
[image: Oracle Corporation]

Contents

Title and Copyright Information

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

1 Introducing PHP with Oracle Database

	Purpose
	Overview of the Sample Application
	Resources

2 Getting Started

	What You Need
	Installing Oracle Database
	Unlocking the HR User

	Installing Apache HTTP Server
	Installing Apache on Windows
	Starting and Stopping Apache on Windows
	Testing the Apache Installation on Windows
	Installing Apache on Linux
	Starting and Stopping Apache on Linux
	Testing the Apache Installation on Linux

	Installing PHP
	Installing PHP on Windows
	Installing PHP on Linux

	Testing the PHP Installation

3 Getting Connected

	Building the Departments Page
	Connecting to the Database
	If You Have Connection Problems
	Other Ways to Connect

	Disconnecting from the Database

4 Querying Data

	Centralizing the Database Application Logic
	Writing Queries with Bind Variables
	Navigating Through Database Records
	ROWNUM vs ROW_NUMBER()

	Extending the Basic Departments Page

5 Updating Data

	Building the Basic Employees page
	Extending the Basic Employees Page
	Combining Departments and Employees
	Adding Error Recovery
	Further Error Handling

6 Executing Stored Procedures and Functions

	Using PL/SQL to Capture Business Logic
	Using PL/SQL Ref Cursors to Return Result Sets

7 Loading Images

	Using BLOBs to Store and Load Employee Images
	Resizing Images

8 Building Global Applications

	Establishing the Environment Between Oracle and PHP
	Manipulating Strings
	Determining the Locale of the User
	Developing Locale Awareness
	Encoding HTML Pages
	Specifying the Page Encoding for HTML Pages
	Specifying the Page Encoding in PHP

	Organizing the Content of HTML Pages for Translation
	Strings in PHP
	Static Files
	Data from the Database

	Presenting Data Using Conventions Expected by the User
	Oracle Date Formats
	Oracle Number Formats
	Oracle Linguistic Sorts
	Oracle Error Messages

Index

Oracle® Database

2 Day + PHP Developer's Guide

11g Release 2 (11.2)

E10811-01

July 2009

Oracle Database 2 Day + PHP Developer's Guide, 11g Release 2 (11.2)

E10811-01

Copyright © 2009, Oracle and/or its affiliates. All rights reserved.

Primary Author: Simon Watt

Contributors: Christopher Jones, Simon Law, Glenn Stokol

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Preface

Oracle Database 2 Day + PHP Developer's Guide introduces developers to the use of PHP to access Oracle Database.

This preface contains these topics:

	
Audience

	
Documentation Accessibility

	
Related Documents

	
Conventions

Audience

Oracle Database 2 Day + PHP Developer's Guide is an introduction to application development using PHP and Oracle Database.

This document assumes that you have a cursory understanding of SQL, PL/SQL, and PHP.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.

Deaf/Hard of Hearing Access to Oracle Support Services

To reach Oracle Support Services, use a telecommunications relay service (TRS) to call Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle technical issues and provide customer support according to the Oracle service request process. Information about TRS is available at http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

Related Documents

For more information, see these Oracle resources:

	
Oracle Database 2 Day Developer's Guide

	
Oracle Database SQL Language Reference

	
Oracle Database PL/SQL Language Reference

	
SQL*Plus User's Guide and Reference

	
Oracle Database Globalization Support Guide

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

1 Introducing PHP with Oracle Database

PHP is a popular scripting language that can be embedded in HTML, which makes it particularly useful for Web development.

This chapter has the following topics:

	
Purpose

	
Overview of the Sample Application

	
Resources

Purpose

This document is a tutorial that shows you how to use PHP to connect to Oracle Database, and demonstrates how to use PHP to access and modify data.

Overview of the Sample Application

This document guides you through the development of a sample Human Resources (HR) application for a fictitious company called AnyCo Corp. For this introduction to the PHP language no framework or abstraction layer is used. However, PHP frameworks are becoming popular and they should be evaluated when building any large application.

The application manages departmental and employee data stored in the DEPARTMENTS and EMPLOYEES tables in the HR schema provided with Oracle Database. See Oracle Database Sample Schemas for information about this schema.

The complete sample application:

	
Establishes a connection to the database using the PHP OCI8 extension

	
Queries the database for departmental and employee data

	
Displays and navigates through the data

	
Shows how to insert, update, and delete employee records

	
Handles data exceptions

	
Uploads and displays employee photographs

Figure 1-1 shows the relationship among the files developed for this application.

Figure 1-1 Components of the Sample HR Application

[image: Description of Figure 1-1 follows]

The sample application files are:

	anyco.php This file contains the main logic for the AnyCo application. It contains control logic that determines which page is displayed. It manages session data for navigation. It calls functions in the include files anyco_cn.inc, anyco_db.inc, and anyco_ui.inc.
	anyco_ui.inc This file contains the functions used to present data and forms in an HTML page.
	anyco_cn.inc This file contains definitions for database connection information, the database user name, password, and database connection identifier.
	anyco_db.inc This file contains the database logic to create database connections, execute queries, and execute data manipulation statements.
	anyco_im.php This file contains logic to retrieve an image from a database column and send it to a Web browser for display as a JPEG image.
	style.css This file contains Cascading Style Sheet (CSS) definitions for various HTML tags generated by the application. It manages the look and feel of the application.

Files with the suffix .inc are PHP code files included in other PHP files.

Files with the suffix .php can be loaded in a Web browser.

You can create and edit the PHP application source files in a text editor or any tool that supports PHP development.

The code for each chapter builds on the files completed in the previous chapter.

Resources

The following Oracle Technology Network Web sites provide additional information you may find useful.

	
PHP Developer Center at

http://www.oracle.com/technology/tech/php/index.html

	
Oracle Database Documentation Library at

http://www.oracle.com/technology/documentation

	
Oracle SQL Developer center at

http://www.oracle.com/technology/products/database/sql_developer/

2 Getting Started

This chapter explains how to install and test Oracle Database and PHP environment. It has the following topics:

	
What You Need

	
Installing Oracle Database

	
Installing Apache HTTP Server

	
Installing PHP

	
Testing the PHP Installation

What You Need

To install your Oracle Database and PHP environment, you need:

	
Oracle Database Server which includes the sample data for this tutorial

	
Oracle Database Client libraries are included with the Oracle Database software or can be installed using Oracle Instant Client

	
Apache HTTP Server which is typically already installed on Linux computers

	
PHP - PHP Hypertext Preprocessor

	
A text editor for editing PHP code. A code editor such as Oracle JDeveloper with the optional PHP Extension can also be used.

Installing Oracle Database

You should install Oracle Database Server on your computer. The sample data used in this tutorial is installed by default. It is the HR component of the Sample Schemas.

Throughout this tutorial Oracle SQL Developer is the graphical user interface used to perform Database tasks. Oracle SQL Developer is a free graphical tool for database development.

	
See Also:

	
Oracle Database Sample Schemas guide for information about the HR sample schema.

	
Oracle SQL Developer web page

http://www.oracle.com/technology/products/database/sql_developer/

Unlocking the HR User

The PHP application connects to the database as the HR user. You may need to unlock the HR account as a user with DBA privileges. To unlock the HR user:

	
Open SQL Developer and open a connection to your Oracle database.

	
Login to your Oracle database as system.

	
Open SQL Worksheet or SQL*Plus and run the following SQL statement:

alter user hr account unlock;

[image: Description of chap2_unlock.gif follows]

For further information about unlocking an Oracle Database account, see Chapter 6, "Managing Users and Security," in the Oracle Database 2 Day DBA guide.

	
See Also:

	
Oracle Database documentation

http://www.oracle.com/technology/documentation

Installing Apache HTTP Server

You should install Apache before you install PHP. Apache is typically installed by default on Linux computers. See Testing the Apache Installation on Linux before downloading the Apache software.

Perform the following steps to obtain Apache HTTP Server for Windows or Linux:

	
Enter the following URL in your Web browser:

http://httpd.apache.org/download.cgi

	
For Windows, click the apache_2.2.12-win32-x86-no_ssl.msi. For Linux, click httpd-2.2.12.tar.bz2.

	
Save the downloaded file in a temporary directory, such as c:\tmp on Windows or \tmp on Linux.

Installing Apache on Windows

This section describes how to install Apache HTTP Server on Windows.

The file name and extraction directory are based on the current version. Throughout this procedure, ensure you use the directory name for the version you are installing.

You must be the administrator user to install Apache.

To install Apache, double-click the file and follow the wizards.

The default installation directory is likely to be C:\Program Files\Apache Group. This is the directory that is assumed for the tutorial exercises. If you install to a different directory, you need to note the directory so you can change the path used in the tutorials.

Starting and Stopping Apache on Windows

You can use the Start menu option to start Apache. This opens a console window showing any error messages. Error messages may also be written to C:\Program Files\Apache Group\Apache2\logs\error.log.

You can also use the ApacheMonitor utility to start Apache. It will appear as an icon in your System Tray, or navigate to the Apache bin directory and double click ApacheMonitor.exe. In a default installation, Apache bin is located at c:\Program Files\Apache Group\Apache2\bin.

You can also use the Windows Services to start Apache. You access Windows Services from the Windows Start menu at Start > Control Panel > Administrative Tools > Services. Select the Standard tab. Right click the Apache2 HTTP Server and then select Restart

If you have errors, double check your httpd.conf and php.ini files.

Testing the Apache Installation on Windows

To test the Apache HTTP Server installation:

	
Start your Web browser on the computer on which you installed Apache.

	
Enter the following URL:

http://localhost/

Your Web browser will display a page similar to the following:

[image: Description of chap2_test_install_013.gif follows]

If this page does not appear check your Apache configuration. Common problems are that Apache is not running, or that it is listening on a non-default port.

Installing Apache on Linux

This section describes how to install Apache HTTP Server on Linux.

The file name and extraction directory are based on the current version. Throughout this procedure, ensure you use the directory name for the version you are installing.

Apache is typically already installed on Linux. If you find it is not installed after Testing the Apache Installation on Linux, perform the following steps to install the Apache HTTP Server:

	
Go to the directory where you downloaded the httpd-2.2.12.tar.bz2 file.

	
Log in as the root user and execute these commands:

tar -jxvf httpd-2.2.12.tar.bz2
cd httpd-2.2.12
export ORACLE_HOME=/usr/lib/oracle/app/oracle/product/10.2.0/server
./configure \
 --prefix=/usr/local/apache \
 --enable-module=so \
make
make install

The option --enable-module=so allows PHP to be compiled as a Dynamic Shared Object (DSO). The --prefix= option sets the Apache installation directory used by the command make install

Starting and Stopping Apache on Linux

You use the apachectl script to start and stop Apache.

Start Apache with the apachectl script:

/usr/local/apache/bin/apachectl start

Stop Apache with the apachectl script:

/usr/local/apache/bin/apachectl stop

When you start Apache, you must have ORACLE_HOME defined. Any other required Oracle environment variables must be set before Apache starts too. These are the same variables set by the $ORACLE_HOME/bin/oracle_env.sh or the /usr/local/bin/oraenv scripts.

For convenience, you could create a script to start Apache as follows:

#!/bin/sh
ORACLE_HOME=/usr/lib/oracle/app/oracle/product/10.2.0/server
export ORACLE_HOME
echo "Oracle Home: $ORACLE_HOME"
echo Starting Apache
/usr/local/apache/bin/apachectl start

Testing the Apache Installation on Linux

To test the Apache HTTP Server installation:

	
Start your Web browser on the host on which you installed Apache, and enter the following URL:

http://localhost/

Your Web browser will display a page similar to the following:

[image: Description of chap2_install_001.gif follows]

If this page does not appear, check your Apache configuration. Common problems are that Apache is not running, or that it is listening on a non default port.

	
In the default Apache HTTP Server configuration file, set up a public virtual directory as public_html for accessing your PHP files. Use your preferred editor to open the Apache configuration file /etc/httpd/conf/httpd.conf (the directory may be different in your installation of Linux), and remove the pound sign (#) at the start of the following line:

 UserDir public_html

In this example, your Apache httpd.conf file contains the following lines:

<IfModule mod_userdir.c>
 #
 # UserDir is disabled by default since it can confirm the presence
 # of a username on the system (depending on home directory
 # permissions).
 #
 #UserDir disable

 #
 # To enable requests to /~user/ to serve the user's public_html
 # directory, remove the "UserDir disable" line above, and uncomment
 # the following line instead:
 #
 UserDir public_html
</IfModule>

This enables the Web browser to make an HTTP request using a registered user on the system and to serve files from the $HOME/public_html directory of the user. For example:

http://localhost/~user/

	
To use the new Apache configuration file, in a command window, restart Apache by entering the following commands:

su -
Password: <enter your su (root) password>
apachectl restart

[image: Description of chap2_install_002.gif follows]

If the Apache HTTP Server does not start, check the error log files to determine the cause. It may be a configuration error.

	
In the command window, log in (not root) and create a public_html subdirectory in the $HOME directory with the following command:

mkdir $HOME/public_html

[image: Description of chap2_install_003.gif follows]

Installing PHP

Perform the following steps to obtain PHP for Windows or Linux:

	
Enter the following URL in your Web browser:

http://www.php.net/downloads.php

	
For Windows, click the 5.2.10 zip package under Windows Binaries. For Linux, click php-5.2.10.tar.bz2 under Complete Source Code.

	
Save the downloaded file in a temporary directory, such as c:\tmp on Windows or \tmp on Linux.

Installing PHP on Windows

This section describes how to install PHP on Windows.

The file name and extraction directory are based on the current version. Throughout this procedure, ensure you use the directory name for the version you are installing.

You must be the administrator user to install PHP. To install PHP, perform the following steps:

	
In Windows Explorer, go to the directory where you downloaded the PHP 5.2.10 zip file.

	
Unzip the PHP package to a directory called C:\php-5.2.10

	
Copy php.ini-recommended to C:\Program Files\Apache Group\Apache2\conf\php.ini

	
Edit php.ini to make the following changes:

	
Change extension_dir to C:\php-5.2.10\ext, which is the directory containing php_oci8.dll and the other PHP extensions.

	
Remove the semicolon from the beginning of the line

extension=php oci8.dll

	
Set the PHP directive, display_errors, to On. For testing it is helpful to see any problems in your code.

	
Edit the file httpd.conf and add the following lines. Make sure you use forward slashes '/' and not back slashes '\':

 #
 # This will load the PHP module into Apache
 #
 LoadModule php5_module c:/php-5.2.10/php5apache2.dll

 #
 # This next section will call PHP for .php, .phtml, and .phps files
 #
 AddType application/x-httpd-php .php
 AddType application/x-httpd-php .phtml
 AddType application/x-httpd-php-source .phps

 #
 # This is the directory containing php.ini
 #
 PHPIniDir "C:/Program Files/Apache Group/Apache2/conf"

	
Restart the Apache Server so that you can test your PHP installation.

You can use the Start menu option to start Apache. This opens a console window showing any error messages. Error messages may also be written to C:\Program Files\Apache Group\Apache2\logs\error.log.

You can also use the ApacheMonitor utility to start Apache. It will appear as an icon in your System Tray, or navigate to the Apache bin directory and double click ApacheMonitor.exe. In a default installation, Apache bin is located at c:\Program Files\Apache Group\Apache2\bin.

You can also use the Windows Services to start Apache. You access Windows Services from the Windows Start menu at Start > Control Panel > Administrative Tools > Services. Select the Standard tab. Right click the Apache2 HTTP Server and then select Restart

If you have errors, double check your httpd.conf and php.ini files.

Installing PHP on Linux

This section describes how to install PHP on Linux.

The file name and extraction directory are based on the current version. Throughout this procedure, ensure you use the directory name for the version you are installing.

Perform the following steps to install PHP:

	
Go to the directory where you downloaded the php-5.2.10.tar.bz2 file.

	
Log in as the root user and execute these commands:

tar -jxvf php-5.2.10.tar.bz2
cd php-5.2.10
export ORACLE_HOME=/usr/lib/oracle/app/oracle/product/10.2.0/server
./configure \
 --with-oci8=$ORACLE_HOME \
 --with-apxs2=/usr/local/apache/bin/apxs \
 --with-config-file-path=/usr/local/apache/conf \
 --enable-sigchild
make
make install

Check the value for ORACLE_HOME to ensure it reflects your Oracle version and installation.

If you are behind a firewall, you may need to set the environment variable http_proxy to your proxy server before running make install. This enables PHP's PEAR components to be installed.

	
Copy PHP's supplied initialization file:

cp php.ini-recommended /usr/local/apache/conf/php.ini

For testing it is helpful to edit php.ini and set the PHP directive, display_errors, to On so you can see any problems in your code.

	
Edit Apache's configuration file /usr/local/apache/conf/httpd.conf and add the following lines:

#
This next section will call PHP for .php, .phtml, and .phps files
#
AddType application/x-httpd-php .php
AddType application/x-httpd-php .phtml
AddType application/x-httpd-php-source .phps

#
This is the directory containing php.ini
#
PHPIniDir "/usr/local/apache/conf"

If a LoadModule line was not inserted by the PHP install, add it with:

LoadModule php5_module modules/libphp5.so

	
Restart the Apache Server to test your PHP installation with the following:

/usr/local/apache/bin/apachectl start

If there are errors, they will display on your screen. They may also be written to /usr/local/apache/logs/error_log. If you have problems, double check your httpd.conf and php.ini files.

Testing the PHP Installation

To test the PHP installation:

	
Create a subdirectory called chap2. To create a directory for your application files, and to change to the newly created directory, enter the following commands in a command window:

On Windows:

mkdir "c:\program files\Apache Group\Apache2\htdocs\chap2"
cd c:\program files\Apache Group\Apache2\htdocs\chap2

On Linux:

mkdir $HOME/public_html/chap2
cd $HOME/public_html/chap2

If you create files in a different location, you must change the steps for file editing and execution to match your working directory name and URL.

	
Create a file called hello.php that contains the following HTML text:

<?php
 echo "Hello, world!";
?>

	
Open a Web browser and enter the following URL in your browser:

On Windows:

http://localhost/chap2/hello.php

On Linux:

http://localhost/~<username>/chap2/hello.php

The line "Hello, world!" appears in the browser.

[image: Description of chap2_hello_001.gif follows]

3 Getting Connected

In this chapter, you create HR application files that implement PHP functions to connect and disconnect to the Oracle Database. You also develop a PHP function that enables you to execute a query to validate that a database connection has been successfully established.

This chapter also guides you through the creation and modification of PHP files that call a function to produce the header and footer for the Departments page, where the footer section of the page includes a date and time.

This chapter has the following topics:

	
Building the Departments Page

	
Connecting to the Database

	
Disconnecting from the Database

	
Note:

For simplicity, the user name and password are written into this sample application code. For applications that will be deployed, coding the user name and password strings directly into your application source code is not recommended. Oracle recommends that you use a more secure technique, such as implementing a dialog that prompts the user for the user name and password.
See Oracle Database Security Guide and the documentation for your development environment for details on security features and practices.

Building the Departments Page

In this section, you will create the functions and styles for the first screen of your application.

Follow these steps to build the Departments page:

	
To create a directory for your application files, and to change to the newly created directory, enter the following commands in a command window:

On Windows:

mkdir c:\program files\Apache Group\Apache2\htdocs\chap3
cd c:\program files\Apache Group\Apache2\htdocs\chap3

On Linux:

mkdir $HOME/public_html/chap3
cd $HOME/public_html/chap3

If you create files in a different location, you must change the steps for file editing and execution to match your working directory name and URL.

	
To start developing your application user interface, use your preferred text editor to create a file called anyco_ui.inc that contains the two functions ui_print_header() and ui_print_footer() with their parameters to enable your application Web pages to have consistent header and footer sections:

<?php

function ui_print_header($title)
{
 $title = htmlentities($title);
 echo <<<END
 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
 <html>
 <head>
 <meta http-equiv="Content-Type"
 content="text/html; charset=ISO-8859-1">
 <link rel="stylesheet" type="text/css" href="style.css">
 <title>Any Co.: $title</title>
 </head>
 <body>
 <h1>$title</h1>
END;
}

function ui_print_footer($date)
{
 $date = htmlentities($date);
 echo <<<END
 <div class="footer">
 <div class="date">$date</div>
 <div class="company">Any Co.</div>
 </div>
END;
}

?>

	
This application design uses PHP function definitions to enable modular reusable code.

	
The functions in anyco_ui.inc use a PHP language construct called a "here document." This enables you to place any amount of HTML formatted text between the following two lines:

echo <<<END
END;

	
Do not put leading spaces in the END; line. If you do, the rest of the document will be treated as part of the text to be printed.

	
Any PHP parameters appearing inside the body of a "here document" are replaced with their values, for example, the $title or $date parameters.

	
The PHP function htmlentities() is used to prevent user-supplied text from accidentally containing HTML markup and affecting the output formatting.

	
The PHP file uses a Cascading Style Sheet (CSS) file called style.css to specify the presentation style in HTML in the browser.

Create a style.css file in the chap3 directory with the following CSS text:

body
{ background: #CCCCFF;
 color: #000000;
 font-family: Arial, sans-serif; }

h1
{ border-bottom: solid #334B66 4px;
 font-size: 160%; }

table
{ padding: 5px; }

td
{ border: solid #000000 1px;
 text-align: left;
 padding: 5px; }

th
{ text-align: left;
 padding: 5px; }

.footer
{ border-top: solid #334B66 4px;
 font-size: 90%; }

.company
{ padding-top: 5px;
 float: right; }

.date
{ padding-top: 5px;
 float: left; }

	
To call the user interface functions, create the anyco.php file with the following text:

<?php

require('anyco_ui.inc');

ui_print_header('Departments');
ui_print_footer(date('Y-m-d H:i:s'));

?>

The require() PHP command is used to include anyco_ui.inc. The new functions can be called to produce HTML output.

	
To test the anyco.php file, enter the following URL in your browser:

On Windows:

http://localhost/chap3/anyco.php

On Linux:

http://localhost/~<username>/chap3/anyco.php

The resulting Web page is similar to the following:

[image: Description of chap3_test_install_005.gif follows]

The date and time appear in the page footer section.

Connecting to the Database

In this section, you will add a database connection to your Departments screen so that you can display Department data.

Follow these steps to add a database connection to your application.

To form a database connection, you use the oci_connect() function with three string parameters:

$conn = oci_connect($username, $password, $db)

The first and second parameters are the database user name and password, respectively. The third parameter is the database connection identifier. The oci_connect() function returns a connection resource needed for other OCI8 calls; it returns FALSE if an error occurs. The connection identifier returned is stored in a variable called $conn.

	
Edit the anyco.php file to add a database connection with the following parameter values:

	
Username is hr.

	
Password for this example is hr. Remember to use the actual password of your HR user.

	
Oracle connection identifier is //localhost/orcl.

	
Edit the anyco.php file to validate that the oci_connect() call returns a usable database connection, write a do_query() function that accepts two parameters: the database connection identifier, obtained from the call to oci_connect(), and a query string to select all the rows from the DEPARTMENTS table.

	
Edit the anyco.php file to prepare the query for execution, add an oci_parse() call. The oci_parse() function has two parameters, the connection identifier and the query string. It returns a statement identifier needed to execute the query and fetch the resulting data rows. It returns FALSE if an error occurs.

	
Edit the anyco.php file to execute the query, add a call to the oci_execute() function. The oci_execute() function executes the statement associated with the statement identifier provided in its first parameter. The second parameter specifies the execution mode. OCI_DEFAULT is used to indicate that you do not want statements to be committed automatically. The default execution mode is OCI_COMMIT_ON_SUCCESS. The oci_execute() function returns TRUE on success; otherwise it returns FALSE.

	
Edit the anyco.php file to fetch all the rows for the query executed, add a while loop and a call to the oci_fetch_array() function. The oci_fetch_array() function returns the next row from the result data; it returns FALSE if there are no more rows. The second parameter of the oci_fetch_array() function, OCI_RETURN_NULLS, indicates that NULL database fields will be returned as PHP NULL values.

Each row of data is returned as a numeric array of column values. The code uses a PHP foreach construct to loop through the array and print each column value in an HTML table cell, inside a table row element. If the item value is NULL then a nonbreaking space is printed; otherwise the item value is printed.

After the edits in Steps 1 to 5, the anyco.php file becomes:

<?php // File: anyco.php

require('anyco_ui.inc');

// Create a database connection
$conn = oci_connect('hr', 'hr', '//localhost/orcl');

ui_print_header('Departments');
do_query($conn, 'SELECT * FROM DEPARTMENTS');
ui_print_footer(date('Y-m-d H:i:s'));

// Execute query and display results
function do_query($conn, $query)
{
 $stid = oci_parse($conn, $query);
 $r = oci_execute($stid, OCI_DEFAULT);

 print '<table border="1">';
 while ($row = oci_fetch_array($stid, OCI_ASSOC+OCI_RETURN_NULLS)) {
 print '<tr>';
 foreach ($row as $item) {
 print '<td>'.
 ($item!== null ? htmlentities($item) : ' ').'</td>';
 }
 print '</tr>';
 }
 print '</table>';
}

?>

	
To test the changes made to anyco.php, save the modified anyco.php file. In a browser window, enter the following URL:

On Windows:

http://localhost/chap3/anyco.php

On Linux:

http://localhost/~<username>/chap3/anyco.php

The page returned in the browser window should resemble the following page:

[image: Description of chap3_db_connect_001.gif follows]

If you want to query the EMPLOYEES data, you can optionally change the query in the do_query() function call to:

do_query($conn, 'SELECT * FROM EMPLOYEES');

If You Have Connection Problems

Check that the username, password and connection string are valid. The connect string '//localhost/orcl' uses the Oracle Easy Connect syntax. If you are using an Oracle Net tnsnames.ora file to specify the database you want to connect to, then use the network alias as the third parameter to the oci_connect() function.

If you are not seeing errors, set the PHP directive display_errors to ON, and the error_reporting directive to E_ALL|E_STRICT.

If you have a PHP code problem and are not using a debugger, you can examine variables using the PHP var_dump() function. For example:

print '<pre>';
var_dump($r);
print '</pre>';

Other Ways to Connect

In some applications, using a persistent connection improves performance by removing the need to reconnect each time the script is called. Depending on your Apache configuration, this may cause a number of database connections to remain open simultaneously. You must balance the connection performance benefits against the overhead on the database server.

Persistent connections are made with the OCI8 oci_pconnect() function. Several settings in the PHP initialization file enable you to control the lifetime of persistent connections. Some settings include:

oci8.max_persistent - This controls the number of persistent connections per process.

oci8.persistent_timeout - This specifies the time (in seconds) that a process maintains an idle persistent connection.

oci8.ping_interval - This specifies the time (in seconds) that must pass before a persistent connection is "pinged" to check its validity.

For more information, see the PHP reference manual at

http://www.php.net/manual/en/ref.oci8.php

For information about connection pooling, see Connection Pooling in OCI in the Oracle Call Interface Programmer's Guide and the Oracle Database Net Services Administrator's Guide.

Disconnecting from the Database

The PHP engine automatically closes the database connection at the end of the script unless a persistent connection was made. If you want to explicitly close a non-persistent database connection, you can call the oci_close() OCI function with the connection identifier returned by the oci_connect() call. For example:

<?php

$conn = oci_connect('hr', '<your_password>', '//localhost/orcl');
...
oci_close($conn);

...

?>

Because PHP uses a reference counting mechanism for tracking variables, the database connection may not actually be closed until all PHP variables referencing the connection are unset or go out of scope.

4 Querying Data

In this chapter, you extend the Anyco HR application from Chapter 3 by adding information to the Departments page. You also implement the functionality to query, insert, update, and delete employee records in a specific department.

This chapter has the following topics:

	
Centralizing the Database Application Logic

	
Writing Queries with Bind Variables

	
Navigating Through Database Records

	
Extending the Basic Departments Page

Centralizing the Database Application Logic

In this section, you will modify your application code by moving the database access logic into separate files for inclusion in the PHP application.

	
Copy the files that you completed in Chapter 3 to a new chap4 directory, and change to the newly created directory:

On Windows:

mkdir c:\program files\Apache Group\Apache2\htdocs\chap4
cd c:\program files\Apache Group\Apache2\htdocs\chap4
copy ..\chap3* .

On Linux:

mkdir $HOME/public_html/chap4
cd $HOME/public_html/chap4
cp ../chap3/* .

	
Using your preferred editor, create a file called anyco_cn.inc that defines named constants for the database connection information. This file enables you to change connection information in one place.

<?php // File: anyco_cn.inc

define('ORA_CON_UN', 'hr'); // User name
define('ORA_CON_PW', 'hr'); // Password
define('ORA_CON_DB', '//localhost/orcl'); // Connection identifier

?>

For simplicity, the user name and password are written into this sample application code. For applications that will be deployed, coding the user name and password strings directly into your application source code is not recommended. Oracle recommends that you use a more secure technique, such as implementing a dialog that prompts the user for the user name and password.

See Oracle Database Security Guide and the documentation for your development environment for details on security features and practices.

	
Create a file called anyco_db.inc that declares functions for creating a database connection, executing a query, and disconnecting from the database. Use the following logic, which includes some error handling that is managed by calling an additional function called db_error ():

<?php // File: anyco_db.inc

function db_connect()
{
 // use constants defined in anyco_cn.inc
 $conn = oci_connect(ORA_CON_UN, ORA_CON_PW, ORA_CON_DB);
 if (!$conn) {
 db_error(null, __FILE__, __LINE__);
 }
 return($conn);
}

function db_do_query($conn, $statement)
{
 $stid = oci_parse($conn, $statement);
 if (!$stid) {
 db_error($conn, __FILE__, __LINE__);
 }

 $r = oci_execute($stid, OCI_DEFAULT);
 if (!$r) {
 db_error($stid, __FILE__, __LINE__);
 }
 $r = oci_fetch_all($stid, $results, null, null,
 OCI_FETCHSTATEMENT_BY_ROW);
 return($results);
}

// $r is the resource containing the error.
// Pass no argument or false for connection errors

function db_error($r = false, $file, $line)
{
 $err = $r ? oci_error($r) : oci_error();

 if (isset($err['message'])) {
 $m = htmlentities($err['message']);
 }
 else {
 $m = 'Unknown DB error';
 }

 echo '<p>Error: at line '.$line.' of '.$file.'</p>';
 echo '<pre>'.$m.'</pre>';

 exit;
}

?>

The db_do_query() function in this example uses the oci_fetch_all() OCI8 function. The oci_fetch_all() function accepts the following five parameters:

	
$stid, the statement identifier for the statement executed

	
$results, the output array variable containing the data returned for the query

	
The null in the third parameter for the number of initial rows to skip is ignored.

	
The null in the fourth parameter for the maximum number of rows to fetch is ignored. In this case, all the rows for the query are returned. For this example where the result set is not large, it is acceptable.

	
The last parameter flag OCI_FETCHSTATEMENT_BY_ROW indicates that the data in the $results array is organized by row, where each row contains an array of column values. A value of OCI_FETCHSTATEMENT_BY_COLUMN causes the results array to be organized by column, where each column entry contains an array of column values for each row. Your choice of value for this flag depends on how you intend to process the data in your logic.

To examine the structure of the result array, use the PHP var_dump() function after the query has been executed. This is useful for debugging. For example:

print '<pre>';
var_dump($results);
print '</pre>';

The db_error() function accepts three arguments. The $r parameter can be false or null for obtaining connection errors, or a connection resource or statement resource to obtain an error for those contexts. The $file and $line values are populated by using __FILE__ and __LINE__, respectively, as the actual parameters to enable the error message to display the source file and line from which the database error is reported. This enables you to easily track the possible cause of errors.

The db_ error() function calls the oci_error() function to obtain database error messages.

The db_error() function calls the isset() function before printing the message. The isset() function checks if the message component of the database error structure is set, or if the error is unknown.

	
Edit anyco_ui.inc. To format the results of a single row from the DEPARTMENTS table query in an HTML table format, insert the following function:

function ui_print_department($dept)
{
 if (!$dept) {
 echo '<p>No Department found</p>';
 }
 else {
 echo <<<END
 <table>
 <tr>
 <th>Department
ID</th>
 <th>Department
Name</th>
 <th>Manager
Id</th>
 <th>Location ID</th>
 </tr>
 <tr>
END;
 echo '<td>'.htmlentities($dept['DEPARTMENT_ID']).'</td>';
 echo '<td>'.htmlentities($dept['DEPARTMENT_NAME']).'</td>';
 echo '<td>'.htmlentities($dept['MANAGER_ID']).'</td>';
 echo '<td>'.htmlentities($dept['LOCATION_ID']).'</td>';
 echo <<<END
 </tr>
 </table>
END;
 }
}

As noted in Chapter 3, do not prefix END; lines with leading spaces. If you do, the rest of the document will be treated as part of the text to be printed.

	
Edit the anyco.php file. Include the anyco_ui.inc and anyco_db.inc files, and call the database functions to query and display information for a department with a department_id of 80 by using the following code. The file becomes:

<?php // File: anyco.php

require('anyco_cn.inc');
require('anyco_db.inc');
require('anyco_ui.inc');

$query =
 'SELECT department_id, department_name, manager_id, location_id
 FROM departments
 WHERE department_id = 80';

$conn = db_connect();

$dept = db_do_query($conn, $query);
ui_print_header('Departments');
ui_print_department($dept[0]);
ui_print_footer(date('Y-m-d H:i:s'));

?>

	
To test the resulting changes to the application, enter the following URL in a browser window:

On Windows:

http://localhost/chap4/anyco.php

On Linux:

http://localhost/~<username>/chap4/anyco.php

The page returned in the browser window should resemble the following page:

[image: Description of chap4_db_connect_002.gif follows]

Writing Queries with Bind Variables

Using queries with values included in the WHERE clause may be useful for some situations. However, if the conditional values in the query are likely to change it is not appropriate to encode a value into the query. Oracle recommends that you use bind variables.

A bind variable is a symbolic name preceded by a colon in the query that acts as a placeholder for literal values. For example, the query string created in the anyco.php file could be rewritten with the bind variable :did as follows:

$query =
 'SELECT department_id, department_name, manager_id, location_id
 FROM departments
 WHERE department_id = :did';

By using bind variables to parameterize SQL statements:

	
The statement is reusable with different input values without needing to change the code.

	
The query performance is improved through a reduction of the query parse time in the server, because the Oracle database can reuse parse information from the previous invocations of the identical query string.

	
There is protection against "SQL Injection" security problems.

	
There is no need to specially handle quotation marks in user input.

When a query uses a bind variable, the PHP code must associate an actual value with each bind variable (placeholder) used in the query before it is executed. This process is known as run-time binding.

To enable your PHP application to use bind variables in the query, perform the following changes to your PHP application code:

	
Edit the anyco.php file. Modify the query to use a bind variable, create an array to store the value to be associated with the bind variable, and pass the $bindargs array to the db_do_query() function:

<?php // File: anyco.php
...

$query =
'SELECT department_id, department_name, manager_id, location_id
 FROM departments
 WHERE department_id = :did';

$bindargs = array();
// In the $bindargs array add an array containing
// the bind variable name used in the query, its value, a length
array_push($bindargs, array('DID', 80, -1));

$conn = db_connect();
$dept = db_do_query($conn, $query, $bindargs);

...
?>

In this example, the bind variable, called DID, is an input argument in the parameterized query, and it is associated with the value 80. Later, the value of the bind variable will be dynamically determined. In addition, the length component is passed as -1 so that the OCI8 layer can determine the length. If the bind variable was used to return output from the database an explicit size would be required.

	
Edit the anyco_db.inc file. Modify the db_do_query() function to accept a $bindvars array variable as a third parameter. Call the oci_bind_by_name() OCI8 call to associate the PHP values supplied in $bindvars parameter with bind variables in the query. The function becomes:

function db_do_query($conn, $statement, $bindvars = array())
{
 $stid = oci_parse($conn, $statement);
 if (!$stid) {
 db_error($conn, __FILE__, __LINE__);
 }

 // Bind the PHP values to query bind parameters
 foreach ($bindvars as $b) {
 // create local variable with caller specified bind value
 $$b[0] = $b[1];
 // oci_bind_by_name(resource, bv_name, php_variable, length)
 $r = oci_bind_by_name($stid, ":$b[0]", $$b[0], $b[2]);
 if (!$r) {
 db_error($stid, __FILE__, __LINE__);
 }
 }
 $r = oci_execute($stid, OCI_DEFAULT);
 if (!$r) {
 db_error($stid, __FILE__, __LINE__);
 }
 $r = oci_fetch_all($stid, $results, null, null,
 OCI_FETCHSTATEMENT_BY_ROW);
 return($results);
}

The binding is performed in the foreach loop before the oci_execute() is done.

For each entry in $bindvars array, the first element contains the query bind variable name that is used to create a PHP variable of the same name; that is, $$b[0] takes the value DID in $b[0] and forms a PHP variable called $DID whose value is assigned from the second element in the entry.

The oci_bind_by_name() function accepts four parameters: the $stid as the resource, a string representing the bind variable name in the query derived from the first element in the array entry, the PHP variable containing the value to be associated with the bind variable, and the length of the input value.

	
To test the results of the preceding modifications, save the anyco.php and anyco_db.inc files and enter the following URL:

On Windows:

http://localhost/chap4/anyco.php

On Linux:

http://localhost/~<username>/chap4/anyco.php

The page returned in the browser window should resemble the following page:

[image: Description of chap4_db_connect_003.gif follows]

Navigating Through Database Records

Adding navigation through the database records requires several important changes to the application logic. The modifications require the combination of:

	
Including an HTML form to provide Next and Previous navigation buttons to step through database records.

	
Detecting if the HTTP request for the page was posted by clicking the Next or Previous button.

	
Tracking the last row queried by using the HTTP session state. A PHP session is started to maintain state information for a specific client between HTTP requests. The first HTTP request will retrieve the first data row and initialize the session state. A subsequent request, initiated with navigation buttons, combined with the session state from a previous HTTP request, enables the application to set variables that control the next record retrieved by the query.

	
Writing a query that returns a subset of rows based on a set of conditions whose values are determined by the application state.

To add navigation through database rows, perform the following steps:

	
Edit the anyco_ui.inc file. Add Next and Previous navigation buttons to the Departments page. Change the ui_print_department() function to append a second parameter called $posturl that supplies the value for the form attribute action. After printing the </table> tag include HTML form tags for the Next and Previous buttons:

<?php // File: anyco_ui.inc
...
function ui_print_department($dept, $posturl)
{
 ...
 echo <<<END
 </tr>
 </table>
 <form method="post" action="$posturl">
 <input type="submit" value="< Previous" name="prevdept">
 <input type="submit" value="Next >" name="nextdept">
 </form>
END;
 }
}

?>

	
Edit the anyco.php file. To detect if the Next or Previous button was used to invoke the page and track the session state, call the PHP function session_start(), and create a function named construct_departments():

Move and modify the database access logic into a new construct_departments() function, which detects if navigation has been performed, manages the session state, defines a subquery for the database access layer to process, and connects and calls a function db_get_page_data(). The file becomes:

<?php // File: anyco.php

require('anyco_cn.inc');
require('anyco_db.inc');
require('anyco_ui.inc');

session_start();
construct_departments();

function construct_departments()
{
 if (isset($_SESSION['currentdept']) &&
 isset($_POST['prevdept']) &&
 $_SESSION['currentdept'] > 1) {
 $current = $_SESSION['currentdept'] - 1;
 }
 elseif (isset($_SESSION['currentdept']) &&
 isset($_POST['nextdept'])) {
 $current = $_SESSION['currentdept'] + 1;
 }
 elseif (isset($_POST['showdept']) &&
 isset($_SESSION['currentdept'])) {
 $current = $_SESSION['currentdept'];
 }
 else {
 $current = 1;
 }

 $query = 'SELECT department_id, department_name,
 manager_id, location_id
 FROM departments
 ORDER BY department_id asc';

 $conn = db_connect();

 $dept = db_get_page_data($conn, $query, $current, 1);
 $deptid = $dept[0]['DEPARTMENT_ID'];

 $_SESSION['currentdept'] = $current;

 ui_print_header('Department');
 ui_print_department($dept[0], $_SERVER['SCRIPT_NAME']);
 ui_print_footer(date('Y-m-d H:i:s'));
}

?>

The if and elseif construct at the start of the construct_departments() function is used to detect if a navigation button was used with an HTTP post request to process the page, and tracks if the currentdept number is set in the session state. Depending on the circumstances, the variable $current is decremented by one when the previous button is clicked, $current is incremented by one when the Next button is clicked, otherwise $current is set to the current department, or initialized to one for the first time through.

A query is formed to obtain all the department rows in ascending sequence of the department_id. The ORDER BY clause is an essential part of the navigation logic. The query is used as a subquery inside the db_get_page_data() function to obtain a page of a number of rows, where the number of rows per page is specified as the fourth argument to the db_get_page_data() function. After connecting to the database, db_get_page_data() is called to retrieve the set of rows obtained for the specified query. The db_get_page_data() function is provided with the connection resource, the query string, a value in $current specifying the first row in the next page of data rows required, and the number of rows per page (in this case one row per page).

After db_get_page_data()has been called to obtain a page of rows, the value of $current is stored in the application session state.

Between printing the page header and footer, the ui_print_department() function is called to display the recently fetched department row. The ui_print_department() function uses $_SERVER['SCRIPT_NAME'] to supply the current PHP script name for the $posturl parameter. This sets the action attribute in the HTML form, so that each Next or Previous button click calls the anyco.php file.

	
Edit the anyco_db.inc file. Implement the db_get_page_data() function to query a subset of rows:

// Return subset of records
function db_get_page_data($conn, $q1, $current = 1,
 $rowsperpage = 1, $bindvars = array())
{
 // This query wraps the supplied query, and is used
 // to retrieve a subset of rows from $q1
 $query = 'SELECT *
 FROM (SELECT A.*, ROWNUM AS RNUM
 FROM ('.$q1.') A
 WHERE ROWNUM <= :LAST)
 WHERE :FIRST <= RNUM';

 // Set up bind variables.
 array_push($bindvars, array('FIRST', $current, -1));
 array_push($bindvars,
 array('LAST', $current+$rowsperpage-1, -1));

 $r = db_do_query($conn, $query, $bindvars);
 return($r);
}

The structure of the query in the db_get_page_data() function enables navigation through a set (or page) of database rows.

The query supplied in $q1 is nested as a subquery inside the following subquery:

SELECT A.*, ROWNUM AS RNUM FROM $q1 WHERE ROWNUM <= :LAST

Remember that the query supplied in $q1 retrieves an ordered set of rows, which is filtered by its enclosing query to return all the rows from the first row to the next page size ($rowsperpage) of rows. This is possible because the Oracle ROWNUM function (or pseudocolumn) returns an integer number starting at 1 for each row returned by the query in $q1.

The set of rows, returned by the subquery enclosing query $q1, is filtered a second time by the condition in the following outermost query:

WHERE :FIRST <= RNUM

This condition ensures that rows prior to the value in :FIRST (the value in $current) are excluded from the final set of rows. The query enables navigation through a set rows where the first row is determined by the $current value and the page size is determined by the $rowsperpage value.

The $current value is associated with the bind variable called :FIRST. The expression $current+$rowsperpage-1 sets the value associated with the :LAST bind variable.

	
To test the changes made to your application, save the changed files, and enter the following URL in your Web browser:

On Windows:

http://localhost/chap4/anyco.php

On Linux:

http://localhost/~<username>/chap4/anyco.php

When you request the anyco.php page, the first DEPARTMENT table record, the Administration department, is displayed:

[image: Description of chap4_db_nagivation_001.gif follows]

	
To navigate to the next department record (Marketing), click Next:

[image: Description of chap4_db_nagivation_002.gif follows]

	
To navigate back to the first department record (Administration), click Previous:

[image: Description of chap4_db_nagivation_003.gif follows]

You may continue to test and experiment with the application by clicking Next and Previous to navigate to other records in the DEPARTMENTS table, as desired.

	
Note:

If you navigate past the last record in the DEPARTMENTS table, an error will occur. Error handling is added in Adding Error Recovery in Chapter 5.

ROWNUM vs ROW_NUMBER()

If you were writing a PHP function with a hard coded query, the ROW_NUMBER() function may be a simpler alternative for limiting the number of rows returned. For example, a query that returns the last name of all employees:

SELECT last_name FROM employees ORDER BY last_name;

could be written to select rows 51 to 100 inclusive as:

SELECT last_name FROM
 SELECT last_name, ROW_NUMBER() OVER (ORDER BY last_name R FROM employees)
 where R BETWEEN 51 AND 100;

Extending the Basic Departments Page

The Departments page is extended to include the following additional information:

	
The name of the manager of the department

	
The number of employees assigned to the department

	
The country name identifying the location of the department

The additional information is obtained by modifying the query to perform a join operation between the DEPARTMENTS, EMPLOYEES, LOCATIONS, and COUNTRIES tables.

To extend the Departments page, perform the following tasks:

	
Edit the anyco_ui.inc file. Modify the ui_print_department() function by replacing the Manager ID and Location ID references with the Manager Name and Location, respectively, and insert a Number of Employees field after Department Name. Make the necessary changes in the table header and data fields. The function becomes:

function ui_print_department($dept, $posturl)
{
 if (!$dept) {
 echo '<p>No Department found</p>';
 }
 else {
 echo <<<END
 <table>
 <tr>
 <th>Department
ID</th>
 <th>Department
Name</th>
 <th>Number of
Employees</th>
 <th>Manager
Name</th>
 <th>Location</th>
 </tr>
 <tr>
END;
 echo '<td>'.htmlentities($dept['DEPARTMENT_ID']).'</td>';
 echo '<td>'.htmlentities($dept['DEPARTMENT_NAME']).'</td>';
 echo '<td>'.htmlentities($dept['NUMBER_OF_EMPLOYEES']).'</td>';
 echo '<td>'.htmlentities($dept['MANAGER_NAME']).'</td>';
 echo '<td>'.htmlentities($dept['COUNTRY_NAME']).'</td>';
 echo <<<END
 </tr>
 </table>
 <form method="post" action="$posturl">
 <input type="submit" value="< Previous" name="prevdept">
 <input type="submit" value="Next >" name="nextdept">
 </form>
END;
 }
}

	
Edit the anyco.php file. Replace the query string in construct_departments() with:

$query =
 "SELECT d.department_id, d.department_name,
 substr(e.first_name,1,1)||'. '|| e.last_name as manager_name,
 c.country_name, count(e2.employee_id) as number_of_employees
 FROM departments d, employees e, locations l,
 countries c, employees e2
 WHERE d.manager_id = e.employee_id
 AND d.location_id = l.location_id
 AND d.department_id = e2.department_id
 AND l.country_id = c.country_id
 GROUP BY d.department_id, d.department_name,
 substr(e.first_name,1,1)||'. '||e.last_name,
 c.country_name
 ORDER BY d.department_id ASC";

The query string is enclosed in double quotation marks to simplify writing this statement, which contains SQL literal strings in single quotation marks.

	
Save the changes to your files, and test the changes by entering the following URL in a Web browser:

On Windows:

http://localhost/chap4/anyco.php

On Linux:

http://localhost/~<username>/chap4/anyco.php

The Web page result should resemble the following output:

[image: Description of chap4_enhance_dept_001.gif follows]

5 Updating Data

In this chapter, you extend the Anyco HR application with forms that enable you to insert, update, and delete an employee record.

	
Building the Basic Employees page

	
Extending the Basic Employees Page

	
Combining Departments and Employees

	
Adding Error Recovery

	
Further Error Handling

Building the Basic Employees page

In this section, you will extend your application to include a basic employees page.

To display employee records, perform the following tasks:

	
Create the chap5 directory, copy the application files from chap4, and change to the newly created directory:

On Windows:

mkdir c:\program files\Apache Group\Apache2\htdocs\chap5
cd c:\program files\Apache Group\Apache2\htdocs\chap5
copy ..\chap4* .

On Linux:

mkdir $HOME/public_html/chap5
cd $HOME/public_html/chap5
cp ../chap4/* .

	
Edit the anyco.php file. Add a construct_employees() function. This function constructs the employee query, calls the db_do_query() function to execute the query, and prints the results using the ui_print_employees() function:

function construct_employees()
{
 $query =
 "SELECT employee_id,
 substr(first_name,1,1) || '. '|| last_name as employee_name,
 hire_date,
 to_char(salary, '9999G999D99') as salary,
 nvl(commission_pct,0) as commission_pct
 FROM employees
 ORDER BY employee_id asc";

 $conn = db_connect();
 $emp = db_do_query($conn, $query);

 ui_print_header('Employees');
 ui_print_employees($emp);
 ui_print_footer(date('Y-m-d H:i:s'));
}

There is no need to pass a $bindargs parameter to the db_do_query() call because this query does not use bind variables. The db_do_query() declaration will provide a default value of an empty array automatically. PHP allows functions to have variable numbers of parameters.

	
Edit the anyco.php file. Replace the call to construct_departments() with a call to construct_employees():

<?php // File: anyco.php

require('anyco_cn.inc');
require('anyco_db.inc');
require('anyco_ui.inc');

session_start();
construct_employees();
...
?>

	
Edit the anyco_ui.inc file. Implement the presentation of employee data in an HTML table by adding a ui_print_employees() function:

function ui_print_employees($employeerecords)
{
 if (!$employeerecords) {
 echo '<p>No Employee found</p>';
 }
 else {
 echo <<<END
 <table>
 <tr>
 <th>Employee
ID</th>
 <th>Employee
Name</th>
 <th>Hiredate</th>
 <th>Salary</th>
 <th>Commission
(%)</th>
 </tr>
END;
 // Write one row per employee
 foreach ($employeerecords as $emp) {
 echo '<tr>';
 echo '<td align="right">'.
 htmlentities($emp['EMPLOYEE_ID']).'</td>';
 echo '<td>'.htmlentities($emp['EMPLOYEE_NAME']).'</td>';
 echo '<td>'.htmlentities($emp['HIRE_DATE']).'</td>';
 echo '<td align="right">'.
 htmlentities($emp['SALARY']).'</td>';
 echo '<td align="right">'.
 htmlentities($emp['COMMISSION_PCT']).'</td>';
 echo '</tr>';
 }
 echo <<<END
 </table>
END;
 }
}

	
Save the changes to the anyco.php and anyco_ui.inc files. Test the result of these changes by entering the following URL in your Web browser:

On Windows:

http://localhost/chap5/anyco.php

On Linux:

http://localhost/~<username>/chap5/anyco.php

Examine the result page, and scroll down to view all the employee records displayed in the page:

[image: Description of chap5_basic_emp_001.gif follows]

Extending the Basic Employees Page

In this section, you will extend the basic employees page to include the ability to manipulate employee records.

To enable employee records to be manipulated, perform the following tasks:

	
Edit the anyco.php file. Replace the construct_employees() call with the form handler control logic to manage the requests for showing, inserting, updating, and deleting employee records:

<?php // File: anyco.php

require('anyco_cn.inc');
require('anyco_db.inc');
require('anyco_ui.inc');

session_start();
// Start form handler code
if (isset($_POST['insertemp'])) {
 construct_insert_emp();
}
elseif (isset($_POST['saveinsertemp'])) {
 insert_new_emp();
}
elseif (isset($_POST['modifyemp'])) {
 construct_modify_emp();
}
elseif (isset($_POST['savemodifiedemp'])) {
 modify_emp();
}
elseif (isset($_POST['deleteemp'])) {
 delete_emp();
}
else {
 construct_employees();
}

...

	
Edit the anyco.php file. Add the construct_insert_emp() function:

function construct_insert_emp()
{
 $conn = db_connect();

 $query = "SELECT job_id, job_title
 FROM jobs
 ORDER BY job_title ASC";
 $jobs = db_do_query($conn, $query,
 OCI_FETCHSTATEMENT_BY_COLUMN);

 $query = "SELECT sysdate FROM dual";
 $date = db_do_query($conn, $query,
 OCI_FETCHSTATEMENT_BY_COLUMN);
 $emp = array(
 'DEPARTMENT_ID' => 10, // Default to department 10
 'HIRE_DATE' => $date['SYSDATE'][0],
 'ALLJOBIDS' => $jobs['JOB_ID'],
 'ALLJOBTITLES' => $jobs['JOB_TITLE']
);

 ui_print_header('Insert New Employee');
 ui_print_insert_employee($emp, $_SERVER['SCRIPT_NAME']);
 // Note: The two kinds of date used:
 // 1) SYSDATE for current date of the database system, and
 // 2) The PHP date for display in the footer of each page
 ui_print_footer(date('Y-m-d H:i:s'));
}

The construct_insert_emp() function executes two queries to obtain default data to be used to populate the Insert New Employee form, which is displayed by the ui_print_insert_employee() function.

The $query of the JOBS table obtains a list of all the existing job IDs and their descriptions in order to build a list for selecting a job type in the HTML form generated by the ui_print_insert_employee() function.

The $query using SYSDATE obtains the current database date and time for setting the default hire date of the new employee.

There are two kinds of date used in the application code, the PHP date() function for printing the date and time in the page footer, and the Oracle SYSDATE function to obtain the default date and time for displaying in the hire date field of the Employees page and to ensure that text is entered in the correct database format.

The two db_do_query() function calls provide an additional parameter value OCI_FETCHSTATEMENT_BY_COLUMN to specify that the return type for the query is an array of column values.

	
Edit the anyco.php file. Add the insert_new_emp() function to insert an employee record into the EMPLOYEES table:

function insert_new_emp()
{
 $newemp = $_POST;
 $statement =
 "INSERT INTO employees
 (employee_id, first_name, last_name, email, hire_date,
 job_id, salary, commission_pct, department_id)
 VALUES (employees_seq.nextval, :fnm, :lnm, :eml, :hdt, :jid,
 :sal, :cpt, :did)";

 $conn = db_connect();
 $emailid = $newemp['firstname'].$newemp['lastname'];

 $bindargs = array();
 array_push($bindargs, array('FNM', $newemp['firstname'], -1));
 array_push($bindargs, array('LNM', $newemp['lastname'], -1));
 array_push($bindargs, array('EML', $emailid, -1));
 array_push($bindargs, array('HDT', $newemp['hiredate'], -1));
 array_push($bindargs, array('JID', $newemp['jobid'], -1));
 array_push($bindargs, array('SAL', $newemp['salary'], -1));
 array_push($bindargs, array('CPT', $newemp['commpct'], -1));
 array_push($bindargs, array('DID', $newemp['deptid'], -1));

 $r = db_execute_statement($conn, $statement, $bindargs);
 construct_employees();
}

The return value from the db_execute_statement() function is ignored and not even assigned to a variable, because no action is performed on its result.

	
Edit the anyco.php file. Add the construct_modify_emp() function to build the HTML form for updating an employee record.

function construct_modify_emp()
{
 $empid = $_POST['emprec'];
 $query =
 "SELECT employee_id, first_name, last_name, email, hire_date,
 salary, nvl(commission_pct,0) as commission_pct
 FROM employees
 WHERE employee_id = :empid";

 $conn = db_connect();
 $bindargs = array();
 array_push($bindargs, array('EMPID', $empid, -1));

 $emp = db_do_query($conn, $query, OCI_FETCHSTATEMENT_BY_ROW,
 $bindargs);

 ui_print_header('Modify Employee ');
 ui_print_modify_employee($emp[0], $_SERVER['SCRIPT_NAME']);
 ui_print_footer(date('Y-m-d H:i:s'));
}

	
Edit the anyco.php file. Add the modify_emp() function to update the employee record in the EMPLOYEES table, using the update form field values:

function modify_emp()
{
 $newemp = $_POST;
 $statement =
 "UPDATE employees
 SET first_name = :fnm, last_name = :lnm, email = :eml,
 salary = :sal, commission_pct = :cpt
 WHERE employee_id = :eid";

 $conn = db_connect();
 $bindargs = array();
 array_push($bindargs, array('EID', $newemp['empid'], -1));
 array_push($bindargs, array('FNM', $newemp['firstname'], -1));
 array_push($bindargs, array('LNM', $newemp['lastname'], -1));
 array_push($bindargs, array('EML', $newemp['email'], -1));
 array_push($bindargs, array('SAL', $newemp['salary'], -1));
 array_push($bindargs, array('CPT', $newemp['commpct'], -1));

 $r = db_execute_statement($conn, $statement, $bindargs);
 construct_employees();
}

	
Edit the anyco.php file. Add the delete_emp() function to delete an employee record from the EMPLOYEES table:

function delete_emp()
{
 $empid = $_POST['emprec'];
 $statement = "DELETE FROM employees
 WHERE employee_id = :empid";
 $conn = db_connect();
 $bindargs = array();
 array_push($bindargs, array('EMPID', $empid, 10));
 $r = db_execute_statement($conn, $statement, $bindargs);

 construct_employees();
}

	
Edit the anyco.php file. In the construct_employees() function, modify the db_do_query() call to supply OCI_FETCHSTATEMENT_BY_ROW as the last parameter, and provide $_SERVER['SCRIPT_NAME'] as second parameter in the ui_print_employees() call. The function becomes:

function construct_employees()
{
 $query =
 "SELECT employee_id,
 substr(first_name,1,1) || '. '|| last_name as employee_name,
 hire_date,
 to_char(salary, '9999G999D99') as salary,
 nvl(commission_pct,0) as commission_pct
 FROM employees
 ORDER BY employee_id asc";

 $conn = db_connect();
 $emp = db_do_query($conn, $query, OCI_FETCHSTATEMENT_BY_ROW);

 ui_print_header('Employees');
 ui_print_employees($emp, $_SERVER['SCRIPT_NAME']);
 ui_print_footer(date('Y-m-d H:i:s'));
}

	
Edit the anyco_db.inc file. Add $resulttype as a third parameter to the db_do_query() function. Replace the last parameter value, OCI_FETCHSTATEMENT_BY_ROW, in the oci_fetch_all() call with a variable, so that callers can choose the output type.

function db_do_query($conn, $statement, $resulttype,
 $bindvars = array())
{
 $stid = oci_parse($conn, $statement);

 ...

 $r = oci_fetch_all($stid, $results, null, null, $resulttype);
 return($results);
}

	
Edit the anyco_db.inc file. Inside the db_get_page_data() function, insert OCI_FETCHSTATEMENT_BY_ROW as the third parameter value in the db_do_query() call:

function db_get_page_data($conn, $q1, $current = 1,
 $rowsperpage = 1, $bindvars = array())
{

 ...

 $r = db_do_query($conn, $query, OCI_FETCHSTATEMENT_BY_ROW, $bindvars);
 return($r);
}

	
Edit the anyco_db.inc file. Add a db_execute_statement() function to execute data manipulation statements such as INSERT statements:

function db_execute_statement($conn, $statement, $bindvars = array())
{
 $stid = oci_parse($conn, $statement);
 if (!$stid) {
 db_error($conn, __FILE__, __LINE__);
 }
 // Bind parameters
 foreach ($bindvars as $b) {
 // create local variable with caller specified bind value
 $$b[0] = $b[1];
 $r = oci_bind_by_name($stid, ":$b[0]", $$b[0], $b[2]);
 if (!$r) {
 db_error($stid, __FILE__, __LINE__);
 }
 }

 $r = oci_execute($stid);
 if (!$r) {
 db_error($stid, __FILE__, __LINE__);
 }
 return($r);
}

	
Edit the anyco_ui.inc file. Change the ui_print_employees() function to produce an HTML form containing the employee rows. The function becomes:

function ui_print_employees($employeerecords, $posturl)
{
 if (!$employeerecords) {
 echo '<p>No Employee found</p>';
 }
 else {
 echo <<<END
 <form method="post" action="$posturl">
 <table>
 <tr>
 <th> </th>
 <th>Employee
ID</th>
 <th>Employee
Name</th>
 <th>Hiredate</th>
 <th>Salary</th>
 <th>Commission
(%)</th>
 </tr>
END;
 // Write one row per employee
 foreach ($employeerecords as $emp) {
 echo '<tr>';
 echo '<td><input type="radio" name="emprec" value="'.
 htmlentities($emp['EMPLOYEE_ID']).'"></td>';
 echo '<td align="right">'.
 htmlentities($emp['EMPLOYEE_ID']).'</td>';
 echo '<td>'.htmlentities($emp['EMPLOYEE_NAME']).'</td>';
 echo '<td>'.htmlentities($emp['HIRE_DATE']).'</td>';
 echo '<td align="right">'.
 htmlentities($emp['SALARY']).'</td>';
 echo '<td align="right">'.
 htmlentities($emp['COMMISSION_PCT']).'</td>';
 echo '</tr>';
 }
 echo <<<END
 </table>
 <input type="submit" value="Modify" name="modifyemp">
 <input type="submit" value="Delete" name="deleteemp">

 <input type="submit" value="Insert new employee"
 name="insertemp">
 </form>
END;
 }
}

A radio button is displayed in the first column of each row to enable you to select the record to be modified or deleted.

	
Edit the anyco_ui.inc file. Add the ui_print_insert_employee() function to generate the form to input new employee data:

function ui_print_insert_employee($emp, $posturl)
{
 if (!$emp) {
 echo "<p>No employee details found</p>";
 }
 else {
 $deptid = htmlentities($emp['DEPARTMENT_ID']);
 $hiredate = htmlentities($emp['HIRE_DATE']);

 echo <<<END
 <form method="post" action="$posturl">
 <table>
 <tr>
 <td>Department ID</td>
 <td><input type="text" name="deptid" value="$deptid"
 size="20"></td>
 </tr>
 <tr>
 <td>First Name</td>
 <td><input type="text" name="firstname" size="20"></td>
 </tr>
 <tr>
 <td>Last Name</td>
 <td><input type="text" name="lastname" size="20"></td>
 </tr>
 <tr>
 <td>Hiredate</td>
 <td><input type="text" name="hiredate" value="$hiredate"
 size="20"></td>
 </tr>
 <tr>
 <td>Job</td>
 <td><select name="jobid">
END;
 // Write the list of jobs
 for ($i = 0; $i < count($emp['ALLJOBIDS']); $i++)
 {
 echo '<option
 label="'.htmlentities($emp['ALLJOBTITLES'][$i]).'"'.
 ' value="'.htmlentities($emp['ALLJOBIDS'][$i]).'">'.
 htmlentities($emp['ALLJOBTITLES'][$i]).'</option>';
 }
 echo <<<END
 </select>
 </td>
 </tr>
 <tr>
 <td>Salary</td>
 <td><input type="text" name="salary" value="1"
 size="20"></td>
 </tr>
 <tr>
 <td>Commission (%)</td>
 <td><input type="text" name="commpct" value="0"
 size="20"></td>
 </tr>
 </table>
 <input type="submit" value="Save" name="saveinsertemp">
 <input type="submit" value="Cancel" name="cancel">
 </form>
END;
 }
}

	
Edit the anyco_ui.inc file. Add the ui_print_modify_employee() function to generate the form to update an employee record:

function ui_print_modify_employee($empdetails, $posturl)
{
 if (!$empdetails) {
 echo '<p>No Employee record selected</p>';
 }
 else {
 $fnm = htmlentities($empdetails['FIRST_NAME']);
 $lnm = htmlentities($empdetails['LAST_NAME']);
 $eml = htmlentities($empdetails['EMAIL']);
 $sal = htmlentities($empdetails['SALARY']);
 $cpt = htmlentities($empdetails['COMMISSION_PCT']);
 $eid = htmlentities($empdetails['EMPLOYEE_ID']);

 echo <<<END
 <form method="post" action="$posturl">
 <table>
 <tr>
 <td>Employee ID</td>
 <td>$eid</td></tr>
 <tr>
 <td>First Name</td>
 <td><input type="text" name="firstname" value="$fnm"></td>
 </tr>
 <tr>
 <td>Last Name</td>
 <td><input type="text" name="lastname" value="$lnm"></td>
 </tr>
 <tr>
 <td>Email Address</td>
 <td><input type="text" name="email" value="$eml"></td>
 </tr>
 <tr>
 <td>Salary</td>
 <td><input type="text" name="salary" value="$sal"></td>
 </tr>
 <tr>
 <td>Commission (%)</td>
 <td><input type="text" name="commpct" value="$cpt"></td>
 </tr>
 </table>
 <input type="hidden" value="{$empdetails['EMPLOYEE_ID']}"
 name="empid">
 <input type="submit" value="Save" name="savemodifiedemp">
 <input type="submit" value="Cancel" name="cancel">
 </form>
END;
 }
}

	
Save the changes to your Anyco application files, and test the changes by entering the following URL in your Web browser:

On Windows:

http://localhost/chap5/anyco.php

On Linux:

http://localhost/~<username>/chap5/anyco.php

The list of all employees is displayed with a radio button in each row.

[image: Description of chap5_test_emp_001.gif follows]

Scroll to the bottom of the Employees page to view the Modify, Delete, and Insert new employee buttons:

[image: Description of chap5_test_emp_002.gif follows]

	
To insert a new employee record, click Insert new employee:

[image: Description of chap5_test_emp_003.gif follows]

When you create or modify employee records, you will see that the database definitions require the salary to be greater than zero, and the commission to be less than 1. The commission will be rounded to two decimal places. In the Insert New Employee page, the Department ID field contains 10 (the default), Hiredate contains the current date (in default database date format), Salary contains 1, and Commission (%) contains 0. Enter the following field values:

First Name: James

Last Name: Bond

Job: Select Programmer from the list.

Salary: replace the 1 with 7000

Click Save.

[image: Description of chap5_test_emp_004.gif follows]

	
When the new employee record is successfully inserted, the Web page is refreshed with the form listing all employees. Scroll the Web page to the last record and check that the new employee record is present. The employee ID assigned to the new record on your system may be different than the one shown in the following example:

[image: Description of chap5_test_emp_005.gif follows]

	
To modify the new employee record, select the radio button next to the new employee record, and click Modify:

[image: Description of chap5_test_emp_006.gif follows]

	
In the Modify Employee page, modify the Email Address field to JBOND, increase the Salary to 7100, and click Save:

[image: Description of chap5_test_emp_007.gif follows]

	
Successfully updating the employee record causes the Employees page to be redisplayed. Scroll to the last employee record and confirm that the salary for James Bond is now 7,100:

[image: Description of chap5_test_emp_008.gif follows]

	
To remove the new employee record, select the radio button for the new employee record, and click Delete:

[image: Description of chap5_test_emp_009.gif follows]

On successful deletion, the deleted row does not appear in the list of employee records redisplayed in the Employees page:

[image: Description of chap5_test_emp_010.gif follows]

Combining Departments and Employees

In this section, you will modify your application to enable access to both Employees and Departments pages.

To combine the Departments and Employees pages, perform the following tasks:

	
Edit the anyco.php file. Modify the query in the construct_employees() function to include a WHERE clause to compare the department_id with a value in a bind variable called :did. This makes the page display employees in one department at a time. Get the deptid session parameter value to populate the bind variable:

$query =
 "SELECT employee_id,
 substr(first_name,1,1) || '. '|| last_name as employee_name,
 hire_date,
 to_char(salary, '9999G999D99') as salary,
 nvl(commission_pct,0) as commission_pct
 FROM employees
 WHERE department_id = :did
 ORDER BY employee_id asc";

$deptid = $_SESSION['deptid'];

	
Edit the anyco.php file. In the construct_employees() function, update the call to the db_do_query() function to pass the bind information:

$conn = db_connect();

$bindargs = array();
array_push($bindargs, array('DID', $deptid, -1));

$emp = db_do_query($conn, $query, OCI_FETCHSTATEMENT_BY_ROW, $bindargs);

	
Edit the anyco.php file. In the construct_departments() function, save the department identifier in a session parameter:

$_SESSION['currentdept'] = $current;
$_SESSION['deptid'] = $deptid;

This saves the current department identifier from the Departments page as a session parameter, which is used in the Employees page.

	
Edit the anyco.php file. Create a function get_dept_name() to query the department name for printing in the Departments and Employees page titles:

function get_dept_name($conn, $deptid)
{
 $query =
 'SELECT department_name
 FROM departments
 WHERE department_id = :did';

 $conn = db_connect();
 $bindargs = array();
 array_push($bindargs, array('DID', $deptid, -1));
 $dn = db_do_query($conn, $query,OCI_FETCHSTATEMENT_BY_COLUMN, $bindargs);

 return($dn['DEPARTMENT_NAME'][0]);
}

	
Edit the anyco.php file. Modify the construct_employees() function to print the department name in the Employees page heading:

$deptname = get_dept_name($conn, $deptid);
ui_print_header('Employees: '.$deptname);

	
Edit the anyco.php file. Modify the construct_departments() function to print the department name in the Departments page heading:

$deptname = get_dept_name($conn, $deptid);
ui_print_header('Department: '.$deptname);

	
Edit the anyco.php file. Modify the construct_insert_emp() function so that the default department is obtained from the session parameter passed in the $emp array to the ui_print_insert_employee() function. The function becomes:

function construct_insert_emp()
{
 $deptid = $_SESSION['deptid'];

 $conn = db_connect();
 $query = "SELECT job_id, job_title FROM jobs ORDER BY job_title ASC";
 $jobs = db_do_query($conn, $query, OCI_FETCHSTATEMENT_BY_COLUMN);
 $query = "SELECT sysdate FROM dual";
 $date = db_do_query($conn, $query, OCI_FETCHSTATEMENT_BY_COLUMN);
 $emp = array(
 'DEPARTMENT_ID' => $deptid,
 'HIRE_DATE' => $date['SYSDATE'][0],
 'ALLJOBIDS' => $jobs['JOB_ID'],
 'ALLJOBTITLES' => $jobs['JOB_TITLE']
);
 ui_print_header('Insert New Employee');
 ui_print_insert_employee($emp, $_SERVER['SCRIPT_NAME']);
 ui_print_footer(date('Y-m-d H:i:s'));
}

	
Edit the anyco.php file. Modify the final else statement in the HTML form handler. The handler becomes:

// Start form handler code
if (isset($_POST['insertemp'])) {
 construct_insert_emp();
}
elseif (isset($_POST['saveinsertemp'])) {
 insert_new_emp();
}
elseif (isset($_POST['modifyemp'])) {
 construct_modify_emp();
}
elseif (isset($_POST['savemodifiedemp'])) {
 modify_emp();
}
elseif (isset($_POST['deleteemp'])) {
 delete_emp();
}
elseif (isset($_POST['showemp'])) {
 construct_employees();
}
elseif (isset($_POST['nextdept'])
 || isset($_POST['prevdept'])
 || isset($_POST['firstdept'])
 || isset($_POST['showdept'])) {
 construct_departments();
}
else {
 construct_departments();
}

	
Edit the anyco_ui.inc file. In the ui_print_department() function, change the HTML form to enable it to call the Employees page:

...
<form method="post" action="$posturl">
<input type="submit" value="First" name="firstdept">
<input type="submit" value="< Previous" name="prevdept">
<input type="submit" value="Next >" name="nextdept">

<input type="submit" value="Show Employees" name="showemp">
</form>
...

	
Edit the anyco_ui.inc file. In the ui_print_employees() function, change the HTML form to enable it to call the Departments page:

...
</table>
<input type="submit" value="Modify" name="modifyemp">
<input type="submit" value="Delete" name="deleteemp">

<input type="submit" value="Insert new employee" name="insertemp">

<input type="submit" value="Return to Departments" name="showdept">
</form>
...

	
Save the changes to your PHP files. In your browser, test the changes by entering the following URL:

On Windows:

http://localhost/chap5/anyco.php

On Linux:

http://localhost/~<username>/chap5/anyco.php

The Departments page is displayed.

[image: Description of chap5_combine_deptemp_001.gif follows]

To display a list of employees in the department, click the Show Employees button.

[image: Description of chap5_combine_deptemp_002.gif follows]

You can return to the Departments page by clicking the Return to Departments button. Experiment by navigating to another department and listing its employees to show the process of switching between the Departments and Employees pages.

Adding Error Recovery

Error management is always a significant design decision. In production systems, you might want to classify errors and handle them in different ways. Fatal errors could be redirected to a standard "site not available" page or home page. Data errors for new record creation might return to the appropriate form with invalid fields highlighted.

In most production systems, you would set the display_errors configuration option in the php.ini file to off, and the log_errors configuration option to on.

You can use the PHP output buffering functionality to trap error text when a function is executing. Using ob_start() prevents text from displaying on the screen. If an error occurs, the ob_get_contents() function allows the previously generated error messages to be stored in a string for later display or analysis.

Now you change the application to display error messages and database errors on a new page using a custom error handling function. Errors are now returned from the db* functions keeping them silent.

	
Edit the anyco_db.inc file. Change the db_error() function to return the error information in an array structure, instead of printing and quitting. The function becomes:

function db_error($r = false, $file, $line)
{
 $err = $r ? oci_error($r) : oci_error();

 if (isset($err['message'])) {
 $m = htmlentities($err['message']);
 $c = $err['code'];
 }
 else {
 $m = 'Unknown DB error';
 $c = null;
 }

 $rc = array(
 'MESSAGE' => $m,
 'CODE' => $c,
 'FILE' => $file,
 'LINE' => $line
);
 return $rc;
}

	
Edit the anyco_db.inc file. For every call to the db_error() function, assign the return value to a variable called $e and add a return false; statement after each call:

if (<error test>)
{
 $e = db_error(<handle>, __FILE__, __LINE__);
 return false;
}

Make sure to keep the <error test> and <handle> parameters the same as they are currently specified for each call. Remember that the __FILE__ and __LINE__ constants help to pinpoint the location of the failure during development. This is useful information to log for fatal errors in a production deployment of an application.

	
Edit the anyco_db.inc file. Add a $e parameter to every function to enable the return of error information. Use the & reference prefix to ensure that results are returned to the calling function. Each function declaration becomes:

function db_connect(&$e) {...}

function db_get_page_data($conn, $q1, $currrownum = 1, $rowsperpage = 1,
 &$e, $bindvars = array()) {...}

function db_do_query($conn, $statement, $resulttype, &$e,
 $bindvars = array()) {...}

function db_execute_statement($conn, $statement, &$e,
 $bindvars = array()) {...}

	
Edit the anyco_db.inc file. In the db_get_page_data() function, change the call to the db_do_query() function to pass down the error parameter $e:

$r = db_do_query($conn, $query, OCI_FETCHSTATEMENT_BY_ROW, $e, $bindvars);

	
Edit the anyco_db.inc file. Add an @ prefix to all oci_* function calls. For example:

@ $r = @oci_execute($stid);

The @ prefix prevents errors from displaying because each return result is tested. Preventing errors from displaying can hide incorrect parameter usage, which may hinder testing the changes in this section. You do not need to add @ prefixes, but it can effect future results when errors are displayed.

	
Edit the anyco.php file. Create a function to handle the error information:

function handle_error($message, $err)
{
 ui_print_header($message);
 ui_print_error($err, $_SERVER['SCRIPT_NAME']);
 ui_print_footer(date('Y-m-d H:i:s'));
}

	
Edit the anyco.php file. Modify all calls to db_* functions to include the additional error parameter:

Steps 8 to 15 show the complete new functions, so the code changes in this step can be skipped.

	
Change all db_connect() calls to db_connect($err).

	
Change all db_do_query() calls and insert a $err parameter as the fourth parameter. For example, the call in construct_employees() becomes:

$emp = db_do_query($conn, $query,
 OCI_FETCHSTATEMENT_BY_ROW, $err, $bindargs);

Change the other four db_do_query() calls in anyco.php remembering to keep the existing parameter values of each specific call.

	
Change the db_get_page_data() call and insert a $err parameter as the fifth parameter:

$dept = db_get_page_data($conn, $query, $current, 1, $err);

	
Change the db_execute_statement() calls and insert a $err parameter as the third parameter, for example:

$r = db_execute_statement($conn, $statement, $err, $bindargs);

	
Edit the anyco.php file. Modify the construct_departments() function to handle errors returned. The function becomes:

function construct_departments()
{
 if (isset($_SESSION['currentdept']) && isset($_POST['prevdept']) &&
 $_SESSION['currentdept'] > 1)
 $current = $_SESSION['currentdept'] - 1;
 elseif (isset($_SESSION['currentdept']) && isset($_POST['nextdept']))
 $current = $_SESSION['currentdept'] + 1;
 elseif (isset($_POST['showdept']) && isset($_SESSION['currentdept']))
 $current = $_SESSION['currentdept'];
 else
 $current = 1;

 $query =
 "SELECT d.department_id, d.department_name,
 substr(e.first_name,1,1)||'. '|| e.last_name as manager_name,
 c.country_name, count(e2.employee_id) as number_of_employees
 FROM departments d, employees e, locations l,
 countries c, employees e2
 WHERE d.manager_id = e.employee_id
 AND d.location_id = l.location_id
 AND d.department_id = e2.department_id
 AND l.country_id = c.country_id
 GROUP BY d.department_id, d.department_name,
 substr(e.first_name,1,1)||'. '||e.last_name, c.country_name
 ORDER BY d.department_id ASC";

 $conn = db_connect($err);

 if (!$conn) {
 handle_error('Connection Error', $err);
 }
 else {
 $dept = db_get_page_data($conn, $query, $current, 1, $err);
 if ($dept === false) {
 // Use === so empty array at end of fetch is not matched
 handle_error('Cannot fetch Departments', $err);
 } else {

 if (!isset($dept[0]['DEPARTMENT_ID']) && $current > 1) {
 // no more records so go back one

 $current--;
 $dept = db_get_page_data($conn, $query, $current, 1, $err);
 }

 $deptid = $dept[0]['DEPARTMENT_ID'];

 $_SESSION['deptid'] = $deptid;
 $_SESSION['currentdept'] = $current;

 $deptname = get_dept_name($conn, $deptid);
 ui_print_header('Department: '.$deptname);
 ui_print_department($dept[0], $_SERVER['SCRIPT_NAME']);
 ui_print_footer(date('Y-m-d H:i:s'));
 }
 }
}

	
Edit the anyco.php file. Modify the construct_employees() function to handle errors. The function becomes:

function construct_employees()
{
 $query =
 "SELECT employee_id,
 substr(first_name,1,1) || '. '|| last_name as employee_name,
 hire_date,
 to_char(salary, '9999G999D99') as salary,
 nvl(commission_pct,0) as commission_pct
 FROM employees
 WHERE department_id = :did
 ORDER BY employee_id asc";

 $deptid = $_SESSION['deptid'];

 $conn = db_connect($err);

 if (!$conn) {
 handle_error('Connection Error', $err);
 }
 else {
 $bindargs = array();
 array_push($bindargs, array('DID', $deptid, -1));
 $emp = db_do_query($conn, $query, OCI_FETCHSTATEMENT_BY_ROW, $err,
 $bindargs);

 if (!$emp) {
 handle_error('Cannot fetch Employees', $err);
 }
 else {
 $deptname = get_dept_name($conn, $deptid);
 ui_print_header('Employees: '.$deptname);
 ui_print_employees($emp, $_SERVER['SCRIPT_NAME']);
 ui_print_footer(date('Y-m-d H:i:s'));
 }
 }
}

	
Edit the anyco.php file. Modify the construct_insert_emp() function to handle errors. The function becomes:

function construct_insert_emp()
{
 $deptid = $_SESSION['deptid'];
 $conn = db_connect($err);
 if (!$conn) {
 handle_error('Connection Error', $err);
 }
 else {
 $query = "SELECT job_id, job_title FROM jobs ORDER BY job_title ASC";
 $jobs = db_do_query($conn, $query, OCI_FETCHSTATEMENT_BY_COLUMN, $err);
 $query = "SELECT sysdate FROM dual";
 $date = db_do_query($conn, $query, OCI_FETCHSTATEMENT_BY_COLUMN, $err);

 $emp = array(
 'DEPARTMENT_ID' => $deptid,
 'HIRE_DATE' => $date['SYSDATE'][0],
 'ALLJOBIDS' => $jobs['JOB_ID'],
 'ALLJOBTITLES' => $jobs['JOB_TITLE']
);

 ui_print_header('Insert New Employee');
 ui_print_insert_employee($emp, $_SERVER['SCRIPT_NAME']);
 ui_print_footer(date('Y-m-d H:i:s'));
 }
}

	
Edit the anyco.php file. Modify the insert_new_emp() function to handle errors. The function becomes:

function insert_new_emp()
{
 $statement =
 'INSERT INTO employees
 (employee_id, first_name, last_name, email, hire_date,
 job_id, salary, commission_pct, department_id)
 VALUES (employees_seq.nextval, :fnm, :lnm, :eml, :hdt,
 :jid, :sal, :cpt, :did)';

 $newemp = $_POST;

 $conn = db_connect($err);
 if (!$conn) {
 handle_error('Connect Error', $err);
 }
 else {
 $emailid = $newemp['firstname'].$newemp['lastname'];

 $bindargs = array();
 array_push($bindargs, array('FNM', $newemp['firstname'], -1));
 array_push($bindargs, array('LNM', $newemp['lastname'], -1));
 array_push($bindargs, array('EML', $emailid, -1));
 array_push($bindargs, array('HDT', $newemp['hiredate'], -1));
 array_push($bindargs, array('JID', $newemp['jobid'], -1));
 array_push($bindargs, array('SAL', $newemp['salary'], -1));
 array_push($bindargs, array('CPT', $newemp['commpct'], -1));
 array_push($bindargs, array('DID', $newemp['deptid'], -1));

 $r = db_execute_statement($conn, $statement, $err, $bindargs);
 if ($r) {
 construct_employees();
 }
 else {
 handle_error('Cannot insert employee', $err);
 }
 }
}

	
Edit the anyco.php function. Modify the construct_modify_emp() function to handle errors. The function becomes:

function construct_modify_emp()
{
 if (!isset($_POST['emprec'])) { // User did not select a record
 construct_employees();
 }
 else {
 $empid = $_POST['emprec'];

 $query =
 "SELECT employee_id, first_name, last_name, email, hire_date,
 salary, nvl(commission_pct,0) as commission_pct
 FROM employees
 WHERE employee_id = :empid";

 $conn = db_connect($err);
 if (!$conn) {
 handle_error('Connect Error', $err);
 }
 else {
 $bindargs = array();
 array_push($bindargs, array('EMPID', $empid, -1));

 $emp = db_do_query($conn, $query, OCI_FETCHSTATEMENT_BY_ROW, $err,
 $bindargs);

 if (!$emp) {
 handle_error('Cannot find details for employee '.$empid, $err);
 }
 else {
 ui_print_header('Modify Employee ');
 ui_print_modify_employee($emp[0], $_SERVER['SCRIPT_NAME']);
 ui_print_footer(date('Y-m-d H:i:s'));
 }
 }
 }
}

	
Edit the anyco.php file. Change the modify_emp() function to handle errors. The function becomes:

function modify_emp()
{
 $newemp = $_POST;

 $statement =
 "UPDATE employees
 SET first_name = :fnm, last_name = :lnm, email = :eml,
 salary = :sal, commission_pct = :cpt
 WHERE employee_id = :eid";

 $conn = db_connect($err);
 if (!$conn) {
 handle_error('Connect Error', $err);
 }
 else {
 $bindargs = array();
 array_push($bindargs, array('EID', $newemp['empid'], -1));
 array_push($bindargs, array('FNM', $newemp['firstname'], -1));
 array_push($bindargs, array('LNM', $newemp['lastname'], -1));
 array_push($bindargs, array('EML', $newemp['email'], -1));
 array_push($bindargs, array('SAL', $newemp['salary'], -1));
 array_push($bindargs, array('CPT', $newemp['commpct'], -1));

 $r = db_execute_statement($conn, $statement, $err, $bindargs);

 if (!$r) {
 handle_error('Cannot update employee '.$newemp['empid'], $err);
 }
 else {
 construct_employees();
 }
 }
}

	
Edit the anyco.php file. Modify the delete_emp() function to handle errors. The function becomes:

function delete_emp()
{
 if (!isset($_POST['emprec'])) { // User did not select a record
 construct_employees();
 }
 else {
 $empid = $_POST['emprec'];

 $conn = db_connect($err);
 if (!$conn) {
 handle_error('Connection Error', $err);
 }
 else {
 $statement = "DELETE FROM employees WHERE employee_id = :empid";
 $bindargs = array();
 array_push($bindargs, array('EMPID', $empid, -1));
 $r = db_execute_statement($conn, $statement, $err, $bindargs);

 if (!$r) {
 handle_error("Error deleting employee $empid", $err);
 }
 else {
 construct_employees();
 }
 }
 }
}

	
Edit the anyco.php file. Modify the get_dept_name() function to handle errors. The function becomes:

function get_dept_name($conn, $deptid)
{
 $query =
 'SELECT department_name
 FROM departments
 WHERE department_id = :did';

 $conn = db_connect($err);
 if (!$conn) {
 return ('Unknown');
 }
 else {
 $bindargs = array();
 array_push($bindargs, array('DID', $deptid, -1));
 $dn = db_do_query($conn, $query, OCI_FETCHSTATEMENT_BY_COLUMN,
 $err, $bindargs);
 if ($dn == false)
 return ('Unknown');
 else
 return($dn['DEPARTMENT_NAME'][0]);
 }
}

	
Edit the anyco_ui.inc file. Add a new function ui_print_error():

function ui_print_error($message, $posturl)
{
 if (!$message) {
 echo '<p>Unknown error</p>';
 }
 else {
 echo "<p>Error at line {$message['LINE']} of "
 ."{$message['FILE']}</p>"; // Uncomment for debugging
 echo "<p>{$message['MESSAGE']}</p>";
 }
 echo <<<END
 <form method="post" action="$posturl">
 <input type="submit" value="Return to Departments" name="showdept">
END;
}

Remember not to put leading spaces in the END; line. Leading spaces in the END;line cause the rest of the document to be treated as part of the text to be printed.

	
Save the changes to your application files. Test the changes by entering the following URL in your browser:

On Windows:

http://localhost/chap5/anyco.php

On Linux:

http://localhost/~<username>/chap5/anyco.php

The Departments page is displayed:

[image: Description of chap5_err_handling_001.gif follows]

	
Click Next to navigate to the last department record, the Accounting department with ID 110. Try to navigate past the last department record by clicking Next.

[image: Description of chap5_err_handling_002.gif follows]

The error handling prevents navigation past the last department record.

	
If a new employee is inserted with a salary of 0, or the department ID is changed to one that does not exist, the new error page is shown with the heading "Cannot insert employee".

Further Error Handling

Specific Oracle errors can be handled individually. For example, if a new employee record is created by clicking the Insert new employee button on the Employees page, and the Department ID is changed to a department that does not exist, you can trap this error and display a more meaningful message:

	
Edit the anyco.php file. Change the error handling in the insert_new_emp() function:

 $r = db_execute_statement($conn, $statement, $err, $bindargs);
 if ($r) {
 construct_employees();
 }
 else {
 if ($err['CODE'] == 2291) { // Foreign key violated
 handle_error("Department {$newemp['deptid']} does not yet exist",
 $err);
 }
 else {
 handle_error('Cannot insert employee', $err);
 }
 }

	
Save the changes to your application files. Test the changes by entering the following URL:

On Windows:

http://localhost/chap5/anyco.php

On Linux:

http://localhost/~<username>/chap5/anyco.php

	
In the Departments page, click Show Employees.

[image: Description of chap5_err_handling_003.gif follows]

	
In the Employees page, click Insert new employee.

[image: Description of chap5_err_handling_004.gif follows]

	
In the Insert New Employee page, enter employee details as shown, setting the Department ID to 99, and click Save.

[image: Description of chap5_err_handling_005.gif follows]

The following error page is displayed:

[image: Description of chap5_err_handling_006.gif follows]

You can click Return to Departments to return to the Departments page and then click Show Employees to verify that the new employee record has not been added to the Administration department.

6 Executing Stored Procedures and Functions

This chapter shows you how to run stored procedures and functions using PHP and Oracle Database. It has the following topics:

	
Using PL/SQL to Capture Business Logic

	
Using PL/SQL Ref Cursors to Return Result Sets

The Anyco application is extended with a PL/SQL function to calculate remuneration for each employee, and is further extended with a PL/SQL procedure to return a REF CURSOR of employee records.

Using PL/SQL to Capture Business Logic

Oracle PL/SQL procedures and functions enable you to store business logic in the database for any client program to use. They also reduce the amount of data that must be transferred between the database and PHP and can help improve performance.

In this section, you will create a PL/SQL stored function to calculate and display the total remuneration for each employee.

To display the total remuneration of each employee, perform the following steps:

The PHP application connects to the database as the HR user. You may need to unlock the HR account as a user with DBA privileges. To unlock the HR user:

	
Open SQL Developer and open a connection to your Oracle database.

	
Login to your Oracle database as system.

	
Open SQL Worksheet or SQL*Plus and run the following grant statement to assign the create procedure privilege to the HR user:

grant create procedure to hr;

[image: Description of chap6_hrgrantproc.gif follows]

	
Login to your HR sample schema as hr.

	
Open SQL Worksheet or SQL*Plus and enter the following text to create a calc_remuneration() function:

create or replace function calc_remuneration(
 salary IN number, commission_pct IN number) return number is
begin
 return ((salary*12) + (salary * 12 * nvl(commission_pct,0)));
end;

[image: Description of chap6_hrcalcrem.gif follows]

	
Create the chap6 directory, copy the application files from chap5, and change to the newly created directory:

On Windows:

mkdir c:\program files\Apache Group\Apache2\htdocs\chap6
cd c:\program files\Apache Group\Apache2\htdocs\chap6
copy ..\chap5* .

On Linux:

mkdir $HOME/public_html/chap6
cd $HOME/public_html/chap6
cp ../chap5/* .

	
Edit the anyco.php file. Modify the query in the construct_employees() function to call the PL/SQL function for each row returned:

$query =
 "SELECT employee_id,
 substr(first_name,1,1) || '. '|| last_name as employee_name,
 hire_date,
 to_char(salary, '9999G999D99') as salary,
 nvl(commission_pct,0) as commission_pct,
 to_char(calc_remuneration(salary, commission_pct),'9999G999D99')
 as remuneration
 FROM employees
 WHERE department_id = :did
 ORDER BY employee_id ASC";

	
Edit the anyco_ui.inc file. In the ui_print_employees() function, add a Remuneration column to the table, and modify the foreach loop to display the remuneration field for each employee:

echo <<<END
 <form method="post" action="$posturl">
 <table>
 <tr>
 <th> </th>
 <th>Employee
ID</th>
 <th>Employee
Name</th>
 <th>Hiredate</th>
 <th>Salary</th>
 <th>Commission
(%)</th>
 <th>Remuneration</th>
 </tr>
END;

 // Write one row per employee
 foreach ($employeerecords as $emp) {
 echo '<tr>';
 echo '<td><input type="radio" name="emprec"
 value="'.htmlentities($emp['EMPLOYEE_ID']).'"></td>';
 echo '<td align="right">'.htmlentities($emp['EMPLOYEE_ID']).'</td>';
 echo '<td>'.htmlentities($emp['EMPLOYEE_NAME']).'</td>';
 echo '<td>'.htmlentities($emp['HIRE_DATE']).'</td>';
 echo '<td align="right">'.htmlentities($emp['SALARY']).'</td>';
 echo '<td align="right">'.htmlentities($emp['COMMISSION_PCT']).'</td>';
 echo '<td align="right">'.htmlentities($emp['REMUNERATION']).'</td>';
 echo '</tr>';
 }

	
Save the changes to your application files. In a browser, enter the following URL to test the application:

On Windows:

http://localhost/chap6/anyco.php

On Linux:

http://localhost/~<username>/chap6/anyco.php

	
In the Departments page, click Show Employees.

[image: Description of chap6_stored_proc_test_001.gif follows]

In the Employees page for the department, the employee remuneration is displayed in the last column:

[image: Description of chap6_stored_proc_test_002.gif follows]

Using PL/SQL Ref Cursors to Return Result Sets

Query data can be returned as REF CURSORS from PL/SQL blocks and displayed in PHP. This can be useful where the data set requires complex functionality or where you want multiple application programs to use the same query.

A REF CURSOR in PL/SQL is a type definition that is assigned to a cursor variable. It is common to declare a PL/SQL type inside a package specification for reuse in other PL/SQL constructs, such as a package body.

In this section, you will use a REF CURSOR to retrieve the employees for a specific department.

To create a PL/SQL package specification and body, with a REF CURSOR to retrieve employees for a specific department, perform the following steps:

	
Open SQL Developer and login to your HR sample schema as hr.

	
Open SQL Worksheet or SQL*Plus and enter the following text to create the cv_types PL/SQL package:

CREATE OR REPLACE PACKAGE cv_types AS
 TYPE empinfotyp IS REF CURSOR;
 PROCEDURE get_employees(deptid in number,
 employees in out empinfotyp);
END cv_types;

Click Run:

[image: Description of chap6_hrcreatepack.gif follows]

	
In SQL Worksheet enter the following text to create the cv_types PL/SQL package body:

CREATE OR REPLACE PACKAGE BODY cv_types AS
 PROCEDURE get_employees(deptid in number,
 employees in out empinfotyp)
 IS
 BEGIN
 OPEN employees FOR
 SELECT employee_id,
 substr(first_name,1,1) || '. '|| last_name as employee_name,
 hire_date,
 to_char(salary, '999G999D99') as salary,
 NVL(commission_pct,0) as commission_pct,
 to_char(calc_remuneration(salary, commission_pct),
 '9999G999D99') as remuneration
 FROM employees
 WHERE department_id = deptid
 ORDER BY employee_id ASC;
 END get_employees;
END cv_types;

Click Run:

[image: Description of chap6_hrcreatebody.gif follows]

	
Edit the anyco_db.inc file. Create a new PHP function that calls the PL/SQL packaged procedure:

// Use ref cursor to fetch employee records
// All records are retrieved - there is no paging in this example
function db_get_employees_rc($conn, $deptid, &$e)
{
 // Execute the call to the stored procedure
 $stmt = "BEGIN cv_types.get_employees($deptid, :rc); END;";
 $stid = @oci_parse($conn, $stmt);
 if (!$stid) {
 $e = db_error($conn, __FILE__, __LINE__);
 return false;
 }
 $refcur = oci_new_cursor($conn);
 if (!$stid) {
 $e = db_error($conn, __FILE__, __LINE__);
 return false;
 }
 $r = @oci_bind_by_name($stid, ':RC', $refcur, -1, OCI_B_CURSOR);
 if (!$r) {
 $e = db_error($stid, __FILE__, __LINE__);
 return false;
 }
 $r = @oci_execute($stid);
 if (!$r) {
 $e = db_error($stid, __FILE__, __LINE__);
 return false;
 }
 // Now treat the ref cursor as a statement resource
 $r = @oci_execute($refcur, OCI_DEFAULT);
 if (!$r) {
 $e = db_error($refcur, __FILE__, __LINE__);
 return false;
 }
 $r = @oci_fetch_all($refcur, $employeerecords, null, null,
 OCI_FETCHSTATEMENT_BY_ROW);
 if (!$r) {
 $e = db_error($refcur, __FILE__, __LINE__);
 return false;
 }
 return ($employeerecords);
}

The db_get_employees_rc() function executes the following anonymous (unnamed) PL/SQL block:

BEGIN cv_types.get_employees($deptid, :rc); END;

The PL/SQL statement inside the BEGIN END block calls the stored PL/SQL package procedure cv_types.et_employees(). This returns an OCI_B_CURSOR REF CURSOR bind variable in the PHP variable $refcur.

The $refcur variable is treated like a statement handle returned by oci_parse(). It is used for execute and fetch operations just as if the SQL query had been done in PHP.

	
Edit the anyco.php file. In the construct_employees() function, remove the query text and the bind arguments. The function becomes:

function construct_employees()
{
 $deptid = $_SESSION['deptid'];
 $conn = db_connect($err);
 if (!$conn) {
 handle_error('Connection Error', $err);
 }
 else {
 $emp = db_get_employees_rc($conn, $deptid, $err);

 if (!$emp) {
 handle_error('Cannot fetch Employees', $err);
 }
 else {
 $deptname = get_dept_name($conn, $deptid);

 ui_print_header('Employees: '.$deptname);
 ui_print_employees($emp, $_SERVER['SCRIPT_NAME']);
 ui_print_footer(date('Y-m-d H:i:s'));
 }
 }
}

	
Save the changes to your application files. In a browser, enter the following URL to test the application:

On Windows:

http://localhost/chap6/anyco.php

On Linux:

http://localhost/~<username>/chap6/anyco.php

	
In the Departments page, click Next to navigate to the Marketing department page.

[image: Description of chap6_refcursor_005.gif follows]

	
In the Marketing department page, click Show Employees.

[image: Description of chap6_refcursor_006.gif follows]

In the Employees page for the Marketing department, the employee pages displays as previously:

[image: Description of chap6_refcursor_007.gif follows]

7 Loading Images

This chapter shows you how to change the application to upload a JPEG image for new employee records and display it on the Employees page. It has the following topics:

	
Using BLOBs to Store and Load Employee Images

	
Resizing Images

Using BLOBs to Store and Load Employee Images

In this section, you will modify your application code to enable a photo to be stored in the record of an employee.

To enable images of employees to be stored in the employee records, perform the following tasks:

	
Create the chap7 directory, copy the application files from chap6, and change to the newly created directory:

On Windows:

mkdir c:\program files\Apache Group\Apache2\htdocs\chap7
cd c:\program files\Apache Group\Apache2\htdocs\chap7
copy ..\chap6* .

On Linux:

mkdir $HOME/public_html/chap7
cd $HOME/public_html/chap7
cp ../chap6/* .

	
Open SQL Developer and open a connection to your HR sample schema.

	
Login to your HR sample schema as hr.

	
Open SQL Worksheet and enter the following CREATE TABLE statement to create a new table for storing employee images:

CREATE TABLE employee_photos(
 employee_id NUMBER,
 employee_thumbnail BLOB);

[image: Description of chap7_hrcreatetable.gif follows]

	
The HR user must have the CREATE TABLE privilege to perform this command. If you get an "insufficient privileges" error message, then log out as the HR user, log in as system, and execute the following GRANT command:

GRANT create table TO hr;

Then log in as HR again to execute the CREATE TABLE statement.

	
Edit the anyco_ui.inc file. Add a Photograph column to the EMPLOYEES table in the ui_print_employees() function:

<th>Commission
(%)</th>
<th>Remuneration</th>
<th>Photograph</th>

The data for the Photograph column is populated with an tag whose src attribute is defined as a URL reference to a new anyco_im.php file, which will display the image for each employee record.

	
Edit the anyco_ui.inc file. Add code in the ui_print_employees() function to generate an tag referencing the anyco_im.php file with the employee identifier as a parameter:

echo '<td align="right">'
 .htmlentities($emp['REMUNERATION']).'</td>';
echo '<td><img src="anyco_im.php?showempphoto='.$emp['EMPLOYEE_ID']
 .'" alt="Employee photo"></td>';

	
Edit the anyco_ui.inc file. To enable images to be uploaded when a new employee record is created, add an enctype attribute to the <form> tag in the ui_print_insert_employee() function:

<form method="post" action="$posturl" enctype="multipart/form-data">

At the bottom of the form add an upload field with an input type of file:

<tr>
 <td>Commission (%)</td>
 <td><input type="text" name="commpct" value="0" size="20"></td>
</tr>
<tr>
 <td>Photo</td>
 <td><input type="file" name="empphoto"></td>
</tr>

	
Create the anyco_im.php file. This file accepts an employee identifier as a URL parameter, reads the image from the Photograph column for that employee record, and returns the thumbnail image to be displayed:

<?php // anyco_im.php

require('anyco_cn.inc');
require('anyco_db.inc');
construct_image();

function construct_image()
{
 if (!isset($_GET['showempphoto'])) {
 return;
 }

 $empid = $_GET['showempphoto'];

 $conn = db_connect($err);

 if (!$conn) {
 return;
 }

 $query =
 'SELECT employee_thumbnail
 FROM employee_photos
 WHERE employee_id = :eid';

 $stid = oci_parse($conn, $query);
 $r = oci_bind_by_name($stid, ":eid", $empid, -1);
 if (!$r) {
 return;
 }
 $r = oci_execute($stid, OCI_DEFAULT);
 if (!$r) {
 return;
 }

 $arr = oci_fetch_row($stid);
 if (!$arr) {
 return; // photo not found
 }

 $result = $arr[0]->load();

 // If any text (or whitespace!) is printed before this header is sent,
 // the text is not displayed. The image also is not displayed properly.
 // Comment out the "header" line to see the text and debug.
 header("Content-type: image/JPEG");
 echo $result;
}

?>

The construct_image() function uses the OCI-Lob->load() function to retrieve the Oracle LOB data, which is the image data. The PHP header() function sets the MIME type in the HTTP response header to ensure the browser interprets the data as a JPEG image.

If you want to display other image types, then the Content-type needs to be changed accordingly.

	
Edit the anyco_db.inc file. Add a new function db_insert_thumbnail()to insert an image into the EMPLOYEE_PHOTOS table:

function db_insert_thumbnail($conn, $empid, $imgfile, &$e)
{
 $lob = oci_new_descriptor($conn, OCI_D_LOB);
 if (!$lob) {
 $e = db_error($conn, __FILE__, __LINE__);
 return false;
 }

 $insstmt =
 'INSERT INTO employee_photos (employee_id, employee_thumbnail)
 VALUES(:eid, empty_blob())
 RETURNING employee_thumbnail into :etn';

 $stmt = oci_parse($conn, $insstmt);
 $r = oci_bind_by_name($stmt, ':etn', $lob, -1, OCI_B_BLOB);
 if (!$r) {
 $e = db_error($stid, __FILE__, __LINE__);
 return false;
 }
 $r = oci_bind_by_name($stmt, ':eid', $empid, -1);
 if (!$r) {
 $e = db_error($stid, __FILE__, __LINE__);
 return false;
 }
 $r = oci_execute($stmt, OCI_DEFAULT);
 if (!$r) {
 $e = db_error($stid, __FILE__, __LINE__);
 return false;
 }

 if (!$lob->savefile($imgfile)) {
 $e = db_error($stid, __FILE__, __LINE__);
 return false;
 }
 $lob->free();

 return true;
}

To tie the new EMPLOYEE_PHOTOS and EMPLOYEES tables together, you must use the same employee id in both tables.

	
Edit the anyco_db.inc file. Change the $bindvars parameter in the db_execute_statement() function to &$bindvars so that OUT bind variable values are returned from the database. At the bottom of the function, add a loop to set any return bind values:

function db_execute_statement($conn, $statement, &$e, &$bindvars = array())
{
 ...
 $r = @oci_execute($stid);
 if (!$r) {
 $e = db_error($stid, __FILE__, __LINE__);
 return false;
 }
 $outbinds = array();
 foreach ($bindvars as $b) {
 $outbinds[$b[0]] = $$b[0];
 }
 $bindvars = $outbinds;
 return true;
}

	
Edit the anyco.php file. Change the INSERT statement in the insert_new_emp() function so that it returns the new employee identifier in the bind variable :neweid. This value is inserted with the image into the new EMPLOYEE_PHOTOS table.

$statement =
 'INSERT INTO employees
 (employee_id, first_name, last_name, email, hire_date,
 job_id, salary, commission_pct, department_id)
 VALUES (employees_seq.nextval, :fnm, :lnm, :eml, :hdt,
 :jid, :sal, :cpt, :did)
 RETURNING employee_id into :neweid';

Also in the insert_new_emp() function, add a call to the array_push() function to set a new bind variable NEWEID at the end of the list of array_push() calls:

array_push($bindargs, array('CPT', $newemp['commpct'], -1));
array_push($bindargs, array('DID', $newemp['deptid'], -1));
array_push($bindargs, array('NEWEID', null, 10));

Because the value of NEWID is being retrieved with the RETURNING clause in the INSERT statement, its initial value is set to NULL. The length is set to 10 to allow enough digits in the return value.

	
Edit the anyco.php file. In the insert_new_emp() function, add a call between the db_execute_statement() and construct_employees() calls to insert the thumbnail image:

$r = db_execute_statement($conn, $statement, $err, $bindargs);
if ($r) {
 $r = db_insert_thumbnail($conn, $bindargs['NEWEID'],
 $_FILES['empphoto']['tmp_name'], $e);
 construct_employees();
}

	
In a browser, enter the following application URL:

On Windows:

http://localhost/chap7/anyco.php

On Linux:

http://localhost/~<username>/chap7/anyco.php

	
In the Departments page, click Show Employees to navigate to the Employees page:

[image: Description of chap7_loadimg_005.gif follows]

	
In the Employees page, to insert a new employee record click Insert new employee:

[image: Description of chap7_loadimg_006.gif follows]

	
The Insert New Employee form allows you to choose a thumbnail image on your system to be uploaded to the database. Enter your own values in the fields or use the values as shown. Click Browse:

[image: Description of chap7_loadimg_007.gif follows]

	
In the File Upload window, browse for and select a JPEG image file, and click Open:

[image: Description of chap7_loadimg_008.gif follows]

	
In the Insert New Employee page, click Save:

[image: Description of chap7_loadimg_022.gif follows]

The Employees page is displayed with the new employee record, including the image, which is displayed at its original size:

[image: Description of chap7_loadimg_009.gif follows]

Resizing Images

In this section, you will further modify your application code to create a thumbnail image from a supplied image, and store the thumbnail image in the record of an employee.

You can use the PHP GD graphics extension to resize employee images.

	
Restart Apache. You can either use the ApacheMonitor utility, or you can use Windows Services.

To use the ApacheMonitor utility, navigate to the Apache bin directory and double click ApacheMonitor.exe. In a default installation, Apache bin is located at c:\Program Files\Apache Group\Apache2\bin.

You can access Windows Services from the Windows Start menu at Start > Control Panel > Administrative Tools > Services. Select the Standard tab. Right click the Apache2 HTTP Server and then select Restart.

	
Edit the anyco_db.inc file. To resize the image to create a thumbnail image, add the following code before the call to $lob->savefile($imgfile) in the db_insert_thumbnail() function:

$r = oci_execute($stmt, OCI_DEFAULT);
if (!$r) {
 $e = db_error($stid, __FILE__, __LINE__);
 return false;
}

// Resize the image to a thumbnail
define('MAX_THUMBNAIL_DIMENSION', 100);
$src_img = imagecreatefromjpeg($imgfile);
list($w, $h) = getimagesize($imgfile);
if ($w > MAX_THUMBNAIL_DIMENSION || $h > MAX_THUMBNAIL_DIMENSION)
{
 $scale = MAX_THUMBNAIL_DIMENSION / (($h > $w) ? $h : $w);
 $nw = $w * $scale;
 $nh = $h * $scale;

 $dest_img = imagecreatetruecolor($nw, $nh);
 imagecopyresampled($dest_img, $src_img, 0, 0, 0, 0, $nw, $nh, $w, $h);

 imagejpeg($dest_img, $imgfile); // overwrite file with new thumbnail

 imagedestroy($src_img);
 imagedestroy($dest_img);
}

if (!$lob->savefile($imgfile)) {
...

The imagecreatefromjpeg() function reads the JPEG file and creates an internal representation used by subsequent GD functions. Next, new dimensions are calculated with the longest side no larger than 100 pixels. A template image with the new size is created using the imagecreatetruecolor() function. Data from the original image is sampled into it with the imagecopyresampled() function to create the thumbnail image. The thumbnail image is written back to the original file and the internal representations of the images are freed.

The existing code in the db_insert_thumbnail() function uploads the image file to the database as it did in the previous implementation.

	
Enter the following URL in your browser to test the changes in your application:

On Windows:

http://localhost/chap7/anyco.php

On Linux:

http://localhost/~<username>/chap7/anyco.php

	
In the Departments page, navigate to the Employees page by clicking Show Employees:

[image: Description of chap7_loadimg_018.gif follows]

	
In the Employees page, to insert a new employee record, click Insert new employee:

[image: Description of chap7_loadimg_019.gif follows]

	
Enter the new employee details or use the values shown. To browse for an employee image, click Browse:

[image: Description of chap7_loadimg_020.gif follows]

	
Locate and select a JPEG image with a size larger than 100 pixels, and click Open:

[image: Description of chap7_loadimg_021.gif follows]

	
In the Insert New Image page, click Save:

[image: Description of chap7_loadimg_022.gif follows]

The Employees page shows the new uploaded JPEG image with a reduced image size, compared to the image loaded before including the image resize code:

[image: Description of chap7_loadimg_023.gif follows]

8 Building Global Applications

This chapter discusses global application development in a PHP and Oracle Database environment. It addresses the basic tasks associated with developing and deploying global Internet applications, including developing locale awareness, constructing HTML content in the user-preferred language, and presenting data following the cultural conventions of the locale of the user.

Building a global Internet application that supports different locales requires good development practices. A locale refers to a national language and the region in which the language is spoken. The application itself must be aware of the locale preference of the user and be able to present content following the cultural conventions expected by the user. It is important to present data with appropriate locale characteristics, such as the correct date and number formats. Oracle Database is fully internationalized to provide a global platform for developing and deploying global applications.

This chapter has the following topics:

	
Establishing the Environment Between Oracle and PHP

	
Manipulating Strings

	
Determining the Locale of the User

	
Developing Locale Awareness

	
Encoding HTML Pages

	
Organizing the Content of HTML Pages for Translation

	
Presenting Data Using Conventions Expected by the User

Establishing the Environment Between Oracle and PHP

Correctly setting up the connectivity between the PHP engine and the Oracle database is first step in building a global application, it guarantees data integrity across all tiers. Most internet based standards support Unicode as a character encoding, in this chapter we will focus on using Unicode as the character set for data exchange.

PHP uses the OCI8 extension, and rules that apply to OCI also apply to PHP. Oracle locale behavior (including the client character set used in OCI applications) is defined by the NLS_LANG environment variable. This environment variable has the form:

 <language>_<territory>.<character set>

For example, for a German user in Germany running an application in Unicode, NLS_LANG should be set to

GERMAN_GERMANY.AL32UTF8

The language and territory settings control Oracle behaviors such as the Oracle date format, error message language, and the rules used for sort order. The character set AL32UTF8 is the Oracle name for UTF-8.

For information on the NLS_LANG environment variable, see the Oracle Database installation guides.

When PHP is installed on Apache, you can set NLS_LANG in /etc/profile:

 export NLS_LANG GERMAN_GERMANY.AL32UTF8

If PHP is installed on Oracle HTTP Server, you must set NLS_LANG as an environment variable in $ORACLE_HOME/opmn/conf/opmn.xml:

 <ias-component id="HTTP_Server">
 <process-type id="HTTP_Server" module-id="OHS">
 <environment>
 <variable id="PERL5LIB"
 value="D:\oracle\1012J2EE\Apache\Apache\mod_perl\site\5.6.1\lib"/>
 <variable id="PHPRC" value="D:\oracle\1012J2EE\Apache\Apache\conf"/>
 <variable id="NLS_LANG" value="german_germany.al32utf8"/>
 </environment>
 <module-data>
 <category id="start-parameters">
 <data id="start-mode" value="ssl-disabled"/>
 </category>
 </module-data>
 <process-set id="HTTP_Server" numprocs="1"/>
 </process-type>
 </ias-component>

You must restart the Web listener to implement the change.

Manipulating Strings

PHP was designed to work with the ISO-8859-1 character set. To handle other character sets, specifically multibyte character sets, a set of "MultiByte String Functions" is available. To enable these functions, you must enable the mbstring extension.

Your application code should use functions such as mb_strlen() to calculate the number of characters in strings. This may return different values than strlen(), which returns the number of bytes in a string.

Once you have enabled the mbstring extension and restarted the Web server, several configuration options become available. You can change the behavior of the standard PHP string functions by setting mbstring.func_overload to one of the "Overload" settings.

For more information, see the PHP mbstring reference manual at

http://www.php.net/mbstring

Determining the Locale of the User

In a global environment, your application should accommodate users with different locale preferences. Once it has determined the preferred locale of the user, the application should construct HTML content in the language of the locale and follow the cultural conventions implied by the locale.

A common method to determine the locale of a user is from the default ISO locale setting of the browser. Usually a browser sends its locale preference setting to the HTTP server with the Accept Language HTTP header. If the Accept Language header is NULL, then there is no locale preference information available, and the application should fall back to a predefined default locale.

The following PHP code retrieves the ISO locale from the Accept-Language HTTP header through the $_SERVER Server variable.

$s = $_SERVER["HTTP_ACCEPT_LANGUAGE"]

Developing Locale Awareness

Once the locale preference of the user has been determined, the application can call locale-sensitive functions, such as date, time, and monetary formatting to format the HTML pages according to the cultural conventions of the locale.

When you write global applications implemented in different programming environments, you should enable the synchronization of user locale settings between the different environments. For example, PHP applications that call PL/SQL procedures should map the ISO locales to the corresponding NLS_LANGUAGE and NLS_TERRITORY values and change the parameter values to match the locale of the user before calling the PL/SQL procedures. The PL/SQL UTL_I18N package contains mapping functions that can map between ISO and Oracle locales.

Table 8-1 shows how some commonly used locales are defined in ISO and Oracle environments.

Table 8-1 Locale Representations in ISO, SQL, and PL/SQL Programming Environments

	Locale	Locale ID	NLS_LANGUAGE	NLS_TERRITORY
	
Chinese (P.R.C.)

	
zh-CN

	
SIMPLIFIED CHINESE

	
CHINA

	
Chinese (Taiwan)

	
zh-TW

	
TRADITIONAL CHINESE

	
TAIWAN

	
English (U.S.A)

	
en-US

	
AMERICAN

	
AMERICA

	
English (United Kingdom)

	
en-GB

	
ENGLISH

	
UNITED KINGDOM

	
French (Canada)

	
fr-CA

	
CANADIAN FRENCH

	
CANADA

	
French (France)

	
fr-FR

	
FRENCH

	
FRANCE

	
German

	
de

	
GERMAN

	
GERMANY

	
Italian

	
it

	
ITALIAN

	
ITALY

	
Japanese

	
ja

	
JAPANESE

	
JAPAN

	
Korean

	
ko

	
KOREAN

	
KOREA

	
Portuguese (Brazil)

	
pt-BR

	
BRAZILIAN PORTUGUESE

	
BRAZIL

	
Portuguese

	
pt

	
PORTUGUESE

	
PORTUGAL

	
Spanish

	
es

	
SPANISH

	
SPAIN

Encoding HTML Pages

The encoding of an HTML page is important information for a browser and an Internet application. You can think of the page encoding as the character set used for the locale that an Internet application is serving. The browser must know about the page encoding so that it can use the correct fonts and character set mapping tables to display the HTML pages. Internet applications must know about the HTML page encoding so they can process input data from an HTML form.

Instead of using different native encodings for the different locales, Oracle recommends that you use UTF-8 (Unicode encoding) for all page encodings. This encoding not only simplifies the coding for global applications, but it also enables multilingual content on a single page.

Specifying the Page Encoding for HTML Pages

You can specify the encoding of an HTML page either in the HTTP header, or in HTML page header.

Specifying the Encoding in the HTTP Header

To specify HTML page encoding in the HTTP header, include the Content-Type HTTP header in the HTTP specification. It specifies the content type and character set. The Content-Type HTTP header has the following form:

Content-Type: text/html; charset=utf-8

The charset parameter specifies the encoding for the HTML page. The possible values for the charset parameter are the IANA names for the character encodings that the browser supports.

Specifying the Encoding in the HTML Page Header

Use this method primarily for static HTML pages. To specify HTML page encoding in the HTML page header, specify the character encoding in the HTML header as follows:

<meta http-equiv="Content-Type" content="text/html;charset=utf-8">

The charset parameter specifies the encoding for the HTML page. As with the Content-Type HTTP Header, the possible values for the charset parameter are the IANA names for the character encodings that the browser supports.

Specifying the Page Encoding in PHP

You can specify the encoding of an HTML page in the Content-Type HTTP header by setting the PHP configuration variable as follows:

default_charset = UTF-8

This setting does not imply any conversion of outgoing pages. Your application must ensure that the server-generated pages are encoded in UTF-8.

Organizing the Content of HTML Pages for Translation

Making the user interface available in the local language of the user is a fundamental task in globalizing an application. Translatable sources for the content of an HTML page belong to the following categories:

	
Text strings included in the application code

	
Static HTML files, images files, and template files such as CSS

	
Dynamic data stored in the database

Strings in PHP

You should externalize translatable strings within your PHP application logic, so that the text is readily available for translation. These text messages can be stored in flat files or database tables depending on the type and the volume of the data being translated.

Static Files

Static files such as HTML and GIF files are readily translatable. When these files are translated, they should be translated into the corresponding language with UTF-8 as the file encoding. To differentiate the languages of the translated files, stage the static files of different languages in different directories or with different file names.

Data from the Database

Dynamic information such as product names and product descriptions is typically stored in the database. To differentiate various translations, the database schema holding this information should include a column to indicate the language. To select the desired language, you must include a WHERE clause in your query.

Presenting Data Using Conventions Expected by the User

Data in the application must be presented in a way that conforms to the expectation of the user. Otherwise, the meaning of the data can be misinterpreted. For example, the date '12/11/05' implies '11th December 2005' in the United States, whereas in the United Kingdom it means '12th November 2005'. Similar confusion exists for number and monetary formats of the users. For example, the symbol '.' is a decimal separator in the United States; in Germany this symbol is a thousand separator.

Different languages have their own sorting rules. Some languages are collated according to the letter sequence in the alphabet, some according to the number of stroke counts in the letter, and some languages are ordered by the pronunciation of the words. Presenting data not sorted in the linguistic sequence that your users are accustomed to can make searching for information difficult and time consuming.

Depending on the application logic and the volume of data retrieved from the database, it may be more appropriate to format the data at the database level rather than at the application level. Oracle Database offers many features that help to refine the presentation of data when the locale preference of the user is known. The following sections provide examples of locale-sensitive operations in SQL.

Oracle Date Formats

The three different date presentation formats in Oracle Database are standard, short, and long dates. The following examples illustrate the differences between the short date and long date formats for both the United States and Germany.

SQL> alter session set nls_territory=america nls_language=american;

Session altered.

SQL> select employee_id EmpID,
 2 substr(first_name,1,1)||'.'||last_name "EmpName",
 3 to_char(hire_date,'DS') "Hiredate",
 4 to_char(hire_date,'DL') "Long HireDate"
 5 from employees
 6* where employee_id <105;

 EMPID EmpName Hiredate Long HireDate
---------- --------------------------- ---------- -----------------------------
 100 S.King 06/17/1987 Wednesday, June 17, 1987
 101 N.Kochhar 09/21/1989 Thursday, September 21, 1989
 102 L.De Haan 01/13/1993 Wednesday, January 13, 1993
 103 A.Hunold 01/03/1990 Wednesday, January 3, 1990
 104 B.Ernst 05/21/1991 Tuesday, May 21, 1991

SQL> alter session set nls_territory=germany nls_language=german;

Session altered.

SQL> select employee_id EmpID,
 2 substr(first_name,1,1)||'.'||last_name "EmpName",
 3 to_char(hire_date,'DS') "Hiredate",
 4 to_char(hire_date,'DL') "Long HireDate"
 5 from employees
 6* where employee_id <105;

 EMPID EmpName Hiredate Long HireDate
---------- --------------------------- -------- ------------------------------
 100 S.King 17.06.87 Mittwoch, 17. Juni 1987
 101 N.Kochhar 21.09.89 Donnerstag, 21. September 1989
 102 L.De Haan 13.01.93 Mittwoch, 13. Januar 1993
 103 A.Hunold 03.01.90 Mittwoch, 3. Januar 1990
 104 B.Ernst 21.05.91 Dienstag, 21. Mai 1991

Oracle Number Formats

The following examples illustrate the differences in the decimal character and group separator between the United States and Germany.

SQL> alter session set nls_territory=america;

Session altered.

SQL> select employee_id EmpID,
 2 substr(first_name,1,1)||'.'||last_name "EmpName",
 3 to_char(salary, '99G999D99') "Salary"
 4 from employees
 5* where employee_id <105

 EMPID EmpName Salary
---------- --------------------------- ----------
 100 S.King 24,000.00
 101 N.Kochhar 17,000.00
 102 L.De Haan 17,000.00
 103 A.Hunold 9,000.00
 104 B.Ernst 6,000.00

SQL> alter session set nls_territory=germany;

Session altered.

SQL> select employee_id EmpID,
 2 substr(first_name,1,1)||'.'||last_name "EmpName",
 3 to_char(salary, '99G999D99') "Salary"
 4 from employees
 5* where employee_id <105

 EMPID EmpName Salary
---------- --------------------------- ----------
 100 S.King 24.000,00
 101 N.Kochhar 17.000,00
 102 L.De Haan 17.000,00
 103 A.Hunold 9.000,00
 104 B.Ernst 6.000,00

Oracle Linguistic Sorts

Spain traditionally treats ch, ll as well as ñ as unique letters, ordered after c, l and n respectively. The following examples illustrate the effect of using a Spanish sort against the employee names Chen and Chung.

SQL> alter session set nls_sort=binary;

Session altered.

SQL> select employee_id EmpID,
 2 last_name "Last Name"
 3 from employees
 4 where last_name like 'C%'
 5* order by last_name

 EMPID Last Name
---------- -------------------------
 187 Cabrio
 148 Cambrault
 154 Cambrault
 110 Chen
 188 Chung
 119 Colmenares

6 rows selected.

SQL> alter session set nls_sort=spanish_m;

Session altered.

SQL> select employee_id EmpID,
 2 last_name "Last Name"
 3 from employees
 4 where last_name like 'C%'
 5* order by last_name

 EMPID Last Name
---------- -------------------------
 187 Cabrio
 148 Cambrault
 154 Cambrault
 119 Colmenares
 110 Chen
 188 Chung

6 rows selected.

Oracle Error Messages

The NLS_LANGUAGE parameter also controls the language of the database error messages being returned from the database. Setting this parameter prior to submitting your SQL statement ensures that the language-specific database error messages will be returned to the application.

Consider the following server message:

ORA-00942: table or view does not exist

When the NLS_LANGUAGE parameter is set to French, the server message appears as follows:

ORA-00942: table ou vue inexistante

For more discussion of globalization support features in Oracle Database, see "Working in a Global Environment" in Oracle Database 2 Day Developer's Guide.

Index

A B C D E F G H I J L M N O P Q R S T U V W

Symbols

	$bindargs array, 4.2
	$bindargs parameter, 5.1
	$bindvars parameter, 4.2, 4.2, 7.1
	$conn parameter, 3.2
	$current variable, 4.3
	$date parameter, 3.1
	$DID variable, 4.2
	$e parameter, 5.4, 5.4, 5.4
	$emp variable, 5.3
	$file parameter, 4.1
	$line parameter, 4.1
	$posturl parameter, 4.3, 4.3
	$q1 parameter, 4.3
	$query parameter, 5.2
	$r parameter, 4.1
	$refcur variable, 6.2
	$results parameter, 4.1
	$resulttype parameter, 5.2
	$rowsperpage parameter, 4.3
	$stid parameter, 4.1, 4.2
	$title parameter, 3.1
	@ preventing error display, 5.4
	__FILE__ variable, 4.1, 5.4
	__LINE__ variable, 4.1, 5.4

A

	AL32UTF8 character set, 8.1
	AnyCo Corp
	
	tutorial application, 1.2

	anyco_cn.inc
	
	creating, 4.1
	description, 1.2

	anyco_db.inc
	
	calling bind variable, 4.2
	calling PL/SQL packaged procedure, 6.2
	changing the bind variable, 7.1
	choosing output type, 5.2, 5.2
	creating, 4.1
	creating a thumbnail image, 7.2
	description, 1.2
	executing data manipulation statements, 5.2
	including in anyco.php, 4.1
	inserting thumbnail image, 7.1
	passing error parameter, 5.4
	preventing error display, 5.4
	return error variable, 5.4
	returning errors, 5.4
	returning errors from all functions, 5.4
	subset query, 4.3
	testing, 4.2

	anyco_im.php
	
	creating, 7.1
	description, 1.2
	employee image display, 7.1

	anyco_ui.inc
	
	add employee remuneration column, 6.1
	adding an employee image column, 7.1
	adding navigation, 4.3
	creating, 3.1, 3.1
	description, 1.2
	employee data in HTML table, 5.1
	error printing, 5.4
	extending, 4.4
	formatting results, 4.1
	functions, 3.1
	generating an employee img tag, 7.1
	generating employee data HTML form, 5.2
	HTML form for employee data, 5.2
	including, 3.1
	including in anyco.php, 4.1
	testing changes, 5.1
	updating an employee record, 5.2
	uploading employee image, 7.1

	anyco.php
	
	adding db connection, 3.2
	bind variables, 4.2
	building employee records, 5.2
	calling a PL/SQL function, 6.1
	creating, 3.1
	data manipulation logic, 5.2
	deleting employee records, 5.2
	departments instead of employees, 5.1
	description, 1.2
	employees and departments pages, 5.3
	employees page, 5.1
	error handling, 5.4, 5.5
	executing the query, 3.2
	fetching all rows, 3.2
	include files, 4.1
	inserting an image, 7.1
	inserting employee records, 5.2
	navigation, 4.3
	obtaining the default department, 5.3
	printing page titles, 5.3
	query to execute, 3.2
	replace query, 4.4
	testing, 3.1, 3.2, 4.1, 4.2, 4.3, 4.4, 5.1, 5.2, 5.3, 5.4, 5.5, 6.1, 6.2, 7.1, 7.2
	updating employee records, 5.2
	usable database connection, 3.2
	using a bind variable, 4.2

	Apache
	
	creating public_html, 2.3.6
	httpd.conf configuration file, 2.3.6
	public_html, 2.3.6
	restarting, 2.3.6
	testing installation on Linux, 2.3.6
	testing installation on Windows, 2.3.3

	application, 5.4
	
	adding an employee image, 7.1
	adding employee remuneration column, 6.1
	building employee records, 5.2
	calling departments instead of employees, 5.1
	calling locale specific functions, 8.4
	centralizing database logic, 4.1
	choosing output type, 5.2, 5.2
	combining departments and employees, 5.3
	connection functions, 4.1
	constants for database connection, 4.1
	creating employees page, 5.1
	deleting employee records, 5.2
	employee image display, 7.1
	employee images in BLOBs, 7.1
	error recovery, 5.4
	executing data manipulation statements, 5.2
	executing the query, 3.2
	extending departments page, 4.4
	extending employees page, 5.2
	externalizing translatable strings, 8.6.1
	fetching all rows, 3.2
	file naming convention, 1.2
	files directory, 2.5, 3.1
	generating an employee img tag, 7.1
	globalizing, 8
	implementing subset query, 4.3
	inserting employee records, 5.2
	inserting employee thumbnail, 7.1
	Next and Previous buttons, 4.3
	obtaining the default department, 5.3
	Oracle errors, 5.5
	PL/SQL procedures and functions, 6.1
	printing errors, 5.4
	printing page titles, 5.3
	query to execute, 3.2
	report page, 3
	return error variable, 5.4
	thumbnail images, 7.2
	translating HTML and GIF, 8.6.2
	translating the user interface, 8.6
	updating employee records, 5.2
	uploading employee image, 7.1
	user interface, 3.1
	UTF-8 page encoding, 8.5

	array_push() function, 7.1

B

	bind variables, 4.2, 4.2
	
	anyco.php, 4.2
	calling in anyco_db.inc, 4.2
	DID, 4.2, 4.2, 5.3
	FIRST, 4.3
	LAST, 4.3
	modify query, 4.2
	NEWEID, 7.1
	OUT, 7.1
	returning from database, 7.1

	BLOBs
	
	storing employee images, 7.1

C

	calc_remuneration() function, 6.1
	character sets
	
	AL32UTF8, 8.1
	globalization settings, 8.2
	UTF-8, 8.1

	charset parameter, 8.5.1.1
	configuring
	
	Apache httpd.conf, 2.3.6

	connections
	
	disconnecting, 3.3
	Easy Connect syntax, 3.2.1
	HR user, 2.2.1, 6.1
	Oracle Database, 3
	persistent, 3.2.2
	settings, 3.2.2

	construct_departments() function, 4.3, 4.3, 4.3, 4.4, 5.1
	construct_employees() function, 5.1, 5.1, 5.3, 6.1
	construct_image() function, 7.1
	construct_insert_emp() function, 5.2, 5.3
	construct_modify_emp() function, 5.2
	Content-type, 7.1
	conventions
	
	presenting data, 8.7

	COUNTRIES table, 4.4
	creating
	
	anyco_ui.inc application user interface, 3.1
	directory for application files, 2.5, 3.1
	PHP files, 3
	public_html, 2.3.6

	cv_types.et_employees() procedure, 6.2

D

	database
	
	centralizing logic, 4.1
	connection functions, 4.1
	constants for connection, 4.1
	disconnection, 3.3
	dynamic information, 8.6.3
	Easy Connect syntax, 3.2.1
	executing the query, 3.2
	fetching all rows, 3.2
	navigating records, 4.3
	storing employee images, 7.1
	tnsnames.ora, 3.2.1
	validating connection, 3.2

	date formats in Oracle, 8.7.1
	date() function, 5.2
	db_do_query() function, 4.1, 4.2, 4.2, 5.1, 5.1, 5.2, 5.2, 5.2, 5.4
	db_error () function, 4.1
	db_error() function, 4.1, 5.4, 5.4
	db_execute_statement() function, 5.2, 5.2, 7.1
	db_get_employees_rc() function, 6.2
	db_get_page_data() function, 4.3, 4.3, 4.3, 5.2, 5.4
	db_insert_thumbnail() function, 7.1, 7.2, 7.2
	debugging, 4.1
	delete_emp() function, 5.2
	department_id variable, 5.3
	departments page
	
	combining with employees, 5.3
	extending, 4.4

	DEPARTMENTS table, 1.2, 3.2, 4.3, 4.4
	deptid parameter, 5.3
	DID bind variable, 4.2, 4.2, 5.3
	directives
	
	display_errors, 3.2.1
	error_reporting, 3.2.1

	disconnection, 3.3
	display_errors directive, 3.2.1
	do_query() function, 3.2

E

	Easy Connect syntax, 3.2.1
	EMPLOYEE_PHOTOS table, 7.1, 7.1
	employees page, 5.1
	
	combining with departments, 5.3
	creating, 5.1
	extending, 5.2

	EMPLOYEES table, 1.2, 3.2, 4.4, 5.2, 5.2, 5.2, 7.1
	enctype attribute, 7.1
	environment variables
	
	NLS_LANG, 8.1
	NLS_LANGUAGE, 8.4, 8.7.4
	NLS_TERRITORY, 8.4

	error_reporting directive, 3.2.1
	errors
	
	assigning to variable, 5.4
	handling, 5.4
	NLS_LANGUAGE, 8.7.4
	Oracle, 5.5
	passing parameter, 5.4
	preventing display, 5.4
	recovery, 5.4
	returning, 5.4
	returning from all functions, 5.4

F

	files
	
	adding data manipulation logic to anyco.php, 5.2
	adding db connection to anyco.php, 3.2
	adding navigation to anyco.php, 4.3
	anyco_cn.inc description, 1.2
	anyco_db.inc description, 1.2
	anyco_im.php description, 1.2
	anyco_ui.inc description, 1.2
	anyco.php description, 1.2
	application, 2.5, 3.1
	application naming convention, 1.2
	creating anyco_cn.inc, 4.1
	creating anyco_db.inc, 4.1
	creating anyco_im.php, 7.1
	creating anyco_ui.inc, 3.1
	creating anyco.php, 3.1
	employees and departments pages, 5.3
	employees page in anyco.php, 5.1
	error handling in anyco.php, 5.4, 5.5
	extending anyco_ui.inc, 4.4
	include file in anyco_ui.inc, 3.1
	include files in anyco.php, 4.1
	JPEG, 7.2
	style.css description, 1.2
	testing anyco_ui.inc, 5.1
	testing anyco.php, 3.1, 3.2, 4.1, 4.2, 4.3, 4.4, 5.1, 5.2, 5.3, 5.4, 5.5, 6.1, 6.2, 7.1, 7.2
	translating HTML and GIF, 8.6.2

	FIRST bind variable, 4.3
	format
	
	function in anyco_ui.inc, 4.1

	functions
	
	anyco_ui.inc, 3.1
	array_push(), 7.1
	calc_remuneration(), 6.1
	construct_departments(), 4.3, 4.3, 4.3, 4.4, 5.1
	construct_employees(), 5.1, 5.1, 5.3, 6.1
	construct_image(, 7.1
	construct_insert_emp(), 5.2, 5.3
	construct_modify_emp(), 5.2
	date(), 5.2
	db_do_query(), 4.1, 4.2, 4.2, 5.1, 5.1, 5.2, 5.2, 5.2, 5.4
	db_error (), 4.1
	db_error(), 4.1, 5.4, 5.4
	db_execute_statement(), 5.2, 5.2, 7.1
	db_get_employees_rc(), 6.2
	db_get_page_data(), 4.3, 4.3, 4.3, 5.2, 5.4
	db_insert_thumbnail(), 7.1, 7.2, 7.2
	delete_emp(), 5.2
	do_query(), 3.2
	get_dept_name(), 5.3
	header(), 7.1
	htmlentities(), 3.1
	imagecopyresampled(), 7.2
	imagecreatefromjpeg(), 7.2
	imagecreatetruecolor(), 7.2
	insert_new_emp(), 5.2, 5.5, 7.1
	isset(), 4.1
	modify_emp(), 5.2
	oci_bind_by_name(), 4.2, 4.2
	oci_close(), 3.3
	oci_connect(), 3.2, 3.2.1, 3.3
	oci_error(), 4.1
	oci_execute(), 4.2
	oci_fetch_all(), 4.1, 5.2
	oci_fetch_array(), 3.2
	oci_parse(), 3.2
	OCI8 oci_pconnect(), 3.2.2
	OCI8 oci_pconnect() function, 3.2.2
	OCI-Lob->load(), 7.1
	session_start(), 4.3
	SYSDATE, 5.2
	ui_print_department(), 4.3, 4.3, 4.4
	ui_print_employees(), 5.1, 5.1, 5.2, 6.1, 7.1, 7.1
	ui_print_error(), 5.4
	ui_print_footer(), 3.1
	ui_print_header(), 3.1
	ui_print_insert_employee(), 5.2, 5.3, 7.1
	ui_print_modify_employee(), 5.2
	var_dump(), 3.2.1, 4.1

G

	GD graphicsextension, 7.2
	get_dept_name() function, 5.3
	globalizing
	
	applications, 8
	calling locale specific functions, 8.4
	character sets, 8.2
	date formats, 8.7.1
	determining user locale, 8.3
	dynamic information, 8.6.3
	HTML page encoding, 8.5
	linguistic sorts, 8.7.3
	NLS_LANGUAGE, 8.7.4
	number formats, 8.7.2
	PHP and Oracle environment, 8.1
	presenting data, 8.7
	sorting data, 8.7
	translating the user interface, 8.6

H

	header() function, 7.1
	hello.php
	
	testing PHP installation, 2.5

	HTML
	
	cascading style sheet, 3.1
	employee data output, 5.1
	form containing employee data, 5.2
	generating employee data form, 5.2
	page encoding, 8.5, 8.5.1.1, 8.5.1.2, 8.5.2
	page header, 8.5.1.2

	htmlentities() function, 3.1
	HTTP header
	
	page encoding, 8.5.1.1

	httpd.conf Apache configuration file, 2.3.6
	Human Resources (HR) application, 1.2

I

	imagecopyresampled() function, 7.2
	imagecreatefromjpeg() function, 7.2
	imagecreatetruecolor() function, 7.2
	images
	
	creating a thumbnail, 7.2
	creating thumbnails, 7.2
	inserting employee thumbnail, 7.1
	inserting in anyco.php, 7.1
	storing in BLOBs, 7.1

	include files
	
	anyco_ui.inc, 3.1
	anyco.php, 4.1
	in anyco.php, 4.1, 4.1

	insert_new_emp() function, 5.2, 5.5, 7.1
	installation
	
	Oracle Database, 2, 2.2
	PHP on Linux, 2.4.2
	PHP on Windows, 2.3.1, 2.3.4, 2.4.1

	isset() function, 4.1

J

	JOBS table, 5.2
	JPEG file, 7.2

L

	LAST bind variable, 4.3
	linguistic sorts, 8.7.3
	locale, 8.3
	LOCATIONS table, 4.4

M

	modify_emp() function, 5.2

N

	navigating database records, 4.3, 4.3
	NEWEID bind variable, 7.1
	NLS_LANG environment variable, 8.1
	NLS_LANGUAGE environment variable, 8.4, 8.7.4
	NLS_TERRITORY environment variable, 8.4
	NULL values, 3.2
	number formats in Oracle, 8.7.2

O

	obtaining
	
	Oracle Database, 2.2

	OCI_B_CURSOR ref cursor, 6.2
	oci_bind_by_name() function, 4.2, 4.2
	oci_close() function, 3.3
	OCI_COMMIT_ON_SUCCESS parameter, 3.2
	oci_connect() function, 3.2, 3.2.1, 3.3
	OCI_DEFAULT parameter, 3.2
	oci_error() function, 4.1
	oci_execute() function, 4.2
	oci_fetch_all() function, 4.1, 5.2
	oci_fetch_array() function, 3.2
	OCI_FETCHSTATEMENT_BY_COLUMN parameter, 5.2
	OCI_FETCHSTATEMENT_BY_ROW parameter, 4.1, 5.2, 5.2
	oci_parse() function, 3.2
	OCI_RETURN_NULLS parameter, 3.2
	OCI8 oci_pconnect(), 3.2.2
	OCI8 oci_pconnect() function, 3.2.2
	oci8.max_persistent setting, 3.2.2
	oci8.persistent_timeout setting, 3.2.2
	oci8.ping_interval setting, 3.2.2
	OCI-Lob->load() function, 7.1
	Oracle
	
	date formats, 8.7.1
	establishing environment, 8.1
	number formats, 8.7.2
	tnsnames.ora, 3.2.1

	Oracle Database
	
	connecting, 3
	installing, 2
	obtaining and installing, 2.2
	prerequisites, 2.1

	OUT bind variable, 7.1

P

	parameters
	
	$bindargs, 5.1
	$bindvars, 4.2, 4.2, 7.1
	$conn, 3.2
	$date, 3.1
	$e, 5.4, 5.4, 5.4
	$file, 4.1
	$line, 4.1
	$posturl, 4.3, 4.3
	$q1, 4.3
	$query, 5.2
	$r, 4.1
	$results, 4.1
	$resulttype, 5.2
	$rowsperpage, 4.3
	$stid, 4.1, 4.2
	$title, 3.1
	charset, 8.5.1.1
	deptid, 5.3
	OCI_COMMIT_ON_SUCCESS, 3.2
	OCI_DEFAULT, 3.2
	OCI_FETCHSTATEMENT_BY_COLUMN, 5.2
	OCI_FETCHSTATEMENT_BY_ROW, 4.1, 5.2, 5.2
	OCI_RETURN_NULLS, 3.2

	PHP
	
	application logic, 4.1
	cascading style sheet, 3.1
	character sets, 8.2
	creating files, 3
	determining user locale, 8.3
	display_errors directive, 3.2.1
	error_reporting directive, 3.2.1
	establishing environment, 8.1
	externalizing translatable strings, 8.6.1
	GD graphicsextension, 7.2, 7.2
	globalizing your application, 8
	hello.php, 2.5
	here document, 3.1
	HTML page encoding, 8.5.2
	installing on Linux, 2.4.2
	installing on Windows, 2.3.1, 2.3.4, 2.4.1
	NULL values, 3.2
	oci8.max_persistent, 3.2.2
	oci8.persistent_timeout, 3.2.2
	oci8.ping_interval, 3.2.2
	translating HTML and GIF files, 8.6.2

	PHP - PHP Hypertext Preprocessor, 1
	PHP functions
	
	ui_print_footer(), 3.1
	ui_print_header(), 3.1

	PL/SQL
	
	application procedures and functions, 6.1
	calling function in anyco.php, 6.1
	calling packaged procedure, 6.2
	cv_types.et_employees() packaged procedure, 6.2
	UTL_I18N package, 8.4

	prerequisites for Oracle Database, 2.1
	public virtual directory in Apache, 2.3.6
	public_html
	
	Apache, 2.3.6
	creating, 2.3.6

Q

	queries with bind variables, 4.2

R

	ref cursors
	
	OCI_B_CURSOR, 6.2

	reporting in the application, 3
	restarting Apache, 2.3.6
	returning errors, 5.4
	returning false statements, 5.4

S

	session_start() function, 4.3
	sorting, 8.7, 8.7.3
	statements, returning false, 5.4
	style.css
	
	HTML presentation, 3.1

	style.css description, 1.2
	SYSDATE function, 5.2

T

	tables
	
	COUNTRIES, 4.4
	DEPARTMENTS, 1.2, 3.2, 4.3, 4.4
	EMPLOYEE_PHOTOS, 7.1, 7.1
	EMPLOYEES, 1.2, 3.2, 4.4, 5.2, 5.2, 5.2, 7.1
	JOBS, 5.2
	LOCATIONS, 4.4

	testing
	
	anyco_db.inc, 4.2
	anyco_ui.inc, 5.1
	Apache installation on Linux, 2.3.6
	Apache installation on Windows, 2.3.3

	thumbnail images, 7.2
	tnsnames.ora, 3.2.1
	tutorial AnyCo Corp, 1.2

U

	ui_print_department() function, 4.3, 4.3, 4.4
	ui_print_employees() function, 5.1, 5.1, 5.2, 6.1, 7.1, 7.1
	ui_print_error() function, 5.4
	ui_print_footer() function, 3.1
	ui_print_header() function, 3.1
	ui_print_insert_employee() function, 5.2, 5.3, 7.1
	ui_print_modify_employee() function, 5.2
	unlocking HR account, 2.2.1, 6.1
	user interface
	
	externalizing translatable strings, 8.6.1
	translating, 8.6

	UTF-8
	
	character set, 8.1
	HTML page encoding, 8.5

	UTL_I18N package, 8.4

V

	var_dump() function, 3.2.1, 4.1
	variables
	
	$current, 4.3
	$DID, 4.2
	$emp, 5.3
	$refcur, 6.2
	__FILE__, 4.1, 5.4
	__LINE__, 4.1, 5.4
	department_id, 5.3

W

	Web browser
	
	testing Apache installation on Linux, 2.3.6
	testing Apache installation on Windows, 2.3.3

chap7_loadimg_007.gif shows a Web form with the title, Insert New Employee. Immediately underneath is a horizontal line to separate the header from the body of the form. Then there is a table of eight rows of two columns comprising the form labels and entry fields. The field labels in the left column are:

Department ID, First Name, Last Name, Hiredate, Job, Salary, Commission (%), Photo.

The entry fields in the second column contain the values:

10, Glenn, Stokol, 11-OCT-05, Programmer, 8000, 0, null

There is a Browse button on the right side of the Photo entry field. The mouse cursor is pointing at the Browse button.

Under the fields, there are two buttons labelled, Save and Cancel.

Immediately underneath is a horizontal line to separate the body of the form and the footer. The footer shows the date, 2005-10-11, and the time, 11:21:05 on the left side, and Any Co. on the right side.

chap5_err_handling_006.gif shows a Web page with the title, Department 99 does not yet exist. Immediately underneath is a horizontal line to separate the header from the body of the page. Then there is the following error message:

Error at line 86 of /home/gstokol/public_html/chap5/anyco_db.inc

ORA-02291: Integrity constraint (HR.EMP_DEPT_FK) violated - parent key not found

Under the error message, there is a button labelled, Return to Departments. The mouse cursor is pointing at the Return to Departments button.

Immediately underneath is a horizontal line to separate the body of the page and the footer. The footer shows the date, 2005-10-10, and the time, 16:39:15 on the left side, and Any Co. on the right side.

chap5_test_emp_006.gif shows the bottom of a Web page. There is a table of 2 rows of six columns.

The data rows contain the following data:

unchecked radio button, 206, W. Gietz, 07-JUN-94, 8,300.00, 0

checked radio button, 248, J. Bond, 04-OCT-05, 7,000.00, 0

Under the data, there are three buttons labelled, Modify, Delete, and Insert new employee. The mouse cursor is pointing at the Modify button.

Immediately underneath is a horizontal line to separate the body of the page and the footer. The footer shows the date, 2005-10-04, and the time, 13:40:42 on the left side, and Any Co. on the right side.

chap5_err_handling_001.gif shows a Web page with the title, Department: Administration. Immediately underneath is a horizontal line to separate the header and the body of the page. Then there is a table of two rows of five columns. The first row contains the column headings:

Department ID, Department Name, Number of Employees, Manager Name, Location.

The data row contains the following data:

10, Administration, 1, J. Whalen, United States of America.

Under the data, there are three buttons labelled, < Previous, Next>, and Show Employees. The mouse cursor is pointing at the Next> button.

Immediately underneath is a horizontal line to separate the body of the page and the footer. The footer shows the date, 2005-10-10, and the time, 16:33:20 on the left side, and Any Co. on the right side.

chap4_db_nagivation_002.gif shows a Web page with the title, Department. Immediately underneath is a horizontal line to separate the header and the body of the page. Then there is a table of 2 rows of four columns. The first row contains the column headings:

Department ID, Department Name, Manager ID, Location ID.

The data row contains the following data:

20, Marketing, 201, 1800.

Under the data, there are two buttons labelled, < Previous and Next>. The mouse cursor is pointing to the <Previous button.

Immediately underneath is a horizontal line to separate the body of the page and the footer. The footer shows the date, 2005-10-02, and the time, 22:59:10 on the left side, and Any Co. on the right side.

chap5_combine_deptemp_001.gif shows a Web page with the title, Department: Administration. Immediately underneath is a horizontal line to separate the header and the body of the page. Then there is a table of two rows of five columns. The first row contains the column headings:

Department ID, Department Name, Number of Employees, Manager Name, Location.

The data row contains the following data:

10, Administration, 1, J. Whalen, United States of America.

Under the data, there are three buttons labelled, < Previous, Next>, and Show Employees.

Immediately underneath is a horizontal line to separate the body of the page and the footer. The footer shows the date, 2005-10-10, and the time, 14:20:14 on the left side, and Any Co. on the right side.

chap5_combine_deptemp_002.gif shows a Web page with the title, Employees: Administration. Immediately underneath is a horizontal line to separate the header and the body of the page. Then there is a table of two rows of six columns. The first row contains the column headings:

no heading, Employee ID, Employee Name, Hiredate, Salary, Commission (%).

The data row contains the following data:

unchecked radio button, 200, J. Whalen, 17-Sep-87, 4,400.00, 0.

Under the data, there are four buttons labelled, Modify, Delete, Insert new employee, and Return to Departments.

Immediately underneath is a horizontal line to separate the body of the page and the footer. The footer shows the date, 2005-10-10, and the time, 14:24:45 on the left side, and Any Co. on the right side.

chap7_loadimg_023.gif shows a Web page with the title, Employees: Administration. Immediately underneath is a horizontal line to separate the header and the body of the page. Then there is a table of four rows of eight columns. The first row contains the column headings:

no heading, Employee ID, Employee Name, Hiredate, Salary, Commission (%), Remuneration, Photograph.

The data rows contain the following data:

unchecked radio button, 200, J. Whalen, 17-Sep-87, 4,400.00, 0, 52,800.00, Employee photo (text).

unchecked radio button, 209, G. Stokol, 11-Sep-05, 8,000.00, 0, 96,000.00, Employee photo (image).

unchecked radio button, 210, C. Jones, 11-Oct-05, 9,000.00, 0, 108,000.00, Employee photo (thumbnail image).

Under the data, there are four buttons labelled, Modify, Delete, Insert new employee, and Return to Departments.

chap2_hello_001.gif shows a browser screen with the text, Hello, world!

chap4_db_nagivation_003.gif shows a Web page with the title, Department. Immediately underneath is a horizontal line to separate the header and the body of the page. Then there is a table of 2 rows of four columns. The first row contains the column headings:

Department ID, Department Name, Manager ID, Location ID.

The data row contains the following data:

10, Administration, 200, 1700.

Under the data, there are two buttons labelled, < Previous and Next>.

Immediately underneath is a horizontal line to separate the body of the page and the footer. The footer shows the date, 2005-10-02, and the time, 22:59:29 on the left side, and Any Co. on the right side.

cchap6_hrreatebody.gif shows the SQL Worksheet in SQL Developer.

The Enter SQL Statement pane contains the statements

CREATE OR REPLACE PACKAGE BODY cv_types AS
 PROCEDURE get_employees(deptid in number,
 employees in out empinfotyp)
 IS
 BEGIN
 OPEN employees FOR
 SELECT employee_id,
 substr(first_name,1,1) || '. '|| last_name as employee_name,
 hire_date,
 to_char(salary, '999G999D99') as salary,

The Results pane contains the message

Package Body Compiled.

chap5_test_emp_009.gif shows the bottom of a Web page. There is a table of one row of six columns.

The data row contains the following data:

checked radio button, 248, J. Bond, 04-OCT-05, 7,000.00, 0

Under the data, there are three buttons labelled, Modify, Delete, and Insert new employee. The mouse cursor is pointing at the Delete button.

Immediately underneath is a horizontal line to separate the body of the page and the footer. The footer shows the date, 2005-10-04, and the time, 13:47:38 on the left side, and Any Co. on the right side.

chap2_install_001.gif shows the Red Hat Enterprise Linux Test Page in a browser. The page is titled, Red Hat Enterprise Linux Test Page. Immediately underneath the title is the paragraph:

This page is used to test the proper operation of the Apache HTTP server after it has been installed. If you can read this page, it means that the Apache HTTP server installed at this site is working properly.

There are general comments about what you can do next under the headings:

	
If you are a member of the general public

	
If you are the website administrator

chap5_test_emp_002.gif shows the bottom of a Web page. There is a table of 6 rows of six columns.

The data rows contain the following data:

unchecked radio button, 201, M. Hartstein, 17-FEB-96, 13,000.00, 0

unchecked radio button, 202, P. Fay, 17-Aug-97, 8,000.00, 0

unchecked radio button, 203, S. Mavris, 07-JUN-94, 6,500.00, 0

unchecked radio button, 204, H. Baer, 07-JUN-94, 10,000.00, 0

unchecked radio button, 205, S. Higgins, 07-JUN-94, 12,000.00, 0

unchecked radio button, 206, W. Gietz, 07-JUN-94, 8,300.00, 0

Under the data, there are three buttons labelled, Modify, Delete, and Insert new employee.

Immediately underneath is a horizontal line to separate the body of the page and the footer. The footer shows the date, 2005-10-04, and the time, 13:28:34 on the left side, and Any Co. on the right side.

chap5_err_handling_004.gif shows a Web page with the title, Employees: Administration. Immediately underneath is a horizontal line to separate the header and the body of the page. Then there is a table of two rows of six columns. The first row contains the column headings:

no heading, Employee ID, Employee Name, Hiredate, Salary, Commission (%).

The data row contains the following data:

unchecked radio button, 200, J. Whalen, 17-Sep-87, 4,400.00, 0.

Under the data, there are four buttons labelled, Modify, Delete, Insert new employee, and Return to Departments. The mouse cursor is pointing at the Insert new employee button.

Immediately underneath is a horizontal line to separate the body of the page and the footer. The footer shows the date, 2005-10-10, and the time, 16:37:54 on the left side, and Any Co. on the right side.

chap6_refcursor_007.gif shows a Web page with the title, Employees: Marketing. Immediately underneath is a horizontal line to separate the header and the body of the page. Then there is a table of three rows of seven columns. The first row contains the column headings:

no heading, Employee ID, Employee Name, Hiredate, Salary, Commission (%), Remuneration.

The data rows contains the following data:

unchecked radio button, 201, M. Hartstein, 17-Feb-96, 13,000.00, 0, 156,000.00.

unchecked radio button, 202, P. Fay, 17-Aug-97, 6,000.00, 0, 72,000.00.

Under the data, there are four buttons labelled, Modify, Delete, Insert new employee, and Return to Departments.

Immediately underneath is a horizontal line to separate the body of the page and the footer. The footer shows the date, 2005-10-10, and the time, 23:30:32 on the left side, and Any Co. on the right side.

chap6_refcursor_006.gif shows a Web page with the title, Department: Marketing. Immediately underneath is a horizontal line to separate the header and the body of the page. Then there is a table of two rows of five columns. The first row contains the column headings:

Department ID, Department Name, Number of Employees, Manager Name, Location.

The data row contains the following data:

20, Marketing, 2, M. Hartstein, Canada.

Under the data, there are three buttons labelled, Previous, Next, and Show Employees.

Immediately underneath is a horizontal line to separate the body of the page and the footer. The footer shows the date, 2005-10-10, and the time, 23:28:36 on the left side, and Any Co. on the right side.

chap6_hrcalcrem.gif shows the SQL Worksheet in SQL Developer.

The Enter SQL Statement pane contains the statements

create or replace function calc_remuneration(
 salary IN number, commission_pct IN number) return number is
begin
 return ((salary * 12) + (salary * 12 * nvl(commission_pct,0)));
end;

The Results pane contains the message:

function calc_remuneration(Compiled.

chap2_install_002.gif shows a terminal window. It shows the commands described in Step 3 entered in the terminal. The cursor is on a new line.

chap7_loadimg_006.gif shows a Web page with the title, Employees: Administration. Immediately underneath is a horizontal line to separate the header and the body of the page. Then there is a table of two rows of eight columns. The first row contains the column headings:

no heading, Employee ID, Employee Name, Hiredate, Salary, Commission (%), Remuneration, Photograph.

The data row contains the following data:

unchecked radio button, 200, J. Whalen, 17-Sep-87, 4,400.00, 0, 52,800.00, Employee photo (text).

Under the data, there are four buttons labelled, Modify, Delete, Insert new employee, and Return to Departments.

Immediately underneath is a horizontal line to separate the body of the page and the footer. The footer shows the date, 2005-10-11, and the time, 11:19:31 on the left side, and Any Co. on the right side.

chap7_loadimg_008.gif shows a file upload dialog. The right side shows that you are viewing the contents of the public_html directory. The file newemp.jpg is selected. The mouse cursor is pointing at the Open button.

chap6_hrgrantproc.gif shows the SQL Worksheet in SQL Developer. The Enter SQL Statement pane contains the statement:

grant create procedure to hr;

The Results pane contains the message:

grant create succeeded.

chap2_install_013.gif shows the Apache Test Page in a browser. A paragraph at the top of the page contains the text:

If you can see this, it means that the installation of the Apache HTTP Server software on this system was successful. You may now add content to this directory and replace this page.

Immediately under this paragraph, separated by a horizontal line is the heading, "Seeing this instead of the website you expected?" Then there is the following paragraph:

This page is here because the site administrator has changed the configuration of this web server. Please contact the person responsible for maintaining this server with questions. The Apache Software Foundation, which wrote the web server software this site administrator is using, has nothing to do with maintaining this site and cannot help resolve configuration issues.

Immediately under this paragraph, separated by another horizontal line are the following paragraphs:

The Apache documentation has been included with this distrubution. (documentation is a hyperlink)

You are free to use the image below on an Apache-powered web server. Thanks for using Apache!

Then follows a logo image containing the words:

Powered by Apache.

chap5_test_emp_001.gif shows a Web page with the title, Employees. Immediately underneath is a horizontal line to separate the header from the body of the page. Then there is a table of 9 rows of six columns. The column headings are:

no heading, Employee ID, Employee Name, Hiredate, Salary, Commission (%).

The data rows contain the following data:

unchecked radio button, 100, S. King, 17-JUN-87, 24,000.00, 0

unchecked radio button, 101, N. Kochhar, 21-SEP-89, 17,000.00, 0

unchecked radio button, 102, L. De Haan, 13-JAN-93, 17,000.00, 0

unchecked radio button, 103, A. Hunold, 03-JAN-90, 9,000.00, 0

unchecked radio button, 104, B. Ernst, 21-MAY-91, 6,000.00, 0

unchecked radio button, 105, D. Austin, 25-JUN-97, 4,800.00, 0

unchecked radio button, 106, V. Pataballa, 05-FEB-98, 4,800.00, 0

unchecked radio button, 107, D. Lorentz, 07-FEB-99, 4,200.00, 0

chap2_unlock.gif shows SQL Worksheet in SQL Developer.

The Enter SQL Statement pane contains the text:

alter user hr account unlock;

chap5_err_handling_003.gif shows a Web page with the title, Department: Administration. Immediately underneath is a horizontal line to separate the header and the body of the page. Then there is a table of two rows of five columns. The first row contains the column headings:

Department ID, Department Name, Number of Employees, Manager Name, Location.

The data row contains the following data:

10, Administration, 1, J. Whalen, United States of America.

Under the data, there are three buttons labelled, < Previous, Next>, and Show Employees. The mouse cursor is pointing at the Show Employees button.

Immediately underneath is a horizontal line to separate the body of the page and the footer. The footer shows the date, 2005-10-10, and the time, 16:37:29 on the left side, and Any Co. on the right side.

chap7_loadimg_018.gif shows a Web page with the title, Department: Administration. Immediately underneath is a horizontal line to separate the header and the body of the page. Then there is a table of two rows of five columns. The first row contains the column headings:

Department ID, Department Name, Number of Employees, Manager Name, Location.

The data row contains the following data:

10, Administration, 2, J. Whalen, United States of America.

Under the data, there are three buttons labelled, Previous, Next, and Show Employees. The mouse cursor is pointing at the Show Employees button.

Immediately underneath is a horizontal line to separate the body of the page and the footer. The footer shows the date, 2005-10-11, and the time, 12:29:43 on the left side, and Any Co. on the right side.

chap4_basic_emp_001.gif shows a Web page with the title, Employees. Immediately underneath is a horizontal line to separate the header from the body of the page. Then there is a table of 9 rows of five columns. The column headings are:

Employee ID, Employee Name, Hiredate, Salary, Commission (%).

The data rows contain the following data:

100, S. King, 17-JUN-87, 24,000.00, 0

101, N. Kochhar, 21-SEP-89, 17,000.00, 0

102, L. De Haan, 13-JAN-93, 17,000.00, 0

103, A. Hunold, 03-JAN-90, 9,000.00, 0

104, B. Ernst, 21-MAY-91, 6,000.00, 0

105, D. Austin, 25-JUN-97, 4,800.00, 0

106, V. Pataballa, 05-FEB-98, 4,800.00, 0

107, D. Lorentz, 07-FEB-99, 4,200.00, 0

108, N. Greenberg, 17-AUG-94, 12,000.00, 0

chap5_test_emp_010.gif shows the bottom of a Web page. There is a table of one row of six columns.

The data row contains the following data:

unchecked radio button, 206, W. Gietz, 07-JUN-94, 8,300.00, 0

Under the data, there are three buttons labelled, Modify, Delete, and Insert new employee.

Immediately underneath is a horizontal line to separate the body of the page and the footer. The footer shows the date, 2005-10-04, and the time, 13:52:19 on the left side, and Any Co. on the right side.

chap7_loadimg_009.gif shows a Web page with the title, Employees: Administration. Immediately underneath is a horizontal line to separate the header and the body of the page. Then there is a table of three rows of eight columns. The first row contains the column headings:

no heading, Employee ID, Employee Name, Hiredate, Salary, Commission (%), Remuneration, Photograph.

The data rows contain the following data:

unchecked radio button, 200, J. Whalen, 17-Sep-87, 4,400.00, 0, 52,800.00, Employee photo (text).

unchecked radio button, 209, G. Stokol, 11-Sep-05, 8,000.00, 0, 96,000.00, Employee photo (image).

Under the data, there are four buttons labelled, Modify, Delete, Insert new employee, and Return to Departments.

Immediately underneath is a horizontal line to separate the body of the page and the footer. The footer shows the date, 2005-10-11, and the time, 12:27:16 on the left side, and Any Co. on the right side.

chap5_test_emp_004.gif shows a Web form with the title, Insert New Employee. Immediately underneath is a horizontal line to separate the header from the body of the form. Then there is a table of 7 rows of two columns comprising the form labels and entry fields. The field labels in the left column are:

Department ID, First Name, Last Name, Hiredate, Job, Salary, Commission (%).

The entry fields in the second column contain the values:

10, James, Bond, 04-OCT-05, Programmer, 7000, 0

Under the fields, there are two buttons labelled, Save, and Cancel. The mouse cursor is pointing at the Save button.

Immediately underneath is a horizontal line to separate the body of the form and the footer. The footer shows the date, 2005-10-04, and the time, 13:31:27 on the left side, and Any Co. on the right side.

chap7_loadimg_020.gif shows a Web form with the title, Insert New Employee. Immediately underneath is a horizontal line to separate the header from the body of the form. Then there is a table of eight rows of two columns comprising the form labels and entry fields. The field labels in the left column are:

Department ID, First Name, Last Name, Hiredate, Job, Salary, Commission (%), Photo.

The entry fields in the second column contain the values:

10, Chris, Jones, 11-OCT-05, Marketing Manager, 9000, 0, null

There is a Browse button on the right side of the Photo entry field. The mouse cursor is pointing at the Browse button.

Under the fields, there are two buttons labelled, Save and Cancel.

Immediately underneath is a horizontal line to separate the body of the form and the footer. The footer shows the date, 2005-10-11, and the time, 12:32:04 on the left side, and Any Co. on the right side.

chap4_db_connect_002.gif shows a Web page with the title, Departments. Immediately underneath is a horizontal line to separate the header and the body of the page. Then there is a table of 2 rows of four columns. The first row contains the column headings:

Department ID, Department Name, Manager ID, Location ID.

The data row contains the following data:

80, Sales, 145, 2500.

Immediately underneath is a horizontal line to separate the body of the page and the footer. The footer shows the date, 2005-09-30, and the time, 11:50:00 on the left side, and Any Co. on the right side.

chap7_loadimg_021.gif shows a file upload dialog. The right side shows that you are viewing the contents of the public_html directory. The file newemp.jpg is selected. The mouse cursor is pointing at the Open button.

chap5_test_emp_003.gif shows the bottom of a Web page. There is a table of one row of six columns.

The data row contains the following data:

unchecked radio button, 206, W. Gietz, 07-JUN-94, 8,300.00, 0

Under the data, there are three buttons labelled, Modify, Delete, and Insert new employee. The mouse cursor is pointing at the Insert new employee button.

Immediately underneath is a horizontal line to separate the body of the page and the footer. The footer shows the date, 2005-10-04, and the time, 13:28:34 on the left side, and Any Co. on the right side.

chap7_loadimg_019.gif shows a Web page with the title, Employees: Administration. Immediately underneath is a horizontal line to separate the header and the body of the page. Then there is a table of three rows of seven. The first row contains the column headings:

no heading, Employee ID, Employee Name, Hiredate, Salary, Commission (%), Remuneration.

The data row contains the following data:

unchecked radio button, 200, J. Whalen, 17-Sep-87, 4,400.00, 0, 52,800.00, Employee photo (text).

unchecked radio button, 209, G. Stokol, 11-Sep-05, 8,000.00, 0, 96,000.00.

Under the data, there are four buttons labelled, Modify, Delete, Insert new employee, and Return to Departments. The mouse cursor is pointing at the Insert new employee button.

Immediately underneath is a horizontal line to separate the body of the page and the footer. The footer shows the date, 2005-10-11, and the time, 12:30:46 on the left side, and Any Co. on the right side.

chap3_test_install_005.gif shows a Web page with the title, Departments. Immediately underneath are two horizontal lines to separate the body of the page from the header and the footer. The body has no content.

The footer of the page shows the date, 2005-09-27, and the time, 12:55:02 on the left side, and Any Co. on the right side.

chap6_hrcreatepack.gif shows SQL Worksheet in SQL Developer.

The Enter SQL Statement pane contains the statements

CREATE OR REPLACE PACKAGE cv_types AS
 TYPE empinfotyp IS REF CURSOR;
 PROCEDURE get_employees(deptid in number,
 employees in out empinfotyp);
END cv_types;

The Results pane contains the message

Package cv_types Compiled.

chap4_db_nagivation_001.gif shows a Web page with the title, Department. Immediately underneath is a horizontal line to separate the header and the body of the page. Then there is a table of 2 rows of four columns. The first row contains the column headings:

Department ID, Department Name, Manager ID, Location ID.

The data row contains the following data:

10, Administration, 200, 1700.

Under the data, there are two buttons labelled, < Previous and Next>. The mouse cursor is pointing to the Next> button.

Immediately underneath is a horizontal line to separate the body of the page and the footer. The footer shows the date, 2005-10-02, and the time, 22:58:19 on the left side, and Any Co. on the right side.

chap4_db_connect_003.gif shows a Web page with the title, Departments. Immediately underneath is a horizontal line to separate the header and the body of the page. Then there is a table of 2 rows of four columns. The first row contains the column headings:

Department ID, Department Name, Manager ID, Location ID.

The data row contains the following data:

80, Sales, 145, 2500.

Immediately underneath is a horizontal line to separate the body of the page and the footer. The footer shows the date, 2005-09-30, and the time, 14:42:50 on the left side, and Any Co. on the right side.

chap1_phpapp_001.gif shows six text boxes in two columns of three. The boxes represent the files in the tutorial application. They contain a description of the file they represent. Arrow-headed lines connect the boxes.

From the top, the boxes in the left column are:

anyco.php

A starter page that provides a form handler (controller) to manage page requests.

anyco_ui.inc

The user interface logic: an include file that contains the PHP code to display HTML forms and database data in HTML tables. A line points to anyco.php. Another line points to style.css. A third broken line points to anyco_im.php.

style.css

A Cascading Style Sheet (CSS) file to manage HTML display.

From the top, the boxes in the right column are:

anyco_cn.inc

An include file that defines default database connection information. This includes the user name, password and database connection identifier. A line points to anyco.php.

anyco_db.inc

The model logic: an include file that contains the database logic to create database connections, and to execute queries and data manipulation statements. A line points to anyco.php.

anyco_im.php

A PHP script referenced in an tag to get an image from a database column for a specified employee and send it to the browser for display.

chap2_install_003.gif shows a terminal window. It shows the command described in Step 4 entered in the terminal.

chap5_test_emp_007.gif shows a Web form with the title, Modify Employee. Immediately underneath is a horizontal line to separate the header from the body of the form. Then there is a table of 6 rows of two columns comprising the form labels and entry fields. The field labels in the left column are:

Employee ID, First Name, Last Name, Email Address, Salary, Commission (%).

The first entry field in the second column, the value for Employee ID, is not editable and had the value 248.

The remaining five entry fields in the second column contain the values:

James, Bond, JBOND, 7100, 0

Under the fields, there are two buttons labelled, Save, and Cancel. The mouse cursor is pointing at the Save button.

Immediately underneath is a horizontal line to separate the body of the form and the footer. The footer shows the date, 2005-10-04, and the time, 13:45:04 on the left side, and Any Co. on the right side.

chap3_db_connect_001.gif shows a Web page with the title, Departments. Immediately underneath is a horizontal line. Then there is a table of 8 rows of four columns. The columns have no headings. They contain the following data:

10, Administration, 200, 1700.

20, Marketing, 201, 1800.

30, Purchasing, 114, 1700.

40, Human Resources, 203, 2400.

50, Shipping, 121, 1500.

60, IT, 103, 1400.

70, Public Relations, 204, 2700.

80, Sales, 145, 2500.

chap5_test_emp_005.gif shows the bottom of a Web page. There is a table of two rows of six columns.

The data rows contain the following data:

unchecked radio button, 206, W. Gietz, 07-JUN-94, 8,300.00, 0

unchecked radio button, 248, J. Bond, 04-OCT-05, 7,000.00, 0

Under the data, there are three buttons labelled, Modify, Delete, and Insert new employee.

Immediately underneath is a horizontal line to separate the body of the page and the footer. The footer shows the date, 2005-10-04, and the time, 13:40:42 on the left side, and Any Co. on the right side.

chap5_err_handling_005.gif shows a Web form with the title, Insert New Employee. Immediately underneath is a horizontal line to separate the header from the body of the form. Then there is a table of 7 rows of two columns comprising the form labels and entry fields. The field labels in the left column are:

Department ID, First Name, Last Name, Hiredate, Job, Salary, Commission (%).

The entry fields in the second column contain the values:

99, New, Person, 10-OCT-05, Accountant, 1000, 0

Under the fields, there are two buttons labelled, Save, and Cancel. The mouse cursor is pointing at the Save button.

Immediately underneath is a horizontal line to separate the body of the form and the footer. The footer shows the date, 2005-10-10, and the time, 16:38:06 on the left side, and Any Co. on the right side.

chap6_refcursor_005.gif shows a Web page with the title, Department: Administration. Immediately underneath is a horizontal line to separate the header and the body of the page. Then there is a table of two rows of five columns. The first row contains the column headings:

Department ID, Department Name, Number of Employees, Manager Name, Location.

The data row contains the following data:

10, Administration, 1, J. Whalen, United States of America.

Under the data, there are three buttons labelled, Previous, Next, and Show Employees.

Immediately underneath is a horizontal line to separate the body of the page and the footer. The footer shows the date, 2005-10-10, and the time, 23:27:47 on the left side, and Any Co. on the right side.

chap7_loadimg_022.gif shows a Web form with the title, Insert New Employee. Immediately underneath is a horizontal line to separate the header from the body of the form. Then there is a table of eight rows of two columns comprising the form labels and entry fields. The field labels in the left column are:

Department ID, First Name, Last Name, Hiredate, Job, Salary, Commission (%), Photo.

The entry fields in the second column contain the values:

10, Chris, Jones, 11-OCT-05, Marketing Manager, 9000, 0, null

There is a Browse button on the right side of the Photo entry field.

Under the fields, there are two buttons labelled, Save and Cancel. The mouse cursor is pointing at the Save button.

Immediately underneath is a horizontal line to separate the body of the form and the footer. The footer shows the date, 2005-10-11, and the time, 12:32:04 on the left side, and Any Co. on the right side.

chap7_createtable.gif shows SQL Worksheet in SQL Developer.

The Enter SQL Statement pane contains the statement

CREATE TABLE employee_photos(
 employee_id NUMBER,
 employee_thumbnail BLOB);

The Results pane contains the message

CREATE TABLE Succeeded.

chap4_enhance_dept_001.gif shows a Web page with the title, Department. Immediately underneath is a horizontal line to separate the header and the body of the page. Then there is a table of 2 rows of five columns. The first row contains the column headings:

Department ID, Department Name, Number of Employees, Manager Name, Location.

The data row contains the following data:

10, Administration, 4, J. Whalen, United States of America.

Under the data, there are two buttons labelled, < Previous and Next>.

Immediately underneath is a horizontal line to separate the body of the page and the footer. The footer shows the date, 2005-10-03, and the time, 10:56:55 on the left side, and Any Co. on the right side.

chap6_stored_proc_test_001.gif shows a Web page with the title, Department: Administration. Immediately underneath is a horizontal line to separate the header and the body of the page. Then there is a table of two rows of five columns. The first row contains the column headings:

Department ID, Department Name, Number of Employees, Manager Name, Location.

The data row contains the following data:

10, Administration, 1, J. Whalen, United States of America.

Under the data, there are three buttons labelled, Previous, Next, and Show Employees.

Immediately underneath is a horizontal line to separate the body of the page and the footer. The footer shows the date, 2005-10-10, and the time, 22:12:54 on the left side, and Any Co. on the right side.

chap5_err_handling_002.gif shows a Web page with the title, Department: Accounting. Immediately underneath is a horizontal line to separate the header and the body of the page. Then there is a table of two rows of five columns. The first row contains the column headings:

Department ID, Department Name, Number of Employees, Manager Name, Location.

The data row contains the following data:

110, Accounting, 2, S. Higgins, United States of America.

Under the data, there are three buttons labelled, < Previous, Next>, and Show Employees. The mouse cursor is pointing at the Next> button.

Immediately underneath is a horizontal line to separate the body of the page and the footer. The footer shows the date, 2005-10-10, and the time, 16:34:07 on the left side, and Any Co. on the right side.

chap6_stored_proc_test_002.gif shows a Web page with the title, Employees: Administration. Immediately underneath is a horizontal line to separate the header and the body of the page. Then there is a table of two rows of seven columns. The first row contains the column headings:

no heading, Employee ID, Employee Name, Hiredate, Salary, Commission (%), Remuneration.

The data row contains the following data:

unchecked radio button, 200, J. Whalen, 17-Sep-87, 4,400.00, 0, 52,800.00.

Under the data, there are four buttons labelled, Modify, Delete, Insert new employee, and Return to Departments.

Immediately underneath is a horizontal line to separate the body of the page and the footer. The footer shows the date, 2005-10-10, and the time, 22:14:31 on the left side, and Any Co. on the right side.

chap7_loadimg_005.gif shows a Web page with the title, Department: Administration. Immediately underneath is a horizontal line to separate the header and the body of the page. Then there is a table of two rows of five columns. The first row contains the column headings:

Department ID, Department Name, Number of Employees, Manager Name, Location.

The data row contains the following data:

10, Administration, 1, J. Whalen, United States of America.

Under the data, there are three buttons labelled, Previous, Next, and Show Employees.

Immediately underneath is a horizontal line to separate the body of the page and the footer. The footer shows the date, 2005-10-11, and the time, 11:18:29 on the left side, and Any Co. on the right side.

chap5_test_emp_008.gif shows the bottom of a Web page. There is a table of one row of six columns.

The data row contains the following data:

unchecked radio button, 248, J. Bond, 04-OCT-05, 7,000.00, 0

Under the data, there are three buttons labelled, Modify, Delete, and Insert new employee.

Immediately underneath is a horizontal line to separate the body of the page and the footer. The footer shows the date, 2005-10-04, and the time, 13:47:38 on the left side, and Any Co. on the right side.

Oracle Legal Notices
Copyright Notice
Copyright © 1994-2010, Oracle and/or its affiliates. All rights reserved.
License Restrictions Warranty/Consequential Damages Disclaimer
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
Warranty Disclaimer
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
Restricted Rights Notice
If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
Hazardous Applications Notice
This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.
Trademark Notice
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
Third-Party Content, Products, and Services Disclaimer
This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
[image: Oracle Logo]
OEBPS/img/chap4_db_connect_002.gif
Departments

3
D
epartment Department Manager | .
D Name Id
80 Sales 145 2500
2005-09-30 11:50:00 Any Co.

OEBPS/img/chap5_err_handling_003.gif
Department: Administration

Department Department Numberof Manager
D Name Employees Name

Location

10 Administration

J. Whalen

United States of America

<Previous | Next> | _Show Employees|

2005-10-10 1

Any Co|

OEBPS/img/chap5_test_emp_001.gif
Employees

ﬁ)mployee :r:r:leoyee Ten e :z:)mmission
« 100 |[S. King 17-JUN-87 |(24,000.00 o
« 101 |[N. Kochhar 21-SEP-89 | 17,000.00 o
« 102 | L. De Haan 13-JAN-93 |(17,000.00 o
« 103 || A. Hunold 03-JAN-90 9,000.00 o
« 104 || B. Ermnst 21-MAY-91 6,000.00 o
« 105 |[D. Austin 25-JUN-97 4,800.00 o
« 106 || V. Pataballa (| 05-FEB-98 4,800.00 o
« 107 || D. Lorentz 07-FEB-99 4,200.00 o

OEBPS/dcommon/conticon.gif

OEBPS/dcommon/booklist.gif

OEBPS/img/chap2_hello_001.gif
Hello, world!

OEBPS/img/chap2_install_003.gif
File Edit View

[gstokol@frodo
Password:

[gstokol@frodo
[gstokol@frodo

Teminal Tabs Help

/1% su - gstokol

~]$ mkdir $HOME/public_html
~1$ exit

OEBPS/img/chap5_err_handling_005.gif
Insert New Employee

Department ID o9
First Name New

Last Name [Person

Hiredate 0-0cT05

Job Accountant

Salary 1000

Commission (%)

Saved| Cancel

2005-10-10 16:38:06

Any Co|

OEBPS/img/chap4_enhance_dept_001.gif
Department

Department Department

Number of Manager

Location

D Name Employees Name
10 Administration || 4 J. Whalen || United States of America
< Previous | Next>

2005-10-03 10:

155

Any Co,

OEBPS/img/chap5_err_handling_001.gif
Department: Administration

Department Department

D Name

Number of Manager

Employees Name

Location

10 Administration

J. Whalen

United States of America

< Previous | Next

Show Employees

2005-10-10 1

Any Co|

OEBPS/dcommon/rightnav.gif

OEBPS/dcommon/index.gif

OEBPS/img/chap5_test_emp_003.gif
» 206 || W. Gietz

07-JUN-94

8,300.00

1po

2005-10-04 13:28:34

Any Co.

OEBPS/dcommon/oracle-small.JPG
ORACLE

OEBPS/dcommon/O_signature_clr.JPG
ORACLE

OEBPS/img/chap7_hrcreatetable.gif
I Oracle SOL Developer : HRSample

Fle Edt View Nevsle Run Debug Sowee Tods Hep
BoEa 9& L@ 0-0- H-

Dnconnect, || @re |B>HRSampe D> 1Rt |
BRRY PERR® @BWE & 041559 secons [rsampe ~|

@ connections [Erter SQL Statement:
& 1o CREATE TABLE enployee_photos(
@ rhsanple eplogee_ia TR,
ETah\es employee_thumbnail BLOB) ;
Vews
38 indexes
@8 Packages
08 Procedures
@ Funcions d DI
g xzzzvs > Resus | 5l Soret Output | E@Expian | 3 uttrace | @0EmS Output | @ o Outa |
{8 Seauences ¢B&
[el e
Weterized Views L

{38 synonyms
(38 Pubiic Synonyms.
@ Databass Links
{3 Pubc Datsbase Links|
& Drectories
2 xu_Schemas
7 Recycke Bin
28 other Users

il
@

Uoras a0 80

s B

Lne 4 Con 1| inert__| Mo Widows: .. Ediing

OEBPS/img/chap7_loadimg_021.gif
@ Home.

@ Deskiop

< Filesystem

< Floppy Diive
< CD-ROM Diive

v e

Name v | Modified
B chap2 Sunday
B chap3 Sunday
B chapt 10/03/2005
3 chaps Yesterday
B chaps Yesterday
B chap? Today

% dump_amay.php. 00/30/2005

index.htm! 09/27/2005

2 newemp.jpg Tod

& Add

= Remove

OEBPS/img/chap7_loadimg_005.gif
Department: Administration

Department Department Numberof Manager

D Name

Employees Name

Location

10 Administration

J. Whalen

United States of America

< Previous | _Next> Show Employee:

k

2005-10-11 11

Any Co.

OEBPS/img/chap7_loadimg_018.gif
Department: Administration

Department Department Numberof Manager
D Name Employees Name

Location

10 Administration || 2 J. Whalen || United States of America
< Previous | Next> | _Show Employees

2005-10-11 12:

Any Co.

OEBPS/dcommon/mix.gif

OEBPS/img/chap6_refcursor_007.gif
Employees: Marketing

E)"'"'wee :’:::’yee Hiredate Salary ::Z)"'"'issw" Remuneration
© |l 201 M. Hartstein || 17-FEB-96 | 13,000.00 | 0 156,000.00
€ |l202 P.Fay 17-AUG-97 | 6,00000 [0 72,000.00
Modify | Delete Insert new employee Retum to Departments

2005-10-10 23:30:32 Any Co,

OEBPS/img/chap4_db_nagivation_002.gif
Department

Department Department Manager

D

Name

Location ID
Id

20

Marketing

201 1800

s | e |

2005-10-02 22:59:10

Any Co.

OEBPS/img/chap5_test_emp_005.gif
-

206

W. Gietz

07-JUN-94

8,300.00

-

248

J.Bond

04-0CT-05

7,000.00

Modify | Delete | _Insert new employee

2005-10-04 13:40:42

Any Co.

OEBPS/dcommon/indxicon.gif

OEBPS/dcommon/toc.gif

OEBPS/dcommon/leftnav.gif

OEBPS/img/chap6_hrgrantproc.gif
I Oracle SOL Developer : 11gR1

Fle Edt View Nevsle Run Debug Sowee Tods Hep
BoEa 9& 0@ 0-O0- H-

Dnconnect, C)|[@re [D>HRSample B> 11oRt |
BRRY PERR® @BWE @ 0510489 secons

D Comectons erter SOL Sietemert
=& égm Iq.m create procedure to hr:
Tables
8 views
8 deres
8 Packages
08 procedures
{23 Functions
3 Triggers d D
E Types > Rosuts | (5 5erbt vt e, T = 2 syt et ormat et | @ o outt|
Sequences
Bvaterizeaviews |[¢ B &
[,
ymonyms
39 Pusic Synonyms.
89 Database Liks
39 Pusic Dtabase Links
(2 orectories
B2 XML Schemss
T Feoyclein
£8 Otver Users
B HRSample

o)

Uoras a0 80

s B

e 2 Counn | indows: .. | Eding

OEBPS/img/chap5_test_emp_007.gif
Modify Employee

Employee ID | 248

First Name ames

Last Name [Bond

Email Address ||[JBOND

Salary 7100

Commission (%) | [0
Save-kl Cancel

2005-10-04 13:45:04. Any Co.

OEBPS/img/chap7_loadimg_007.gif
Insert New Employee

Department ID |10

First Name [Glenn

Last Name [Stokol
Hiredate fi-ocTos
Job Programmer
Salary [sooo
Commission (%) | o

Photo Brows
Save | _Cancel

05 Any Co.

2005-10-11 11

OEBPS/dcommon/feedback.gif

OEBPS/img/chap7_loadimg_009.gif
Employees: Adm ration
rmpkages =pkges T
ploy PIOYe® iredate salary Remuneration Photograph
[o)
Employee
« ||200 J. Whalen || 17-SEP-87 |(4,400.00 | 0 52,800.00
photo
« ||209 G. Stokol 11-OCT-05 | 8,000.00 || O 96,000.00

Modify | Delete

Insert new employee

Retum to Departments

2005-10-11 12:

Any Co.

OEBPS/img/chap5_err_handling_006.gif
Department 99 does not yet exist

Error at line 86 of /home/gstokol/jpublic_html/chaps/anyco_db.inc

ORA-02291: integrity constraint (HR.EMP_DEPT_FK) violated - parent key not found

Return to Department

2005-10-10 16:39:15 Any Co.

OEBPS/dcommon/feedbck2.gif
<

OEBPS/img/chap5_test_emp_009.gif
@ 248

J.Bond 04-0CT-05

7,100.00

Modify DE\EIE'J

Insert new employee

2005-10-04 13:47:38

Any Co.

OEBPS/img/chap6_stored_proc_test_001.gif
Department: Administration

Department Department Numberof Manager

D Name

Employees Name

Location

10 Administration

J. Whalen

United States of America

< Previous | _Next> Show Employee:

3

2005-10-10 22:

Any Co.

OEBPS/img/chap5_combine_deptemp_002.gif
Employees: Administration

Empl Empl Commissi

mployes EMployee | gopy COMMIssion
D Name (%)

« 200 || J. Whalen (| 17-SEP-87 | 4,400.00 o

Modify | Delete |

Insert new employee

Retum to Departments_|

2005-10-10 14:24:45

Any Co.

OEBPS/dcommon/masterix.gif

OEBPS/dcommon/bookicon.gif

OEBPS/img/chap2_install_002.gif
Eile Edit View Teminal Tabs Help
[gstokol@frodo /1§ su - [+]
Password:

[root@frodo ~1# apachectl restart

[root@frodo ~1#

OEBPS/img/chap5_err_handling_004.gif
Employees: Administration

Employee Employee Commission
ploys PIOYe® Hiredate Salary
D Name (%)
» 200 | J. Whalen | 17-SEP-87 | 4.400.00 0
Modify | Delete | iInsert new employees| ~ Retum to Departments |

2005-10-10 1

Any Co|

OEBPS/img/chap4_db_connect_003.gif
Departments

Department Department Manager

D

Name

Id

Location ID

80

Sales

145

2500

2005-09-30 14:42:50

Any Co.

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Database 2 Day +
PHP Developer's
Guide, 11g Release
2 (11.2)

OEBPS/dcommon/rarrow.gif

OEBPS/img/chap5_test_emp_002.gif
» 201 || M. Hartstein (| 17-FEB-96 | 13,000.00
» 202 | P. Fay 17-AUG-97 || 6,000.00
» 203 || S. Mavris 07-JUN-94 || 6,500.00
» 204 | H. Baer 07-JUN-94 | 10,000.00
» 205 S. Higgins || 07-JUN-94 | 12,000.00
» 206 || W. Gietz 07-JUN-94 || 8,300.00

npves

2005-10-04 1

Any Co.

OEBPS/img/chap6_hrcreatebody.gif
I Oracle SOL Developer : HRSample

Fle Edt Vew Navigte Run Debuy Sowce Iools Help

Goaa 90 XEB 0-0- B-

Ducomect =]

@ [D>rrsene [riov |

BRY

PHRRO® SWE & osismerseons [rrsane <]

il
@

D Comectons
& 1t

=& HRSample
{2 Tables
8 views
8 deres
8 Packages
08 procedures
{23 Functions
08 Triggers
BEtypes
{3 Sesences
{53 Materilized Views
{57 Meterinzea Vews L
33 synonyms
39 Pusic Synonyms.
9 Database Liks
39 Pusic Dtabase Links
(2 orectories
B2 XM Schemss
T Feoyclein
£8 otver Users

Erter SAL Statement:

CRERTE OR REPLACE PACKAGE BODY cv_types AS
PROCEDURE get_ewployees (deptid in number,
employees in out empinfotyp)
15
BEGTH
OPEN euployees FOR

J D]

Uoras a0 80

> Resuts | 5 sert O] B9l 3 uttrace | @oBws ot | @ ow oo

¢8a

s 5

PACKAGE BODY Compiled.

Lne 15.Coln 14| inert | Mo Wirdows: .

Edting

OEBPS/img/chap7_loadimg_019.gif
Employees: Administration

Employee Employee Commission
ploy PIOYe® iredate salary Remuneration
D Name (%)
|l 200 J.Whalen || 17-SEP-87 | 4.400.00 | 0 52,800.00
|l 209 G. Stokol [11-0CT-05 | 8,000.00 | 0 96,000.00
Modify | Delete et g | _Retum to Departments

2005-10-11 12;

Any Co.

OEBPS/img/chap2_unlock.gif
¥ oracle

Fle Et View Navigate

Bun Debug Sowce Tooks Hep

Beag 9@

XEm 0-0- §-

Gyconmect

@rer (Do |

BRY

PERRO® 8B & ossecons

By comnections:

QA=

Erter SOL Statement:

alter user hr account unlock;

Uoras a0 80

Kl

> Recuts | 5 Serbt O 89l B uttrace | @oBws ot | Qo o

¢Ba

alter user hr succeeded.

S

OEBPS/dcommon/bookbig.gif

OEBPS/dcommon/oracle.gif

OEBPS/img/chap7_loadimg_020.gif
Insert New Employee

Department ID |10
First Name [chris

Last Name ones

Hiredate fi-ocT-05

Job Marketing Manager
Salary joo00
Commission (%) | o

Photo Browss
Save | _Cancel

2005-10-11 12:32:04 Any Co.

OEBPS/dcommon/larrow.gif

OEBPS/dcommon/help.gif

OEBPS/img/chap6_refcursor_005.gif
Department: Administration

Department Department Numberof Manager

D

Name Employees Name

Location

10

Administration J. Whalen

United States of America

< Previous | _Next>

Show Employees

2005-10-10 23;

Any Co.

OEBPS/img/chap5_basic_emp_001.gif
Employees

ﬁ)mployee :r:r:leoyee Hiredate — :z/:))mmission
100 || S. King 17-JUN-87 | 24,000.00 0
101 ||N. Kochhar 21-SEP-89 | 17,000.00 0
102 || L. De Haan 13-JAN-93 17,000.00 0
103 || A. Hunold 03-JAN-90 | 9,000.00 0
104 || B. Ernst 21-MAY-91 | 6,000.00 0
105 || D. Austin 25-JUN-97 | 4,800.00 0
106 || V. Pataballa | 05-FEB-98 | 4,800.00 0
107 || D. Lorentz 07-FEB-99 | 4.200.00 0
108 || N. Greenberg | 17-AUG-94 | 12,000.00 0

OEBPS/dcommon/prodicon.gif

OEBPS/img/chap5_test_emp_010.gif
» 206 || W. Gietz 07-JUN-94 | 8,300.00

Modify | Delete | _iInsert new employee

2005-10-04 13:52:19 Any Co.

OEBPS/img/chap7_loadimg_022.gif
Insert New Employee

Department ID |10

First Name [chris

Last Name ones

Hiredate fi-ocT-05

Job Marketing Manager
Salary joo00
Commission (%) | o

Photo Jhomergstokolfpublic_htm Browse...
55\;§J Cancel

2005-10-11 12:32:04 Any Co.|

OEBPS/img/chap5_err_handling_002.gif
Department: Accounting

Department Department Number of Manager

D

Name

Employees

Name

Location

110

Accounting

2

S. Higgins

United States of America

<Previous | Next>y _Show Employees

2005-10-10 1

Any Co|

OEBPS/img/chap5_test_emp_004.gif
Insert New Employee

Department ID |10

First Name ames

Last Name [Bond
Hiredate jo+-0cT-05

Job Programmer

Salary j7000

Commission (%)

|_Cancel

Sav

Any Co.

OEBPS/dcommon/contbig.gif

OEBPS/img/chap3_test_install_005.gif
Departments

2005-09-27 12:55:02

Any Co.

OEBPS/img/chap7_loadimg_006.gif
Employees: Administration

Employee Employee Commission

Hiredate Salary Remuneration Photograph
D Name (%)
Employee
€ | 200 J. Whalen | 17-SEP-87 | 4,400.00 || 0 52,800.00
photo
Modify | Delete I Retum to Departments
2005-10-11 11 Any Co.

OEBPS/img/chap4_db_nagivation_003.gif
Department

Department Department Manager

Location ID
D Name Id
10 Administration || 200 1700
< Previous | _Next>
2005-10-02 22:59:29 Any Co.

OEBPS/dcommon/topnav.gif

OEBPS/img/chap7_loadimg_023.gif
Employees: Administration
Employee Employee Commission
ploy PlOYe® Hiredate Salary Remuneration Photograph
D Name (%)
Employee
« ||200 J.Whalen | 17-SEP-87 | 4,400.00 || 0 52,800.00
photo
« ||209 G. Stokol 11-OCT-05 | 8,000.00 || O 96,000.00 '
« |[210 C.Jones 11-OCT-05 | 9,000.00 || O 108,000.00
Modify | Delete Insert new employee Retum to Departments

OEBPS/img/chap4_db_nagivation_001.gif
Department

Department Department Manager

Location ID
D Name Id
10 Administration || 200 1700
< Previous | _Next
2005-10-02 22:58:19 Any Co.

OEBPS/img/chap3_db_connect_001.gif
Departments

10 || Administration 200 | 1700
20 |Marketing 201 | 1800
30 | Purchasing 114 | 1700
40 || Human Resources | 203 | 2400
50 | Shipping 121 | 1500
60 |IT 103 | 1400
70 | Public Relations 204 | 2700
80 | Sales 145 | 2500

OEBPS/img/chap6_refcursor_006.gif
Department: Marketing

Department Department Number of Manager
Employees Name

D

Name

Location

20

Marketing

2

M. Hartstein

Canada

< Previous | _Next>

Show Employees;

2005-10-10 2:

Any Co.

OEBPS/img/chap5_test_emp_006.gif
» 206 || W. Gietz 07-JUN-94 | 8,300.00

¢ 248 J. Bond 04-OCT-05 || 7,000.00

Momfy:k! Delete Insert new employee

2005-10-04 13:40:42 Any Co.

OEBPS/img/chap1_phpapp_001.gif
anyco.php
(start page)
A starter page that provides a

form handler (contraller) to
manage page requests.

anyeo_ui.inc

The user intetface logic: an
include file that contains the
PHP code to display HTML
forms and database data in

HTML tables.

style.css

A Cascading Style Sheet (CSS)
file to manage HTNL display.

anyco_cn.inc

Aninclude file that defines
default database connection
information. This includes the
user name, password, and
database connection identitier.

anyco_db.inc

The model logic: an include file
that contains the database logic
to create database connections,
and to execute queries and data
manipulation statements.

anyeo_im.php

APHP script referenced in an
<IuG> tag to get an image from
a database column for a
specified employee and send it
10 the browser for display.

OEBPS/dcommon/prodbig.gif

OEBPS/img/chap6_hrcreatepack.gif
I Oracle SOL Developer : HRSample

Fle Edt Vew Navigte Run Debuy Sowce Iools Help

GoEa 90 YXE0B 0-0- H-

Dncomect. @]

e |Drrsene [rior |

BRY

PERBO® BB & oo secons HRSangle

il
@

D Comectons
& 1ot

= {g HRSample
{23 Tables
8 views
8 nderes
8 Packages
08 procedures
{23 Functions
08 Triggers
BEtypes
{3 Sesences
{53 Materilizzd Views
{57 Weteriszea Views L
39 synonyms
39 Pusic Synonyms.
8 Database Liks
88 Pusic Dtabase Links
2 orectories
B2 XM Schemss
T Feoyclein
£8 Otver users

Erter SOL Statement:

CRERTE OR REPLACE PACKAGE cv_types S
TYPE ewpinforyp IS REF CURSOR:
PROCEDURE get_enployees (deptid in number,
employees in out empinfotyp):

D]

Uoras a0 80

> Resuts | 5 serot O] @Dl 3 uttrace | @oBws ot | @ ow o

¢8a

s B

PACKAGE cv_types Compiled.

Lne S ol 14| inert | o Windows: .

Edting

OEBPS/img/chap5_test_emp_008.gif
-

248

J.Bond

04-0CT-05

7,100.00

Modify | Delete | _iInsert new employee

2005-10-04 13:47:38

Any Co.

OEBPS/img/chap6_hrcalcrem.gif
I Oracle SOL Developer : HRSample

Fle Edt Vew Navigte Run Debuy Sowce Iools Help

GoEa 90 YXE0B 0-0- B~

Dncomect @]

@ |D>rrsene [rior |

BRY

PERBO® BB & oswrmmorssecons HRSangle

il
@

D Comectons
& 1t

=g HRSample
{23 Tables
8 views
8 deres
8 Packages
08 procedures
{23 Functions
08 Triggers
BEtypes
{3 Sesences
{53 Materilized Views
{57 Weterinzea Views L
39 synonyms
39 Pusic Synonyms.
8 Database Liks
89 Pusic Dtabase Links
2 orectories
B2 XML Schemss
T Feoyclein
£8 otver Users

Erter SOL Statement:

create or replace function calc_remuneration
salary TN muber, comnission_pct IN muber) return muber is
begin
return ((salary®12) + (salary * 12 * nvl{commission pet,0)))
ena;]

Kl D]

Uoras a0 80

> Resuts | 5 sert O] @Dl 3 uttrace | @oBwS ot | @ ow o

¢8a

s 5

function cale_remmeration(Compiled.

e s Con's [idove: .

Edting

OEBPS/img/chap5_combine_deptemp_001.gif
Department: Administration

Department Department

D Name

Number of Manager

Employees Name

Location

10 Administration || 1

J. Whalen

United States of America

< Previous | Next>

Show Employees

2005-10-10 14:20:14.

Any Co.

OEBPS/dcommon/uarrow.gif

OEBPS/img/chap7_loadimg_008.gif
File Upload]}

@ Home.

@ Deskiop

< Filesystem

< Floppy Diive
< CD-ROM Diive

v e

Name v | Modified
B chap2 Sunday
B chap3 Sunday
B chapt 10/03/2005
3 chaps Yesterday
B chaps Yesterday
B chap? Today

% dump_amay.php. 00/30/2005

index.htm! 09/27/2005

2 newemp.jpg Tod

& Add

= Remove

OEBPS/img/chap2_install_001.gif
Red Hat Enterprise Linux Test Page

This page is used to test the proper operation of the Apache HTTP server
after it has been installed. If you can read this page, it means that the
Apache HTTP server installed at this site is working properly.

If you are a member of the
general public:

The fact that you are seeing this
page indicates that the website
You just visited is either
experiencing roblems, or is
undergoing routine maintenance.

If you would like to let the
administrators of this website know
that you've seen this page instead
of the page you expected, you
should send them e-mail. In
general, mail sent to the name

If you are the website
administrator:

You may now add content to the
directory /vax/sm/menl/. Note that
until you do so, people visiting your
website will see this page, and not
Your content. To prevent this page
from ever being used, follow the
instructions in the file
/ete/ttpd/cont. d/welcone. cont.

You are free to use the image
below on web sites powered by the
Apache HTTP Server:

OEBPS/img/chap2_test_install_013.gif
Ifyou can see this, it means that the installaion of the Apache web server software on this system
was successfil. Yon may now add content to this directory and replace this page.

Seeing this instead of the website you expected?

‘This page is here because the site administrator has changed the configuration of this web server.
Please contact the person responsible for maintaining this server with questions. The
Apache Software Foundation, which wrote the web server software this site administrator i using,
has nothing to do with maintaining this site and cannot help resolve configuration issues.

The Apache documentation has been inchided with this distribution.

You are free to use the image below on an Apache-powered web server. Thaniks for using
Apache!

wered by
APACHE

OEBPS/dcommon/doclib.gif

OEBPS/img/chap6_stored_proc_test_002.gif
Employees: Administration

Employee Employee Commission
ploy PIOYe® Hiredate Salary Remuneration
D Name (%)
|l 200 J.Whalen | 17-SEP-87 || 4.400.00 | 0 52,800.00
Modify | Delete | _insert new employee | _Retum to Departments |
2005-10-10 22:14:31 Any Co|

