
[image: Oracle Corporation]




Contents

List of Examples

List of Figures

List of Tables

Title and Copyright Information

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions


What's New in Semantic Technologies?

	Release 11.2 Features
	Release 11.1 Features


Part I Conceptual and Usage Information

1 Oracle Database Semantic Technologies Overview

	1.1 Introduction to Oracle Semantic Technologies
	1.2 Semantic Data Modeling
	1.3 Semantic Data in the Database
	1.3.1 Metadata for Models
	1.3.2 Statements
	1.3.2.1 Triple Uniqueness and Data Types for Literals



	1.3.3 Subjects and Objects
	1.3.4 Blank Nodes
	1.3.5 Properties
	1.3.6 Inferencing: Rules and Rulebases
	1.3.7 Entailments (Rules Indexes)
	1.3.8 Virtual Models
	1.3.9 Named Graphs
	1.3.10 Semantic Data Security Considerations



	1.4 Semantic Metadata Tables and Views
	1.5 Semantic Data Types, Constructors, and Methods
	1.5.1 Constructors for Inserting Triples



	1.6 Using the SEM_MATCH Table Function to Query Semantic Data
	1.6.1 Performing Queries with Incomplete or Invalid Entailments
	1.6.2 Graph Patterns: Support for Curly Brace Syntax, and OPTIONAL, FILTER, UNION, and GRAPH Keywords
	1.6.2.1 GRAPH Keyword Support



	1.6.3 Graph Patterns: Support for SPARQL SELECT Syntax
	1.6.4 Inline Query Optimizer Hints
	1.6.5 Full-Text Search
	1.6.6 Spatial Support
	1.6.6.1 Representing Spatial Data in RDF
	1.6.6.2 Indexing Spatial Data
	1.6.6.3 Querying Spatial Data



	1.6.7 Best Practices for Query Performance
	1.6.7.1 FILTER Constructs Involving xsd:dateTime, xsd:date, and xsd:time
	1.6.7.2 Function-Based Indexes for FILTER Constructs Involving Typed Literals
	1.6.7.3 FILTER Constructs Involving Relational Expressions
	1.6.7.4 Optimizer Statistics and Dynamic Sampling
	1.6.7.5 Multi-Partition Queries






	1.7 Loading and Exporting Semantic Data
	1.7.1 Bulk Loading Semantic Data Using a Staging Table
	1.7.1.1 Loading the Staging Table
	1.7.1.2 Recording Event Traces During Bulk Loading



	1.7.2 Batch Loading N-Triple Format Semantic Data Using the Java API
	1.7.2.1 When to Choose Batch Loading



	1.7.3 Loading Semantic Data Using INSERT Statements
	1.7.3.1 Loading Data into Named Graphs Using INSERT Statements



	1.7.4 Exporting Semantic Data



	1.8 Using Semantic Network Indexes
	1.8.1 MDSYS.SEM_NETWORK_INDEX_INFO View



	1.9 Using Data Type Indexes
	1.10 Quick Start for Using Semantic Data
	1.11 Semantic Data Examples (PL/SQL and Java)
	1.11.1 Example: Journal Article Information
	1.11.2 Example: Family Information



	1.12 Software Naming Changes for Semantic Technologies
	1.13 For More Information About Semantic Technologies


2 OWL Concepts

	2.1 Ontologies
	2.1.1 Example: Cancer Ontology
	2.1.2 Supported OWL Subsets



	2.2 Using OWL Inferencing
	2.2.1 Creating a Simple OWL Ontology
	2.2.2 Performing Native OWL inferencing
	2.2.3 Performing OWL and User-Defined Rules inferencing
	2.2.4 Generating OWL inferencing Proofs
	2.2.5 Validating OWL Models and Entailments
	2.2.6 Using SEM_APIS.CREATE_ENTAILMENT for RDFS Inference
	2.2.7 Enhancing Inference Performance
	2.2.8 Optimizing owl:sameAs Inference
	2.2.8.1 Querying owl:sameAs Consolidated Inference Graphs



	2.2.9 Performing Incremental Inference
	2.2.10 Using Parallel Inference
	2.2.11 Using Named Graph Based Inferencing (Global and Local)
	2.2.11.1 Named Graph Based Global Inference (NGGI)
	2.2.11.2 Named Graph Based Local Inference (NGLI)
	2.2.11.3 Using NGGI and NGLI Together



	2.2.12 Performing Selective Inferencing (Advanced Information)



	2.3 Using Semantic Operators to Query Relational Data
	2.3.1 Using the SEM_RELATED Operator
	2.3.2 Using the SEM_DISTANCE Ancillary Operator
	2.3.2.1 Computation of Distance Information



	2.3.3 Creating a Semantic Index of Type MDSYS.SEM_INDEXTYPE
	2.3.4 Using SEM_RELATED and SEM_DISTANCE When the Indexed Column Is Not the First Parameter
	2.3.5 Using URIPREFIX When Values Are Not Stored as URIs





3 Simple Knowledge Organization System (SKOS) Support

	3.1 Supported and Unsupported SKOS Semantics
	3.1.1 Supported SKOS Semantics
	3.1.2 Unsupported SKOS Semantics



	3.2 Performing Inference on SKOS Models
	3.2.1 Validating SKOS Models and Entailments
	3.2.2 Property Chain Handling





4 Semantic Indexing for Documents

	4.1 Information Extractors for Semantically Indexing Documents
	4.2 Extractor Policies
	4.3 Semantically Indexing Documents
	4.4 SEM_CONTAINS and Ancillary Operators
	4.4.1 SEM_CONTAINS_SELECT Ancillary Operator
	4.4.2 SEM_CONTAINS_COUNT Ancillary Operator



	4.5 Searching for Documents Using SPARQL Query Patterns
	4.6 Bindings for SPARQL Variables in Matching Subgraphs in a Document (SEM_CONTAINS_SELECT Ancillary Operator)
	4.7 Improving the Quality of Document Search Operations
	4.8 Indexing External Documents
	4.9 Configuring the Calais Extractor type
	4.10 Working with General Architecture for Text Engineering (GATE)
	4.11 Creating a New Extractor Type
	4.12 Creating a Local Semantic Index on a Range-Partitioned Table
	4.13 Altering a Semantic Index
	4.13.1 Rebuilding Content for All Existing Policies in a Semantic Index
	4.13.2 Rebuilding to Add Content for a New Policy to a Semantic Index
	4.13.3 Rebuilding Content for an Existing Policy from a Semantic Index
	4.13.4 Rebuilding to Drop Content for an Existing Policy from a Semantic Index



	4.14 Passing Extractor-Specific Parameters in CREATE INDEX and ALTER INDEX
	4.15 Performing Document-Centric Inference
	4.16 Metadata Views for Semantic Indexing
	4.16.1 MDSYS.RDFCTX_POLICIES View
	4.16.2 RDFCTX_INDEX_POLICIES View
	4.16.3 RDFCTX_INDEX_EXCEPTIONS View



	4.17 Default Style Sheet for GATE Extractor Output


5 Fine-Grained Access Control for RDF Data

	5.1 Virtual Private Database (VPD) for RDF Data
	5.1.1 VPD Policy for RDF Data
	5.1.2 RDF Metadata for Enforcing VPD Policies
	5.1.3 Data Access Constraints
	5.1.4 RDFVPD_POLICIES View
	5.1.5 RDFVPD_MODELS View
	5.1.6 RDFVPD_POLICY_CONSTRAINTS View
	5.1.7 RDFVPD_PREDICATE_MDATA View
	5.1.8 RDFVPD_RESOURCE_REL View



	5.2 Oracle Label Security (OLS) for RDF Data
	5.2.1 Triple-Level Security
	5.2.2 Resource-Level Security
	5.2.2.1 Securing RDF Subjects
	5.2.2.2 Securing RDF Predicates
	5.2.2.3 Securing RDF Objects
	5.2.2.4 Generating Labels for Inferred Triples
	5.2.2.5 Using Labels Based on Application Logic
	5.2.2.6 RDFOLS_SECURE_RESOURCE View








6 Workspace Manager Support for RDF Data

	6.1 Enabling Workspace Manager Support for RDF Data
	6.1.1 Removing Workspace Manager Support for RDF Data



	6.2 Version-Enabling an RDF Model
	6.3 Inferring from Version-Enabled RDF Models
	6.4 Merging and Refreshing Workspaces in Version-Enabled RDF Models


7 Jena Adapter for Oracle Database

	7.1 Setting Up the Software Environment
	7.2 Setting Up the SPARQL Service
	7.2.1 Creating the Required Data Source Using WebLogic Server
	7.2.2 Configuring the SPARQL Service
	7.2.2.1 Client Identifiers



	7.2.3 Terminating Long-Running SPARQL Queries
	7.2.4 N-Triples Encoding for Non-ASCII Characters



	7.3 Setting Up the Semantic Technologies Environment
	7.4 SEM_MATCH and Jena Adapter Queries Compared
	7.5 Optimized Handling of SPARQL Queries
	7.5.1 Compilation of SPARQL queries to a single SEM_MATCH Call
	7.5.2 Optimized Handling of Property Paths
	7.5.3 Optimized Handling of Plain BGP and OPTIONAL Queries



	7.6 Additions to the SPARQL Syntax to Support Other Features
	7.6.1 SQL Hints
	7.6.2 Using Bind Variables in SPARQL Queries
	7.6.3 Additional WHERE Clause Predicates
	7.6.4 Additional Query Options
	7.6.4.1 JOIN Option and Federated Queries
	7.6.4.2 S2S Option Benefits and Usage Information



	7.6.5 Midtier Resource Caching



	7.7 Functions Supported in SPARQL Queries through the Jena Adapter
	7.7.1 Functions in the ARQ Function Library
	7.7.2 Native Oracle Database Functions for Projected Variables
	7.7.3 User-Defined Functions



	7.8 Support for Server-Side APIs
	7.8.1 Virtual Models Support
	7.8.2 Connection Pooling Support
	7.8.3 Semantic Model PL/SQL Interfaces
	7.8.4 Inference Options
	7.8.5 PelletInfGraph Class Support Deprecated



	7.9 Bulk Loading Using the Jena Adapter
	7.10 Example Queries Using the Jena Adapter
	7.10.1 Test.java: Query Family Relationships
	7.10.2 Test6.java: Load OWL Ontology and Perform OWLPrime inference
	7.10.3 Test7.java: Bulk Load OWL Ontology and Perform OWLPrime inference
	7.10.4 Test8.java: SPARQL OPTIONAL Query
	7.10.5 Test9.java: SPARQL Query with LIMIT and OFFSET
	7.10.6 Test10.java: SPARQL Query with TIMEOUT and DOP
	7.10.7 Test11.java: Query Involving Named Graphs
	7.10.8 Test12.java: SPARQL ASK Query
	7.10.9 Test13.java: SPARQL DESCRIBE Query
	7.10.10 Test14.java: SPARQL CONSTRUCT Query
	7.10.11 Test15.java: Query Multiple Models and Specify "Allow Duplicates"
	7.10.12 Test16.java: SPARUL (SPARQL Update) Example
	7.10.13 Test17.java: SPARQL Query with ARQ Built-In Functions
	7.10.14 Test18.java: SELECT Cast Query
	7.10.15 Test19.java: Instantiate Oracle Database Using OracleConnection
	7.10.16 Test20.java: Oracle Database Connection Pooling



	7.11 SPARQL Gateway and Semantic Data
	7.11.1 SPARQL Gateway Features and Benefits Overview
	7.11.2 Installing and Configuring SPARQL Gateway
	7.11.2.1 Download the Jena Adapter .zip File (if Not Already Done)
	7.11.2.2 Deploy SPARQL Gateway in WebLogic Server
	7.11.2.3 Modify Proxy Settings, if Necessary
	7.11.2.4 Configure the OracleSGDS Data Source, if Necessary
	7.11.2.5 Add and Configure the SparqlGatewayAdminGroup Group, if Desired



	7.11.3 Using SPARQL Gateway with Semantic Data
	7.11.3.1 Storing SPARQL Queries and XSL Transformations
	7.11.3.2 Specifying a Timeout Value
	7.11.3.3 Specifying Best Effort Query Execution
	7.11.3.4 Specifying a Content Type Other Than text/xml



	7.11.4 Customizing the Default XSLT File
	7.11.5 Using the SPARQL Gateway Java API
	7.11.6 Using the SPARQL Gateway Graphical Web Interface
	7.11.6.1 Main Page (index.html)
	7.11.6.2 Navigation and Browsing Page (browse.jsp)
	7.11.6.3 XSLT Management Page (xslt.jsp)
	7.11.6.4 SPARQL Management Page (sparql.jsp)



	7.11.7 Using SPARQL Gateway as an XML Data Source to OBIEE





8 Sesame Adapter for Oracle Database

	8.1 Sesame Adapter Overview
	8.2 Setup and Configuration for the Sesame Adapter
	8.2.1 Setting Up the Software Environment
	8.2.2 Setting Up the SPARQL Service
	8.2.2.1 Creating the Required Data Source Using WebLogic Server
	8.2.2.2 Configuring the SPARQL Service
	8.2.2.3 Terminating Long-Running SPARQL Queries



	8.2.3 Setting Up the Semantic Technologies Environment



	8.3 SEM_MATCH and Sesame Adapter Queries Compared
	8.4 Optimized Handling of SPARQL Queries
	8.4.1 Compilation of SPARQL Queries to a Single SEM_MATCH Call



	8.5 Recommendations for Best Performance
	8.5.1 Statement Storage and Implications for Sesame Adapter Queries



	8.6 Additions to the SPARQL Syntax to Support Other Features
	8.6.1 SQL Hints
	8.6.2 Additional WHERE Clause Predicates
	8.6.3 Additional Query Options



	8.7 Support for Server-Side APIs
	8.7.1 Virtual Models Support
	8.7.2 Connection Pooling Support
	8.7.3 Semantic Model PL/SQL Interfaces
	8.7.4 Inference Options



	8.8 Oracle-Specific Extensions to Sesame APIs
	8.8.1 Statement Uniqueness
	8.8.2 Indexes and Interoperability with the Jena Adapter
	8.8.3 Inference
	8.8.4 Performing Analysis Operations



	8.9 Using the Sesame Console with the Sesame Adapter
	8.10 Example Queries Using the Sesame Adapter
	8.10.1 Example1.java: Basic Operations
	8.10.2 Example2.java: Add a Data File (in TRIG format)
	8.10.3 Example3.java: Simple Query
	8.10.4 Example4.java: Simple Bulk Load
	8.10.5 Example5.java: Bulk Load RDF/XML and Application Table Index Maintenance
	8.10.6 Example6.java: Bulk Load With StatusListener to Handle Loading with Bad Data
	8.10.7 Example7.java: Load Data from Sesame Store into Oracle Database
	8.10.8 Example8.java: SPARQL ASK Query
	8.10.9 Example9.java: SPARQL CONSTRUCT and DESCRIBE
	8.10.10 Example10.java: Inference
	8.10.11 Example11.java: Named Graph Query
	8.10.12 Example12.java: Indexes on Application Table [Advanced]
	8.10.13 Example13.java: Uniqueness Constraint on Application Table [Advanced]
	8.10.14 Example14.java: Query Timeout and Parallel Execution [Advanced]
	8.10.15 Example15.java: Get COUNT of Matches [Advanced]
	8.10.16 Example16.java: Specify Bind Variable for Constant in Query Pattern [Advanced]
	8.10.17 Example17.java: Specify Bind Variable for Constant in Different Position in Query Pattern [Advanced]
	8.10.18 Example18.java: Build URIs from Internal Numeric IDs [Advanced]





Part II Reference and Supplementary Information

9 SEM_APIS Package Subprograms

	SEM_APIS.ADD_DATATYPE_INDEX
	SEM_APIS.ADD_SEM_INDEX
	SEM_APIS.ALTER_DATATYPE_INDEX
	SEM_APIS.ALTER_ENTAILMENT
	SEM_APIS.ALTER_MODEL
	SEM_APIS.ALTER_SEM_INDEX_ON_ENTAILMENT
	SEM_APIS.ALTER_SEM_INDEX_ON_MODEL
	SEM_APIS.ANALYZE_ENTAILMENT
	SEM_APIS.ANALYZE_MODEL
	SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE
	SEM_APIS.CLEANUP_FAILED
	SEM_APIS.COMPOSE_RDF_TERM
	SEM_APIS.CREATE_ENTAILMENT
	SEM_APIS.CREATE_RULEBASE
	SEM_APIS.CREATE_SEM_MODEL
	SEM_APIS.CREATE_SEM_NETWORK
	SEM_APIS.CREATE_SOURCE_EXTERNAL_TABLE
	SEM_APIS.CREATE_VIRTUAL_MODEL
	SEM_APIS.DISABLE_CHANGE_TRACKING
	SEM_APIS.DISABLE_INC_INFERENCE
	SEM_APIS.DROP_DATATYPE_INDEX
	SEM_APIS.DROP_ENTAILMENT
	SEM_APIS.DROP_RULEBASE
	SEM_APIS.DROP_SEM_INDEX
	SEM_APIS.DROP_SEM_MODEL
	SEM_APIS.DROP_SEM_NETWORK
	SEM_APIS.DROP_USER_INFERENCE_OBJS
	SEM_APIS.DROP_VIRTUAL_MODEL
	SEM_APIS.ENABLE_CHANGE_TRACKING
	SEM_APIS.ENABLE_INC_INFERENCE
	SEM_APIS.GET_CHANGE_TRACKING_INFO
	SEM_APIS.GET_INC_INF_INFO
	SEM_APIS.GET_MODEL_ID
	SEM_APIS.GET_MODEL_NAME
	SEM_APIS.GET_TRIPLE_ID
	SEM_APIS.GETV$DATETIMETZVAL
	SEM_APIS.GETV$DATETZVAL
	SEM_APIS.GETV$NUMERICVAL
	SEM_APIS.GETV$STRINGVAL
	SEM_APIS.GETV$TIMETZVAL
	SEM_APIS.IS_TRIPLE
	SEM_APIS.LOAD_INTO_STAGING_TABLE
	SEM_APIS.LOOKUP_ENTAILMENT
	SEM_APIS.MERGE_MODELS
	SEM_APIS.REFRESH_SEM_NETWORK_INDEX_INFO
	SEM_APIS.REMOVE_DUPLICATES
	SEM_APIS.RENAME_ENTAILMENT
	SEM_APIS.RENAME_MODEL
	SEM_APIS.SWAP_NAMES
	SEM_APIS.VALIDATE_ENTAILMENT
	SEM_APIS.VALIDATE_MODEL
	SEM_APIS.VALUE_NAME_PREFIX
	SEM_APIS.VALUE_NAME_SUFFIX


10 SEM_OLS Package Subprograms

	SEM_OLS.APPLY_POLICY_TO_APP_TAB
	SEM_OLS.REMOVE_POLICY_FROM_APP_TAB


11 SEM_PERF Package Subprograms

	SEM_PERF.GATHER_STATS


12 SEM_RDFCTX Package Subprograms

	SEM_RDFCTX.ADD_DEPENDENT_POLICY
	SEM_RDFCTX.CREATE_POLICY
	SEM_RDFCTX.DROP_POLICY
	SEM_RDFCTX.MAINTAIN_TRIPLES
	SEM_RDFCTX.SET_DEFAULT_POLICY
	SEM_RDFCTX.SET_EXTRACTOR_PARAM


13 SEM_RDFSA Package Subprograms

	SEM_RDFSA.ADD_VPD_CONSTRAINT
	SEM_RDFSA.APPLY_OLS_POLICY
	SEM_RDFSA.APPLY_VPD_POLICY
	SEM_RDFSA.CREATE_VPD_POLICY
	SEM_RDFSA.DELETE_VPD_CONSTRAINT
	SEM_RDFSA.DISABLE_OLS_POLICY
	SEM_RDFSA.DROP_VPD_POLICY
	SEM_RDFSA.ENABLE_OLS_POLICY
	SEM_RDFSA.MAINT_VPD_METADATA
	SEM_RDFSA.REMOVE_OLS_POLICY
	SEM_RDFSA.REMOVE_VPD_POLICY
	SEM_RDFSA.RESET_MODEL_LABELS
	SEM_RDFSA.SET_PREDICATE_LABEL
	SEM_RDFSA.SET_RDFS_LABEL
	SEM_RDFSA.SET_RESOURCE_LABEL
	SEM_RDFSA.SET_RULE_LABEL


A Enabling, Downgrading, or Removing Semantic Technologies Support

	A.1 Enabling Semantic Technologies Support
	A.1.1 Enabling Semantic Technologies Support in a New Database Installation
	A.1.2 Upgrading Semantic Technologies Support from Release 11.1
	A.1.2.1 Handling of Empty RDF Literals



	A.1.3 Upgrading Semantic Technologies Support from Release 10.2
	A.1.4 Release 11.2.0.2: Required Actions if Semantic Technologies Installation is Invalid
	A.1.5 Spatial and Partitioning Requirements



	A.2 Downgrading Semantic Technologies Support to a Previous Release
	A.2.1 Downgrading to Release 11.1 Semantic Technologies Support
	A.2.2 Downgrading to Release 10.2 Semantic Technologies Support



	A.3 Removing Semantic Technologies Support


B SEM_MATCH Support for Spatial Queries

	orageo:area
	orageo:buffer
	orageo:centroid
	orageo:convexHull
	orageo:difference
	orageo:distance
	orageo:intersection
	orageo:length
	orageo:mbr
	orageo:nearestNeighbor
	orageo:relate
	orageo:union
	orageo:withinDistance
	orageo:xor


Glossary

Index



List of Examples

	1-1 Inserting a Rule into a Rulebase
	1-2 Using Rulebases for Inferencing
	1-3 Creating an Entailment
	1-4 Querying a Virtual Model
	1-5 SDO_RDF_TRIPLE_S Methods
	1-6 SDO_RDF_TRIPLE_S Constructor to Insert Triples
	1-7 SEM_MATCH Table Function
	1-8 HINT0 Option with SEM_MATCH Table Function
	1-9 SEM_MATCH Table Function
	1-10 Curly Brace Syntax
	1-11 Curly Brace Syntax and OPTIONAL Construct
	1-12 Curly Brace Syntax and Multi-Pattern OPTIONAL Construct
	1-13 Curly Brace Syntax and Nested OPTIONAL Construct
	1-14 Curly Brace Syntax and Parallel OPTIONAL Construct
	1-15 Curly Brace Syntax and FILTER Construct
	1-16 Curly Brace Syntax and FILTER with REGEX and STR Built-In Constructs
	1-17 Curly Brace Syntax and UNION and FILTER Constructs
	1-18 Named Graph Construct
	1-19 Using the named_graphs Parameter
	1-20 Using the graphs Parameter
	1-21 SPARQL PREFIX, SELECT, and WHERE Clauses
	1-22 SPARQL SELECT * (All Variables in Triple Pattern)
	1-23 SPARQL SELECT DISTINCT
	1-24 RDF Dataset Specification Using FROM and FROM NAMED
	1-25 SPARQL ORDER BY
	1-26 SPARQL LIMIT
	1-27 SPARQL OFFSET
	1-28 Inline Query Optimizer Hints
	1-29 Full-Text Search
	1-30 Spatial Point Geometry Represented as orageo:WKTLiteral
	1-31 Spatial Data Encoded Using orageo:WKTLiteral Values
	1-32 Adding a Spatial Data Type Index on RDF Data
	1-33 SQL Hint for Dynamic Sampling
	1-34 Using an External Table to Load a Staging Table
	1-35 Using HINT0 to Ensure Use of Data Type Index
	1-36 Using a Model for Journal Article Information
	1-37 Using a Model for Family Information
	2-1 Creating a Simple OWL Ontology
	2-2 Performing Native OWL Inferencing
	2-3 Performing OWL and User-Defined Rules Inferencing
	2-4 Displaying Proof Information
	2-5 Validating an Entailment
	2-6 Named Graph Based Global Inference
	2-7 Named Graph Based Local Inference
	2-8 Performing Selective Inferencing
	2-9 SEM_RELATED Operator
	2-10 SEM_DISTANCE Ancillary Operator
	2-11 Using SEM_DISTANCE to Restrict the Number of Rows Returned
	2-12 Creating a Semantic Index
	2-13 Creating a Semantic Index Specifying a Model and Rulebase
	2-14 Query Benefitting from Generation of Statistical Information
	2-15 Specifying a URI Prefix During Semantic Index Creation
	3-1 SKOS Definition of an Electronics Scheme
	3-2 Validating an SKOS Entailment
	3-3 Property Chain Insertions to Implement S55
	4-1 RDFCTX_EXTRACTOR Abstract Type Definition
	4-2 Using Document-Centric Inference
	5-1 Creating a Custom Label Generator Type
	7-1 Loading Data into the Staging Table (prepareBulk)
	7-2 Loading Data from the Staging Table into the Semantic Network (completeBulk)
	7-3 Using prepareBulk with RDFa
	7-4 Query Family Relationships
	7-5 Load OWL Ontology and Perform OWLPrime inference
	7-6 Bulk Load OWL Ontology and Perform OWLPrime inference
	7-7 SPARQL OPTIONAL Query
	7-8 SPARQL Query with LIMIT and OFFSET
	7-9 SPARQL Query with TIMEOUT and DOP
	7-10 Named Graph Based Query
	7-11 SPARQL ASK Query
	7-12 SPARQL DESCRIBE Query
	7-13 SPARQL CONSTRUCT Query
	7-14 Query Multiple Models and Specify "Allow Duplicates"
	7-15 SPARUL (SPARQL Update) Example
	7-16 SPARQL Query with ARQ Built-In Functions
	7-17 SELECT Cast Query
	7-18 Instantiate Oracle Database Using OracleConnection
	7-19 Oracle Database Connection Pooling
	7-20 Storing a SPARQL Query and an XSL Transformation
	7-21 Modifying a Query
	7-22 Retrieving and Printing an XSL Transformation
	8-1 Sample Usage flow for Sesame Adapter
	8-2 Migration Between Jena Adapter and Sesame Adapter Models
	8-3 Using the Sesame Console
	8-4 Basic Operations
	8-5 Add a Data File (in TRIG format)
	8-6 Simple Query
	8-7 Simple Bulk Load
	8-8 Bulk Load RDF/XML and Application Table Index Maintenance
	8-9 Bulk Load With StatusListener to Handle Loading with Bad Data
	8-10 Load Data from Sesame Store into Oracle Database
	8-11 SPARQL ASK Query
	8-12 SPARQL CONSTRUCT and DESCRIBE
	8-13 Inference
	8-14 Named Graph Query
	8-15 Indexes on Application Table [Advanced]
	8-16 Uniqueness Constraint on Application Table [Advanced]
	8-17 Query Timeout and Parallel Execution [Advanced]
	8-18 Get COUNT of Matches [Advanced]
	8-19 Specify Bind Variable for Constant in Query Pattern [Advanced]
	8-20 Specify Bind Variable for Constant in Different Position in Query Pattern [Advanced]
	8-21 Build URIs from Internal Numeric IDs [Advanced]




List of Figures

	1-1 Oracle Semantic Capabilities
	1-2 Inferencing
	1-3 Family Tree for RDF Example
	2-1 Cancer Ontology Example
	6-1 Physical Versioning of Entailment (Rules Index)
	7-1 Graphical Interface Main Page (index.html)
	7-2 SPARQL Query Main Page Response
	7-3 Graphical Interface Navigation and Browsing Page (browse.jsp)
	7-4 Browsing and Navigation Page: Response
	7-5 Query and Response from Clicking URI Link
	7-6 XSLT Management Page
	7-7 SPARQL Management Page
	7-8 Import Metadata - Select Data Source
	7-9 Import Metadata - Select Metadata Types
	7-10 Import Metadata - Select Metadata Objects




List of Tables

	1-1 MDSYS.SEM_MODEL$ View Columns
	1-2 MDSYS.SEMM_model-name View Columns
	1-3 MDSYS.RDF_VALUE$ Table Columns
	1-4 MDSYS.SEMR_rulebase-name View Columns
	1-5 MDSYS.SEM_RULEBASE_INFO View Columns
	1-6 MDSYS.SEM_RULES_INDEX_INFO View Columns
	1-7 MDSYS.SEM_RULES_INDEX_DATASETS View Columns
	1-8 MDSYS.SEM_MODEL$ View Column Explanations for Virtual Models
	1-9 MDSYS.SEM_VMODEL_INFO View Columns
	1-10 MDSYS.SEM_VMODEL_DATASETS View Columns
	1-11 Semantic Metadata Tables and Views
	1-12 Built-in Functions Available for FILTER Clause
	1-13 SEM_MATCH graphs and named_graphs Values, and Resulting Dataset Configurations
	1-14 MDSYS.SEM_NETWORK_INDEX_INFO View Columns (Partial List)
	1-15 Data Types for Data Type Indexing
	1-16 MDSYS.SEM_DTYPE_INDEX_INFO View Columns
	1-17 Semantic Technology Software Objects: Old and New Names
	2-1 PATIENTS Table Example Data
	2-2 RDFS/OWL Vocabulary Constructs Included in Each Supported Rulebase
	2-3 MDSYS.SEMCL_entailment_name View Columns
	4-1 MDSYS.RDFCTX_POLICIES View Columns
	4-2 MDSYS.RDFCTX_INDEX_POLICIES View Columns
	4-3 MDSYS.RDFCTX_INDEX_EXCEPTIONS View Columns
	5-1 MDSYS.RDFVPD_POLICIES View Columns
	5-2 MDSYS.RDFVPD_MODELS View Columns
	5-3 MDSYS.RDFVPD_POLICY_CONSTRAINTS View Columns
	5-4 MDSYS.RDFVPD_PREDICATE_MDATA View Columns
	5-5 MDSYS.RDFVPD_RESOURCE_REL View Columns
	5-6 MDSYS.RDFOLS_SECURE_RESOURCE View Columns
	7-1 Functions and Return Values for my_strlen Example
	7-2 PL/SQL Subprograms and Corresponding Jena Adapter Java Class and Methods
	8-1 PL/SQL Subprograms and Corresponding Sesame Adapter Java Class and Methods
	9-1 Inferencing Keywords for inf_components_in Parameter
	9-2 SEM_RDFSA Package Constants for label_gen Parameter
	13-1 SEM_RDFSA Package Constants for rdfsa_options Parameter




Oracle® Database

Semantic Technologies Developer's Guide

11g Release 2 (11.2)

E25609-01

September 2011

Provides usage and reference information about Oracle Database support for semantic technologies, including storage, inference, and query capabilities for data and ontologies based on Resource Description Framework (RDF), RDF Schema (RDFS), and Web Ontology Language (OWL).




Oracle Database Semantic Technologies Developer's Guide, 11g Release 2 (11.2)

E25609-01

Copyright © 2005, 2011, Oracle and/or its affiliates. All rights reserved.

Primary Author:  Chuck Murray

Contributors:  Eugene Inseok Chong, Souri Das, Vladimir Kolovski, Matt Perry, Jags Srinivasan, Seema Sundara, Zhe (Alan) Wu, Aravind Yalamanchi

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.



Preface

Oracle Database Semantic Technologies Developer's Guide provides usage and reference information about Oracle Database Enterprise Edition support for semantic technologies, including storage, inference, and query capabilities for data and ontologies based on Resource Description Framework (RDF), RDF Schema (RDFS), and Web Ontology Language (OWL). The Semantic Technologies feature is licensed with the Oracle Spatial option to Oracle Database Enterprise Edition, and it requires the Oracle Partitioning option to Oracle Database Enterprise Edition.




	
Note:

You must perform certain actions and meet prerequisites before you can use any types, synonyms, or PL/SQL packages related to Oracle semantic technologies support. These actions and prerequisites are explained in Section A.1.








Audience

This guide is intended for those who need to use semantic technology to store, manage, and query semantic data in the database.

You should be familiar with at least the main concepts and techniques for the Resource Description Framework (RDF) and the Web Ontology Language (OWL).


Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.


Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.


Related Documents

For an excellent explanation of RDF concepts, see the World Wide Web Consortium (W3C) RDF Primer at http://www.w3.org/TR/rdf-primer/.

For information about OWL, see the OWL Web Ontology Language Reference at http://www.w3.org/TR/owl-ref/.


Conventions

The following text conventions are used in this document:


	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.







What's New in Semantic Technologies?

This section describes new and changed semantic technologies features for Oracle Database Release 11.


Release 11.2 Features

The following are new and changed features for Oracle Database 11g Release 2 (11.2).

This release also includes the features that were supplied in the interim patch 7600122 for Release 11.1.0.7.0, which are listed in "Features Added for Release 11.1.0.7 (November, 2008)".




	
Release 11.2.0.2: Required Actions if Semantic Technologies Installation is Invalid:

Further action may be required if your Semantic Technologies installation is invalid after upgrading to Release 11.2.0.2.0. For information, see Section A.1.4.








Named Graph Support Enhancements (Added in Patch 9825019 in May 2011; Included in Release 11.2.0.3)

With Patch 9825019 (SEMANTIC TECHNOLOGIES 11G R2 FIX BUNDLE 3), features have been added to support the following operations with named graph data:

	
Loading


	
Querying


	
Inferencing




Section 1.3.9 provides an overview of named graph support. That section also includes links to sections about performing specific operations with named graph data.


Spatial Support (Added in Patch 9825019 in May 2011; Included in Release 11.2.0.3)

With Patch 9825019 (SEMANTIC TECHNOLOGIES 11G R2 FIX BUNDLE 3), Oracle Database Semantic Technologies supports storage of spatial geometry data encoded as orageo:WKTLiteral typed literals, and it provides a set of query functions for spatial operations.

For information about representing, indexing, and querying spatial data in RDF, see Section 1.6.6.


Data Type Indexing (Added in Patch 9825019 in May 2011; Included in Release 11.2.0.3)

With Patch 9825019 (SEMANTIC TECHNOLOGIES 11G R2 FIX BUNDLE 3), data type indexes (indexes on the values of typed literals stored in a semantic network) may significantly improve the performance of SEM_MATCH queries involving certain types of FILTER expressions.

Section 1.9 explains how to use data type indexes, and it provides links to reference information about new procedures to create, alter, and drop a data type index.


Jena Adapter for Oracle Database (Updated September, 2011)

The Jena Adapter for Oracle Database provides a Java-based interface to Oracle Semantic Technologies by implementing the well-known Jena Graph and Model APIs. For information about downloading and using the Jena Adapter, see Chapter 7.

SPARQL Gateway (described in Section 7.11, "SPARQL Gateway and Semantic Data") is added in the September 2011 update to the Jena Adapter. (If you are using a previous version of the Jena Adapter and if you do not want to use SPARQL Gateway, you do not need to download and install the September 2011 update.)




	
Note:

Updates of the Jena Adapter have been made available since its initial release. For information about the new features in an update, see the "readme" file included in the download .zip file.








Enhanced Optimizer Hint Support in SEM_MATCH (11.2.0.2)

Effective with Release 11.2.0.2, you can embed inline HINT0 query optimizer hints using SPARQL comments in SEM_MATCH, which allows optimizer hints to be associated with non-root BGPs in a SPARQL query. In addition, new hints have been introduced to influence joins between BGPs. For information, see Section 1.6.4, "Inline Query Optimizer Hints".


Full-Text Indexing and Searching for RDF Terms (11.2.0.2)

Effective with Release 11.2.0.2, you can create an Oracle Text index on the MDSYS.RDF_VALUE$ table and use the orardf:textContains SPARQL FILTER function to execute efficient full-text searches in semantic queries. For information, see Section 1.6.5, "Full-Text Search".


OLS Triple-Level Security (Added in Patch 9819833 in June 2010)

Oracle Label Security (OLS) for RDF data provides the triple-level security option, in addition to the resource-level security previously available. Triple-level provides superior performance and ease of use, and is described in Section 5.2.1, "Triple-Level Security".


OWL 2 RL Support (Added in Patch 9819833 in June 2010)

The OWL 2 RL profile is supported by the addition of the system-defined rulebase OWL2RL, as explained in Section 2.1.2, "Supported OWL Subsets".


Features Added in Patch to Release 11.2 (Released March 2010)

The following features are included in a Release 11.2 Semantic Technologies patch that was made available on the Oracle Technology Network (OTN) in March 2010. You must apply that patch in order to be able to use these features.

	
The recommended best practices in Section 1.6.7.1, "FILTER Constructs Involving xsd:dateTime, xsd:date, and xsd:time" and Section 1.6.7.2, "Function-Based Indexes for FILTER Constructs Involving Typed Literals"


	
The functions with names in the form SEM_APIS.GETV$... in Chapter 9, "SEM_APIS Package Subprograms"




In addition, Section A.1.2, "Upgrading Semantic Technologies Support from Release 11.1" has been expanded to include Section A.1.2.1, "Handling of Empty RDF Literals".


Sesame Adapter for Oracle Database

The Sesame Adapter for Oracle Database integrates the popular Sesame Java APIs with Oracle Semantic Technologies support. For information about downloading and using the Sesame Adapter, see Chapter 8.




	
Note:

Support for the Sesame Adapter was provided in a patch that was made available in January, 2010, on the Oracle Technology Network (OTN), and is updated in a patch made available in March or April, 2010.








Semantic Indexing for Documents

You can use semantic indexing to enable queries on information extracted from unstructured documents. Documents indexed semantically can be searched using the SEM_CONTAINS operator within a standard SQL query. For information about using semantic indexing, see Chapter 4.

The SEM_RDFCTX PL/SQL package contains subprograms to manage extractor policies and semantic indexes created for documents. This package is documented in Chapter 12.


Virtual Private Database (VPD) and Oracle Label Security (OLS) Support

You can enforce a fine-grained access control mechanism for RDF data by using either the Virtual Private Database (VPD) or Oracle Label Security (OLS) feature of Oracle Database, as explained in Chapter 5.


Workspace Manager Support for RDF Data

You can use Oracle Workspace Manager to version-enable RDF data in the semantic data store, as explained in Chapter 6.


New Procedures to Enable, Downgrade, and Remove Semantic Technologies Support

The procedures for enabling, downgrading, and removing semantic technologies support in the database have been redesigned. These procedures are explained in Appendix A.

Note that you still must perform certain actions and meet prerequisites before you can use any types, synonyms, or PL/SQL packages related to Oracle semantic technologies support. These actions and prerequisites are explained in Section A.1.


Optimized owl:sameAs Inference

You can optimize the performance of owl:sameAs inference, as explained in Section 2.2.8.


Optimizing Entailment Performance Through Compact Structures

You can specify RAW8=T in the options parameter to the SEM_APIS.CREATE_ENTAILMENT procedure, to cause RAW8 datatypes to be used instead of NUMBER in many intermediate tables created during the inference process. This option can improve entailment performance by up to 30% in some cases.


Incremental Inference

You can use incremental inference update entailments (rules indexes) efficiently after triple additions, as explained in Section 2.2.9.


Parallel Inference

You can use parallel inference to improve inference performance by taking advantage of the capabilities of a multi-core or multi-CPU architectures, as explained in Section 2.2.10.


Filter and Union Support in Curly Brace Syntax for SEM_MATCH

You can now specify FILTER or UNION, or both, in addition to OPTIONAL as keywords in the curly brace syntax supported for the SEM_MATCH table function. These keywords are explained in Section 1.6.2.


Simple Knowledge Organization System (SKOS) Support

You can perform inferencing based on a core subset of the Simple Knowledge Organization System (SKOS) data model, as explained in Chapter 3.


Inference Beyond OWLPrime

You can specify additional inference components to cover OWL constructs, such as owl:intersectionOf and owl:unionOf, as explained in Table 9-1, "Inferencing Keywords for inf_components_in Parameter" in the Usage Notes for the SEM_APIS.CREATE_ENTAILMENT procedure in Chapter 9.


Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT) Support

The current release includes a built-in rulebase that supports the expressiveness of Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT) terminology. To include this support, specify the SNOMED keyword in the inf_components_in parameter in the call to the SEM_APIS.CREATE_ENTAILMENT procedure .


New SEM_APIS Package Subprograms

The following subprograms have been added to the SEM_APIS PL/SQL package, which is documented in Chapter 9.

	
SEM_APIS.ADD_DATATYPE_INDEX


	
SEM_APIS.ALTER_DATATYPE_INDEX


	
SEM_APIS.ALTER_ENTAILMENT


	
SEM_APIS.ALTER_MODEL


	
SEM_APIS.ALTER_SEM_INDEX_ON_ENTAILMENT


	
SEM_APIS.ALTER_SEM_INDEX_ON_MODEL


	
SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE


	
SEM_APIS.COMPOSE_RDF_TERM


	
SEM_APIS.CREATE_SOURCE_EXTERNAL_TABLE


	
SEM_APIS.DISABLE_CHANGE_TRACKING


	
SEM_APIS.DISABLE_INC_INFERENCE


	
SEM_APIS.DROP_DATATYPE_INDEX


	
SEM_APIS.ENABLE_CHANGE_TRACKING


	
SEM_APIS.ENABLE_INC_INFERENCE


	
SEM_APIS.GET_CHANGE_TRACKING_INFO


	
SEM_APIS.GET_INC_INF_INFO


	
SEM_APIS.LOAD_INTO_STAGING_TABLE


	
SEM_APIS.MERGE_MODELS


	
SEM_APIS.REMOVE_DUPLICATES


	
SEM_APIS.RENAME_ENTAILMENT


	
SEM_APIS.RENAME_MODEL


	
SEM_APIS.SWAP_NAMES





Parameters for SEM_PERF.GATHER_STATISTICS

The SEM_PERF.GATHER_STATS procedure now accepts two parameters, both optional: just_on_values_table and parallel. This procedure is documented in Chapter 11.


SEM_APIS.*_RULES_INDEX Subprograms Deprecated

In the SEM_APIS PL/SQL package, the subprograms containing "_RULES_INDEX" in their names are deprecated and removed from this manual. Instead, you should use subprograms containing "_ENTAILMENT" in their names:

	
Instead of SEM_APIS.ALTER_SEM_INDEX_ON_RULES_INDEX, use SEM_APIS.ALTER_SEM_INDEX_ON_ENTAILMENT.


	
Instead of SEM_APIS.ANALYZE_RULES_INDEX, use SEM_APIS.ANALYZE_ENTAILMENT.


	
Instead of SEM_APIS.CREATE_RULES_INDEX, use SEM_APIS.CREATE_ENTAILMENT.


	
Instead of SEM_APIS.DROP_RULES_INDEX, use SEM_APIS.DROP_ENTAILMENT.


	
Instead of SEM_APIS.LOOKUP_RULES_INDEX, use SEM_APIS.LOOKUP_ENTAILMENT.




The old "*_RULES_INDEX" formats will continue to work, but you are encouraged to switch to using the "*_ENTAILMENT" subprograms.

Note that several metadata views still include "RULES_INDEX" in their names.

The terms entailment and rules index are synonyms in this manual, although entailment is used predominantly


Release 11.1 Features

The following are new and changed features for Oracle Database 11g Release 1 (11.1).


Features Added for Release 11.1.0.7 (November, 2008)

This section describes features that are included in interim patch 7600122 for Release 11.1.0.7.0, which was made available on My Oracle Support in November, 2008.

	
Support for virtual models (see Section 1.3.8)


	
Curly brace syntax for SEM_MATCH graph pattern, including support for the OPTIONAL construct (see Section 1.6.2)


	
Using HINT0 ("hint-zero" ) in a SEM_MATCH query (see Section 1.6)


	
New columns returned from SEM_MATCH: id, _prefix, _suffix (see Section 1.6)


	
Ability to create and manage semantic network indexes on models and rules indexes (see Section 1.8)


	
SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE procedure: New options in the flags parameter join_hint for tasks IZC, MBV, and MBT; parallel=n)


	
Simplification of staging table definition (fewer columns) and privilege requirements (see Section 1.7.1)


	
Simpler event tracing during bulk load (see the information about the new RDF$ET_TAB table in Section 1.7.1.2)





Storage Model Enhancements and Migration

The storage model has been enhanced to support OWL inferencing: some internal data structures and indexes have been changed, added, and removed. These changes also result in enhanced performance.

Because of the extent of these changes, if you have semantic data that you used with the previous release, you must upgrade that data to migrate it to the new format before you can use any new features for this release. For more information, see Appendix A, "Enabling, Downgrading, or Removing Semantic Technologies Support".


Support for OWL Inferencing

Support has been added to support storing, validating, and querying Web Ontology Language (OWL)-based ontologies. Support is provided for a subset of the OWL DL language.

To query ontology data, you can use table functions and operators that examine semantic relationships, such as SEM_MATCH, SEM_RELATED, and SEM_DISTANCE.


New Bulk Loading Interface for Improved Performance

You can improve performance for bulk loading of semantic data in bulk using a staging table and calling the SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE procedure. For more information, see Section 1.7.1.


Ontology-Assisted Querying of Relational Data

You can go beyond syntactic matching to perform semantic relatedness-based querying of relational data, by associating an ontology with the data and using the new SEM_RELATED operator (and optionally its SEM_DISTANCE ancillary operator). The new SEM_INDEXTYPE index type improves performance for semantic queries.


Required Procedure for Using Semantic Technology Support

Before you can use any types, synonyms, or PL/SQL packages related to Oracle semantic technologies support, you must enable support for semantic technologies. For more information, see Appendix A, "Enabling, Downgrading, or Removing Semantic Technologies Support".



Part I


Conceptual and Usage Information

This document has the following parts:

	
Part I provides conceptual and usage information about Oracle Semantic Technologies.


	
Part II provides reference information about Oracle Semantic Technologies subprograms; it also provides supplementary information in appendixes and a glossary.




Part I contains the following chapters:

	
Chapter 1, "Oracle Database Semantic Technologies Overview"


	
Chapter 2, "OWL Concepts"


	
Chapter 3, "Simple Knowledge Organization System (SKOS) Support"


	
Chapter 4, "Semantic Indexing for Documents"


	
Chapter 5, "Fine-Grained Access Control for RDF Data"


	
Chapter 6, "Workspace Manager Support for RDF Data"


	
Chapter 7, "Jena Adapter for Oracle Database"


	
Chapter 8, "Sesame Adapter for Oracle Database"






1 Oracle Database Semantic Technologies Overview

This chapter describes the support in Oracle Database Enterprise Edition for semantic technologies, specifically Resource Description Framework (RDF) and a subset of the Web Ontology Language (OWL). It assumes that you are familiar with the major concepts associated with RDF and OWL, such as {subject, predicate, object} triples, URIs, blank nodes, plain and typed literals, and ontologies. This chapter does not explain these concepts in detail, but focuses instead on how the concepts are implemented in Oracle.

	
For an excellent explanation of RDF concepts, see the World Wide Web Consortium (W3C) RDF Primer at http://www.w3.org/TR/rdf-primer/.


	
For information about OWL, see the OWL Web Ontology Language Reference at http://www.w3.org/TR/owl-ref/.




The PL/SQL subprograms for working with semantic data are in the SEM_APIS package, which is documented in Chapter 9.

The RDF and OWL support are features of Oracle Spatial, which must be installed for these features to be used. However, the use of RDF and OWL is not restricted to spatial data.

This chapter contains the following major sections:

	
Section 1.1, "Introduction to Oracle Semantic Technologies"


	
Section 1.2, "Semantic Data Modeling"


	
Section 1.3, "Semantic Data in the Database"


	
Section 1.4, "Semantic Metadata Tables and Views"


	
Section 1.5, "Semantic Data Types, Constructors, and Methods"


	
Section 1.6, "Using the SEM_MATCH Table Function to Query Semantic Data"


	
Section 1.7, "Loading and Exporting Semantic Data"


	
Section 1.8, "Using Semantic Network Indexes"


	
Section 1.9, "Using Data Type Indexes"


	
Section 1.10, "Quick Start for Using Semantic Data"


	
Section 1.11, "Semantic Data Examples (PL/SQL and Java)"


	
Section 1.12, "Software Naming Changes for Semantic Technologies"




For information about OWL concepts and the Oracle Database support for OWL capabilities, see Chapter 2.




	
Required Actions to Enable Semantic Technologies Support:

Before performing any operations described in this guide, you must enable semantic technologies support in the database and meet other prerequisites, as explained in Section A.1, "Enabling Semantic Technologies Support".










	
Release 11.2.0.2: Required Actions if Semantic Technologies Installation is Invalid:

Further action may be required if your Semantic Technologies installation is invalid after upgrading to Release 11.2.0.2.0. For information, see Section A.1.4.









1.1 Introduction to Oracle Semantic Technologies

Oracle Database enables you to store semantic data and ontologies, to query semantic data and to perform ontology-assisted query of enterprise relational data, and to use supplied or user-defined inferencing to expand the power of querying on semantic data. Figure 1-1 shows how these capabilities interact.


Figure 1-1 Oracle Semantic Capabilities

[image: Description of Figure 1-1 follows]






As shown in Figure 1-1, the database contains semantic data and ontologies (RDF/OWL models), as well as traditional relational data. To load semantic data, bulk loading is the most efficient approach, although you can load data incrementally using transactional INSERT statements.




	
Note:

If you want to use existing semantic data from a release before Oracle Database 11.1, the data must be upgraded as described in Section A.1.







You can query semantic data and ontologies, and you can also perform ontology-assisted queries of semantic and traditional relational data to find semantic relationships. To perform ontology-assisted queries, use the SEM_RELATED operator, which is described in Section 2.3.

You can expand the power of queries on semantic data by using inferencing, which uses rules in rulebases. Inferencing enables you to make logical deductions based on the data and the rules. For information about using rules and rulebases for inferencing, see Section 1.3.6.






1.2 Semantic Data Modeling

In addition to its formal semantics, semantic data has a simple data structure that is effectively modeled using a directed graph. The metadata statements are represented as triples: nodes are used to represent two parts of the triple, and the third part is represented by a directed link that describes the relationship between the nodes. The triples are stored in a semantic data network. In addition, information is maintained about specific semantic data models created by database users. A user-created model has a model name, and refers to triples stored in a specified table column.

Statements are expressed in triples: {subject or resource, predicate or property, object or value}. In this manual, {subject, property, object} is used to describe a triple, and the terms statement and triple may sometimes be used interchangeably. Each triple is a complete and unique fact about a specific domain, and can be represented by a link in a directed graph.






1.3 Semantic Data in the Database

There is one universe for all semantic data stored in the database. All triples are parsed and stored in the system as entries in tables under the MDSYS schema. A triple {subject, property, object} is treated as one database object. As a result, a single document containing multiple triples results in multiple database objects.

All the subjects and objects of triples are mapped to nodes in a semantic data network, and properties are mapped to network links that have their start node and end node as subject and object, respectively. The possible node types are blank nodes, URIs, plain literals, and typed literals.

The following requirements apply to the specifications of URIs and the storage of semantic data in the database:

	
A subject must be a URI or a blank node.


	
A property must be a URI.


	
An object can be any type, such as a URI, a blank node, or a literal. (However, null values and null strings are not supported.)






1.3.1 Metadata for Models

The MDSYS.SEM_MODEL$ view contains information about all models defined in the database. When you create a model using the SEM_APIS.CREATE_SEM_MODEL procedure, you specify a name for the model, as well as a table and column to hold references to the semantic data, and the system automatically generates a model ID.

Oracle maintains the MDSYS.SEM_MODEL$ view automatically when you create and drop models. Users should never modify this view directly. For example, do not use SQL INSERT, UPDATE, or DELETE statements with this view.

The MDSYS.SEM_MODEL$ view contains the columns shown in Table 1-1.


Table 1-1 MDSYS.SEM_MODEL$ View Columns

	Column Name	Data Type	Description
	
OWNER

	
VARCHAR2(30)

	
Schema of the owner of the model.


	
MODEL_ID

	
NUMBER

	
Unique model ID number, automatically generated.


	
MODEL_NAME

	
VARCHAR2(25)

	
Name of the model.


	
TABLE_NAME

	
VARCHAR2(30)

	
Name of the table to hold references to semantic data for the model.


	
COLUMN_NAME

	
VARCHAR2(30)

	
Name of the column of type SDO_RDF_TRIPLE_S in the table to hold references to semantic data for the model.


	
MODEL_TABLESPACE_NAME

	
VARCHAR2(30)

	
Name of the tablespace to be used for storing the triples for this model.








When you create a model, a view for the triples associated with the model is also created under the MDSYS schema. This view has a name in the format SEMM_model-name, and it is visible only to the owner of the model and to users with suitable privileges. Each MDSYS.SEMM_model-name view contains a row for each triple (stored as a link in a network), and it has the columns shown in Table 1-2.


Table 1-2 MDSYS.SEMM_model-name View Columns

	Column Name	Data Type	Description
	
P_VALUE_ID

	
NUMBER

	
The VALUE_ID for the text value of the predicate of the triple. Part of the primary key.


	
START_NODE_ID

	
NUMBER

	
The VALUE_ID for the text value of the subject of the triple. Also part of the primary key.


	
CANON_END_NODE_ID

	
NUMBER

	
The VALUE_ID for the text value of the canonical form of the object of the triple. Also part of the primary key.


	
END_NODE_ID

	
NUMBER

	
The VALUE_ID for the text value of the object of the triple


	
MODEL_ID

	
NUMBER

	
The ID for the RDF model to which the triple belongs.


	
COST

	
NUMBER

	
(Reserved for future use)


	
CTXT1

	
NUMBER

	
(Reserved for future use)


	
CTXT2

	
VARCHAR2(4000)

	
(Reserved for future use)


	
DISTANCE

	
NUMBER

	
(Reserved for future use)


	
EXPLAIN

	
VARCHAR2(4000)

	
(Reserved for future use)


	
PATH

	
VARCHAR2(4000)

	
(Reserved for future use)


	
G_ID

	
NUMBER

	
The VALUE_ID for the text value of the graph name for the triple. Null indicates the default graph (see Section 1.3.9, "Named Graphs").


	
LINK_ID

	
VARCHAR2(71)

	
Unique triple identifier value. (It is currently a computed column, and its definition may change in a future release.)











	
Note:

In Table 1-2, for columns P_VALUE_ID, START_NODE_ID, END_NODE_ID, CANON_END_NODE_ID, and G_ID, the actual ID values are computed from the corresponding lexical values. However, a lexical value may not always map to the same ID value.












1.3.2 Statements

The MDSYS.RDF_VALUE$ table contains information about the subjects, properties, and objects used to represent RDF statements. It uniquely stores the text values (URIs or literals) for these three pieces of information, using a separate row for each part of each triple.

Oracle maintains the MDSYS.RDF_VALUE$ table automatically. Users should never modify this view directly. For example, do not use SQL INSERT, UPDATE, or DELETE statements with this view.

The RDF_VALUE$ table contains the columns shown in Table 1-3.


Table 1-3 MDSYS.RDF_VALUE$ Table Columns

	Column Name	Data Type	Description
	
VALUE_ID

	
NUMBER

	
Unique value ID number, automatically generated.


	
VALUE_TYPE

	
VARCHAR2(10)

	
The type of text information stored in the VALUE_NAME column. Possible values: UR for URI, BN for blank node, PL for plain literal, PL@ for plain literal with a language tag, PLL for plain long literal, PLL@ for plain long literal with a language tag, TL for typed literal, or TLL for typed long literal. A long literal is a literal with more than 4000 bytes.


	
VNAME_PREFIX

	
VARCHAR2(4000)

	
If the length of the lexical value is 4000 bytes or less, this column stores a prefix of a portion of the lexical value. The SEM_APIS.VALUE_NAME_PREFIX function can be used for prefix computation. For example, the prefix for the portion of the lexical value <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> without the angle brackets is http://www.w3.org/1999/02/22-rdf-syntax-ns#.


	
VNAME_SUFFIX

	
VARCHAR2(512)

	
If the length of the lexical value is 4000 bytes or less, this column stores a suffix of a portion of the lexical value. The SEM_APIS.VALUE_NAME_SUFFIX function can be used for suffix computation. For the lexical value mentioned in the description of the VNAME_PREFIX column, the suffix is type.


	
LITERAL_TYPE

	
VARCHAR2(4000)

	
For typed literals, the type information; otherwise, null. For example, for a row representing a creation date of 1999-08-16, the VALUE_TYPE column can contain TL, and the LITERAL_TYPE column can contain http://www.w3.org/2001/XMLSchema#date.


	
LANGUAGE_TYPE

	
VARCHAR2(80)

	
Language tag (for example, fr for French) for a literal with a language tag (that is, if VALUE_TYPE is PL@ or PLL@). Otherwise, this column has a null value.


	
CANON_ID

	
NUMBER

	
The ID for the canonical lexical value for the current lexical value. (The use of this column may change in a future release.)


	
COLLISION_EXT

	
VARCHAR2(64)

	
Used for collision handling for the lexical value. (The use of this column may change in a future release.)


	
CANON_COLLISION_EXT

	
VARCHAR2(64)

	
Used for collision handling for the canonical lexical value. (The use of this column may change in a future release.)


	
LONG_VALUE

	
CLOB

	
The character string if the length of the lexical value is greater than 4000 bytes. Otherwise, this column has a null value.


	
VALUE_NAME

	
VARCHAR2(4000)

	
This is a computed column. If length of the lexical value is 4000 bytes or less, the value of this column is the concatenation of the values of VNAME_PREFIX column and the VNAME_SUFFIX column.










1.3.2.1 Triple Uniqueness and Data Types for Literals

Duplicate triples are not stored in the database. To check if a triple is a duplicate of an existing triple, the subject, property, and object of the incoming triple are checked against triple values in the specified model. If the incoming subject, property, and object are all URIs, an exact match of their values determines a duplicate. However, if the object of incoming triple is a literal, an exact match of the subject and property, and a value (canonical) match of the object, determine a duplicate. For example, the following two triples are duplicates:


<eg:a> <eg:b> "123"^^http://www.w3.org/2001/XMLSchema#int
<eg:a> <eg:b> "123"^^http://www.w3.org/2001/XMLSchema#unsignedByte


The second triple is treated as a duplicate of the first, because "123"^^http://www.w3.org/2001/XMLSchema#int has an equivalent value (is canonically equivalent) to "123"^^http://www.w3.org/2001/XMLSchema#unsignedByte. Two entities are canonically equivalent if they can be reduced to the same value.

To use a non-RDF example, A*(B-C), A*B-C*A, (B-C)*A, and -A*C+A*B all convert into the same canonical form.

Value-based matching of lexical forms is supported for the following data types:

	
STRING: plain literal, xsd:string and some of its XML Schema subtypes


	
NUMERIC: xsd:decimal and its XML Schema subtypes, xsd:float, and xsd:double. (Support is not provided for float/double INF, -INF, and NaN values.)


	
DATETIME: xsd:datetime, with support for time zone. (Without time zone there are still multiple representations for a single value, for example, "2004-02-18T15:12:54" and "2004-02-18T15:12:54.0000".)


	
DATE: xsd:date, with or without time zone


	
OTHER: Everything else. (No attempt is made to match different representations).




Canonicalization is performed when the time zone is present for literals of type xsd:time and xsd:dateTime.

The following namespace definition is used: xmlns:xsd="http://www.w3.org/2001/XMLSchema"

The first occurrence of a literal in the RDF_VALUE$ table is taken as the canonical form and given the VALUE_TYPE value of CPL, CPL@, CTL, CPLL, CPLL@, or CTLL as appropriate; that is, a C for canonical is prefixed to the actual value type. If a literal with the same canonical form (but a different lexical representation) as a previously inserted literal is inserted into the RDF_VALUE$ table, the VALUE_TYPE value assigned to the new insert is PL, PL@, TL, PLL, PLL@, or TLL as appropriate.

Canonically equivalent text values having different lexical representations are thus stored in the RDF_VALUE$ table; however, canonically equivalent triples are not stored in the database.








1.3.3 Subjects and Objects

RDF subjects and objects are mapped to nodes in a semantic data network. Subject nodes are the start nodes of links, and object nodes are the end nodes of links. Non-literal nodes (that is, URIs and blank nodes) can be used as both subject and object nodes. Literals can be used only as object nodes.






1.3.4 Blank Nodes

Blank nodes can be used as subject and object nodes in the semantic network. Blank node identifiers are different from URIs in that they are scoped within a semantic model. Thus, although multiple occurrences of the same blank node identifier within a single semantic model necessarily refer to the same resource, occurrences of the same blank node identifier in two different semantic models do not refer to the same resource.

In an Oracle semantic network, this behavior is modeled by requiring that blank nodes are always reused (that is, are used to represent the same resource if the same blank node identifier is used) within a semantic model, and never reused between two different models. Thus, when inserting triples involving blank nodes into a model, you must use the SDO_RDF_TRIPLE_S constructor that supports reuse of blank nodes.






1.3.5 Properties

Properties are mapped to links that have their start node and end node as subjects and objects, respectively. Therefore, a link represents a complete triple.

When a triple is inserted into a model, the subject, property, and object text values are checked to see if they already exist in the database. If they already exist (due to previous statements in other models), no new entries are made; if they do not exist, three new rows are inserted into the RDF_VALUE$ table (described in Section 1.3.2).






1.3.6 Inferencing: Rules and Rulebases

Inferencing is the ability to make logical deductions based on rules. Inferencing enables you to construct queries that perform semantic matching based on meaningful relationships among pieces of data, as opposed to just syntactic matching based on string or other values. Inferencing involves the use of rules, either supplied by Oracle or user-defined, placed in rulebases.

Figure 1-2 shows triple sets being inferred from model data and the application of rules in one or more rulebases. In this illustration, the database can have any number of semantic models, rulebases, and inferred triple sets, and an inferred triple set can be derived using rules in one or more rulebases.


Figure 1-2 Inferencing

[image: Description of Figure 1-2 follows]






A rule is an object that can be applied to draw inferences from semantic data. A rule is identified by a name and consists of:

	
An IF side pattern for the antecedents


	
An optional filter condition that further restricts the subgraphs matched by the IF side pattern


	
A THEN side pattern for the consequents




For example, the rule that a chairperson of a conference is also a reviewer of the conference could be represented as follows:


('chairpersonRule', -- rule name
 '(?r :ChairPersonOf ?c)', -- IF side pattern
 NULL,  -- filter condition
 '(?r :ReviewerOf ?c)', -- THEN side pattern
 SEM_ALIASES (SEM_ALIAS('', 'http://some.org/test/'))
)


In this case, the rule does not have a filter condition, so that component of the representation is NULL. For best performance, use a single-triple pattern on the THEN side of the rule. If a rule has multiple triple patterns on the THEN side, you can easily break it into multiple rules, each with a single-triple pattern, on the THEN side.

A rulebase is an object that contains rules. The following Oracle-supplied rulebases are provided:

	
RDFS


	
RDF (a subset of RDFS)


	
OWLSIF (empty)


	
RDFS++ (empty)


	
OWLPrime (empty)


	
SKOSCORE (empty)




The RDFS and RDF rulebases are created when you call the SEM_APIS.CREATE_SEM_NETWORK procedure to add RDF support to the database. The RDFS rulebase implements the RDFS entailment rules, as described in the World Wide Web Consortium (W3C) RDF Semantics document at http://www.w3.org/TR/rdf-mt/. The RDF rulebase represents the RDF entailment rules, which are a subset of the RDFS entailment rules. You can see the contents of these rulebases by examining the MDSYS.SEMR_RDFS and MDSYS.SEMR_RDF views.

You can also create user-defined rulebases using the SEM_APIS.CREATE_RULEBASE procedure. User-defined rulebases enable you to provide additional specialized inferencing capabilities.

For each rulebase, a system table is created to hold rules in the rulebase, along with a system view with a name in the format MDSYS.SEMR_rulebase-name (for example, MDSYS.SEMR_FAMILY_RB for a rulebase named FAMILY_RB). You must use this view to insert, delete, and modify rules in the rulebase. Each MDSYS.SEMR_rulebase-name view has the columns shown in Table 1-4.


Table 1-4 MDSYS.SEMR_rulebase-name View Columns

	Column Name	Data Type	Description
	
RULE_NAME

	
VARCHAR2(30)

	
Name of the rule


	
ANTECEDENTS

	
VARCHAR2(4000)

	
IF side pattern for the antecedents


	
FILTER

	
VARCHAR2(4000)

	
Filter condition that further restricts the subgraphs matched by the IF side pattern. Null indicates no filter condition is to be applied.


	
CONSEQUENTS

	
VARCHAR2(4000)

	
THEN side pattern for the consequents


	
ALIASES

	
SEM_ALIASES

	
One or more namespaces to be used. (The SEM_ALIASES data type is described in Section 1.6.)








Information about all rulebases is maintained in the MDSYS.SEM_RULEBASE_INFO view, which has the columns shown in Table 1-5 and one row for each rulebase.


Table 1-5 MDSYS.SEM_RULEBASE_INFO View Columns

	Column Name	Data Type	Description
	
OWNER

	
VARCHAR2(30)

	
Owner of the rulebase


	
RULEBASE_NAME

	
VARCHAR2(25)

	
Name of the rulebase


	
RULEBASE_VIEW_NAME

	
VARCHAR2(30)

	
Name of the view that you must use for any SQL statements that insert, delete, or modify rules in the rulebase


	
STATUS

	
VARCHAR2(30)

	
Contains VALID if the rulebase is valid, INPROGRESS if the rulebase is being created, or FAILED if a system failure occurred during the creation of the rulebase.








Example 1-1 creates a rulebase named family_rb, and then inserts a rule named grandparent_rule into the family_rb rulebase. This rule says that if a person is the parent of a child who is the parent of a child, that person is a grandparent of (that is, has the grandParentOf relationship with respect to) his or her child's child. It also specifies a namespace to be used. (This example is an excerpt from Example 1-37 in Section 1.11.2.)


Example 1-1 Inserting a Rule into a Rulebase


EXECUTE SEM_APIS.CREATE_RULEBASE('family_rb');

INSERT INTO mdsys.semr_family_rb VALUES(
  'grandparent_rule',
  '(?x :parentOf ?y) (?y :parentOf ?z)',
  NULL,
  '(?x :grandParentOf ?z)', 
  SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')));




Note that the kind of grandparent rule shown in Example 1-1 can be implemented using the OWL 2 property chain construct. For information about property chain handling, see Section 3.2.2.

You can specify one or more rulebases when calling the SEM_MATCH table function (described in Section 1.6), to control the behavior of queries against semantic data. Example 1-2 refers to the family_rb rulebase and to the grandParentOf relationship created in Example 1-1, to find all grandfathers (grandparents who are male) and their grandchildren. (This example is an excerpt from Example 1-37 in Section 1.11.2.)


Example 1-2 Using Rulebases for Inferencing


-- Select all grandfathers and their grandchildren from the family model.
-- Use inferencing from both the RDFS and family_rb rulebases.
SELECT x, y
  FROM TABLE(SEM_MATCH(
    '(?x :grandParentOf ?y) (?x rdf:type :Male)',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null));




For information about support for native OWL inferencing, see Section 2.2.






1.3.7 Entailments (Rules Indexes)

An entailment (rules index) is an object containing precomputed triples that can be inferred from applying a specified set of rulebases to a specified set of models. If a SEM_MATCH query refers to any rulebases, an entailment must exist for each rulebase-model combination in the query.

To create an entailment, use the SEM_APIS.CREATE_ENTAILMENT procedure. To drop (delete) an entailment, use the SEM_APIS.DROP_ENTAILMENT procedure.

When you create an entailment, a view for the triples associated with the entailment is also created under the MDSYS schema. This view has a name in the format SEMI_entailment-name, and it is visible only to the owner of the entailment and to users with suitable privileges. Each MDSYS.SEMI_entailment-name view contains a row for each triple (stored as a link in a network), and it has the same columns as the SEMM_model-name view, which is described in Table 1-2 in Section 1.3.1.

Information about all entailments is maintained in the MDSYS.SEM_RULES_INDEX_INFO view, which has the columns shown in Table 1-6 and one row for each entailment.


Table 1-6 MDSYS.SEM_RULES_INDEX_INFO View Columns

	Column Name	Data Type	Description
	
OWNER

	
VARCHAR2(30)

	
Owner of the entailment


	
INDEX_NAME

	
VARCHAR2(25)

	
Name of the entailment


	
INDEX_VIEW_NAME

	
VARCHAR2(30)

	
Name of the view that you must use for any SQL statements that insert, delete, or modify rules in the entailment


	
STATUS

	
VARCHAR2(30)

	
Contains VALID if the entailment is valid, INVALID if the entailment is not valid, INCOMPLETE if the entailment is incomplete (similar to INVALID but requiring less time to re-create), INPROGRESS if the entailment is being created, or FAILED if a system failure occurred during the creation of the entailment.


	
MODEL_COUNT

	
NUMBER

	
Number of models included in the entailment


	
RULEBASE_COUNT

	
NUMBER

	
Number of rulebases included in the entailment








Information about all database objects, such as models and rulebases, related to entailments is maintained in the MDSYS.SEM_RULES_INDEX_DATASETS view. This view has the columns shown in Table 1-7 and one row for each unique combination of values of all the columns.


Table 1-7 MDSYS.SEM_RULES_INDEX_DATASETS View Columns

	Column Name	Data Type	Description
	
INDEX_NAME

	
VARCHAR2(25)

	
Name of the entailment


	
DATA_TYPE

	
VARCHAR2(8)

	
Type of data included in the entailment. Examples: MODEL and RULEBASE


	
DATA_NAME

	
VARCHAR2(25)

	
Name of the object of the type in the DATA_TYPE column








Example 1-3 creates an entailment named family_rb_rix_family, using the family model and the RDFS and family_rb rulebases. (This example is an excerpt from Example 1-37 in Section 1.11.2.)


Example 1-3 Creating an Entailment


BEGIN
  SEM_APIS.CREATE_ENTAILMENT(
    'rdfs_rix_family',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'));
END;
/








1.3.8 Virtual Models

A virtual model is a logical graph that can be used in a SEM_MATCH query. A virtual model is the result of a UNION or UNION ALL operation on one or more models and optionally the corresponding entailment.

Using a virtual model can provide several benefits:

	
It can simplify management of access privileges for semantic data. For example, assume that you have created three semantic models and one entailment based on the three models and the OWLPrime rulebase. Without a virtual model, you must individually grant and revoke access privileges for each model and the entailment. However, if you create a virtual model that contains the three models and the entailment, you will only need to grant and revoke access privileges for the single virtual model.


	
It can facilitate rapid updates to semantic models. For example, assume that virtual model VM1 contains model M1 and entailment R1 (that is, VM1 = M1 UNION ALL R1), and assume that semantic model M1_UPD is a copy of M1 that has been updated with additional triples and that R1_UPD is an entailment created for M1_UPD. Now, to have user queries over VM1 go to the updated model and entailment, you can redefine virtual model VM1 (that is, VM1 = M1_UPD UNION ALL R1_UPD).


	
It can simplify query specification because querying a virtual model is equivalent to querying multiple models in a SEM_MATCH query. For example, assume that models m1, m2, and m3 already exist, and that an entailment has been created for m1, m2 ,and m3 using the OWLPrime rulebase. You could create a virtual model vm1 as follows:


EXECUTE sem_apis.create_virtual_model('vm1', sem_models('m1', 'm2', 'm3'), 
                                      sem_rulebases('OWLPRIME'));


To query the virtual model, use the virtual model name as if it were a model in a SEM_MATCH query. For example, the following query on the virtual model:


SELECT * FROM TABLE (sem_match('{…}', sem_models('vm1'), null, …));


is equivalent to the following query on all the individual models:


SELECT * FROM TABLE (sem_match('{…}', sem_models('m1', 'm2', 'm3'), 
                                      sem_rulebases('OWLPRIME'), …));


A SEM_MATCH query over a virtual model will query either the SEMV or SEMU view (SEMU by default and SEMV if the 'ALLOW_DUP=T' option is specified) rather than querying the UNION or UNION ALL of each model and entailment. For information about these views and options, see the reference section for the SEM_APIS.CREATE_VIRTUAL_MODEL procedure.




Note that you cannot use Oracle Workspace Manager version-enabling on a model that participates in a virtual model. (Workspace Manager support for RDF data is described in Chapter 6.)

Virtual models use views (described later in this section) and add some metadata entries, but do not significantly increase system storage requirements.

To create a virtual model, use the SEM_APIS.CREATE_VIRTUAL_MODEL procedure. To drop (delete) a virtual model, use the SEM_APIS.DROP_VIRTUAL_MODEL procedure. A virtual model is dropped automatically if any of its component models, rulebases, or entailment are dropped.

To query a virtual model, specify the virtual model name in the models parameter of the SEM_MATCH table function, as shown in Example 1-4.


Example 1-4 Querying a Virtual Model


SELECT COUNT(protein)
  FROM TABLE (SEM_MATCH (
    '(?protein rdf:type :Protein) 
     (?protein :citation ?citation) 
     (?citation :author "Bairoch A.")',
    SEM_MODELS('UNIPROT_VM'), 
    NULL, 
    SEM_ALIASES(SEM_ALIAS('', 'http://purl.uniprot.org/core/')),
    NULL, 
    NULL, 
    'ALLOW_DUP=T'));




For information about the SEM_MATCH table function, see Section 1.6, which includes information using certain attributes when querying a virtual model.

When you create a virtual model, an entry is created for it in the MDSYS.SEM_MODEL$ view, which is described in Table 1-1 in Section 1.3.1. However, the values in several of the columns are different for virtual models as opposed to semantic models, as explained in Table 1-8.


Table 1-8 MDSYS.SEM_MODEL$ View Column Explanations for Virtual Models

	Column Name	Data Type	Description
	
OWNER

	
VARCHAR2(30)

	
Schema of the owner of the virtual model


	
MODEL_ID

	
NUMBER

	
Unique model ID number, automatically generated. Will be a negative number, to indicate that this is a virtual model.


	
MODEL_NAME

	
VARCHAR2(25)

	
Name of the virtual model


	
TABLE_NAME

	
VARCHAR2(30)

	
Null for a virtual model


	
COLUMN_NAME

	
VARCHAR2(30)

	
Null for a virtual model


	
MODEL_TABLESPACE_NAME

	
VARCHAR2(30)

	
Null for a virtual model








Information about all virtual models is maintained in the MDSYS.SEM_VMODEL_INFO view, which has the columns shown in Table 1-9 and one row for each virtual model.


Table 1-9 MDSYS.SEM_VMODEL_INFO View Columns

	Column Name	Data Type	Description
	
OWNER

	
VARCHAR2(30)

	
Owner of the virtual model


	
VIRTUAL_MODEL_NAME

	
VARCHAR2(25)

	
Name of the virtual model


	
UNIQUE_VIEW_NAME

	
VARCHAR2(30)

	
Name of the view that contains unique triples in the virtual model, or null if the view was not created


	
DUPLICATE_VIEW_NAME

	
VARCHAR2(30)

	
Name of the view that contains duplicate triples (if any) in the virtual model


	
STATUS

	
VARCHAR2(30)

	
Contains VALID if the associated entailment is valid, INVALID if the entailment is not valid, INCOMPLETE if the entailment is incomplete (similar to INVALID but requiring less time to re-create), INPROGRESS if the entailment is being created, FAILED if a system failure occurred during the creation of the entailment, or NORIDX if no entailment is associated with the virtual model.


	
MODEL_COUNT

	
NUMBER

	
Number of models in the virtual model


	
RULEBASE_COUNT

	
NUMBER

	
Number of rulebases used for the virtual model


	
RULES_INDEX_COUNT

	
NUMBER

	
Number of entailments in the virtual model








Information about all objects (models, rulebases, and entailment) related to virtual models is maintained in the MDSYS.SEM_VMODEL_DATASETS view. This view has the columns shown in Table 1-10 and one row for each unique combination of values of all the columns.


Table 1-10 MDSYS.SEM_VMODEL_DATASETS View Columns

	Column Name	Data Type	Description
	
VIRTUAL_MODEL_NAME

	
VARCHAR2(25)

	
Name of the virtual model


	
DATA_TYPE

	
VARCHAR2(8)

	
Type of object included in the virtual model. Examples: MODEL for a semantic model, RULEBASE for a rulebase, or RULEIDX for an entailment


	
DATA_NAME

	
VARCHAR2(25)

	
Name of the object of the type in the DATA_TYPE column












1.3.9 Named Graphs

Oracle Database Semantic Technologies supports the use of named graphs, which are described in the "RDF Dataset" section of the W3C SPARQL Query Language for RDF recommendation (http://www.w3.org/TR/rdf-sparql-query/#rdfDataset).

This support is provided by extending an RDF triple consisting of the traditional subject, predicate, and object, to include an additional component to represent a graph name. The extended RDF triple, despite having four components, will continue to be referred to as an RDF triple in this document. In addition, the following terms are sometimes used:

	
N-Triple is a format that does not allow extended triples. Thus, n-triples can include only triples with three components.


	
N-Quad is a format that allows both "regular" triples (three components) and extended triples (four components, including the graph name). For more information, see N-Quads: Extending N-Triples with Context (http://sw.deri.org/2008/07/n-quads/).

To load a file containing extended triples (possibly mixed with regular triples) into an Oracle database, the input file must be in N-Quad format.




The graph name component of an RDF triple must either be null or a URI. If it is null, the RDF triple is said to belong to a default graph; otherwise it is said to belong to a named graph whose name is designated by the URI.

Additionally, to support named graphs in SDO_RDF_TRIPLE_S object type (described in Section 1.5), a new syntax is provided for specifying a model-graph, that is, a combination of model and graph (if any) together, and the RDF_M_ID attribute holds the identifier for a model-graph: a combination of model ID and value ID for the graph (if any). The name of a model-graph is specified as model_name, and if a graph is present, followed by the colon (:) separator character and the graph name (which must be a URI and enclosed within angle brackets < >).

For example, in a medical data set the named graph component for each RDF triple might be a URI based on patient identifier, so there could be as many named graphs as there are unique patients, with each named graph consisting of data for a specific patient.

For information about performing specific operations with named graphs, see the following:

	
Using constructors and methods: Section 1.5, "Semantic Data Types, Constructors, and Methods"


	
Loading: Section 1.7.1.1.2, "Loading N-Quad Format Data into a Staging Table Using an External Table" and Section 1.7.3.1, "Loading Data into Named Graphs Using INSERT Statements"


	
Querying: Section 1.6.2.1, "GRAPH Keyword Support" and Section 1.6.3, "Graph Patterns: Support for SPARQL SELECT Syntax"


	
Inferencing: Section 2.2.11, "Using Named Graph Based Inferencing (Global and Local)"









1.3.10 Semantic Data Security Considerations

The following database security considerations apply to the use of semantic data:

	
When a model or entailment is created, the owner gets the SELECT privilege with the GRANT option on the associated view. Users that have the SELECT privilege on these views can perform SEM_MATCH queries against the associated model or entailment.


	
When a rulebase is created, the owner gets the SELECT, INSERT, UPDATE, and DELETE privileges on the rulebase, with the GRANT option. Users that have the SELECT privilege on a rulebase can create an entailment that includes the rulebase. The INSERT, UPDATE, and DELETE privileges control which users can modify the rulebase and how they can modify it.


	
To perform data manipulation language (DML) operations on a model, a user must have DML privileges for the corresponding base table.


	
The creator of the base table corresponding to a model can grant privileges to other users.


	
To perform data manipulation language (DML) operations on a rulebase, a user must have the appropriate privileges on the corresponding database view.


	
The creator of a model can grant SELECT privileges on the corresponding database view to other users.


	
A user can query only those models for which that user has SELECT privileges to the corresponding database views.


	
Only the creator of a model or a rulebase can drop it.











1.4 Semantic Metadata Tables and Views

Oracle Database maintains several tables and views in the MDSYS schema to hold metadata related to semantic data. (Some of these tables and views are created by the SEM_APIS.CREATE_SEM_NETWORK procedure, as explained in Section 1.10, and some are created only as needed.) Table 1-11 lists the tables and views in alphabetical order. (In addition, several tables and views are created for Oracle internal use, and these are accessible only by users with DBA privileges.)


Table 1-11 Semantic Metadata Tables and Views

	Name	Contains Information About	Described In
	
RDF_VALUE$

	
Subjects, properties, and objects used to represent statements

	
Section 1.3.2



	
RDFOLS_SECURE_RESOURCE

	
Resources secured with Oracle Label Security (OLS) policies and the sensitivity labels associated with these resources

	
Section 5.2.2.6



	
RDFVPD_MODELS

	
RDF models and their associated VPD policies

	
Section 5.1.5



	
RDFVPD_POLICIES

	
All VPD policies defined in the schema or the policies to which the user has FULL access

	
Section 5.1.4



	
RDFVPD_POLICY_CONSTRAINTS

	
Constraints defined in the VPD policy that are accessible to the current user

	
Section 5.1.6



	
RDFVPD_PREDICATE_MDATA

	
Predicate metadata associated with a VPD policy

	
Section 5.1.7



	
RDFVPD_RESOURCE_REL

	
Subclass, subproperty, and equivalence property relationships that are defined between resources in a VPD policy

	
Section 5.1.8



	
SEM_DTYPE_INDEX_INFO

	
All data type indexes in the network

	
Section 1.9



	
SEM_MODEL$

	
All models defined in the database

	
Section 1.3.1



	
SEM_NETWORK_INDEX_INFO$

	
Semantic network indexes

	
Section 1.8.1



	
SEM_RULEBASE_INFO

	
Rulebases

	
Section 1.3.6



	
SEM_RULES_INDEX_DATASETS

	
Database objects used in entailments

	
Section 1.3.7



	
SEM_RULES_INDEX_INFO

	
Entailments (rules indexes)

	
Section 1.3.7



	
SEM_VMODEL_INFO

	
Virtual models

	
Section 1.3.8



	
SEM_VMODEL_DATASETS

	
Database objects used in virtual models

	
Section 1.3.8



	
SEMCL_entailment-name

	
owl:sameAs clique members and canonical representatives

	
Section 2.2.8



	
SEMI_entailment-name

	
Triples in the specified entailment

	
Section 1.3.7



	
SEMM_model-name

	
Triples in the specified model

	
Section 1.3.1



	
SEMR_rulebase-name

	
Rules in the specified rulebase

	
Section 1.3.6



	
SEMU_virtual-model-name

	
Unique triples in the virtual model

	
Section 1.3.8



	
SEMV_virtual-model-name

	
Triples in the virtual model

	
Section 1.3.8













1.5 Semantic Data Types, Constructors, and Methods

The SDO_RDF_TRIPLE object type represents semantic data in triple format, and the SDO_RDF_TRIPLE_S object type (the _S for storage) stores persistent semantic data in the database. The SDO_RDF_TRIPLE_S type has references to the data, because the actual semantic data is stored only in the central RDF schema. This type has methods to retrieve the entire triple or part of the triple.




	
Note:

Blank nodes are always reused within an RDF model and cannot be reused across models







The SDO_RDF_TRIPLE type is used to display triples, whereas the SDO_RDF_TRIPLE_S type is used to store the triples in database tables.

The SDO_RDF_TRIPLE object type has the following attributes:


SDO_RDF_TRIPLE (
  subject VARCHAR2(4000), 
  property VARCHAR2(4000), 
  object VARCHAR2(10000))


The SDO_RDF_TRIPLE_S object type has the following attributes:


SDO_RDF_TRIPLE_S (
  RDF_C_ID  NUMBER,  -- Canonical object value ID
  RDF_M_ID NUMBER,  -- Model (or Model-Graph) ID 
  RDF_S_ID  NUMBER,  -- Subject value ID
  RDF_P_ID NUMBER, -- Property value ID
  RDF_O_ID  NUMBER)  -- Object value ID


The SDO_RDF_TRIPLE_S type has the following methods that retrieve the name of the RDF model (or model-graph), a triple, or a part (subject, property, or object) of a triple:


GET_MODEL() RETURNS VARCHAR2
GET_TRIPLE() RETURNS SDO_RDF_TRIPLE
GET_SUBJECT() RETURNS VARCHAR2
GET_PROPERTY() RETURNS VARCHAR2
GET_OBJECT() RETURNS CLOB


Example 1-5 shows the SDO_RDF_TRIPLE_S methods.


Example 1-5 SDO_RDF_TRIPLE_S Methods


SELECT a.triple.GET_MODEL() AS model_graph, a.triple.GET_TRIPLE() AS triple
  FROM articles_rdf_data a WHERE a.id = 99;
 
MODEL_GRAPH
--------------------------------------------------------------------------------
TRIPLE(SUBJECT, PROPERTY, OBJECT)
--------------------------------------------------------------------------------
ARTICLES:<http://examples.com/ns#Graph1>
SDO_RDF_TRIPLE('<http://nature.example.com/Article101>', '<http://purl.org/dc/elements/1.1/creator>', '"John Smith"')

SELECT a.triple.GET_TRIPLE() AS triple
  FROM articles_rdf_data a WHERE a.id = 1;
 
TRIPLE(SUBJECT, PROPERTY, OBJECT)
--------------------------------------------------------------------------------
SDO_RDF_TRIPLE('<http://nature.example.com/Article1>', '<http://purl.org/dc/elem
ents/1.1/title>', '<All about XYZ>')
 
SELECT a.triple.GET_SUBJECT() AS subject
  FROM articles_rdf_data a WHERE a.id = 1;
 
SUBJECT                                                                         
--------------------------------------------------------------------------------
<http://nature.example.com/Article1>                                           
 
SELECT a.triple.GET_PROPERTY() AS property
  FROM articles_rdf_data a WHERE a.id = 1;
 
PROPERTY                                                                        
--------------------------------------------------------------------------------
<http://purl.org/dc/elements/1.1/title>                                         
 
SELECT a.triple.GET_OBJECT() AS object
  FROM articles_rdf_data a WHERE a.id = 1;
 
OBJECT                                                                          
--------------------------------------------------------------------------------
<All about XYZ>






1.5.1 Constructors for Inserting Triples

The following constructor formats are available for inserting triples into a model table. The only difference is that in the second format the data type for the object is CLOB, to accommodate very long literals.


SDO_RDF_TRIPLE_S (
  model_name VARCHAR2, -- Model name
  subject    VARCHAR2, -- Subject
  property   VARCHAR2, -- Property
  object     VARCHAR2) -- Object
  RETURN     SELF;

SDO_RDF_TRIPLE_S (
  model_name VARCHAR2, -- Model name
  subject    VARCHAR2, -- Subject
  property   VARCHAR2, -- Property
  object     CLOB) -- Object
  RETURN SELF;

GET_OBJ_VALUE() RETURN VARCHAR2;


Example 1-6 uses the first constructor format to insert several triples.


Example 1-6 SDO_RDF_TRIPLE_S Constructor to Insert Triples


INSERT INTO articles_rdf_data VALUES (2,
  SDO_RDF_TRIPLE_S ('articles','<http://nature.example.com/Article1>',
    '<http://purl.org/dc/elements/1.1/creator>',
    '"Jane Smith"'));

INSERT INTO articles_rdf_data VALUES (98,
  SDO_RDF_TRIPLE_S ('articles:<http://examples.com/ns#Graph1>',
    '<http://nature.example.com/Article102>',
    '<http://purl.org/dc/elements/1.1/creator>',
    '_:b1'));
 
INSERT INTO articles_rdf_data VALUES (97,
  SDO_RDF_TRIPLE_S ('articles:<http://examples.com/ns#Graph1>',
    '_:b2',
    '<http://purl.org/dc/elements/1.1/creator>',
    '_:b1'));










1.6 Using the SEM_MATCH Table Function to Query Semantic Data

To query semantic data, use the SEM_MATCH table function. This function has the following attributes:


SEM_MATCH(
  query        VARCHAR2,
  models       SEM_MODELS,
  rulebases    SEM_RULEBASES,
  aliases      SEM_ALIASES,
  filter       VARCHAR2,
  index_status VARCHAR2,
  options      VARCHAR2,
  graphs       SEM_GRAPHS,
  named_graphs SEM_GRAPHS
 ) RETURN ANYDATASET;


The query attribute is required. The other attributes are optional (that is, each can be a null value).

The query attribute is a string literal (or concatenation of string literals) with one or more triple patterns, usually containing variables. (The query attribute cannot be a bind variable or an expression involving a bind variable.) A triple pattern is a triple of atoms followed by a period. Each atom can be a variable (for example, ?x), a qualified name (for example, rdf:type) that is expanded based on the default namespaces and the value of the aliases attribute, or a full URI (for example, <http://www.example.org/family/Male>). In addition, the third atom can be a numeric literal (for example, 3.14), a plain literal (for example, "Herman"), a language-tagged plain literal (for example, "Herman"@en), or a typed literal (for example, "123"^^xsd:int).

For example, the following query attribute specifies three triple patterns to find grandfathers (that is, grandparents who are also male) and the height of each of their grandchildren:


'{ ?x :grandParentOf ?y . ?x rdf:type :Male . ?y :height ?h }'


The models attribute identifies the model or models to use. Its data type is SEM_MODELS, which has the following definition: TABLE OF VARCHAR2(25). If you are querying a virtual model, specify only the name of the virtual model and no other models. (Virtual models are explained in Section 1.3.8.)

The rulebases attribute identifies one or more rulebases whose rules are to be applied to the query. Its data type is SDO_RDF_RULEBASES, which has the following definition: TABLE OF VARCHAR2(25). If you are querying a virtual model, this attribute must be null.

The aliases attribute identifies one or more namespaces, in addition to the default namespaces, to be used for expansion of qualified names in the query pattern. Its data type is SEM_ALIASES, which has the following definition: TABLE OF SEM_ALIAS, where each SEM_ALIAS element identifies a namespace ID and namespace value. The SEM_ALIAS data type has the following definition: (namespace_id VARCHAR2(30), namespace_val VARCHAR2(4000))

The following default namespaces (namespace_id and namespace_val attributes) are used by the SEM_MATCH table function and the SEM_CONTAINS and SEM_RELATED operators:


('orardf', 'http://xmlns.oracle.com/rdf/')
('orageo', 'http://xmlns.oracle.com/rdf/geo/')
('owl',    'http://www.w3.org/2002/07/owl#')
('rdf',    'http://www.w3.org/1999/02/22-rdf-syntax-ns#')
('rdfs',   'http://www.w3.org/2000/01/rdf-schema#')
('xsd',    'http://www.w3.org/2001/XMLSchema#')


You can override any of these defaults by specifying the namespace_id value and a different namespace_val value in the aliases attribute.

The filter attribute identifies any additional selection criteria. If this attribute is not null, it should be a string in the form of a WHERE clause without the WHERE keyword. For example: '(h >= 6)' to limit the result to cases where the height of the grandfather's grandchild is 6 or greater (using the example of triple patterns earlier in this section).




	
Note:

Instead of using the filter attribute, you are encourage to use the FILTER keyword inside your query pattern whenever possible (as explained in Section 1.6.2). Using the FILTER keyword is likely to give better performance because of internal optimizations. The filter argument, however, can be useful if you require SQL constructs that cannot be expressed with the FILTER keyword.







The index_status attribute lets you query semantic data even when the relevant entailment does not have a valid status. (If you are querying a virtual model, this attribute refers to the entailment associated with the virtual model.) If this attribute is null, the query returns an error if the entailment does not have a valid status. If this attribute is not null, it must be the string INCOMPLETE or INVALID. For an explanation of query behavior with different index_status values, see Section 1.6.1.

The options attribute identifies options that can affect the results of queries. Options are expressed as keyword-value pairs. The following options are supported:

	
ALL_BGP_HASH and ALL_BGP_NL are global query optimizer hints that specify that all inter-BGP joins (for example. the join between the root BGP and an OPTIONAL BGP) should use the specified join type. (BGP stands for basic graph pattern. From the W3C SPARQL Query Language for RDF Recommendation: "SPARQL graph pattern matching is defined in terms of combining the results from matching basic graph patterns. A sequence of triple patterns interrupted by a filter comprises a single basic graph pattern. Any graph pattern terminates a basic graph pattern."

Example 1-12 shows the ALL_BGP_HASH option used in a SEM_MATCH query.


	
ALL_LINK_HASH and ALL_LINK_NL are global query optimizer hints that specify the join type for all LINK$ joins (that is, all joins between triple patterns within a BGP). If ALL_LINK_HASH or ALL_LINK_NL is used with a HINT0 hint, the HINT0 hint overrides the ALL_ORDERED hint.


	
ALL_ORDERED is a global query optimizer hint that specifies that the triple patterns in each BGP in the query should be evaluated in order. If ALL_ORDERED is used with a HINT0 hint, the HINT0 hint overrides the ALL_ORDERED hint.

Example 1-12 shows the ALL_ORDERED option used in a SEM_MATCH query.


	
ALLOW_DUP=T generates an underlying SQL statement that performs a "union all" instead of a union of the semantic models and inferred data (if applicable). This option may introduce more rows (duplicate triples) in the result set, and you may need to adjust the application logic accordingly. If you do not specify this option, duplicate triples are automatically removed across all the models and inferred data to maintain the set semantics of merged RDF graphs; however, removing duplicate triples increases query processing time. In general, specifying 'ALLOW_DUP=T' improves performance significantly when multiple semantic models are involved in a SEM_MATCH query.

If you are querying a virtual model, specifying ALLOW_DUP=T causes the SEMV_vm_name view to be queried; otherwise, the SEMU_vm_name view is queried.


	
FINAL_VALUE_HASH and FINAL_VALUE_NL are global query optimizer hints that specify the join method that should be used to obtain the lexical values for any query variables that are not used in a FILTER clause.


	
GRAPH_MATCH_UNNAMED=T allows unnamed triples (null G_ID) to be matched inside GRAPH clauses. That is, two triples will satisfy the graph join condition if their graphs are equal or if one or both of the graphs are null. This option may be useful when your dataset includes unnamed TBOX triples or unnamed entailed triples.


	
HINT0={<hint-string>} (pronounced and written "hint" and the number zero) specifies one or more keywords with hints to influence the execution plan and results of queries. Conceptually, a graph pattern with n triple patterns and referring to m distinct variables results in an (n+m)-way join: n-way self-join of the target RDF model or models and optionally the corresponding entailment, and then m joins with RDF_VALUE$ for looking up the values for the m variables. A hint specification affects the join order and join type used for the query execution.

The hint specification, <hint-string>, uses keywords, some of which have parameters consisting of a sequence or set of aliases, or references, for individual triple patterns and variables used in the query. Aliases for triple patterns are of the form ti where i refers to the 0-based ordinal numbers of triple patterns in the query. For example, the alias for the first triple pattern in a query is t0, the alias for the second one is t1, and so on. Aliases for the variables used in a query are simply the names of those variables. Thus, ?x will be used in the hint specification as the alias for a variable ?x used in the graph pattern.

Hints used for influencing query execution plans include LEADING(<sequence of aliases>), USE_NL(<set of aliases>), USE_HASH(<set of aliases>), and INDEX(<alias> <index_name>). These hints have the same format and basic meaning as hints in SQL statements, which are explained in Oracle Database SQL Language Reference.

Example 1-8 shows the HINT0 option used in a SEM_MATCH query.


	
INF_ONLY=T queries only the entailed graph for the specified models and rulebases.


	
PLUS_RDFT=T can be used with SPARQL SELECT syntax (see Section 1.6.3, "Graph Patterns: Support for SPARQL SELECT Syntax") to additionally return a var$RDFTERM CLOB column for each projected query variable. The value for this column is equivalent to the result of SEM_APIS.COMPOSE_RDF_TERM(var, var$RDFVTYP, var$RDFLTYP, var$RDFLANG, var$RDFCLOB). When using this option, the return columns for each variable var will be var, var$RDFVID, var$_PREFIX, var$_SUFFIX, var$RDFVTYP, var$RDFCLOB, var$RDFLTYP, var$RDFLANG, and var$RDFTERM.


	
STRICT_DEFAULT=T restricts the default graph to unnamed triples when no dataset information is specified.




The graphs attribute specifies the set of named graphs from which to construct the default graph for a SEM_MACH query. Its data type is SEM_GRAPHS, which has the following definition: TABLE OF VARCHAR2(4000). The default value for this attribute is NULL. When graphs is NULL, the "union all" of all graphs in the set of query models is used as the default graph.

The named_graphs attribute specifies the set of named graphs that can be matched by a GRAPH clause. Its data type is SEM_GRAPHS, which has the following definition: TABLE OF VARCHAR2(4000). The default value for this attribute is NULL. When named_graphs is NULL, all named graphs in the set of query models can be matched by a GRAPH clause.

The SEM_MATCH table function returns an object of type ANYDATASET, with elements that depend on the input variables. In the following explanations, var represents the name of a variable used in the query. For each variable var, the result elements have the following attributes: var, var$RDFVID, var$_PREFIX, var$_SUFFIX, var$RDFVTYP, var$RDFCLOB, var$RDFLTYP, and var$RDFLANG.

In such cases, var has the lexical value bound to the variable, var$RDFVID has the VALUE_ID of the value bound to the variable, var$_PREFIX and var$_SUFFIX are the prefix and suffix of the value bound to the variable, var$RDFVTYP indicates the type of value bound to the variable (URI, LIT [literal], or BLN [blank node]), var$RDFCLOB has the lexical value bound to the variable if the value is a long literal, var$RDFLTYP indicates the type of literal bound if a literal is bound, and var$RDFLANG has the language tag of the bound literal if a literal with language tag is bound. var$RDFCLOB is of type CLOB, while all other attributes are of type VARCHAR2.

For a literal value or a blank node, its prefix is the value itself and its suffix is null. For a URI value, its prefix is the left portion of the value up to and including the rightmost occurrence of any of the three characters / (slash), # (pound), or : (colon), and its suffix is the remaining portion of the value to the right. For example, the prefix and suffix for the URI value http://www.example.org/family/grandParentOf are http://www.example.org/family/ and grandParentOf, respectively.

Along with columns for variable values, a SEM_MATCH query that uses SPARQL SELECT syntax returns one additional NUMBER column, SEM$ROWNUM, which can be used to ensure the correct result ordering for queries that involve a SPARQL ORDER BY clause.

Example 1-7 selects all grandfathers (grandparents who are male) and their grandchildren from the family model, using inferencing from both the RDFS and family_rb rulebases. (This example is an excerpt from Example 1-37 in Section 1.11.2.)


Example 1-7 SEM_MATCH Table Function


SELECT x, y
  FROM TABLE(SEM_MATCH(
    '{?x :grandParentOf ?y . ?x rdf:type :Male}',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null));




Example 1-8 is functionally the same as Example 1-7, but it adds the HINT0 option.


Example 1-8 HINT0 Option with SEM_MATCH Table Function


SELECT x, y
  FROM TABLE(SEM_MATCH(
    '{?x :grandParentOf ?y . ?x rdf:type :Male}',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_Aliases(SEM_ALIAS('','http://www.example.org/family/')),
    null,
    null,
    'HINT0={LEADING(t0 t1) USE_NL(?x ?y) GET_CANON_VALUE(?x ?y)}'));




Example 1-9 uses the Pathway/Genome BioPax ontology to get all chemical compound types that belong to both Proteins and Complexes:


Example 1-9 SEM_MATCH Table Function


SELECT t.r 
  FROM TABLE (SEM_MATCH ( 
      '{?r rdfs:subClassOf :Proteins .  
        ?r rdfs:subClassOf :Complexes}', 
      SEM_Models ('BioPax'), 
      SEM_Rulebases ('rdfs'), 
      SEM_Aliases (SEM_ALIAS('', 'http://www.biopax.org/release1/biopax-release1.owl')),
      NULL)) t;




As shown in Example 1-9, the search pattern for the SEM_MATCH table function is specified using SPARQL-like syntax where the variable starts with the question-mark character (?). In this example, the variable ?r must match to the same term, and thus is must be a subclass of both Proteins and Complexes.

To use the SEM_RELATED operator to query an OWL ontology, see Section 2.3.

When you are querying multiple models or querying one or more models and the corresponding entailment, consider using virtual models (explained in Section 1.3.8) because of the potential performance benefits.



1.6.1 Performing Queries with Incomplete or Invalid Entailments

You can query semantic data even when the relevant entailment does not have a valid status if you specify the string value INCOMPLETE or INVALID for the index_status attribute of the SEM_MATCH table function. (The entailment status is stored in the STATUS column of the MDSYS.SEM_RULES_INDEX_INFO view, which is described in Section 1.3.7. The SEM_MATCH table function is described in Section 1.6.)

The index_status attribute value affects the query behavior as follows:

	
If the entailment has a valid status, the query behavior is not affected by the value of the index_status attribute.


	
If you provide no value or specify a null value for index_status, the query returns an error if the entailment does not have a valid status.


	
If you specify the string INCOMPLETE for the index_status attribute, the query is performed if the status of the entailment is incomplete or valid.


	
If you specify the string INVALID for the index_status attribute, the query is performed regardless of the actual status of the entailment (invalid, incomplete, or valid).




However, the following considerations apply if the status of the entailment is incomplete or invalid:

	
If the status is incomplete, the content of an entailment may be approximate, because some triples that are inferable (due to the recent insertions into the underlying models) may not actually be present in the entailment, and therefore results returned by the query may be inaccurate.


	
If the status is invalid, the content of the entailment may be approximate, because some triples that are no longer inferable (due to recent modifications to the underlying models or rulebases, or both) may still be present in the entailment, and this may affect the accuracy of the result returned by the query. In addition to possible presence of triples that are no longer inferable, some inferable rows may not actually be present in the entailment.









1.6.2 Graph Patterns: Support for Curly Brace Syntax, and OPTIONAL, FILTER, UNION, and GRAPH Keywords

The SEM_MATCH table function accepts the syntax for the graph pattern in which a sequence of triple patterns is enclosed within curly braces. The period is usually required as a separator unless followed by the OPTIONAL, FILTER, UNION, or GRAPH keyword. With this syntax, you can do any combination of the following:

	
Use the OPTIONAL construct to retrieve results even in the case of a partial match


	
Use the FILTER construct to specify a filter expression in the graph pattern to restrict the solutions to a query


	
Use the UNION construct to match one of multiple alternative graph patterns


	
Use the GRAPH construct (explained in Section 1.6.2.1) to scope graph pattern matching to a set of named graphs




Example 1-10 is functionally the same as Example 1-7, but it uses the syntax with curly braces and a period to express a graph pattern in the SEM_MATCH table function.


Example 1-10 Curly Brace Syntax


SELECT x, y
  FROM TABLE(SEM_MATCH(
    '{?x :grandParentOf ?y . ?x rdf:type :Male}',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null));




Example 1-11 uses the OPTIONAL construct to modify Example 1-10, so that it also returns, for each grandfather, the names of the games that he plays or null if he does not play any games.


Example 1-11 Curly Brace Syntax and OPTIONAL Construct


SELECT x, y, game
  FROM TABLE(SEM_MATCH(
    '{?x :grandParentOf ?y . ?x rdf:type :Male . 
      OPTIONAL{?x :plays ?game} 
     }',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null,
    null,
    'HINT0={LEADING(t0 t1) USE_NL(?x ?y)}'));




When multiple triple patterns are present in an OPTIONAL graph pattern, values for optional variables are returned only if a match is found for each triple pattern in the OPTIONAL graph pattern. Example 1-12 modifies Example 1-11 so that it returns, for each grandfather, the names of the games both he and his grandchildren play, or null if he and his grandchildren have no such games in common. It also uses global query optimizer hints to specify that triple patterns should be evaluated in order within each BGP and that a hash join should be used to join the root BGP with the OPTIONAL BGP.


Example 1-12 Curly Brace Syntax and Multi-Pattern OPTIONAL Construct


SELECT x, y, game
  FROM TABLE(SEM_MATCH(
    '{?x :grandParentOf ?y . ?x rdf:type :Male . 
      OPTIONAL{?x :plays ?game . ?y :plays ?game} 
     }',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null,
    'ALL_ORDERED ALL_BGP_HASH'));




A single query can contain multiple OPTIONAL graph patterns, which can be nested or parallel. Example 1-13 modifies Example 1-12 with a nested OPTIONAL graph pattern. This example returns, for each grandfather, (1) the games he plays or null if he plays no games and (2) if he plays games, the ages of his grandchildren that play the same game, or null if he has no games in common with his grandchildren. Note that in Example 1-13 a value is returned for ?game even if the nested OPTIONAL graph pattern ?y :plays ?game . ?y :age ?age is not matched.


Example 1-13 Curly Brace Syntax and Nested OPTIONAL Construct


SELECT x, y, game, age
  FROM TABLE(SEM_MATCH(
    '{?x :grandParentOf ?y . ?x rdf:type :Male . 
      OPTIONAL{?x :plays ?game 
                          OPTIONAL {?y :plays ?game . ?y :age ?age} } 
     }',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null));




Example 1-14 modifies Example 1-12 with a parallel OPTIONAL graph pattern. This example returns, for each grandfather, (1) the games he plays or null if he plays no games and (2) his e-mail address or null if he has no e-mail address. Note that, unlike nested OPTIONAL graph patterns, parallel OPTIONAL graph patterns are treated independently. That is, if an e-mail address is found, it will be returned regardless of whether or not a game was found; and if a game was found, it will be returned regardless of whether an e-mail address was found.


Example 1-14 Curly Brace Syntax and Parallel OPTIONAL Construct


SELECT x, y, game, email
  FROM TABLE(SEM_MATCH(
    '{?x :grandParentOf ?y . ?x rdf:type :Male . 
      OPTIONAL{?x :plays ?game}
      OPTIONAL{?x :email ?email} 
     }',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null));




Example 1-15 uses the FILTER construct to modify Example 1-10, so that it returns grandchildren information for only those grandfathers who are residents of either NY or CA.


Example 1-15 Curly Brace Syntax and FILTER Construct


SELECT x, y
  FROM TABLE(SEM_MATCH(
    '{?x :grandParentOf ?y . ?x rdf:type :Male . ?x :residentOf ?z
       FILTER (?z = "NY"  || ?z = "CA")}',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null));




In addition to arithmetic operators (+, -, *, /), boolean operators and logical connectives (||, &&, !), and comparison operators (<, >, <=, >=, =, !=), several built-in functions are available for use in FILTER clauses. Table 1-12 lists built-in functions that you can use in the FILTER clause. In the Description column of Table 1-12, x, y, and z are arguments of the appropriate types.


Table 1-12 Built-in Functions Available for FILTER Clause

	Function	Description
	
BOUND(variable)

	
BOUND(x) returns true if x is bound (that is, non-null) in the result, false otherwise.


	
DATATYPE(literal)

	
DATATYPE(x) returns a URI representing the datatype of x.


	
isBLANK(RDF term)

	
isBLANK(x) returns true if x is a blank node, false otherwise.


	
isIRI(RDF term)

	
isIRI(x) returns true if x is an IRI, false otherwise.


	
isLITERAL(RDF term)

	
isLiteral(x) returns true if x is a literal, false otherwise.


	
isURI(RDF term)

	
isURI(x) returns true if x is a URI, false otherwise.


	
LANG(literal)

	
LANG(x) returns a plain literal serializing the language tag of x.


	
langMATCHES(literal, literal)

	
langMATCHES(x, y) returns true if language tag x matches language range y, false otherwise.


	
REGEX(string, pattern)

	
REGEX(x,y) returns true if x matches the regular expression y, false otherwise. For more information about the regular expressions supported, see the Oracle Regular Expression Support appendix in Oracle Database SQL Language Reference.


	
REGEX(string, pattern, flags)

	
REGEX(x,y,z) returns true if x matches the regular expression y using the options given in z, false otherwise. Available options: 's' – dot all mode ('.' matches any character including the newline character); 'm' – multiline mode ('^' matches the beginning of any line and '$' matches the end of any line); 'i' – case insensitive mode; 'x' – remove whitespace characters from the regular expression before matching.


	
sameTERM(RDF term, RDF term)

	
sameTERM(x, y) returns true if x and y are the same RDF term, false otherwise.


	
STR(RDF term)

	
STR(x) returns a plain literal of the string representation of x (that is, what would be stored in the VALUE_NAME column of MDSYS.RDF_VALUE$ enclosed within double quotes).








See also the descriptions of the built-in functions defined in the SPARQL query language specification (http://www.w3.org/TR/rdf-sparql-query/), to better understand the built-in functions available in SEM_MATCH.

Example 1-16 uses the REGEX built-in function to select all grandfathers that have an Oracle e-mail address. Note that backslash (\) characters in the regular expression pattern must be escaped in the query string; for example, \\. produces the following pattern: \.


Example 1-16 Curly Brace Syntax and FILTER with REGEX and STR Built-In Constructs


SELECT x, y, z
  FROM TABLE(SEM_MATCH(
    '{?x :grandParentOf ?y . ?x rdf:type :Male . ?x :email ?z
       FILTER (REGEX(STR(?z), "@oracle\\.com$"))}',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null));




Example 1-17 uses the UNION construct to modify Example 1-15, so that grandfathers are returned only if they are residents of NY or CA or own property in NY or CA, or if both conditions are true (they reside in and own property in NY or CA).


Example 1-17 Curly Brace Syntax and UNION and FILTER Constructs


SELECT x, y
  FROM TABLE(SEM_MATCH(
    '{?x :grandParentOf ?y . ?x rdf:type :Male 
       {{?x :residentOf ?z} UNION {?x :ownsPropertyIn ?z}}
       FILTER (?z = "NY"  || ?z = "CA")}',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null));




If you use the syntax with curly braces to express a graph pattern:

	
The query always returns canonical lexical forms for the matching values for the variables.


	
Any hints specified in the options argument using HINT0={<hint-string>} (explained in Section 1.6), should be constructed only on the basis of the portion of the graph pattern inside the root BGP. For example, the only valid aliases for use in a hint specification for the query in Example 1-11 are t0, t1, ?x, and ?y. Inline query optimizer hints can be used to influence other parts of the graph pattern (see Section 1.6.4).


	
The FILTER construct is not supported for variables bound to long literals.






1.6.2.1 GRAPH Keyword Support

A SEM_MATCH query is executed against an RDF Dataset. An RDF Dataset is a collection of graphs that includes one unnamed graph, known as the default graph, and one or more named graphs, which are identified by a URI. Graph patterns that appear inside a GRAPH clause are matched against the set of named graphs, and graph patterns that do not appear inside a graph clause are matched against the default graph. The graphs and named_graphs SEM_MATCH parameters are used to construct the default graph and set of named graphs for a given SEM_MATCH query. A summary of possible dataset configurations is shown in Table 1-13.


Table 1-13 SEM_MATCH graphs and named_graphs Values, and Resulting Dataset Configurations

	Parameter Values	Default Graph	Set of Named Graphs
	
graphs: NULL

named_graphs: NULL

	
Union All of all unnamed triples and all named graph triples. (But if the options parameter contains STRICT_DEFAULT=T, only unnamed triples are included in the default graph.)

	
All named graphs


	
graphs: NULL

named_graphs: {g1,…, gn}

	
Empty set

	
{g1,…, gn}


	
graphs: {g1,…, gm}

named_graphs: NULL

	
Union All of {g1,…, gm}

	
Empty set


	
graphs: {g1,…, gm}

named_graphs: {gn,…, gz}

	
Union All of {g1,…, gm}

	
{gn,…, gz}








Example 1-18 uses the GRAPH construct to scope graph pattern matching to a specific named graph. This example finds the names and e-mail addresses of all people in the <http://www.example.org/family/Smith> named graph.


Example 1-18 Named Graph Construct


SELECT name, email
  FROM TABLE(SEM_MATCH(
    '{GRAPH :Smith {
       ?x :name ?name . ?x :email ?email } }',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null));




In addition to URIs, variables can appear after the GRAPH keyword. Example 1-19 uses a variable, ?g, with the GRAPH keyword, and uses the named_graphs parameter to restrict the possible values of ?g to the <http://www.example.org/family/Smith> and <http://www.example.org/family/Jones> named graphs. Note that aliases specified in SEM_ALIASES argument can be used in the graphs and named_graphs parameters.


Example 1-19 Using the named_graphs Parameter


SELECT name, email
  FROM TABLE(SEM_MATCH(
    '{GRAPH ?g {
       ?x :name ?name . ?x :email ?email } }',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null,null,null,null,
    SEM_GRAPHS('<http://www.example.org/family/Smith>',
               ':Jones')));




Example 1-20 uses the default graph to query the union of the <http://www.example.org/family/Smith> and <http://www.example.org/family/Jones> named graphs.


Example 1-20 Using the graphs Parameter


FROM TABLE(SEM_MATCH(
    '{?x :name ?name . ?x :email ?email }',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null,null,null,
    SEM_GRAPHS('<http://www.example.org/family/Smith>', 
               ':Jones'),
    null));




See also the W3C SPARQL specification for more information on RDF Datasets and the GRAPH construct, specifically: http://www.w3.org/TR/rdf-sparql-query/#rdfDataset








1.6.3 Graph Patterns: Support for SPARQL SELECT Syntax

In addition to curly-brace graph patterns, SEM_MATCH allows fully-specified SPARQL SELECT queries in the query parameter. When using the SPARQL SELECT syntax option, SEM_MATCH supports the following query constructs: PREFIX, SELECT, SELECT DISTINCT, FROM, FROM NAMED, WHERE, ORDER BY, LIMIT, and OFFSET. Each SPARQL SELECT syntax query must include a SELECT clause and a graph pattern.

You should consider the following key differences between curly-brace and SPARQL SELECT syntax when using SEM_MATCH:

	
Only variables appearing in the SPARQL SELECT clause are returned from SEM_MATCH when using SPARQL SELECT syntax.


	
One additional column, SEM$ROWNUM, is returned from SEM_MATCH when using SPARQL SELECT syntax. This NUMBER column can be used to order the results of a SEM_MATCH query so that the result order matches the ordering specified by a SPARQL ORDER BY clause.




Example 1-21 uses the following SPARQL constructs:

	
SPARQL PREFIX clause to specify an abbreviation for the http://www.example.org/family/ and http://xmlns.com/foaf/0.1/ namespaces


	
SPARQL SELECT clause to specify the set of variables to project out of the query


	
SPARQL WHERE clause to specify the query graph pattern





Example 1-21 SPARQL PREFIX, SELECT, and WHERE Clauses


SELECT y, name
  FROM TABLE(SEM_MATCH(
    'PREFIX : <http://www.example.org/family/> 
     PREFIX foaf: <http://xmlns.com/foaf/0.1/>
     SELECT ?y ?name
     WHERE
     {?x :grandParentOf ?y . 
      ?x foaf:name ?name }',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    null, null));




Example 1-21 returns the following columns: y, y$RDFVID, y$_PREFIX, y$_SUFFIX, y$RDFVTYP, y$RDFCLOB, y$RDFLTYP, y$RDFLANG, name, name$RDFVID, name$_PREFIX, name$_SUFFIX, name$RDFVTYP, name$RDFCLOB, name$RDFLTYP, name$RDFLANG, and SEM$ROWNUM.

The SPARQL SELECT clause specifies either (A) a sequence of variables or (B) *, which projects all variables that appear in a specified triple pattern. Example 1-22 uses the SPARQL SELECT clause to select all variables that appear in a specified triple pattern.


Example 1-22 SPARQL SELECT * (All Variables in Triple Pattern)


SELECT x, y, name
  FROM TABLE(SEM_MATCH(
    'PREFIX : <http://www.example.org/family/> 
     PREFIX foaf: <http://xmlns.com/foaf/0.1/>
     SELECT *
     WHERE
     {?x :grandParentOf ?y . 
      ?x foaf:name ?name }',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    null, null));




The DISTINCT keyword can be used after SELECT to remove duplicate result rows. Example 1-23 uses SELECT DISTINCT to select only the distinct names.


Example 1-23 SPARQL SELECT DISTINCT


SELECT name
  FROM TABLE(SEM_MATCH(
    'PREFIX : <http://www.example.org/family/> 
     PREFIX foaf: <http://xmlns.com/foaf/0.1/>
     SELECT DISTINCT ?name
     WHERE
     {?x :grandParentOf ?y . 
      ?x foaf:name ?name }',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    null, null));




SPARQL FROM and FROM NAMED are used to specify the RDF dataset for a query. FROM clauses are used to specify the set of graphs that make up the default graph, and FROM NAMED clauses are used to specify the set of graphs that make up the set of named graphs. Example 1-24 uses FROM and FROM NAMED to select e-mail addresses and friend of relationships from the union of the <http://www.friends.com/friends> and <http://www.contacts.com/contacts> graphs and grandparent information from the <http://www.example.org/family/Smith> and <http://www.example.org/family/Jones> graphs.


Example 1-24 RDF Dataset Specification Using FROM and FROM NAMED


SELECT x, y, z, email
  FROM TABLE(SEM_MATCH(
    'PREFIX : <http://www.example.org/family/> 
     PREFIX foaf: <http://xmlns.com/foaf/0.1/>
     PREFIX friends: <http://www.friends.com/>
     PREFIX contacts: <http://www.contacts.com/>
     SELECT *
     FROM friends:friends
     FROM contacts:contacts
     FROM NAMED :Smith
     FROM NAMED :Jones
     WHERE
     {?x foaf:frendOf ?y .
      ?x :email ?email .
      GRAPH ?g {
        ?x :grandParentOf ?z }
     }',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    null, null));




The SPARQL ORDER BY clause can be used to order the results of SEM_MATCH queries. This clause specifies a sequence of comparators used to order the results of a given query. A comparator consists of an expression composed of variables, RDF terms, arithmetic operators (+, -, *, /), boolean operators and logical connectives (||, &&, !), comparison operators (<, >, <=, >=, =, !=), and any functions available for use in FILTER expressions.

In a SPARQL ORDER BY clause:

	
Single variable ordering conditions do not require enclosing parenthesis, but parentheses are required for more complex ordering conditions.


	
An optional ASC() or DESC() order modifier can be used to indicate the desired order (ascending or descending, respectively). Ascending is the default order.


	
When using SPARQL ORDER BY in SEM_MATCH, the containing SQL query should be ordered by SEM$ROWNUM to ensure that the desired ordering is maintained through any enclosing SQL blocks.




Example 1-25 uses a SPARQL ORDER BY clause to select all cameras, and it specifies ordering by descending type and ascending total price (price * (1 - discount) * (1 + tax)).


Example 1-25 SPARQL ORDER BY


SELECT *
  FROM TABLE(SEM_MATCH(
    'PREFIX : <http://www.example.org/electronics/> 
     SELECT * 
     WHERE
      {?x :price ?p .
       ?x :discount ?d .
       ?x :tax ?t .
       ?x :cameraType ?cType .
      }
     ORDER BY DESC(?cType) ASC(?p * (1-?d) * (1+?t))',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    null, null))
ORDER BY SEM$ROWNUM;




SPARQL LIMIT and SPARQL OFFSET can be used to select different subsets of the query solutions. Example 1-26 uses SPARQL LIMIT to select the five cheapest cameras, and Example 1-27 uses SPARQL LIMIT and OFFSET to select the fifth through tenth cheapest cameras.


Example 1-26 SPARQL LIMIT


SELECT *
  FROM TABLE(SEM_MATCH(
    'PREFIX : <http://www.example.org/electronics/> 
     SELECT ?x ?cType ?p
     WHERE
      {?x :price ?p .
       ?x :cameraType ?cType .
      }
     ORDER BY ASC(?p)
     LIMIT 5',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    null, null))
ORDER BY SEM$ROWNUM;





Example 1-27 SPARQL OFFSET


SELECT *
  FROM TABLE(SEM_MATCH(
    'PREFIX : <http://www.example.org/electronics/> 
     SELECT ?x ?cType ?p
     WHERE
      {?x :price ?p .
       ?x :cameraType ?cType .
      }
     ORDER BY ASC(?p)
     LIMIT 5
     OFFSET 5',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    null, null))
ORDER BY SEM$ROWNUM;




See also the W3C SPARQL specification for more information on SPARQL PREFIX, SELECT, SELECT DISTINCT, FROM, FROM NAMED, WHERE, ORDER BY, LIMIT, and OFFSET constructs, specifically: http://www.w3.org/TR/rdf-sparql-query/






1.6.4 Inline Query Optimizer Hints

In SEM_MATCH, the SPARQL comment construct has been overloaded to allow inline HINT0 query optimizer hints. In SPARQL, the hash (#) character indicates that the remainder of the line is a comment. To associate an inline hint with a particular BGP, place a HINT0 hint string inside a SPARQL comment and insert the comment between the opening curly bracket ({) and the first triple pattern in the BGP. Inline hints enable you to influence the execution plan for each BGP in a query. Example 1-28 shows a query with inline query optimizer hints.


Example 1-28 Inline Query Optimizer Hints


SELECT x, y, hp, cp
  FROM TABLE(SEM_MATCH(
    '{ # HINT0={ LEADING(t0) USE_NL(?x ?y ?bd) }
      ?x :grandParentOf ?y . ?x rdf:type :Male . ?x :birthDate ?bd
      OPTIONAL { # HINT0={ LEADING(t0 t1) BGP_JOIN(USE_HASH) }
                 ?x :homepage ?hp . ?x :cellPhoneNum ?cp }
     }',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null));




The BGP_JOIN hint influences inter-BGP joins and has the following syntax: BGP_JOIN(<join_type>), where <join_type> is USE_HASH or USE_NL. Example 1-28 uses the BGP_JOIN(USE_HASH) hint to specify that a hash join should be used when joining the OPTIONAL BGP with its parent BGP.

Inline optimizer hints override any hints passed to SEM_MATCH through the options argument. For example, a global ALL_ORDERED hint applies to each BGP that does not specify an inline optimizer hint, but those BGPs with an inline hint use the inline hint instead of the ALL_ORDERED hint.






1.6.5 Full-Text Search

The Oracle-specific orardf:textContains SPARQL FILTER function uses full-text indexes on the MDSYS.RDF_VALUE$ table. This function has the following syntax (where orardf is a built-in prefix that expands to <http://xmlns.oracle.com/rdf/>):


orardf:textContains(variable, pattern)


The first argument to orardf:textContains must be a local variable (that is, a variable present in the BGP that contains the orardf:textContains filter), and the second argument must be a constant plain literal.

For example, orardf:textContains(x, y) returns true if x matches the expression y, where y is a valid expression for the Oracle Text SQL operator CONTAINS. For more information about such expressions, see Oracle Text Reference.

Before using orardf:textContains, you must create an Oracle Text index for the RDF network. To create such an index, invoke the SEM_APIS.ADD_DATATYPE_INDEX procedure as follows:


EXECUTE SEM_APIS.ADD_DATATYPE_INDEX('http://xmlns.oracle.com/rdf/text');


When performing large bulk loads into a semantic network with a text index, the overall load time may be faster if you drop the text index, perform the bulk load, and then re-create the text index. See Section 1.9 for more information about data type indexing.

After creating a text index, you can use the orardf:textContains FILTER function in SEM_MATCH queries. Example 1-29 uses orardf:textContains to find all grandfathers whose names start with the letter A or B.


Example 1-29 Full-Text Search


SELECT x, y, hp, cp
  FROM TABLE(SEM_MATCH(
    '{ ?x :grandParentOf ?y . ?x rdf:type :Male . ?x :name ?n 
       FILTER (orardf:textContains(?n, " A% | B% ")) }',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
          null));








1.6.6 Spatial Support




	
Note:

Before using spatial support in Oracle Database Semantic Technologies, be sure that Oracle Spatial Patch 11828358: ORA-7445 ON SELECT WITH SDO_RELATE IN WHERE CLAUSE has been applied.







Oracle Database Semantic Technologies supports storage of spatial geometry data encoded as orageo:WKTLiteral typed literals, and it provides a set of query functions for spatial operations. (orageo is a built-in prefix that expands to: <http://xmlns.oracle.com/rdf/geo/>)

This section covers the following topics:

	
Representing Spatial Data in RDF


	
Indexing Spatial Data


	
Querying Spatial Data






1.6.6.1 Representing Spatial Data in RDF

Spatial geometries can be represented in RDF as orageo:WKTLiteral typed literals. Example 1-30 shows the orageo:WKTLiteral encoding for a simple point geometry.


Example 1-30 Spatial Point Geometry Represented as orageo:WKTLiteral


"Point(-83.4 34.3)"^^<http://xmlns.oracle.com/rdf/geo/WKTLiteral>




orageo:WKTLiteral encodings consist of an optional spatial reference system URI, followed by a Well-Known Text (WKT) string that encodes a geometry value. The spatial reference system URI and the WKT string should be separated by a whitespace character.

Spatial reference system URIs have the following form <http://xmlns.oracle.com/rdf/geo/srid/{srid}>, where {srid} is a valid spatial reference system id from Oracle Spatial. If an orageo:WKTLiteral value does not include a spatial reference system URI, then the default spatial reference system, WGS84 Longitude-Latitude (URI <http://xmlns.oracle.com/rdf/geo/srid/8307>), is used. The same default spatial reference system is used when orageo:WKTLiteral values are encountered in a query string.

Several geometry types can be represented as orageo:WKTLiteral values, including point, linestring, polygon, polyhedral surface, triangle, TIN, multipoint, multi-linestring, multipolygon, and geometry collection. Up to 500,000 vertices per geometry are supported for two-dimensional geometries.

Example 1-31 shows some RDF spatial data (in N-triple format) encoded using orageo:WKTLiteral values. In this example, the first two geometries (in lot1) use the default coordinate system (SRID 8307), but the other two geometries (in lot2) specify SRID 8265.


Example 1-31 Spatial Data Encoded Using orageo:WKTLiteral Values


# spatial data for lot1 using the default WGS84 Longitude-Latitude spatial reference system
<urn:lot1> <urn:hasExactGeometry> "Polygon((-83.6 34.1, -83.6 34.5, -83.2 34.5, -83.2 34.1, -83.6 34.1))"^^<http://xmlns.oracle.com/rdf/geo/WKTLiteral> .
<urn:lot1> <urn:hasPointGeometry> "Point(-83.4 34.3)"^^<http://xmlns.oracle.com/rdf/geo/WKTLiteral> .
# spatial data for lot2 using the NAD83 Longitude-Latitude spatial reference system
<urn:lot2> <urn:hasExactGeometry> "<http://xmlns.oracle.com/rdf/geo/srid/8265> Polygon((-83.6  34.1, -83.6 34.3, -83.4 34.3, -83.4 34.1, -83.6 34.1))"^^<http://xmlns.oracle.com/rdf/geo/WKTLiteral> .
<urn:lot2> <urn:hasPointGeometry> "<http://xmlns.oracle.com/rdf/geo/srid/8265> Point(-83.5 34.2)"^^<http://xmlns.oracle.com/rdf/geo/WKTLiteral> .




For more information, see the chapter about coordinate systems (spatial reference systems) in Oracle Spatial Developer's Guide. See also the material about the WKT geometry representation in the Open Geospatial Consortium (OGC) Simple Features document: http://portal.opengeospatial.org/files/?artifact_id=25355






1.6.6.2 Indexing Spatial Data

Before you can use any of the SPARQL extension functions (introduced in Section 1.6.6.3) to query spatial data, you must create a spatial index on the RDF network by calling the SEM_APIS.ADD_DATATYPE_INDEX procedure.

When you create the spatial index, you must specify the following information:

	
SRID - The ID for the spatial reference system in which to create the spatial index. Any valid spatial reference system ID from Oracle Spatial can be used as an SRID value.


	
TOLERANCE – The tolerance value for the spatial index. Tolerance is a positive number indicating how close together two points must be to be considered the same point. The units for this value are determined by the default units for the SRID used (for example, meters for WGS84 Long-Lat). Tolerance is explained in detail in Oracle Spatial Developer's Guide.


	
DIMENSIONS - A text string encoding dimension information for the spatial index. Each dimension is represented by a sequence of three comma-separated values: name, minimum value, and maximum value. Each dimension is enclosed in parenthesis, and the set of dimensions is enclosed by an outer parenthesis.




Example 1-32 adds a spatial data type index on the RDF network, specifying the WGS84 Longitude-Latitude spatial reference system, a tolerance value of 10 meters, and the recommended dimensions for the indexing of spatial data that uses this coordinate system. Note that the TOLERANCE, SRID, and DIMENSIONS keywords are case sensitive.


Example 1-32 Adding a Spatial Data Type Index on RDF Data


EXECUTE sem_apis.add_datatype_index('http://xmlns.oracle.com/rdf/geo/WKTLiteral',  options=>'TOLERANCE=10 SRID=8307 DIMENSIONS=((LONGITUDE,-180,180) (LATITUDE,-90,90))');




No more than one spatial data type index is supported for an RDF network. orageo:WKTLiteral values stored in the RDF network are automatically normalized to the spatial reference system used for the index, so a single spatial index can simultaneously support orageo:WKTLiteral values from different spatial reference systems. This coordinate transformation is done transparently for indexing and spatial computations. When orageo:WKTLiteral values are returned from a SEM_MATCH query, the original, untransformed geometry is returned.

For more information about spatial indexing, see the chapter about indexing and querying spatial data in Oracle Spatial Developer's Guide.






1.6.6.3 Querying Spatial Data

Several SPARQL extension functions are available for performing spatial queries in SEM_MATCH. For example, for spatial RDF data, you can find the area and perimeter (length) of a geometry, the distance between two geometries, and the centroid and the minimum bounding rectangle (MBR) of a geometry, and you can check various topological relationships between geometries.

Appendix B contains reference and usage information about the following functions:

	
orageo:area


	
orageo:buffer


	
orageo:centroid


	
orageo:convexHull


	
orageo:difference


	
orageo:distance


	
orageo:intersection


	
orageo:length


	
orageo:mbr


	
orageo:nearestNeighbor


	
orageo:relate


	
orageo:union


	
orageo:withinDistance


	
orageo:xor











1.6.7 Best Practices for Query Performance

This section describes some recommended practices for using the SEM_MATCH table function to query semantic data. It includes the following subsections:

	
Section 1.6.7.1, "FILTER Constructs Involving xsd:dateTime, xsd:date, and xsd:time"


	
Section 1.6.7.2, "Function-Based Indexes for FILTER Constructs Involving Typed Literals"


	
Section 1.6.7.3, "FILTER Constructs Involving Relational Expressions"


	
Section 1.6.7.4, "Optimizer Statistics and Dynamic Sampling"


	
Section 1.6.7.5, "Multi-Partition Queries"






1.6.7.1 FILTER Constructs Involving xsd:dateTime, xsd:date, and xsd:time

By default, SEM_MATCH complies with the XML Schema standard for comparison of xsd:date, xsd:time, and xsd:dateTime values. According to this standard, when comparing two calendar values c1 and c2 where c1 has an explicitly specified time zone and c2 does not have a specified time zone, c2 is converted into the interval [c2-14:00, c2+14:00]. If c2-14:00 <= c1 <= c2+14:00, then the comparison is undefined and will always evaluate to false. If c1 is outside this interval, then the comparison is defined.

However, the extra logic required to evaluate such comparisons (value with a time zone and value without a time zone) can significantly slow down queries with FILTER constructs that involve calendar values. For improved query performance, you can disable this extra logic by specifying FAST_DATE_FILTER=T in the options parameter of the SEM_MATCH table function. When FAST_DATE_FILTER=T is specified, all calendar values without time zones are assumed to be in Greenwich Mean Time (GMT).

Note that using FAST_DATE_FILTER=T does not affect query correctness when either (1) all calendar values in the data set have a time zone or (2) all calendar values in the data set do not have a time zone.






1.6.7.2 Function-Based Indexes for FILTER Constructs Involving Typed Literals

The evaluation of SEM_MATCH queries involving the FILTER construct often requires executing one or more SQL functions against the RDF_VALUE$ table. For example, the filter (?x < "1929-11-16Z"^^xsd:date) invokes the SEM_APIS.GETV$DATETZVAL function.

Function-based indexes can be used to improve the performance of queries that contain a filter condition involving a typed literal. For example, an xsd:date function-based index may speed up evaluation of the filter (?x < "1929-11-16Z"^^xsd:date).

Convenient interfaces are provided for creating, altering, and dropping these function-based indexes. For more information, see Section 1.9, "Using Data Type Indexes".

Note, however, that the existence of these function-based indexes on the MDSYS.RDF_VALUE$ table can significantly slow down bulk load operations. In many cases it may be faster to drop the indexes, perform the bulk load, and then re-create the indexes, as opposed to doing the bulk load with the indexes in place.






1.6.7.3 FILTER Constructs Involving Relational Expressions

The following recommendations apply to FILTER constructs involving relational expressions:

	
The sameTerm built-in function is more efficient than using = or != when comparing two variables in a FILTER clause, so (for example) use sameTerm(?a, ?b) instead of (?a = ?b) and use (!sameTerm(?a, ?b)) instead of (?a != ?b) whenever possible.


	
When comparing values in FILTER expressions, you may get better performance by reducing the use of negation. For example, it is more efficient to evaluate (?x <= "10"^^xsd:int) than it is to evaluate the expression (!(?x > "10"^^xsd:int)).









1.6.7.4 Optimizer Statistics and Dynamic Sampling

Having sufficient statistics for the query optimizer is critical for good query performance. In general, you should ensure that you have gathered basic statistics for the semantic network using the SEM_PERF.GATHER_STATS procedure (described in Chapter 11).

Due to the inherent flexibility of the RDF data model, static information may not produce optimal execution plans for SEM_MATCH queries. Dynamic sampling can often produce much better query execution plans. Dynamic sampling levels can be set at the session or system level using the optimizer_dynamic_sampling parameter, and at the individual query level using the dynamic_sampling(level) SQL query hint. In general, it is good to experiment with dynamic sampling levels between 3 and 6. For information about estimating statistics with dynamic sampling, see Oracle Database Performance Tuning Guide.

Example 1-33 uses a SQL hint for a dynamic sampling level of 6.


Example 1-33 SQL Hint for Dynamic Sampling


SELECT /*+ DYNAMIC_SAMPLING(6) */ x, y
  FROM TABLE(SEM_MATCH(
    '{?x :grandParentOf ?y . 
      ?x rdf:type :Male . 
      ?x :birthDate ?bd }',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null, null, '' ));








1.6.7.5 Multi-Partition Queries

The following recommendations apply to the use of multiple semantic models, semantic models plus entailments, and virtual models:

	
If you execute SEM_MATCH queries against multiple semantic models or against semantic models plus entailments, you can probably improve query performance if you create a virtual model (see Section 1.3.8) that contains all the models and entailments you are querying and then query this single virtual model.


	
Use the ALLOW_DUP=T query option. If you do not use this option, then an expensive (in terms of processing) duplicate-elimination step is required during query processing, in order to maintain set semantics for RDF data. However, if you use this option, the duplicate-elimination step is not performed, and this results in significant performance gains.













1.7 Loading and Exporting Semantic Data

To load semantic data into a model, use one or more of the following options:

	
Bulk load or append data into the semantic data store from a staging table, with each row containing the three components -- subject, predicate, and object -- of an RDF triple and optionally a named graph. This is explained in Section 1.7.1.

This is the fastest option for loading large amounts of data; however, it cannot handle triples containing object values with more than 4000 bytes.


	
Batch load using a Java client interface to load or append data from an N-Triple format file into the semantic data store (see Section 1.7.2).

This option is slower than bulk loading, but it handles triples containing object values with more than 4000 bytes. However, this option does not handle named graphs.


	
Load into the application table using SQL INSERT statements that call the SDO_RDF_TRIPLE_S constructor, which results in the corresponding RDF triple, possibly including a graph name, to be inserted into the semantic data store, as explained in Section 1.7.3.

This option is convenient for loading small amounts of data. However, this option does not handle named graphs.




To export semantic data, use the Java API, as described in Section 1.7.4. However, this approach does not handle named graphs.



1.7.1 Bulk Loading Semantic Data Using a Staging Table

You can load semantic data (and optionally associated non-semantic data) in bulk using a staging table. Call the SEM_APIS.LOAD_INTO_STAGING_TABLE procedure (described in Chapter 9) to load the data, and you can have during the load operation to check for syntax correctness. Then, you can call the SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE procedure to load the data into the semantic store from the staging table. (If the data was not parsed during the load operation into the staging table, you must specify the PARSE keyword in the flags parameter when you call the SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE procedure.)

The following example shows the format for the staging table, including all required columns and the required names for these columns, plus the optional RDF$STC_graph column which must be included if one or more of the RDF triples to be loaded include a graph name:


CREATE TABLE stage_table (
                     RDF$STC_sub varchar2(4000) not null,
                     RDF$STC_pred varchar2(4000) not null,
                     RDF$STC_obj varchar2(4000) not null,
                     RDF$STC_graph varchar2(4000)
);


If you also want to load non-semantic data, specify additional columns for the non-semantic data in the CREATE TABLE statement. The non-semantic column names must be different from the names of the required columns. The following example creates the staging table with two additional columns (SOURCE and ID) for non-semantic attributes.


CREATE TABLE stage_table_with_extra_cols (
                     source VARCHAR2(4000),
                     id NUMBER,
                     RDF$STC_sub varchar2(4000) not null,
                     RDF$STC_pred varchar2(4000) not null,
                     RDF$STC_obj varchar2(4000) not null,
                     RDF$STC_graph varchar2(4000)
);





	
Note:

For either form of the CREATE TABLE statement, you may want to add the COMPRESS clause to use table compression, which will reduce the disk space requirements and may improve bulk-load performance.







Both the invoker and the MDSYS user must have the following privileges: SELECT privilege on the staging table, and INSERT privilege on the application table.

See also the following:

	
Section 1.7.1.1, "Loading the Staging Table"


	
Section 1.7.1.2, "Recording Event Traces During Bulk Loading"






1.7.1.1 Loading the Staging Table

You can load semantic data into the staging table, as a preparation for loading it into the semantic store, in several ways. Some of the common ways are the following:

	
Using Oracle SQL*Loader to load the staging table, as described in Section 1.7.1.1.1


	
Using an external table to load the staging table, as described in Section 1.7.1.1.2






1.7.1.1.1 Loading N-Triple Format Data into a Staging Table Using SQL*Loader

You can use the SQL*Loader utility to parse and load semantic data into a staging table. If you installed the demo files from the Oracle Database Examples media (see Oracle Database Examples Installation Guide), a sample control file is available at $ORACLE_HOME/md/demo/network/rdf_demos/bulkload.ctl. You can modify and use this file if the input data is in N-Triple format.

Objects longer than 4000 bytes cannot be loaded. If you use the sample SQL*Loader control file, triples (rows) containing such long values will be automatically rejected and stored in a SQL*Loader "bad" file. However, you can load these rejected rows by inserting them into the application table using SQL INSERT statements (see Section 1.7.3).






1.7.1.1.2 Loading N-Quad Format Data into a Staging Table Using an External Table

You can use an Oracle external table to load N-Quad format data (extended triple having four components) into a staging table, as follows:

	
Call the SEM_APIS.CREATE_SOURCE_EXTERNAL_TABLE procedure to create an external table, and then use the SQL STATEMENT ALTER TABLE to alter the external table to include the relevant input file name or names. You must have READ and WRITE privileges for the directory object associated with folder containing the input file or files.


	
After you create the external table, grant the MDSYS user SELECT and INSERT privileges on the table.


	
Call the SEM_APIS.LOAD_INTO_STAGING_TABLE procedure to populate the staging table.


	
After the loading is finished, issue a COMMIT statement to complete the transaction.




Rows where the objects and graph URIs (combined) are longer than 4000 bytes will be rejected and stored in a "bad" file. However, you can load these rejected rows by inserting them into the application table using SQL INSERT statements (see Section 1.7.3).

Example 1-34 shows the use of an external table to load a staging table.


Example 1-34 Using an External Table to Load a Staging Table


-- Create a source external table (note: table names are case sensitive)
BEGIN
  sem_apis.create_source_external_table(
    source_table    => 'stage_table_source'
   ,def_directory   => 'DATA_DIR'
   ,bad_file        => 'CLOBrows.bad'
   );
END;
/
grant SELECT on "stage_table_source" to MDSYS;
 
-- Use ALTER TABLE to target the appropriate file(s)
alter table "stage_table_source" location ('demo_datafile.nt');
 
-- Load the staging table (note: table names are case sensitive)
BEGIN
  sem_apis.load_into_staging_table(
    staging_table => 'STAGE_TABLE'
   ,source_table  => 'stage_table_source'
   ,input_format  => 'N-QUAD');
END;
/










1.7.1.2 Recording Event Traces During Bulk Loading

If a table named RDF$ET_TAB exists in the invoker's schema and if the MDSYS user has been granted the INSERT and UPDATE privileges on this table, event traces for some of the tasks performed during executions of the SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE procedure will be added to the table. You may find the content of this table useful if you ever need to report any problems in bulk load. The RDF$ET_TAB table must be created as follows:


CREATE TABLE RDF$ET_TAB (
  proc_sid VARCHAR2(30), 
  proc_sig VARCHAR2(200),
  event_name varchar2(200),
  start_time timestamp,
  end_time timestamp,
  start_comment varchar2(1000) DEFAULT NULL,
  end_comment varchar2(1000) DEFAULT NULL
);
GRANT INSERT, UPDATE on RDF$ET_TAB to MDSYS;








1.7.2 Batch Loading N-Triple Format Semantic Data Using the Java API

You can perform a batch load operation for N-Triple format semantic data using the Java class oracle.spatial.rdf.client.BatchLoader, which is packaged in <ORACLE_HOME>/md/jlib/sdordf.jar. Before performing a batch load operation, ensure that the following are true:

	
The semantic data is in N-Triple format. (Several tools are available for converting RDF/XML to N-Triple format; see the Oracle Technology Network or perform a Web search for information about RDF/XML to N-Triple conversion.)


	
Oracle Database Release 11, with Oracle Spatial, is installed, and partitioning is enabled.


	
A semantic technologies network, an application table, and its corresponding semantic model have been created in the database.


	
The CLASSPATH definition includes ojdbc5.jar.


	
You are using JDK version 1.5 or later. (You can use the Java version packaged under <ORACLE_HOME>/jdk/bin.)




To run the oracle.spatial.rdf.client.BatchLoader class, use a command (on a single command line) in the following general form (replacing the sample example database connection information with your own connection information).

	
Linux systems:


java -Ddb.user=scott -Ddb.password=password -Ddb.host=127.0.0.1 -Ddb.port=1522 -Ddb.sid=orcl -classpath ${ORACLE_HOME}/md/jlib/sdordf.jar:${ORACLE_HOME}/jdbc/lib/ojdbc5.jar oracle.spatial.rdf.client.BatchLoader <N-TripleFile> <tablename> <tablespaceName> <modelName>


	
Windows systems:


java -Ddb.user=scott -Ddb.password=password -Ddb.host=127.0.0.1 -Ddb.port=1522 -Ddb.sid=orcl -classpath %ORACLE_HOME%\md\jlib\sdordf.jar;%ORACLE_HOME%\jdbc\lib\ojdbc5.jar oracle.spatial.rdf.client.BatchLoader <N-TripleFile> <tablename> <tablespaceName> <modelName>




The values for -Ddb.user and -Ddb.password must correspond either to the owner of the model <modelName> or to a DBA user.

By default, BatchLoader assumes there are at least two columns, a column named ID of type NUMBER and a column named TRIPLE of type SDO_RDF_TRIPLE_S, in the user's application table. However, you can override the default names by using the JVM properties -DidColumn=<idColumnName> and -DtripleColumn=<tripleColumnName>. Note that the ID column is not required; and to prevent BatchLoader from generating a sequence-like identifier in the ID column for each triple inserted, specify the JVM property -DjustTriple=true.

If the application table is not empty and if you want the batch loading to be done in append mode, specify an additional JVM property: -Dappend=true. Moreover, in append mode you might want to choose a different starting value for ID column in user's application table, and to accomplish this you can add the JVM property -DstartID=<startingIntegerValue> to the command line. By default, the ID column starts at 1 and is increased sequentially as new triples are inserted into the application table.

To skip the first n triples in <N-TripleFile>, add the JVM property -Dskip=<numberOfTriplesSkipped> to the command line.

To load an N-Triple file with a character set different from the default, specify the JVM property -Dcharset=<charsetName>. For example, -Dcharset="UTF-8" will recognize UTF-8 encoding. However, for UTF-8 characters to be stored properly in the N-Triple file, the Oracle database must be configured to use a corresponding universal character set, such as AL32UTF8.

The BatchLoader class supports loading an N-Triple file in compressed format. If the <N-TripleFile> has a file extension of .zip or .jar, the file will be uncompressed and loaded at the same time.



1.7.2.1 When to Choose Batch Loading

Batch loading is faster than loading semantic data using INSERT statements (described in Section 1.7.3). However, bulk loading (described in Section 1.7.1) is much faster than batch loading for large amounts of data. Batch loading is typically a good option when the following conditions are true:

	
The data to be loaded is less than a few million N-Triple format triples.


	
The data contains a significant amount of long literals (longer than 4000 bytes).











1.7.3 Loading Semantic Data Using INSERT Statements

To load semantic data using INSERT statements, the data should be encoded using < > (angle brackets) for URIs, _: (underscore colon) for blank nodes, and " " (quotation marks) for literals. Spaces are not allowed in URIs or blank nodes. Use the SDO_RDF_TRIPLE_S constructor to insert the data, as described in Section 1.5.1. You must have INSERT privilege on the application table.




	
Note:

If URIs are not encoded with < > and literals with " ", statements will still be processed. However, the statements will take longer to load, since they will have to be further processed to determine their VALUE_TYPE values.







The following example includes statements with URIs, a blank node, a literal, a literal with a language tag, and a typed literal:


INSERT INTO nsu_data VALUES (SDO_RDF_TRIPLE_S('nsu', '<http://nature.example.com/nsu/rss.rdf>',
  '<http://purl.org/rss/1.0/title>', '"Nature''s Science Update"'));
INSERT INTO nsu_data VALUES (SDO_RDF_TRIPLE_S('nsu', '_:BNSEQN1001A',
  '<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>', 
  '<http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq>'));
INSERT INTO nsu_data VALUES (SDO_RDF_TRIPLE_S('nsu',
  '<http://nature.example.com/cgi-taf/dynapage.taf?file=/nature/journal/v428/n6978/index.html>',
  '<http://purl.org/dc/elements/1.1/language>', '"English"@en-GB'));
INSERT INTO nature VALUES (SDO_RDF_TRIPLE_S('nsu', '<http://dx.doi.org/10.1038/428004b>',
  '<http://purl.org/dc/elements/1.1/date>', '"2004-03-04"^^xsd:date'));


To convert semantic XML data to INSERT statements, you can edit the sample rss2insert.xsl XSLT file to convert all the features in the semantic data XML file. The blank node constructor is used to insert statements with blank nodes. After editing the XSLT, download the Xalan XSLT processor (http://xml.apache.org/xalan) and follow the installation instructions. To convert a semantic data XML file to INSERT statements using your edited version of the rss2insert.xsl file, use a command in the following format:


java org.apache.xalan.xslt.Process –in input.rdf -xsl rss2insert.xsl –out output.nt




1.7.3.1 Loading Data into Named Graphs Using INSERT Statements

To load an RDF triple with a non-null graph name using an INSERT statement, you must append the graph name, enclosed within angle brackets (< >), after the model name and colon (:) separator character, as shown in the following example:


INSERT INTO articles_rdf_data VALUES (99,
  SDO_RDF_TRIPLE_S ('articles:<http://examples.com/ns#Graph1>',
    '<http://nature.example.com/Article101>',
    '<http://purl.org/dc/elements/1.1/creator>',
    '"John Smith"'));








1.7.4 Exporting Semantic Data

To output semantic data to a file in N-Triple format, use the NTripleConverter Java class. The NDM2NTriple(String, int) method exports all the triples stored for the specified model.

For information about using the NTriple converter class, see the README.txt file in the sdordf_converter.zip file, which you can download from the Oracle Technology Network.








1.8 Using Semantic Network Indexes

Semantic network indexes are nonunique B-tree indexes that you can add, alter, and drop for use with models and entailments in a semantic network. You can use such indexes to tune the performance of SEM_MATCH queries on the models and entailments in the network. As with any indexes, semantic network indexes enable index-based access that suits your query workload. This can lead to substantial performance benefits, such as in the following example scenarios:

	
If your graph pattern is '{<John> ?p <Mary>}', you may want to have a usable 'CSP' or 'SCP' index for the target model or models and on the corresponding entailment, if used in the query.


	
If your graph pattern is '{?x <talksTo> ?y . ?z ?p ?y}', you may want to have a usable semantic network index on the relevant model or models and entailment, with C as the leading key (for example, 'C' or 'CPS').




However, using semantic network indexes can affect overall performance by increasing the time required for DML, load, and inference operations.

You can create and manage semantic network indexes using the following subprograms:

	
SEM_APIS.ADD_SEM_INDEX


	
SEM_APIS.ALTER_SEM_INDEX_ON_MODEL


	
SEM_APIS.ALTER_SEM_INDEX_ON_ENTAILMENT


	
SEM_APIS.DROP_SEM_INDEX




All of these subprograms have an index_code parameter, which can contain any sequence of the following letters (without repetition): P, C, S, G, M. These letters used in the index_code correspond to the following columns in the SEMM_* and SEMI_* views: P_VALUE_ID, CANON_END_NODE_ID, START_NODE_ID, G_ID, and MODEL_ID.

The SEM_APIS.ADD_SEM_INDEX procedure creates a semantic network index that results in creation of a nonunique B-tree index in UNUSABLE status for each of the existing models and entailments. The name of the index is RDF_LNK_<index_code>_IDX and the index is owned by MDSYS. This operation is allowed only if the invoker has DBA role. The following example shows creation of the PSCGM index with the following key: <P_VALUE_ID, START_NODE_ID, CANON_END_NODE_ID, G_ID, MODEL_ID>.


EXECUTE SEM_APIS.ADD_SEM_INDEX('PSCGM');


After you create a semantic network index, each of the corresponding nonunique B-tree indexes is in the UNUSABLE status, because making it usable can cause significant time and resources to be used, and because subsequent index maintenance operations might involve performance costs that you do not want to incur. You can make a semantic network index usable or unusable for specific models or entailments that you own by calling the SEM_APIS.ALTER_SEM_INDEX_ON_MODEL and SEM_APIS.ALTER_SEM_INDEX_ON_ENTAILMENT procedures and specifying 'REBUILD' or 'UNUSABLE' as the command parameter. Thus, you can experiment by making different semantic network indexes usable and unusable, and checking for any differences in performance. For example, the following statement makes the PSCGM index usable for the FAMILY model:


EXECUTE SEM_APIS.ALTER_SEM_INDEX_ON_MODEL('FAMILY','PSCGM','REBUILD');


Also note the following:

	
Independent of any semantic network indexes that you create, when a semantic network is created, one of the indexes that is automatically created is an index that you can manage by referring to the index_code as 'PSCGM' when you call the subprograms mentioned in this section.


	
When you create a new model or a new entailment, a new nonunique B-tree index is created for each of the semantic network indexes, and each such B-tree index is in the USABLE status.


	
Including the MODEL_ID column in a semantic network index key (by including 'M' in the index_code value) may improve query performance. This is particularly relevant when virtual models are used.






1.8.1 MDSYS.SEM_NETWORK_INDEX_INFO View

Information about all network indexes on models and entailments is maintained in the MDSYS.SEM_NETWORK_INDEX_INFO view, which includes (a partial list) the columns shown in Table 1-14 and one row for each network index.


Table 1-14 MDSYS.SEM_NETWORK_INDEX_INFO View Columns (Partial List)

	Column Name	Data Type	Description
	
NAME

	
VARCHAR2(30)

	
Name of the RDF model or entailment


	
TYPE

	
VARCHAR2(10)

	
Type of object on which the index is built: MODEL, ENTAILMENT, or NETWORK


	
ID

	
NUMBER

	
ID number for the model or entailment, or zero (0) for an index on the network


	
INDEX_CODE

	
VARCHAR2(25)

	
Code for the index (for example, PSCGM).


	
INDEX_NAME

	
VARCHAR2(30)

	
Name of the index (for example, RDF_LNK_PSCGM_IDX)


	
LAST_REFRESH

	
TIMESTAMP(6) WITH TIME ZONE

	
Timestamp for the last time this content was refreshed








In addition to the columns listed in Table 1-14, the MDSYS.SEM_NETWORK_INDEX_INFO view contains columns from the ALL_INDEXES and ALL_IND_PARTITIONS views (both described in Oracle Database Reference), including:

	
From the ALL_INDEXES view: UNIQUENESS, COMPRESSION, PREFIX_LENGTH


	
From the ALL_IND_PARTITIONS view: STATUS, TABLESPACE_NAME, BLEVEL, LEAF_BLOCKS, NUM_ROWS, DISTINCT_KEYS, AVG_LEAF_BLOCKS_PER_KEY, AVG_DATA_BLOCKS_PER_KEY, CLUSTERING_FACTOR, SAMPLE_SIZE, LAST_ANALYZED




Note that the information in the MDSYS.SEM_NETWORK_INDEX_INFO view may sometimes be stale. You can refresh this information by using the SEM_APIS.REFRESH_SEM_NETWORK_INDEX_INFO procedure.








1.9 Using Data Type Indexes

Data type indexes are indexes on the values of typed literals stored in a semantic network. These indexes may significantly improve the performance of SEM_MATCH queries involving certain types of FILTER expressions. For example, a data type index on xsd:dateTime literals may speed up evaluation of the filter (?x < "1929-11-16T13:45:00Z"^^xsd:dateTime). Indexes can be created for several data types, which are listed in Table 1-15.


Table 1-15 Data Types for Data Type Indexing

	Data Type URI	Oracle Type	Index Type
	
http://www.w3.org/2001/XMLSchema#decimal

	
NUMBER

	
Non-unique B-tree (creates a single index for all xsd numeric types, including xsd:float, xsd:double, and xsd:decimal and all of its subtypes)


	
http://www.w3.org/2001/XMLSchema#string

	
VARCHAR2

	
Non-unique B-tree (creates a single index for xsd:string typed literals and plain literals)


	
http://www.w3.org/2001/XMLSchema#time

	
TIMESTAMP WITH TIMEZONE

	
Non-unique B-tree


	
http://www.w3.org/2001/XMLSchema#date

	
TIMESTAMP WITH TIMEZONE

	
Non-unique B-tree


	
http://www.w3.org/2001/XMLSchema#dateTime

	
TIMESTAMP WITH TIMEZONE

	
Non-unique B-tree


	
http://xmlns.oracle.com/rdf/text

	
(Not applicable)

	
CTXSYS.CONTEXT


	
http://xmlns.oracle.com/rdf/geo/WKTLiteral

	
SDO_GEOMETRY

	
MDSYS.SPATIAL_INDEX








The suitability of data type indexes depends on your query workload. Data type indexes on xsd data types can be used for filters that compare a variable with a constant value, and are particularly useful when queries have an unselective graph pattern with a very selective filter condition. Appropriate data type indexes are required for queries with spatial or text filters.

While data type indexes improve query performance, overhead from incremental index maintenance can degrade the performance of DML and bulk load operations on the semantic network. For bulk load operations, it may often be faster to drop data type indexes, perform the bulk load, and then re-create the data type indexes.

You can add, alter, and drop data type indexes using the following procedures, which are described in Chapter 9:

	
SEM_APIS.ADD_DATATYPE_INDEX


	
SEM_APIS.ALTER_DATATYPE_INDEX


	
SEM_APIS.DROP_DATATYPE_INDEX




Information about existing data type indexes is maintained in the MDSYS.SEM_DTYPE_INDEX_INFO view, which has the columns shown in Table 1-16 and one row for each data type index.


Table 1-16 MDSYS.SEM_DTYPE_INDEX_INFO View Columns

	Column Name	Data Type	Description
	
DATATYPE

	
VARCHAR2(51)

	
Data type URI


	
INDEX_NAME

	
VARCHAR2(30)

	
Name of the index


	
STATUS

	
VARCHAR2(8)

	
Status of the index: USABLE or UNUSABLE


	
TABLESPACE_NAME

	
VARCHAR2(30)

	
Tablespace for the index








You can use the HINT0 hint to ensure that data type indexes are used during query evaluation, as shown in Example 1-35, which finds all grandfathers who were born before November 16, 1929.


Example 1-35 Using HINT0 to Ensure Use of Data Type Index


SELECT x, y
  FROM TABLE(SEM_MATCH(
    '{?x :grandParentOf ?y . ?x rdf:type :Male . ?x :birthDate ?bd
       FILTER (?bd <= "1929-11-15T23:59:59Z"^^xsd:dateTime) }',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null, null, 
    'HINT0={ LEADING(?bd) INDEX(?bd rdf_v$dateTime_idx) } 
             FAST_DATE_FILTER=T' ));








1.10 Quick Start for Using Semantic Data

To work with semantic data in an Oracle database, follow these general steps:

	
Create a tablespace for the system tables. You must be connected as a user with appropriate privileges to create the tablespace. The following example creates a tablespace named RDF_TBLSPACE:


CREATE TABLESPACE rdf_tblspace
 DATAFILE '/oradata/orcl/rdf_tblspace.dat' SIZE 1024M REUSE
 AUTOEXTEND ON NEXT 256M MAXSIZE UNLIMITED
 SEGMENT SPACE MANAGEMENT AUTO;


	
Create a semantic data network.

Creating a semantic data network adds semantic data support to an Oracle database. You must create a semantic data network as a user with DBA privileges, specifying a valid tablespace with adequate space. Create the network only once for an Oracle database.

The following example creates a semantic data network using a tablespace named RDF_TBLSPACE (which must already exist):


EXECUTE SEM_APIS.CREATE_SEM_NETWORK('rdf_tblspace');


	
Connect as the database user under whose schema you will store your semantic data; do not perform the following steps while connected as SYS, SYSTEM, or MDSYS.


	
Create a table to store references to the semantic data. (You do not need to be connected as a user with DBA privileges for this step and the remaining steps.)

This table must contain a column of type SDO_RDF_TRIPLE_S, which will contain references to all data associated with a single model.

The following example creates a table named ARTICLES_RDF_DATA:


CREATE TABLE articles_rdf_data (id NUMBER, triple SDO_RDF_TRIPLE_S);


	
Create a model.

When you create a model, you specify the model name, the table to hold references to semantic data for the model, and the column of type SDO_RDF_TRIPLE_S in that table.

The following command creates a model named ARTICLES, which will use the table created in the preceding step.


EXECUTE SEM_APIS.CREATE_SEM_MODEL('articles', 'articles_rdf_data', 'triple');


	
Where possible, create Oracle database indexes on conditions that will be specified in the WHERE clause of SELECT statements, to provide better performance for direct queries against the application table's SDO_RDF_TRIPLE_S column. (These indexes are not relevant if the SEM_MATCH table function is being used.) The following example creates such indexes:


-- Create indexes on the subjects, properties, and objects
-- in the ARTICLES_RDF_DATA table.
CREATE INDEX articles_sub_idx ON articles_rdf_data (triple.GET_SUBJECT());
CREATE INDEX articles_prop_idx ON articles_rdf_data (triple.GET_PROPERTY());
CREATE INDEX articles_obj_idx ON articles_rdf_data (TO_CHAR(triple.GET_OBJECT()));




After you create the model, you can insert triples into the table, as shown in the examples in Section 1.11.






1.11 Semantic Data Examples (PL/SQL and Java)

This section contains the following PL/SQL examples:

	
Section 1.11.1, "Example: Journal Article Information"


	
Section 1.11.2, "Example: Family Information"




In addition to the examples in this guide, see the "Semantic Technologies Code Samples and Examples" page on the Oracle Technology Network (http://www.oracle.com/technology/tech/semantic_technologies/sample_code/). That page includes several Java examples.



1.11.1 Example: Journal Article Information

This section presents a simplified PL/SQL example of model for statements about journal articles. Example 1-36 contains descriptive comments, refer to concepts that are explained in this chapter, and uses functions and procedures documented in Chapter 9.


Example 1-36 Using a Model for Journal Article Information


-- Basic steps:
-- After you have connected as a privileged user and called 
-- SEM_APIS.CREATE_SEM_NETWORK to add RDF support,
-- connect as a regular database user and do the following.
-- 1. For each desired model, create a table to hold its data.
-- 2. For each model, create a model (SEM_APIS.CREATE_RDF_MODEL).
-- 3. For each table to hold semantic data, insert data into the table.
-- 4. Use various subprograms and consructors.
 
-- Create the table to hold data for the model.
CREATE TABLE articles_rdf_data (id NUMBER, triple SDO_RDF_TRIPLE_S);
 
-- Create the model.
EXECUTE SEM_APIS.CREATE_RDF_MODEL('articles', 'articles_rdf_data', 'triple');
 
-- Information to be stored about some fictitious articles:
-- Article1, titled "All about XYZ" and written by Jane Smith, refers 
--   to Article2 and Article3.
-- Article2, titled "A review of ABC" and written by Joe Bloggs, 
--   refers to Article3.
-- Seven SQL statements to store the information. In each statement:
-- Each article is referred to by its complete URI The URIs in
--   this example are fictitious.
-- Each property is referred to by the URL for its definition, as 
--   created by the Dublin Core Metadata Initiative.
 
-- Insert rows into the table.
 
-- Article1 has the title "All about XYZ".
INSERT INTO articles_rdf_data VALUES (1,
  SDO_RDF_TRIPLE_S ('articles','http://nature.example.com/Article1',
    'http://purl.org/dc/elements/1.1/title','All about XYZ'));
 
-- Article1 was created (written) by Jane Smith.
INSERT INTO articles_rdf_data VALUES (2,
  SDO_RDF_TRIPLE_S ('articles','http://nature.example.com/Article1',
    'http://purl.org/dc/elements/1.1/creator',
    'Jane Smith'));
 
-- Article1 references (refers to) Article2.
INSERT INTO articles_rdf_data VALUES (3,
  SDO_RDF_TRIPLE_S ('articles',
    'http://nature.example.com/Article1',
    'http://purl.org/dc/terms/references',
    'http://nature.example.com/Article2'));
 
-- Article1 references (refers to) Article3.
INSERT INTO articles_rdf_data VALUES (4,
  SDO_RDF_TRIPLE_S ('articles',
    'http://nature.example.com/Article1',
    'http://purl.org/dc/terms/references',
    'http://nature.example.com/Article3'));
 
-- Article2 has the title "A review of ABC".
INSERT INTO articles_rdf_data VALUES (5,
  SDO_RDF_TRIPLE_S ('articles',
    'http://nature.example.com/Article2',
    'http://purl.org/dc/elements/1.1/title',
    'A review of ABC'));
 
-- Article2 was created (written) by Joe Bloggs.
INSERT INTO articles_rdf_data VALUES (6,
  SDO_RDF_TRIPLE_S ('articles',
    'http://nature.example.com/Article2',
    'http://purl.org/dc/elements/1.1/creator',
    'Joe Bloggs'));
 
-- Article2 references (refers to) Article3.
INSERT INTO articles_rdf_data VALUES (7,
  SDO_RDF_TRIPLE_S ('articles',
    'http://nature.example.com/Article2',
    'http://purl.org/dc/terms/references',
    'http://nature.example.com/Article3'));
 
COMMIT;
 
-- Query semantic data.
 
SELECT SEM_APIS.GET_MODEL_ID('articles') AS model_id FROM DUAL;

SELECT SEM_APIS.GET_TRIPLE_ID(
  'articles',
  'http://nature.example.com/Article2',
  'http://purl.org/dc/terms/references',
  'http://nature.example.com/Article3') AS RDF_triple_id FROM DUAL;
 
SELECT SEM_APIS.IS_TRIPLE(
  'articles',
  'http://nature.example.com/Article2',
  'http://purl.org/dc/terms/references',
  'http://nature.example.com/Article3') AS is_triple FROM DUAL;
 
-- Use SDO_RDF_TRIPLE_S member functions in queries.
 
SELECT a.triple.GET_TRIPLE() AS triple 
  FROM articles_rdf_data a WHERE a.id = 1;
SELECT a.triple.GET_SUBJECT() AS subject 
  FROM articles_rdf_data a WHERE a.id = 1;
SELECT a.triple.GET_PROPERTY() AS property 
  FROM articles_rdf_data a WHERE a.id = 1;
SELECT a.triple.GET_OBJECT() AS object 
  FROM articles_rdf_data a WHERE a.id = 1;








1.11.2 Example: Family Information

This section presents a simplified PL/SQL example of a model for statements about family tree (genealogy) information. Example 1-36 contains descriptive comments, refer to concepts that are explained in this chapter, and uses functions and procedures documented in Chapter 9.

The family relationships in this example reflect the family tree shown in Figure 1-3. This figure also shows some of the information directly stated in the example: Cathy is the sister of Jack, Jack and Tom are male, and Cindy is female.


Figure 1-3 Family Tree for RDF Example

[image: Description of Figure 1-3 follows]







Example 1-37 Using a Model for Family Information


-- Basic steps:
-- After you have connected as a privileged user and called 
-- SEM_APIS.CREATE_SEM_NETWORK to enable RDF support,
-- connect as a regular database user and do the following.
-- 1. For each desired model, create a table to hold its data.
-- 2. For each model, create a model (SEM_APIS.CREATE_RDF_MODEL).
-- 3. For each table to hold semantic data, insert data into the table.
-- 4. Use various subprograms and constructors.
 
-- Create the table to hold data for the model.
CREATE TABLE family_rdf_data (id NUMBER, triple SDO_RDF_TRIPLE_S);
 
-- Create the model.
execute SEM_APIS.create_rdf_model('family', 'family_rdf_data', 'triple');
 
-- Insert rows into the table. These express the following information:
-----------------
-- John and Janice have two children, Suzie and Matt.
-- Matt married Martha, and they have two children:
--   Tom (male, height 5.75) and Cindy (female, height 06.00).
-- Suzie married Sammy, and they have two children:
--   Cathy (height 5.8) and Jack (male, height 6).
 
-- Person is a class that has two subslasses: Male and Female.
-- parentOf is a property that has two subproperties: fatherOf and motherOf.
-- siblingOf is a property that has two subproperties: brotherOf and sisterOf.
-- The domain of the fatherOf and brotherOf properties is Male.
-- The domain of the motherOf and sisterOf properties is Female.
------------------------
 
-- John is the father of Suzie.
INSERT INTO family_rdf_data VALUES (1, 
SDO_RDF_TRIPLE_S('family', 
'http://www.example.org/family/John', 
'http://www.example.org/family/fatherOf', 
'http://www.example.org/family/Suzie'));
 
-- John is the father of Matt.
INSERT INTO family_rdf_data VALUES (2, 
SDO_RDF_TRIPLE_S('family', 
'http://www.example.org/family/John', 
'http://www.example.org/family/fatherOf', 
'http://www.example.org/family/Matt'));
 
-- Janice is the mother of Suzie.
INSERT INTO family_rdf_data VALUES (3, 
SDO_RDF_TRIPLE_S('family', 
'http://www.example.org/family/Janice', 
'http://www.example.org/family/motherOf', 
'http://www.example.org/family/Suzie'));
 
-- Janice is the mother of Matt.
INSERT INTO family_rdf_data VALUES (4, 
SDO_RDF_TRIPLE_S('family', 
'http://www.example.org/family/Janice', 
'http://www.example.org/family/motherOf', 
'http://www.example.org/family/Matt'));
 
-- Sammy is the father of Cathy.
INSERT INTO family_rdf_data VALUES (5, 
SDO_RDF_TRIPLE_S('family', 
'http://www.example.org/family/Sammy', 
'http://www.example.org/family/fatherOf', 
'http://www.example.org/family/Cathy'));
 
-- Sammy is the father of Jack.
INSERT INTO family_rdf_data VALUES (6, 
SDO_RDF_TRIPLE_S('family', 
'http://www.example.org/family/Sammy', 
'http://www.example.org/family/fatherOf', 
'http://www.example.org/family/Jack'));
 
-- Suzie is the mother of Cathy.
INSERT INTO family_rdf_data VALUES (7, 
SDO_RDF_TRIPLE_S('family', 
'http://www.example.org/family/Suzie', 
'http://www.example.org/family/motherOf', 
'http://www.example.org/family/Cathy'));
 
-- Suzie is the mother of Jack.
INSERT INTO family_rdf_data VALUES (8, 
SDO_RDF_TRIPLE_S('family', 
'http://www.example.org/family/Suzie', 
'http://www.example.org/family/motherOf', 
'http://www.example.org/family/Jack'));
 
-- Matt is the father of Tom.
INSERT INTO family_rdf_data VALUES (9, 
SDO_RDF_TRIPLE_S('family', 
'http://www.example.org/family/Matt', 
'http://www.example.org/family/fatherOf', 
'http://www.example.org/family/Tom'));
 
-- Matt is the father of Cindy
INSERT INTO family_rdf_data VALUES (10, 
SDO_RDF_TRIPLE_S('family', 
'http://www.example.org/family/Matt', 
'http://www.example.org/family/fatherOf', 
'http://www.example.org/family/Cindy'));
 
-- Martha is the mother of Tom.
INSERT INTO family_rdf_data VALUES (11, 
SDO_RDF_TRIPLE_S('family', 
'http://www.example.org/family/Martha', 
'http://www.example.org/family/motherOf', 
'http://www.example.org/family/Tom'));
 
-- Martha is the mother of Cindy. 
INSERT INTO family_rdf_data VALUES (12, 
SDO_RDF_TRIPLE_S('family', 
'http://www.example.org/family/Martha', 
'http://www.example.org/family/motherOf', 
'http://www.example.org/family/Cindy'));
 
-- Cathy is the sister of Jack.
INSERT INTO family_rdf_data VALUES (13, 
SDO_RDF_TRIPLE_S('family', 
'http://www.example.org/family/Cathy', 
'http://www.example.org/family/sisterOf', 
'http://www.example.org/family/Jack'));
 
-- Jack is male.
INSERT INTO family_rdf_data VALUES (14, 
SDO_RDF_TRIPLE_S('family', 
'http://www.example.org/family/Jack', 
'http://www.w3.org/1999/02/22-rdf-syntax-ns#type',
'http://www.example.org/family/Male'));
 
-- Tom is male.
INSERT INTO family_rdf_data VALUES (15, 
SDO_RDF_TRIPLE_S('family', 
'http://www.example.org/family/Tom', 
'http://www.w3.org/1999/02/22-rdf-syntax-ns#type',
'http://www.example.org/family/Male'));
 
-- Cindy is female.
INSERT INTO family_rdf_data VALUES (16, 
SDO_RDF_TRIPLE_S('family', 
'http://www.example.org/family/Cindy', 
'http://www.w3.org/1999/02/22-rdf-syntax-ns#type',
'http://www.example.org/family/Female'));
 
-- Person is a class.
INSERT INTO family_rdf_data VALUES (17, 
SDO_RDF_TRIPLE_S('family', 
'http://www.example.org/family/Person', 
'http://www.w3.org/1999/02/22-rdf-syntax-ns#type',
'http://www.w3.org/2000/01/rdf-schema#Class'));
 
-- Male is a subclass of Person.
INSERT INTO family_rdf_data VALUES (18, 
SDO_RDF_TRIPLE_S('family', 
'http://www.example.org/family/Male', 
'http://www.w3.org/2000/01/rdf-schema#subClassOf',
'http://www.example.org/family/Person'));
 
-- Female is a subclass of Person. 
INSERT INTO family_rdf_data VALUES (19, 
SDO_RDF_TRIPLE_S('family', 
'http://www.example.org/family/Female', 
'http://www.w3.org/2000/01/rdf-schema#subClassOf',
'http://www.example.org/family/Person'));
 
-- siblingOf is a property.
INSERT INTO family_rdf_data VALUES (20, 
SDO_RDF_TRIPLE_S('family', 
'http://www.example.org/family/siblingOf', 
'http://www.w3.org/1999/02/22-rdf-syntax-ns#type',
'http://www.w3.org/1999/02/22-rdf-syntax-ns#Property'));
 
-- parentOf is a property.
INSERT INTO family_rdf_data VALUES (21, 
SDO_RDF_TRIPLE_S('family', 
'http://www.example.org/family/parentOf', 
'http://www.w3.org/1999/02/22-rdf-syntax-ns#type',
'http://www.w3.org/1999/02/22-rdf-syntax-ns#Property'));
 
-- brotherOf is a subproperty of siblingOf.
INSERT INTO family_rdf_data VALUES (22, 
SDO_RDF_TRIPLE_S('family', 
'http://www.example.org/family/brotherOf', 
'http://www.w3.org/2000/01/rdf-schema#subPropertyOf',
'http://www.example.org/family/siblingOf'));
 
-- sisterOf is a subproperty of siblingOf.
INSERT INTO family_rdf_data VALUES (23, 
SDO_RDF_TRIPLE_S('family', 
'http://www.example.org/family/sisterOf', 
'http://www.w3.org/2000/01/rdf-schema#subPropertyOf',
'http://www.example.org/family/siblingOf'));
 
-- A brother is male.
INSERT INTO family_rdf_data VALUES (24, 
SDO_RDF_TRIPLE_S('family', 
'http://www.example.org/family/brotherOf', 
'http://www.w3.org/2000/01/rdf-schema#domain',
'http://www.example.org/family/Male'));
 
-- A sister is female.
INSERT INTO family_rdf_data VALUES (25, 
SDO_RDF_TRIPLE_S('family', 
'http://www.example.org/family/sisterOf', 
'http://www.w3.org/2000/01/rdf-schema#domain',
'http://www.example.org/family/Female'));
 
-- fatherOf is a subproperty of parentOf.
INSERT INTO family_rdf_data VALUES (26, 
SDO_RDF_TRIPLE_S('family', 
'http://www.example.org/family/fatherOf', 
'http://www.w3.org/2000/01/rdf-schema#subPropertyOf',
'http://www.example.org/family/parentOf'));
 
-- motherOf is a subproperty of parentOf.
INSERT INTO family_rdf_data VALUES (27, 
SDO_RDF_TRIPLE_S('family', 
'http://www.example.org/family/motherOf', 
'http://www.w3.org/2000/01/rdf-schema#subPropertyOf',
'http://www.example.org/family/parentOf'));
 
-- A father is male.
INSERT INTO family_rdf_data VALUES (28, 
SDO_RDF_TRIPLE_S('family', 
'http://www.example.org/family/fatherOf', 
'http://www.w3.org/2000/01/rdf-schema#domain',
'http://www.example.org/family/Male'));
 
-- A mother is female.
INSERT INTO family_rdf_data VALUES (29, 
SDO_RDF_TRIPLE_S('family', 
'http://www.example.org/family/motherOf', 
'http://www.w3.org/2000/01/rdf-schema#domain',
'http://www.example.org/family/Female'));
 
-- Use SET ESCAPE OFF to prevent the caret (^) from being
-- interpreted as an escape character. Two carets (^^) are
-- used to represent typed literals.
SET ESCAPE OFF;
 
-- Cathy's height is 5.8 (decimal).
INSERT INTO family_rdf_data VALUES (30,
SDO_RDF_TRIPLE_S('family', 
'http://www.example.org/family/Cathy', 
'http://www.example.org/family/height',
'"5.8"^^xsd:decimal'));
 
-- Jack's height is 6 (integer).
INSERT INTO family_rdf_data VALUES (31,
SDO_RDF_TRIPLE_S('family', 
'http://www.example.org/family/Jack', 
'http://www.example.org/family/height',
'"6"^^xsd:integer'));
 
-- Tom's height is 05.75 (decimal).
INSERT INTO family_rdf_data VALUES (32,
SDO_RDF_TRIPLE_S('family', 
'http://www.example.org/family/Tom', 
'http://www.example.org/family/height',
'"05.75"^^xsd:decimal'));
 
-- Cindy's height is 06.00 (decimal).
INSERT INTO family_rdf_data VALUES (33,
SDO_RDF_TRIPLE_S('family', 
'http://www.example.org/family/Cindy', 
'http://www.example.org/family/height',
'"06.00"^^xsd:decimal'));
 
COMMIT;
 
-- RDFS inferencing in the family model
BEGIN
  SEM_APIS.CREATE_ENTAILMENT(
    'rdfs_rix_family',
    SEM_Models('family'),
    SEM_Rulebases('RDFS'));
END;
/
 
-- Select all males from the family model, without inferencing.
SELECT m
  FROM TABLE(SEM_MATCH(
    '(?m rdf:type :Male)',
    SEM_Models('family'),
    null,
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null));
 
-- Select all males from the family model, with RDFS inferencing.
SELECT m
  FROM TABLE(SEM_MATCH(
    '(?m rdf:type :Male)',
    SEM_Models('family'),
    SDO_RDF_Rulebases('RDFS'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null));
 
-- General inferencing in the family model
 
EXECUTE SEM_APIS.CREATE_RULEBASE('family_rb');
 
INSERT INTO mdsys.semr_family_rb VALUES(
  'grandparent_rule',
  '(?x :parentOf ?y) (?y :parentOf ?z)',
  NULL,
  '(?x :grandParentOf ?z)', 
  SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')));
 
COMMIT;
 
-- Because a new rulebase has been created, and it will be used in the
-- entailment, drop the preceding entailment and then re-create it.
EXECUTE SEM_APIS.DROP_ENTAILMENT ('rdfs_rix_family');
 
-- Re-create the entailment.
BEGIN
  SEM_APIS.CREATE_ENTAILMENT(
    'rdfs_rix_family',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'));
END;
/
 
-- Select all grandfathers and their grandchildren from the family model, 
-- without inferencing. (With no inferencing, no results are returned.)
SELECT x grandfather, y grandchild
  FROM TABLE(SEM_MATCH(
    '(?x :grandParentOf ?y) (?x rdf:type :Male)',
    SEM_Models('family'),
    null, 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null));
 
-- Select all grandfathers and their grandchildren from the family model.
-- Use inferencing from both the RDFS and family_rb rulebases.
SELECT x grandfather, y grandchild
  FROM TABLE(SEM_MATCH(
    '(?x :grandParentOf ?y) (?x rdf:type :Male)',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null));
 
-- Set up to find grandfathers of tall (>= 6) grandchildren
-- from the family model, with RDFS inferencing and
-- inferencing using the "family_rb" rulebase.
 
UPDATE mdsys.semr_family_rb SET
  antecedents = '(?x :parentOf ?y) (?y :parentOf ?z) (?z :height ?h)',
  filter = '(h >= 6)',
  aliases = SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/'))
WHERE rule_name = 'GRANDPARENT_RULE';
 
-- Because the rulebase has been updated, drop the preceding entailment, 
-- and then re-create it.
EXECUTE SEM_APIS.DROP_ENTAILMENT ('rdfs_rix_family');
 
-- Re-create the entailment.
BEGIN
  SEM_APIS.CREATE_ENTAILMENT(
    'rdfs_rix_family',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'));
END;
/
 
-- Find the entailment that was just created (that is, the
-- one based on the specified model and rulebases).
SELECT SEM_APIS.LOOKUP_ENTAILMENT(SEM_MODELS('family'),
  SEM_RULEBASES('RDFS','family_rb')) AS lookup_entailment FROM DUAL;
 
-- Select grandfathers of tall (>= 6) grandchildren, and their
-- tall grandchildren.
SELECT x grandfather, y grandchild
  FROM TABLE(SEM_MATCH(
    '(?x :grandParentOf ?y) (?x rdf:type :Male)',
    SEM_Models('family'),
    SEM_RuleBases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')), 
    null));










1.12 Software Naming Changes for Semantic Technologies

Because the support for semantic data has been expanded beyond the original focus on RDF, the names of many software objects (PL/SQL packages, functions and procedures, system tables and views, and so on) have been changed as of Oracle Database Release 11.1. In most cases, the change is to replace the string RDF with SEM. although in some cases it may be to replace SDO_RDF with SEM.

All valid code that used the pre-Release 11.1 names will continue to work; your existing applications will not be broken. However, it is suggested that you change old applications to use new object names, and you should use the new names for any new applications. This manual will document only the new names.

Table 1-17 lists the old and new names for some objects related to support for semantic technologies, in alphabetical order by old name.


Table 1-17 Semantic Technology Software Objects: Old and New Names

	Old Name	New Name
	
RDF_ALIAS data type

	
SEM_ALIAS


	
RDF_MODEL$ view

	
SEM_MODEL$


	
RDF_RULEBASE_INFO view

	
SEM_RULEBASE_INFO


	
RDF_RULES_INDEX_DATASETS view

	
SEM_RULES_INDEX_DATASETS


	
RDF_RULES_INDEX_INFO view

	
SEM_RULES_INDEX_INFO


	
RDFI_rules-index-name view

	
SEMI_rules-index-name


	
RDFM_model-name view

	
SEMM_model-name


	
RDFR_rulebase-name view

	
SEMR_rulebase-name


	
SDO_RDF package

	
SEM_APIS


	
SDO_RDF_INFERENCE package

	
SEM_APIS


	
SDO_RDF_MATCH table function

	
SEM_MATCH


	
SDO_RDF_MODELS data type

	
SEM_MODELS


	
SDO_RDF_RULEBASES data type

	
SEM_RULEBASES












1.13 For More Information About Semantic Technologies

For more information about Oracle Database semantic technology support and related topics, you may find the following resources helpful:

	
Semantic Technologies Center (OTN), which includes links for downloads, technical and business white papers, a discussion forum, and other sources of information: http://www.oracle.com/technology/tech/semantic_technologies/


	
World Wide Web Consortium (W3C) RDF Primer: http://www.w3.org/TR/rdf-primer/


	
World Wide Web Consortium (W3C) OWL Web Ontology Language Reference: http://www.w3.org/TR/owl-ref/








2 OWL Concepts

This chapter describes concepts related to the support for a subset of the Web Ontology Language (OWL). It builds on the information in Chapter 1, and it assumes that you are familiar with the major concepts associated with OWL, such as ontologies, properties, and relationships. For detailed information about OWL, see the OWL Web Ontology Language Reference at http://www.w3.org/TR/owl-ref/.

This chapter contains the following major sections:

	
Section 2.1, "Ontologies"


	
Section 2.2, "Using OWL Inferencing"


	
Section 2.3, "Using Semantic Operators to Query Relational Data"






2.1 Ontologies

An ontology is a shared conceptualization of knowledge in a particular domain. It consists of a collection of classes, properties, and optionally instances. Classes are typically related by class hierarchy (subclass/ superclass relationship). Similarly, the properties can be related by property hierarchy (subproperty/ superproperty relationship). Properties can be symmetric or transitive, or both. Properties can also have domain, ranges, and cardinality constraints specified for them.

RDFS-based ontologies only allow specification of class hierarchies, property hierarchies, instanceOf relationships, and a domain and a range for properties.

OWL ontologies build on RDFS-based ontologies by additionally allowing specification of property characteristics. OWL ontologies can be further classified as OWL-Lite, OWL-DL, and OWL Full. OWL-Lite restricts the cardinality minimum and maximum values to 0 or 1. OWL-DL relaxes this restriction by allowing minimum and maximum values. OWL Full allows instances to be also defined as a class, which is not allowed in OWL-DL and OWL-Lite ontologies.

Section 2.1.2 describes OWL capabilities that are supported and not supported with semantic data.



2.1.1 Example: Cancer Ontology

Figure 2-1 shows part of a cancer ontology, which describes the classes and properties related to cancer. One requirement is to have a PATIENTS data table with a column named DIAGNOSIS, which must contain a value from the Diseases_and_Disorders class hierarchy.


Figure 2-1 Cancer Ontology Example

[image: Description of Figure 2-1 follows]






In the cancer ontology shown in Figure 2-1, the diagnosis Immune_System_Disorder includes two subclasses, Autoimmune_Disease and Immunodeficiency_Syndrome. The Autoimmune_Disease diagnosis includes the subclass Rheumatoid_Arthritis; and the Immunodeficiency_Syndrome diagnosis includes the subclass T_Cell_Immunodeficiency, which includes the subclass AIDS.

The data in the PATIENTS table might include the PATIENT_ID and DIAGNOSIS column values shown in Table 2-1.


Table 2-1 PATIENTS Table Example Data

	PATIENT_ID	DIAGNOSIS
	
1234

	
Rheumatoid_Arthritis


	
2345

	
Immunodeficiency_Syndrome


	
3456

	
AIDS








To query ontologies, you can use the SEM_MATCH table function (described in Section 1.6) or the SEM_RELATED operator and its ancillary operators (described in Section 2.3).






2.1.2 Supported OWL Subsets

This section describes OWL vocabulary subsets that are supported.

Oracle Database supports the RDFS++, OWLSIF, and OWLPrime vocabularies, which have increasing expressivity, as well as OWL 2 RL. Each supported vocabulary has a corresponding rulebase; however, these rulebases do not need to be populated because the underlying entailment rules of these three vocabularies are internally implemented. The supported vocabularies are as follows:

	
RDFS++: A minimal extension to RDFS; which is RDFS plus owl:sameAs and owl:InverseFunctionalProperty.


	
OWLSIF: OWL with IF Semantic, with the vocabulary and semantics proposed for pD* semantics in Completeness, decidability and complexity of entailment for RDF Schema and a semantic extension involving the OWL vocabulary, by H.J. Horst, Journal of Web Semantics 3, 2 (2005), 79–115.


	
OWLPrime: The following OWL capabilities:

	
Basics: class, subclass, property, subproperty, domain, range, type


	
Property characteristics: transitive, symmetric, functional, inverse functional, inverse


	
Class comparisons: equivalence, disjointness


	
Property comparisons: equivalence


	
Individual comparisons: same, different


	
Class expressions: complement


	
Property restrictions: hasValue, someValuesFrom, allValuesFrom

As with pD*, the supported semantics for these value restrictions are only intensional (IF semantics).





	
OWL 2 RL: Described in the "OWL 2 RL" section of the W3C OWL 2 Web Ontology Language Profiles recommendation (http://www.w3.org/TR/owl-profiles/#OWL_2_RL) as: "The OWL 2 RL profile is aimed at applications that require scalable reasoning without sacrificing too much expressive power. It is designed to accommodate both OWL 2 applications that can trade the full expressivity of the language for efficiency, and RDF(S) applications that need some added expressivity from OWL 2."

The system-defined rulebase OWL2RL supports all the standard production rules defined for OWL 2 RL. As with OWLPRIME, users will not see any rules in this OWL2RL rulebase. Note that the rulebase OWL2RL will be created automatically if it does not already exist.

The following code excerpt uses the OWL2RL rulebase:


CREATE TABLE m1_tpl (triple SDO_RDF_TRIPLE_S) COMPRESS;
EXECUTE sem_apis.create_sem_model('m1','m1_tpl','triple');
-- Insert data into model M1. Details omitted
...
-- Now run inference using the OWL2RL rulebase
EXECUTE sem_apis.create_entailment('m1_inf',sem_models('m1'),sem_rulebases('owl2rl'));


Note that inference-related optimization, such as parallel inference and RAW8, are all applicable when the OWL2RL rulebase is used.




Table 2-2 lists the RDFS/OWL vocabulary constructs included in each supported rulebase.


Table 2-2 RDFS/OWL Vocabulary Constructs Included in Each Supported Rulebase

	Rulebase Name	RDFS/OWL Constructs Included
	
RDFS++

	
all RDFS vocabulary constructs

owl:InverseFunctionalProperty

owl:sameAs


	
OWLSIF

	
all RDFS vocabulary constructs

owl:FunctionalProperty

owl:InverseFunctionalProperty

owl:SymmetricProperty

owl:TransitiveProperty

owl:sameAs

owl:inverseOf

owl:equivalentClass

owl:equivalentProperty

owl:hasValue

owl:someValuesFrom

owl:allValuesFrom


	
OWLPrime

	
rdfs:subClassOf

rdfs:subPropertyOf

rdfs:domain

rdfs:range

owl:FunctionalProperty

owl:InverseFunctionalProperty

owl:SymmetricProperty

owl:TransitiveProperty

owl:sameAs

owl:inverseOf

owl:equivalentClass

owl:equivalentProperty

owl:hasValue

owl:someValuesFrom

owl:allValuesFrom

owl:differentFrom

owl:disjointWith

owl:complementOf


	
OWL2RL

	
(As described in http://www.w3.org/TR/owl-profiles/#OWL_2_RL)














2.2 Using OWL Inferencing

You can use entailment rules to perform native OWL inferencing. This section creates a simple ontology, performs native inferencing, and illustrates some more advanced features.



2.2.1 Creating a Simple OWL Ontology

Example 2-1 creates a simple OWL ontology, inserts one statement that two URIs refer to the same entity, and performs a query using the SEM_MATCH table function


Example 2-1 Creating a Simple OWL Ontology


SQL> CREATE TABLE owltst(id number, triple sdo_rdf_triple_s);
Table created.
 
SQL> EXECUTE sem_apis.create_sem_model('owltst','owltst','triple');
PL/SQL procedure successfully completed.
 
SQL> INSERT INTO owltst VALUES (1, sdo_rdf_triple_s('owltst',
       'http://example.com/name/John', 'http://www.w3.org/2002/07/owl#sameAs', 
       'http://example.com/name/JohnQ'));
1 row created.
 
SQL> commit;
 
SQL> -- Use SEM_MATCH to perform a simple query.
SQL> select s,p,o from table(SEM_MATCH('(?s ?p  ?o)', SEM_Models('OWLTST'),
           null,  null, null ));








2.2.2 Performing Native OWL inferencing

Example 2-2 calls the SEM_APIS.CREATE_ENTAILMENT procedure. You do not need to create the rulebase and add rules to it, because the OWL rules are already built into the Oracle semantic technologies inferencing engine.


Example 2-2 Performing Native OWL Inferencing


SQL> -- Invoke the following command to run native OWL inferencing that
SQL> -- understands the vocabulary defined in the preceding section.
SQL>
SQL>  EXECUTE sem_apis.create_entailment('owltst_idx', sem_models('owltst'), sem_rulebases('OWLPRIME'));
PL/SQL procedure successfully completed.
 
SQL> -- The following view is generated to represent the entailed graph (rules index).
SQL> desc mdsys.semi_owltst_idx;
 
SQL> -- Run the preceding query with an additional rulebase parameter to list
SQL> -- the original graph plus the inferred triples.
SQL> SELECT s,p,o FROM table(SEM_MATCH('(?s ?p  ?o)', SEM_MODELS('OWLTST'),
           SEM_RULEBASES('OWLPRIME'),  null, null ));








2.2.3 Performing OWL and User-Defined Rules inferencing

Example 2-3 creates a user-defined rulebase, inserts a simplified uncleOf rule (stating that the brother of one's father is one's uncle), and calls the SEM_APIS.CREATE_ENTAILMENT procedure.


Example 2-3 Performing OWL and User-Defined Rules Inferencing


SQL> -- First, insert the following assertions.
 
SQL> INSERT INTO owltst VALUES (1, sdo_rdf_triple_s('owltst',
       'http://example.com/name/John', 'http://example.com/rel/fatherOf',
       'http://example.com/name/Mary'));
 
 
SQL> INSERT INTO owltst VALUES (1, sdo_rdf_triple_s('owltst',
       'http://example.com/name/Jack', 'http://example.com/rel/brotherOf',
       'http://example.com/name/John'));
 
SQL> -- Create a user-defined rulebase.
 
SQL> EXECUTE sem_apis.create_rulebase('user_rulebase');
 
SQL> -- Insert a simple "uncle" rule.
 
SQL> INSERT INTO mdsys.semr_user_rulebase VALUES ('uncle_rule', 
'(?x <http://example.com/rel/brotherOf> ?y)(?y <http://example.com/rel/fatherOf> ?z)',
NULL, '(?x <http://example.com/rel/uncleOf> ?z)', null);
 
SQL>  -- In the following statement, 'USER_RULES=T' is required, to
SQL> --  include the original graph plus the inferred triples.
SQL> EXECUTE sem_apis.create_entailment('owltst2_idx', sem_models('owltst'),
          sem_rulebases('OWLPRIME','USER_RULEBASE'), 
          SEM_APIS.REACH_CLOSURE, null, 'USER_RULES=T');
 
SQL> -- In the result of the following query, :Jack :uncleOf :Mary is inferred.
SQL> SELECT s,p,o FROM table(SEM_MATCH('(?s ?p  ?o)',
           SEM_MODELS('OWLTST'),
           SEM_RULEBASES('OWLPRIME','USER_RULEBASE'),  null, null ));








2.2.4 Generating OWL inferencing Proofs

OWL inference can be complex, depending on the size of the ontology, the actual vocabulary (set of language constructs) used, and the interactions among those language constructs. To enable you to find out how a triple is derived, you can use proof generation during inference. (Proof generation does require additional CPU time and disk resources.)

To generate the information required for proof, specify PROOF=T in the call to the SEM_APIS.CREATE_ENTAILMENT procedure, as shown in the following example:


EXECUTE sem_apis.create_entailment('owltst_idx', sem_models('owltst'), -
  sem_rulebases('owlprime'), SEM_APIS.REACH_CLOSURE, 'SAM', 'PROOF=T');


Specifying PROOF=T causes a view to be created containing proof for each inferred triple. The view name is the entailment name prefixed by MDSYS.SEMI_. Two relevant columns in this view are LINK_ID and EXPLAIN (the proof). The following example displays the LINK_ID value and proof of each generated triple (with LINK_ID values shortened for simplicity):


SELECT link_id || ' generated by ' || explain as 
          triple_and_its_proof FROM mdsys.semi_owltst_idx;
 
TRIPLE_AND_ITS_PROOF
--------------------------------------------------------------------
8_5_5_4 generated by 4_D_5_5 : SYMM_SAMH_SYMM
8_4_5_4 generated by 8_5_5_4 4_D_5_5 : SAM_SAMH
. . .


A proof consists of one or more triple (link) ID values and the name of the rule that is applied on those triples:

link-id1 [link-id2 ... link-idn] : rule-name

To get the full subject, predicate, and object URIs for proofs, you can query the model view and the entailment (rules index) view. Example 2-4 displays the LINK_ID value and associated triple contents using the model view MDSYS.SEMM_OWLTST and the entailment view MDSYS.SEMI_OWLTST_IDX.


Example 2-4 Displaying Proof Information


SELECT to_char(x.triple.rdf_m_id, 'FMXXXXXXXXXXXXXXXX') ||'_'||
       to_char(x.triple.rdf_s_id, 'FMXXXXXXXXXXXXXXXX') ||'_'||
       to_char(x.triple.rdf_p_id, 'FMXXXXXXXXXXXXXXXX') ||'_'||
       to_char(x.triple.rdf_c_id, 'FMXXXXXXXXXXXXXXXX'),
       x.triple.get_triple()
  FROM (
   SELECT sdo_rdf_triple_s(
           t.canon_end_node_id,
           t.model_id, 
           t.start_node_id,
           t.p_value_id,
           t.end_node_id) triple
     FROM (select * from mdsys.semm_owltst union all
           select * from mdsys.semi_owltst_idx
          ) t  
    WHERE t.link_id IN ('4_D_5_5','8_5_5_4')
  ) x;
 
   LINK_ID  X.TRIPLE.GET_TRIPLE()(SUBJECT, PROPERTY, OBJECT)
----------  --------------------------------------------------------------
4_D_5_5 SDO_RDF_TRIPLE('<http://example.com/name/John>', '<http://www.w3.org/2002/07/owl#sameAs>', '<http://example.com/name/JohnQ>')
8_5_5_4 SDO_RDF_TRIPLE('<http://example.com/name/JohnQ>', '<http://www.w3.org/2002/07/owl#sameAs>', '<http://example.com/name/John>')




In Example 2-4, for the proof entry 8_5_5_4 generated by 4_D_5_5 : SYMM_SAMH_SYMM for the triple with LINK_ID = 8_5_5_4, it is inferred from the triple with 4_D_5_5 using the symmetricity of owl:sameAs.

If the entailment status is INCOMPLETE and if the last entailment was generated without proof information, you cannot invoke SEM_APIS.CREATE_ENTAILMENT with PROOF=T. In this case, you must first drop the entailment and create it again specifying PROOF=T.






2.2.5 Validating OWL Models and Entailments

An OWL ontology may contain errors, such as unsatisfiable classes, instances belonging to unsatisfiable classes, and two individuals asserted to be same and different at the same time. You can use the SEM_APIS.VALIDATE_MODEL and SEM_APIS.VALIDATE_ENTAILMENT functions to detect inconsistencies in the original data model and in the entailment, respectively.

Example 2-5 shows uses the SEM_APIS.VALIDATE_ENTAILMENT function, which returns a null value if no errors are detected or a VARRAY of strings if any errors are detected.


Example 2-5 Validating an Entailment


SQL>  -- Insert an offending triple.
SQL>  insert into owltst values (1, sdo_rdf_triple_s('owltst',
             'urn:C1', 'http://www.w3.org/2000/01/rdf-schema#subClassOf', 'http://www.w3.org/2002/07/owl#Nothing'));
 
SQL> -- Drop entailment first.
SQL>  exec sem_apis.drop_entailment('owltst_idx');
PL/SQL procedure successfully completed.
 
SQL> -- Perform OWL inferencing.
SQL> exec sem_apis.create_entailment('owltst_idx', sem_models('OWLTST'), sem_rulebases('OWLPRIME'));
PL/SQL procedure successfully completed.
 
SQL > set serveroutput on; 
SQL > -- Now invoke validation API: sem_apis.validate_entailment
SQL > 
declare 
  lva mdsys.rdf_longVarcharArray; 
  idx int; 
begin 
  lva := sem_apis.validate_entailment(sem_models('OWLTST'), sem_rulebases('OWLPRIME')) ; 
 
  if (lva is null) then
   dbms_output.put_line('No errors found.');
  else 
    for idx in 1..lva.count loop 
      dbms_output.put_line('Offending entry := ' || lva(idx)) ; 
    end loop ; 
  end if;
end ; 
/ 
 
SQL> -- NOTE: The LINK_ID value and the numbers in the following
SQL> -- line are shortened for simplicity in this example. -- 

          Offending entry  := 1 10001 (4_2_4_8 2 4 8) Unsatisfiable class.




Each item in the validation report array includes the following information:

	
Number of triples that cause this error (1 in Example 2-5)


	
Error code (10001 Example 2-5)


	
One or more triples (shown in parentheses in the output; (4_2_4_8 2 4 8) in Example 2-5).

These numbers are the LINK_ID value and the ID values of the subject, predicate, and object.


	
Descriptive error message (Unsatisfiable class. in Example 2-5)




The output in Example 2-5 indicates that the error is caused by one triple that asserts that a class is a subclass of an empty class owl:Nothing.






2.2.6 Using SEM_APIS.CREATE_ENTAILMENT for RDFS Inference

In addition to accepting OWL vocabularies, the SEM_APIS.CREATE_ENTAILMENT procedure accepts RDFS rulebases. The following example shows RDFS inference (all standard RDFS rules are defined in http://www.w3.org/TR/rdf-mt/):


EXECUTE sem_apis.create_entailment('rdfstst_idx', sem_models('my_model'), sem_rulebases('RDFS'));


Because rules RDFS4A, RDFS4B, RDFS6, RDFS8, RDFS10, RDFS13 may not generate meaningful inference for your applications, you can deselect those components for faster inference. The following example deselects these rules.


EXECUTE sem_apis.create_entailment('rdfstst_idx', sem_models('my_model'), sem_rulebases('RDFS'), SEM_APIS.REACH_CLOSURE, -
 'RDFS4A-, RDFS4B-, RDFS6-, RDFS8-, RDFS10-, RDFS13-');






2.2.7 Enhancing Inference Performance

This section describes suggestions for improving the performance of inference operations.

	
Collect statistics before inferencing. After you load a large RDF/OWL data model, you should execute the SEM_PERF.GATHER_STATS procedure. See the Usage Notes for that procedure (in Chapter 11) for important usage information.


	
Allocate sufficient temporary tablespace for inference operations. OWL inference support in Oracle relies heavily on table joins, and therefore uses significant temporary tablespace.




See also Section 2.2.8, "Optimizing owl:sameAs Inference".






2.2.8 Optimizing owl:sameAs Inference

You can optimize inference performance for large owl:sameAs cliques by specifying 'OPT_SAMEAS=T' in the options parameter when performing OWLPrime entailment. (A clique is a graph in which every node of it is connected to, bidirectionally, every other node in the same graph.)

According to OWL semantics, the owl:sameAs construct is treated as an equivalence relation, so it is reflexive, symmetric, and transitive. As a result, during inference a full materialization of owl:sameAs-related entailments could significantly increase the size of the inferred graph. Consider the following example triple set:


:John  owl:sameAs  :John1 .
:John  owl:sameAs  :John2 .
:John2 :hasAge     "32" .


Applying OWLPrime inference (with the SAM component specified) to this set would generate the following new triples:


:John1  owl:sameAs  :John .
:John2  owl:sameAs  :John .
:John1  owl:sameAs  :John2 .
:John2  owl:sameAs  :John1 .
:John   owl:sameAs  :John .
:John1  owl:sameAs  :John1 .
:John2  owl:sameAs  :John2 .
:John   :hasAge     "32" . 
:John1  :hasAge     "32" .


In the preceding example, :John, :John1 and :John2 are connected to each other with the owl:sameAs relationship; that is, they are members of an owl:sameAs clique. To provide optimized inference for large owl:sameAs cliques, you can consolidate owl:sameAs triples without sacrificing correctness by specifying 'OPT_SAMEAS=T' in the options parameter when performing OWLPrime entailment. For example:


EXECUTE sem_apis.create_entailment('M_IDX',sem_models('M'),
   sem_rulebases('OWLPRIME'),null,null,'OPT_SAMEAS=T');


When you specify this option, for each owl:sameAs clique, one resource from the clique is chosen as a canonical representative and all of the inferences for that clique are consolidated around that resource. Using the preceding example, if :John1 is the clique representative, after consolidation the inferred graph would contain only the following triples:


:John1 owl:sameAs :John1 .
:John1 :hasAge    "32" .


Some overhead is incurred with owl:sameAs consolidation. During inference, all asserted models are copied into the inference partition, where they are consolidated together with the inferred triples. Additionally, for very large asserted graphs, consolidating and removing duplicate triples incurs a large run-time overhead, so the OPT_SAMEAS=T option is recommended only for ontologies that have a large number of owl:sameAs relationships and large clique sizes.

After the OPT_SAMEAS=T option has been used for an entailment, all subsequent uses of SEM_APIS.CREATE_ENTAILMENT for that entailment must also use OPT_SAMEAS=T, or an error will be reported. To disable optimized sameAs handling, you must first drop the entailment.

Clique membership information is stored in a view named MDSYS.SEMCL_entailment-name, where entailment-name is the name of the entailment (rules index). Each MDSYS.SEMCL_entailment-name view has the columns shown in Table 2-3.


Table 2-3 MDSYS.SEMCL_entailment_name View Columns

	Column Name	Data Type	Description
	
MODEL_ID

	
NUMBER

	
ID number of the inferred model


	
VALUE_ID

	
NUMBER)

	
ID number of a resource that is a member of the owl:sameAs clique identified by CLIQUE_ID


	
CLIQUE_ID

	
NUMBER

	
ID number of the clique representative for the VALUE_ID resource








To save space, the MDSYS.SEMCL_entailment-name view does not contain reflexive rows like (CLIQUE_ID, CLIQUE_ID).



2.2.8.1 Querying owl:sameAs Consolidated Inference Graphs

At query time, if the entailment queried was created using the OPT_SAMEAS=T option, the results are returned from an owl:sameAs-consolidated inference partition. The query results are not expanded to include the full owl:sameAs closure.

In the following example query, the only result returned would be :John1, which is the canonical clique representative.


SELECT A FROM TABLE (
  SEM_MATCH ('(?A :hasAge "32")',SEM_MODELS('M'),  
    SEM_RULEBASES('OWLPRIME'),NULL, NULL));


With the preceding example, even though :John2 :hasAge "32" occurs in the model, it has been replaced during the inference consolidation phase where redundant triples are removed. However, you can expand the query results by performing a join with the MDSYS.SEMCL_rules-index-name view that contains the consolidated owl:sameAs information. For example, to get expanded result set for the preceding SEM_MATCH query, you can use the following expanded query:


SELECT V.VALUE_NAME A_VAL FROM TABLE (
  SEM_MATCH ('(?A :hasAge "32")',SEM_MODELS('M'), 
    SEM_RULEBASES('OWLPRIME'), NULL, NULL)) Q,
    MDSYS.RDF_VALUE$ V, MDSYS.SEMCL_M_IDX C
  WHERE V.VALUE_ID  = C.VALUE_ID 
     AND C.CLIQUE_ID = Q.A$RDFVID
  UNION ALL
    SELECT A A_VAL FROM TABLE (
      SEM_MATCH ('(?A :hasAge "32")',SEM_MODELS('M'),  
        SEM_RULEBASES('OWLPRIME'),NULL, NULL));


Or, you could rewrite the preceding expanded query using a left outer join, as follows:


SELECT V.VALUE_NAME A_VAL FROM TABLE (
  SEM_MATCH ('(?A <http://hasAge> "33")',SEM_MODELS('M'), 
   SEM_RULEBASES('OWLPRIME'), NULL, NULL)) Q,
  MDSYS.RDF_VALUE$ V, 
   (SELECT value_id, clique_id FROM MDSYS.SEMCL_M_IDX 
  UNION ALL
    SELECT DISTINCT clique_id, clique_id 
      FROM MDSYS.SEMCL_M_IDX) C
 WHERE Q.A$RDFVID  = c.clique_id  (+)
   AND V.VALUE_ID  = nvl(C.VALUE_ID, Q.A$RDFVID);








2.2.9 Performing Incremental Inference

Incremental inference can be used to update entailments (rules indexes) efficiently after triple additions. There are two ways to enable incremental inference for an entailment:

	
Specify the options parameter value INC=T when creating the entailment. For example:


EXECUTE sem_apis.create_entailment ('M_IDX',sem_models('M'),
  sem_rulebases('OWLPRIME'),null,null, 'INC=T');


	
Use the SEM_APIS.ENABLE_INC_INFERENCE procedure.

If you use this procedure, the entailment must have a VALID status. Before calling the procedure, if you do not own the models involved in the entailment, you must ensure that the respective model owners have used the SEM_APIS.ENABLE_CHANGE_TRACKING procedure to enable change tracking for those models.




When incremental inference is enabled for an entailment, the parameter INC=T must be specified when invoking the SEM_APIS.CREATE_ENTAILMENT procedure for that entailment.

Incremental inference for an entailment depends on triggers for the application tables of the models involved in creating the entailment. This means that incremental inference works only when triples are inserted in the application tables underlying the entailment using conventional path loads, unless you specify the triples by using the delta_in parameter in the call to the SEM_APIS.CREATE_ENTAILMENT procedure, as in the following example, in which the triples from model M_NEW will be added to model M, and entailment M_IDX will be updated with the new inferences:


EXECUTE sem_apis.create_entailment('M_IDX', sem_models('M'),
  sem_rulebases('OWLPRIME''), SEM_APIS.REACH_CLOSURE, null, null,
  sem_models('M_NEW'));
  


Another way to bypass the conventional path loading requirement when using incremental inference is to set the UNDO_RETENTION parameter to cover the intervals between entailments when you perform bulk loading. For example, if the last entailment was created 6 hours ago, the UNDO_RETENTION value should be set to greater than 6 hours; if it is less than that, then (given a heavy workload and limited undo space) it is not guaranteed that all relevant undo information will be preserved for incremental inference to apply. In such cases, the SEM_APIS.CREATE_ENTAILMENT procedure falls back to regular (non-incremental) inference.

To check if change tracking is enabled on a model, use the SEM_APIS.GET_CHANGE_TRACKING_INFO procedure. To get additional information about incremental inference for an entailment, use the SEM_APIS.GET_INC_INF_INFO procedure.

The following restrictions apply to incremental inference:

	
It does not work with optimized owl:sameAs handling (OPT_SAMEAS), user-defined rules, VPD-enabled models, or version-enabled models.


	
It supports only the addition of triples. With updates or deletions, the entailment will be completely rebuilt.


	
It depends on triggers on application tables.


	
Column types (RAW8 or NUMBER) used in incremental inference must be consistent. For instance, if RAW8=T is used to build the entailment initially, then for every subsequent SEM_APIS.CREATE_ENTAILMENT call the same option must be used. To change the column type to NUMBER, you must drop and rebuild the entailment.









2.2.10 Using Parallel Inference

Parallel inference can improve inference performance by taking advantage of the capabilities of a multi-core or multi-CPU architectures. To use parallel inference, specify the DOP (degree of parallelism) keyword and an appropriate value when using the SEM_APIS.CREATE_ENTAILMENT procedure. For example:


EXECUTE sem_apis.create_entailment('M_IDX',sem_models('M'), 
      sem_rulebases('OWLPRIME'), sem_apis.REACH_CLOSURE, null, 'DOP=4');


Specifying the DOP keyword causes parallel execution to be enabled for an Oracle-chosen set of inference components

The success of parallel inference depends heavily on a good hardware configuration of the system on which the database is running. The key is to have a "balanced" system that implements the best practices for database performance tuning and Oracle SQL parallel execution. For example, do not use a single 1 TB disk for an 800 GB database, because executing SQL statements in parallel on a single physical disk can even be slower than executing SQL statements in serial mode. Parallel inference requires ample memory; for each CPU core, you should have at least 4 GB of memory.

Parallel inference is best suited for large ontologies; however, inference performance can also improve for small ontologies.

There is some transient storage overhead associated with using parallel inference. Parallel inference builds a source table that includes all triples based on all the source RDF/OWL models and existing inferred graph. This table might use an additional 10 to 30 percent of storage compared to the space required for storing data and index of the source models.






2.2.11 Using Named Graph Based Inferencing (Global and Local)

The default inferencing in Oracle Database takes all asserted triples from all the source model or models provided and applies semantic rules on top of all the asserted triples until an inference closure is reached. Even if the given source models contain one or more multiple named graphs, it makes no difference because all assertions, whether part of a named graph or not, are treated the same as if they come from a single graph. (For an introduction to named graph support in Oracle Database Semantic Technologies, see Section 1.3.9.)

This default inferencing can be thought of as completely "global" in that it does not consider named graphs at all.

However, if you use named graphs, you can override the default inferencing and have named graphs be considered by using either of the following features:

	
Named graph based global inference (NGGI), which treats all specified named graphs as a unified graph. NGGI lets you narrow the scope of triples to be considered, while enabling great flexibility; it is explained in Section 2.2.11.1.


	
Named graph based local inference (NGLI), which treats each specified named graph as a separate entity. NGLI is explained in Section 2.2.11.2.




For using NGGI and NGLI together, see a recommended usage flow in Section 2.2.11.3.

You specify NGGI or NGLI through certain parameters and options to the SEM_APIS.CREATE_ENTAILMENT procedure when you create an entailment (rules index).



2.2.11.1 Named Graph Based Global Inference (NGGI)

Named graph based global inference (NGGI) enables you to narrow the scope of triples used for inferencing at the named graph level (as opposed to the model level). It also enables great flexibility in selecting the scope; for example, you can include triples from zero or more named graphs and/or from the default graph, and you can include all triples with a null graph name from specified models.

For example, in a hospital application you may only want to apply the inference rules on all the information contained in a set of named graphs describing patients of a particular hospital. If the patient-related named graphs contains only instance-related assertions (ABox), you can specify one or multiple additional schema related-models (TBox), as in Example 2-6.


Example 2-6 Named Graph Based Global Inference


EXECUTE sem_apis.create_entailment(
  'patients_inf',
  models_in         => sem_models('patients','hospital_ontology'),
  rulebases_in      => sem_rulebases('owl2rl'),
  passes            => SEM_APIS.REACH_CLOSURE,
  inf_components_in => null,
  options           => 'DOP=4,RAW8=T',
  include_default_g => sem_models('hospital_ontology'),
  include_named_g   => sem_graphs('<urn:hospital1_patient1>','<urn:hospital1_patient2>'),
  inf_ng_name       => '<urn:inf_graph_for_hospital1>'
  );




In Example 2-6:

	
Two models are involved: patients contains a set of named graphs where each named graph holds triples relevant to a particular patient, and hospital_ontology contains schema information describing concepts and relationships that are defined for hospitals. These two models together are the source models, and they set up an overall scope for the inference.


	
The include_default_g parameter causes all triples with a NULL graph name in the specified models to participate in NGGI. In this example, all triples with a NULL graph name in model hospital_ontology will be included in NGGI.


	
The include_named_g parameter causes all triples from the specified named graphs (across all source models) to participate in NGGI. In this example, triples from named graphs <urn:hospital1_patient1> and <urn:hospital1_patient2> will be included in NGGI.


	
The inf_ng_name parameter assigns graph name <urn:inf_graph_for_hospital1> to all the new triples inferred by NGGI.









2.2.11.2 Named Graph Based Local Inference (NGLI)

Named graph based local inference (NGLI) treats each named graph as a separate entity instead of viewing the graphs as a single unified graph. Inference logic is performed within the boundary of each entity. You can specify schema-related assertions (TBox) in a default graph, and that default graph will participate the inference of each named graph. For example, inferred triples based on a graph with name G1 will be assigned the same graph name G1 in the inferred data partition.

Assertions from any two separate named graphs will never jointly produce any new assertions.

For example, assume the following:

	
Graph G1 includes the following assertion:


:John  :hasBirthMother  :Mary .


	
Graph G2 includes the following assertion:


:John  :hasBirthMother  :Bella .


	
The default graph includes the assertion that :hasBirthMother is an owl:FunctionalProperty. (This assertion has a null graph name.)




In this example, named graph based local inference (NGLI) will not infer that :Mary is owl:sameAs :Bella because the two assertions are from two distinct graphs, G1 and G2. By contrast, a named graph based global inference (NGGI) that includes G1, G2, and the functional property definition would be able to infer that :Mary is owl:sameAs :Bella.

Example 2-7 shows NGLI.


Example 2-7 Named Graph Based Local Inference


EXECUTE sem_apis.create_entailment(
  'patients_inf',
  models_in         => sem_models('patients','hospital_ontology'),
  rulebases_in      => sem_rulebases('owl2rl'),
  passes            => SEM_APIS.REACH_CLOSURE,
  inf_components_in => null,
  options           => 'LOCAL_NG_INF=T'
);




In Example 2-7:

	
The two models patients and hospital_ontology together are the source models, and they set up an overall scope for the inference, similar to the case of global inference in Example 2-6. All triples with a null graph name are treated as part of the common schema (TBox). Inference is performed within the boundary of every single named graph combined with the common schema.


	
Then options parameter keyword-value pair LOCAL_NG_INF=T specifies that named graph based local inference (NGLI) is to be performed.




Note that, by design, NGLI does not apply to the default graph itself. However, you can easily apply named graph based global inference (NGGI) on the default graph and set the inf_ng_name parameter to null. In this way, the TBox inference is precomputed, improving the overall performance and storage consumption.

NGLI does not allow the following:

	
Inferring new relationships based on a mix of triples from multiple named graphs


	
Inferring new relationships using only triples from the default graph.




To get the inference that you would normally expect, you should keep schema assertions and instance assertions separate. Schema assertions (for example, :A rdfs:subClassOf :B and :p1 rdfs:subPropertyOf :p2) should be stored in the default graph as unnamed triples (with null graph names). By contrast, instance assertions (for example, :X :friendOf :Y) should be stored in one of the named graphs.

For a discussion and example of using NGLI to perform document-centric inference with semantically indexed documents, see Section 4.15, "Performing Document-Centric Inference".

NGLI currently does not work together with proof generation, user-defined rules, optimized owl:sameAs handling, or incremental inference.






2.2.11.3 Using NGGI and NGLI Together

The following is a recommended usage flow for using NGGI and NGLI together. It assumes that TBox and ABox are stored in two separate models, that TBox contains schema definitions and all triples in the TBox have a null graph name, but that ABox consists of a set of named graphs describing instance-related data.

	
Invoke NGGI on the TBox by itself. For example:


EXECUTE sem_apis.create_entailment(
    'TEST_INF',
    sem_models('abox','tbox'),
    sem_rulebases('owl2rl'),
    SEM_APIS.REACH_CLOSURE,
    include_default_g=>sem_models('tbox')
);


	
Invoke NGLI for all named graphs. For example:


EXECUTE sem_apis.create_entailment(
    'TEST_INF',
    sem_models('abox','tbox'),
    sem_rulebases('owl2rl'),
    SEM_APIS.REACH_CLOSURE,
    options => 'LOCAL_NG_INF=T,ENTAIL_ANYWAY=T'
);


Note that ENTAIL_ANYWAY=T is specified because the NGGI call in step 1will set the status of inferred graph to VALID, and the SEM_APIS.CREATE_ENTAILMENT procedure call in step 2 will quit immediately unless ENTAIL_ANYWAY=T is specified.











2.2.12 Performing Selective Inferencing (Advanced Information)

Selective inferencing is component-based inferencing, in which you limit the inferencing to specific OWL components that you are interested in. To perform selective inferencing, use the inf_components_in parameter to the SEM_APIS.CREATE_ENTAILMENT procedure to specify a comma-delimited list of components. The final inferencing is determined by the union of rulebases specified and the components specified.

Example 2-8 limits the inferencing to the class hierarchy from subclass (SCOH) relationship and the property hierarchy from subproperty (SPOH) relationship. This example creates an empty rulebase and then specifies the two components ('SCOH,SPOH') in the call to the SEM_APIS.CREATE_ENTAILMENT procedure.


Example 2-8 Performing Selective Inferencing


EXECUTE sem_apis.create_rulebase('my_rulebase');
 
EXECUTE sem_apis.create_entailment('owltst_idx', sem_models('owltst'), sem_rulebases('my_rulebase'), SEM_APIS.REACH_CLOSURE, 'SCOH,SPOH');




The following component codes are available: SCOH, COMPH, DISJH, SYMMH, INVH, SPIH, MBRH, SPOH, DOMH, RANH, EQCH, EQPH, FPH, IFPH, DOM, RAN, SCO, DISJ, COMP, INV, SPO, FP, IFP, SYMM, TRANS, DIF, SAM, CHAIN, HASKEY, ONEOF, INTERSECT, INTERSECTSCOH, MBRLST, PROPDISJH, SKOSAXIOMS, SNOMED, SVFH, THINGH, THINGSAM, UNION, RDFP1, RDFP2, RDFP3, RDFP4, RDFP6, RDFP7, RDFP8AX, RDFP8BX, RDFP9, RDFP10, RDFP11, RDFP12A, RDFP12B, RDFP12C, RDFP13A, RDFP13B, RDFP13C, RDFP14A, RDFP14BX, RDFP15, RDFP16, RDFS2, RDFS3, RDFS4a, RDFS4b, RDFS5, RDFS6, RDFS7, RDFS8, RDFS9, RDFS10, RDFS11, RDFS12, RDFS13

The rules corresponding to components with a prefix of RDFP can be found in Completeness, decidability and complexity of entailment for RDF Schema and a semantic extension involving the OWL vocabulary, by H.J. Horst.

The syntax for deselecting a component is component_name followed by a minus (-) sign. For example, the following statement performs OWLPrime inference without calculating the subClassOf hierarchy:


EXECUTE sem_apis.create_entailment('owltst_idx', sem_models('owltst'), sem_rulebases('OWLPRIME'), SEM_APIS.REACH_CLOSURE, 'SCOH-');


By default, the OWLPrime rulebase implements the transitive semantics of owl:sameAs. OWLPrime does not include the following rules (semantics):


U   owl:sameAs   V  .
U     p    X  .        ==>   V  p   X   .
 
U   owl:sameAs   V  .
X     p    U  .        ==>   X   p   V   .


The reason for not including these rules is that they tend to generate many assertions. If you need to include these assertions, you can include the SAM component code in the call to the SEM_APIS.CREATE_ENTAILMENT procedure.








2.3 Using Semantic Operators to Query Relational Data

You can use semantic operators to query relational data in an ontology-assisted manner, based on the semantic relationship between the data in a table column and terms in an ontology. The SEM_RELATED semantic operator retrieves rows based on semantic relatedness. The SEM_DISTANCE semantic operator returns distance measures for the semantic relatedness, so that rows returned by the SEM_RELATED operator can be ordered or restricted using the distance measure. The index type MDSYS.SEM_INDEXTYPE allows efficient execution of such queries, enabling scalable performance over large data sets.



2.3.1 Using the SEM_RELATED Operator

Referring to the cancer ontology example in Section 2.1.1, consider the following query that requires semantic matching: Find all patients whose diagnosis is of the type 'Immune_System_Disorder'. A typical database query of the PATIENTS table (described in Section 2.1.1) involving syntactic match will not return any rows, because no rows have a DIAGNOSIS column containing the exact value Immune_System_Disorder. For example the following query will not return any rows:


SELECT diagnosis FROM patients WHERE diagnosis = 'Immune_System_Disorder';


However, many rows in the patient data table are relevant, because their diagnoses fall under this class. Example 2-9 uses the SEM_RELATED operator (instead of lexical equality) to retrieve all the relevant rows from the patient data table. (In this example, the term Immune_System_Disorder is prefixed with a namespace, and the default assumption is that the values in the table column also have a namespace prefix. However, that might not always be the case, as explained in Section 2.3.5.)


Example 2-9 SEM_RELATED Operator


SELECT diagnosis FROM patients 
  WHERE SEM_RELATED (diagnosis, 
    '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
    '<http://www.example.org/medical_terms/Immune_System_Disorder>', 
    sem_models('medical_ontology'), sem_rulebases('owlprime')) = 1;




The SEM_RELATED operator has the following attributes:


SEM_RELATED(
  sub  VARCHAR2,
  predExpr  VARCHAR2,
  obj  VARCHAR2,
  ontologyName  SEM_MODELS,
  ruleBases  SEM_RULEBASES,
  index_status  VARCHAR2,
  lower_bound INTEGER,
  upper_bound INTEGER
 ) RETURN INTEGER;


The sub attribute is the name of table column that is being searched. The terms in the table column are typically the subject in a <subject, predicate, object> triple pattern.

The predExpr attribute represents the predicate that can appear as a label of the edge on the path from the subject node to the object node.

The obj attribute represents the term in the ontology for which related terms (related by the predExpr attribute) have to be found in the table (in the column specified by the sub attribute). This term is typically the object in a <subject, predicate, object> triple pattern. (In a query with the equality operator, this would be the query term.)

The ontologyName attribute is the name of the ontology that contains the relationships between terms.

The rulebases attribute identifies one or more rulebases whose rules have been applied to the ontology to infer new relationships. The query will be answered based both on relationships from the ontology and the inferred new relationships when this attribute is specified.

The index_status optional attribute lets you query the data even when the relevant entailment (created when the specified rulebase was applied to the ontology) does not have a valid status. If this attribute is null, the query returns an error if the entailment does not have a valid status. If this attribute is not null, it must be the string VALID, INCOMPLETE, or INVALID, to specify the minimum status of the entailment for the query to succeed. Because OWL does not guarantee monotonicity, the value INCOMPLETE should not be used when an OWL Rulebase is specified.

The lower_bound and upper_bound optional attributes let you specify a bound on the distance measure of the relationship between terms that are related. See Section 2.3.2 for the description of the distance measure.

The SEM_RELATED operator returns 1 if the two input terms are related with respect to the specified predExpr relationship within the ontology, and it returns 0 if the two input terms are not related. If the lower and upper bounds are specified, it returns 1 if the two input terms are related with a distance measure that is greater than or equal to lower_bound and less than or equal to upper_bound.






2.3.2 Using the SEM_DISTANCE Ancillary Operator

The SEM_DISTANCE ancillary operator computes the distance measure for the rows filtered using the SEM_RELATED operator. The SEM_DISTANCE operator has the following format:


SEM_DISTANCE (number) RETURN NUMBER;


The number attribute can be any number, as long as it matches the number that is the last attribute specified in the call to the SEM_RELATED operator (see Example 2-10). The number is used to match the invocation of the ancillary operator SEM_DISTANCE with a specific SEM_RELATED (primary operator) invocation, because a query can have multiple invocations of primary and ancillary operators.

Example 2-10 expands Example 2-9 to show several statements that include the SEM_DISTANCE ancillary operator, which gives a measure of how closely the two terms (here, a patient's diagnosis and the term Immune_System_Disorder) are related by measuring the distance between the terms. Using the cancer ontology described in Section 2.1.1, the distance between AIDS and Immune_System_Disorder is 3.


Example 2-10 SEM_DISTANCE Ancillary Operator


SELECT diagnosis, SEM_DISTANCE(123) FROM patients 
  WHERE SEM_RELATED (diagnosis, 
    '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
    '<http://www.example.org/medical_terms/Immune_System_Disorder>', 
    sem_models('medical_ontology'), sem_rulebases('owlprime'), 123) = 1;
 
SELECT diagnosis FROM patients 
  WHERE SEM_RELATED (diagnosis,
    '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
    '<http://www.example.org/medical_terms/Immune_System_Disorder>', 
    sem_models('medical_ontology'), sem_rulebases('owlprime'), 123) = 1
  ORDER BY SEM_DISTANCE(123);
 
SELECT diagnosis, SEM_DISTANCE(123) FROM patients 
  WHERE SEM_RELATED (diagnosis,
    '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
    '<http://www.example.org/medical_terms/Immune_System_Disorder>', 
    sem_models('medical_ontology'), sem_rulebases('owlprime'), 123) = 1 
  WHERE SEM_DISTANCE(123) <= 3;




Example 2-11 uses distance information to restrict the number of rows returned by the primary operator. All rows with a term related to the object attribute specified in the SEM_RELATED invocation, but with a distance of greater than or equal to 2 and less than or equal to 4, are retrieved.


Example 2-11 Using SEM_DISTANCE to Restrict the Number of Rows Returned


SELECT diagnosis FROM patients 
  WHERE SEM_RELATED (diagnosis,
    '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
    '<http://www.example.org/medical_terms/Immune_System_Disorder>', 
    sem_models('medical_ontology'), sem_rulebases('owlprime'), 2, 4) = 1;




In Example 2-11, the lower and upper bounds are specified using the lower_bound and upper_bound parameters in the SEM_RELATED operator instead of using the SEM_DISTANCE operator. The SEM_DISTANCE operator can be also be used for restricting the rows returned, as shown in the last SELECT statement in Example 2-10.



2.3.2.1 Computation of Distance Information

Distances are generated for the following properties during inference (entailment): OWL properties defined as transitive properties, and RDFS subClassOf and RDFS subPropertyOf properties. The distance between two terms linked through these properties is computed as the shortest distance between them in a hierarchical class structure. Distances of two terms linked through other properties are undefined and therefore set to null.

Each transitive property link in the original model (viewed as a hierarchical class structure) has a distance of 1, and the distance of an inferred triple is generated according to the number of links between the two terms. Consider the following hypothetical sample scenarios:

	
If the original graph contains C1 rdfs:subClassOf C2 and C2 rdfs:subClassOf C3, then C1 rdfs:subClassof of C3 will be derived. In this case:

	
C1 rdfs:subClassOf C2: distance = 1, because it exists in the model.


	
C2 rdfs:subClassOf C3: distance = 1, because it exists in the model.


	
C1 rdfs:subClassOf C3: distance = 2, because it is generated during inference.





	
If the original graph contains P1 rdfs:subPropertyOf P2 and P2 rdfs:subPropertyOf P3, then P1 rdfs:subPropertyOf P3 will be derived. In this case:

	
P1 rdfs:subPropertyOf P2: distance = 1, because it exists in the model.


	
P2 rdfs:subPropertyOf P3: distance = 1, because it exists in the model.


	
P1 rdfs:subPropertyOf P3: distance = 2, because it is generated during inference.





	
If the original graph contains C1 owl:equivalentClass C2 and C2 owl:equivalentClass C3, then C1 owl:equivalentClass C3 will be derived. In this case:

	
C1 owl:equivalentClass C2: distance = 1, because it exists in the model.


	
C2 owl:equivalentClass C3: distance = 1, because it exists in the model.


	
C1 owl:equivalentClass C3: distance = 2, because it is generated during inference.







The SEM_RELATED operator works with user-defined rulebases. However, using the SEM_DISTANCE operator with a user-defined rulebase is not yet supported, and will raise an error.








2.3.3 Creating a Semantic Index of Type MDSYS.SEM_INDEXTYPE

When using the SEM_RELATED operator, you can create a semantic index of type MDSYS.SEM_INDEXTYPE on the column that contains the ontology terms. Creating such an index will result in more efficient execution of the queries. The CREATE INDEX statement must contain the INDEXTYPE IS MDSYS.SEM_INDEXTYPE clause, to specify the type of index being created.

Example 2-12 creates a semantic index named DIAGNOSIS_SEM_IDX on the DIAGNOSIS column of the PATIENTS table using the Cancer_Ontology ontology.


Example 2-12 Creating a Semantic Index


CREATE INDEX diagnosis_sem_idx
  ON patients (diagnosis) 
  INDEXTYPE IS MDSYS.SEM_INDEXTYPE;




The column on which the index is built (DIAGNOSIS in Example 2-12) must be the first parameter to the SEM_RELATED operator, in order for the index to be used. If it not the first parameter, the index is not used during the execution of the query.

To improve the performance of certain semantic queries, you can cause statistical information to be generated for the semantic index by specifying one or more models and rulebases when you create the index. Example 2-13 creates an index that will also generate statistics information for the specified model and rulebase. The index can be used with other models and rulebases during query, but the statistical information will be used only if the model and rulebase specified during the creation of the index are the same model and rulebase specified in the query.


Example 2-13 Creating a Semantic Index Specifying a Model and Rulebase


CREATE INDEX diagnosis_sem_idx
  ON patients (diagnosis) 
  INDEXTYPE IS MDSYS.SEM_INDEXTYPE('ONTOLOGY_MODEL(medical_ontology), 
    RULEBASE(OWLPrime)');




The statistical information is useful for queries that return top-k results sorted by semantic distance. Example 2-14 shows such a query.


Example 2-14 Query Benefitting from Generation of Statistical Information


SELECT /*+ FIRST_ROWS */ diagnosis FROM patients 
  WHERE SEM_RELATED (diagnosis,
    '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
    '<http://www.example.org/medical_terms/Immune_System_Disorder>', 
    sem_models('medical_ontology'), sem_rulebases('owlprime'), 123) = 1
  ORDER BY SEM_DISTANCE(123);








2.3.4 Using SEM_RELATED and SEM_DISTANCE When the Indexed Column Is Not the First Parameter

If an index of type MDSYS.SEM_INDEXTYPE has been created on a table column that is the first parameter to the SEM_RELATED operator, the index will be used. For example, the following query retrieves all rows that have a value in the DIAGNOSIS column that is a subclass of (rdfs:subClassOf) Immune_System_Disorder.


SELECT diagnosis FROM patients 
  WHERE SEM_RELATED (diagnosis, 
    '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
    '<http://www.example.org/medical_terms/Immune_System_Disorder>', 
    sem_models('medical_ontology'), sem_rulebases('owlprime')) = 1;


Assume, however, that this query instead needs to retrieve all rows that have a value in the DIAGNOSIS column for which Immune_System_Disorder is a subclass. You could rewrite the query as follows:


SELECT diagnosis FROM patients 
  WHERE SEM_RELATED
    ('<http://www.example.org/medical_terms/Immune_System_Disorder>', 
    '<http://www.w3.org/2000/01/rdf-schema#subClassOf>', 
    diagnosis, 
    sem_models('medical_ontology'), sem_rulebases('owlprime')) = 1;


However, in this case a semantic index on the DIAGNOSIS column will not be used, because it is not the first parameter to the SEM_RELATED operator. To cause the index to be used, you can change the preceding query to use the inverseOf keyword, as follows:


SELECT diagnosis FROM patients 
  WHERE SEM_RELATED (diagnosis,
    'inverseOf(http://www.w3.org/2000/01/rdf-schema#subClassOf)',
    '<http://www.example.org/medical_terms/Immune_System_Disorder>', 
    sem_models('medical_ontology'), sem_rulebases('owlprime')) = 1;


This form causes the table column (on which the index is built) to be the first parameter to the SEM_RELATED operator, and it retrieves all rows that have a value in the DIAGNOSIS column for which Immune_System_Disorder is a subclass.






2.3.5 Using URIPREFIX When Values Are Not Stored as URIs

By default, the semantic operator support assumes that the values stored in the table are URIs. These URIs can be from different namespaces. However, if the values in the table do not have URIs, you can use the URIPREFIX keyword to specify a URI when you create the semantic index. In this case, the specified URI is prefixed to the value in the table and stored in the index structure. (One implication is that multiple URIs cannot be used).

Example 2-15 creates a semantic index that uses a URI prefix.


Example 2-15 Specifying a URI Prefix During Semantic Index Creation


CREATE INDEX diagnosis_sem_idx
  ON patients (diagnosis) 
  INDEXTYPE IS MDSYS.SEM_INDEXTYPE
  PARAMETERS('URIPREFIX(<http://www.example.org/medical/>)');




Note that the slash (/) character at the end of the URI is important, because the URI is prefixed to the table value (in the index structure) without any parsing.







3 Simple Knowledge Organization System (SKOS) Support

You can perform inferencing based on a core subset of the Simple Knowledge Organization System (SKOS) data model, which is especially useful for representing thesauri, classification schemes, taxonomies, and other types of controlled vocabulary. SKOS is based on standard semantic web technologies including RDF and OWL, which makes it easy to define the formal semantics for those knowledge organization systems and to share the semantics across applications.

Support is provided for most, but not all, of the features of SKOS, the detailed specification of which is available at http://www.w3.org/TR/skos-reference/.

Around 40 SKOS-specific terms are included in the Oracle Database semantic technologies support, such as skos:broader, skos:relatedMatch, and skos:Concept. Over 100 SKOS axiomatic triples have been added, providing the basic coverage of SKOS semantics. However, support is not included for the integrity conditions described in the SKOS specification.

To perform SKOS-based inferencing, specify the system-defined SKOSCORE rulebase in the rulebases_in parameter in the call to the SEM_APIS.CREATE_ENTAILMENT procedure, as in the following example:


EXECUTE sem_apis.create_entailment('tstidx',sem_models('tst'), sem_rulebases('skoscore'));


Example 3-1 defines, in Turtle format, a simple electronics scheme and two relevant concepts, cameras and digital cameras. Its meaning is straightforward and its representation is in RDF. It can be managed by Oracle Database in the same way as other RDF and OWL data.


Example 3-1 SKOS Definition of an Electronics Scheme


ex1:electronicsScheme rdf:type skos:ConceptScheme;
 
ex1:cameras rdf:type skos:Concept;
   skos:prefLabel "cameras"@en;
   skos:inScheme ex1:electronicsScheme.
 
ex1:digitalCameras rdf:type skos:Concept;
   skos:prefLabel "digital cameras"@en;
   skos:inScheme ex1:electronicsScheme.
 
ex1:digitalCameras skos:broader ex1:cameras.






3.1 Supported and Unsupported SKOS Semantics

This section describes features of SKOS semantics that are and are not supported by Oracle Database.



3.1.1 Supported SKOS Semantics

All terms defined in SKOS and SKOS extension for labels are recognized. When the SKOSCORE rulebase is chosen for inference, the recognized terms include the following:


skos:altLabel
skos:broader
skos:broaderTransitive
skos:broadMatch
skos:changeNote
skos:closeMatch
skos:Collection
skos:Concept
skos:ConceptScheme
skos:definition
skos:editorialNote
skos:exactMatch
skos:example
skos:hasTopConcept
skos:hiddenLabel
skos:historyNote
skos:inScheme
skos:mappingRelation
skos:member
skos:memberList
skos:narrower
skos:narrowerTransitive
skos:narrowMatch
skos:notation
skos:note
skos:OrderedCollection
skos:prefLabel
skos:related
skos:relatedMatch
skos:scopeNote
skos:semanticRelation
skos:topConceptOf
skosxl:altLabel
skosxl:hiddenLabel
skosxl:Label
skosxl:labelRelation
skosxl:literalForm
skosxl:prefLabel


Most SKOS axioms and definitions are supported including the following: S1-S8, S10-S11, S15-S26, S28-S31, S33-S36, S38-S45, S47-S50, and S53-S54. (See the SKOS detailed specification for definitions.)

Most SKOS integrity conditions are supported, including S9, S13, S27, S37, and S46.

S52 is partially supported.

S55, S56, and S57 are not supported by default.

	
S55, the property chain (skosxl:prefLabel, skosxl:literalForm), is a subproperty of skos:prefLabel.


	
S56, the property chain (skosxl:altLabel, skosxl:literalForm), is a subproperty of skos:altLabel.


	
S57, the property chain (skosxl:hiddenLabel, skosxl:literalForm), is a subproperty of skos:hiddenLabel.chains.




However, S55, S56, and S57 can be implemented using the OWL 2 subproperty chain construct. For information about property chain handling, see Section 3.2.2.






3.1.2 Unsupported SKOS Semantics

The following features of SKOS semantics are not supported:

	
S12 and S51: The rdfs:range of the relevant predicates is the class of RDF plain literals. There is no check that the object values of these predicates are indeed plain literals; however, applications can perform such a check.


	
S14: A resource has no more than one value of skos:prefLabel per language tag. This integrity condition is even beyond OWL FULL semantics, and it is not enforced in the current release.


	
S32: The rdfs:range of skos:member is the union of classes skos:Concept and skos:Collection. This integrity condition is not enforced.


	
S55, S56, and S57 are not supported by default, but they can be implemented using the OWL 2 subproperty chain construct, as explained in Section 3.1.1.











3.2 Performing Inference on SKOS Models

To create an SKOS model, use the same procedure (SEM_APIS.CREATE_SEM_MODEL) as for creating a semantic model. You can load data into an SKOS model in the same way as for semantic models.

To infer new relationships for one or more SKOS models, use the SEM_APIS.CREATE_ENTAILMENT procedure with the system-defined rulebase SKOSCORE. For example:


EXECUTE sem_apis.create_entailment('tstidx',sem_models('tst'), sem_rulebases('skoscore'));


The inferred data will include many of the axioms defined in the SKOS detailed specification. Like other system-defined rulebases, SKOSCORE has no explicit rules; all the semantics supported are coded into the implementation.



3.2.1 Validating SKOS Models and Entailments

You can use the SEM_APIS.VALIDATE_ENTAILMENT and SEM_APIS.VALIDATE_MODEL procedures to validate the supported integrity conditions. The output will include any inconsistencies caused by the supported integrity conditions, such as OWL 2 propertyDisjointWith and S52.

Example 3-2 validates an SKOS entailment.


Example 3-2 Validating an SKOS Entailment


set serveroutput on
declare
  lva mdsys.rdf_longVarcharArray;
  idx int;
begin
  lva := sem_apis.validate_entailment(sdo_rdf_models('tstskos'), sem_rulebases('skoscore'));
  if (lva is null) then
    dbms_output.put_line('No conflicts');
  else
  for idx in 1..lva.count loop
    dbms_output.put_line('entry ' || idx || ' ' || lva(idx));
  end loop;
  end if;
end;
 /








3.2.2 Property Chain Handling

The SKOS S55, S56, and S57 semantics are not supported by default. However, you can add support for them by using the OWL 2 subproperty chain construct.

Example 3-3 inserts the necessary chain definition triples for S55 into an SKOS model. After the insertion, an invocation of SEM_APIS.CREATE_ENTAILMENT that specifies the SKOSCORE rulebase will include the semantics defined in S55.


Example 3-3 Property Chain Insertions to Implement S55


INSERT INTO tst VALUES(sdo_rdf_triple_s('tst','<http://www.w3.org/2004/02/skos/core#prefLabel>', '<http://www.w3.org/2002/07/owl#propertyChainAxiom>', '_:jA1'));
INSERT INTO tst VALUES(sdo_rdf_triple_s('tst','_:jA1', '<http://www.w3.org/1999/02/22-rdf-syntax-ns#first>', '<http://www.w3.org/2008/05/skos-xl#prefLabel>'));
INSERT INTO tst VALUES(sdo_rdf_triple_s('tst','_:jA1', '<http://www.w3.org/1999/02/22-rdf-syntax-ns#rest>', '_:jA2'));
INSERT INTO tst VALUES(sdo_rdf_triple_s('tst','_:jA2', '<http://www.w3.org/1999/02/22-rdf-syntax-ns#first>', '<http://www.w3.org/2008/05/skos-xl#literalForm>'));
INSERT INTO tst VALUES(sdo_rdf_triple_s('tst','_:jA2', '<http://www.w3.org/1999/02/22-rdf-syntax-ns#rest>', '<http://www.w3.org/1999/02/22-rdf-syntax-ns#nil>'));









4 Semantic Indexing for Documents

Information extractors locate and extract meaningful information from unstructured documents. The ability to search for documents based on this extracted information is a significant improvement over the keyword-based searches supported by the full-text search engines.

Semantic indexing for documents introduces an index type that can make use of information extractors and annotators to semantically index documents stored in relational tables. Documents indexed semantically can be searched using SEM_CONTAINS operator within a standard SQL query. The search criteria for these documents are expressed using SPARQL query patterns that operate on the information extracted from the documents, as in the following example.


SELECT docId
FROM   Newsfeed
WHERE  SEM_CONTAINS (article, 
     ' { ?org    rdf:type            typ:Organization  . 
         ?org    pred:hasCategory    cat:BusinessFinance } ', ..) = 1


The key components that facilitate Semantic Indexing for documents in an Oracle Database include:

	
Extensible information extractor framework, which allows third-party information extractors to be plugged into the database


	
SEM_CONTAINS operator to identify documents of interest, based on their extracted information, using standard SQL queries


	
SEM_CONTAINS_SELECT ancillary operator to return relevant information about the documents identified using SEM_CONTAINS operator


	
SemContext index type to interact with the information extractor and manage the information extracted from a document set in an index structure and to facilitate semantically meaningful searches on the documents




The application program interface (API) for managing extractor policies and semantic indexes created for documents is provided in the SEM_RDFCTX PL/SQL package. Chapter 12 provides the reference information about the subprograms in SEM_RDFCTX package.

This chapter contains the following major sections:

	
Section 4.1, "Information Extractors for Semantically Indexing Documents"


	
Section 4.2, "Extractor Policies"


	
Section 4.3, "Semantically Indexing Documents"


	
Section 4.4, "SEM_CONTAINS and Ancillary Operators"


	
Section 4.5, "Searching for Documents Using SPARQL Query Patterns"


	
Section 4.6, "Bindings for SPARQL Variables in Matching Subgraphs in a Document (SEM_CONTAINS_SELECT Ancillary Operator)"


	
Section 4.7, "Improving the Quality of Document Search Operations"


	
Section 4.8, "Indexing External Documents"


	
Section 4.9, "Configuring the Calais Extractor type"


	
Section 4.10, "Working with General Architecture for Text Engineering (GATE)"


	
Section 4.11, "Creating a New Extractor Type"


	
Section 4.12, "Creating a Local Semantic Index on a Range-Partitioned Table"


	
Section 4.13, "Altering a Semantic Index"


	
Section 4.14, "Passing Extractor-Specific Parameters in CREATE INDEX and ALTER INDEX"


	
Section 4.15, "Performing Document-Centric Inference"


	
Section 4.16, "Metadata Views for Semantic Indexing"


	
Section 4.17, "Default Style Sheet for GATE Extractor Output"






4.1 Information Extractors for Semantically Indexing Documents

Information extractors process unstructured documents and extract meaningful information from them, often using natural-language processing engines with the aid of ontologies. The quality and the completeness of information extracted from a document vary from one extractor to another. Some extractors simply identify the entities (such as names of persons, organizations, and geographic locations from a document), while the others attempt to identify the relationships among the identified entities and additional description for those entities. You can search for a specific document from a large set when the information extracted from the documents is maintained as a semantic index.

You can use an information extractor to create a semantic index on the documents stored in a column of a relational table. An extensible framework allows any third-party information extractor that is accessible from the database to be plugged into the database. An object type created for an extractor encapsulates the extraction logic, and has methods to configure the extractor and receive information extracted from a given document in RDF/XML format.

An abstract type MDSYS.RDFCTX_EXTRACTOR defines the common interfaces to all information extractors. An implementation of this abstract type interacts with a specific information extractor to produce RDF/XML for a given document. An implementation for this type can access a third-party information extractor that either is available as a database application or is installed on the network (accessed using Web service callouts). Example 4-1 shows the definition of the RDFCTX_EXTRACTOR abstract type.


Example 4-1 RDFCTX_EXTRACTOR Abstract Type Definition


create or replace type rdfctx_extractor authid current_user as object (
  extr_type        VARCHAR2(32),
  member function  getDescription return VARCHAR2,
  member function  rdfReturnType return VARCHAR2,
  member function  getContext(attribute VARCHAR2) return VARCHAR2,
  member procedure startDriver,
  member function  extractRDF(document CLOB,
                              docId    VARCHAR2) return CLOB,
  member function  extractRdf(document CLOB,
                              docId    VARCHAR2,
                              params   VARCHAR2,
                              options  VARCHAR2 default NULL) return CLOB
  member function  batchExtractRdf(docCursor        SYS_REFCURSOR,
                              extracted_info_table  VARCHAR2,
                              params                VARCHAR2,
                              partition_name        VARCHAR2 default NULL,
                              docId                 VARCHAR2 default NULL,
                              preferences           SYS.XMLType default NULL,
                              options               VARCHAR2 default NULL)  
                              return CLOB,
  member procedure closeDriver
) not instantiable not final
/




A specific implementation of the RDFCTX_EXTRACTOR type sets an identifier for the extractor type in the extr_type attribute, and it returns a short description for the extractor type using getDescription method. All implementations of this abstract type return the extracted information as RDF triples. In the current release, the RDF triples are expected to be serialized using RDF/XML format, and therefore the rdfReturnType method should return 'RDF/XML'.

An extractor type implementation uses the extractRDF method to encapsulate the extraction logic, possibly by invoking external information extractor using proprietary interfaces, and returns the extracted information in RDF/XML format. When a third-party extractor uses some proprietary XML Schema to capture the extracted information, an XML style sheet can be used to generate an equivalent RDF/XML. The startDriver and closeDriver methods can perform any housekeeping operations pertaining to the information extractor. The optional params parameter allows the extractor to obtain additional information about the type of extraction needed (for example, the desired quality of extraction).

Optionally, an extractor type implementation may support a batch interface by providing an implementation of the batchExtractRdf member function. This function accepts a cursor through the input parameter docCursor and typically uses that cursor to retrieve each document, extract information from the document, and then insert the extracted information into (the specified partition identified by the partition_name partition of the extracted_info_table table. The preferences parameter is used to obtain the preferences value associated with the policy (as described in Section 4.8 and in the SEM_RDFCTX.CREATE_POLICY reference section).

The getContext member function accepts an attribute name and returns the value for that attribute. Currently this function is used only for extractors supporting the batch interface. The attribute names and corresponding possible return values are the following:

	
For the BATCH_SUPPORT attribute, the return values are 'YES' or 'NO' depending on whether the extractor supports the batch interface.


	
For the DBUSER attribute, the return value is the name of a database user that will connect to the database to retrieve rows from the cursor (identified by the docCursor parameter) and that will write to the table extracted_info_table.




This information is used for granting appropriate privileges to the table being indexed and the table extracted_info_table.

The startDriver and closeDriver methods can perform any housekeeping operations pertaining to the information extractor.

An extractor type for the General Architecture for Text Engineering (GATE) engine is defined as a subtype of the RDFCTX_EXTRACTOR type. The implementation of this extractor type sends the documents to a GATE engine over a TCP connection, receives annotations extracted by the engine in XML format, and converts this proprietary XML document to an RDF/XML document. For more information on configuring a GATE engine to work with Oracle Database, see Section 4.10. For an example of creating a new information extractor, see Section 4.11.

Information extractors that are deployed as Web services can be invoked from the database by extending the RDFCTX_WS_EXTRACTOR type, which is a subtype of the RDFCTX_EXTRACTOR type. The RDFCTX_WS_EXTRACTOR type encapsulates the Web service callouts in the extractRDF method; specific implementations for network-based extractors can reuse this implementation by setting relevant attribute values in the type constructor.

Thomson Reuters Calais is an example of a network-based information extractor that can be accessed using web-service callouts. The CALAIS_EXTRACTOR type, which is a subtype of the RDFCTX_WS_EXTRACTOR type, encapsulates the Calais extraction logic, and it can be used to semantically index the documents. The CALAIS_EXTRACTOR type must be configured for the database instance before it can be used to create semantic indexes, as explained in Section 4.9.






4.2 Extractor Policies

An extractor policy is a named dictionary entity that determines the characteristics of a semantic index that is created using the policy. Each extractor policy refers, directly or indirectly, to an instance of an extractor type. An extractor policy with a direct reference to an extractor type instance can be used to compose other extractor policies that include additional RDF models for ontologies.

The following example creates a basic extractor policy created using the GATE extractor type:


begin
  sem_rdfctx.create_policy (policy_name => 'SEM_EXTR',
                            extractor   => mdsys.gatenlp_extractor());
end;
/


The following example creates a dependent extractor policy that combines the metadata extracted by the policy in the preceding example with a user-defined RDF model named geo_ontology:


begin
  sem_rdfctx.create_policy (policy_name => 'SEM_EXTR_PLUS_GEOONT',
                            base_policy => 'SEM_EXTR',
                            user_models => SEM_MODELS ('geo_ontology'));
end;
/


You can use an extractor policy to create one or more semantic indexes on columns that store unstructured documents, as explained in Section 4.3.






4.3 Semantically Indexing Documents

Textual documents stored in a CLOB or VARCHAR2 column of a relational table can be indexed using the MDSYS.SEMCONTEXT index type, to facilitate semantically meaningful searches. The extractor policy specified at index creation determines the information extractor used to semantically index the documents. The extracted information, captured as a set of RDF triples for each document, is managed in the semantic data store. Each instance of the semantic index is associated with a system-generated RDF model, which maintains the RDF triples extracted from the corresponding documents.

The following example creates a semantic index named ArticleIndex on the textual documents in the ARTICLE column of the NEWSFEED table, using the extractor policy named SEM_EXTR:


CREATE INDEX ArticleIndex on Newsfeed (article)
   INDEXTYPE IS mdsys.SemContext PARAMETERS ('SEM_EXTR');


The RDF model created for an index is managed internally and it is not associated with an application table. The triples stored in such model are automatically maintained for any modifications (such as update, insert, or delete) made to the documents stored in the table column. Although a single RDF model is used to index all documents stored in a table column, the triples stored in the model maintain references to the documents from which they are extracted; therefore, all the triples extracted from a specific document form an individual graph within the RDF model. The documents that are semantically indexed can then be searched using a SPARQL query pattern that operates on the triples extracted from the documents.

When creating a semantic index for documents, you can use a basic extractor policy or a dependent policy, which may include one or more user-defined RDF models. When you create an index with a dependent extractor policy, the document search pattern specified using SPARQL could span the triples extracted from the documents as well as those defined in user-defined models.

You can create an index using multiple extractor policies, in which case the triples extracted by the corresponding extractors are maintained separately in distinct RDF models. A document search query using one such index can select the specific policy to be used for answering the query. For example, an extractor policy named CITY_EXTR can be created to extract the names of the cities from a given document, and this extractor policy can be used in combination with the SEM_EXTR policy to create a semantic index, as in the following example:


CREATE INDEX ArticleIndex on Newsfeed (article)
   INDEXTYPE IS mdsys.SemContext PARAMETERS ('SEM_EXTR CITY_EXTR');


The first extractor policy in the PARAMETERS list is considered to be the default policy if a query does not refer to a specific policy; however, you can change the default extractor policy for a semantic index by using the SEM_RDFCTX.SET_DEFAULT_POLICY procedure, as in the following example:


begin
  sem_rdfctx.set_default_policy (index_name => 'ArticleIndex',
                                 policy_name => 'CITY_EXTR');
end;
/






4.4 SEM_CONTAINS and Ancillary Operators

You can use the SEM_CONTAINS operator in a standard SQL statement to search for documents or document references that are stored in relational tables. This operator has the following syntax:


SEM_CONTAINS(
  column   VARCHAR2 / CLOB,
  sparql   VARCHAR2,
  policy   VARCHAR2,
  aliases  SEM_ALIASES,
  index_status  NUMBER,
  ancoper  NUMBER
 ) RETURN NUMBER;


The column and sparql attributes attribute are required. The other attributes are optional (that is, each can be a null value).

The column attribute identifies a VARCHAR2 or CLOB column in a relational table that stores the documents or references to documents that are semantically indexed. An index of type MDSYS.SEMCONTEXT must be defined in this column for the SEM_CONTAINS operator to use.

The sparql attribute is a string literal that defines the document search criteria, expressed in SPARQL format.

The optional policy attribute specifies the name of an extractor policy, usually to override the default policy. A semantic document index can have one or more extractor policies specified at index creation, and one of these policies is the default, which is used if the policy attribute is null in the call to SEM_CONTAINS.

The optional aliases attribute identifies one or more namespaces, including a default namespace, to be used for expansion of qualified names in the query pattern. Its data type is SEM_ALIASES, which has the following definition: TABLE OF SEM_ALIAS, where each SEM_ALIAS element identifies a namespace ID and namespace value. The SEM_ALIAS data type has the following definition: (namespace_id VARCHAR2(30), namespace_val VARCHAR2(4000))

The optional index_status attribute is relevant only when a dependent policy involving one or more entailments is being used for the SEM_CONTAINS invocation. The index_status value identifies the minimum required validity status of the entailments. The possible values are 0 (for VALID, the default), 1 (for INCOMPLETE), and 2 (for INVALID).

The optional ancoper attribute specifies a number as the binding to be used when the SEM_CONTAINS_SELECT ancillary operator is used with this operator in a query. The number specified for the ancoper attribute should be the same as number specified for the operbind attribute in the SEM_CONTAINS_SELECT ancillary operator.

The SEM_CONTAINS operator returns 1 for each document instance matching the specified search criteria, and returns 0 for all other cases.

For more information about using the SEM_CONTAINS operator, including an example, see Section 4.5.



4.4.1 SEM_CONTAINS_SELECT Ancillary Operator

You can use the SEM_CONTAINS_SELECT ancillary operator to return additional information about each document that matches some search criteria. This ancillary operator has a single numerical attribute (operbind) that associates an instance of the SEM_CONTAINS_SELECT ancillary operator with a SEM_CONTAINS operator by using the same value for the binding. This ancillary operator returns an object of type CLOB that contains the additional information from the matching document, formatted in SPARQL Query Results XML format.

The SEM_CONTAINS_SELECT ancillary operator has the following syntax:


SEM_CONTAINS_SELECT(
  operbind  NUMBER
 ) RETURN CLOB;


For more information about using the SEM_CONTAINS_SELECT ancillary operator, including examples, see Section 4.6.






4.4.2 SEM_CONTAINS_COUNT Ancillary Operator

You can use the SEM_CONTAINS_COUNT ancillary operator for a SEM_CONTAINS operator invocation. For each matched document, it returns the count of matching subgraphs for the SPARQL graph pattern specified in the SEM_CONTAINS invocation.

The SEM_CONTAINS_COUNT ancillary operator has the following syntax:


SEM_CONTAINS_COUNT(
  operbind  NUMBER
 ) RETURN NUMBER;


The following example excerpt shows the use of the SEM_CONTAINS_COUNT ancillary operator to return the count of matching subgraphs for each matched document:


SELECT docId, SEM_CONTAINS_COUNT(1) as matching_subgraph_count
FROM   Newsfeed
WHERE  SEM_CONTAINS (article, 
  '{ ?org   rdf:type          class:Organization  . 
     ?org   pred:hasCategory  cat:BusinessFinance }', .., 
   1)= 1;








4.5 Searching for Documents Using SPARQL Query Patterns

Documents that are semantically indexed (that is, indexed using the mdsys.SemContext index type) can be searched using SEM_CONTAINS operator within a standard SQL query. In the query, the SEM_CONTAINS operator must have at least two parameters, the first specifying the column in which the documents are stored and the second specifying the document search criteria expressed as a SPARQL query pattern, as in the following example:


SELECT docId FROM Newsfeed
WHERE  SEM_CONTAINS (article, 
  '{ ?org  rdf:type  <http://www.example.com/classes/Organization>  . 
     ?org  <http://example.com/pred/hasCategory>  
             <http://www.example.com/category/BusinessFinance> }'
           )= 1;


The SPARQL query pattern specified with the SEM_CONTAINS operator is matched against the individual graphs corresponding to each document, and a document is considered to match a search criterion if the triples from the corresponding graph satisfy the query pattern. In the preceding example, the SPARQL query pattern identifies the individual graphs (thus, the documents) that refer to an Organization that belong to BusinessFinance category. The SQL query returns the rows corresponding to the matching documents in its result set. The preceding example assumes that the URIs used in the query are generated by the underlying extractor, and that you (the user searching for documents) are aware of the properties and terms that are generated by the extractor in use.

When you create an index using a dependent extractor policy that includes one or more user-defined RDF models, the triples asserted in the user models are considered to be common to all the documents. Document searches involving such policies test the search criteria against the triples in individual graphs corresponding to the documents, combined with the triples in the user models. For example, the following query identifies all articles referring to organizations in the state of New Hampshire, using the geographical ontology (geo_ontology RDF Model from a preceding example) that maps cities to states:


SELECT docId FROM   Newsfeed
WHERE  SEM_CONTAINS (article, 
        '{ ?org     rdf:type          class:Organization  . 
           ?org     pred:hasLocation  ?city . 
           ?city    geo:hasState      state:NewHampshire }', 
        'SEM_EXTR_PLUS_GEOONT', 
               sem_aliases(                              
                  sem_alias('class', 'http://www.myorg.com/classes/'),
                  sem_alias('pred', 'http://www.myorg.com/pred/'),
                  sem_alias('geo', 'http://geoont.org/rel/'),
                  sem_alias('state', 'http://geoont.org/state/'))) = 1;


The preceding query, with a reference to the extractor policy SEM_EXTR_PLUS_GEOONT (created in an example in Section 4.2), combines the triples extracted from the indexed documents and the triples in the user model to find matching documents. In this example, the name of the extractor policy is optional if the corresponding index is created with just this policy or if this is the default extractor policy for the index. When the query pattern uses some qualified names, an optional parameter to the SEM_CONTAINS operator can specify the namespaces to be used for expanding the qualified names.

SPARQL-based document searches can make use of the SPARQL syntax that is supported through SEM_MATCH queries.






4.6 Bindings for SPARQL Variables in Matching Subgraphs in a Document (SEM_CONTAINS_SELECT Ancillary Operator)

You can use the SEM_CONTAINS_SELECT ancillary operator to return additional information about each document matched using the SEM_CONTAINS operator. Specifically, the bindings for the variables used in SPARQL-based document search criteria can be returned using this operator. This operator is ancillary to the SEM_CONTAINS operator, and a literal number is used as an argument to this operator to associate it with a specific instance of SEM_CONTAINS operator, as in the following example:


SELECT docId, SEM_CONTAINS_SELECT(1) as result
FROM   Newsfeed
WHERE  SEM_CONTAINS (article, 
  '{ ?org   rdf:type          class:Organization  . 
     ?org   pred:hasCategory  cat:BusinessFinance }', .., 
   1)= 1;


The SEM_CONTAINS_SELECT ancillary operator returns the bindings for the variables in SPARQL Query Results XML format, as CLOB data. The variables may be bound to multiple data instances from a single document, in which case all bindings for the variables are returned. The following example is an excerpt from the output of the preceding query: a value returned by the SEM_CONTAINS_SELECT ancillary operator for a document matching the specified search criteria.


<results>
  <result> 
     <binding name="ORG">
        <uri>http://newscorp.com/Org/AcmeCorp</uri>
     </binding>
  </result> 
  <result>
     <binding name="ORG">
       <uri>http://newscorp.com/Org/ABCCorp</uri>
     </binding>
  </result>
</results>


You can rank the search results by creating an instance of XMLType for the CLOB value returned by the SEM_CONTAINS_SELECT ancillary operator and applying an XPath expression to sort the results on some attribute values.

By default, the SEM_CONTAINS_SELECT ancillary operator returns bindings for all variables used in the SPARQL-based document search criteria. However, when the values for only a subset of the variables are relevant for a search, the SPARQL pattern can include a SELECT clause with space-separated list of variables for which the values should be returned, as in the following example:


SELECT docId, SEM_CONTAINS_SELECT(1) as result
FROM   Newsfeed
WHERE  SEM_CONTAINS (article, 
        'SELECT ?org  ?city 
         WHERE { ?org     rdf:type          class:Organization  . 
                 ?org     pred:hasLocation  ?city . 
                 ?city    geo:hasState      state:NewHampshire }', .., 
         1) = 1;






4.7 Improving the Quality of Document Search Operations

The quality of a document search operation depends on the quality of the information produced by the extractor used to index the documents. If the information extracted is incomplete, you may want to add some annotations to a document. You can use the SEM_RDFCTX.MAINTAIN_TRIPLES procedure to add annotations, in the form of RDF triples, to specific documents in order to improve the quality of search, as shown in the following example:


begin
  sem_rdfctx.maintain_triples(
     index_name      => 'ArticleIndex',
     where_clause    => 'docid in (1,15,20)',  
     rdfxml_content => sys.xmltype(
      '<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
                xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
                xmlns:pred="http://example.com/pred/">
       <rdf:Description rdf:about=" http://newscorp.com/Org/ExampleCorp">
         <pred:hasShortName 
               rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
             Example
         </pred:hasShortName>
     </rdf:Description> 
    </rdf:RDF>'));
end;
/


The index name and the WHERE clause specified in the preceding example identify specific instances of the document to be annotated, and the RDF/XML content passed in is used to add additional triples to the individual graphs corresponding to those documents. This allows domain experts and user communities to improve the quality of search by adding relevant triples to annotate some documents.






4.8 Indexing External Documents

You can use semantic indexing on documents that are stored in a file system or on the network. In such cases, you store the references to external documents in a table column, and you create a semantic index on the column using an appropriate extractor policy.

To index external documents, define an extractor policy with appropriate preferences, using an XML document that is assigned to the preferences parameter of the SEM_RDFCTX.CREATE_POLICY procedure, as in the following example:


begin
  sem_rdfctx.create_policy (
       policy_name => 'SEM_EXTR_FROM_FILE',
       extractor   => mdsys.gatenlp_extractor()),
       preferences => sys.xmltype('<RDFCTXPreferences>
                                     <Datastore type="FILE"> 
                                        <Path>EXTFILES_DIR</Path>
                                     </Datastore>
                                   </RDFCTXPreferences>')); 
end;
/


The <Datastore> element in the preferences document specifies the type of repository used for the documents to be indexed. When the value for the type attribute is set to FILE, the <Path> element identifies a directory object in the database (created using the SQL statement CREATE DIRECTORY). A table column indexed using the specified extractor policy is expected to contain relative paths to individual files within the directory object, as shown in the following example:


CREATE TABLE newsfeed (docid       number, 
                       articleLoc  VARCHAR2(100)); 
INSERT INTO into newsfeed (docid, articleLoc) values
                     (1, 'article1.txt'); 
INSERT INTO newsfeed (docid, articleLoc) values
                     (2, 'folder/article2.txt'); 
 
CREATE INDEX ArticleIndex on newsfeed (articleLoc)
   INDEXTYPE IS mdsys.SemContext PARAMETERS ('SEM_EXTR_FROM_FILE');


To index documents that are accessed using HTTP protocol, create a extractor policy with preferences that set the type attribute of the <Datastore> element to URL and that list one or more hosts in the <Path> elements, as shown in the following excerpt:


<RDFCTXPreferences>
   <Datastore type="URL"> 
       <Path>http://cnn.com</Path>
       <Path>http://abc.com</Path>
   </Datastore>
</RDFCTXPreferences>


The schema in which a semantic index for external documents is created must have the necessary privileges to access the external objects, including access to any proxy server used to access documents outside the firewall, as shown in the following example:


-- Grant read access to the directory object for FILE data store -- 
grant read on directory EXTFILES_DIR to SEMUSR;
 
-- Grant connect access to set of hosts for URL data store -- 
begin
  dbms_network_acl_admin.create_acl (
                acl          => 'network_docs.xml',
                description  => 'Normal Access',
                principal    => 'SEMUSR',
                is_grant     => TRUE,
                privilege    => 'connect');
end;
/
 
begin
  dbms_network_acl_admin.assign_acl (
               acl        => 'network_docs.xml',
               host       =>  'cnn.com',
               lower_port => 1,
               upper_port => 10000);
end;
/


External documents that are semantically indexed in the database may be in one of the well-known formats such as Microsoft Word, RTF, and PDF. This takes advantage of the Oracle Text capability to extract plain text version from formatted documents using filters (see the CTX_DOC.POLICY_FILTER procedure, described in Oracle Text Reference). To semantically index formatted documents, you must specify the name of a CTX policy in the extractor preferences, as shown in the following excerpt:


<RDFCTXPreferences>
   <Datastore type="FILE" filter="CTX_FILTER_POLICY"> 
       <Path>EXTFILES_DIR</Path>
   </Datastore>
</RDFCTXPreferences>


In the preceding example, the CTX_FILTER_POLICY policy, created using the CTX_DDL.CREATE_POLICY procedure, must exist in your schema. The table columns that are semantically indexed using this preferences document can store paths to formatted documents, from which plain text is extracted using the specified CTX policy. The information extractor associated with the extractor policy then processes the plain text further, to extract the semantics in RDF/XML format.






4.9 Configuring the Calais Extractor type

The CALAIS_EXTRACTOR type, which is a subtype of the RDFCTX_WS_EXTRACTOR type, enables you to access a Web service end point anywhere on the network, including the one that is publicly accessible (OpenCalais.com). To do so, you must connect with SYSDBA privileges and configure the Calais extractor type with Web service end point, the SOAP action, and the license key by setting corresponding parameters, as shown in the following example:


begin
  sem_rdfctx.set_extractor_param (
     param_key   => 'CALAIS_WS_ENDPOINT',
     param_value => 'http://api1.opencalais.com/enlighten/calais.asmx',
     param_desc  => 'Calais web service end-point');
       
  sem_rdfctx.set_extractor_param (
     param_key   => 'CALAIS_KEY',
     param_value => '<Calais license key goes here>',
     param_desc  => 'Calais extractor license key');
 
  sem_rdfctx.set_extractor_param (
     param_key   => 'CALAIS_WS_SOAPACTION',
     param_value => 'http://clearforest.com/Enlighten',
     param_desc  => 'Calais web service SOAP Action');
end;


To enable access to a Web service outside the firewall, you must also set the parameter for the proxy host, as in the following example:


begin
  sem_rdfctx.set_extractor_param (
      param_key   => 'HTTP_PROXY',
      param_value => 'www-proxy.acme.com',
      param_desc  => 'Proxy server');
end;






4.10 Working with General Architecture for Text Engineering (GATE)

General Architecture for Text Engineering (GATE) is an open source natural language processor and information extractor (see http://gate.ac.uk). You can use GATE to perform semantic indexing of documents stored in the database. The extractor type mdsys.gatenlp_extractor is defined as a subtype of the RDFCTX_EXTRACTOR type. The implementation of this extractor type sends an unstructured document to a GATE engine over a TCP connection, receives corresponding annotations, and converts them into RDF following a user-specified XML style sheet.

The requests for information extraction are handled by a server socket implementation, which instantiates the GATE components and listens to extraction requests at a pre-determined port. The host and the post for the GATE listener are recorded in the database, as shown in the following example, for all instances of the mdsys.gatenlp_extractor type to use.


begin 
  sem_rdfctx.set_extractor_param (
     param_key   => 'GATE_NLP_HOST',
     param_value => 'gateserver.acme.com',
     param_desc  => 'Host for GATE NLP Listener ');
       
  sem_rdfctx.set_extractor_param (
     param_key   => 'GATE_NLP_PORT',
     param_value => '7687',
     param_desc  => 'Port for Gate NLP Listener');
end;


The server socket application receives an unstructured document and constructs an annotation set with the desired types of annotations. Each annotation in the set may be customized to include additional features, such as the relevant phrase from the input document and some domain specific features. The resulting annotation set is serialized into XML (using the annotationSetToXml method in the gate.corpora.DocumentXmlUtils Java package) and returned back to the socket client.

A sample Java implementation for the GATE listener is available for download from the code samples and examples page on OTN (see Section 1.11, "Semantic Data Examples (PL/SQL and Java)" for information about this page).

The mdsys.gatenlp_extractor implementation in the database receives the annotation set encoded in XML, and converts it to RDF/XML using an XML style sheet. You can replace the default style sheet (listed in Section 4.17) used by the mdsys.gatenlp_extractor implementation with a custom style sheet when you instantiate the type.

The following example creates an extractor policy that uses a custom style sheet to generate RDF from the annotation set produced by the GATE extractor:


begin
  sem_rdfctx.create_policy (policy_name => 'GATE_EXTR',
                            extractor   => mdsys.gatenlp_extractor(
      sys.XMLType('<?xml version="1.0"?> 
                 <xsl:stylesheet version="2.0" 
                    xmlns:xsl="http://www.w3.org/1999/XSL/Transform" >
                   ..
                 </xsl:stylesheet>')));
end;
/






4.11 Creating a New Extractor Type

You can create a new extractor type by extending the RDFCTX_EXTRACTOR or RDFCTX_WS_EXTRACTOR extractor type. The extractor type to be extended must be accessible using Web service calls. The schema in which the new extractor type is created must be granted additional privileges to allow creation of the subtype. For example, if a new extractor type is created in the schema RDFCTXU, you must enter the following commands to grant the UNDER and RDFCTX_ADMIN privileges to that schema:


GRANT under ON mdsys.rdfctx_extractor TO rdfctxu;
GRANT rdfctx_admin TO rdfctxu;


As an example, assume that an information extractor can process an incoming document and return an XML document that contains extracted information. To enable the information extractor to be invoked using a PL/SQL wrapper, you can create the corresponding extractor type implementation, as in the following example:


create or replace type rdfctxu.info_extractor under rdfctx_extractor (
  xsl_trans   sys.XMLtype,
  constructor function info_extractor (
                 xsl_trans  sys.XMLType ) return self as result,
  overriding member function getDescription return VARCHAR2,
  overriding member function rdfReturnType return VARCHAR2,
  overriding member function extractRDF(document CLOB,
                                        docId    VARCHAR2) return CLOB
)
/
 
create or replace type body rdfctxu.info_extractor as 
  constructor function info_extractor (
                 xsl_trans  sys.XMLType ) return self as result is
  begin
    self.extr_type := 'Info Extractor Inc.'; 
    -- XML style sheet to generate RDF/XML from proprietary XML documents
    self.xsl_trans := xsl_trans; 
    return;
  end info_extractor; 
 
  overriding member function getDescription return VARCHAR2 is
  begin
    return 'Extactor by Info Extractor Inc.';
  end getDescription;
 
  overriding member function rdfReturnType return VARCHAR2 is
  begin
    return 'RDF/XML';
  end rdfReturnType;
 
  overriding member function extractRDF(document CLOB,
                                        docId    VARCHAR2) return CLOB is
    ce_xmlt  sys.xmltype;
  begin
    EXECUTE IMMEDIATE 
      'begin :1 = info_extract_xml(doc => :2); end;'
       USING IN OUT ce_xmlt, IN document;
 
    -- Now pass the ce_xmlt through RDF/XML transformation -- 
    return ce_xmlt.transform(self.xsl_trans).getClobVal();
  end extractRdf;
 
end;


In the preceding example:

	
The implementation for the created info_extractor extractor type relies on the XML style sheet, set in the constructor, to generate RDF/XML from the proprietary XML schema used by the underlying information extractor.


	
The extractRDF function assumes that the info_extract_xml function contacts the desired information extractor and returns an XML document with the information extracted from the document that was passed in.


	
The XML style sheet is applied on the XML document to generate equivalent RDF/XML, which is returned by the extractRDF function.









4.12 Creating a Local Semantic Index on a Range-Partitioned Table

A local index can be created on a VARCHAR2 or CLOB column of a range-partitioned table by using the following syntax:


CREATE INDEX <index-name> … LOCAL;


The following example creates a range-partitioned table and a local semantic index on that table:


CREATE TABLE part_newsfeed (
  docid number, article CLOB, cdate DATE) 
partition by range (cdate)
(partition p1 values less than (to_date('01-Jan-2001')),
 partition p2 values less than (to_date('01-Jan-2004')),
 partition p3 values less than (to_date('01-Jan-2008')),
 partition p4 values less than (to_date('01-Jan-2012'))
);
 
CREATE INDEX ArticleLocalIndex on part_newsfeed (article)
   INDEXTYPE IS mdsys.SemContext PARAMETERS ('SEM_EXTR')
LOCAL;


Note that every partition of the local semantic index will have content generated for the same set of policies. When you use the ALTER INDEX statement on a local index to add or drop policies associated with a semantic index partition, you should try to keep the same set of policies associated with each partition. You can achieve this result by using ALTER INDEX statements in a loop over the set of partitions. (For more information about altering semantic indexes, see Section 4.13,)






4.13 Altering a Semantic Index

This section discusses using the ALTER INDEX statement with a semantic index. For a local semantic index, the ALTER INDEX statement applies to a specified partition. The general syntax of the ALTER INDEX command for a semantic index is as follows:


ALTER INDEX <index-name> REBUILD [PARTITION <index-partition-name>]
  [PARAMETERS ('-<action_for_policy> <policy-name>')];




4.13.1 Rebuilding Content for All Existing Policies in a Semantic Index

If the PARAMETERS clause is not included in the ALTER INDEX statement, the content of the semantic index (or index partition) is rebuilt for every policy presently associated with the index. The following are two examples:


ALTER INDEX ArticleIndex REBUILD;
ALTER INDEX ArticleLocalIndex REBUILD PARTITION p1;






4.13.2 Rebuilding to Add Content for a New Policy to a Semantic Index

Using add_policy for <action_for_policy>, you can add content for a new base policy or a dependent policy to a semantic index (or index partition). If a dependent policy is being added and if its base policy is not already a part of the index, then content for the base policy is also added implicitly (by invoking the extractor specified as part of the base policy definition). The following is an example:


ALTER INDEX ArticleIndex REBUILD PARAMETERS ('-add_policy MY_POLICY');






4.13.3 Rebuilding Content for an Existing Policy from a Semantic Index

Using rebuild_policy for <action_for_policy>, you can rebuild the content of the semantic index (or index partition) for an existing policy presently associated with the index. The following is an example:


ALTER INDEX ArticleIndex REBUILD PARAMETERS ('-rebuild_policy MY_POLICY');






4.13.4 Rebuilding to Drop Content for an Existing Policy from a Semantic Index

Using drop_policy for <action_for_policy>, you can drop content corresponding to an existing base policy or a dependent policy from a semantic index (or index partition). Note that dropping the content for a base policy will fail if it is the only policy for the index (or index partition) or if it is used by dependent policies associated with this index (or index partition).

The following example drops the content for a policy from an index:


ALTER INDEX ArticleIndex REBUILD PARAMETERS ('-drop_policy MY_POLICY');








4.14 Passing Extractor-Specific Parameters in CREATE INDEX and ALTER INDEX

The CREATE INDEX and ALTER INDEX statements allow the passing of parameters needed by extractors. These parameters are passed on to the extractor using the params parameter of the extractRdf and batchExtractRdf methods. The following two examples show their use:


CREATE INDEX ArticleIndex on Newsfeed (article)
  INDEXTYPE IS mdsys.SemContext PARAMETERS ('SEM_EXTR=(NE_ONLY)');

ALTER INDEX ArticleIndex REBUILD 
  PARAMETERS ('-add_policy MY_POLICY=(NE_ONLY)');






4.15 Performing Document-Centric Inference

Document-centric inference refers to the ability to infer from each document individually. It does not allow triples extracted from two different documents to be used together for inference. It contrasts with the more common corpus-centric inference, where new triples can be inferred from combinations of triples extracted from multiple documents.

Document-centric inference can be desirable in document search applications because inclusion of a document in the search result is based on the extracted and/or inferred triples for that document only, that is, triples extracted and/or inferred from any other documents in the corpus do not play any role in the selection of this document. (Document-centric inference might be preferred, for example, if there is inconsistency among documents because of differences in the reliability of the data or in the biases of the document creators.)

To perform document-centric inference, use named graph based local inference (explained in Section 2.2.11.2) by specifying options => 'LOCAL_NG_INF=T' in the call to the SEM_APIS.CREATE_ENTAILMENT procedure.

Entailments created through document-centric inference can be included as content of a semantic index by creating a dependent policy and adding that policy to the semantic index, as shown in Example 4-2.


Example 4-2 Using Document-Centric Inference


-- Create entailment 'extr_data_inf' using document-centric inference
-- assuming:
--   model_name for semantic index based on base policy: 'RDFCTX_MOD_1'
--    (model name is available from the RDFCTX_INDEX_POLICIES view; 
--     see Section 4.16.2, "RDFCTX_INDEX_POLICIES View")
--   ontology: dataOntology
--   rulebase: OWL2RL
-- options: 'LOCAL_NG_INF=T' (for document-centric inference)
BEGIN
sem_apis.create_entailment('extr_data_inf',
  models_in    => sem_models('RDFCTX_MOD_1', 'dataOntology'),
  rulebases_in => sem_rulebases('OWL2RL'),
  options      => 'LOCAL_NG_INF=T');
END;
/
-- Create a dependent policy to augment data extracted using base policy
-- with content of entailment extr_data_inf (computed in previous statement)
BEGIN
sem_rdfctx.create_policy (
  policy_name => 'SEM_EXTR_PLUS_DATA_INF',
  base_policy => 'SEM_EXTR',
  user_models => NULL,
  user_entailments => sem_models('extr_data_inf'));
END;
/
-- Add the dependent policy to the ARTICLEINDEX index.
EXECUTE sem_rdfctx.add_dependent_policy('ARTICLEINDEX','SEM_EXTR_PLUS_DATA_INF');








4.16 Metadata Views for Semantic Indexing

This section describes views that contain metadata about semantic indexing.



4.16.1 MDSYS.RDFCTX_POLICIES View

Information about extractor policies defined in the current schema is maintained in the MDSYS.RDFCTX_POLICIES view, which has the columns shown in Table 4-1 and one row for each extractor policy.


Table 4-1 MDSYS.RDFCTX_POLICIES View Columns

	Column Name	Data Type	Description
	
POLICY_OWNER

	
VARCHAR2(32)

	
Owner of the extractor policy


	
POLICY_NAME

	
VARCHAR2(32)

	
Name of the extractor policy


	
EXTRACTOR

	
MDSYS.RDFCTX_EXTRACTOR

	
Instance of extractor type


	
IS_DEPENDENT

	
VARCHAR2(3)

	
Contains YES if the extractor policy is dependent on a base policy; contains NO if the extractor policy is not dependent on a base policy.


	
BASE_POLICY

	
VARCHAR2(32)

	
For a dependent policy, the name of the base policy


	
USER_MODELS

	
MDSYS.RDF_MODELS

	
For a dependent policy, a list of the RDF models included in the policy












4.16.2 RDFCTX_INDEX_POLICIES View

Information about semantic indexes defined in the current schema and the extractor policies used to create the index is maintained in the MDSYS.RDFCTX_POLICIES view, which has the columns shown in Table 4-2 and one row for each combination of semantic index and extractor policy.


Table 4-2 MDSYS.RDFCTX_INDEX_POLICIES View Columns

	Column Name	Data Type	Description
	
INDEX_OWNER

	
VARCHAR2(32)

	
Owner of the semantic index


	
INDEX_NAME

	
VARCHAR2(32)

	
Name of the semantic index


	
INDEX_PARTITION

	
VARCHAR2(32)

	
Name of the index partition (for LOCAL index only)


	
POLICY_NAME

	
VARCHAR2(32)

	
Name of the extractor policy


	
EXTR_PARAMETERS

	
VARCHAR2(100)

	
Parameters specified for the extractor


	
IS_DEFAULT

	
VARCHAR2(3)

	
Contains YES if POLICY_NAME is the default extractor policy for the index; contains NO if POLICY_NAME is not the default extractor policy for the index.


	
STATUS

	
VARCHAR2(10)

	
Contains VALID if the index is valid, INPROGRESS if the index is being created, or FAILED if a system failure occurred during the creation of the index.


	
RDF_MODEL

	
VARCHAR2(32)

	
Name of the RDF model maintaining the index data












4.16.3 RDFCTX_INDEX_EXCEPTIONS View

Information about exceptions encountered while creating or maintaining semantic indexes in the current schema is maintained in the MDSYS.RDFCTX_INDEX_EXCEPTIONS view, which has the columns shown in Table 4-3 and one row for each exception.


Table 4-3 MDSYS.RDFCTX_INDEX_EXCEPTIONS View Columns

	Column Name	Data Type	Description
	
INDEX_OWNER

	
VARCHAR2(32)

	
Owner of the semantic index associated with the exception


	
INDEX_NAME

	
VARCHAR2(32)

	
Name of the semantic index associated with the exception


	
POLICY_NAME

	
VARCHAR2(32)

	
Name of the extractor policy associated with the exception


	
DOC_IDENTIFIER

	
VARCHAR2(38)

	
Row identifier (rowid) of the document associated with the exception


	
EXCEPTION_TYPE

	
VARCHAR2(13)

	
Type of exception


	
EXCEPTION_CODE

	
NUMBER

	
Error code associated with the exception


	
EXCEPTION_TEXT

	
CLOB

	
Text associated with the exception


	
EXTRACTED_AT

	
TIMESTAMP

	
Time at which the exception occurred














4.17 Default Style Sheet for GATE Extractor Output

This section lists the default XML style sheet that the mdsys.gatenlp_extractor implementation uses to convert the annotation set (encoded in XML) into RDF/XML. (This extractor is explained in Section 4.10.)


<?xml version="1.0"?> 
  <xsl:stylesheet version="2.0" 
                   xmlns:xsl="http://www.w3.org/1999/XSL/Transform" > 
     <xsl:output encoding="utf-8" indent="yes"/> 
     <xsl:param name="docbase">http://xmlns.oracle.com/rdfctx/</xsl:param>
     <xsl:param name="docident">0</xsl:param>
     <xsl:param name="classpfx">
       <xsl:value-of select="$docbase"/>
       <xsl:text>class/</xsl:text> 
     </xsl:param>
     <xsl:template match="/">
        <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
                 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
                 xmlns:owl="http://www.w3.org/2002/07/owl#" 
                 xmlns:prop="http://xmlns.oracle.com/rdfctx/property/">  
        <xsl:for-each select="AnnotationSet/Annotation"> 
          <rdf:Description> 
            <xsl:attribute name="rdf:about"> 
              <xsl:value-of select="$docbase"/>
              <xsl:text>docref/</xsl:text>
              <xsl:value-of select="$docident"/>
              <xsl:text>/</xsl:text>
              <xsl:value-of select="@Id"/>
            </xsl:attribute>
            <xsl:for-each select="./Feature"> 
              <xsl:choose>
                <xsl:when test="./Name[text()='majorType']"> 
                  <rdf:type> 
                    <xsl:attribute name="rdf:resource"> 
                       <xsl:value-of select="$classpfx"/>
                       <xsl:text>major/</xsl:text>
                       <xsl:value-of select="translate(./Value/text(),
                                                       ' ', '#')"/>
                    </xsl:attribute>  
                  </rdf:type>
                </xsl:when>
                <xsl:when test="./Name[text()='minorType']"> 
                  <xsl:element name="prop:hasMinorType"> 
                    <xsl:attribute name="rdf:resource"> 
                       <xsl:value-of select="$docbase"/>
                       <xsl:text>minorType/</xsl:text>
                       <xsl:value-of select="translate(./Value/text(),
                                                       ' ', '#')"/>
                    </xsl:attribute>  
                  </xsl:element> 
                </xsl:when>
                <xsl:when test="./Name[text()='kind']"> 
                  <xsl:element name="prop:hasKind"> 
                    <xsl:attribute name="rdf:resource"> 
                       <xsl:value-of select="$docbase"/>
                       <xsl:text>kind/</xsl:text>
                       <xsl:value-of select="translate(./Value/text(),
                                                       ' ', '#')"/>
                    </xsl:attribute>  
                  </xsl:element> 
                </xsl:when>
                <xsl:when test="./Name[text()='locType']"> 
                  <xsl:element name="prop:hasLocType"> 
                    <xsl:attribute name="rdf:resource"> 
                       <xsl:value-of select="$docbase"/>
                       <xsl:text>locType/</xsl:text>
                       <xsl:value-of select="translate(./Value/text(),
                                                       ' ', '#')"/>
                    </xsl:attribute>  
                  </xsl:element> 
                </xsl:when>
                <xsl:when test="./Name[text()='entityValue']"> 
                  <xsl:element name="prop:hasEntityValue"> 
                    <xsl:attribute name="rdf:datatype"> 
                      <xsl:text>
                         http://www.w3.org/2001/XMLSchema#string
                      </xsl:text>
                    </xsl:attribute> 
                    <xsl:value-of select="./Value/text()"/>
                  </xsl:element> 
                </xsl:when>
                <xsl:otherwise> 
                  <xsl:element name="prop:has{translate(
                                        substring(./Name/text(),1,1),
                                        'abcdefghijklmnopqrstuvwxyz',
                                        'ABCDEFGHIJKLMNOPQRSTUVWXYZ')}{
                                      substring(./Name/text(),2)}"> 
                     <xsl:attribute name="rdf:datatype"> 
                        <xsl:text>
                          http://www.w3.org/2001/XMLSchema#string
                        </xsl:text> 
                     </xsl:attribute> 
                    <xsl:value-of select="./Value/text()"/>
                  </xsl:element> 
                </xsl:otherwise> 
              </xsl:choose>
            </xsl:for-each> 
          </rdf:Description> 
        </xsl:for-each>
        </rdf:RDF> 
      </xsl:template>
   </xsl:stylesheet>





5 Fine-Grained Access Control for RDF Data

The default control of access to the Oracle Database semantic data store is at the model level: the owner of a model may grant select, delete, and insert privileges on the model to other users by granting appropriate privileges on the view named RDFM_<model_name>. However, for applications with stringent security requirements, you can enforce a fine-grained access control mechanism by using either the Virtual Private Database feature or the Oracle Label Security option of Oracle Database:

	
Virtual Private Database (VPD) for RDF data allows security administrators to define policies that conditionally restrict a user's access to triples that involve instances of a specific RDF class or property. Using VPD, the data stored in the RDF models is classified using its metadata and each user query is rewritten to include context-dependent data access constraints that enforce access restrictions.

For information about using VPD, see Oracle Database Security Guide. For information about support for VPD with semantic data, see Section 5.1.


	
Oracle Label Security (OLS) for RDF data allows sensitivity labels to be associated with individual triples stored in an RDF model. For each query, access to specific triples is granted by comparing their labels with the user's session labels. Furthermore, a minimum sensitivity label for all triple describing a specific resource or all triples defined with a specific predicate can be enforced by assigning a sensitivity label directly to the resource or the predicate, respectively.

For information about using OLS, see Oracle Label Security Administrator's Guide. For information about support for OLS with semantic data, see Section 5.2




Some factors to consider in choosing whether use VPD or OLS with RDF data include the following:

	
OLS, when enabled for RDF data, is enforced at the network level, while VPD can be enforced for individual RDF models.


	
You cannot use both VPD and OLS for RDF data at the same time in an Oracle instance.




The application programming interface (API) for implementing VPD or OLS with semantic data is provided in the SEM_RDFSA PL/SQL package. Chapter 13 provides reference information about the programs in the SEM_RDFSA package.

VPD and OLS support for RDF data is included in the semantic technologies support for Release 11.2. (For information about enabling, downgrading, or removing semantic technologies support, see Appendix A.)

This chapter contains the following major sections:

	
Section 5.1, "Virtual Private Database (VPD) for RDF Data"


	
Section 5.2, "Oracle Label Security (OLS) for RDF Data"






5.1 Virtual Private Database (VPD) for RDF Data

The Virtual Private Database (VPD) feature is a row-level security mechanism that restricts access to specific rows in a relational table or view using a security policy and an application context. The security policy includes a policy function that dynamically generates predicates that are enforced for each row returned for the user query. The security predicates returned by the policy function associated with a table are typically expressed using the columns in the table and are thus dependent on the table metadata. Effectively, the security predicates ensure that the rows returned for a user query satisfy additional conditions that are applied on the contents of the row.

When the relational data is mapped to RDF, the data stored in a specific relational table represent triples describing instances of a specific RDF class. In this representation, the columns in the relational table map to RDF properties that are used to describe a resource. This mapping may be further extended to the application of VPD policies.

A VPD policy applied to RDF data restricts users' access to instances of a specific RDF class or property by applying predicates, in the form of graph patterns and filter conditions, on the instance data. For example, a VPD policy may be defined to restrict access to instances of a Contract RDF class only to the users belonging to a specific department. Furthermore, access to the hasContractValue property for a resource identified as instance of the Contract RDF class may be restricted only to the manager of the contract. VPD support for RDF data allows security conditions or data access constraints to be associated with RDF classes and properties, so that access to corresponding instance data is restricted.

A data access constraint associated with an RDF class or property specifies a graph query pattern that must be enforced for all corresponding data instances that are returned as the query result. For example, a SPARQL query pattern to find the due dates for all instances of a Contract class, {?contract :hasDueDate ?due}, may activate a data access constraint that ensures that the information returned pertains to contracts belonging to a specific department. This is achieved by logically rewriting the user's graph query pattern to include additional graph patterns, as shown in the following example:


{ ?contract   :hasDueDate  ?due . 
  ?contract   :drivenBy    dept:Dept1 }


Furthermore, the values bound into the rewritten graph query pattern may make use of session context to enforce dynamic access restrictions. In the following example, the sys_context function in the object position of the triple pattern binds the appropriate department value based on the session context:


{ ?contract   :hasDueDate   ?due . 
  ?contract   :drivenBy
             "sys_context('sa$appctx','user_dept'}"^^orardf:instruction }


In a relational data model, the metadata, in the form of table definition, always exists along with the data (the rows stored in the table); thus, the VPD policies defined using the metadata are well formed and the security conditions are generated using a procedural logic in the policy function.

However, the RDF data model allows data with no accompanying metadata, and therefore the class information for instance data may not always be available for a given RDF graph. For example, in an RDF graph a resource known to be a contract might not accompany a triple that asserts that the resource is an instance of Contract class. Usually such triples can be inferred using available domain and range specifications for the properties describing the resource.

Similarly, a VPD policy relies on the properties' domain and range specifications for deriving the class information for the instance data and for enforcing appropriate data access constraints. However, to avoid runtime dependencies on the user data, a VPD policy maintains the minimal metadata required to derive the class information in its dictionary, separate from the asserted and inferred triples. This also ensures that the metadata maintained by a VPD policy is complete even when some necessary information is missing from the asserted triples and that a VPD policy, with its data access constraints and the metadata, is self-contained and portable with no external dependencies.

A VPD policy with specific data access constraints and RDF metadata specifications can be used to enforce access restrictions for the data stored in an RDF model. Each SPARQL query issued on the model is analyzed to deduce the class information for the resources accessed in the query, and appropriate data access constraints are applied. To facilitate the compile-time analysis and derivation of class information for instance data, a graph query pattern with an unbound predicate is restricted when a VPD policy is in effect. For example, a graph pattern of the following form, anywhere in a SPARQL query pattern, raises an exception when any underlying model has a VPD policy:


{ <contract:projectHLS>  ?pred  ?obj }


VPD policies are only enforced for SEM_MATCH queries expressed in SPARQL syntax. All other forms of data access (such as classic syntax for graph pattern or direct query on the model view) are not permitted.



5.1.1 VPD Policy for RDF Data

A VPD policy for RDF data is a named dictionary entity that can be used to enforce access restrictions for the data stored in one or more RDF models. A VPD policy defined for RDF data has unique characteristics, and it cannot be reused to enforce security policies for relational data. An RDF-VPD policy defined in the database includes the following:

	
The RDF Schema statements or metadata necessary for deriving class information for the data referenced in a SPARQL user query


	
The data access constraints that enforce access restrictions for the instance data


	
Application context that allows conditional inclusions of groups of data access constraints based on the runtime environment




An RDF-VPD policy is defined, owned, and maintained by a user with a security administrator role in an organization. This user must have at least EXECUTE privileges on the SYS.DBMS_RLS package. The owner of an RDF-VPD policy can maintain the metadata associated with the policy, define new data access constraints, and apply the policy to one or more RDF models.

A SPARQL query issued on an RDF model with a VPD policy is analyzed, and zero or more data access constraints defined in the policy are enforced such that the data instances that are returned as the query result also satisfy these constraints. The exact data access constraints enforced for a user query vary, based on the resources referenced in the query and the application context. For example, a policy that restricts a manager's access to the hasContractValue property may be relaxed for a user with the Vice President role.

Based on the role of the user, as captured in the application context, specific constraints to be applied are determined at runtime. To facilitate this dynamic inclusion of subsets of constraints defined in a VPD policy, the data access constraints are arranged into named groups that can be activated and deactivated based on the application context. During query analysis, only the constraints defined in the active groups are considered for enforcement.

The constraint groups within a VPD policy are managed using an application context and its package implementation. Each VPD policy can specify the namespace for a context created with the CREATE CONTEXT command. Each attribute associated with the context is treated as the name of a constraint group that can be activated by initializing its value to 1. For example, setting the value for MANAGER attribute of the context associated with a VPD policy to 1 will activate the constraints associated with MANAGER group for the user session. The logic that initializes specific constraint groups based on the user context is typically embedded in the package associated with the context type. The following example shows an excerpt from a sample implementation for one such package:


CREATE CONTEXT contracts_constr_ctx using sec_admin.contracts_ctx_pack;
 
begin
  -- create the VPD policy with a context -- 
  sem_rdfsa.create_vpd_policy(policy_name    => 'CONTRACTS_POLICY',
                              policy_context => 'contracts_constr_ctx');
end;
/
 
create or replace package sec_admin.contracts_ctx_pack as
  procedure init_constr_groups;
end;
/
 
create or replace package body sec_admin.contracts_ctx_pack as
  procedure init_contr_groups is 
    hrdata EmpRole%rowtype; 
  begin
    -- specific users with FULL access to the data associated with 
    -- the policy -- 
    if (sys_context('userenv', 'session_user') = 'RDF_ADMIN') then 
      dbms_session.set_context('contracts_constr_ctx',
                                sem_rdfsa.VPD_FULL_ACCESS, 1); 
      return;
    end if; 
 
    SELECT * into hrdata FROM EmpRole WHERE guid = 
                          sys_context('userenv','session_user');
 
    if (hrdata.emprole = 'VP') then 
      -- if the user logged in has VP role, activate the constraint
      -- group named VP and keep all other groups inactive. 
      dbms_session.set_context('contracts_constr_ctx','VP', '1'); 
    elsif (hrdata.emprole = 'MANAGER') then 
      dbms_session.set_context('contracts_constr_ctx', 'MANAGER', '1'); 
    elsif ...
      ...  
    else 
      raise_application_error(-20010, 'unknown user role'); 
    end if;
 
  exception when others then 
    -- enforce constraints for all groups --
    dbms_session.clear_all_context('contracts_constr_ctx');
  end init_contr_groups; 
end;
/


By default, when a namespace is not associated with an RDF-VPD policy or when a specific constraint group is not activated in a session, all the constraints defined in the policy are active and they are enforced for each user query. However, when a specific constraint group is activated by setting the corresponding namespace-attribute value to 1, only the constraints belonging to the group and any other constraints that are not associated with any group are enforced. For a given session, one or more constraint groups may be activated, in which case all the applicable constraints are enforced conjunctively.

At the time of creation, the data access constraints defined in a RDF-VPD policy may specify the name of a constraint group (explained in Section 5.1.3, "Data Access Constraints"). Within a database session, appropriate groups of constraints are activated based on the session context set by the context package. For all subsequent SPARQL queries in the database session, the constraints belonging to the active groups are consulted for enforcing appropriate security policies.

Maintenance operations on an RDF model with a VPD policy require unconditional access to data in the model. These operations include creation of an entailment using at least one VPD protected model, and load or data manipulation operations. You can grant unconditional access to the data stored in an RDF model by initializing a reserved attribute for the namespace associated with the VPD policy. The reserved attribute is defined by the package constant sem_rdfsa.VPD_FULL_ACCESS, and the context package implementation shown in the preceding example grants FULL access to the RDF_ADMIN user.

DML operations on the application table are not validated for VPD constraint violations, so only a user with FULL access to the corresponding model can add or modify existing triples.

You can use the SEM_MATCH operator to query an RDF model with a VPD policy in a standard SQL query, and to perform a multi-model query on a combination of VPD-enabled models and models with no VPD policy. However, when more than one model in a multi-model query is VPD-enabled, they must all be associated with the same VPD policy. A VPD policy associated with an RDF model is automatically extended to any data inferred from the model. When multiple RDF models are specified during inference, all VPD-enabled models within the set should use the same VPD policy.






5.1.2 RDF Metadata for Enforcing VPD Policies

The types of RDF metadata used to enforce VPD policies include the following:

	
Domain and range information for the properties used in the graph


	
Subclass relationships in the graph


	
Subproperty relationships in the graph


	
Equivalent properties in the graph




The RDF metadata associated with a VPD policy is specified as one or more RDF Schema statements using one of the following property URIs:

	
http://www.w3.org/2000/01/rdf-schema#domain


	
http://www.w3.org/2000/01/rdf-schema#range


	
http://www.w3.org/2000/01/rdf-schema#subClassOf


	
http://www.w3.org/2000/01/rdf-schema#subPropertyOf


	
http://www.w3.org/2002/07/owl#equivalentProperty




For example, the following RDF Schema statement associated with contracts_policy asserts that the domain of the hasContractValue property is a Contract class. Note that range specification for the predicates can be skipped if they are not relevant or if they are of literal type


begin
  sem_rdfsa.maint_vpd_metadata(
        policy_name => 'contracts_policy',
        t_subject   => '<http://www.myorg.com/pred/hasContractValue>',
        t_predicate => '<http://www.w3.org/2000/01/rdf-schema#domain>',
        t_object    => '<http://www.myorg.com/classes/Contract>');
end;
/


An RDF-VPD policy maintains its metadata separate from the asserted and inferred triples. You can derive this metadata programmatically from the RDF models and the corresponding entailments. For example, if the domain and range information for the properties and subclass and subproperty relationships are already established in the asserted or inferred triples, you can use a SQL query on the underlying model views to populate the metadata for an RDF-VPD policy.

The domain and range information for the properties aid the query analysis in determining the RDF class type for the terms and unbound variables referenced in the query. This information is further used to enforce appropriate data access constraints on the data accessed by the query. The metadata relating to the subclass property is used to ensure that a data access constraint defined for a specific class in a class hierarchy is automatically enforced for all its subclasses. Similarly, the subproperty specification in a VPD policy is used to enforce any constraints associated with a property to all its subproperties.

The RDF Schema statements associated with a VPD policy are not used to infer additional statements, and the security administrator should ensure that the metadata captured in a VPD policy is complete by cross checking it with inferred data. For example, a subproperty schema statement does not automatically infer the domain and range information for the property based on the domain and range specified for the super-property.

Certain owl and rdfs properties in the asserted triples, when left unchecked, may be used to infer data that may be used to circumvent the VPD policies. For example, when the new property is defined as a super-property of a property that has a specific data access constraint, the inferred data may duplicate all instances of the subproperty using the super-property. Unless the VPD policy explicitly defines access constraints for the super-property, the inferred data may be used to circumvent the access restrictions.

The ability to infer new data is only granted to users with FULL access, and such users should ensure that the metadata associated with the VPD policy is complete in light of newly inferred data. Specifically, the metadata associated with the VPD policy should be maintained if some new rdfs:subClassOf, rdfs:superClassOf, rdfs:subPropertyOf, rdfs:superPropertyOf, or owl:equivalentProperty assertions are generated during inference. Also, any new properties introduced by the rulebases used for inference may need domain and range specifications, as well as data access constraints, if they are associated with some sensitive information.

In a VPD policy, a property can be declared to be equivalent to another property so that the domain and range information, as well as any constraints defined for the original property, are automatically duplicated for the equivalent property. However, within a VPD policy, additional metadata or data access constraints cannot be directly assigned to the property declared to be an equivalent of another property.






5.1.3 Data Access Constraints

The data access constraints associated with a VPD policy fall into two general categories, based on the types of access restrictions that they enforce:

	
Those that restrict access to instances of specific RDF classes


	
Those that restrict to assertions using specific RDF properties




The access restrictions are enforced conditionally, based on the application context and the characteristics of the resources being accessed in a SPARQL query. Data access constraints restrict access to instances of an RDF class or property using some properties associated with the resource. For example, access to a resource that is a member of the Contract class may be restricted only to the users who work on the contract, identified using the hasMember property associated with the resource. Similarly, access to the hasContractValue property for a resource may be restricted to a user identified as the manager of the contract using hasManager property associated with the same resource.

Each data access constraint is expressed using two graph patterns identified as a match pattern and an apply pattern. The match pattern of a constraint determines the type of access restriction it enforces and binds one or more variables to the corresponding data instances accessed in the user query. For example, the following match pattern is defined for instances of the Contract class, and it binds a variable to all such instances accessed through a SPARQL query:


{ ?contract  rdf:type  <http://www.myorg.com/classes/Contract> }


Similarly, a match pattern for a constraint involving an RDF property matches the instances of the property accessed in a SPARQL query, and binds two variables to the resources in the subject and object position of such instances. For example, the match pattern for a constraint on the hasContractValue property is defined as follows:


{ ?contract  <http://www.myorg.com/pred/hasContractValue>  ?cvalue }


The apply pattern of a data access constraint defines additional graph patterns to be applied on the resources that match the match pattern before they can be used to construct the query results. One or more variables defined in the match pattern of a data access constraint are used in the corresponding apply pattern to enforce the access restrictions on the identified resources. For example, the following match pattern and apply pattern combination ensures that the hasContractValue of a contract can be accessed only if Andy is the manager of the contract being accessed.:


Match:  { ?contract  pred:hasContractValue  ?cvalue  }
Apply:  { ?contract  pred:hasManager        emp:Andy }


A data access constraint with its match and apply patterns expressed in SPARQL syntax can be added to a VPD policy to enforce access restrictions on the data stored in RDF models that are associated with the VPD policy. The following example, which adds a constraint to the VPD policy, assumes that the VPD policy is defined with appropriate namespace map for the pred and emp namespace prefixes. (To associate a namespace map with a VPD policy, use the SEM_RDFSA.CREATE_VPD_POLICY procedure.)


begin
  sem_rdfsa.add_vpd_constraint(
          policy_name   => 'contracts_policy',
          constr_name   => 'andy_constraint_1',
          match_pattern => '{?contract  pred:hasContractValue ?cvalue }',
          apply_pattern => '{?contract  pred:hasManager       emp:Andy }', 
          constr_group  => 'andy');
end;
/


The ability to arrange data access constraints into groups could ensure that the previous constraint is applied only for the sessions associated with Andy. However, to avoid proliferation of structurally similar constraints for each user, you can define a common constraint that uses the application context in the object position of the apply graph patterns, as shown in the following example:


begin
  sem_rdfsa.add_vpd_constraint(
          policy_name   => 'contracts_policy',
          constr_name   => 'manager_constraint_1',
          match_pattern => '{?contract  pred:hasContractValue ?cvalue }',
          apply_pattern => '{?contract  pred:hasManager     
             "sys_context(''sa$appctx'',''app_user_uri''}"^^orardf:instruction }',
          constr_group  => 'manager');
end;
/


In the preceding example. the data access constraint, defined within the manager constraint group, can be activated for all sessions involving users with a manager role. In this case, the secure application context can be programmed to initialize the attribute app_user_uri of the sa$appctx namespace with the URI for the user logged in. For example, when user Andy logs into the application, the app_user_uri attribute can be initialized to <http://www.myorg.com/employee/Andy>, in which case the constraint will ensure that user Andy can view the value for a contract only if user Andy manages the contract. Generally, the sys_context function can be used in the object position of any graph pattern to allow dynamic URIs or literal values to be bound at the time of query execution. Note that if the context is not initialized properly, the preceding constraint will fail for all data instances and effectively restrict the user from accessing any data.

A SPARQL query issued on an RDF model with a VPD policy is analyzed using the match patterns of all the active data access constraints that are defined in the policy. In the next example, the SPARQL query refers to the hasContractValue property, thereby enforcing the constraint if the group is active. Logically, the enforcement of a constraint is equivalent to rewriting the original SPARQL graph pattern to include the apply patterns for all the relevant constraints, using appropriate variables and terms from the user query. With the previous access restriction on the hasContractValue property, the following SPARQL graph pattern passed to a SEM_MATCH operator is logically rewritten as shown in the following example:


Query:     
{ ?contr  pred:drivenBy         ?dept . 
  ?contr  pred:hasContractValue ?val }
 
Rewritten query:     
{ ?contr  pred:drivenBy         ?dept . 
  ?contr  pred:hasContractValue ?val .
  ?contr  pred:hasManager
                "sys_context('sa$appctx','app_user_uri'}"^^orardf:instruction }


When the match pattern of a data access constraint on an RDF property matches the pattern being accessed in a user query, the equivalent VPD-enforced query appends the corresponding apply patterns to the SPARQL query using the variables and terms appearing in the matched pattern. When a SPARQL query has nested graph patterns, the data access constraints are applied to appropriate basic query graph pattern block. In the following example, the hasContractValue property is referenced in the OPTIONAL graph pattern, and therefore the corresponding apply pattern is enforced just for this block of the graph pattern.


Query:     
{ ?contr  pred:drivenBy         ?dept . 
   OPTIONAL { ?contr  pred:hasContractValue ?val } } 
 
Rewritten query:     
{ ?contr  pred:drivenBy         ?dept . 
   OPTIONAL { ?contr  pred:hasContractValue ?val .
              ?contr  pred:hasManager
                "sys_context('sa$appctx','app_user_uri'}"^^orardf:instruction }


The apply pattern for a data access constraint can be any valid basic graph pattern with multiple triple patterns and a FILTER clause. For example, the access constraint on the hasContractValue property for a user with VP role may stipulate that the user can access the property only if he or she is the Vice President of the department driving the contract. The match and apply patterns for such constraint can be defined as follows:


Match:  { ?contract  pred:hasContractValue  ?cvalue  }
Apply:  { ?contract  pred:drivenBy          ?dept . 
          ?dept      pred:hasVP
               "sys_context('sa$appctx','app_user_uri'}"^^orardf:instruction }


A match pattern defined for a data access constraint associated with an RDF class identifies all variables and terms that are known to be instances of the class. The RDF metadata defined in the VPD policy is used to determine the type for each variable and the term in a SPARQL query, and the appropriate access constraints are applied on these variables and terms. For example, the following VPD constraint ensures that a resource that is a member of the Contract class can only be accessed by a user who has a hasMember relationship with the resource:


Match:  { ?contract  rdf:type  <http://www.myorg.com/classes/Contract> }
Apply:  { ?contract  pred:hasMember           
               "sys_context('sa$appctx','app_user_uri'}"^^orardf:instruction }


The class information for a variable or term appearing in a SPARQL query is derived using the domain and range information for the properties appearing in the query. In the SPARQL query in the next example, if the VPD policy has an RDF Schema statement that asserts that the domain of the drivenBy property is the Contract class, the variable ?contr is known to hold instances of the Contract class. Therefore, with the previously defined access restriction for the Contract class, the user query is rewritten to include an appropriate apply pattern, as shown in the following example:


Query:     
{ ?contr  pred:drivenBy    ?dept . 
  ?contr  pred:hasDueDate  ?due } 
 
Rewritten query: 
{ ?contr  pred:drivenBy    ?dept . 
  ?contr  pred:hasDueDate  ?due  . 
  ?contr  pred:hasMember           
               "sys_context('sa$appctx','app_user_uri'}"^^orardf:instruction }


When a basic graph pattern in a SPARQL query matches multiple data access constraints, the corresponding apply patterns are combined to form a conjunctive graph pattern, which is subsequently enforced for the specific graph pattern by logically rewriting the SPARQL query. While considering the data access constraints to be enforced for a given SPARQL query, the class and property hierarchy associated with the VPD policy is consulted to automatically enforce all applicable constraints.

	
A variable or term identified as an instance of a specific RDF class enforces constraints associated with the class and all its superclasses.


	
A constraint associated with a property is enforced when the user query references the property or any property defined as its subproperty or an equivalent property.




You can use the sys_context function in a data access constraint to enforce context-dependent access restrictions with structurally similar graph patterns. You can dynamically activate and deactivate constraint groups, based on the application context, to enforce alternate access restrictions using structurally different graph patterns.






5.1.4 RDFVPD_POLICIES View

The MDSYS.RDFVPD_POLICIES view contains information about all VPD policies defined in the schema or the policies to which the user has FULL access. If the same policy is associated with multiple models, this view has one entry for each such association. This view exists only after the semantic network and a VPD policy have been created.

The MDSYS.RDFVPD_POLICIES view contains the columns shown in Table 5-1.


Table 5-1 MDSYS.RDFVPD_POLICIES View Columns

	Column Name	Data Type	Description
	
POLICY_OWNER

	
VARCHAR2(32)

	
Owner of the VPD policy.


	
POLICY_NAME

	
VARCHAR2(32)

	
Name of the VPD policy.


	
NAMESPACE_MAP

	
RDF_ALIASES

	
Mapping for namespace entries that are used in the VPD constraint definitions.


	
CONTEXT_NAME

	
VARCHAR2(32)

	
Name of the context used to manage constraint groups.












5.1.5 RDFVPD_MODELS View

The MDSYS.RDFVPD_MODELS view contains information about RDF models and their associated VPD policies. This view exists only after the semantic network and a VPD policy have been created.

The MDSYS.RDFVPD_MODELS view contains the columns shown in Table 5-2.


Table 5-2 MDSYS.RDFVPD_MODELS View Columns

	Column Name	Data Type	Description
	
MODEL_NAME

	
VARCHAR2(25)

	
Name of the model.


	
POLICY_OWNER

	
VARCHAR2(32)

	
Owner of the VPD policy.


	
POLICY_NAME

	
VARCHAR2(32)

	
Name of the VPD policy.


	
OPERATION_TYPE

	
VARCHAR2(9)

	
Type of operation for which the VPD policy is enforced: QUERY or DML.












5.1.6 RDFVPD_POLICY_CONSTRAINTS View

The MDSYS.RDFVPD_POLICY_CONSTRAINTS view contains information about the constraints defined in the VPD policy that are accessible to the current user. This view exists only after the semantic network and a VPD policy have been created.

The MDSYS.RDFVPD_POLICY_CONSTRAINTS view contains the columns shown in Table 5-3.


Table 5-3 MDSYS.RDFVPD_POLICY_CONSTRAINTS View Columns

	Column Name	Data Type	Description
	
POLICY_OWNER

	
VARCHAR2(32)

	
Owner of the VPD policy.


	
POLICY_NAME

	
VARCHAR2(32)

	
Name of the VPD policy.


	
CONSTRAINT_NAME

	
VARCHAR2(32)

	
Name of the constraint.


	
MATCH_PATTERN

	
VARCHAR2(1000)

	
Match pattern for the constraint.


	
APPLY_PATTERN

	
VARCHAR2(4000)

	
Apply pattern for the constraint.


	
CONSTRAINT_GROUP

	
VARCHAR2(32)

	
Name of the constraint group to which the constraint belongs. (Not case-sensitive.).












5.1.7 RDFVPD_PREDICATE_MDATA View

The MDSYS.RDFVPD_PREDICATE_MDATA view contains information about the predicate metadata associated with a VPD policy. This view exists only after the semantic network and a VPD policy have been created.

The MDSYS.RDFVPD_PREDICATE_MDATA view contains the columns shown in Table 5-4.


Table 5-4 MDSYS.RDFVPD_PREDICATE_MDATA View Columns

	Column Name	Data Type	Description
	
POLICY_OWNER

	
VARCHAR2(32)

	
Owner of the VPD policy.


	
POLICY_NAME

	
VARCHAR2(32)

	
Name of the VPD policy.


	
PREDICATE

	
VARCHAR2(4000)

	
URI for the predicate for which the domain and range information is defined.


	
HASDOMAIN

	
VARCHAR2(4000)

	
URI representing the domain of the predicate.


	
HASRANGE

	
VARCHAR2(4000)

	
URI representing the range of the predicate.












5.1.8 RDFVPD_RESOURCE_REL View

The MDSYS.RDFVPD_RESOURCE_REL view contains information about the subclass, subproperty, and equivalence property relationships that are defined between resources in a VPD policy. This view exists only after the semantic network and a VPD policy have been created.

The MDSYS.RDFVPD_RESOURCE_REL view contains the columns shown in Table 5-5.


Table 5-5 MDSYS.RDFVPD_RESOURCE_REL View Columns

	Column Name	Data Type	Description
	
POLICY_OWNER

	
VARCHAR2(32)

	
Owner of the VPD policy.


	
POLICY_NAME

	
VARCHAR2(32)

	
Name of the VPD policy.


	
SUBJECT_RESOURCE

	
VARCHAR2(4000)

	
Subject resource.


	
OBJECT_RESOURCE

	
VARCHAR2(4000)

	
Object resource.


	
RELATIONSHIP_TYPE

	
VARCHAR2(4000)

	
Relationship that exists between the subject resource and the object resource.














5.2 Oracle Label Security (OLS) for RDF Data

Oracle Label Security (OLS) for RDF data provides two options for securing semantic data:

	
Triple-level security (explained in Section 5.2.1), which is highly recommended for its performance and ease of use, but requires that a patch be installed


	
Resource-level security (explained in Section 5.2.2)




To specify an option, use the SEM_RDFSA.APPLY_OLS_POLICY procedure with the appropriate rdfsa_options parameter value.

To switch from one option to the other, remove the existing policy by using the SEM_RDFSA.REMOVE_OLS_POLICY procedure, and then apply the new policy by using the SEM_RDFSA.APPLY_OLS_POLICY procedure with the appropriate rdfsa_options parameter value.



5.2.1 Triple-Level Security

The triple-level security option provides a thin layer of RDF-specific capabilities on top of the Oracle Database native support for label security. This option provides better performance and is easier to use than the resource-level security (described in Section 5.2.2), especially for performing inference while using OLS. The main difference is that with triple-level security there is no need to assign labels, explicitly or implicitly, to individual triple resources (subjects, properties, objects).




	
Note:

To use triple-level security, you must first install Patch 9819833 SEMANTIC TECHNOLOGIES 11G R2 FIX BUNDLE 2 (available from My Oracle Support).







To use triple-level security, specify SEM_RDFSA.TRIPLE_LEVEL_ONLY as the rdfsa_options parameter value when you execute the SEM_RDFSA.APPLY_OLS_POLICY procedure. For example:


EXECUTE sem_rdfsa.apply_ols_policy('defense', SEM_RDFSA.TRIPLE_LEVEL_ONLY);


Do not specify any of the other available parameters for the SEM_RDFSA.APPLY_OLS_POLICY procedure.

When you use triple-level security, OLS is applied to each semantic model in the network. That is, label security is applied to the relevant internal tables and to all the application tables; there is no need to manually apply policies to the application tables of existing semantic models. However, if you need to create additional models after applying the OLS policy, you must use the SEM_OLS.APPLY_POLICY_TO_APP_TAB procedure to apply OLS to the application table before creating the model. Similarly, if you have dropped a semantic model and you no longer need to protect the application table, you can use the SEM_OLS.REMOVE_POLICY_FROM_APP_TAB procedure. (These procedures are described in Chapter 10.)

With triple-level security, duplicate triples with different labels can be inserted in the semantic model. (Such duplicates are not allowed with resource-level security.) For example, assume that you have a triple with a very sensitive label, such as:


(<urn:X>,<urn:P>,<urn:Y>, "TOPSECRET")


This does not prevent a low-privileged (UNCLASSIFIED) user from inserting the triple (<urn:X>,<urn:P>,<urn:Y>, "UNCLASSIFIED"). Because SPARQL and SEM_MATCH do not return label information, a query will return both rows (assuming the user has appropriate privileges), and it will not be easy to distinguish between the TOPSECRET and UNCLASSIFIED triples.

To filter out such low-security triples when querying the semantic models, you can one or more the following options with SEM_MATCH:

	
POLICY_NAME specifies the OLS policy name.


	
MIN_LABEL specifies the minimum label for triples that are included in the query




In other words, every triple that contains a label that is strictly dominated by MIN_LABEL is not included in the query. For example, to filter out the "UNCLASSIFIED" triple, you could use the following query (assuming the OLS policy name is DEFENSE and that the query user has read privileges over UNCLASSIFIED and TOPSECRET triples):


SELECT s,p,y FROM table(sem_match('{?s ?p ?y}' , 
  sem_models(TEST'), null, null, null, null, 
  'MIN_LABEL=TOPSECRET POLICY_NAME=DEFENSE'));


Note that the filtering in the preceding example occurs in addition to the security checks performed by the native OLS software.

After a triple has been inserted, you can view and update the label information can be done through the CTXT1 column in the application table for the semantic model (assuming that you have the WRITEUP and WRITEDOWN privileges to modify the labels).

There are no restrictions on who can perform inference or bulk loading with triple-level security; all of the inferred or bulk loaded triples are inserted with the user's session row label. Note that you can change the session labels by using the SA_UTL package. (For more information, see Oracle Label Security Administrator's Guide.)






5.2.2 Resource-Level Security

The resource-level security option enables you to assign one or more security labels that define a security level for table rows. Conceptually, a table in a relational data model can be mapped to an equivalent RDF graph. Specifically, a row in a relational table can be mapped to a set of triples, each asserting some facts about a specific Subject. In this scenario, the subject represents the primary key for the row and each non-key column-value combination from the row is mapped to a predicate-object value combination for the corresponding triples.

A row in a relational data model is identified by its key, and OLS, as a row-level access control mechanism, effectively restricts access to the values associated with the key. With this conceptual mapping between relational and RDF data models, restricting access to a row in a relational table is equivalent to restricting access to a subgraph involving a specific subject. In a model that supports sensitivity labels for each triple, this is enforced by applying the same label to all the triples involving the given subject. However, you can also achieve greater flexibility by allowing the individual triples to have different labels, while maintaining a minimum bound for all the labels.

OLS support for RDF data employs a multilevel approach in which sensitivity labels associated with the triple components (subject, predicate, object) collectively form a minimum bound for the sensitivity label for the triple. With this approach, a data sensitivity label associated with an RDF resource (used as subject, predicate, or object) restricts unauthorized users from accessing any triples involving the resource and from creating new triples with the resource. For example, projectHLS as a subject may have a minimum sensitivity label, which ensures that all triples describing this subject have a sensitivity label that at least covers the label for projectHLS. Additionally, hasContractValue as a predicate may have a higher sensitivity label; and when this predicate is used with projectHLS to form a triple, that triple minimally has a label that covers both the subject and the predicate labels, as in the following example:


Triple 1: <http://www.myorg.com/contract/projectHLS> :ownedBy
                               <http://www.myorg.com/department/Dept1>
Triple 2: <http://www.myorg.com/contract/projectHLS> :hasContractValue
                               "100000"^^xsd:integer


Sensitivity labels are associated with the RDF resources (URIs) based on the position in which they appear in a triple. For example, the same RDF resource may appear in different positions (subject, predicate, or object) in different triples. Three unique labels can be assigned to each resource, so that the appropriate label is used to determine the label for a triple based on the position of the resource in the triple. You can choose the specific resource positions to be secured in a database instance when you apply an OLS policy to the RDF repository. You can secure subjects, objects, predicates, or any combination, as explained in separate sections to follow. The following example applies an OLS policy named defense to the RDF repository and allows sensitivity labels to be associated with RDF subjects and predicates.


begin
  sem_rdfsa.apply_ols_policy(
        policy_name   => 'defense',
        rdfsa_options => sem_rdfsa.SECURE_SUBJECT+
                         sem_rdfsa.SECURE_PREDICATE); 
end;
/


The same RDF resource can appear in both the subject and object positions (and sometime even as the predicate), and such a resource can have distinct sensitivity labels based on its position. A triple using the resource at a specific position should have a label that covers the label corresponding to the resource's position. In such cases, the triple can be asserted or accessed only by the users with labels that cover the triple and the resource labels.

In a specific RDF repository, security based on data classification techniques can be turned on for subjects, predicates, objects, or a combination of these. This ensures that all the triples added to the repository automatically conform to the label relationships described above.



5.2.2.1 Securing RDF Subjects

An RDF resource (typically a URI) appears in the subject position of a triple when an assertion is made about the resource. In this case, a sensitivity label associated with the resource has following characteristics:

	
The label represents the minimum sensitivity label for any triple using the resource as a subject. In other words, the sensitivity label for the triple should dominate or cover the label for the subject.


	
The label for a newly added triple is initialized to the user initial row label or is generated using the label function, if one is specified. Such operations are successful only if the triple's label dominates the label associated with the triple's subject.


	
Only a user with an access label that dominates the subject's label and the triple's label can read the triple.




By default, the sensitivity label for a subject is derived from the user environment when an RDF resource is used in the subject position of a triple for the first time. The default sensitivity label in this case is set to the user's initial row label (the default that is assigned to all rows inserted by the user).

However, you can categorize an RDF resource as a subject and assign a sensitivity label to it even before it is used in a triple. The following example assigns a sensitivity label named SECRET:HLS:US to the projectHLS resource, thereby restricting the users who are able to define new triples about this resource and who are able to access existing triples with this resource as the subject:


begin
  sem_rdfsa.set_resource_label(
         model_name   => 'contracts',
         resource_uri => '<http://www.myorg.com/contract/projectHLS>',
         label_string => 'SECRET:HLS:US',
         resource_pos => 'S');
end;






5.2.2.2 Securing RDF Predicates

An RDF predicate defines the relationship between a subject and an object. You can use sensitivity labels associated with RDF predicates to restrict access to specific types of relationships with all subjects.

RDF predicates are analogous to columns in a relational table, and the ability to restrict access to specific predicates is equivalent to securing relational data at the column level. As in the case of securing the subject, the predicate's sensitivity label creates a minimum bound for any triples using this predicate. It is also the minimum authorization that a user must posses to define a triple with the predicate or to access a triple with the predicate.

The following example assigns the label HSECRET:FIN (in this scenario, a label that is Highly Secret and that also belongs to the Finance department) to triples with the hasContractValue predicate, to ensure that only a user with such clearance can define the triple or access it:


begin
  sem_rdfsa.set_predicate_label( 
         model_name   => 'contracts',
         predicate    => '<http://www.myorg.com/pred/hasContractValue>',
         label_string => 'HSECRET:FIN');
end;  
/


You can secure predicates in combination with subjects. In such cases, the triples using a subject and a predicate are ensured to have a sensitivity label that at least covers the labels for both the subject and the predicate. Extending the preceding example, if projectHLS as a subject is secured with label SECRET:HLS:US and if hasContractValue as a predicate is secured with label HSECRET:FIN:, a triple assigning a monetary value for projectHLS should at least have a label HSECRET:HLS,FIN:US. Effectively, a user's label must dominate this triple's label to be able to define or access the triple.






5.2.2.3 Securing RDF Objects

An RDF triple can have an URI or a literal in its object position. The URI in object position of a triple represents some resource. You can secure a resource in the object position by associating a sensitivity label to it, to restrict the ability to use the resource as an object in triples.

Typically, a resource (URI or non-literal) appearing in the object position of a triple may itself be described using additional RDF statements. Effectively, an RDF resource in the object position could appear in the subject position in some other triples. When the RDF resources are secured at the object position without explicit sensitivity labels, the label associated with the same resource in the subject position is used as the default label for the object.






5.2.2.4 Generating Labels for Inferred Triples

RDF data model allows for specification of declarative rules, enabling it to infer the presence of RDF statements that are not explicitly added to the repository. The following shows some simple declarative rules associated with the logic that projects can be owned by departments and departments have Vice Presidents, and in such cases the project leader is by default the Vice President of the department that owns the project.


RuleID -> projectLedBy
Antecedent Expression -> (?proj :ownedBy ?dept) (?dept :hasVP ?person)
Consequent Expression -> (?proj :isLedBy ?person)


An RDF rule uses some explicitly asserted triples as well as previously inferred triples as antecedents, and infers one or more consequent triples. Traditionally, the inference process is executed as an offline operation to pregenerate all the inferred triples and to make them available for subsequent query operations.

When the underlying RDF graph is secured using OLS, any additional data inferred from the graph should also be secured to avoid exposing the data to unauthorized users. Additionally, the inference process should run with higher privileges, specifically with full access to data, in order to ensure completeness.

OLS support for RDF data offers techniques to generate sensitivity labels for inferred triples based on labels associated with one or more RDF artifacts. It provides label generation techniques that you can invoke at the time of inference. Additionally, it provides an extensibility framework, which allows an extensible implementation to receive a set of possible labels for a specific triple and determine the most appropriate sensitivity label for the triple based on some application-specific logic. The techniques that you can use for generating the labels for inferred triples include the following (each technique, except for Use Antecedent Labels, is associated with a SEM_RDFSA package constant):

	
Use Rule Label (SEM_RDFSA.LABELGEN_RULE): An inferred triple is directly generated by a specific rule, and it may be indirectly dependent on other rules through its antecedents. Each rule may have a sensitivity label, which is used as the sensitivity label for all the triples directly inferred by the rule.


	
Use Subject Label (SEM_RDFSA.LABELGEN_SUBJECT): Derives the label for the inferred triple by considering any sensitivity labels associated with the subject in the new triple. Each inferred triple has a subject, which could in turn be a subject, predicate, or object in any of the triple's antecedents. When such RDF resources are secured, the subject in the newly inferred triple may have one or more labels associated with it. With the Use Subject Label technique, the label for the inferred triple is set to the unique label associated with the RDF resource. When more than one label exists for the resource, you can implement the extensible logic to determine the most relevant label for the new triple.


	
Use Predicate Label (SEM_RDFSA.LABELGEN_PREDICATE): Derives the label for the inferred triple by considering any sensitivity labels associated with the predicate in the new triple. Each inferred triple has a predicate, which could in turn be a subject, predicate, or object in any of the triple's antecedents. When such RDF resources are secured, the predicate in the newly inferred triple may have one or more labels associated with it. With the Use Predicate Label technique, the label for the inferred triple is set to the unique label associated with the RDF resource. When more than one label exists for the resource, you can implement the extensible logic to determine the most relevant label for the new triple.


	
Use Object Label (SEM_RDFSA.LABELGEN_OBJECT): Derives the label for the inferred triple by considering any sensitivity labels associated with the object in the new triple. Each inferred triple has an object, which could in turn be a subject, predicate, or object in any of the triple's antecedents. When such RDF resources are secured, the object in the newly inferred triple may have one or more labels associated with it. With the Use Object Label technique, the label for the inferred triple is set to the unique label associated with the RDF resource. When more than one label exists for the resource, you can implement the extensible logic to determine the most relevant label for the new triple.


	
Use Dominating Label (SEM_RDFSA.LABELGEN_DOMINATING): Each inferred triple minimally has four direct components: subject, predicate, object, and the rule that produced the triple. With the Use Dominating Label technique, at the time of inference the label generator computes the most dominating of the sensitivity labels associated with each of the component and assigns it as the sensitivity label for the inferred triple. Exception labels are assigned when a clear dominating relationship cannot be established between various labels.


	
Use Antecedent Labels: In addition to the four direct components for each inferred triple (subject, predicate, object, and the rule that produced the triple), a triple may have one or more antecedent triples, which are instrumental in deducing the new triple. With the Use Antecedent Labels technique, the labels for all the antecedent triples are considered, and conflict resolution criteria are implemented to determine the most appropriate label for the new triple. Since an inferred triple may be dependent on other inferred triples, a strict order is followed while generating the labels for all the inferred triples.

The Use Antecedent Labels technique requires that you use a custom label generator. For information about creating and using a custom label generator, see Section 5.2.2.5.




The following example creates an entailment (rules index) for the contracts data using a specific rule base. This operation can only be performed by a user with FULL access privilege with the OLS policy applied to the RDF repository. In this case, the labels generated for the inferred triples are based on the labels associated with their predicates, as indicated by the use of the SEM_RDFSA.LABELGEN_PREDICATE package constant in the label_gen parameter.


begin
  sem_rdfsa.create_entailment(
         index_name_in   => 'contracts_inf',
         models_in       => SDO_RDF_Models('contracts'),
         rulebases_in    => SDO_RDF_Rulebases('contracts_rb'),
         options         => 'USER_RULES=T',
         label_gen       => sem_rdfsa.LABELGEN_PREDICATE);
end;


When the predefined or extensible label generation implementation cannot compute a unique label to be applied to an inferred triple, an exception label is set for the triple. Such triples are not accessible by any user other than the user with full access to RDF data (also the user initiating the inference process). The triples with exception labels are clearly marked, so that a privileged user can access them and apply meaningful labels manually. After the sensitivity labels are applied to inferred triples, only users with compatible labels can access these triples. The following example updates the sensitivity label for triples for which an exception label was set:


update mdsys.rdfi_contracts_inf 
     set ctxt1 = char_to_label('defense', 'SECRET:HLS:US')
     where ctxt1 = -1;


Inferred triples accessed through generated labels might not be same as conceptual triples inferred directly from the user accessible triples and rules. The labels generated using system-defined or custom implementations cannot be guaranteed to be precise. See the information about Fine-Grained Access Control (VPD and OLS) Considerations in the Usage Notes for the SEM_APIS.CREATE_ENTAILMENT procedure in Chapter 9 for details.






5.2.2.5 Using Labels Based on Application Logic

The MDSYS.RDFSA_LABELGEN type is used to apply appropriate label generator logic at the time of index creation; however, you can also extend this type to implement a custom label generator and generate labels based on application logic. The label generator is specified using the label_gen parameter with the SEM_APIS.CREATE_ENTAILMENT procedure. To use a system-defined label generator, specify a SEM_RDFSA package constant, as explained in Section 5.2.2.4; to use a custom label generator, you must implement a custom label generator type and specify an instance of that type instead of a SEM_RDFSA package constant.

To create a custom label generator type, you must have the UNDER privilege on the RDFSA_LABELGEN type. In addition, to create an index for RDF data , you must should have the EXECUTE privilege on this type. The following example grants these privileges to a user named RDF_ADMIN:


GRANT under, execute ON mdsys.rdfsa_labelgen TO rdf_admin;


The custom label generator type must implement a constructor, which should set the dependent resources and specify the getNumericLabel method to return the label computed from the information passed in, as shown in the following example:


CREATE OR REPLACE TYPE CustomSPORALabel UNDER mdsys.rdfsa_labelgen  (
   constructor function CustomSPORALabel return self as result,
   overriding member function getNumericLabel (
                                    subject   rdfsa_resource,
                                    predicate rdfsa_resource,
                                    object    rdfsa_resource,
                                    rule      rdfsa_resource,
                                    anteced   rdfsa_resource)
        return number);


The label generator constructor uses a set of constants defined in the SEM_RDFSA package to indicate the list of resources on which the label generator relies. The dependent resources are identified as an inferred triple's subject, its predicate, its object, the rule that produced the triple, and its antecedents. A custom label generator can rely on any subset of these resources for generating the labels, and you can specify this in its constructor by using the constants defined in SEM_RDFSA package : USE_SUBJECT_LABEL, USE_PREDICATE_LABEL, USE_OBJECT_LABEL, USE_RULE_LABEL, USE_ANTCED_LABEL. The following example creates the type body and specifies the constructor:

Example 5-1 creates the type body, specifying the constructor function and the getNumericLabel member function. (Application-specific logic is not included in this example.)


Example 5-1 Creating a Custom Label Generator Type


CREATE OR REPLACE TYPE BODY CustomSPORALabel AS
 
   constructor function CustomSPORALabel return self as result as
   begin
     self.setDepResources(sem_rdfsa.USE_SUBJECT_LABEL+
                          sem_rdfsa.USE_PREDICATE_LABEL+
                          sem_rdfsa.USE_OBJECT_LABEL+
                          sem_rdfsa.USE_RULE_LABEL+
                          sem_rdfsa.USE_ANTECED_LABELS);
     return;
   end CustomSPORALabel;
   
   overriding member function getNumericLabel (
                                    subject   rdfsa_resource,
                                    predicate rdfsa_resource,
                                    object    rdfsa_resource,
                                    rule      rdfsa_resource,
                                    anteced   rdfsa_resource)
        return number as
     labellst mdsys.int_array := mdsys.int_array(); 
   begin
    -- Find dominating label of S P O R A –
    –- Application specific logic for computing the triple label –
    -- Copy over all labels to labellst --
    for li in 1 .. subject.getLabelCount() loop
      labellst.extend; 
      labellst(labellst.COUNT) = subject.getLabel(li); 
    end loop; 
    --- Copy over other labels as well --- 
    --- Find a dominating of all the labels. Generates –1 if no
    --- dominating label within the set
    return self.findDominatingOf(labellst); 
   end getNumericLabel;
  end CustomSPORALabel;  
  /




In Example 5-1, the sample label generator implementation uses all the resources contributing to the inferred triple for generating a sensitivity label for the triple. Thus, the constructor uses the setDepResources method defined in the superclass to set all its dependent components. The list of dependent resources set with this step determines the exact list of values passed to the label generating routine.

The getNumericLabel method is the label generation routine that has one argument for each resource that an inferred triple may depend on. Some arguments may be null values if the corresponding dependent resource is not set in the constructor implementation.

The label generator implementation can make use of a general-purpose static routine defined in the RDFSA_LABELGEN type to find a domination label for a given set of labels. A set of labels is passed in an instance of MDSYS.INT_ARRAY type, and the method finds a dominating label among them. If no such label exists, an exception label –1 is returned.

After you have implemented the custom label generator type, you can use the custom label generator for inferred data by assigning an instance of this type to the label_gen parameter in the SEM_APIS.CREATE_ENTAILMENT procedure, as shown in the following example:


begin
  sem_apis.create_entailment(
         index_name_in  => 'contracts_rdfsinf',
         models_in      => SDO_RDF_Models('contracts'),
         rulebases_in   => SDO_RDF_Rulebases('RDFS'),
         options        => '',
         label_gen      => CustomSPORALabel());
end;
/






5.2.2.6 RDFOLS_SECURE_RESOURCE View

The MDSYS.RDFOLS_SECURE_RESOURCE view contains information about resources secured with Oracle Label Security (OLS) policies and the sensitivity labels associated with these resources.

Select privileges on this view can be granted to appropriate users. To view the resources associated with a specific model, you must also have select privileges on the model (or the corresponding RDFM_model-name view).

The MDSYS.RDFOLS_SECURE_RESOURCE view contains the columns shown in Table 5-6.


Table 5-6 MDSYS.RDFOLS_SECURE_RESOURCE View Columns

	Column Name	Data Type	Description
	
MODEL_NAME

	
VARCHAR2(25)

	
Name of the model.


	
MODEL_ID

	
NUMBER

	
Internal identifier for the model.


	
RESOURCE_ID

	
NUMBER

	
Internal identifier for the resource; to be joined with MDSYS.RDF_VALUE$.VALUE_ID column for information about the resource.


	
RESOURCE_TYPE

	
VARCHAR2(16)

	
One of the following string values to indicate the resource type for which the label is assigned: SUBJECT, PREDICATE, OBJECT, GLOBAL.


	
CTXT1

	
NUMBER

	
Sensitivity label assigned to the resource.















6 Workspace Manager Support for RDF Data

RDF data stored in the Oracle Database semantic data store can be version-enabled using Oracle Database 11g Workspace Manager. Using Workspace Manager, you can create new versions of RDF data through data modification operations while maintaining a copy of the old data. For detailed usage and reference information about Workspace Manager, see Oracle Database Workspace Manager Developer's Guide.

The unit of versioning for the semantic data store is a model, which is in turn associated with an application table that resides in a user schema. Traditional Workspace Manager interfaces are used to manage a version-enabled RDF model. (However, you cannot use version-enabling on a model that participates in a virtual model. Virtual models are described in Section 1.3.8)

Creating the first version-enabled RDF model in a database re-creates an index on the underlying triple store that holds data for all RDF models. Thus, the time needed to create the first version-enabled RDF model depends on the amount of existing data in these models.

This chapter discuss the key characteristics of a version-enabled RDF model and provides some examples. It contains the following major sections:

	
Section 6.1, "Enabling Workspace Manager Support for RDF Data"


	
Section 6.2, "Version-Enabling an RDF Model"


	
Section 6.3, "Inferring from Version-Enabled RDF Models"


	
Section 6.4, "Merging and Refreshing Workspaces in Version-Enabled RDF Models"






6.1 Enabling Workspace Manager Support for RDF Data

Workspace Manager support for RDF data is not installed in the database by default. Instead, you must run a script named sdordfwm.sql after you enable semantic technologies support in the database (explained in Section A.1, "Enabling Semantic Technologies Support"). You only need to run sdordfwm.sql once for the database. To run this script, connect to the database as SYSDBA and enter the following statement as appropriate for your operating system:

	
Linux: SQL> @$ORACLE_HOME/md/admin/sdordfwm.sql


	
Windows: SQL> @%ORACLE_HOME%\md\admin\sdordfwm.sql




If you want to check whether Workspace Manager support is enabled for RDF data, enter the following query and see if the value returned is INSTALLED:


SELECT value FROM mdsys.rdf_parameter 
  WHERE namespace = 'COMPONENT' and attribute = 'RDFOWM';




6.1.1 Removing Workspace Manager Support for RDF Data

After you have enabled Workspace Manager support for RDF data, you might need to remove that support in certain circumstances. For example, before you downgrade or remove semantic technologies support in the database, you must remove the Workspace Manager support for RDF data. (For information about downgrading and removing semantic technologies support, see Appendix A, "Enabling, Downgrading, or Removing Semantic Technologies Support".)

To remove Workspace Manager support for RDF data, perform the following steps:

	
Connect to the database as the SYS user with SYSDBA privileges (SYS AS SYSDBA, and enter the SYS account password when prompted).


	
Start SQL*Plus, and enter the following statement:

	
Linux: @$ORACLE_HOME/md/admin/sdordfwm_rm.sql


	
Windows: @%ORACLE_HOME%\md\admin\sdordfwm_rm.sql







After the sdordfwm_rm.sql script completes successfully, you can downgrade or remove semantic technologies support in the database.








6.2 Version-Enabling an RDF Model

To version-enable an RDF model, you version-enable its associated application table. For example, if an RDF model named contracts is associated with an application table named CONTRACTS_RDF_DATA, you can perform the version enabling as shown in the following example:


begin
  dbms_wm.enableVersioning (table_name => 'contracts_rdf_data'); 
end;
/


The application table must have a primary key, and you cannot specify the HISTORY or VALID TIME options.

The data stored in the application table and the corresponding RDF data in the semantic data store are versioned logically. The standard data manipulation operations (insert, update, delete) on a version-enabled application table maintain the version information for both the affected application table rows and the corresponding RDF triples in the semantic data store. Queries accessing the RDF data using the SEM_MATCH operator take the state of the active workspace and the relevant versions of data into account when constructing the result set.

You cannot use continually refreshed workspaces and multiparent workspaces when working with RDF data. However, other workspace operations (such as creating new workspaces, creating savepoints, setting access modes, and refreshing and merging workspaces) proceed as you would expect.

You can use Workspace Manager locks on the application table rows to avoid conflicting data manipulation operations in concurrent workspaces. The conflicts in such cases are detected based on the primary keys for the locked rows, and they may not directly translate to any meaningful locks on the RDF data, such as a lock on a sub-graph or a node. (See Section 6.4 for best practices involving version-enabled RDF data.)






6.3 Inferring from Version-Enabled RDF Models

You can use an RDF model to create one or more entailments through inference using system-defined and user-defined rulebases. When such a model is version-enabled, the associated entailments that store the inferred data are also version-enabled.

However, unlike the RDF models, which are versioned logically, the entailments are versioned physically. Thus, a workspace with some unmerged changes to an RDF model may maintain a private version of the entailment, which duplicates all the inferred triples that may already exist in the entailment corresponding to the parent workspace. Figure 6-1 shows a physically versioned entailment where private copies of the index are maintained for workspaces W1 and W2, which are child workspaces of the LIVE workspace.


Figure 6-1 Physical Versioning of Entailment (Rules Index)

[image: Description of Figure 6-1 follows]






A workspace created from a parent workspace with a valid entailment will share the entailment with its parent until some workspace-specific data manipulation operations occur on the corresponding models. The first data manipulation operation within a workspace creates a private copy of the entailment and marks it INVALID. Workspace-private versions of inference data can be rebuilt using the SEM_APIS.CREATE_ENTAILMENT procedure, as shown in the following example:


begin
  sem_apis.create_entailment(
            index_name_in   => 'contracts_rdfs',
            models_in       => SDO_RDF_Models('contracts'),
            rulebases_in    => SDO_RDF_Rulebases('RDFS')); 
end;
/


Any subsequent additions to the RDF model within the workspace will mark the entailment as INCOMPLETE, although you can return it to a VALID status using the SEM_APIS.CREATE_ENTAILMENT procedure. When a workspace is merged, the workspace-private entailment is dropped, and the corresponding index in the parent workspace is marked INVALID.






6.4 Merging and Refreshing Workspaces in Version-Enabled RDF Models

A workspace modifying data stored in a version-enabled RDF model may contain additional changes to other RDF models or relational tables. The semantics for the merging or refreshing relational data modified in a workspace remain unchanged. Similarly, the merging or refreshing of the application table is subject to conflict analysis based on the primary key defined in the application table. Triples added and deleted in concurrent workspaces are not flagged as conflicts unless they are associated with the same primary key in the application table. For example, a parent and a child workspace may assert the same triple with different primary keys, and during a workspace merge both the triples are accepted. You can avoid such conflicts by generating the application table primary keys from the triple components.

When you work with RDF data, the types of conflicts that must be flagged vary depending on the application requirements. The conflicts include physical conflicts that exist between two triples, and logical conflicts that exist in a graph to which the triples belong. For example, two concurrent workspaces asserting a triple that captures the value of a specific contract physically conflict with each other. Similarly, a workspace that assigned a new project to a department (with an appropriate triple) may logically conflict with other workspace that reduced the budget for the department.

You can avoid these conflicts by acquiring appropriate Workspace Manager locks on the application table rows using the DBMS_WM.lockRows subprogram. For example, while adding a new triple that describes a specific resource, the application logic may acquire row locks for all application table rows that describe the same resource; in this case, failure to acquire the lock indicates a conflict.

If business conflicts between concurrent workspaces can be manually detected and reconciled, you can use the <application table name>_DIFF Workspace Manager view to obtain a summary of all the changes in two workspaces. For a version-enabled application table named contracts_rdf_data, the query in following example fetches the triples for all the rows that are modified either in W2 workspace or the LIVE workspace:


begin
  dbms_wm.SetDiffVersions(workspace1 => 'W2',
                          workspace2 => 'LIVE');
end;
/
 
SELECT appt.apptable_pkey, appt.triple.get_triple() triple, 
       wm_diffver, wm_code FROM contracts_rdf_data_diff appt;


For an explanation of the possible values for the WM_DIFFVER and WM_CODE columns, see the section about xxx_DIFF views in Oracle Database Workspace Manager Developer's Guide.

For any conflicts detected using this technique, you can resolve them by executing compensating data manipulation operations for the conflicting data modifications.





7 Jena Adapter for Oracle Database

The Jena Adapter for Oracle Database (referred to here as the Jena Adapter) provides a Java-based interface to Oracle Database Semantic Technologies by implementing the well-known Jena Graph and Model APIs. (Jena is an open source framework developed by Hewlett-Packard and is available under a BSD-style license.)

This chapter assumes that you are familiar with major concepts explained in Chapter 1, "Oracle Database Semantic Technologies Overview" and Chapter 2, "OWL Concepts". It also assumes that you are familiar with the overall capabilities and use of the Jena Java framework. For information about the Jena framework, see http://jena.sourceforge.net/, especially the Jena Documentation page.

The Jena Adapter extends the semantic data management capabilities of Oracle Database Release 11.2 RDF/OWL.

This chapter includes the following major topics:

	
Section 7.1, "Setting Up the Software Environment"


	
Section 7.2, "Setting Up the SPARQL Service"


	
Section 7.3, "Setting Up the Semantic Technologies Environment"


	
Section 7.4, "SEM_MATCH and Jena Adapter Queries Compared"


	
Section 7.5, "Optimized Handling of SPARQL Queries"


	
Section 7.6, "Additions to the SPARQL Syntax to Support Other Features"


	
Section 7.7, "Functions Supported in SPARQL Queries through the Jena Adapter"


	
Section 7.8, "Support for Server-Side APIs"


	
Section 7.9, "Bulk Loading Using the Jena Adapter"


	
Section 7.10, "Example Queries Using the Jena Adapter"


	
Section 7.11, "SPARQL Gateway and Semantic Data"







	
Disclaimer:

The current Jena Adapter release has been tested against Jena 2.6.3, ARQ 2.8.5, and Joseki 3.4.2. Because of the nature of open source projects, you should not use this Jena Adapter with later versions of Jena, ARQ, or Joseki.









7.1 Setting Up the Software Environment

To use the Jena Adapter, you must first ensure that the system environment has the necessary software, including Oracle Database 11g Release 2 with the Spatial and Partitioning options and with Semantic Technologies support enabled, Jena version 2.6.3, the Jena Adapter, and JDK 1.6. You can set up the software environment by performing these actions:

	
Install Oracle Database Release 11.2 Enterprise Edition with the Oracle Spatial and Partitioning Options.


	
If you have not yet installed Release 11.2.0.3 or later, install the 11.2.0.2 Patch Set for Oracle Database Server (https://updates.oracle.com/ARULink/PatchDetails/process_form?patch_num=10098816).


	
Enable the support for Semantic Technologies, as explained in Section A.1.


	
Install Jena (version 2.6.3): download the .zip file from http://sourceforge.net/projects/jena/files/Jena/Jena-2.6.3/jena-2.6.3.zip/download and unzip it. (The directory or folder into which you unzip it will be referred to as <Jena_DIR>.)

The Java package will be unpacked into <Jena_DIR>.

Note that Jena 2.6.3 comes with ARQ version 2.8.4 (arq-2.8.4.jar); however, this version of the Jena Adapter actually requires a newer ARQ version (arq-2.8.5.jar). You can download arq-2.8.5.jar from http://sourceforge.net/projects/jena/files/ARQ/ARQ-2.8.5/arq-2.8.5.zip/download and unzip it to a temporary directory. Remove the arq-2.8.4.jar file from <Jena_DIR>/Jena-2.6.3/lib/, and copy arq-2.8.5.jar from the temporary directory into <Jena_DIR>/Jena-2.6.3/lib/.


	
Download the Jena Adapter (jena_adaptor_for_release11.2.0.2.sg.zip) from the Oracle Database Semantic Technologies page (http://www.oracle.com/technology/tech/semantic_technologies/), and unzip it into a temporary directory, such as (on a Linux system) /tmp/jena_adapter. (If this temporary directory does not already exist, create it before the unzip operation.)

The Jena Adapter directories and files have the following structure:


 examples/
   examples/Test10.java
   examples/Test11.java
   examples/Test12.java
   examples/Test13.java
   examples/Test14.java
   examples/Test15.java
   examples/Test16.java
   examples/Test17.java
   examples/Test18.java
   examples/Test19.java
   examples/Test20.java
   examples/Test6.java
   examples/Test7.java
   examples/Test8.java
   examples/Test9.java
   examples/Test.java
jar/
   jar/sdordfclient.jar
javadoc/
  javadoc/javadoc.zip
joseki/
   joseki/index.html
   joseki/application.xml
   joseki/update.html
   joseki/xml-to-html.xsl
   joseki/joseki-config.ttl
sparqlgateway/ 
  default.xslt
  noop.xslt
  qb1.sparql
  . . .
  browse.jsp
  index.html
  . . .
  application.xml
  WEB-INF/
    WEB-INF/web.xml
    WEB-INF/weblogic.xml
  WEB-INF/lib/
  StyleSheets/
    StyleSheets/paginator.css
    StyleSheets/sg.css
    StyleSheets/sgmin.css
  Scripts/
    Scripts/load.js
    Scripts/paginator.js
    Scripts/tooltip.js
  admin/
    admin/sparql.jsp
    admin/xslt.jsp
web/
  web/web.xml


	
Copy ojdbc5.jar into <Jena_DIR>/lib (Linux) or <Jena_DIR>\lib (Windows). (ojdbc5.jar is in $ORACLE_HOME/jdbc/lib or %ORACLE_HOME%\jdbc\lib.)


	
Copy sdordf.jar into <Jena_DIR>/lib (Linux) or <Jena_DIR>\lib (Windows). (sdordf.jar is in $ORACLE_HOME/md/jlib or %ORACLE_HOME%\md\jlib.)


	
If JDK 1.6 is not already installed, install it.


	
If the JAVA_HOME environment variable does not already refer to the JDK 1.6 installation, define it accordingly. For example:


setenv JAVA_HOME /usr/local/packages/jdk16/


	
If the SPARQL service to support the SPARQL protocol is not set up, set it up as explained in Section 7.2.




After setting up the software environment, ensure that your Semantic Technologies environment can enable you to use the Jena Adapter to perform queries, as explained in Section 7.3.






7.2 Setting Up the SPARQL Service

Setting up a SPARQL endpoint using the Jena Adapter involves downloading Joseki, an open source HTTP engine that supports the SPARQL protocol and SPARQL queries. This section explains how to set up a SPARQL service using a servlet deployed in WebLogic Server. The number and complexity of the steps reflect the fact that Oracle is not permitted to bundle all the dependent third-party libraries in a .war or .ear file.

	
Download and Install Oracle WebLogic Server 11g Release 1 (10.3.1). For details, see http://www.oracle.com/technology/products/weblogic/ and http://www.oracle.com/technetwork/middleware/ias/downloads/wls-main-097127.html.


	
Ensure that you have Java 6 installed, because it is required by Joseki 3.4.2.


	
Download Joseki 3.4.2 (joseki-3.4.2.zip) from http://sourceforge.net/projects/joseki/files/Joseki-SPARQL/.


	
Unpack joseki-3.4.2.zip into a temporary directory. For example:


mkdir /tmp/joseki
cp joseki-3.4.2.zip /tmp/joseki
cd /tmp/joseki
unzip joseki-3.4.2.zip


	
Ensure that you have downloaded and unzipped the Jena Adapter for Oracle Database, as explained in Section 7.1.


	
Create a directory named joseki.war at the same level as the jena_adapter directory, and go to it. For example:


mkdir /tmp/joseki.war
cd /tmp/joseki.war


	
Copy necessary files into the directory created in the preceding step:


cp /tmp/jena_adapter/joseki/*  /tmp/joseki.war
cp -rf /tmp/joseki/Joseki-3.4.2/webapps/joseki/StyleSheets  /tmp/joseki.war


	
Create directories and copy necessary files into them, as follows:


mkdir /tmp/joseki.war/WEB-INF
cp /tmp/jena_adapter/web/*  /tmp/joseki.war/WEB-INF
 
mkdir /tmp/joseki.war/WEB-INF/lib
cp /tmp/joseki/Joseki-3.4.2/lib/*.jar   /tmp/joseki.war/WEB-INF/lib
cp /tmp/jena_adapter/jar/*.jar   /tmp/joseki.war/WEB-INF/lib
##
## Assume ORACLE_HOME points to the home directory of a Release 11.2 Oracle Database.
##
cp $ORACLE_HOME/md/jlib/sdordf.jar /tmp/joseki.war/WEB-INF/lib
cp $ORACLE_HOME/jdbc/lib/ojdbc5.jar /tmp/joseki.war/WEB-INF/lib


Note that in the last command, you can specify ojdbc6.jar instead of ojdbc5.jar.


	
Using the WebLogic Server Administration console, create a J2EE data source named OracleSemDS. During the data source creation, you can specify a user and password for the database schema that contains the relevant semantic data against which SPARQL queries are to be executed.

If you need help in creating this data source, see Section 7.2.1, "Creating the Required Data Source Using WebLogic Server".


	
Go to the autodeploy directory of WebLogic Server and copy files, as follows. (For information about auto-deploying applications in development domains, see: http://download.oracle.com/docs/cd/E11035_01/wls100/deployment/autodeploy.html)


cd <domain_name>/autodeploy
cp -rf  /tmp/joseki.war  <domain_name>/autodeploy


In the preceding example, <domain_name> is the name of a WebLogic Server domain.

Note that while you can run a WebLogic Server domain in two different modes, development and production, only development mode allows you use the auto-deployment feature.


	
Check the files and the directory structure, as in the following example:


autodeploy/% ls -1R ./joseki.war/
 
    ./joseki.war:
    application.xml
    index.html
    joseki-config.ttl
    StyleSheets/
    update.html
    WEB-INF/
    xml-to-html.xsl
 
    ./joseki.war/StyleSheets:
    joseki.css
 
    ./joseki.war/WEB-INF:
    lib/
    web.xml
 
    ./joseki.war/WEB-INF/lib:
    ojdbc5.jar
    sdordfclient.jar
    sdordf.jar
    arq-2.8.5.jar
    arq-2.8.5-sources.jar
    arq-2.8.5-tests.jar
    arq-2.8.5-test-sources.jar
    icu4j-3.4.4.jar
    iri-0.8.jar
    iri-0.8-sources.jar
    jena-2.6.3.jar
    jena-2.6.3-sources.jar
    jena-2.6.3-tests.jar
    jena-2.6.3-test-sources.jar
    jetty-6.1.10.jar
    jetty-util-6.1.10.jar
    joseki-3.4.2.jar
    junit-4.5.jar
    log4j-1.2.14.jar
    lucene-core-2.3.1.jar
    sdb-1.3.2.jar
    servlet-api-2.5-6.1.10.jar
    servlet-api-2.5.jar
    slf4j-api-1.5.8.jar
    slf4j-log4j12-1.5.8.jar
    stax-api-1.0.1.jar
    tdb-0.8.7.jar
    wstx-asl-3.2.9.jar
    xercesImpl-2.7.1.jar


	
If you want to build a .war file from the /tmp/joseki.war directory (note that a .war file is required if you want to deploy Joseki to an OC4J container), enter the following commands:


cd /tmp/joseki.war
jar cvf /tmp/joseki_app.war *


	
Start or restart WebLogic Server.


	
Verify your deployment by using your Web browser to connect to a URL in the following format (assume that the Web application is deployed at port 7001): http://<hostname>:7001/joseki

You should see a page titled Oracle SPARQL Service Endpoint using Joseki, and the first text box should contain an example SPARQL query.


	
Click Submit Query.

You should see a page titled Oracle SPARQL Endpoint Query Results. There may or may not be any results, depending on the underlying semantic model against which the query is executed.






7.2.1 Creating the Required Data Source Using WebLogic Server

If you need help creating the required J2EE data source using the WebLogic Server admin console, you can follow these steps:

	
Login to: http://<hostname>:7001/console


	
In the Domain Structure panel, click Services.


	
Click JDBC


	
Click Data Sources.


	
In the Summary of JDBC Data Sources panel, click New under the Data Sources table.


	
In the Create a New JDBC Data Source panel, enter or select the following values.

Name: OracleSemDS

JNDI Name: OracleSemDS

Database Type: Oracle

Database Driver: Oracle's Driver (Thin) Versions: 9.0.1,9.2.0,10,11


	
Click Next twice.


	
In the Connection Properties panel, enter the appropriate values for the Database Name, Host Name, Port, Database User Name (schema that contains semantic data), Password fields.


	
Click Next.


	
Select (check) the target server or servers to which you want to deploy this OracleSemDS data source.


	
Click Finish.

You should see a message that all changes have been activated and no restart is necessary.









7.2.2 Configuring the SPARQL Service

By default, the SPARQL Service endpoint assumes that the queries are to be executed against a semantic model with a pre-set name. This semantic model is owned by the schema specified in the J2EE data source with JNDI name OracleSemDS. Note that you do not need to create this model explicitly using PL/SQL or Java; if the model does not exist in the network, it will be automatically created, along with the necessary application table and index.




	
Note:

Effective with the Jena Adapter release in November 2010, the default name of the application table index is changed from <model_name>_triple_idx to <model_name>_idx, and a compressed index is created on the leading model ID column in the application table to save storage.
For existing models created by an older version of the Jena Adapter, you can migrate the application table index name and definition by using the OracleUtils.migrateApplicationTableIndex(oracle, graph, dop) method in the oracle.spatial.rdf.client.jena package. (See the Javadoc for more information.)









However, you must configure the SPARQL service by editing the joseki-config.ttl configuration file, which is in <domain_name>/autodeploy/joseki.war.

The supplied joseki-config.ttl file includes a section similar to the following for the Oracle data set:


#
## Datasets
#
[] ja:loadClass "oracle.spatial.rdf.client.jena.assembler.OracleAssemblerVocab" .
 
oracle:Dataset  rdfs:subClassOf  ja:RDFDataset .
 
<#oracle> rdf:type oracle:Dataset;
    joseki:poolSize     1 ;         ## Number of concurrent connections allowed to this dataset.
    oracle:connection
    [ a oracle:OracleConnection ;
    ];
    oracle:defaultModel [ oracle:firstModel "TEST_MODEL" ] .


In this section of the file, you can:

	
Modify the joseki:poolSize value, which specifies the number of concurrent connections allowed to this Oracle data set (<#oracle> rdf:type oracle:Dataset;), which points to various RDF models in the database.


	
Modify the name (or the object value of oracle:firstModel predicate) of the defaultModel, to use a different semantic model for queries. You can also specify multiple models, and one or more rulebases for this defaultModel.

For example, the following specifies two models (named ABOX and TBOX) and an OWLPRIME rulebase for the default model. Note that models specified using the oracle:modelName predicate must exist; they will not be created automatically.


<#oracle> rdf:type oracle:Dataset;
    joseki:poolSize 1 ; ## Number of concurrent connections allowed to this dataset.
    oracle:connection
    [ a oracle:OracleConnection ;
    ];
    oracle:defaultModel [ oracle:firstModel "ABOX";
                                      oracle:modelName "TBOX";
                                      oracle:rulebaseName "OWLPRIME" ] .


	
Specify named graphs in the dataset. For example, you can create a named graph called <http://G1> based on two Oracle models and an entailment, as follows.


<#oracle> rdf:type oracle:Dataset;
    joseki:poolSize 1 ; ## Number of concurrent connections allowed to this dataset.
      oracle:connection
      [ a oracle:OracleConnection ;
      ];
      oracle:namedModel [ oracle:firstModel "ABOX";
                          oracle:modelName "TBOX";
                          oracle:rulebaseName "OWLPRIME";
                          oracle:namedModelURI <http://G1> ]  .


The object of namedModel can take the same specifications as defaultModel, so virtual models are supported here as well (see also the next item).


	
Use a virtual model for queries by adding oracle:useVM "TRUE", as shown in the following example. Note that if the specified virtual model does not exist, it will automatically be created on demand.


<#oracle> rdf:type oracle:Dataset;
    joseki:poolSize 1 ; ## Number of concurrent connections allowed to this dataset.
    oracle:connection
    [ a oracle:OracleConnection ;
    ];
    oracle:defaultModel [ oracle:firstModel "ABOX";
                                     oracle:modelName "TBOX";
                                     oracle:rulebaseName "OWLPRIME";
                                     oracle:useVM "TRUE"
    ] .


For more information, see Section 7.8.1, "Virtual Models Support".


	
Set the queryOptions and inferenceMaintenance properties to change the query behavior and inference update mode. (See the Javadoc for information about QueryOptions and InferenceMaintenanceMode.)

By default, QueryOptions.ALLOW_QUERY_INVALID_AND_DUP and InferenceMaintenanceMode.NO_UPDATE are set, for maximum query flexibility and efficiency.






7.2.2.1 Client Identifiers

For every database connection created or used by the Jena Adapter, a client identifier is associated with the connection. The client identifier can be helpful, especially in a Real Application Cluster (Oracle RAC) environment, for isolating Jena Adapter-related activities from other database activities when you are doing performance analysis and tuning.

By default, the client identifier assigned is JenaAdapter. However, you can specify a different value by setting the Java VM clientIdentifier property using the following format:


-Doracle.spatial.rdf.client.jena.clientIdentifier=<identificationString>


To start the tracing of only Jena Adapter-related activities on the database side, you can use the DBMS_MONITOR.CLIENT_ID_TRACE_ENABLE procedure. For example:


SQL> EXECUTE DBMS_MONITOR.CLIENT_ID_TRACE_ENABLE('JenaAdapter', true, true);








7.2.3 Terminating Long-Running SPARQL Queries

Because some applications need to be able to terminate long-running SPARQL queries, an abort framework has been introduced with the Jena Adapter and the Joseki setup. Basically, for queries that may take a long time to run, you must stamp each with a unique query ID (qid) value.

For example, the following SPARQL query selects out the subject of all triples. A query ID (qid) is set so that this query can be terminated upon request.


PREFIX ORACLE_SEM_FS_NS:  <http://example.com/semtech#qid=8761>
SELECT ?subject WHERE {?subject ?property ?object }


The qid attribute value is of long integer type. You can choose a value for the qid for a particular query based on your own application needs.

To terminate a SPARQL query that has been submitted with a qid value, applications can send an abort request to a servlet in the following format and specify a matching QID value


http://<hostname>:7001/joseki/querymgt?abortqid=8761






7.2.4 N-Triples Encoding for Non-ASCII Characters

For any non-ASCII characters in the lexical representation of RDF resources, \uHHHH N-Triples encoding is used when the characters are inserted into the Oracle database. (For details about N-Triples encoding, see http://www.w3.org/TR/rdf-testcases/#ntrip_grammar.) Encoding of the constant resources in a SPARQL query is handled in a similar fashion.

Using \uHHHH N-Triples encoding enables support for international characters, such as a mix of Norwegian and Swedish characters, in the Oracle database even if a supported Unicode character set is not being used.








7.3 Setting Up the Semantic Technologies Environment

To use the Jena Adapter to perform queries, you can connect as any user (with suitable privileges) and use any models in the semantic network. If your Semantic Technologies environment already meets the requirements, you can go directly to compiling and running Java code that uses the Jena Adapter. If your Semantic Technologies environment is not yet set up to be able to use the Jena Adapter, you can perform actions similar to the following example steps:

	
Connect as SYS with the SYSDBA role:


sqlplus sys/<password-for-sys> as sysdba


	
Create a tablespace for the system tables. For example:


CREATE TABLESPACE rdf_users datafile 'rdf_users01.dbf' 
    size 128M reuse autoextend on next 64M 
    maxsize unlimited segment space management auto;


	
Create the semantic network. For example:


EXECUTE sem_apis.create_sem_network('RDF_USERS');


	
Create a database user (for connecting to the database to use the semantic network and the Jena Adapter). For example:


CREATE USER rdfusr IDENTIFIED BY <password-for-udfusr>
                   DEFAULT TABLESPACE rdf_users;


	
Grant the necessary privileges to this database user. For example:


GRANT connect, resource TO rdfusr;


	
To use the Jena Adapter with your own semantic data, perform the appropriate steps to store data, create a model, and create database indexes, as explained in Section 1.10, "Quick Start for Using Semantic Data". Then perform queries by compiling and running Java code; see Section 7.10 for information about example queries.

To use the Jena Adapter with supplied example data, see Section 7.10.









7.4 SEM_MATCH and Jena Adapter Queries Compared

There are two ways to query semantic data stored in Oracle Database: SEM_MATCH-based SQL statements and SPARQL queries through the Jena Adapter. Queries using each approach are similar in appearance, but there are important behavioral differences. To ensure consistent application behavior, you must understand the differences and use care when dealing with query results coming from SEM_MATCH queries and SPARQL queries.

The following simple examples show the two approaches.

Query 1 (SEM_MATCH-based)


select s, p, o
    from table(sem_match('{?s ?p ?o}', sem_models('Test_Model'), ....))


Query 2 (SPARQL query through the Jena Adapter)


select ?s ?p ?o
where {?s ?p ?o}


These two queries perform the same kind of functions; however, there are some important differences. Query 1 (SEM_MATCH-based):

	
Reads all triples out of Test_Model.


	
Does not differentiate among URI, bNode, plain literals, and typed literals, and it does not handle long literals.


	
Does not unescape certain characters (such as '\n').




Query 2 (SPARQL query executed through the Jena Adapter) also reads all triples out of Test_Model (assume it executed a call to ModelOracleSem referring to the same underlying Test_Model). However, Query 2:

	
Reads out additional columns (as opposed to just the s, p, and o columns with the SEM_MATCH table function), to differentiate URI, bNodes, plain literals, typed literals, and long literals. This is to ensure proper creation of Jena Node objects.


	
Unescapes those characters that are escaped when stored in Oracle Database




Blank node handling is another difference between the two approaches:

	
In a SEM_MATCH-based query, blank nodes are always treated as constants.


	
In a SPARQL query, a blank node that is not wrapped inside < and > is treated as a variable when the query is executed through the Jena Adapter. This matches the SPARQL standard semantics. However, a blank node that is wrapped inside < and > is treated as a constant when the query is executed, and the Jena Adapter adds a proper prefix to the blank node label as required by the underlying data modeling.




The maximum length for the name of a semantic model created using the Jena Adapter API is 22 characters.






7.5 Optimized Handling of SPARQL Queries

This section describes some performance-related features of the Jena Adapter that can enhance SPARQL query processing. These features are performed automatically by default.

This section assumes that you are familiar with SPARQL, including the CONSTRUCT feature and property paths.



7.5.1 Compilation of SPARQL queries to a single SEM_MATCH Call

SPARQL queries involving DISTINCT, OPTIONAL, FILTER, UNION, ORDER BY, and LIMIT are converted to a single Oracle SEM_MATCH table function. If a query cannot be converted directly to SEM_MATCH because it uses SPARQL features not supported by SEM_MATCH (for example, CONSTRUCT), the Jena Adapter employs a hybrid approach and tries to execute the largest portion of the query using a single SEM_MATCH function while executing the rest using the Jena ARQ query engine.

For example, the following SPARQL query is directly translated to a single SEM_MATCH table function:


PREFIX dc:  <http://purl.org/dc/elements/1.1/> 
PREFIX rdf:  <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
SELECT ?person ?name 
  WHERE {
                 {?alice foaf:knows ?person . }
               UNION { 
                 ?person ?p ?name. OPTIONAL { ?person ?x ?name1 } 
                     }
        }


However, the following example query is not directly translatable to a single SEM_MATCH table function because of the CONSTRUCT keyword:


PREFIX vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> 
CONSTRUCT  { <http://example.org/person#Alice> vcard:FN ?obj } 
  WHERE  { { ?x <http://pred/a> ?obj.}
         UNION
         { ?x <http://pred/b> ?obj.}  }


In this case, the Jena Adapter converts the inner UNION query into a single SEM_MATCH table function, and then passes on the result set to the Jena ARQ query engine for further evaluation.






7.5.2 Optimized Handling of Property Paths

As defined in Jena, a property path is a possible route through an RDF graph between two graph nodes. Property paths are an extension of SPARQL and are more expressive than basic graph pattern queries, because regular expressions can be used over properties for pattern matching RDF graphs. For more information about property paths, see the documentation for the Jena ARQ query engine.

The Jena Adapter supports all Jena property path types through the integration with the Jena ARQ query engine, but it converts some common path types directly to native SQL hierarchical queries (not based on SEM_MATCH) to improve performance. The following types of property paths are directly converted to SQL by the Jena Adapter:

	
Predicate alternatives: (p1 | p2 | … | pn) where pi is a property URI


	
Predicate sequences: (p1 / p2 / … / pn) where pi is a property URI


	
Reverse paths : ( ^ p ) where p is a predicate URI


	
Complex paths: p+, p*, p{0, n} where p could be an alternative, sequence, reverse path, or property URI




Path expressions that cannot be captured in this grammar are not translated directly to SQL by the Jena Adapter, and they are answered using the Jena query engine.

The following example contains a code snippet using a property path expression with path sequences:


String m = "PROP_PATH";
 
ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, m);
 
GraphOracleSem graph = new GraphOracleSem(oracle, m);    
    
// populate the RDF Graph
    graph.add(Triple.create(Node.createURI("http://a"),
    Node.createURI("http://p1"),
    Node.createURI("http://b")));
 
graph.add(Triple.create(Node.createURI("http://b"),
 Node.createURI("http://p2"),
 Node.createURI("http://c")));
 
graph.add(Triple.create(Node.createURI("http://c"),
 Node.createURI("http://p5"),
 Node.createURI("http://d")));
 
String query =
" SELECT ?s  " +
" WHERE {?s (<http://p1>/<http://p2>/<http://p5>)+ <http://d>.}";
   
QueryExecution qexec = 
      QueryExecutionFactory.create(QueryFactory.create(query, 
 Syntax.syntaxARQ), model);
 
try {
  ResultSet results = qexec.execSelect();
  ResultSetFormatter.out(System.out, results);
}
finally {
  if (qexec != null)
    qexec.close();
}
     
OracleUtils.dropSemanticModel(oracle, m);
model.close();






7.5.3 Optimized Handling of Plain BGP and OPTIONAL Queries

The Jena Adapter automatically translates basic graph pattern (BGP) and parallel OPTIONAL queries directly to native SQL (not based on SEM_MATCH). The advantage of this approach is that you can specify directives such as RESULT_CACHE in the query to improve performance.

The following queries are translated directly to SQL:

	
Plain BGP queries. For example:


SELECT ?x ?y WHERE {?x urn:a ?o. ?o ?p ?y}


	
Queries using parallel OPTIONAL clauses. For example:


SELECT ?x ?y      
WHERE {?x urn:a ?o. 
       OPTIONAL {?x urn:b ?b} 
       OPTIONAL {?x urn:c ?c} }


	
Queries using property paths (see Section 7.5.2, "Optimized Handling of Property Paths"). For example:


SELECT ?x ?y  
WHERE {?x urn:a ?o. OPTIONAL {?x urn:b* ?b} }











7.6 Additions to the SPARQL Syntax to Support Other Features

The Jena Adapter allows you to pass in hints and additional query options. It implements these capabilities by overloading the SPARQL namespace prefix syntax by using Oracle-specific namespaces that contain query options. The namespaces are in the form PREFIX ORACLE_SEM_xx_NS, where xx indicates the type of feature (such as HT for hint or AP for additional predicate)



7.6.1 SQL Hints

SQL hints can be passed to a SEM_MATCH query including a line in the following form:


PREFIX ORACLE_SEM_HT_NS: <http://oracle.com/semtech#hint>


Where hint can be any hint supported by SEM_MATCH. For example:


PREFIX ORACLE_SEM_HT_NS: <http://oracle.com/semtech#leading(t0,t1)> 
SELECT ?book ?title ?isbn     
WHERE { ?book <http://title> ?title. ?book <http://ISBN> ?isbn }


In this example, t0,t1 refers to the first and second patterns in the query.

Note the slight difference in specifying hints when compared to SEM_MATCH. Due to restrictions of namespace value syntax, a comma (,) must be used to separate t0 and t1 (or other hint components) instead of a space.

For more information about using SQL hints, see Section 1.6, "Using the SEM_MATCH Table Function to Query Semantic Data", specifically the material about the HINT0 keyword in the options attribute.






7.6.2 Using Bind Variables in SPARQL Queries

In Oracle Database, using bind variables can reduce query parsing time and increase query efficiency and concurrency. Bind variable support in SPARQL queries is provided through namespace pragma specifications similar to ORACLE_SEM_FS_NS.

Consider a case where an application runs two SPARQL queries, where the second (Query 2) depends on the partial or complete results of the first (Query 1). Some approaches that do not involve bind variables include:

	
Iterating through results of Query 1 and generating a set of queries. (However, this approach requires as many queries as the number of results of Query 1.)


	
Constructing a SPARQL filter expression based on results of Query 1.


	
Treating Query 1 as a subquery.




Another approach in this case is to use bind variables, as in the following sample scenario:


Query 1:
 
  SELECT ?x
    WHERE { ... <some complex query> ... };
 
 
Query 2:
 
  SELECT ?subject ?x
    WHERE {?subject <urn:related> ?x .};


The following example shows Query 2 with the syntax for using bind variables with the Jena Adapter:


PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#no_fall_back,s2s>
PREFIX ORACLE_SEM_UEAP_NS: <http://oracle.com/semtech#x$RDFVID%20in(?,?,?)>
PREFIX ORACLE_SEM_UEPJ_NS: <http://oracle.com/semtech#x$RDFVID>
PREFIX ORACLE_SEM_UEBV_NS: <http://oracle.com/semtech#1,2,3>
SELECT ?subject ?x
WHERE {
  ?subject <urn:related>  ?x
};


This syntax includes using the following namespaces:

	
ORACLE_SEM_UEAP_NS is like ORACLE_SEM_AP_NS, but the value portion of ORACLE_SEM_UEAP_NS is URL Encoded. Before the value portion is used, it must be URL decoded, and then it will be treated as an additional predicate to the SPARQL query.

In this example, after URL decoding, the value portion (following the # character) of this ORACLE_SEM_UEAP_NS prefix becomes "x$RDFVID in(?,?,?)". The three question marks imply a binding to three values coming from Query 1.


	
ORACLE_SEM_UEPJ_NS specifies the additional projections involved. In this case, because ORACLE_SEM_UEAP_NS references the x$RDFVID column, which does not appear in the SELECT clause of the query, it must be specified. Multiple projections are separated by commas.


	
ORACLE_SEM_UEBV_NS specifies the list of bind values that are URL encoded first, and then concatenated and delimited by commas.




Conceptually, the preceding example query is equivalent to the following non-SPARQL syntax query, in which 1, 2, and 3 are treated as bind values:


SELECT ?subject ?x
  WHERE {
    ?subject <urn:related>  ?x
  }
  AND ?x$RDFVID in (1,2,3);


In the preceding SPARQL example of Query 2, the three integers 1, 2, and 3 come from Query 1. You can use the oext:build-uri-for-id function to generate such internal integer IDs for RDF resources. The following example gets the internal integer IDs from Query 1:


PREFIX oext: <http://oracle.com/semtech/jena-adaptor/ext/function#>
SELECT ?x  (oext:build-uri-for-id(?x) as ?xid)
WHERE { ... <some complex query> ... };


The values of ?xid have the form of <rdfvid:integer-value>. The application can strip out the angle brackets and the "rdfvid:" strings to get the integer values and pass them to Query 2.

Consider another case, with a single query structure but potentially many different constants. For example, the following SPARQL query finds the hobby for each user who has a hobby and who logs in to an application. Obviously, different users will provide different <uri> values to this SPARQL query, because users of the application are represented using different URIs.


SELECT ?hobby
  WHERE { <uri> <urn:hasHobby> ?hobby };


One approach, which would not use bind variables, is to generate a different SPARQL query for each different <uri> value. For example, user Jane Doe might trigger the execution of the following SPARQL query:


SELECT ?hobby WHERE {
<http://www.example.com/Jane_Doe> <urn:hasHobby> ?hobby };


However, another approach is to use bind variables, as in the following example specifying user Jane Doe:


PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#no_fall_back,s2s>
PREFIX ORACLE_SEM_UEAP_NS: <http://oracle.com/semtech#subject$RDFVID%20in(ORACLE_ORARDF_RES2VID(?))>
PREFIX ORACLE_SEM_UEPJ_NS: <http://oracle.com/semtech#subject$RDFVID>
PREFIX ORACLE_SEM_UEBV_NS: <http://oracle.com/semtech#http%3a%2f%2fwww.example.com%2fJohn_Doe>
SELECT ?subject ?hobby
  WHERE {
    ?subject <urn:hasHobby>  ?hobby
  };


Conceptually, the preceding example query is equivalent to the following non-SPARQL syntax query, in which http://www.example.com/Jane_Doe is treated as a bind variable:


SELECT ?subject ?hobby
WHERE {
  ?subject <urn:hasHobby>  ?hobby
}
AND ?subject$RDFVID in (ORACLE_ORARDF_RES2VID('http://www.example.com/Jane_Doe'));


In this example, ORACLE_ORARDF_RES2VID is a function that translates URIs and literals into their internal integer ID representation. This function is created automatically when the Jena Adapter is used to connect to an Oracle database.






7.6.3 Additional WHERE Clause Predicates

The SEM_MATCH filter attribute can specify additional selection criteria as a string in the form of a WHERE clause without the WHERE keyword. Additional WHERE clause predicates can be passed to a SEM_MATCH query including a line in the following form:


PREFIX ORACLE_SEM_AP_NS: <http://oracle.com/semtech#pred>


Where pred reflects the WHERE clause content to be appended to the query. For example:


PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX ORACLE_SEM_AP_NS:<http://www.oracle.com/semtech#label$RDFLANG='fr'>  
SELECT DISTINCT ?inst ?label
  WHERE { ?inst a <http://someCLass>. ?inst rdfs:label ?label . }
  ORDER BY (?label) LIMIT 20


In this example, a restriction is added to the query that the language type of the label variable must be 'fr'.






7.6.4 Additional Query Options

Additional query options can be passed to a SEM_MATCH query including a line in the following form:


PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#option>


Where option reflects a query option (or multiple query options delimited by commas) to be appended to the query. For example:


PREFIX ORACLE_SEM_FS_NS:   
<http://oracle.com/semtech#timeout=3,dop=4,INF_ONLY,ORDERED,ALLOW_DUP=T>
SELECT * WHERE {?subject ?property ?object }


The following query options are supported:

	
ALLOW_DUP=t chooses a faster way to query multiple semantic models, although duplicate results may occur.


	
BEST_EFFORT_QUERY=t, when used with the TIMEOUT=n option, returns all matches found in n seconds for the SPARQL query.


	
DEGREE=n specifies, at the statement level, the degree of parallelism (n) for the query. With multi-core or multi-CPU processors, experimenting with different DOP values (such as 4 or 8) may improve performance.

Contrast DEGREE with DOP, which specifies parallelism at the session level. DEGREE is recommended over DOP for use with the Jena Adapter, because DEGREE involves less processing overhead.


	
DOP=n specifies, at the session level, the degree of parallelism (n) for the query. With multi-core or multi-CPU processors, experimenting with different DOP values (such as 4 or 8) may improve performance.


	
INF_ONLY causes only the inferred model to be queried.


	
JENA_EXECUTOR disables the compilation of SPARQL queries to SEM_MATCH (or native SQL); instead, the Jena native query executor will be used.


	
JOIN=n specifies how results from a SPARQL SERVICE call to a federated query can be joined with other parts of the query. For information about federated queries and the JOIN option, see Section 7.6.4.1.


	
NO_FALL_BACK causes the underlying query execution engine not to fall back on the Jena execution mechanism if a SQL exception occurs.


	
ODS=n specifies, at the statement level, the level of dynamic sampling. (For an explanation of dynamic sampling, see the section about estimating statistics with dynamic sampling in Oracle Database Performance Tuning Guide.) Valid values for n are 1 through 10. For example, you could try ODS=3 for complex queries.


	
ORDERED is translated to a LEADING SQL hint for the query triple pattern joins, while performing the necessary RDF_VALUE$ joins last.


	
PLAIN_SQL_OPT=F disables the native compilation of queries directly to SQL.


	
QID=n specifies a query ID number; this feature can be used to cancel the query if it is not responding.


	
RESULT_CACHE uses the Oracle RESULT_CACHE directive for the query.


	
REWRITE=F disables ODCI_Table_Rewrite for the SEM_MATCH table function.


	
SKIP_CLOB=T causes CLOB values not to be returned for the query.


	
S2S (SPARQL to pure SQL) causes the underlying SEM_MATCH-based query or queries generated based on the SPARQL query to be further converted into SQL queries without using the SEM_MATCH table function. The resulting SQL queries are executed by the Oracle cost-based optimizer, and the results are processed by the Jena Adapter before being passed on to the client. For more information about the S2S option, including benefits and usage information, see Section 7.6.4.2.


	
TIMEOUT=n (query timeout) specifies the number of seconds (n) that the query will run until it is terminated. The underlying SQL generated from a SPARQL query can return many matches and can use features like subqueries and assignments, all of which can take considerable time. The TIMEOUT and BEST_EFFORT_QUERY=t options can be used to prevent what you consider excessive processing time for the query.






7.6.4.1 JOIN Option and Federated Queries

A SPARQL federated query, as described in W3C documents, is a query "over distributed data" that entails "querying one source and using the acquired information to constrain queries of the next source." For more information, see SPARQL 1.1 Federation Extensions (http://www.w3.org/2009/sparql/docs/fed/service).

You can use the JOIN option (described in Section 7.6.4) and the SERVICE keyword in a federated query that uses the Jena Adapter. For example, assume the following query:


SELECT ?s ?s1 ?o
 WHERE { ?s1 ?p1 ?s .
                    {
                     SERVICE <http://sparql.org/books> { ?s ?p ?o }
                    }
                 }


If the local query portion (?s1 ?p1 ?s,) is very selective, you can specify join=2, as shown in the following query:


PREFIX ORACLE_SEM_FS_NS:   <http://oracle.com/semtech#join=2>
SELECT ?s ?s1 ?o
 WHERE { ?s1 ?p1 ?s .
                    {
                     SERVICE <http://sparql.org/books> { ?s ?p ?o }
                    }
                 }


In this case, the local query portion (?s1 ?p1 ?s,) is executed locally against the Oracle database. Each binding of ?s from the results is then pushed into the SERVICE part (remote query portion), and a call is made to the service endpoint specified. Conceptually, this approach is somewhat like nested loop join.

If the remote query portion (?s ?s1 ?o) is very selective, you can specify join=3, as shown in the following query, so that the remote portion is executed first and results are used to drive the execution of local portion:


PREFIX ORACLE_SEM_FS_NS:   <http://oracle.com/semtech#join=3>
SELECT ?s ?s1 ?o
 WHERE { ?s1 ?p1 ?s .
                    {
                     SERVICE <http://sparql.org/books> { ?s ?p ?o }
                    }
                  }


In this case, a single call is made to the remote service endpoint and each binding of ?s triggers a local query. As with join=2, this approach is conceptually a nested loop based join, but the difference is that the order is switched.

If neither the local query portion nor the remote query portion is very selective, then we can choose join=1, as shown in the following query:


PREFIX ORACLE_SEM_FS_NS:   <http://oracle.com/semtech#join=1>
SELECT ?s ?s1 ?o
 WHERE { ?s1 ?p1 ?s .
                    {
                     SERVICE <http://sparql.org/books> { ?s ?p ?o }
                    }
                }


In this case, the remote query portion and the local portion are executed independently, and the results are joined together by Jena. Conceptually, this approach is somewhat like a hash join.

For debugging or tracing federated queries, you can use the HTTP Analyzer in Oracle JDeveloper to see the underlying SERVICE calls.






7.6.4.2 S2S Option Benefits and Usage Information

The S2S option, described in Section 7.6.4, provides the following potential benefits:

	
It works well with the RESULT_CACHE option to improve query performance. Using the S2S and RESULT_CACHE options is especially helpful for queries that are executed frequently.


	
It reduces the parsing time of the SEM_MATCH table function, which can be helpful for applications that involve many dynamically generated SPARQL queries.


	
It eliminates the limit of 4000 bytes for the query body (the first parameter of the SEM_MATCH table function), which means that longer, more complex queries are supported.




The S2S option causes an internal in-memory cache to be used for translated SQL query statements. The default size of this internal cache is 1024 (that is, 1024 SQL queries); however, you can adjust the size by using the following Java VM property:


-Doracle.spatial.rdf.client.jena.queryCacheSize=<size>








7.6.5 Midtier Resource Caching

When semantic data is stored, all of the resource values are hashed into IDs, which are stored in the triples table. The mappings from value IDs to full resource values are stored in the MDSYS.RDF_VALUE$ table. At query time, for each selected variable, Oracle Database must perform a join with the RDF_VALUE$ table to retrieve the resource.

However, to reduce the number of joins, you can use the midtier cache option, which causes an in-memory cache on the middle tier to be used for storing mappings between value IDs and resource values. To use this feature, include the following PREFIX pragma in the SPARQL query:


PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#midtier_cache>


To control the maximum size (in bytes) of the in-memory cache, use the oracle.spatial.rdf.client.jena.cacheMaxSize system property. The default cache maximum size is 1GB.

Note that midtier resource caching is most effective for queries using ORDER BY or DISTINCT (or both) constructs. Midtier cache can be combined with the other options specified in Section 7.6.4.

If you want to pre-populate the cache with all of the resources in a model, use the GraphOracleSem.populateCache method.








7.7 Functions Supported in SPARQL Queries through the Jena Adapter

SPARQL queries through the Jena Adapter can use the following kinds of functions:

	
Functions in the function library of the Jena ARQ query engine


	
Native Oracle Database functions for projected variables


	
User-defined functions






7.7.1 Functions in the ARQ Function Library

SPARQL queries through the Jena Adapter can use functions in the function library of the Jena ARQ query engine. These queries are executed in the middle tier.

The following examples use the upper-case and namespace functions. In these examples, the prefix fn is <http://www.w3.org/2005/xpath-functions#> and the prefix afn is <http://jena.hpl.hp.com/ARQ/function#>.


PREFIX  fn: <http://www.w3.org/2005/xpath-functions#>
PREFIX  afn: <http://jena.hpl.hp.com/ARQ/function#>
SELECT (fn:upper-case(?object) as ?object1)
WHERE { ?subject dc:title ?object }

PREFIX  fn: <http://www.w3.org/2005/xpath-functions#>
PREFIX  afn: <http://jena.hpl.hp.com/ARQ/function#>
SELECT ?subject (afn:namespace(?object) as ?object1)
WHERE { ?subject <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?object } 






7.7.2 Native Oracle Database Functions for Projected Variables

SPARQL queries through the Jena Adapter can use native Oracle Database functions for projected variables. These queries and the functions are executed inside the database. Note that the functions described in this section should not be used together with ARQ functions (described in Section 7.7.1).

This section lists the supported native functions and provides some examples. In the examples, the prefix oext is <http://oracle.com/semtech/jena-adaptor/ext/function#>.




	
Note:

In the preceding URL, note the spelling jena-adaptor, which is retained for compatibility with existing applications and which must be used in queries. The adapter spelling is used in regular text, to follow Oracle documentation style guidelines.







	
oext:upper-literal converts literal values (except for long literals) to uppercase. For example:


PREFIX  oext: <http://oracle.com/semtech/jena-adaptor/ext/function#>
SELECT (oext:upper-literal(?object) as ?object1)
WHERE { ?subject dc:title ?object }


	
oext:lower-literal converts literal values (except for long literals) to lowercase. For example:


PREFIX  oext: <http://oracle.com/semtech/jena-adaptor/ext/function#>
SELECT (oext:lower-literal(?object) as ?object1)
WHERE { ?subject dc:title ?object }


	
oext:build-uri-for-id converts the value ID of a URI, bNode, or literal into a URI form. For example:


PREFIX  oext: <http://oracle.com/semtech/jena-adaptor/ext/function#>
SELECT (oext:build-uri-for-id(?object) as ?object1)
WHERE { ?subject dc:title ?object }


An example of the output might be: <rdfvid:1716368199350136353>

One use of this function is to allow Java applications to maintain in memory a mapping of those value IDs to the lexical form of URIs, bNodes, or literals. The MDSYS.RDF_VALUE$ table provides such a mapping in Oracle Database.

For a given variable ?var, if only oext:build-uri-for-id(?var) is projected, the query performance is likely to be faster because fewer internal table join operations are needed to answer the query.


	
oext:literal-strlen returns the length of literal values (except for long literals). For example:


PREFIX  oext: <http://oracle.com/semtech/jena-adaptor/ext/function#>
SELECT (oext:literal-strlen(?object) as ?objlen)
WHERE { ?subject dc:title ?object }









7.7.3 User-Defined Functions

SPARQL queries through the Jena Adapter can use user-defined functions that are stored in the database.

In the following example, assume that you want to define a string length function (my_strlen) that handles long literals (CLOB) as well as short literals. On the SPARQL query side, this function can be referenced under the namespace of ouext, which is http://oracle.com/semtech/jena-adaptor/ext/user-def-function#.


PREFIX  ouext: <http://oracle.com/semtech/jena-adaptor/ext/user-def-function#>
SELECT ?subject ?object (ouext:my_strlen(?object) as ?obj1)
WHERE { ?subject dc:title ?object }


Inside the database, functions including my_strlen, my_strlen_cl, my_strlen_la, my_strlen_lt, and my_strlen_vt are defined to implement this capability. Conceptually, the return values of these functions are mapped as shown in Table 7-1.


Table 7-1 Functions and Return Values for my_strlen Example

	Function Name	Return Value
	
my_strlen

	
<VAR>


	
my_strlen_cl

	
<VAR>$RDFCLOB


	
my_strlen_la

	
<VAR>$RDFLANG


	
my_strlen_lt

	
<VAR>$RDFLTYP


	
my_strlen_vt

	
<VAR>$RDFVTYP








A set of functions (five in all) is used to implement a user-defined function that can be referenced from SPARQL, because this aligns with the internal representation of an RDF resource (in MDSYS.RDF_VALUE$). There are five major columns describing an RDF resource in terms of its value, language, literal type, long value, and value type, and these five columns can be selected out using SEM_MATCH. In this context, a user-defined function simply converts one RDF resource that is represented by five columns to another RDF resource.

These functions are defined as follows:


create or replace function my_strlen(rdfvtyp in varchar2,
                              rdfltyp in varchar2,
                              rdflang in varchar2,
                              rdfclob in clob,
                              value   in varchar2
                              ) return varchar2
 as
   ret_val  varchar2(4000);
 begin
   -- value
   if (rdfvtyp = 'LIT') then
     if (rdfclob is null) then
       return length(value);
     else
       return dbms_lob.getlength(rdfclob);
     end if;
   else
     -- Assign -1 for non-literal values so that application can
     -- easily differentiate
     return '-1';
   end if;
 end;
 /
 
 create or replace function my_strlen_cl(rdfvtyp in varchar2,
                              rdfltyp in varchar2,
                              rdflang in varchar2,
                              rdfclob in clob,
                              value   in varchar2
                              ) return clob
 as
 begin
   return null;
 end;
 /
 
 create or replace function my_strlen_la(rdfvtyp in varchar2,
                              rdfltyp in varchar2,
                              rdflang in varchar2,
                              rdfclob in clob,
                              value   in varchar2
                              ) return varchar2
 as
 begin
   return null;
 end;
 /
 
 create or replace function my_strlen_lt(rdfvtyp in varchar2,
                              rdfltyp in varchar2,
                              rdflang in varchar2,
                              rdfclob in clob,
                              value   in varchar2
                              ) return varchar2
 as
   ret_val  varchar2(4000);
 begin
   -- literal type
   return 'http://www.w3.org/2001/XMLSchema#integer';
 end;
 /
 
 create or replace function my_strlen_vt(rdfvtyp in varchar2,
                              rdfltyp in varchar2,
                              rdflang in varchar2,
                              rdfclob in clob,
                              value   in varchar2
                              ) return varchar2
 as
   ret_val  varchar2(3);
 begin
   return 'LIT';
 end;
 /


User-defined functions can also accept a parameter of VARCHAR2 type. The following five functions together define a my_shorten_str function that accepts an integer (in VARCHAR2 form) for the substring length and returns the substring. (The substring in this example is 12 characters, and it must not be greater than 4000 bytes.)


-- SPARQL query that returns the first 12 characters of literal values.
-- 
PREFIX  ouext: <http://oracle.com/semtech/jena-adaptor/ext/user-def-function#>
SELECT (ouext:my_shorten_str(?object, "12") as ?obj1) ?subject
WHERE { ?subject dc:title ?object }
 
create or replace function my_shorten_str(rdfvtyp in varchar2,
                            rdfltyp in varchar2,
                            rdflang in varchar2,
                            rdfclob in clob,
                            value   in varchar2,
                            arg     in varchar2
                            ) return varchar2
as
 ret_val  varchar2(4000);
begin
 -- value
 if (rdfvtyp = 'LIT') then
   if (rdfclob is null) then
     return substr(value, 1, to_number(arg));
   else
     return dbms_lob.substr(rdfclob, to_number(arg), 1);
   end if;
 else
   return null;
 end if;
end;
/
 
create or replace function my_shorten_str_cl(rdfvtyp in varchar2,
                            rdfltyp in varchar2,
                            rdflang in varchar2,
                            rdfclob in clob,
                            value   in varchar2,
                            arg     in varchar2
                            ) return clob
as
 ret_val  clob;
begin
 -- lob
 return null;
end;
/
 
create or replace function my_shorten_str_la(rdfvtyp in varchar2,
                            rdfltyp in varchar2,
                            rdflang in varchar2,
                            rdfclob in clob,
                            value   in varchar2,
                            arg     in varchar2
                            ) return varchar2
as
 ret_val  varchar2(4000);
begin
 -- lang
 if (rdfvtyp = 'LIT') then
   return rdflang;
 else
   return null;
 end if;
end;
/
 
create or replace function my_shorten_str_lt(rdfvtyp in varchar2,
                            rdfltyp in varchar2,
                            rdflang in varchar2,
                            rdfclob in clob,
                            value   in varchar2,
                            arg     in varchar2
                            ) return varchar2
as
 ret_val  varchar2(4000);
begin
 -- literal type
 ret_val := rdfltyp;
 return ret_val;
end;
/
 
create or replace function my_shorten_str_vt(rdfvtyp in varchar2,
                            rdfltyp in varchar2,
                            rdflang in varchar2,
                            rdfclob in clob,
                            value   in varchar2,
                            arg     in varchar2
                            ) return varchar2
as
 ret_val  varchar2(3);
begin
 return 'LIT';
end;
/








7.8 Support for Server-Side APIs

This section describes some of the Oracle Database Semantic Technologies features that are exposed by the Jena Adapter. For comprehensive documentation of the API calls that support the available features, see the Jena Adapter reference information (Javadoc). For additional information about the server-side features exposed by the Jena Adapter, see the relevant chapters in this manual.



7.8.1 Virtual Models Support

Virtual models (explained in Section 1.3.8) are specified in the GraphOracleSem constructor, and they are handled transparently. If a virtual model exists for the model-rulebase combination, it is used in query answering; if such a virtual model does not exist, it is created in the database.




	
Note:

Virtual model support through the Jena Adapter is available only with Oracle Database Release 11.2 or later.







The following example reuses an existing virtual model.


String modelName = "EX";
String m1 = "EX_1";
 
ModelOracleSem defaultModel = 
  ModelOracleSem.createOracleSemModel(oracle, modelName);
 
// create these models in case they don't exist
ModelOracleSem model1 = ModelOracleSem.createOracleSemModel(oracle, m1);
 
String vmName = "VM_" + modelName;
 
 
//create a virtual model containing EX and EX_1
oracle.executeCall(
"begin sem_apis.create_virtual_model(?,sem_models('"+ m1 + "','"+ modelName+"'),null); end;",vmName);
 
String[] modelNames = {m1};
String[] rulebaseNames = {};
 
Attachment attachment = Attachment.createInstance(modelNames, rulebaseNames, 
InferenceMaintenanceMode.NO_UPDATE, QueryOptions.ALLOW_QUERY_VALID_AND_DUP);
 
// vmName is passed to the constructor, so GraphOracleSem will use the virtual 
// model named vmname (if the current user has read privileges on it)
GraphOracleSem graph = new GraphOracleSem(oracle, modelName, attachment, vmName);
graph.add(Triple.create(Node.createURI("urn:alice"),
                        Node.createURI("http://xmlns.com/foaf/0.1/mbox"),
                        Node.createURI("mailto:alice@example")));
ModelOracleSem model = new ModelOracleSem(graph);          
 
String queryString =
 
   " SELECT ?subject ?object WHERE { ?subject ?p ?object } ";
 
Query query = QueryFactory.create(queryString) ;
QueryExecution qexec = QueryExecutionFactory.create(query, model) ;
 
try {
   ResultSet results = qexec.execSelect() ;
   for ( ; results.hasNext() ; ) {
      QuerySolution soln = results.nextSolution() ;
      psOut.println("soln " + soln);
   }
} 
finally { 
   qexec.close() ; 
}
 
OracleUtils.dropSemanticModel(oracle, modelName);
OracleUtils.dropSemanticModel(oracle, m1);
 
oracle.dispose();


You can also use the GraphOracleSem constructor to create a virtual model, as in the following example:


GraphOracleSem graph = new GraphOracleSem(oracle, modelName, attachment, true);


In this example, the fourth parameter (true) specifies that a virtual model needs to be created for the specified modelName and attachment.






7.8.2 Connection Pooling Support

Oracle Database Connection Pooling is provided through the Jena Adapter OraclePool class. Once this class is initialized, it can return Oracle objects out of its pool of available connections. Oracle objects are essentially database connection wrappers. After dispose is called on the Oracle object, the connection is returned to the pool. More information about using OraclePool can be found in the API reference information (Javadoc).

The following example sets up an OraclePool object with five (5) initial connections.


public static void main(String[] args) throws Exception
  {      
    String szJdbcURL = args[0];
    String szUser    = args[1];
    String szPasswd  = args[2];
    String szModelName = args[3];
 
    // test with connection properties 
    java.util.Properties prop = new java.util.Properties();
    prop.setProperty("MinLimit", "2");     // the cache size is 2 at least 
    prop.setProperty("MaxLimit", "10");
    prop.setProperty("InitialLimit", "2"); // create 2 connections at startup
    prop.setProperty("InactivityTimeout", "1800");    //  seconds
    prop.setProperty("AbandonedConnectionTimeout", "900");  //  seconds
    prop.setProperty("MaxStatementsLimit", "10");
    prop.setProperty("PropertyCheckInterval", "60"); // seconds
 
    System.out.println("Creating OraclePool");
    OraclePool op = new OraclePool(szJdbcURL, szUser, szPasswd, prop, 
               "OracleSemConnPool");
    System.out.println("Done creating OraclePool");
 
    // grab an Oracle and do something with it
    System.out.println("Getting an Oracle from OraclePool");
    Oracle oracle = op.getOracle();
    System.out.println("Done");
    System.out.println("Is logical connection:" +
        oracle.getConnection().isLogicalConnection());
    GraphOracleSem g = new GraphOracleSem(oracle, szModelName);
    g.add(Triple.create(Node.createURI("u:John"), 
                        Node.createURI("u:parentOf"), 
                        Node.createURI("u:Mary")));
    g.close();
    // return the Oracle back to the pool
    oracle.dispose();
    
    // grab another Oracle and do something else 
    System.out.println("Getting an Oracle from OraclePool");
    oracle = op.getOracle();
    System.out.println("Done");
    System.out.println("Is logical connection:" +
        oracle.getConnection().isLogicalConnection());
    g = new GraphOracleSem(oracle, szModelName);
    g.add(Triple.create(Node.createURI("u:John"), 
                        Node.createURI("u:parentOf"), 
                        Node.createURI("u:Jack")));
    g.close();
    
    OracleUtils.dropSemanticModel(oracle, szModelName); 
    
    // return the Oracle object back to the pool
    oracle.dispose();
}






7.8.3 Semantic Model PL/SQL Interfaces

Several semantic PL/SQL subprograms are available through the Jena Adapter. Table 7-2 lists the subprograms and their corresponding Java class and methods.


Table 7-2 PL/SQL Subprograms and Corresponding Jena Adapter Java Class and Methods

	PL/SQL Subprogram	Corresponding Java Class and Methods
	
SEM_APIS.DROP_SEM_MODEL


	
OracleUtils.dropSemanticModel


	
SEM_APIS.MERGE_MODELS


	
OracleUtils.mergeModels


	
SEM_APIS.SWAP_NAMES


	
OracleUtils.swapNames


	
SEM_APIS.REMOVE_DUPLICATES


	
OracleUtils.removeDuplicates


	
SEM_APIS.RENAME_MODEL


	
OracleUtils.renameModels








For information about these PL/SQL utility subprograms, see the reference information in Chapter 9. For information about the corresponding Java class and methods, see the Jena Adapter API Reference documentation (Javadoc).






7.8.4 Inference Options

You can add options to entailment calls by using the setInferenceOption(String options) procedure with the GraphOracleSem constructor. The following example enables incremental inference and specifies a parallelism value of 4 when creating an entailment.


graph.setInferenceOption("INC=T,DOP=4");


For information about inference options, see Section 2.2.






7.8.5 PelletInfGraph Class Support Deprecated

The support for the PelletInfGraph class within the Jena Adapter is deprecated. You should instead use the more optimized Oracle/Pellet integration through the PelletDb OWL 2 reasoner for Oracle Database 11g. (For information about PelletDb, see http://clarkparsia.com/pelletdb/.)








7.9 Bulk Loading Using the Jena Adapter

To load thousands to hundreds of thousands of RDF/OWL data files into an Oracle database, you can use the prepareBulk and completeBulk methods in the OracleBulkUpdateHandler Java class to simplify the task.

The addInBulk method in the OracleBulkUpdateHandler class can load triples of a graph or model into an Oracle database in bulk loading style. If the graph or model is a Jena in-memory graph or model, the operation is limited by the size of the physical memory. The prepareBulk method bypasses the Jena in-memory graph or model and takes a direct input stream to an RDF data file, parses the data, and load the triples into an underlying staging table. If the staging table and an accompanying table for storing long literals do not already exist, they are created automatically.

The prepareBulk method can be invoked multiple times to load multiple data files into the same underlying staging table. It can also be invoked concurrently, assuming the hardware system is balanced and there are multiple CPU cores and sufficient I/O capacity.

Once all the data files are processed by the prepareBulk method, you can invoke completeBulk to load all the data into the semantic network.

Example 7-1 shows how to load all data files in directory dir_1 into the underlying staging table. Long literals are supported and will be stored in a separate table. The data files can be compressed using GZIP to save storage space, and the prepareBulk method can detect automatically if a data file is compressed using GZIP or not.


Example 7-1 Loading Data into the Staging Table (prepareBulk)


Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
GraphOracleSem graph = new GraphOracleSem(oracle, szModelName);
 
PrintStream psOut = System.out;

String dirname = "dir_1";
File fileDir = new File(dirname);
String[] szAllFiles = fileDir.list();

// loop through all the files in a directory
for (int idx = 0; idx < szAllFiles.length; idx++) {
  String szIndFileName = dirname + File.separator + szAllFiles[idx];
  psOut.println("process to [ID = " + idx + " ] file " + szIndFileName);
  psOut.flush();
 
  try {
    InputStream is = new FileInputStream(szIndFileName);
    graph.getBulkUpdateHandler().prepareBulk(
        is,                    // input stream
        "http://example.com",  // base URI
        "RDF/XML",             // data file type: can be RDF/XML, N-TRIPLE, etc.
        "SEMTS",               // tablespace
        null,                  // flags
        null,                  // listener
        null                   // staging table name.
        );
    is.close();
  }
  catch (Throwable t) {
    psOut.println("Hit exception " + t.getMessage());
  }
}
 
graph.close();
oracle.dispose();




The code in Example 7-1, starting from creating a new Oracle object and ending with disposing of the Oracle object, can be executed in parallel. Assume there is a quad-core CPU and enough I/O capacity on the database hardware system; you can divide up all the data files and save them into four separate directories: dir_1, dir_2, dir_3, and dir_4. Four Java threads of processes can be started to work on those directories separately and concurrently.

After all data files are processed, you can invoke, just once, the completeBulk method to load the data from staging table into the semantic network, as shown in Example 7-2. Triples with long literals will be loaded also.


Example 7-2 Loading Data from the Staging Table into the Semantic Network (completeBulk)


graph.getBulkUpdateHandler().completeBulk(
  null,  // flags for invoking SEM_APIS.bulk_load_from_staging_table
  null   // staging table name
);




The prepareBulk method can also take a Jena model as an input data source, in which case triples in that Jena model are loaded into the underlying staging table. For more information, see the Javadoc.

In addition to loading triples from Jena models and data files, the prepareBulk method supports RDFa, as shown in Example 7-3. (RDFa is explained in http://www.w3.org/TR/xhtml-rdfa-primer/.)


Example 7-3 Using prepareBulk with RDFa


graph.getBulkUpdateHandler().prepareBulk(
  rdfaUrl,   // url to a web page using RDFa
  "SEMTS",   // tablespace
  null,      // flags
  null,      // listener
  null       // staging table name
);




To parse RDFa, the relevant java-rdfa libraries must be included in the classpath. No additional setup or API calls are required. (For information about java-rdfa, see http://www.rootdev.net/maven/projects/java-rdfa/ and the other topics there under Project Information.)

Note that if the rdfaUrl is located outside a firewall, you may need to set the following HTTP Proxy-related Java VM properties:


-Dhttp.proxyPort=...
-Dhttp.proxyHost=...






7.10 Example Queries Using the Jena Adapter

This section includes example queries using the Jena Adapter. Each example is self-contained: it typically creates a model, creates triples, performs a query that may involve inference, displays the result, and drops the model.

This section includes queries that do the following:

	
Count asserted triples and asserted plus inferred triples in an example "university" ontology, both by referencing the ontology by a URL and by bulk loading the ontology from a local file


	
Run several SPARQL queries using a "family" ontology, including features such as LIMIT, OFFSET, TIMEOUT, DOP (degree of parallelism), ASK, DESCRIBE, CONSTRUCT, GRAPH, ALLOW_DUP (duplicate triples with multiple models), SPARUL (inserting data)


	
Use the ARQ built-in function


	
Use a SELECT cast query


	
Instantiate Oracle Database using OracleConnection


	
Use Oracle Database connection pooling




To run a query, you must do the following:

	
Include the code in a Java source file. The examples used in this section are supplied in files in the examples directory of the Jena Adapter download.


	
Compile the Java source file. For example:


> javac -classpath ./:./jena-2.6.3.jar:./sdordfclient.jar:./ojdbc5.jar:/slf4j-api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.5.jar:./xercesImpl-2.7.1.jar Test.java





	
Note:

The javac and java commands must each be on a single command line.








	
Run the compiled file. For example:


> java -classpath ./:./jena-2.6.3.jar:./sdordfclient.jar:./ojdbc5.jar:./slf4j-api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.5.jar:./xercesImpl-2.7.1.jar:./iri-0.8.jar:./icu4j-3.4.4.jar:./log4j-1.2.14.jar  Test jdbc:oracle:thin:@localhost:1521:orcl scott <password-for-scott> M1






7.10.1 Test.java: Query Family Relationships

Example 7-4 specifies that John is the father of Mary, and it selects and displays the subject and object in each fatherOf relationship


Example 7-4 Query Family Relationships


import oracle.spatial.rdf.client.jena.*;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.graph.*;
import com.hp.hpl.jena.query.*;
public class Test {
 
  public static void main(String[] args) throws Exception
  {
    String szJdbcURL = args[0];
    String szUser    = args[1];
    String szPasswd  = args[2];
    String szModelName = args[3];
          
    Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
    Model model = ModelOracleSem.createOracleSemModel(
      oracle, szModelName);
 
    model.getGraph().add(Triple.create(
          Node.createURI("http://example.com/John"),
          Node.createURI("http://example.com/fatherOf"),
          Node.createURI("http://example.com/Mary")));
    Query query = QueryFactory.create(
        "select ?f ?k WHERE {?f <http://example.com/fatherOf> ?k .}");
    QueryExecution qexec = QueryExecutionFactory.create(query, model);
    ResultSet results = qexec.execSelect();
    ResultSetFormatter.out(System.out, results, query);
    model.close();
    oracle.dispose();
  }
}




The following are the commands to compile and run Example 7-4, as well as the expected output of the java command.


javac -classpath ./:./jena-2.6.3.jar:./sdordfclient.jar:./ojdbc5.jar:/slf4j-api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.5.jar:./xercesImpl-2.7.1.jar Test.java
java -classpath ./:./jena-2.6.3.jar:./sdordfclient.jar:./ojdbc5.jar:./slf4j-api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.5.jar:./xercesImpl-2.7.1.jar:./iri-0.8.jar:./icu4j-3.4.4.jar:./log4j-1.2.14.jar  Test jdbc:oracle:thin:@localhost:1521:orcl scott <password-for-scott> M1
 
---------------------------------------------------------
| f                         | k                         |
=========================================================
| <http://example.com/John> | <http://example.com/Mary> |
---------------------------------------------------------






7.10.2 Test6.java: Load OWL Ontology and Perform OWLPrime inference

Example 7-5 loads an OWL ontology and performs OWLPrime inference. Note that the OWL ontology is in RDF/XML format, and after it is loaded into Oracle it will be serialized out in N-TRIPLE form. The example also queries for the number of asserted and inferred triples.

The ontology in this example can be retrieved from http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl, and it describes roles, resources, and relationships in a university environment.


Example 7-5 Load OWL Ontology and Perform OWLPrime inference


import java.io.*;
import com.hp.hpl.jena.query.*;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.util.FileManager;
import oracle.spatial.rdf.client.jena.*;
public class Test6 {
  public static void main(String[] args) throws Exception
  {
    String szJdbcURL = args[0];
    String szUser    = args[1];
    String szPasswd  = args[2];
    String szModelName = args[3];
    
    Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
    Model model = ModelOracleSem.createOracleSemModel(oracle, szModelName);
        
    // load UNIV ontology
    InputStream in = FileManager.get().open("./univ-bench.owl" );
    model.read(in, null);
    OutputStream os = new FileOutputStream("./univ-bench.nt");
    model.write(os, "N-TRIPLE");
    os.close();
 
    String queryString =
      " SELECT ?subject ?prop ?object WHERE { ?subject ?prop ?object } ";
 
    Query query = QueryFactory.create(queryString) ;
    QueryExecution qexec = QueryExecutionFactory.create(query, model) ;
 
    try {
      int iTriplesCount = 0;
      ResultSet results = qexec.execSelect() ;
      for ( ; results.hasNext() ; ) {
        QuerySolution soln = results.nextSolution() ;
        iTriplesCount++;
      }
      System.out.println("Asserted  triples count: " + iTriplesCount);
    } 
    finally { 
      qexec.close() ; 
    }
    
    Attachment attachment = Attachment.createInstance(
        new String[] {}, "OWLPRIME",
        InferenceMaintenanceMode.NO_UPDATE, QueryOptions.DEFAULT);
 
    GraphOracleSem graph = new GraphOracleSem(oracle, szModelName, attachment);
    graph.analyze();
    graph.performInference();
 
    query = QueryFactory.create(queryString) ;
    qexec = QueryExecutionFactory.create(query,new ModelOracleSem(graph)) ;
 
    try {
      int iTriplesCount = 0;
      ResultSet results = qexec.execSelect() ;
      for ( ; results.hasNext() ; ) {
        QuerySolution soln = results.nextSolution() ;
        iTriplesCount++;
      }
      System.out.println("Asserted + Infered triples count: " + iTriplesCount);
    } 
    finally { 
      qexec.close() ; 
    }
    model.close();    
 
    OracleUtils.dropSemanticModel(oracle, szModelName);    
    oracle.dispose();
  }
}




The following are the commands to compile and run Example 7-5, as well as the expected output of the java command.


javac -classpath ./:./jena-2.6.3.jar:./sdordfclient.jar:./ojdbc5.jar:/slf4j-api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.5.jar:./xercesImpl-2.7.1.jar Test6.java
java -classpath ./:./jena-2.6.3.jar:./sdordfclient.jar:./ojdbc5.jar:./slf4j-api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.5.jar:./xercesImpl-2.7.1.jar:./iri-0.8.jar:./icu4j-3.4.4.jar:./log4j-1.2.14.jar  Test6 jdbc:oracle:thin:@localhost:1521:orcl scott <password-for-scott> M1
Asserted  triples count: 294
Asserted + Infered triples count: 341


Note that this output reflects an older version of the LUBM ontology. The latest version of the ontology has more triples.






7.10.3 Test7.java: Bulk Load OWL Ontology and Perform OWLPrime inference

Example 7-6 loads the same OWL ontology as in Section 7.10.2, but stored in a local file using Bulk Loader. Ontologies can also be loaded using an incremental and batch loader; these two methods are also listed in the example for completeness.


Example 7-6 Bulk Load OWL Ontology and Perform OWLPrime inference


import java.io.*;
import com.hp.hpl.jena.query.*;
import com.hp.hpl.jena.graph.*;
import com.hp.hpl.jena.rdf.model.*;
import com.hp.hpl.jena.util.*;
import oracle.spatial.rdf.client.jena.*;
 
public class Test7 
{
  public static void main(String[] args) throws Exception
  {
    String szJdbcURL = args[0];
    String szUser    = args[1];
    String szPasswd  = args[2];
    String szModelName = args[3];
    // in memory Jena Model
    Model model = ModelFactory.createDefaultModel();
    InputStream is = FileManager.get().open("./univ-bench.owl");
    model.read(is, "", "RDF/XML");
    is.close();
 
    Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
    ModelOracleSem modelDest = ModelOracleSem.createOracleSemModel(oracle, 
szModelName);
 
    GraphOracleSem g = modelDest.getGraph();
    g.dropApplicationTableIndex();
 
    int method = 2; // try bulk loader
    String tbs = "SYSAUX"; // can be customized
    if (method == 0) {
      System.out.println("start incremental");
      modelDest.add(model);
      System.out.println("end size " + modelDest.size());
    }
    else if (method == 1) {
      System.out.println("start batch load");
      g.getBulkUpdateHandler().addInBatch(
          GraphUtil.findAll(model.getGraph()), tbs);
      System.out.println("end size " + modelDest.size());
    }
    else {
      System.out.println("start bulk load");
      g.getBulkUpdateHandler().addInBulk(
          GraphUtil.findAll(model.getGraph()), tbs);
      System.out.println("end size " + modelDest.size());
    }
    g.rebuildApplicationTableIndex();
 
    long lCount = g.getCount(Triple.ANY);
    System.out.println("Asserted  triples count: " + lCount);
    model.close();    
    OracleUtils.dropSemanticModel(oracle, szModelName);
    oracle.dispose();
  }
}




The following are the commands to compile and run Example 7-6, as well as the expected output of the java command.


javac -classpath ./:./jena-2.6.3.jar:./sdordfclient.jar:./ojdbc5.jar:/slf4j-api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.5.jar:./xercesImpl-2.7.1.jar Test7.java
java -classpath ./:./jena-2.6.3.jar:./sdordfclient.jar:./ojdbc5.jar:./slf4j-api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.5.jar:./xercesImpl-2.7.1.jar:./iri-0.8.jar:./icu4j-3.4.4.jar:./log4j-1.2.14.jar  Test7 jdbc:oracle:thin:@localhost:1521:orcl scott <password-for-scott> M1
start bulk load
end size 293
Asserted  triples count: 293


Note that this output reflects an older version of the LUBM ontology. The latest version of the ontology has more triples.






7.10.4 Test8.java: SPARQL OPTIONAL Query

Example 7-7 shows a SPARQL OPTIONAL query. It inserts triples that postulate the following:

	
John is a parent of Mary.


	
John is a parent of Jack.


	
Mary is a parent of Jill.




It then finds parent-child relationships, optionally including any grandchild (gkid) relationships.


Example 7-7 SPARQL OPTIONAL Query


import java.io.*;
import com.hp.hpl.jena.query.*;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.util.FileManager;
import oracle.spatial.rdf.client.jena.*;
import com.hp.hpl.jena.graph.*;
 
public class Test8 
{
  public static void main(String[] args) throws Exception
  {
    String szJdbcURL = args[0];
    String szUser    = args[1];
    String szPasswd  = args[2];
    String szModelName = args[3];
    
    Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
    ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, 
szModelName);
    GraphOracleSem g = model.getGraph();
 
    g.add(Triple.create(
          Node.createURI("u:John"), Node.createURI("u:parentOf"), 
Node.createURI("u:Mary")));
    g.add(Triple.create(
          Node.createURI("u:John"), Node.createURI("u:parentOf"), 
Node.createURI("u:Jack")));
    g.add(Triple.create(
          Node.createURI("u:Mary"), Node.createURI("u:parentOf"), 
Node.createURI("u:Jill")));
        
    String queryString =
  " SELECT ?s ?o ?gkid " +
  " WHERE { ?s <u:parentOf> ?o . OPTIONAL {?o <u:parentOf> ?gkid }} ";
 
    Query query = QueryFactory.create(queryString) ;
    QueryExecution qexec = QueryExecutionFactory.create(query, model) ;
 
    try {
      int iMatchCount = 0;
      ResultSet results = qexec.execSelect() ;
      ResultSetFormatter.out(System.out, results, query);
    } 
    finally { 
      qexec.close() ; 
    }
    model.close();    
 
    OracleUtils.dropSemanticModel(oracle, szModelName);
    oracle.dispose();
  }
}




The following are the commands to compile and run Example 7-7, as well as the expected output of the java command.


javac -classpath ./:./jena-2.6.3.jar:./sdordfclient.jar:./ojdbc5.jar:/slf4j-api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.5.jar:./xercesImpl-2.7.1.jar Test8.java
java -classpath ./:./jena-2.6.3.jar:./sdordfclient.jar:./ojdbc5.jar:./slf4j-api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.5.jar:./xercesImpl-2.7.1.jar:./iri-0.8.jar:./icu4j-3.4.4.jar:./log4j-1.2.14.jar  Test8 jdbc:oracle:thin:@localhost:1521:orcl scott <password-for-scott> M1
----------------------------------
| s        | o        | gkid     |
==================================
| <u:John> | <u:Mary> | <u:Jill> |
| <u:Mary> | <u:Jill> |          |
| <u:John> | <u:Jack> |          |
---------------------------------- 






7.10.5 Test9.java: SPARQL Query with LIMIT and OFFSET

Example 7-8 shows a SPARQL query with LIMIT and OFFSET. It inserts triples that postulate the following:

	
John is a parent of Mary.


	
John is a parent of Jack.


	
Mary is a parent of Jill.




It then finds one parent-child relationship (LIMIT 1), skipping the first two parent-child relationships encountered (OFFSET 2), and optionally includes any grandchild (gkid) relationships for the one found.


Example 7-8 SPARQL Query with LIMIT and OFFSET


import java.io.*;
import com.hp.hpl.jena.query.*;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.util.FileManager;
import oracle.spatial.rdf.client.jena.*;
import com.hp.hpl.jena.graph.*;
public class Test9 
{
  public static void main(String[] args) throws Exception
  {
    String szJdbcURL = args[0];
    String szUser    = args[1];
    String szPasswd  = args[2];
    String szModelName = args[3];
    
    Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
    ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, 
szModelName);
    GraphOracleSem g = model.getGraph();
 
    g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"),
                    Node.createURI("u:Mary")));
    g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"),
                    Node.createURI("u:Jack")));
    g.add(Triple.create(Node.createURI("u:Mary"), Node.createURI("u:parentOf"),              
                    Node.createURI("u:Jill")));
        
    String queryString =
      " SELECT ?s ?o ?gkid " +
      " WHERE { ?s <u:parentOf> ?o . OPTIONAL {?o <u:parentOf> ?gkid }} " +
      " LIMIT 1 OFFSET 2";
 
    Query query = QueryFactory.create(queryString) ;
    QueryExecution qexec = QueryExecutionFactory.create(query, model) ;
 
    int iMatchCount = 0;
    ResultSet results = qexec.execSelect() ;
    ResultSetFormatter.out(System.out, results, query);
    qexec.close() ; 
    model.close();    
 
    OracleUtils.dropSemanticModel(oracle, szModelName);
    oracle.dispose();
  }
}




The following are the commands to compile and run Example 7-8, as well as the expected output of the java command.


javac -classpath ./:./jena-2.6.3.jar:./sdordfclient.jar:./ojdbc5.jar:/slf4j-api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.5.jar:./xercesImpl-2.7.1.jar Test9.java
java -classpath ./:./jena-2.6.3.jar:./sdordfclient.jar:./ojdbc5.jar:./slf4j-api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.5.jar:./xercesImpl-2.7.1.jar:./iri-0.8.jar:./icu4j-3.4.4.jar:./log4j-1.2.14.jar  Test9 jdbc:oracle:thin:@localhost:1521:orcl scott <password-for-scott> M1
------------------------------
| s        | o        | gkid |
==============================
| <u:John> | <u:Jack> |      |
------------------------------ 






7.10.6 Test10.java: SPARQL Query with TIMEOUT and DOP

Example 7-9 shows the SPARQL query from Section 7.10.5 with additional features, including a timeout setting (TIMEOUT=1, in seconds) and parallel execution setting (DOP=4).


Example 7-9 SPARQL Query with TIMEOUT and DOP


import java.io.*;
import com.hp.hpl.jena.query.*;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.util.FileManager;
import oracle.spatial.rdf.client.jena.*;
import com.hp.hpl.jena.graph.*;
 
public class Test10 {
  public static void main(String[] args) throws Exception  {
    String szJdbcURL = args[0];
    String szUser    = args[1];
    String szPasswd  = args[2];
    String szModelName = args[3];
    
    Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
    ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, szModelName);
    GraphOracleSem g = model.getGraph();
 
    g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"), 
                            Node.createURI("u:Mary")));
    g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"), 
                        Node.createURI("u:Jack")));
    g.add(Triple.create(Node.createURI("u:Mary"), Node.createURI("u:parentOf"), 
                        Node.createURI("u:Jill")));
    String queryString =
        " PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#dop=4,timeout=1> " 
      + " SELECT ?s ?o ?gkid WHERE { ?s <u:parentOf> ?o . " 
      + " OPTIONAL {?o <u:parentOf> ?gkid }} "
      + " LIMIT 1 OFFSET 2";
 
    Query query = QueryFactory.create(queryString) ;
    QueryExecution qexec = QueryExecutionFactory.create(query, model) ;
 
    int iMatchCount = 0;
    ResultSet results = qexec.execSelect() ;
    ResultSetFormatter.out(System.out, results, query);
    qexec.close() ; 
    model.close();    
 
    OracleUtils.dropSemanticModel(oracle, szModelName);
    oracle.dispose();
  }
}




The following are the commands to compile and run Example 7-9, as well as the expected output of the java command.


javac -classpath ./:./jena-2.6.3.jar:./sdordfclient.jar:./ojdbc5.jar:/slf4j-api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.5.jar:./xercesImpl-2.7.1.jar Test10.java
java -classpath ./:./jena-2.6.3.jar:./sdordfclient.jar:./ojdbc5.jar:./slf4j-api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.5.jar:./xercesImpl-2.7.1.jar:./iri-0.8.jar:./icu4j-3.4.4.jar:./log4j-1.2.14.jar  Test10 jdbc:oracle:thin:@localhost:1521:orcl scott <password-for-scott> M1
------------------------------
| s        | o        | gkid |
==============================
| <u:Mary> | <u:Jill> |      |
------------------------------






7.10.7 Test11.java: Query Involving Named Graphs

Example 7-10 shows a query involving named graphs. It involves a default model that has information about named graph URIs and their publishers. The query finds graph names, their publishers, and within each named graph finds the mailbox value using the foaf:mbox predicate.


Example 7-10 Named Graph Based Query


import java.io.*;
import com.hp.hpl.jena.query.*;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.util.FileManager;
import oracle.spatial.rdf.client.jena.*;
import com.hp.hpl.jena.graph.*;
 
public class Test11
{
  public static void main(String[] args) throws Exception
  {
    String szJdbcURL = args[0];
    String szUser    = args[1];
    String szPasswd  = args[2];
    String szModelName = args[3];
    
    Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
    DataSource ds = DatasetFactory.create();
    ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, szModelName);
    model.getGraph().add(Triple.create(Node.createURI("http://example.org/bob"),
          Node.createURI("http://purl.org/dc/elements/1.1/publisher"),
          Node.createLiteral("Bob Hacker")));
    model.getGraph().add(Triple.create(Node.createURI("http://example.org/alice"),
          Node.createURI("http://purl.org/dc/elements/1.1/publisher"),
          Node.createLiteral("alice Hacker")));
 
 
    ModelOracleSem model1 = ModelOracleSem.createOracleSemModel(oracle,
 szModelName+"1");
 
    model1.getGraph().add(Triple.create(Node.createURI("urn:bob"),
                                        Node.createURI("http://xmlns.com/foaf/0.1/name"),
                                    Node.createLiteral("Bob")));
    model1.getGraph().add(Triple.create(Node.createURI("urn:bob"),
                                     Node.createURI("http://xmlns.com/foaf/0.1/mbox"),
                                     Node.createURI("mailto:bob@example")));
 
    ModelOracleSem model2 = ModelOracleSem.createOracleSemModel(oracle,
            szModelName+"2");
    model2.getGraph().add(Triple.create(Node.createURI("urn:alice"),
                                        Node.createURI("http://xmlns.com/foaf/0.1/name"),
                                    Node.createLiteral("Alice")));
    model2.getGraph().add(Triple.create(Node.createURI("urn:alice"),
                                        Node.createURI("http://xmlns.com/foaf/0.1/mbox"),
                                    Node.createURI("mailto:alice@example")));
 
    ds.setDefaultModel(model);
    ds.addNamedModel("http://example.org/bob",model1);
    ds.addNamedModel("http://example.org/alice",model2);
 
    String queryString =  
      " PREFIX foaf: <http://xmlns.com/foaf/0.1/> "
    + " PREFIX dc: <http://purl.org/dc/elements/1.1/> "
    + " SELECT ?who ?graph ?mbox "
    + " FROM NAMED <http://example.org/alice> "
    + " FROM NAMED <http://example.org/bob> "
    + " WHERE "
    + " { " 
    + "    ?graph dc:publisher ?who . "
    + "    GRAPH ?graph { ?x foaf:mbox ?mbox } "
    + " } ";
 
    Query query = QueryFactory.create(queryString) ;
    QueryExecution qexec = QueryExecutionFactory.create(query, ds) ;
 
    ResultSet results = qexec.execSelect() ;
    ResultSetFormatter.out(System.out, results, query);
    
    qexec.close();
    model.close();    
    model1.close();    
    model2.close();    
 
    OracleUtils.dropSemanticModel(oracle, szModelName);
    OracleUtils.dropSemanticModel(oracle, szModelName + "1");
    OracleUtils.dropSemanticModel(oracle, szModelName + "2");
    oracle.dispose();
  }
}




The following are the commands to compile and run Example 7-10, as well as the expected output of the java command.


javac -classpath ./:./jena-2.6.3.jar:./sdordfclient.jar:./ojdbc5.jar:/slf4j-api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.5.jar:./xercesImpl-2.7.1.jar Test11.java
java -classpath ./:./jena-2.6.3.jar:./sdordfclient.jar:./ojdbc5.jar:./slf4j-api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.5.jar:./xercesImpl-2.7.1.jar:./iri-0.8.jar:./icu4j-3.4.4.jar:./log4j-1.2.14.jar  Test11 jdbc:oracle:thin:@localhost:1521:orcl scott <password-for-scott> M1
------------------------------------------------------------------------
| who            | graph                      | mbox                   |
========================================================================
| "alice Hacker" | <http://example.org/alice> | <mailto:alice@example> |
| "Bob Hacker"   | <http://example.org/bob>   | <mailto:bob@example>   |
------------------------------------------------------------------------






7.10.8 Test12.java: SPARQL ASK Query

Example 7-11 shows a SPARQL ASK query. It inserts a triple that postulates that John is a parent of Mary. It then finds whether John is a parent of Mary.


Example 7-11 SPARQL ASK Query


import java.io.*;
import com.hp.hpl.jena.query.*;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.util.FileManager;
import oracle.spatial.rdf.client.jena.*;
import com.hp.hpl.jena.graph.*;
public class Test12
{
  public static void main(String[] args) throws Exception
  {
    String szJdbcURL = args[0];
    String szUser    = args[1];
    String szPasswd  = args[2];
    String szModelName = args[3];
    
    Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
    ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, 
          szModelName);
    GraphOracleSem g = model.getGraph();
 
    g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"), 
                        Node.createURI("u:Mary")));
    String queryString = " ASK { <u:John> <u:parentOf> <u:Mary> } ";
 
    Query query = QueryFactory.create(queryString) ;
    QueryExecution qexec = QueryExecutionFactory.create(query, model) ;
    boolean b = qexec.execAsk();
    System.out.println("ask result = " + ((b)?"TRUE":"FALSE"));
    qexec.close() ; 
    
    model.close();    
    OracleUtils.dropSemanticModel(oracle, szModelName);
    oracle.dispose();
  }
}




The following are the commands to compile and run Example 7-11, as well as the expected output of the java command.


javac -classpath ./:./jena-2.6.3.jar:./sdordfclient.jar:./ojdbc5.jar:/slf4j-api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.5.jar:./xercesImpl-2.7.1.jar Test12.java
java -classpath ./:./jena-2.6.3.jar:./sdordfclient.jar:./ojdbc5.jar:./slf4j-api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.5.jar:./xercesImpl-2.7.1.jar:./iri-0.8.jar:./icu4j-3.4.4.jar:./log4j-1.2.14.jar  Test12 jdbc:oracle:thin:@localhost:1521:orcl scott <password-for-scott> M1
ask result = TRUE






7.10.9 Test13.java: SPARQL DESCRIBE Query

Example 7-12 shows a SPARQL DESCRIBE query. It inserts triples that postulate the following:

	
John is a parent of Mary.


	
John is a parent of Jack.


	
Amy is a parent of Jack.




It then finds all relationships that involve any parents of Jack.


Example 7-12 SPARQL DESCRIBE Query


import java.io.*;
import com.hp.hpl.jena.query.*;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.util.FileManager;
import oracle.spatial.rdf.client.jena.*;
import com.hp.hpl.jena.graph.*;
 
public class Test13
{
  public static void main(String[] args) throws Exception
  {
    String szJdbcURL = args[0];
    String szUser    = args[1];
    String szPasswd  = args[2];
    String szModelName = args[3];
    
    Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
    ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, szModelName);
    GraphOracleSem g = model.getGraph();
 
    g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"), 
                    Node.createURI("u:Mary")));
    g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"), 
 Node.createURI("u:Jack")));
    g.add(Triple.create(Node.createURI("u:Amy"), Node.createURI("u:parentOf"), 
 Node.createURI("u:Jack")));
    String queryString = " DESCRIBE ?x WHERE {?x <u:parentOf> <u:Jack>}";
 
    Query query = QueryFactory.create(queryString) ;
    QueryExecution qexec = QueryExecutionFactory.create(query, model) ;
    Model m = qexec.execDescribe();
    System.out.println("describe result = " + m.toString());
 
    qexec.close() ; 
    model.close();    
    OracleUtils.dropSemanticModel(oracle, szModelName);
    oracle.dispose();
  }
}




The following are the commands to compile and run Example 7-12, as well as the expected output of the java command.


javac -classpath ./:./jena-2.6.3.jar:./sdordfclient.jar:./ojdbc5.jar:/slf4j-api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.5.jar:./xercesImpl-2.7.1.jar Test13.java
java -classpath ./:./jena-2.6.3.jar:./sdordfclient.jar:./ojdbc5.jar:./slf4j-api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.5.jar:./xercesImpl-2.7.1.jar:./iri-0.8.jar:./icu4j-3.4.4.jar:./log4j-1.2.14.jar  Test13 jdbc:oracle:thin:@localhost:1521:orcl scott <password-for-scott> M1
describe result = <ModelCom   {u:Amy @u:parentOf u:Jack; u:John @u:parentOf u:Jack; u:John @u:parentOf u:Mary} | >






7.10.10 Test14.java: SPARQL CONSTRUCT Query

Example 7-13 shows a SPARQL CONSTRUCT query. It inserts triples that postulate the following:

	
John is a parent of Mary.


	
John is a parent of Jack.


	
Amy is a parent of Jack.


	
Each parent loves all of his or her children.




It then constructs an RDF graph with information about who loves whom.


Example 7-13 SPARQL CONSTRUCT Query


import java.io.*;
import com.hp.hpl.jena.query.*;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.util.FileManager;
import oracle.spatial.rdf.client.jena.*;
import com.hp.hpl.jena.graph.*;
 
public class Test14
{
  public static void main(String[] args) throws Exception
  {
    String szJdbcURL = args[0];
    String szUser    = args[1];
    String szPasswd  = args[2];
    String szModelName = args[3];
    
    Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
    ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, szModelName);
    GraphOracleSem g = model.getGraph();
 
    g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"), 
 Node.createURI("u:Mary")));
    g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"), 
 Node.createURI("u:Jack")));
    g.add(Triple.create(Node.createURI("u:Amy"), Node.createURI("u:parentOf"), 
 Node.createURI("u:Jack")));
    String queryString = " CONSTRUCT { ?s <u:loves> ?o } WHERE {?s <u:parentOf> ?o}";
 
    Query query = QueryFactory.create(queryString) ;
    QueryExecution qexec = QueryExecutionFactory.create(query, model) ;
    Model m = qexec.execConstruct();
    System.out.println("Construct result = " + m.toString());
 
    qexec.close() ; 
    model.close();    
    OracleUtils.dropSemanticModel(oracle, szModelName);
    oracle.dispose();
  }
}




The following are the commands to compile and run Example 7-13, as well as the expected output of the java command.


javac -classpath ./:./jena-2.6.3.jar:./sdordfclient.jar:./ojdbc5.jar:/slf4j-api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.5.jar:./xercesImpl-2.7.1.jar Test14.java
java -classpath ./:./jena-2.6.3.jar:./sdordfclient.jar:./ojdbc5.jar:./slf4j-api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.5.jar:./xercesImpl-2.7.1.jar:./iri-0.8.jar:./icu4j-3.4.4.jar:./log4j-1.2.14.jar  Test14 jdbc:oracle:thin:@localhost:1521:orcl scott <password-for-scott> M1
Construct result = <ModelCom   {u:Amy @u:loves u:Jack; u:John @u:loves u:Jack; u:John @u:loves u:Mary} | >






7.10.11 Test15.java: Query Multiple Models and Specify "Allow Duplicates"

Example 7-14 queries multiple models and uses the "allow duplicates" option. It inserts triples that postulate the following:

	
John is a parent of Jack (in Model 1).


	
Mary is a parent of Jack (in Model 2).


	
Each parent loves all of his or her children.




It then finds out who loves whom. It searches both models and allows for the possibility of duplicate triples in the models (although there are no duplicates in this example).


Example 7-14 Query Multiple Models and Specify "Allow Duplicates"


import java.io.*;
import com.hp.hpl.jena.query.*;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.util.FileManager;
import oracle.spatial.rdf.client.jena.*;
import com.hp.hpl.jena.graph.*;
 
public class Test15
{
  public static void main(String[] args) throws Exception
  {
    String szJdbcURL = args[0];
    String szUser    = args[1];
    String szPasswd  = args[2];
    String szModelName1 = args[3];
    String szModelName2 = args[4];
    
    Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
    ModelOracleSem model1 = ModelOracleSem.createOracleSemModel(oracle, szModelName1);
    model1.getGraph().add(Triple.create(Node.createURI("u:John"), 
                     Node.createURI("u:parentOf"), Node.createURI("u:Jack")));
    model1.close();
 
    ModelOracleSem model2 = ModelOracleSem.createOracleSemModel(oracle, szModelName2);
    model2.getGraph().add(Triple.create(Node.createURI("u:Mary"), 
                     Node.createURI("u:parentOf"), Node.createURI("u:Jack")));
    model2.close();
 
    String[] modelNamesList = {szModelName2};
    String[] rulebasesList  = {};
    Attachment attachment = Attachment.createInstance(modelNamesList, rulebasesList, 
              InferenceMaintenanceMode.NO_UPDATE,
              QueryOptions.ALLOW_QUERY_VALID_AND_DUP);
 
    GraphOracleSem graph = new GraphOracleSem(oracle, szModelName1, attachment);
    ModelOracleSem model = new ModelOracleSem(graph);
 
    String queryString = " CONSTRUCT { ?s <u:loves> ?o } WHERE {?s <u:parentOf> ?o}";
    Query query = QueryFactory.create(queryString) ;
    QueryExecution qexec = QueryExecutionFactory.create(query, model) ;
    Model m = qexec.execConstruct();
    System.out.println("Construct result = " + m.toString());
 
    qexec.close() ; 
    model.close();    
    OracleUtils.dropSemanticModel(oracle, szModelName1);
    OracleUtils.dropSemanticModel(oracle, szModelName2);
    oracle.dispose();
  }
}




The following are the commands to compile and run Example 7-14, as well as the expected output of the java command.


javac -classpath ./:./jena-2.6.3.jar:./sdordfclient.jar:./ojdbc5.jar:/slf4j-api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.5.jar:./xercesImpl-2.7.1.jar Test15.java
java -classpath ./:./jena-2.6.3.jar:./sdordfclient.jar:./ojdbc5.jar:./slf4j-api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.5.jar:./xercesImpl-2.7.1.jar:./iri-0.8.jar:./icu4j-3.4.4.jar:./log4j-1.2.14.jar  Test15 jdbc:oracle:thin:@localhost:1521:orcl scott <password-for-scott> M1 M2
Construct result = <ModelCom   {u:Mary @u:loves u:Jack; u:John @u:loves u:Jack} | >






7.10.12 Test16.java: SPARUL (SPARQL Update) Example

Example 7-15 inserts two triples into a model.


Example 7-15 SPARUL (SPARQL Update) Example


import java.io.*;
import com.hp.hpl.jena.query.*;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.util.FileManager;
import com.hp.hpl.jena.util.iterator.*;
import oracle.spatial.rdf.client.jena.*;
import com.hp.hpl.jena.graph.*;
import com.hp.hpl.jena.update.*;
 
public class Test16
{
  public static void main(String[] args) throws Exception
  {
    String szJdbcURL = args[0];
    String szUser    = args[1];
    String szPasswd  = args[2];
    String szModelName = args[3];
    
    Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
    ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, szModelName);
    GraphOracleSem g = model.getGraph();
    String insertString =  
      " PREFIX dc: <http://purl.org/dc/elements/1.1/> "         + 
      " INSERT DATA "                                           +
      " { <http://example/book3> dc:title    \"A new book\" ; " +
      "                         dc:creator  \"A.N.Other\" . "   + 
      " }   ";
 
    UpdateAction.parseExecute(insertString,  model);
    ExtendedIterator ei = GraphUtil.findAll(g);
    while (ei.hasNext()) {
      System.out.println("Triple " + ei.next().toString());
    }
    model.close();    
    OracleUtils.dropSemanticModel(oracle, szModelName);
    oracle.dispose();
  }
}




The following are the commands to compile and run Example 7-15, as well as the expected output of the java command.


javac -classpath ./:./jena-2.6.3.jar:./sdordfclient.jar:./ojdbc5.jar:/slf4j-api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.5.jar:./xercesImpl-2.7.1.jar Test16.java
java -classpath ./:./jena-2.6.3.jar:./sdordfclient.jar:./ojdbc5.jar:./slf4j-api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.5.jar:./xercesImpl-2.7.1.jar:./iri-0.8.jar:./icu4j-3.4.4.jar:./log4j-1.2.14.jar  Test16 jdbc:oracle:thin:@localhost:1521:orcl scott <password-for-scott> M1
Triple http://example/book3 @dc:title "A new book"
Triple http://example/book3 @dc:creator "A.N.Other"






7.10.13 Test17.java: SPARQL Query with ARQ Built-In Functions

Example 7-16 inserts data about two books, and it displays the book titles in all uppercase characters and the length of each title string.


Example 7-16 SPARQL Query with ARQ Built-In Functions


import java.io.*;
import com.hp.hpl.jena.query.*;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.util.FileManager;
import com.hp.hpl.jena.util.iterator.*;
import oracle.spatial.rdf.client.jena.*;
import com.hp.hpl.jena.graph.*;
import com.hp.hpl.jena.update.*;
 
public class Test17 {
  public static void main(String[] args) throws Exception  {
    String szJdbcURL = args[0];
    String szUser    = args[1];
    String szPasswd  = args[2];
    String szModelName = args[3];
    
    Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
    ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, szModelName);
    GraphOracleSem g = model.getGraph();
    String insertString =  
      " PREFIX dc: <http://purl.org/dc/elements/1.1/> "         + 
      " INSERT DATA "                                           +
      " { <http://example/book3> dc:title    \"A new book\" ; " +
      "                         dc:creator  \"A.N.Other\" . "   + 
      "   <http://example/book4> dc:title    \"Semantic Web Rocks\" ; " +
      "                         dc:creator  \"TB\" . "   + 
      " }   ";
 
    UpdateAction.parseExecute(insertString,  model);
    String queryString = "PREFIX  dc:   <http://purl.org/dc/elements/1.1/> " +
      " PREFIX  fn: <http://www.w3.org/2005/xpath-functions#> " + 
      " SELECT ?subject (fn:upper-case(?object) as ?object1)  " + 
      "                 (fn:string-length(?object) as ?strlen) " + 
      " WHERE { ?subject dc:title ?object } " 
      ;
    Query query = QueryFactory.create(queryString, Syntax.syntaxARQ);
    QueryExecution qexec = QueryExecutionFactory.create(query, model);
    ResultSet results = qexec.execSelect();
    ResultSetFormatter.out(System.out, results, query);
    model.close();    
    OracleUtils.dropSemanticModel(oracle, szModelName);
    oracle.dispose();
  }
}




The following are the commands to compile and run Example 7-16, as well as the expected output of the java command.


javac -classpath ./:./jena-2.6.3.jar:./sdordfclient.jar:./ojdbc5.jar:/slf4j-api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.5.jar:./xercesImpl-2.7.1.jar Test17.java
java -classpath ./:./jena-2.6.3.jar:./sdordfclient.jar:./ojdbc5.jar:./slf4j-api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.5.jar:./xercesImpl-2.7.1.jar:./iri-0.8.jar:./icu4j-3.4.4.jar:./log4j-1.2.14.jar  Test17 jdbc:oracle:thin:@localhost:1521:orcl scott <password-for-scott> M1
----------------------------------------------------------
| subject                | object1              | strlen |
==========================================================
| <http://example/book3> | "A NEW BOOK"         | 10     |
| <http://example/book4> | "SEMANTIC WEB ROCKS" | 18     |
----------------------------------------------------------






7.10.14 Test18.java: SELECT Cast Query

Example 7-17 "converts" two Fahrenheit temperatures (18.1 and 32.0) to Celsius temperatures.


Example 7-17 SELECT Cast Query


import java.io.*;
import com.hp.hpl.jena.query.*;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.util.FileManager;
import com.hp.hpl.jena.util.iterator.*;
import oracle.spatial.rdf.client.jena.*;
import com.hp.hpl.jena.graph.*;
import com.hp.hpl.jena.update.*;
 
public class Test18 {
  public static void main(String[] args) throws Exception  {
    String szJdbcURL = args[0];
    String szUser    = args[1];
    String szPasswd  = args[2];
    String szModelName = args[3];
    
    Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
    ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, 
szModelName);
    GraphOracleSem g = model.getGraph();
    String insertString =  
      " PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> " +
      " INSERT DATA "                                     +
      " { <u:Object1> <u:temp>    \"18.1\"^^xsd:float ; " +
      "               <u:name>    \"Foo... \" . "         + 
      "   <u:Object2> <u:temp>    \"32.0\"^^xsd:float ; " +
      "               <u:name>    \"Bar... \" . "         + 
      " }   ";
 
    UpdateAction.parseExecute(insertString,  model);
    String queryString = 
      " PREFIX  fn: <http://www.w3.org/2005/xpath-functions#> " + 
      " SELECT ?subject ((?temp - 32.0)*5/9 as ?celsius_temp) " +
      "WHERE { ?subject <u:temp> ?temp } " 
      ;
    Query query = QueryFactory.create(queryString, Syntax.syntaxARQ);
    QueryExecution qexec = QueryExecutionFactory.create(query, model);
    ResultSet results = qexec.execSelect();
    ResultSetFormatter.out(System.out, results, query);
 
    model.close();    
    OracleUtils.dropSemanticModel(oracle, szModelName);
    oracle.dispose();
  }
}




The following are the commands to compile and run Example 7-17, as well as the expected output of the java command.


javac -classpath ./:./jena-2.6.3.jar:./sdordfclient.jar:./ojdbc5.jar:/slf4j-api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.5.jar:./xercesImpl-2.7.1.jar Test18.java
java -classpath ./:./jena-2.6.3.jar:./sdordfclient.jar:./ojdbc5.jar:./slf4j-api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.5.jar:./xercesImpl-2.7.1.jar:./iri-0.8.jar:./icu4j-3.4.4.jar:./log4j-1.2.14.jar  Test18 jdbc:oracle:thin:@localhost:1521:orcl scott <password-for-scott> M1
------------------------------------------------------------------------
| subject     | celsius_temp                                           |
========================================================================
| <u:Object1> | "-7.7222223"^^<http://www.w3.org/2001/XMLSchema#float> |
| <u:Object2> | "0.0"^^<http://www.w3.org/2001/XMLSchema#float>        |
------------------------------------------------------------------------






7.10.15 Test19.java: Instantiate Oracle Database Using OracleConnection

Example 7-18 shows a different way to instantiate an Oracle object using a given OracleConnection object. (In a J2EE Web application, users can normally get an OracleConnection object from a J2EE data source.)


Example 7-18 Instantiate Oracle Database Using OracleConnection


import java.io.*;
import com.hp.hpl.jena.query.*;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.util.FileManager;
import com.hp.hpl.jena.util.iterator.*;
import com.hp.hpl.jena.graph.*;
import com.hp.hpl.jena.update.*;
import oracle.spatial.rdf.client.jena.*;
import oracle.jdbc.pool.*;
import oracle.jdbc.*;
        
public class Test19 {
  public static void main(String[] args) throws Exception {
    String szJdbcURL = args[0];
    String szUser    = args[1];
    String szPasswd  = args[2];
    String szModelName = args[3];
 
    OracleDataSource ds = new OracleDataSource();
    ds.setURL(szJdbcURL);
    ds.setUser(szUser);
    ds.setPassword(szPasswd);
    OracleConnection conn = (OracleConnection) ds.getConnection();
    Oracle oracle = new Oracle(conn);
 
    ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, 
szModelName);
    GraphOracleSem g = model.getGraph();
 
    g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"), 
                        Node.createURI("u:Mary")));
    g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"),   
                        Node.createURI("u:Jack")));
    g.add(Triple.create(Node.createURI("u:Mary"), Node.createURI("u:parentOf"), 
         Node.createURI("u:Jill")));
    String queryString =
       " SELECT ?s ?o  WHERE { ?s <u:parentOf> ?o .} ";
    Query query = QueryFactory.create(queryString) ;
    QueryExecution qexec = QueryExecutionFactory.create(query, model) ;
 
    ResultSet results = qexec.execSelect() ;
    ResultSetFormatter.out(System.out, results, query);
    qexec.close() ; 
    model.close();    
    OracleUtils.dropSemanticModel(oracle, szModelName);
    oracle.dispose();
  }
}




The following are the commands to compile and run Example 7-18, as well as the expected output of the java command.


javac -classpath ./:./jena-2.6.3.jar:./sdordfclient.jar:./ojdbc5.jar:/slf4j-api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.5.jar:./xercesImpl-2.7.1.jar Test19.java
java -classpath ./:./jena-2.6.3.jar:./sdordfclient.jar:./ojdbc5.jar:./slf4j-api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.5.jar:./xercesImpl-2.7.1.jar:./iri-0.8.jar:./icu4j-3.4.4.jar:./log4j-1.2.14.jar  Test19 jdbc:oracle:thin:@localhost:1521:orcl scott <password-for-scott> M1
-----------------------
| s        | o        |
=======================
| <u:John> | <u:Mary> |
| <u:John> | <u:Jack> |
| <u:Mary> | <u:Jill> |
-----------------------






7.10.16 Test20.java: Oracle Database Connection Pooling

Example 7-19 uses Oracle Database connection pooling.


Example 7-19 Oracle Database Connection Pooling


import java.io.*;
import com.hp.hpl.jena.query.*;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.util.FileManager;
import com.hp.hpl.jena.util.iterator.*;
import com.hp.hpl.jena.graph.*;
import com.hp.hpl.jena.update.*;
import oracle.spatial.rdf.client.jena.*;
import oracle.jdbc.pool.*;
import oracle.jdbc.*;
 
public class Test20
{
  public static void main(String[] args) throws Exception
  {
    String szJdbcURL = args[0];
    String szUser    = args[1];
    String szPasswd  = args[2];
    String szModelName = args[3];
 
    // test with connection properties (taken from some example)
    java.util.Properties prop = new java.util.Properties();
    prop.setProperty("MinLimit", "2");     // the cache size is 2 at least 
    prop.setProperty("MaxLimit", "10");
    prop.setProperty("InitialLimit", "2"); // create 2 connections at startup
    prop.setProperty("InactivityTimeout", "1800");    //  seconds
    prop.setProperty("AbandonedConnectionTimeout", "900");  //  seconds
    prop.setProperty("MaxStatementsLimit", "10");
    prop.setProperty("PropertyCheckInterval", "60"); // seconds
 
    System.out.println("Creating OraclePool");
    OraclePool op = new OraclePool(szJdbcURL, szUser, szPasswd, prop, 
               "OracleSemConnPool");
    System.out.println("Done creating OraclePool");
 
    // grab an Oracle and do something with it
    System.out.println("Getting an Oracle from OraclePool");
    Oracle oracle = op.getOracle();
    System.out.println("Done");
    System.out.println("Is logical connection:" +
        oracle.getConnection().isLogicalConnection());
    GraphOracleSem g = new GraphOracleSem(oracle, szModelName);
    g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"), 
                        Node.createURI("u:Mary")));
    g.close();
    // return the Oracle back to the pool
    oracle.dispose();
    
    // grab another Oracle and do something else 
    System.out.println("Getting an Oracle from OraclePool");
    oracle = op.getOracle();
    System.out.println("Done");
    System.out.println("Is logical connection:" +
        oracle.getConnection().isLogicalConnection());
    g = new GraphOracleSem(oracle, szModelName);
    g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"), 
                        Node.createURI("u:Jack")));
    g.close();
    
    OracleUtils.dropSemanticModel(oracle, szModelName); 
    
    // return the Oracle back to the pool
    oracle.dispose();
  }
}




The following are the commands to compile and run Example 7-19, as well as the expected output of the java command.


javac -classpath ./:./jena-2.6.3.jar:./sdordfclient.jar:./ojdbc5.jar:/slf4j-api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.5.jar:./xercesImpl-2.7.1.jar Test20.java
java -classpath ./:./jena-2.6.3.jar:./sdordfclient.jar:./ojdbc5.jar:./slf4j-api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.5.jar:./xercesImpl-2.7.1.jar:./iri-0.8.jar:./icu4j-3.4.4.jar:./log4j-1.2.14.jar  Test20 jdbc:oracle:thin:@localhost:1521:orcl scott <password-for-scott> M1
Creating OraclePool
Done creating OraclePool
Getting an Oracle from OraclePool
Done
Is logical connection:true
Getting an Oracle from OraclePool
Done
Is logical connection:true








7.11 SPARQL Gateway and Semantic Data

SPARQL Gateway is a J2EE web application that is included with the Jena Adapter for Oracle Database. It is designed to make semantic data (RDF/OWL/SKOS) easily available to applications that operate on relational and XML data, including Oracle Business Intelligence Enterprise Edition (OBIEE) 11g.

This section includes the following major topics:

	
Section 7.11.1, "SPARQL Gateway Features and Benefits Overview"


	
Section 7.11.2, "Installing and Configuring SPARQL Gateway"


	
Section 7.11.3, "Using SPARQL Gateway with Semantic Data"


	
Section 7.11.4, "Customizing the Default XSLT File"


	
Section 7.11.5, "Using the SPARQL Gateway Java API"


	
Section 7.11.6, "Using the SPARQL Gateway Graphical Web Interface"


	
Section 7.11.7, "Using SPARQL Gateway as an XML Data Source to OBIEE"






7.11.1 SPARQL Gateway Features and Benefits Overview

SPQRQL Gateway handles several challenges in exposing semantic data to a non-semantic application:

	
RDF syntax, SPARQL query syntax and SPARQL protocol must be understood.


	
The SPARQL query response syntax must be understood.


	
A transformation must convert a SPARQL query response to something that the application can consume.




To address these challenges, SPARQL Gateway manages SPARQL queries and XSLT operations, executes SPARQL queries against any arbitrary standard-compliant SPARQL endpoints, and performs necessary XSL transformations before passing the response back to applications. Applications can then consume semantic data as if it is coming from an existing data source.

Different triple stores or quad stores often have different capabilities. For example, the SPARQL endpoint supported by Oracle Database, with the Jena Adapter and Joseki, allows parallel execution, query timeout, dynamic sampling, result cache, and other features, in addition to the core function of parsing and answering a given standard-compliant SPARQL query. However, these features may not be available from another given semantic data store.

With the Oracle Semantic Technologies SPARQL Gateway, you get certain highly desirable capabilities, such as the ability to set a timeout on a long running query and the ability to get partial results from a complex query in a given amount of time. Waiting indefinitely for a query to finish is a challenge for end users, as is an application with a response time constraint. SPARQL Gateway provides both timeout and best effort query functions on top of a SPARQL endpoint. This effectively removes some uncertainty from consuming semantic data through SPARQL query executions. (See Section 7.11.3.2, "Specifying a Timeout Value" and Section 7.11.3.3, "Specifying Best Effort Query Execution".)






7.11.2 Installing and Configuring SPARQL Gateway

To install and configure SPARQL Gateway, follow these major steps, which are explained in subsections that follow:

	
Download the Jena Adapter .zip File (if Not Already Done)


	
Deploy SPARQL Gateway in WebLogic Server


	
Modify Proxy Settings, if Necessary


	
Configure the OracleSGDS Data Source, if Necessary


	
Add and Configure the SparqlGatewayAdminGroup Group, if Desired






7.11.2.1 Download the Jena Adapter .zip File (if Not Already Done)

If you have not already done so, download the Jena Adapter (jena_adaptor_for_release11.2.0.2.sg.zip) from the Oracle Database Semantic Technologies page and unzip it into a temporary directory, as explained in Section 7.1.

Note that the SPARQL Gateway Java class implementations are embedded in sdordfclient.jar (see Section 7.11.5, "Using the SPARQL Gateway Java API").






7.11.2.2 Deploy SPARQL Gateway in WebLogic Server

Deploy SPARQL Gateway in Oracle WebLogic Server, as follows:

	
Create a temporary directory, for example, /tmp/sg.


	
From the directory into which you unzipped the SPARQL Gateway file that you downloaded, copy the sparqlgateway directory and everything under it (including subdirectories) into the temporary directory you created in step 1. For example:


cd /tmp
cp -rf  sparqlgateway/*  /tmp/sg


(This sample directory structure is assumed in some later steps.)


	
If you do not already have the ARQ 2.8.5 package, download it from http://sourceforge.net/projects/jena/files/ARQ/ARQ-2.8.5/arq-2.8.5.zip/download.


	
Copy the following libraries from the ARQ 2.8.5 package to /tmp/sg/WEB-INF/lib:


arq-2.8.5.jar
icu4j-3.4.4.jar
iri-0.8.jar
jena-2.6.3.jar
junit-4.5.jar
log4j-1.2.14.jar
lucene-core-2.3.1.jar
slf4j-api-1.5.8.jar
slf4j-log4j12-1.5.8.jar
stax-api-1.0.1.jar
wstx-asl-3.2.9.jar
xercesImpl-2.7.1.jar


	
Copy the following libraries to /tmp/sg/WEB-INF/lib:


ojdbc5.jar  (from $ORACLE_HOME/jdbc/lib/ojdbc5.jar )
sdordfclient.jar  (from jena_adaptor_for_release11.2.0.2.sg.zip under the jar/ directory)
sdordf.jar  from $ORACLE_HOME/md/jlib/sdordf.jar )


	
Customize the /tmp/sg/WEB-INF/web.xml file as needed. Be sure to specify appropriate values for the sparql_gateway_repository_filedir and sparql_gateway_repository_url parameters.


	
Add XSLT files or SPARQL query files to the /tmp/sg directory, if necessary.

The following files are provided by Oracle in that directory: default.xslt, noop.xslt, and qb1.sparql. The default.xslt file is intended mainly for transforming SPARQL query responses (XML) to a format acceptable to Oracle Business Intelligence Enterprise Edition (OBIEE).

(These files are described in Section 7.11.3.1, "Storing SPARQL Queries and XSL Transformations"; using SPARQL Gateway with OBIEE is explained in Section 7.11.7, "Using SPARQL Gateway as an XML Data Source to OBIEE".)


	
Go to the autodeploy directory of WebLogic Server, create directory sparqlgateway.war, and copy files, as follows. (For information about auto-deploying applications in development domains, see: http://download.oracle.com/docs/cd/E11035_01/wls100/deployment/autodeploy.html)


cd <domain_name>/autodeploy
mkdir sparqlgateway.war  
cp -rf  /tmp/sg/*  <domain_name>/autodeploy/sparqgateway.war
  


In this example, <domain_name> is the name of a WebLogic Server domain.


	
If you want to build a .war file from the /tmp/sg directory, enter the following commands:


cd /tmp/sg
jar cvf /tmp/sparqlgateway.war *


	
Start or restart WebLogic Server.


	
Verify your deployment by using your Web browser to connect to a URL in the following format (assume that the Web application is deployed at port 7001):


http://<hostname>:7001/sparqlgateway









7.11.2.3 Modify Proxy Settings, if Necessary

If your SPARQL Gateway is behind a firewall and you want SPARQL Gateway to communicate with SPARQL endpoints on the Internet as well as those inside the firewall, you probably need to use the following JVM settings:


-Dhttp.proxyHost=<your_proxy_host>
-Dhttp.proxyPort=<your_proxy_port>
-Dhttp.nonProxyHosts=127.0.0.1|<hostname_1_for_sparql_endpoint_inside_firewall>|<hostname_2_for_sparql_endpoint_inside_firewall>|...|<hostname_n_for_sparql_endpoint_inside_firewall>


You can specify these settings in the startWebLogic.sh script.






7.11.2.4 Configure the OracleSGDS Data Source, if Necessary

If an Oracle database is used for storage of and access to SPARQL queries and XSL transformations for SPARQL Gateway, then you must configure a data source named OracleSGDS.

To create this data source, follow the instructions in Section 7.2.1, "Creating the Required Data Source Using WebLogic Server"; however, specify OracleSGDS as the data source name instead of OracleSemDS.

If the OracleSGDS data source is configured and available, SPARQL Gateway servlet will automatically create all the necessary tables and indexes upon initialization.






7.11.2.5 Add and Configure the SparqlGatewayAdminGroup Group, if Desired

The following JSP files in SPARQL Gateway can help you to view, edit, and update SPARQL queries and XSL transformations that are stored in an Oracle database:


http://<host>:7001/sparqlgateway/admin/sparql.jsp
http://<host>:7001/sparqlgateway/admin/xslt.jsp


These files are protected by HTTP Basic Authentication. In WEB-INF/weblogic.xml, a principal named SparqlGatewayAdminGroup is defined.

To be able to log in to either of these JSP pages, you must use the WebLogic Server to add a group named SparqlGatewayAdminGroup, and create a new user or assign an existing user to this group.








7.11.3 Using SPARQL Gateway with Semantic Data

The primary interface for an application to interact with SPARQL Gateway is through a URL with the following format:


http://host:port/sparqlgateway/sg?<SPARQL_ENDPOINT>&<SPARQL_QUERY>&<XSLT>


In the preceding format:

	
<SPARQL_ENDPOINT> specifies the ee parameter, which contains a URL encoded form of a SPARQL endpoint.

For example, ee=http%3A%2F%2Fsparql.org%2Fbooks is the URL encoded string for SPARQL endpoint http://sparql.org/books. It means that SPARQL queries are to be executed against endpoint http://sparql.org/books.


	
<SPARQL_QUERY> specifies either the SPARQL query, or the location of the SPARQL query.

If it is feasible for an application to accept a very long URL, you can encode the whole SPARQL query and set eq=<encoded_SPARQL_query> in the URL If it is not feasible for an application to accept a very long URL, you can store the SPARQL queries and make them available to SPARQL Gateway using one of the approaches described in Section 7.11.3.1.


	
<XSLT> specifies either the XSL transformation, or the location of the XSL transformation.

If it is feasible for an application to accept a very long URL, you can encode the whole XSL transformation and set ex=<encoded_XSLT> in the URL If it is not feasible for an application to accept a very long URL, you can store the XSL transformations and make them available to SPARQL Gateway using one of the approaches described in Section 7.11.3.1.




Related topics:

	
Storing SPARQL Queries and XSL Transformations


	
Specifying a Timeout Value


	
Specifying Best Effort Query Execution


	
Specifying a Content Type Other Than text/xml






7.11.3.1 Storing SPARQL Queries and XSL Transformations

If it is not feasible for an application to accept a very long URL, you can specify the location of the SPARQL query and the XSL transformation in the <SPARQL_QUERY> and <XSLT> portions of the URL format described in Section 7.11.3, using any of the following approaches:

	
Store the SPARQL queries and XSL transformations in the SPARQL Gateway Web application itself.

To do this, unpack the sparqlgateway.war file, and store the SPARQL queries and XSL transformations in the top-level directory; then pack the sparqlgateway.war file and redeploy it.

The sparqlgateway.war file includes the following example files: qb1.sparql (SPARQL query) and default.xslt (XSL transformation).




	
Tip:

Use the file extension .sparql for SPARQL query files, and the file extension .xslt for XSL transformation files.







The syntax for specifying these files (using the provided example file names) is wq=qb1.sparql for a SPARQL query file and wx=default.xslt for an XSL transformation file.

If you want to customize the default XSL transformations, see the examples in Section 7.11.4, "Customizing the Default XSLT File".

If you specify wx=noop.xslt, XSL transformation is not performed and the SPARQL response is returned "as is" to the client.


	
Store the SPARQL queries and XSL transformations in a file system directory, and make sure that the directory is accessible for the deployed SPARQL Gateway Web application.

By default, the directory is set to /tmp, as shown in the following <init-param> setting:


<init-param>
   <param-name>sparql_gateway_repository_filedir</param-name>
   <param-value>/tmp/</param-value>
</init-param>


It is recommended that you customize this directory before deploying the SPARQL Gateway. To change the directory setting, edit the text in between the <param-value> and </param-value> tags.

The follwoing examples specify a SPARQL query file and an XSL transflrmation file that are in the directory specified in the <init-param> element for sparql_gateway_repository_filedir:


fq=qb1.sparql
fx=myxslt1.xslt


	
Make the SPARQL queries and XSL transformations accessible from a Web site.

By default, the Web site directory is set to http://127.0.0.1/queries/, as shown in the following <init-param> setting:


<init-param>
   <param-name>sparql_gateway_repository_url</param-name>
   <param-value>http://127.0.0.1/queries/</param-value>
</init-param>


Customize this directory before deploying the SPARQL Gateway. To change the Web site setting, edit the text in between the <param-value> and </param-value> tags.

The follwoing example specifies a SPARQL query file and an XSL transflrmation file that are in the URL specified in the <init-param> element for sparql_gateway_repository_url.


uq=qb1.sparql
ux=myxslt1.xslt


Internally, SPARQL Gateway computes the appropriate complete URL, fetches the content, starts query execution, and applies the XSL transformation to the query response XML.


	
Store the SPARQL queries and XSL transformations in an Oracle database.

This approach requires that the J2EE data source OracleSGDS be defined. After SPARQL Gateway retrieves a database connection from the OracleSGDS data source, a SPARQL query is read from the database table ORACLE_ORARDF_SG_QUERY using the integer ID provided.

The syntax for fetching a SPARQL query from an Oracle database is dq=<integer-id>, and the syntax for fetching an XSL transformation from an Oracle database is dx=<integer-id>.

Upon servlet initialization, the following tables are created automatically if they do not already exist (you do not need to create them manually):

	
ORACLE_ORARDF_SG_QUERY with a primary key of QID (integer type)


	
ORACLE_ORARDF_SG_XSLT with a primary key of XID (integer type)












7.11.3.2 Specifying a Timeout Value

When you submit a potentially long-running query using the URL format described in Section 7.11.3, you can limit the execution time by specifying a timeout value in milliseconds. For example, the following shows the URL format and a timeout specification that the SPARQL query execution started from SPARQL Gateway is to be ended after 1000 milliseconds (1 second):


http://host:port/sparqlgateway/sg?<SPARQL_ENDPOINT>&<SPARQL_QUERY>&<XSLT>&t=1000


If a query does not finish when timeout occurs, then an empty SPARQL response is constructed by SPARQL Gateway.

Note that even if SPARQL Gateway times out a query execution at the HTTP connection level, the query may still be running on the server side. The actual behavior will be vendor-dependent.






7.11.3.3 Specifying Best Effort Query Execution




	
Note:

You can specify best effort query execution only if you also specify a timeout value (described in Section 7.11.3.2).







When you submit a potentially long-running query using the URL format described in Section 7.11.3, if you specify a timeout value, you can also specify a "best effort" limitation on the query. For example, the following shows the URL format with a timeout specification of 1000 milliseconds (1 second) and a best effort specification (&b=t):


http://host:port/sparqlgateway/sg?<SPARQL_ENDPOINT>&<SPARQL_QUERY>&<XSLT>&t=1000&b=t


The web.xml file includes two parameter settings that affect the behavior of the best effort option: sparql_gateway_besteffort_maxrounds and sparql_gateway_besteffort_maxthreads. The following show the default definitions:


<init-param>
  <param-name>sparql_gateway_besteffort_maxrounds</param-name>
  <param-value>10</param-value>
</init-param>
 
<init-param>
  <param-name>sparql_gateway_besteffort_maxthreads</param-name>
  <param-value>3</param-value>
</init-param>


When a SPARQL SELECT query is executed in best effort style, a series of queries will be executed with an increasing LIMIT value setting in the SPARQL query body. (The core idea is based on the observation that a SPARQL query runs faster with a smaller LIMIT setting.) SPARQL Gateway starts query execution with a "LIMIT 1" setting. Ideally, this query can finish before the timeout is due. Assume that is the case, the next query will have its LIMIT setting is increased, and subsequent queries have higher limits. The maximum number of query executions is controlled by the sparql_gateway_besteffort_maxrounds parameter.

If it is possible to run the series of queries in parallel, the sparql_gateway_besteffort_maxthreads parameter controls the degree of parallelism.






7.11.3.4 Specifying a Content Type Other Than text/xml

By default, SPARQL Gateway assumes that XSL transformations generate XML, and so the default content type set for HTTP response is text/xml. However, if your application requires a response format other than XML, you can specify the format in an additional URL parameter (with syntax &rt=), using the following format:


http://host:port/sparqlgateway/sg?<SPARQL_ENDPOINT>&<SPARQL_QUERY>&<XSLT>&rt=<content_type>


Note that <content_type> must be URL encoded.








7.11.4 Customizing the Default XSLT File

You can customize the default XSL transformation file (the one referenced using wx=default.xslt). This section presents some examples of customizations.

The following example implements this namespace prefix replacement logic: if a variable binding returns a URI that starts with http://purl.org/goodrelations/v1#, that portion is replaced by gr:; and if a variable binding returns a URI that starts with http://www.w3.org/2000/01/rdf-schema#, that portion is replaced by rdfs:.


<xsl:when test="starts-with(text(),'http://purl.org/goodrelations/v1#')">
   <xsl:value-of select="concat('gr:',substring-after(text(),'http://purl.org/goodrelations/v1#'))"/>
</xsl:when>
...
<xsl:when test="starts-with(text(),'http://www.w3.org/2000/01/rdf-schema#')">
   <xsl:value-of select="concat('rdfs:',substring-after(text(),'http://www.w3.org/2000/01/rdf-schema#'))"/>
</xsl:when>


The following example implements logic to trim a leading http://localhost/ or a leading http://127.0.0.1/.


<xsl:when test="starts-with(text(),'http://localhost/')">
  <xsl:value-of select="substring-after(text(),'http://localhost/')"/>
</xsl:when>
<xsl:when test="starts-with(text(),'http://127.0.0.1/')">
  <xsl:value-of select="substring-after(text(),'http://127.0.0.1/')"/>
</xsl:when>






7.11.5 Using the SPARQL Gateway Java API

In addition to a Web interface, the SPARQL Gateway administration service provides a convenient Java application programming interface (API) for managing SPARQL queries and their associated XSL transformations. The Java API is included in the Jena Adapter library, sdordfclient.jar.

Java API reference information is available in the javadoc_sparqlgateway.zip file that is included in the SPARQL Gateway .zip file (described in Section 7.11.2.1).

The main entry point for this API is the oracle.spatial.rdf.client.jena.SGDBHandler class (SPARQL Gateway Database Handler), which provides the following static methods for managing queries and transformations:

	
deleteSparqlQuery(Connection, int)


	
deleteXslt(Connection, int)


	
insertSparqlQuery(Connection, int, String, String, boolean)


	
insertXslt(Connection, int, String, String, boolean)


	
getSparqlQuery(Connection, int, StringBuilder, StringBuilder)


	
getXslt(Connection, int, StringBuilder, StringBuilder)




These methods manipulate and retrieve entries in the SPARQL Gateway associated tables that are stored in an Oracle Database instance. To use these methods, the necessary associated tables must already exist. If the tables do not exist, deploy the SPARQL Gateway on a Web server and access a URL in the following format:


http://<host>:<port>/sparqlgateway/sg?


where <host> is the host name of the Web server and <port> is the listening port of the Web server. Accessing this URL will automatically create the necessary tables if they do not already exist.

Any changes made through the Java API affect the SPARQL Gateway Web service in the same way as changes made through the administration Web interface. This provides the flexibility to manage queries and transformations using the interface you find most convenient.

Note that the insert methods provided by the Java API will not replace existing queries or transformations stored in the tables. Attempting to replace an existing query or transformation will fail. To replace a query or transformation, you must remove the existing entry in the table using one of the delete methods, and then insert the new query or transformation using one of the insert methods.

The following examples demonstrate how to perform common management tasks using the Java API. The examples assume a connection has already been established to the underlying Oracle Database instance backing the SPARQL Gateway.

Example 7-20 adds a query and an XSL transformation to the database backing the SPARQL Gateway. After the query and transformation are added, other programs can use the query and transformation through the gateway by specifying the appropriate query ID (qid) and XSL transformation ID (xid) in the request URL.




	
Note:

Although Example 7-20 inserts both a query and transformation, the query and transformation are not necessarily related and do not need to be used together when accessing SPARQL Gateway. Any query in the database can be used with any transformation in the database when submitting a request to SPARQL Gateway.








Example 7-20 Storing a SPARQL Query and an XSL Transformation


String query = "PREFIX ... SELECT ..."; // full SPARQL query text
String xslt  = "<?xml ...> ...";        // full XSLT transformation text
 
String queryDesc = "Conference attendee information"; // description of SPARQL query
String xsltDesc = "BIEE table widget transformation"; // description of XSLT transformation
 
int queryId = queryIdCounter++; // assign a unique ID to this query
int xsltId  = xsltIdCounter++;  // assign a unique ID to this transformation
 
// Inserting a query or transformation will fail if the table already contains
// an entry with the same ID.  Setting this boolean to true will ignore these
// exceptions (but the table will remain unchanged). Here we specify that we
// want an exception thrown if we encounter a duplicate ID.
boolean ignoreDupException = false;
 
// add the query
try {
  // Delete query if one already exists with this ID (this will not throw an
  // error if no such entry exists)
  SGDBHandler.deleteSparqlQuery( connection, queryId );
  SGDBHandler.insertSparqlQuery( connection, queryId, query, queryDesc, ignoreDupException );
} catch( SQLException sqle ) {
  // Handle exception
} catch( QueryException qe ) {
  // Handle query syntax exception
}
 
// add the XSLT
try {
  // Delete xslt if one already exists with this ID (this will not throw an
  // error if no such entry exists)
  SGDBHandler.deleteXslt( connection, xsltId );
  SGDBHandler.insertXslt( connection, xsltId, xslt, xsltDesc, ignoreDupException );
}  catch( SQLException sqle ) {
  // Handle database exception
} catch( TransformerConfigurationException tce ) {
  // Handle XSLT syntax exception
}




Example 7-21 retrieves an existing query from the database, modifies it, then stores the updated version of the query back in the database. These steps simulate editing a query and saving the changes. (Note that if the query does not exist, an exception is thrown.)


Example 7-21 Modifying a Query


StringBuilder query;
StringBuilder description;
 
// Populate these with the query text and description from the database
query = new StringBuilder( );
description = new StringBuilder( );
 
// Get the query from the database
try {
  SGDBHandler.getSparqlQuery( connection, queryId, query, description );
} catch( SQLException sqle ) {
  // Handle exception
  // NOTE: exception is thrown if query with specified ID does not exist
}
 
// The query and description should be populated now
 
// Modify the query 
String updatedQuery = query.toString( ).replaceAll("invite", "attendee");
 
// Insert the query back into the database
boolean ignoreDup = false;
try {
  // First must delete the old query
  SGDBHandler.deleteSparqlQuery( connection, queryId );
  // Now we can add
  SGDBHandler.insertSparqlQuery( connection, queryId, updatedQuery, description.toString( ), ignoreDup );
} catch( SQLException sqle ) {
  // Handle exception
} catch( QueryException qe ) {
  // Handle query syntax exception
}




Example 7-22 retrieves an existing XSL transformation and prints it to standard output. (Note that if the transformation does not exist, an exception is thrown.)


Example 7-22 Retrieving and Printing an XSL Transformation


StringBuilder xslt;
StringBuilder description;
 
// Populate these with the XSLT text and description from the database
xslt = new StringBuilder( );
description = new StringBuilder( );
 
try {
  SGDBHandler.getXslt( connection, xsltId, xslt, description );
} catch( SQLException sqle ) {
  // Handle exception
  // NOTE: exception is thrown if transformation with specified ID does not exist
}
 
// Print it to standard output
System.out.printf( "XSLT description: %s\n", description.toString( ) );
System.out.printf( "XSLT body:\n%s\n", xslt.toString( ) );








7.11.6 Using the SPARQL Gateway Graphical Web Interface

SPARQL Gateway provides several browser-based interfaces to help you test queries, navigate semantic data, and manage SPQARQL query and XSLT files:

	
Main Page (index.html)


	
Navigation and Browsing Page (browse.jsp)


	
XSLT Management Page (xslt.jsp)


	
SPARQL Management Page (sparql.jsp)






7.11.6.1 Main Page (index.html)

http://<host>:<port>/sparqlgateway/index.html provides a simple interface for executing SPARQL queries and then applying the transformations in the default.xslt file to the response. Figure 7-1 shows this interface for executing a query.


Figure 7-1 Graphical Interface Main Page (index.html)

[image: Description of Figure 7-1 follows]






Enter or select a SPARQL Endpoint, specify the SPARQL SELECT Query Body, and press Submit Query.

For example, if you specify http://dbpedia.org/sparql as the SPARQL endpoint and use the SPARQL query body from Figure 7-1, the response will be similar to Figure 7-2. Note that the default transformations (in default.xslt) have been applied to the XML output in this figure.


Figure 7-2 SPARQL Query Main Page Response

[image: Description of Figure 7-2 follows]










7.11.6.2 Navigation and Browsing Page (browse.jsp)

http://<host>:<port>/sparqlgateway/browse.jsp provides navigation and browsing capabilities for semantic data. It works against any standard compliant SPARQL endpoint. Figure 7-3 shows this interface for executing a query.


Figure 7-3 Graphical Interface Navigation and Browsing Page (browse.jsp)

[image: Description of Figure 7-3 follows]






Enter or select a SPARQL Endpoint, specify the SPARQL SELECT Query Body, optionally specify a Timeout (ms) value in milliseconds and the Best Effort option, and press Submit Query.

The SPARQL response is parsed and then presented in table form, as shown in Figure 7-4.


Figure 7-4 Browsing and Navigation Page: Response

[image: Description of Figure 7-4 follows]






In Figure 7-4, note that URIs are clickable to allow navigation, and that when users move the cursor over a URI, tool tips are shown for the URIs which have been shortened for readability (as in http://purl.org.dc/elements/1.1/title being displayed as the tool tip for dc:title in the figure).

If you click the URI http://example.org/book/book5 in the output shown in Figure 7-4, a new SPARQL query is automatically generated and executed. This generated SPARQL query has three query patterns that use this particular URI as subject, predicate, and object, as shown in Figure 7-5. Such a query can give you a good idea about how this URI is used and how it is related to other resources in the data set.


Figure 7-5 Query and Response from Clicking URI Link

[image: Description of Figure 7-5 follows]






When there are many matches of a query, the results are organized in pages and you can click on any page. The page size by default is 50 results. To display more (or fewer) than 50 rows per page in a response with the Browsing and Navigation Page (browse.jsp), you can specify the &resultsPerPage parameter in the URL. For example, to allow 100 rows per page, include the following in the URL:


&resultsPerPage=100






7.11.6.3 XSLT Management Page (xslt.jsp)

http://<host>:<port>/sparqlgateway/admin/xslt.jsp provides a simple XSLT management interface. You can enter an XSLT ID (integer) and click Get XSLT to retrieve both the Description and XSLT Body. You can modify the XSLT Body text and then save the changes by clicking Save XSLT. Note that there is a previewer to help you navigate among available XSLT definitions.

Figure 7-6 shows the XSLT Management Page.


Figure 7-6 XSLT Management Page

[image: Description of Figure 7-6 follows]










7.11.6.4 SPARQL Management Page (sparql.jsp)

http://<host>:<port>/sparqlgateway/admin/xslt.jsp provides a simple SPARQL management interface. You can enter a SPARQL ID (integer) and click Get SPARQL to retrieve both the Description and SPARQL Body. You can modify the SPARQL Body text and then save the changes by clicking Save SPARQL. Note that there is a previewer to help you navigate among available SPARQL queries.

Figure 7-7 shows the SPARQL Management Page.


Figure 7-7 SPARQL Management Page

[image: Description of Figure 7-7 follows]












7.11.7 Using SPARQL Gateway as an XML Data Source to OBIEE

This section explains how to create an XML Data source for Oracle Business Intelligence Enterprise Edition (OBIEE), by integrating OBIEE with RDF using SPARQL Gateway as a bridge. (The specific steps and illustrations reflect the Oracle BI Administration Tool Version 11.1.1.3.0.100806.0408.000.)

	
Start the Oracle BI Administration Tool.


	
Click File, then Import Metadata. The first page of the Import Metadata wizard is displayed, as shown in Figure 7-8.


Figure 7-8 Import Metadata - Select Data Source

[image: Description of Figure 7-8 follows]






Connection Type: Select XML.

URL: URL for an application to interact with SPARQL Gateway, as explained in Section 7.11.3. You can also include the timeout and best effort options.

Ignore the User Name and Password fields.


	
Click Next. The second page of the Import Metadata wizard is displayed, as shown in Figure 7-9.


Figure 7-9 Import Metadata - Select Metadata Types

[image: Description of Figure 7-9 follows]






Select the desired metadata types to be imported. Be sure that Tables is included in the selected types.


	
Click Next. The third page of the Import Metadata wizard is displayed, as shown in Figure 7-10.


Figure 7-10 Import Metadata - Select Metadata Objects

[image: Description of Figure 7-10 follows]






In the Data Source View, expand the node that has the table icon, select the column names (mapped from projected variables defined in the SPARQL SELECT statement), and click the right-arrow (>) button to move the selected columns to the Repository View.


	
Click Finish.


	
Complete the remaining steps for the usual BI Business Model work and Mapping and Presentation definition work, which are not specific to SPARQL Gateway or RDF data.










8 Sesame Adapter for Oracle Database

The Sesame Adapter for Oracle Database (referred to here as the Sesame Adapter) integrates the popular Sesame Java APIs with Oracle Semantic Technologies support. Sesame, created by OpenRDF (http://www.openrdf.org/), "is an open source framework for storage, inferencing and querying of RDF data."

This chapter assumes that you are familiar with major concepts explained in Chapter 1, "Oracle Database Semantic Technologies Overview" and Chapter 2, "OWL Concepts". It also assumes that you are familiar with the overall capabilities and use of the Sesame Java framework. For information about the Sesame framework, see the Sesame Documentation page at http://www.openrdf.org/documentation.jsp.

The Sesame Adapter extends the semantic data management capabilities of Oracle Database Release 11.2 RDF/OWL.

This chapter includes the following major topics:

	
Section 8.1, "Sesame Adapter Overview"


	
Section 8.2, "Setup and Configuration for the Sesame Adapter"


	
Section 8.3, "SEM_MATCH and Sesame Adapter Queries Compared"


	
Section 8.4, "Optimized Handling of SPARQL Queries"


	
Section 8.5, "Recommendations for Best Performance"


	
Section 8.6, "Additions to the SPARQL Syntax to Support Other Features"


	
Section 8.7, "Support for Server-Side APIs"


	
Section 8.8, "Oracle-Specific Extensions to Sesame APIs"


	
Section 8.9, "Using the Sesame Console with the Sesame Adapter"


	
Section 8.10, "Example Queries Using the Sesame Adapter"






8.1 Sesame Adapter Overview

Like the Jena Adapter (described in Chapter 7), the Sesame Adapter provides a Java-based interface to Oracle semantic data through an open source framework and related tools. However, the Sesame Adapter adds support for context to the data:

	
Jena statements deal with triples (subject, predicate, object).


	
Sesame statements deal with triples and contexts; a Sesame statement is a quad consisting of a triple and a context. For example, with hospital patient data, the context might contain the patient's URI.




The Sesame Adapter provides a Java API for interacting with semantic data stored in Oracle Database. It also provides integration with the following Sesame tools:

	
Sesame Server, which provides an HTTP SPARQL endpoint.


	
Sesame Console, a command-line tool for creating and managing repositories. The available commands include the following:


connect  Connects to a (local or remote) set of repositories
disconnect  Disconnects from the current set of repositories
create  Creates a new repository
drop  Drops a repository
open  Opens a repository to work on, takes a repository ID as argument
close  Closes the current repository
show  Displays an overview of various resources
load  Loads a data file into a repository, takes a file path or URL as argument
verify  Verifies the syntax of an RDF data file, takes a file path or URL as argument
clear  Removes data from a repository
serql  Evaluates the SeRQL query, takes a query as argument
sparql  Evaluates the SPARQL query, takes a query as argument
set  Allows various console parameters to be set
exit, quit  Exits the console


	
OpenRDF Workbench, a graphical user interface to the Sesame Server.




The features provided by the Sesame Adapter include:

	
Loading (bulk and incremental), exporting, and removing statements, with and without context


	
Querying of data, with and without context


	
Inferencing, where inferred data is considered during query execution (if includeInferred=true), and where inferred triples have a null context


	
Managing namespaces




The Sesame Adapter for Oracle Database implements various interfaces of the Sesame Storage and Inference Layer (SAIL) API. For example, the class OracleSailConnection is an Oracle implementation of the Sesame SailConnection interface, and the class OracleSailStore is an Oracle implementation of the Sesame Sail interface.

A typical usage flow for the Sesame Adapter might include the excerpt shown in Example 8-1.


Example 8-1 Sample Usage flow for Sesame Adapter


String query =
" PREFIX foaf: <http://xmlns.com/foaf/0.1/> "
" PREFIX dc: <http://purl.org/dc/elements/1.1/> "
" select ?s ?p ?o ?name WHERE {?s ?p ?o . OPTIONAL {?o foaf:name ?name .} } ";

SailRepository sr = new SailRepository(
   new OracleSailStore(oracle, modelName,…attachmentForInference));
RepositoryConnection repConn = sr.getConnection();
// Data loading can happen here.
repConn.add(alice, friendOf, bob, context1);
 
TupleQuery tq = repConn.prepareTupleQuery(QueryLanguage.SPARQL, query);
TupleQueryResult tqr = tq.evaluate();
while(tqr.hasNext()) {
    psOut.print((tqr.next().toString()));
};
tqr.close()
repConn.close();
sr.shutDown();








8.2 Setup and Configuration for the Sesame Adapter

Setting up and configuring the Sesame Adapter for Oracle Database involves the following actions:

	
Setting Up the Software Environment


	
Setting Up the SPARQL Service


	
Setting Up the Semantic Technologies Environment






8.2.1 Setting Up the Software Environment

To use the Sesame Adapter, you must first ensure that the system environment has the necessary software, including Oracle Database 11g Release 2 with the Spatial and Partitioning options and with Semantic Technologies support enabled, Sesame version 2.3.1, the Sesame Adapter, and JDK 6. You can set up the software environment by performing these actions:

	
Install Oracle Database Release 11.2 Enterprise Edition with the Oracle Spatial and Partitioning Options.


	
Enable the support for Semantic Technologies, as explained in Section A.1.


	
Download the Sesame 2.3.1 onejar library and include it in your classpath, as explained in the "Setting up to use the Sesame libraries" chapter of the User Guide for Sesame 2.2. (See http://www.openrdf.org/doc/sesame2/users/ch04.html, or a more recent version if available.)


	
Install the Sesame 2.3.1 Server, as explained in the "Server software installation" chapter of the User Guide for Sesame 2.2. (See http://www.openrdf.org/doc/sesame2/users/ch06.html, or a more recent version if available.)


	
Download the Sesame Adapter (sesame_adapter_for_release11.2.zip) from the Oracle Database Semantic Technologies page (http://www.oracle.com/technology/tech/semantic_technologies/), and unzip it into a temporary directory, such as (on a Linux system) /tmp/sesame_adapter. (If this temporary directory does not already exist, create it before the unzip operation.)

The Sesame Adapter directories and files have the following structure:


 examples/
   examples/Example1.java
   examples/Example2.java
   .
   .
   .
lib/
   lib/sdordfsesame.jar
web/
   web/web.xml
javadoc/
   javadoc/javadoc.zip


	
Copy ojdbc5.jar into <Sesame_DIR>/lib (Linux) or <Sesame_DIR>\lib (Windows). (ojdbc5.jar is in $ORACLE_HOME/jdbc/lib or %ORACLE_HOME%\jdbc\lib.)


	
Copy sdordf.jar into <Sesame_DIR>/lib (Linux) or <Sesame_DIR>\lib (Windows). (sdordf.jar is in $ORACLE_HOME/md/jlib or %ORACLE_HOME%\md\jlib.)


	
If JDK 6 is not already installed, install it.


	
If the JAVA_HOME environment variable does not already refer to the JDK 6 installation, define it accordingly. For example:


setenv JAVA_HOME /usr/local/packages/jdk16/


	
If the SPARQL service to support the SPARQL protocol is not set up, set it up as explained in Section 8.2.2.




After setting up the software environment, ensure that your Semantic Technologies environment can enable you to use the Sesame Adapter to perform queries, as explained in Section 8.2.3.






8.2.2 Setting Up the SPARQL Service

Setting up a SPARQL endpoint using the Sesame Adapter involves downloading the Sesame Server, with which client applications can communicate over HTTP protocol. The Sesame Server (and OpenRDF Workbench) is bundled with the Sesame 2.3.1 release package. This section explains how to set up a SPARQL service using a servlet deployed in WebLogic Server. The number and complexity of the steps reflect the fact that Oracle is not permitted to bundle all the dependent third-party libraries in a .war or .ear file.

	
Download and Install Oracle WebLogic Server 11g Release 1 (10.3.1). For details, see http://www.oracle.com/technology/products/weblogic/.


	
Ensure that you have Java 6 installed, because it is required by Sesame.


	
Download the Sesame 2.3.1 release package (in .zip format) from http://sourceforge.net/projects/sesame/files/Sesame%202/.


	
Unpack the .zip file into a temporary directory. For example:


mkdir /tmp/sesame
cp openrdf-sesame-2.3.1-sdk.zip /tmp/sesame/
cd /tmp/sesame
unzip openrdf-sesame-2.3.1-sdk.zip


	
Ensure that you have downloaded and unzipped the Sesame Adapter for Oracle Database, as explained in Section 8.2.1.


	
Create a directory named openrdf-sesame.war at the same level as the Sesame_adapter directory, and go to it. For example:


/tmp/openrdf-sesame.war
cd /tmp/openrdf-sesame.war


	
Unzip necessary files into the directory created in the preceding step:


cd /tmp/openrdf-sesame.war
unzip /tmp/sesame/openrdf-sesame-2.3.1/war/openrdf-sesame.war


	
Copy necessary files, as follows. (Assume that ORACLE_HOME points to the home directory of a Release 11.2 Oracle Database.)


cp /tmp/Sesame_adapter/web/web.xml /tmp/openrdf-sesame.war/WEB-INF/web.xml 
cp /tmp/Sesame_adapter/lib/*.jar   /tmp/openrdf-sesame.war/WEB-INF/lib
cp $ORACLE_HOME/md/jlib/sdordf.jar /tmp/openrdf-sesame.war/WEB-INF/lib
cp $ORACLE_HOME/jdbc/lib/ojdbc5.jar /tmp/openrdf-sesame.war/WEB-INF/lib


Note that in the last command, you can specify ojdbc6.jar instead of ojdbc5.jar.


	
Using the WebLogic Server Administration console, create a J2EE data source named OracleSemDS. During the data source creation, you can specify a user and password for the database schema that contains the relevant semantic data against which SPARQL queries are to be executed.

If you need help in creating this data source, see Section 8.2.2.1, "Creating the Required Data Source Using WebLogic Server".


	
Go to the autodeploy directory of WebLogic Server and copy files, as follows. (For information about auto-deploying applications in development domains, see: http://download.oracle.com/docs/cd/E11035_01/wls100/deployment/autodeploy.html)


cd <domain_name>/autodeploy
cp -rf  /tmp/openrdf-sesame.war  <domain_name>/autodeploy


In the preceding example, <domain_name> is the name of a WebLogic Server domain.

Note that while you can run a WebLogic Server domain in two different modes, development and production, only development mode allows you use the auto-deployment feature.


	
Check the files and the directory structure, as in the following example:


autodeploy/% ls -1R ./openrdf-sesame.war/
 
openrdf-sesame.war/:
favicon.ico
favicon.png
images
META-INF
styles
WEB-INF
 
openrdf-sesame.war/images:
DEBUG.png
ERROR.png
INFO.png
logo.png
productgroup.png
transparent.png
WARN.png
 
openrdf-sesame.war/META-INF:
MANIFEST.MF
maven
 
openrdf-sesame.war/META-INF/maven:
info.aduna.appbase
org.openrdf.sesame
 
openrdf-sesame.war/META-INF/maven/info.aduna.appbase:
aduna-appbase-webapp-system
 
openrdf-sesame.war/META-INF/maven/info.aduna.appbase/aduna-appbase-webapp-system:
pom.properties
pom.xml
 
openrdf-sesame.war/META-INF/maven/org.openrdf.sesame:
sesame-http-server
 
openrdf-sesame.war/META-INF/maven/org.openrdf.sesame/sesame-http-server:
pom.properties
pom.xml
 
openrdf-sesame.war/styles:
basic
default
msie-png-alpha.css
msie-png-alpha.png
w3-html40-recommended.css
 
openrdf-sesame.war/styles/basic:
all.css
 
openrdf-sesame.war/styles/default:
images
msie-minheight.css
print.css
screen.css
 
openrdf-sesame.war/styles/default/images:
bg_body.png
bg_header.png
bg_html.png
hr_menu.png
 
openrdf-sesame.war/WEB-INF:
aduna-webapp-servlet.xml
aduna-webapp-system-servlet.xml
classes
includes
lib
openrdf-http-server-servlet.xml
sample-web.xml
taglibs
tags
urlrewrite.xml
views
web.xml
 
openrdf-sesame.war/WEB-INF/classes:
logback.xml
 
openrdf-sesame.war/WEB-INF/includes:
components
stylesheets.html.jspf
taglibs.jspf
 
openrdf-sesame.war/WEB-INF/includes/components:
bodyStart.html.jspf
bodyStop.html.jspf
ContentHeader.html.jspf
Footer.html.jspf
Header.html.jspf
head.html.jspf
htmlStart.html.jspf
htmlStop.html.jspf
logfilterform.html.jspf
logpaginationfooter.html.jspf
logpaginationheader.html.jspf
Message.html.jspf
Navigation.html.jspf
page.html.jspf
tabs.html.jspf
 
openrdf-sesame.war/WEB-INF/lib:
activation-1.1.jar
aduna-appbase-core-3.9.0.jar
aduna-appbase-logging-api-3.9.0.jar
aduna-appbase-logging-file-3.9.0.jar
aduna-appbase-webapp-base-core-3.9.0.jar
aduna-appbase-webapp-system-core-3.9.0.jar
aduna-commons-collections-2.7.0.jar
aduna-commons-concurrent-2.6.0.jar
aduna-commons-i18n-1.3.0.jar
aduna-commons-io-2.8.0.jar
aduna-commons-iteration-2.7.0.jar
aduna-commons-lang-2.8.0.jar
aduna-commons-net-2.6.0.jar
aduna-commons-platform-info-2.8.0.jar
aduna-commons-text-2.6.0.jar
aduna-commons-webapp-core-2.8.0.jar
aduna-commons-xml-2.6.0.jar
aopalliance-1.0.jar
asm-1.5.3.jar
cglib-2.1_3.jar
commons-codec-1.3.jar
commons-dbcp-1.2.2.jar
commons-httpclient-3.1.jar
commons-pool-1.3.jar
jcl-over-slf4j-1.5.10.jar
jstl-1.1.2.jar
logback-classic-0.9.18.jar
logback-core-0.9.18.jar
ojdbc5.jar
sdordf.jar
sdordfsesame.jar
sesame-http-client-2.3.1.jar
sesame-http-protocol-2.3.1.jar
sesame-http-server-2.3.1.jar
sesame-http-server-spring-2.3.1.jar
sesame-model-2.3.1.jar
sesame-query-2.3.1.jar
sesame-queryalgebra-evaluation-2.3.1.jar
sesame-queryalgebra-model-2.3.1.jar
sesame-queryparser-api-2.3.1.jar
sesame-queryparser-serql-2.3.1.jar
sesame-queryparser-sparql-2.3.1.jar
sesame-queryresultio-api-2.3.1.jar
sesame-queryresultio-binary-2.3.1.jar
sesame-queryresultio-sparqljson-2.3.1.jar
sesame-queryresultio-sparqlxml-2.3.1.jar
sesame-queryresultio-text-2.3.1.jar
sesame-repository-api-2.3.1.jar
sesame-repository-contextaware-2.3.1.jar
sesame-repository-dataset-2.3.1.jar
sesame-repository-event-2.3.1.jar
sesame-repository-http-2.3.1.jar
sesame-repository-manager-2.3.1.jar
sesame-repository-sail-2.3.1.jar
sesame-rio-api-2.3.1.jar
sesame-rio-n3-2.3.1.jar
sesame-rio-ntriples-2.3.1.jar
sesame-rio-rdfxml-2.3.1.jar
sesame-rio-trig-2.3.1.jar
sesame-rio-trix-2.3.1.jar
sesame-rio-turtle-2.3.1.jar
sesame-runtime-2.3.1.jar
sesame-sail-api-2.3.1.jar
sesame-sail-inferencer-2.3.1.jar
sesame-sail-memory-2.3.1.jar
sesame-sail-nativerdf-2.3.1.jar
sesame-sail-rdbms-2.3.1.jar
slf4j-api-1.5.10.jar
spring-aop-2.5.6.jar
spring-beans-2.5.6.jar
spring-context-2.5.6.jar
spring-context-support-2.5.6.jar
spring-core-2.5.6.jar
spring-web-2.5.6.jar
spring-webmvc-2.5.6.jar
standard-1.1.2.jar
urlrewritefilter-3.0.4.jar
 
openrdf-sesame.war/WEB-INF/taglibs:
navigation.tld
 
openrdf-sesame.war/WEB-INF/tags:
errors.tag
 
openrdf-sesame.war/WEB-INF/views:
home
overview.jsp
system
 
openrdf-sesame.war/WEB-INF/views/home:
overview.jsp
 
openrdf-sesame.war/WEB-INF/views/system:
info
logging
overview.jsp
 
openrdf-sesame.war/WEB-INF/views/system/info:
debug.jsp
overview.jsp
 
openrdf-sesame.war/WEB-INF/views/system/logging:
overview.jsp


	
Start or restart WebLogic Server.


	
Verify your deployment by using your Web browser to connect to a URL in the following format (assume that the Web application is deployed at port 7001): http://<hostname>:7001/openrdf-sesame/querymgt?abortqid=0

You should see an XML response, which indicates a successful deployment of the Sesame Server with the Sesame Adapter query management servlet.




You can also install the OpenRDF Workbench, which is a graphical user interface (GUI) for communicating with the Sesame Server. To deploy the OpenRDF Workbench into the Oracle WebLogic Server, you must have performed at least the first 7 steps in the preceding instructions for setting up the SPARQL endpoint (explained earlier in this section); then, follow these steps:

	
Go to the autodeploy directory of WebLogic Server and copy files, as follows. (For information about auto-deploying applications in development domains, see: http://download.oracle.com/docs/cd/E11035_01/wls100/deployment/autodeploy.html)


cd <domain_name>/autodeploy
cp -rf  /tmp/openrdf-workbench.war  <domain_name>/autodeploy


In the preceding example, <domain_name> is the name of a WebLogic Server domain.


	
Check the files and the directory structure, as in the following example:


autodeploy/% ls -1R ./openrdf-workbench.war/
 openrdf-workbench.war/:

favicon.ico
favicon.png
images
locale
META-INF
scripts
styles
transformations
WEB-INF
 
openrdf-workbench.war/images:
affirmative.png
edit.png
logo.png
negative.png
productgroup.png
server_network.png
server.png
view.png
 
openrdf-workbench.war/locale:
messages.xsl
 
openrdf-workbench.war/META-INF:
MANIFEST.MF
maven
 
openrdf-workbench.war/META-INF/maven:
org.openrdf.sesame
 
openrdf-workbench.war/META-INF/maven/org.openrdf.sesame:
sesame-http-workbench
 
openrdf-workbench.war/META-INF/maven/org.openrdf.sesame/sesame-http-workbench:
pom.properties
pom.xml
 
openrdf-workbench.war/scripts:
cookies.html
 
openrdf-workbench.war/styles:
basic
default
msie-png-alpha.css
msie-png-alpha.png
w3-html40-recommended.css
 
openrdf-workbench.war/styles/basic:
all.css
 
openrdf-workbench.war/styles/default:
images
msie-minheight.css
print.css
screen.css
 
openrdf-workbench.war/styles/default/images:
bg_body.png
bg_header.png
bg_html.png
hr_menu.png
 
openrdf-workbench.war/transformations:
add.xsl
boolean.xsl
clear.xsl
contexts.xsl
create-memory-rdfs-dt.xsl
create-memory-rdfs.xsl
create-memory.xsl
create-mysql.xsl
create-native-rdfs-dt.xsl
create-native-rdfs.xsl
create-native.xsl
create-pgsql.xsl
create-remote.xsl
create.xsl
delete.xsl
explore.xsl
export.xsl
graph.xsl
information.xsl
list.xsl
namespaces.xsl
query.xsl
remove.xsl
repositories.xsl
server.xsl
summary.xsl
table.xsl
template.xsl
tuple.xsl
types.xsl
url-encode.xsl
 
openrdf-workbench.war/WEB-INF:
classes
lib
web.xml
 
openrdf-workbench.war/WEB-INF/classes:
org
 
openrdf-workbench.war/WEB-INF/classes/org:
openrdf
 
openrdf-workbench.war/WEB-INF/classes/org/openrdf:
workbench
 
openrdf-workbench.war/WEB-INF/classes/org/openrdf/workbench:
base
commands
exceptions
proxy
RepositoryServlet.class
util
 
openrdf-workbench.war/WEB-INF/classes/org/openrdf/workbench/base:
BaseRepositoryServlet.class
BaseServlet.class
TransformationServlet.class
TupleServlet.class
 
openrdf-workbench.war/WEB-INF/classes/org/openrdf/workbench/commands:
AddServlet.class
ClearServlet.class
ContextsServlet.class
CreateServlet.class
DeleteServlet.class
ExploreServlet.class
ExportServlet.class
InformationServlet.class
InfoServlet.class
NamespacesServlet.class
QueryServlet.class
RemoveServlet.class
RepositoriesServlet.class
SummaryServlet.class
TypesServlet.class
 
openrdf-workbench.war/WEB-INF/classes/org/openrdf/workbench/exceptions:
BadRequestException.class
MissingInitParameterException.class
 
openrdf-workbench.war/WEB-INF/classes/org/openrdf/workbench/proxy:
CookieCacheControlFilter$CacheAwareRequest.class
CookieCacheControlFilter$CacheAwareResponse.class
CookieCacheControlFilter.class
ProxyRepositoryServlet.class
RedirectFilter.class
WorkbenchGateway.class
WorkbenchServlet.class
 
openrdf-workbench.war/WEB-INF/classes/org/openrdf/workbench/util:
BasicServletConfig.class
ConfigTemplate.class
DynamicHttpRequest.class
TupleResultBuilder.class
WorkbenchRequest.class
 
openrdf-workbench.war/WEB-INF/lib:
aduna-appbase-core-3.9.0.jar
aduna-appbase-logging-api-3.9.0.jar
aduna-appbase-logging-file-3.9.0.jar
aduna-commons-collections-2.7.0.jar
aduna-commons-concurrent-2.6.0.jar
aduna-commons-i18n-1.3.0.jar
aduna-commons-io-2.8.0.jar
aduna-commons-iteration-2.7.0.jar
aduna-commons-lang-2.8.0.jar
aduna-commons-net-2.6.0.jar
aduna-commons-platform-info-2.8.0.jar
aduna-commons-text-2.6.0.jar
aduna-commons-xml-2.6.0.jar
commons-cli-1.1.jar
commons-codec-1.3.jar
commons-dbcp-1.2.2.jar
commons-fileupload-1.2.1.jar
commons-httpclient-3.1.jar
commons-io-1.3.2.jar
commons-pool-1.3.jar
jcl-over-slf4j-1.5.10.jar
sesame-console-2.3.1.jar
sesame-http-client-2.3.1.jar
sesame-http-protocol-2.3.1.jar
sesame-model-2.3.1.jar
sesame-query-2.3.1.jar
sesame-queryalgebra-evaluation-2.3.1.jar
sesame-queryalgebra-model-2.3.1.jar
sesame-queryparser-api-2.3.1.jar
sesame-queryparser-serql-2.3.1.jar
sesame-queryparser-sparql-2.3.1.jar
sesame-queryresultio-api-2.3.1.jar
sesame-queryresultio-binary-2.3.1.jar
sesame-queryresultio-sparqljson-2.3.1.jar
sesame-queryresultio-sparqlxml-2.3.1.jar
sesame-queryresultio-text-2.3.1.jar
sesame-repository-api-2.3.1.jar
sesame-repository-contextaware-2.3.1.jar
sesame-repository-dataset-2.3.1.jar
sesame-repository-event-2.3.1.jar
sesame-repository-http-2.3.1.jar
sesame-repository-manager-2.3.1.jar
sesame-repository-sail-2.3.1.jar
sesame-rio-api-2.3.1.jar
sesame-rio-n3-2.3.1.jar
sesame-rio-ntriples-2.3.1.jar
sesame-rio-rdfxml-2.3.1.jar
sesame-rio-trig-2.3.1.jar
sesame-rio-trix-2.3.1.jar
sesame-rio-turtle-2.3.1.jar
sesame-runtime-2.3.1.jar
sesame-sail-api-2.3.1.jar
sesame-sail-inferencer-2.3.1.jar
sesame-sail-memory-2.3.1.jar
sesame-sail-nativerdf-2.3.1.jar
sesame-sail-rdbms-2.3.1.jar
slf4j-api-1.5.10.jar
slf4j-jdk14-1.5.10.jar


	
Start or restart WebLogic Server.


	
Verify your deployment by using your Web browser to connect to a URL in the following format (assume that the Web application is deployed at port 7001): http://<hostname>:7001/openrdf-workbench

You should see a Web page with the OpenRDF Workbench logo. Click the Repositories link on the left to see a list of repositories.






8.2.2.1 Creating the Required Data Source Using WebLogic Server

If you need help creating the required J2EE data source using the WebLogic Server admin console, you can follow these steps:

	
Login to: http://<hostname>:7001/console


	
In the Domain Structure panel, click Services.


	
Click JDBC


	
Click Data Sources.


	
In the Summary of JDBC Data Sources panel, click New under the Data Sources table.


	
In the Create a New JDBC Data Source panel, enter or select the following values.

Name: OracleSemDS

JNDI Name: OracleSemDS

Database Type: Oracle

Database Driver: Oracle's Driver (Thin) Versions: 9.0.1,9.2.0,10,11


	
Click Next twice.


	
In the Connection Properties panel, enter the appropriate values for the Database Name, Host Name, Port, Database User Name (schema that contains semantic data), Password fields.


	
Click Next.


	
Select (check) the target server or servers to which you want to deploy this OracleSemDS data source.


	
Click Finish.

You should see a message that all changes have been activated and no restart is necessary.









8.2.2.2 Configuring the SPARQL Service

You can use the OracleSailStore API and other relevant APIs to create semantic models, load data (incrementally or in bulk), and perform logical inference.

After the semantic models are in the Oracle database, you can use the Sesame Console (described in Section 8.9) to connect to the Sesame Server and create an Oracle semantic model-backed repository. For example, you might create a repository with the repository ID myOracleRepos that uses a semantic model named LUBM and the OWLPRIME rulebase.

This newly created repository provides a new service endpoint on the Sesame Server.






8.2.2.3 Terminating Long-Running SPARQL Queries

Because some applications need to be able to terminate long-running SPARQL queries, an abort framework has been introduced with the Sesame Adapter and the Sesame Server setup. Basically, for queries that may take a long time to run, you must stamp each with a unique query ID (qid) value.

For example, the following SPARQL query selects out the subject of all triples. A query ID (qid) is set so that this query can be terminated upon request.


PREFIX ORACLE_SEM_FS_NS:  <http://example.com/semtech#qid=8761>
SELECT ?subject WHERE {?subject ?property ?object }


The qid attribute value is of long integer type. You can choose a value for the qid for a particular query based on your own application needs.

To terminate a SPARQL query that has been submitted with a qid value, applications can send an abort request to a servlet in the following format and specify a matching QID value


http://<hostname>:7001/openrdf-sesame/querymgt?abortqid=8761








8.2.3 Setting Up the Semantic Technologies Environment

To use the Sesame Adapter to perform queries, you can connect as any user (with suitable privileges) and use any models in the semantic network. If your Semantic Technologies environment already meets the requirements, you can go directly to compiling and running Java code that uses the Sesame Adapter. If your Semantic Technologies environment is not yet set up to be able to use the Sesame Adapter, you can perform actions similar to the following example steps:

	
Connect as SYS with the SYSDBA role:


sqlplus sys/<password-for-sys> as sysdba


	
Create a tablespace for the system tables. For example:


CREATE TABLESPACE rdf_users datafile 'rdf_users01.dbf' 
    size 128M reuse autoextend on next 64M 
    maxsize unlimited segment space management auto;


	
Create the semantic network. For example:


EXECUTE sem_apis.create_sem_network('RDF_USERS');


	
Create a database user (for connecting to the database to use the semantic network and the Sesame Adapter). For example:


CREATE USER rdfusr IDENTIFIED BY <password-for-udfusr>
                   DEFAULT TABLESPACE rdf_users;


	
Grant the necessary privileges to this database user. For example:


GRANT connect, resource TO rdfusr;


	
To use the Sesame Adapter with your own semantic data, perform the appropriate steps to store data, create a model, and create database indexes, as explained in Section 1.10, "Quick Start for Using Semantic Data". Then perform queries by compiling and running Java code; see Section 8.10 for information about example queries.

To use the Sesame Adapter with supplied example data, see Section 8.10.











8.3 SEM_MATCH and Sesame Adapter Queries Compared

There are two ways to query semantic data stored in Oracle Database: SEM_MATCH-based SQL statements and SPARQL queries through the Sesame Adapter. Queries using each approach are similar in appearance, but there are important behavioral differences. To ensure consistent application behavior, you must understand the differences and use care when dealing with query results coming from SEM_MATCH queries and SPARQL queries.

The following simple examples show the two approaches.

Query 1 (SEM_MATCH-based)


select s, p, o
    from table(sem_match('{?s ?p ?o}', sem_models('Test_Model'), ....))


Query 2 (SPARQL query through the Sesame Adapter)


select ?s ?p ?o
where {?s ?p ?o}


These two queries perform the same kind of functions; however, there are some important differences. Query 1 (SEM_MATCH-based):

	
Reads all triples out of Test_Model.


	
Does not differentiate among URI, bNode, plain literals, and typed literals, and it does not handle long literals.


	
Does not unescape certain characters (such as '\n').




Query 2 (SPARQL query executed through the Sesame Adapter) also reads all triples out of Test_Model (assume it executed a call to ModelOracleSem referring to the same underlying Test_Model). However, Query 2:

	
Reads out additional columns (as opposed to just the s, p, and o columns with the SEM_MATCH table function), to differentiate URI, bNodes, plain literals, typed literals, and long literals. This is to ensure proper creation of Sesame Node objects.


	
Unescapes those characters that are escaped when stored in Oracle Database




Blank node handling is another difference between the two approaches:

	
In a SEM_MATCH-based query, blank nodes are always treated as constants.


	
In a SPARQL query, a blank node that is not wrapped inside < and > is treated as a variable when the query is executed through the Sesame Adapter. This matches the SPARQL standard semantics. However, a blank node that is wrapped inside < and > is treated as a constant when the query is executed, and the Sesame Adapter adds a proper prefix to the blank node label as required by the underlying data modeling.




The maximum length for the name of a semantic model created using the Sesame Adapter API is 22 characters.






8.4 Optimized Handling of SPARQL Queries

This section describes some performance-related features of the Sesame Adapter that can enhance SPARQL query processing. These features are performed automatically by default.



8.4.1 Compilation of SPARQL Queries to a Single SEM_MATCH Call

SPARQL queries involving DISTINCT, OPTIONAL, GRAPH, FILTER, UNION, ORDER BY, and LIMIT are converted to a single SQL query based on the SEM_MATCH table function. For SPARQL ASK, DESCRIBE, and CONSTRUCT queries, the Sesame Adapter employs additional query transformation logic and mid-tier processing.

If the SQL query based on SEM_MATCH fails to execute, the Sesame Adapter employs the Sesame evaluation strategy to execute the query.








8.5 Recommendations for Best Performance

The following are recommendations for enhancing the performance of queries using the Sesame Adapter:

	
Put only relevant triple patterns in the GRAPH clause of a SPARQL query, to reduce the number of additional joins with the application table. (For an explanation, see Section 8.5.1.)


	
For the triple patterns inside GRAPH clause of a named graph query, do not use variables with null bindings. A null binding will not match any row in the join with the relevant application table, and therefore this binding will be dropped.


	
Because of the preceding item, do not put an OPTIONAL clause in a GRAPH clause, or a GRAPH clause in an OPTIONAL clause.


	
Do not use blank nodes for the CONTEXT column in the application table (see Section 8.5.1), because blank nodes in named graphs from two different semantic models will be treated as the same resource if they have the same label. This is not the case for blank nodes in triples (they are stored separately if coming from different models).






8.5.1 Statement Storage and Implications for Sesame Adapter Queries

Because the MDSYS.SEMM_model-name view (described in Table 1-2 in Section 1.3.1) does not have columns for the graph name or context for each model, these two pieces of information are not stored inside that Oracle semantic model. Rather, this information is kept in the CONTEXT column in the user's application table.

When an OracleSailStore object is created for the first time using a model name that does not exist in the semantic network, a new application table is created automatically, and it includes these columns:

	
TRIPLE, of type SDO_RDF_TRIPLE_S


	
CONTEXT, of type VARCHAR2




A semantic model with the specified model name is then created. To enhance the performance of named graph queries and statement-oriented operations, a default index is created on the application table, and this index covers the CONTEXT column (leading column) as well as the three numeric ID attributes for triple's subject, predicate, and object field of the TRIPLE column.

When a SPARQL query runs against a semantic model, if the query does not use a named graph (that is, does not contain a GRAPH clause), the generated SQL statement will not use the model's application table. However, if the query has a GRAPH clause, the generated SQL statement will join a SEM_MATCH-based subquery with the model's application table to scope the results down to relevant contexts or named graphs. The number of joins with the application table depends on how many triple patterns are in the GRAPH clause, and therefore it is best to put only relevant triple patterns in the GRAPH clause, to reduce the number of additional joins with the application table.








8.6 Additions to the SPARQL Syntax to Support Other Features

The Sesame Adapter allows you to pass in hints and additional query options. It implements these capabilities by overloading the SPARQL namespace prefix syntax by using Oracle-specific namespaces that contain query options. The namespaces are in the form PREFIX ORACLE_SEM_xx_NS, where xx indicates the type of feature (such as HT for hint or AP for additional predicate)



8.6.1 SQL Hints

SQL hints can be passed to a SEM_MATCH query including a line in the following form:


PREFIX ORACLE_SEM_HT_NS: <http://oracle.com/semtech#hint>


Where hint can be any hint supported by SEM_MATCH. For example:


PREFIX ORACLE_SEM_HT_NS: <http://oracle.com/semtech#leading(t0,t1)> 
SELECT ?book ?title ?isbn     
WHERE { ?book <http://title> ?title. ?book <http://ISBN> ?isbn }


In this example, t0,t1 refers to the first and second patterns in the query.

Note the slight difference in specifying hints when compared to SEM_MATCH. Due to restrictions of namespace value syntax, a comma (,) must be used to separate t0 and t1 (or other hint components) instead of a space.

For more information about using SQL hints, see Section 1.6, "Using the SEM_MATCH Table Function to Query Semantic Data", specifically the material about the HINT0 keyword in the options attribute.






8.6.2 Additional WHERE Clause Predicates

The SEM_MATCH filter attribute can specify additional selection criteria as a string in the form of a WHERE clause without the WHERE keyword. Additional WHERE clause predicates can be passed to a SEM_MATCH query including a line in the following form:


PREFIX ORACLE_SEM_AP_NS: <http://oracle.com/semtech#pred>


Where pred reflects the WHERE clause content to be appended to the query. For example:


PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX ORACLE_SEM_AP_NS:<http://www.oracle.com/semtech#label$RDFLANG='fr'>  
SELECT DISTINCT ?inst ?label
  WHERE { ?inst a <http://someCLass>. ?inst rdfs:label ?label . }
  ORDER BY (?label) LIMIT 20


In this example, a restriction is added to the query that the language type of the label variable must be 'fr'.






8.6.3 Additional Query Options

Additional query options can be passed to a SEM_MATCH query including a line in the following form:


PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#option>


Where option reflects a query option (or multiple query options delimited by commas) to be appended to the query. For example:


PREFIX ORACLE_SEM_FS_NS:   
<http://oracle.com/semtech#timeout=3,dop=4,INF_ONLY,ORDERED,ALLOW_DUP=T>
SELECT * WHERE {?subject ?property ?object }


The following query options are supported:

	
ALLOW_DUP=t chooses a faster way to query multiple semantic models, although duplicate results may occur.


	
DOP=n specifies the degree of parallelism (n) for the query. With multi-core or multi-CPU processors, experimenting with different DOP values (such as 4 or 8) may improve performance.


	
INF_ONLY causes only the inferred model to be queried. (For this option, you should also specify the includeInferred=true option for the query.)


	
ORDERED is translated to a LEADING SQL hint for the query triple pattern joins, while performing the necessary RDF_VALUE$ joins last.


	
QID=n specifies a query ID number; this feature can be used to cancel the query if it is not responding.


	
REWRITE=F disables ODCI_Table_Rewrite for the SEM_MATCH table function.


	
SKIP_CLOB=T causes CLOB values not to be returned for the query.


	
TIMEOUT=n (query timeout) specifies the number of seconds (n) that the query will run until it is terminated.


	
USE_BIND_VAR(n) specifies that a bind variable be used during query parsing for the nth constant in triple patterns. (Do not apply this feature to constants inside an OPTIONAL clause.)











8.7 Support for Server-Side APIs

This section describes some of the Oracle Database Semantic Technologies features that are exposed by the Sesame Adapter. For comprehensive documentation of the API calls that support the available features, see the Sesame Adapter reference information (Javadoc). For additional information about the server-side features exposed by the Sesame Adapter, see the relevant chapters in this manual.



8.7.1 Virtual Models Support

Virtual models (explained in Section 1.3.8) are specified in the OracleSailStore constructor, and they are handled transparently. If a virtual model exists for the model-rulebase combination, it is used in query answering; if such a virtual model does not exist, it is created in the database.




	
Note:

Virtual model support through the Sesame Adapter is available only with Oracle Database Release 11.2 or later.







The following example reuses an existing virtual model.


public void vm(String jdbcUrl, 
                        String user, 
                        String password, 
                        String model,                              
                        PrintStream psOut) 
{
String m1 = "TEST_1";
String m2 = "TEST_2";
OraclePool op = new OraclePool(
    OraclePool.getOracleDataSource(jdbcUrl, user, password));
        
// create the attachment semantic model in case it doesn't exist 
// (constructor handles it)
OracleSailStore store = new OracleSailStore(op, m1);
store.shutDown();
                
store= new OracleSailStore(op, m2);
store.shutDown();
 
String vmName = "VM_" + m1;
 
// create a virtual model with name vmName that will be used in the 
// OracleSailStore
Oracle oracle = op.getOracle();
oracle.executeCall(
"begin sem_apis.create_virtual_model(?,sem_models(?,?), null); end;", 
 vmName, m1, m2);
op.returnOracle(oracle);
 
 String[] modelNames = {m2};
 String[] rulebaseNames = {};
 
 Attachment attachment = Attachment.createInstance(modelNames,
 rulebaseNames); 
 
    store = new OracleSailStore(op, m1, attachment, vmName);
 
OracleSailConnection conn = store.getConnection();
conn.clear();
conn.addStatement(
        store.getValueFactory().createURI("http://a1"), 
        store.getValueFactory().createURI("http://p1"), 
        store.getValueFactory().createURI("http://b1"));
   
CloseableIteration res = conn.getStatements(null, null, null, false);
while (res.hasNext()) {
  Statement stmt = (Statement) res.next();
  System.out.println(stmt);
}    
conn.close();
store.shutDown();
}


You can also use the OracleSailStore constructor to create a virtual model, as in the following example:


OracleSailStore store = new OracleSailStore(oracle, modelName, attachment, true);


In this example, the fourth parameter (true) specifies that a virtual model needs to be created for the specified modelName and attachment.






8.7.2 Connection Pooling Support

Oracle Database Connection Pooling is provided through the Sesame Adapter OraclePool class. Usually, OraclePool is initialized with a DataSource, using the OraclePool (DataSource ods) constructor. In this case, OraclePool acts as an extended wrapper for the DataSource, while using the connection pooling capabilities of the data source. When you create an OracleSailStore object, it is sufficient to specify the OraclePool object in the store constructor; the database connections will then be managed automatically by the Sesame Adapter.

If you need to retrieve Oracle connection objects (which are essentially database connection wrappers) explicitly, you can invoke the OraclePool.getOracle method. After finishing with the connection, you can invoke the OraclePool.returnOracle method to return the object to the connection pool.

OraclePool can also be initialized with an OracleConnection object. In this case, only a single database connection is used when referring to this OraclePool; and because multiple Sesame SailConnection objects will use the same database connection, you must be aware that "dirty" reads across different SailConnection objects are possible.

More information about using OraclePool can be found in the Sesame Adapter API reference information (Javadoc).

The following example sets up an OracleSailStore object using the OraclePool class, with two initial connections.


public void op(String jdbcUrl, 
                 String user, 
                 String password, 
                 String model,                              
                 PrintStream psOut)
  throws Exception
  {          
    // test with connection properties 
    java.util.Properties prop = new java.util.Properties();
    prop.setProperty("MinLimit", "2");     // the cache size is 2 at least 
    prop.setProperty("MaxLimit", "10");
    prop.setProperty("InitialLimit", "2"); // create 2 connections at startup
    prop.setProperty("InactivityTimeout", "1800");    //  seconds
    prop.setProperty("AbandonedConnectionTimeout", "900");  //  seconds
    prop.setProperty("MaxStatementsLimit", "10");
    prop.setProperty("PropertyCheckInterval", "60"); // seconds
 
    System.out.println("Creating Data Source");
    OracleDataSource ods = 
OraclePool.getOracleDataSource(jdbcUrl, user, password,
        prop, "OracleSemConnPool");
    System.out.println("Done creating Data Source");
    
    OraclePool op = new OraclePool(ods);
 
    // create an OracleSailStore with the OraclePool
    OracleSailStore store = new OracleSailStore(op, model);
    store.shutDown();
    op.close();
    ods.close();
  }






8.7.3 Semantic Model PL/SQL Interfaces

Several semantic PL/SQL subprograms are available through the Sesame Adapter. Table 8-1 lists the subprograms and their corresponding Java class and methods.


Table 8-1 PL/SQL Subprograms and Corresponding Sesame Adapter Java Class and Methods

	PL/SQL Subprogram	Corresponding Java Class and Methods
	
SEM_APIS.DROP_SEM_MODEL


	
OracleUtils.dropSemanticModel


	
SEM_APIS.MERGE_MODELS


	
OracleUtils.mergeModels


	
SEM_APIS.SWAP_NAMES


	
OracleUtils.swapNames


	
SEM_APIS.REMOVE_DUPLICATES


	
OracleUtils.removeDuplicates


	
SEM_APIS.RENAME_MODEL


	
OracleUtils.renameModels








For information about these PL/SQL utility subprograms, see the reference information in Chapter 9. For information about the corresponding Java class and methods, see the Sesame Adapter API Reference documentation (Javadoc).






8.7.4 Inference Options

You can add options to entailment calls by using the setInferenceOption(String options) procedure with the OracleSailConnection object. The following example enables incremental inference and specifies a parallelism value of 4 when creating an entailment.


conn.setInferenceOption("INC=T,DOP=4");


For information about inference options, see Section 2.2.








8.8 Oracle-Specific Extensions to Sesame APIs

This section describes the extensions that the Sesame Adapter for Oracle Database provides to the Sesame SailConnection and Sail APIs.



8.8.1 Statement Uniqueness

In Sesame 2.3.0, statement uniqueness is enforced at the context level: the same triple cannot occur twice in a single context. In the Oracle Sesame Adapter, such uniqueness is enforced through a unique index on the context, predicate, subject, and object. However, in the Sesame Adapter, statement uniqueness is not enabled by default. When constructing an OracleSailStore object, the default value for statement uniqueness is DONTCARE, meaning that if such a unique index does not already exist, it will not be created.

You can explicitly enable and disable the requirement for statement uniqueness either through the OracleSailStore constructor, or through the enableUniquenessConstraint and disableUniquenessConstraint methods.






8.8.2 Indexes and Interoperability with the Jena Adapter

Indexes on the application table are critical for good performance when performing DML operations (especially deletes) and named graph queries against an OracleSailStore object. When creating a new OracleSailStore object, a default CPSO index is created (where C,P,S,O stands for the context, predicate, subject, and object columns).

There are some storage differences between Oracle semantic models created using the Sesame Adapter and the Jena Adapter. For example, the default application table index is different in Jena Adapter. To access data in a Jena Adapter model from the Sesame Adapter (and vice versa), you can use the OracleUtils.migrateFromJena and OracleUtils.migrateToJena methods. These methods preserve the semantic data while making changes to the underlying storage structures. In particular, all triples along with their context information are preserved when migrating from Sesame Adapter to Jena Adapter and back.

Example 8-2 illustrates migration between models created using the Sesame Adapter and the Jena Adapter:


Example 8-2 Migration Between Jena Adapter and Sesame Adapter Models


public void migrate(String jdbcUrl, 
                         String user, 
                         String password, 
                         String model,                                
                         PrintStream psOut)
  throws Exception
  {
    OraclePool oraclePool= new OraclePool(
        OraclePool.getOracleDataSource(jdbcUrl, user, password));
       
    OracleSailStore store = new OracleSailStore(oraclePool, model);
    
    OracleSailConnection conn = store.getConnection();
    conn.clear();
    
    // create a statement and add it to the store
    URI subject = 
store.getValueFactory().createURI("http://example.org/foo");
    URI object = store.getValueFactory().createURI("http://example.org/bar");
    URI ngURI = store.getValueFactory().createURI("http://example.org/bar");
  
    conn.addStatement(subject, RDF.TYPE, object, ngURI);
    conn.commit();    
    
    // convert it to a jena model    
    OracleUtils.migrateToJena(oraclePool, model);    
 
    Oracle newOra = oraclePool.getOracle();
    oracle.spatial.rdf.client.jena.Oracle ora =
      new oracle.spatial.rdf.client.jena.Oracle(newOra.getConnection());
    
    GraphOracleSem graph = new GraphOracleSem(ora, model);
   
    // check size of jena graph
    System.out.print("GraphOracleSem size:" + graph.getSize());
    
    store.shutDown();
    
    // now convert it back to an Oracle sailstore.
    OracleUtils.migrateFromJena(oraclePool, model);
    conn = store.getConnection();   
 
    // check overall store size
    System.out.println("Size of store :" +conn.size());
    // check context size, should be 1
    System.out.println("Size of context " + ngURI + ":" + conn.size(ngURI));
    store.shutDown();
    ora.dispose();
    oraclePool.returnOracle(newOra);
  }








8.8.3 Inference

You can perform inference using the OracleSailConnection.performInference method. This method builds an entailment for the OracleSailStore object, given the models and rulebases that were specified in the attachment when constructing the store.

For information about creating entailments, see Section 1.3.7, "Entailments (Rules Indexes)".






8.8.4 Performing Analysis Operations

It is strongly recommended that you analyze the application table, semantic model, and inferred graph (if it exists) before performing inference and after loading a significant amount of semantic data into the database. Performing the analysis operations causes statistics to be gathered, which will help the Oracle optimizer select efficient execution plans when answering queries.

To gather relevant statistics, you can use the following methods in the OracleSailConnection and OracleSailStore classes:

	
OracleSailConnection.analyze


	
OracleSailConnection.analyzeApplicationTable


	
OracleSailConnection.analyzeInferredGraph




For information about these methods, including their parameters, see the Sesame Adapter reference information (Javadoc).








8.9 Using the Sesame Console with the Sesame Adapter

The Sesame Console is, as OpenRDF.org explains, "a command-line application for interacting with Sesame. For now, the best way to create and manage repositories in a SYSTEM repository is to use the Sesame Console. " For basic usage and reference information about the Sesame Console, see the documentation at http://www.openrdf.org/doc/sesame2/users/ch07.html.

This section describes how to use the Sesame Console with the Sesame Adapter for Oracle Database.

To create a new SAIL repository (OracleSailStore object) using the Sesame Console command-line tool, use the following command:


create oracle.


When you are prompted for parameters, you can specify the following:

	Repository ID
	
ID string associated with the repository. Example: myOracleRepos


	Repository Title
	
Title string associated with the repository. Example: My Oracle Repository


	Model Name
	
Name of the Oracle semantic model that corresponds to this repository. All DML operations are performed against this model.


	Additional Models
	
Comma-separated list of any additional semantic models to be included in this repository. Any additional models are used only for inference and query operations.


	Rulebases
	
Comma-separated list of rulebases to be considered when building the entailment closure for this repository. The default is no rulebases, which means that no inference will be performed.


	Use Virtual Model (TRUE|FALSE) [TRUE]
	
Specifies whether to use a virtual model when answering queries. The default is TRUE, which means to use a virtual model.


	Virtual Model Name
	
If Use Virtual Model is TRUE, specify the name of the virtual model to be used to answer queries, if the database user that owns the repository has read permission on the specified virtual model.


	Inference Maintenance Mode (NO_UPDATE|UPDATE_WHEN_COMMIT) [NO_UPDATE]
	
Specifies whether to update the entailment closure on each commit operation (UPDATE_WHEN_COMMIT) or only when the OracleSailConnection.performInference method is invoked (NO_UPDATE). The default is NO_UPDATE.


	Allow Duplicates in Query (TRUE|FALSE) [TRUE]
	
Specifies whether, when querying a repository that has additional models, the query response can include duplicates across the different models. The default is TRUE, allows duplicates to be included, and which speeds query performance.


	Allow Query with Non-Valid Inference status (INVALID|VALID|INCOMPLETE) [INVALID]
	
Specifies whether to allow queries when the entailment is not updated, that is, when the inference status is not valid. The default value is INVALID, which means that the entailment status can be INVALID when querying.

To allow queries only when entailments have a valid status, specify VALID. To allow queries when entailments have either a valid or incomplete status, specify INCOMPLETE.


	Application Table Indexes [CPSO]
	
Specifies the custom index to be created on the application table for this repository. You can specify the columns to be included (and their order) by using a string of up to 4 of the following characters: C (context), P (property), S (subject), O (object). (You can use only those characters and cannot repeat any characters.) The default is CPSO, which creates an index on all four columns with context as the leading column.


	Index Option: Degree of Parallelism [1]
	
Specifies the DOP (degree of parallelism) value for the application table indexes. With multi-core or multi-CPU processors, experimenting with different DOP values (such as 4 or 8) may improve performance. The default is 1 (no parallelism).


	Index Option: Prefix Length to Compress [2]
	
Specifies whether to use key compression on the application table indexes. The default is 2, which specifies compression on the first two columns. A value of 0 (zero) means that no compression will be used.


	Enforce Uniqueness (FALSE|TRUE) []
	
Specifies whether to enforce statement uniqueness across multiple contexts in the repository. Note that statement uniqueness is enforced by a unique index on the application table. The default is [] (that is, no value specified), which means that if the model exists, the uniqueness setting will be inherited from that model; and if the model does not already exist, a non-unique index will be created.

If you specify FALSE and if a unique index exists, that index is dropped and it is re-created as a non-unique index.


	Data Source Name [OracleSemDS]
	
Name of the JDBC data source that provides the database connection setting for accessing the Oracle semantic models and application tables for this repository. The default is OracleSemDS.




Example 8-3 shows a sample scenario of using the Sesame Console.


Example 8-3 Using the Sesame Console


> connect http://localhost:8080/openrdf-sesame.
Disconnecting from default data directory
Connected to http://localhost:8080/openrdf-sesame
> create oracle.
Please specify values for the following variables:
Repository ID: model2Repos
Repository title: Repository for Model 2
Model Name: model2
Additional Models (comma separated):    
Rulebases (comma separated): OWLPRIME    -- OWLPRIME inference will be performed when this model is created
Use Virtual Model (TRUE|FALSE) [TRUE]:  TRUE
Virtual Model Name:     -- a new virtual model will be created if nonexistent
Inference Maintenance Mode (UPDATE_WHEN_COMMIT|NO_UPDATE) [UPDATE_WHEN_COMMIT]: NO_UPDATE
Allow duplicates in query (TRUE|FALSE) [TRUE]: TRUE
Allow query with non-valid inference status (NONE|INCOMPLETE|INVALID) [NONE]: NONE – inference must be up to date before query
Application Table Index [CPSO]: CPSO      –- default, recommended index
Index option: Degree of parallelism [1]: 1
Index option: Leading columns to compress [2]: 2
Enforce Uniqueness (|FALSE|TRUE) []: FALSE
DataSource Name [OracleSemDS]: OracleSemDS
Repository created
> open model2Repos.
Opened repository 'model2Repos'
model2Repos> show c.
--no contexts found--
model2Repos>








8.10 Example Queries Using the Sesame Adapter

This section includes example queries using the Sesame Adapter. Each example is self-contained: it typically starts an OraclePool object, creates an OracleSailStore object, adds and perhaps removes statements, performs a query that may involve inference, displays the result, shuts down the OracleSailStore object, and closes the OraclePool object.

For these examples, the following libraries must be included in the CLASSPATH definition:


sesame-console-2.3.1.jar
sesame-http-client-2.3.1.jar
sesame-http-protocol-2.3.1.jar
sesame-http-server-spring-2.3.1.jar
sesame-model-2.3.1.jar
sesame-query-2.3.1.jar
sesame-queryalgebra-evaluation-2.3.1.jar
sesame-queryalgebra-model-2.3.1.jar
sesame-queryparser-api-2.3.1.jar
sesame-queryparser-serql-2.3.1.jar
sesame-queryparser-sparql-2.3.1.jar
sesame-queryresultio-api-2.3.1.jar
sesame-queryresultio-binary-2.3.1.jar
sesame-queryresultio-sparqljson-2.3.1.jar
sesame-queryresultio-sparqlxml-2.3.1.jar
sesame-queryresultio-text-2.3.1.jar
sesame-repository-api-2.3.1.jar
sesame-repository-contextaware-2.3.1.jar
sesame-repository-dataset-2.3.1.jar
sesame-repository-event-2.3.1.jar
sesame-repository-http-2.3.1.jar
sesame-repository-manager-2.3.1.jar
sesame-repository-sail-2.3.1.jar
sesame-rio-api-2.3.1.jar
sesame-rio-n3-2.3.1.jar
sesame-rio-ntriples-2.3.1.jar
sesame-rio-rdfxml-2.3.1.jar
sesame-rio-trig-2.3.1.jar
sesame-rio-trix-2.3.1.jar
sesame-rio-turtle-2.3.1.jar
sesame-runtime-2.3.1.jar
sesame-sail-api-2.3.1.jar
sesame-sail-inferencer-2.3.1.jar
sesame-sail-memory-2.3.1.jar
sesame-sail-nativerdf-2.3.1.jar
sesame-sail-rdbms-2.3.1.jar
sdordf.jar
sdordfsesame.jar
ojdbc5.jar


To simplify the examples, an environment variable named CP was defined, as follows:


setenv CP ./:sesame-console-2.3.1.jar:sesame-http-client-2.3.1.jar:sesame-http-protocol-2.3.1.jar:sesame-http-server-spring-2.3.1.jar:sesame-model-2.3.1.jar:sesame-query-2.3.1.jar:sesame-queryalgebra-evaluation-2.3.1.jar:sesame-queryalgebra-model-2.3.1.jar:sesame-queryparser-api-2.3.1.jar:sesame-queryparser-serql-2.3.1.jar:sesame-queryparser-sparql-2.3.1.jar:sesame-queryresultio-api-2.3.1.jar:sesame-queryresultio-binary-2.3.1.jar:sesame-queryresultio-sparqljson-2.3.1.jar:sesame-queryresultio-sparqlxml-2.3.1.jar:sesame-queryresultio-text-2.3.1.jar:sesame-repository-api-2.3.1.jar:sesame-repository-contextaware-2.3.1.jar:sesame-repository-dataset-2.3.1.jar:sesame-repository-event-2.3.1.jar:sesame-repository-http-2.3.1.jar:sesame-repository-manager-2.3.1.jar:sesame-repository-sail-2.3.1.jar:sesame-rio-api-2.3.1.jar:sesame-rio-n3-2.3.1.jar:sesame-rio-ntriples-2.3.1.jar:sesame-rio-rdfxml-2.3.1.jar:sesame-rio-trig-2.3.1.jar:sesame-rio-trix-2.3.1.jar:sesame-rio-turtle-2.3.1.jar:sesame-runtime-2.3.1.jar:sesame-sail-api-2.3.1.jar:sesame-sail-inferencer-2.3.1.jar:sesame-sail-memory-2.3.1.jar:sesame-sail-nativerdf-2.3.1.jar:sesame-sail-rdbms-2.3.1.jar:sdordf.jar:sdordfsesame.jar:ojdbc5.jar





	
Note:

Enter the setenv command, as well as each javac and java command, on a single command line.







To run a query, you must do the following:

	
Include the code in a Java source file. The examples used in this section are supplied in files in the examples directory of the Sesame Adapter download.


	
Compile the Java source file. For example:


> javac -classpath $CP Example1.java


	
Run the compiled file. For example:


> java -classpath $CP Test jdbc:oracle:thin:@localhost:1521:orcl scott <password-for-scott> M1






8.10.1 Example1.java: Basic Operations

Example 8-4 shows the Example1.java file, which performs some basic operations.


Example 8-4 Basic Operations


import org.openrdf.model.Statement;
import org.openrdf.model.URI;
import org.openrdf.model.ValueFactory;
import info.aduna.iteration.CloseableIteration;
 
import java.io.*;
import java.sql.SQLException;
 
import oracle.spatial.rdf.client.sesame.*;
 
import org.openrdf.sail.SailConnection;
import org.openrdf.sail.SailException;
import org.openrdf.model.vocabulary.RDFS;
 
public class Example1
{
  public static void main(String[] args) throws SQLException, SailException
  {
    PrintStream psOut = System.out;
    String jdbcUrl  = args[0];
    String user     = args[1];
    String password = args[2];
    String model    = args[3];
 
    OraclePool op = new OraclePool(
        OraclePool.getOracleDataSource(jdbcUrl, user, password));
    OracleSailStore store = new OracleSailStore(op, model);       
 
    OracleSailConnection conn = store.getConnection();
 
    ValueFactory vf = store.getValueFactory();
    URI p = vf.createURI("http://p");   
    URI cls = vf.createURI("http://cls");
    URI a = vf.createURI("http://a");
    URI b = vf.createURI("http://b");
    URI ng1 = vf.createURI("http://ng1");
 
    conn.clear();
    conn.addStatement(p, RDFS.DOMAIN, cls);
    conn.addStatement(a, p, b, ng1);
 
    psOut.println("size of context " + ng1 + ":" + conn.size(ng1));
 
    // returns OracleStatements
    CloseableIteration<? extends Statement, SailException> it =
      conn.getStatements(null, null, null, false);
 
    while (it.hasNext()) {   
      Statement stmt = it.next();
      psOut.println("getStatements: stmt: " + stmt.toString());
    }
 
    conn.removeStatements(null, null, null, ng1);
 
    psOut.println("size of context " + ng1 + ":" + conn.size(ng1));
 
    conn.removeAll();   
 
    psOut.println("size of store: " + conn.size());
 
    conn.close();
    store.shutDown();
    op.close();
  }
}




To compile this example, enter the following command:


/usr/local/packages/jdk16/bin/javac -classpath $CP Example1.java


To run this example, enter a command in the following format:


/usr/local/packages/jdk16/bin/java -classpath $CP Example1 jdbc:oracle:thin:@localhost:1521:ORCL scott <password-for-scott> TestModel


The expected output of the java command might appear as follows:


size of context http://ng1:1
getStatements: stmt:  O: (http://a, http://p, http://b) [http://ng1]
getStatements: stmt:  O: (http://p, http://www.w3.org/2000/01/rdf-schema#domain, http://cls) [null]
size of context http://ng1:0
size of store: 0






8.10.2 Example2.java: Add a Data File (in TRIG format)

Example 8-5 shows the Example2.java file, which adds a data file in TRIG format.


Example 8-5 Add a Data File (in TRIG format)


import org.openrdf.model.Statement;
import org.openrdf.model.URI;
import org.openrdf.model.ValueFactory;
import info.aduna.iteration.CloseableIteration;
 
import java.io.*;
import java.sql.SQLException;
 
import oracle.spatial.rdf.client.sesame.*;
import org.openrdf.rio.RDFFormat;
import org.openrdf.sail.SailConnection;
import org.openrdf.sail.SailException;
import org.openrdf.model.vocabulary.RDFS;
import org.openrdf.repository.RepositoryConnection;
import org.openrdf.repository.sail.SailRepository;
import org.openrdf.repository.RepositoryException;
import org.openrdf.rio.RDFParseException;
 
public class Example2
{
  public static void main(String[] args) throws SQLException, SailException,
    RepositoryException, IOException, RDFParseException
  {
    PrintStream psOut = System.out;
    String jdbcUrl  = args[0];
    String user     = args[1];
    String password = args[2];
    String model    = args[3];
    String trigFile = args[4];
 
    OraclePool op = new OraclePool(
        OraclePool.getOracleDataSource(jdbcUrl, user, password));
    OracleSailStore store = new OracleSailStore(op, model);       
    SailRepository sr = new SailRepository(store);
    RepositoryConnection repConn = sr.getConnection();
 
    repConn.setAutoCommit(false);
    repConn.add(new File(trigFile), "http://my.com/", RDFFormat.TRIG);
    repConn.commit();
 
    psOut.println("size " + Long.toString(repConn.size()));
 
    repConn.close();
    store.shutDown();
    op.close();
  }
}




To compile this example, enter the following command:


usr/local/packages/jdk16/bin/javac -classpath $CP Example2.java


For running this example, assume that a sample TRIG data file named test.trig was created as:


@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix swp: <http://www.w3.org/2004/03/trix/swp-1/> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix ex: <http://example.org/> .
@prefix : <http://example.org/> .
 
# default graph
{
<http://example.org/bob>    dc:publisher  "Bob Hacker" .
<http://example.org/alice>  dc:publisher  "Alice Hacker" .
}
 
:bob {
_:a foaf:mbox <mailto:bob@oldcorp.example.org> .
}
 
:alice {
_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@work.example.org> .
}
 
:jack {
_:a foaf:name "Jack" .
_:a foaf:mbox <mailto:jack@oracle.example.org> .
}


To run this example using the test.trig data file, enter the following command:


/usr/local/packages/jdk16/bin/java -classpath $CP Example2 jdbc:oracle:thin:@localhost:1521:ORCL scott  <password>  TestModel ./test.trig


The expected output of the java command might appear as follows:


size 7






8.10.3 Example3.java: Simple Query

Example 8-6 shows the Example3.java file, which performs a simple query.


Example 8-6 Simple Query


import org.openrdf.model.Statement;
import org.openrdf.model.URI;
import org.openrdf.model.ValueFactory;
import info.aduna.iteration.CloseableIteration;
 
import java.io.*;
import java.sql.SQLException;
 
import oracle.spatial.rdf.client.sesame.*;
import org.openrdf.rio.RDFFormat;
import org.openrdf.sail.SailConnection;
import org.openrdf.sail.SailException;
import org.openrdf.model.vocabulary.RDFS;
import org.openrdf.repository.RepositoryConnection;
import org.openrdf.repository.sail.SailRepository;
import org.openrdf.repository.RepositoryException;
import org.openrdf.rio.RDFParseException;
import org.openrdf.model.Literal;
import org.openrdf.query.BindingSet;
import org.openrdf.query.QueryLanguage;
import org.openrdf.query.TupleQuery;
import org.openrdf.query.TupleQueryResult;
import org.openrdf.model.vocabulary.RDF;
import org.openrdf.query.QueryEvaluationException;
import org.openrdf.query.MalformedQueryException;
 
public class Example3
{
  public static void main(String[] args) throws SQLException, SailException,
    RepositoryException, IOException, RDFParseException, QueryEvaluationException,
    MalformedQueryException
  {
    PrintStream psOut = System.out;
    String jdbcUrl  = args[0];
    String user     = args[1];
    String password = args[2];
    String model    = args[3];
 
    OraclePool op = new OraclePool(
        OraclePool.getOracleDataSource(jdbcUrl, user, password));
    OracleSailStore store = new OracleSailStore(op, model);   
    SailRepository myRepository = new SailRepository(store);
 
    ValueFactory f = myRepository.getValueFactory();
    RepositoryConnection conn = myRepository.getConnection();
 
    // create some resources and literals to make statements out of
    URI alice = f.createURI("http://example.org/people/alice");
    URI name = f.createURI("http://example.org/ontology/name");
    URI person = f.createURI("http://example.org/ontology/Person");
    Literal alicesName = f.createLiteral("Alice");
 
    conn.clear(); // to start from scratch
    conn.add(alice, RDF.TYPE, person);
    conn.add(alice, name, alicesName);
    conn.commit();
 
    store.analyze();
    store.analyzeApplicationTable();
 
    try {
      //run a query against the repository
      String queryString = " SELECT * WHERE {?x ?p ?y} LIMIT 1 ";
      TupleQuery tupleQuery = conn.prepareTupleQuery(QueryLanguage.SPARQL, queryString);
      TupleQueryResult result = tupleQuery.evaluate();
      try {
        while (result.hasNext()) {
          BindingSet bindingSet = result.next();
          psOut.println("value of x: " + bindingSet.getValue("x"));
        }
      }
      finally {
        result.close();
      }
    }
    finally {  
      conn.clear();
      if (conn != null && conn.isOpen()) {
        conn.close();
      }       
 
      myRepository.shutDown();
      op.close();
    }
  }
}




To compile this example, enter the following command:


/usr/local/packages/jdk16/bin/javac -classpath $CP Example3.java


To run this example, enter a command in the following format:


/usr/local/packages/jdk16/bin/java -classpath $CP Example3 jdbc:oracle:thin:@localhost:1521:ORCL scott <password-for-scott> TestModel


The expected output of the java command might appear as follows:


value of x: http://example.org/people/alice






8.10.4 Example4.java: Simple Bulk Load

Example 8-7 shows the Example4.java file, which performs a simple bulk load operation.


Example 8-7 Simple Bulk Load


import org.openrdf.model.Statement;
import org.openrdf.model.URI;
import org.openrdf.model.ValueFactory;
import org.openrdf.model.Resource;
import info.aduna.iteration.CloseableIteration;
 
import java.io.*;
import java.sql.SQLException;
 
import oracle.spatial.rdf.client.sesame.*;
import org.openrdf.rio.RDFFormat;
import org.openrdf.sail.SailConnection;
import org.openrdf.sail.SailException;
import org.openrdf.model.vocabulary.RDFS;
import org.openrdf.repository.RepositoryConnection;
import org.openrdf.repository.sail.SailRepository;
import org.openrdf.repository.RepositoryException;
import org.openrdf.rio.RDFParseException;
import org.openrdf.model.Literal;
import org.openrdf.query.BindingSet;
import org.openrdf.query.QueryLanguage;
import org.openrdf.query.TupleQuery;
import org.openrdf.query.TupleQueryResult;
import org.openrdf.model.vocabulary.RDF;
import org.openrdf.query.QueryEvaluationException;
import org.openrdf.query.MalformedQueryException;
 
public class Example4
{
  public static void main(String[] args) throws SQLException, SailException,
    RepositoryException, IOException, RDFParseException, QueryEvaluationException,
    MalformedQueryException
  {
    PrintStream psOut = System.out;
    String jdbcUrl  = args[0];
    String user     = args[1];
    String password = args[2];
    String model    = args[3];
    String filename = args[4]; // N-TRIPLES file
 
    OraclePool op = new OraclePool(OraclePool.getOracleDataSource(jdbcUrl, user, password));
 
    psOut.println("testBulkLoad: start");
 
    OracleSailStore store = new OracleSailStore(op, model);
    OracleSailConnection osc = store.getConnection();
    FileInputStream fis = new FileInputStream(filename);
   
    long loadBegin = System.currentTimeMillis();
    osc.getBulkUpdateHandler().addInBulk(
        fis,
        "http://abc",                // baseURI
        RDFFormat.NTRIPLES,          // dataFormat
        null,                        // tablespaceName
        null,                        // flags
        null,                        // StatusListener
        (Resource[]) null            // Resource... for contexts
        );
 
    long loadEnd = System.currentTimeMillis();
    psOut.println("testBulkLoad: " + (loadEnd - loadBegin) + "ms.\n");
 
    osc.close();
    store.shutDown();
    op.close();
  }
}




To compile this example, enter the following command:


usr/local/packages/jdk16/bin/javac -classpath $CP Example4.java


For running this example, assume that a sample ntriples data file named test.ntriples was created as:


<http://example.org/bob>    <http://purl.org/dc/elements/1.1/publisher>  "Bob Hacker" .
<http://example.org/alice>  <http://purl.org/dc/elements/1.1/publisher>  "Alice Hacker" .


To run this example using the test.ntriples file, enter the following command:


/usr/local/packages/jdk16/bin/java -classpath $CP Example4 jdbc:oracle:thin:@localhost:1521:ORCL scott  <password>  TestModel ./test.ntriples


The expected output of the java command might appear as follows:


testBulkLoad: start
testBulkLoad: 756ms






8.10.5 Example5.java: Bulk Load RDF/XML and Application Table Index Maintenance

Example 8-8 shows the Example5.java file, which disables indexes on the application table, performs a bulk load operation from an RDF file in XML format, and re-enables the indexes.


Example 8-8 Bulk Load RDF/XML and Application Table Index Maintenance


import org.openrdf.model.Statement;
import org.openrdf.model.URI;
import org.openrdf.model.ValueFactory;
import org.openrdf.model.Resource;
import info.aduna.iteration.CloseableIteration;
 
import java.io.*;
import java.sql.SQLException;
 
import oracle.spatial.rdf.client.sesame.*;
import org.openrdf.rio.RDFFormat;
import org.openrdf.sail.SailConnection;
import org.openrdf.sail.SailException;
import org.openrdf.model.vocabulary.RDFS;
import org.openrdf.repository.RepositoryConnection;
import org.openrdf.repository.sail.SailRepository;
import org.openrdf.repository.RepositoryException;
import org.openrdf.rio.RDFParseException;
import org.openrdf.model.Literal;
import org.openrdf.query.BindingSet;
import org.openrdf.query.QueryLanguage;
import org.openrdf.query.TupleQuery;
import org.openrdf.query.TupleQueryResult;
import org.openrdf.model.vocabulary.RDF;
import org.openrdf.query.QueryEvaluationException;
import org.openrdf.query.MalformedQueryException;
 
public class Example5
{
  public static void main(String[] args) throws SQLException, SailException,
    RepositoryException, IOException, RDFParseException, QueryEvaluationException,
    MalformedQueryException
  {
    PrintStream psOut = System.out;
    String jdbcUrl  = args[0];
    String user     = args[1];
    String password = args[2];
    String model    = args[3];
    String filename = args[4]; // RDF/XML
 
    OraclePool op = new OraclePool(OraclePool.getOracleDataSource(jdbcUrl, user, password));
 
    psOut.println("testBulkLoad: start");
 
    OracleSailStore store = new OracleSailStore(op, model);
    OracleSailConnection osc = store.getConnection();
 
    // disable indexes on application table
    store.disableAllAppTabIndexes();
 
    // NOTE: can be a gzipped file!
    FileInputStream fis = new FileInputStream(filename);
   
    long loadBegin = System.currentTimeMillis();
    osc.getBulkUpdateHandler().addInBulk(
        fis,
        "http://abc",                // baseURI
        RDFFormat.RDFXML,            // dataFormat
        null,                        // tablespaceName
        null,                        // flags
        null,                        // StatusListener
        (Resource[]) null            // Resource... for contexts
        );
 
    long loadEnd = System.currentTimeMillis();
    psOut.println("testBulkLoad: " + (loadEnd - loadBegin) + "ms.\n");
   
    // enable indexes on application table
    // Note: one can also specify to rebuild indexes in parallel.
    store.enableAllAppTabIndexes();
 
    osc.close();
    store.shutDown();
    op.close();
  }
}




To compile this example, enter the following command:


usr/local/packages/jdk16/bin/javac -classpath $CP Example5.java


For running this example, assume that a sample file named test.rdfxml was created as:


<?xml version="1.0"?>
<!DOCTYPE owl [
     <!ENTITY owl  "http://www.w3.org/2002/07/owl#" >
     <!ENTITY xsd  "http://www.w3.org/2001/XMLSchema#" >
   ]>
 
<rdf:RDF
  xmlns     = "http://a/b#" xml:base  = "http://a/b#" xmlns:my  = "http://a/b#"
  xmlns:owl = "http://www.w3.org/2002/07/owl#"
  xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
  xmlns:rdfs= "http://www.w3.org/2000/01/rdf-schema#"
  xmlns:xsd = "http://www.w3.org/2001/XMLSchema#">
  <owl:Class rdf:ID="Color">
    <owl:oneOf rdf:parseType="Collection">
      <owl:Thing rdf:ID="Red"/>
      <owl:Thing rdf:ID="Blue"/>
    </owl:oneOf>
  </owl:Class>
</rdf:RDF>


To run this example using the test.rdfxml file, enter the following command:


/usr/local/packages/jdk16/bin/java -classpath $CP Example5 jdbc:oracle:thin:@localhost:1521:ORCL scott  <password>  EX5 ./test.rdfxml


The expected output of the java command might appear as follows:


testBulkLoad: start
testBulkLoad: 825ms






8.10.6 Example6.java: Bulk Load With StatusListener to Handle Loading with Bad Data

Example 8-9 shows the Example6.java file, which performs the bulk load and index maintenance operations shown in Example 8-7, but also registers and implements a StatusListener class to check for and report any data errors.


Example 8-9 Bulk Load With StatusListener to Handle Loading with Bad Data


import org.openrdf.model.Statement;
import org.openrdf.model.URI;
import org.openrdf.model.ValueFactory;
import org.openrdf.model.Resource;
import info.aduna.iteration.CloseableIteration;
 
import java.io.*;
import java.sql.SQLException;
 
import oracle.spatial.rdf.client.sesame.*;
import org.openrdf.rio.RDFFormat;
import org.openrdf.sail.SailConnection;
import org.openrdf.sail.SailException;
import org.openrdf.model.vocabulary.RDFS;
import org.openrdf.model.Statement;
import org.openrdf.repository.RepositoryConnection;
import org.openrdf.repository.sail.SailRepository;
import org.openrdf.repository.RepositoryException;
import org.openrdf.rio.RDFParseException;
import org.openrdf.model.Literal;
import org.openrdf.query.BindingSet;
import org.openrdf.query.QueryLanguage;
import org.openrdf.query.TupleQuery;
import org.openrdf.query.TupleQueryResult;
import org.openrdf.model.vocabulary.RDF;
import org.openrdf.query.QueryEvaluationException;
import org.openrdf.query.MalformedQueryException;
 
public class Example6
{
  public static void main(String[] args) throws SQLException, SailException,
    RepositoryException, IOException, RDFParseException, QueryEvaluationException,
    MalformedQueryException
  {
    PrintStream psOut = System.out;
    String jdbcUrl  = args[0];
    String user     = args[1];
    String password = args[2];
    String model    = args[3];
    String filename = args[4]; // RDF/XML
 
    OraclePool op = new OraclePool(OraclePool.getOracleDataSource(jdbcUrl, user, password));
 
    psOut.println("testBulkLoad: start");
 
    OracleSailStore store = new OracleSailStore(op, model);
    OracleSailConnection osc = store.getConnection();
 
    // disable indexes on application table
    store.disableAllAppTabIndexes();
 
    // NOTE: can be a gzipped file!
    FileInputStream fis = new FileInputStream(filename);
   
    long loadBegin = System.currentTimeMillis();
    osc.getBulkUpdateHandler().addInBulk(
        fis,
        "http://abc",                // baseURI
        RDFFormat.NTRIPLES,          // dataFormat
        null,                        // tablespaceName
        null,                        // flags
        new MyListener(psOut),       // register a StatusListener
        (Resource[]) null            // Resource... for contexts
        );
 
    long loadEnd = System.currentTimeMillis();
    psOut.println("testBulkLoad: " + (loadEnd - loadBegin) + "ms.\n");
   
    // enable indexes on application table
    // Note: one can also specify to rebuild indexes in parallel.
    store.enableAllAppTabIndexes();
 
    osc.close();
    store.shutDown();
    op.close();
  }

  static class MyListener implements StatusListener {
    PrintStream m_ps = null;
    public MyListener(PrintStream ps) { m_ps = ps; }
 
    public void statusChanged(long count)
    {
      m_ps.println("process to " + Long.toString(count));
    }
 
    public int illegalStmtEncountered(Statement statement, long count)
    {
      m_ps.println("hit illegal statement with object " + statement.getObject().toString());
      return 0; // skip it
    }
  }
}




To compile this example, enter the following command:


usr/local/packages/jdk16/bin/javac -classpath $CP Example6.java


For running this example, assume that a sample N-TRIPLES file named test-include-badtriple.ntriples was created as follows. In this file, the first and last triples have illegal typed literal values for objects.


<http://example.org/x>      <http://my.com/#age> "123.3456"^^<http://www.w3.org/2001/XMLSchema#integer> .
<http://example.org/bob>    <http://purl.org/dc/elements/1.1/publisher>  "Bob Hacker" .
<http://example.org/alice>  <http://purl.org/dc/elements/1.1/publisher>  "Alice Hacker" .
<http://example.org/y>      <http://my.com/#age> "hello"^^<http://www.w3.org/2001/XMLSchema#float> .


To run this example using the test-include-badtriple.ntriples file, enter a command in the following format:


/usr/local/packages/jdk16/bin/java -classpath $CP Example6 jdbc:oracle:thin:@localhost:1521:ORCL scott  <password>  EX6 ./test-include-badtriple.ntriples


The expected output of the java command might appear as follows:


testBulkLoad: start
hit illegal statement with object "123.3456"^^<http://www.w3.org/2001/XMLSchema#integer>
process to 2
process to 3
hit illegal statement with object "hello"^^<http://www.w3.org/2001/XMLSchema#float>
testBulkLoad: 725ms.






8.10.7 Example7.java: Load Data from Sesame Store into Oracle Database

Example 8-10 shows the Example7.java file, disables indexes on the application table, loads an RDF file in XML format into an in-memory Sesame store, loads the data into the Oracle database, and re-enables the indexes.


Example 8-10 Load Data from Sesame Store into Oracle Database


import org.openrdf.model.Statement;
import org.openrdf.model.URI;
import org.openrdf.model.ValueFactory;
import org.openrdf.model.Resource;
import info.aduna.iteration.CloseableIteration;
 
import java.io.*;
import java.sql.SQLException;
 
import oracle.spatial.rdf.client.sesame.*;
import org.openrdf.rio.RDFFormat;
import org.openrdf.sail.SailConnection;
import org.openrdf.sail.SailException;
import org.openrdf.sail.memory.MemoryStore;
import org.openrdf.model.vocabulary.RDFS;
import org.openrdf.model.Statement;
import org.openrdf.repository.RepositoryConnection;
import org.openrdf.repository.sail.SailRepository;
import org.openrdf.repository.RepositoryException;
import org.openrdf.rio.RDFParseException;
import org.openrdf.model.Literal;
import org.openrdf.query.BindingSet;
import org.openrdf.query.QueryLanguage;
import org.openrdf.query.TupleQuery;
import org.openrdf.query.TupleQueryResult;
import org.openrdf.model.vocabulary.RDF;
import org.openrdf.query.QueryEvaluationException;
import org.openrdf.query.MalformedQueryException;
 
public class Example7
{
  public static void main(String[] args) throws SQLException, SailException,
    RepositoryException, IOException, RDFParseException, QueryEvaluationException,
    MalformedQueryException
  {
    PrintStream psOut = System.out;
    String jdbcUrl  = args[0];
    String user     = args[1];
    String password = args[2];
    String model    = args[3];
    String filename = args[4]; // RDF/XML
 
    OraclePool op = new OraclePool(OraclePool.getOracleDataSource(jdbcUrl, user, password));
 
    psOut.println("testBulkLoad: start");
 
    SailRepository srInMem = null;
    RepositoryConnection repConnInMem = null;
    { // build an in memory Sesame store for testing purpose
      srInMem = new SailRepository(new MemoryStore());
      srInMem.initialize();
      repConnInMem = srInMem.getConnection();
      File file = new File(filename);
      repConnInMem.setAutoCommit(false);
      repConnInMem.add(file, "http://my.com", RDFFormat.RDFXML);
      repConnInMem.commit();
    }
 
    OracleSailStore store = new OracleSailStore(op, model);
    OracleSailConnection osc = store.getConnection();
 
    // disable indexes on application table
    store.disableAllAppTabIndexes();
 
    long loadBegin = System.currentTimeMillis();
    // load all statements from in memory store to Oracle
    osc.getBulkUpdateHandler().addInBulk(
        repConnInMem.getStatements(null, null, null, false),
        null                       // tablespaceName
        );
 
    long loadEnd = System.currentTimeMillis();
    psOut.println("testBulkLoad: " + (loadEnd - loadBegin) + "ms.\n");
   
    // enable indexes on application table
    // Note: one can also specify to rebuild indexes in parallel.
    store.enableAllAppTabIndexes();
 
    repConnInMem.close();
    srInMem.shutDown();
 
    osc.close();
    store.shutDown();
    op.close();
  }
}




To compile this example, enter the following command:


usr/local/packages/jdk16/bin/javac -classpath $CP Example7.java


For running this example, assume that a file (to be loaded into memory) with the same format and content as the file described in Section 8.10.5, "Example5.java: Bulk Load RDF/XML and Application Table Index Maintenance" has been created.

To run this example, enter a command in the following format:


/usr/local/packages/jdk16/bin/java -classpath $CP Example7 jdbc:oracle:thin:@localhost:1521:ORCL scott  <password>  EX7 ./test.rdfxml


The expected output of the java command might appear as follows:


testBulkLoad: start
testBulkLoad: 720ms






8.10.8 Example8.java: SPARQL ASK Query

Example 8-11 shows the Example8.java file, which performs a SPARQL ASK query.


Example 8-11 SPARQL ASK Query


import org.openrdf.model.Statement;
import org.openrdf.model.URI;
import org.openrdf.model.ValueFactory;
import info.aduna.iteration.CloseableIteration;
 
import java.io.*;
import java.sql.SQLException;
 
import oracle.spatial.rdf.client.sesame.*;
import org.openrdf.rio.RDFFormat;
import org.openrdf.sail.SailConnection;
import org.openrdf.sail.SailException;
import org.openrdf.model.vocabulary.RDFS;
import org.openrdf.repository.RepositoryConnection;
import org.openrdf.repository.sail.SailRepository;
import org.openrdf.repository.RepositoryException;
import org.openrdf.rio.RDFParseException;
import org.openrdf.model.Literal;
import org.openrdf.query.BindingSet;
import org.openrdf.query.QueryLanguage;
import org.openrdf.query.BooleanQuery;
import org.openrdf.query.TupleQuery;
import org.openrdf.query.TupleQueryResult;
import org.openrdf.model.vocabulary.RDF;
import org.openrdf.query.QueryEvaluationException;
import org.openrdf.query.MalformedQueryException;
 
public class Example8
{
  public static void main(String[] args) throws SQLException, SailException,
    RepositoryException, IOException, RDFParseException, QueryEvaluationException,
    MalformedQueryException
  {
    PrintStream psOut = System.out;
    String jdbcUrl  = args[0];
    String user     = args[1];
    String password = args[2];
    String model    = args[3];
 
    OraclePool op = new OraclePool(
        OraclePool.getOracleDataSource(jdbcUrl, user, password));
    OracleSailStore store = new OracleSailStore(op, model);
 
    SailRepository sr = new SailRepository(store);
    RepositoryConnection repConn = sr.getConnection();
 
    ValueFactory vf = sr.getValueFactory();
    URI p   = vf.createURI("http://p");   
    URI cls = vf.createURI("http://cls");    
 
    repConn.clear();
    repConn.add(p, RDFS.DOMAIN, cls);
    repConn.commit();
 
    store.analyze();                 // analyze the semantic model
    store.analyzeApplicationTable(); // and then the application table
 
    BooleanQuery tq = null;
    tq = repConn.prepareBooleanQuery(QueryLanguage.SPARQL, "ASK { ?x ?p <http://cls> }" );
    boolean b = tq.evaluate();
    psOut.print("\nAnswer is " + Boolean.toString(b));
 
    repConn.close(); 
    sr.shutDown();
    op.close();
  }
}




To compile this example, enter the following command:


usr/local/packages/jdk16/bin/javac -classpath $CP Example8.java


To run this example, enter a command in the following format:


/usr/local/packages/jdk16/bin/java -classpath $CP Example4 jdbc:oracle:thin:@localhost:1521:ORCL scott  <password>  EX8


The expected output of the java command might appear as follows:


Answer is true






8.10.9 Example9.java: SPARQL CONSTRUCT and DESCRIBE

Example 8-12 shows the Example9.java file, which performs SPARQL CONSTRUCT and DESCRIBE queries.


Example 8-12 SPARQL CONSTRUCT and DESCRIBE


import org.openrdf.model.Statement;
import org.openrdf.model.URI;
import org.openrdf.model.ValueFactory;
import info.aduna.iteration.CloseableIteration;
 
import java.io.*;
import java.sql.SQLException;
 
import oracle.spatial.rdf.client.sesame.*;
import org.openrdf.rio.RDFFormat;
import org.openrdf.sail.SailConnection;
import org.openrdf.sail.SailException;
import org.openrdf.model.vocabulary.RDFS;
import org.openrdf.repository.RepositoryConnection;
import org.openrdf.repository.sail.SailRepository;
import org.openrdf.repository.RepositoryException;
import org.openrdf.rio.RDFParseException;
import org.openrdf.model.Literal;
import org.openrdf.query.BindingSet;
import org.openrdf.query.QueryLanguage;
import org.openrdf.query.BooleanQuery;
import org.openrdf.query.TupleQuery;
import org.openrdf.query.GraphQuery;
import org.openrdf.query.GraphQueryResult;
import org.openrdf.query.TupleQueryResult;
import org.openrdf.model.vocabulary.RDF;
import org.openrdf.query.QueryEvaluationException;
import org.openrdf.query.MalformedQueryException;
 
public class Example9
{
  public static void main(String[] args) throws SQLException, SailException,
    RepositoryException, IOException, RDFParseException, QueryEvaluationException,
    MalformedQueryException
  {
    PrintStream psOut = System.out;
    String jdbcUrl  = args[0];
    String user     = args[1];
    String password = args[2];
    String model    = args[3];
 
    OraclePool op = new OraclePool(
        OraclePool.getOracleDataSource(jdbcUrl, user, password));
    OracleSailStore store = new OracleSailStore(op, model);
 
    SailRepository sr = new SailRepository(store);
    RepositoryConnection repConn = sr.getConnection();
 
    ValueFactory vf = sr.getValueFactory();
    URI p   = vf.createURI("http://p");   
    URI cls = vf.createURI("http://cls");    
 
    repConn.clear();
    repConn.add(p, RDFS.DOMAIN, cls);
    repConn.commit();
 
    store.analyze();                 // analyze the semantic model
    store.analyzeApplicationTable(); // and then the application table
 
    GraphQuery tq = null;
    tq = repConn.prepareGraphQuery(QueryLanguage.SPARQL,
        "CONSTRUCT {?x <http://new_eq_p> ?o } WHERE { ?x ?p ?o }" );
    {
      psOut.println("Start construct query");
      GraphQueryResult result = tq.evaluate();
      while (result.hasNext()) {
        Statement stmt = (Statement) result.next();
        psOut.println(stmt.toString());
        // do something interesting with the values here...
      }
      result.close();
    }
 
    tq = repConn.prepareGraphQuery(QueryLanguage.SPARQL,
        "DESCRIBE <http://p> ");
    {
      psOut.println("Start describe query");
      GraphQueryResult result = tq.evaluate();
      while (result.hasNext()) {
        Statement stmt = (Statement) result.next();
        psOut.println(stmt.toString());
        // do something interesting with the values here...
      }
      result.close();
    }
 
    repConn.close(); 
    sr.shutDown();
    op.close();
  }
}




To compile this example, enter the following command:


usr/local/packages/jdk16/bin/javac -classpath $CP Example9.java


To run this example, enter a command in the following format:


/usr/local/packages/jdk16/bin/java -classpath $CP Example9 jdbc:oracle:thin:@localhost:1521:ORCL scott <password> EX9


The expected output of the java command might appear as follows:


Start construct query
(http://p, http://new_eq_p, http://cls)
Start describe query
(http://p, http://www.w3.org/2000/01/rdf-schema#domain, http://cls)






8.10.10 Example10.java: Inference

Example 8-13 shows the Example10.java file, which performs OWLPrime inference using the incremental (INC) and degree of parallelism (DOP) options.


Example 8-13 Inference


import org.openrdf.model.Statement;
import org.openrdf.model.URI;
import org.openrdf.model.ValueFactory;
import info.aduna.iteration.CloseableIteration;
 
import java.io.*;
import java.sql.SQLException;
 
import oracle.spatial.rdf.client.sesame.*;
import org.openrdf.rio.RDFFormat;
import org.openrdf.sail.SailConnection;
import org.openrdf.sail.SailException;
import org.openrdf.model.vocabulary.RDFS;
import org.openrdf.repository.RepositoryConnection;
import org.openrdf.repository.sail.SailRepository;
import org.openrdf.repository.RepositoryException;
import org.openrdf.rio.RDFParseException;
import org.openrdf.model.Literal;
import org.openrdf.query.BindingSet;
import org.openrdf.query.QueryLanguage;
import org.openrdf.query.BooleanQuery;
import org.openrdf.query.TupleQuery;
import org.openrdf.query.GraphQuery;
import org.openrdf.query.GraphQueryResult;
import org.openrdf.query.TupleQueryResult;
import org.openrdf.model.vocabulary.RDF;
import org.openrdf.query.QueryEvaluationException;
import org.openrdf.query.MalformedQueryException;
 
public class Example10
{
  public static void main(String[] args) throws SQLException, SailException,
    RepositoryException, IOException, RDFParseException, QueryEvaluationException,
    MalformedQueryException
  {
    PrintStream psOut = System.out;
    String jdbcUrl  = args[0];
    String user     = args[1];
    String password = args[2];
    String model    = args[3];
 
    OraclePool op = new OraclePool(
        OraclePool.getOracleDataSource(jdbcUrl, user, password));
    String[] rulebaseNames = new String[1];
    rulebaseNames[0] = "owlprime";
 
    Attachment attachment = Attachment.createInstance(
        Attachment.NO_ADDITIONAL_MODELS, rulebaseNames,
        InferenceMaintenanceMode.NO_UPDATE,
        QueryOptions.DEFAULT);
 
    OracleSailStore store = new OracleSailStore(op, model, attachment);   
    OracleSailConnection osc = store.getConnection();
 
    ValueFactory vf = osc.getValueFactory();
 
    URI sub, pred, obj;
    {
      sub = vf.createURI("http://C1");
      pred = vf.createURI("http://www.w3.org/2000/01/rdf-schema#subClassOf");
      obj  = vf.createURI("http://C2");
      osc.addStatement(sub, pred, obj);
 
      sub = vf.createURI("http://C2");
      pred = vf.createURI("http://www.w3.org/2000/01/rdf-schema#subClassOf");
      obj  = vf.createURI("http://C3");
      osc.addStatement(sub, pred, obj);
    }
 
    osc.commit();
    osc.analyze();                 // analyze the semantic model
    osc.analyzeApplicationTable(); // and then the application table
 
    // parallel inference is certainly an overkill for this ontology
    osc.setInferenceOption("INC=T,DOP=4,RAW8=T");
    osc.performInference();
    osc.analyzeInferredGraph();
 
    TupleQuery tq = null;
    RepositoryConnection repConn = osc.asRepositoryConnection();
    tq = repConn.prepareTupleQuery(QueryLanguage.SPARQL,
        "SELECT ?s ?p ?o WHERE {?s ?p ?o } ");
    {
      TupleQueryResult result = tq.evaluate();
      int idx = 0;
      try {
        psOut.print("\nStart printing solution\n");
        while (result.hasNext()) {
          idx++;
          BindingSet bindingSet = result.next();
        }
      }
      finally {
        psOut.println("\ntotal # of solution " + Integer.toString(idx));
        result.close();
      }
    }
 
 
    {
      sub  = vf.createURI("http://C3");
      pred = vf.createURI("http://www.w3.org/2000/01/rdf-schema#subClassOf");
      obj  = vf.createURI("http://C4");
      osc.addStatement(sub, pred, obj);
    }
 
    // make a small change and then perform inference again
    osc.commit();
    osc.analyze();                 // analyze the semantic model
    osc.analyzeApplicationTable(); // and then the application table
    osc.performInference();
    osc.analyzeInferredGraph();
 
    {
      TupleQueryResult result = tq.evaluate();
      int idx = 0;
      try {
        psOut.print("\nStart printing solution\n");
        while (result.hasNext()) {
          idx++;
          BindingSet bindingSet = result.next();
        }
      }
      finally {
        psOut.println("\ntotal # of solution " + Integer.toString(idx));
        result.close();
      }
    }
 
    osc.close();
    store.shutDown();
    op.close();
  }
}




To compile this example, enter the following command:


usr/local/packages/jdk16/bin/javac -classpath $CP Example10.java


To run this example, enter a command in the following format:


/usr/local/packages/jdk16/bin/java -classpath $CP Example10 jdbc:oracle:thin:@localhost:1521:ORCL scott <password> EX10


The expected output of the java command might appear as follows:


Start printing solution
 
total # of solution 3
 
Start printing solution
 
total # of solution 6






8.10.11 Example11.java: Named Graph Query

Example 8-14 shows the Example9.java file, which performs a named graph query.


Example 8-14 Named Graph Query


import org.openrdf.model.Statement;
import org.openrdf.model.URI;
import org.openrdf.model.ValueFactory;
import info.aduna.iteration.CloseableIteration;
 
import java.io.*;
import java.sql.SQLException;
 
import oracle.spatial.rdf.client.sesame.*;
import org.openrdf.rio.RDFFormat;
import org.openrdf.sail.SailConnection;
import org.openrdf.sail.SailException;
import org.openrdf.model.vocabulary.RDFS;
import org.openrdf.repository.RepositoryConnection;
import org.openrdf.repository.sail.SailRepository;
import org.openrdf.repository.RepositoryException;
import org.openrdf.rio.RDFParseException;
import org.openrdf.model.Literal;
import org.openrdf.query.BindingSet;
import org.openrdf.query.QueryLanguage;
import org.openrdf.query.BooleanQuery;
import org.openrdf.query.TupleQuery;
import org.openrdf.query.GraphQuery;
import org.openrdf.query.GraphQueryResult;
import org.openrdf.query.TupleQueryResult;
import org.openrdf.model.vocabulary.RDF;
import org.openrdf.query.QueryEvaluationException;
import org.openrdf.query.MalformedQueryException;
 
public class Example11
{
  public static void main(String[] args) throws SQLException, SailException,
    RepositoryException, IOException, RDFParseException, QueryEvaluationException,
    MalformedQueryException
  {
    PrintStream psOut = System.out;
    String jdbcUrl  = args[0];
    String user     = args[1];
    String password = args[2];
    String model    = args[3];
    String trigFile = args[4];
 
    OraclePool op = new OraclePool(
        OraclePool.getOracleDataSource(jdbcUrl, user, password));
 
    OracleSailStore store = new OracleSailStore(op, model);
    OracleSailConnection osc = store.getConnection();
    RepositoryConnection repConn = osc.asRepositoryConnection();
    repConn.setAutoCommit(false);
 
    // load the data incrementally since it is very small file
    repConn.add(new File(trigFile), "http://my.com/", RDFFormat.TRIG);
 
    osc.commit();
    osc.analyze();                 // analyze the semantic model
    osc.analyzeApplicationTable(); // and then the application table
 
    TupleQuery tq = null;
    tq = repConn.prepareTupleQuery(QueryLanguage.SPARQL,
        "SELECT ?g ?s ?p ?o WHERE {?g <http://purl.org/dc/elements/1.1/publisher> ?o1 . GRAPH ?g {?s ?p ?o}}");
    {
      TupleQueryResult result = tq.evaluate();
      int idx = 0;
      try {
        while (result.hasNext()) {
          idx++;
          BindingSet bindingSet = result.next();
          psOut.print("\nsolution " + bindingSet.toString());
        }
      }
      finally {
        psOut.println("\ntotal # of solution " + Integer.toString(idx));
        result.close();
      }
    }
 
    osc.close();
    store.shutDown();
    op.close();
  }
}




To compile this example, enter the following command:


usr/local/packages/jdk16/bin/javac -classpath $CP Example9.java


For running this example, assume that the test.trig file described in Section 8.10.2, "Example2.java: Add a Data File (in TRIG format)" has been created.

To run this example using the test.trig data file, enter the following command:


/usr/local/packages/jdk16/bin/java -classpath $CP Example11 jdbc:oracle:thin:@localhost:1521:ORCL scott  <password>  EX11 ./test.trig


The expected output of the java command might appear as follows:


solution [g=http://example.org/alice;s=_:node14r2238h1x1;p=http://xmlns.com/foaf/0.1/mbox;o=mailto:alice@work.example.org]
solution [g=http://example.org/alice;s=_:node14r2238h1x1;p=http://xmlns.com/foaf/0.1/name;o="Alice"]
solution [g=http://example.org/bob;s=_:node14r2238h1x1;p=http://xmlns.com/foaf/0.1/mbox;o=mailto:bob@oldcorp.example.org]
total # of solution 3






8.10.12 Example12.java: Indexes on Application Table [Advanced]

Example 8-15 shows the Example12.java file, an advanced example that creates indexes on the application table.


Example 8-15 Indexes on Application Table [Advanced]


import org.openrdf.model.Statement;
import org.openrdf.model.URI;
import org.openrdf.model.ValueFactory;
import info.aduna.iteration.CloseableIteration;
 
import java.io.*;
import java.sql.SQLException;
 
import oracle.spatial.rdf.client.sesame.*;
import org.openrdf.rio.RDFFormat;
import org.openrdf.sail.SailConnection;
import org.openrdf.sail.SailException;
import org.openrdf.model.vocabulary.RDFS;
import org.openrdf.repository.RepositoryConnection;
import org.openrdf.repository.sail.SailRepository;
import org.openrdf.repository.RepositoryException;
import org.openrdf.rio.RDFParseException;
import org.openrdf.model.Literal;
import org.openrdf.query.BindingSet;
import org.openrdf.query.QueryLanguage;
import org.openrdf.query.BooleanQuery;
import org.openrdf.query.TupleQuery;
import org.openrdf.query.GraphQuery;
import org.openrdf.query.GraphQueryResult;
import org.openrdf.query.TupleQueryResult;
import org.openrdf.model.vocabulary.RDF;
import org.openrdf.query.QueryEvaluationException;
import org.openrdf.query.MalformedQueryException;
 
public class Example12
{
  public static void main(String[] args) throws SQLException, SailException,
    RepositoryException, IOException, RDFParseException, QueryEvaluationException,
    MalformedQueryException
  {
    PrintStream psOut = System.out;
    String jdbcUrl  = args[0];
    String user     = args[1];
    String password = args[2];
    String model    = args[3];
 
    OraclePool op = new OraclePool(
        OraclePool.getOracleDataSource(jdbcUrl, user, password));
 
    OracleSailStore store = new OracleSailStore(op, model);
 
    // create an index with compress 2, parallel 4
    store.createAppTabIndex("spoc", 2, 4);
 
    // create another index w/o parallel or compression
    store.createAppTabIndex("cspo", 0, 1);
 
    // will print out the default index (cpso) as well
    psOut.println("index signatures before dropping indexes:");
    for (String sig : store.getAppTabIndexSignatures()) {
      psOut.println("index signature:" + sig);     
    }
 
    store.dropAllAppTabIndexes();
    psOut.println("index signatures after dropping indexes...");
    for (String sig : store.getAppTabIndexSignatures()) {
      psOut.println("index signature:" + sig);     
    }
 
    store.shutDown();
 
    // clean up oracle tables and models
    OracleUtils.dropSemanticModelAndTables(op, model);
 
    store.shutDown();
    op.close();
  }
}




To compile this example, enter the following command:


usr/local/packages/jdk16/bin/javac -classpath $CP Example12.java


To run this example, enter a command in the following format:


/usr/local/packages/jdk16/bin/java -classpath $CP Example12 jdbc:oracle:thin:@localhost:1521:ORCL scott <password> EX12


The expected output of the java command might appear as follows:


index signatures before dropping indexes:
index signature:spoc
index signature:cpso
index signature:cspo
index signatures after dropping indexes...






8.10.13 Example13.java: Uniqueness Constraint on Application Table [Advanced]

Example 8-16 shows the Example13.java file, an advanced example that enables and disables the uniqueness constraint on the application table.


Example 8-16 Uniqueness Constraint on Application Table [Advanced]


import org.openrdf.model.Statement;
import org.openrdf.model.URI;
import org.openrdf.model.ValueFactory;
import info.aduna.iteration.CloseableIteration;
 
import java.io.*;
import java.sql.SQLException;
 
import oracle.spatial.rdf.client.sesame.*;
import org.openrdf.rio.RDFFormat;
import org.openrdf.sail.SailConnection;
import org.openrdf.sail.SailException;
import org.openrdf.model.vocabulary.RDFS;
import org.openrdf.repository.RepositoryConnection;
import org.openrdf.repository.sail.SailRepository;
import org.openrdf.repository.RepositoryException;
import org.openrdf.rio.RDFParseException;
import org.openrdf.model.Literal;
import org.openrdf.query.BindingSet;
import org.openrdf.query.QueryLanguage;
import org.openrdf.query.BooleanQuery;
import org.openrdf.query.TupleQuery;
import org.openrdf.query.GraphQuery;
import org.openrdf.query.GraphQueryResult;
import org.openrdf.query.TupleQueryResult;
import org.openrdf.model.vocabulary.RDF;
import org.openrdf.query.QueryEvaluationException;
import org.openrdf.query.MalformedQueryException;
 
public class Example13
{
  public static void main(String[] args) throws SQLException, SailException,
    RepositoryException, IOException, RDFParseException, QueryEvaluationException,
    MalformedQueryException
  {
    PrintStream psOut = System.out;
    String jdbcUrl  = args[0];
    String user     = args[1];
    String password = args[2];
    String model    = args[3];
 
    OraclePool op = new OraclePool(
        OraclePool.getOracleDataSource(jdbcUrl, user, password));
 
    OracleSailStore store = new OracleSailStore(op, model);
    store.enableUniquenessConstraint();    ValueFactory f = store.getValueFactory();
 
    OracleSailConnection osc = store.getConnection();
 
    // create some resources and literals to make statements out of
    URI alice = f.createURI("http://example.org/people/alice");
    URI name = f.createURI("http://example.org/ontology/name");
    URI person = f.createURI("http://example.org/ontology/Person");   
 
    osc.addStatement(alice, name, person);
    osc.addStatement(alice, name, person);
    psOut.println("size of store after adding duplicate triple with uniqueness ON :" + osc.size());
 
    osc.clear();       
    store.disableUniquenessConstraint();    osc.addStatement(alice, name, person);
    osc.addStatement(alice, name, person);
    psOut.println("size of store after adding duplicate triple with uniqueness OFF:" + osc.size());
 
    osc.close();
 
    store.shutDown();
    op.close();
  }
}




To compile this example, enter the following command:


usr/local/packages/jdk16/bin/javac -classpath $CP Example13.java


To run this example, enter a command in the following format:


/usr/local/packages/jdk16/bin/java -classpath $CP Example13 jdbc:oracle:thin:@localhost:1521:ORCL scott <password> EX13


The expected output of the java command might appear as follows:


size of store after adding duplicate triple with uniqueness ON :1
size of store after adding duplicate triple with uniqueness OFF:2






8.10.14 Example14.java: Query Timeout and Parallel Execution [Advanced]

Example 8-17 shows the Example14.java file, an advanced example that specifies a query timeout and parallel execution (TIMEOUT and DOP options).


Example 8-17 Query Timeout and Parallel Execution [Advanced]


import org.openrdf.model.Statement;
import org.openrdf.model.URI;
import org.openrdf.model.ValueFactory;
import info.aduna.iteration.CloseableIteration;
 
import java.io.*;
import java.sql.SQLException;
 
import oracle.spatial.rdf.client.sesame.*;
import org.openrdf.rio.RDFFormat;
import org.openrdf.sail.SailConnection;
import org.openrdf.sail.SailException;
import org.openrdf.model.vocabulary.RDFS;
import org.openrdf.repository.RepositoryConnection;
import org.openrdf.repository.sail.SailRepository;
import org.openrdf.repository.RepositoryException;
import org.openrdf.rio.RDFParseException;
import org.openrdf.model.Literal;
import org.openrdf.query.BindingSet;
import org.openrdf.query.QueryLanguage;
import org.openrdf.query.TupleQuery;
import org.openrdf.query.TupleQueryResult;
import org.openrdf.model.vocabulary.RDF;
import org.openrdf.query.QueryEvaluationException;
import org.openrdf.query.MalformedQueryException;
 
public class Example14
{
  public static void main(String[] args) throws SQLException, SailException,
    RepositoryException, IOException, RDFParseException, QueryEvaluationException,
    MalformedQueryException
  {
    PrintStream psOut = System.out;
    String jdbcUrl  = args[0];
    String user     = args[1];
    String password = args[2];
    String model    = args[3];
 
    OraclePool op = new OraclePool(
        OraclePool.getOracleDataSource(jdbcUrl, user, password));
    OracleSailStore store = new OracleSailStore(op, model);   
 
    OracleSailConnection osc = store.getConnection();
    ValueFactory f = osc.getValueFactory();
 
    // create some resources and literals to make statements out of
    URI alice = f.createURI("http://example.org/people/alice");
    URI name = f.createURI("http://example.org/ontology/name");
    URI person = f.createURI("http://example.org/ontology/Person");
    Literal alicesName = f.createLiteral("Alice");
 
    osc.addStatement(alice, RDF.TYPE, person);
    osc.addStatement(alice, name, alicesName);
    osc.commit();
 
    osc.analyze();
    osc.analyzeApplicationTable();
 
    // Run a query while specifying parallel execution (through DOP=2)
    // and max query execution time (through tmieout=3)
    String queryString =
      " PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#dop=2,timeout=3> " +
      " SELECT * WHERE {?x ?p ?y} ";
 
    TupleQuery tupleQuery = osc.asRepositoryConnection().prepareTupleQuery(
        QueryLanguage.SPARQL, queryString);
 
    TupleQueryResult result = tupleQuery.evaluate();
    try {
      while (result.hasNext()) {
        BindingSet bindingSet = result.next();
        psOut.println("value of x: " + bindingSet.getValue("x"));
      }
    }
    finally {
      result.close();
    }
 
    osc.close();
    store.shutDown();
    op.close();
  }
}




To compile this example, enter the following command:


usr/local/packages/jdk16/bin/javac -classpath $CP Example14.java


To run this example, enter a command in the following format:


/usr/local/packages/jdk16/bin/java -classpath $CP Example14 jdbc:oracle:thin:@localhost:1521:ORCL scott <password> EX14


The expected output of the java command might appear as follows:


value of x: http://example.org/people/alice
value of x: http://example.org/people/alice






8.10.15 Example15.java: Get COUNT of Matches [Advanced]

Example 8-18 shows the Example15.java file, an advanced example that returns the total number (COUNT) of matches (and only of matches).


Example 8-18 Get COUNT of Matches [Advanced]


import org.openrdf.model.Statement;
import org.openrdf.model.URI;
import org.openrdf.model.ValueFactory;
import info.aduna.iteration.CloseableIteration;
 
import java.io.*;
import java.sql.SQLException;
 
import oracle.spatial.rdf.client.sesame.*;
import org.openrdf.rio.RDFFormat;
import org.openrdf.sail.SailConnection;
import org.openrdf.sail.SailException;
import org.openrdf.model.vocabulary.RDFS;
import org.openrdf.repository.RepositoryConnection;
import org.openrdf.repository.sail.SailRepository;
import org.openrdf.repository.RepositoryException;
import org.openrdf.rio.RDFParseException;
import org.openrdf.model.Literal;
import org.openrdf.query.BindingSet;
import org.openrdf.query.QueryLanguage;
import org.openrdf.query.TupleQuery;
import org.openrdf.query.TupleQueryResult;
import org.openrdf.model.vocabulary.RDF;
import org.openrdf.query.QueryEvaluationException;
import org.openrdf.query.MalformedQueryException;
 
public class Example15
{
  public static void main(String[] args) throws SQLException, SailException,
    RepositoryException, IOException, RDFParseException, QueryEvaluationException,
    MalformedQueryException
  {
    PrintStream psOut = System.out;
    String jdbcUrl  = args[0];
    String user     = args[1];
    String password = args[2];
    String model    = args[3];
 
    OraclePool op = new OraclePool(
        OraclePool.getOracleDataSource(jdbcUrl, user, password));
    OracleSailStore store = new OracleSailStore(op, model);   
 
    OracleSailConnection osc = store.getConnection();
    ValueFactory f = osc.getValueFactory();
 
    // create some resources and literals to make statements out of
    URI alice = f.createURI("http://example.org/people/alice");
    URI name = f.createURI("http://example.org/ontology/name");
    URI person = f.createURI("http://example.org/ontology/Person");
    Literal alicesName = f.createLiteral("Alice");
 
    osc.addStatement(alice, RDF.TYPE, person);
    osc.addStatement(alice, name, alicesName);
    osc.commit();
 
    osc.analyze();
    osc.analyzeApplicationTable();
 
    // Run a query and only return the number of matches (the count!)
    String queryString =
      " PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#count_only> " +
      " SELECT ?totalCount WHERE {?s ?p ?y} ";
 
    TupleQuery tupleQuery = osc.asRepositoryConnection().prepareTupleQuery(
        QueryLanguage.SPARQL, queryString);
 
    TupleQueryResult result = tupleQuery.evaluate();
    try {
      if (result.hasNext()) {
        BindingSet bindingSet = result.next();
        psOut.println("number of matches: " + bindingSet.getValue("totalCount"));
      }
    }
    finally {
      result.close();
    }
 
    osc.close();
    store.shutDown();
    op.close();
  }
}




To compile this example, enter the following command:


usr/local/packages/jdk16/bin/javac -classpath $CP Example15.java


To run this example, enter a command in the following format:


/usr/local/packages/jdk16/bin/java -classpath $CP Example15 jdbc:oracle:thin:@localhost:1521:ORCL scott <password> EX15


The expected output of the java command might appear as follows:


number of matches: "2"^^<http://www.w3.org/2001/XMLSchema#integer>






8.10.16 Example16.java: Specify Bind Variable for Constant in Query Pattern [Advanced]

Example 8-19 shows the Example16.java file, an advanced example that specifies a bind variable for a constant in the SPARQL query pattern.


Example 8-19 Specify Bind Variable for Constant in Query Pattern [Advanced]


import org.openrdf.model.Statement;
import org.openrdf.model.URI;
import org.openrdf.model.ValueFactory;
import info.aduna.iteration.CloseableIteration;
 
import java.io.*;
import java.sql.SQLException;
 
import oracle.spatial.rdf.client.sesame.*;
import org.openrdf.rio.RDFFormat;
import org.openrdf.sail.SailConnection;
import org.openrdf.sail.SailException;
import org.openrdf.model.vocabulary.RDFS;
import org.openrdf.repository.RepositoryConnection;
import org.openrdf.repository.sail.SailRepository;
import org.openrdf.repository.RepositoryException;
import org.openrdf.rio.RDFParseException;
import org.openrdf.model.Literal;
import org.openrdf.query.BindingSet;
import org.openrdf.query.QueryLanguage;
import org.openrdf.query.TupleQuery;
import org.openrdf.query.TupleQueryResult;
import org.openrdf.model.vocabulary.RDF;
import org.openrdf.query.QueryEvaluationException;
import org.openrdf.query.MalformedQueryException;
 
public class Example16
{
  public static void main(String[] args) throws SQLException, SailException,
    RepositoryException, IOException, RDFParseException, QueryEvaluationException,
    MalformedQueryException
  {
    PrintStream psOut = System.out;
    String jdbcUrl  = args[0];
    String user     = args[1];
    String password = args[2];
    String model    = args[3];
 
    OraclePool op = new OraclePool(
        OraclePool.getOracleDataSource(jdbcUrl, user, password));
    OracleSailStore store = new OracleSailStore(op, model);   
 
    OracleSailConnection osc = store.getConnection();
    ValueFactory f = osc.getValueFactory();
 
    // create some resources and literals to make statements out of
    URI alice = f.createURI("http://example.org/people/alice");
    URI name = f.createURI("http://example.org/ontology/name");
    URI person = f.createURI("http://example.org/ontology/Person");
    Literal alicesName = f.createLiteral("Alice");
 
    osc.addStatement(alice, RDF.TYPE, person);
    osc.addStatement(alice, name, alicesName);
    osc.commit();
 
    osc.analyze();
    osc.analyzeApplicationTable();
 
    String queryString =
      " PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#use_bind_var(1)> " +
      " SELECT ?p WHERE { <http://example.org/people/alice> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?p} ";
 
    TupleQuery tupleQuery = osc.asRepositoryConnection().prepareTupleQuery(
        QueryLanguage.SPARQL, queryString);
 
    TupleQueryResult result = tupleQuery.evaluate();
    try {
      if (result.hasNext()) {
        BindingSet bindingSet = result.next();
        psOut.println("solution " + bindingSet.toString());
      }
    }
    finally {
      result.close();
    }
 
    osc.close();
    store.shutDown();
    op.close();
  }
}




To compile this example, enter the following command:


usr/local/packages/jdk16/bin/javac -classpath $CP Example16.java


To run this example, enter a command in the following format:


/usr/local/packages/jdk16/bin/java -classpath $CP Example16 jdbc:oracle:thin:@localhost:1521:ORCL scott <password> EX16


The expected output of the java command might appear as follows:


solution [p=http://example.org/ontology/Person]






8.10.17 Example17.java: Specify Bind Variable for Constant in Different Position in Query Pattern [Advanced]

Example 8-20 shows the Example17.java file, an advanced example that specifies a bind variable for a constant in a different position in the SPARQL query pattern than in Example16.java (Example 8-19).


Example 8-20 Specify Bind Variable for Constant in Different Position in Query Pattern [Advanced]


import org.openrdf.model.Statement;
import org.openrdf.model.URI;
import org.openrdf.model.ValueFactory;
import info.aduna.iteration.CloseableIteration;
 
import java.io.*;
import java.sql.SQLException;
 
import oracle.spatial.rdf.client.sesame.*;
import org.openrdf.rio.RDFFormat;
import org.openrdf.sail.SailConnection;
import org.openrdf.sail.SailException;
import org.openrdf.model.vocabulary.RDFS;
import org.openrdf.repository.RepositoryConnection;
import org.openrdf.repository.sail.SailRepository;
import org.openrdf.repository.RepositoryException;
import org.openrdf.rio.RDFParseException;
import org.openrdf.model.Literal;
import org.openrdf.query.BindingSet;
import org.openrdf.query.QueryLanguage;
import org.openrdf.query.TupleQuery;
import org.openrdf.query.TupleQueryResult;
import org.openrdf.model.vocabulary.RDF;
import org.openrdf.query.QueryEvaluationException;
import org.openrdf.query.MalformedQueryException;
 
public class Example17
{
  public static void main(String[] args) throws SQLException, SailException,
    RepositoryException, IOException, RDFParseException, QueryEvaluationException,
    MalformedQueryException
  {
    PrintStream psOut = System.out;
    String jdbcUrl  = args[0];
    String user     = args[1];
    String password = args[2];
    String model    = args[3];
 
    OraclePool op = new OraclePool(
        OraclePool.getOracleDataSource(jdbcUrl, user, password));
    OracleSailStore store = new OracleSailStore(op, model);   
 
    OracleSailConnection osc = store.getConnection();
    ValueFactory f = osc.getValueFactory();
 
    // create some resources and literals to make statements out of
    URI alice = f.createURI("http://example.org/people/alice");
    URI name = f.createURI("http://example.org/ontology/name");
    URI person = f.createURI("http://example.org/ontology/Person");
    Literal alicesName = f.createLiteral("Alice");
 
    osc.addStatement(alice, RDF.TYPE, person);
    osc.addStatement(alice, name, alicesName);
    osc.commit();
 
    osc.analyze();
    osc.analyzeApplicationTable();
 
    String queryString =
      " PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#use_bind_var(2)> " +
      " SELECT ?s WHERE { ?s <http://example.org/ontology/name> \"Alice\" } ";
 
    TupleQuery tupleQuery = osc.asRepositoryConnection().prepareTupleQuery(
        QueryLanguage.SPARQL, queryString);
 
    TupleQueryResult result = tupleQuery.evaluate();
    try {
      if (result.hasNext()) {
        BindingSet bindingSet = result.next();
        psOut.println("solution " + bindingSet.toString());
      }
    }
    finally {
      result.close();
    }
 
    osc.close();
    store.shutDown();
    op.close();
  }
}




To compile this example, enter the following command:


usr/local/packages/jdk16/bin/javac -classpath $CP Example17.java


To run this example, enter a command in the following format:


/usr/local/packages/jdk16/bin/java -classpath $CP Example17 jdbc:oracle:thin:@localhost:1521:ORCL scott <password> EX17


The expected output of the java command might appear as follows:


solution [s=http://example.org/people/alice]






8.10.18 Example18.java: Build URIs from Internal Numeric IDs [Advanced]

Example 8-21 shows the Example18.java file, an advanced example that builds URIs from internal numeric IDs.


Example 8-21 Build URIs from Internal Numeric IDs [Advanced]


import org.openrdf.model.Statement;
import org.openrdf.model.URI;
import org.openrdf.model.ValueFactory;
import info.aduna.iteration.CloseableIteration;
 
import java.io.*;
import java.sql.SQLException;
 
import oracle.spatial.rdf.client.sesame.*;
import org.openrdf.rio.RDFFormat;
import org.openrdf.sail.SailConnection;
import org.openrdf.sail.SailException;
import org.openrdf.model.vocabulary.RDFS;
import org.openrdf.repository.RepositoryConnection;
import org.openrdf.repository.sail.SailRepository;
import org.openrdf.repository.RepositoryException;
import org.openrdf.rio.RDFParseException;
import org.openrdf.model.Literal;
import org.openrdf.query.BindingSet;
import org.openrdf.query.QueryLanguage;
import org.openrdf.query.TupleQuery;
import org.openrdf.query.TupleQueryResult;
import org.openrdf.model.vocabulary.RDF;
import org.openrdf.query.QueryEvaluationException;
import org.openrdf.query.MalformedQueryException;
 
public class Example18
{
  public static void main(String[] args) throws SQLException, SailException,
    RepositoryException, IOException, RDFParseException, QueryEvaluationException,
    MalformedQueryException
  {
    PrintStream psOut = System.out;
    String jdbcUrl  = args[0];
    String user     = args[1];
    String password = args[2];
    String model    = args[3];
 
    OraclePool op = new OraclePool(
        OraclePool.getOracleDataSource(jdbcUrl, user, password));
    OracleSailStore store = new OracleSailStore(op, model);   
 
    OracleSailConnection osc = store.getConnection();
    ValueFactory f = osc.getValueFactory();
 
    // create some resources and literals to make statements out of
    URI alice = f.createURI("http://example.org/people/alice");
    URI name = f.createURI("http://example.org/ontology/name");
    URI person = f.createURI("http://example.org/ontology/Person");
    Literal alicesName = f.createLiteral("Alice");
 
    osc.addStatement(alice, RDF.TYPE, person);
    osc.addStatement(alice, name, alicesName);
    osc.commit();
 
    osc.analyze();
    osc.analyzeApplicationTable();
 
    String queryString =
      " PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#build-uri-for-id(?p)> " +
      " SELECT ?p WHERE { <http://example.org/people/alice> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?p} ";
 
    TupleQuery tupleQuery = osc.asRepositoryConnection().prepareTupleQuery(
        QueryLanguage.SPARQL, queryString);
 
    TupleQueryResult result = tupleQuery.evaluate();
    try {
      if (result.hasNext()) {
        BindingSet bindingSet = result.next();
        psOut.println("solution " + bindingSet.toString());
      }
    }
    finally {
      result.close();
    }
 
    osc.close();
    store.shutDown();
    op.close();
  }
}




To compile this example, enter the following command:


usr/local/packages/jdk16/bin/javac -classpath $CP Example18.java


To run this example, enter a command in the following format:


/usr/local/packages/jdk16/bin/java -classpath $CP Example18 jdbc:oracle:thin:@localhost:1521:ORCL scott <password> EX18


The expected output of the java command might appear as follows:


solution [p=rdfvid:428072448720587401]







Part II



Reference and Supplementary Information

This document has the following parts:

	
Part I provides conceptual and usage information about Oracle Semantic Technologies.


	
Part II provides reference information about Oracle Semantic Technologies subprograms; it also provides supplementary information in appendixes and a glossary.




Part II contains the following chapters with reference and supplementary information:

	
Chapter 9, "SEM_APIS Package Subprograms"


	
Chapter 10, "SEM_OLS Package Subprograms"


	
Chapter 11, "SEM_PERF Package Subprograms"


	
Chapter 12, "SEM_RDFCTX Package Subprograms"


	
Chapter 13, "SEM_RDFSA Package Subprograms"


	
Appendix A, "Enabling, Downgrading, or Removing Semantic Technologies Support"


	
Appendix B, "SEM_MATCH Support for Spatial Queries"


	
Glossary




To understand the examples in the reference chapters, you must understand the conceptual and data type information in Chapter 1, "Oracle Database Semantic Technologies Overview" and Chapter 2, "OWL Concepts".



9 SEM_APIS Package Subprograms

The SEM_APIS package contains subprograms (functions and procedures) for working with the Resource Description Framework (RDF) and Web Ontology Language (OWL) in an Oracle database. To use the subprograms in this chapter, you must understand the conceptual and usage information in Chapter 1, "Oracle Database Semantic Technologies Overview" and Chapter 2, "OWL Concepts".

This chapter provides reference information about the subprograms, listed in alphabetical order.





SEM_APIS.ADD_DATATYPE_INDEX


Format

SEM_APIS.ADD_DATATYPE_INDEX(

     datatype IN VARCHAR2,

     tablespace_name IN VARCHAR2 default NULL,

     parallel IN PLS_INTEGER default NULL,

     online IN BOOLEAN default FALSE,

     options IN VARCHAR2 default NULL);


Description

Adds a data type index for the specified data type to the semantic network.


Parameters

	datatype
	
URI of the data type to index.


	tablespace_name
	
Destination tablespace for the index.


	parallel
	
Degree of parallelism to use when building the index.


	online
	
TRUE allows DML operations affecting the index during creation of the index; FALSE (the default) does not allow DML operations affecting the index during creation of the index.


	options
	
String specifying options for index creation using the form OPTION_NAME=option_value. Supported options are SRID, TOLERANCE, and DIMENSIONS, which are all associated with spatial index creation (see Section 1.6.6.2, "Indexing Spatial Data"). The option name keywords are case sensitive and must be specified in uppercase.





Usage Notes

You must have DBA privileges to call this procedure.

For more information about data type indexing, see Section 1.9.

For information about creating a data type index on RDF spatial data, see Section 1.6.6.2.


Examples

The following example creates an index on xsd:string typed literals and plain literals in the MY_TBS tablespace.


EXECUTE SEM_APIS.ADD_DATATYPE_INDEX('http://www.w3.org/2001/XMLSchema#string', tablespace_name=>'MY_TBS', parallel=>4);








SEM_APIS.ADD_SEM_INDEX


Format

SEM_APIS.ADD_SEM_INDEX(

     index_code IN VARCHAR2);


Description

Creates a semantic network index that results in creation of a nonunique B-tree index in UNUSABLE status for each of the existing models and entailments of the semantic network.


Parameters

	index_code
	
Index code string.





Usage Notes

You must have DBA privileges to call this procedure.

For an explanation of semantic network indexes, see Section 1.8.


Examples

The following example creates a semantic network index with the index code string pcsm on the models and entailments of the semantic network.


EXECUTE SEM_APIS.ADD_SEM_INDEX('pscm');








SEM_APIS.ALTER_DATATYPE_INDEX


Format

SEM_APIS.ALTER_DATATYPE_INDEX(

     datatype IN VARCHAR2,

     command IN VARCHAR2,

     tablespace_name IN VARCHAR2 default NULL,

     parallel IN PLS_INTEGER default NULL,

     online IN BOOLEAN default FALSE);


Description

Alters a data type index.


Parameters

	datatype
	
URI of the data type to index.


	options
	
String specifying the command to be performed: REBUILD to rebuild the data type index, or UNUSABLE to marks the data type index as unusable. The value for this parameter is not case-sensitive.


	tablespace_name
	
Destination tablespace for the index.


	parallel
	
Degree of parallelism to use when rebuilding the index.


	online
	
TRUE allows DML operations affecting the index during rebuilding of the index; FALSE (the default) does not allow DML operations affecting the index during rebuilding of the index.





Usage Notes

You must have DBA privileges to call this procedure.

For an explanation of data type indexes, see Section 1.9.


Examples

The following example rebuilds the index on xsd:string typed literals and plain literals in the MY_TBS tablespace.


EXECUTE SEM_APIS.ALTER_DATATYPE_INDEX('http://www.w3.org/2001/XMLSchema#string', command=>'REBUILD', tablespace_name=>'MY_TBS', parallel=>4);








SEM_APIS.ALTER_ENTAILMENT


Format

SEM_APIS.ALTER_ENTAILMENT(

     entailment_name IN VARCHAR2,

     command IN VARCHAR2,

     tablespace_name IN VARCHAR2,

     parallel IN NUMBER(38) DEFAULT NULL);


Description

Alters an entailment (rules index). Currently, the only action supported is to move the entailment to a specified tablespace.


Parameters

	entailment_name
	
Name of the entailment.


	command
	
Must be the string MOVE.


	tablespace_name
	
Name of the destination tablespace.


	parallel
	
Degree of parallelism to be associated with the operation. For more information about parallel execution, see Oracle Database VLDB and Partitioning Guide.





Usage Notes

For an explanation of entailments, see Section 1.3.7.


Examples

The following example moves the entailment named rdfs_rix_family to the tablespace named my_tbs.


EEXECUTE SEM_APIS.ALTER_ENTAILMENT('rdfs_rix_family', 'MOVE',  'my_tbs');








SEM_APIS.ALTER_MODEL


Format

SEM_APIS.ALTER_MODEL(

     model_name IN VARCHAR2,

     command IN VARCHAR2,

     tablespace_name IN VARCHAR2,

     parallel IN NUMBER(38) DEFAULT NULL);


Description

Alters a model. Currently, the only action supported is to move the model to a specified tablespace.


Parameters

	model_name
	
Name of the model.


	command
	
Must be the string MOVE.


	tablespace_name
	
Name of the destination tablespace.


	parallel
	
Degree of parallelism to be associated with the operation. For more information about parallel execution, see Oracle Database VLDB and Partitioning Guide.





Usage Notes

For an explanation of models, see Section 1.2, "Semantic Data Modeling" and Section 1.3, "Semantic Data in the Database".


Examples

The following example moves the model named family to the tablespace named my_tbs.


EEXECUTE SEM_APIS.ALTER_MODEL('family', 'MOVE',  'my_tbs');








SEM_APIS.ALTER_SEM_INDEX_ON_ENTAILMENT


Format

SEM_APIS.ALTER_SEM_INDEX_ON_ENTAILMENT(

     entailment_name IN VARCHAR2,

     index_code IN VARCHAR2,

     command IN VARCHAR2,

     tablespace_name IN VARCHAR2 DEFAULT NULL,

     use_compression IN BOOLEAN DEFAULT NULL,

     parallel IN NUMBER(38) DEFAULT NULL,

     online IN BOOLEAN DEFAULT FALSE);


Description

Alters a semantic network index on an entailment.


Parameters

	entailment_name
	
Name of the entailment.


	index_code
	
Index code string.


	command
	
String value containing one of the following commands: REBUILD rebuilds the semantic network index on the entailment, or UNUSABLE marks as unusable the semantic network index on the entailment. The value for this parameter is not case-sensitive.


	tablespace_name
	
Name of the destination tablespace for the rebuild operation.


	use_compression
	
Specifies whether compression should be used when rebuilding the index.


	parallel
	
Degree of parallelism to be associated with the operation. For more information about parallel execution, see Oracle Database VLDB and Partitioning Guide.


	online
	
TRUE allows DML operations affecting the index during the rebuilding of the index; FALSE (the default) does not allow DML operations affecting the index during the rebuilding of the index.





Usage Notes

For an explanation of semantic network indexes, see Section 1.8.


Examples

The following example rebuilds (and makes usable if it is unusable) the semantic network index on the entailment named rdfs_rix_family.


EXECUTE SEM_APIS.ALTER_SEM_INDEX_ON_ENTAILMENT('rdfs_rix_family', 'pscm', 'rebuild');








SEM_APIS.ALTER_SEM_INDEX_ON_MODEL


Format

SEM_APIS.ALTER_SEM_INDEX_ON_MODEL(

     model_name IN VARCHAR2,

     index_code IN VARCHAR2,

     command IN VARCHAR2,

     tablespace_name IN VARCHAR2 DEFAULT NULL,

     use_compression IN BOOLEAN DEFAULT NULL,

     parallel IN NUMBER(38) DEFAULT NULL,

     online IN BOOLEAN DEFAULT FALSE);


Description

Alters a semantic network index on a model.


Parameters

	model_name
	
Name of the model.


	index_code
	
Index code string.


	command
	
String value containing one of the following commands: REBUILD rebuilds the semantic network index on the model, or UNUSABLE marks as unusable the semantic network index on the model. The value for this parameter is not case-sensitive.


	tablespace_name
	
Name of the destination tablespace for the rebuild operation.


	use_compression
	
Specifies whether compression should be used when rebuilding the index.


	parallel
	
Degree of parallelism to be associated with the operation. For more information about parallel execution, see Oracle Database VLDB and Partitioning Guide.


	online
	
TRUE allows DML operations affecting the index during the rebuilding of the index; FALSE (the default) does not allow DML operations affecting the index during the rebuilding of the index.





Usage Notes

For an explanation of semantic network indexes, see Section 1.8.


Examples

The following example rebuilds (and makes usable if it is unusable) the semantic network index on the model named family.


EXECUTE SEM_APIS.ALTER_SEM_INDEX_ON_MODEL('family', 'pscm', 'rebuild');








SEM_APIS.ANALYZE_ENTAILMENT


Format

SEM_APIS.ANALYZE_ENTAILMENT(

     entailment_name IN VARCHAR2,

     estimate_percent IN NUMBER DEFAULT to_estimate_percent_type (get_param('ESTIMATE_PERCENT')),

     method_opt IN VARCHAR2 DEFAULT get_param('METHOD_OPT'),

     degree IN NUMBER DEFAULT to_degree_type(get_param('DEGREE')),

     cascade IN BOOLEAN DEFAULT to_cascade_type(get_param('CASCADE')),

     no_invalidate IN BOOLEAN DEFAULT to_no_invalidate_type (get_param('NO_INVALIDATE')),

     force IN BOOLEAN DEFAULT FALSE);


Description

Collects statistics for a specified entailment (rules index).


Parameters

	entailment_name
	
Name of the entailment.


	estimate_percent
	
Percentage of rows to estimate in the internal table partition containing information about the entailment (NULL means compute). The valid range is [0.000001,100]. Use the constant DBMS_STATS.AUTO_SAMPLE_SIZE to have Oracle determine the appropriate sample size for good statistics. This is the usual default.


	method_opt
	
Accepts either of the following options, or both in combination, for the internal table partition containing information about the entailment:

	
FOR ALL [INDEXED | HIDDEN] COLUMNS [size_clause]


	
FOR COLUMNS [size clause] column|attribute [size_clause] [,column|attribute [size_clause]...]




size_clause is defined as size_clause := SIZE {integer | REPEAT | AUTO | SKEWONLY}

column is defined as column := column_name | (extension)



- integer : Number of histogram buckets. Must be in the range [1,254].

- REPEAT : Collects histograms only on the columns that already have histograms.

- AUTO : Oracle determines the columns to collect histograms based on data distribution and the workload of the columns.

- SKEWONLY : Oracle determines the columns to collect histograms based on the data distribution of the columns.

- column_name : name of a column

- extension: Can be either a column group in the format of (column_name, column_name [, ...]) or an expression.
The usual default is FOR ALL COLUMNS SIZE AUTO.


	degree
	
Degree of parallelism for the internal table partition containing information about the entailment. The usual default for degree is NULL, which means use the table default value specified by the DEGREE clause in the CREATE TABLE or ALTER TABLE statement. Use the constant DBMS_STATS.DEFAULT_DEGREE to specify the default value based on the initialization parameters. The AUTO_DEGREE value determines the degree of parallelism automatically. This is either 1 (serial execution) or DEFAULT_DEGREE (the system default value based on number of CPUs and initialization parameters) according to size of the object.


	cascade
	
Gathers statistics on the indexes for the internal table partition containing information about the entailment. Use the constant DBMS_STATS.AUTO_CASCADE to have Oracle determine whether index statistics are to be collected or not. This is the usual default.


	no_invalidate
	
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE. to have Oracle decide when to invalidate dependent cursors. This is the usual default.


	force
	
TRUE gathers statistics even if the entailment is locked; FALSE (the default) does not gather statistics if the entailment is locked.





Usage Notes

Index statistics collection can be parellelized except for cluster, domain, and join indexes.

This procedure internally calls the DBMS_STATS.GATHER_TABLE_STATS procedure, which collects statistics for the internal table partition that contains information about the entailment. The DBMS_STATS.GATHER_TABLE_STATS procedure is documented in Oracle Database PL/SQL Packages and Types Reference.

For information about entailments, see Section 1.3.7.


Examples

The following example collects statistics for the entailment named rdfs_rix_family.


EXECUTE SEM_APIS.ANALYZE_ENTAILMENT('rdfs_rix_family');








SEM_APIS.ANALYZE_MODEL


Format

SEM_APIS.ANALYZE_MODEL(

     model_name IN VARCHAR2,

     estimate_percent IN NUMBER DEFAULT to_estimate_percent_type (get_param('ESTIMATE_PERCENT')),

     method_opt IN VARCHAR2 DEFAULT get_param('METHOD_OPT'),

     degree IN NUMBER DEFAULT to_degree_type(get_param('DEGREE')),

     cascade IN BOOLEAN DEFAULT to_cascade_type(get_param('CASCADE')),

     no_invalidate IN BOOLEAN DEFAULT to_no_invalidate_type (get_param('NO_INVALIDATE')),

     force IN BOOLEAN DEFAULT FALSE);


Description

Collects optimizer statistics for a specified model.


Parameters

	model_name
	
Name of the model.


	estimate_percent
	
Percentage of rows to estimate in the internal table partition containing information about the model (NULL means compute). The valid range is [0.000001,100]. Use the constant DBMS_STATS.AUTO_SAMPLE_SIZE to have Oracle determine the appropriate sample size for good statistics. This is the usual default.


	method_opt
	
Accepts either of the following options, or both in combination, for the internal table partition containing information about the model:

	
FOR ALL [INDEXED | HIDDEN] COLUMNS [size_clause]


	
FOR COLUMNS [size clause] column|attribute [size_clause] [,column|attribute [size_clause]...]




size_clause is defined as size_clause := SIZE {integer | REPEAT | AUTO | SKEWONLY}

column is defined as column := column_name | (extension)



- integer : Number of histogram buckets. Must be in the range [1,254].

- REPEAT : Collects histograms only on the columns that already have histograms.

- AUTO : Oracle determines the columns to collect histograms based on data distribution and the workload of the columns.

- SKEWONLY : Oracle determines the columns to collect histograms based on the data distribution of the columns.

- column_name : name of a column

- extension: Can be either a column group in the format of (column_name, column_name [, ...]) or an expression.
The usual default is FOR ALL COLUMNS SIZE AUTO.


	degree
	
Degree of parallelism for the internal table partition containing information about the model. The usual default for degree is NULL, which means use the table default value specified by the DEGREE clause in the CREATE TABLE or ALTER TABLE statement. Use the constant DBMS_STATS.DEFAULT_DEGREE to specify the default value based on the initialization parameters. The AUTO_DEGREE value determines the degree of parallelism automatically. This is either 1 (serial execution) or DEFAULT_DEGREE (the system default value based on number of CPUs and initialization parameters) according to size of the object.


	cascade
	
Gathers statistics on the indexes for the internal table partition containing information about the model. Use the constant DBMS_STATS.AUTO_CASCADE to have Oracle determine whether index statistics are to be collected or not. This is the usual default.


	no_invalidate
	
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE. to have Oracle decide when to invalidate dependent cursors. This is the usual default.


	force
	
TRUE gathers statistics even if the model is locked; FALSE (the default) does not gather statistics if the model is locked.





Usage Notes

Index statistics collection can be parellelized except for cluster, domain, and join indexes.

This procedure internally calls the DBMS_STATS.GATHER_TABLE_STATS procedure, which collects optimizer statistics for the internal table partition that contains information about the model. The DBMS_STATS.GATHER_TABLE_STATS procedure is documented in Oracle Database PL/SQL Packages and Types Reference.


Examples

The following example collects statistics for the semantic model named family.


EXECUTE SEM_APIS.ANALYZE_MODEL('family');








SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE


Format

SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE(

     model_name IN VARCHAR2,

     table_owner IN VARCHAR2,

     table_name IN VARCHAR2,

     flags IN VARCHAR2 DEFAULT NULL,

     debug IN INTEGER DEFAULT NULL,

     start_comment IN VARCHAR2 DEFAULT NULL,

     end_comment IN VARCHAR2 DEFAULT NULL);


Description

Loads semantic data from a staging table.


Parameters

	model_name
	
Name of the model.


	table_owner
	
Name of the schema that owns the staging table that holds semantic data to be loaded.


	table_name
	
Name of the staging table that holds semantic data to be loaded.


	flags
	
An optional quoted string with one or more of the following keyword specifications:

	
DEL_BATCH_DUPS=USE_INSERT allows the use of an insertion-based strategy for duplicate elimination that may lead to faster processing if the input data contains many duplicates.


	
MBV_METHOD=SHADOW allows the use of a different value loading strategy that may lead to faster processing for large loads.


	
PARALLEL_CREATE_INDEX allows internal indexes to be created in parallel, which may improve the performance of the bulk load processing.


	
PARALLEL=<integer> allows much of the processing used during bulk load to be done in parallel using the specified degree of parallelism to be associated with the operation.


	
PARSE allows parsing of triples retrieved from the staging table (also parses triples containing graph names).


	
<task>_JOIN_HINT=<join_type>, where <task> can be any of the following internal tasks performed during bulk load: IZC (is zero collisions), MBV (merge batch values), or MBT (merge batch triples, used when adding triples to a non-empty model), and where <join_type> can be USE_NL and USE_HASH.





	debug
	
(Reserved for future use)


	start_comment
	
Optional comment about the start of the load operation.


	end_comment
	
Optional comment about the end of the load operation.





Usage Notes

You must first load semantic data into a staging table before calling this procedure. See Section 1.7.1 for more information.


Using BULK_LOAD_FROM_STAGING_TABLE with Fine Grained Access Control (VPD and OLS)

When fine-grained access control (explained in Chapter 5) is enabled for a specific model using VPD or for the entire network using OLS, only a user with FULL access privileges to the associated policy may perform the bulk load operation. Full access privileges to a VPD policy are granted by setting the context attribute defined by the package constant sem_rdfsa.VPD_FULL_ACCESS to 1 for the namespace associated with the VPD policy (see Section 5.1.1). When OLS is enabled, full access privileges to the OLS policy are granted using the SA_USER_ADMIN.SET_USER_PRIVS procedure.

The data loaded into a model with VPD enabled is immediately available for access and does not need any maintenance operations. However, when the OLS is used, the label column in the tables storing the RDF triples must be maintained. By default, with OLS enabled, the label column in the tables storing the RDF triples is set to null. If you have FULL access, you can reset the labels for the newly inserted triples as well as any resources introduced by the new batch of triples by using appropriate subprograms (SEM_RDFSA.SET_RESOURCE_LABEL and SEM_RDFSA.SET_PREDICATE_LABEL).

Optionally, you can define a numeric column named RDF$STC_CTXT1 in the staging table and the application table, to assign the sensitivity label of the triple before the data is loaded into the desired model. Such labels are automatically applied to the corresponding triples stored in the MDSYS.RDF_LINK$ table. The labels for the newly introduced resources may still have to be applied separately before or after the load, and the system does not validate the labels assigned during bulk load operation.

The RDF$STC_CTXT1 column in the application table has no significance, and it may be dropped after the bulk load operation.


Examples

The following example loads semantic data stored in the staging table named STAGE_TABLE in schema SCOTT into the semantic model named family. The example includes some join hints.


EXECUTE SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE('family', 'scott', 'stage_table', flags => 'IZC_JOIN_HINT=USE_HASH MBV_JOIN_HINT=USE_HASH');








SEM_APIS.CLEANUP_FAILED


Format

SEM_APIS.CLEANUP_FAILED(

     rdf_object_type IN VARCHAR2,

     rdf_object_name IN VARCHAR2);


Description

Drops (deletes) a specified rulebase or entailment if it is in a failed state.


Parameters

	rdf_object_type
	
Type of the RDF object: RULEBASE for a rulebase or RULES_INDEX for an entailment (rules index).


	rdf_object_name
	
Name of the RDF object of type rdf_object_type.





Usage Notes

This procedure checks to see if the specified RDF object is in a failed state; and if the object is in a failed state, the procedure deletes the object.

A rulebase or entailment is in a failed state if a system failure occurred during the creation of that object. You can check if a rulebase or entailment is in a failed state by checking to see if the value of the STATUS column is FAILED in the SDO_RULEBASE_INFO view (described in Section 1.3.6) or the SDO_RULES_INDEX_INFO view (described in Section 1.3.7), respectively.

If the rulebase or entailment is not in a failed state, this procedure performs no action and returns a successful status.

An exception is generated if the RDF object is currently being used.


Examples

The following example deletes the rulebase named family_rb if (and only if) that rulebase is in a failed state.


EXECUTE SEM_APIS.CLEANUP_FAILED('RULEBASE', 'family_rb');








SEM_APIS.COMPOSE_RDF_TERM


Format

SEM_APIS.COMPOSE_RDF_TERM(

     value_name IN VARCHAR2,

     value_type IN VARCHAR2,

     literal_type IN VARCHAR2,

     language_type IN VARCHAR2

     ) RETURN VARCHAR2;

or

SEM_APIS.COMPOSE_RDF_TERM(

     value_name IN VARCHAR2,

     value_type IN VARCHAR2,

     literal_type IN VARCHAR2,

     language_type IN VARCHAR2,

     long_value IN CLOB,

     options IN VARCHAR2 DEFAULT NULL,

     ) RETURN CLOB;


Description

Creates and returns an RDF term using the specified parameters.


Parameters

	value_name
	
Value name. Must match a value in the VALUE_NAME column in the MDSYS.RDF_VALUE$ table (described in Section 1.3.2) or in the var attribute returned from SEM_MATCH table function.


	value_type
	
The type of text information. Must match a value in the VALUE_TYPE column in the MDSYS.RDF_VALUE$ table (described in Section 1.3.2) or in the var$RDFVTYP attribute returned from SEM_MATCH table function.


	literal_type
	
For typed literals, the type information; otherwise, null. Must either be a null value or match a value in the LITERAL_TYPE column in the MDSYS.RDF_VALUE$ table (described in Section 1.3.2) or in the var$RDFLTYP attribute returned from SEM_MATCH table function.


	language_type
	
Language tag. Must match a value in the LANGUAGE_TYPE column in the MDSYS.RDF_VALUE$ table (described in Section 1.3.2) or in the var$RDFLANG attribute returned from SEM_MATCH table function.


	long_value
	
The character string if the length of the lexical value is greater than 4000 bytes. Must match a value in the LONG_VALUE column in the MDSYS.RDF_VALUE$ table (described in Section 1.3.2) or in the var$RDFCLOB attribute returned from SEM_MATCH table function.


	options
	
(Reserved for future use.)





Usage Notes

If you specify an inconsistent combination of values for the parameters, this function returns a null value. If a null value is returned but you believe that the values for the parameters are appropriate (reflecting columns from the same row in the MDSYS.RDF_VALUE$ table or from a SEM_MATCH query for the same variable), contact Oracle Support.


Examples

The following example returns, for each member of the family whose height is known, the RDF term for the height and also just the value portion of the height.


SELECT x, SEM_APIS.COMPOSE_RDF_TERM(h, h$RDFVTYP, h$RDFLTYP, h$RDFLANG)
       h_rdf_term, h
  FROM TABLE(SEM_MATCH(
    '{?x :height ?h}',
    SEM_Models('family'),
    null, 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null))
ORDER BY x;
X
--------------------------------------------------------------------------------
H_RDF_TERM
--------------------------------------------------------------------------------
H
--------------------------------------------------------------------------------
http://www.example.org/family/Cathy
"5.8"^^<http://www.w3.org/2001/XMLSchema#decimal>
5.8
 
http://www.example.org/family/Cindy
"6"^^<http://www.w3.org/2001/XMLSchema#decimal>
6
 
http://www.example.org/family/Jack
"6"^^<http://www.w3.org/2001/XMLSchema#decimal>
6
 
http://www.example.org/family/Tom
"5.75"^^<http://www.w3.org/2001/XMLSchema#decimal>
5.75
 
4 rows selected.


The following example returns the RDF terms for a few of the values stored in the MDSYS.RDF_VALUE$ table.


SELECT SEM_APIS.COMPOSE_RDF_TERM(value_name, value_type, literal_type,
     language_type)
  FROM MDSYS.RDF_VALUE$ WHERE ROWNUM < 5;

SEM_APIS.COMPOSE_RDF_TERM(VALUE_NAME,VALUE_TYPE,LITERAL_TYPE,LANGUAGE_TYPE)
--------------------------------------------------------------------------------
<http://www.w3.org/1999/02/22-rdf-syntax-ns#object>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#subject>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#Property>








SEM_APIS.CREATE_ENTAILMENT


Format

SEM_APIS.CREATE_ENTAILMENT(

     entailment_name_in IN VARCHAR2,

     models_in IN SEM_MODELS,

     rulebases_in IN SEM_RULEBASES,

     passes IN NUMBER DEFAULT SEM_APIS.REACH_CLOSURE,

     inf_components_in IN VARCHAR2 DEFAULT NULL,

     options IN VARCHAR2 DEFAULT NULL,

     delta_in IN SEM_MODELS DEFAULT NULL,

     label_gen IN RDFSA_LABELGEN DEFAULT NULL,

     include_named_g IN SEM_GRAPHS DEFAULT NULL,

     include_default_g IN SEM_MODELS DEFAULT NULL,

     include_all_g IN SEM_MODELS DEFAULT NULL,

     inf_ng_name IN VARCHAR2 DEFAULT NULL);


Description

Creates an entailment (rules index) that can be used to perform OWL or RDFS inferencing, and optionally use user-defined rules.


Parameters

	entailment_name_in
	
Name of the entailment to be created.


	models_in
	
One or more model names. Its data type is SEM_MODELS, which has the following definition: TABLE OF VARCHAR2(25)


	rulebases_in
	
One or more rulebase names. Its data type is SEM_RULEBASES, which has the following definition: TABLE OF VARCHAR2(25). Rules and rulebases are explained in Section 1.3.6.


	passes
	
The number of rounds that the inference engine should run. The default value is SEM_APIS.REACH_CLOSURE, which means the inference engine will run till a closure is reached. If the number of rounds specified is less than the number of actual rounds needed to reach a closure, the status of the entailment will then be set to INCOMPLETE.


	inf_components_in
	
A comma-delimited string of keywords representing inference components, for performing selective or component-based inferencing. If this parameter is null, the default set of inference components is used. See the Usage Notes for more information about inference components.


	options
	
A comma-delimited string of options to control the inference process by overriding the default inference behavior. To enable an option, specify option-name=T; to disable an option, you can specify option-name=F (the default). The available option-name values are COL_COMPRESS, DISTANCE,DOP, ENTAIL_ANYWAY, HASH_PART, INC, LOCAL_NG_INF, OPT_SAMEAS, RAW8, PROOF, and USER_RULES. See the Usage Notes for explanations of each value.


	delta_in
	
If incremental inference is in effect, specifies one or more models on which to perform incremental inference. Its data type is SEM_MODELS, which has the following definition: TABLE OF VARCHAR2(25)

The triples in the first model in delta_in are copied to the first model in models_in, and the entailment (rules index) in rules_index_in is updated; then the triples in the second model (if any) in delta_in are copied to the second model (if any) in models_in, and the entailment in rules_index_in is updated; and so on until all triples are copied and the entailment is updated. (The delta_in parameter has no effect if incremental inference is not enabled for the entailment.)


	label_gen
	
An instance of MDSYS.RDFSA_LABELGEN or a subtype of it, defining the logic for generating Oracle Label Security (OLS) labels for inferred triples. What you specify for this parameter depends on whether you use the default label generator or a custom label generator:

	
If you use the default label generator, specify one of the following constants: SEM_RDFSA.LABELGEN_RULE for Use Rule Label, SEM_RDFSA.LABELGEN_SUBJECT for Use Subject Label, SEM_RDFSA.LABELGEN_PREDICATE for Use Predicate Label, SEM_RDFSA.LABELGEN_OBJECT for Use Object Label, SEM_RDFSA.LABELGEN_DOMINATING for Use Dominating Label, SEM_RDFSA.LABELGEN_ANTECED for Use Antecedent Labels. For a detailed explanation of each constant, see Section 5.2.2.4.


	
If you use a custom label generator, specify the custom label generator type. For information about creating and implementing a custom label generator, see Section 5.2.2.5.





	include_named_g
	
Causes all triples from the specified named graphs (across all source models) to participate in named graph based global inference (NGGI, explained in Section 2.2.11.1). For example, include_named_g => sem_graphs('<urn:G1>','<urn:G2>') implies that triples from named graphs G1 and G2 will be included in NGGI.

Its data type is SEM_GRAPHS, which has the following definition: TABLE OF VARCHAR2(4000).


	include_default_g
	
Causes all triples with a null graph name in the specified models to participate in named graph based global inference (NGGI, explained in Section 2.2.11.1). For example, include_default_g => sem_models('m1') causes all triples with a null graph name from model M1 to be included in NGGI.


	include_all_g
	
Causes all triples, regardless of their graph name values, in the specified models to participate in named graph based global inference (NGGI, explained in Section 2.2.11.1). For example, include_all_g => sem_models('m2')causes all triples in model M2 to be included in NGGI.


	inf_ng_name
	
Assigns the specified graph name to all the new triples inferred by the named graph based global inference (NGGI, explained in Section 2.2.11.1).





Usage Notes

For the inf_components_in parameter, you can specify any combination of the following keywords: SCOH, COMPH, DISJH, SYMMH, INVH, SPIH, MBRH, SPOH, DOMH, RANH, EQCH, EQPH, FPH, IFPH, DOM, RAN, SCO, DISJ, COMP, INV, SPO, FP, IFP, SYMM, TRANS, DIF, SAM, CHAIN, HASKEY, ONEOF, INTERSECT, INTERSECTSCOH, MBRLST, PROPDISJH, SKOSAXIOMS, SNOMED, SVFH, THINGH, THINGSAM, UNION, RDFP1, RDFP2, RDFP3, RDFP4, RDFP6, RDFP7, RDFP8AX, RDFP8BX, RDFP9, RDFP10, RDFP11, RDFP12A, RDFP12B, RDFP12C, RDFP13A, RDFP13B, RDFP13C, RDFP14A, RDFP14BX, RDFP15, RDFP16, RDFS2, RDFS3, RDFS4a, RDFS4b, RDFS5, RDFS6, RDFS7, RDFS8, RDFS9, RDFS10, RDFS11, RDFS12, RDFS13. For an explanation of the meaning of these keywords, see Table 9-1, where the keywords are listed in alphabetical order.

The default set of inference components for the OWLPrime vocabulary includes the following: SCOH, COMPH, DISJH, SYMMH, INVH, SPIH, SPOH, DOMH, RANH, EQCH, EQPH, FPH, IFPH, SAMH, DOM, RAN, SCO, DISJ, COMP, INV, SPO, FP, IFP, SYMM, TRANS, DIF, RDFP14A, RDFP14BX, RDFP15, RDFP16. However, note the following:

	
Component SAM is not in this default OWLPrime list, because it tends to generate many new triples for some ontologies.


	
Effective with Release 11.2, the native OWL inference engine supports the following new inference components: CHAIN, HASKEY, INTERSECT, INTERSECTSCOH, MBRLST, ONEOF, PROPDISJH, SKOSAXIOMS, SNOMED, SVFH, THINGH, THINGSAM, UNION. However, for backward compatibility, the OWLPrime rulebase and any existing rulebases do not include these new components by default; instead, to use these new inference components, you must specify them explicitly, and they are included in Table 9-1. The following example creates an OWLPrime entailment for two OWL ontologies named LUBM and UNIV. Because of the additional inference components specified, this entailment will include the new semantics introduced in those inference components.


EXECUTE sem_apis.create_entailment('lubm1000_idx',sem_models('lubm','univ'),
    sem_rulebases('owlprime'), SEM_APIS.REACH_CLOSURE, 
    'INTERSECT,INTERSECTSCOH,SVFH,THINGH,THINGSAM,UNION');





Table 9-1 Inferencing Keywords for inf_components_in Parameter

	Keyword	Explanation
	
CHAIN

	
Captures the property chain semantics defined in OWL 2. Only chains of length 2 are supported. By default, this is included in the SKOSCORE rulebase. Subproperty chaining is an OWL 2 feature, and for backward compatibility this component is not by default included in the OWLPrime rulebase. (For information about property chain handling, see Section 3.2.2.) (New as of Release 11.2.)


	
COMPH

	
Performs inference based on owl:complementOf assertions and the interaction of owl:complementOf with other language constructs.


	
DIF

	
Generates owl:differentFrom assertions based on the symmetricity of owl:differentFrom.


	
DISJ

	
Infers owl:differentFrom relationships at instance level using owl:disjointWith assertions.


	
DISJH

	
Performs inference based on owl:disjointWith assertions and their interactions with other language constructs.


	
DOM

	
Performs inference based on RDFS2.


	
DOMH

	
Performs inference based on rdfs:domain assertions and their interactions with other language constructs.


	
EQCH

	
Performs inference that are relevant to owl:equivalentClass.


	
EQPH

	
Performs inference that are relevant to owl:equivalentProperty.


	
FP

	
Performs instance-level inference using instances of owl:FunctionalProperty.


	
FPH

	
Performs inference using instances of owl:FunctionalProperty.


	
HASKEY

	
Covers the semantics behind "keys" defined in OWL 2. In OWL 2, a collection of properties can be treated as a key to a class expression. For efficiency, the size of the collection must not exceed 3. (New as of Release 11.2.)


	
IFP

	
Performs instance-level inference using instances of owl:InverseFunctionalProperty.


	
IFPH

	
Performs inference using instances of owl:InverseFunctionalProperty.


	
INTERSECT

	
Handles the core semantics of owl:intersectionOf. For example, if class C is the intersection of classes C1, C2 and C3, then C is a subclass of C1, C2, and C3. In addition, common instances of all C1, C2, and C3 are also instances of C. (New as of Release 11.2.)


	
INTERSECTSCOH

	
Handles the fact that an intersection is the maximal common subset. For example, if class C is the intersection of classes C1, C2, and C3, then any common subclass of all C1, C2, and C3 is a subclass of C. (New as of Release 11.2.)


	
INV

	
Performs instance-level inference using owl:inverseOf assertions.


	
INVH

	
Performs inference based on owl:inverseOf assertions and their interactions with other language constructs.


	
MBRLST

	
Captures the semantics that for any resource, every item in the list given as the value of the skos:memberList property is also a value of the skos:member property. (See S36 in the SKOS detailed specification.) By default, this is included in the SKOSCORE rulebase. (New as of Release 11.2.)


	
ONEOF

	
Generates classification assertions based on the definition of the enumeration classes. In OWL, class extensions can be enumerated explicitly with the owl:oneOf constructor. (New as of Release 11.2.)


	
PROPDISJH

	
Captures the interaction between owl:propertyDisjointWith and rdfs:subPropertyOf. By default, this is included in SKOSCORE rulebase. propertyDisjointWith is an OWL 2 feature, and for backward compatibility this component is not by default included in the OWLPrime rulebase. (New as of Release 11.2.)


	
RANH

	
Performs inference based on rdfs:range assertions and their interactions with other language constructs.


	
RDFP*

	
(The rules corresponding to components with a prefix of RDFP can be found in Completeness, decidability and complexity of entailment for RDF Schema and a semantic extension involving the OWL vocabulary, by H.J. Horst.)


	
RDFS2, ... RDFS13

	
RDFS2, RDFS3, RDFS4a, RDFS4b, RDFS5, RDFS6, RDFS7, RDFS8, RDFS9, RDFS10, RDFS11, RDFS12, and RDFS13 are described in Section 7.3 of RDF Semantics (http://www.w3.org/TR/rdf-mt/). Note that many of the RDFS components are not relevant for OWL inference.


	
SAM

	
Performs inference about individuals based on existing assertions for those individuals and owl:sameAs.


	
SAMH

	
Infers owl:sameAs assertions using transitivity and symmetricity of owl:sameAs.


	
SCO

	
Performs inference based on RDFS9.


	
SCOH

	
Generates the subClassOf hierarchy based on existing rdfs:subClassOf assertions. Basically, C1 rdfs:subClassOf C2 and C2 rdfs:subClassOf C3 will infer C1 rdfs:subClassOf C3 based on transitivity. SCOH is also an alias of RDFS11.


	
SKOSAXIOMS

	
Captures most of the axioms defined in the SKOS detailed specification. By default, this is included in the SKOSCORE rulebase. (New as of Release 11.2.)


	
SNOMED

	
Performs inference based on the semantics of the OWL 2 EL profile, which captures the expressiveness of SNOMED CT (Systematized Nomenclature of Medicine - Clinical Terms), which is one of the most expressive and complex medical terminologies. (New as of Release 11.2.)


	
SPIH

	
Performs inference based on interactions between rdfs:subPropertyOf and owl:inverseOf assertions.


	
SPO

	
Performs inference based on RDFS7.


	
SPOH

	
Generates rdfs:subPropertyOf hierarchy based on transitivity of rdfs:subPropertyOf. It is an alias of RDFS5.


	
SVFH

	
Handles the following semantics that involves the interaction between owl:someValuesFrom and rdfs:subClassOf. Consider two existential restriction classes C1 and C2 that both use the same restriction property. Assume further that the owl:someValuesFrom constraint class for C1 is a subclass of that for C2. Then C1 can be inferred as a subclass of C2. (New as of Release 11.2.)


	
SYMM

	
Performs instance-level inference using instances of owl:SymmetricProperty.


	
SYMH

	
Performs inference for properties of type owl:SymmetricProperty.


	
THINGH

	
Handles the semantics that any defined OWL class is a subclass of owl:Thing. The consequence of this rule is that instances of all defined OWL classes will become instances of owl:Thing. The size of the inferred graph will very likely be bigger with this component selected. (New as of Release 11.2.)


	
THINGSAM

	
Handles the semantics that instances of owl:Thing are equal to (owl:sameAs) themselves. This component is provided for the convenience of some applications. Note that an application does not have to select this inference component to figure out an individual is equal to itself; this kind of information can easily be built in the application logic. (New as of Release 11.2.)


	
TRANS

	
Calculates transitive closure for instances of owl:TransitiveProperty.


	
UNION

	
Captures the core semantics of the owl:unionOf construct. Basically, the union class is a superclass of all member classes. For backward compatibility, this component is not by default included in the OWLPrime rulebase. (New as of Release 11.2.)








To deselect a component, use the component name followed by a minus (-) sign. For example, SCOH- deselects inference of the subClassOf hierarchy.

For the options parameter, you can enable the following options to override the default inferencing behavior:

	
COL_COMPRESS=T creates temporary, intermediate working tables. This option can reduce the space required for such tables, and can improve the performance of the CREATE_ENTAILMENT operation with large data sets.




	
Note:

You can specify COL_COMPRESS=T only on systems that support Hybrid Columnar Compression (HCC). For information about HCC, see Oracle Database Concepts.








	
DISTANCE=T generates ancillary distance information that is useful for semantic operators.


	
DOP=n specifies the degree of parallelism for parallel inference, which can improve inference performance. For information about parallel inference, see Section 2.2.10.


	
ENTAIL_ANYWAY=T forces OWL inferencing to proceed and reuse existing inferred data (entailment) when the entailment has a valid status. By default, SEM_APIS.CREATE_ENTAILMENT quits immediately if there is already a valid entailment for the combination of models and rulebases.


	
HASH_PART=n creates the specified number of hash partitions for internal working tables. (The number must be a power of 2: 2, 4, 8, 16, 32, and so on.) You may want to specify a value if there are many distinct predicates in the semantic data model. In Oracle internal testing on benchmark ontologies, HASH_PART=32 worked well.


	
INC=T enables incremental inference for the entailment. For information about incremental inference, see Section 2.2.9.


	
LOCAL_NG_INF=T causes named graph based local inference (NGLI) to be used instead of named graph based global inference (NGGI). For information about NGLI, see Section 2.2.11.2.


	
OPT_SAMEAS=T uses consolidated owl:sameAs entailment for the entailment. If you specify this option, you cannot specify PROOF=T. For information about optimizing owl:sameAs inference, see Section 2.2.8.


	
RAW8=T uses RAW8 datatypes for the auxiliary inference tables. This option can improve entailment performance by up to 30% in some cases.


	
PROOF=T generates proof for inferred triples. Do not specify this option unless you need to; it slows inference performance because it causes more data to be generated. If you specify this option, you cannot specify OPT_SAMEAS=T.


	
USER_RULES=T causes any user-defined rules to be applied. If you specify this option, you cannot specify PROOF=T or DISTANCE=T, and you must accept the default value for the passes parameter.




For the delta_in parameter, inference performance is best if the value is small compared to the overall size of those models. In a typical scenario, the best results might be achieved when the delta contains fewer than 10,000 triples; however, some tests have shown significant inference performance improvements with deltas as large as 100,000 triples.

For the label_gen parameter, if you want to use the default OLS label generator, specify the appropriate SEM_RDFSA package constant value from Table 9-2.


Table 9-2 SEM_RDFSA Package Constants for label_gen Parameter

	Constant	Description
	
SEM_RDFSA.LABELGEN_SUBJECT

	
Label generator that applies the label associated with the inferred triple's subject as the triple's label.


	
SEM_RDFSA.LABELGEN_PREDICATE

	
Label generator that applies the label associated with the inferred triple's subject as the triple's label.


	
SEM_RDFSA.LABELGEN_OBJECT

	
Label generator that applies the label associated with the inferred triple's subject as the triple's label.


	
SEM_RDFSA.LABELGEN_RULE

	
Label generator that applies the label associated with the rule that directly produced the inferred triple as the triple's label. If you specify this option, you must also specify PROOF=T in the options parameter.


	
SEM_RDFSA.LABELGEN_DOMINATING

	
Label generator that computes a dominating label of all the available labels for the triple's components (subject, predicate, object, and rule), and applies it as the label for the inferred triple.









Fine-Grained Access Control (VPD and OLS) Considerations

When fine-grained access control is enabled for a specific model using VPD or for the entire network using OLS, only a user with FULL access privileges to the associated policy may create an entailment. Full access privileges to a VPD policy are granted by setting the context attribute defined by the package constant sem_rdfsa.VPD_FULL_ACCESS to 1 for the namespace associated with the VPD policy (see Section 5.1.1, "VPD Policy for RDF Data"). When OLS is enabled, full access privileges to the OLS policy are granted using the SA_USER_ADMIN.SET_USER_PRIVS procedure. VPD policy is automatically enforced for any entailment created using at least one VPD enabled RDF model. As discussed in Section 5.1.1, the RDF metadata associated with the VPD policy may need to be maintained using the newly inferred data to ensure that the predefined VPD policies are not circumvented using inferred data.

Inferred triples accessed through generated labels might not be same as conceptual triples inferred directly from the user accessible triples and rules. The labels generated using a subset of triple components may be weaker than intended. For example, one of the antecedents for the inferred triple may have a higher label than any of the components of the triple. When the label is generated based on just the triple components, end users with no access to one of the antecedents may still have access to the inferred triple. Even when the antecedents are used for custom label generation, the generated label may be stronger than intended. The inference process is not exhaustive, and information pertaining to any alternate ways of inferring the same triple is not available. So, the label generated using a given set of antecedents may be too strong, because the user with access to all the triples in the alternate path could infer the triple with lower access.

Even when generating a label that dominates all its components and antecedents, the label may not be precise. This is the case when labels considered for dominating relationship have non-overlapping group information. For example, consider two labels L:C:NY and L:C:NH where L is a level, C is a component and NY and NH are two groups. A simple label that dominates these two labels is L:C:NY,NH, and a true supremum for the two labels is L:C:US, where US is parent group for both NY and NH. Unfortunately, neither of these two dominating labels is precise for the triple inferred from the triples with first two labels. If L:C:NY,NH is used for the inferred triple, a user with membership in either of these groups has access to the inferred triple, whereas the same user does not have access to one of its antecedents. On the other hand, if L:C:US is used for the inferred triple, a user with membership in both the groups and not in the US group will not be able to access the inferred triple, whereas that user could infer the triple by directly accessing its components and antecedents.

Because of these unique challenges with inferred triples, extra caution must be taken when choosing or implementing the label generator.

See also the OLS example in the Examples section.


Examples

The following example creates an entailment named OWLTST_IDX using the OWLPrime rulebase, and it causes proof to be generated for inferred triples.


EXECUTE sem_apis.create_entailment('owltst_idx', sem_models('owltst'), sem_rulebases('OWLPRIME'), SEM_APIS.REACH_CLOSURE, null, 'PROOF=T');


The following example assumes an OLS environment. It creates a rulebase with a rule, and it creates an entailment.


-- Create an entailment with a rule. -- 
exec sdo_rdf_inference.create_entailment('contracts_rb');
 
insert into mdsys.rdfr_contracts_rb values (
  'projectLedBy', '(?x :drivenBy ?y) (?y :hasVP ?z)',  NULL,
  '(?x :isLedBy ?z)',
  SDO_RDF_Aliases(SDO_RDF_Alias('','http://www.myorg.com/pred/')));
 
-- Assign sensitivity label for the predicate to be inferred. -- 
-- Yhe predicate label may be set globally or it can be assign to --
-- the one or the models used to infer the data – e.g: CONTRACTS. 
begin
  sem_rdfsa.set_predicate_label(
         model_name   => 'rdf$global',
         predicate    => 'http://www.myorg.com/pred/isLedBy',
         label_string => 'TS:US_SPCL');
end;
/
 
-- Create index with a specific label generator. -- 
begin
  sem_apis.create_entailment(
         entailment_name_in => 'contracts_inf',
         models_in          => SDO_RDF_Models('contracts'),
         rulebases_in       => SDO_RDF_Rulebases('contracts_rb'),
         options            => 'USER_RULES=T',
         label_gen          => sem_rdfsa.LABELGEN_PREDICATE);
end;
/
 
-- Check for any label exceptions and update them accordingly. -- 
update mdsys.rdfi_contracts_inf set ctxt1 = 1100 where ctxt1 = -1;
 
-- The new entailment is now ready for use in SEM_MATCH queries. --








SEM_APIS.CREATE_RULEBASE


Format

SEM_APIS.CREATE_RULEBASE(

     rulebase_name IN VARCHAR2);


Description

Creates a rulebase.


Parameters

	rulebase_name
	
Name of the rulebase.





Usage Notes

This procedure creates a user-defined rulebase. After creating the rulebase, you can add rules to it. To cause the rules in the rulebase to be applied in a query of RDF data, you can specify the rulebase in the call to the SEM_MATCH table function.

Rules and rulebases are explained in Section 1.3.6. The SEM_MATCH table function is described in Section 1.6,


Examples

The following example creates a rulebase named family_rb. (It is an excerpt from Example 1-37 in Section 1.11.2.)


EXECUTE SEM_APIS.CREATE_RULEBASE('family_rb');








SEM_APIS.CREATE_SEM_MODEL


Format

SEM_APIS.CREATE_SEM_MODEL(

     model_name IN VARCHAR2,

     table_name IN VARCHAR2,

     column_name IN VARCHAR2,

     model_tablespace IN VARCHAR2 DEFAULT NULL);


Description

Creates a semantic technology model.


Parameters

	model_name
	
Name of the model.


	table_name
	
Name of the table to hold references to semantic technology data for this model.


	column_name
	
Name of the column of type SDO_RDF_TRIPLE_S in table_name.


	model_tablespace
	
Name of the tablespace for the tables and other database objects used by Oracle to support this model. The default value is the tablespace that was specified in the call to the SEM_APIS.CREATE_SEM_NETWORK procedure.





Usage Notes

You must create the table to hold references to semantic technology data before calling this procedure to create the semantic technology model. For more information, see Section 1.10.

This procedure adds the model to the MDSYS.SEM_MODEL$ view, which is described in Section 1.3.1.

This procedure is the only supported way to create a model. Do not use SQL INSERT statements with the MDSYS.SEM_MODEL$ view.

To delete a model, use the SEM_APIS.DROP_SEM_MODEL procedure.


Examples

The following example creates a semantic technology model named articles. References to the triple data for the model will be stored in the TRIPLE column of the ARTICLES_RDF_DATA table. (This example is an excerpt from Example 1-36 in Section 1.11.2.)


EXECUTE SEM_APIS.CREATE_SEM_MODEL('articles', 'articles_rdf_data', 'triple');


The definition of the ARTICLES_RDF_DATA table is as follows:


CREATE TABLE articles_rdf_data (id NUMBER, triple SDO_RDF_TRIPLE_S);








SEM_APIS.CREATE_SEM_NETWORK


Format

SEM_APIS.CREATE_SEM_NETWORK(

     tablespace_name IN VARCHAR2


Description

Creates structures for persistent storage of semantic data.


Parameters

	tablespace_name
	
Name of the tablespace to be used for tables created by this procedure. This tablespace will be the default for all models that you create, although you can override the default when you create a model by specifying the model_tablespace parameter in the call to the SEM_APIS.CREATE_SEM_MODEL procedure.





Usage Notes

This procedure creates system tables and other database objects used for semantic technology support.

You should create a tablespace for the semantic technology system tables and specify the tablespace name in the call to this procedure. (You should not specify the SYSTEM tablespace.) The size needed for the tablespace that you create will depend on the amount of semantic technology data you plan to store.

You must connect to the database as a user with DBA privileges in order to call this procedure, and you should call the procedure only once for the database.

To drop these structures for persistent storage of semantic data, you must connect as a user with DBA privileges and call the SEM_APIS.DROP_SEM_NETWORK procedure.


Examples

The following example creates a tablespace for semantic technology system tables and creates structures for persistent storage of semantic data in this tablespace.


CREATE TABLESPACE rdf_tblspace
 DATAFILE '/oradata/orcl/rdf_tblspace.dat' SIZE 1024M REUSE
 AUTOEXTEND ON NEXT 256M MAXSIZE UNLIMITED
 SEGMENT SPACE MANAGEMENT AUTO;
. . .
EXECUTE SEM_APIS.CREATE_SEM_NETWORK('rdf_tblspace');








SEM_APIS.CREATE_SOURCE_EXTERNAL_TABLE


Format

SEM_APIS.CREATE_SOURCE_EXTERNAL_TABLE(

     source_table IN VARCHAR2,

     def_directory IN VARCHAR2,

     log_directory IN VARCHAR2 DEFAULT NULL,

     bad_directory IN VARCHAR2 DEFAULT NULL,

     log_file IN VARCHAR2 DEFAULT NULL,

     bad_file IN VARCHAR2 DEFAULT NULL,

     parallel IN INTEGER DEFAULT NULL,

     source_table_owner IN VARCHAR2 DEFAULT NULL,

     flags IN VARCHAR2 DEFAULT NULL);


Description

Creates an external table to map an N-Triple or N-Quad format file into a table.


Parameters

	source_table
	
Name of the external table to be created.


	def_directory
	
Database directory where the input files are located. To load from this staging table, you must have READ privilege on this directory.


	log_directory
	
Database directory where the log files will be generated when loading from the external table. If not specified, the value of the def_directory parameter is used. When loading from the external table, you must have WRITE privilege on this directory.


	bad_directory
	
Database directory where the bad files will be generated when loading from the external table. If not specified, the value of the def_directory parameter is used. When loading from the external table, you must have WRITE privilege on this directory.


	log_file
	
Name of the log file. If not specified, the name will be .generated automatically during a load operation.


	bad_file
	
Name of the bad file. If not specified, the name will be .generated automatically during a load operation.


	parallel
	
Degree of parallelism to associate with the external table being created.


	source_table_owner
	
Owner for the external table being created. If not specified, the invoker becomes the owner.


	flags
	
(Reserved for future use)





Usage Notes

For more information and an example, see Section 1.7.1.1.2, "Loading N-Quad Format Data into a Staging Table Using an External Table".


Examples

The following example creates a source external table. (This example is an excerpt from Example 1-34 in Section 1.7.1.1.2.)


BEGIN
  sem_apis.create_source_external_table(
    source_table    => 'stage_table_source'
   ,def_directory   => 'DATA_DIR'
   ,bad_file        => 'CLOBrows.bad'
   );
END;








SEM_APIS.CREATE_VIRTUAL_MODEL


Format

SEM_APIS.CREATE_VIRTUAL_MODEL(

     vm_name IN VARCHAR2,

     models IN SEM_MODELS,

     rulebases IN SEM_RULEBASES DEFAULT NULL,

     options IN VARCHAR2 DEFAULT NULL);


Description

Creates a virtual model containing the specified semantic models and rulebases.


Parameters

	vm_name
	
Name of the virtual model to be created.


	models
	
One or more semantic model names. Its data type is SEM_MODELS, which has the following definition: TABLE OF VARCHAR2(25). At least one semantic model must be specified.


	rulebases
	
One or more rulebase names. Its data type is SEM_RULEBASES, which has the following definition: TABLE OF VARCHAR2(25). If this parameter is null, no rulebases are included in the virtual model definition. Rules and rulebases are explained in Section 1.3.6.


	options
	
(Reserved for future use.)





Usage Notes

For an explanation of virtual models, including usage information, see Section 1.3.8.

An entailment must exist for each specified combination of semantic model and rulebase.

To create a virtual model, you must either be (A) the owner of each specified model and any corresponding entailments, or (B) a user with DBA privileges.

This procedure creates views with names in the following format:

	
SEMV_vm_name, which corresponds to a UNION ALL of the triples in each model and entailment. This view may contain duplicates.


	
SEMU_vm_name, which corresponds to a UNION of the triples in each model and entailment. This view will not contain duplicates (thus, the U in SEMU indicates unique).

However, the SEMU_vm_name view is not created if the virtual model contains only one semantic model and no entailment.




To use the example in Section 1.3.8 of a virtual model vm1 created from models m1, m2, m3, and with an entailment created for m1, m2 ,and m3 using the OWLPrime rulebase, this procedure will create the following two views (assuming that m1, m2, and m3, and the OWLPRIME entailment have internal model_id values 1, 2, 3, 4):


CREATE VIEW MDSYS.SEMV_VM1 AS
  SELECT start_node_id, p_value_id, canon_end_node_id, end_node_id
  FROM MDSYS.rdf_link$
  WHERE model_id IN (1, 2, 3, 4);
 
CREATE VIEW MDSYS.SEMU_VM1 AS
  SELECT start_node_id, p_value_id, canon_end_node_id, MAX(end_node_id)
  FROM MDSYS.rdf_link$
  WHERE model_id IN (1, 2, 3, 4)
  GROUP BY start_node_id, p_value_id, canon_end_node_id;


The user that invokes this procedure will be the owner of the virtual model and will have SELECT WITH GRANT privileges on the SEMU_vm_name and SEMV_vm_name views. To query the corresponding virtual model, a user must have select privileges on these views.


Examples

The following example creates a virtual model named VM1.


EXECUTE sem_apis.create_virtual_model('VM1', sem_models('model_1', 'model_2'), sem_rulebases('OWLPRIME'));








SEM_APIS.DISABLE_CHANGE_TRACKING


Format

SEM_APIS.DISABLE_CHANGE_TRACKING(

     models_in IN SEM_MODELS);


Description

Disables change tracking for a specified set of models.


Parameters

	models_in
	
One or more model names. Its data type is SEM_MODELS, which has the following definition: TABLE OF VARCHAR2(25)





Usage Notes

Disabling change tracking on a model automatically disables incremental inference on all entailment that use the model.

To use this procedure, you must be the owner of the specified model, and incremental inference must have been previously enabled.

For an explanation of incremental inference, including usage information, see Section 2.2.9.


Examples

The following example disables change tracking for the family model.


EXECUTE sem_apis.disable_change_tracking(sem_models('family'));








SEM_APIS.DISABLE_INC_INFERENCE


Format

SEM_APIS.DISABLE_INC_INFERENCE(

     entailment_name IN VARCHAR2);


Description

Disables incremental inference for a specified entailment (rules index).


Parameters

	entailment_name
	
Name of the entailment for which to disable incremental inference.





Usage Notes

To use this procedure, you must be the owner of the specified entailment, and incremental inference must have been previously enabled by the SEM_APIS.ENABLE_INC_INFERENCE procedure.

Calling this procedure automatically disables change tracking for all models owned by the invoking user that were having changes tracked only because of this particular inference.

For an explanation of incremental inference, including usage information, see Section 2.2.9.


Examples

The following example enables incremental inference for the entailment named RDFS_RIX_FAMILY.


EXECUTE sem_apis.disable_inc_inference('rdfs_rix_family');








SEM_APIS.DROP_DATATYPE_INDEX


Format

SEM_APIS.DROP_DATATYPE_INDEX(

     datatype IN VARCHAR2,

     force_drop IN BOOLEAN default FALSE);


Description

Drops (deletes) an existing data type index.


Parameters

	datatype
	
URI of the data type for the index to drop.


	force_drop
	
TRUE forces the index to be dropped if an error occurs during the processing of the statement; FALSE (the default) does not drop the index if an error occurs during the processing of the statement.





Usage Notes

You must have DBA privileges to call this procedure.

For an explanation of data type indexes, see Section 1.9.


Examples

The following example drops the data type index for xsd:string typed literals and plain literals.


EXECUTE SEM_APIS.DROP_DATATYPE_INDEX('http://www.w3.org/2001/XMLSchema#string');








SEM_APIS.DROP_ENTAILMENT


Format

SEM_APIS.DROP_ENTAILMENT(

     entailment_name_in IN VARCHAR2,

     named_g_in IN SEM_GRAPHS DEFAULT NULL,

     dop IN INT DEFAULT 1);


Description

Drops (deletes) an entailment (rules index).


Parameters

	entailment_name_in
	
Name of the entailment to be deleted.


	named_g_in
	
Causes only the triples with the specified graph names in the entailment to be deleted. A null value (the default) drops the entire entailment.

For example, named_g_in => sem_graphs('<urn:G1>','<urn:G2>') drops only the triples in entailment with graph names G1 and G2; the rest of the entailment graph is not dropped.


	dop
	
Degree of parallelism for a parallel execution of triple deletion. Applies only if the named_g_in parameter is not null.





Usage Notes

You can use this procedure to delete an entailment that you created using the SEM_APIS.CREATE_ENTAILMENT procedure.

If you drop only a subset of the entailment with specified named graphs (that is, when named_g_in is not null) on an entailment with a VALID or INCOMPLETE status, then the resulting status of the entailment after the drop is set to INCOMPLETE.


Examples

The following example deletes a entailment named OWLTST_IDX.


EXECUTE sem_apis.drop_entailment('owltst_idx');


The following example deletes only inferred triples with graph names G1 and G2 that belong to the entailment named OWLNG_IDX. Any inferred triples in the default graph and other named graphs remain in the entailment.


EXECUTE sem_apis.drop_entailment('owlng_idx',sem_graphs('<urn:G1>','<urn:G2>'));








SEM_APIS.DROP_RULEBASE


Format

SEM_APIS.DROP_RULEBASE(

     rulebase_name IN VARCHAR2);


Description

Deletes a rulebase.


Parameters

	rulebase_name
	
Name of the rulebase.





Usage Notes

This procedure deletes the specified rulebase, making it no longer available for use in calls to the SEM_MATCH table function. For information about rulebases, see Section 1.3.6.

Only the creator of a rulebase can delete the rulebase.


Examples

The following example drops the rulebase named family_rb.


EXECUTE SEM_APIS.DROP_RULEBASE('family_rb');








SEM_APIS.DROP_SEM_INDEX


Format

SEM_APIS.DROP_SEM_INDEX(

     index_code IN VARCHAR2);


Description

Drops a semantic network index on the models and entailments of the semantic network.


Parameters

	index_code
	
Index code string. Must match the index_code value that was specified in an earlier call to the SEM_APIS.ADD_SEM_INDEX procedure.





Usage Notes

For an explanation of semantic network indexes, see Section 1.8.


Examples

The following example drops a semantic network index with the index code string pcsm on the models and entailments of the semantic network.


EXECUTE SEM_APIS.DROP_SEM_INDEX('pscm');








SEM_APIS.DROP_SEM_MODEL


Format

SEM_APIS.DROP_SEM_MODEL(

     model_name IN VARCHAR2);


Description

Drops (deletes) a semantic technology model.


Parameters

	model_name
	
Name of the model.





Usage Notes

This procedure deletes the model from the MDSYS.SEM_MODEL$ view, which is described in Section 1.3.1.

This procedure is the only supported way to delete a model. Do not use SQL DELETE statements with the MDSYS.SEM_MODEL$ view.

Only the creator of a model can delete the model.


Examples

The following example drops the semantic technology model named articles.


EXECUTE SEM_APIS.DROP_SEM_MODEL('articles');








SEM_APIS.DROP_SEM_NETWORK


Format

SEM_APIS.DROP_SEM_NETWORK(

     cascade IN BOOLEAN DEFAULT FALSE);


Description

Removes structures used for persistent storage of semantic data.


Parameters

	cascade
	
TRUE drops any existing semantic technology models and rulebases, and removes structures used for persistent storage of semantic data; FALSE (the default) causes the operation to fail if any semantic technology models or rulebases exist.





Usage Notes

To remove structures used for persistent storage of semantic data, you must connect as a user with DBA privileges and call this procedure.

If any version-enabled models exist, this procedure will fail regardless of the value of the cascade parameter.


Examples

The following example removes structures used for persistent storage of semantic data.


EXECUTE SEM_APIS.DROP_SEM_NETWORK;








SEM_APIS.DROP_USER_INFERENCE_OBJS


Format

SEM_APIS.DROP_USER_INFERENCE_OBJS(

     uname IN VARCHAR2);


Description

Drops (deletes) all rulebases and entailments owned by a specified database user.


Parameters

	uname
	
Name of a database user. (This value is case-sensitive; for example, HERMAN and herman are considered different users.)





Usage Notes

You must have sufficient privileges to delete rules and rulebases for the specified user.

This procedure does not delete the database user. It deletes only RDF rulebases and entailments owned by that user.


Examples

The following example deletes all rulebases and entailments owned by user SCOTT.


EXECUTE SEM_APIS.DROP_USER_INFERENCE_OBJS('SCOTT');
 
PL/SQL procedure successfully completed.








SEM_APIS.DROP_VIRTUAL_MODEL


Format

SEM_APIS.DROP_VIRTUAL_MODEL(

     vm_name IN VARCHAR2);


Description

Drops (deletes) a virtual model.


Parameters

	vm_name
	
Name of the virtual model to be deleted.





Usage Notes

You can use this procedure to delete a virtual model that you created using the SEM_APIS.CREATE_VIRTUAL_MODEL procedure. A virtual model is deleted automatically if any of its component models, rulebases, or entailment are deleted.

To use this procedure, you must be the owner of the specified virtual model.

For an explanation of virtual models, including usage information, see Section 1.3.8.


Examples

The following example deletes a virtual model named VM1.


EXECUTE sem_apis.drop_virtual_model('VM1');








SEM_APIS.ENABLE_CHANGE_TRACKING


Format

SEM_APIS.ENABLE_CHANGE_TRACKING(

     models_in IN SEM_MODELS);


Description

Enables change tracking for a specified set of models.


Parameters

	models_in
	
One or more model names. Its data type is SEM_MODELS, which has the following definition: TABLE OF VARCHAR2(25)





Usage Notes

Change tracking must be enabled on a model before incremental inference can be enabled on any entailments that use the model.

To use this procedure, you must be the owner of the specified model or models.

If the owner of an entailment is also an owner of any underlying models, then enabling incremental inference on the entailment (by calling the SEM_APIS.ENABLE_INC_INFERENCE procedure) automatically enables change tracking on those models owned by that user.

To disable change tracking for a set of models, use the SEM_APIS.DISABLE_CHANGE_TRACKING procedure.

For an explanation of incremental inference, including usage information, see Section 2.2.9.


Examples

The following example enables change tracking for the family model.


EXECUTE sem_apis.enable_change_tracking(sem_models('family'));








SEM_APIS.ENABLE_INC_INFERENCE


Format

SEM_APIS.ENABLE_INC_INFERENCE(

     entailment_name IN VARCHAR2);


Description

Enables incremental inference for a specified entailment (rules index).


Parameters

	entailment_name
	
Name of the entailment for which to enable incremental inference.





Usage Notes

To use this procedure, you must be the owner of the specified entailment.

Before this procedure is executed, all underlying models involved in the entailment must have change tracking enabled. If the owner of the entailment is also an owner of any underlying models, calling this procedure automatically enables change tracking on those models. However, if some underlying model are not owned by the owner of the entailment, the appropriate model owners must first call the SEM_APIS.ENABLE_CHANGE_TRACKING procedure to enable change tracking on those models.

To disable incremental inference for an entailment, use the SEM_APIS.DISABLE_INC_INFERENCE procedure.

For an explanation of incremental inference, including usage information, see Section 2.2.9.


Examples

The following example enables incremental inference for the entailment named RDFS_RIX_FAMILY.


EXECUTE sem_apis.enable_inc_inference('rdfs_rix_family');








SEM_APIS.GET_CHANGE_TRACKING_INFO


Format

SEM_APIS.GET_CHANGE_TRACKING_INFO(

     model_name IN VARCHAR2,

     enabled OUT BOOLEAN,

     tracking_start_time OUT TIMESTAMP);


Description

Returns change tracking information for a model.


Parameters

	model_name
	
Name of the semantic technology model.


	enabled
	
Boolean value returned by the procedure: TRUE if change tracking is enabled for the model, or FALSE if change tacking is not enabled for the model.


	timestamp
	
Timestamp indicating when change tracking was enabled for the model (if it is enabled).





Usage Notes

The model_name value must match a value in the MODEL_NAME column in the MDSYS.SEM_MODEL$ view, which is described in Section 1.3.1.

To enable change tracking for a set of models, use the SEM_APIS.ENABLE_CHANGE_TRACKING procedure.

For an explanation of incremental inference, including usage information, see Section 2.2.9.


Examples

The following example displays change tracking information for a model.


DECLARE 
  bEnabled  boolean;
  tsEnabled  timestamp;
  
BEGIN
  EXECUTE IMMEDIATE 'create table m1 (t SDO_RDF_TRIPLE_S)';
  sem_apis.create_sem_model('m1','m1','t');
 
  sem_apis.enable_change_tracking(sem_models('m1'));
 
  sem_apis.get_change_tracking_info('m1', bEnabled,  tsEnabled);
  dbms_output.put_line('is enabled:' || case when bEnabled then 'true' else 'false' end);
  dbms_output.put_line('enabled at:' || tsEnabled);
END;
/








SEM_APIS.GET_INC_INF_INFO


Format

SEM_APIS.GET_INC_INF_INFO(

     entailment_name IN VARCHAR2,

     enabled OUT BOOLEAN,

     prev_inf_start_time OUT TIMESTAMP);


Description

Returns incremental inference information for an entailment.


Parameters

	entailment_name
	
Name of the entailment.


	enabled
	
Boolean value returned by the procedure: TRUE if incremental inference is enabled for the entailment, or FALSE if incremental inference is not enabled for the entailment.


	timestamp
	
Timestamp indicating when the entailment was most recently updated (if incremental inference is enabled).





Usage Notes

To enable incremental inference for an entailment, use the SEM_APIS.ENABLE_INC_INFERENCE procedure.

For an explanation of incremental inference, including usage information, see Section 2.2.9.


Examples

The following example displays incremental inference information for an entailment.


DECLARE 
  bEnabled boolean;
  tsEnabled timestamp;
  
DECLARE 
  EXECUTE IMMEDIATE 'create table m1 (t SDO_RDF_TRIPLE_S)';
  sem_apis.create_sem_model('m1','m1','t');
 
  sem_apis.create_entailment('m1_inf',sem_models('m1'), 
sem_rulebases('owlprime'),null,null,'INC=T');
 
  sem_apis.get_inc_inf_info('m1_inf', bEnabled,  tsEnabled);
  dbms_output.put_line('is enabled:' || case when bEnabled then 'true' else 'false' 
  end);
  dbms_output.put_line('enabled at:' || tsEnabled);
END
/








SEM_APIS.GET_MODEL_ID


Format

SEM_APIS.GET_MODEL_ID(

     model_name IN VARCHAR2

     ) RETURN NUMBER;


Description

Returns the model ID number of a semantic technology model.


Parameters

	model_name
	
Name of the semantic technology model.





Usage Notes

The model_name value must match a value in the MODEL_NAME column in the MDSYS.SEM_MODEL$ view, which is described in Section 1.3.1.


Examples

The following example returns the model ID number for the model named articles. (This example is an excerpt from Example 1-36 in Section 1.11.2.)


SELECT SEM_APIS.GET_MODEL_ID('articles') AS model_id FROM DUAL;
 
  MODEL_ID
----------
         1








SEM_APIS.GET_MODEL_NAME


Format

SEM_APIS.GET_MODEL_NAME(

     model_id IN NUMBER

     ) RETURN VARCHAR2;


Description

Returns the model name of a semantic technology model.


Parameters

	model_id
	
ID number of the semantic technology model.





Usage Notes

The model_id value must match a value in the MODEL_ID column in the MDSYS.SEM_MODEL$ view, which is described in Section 1.3.1.


Examples

The following example returns the model ID number for the model with the ID value of 1. This example is an excerpt from Example 1-36 in Section 1.11.2.)


SQL> SELECT SEM_APIS.GET_MODEL_NAME(1) AS model_name FROM DUAL;
 
MODEL_NAME                                                       
--------------------------------------------------------------------------------
ARTICLES                                                           








SEM_APIS.GET_TRIPLE_ID


Format

SEM_APIS.GET_TRIPLE_ID(

     model_id IN NUMBER,

     subject IN VARCHAR2,

     property IN VARCHAR2,

     object IN VARCHAR2

     ) RETURN VARCHAR2;

or

SEM_APIS.GET_TRIPLE_ID(

     model_name IN VARCHAR2,

     subject IN VARCHAR2,

     property IN VARCHAR2,

     object IN VARCHAR2

     ) RETURN VARCHAR2;


Description

Returns the ID of a triple in the specified semantic technology model, or a null value if the triple does not exist.


Parameters

	model_id
	
ID number of the semantic technology model. Must match a value in the MODEL_ID column of the MDSYS.SEM_MODEL$ view, which is described in Section 1.3.1.


	model_name
	
Name of the semantic technology model. Must match a value in the MODEL_NAME column of the MDSYS.SEM_MODEL$ view, which is described in Section 1.3.1.


	subject
	
Subject. Must match a value in the VALUE_NAME column of the MDSYS.RDF_VALUE$ table, which is described in Section 1.3.2.


	property
	
Property. Must match a value in the VALUE_NAME column of the MDSYS.RDF_VALUE$ table, which is described in Section 1.3.2.


	object
	
Object. Must match a value in the VALUE_NAME column of the MDSYS.RDF_VALUE$ table, which is described in Section 1.3.2.





Usage Notes

This function has two formats, enabling you to specify the semantic technology model by its model number or its name.


Examples

The following example returns the ID number of a triple. (This example is an excerpt from Example 1-36 in Section 1.11.2.)


SELECT SEM_APIS.GET_TRIPLE_ID(
  'articles',
  'http://nature.example.com/Article2',
  'http://purl.org/dc/terms/references',
  'http://nature.example.com/Article3') AS RDF_triple_id FROM DUAL;
 
RDF_TRIPLE_ID
--------------------------------------------------------------------------------
2_9F2BFF05DA0672E_90D25A8B08C653A_46854582F25E8AC5








SEM_APIS.GETV$DATETIMETZVAL


Format

SEM_APIS.GETV$DATETIMETZVAL(

     value_type IN VARCHAR2,

     vname_prefix IN VARCHAR2,

     vname_suffix IN VARCHAR2,

     literal_type IN VARCHAR2,

     language_type IN VARCHAR2,

     ) RETURN NUMBER;


Description

Returns a TIMESTAMP WITH TIME ZONE value for xsd:dateTime typed literals, and returns a null value for all other RDF terms. Greenwich Mean Time is used as the default time zone for xsd:dateTime values without time zones.


Parameters

	value_type
	
Type of the RDF term.


	vname_prefix
	
Prefix value of the RDF term.


	vname_suffix
	
Suffix value of the RDF term.


	literal_type
	
Literal type of the RDF term.


	language_type
	
Language type of the RDF term.





Usage Notes

For better performance, consider creating a function-based index on this function. For more information, see Section 1.6.7.2.


Examples

The following example returns TIMESTAMP WITH TIME ZONE values for all xsd:dateTime literals in the MDSYS.RDF_VALUE$ table:


SELECT SEM_APIS.GETV$DATETIMETZVAL(value_type, vname_prefix, vname_suffix, 
  literal_type, language_type) 
  FROM MDSYS.RDF_VALUE$;








SEM_APIS.GETV$DATETZVAL


Format

SEM_APIS.GETV$DATETZVAL(

     value_type IN VARCHAR2,

     vname_prefix IN VARCHAR2,

     vname_suffix IN VARCHAR2,

     literal_type IN VARCHAR2,

     language_type IN VARCHAR2,

     ) RETURN TIMESTAMP WITH TIME ZONE;


Description

Returns a TIMESTAMP WITH TIME ZONE value for xsd:date typed literals, and returns a null value for all other RDF terms. Greenwich Mean Time is used as the default time zone for xsd:date values without time zones.


Parameters

	value_type
	
Type of the RDF term.


	vname_prefix
	
Prefix value of the RDF term.


	vname_suffix
	
Suffix value of the RDF term.


	literal_type
	
Literal type of the RDF term.


	language_type
	
Language type of the RDF term.





Usage Notes

For better performance, consider creating a function-based index on this function. For more information, see Section 1.6.7.2.


Examples

The following example returns TIMESTAMP WITH TIME ZONE values for all xsd:date literals in the MDSYS.RDF_VALUE$ table:


SELECT SEM_APIS.GETV$DATETZVAL(value_type, vname_prefix, vname_suffix, 
  literal_type, language_type) 
  FROM MDSYS.RDF_VALUE$;








SEM_APIS.GETV$NUMERICVAL


Format

SEM_APIS.GETV$NUMERICVAL(

     value_type IN VARCHAR2,

     vname_prefix IN VARCHAR2,

     vname_suffix IN VARCHAR2,

     literal_type IN VARCHAR2,

     language_type IN VARCHAR2,

     ) RETURN NUMBER;


Description

Returns a numeric value for XML Schema numeric typed literals, and returns a null value for all other RDF terms.


Parameters

	value_type
	
Type of the RDF term.


	vname_prefix
	
Prefix value of the RDF term.


	vname_suffix
	
Suffix value of the RDF term.


	literal_type
	
Literal type of the RDF term.


	language_type
	
Language type of the RDF term.





Usage Notes

For better performance, consider creating a function-based index on this function. For more information, see Section 1.6.7.2.


Examples

The following example returns numeric values for all numeric literals in the MDSYS.RDF_VALUE$ table:


SELECT SEM_APIS.GETV$NUMERICVAL(value_type, vname_prefix, vname_suffix, 
  literal_type, language_type) 
  FROM MDSYS.RDF_VALUE$;








SEM_APIS.GETV$STRINGVAL


Format

SEM_APIS.GETV$STRINGVAL(

     value_type IN VARCHAR2,

     vname_prefix IN VARCHAR2,

     vname_suffix IN VARCHAR2,

     literal_type IN VARCHAR2,

     language_type IN VARCHAR2,

     ) RETURN TIMESTAMP WITH TIME ZONE;


Description

Returns a VARCHAR2 string of the lexical form of plain literals and xsd:string typed literals, and returns a null value for all other RDF terms. CHR(0) is returned for empty literals.


Parameters

	value_type
	
Type of the RDF term.


	vname_prefix
	
Prefix value of the RDF term.


	vname_suffix
	
Suffix value of the RDF term.


	literal_type
	
Literal type of the RDF term.


	language_type
	
Language type of the RDF term.





Usage Notes

For better performance, consider creating a function-based index on this function. For more information, see Section 1.6.7.2.


Examples

The following example returns lexical values for all plain literals and xsd:string literals in the MDSYS.RDF_VALUE$ table:


SELECT SEM_APIS.GETV$STRINGVAL(value_type, vname_prefix, vname_suffix, 
  literal_type, language_type) 
  FROM MDSYS.RDF_VALUE$;








SEM_APIS.GETV$TIMETZVAL


Format

SEM_APIS.GETV$TIMETZVAL(

     value_type IN VARCHAR2,

     vname_prefix IN VARCHAR2,

     vname_suffix IN VARCHAR2,

     literal_type IN VARCHAR2,

     language_type IN VARCHAR2,

     ) RETURN TIMESTAMP WITH TIME ZONE;


Description

Returns a TIMESTAMP WITH TIME ZONE value for xsd:time typed literals, and returns a null value for all other RDF terms. Greenwich Mean Time is used as the default time zone for xsd:time values without time zones. 2009-06-26 is used as the default date in all the generated TIMESTAMP WITH TIME ZONE values.


Parameters

	value_type
	
Type of the RDF term.


	vname_prefix
	
Prefix value of the RDF term.


	vname_suffix
	
Suffix value of the RDF term.


	literal_type
	
Literal type of the RDF term.


	language_type
	
Language type of the RDF term.





Usage Notes

For better performance, consider creating a function-based index on this function. For more information, see Section 1.6.7.2.

Because xsd:time values include only a time but not a date, the returned TIMESTAMP WITH TIME ZONE values (which include a date component) have 2009-06-26 added as the date. This is done so that the returned values can be indexed internally, and so that the date is the same for all of them.


Examples

The following example returns TIMESTAMP WITH TIME ZONE values (using the default 2009-06-26 for the date) for all xsd:time literals in the MDSYS.RDF_VALUE$ table. (


SELECT SEM_APIS.GETV$DATETIMETZVAL(value_type, vname_prefix, vname_suffix, 
  literal_type, language_type) 
  FROM MDSYS.RDF_VALUE$;








SEM_APIS.IS_TRIPLE


Format

SEM_APIS.IS_TRIPLE(

     model_id IN NUMBER,

     subject IN VARCHAR2,

     property IN VARCHAR2,

     object IN VARCHAR2) RETURN VARCHAR2;

or

SEM_APIS.IS_TRIPLE(

     model_name IN VARCHAR2,

     subject IN VARCHAR2,

     property IN VARCHAR2,

     object IN VARCHAR2) RETURN VARCHAR2;


Description

Checks if a statement is an existing triple in the specified model in the database.


Parameters

	model_id
	
ID number of the semantic technology model. Must match a value in the MODEL_ID column of the MDSYS.SEM_MODEL$ view, which is described in Section 1.3.1.


	model_name
	
Name of the semantic technology model. Must match a value in the MODEL_NAME column of the MDSYS.SEM_MODEL$ view, which is described in Section 1.3.1.


	subject
	
Subject. Must match a value in the VALUE_NAME column of the MDSYS.RDF_VALUE$ table, which is described in Section 1.3.2.


	property
	
Property. Must match a value in the VALUE_NAME column of the MDSYS.RDF_VALUE$ table, which is described in Section 1.3.2.


	object
	
Object. Must match a value in the VALUE_NAME column of the MDSYS.RDF_VALUE$ table, which is described in Section 1.3.2.





Usage Notes

This function returns the string value FALSE, TRUE, or TRUE (EXACT):

	
FALSE means that the statement is not a triple in the specified model the database.


	
TRUE means that the statement matches the value of a triple or is the canonical representation of the value of a triple in the specified model the database.


	
TRUE (EXACT) means that the specified subject, property, and object values have exact matches in a triple in the specified model in the database.





Examples

The following example checks if a statement is a triple in the database. In this case, there is an exact match. (This example is an excerpt from Example 1-36 in Section 1.11.2.)


SELECT SEM_APIS.IS_TRIPLE(
  'articles',
  'http://nature.example.com/Article2',
  'http://purl.org/dc/terms/references',
  'http://nature.example.com/Article3') AS is_triple FROM DUAL;
 
IS_TRIPLE                                                                       
--------------------------------------------------------------------------------
TRUE (EXACT)








SEM_APIS.LOAD_INTO_STAGING_TABLE


Format

SEM_APIS.LOAD_INTO_STAGING_TABLE(

     stagong_table IN VARCHAR2,

     source_table IN VARCHAR2,

     input_format IN VARCHAR2 DEFAULT NULL,

     parallel IN INTEGER DEFAULT NULL,

     staging_table_owner IN VARCHAR2 DEFAULT NULL,

     source_table_owner IN VARCHAR DEFAULT NULL,

     flags IN VARCHAR DEFAULT NULL);


Description

Loads data into a staging table from an external table mapped to an N-Triple or N-Quad format input file.


Parameters

	staging_table
	
Name of the staging table.


	source_table
	
Name of the source external table.


	input_format
	
Format of the input file mapped by the source external table: N-TRIPLE or N-QUAD


	parallel
	
Degree of parallelism to use during the load.


	staging_table_owner
	
Owner for the staging table being created. If not specified, the invoker is assumed to be the owner.


	source_table_owner
	
Owner for the source table. If not specified, the invoker is assumed to be the owner.


	flags
	
(Reserved for future use)





Usage Notes

For more information and an example, see Section 1.7.1.1.2, "Loading N-Quad Format Data into a Staging Table Using an External Table".


Examples

The following example loads the staging table. (This example is an excerpt from Example 1-34 in Section 1.7.1.1.2.)


BEGIN
  sem_apis.load_into_staging_table(
    staging_table => 'STAGE_TABLE'
   ,source_table  => 'stage_table_source'
   ,input_format  => 'N-QUAD');
END;








SEM_APIS.LOOKUP_ENTAILMENT


Format

SEM_APIS.LOOKUP_ENTAILMENT (

     models IN SEM_MODELS,

     rulebases IN SEM_RULEBASES

     ) RETURN VARCHAR2;


Description

Returns the name of the entailment (rules index) based on the specified models and rulebases.


Parameters

	models
	
One or more model names. Its data type is SEM_MODELS, which has the following definition: TABLE OF VARCHAR2(25)


	rulebases
	
One or more rulebase names. Its data type is SEM_RULEBASES, which has the following definition: TABLE OF VARCHAR2(25)Rules and rulebases are explained in Section 1.3.6.





Usage Notes

For a rulebase index to be returned, it must be based on all specified models and rulebases.


Examples

The following example finds the entailment that is based on the family model and the RDFS and family_rb rulebases. (It is an excerpt from Example 1-37 in Section 1.11.2.)


SELECT SEM_APIS.LOOKUP_ENTAILMENT(SEM_MODELS('family'),
  SEM_RULEBASES('RDFS','family_rb')) AS lookup_entailment FROM DUAL;

LOOKUP_ENTAILMENT
--------------------------------------------------------------------------------
RDFS_RIX_FAMILY








SEM_APIS.MERGE_MODELS


Format

SEM_APIS.MERGE_MODELS(

     source_model IN VARCHAR2,

     destination_model IN VARCHAR2,

     rebuild_apptab_index IN BOOLEAN DEFAULT TRUE,

     drop_source_model IN BOOLEAN DEFAULT FALSE,

     options IN VARCHAR2 DEFAULT NULL);


Description

Inserts the content from a source model into a destination model, and updates the destination application table.


Parameters

	source_model
	
Name of the source model.


	destination_model
	
Name of the destination model.


	rebuild_apptab_index
	
TRUE causes indexes on the destination application table to be rebuilt after the models are merged; FALSE does not rebuild any indexes.


	drop_source_model
	
TRUE causes the source model (source_model) to be deleted after the models are merged; FALSE (the default) does not delete the source model.


	options
	
A comma-delimited string of options that overrides the default behavior of the procedure. Currently, only the DOP (degree of parallelism) option is supported, to enable parallel execution of this procedure and to specify the degree of parallelism to be associated with the operation.





Usage Notes

Before you merge any models, if you are using positional parameters, check to be sure that you are specifying the correct models for the first and second parameters (source model for the first, destination model for the second). This is especially important if you plan to specify drop_source_model=TRUE.

If appropriate, make copies of the destination model or both models before performing the merge. To make a copy of a model, use SEM_APIS.CREATE_SEM_MODEL to create an empty model with the desired name for the copy, and use SEM_APIS.MERGE_MODELS to populate the newly created copy as the destination model.

Some common uses for this procedure include the following:

	
If you have read-only access to a model that you want to modify, you can clone that model into an empty model on which you have full access, and then modify this latter model.


	
If you want to consolidate multiple models, you can use this procedure as often as necessary to merge the necessary models. Merging all models beforehand and using only the merged model simplifies entailment and can improve entailment performance.




On a multi-core or multi-cpu machine, the DOP (degree of parallelism) option can be beneficial. See Examples for an example that uses the DOP option.

If the source model is large, you may want to update the optimizer statistics on the destination after the merge operation by calling the SEM_APIS.ANALYZE_MODEL procedure.

The following considerations apply to the use of this procedure:

	
You must be the owner of the destination model and have SELECT privilege on the source model. If drop_second_model=TRUE, you must also be owner of the source model.


	
This procedure cannot be used on VPD-enabled or versioning-enabled semantic models.


	
This procedure is not supported on virtual models (explained in Section 1.3.8).


	
No table constraints are allowed on the destination application table.





Examples

The following example inserts the contents of model M1 into M2.


EXECUTE SEM_APIS.MERGE_MODELS('M1', 'M2');


The following example inserts the contents of model M1 into M2, and it specifies a degree of parallelism of 4 (up to four parallel threads for execution of the merge operation).


EXECUTE SEM_APIS.MERGE_MODELS('M1', 'M2', null, null, 'DOP=4');








SEM_APIS.REFRESH_SEM_NETWORK_INDEX_INFO


Format

SEM_APIS.REFRESH_SEM_NETWORK_INDEX_INFO(

     options IN VARCHAR2 DEFAULT NULL);


Description

Refreshes the information about semantic network indexes.


Parameters

	options
	
(Reserved for future use)





Usage Notes

This procedure updates the information in the MDSYS.SEM_NETWORK_INDEX_INFO view, which is described in Section 1.8.1.


Examples

The following example refreshes the information about semantic network indexes.


EXECUTE sem_apis.refresh_sem_network_index_info;








SEM_APIS.REMOVE_DUPLICATES


Format

SEM_APIS.REMOVE_DUPLICATES(

     model_name IN VARCHAR2,

     threshold IN FLOAT DEFAULT 0.3,

     rebuild_apptab_index IN BOOLEAN DEFAULT TRUE);


Description

Removes duplicate triples from a model.


Parameters

	model_name
	
Name of the model.


	threshold
	
A value to determine how numerous triples must be in order for the removal operation to be performed. This procedure removes triples only if the number of triples in the model exceeds the following formula: (total-triples - total-unique-triples + 0.01) / (total-unique-triples + 0.01). For the default value of 0.3 and a model containing 1000 total triples (including duplicates), duplicate triples would be removed only if the number of duplicates exceeds approximately 230.

The lower the threshold value, the fewer duplicates are needed for the procedure to remove duplicates; the higher the threshold value, the more duplicates are needed for the procedure to remove duplicates.


	rebuild_apptab_index
	
TRUE (the default) causes all usable indexes on tables that were affected by this operation to be rebuilt after the duplicate triples are removed; FALSE does not rebuild any indexes.





Usage Notes

When duplicate triples are removed, all information in the removed rows is lost, including information in columns other than the triple column.

This procedure is not supported on virtual models (explained in Section 1.3.8).

If the model is empty, or if it contains no duplicate triples or not enough duplicate triples (as computed using the threshold value), this procedure does not perform any removal operations.

If there are not enough duplicates (as computed using the threshold value) to perform the operation, an informational message is displayed.


Examples

The following example removes duplicate triples in the model named family. It accepts the default threshold value of 0.3 and (by default) rebuilds indexes after the duplicates are removed.


EXECUTE SEM_APIS.REMOVE_DUPLICATES('family');








SEM_APIS.RENAME_ENTAILMENT


Format

SEM_APIS.RENAME_ENTAILMENT(

     old_name IN VARCHAR2,

     new_name IN VARCHAR2);


Description

Renames an entailment (rules index).


Parameters

	old_name
	
Name of the existing entailment to be renamed.


	new_name
	
New name for the entailment.





Usage Notes

(None.)


Examples

The following example renames a entailment named OWLTST_IDX to MY_OWLTST_IDX.


EXECUTE sem_apis.rename_entailment('owltst_idx', 'my_owltst_idx');








SEM_APIS.RENAME_MODEL


Format

SEM_APIS.RENAME_MODEL(

     old_name IN VARCHAR2,

     new_name IN VARCHAR2);


Description

Renames a model.


Parameters

	old_name
	
Name of the existing model to be renamed.


	new_name
	
New name for the model.





Usage Notes

The following considerations apply to the use of this procedure:

	
You must be the owner of the existing model.


	
This procedure cannot be used on VPD-enabled or versioning-enabled semantic models.


	
This procedure is not supported on virtual models (explained in Section 1.3.8).




Contrast this procedure with SEM_APIS.SWAP_NAMES, which swaps (exchanges) the names of two existing models.


Examples

The following example renames a model named MODEL1 to MODEL2.


EXECUTE sem_apis.rename_model('model1', 'model2');








SEM_APIS.SWAP_NAMES


Format

SEM_APIS.SWAP_NAMES(

     model1 IN VARCHAR2,

     model2 IN VARCHAR2);


Description

Swaps (exchanges) the names of two existing models.


Parameters

	model1
	
Name of a model.


	model2
	
Name of another model.





Usage Notes

As a result of this procedure, the name of model model1 is changed to the (old) name of model2, and the name of model model2 is changed to the (old) name of model1.

The order of the names does not affect the result. For example, you could specify TEST for model1 and PRODUCTION for model2, or PRODUCTION for model1 and TEST for model2, and the result will be the same.

Contrast this procedure with SEM_APIS.RENAME_MODEL, which renames an existing model.


Examples

The following example changes the name of the (old) TEST model to PRODUCTION, and the name of the (old) PRODUCTION model to TEST.


EXECUTE sem_apis.swap_names('test', 'production');








SEM_APIS.VALIDATE_ENTAILMENT


Format

SEM_APIS.VALIDATE_ENTAILMENT(

     models_in IN SEM_MODELS,

     rulebases_in IN SEM_RULEBASES,

     criteria_in IN VARCHAR2 DEFAULT NULL,

     max_conflict IN NUMBER DEFAULT 100,

     options IN VARCHAR2 DEFAULT NULL

     ) RETURN RDF_LONGVARCHARARRAY;


Description

Validates entailments (rules indexes) that can be used to perform OWL or RDFS inferencing for one or more models.


Parameters

	models_in
	
One or more model names. Its data type is SEM_MODELS, which has the following definition: TABLE OF VARCHAR2(25)


	rulebases_in
	
One or more rulebase names. Its data type is SEM_RULEBASES, which has the following definition: TABLE OF VARCHAR2(25). Rules and rulebases are explained in Section 1.3.6.


	criteria_in
	
A comma-delimited string of validation checks to run. If you do not specify this parameter, by default all of the following checks are run:

	
UNSAT: Find unsatisfiable classes.


	
EMPTY: Find instances that belong to unsatisfiable classes.


	
SYNTAX_S: Find triples whose subject is neither URI nor blank node.


	
SYNTAX_P: Find triples whose predicate is not URI.


	
SELF_DIF: Find individuals that are different from themselves.


	
INST: Find individuals that simultaneously belong to two disjoint classes.


	
SAM_DIF: Find pairs of individuals that are same (owl:sameAs) and different (owl:differentFrom) at the same time.




To specify fewer checks, specify a string with only the checks to be performed. For example, criteria_in => 'UNSAT' causes the validation process to search only for unsatisfiable classes.


	max_conflict
	
The maximum number of conflicts to find before the validation process stops. The default value is 100.


	options
	
(Not currently used. Reserved for Oracle use.).





Usage Notes

This procedure can be used to detect inconsistencies in the original entailment. For more information, see Section 2.2.5.

This procedure returns a null value if no errors are detected or (if errors are detected) an object of type RDF_LONGVARCHARARRAY, which has the following definition: VARRAY(32767) OF VARCHAR2(4000)

To create an entailment, use the SEM_APIS.CREATE_ENTAILMENT procedure.


Examples

For an example of this procedure, see Example 2-5 in Section 2.2.5.








SEM_APIS.VALIDATE_MODEL


Format

SEM_APIS.VALIDATE_MODEL(

     models_in IN SEM_MODELS,

     criteria_in IN VARCHAR2 DEFAULT NULL,

     max_conflict IN NUMBER DEFAULT 100,

     options IN VARCHAR2 DEFAULT NULL

     ) RETURN RDF_LONGVARCHARARRAY;


Description

Validates one or more models.


Parameters

	models_in
	
One or more model names. Its data type is SEM_MODELS, which has the following definition: TABLE OF VARCHAR2(25)


	criteria_in
	
A comma-delimited string of validation checks to run. If you do not specify this parameter, by default all of the following checks are run:

	
UNSAT: Find unsatisfiable classes.


	
EMPTY: Find instances that belong to unsatisfiable classes.


	
SYNTAX_S: Find triples whose subject is neither URI nor blank node.


	
SYNTAX_P: Find triples whose predicate is not URI.


	
SELF_DIF: Find individuals that are different from themselves.


	
INST: Find individuals that simultaneously belong to two disjoint classes.


	
SAM_DIF: Find pairs of individuals that are same (owl:sameAs) and different (owl:differentFrom) at the same time.




To specify fewer checks, specify a string with only the checks to be performed. For example, criteria_in => 'UNSAT' causes the validation process to search only for unsatisfiable classes.


	max_conflict
	
The maximum number of conflicts to find before the validation process stops. The default value is 100.


	options
	
(Not currently used. Reserved for Oracle use.).





Usage Notes

This procedure can be used to detect inconsistencies in the original data model. For more information, see Section 2.2.5.

This procedure returns a null value if no errors are detected or (if errors are detected) an object of type RDF_LONGVARCHARARRAY, which has the following definition: VARRAY(32767) OF VARCHAR2(4000)


Examples

The following example validates the model named family.


SELECT SEM_APIS.VALIDATE_MODEL(SEM_MODELS('family')) FROM DUAL;








SEM_APIS.VALUE_NAME_PREFIX


Format

SEM_APIS.VALUE_NAME_PREFIX (

     value_name IN VARCHAR2,

     value_type IN VARCHAR2

     ) RETURN VARCHAR2;


Description

Returns the value in the VNAME_PREFIX column for the specified value name and value type pair in the MDSYS.RDF_VALUE$ table.


Parameters

	value_name
	
Value name. Must match a value in the VALUE_NAME column in the MDSYS.RDF_VALUE$ table, which is described in Section 1.3.2.


	value_type
	
Value type. Must match a value in the VALUE_TYPE column in the MDSYS.RDF_VALUE$ table, which is described in Section 1.3.2.





Usage Notes

This function usually causes an index on the MDSYS.RDF_VALUE$ table to be used for processing a lookup for values, and thus can make a query run faster.


Examples

The following query returns value name portions of all the lexical values in MDSYS.RDF_VALUE$ table with a prefix value same as that returned by the VALUE_NAME_PREFIX function. This query uses an index on the MDSYS.RDF_VALUE$ table, thereby providing efficient lookup.


SELECT value_name FROM MDSYS.RDF_VALUE$
  WHERE vname_prefix = SEM_APIS.VALUE_NAME_PREFIX(
    'http://www.w3.org/1999/02/22-rdf-syntax-ns#type','UR');
 
VALUE_NAME
--------------------------------------------------------------------------------
http://www.w3.org/1999/02/22-rdf-syntax-ns#Alt
http://www.w3.org/1999/02/22-rdf-syntax-ns#Bag
http://www.w3.org/1999/02/22-rdf-syntax-ns#List
http://www.w3.org/1999/02/22-rdf-syntax-ns#Property
http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq
http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement
http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral
http://www.w3.org/1999/02/22-rdf-syntax-ns#first
http://www.w3.org/1999/02/22-rdf-syntax-ns#nil
http://www.w3.org/1999/02/22-rdf-syntax-ns#object
http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate
http://www.w3.org/1999/02/22-rdf-syntax-ns#rest
http://www.w3.org/1999/02/22-rdf-syntax-ns#subject
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#value
 
15 rows selected.








SEM_APIS.VALUE_NAME_SUFFIX


Format

SEM_APIS.VALUE_NAME_SUFFIX (

     value_name IN VARCHAR2,

     value_type IN VARCHAR2

     ) RETURN VARCHAR2;


Description

Returns the value in the VNAME_SUFFIX column for the specified value name and value type pair in the MDSYS.RDF_VALUE$ table.


Parameters

	value_name
	
Value name. Must match a value in the VALUE_NAME column in the MDSYS.RDF_VALUE$ table, which is described in Section 1.3.2.


	value_type
	
Value type. Must match a value in the VALUE_TYPE column in the MDSYS.RDF_VALUE$ table, which is described in Section 1.3.2.





Usage Notes

This function usually causes an index on the MDSYS.RDF_VALUE$ table to be used for processing a lookup for values, and thus can make a query run faster.


Examples

The following query returns value name portions of all the lexical values in MDSYS.RDF_VALUE$ table with a suffix value same as that returned by the VALUE_NAME_SUFFIX function. This query uses an index on the MDSYS.RDF_VALUE$ table, thereby providing efficient lookup.


SELECT value_name FROM MDSYS.RDF_VALUE$
  WHERE vname_suffix = SEM_APIS.VALUE_NAME_SUFFIX(
    'http://www.w3.org/1999/02/22-rdf-syntax-ns#type','UR');
 
VALUE_NAME
--------------------------------------------------------------------------------
http://www.w3.org/1999/02/22-rdf-syntax-ns#type





10 SEM_OLS Package Subprograms

The SEM_OLS package contains subprograms (functions and procedures) related to triple-level security to RDF data, using Oracle Label Security (OLS). To use the subprograms in this chapter, you should understand the conceptual and usage information in Chapter 1, "Oracle Database Semantic Technologies Overview" and Chapter 5, "Fine-Grained Access Control for RDF Data".

This chapter provides reference information about the subprograms, listed in alphabetical order.





SEM_OLS.APPLY_POLICY_TO_APP_TAB


Format

SEM_OLS.APPLY_POLICY_TO_APP_TAB(

     policy_name IN VARCHAR2,

     schema_name IN VARCHAR2,

     table_name IN VARCHAR2,

     predicate IN VARCHAR2 DEFAULT NULL);


Description

Applies an OLS policy to an application table.


Parameters

	policy_name
	
Name of an existing OLS policy.


	schema_name
	
Name of the schema containing the application table.


	table_name
	
Name of the application table.


	predicate
	
An additional predicate to combine with the label-based predicate.





Usage Notes

When you use triple-level security, OLS is applied to each semantic model in the network. That is, label security is applied to the relevant internal tables and to all the application tables; there is no need to manually apply policies to the application tables of existing semantic models. However, if you need to create additional models after applying the OLS policy, you must use the SEM_OLS.APPLY_POLICY_TO_APP_TAB procedure to apply OLS to the application table before creating the model.

You must have the following to execute this procedure: EXECUTE privilege for the SA_POLICY_ADMIN package, and the policy_DBA role.

Before executing this procedure, you must have executed the SEM_RDFSA.APPLY_OLS_POLICY procedure specifying SEM_RDFSA.TRIPLE_LEVEL_ONLY for the rdfsa_options parameter.

To remove the OLS policy from the application table, use the SEM_OLS.REMOVE_POLICY_FROM_APP_TAB procedure.

For information about support for OLS, see Section 5.2.


Examples

The following example applies an OLS policy named defense to the MY_SCHEMA.MY_APP_TABLE application table.


begin
  sem_ols.apply_policy_to_app_table(
        policy_name => 'defense',
        schema_name => 'my_schema',
        table_name  => 'my_app_table');
end;
/








SEM_OLS.REMOVE_POLICY_FROM_APP_TAB


Format

SEM_OLS.REMOVE_POLICY_FROM_APP_TAB(

     policy_name IN VARCHAR2,

     schema_name IN VARCHAR2,

     table_name IN VARCHAR2);


Description

Permanently removes or detaches the OLS policy from an application table.


Parameters

	policy_name
	
Name of the existing OLS policy.


	schema_name
	
Name of the schema containing the application table.


	table_name
	
Name of the application table.





Usage Notes

If you have dropped a semantic model and you no longer need to protect the application table, you can use this procedure.

You must have the following to execute this procedure: EXECUTE privilege for the SA_POLICY_ADMIN package, and the policy_DBA role.

Before executing this procedure, you must have executed the SEM_RDFSA.APPLY_OLS_POLICY procedure specifying SEM_RDFSA.TRIPLE_LEVEL_ONLY for the rdfsa_options parameter.

An exception is generated if the associated model exists. In this case, if you want to execute this procedure, you must first drop the model.

For information about support for OLS, see Section 5.2.


Examples

The following example removes the OLS policy named defense from the MY_SCHEMA.MY_APP_TABLE application table.


begin
  sem_ols.remove_policy_from_app_table(
        policy_name => 'defense',
        schema_name => 'my_schema',
        table_name  => 'my_app_table');
end;
/





11 SEM_PERF Package Subprograms

The SEM_PERF package contains subprograms for examining and enhancing the performance of the Resource Description Framework (RDF) and Web Ontology Language (OWL) support in an Oracle database. To use the subprograms in this chapter, you must understand the conceptual and usage information in Chapter 1, "Oracle Database Semantic Technologies Overview" and Chapter 2, "OWL Concepts".

This chapter provides reference information about the subprograms, listed in alphabetical order.





SEM_PERF.GATHER_STATS


Format

SEM_PERF.GATHER_STATS();

     just_on_values_table IN BOOLEAN DEFAULT FALSE,

     degree IN NUMBER(38) DEFAULT NULL);


Description

Gathers statistics about RDF and OWL tables and their indexes.


Parameters

	just_on_values_table
	
TRUE collects statistics only on the table containing the lexical values of triples; FALSE (the default) collects statistics on all major tables related to the storage of RDF and OWL data.

A value of TRUE reduces the execution time for the procedure; and it may be sufficient if you need only to collect statistics on the values table (for example, if you use other interfaces to collect any other statistics that you might need).


	degree
	
Degree of parallelism. For more information about parallel execution, see Oracle Database VLDB and Partitioning Guide.





Usage Notes

To use this procedure, you must connect as a user with permission to execute it. By default, when Spatial is installed as part of Oracle Database, only the MDSYS user can execute this procedure; however execution permission on this procedure can be granted to users as needed.

This procedure collects statistical information that can help you to improve inferencing performance, as explained in Section 2.2.7. This procedure internally calls the DBMS_STATS.GATHER_TABLE_STATS procedure to collect statistics on RDF- and OWL-related tables and their indexes, and stores the statistics in the Oracle Database data dictionary. For information about using the DBMS_STATS package, see Oracle Database PL/SQL Packages and Types Reference.

Gathering statistics uses significant system resources, so execute this procedure when it cannot adversely affect essential applications and operations.


Examples

The following example gathers statistics about RDF and OWL related tables and their indexes.


EXECUTE SEM_PERF.GATHER_STATS;





12 SEM_RDFCTX Package Subprograms

The SEM_RDFCTX package contains subprograms (functions and procedures) to manage extractor policies and semantic indexes created for documents. To use the subprograms in this chapter, you should understand the conceptual and usage information in Chapter 4, "Semantic Indexing for Documents".

This chapter provides reference information about the subprograms, listed in alphabetical order.





SEM_RDFCTX.ADD_DEPENDENT_POLICY


Format

SEM_RDFCTX.ADD_DEPENDENT_POLICY(

     index_name IN VARCHAR2,

     policy_name IN VARCHAR2,

     partition_name IN VARCHAR2 DEFAULT NULL);


Description

Adds a dependent policy to an (already created) index or index partition.


Parameters

	index_name
	
Name of the index.


	policy_name
	
Name of the dependent policy.


	partition_name
	
If the specified index is local, the name of the target partition. (Otherwise, must be null.)





Usage Notes

The base policy corresponding to the new dependent policy must already be a part of the index.


Examples

The following example adds a new dependent policy SEM_EXTR_PLUS_GEOONT to the index ArticleIndex.


begin
  sem_rdfctx.add_dependent_policy (index_name  => 'ArticleIndex',
                                   policy_name => 'SEM_EXTR_PLUS_GEOONT');
end;
/








SEM_RDFCTX.CREATE_POLICY


Format

SEM_RDFCTX.CREATE_POLICY(

     policy_name IN VARCHAR2,

     extractor mdsys.rdfctx_extractor,

     preferences sys.XMLType DEFAULT NULL);

or

SEM_RDFCTX.CREATE_POLICY(

     policy_name IN VARCHAR2,

     base_policy IN VARCHAR2,

     user_models IN SEM_MODELS DEFAULT NULL,

     user_entailments IN SEM_MODELS DEFAULT NULL);


Description

Creates an extractor policy. (The first format is for a base policy; the second format is for a policy that is dependent on a base policy.)


Parameters

	policy_name
	
Name of the extractor policy.


	extractor
	
An instance of a subtype of the RDFCTX_EXTRACTOR type that encapsulates the extraction logic for the information extractor.


	preferences
	
Any preferences associated with the policy.


	base_policy
	
Base extractor policy for a dependent policy.


	user_models
	
List of user models for a dependent policy.


	user_entailments
	
List of user entailments for a dependent policy.





Usage Notes

An extractor policy created using this procedure determines the characteristics of a semantic index that is created using the policy. Each extractor policy refers to an instance of an extractor type, either directly or indirectly. An extractor policy with a direct reference to an extractor type instance can be used to compose other extractor policies that include additional RDF models for ontologies.

An instance of the extractor type assigned to the extractor parameter must be an instance of a direct or indirect subtype of type mdsys.rdfctx_extractor.

The RDF models specified in the user_models parameter must be accessible to the user that is creating the policy.

The RDF entailments specified in the user_entailments parameter must be accessible to the user that is creating the policy. Note that the RDF models underlying the entailments do not get automatically included in the dependent policy. To include one or more of those underlying RDF models, you need to include the models in the user_models parameter.

The preferences specified for extractor policy determine the type of repository used for the documents to be indexed and other relevant information. For more information, see Section 4.8, "Indexing External Documents".


Examples

The following example creates an extractor policy using the gatenlp_extractor extractor type, which is included with the Oracle Database support for semantic indexing.


begin
  sem_rdfctx.create_policy (policy_name => 'SEM_EXTR',
                            extractor   => mdsys.gatenlp_extractor());
end;
/


The following example creates a dependent policy for the previously created extractor policy, and it adds the user-defined RDF model geo_ontology to the dependent policy.


begin
  sem_rdfctx.create_policy (policy_name => 'SEM_EXTR_PLUS_GEOONT',
                            base_policy => 'SEM_EXTR',
                            user_models => SEM_MODELS ('geo_ontology'));
end;
/








SEM_RDFCTX.DROP_POLICY


Format

SEM_RDFCTX.DROP_POLICY(

     policy_name IN VARCHAR2);


Description

Deletes (drops) an unused extractor policy.


Parameters

	policy_name
	
Name of the extractor policy.





Usage Notes

An exception is generated if the specified policy being is used for a semantic index for documents or if a dependent extractor policy exists for the specified policy.


Examples

The following example drops the SEM_EXTR_PLUS_GEOONT extractor policy.


begin
  sem_rdfctx.drop_policy (policy_name => 'SSEM_EXTR_PLUS_GEOONT');
end;
/








SEM_RDFCTX.MAINTAIN_TRIPLES


Format

SEM_RDFCTX.MAINTAIN_TRIPLES(

     index_name IN VARCHAR2,

     where_clause IN VARCHAR2,

     rdfxml_content sys.XMLType,

     policy_name IN VARCHAR2 DEFAULT NULL,

     action IN VARCHAR2 DEFAULT 'ADD');


Description

Adds one or more triples to graphs that contain information extracted from specific documents.


Parameters

	index_name
	
Name of the semantic index for documents.


	where_clause
	
A SQL predicate (WHERE clause text without the WHERE keyword) on the table in which the documents are stored, to identify the rows for which to maintain the index.


	rdfxml_content
	
Triples, in the form of an RDF/XML document, to be added to the individual graphs corresponding to the documents.


	policy_name
	
Name of the extractor policy. If policy_name is null (the default), the triples are added to the information extracted by the default (or the only) extractor policy for the index; if you specify a policy name, the triples are added to the information extracted by that policy.


	action
	
Type of maintenance operation to perform on the triples. The only value currently supported in ADD (the default), which adds the triples that are specified in the rdfxml_content parameter.





Usage Notes

The information extracted from the semantically indexed documents may be incomplete and lacking in proper context. This procedure enables a domain expect to add triples to individual graphs pertaining to specific semantically indexed documents, so that all subsequent SEM_CONTAINS queries can consider these triples in their document search criteria.

This procedure accepts the index name and WHERE clause text to identify the specific documents to be annotated with the additional triples. For example, the where_clause might be specified as a simple predicate involving numeric data, such as 'docId IN (1,2,3)'.


Examples

The following example annotates a specific document with the semantic index ArticleIndex by adding triples to the corresponding individual graph.


begin
  sem_rdfctx.maintain_triples(
     index_name      => 'ArticleIndex',
     where_clause    => 'docid = 15',  
     rdfxml_content => sys.xmltype(
      '<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
                xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
                xmlns:pred="http://myorg.com/pred/">
       <rdf:Description rdf:about=" http://newscorp.com/Org/ExampleCorp">
         <pred:hasShortName 
               rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
             Example
         </pred:hasShortName>
     </rdf:Description> 
    </rdf:RDF>'));
end;
/








SEM_RDFCTX.SET_DEFAULT_POLICY


Format

SEM_RDFCTX.SET_DEFAULT_POLICY(

     index_name IN VARCHAR2,

     policy_name IN VARCHAR2);


Description

Sets the default extractor policy for a semantic index that is configured with multiple extractor policies.


Parameters

	index_name
	
Name of the semantic index for documents.


	policy_name
	
Name of the extractor policy to be used as the default extractor policy for the specified semantic index. Must be one of the extractor policies listed in the PARAMETERS clause of the CREATE INDEX statement that created index_name.





Usage Notes

When you create a semantic index for documents, you can specify multiple extractor policies as a space-separated list of names in the PARAMETERS clause of the CREATE INDEX statement. As explained in Section 4.3, "Semantically Indexing Documents", the first policy from this list is used as the default extractor policy for all SEM_CONTAINS queries that do not identify an extractor policy by name. You can use the SEM_RDFCTX.SET_DEFAULT_POLICY procedure to set a different default policy for the index.


Examples

The following example sets CITY_EXTR as the default extractor policy for the ArticleIndex index.


begin
  sem_rdfctx.set_default_policy (index_name => 'ArticleIndex',
                                 policy_name => 'CITY_EXTR');
end;
/








SEM_RDFCTX.SET_EXTRACTOR_PARAM


Format

SEM_RDFCTX.SET_EXTRACTOR_PARAM(

     param_key IN VARCHAR2,

     patam_value IN VARCHAR2,

     param_desc IN VARCHAR2);


Description

Configures the Oracle Database semantic indexing support to work with external information extractors, such as Calais and GATE.


Parameters

	param_key
	
Key for the parameter to be set.


	param_value
	
Value for the parameter to be set.


	param_desc
	
Short description for the parameter to be set.





Usage Notes

You must have the SYSDBA role to use this procedure.

To work with the Calais extractor type (see Section 4.9), you must specify values for the following parameters:

	
CALAIS_WS_ENDPOINT: Web service end point for Calais.


	
CALAIS_KEY: License key for Calais.


	
CALAIS_WS_SOAPACTION: SOAP action for the Calais Web service.




To work with the General Architecture for Text Engineering (GATE) extractor type (see Section 4.10), you must specify values for the following parameters:

	
GATE_NLP_HOST: Host for the GATE NLP Listener.


	
GATE_NLP_PORT: Port for the GATE NLP Listener.




In addition to these parameters, you may need to specify a value for the HTTP_PROXY parameter to work with information extractors or index documents that are outside the firewall.

A database instance only has one set of values for these parameters, and they are used for all instances of semantic indexes using the corresponding information extractor. You can use this procedure if you need to change the existing values of any of the parameters.


Examples

For examples, see the following sections:

	
Section 4.9, "Configuring the Calais Extractor type"


	
Section 4.10, "Working with General Architecture for Text Engineering (GATE)"








13 SEM_RDFSA Package Subprograms

The SEM_RDFSA package contains subprograms (functions and procedures) for providing fine-grained access control to RDF data, using either a virtual private database (VPD) or Oracle Label Security (OLS). To use the subprograms in this chapter, you should understand the conceptual and usage information in Chapter 1, "Oracle Database Semantic Technologies Overview" and Chapter 5, "Fine-Grained Access Control for RDF Data".

This chapter provides reference information about the subprograms, listed in alphabetical order.





SEM_RDFSA.ADD_VPD_CONSTRAINT


Format

SEM_RDFSA.ADD_VPD_CONSTRAINT(

     policy_name IN VARCHAR2,

     constr_name IN VARCHAR2,

     match_pattern IN VARCHAR2,

     apply_pattern IN VARCHAR2,

     constr_group IN VARCHAR2 DEFAULT NULL);


Description

Adds a data access constraint to a VPD policy.


Parameters

	policy_name
	
Name of an existing VPD policy.


	constr_name
	
Unique case-insensitive name for the constraint to be defined in the VPD policy.


	match_pattern
	
Match pattern that determines the target of the constraint.


	apply_pattern
	
The constraint's apply pattern that enforces the access restriction.


	constr_group
	
Case-insensitive name for the group to which the constraint belongs.





Usage Notes

This procedure adds a data access constraint to a VPD policy. Only the owner of a VPD policy can add a new constraint to the policy. The newly added constraint comes into effect immediately and it is enforced for queries on all RDF models associated with the VPD policy.

A constraint group may be specified for each policy such that they can be selectively activated and deactivated at runtime based on the application context (as explained in Section 5.1.1). A constraint with no constraint group is always active. See Section 5.1.3 for details about the match and apply patterns passed to this procedure.

See also the MDSYS.RDFVPD_POLICY_CONSTRAINTS view, which is described in Section 5.1.6.

For information about support for VPD, see Section 5.1.


Examples

The following example adds data access constraint for the RDF Class Contracts to the VPD policy and assigns it a constraint group named user:


begin
  sem_rdfsa.add_vpd_constraint(
          policy_name   => 'contracts_policy',
          constr_name   => 'andy_constraint_1',
          match_pattern =>'{?contract  rdf:type
                              <http://www.myorg.com/classes/Contract>}',
          apply_pattern => '{?contract  pred:hasMember      
              "sys_context('sa$appctx','app_user_uri'}"^^orardf:instruction }', 
          constr_group  => 'user');
end;
/


The preceding example makes use of secure application context to identify the user issuing the query and binds its value in the apply pattern to ensure that the user has access to a specific contract. The secure application context with the namespace sa$appctx is expected to initialize the value for the attribute app_user_uri to the URI identifying the user logged in.

The following example adds a data access constraint for the RDF property hasContractValue to the same VPD policy and assigns it to a constraint group named vp.


begin
  sem_rdfsa.add_vpd_constraint(
          policy_name   => 'contracts_policy',
          constr_name   => 'vp_access_to_contr_value',
          match_pattern => '{?contract  pred:hasContractValue ?cvalue }',
          apply_pattern => '{?contract  pred:drivenBy         ?dept .
                             ?dept      pred:hasVP
              "sys_context('sa$appctx','app_user_uri'}"^^orardf:instruction }', 
          constr_group  => 'vp');
end;
/








SEM_RDFSA.APPLY_OLS_POLICY


Format

SEM_RDFSA.APPLY_OLS_POLICY(

     policy_name IN VARCHAR2,

     rdfsa_options IN NUMBER DEFAULT SEM_RDFSA.SECURE_SUBJECT,

     table_options IN VARCHAR2 DEFAULT 'ALL_CONTROL',

     label_function IN VARCHAR2 DEFAULT NULL,

     predicate IN VARCHAR2 DEFAULT NULL);


Description

Applies an OLS policy to the semantic data store.


Parameters

	policy_name
	
Name of an existing OLS policy.


	rdfsa_options
	
Options specifying the mode of fine-grained access control to be enabled for RDF data. The default option for securing RDF data involves assigning sensitivity labels for the resources appearing the triples' subject position. You can override the defaults by using the rdfsa_options parameter and specifying one of the constants defined in Table 13-1 in the Usage Notes.


	table_options
	
Policy enforcement options. The default value (ALL_CONTROL) is the only supported value for this procedure.


	label_function
	
A string invoking a function to return a label value to use as the default.


	predicate
	
An additional predicate to combine with the label-based predicate.





Usage Notes

The OLS policy specified with this procedure must be created with CTXT1 as the column name, and it should use default policy options. For information about policy options, see Oracle Label Security Administrator's Guide.

This procedure invokes the sa_policy_admin.apply_table_policy procedure on multiple tables defined in the MDSYS schema. The parameters table_options, label_function, and predicate for the SEM_RDFSA.APPLY_OLS_POLICY procedure have same semantics as the parameters with same names in the sa_policy_admin.apply_table_policy procedure.

For the rdfsa_options parameter, you can specify the package constant for the desired option. Table 13-1 lists these constants and their descriptions.


Table 13-1 SEM_RDFSA Package Constants for rdfsa_options Parameter

	Constant	Description
	
SEM_RDFSA.SECURE_SUBJECT

	
Assigns sensitivity labels for the resources appearing the triples' subject position.


	
SEM_RDFSA.SECURE_PREDICATE

	
Assigns sensitivity labels for the resources appearing the triples' predicate position.


	
SEM_RDFSA.SECURE_OBJECT

	
Assigns sensitivity labels for the resources appearing the triples' object position.


	
SEM_RDFSA.TRIPLE_LEVEL_ONLY

	
Applies triple-level security. Provides good performance, and eliminates the need to assign labels to individual resources. (Requires that Patch 9819833, available from My Oracle Support, be installed.)


	
SEM_RDFSA.OPT_DEFINE_BEFORE_USE

	
Restricts the use of an RDF resource in a triple before the sensitivity label is defined for the resource. If this option is not specified, the user's initial row label is used as the default label for the resource upon first use.


	
SEM_RDFSA.OPT_RELAX_TRIPLE_LABEL

	
Relaxes the dominating relationship that exists between the triple label and the labels associated with all its components. With this option, a triple can be defined if the user has READ access to all the triple components and the triple label may not bear any relationship with the component labels. Without this option, the triple label should at least cover the label for all its components.








You can specify a function in the label_function parameter to generate custom labels for newly inserted triples. The label function is associated with the MDSYS.RDF_LINK$ table, and the columns in this table may be configured as parameters to the label function as shown in the following example:


fgac_admin.new_triple_label(:new.model_id,
                            :new.start_node_id,
                            :new.p_value_id,
                            :new.canon_end_node_id)'


Because the OLS policy is applied to more than one table with different structures, the only valid column reference in any predicates assigned to the predicate parameter is that of the label column: CTXT1. If OLS is enabled for a semantic data store with existing data, you can specify a predicate of the form 'OR CTXT1 is null' to be able to continue using this data with no access restrictions.

An OLS-enabled semantic data store uses sensitivity labels for all the RDF triples organized in multiple models. User access to such triples, through model views and SEM_MATCH queries, is restricted by the OLS policy. Additionally, independent of a user owning the application table, access to the triple column (of type SDO_RDF_TRIPLE_S) in the table is restricted to users with FULL access privileges with the OLS policy.

The triples are inserted into a specific RDF model using the INSERT privileges on the corresponding application table. A sensitivity label for the new triple is generated using the user's session context (initial row label) or the label function. The triple is validated for any RDF policy violations using labels associated with the triple components. Although the triple information may not be accessed trough the application table, the model view may be queried to access the triples, while enforcing the OLS policy restrictions. If you have the necessary policy privileges (such as writeup, writeacross), you can update the CTXT1 column in the model view to reset the label assigned to the triple. The new label is automatically validated for any RDF policy violations involving the triple components. Update privilege on the CTXT1 column of the model view is granted to the owner of the model, and this user may selectively grant this privilege to other users.

If the RDF models are created in schemas other than the user with FULL access, necessary privileges on the model objects -- specifically, read/write access on the application table, read access to the model view, and write access to the CTXT1 column in the model view -- can be granted to such users for maintenance operations. These operations include bulk loading into the model, resetting any sensitivity labels assigned to the triples, and creating entailments using the model.

To disable the OLS policy, use the SEM_RDFSA.DISABLE_OLS_POLICY procedure.

For information about support for OLS, see Section 5.2.


Examples

The following example enable secure access to RDF data with secure subject and secure predicate options.


begin
  sem_rdfsa.apply_ols_policy(
        policy_name   => 'defense',
        rdfsa_options => sem_rdfsa.SECURE_SUBJECT+
                         sem_rdfsa.SECURE_PREDICATE); 
end;
/


The following example extends the preceding example by specifying a Define Before Use option, which allows a user to define a triple only if the triple components secured (Subject, Predicate or Object) are predefined with an associated sensitivity label. This configuration is effective if the user inserting the triple does not have execute privileges on the SEM_RDFSA package.


begin
  sem_rdfsa.apply_ols_policy(
        policy_name   => 'defense',
        rdfsa_options => sem_rdfsa.SECURE_SUBJECT+
                         sem_rdfsa.SECURE_PREDICATE+
                         sem_rdfsa.OPT_DEFINE_BEFORE_USE); 
end;
/








SEM_RDFSA.APPLY_VPD_POLICY


Format

SEM_RDFSA.APPLY_VPD_POLICY(

     policy_name IN VARCHAR2,

     model_name IN VARCHAR2);


Description

Applies a VPD policy to an RDF model.


Parameters

	policy_name
	
Name of an existing VPD policy.


	model_name
	
Name of the model to which to apply the VPD policy.





Usage Notes

This procedure applies a VPD policy to an RDF model. The owner of a VPD policy can apply it to any model in the database instance. The owner must also have EXECUTE privileges on the SYS.DBMS_RLS package.

After a policy is applied to an RDF model, the data stored in the model and the data inferred from this model can be accessed only using SPARQL query patterns within a SEM_MATCH operation. All other forms of data access (such as through model views or using classic graph pattern syntax in a SEM_MATCH query) are not permitted.

A VPD policy may not applied to a model participating in a virtual model. Similarly, a virtual model may not be defined to include any VPD-enabled models

See also the MDSYS.RDFVPD_POLICIES view, which is described in Section 5.1.4.

For information about support for VPD, see Section 5.1.


Examples

The following example applies a VPD policy to an RDF model.


begin
  sem_rdfsa.apply_vpd_policy(
      policy_name => 'contracts_policy',
      model_name  => 'contracts');
end;
/








SEM_RDFSA.CREATE_VPD_POLICY


Format

SEM_RDFSA.CREATE_VPD_POLICY(

     policy_name IN VARCHAR2,

     namespace_map IN RDF_ALIASES DEFAULT NULL,

    policy_context IN VARCHAR2 DEFAULT NULL);


Description

Creates a new VPD policy in a user schema.


Parameters

	policy_name
	
Name for the VPD policy.


	namespace_map
	
A mapping of namespaces and their prefixes to be used in the VPD constraints.


	policy_context
	
Name of the context created specifically to manage constraint groups defined in the VPD policy.





Usage Notes

You must have EXECUTE privileges on the SYS.DBMS_RLS package.

The namespace map associated with the policy may be used to define namespace prefixes that are subsequently used in the policy's metadata statements added using the SEM_RDFSA.MAINT_VPD_METADATA procedure and the policy's data access constraints defined using the SEM_RDFSA.ADD_VPD_CONSTRAINT procedure.

The name of the application context assigned to the policy_context parameter is used to manage the constraint groups dynamically at run time. Such context must be created using the CREATE CONTEXT command before associating it with the VPD policy. Each data access constraint defined in the VPD policy may specify the name of a constraint group to which it belongs. At run time, the name of the constraint group is matched with the name of the policy_context value to selectively activate the group. (For more information, see Section 5.1.1).

See also the MDSYS.RDFVPD_POLICIES view, which is described in Section 5.1.4.

For information about support for VPD, see Section 5.1.


Examples

The following example creates a VPD policy with a namespace map and also associates a policy context to manage constraint groups.


create context contracts_appctx using sec_admin.contracts_appctx;
begin
  sem_rdfsa.create_vpd_policy(
        policy_name  => 'contracts_policy',
        namespace_map => 
          mdsys.rdf_aliases(                                                    
            mdsys.rdf_alias('','http://www.myorg.com/classes/'),                                                     
            mdsys.rdf_alias('pred','http://www.myorg.com/pred/'),
            mdsys.rdf_alias('emp','http://www.myorg.com/employee/')),
        policy_context => 'contracts_appctx');
end;
/








SEM_RDFSA.DELETE_VPD_CONSTRAINT


Format

SEM_RDFSA.DELETE_VPD_CONSTRAINT(

     policy_name IN VARCHAR2,

     constr_name IN VARCHAR2);


Description

Deletes a data access constraint from a VPD policy.


Parameters

	policy_name
	
Name of an existing VPD policy.


	constr_name
	
Unique case-insensitive name for the constraint to be deleted from the VPD policy.





Usage Notes

This procedure deletes a data access constraint from a VPD policy. Only the owner of a VPD policy can delete a constraint from the policy.

See also the MDSYS.RDFVPD_POLICY_CONSTRAINTS view, which is described in Section 5.1.6.

For information about support for VPD, see Section 5.1.


Examples

The following example adds data access constraint named vp_access_to_contr_value from the VPD policy named contracts_policy:


begin
  sem_rdfsa.delete_vpd_policy(
      policy_name   => 'contracts_policy',
      constr_name   => 'vp_access_to_contr_value'); 
end;
/








SEM_RDFSA.DISABLE_OLS_POLICY


Format

SEM_RDFSA.DISABLE_OLS_POLICY;


Description

Disables the OLS policy that has been previously applied to or enabled on the semantic data store.


Parameters

(None.)


Usage Notes

You can use this procedure to disable temporarily the OLS policy that had been applied to or enabled for the semantic data store. The user disabling the policy should have the necessary privileges to administer OLS policies and should also have access to the OLS policy applied to RDF data.

The sensitivity labels assigned to various RDF resources and triples are preserved and the OLS policy may be re-enabled to enforce them. New resources with specific labels can be added, or labels for existing triples and resources can be updated when the OLS policy is disabled.

To apply an OLS policy, use the SEM_RDFSA.APPLY_OLS_POLICY procedure; to enable an OLS policy that had been disabled, use the SEM_RDFSA.ENABLE_OLS_POLICY procedure.

For information about support for OLS, see Section 5.2.


Examples

The following example disables the OLS policy for the semantic data store.


begin
  sem_rdfsa.disable_ols_policy;
end;
/








SEM_RDFSA.DROP_VPD_POLICY


Format

SEM_RDFSA.DROP_VPD_POLICY(

     policy_name IN VARCHAR2);


Description

Drops an unused VPD policy.


Parameters

	policy_name
	
Name of an existing VPD policy.





Usage Notes

This procedure permanently drops an unused VPD policy along with its metadata and constraints. You must be the owner of a VPD policy or a user with a DBA role to perform this operation.

For information about support for VPD, see Section 5.1.


Examples

The following example adds data access constraint named vp_access_to_contr_value from the VPD policy named contracts_policy:


begin
  sem_rdfsa.delete_vpd_policy(
      policy_name   => 'contracts_policy',
      constr_name   => 'vp_access_to_contr_value'); 
end;
/








SEM_RDFSA.ENABLE_OLS_POLICY


Format

SEM_RDFSA.ENABLE_OLS_POLICY;


Description

Enables the OLS policy that has been previously disabled.


Parameters

(None.)


Usage Notes

You can use this procedure to enable the OLS policy that had been disabled for the semantic data store. The user enabling the policy should have the necessary privileges to administer OLS policies and should also have access to the OLS policy applied to RDF data.

To disable an OLS policy, use the SEM_RDFSA.DISABLE_OLS_POLICY procedure.

For information about support for OLS, see Section 5.2.


Examples

The following example enables the OLS policy for the semantic data store.


begin
  sem_rdfsa.enable_ols_policy;
end;
/








SEM_RDFSA.MAINT_VPD_METADATA


Format

SEM_RDFSA.MAINT_VPD_METADATA(

     policy_name IN VARCHAR2,

     t_subject IN VARCHAR2,

     t_predicate IN VARCHAR2,

     t_object IN VARCHAR2,

     action IN VARCHAR2 DEFAULT 'ADD');


Description

Maintains the VPD metadata by accepting RDF schema statements with their subject, predicate, and object terms.


Parameters

	policy_name
	
Name of an existing VPD policy.


	t_subject
	
Subject of the metadata triple.


	t_predicate
	
Predicate of the metadata triple.


	t_object
	
Object of the metadata triple.


	action
	
Maintenance operation to be performed: ADD (add the specified triple to the metadata) or DELETE (delete the specified triple from the metadata).





Usage Notes

This procedure maintains the metadata associated with the VPD policy by accepting RDF Schema statements and performing appropriate actions on its dictionary. Only the owner of the VPD policy or a user with FULL access to the VPD policy can maintain its metadata.

The types metadata statements that you can add using this procedure are determined by the terms assigned to the t_predicate parameter. The accepted values for this parameter are:


http://www.w3.org/2000/01/rdf-schema#domain
http://www.w3.org/2000/01/rdf-schema#range
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.w3.org/2000/01/rdf-schema#subPropertyOf
http://www.w3.org/2002/07/owl#equivalentProperty


MDSYS.RDFVPD_PREDICATE_MDATA and MDSYS.RDFVPD_RESOURCE_REL views, which are described in Section 5.1.7 and Section 5.1.8, respectively.

For information about support for VPD, see Section 5.1.


Examples

The following example specifies Contract as a subclass of Project and adds domain information for the hasContractValue property:


begin
  sem_rdfsa.maint_vpd_metadata(
      policy_name => 'contracts_policy',
      t_subject   => '<http://www.myorg.com/classes/Project>',
      t_predicate => '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
      t_object    => '<http://www.myorg.com/classes/Contract>',
      action      => 'add');
end;
 
begin
  sem_rdfsa.maint_vpd_metadata(
      policy_name => 'contracts_policy',
      t_subject   => '<http://www.myorg.com/property/hasConfValue>',
      t_predicate => 'rdfs:domain',
      t_object    => '<http://www.myorg.com/classes/Contract>');
end;








SEM_RDFSA.REMOVE_OLS_POLICY


Format

SEM_RDFSA.REMOVE_OLS_POLICY;


Description

Permanently removes or detaches the OLS policy from the semantic data store.


Parameters

(None.)


Usage Notes

You should have the necessary privileges to administer OLS policies, and you should also have access to the OLS policy applied to RDF data. Once the OLS policy is detached from the semantic data store, all the sensitivity labels previously assigned to the triples and resources are lost.

This operation drops objects that are specifically created to maintain the RDF security policies.

To apply an OLS policy, use the SEM_RDFSA.APPLY_OLS_POLICY procedure.

For information about support for OLS, see Section 5.2.


Examples

The following example removes the OLS policy that had been previously applied to the semantic data store.


begin
  sem_rdfsa.remove_ols_policy;
end;
/








SEM_RDFSA.REMOVE_VPD_POLICY


Format

SEM_RDFSA.REMOVE_VPD_POLICY(

     policy_name IN VARCHAR2,

     model_name IN VARCHAR2);


Description

Removes (detaches) a VPD policy from an RDF model.


Parameters

	policy_name
	
Name of an existing VPD policy.


	model_name
	
Name of the model to which to apply the VPD policy.





Usage Notes

This procedure permanently removes or detaches a VPD policy from an RDF Model. You must be the owner of the VPD policy or a user with a DBA role to perform this operation.

After a VPD policy is removed, fine-grained access control for the specific model is turned off and the users with SELECT privileges on the model view can access all the data in the model.

For information about support for VPD, see Section 5.1.


Examples

The following example removes a VPD policy from an RDF model.


begin
  sem_rdfsa.remove_vpd_policy(
      policy_name => 'contracts_policy',
      model_name  => 'contracts');
end;
/








SEM_RDFSA.RESET_MODEL_LABELS


Format

SEM_RDFSA.RESET_MODEL_LABELS(

     model_name IN VARCHAR2);


Description

Resets the labels associated with a model or with global resources; requires that the associated model or models be empty.


Parameters

	model_name
	
Name of the model for which the labels should be reset, or the string RDF$GLOBAL to reset the labels associated with all global resources.





Usage Notes

If you specify a model name, the model must be empty. If you specify RDF$GLOBAL, all the models must be empty (that is, no triples in the RDF repository).

You must have FULL access privilege with the OLS policy applied to the semantic data store.

For information about support for OLS, see Section 5.2.


Examples

The following example removes all resources and their labels associated with the Contracts model.


begin
   sem_rdfsa.reset_model_labels(model_name => 'Contracts');
end;
/








SEM_RDFSA.SET_PREDICATE_LABEL


Format

SEM_RDFSA.SET_PREDICATE_LABEL(

     model_name IN VARCHAR2,

     predicate IN VARCHAR2,

     label_string IN VARCHAR2);


Description

Sets a sensitivity label for a predicate at the model level or for the whole repository.


Parameters

	model_name
	
Name of the model to which the predicate belongs, or the string RDF$GLOBAL if the same label should applied for the use of the predicate in all models.


	predicate
	
Predicate for which the label should be assigned.


	label_string
	
OLS row label in string representation.





Usage Notes

If you specify a model name, you must have read access to the model and execute privileges on the SEM_RDFSA package to perform this operation. If you specify RDF$GLOBAL, you must have FULL access privilege with the OLS policy applied to RDF data.

You must have access to the specified label and OLS policy privilege to overwrite an existing label if a label already exists for the predicate. The SECURE_PREDICATE option must be enabled for RDF data.

If an existing predicate label is updated with this operation, the labels for the triples using this predicate must all dominate the new predicate label. The only exception is when the OPT_RELAX_TRIPLE_LABEL option is chosen for the OLS-enabled RDF data.

If you specify RDF$GLOBAL, a global predicate with a unique sensitivity label across models is created. If the same predicate is previously defined in one or more models, the global label dominates all such labels and the model-specific labels are replaced for the given predicate.

After a label for a predicate is set, new triples with the predicate can be added only if the triple label (which may be initialized from user's initial row label or using a label function) dominates the predicate's sensitivity label. This dominance relationship can be relaxed with the OPT_RELAX_TRIPLE_LABEL option, in which case the user should at least have read access to the predicate to be able to define a new triple using the predicate.

For information about support for OLS, see Section 5.2.


Examples

The following example sets a predicate label for Contracts model and another predicate label for all models in the database instance.


begin
  sem_rdfsa.set_predicate_label( 
         model_name   => 'contracts',
         predicate    => '<http://www.myorg.com/pred/hasContractValue>',
         label_string => 'TS:US_SPCL');
end;  
/
 
begin
  sem_rdfsa.set_predicate_label(
         model_name   => 'rdf$global',
         predicate    => '<http://www.myorg.com/pred/hasStatus>',
         label_string => 'SE:US_SPCL:US');
end;
/








SEM_RDFSA.SET_RDFS_LABEL


Format

SEM_RDFSA.SET_RDFS_LABEL(

     label_string IN VARCHAR2,

     inf_override IN VARCHAR2);


Description

Sets a sensitivity label for RDFS schema elements.


Parameters

	label_string
	
OLS row label in string representation, to be used as the sensitivity label for all RDF schema constructs.


	inf_override
	
OLS row label to be used as the override for generating labels for inferred triples.





Usage Notes

This procedure sets or resets the sensitivity label associated with the RDF schema resources, often recognized by http://www.w3.org/1999/02/22-rdf-syntax-ns# and http://www.w3.org/2000/01/rdf-schema# prefixes for their URIs. You can assign a sensitivity label with restricted access to these resources, so that operations such as creating new RDF classes and adding new properties can be restricted to users with higher privileges.

You must have FULL access privilege with policy applied to RDF data.

RDF schema elements implicitly use the relaxed triple label option, so that the triples using RDFS and OWL constructs for subject, predicate, or object are not forced to have a sensitivity label that dominates the labels associated with the schema constructs. Therefore, a user capable of defining new RDF classes and properties must least have read access to the schema elements.

When RDF schema elements are referred to in the inferred triples, the system-defined and custom label generators consider the inference override label in determining the appropriate label for the inferred triples. If a custom label generator is used, this override label is passed instead of the actual label when an RDF schema element is involved.

For information about support for OLS, see Section 5.2.


Examples

The following example sets a label with a unique compartment for all RDF schema elements. A user capable of defining new RDF classes and properties is expected to have an exclusive membership to the compartment.


begin
  sem_rdfsa.set_rdfs_label( 
         label_string  => 'SE:RDFS:',
         inf_override  => 'SE:US_SPCL:US');
end;  
/








SEM_RDFSA.SET_RESOURCE_LABEL


Format

SEM_RDFSA.SET_RESOURCE_LABEL(

     model_name IN VARCHAR2,

     resource_uri IN VARCHAR2,

     label_string IN VARCHAR2,

     resource_pos IN VARCHAR2 DEFAULT 'S');


Description

Sets a sensitivity label for a resource that may be used in the subject and/or object position of a triple.


Parameters

	model_name
	
Name of the model to which the resource belongs, or the string RDF$GLOBAL if the same label should applied for using the resource in all models.


	resource_uri
	
URI for the resource that may be used as subject or object in one or more triples.


	label_string
	
OLS row label in string representation.


	resource_pos
	
Position of the resource within a triple: S, O, or S,O. You can specify up to two separate labels for the same resource, one to be considered when the resource is used in the subject position of a triple and the other to be considered when it appears in the object position. The values 'S', 'O' or 'S,O' set a label for the resource in subject, object or both subject and object positions, respectively.





Usage Notes

If you specify a model name, you must have read access to the model and execute privileges on the SEM_RDFSA package to perform this operation. If you specify RDF$GLOBAL, you must have FULL access privilege with the OLS policy applied to RDF data.

You must have access to the specified label and OLS policy privilege to overwrite an existing label if a label already exists for the predicate. The SECURE_PREDICATE option must be enabled for RDF data.

If an existing resource label is updated with this operation, the labels for the triples using this resource in the specified position must all dominate the new resource label. The only exception is when the OPT_RELAX_TRIPLE_LABEL option is chosen for the OLS-enabled RDF data.

If you specify RDF$GLOBAL, a global resource with a unique sensitivity label across models is created. If the same resource is previously defined in one or more models with the same triple position, the global label dominates all such labels and the model-specific labels are replaced for the given resource in that position.

After a label for a predicate is set, new triples using the resource in the specified position can be added only if the triple label dominates the resource's sensitivity label. This dominance relationship can be relaxed with OPT_RELAX_TRIPLE_LABEL option, in which case, the user should at least have read access to the resource.

For information about support for OLS, see Section 5.2.


Examples

The following example sets sensitivity labels for multiple resources based on their position.


begin
  sem_rdfsa.set_resource_label(
         model_name   => 'contracts',
         resource_uri => '<http://www.myorg.com/contract/projectHLS>',
         label_string => 'SE:US_SPCL:US',
         resource_pos => 'S,O');
end;
/
 
begin
  sem_rdfsa.set_resource_label(
       model_name   => 'rdf$global',
       resource_uri => '<http://www.myorg.com/contract/status/Complete>',
       label_string => 'SE:US_SPCL:US',
       resource_pos => 'O');
end;
/








SEM_RDFSA.SET_RULE_LABEL


Format

SEM_RDFSA.SET_RULE_LABEL(

     rule_base IN VARCHAR2,

     rule_name IN VARCHAR2,

     label_string IN VARCHAR2);


Description

Sets sensitivity label for a rule belonging to a rulebase.


Parameters

	rule_base
	
Name of an existing RDF rulebase.


	rule_name
	
Name of the rule belonging to the rulebase.


	label_string
	
OLS row label in string representation.





Usage Notes

The sensitivity label assigned to the rule is used to generate the label for the inferred triples when an appropriate label generator option is chosen.

You must have access have access to the rulebase, and you must have FULL access privilege with the OLS policy can assign labels for system-defined rules in the RDFS rulebase.

There is no support for labels assigned to user-defined rules.

For information about support for OLS, see Section 5.2.


Examples

The following example assigns a sensitivity label for an RDFS rule.


begin
sem_rdfsa.set_rule_label (rule_base    => 'RDFS',
                          rule_name    => 'RDF-AXIOMS',
                          label_string => 'SE:US_SPCL:');
end;
/





A Enabling, Downgrading, or Removing Semantic Technologies Support

This appendix describes the required steps that you must perform before you can use any types, synonyms, or PL/SQL packages related to Oracle semantic technologies support in the current Oracle Database release. You must run one or more scripts, and you must ensure that Spatial is installed and the Partitioning option is enabled. These requirements are explained in Section A.1.

This appendix also describes the steps if, after enabling semantic technologies support, you need to do any of the following:

	
Downgrade the semantic technologies support to that provided with a previous Oracle Database release, as explained in Section A.2.


	
Remove all support for semantic technologies from the database, as explained in Section A.3.






A.1 Enabling Semantic Technologies Support

Before you can use any types, synonyms, or PL/SQL packages related to Oracle semantic technologies support in the current Oracle Database release, you must either install the capabilities in a new Oracle Database installation or upgrade the capabilities from a previous release, following the steps in whichever of the following sections applies to your situation:

	
Section A.1.1, "Enabling Semantic Technologies Support in a New Database Installation"


	
Section A.1.2, "Upgrading Semantic Technologies Support from Release 11.1"


	
Section A.1.3, "Upgrading Semantic Technologies Support from Release 10.2"




If you upgraded to Release 11.2.0.2.0 and your Semantic Technologies installation is invalid, see Section A.1.4, "Release 11.2.0.2: Required Actions if Semantic Technologies Installation is Invalid"

In addition, you must ensure that Spatial is installed and the Partitioning option is enabled, as explained in Section A.1.5.



A.1.1 Enabling Semantic Technologies Support in a New Database Installation

To enable semantic technologies support in a new installation of Oracle Database Release 11.2 (or for an upgrade from Release 10.2 if no RDF network exists, as explained in Section A.1.3), follow these steps:

	
Connect to the database as the SYS user with SYSDBA privileges (SYS AS SYSDBA, and enter the SYS account password when prompted).


	
Start SQL*Plus, and enter the following statement:

	
Linux: @$ORACLE_HOME/md/admin/catsem.sql


	
Windows: @%ORACLE_HOME%\md\admin\catsem.sql







If a semantic network already exists, or if any semantic technologies types, tables, or PL/SQL packages already exist, the catsem.sql script exits with an error.

If the script completes successfully, a row with the following column values is inserted into the MDSYS.RDF_PARAMETER table:

	
NAMESPACE: MDSYS


	
ATTRIBUTE: SEM_VERSION


	
VALUE: (string starting with 112)


	
DESCRIPTION: VALID




If you use Workspace Manager with RDF data, you must also run the appropriate script after you run catsem.sql, as explained in Section 6.1, "Enabling Workspace Manager Support for RDF Data".






A.1.2 Upgrading Semantic Technologies Support from Release 11.1

If you are upgrading from Oracle Database Release 11.1 that includes the semantic technologies support for Release 11.1, the semantic technologies support is automatically upgraded to Release 11.2 when the database is upgraded. If you use Workspace Manager with RDF data, you must also run the appropriate script after the upgrade of semantic technologies support, as explained in Section 6.1, "Enabling Workspace Manager Support for RDF Data".

However, you will also need to migrate RDF data if you have an existing Release 11.1 RDF network containing triples that include typed literal values of type xsd:float, xsd:double, xsd:boolean, or xsd:time.

To check if you need to migrate RDF data, connect to the database as a user with DBA privileges and query the MDSYS.RDF_PARAMETER table, as follows:


SELECT namespace, attribute, value FROM mdsys.rdf_parameter
  WHERE namespace='MDSYS' 
  AND attribute IN ('FLOAT_DOUBLE_DECIMAL',
                    'XSD_TIME', 'XSD_BOOLEAN', 
                    'DATA_CONVERSION_CHECK');


If the FLOAT_DOUBLE_DECIMAL, XSD_TIME, or XSD_BOOLEAN attributes have the string value INVALID or if the DATA_CONVERSION_CHECK attribute has the string value FAILED_UNABLE_TO_LOCK_APPLICATION_TABLES, FAILED_INSUFFICIENT_WORKSPACE_PRIVILEGES, or FAILED_OLS_POLICIES_ARE_ENABLED, you need to migrate RDF data.

However, if the FLOAT_DOUBLE_DECIMAL, XSD_TIME, and XSD_BOOLEAN attributes do not exist or have the string value VALID and if the DATA_CONVERSION_CHECK attribute does not exist, you do not need to migrate RDF data. However, if your semantic network may have any empty RDF literals, see Section A.1.2.1, "Handling of Empty RDF Literals"; and if you choose to migrate existing empty literals to the new format, follow the steps in this section.

To migrate RDF data, follow these steps:

	
Connect to the database as the SYS user with SYSDBA privileges (SYS AS SYSDBA, and enter the SYS account password when prompted), and enter: SET CURRENT_SCHEMA=MDSYS


	
Ensure that the user MDSYS has the following privileges:

	
INSERT privilege on all application tables in the semantic network


	
ALTER ANY INDEX privilege (optional: only necessary if Semantic Indexing for Documents is being used)


	
ACCESS privilege for any workspace in which version-enabled application tables have been modified (optional: only necessary if Workspace Manager is being used for RDF data)





	
Ensure that any OLS policies for RDF data are temporarily disabled (optional: only necessary if OLS for RDF Data is being used). OLS policies can be re-enabled after running convert_old_rdf_data.


	
Start SQL*Plus. If you want to migrate the RDF data without converting existing empty literals to the new format (see Section A.1.2.1), enter the following statement:


EXECUTE sdo_rdf_internal.convert_old_rdf_data;


If you want to migrate the RDF data and also convert existing empty literals to the new format, call convert_old_rdf_data with the flags parameter set to 'CONVERT_ORARDF_NULL'. In addition, you can use an optional tablespace_name parameter to specify the tablespace to use when creating intermediate tables during data migration. For example, the following statement migrates old semantic data, converts existing "orardf:null " values to "", and uses the MY_TBS tablespace for any intermediate tables:


EXECUTE sdo_rdf_internal.convert_old_rdf_data(
  flags=>'CONVERT_ORARDF_NULL', 
  tablespace_name=>'MY_TBS');


The sdo_rdf_internal.convert_old_rdf_data procedure may take a significant amount of time to run if the semantic network contains many triples that are using (or affected by use of) xsd:float, xsd:double, xsd:time, or xsd:boolean typed literals.


	
Enter the following statement:

	
Linux: @$ORACLE_HOME/md/admin/semrelod.sql


	
Windows: @%ORACLE_HOME%\md\admin\semrelod.sql










	
Note:

You may encounter the ORA-00904 (invalid identifier) error when executing a SEM_MATCH query if the sdo_rdf_internal.convert_old_rdf_data procedure and the semrelod.sql script were not run after the upgrade to Release 11.2.









A.1.2.1 Handling of Empty RDF Literals

The way empty-valued RDF literals are handled has changed in Release 11.2. Before this release, the values of empty-valued literals were converted to "orardf:null ". In Release 11.2, such values are stored without modification (that is, as ""). However, whether you migrate existing "orardf:null " values to "" is optional.

To check if "orardf:null " values exist in your semantic network, connect to the database as a user with DBA privileges and query the MDSYS.RDF_PARAMETER table, as follows:


SELECT namespace, attribute, value FROM mdsys.rdf_parameter
  WHERE namespace='MDSYS' 
  AND attribute = 'NULL_LITERAL';


If the NULL_LITERAL attribute has the value EXISTS, then "orardf:null " values are present in your semantic network.








A.1.3 Upgrading Semantic Technologies Support from Release 10.2

If you are upgrading from Oracle Database Release 10.2 that includes the semantic technologies support for Release 10.2, the actions required depend on whether there is an existing RDF network.

If there is not an existing RDF network, skip the rest of this section and follow the instructions in Section A.1.1, "Enabling Semantic Technologies Support in a New Database Installation".

If there is an existing RDF network, perform the following steps after the Oracle Database upgrade:

	
Connect to the database (Release 11.2) as the SYS user with SYSDBA privileges (SYS AS SYSDBA, and enter the SYS account password when prompted).


	
Start SQL*Plus, and enter the following statement:

	
Linux: @$ORACLE_HOME/md/admin/catsem10i.sql


	
Windows: @%ORACLE_HOME%\md\admin\catsem10i.sql




The catsem10i.sql script enables Release 11.2 semantic technologies support and migrates RDF data from Release 10.2 to Release 11.2 format. The script may take a long time to run if the existing Release 10.2 RDF network contains a large amount of RDF data.









A.1.4 Release 11.2.0.2: Required Actions if Semantic Technologies Installation is Invalid

Further action may be required if your Semantic Technologies installation is invalid after upgrading to Release 11.2.0.2.0. (This is not an issue with upgrades to Release 11.2.0.3 and later.) Action is required if either or both of the following are true after upgrading to Release 11.2.0.2.0:

	
A row exists with the following values in the MDSYS.RDF_PARAMETER table:


MDSYS   SEM_VERSION   11202   INVALID


	
The STATUS column value is INVALID in any row returned by the following query:


SELECT object_name, status FROM all_objects WHERE object_name = 'SEMCONTEXTINDEXMETHODS' or object_name = 'PRLLIDX_CREATE';




In such a case, enter the following sequence of commands as SYSDBA to complete the upgrade of your installation:


SQL> @ $ORACLE_HOME/md/admin/sdordfctx.sql
SQL> @ $ORACLE_HOME/md/admin/semrelod.sql
SQL> EXECUTE sys.validate_sdo;


For the preceding commands:

	
When running sdordfctx.sql, you can ignore any ORA-01921, ORA-02303, ORA-00955, and ORA-29809 errors.


	
Executing sys.validate_sdo is needed only if SDO is invalid, which it could be if Semantic Technologies is invalid; however, there is no harm in executing sys.validate_sdo in any case.




After running the preceding commands, check whether your Semantic Technologies installation is valid by checking if a row exists with the following values in the MDSYS.RDF_PARAMETER table:


MDSYS   SEM_VERSION   11202   VALID






A.1.5 Spatial and Partitioning Requirements

Oracle Spatial must be installed before you can use any of the RDF and OWL capabilities. Oracle Locator is not sufficient. For information about Spatial and Locator, see Oracle Spatial Developer's Guide.

The Partitioning option must be enabled before you can use any of the RDF and OWL capabilities. For licensing information about the Partitioning option, see Oracle Database Licensing Information. For usage information about partitioning, see Oracle Database VLDB and Partitioning Guide.








A.2 Downgrading Semantic Technologies Support to a Previous Release

This section explains how to downgrade the semantic technologies support, in conjunction with an Oracle Database downgrade to Release 11.1 or 10.2.

Downgrading is strongly discouraged, except for rare cases where it is necessary. If you downgrade to a previous release, you will not benefit from bug fixes and enhancements that have been made in intervening releases.

If you have enabled Workspace Manager support for RDF data, you must remove that support before you downgrade semantic technologies support in the database, as explained in Section 6.1.1.



A.2.1 Downgrading to Release 11.1 Semantic Technologies Support

If you need to downgrade to Oracle Database Release 11.1, the semantic technologies component will be downgraded automatically when you downgrade the database. However, any RDF or OWL data that is specific to Release 11.2 (that is, Release 11.2 RDF/OWL persistent structures that are not supported in previous versions) must be dropped before you perform the downgrade, so that the database is compatible with Release 11.1.

Any virtual models will not be preserved during a downgrade, because they are only available through a Release 11.1.0.7.0 patch (number 7600122) that was made available on My Oracle Support (MetaLink) in November, 2008. To use virtual models, you must reapply this patch after the downgrade, and then re-create the virtual models. For convenience, you can use the semvmrecreate.sql script to generate a script that you can later use (after the downgrade) to automatically re-create any virtual models that were present in the Release 11.2 semantic network. To do so, follow these steps before you downgrade the database :

	
Connect to the database (Release 11.2) as the SYS user with SYSDBA privileges (SYS AS SYSDBA, and enter the SYS account password when prompted).


	
Start SQL*Plus, and enter a statement in the following format:

	
Linux: @$ORACLE_HOME/md/admin/semvmrecreate.sql /my_dir_path/my_vm_recreate.sql


	
Windows: @%ORACLE_HOME%\md\admin\semvmrecreate.sql \my_dir_path\my_vm_recreate.sql




where my_dir_path is the path to the location in which to create the my_vm_recreate.sql script file. (You can use another file name for the script, if you want.)




To check if any Release 11.2 RDF data is incompatible with Release 11.1, perform the following steps:

	
Connect to the database (Release 11.2) as the SYS user with SYSDBA privileges (SYS AS SYSDBA, and enter the SYS account password when prompted).


	
Start SQL*Plus, and enter the following statements:


SET SERVEROUT ON
EXECUTE SDO_SEM_DOWNGRADE.CHECK_111_COMPATIBLE;




If any RDF data is incompatible with Release 11.1, the procedure generates an error and displays a list of the incompatible data. In this case, you must run the semrelod111.sql script after the database downgrade, as follows:

	
In the Release 11.2 database, save a copy of the semrelod111.sql file, which is in the following location:

	
Linux: $ORACLE_HOME/md/admin/semrelod111.sql


	
Windows: %ORACLE_HOME%\md\admin\semrelod111.sql





	
If you have any virtual models that you want to be able to re-create after the download, run the semvmrecreate.sql script (if you have not already done so), as explained earlier in this section.


	
Remove any Release 11.2 release-specific RDF or OWL data (including virtual models) if you have not already done so, as explained earlier in this section.


	
Perform the database downgrade.


	
In the Release 11.1 database, copy the saved copy of the semrelod111.sql file to the following location:

	
Linux: $ORACLE_HOME/md/admin/


	
Windows: %ORACLE_HOME%\md\admin\





	
Connect to the Release 11.1 database as the SYS user with SYSDBA privileges (SYS AS SYSDBA, and enter the SYS account password when prompted).


	
Start SQL*Plus, and enter the following statement:

	
Linux: @$ORACLE_HOME/md/admin/semrelod111.sql


	
Windows: @%ORACLE_HOME%\md\admin\semrelod111.sql




After the semrelod111.sql script completes successfully, Oracle semantic technologies support for Release 11.1 is enabled and ready to use, and all Release 11.1-compatible data is preserved.


	
If you want to enable support for virtual models, apply the Release 11.1.0.7 interim patch number 7600122.


	
If you previously generated a my_vm_recreate.sql script to re-create your virtual models after the downgrade, go to the my_dir_path location, connect to the database as the SYS user with SYSDBA privileges, start SQL*Plus, and run the my_vm_recreate.sql script.









A.2.2 Downgrading to Release 10.2 Semantic Technologies Support

If you need to downgrade to Oracle Database Release 10.2, follow the instructions in Section A.2.1 to downgrade to Release 11.1, and then follow the instructions in the rest of this section (taken from the Release 11.1 manual) to downgrade from Release 11.1 to Release 10.2.

If you need to downgrade to Oracle Database Release 10.2, and if you used Oracle Database Release 11 RDF or OWL features and want to preserve existing semantic data and rulebases, you must execute a statement to prepare for the downgrade, perform the downgrade, and execute another statement to restore the semantic data.

However, the following considerations apply:

	
Entailed graph data will not be preserved, because the same information can be regenerated using the Oracle Database Release 10.2 RDF inference API.


	
No rulebases or rules indexes related to OWL are preserved, because Oracle Database Release 10.2 did not support the OWL vocabulary.




Perform the following steps:

	
Before the database downgrade, connect to the Release 11 database as the SYS user with SYSDBA privileges (SYS AS SYSDBA, and enter the SYS account password when prompted).


	
Start SQL*Plus and enter the following statement:


EXECUTE SDO_SEM_DOWNGRADE.PREPARE_DOWNGRADE_FROM_11;


When this statement executes successfully, all existing semantic data and rulebases are saved. You will restore the semantic data after the database downgrade.


	
Perform the database downgrade.


	
Download the following file from the Semantic Technologies page of the Oracle Technology Network site: sdosemdgu.plb


	
If (and only if) your Oracle Database Release 10.2 release number is 10.2.0.1, click the Software link, and download and install the RDF-specific patch. (This patch is needed because Release 10.2.0.1 did not have the batch loading feature, which is used to restore the semantic data.)


	
Connect to the Release 10.2 database as the SYS user with SYSDBA privileges.


	
Start SQL*Plus and enter a statement in the following statement:


EXECUTE SDO_SEM_DOWNGRADE_UTL.PREPARE_DOWNGRADE_TO_102('<tablespace-name>');


Where <tablespace-name> is the name of the tablespace in which the RDF network will be created.

When this statement executes successfully, all semantic data that had been saved before the downgrade is restored and ready to use.











A.3 Removing Semantic Technologies Support

This section explains how to remove the semantic technologies support from the database. Removing this support is strongly discouraged, unless you have a strong reason for doing it. After you remove this support, no applications or database users will be able to use any types, synonyms, or PL/SQL packages related to Oracle semantic technologies support.

If you have enabled Workspace Manager support for RDF data, you must remove that support before you remove semantic technologies support from the database, as explained in Section 6.1.1.

To remove the semantic technologies support from the database, perform the following steps:

	
Connect to the database (Release 11.2) as the SYS user with SYSDBA privileges (SYS AS SYSDBA, and enter the SYS account password when prompted).


	
Start SQL*Plus, and enter the following statement:

	
Linux: @$ORACLE_HOME/md/admin/semremov.sql


	
Windows: @%ORACLE_HOME%\md\admin\semremov.sql







The semremov.sql script drops the semantic network and removes any semantic technologies types, tables, and PL/SQL packages:





B SEM_MATCH Support for Spatial Queries

This appendix provides reference information for SPARQL extension functions for performing spatial queries in SEM_MATCH. To use these functions, you must understand the concepts explained in Section 1.6.6, "Spatial Support".

This appendix includes the following functions:

	
orageo:area


	
orageo:buffer


	
orageo:centroid


	
orageo:convexHull


	
orageo:difference


	
orageo:distance


	
orageo:intersection


	
orageo:length


	
orageo:mbr


	
orageo:nearestNeighbor


	
orageo:relate


	
orageo:union


	
orageo:withinDistance


	
orageo:xor








orageo:area


Format

orageo:area(geom1 : orageo:WKTLiteral, unit : Literal) : xsd:decimal


Description

Returns the area of geom1 in terms of the specified unit of measure.


Parameters

	geom1
	
Geometry object. Specified as a query variable or a constant orageo:WKTLiteral value.


	unit
	
Unit of measurement: a quoted string with an SDO_UNIT value from the MDSYS.SDO_DIST_UNITS table (for example, "unit=SQ_KM"). See the section about unit of measurement support in Oracle Spatial Developer's Guide for more information about unit of measurement specification.





Usage Notes

See Section 1.6.6 for information about representing , indexing, and querying spatial data in RDF.

See also the SDO_GEOM.SDO_AREA function in Oracle Spatial Developer's Guide.


Example

The following example finds the U.S. Congressional district polygons with areas greater than 10,000 square kilometers.


SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (orageo:area(?cgeom, "unit=SQ_KM") > 10000) }'
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, null, ' ALLOW_DUP=T '));








orageo:buffer


Format

orageo:buffer(geom1 : orageo:WKTLiteral, distance : xsd:decimal, unit : Literal) : orageo:WKTLiteral


Description

Returns a buffer polygon at a specified distance around or inside a geometry.


Parameters

	geom1
	
Geometry object. Specified as a query variable or a constant orageo:WKTLiteral value.


	distance
	
Distance value. Distance value. If the value is positive, the buffer is generated around geom1; if the value is negative (valid only for polygons), the buffer is generated inside geom1.


	unit
	
Unit of measurement: a quoted string with an SDO_UNIT value from the MDSYS.SDO_DIST_UNITS table (for example, "unit=KM"). See the section about unit of measurement support in Oracle Spatial Developer's Guide for more information about unit of measurement specification.





Usage Notes

See Section 1.6.6 for information about representing , indexing, and querying spatial data in RDF.

See also the SDO_GEOM.SDO_BUFFER function in Oracle Spatial Developer's Guide.


Example

The following example finds the U.S. Congressional district polygons that are completely inside a 100 kilometer buffer around a specified point.


SELECT name, cdist
FROM table(sem_match(
'{ # HINT0={LEADING(?cgeom)}
   ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (
     orageo:relate(?cgeom, 
       orageo:buffer("POINT(-71.46444 42.7575)"^^orageo:WKTLiteral,
                     100, "unit=KM"),
      "mask=inside")) }'
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, null, ' ALLOW_DUP=T '));








orageo:centroid


Format

orageo:centroid(geom1 : orageo:WKTLiteral) : orageo:WKTLiteral


Description

Returns a point geometry that is the centroid of geom1. (The centroid is also known as the "center of gravity.")


Parameters

	geom1
	
Geometry object. Specified as a query variable or a constant orageo:WKTLiteral value.





Usage Notes

For an input geometry consisting of multiple objects, the result is weighted by the area of each polygon in the geometry objects. If the geometry objects are a mixture of polygons and points, the points are not used in the calculation of the centroid. If the geometry objects are all points, the points have equal weight.

See Section 1.6.6 for information about representing , indexing, and querying spatial data in RDF.

See also the SDO_GEOM.SDO_CENTROID function in Oracle Spatial Developer's Guide.


Example

The following example finds the U.S. Congressional district polygons with centroids within 200 kilometers of a specified point.


SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (orageo:withinDistance(orageo:centroid(?cgeom), 
      "POINT(-71.46444 42.7575)"^^orageo:WKTLiteral,
      "distance=200 unit=KM")) } '
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, null, ' ALLOW_DUP=T '));








orageo:convexHull


Format

orageo:convexHull(geom1 : orageo:WKTLiteral) : orageo:WKTLiteral


Description

Returns a polygon-type object that represents the convex hull of geom1. (The convex hull is a simple convex polygon that completely encloses the geometry object, using as few straight-line sides as possible to create the smallest polygon that completely encloses the geometry object.)


Parameters

	geom1
	
Geometry object. Specified as a query variable or a constant orageo:WKTLiteral value.





Usage Notes

A convex hull is a convenient way to get an approximation of a complex geometry object.

See Section 1.6.6 for information about representing , indexing, and querying spatial data in RDF.

See also the SDO_GEOM.SDO_CONVEX_HULL function in Oracle Spatial Developer's Guide.


Example

The following example finds the U.S. Congressional district polygons whose convex hull contains a specified point.


SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (orageo:relate(orageo:convexHull(?cgeom), 
      "POINT(-71.46444 42.7575)"^^orageo:WKTLiteral,
      "mask=contains")) } '
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, null, ' ALLOW_DUP=T '));








orageo:difference 


Format

orageo:difference(geom1 : orageo:WKTLiteral, geom2 : orageo:WKTLiteral) : orageo:WKTLiteral


Description

Returns a geometry object that is the topological difference (MINUS operation) of geom1 and geom2.


Parameters

	geom1
	
Geometry object. Specified as a query variable or a constant orageo:WKTLiteral value.


	geom2
	
Geometry object. Specified as a query variable or a constant orageo:WKTLiteral value.





Usage Notes

See Section 1.6.6 for information about representing , indexing, and querying spatial data in RDF.

See also the SDO_GEOM.SDO_UNION function in Oracle Spatial Developer's Guide.


Example

The following example finds the U.S. Congressional district polygons whose centroid is inside the difference of two specified polygons.


SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (orageo:relate(orageo:centroid(?cgeom), 
      orageo:difference("Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, 
                         -83.6 34.5, -83.6 34.1))"^^orageo:WKTLiteral,
                        "Polygon((-83.2 34.3, -83.0 34.3, -83.0 34.5, 
                         -83.2 34.5, -83.2 34.3))"^^orageo:WKTLiteral),
      "mask=inside")) } '
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, null, ' ALLOW_DUP=T '));








orageo:distance


Format

orageo:distance(geom1 : orageo:WKTLiteral, geom2 : orageo:WKTLiteral, unit : Literal) : xsd:decimal


Description

Returns the distance between the nearest pair of points or segments of geom1 and geom2 in terms of the specified unit of measure.


Parameters

	geom1
	
Geometry object. Specified as a query variable or a constant orageo:WKTLiteral value.


	geom2
	
Geometry object. Specified as a query variable or a constant orageo:WKTLiteral value.


	unit
	
Unit of measurement: a quoted string with an SDO_UNIT value from the MDSYS.SDO_DIST_UNITS table (for example, "unit=KM"). See the section about unit of measurement support in Oracle Spatial Developer's Guide for more information about unit of measurement specification.





Usage Notes

Use orageo:withinDistance instead of orageo:distance whenever possible, because orageo:withinDistance has a more efficient index-based implementation.

See Section 1.6.6 for information about representing , indexing, and querying spatial data in RDF.

See also the SDO_GEOM.SDO_DISTANCE function in Oracle Spatial Developer's Guide.


Example

The following example finds the ten nearest U.S. Congressional districts to a specified point and orders them by distance from the point.


SELECT name, cdist
FROM table(sem_match(
'SELECT ?name ?cdist
 WHERE
 { # HINT0={LEADING(?cgeom)}
   ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (orageo:nearestNeighbor(?cgeom, 
      "POINT(-71.46444 42.7575)"^^orageo:WKTLiteral,
      "sdo_num_res=10")) }
 ORDER BY ASC(orageo:distance(?cgeom,
                "POINT(-71.46444 42.7575)"^^orageo:WKTLiteral,
                "unit=KM"))'
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, null, ' ALLOW_DUP=T '))
ORDER BY sem$rownum;








orageo:intersection 


Format

orageo:intersection(geom1 : orageo:WKTLiteral, geom2 : orageo:WKTLiteral) : orageo:WKTLiteral


Description

Returns a geometry object that is the topological intersection (AND operation) of geom1 and geom2.


Parameters

	geom1
	
Geometry object. Specified as a query variable or a constant orageo:WKTLiteral value.


	geom2
	
Geometry object. Specified as a query variable or a constant orageo:WKTLiteral value.





Usage Notes

See Section 1.6.6 for information about representing , indexing, and querying spatial data in RDF.

See also the SDO_GEOM.SDO_INTERSECTION function in Oracle Spatial Developer's Guide.


Example

The following example finds the U.S. Congressional district polygons whose centroid is inside the intersection of two specified polygons.


SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (orageo:relate(orageo:centroid(?cgeom), 
      orageo:intersection("Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, 
                           -83.6 34.5, -83.6 34.1))"^^orageo:WKTLiteral,
                          "Polygon((-83.2 34.3, -83.0 34.3, -83.0 34.5, 
                           -83.2 34.5, -83.2 34.3))"^^orageo:WKTLiteral),
      "mask=inside")) } '
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, null, ' ALLOW_DUP=T '));








orageo:length


Format

orageo:length(geom1 : orageo:WKTLiteral, unit : Literal) : xsd:decimal


Description

Returns the length or perimeter of geom1 in terms of the specified unit of measure.


Parameters

	geom1
	
Geometry object. Specified as a query variable or a constant orageo:WKTLiteral value.


	unit
	
Unit of measurement: a quoted string with an SDO_UNIT value from the MDSYS.SDO_DIST_UNITS table (for example, "unit=KM"). See the section about unit of measurement support in Oracle Spatial Developer's Guide for more information about unit of measurement specification.





Usage Notes

See Section 1.6.6 for information about representing , indexing, and querying spatial data in RDF.

See also the SDO_GEOM.SDO_LENGTH function in Oracle Spatial Developer's Guide.


Example

The following example finds the U.S. Congressional district polygons with lengths (perimeters) greater than 1000 kilometers.


SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (orageo:legnth(?cgeom, "unit=KM") > 1000) }'
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, null, ' ALLOW_DUP=T '));








orageo:mbr


Format

orageo:mbr(geom1 : orageo:WKTLiteral) : orageo:WKTLiteral


Description

Returns the minimum bounding rectangle of geom1, that is, the single rectangle that minimally encloses geom1.


Parameters

	geom1
	
Geometry object. Specified as a query variable or a constant orageo:WKTLiteral value.





Usage Notes

See Section 1.6.6 for information about representing , indexing, and querying spatial data in RDF.

See also the SDO_GEOM.SDO_MBR function in Oracle Spatial Developer's Guide.


Example

The following example finds the U.S. Congressional district polygons whose minimum bounding rectangle contains a specified point.


SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (orageo:relate(orageo:mbr(?cgeom), 
      "POINT(-71.46444 42.7575)"^^orageo:WKTLiteral,
      "mask=contains")) } '
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, null, ' ALLOW_DUP=T '));








orageo:nearestNeighbor


Format

orageo:nearestNeighbor(geom1: orageo:WKTLiteral, geom2 : orageo:WKTLiteral, param : Literal) : xsd:boolean


Description

Returns true if geom1 is a nearest neighbor of geom2, where the size of the nearest neighbors set is specified by param; returns false otherwise.


Parameters

	geom1
	
Geometry object. Specified as a query variable.


	geom2
	
Geometry object. Specified as a query variable or a constant orageo:WKTLiteral value.


	param
	
Determines the behavior of the operator. See the Usage Notes for the available keyword-value pairs.





Usage Notes

In the param parameter, the available keyword-value pairs are:

	
distance=n specifies the maximum allowable distance for the nearest neighbor search.


	
sdo_num_res=n specifies the size of the set for the nearest neighbor search.


	
unit=unit specifies the unit of measurement to use with distance value. If you do not specify a value, the unit of measurement associated with the data is used.




geom1 must be a local variable (that is, a variable that appears in the basic graph pattern that contains the orageo:nearestNeighbor spatial filter).

It is a good idea to use a 'LEADING(?var)' HINT0 hint when your query involves a restrictive orageo:relate spatial filter on ?var.

See Section 1.6.6 for information about representing , indexing, and querying spatial data in RDF.

See also the SDO_NN operator in Oracle Spatial Developer's Guide.


Example

The following example finds the ten nearest U.S. Congressional districts to a specified point.


SELECT name, cdist
FROM table(sem_match(
'{ # HINT0={LEADING(?cgeom)}
   ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (orageo:nearestNeighbor(?cgeom, 
      "POINT(-71.46444 42.7575)"^^orageo:WKTLiteral,
      "sdo_num_res=10")) } '
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, null, ' ALLOW_DUP=T '));








orageo:relate


Format

orageo:relate(geom1: orageo:WKTLiteral, geom2 : orageo:WKTLiteral, param : Literal) : xsd:boolean


Description

Returns true if geom1 and geom2 satisfy the topological spatial relation specified by the param parameter; returns false otherwise.


Parameters

	geom1
	
Geometry object. Specified as a query variable or a constant orageo:WKTLiteral value.


	geom2
	
Geometry object. Specified as a query variable or a constant orageo:WKTLiteral value.


	param
	
Specifies a list of mask relationships to check. See the list of keywords in the Usage Notes.





Usage Notes

The following param values (mask relationships) can be tested:

	
ANYINTERACT: Returns TRUE if the objects are not disjoint.


	
CONTAINS: Returns CONTAINS if the second object is entirely within the first object and the object boundaries do not touch; otherwise, returns FALSE.


	
COVEREDBY: Returns COVEREDBY if the first object is entirely within the second object and the object boundaries touch at one or more points; otherwise, returns FALSE.


	
COVERS: Returns COVERS if the second object is entirely within the first object and the boundaries touch in one or more places; otherwise, returns FALSE.


	
DISJOINT: Returns DISJOINT if the objects have no common boundary or interior points; otherwise, returns FALSE.


	
EQUAL: Returns EQUAL if the objects share every point of their boundaries and interior, including any holes in the objects; otherwise, returns FALSE.


	
INSIDE: Returns INSIDE if the first object is entirely within the second object and the object boundaries do not touch; otherwise, returns FALSE.


	
ON: Returns ON if the boundary and interior of a line (the first object) is completely on the boundary of a polygon (the second object); otherwise, returns FALSE.


	
OVERLAPBDYDISJOINT: Returns OVERLAPBDYDISJOINT if the objects overlap, but their boundaries do not interact; otherwise, returns FALSE.


	
OVERLAPBDYINTERSECT: Returns OVERLAPBDYINTERSECT if the objects overlap, and their boundaries intersect in one or more places; otherwise, returns FALSE.


	
TOUCH: Returns TOUCH if the two objects share a common boundary point, but no interior points; otherwise, returns FALSE.




Values for param can be combined using the logical Boolean operator OR. For example, 'INSIDE + TOUCH' returns INSIDE+TOUCH if the relationship between the geometries is INSIDE or TOUCH or both INSIDE and TOUCH; it returns FALSE if the relationship between the geometries is neither INSIDE nor TOUCH.

When invoking orageo:relate with a query variable and a constant geometry, always use the query variable as the first parameter and the constant geometry as the second parameter.

For best performance, geom1 should be a local variable (that is, a variable that appears in the basic graph pattern that contains the orageo:relate spatial filter).

It is a good idea to use a 'LEADING(?var)' HINT0 hint when your query involves a restrictive orageo:relate spatial filter on ?var.

See Section 1.6.6 for information about representing , indexing, and querying spatial data in RDF.

See also the SDO_RELATE operator in Oracle Spatial Developer's Guide.


Example

The following example finds the U.S. Congressional district that contains a specified point.


SELECT name, cdist
FROM table(sem_match(
'{ # HINT0={LEADING(?cgeom)}
   ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (orageo:relate(?cgeom, 
      "POINT(-71.46444 42.7575)"^^orageo:WKTLiteral,
      "mask=contains")) } '
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, null, ' ALLOW_DUP=T '
));








orageo:union 


Format

orageo:union(geom1 : orageo:WKTLiteral, geom2 : orageo:WKTLiteral) : orageo:WKTLiteral


Description

Returns a geometry object that is the topological union (OR operation) of geom1 and geom2.


Parameters

	geom1
	
Geometry object. Specified as a query variable or a constant orageo:WKTLiteral value.


	geom2
	
Geometry object. Specified as a query variable or a constant orageo:WKTLiteral value.





Usage Notes

See Section 1.6.6 for information about representing , indexing, and querying spatial data in RDF.

See also the SDO_GEOM.SDO_UN ION function in Oracle Spatial Developer's Guide.


Example

The following example finds the U.S. Congressional district polygons whose centroid is inside the union of two specified polygons.


SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (orageo:relate(orageo:centroid(?cgeom), 
      orageo:union("Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, 
                    -83.6 34.5, -83.6 34.1))"^^orageo:WKTLiteral,
                   "Polygon((-83.2 34.3, -83.0 34.3, -83.0 34.5, 
                    -83.2 34.5, -83.2 34.3))"^^orageo:WKTLiteral),
      "mask=inside")) } '
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, null, ' ALLOW_DUP=T '));








orageo:withinDistance


Format

orageo:withinDistance(geom1 : orageo:WKTLiteral, geom2 : orageo:WKTLiteral, distance : xsd:decimal, unit : Literal) : xsd:boolean


Description

Returns true if the distance between geom1 and geom2 is less than or equal to distance when measured in unit; returns false otherwise.


Parameters

	geom1
	
Geometry object. Specified as a query variable or a constant orageo:WKTLiteral value.


	geom2
	
Geometry object. Specified as a query variable or a constant orageo:WKTLiteral value.


	distance
	
Distance value.


	unit
	
Unit of measurement: a quoted string with an SDO_UNIT value from the MDSYS.SDO_DIST_UNITS table (for example, "unit=KM"). See the section about unit of measurement support in Oracle Spatial Developer's Guide for more information about unit of measurement specification.





Usage Notes

When invoking this function with a query variable and a constant geometry, always use the query variable as the first parameter and the constant geometry as the second parameter.

For best performance, geom1 should be a local variable (that is, a variable that appears in the basic graph pattern that contains the orageo:withinDistance spatial filter).

It is a good idea to use a 'LEADING(?var)' HINT0 hint when your query involves a restrictive orageo:withinDistance spatial filter on ?var.

See Section 1.6.6 for information about representing , indexing, and querying spatial data in RDF.

See also the SDO_WITHIN_DISTANCE operator in Oracle Spatial Developer's Guide.


Example

The following example finds the U.S. Congressional districts that are within 100 kilometers of a specified point.


SELECT name, cdist
FROM table(sem_match(
'{ # HINT0={LEADING(?cgeom)}
   ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (orageo:withinDistance(?cgeom, 
      "POINT(-71.46444 42.7575)"^^orageo:WKTLiteral,
      100, "KM")) } '
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, null, ' ALLOW_DUP=T '));








orageo:xor 


Format

orageo:xor(geom1 : orageo:WKTLiteral, geom2 : orageo:WKTLiteral) : orageo:WKTLiteral


Description

Returns a geometry object that is the topological symmetric difference (XOR operation) of geom1 and geom2.


Parameters

	geom1
	
Geometry object. Specified as a query variable or a constant orageo:WKTLiteral value.


	geom2
	
Geometry object. Specified as a query variable or a constant orageo:WKTLiteral value.





Usage Notes

See Section 1.6.6 for information about representing , indexing, and querying spatial data in RDF.

See also the SDO_GEOM.SDO_XOR function in Oracle Spatial Developer's Guide.


Example

The following example finds the U.S. Congressional district polygons whose centroid is inside the symmetric difference of two specified polygons.


SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (orageo:relate(orageo:centroid(?cgeom), 
      orageo:xor("Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, 
                  -83.6 34.5, -83.6 34.1))"^^orageo:WKTLiteral,
                 "Polygon((-83.2 34.3, -83.0 34.3, -83.0 34.5, 
                  -83.2 34.5, -83.2 34.3))"^^orageo:WKTLiteral),
      "mask=inside")) } '
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, null, ' ALLOW_DUP=T '));





Glossary

The following are selected terms relevant to the Oracle Database implementation of semantic technologies support. This is not a comprehensive RDF and OWL glossary.



apply pattern

Part of a data access constraint defines additional graph patterns to be applied on the resources that match the match pattern before they can be used to construct the query results. See also: match pattern






basic graph pattern (BGP)

A set of triple patterns. From the W3C SPARQL Query Language for RDF Recommendation: "SPARQL graph pattern matching is defined in terms of combining the results from matching basic graph patterns. A sequence of triple patterns interrupted by a filter comprises a single basic graph pattern. Any graph pattern terminates a basic graph pattern."






clique

A graph in which every node of it is connected to, bidirectionally, every other node in the same graph.






Cytoscape

An open source bioinformatics software platform for visualizing molecular interaction networks and integrating these interactions with gene expression profiles and other state data. (See http://www.cytoscape.org/.) An RDF viewer (available for download) is provided as a Cytoscape plug-in.






entailment

An object containing precomputed triples that can be inferred from applying a specified set of rulebases to a specified set of models. See also: rulebase






extractor policy

A named dictionary entity that determines the characteristics of a semantic index that is created using the policy. Each extractor policy refers, directly or indirectly, to an instance of an extractor type.






graph pattern

A combination of triples constructed by combining triple patterns in various ways, including conjunction of triple patterns into groups, optionally using filter conditions, and then combining such groups via connectors similar to disjunctions, outer-joins, and so on. SPARQL querying is based around graph pattern matching.






inferencing

The ability to make logical deductions based on rules. Inferencing enables you to construct queries that perform semantic matching based on meaningful relationships among pieces of data, as opposed to just syntactic matching based on string or other values. Inferencing involves the use of rules, either supplied by Oracle or user-defined, placed in rulebases.






information extractor

An application that processes unstructured documents and extract meaningful information from them, often using natural-language processing engines with the aid of ontologies.






Jena Adapter for Oracle Database

An Oracle-supplied adapter (available for download) for Jena, which is a Java framework for building Semantic Web applications.






match pattern

Part of a constraint that determines the type of access restriction it enforces and binds one or more variables to the corresponding data instances accessed in the user query. See also: apply pattern






model

A user-created semantic structure that has a model name, and refers to triples stored in a specified table column. Examples in this manual are the Articles and Family models.






ontology

A shared conceptualization of knowledge in a particular domain. It consists of a collection of classes, properties, and optionally instances. Classes are typically related by class hierarchy (subclass/ superclass relationship). Similarly, the properties can be related by property hierarchy (subproperty/ superproperty relationship). Properties can be symmetric or transitive, or both. Properties can also have domain, ranges, and cardinality constraints specified for them.






OWLPrime

An Oracle-defined subset of OWL capabilities; refers to the elements of the OWL standard supported by the Oracle Database semantic technologies native inferencing engine.






reasoning

See inferencing






rule

An object that can be applied to draw inferences from semantic data.






rulebase

An object that can contain rules. See also: rule






rules index

See: entailment






semantic index

An index of type MDSYS.SEMCONTEXT, created on textual documents stored in a column of a table, and used with information extractors to locate and extract meaningful information from unstructured documents. See also: information extractor






Sesame Adapter for Oracle Database

An Oracle-supplied adapter (available for download) that integrates the popular Sesame Java APIs with Oracle Semantic Technologies support.






Simple Knowledge Organization System (SKOS)

A data model that is especially useful for representing thesauri, classification schemes, taxonomies, and other types of controlled vocabulary. SKOS is based on standard semantic web technologies including RDF and OWL, which makes it easy to define the formal semantics for those knowledge organization systems and to share the semantics across applications.






triple pattern

Similar to an RDF triple, but allows use of a variable in place of any of the three components (subject, predicate, or object). Triple patterns are basic elements in graph patterns used in SPARQL queries. A triple pattern used in a query against an RDF graph is said to match if, substitution of RDF terms for the variables present in the triple pattern, creates a triple that is present in the RDF graph. See also: graph pattern





Index

A  B  C  D  E  F  G  H  I  J  L  M  N  O  P  Q  R  S  T  U  V  W  X 


A

	ADD_DATATYPE_INDEX procedure, 9
	ADD_DEPENDENT_POLICY procedure, 12
	ADD_SEM_INDEX procedure, 9
	ADD_VPD_CONSTRAINT procedure, 13
	aliases
	
	SEM_ALIASES and SEM_ALIAS data types, 1.6, 4.4



	ALL_BGP_HASH
	
	query option for SEM_MATCH, 1.6



	ALL_BGP_NL
	
	query option for SEM_MATCH, 1.6



	ALL_LINK_HASH
	
	query option for SEM_MATCH, 1.6



	ALL_LINK_NL
	
	query option for SEM_MATCH, 1.6



	ALL_ORDERED
	
	query option for SEM_MATCH, 1.6



	ALLOW_DUP=T
	
	query option for SEM_MATCH, 1.6



	ALTER_DATATYPE_INDEX procedure, 9
	ALTER_ENTAILMENT procedure, 9
	ALTER_MODEL procedure, 9
	ALTER_SEM_INDEX_ON_ENTAILMENT procedure, 9
	ALTER_SEM_INDEX_ON_MODEL procedure, 9
	ANALYZE_ENTAILMENT procedure, 9
	ANALYZE_MODEL procedure, 9
	apply pattern, 5.1.3
	APPLY_OLS_POLICY procedure, 13
	APPLY_POLICY_TO_APP_TAB procedure, 10
	APPLY_VPD_POLICY procedure, 13





B

	basic graph pattern (BGP), 1.6
	batch (bulk) loading, 9, 9
	batch loading semantic data, 1.7.2
	best effort
	
	specifying for SPARQL query, 7.11.3.3



	BGP (basic graph pattern), 1.6
	blank nodes, 1.3.4
	bulk loading, 9, 9
	bulk loading semantic data, 1.7.1
	BULK_LOAD_FROM_STAGING_TABLE procedure, 9





C

	Calais
	
	configuring the Calais extractor type, 4.9



	canonical forms, 1.3.2.1
	catsem10i.sql script, A.1.3, A.2.1
	catsem.sql script, A.1.1
	change tracking
	
	disabling, 9
	enabling, 9
	getting information, 9



	CLEANUP_FAILED procedure, 9
	client identifiers, 7.2.2.1
	cliques (sameAs), 2.2.8
	COMPOSE_RDF_TERM function, 9
	connection pooling
	
	support in Jena Adapter, 7.8.2
	support in Sesame Adapter, 8.7.2



	constructors for semantic data, 1.5
	convert_old_rdf_data procedure, A.1.2
	corpus-centric inference, 4.15
	CREATE_ENTAILMENT procedure, 9
	CREATE_POLICY procedure, 12
	CREATE_RULEBASE procedure, 9
	CREATE_SEM_MODEL procedure, 9
	CREATE_SEM_NETWORK procedure, 9
	CREATE_SOURCE_EXTERNAL_TABLE procedure, 9
	CREATE_VIRTUAL_MODEL procedure, 9
	CREATE_VPD_POLICY procedure, 13





D

	data type indexes
	
	adding, 9
	altering, 9
	dropping, 9
	SEM_DTYPE_INDEX_INFO view, 1.9
	using, 1.9



	data types
	
	for literals, 1.3.2.1



	data types for semantic data, 1.5
	default.xslt file
	
	customizing, 7.11.4



	DELETE_VPD_CONSTRAINT procedure, 13
	demo files
	
	semantic data, 1.11



	DISABLE_CHANGE_TRACKING procedure, 9
	DISABLE_INC_INFERENCE procedure, 9
	DISABLE_OLS_POLICY procedure, 13
	discussion forum
	
	semantic technologies, 1.13



	document-centric inference, 4.15
	documents
	
	semantic indexing for, 4



	downgrading
	
	semantic technologies support to Release 10.2, A.2.2
	semantic technologies support to Release 11.1, A.2.1



	downloads
	
	semantic technologies, 1.13



	DROP_DATATYPE_INDEX procedure, 9
	DROP_ENTAILMENT procedure, 9
	DROP_POLICY procedure, 12
	DROP_RULEBASE procedure, 9
	DROP_SEM_INDEX procedure, 9
	DROP_SEM_MODEL procedure, 9
	DROP_SEM_NETWORK procedure, 9
	DROP_USER_INFERENCE_OBJS procedure, 9
	DROP_VIRTUAL_MODEL procedure, 9
	DROP_VPD_POLICY procedure, 13
	duplicate triples
	
	checking for, 1.3.2.1
	removing from model, 9








E

	ENABLE_CHANGE_TRACKING procedure, 9
	ENABLE_INC_INFERENCE procedure, 9
	ENABLE_OLS_POLICY procedure, 13
	entailment
	
	invalid status, 1.6



	entailment rules, 1.3.6
	entailments, 1.3.7
	
	altering, 9
	deleting if in failed state, 9
	incomplete status, 1.6, 2.3.1
	invalid status, 2.3.1
	SEM_RULES_INDEX_DATASETS view, 1.3.7
	SEM_RULES_INDEX_INFO view, 1.3.7



	examples
	
	Java (on Oracle Technology Network), 1.11
	PL/SQL, 1.11



	exporting semantic data, 1.7
	external documents
	
	indexing, 4.8



	external table
	
	creating, 9



	extractor policies, 4.2
	
	RDFCTX_POLICIES view, 4.16.1, 4.16.2



	extractors
	
	information, 4.1
	
	policies, 4.2











F

	failed state
	
	rulebase or entailment, 9



	federated queries, 7.6.4.1
	filter
	
	attribute of SEM_MATCH, 1.6, 4.4



	FINAL_VALUE_HASH
	
	query option for SEM_MATCH, 1.6



	FINAL_VALUE_NL
	
	query option for SEM_MATCH, 1.6








G

	GATE (General Architecture for Text Engineering)
	
	sample Java implementation, 4.10
	using, 4.10



	GATHER_STATS procedure, 11
	General Architecture for Text Engineering (GATE)
	
	sample Java implementation, 4.10
	using, 4.10



	GET_CHANGE_TRACKING_INFO procedure, 9
	GET_INC_INF_INFO procedure, 9
	GET_MODEL_ID function, 9
	GET_MODEL_NAME function, 9
	GET_TRIPLE_ID function, 9
	GETV$DATETIMETZVAL function, 9
	GETV$DATETZVAL function, 9
	GETV$NUMERICVAL function, 9
	GETV$STRINGVAL function, 9
	GETV$TIMETZVAL function, 9
	GRAPH_MATCH_UNNAMED=T
	
	query option for SEM_MATCH, 1.6



	graphs
	
	attribute of SEM_MATCH, 1.6








H

	HINT0
	
	query option for SEM_MATCH, 1.6








I

	incremental inference, 2.2.9
	
	disabling, 9
	enabling, 9



	incremental inferencing
	
	getting information, 9



	index_status
	
	attribute of SEM_MATCH, 1.6, 2.3.1



	INF_ONLY
	
	query option for SEM_MATCH, 1.6



	inferencing, 1.3.6
	information extractors, 4.1
	inverseOf keyword
	
	using to force use of semantic index, 2.3.4



	IS_TRIPLE function, 9





J

	Java examples
	
	GATE listener, 4.10
	OTN semantic technologies page, 1.11



	Jena Adapter, 7
	
	functions supported in SPARQL queries, 7.7
	optimized handling of SPARQL queries, 7.5
	optimized handling or property paths, 7.5.2
	query examples, 7.10
	RDFa support with prepareBulk, 7.9
	SEM_MATCH and Jena Adapter queries compared, 7.4
	setting up software environment, 7.1
	setting up SPARQL service, 7.2
	support for connection pooling, 7.8.2
	support for semantic model PL/SQL interfaces, 7.8.3
	support for virtual models, 7.8.1



	Joseki
	
	using with Jena Adapter, 7.2








L

	literals
	
	data types for, 1.3.2.1



	LOAD_INTO_STAGING_TABLE procedure, 9
	loading semantic data, 1.7
	
	bulk, 9, 9



	LOOKUP_ENTAILMENT procedure, 9





M

	MAINT_VPD_METADATA procedure, 13
	MAINTAIN_TRIPLES procedure, 12
	match pattern, 5.1.3
	mdsys.SemContent index type, 4.3
	MERGE_MODELS procedure, 9
	metadata
	
	semantic, 1.3.1



	metadata tables and views for semantic data, 1.4
	methods for semantic data, 1.5
	model ID
	
	getting, 9



	model name
	
	getting, 9



	models, 1.2
	
	altering, 9
	creating, 9
	deleting (dropping), 9
	disabling support in the database, 9
	enabling support in the database, 9
	merging, 9
	renaming, 9
	SEM_MODELS data type, 1.6
	SEMI_entailment-name view, 1.3.7
	SEMM_model-name view, 1.3.1
	swapping names, 9
	virtual, 1.3.8








N

	named graph based inference
	
	global, 2.2.11
	local, 2.2.11



	named graphs
	
	support for, 1.3.9



	named_graphs
	
	attribute of SEM_MATCH, 1.6



	network indexes
	
	refreshing information, 9
	SEM_NETWORK_INDEX_INFO view, 1.8.1



	NGGI (named graph based global inference), 2.2.11
	NGLI (named graph based local inference), 2.2.11
	N-Quad format, 1.3.9
	N-Triple format, 1.3.9





O

	OBIEE
	
	using SPARQL Gateway as an XML data source, 7.11.7



	objects, 1.3.3
	options
	
	attribute of SEM_MATCH, 1.6



	Oracle Business Intelligence Enterprise Edition (OBIEE)
	
	using SPARQL Gateway as an XML data source, 7.11.7



	Oracle Label Security (OLS), 5.2.2.6
	
	applying policy, 10, 13
	disabling policy, 13
	enabling policy, 13
	removing policy, 10, 13
	resetting labels associated with a model, 13
	resource-level security, 5.2.2
	setting sensitivity label for a resource that may be used in the subject and/or object position of a triple, 13
	setting sensitivity level for a predicate, 13
	setting sensitivity level for a rule belonging to a rulebase, 13
	setting sensitivity level for RDFS schema elements, 13
	triple-level security, 5.2.1
	using with RDF data, 5.2



	Oracle Spatial
	
	prerequisite software for RDF and OWL capabilities, A.1.5



	orageo
	
	area function, B
	buffer function, B
	centroid function, B
	convexHull function, B
	difference function, B
	distance function, B
	intersection function, B
	length function, B
	mbr function, B
	nearestNeighbor function, B
	relate function, B
	union function, B
	withinDistance function, B
	xor function, B



	OTN page
	
	semantic technologies, 1.13



	OWL
	
	queries using the SEM_DISTANCE ancillary operator, 2.3.2
	queries using the SEM_RELATED operator, 2.3



	owl
	
	SameAs
	
	optimizing inference, 2.2.8



	sameAs
	
	SEMCL_entailment-name view, 2.2.8






	OWL 2 RL support, 2.1.2
	OWL2RL rulebase, 2.1.2





P

	parallel inference, 2.2.10
	Partitioning
	
	must be enabled for RDF and OWL, A.1.5



	PelletInfGraph class
	
	support deprecated in Jena Adapter, 7.8.5



	PLUS_RDFT
	
	query option for SEM_MATCH, 1.6



	properties, 1.3.5
	property chain handling, 3.2.2
	property paths
	
	optimized handling by Jena Adapter, 7.5.2








Q

	quality of search, 4.7
	queries
	
	using the SEM_DISTANCE ancillary operator, 2.3.2
	using the SEM_MATCH table function, 1.6
	using the SEM_RELATED operator, 2.3








R

	RDF rulebase
	
	subset of RDFS rulebase, 1.3.6



	RDF$ET_TAB table, 1.7.1.2
	RDF_VALUE$ table, 1.3.2
	RDFa
	
	support with prepareBulk (Jena Adapter), 7.9



	RDFCTX_INDEX_EXCEPTIONS view, 4.16.3
	RDFCTX_POLICIES view, 4.16.1, 4.16.2
	RDFOLS_SECURE_RESOURCE view, 5.2.2.6, 5.2.2.6
	RDFS entailment rules, 1.3.6
	RDFS rulebase
	
	implements RDFS entailment rules, 1.3.6



	RDFVPD_MODELS view, 5.1.5, 5.1.5
	RDFVPD_POLICIES view, 5.1.4, 5.1.4
	RDFVPD_POLICY_CONSTRAINTS view, 5.1.6, 5.1.6
	RDFVPD_PREDICATE_MDATA view, 5.1.7, 5.1.7
	RDFVPD_RESOURCE_REL view, 5.1.8, 5.1.8
	REFRESH_SEM_NETWORK_INDEX_INFO procedure, 9
	REMOVE_DUPLICATES procedure, 9
	REMOVE_OLS_POLICY procedure, 13
	REMOVE_POLICY_FROM_APP_TAB procedure, 10
	REMOVE_VPD_POLICY procedure, 13
	removing semantic technologies support, A.3
	RENAME_ENTAILMENT procedure, 9
	RENAME_MODEL procedure, 9
	RESET_MODEL_LABELS procedure, 13
	Resource Description Framework
	
	See semantic technologies



	resource-level security, 5.2.2
	resultsPerPage parameter, 7.11.6.2
	rulebases, 1.3.6
	
	attribute of SEM_MATCH, 2.3.1
	deleting if in failed state, 9
	SEM_RULEBASE_INFO view, 1.3.6
	SEM_RULEBASES data type, 1.6
	SEMR_rulebase-name view, 1.3.6



	rules, 1.3.6
	rules indexes
	
	See entailments








S

	sameAs
	
	optimizing inference (OWL), 2.2.8



	sameTerm built-in function, 1.6.7.3
	sdo_rdf_internal.convert_old_rdf_data procedure, A.1.2
	sdordfwm_rm.sql script, 6.1.1
	sdordfwm.sql script, 6.1
	search
	
	quality of, 4.7



	security considerations, 1.3.10
	SEM_ALIAS data type, 1.6, 4.4
	SEM_ALIASES data type, 1.6, 4.4
	SEM_APIS package
	
	ADD_DATATYPE_INDEX, 9
	ADD_SEM_INDEX, 9
	ALTER_DATATYPE_INDEX, 9
	ALTER_ENTAILMENT, 9
	ALTER_MODEL, 9
	ALTER_SEM_INDEX_ON_ENTAILMENT semantic network indexes
	
	altering on entailment, 9



	ALTER_SEM_INDEX_ON_MODEL, 9
	ANALYZE_ENTAILMENT, 9
	ANALYZE_MODEL, 9
	BULK_LOAD_FROM_STAGING_TABLE, 9
	CLEANUP_FAILED, 9
	COMPOSE_RDF_TERM, 9
	CREATE_ENTAILMENT, 9
	CREATE_RULEBASE, 9
	CREATE_SEM_MODEL, 9
	CREATE_SEM_NETWORK, 9
	CREATE_SOURCE_EXTERNAL_TABLE, 9
	CREATE_VIRTUAL_MODEL, 9
	DISABLE_CHANGE_TRACKING, 9
	DISABLE_INC_INFERENCE, 9
	DROP_DATATYPE_INDEX, 9
	DROP_ENTAILMENT, 9
	DROP_RULEBASE, 9
	DROP_SEM_INDEX, 9
	DROP_SEM_MODEL, 9
	DROP_SEM_NETWORK, 9
	DROP_USER_INFERENCE_OBJS, 9
	DROP_VIRTUAL_MODEL, 9
	ENABLE_CHANGE_TRACKING, 9
	ENABLE_INC_INFERENCE, 9
	GET_CHANGE_TRACKING_INFO, 9
	GET_INC_INF_INFO, 9
	GET_MODEL_ID, 9
	GET_MODEL_NAME, 9
	GET_TRIPLE_ID, 9
	GETV$DATETIMETZVAL, 9
	GETV$DATETZVAL, 9
	GETV$NUMERICVAL, 9
	GETV$STRINGVAL, 9
	GETV$TIMETZVAL, 9
	LOAD_INTO_STAGING_TABLE, 9
	LOOKUP_ENTAILMENT, 9
	MERGE_MODELS, 9
	reference information, 9, 11
	REFRESH_SEM_NETWORK_INDEX_INFO, 9
	REMOVE_DUPLICATES, 9
	RENAME_ENTAILMENT, 9
	RENAME_MODEL, 9
	SWAP_NAMES, 9
	TRIPLE, 9
	VALIDATE_ENTAILMENT, 9
	VALIDATE_MODEL, 9
	VALUE_NAME_PREFIX, 9, 9



	SEM_CONTAINS operator
	
	syntax, 4.4



	SEM_CONTAINS_COUNTancillary operator
	
	syntax, 4.4.2



	SEM_CONTAINS_SELECT ancillary operator
	
	syntax, 4.4.1
	using in queries, 4.6



	SEM_DISTANCE ancillary operator, 2.3.2
	SEM_DTYPE_INDEX_INFO view, 1.9
	SEM_GRAPHS data type, 9
	SEM_INDEXTYPE index type, 2.3.3
	SEM_MATCH table function, 1.6
	SEM_MODEL$ view, 1.3.1
	
	virtual model entries, 1.3.8



	SEM_MODELS data type, 1.6
	SEM_NETWORK_INDEX_INFO view, 1.8.1
	SEM_OLS package
	
	APPLY_POLICY_TO_APP_TAB, 10
	REMOVE_POLICY_FROM_APP_TAB, 10



	SEM_PERF package
	
	GATHER_STATS, 11



	SEM_RDFCTX package
	
	ADD_DEPENDENT_POLICY, 12
	CREATE_POLICY, 12
	DROP_POLICY, 12
	MAINTAIN_TRIPLES, 12
	reference information, 12
	SET_DEFAULT_POLICY, 12
	SET_EXTRACTOR_PARAM, 12



	SEM_RDFSA package
	
	ADD_VPD_CONSTRAINT, 13
	APPLY_OLS_POLICY, 13
	APPLY_VPD_POLICY, 13
	CREATE_VPD_POLICY, 13
	DELETE_VPD_CONSTRAINT, 13
	DISABLE_OLS_POLICY, 13
	DROP_VPD_POLICY, 13
	ENABLE_OLS_POLICY, 13
	MAINT_VPD_METADATA, 13
	reference information, 10, 13
	REMOVE_OLS_POLICY, 13
	REMOVE_VPD_POLICY, 13
	RESET_MODEL_LABELS, 13
	SET_PREDICATE_LABEL, 13
	SET_RDFS_LABEL, 13
	SET_RESOURCE_LABEL, 13
	SET_RULE_LABEL, 13



	SEM_RELATED operator, 2.3
	SEM_RULEBASE_INFO view, 1.3.6
	SEM_RULEBASES data type, 1.6
	SEM_RULES_INDEX_DATASETS view, 1.3.7
	SEM_RULES_INDEX_INFO view, 1.3.7
	SEM_VMODEL_DATASETS view, 1.3.8
	SEM_VMODEL_INFO view, 1.3.8
	semantic data
	
	blank nodes, 1.3.4
	constructors, 1.5
	data types, 1.5
	demo files, 1.11
	examples (Java), 1.11
	examples (PL/SQL), 1.11
	in the database, 1.3
	metadata, 1.3.1
	metadata tables and views, 1.4
	methods, 1.5
	modeling, 1.2
	objects, 1.3.3
	properties, 1.3.5
	queries using the SEM_MATCH table function, 1.6
	security considerations, 1.3.10
	statements, 1.3.2
	steps for using, 1.10
	subjects, 1.3.3



	semantic index
	
	creating (MDSYS.SEM_INDEXTYPE), 2.3.3
	indexing documents, 4.3
	using for documents, 4



	semantic indexes
	
	RDFCTX_INDEX_EXCEPTIONS view, 4.16.3



	semantic network indexes
	
	adding, 9
	altering on model, 9
	dropping, 9
	using, 1.8



	semantic technologies
	
	overview, 1



	semantic technologies support
	
	downgrading to Release 10.2, A.2.2
	downgrading to Release 11.1, A.2.1
	enabling, A.1
	removing, A.3
	upgrading from Release 10.2, A.1.3
	upgrading from Release 11.1, A.1.2



	SEMCL_entailment-name view, 2.2.8
	SemContent
	
	mdsys.SemContent index type, 4.3



	SEMI_entailment-name view, 1.3.7
	SEMM_model-name view, 1.3.1
	SEMR_rulebase-name view, 1.3.6
	semrelod111.sql script, A.2.1
	semrelod.sql script, A.1.2
	semremov.sql script, A.3
	Sesame Adapter, 8
	
	optimized handling of SPARQL queries, 8.4
	performance recommendations, 8.5
	query examples, 8.10
	SEM_MATCH and Sesame Adapter queries compared, 8.3
	setting up software environment, 8.2.1
	setting up SPARQL endpoint, 8.2.2
	support for connection pooling, 8.7.2
	support for semantic model PL/SQL interfaces, 8.7.3
	support for virtual models, 8.7.1



	SET_DEFAULT_POLICY procedure, 12
	SET_EXTRACTOR_PARAM procedure, 12
	SET_PREDICATE_LABEL procedure, 13
	SET_RDFS_LABEL procedure, 13
	SET_RESOURCE_LABEL procedure, 13
	SET_RULE_LABEL procedure, 13
	Simple Knowledge Organization System (SKOS)
	
	property chain handling, 3.2.2
	support for, 3



	SKOS (Simple Knowledge Organization System)
	
	property chain handling, 3.2.2
	support for, 3



	SNOMED CT (Systematized Nomenclature of Medicine - Clinical Terms)
	
	support for, 9



	SPARQL
	
	configuring the service, 7.2.2, 8.2.2.2
	optimized handling of queries, 7.5, 8.4
	searching for documents using SPARQL query pattern, 4.5
	setting up service for Jena Adapter, 7.2
	setting up service for Sesame Adapter, 8.2.2



	SPARQL Gateway, 7.11
	
	customizing the default XSLT file, 7.11.4
	features and benefits overview, 7.11.1
	installing and configuring, 7.11.2
	Java API, 7.11.5
	specifying best effort for SPARQL query, 7.11.3.3
	specifying content type other than text/xml, 7.11.3.4
	specifying timeout value for SPARQL query, 7.11.3.2
	using as an XML data source to OBIEE, 7.11.7
	using with semantic data, 7.11.3



	Spatial
	
	prerequisite software for RDF and OWL capabilities, A.1.5



	spatial support
	
	orageo
	
	area function, B
	buffer function, B
	centroid function, B
	convexHull function, B
	difference function, B
	distance function, B
	intersection function, B
	length function, B
	mbr function, B
	nearestNeighbor function, B
	relate function, B
	union function, B
	withinDistance function, B
	xor function, B






	staging table
	
	loading data from, 9
	loading data into, 9



	staging table for bulk loading semantic data, 1.7.1
	statements
	
	RDF_VALUE$ table, 1.3.2



	statistics
	
	gathering for RDF and OWL, 11



	STRICT_DEFAULT
	
	query option for SEM_MATCH, 1.6



	subjects, 1.3.3
	subproperty chaining, 3.2.2
	SWAP_NAMES procedure, 9
	Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT)
	
	support for, 9








T

	timeout value
	
	specifying for SPARQL query, 7.11.3.2



	triple-level security, 5.2.1
	triples
	
	constructors for inserting, 1.5.1
	duplication checking, 1.3.2.1
	IS_TRIPLE function, 9








U

	uninstalling semantic technologies support, A.3
	upgrading
	
	semantic technologies support from Release 10.2, A.1.3
	semantic technologies support from Release 11.1, A.1.2



	URI prefix
	
	using when values are not stored as URIs, 2.3.5



	URIPREFIX keyword, 2.3.5





V

	VALIDATE_ENTAILMENT procedure, 9
	VALIDATE_MODEL procedure, 9
	VALUE_NAME_PREFIX function, 9, 9
	version-enabling an RDF model, 6.2, 6.4
	virtual models, 1.3.8
	
	SEM_MODEL$ view entries, 1.3.8
	SEM_VMODEL_DATASETS view, 1.3.8
	SEM_VMODEL_INFO view, 1.3.8
	support in Jena Adapter, 7.8.1
	support in Sesame Adapter, 8.7.1



	Virtual Private Database (VPD), 5.1.4, 5.1.5, 5.1.6, 5.1.7, 5.1.8
	virtual private database (VPD)
	
	adding constraint, 13
	applying policy, 13
	creating policy, 13
	deleting constraint, 13
	dropping policy, 13
	maintaining metadata, 13
	removing policy, 13
	using with RDF data, 5.1








W

	Workspace Manager
	
	enabling support for RDF data, 6.1
	inferring from version-enabled RDF models, 6.3
	merging and refreshing workspaces, 6.4
	removing support for RDF data, 6.1.1
	version-enabling an RDF model, 6.2



	workspaces
	
	merging and refreshing, 6.4








X

	XSLT file
	
	customizing default for SPARQL Gateway, 7.11.4







This screen capture shows the XSLT Management Page, which is described in text before the illustration.


This screen capture shows the query and the response from clicking in the specified URI link that appears in the preceding Figure 7-4. The response is shown in table form.


This illustration shows the Select Metadata Types page of the Import Metadata wizard. The following metadata types are shows as selected: Tables, Keys, and Foreign Keys. The following metadata types are shown as deselected (not selected): Metadata From CRM Tables, System Tables, Aliases, Synonyms, and Views.


This is a text description of Figure 6-1, "Physical Versioning of Entailment (Rules Index)", which is described before and after the illustration.

The illustration uses boxes to show the following: The RDF model includes some differences from workspace W1 and some differences from workspace W2. For the rules index, there are three private copies maintained: one for the LIVE workspace, one for the W1 workspace, and one for the W2 workspace. Each of the private copies for workspaces W1 and W2 includes the information for the LIVE workspace, plus information about differences from the associated other workspace (W1 or W2).


This illustration shows the Select Data Source page of the Import Metadata wizard. After this illustration are instructions for fields that you should fill in.


This is a text description of Figure 1-2, "Inferencing". It illustrates the inferencing capabilities of Oracle Database, as explained in text before and after the illustration.

The illustration uses boxes and arrows to show the following: Inferred Triple Set 1 is derived from Model 1 using rules in Rulebase 1; Inferred Triple Set 2 is derived from Model 2 using rules in Rulebase 1 and Rulebase 2; and the database can have additional models, rulebases, and inferred triple sets.


This is a text description of Figure 1-3, "Family Tree for RDF Example". It illustrates the family tree for the example that uses an RDF model for family information. The family relationships are explained in text before the illustration and in comment lines before the INSERT statements in the example.


This screen capture includes the following controls:

	
SPARQL Endpoint


	
Location selector (here showing "sparql.org")


	
SPARQL SELECT Query Body and selector control


	
Submit Query button


	
Hide Advanced Options link


	
Timeout (ms) (here showing "3000") and selector control


	
Best Effort check box (here not selected)





This screen capture shows the XML format for the response to the query.


This illustration shows the Select Metadata Objects page of the Import Metadata wizard. It contains a Find box for finding metadata objects, and a Datasource View pane on the left and a Repository View box on the right. Each view contains an expandable hierarchy tree, with a check box option to Show Complete Structure (checked in this illustration).


This screen capture includes the following controls:

	
SPARQL Endpoint


	
Location selector (here showing "local")


	
SPARQL SELECT Query Body


	
Submit Query button


	
Show Advanced Options link





This screen capture shows the query response in table form. The column headings are Row Count, Subject, Predicate, and Object.


This screen capture shows the XSLT Management Page, which is described in text before the illustration.


This is a text description of Figure 1-1, "Oracle Semantic Capabilities". It illustrates the storage, query, and inferencing capabilities of Oracle Database. These capabilities are explained in text after the illustration.

The illustration contains four boxes, labeled INFER, QUERY, STORE, and Database.

The INFER box contains boxes labeled "OWL subset", "RDF/S", and "User-defined", with an arrow pointing to "RDF/OWL data and ontologies" in the Database box.

The QUERY box contains two boxes: one labeled "Query RDF/OWL data and ontologies and the other labeled "Ontology-assisted query of relational data", with an arrow pointing from each to "RDF/OWL data and ontologies" in the Database box, and an arrow pointing from "Ontology-assisted query of relational data" to "Enterprise (relational) data" in the Database box.

The STORE box contains boxes labeled "Bulk Load" and "Incremental Load and DML", with an arrow pointing to "RDF/OWL data and ontologies" in the Database box.


This is a text description of Figure 2-1, "Cancer Ontology Example". It illustrates a cancer ontology, as described in text after the illustration.

Oracle Legal Notices
Copyright Notice
Copyright © 1994-2010, Oracle and/or its affiliates. All rights reserved.
License Restrictions Warranty/Consequential Damages Disclaimer
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
Warranty Disclaimer
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
Restricted Rights Notice
If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
Hazardous Applications Notice
This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.
Trademark Notice
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
Third-Party Content, Products, and Services Disclaimer
This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
[image: Oracle Logo]
OEBPS/img/inferencing.gif
Rulebase 1 Rulebase 2
— iered

o> il set
P, ferred

Trile Set 2






OEBPS/dcommon/bookicon.gif





OEBPS/dcommon/conticon.gif





OEBPS/img/obiee_impmeta_metaobjects.jpg
Import Metadata - Select Metadata

[1] selectDeta source

SelectMetadata Types

“ Select Metadata Objects

Help

jects

Select the metadata objects you want to irmport it the physical layer of the repository.

Data source view!

Repository View:

5 8 htp/slc00ariB080/sparglgatew |
& sg_se-http%3A%2F%2F127
B sub_class
B super_class

%

Elagl

K

[ Show complete structure

=

O htip:/slcOiari 8080/sparglgateway/st
B htip:/slci0ari 8080/sparglgateway/st

K

[ show complete structure

fiext | Eiely | Cancel |

[For Help, press F1

4






OEBPS/dcommon/booklist.gif





OEBPS/dcommon/oracle-logo.jpg
ORACLE

Database Semantic
Technologies
Developer's Guide,
11g Release 2 (11.2)





OEBPS/dcommon/rarrow.gif





OEBPS/img/spgateway_browse_1.jpg
© SPARGL Gateway

€ € O slco0ar

001/sparqlgateway/browse.jsp

A simple navigation interface. Welcome!

SPARQL Gateway

SPARQL Endpoint: [http:#spargl orgibooks [sparqlorg =]

SPARQL SELECT Query Body: [Load example query: Fetch triples.

[PREFIX raf: <http://wov.us.ors/1999/02/22-rdf-syntax-nsh>
PREFIX rdfs: <http://www.uvs.org/2000/01/rdf-schenaf>
SELECT 2subject 7predicate 2object
WHERE

¢ 2swpject Jpredicate Zobject)
LnIT 100

Subrmit Query
Hide Advanced Options Timeout (ms) [3000 1000ms (1s) =]

I Best effort





OEBPS/dcommon/bookbig.gif





OEBPS/dcommon/oracle.gif





OEBPS/img/obiee_impmeta_datasource.jpg
Import Metadat

Select Data Source

Fl select Data Source
'

i
[2] selectMetadata Types

SelectMetadata Objects

Help

Import Type:
Connection Type

URL:
User Narme:

Password

[coeal wachine

o

Browse,

Back

et

P

Cancel

[For Help, press F1






OEBPS/dcommon/larrow.gif





OEBPS/img/cancer_ontology.gif
T_Gall_immunodeficiency






OEBPS/dcommon/rightnav.gif





OEBPS/dcommon/help.gif





OEBPS/dcommon/index.gif





OEBPS/img/sem_overview.gif
INFER

queny

Hells auery roFron. | [ omaogyasssea

HIBE Gt aeryof

HIEIE ontologies enterprise data

3

srore v v
rorowt | [ entepree

Bulk Load data and {relational)
iooges || dma

Tereron

Crada oL

Database






OEBPS/dcommon/oracle-small.JPG
ORACLE





OEBPS/dcommon/O_signature_clr.JPG
ORACLE





OEBPS/dcommon/prodicon.gif





OEBPS/img/spgateway_index_1.jpg
(© SPARGL Gateway

€ - C | O slc00ari:7001/sparqlgateway,/index html PN
SPARQL Gateway

home browse spargl xslt
& simple test query interface. Welcome!

SPARQL Endpoint: [htp:/127.0.0. 16080 josekiforacle [iacal

SPARQL SELECT Query Body:

[PREFIX a <nttp://purl.org/dc/elenents/1.1/>
PREFIX raf: <htep://wow.vs.ors/1999/02/22-rdf-syntax-nsf>
PREFIX rdfs: <http://wsv.us.ors/2000/01/rdf-scheraf>
[PREFIX xsa:  <http://wuv.us.ors/2001/XHLSchenafi>
PREFIX oul:  <http://wev.us.ors/2000/07/oulf>
PREFIZ fn:  <http://wsw.wd.org/2005/xpach-functionsé>
[PREFIX ouext: <http://oracle.com/sentech/jena-adaptor/ext/user-def-functionff>
PREFIX cext: <http://oracle.com/sentech/jena-adaptor/ext/functionff>
[PREFIX ORACLE_SEM_FS_NS: <http://oracle.con/semtechitinecut=100, qid=123>
SELECT 2sc 2c
wHERE
( 2sc rafsisunClassof 2c)
LnIT 100

Subrmit Query





OEBPS/dcommon/mix.gif





OEBPS/img/spgateway_xslt.jpg
© SPARGL Gateway &)

€ - C | ©slc00ari:7001/sparglgateway/admin/xslit.jsp

SPARQL Gateway Administration

A simple XSLT management interface. Welcome sg!

Enter XSLT ID

Description  [defauit XSLT

Get XSLT | _Save XSLT

XSLT Body

<xslt
<xsl

arishle neme="uri">
hoose>

<xsl:ivhen test="starts-with(text(),'http://vuv.us.ory/2000/01/rdf-schenaf') ">
<xslivalue-of select=rconcat('rdfs:',substring-
after (text (), ' http://vww.u3.org/2000/01/raf-schema ) ) />
</xs1:uhen>
<xsl:ivhen test="starts-with(text(},'http://vuw.u3.ory/2004/02/skos/coref’ ) ">
<xslivalue-of select=rconcat('skos:',substring-
after (text (), 'http://vww.u3.org/2004/02/skos/corel ') ) "/ >
</xs1:uhen>
<xslivhen test="starts-with(text (), 'htep://vew.v3.org/2002/07/oulf!) "> b
<xslivalue-of select="concat('owl:',substring-
after (text(), 'hetp://www.w3.org/2002/07/oulf’ ) "/>
</xs1:uhen>

<xsl:ivhen test="starts-with(text (), 'http://vuw.u3.ory/1999/02/22-rdf-syntax-nsf') ">
<xslivalue-of select=rconcat('rdf:',substring-after (text(),'htep://www.u3.ors/1999/02/22-

rat-syntax-ns§')) />
</xs1:uhen>
<xsl:ivhen test="starts-with(text(),'htep://purl.org/goodrelations/vif') "> =
<xslivalue-of select="concat('gr:', substring-






OEBPS/dcommon/contbig.gif





OEBPS/dcommon/indxicon.gif





OEBPS/dcommon/topnav.gif





OEBPS/img/spgateway_sparql_mgmt.jpg
© SPARGL Gateway

€ = C | © sk00ari:7001/sparqlgateway/admin/sparql.jsp
SPARQL Gateway Administration

&

A simple SPARQL management interface. Welcome sg!

Changes persisted successfully!

Enter SPARQLID [j

0 default example SPARQL query

Description  [Fetch indiduals and classes

Get SPARGL | _Save SPARGL

2 Get triples

SPARQL Body

PREFIX Jpurl.org/dc/elenents/1.1/>
PREFIX /wwy. w3 . 0rg/ 1999/02/ 22 -rdf-syntax-nsf>
PREFIX /Y. w3 . 0rg/2000/ 01/ raf-schenad>
PREFIX /wuy. u3 . 0rg/2001/ XHLSChenal>

PREFIX /wwy. w3 .0rg/2000/07/ oulf>

PREFIX /wwy. w3 . 0rg/ 2005/ xpath-tunctionsh>

PREFIX Joracle.con/sentech/ jena-adaptor/ext/ user-def-funct ionff>
PREFIX : -com/ sentech/ jena-adaptor/ ext/ funct ionf>

PREFIX ORACLE_SEM_FS_NS: <http://oracle.con/semtechitinecut=100, qid=123>
SELECT 21 2¢

WHERE
¢ 21 rat:eype %)
LINIT 10






OEBPS/dcommon/toc.gif





OEBPS/dcommon/leftnav.gif





OEBPS/img/spgateway_index_2.jpg
@ slco0ari: 7001 /spardigat: *
€ - C | © slc00ari:7001/sparqlgateway/sg?ee =http%3A%2F %2F dbpedia.org%2Fsparql&endpoint_select=http%3A%

‘This XML file does not appear to have any siyle information associated with it. The document free is shown below.

w<test xmlns:rdf="hetp://uww.u3.or/1999/02/22-raf-syntax-ns§” xnlns:
verows
<sc>griBusinessEntity</se>

="http://wwe.w3.org/2008/ spargl-resultef >

<c>http://xmins.com/foat/0.1/Organizations/c>
</rou>
verow
<sc>hrep://dbpedia.org/ontology/ hirline</sc>
<c>http://dbpedia.org/ontology/ Company</c>
</rou>
verow
<sc>hrep://dbpedia. org/ontology/ LavF i</ sc>
<c>http://dbpedia.org/ontology/ Company</c>
</rou>
verow
<sc>htep://dbpedia. org/ontology/ RecordLabel</se>
<c>http://dbpedia.org/ontology/ Conpany</ o>
</rou>
verow
<sc>hrep://dbpedia.org/ontology/ hirline</sc>
<c>http://dbpedia.org/ontology/ Company</c>
</rou>
verow
<sc>hrep://dbpedia. org/ontology/ LavF i</ sc>
<c>http://dbpedia.org/ontology/ Company</c>
</rou>
verow
<sc>htep://dbpedia. org/ontology/ RecordLabel</se>
<c>http://dbpedia.org/ontology/ Conpany</ o>
</rou>
verow

<scoul:ontologyProperty</se>
<csraf:Property</c>
</rou>
verow
<scovl:DatatypeProperty</sc>
<csraf:Property</c>
</rou>
verow
<sc>ovl:innotationProperty</sc>
<csraf:Property</c>
</rows






OEBPS/dcommon/prodbig.gif





OEBPS/img/obiee_impmeta_metatypes.jpg
Import Metadata - Select Metadata Types

Select Data Source

u Select Metadata Types

SelectMetadata Objects

Help

Select the Metadata types you want to
¥ Iables

[ Keys

¥ Eorsign keys

™ Metadata from CRM tables

Back

™ System tables
I aliases

I~ Synonyms
™ views

Hext

Erih

Cancel

[For Help, press F1






OEBPS/dcommon/feedback.gif





OEBPS/img/spgateway_browse_3.jpg
© SPARGL Gateway

€ O slc00ari

001/sparqlgateway/browse jsp?ee =http%3A%2F % 2Fsparql.org%2Fbooks&eq =select +%3Fsubject+%3Fpre

SPARQL Gateway

horme browse s

A simple navigation interface. Welcome!

SPARQL Endpoint: [http:#spargl orgrbooks [tocal |

SPARQL SELECT Query Body: [Load example query: Fetch subclass & superclass v |

[select 2subject 7predicate 2object

where

i

(<htep://example.org/book/bookS> rpredicate ohject . }
(2subject <http://exsmple.ors/book/bookSs 2ohject .}
(7subject 7predicate <http://example.org/bock/books> }
)

Limic 100

Subrmit Query
Hide Advanced Options Timeout (ms) [3000 000ms (1) =] [ Best effort

1 http://example.org/book/boaks destitle Harry Potter and the Order of the Phoeni

*

2 http://example.org/book/boks deicreator K. Rowling






OEBPS/dcommon/feedbck2.gif
<





OEBPS/dcommon/uarrow.gif





OEBPS/img/family.gif
Janice

Cathy Jack Tom Cindy
(sisterOf Jack)  (Male) (Male) (Female)





OEBPS/img/wm_rdf_rules_index.gif
RDF Model

Rules Index

5 Deta fom Worpace W1
9 Dot rom Workspace W2

P copyor
LV et

P copyor
W mpace

Pt copyor
W2 dpace





OEBPS/dcommon/doclib.gif





OEBPS/img/spgateway_browse_1a.jpg
1 http://example.org/book/boaks destitle

Harry Patter and the Order of the Phoeni
*

http: //purl.org/dc/slements/1. 1/title

2 http: //example .org/book/books JK. Rowling

3 _ibo hittp: //www. w3.0rg/2001 /veard= JK. Rowling
rdf/3.0#EN

4 b0

http://www.w3.0rg/2001/veard- _ib1






OEBPS/dcommon/masterix.gif





