
[image: Oracle Corporation]

Contents

Title and Copyright Information

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

What's New in PL/SQL Packages and Types Reference?

	New Packages
	Updated Packages
	New Types
	Updated Types

1 Introduction to Oracle Supplied PL/SQL Packages & Types

	Package Overview
	Package Components
	Using Oracle Supplied Packages
	Creating New Packages
	Separating the Specification and Body

	Referencing Package Contents

	Summary of Oracle Supplied PL/SQL Packages and Types

2 APEX_CUSTOM_AUTH

	Documentation of APEX_CUSTOM_AUTH

3 APEX_APPLICATION

	Documentation of APEX_APPLICATION

4 APEX_ITEM

	Documentation of APEX_ITEM

5 APEX_UTIL

	Documentation of APEX_UTIL

6 CTX_ADM

	Documentation of CTX_ADM

7 CTX_CLS

	Documentation of CTX_CLS

8 CTX_DDL

	Documentation of CTX_DDL

9 CTX_DOC

	Documentation of CTX_DOC

10 CTX_ENTITY

	Documentation of CTX_ENTITY

11 CTX_OUTPUT

	Documentation of CTX_OUTPUT

12 CTX_QUERY

	Documentation of CTX_QUERY

13 CTX_REPORT

	Documentation of CTX_REPORT

14 CTX_THES

	Documentation of CTX_THES

15 CTX_ULEXER

	Documentation of CTX_ULEXER

16 DBMS_ADDM

	Using DBMS_ADDM
	Security Model

	Summary of DBMS_ADDM Subprograms
	ANALYZE_DB Procedure
	ANALYZE_INST Procedure
	ANALYZE_PARTIAL Procedure
	DELETE Procedure
	DELETE_FINDING_DIRECTIVE Procedure
	DELETE_PARAMETER_DIRECTIVE Procedure
	DELETE_SEGMENT_DIRECTIVE Procedure
	DELETE_SQL_DIRECTIVE Procedure
	GET_ASH_QUERY Function
	GET_REPORT Function
	INSERT_FINDING_DIRECTIVE Procedure
	INSERT_PARAMETER_DIRECTIVE Procedure
	INSERT_SEGMENT_DIRECTIVE Procedure
	INSERT_SQL_DIRECTIVE Procedure

17 DBMS_ADVANCED_REWRITE

	Using DBMS_ADVANCED_REWRITE
	Security Model

	Summary of DBMS_ADVANCED_REWRITE Subprograms
	ALTER_REWRITE_EQUIVALENCE Procedure
	BUILD_SAFE_REWRITE_EQUIVALENCE Procedure
	DECLARE_REWRITE_EQUIVALENCE Procedures
	DROP_REWRITE_EQUIVALENCE Procedure
	VALIDATE_REWRITE_EQUIVALENCE Procedure

18 DBMS_ADVISOR

	Using DBMS_ADVISOR
	Deprecated Subprograms
	Security Model

	Summary of DBMS_ADVISOR Subprograms
	ADD_SQLWKLD_REF Procedure
	ADD_SQLWKLD_STATEMENT Procedure
	ADD_STS_REF Procedure
	CANCEL_TASK Procedure
	COPY_SQLWKLD_TO_STS Procedure
	CREATE_FILE Procedure
	CREATE_OBJECT Procedure
	CREATE_SQLWKLD Procedure
	CREATE_TASK Procedures
	DELETE_SQLWKLD Procedure
	DELETE_SQLWKLD_REF Procedure
	DELETE_SQLWKLD_STATEMENT Procedures
	DELETE_STS_REF Procedure
	DELETE_TASK Procedure
	EXECUTE_TASK Procedure
	GET_REC_ATTRIBUTES Procedure
	GET_TASK_REPORT Function
	GET_TASK_SCRIPT Function
	IMPLEMENT_TASK Procedure
	IMPORT_SQLWKLD_SCHEMA Procedure
	IMPORT_SQLWKLD_SQLCACHE Procedure
	IMPORT_SQLWKLD_STS Procedure
	IMPORT_SQLWKLD_SUMADV Procedure
	IMPORT_SQLWKLD_USER Procedure
	INTERRUPT_TASK Procedure
	MARK_RECOMMENDATION Procedure
	QUICK_TUNE Procedure
	RESET_SQLWKLD Procedure
	RESET_TASK Procedure
	SET_DEFAULT_SQLWKLD_PARAMETER Procedures
	SET_DEFAULT_TASK_PARAMETER Procedures
	SET_SQLWKLD_PARAMETER Procedures
	SET_TASK_PARAMETER Procedure
	TUNE_MVIEW Procedure
	UPDATE_OBJECT Procedure
	UPDATE_REC_ATTRIBUTES Procedure
	UPDATE_SQLWKLD_ATTRIBUTES Procedure
	UPDATE_SQLWKLD_STATEMENT Procedure
	UPDATE_TASK_ATTRIBUTES Procedure

19 DBMS_ALERT

	Using DBMS_ALERT
	Overview
	Security Model
	Constants
	Restrictions
	Exceptions
	Operational Notes
	Examples

	Summary of DBMS_ALERT Subprograms
	REGISTER Procedure
	REMOVE Procedure
	REMOVEALL Procedure
	SET_DEFAULTS Procedure
	SIGNAL Procedure
	WAITANY Procedure
	WAITONE Procedure

20 DBMS_APPLICATION_INFO

	Using DBMS_APPLICATION_INFO
	Overview
	Security Model
	Operational Notes

	Summary of DBMS_APPLICATION_INFO Subprograms
	READ_CLIENT_INFO Procedure
	READ_MODULE Procedure
	SET_ACTION Procedure
	SET_CLIENT_INFO Procedure
	SET_MODULE Procedure
	SET_SESSION_LONGOPS Procedure

21 DBMS_APPLY_ADM

	Using DBMS_APPLY_ADM
	Overview
	Security Model
	Operational Notes
	Deprecated Apply Component Parameter Value

	Summary of DBMS_APPLY_ADM Subprograms
	ADD_STMT_HANDLER Procedure
	ALTER_APPLY Procedure
	COMPARE_OLD_VALUES Procedure
	CREATE_APPLY Procedure
	CREATE_OBJECT_DEPENDENCY Procedure
	DELETE_ALL_ERRORS Procedure
	DELETE_ERROR Procedure
	DROP_APPLY Procedure
	DROP_OBJECT_DEPENDENCY Procedure
	EXECUTE_ALL_ERRORS Procedure
	EXECUTE_ERROR Procedure
	GET_ERROR_MESSAGE Function
	REMOVE_STMT_HANDLER
	SET_CHANGE_HANDLER Procedure
	SET_DML_HANDLER Procedure
	SET_ENQUEUE_DESTINATION Procedure
	SET_EXECUTE Procedure
	SET_GLOBAL_INSTANTIATION_SCN Procedure
	SET_KEY_COLUMNS Procedures
	SET_PARAMETER Procedure
	SET_SCHEMA_INSTANTIATION_SCN Procedure
	SET_TABLE_INSTANTIATION_SCN Procedure
	SET_UPDATE_CONFLICT_HANDLER Procedure
	SET_VALUE_DEPENDENCY Procedure
	START_APPLY Procedure
	STOP_APPLY Procedure

22 DBMS_AQ

	Using DBMS_AQ
	Constants
	Data Structures
	Object Name
	Type Name
	Oracle Streams AQ PL/SQL Callback

	Operational Notes
	DBMS_AQ and DBMS_AQADM Java Classes

	Summary of DBMS_AQ Subprograms
	BIND_AGENT Procedure
	DEQUEUE Procedure
	DEQUEUE_ARRAY Function
	ENQUEUE Procedure
	ENQUEUE_ARRAY Function
	LISTEN Procedures
	POST Procedure
	REGISTER Procedure
	UNBIND_AGENT Procedure
	UNREGISTER Procedure

23 DBMS_AQADM

	Using DBMS_AQADM
	Constants

	Subprogram Groups
	Queue Table Subprograms
	Privilege Subprograms
	Queue Subprograms
	Subscriber Subprograms
	Notification Subprograms
	Propagation Subprograms
	Oracle Streams AQ Agent Subprograms
	Alias Subprograms

	Summary of DBMS_AQADM Subprograms
	ADD_ALIAS_TO_LDAP Procedure
	ADD_SUBSCRIBER Procedure
	ALTER_AQ_AGENT Procedure
	ALTER_PROPAGATION_SCHEDULE Procedure
	ALTER_QUEUE Procedure
	ALTER_QUEUE_TABLE Procedure
	ALTER_SUBSCRIBER Procedure
	CREATE_AQ_AGENT Procedure
	CREATE_NP_QUEUE Procedure
	CREATE_QUEUE Procedure
	CREATE_QUEUE_TABLE Procedure
	DEL_ALIAS_FROM_LDAP Procedure
	DISABLE_DB_ACCESS Procedure
	DISABLE_PROPAGATION_SCHEDULE Procedure
	DROP_AQ_AGENT Procedure
	DROP_QUEUE Procedure
	DROP_QUEUE_TABLE Procedure
	ENABLE_DB_ACCESS Procedure
	ENABLE_JMS_TYPES Procedure
	ENABLE_PROPAGATION_SCHEDULE Procedure
	GET_WATERMARK Procedure
	GRANT_QUEUE_PRIVILEGE Procedure
	GRANT_SYSTEM_PRIVILEGE Procedure
	MIGRATE_QUEUE_TABLE Procedure
	PURGE_QUEUE_TABLE Procedure
	QUEUE_SUBSCRIBERS Function
	REMOVE_SUBSCRIBER Procedure
	REVOKE_QUEUE_PRIVILEGE Procedure
	REVOKE_SYSTEM_PRIVILEGE Procedure
	SCHEDULE_PROPAGATION Procedure
	SET_WATERMARK Procedure
	START_QUEUE Procedure
	STOP_QUEUE Procedure
	UNSCHEDULE_PROPAGATION Procedure
	VERIFY_QUEUE_TYPES Procedure

24 DBMS_AQELM

	Summary of DBMS_AQELM Subprograms
	SET_MAILHOST Procedure
	SET_MAILPORT Procedure
	SET_SENDFROM Procedure

25 DBMS_AQIN

	Using DBMS_AQIN
	Overview

26 DBMS_ASSERT

	Using DBMS_ASSERT
	Operational Notes

	Summary of DBMS_ASSERT Subprograms
	ENQUOTE_LITERAL Function
	ENQUOTE_NAME Function
	NOOP Functions
	QUALIFIED_SQL_NAME Function
	SCHEMA_NAME Function
	SIMPLE_SQL_NAME Function
	SQL_OBJECT_NAME Function

27 DBMS_AUDIT_MGMT

	Using DBMS_AUDIT_MGMT
	Overview
	Security Model
	Constants
	Views

	Subprogram Groups
	Audit Trail Management Subprograms
	Audit Trail Cleanup Subprograms

	Summary of DBMS_AUDIT_MGMT Subprograms
	CLEAN_AUDIT_TRAIL Procedure
	CLEAR_AUDIT_TRAIL_PROPERTY Procedure
	CLEAR_LAST_ARCHIVE_TIMESTAMP Procedure
	CREATE_PURGE_JOB Procedure
	DEINIT_CLEANUP Procedure
	DROP_PURGE_JOB Procedure
	GET_AUDIT_COMMIT_DELAY Function
	INIT_CLEANUP Procedure
	IS_CLEANUP_INITIALIZED Function
	SET_AUDIT_TRAIL_LOCATION Procedure
	SET_AUDIT_TRAIL_PROPERTY Procedure
	SET_LAST_ARCHIVE_TIMESTAMP Procedure
	SET_PURGE_JOB_INTERVAL Procedure
	SET_PURGE_JOB_STATUS Procedure

28 DBMS_AUTO_SQLTUNE

	Using DBMS_AUTO_SQLTUNE
	Overview
	Security Model

	Summary of DBMS_AUTO_SQLTUNE Subprograms
	EXECUTE_AUTO_TUNING_TASK Function & Procedure
	REPORT_AUTO_TUNING_TASK Function
	SET_AUTO_TUNING_TASK_PARAMETER Procedures

29 DBMS_AUTO_TASK_ADMIN

	Using DBMS_AUTO_TASK_ADMIN
	Constants

	Summary of DBMS_AUTO_TASK_ADMIN Subprograms
	DISABLE Procedures
	ENABLE Procedures
	GET_CLIENT_ATTRIBUTES Procedure
	GET_P1_RESOURCES Procedure
	OVERRIDE_PRIORITY Procedures
	SET_CLIENT_SERVICE Procedure
	SET_P1_RESOURCES Procedure

30 DBMS_AUTO_TASK_IMMEDIATE

	Summary of DBMS_AUTO_TASK_IMMEDIATE Subprograms
	GATHER_OPTIMIZER_STATS Procedure

31 DBMS_AW_STATS

	Using DBMS_AW_STATS
	Summary of DBMS_AW_STATS Subprograms
	ANALYZE Procedure
	CLEAR Procedure

32 DBMS_CAPTURE_ADM

	Using DBMS_CAPTURE_ADM
	Overview
	Security Model

	Summary of DBMS_CAPTURE_ADM Subprograms
	ABORT_GLOBAL_INSTANTIATION Procedure
	ABORT_SCHEMA_INSTANTIATION Procedure
	ABORT_SYNC_INSTANTIATION Procedure
	ABORT_TABLE_INSTANTIATION Procedure
	ALTER_CAPTURE Procedure
	ALTER_SYNC_CAPTURE Procedure
	BUILD Procedure
	CREATE_CAPTURE Procedure
	CREATE_SYNC_CAPTURE Procedure
	DROP_CAPTURE Procedure
	INCLUDE_EXTRA_ATTRIBUTE Procedure
	PREPARE_GLOBAL_INSTANTIATION Procedure
	PREPARE_SCHEMA_INSTANTIATION Procedure
	PREPARE_SYNC_INSTANTIATION Function
	PREPARE_TABLE_INSTANTIATION Procedure
	SET_PARAMETER Procedure
	START_CAPTURE Procedure
	STOP_CAPTURE Procedure

33 DBMS_CDC_PUBLISH

	Using DBMS_CDC_PUBLISH
	Overview
	Deprecated Subprograms
	Security Model
	Views

	Summary of DBMS_CDC_PUBLISH Subprograms
	ALTER_AUTOLOG_CHANGE_SOURCE Procedure
	ALTER_CHANGE_SET Procedure
	ALTER_CHANGE_TABLE Procedure
	ALTER_HOTLOG_CHANGE_SOURCE Procedure
	CREATE_AUTOLOG_CHANGE_SOURCE Procedure
	CREATE_CHANGE_SET Procedure
	CREATE_CHANGE_TABLE Procedure
	CREATE_HOTLOG_CHANGE_SOURCE Procedure
	DROP_CHANGE_SET Procedure
	DROP_CHANGE_SOURCE Procedure
	DROP_CHANGE_TABLE Procedure
	DROP_SUBSCRIPTION Procedure
	GET_DDLOPER Function
	Syntax
	Parameters
	Example
	Usage Notes

	PURGE Procedure
	PURGE_CHANGE_SET Procedure
	PURGE_CHANGE_TABLE Procedure

34 DBMS_CDC_SUBSCRIBE

	Using DBMS_CDC_SUBSCRIBE
	Overview
	Deprecated Subprograms
	Security Model
	Views

	Summary of DBMS_CDC_SUBSCRIBE Subprograms
	ACTIVATE_SUBSCRIPTION Procedure
	CREATE_SUBSCRIPTION Procedure
	DROP_SUBSCRIPTION Procedure
	EXTEND_WINDOW Procedure
	PURGE_WINDOW Procedure
	SUBSCRIBE Procedure

35 DBMS_COMPARISON

	Using DBMS_COMPARISON
	Overview
	Security Model
	Constants
	Views
	Operational Notes
	Oracle Database Release Requirements for the DBMS_COMPARISON Package
	Database Character Set Requirements for the DBMS_COMPARISON Package
	Database Object Requirements for the DBMS_COMPARISON Package
	Index Column Requirements for the DBMS_COMPARISON Package
	Data Type Requirements for the DBMS_COMPARISON Package
	Only Converge Rows That Are Not Being Updated

	Data Structures
	COMPARISON_TYPE Record Type
	Syntax
	Fields

	Summary of DBMS_COMPARISON Subprograms
	COMPARE Function
	CONVERGE Procedure
	CREATE_COMPARISON Procedure
	DROP_COMPARISON Procedure
	PURGE_COMPARISON Procedure
	RECHECK Function

36 DBMS_COMPRESSION

	Using DBMS_COMPRESSION
	Overview
	Security Model
	Constants
	Views

	Summary of DBMS_COMPRESSION Subprograms
	GET_COMPRESSION_RATIO Procedure
	GET_COMPRESSION_TYPE Function

37 DBMS_CONNECTION_POOL

	Summary of DBMS_CONNECTION_POOL Subprograms
	ALTER_PARAM Procedure
	CONFIGURE_POOL Procedure
	START_POOL Procedure
	STOP_POOL Procedure
	RESTORE_DEFAULTS Procedure

38 DBMS_CQ_NOTIFICATION

	Using DBMS_CQ_NOTIFICATION
	Overview
	Security Model
	Constants
	Operational Notes
	Examples

	Data Structures
	CQ_NOTIFICATION$_DESCRIPTOR Object Type
	CQ_NOTIFICATION$_QUERY Object Type
	CQ_NOTIFICATION$_QUERY_ARRAY Object (Array) Type
	CQ_NOTIFICATION$_TABLE Object Type
	CQ_NOTIFICATION$_TABLE_ARRAY Object (Array) Type
	CQ_NOTIFICATION$_ROW Object Type
	CQ_NOTIFICATION$_ROW_ARRAY Object (Array) Type
	CQ_NOTIFICATION$_REG_INFO Object Type

	Summary of DBMS_CQ_NOTIFICATION Subprograms
	CQ_NOTIFICATION_QUERYID Function
	DEREGISTER Procedure
	ENABLE_REG Procedure
	NEW_REG_START Function
	REG_END Procedure
	SET_ROWID_THRESHOLD Procedure

39 DBMS_CRYPTO

	Using the DBMS_CRYPTO Subprograms
	Overview
	Security Model
	Types
	Algorithms
	Restrictions
	Exceptions
	Operational Notes
	When to Use Encrypt and Decrypt Procedures or Functions
	When to Use Hash or Message Authentication Code (MAC) Functions
	About Generating and Storing Encryption Keys
	Conversion Rules

	Examples

	Summary of DBMS_CRYPTO Subprograms
	DECRYPT Function
	DECRYPT Procedures
	ENCRYPT Function
	ENCRYPT Procedures
	HASH Function
	MAC Function
	RANDOMBYTES Function
	RANDOMINTEGER Function
	RANDOMNUMBER Function

40 DBMS_CSX_ADMIN

	Using DBMS_CSX_ADMIN
	Overview
	Security Model
	Constants
	Examples

	Summary of DBMS_CSX_ADMIN
	COPYDEFAULTTOKENTABLESET Procedure
	GETTOKENTABLEINFO Procedure & Function
	GETTOKENTABLEINFOBYTABLESPACE Procedure
	NAMESPACEIDTABLE Function
	PATHIDTABLE Function
	QNAMEIDTABLE Function
	REGISTERTOKENTABLESET Procedure

41 DBMS_CUBE

	Using DBMS_CUBE
	Security Model

	Using SQL Aggregation Management
	Subprograms in SQL Aggregation Management
	Requirements for the Relational Materialized View
	Permissions for Managing and Querying Cube Materialized Views
	Example of SQL Aggregation Management
	About Relational Materialized View CAL_MONTH_SALES_MV
	Creating the Cube Materialized View
	Disabling the Relational Materialized Views
	Creating Execution Plans for Cube Materialized Views
	Maintaining Cube Materialized Views
	New Database Objects

	Upgrading Analytic Workspaces From OLAP 10g to OLAP 11g
	Correcting Naming Conflicts
	Initialization Table
	Rename Table

	Simple Upgrade
	Custom Upgrade

	Summary of DBMS_CUBE Subprograms
	BUILD Procedure
	CREATE_EXPORT_OPTIONS Procedure
	CREATE_IMPORT_OPTIONS Procedure
	CREATE_MVIEW Function
	DERIVE_FROM_MVIEW Function
	DROP_MVIEW Procedure
	EXPORT_XML Procedure
	EXPORT_XML_TO_FILE Procedure
	IMPORT_XML Procedure
	INITIALIZE_CUBE_UPGRADE Procedure
	REFRESH_MVIEW Procedure
	UPGRADE_AW Procedure
	VALIDATE_XML Procedure

42 DBMS_CUBE_ADVISE

	Using DBMS_CUBE_ADVISE
	Security Model

	Summary of DBMS_CUBE_ADVISE Subprograms
	MV_CUBE_ADVICE Function
	SET_CNS_EXCEPTION_LOG Procedure
	TRACE Procedure

43 DBMS_CUBE_LOG

	Using DBMS_CUBE_LOG
	Logging Types
	Logging Targets
	Verbosity Levels
	Security Model
	Creating Cube Logs
	Cube Build Log
	Cube Dimension Compile Log
	Cube Operations Log
	Cube Rejected Records Log

	Summary of DBMS_CUBE_LOG Subprograms
	DEFAULT_NAME Function
	DISABLE Procedure
	ENABLE Procedure
	FLUSH Procedure
	GET_LOG Procedure
	GET_LOG_SPEC Function
	GET_PARAMETER Function
	LEVEL_HIGH Function
	LEVEL_HIGHEST Function
	LEVEL_LOW Function
	LEVEL_LOWEST Function
	LEVEL_MEDIUM Function
	SET_LOG_SPEC Procedure
	SET_PARAMETER Procedure
	TABLE_CREATE Procedure
	TARGET_FILE Function
	TARGET_LOB Function
	TARGET_TABLE Function
	TARGET_TRACE Function
	TYPE_BUILD Function
	TYPE_DIMENSION_COMPILE Function
	TYPE_OPERATIONS Function
	TYPE_REJECTED_RECORDS Function
	VERSION Function

44 DBMS_DATA_MINING

	Using DBMS_DATA_MINING
	Overview
	Mining Model Objects
	ALL_MINING_MODELS
	Mining Model Naming Restrictions
	ALL_MINING_MODEL_ATTRIBUTES
	ALL_MINING_MODEL_SETTINGS

	Security Model
	Deprecated Subprograms
	Mining Functions
	Model Settings
	Algorithm Names
	Automatic Data Preparation
	Mining Function Settings
	Global Settings
	Algorithm Settings: Adaptive Bayes Network (deprecated)
	Algorithm Settings: Decision Tree
	Algorithm Settings: Generalized Linear Models
	Algorithm Settings: k-Means
	Algorithm Settings: Naive Bayes
	Algorithm Settings: Non-Negative Matrix Factorization
	Algorithm Settings: O-Cluster
	Algorithm Settings: Support Vector Machine

	Data Types

	Summary of DBMS_DATA_MINING Subprograms
	ADD_COST_MATRIX Procedure
	ALTER_REVERSE_EXPRESSION Procedure
	APPLY Procedure
	Classification
	One-Class SVM (Anomaly Detection)
	Regression using SVM or GLM
	Clustering using k-Means or O-Cluster
	Feature Extraction using NMF

	COMPUTE_CONFUSION_MATRIX Procedure
	COMPUTE_LIFT Procedure
	COMPUTE_ROC Procedure
	CREATE_MODEL Procedure
	DROP_MODEL Procedure
	EXPORT_MODEL Procedure
	GET_ASSOCIATION_RULES Function
	GET_DEFAULT_SETTINGS Function
	GET_FREQUENT_ITEMSETS Function
	GET_MODEL_COST_MATRIX Function
	GET_MODEL_DETAILS_ABN Function
	GET_MODEL_DETAILS_AI Function
	GET_MODEL_DETAILS_GLM Function
	GET_MODEL_DETAILS_GLOBAL Function
	GET_MODEL_DETAILS_KM Function
	GET_MODEL_DETAILS_NB Function
	GET_MODEL_DETAILS_NMF Function
	GET_MODEL_DETAILS_OC Function
	GET_MODEL_DETAILS_SVM Function
	GET_MODEL_DETAILS_XML Function
	GET_MODEL_SETTINGS Function
	GET_MODEL_SIGNATURE Function
	GET_MODEL_TRANSFORMATIONS Function
	GET_TRANSFORM_LIST Procedure
	IMPORT_MODEL Procedure
	RANK_APPLY Procedure
	Classification Models — NB, ABN, SVM
	Clustering using k-Means or O-Cluster
	Feature Extraction using NMF

	REMOVE_COST_MATRIX Procedure
	RENAME_MODEL Procedure

45 DBMS_DATA_MINING_TRANSFORM

	Using DBMS_DATA_MINING_TRANSFORM
	Overview
	External or Embedded Transformations
	Automatic Transformations
	Transformations in DBMS_DATA_MINING_TRANSFORM

	Operational Notes
	About Transformation Lists
	About Stacking
	Nested Data Transformations

	Security Model
	Types
	Constants

	Summary of DBMS_DATA_MINING_TRANSFORM Subprograms
	CREATE_BIN_CAT Procedure
	CREATE_BIN_NUM Procedure
	CREATE_CLIP Procedure
	CREATE_COL_REM Procedure
	CREATE_MISS_CAT Procedure
	CREATE_MISS_NUM Procedure
	CREATE_NORM_LIN Procedure
	DESCRIBE_STACK Procedure
	GET_EXPRESSION Function
	INSERT_AUTOBIN_NUM_EQWIDTH Procedure
	INSERT_BIN_CAT_FREQ Procedure
	INSERT_BIN_NUM_EQWIDTH Procedure
	INSERT_BIN_NUM_QTILE Procedure
	INSERT_BIN_SUPER Procedure
	INSERT_CLIP_TRIM_TAIL Procedure
	INSERT_CLIP_WINSOR_TAIL Procedure
	INSERT_MISS_CAT_MODE Procedure
	INSERT_MISS_NUM_MEAN Procedure
	INSERT_NORM_LIN_MINMAX Procedure
	INSERT_NORM_LIN_SCALE Procedure
	INSERT_NORM_LIN_ZSCORE Procedure
	SET_EXPRESSION Procedure
	SET_TRANSFORM Procedure
	Examples

	STACK_BIN_CAT Procedure
	STACK_BIN_NUM Procedure
	STACK_CLIP Procedure
	STACK_COL_REM Procedure
	STACK_MISS_CAT Procedure
	STACK_MISS_NUM Procedure
	STACK_NORM_LIN Procedure
	XFORM_BIN_CAT Procedure
	XFORM_BIN_NUM Procedure
	XFORM_CLIP Procedure
	XFORM_COL_REM Procedure
	XFORM_EXPR_NUM Procedure
	XFORM_EXPR_STR Procedure
	XFORM_MISS_CAT Procedure
	XFORM_MISS_NUM Procedure
	XFORM_NORM_LIN Procedure
	XFORM_STACK Procedure

46 DBMS_DATAPUMP

	Using DBMS_DATAPUMP
	Overview
	Security Model
	Roles

	Constants
	Mask Bit Definitions
	Dump File Type Definitions

	Data Structures
	Data Structures - Object Types
	Worker Status Types
	Log Entry and Error Types
	Job Status Types
	Job Description Types
	Status Types

	Summary of DBMS_DATAPUMP Subprograms
	ADD_FILE Procedure
	ATTACH Function
	DATA_FILTER Procedures
	DATA_REMAP Procedure
	DETACH Procedure
	GET_DUMPFILE_INFO Procedure
	GET_STATUS Procedure
	LOG_ENTRY Procedure
	METADATA_FILTER Procedure
	METADATA_REMAP Procedure
	METADATA_TRANSFORM Procedure
	OPEN Function
	SET_PARALLEL Procedure
	SET_PARAMETER Procedures
	START_JOB Procedure
	STOP_JOB Procedure
	WAIT_FOR_JOB Procedure

47 DBMS_DBFS_CONTENT

	Using DBMS_DBFS_CONTENT
	Overview
	Security Model
	Constants
	Exceptions
	Operational Notes

	Data Structures
	FEATURE_T Record Type
	MOUNT_T Record Type
	PATH_ITEM_T Record Type
	PROP_ITEM_T Record Type
	PROPERTY_T Record Type
	STORE_T Record Type
	FEATURES_T Table Type
	MOUNTS_T Table Type
	PATH_ITEMS_T Table Type
	PROP_ITEMS_T Table Type
	PROPERTIES_T Table Type
	STORES_T Table Type

	Summary of DBMS_DBFS_CONTENT Subprograms
	CHECKACCESS Function
	CHECKSPI Functions and Procedures
	CREATEDIRECTORY Procedures
	CREATEFILE Procedures
	CREATELINK Procedures
	CREATEREFERENCE Procedures
	DECODEFEATURES Function
	DELETECONTENT Procedure
	DELETEDIRECTORY Procedure
	DELETEFILE Procedure
	FEATURENAME Function
	FLUSHSTATS Function
	GETDEFAULTACL Procedure
	GETDEFAULTASOF Procedure
	GETTDEFAULTCONTEXT Procedure
	GETDEFAULTOWNER Procedure
	GETDEFAULTPRINCIPAL Procedure
	GETFEATURESBYMOUNT Function
	GETFEATURESBYNAME Function
	GETFEATURESBYPATH Function
	GETPATH Procedures
	GETPATHBYMOUNTID Function
	GETPATHBYSTOREID Function
	GETPATHNOWAIT Procedures
	GETSTOREBYMOUNT Function
	GETSTOREBYNAME Function
	GETSTOREBYPATH Function
	GETSTATS Procedure
	GETTRACE Function
	GETVERSION Function
	LIST Function
	LISTALLPROPERTIES Function
	LISTALLCONTENT Function
	LISTMOUNTS Function
	LISTSTORES Function
	LOCKPATH Procedure
	MOUNTSTORE Procedure
	NORMALIZEPATH Functions
	PROPANY Functions
	PROPERTIESH2T Function
	PROPERTIEST2H Function
	PROPNUMBER Function
	PROPRAW Function
	PROPTIMESTAMP Function
	PROPVARCHAR2 Function
	PURGEALL Procedure
	PURGEPATH Procedure
	PUTPATH Procedures
	REGISTERSTORE Procedure
	RENAMEPATH Procedures
	RESTOREALL Procedure
	RESTOREPATH Procedure
	SEARCH Function
	SETDEFAULTACL Procedure
	SETDEFAULTASOF Procedure
	SETDEFAULTCONTEXT Procedure
	SETDEFAULTOWNER Procedure
	SETDEFAULTPRINCIPAL Procedure
	SETPATH Procedures
	SETSTATS Procedure
	SETTRACE Procedure
	SPACEUSAGE Procedure
	TRACE Procedure
	TRACEENABLED Function
	UNLOCKPATH Procedure
	UNMOUNTSTORE Procedure
	UNREGISTERSTORE Procedure

48 DBMS_DBFS_CONTENT_SPI

	Using DBMS_DBFS_CONTENT_SPI
	Overview
	Security Model
	Operational Notes

	Summary of DBMS_DBFS_CONTENT_SPI Subprograms
	CHECKACCESS Function
	CREATEDIRECTORY Procedure
	CREATEFILE Procedure
	CREATELINK Procedure
	CREATEREFERENCE Procedure
	DELETECONTENT Procedure
	DELETEDIRECTORY Procedure
	DELETEFILE Procedure
	GETFEATURES Function
	GETPATH Procedures
	GETPATHBYSTOREID Function
	GETPATHNOWAIT Procedure
	GETSTOREID Function
	GETVERSION Function
	LIST Function
	LOCKPATH Procedure
	PURGEALL Procedure
	PURGEPATH Procedure
	PUTPATH Procedures
	RENAMEPATH Procedure
	RESTOREALL Procedure
	RESTOREPATH Procedure
	SEARCH Function
	SETPATH Procedure
	SPACEUSAGE Procedure
	UNLOCKPATH Procedure

49 DBMS_DBFS_HS

	Using DBMS_DBFS_HS
	Overview
	Security Model
	Constants
	Operational Notes

	Summary of DBMS_DBFS_HS Subprograms
	CLEANUPUNUSEDBACKUPFILES Procedure
	CREATEBUCKET Procedure
	CREATESTORE Procedure
	DEREGSTORECOMMAND Function
	DROPSTORE Procedure
	FLUSHCACHE Procedure
	GETSTOREPROPERTY Function
	RECONFIGCACHE Procedure
	REGISTERSTORECOMMAND Procedure
	SENDCOMMAND Procedures
	SETSTOREPROPERTY Procedure
	STOREPUSH Procedure

50 DBMS_DBFS_SFS

	Using DBMS_DBFS_SFS
	Overview
	Security Model
	Constants

	Summary of DBMS_DBFS_SFS Subprograms
	CREATEFILESYSTEM Procedure
	CREATESTORE Procedure
	DROPFILESYSTEM Procedures
	INITFS Procedure

51 DBMS_DB_VERSION

	Using DBMS_DB_VERSION
	Overview
	Constants
	Examples

52 DBMS_DEBUG

	Using DBMS_DEBUG
	Overview
	Constants
	Variables
	Exceptions
	Operational Notes
	Control of the Interpreter
	Session Termination
	Deferred Operations
	Diagnostic Output
	Common and Debug Session Sections
	OER Breakpoints
	Namespaces
	Libunit Types
	Breakflags
	Information Flags
	Reasons for Suspension

	Data Structures
	BREAKPOINT_INFO Record Type
	PROGRAM_INFO Record Type
	RUNTIME_INFO Record Type
	BACKTRACE_TABLE Table Type
	BREAKPOINT_TABLE Table Type
	INDEX_TABLE Table Type
	VC2_TABLE Table Type

	Summary of DBMS_DEBUG Subprograms
	ATTACH_SESSION Procedure
	CONTINUE Function
	DEBUG_OFF Procedure
	DEBUG_ON Procedure
	DELETE_BREAKPOINT Function
	DELETE_OER_BREAKPOINT Function
	DETACH_SESSION Procedure
	DISABLE_BREAKPOINT Function
	ENABLE_BREAKPOINT Function
	EXECUTE Procedure
	GET_INDEXES Function
	GET_MORE_SOURCE Procedure
	GET_LINE_MAP Function
	GET_RUNTIME_INFO Function
	GET_TIMEOUT_BEHAVIOUR Function
	GET_VALUE Function
	INITIALIZE Function
	PING Procedure
	PRINT_BACKTRACE Procedure
	Parameters

	PRINT_INSTANTIATIONS Procedure
	PROBE_VERSION Procedure
	SELF_CHECK Procedure
	SET_BREAKPOINT Function
	SET_OER_BREAKPOINT Function
	SET_TIMEOUT Function
	SET_TIMEOUT_BEHAVIOUR Procedure
	SET_VALUE Function
	SHOW_BREAKPOINTS Procedures
	SHOW_FRAME_SOURCE Procedure
	SHOW_SOURCE Procedures
	SYNCHRONIZE Function
	TARGET_PROGRAM_RUNNING Procedure

53 DBMS_DDL

	Using DBMS_DDL
	Deprecated Subprograms
	Security Model
	Operational Notes

	Summary of DBMS_DDL Subprograms
	ALTER_COMPILE Procedure
	ALTER_TABLE_NOT_REFERENCEABLE Procedure
	ALTER_TABLE_REFERENCEABLE Procedure
	CREATE_WRAPPED Procedures
	IS_TRIGGER_FIRE_ONCE Function
	SET_TRIGGER_FIRING_PROPERTY Procedures
	WRAP Functions

54 DBMS_DEFER

	Documentation of DBMS_DEFER

55 DBMS_DEFER_QUERY

	Documentation of DBMS_DEFER_QUERY

56 DBMS_DEFER_SYS

	Documentation of DBMS_DEFER_SYS

57 DBMS_DESCRIBE

	Using DBMS_DESCRIBE
	Overview
	Security Model
	Types
	Exceptions
	Examples

	Summary of DBMS_DESCRIBE Subprograms
	DESCRIBE_PROCEDURE Procedure

58 DBMS_DG

	Using DBMS_DG
	Security Model

	Summary of the DBMS_DG Subprogram
	INITIATE_FS_FAILOVER Procedure

59 DBMS_DIMENSION

	Using DBMS_DIMENSION
	Security Model

	Summary of DBMS_DIMENSION Subprograms
	DESCRIBE_DIMENSION Procedure
	VALIDATE_DIMENSION Procedure

60 DBMS_DST

	Using DBMS_DST
	Overview
	Security Model
	Views

	Summary of DBMS_DST Subprograms
	BEGIN_PREPARE Procedure
	BEGIN_UPGRADE Procedure
	CREATE_AFFECTED_TABLE Procedure
	CREATE_ERROR_TABLE Procedure
	CREATE_TRIGGER_TABLE Procedure
	END_PREPARE Procedure
	END_UPGRADE Procedure
	FIND_AFFECTED_TABLES Procedure
	UPGRADE_DATABASE Procedure
	UPGRADE_SCHEMA Procedure
	UPGRADE_TABLE Procedure

61 DBMS_DISTRIBUTED_TRUST_ADMIN

	Using DBMS_DISTRIBUTED_TRUST_ADMIN
	Overview
	Security Model
	Examples

	Summary of DBMS_DISTRIBUTED_TRUST_ADMIN Subprograms
	ALLOW_ALL Procedure
	ALLOW_SERVER Procedure
	DENY_ALL Procedure
	DENY_SERVER Procedure

62 DBMS_EDITIONS_UTILITIES

	Using DBMS_EDITIONS_UTILITIES
	Overview
	Security Model
	Exceptions

	Summary of DBMS_EDITIONS_UTILITIES Subprograms
	SET_EDITIONING_VIEWS_READ_ONLY Procedure

63 DBMS_EPG

	Using DBMS_EPG
	Overview
	Security Model
	Exceptions

	Data Structures
	Subprogram Groups
	Configuration Subprograms
	Authorization Subprograms

	Summary of DBMS_EPG Subprograms
	AUTHORIZE_DAD Procedure
	CREATE_DAD Procedure
	DEAUTHORIZE_DAD Procedure
	DELETE_DAD_ATTRIBUTE Procedure
	DELETE_GLOBAL_ATTRIBUTE Procedure
	DROP_DAD Procedure
	GET_ALL_DAD_ATTRIBUTES Procedure
	GET_ALL_DAD_MAPPINGS Procedure
	GET_ALL_GLOBAL_ATTRIBUTES Procedure
	GET_DAD_ATTRIBUTE Function
	GET_DAD_LIST Procedure
	GET_GLOBAL_ATTRIBUTE Function
	MAP_DAD Procedure
	SET_DAD_ATTRIBUTE Procedure
	SET_GLOBAL_ATTRIBUTE Procedure
	UNMAP_DAD Procedure

64 DBMS_ERRLOG

	Using DBMS_ERRLOG
	Security Model

	Summary of DBMS_ERRLOG Subprograms
	CREATE_ERROR_LOG Procedure

65 DBMS_EXPFIL

	Using DBMS_EXPFIL
	Security Model

	Summary of Expression Filter Subprograms
	ADD_ELEMENTARY_ATTRIBUTE Procedures
	ADD_FUNCTIONS Procedure
	ASSIGN_ATTRIBUTE_SET Procedure
	BUILD_EXCEPTIONS_TABLE Procedure
	CLEAR_EXPRSET_STATS Procedure
	COPY_ATTRIBUTE_SET Procedure
	CREATE_ATTRIBUTE_SET Procedure
	DEFAULT_INDEX_PARAMETERS Procedure
	DEFAULT_XPINDEX_PARAMETERS Procedure
	DEFRAG_INDEX Procedure
	DROP_ATTRIBUTE_SET Procedure
	GET_EXPRSET_STATS Procedure
	GRANT_PRIVILEGE Procedure
	INDEX_PARAMETERS Procedure
	MODIFY_OPERATOR_LIST Procedure
	REVOKE_PRIVILEGE Procedure
	SYNC_TEXT_INDEXES Procedure
	UNASSIGN_ATTRIBUTE_SET Procedure
	VALIDATE_EXPRESSIONS Procedure
	XPINDEX_PARAMETERS Procedure

66 DBMS_FGA

	Using DBMS_FGA
	Security Model
	Operational Notes

	Summary of DBMS_FGA Subprograms
	ADD_POLICY Procedure
	DISABLE_POLICY Procedure
	DROP_POLICY Procedure
	ENABLE_POLICY Procedure

67 DBMS_FILE_GROUP

	Using DBMS_FILE_GROUP
	Overview
	Security Model
	Constants

	Summary of DBMS_FILE_GROUP Subprograms
	ADD_FILE Procedure
	ALTER_FILE Procedure
	ALTER_FILE_GROUP Procedure
	ALTER_VERSION Procedure
	CREATE_FILE_GROUP Procedure
	CREATE_VERSION Procedure
	DROP_FILE_GROUP Procedure
	DROP_VERSION Procedure
	GRANT_OBJECT_PRIVILEGE Procedure
	GRANT_SYSTEM_PRIVILEGE Procedure
	PURGE_FILE_GROUP Procedure
	REMOVE_FILE Procedure
	REVOKE_OBJECT_PRIVILEGE Procedure
	REVOKE_SYSTEM_PRIVILEGE Procedure

68 DBMS_FILE_TRANSFER

	Using DBMS_FILE_TRANSFER
	Operating Notes

	Summary of DBMS_FILE_TRANSFER Subprograms
	COPY_FILE Procedure
	GET_FILE Procedure
	PUT_FILE Procedure

69 DBMS_FLASHBACK

	Using DBMS_FLASHBACK
	Overview
	Security Model
	Types
	Exceptions
	Operational Notes
	Examples

	Summary of DBMS_FLASHBACK Subprograms
	DISABLE Procedure
	ENABLE_AT_SYSTEM_CHANGE_NUMBER Procedure
	ENABLE_AT_TIME Procedure
	GET_SYSTEM_CHANGE_NUMBER Function
	TRANSACTION_BACKOUT Procedures

70 DBMS_FLASHBACK_ARCHIVE

	Using DBMS_FLASHBACK_ARCHIVE
	Overview
	Security Model
	Examples

	Summary of DBMS_FLASHBACK_ARCHIVE Subprograms
	DISASSOCIATE_FBA Procedure
	REASSOCIATE_FBA Procedure

71 DBMS_FREQUENT_ITEMSET

	Summary of DBMS_FREQUENT_ITEMSET Subprograms
	FI_HORIZONTAL Function
	FI_TRANSACTIONAL Function

72 DBMS_HM

	Using DBMS_HM
	Security Model

	Summary of DBMS_HM Subprograms
	GET_RUN_REPORT Function
	RUN_CHECK Procedure

73 DBMS_HPROF

	Summary of DBMS_HPROF Subprograms
	ANALYZE Function
	START_PROFILING Procedure
	STOP_PROFILING Procedure

74 DBMS_HS_PARALLEL

	Using DBMS_HS_PARALLEL
	Summary of DBMS_HS_PARALLEL Subprograms
	CREATE_OR_REPLACE_VIEW
	Syntax
	Parameters

	CREATE_TABLE_TEMPLATE
	Syntax
	Parameters

	DROP_VIEW
	Syntax
	Parameters

	LOAD_TABLE
	Syntax
	Parameters

75 DBMS_HS_PASSTHROUGH

	Using DBMS_HS_PASSTHROUGH
	Overview
	Operational Notes

	Summary of DBMS_HS_PASSTHROUGH Subprograms
	BIND_INOUT_VARIABLE Procedure
	Syntax
	Parameters
	Exceptions
	Pragmas

	BIND_INOUT_VARIABLE_RAW Procedure
	Syntax
	Parameters
	Exceptions
	Pragmas

	BIND_OUT_VARIABLE Procedure
	Syntax
	Parameters
	Exceptions
	Pragmas

	BIND_OUT_VARIABLE_RAW Procedure
	Syntax
	Parameters
	Exceptions
	Pragmas

	BIND_VARIABLE Procedure
	Syntax
	Parameters
	Exceptions
	Pragmas

	BIND_VARIABLE_RAW Procedure
	Syntax
	Parameters
	Exceptions
	Pragmas

	CLOSE_CURSOR Procedure
	Syntax
	Parameters
	Exceptions
	Pragmas

	EXECUTE_IMMEDIATE Procedure
	Syntax
	Parameters
	Return Values
	Exceptions

	EXECUTE_NON_QUERY Function
	Syntax
	Parameters
	Return Values
	Exceptions

	FETCH_ROW Function
	Syntax
	Parameters
	Return Values
	Exceptions
	Pragmas

	GET_VALUE Procedure
	Syntax
	Parameters
	Exceptions
	Pragmas

	GET_VALUE_RAW Procedure
	Syntax
	Parameters
	Exceptions
	Pragmas

	OPEN_CURSOR Function
	Syntax
	Return Values
	Exceptions
	Pragmas

	PARSE Procedure
	Syntax
	Parameters
	Exceptions
	Pragmas

76 DBMS_IOT

	Summary of DBMS_IOT Subprograms
	BUILD_CHAIN_ROWS_TABLE Procedure
	Syntax
	Parameters
	Usage Notes
	Examples

	BUILD_EXCEPTIONS_TABLE Procedure
	Syntax
	Parameters
	Usage Notes
	Examples

77 DBMS_JAVA

	Documentation of DBMS_JAVA

78 DBMS_JOB

	Using DBMS_JOB
	Security Model
	Operational Notes
	Working with Oracle Real Application Clusters
	Stopping a Job

	Summary of DBMS_JOB Subprograms
	BROKEN Procedure
	CHANGE Procedure
	INSTANCE Procedure
	INTERVAL Procedure
	NEXT_DATE Procedure
	REMOVE Procedure
	RUN Procedure
	SUBMIT Procedure
	USER_EXPORT Procedures
	WHAT Procedure

79 DBMS_LDAP

	Documentation of DBMS_LDAP

80 DBMS_LDAP_UTL

	Documentation of DBMS_LDAP_UTL

81 DBMS_LIBCACHE

	Using DBMS_LIBCACHE
	Overview
	Security Model

	Summary of DBMS_LIBCACHE Subprograms
	COMPILE_FROM_REMOTE Procedure

82 DBMS_LOB

	Using DBMS_LOB
	Overview
	Security Model
	Constants
	Datatypes
	Operational Notes
	Internal LOBs
	External LOBs
	Temporary LOBs

	Rules and Limits
	General Rules and Limits
	Rules and Limits Specific to External Files (BFILEs)
	Maximum LOB Size
	Maximum Buffer Size

	Exceptions

	Summary of DBMS_LOB Subprograms
	APPEND Procedures
	CLOSE Procedure
	COMPARE Functions
	CONVERTTOBLOB Procedure
	CONVERTTOCLOB Procedure
	COPY Procedures
	COPY_DBFS_LINK Procedures
	COPY_FROM_DBFS_LINK
	CREATETEMPORARY Procedures
	DBFS_LINK_GENERATE_PATH Functions
	ERASE Procedures
	FILECLOSE Procedure
	FILECLOSEALL Procedure
	FILEEXISTS Function
	FILEGETNAME Procedure
	FILEISOPEN Function
	FILEOPEN Procedure
	FRAGMENT_DELETE Procedure
	FRAGMENT_INSERT Procedures
	FRAGMENT_MOVE Procedure
	FRAGMENT_REPLACE Procedures
	FREETEMPORARY Procedures
	GET_DBFS_LINK Functions
	GET_DBFS_LINK_STATE Procedures
	GETCONTENTTYPE Functions
	GET_STORAGE_LIMIT Function
	GETCHUNKSIZE Functions
	GETLENGTH Functions
	GETOPTIONS Functions
	INSTR Functions
	ISOPEN Functions
	ISTEMPORARY Functions
	LOADBLOBFROMFILE Procedure
	LOADCLOBFROMFILE Procedure
	LOADFROMFILE Procedure
	MOVE_TO_DBFS_LINK Procedures
	OPEN Procedures
	READ Procedures
	SET_DBFS_LINK Procedures
	SETCONTENTTYPE Procedure
	SETOPTIONS Procedures
	SUBSTR Functions
	TRIM Procedures
	WRITE Procedures
	WRITEAPPEND Procedures

83 DBMS_LOCK

	Using DBMS_LOCK
	Overview
	Security Model
	Constants
	Rules and Limits
	Operational Notes

	Summary of DBMS_LOCK Subprograms
	ALLOCATE_UNIQUE Procedure
	CONVERT Function
	RELEASE Function
	REQUEST Function
	SLEEP Procedure

84 DBMS_LOGMNR

	Using DBMS_LOGMNR
	Overview
	Security Model
	Constants
	Views
	Operational Notes

	Summary of DBMS_LOGMNR Subprograms
	ADD_LOGFILE Procedure
	COLUMN_PRESENT Function
	END_LOGMNR Procedure
	MINE_VALUE Function
	REMOVE_LOGFILE Procedure
	START_LOGMNR Procedure

85 DBMS_LOGMNR_D

	Using DBMS_LOGMNR_D
	Overview
	Security Model

	Summary of DBMS_LOGMNR_D Subprograms
	BUILD Procedure
	SET_TABLESPACE Procedure

86 DBMS_LOGSTDBY

	Using DBMS_LOGSTDBY
	Overview
	Secutity Model

	Summary of DBMS_LOGSTDBY Subprograms
	APPLY_SET Procedure
	APPLY_UNSET Procedure
	BUILD Procedure
	INSTANTIATE_TABLE Procedure
	IS_APPLY_SERVER Function
	MAP_PRIMARY_SCN Function
	PREPARE_FOR_NEW_PRIMARY Procedure
	PURGE_SESSION Procedure
	REBUILD Procedure
	SET_TABLESPACE Procedure
	SKIP Procedure
	SKIP_ERROR Procedure
	SKIP_TRANSACTION Procedure
	UNSKIP Procedure
	UNSKIP_ERROR Procedure
	UNSKIP_TRANSACTION Procedure

87 DBMS_METADATA

	Using DBMS_METADATA
	Overview
	Retrieving Metadata
	Submitting XML

	Security Model
	Rules and Limits

	Data Structures - Object and Table Types
	Subprogram Groupings
	Subprograms for Retrieving Multiple Objects From the Database
	Subprograms for Submitting XML to the Database

	Summary of All DBMS_METADATA Subprograms
	ADD_TRANSFORM Function
	CLOSE Procedure
	CONVERT Functions and Procedures
	FETCH_xxx Functions and Procedures
	GET_xxx Functions
	GET_QUERY Function
	OPEN Function
	OPENW Function
	PUT Function
	SET_COUNT Procedure
	SET_FILTER Procedure
	SET_PARSE_ITEM Procedure
	SET_TRANSFORM_PARAM and SET_REMAP_PARAM Procedures

88 DBMS_METADATA_DIFF

	Using DBMS_METADATA_DIFF
	Overview
	Security Model

	Browsing APIs for Fetching and Comparing Objects
	Summary of DBMS_METADATA_DIFF Subprograms
	OPENC Function
	ADD_DOCUMENT Procedure
	FETCH_CLOB Functions and Procedures
	CLOSE Procedure

89 DBMS_MGD_ID_UTL

	Using DBMS_MGD_ID_UTL
	Security Model
	Constants
	Exceptions

	Summary of DBMS_MGD_ID_UTL Subprograms
	ADD_SCHEME Procedure
	CREATE_CATEGORY Function
	EPC_TO_ORACLE_SCHEME Function
	GET_CATEGORY_ID Function
	GET_COMPONENTS Function
	GET_ENCODINGS Function
	GET_JAVA_LOGGING_LEVEL Function
	GET_PLSQL_LOGGING_LEVEL Function
	GET_SCHEME_NAMES Function
	GET_TDT_XML Function
	GET_VALIDATOR Function
	REFRESH_CATEGORY Function
	REMOVE_CATEGORY Procedure
	REMOVE_PROXY Procedure
	REMOVE_SCHEME Procedure
	SET_JAVA_LOGGING_LEVEL Procedure
	SET_PLSQL_LOGGING_LEVEL Procedure
	SET_PROXY Procedure
	VALIDATE_SCHEME Function

90 DBMS_MGWADM

	Using DBMS_MGWADM
	Deprecated Subprograms
	Constants

	Data Structures
	SYS.MGW_MQSERIES_PROPERTIES Object Type
	SYS.MGW_PROPERTIES Object Type
	SYS.MGW_PROPERTY Object Type
	SYS.MGW_TIBRV_PROPERTIES Object Type

	Summary of DBMS_MGWADM Subprograms
	ADD_SUBSCRIBER Procedure
	ALTER_AGENT Procedures
	ALTER_JOB Procedure
	ALTER_MSGSYSTEM_LINK Procedure for TIB/Rendezvous
	ALTER_MSGSYSTEM_LINK Procedure for WebSphere MQ
	ALTER_PROPAGATION_SCHEDULE Procedure
	ALTER_SUBSCRIBER Procedure
	CLEANUP_GATEWAY Procedures
	CREATE_AGENT Procedure
	CREATE_JOB Procedure
	CREATE_MSGSYSTEM_LINK Procedures for TIB/Rendezvous
	CREATE_MSGSYSTEM_LINK Procedures for WebSphere MQ
	DB_CONNECT_INFO Procedure
	DISABLE_JOB Procedure
	DISABLE_PROPAGATION_SCHEDULE Procedure
	ENABLE_JOB Procedure
	ENABLE_PROPAGATION_SCHEDULE Procedure
	REGISTER_FOREIGN_QUEUE Procedure
	REMOVE_AGENT Procedure
	REMOVE_JOB Procedure
	REMOVE_MSGSYSTEM_LINK Procedure
	REMOVE_OPTION Procedure
	REMOVE_SUBSCRIBER Procedure
	RESET_JOB Procedure
	RESET_SUBSCRIBER Procedure
	SCHEDULE_PROPAGATION Procedure
	SET_LOG_LEVEL Procedures
	SET_OPTION Procedure
	SHUTDOWN Procedures
	STARTUP Procedures
	UNREGISTER_FOREIGN_QUEUE Procedure
	UNSCHEDULE_PROPAGATION Procedure

91 DBMS_MGWMSG

	Using DBMS_MGWMSG
	Security Model
	Constants
	Types
	SYS.MGW_NAME_VALUE_T Type
	SYS.MGW_NAME_TYPE_ARRAY_T Type
	SYS.MGW_TEXT_VALUE_T Type
	SYS.MGW_RAW_VALUE_T Type
	SYS.MGW_BASIC_MSG_T Type
	SYS.MGW_NUMBER_ARRAY_T Type
	SYS.MGW_TIBRV_FIELD_T Type
	SYS.MGW_TIBRV_MSG_T Type

	Summary of DBMS_MGWMSG Subprograms
	LCR_TO_XML Function
	NVARRAY_ADD Procedure
	NVARRAY_FIND_NAME Function
	NVARRAY_FIND_NAME_TYPE Function
	NVARRAY_GET Function
	NVARRAY_GET_BOOLEAN Function
	NVARRAY_GET_BYTE Function
	NVARRAY_GET_DATE Function
	NVARRAY_GET_DOUBLE Function
	NVARRAY_GET_FLOAT Function
	NVARRAY_GET_INTEGER Function
	NVARRAY_GET_LONG Function
	NVARRAY_GET_RAW Function
	NVARRAY_GET_SHORT Function
	NVARRAY_GET_TEXT Function
	XML_TO_LCR Function

92 DBMS_MONITOR

	Summary of DBMS_MONITOR Subprograms
	CLIENT_ID_STAT_DISABLE Procedure
	CLIENT_ID_STAT_ENABLE Procedure
	CLIENT_ID_TRACE_DISABLE Procedure
	CLIENT_ID_TRACE_ENABLE Procedure
	DATABASE_TRACE_DISABLE Procedure
	DATABASE_TRACE_ENABLE Procedure
	SERV_MOD_ACT_STAT_DISABLE Procedure
	SERV_MOD_ACT_STAT_ENABLE Procedure
	SERV_MOD_ACT_TRACE_DISABLE Procedure
	SERV_MOD_ACT_TRACE_ENABLE Procedure
	SESSION_TRACE_DISABLE Procedure
	SESSION_TRACE_ENABLE Procedure

93 DBMS_MVIEW

	Using DBMS_MVIEW
	Operational Notes
	Security Model
	Rules and Limits

	Summary of DBMS_MVIEW Subprograms
	BEGIN_TABLE_REORGANIZATION Procedure
	END_TABLE_REORGANIZATION Procedure
	ESTIMATE_MVIEW_SIZE Procedure
	EXPLAIN_MVIEW Procedure
	EXPLAIN_REWRITE Procedure
	I_AM_A_REFRESH Function
	PMARKER Function
	PURGE_DIRECT_LOAD_LOG Procedure
	PURGE_LOG Procedure
	PURGE_MVIEW_FROM_LOG Procedure
	REFRESH Procedures
	REFRESH_ALL_MVIEWS Procedure
	REFRESH_DEPENDENT Procedures
	REGISTER_MVIEW Procedure
	UNREGISTER_MVIEW Procedure

94 DBMS_NETWORK_ACL_ADMIN

	Using DBMS_NETWORK_ACL_ADMIN
	Examples

	Summary of DBMS_NETWORK_ACL_ADMIN Subprograms
	ADD_PRIVILEGE Procedure
	ASSIGN_ACL Procedure
	ASSIGN_WALLET_ACL Procedure
	CHECK_PRIVILEGE Function
	CHECK_PRIVILEGE_ACLID Function
	CREATE_ACL Procedure
	DELETE_PRIVILEGE Procedure
	DROP_ACL Procedure
	UNASSIGN_ACL Procedure
	UNASSIGN_WALLET_ACL Procedure

95 DBMS_NETWORK_ACL_UTILITY

	Using DBMS_NETWORK_ACL_UTILITY
	Examples

	Summary of DBMS_NETWORK_ACL_UTILITY Subprograms
	CONTAINS_HOST Function
	DOMAIN_LEVEL Function
	DOMAINS Function
	EQUALS_HOST Function

96 DBMS_OBFUSCATION_TOOLKIT

	Using DBMS_OBFUSCATION_TOOLKIT
	Overview
	Security Model
	Operational Notes
	Key Management
	Storing the Key in the Database
	Storing the Key in the Operating System
	User-Supplied Keys

	Summary of DBMS_OBFUSCATION Subprograms
	DES3DECRYPT Procedures and Functions
	DES3ENCRYPT Procedures and Functions
	DES3GETKEY Procedures and Functions
	DESDECRYPT Procedures and Functions
	DESENCRYPT Procedures and Functions
	DESGETKEY Procedures and Functions
	MD5 Procedures and Functions

97 DBMS_ODCI

	Summary of DBMS_ODCI Subprograms
	ESTIMATE_CPU_UNITS Function

98 DBMS_OFFLINE_OG

	Documentation of DBMS_OFFLINE_OG

99 DBMS_OUTLN

	Using DBMS_OUTLN
	Overview
	Security Model

	Summary of DBMS_OUTLN Subprograms
	CLEAR_USED Procedure
	CREATE_OUTLINE Procedure
	DROP_BY_CAT Procedure
	DROP_UNUSED Procedure
	EXACT_TEXT_SIGNATURES Procedure
	UPDATE_BY_CAT Procedure
	UPDATE_SIGNATURES Procedure

100 DBMS_OUTPUT

	Using DBMS_OUTPUT
	Overview
	Security Model
	Operational Notes
	Exceptions
	Rules and Limits
	Examples

	Data Structures
	CHARARR Table Type
	DBMSOUTPUT_LINESARRAY Object Type

	Summary of DBMS_OUTPUT Subprograms
	DISABLE Procedure
	ENABLE Procedure
	GET_LINE Procedure
	GET_LINES Procedure
	NEW_LINE Procedure
	PUT Procedure
	PUT_LINE Procedure

101 DBMS_PARALLEL_EXECUTE

	Using DBMS_PARALLEL_EXECUTE
	Overview
	Security Model
	Constants
	Views
	Exceptions
	Examples

	Summary of DBMS_PARALLEL_EXECUTE Subprograms
	ADM_DROP_CHUNKS Procedure
	ADM_DROP_TASK Procedure
	ADM_TASK_STATUS Procedure
	ADM_STOP_TASK Procedure
	CREATE_TASK Procedure
	CREATE_CHUNKS_BY_NUMBER_COL Procedure
	CREATE_CHUNKS_BY_ROWID Procedure
	CREATE_CHUNKS_BY_SQL Procedure
	DROP_TASK Procedure
	DROP_CHUNKS Procedure
	GENERATE_TASK_NAME Function
	GET_NUMBER_COL_CHUNK Procedure
	GET_ROWID_CHUNK Procedure
	PURGE_PROCESSED_CHUNKS Procedure
	RESUME_TASK Procedures
	RUN_TASK Procedure
	SET_CHUNK_STATUS Procedure
	STOP_TASK Procedure
	TASK_STATUS Procedure

102 DBMS_PCLXUTIL

	Using DBMS_PCLXUTIL
	Overview
	Security Model
	Operational Notes
	Rules and Limits

	Summary of DBMS_PCLXUTIL Subprograms
	BUILD_PART_INDEX Procedure

103 DBMS_PIPE

	Using DBMS_PIPE
	Overview
	Security Model
	Constants
	Operational Notes
	Public Pipes
	Writing and Reading Pipes
	Private Pipes

	Exceptions
	Examples
	Example 1: Debugging - PL/SQL
	Example 2: Debugging - Pro*C
	Example 3: Execute System Commands
	Example 4: External Service Interface

	Summary of DBMS_PIPE Subprograms
	CREATE_PIPE Function
	NEXT_ITEM_TYPE Function
	PACK_MESSAGE Procedures
	PURGE Procedure
	RECEIVE_MESSAGE Function
	RESET_BUFFER Procedure
	REMOVE_PIPE Function
	SEND_MESSAGE Function
	UNIQUE_SESSION_NAME Function
	UNPACK_MESSAGE Procedures

104 DBMS_PREDICTIVE_ANALYTICS

	Using DBMS_PREDICTIVE_ANALYTICS
	Overview
	Security Model

	Summary of DBMS_PREDICTIVE_ANALYTICS Subprograms
	EXPLAIN Procedure
	PREDICT Procedure
	PROFILE Procedure

105 DBMS_PREPROCESSOR

	Using DBMS_PREPROCESSOR
	Overview
	Operating Notes

	Data Structures
	SOURCE_LINES_T Table Type

	Summary of DBMS_PREPROCESSOR Subprograms
	GET_POST_PROCESSED_SOURCE Functions
	PRINT_POST_PROCESSED_SOURCE Procedures

106 DBMS_PROFILER

	Using DBMS_PROFILER
	Overview
	Security Model
	Operational Notes
	Typical Run
	Two Methods of Exception Generation

	Exceptions

	Summary of DBMS_PROFILER Subprograms
	FLUSH_DATA Function and Procedure
	GET_VERSION Procedure
	INTERNAL_VERSION_CHECK Function
	PAUSE_PROFILER Function and Procedure
	RESUME_PROFILER Function and Procedure
	START_PROFILER Functions and Procedures
	STOP_PROFILER Function and Procedure

107 DBMS_PROPAGATION_ADM

	Using DBMS_PROPAGATION_ADM
	Overview
	Security Model

	Summary of DBMS_PROPAGATION_ADM Subprograms
	ALTER_PROPAGATION Procedure
	CREATE_PROPAGATION Procedure
	DROP_PROPAGATION Procedure
	START_PROPAGATION Procedure
	STOP_PROPAGATION Procedure

108 DBMS_RANDOM

	Using DBMS_RANDOM
	Deprecated Subprograms
	Security Model
	Operational Notes

	Summary of DBMS_RANDOM Subprograms
	INITIALIZE Procedure
	NORMAL Function
	RANDOM Procedure
	SEED Procedures
	STRING Function
	TERMINATE Procedure
	VALUE Functions

109 DBMS_RECTIFIER_DIFF

	Documentation of DBMS_RECTIFIER_DIFF

110 DBMS_REDEFINITION

	Using DBMS_REDEFINITION
	Overview
	Constants
	Operational Notes
	Rules and Limits

	Summary of DBMS_REDEFINITION Subprograms
	ABORT_REDEF_TABLE Procedure
	CAN_REDEF_TABLE Procedure
	COPY_TABLE_DEPENDENTS Procedure
	FINISH_REDEF_TABLE Procedure
	REGISTER_DEPENDENT_OBJECT Procedure
	START_REDEF_TABLE Procedure
	SYNC_INTERIM_TABLE Procedure
	UNREGISTER_DEPENDENT_OBJECT Procedure

111 DBMS_REFRESH

	Documentation of DBMS_REFRESH

112 DBMS_REPAIR

	Using DBMS_REPAIR
	Overview
	Security Model
	Constants
	Operating Notes
	Exceptions
	Examples

	Summary of DBMS_REPAIR Subprograms
	ADMIN_TABLES Procedure
	CHECK_OBJECT Procedure
	DUMP_ORPHAN_KEYS Procedure
	FIX_CORRUPT_BLOCKS Procedure
	ONLINE_INDEX_CLEAN Function
	REBUILD_FREELISTS Procedure
	SEGMENT_FIX_STATUS Procedure
	SKIP_CORRUPT_BLOCKS Procedure

113 DBMS_REPCAT

	Documentation of DBMS_REPCAT

114 DBMS_REPCAT_ADMIN

	Documentation of DBMS_REPCAT_ADMIN

115 DBMS_REPCAT_INSTANTIATE

	Documentation of DBMS_REPCAT_INSTANTIATE

116 DBMS_REPCAT_RGT

	Documentation of DBMS_REPCAT_RGT

117 DBMS_REPUTIL

	Documentation of DBMS_REPUTIL

118 DBMS_RESCONFIG

	Using DBMS_RESCONFIG
	Overview

	Summary of DBMS_RESCONFIG Subprograms
	ADDREPOSITORYRESCONFIG Procedure
	ADDRESCONFIG Procedure
	APPENDRESCONFIG Procedure
	DELETEREPOSITORYRESCONFIG Procedure
	DELETERESCONFIG Procedures
	GETLISTENERS Function
	GETREPOSITORYRESCONFIG Function
	GETREPOSITORYRESCONFIGPATHS Function
	GETRESCONFIG Function
	GETRESCONFIGPATHS Function
	PATCHREPOSITORYRESCONFIGLIST Procedure

119 DBMS_RESOURCE_MANAGER

	Using DBMS_RESOURCE_MANAGER
	Deprecated Subprograms
	Security Model
	Constants

	Summary of DBMS_RESOURCE_MANAGER Subprograms
	BEGIN_SQL_BLOCK Procedure
	CALIBRATE_IO Procedure
	CLEAR_PENDING_AREA Procedure
	CREATE_CATEGORY Procedure
	CREATE_CONSUMER_GROUP Procedure
	CREATE_PENDING_AREA Procedure
	CREATE_PLAN Procedure
	CREATE_PLAN_DIRECTIVE Procedure
	CREATE_SIMPLE_PLAN Procedure
	DELETE_CATEGORY Procedure
	DELETE_CONSUMER_GROUP Procedure
	DELETE_PLAN Procedure
	DELETE_PLAN_CASCADE Procedure
	DELETE_PLAN_DIRECTIVE Procedure
	END_SQL_BLOCK Procedure
	SET_CONSUMER_GROUP_MAPPING Procedure
	SET_CONSUMER_GROUP_MAPPING_PRI Procedure
	SET_INITIAL_CONSUMER_GROUP Procedure
	SUBMIT_PENDING_AREA Procedure
	SWITCH_CONSUMER_GROUP_FOR_SESS Procedure
	SWITCH_CONSUMER_GROUP_FOR_USER Procedure
	SWITCH_PLAN Procedure
	UPDATE_CATEGORY Procedure
	UPDATE_CONSUMER_GROUP Procedure
	UPDATE_PLAN Procedure
	UPDATE_PLAN_DIRECTIVE Procedure
	VALIDATE_PENDING_AREA Procedure

120 DBMS_RESOURCE_MANAGER_PRIVS

	Summary of DBMS_RESOURCE_MANAGER_PRIVS Subprograms
	GRANT_SWITCH_CONSUMER_GROUP Procedure
	GRANT_SYSTEM_PRIVILEGE Procedure
	REVOKE_SWITCH_CONSUMER_GROUP Procedure
	REVOKE_SYSTEM_PRIVILEGE Procedure

121 DBMS_RESULT_CACHE

	Using DBMS_RESULT_CACHE
	Constants

	Summary of DBMS_RESULT_CACHE Subprograms
	BYPASS Procedure
	FLUSH Function & Procedure
	INVALIDATE Functions & Procedures
	INVALIDATE_OBJECT Functions & Procedures
	MEMORY_REPORT Procedure
	STATUS Function

122 DBMS_RESUMABLE

	Using DBMS_RESUMABLE
	Operational Notes

	Summary of DBMS_RESUMABLE Subprograms
	ABORT Procedure
	GET_SESSION_TIMEOUT Function
	GET_TIMEOUT Function
	SET_SESSION_TIMEOUT Procedure
	SET_TIMEOUT Procedure
	SPACE_ERROR_INFO Function

123 DBMS_RLMGR

	Using DBMS_RLMGR
	Security Model

	Summary of Rules Manager Subprograms
	ADD_ELEMENTARY_ATTRIBUTE Procedures
	ADD_EVENT Procedure
	ADD_FUNCTIONS Procedure
	ADD_RULE Procedure
	CONDITION_REF Function
	CONSUME_EVENT Function
	CONSUME_PRIM_EVENTS Function
	CREATE_CONDITIONS_TABLE Procedure
	CREATE_EVENT_STRUCT Procedure
	CREATE_EXPFIL_INDEXES Procedure
	CREATE_INTERFACE Procedure
	CREATE_RULE_CLASS Procedure
	DELETE_RULE Procedure
	DROP_CONDITIONS_TABLE Procedure
	DROP_EVENT_STRUCT Procedure
	DROP_EXPFIL_INDEXES Procedure
	DROP_INTERFACE Procedure
	DROP_RULE_CLASS Procedure
	EXTEND_EVENT_STRUCT Procedure
	GET_AGGREGATE_VALUE Function
	GRANT_PRIVILEGE Procedure
	PROCESS_RULES Procedure
	PURGE_EVENTS Procedure
	RESET_SESSION Procedure
	REVOKE_PRIVILEGE Procedure
	SYNC_TEXT_INDEXES Procedure

124 DBMS_RLS

	Using DBMS_RLS
	Overview
	Security Model
	Operational Notes

	Summary of DBMS_RLS Subprograms
	ADD_GROUPED_POLICY Procedure
	ADD_POLICY Procedure
	ADD_POLICY_CONTEXT Procedure
	CREATE_POLICY_GROUP Procedure
	DELETE_POLICY_GROUP Procedure
	DISABLE_GROUPED_POLICY Procedure
	DROP_GROUPED_POLICY Procedure
	DROP_POLICY Procedure
	DROP_POLICY_CONTEXT Procedure
	ENABLE_GROUPED_POLICY Procedure
	ENABLE_POLICY Procedure
	REFRESH_GROUPED_POLICY Procedure
	REFRESH_POLICY Procedure

125 DBMS_ROWID

	Using DBMS_ROWID
	Security Model
	Types
	Extension and Restriction Types
	Verification Types
	Object Types
	Conversion Types

	Exceptions
	Operational Notes
	Examples

	Summary of DBMS_ROWID Subprograms
	ROWID_BLOCK_NUMBER Function
	ROWID_CREATE Function
	ROWID_INFO Procedure
	ROWID_OBJECT Function
	ROWID_RELATIVE_FNO Function
	ROWID_ROW_NUMBER Function
	ROWID_TO_ABSOLUTE_FNO Function
	ROWID_TO_EXTENDED Function
	ROWID_TO_RESTRICTED Function
	ROWID_TYPE Function
	ROWID_VERIFY Function

126 DBMS_RULE

	Using DBMS_RULE
	Overview
	Security Model

	Summary of DBMS_RULE Subprograms
	CLOSE_ITERATOR Procedure
	EVALUATE Procedures
	GET_NEXT_HIT Function

127 DBMS_RULE_ADM

	Using DBMS_RULE_ADM
	Overview
	Security Model

	Summary of DBMS_RULE_ADM Subprograms
	ADD_RULE Procedure
	ALTER_EVALUATION_CONTEXT Procedure
	ALTER_RULE Procedure
	CREATE_EVALUATION_CONTEXT Procedure
	CREATE_RULE Procedure
	CREATE_RULE_SET Procedure
	DROP_EVALUATION_CONTEXT Procedure
	DROP_RULE Procedure
	DROP_RULE_SET Procedure
	GRANT_OBJECT_PRIVILEGE Procedure
	GRANT_SYSTEM_PRIVILEGE Procedure
	REMOVE_RULE Procedure
	REVOKE_OBJECT_PRIVILEGE Procedure
	REVOKE_SYSTEM_PRIVILEGE Procedure

128 DBMS_SCHEDULER

	Data Structures
	JOBARG Object Type
	JOBARG Constructor Function

	JOBARG_ARRAY Table Type
	JOB Object Type
	JOB_ARRAY Table Type
	JOB_DEFINITION Object Type
	JOB_DEFINITION Constructor Function

	JOB_DEFINITION_ARRAY Table Type
	JOBATTR Object Type
	JOBATTR Constructor Function

	JOBATTR_ARRAY Table Type
	SCHEDULER$_STEP_TYPE Object Type
	SCHEDULER$_STEP_TYPE_LIST Table Type
	SCHEDULER$_EVENT_INFO Object Type
	SCHEDULER_FILEWATCHER_RESULT Object Type
	SCHEDULER_FILEWATCHER_REQUEST Object Type

	Using DBMS_SCHEDULER
	Security Model
	Rules and Limits
	Operational Notes

	Summary of DBMS_SCHEDULER Subprograms
	ADD_EVENT_QUEUE_SUBSCRIBER Procedure
	ADD_GROUP_MEMBER Procedure
	ADD_JOB_EMAIL_NOTIFICATION Procedure
	ADD_WINDOW_GROUP_MEMBER Procedure
	ALTER_CHAIN Procedure
	ALTER_RUNNING_CHAIN Procedure
	CLOSE_WINDOW Procedure
	COPY_JOB Procedure
	CREATE_CHAIN Procedure
	CREATE_CREDENTIAL Procedure
	CREATE_DATABASE_DESTINATION Procedure
	CREATE_EVENT_SCHEDULE Procedure
	Parameters
	Usage Notes

	CREATE_FILE_WATCHER Procedure
	CREATE_GROUP Procedure
	CREATE_JOB Procedure
	CREATE_JOB_CLASS Procedure
	CREATE_JOBS Procedure
	CREATE_PROGRAM Procedure
	CREATE_SCHEDULE Procedure
	CREATE_WINDOW Procedure
	CREATE_WINDOW_GROUP Procedure
	DEFINE_ANYDATA_ARGUMENT Procedure
	DEFINE_CHAIN_EVENT_STEP Procedure
	DEFINE_CHAIN_RULE Procedure
	DEFINE_CHAIN_STEP Procedure
	DEFINE_METADATA_ARGUMENT Procedure
	DEFINE_PROGRAM_ARGUMENT Procedure
	DISABLE Procedure
	DROP_AGENT_DESTINATION Procedure
	DROP_CHAIN Procedure
	DROP_CHAIN_RULE Procedure
	DROP_CHAIN_STEP Procedure
	DROP_CREDENTIAL Procedure
	DROP_DATABASE_DESTINATION Procedure
	DROP_FILE_WATCHER Procedure
	DROP_GROUP Procedure
	DROP_JOB Procedure
	DROP_JOB_CLASS Procedure
	DROP_PROGRAM Procedure
	DROP_PROGRAM_ARGUMENT Procedure
	DROP_SCHEDULE Procedure
	DROP_WINDOW Procedure
	DROP_WINDOW_GROUP Procedure
	ENABLE Procedure
	END_DETACHED_JOB_RUN Procedure
	EVALUATE_CALENDAR_STRING Procedure
	EVALUATE_RUNNING_CHAIN Procedure
	GENERATE_JOB_NAME Function
	GET_AGENT_INFO Function
	GET_AGENT_VERSION Function
	GET_ATTRIBUTE Procedure
	GET_FILE Procedure
	GET_SCHEDULER_ATTRIBUTE Procedure
	OPEN_WINDOW Procedure
	PURGE_LOG Procedure
	PUT_FILE Procedure
	REMOVE_EVENT_QUEUE_SUBSCRIBER Procedure
	REMOVE_GROUP_MEMBER Procedure
	REMOVE_JOB_EMAIL_NOTIFICATION Procedure
	REMOVE_WINDOW_GROUP_MEMBER Procedure
	RESET_JOB_ARGUMENT_VALUE Procedure
	RUN_CHAIN Procedure
	RUN_JOB Procedure
	SET_AGENT_REGISTRATION_PASS Procedure
	SET_ATTRIBUTE Procedure
	SET_ATTRIBUTE_NULL Procedure
	SET_JOB_ANYDATA_VALUE Procedure
	SET_JOB_ARGUMENT_VALUE Procedure
	SET_JOB_ATTRIBUTES Procedure
	SET_SCHEDULER_ATTRIBUTE Procedure
	STOP_JOB Procedure

129 DBMS_SERVER_ALERT

	Using DBMS_SERVER_ALERT
	Security Model
	Object Types
	Relational Operators
	Supported Metrics

	Summary of DBMS_SERVER_ALERT Subprograms
	EXPAND_MESSAGE Function
	GET_THRESHOLD Procedure
	SET_THRESHOLD Procedure

130 DBMS_SERVICE

	Using DBMS_SERVICE
	Overview
	Security Model
	Deprecated Subprograms
	Constants
	Exceptions

	Summary of DBMS_SERVICE Subprograms
	CREATE_SERVICE Procedure
	DELETE_SERVICE Procedure
	DISCONNECT_SESSION Procedure
	MODIFY_SERVICE Procedure
	START_SERVICE Procedure
	STOP_SERVICE Procedure

131 DBMS_SESSION

	Using DBMS_SESSION
	Security Model
	Operational Notes

	Data Structures
	INTEGER_ARRAY Table Type
	LNAME_ARRAY Table Type

	Summary of DBMS_SESSION Subprograms
	CLEAR_ALL_CONTEXT Procedure
	CLEAR_CONTEXT Procedure
	CLEAR_IDENTIFIER Procedure
	CLOSE_DATABASE_LINK Procedure
	FREE_UNUSED_USER_MEMORY Procedure
	GET_PACKAGE_MEMORY_UTILIZATION Procedure
	IS_ROLE_ENABLED Function
	IS_SESSION_ALIVE Function
	LIST_CONTEXT Procedures
	MODIFY_PACKAGE_STATE Procedure
	SESSION _TRACE_DISABLE Procedure
	SESSION _TRACE_ENABLE Procedure
	RESET_PACKAGE Procedure
	SET_CONTEXT Procedure
	SET_EDITION_DEFERRED Procedure
	SET_IDENTIFIER Procedure
	SET_NLS Procedure
	SET_ROLE Procedure
	SET_SQL_TRACE Procedure
	SWITCH_CURRENT_CONSUMER_GROUP Procedure
	UNIQUE_SESSION_ID Function

132 DBMS_SHARED_POOL

	Using DBMS_SHARED_POOL
	Overview
	Operational Notes

	Summary of DBMS_SHARED_POOL Subprograms
	ABORTED_REQUEST_THRESHOLD Procedure
	KEEP Procedure
	MARKHOT Procedure
	PURGE Procedure
	SIZES Procedure
	UNKEEP Procedure
	UNMARKHOT Procedure

133 DBMS_SPACE

	Using DBMS_SPACE
	Security Model

	Data Structures
	CREATE_TABLE_COST_COLINFO Object Type
	ASA_RECO_ROW Record Type
	ASA_RECO_ROW_TB Table Type

	Summary of DBMS_SPACE Subprograms
	ASA_RECOMMENDATIONS Function
	CREATE_INDEX_COST Procedure
	CREATE_TABLE_COST Procedures
	FREE_BLOCKS Procedure
	ISDATAFILEDROPPABLE_NAME Procedure
	OBJECT_DEPENDENT_SEGMENTS Function
	OBJECT_GROWTH_TREND Function
	SPACE_USAGE Procedures
	UNUSED_SPACE Procedure

134 DBMS_SPACE_ADMIN

	Using DBMS_SPACE_ADMIN
	Security Model
	Constants
	Operational Notes

	Summary of DBMS_SPACE_ADMIN Subprograms
	ASSM_SEGMENT_VERIFY Procedure
	ASSM_TABLESPACE_VERIFY Procedure
	DROP_EMPTY_SEGMENTS Procedure
	MATERIALIZE_DEFERRED_SEGMENTS Procedure
	SEGMENT_CORRUPT Procedure
	SEGMENT_DROP_CORRUPT Procedure
	SEGMENT_DUMP Procedure
	SEGMENT_VERIFY Procedure
	TABLESPACE_FIX_BITMAPS Procedure
	TABLESPACE_FIX_SEGMENT_STATES Procedure
	TABLESPACE_MIGRATE_FROM_LOCAL Procedure
	TABLESPACE_MIGRATE_TO_LOCAL Procedure
	TABLESPACE_REBUILD_BITMAPS Procedure
	TABLESPACE_REBUILD_QUOTAS Procedure
	TABLESPACE_RELOCATE_BITMAPS Procedure
	TABLESPACE_VERIFY Procedure

135 DBMS_SPM

	Using DBMS_SPM
	Overview
	Security Model
	Constants
	Examples

	Data Structures
	NAMELIST Table Type

	Summary of DBMS_SPM Subprograms
	ALTER_SQL_PLAN_BASELINE Function
	CONFIGURE Procedure
	CREATE_STGTAB_BASELINE Procedure
	DROP_SQL_PLAN_BASELINE Function
	EVOLVE_SQL_PLAN_BASELINE Function
	LOAD_PLANS_FROM_CURSOR_CACHE Functions
	LOAD_PLANS_FROM_SQLSET Function
	MIGRATE_STORED_OUTLINE Functions
	PACK_STGTAB_BASELINE Function
	UNPACK_STGTAB_BASELINE Function

136 DBMS_SQL

	Using DBMS_SQL
	Overview
	Security Model
	Constants
	Exceptions
	Operational Notes
	Execution Flow
	Processing Queries
	Processing Updates, Inserts, and Deletes
	Locating Errors

	Examples

	Data Structures
	DESC_REC Record Type
	DESC_REC2 Record Type
	DESC_REC3 Record Type
	BFILE_TABLE Table Type
	BINARY_DOUBLE_TABLE Table Type
	BINARY_FLOAT_TABLE Table Type
	BLOB_TABLE Table Type
	CLOB_TABLE Table Type
	DATE_TABLE Table Type
	DESC_TAB Table Type
	DESC_TAB2 Table Type
	DESC_TAB3 Table Type
	INTERVAL_DAY_TO_SECOND_TABLE Table Type
	INTERVAL_YEAR_TO_MONTH_TABLE Table Type
	NUMBER_TABLE Table Type
	TIME_TABLE Table Type
	TIME_WITH_TIME_ZONE_TABLE Table Type
	TIMESTAMP_TABLE Table Type
	TIMESTAMP_WITH_LTZ_TABLE Table Type
	TIMESTAMP_WITH_TIME_ZONE_TABLE Table Type
	UROWID_TABLE Table Type
	VARCHAR2_TABLE Table Type
	VARCHAR2A Table Type
	VARCHAR2S Table Type

	Summary of DBMS_SQL Subprograms
	BIND_ARRAY Procedures
	BIND_VARIABLE Procedures
	CLOSE_CURSOR Procedure
	COLUMN_VALUE Procedure
	COLUMN_VALUE_LONG Procedure
	DEFINE_ARRAY Procedure
	DEFINE_COLUMN Procedures
	DEFINE_COLUMN_CHAR Procedure
	DEFINE_COLUMN_LONG Procedure
	DEFINE_COLUMN_RAW Procedure
	DEFINE_COLUMN_ROWID Procedure
	DESCRIBE_COLUMNS Procedure
	DESCRIBE_COLUMNS2 Procedure
	DESCRIBE_COLUMNS3 Procedure
	EXECUTE Function
	EXECUTE_AND_FETCH Function
	FETCH_ROWS Function
	IS_OPEN Function
	LAST_ERROR_POSITION Function
	LAST_ROW_COUNT Function
	LAST_ROW_ID Function
	LAST_SQL_FUNCTION_CODE Function
	OPEN_CURSOR Function
	PARSE Procedures
	TO_CURSOR_NUMBER Function
	TO_REFCURSOR Function
	VARIABLE_VALUE Procedures

137 DBMS_SQLDIAG

	Using DBMS_SQLDIAG
	Overview
	Constants
	Examples

	Summary of DBMS_SQLDIAG Subprograms
	ACCEPT_SQL_PATCH Function & Procedure
	ALTER_SQL_PATCH Procedure
	CANCEL_DIAGNOSIS_TASK Procedure
	CREATE_DIAGNOSIS_TASK Functions
	CREATE_STGTAB_SQLPATCH Procedure
	DROP_DIAGNOSIS_TASK Procedure
	DROP_SQL_PATCH Procedure
	EXECUTE_DIAGNOSIS_TASK Procedure
	EXPLAIN_SQL_TESTCASE Function
	EXPORT_SQL_TESTCASE Procedures
	EXPORT_SQL_TESTCASE_DIR_BY_INC Function
	EXPORT_SQL_TESTCASE_DIR_BY_TXT Function
	GET_FIX_CONTROL Function
	GET_SQL Function
	IMPORT_SQL_TESTCASE Procedures
	INCIDENTID_2_SQL Procedure
	INTERRUPT_DIAGNOSIS_TASK Procedure
	LOAD_SQLSET_FROM_TCB Function
	PACK_STGTAB_SQLPATCH Procedure
	REPORT_DIAGNOSIS_TASK Function
	RESET_DIAGNOSIS_TASK Procedure
	RESUME_DIAGNOSIS_TASK Procedure
	SET_DIAGNOSIS_TASK_PARAMETER Procedure
	UNPACK_STGTAB_SQLPATCH Procedure

138 DBMS_SQLPA

	Using DBMS_SQLPA
	Overview
	Security Model

	Summary of DBMS_SQLPA Subprograms
	CANCEL_ANALYSIS_TASK Procedure
	CREATE_ANALYSIS_TASK Functions
	DROP_ANALYSIS_TASK Procedure
	EXECUTE_ANALYSIS_TASK Function & Procedure
	INTERRUPT_ANALYSIS_TASK Procedure
	REPORT_ANALYSIS_TASK Function
	RESET_ANALYSIS_TASK Procedure
	RESUME_ANALYSIS_TASK Procedure
	SET_ANALYSIS_TASK_PARAMETER Procedures
	SET_ANALYSIS_DEFAULT_PARAMETER Procedures

139 DBMS_SQLTUNE

	Using DBMS_SQLTUNE
	Overview
	Security Model

	Data Structures
	SQLSET_ROW Object Type

	Subprogram Groups
	SQL Tuning Advisor Subprograms
	SQL Profile Subprograms
	SQL Tuning Set Subprograms
	Real-time SQL Monitoring Subprograms
	SQL Performance Reporting Subprograms

	Summary of DBMS_SQLTUNE Subprograms
	ACCEPT_SQL_PROFILE Procedure and Function
	ADD_SQLSET_REFERENCE Function
	ALTER_SQL_PROFILE Procedure
	CANCEL_TUNING_TASK Procedure
	CAPTURE_CURSOR_CACHE_SQLSET Procedure
	CREATE_SQL_PLAN_BASELINE Procedure
	CREATE_SQLSET Procedure and Function
	CREATE_STGTAB_SQLPROF Procedure
	CREATE_STGTAB_SQLSET Procedure
	CREATE_TUNING_TASK Functions
	DELETE_SQLSET Procedure
	DROP_SQL_PROFILE Procedure
	DROP_SQLSET Procedure
	DROP_TUNING_TASK Procedure
	EXECUTE_TUNING_TASK Function & Procedure
	IMPLEMENT_TUNING_TASK Function
	INTERRUPT_TUNING_TASK Procedure
	LOAD_SQLSET Procedure
	PACK_STGTAB_SQLPROF Procedure
	PACK_STGTAB_SQLSET Procedure
	REMAP_STGTAB_SQLPROF Procedure
	REMAP_STGTAB_SQLSET Procedure
	REMOVE_SQLSET_REFERENCE Procedure
	REPORT_AUTO_TUNING_TASK Function
	REPORT_SQL_DETAIL Function
	REPORT_SQL_MONITOR Function
	REPORT_SQL_MONITOR_LIST Function
	REPORT_TUNING_TASK Function
	RESET_TUNING_TASK Procedure
	RESUME_TUNING_TASK Procedure
	SCRIPT_TUNING_TASK Function
	SELECT_CURSOR_CACHE Function
	SELECT_SQL_TRACE Function
	SELECT_SQLPA_TASK Function
	SELECT_SQLSET Function
	SELECT_WORKLOAD_REPOSITORY Functions
	SET_TUNING_TASK_PARAMETER Procedures
	SQLTEXT_TO_SIGNATURE Function
	UNPACK_STGTAB_SQLPROF Procedure
	UNPACK_STGTAB_SQLSET Procedure
	UPDATE_SQLSET Procedures

140 DBMS_STAT_FUNCS

	Summary of DBMS_STAT_FUNCS Subprograms
	EXPONENTIAL_DIST_FIT Procedure
	NORMAL_DIST_FIT Procedure
	POISSON_DIST_FIT Procedure
	SUMMARY Procedure
	UNIFORM_DIST_FIT Procedure
	WEIBULL_DIST_FIT Procedure

141 DBMS_STATS

	Using DBMS_STATS
	Overview
	Types
	Constants
	Operational Notes
	Deprecated Subprograms
	Examples

	Summary of DBMS_STATS Subprograms
	ALTER_STATS_HISTORY_RETENTION Procedure
	CONVERT_RAW_VALUE Procedures
	CONVERT_RAW_VALUE_NVARCHAR Procedure
	CONVERT_RAW_VALUE_ROWID Procedure
	COPY_TABLE_STATS Procedure
	CREATE_EXTENDED_STATS Function
	CREATE_STAT_TABLE Procedure
	DELETE_COLUMN_STATS Procedure
	DELETE_DATABASE_PREFS Procedure
	DELETE_DATABASE_STATS Procedure
	DELETE_DICTIONARY_STATS Procedure
	DELETE_FIXED_OBJECTS_STATS Procedure
	DELETE_INDEX_STATS Procedure
	DELETE_PENDING_STATS Procedure
	DELETE_SCHEMA_PREFS Procedure
	DELETE_SCHEMA_STATS Procedure
	DELETE_SYSTEM_STATS Procedure
	DELETE_TABLE_PREFS Procedure
	DELETE_TABLE_STATS Procedure
	DIFF_TABLE_STATS_IN_HISTORY Function
	DIFF_TABLE_STATS_IN_PENDING Function
	DIFF_TABLE_STATS_IN_STATTAB Function
	DROP_EXTENDED_STATS Procedure
	DROP_STAT_TABLE Procedure
	EXPORT_COLUMN_STATS Procedure
	EXPORT_DATABASE_PREFS Procedure
	EXPORT_DATABASE_STATS Procedure
	EXPORT_DICTIONARY_STATS Procedure
	EXPORT_FIXED_OBJECTS_STATS Procedure
	EXPORT_INDEX_STATS Procedure
	EXPORT_PENDING_STATS Procedure
	EXPORT_SCHEMA_PREFS Procedure
	EXPORT_SCHEMA_STATS Procedure
	EXPORT_SYSTEM_STATS Procedure
	EXPORT_TABLE_PREFS Procedure
	EXPORT_TABLE_STATS Procedure
	FLUSH_DATABASE_MONITORING_INFO Procedure
	GATHER_DATABASE_STATS Procedures
	GATHER_DICTIONARY_STATS Procedure
	GATHER_FIXED_OBJECTS_STATS Procedure
	GATHER_INDEX_STATS Procedure
	GATHER_SCHEMA_STATS Procedures
	GATHER_SYSTEM_STATS Procedure
	GATHER_TABLE_STATS Procedure
	GENERATE_STATS Procedure
	GET_COLUMN_STATS Procedures
	GET_INDEX_STATS Procedures
	GET_PARAM Function
	GET_PREFS Function
	GET_STATS_HISTORY_AVAILABILITY Function
	GET_STATS_HISTORY_RETENTION Function
	GET_SYSTEM_STATS Procedure
	GET_TABLE_STATS Procedure
	IMPORT_COLUMN_STATS Procedure
	IMPORT_DATABASE_PREFS Procedure
	IMPORT_DATABASE_STATS Procedure
	IMPORT_DICTIONARY_STATS Procedure
	IMPORT_FIXED_OBJECTS_STATS Procedure
	IMPORT_INDEX_STATS Procedure
	IMPORT_SCHEMA_PREFS Procedure
	IMPORT_SCHEMA_STATS Procedure
	IMPORT_SYSTEM_STATS Procedure
	IMPORT_TABLE_PREFS Procedure
	IMPORT_TABLE_STATS Procedure
	LOCK_PARTITION_STATS Procedure
	LOCK_SCHEMA_STATS Procedure
	LOCK_TABLE_STATS Procedure
	MERGE_COL_USAGE Procedure
	PREPARE_COLUMN_VALUES Procedures
	PREPARE_COLUMN_VALUES_NVARCHAR2 Procedure
	PREPARE_COLUMN_VALUES_ROWID Procedure
	PUBLISH_PENDING_STATS Procedure
	PURGE_STATS Procedure
	RESET_GLOBAL_PREF_DEFAULTS Procedure
	RESET_PARAM_DEFAULTS Procedure
	RESTORE_DATABASE_STATS Procedure
	RESTORE_DICTIONARY_STATS Procedure
	RESTORE_FIXED_OBJECTS_STATS Procedure
	RESTORE_SCHEMA_STATS Procedure
	RESTORE_SYSTEM_STATS Procedure
	RESTORE_TABLE_STATS Procedure
	SEED_COL_USAGE Procedure
	SET_COLUMN_STATS Procedures
	SET_DATABASE_PREFS Procedure
	SET_GLOBAL_PREFS Procedure
	SET_INDEX_STATS Procedures
	SET_PARAM Procedure
	SET_SCHEMA_PREFS Procedure
	SET_SYSTEM_STATS Procedure
	SET_TABLE_PREFS Procedure
	SET_TABLE_STATS Procedure
	SHOW_EXTENDED_STATS_NAME Function
	UNLOCK_PARTITION_STATS Procedure
	UNLOCK_SCHEMA_STATS Procedure
	UNLOCK_TABLE_STATS Procedure
	UPGRADE_STAT_TABLE Procedure

142 DBMS_STORAGE_MAP

	Using DBMS_STORAGE_MAP
	Overview
	Operational Notes

	Summary of DBMS_STORAGE_MAP Subprograms
	DROP_ALL Function
	DROP_ELEMENT Function
	DROP_FILE Function
	Parameters

	LOCK_MAP Procedure
	MAP_ALL Function
	MAP_ELEMENT Function
	MAP_FILE Function
	MAP_OBJECT Function
	RESTORE Function
	SAVE Function
	UNLOCK_MAP Procedure

143 DBMS_STREAMS

	Using DBMS_STREAMS
	Overview
	Security Model

	Summary of DBMS_STREAMS Subprograms
	COMPATIBLE_11_2 Function
	COMPATIBLE_11_1 Function
	COMPATIBLE_10_2 Function
	COMPATIBLE_10_1 Function
	COMPATIBLE_9_2 Function
	CONVERT_ANYDATA_TO_LCR_DDL Function
	CONVERT_ANYDATA_TO_LCR_ROW Function
	CONVERT_LCR_TO_XML Function
	CONVERT_XML_TO_LCR Function
	GET_INFORMATION Function
	GET_STREAMS_NAME Function
	GET_STREAMS_TYPE Function
	GET_TAG Function
	MAX_COMPATIBLE Function
	SET_TAG Procedure

144 DBMS_STREAMS_ADM

	Using DBMS_STREAMS_ADM
	Overview
	Deprecated Subprograms
	Security Model
	Oracle Streams Administrator
	Capture User
	Propagation User
	Apply User for an Oracle Streams Apply Process
	Apply User for an XStream Inbound Server
	Messaging Client User

	Operational Notes
	Procedures That Create Rules for Oracle Streams Clients and XStream Clients
	Procedures That Configure an Oracle Streams Environment

	Summary of DBMS_STREAMS_ADM Subprograms
	ADD_COLUMN Procedure
	ADD_GLOBAL_PROPAGATION_RULES Procedure
	ADD_GLOBAL_RULES Procedure
	ADD_MESSAGE_PROPAGATION_RULE Procedure
	ADD_MESSAGE_RULE Procedure
	ADD_SCHEMA_PROPAGATION_RULES Procedure
	ADD_SCHEMA_RULES Procedure
	ADD_SUBSET_PROPAGATION_RULES Procedure
	ADD_SUBSET_RULES Procedure
	ADD_TABLE_PROPAGATION_RULES Procedure
	ADD_TABLE_RULES Procedure
	CLEANUP_INSTANTIATION_SETUP Procedure
	DELETE_COLUMN Procedure
	GET_MESSAGE_TRACKING Function
	GET_SCN_MAPPING Procedure
	GET_TAG Function
	KEEP_COLUMNS Procedure
	MAINTAIN_CHANGE_TABLE Procedure
	MAINTAIN_GLOBAL Procedure
	MAINTAIN_SCHEMAS Procedure
	MAINTAIN_SIMPLE_TABLESPACE Procedure
	MAINTAIN_SIMPLE_TTS Procedure
	MAINTAIN_TABLES Procedure
	MAINTAIN_TABLESPACES Procedure
	MAINTAIN_TTS Procedure
	MERGE_STREAMS Procedure
	MERGE_STREAMS_JOB Procedure
	POST_INSTANTIATION_SETUP Procedure
	PRE_INSTANTIATION_SETUP Procedure
	PURGE_SOURCE_CATALOG Procedure
	RECOVER_OPERATION Procedure
	REMOVE_QUEUE Procedure
	REMOVE_RULE Procedure
	REMOVE_STREAMS_CONFIGURATION Procedure
	RENAME_COLUMN Procedure
	RENAME_SCHEMA Procedure
	RENAME_TABLE Procedure
	SET_MESSAGE_NOTIFICATION Procedure
	SET_MESSAGE_TRACKING Procedure
	SET_RULE_TRANSFORM_FUNCTION Procedure
	SET_TAG Procedure
	SET_UP_QUEUE Procedure
	SPLIT_STREAMS Procedure

145 DBMS_STREAMS_ADVISOR_ADM

	Using DBMS_STREAMS_ADVISOR_ADM
	Overview
	Security Model
	Constants
	Views
	Operational Notes
	Oracle Streams Components Analyzed by the DBMS_STREAMS_ADVISOR_ADM Package
	General Steps for Running the Oracle Streams Performance Advisor and Analyzing the Information

	Summary of DBMS_STREAMS_ADVISOR_ADM Subprograms
	ANALYZE_CURRENT_PERFORMANCE Procedure

146 DBMS_STREAMS_AUTH

	Using DBMS_STREAMS_AUTH
	Overview
	Security Model

	Summary of DBMS_STREAMS_AUTH Subprograms
	GRANT_ADMIN_PRIVILEGE Procedure
	GRANT_REMOTE_ADMIN_ACCESS Procedure
	REVOKE_ADMIN_PRIVILEGE Procedure
	REVOKE_REMOTE_ADMIN_ACCESS Procedure

147 DBMS_STREAMS_HANDLER_ADM

	Using DBMS_STREAMS_HANDLER_ADM
	Overview
	Security Model
	Views
	Operational Notes
	Statement Execution Order
	Supported SQL Statements
	Supported Row LCR Column Attributes
	Supported Row LCR Attributes
	Supported Row LCR Extra Attributes
	Supported Row LCR Method

	Summary of DBMS_STREAMS_HANDLER_ADM Subprograms
	ADD_STMT_TO_HANDLER Procedure
	CREATE_STMT_HANDLER Procedure
	DROP_STMT_HANDLER Procedure
	REMOVE_STMT_FROM_HANDLER Procedure

148 DBMS_STREAMS_MESSAGING

	Using DBMS_STREAMS_MESSAGING
	Overview
	Security Model

	Summary of DBMS_STREAMS_MESSAGING Subprograms
	DEQUEUE Procedure
	ENQUEUE Procedure

149 DBMS_STREAMS_TABLESPACE_ADM

	Using DBMS_STREAMS_TABLESPACE_ADM
	Overview
	Security Model

	Data Structures
	DIRECTORY_OBJECT_SET Table Type
	Syntax

	FILE Record Type
	Syntax
	Fields

	FILE_SET Table Type
	Syntax

	TABLESPACE_SET Table Type
	Syntax

	Summary of DBMS_STREAMS_TABLESPACE_ADM Subprograms
	ATTACH_SIMPLE_TABLESPACE Procedure
	ATTACH_TABLESPACES Procedure
	CLONE_SIMPLE_TABLESPACE Procedure
	CLONE_TABLESPACES Procedure
	DETACH_SIMPLE_TABLESPACE Procedure
	DETACH_TABLESPACES Procedure
	PULL_SIMPLE_TABLESPACE Procedure
	PULL_TABLESPACES Procedure

150 DBMS_TDB

	Using DBMS_TDB
	Overview
	Security Model
	Constants
	Views
	Operational Notes

	Summary of DBMS_TDB Subprograms
	CHECK_DB Function
	CHECK_EXTERNAL Function

151 DBMS_TRACE

	Using DBMS_TRACE
	Overview
	Security Model
	Constants
	Restrictions
	Operational Notes
	Controlling Data Volume
	Creating Database Tables to Collect DBMS_TRACE Output
	Collecting Trace Data
	Collected Data
	Trace Control

	Summary of DBMS_TRACE Subprograms
	CLEAR_PLSQL_TRACE Procedure
	GET_PLSQL_TRACE_LEVEL Function
	PLSQL_TRACE_VERSION Procedure
	SET_PLSQL_TRACE Procedure

152 DBMS_TRANSACTION

	Using DBMS_TRANSACTION
	Security Model

	Summary of DBMS_TRANSACTION Subprograms
	ADVISE_COMMIT Procedure
	ADVISE_NOTHING Procedure
	ADVISE_ROLLBACK Procedure
	COMMIT Procedure
	COMMIT_COMMENT Procedure
	COMMIT_FORCE Procedure
	LOCAL_TRANSACTION_ID Function
	PURGE_LOST_DB_ENTRY Procedure
	PURGE_MIXED Procedure
	READ_ONLY Procedure
	READ_WRITE Procedure
	ROLLBACK Procedure
	ROLLBACK_FORCE Procedure
	ROLLBACK_SAVEPOINT Procedure
	SAVEPOINT Procedure
	STEP_ID Function
	USE_ROLLBACK_SEGMENT Procedure

153 DBMS_TRANSFORM

	Summary of DBMS_TRANSFORM Subprograms
	CREATE_TRANSFORMATION Procedure
	DROP_TRANSFORMATION Procedure
	MODIFY_TRANSFORMATION Procedure

154 DBMS_TTS

	Using DBMS_TTS
	Security Model
	Exceptions
	Operational Notes

	Summary of DBMS_TTS Subprograms
	DOWNGRADE Procedure
	TRANSPORT_SET_CHECK Procedure

155 DBMS_TYPES

	Using DBMS_TYPES
	Constants
	Exceptions

156 DBMS_UTILITY

	Using DBMS_UTILITY
	Security Model
	Constants
	Exceptions

	Data Structures
	INSTANCE_RECORD Record Type
	DBLINK_ARRAY TABLE Type
	INDEX_TABLE_TYPE Table Type
	INSTANCE_TABLE Table Type
	LNAME_ARRAY Table Type
	NAME_ARRAY Table Type
	NUMBER_ARRAY Table Type
	UNCL_ARRAY Table Type

	Summary of DBMS_UTILITY Subprograms
	ACTIVE_INSTANCES Procedure
	ANALYZE_DATABASE Procedure
	ANALYZE_PART_OBJECT Procedure
	ANALYZE_SCHEMA Procedure
	CANONICALIZE Procedure
	COMMA_TO_TABLE Procedures
	COMPILE_SCHEMA Procedure
	CREATE_ALTER_TYPE_ERROR_TABLE Procedure
	CURRENT_INSTANCE Function
	DATA_BLOCK_ADDRESS_BLOCK Function
	DATA_BLOCK_ADDRESS_FILE Function
	DB_VERSION Procedure
	EXEC_DDL_STATEMENT Procedure
	FORMAT_CALL_STACK Function
	FORMAT_ERROR_BACKTRACE Function
	FORMAT_ERROR_STACK Function
	GET_CPU_TIME Function
	GET_DEPENDENCY Procedure
	GET_ENDIANNESS Function
	GET_HASH_VALUE Function
	GET_PARAMETER_VALUE Function
	GET_SQL_HASH Function
	GET_TIME Function
	GET_TZ_TRANSITIONS Procedure
	INVALIDATE Procedure
	IS_BIT_SET Function
	IS_CLUSTER_DATABASE Function
	MAKE_DATA_BLOCK_ADDRESS Function
	NAME_RESOLVE Procedure
	NAME_TOKENIZE Procedure
	OLD_CURRENT_SCHEMA Function
	OLD_CURRENT_USER Function
	PORT_STRING Function
	SQLID_TO_SQLHASH Function
	TABLE_TO_COMMA Procedures
	VALIDATE Procedure
	WAIT_ON_PENDING_DML Function

157 DBMS_WARNING

	Using DBMS_WARNING
	Security Model

	Summary of DBMS_WARNING Subprograms
	ADD_WARNING_SETTING_CAT Procedure
	ADD_WARNING_SETTING_NUM Procedure
	GET_CATEGORY Function
	GET_WARNING_SETTING_CAT Function
	GET_WARNING_SETTING_NUM Function
	GET_WARNING_SETTING_STRING Function
	SET_WARNING_SETTING_STRING Procedure

158 DBMS_WM

	Documentation of DBMS_WM

159 DBMS_WORKLOAD_CAPTURE

	Using DBMS_WORKLOAD_CAPTURE
	Overview
	Security Model

	Summary of DBMS_WORKLOAD_CAPTURE Subprograms
	ADD_FILTER Procedures
	DELETE_CAPTURE_INFO Procedure
	DELETE_FILTER Procedure
	EXPORT_AWR Procedure
	FINISH_CAPTURE Procedure
	GET_CAPTURE_INFO Function
	IMPORT_AWR Function
	REPORT Function
	START_CAPTURE Procedure

160 DBMS_WORKLOAD_REPLAY

	Using DBMS_WORKLOAD_REPLAY
	Security Model

	Summary of DBMS_WORKLOAD_REPLAY Subprograms
	ADD_FILTER Procedure
	CALIBRATE Function
	CANCEL_REPLAY Procedure
	COMPARE_PERIOD_REPORT Procedure
	COMPARE_SQLSET_REPORT Function
	CREATE_FILTER_SET Procedure
	DELETE_FILTER Procedure
	DELETE_REPLAY_INFO Procedure
	EXPORT_AWR Procedure
	GET_DIVERGING_STATEMENT Function
	GET_REPLAY_INFO Function
	GET_REPLAY_TIMEOUT Procedure
	IMPORT_AWR Function
	INITIALIZE_REPLAY Procedure
	IS_REPLAY_PAUSED Function
	PAUSE_REPLAY Procedure
	POPULATE_DIVERGENCE Procedure
	PREPARE_REPLAY Procedure
	PROCESS_CAPTURE Procedure
	REMAP_CONNECTION Procedure
	REPORT Function
	RESUME_REPLAY Procedure
	REUSE_REPLAY_FILTER_SET Procedure
	SET_ADVANCED_PARAMETER Procedure
	SET_REPLAY_TIMEOUT Procedure
	START_REPLAY Procedure
	USE_FILTER_SET Procedure

161 DBMS_WORKLOAD_REPOSITORY

	Using DBMS_WORKLOAD_REPOSITORY
	Examples

	Data Structures
	AWR_BASELINE_METRIC_TYPE Object Type
	AWR_BASELINE_METRIC_TYPE_TABLE Table Type
	AWRRPT_INSTANCE_LIST_TYPE Table Type

	Summary of DBMS_WORKLOAD_REPOSITORY Subprograms
	ADD_COLORED_SQL Procedure
	ASH_GLOBAL_REPORT_HTML Function
	ASH_GLOBAL_REPORT_TEXT Function
	ASH_REPORT_HTML Function
	ASH_REPORT_TEXT Function
	AWR_DIFF_REPORT_HTML Function
	AWR_DIFF_REPORT_TEXT Function
	AWR_GLOBAL_DIFF_REPORT_HTML Functions
	AWR_GLOBAL_DIFF_REPORT_TEXT Functions
	AWR_GLOBAL_REPORT_HTML Functions
	AWR_GLOBAL_REPORT_TEXT Functions
	AWR_REPORT_HTML Function
	AWR_REPORT_TEXT Function
	AWR_SQL_REPORT_HTML Function
	AWR_SQL_REPORT_TEXT Function
	CREATE_BASELINE Functions & Procedures
	CREATE_BASELINE_TEMPLATE Procedures
	CREATE_SNAPSHOT Function and Procedure
	DROP_BASELINE Procedure
	DROP_BASELINE_TEMPLATE Procedure
	DROP_SNAPSHOT_RANGE Procedure
	MODIFY_SNAPSHOT_SETTINGS Procedures
	MODIFY_BASELINE_WINDOW_SIZE Procedure
	REMOVE_COLORED_SQL Procedure
	RENAME_BASELINE Procedure
	SELECT_BASELINE_METRICS Function

162 DBMS_XA

	Using DBMS_XA
	Overview
	Security Model
	Constants
	Operational Notes

	Data Structures
	DBMS_XA_XID Object Type
	DBMS_XA_XID_ARRAY Table Type

	Summary of DBMS_XA Subprograms
	DIST_TXN_SYNC Procedure
	XA_COMMIT Function
	XA_END Function
	XA_FORGET Function
	XA_GETLASTOER Function
	XA_PREPARE Function
	XA_RECOVER Function
	XA_ROLLBACK Function
	XA_SETTIMEOUT Function
	XA_START Function

163 DBMS_XDB

	Using DBMS_XDB
	Overview
	Deprecated Subprograms
	Security Model
	Constants

	Summary of DBMS_XDB Subprograms
	ACLCHECKPRIVILEGES Function
	ADDHTTPEXPIREMAPPING Procedure
	ADDMIMEMAPPING Procedure
	ADDSCHEMALOCMAPPING Procedure
	ADDSERVLET Procedure
	ADDSERVLETMAPPING Procedure
	ADDSERVLETSECROLE Procedure
	ADDXMLEXTENSION Procedure
	APPENDPATH Procedure
	APPENDRESOURCEMETADATA Procedure
	CFG_GET Function
	CFG_REFRESH Procedure
	CFG_UPDATE Procedure
	CHANGEOWNER Procedure
	CHANGEPRIVILEGES Function
	CHECKPRIVILEGES Function
	CREATEFOLDER Function
	CREATEOIDPATH Function
	CREATERESOURCE Functions
	DELETEHTTPEXPIREMAPPING Procedure
	DELETEMIMEMAPPING Procedure
	DELETERESOURCE Procedure
	DELETERESOURCEMETADATA Procedures
	DELETESCHEMALOCMAPPING Procedure
	DELETESERVLET Procedure
	DELETESERVLETMAPPING Procedure
	DELETESERVLETSECROLE Procedure
	DELETEXMLEXTENSION Procedure
	EXISTSRESOURCE Function
	GETACLDOCUMENT Function
	GETCHILDRESPATHS Function
	GETCONTENTBLOB Function
	GETCONTENTCLOB Function
	GETCONTENTVARCHAR2 Function
	GETCONTENTXMLREF Function
	GETCONTENTXMLTYPE Function
	GETFTPPORT Function
	GETHTTPPORT Function
	GETLISTENERENDPOINT Procedure
	GETLOCKTOKEN Procedure
	GETPRIVILEGES Function
	GETRESOID Function
	GETXDB_TABLESPACE Function
	HASBLOBCONTENT Function
	HASCHARCONTENT Function
	HASXMLCONTENT Function
	HASXMLREFERENCE Function
	ISFOLDER Function
	LINK Procedures
	LOCKRESOURCE Function
	MOVEXDB_TABLESPACE Procedure
	PROCESSLINKS Procedure
	PURGERESOURCEMETADATA Procedure
	REBUILDHIERARCHICALINDEX Procedure
	RENAMERESOURCE Procedure
	SETACL Procedure
	SETCONTENT Procedures
	SETFTPPORT Procedure
	SETHTTPPORT Procedure
	SETLISTENERENDPOINT Procedure
	SETLISTENERLOCALACCESS Procedure
	SPLITPATH Procedure
	TOUCHRESOURCE Procedure
	UPDATERESOURCEMETADATA Procedures
	UNLOCKRESOURCE Function

164 DBMS_XDB_ADMIN

	Using DBMS_XDB_ADMIN
	Deprecated Subprograms
	Security Model

	Summary of DBMS_XDB_ADMIN Subprograms
	CREATEREPOSITORYXMLINDEX Procedure
	DROPREPOSITORYXMLINDEX Procedure
	MOVEXDB_TABLESPACE Procedure
	REBUILDHIERARCHICALINDEX Procedure
	XMLINDEXADDPATH Procedure
	XMLINDEXREMOVEPATH Procedure

165 DBMS_XDB_VERSION

	Using DBMS_XDB_VERSION
	Security Model

	Summary of DBMS_XDB_VERSION Subprograms
	CHECKIN Function
	CHECKOUT Procedure
	GETCONTENTSBLOBBYRESID Function
	GETCONTENTSCLOBBYRESID Function
	GETCONTENTSXMLBYRESID Function
	GETPREDECESSORS Function
	GETPREDSBYRESID Function
	GETRESOURCEBYRESID Function
	GETSUCCESSORS Function
	GETSUCCSBYRESID Function
	MAKEVERSIONED Function
	UNCHECKOUT Function

166 DBMS_XDBRESOURCE

	Using DBMS_XDBRESOURCE
	Overview
	Security Model

	Summary of DBMS_XDBRESOURCE Subprograms
	FREERESOURCE Procedure
	GETACL Function
	GETACLDOCFROMRES Function
	GETAUTHOR Function
	GETCHARACTERSET Function
	GETCOMMENT Function
	GETCONTENTBLOB Function
	GETCONTENTCLOB Function
	GETCONTENTREF Function
	GETCONTENTTYPE Function
	GETCONTENTXML Function
	GETCONTENTVARCHAR2 Function
	GETCREATIONDATE Function
	GETCREATOR Function
	GETCUSTOMMETADATA Function
	GETDISPLAYNAME Function
	GETLANGUAGE Function
	GETLASTMODIFIER Function
	GETMODIFICATIONDATE Function
	GETOWNER Function
	GETREFCOUNT Function
	GETVERSIONID Function
	HASACLCHANGED Function
	HASAUTHORCHANGED Function
	HASCHANGED Function
	HASCHARACTERSETCHANGED Function
	HASCOMMENTCHANGED Function
	HASCONTENTCHANGED Function
	HASCONTENTTYPECHANGED Function
	HASCREATIONDATECHANGED Function
	HASCREATORCHANGED Function
	HASCUSTOMMETADATACHANGED Function
	HASDISPLAYNAMECHANGED Function
	HASLANGUAGECHANGED Function
	HASLASTMODIFIERCHANGED Function
	HASMODIFICATIONDATECHANGED Function
	HASOWNERCHANGED Function
	HASREFCOUNTCHANGED Function
	HASVERSIONIDCHANGED Function
	ISFOLDER Function
	ISNULL Function
	MAKEDOCUMENT Function
	SAVE Procedure
	SETACL Procedure
	SETAUTHOR Procedure
	SETCHARACTERSET Procedure
	SETCOMMENT Procedure
	SETCONTENT Procedures
	SETCONTENTTYPE Procedure
	SETCUSTOMMETADATA Procedure
	SETDISPLAYNAME Procedure
	SETLANGUAGE Procedure
	SETOWNER Procedure

167 DBMS_XDBT

	Using DBMS_XDBT
	Overview
	Security Model
	Operational Notes

	Summary of DBMS_XDBT Subprograms
	CONFIGUREAUTOSYNC Procedure
	CREATEDATASTOREPREF Procedure
	CREATEFILTERPREF Procedure
	CREATEINDEX Procedure
	CREATELEXERPREF Procedure
	CREATEPREFERENCES Procedure
	CREATESECTIONGROUPPREF Procedure
	CREATESTOPLISTPREF Procedure
	CREATESTORAGEPREF Procedure
	CREATEWORLDLISTPREF Procedure
	DROPPREFERENCES Procedure

168 DBMS_XDBZ

	Using DBMS_XDBZ
	Security Model
	Constants

	Summary of DBMS_XDBZ Subprograms
	DISABLE_HIERARCHY Procedure
	ENABLE_HIERARCHY Procedure
	GET_ACLOID Function
	GET_USERID Function
	IS_HIERARCHY_ENABLED Function
	PURGELDAPCACHE Function

169 DBMS_XEVENT

	Using DBMS_XEVENT
	Security Model
	Constants

	Subprogram Groups
	XDBEvent Type Subprograms
	XDBRepositoryEvent Type Subprograms
	XDBHandlerList Type Subprograms
	XDBHandler Type Subprograms
	XDBPath Type Subprograms
	XDBLink Type Subprograms

	Summary of DBMS_XEVENT Subprograms
	CLEAR Procedure
	GETAPPLICATIONDATA Function
	GETCHILDOID Function
	GETCURRENTUSER Function
	GETEVENT Function
	GETFIRST Function
	GETHANDLERLIST Function
	GETINTERFACE Function
	GETLANGUAGE Function
	GETLINK Function
	GETLINKNAME Function
	GETLOCK Function
	GETLANGUAGE Function
	GETNAME Function
	GETNEXT Function
	GETOLDRESOURCE Function
	GETOPENACCESSMODE Function
	GETOPENDENYMODE Function
	GETOUTPUTSTREAM Function
	GETPARAMETER Function
	GETPARENT Function
	GETPARENTNAME Function
	GETPARENTOID Function
	GETPARENTPATH Function
	GETPATH Function
	GETRESOURCE Function
	GETSCHEMA Function
	GETSOURCE Function
	GETUPDATEBYTECOUNT Function
	GETUPDATEBYTEOFFSET Function
	GETXDBEVENT Function
	ISNULL Functions
	REMOVE Procedure
	SETRENDERPATH Procedure
	SETRENDERSTREAM Procedure

170 DBMS_XMLDOM

	Using DBMS_XMLDOM
	Overview
	Security Model
	Constants
	Types
	Exceptions

	Subprogram Groups
	DOMNode Subprograms
	DOMAttr Subprograms
	DOMCDataSection Subprograms
	DOMCharacterData Subprograms
	DOMComment Subprograms
	DOMDocument Subprograms
	DOMDocumentFragment Subprograms
	DOMDocumentType Subprograms
	DOMElement Subprograms
	DOMEntity Subprograms
	DOMEntityReference Subprograms
	DOMImplementation Subprograms
	DOMNamedNodeMap Subprograms
	DOMNodeList Subprograms
	DOMNotation Subprograms
	DOMProcessingInstruction Subprograms
	DOMText Subprograms

	Summary of DBMS_XMLDOM Subprograms
	ADOPTNODE Function
	APPENDCHILD Function
	APPENDDATA Procedure
	CLONENODE Function
	CREATEATTRIBUTE Functions
	CREATECDATASECTION Function
	CREATECOMMENT Function
	CREATEDOCUMENT Function
	CREATEDOCUMENTFRAGMENT Function
	CREATEELEMENT Functions
	CREATEENTITYREFERENCE Function
	CREATEPROCESSINGINSTRUCTION Function
	CREATETEXTNODE Function
	DELETEDATA Procedure
	FINDENTITY Function
	FINDNOTATION Function
	FREEDOCFRAG Procedure
	FREEDOCUMENT Procedure
	FREEELEMENT Procedure
	FREENODE Procedure
	FREENODELIST Procedure
	GETATTRIBUTE Functions
	GETATTRIBUTENODE Functions
	GETATTRIBUTES Function
	GETCHARSET Function
	GETCHILDNODES Function
	GETCHILDRENBYTAGNAME Functions
	GETDATA Functions
	GETDOCTYPE Function
	GETDOCUMENTELEMENT Function
	GETELEMENTSBYTAGNAME Functions
	GETENTITIES Function
	GETEXPANDEDNAME Procedure and Functions
	GETFIRSTCHILD Function
	GETIMPLEMENTATION Function
	GETLASTCHILD Function
	GETLENGTH Functions
	GETLOCALNAME Procedure and Functions
	GETNAME Functions
	GETNAMEDITEM Function
	GETNAMESPACE Procedure and Functions
	GETNEXTSIBLING Function
	GETNODETYPE Function
	GETNODENAME Function
	GETNODEVALUE Function
	GETNODEVALUEASBINARYSTREAM Function & Procedure
	GETNODEVALUEASCHARACTERSTREAM Function & Procedure
	GETNOTATIONNAME Function
	GETNOTATIONS Function
	GETTARGET Function
	GETOWNERDOCUMENT Function
	GETOWNERELEMENT Function
	GETPARENTNODE Function
	GETPREFIX Function
	GETPREVIOUSSIBLING Function
	GETPUBLICID Functions
	GETQUALIFIEDNAME Functions
	GETSCHEMANODE Function
	GETSPECIFIED Function
	GETSTANDALONE Function
	GETSYSTEMID Functions
	GETTAGNAME Function
	GETVALUE Function
	GETVERSION Function
	GETXMLTYPE Function
	HASATTRIBUTE Functions
	HASATTRIBUTES Function
	HASCHILDNODES Function
	HASFEATURE Function
	IMPORTNODE Function
	INSERTBEFORE Function
	INSERTDATA Procedure
	ISNULL Functions
	ITEM Functions
	MAKEATTR Function
	MAKECDATASECTION Function
	MAKECHARACTERDATA Function
	MAKECOMMENT Function
	MAKEDOCUMENT Function
	MAKEDOCUMENTFRAGMENT Function
	MAKEDOCUMENTTYPE Function
	MAKEELEMENT Function
	MAKEENTITY Function
	MAKEENTITYREFERENCE Function
	MAKENODE Functions
	MAKENOTATION Function
	MAKEPROCESSINGINSTRUCTION Function
	MAKETEXT Function
	NEWDOMDOCUMENT Functions
	NORMALIZE Procedure
	REMOVEATTRIBUTE Procedures
	REMOVEATTRIBUTENODE Function
	REMOVECHILD Function
	REMOVENAMEDITEM Function
	REPLACECHILD Function
	REPLACEDATA Procedure
	RESOLVENAMESPACEPREFIX Function
	SETATTRIBUTE Procedures
	SETATTRIBUTENODE Functions
	SETCHARSET Procedure
	SETDATA Procedures
	SETDOCTYPE Procedure
	SETNAMEDITEM Function
	SETNODEVALUE Procedure
	SETNODEVALUEASBINARYSTREAM Function & Procedure
	SETNODEVALUEASCHARACTERSTREAM Function & Procedure
	SETPREFIX Procedure
	SETSTANDALONE Procedure
	SETVALUE Procedure
	SETVERSION Procedure
	SPLITTEXT Function
	SUBSTRINGDATA Function
	USEBINARYSTREAM Function
	WRITETOBUFFER Procedures
	WRITETOCLOB Procedures
	WRITETOFILE Procedures

171 DBMS_XMLGEN

	Using DBMS_XMLGEN
	Security Model

	Summary of DBMS_XMLGEN Subprograms
	CLOSECONTEXT Procedure
	CONVERT Functions
	GETNUMROWSPROCESSED Function
	GETXML Functions
	GETXMLTYPE Functions
	NEWCONTEXT Functions
	NEWCONTEXTFROMHIERARCHY Function
	RESTARTQUERY Procedure
	SETCONVERTSPECIALCHARS Procedure
	SETMAXROWS Procedure
	SETNULLHANDLING Procedure
	SETROWSETTAG Procedure
	SETROWTAG Procedure
	SETSKIPROWS Procedure
	USEITEMTAGSFORCOLL Procedure
	USENULLATTRIBUTEINDICATOR Procedure

172 DBMS_XMLINDEX

	Using DBMS_XMLINDEX
	Overview
	Security Model

	Summary of DBMS_XMLINDEX Subprograms
	CREATEDATEINDEX Procedure
	CREATENUMBERINDEX Procedure
	DROPPARAMETER Procedure
	MODIFYPARAMETER Procedure
	REGISTERPARAMETER Procedure
	SYNCINDEX Procedure

173 DBMS_XMLPARSER

	Using DBMS_XMLPARSER
	Security Model

	Summary of DBMS_XMLPARSER Subprograms
	FREEPARSER
	GETDOCTYPE
	GETDOCUMENT
	GETRELEASEVERSION
	GETVALIDATIONMODE
	NEWPARSER
	PARSE
	PARSEBUFFER
	PARSECLOB
	PARSEDTD
	PARSEDTDBUFFER
	PARSEDTDCLOB
	SETBASEDIR
	SETDOCTYPE
	SETERRORLOG
	SETPRESERVEWHITESPACE
	SETVALIDATIONMODE
	SHOWWARNINGS

174 DBMS_XMLQUERY

	Using DBMS_XMLQUERY
	Security Model
	Constants
	Types

	Summary of DBMS_XMLQUERY Subprograms
	CLOSECONTEXT
	GETDTD
	GETEXCEPTIONCONTENT
	GETNUMROWSPROCESSED
	GETVERSION
	GETXML
	NEWCONTEXT
	PROPAGATEORIGINALEXCEPTION
	REMOVEXSLTPARAM
	SETBINDVALUE
	SETCOLLIDATTRNAME
	SETDATAHEADER
	SETDATEFORMAT
	SETENCODINGTAG
	SETERRORTAG
	SETMAXROWS
	SETMETAHEADER
	SETRAISEEXCEPTION
	SETRAISENOROWSEXCEPTION
	SETROWIDATTRNAME
	SETROWIDATTRVALUE
	SETROWSETTAG
	SETROWTAG
	SETSKIPROWS
	SETSQLTOXMLNAMEESCAPING
	SETSTYLESHEETHEADER
	SETTAGCASE
	SETXSLT
	SETXSLTPARAM
	USENULLATTRIBUTEINDICATOR
	USETYPEFORCOLLELEMTAG

175 DBMS_XMLSAVE

	Using DBMS_XMLSAVE
	Security Model
	Constants
	Types

	Summary of DBMS_XMLSAVE Subprograms
	CLEARKEYCOLUMNLIST
	CLEARUPDATECOLUMNLIST
	CLOSECONTEXT
	DELETEXML
	GETEXCEPTIONCONTENT
	INSERTXML
	NEWCONTEXT
	PROPAGATEORIGINALEXCEPTION
	REMOVEXSLTPARAM
	SETBATCHSIZE
	SETCOMMITBATCH
	SETDATEFORMAT
	SETIGNORECASE
	SETKEYCOLUMN
	SETPRESERVEWHITESPACE
	SETROWTAG
	SETSQLTOXMLNAMEESCAPING
	SETUPDATECOLUMN
	SETXSLT
	SETXSLTPARAM
	UPDATEXML

176 DBMS_XMLSCHEMA

	Using DBMS_XMLSCHEMA
	Overview
	Security Model
	Constants
	Views
	Operational Notes

	Summary of DBMS_XMLSCHEMA Subprograms
	COMPILESCHEMA Procedure
	COPYEVOLVE Procedure
	DELETESCHEMA Procedure
	GENERATESCHEMA Function
	GENERATESCHEMAS Function
	INPLACEEVOLVE Procedure
	PURGESCHEMA Procedure
	REGISTERSCHEMA Procedures
	REGISTERURI Procedure

177 DBMS_XMLSTORE

	Using DBMS_XMLSTORE
	Security Model
	Types

	Summary of DBMS_XMLSTORE Subprograms
	CLEARKEYCOLUMNLIST
	CLEARUPDATECOLUMNLIST
	CLOSECONTEXT
	DELETEXML
	INSERTXML
	NEWCONTEXT
	SETKEYCOLUMN
	SETROWTAG
	SETUPDATECOLUMN
	UPDATEXML

178 DBMS_XMLTRANSLATIONS

	Using DBMS_XMLTRANSLATIONS
	Security Model

	Summary of DBMS_XMLTRANSLATIONS Subprograms
	DISABLETRANSLATION Procedure
	ENABLETRANSLATION Procedure
	EXTRACTXLIFF Function & Procedure
	GETBASEDOCUMENT Function
	MERGEXLIFF Functions
	SETSOURCELANG Function
	TRANSLATEXML Function
	UPDATETRANSLATION Function

179 DBMS_XPLAN

	Using DBMS_XPLAN
	Overview
	Security Model
	Examples

	Summary of DBMS_XPLAN Subprograms
	DISPLAY Function
	DISPLAY_AWR Function
	DISPLAY_CURSOR Function
	DISPLAY_PLAN Function
	DISPLAY_SQL_PLAN_BASELINE Function
	DISPLAY_SQLSET Function

180 DBMS_XSLPROCESSOR

	Using DBMS_XSLPROCESSOR
	Overview
	Security Model

	Summary of DBMS_XSLPROCESSOR Subprograms
	CLOB2FILE Procedure
	FREEPROCESSOR Procedure
	FREESTYLESHEET Procedure
	NEWPROCESSOR Function
	NEWSTYLESHEET Functions
	PROCESSXSL Functions and Procedures
	READ2CLOB Function
	REMOVEPARAM Procedure
	RESETPARAMS Procedure
	SELECTNODES Function
	SELECTSINGLENODE Function
	SETERRORLOG Procedure
	SETPARAM Procedure
	SHOWWARNINGS Procedure
	TRANSFORMNODE Function
	VALUEOF Function and Procedure

181 DEBUG_EXTPROC

	Using DEBUG_EXTPROC
	Security Model
	Operational Notes
	Rules and Limits

	Summary of DEBUG_EXTPROC Subprograms
	STARTUP_EXTPROC_AGENT Procedure

182 HTF

	Using HTF
	Deprecated Subprograms
	Operational Notes
	Rules and Limits
	Examples

	Summary of Tags
	Summary of HTF Subprograms
	ADDRESS Function
	ANCHOR Function
	ANCHOR2 Function
	APPLETCLOSE Function
	APPLETOPEN Function
	AREA Function
	BASE Function
	BASEFONT Function
	BGSOUND Function
	BIG Function
	BLOCKQUOTECLOSE Function
	BLOCKQUOTEOPEN Function
	BODYCLOSE Function
	BODYOPEN Function
	BOLD Function
	BR Function
	CENTER Function
	CENTERCLOSE Function
	CENTEROPEN Function
	CITE Function
	CODE Function
	COMMENT Function
	DFN Function
	DIRLISTCLOSE Function
	DIRLISTOPEN Function
	DIV Function
	DLISTCLOSE Function
	DLISTDEF Function
	DLISTOPEN Function
	DLISTTERM Function
	EM Function
	EMPHASIS Function
	ESCAPE_SC Function
	ESCAPE_URL Function
	FONTCLOSE Function
	FONTOPEN Function
	FORMAT_CELL Function
	FORMCHECKBOX Function
	FORMCLOSE Function
	FORMFILE Function
	FORMHIDDEN Function
	FORMIMAGE Function
	FORMOPEN Function
	FORMPASSWORD Function
	FORMRADIO Function
	FORMRESET Function
	FORMSELECTCLOSE Function
	FORMSELECTOPEN Function
	FORMSELECTOPTION Function
	FORMSUBMIT Function
	FORMTEXT Function
	FORMTEXTAREA Function
	FORMTEXTAREA2 Function
	FORMTEXTAREACLOSE Function
	FORMTEXTAREAOPEN Function
	FORMTEXTAREAOPEN2 Function
	FRAME Function
	FRAMESETCLOSE Function
	FRAMESETOPEN Function
	HEADCLOSE Function
	HEADER Function
	HEADOPEN Function
	HR Function
	HTMLCLOSE Function
	HTMLOPEN Function
	IMG Function
	IMG2 Function
	ISINDEX Function
	ITALIC Function
	KBD Function
	KEYBOARD Function
	LINE Function
	LINKREL Function
	LINKREV Function
	LISTHEADER Function
	LISTINGCLOSE Function
	LISTINGOPEN Function
	LISTITEM Function
	MAILTO Function
	MAPCLOSE Function
	MAPOPEN Function
	MENULISTCLOSE Function
	MENULISTOPEN Function
	META Function
	NL Function
	NOBR Function
	NOFRAMESCLOSE Function
	NOFRAMESOPEN Function
	OLISTCLOSE Function
	OLISTOPEN Function
	PARA Function
	PARAGRAPH Function
	PARAM Function
	PLAINTEXT Function
	PRECLOSE Function
	PREOPEN Function
	PRINT Functions
	PRN Functions
	S Function
	SAMPLE Function
	SCRIPT Function
	SMALL Function
	STRIKE Function
	STRONG Function
	STYLE Function
	SUB Function
	SUP Function
	TABLECAPTION Function
	TABLECLOSE Function
	TABLEDATA Function
	TABLEHEADER Function
	TABLEOPEN Function
	TABLEROWCLOSE Function
	TABLEROWOPEN Function
	TELETYPE Function
	TITLE Function
	ULISTCLOSE Function
	ULISTOPEN Function
	UNDERLINE Function
	VARIABLE Function
	WBR Function

183 HTP

	Using HTP
	Operational Notes
	Rules and Limits
	Examples

	Summary of Tags
	Summary of HTP Subprograms
	ADDRESS Procedure
	ANCHOR Procedure
	ANCHOR2 Procedure
	APPLETCLOSE Procedure
	APPLETOPEN Procedure
	AREA Procedure
	BASE Procedure
	BASEFONT Procedure
	BGSOUND Procedure
	BIG Procedure
	BLOCKQUOTECLOSE Procedure
	BLOCKQUOTEOPEN Procedure
	BODYCLOSE Procedure
	BODYOPEN Procedure
	BOLD Procedure
	BR Procedure
	CENTER Procedure
	CENTERCLOSE Procedure
	CENTEROPEN Procedure
	CITE Procedure
	CODE Procedure
	COMMENT Procedure
	DFN Procedure
	DIRLISTCLOSE Procedure
	DIRLISTOPEN Procedure
	DIV Procedure
	DLISTCLOSE Procedure
	DLISTDEF Procedure
	DLISTOPEN Procedure
	DLISTTERM Procedure
	EM Procedure
	EMPHASIS Procedure
	ESCAPE_SC Procedure
	FONTCLOSE Procedure
	FONTOPEN Procedure
	FORMCHECKBOX Procedure
	FORMCLOSE Procedure
	FORMOPEN Procedure
	FORMFILE Procedure
	FORMHIDDEN Procedure
	FORMIMAGE Procedure
	FORMPASSWORD Procedure
	FORMRADIO Procedure
	FORMRESET Procedure
	FORMSELECTCLOSE Procedure
	FORMSELECTOPEN Procedure
	FORMSELECTOPTION Procedure
	FORMSUBMIT Procedure
	FORMTEXT Procedure
	FORMTEXTAREA Procedure
	FORMTEXTAREA2 Procedure
	FORMTEXTAREACLOSE Procedure
	FORMTEXTAREAOPEN Procedure
	FORMTEXTAREAOPEN2 Procedure
	FRAME Procedure
	FRAMESETCLOSE Procedure
	FRAMESETOPEN Procedure
	HEADCLOSE Procedure
	HEADER Procedure
	HEADOPEN Procedure
	HR Procedure
	HTMLCLOSE Procedure
	HTMLOPEN Procedure
	IMG Procedure
	IMG2 Procedure
	ISINDEX Procedure
	ITALIC Procedure
	KBD Procedure
	KEYBOARD Procedure
	LINE Procedure
	LINKREL Procedure
	LINKREV Procedure
	LISTHEADER Procedure
	LISTINGCLOSE Procedure
	LISTINGOPEN Procedure
	LISTITEM Procedure
	MAILTO Procedure
	MAPCLOSE Procedure
	MAPOPEN Procedure
	MENULISTCLOSE Procedure
	MENULISTOPEN Procedure
	META Procedure
	NL Procedure
	NOBR Procedure
	NOFRAMESCLOSE Procedure
	NOFRAMESOPEN Procedure
	OLISTCLOSE Procedure
	OLISTOPEN Procedure
	PARA Procedure
	PARAGRAPH Procedure
	PARAM Procedure
	PLAINTEXT Procedure
	PRECLOSE Procedure
	PREOPEN Procedure
	PRINT Procedures
	PRINTS Procedure
	PRN Procedures
	PS Procedure
	S Procedure
	SAMPLE Procedure
	SCRIPT Procedure
	SMALL Procedure
	STRIKE Procedure
	STRONG Procedure
	STYLE Procedure
	SUB Procedure
	SUP Procedure
	TABLECAPTION Procedure
	TABLECLOSE Procedure
	TABLEDATA Procedure
	TABLEHEADER Procedure
	TABLEOPEN Procedure
	TABLEROWCLOSE Procedure
	TABLEROWOPEN Procedure
	TELETYPE Procedure
	TITLE Procedure
	ULISTCLOSE Procedure
	ULISTOPEN Procedure
	UNDERLINE Procedure
	VARIABLE Procedure
	WBR Procedure

184 ORD_DICOM

	Documentation of ORD_DICOM

185 ORD_DICOM_ADMIN

	Documentation of ORD_DICOM_ADMIN

186 OWA_CACHE

	Using OWA_CACHE
	Constants

	Summary of OWA_CACHE Subprograms
	DISABLE Procedure
	GET_ETAG Function
	GET_LEVEL Function
	SET_CACHE Procedure
	SET_EXPIRES Procedure
	SET_NOT_MODIFIED Procedure
	SET_SURROGATE_CONTROL Procedure

187 OWA_COOKIE

	Using OWA_COOKIE
	Overview
	Types
	Rules and Limits

	Summary of OWA_COOKIE Subprograms
	GET Function
	GET_ALL Procedure
	REMOVE Procedure
	SEND procedure

188 OWA_CUSTOM

	Using OWA_CUSTOM
	Constants

	Summary of OWA_CUSTOM Subprograms
	AUTHORIZE Function

189 OWA_IMAGE

	Using OWA_IMAGE
	Overview
	Types
	Variables
	Examples

	Summary of OWA_IMAGE Subprograms
	GET_X Function
	GET_Y Function

190 OWA_OPT_LOCK

	Using OWA_OPT_LOCK
	Overview
	Types

	Summary of OWA_OPT_LOCK Subprograms
	CHECKSUM Functions
	GET_ROWID Function
	STORE_VALUES Procedure
	VERIFY_VALUES Function

191 OWA_PATTERN

	Using OWA_PATTERN
	Types
	Operational Notes
	Wildcards
	Quantifiers
	Flags

	Summary of OWA_PATTERN Subprograms
	AMATCH Function
	CHANGE Functions and Procedures
	GETPAT Procedure
	MATCH Function

192 OWA_SEC

	Using OWA_SEC
	Operational Notes

	Summary of OWA_SEC Subprograms
	GET_CLIENT_HOSTNAME Function
	GET_CLIENT_IP Function
	GET_PASSWORD Function
	GET_USER_ID Function
	SET_AUTHORIZATION Procedure
	SET_PROTECTION_REALM Procedure

193 OWA_TEXT

	Using OWA_TEXT
	Types
	MULTI_LINE DATA TYPE
	ROW_LIST DATA TYPE
	VC_ARR DATA TYPE

	Summary of OWA_TEXT Subprograms
	ADD2MULTI Procedure
	NEW_ROW_LIST Function and Procedure
	PRINT_MULTI Procedure
	PRINT_ROW_LIST Procedure
	STREAM2MULTI Procedure

194 OWA_UTIL

	Using OWA_UTIL
	Overview
	Types
	DATETYPE Data Type
	IDENT_ARR Data Type
	IP_ADDRESS Data Type

	Summary of OWA_UTIL Subprograms
	BIND_VARIABLES Function
	CALENDARPRINT Procedures
	CELLSPRINT Procedures
	CHOOSE_DATE Procedure
	GET_CGI_ENV Function
	GET_OWA_SERVICE_PATH Function
	GET_PROCEDURE Function
	HTTP_HEADER_CLOSE Procedure
	LISTPRINT Procedure
	MIME_HEADER Procedure
	PRINT_CGI_ENV Procedure
	REDIRECT_URL Procedure
	SHOWPAGE Procedure
	SHOWSOURCE Procedure
	SIGNATURE procedure
	STATUS_LINE Procedure
	TABLEPRINT Function
	TODATE Function
	WHO_CALLED_ME Procedure

195 SDO_CS

	Documentation of SDO_CS

196 SDO_CSW_PROCESS

	Documentation of SDO_CSW_PROCESS

197 SDO_GCDR

	Documentation of SDO_GCDR

198 SDO_GEOM

	Documentation of SDO_GEOM

199 SDO_GEOR

	Documentation of SDO_GEOR

200 SDO_GEOR_ADMIN

	Documentation of SDO_GEOR_ADMIN

201 SDO_GEOR_UTL

	Documentation of SDO_GEOR_UTL

202 SDO_LRS

	Documentation of SDO_LRS

203 SDO_MIGRATE

	Documentation of SDO_MIGRATE

204 SDO_NET

	Documentation of SDO_NET

205 SDO_NET_MEM

	Documentation of SDO_NET_MEM

206 SDO_OLS

	Documentation of SDO_OLS

207 SDO_PC_PKG

	Documentation of SDO_PC_PKG

208 SDO_SAM

	Documentation of SDO_SAM

209 SDO_TIN_PKG

	Documentation of SDO_TIN_PKG

210 SDO_TOPO

	Documentation of SDO_TOPO

211 SDO_TOPO_MAP

	Documentation of SDO_TOPO_MAP

212 SDO_TUNE

	Documentation of SDO_TUNE

213 SDO_UTIL

	Documentation of SDO_UTIL

214 SDO_WFS_LOCK

	Documentation of SDO_WFS_LOCK

215 SDO_WFS_PROCESS

	Documentation of SDO_WFS_PROCESS

216 SEM_APIS

	Documentation of SEM_APIS

217 SEM_PERF

	Documentation of SEM_PERF

218 SEM_RDFCTX

	Documentation of SEM_RDFCTX

219 SEM_RDFSA

	Documentation of SEM_RDFSA

220 UTL_COLL

	Summary of UTL_COLL Subprograms
	IS_LOCATOR Function
	Examples

221 UTL_COMPRESS

	Using UTL_COMPRESS
	Constants
	Exceptions
	Operational Notes

	Summary of UTL_COMPRESS Subprograms
	ISOPEN Function
	Return Values
	Examples

	LZ_COMPRESS Functions and Procedures
	LZ_COMPRESS_ADD Procedure
	Exceptions

	LZ_COMPRESS_CLOSE
	Exceptions

	LZ_COMPRESS_OPEN
	Return Values
	Exceptions
	Usage Notes

	LZ_UNCOMPRESS Functions and Procedures
	LZ_UNCOMPRESS_EXTRACT Procedure
	Exceptions

	LZ_UNCOMPRESS_OPEN Function
	Return Values
	Exceptions
	Usage Notes

	LZ_UNCOMPRESS_CLOSE Procedure
	Exceptions

222 UTL_ENCODE

	Summary of UTL_ENCODE Subprograms
	BASE64_DECODE Function
	BASE64_ENCODE Function
	MIMEHEADER_DECODE Function
	MIMEHEADER_ENCODE Function
	QUOTED_PRINTABLE_DECODE Function
	QUOTED_PRINTABLE_ENCODE Function
	TEXT_DECODE Function
	TEXT_ENCODE Function
	UUDECODE Function
	UUENCODE Function

223 UTL_FILE

	Using UTL_FILE
	Security Model
	Operational Notes
	Rules and Limits
	Exceptions
	Examples

	Data Structures
	FILETYPE Record Type

	Summary of UTL_FILE Subprograms
	FCLOSE Procedure
	FCLOSE_ALL Procedure
	FCOPY Procedure
	FFLUSH Procedure
	FGETATTR Procedure
	FGETPOS Function
	FOPEN Function
	FOPEN_NCHAR Function
	FREMOVE Procedure
	FRENAME Procedure
	FSEEK Procedure
	GET_LINE Procedure
	GET_LINE_NCHAR Procedure
	GET_RAW Procedure
	IS_OPEN Function
	NEW_LINE Procedure
	PUT Procedure
	PUT_LINE Procedure
	PUT_LINE_NCHAR Procedure
	PUT_NCHAR Procedure
	PUTF Procedure
	PUTF_NCHAR Procedure
	PUT_RAW Procedure

224 UTL_HTTP

	Using UTL_HTTP
	Overview
	Security Model
	Constants
	Datatypes
	REQ Type
	REQUEST_CONTEXT_KEY Type
	RESP Type
	COOKIE and COOKIE_TABLE Types
	CONNECTION Type

	Operational Notes
	Operational Flow
	Simple HTTP Fetches
	HTTP Requests
	HTTP Responses
	HTTP Cookies
	HTTP Persistent Connections
	Error Conditions
	Session Settings
	Request Context
	External Password Store

	Exceptions
	Examples
	General Usage
	Retrieving HTTP Response Headers
	Handling HTTP Authentication
	Retrieving and Restoring Cookies
	Making HTTP Request with Private Wallet and Cookie Table

	Subprogram Groups
	Simple HTTP Fetches in a Single Call Subprograms
	Session Settings Subprograms
	HTTP Requests Subprograms
	HTTP Request Contexts Subprograms
	HTTP Responses Subprograms
	HTTP Cookies Subprograms
	HTTP Persistent Connections Subprograms
	Error Conditions Subprograms

	Summary of UTL_HTTP Subprograms
	ADD_COOKIES Procedure
	BEGIN_REQUEST Function
	CLEAR_COOKIES Procedure
	CLOSE_PERSISTENT_CONN Procedure
	CLOSE_PERSISTENT_CONNS Procedure
	CREATE_REQUEST_CONTEXT Function
	DESTROY_REQUEST_CONTEXT Procedure
	END_REQUEST Procedure
	END_RESPONSE Procedure
	GET_AUTHENTICATION Procedure
	GET_BODY_CHARSET Procedure
	GET_COOKIE_COUNT Function
	GET_COOKIE_SUPPORT Procedure
	GET_COOKIES Function
	GET_DETAILED_EXCP_SUPPORT Procedure
	GET_DETAILED_SQLCODE Function
	GET_DETAILED_SQLERRM Function
	GET_FOLLOW_REDIRECT Procedure
	GET_HEADER Procedure
	GET_HEADER_BY_NAME Procedure
	GET_HEADER_COUNT Function
	GET_PERSISTENT_CONN_COUNT Function
	GET_PERSISTENT_CONN_SUPPORT Procedure
	GET_PERSISTENT_CONNS Procedure
	GET_PROXY Procedure
	GET_RESPONSE Function
	GET_RESPONSE_ERROR_CHECK Procedure
	GET_TRANSFER_TIMEOUT Procedure
	READ_LINE Procedure
	READ_RAW Procedure
	READ_TEXT Procedure
	REQUEST Function
	REQUEST_PIECES Function
	SET_AUTHENTICATION Procedure
	SET_AUTHENTICATION_FROM_WALLET Procedure
	SET_BODY_CHARSET Procedures
	SET_COOKIE_SUPPORT Procedures
	SET_DETAILED_EXCP_SUPPORT Procedure
	SET_FOLLOW_REDIRECT Procedures
	SET_HEADER Procedure
	SET_PERSISTENT_CONN_SUPPORT Procedure
	SET_PROXY Procedure
	SET_RESPONSE_ERROR_CHECK Procedure
	SET_TRANSFER_TIMEOUT Procedure
	SET_WALLET Procedure
	WRITE_LINE Procedure
	WRITE_RAW Procedure
	WRITE_TEXT Procedure

225 UTL_I18N

	Using UTL_I18N
	Overview
	Security Model
	Constants

	Summary of UTL_I18N Subprograms
	ESCAPE_REFERENCE Function
	GET_COMMON_TIME_ZONES Function
	GET_DEFAULT_CHARSET Function
	GET_DEFAULT_ISO_CURRENCY Function
	GET_DEFAULT_LINGUISTIC_SORT Function
	GET_LOCAL_LANGUAGES Function
	GET_LOCAL_LINGUISTIC_SORTS Function
	GET_LOCAL_TERRITORIES Function
	GET_LOCAL_TIME_ZONES Function
	GET_TRANSLATION Function
	MAP_CHARSET Function
	MAP_FROM_SHORT_LANGUAGE Function
	MAP_LANGUAGE_FROM_ISO Function
	MAP_LOCALE_TO_ISO Function
	MAP_TERRITORY_FROM_ISO Function
	MAP_TO_SHORT_LANGUAGE Function
	RAW_TO_CHAR Functions
	RAW_TO_NCHAR Functions
	STRING_TO_RAW Function
	TRANSLITERATE Function
	UNESCAPE_REFERENCE Function

226 UTL_INADDR

	Using UTL_INADDR
	Security Model
	Exceptions
	Examples

	Summary of UTL_INADDR Subprograms
	GET_HOST_ADDRESS Function
	GET_HOST_NAME Function

227 UTL_IDENT

	Using UTL_IDENT
	Overview
	Security Model
	Constants

228 UTL_LMS

	Using UTL_LMS
	Security Model

	Summary of UTL_LMS Subprograms
	FORMAT_MESSAGE Function
	GET_MESSAGE Function

229 UTL_MAIL

	Using UTL_MAIL
	Security Model
	Operational Notes
	Rules and Limits

	Summary of UTL_MAIL Subprograms
	SEND Procedure
	SEND_ATTACH_RAW Procedure
	SEND_ATTACH_VARCHAR2 Procedure

230 UTL_MATCH

	Using UTL_MATCH
	Overview
	Security Model

	Summary of UTL_MATCH Subprograms
	EDIT_DISTANCE Function
	EDIT_DISTANCE_SIMILARITY Function
	JARO_WINKLER Function
	JARO_WINKLER_SIMILARITY Function

231 UTL_NLA

	Using UTL_NLA
	Overview
	Rules and Limits
	Security Model

	Subprogram Groups
	BLAS Level 1 (Vector-Vector Operations) Subprograms
	BLAS Level 2 (Matrix-Vector Operations) Subprograms
	BLAS Level 3 (Matrix-Matrix Operations) Subprograms
	LAPACK Driver Routines (Linear Equations) Subprograms
	LAPACK Driver Routines (LLS and Eigenvalue Problems) Subprograms

	Summary of UTL_NLA Subprograms
	BLAS_ASUM Functions
	BLAS_AXPY Procedures
	BLAS_COPY Procedures
	BLAS_DOT Functions
	BLAS_GBMV Procedures
	BLAS_GEMM Procedures
	BLAS_GEMV Procedures
	BLAS_GER Procedures
	BLAS_IAMAX Functions
	BLAS_NRM2 Functions
	BLAS_ROT Procedures
	BLAS_ROTG Procedures
	BLAS_SCAL Procedures
	BLAS_SPMV Procedures
	BLAS_SPR Procedures
	BLAS_SPR2 Procedures
	BLAS_SBMV Procedures
	BLAS_SWAP Procedures
	BLAS_SYMM Procedures
	BLAS_SYMV Procedures
	BLAS_SYR Procedures
	BLAS_SYR2 Procedures
	BLAS_SYR2K Procedures
	BLAS_SYRK Procedures
	BLAS_TBMV Procedures
	BLAS_TBSV Procedures
	BLAS_TPMV Procedures
	BLAS_TPSV Procedures
	BLAS_TRMM Procedures
	BLAS_TRMV Procedures
	BLAS_TRSM Procedures
	BLAS_TRSV Procedures
	LAPACK_GBSV Procedures
	LAPACK_GEES Procedures
	LAPACK_GELS Procedures
	LAPACK_GESDD Procedures
	LAPACK_GESV Procedures
	LAPACK_GESVD Procedures
	LAPACK_GEEV Procedures
	LAPACK_GTSV Procedures
	LAPACK_PBSV Procedures
	LAPACK_POSV Procedures
	LAPACK_PPSV Procedures
	LAPACK_PTSV Procedures
	LAPACK_SBEV Procedures
	LAPACK_SBEVD Procedures
	LAPACK_SPEV Procedures
	LAPACK_SPEVD Procedures
	LAPACK_SPSV Procedures
	LAPACK_STEV Procedures
	LAPACK_STEVD Procedures
	LAPACK_SYEV Procedures
	LAPACK_SYEVD Procedures
	LAPACK_SYSV Procedures

232 UTL_RAW

	Using UTL_RAW
	Overview
	Operational Notes

	Summary of UTL_RAW Subprograms
	BIT_AND Function
	BIT_COMPLEMENT Function
	BIT_OR Function
	BIT_XOR Function
	CAST_FROM_BINARY_DOUBLE Function
	CAST_FROM_BINARY_FLOAT Function
	CAST_FROM_BINARY_INTEGER Function
	CAST_FROM_NUMBER Function
	CAST_TO_BINARY_DOUBLE Function
	CAST_TO_BINARY_FLOAT Function
	CAST_TO_BINARY_INTEGER Function
	CAST_TO_NUMBER Function
	CAST_TO_NVARCHAR2 Function
	CAST_TO_RAW Function
	CAST_TO_VARCHAR2 Function
	COMPARE Function
	CONCAT Function
	CONVERT Function
	COPIES Function
	LENGTH Function
	OVERLAY Function
	REVERSE Function
	SUBSTR Function
	TRANSLATE Function
	TRANSLITERATE Function
	XRANGE Function

233 UTL_RECOMP

	Using UTL_RECOMP
	Overview
	Operational Notes
	Examples

	Summary of UTL_RECOMP Subprograms
	RECOMP_PARALLEL Procedure
	RECOMP_SERIAL Procedure

234 UTL_REF

	Using UTL_REF
	Overview
	Security Model
	Types
	Exceptions

	Summary of UTL_REF Subprograms
	DELETE_OBJECT Procedure
	LOCK_OBJECT Procedure
	SELECT_OBJECT Procedure
	UPDATE_OBJECT Procedure

235 UTL_SMTP

	Using UTL_SMTP
	Overview
	Security Model
	Constants
	Types
	CONNECTION Record Type
	REPLY, REPLIES Record Types

	Reply Codes
	Exceptions
	Rules and Limits
	Examples

	Summary of UTL_SMTP Subprograms
	AUTH Function and Procedure
	CLOSE_CONNECTION Procedure
	CLOSE_DATA Function and Procedure
	COMMAND Function and Procedure
	COMMAND_REPLIES Function
	DATA Function and Procedure
	EHLO Function and Procedure
	HELO Function and Procedure
	HELP Function
	MAIL Function and Procedure
	NOOP Function and Procedure
	OPEN_CONNECTION Functions
	OPEN_DATA Function and Procedure
	QUIT Function and Procedure
	RCPT Function
	RSET Function and Procedure
	STARTTLS Function and Procedure
	VRFY Function
	WRITE_DATA Procedure
	WRITE_RAW_DATA Procedure

236 UTL_SPADV

	Using UTL_SPADV
	Overview
	Security Model
	Operational Notes

	Summary of UTL_SPADV Subprograms
	ALTER_MONITORING Procedure
	COLLECT_STATS Procedure
	IS_MONITORING Function
	SHOW_STATS Procedure
	START_MONITORING Procedure
	STOP_MONITORING Procedure

237 UTL_TCP

	Using UTL_TCP
	Overview
	Security Model
	Types
	CONNECTION Type
	CRLF

	Exceptions
	Rules and Limits
	Examples

	Summary of UTL_TCP Subprograms
	AVAILABLE Function
	CLOSE_ALL_CONNECTIONS Procedure
	CLOSE_CONNECTION Procedure
	FLUSH Procedure
	GET_LINE Function
	GET_LINE_NCHAR Function
	GET_RAW Function
	GET_TEXT Function
	GET_TEXT_NCHAR Function
	OPEN_CONNECTION Function
	READ_LINE Function
	READ_RAW Function
	READ_TEXT Function
	SECURE_CONNECTION Procedure
	WRITE_LINE Function
	WRITE_RAW Function
	WRITE_TEXT Function

238 UTL_URL

	Using UTL_URL
	Overview
	Exceptions
	Examples

	Summary of UTL_URL Subprograms
	ESCAPE Function
	UNESCAPE Function

239 WPG_DOCLOAD

	Using WPG_DOCLOAD
	Constants
	NAME_COL_LEN
	MIMET_COL_LEN
	MAX_DOCTABLE_NAME_LEN

	Summary of WPG_DOCLOAD Subprograms
	DOWNLOAD_FILE Procedures

240 ANYDATA TYPE

	Using ANYDATA TYPE
	Restrictions
	Operational Notes
	Construction
	Access

	Summary of ANYDATA Subprograms
	BEGINCREATE Static Procedure
	ENDCREATE Member Procedure
	GET* Member Functions
	GETTYPE Member Function
	GETTYPENAME Member Function
	PIECEWISE Member Procedure
	SET* Member Procedures

241 ANYDATASET TYPE

	Construction
	Summary of ANYDATASET TYPE Subprograms
	ADDINSTANCE Member Procedure
	BEGINCREATE Static Procedure
	ENDCREATE Member Procedure
	GET* Member Functions
	GETCOUNT Member Function
	GETINSTANCE Member Function
	GETTYPE Member Function
	GETTYPENAME Member Function
	PIECEWISE Member Procedure
	SET* Member Procedures

242 ANYTYPE TYPE

	Summary of ANYTYPE Subprograms
	BEGINCREATE Static Procedure
	SETINFO Member Procedure
	ADDATTR Member Procedure
	ENDCREATE Member Procedure
	GETPERSISTENT Static Function
	GETINFO Member Function
	GETATTRELEMINFO Member Function

243 Oracle Streams AQ TYPEs

	Summary of Types
	AQ$_AGENT Type
	AQ$_AGENT_LIST_T Type
	AQ$_DESCRIPTOR Type
	AQ$_NTFN_DESCRIPTOR Type
	AQ$_NTFN_MSGID_ARRAY Type
	AQ$_POST_INFO Type
	AQ$_POST_INFO_LIST Type
	AQ$_PURGE_OPTIONS_T Type
	AQ$_RECIPIENT_LIST_T Type
	AQ$_REG_INFO Type
	AQ$_REG_INFO_LIST Type
	AQ$_SUBSCRIBER_LIST_T Type
	DEQUEUE_OPTIONS_T Type
	ENQUEUE_OPTIONS_T Type
	SYS.MSG_PROP_T Type
	MESSAGE_PROPERTIES_T Type
	MESSAGE_PROPERTIES_ARRAY_T Type
	MSGID_ARRAY_T Type

244 DBFS Content Interface Types

	Using Content Types
	Overview
	Security Model

	Data Structures
	DBMS_DBFS_CONTENT_CONTEXT_T Object Type
	DBMS_DBFS_CONTENT_LIST_ITEM_T Object Type
	DBMS_DBFS_CONTENT_PROPERTY_T Object Type
	DBMS_DBFS_CONTENT_LIST_ITEMS_T Table Type
	DBMS_DBFS_CONTENT_PROPERTIES_T Table Type
	DBMS_DBFS_CONTENT_RAW_T Table Type

245 Database URI TYPEs

	Summary of URITYPE Supertype Subprograms
	GETBLOB
	GETCLOB
	GETCONTENTTYPE
	GETEXTERNALURL
	GETURL
	GETXML

	Summary of HTTPURITYPE Subtype Subprograms
	CREATEURI
	GETBLOB
	GETCLOB
	GETCONTENTTYPE
	GETEXTERNALURL
	GETURL
	GETXML
	HTTPURITYPE

	Summary of DBURITYPE Subtype Subprogams
	CREATEURI
	DBURITYPE
	GETBLOB
	GETCLOB
	GETCONTENTTYPE
	GETEXTERNALURL
	GETURL
	GETXML

	Summary of XDBURITYPE Subtype Subprograms
	CREATEURI
	GETBLOB
	GETCLOB
	GETCONTENTTYPE
	GETEXTERNALURL
	GETURL
	GETXML
	XDBURITYPE

	Summary of URIFACTORY Package Subprograms
	GETURI
	ESCAPEURI
	UNESCAPEURI
	REGISTERURLHANDLER
	UNREGISTERURLHANDLER

246 JMS Types

	Using JMS Types
	Overview
	Java Versus PL/SQL Data Types
	New JMS Support in Oracle Database 10g

	More on Bytes, Stream and Map Messages
	Using Java Stored Procedures to Encode and Decode Oracle Streams AQ Messages
	Initialize the Jserv Static Variable
	Get the Payload Data Back to PL/SQL
	Garbage Collect the Static Variable
	Use a Message Store: A Static Variable Collection
	Typical Calling Sequences
	Read-Only and Write-Only Modes Enforced for Stream and Bytes Messages
	Differences Between Bytes and Stream Messages
	Getting and Setting Bytes, Map, and Stream Messages as RAW Bytes

	Upcasting and Downcasting Between General and Specific Messages
	JMS Types Error Reporting
	Oracle JMS Type Constants
	CONVERT_JMS_SELECTOR
	Convert with Minimal Specification
	Convert with Destination Payload Type Specified
	Convert with Destination Payload Type and Compliant Mode Specified

	Summary of JMS Types
	SYS.AQ$_JMS_MESSAGE Type
	CONSTRUCT Static Functions
	Cast Methods
	JMS Header Methods
	System Properties Methods
	User Properties Methods
	Payload Methods

	SYS.AQ$_JMS_TEXT_MESSAGE Type
	CONSTRUCT Function
	JMS Header Methods
	System Properties Methods
	User Properties Methods
	Payload Methods

	SYS.AQ$_JMS_BYTES_MESSAGE Type
	CONSTRUCT Function
	JMS Header Methods
	System Properties Methods
	User Properties Methods
	Payload Methods

	SYS.AQ$_JMS_MAP_MESSAGE Type
	CONSTRUCT Function
	JMS Header Methods
	System Properties Methods
	User Properties Methods
	Payload Methods

	SYS.AQ$_JMS_STREAM_MESSAGE Type
	CONSTRUCT Function
	JMS Header Methods
	System Properties Methods
	User Properties Methods
	Payload Methods

	SYS.AQ$_JMS_OBJECT_MESSAGE Type
	SYS.AQ$_JMS_NAMESARRAY Type
	SYS.AQ$_JMS_VALUE Type
	SYS.AQ$_JMS_EXCEPTION Type

247 Expression Filter Types

	Using Expression Filter Types
	Security Model

	Summary of Expression Filter Types
	EXF$ATTRIBUTE
	EXF$ATTRIBUTE_LIST
	EXF$INDEXOPER
	EXF$TABLE_ALIAS
	EXF$TEXT
	EXF$XPATH_TAG
	EXF$XPATH_TAGS

248 Logical Change Record TYPEs

	Using Logical Change Record Types
	Overview
	Security Model

	Summary of Logical Change Record Types
	LCR$_DDL_RECORD Type
	LCR$_DDL_RECORD Constructor
	Summary of LCR$_DDL_RECORD Subprograms

	LCR$_ROW_RECORD Type
	LCR$_ROW_RECORD Constructor
	Summary of LCR$_ROW_RECORD Subprograms

	Common Subprograms for LCR$_DDL_RECORD and LCR$_ROW_RECORD
	LCR$_ROW_LIST Type
	LCR$_ROW_UNIT Type

249 Oracle Multimedia ORDAudio TYPE

	Documentation of ORDAudio

250 Oracle Multimedia ORDDicom TYPE

	Documentation of ORDDicom

251 Oracle Multimedia ORDDoc TYPE

	Documentation of ORDDoc

252 Oracle Multimedia ORDImage TYPE

	Documentation of ORDImage

253 Oracle Multimedia SQL/MM Still Image TYPES

	Documentation of SQL/MM Still Image

254 Oracle Multimedia ORDVideo TYPE

	Documentation of ORDVideo

255 MGD_ID Package Types

	Using MGD_ID Package Object Types
	Security Model

	Summary of Types
	MGD_ID_COMPONENT Object Type
	MGD_ID_COMPONENT_VARRAY Object Type
	MGD_ID Object Type

	Summary of MGD_ID Subprograms
	MGD_ID Constructor Function
	FORMAT Function
	GET_COMPONENT Function
	TO_STRING Function
	TRANSLATE Function

256 Rule TYPEs

	Using Rule Types
	Overview
	Security Model

	Summary of Rule Types
	RE$ATTRIBUTE_VALUE Type
	RE$ATTRIBUTE_VALUE_LIST Type
	RE$COLUMN_VALUE Type
	RE$COLUMN_VALUE_LIST Type
	RE$NAME_ARRAY Type
	RE$NV_ARRAY Type
	Syntax

	RE$NV_LIST Type
	RE$NV_NODE Type
	RE$RULE_HIT Type
	RE$RULE_HIT_LIST Type
	RE$TABLE_ALIAS Type
	RE$TABLE_ALIAS_LIST Type
	RE$TABLE_VALUE Type
	RE$TABLE_VALUE_LIST Type
	RE$VARIABLE_TYPE Type
	RE$VARIABLE_TYPE_LIST Type
	RE$VARIABLE_VALUE Type
	RE$VARIABLE_VALUE_LIST Type

257 Rules Manager Types

	Using Rules Manager Types
	Security Model

	Summary of Rule Manager Types
	RLM$EVENTIDS Object Type

258 UTL Streams Types

	Summary of UTL Binary Streams Types
	UTL_BINARYINPUTSTREAM Type
	UTL_BINARYOUTPUTSTREAM Type
	UTL_CHARACTERINPUTSTREAM Type
	UTL_CHARACTEROUTPUTSTREAM Type

259 XMLTYPE

	Summary of XMLType Subprograms
	CREATENONSCHEMABASEDXML
	CREATESCHEMABASEDXML
	CREATEXML
	EXISTSNODE
	EXTRACT
	GETBLOBVAL
	GETCLOBVAL
	GETNAMESPACE
	GETNUMBERVAL
	GETROOTELEMENT
	GETSCHEMAURL
	GETSTRINGVAL
	ISFRAGMENT
	ISSCHEMABASED
	ISSCHEMAVALID
	ISSCHEMAVALIDATED
	SCHEMAVALIDATE
	SETSCHEMAVALIDATED
	TOOBJECT
	TRANSFORM
	XMLTYPE

Index

Oracle® Database

PL/SQL Packages and Types Reference

11g Release 2 (11.2)

E25788-02

October 2011

Oracle Database PL/SQL Packages and Types Reference, 11g Release 2 (11.2)

E25788-02

Copyright © 1996, 2011, Oracle and/or its affiliates. All rights reserved.

Primary Author: Denis Raphaely

Contributing Author: Lance Ashdown, Drue Baker, Donna Carver, Beethoven Cheng, Rhonda Day, Steve Fogel, Bryn Llewellyn, Paul Lane, Tony Morales, Chuck Murray, Sue Pelski, Kathy Rich, Antonio Romero, Vivian Schupmann, Cathy Shea, Margaret Taft, Kathy Taylor, Randy Urbano, Rodney Ward

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Preface

This Preface contains these topics:

	
Audience

	
Documentation Accessibility

	
Related Documents

	
Conventions

Audience

Oracle Database PL/SQL Packages and Types Reference is intended for programmers, systems analysts, project managers, and others interested in developing database applications. This manual assumes a working knowledge of application programming and familiarity with SQL to access information in relational database systems. Some sections also assume a knowledge of basic object-oriented programming.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information, see the following documents:

	
Oracle Database Advanced Application Developer's Guide

	
Oracle Database PL/SQL Language Reference

Many of the examples in this book use the sample schemas, which are installed by default when you select the Basic Installation option with an Oracle Database installation. Refer to Oracle Database Sample Schemas for information on how these schemas were created and how you can use them yourself.

Printed documentation is available for sale in the Oracle Store at

https://oraclestore.oracle.com/OA_HTML/ibeCZzpHome.jsp

To download free release notes, installation documentation, white papers, or other collateral, please visit the Oracle Technology Network (OTN). You must register online before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/

If you already have a username and password for OTN, then you can go directly to the documentation section of the OTN Web site at

http://otn.oracle.com/documentation/

Conventions

This section describes the conventions used in the text and code examples of this documentation set. It describes:

	
Conventions in Text

	
Conventions in Code Examples

Conventions in Text

We use various conventions in text to help you more quickly identify special terms. The following table describes those conventions and provides examples of their use.

	Convention	Meaning	Example
	Bold	Bold typeface indicates terms that are defined in the text or terms that appear in a glossary, or both.	When you specify this clause, you create an index-organized table.
	Italics	Italic typeface indicates book titles or emphasis.	Oracle Database Concepts
Ensure that the recovery catalog and target database do not reside on the same disk.

	UPPERCASE monospace (fixed-width) font	Uppercase monospace typeface indicates elements supplied by the system. Such elements include parameters, privileges, datatypes, RMAN keywords, SQL keywords, SQL*Plus or utility commands, packages and methods, as well as system-supplied column names, database objects and structures, usernames, and roles.	You can specify this clause only for a NUMBER column.
You can back up the database by using the BACKUP command.

Query the TABLE_NAME column in the USER_TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS procedure.

	lowercase monospace (fixed-width) font	Lowercase monospace typeface indicates executable programs, filenames, directory names, and sample user-supplied elements. Such elements include computer and database names, net service names and connect identifiers, user-supplied database objects and structures, column names, packages and classes, usernames and roles, program units, and parameter values.
Note: Some programmatic elements use a mixture of UPPERCASE and lowercase. Enter these elements as shown.

	Enter sqlplus to start SQL*Plus.
The password is specified in the orapwd file.

Back up the datafiles and control files in the /disk1/oracle/dbs directory.

The department_id, department_name, and location_id columns are in the hr.departments table.

Set the QUERY_REWRITE_ENABLED initialization parameter to true.

The JRepUtil class implements these methods.

	lowercase italic monospace (fixed-width) font	Lowercase italic monospace font represents placeholders or variables.	You can specify the parallel_clause.
Run old_release.SQL where old_release refers to the release you installed prior to upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line statements. They are displayed in a monospace (fixed-width) font and separated from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = 'MIGRATE';

The following table describes typographic conventions used in code examples and provides examples of their use.

	Convention	Meaning	Example
	

[]

	Anything enclosed in brackets is optional.	

DECIMAL (digits [, precision])

	

{ }

	Braces are used for grouping items.	

{ENABLE | DISABLE}

	

|

	A vertical bar represents a choice of two options.	

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

	

...

	Ellipsis points mean repetition in syntax descriptions.
In addition, ellipsis points can mean an omission in code examples or text.

	

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM employees;

	Other symbols	You must use symbols other than brackets ([]), braces ({ }), vertical bars (|), and ellipsis points (...) exactly as shown.	

acctbal NUMBER(11,2);
acct CONSTANT NUMBER(4) := 3;

	

Italics

	Italicized text indicates placeholders or variables for which you must supply particular values.	

enter password

DB_NAME = database_name

	

UPPERCASE

	Uppercase typeface indicates elements supplied by the system. We show these terms in uppercase in order to distinguish them from terms you define. Unless terms appear in brackets, enter them in the order and with the spelling shown. Because these terms are not case sensitive, you can use them in either UPPERCASE or lowercase.	

SELECT last_name, employee_id FROM employees;
SELECT * FROM USER_TABLES;
DROP TABLE hr.employees;

	

lowercase

	Lowercase typeface indicates user-defined programmatic elements, such as names of tables, columns, or files.
Note: Some programmatic elements use a mixture of UPPERCASE and lowercase. Enter these elements as shown.

	

SELECT last_name, employee_id FROM employees;
sqlplus hr/hr
CREATE USER mjones IDENTIFIED BY ty3MU9;

What's New in PL/SQL Packages and Types Reference?

The following sections describe the new documentation for Oracle Database 11g Release 1 (11.1) and Release 2 (11.2):

	
New Packages

	
Updated Packages

	
New Types

	
Updated Types

	
Note:

Functionality introduced with Oracle Database 11g Release 2 (11.2.0.2) is flagged within the manual, and also by means of * in the list of packages that follows.

New Packages

	
APEX_CUSTOM_AUTH

	
APEX_APPLICATION

	
APEX_ITEM

	
APEX_UTIL

	
DBMS_ADDM

	
DBMS_DBFS_HS

	
DBMS_ASSERT

	
DBMS_AUTO_SQLTUNE

	
DBMS_AUTO_TASK_ADMIN

	
DBMS_AUTO_TASK_IMMEDIATE

	
DBMS_AUDIT_MGMT

	
DBMS_AW_STATS

	
DBMS_COMPARISON

	
DBMS_COMPRESSION

	
DBMS_CONNECTION_POOL

	
DBMS_CSX_ADMIN

	
DBMS_CUBE

	
DBMS_CUBE_ADVISE

	
DBMS_DBFS_CONTENT

	
DBMS_DBFS_CONTENT_SPI

	
DBMS_DBFS_HS

	
DBMS_DBFS_SFS

	
DBMS_DG

	
DBMS_DST

	
DBMS_HM

	
DBMS_HPROF

	
DBMS_HS_PARALLEL

	
DBMS_METADATA_DIFF

	
DBMS_MGD_ID_UTL

	
DBMS_NETWORK_ACL_ADMIN

	
DBMS_NETWORK_ACL_UTILITY

	
DBMS_PARALLEL_EXECUTE

	
DBMS_RESCONFIG

	
DBMS_RESULT_CACHE

	
DBMS_SPM

	
DBMS_SQLDIAG

	
DBMS_STREAMS_ADVISOR_ADM

	
DBMS_STREAMS_HANDLER_ADM

	
DBMS_WORKLOAD_CAPTURE *

	
DBMS_WORKLOAD_REPLAY *

	
DBMS_XA

	
DBMS_XDB_ADMIN

	
DBMS_XDBRESOURCE

	
DBMS_XEVENT

	
DBMS_XMLINDEX

	
DBMS_XMLTRANSLATIONS

	
DBMS_XPLAN

	
SDO_CSW_PROCESS

	
SDO_GEOR_ADMIN

	
SDO_OLS

	
SDO_PC_PKG

	
SDO_TIN_PKG

	
SDO_WFS_LOCK

	
SDO_WFS_PROCESS

	
SEM_APIS

	
SEM_PERF

	
SEM_RDFCTX

	
SEM_RDFSA

	
UTL_MATCH

	
UTL_SPADV

Updated Packages

	
DBMS_ADVISOR

	
DBMS_APPLY_ADM

	
DBMS_AQ

	
DBMS_AQADM

	
DBMS_CAPTURE_ADM *

	
DBMS_CDC_PUBLISH

	
DBMS_CDC_SUBSCRIBE

	
DBMS_CQ_NOTIFICATION

	
DBMS_DATA_MINING *

	
DBMS_DATA_MINING_TRANSFORM

	
DBMS_DATAPUMP *

	
DBMS_EXPFIL

	
DBMS_FLASHBACK

	
DBMS_HS_PASSTHROUGH

	
DBMS_LOB

	
DBMS_LOGSTDBY

	
DBMS_METADATA

	
DBMS_MGWADM

	
DBMS_MVIEW

	
DBMS_OUTLN

	
DBMS_PARALLEL_EXECUTE

	
DBMS_PREDICTIVE_ANALYTICS

	
DBMS_PROPAGATION_ADM

	
DBMS_RESOURCE_MANAGER *

	
DBMS_RLMGR

	
DBMS_RULE_ADM

	
DBMS_SCHEDULER *

	
DBMS_SERVER_ALERT

	
DBMS_SERVICE *

	
DBMS_SESSION

	
DBMS_SPACE

	
DBMS_SPACE_ADMIN *

	
DBMS_SQL

	
DBMS_SQLPA

	
DBMS_SQLTUNE

	
DBMS_STATS

	
DBMS_STREAMS

	
DBMS_STREAMS_ADM

	
DBMS_STREAMS_TABLESPACE_ADM

	
DBMS_TRACE

	
DBMS_UTILITY

	
DBMS_WORKLOAD_REPOSITORY

	
DBMS_XDB

	
DBMS_XMLINDEX

	
DBMS_XMLSCHEMA

	
DBMS_XPLAN

	
ORD_DICOM

	
UTL_HTTP

	
UTL_IDENT

	
UTL_INADDR

	
UTL_RECOMP

	
UTL_SMTP

	
UTL_SPADV

	
UTL_TCP

New Types

	
DBFS Content Interface Types

	
MGD_ID Package Types

	
UTL Streams Types

Updated Types

	
Oracle Streams AQ TYPEs

	
Logical Change Record TYPEs

1 Introduction to Oracle Supplied PL/SQL Packages & Types

Oracle supplies many PL/SQL packages with the Oracle server to extend database functionality and provide PL/SQL access to SQL features. You can use the supplied packages when creating your applications or for ideas in creating your own stored procedures.

This manual covers the packages provided with the Oracle database server. Packages supplied with other products, such as Oracle Developer or the Oracle Application Server, are not covered.

Note that not every package or type described in this manual or elsewhere in the Oracle Database Documentation Library is installed by default. In such cases, the documentation states this and explains how to install the object. Run this query as a suitably privileged user:

SELECT DISTINCT Owner, Object_Type, Object_Name FROM DBA_Objects_AE
 WHERE Owner IN (
 'SYS', 'OUTLN', 'SYSTEM', 'CTXSYS', 'DBSNMP',
 'LOGSTDBY_ADMINISTRATOR', 'ORDSYS',
 'ORDPLUGINS', 'OEM_MONITOR', 'MDSYS', 'LBACSYS',
 'DMSYS', 'WMSYS', 'OLAPDBA', 'OLAPSVR', 'OLAP_USER',
 'OLAPSYS', 'EXFSYS', 'SYSMAN', 'MDDATA',
 'SI_INFORMTN_SCHEMA', 'XDB', 'ODM')
 AND Object_Type IN ('PACKAGE', 'TYPE')
 ORDER BY Owner, Object_Type, Object_Name

This lists every Oracle-supplied package and type that is currently installed in the database. Note that it lists a number of objects not mentioned in the Oracle Database Documentation Library. This is deliberate. Some of the Oracle-supplied packages and types are intended to be used only by other Oracle-supplied components. Any package or type that is not described in the Oracle Database Documentation Library is not supported for direct customer use.

This chapter contains the following topics:

	
Package Overview

	
Summary of Oracle Supplied PL/SQL Packages and Types

	
See Also:

Oracle Database Advanced Application Developer's Guide for information on how to create your own packages

Package Overview

A package is an encapsulated collection of related program objects stored together in the database. Program objects are procedures, functions, variables, constants, cursors, and exceptions.

Package Components

PL/SQL packages have two parts: the specification and the body, although sometimes the body is unnecessary. The specification is the interface to your application; it declares the types, variables, constants, exceptions, cursors, and subprograms available for use. The body fully defines cursors and subprograms, and so implements the specification.

Unlike subprograms, packages cannot be called, parameterized, or nested. However, the formats of a package and a subprogram are similar:

CREATE PACKAGE name AS -- specification (visible part)
 -- public type and item declarations
 -- subprogram specifications
END [name];

CREATE PACKAGE BODY name AS -- body (hidden part)
 -- private type and item declarations
 -- subprogram bodies
[BEGIN
 -- initialization statements]
END [name];

The specification holds public declarations that are visible to your application. The body holds implementation details and private declarations that are hidden from your application. You can debug, enhance, or replace a package body without changing the specification. You can change a package body without recompiling calling programs because the implementation details in the body are hidden from your application.

Using Oracle Supplied Packages

Most Oracle supplied packages are automatically installed when the database is created. Certain packages are not installed automatically. Special installation instructions for these packages are documented in the individual chapters.

To call a PL/SQL function from SQL, you must either own the function or have EXECUTE privileges on the function. To select from a view defined with a PL/SQL function, you must have SELECT privileges on the view. No separate EXECUTE privileges are needed to select from the view. Instructions on special requirements for packages are documented in the individual chapters.

Creating New Packages

To create packages and store them permanently in an Oracle database, use the CREATE PACKAGE and CREATE PACKAGE BODY statements. You can execute these statements interactively from SQL*Plus or Enterprise Manager.

To create a new package, do the following:

	
Create the package specification with the CREATE PACKAGE statement.

You can declare program objects in the package specification. Such objects are called public objects. Public objects can be referenced outside the package, as well as by other objects in the package.

	
Note:

It is often more convenient to add the OR REPLACE clause in the CREATE PACKAGE statement. But note that CREATE PACKAGE warns you if you are about to overwrite an existing package with the same name while CREATE OR REPLACE just overwrites it with no warning.

	
Create the package body with the CREATE PACKAGE BODY statement.

You can declare and define program objects in the package body.

	
You must define public objects declared in the package specification.

	
You can declare and define additional package objects, called private objects. Private objects are declared in the package body rather than in the package specification, so they can be referenced only by other objects in the package. They cannot be referenced outside the package.

	
See Also:

	
Oracle Database PL/SQL Language Reference

	
Oracle Database Advanced Application Developer's Guidefor more information on creating new packages

	
Oracle Database Concepts

for more information on storing and executing packages

Separating the Specification and Body

The specification of a package declares the public types, variables, constants, and subprograms that are visible outside the immediate scope of the package. The body of a package defines the objects declared in the specification, as well as private objects that are not visible to applications outside the package.

Oracle stores the specification and body of a package separately in the database. Other schema objects that call or reference public program objects depend only on the package specification, not on the package body. Using this distinction, you can change the definition of a program object in the package body without causing Oracle to invalidate other schema objects that call or reference the program object. Oracle invalidates dependent schema objects only if you change the declaration of the program object in the package specification.

Creating a New Package: Example

The following example shows a package specification for a package named EMPLOYEE_MANAGEMENT. The package contains one stored function and two stored procedures.

CREATE PACKAGE employee_management AS
 FUNCTION hire_emp (name VARCHAR2, job VARCHAR2,
 mgr NUMBER, hiredate DATE, sal NUMBER, comm NUMBER,
 deptno NUMBER) RETURN NUMBER;
 PROCEDURE fire_emp (emp_id NUMBER);
 PROCEDURE sal_raise (emp_id NUMBER, sal_incr NUMBER);
END employee_management;

The body for this package defines the function and the procedures:

CREATE PACKAGE BODY employee_management AS
 FUNCTION hire_emp (name VARCHAR2, job VARCHAR2,
 mgr NUMBER, hiredate DATE, sal NUMBER, comm NUMBER,
 deptno NUMBER) RETURN NUMBER IS

The function accepts all arguments for the fields in the employee table except for the employee number. A value for this field is supplied by a sequence. The function returns the sequence number generated by the call to this function.

 new_empno NUMBER(10);

 BEGIN
 SELECT emp_sequence.NEXTVAL INTO new_empno FROM dual;
 INSERT INTO emp VALUES (new_empno, name, job, mgr,
 hiredate, sal, comm, deptno);
 RETURN (new_empno);
 END hire_emp;

 PROCEDURE fire_emp(emp_id IN NUMBER) AS

The procedure deletes the employee with an employee number that corresponds to the argument emp_id. If no employee is found, then an exception is raised.

 BEGIN
 DELETE FROM emp WHERE empno = emp_id;
 IF SQL%NOTFOUND THEN
 raise_application_error(-20011, 'Invalid Employee
 Number: ' || TO_CHAR(emp_id));
 END IF;
END fire_emp;

PROCEDURE sal_raise (emp_id IN NUMBER, sal_incr IN NUMBER) AS

The procedure accepts two arguments. Emp_id is a number that corresponds to an employee number. Sal_incr is the amount by which to increase the employee's salary.

 BEGIN

 -- If employee exists, then update salary with increase.

 UPDATE emp
 SET sal = sal + sal_incr
 WHERE empno = emp_id;
 IF SQL%NOTFOUND THEN
 raise_application_error(-20011, 'Invalid Employee
 Number: ' || TO_CHAR(emp_id));
 END IF;
 END sal_raise;
END employee_management;

	
Note:

If you want to try this example, then first create the sequence number emp_sequence. You can do this using the following SQL*Plus statement:

SQL> CREATE SEQUENCE emp_sequence
 > START WITH 8000 INCREMENT BY 10;

Referencing Package Contents

To reference the types, items, and subprograms declared in a package specification, use the dot notation. For example:

package_name.type_name
package_name.item_name
package_name.subprogram_name

Summary of Oracle Supplied PL/SQL Packages and Types

Table 1-1 lists the supplied PL/SQL server packages. These packages run as the invoking user, rather than the package owner. Unless otherwise noted, the packages are callable through public synonyms of the same name.

	
Caution:

	
The procedures and functions provided in these packages and their external interfaces are reserved by Oracle and are subject to change.

	
Modifying Oracle supplied packages can cause internal errors and database security violations. Do not modify supplied packages.

Table 1-1 Summary of Oracle Supplied PL/SQL Packages

	Package Name	Description
	
APEX_CUSTOM_AUTH

	
Provides an interface for authentication and session management

	
APEX_APPLICATION

	
Enables users to take advantage of global variables

	
APEX_ITEM

	
Enables users to create form elements dynamically based on a SQL query instead of creating individual items page by page

	
APEX_UTIL

	
Provides utilities for getting and setting session state, getting files, checking authorizations for users, resetting different states for users, and also getting and setting preferences for users

	
CTX_ADM

	
Lets you administer servers and the data dictionary

	
CTX_CLS

	
Lets you generate CTXRULE rules for a set of documents

	
CTX_DDL

	
Lets you create and manage the preferences, section lists and stopgroups required for Text indexes

	
CTX_DOC

	
Lets you request document services

	
CTX_OUTPUT

	
Lets you manage the index log

	
CTX_QUERY

	
Lets you generate query feedback, count hits, and create stored query expressions

	
CTX_REPORT

	
Lets you create various index reports

	
CTX_THES

	
Lets you to manage and browse thesauri

	
CTX_ULEXER

	
For use with the user-lexer

	
DBMS_ADDM

	
Facilitates the use of Advisor functionality regarding the Automatic Database Diagnostic Monitor

	
DBMS_ADVANCED_REWRITE

	
Contains interfaces for advanced query rewrite users to create, drop, and maintain functional equivalence declarations for query rewrite

	
DBMS_ADVISOR

	
Part of the SQLAccess Advisor, an expert system that identifies and helps resolve performance problems relating to the execution of SQL statements

	
DBMS_ALERT

	
Provides support for the asynchronous notification of database events

	
DBMS_APPLICATION_INFO

	
Lets you register an application name with the database for auditing or performance tracking purposes

	
DBMS_APPLY_ADM

	
Provides administrative procedures to start, stop, and configure an apply process

	
DBMS_AQ

	
Lets you add a message (of a predefined object type) onto a queue or to dequeue a message

	
DBMS_AQADM

	
Lets you perform administrative functions on a queue or queue table for messages of a predefined object type

	
DBMS_AQELM

	
Provides procedures to manage the configuration of Advanced Queuing asynchronous notification by e-mail and HTTP

	
DBMS_AQIN

	
Plays a part in providing secure access to the Oracle JMS interfaces

	
DBMS_ASSERT

	
Provides an interface to validate properties of the input value

	
DBMS_AUTO_TASK_ADMIN

	
Used by the DBA as well as Enterprise Manager to access the AUTOTASK controls

	
DBMS_AUTO_TASK_IMMEDIATE

	
Cconsists of one subprogram whose function is to initiate gathering of optimizer statistics without delay

	
DBMS_AW_STATS

	
Contains a subprogram that generates and stores optimizer statistics for cubes and dimensions

	
DBMS_CAPTURE_ADM

	
Describes administrative procedures to start, stop, and configure a capture process; used in Streams

	
DBMS_CDC_PUBLISH

	
Identifies new data that has been added to, modified, or removed from, relational tables and publishes the changed data in a form that is usable by an application

	
DBMS_CDC_SUBSCRIBE

	
Lets you view and query the change data that was captured and published with the DBMS_LOGMNR_CDC_PUBLISH package

	
DBMS_COMPARISON

	
Provides interfaces to compare and converge database objects at different databases

	
DBMS_COMPRESSION

	
Provides an interface to facilitate choosing the correct compression level for an application

	
DBMS_CONNECTION_POOL

	
Provides an interface to manage the Database Resident Connection Pool

	
DBMS_CQ_NOTIFICATION

	
Is part of a set of features that clients use to receive notifications when result sets of a query have changed. The package contains interfaces that can be used by mid-tier clients to register objects and specify delivery mechanisms.

	
DBMS_CRYPTO

	
Lets you encrypt and decrypt stored data, can be used in conjunction with PL/SQL programs running network communications, and supports encryption and hashing algorithms

	
DBMS_CSX_ADMIN

	
Provides an interface to customize the setup when transporting a tablespace containing binary XML data

	
DBMS_CUBE

	
Contains subprograms that create OLAP cubes and dimensions, and that load and process the data for querying

	
DBMS_CUBE_ADVISE

	
Contains subprograms for evaluating cube materialized views to support log-based fast refresh and query rewrite

	
DBMS_DATA_MINING

	
Implements the Oracle Data Mining interface for creating, evaluating, and managing mining models

	
DBMS_DATA_MINING_TRANSFORM

	
Provides subroutines that can be used to prepare data for Oracle Data Mining

	
DBMS_DATAPUMP

	
Lets you move all, or part of, a database between databases, including both data and metadata

	
DBMS_DBFS_CONTENT

	
Provides an interface comprising a file system-like abstraction backed by one or more Store Providers

	
DBMS_DBFS_CONTENT_SPI

	
Provides the Application Programming Interface (API) specification for DBMS_DBFS_CONTENT service providers

	
DBMS_DBFS_HS

	
Provides users the ability to use tape or Amazon S3 Web service as a storage tier when doing Information Lifecycle Management for their database tables

	
DBMS_DBFS_SFS

	
Provides an interface to operate a SecureFile-based store (SFS) for the content interface described in the DBMS_DBFS_CONTENT package

	
DBMS_DB_VERSION

	
Specifies the Oracle version numbers and other information useful for simple conditional compilation selections based on Oracle versions

	
DBMS_DDL

	
Provides access to some SQL DDL statements from stored procedures, and provides special administration operations not available as DDLs

	
DBMS_DEBUG

	
Implements server-side debuggers and provides a way to debug server-side PL/SQL program units

	
DBMS_DEFER

	
Provides the user interface to a replicated transactional deferred remote procedure call facility. Requires the Distributed Option.

	
DBMS_DEFER_QUERY

	
Permits querying the deferred remote procedure calls (RPC) queue data that is not exposed through views. Requires the Distributed Option.

	
DBMS_DEFER_SYS

	
Provides the system administrator interface to a replicated transactional deferred remote procedure call facility. Requires the Distributed Option.

	
DBMS_DESCRIBE

	
Describes the arguments of a stored procedure with full name translation and security checking

	
DBMS_DG

	
Allows applications to notify the primary database in an Oracle Data Guard broker environment to initiate a fast-start failover when the application encounters a condition that warrants a failover

	
DBMS_DIMENSION

	
Enables you to verify dimension relationships and provides an alternative to the Enterprise Manager Dimension Wizard for displaying a dimension definition

	
DBMS_DISTRIBUTED_TRUST_ADMIN

	
Maintains the Trusted Database List, which is used to determine if a privileged database link from a particular server can be accepted

	
DBMS_EPG

	
Implements the embedded PL/SQL gateway that enables a Web browser to invoke a PL/SQL stored procedure through an HTTP listener

	
DBMS_ERRLOG

	
Provides a procedure that enables you to create an error logging table so that DML operations can continue after encountering errors rather than abort and roll back

	
DBMS_EXPFIL

	
Contains all the procedures used to manage attribute sets, expression sets, expression indexes, optimizer statistics, and privileges by Expression Filter

	
DBMS_FGA

	
Provides fine-grained security functions

	
DBMS_FILE_GROUP

	
One of a set of Streams packages, provides administrative interfaces for managing file groups, file group versions, files and file group repositories

	
DBMS_FILE_TRANSFER

	
Lets you copy a binary file within a database or to transfer a binary file between databases

	
DBMS_FLASHBACK

	
Lets you flash back to a version of the database at a specified wall-clock time or a specified system change number (SCN)

	
DBMS_FLASHBACK_ARCHIVE

	
Containsprocedures for disassociation and reassociation of a Flashback Data Archive (FDA) enabled table from/with its underlying FDA respectively.

	
DBMS_FREQUENT_ITEMSET

	
Enables frequent itemset counting

	
DBMS_HM

	
Contains constants and procedure declarations for health check management

	
DBMS_HPROF

	
Provides an interface for profiling the execution of PL/SQL applications

	
DBMS_HS_PARALLEL

	
Enables parallel processing for heterogeneous targets access

	
DBMS_HS_PASSTHROUGH

	
Lets you use Heterogeneous Services to send pass-through SQL statements to non-Oracle systems

	
DBMS_IOT

	
Creates a table into which references to the chained rows for an Index Organized Table can be placed using the ANALYZE command

	
DBMS_JAVA

	
Provides a PL/SQL interface for accessing database functionality from Java

	
DBMS_JOB

	
Schedules and manages jobs in the job queue

	
DBMS_LDAP

	
Provides functions and procedures to access data from LDAP servers

	
DBMS_LDAP_UTL

	
Provides the Oracle Extension utility functions for LDAP

	
DBMS_LIBCACHE

	
Prepares the library cache on an Oracle instance by extracting SQL and PL/SQL from a remote instance and compiling this SQL locally without execution

	
DBMS_LOB

	
Provides general purpose routines for operations on Oracle Large Object (LOBs) datatypes - BLOB, CLOB (read/write), and BFILEs (read-only)

	
DBMS_LOCK

	
Lets you request, convert and release locks through Oracle Lock Management services

	
DBMS_LOGMNR

	
Provides functions to initialize and run the log reader

	
DBMS_LOGMNR_D

	
Queries the dictionary tables of the current database, and creates a text based file containing their contents

	
DBMS_LOGSTDBY

	
Describes procedures for configuring and managing the logical standby database environment

	
DBMS_METADATA

	
Lets callers easily retrieve complete database object definitions (metadata) from the dictionary

	
DBMS_METADATA_DIFF

	
Contains the interfaces for comparing two metadata documents in SXML format. The result of the comparison is an SXML difference document. This document can be converted to other formats using the DBMS_METADATA submit interface and the CONVERT API.

	
DBMS_MGD_ID_UTL

	
Provides a set of utility subprograms

	
DBMS_MGWADM

	
Describes the Messaging Gateway administrative interface; used in Advanced Queuing

	
DBMS_MGWMSG

	
Describes object types (used by the canonical message types to convert message bodies) and helper methods, constants, and subprograms for working with the Messaging Gateway message types; used in Advanced Queuing.

	
DBMS_MONITOR

	
Let you use PL/SQL for controlling additional tracing and statistics gathering

	
DBMS_MVIEW

	
Lets you refresh snapshots that are not part of the same refresh group and purge logs. DBMS_SNAPSHOT is a synonym.

	
DBMS_NETWORK_ACL_ADMIN

	
Provides the interface to administer the network Access Control List (ACL)

	
DBMS_NETWORK_UTL

	
Provides the interface to administer the network Access Control List (ACL)

	
DBMS_OBFUSCATION_TOOLKIT

	
Provides procedures for Data Encryption Standards

	
DBMS_ODCI

	
Returns the CPU cost of a user function based on the elapsed time of the function

	
DBMS_OFFLINE_OG

	
Provides a public interface for offline instantiation of master groups

	
DBMS_OLAP

	
Provides procedures for summaries, dimensions, and query rewrites

	
DBMS_OUTLN

	
Provides the interface for procedures and functions associated with management of stored outlines Synonymous with OUTLN_PKG

	
DBMS_OUTPUT

	
Accumulates information in a buffer so that it can be retrieved later

	
DBMS_PARALLEL_EXECUTE

	
Enables the user to incrementally update table data in parallel

	
DBMS_PCLXUTIL

	
Provides intra-partition parallelism for creating partition-wise local indexes

	
DBMS_PIPE

	
Provides a DBMS pipe service which enables messages to be sent between sessions

	
DBMS_PREDICTIVE_ANALYTICS

	
Provides subroutines that implement automatic data mining operations for predict, explain, and profile

	
DBMS_PREPROCESSOR

	
Provides an interface to print or retrieve the source text of a PL/SQL unit in its post-processed form

	
DBMS_PROFILER

	
Provides a Probe Profiler API to profile existing PL/SQL applications and identify performance bottlenecks

	
DBMS_PROPAGATION_ADM

	
Provides administrative procedures for configuring propagation from a source queue to a destination queue

	
DBMS_RANDOM

	
Provides a built-in random number generator

	
DBMS_RECTIFIER_DIFF

	
Provides an interface to detect and resolve data inconsistencies between two replicated sites

	
DBMS_REDEFINITION

	
Lets you perform an online reorganization of tables

	
DBMS_REFRESH

	
Lets you create groups of snapshots that can be refreshed together to a transactionally consistent point in time Requires the Distributed Option

	
DBMS_REPAIR

	
Provides data corruption repair procedures

	
DBMS_REPCAT

	
Provides routines to administer and update the replication catalog and environment. Requires the Replication Option.

	
DBMS_REPCAT_ADMIN

	
Lets you create users with the privileges needed by the symmetric replication facility. Requires the Replication Option.

	
DBMS_REPCAT_INSTANTIATE

	
Instantiates deployment templates. Requires the Replication Option.

	
DBMS_REPCAT_RGT

	
Controls the maintenance and definition of refresh group templates. Requires the Replication Option.

	
DBMS_REPUTIL

	
Provides routines to generate shadow tables, triggers, and packages for table replication.

	
DBMS_RESCONFIG

	
Provides an interface to operate on the Resource Configuration List, and to retrieve listener information for a resource

	
DBMS_RESOURCE_MANAGER

	
Maintains plans, consumer groups, and plan directives; it also provides semantics so that you may group together changes to the plan schema

	
DBMS_RESOURCE_MANAGER_PRIVS

	
Maintains privileges associated with resource consumer groups

	
DBMS_RESULT_CACHE

	
Provides an interface to operate on the Result Cache

	
DBMS_RESUMABLE

	
Lets you suspend large operations that run out of space or reach space limits after executing for a long time, fix the problem, and make the statement resume execution

	
DBMS_RLMGR

	
Contains various procedures to create and manage rules and rule sessions by the Rules Manager

	
DBMS_RLS

	
Provides row level security administrative interface

	
DBMS_ROWID

	
Provides procedures to create rowids and to interpret their contents

	
DBMS_RULE

	
Describes the EVALUATE procedure used in Streams

	
DBMS_RULE_ADM

	
Describes the administrative interface for creating and managing rules, rule sets, and rule evaluation contexts; used in Streams

	
DBMS_SCHEDULER

	
Provides a collection of scheduling functions that are callable from any PL/SQL program

	
DBMS_SERVER_ALERT

	
Lets you issue alerts when some threshold has been violated

	
DBMS_SERVICE

	
Lets you create, delete, activate and deactivate services for a single instance

	
DBMS_SESSION

	
Provides access to SQL ALTER SESSION statements, and other session information, from stored procedures

	
DBMS_SHARED_POOL

	
Lets you keep objects in shared memory, so that they will not be aged out with the normal LRU mechanism

	
DBMS_SPACE

	
Provides segment space information not available through standard SQL

	
DBMS_SPACE_ADMIN

	
Provides tablespace and segment space administration not available through the standard SQL

	
DBMS_SPM

	
Supports the SQL plan management feature by providing an interface for the DBA or other user to perform controlled manipulation of plan history and SQL plan baselines maintained for various SQL statements

	
DBMS_SQL

	
Lets you use dynamic SQL to access the database

	
DBMS_SQLDIAG

	
Provides an interface to the SQL Diagnosability functionality

	
DBMS_SQLPA

	
Provides an interface to implement the SQL Performance Analyzer.

	
DBMS_SQLTUNE

	
Provides the interface to tune SQL statements

	
DBMS_STAT_FUNCS

	
Provides statistical functions

	
DBMS_STATS

	
Provides a mechanism for users to view and modify optimizer statistics gathered for database objects

	
DBMS_STORAGE_MAP

	
Communicates with FMON to invoke mapping operations

	
DBMS_STREAMS

	
Describes the interface to convert SYS.AnyData objects into LCR objects and an interface to annotate redo entries generated by a session with a binary tag.

	
DBMS_STREAMS_ADMIN

	
Describes administrative procedures for adding and removing simple rules, without transformations, for capture, propagation, and apply at the table, schema, and database level

	
DBMS_STREAMS_ADVISOR_ADM

	
Provides an interface to gather information about an Oracle Streams environment and advise database administrators based on the information gathered

	
DBMS_STREAMS_AUTH

	
Provides interfaces for granting privileges to Streams administrators and revoking privileges from Streams administrators

	
DBMS_STREAMS_HANDLER_ADM

	
Provides interfaces to enqueue messages into and dequeue messages from a SYS.AnyData queue

	
DBMS_STREAMS_MESSAGING

	
Provides interfaces to enqueue messages into and dequeue messages from a SYS.AnyData queue

	
DBMS_STREAMS_TABLESPACE_ADM

	
Provides administrative procedures for copying tablespaces between databases and moving tablespaces from one database to another

	
DBMS_TDB

	
Reports whether a database can be transported between platforms using the RMAN CONVERT DATABASE command. It verifies that databases on the current host platform are of the same endian format as the destination platform, and that the state of the current database does not prevent transport of the database.

	
DBMS_TRACE

	
Provides routines to start and stop PL/SQL tracing

	
DBMS_TRANSACTION

	
Provides access to SQL transaction statements from stored procedures and monitors transaction activities

	
DBMS_TRANSFORM

	
Provides an interface to the message format transformation features of Oracle Advanced Queuing

	
DBMS_TTS

	
Checks if the transportable set is self-contained

	
DBMS_TYPES

	
Consists of constants, which represent the built-in and user-defined types

	
DBMS_UTILITY

	
Provides various utility routines

	
DBMS_WARNING

	
Provides the interface to query, modify and delete current system or session settings

	
DBMS_WM

	
Describes how to use the programming interface to Oracle Database Workspace Manager to work with long transactions

	
DBMS_WORKLOAD_CAPTURE

	
Configures the Workload Capture system and produce the workload capture data.

	
DBMS_WORKLOAD_REPLAY

	
Provides an interface to replay and report on a record of a workload on a production or test system

	
DBMS_WORKLOAD_REPOSITORY

	
Lets you manage the Workload Repository, performing operations such as managing snapshots and baselines

	
DBMS_XA

	
Contains the XA/Open interface for applications to call XA interface in PL/SQL

	
DBMS_XDB

	
Describes Resource Management and Access Control interface for PL/SQL

	
DBMS_XDB_ADMIN

	
Provides an interface to implement XMLIndex administration operation

	
DBMS_XDBRESOURCE

	
Provides an interface to operate on the XDB resource's metadata and contents

	
DBMS_XDB_VERSION

	
Describes the versioning interface

	
DBMS_XDBT

	
Describes how an administrator can create a ConText index on the XML DB hierarchy and configure it for automatic maintenance

	
DBMS_XDBZ

	
Controls the Oracle XML DB repository security, which is based on Access Control Lists (ACLs)

	
DBMS_XEVENT

	
Provides event-related types and supporting subprograms

	
DBMS_XMLDOM

	
Explains access to XMLType objects

	
DBMS_XMLGEN

	
Converts the results of a SQL query to a canonical XML format

	
DBMS_XMLINDEX

	
Provides an interface to implement asychronous indexing and apply node referencing

	
DBMS_XMLPARSER

	
Explains access to the contents and structure of XML documents

	
DBMS_XMLQUERY

	
Provides database-to-XMLType functionality

	
DBMS_XMLSAVE

	
Provides XML-to-database-type functionality

	
DBMS_XMLSCHEMA

	
Explains procedures to register and delete XML schemas

	
DBMS_XMLSTORE

	
Provides the ability to store XML data in relational tables

	
DBMS_XMLTRANSLATIONS

	
Provides an interface to perform translations so that strings can be searched or displayed in various languages

	
DBMS_XPLAN

	
Describes how to format the output of the EXPLAIN PLAN command

	
DBMS_XSLPROCESSOR

	
Explains access to the contents and structure of XML documents

	
DEBUG_EXTPROC

	
Lets you debug external procedures on platforms with debuggers that attach to a running process

	
HTF

	
Hypertext functions generate HTML tags

	
HTP

	
Hypertext procedures generate HTML tags

	
ORD_DICOM

	
Supports the management and manipulation of Digital Imaging and Communications in Medicine (DICOM) content stored in BLOBs or BFILEs rather than in an ORDDicom object type

	
ORD_DICOM_ADMIN

	
Used by Oracle Multimedia Digital Imaging and Communications in Medicine (DICOM) administrators to maintain the Oracle Multimedia DICOM data model repository

	
OWA_CACHE

	
Provides an interface that enables the PL/SQL Gateway cache to improve the performance of PL/SQL Web applications

	
OWA_COOKIE

	
Provides an interface for sending and retrieving HTTP cookies from the client's browser

	
OWA_CUSTOM

	
Provides a Global PLSQL Agent Authorization callback function

	
OWA_IMAGE

	
Provides an interface to access the coordinates where a user clicked on an image

	
OWA_OPT_LOCK

	
Contains subprograms that impose optimistic locking strategies so as to prevent lost updates

	
OWA_PATTERN

	
Provides an interface to locate text patterns within strings and replace the matched string with another string

	
OWA_SEC

	
Provides an interface for custom authentication

	
OWA_TEXT

	
Contains subprograms used by OWA_PATTERN for manipulating strings. They are externalized so you can use them directly.

	
OWA_UTIL

	
Contains utility subprograms for performing operations such as getting the value of CGI environment variables, printing the data that is returned to the client, and printing the results of a query in an HTML table

	
SDO_CS

	
Provides functions for coordinate system transformation

	
SDO_CSW_PROCESS

	
Contains subprograms for various processing operations related to support for Catalog Services for the Web (CSW)

	
SDO_GCDR

	
Contains the Oracle Spatial geocoding subprograms, which let you geocode unformatted postal addresses

	
SDO_GEOM

	
Provides functions implementing geometric operations on spatial objects

	
SDO_GEOR

	
Contains functions and procedures for the Spatial GeoRaster feature, which lets you store, index, query, analyze, and deliver raster image data and its associated Spatial vector geometry data and metadata

	
SDO_GEOR_ADMIN

	
Contains subprograms for administrative operations related to GeoRaster.

	
SDO_GEOR_UTL

	
Contains utility functions and procedures for the Spatial GeoRaster feature, including those related to using triggers with GeoRaster data

	
SDO_LRS

	
Provides functions for linear referencing system support

	
SDO_MIGRATE

	
Provides functions for migrating spatial data from previous releases

	
SDO_NET

	
Provides functions and procedures for working with data modeled as nodes and links in a network

	
SDO_NET_MEM

	
Contains functions and procedures for performing editing and analysis operations on network data using a network memory object

	
SDO_OLS

	
Contains functions and procedures for performing editing and analysis operations on network data using a network memory object

	
SDO_PC_PKG

	
Contains subprograms to support the use of point clouds in Spatial

	
SDO_SAM

	
Contains functions and procedures for spatial analysis and data mining

	
SDO_TIN_PKG

	
Contains subprograms to support the use of triangulated irregular networks (TINs) in Spatial

	
SDO_TOPO

	
Provides procedures for creating and managing Spatial topologies

	
SDO_TOPO_MAP

	
Contains subprograms for editing Spatial topologies using a cache (TopoMap object)

	
SDO_TUNE

	
Provides functions for selecting parameters that determine the behavior of the spatial indexing scheme used in Oracle Spatial

	
SDO_UTIL

	
Provides utility functions and procedures for Oracle Spatial

	
SDO_WFS_LOCK

	
Contains subprograms for WFS support for registering and unregistering feature tables

	
SDO_WFS_PROC

	
Provides utility functions and procedures for Oracle Spatial

	
SEM_APIS

	
Contains subprograms for working with the Resource Description Framework (RDF) and Web Ontology Language (OWL) in an Oracle database.

	
SEM_PERF

	
Contains subprograms for examining and enhancing the performance of the Resource Description Framework (RDF) and Web Ontology Language (OWL) support in an Oracle database

	
SEM_RDFCTX

	
Contains subprograms for managing extractor policies and semantic indexes created for documents

	
SEM_RDFSA

	
Contains subprograms for providing fine-grained access control to RDF data, using either a virtual private database (VPD) or Oracle Label Security (OLS)

	
UTL_COLL

	
Enables PL/SQL programs to use collection locators to query and update

	
UTL_COMPRESS

	
Provides a set of data compression utilities

	
UTL_DBWS

	
Provides database Web services

	
UTL_ENCODE

	
Provides functions that encode RAW data into a standard encoded format so that the data can be transported between hosts

	
UTL_FILE

	
Enables your PL/SQL programs to read and write operating system text files and provides a restricted version of standard operating system stream file I/O

	
UTL_HTTP

	
Enables HTTP callouts from PL/SQL and SQL to access data on the Internet or to call Oracle Web Server Cartridges

	
UTL_I18N

	
Provides a set of services (Oracle Globalization Service) that help developers build multilingual applications

	
UTL_INADDR

	
Provides a procedure to support internet addressing

	
UTL_IDENT

	
Specifies which database or client PL/SQL is running

	
UTL_LMS

	
Retrieves and formats error messages in different languages

	
UTL_MAIL

	
A utility for managing email which includes commonly used email features, such as attachments, CC, BCC, and return receipt

	
UTL_NLA

	
Exposes a subset of the BLAS and LAPACK (Version 3.0) operations on vectors and matrices represented as VARRAYs

	
UTL_RAW

	
Provides SQL functions for manipulating RAW datatypes

	
UTL_RECOMP

	
Recompiles invalid PL/SQL modules, invalid views, Java classes, indextypes and operators in a database, either sequentially or in parallels

	
UTL_REF

	
Enables a PL/SQL program to access an object by providing a reference to the object

	
UTL_SMTP

	
Provides PL/SQL functionality to send emails

	
UTL_SPADV

	
Provides subprograms to collect and analyze statistics for the Oracle Streams components in a distributed database environment

	
UTL_TCP

	
Provides PL/SQL functionality to support simple TCP/IP-based communications between servers and the outside world

	
UTL_URL

	
Provides escape and unescape mechanisms for URL characters

	
WPG_DOCLOAD

	
Provides an interface to download files, both BLOBs and BFILEs

	
ANYDATA TYPE

	
A self-describing data instance type containing an instance of the type plus a description

	
ANYDATASET TYPE

	
Contains a description of a given type plus a set of data instances of that type

	
ANYTYPE TYPE

	
Contains a type description of any persistent SQL type, named or unnamed, including object types and collection types; or, it can be used to construct new transient type descriptions

	
Oracle Streams AQ Types

	
Describes the types used in Advanced Queuing

	
DBFS Content Interface Types

	
Describes public types defined to support the DBMS_DBFS_CONTENT interface.

	
Database URI Type

	
Contains URI Support, UriType Super Type, HttpUriType Subtype, DBUriType Subtype, XDBUriType Subtype, UriFactory Package

	
Expression Filter Types

	
Expression Filter feature is supplied with a set of predefined types and public synonyms for these types.

	
JMS TYPES

	
Describes JMS types so that a PL/SQL application can use JMS queues of JMS types

	
Oracle Multimedia ORDAudio TYPE

	
Supports the storage and management of audio data

	
Oracle Multimedia ORDDicom Type

	
Supports the storage, management, and manipulation of Digital Imaging and Communications in Medicine (DICOM) data

	
Oracle Multimedia ORDDoc TYPE

	
Supports the storage and management of heterogeneous media data including image, audio, and video

	
Oracle Multimedia ORDImage TYPE

	
Supports the storage, management, and manipulation of image data

	
Oracle Multimedia SQL/MM Still Image TYPE

	
Supports the SQL/MM Still Image Standard, which lets you store, retrieve, and modify images in the database and locate images using visual predicates

	
Oracle Multimedia ORDVideo TYPE

	
Supports the storage and management of video data

	
LOGICAL CHANGE RECORD TYPES

	
Describes LCR types, which are message payloads that contain information about changes to a database, used in Streams

	
MG_ID Package Types

	
Provides an extensible framework that supports current RFID tags with the standard family of EPC bit encodings for the supported encoding types

	
RULES TYPEs

	
Describes the types used with rules, rule sets, and evaluation contexts

	
RULES Manager Types

	
Rules Manager is supplied with one predefined type and a public synonym

	
UTL Streams Types

	
Describes describes abstract streams types used with Oracle XML functionality

	
XMLType

	
Describes the types and functions used for native XML support in the server

2 APEX_CUSTOM_AUTH

The APEX_CUSTOM_AUTH package provides an interface for authentication and session management.

	
Documentation of APEX_CUSTOM_AUTH

Documentation of APEX_CUSTOM_AUTH

For a complete description of this package within the context of APEX, see APEX_CUSTOM_AUTH in the Oracle Application Express API Reference.

3 APEX_APPLICATION

The APEX_APPLICATION package enables users to take advantage of global variables.

	
Documentation of APEX_APPLICATION

Documentation of APEX_APPLICATION

For a complete description of this package within the context of APEX, see APEX_APPLICATION in the Oracle Application Express API Reference.

4 APEX_ITEM

The APEX_ITEM package enables users to create form elements dynamically based on a SQL query instead of creating individual items page by page.

	
Documentation of APEX_ITEM

Documentation of APEX_ITEM

For a complete description of this package within the context of APEX, see APEX_ITEM in the Oracle Application Express API Reference.

5 APEX_UTIL

The APEX_UTIL package provides utilities for getting and setting session state, getting files, checking authorizations for users, resetting different states for users, and also getting and setting preferences for users.

	
Documentation of APEX_UTIL

Documentation of APEX_UTIL

For a complete description of this package within the context of APEX, see APEX_UTIL in the Oracle Application Express API Reference.

6 CTX_ADM

The CTX_ADM package lets you administer the Oracle Text data dictionary. Note that you must install this package in order to use it.

	
Documentation of CTX_ADM

Documentation of CTX_ADM

For a complete description of this package within the context of Oracle Text, see CTX_ADM in the Oracle Text Reference.

7 CTX_CLS

The CTX_CLS package enables generation of CTXRULE rules for a set of documents.

	
Documentation of CTX_CLS

Documentation of CTX_CLS

For a complete description of this package within the context of Oracle Text, see CTX_CLS in the Oracle Text Reference.

8 CTX_DDL

The CTX_DDL package lets you create and manage the preferences, section groups, and stoplists required for Text indexes. Note that you must install this package in order to use it.

	
Documentation of CTX_DDL

Documentation of CTX_DDL

For complete description of this package within the context of Oracle Text, see CTX_DDL in the Oracle Text Reference.

9 CTX_DOC

The CTX_DOC package lets you request document services. Note that you must install this package in order to use it.

	
Documentation of CTX_DOC

Documentation of CTX_DOC

For a complete description of this package within the context of Oracle Text, see CTX_DOC in the Oracle Text Reference.

10 CTX_ENTITY

	
Note:

The CTX_ENTITY package is not available with release 11.2.0.3.

The CTX_ENTITY package enables you to search for terms that are unknown to you without specifying a particular search text. It does this by identifying names, places, dates, and other objects when they are mentioned in a document and tagging each occurrence (called a mention) with its type and subtype. This process enables you to produce a structured view of a document that can later be used for text/data mining and more comprehensive intelligence analysis.

	
Documentation of CTX_ENTITY

Documentation of CTX_ENTITY

For complete description of this package within the context of Oracle Text, see CTX_ENTITY in the Oracle Text Reference.

11 CTX_OUTPUT

This Oracle Text package lets you manage the index log. Note that you must install this package in order to use it.

	
Documentation of CTX_OUTPUT

Documentation of CTX_OUTPUT

For a complete description of this package within the context of Oracle Text, see CTX_OUTPUT in the Oracle Text Reference.

12 CTX_QUERY

This Oracle Text package lets you generate query feedback, count hits, and create stored query expressions. Note that you must install this package in order to use it.

	
Documentation of CTX_QUERY

Documentation of CTX_QUERY

For a complete description of this package within the context of Oracle Text, see CTX_QUERY in the Oracle Text Reference.

13 CTX_REPORT

This Oracle Text package lets you create various index reports. Note that you must install this package in order to use it.

	
Documentation of CTX_REPORT

Documentation of CTX_REPORT

For a complete description of this package within the context of Oracle Text, see CTX_REPORT in the Oracle Text Reference.

14 CTX_THES

This Oracle Text package lets you to manage and browse thesauri. Note that you must install this package in order to use it.

	
Documentation of CTX_THES

Documentation of CTX_THES

For a complete description of this package within the context of Oracle Text, see CTX_THES in the Oracle Text Reference.

15 CTX_ULEXER

This Oracle Text package is for use with the user-lexer. Note that you must install this package in order to use it.

	
Documentation of CTX_ULEXER

Documentation of CTX_ULEXER

For a complete description of this package within the context of Oracle Text, see CTX_ULEXER in the Oracle Text Reference.

16 DBMS_ADDM

The DBMS_ADDM package facilitates the use of Advisor functionality regarding the Automatic Database Diagnostic Monitor.

	
See Also:

	
Oracle Real Application Clusters Administration and Deployment Guide for more information about "Automatic Workload Repository in Oracle Real Application Clusters Environments"

	
Oracle Database Performance Tuning Guide for more information about "Automatic Performance Diagnostics"

This chapter contains the following topics:

	
Using DBMS_ADDM

	
Security Model

	
Summary of DBMS_ADDM Subprograms

Using DBMS_ADDM

	
Security Model

Security Model

The DBMS_ADDM package runs with the caller's permission, not the definer's, and then applies the security constraints required by the DBMS_ADVISOR package.

	
See Also:

The DBMS_ADVISOR package for more information about "Security Model".

Summary of DBMS_ADDM Subprograms

Table 16-1 DBMS_ADDM Package Subprograms

	Subprogram	Description
	
ANALYZE_DB Procedure

	
Creates an ADDM task for analyzing in database analysis mode and executes it

	
ANALYZE_INST Procedure

	
Creates an ADDM task for analyzing in instance analysis mode and executes it.

	
ANALYZE_PARTIAL Procedure

	
Creates an ADDM task for analyzing a subset of instances in partial analysis mode and executes it

	
DELETE Procedure

	
Deletes an already created ADDM task (of any kind)

	
DELETE_FINDING_DIRECTIVE Procedure

	
Deletes a finding directive

	
DELETE_PARAMETER_DIRECTIVE Procedure

	
Deletes a parameter directive

	
DELETE_SEGMENT_DIRECTIVE Procedure

	
Deletes a segment directive

	
DELETE_SQL_DIRECTIVE Procedure

	
Deletes a SQL directive

	
GET_ASH_QUERY Function

	
Returns a string containing the SQL text of an ASH query identifying the rows in ASH with impact for the finding

	
GET_REPORT Function

	
Retrieves the default text report of an executed ADDM task

	
INSERT_FINDING_DIRECTIVE Procedure

	
Creates a directive to limit reporting of a specific finding type.

	
INSERT_PARAMETER_DIRECTIVE Procedure

	
Creates a directive to prevent ADDM from creating actions to alter the value of a specific system parameter

	
INSERT_SEGMENT_DIRECTIVE Procedure

	
Creates a directive to prevent ADDM from creating actions to "run Segment Advisor" for specific segments

	
INSERT_SQL_DIRECTIVE Procedure

	
Creates a directive to limit reporting of actions on specific SQL

ANALYZE_DB Procedure

This procedure creates an ADDM task for analyzing in database analysis mode and executes it.

Syntax

DBMS_ADDM.ANALYZE_DB (
 task_name IN OUT VARCHAR2,
 begin_snapshot IN NUMBER,
 end_snapshot IN NUMBER,
 db_id IN NUMBER := NULL);

Parameters

Table 16-2 ANALYZE_DB Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task to be created

	
begin_snapshot

	
Number of the snapshot that starts the analysis period

	
end_snapshot

	
Number of the snapshot that ends the analysis period

	
db_id

	
Database ID for the database you to analyze. By default, this is the database currently connected

Return Values

The name of the created task is returned in the task_name parameter. It may be different from the value that is given as input (only in cases that name is already used by another task).

Examples

To create an ADDM task in database analysis mode and execute it, with its name in variable tname:

var tname VARCHAR2(60);
BEGIN
 :tname := 'my_database_analysis_mode_task';
 DBMS_ADDM.ANALYZE_DB(:tname, 1, 2);
END

To see a report:

SET LONG 100000
SET PAGESIZE 50000
SELECT DBMS_ADDM.GET_REPORT(:tname) FROM DUAL;

Note that the return type of a report is a CLOB, formatted to fit line size of 80.

ANALYZE_INST Procedure

This procedure creates an ADDM task for analyzing in instance analysis mode and executes it.

Syntax

DBMS_ADDM.ANALYZE_INST (
 task_name IN OUT VARCHAR2,
 begin_snapshot IN NUMBER,
 end_snapshot IN NUMBER,
 instance_number IN NUMBER := NULL,
 db_id IN NUMBER := NULL);

Parameters

Table 16-3 ANALYZE_INST Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task to be created

	
begin_snapshot

	
Number of the snapshot that starts the analysis period

	
end_snapshot

	
Number of the snapshot that ends the analysis period

	
instance_number

	
Number of the instance to analyze. By default it is the instance currently connected

	
db_id

	
Database ID for the database you to analyze. By default, this is the database currently connected

Return Values

The name of the created task is returned in the task_name parameter. It may be different from the value that is given as input (only in cases that name is already used by another task).

Usage Notes

On single instance systems (when not using Oracle RAC) the resulting task is identical to using the ANALYZE_DB procedure.

Examples

To create an ADDM task in instance analysis mode and execute it, with its name in variable tname:

var tname VARCHAR2(60);
BEGIN
 :tname := 'my_instance_analysis_mode_task';
 DBMS_ADDM.ANALYZE_INST(:tname, 1, 2);
END

To see a report:

SET LONG 100000
SET PAGESIZE 50000
SELECT DBMS_ADDM.GET_REPORT(:tname) FROM DUAL;

Note that the return type of a report is a CLOB, formatted to fit line size of 80.

ANALYZE_PARTIAL Procedure

This procedure creates an ADDM task for analyzing a subset of instances in partial analysis mode and executes it.

Syntax

DBMS_ADDM.ANALYZE_PARTIAL (
 task_name IN OUT VARCHAR2,
 instance_numbers IN VARCHAR2,
 begin_snapshot IN NUMBER,
 end_snapshot IN NUMBER,
 db_id IN NUMBER := NULL);

Parameters

Table 16-4 ANALYZE_PARTIAL Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task to be created

	
instance_numbers

	
Comma separated list of instance numbers to analyze

	
begin_snapshot

	
Number of the snapshot that starts the analysis period

	
end_snapshot

	
Number of the snapshot that ends the analysis period

	
db_id

	
Database ID for the database you to analyze. By default, this is the database currently connected

Return Values

The name of the created task is returned in the task_name parameter. It may be different from the value that is given as input (only in cases that name is already used by another task).

Examples

To create an ADDM task in partial analysis mode and execute it, with its name in variable tname:

var tname VARCHAR2(60);
BEGIN
 :tname := 'my_partial_analysis_modetask';
 DBMS_ADDM.ANALYZE_PARTIAL(:tname, '1,2,3', 1, 2);
END

To see a report:

SET LONG 100000
SET PAGESIZE 50000
SELECT DBMS_ADDM.GET_REPORT(:tname) FROM DUAL;

Note that the return type of a report is a CLOB, formatted to fit line size of 80.

DELETE Procedure

This procedure deletes an already created ADDM task (of any kind). For database analysis mode and partial analysis mode this deletes the local tasks associated with the main task.

Syntax

DBMS_ADDM.DELETE (
 task_name IN VARCHAR2);

Parameters

Table 16-5 DELETE Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task to be deleted

Examples

BEGIN
 DBMS_ADDM.DELETE ('my_partial_analysis_mode_task');
END

DELETE_FINDING_DIRECTIVE Procedure

This procedure deletes a finding directive.

Syntax

DBMS_ADDM.DELETE_FINDING_DIRECTIVE (
 task_name IN VARCHAR2,
 dir_name IN VARCHAR2);

Parameters

Table 16-6 DELETE_FINDING_DIRECTIVE Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task this directive applies to. If the value is NULL, it is a system directive.

	
dir_name

	
Name of the directive. All directives must be given unique names.

DELETE_PARAMETER_DIRECTIVE Procedure

This procedure deletes a parameter directive. This removes a specific system directive for parameters. Subsequent ADDM tasks are not affected by this directive.

Syntax

DBMS_ADDM.DELETE_PARAMETER_DIRECTIVE (
 task_name IN VARCHAR2,
 dir_name IN VARCHAR2);

Parameters

Table 16-7 DELETE_PARAMETER_DIRECTIVE Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task this directive applies to. If the value is NULL, it is a system directive.

	
dir_name

	
Name of the directive. All directives must be given unique names.

Examples

BEGIN
 DBMS_ADDM.DELETE_PARAMETER_DIRECTIVE (NULL,'my Parameter directive');
END;

DELETE_SEGMENT_DIRECTIVE Procedure

This procedure deletes a segment directive.

Syntax

DBMS_ADDM.DELETE_SEGMENT_DIRECTIVE (
 task_name IN VARCHAR2,
 dir_name IN VARCHAR2);

Parameters

Table 16-8 DELETE_SEGMENT_DIRECTIVE Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task this directive applies to. If the value is NULL, it is a system directive.

	
dir_name

	
Name of the directive. All directives must be given unique names.

DELETE_SQL_DIRECTIVE Procedure

This procedure deletes a SQL directive.

Syntax

DBMS_ADDM.DELETE_SQL_DIRECTIVE (
 task_name IN VARCHAR2,
 dir_name IN VARCHAR2);

Parameters

Table 16-9 DELETE_SQL_DIRECTIVE Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task this directive applies to. If the value is NULL, it is a system directive.

	
dir_name

	
Name of the directive. All directives must be given unique names.

GET_ASH_QUERY Function

The function returns a string containing the SQL text of an ASH query identifying the rows in ASH with impact for the finding. For most types of findings this identifies the exact rows in ASH corresponding to the finding. For some types of findings the query is an approximation and should not be used for exact identification of the finding's impact or the finding's specific activity.

Syntax

DBMS_ADDM.GET_ASH_QUERY (
 task_name IN VARCHAR2,
 finding_id IN NUMBER)
 RETURN VARCHAR2;

Parameters

Table 16-10 GET_ASH_QUERY Function Parameters

	Parameter	Description
	
task_name

	
Name of the task

	
finding

	
ID of the finding within the task

Return Values

A VARCHAR containing an ASH query identifying the rows in ASH with impact for the finding

GET_REPORT Function

This function retrieves the default text report of an executed ADDM task.

Syntax

DBMS_ADDM.GET_REPORT (
 task_name IN VARCHAR2)
 RETURN CLOB;

Parameters

Table 16-11 GET_REPORT Function Parameters

	Parameter	Description
	
task_name

	
Name of the task

Examples

Set long 1000000
Set pagesize 50000
SELECT DBMS_ADDM.GET_REPORT('my_partial_analysis_mode_task') FROM DUAL;

INSERT_FINDING_DIRECTIVE Procedure

This procedure creates a directive to limit reporting of a specific finding type. The directive can be created for a specific task (only when the task is in INITIAL status), or for all subsequently created ADDM tasks (such as a system directive).

Syntax

DBMS_ADDM.INSERT_FINDING_DIRECTIVE (
 task_name IN VARCHAR2,
 dir_name IN VARCHAR2,
 finding_name IN VARCHAR2,
 min_active_sessions IN NUMBER := 0,
 min_perc_impact IN NUMBER := 0);

Parameters

Table 16-12 INSERT_FINDING_DIRECTIVE Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task this directive applies to. If the value is NULL, it applies to all subsequently created ADDM Tasks.

	
dir_name

	
Name of the directive. All directives must be given unique names.

	
finding_name

	
Name of an ADDM finding to which this directive applies. All valid findings names appear in the NAME column of view DBA_ADVISOR_FINDING_NAMES.

	
min_active_sessions

	
Minimal number of active sessions for the finding. If a finding has less than this number, it is filtered from the ADDM result.

	
min_perc_impact

	
Minimal number for the "percent impact" of the finding relative to total database time in the analysis period. If the finding's impact is less than this number, it is filtered from the ADDM result.

Examples

A new ADDM task is created to analyze a local instance. However, it has special treatment for 'Undersized SGA' findings. The result of GET_REPORT shows only an 'Undersized SGA' finding if the finding is responsible for at least 2 average active sessions during the analysis period, and this constitutes at least 10% of the total database time during that period.

var tname VARCHAR2(60);
BEGIN
 DBMS_ADDM.INSERT_FINDING_DIRECTIVE(
 NULL,
 'Undersized SGA directive',
 'Undersized SGA',
 2,
 10);
 :tname := 'my_instance_analysis_mode_task';
 DBMS_ADDM.ANALYZE_INST(:tname, 1, 2);
END;

To see a report containing 'Undersized SGA' findings regardless of the directive:

SELECT DBMS_ADVISOR.GET_TASK_REPORT(:tname, 'TEXT', 'ALL') FROM DUAL;

INSERT_PARAMETER_DIRECTIVE Procedure

This procedure creates a directive to prevent ADDM from creating actions to alter the value of a specific system parameter. The directive can be created for a specific task (only when the task is in INITIAL status), or for all subsequently created ADDM tasks (such as a system directive).

Syntax

DBMS_ADDM.INSERT_PARAMETER_DIRECTIVE (
 task_name IN VARCHAR2,
 dir_name IN VARCHAR2,
 parameter_name IN VARCHAR2);

Parameters

Table 16-13 INSERT_PARAMETER_DIRECTIVE Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task this directive applies to. If the value is NULL, it applies to all subsequently created ADDM Tasks.

	
dir_name

	
Name of the directive. All directives must be given unique names.

	
parameter_name

	
Specifies the parameter to use. Valid parameter names appear in V$PARAMETER.

Examples

A new ADDM task is created to analyze a local instance. However, it has special treatment for all actions that recommend modifying the parameter 'sga_target'. The result of GET_REPORT does not show these actions.

var tname varchar2(60);
BEGIN
 DBMS_ADDM.INSERT_PARAMETER_DIRECTIVE(
 NULL,
 'my Parameter directive',
 'sga_target');
 :tname := 'my_instance_analysis_mode_task';
 DBMS_ADDM.ANALYZE_INST(:tname, 1, 2);
END;

To see a report containing all actions regardless of the directive:

SELECT DBMS_ADVISOR.GET_TASK_REPORT(:tname, 'TEXT', 'ALL') FROM DUAL;

INSERT_SEGMENT_DIRECTIVE Procedure

This procedure creates a directive to prevent ADDM from creating actions to "run Segment Advisor" for specific segments. The directive can be created for a specific task (only when the task is in INITIAL status), or for all subsequently created ADDM tasks (such as a system directive).

Syntax

DBMS_ADDM.INSERT_SEGMENT_DIRECTIVE (
 task_name IN VARCHAR2,
 dir_name IN VARCHAR2,
 owner_name IN VARCHAR2,
 object_name IN VARCHAR2 := NULL,
 sub_object_name IN VARCHAR2 := NULL);

DBMS_ADDM.INSERT_SEGMENT_DIRECTIVE (
 task_name IN VARCHAR2,
 dir_name IN VARCHAR2,
 object_number IN NUMBER);

Parameters

Table 16-14 INSERT_SEGMENT_DIRECTIVE Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task this directive applies to. If the value is NULL, it applies to all subsequently created ADDM Tasks.

	
dir_name

	
Name of the directive. All directives must be given unique names.

	
owner_name

	
Specifies the owner of the segment/s to be filtered. A wildcard is allowed in the same syntax used for "like" constraints.

	
object_name

	
Name of the main object to be filtered. Again, wildcards are allowed. The default value of NULL is equivalent to a value of '%'.

	
sub_object_name

	
Name of the part of the main object to be filtered. This could be a partition name, or even sub partitions (separated by a '.'). Again, wildcards are allowed. The default value of NULL is equivalent to a value of '%'.

	
object_number

	
Object number of the SEGMENT that this directive is to filter, found in views DBA_OBJECTS or DBA_SEGMENTS

Examples

A new ADDM task is created to analyze a local instance. However, it has special treatment for all segments that belong to user SCOTT. The result of GET_REPORT does not show actions for running Segment advisor for segments that belong to SCOTT.

var tname VARCHAR2(60);
BEGIN
 DBMS_ADDM.INSERT_SEGMENT_DIRECTIVE(NULL,
 'my Segment directive',
 'SCOTT');
 :tname := 'my_instance_analysis_mode_task';
 DBMS_ADDM.ANALYZE_INST(:tname, 1, 2);
END;

To see a report containing all actions regardless of the directive:

SELECT DBMS_ADVISOR.GET_TASK_REPORT(:tname, 'TEXT', 'ALL') FROM DUAL;

INSERT_SQL_DIRECTIVE Procedure

This procedure creates a directive to limit reporting of actions on specific SQL. The directive can be created for a specific task (only when the task is in INITIAL status), or for all subsequently created ADDM tasks (such as a system directive).

Syntax

DBMS_ADDM.INSERT_SQL_DIRECTIVE (
 task_name IN VARCHAR2,
 dir_name IN VARCHAR2,
 sql_id IN VARCHAR2,
 min_active_sessions IN NUMBER := 0,
 min_response_time IN NUMBER := 0);

Parameters

Table 16-15 INSERT_SQL_DIRECTIVE Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task this directive applies to. If the value is NULL, it applies to all subsequently created ADDM Tasks.

	
dir_name

	
Name of the directive. All directives must be given unique names.

	
sql_id

	
Identifies which SQL statement to filter. A valid value contains exactly 13 characters from '0' to '9' and 'a' to 'z'.

	
min_active_sessions

	
Minimal number of active sessions for the SQL. If a SQL action has less than this number, it is filtered from the ADDM result.

	
min_response_time

	
Minimal value for response time of the SQL (in microseconds). If the SQL had lower response time, it is filtered from the ADDM result.

Examples

A new ADDM task is created to analyze a local instance. However, it has special treatment for SQL with id 'abcd123456789'. The result of GET_REPORT shows only actions for that SQL (actions to tune the SQL, or to investigate application using it) if the SQL is responsible for at least 2 average active sessions during the analysis period, and the average response time was at least 1 second.

var tname VARCHAR2(60);
BEGIN
 DBMS_ADDM.INSERT_SQL_DIRECTIVE(
 NULL,
 'my SQL directive',
 'abcd123456789',
 2,
 1000000);
 :tname := 'my_instance_analysis_mode_task';
 DBMS_ADDM.ANALYZE_INST(:tname, 1, 2);
END;

To see a report containing all actions regardless of the directive:

SELECT DBMS_ADVISOR.GET_TASK_REPORT(:tname, 'TEXT', 'ALL') FROM DUAL;

17 DBMS_ADVANCED_REWRITE

DBMS_ADVANCED_REWRITE contains interfaces for advanced query rewrite users. Using this package, you can create, drop, and maintain functional equivalence declarations for query rewrite.

	
See Also:

Oracle Database Data Warehousing Guide for more information about query rewrite

This chapter contains the following topics:

	
Using DBMS_ADVANCED_REWRITE

	
Security Model

	
Summary of DBMS_ADVANCED_REWRITE Subprograms

Using DBMS_ADVANCED_REWRITE

This section contains topics which relate to using the DBMS_ADVANCED_REWRITE package.

	
Security Model

Security Model

No privileges to access these procedures are granted to anyone by default. To gain access to these procedures, you must connect as SYSDBA and explicitly grant execute access to the desired database administrators.

You can control security on this package by granting the EXECUTE privilege to selected database administrators or roles. For example, the user er can be given access to use this package by the following statement, executed as SYSDBA:

GRANT EXECUTE ON DBMS_ADVANCED_REWRITE TO er;

You may want to write a separate cover package on top of this package for restricting the alert names used. Instead of granting the EXECUTE privilege on the DBMS_ADVANCED_REWRITE package directly, you can then grant it to the cover package.

In addition, similar to the privilege required for regular materialized views, the user should be granted the privilege to create an equivalence. For example, the user er can be granted this privilege by executing the following statement as SYSDBA:

GRANT CREATE MATERIALIZED VIEW TO er;

Summary of DBMS_ADVANCED_REWRITE Subprograms

This table list the all the package subprograms in alphabetical order.

Table 17-1 DBMS_ADVANCED_REWRITE Package Subprograms

	Subprogram	Description
	
ALTER_REWRITE_EQUIVALENCE Procedure

	
Changes the mode of the rewrite equivalence declaration to the mode you specify

	
BUILD_SAFE_REWRITE_EQUIVALENCE Procedure

	
Enables the rewrite of top-level materialized views using submaterialized views. Oracle Corporation does not recommend you directly use this procedure

	
DECLARE_REWRITE_EQUIVALENCE Procedures

	
Creates a declaration indicating that source_stmt is functionally equivalent to destination_stmt for as long as the equivalence declaration remains enabled, and that destination_stmt is more favorable in terms of performance

	
DROP_REWRITE_EQUIVALENCE Procedure

	
Drops the specified rewrite equivalence declaration

	
VALIDATE_REWRITE_EQUIVALENCE Procedure

	
Validates the specified rewrite equivalence declaration using the same validation method as described with the validate parameter

ALTER_REWRITE_EQUIVALENCE Procedure

This procedure changes the mode of the rewrite equivalence declaration to the mode you specify.

Syntax

DBMS_ADVANCED_REWRITE.ALTER_REWRITE_EQUIVALENCE (
 name VARCHAR2,
 rewrite_mode VARCHAR2);

Parameters

Table 17-2 ALTER_REWRITE_EQUIVALENCE Procedure Parameters

	Parameter	Description
	
name

	
A name for the equivalence declaration to alter. The name can be of the form owner.name, where owner complies with the rules for a schema name, and name compiles with the rules for a table name. Alternatively, a simple name that complies with the rules for a table name can be specified. In this case, the rewrite equivalence is altered in the current schema. The invoker must have the appropriate alter materialized view privileges to alter an equivalence declaration outside their own schema.

	
rewrite_mode

	
The following modes are supported, in increasing order of power:

disabled: Query rewrite does not use the equivalence declaration. Use this mode to temporarily disable use of the rewrite equivalence declaration.

text_match: Query rewrite uses the equivalence declaration only in its text match modes. This mode is useful for simple transformations.

general: Query rewrite uses the equivalence declaration in all of its transformation modes against the incoming request queries. However, query rewrite makes no attempt to rewrite the specified destination_query.

recursive: Query rewrite uses the equivalence declaration in all of its transformation modes against the incoming request queries. Moreover, query rewrite further attempts to rewrite the specified destination_query for further performance enhancements whenever it uses the equivalence declaration.

Oracle recommends you use the least powerful mode that is sufficient to solve your performance problem.

BUILD_SAFE_REWRITE_EQUIVALENCE Procedure

This procedure enables the rewrite and refresh of top-level materialized views using submaterialized views. It is provided for the exclusive use by scripts generated by the DBMS_ADVISOR.TUNE_MVIEW procedure. It is required to enable query rewrite and fast refresh when DBMS_ADVISOR.TUNE_MVIEW decomposes a materialized view into a top-level materialized view and one or more submaterialized views.

Oracle does not recommend you directly use the BUILD_SAFE_REWRITE_EQUIVALENCE procedure. You should use either the DBMS_ADVISOR.TUNE_MVIEW or the DBMS_ADVANCED_REWRITE.CREATE_REWRITE_EQUIVALENCE procedure as appropriate.

DECLARE_REWRITE_EQUIVALENCE Procedures

This procedure creates a declaration indicating that source_stmt is functionally equivalent to destination_stmt for as long as the equivalence declaration remains enabled, and that destination_stmt is more favorable in terms of performance. The scope of the declaration is system wide. The query rewrite engine uses such declarations to perform rewrite transformations in QUERY_REWRITE_INTEGRITY = trusted and stale_tolerated modes.

Because the underlying equivalences between the source and destination statements cannot be enforced by the query rewrite engine, queries can be only rewritten in trusted and stale_tolerated integrity modes.

Syntax

DBMS_ADVANCED_REWRITE.DECLARE_REWRITE_EQUIVALENCE (
 name VARCHAR2,
 source_stmt VARCHAR2,
 destination_stmt VARCHAR2,
 validate BOOLEAN := TRUE,
 rewrite_mode VARCHAR2 := 'TEXT_MATCH');

DBMS_ADVANCED_REWRITE.DECLARE_REWRITE_EQUIVALENCE (
 name VARCHAR2,
 source_stmt CLOB,
 destination_stmt CLOB,
 validate BOOLEAN := TRUE,
 rewrite_mode VARCHAR2 := 'TEXT_MATCH');

Parameters

Table 17-3 DECLARE_REWRITE_EQUIVALENCE Procedure Parameters

	Parameter	Description
	
name

	
A name for the equivalence declaration. The name can be of the form owner.name, where owner complies with the rules for a schema name, and name compiles with the rules for a table name.

Alternatively, a simple name that complies with the rules for a table name can be specified. In this case, the rewrite equivalence is created in the current schema. The invoker must have the appropriate CREATE MATERIALIZED VIEW privileges to alter an equivalence declaration.

	
source_stmt

	
A sub-SELECT expression in either VARCHAR2 or CLOB format. This is the query statement that is the target of optimization.

	
destination_stmt

	
A sub-SELECT expression in either VARCHAR2 or CLOB format.

	
validate

	
A Boolean indicating whether to validate that the specified source_stmt is functionally equivalent to the specified destination_stmt. If validate is specified as TRUE, DECLARE_REWRITE_EQUIVALENCE evaluates the two sub-SELECTs and compares their results. If the results are not the same, DECLARE_REWRITE_EQUIVALENCE does not create the rewrite equivalence and returns an error condition. If FALSE, DECLARE_REWRITE_EQUIVALENCE does not validate the equivalence.

	
rewrite_mode

	
The following modes are supported, in increasing order of power:

	
disabled: Query rewrite does not use the equivalence declaration. Use this mode to temporarily disable use of the rewrite equivalence declaration.

	
text_match: Query rewrite uses the equivalence declaration only in its text match modes. This mode is useful for simple transformations.

	
general: Query rewrite uses the equivalence declaration in all of its transformation modes against the incoming request queries. However, query rewrite makes no attempt to rewrite the specified destination_query.

	
recursive: Query rewrite uses the equivalence declaration in all of its transformation modes against the incoming request queries. Moreover, query rewrite further attempts to rewrite the specified destination_query for further performance enhancements whenever it uses the equivalence declaration.

Oracle recommends you use the least powerful mode that is sufficient to solve your performance problem.

Exceptions

Table 17-4 DECLARE_REWRITE_EQUIVALENCE Procedure Exceptions

	Exception	Description
	
ORA-30388

	
Name of the rewrite equivalence is not specified

	
ORA-30391

	
The specified rewrite equivalence does not exist

	
ORA-30392

	
The checksum analysis for the rewrite equivalence failed

	
ORA-30393

	
A query block in the statement did not write

	
ORA-30396

	
Rewrite equivalence procedures require the COMPATIBLE parameter to be set to 10.1 or greater

Usage Notes

Query rewrite using equivalence declarations occurs simultaneously and in concert with query rewrite using materialized views. The same query rewrite engine is used for both. The query rewrite engine uses the same rewrite rules to rewrite queries using both equivalence declarations and materialized views. Because the rewrite equivalence represents a specific rewrite crafted by a sophisticated user, the query rewrite engine gives priority to rewrite equivalences over materialized views when it is possible to perform a rewrite with either a materialized view or a rewrite equivalence. For this same reason, the cost-based optimizer (specifically, cost-based rewrite) will not choose an unrewritten query plan over a query plan that is rewritten to use a rewrite equivalence even if the cost of the un-rewritten plan appears more favorable. Query rewrite matches properties of the incoming request query against the equivalence declaration's source_stmt or the materialized view's defining statement, respectively, and derives an equivalent relational expression in terms of the equivalence declaration's destination_stmt or the materialized view's container table, respectively.

DROP_REWRITE_EQUIVALENCE Procedure

This procedure drops the specified rewrite equivalence declaration.

Syntax

DBMS_ADVANCED_REWRITE.DROP_REWRITE_EQUIVALENCE (
 name VARCHAR2);

Parameters

Table 17-5 DROP_REWRITE_EQUIVALENCE Procedure Parameters

	Parameter	Description
	
name

	
A name for the equivalence declaration to drop. The name can be of the form owner.name, where owner complies with the rules for a schema name, and name compiles with the rules for a table name. Alternatively, a simple name that complies with the rules for a table name can be specified. In this case, the rewrite equivalence is dropped in the current schema. The invoker must have the appropriate drop materialized view privilege to drop an equivalence declaration outside their own schema.

VALIDATE_REWRITE_EQUIVALENCE Procedure

This procedure validates the specified rewrite equivalence declaration using the same validation method as described with the VALIDATE parameter in "VALIDATE_REWRITE_EQUIVALENCE Procedure".

Syntax

DBMS_ADVANCED_REWRITE.VALIDATE_REWRITE_EQUIVALENCE (
 name VARCHAR2);

Parameters

Table 17-6 VALIDATE_REWRITE_EQUIVALENCE Procedure Parameters

	Parameter	Description
	
name

	
A name for the equivalence declaration to validate. The name can be of the form owner.name, where owner complies with the rules for a schema name, and name compiles with the rules for a table name. Alternatively, a simple name that complies with the rules for a table name can be specified. In this case, the rewrite equivalence is validated in the current schema. The invoker must have sufficient privileges to execute both the source_stmt and destination_stmt of the specified equivalence declaration.

18 DBMS_ADVISOR

DBMS_ADVISOR is part of the server manageability suite of advisors, a set of expert systems that identifies and helps resolve performance problems relating to database server components.

Some advisors have their own packages. For these advisors, Oracle recommends that you use the advisor-specific package rather than DBMS_ADVISOR. Each of the following advisors has its own package, tailored to its specific functionality:

	
Automatic Database Diagnostic Monitor (DBMS_ADDM)

	
SQL Performance Analyzer (DBMS_SQLPA)

	
SQL Repair Advisor (DBMS_SQLDIAG)

	
SQL Tuning Advisor (DBMS_SQLTUNE)

	
Compression Advisor (DBMS_COMPRESSION.GET_COMPRESSION_RATIO)

SQL Access Advisor and Segment Advisor are the only advisors with common use cases for DBMS_ADVISOR. Undo Advisor and Compression Advisor do not support DBMS_ADVISOR subprograms.

	
See Also:

	
Oracle Database Administrator's Guide to learn about Segment Advisor

	
Oracle Database 2 Day + Performance Tuning Guide for information regarding how to use various advisors in Enterprise Manager

	
Oracle Database Performance Tuning Guide for information regarding SQL Tuning Advisor and SQL Access Advisor

	
Oracle Database 2 Day DBA and Oracle Database Administrator's Guide to learn about Undo Advisor

This chapter contains the following topics:

	
Using DBMS_ADVISOR

	
Deprecated Subprograms

	
Security Model

	
Summary of DBMS_ADVISOR Subprograms

Using DBMS_ADVISOR

This section contains topics which relate to using the DBMS_ADVISOR package.

	
Deprecated Subprograms

	
Security Model

Deprecated Subprograms

	
Note:

Oracle recommends that you do not use deprecated procedures in new applications. Support for deprecated features is for backward compatibility only.

The following subprograms are deprecated with Oracle Database 11g:

	
ADD_SQLWKLD_REF Procedure

	
CREATE_SQLWKLD Procedure

	
DELETE_SQLWKLD Procedure

	
DELETE_SQLWKLD_REF Procedure

	
DELETE_SQLWKLD_STATEMENT Procedures

	
IMPORT_SQLWKLD_SCHEMA Procedure

	
IMPORT_SQLWKLD_SQLCACHE Procedure

	
IMPORT_SQLWKLD_STS Procedure

	
IMPORT_SQLWKLD_SUMADV Procedure

	
IMPORT_SQLWKLD_USER Procedure

	
RESET_SQLWKLD Procedure

	
SET_SQLWKLD_PARAMETER Procedures

	
UPDATE_SQLWKLD_ATTRIBUTES Procedure

	
UPDATE_SQLWKLD_STATEMENT Procedure

Security Model

The ADVISOR privilege is required to use this package.

Summary of DBMS_ADVISOR Subprograms

Table 18-1 summarizes the subprograms in this package. The Used in column lists advisors relevant for each subprogram, but excludes ADDM, SQL Performance Analyzer, SQL Repair Advisor, and SQL Tuning Advisor because these advisors have their own packages.

Table 18-1 DBMS_ADVISOR Package Subprograms

	Subprogram	Description	Used in
	
ADD_SQLWKLD_REF Procedure

	
Adds a workload reference to an Advisor task (Caution: Deprecated Subprogram)

	
SQL Access Advisor

	
ADD_SQLWKLD_STATEMENT Procedure

	
Adds a single statement to a workload

	
SQL Access Advisor

	
ADD_STS_REF Procedure

	
Establishes a link between the current SQL Access Advisor task and a SQL tuning set

	
SQL Access Advisor

	
CANCEL_TASK Procedure

	
Cancels a currently executing task operation

	
Segment Advisor, SQL Access Advisor

	
COPY_SQLWKLD_TO_STS Procedure

	
Copies the contents of a SQL workload object to a SQL tuning set

	
SQL Access Advisor

	
CREATE_FILE Procedure

	
Creates an external file from a PL/SQL CLOB variable, which is useful for creating scripts and reports

	
SQL Access Advisor

	
CREATE_OBJECT Procedure

	
Creates a new task object

	
Segment Advisor

	
CREATE_SQLWKLD Procedure

	
Creates a new workload object (Caution: Deprecated Subprogram)

	
SQL Access Advisor

	
CREATE_TASK Procedures

	
Creates a new Advisor task in the repository

	
Segment Advisor, SQL Access Advisor

	
DELETE_SQLWKLD Procedure

	
Deletes an entire workload object (Caution: Deprecated Subprogram)

	
SQL Access Advisor

	
DELETE_SQLWKLD_REF Procedure

	
Deletes an entire workload object (Caution: Deprecated Subprogram)

	
SQL Access Advisor

	
DELETE_SQLWKLD_STATEMENT Procedures

	
Deletes one or more statements from a workload (Caution: Deprecated Subprogram)

	
SQL Access Advisor

	
DELETE_STS_REF Procedure

	
Removes a link between the current SQL Access Advisor task and a SQL tuning set object

	
SQL Access Advisor

	
DELETE_TASK Procedure

	
Deletes the specified task from the repository

	
SQL Access Advisor

	
EXECUTE_TASK Procedure

	
Executes the specified task

	
Segment Advisor, SQL Access Advisor

	
GET_REC_ATTRIBUTES Procedure

	
Retrieves specific recommendation attributes from a task

	
SQL Access Advisor

	
GET_TASK_REPORT Function

	
Creates and returns a report for the specified task

	
	
GET_TASK_SCRIPT Function

	
Creates and returns an executable SQL script of the Advisor task's recommendations in a buffer

	
SQL Access Advisor

	
IMPLEMENT_TASK Procedure

	
Implements the recommendations for a task

	
SQL Access Advisor

	
IMPORT_SQLWKLD_SCHEMA Procedure

	
Imports data into a workload from the current SQL cache (Caution: Deprecated Subprogram)

	
SQL Access Advisor

	
IMPORT_SQLWKLD_SQLCACHE Procedure

	
Imports data into a workload from the current SQL cache (Caution: Deprecated Subprogram)

	
SQL Access Advisor

	
IMPORT_SQLWKLD_STS Procedure

	
Imports data from a SQL tuning set into a SQL workload data object (Caution: Deprecated Subprogram)

	
SQL Access Advisor

	
IMPORT_SQLWKLD_SUMADV Procedure

	
Imports data into a workload from the current SQL cache (Caution: Deprecated Subprogram)

	
SQL Access Advisor

	
IMPORT_SQLWKLD_USER Procedure

	
Imports data into a workload from the current SQL cache (Caution: Deprecated Subprogram)

	
SQL Access Advisor

	
INTERRUPT_TASK Procedure

	
Stops a currently executing task, ending its operations as it would at a normal exit, so that the recommendations are visible

	
Segment Advisor, SQL Access Advisor

	
MARK_RECOMMENDATION Procedure

	
Sets the annotation_status for a particular recommendation

	
Segment Advisor, SQL Access Advisor

	
QUICK_TUNE Procedure

	
Performs an analysis on a single SQL statement

	
SQL Access Advisor

	
RESET_SQLWKLD Procedure

	
Resets a workload to its initial starting point (Caution: Deprecated Subprogram)

	
SQL Access Advisor

	
RESET_TASK Procedure

	
Resets a task to its initial state

	
Segment Advisor, SQL Access Advisor

	
SET_DEFAULT_SQLWKLD_PARAMETER Procedures

	
Imports data into a workload from schema evidence

	
SQL Access Advisor

	
SET_DEFAULT_TASK_PARAMETER Procedures

	
Modifies a default task parameter

	
Segment Advisor, SQL Access Advisor

	
SET_SQLWKLD_PARAMETER Procedures

	
Sets the value of a workload parameter

	
SQL Access Advisor

	
SET_TASK_PARAMETER Procedure

	
Sets the specified task parameter value

	
Segment Advisor, SQL Access Advisor

	
TUNE_MVIEW Procedure

	
Shows how to decompose a materialized view into two or more materialized views or to restate the materialized view in a way that is more advantageous for fast refresh and query rewrite

	
SQL Access Advisor

	
UPDATE_OBJECT Procedure

	
Updates a task object

	
Segment Advisor

	
UPDATE_REC_ATTRIBUTES Procedure

	
Updates an existing recommendation for the specified task

	
SQL Access Advisor

	
UPDATE_SQLWKLD_ATTRIBUTES Procedure

	
Updates a workload object

	
SQL Access Advisor

	
UPDATE_SQLWKLD_STATEMENT Procedure

	
Updates one or more SQL statements in a workload

	
SQL Access Advisor

	
UPDATE_TASK_ATTRIBUTES Procedure

	
Updates a task's attributes

	
Segment Advisor, SQL Access Advisor

ADD_SQLWKLD_REF Procedure

	
Note:

This procedure is deprecated in Release 11gR1.

This procedure establishes a link between the current SQL Access Advisor task and a SQL Workload object. The link allows an advisor task to access interesting data for doing an analysis. The link also provides a stable view of the data. Once a connection between a SQL Access Advisor task and a SQL Workload object is made, the workload is protected from removal or modification.

Users should use ADD_STS_REF instead of ADD_SQLWKLD_REF for all SQL tuning set-based advisor runs. This function is only provided for backward compatibility.

Syntax

DBMS_ADVISOR.ADD_SQLWKLD_REF (
 task_name IN VARCHAR2,
 workload_name IN VARCHAR2,
 is_sts IN NUMBER :=0);

Parameters

Table 18-2 ADD_SQLWKLD_REF Procedure Parameters

	Parameter	Description
	
task_name

	
The SQL Access Advisor task name that uniquely identifies an existing task.

	
workload_name

	
The name of the workload object to be linked. Once a object has been linked to a task, it becomes read-only and cannot be deleted. There is no limit to the number of links to workload objects. To remove the link to the workload object, use the procedure DELETE_REFERENCE.

	
is_sts

	
Indicates the type of workload source. Possible values are:

	
0 - SQL workload object

	
1 - SQL tuning set

Examples

DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
 workload_name VARCHAR2(30);
BEGIN
 task_name := 'My Task';
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
 DBMS_ADVISOR.ADD_SQLWKLD_REF(task_name, workload_name, 1);
END;
/

ADD_SQLWKLD_STATEMENT Procedure

	
Note:

This procedure is deprecated in Release 11gR1.

This procedure adds a single statement to the specified workload.

Syntax

DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT (
 workload_name IN VARCHAR2,
 module IN VARCHAR2,
 action IN VARCHAR2,
 cpu_time IN NUMBER := 0,
 elapsed_time IN NUMBER := 0,
 disk_reads IN NUMBER := 0,
 buffer_gets IN NUMBER := 0,
 rows_processed IN NUMBER := 0,
 optimizer_cost IN NUMBER := 0,
 executions IN NUMBER := 1,
 priority IN NUMBER := 2,
 last_execution_date IN DATE := 'SYSDATE',
 stat_period IN NUMBER := 0,
 username IN VARCHAR2,
 sql_text IN CLOB);

Parameters

Table 18-3 ADD_SQLWKLD_STATEMENT Procedure Parameters

	Parameter	Description
	
workload_name

	
The workload name that uniquely identifies an existing workload.

	
module

	
An optional business application module that will be associated with the SQL statement.

	
action

	
An optional application action that will be associated with the SQL statement.

	
cpu_time

	
The total CPU time in seconds that is consumed by the SQL statement.

	
elapsed_time

	
The total elapsed time in seconds that is consumed by the SQL statement.

	
disk_reads

	
The total disk-read operations that are consumed by the SQL statement.

	
buffer_gets

	
The total buffer-get operations that are consumed by the SQL statement.

	
rows_processed

	
The average number of rows processed by the SQL statement.

	
optimizer_cost

	
The optimizer's calculated cost value.

	
executions

	
The total execution count by the SQL statement. This value should be greater than zero.

	
priority

	
The relative priority of the SQL statement. The value must be one of the following: 1-HIGH, 2-MEDIUM, or 3-LOW.

	
last_execution_date

	
The date and time at which the SQL statement last executed. If the value is NULL, then the current date and time will be used.

	
stat_period

	
Time interval in seconds from which statement statistics were calculated.

	
username

	
The Oracle user name that executed the SQL statement. Because a username is an Oracle identifier, the username value must be entered exactly as it is stored in the server. For example, if the user SCOTT is the executing user, then you must provide the user identifier SCOTT in all uppercase letters. It will not recognize the user scott as a match for SCOTT.

	
sql_text

	
The complete SQL statement. To increase the quality of a recommendation, the SQL statement should not contain bind variables.

Usage Notes

A workload cannot be modified or deleted if it is currently referenced by an active task. A task is considered active if it is not in its initial state. See RESET_TASK Procedure for directions on setting a task to its initial state.

The ADD_SQLWKLD_STATEMENT procedure accepts several parameters that may be ignored by the caller. cpu_time, elapsed_time, disk_reads, buffer_gets, and optimizer_cost are only used to sort workload data when actual analysis occurs, so actual values are only necessary when the order_list task parameter references a particular statistic.To determine what statistics to provide when adding a new SQL statement to a workload, examine or set the task parameter order_list. The order_list parameter accepts any combination of the keys: buffer_gets, optimizer_cost, cpu_time, disk_reads, elapsed_time, executions, and priority. A typical setting of priority, optimizer_cost would indicate the SQL Access Advisor will sort the workload data by priority and optimizer_cost and process the highest cost statements first. Any statements added to the workload would need to include appropriate priority and optimizer_cost values. All other statistics can be defaulted or set to zero.For the statistical keys referenced by the order_list task parameter, the actual parameter values should be reasonably accurate since they will be compared to other statements in the workload. If the caller is unable to estimate values, choose values that would determine its importance relative to other statements in the workload. For example, if the current statement is considered the most critical query in your business, then an appropriate value would be anything greater than all other values for the same statistic found in the workload.

Examples

DECLARE
 workload_name VARCHAR2(30);
BEGIN
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
 DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT(workload_name, 'MONTHLY', 'ROLLUP',
 100,400,5041,103,640445,680000,2,
 1,SYSDATE,1,'SH','SELECT AVG(amount_sold) FROM sh.sales');
END;
/

ADD_STS_REF Procedure

This procedure establishes a link between the current SQL Access Advisor task and a SQL tuning set. The link enables an advisor task to access data for the purpose of doing an analysis. The link also provides a stable view of the data. Once a connection between a SQL Access Advisor task and a SQL tuning set is made, the STS is protected from removal or modification.

Use ADD_STS_REF for any STS-based advisor runs. The older method of using ADD_SQLWKLD_REF with parameter IS_STS=1 is only supported for backward compatibility. Furthermore, the ADD_STS_REF function accepts a SQL tuning set owner name, whereas ADD_SQLWKLD_REF does not.

Syntax

DBMS_ADVISOR.ADD_STS_REF(
 task_name IN VARCHAR2 NOT NULL,
 sts_owner IN VARCHAR2,
 workload_name IN VARCHAR2 NOT NULL);

Parameters

Table 18-4 ADD_STS_REF Procedure Parameters

	Parameter	Description
	
task_name

	
The SQL Access Advisor task name that uniquely identifies an existing task.

	
sts_owner

	
The owner of the SQL tuning set. The value of this parameter may be NULL, in which case the advisor assumes the SQL tuning set to be owned by the currently logged-in user.

	
workload_name

	
The name of the workload to be linked. A workload consists of one or more SQL statements, plus statistics and attributes that fully describe each statement. The database stores a workload as a SQL tuning set.

After a workload has been linked to a task, it becomes read-only and cannot be deleted.

There is no limit to the number of links to workloads.

To remove the link to the workload, use the procedure DBMS_ADVISOR.DELETE_STS_REF.

Examples

DBMS_ADVISOR.ADD_STS_REF ('My Task', 'SCOTT', 'My Workload');

CANCEL_TASK Procedure

This procedure causes a currently executing operation to terminate. This call does a soft interrupt. It will not break into a low-level database access call like a hard interrupt such as Ctrl-C. The SQL Access Advisor periodically checks for soft interrupts and acts appropriately. As a result, this operation may take a few seconds to respond to a call.

Syntax

DBMS_ADVISOR.CANCEL_TASK (
 task_name IN VARCHAR2);

Parameters

Table 18-5 CANCEL_TASK Procedure Parameter

	Parameter	Description
	
task_name

	
A valid Advisor task name that uniquely identifies an existing task.

Usage Notes

A cancel command restores the task to its condition prior to the start of the cancelled operation. Therefore, a cancelled task or data object cannot be resumed.

Because all Advisor task procedures are synchronous, to cancel an operation, you must use a separate database session.

Examples

DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
 workload_name VARCHAR2(30);
BEGIN
 task_name := 'My Task';
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
 DBMS_ADVISOR.CANCEL_TASK('My Task');
END;
/

COPY_SQLWKLD_TO_STS Procedure

This procedure copies the contents of a SQL workload object to a SQL tuning set.

Syntax

To use this procedure, the caller must have privileges to create and modify a SQL tuning set.

DBMS_ADVISOR.COPY_SQLWKLD_TO_STS (
 workload_name IN VARCHAR2,
 sts_name IN VARCHAR2,
 import_mode IN VARCHAR2 := 'NEW');

Parameters

Table 18-6 COPY_SQLWKLD_TO_STS Procedure Parameter

	Parameter	Description
	
workload_name

	
The SQL Workload object name to copy.

	
sts_name

	
The SQL tuning set name into which the SQL Workload object will be copied.

	
import_mode

	
Specifies the handling of the target SQL tuning set. Possible values are:

	
APPEND

Causes SQL Workload data to be appended to the target SQL tuning set.

	
NEW

Indicates the SQL tuning set can only contain the copied contents. If the SQL tuning set exists and has data, an error will be reported.

	
REPLACE

Causes any existing data in the target SQL tuning set to be purged prior to the workload copy.

In all cases, if the specified SQL tuning set does not exist, it will be created.

Usage Notes

To use this procedure, the caller must have privileges to create and modify a SQL tuning set.

Examples

BEGIN
 DBMS_ADVISOR.COPY_SQLWKLD_TO_STS('MY_OLD_WORKLOAD', 'MY_NEW_STS', 'NEW');
END;
/

CREATE_FILE Procedure

This procedure creates an external file from a PL/SQL CLOB variable, which is used for creating scripts and reports. CREATE_FILE accepts a CLOB input parameter and writes the character string contents to the specified file.

Syntax

DBMS_ADVISOR.CREATE_FILE (
 buffer IN CLOB,
 location IN VARCHAR2,
 filename IN VARCHAR2);

Parameters

Table 18-7 CREATE_FILE Procedure Parameters

	Parameter	Description
	
buffer

	
A CLOB buffer containing report or script information.

	
location

	
Specifies the directory that will contain the new file. You must use the directory alias as defined by the CREATE DIRECTORY statement. The Advisor will translate the alias into the actual directory location.

	
filename

	
Specifies the output file to receive the script commands. The filename can only contain the name and an optional file type of the form filename.filetype.

Usage Notes

All formatting must be embedded within the CLOB.

The Oracle server restricts file access within Oracle Stored Procedures. This means that file locations and names must adhere to the known file permissions in the server.

Examples

CREATE DIRECTORY MY_DIR as '/homedir/user4/gssmith';
GRANT READ,WRITE ON DIRECTORY MY_DIR TO PUBLIC;

DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
 workload_name VARCHAR2(30);
BEGIN
 task_name := 'My Task';
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
 DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
 DBMS_ADVISOR.ADD_SQLWKLD_REF(task_name, workload_name);
 DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT(workload_name, 'MONTHLY', 'ROLLUP',
 100,400,5041,103,640445,680000,2,
 1,SYSDATE,1,'SH','SELECT AVG(amount_sold)
 FROM sh.sales');
 DBMS_ADVISOR.EXECUTE_TASK(task_name);
 DBMS_ADVISOR.CREATE_FILE(DBMS_ADVISOR.GET_TASK_SCRIPT(task_name),
 'MY_DIR','script.sql');

END;
/

CREATE_OBJECT Procedure

This procedure creates a new task object.

Syntax

DBMS_ADVISOR.CREATE_OBJECT (
 task_name IN VARCHAR2,
 object_type IN VARCHAR2,
 attr1 IN VARCHAR2 := NULL,
 attr2 IN VARCHAR2 := NULL,
 attr3 IN VARCHAR2 := NULL,
 attr4 IN CLOB := NULL,
 object_id OUT NUMBER);

DBMS_ADVISOR.CREATE_OBJECT (
 task_name IN VARCHAR2,
 object_type IN VARCHAR2,
 attr1 IN VARCHAR2 := NULL,
 attr2 IN VARCHAR2 := NULL,
 attr3 IN VARCHAR2 := NULL,
 attr4 IN CLOB := NULL,
 attr5 IN VARCHAR2 := NULL,
 object_id OUT NUMBER);

Parameters

Table 18-8 CREATE_OBJECT Procedure Parameters

	Parameter	Description
	
task_name

	
A valid Advisor task name that uniquely identifies an existing task.

	
object_type

	
Specifies the external object type.

	
attr1

	
Advisor-specific data.

	
attr2

	
Advisor-specific data.

	
attr3

	
Advisor-specific data.

	
attr4

	
Advisor-specific data.

	
attr5

	
Advisor-specific data.

	
object_id

	
The advisor-assigned object identifier.

The attribute parameters have different values depending upon the object type. See Oracle Database Administrator's Guide for details regarding these parameters and object types.

Return Values

Returns the new object identifier.

Usage Notes

Task objects are typically used as input data for a particular advisor. Segment advice can be generated at the object, segment, or tablespace level. If for the object level, advice is generated on all partitions of the object (if the object is partitioned). The advice is not cascaded to any dependent objects. If for the segment level, advice can be obtained on a single segment, such as the partition or subpartition of a table, index, or LOB column. If for a tablespace level, target advice for every segment in the tablespace will be generated.

See Oracle Database Administrator's Guide for further information regarding the Segment Advisor.

Examples

DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
 obj_id NUMBER;
BEGIN
 task_name := 'My Task';

 DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
 DBMS_ADVISOR.CREATE_OBJECT (task_name,'SQL',NULL,NULL,NULL,
 'SELECT * FROM SH.SALES',obj_id);
END;
/

CREATE_SQLWKLD Procedure

	
Note:

This procedure is deprecated in Release 11gR1.

This procedure creates a new private SQL Workload object for the user. A SQL Workload object manages a SQL workload on behalf of the SQL Access Advisor. A SQL Workload object must exist prior to performing any other SQL Workload operations, such as importing or updating SQL statements.

Syntax

DBMS_ADVISOR.CREATE_SQLWKLD (
 workload_name IN OUT VARCHAR2,
 description IN VARCHAR2 := NULL,
 template IN VARCHAR2 := NULL,
 is_template IN VARCHAR2 := 'FALSE');

Parameters

Table 18-9 CREATE_SQLWKLD Procedure Parameters

	Parameter	Description
	
workload_name

	
A name that uniquely identifies the created workload. If not specified, the system will generate a unique name. Names can be up to 30 characters long.

	
description

	
Specifies an optional workload description. Descriptions can be up to 256 characters.

	
template

	
An optional SQL Workload name of an existing workload data object or data object template.

	
is_template

	
An optional value that enables you to set the newly created workload as a template. Valid values are TRUE and FALSE.

Return Values

The SQL Access Advisor returns a unique workload object identifier number that must be used for subsequent activities within the new SQL Workload object.

Usage Notes

By default, workload objects are created using built-in default settings. To create a workload using the parameter settings of an existing workload or workload template, the user may specify an existing workload name.

After a SQL Workload object is present, it can then be referenced by one or more SQL Access Advisor tasks using the ADD_SQLWKLD_REF procedure.

Examples

DECLARE
 workload_name VARCHAR2(30);
BEGIN
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
END;
/

CREATE_TASK Procedures

This procedure creates a new Advisor task in the repository.

Syntax

DBMS_ADVISOR.CREATE_TASK (
 advisor_name IN VARCHAR2,
 task_id OUT NUMBER,
 task_name IN OUT VARCHAR2,
 task_desc IN VARCHAR2 := NULL,
 template IN VARCHAR2 := NULL,
 is_template IN VARCHAR2 := 'FALSE',
 how_created IN VARCHAR2 := NULL);

DBMS_ADVISOR.CREATE_TASK (
 advisor_name IN VARCHAR2,
 task_name IN VARCHAR2,
 task_desc IN VARCHAR2 := NULL,
 template IN VARCHAR2 := NULL,
 is_template IN VARCHAR2 := 'FALSE',
 how_created IN VARCHAR2 := NULL);

DBMS_ADVISOR.CREATE_TASK (
 parent_task_name IN VARCHAR2,
 rec_id IN NUMBER,
 task_id OUT NUMBER,
 task_name IN OUT VARCHAR2,
 task_desc IN VARCHAR2,
 template IN VARCHAR2);

Parameters

Table 18-10 CREATE_TASK Procedure Parameters

	Parameter	Description
	
advisor_name

	
Specifies the unique advisor name as defined in the view DBA_ADVISOR_DEFINITIONS.

	
task_id

	
A number that uniquely identifies the created task. The number is generated by the procedure and returned to the user.

	
task_name

	
Specifies a new task name. Names must be unique among all tasks for the user.

When using the second form of the CREATE_TASK syntax listed above (with OUT), a unique name can be generated. Names can be up to 30 characters long.

	
task_desc

	
Specifies an optional task description. Descriptions can be up to 256 characters in length.

	
template

	
An optional task name of an existing task or task template. To specify built-in SQL Access Advisor templates, use the template name as described earlier.

	
is_template

	
An optional value that allows the user to set the newly created task as template. Valid values are: TRUE and FALSE.

	
how_created

	
An optional value that identifies how the source was created.

Return Values

Returns a unique task ID number and a unique task name if one is not specified.

Usage Notes

A task must be associated with an advisor, and once the task has been created, it is permanently associated with the original advisor. By default, tasks are created using built-in default settings. To create a task using the parameter settings of an existing task or task template, the user may specify an existing task name.

For the SQL Access Advisor, use the identifier DBMS_ADVISOR.SQLACCESS_ADVISOR as the advisor_name.

The SQL Access Advisor provides three built-in task templates, using the following constants:

	
DBMS_ADVISOR.SQLACCESS_OLTP

Parameters are preset to favor an OLTP application environment.

	
DBMS_ADVISOR.SQLACCESS_WAREHOUSE

Parameters are preset to favor a data warehouse application environment.

	
DBMS_ADVISOR.SQLACCESS_GENERAL

Parameters are preset to favor a hybrid application environment where both OLTP and data warehouse operations may occur. For the SQL Access Advisor, this is the default template.

Examples

DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
BEGIN
 task_name := 'My Task';
 DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
END;
/

DELETE_SQLWKLD Procedure

	
Note:

This procedure is deprecated in Release 11gR1.

This procedure deletes an existing SQL Workload object from the repository.

Syntax

DBMS_ADVISOR.DELETE_SQLWKLD (
 workload_name IN VARCHAR2);

Parameters

Table 18-11 DELETE_SQLWKLD Procedure Parameters

	Parameter	Description
	
workload_name

	
The workload object name that uniquely identifies an existing workload. The wildcard % is supported as a WORKLOAD_NAME. The rules of use are identical to the LIKE operator. For example, to delete all tasks for the current user, use the wildcard % as the WORKLOAD_NAME. If a wildcard is provided, the DELETE_SQLWKLD operation will not delete any workloads marked as READ_ONLY or TEMPLATE.

Usage Notes

A workload cannot be modified or deleted if it is currently referenced by an active task. A task is considered active if it is not in its initial state. See the RESET_TASK Procedure to set a task to its initial state.

Examples

DECLARE
 workload_name VARCHAR2(30);
BEGIN
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
 DBMS_ADVISOR.DELETE_SQLWKLD(workload_name);
END;
/

DELETE_SQLWKLD_REF Procedure

	
Note:

This procedure is deprecated in Release 11gR1.

This procedure removes a link between the current SQL Access task and a SQL Workload data object.

Users should use DELETE_STS_REF instead of DELETE_SQLWKLD_REF for all SQL tuning set-based advisor runs. This function is only provided for backward compatibility.

Syntax

DBMS_ADVISOR.DELETE_SQLWKLD_REF (
 task_name IN VARCHAR2,
 workload_name IN VARCHAR2,
 is_sts IN NUMBER :=0);

Parameters

Table 18-12 DELETE_SQLWKLD_REF Procedure Parameters

	Parameter	Description
	
task_name

	
The SQL Access task name that uniquely identifies an existing task.

	
workload_name

	
The name of the workload object to be unlinked. The wildcard % is supported as a workload_name. The rules of use are identical to the LIKE operator. For example, to remove all links to workload objects, use the wildcard % as the workload_name.

	
is_sts

	
Indicates the type of workload source. Possible values are:

	
0 - SQL workload object

	
1 - SQL tuning set

Examples

DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
 workload_name VARCHAR2(30);
BEGIN
 task_name := 'My Task';
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
 DBMS_ADVISOR.ADD_SQLWKLD_REF(task_name, workload_name);
 DBMS_ADVISOR.DELETE_SQLWKLD_REF(task_name, workload_name);
END;
/

DELETE_SQLWKLD_STATEMENT Procedures

This procedure has been deprecated.

This procedure deletes one or more statements from a workload.

Syntax

DBMS_ADVISOR.DELETE_SQLWKLD_STATEMENT (
 workload_name IN VARCHAR2,
 sql_id IN NUMBER);

DBMS_ADVISOR.DELETE_SQLWKLD_STATEMENT (
 workload_name IN VARCHAR2,
 search IN VARCHAR2,
 deleted OUT NUMBER);

Parameters

Table 18-13 DELETE_SQLWKLD_STATEMENT Procedure Parameters

	Parameter	Description
	
workload_name

	
The workload object name that uniquely identifies an existing workload.

	
sql_id

	
The Advisor-generated identifier number that is assigned to the statement. To specify all workload statements, use the constant ADVISOR_ALL.

	
search

	
Disabled.

	
deleted

	
Returns the number of statements deleted by the searched deleted operation.

Usage Notes

A workload cannot be modified or deleted if it is currently referenced by an active task. A task is considered active if it is not in its initial state. See the RESET_TASK Procedure to set a task to its initial state.

Examples

DECLARE
 workload_name VARCHAR2(30);
 deleted NUMBER;
 id NUMBER;
BEGIN
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
 DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT(workload_name, 'YEARLY', 'ROLLUP',
 100,400,5041,103,640445,680000,2,
 1,SYSDATE,1,'SH','SELECT AVG(amount_sold)
 FROM sh.sales');

 SELECT sql_id INTO id FROM USER_ADVISOR_SQLW_STMTS
 WHERE workload_name = 'My Workload';

 DBMS_ADVISOR.DELETE_SQLWKLD_STATEMENT(workload_name, id);
END;
/

DELETE_STS_REF Procedure

This procedure removes a link between the current SQL Access Advisor task and a SQL tuning set.Use DELETE_STS_REF for any STS-based advisor runs. The older method of using DELETE_SQLWKLD_REF with parameter IS_STS=1 is only supported for backward compatibility. Furthermore, the DELETE_STS_REF function accepts an STS owner name, whereas DELETE_SQLWKLD_REF does not.

Syntax

DBMS_ADVISOR.DELETE_STS_REF (
 task_name IN VARCHAR2 NOT NULL,
 sts_owner IN VARCHAR2,
 workload_name IN VARCHAR2 NOT NULL);

Parameters

Table 18-14 DELETE_STS_REF Procedure Parameters

	Parameter	Description
	
task_name

	
The SQL Access Advisor task name that uniquely identifies an existing task.

	
sts_owner

	
The owner of the SQL tuning set. The value of this parameter may be NULL, in which case the advisor assumes the SQL tuning set to be owned by the currently logged-in user.

	
workload_name

	
The name of the workload to be unlinked. A workload consists of one or more SQL statements, plus statistics and attributes that fully describe each statement. The database stores a workload as a SQL tuning set.

The wildcard % is supported as a workload name. The rules of use are identical to the SQL LIKE operator. For example, to remove all links to SQL tuning set objects, use the wildcard % as the STS_NAME.

Examples

DBMS_ADVISOR.DELETE_STS_REF ('My task', 'SCOTT', 'My workload');

DELETE_TASK Procedure

This procedure deletes an existing task from the repository.

Syntax

DBMS_ADVISOR.DELETE_TASK (
 task_name IN VARCHAR2);

Parameters

Table 18-15 DELETE_TASK Procedure Parameters

	Parameter	Description
	
task_name

	
A single Advisor task name that will be deleted from the repository.

The wildcard % is supported as a TASK_NAME. The rules of use are identical to the LIKE operator. For example, to delete all tasks for the current user, use the wildcard % as the TASK_NAME.

If a wildcard is provided, the DELETE_TASK operation will not delete any tasks marked as READ_ONLY or TEMPLATE.

Examples

DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
BEGIN
 task_name := 'My Task';

 DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
 DBMS_ADVISOR.DELETE_TASK(task_name);
END;
/

EXECUTE_TASK Procedure

This procedure performs the Advisor analysis or evaluation for the specified task. The procedure is overloaded.

The execution-related arguments are optional and you do not need to set them for advisors that do not allow their tasks to be executed multiple times.

Advisors can execute a task multiple times and use the results for further processing and analysis.

Syntax

DBMS_ADVISOR.EXECUTE_TASK (
 task_name IN VARCHAR2);

DBMS_ADVISOR.EXECUTE_TASK (
 task_name IN VARCHAR2,
 execution_type IN VARCHAR2 := NULL,
 execution_name IN VARCHAR2 := NULL,
 execution_params IN dbms_advisor.argList := NULL,
 execution_desc IN VARCHAR2 := NULL,
RETURN VARCHAR2;

Parameters

Table 18-16 EXECUTE_TASK Procedure Parameters

	Parameter	Description
	
task_name

	
The task name that uniquely identifies an existing task.

	
execution_type

	
The type of action to be performed by the function. If NULL, it will default to the value of the DEFAULT_EXECUTION_TYPE parameter.

As an example, the SQL Performance Analyzer accepts the following possible values:

	
EXPLAIN PLAN: Generate an explain plan for a SQL statement. This is similar to an EXPLAIN PLAN command. The resulting plans will be stored in the advisor framework in association with the task.

	
TEST EXECUTE: Test execute the SQL statement and collect its execute plan and statistics. The resulting plans and statistics are stored in the advisor framework.

	
ANALYZE PERFORMANCE: Analyze and compare two versions of SQL performance data. The performance data is generated by test executing a SQL statement or generating its explain plan.

	
execution_name

	
A name to qualify and identify an execution. If not specified, it will be generated by the Advisor and returned by function.

	
execution_params

	
A list of parameters (name, value) for the specified execution. Note that execution parameters are real task parameters, but they affect only the execution they are specified for.

As an example, consider the following:

DBMS_ADVISOR.ARGLIST('time_limit', 12, 'username', 'foo')

	
execution_desc

	
A 256-length string describing the execution.

Usage Notes

Task execution is a synchronous operation. Control will not be returned to the caller until the operation has completed, or a user-interrupt was detected.

Upon return, you can check the DBA_ADVISOR_LOG table for the execution status.

Examples

DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
 workload_name VARCHAR2(30);
BEGIN
 task_name := 'My Task';
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
 DBMS_ADVISOR.ADD_SQLWKLD_REF(task_name, workload_name);
 DBMS_ADVISOR.EXECUTE_TASK(task_name);
END;
/

GET_REC_ATTRIBUTES Procedure

This procedure retrieves a specified attribute of a new object as recommended by Advisor analysis.

Syntax

DBMS_ADVISOR.GET_REC_ATTRIBUTES (
 workload_name IN VARCHAR2,
 rec_id IN NUMBER,
 action_id IN NUMBER,
 attribute_name IN VARCHAR2,
 value OUT VARCHAR2,
 owner_name IN VARCHAR2 := NULL);

Parameters

Table 18-17 GET_REC_ATTRIBUTES Procedure Parameters

	Parameter	Description
	
task_name

	
The task name that uniquely identifies an existing task.

	
rec_id

	
The Advisor-generated identifier number that is assigned to the recommendation.

	
action_id

	
The Advisor-generated action identifier that is assigned to the particular command.

	
attribute_name

	
Specifies the attribute to change.

	
value

	
The buffer to receive the requested attribute value.

	
owner_name

	
Optional owner name of the target task. This permits access to task data not owned by the current user.

Return Values

The requested attribute value is returned in the VALUE argument.

Examples

DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
 workload_name VARCHAR2(30);
 attribute VARCHAR2(100);
BEGIN
 task_name := 'My Task';
 workload_name := 'My Workload';
 DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
 DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
 DBMS_ADVISOR.ADD_SQLWKLD_REF(task_name, workload_name);
 DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT(workload_name, 'MONTHLY', 'ROLLUP',
 100,400,5041,103,640445,680000,2,
 1,SYSDATE,1,'SH','SELECT AVG(amount_sold)
 FROM sh.sales WHERE promo_id = 10');
 DBMS_ADVISOR.EXECUTE_TASK(task_name);
 DBMS_ADVISOR.GET_REC_ATTRIBUTES(task_name, 1, 1, 'NAME', attribute);
END;
/

GET_TASK_REPORT Function

This function creates and returns a report for the specified task.

Syntax

DBMS_ADVISOR.GET_TASK_REPORT (
 task_name IN VARCHAR2,
 type IN VARCHAR2 := 'TEXT',
 level IN VARCHAR2 := 'TYPICAL',
 section IN VARCHAR2 := 'ALL',
 owner_name IN VARCHAR2 := NULL,
 execution_name IN VARCHAR2 := NULL,
 object_id IN NUMBER := NULL)
RETURN CLOB;

Parameters

Table 18-18 GET_TASK_REPORT Function Parameters

	Parameter	Description
	
task_name

	
The name of the task from which the script will be created.

	
type

	
The only valid value is TEXT.

	
level

	
The possible values are BASIC, TYPICAL, and ALL.

	
section

	
Advisor-specific report sections.

	
owner_name

	
Owner of the task. If specified, the system will check to see if the current user has read privileges to the task data.

	
execution_name

	
An identifier of a specific execution of the task. It is needed only for advisors that allow their tasks to be executed multiple times.

	
object_id

	
An identifier of an advisor object that can be targeted by the script.

Return Values

Returns the buffer receiving the script.

GET_TASK_SCRIPT Function

This function creates a SQL*Plus-compatible SQL script and sends the output to file. The script will contain all of the accepted recommendations from the specified task.

Syntax

DBMS_ADVISOR.GET_TASK_SCRIPT (
 task_name IN VARCHAR2
 type IN VARCHAR2 := 'IMPLEMENTATION',
 rec_id IN NUMBER := NULL,
 act_id IN NUMBER := NULL,
 owner_name IN VARCHAR2 := NULL,
 execution_name IN VARCHAR2 := NULL,
 object_id IN NUMBER := NULL)
RETURN CLOB;

Parameters

Table 18-19 GET_TASK_SCRIPT Function Parameters

	Parameter	Description
	
task_name

	
The task name that uniquely identifies an existing task.

	
type

	
Specifies the type of script to generate. The possible values are IMPLEMENTATION and UNDO.

	
rec_id

	
An optional recommendation identifier number that can be used to extract a subset of the implementation script.

A zero or the value DBMS_ADVISOR.ADVISOR_ALL indicates all accepted recommendations would be included. The default is to include all accepted recommendations for the task.

	
act_id

	
Optional action identifier number that can be used to extract a single action as a DDL command.

A zero or the value DBMS_ADVISOR.ADVISOR_ALL indicates all actions for the recommendation would be included. The default is to include all actions for a recommendation.

	
owner_name

	
An optional task owner name.

	
execution_name

	
An identifier of a specific execution of the task. It is needed only for advisors that allow their tasks to be executed multiple times.

	
object_id

	
An identifier of an advisor object that can be targeted by the script.

Return Values

Returns the script as a CLOB buffer.

Usage Notes

Though the script is ready to execute, Oracle recommends that the user review the script for acceptable locations for new materialized views and indexes.

For a recommendation to appear in a generated script, it must be marked as accepted.

Examples

DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
 workload_name VARCHAR2(30);
 buf CLOB;
BEGIN
 task_name := 'My Task';
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
 DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
 DBMS_ADVISOR.ADD_SQLWKLD_REF(task_name, workload_name);
 DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT(workload_name, 'MONTHLY', 'ROLLUP',
 100,400,5041,103,640445,680000,2,
 1,SYSDATE,1,'SH','SELECT AVG(amount_sold)
 FROM sh.sales');
 DBMS_ADVISOR.EXECUTE_TASK(task_name);
 buf := DBMS_ADVISOR.GET_TASK_SCRIPT(task_name);
END;
/

IMPLEMENT_TASK Procedure

This procedure implements the recommendations of the specified task.

Syntax

DBMS_ADVISOR.IMPLEMENT_TASK (
 task_name IN VARCHAR2,
 rec_id IN NUMBER := NULL,
 exit_on_error IN BOOLEAN := NULL);

Parameters

Table 18-20 IMPLEMENT_TASK Procedure Parameters

	Parameter	Description
	
task_name

	
The name of the task.

	
rec_id

	
An optional recommendation ID.

	
exit_on_error

	
An optional boolean to exit on the first error.

IMPORT_SQLWKLD_SCHEMA Procedure

	
Note:

This procedure is deprecated in Release 11gR1.

This procedure constructs and loads a SQL workload based on schema evidence. The workload is also referred to as a hypothetical workload.

Syntax

DBMS_ADVISOR.IMPORT_SQLWKLD_SCHEMA (
 workload_name IN VARCHAR2,
 import_mode IN VARCHAR2 := 'NEW',
 priority IN NUMBER := 2,
 saved_rows OUT NUMBER,
 failed_rows OUT NUMBER);

Parameters

Table 18-21 IMPORT_SQLWKLD_SCHEMA Procedure Parameters

	Parameter	Description
	
workload_name

	
The workload object name that uniquely identifies an existing workload.

	
import_mode

	
Specifies the action to be taken when storing the workload. Possible values are:

	
APPEND Indicates that the collected workload will be added to any existing workload in the task.

	
NEW Indicates that the collected workload will be the exclusive workload for the task. If an existing workload is found, an exception will be thrown.

	
REPLACE Indicates the collected workload will be the exclusive workload for the task. If an existing workload is found, it will be deleted prior to saving the new workload.

The default value is NEW.

	
priority

	
Specifies the application priority for each statement that is saved in the workload object. The value must be one of the following: 1-HIGH, 2-MEDIUM, or 3-LOW.

	
failed_rows

	
Returns the number or rows that were not saved due to syntax or validation errors

	
saved_rows

	
Returns the number of rows actually saved in the repository.

Return Values

This call returns the number of rows saved and failed as output parameters.

Usage Notes

To successfully import a hypothetical workload, the target schemas must contain dimensions.

If the VALID_TABLE_LIST parameter is not set, the search space may become very large and require a significant amount of time to complete. Oracle recommends that you limit your search space to specific set of tables.

If a task contains valid recommendations from a prior run, adding or modifying task will mark the task as invalid, preventing the viewing and reporting of potentially valuable recommendation data.

Examples

DECLARE
 workload_name VARCHAR2(30);
 saved NUMBER;
 failed NUMBER;
BEGIN
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
 DBMS_ADVISOR.SET_SQLWKLD_PARAMETER(workload_name,'VALID_TABLE_LIST','SH.%');
 DBMS_ADVISOR.IMPORT_SQLWKLD_SCHEMA(workload_name, 'REPLACE', 1, saved,
 failed);
END;
/

IMPORT_SQLWKLD_SQLCACHE Procedure

	
Note:

This procedure is deprecated in Release 11gR1.

This procedure creates a SQL workload from the current contents of the server's SQL cache.

Syntax

DBMS_ADVISOR.IMPORT_SQLWKLD_SQLCACHE (
 workload_name IN VARCHAR2,
 import_mode IN VARCHAR2 := 'NEW',
 priority IN NUMBER := 2,
 saved_rows OUT NUMBER,
 failed_rows OUT NUMBER);

Parameters

Table 18-22 IMPORT_SQLWKLD_SQLCACHE Procedure Parameters

	Parameter	Description
	
workload_name

	
The workload object name that uniquely identifies an existing workload.

	
import_mode

	
Specifies the action to be taken when storing the workload. Possible values are:

	
APPEND Indicates that the collected workload will be added to any existing workload in the task.

	
NEW Indicates that the collected workload will be the exclusive workload for the task. If an existing workload is found, an exception will be thrown.

	
REPLACE Indicates the collected workload will be the exclusive workload for the task. If an existing workload is found, it will be deleted prior to saving the new workload.

The default value is NEW.

	
priority

	
Specifies the application priority for each statement that is saved in the workload object. The value must be one of the following 1-HIGH, 2-MEDIUM, or 3-LOW.

	
saved_rows

	
Returns the number of rows saved as output parameters.

	
failed_rows

	
Returns the number of rows that were not saved due to syntax or validation errors.

Return Values

This call returns the number of rows saved and failed as output parameters.

Usage Notes

A workload cannot be modified or deleted if it is currently referenced by an active task. A task is considered active if it is not in its initial state. See RESET_TASK Procedure to set a task to its initial state.

Examples

DECLARE
 workload_name VARCHAR2(30);
 saved NUMBER;
 failed NUMBER;
BEGIN
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
 DBMS_ADVISOR.SET_SQLWKLD_PARAMETER(workload_name,'VALID_TABLE_LIST','SH.%');
 DBMS_ADVISOR.IMPORT_SQLWKLD_SQLCACHE(workload_name, 'REPLACE', 1, saved,
 failed);
END;
/

IMPORT_SQLWKLD_STS Procedure

	
Note:

This procedure is deprecated in Release 11gR1.

This procedure loads a SQL workload from an existing SQL tuning set. A SQL tuning set is typically created from the server workload repository using various time and data filters.

Syntax

DBMS_ADVISOR.IMPORT_SQLWKLD_STS (
 workload_name IN VARCHAR2,
 sts_name IN VARCHAR2,
 import_mode IN VARCHAR2 := 'NEW',
 priority IN NUMBER := 2,
 saved_rows OUT NUMBER,
 failed_rows OUT NUMBER);

DBMS_ADVISOR.IMPORT_SQLWKLD_STS (
 workload_name IN VARCHAR2,
 sts_owner IN VARCHAR2,
 sts_name IN VARCHAR2,
 import_mode IN VARCHAR2 := 'NEW',
 priority IN NUMBER := 2,
 saved_rows OUT NUMBER,
 failed_rows OUT NUMBER);

Parameters

Table 18-23 IMPORT_SQLWKLD_STS Procedure Parameters

	Parameter	Description
	
workload_name

	
The workload object name that uniquely identifies an existing workload.

	
sts_owner

	
The optional owner of the SQL tuning set.

	
sts_name

	
The name of an existing SQL tuning set workload from which the data will be imported. If the sts_owner value is not provided, the owner will default to the current user.

	
import_mode

	
Specifies the action to be taken when storing the workload. Possible values are:

	
APPEND Indicates that the collected workload will be added to any existing workload in the task.

	
NEW Indicates that the collected workload will be the exclusive workload for the task. If an existing workload is found, an exception will be thrown.

	
REPLACE Indicates the collected workload will be the exclusive workload for the task. If an existing workload is found, it will be deleted prior to saving the new workload.

The default value is NEW.

	
priority

	
Specifies the application priority for each statement that is saved in the workload object. The value must be one of the following: 1-HIGH, 2-MEDIUM, or 3-LOW. The default value is 2.

	
saved_rows

	
Returns the number of rows actually saved in the repository.

	
failed_rows

	
Returns the number of rows that were not saved due to syntax or validation errors.

Return Values

This call returns the number of rows saved and failed as output parameters.

Usage Notes

A workload cannot be modified or deleted if it is currently referenced by an active task. A task is considered active if it is not in its initial state. See RESET_TASK Procedure to set a task to its initial state.

Examples

DECLARE
 workload_name VARCHAR2(30);
 saved NUMBER;
 failed NUMBER;
BEGIN
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
 DBMS_ADVISOR.SET_SQLWKLD_PARAMETER(workload_name,'VALID_TABLE_LIST','SH.%');
 DBMS_ADVISOR.IMPORT_SQLWKLD_STS(workload_name, 'MY_SQLSET', 'REPLACE', 1,
 saved, failed);
END;
/

IMPORT_SQLWKLD_SUMADV Procedure

	
Note:

This procedure is deprecated in Release 11gR1.

This procedure collects a SQL workload from a Summary Advisor workload. This procedure is intended to assist Oracle9i Database Summary Advisor users in the migration to SQL Access Advisor.

Syntax

DBMS_ADVISOR.IMPORT_SQLWKLD_SUMADV (
 workload_name IN VARCHAR2,
 import_mode IN VARCHAR2 := 'NEW',
 priority IN NUMBER := 2,
 sumadv_id IN NUMBER,
 saved_rows OUT NUMBER,
 failed_rows OUT NUMBER);

Parameters

Table 18-24 IMPORT_SQLWKLD_SUMADV Procedure Parameters

	Parameter	Description
	
workload_name

	
The workload object name that uniquely identifies an existing workload.

	
import_mode

	
Specifies the action to be taken when storing the workload. Possible values are:

	
APPEND Indicates that the collected workload will be added to any existing workload in the task.

	
NEW Indicates that the collected workload will be the exclusive workload for the task. If an existing workload is found, an exception will be thrown.

	
REPLACE Indicates the collected workload will be the exclusive workload for the task. If an existing workload is found, it will be deleted prior to saving the new workload.

The default value is NEW.

	
priority

	
Specifies the default application priority for each statement that is saved in the workload object. If a Summary Advisor workload statement contains a priority of zero, the default priority will be applied. If the workload statement contains a valid priority, then the Summary Advisor priority will be converted to a comparable SQL Access Advisor priority. The value must be one of the following:

1-HIGH, 2-MEDIUM, or 3-LOW.

	
sumadv_id

	
Specifies the Summary Advisor workload identifier number.

	
saved_rows

	
Returns the number of rows actually saved in the repository.

	
failed_rows

	
Returns the number of rows that were not saved due to syntax or validation errors.

Return Values

This call returns the number of rows saved and failed as output parameters.

Usage Notes

A workload cannot be modified or deleted if it is currently referenced by an active task. A task is considered active if it is not in its initial state. See RESET_TASK Procedure to set a task to its initial state.

Examples

DECLARE
 workload_name VARCHAR2(30);
 saved NUMBER;
 failed NUMBER;
 sumadv_id NUMBER;
BEGIN
 workload_name := 'My Workload';
 sumadv_id := 394;

 DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
 DBMS_ADVISOR.SET_SQLWKLD_PARAMETER(workload_name,'VALID_TABLE_LIST','SH.%');
 DBMS_ADVISOR.IMPORT_SQLWKLD_SUMADV(workload_name, 'REPLACE', 1, sumadv_id,
 saved, failed);
END;
/

IMPORT_SQLWKLD_USER Procedure

	
Note:

This procedure is deprecated in Release 11gR1.

This procedure collects a SQL workload from a specified user table.

Syntax

DBMS_ADVISOR.IMPORT_SQLWKLD_USER (
 workload_name IN VARCHAR2,
 import_mode IN VARCHAR2 := 'NEW',
 owner_name IN VARCHAR2,
 table_name IN VARCHAR2,
 saved_rows OUT NUMBER,
 failed_rows OUT NUMBER);

Parameters

Table 18-25 IMPORT_SQLWKLD_USER Procedure Parameters

	Parameter	Description
	
workload_name

	
The workload object name that uniquely identifies an existing workload.

	
import_mode

	
Specifies the action to be taken when storing the workload. Possible values are:

	
APPEND Indicates that the collected workload will be added to any existing workload in the task.

	
NEW Indicates that the collected workload will be the exclusive workload for the task. If an existing workload is found, an exception will be thrown.

	
REPLACE Indicates the collected workload will be the exclusive workload for the task. If an existing workload is found, it will be deleted prior to saving the new workload.

The default value is NEW.

	
owner_name

	
Specifies the owner name of the table or view from which workload data will be collected.

	
table_name

	
Specifies the name of the table or view from which workload data will be collected.

	
saved_rows

	
Returns the number of rows actually saved in the workload object.

	
failed_rows

	
Returns the number of rows that were not saved due to syntax or validation errors.

Return Values

This call returns the number of rows saved and failed as output parameters.

Usage Notes

A workload cannot be modified or deleted if it is currently referenced by an active task. A task is considered active if it is not in its initial state. See RESET_TASK Procedure to set a task to its initial state.

Examples

DECLARE
 workload_name VARCHAR2(30);
 saved NUMBER;
 failed NUMBER;
BEGIN
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
 DBMS_ADVISOR.SET_SQLWKLD_PARAMETER(workload_name,'VALID_TABLE_LIST','SH.%');
 DBMS_ADVISOR.IMPORT_SQLWKLD_USER(workload_name, 'REPLACE', 'SH',
 'USER_WORKLOAD', saved, failed);
END;
/

INTERRUPT_TASK Procedure

This procedure stops a currently executing task. The task will end its operations as it would at a normal exit. The user will be able to access any recommendations that exist to this point.

Syntax

DBMS_ADVISOR.INTERRUPT_TASK (
 task_name IN VARCHAR2);

Parameters

Table 18-26 INTERRUPT_TASK Procedure Parameters

	Parameter	Description
	
task_name

	
A single Advisor task name that will be interrupted.

Examples

DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
BEGIN
 task_name := 'My Task';

 DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
 DBMS_ADVISOR.EXECUTE_TASK(task_name);
END;
/

While this session is executing its task, you can interrupt the task from a second session using the following statement:

BEGIN
 DBMS_ADVISOR.INTERRUPT_TASK('My Task');
END;
/

MARK_RECOMMENDATION Procedure

This procedure marks a recommendation for import or implementation.

Syntax

DBMS_ADVISOR.MARK_RECOMMENDATION (
 task_name IN VARCHAR2
 id IN NUMBER,
 action IN VARCHAR2);

Parameters

Table 18-27 MARK_RECOMMENDATION Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task.

	
id

	
The recommendation identifier number assigned by the Advisor.

	
action

	
The recommendation action setting. The possible actions are:

	
ACCEPT Marks the recommendation as accepted. With this setting, the recommendation will appear in implementation and undo scripts.

	
IGNORE Marks the recommendation as ignore. With this setting, the recommendation will not appear in an implementation or undo script.

	
REJECT Marks the recommendation as rejected. With this setting, the recommendation will not appear in any implementation or undo scripts.

Usage Notes

For a recommendation to be implemented, it must be marked as accepted. By default, all recommendations are considered accepted and will appear in any generated scripts.

Examples

DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
 workload_name VARCHAR2(30);
 attribute VARCHAR2(100);
 rec_id NUMBER;
BEGIN
 task_name := 'My Task';
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
 DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
 DBMS_ADVISOR.ADD_SQLWKLD_REF(task_name, workload_name);
 DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT(workload_name, 'MONTHLY', 'ROLLUP',
 100,400,5041,103,640445,680000,2,
 1,SYSDATE,1,'SH','SELECT AVG(amount_sold)
 FROM sh.sales WHERE promo_id = 10');
 DBMS_ADVISOR.EXECUTE_TASK(task_name);

 rec_id := 1;
 DBMS_ADVISOR.MARK_RECOMMENDATION(task_name, rec_id, 'REJECT');
END;
/

QUICK_TUNE Procedure

This procedure performs an analysis and generates recommendations for a single SQL statement.

This provides a shortcut method of all necessary operations to analyze the specified SQL statement. The operation creates a task using the specified task name. The task will be created using a specified Advisor task template. Finally, the task will be executed and the results will be saved in the repository.

Syntax

DBMS_ADVISOR.QUICK_TUNE (
 advisor_name IN VARCHAR2,
 task_name IN VARCHAR2,
 attr1 IN CLOB,
 attr2 IN VARCHAR2 := NULL,
 attr3 IN NUMBER := NULL,
 task_or_template IN VARCHAR2 := NULL);

Parameters

Table 18-28 QUICK_TUNE Procedure Parameters

	Parameter	Description
	
advisor_name

	
Name of the Advisor that will perform the analysis.

	
task_name

	
Name of the task.

	
attr1

	
Advisor-specific attribute in the form of a CLOB variable.

	
attr2

	
Advisor-specific attribute in the form of a VARCHAR2 variable.

	
attr3

	
Advisor-specific attribute in the form of a NUMBER.

	
task_or_template

	
An optional task name of an existing task or task template.

Usage Notes

If indicated by the user, the final recommendations can be implemented by the procedure.

The task will be created using either a specified SQL Access task template or the built-in default template of SQLACCESS_GENERAL. The workload will only contain the specified statement, and all task parameters will be defaulted.

attr1 must be the single SQL statement to tune. For the SQL Access Advisor, attr2 is the user who would execute the single statement. If omitted, the current user will be used.

Examples

DECLARE
 task_name VARCHAR2(30);
BEGIN
 task_name := 'My Task';

 DBMS_ADVISOR.QUICK_TUNE(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_name,
 'SELECT AVG(amount_sold) FROM sh.sales WHERE promo_id=10');
END;
/

RESET_SQLWKLD Procedure

	
Note:

This procedure is deprecated in Release 11gR1.

This procedure resets a workload to its initial starting point. This has the effect of removing all journal messages, log messages, and recalculating necessary volatility and usage statistics.

Syntax

DBMS_ADVISOR.RESET_SQLWKLD (
 workload_name IN VARCHAR2);

Parameters

Table 18-29 RESET_SQLWKLD Procedure Parameters

	Parameter	Description
	
workload_name

	
The SQL Workload object name that uniquely identifies an existing workload.

Usage Notes

RESET_SQLWKLD should be executed after any workload adjustments such as adding or removing SQL statements.

Examples

DECLARE
 workload_name VARCHAR2(30);
BEGIN
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
 DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT(workload_name, 'MONTHLY', 'ROLLUP',
 100,400,5041,103,640445,680000,2,
 1,SYSDATE,1,'SH','SELECT AVG(amount_sold)
 FROM sh.sales WHERE promo_id = 10');

 DBMS_ADVISOR.RESET_SQLWKLD(workload_name);
END;
/

RESET_TASK Procedure

This procedure resets a task to its initial state. All intermediate and recommendation data will be removed from the task. The task status will be set to INITIAL.

Syntax

DBMS_ADVISOR.RESET_TASK (
 task_name IN VARCHAR2);

Parameters

Table 18-30 RESET_TASK Procedure Parameters

	Parameter	Description
	
task_name

	
The task name that uniquely identifies an existing task.

Examples

DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
 workload_name VARCHAR2(30);
BEGIN
 task_name := 'My Task';
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
 DBMS_ADVISOR.ADD_SQLWKLD_REF(task_name, workload_name);
 DBMS_ADVISOR.EXECUTE_TASK(task_name);
 DBMS_ADVISOR.RESET_TASK(task_name);
END;
/

SET_DEFAULT_SQLWKLD_PARAMETER Procedures

	
Note:

This procedure is deprecated in Release 11gR1.

This procedure modifies the default value for a user parameter within a SQL Workload object or SQL Workload object template. A user parameter is a simple variable that stores various attributes that affect workload collection, tuning decisions and reporting. When a default value is changed for a parameter, workload objects will inherit the new value when they are created.

Syntax

DBMS_ADVISOR.SET_DEFAULT_SQLWKLD_PARAMETER (
 parameter IN VARCHAR2,
 value IN VARCHAR2);

DBMS_ADVISOR.SET_DEFAULT_SQLWKLD_PARAMETER (
 parameter IN VARCHAR2,
 value IN NUMBER);

Parameters

Table 18-31 SET_DEFAULT_SQLWKLD_PARAMETER Procedure Parameters

	Parameter	Description
	
parameter

	
The name of the data parameter to be modified. Parameter names are not case sensitive. Parameter names are unique to the workload object type, but not necessarily unique to all workload object types. Various object types may use the same parameter name for different purposes.

	
value

	
The value of the specified parameter. The value can be specified as a string or a number. If the value is DBMS_ADVISOR.DEFAULT, the value will be reset to the default value.

Usage Notes

A parameter will only affect operations that modify the workload collection. Therefore, parameters should be set prior to importing or adding new SQL statements to a workload. If a parameter is set after data has been placed in a workload object, it will have no effect on the existing data.

Examples

BEGIN
 DBMS_ADVISOR.SET_DEFAULT_SQLWKLD_PARAMETER('VALID_TABLE_LIST','SH.%');
END;
/

SET_DEFAULT_TASK_PARAMETER Procedures

This procedure modifies the default value for a user parameter within a task or a template. A user parameter is a simple variable that stores various attributes that affect various Advisor operations. When a default value is changed for a parameter, tasks will inherit the new value when they are created.

A default task is different from a regular task. The default value is the initial value that will be inserted into a newly created task, while setting a task parameter with SET_TASK_PARAMETER sets the local value only. Thus, SET_DEFAULT_TASK_PARAMETER has no effect on an existing task.

Syntax

DBMS_ADVISOR.SET_DEFAULT_TASK_PARAMETER (
 advisor_name IN VARCHAR2
 parameter IN VARCHAR2,
 value IN VARCHAR2);

DBMS_ADVISOR.SET_DEFAULT_TASK_PARAMETER (
 advisor_name IN VARCHAR2
 parameter IN VARCHAR2,
 value IN NUMBER);

Parameters

Table 18-32 SET_DEFAULT_TASK_PARAMETER Procedure Parameters

	Parameter	Description
	
advisor_name

	
Specifies the unique advisor name as defined in the view DBA_ADVISOR_DEFINITIONS.

	
parameter

	
The name of the task parameter to be modified. Parameter names are not case sensitive. Parameter names are unique to the task type, but not necessarily unique to all task types. Various task types may use the same parameter name for different purposes.

	
value

	
The value of the specified task parameter. The value can be specified as a string or a number.

Examples

BEGIN
 DBMS_ADVISOR.SET_DEFAULT_TASK_PARAMETER(DBMS_ADVISOR.SQLACCESS_ADVISOR,
 'VALID_TABLE_LIST', 'SH.%');
END;
/

SET_SQLWKLD_PARAMETER Procedures

	
Note:

This procedure is deprecated in Release 11gR1.

This procedure modifies a user parameter within a SQL Workload object or SQL Workload object template. A user parameter is a simple variable that stores various attributes that affect workload collection, tuning decisions and reporting.

Syntax

DBMS_ADVISOR.SET_SQLWKLD_PARAMETER (
 workload_name IN VARCHAR2,
 parameter IN VARCHAR2,
 value IN VARCHAR2);

DBMS_ADVISOR.SET_SQLWKLD_PARAMETER (
 workload_name IN VARCHAR2,
 parameter IN VARCHAR2,
 value IN NUMBER);

Parameters

Table 18-33 SET_SQLWKLD_PARAMETER Procedure Parameters

	Parameter	Description
	
workload_name

	
The SQL Workload object name that uniquely identifies an existing workload.

	
parameter

	
The name of the data parameter to be modified. Parameter names are not case sensitive.

	
value

	
The value of the specified parameter. The value can be specified as a string or a number. If the value is DBMS_ADVISOR.DEFAULT, the value will be reset to the default value.

Usage Notes

A parameter will only affect operations that modify the workload collection. Therefore, parameters should be set prior to importing or adding new SQL statements to a workload. If a parameter is set after data has been placed in a workload object, it will have no effect on the existing data.

Examples

DECLARE
 workload_name VARCHAR2(30);
BEGIN
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
 DBMS_ADVISOR.SET_SQLWKLD_PARAMETER(workload_name, 'VALID_TABLE_LIST','SH.%');
END;
/

SET_TASK_PARAMETER Procedure

This procedure modifies a user parameter within an Advisor task or a template. A user parameter is a simple variable that stores various attributes that affect workload collection, tuning decisions and reporting.

Syntax

DBMS_ADVISOR.SET_TASK_PARAMETER (
 task_name IN VARCHAR2
 parameter IN VARCHAR2,
 value IN VARCHAR2);

DBMS_ADVISOR.SET_TASK_PARAMETER (
 task_name IN VARCHAR2
 parameter IN VARCHAR2,
 value IN NUMBER);

Parameters

Table 18-34 SET_TASK_PARAMETER Procedure Parameters

	Parameter	Description
	
task_name

	
The Advisor task name that uniquely identifies an existing task.

	
parameter

	
The name of the task parameter to be modified. Parameter names are not case sensitive. Parameter names are unique to the task type, but not necessarily unique to all task types. Various task types may use the same parameter name for different purposes.

	
value

	
The value of the specified task parameter. The value can be specified as a string or a number. If the value is DEFAULT, the value will be reset to the default value.

Usage Notes

A task cannot be modified unless it is in its initial state. See RESET_TASK Procedure to set a task to its initial state. See your Advisor-specific documentation for further information on using this procedure.

SQL Access Advisor Task Parameters

Table 18-35 lists SQL Access Advisor task parameters.

Table 18-35 SQL Access Advisor Task Parameters

	Parameter	Description
	
ANALYSIS_SCOPE

	
A comma-separated list that specifies the tuning artifacts to consider during analysis.

The possible values are:

	
ALL Short name for specifying INDEX, MVIEW, TABLE, and PARTITION.

	
EVALUATION Causes a read-only evaluation of the specified workload. No new recommendations will be made. Can only be specified alone.

	
INDEX Allows the SQL Access Advisor to recommend index structure changes.

	
MVIEW Allows the SQL Access Advisor to recommend materialized view and log changes.

	
PARTITION Allows the SQL Access Advisor to recommend partition options. Use this in conjunction with the INDEX, MVIEW, and TABLE options.

	
TABLE Allows the SQL Access Advisor to make base-table recommendations. In this release, the only base-table recommendation is partitioning.

Using the new keywords, the following combinations are valid:

	
INDEX

	
MVIEW

	
INDEX, PARTITION

	
INDEX, MVIEW, PARTITION

	
INDEX, TABLE, PARTITION

	
MVIEW, PARTITION

	
MIVEW, TABLE, PARTITION

	
INDEX, MVIEW, TABLE, PARTITION

	
TABLE, PARTITION

	
EVALUATION

The default value is INDEX. The datatype is STRINGLIST.

	
CREATION_COST

	
When set to true (default), the SQL Access Advisor will weigh the cost of creation of the access structure (index or materialized view) against the frequency of the query and potential improvement in the query execution time. When set to false, the cost of creation is ignored. The datatype is STRING.

	
DAYS_TO_EXPIRE

	
Specifies the expiration time in days for the current SQL Access Advisor task. The value is relative to the last modification date. Once the task expires, it will become a candidate for removal by an automatic purge operation.

Specifies the expiration time in days for the current Access Advisor task. The value is relative to the last modification date. The datatype is NUMBER.

Once the task expires, it becomes a candidate for removal by an automatic purge operation.

The possible values are:

	
an integer in the range of 0 to 2147483647

	
ADVISOR_UNLIMITED

	
ADVISOR_UNUSED

The default value is 30.

	
DEF_EM_TEMPLATE

	
Contains the default task or template name from which the Enterprise Manager SQL Access Advisor Wizard reads its initial values.

The default value is SQLACCESS_EMTASK. The datatype is STRING.

	
DEF_INDEX_OWNER

	
Specifies the default owner for new index recommendations. When a script is created, this value will be used to qualify the index name.

Possible values are:

	
Existing schema name. Quoted identifiers are supported.

	
ADVISOR_UNUSED

The default value is ADVISOR_UNUSED. The datatype is STRING.

	
DEF_INDEX_TABLESPACE

	
Specifies the default tablespace for new index recommendations. When a script is created, this value will be used to specify a tablespace clause.

Possible values are:

	
Existing tablespace name. Quoted identifiers are supported.

	
ADVISOR_UNUSED No tablespace clause will be present in the script for indexes.

The default value is ADVISOR_UNUSED. The datatype is STRING.

	
DEF_MVIEW_OWNER

	
Specifies the default owner for new materialized view recommendations. When a script is created, this value will be used to qualify the materialized view name.

Possible values are:

	
Existing schema name. Quoted identifiers are supported.

	
ADVISOR_UNUSED

The default value is ADVISOR_UNUSED. The datatype is STRING.

	
DEF_MVIEW_TABLESPACE

	
Specifies the default tablespace for new materialized view recommendations. When a script is created, this value will be used to specify a tablespace clause.

Possible values are

	
Existing tablespace name. Quoted identifiers are supported.

	
ADVISOR_UNUSED. No tablespace clause will be present in the script for materialized view logs.

The default value is ADVISOR_UNUSED. The datatype is STRING.

	
DEF_MVLOG_TABLSPACE

	
Specifies the default tablespace for new materialized view log recommendations. When a script is created, this value will be used to specify a tablespace clause.

Possible values are:

	
Existing tablespace name. Quoted identifiers are supported.

	
ADVISOR_UNUSED. No tablespace clause will be present in the script for materialized view logs.

The default value is ADVISOR_UNUSED. The datatype is STRING.

	
DEF_PARTITION_TABLESPACE

	
Specifies the default tablespace for new partitioning recommendations. When a script is created, this value will be used to specify a tablespace clause.

Possible values are:

	
Existing tablespace name. Quoted identifiers are supported.

	
ADVISOR_UNUSED. No tablespace clause will be present in the script for materialized views.

The default value is ADVISOR_UNUSED. The datatype is STRING.

	
DML_VOLATILITY

	
When set to TRUE, the SQL Access Advisor will consider the impact of index maintenance and materialized view refresh in determining the recommendations. It will limit the access structure recommendations involving columns or tables that are frequently updated. For example, if there are too many DMLs on a column, then it may favor a B-tree index over a bitmap index on that column. For this process to be effective, the workload must include DML (insert/update/delete/merge/direct path inserts) statements that represent the update behavior of the application. The datatype is STRING.

See the related parameter refresh_mode.

	
END_TIME

	
Specifies an end time for selecting SQL statements. If the statement did not execute on or before the specified time, it will not be processed.

Each date must be in the standard Oracle form of MM-DD-YYYY HH24:MI:SS, where:

	
DD is the numeric date

	
MM is the numeric month

	
YYYY is the numeric year

	
HH is the hour in 24 hour format

	
MI is the minute

	
SS is the second

The datatype is STRING.

	
EVALUATION_ONLY

	
This parameter is maintained for backward compatibility. All values will be translated and placed into the ANALYSIS_SCOPE task parameter.

If set to TRUE, causes SQL Access Advisor to analyze the workload, but only comment on how well the current configuration is supporting it. No tuning recommendations will be generated.

Possible values are:

	
FALSE

	
TRUE

The default value is FALSE. The datatype is STRING.

	
EXECUTION_TYPE

	
This parameter is maintained for backward compatibility. All values will be translated and placed into the ANALYSIS_SCOPE task parameter.

The translated values are:

	
FULL => FULL

	
INDEX_ONLY => INDEX

	
MVIEW_ONLY => MVIEW

	
MVIEW_LOG_ONLY => MVIEW_LOG_ONLY

The type of recommendations that is desired. Possible values:

	
FULL All supported recommendation types will be considered.

	
INDEX_ONLY The SQL Access Advisor will only consider index solutions as recommendations.

	
MVIEW_ONLY The SQL Access Advisor will consider materialized view and materialized view log solutions as recommendations.

	
MVIEW_LOG_ONLY The SQL Access Advisor will only consider materialized view log solutions as recommendations.

The default value is FULL. The datatype is STRINGLIST.

	
IMPLEMENT_EXIT_ON_ERROR

	
When performing an IMPLEMENT_TASK operation, this parameter will control behavior when an action fails to implement. If set to TRUE, IMPLEMENT_TASK will stop on the first unexpected error.

The possible values are:

	
TRUE

	
FALSE

The default value is TRUE. The datatype is STRING.

	
INDEX_NAME_TEMPLATE

	
Specifies the method by which new index names are formed.

If the TASK_ID is omitted from the template, names generated by two concurrently executing SQL Access Advisor tasks may conflict and cause undesirable effects. So it is recommended that you include the TASK_ID in the template. Once formatted, the maximum size of a name is 30 characters.

Valid keywords are:

	
Any literal value up to 22 characters.

	
TABLE Causes the parent table name to be substituted into the index name. If the name is too long, it will be trimmed to fit.

	
TASK_ID Causes the current task identifier number to be inserted in hexadecimal form.

	
SEQ Causes a sequence number to be inserted in hexadecimal form. Because this number is used to guarantee uniqueness, it is a required token.

The default template is <TABLE>_IDX$$_<TASK_ID><SEQ>. The datatype is STRING.

	
INVALID_ACTION_LIST

	
Contains a fully qualified list of actions that are not eligible for processing in a SQL workload object. The list elements are comma-delimited, and quoted names are supported.

An action can be any string. If an action is not quoted, it will be changed to uppercase lettering and stripped of leading and trailing spaces. An action string is not scanned for correctness.

During a task execution, if a SQL statement's action matches a name in the action list, it will not be processed by the task. An action name is case sensitive.

The possible values are:

	
single action

	
comma-delimited action list

	
ADVISOR_UNUSED

The default value is ADVISOR_UNUSED. The datatype is STRINGLIST.

	
INVALID_MODULE_LIST

	
Contains a fully qualified list of modules that are not eligible for processing in a SQL workload object. The list elements are comma-delimited, and quoted names are supported.

A module can be any string. If a module is not quoted, it will be changed to uppercase lettering and stripped of leading and trailing spaces. A module string is not scanned for correctness.

During a task execution, if a SQL statement's module matches a name in the list, it will not be processed by the task. A module name is case sensitive.

The possible values are:

	
single application

	
comma-delimited module list

	
ADVISOR_UNUSED

The default value is ADVISOR_UNUSED. The datatype is STRINGLIST.

	
INVALID_SQLSTRING_LIST

	
Contains a fully qualified list of text strings that are not eligible for processing in a SQL workload object. The list elements are comma-delimited, and quoted values are supported.

A SQL string can be any string. If a string is not quoted, it will be changed to uppercase lettering and stripped of leading and trailing spaces. A SQL string is not scanned for correctness.

During a task execution, if a SQL statement contains a string in the SQL string list, it will not be processed by the task.

The possible values are:

	
single string

	
comma-delimited string list

	
ADVISOR_UNUSED

The default value is ADVISOR_UNUSED. The datatype is STRINGLIST.

	
INVALID_USERNAME_LIST

	
Contains a fully qualified list of usernames that are not eligible for processing in a SQL workload object. The list elements are comma-delimited, and quoted names are supported.

During a task execution, if a SQL statement's username matches a name in the username list, it will not be processed by the task. A username is not case sensitive unless it is quoted.

The possible values are:

	
single username

	
comma-delimited username list

	
ADVISOR_UNUSED

The default value is ADVISOR_UNUSED. The datatype is STRINGLIST.

	
JOURNALING

	
Controls the logging of messages to the journal (DBA_ADVISOR_JOURNAL and USER_ADVISOR_JOURNAL views). The higher the setting, the more information is logged to the journal.

Possible values are:

	
UNUSED: no journal messages

	
FATAL: explanation of fatal conditions

	
ERROR: explanation of errors

	
WARNING: explanation of warnings

	
INFORMATION: information message

	
INFORMATION2: common information

	
INFORMATION3: common information

	
INFORMATION4: common information

	
INFORMATION5: common information

	
INFORMATION6: common information

Each journal value represents all recorded messages at that level or lower. For example, when choosing WARNING, all messages marked WARNING as well as ERROR and FATAL will be recorded in the repository.

INFORMATION6 represents the most thorough message recording and UNUSED is the least.

The default value is INFORMATION. The datatype is NUMBER.

	
LIMITED_PARTITION_SCHEMES

	
User can suggest that the Partition Expert cut off the number of partitioning schemes to investigate. This can help with cutting down the run time of the advisor.

Possible values are:

	
An integer in the range of 1 to 10

	
ADVISOR_UNUSED

The default value is ADVISOR_UNUSED. The datatype is NUMBER.

	
MAX_NUMBER_PARTITIONS

	
Limits the number of partitions the advisor will recommend for any base table, index, or materialized view.

Possible values are:

	
An integer in the range of 1 to 4294967295

	
ADVISOR_UNLIMITED

	
ADVISOR_UNUSED

The default value is ADVISOR_UNLIMITED. The datatype is NUMBER.

	
MODE

	
Specifies the mode by which Access Advisor will operate during an analysis.

Valid values are:

	
LIMITED Indicates the Advisor will attempt to a quick job by limiting the search-space of candidate recommendations, and correspondingly, the results may be of a low quality.

	
COMPREHENSIVE Indicates the Advisor will search a large pool of candidates that may take long to run, but the resulting recommendations will be of the highest quality.

The default value is COMPREHENSIVE. The datatype is STRING.

	
MVIEW_NAME_TEMPLATE

	
Specifies the method by which new materialized view names are formed.

If the TASK_ID is omitted from the template, names generated by two concurrently executing SQL Access Advisor tasks may conflict and cause undesirable effects. So it is recommended that you include the TASK_ID in the template.

The format is any combination of keyword tokens and literals. However, once formatted, the maximum size of a name is 30 characters.

Valid tokens are:

	
Any literal value up to 22 characters.

	
TASK_ID Causes the current task identifier number to be inserted in hexadecimal form.

	
SEQ Causes a sequence number to be inserted in hexadecimal form. Because this number is used to guarantee uniqueness, it is a required token.

The default template is: MV$$_<TASK_ID><SEQ>. The datatype is STRING.

	
ORDER_LIST

	
This parameter has been deprecated.

Contains the primary natural order in which the Access Advisor processes workload elements during the analysis operation. To determine absolute natural order, Access Advisor sorts the workload using ORDER_LIST values. A comma must separate multiple order keys.

Possible values are:

	
BUFFER_GETS Sets the order using the SQL statement's buffer-get count value.

	
CPU_TIME Sets the order using the SQL statement's CPU time value.

	
DISK_READS Sets the order using the SQL statement's disk-read count value.

	
ELAPSED_TIME Sets the order using the SQL statement's elapsed time value.

	
EXECUTIONS Sets the order using the SQL statement's execution frequency value.

	
OPTIMIZER_COST Sets the order using the SQL statement's optimizer cost value.

	
I/O Sets the order using the SQL statement's I/O count value.

	
PRIORITY Sets the order using the user-supplied business priority value.

All values are accessed in descending order, where a high value is considered more interesting than a low value.

The default value is PRIORITY, OPTIMIZER_COST. The datatype is STRINGLIST.

	
PARTITION_NAME_TEMPLATE

	
Specifies the method by which new partition names are formed. The format is any combination of keyword tokens and literals. However, once formatted, the maximum size of a name is 30 characters.

Valid tokens are:

	
Any literal value up to 22 characters.

	
<TABLE> Causes the parent table name to be substituted into the partition name. If the name is too long, it will be trimmed to fit.

	
<TASK_ID> Causes the current task identifier number to be inserted in hexadecimal form.

	
<SEQ> Causes a sequence number to be inserted in hexadecimal form. Because this number is used to guarantee uniqueness, it is a required token.

The default template is PTN$$_<TABLE>_<TASK_ID><SEQ>. The datatype is STRING.

	
PARTITIONING_GOAL

	
Specifies the approach used to make partitioning recommendations. One possible value is PERFORMANCE, which is the default. The datatype is STRING.

	
PARTITIONING_TYPES

	
Specifies the type of partitioning used. Possible values are RANGE and HASH. The datatype is STRING.

	
RANKING_MEASURE

	
Contains the primary natural order in which the SQL Access Advisor processes workload elements during the analysis operation. To determine absolute natural order, SQL Access Advisor sorts the workload using RANKING_MEASURE values. A comma must separate multiple order keys.

Possible values are:

	
BUFFER_GETS Sets the order using the SQL statement's buffer-get count value.

	
CPU_TIME Sets the order using the SQL statement's CPU time value.

	
DISK_READS Sets the order using the SQL statement's disk-read count value.

	
ELAPSED_TIME Sets the order using the SQL statement's elapsed time value.

	
EXECUTIONS Sets the order using the SQL statement's elapsed time value.

	
OPTIMIZER_COST Sets the order using the SQL statement's optimizer cost value.

	
PRIORITY Sets the order using the user-supplied business priority value.

All values are accessed in descending order, where a high value is considered more interesting than a low value.

The default value is PRIORITY, OPTIMIZER_COST. The datatype is STRINGLIST.

	
RECOMMEND_MV_EXACT_TEXT_MATCH

	
When considering candidate materialized views, exact text match solutions will only be included if this parameter contains TRUE.

The possible values are:

	
TRUE

	
FALSE

The default value is TRUE. The datatype is STRING.

	
RECOMMENDED_TABLESPACES

	
Allows the SQL Access Advisor to recommend optimal tablespaces for any partitioning scheme. If this is not set, the SQL Access Advisor will simply recommend a partitioning method but give no advice on physical storage.

Possible values are:

	
TRUE

	
FALSE (the default)

The datatype is STRING.

	
REFRESH_MODE

	
Specifies whether materialized views are refreshed ON_DEMAND or ON_COMMIT. This will be used to weigh the impact of materialized view refresh when the parameter dml_volatility is set to TRUE.

Possible values are:

	
ON_DEMAND

	
ON_COMMIT

The default value is ON_DEMAND. The datatype is STRING.

	
REPORT_DATE_FORMAT

	
This is the default date and time formatting template. The default format is DD/MM/YYYYHH24:MI. The datatype is STRING.

	
SHOW_RETAINS

	
Controls the display of RETAIN actions within an implementation script and the SQL Access Advisor wizard.

The possible values are:

	
TRUE

	
FALSE

The default value is TRUE. The datatype is STRING.

	
SQL_LIMIT

	
Specifies the number of SQL statements to be analyzed. The SQL_LIMIT filter is applied after all other filters have been applied. For example, if only statements referencing the table foo.bar are to be accepted, the SQL_LIMIT value will be only apply to those statements.

When used in conjunction with the parameter ORDER_LIST, SQL Access Advisor will process the most interesting SQL statements by ordering the statements according to the specified sort keys.

The possible values are:

	
an integer in the range of 1 to 2147483647

	
ADVISOR_UNLIMITED

	
ADVISOR_UNUSED

The default value is ADVISOR_UNUSED. The datatype is NUMBER.

	
START_TIME

	
Specifies a start time for selecting SQL statements. If the statement did not execute on or before the specified time, it will not be processed.

Each date must be in the standard Oracle form of MM-DD-YYYY HH24:MI:SS, where:

	
DD is the numeric date

	
MM is the numeric month

	
YYYY is the numeric year

	
HH is the hour in 24 hour format

	
MI is the minute

	
SS is the second

The datatype is STRING.

	
STORAGE_CHANGE

	
Contains the amount of space adjustment that can be consumed by SQL Access Advisor recommendations. Zero or negative values are only permitted if the workload scope is marked as FULL.

When the SQL Access Advisor produces a set of recommendations, the resultant physical structures must be able to fit into the budgeted space. A space budget is computed by adding the STORAGE_CHANGE value to the space quantity currently used by existing access structures. A negative STORAGE_CHANGE value may force SQL Access Advisor to remove existing structures in order to shrink space demand.

Possible values:

	
Any valid integer including negative values, zero and positive values.

The default value is ADVISOR_UNLIMITED. The datatype is NUMBER.

	
TIME_LIMIT

	
Specifies the time in minutes that the SQL Access Advisor can use to perform an analysis operation. If the SQL Access Advisor reaches a specified recommendation quality or all input data has been analyzed, processing will terminate regardless of any remaining time.

Possible values:

	
An integer in the range of 1 to 10,000

	
ADVISOR_UNLIMITED

The default value is 720 (12 hours). The datatype is NUMBER.

Note that specifying ADVISOR_UNLIMITED has the same effect as setting the parameter to the maximum of 10,000 (about one week). The SQL Access Advisor will never run for more than 10,000 minutes.

	
VALID_ACTION_LIST

	
Contains a fully qualified list of actions that are eligible for processing in a SQL workload object. The list elements are comma-delimited, and quoted names are supported.

An action can be any string. If an action is not quoted, it will be changed to uppercase lettering and stripped of leading and trailing spaces. An action string is not scanned for correctness.

During a task execution, if a SQL statement's action does not match a name in the action list, it will not be processed by the task. An action name is case sensitive.

The possible values are:

	
single action

	
comma-delimited action list

	
ADVISOR_UNUSED

The default value is ADVISOR_UNUSED. The datatype is STRINGLIST.

	
VALID_MODULE_LIST

	
Contains a fully qualified list of application modules that are eligible for processing in a SQL workload object. The list elements are comma-delimited, and quoted names are supported.

A module can be any string. If a module is not quoted, it will be changed to uppercase lettering and stripped of leading and trailing spaces. A module string is not scanned for correctness.

During a task execution, if a SQL statement's module does not match a name in the module list, it will not be processed by the task. A module name is case sensitive.

The possible values are:

	
single application

	
comma-delimited module list

	
ADVISOR_UNUSED

The default value is ADVISOR_UNUSED. The datatype is STRINGLIST.

	
VALID_SQLSTRING_LIST

	
Contains a fully qualified list of text strings that are eligible for processing in a SQL workload object. The list elements are comma-delimited, and quoted names are supported.

A SQL string can be any string. If a string is not quoted, it will be changed to uppercase lettering and stripped of leading and trailing spaces. A SQL string is not scanned for correctness.

During a task execution, if a SQL statement does not contain string in the SQL string list, it will not be processed by the task.

The possible values are:

	
single string

	
comma-delimited string list

	
ADVISOR_UNUSED

The default value is ADVISOR_UNUSED. The datatype is STRINGLIST.

	
VALID_TABLE_LIST

	
Contains a fully qualified list of tables that are eligible for tuning. The list elements are comma-delimited, and quoted identifiers are supported. Wildcard specifications are supported for tables. The default value is all tables within the user's scope are eligible for tuning. Supported wildcard character is %. A % wildcard matches any set of consecutive characters.

When a SQL statement is processed, it will not be accepted unless at least one referenced table is specified in the valid table list. If the list is unused, then all table references within a SQL statement are considered valid.

The valid syntax for a table reference is:

	
schema.table

	
schema

	
schema.% (equivalent to schema)

	
comma-delimited action list

	
ADVISOR_UNUSED

The possible values are:

	
single table reference

	
comma-delimited reference list

	
ADVISOR_UNUSED

The default value is ADVISOR_UNUSED. The datatype is TABLELIST.

	
VALID_USERNAME_LIST

	
Contains a fully qualified list of usernames that are eligible for processing in a SQL workload object. The list elements are comma-delimited, and quoted names are supported.

During a task execution, if a SQL statement's username does not match a name in the username list, it will not be processed by the task. A username is not case sensitive unless it is quoted.

The possible values are:

	
single username

	
comma-delimited username list

	
ADVISOR_UNUSED

The default value is ADVISOR_UNUSED. The datatype is STRINGLIST.

	
WORKLOAD_SCOPE

	
Describes the level of application coverage the workload represents. Possible values are FULL and PARTIAL.

FULL Should be used if the workload contains all interesting application SQL statements for the targeted tables.

PARTIAL (default) Should be used if the workload contains anything less than a full representation of the interesting application SQL statements for the targeted tables.

The datatype is STRING.

Segment Advisor Parameters

Table 18-36 lists the input task parameters that can be set in the Segment Advisor using the SET_TASK_PARAMETER procedure.

Table 18-36 Segment Advisor Task Parameters

	Parameter	Description
	
MODE

	
The data to use for analysis. The default value is COMPREHENSIVE, and the possible values are:

	
LIMITED: Analysis restricted to statistics available in the Automatic Workload Repository

	
COMPREHENSIVE: Analysis based on sampling and Automatic Workload Repository statistics

	
TIME_LIST

	
The time limit for which the Advisor should run. It is specified in seconds, and the default and possible values are UNLIMITED.

	
RECOMMEND_ALL

	
Whether to generate recommendations for all segments.

The default value is TRUE. If set to TRUE, it generates recommendations all segments specified by the user. If set to FALSE, it generates recommendations for only those objects that are eligible for shrink.

Examples

DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
BEGIN
 task_name := 'My Task';

 DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
 DBMS_ADVISOR.SET_TASK_PARAMETER(task_name, 'VALID_TABLELIST',
 'SH.%,SCOTT.EMP');
END;
/

Undo Advisor Task Parameters

Table 18-37 lists the input task parameters that can be set in the Undo Advisor using the SET_TASK_PARAMETER procedure.

Table 18-37 Undo Advisor Task Parameters

	Parameter	Description
	
TARGET_OBJECTS

	
The undo tablespace of the system. There is no default value, and the possible value is UNDO_TBS.

	
START_SNAPSHOT

	
The starting time for the system to perform analysis using the snapshot numbers in the AWR repository. There is no default value and the possible values are the valid snapshot numbers in the AWR repository.

	
END_SNAPSHOT

	
The ending time for the system to perform analysis using the snapshot numbers in the AWR repository. There is no default value and the possible values are the valid snapshot numbers in the AWR repository.

	
BEGIN_TIME_SEC

	
The number of seconds between the beginning time of the period and now. Describes a period of time for the system to perform analysis. BEGIN_TIME_SEC should be greater than END_TIME_SEC. There is no default value and the possible values are any positive integer.

	
END_TIME_SEC

	
The number of seconds between the ending time of the period and now. END_TIME_SEC should be less than BEGIN_TIME_SEC. There is no default value and the possible values are any positive integer.

Examples

DECLARE
 tname VARCHAR2(30);
 oid NUMBER;
 BEGIN
 DBMS_ADVISOR.CREATE_TASK('Undo Advisor', tid, tname, 'Undo Advisor Task');
 DBMS_ADVISOR.CREATE_OBJECT(tname, 'UNDO_TBS', null, null, null, 'null', oid);
 DBMS_ADVISOR.SET_TASK_PARAMETER(tname, 'TARGET_OBJECTS', oid);
 DBMS_ADVISOR.SET_TASK_PARAMETER(tname, 'START_SNAPSHOT', 1);
 DBMS_ADVISOR.SET_TASK_PARAMETER(tname, 'END_SNAPSHOT', 2);
 DBMS_ADVISOR.EXECUTE_TASK(tname);
 END;
/

Automatic Database Diagnostic Monitor (ADDM) Task Parameters

Table 18-38 lists the input task parameters that can be set in ADDM using the SET_TASK_PARAMETER procedure. See Oracle Database Performance Tuning Guide for more information on using these parameters.

Table 18-38 ADDM Task Parameters

	Parameter	Description
	
START_SNAPSHOT

	
The starting time for the system to perform analysis using the snapshot numbers in the AWR repository. There is no default value, and the possible values are the valid snapshot numbers in the AWR repository.

	
END_SNAPSHOT

	
The ending time for the system to perform analysis using the snapshot numbers in the AWR repository. There is no default value, and the possible values are the valid snapshot numbers in the AWR repository.

	
DB_ID

	
The database for START_SNAPSHOT and END_SNAPSHOT. The default value is the current database ID.

	
INSTANCE

	
The instance for START_SNAPSHOT and END_SNAPSHOT. The default value is 0 or UNUSED, and the possible values are all positive integers. By default, all instances are analyzed.

	
INSTANCES

	
If the INSTANCE parameter has been set, INSTANCES is ignored. The default value is UNUSED, and the possible values are comma-separated list of instance numbers (for example, "1, 3, 5"). By default, all instances are analyzed.

	
DBIO_EXPECTED

	
The average time to read the database block in microseconds. The default value is 10 milliseconds, and the possible values are system-dependent.

Examples

The following creates and executes an ADDM task for the current database and an AWR snapshot range between 19 and 26. Note that this example will analyze all instances, whether you have only one or an Oracle RAC database.

DECLARE
 tid NUMBER;
 tname VARCHAR2(30) := 'ADDM_TEST';
BEGIN
 DBMS_ADVISOR.CREATE_TASK('ADDM', tid, tname, 'my test');
 DBMS_ADVISOR.SET_TASK_PARAMETER(tname, 'START_SNAPSHOT', '19');
 DBMS_ADVISOR.SET_TASK_PARAMETER(tname, 'END_SNAPSHOT', '26');
 DBMS_ADVISOR.EXECUTE_TASK(tname);
END;
/

	
See Also:

	
Oracle Database Performance Tuning Guide for more information regarding ADDM usage

	
The DBMS_ADDM package for details on how to create and execute ADDM tasks

SQL Tuning Advisor Task Parameters

See the DBMS_SQLTUNE package and Oracle Database Performance Tuning Guide for more information.

TUNE_MVIEW Procedure

This procedure shows how to decompose a materialized view into two or more materialized views and to restate the materialized view in a way that is more advantageous for fast refresh and query rewrite. It also shows how to fix materialized view logs and to enable query rewrite.

Syntax

DBMS_ADVISOR.TUNE_MVIEW (
 task_name IN OUT VARCHAR2,
 mv_create_stmt IN [CLOB | VARCHAR2]);

Parameters

Table 18-39 TUNE_MVIEW Procedure Parameters

	Parameter	Description
	
task_name

	
The task name for looking up the results in a catalog view. If not specified, the system will generate a name and return.

	
mv_create_stmt

	
The original materialized view creation statement.

	
See Also:

Oracle Database Performance Tuning Guide for more information about using the TUNE_MVIEW procedure

Usage Notes

Executing TUNE_MVIEW generates two sets of output results: one is for CREATE implementation and the other is for undoing the CREATE MATERIALIZED VIEW implementation. The output results are accessible through USER_TUNE_MVIEW and DBA_TUNE_MVIEW views. You can also use DBMS_ADVISOR.GET_TASK_SCRIPT and DBMS_ADVISOR.CREATE_FILE to output the TUNE_MVIEW results into a script file for later execution.

USER_TUNE_MVIEW and DBA_TUNE_MVIEW Views

These views are to get the result after executing the TUNE_MVIEW procedure.

Table 18-40 USER_TUNE_MVIEW and DBA_TUNE_MVIEW Views

	Column Name	Column Description
	
OWNER

	
The materialized view owner's name.

	
TASK_NAME

	
The task name as a key to access the set of recommendations

	
SCRIPT_TYPE

	
Recommendation ID used to indicate the row is for IMPLEMENTATION or UNDO script.

	
ACTION_ID

	
Action ID used as the command order number.

	
STATEMENT

	
For TUNE_MVIEW output, this column represents the following statements, and includes statement properties such as REFRESH and REWRITE options:

	
CREATE MATERIALIZED VIEW LOG

	
ALTER MATERIALIZED VIEW LOG FORCE

	
[CREATE | DROP] MATERIALIZED VIEW

Examples

name VARCHAR2(30);
DBMS_ADVISOR.TUNE_MVIEW.(name, 'SELECT AVG(C1) FROM my_fact_table WHERE c10 = 7');

The following is an example to show how to use TUNE_MVIEW to optimize a CREATE MATERIALIZED VIEW statement:

NAME VARCHAR2(30) := 'my_tune_mview_task';
EXECUTE DBMS_ADVISOR.TUNE_MVIEW (name, 'CREATE MATERIALIZED VIEW MY_MV
REFRESH FAST AS SELECT C2, AVG(C1) FROM MY_FACT_TABLE WHERE C10 = 7
GROUP BY C2');

You can view the CREATE output results by querying USER_TUNE_MVIEW or DBA_TUNE_MVIEW as the following example:

SELECT * FROM USER_TUNE_MVIEW WHERE TASK_NAME='my_tune_mview_task' AND
SCRIPT_TYPE='CREATE';

Alternatively, you can save the output results in an external script file as in the following example:

CREATE DIRECTORY TUNE_RESULTS AS ''/myscript_dir'' ;
GRANT READ, WRITE ON DIRECTORY TUNE_RESULTS TO PUBLIC;
EXECUTE DBMS_ADVISOR.CREATE_FILE(DBMS_ADVISOR.GET_TASK_SCRIPT('my_tune_mview_task'), -
'/homes/tune','my_tune_mview_create.sql');

The preceding statement will save the CREATE output results in /myscript_dir/my_tune_mview_create.sql.

UPDATE_OBJECT Procedure

This procedure updates an existing task object. Task objects are typically used as input data for a particular advisor. Segment advice can be generated at the object, segment, or tablespace level.

Syntax

DBMS_ADVISOR.UPDATE_OBJECT (
 task_name IN VARCHAR2
 object_id IN NUMBER,
 attr1 IN VARCHAR2 := NULL,
 attr2 IN VARCHAR2 := NULL,
 attr3 IN VARCHAR2 := NULL,
 attr4 IN CLOB := NULL,
 attr5 IN VARCHAR2 := NULL);

Parameters

Table 18-41 UPDATE_OBJECT Procedure Parameters

	Parameter	Description
	
task_name

	
A valid advisor task name that uniquely identifies an existing task.

	
object_id

	
The advisor-assigned object identifier.

	
attr1

	
Advisor-specific data. If set to NULL, there will be no effect on the target object.

	
attr2

	
Advisor-specific data. If set to NULL, there will be no effect on the target object.

	
attr3

	
Advisor-specific data. If set to NULL, there will be no effect on the target object.

	
attr4

	
Advisor-specific data. If set to NULL, there will be no effect on the target object.

	
attr5

	
Advisor-specific data. If set to null, there will be no effect on the target object.

The attribute parameters have different values depending upon the object type. See Oracle Database Administrator's Guide for details regarding these parameters and object types.

Usage Notes

If for the object level, advice is generated on all partitions of the object (if the object is partitioned). The advice is not cascaded to any dependent objects. If for the segment level, advice can be obtained on a single segment, such as the partition or subpartition of a table, index, or lob column. If for a tablespace level, target advice for every segment in the tablespace will be generated.

See Oracle Database Administrator's Guide for further information regarding the Segment Advisor.

Examples

DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
 obj_id NUMBER;
BEGIN
 task_name := 'My Task';

 DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
 DBMS_ADVISOR.CREATE_OBJECT (task_name,'SQL',NULL,NULL,NULL,
 'SELECT * FROM SH.SALES',obj_id);
 DBMS_ADVISOR.UPDATE_OBJECT (task_name, obj_id,NULL,NULL,NULL,
 'SELECT count(*) FROM SH.SALES');
END;
/

UPDATE_REC_ATTRIBUTES Procedure

This procedure updates the owner, name, and tablespace for a recommendation.

Syntax

DBMS_ADVISOR.UPDATE_REC_ATTRIBUTES (
 task_name IN VARCHAR2
 rec_id IN NUMBER,
 action_id IN NUMBER,
 attribute_name IN VARCHAR2,
 value IN VARCHAR2);

Parameters

Table 18-42 UPDATE_REC_ATTRIBUTES Procedure Parameters

	Parameter	Description
	
task_name

	
The task name that uniquely identifies an existing task.

	
rec_id

	
The Advisor-generated identifier number that is assigned to the recommendation.

	
action_id

	
The Advisor-generated action identifier that is assigned to the particular command.

	
attribute_name

	
Name of the attribute to be changed. The valid values are:

	
owner The new owner of the object.

	
name The new name of the object.

	
tablespace The new tablespace for the object.

	
value

	
Specifies the new value for the recommendation attribute.

Usage Notes

Recommendation attributes cannot be modified unless the task has successfully executed.

Examples

DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
 workload_name VARCHAR2(30);
 attribute VARCHAR2(100);
BEGIN
 task_name := 'My Task';
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
 DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
 DBMS_ADVISOR.ADD_SQLWKLD_REF(task_name, workload_name);
 DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT(workload_name, 'MONTHLY', 'ROLLUP',
 100,400,5041,103,640445,680000,2,
 1,SYSDATE,1,'SH','SELECT AVG(amount_sold)
 FROM sh.sales WHERE promo_id = 10');
 DBMS_ADVISOR.EXECUTE_TASK(task_name);

attribute := 'SH';

 DBMS_ADVISOR.UPDATE_REC_ATTRIBUTES(task_name, 1, 3, 'OWNER', attribute);
END;
/

UPDATE_SQLWKLD_ATTRIBUTES Procedure

	
Note:

This procedure is deprecated in Release 11gR1.

This procedure changes various attributes of a SQL Workload object or template.

Syntax

DBMS_ADVISOR.UPDATE_SQLWKLD_ATTRIBUTES (
 workload_name IN VARCHAR2,
 new_name IN VARCHAR2 := NULL,
 description IN VARCHAR2 := NULL,
 read_only IN VARCHAR2 := NULL,
 is_template IN VARCHAR2 := NULL,
 how_created IN VARCHAR2 := NULL);

Parameters

Table 18-43 UPDATE_SQLWKLD_ATTRIBUTES Procedure Parameters

	Parameter	Description
	
workload_name

	
The workload object name that uniquely identifies an existing workload.

	
new_name

	
The new workload object name. If the value is NULL or contains the value ADVISOR_UNUSED, the workload will not be renamed. A task name can be up to 30 characters long.

	
description

	
A new workload description. If the value is NULL or contains the value ADVISOR_UNUSED, the description will not be changed. Names can be up to 256 characters long.

	
read_only

	
Set to TRUE so it cannot be changed.

	
is_template

	
TRUE if workload is to be used as a template.

	
how_created

	
Indicates a source application name that initiated the workload creation. If the value is NULL or contains the value ADVISOR_UNUSED, the source will not be changed.

Examples

DECLARE
 workload_name VARCHAR2(30);
BEGIN
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
 DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT(workload_name, 'MONTHLY', 'ROLLUP',
 100,400,5041,103,640445,680000,2,
 1,SYSDATE,1,'SH','SELECT AVG(amount_sold)
 FROM sh.sales WHERE promo_id = 10');
 DBMS_ADVISOR.UPDATE_SQLWKLD_ATTRIBUTES(workload_name,'New workload name');
END;
/

UPDATE_SQLWKLD_STATEMENT Procedure

	
Note:

This procedure is deprecated in Release 11gR1.

This procedure updates an existing SQL statement in a specified SQL workload.

Syntax

DBMS_ADVISOR.UPDATE_SQLWKLD_STATEMENT (
 workload_name IN VARCHAR2,
 sql_id IN NUMBER,
 application IN VARCHAR2 := NULL,
 action IN VARCHAR2 := NULL,
 priority IN NUMBER := NULL,
 username IN VARCHAR2 := NULL);

DBMS_ADVISOR.UPDATE_SQLWKLD_STATEMENT (
 workload_name IN VARCHAR2,
 search IN VARCHAR2,
 updated OUT NUMBER,
 application IN VARCHAR2 := NULL,
 action IN VARCHAR2 := NULL,
 priority IN NUMBER := NULL,
 username IN VARCHAR2 := NULL);

Parameters

Table 18-44 UPDATE_SQLWKLD_STATEMENT Procedure Parameters

	Parameter	Description
	
workload_name

	
The SQL Workload object name that uniquely identifies an existing workload.

	
sql_id

	
The Advisor-generated identifier number that is assigned to the statement. To specify all workload statements, use the constant DBMS_ADVISOR.ADVISOR_ALL.

	
updated

	
Returns the number of statements changed by a searched update.

	
application

	
Specifies a business application name that will be associated with the SQL statement. If the value is NULL or contains the value ADVISOR_UNUSED, then the column will not be updated in the repository.

	
action

	
Specifies the application action for the statement. If the value is NULL or contains the value ADVISOR_UNUSED, then the column will not be updated in the repository.

	
priority

	
The relative priority of the SQL statement. The value must be one of the following: 1 - HIGH, 2 - MEDIUM, or 3 - LOW.

If the value is NULL or contains the value ADVISOR_UNUSED, then the column will not be updated in the repository.

	
username

	
The Oracle user name that executed the SQL statement. If the value is NULL or contains the value ADVISOR_UNUSED, then the column will not be updated in the repository.

Because a username is an Oracle identifier, the username value must be entered exactly like it is stored in the server. For example, if the user SCOTT is the executing user, then you must provide the user identifier SCOTT in all uppercase letters. It will not recognize the user scott as a match for SCOTT.

	
search

	
Disabled.

Usage Notes

A workload cannot be modified or deleted if it is currently referenced by an active task. A task is considered active if it is not in its initial state. See RESET_TASK Procedure to set a task to its initial state.

Examples

DECLARE
 workload_name VARCHAR2(30);
 updated NUMBER;
 id NUMBER;
BEGIN
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
 DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT(workload_name, 'MONTHLY', 'ROLLUP',
 100,400,5041,103,640445,680000,2,
 1,SYSDATE,1,'SH','SELECT AVG(amount_sold)
 FROM sh.sales WHERE promo_id = 10');

 SELECT sql_id INTO id FROM USER_ADVISOR_SQLW_STMTS
 WHERE workload_name = 'My Workload';

 DBMS_ADVISOR.UPDATE_SQLWKLD_STATEMENT(workload_name, id);
END;
/

UPDATE_TASK_ATTRIBUTES Procedure

This procedure changes various attributes of a task or a task template.

Syntax

DBMS_ADVISOR.UPDATE_TASK_ATTRIBUTES (
 task_name IN VARCHAR2
 new_name IN VARCHAR2 := NULL,
 description IN VARCHAR2 := NULL,
 read_only IN VARCHAR2 := NULL,
 is_template IN VARCHAR2 := NULL,
 how_created IN VARCHAR2 := NULL);

Parameters

Table 18-45 UPDATE_TASK_ATTRIBUTES Procedure Parameters

	Parameter	Description
	
task_name

	
The Advisor task name that uniquely identifies an existing task.

	
new_name

	
The new Advisor task name. If the value is NULL or contains the value ADVISOR_UNUSED, the task will not be renamed. A task name can be up to 30 characters long.

	
description

	
A new task description. If the value is NULL or contains the value ADVISOR_UNUSED, the description will not be changed. Names can be up to 256 characters long.

	
read_only

	
Sets the task to read-only. Possible values are: TRUE and FALSE.

If the value is NULL or contains the value ADVISOR_UNUSED, the setting will not be changed.

	
is_template

	
Marks the task as a template. Physically, there is no difference between a task and a template; however, a template cannot be executed. Possible values are: TRUE and FALSE. If the value is NULL or contains the value ADVISOR_UNUSED, the setting will not be changed.

	
how_created

	
Indicates a source application name that initiated the task creation. If the value is NULL or contains the value ADVISOR_UNUSED, the source will not be changed.

Examples

DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
BEGIN
 task_name := 'My Task';

 DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
 DBMS_ADVISOR.UPDATE_TASK_ATTRIBUTES(task_name,'New Task Name');
 DBMS_ADVISOR.UPDATE_TASK_ATTRIBUTES('New Task Name',NULL,'New description');
END;
/

19 DBMS_ALERT

DBMS_ALERT supports asynchronous notification of database events (alerts). By appropriate use of this package and database triggers, an application can notify itself whenever values of interest in the database are changed.

This chapter contains the following topics:

	
Using DBMS_ALERT

	
Overview

	
Security Model

	
Constants

	
Restrictions

	
Exceptions

	
Operational Notes

	
Examples

	
Summary of DBMS_ALERT Subprograms

Using DBMS_ALERT

	
Overview

	
Security Model

	
Constants

	
Restrictions

	
Exceptions

	
Operational Notes

	
Examples

Overview

Suppose a graphics tool is displaying a graph of some data from a database table. The graphics tool can, after reading and graphing the data, wait on a database alert (WAITONE) covering the data just read. The tool automatically wakes up when the data is changed by any other user. All that is required is that a trigger be placed on the database table, which performs a signal (SIGNAL) whenever the trigger is fired.

Security Model

Security on this package can be controlled by granting EXECUTE on this package to selected users or roles. You might want to write a cover package on top of this one that restricts the alert names used. EXECUTE privilege on this cover package can then be granted rather than on this package.

Constants

The DBMS_ALERT package uses the constants shown in Table 19-1:

Table 19-1 DBMS_ALERT Constants

	Name	Type	Value	Description
	
MAXWAIT

	
INTEGER

	
86400000

	
The maximum time to wait for an alert (1000 days which is essentially forever).

Restrictions

Because database alerters issue commits, they cannot be used with Oracle Forms. For more information on restrictions on calling stored procedures while Oracle Forms is active, refer to your Oracle Forms documentation.

Exceptions

DBMS_ALERT raises the application error -20000 on error conditions. Table 19-2 shows the messages and the procedures that can raise them.

Operational Notes

The following notes relate to general and specific applications:

	
Alerts are transaction-based. This means that the waiting session is not alerted until the transaction signalling the alert commits. There can be any number of concurrent signalers of a given alert, and there can be any number of concurrent waiters on a given alert.

	
A waiting application is blocked in the database and cannot do any other work.

	
An application can register for multiple events and can then wait for any of them to occur using the WAITANY procedure.

	
An application can also supply an optional timeout parameter to the WAITONE or WAITANY procedures. A timeout of 0 returns immediately if there is no pending alert.

	
The signalling session can optionally pass a message that is received by the waiting session.

	
Alerts can be signalled more often than the corresponding application wait calls. In such cases, the older alerts are discarded. The application always gets the latest alert (based on transaction commit times).

	
If the application does not require transaction-based alerts, the DBMS_PIPE package may provide a useful alternative.

	
See Also:

Chapter 103, "DBMS_PIPE"

	
If the transaction is rolled back after the call to SIGNAL, no alert occurs.

	
It is possible to receive an alert, read the data, and find that no data has changed. This is because the data changed after the prior alert, but before the data was read for that prior alert.

	
Usually, Oracle is event-driven; this means that there are no polling loops. There are two cases where polling loops can occur:

	
Shared mode. If your database is running in shared mode, a polling loop is required to check for alerts from another instance. The polling loop defaults to one second and can be set by the SET_DEFAULTS procedure.

	
WAITANY procedure. If you use the WAITANY procedure, and if a signalling session does a signal but does not commit within one second of the signal, a polling loop is required so that this uncommitted alert does not camouflage other alerts. The polling loop begins at a one second interval and exponentially backs off to 30-second intervals.

Table 19-2 DBMS_ALERT Error Messages

	Error Message	Procedure
	
ORU-10001 lock request error, status: N

	
SIGNAL

	
ORU-10015 error: N waiting for pipe status

	
WAITANY

	
ORU-10016 error: N sending on pipe 'X'

	
SIGNAL

	
ORU-10017 error: N receiving on pipe 'X'

	
SIGNAL

	
ORU-10019 error: N on lock request

	
WAIT

	
ORU-10020 error: N on lock request

	
WAITANY

	
ORU-10021 lock request error; status: N

	
REGISTER

	
ORU-10022 lock request error, status: N

	
SIGNAL

	
ORU-10023 lock request error; status N

	
WAITONE

	
ORU-10024 there are no alerts registered

	
WAITANY

	
ORU-10025 lock request error; status N

	
REGISTER

	
ORU-10037 attempting to wait on uncommitted signal from same session

	
WAITONE

Examples

Suppose you want to graph average salaries by department, for all employees. Your application needs to know whenever EMP is changed. Your application would look similar to this code:

DBMS_ALERT.REGISTER('emp_table_alert');
 <<readagain>>:
 /* ... read the emp table and graph it */
 DBMS_ALERT.WAITONE('emp_table_alert', :message, :status);
 if status = 0 then goto <<readagain>>; else
 /* ... error condition */

The EMP table would have a trigger similar to this:

CREATE TRIGGER emptrig AFTER INSERT OR UPDATE OR DELETE ON emp
 BEGIN
 DBMS_ALERT.SIGNAL('emp_table_alert', 'message_text');
 END;

When the application is no longer interested in the alert, it makes this request:

DBMS_ALERT.REMOVE('emp_table_alert');

This reduces the amount of work required by the alert signaller. If a session exits (or dies) while registered alerts exist, the alerts are eventually cleaned up by future users of this package.

The example guarantees that the application always sees the latest data, although it may not see every intermediate value.

Summary of DBMS_ALERT Subprograms

Table 19-3 DBMS_ALERT Package Subprograms

	Subprogram	Description
	
REGISTER Procedure

	
Receives messages from an alert

	
REMOVE Procedure

	
Disables notification from an alert

	
REMOVEALL Procedure

	
Removes all alerts for this session from the registration list

	
SET_DEFAULTS Procedure

	
Sets the polling interval

	
SIGNAL Procedure

	
Signals an alert (send message to registered sessions)

	
WAITANY Procedure

	
Waits timeout seconds to receive alert message from an alert registered for session

	
WAITONE Procedure

	
Waits timeout seconds to receive message from named alert

REGISTER Procedure

This procedure lets a session register interest in an alert.

Syntax

DBMS_ALERT.REGISTER (
 name IN VARCHAR2,
 cleanup IN BOOLEAN DEFAULT TRUE);

Parameters

Table 19-4 REGISTER Procedure Parameters

	Parameter	Description
	
name

	
Name of the alert in which this session is interested

	
cleanup

	
Specifies whether to perform cleanup of any extant orphaned pipes used by the DBMS_ALERT package. This cleanup is only performed on the first call to REGISTER for each package instantiation. The default for the parameter is TRUE.

	
Caution:

Alert names beginning with 'ORA$' are reserved for use for products provided by Oracle. Names must be 30 bytes or less. The name is case insensitive.

Usage Notes

A session can register interest in an unlimited number of alerts. Alerts should be deregistered when the session no longer has any interest, by calling REMOVE.

REMOVE Procedure

This procedure enables a session that is no longer interested in an alert to remove that alert from its registration list. Removing an alert reduces the amount of work done by signalers of the alert.

Syntax

DBMS_ALERT.REMOVE (
 name IN VARCHAR2);

Parameters

Table 19-5 REMOVE Procedure Parameters

	Parameter	Description
	
name

	
Name of the alert (case-insensitive) to be removed from registration list.

Usage Notes

Removing alerts is important because it reduces the amount of work done by signalers of the alert. If a session dies without removing the alert, that alert is eventually (but not immediately) cleaned up.

REMOVEALL Procedure

This procedure removes all alerts for this session from the registration list. You should do this when the session is no longer interested in any alerts.

This procedure is called automatically upon first reference to this package during a session. Therefore, no alerts from prior sessions which may have terminated abnormally can affect this session.

This procedure always performs a commit.

Syntax

DBMS_ALERT.REMOVEALL;

SET_DEFAULTS Procedure

In case a polling loop is required, use the SET_DEFAULTS procedure to set the polling interval.

Syntax

DBMS_ALERT.SET_DEFAULTS (
 sensitivity IN NUMBER);

Parameters

Table 19-6 SET_DEFAULTS Procedure Parameters

	Parameter	Description
	
sensitivity

	
Polling interval, in seconds, to sleep between polls. The default interval is five seconds.

SIGNAL Procedure

This procedure signals an alert. The effect of the SIGNAL call only occurs when the transaction in which it is made commits. If the transaction rolls back, SIGNAL has no effect.

All sessions that have registered interest in this alert are notified. If the interested sessions are currently waiting, they are awakened. If the interested sessions are not currently waiting, they are notified the next time they do a wait call.

Multiple sessions can concurrently perform signals on the same alert. Each session, as it signals the alert, blocks all other concurrent sessions until it commits. This has the effect of serializing the transactions.

Syntax

DBMS_ALERT.SIGNAL (
 name IN VARCHAR2,
 message IN VARCHAR2);

Parameters

Table 19-7 SIGNAL Procedure Parameters

	Parameter	Description
	
name

	
Name of the alert to signal.

	
message

	
Message, of 1800 bytes or less, to associate with this alert.

This message is passed to the waiting session. The waiting session might be able to avoid reading the database after the alert occurs by using the information in the message.

WAITANY Procedure

Call this procedure to wait for an alert to occur for any of the alerts for which the current session is registered.

Syntax

DBMS_ALERT.WAITANY (
 name OUT VARCHAR2,
 message OUT VARCHAR2,
 status OUT INTEGER,
 timeout IN NUMBER DEFAULT MAXWAIT);

Parameters

Table 19-8 WAITANY Procedure Parameters

	Parameter	Description
	
name

	
Returns the name of the alert that occurred.

	
message

	
Returns the message associated with the alert.

This is the message provided by the SIGNAL call. If multiple signals on this alert occurred before WAITANY, the message corresponds to the most recent SIGNAL call. Messages from prior SIGNAL calls are discarded.

	
status

	
Values returned:

0 - alert occurred

1 - timeout occurred

	
timeout

	
Maximum time to wait for an alert.

If no alert occurs before timeout seconds, this returns a status of 1.

Usage Notes

An implicit COMMIT is issued before this procedure is executed. The same session that waits for the alert may also first signal the alert. In this case remember to commit after the signal and before the wait; otherwise, DBMS_LOCK.REQUEST (which is called by DBMS_ALERT) returns status 4.

Exceptions

-20000, ORU-10024: there are no alerts registered.

WAITONE Procedure

This procedure waits for a specific alert to occur. An implicit COMMIT is issued before this procedure is executed. A session that is the first to signal an alert can also wait for the alert in a subsequent transaction. In this case, remember to commit after the signal and before the wait; otherwise, DBMS_LOCK.REQUEST (which is called by DBMS_ALERT) returns status 4.

Syntax

DBMS_ALERT.WAITONE (
 name IN VARCHAR2,
 message OUT VARCHAR2,
 status OUT INTEGER,
 timeout IN NUMBER DEFAULT MAXWAIT);

Parameters

Table 19-9 WAITONE Procedure Parameters

	Parameter	Description
	
name

	
Name of the alert to wait for.

	
message

	
Returns the message associated with the alert.

This is the message provided by the SIGNAL call. If multiple signals on this alert occurred before WAITONE, the message corresponds to the most recent SIGNAL call. Messages from prior SIGNAL calls are discarded.

	
status

	
Values returned:

0 - alert occurred

1 - timeout occurred

	
timeout

	
Maximum time to wait for an alert.

If the named alert does not occurs before timeout seconds, this returns a status of 1.

20 DBMS_APPLICATION_INFO

Application developers can use the DBMS_APPLICATION_INFO package with Oracle Trace and the SQL trace facility to record names of executing modules or transactions in the database for later use when tracking the performance of various modules and debugging.

This chapter contains the following topics:

	
Using DBMS_APPLICATION_INFO

	
Overview

	
Security Model

	
Operational Notes

	
Summary of DBMS_APPLICATION_INFO Subprograms

Using DBMS_APPLICATION_INFO

	
Overview

	
Security Model

	
Operational Notes

Overview

Registering the application allows system administrators and performance tuning specialists to track performance by module. System administrators can also use this information to track resource use by module. When an application registers with the database, its name and actions are recorded in the V$SESSION and V$SQLAREA views.

Security Model

	
Note:

The public synonym for DBMS_APPLICATION_INFO is not dropped before creation so that you can redirect the public synonym to point to your own package.

No further privileges are required. The DBMSAPIN.SQL script is already run as a part of standard database creation .

Operational Notes

Your applications should set the name of the module and name of the action automatically each time a user enters that module. The module name could be the name of a form in an Oracle Forms application, or the name of the code segment in an Oracle Precompilers application. The action name should usually be the name or description of the current transaction within a module.

If you want to gather your own statistics based on module, you can implement a wrapper around this package by writing a version of this package in another schema that first gathers statistics and then calls the SYS version of the package. The public synonym for DBMS_APPLICATION_INFO can then be changed to point to the DBA's version of the package.

Summary of DBMS_APPLICATION_INFO Subprograms

Table 20-1 DBMS_APPLICATION_INFO Package Subprograms

	Subprogram	Description
	
READ_CLIENT_INFO Procedure

	
Reads the value of the client_info field of the current session

	
READ_MODULE Procedure

	
Reads the values of the module and action fields of the current session

	
SET_ACTION Procedure

	
Sets the name of the current action within the current module

	
SET_CLIENT_INFO Procedure

	
Sets the client_info field of the session

	
SET_MODULE Procedure

	
Sets the name of the module that is currently running to a new module

	
SET_SESSION_LONGOPS Procedure

	
Sets a row in the V$SESSION_LONGOPS table

READ_CLIENT_INFO Procedure

This procedure reads the value of the client_info field of the current session.

Syntax

DBMS_APPLICATION_INFO.READ_CLIENT_INFO (
 client_info OUT VARCHAR2);

Parameters

Table 20-2 READ_CLIENT_INFO Procedure Parameters

	Parameter	Description
	
client_info

	
Last client information value supplied to the SET_CLIENT_INFO procedure.

READ_MODULE Procedure

This procedure reads the values of the module and action fields of the current session.

Syntax

DBMS_APPLICATION_INFO.READ_MODULE (
 module_name OUT VARCHAR2,
 action_name OUT VARCHAR2);

Parameters

Table 20-3 READ_MODULE Procedure Parameters

	Parameter	Description
	
module_name

	
Last value that the module name was set to by calling SET_MODULE.

	
action_name

	
Last value that the action name was set to by calling SET_ACTION or SET_MODULE.

Usage Notes

Module and action names for a registered application can be retrieved by querying V$SQLAREA or by calling the READ_MODULE procedure. Client information can be retrieved by querying the V$SESSION view, or by calling the READ_CLIENT_INFO Procedure.

Examples

The following sample query illustrates the use of the MODULE and ACTION column of the V$SQLAREA.

SELECT sql_text, disk_reads, module, action
FROM v$sqlarea
WHERE module = 'add_employee';

SQL_TEXT DISK_READS MODULE ACTION
------------------- ---------- ------------------ ----------------
INSERT INTO emp 1 add_employee insert into emp
(ename, empno, sal, mgr, job, hiredate, comm, deptno)
VALUES
(name, next.emp_seq, manager, title, SYSDATE, commission, department)

1 row selected.

SET_ACTION Procedure

This procedure sets the name of the current action within the current module.

Syntax

DBMS_APPLICATION_INFO.SET_ACTION (
 action_name IN VARCHAR2);

Parameters

Table 20-4 SET_ACTION Procedure Parameters

	Parameter	Description
	
action_name

	
The name of the current action within the current module. When the current action terminates, call this procedure with the name of the next action if there is one, or NULL if there is not. Names longer than 32 bytes are truncated.

Usage Notes

The action name should be descriptive text about the current action being performed. You should probably set the action name before the start of every transaction.

Set the transaction name to NULL after the transaction completes, so that subsequent transactions are logged correctly. If you do not set the transaction name to NULL, subsequent transactions may be logged with the previous transaction's name.

Example

The following is an example of a transaction that uses the registration procedure:

CREATE OR REPLACE PROCEDURE bal_tran (amt IN NUMBER(7,2)) AS
BEGIN

-- balance transfer transaction

 DBMS_APPLICATION_INFO.SET_ACTION(
 action_name => 'transfer from chk to sav');
 UPDATE chk SET bal = bal + :amt
 WHERE acct# = :acct;
 UPDATE sav SET bal = bal - :amt
 WHERE acct# = :acct;
 COMMIT;
 DBMS_APPLICATION_INFO.SET_ACTION(null);

END;

SET_CLIENT_INFO Procedure

This procedure supplies additional information about the client application.

Syntax

DBMS_APPLICATION_INFO.SET_CLIENT_INFO (
 client_info IN VARCHAR2);

Parameters

Table 20-5 SET_CLIENT_INFO Procedure Parameters

	Parameter	Description
	
client_info

	
Supplies any additional information about the client application. This information is stored in the V$SESSION view. Information exceeding 64 bytes is truncated.

	
Note:

CLIENT_INFO is readable and writable by any user. For storing secured application attributes, you can use the application context feature.

SET_MODULE Procedure

This procedure sets the name of the current application or module.

Syntax

DBMS_APPLICATION_INFO.SET_MODULE (
 module_name IN VARCHAR2,
 action_name IN VARCHAR2);

Parameters

Table 20-6 SET_MODULE Procedure Parameters

	Parameter	Description
	
module_name

	
Name of module that is currently running. When the current module terminates, call this procedure with the name of the new module if there is one, or NULL if there is not. Names longer than 48 bytes are truncated.

	
action_name

	
Name of current action within the current module. If you do not want to specify an action, this value should be NULL. Names longer than 32 bytes are truncated.

Usage Notes

Example

CREATE or replace PROCEDURE add_employee(
 name VARCHAR2,
 salary NUMBER,
 manager NUMBER,
 title VARCHAR2,
 commission NUMBER,
 department NUMBER) AS
BEGIN
 DBMS_APPLICATION_INFO.SET_MODULE(
 module_name => 'add_employee',
 action_name => 'insert into emp');
 INSERT INTO emp
 (ename, empno, sal, mgr, job, hiredate, comm, deptno)
 VALUES (name, emp_seq.nextval, salary, manager, title, SYSDATE,
 commission, department);
 DBMS_APPLICATION_INFO.SET_MODULE(null,null);
END;

SET_SESSION_LONGOPS Procedure

This procedure sets a row in the V$SESSION_LONGOPS view. This is a view that is used to indicate the on-going progress of a long running operation. Some Oracle functions, such as parallel execution and Server Managed Recovery, use rows in this view to indicate the status of, for example, a database backup.

Applications may use the SET_SESSION_LONGOPS procedure to advertise information on the progress of application specific long running tasks so that the progress can be monitored by way of the V$SESSION_LONGOPS view.

Syntax

DBMS_APPLICATION_INFO.SET_SESSION_LONGOPS (
 rindex IN OUT BINARY_INTEGER,
 slno IN OUT BINARY_INTEGER,
 op_name IN VARCHAR2 DEFAULT NULL,
 target IN BINARY_INTEGER DEFAULT 0,
 context IN BINARY_INTEGER DEFAULT 0,
 sofar IN NUMBER DEFAULT 0,
 totalwork IN NUMBER DEFAULT 0,
 target_desc IN VARCHAR2 DEFAULT 'unknown target',
 units IN VARCHAR2 DEFAULT NULL)

set_session_longops_nohint constant BINARY_INTEGER := -1;

Parameters

Table 20-7 SET_SESSION_LONGOPS Procedure Parameters

	Parameter	Description
	
rindex

	
A token which represents the v$session_longops row to update. Set this to set_session_longops_nohint to start a new row. Use the returned value from the prior call to reuse a row.

	
slno

	
Saves information across calls to set_session_longops: It is for internal use and should not be modified by the caller.

	
op_name

	
Specifies the name of the long running task. It appears as the OPNAME column of v$session_longops. The maximum length is 64 bytes.

	
target

	
Specifies the object that is being worked on during the long running operation. For example, it could be a table ID that is being sorted. It appears as the TARGET column of v$session_longops.

	
context

	
Any number the client wants to store. It appears in the CONTEXT column of v$session_longops.

	
sofar

	
Any number the client wants to store. It appears in the SOFAR column of v$session_longops. This is typically the amount of work which has been done so far.

	
totalwork

	
Any number the client wants to store. It appears in the TOTALWORK column of v$session_longops. This is typically an estimate of the total amount of work needed to be done in this long running operation.

	
target_desc

	
Specifies the description of the object being manipulated in this long operation. This provides a caption for the target parameter. This value appears in the TARGET_DESC field of v$session_longops. The maximum length is 32 bytes.

	
units

	
Specifies the units in which sofar and totalwork are being represented. It appears as the UNITS field of v$session_longops. The maximum length is 32 bytes.

Example

This example performs a task on 10 objects in a loop. As the example completes each object, Oracle updates V$SESSION_LONGOPS on the procedure's progress.

DECLARE
 rindex BINARY_INTEGER;
 slno BINARY_INTEGER;
 totalwork number;
 sofar number;
 obj BINARY_INTEGER;

 BEGIN
 rindex := dbms_application_info.set_session_longops_nohint;
 sofar := 0;
 totalwork := 10;

 WHILE sofar < 10 LOOP
 -- update obj based on sofar
 -- perform task on object target

 sofar := sofar + 1;
 dbms_application_info.set_session_longops(rindex, slno,
 "Operation X", obj, 0, sofar, totalwork, "table", "tables");
 END LOOP;
 END;

21 DBMS_APPLY_ADM

The DBMS_APPLY_ADM package provides subprograms to configure and manage Oracle Streams apply processes, XStream outbound servers, and XStream inbound servers.

This chapter contains the following topics:

	
Using DBMS_APPLY_ADM

	
Overview

	
Security Model

	
Operational Notes

	
Summary of DBMS_APPLY_ADM Subprograms

	
See Also:

	
Oracle Streams Concepts and Administration and Oracle Streams Replication Administrator's Guide for more information about this package and apply processes

	
Oracle Database XStream Guide for more information about XStream outbound servers and inbound servers

Using DBMS_APPLY_ADM

This section contains topics which relate to using the DBMS_APPLY_ADM package.

	
Overview

	
Security Model

	
Operational Notes

Overview

This package provides interfaces to start, stop, and configure Oracle Streams apply processes, XStream outbound servers, and XStream inbound servers. This package includes subprograms for configuring apply handlers, setting enqueue destinations for messages, and specifying execution directives for messages. This package also provides administrative subprograms that set the instantiation SCN for objects at a destination database. This package also includes subprograms for managing apply errors.

	
Note:

	
For simplicity, this chapter refers to apply processes, XStream outbound servers, and XStream inbound servers as apply components. This chapter identifies a specific type of apply component when necessary.

	
Using XStream requires purchasing a license for the Oracle GoldenGate product.

	
See Also:

	
Oracle Streams Concepts and Administration

	
Oracle Streams Replication Administrator's Guide

	
Oracle Database XStream Guide

Security Model

Security on this package can be controlled in either of the following ways:

	
Granting EXECUTE on this package to selected users or roles.

	
Granting EXECUTE_CATALOG_ROLE to selected users or roles.

If subprograms in the package are run from within a stored procedure, then the user who runs the subprograms must be granted EXECUTE privilege on the package directly. It cannot be granted through a role.

When the DBMS_APPLY_ADM package is used to manage an Oracle Streams configuration, it requires that the user is granted the privileges of an Oracle Streams administrator.

When the DBMS_APPLY_ADM package is used to manage an XStream configuration, it requires that the user is granted the privileges of an XStream administrator.

	
Note:

The user must be granted additional privileges to perform some administrative tasks using the subprograms in this package, such as setting an apply user. If additional privileges are required for a subprogram, then the privileges are documented in the section that describes the subprogram.

	
See Also:

	
Oracle Streams Concepts and Administration for information about configuring an Oracle Streams administrator

	
Oracle Database XStream Guide for information about configuring an XStream administrator

Operational Notes

The following sections contain operational notes for this package:

	
Deprecated Apply Component Parameter Value

Deprecated Apply Component Parameter Value

	
Note:

Oracle recommends that you do not use deprecated apply component parameter values. Support for deprecated features is for backward compatibility only.

The NONE value for the commit_serialization apply component parameter is deprecated. It is replaced by the DEPENDENT_TRANSACTIONS value.

	
See Also:

SET_PARAMETER Procedure

Summary of DBMS_APPLY_ADM Subprograms

Table 21-1 DBMS_APPLY_ADM Package Subprograms

	Subprogram	Description
	
ADD_STMT_HANDLER Procedure

	
Adds a statement DML handler for a specified operation on a specified database object to a single apply component or to all apply components in the database

	
ALTER_APPLY Procedure

	
Alters an apply component

	
COMPARE_OLD_VALUES Procedure

	
Specifies whether to compare the old value of one or more columns in a row logical change record (row LCR) with the current value of the corresponding columns at the destination site during apply

	
CREATE_APPLY Procedure

	
Creates an apply component

	
CREATE_OBJECT_DEPENDENCY Procedure

	
Creates an object dependency

	
DELETE_ALL_ERRORS Procedure

	
Deletes all the error transactions for the specified apply component

	
DELETE_ERROR Procedure

	
Deletes the specified error transaction

	
DROP_APPLY Procedure

	
Drops an apply component

	
DROP_OBJECT_DEPENDENCY Procedure

	
Drops an object dependency

	
EXECUTE_ALL_ERRORS Procedure

	
Reexecutes the error transactions for the specified apply component

	
EXECUTE_ERROR Procedure

	
Reexecutes the specified error transaction

	
GET_ERROR_MESSAGE Function

	
Returns the message payload from the error queue for the specified message number and transaction identifier

	
REMOVE_STMT_HANDLER

	
Removes a statement DML handler for a specified operation on a specified database object from a single apply component or from all apply components in the database

	
SET_CHANGE_HANDLER Procedure

	
Sets or unsets a statement DML handler that tracks changes for a specified operation on a specified database object for a single apply component

	
SET_DML_HANDLER Procedure

	
Sets a user procedure as a procedure DML handler for a specified operation on a specified database object for a single apply component or for all apply components in the database

	
SET_ENQUEUE_DESTINATION Procedure

	
Sets the queue where the apply component automatically enqueues a message that satisfies the specified rule

	
SET_EXECUTE Procedure

	
Specifies whether a message that satisfies the specified rule is executed by an apply component

	
SET_GLOBAL_INSTANTIATION_SCN Procedure

	
Records the specified instantiation SCN for the specified source database and, optionally, for the schemas at the source database and the tables owned by these schemas

	
SET_KEY_COLUMNS Procedures

	
Records the set of columns to be used as the substitute primary key for local apply purposes and removes existing substitute primary key columns for the specified object if they exist

	
SET_PARAMETER Procedure

	
Sets an apply parameter to the specified value

	
SET_SCHEMA_INSTANTIATION_SCN Procedure

	
Records the specified instantiation SCN for the specified schema in the specified source database and, optionally, for the tables owned by the schema at the source database

	
SET_TABLE_INSTANTIATION_SCN Procedure

	
Records the specified instantiation SCN for the specified table in the specified source database

	
SET_UPDATE_CONFLICT_HANDLER Procedure

	
Adds, updates, or drops an update conflict handler for the specified object

	
SET_VALUE_DEPENDENCY Procedure

	
Sets or removes a value dependency

	
START_APPLY Procedure

	
Directs the apply component to start applying messages

	
STOP_APPLY Procedure

	
Stops the apply component from applying any messages and rolls back any unfinished transactions being applied

	
Note:

All procedures commit unless specified otherwise. However, the GET_ERROR_MESSAGE function does not commit.

ADD_STMT_HANDLER Procedure

This procedure adds a statement DML handler for a specified operation on a specified database object. The procedure adds the statement DML handler to a single apply component or to all apply components in the database.

This procedure is overloaded. One version of this procedure contains the statement and comment parameters, and the other does not. The statement parameter enables you to create the statement DML handler and add it to one or more processes in one step. Otherwise, create the statement DML handler using the DBMS_STREAMS_HANDLER_ADM package before adding it to one or more processes.

	
See Also:

	
Chapter 147, "DBMS_STREAMS_HANDLER_ADM"

	
Oracle Streams Concepts and Administration

Syntax

DBMS_APPLY_ADM.ADD_STMT_HANDLER(
 object_name IN VARCHAR2,
 operation_name IN VARCHAR2,
 handler_name IN VARCHAR2,
 statement IN CLOB,
 apply_name IN VARCHAR2 DEFAULT NULL,
 comment IN VARCHAR2 DEFAULT NULL);

DBMS_APPLY_ADM.ADD_STMT_HANDLER(
 object_name IN VARCHAR2,
 operation_name IN VARCHAR2,
 handler_name IN VARCHAR2,
 apply_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 21-2 ADD_STMT_HANDLER Procedure Parameters

	Parameter	Description
	
object_name

	
The name of the source object specified as [schema_name.]object_name. For example, hr.employees. If the schema is not specified, then the current user is the default. The specified object does not need to exist when you run this procedure.

If NULL, then the procedure raises an error.

	
operation_name

	
The name of the operation, which can be specified as:

	
INSERT

	
UPDATE

	
DELETE

If NULL, then the procedure raises an error.

Note: Statement DML handlers cannot be specified for LOB operations.

	
handler_name

	
The name of the statement DML handler.

If the specified statement DML handler exists, then the statement in the statement parameter is added to the existing handler. Ensure that the existing statement DML handler is for the same operation on the same database object as the settings for the operation_name and object_name parameters, respectively. If the existing handler is for a different operation or database object, then an apply error results when the handler is invoked.

If the specified statement DML handler does not exist and a non-NULL statement parameter is specified, then this procedure creates the statement DML handler.

If the specified statement DML handler does not exist and the statement parameter is not specified or is NULL, then this procedure raises an error.

If NULL, then the procedure raises an error.

	
statement

	
The text of the SQL statement to add to the statement DML handler.

If NULL, then the procedure raises an error.

	
apply_name

	
The name of the apply component that uses the statement DML handler.

If NULL, then the procedure adds the statement DML handler as a general handler to all apply components in the database.

	
comment

	
A comment for the statement DML handler.

If NULL, then no comment is recorded for the statement DML handler.

Usage Notes

The following usage notes apply to this procedure:

	
The ADD_STMT_HANDLER Procedure and XStream Outbound Servers

	
The ADD_STMT_HANDLER Procedure and XStream Inbound Servers

The ADD_STMT_HANDLER Procedure and XStream Outbound Servers

This procedure has no effect on XStream outbound servers. Outbound servers ignore all apply handlers.

The ADD_STMT_HANDLER Procedure and XStream Inbound Servers

This procedure functions the same way for apply processes and inbound servers.

ALTER_APPLY Procedure

This procedure alters an apply component.

Syntax

DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name IN VARCHAR2,
 rule_set_name IN VARCHAR2 DEFAULT NULL,
 remove_rule_set IN BOOLEAN DEFAULT FALSE,
 message_handler IN VARCHAR2 DEFAULT NULL
 remove_message_handler IN BOOLEAN DEFAULT FALSE,
 ddl_handler IN VARCHAR2 DEFAULT NULL,
 remove_ddl_handler IN BOOLEAN DEFAULT FALSE,
 apply_user IN VARCHAR2 DEFAULT NULL,
 apply_tag IN RAW DEFAULT NULL,
 remove_apply_tag IN BOOLEAN DEFAULT FALSE,
 precommit_handler IN VARCHAR2 DEFAULT NULL,
 remove_precommit_handler IN BOOLEAN DEFAULT FALSE,
 negative_rule_set_name IN VARCHAR2 DEFAULT NULL,
 remove_negative_rule_set IN BOOLEAN DEFAULT FALSE);

Parameters

Table 21-3 ALTER_APPLY Procedure Parameters

	Parameter	Description
	
apply_name

	
The name of the apply component being altered. You must specify the name of an existing apply component. Do not specify an owner.

	
rule_set_name

	
The name of the positive rule set for the apply component. The positive rule set contains the rules that instruct the apply component to apply messages.

If you want to use a positive rule set for the apply component, then you must specify an existing rule set in the form [schema_name.]rule_set_name. For example, to specify a positive rule set in the hr schema named job_apply_rules, enter hr.job_apply_rules. If the schema is not specified, then the current user is the default.

An error is returned if the specified rule set does not exist. You can create a rule set and add rules to it using the DBMS_STREAMS_ADM package or the DBMS_RULE_ADM package.

If you specify NULL and the remove_rule_set parameter is set to FALSE, then this procedure retains any existing positive rule set for the specified apply component. If you specify NULL and the remove_rule_set parameter is set to TRUE, then this procedure removes any existing positive rule set from the specified apply component.

	
remove_rule_set

	
If TRUE, then the procedure removes the positive rule set for the specified apply component. If you remove the positive rule set for an apply component, and the apply component does not have a negative rule set, then the apply component dequeues all messages in its queue.

If you remove the positive rule set for an apply component, and a negative rule set exists for the apply component, then the apply component dequeues all messages in its queue that are not discarded by the negative rule set.

If FALSE, then the procedure retains the positive rule set for the specified apply component.

If the rule_set_name parameter is non-NULL, then this parameter should be set to FALSE.

	
message_handler

	
A user-defined procedure that processes non-LCR messages in the queue for the apply component.

See "Usage Notes" in the CREATE_APPLY Procedure for more information about a message handler procedure.

	
remove_message_handler

	
If TRUE, then the procedure removes the message handler for the specified apply component.

If FALSE, then the procedure retains any message handler for the specified apply component.

If the message_handler parameter is non-NULL, then this parameter should be set to FALSE.

	
ddl_handler

	
A user-defined procedure that processes DDL logical change records (DDL LCRs) in the queue for the apply component.

All applied DDL LCRs commit automatically. Therefore, if a DDL handler calls the EXECUTE member procedure of a DDL LCR, then a commit is performed automatically.

See "Usage Notes" in the CREATE_APPLY Procedure for more information about a DDL handler procedure.

	
remove_ddl_handler

	
If TRUE, then the procedure removes the DDL handler for the specified apply component.

If FALSE, then the procedure retains any DDL handler for the specified apply component.

If the ddl_handler parameter is non-NULL, then this parameter should be set to FALSE.

	
apply_user

	
The user in whose security domain an apply component dequeues messages that satisfy its rule sets, applies messages directly to database objects, runs custom rule-based transformations, and runs apply handlers. If NULL, then the apply user is not changed.

If a non-NULL value is specified to change the apply user, then the user who invokes the ALTER_APPLY procedure must be granted the DBA role. Only the SYS user can set the apply_user to SYS.

If you change the apply user, then this procedure grants the new apply user dequeue privilege on the queue used by the apply component. It also configures the user as a secure queue user of the queue.

In addition to the privileges granted by this procedure, you also should grant the following privileges to the apply user:

	
The necessary privileges to perform DML and DDL changes on the apply objects

	
EXECUTE privilege on the rule sets used by the apply component

	
EXECUTE privilege on all rule-based transformation functions used in the rule set

	
EXECUTE privilege on all apply handler procedures

These privileges can be granted directly to the apply user, or they can be granted through roles.

In addition, the apply user must be granted the EXECUTE privilege on all packages, including Oracle-supplied packages, that are invoked in subprograms run by the apply component. These privileges must be granted directly to the apply user. They cannot be granted through roles.

By default, this parameter is set to the user who created the apply component by running either the CREATE_APPLY procedure in this package or a procedure in the DBMS_STREAMS_ADM package.

Note: If the apply user for an apply component is dropped using DROP USER . . . CASCADE, then the apply component is also dropped automatically.

	
apply_tag

	
A binary tag that is added to redo entries generated by the specified apply component. The tag is a binary value that can be used to track LCRs.

The tag is relevant only if a capture process at the database where the apply component is running captures changes made by the apply component. If so, then the captured changes include the tag specified by this parameter.

If NULL, the default, then the apply tag for the apply component is not changed.

The following is an example of a tag with a hexadecimal value of 17:

HEXTORAW('17')

See Also: Oracle Streams Replication Administrator's Guide for more information about tags

	
remove_apply_tag

	
If TRUE, then the procedure sets the apply tag for the specified apply component to NULL, and the apply component generates redo entries with NULL tags.

If FALSE, then the procedure retains any apply tag for the specified apply component.

If the apply_tag parameter is non-NULL, then this parameter should be set to FALSE.

	
precommit_handler

	
A user-defined procedure that can receive internal commit directives in the queue for the apply component before they are processed by the apply component. Typically, precommit handlers are used for auditing commit information for transactions processed by an apply component.

An internal commit directive is enqueued in the following ways:

	
When a capture process captures row LCRs, the capture process enqueues the commit directive for the transaction that contains the row LCRs.

	
When a user or application enqueues messages and then issues a COMMIT statement, the commit directive is enqueued automatically.

For a captured row LCR, a commit directive contains the commit SCN of the transaction from the source database. For a user message, the commit SCN is generated by the apply component.

The precommit handler procedure must conform to the following restrictions:

	
Any work that commits must be an autonomous transaction.

	
Any rollback must be to a named savepoint created in the procedure.

If a precommit handler raises an exception, then the entire apply transaction is rolled back, and all of the messages in the transaction are moved to the error queue.

See "Usage Notes" in the CREATE_APPLY Procedure for more information about a precommit handler procedure.

	
remove_precommit_handler

	
If TRUE, then the procedure removes the precommit handler for the specified apply component.

If FALSE, then the procedure retains any precommit handler for the specified apply component.

If the precommit_handler parameter is non-NULL, then this parameter should be set to FALSE.

	
negative_rule_set_name

	
The name of the negative rule set for the apply component. The negative rule set contains the rules that instruct the apply component to discard messages.

If you want to use a negative rule set for the apply component, then you must specify an existing rule set in the form [schema_name.]rule_set_name. For example, to specify a negative rule set in the hr schema named neg_apply_rules, enter hr.neg_apply_rules. If the schema is not specified, then the current user is the default.

An error is returned if the specified rule set does not exist. You can create a rule set and add rules to it using the DBMS_STREAMS_ADM package or the DBMS_RULE_ADM package.

If you specify NULL and the remove_negative_rule_set parameter is set to FALSE, then the procedure retains any existing negative rule set. If you specify NULL and the remove_negative_rule_set parameter is set to TRUE, then the procedure removes any existing negative rule set.

If you specify both a positive and a negative rule set for an apply component, then the negative rule set is always evaluated first.

	
remove_negative_rule_set

	
If TRUE, then the procedure removes the negative rule set for the specified apply component. If you remove the negative rule set for an apply component, and the apply component does not have a positive rule set, then the apply component dequeues all messages in its queue.

If you remove the negative rule set for an apply component, and a positive rule set exists for the apply component, then the apply component dequeues all messages in its queue that are not discarded by the positive rule set.

If FALSE, then the procedure retains the negative rule set for the specified apply component.

If the negative_rule_set_name parameter is non-NULL, then this parameter should be set to FALSE.

Usage Notes

The following usage notes apply to this procedure:

	
Automatic Restart of Apply Components

	
The ALTER_APPLY Procedure and XStream Outbound Servers

	
The ALTER_APPLY Procedure and XStream Inbound Servers

Automatic Restart of Apply Components

An apply component is stopped and restarted automatically when you change the value of one or more of the following ALTER_APPLY procedure parameters:

	
message_handler

	
ddl_handler

	
apply_user

	
apply_tag

	
precommit_handler

The ALTER_APPLY Procedure and XStream Outbound Servers

The following usage notes apply to this procedure and XStream outbound servers:

	
The apply_user parameter can change the connect user for an outbound server.

	
You cannot specify an apply handler for an outbound server. An outbound server ignores the settings for the following parameters: message_handler, ddl_handler, and precommit_handler.

The client application can perform custom processing of the LCRs instead if necessary. However, if apply processes are configured in the same database as the outbound server, then you can specify apply handlers for these apply processes. In addition, you can configure general apply handlers for the database. An outbound server ignores general apply handlers.

	
An outbound server cannot set an apply tag for the changes it processes. An outbound server ignores the setting for the apply_tag parameter.

The ALTER_APPLY Procedure and XStream Inbound Servers

Inbound servers can use apply handlers. However, inbound servers only process LCRs. Therefore, inbound servers ignore message handlers specified in the message_handler parameter.

COMPARE_OLD_VALUES Procedure

This procedure specifies whether to compare the old values of one or more columns in a row logical change record (row LCR) with the current values of the corresponding columns at the destination site during apply. This procedure is relevant only for UPDATE and DELETE operations because only these operations result in old column values in row LCRs. The default is to compare old values for all columns.

This procedure is overloaded. The column_list and column_table parameters are mutually exclusive.

	
See Also:

Oracle Streams Replication Administrator's Guide for more information about conflict detection and resolution in an Oracle Streams environment

Syntax

DBMS_APPLY_ADM.COMPARE_OLD_VALUES(
 object_name IN VARCHAR2,
 column_list IN VARCHAR2,
 operation IN VARCHAR2 DEFAULT 'UPDATE',
 compare IN BOOLEAN DEFAULT TRUE,
 apply_database_link IN VARCHAR2 DEFAULT NULL);

DBMS_APPLY_ADM.COMPARE_OLD_VALUES(
 object_name IN VARCHAR2,
 column_table IN DBMS_UTILITY.LNAME_ARRAY,
 operation IN VARCHAR2 DEFAULT 'UPDATE',
 compare IN BOOLEAN DEFAULT TRUE,
 apply_database_link IN VARCHAR2 DEFAULT NULL);

Parameters

Table 21-4 COMPARE_OLD_VALUES Procedure Parameters

	Parameter	Description
	
object_name

	
The name of the source table specified as [schema_name.]object_name. For example, hr.employees. If the schema is not specified, then the current user is the default.

	
column_list

	
A comma-delimited list of column names in the table. There must be no spaces between entries.

Specify * to include all nonkey columns.

	
column_table

	
A PL/SQL associative array of type DBMS_UTILITY.LNAME_ARRAY that contains names of columns in the table. The first column name should be at position 1, the second at position 2, and so on. The table does not need to be NULL terminated.

	
operation

	
The name of the operation, which can be specified as:

	
UPDATE for UPDATE operations

	
DELETE for DELETE operations

	
* for both UPDATE and DELETE operations

	
compare

	
If compare is TRUE, the old values of the specified columns are compared during apply.

If compare is FALSE, the old values of the specified columns are not compared during apply.

	
apply_database_link

	
The name of the database link to a non-Oracle database. This parameter should be set only when the destination database is a non-Oracle database.

Usage Notes

The following usage notes apply to this procedure:

	
Conflict Detection

	
The COMPARE_OLD_VALUES Procedure and XStream Outbound Servers

	
The COMPARE_OLD_VALUES Procedure and XStream Inbound Servers

Conflict Detection

By default, an apply component uses the old column values in a row LCR to detect conflicts. You can choose not to compare old column values to avoid conflict detection for specific tables. For example, if you do not want to compare the old values for a set of columns during apply, then, using the COMPARE_OLD_VALUES procedure, specify the set of columns in the column_list or column_table parameter, and set the compare parameter to FALSE.

In addition, when the compare_key_only apply component parameter is set to Y, automatic conflict detection is disabled, and the apply component only uses primary key and unique key columns to identify the table row for a row LCR. When the compare_key_only apply component parameter is set to N, automatic conflict detection is enabled, and the apply component uses all of the old values in a row LCR to identify the table row for a row LCR.

	
Note:

	
An apply component compares old values for non-key columns when they are present in a row LCR and when the apply component parameter compare_key_only is set to N.

	
This procedure raises an error if a key column is specified in column_list or column_table and the compare parameter is set to FALSE.

	
See Also:

SET_PARAMETER Procedure for more information about the compare_key_only apply component parameter

The COMPARE_OLD_VALUES Procedure and XStream Outbound Servers

This procedure has no effect on XStream outbound servers.

The COMPARE_OLD_VALUES Procedure and XStream Inbound Servers

This procedure functions the same way for apply processes and inbound servers.

CREATE_APPLY Procedure

This procedure creates an apply component.

Syntax

 DBMS_APPLY_ADM.CREATE_APPLY(
 queue_name IN VARCHAR2,
 apply_name IN VARCHAR2,
 rule_set_name IN VARCHAR2 DEFAULT NULL,
 message_handler IN VARCHAR2 DEFAULT NULL,
 ddl_handler IN VARCHAR2 DEFAULT NULL,
 apply_user IN VARCHAR2 DEFAULT NULL,
 apply_database_link IN VARCHAR2 DEFAULT NULL,
 apply_tag IN RAW DEFAULT '00',
 apply_captured IN BOOLEAN DEFAULT FALSE,
 precommit_handler IN VARCHAR2 DEFAULT NULL,
 negative_rule_set_name IN VARCHAR2 DEFAULT NULL,
 source_database IN VARCHAR2 DEFAULT NULL);

Parameters

Table 21-5 CREATE_APPLY Procedure Parameters

	Parameter	Description
	
queue_name

	
The name of the queue from which the apply component dequeues messages. You must specify an existing queue in the form [schema_name.]queue_name. For example, to specify a queue in the hr schema named streams_queue, enter hr.streams_queue. If the schema is not specified, then the current user is the default.

Note: The queue_name setting cannot be altered after the apply component is created.

	
apply_name

	
The name of the apply component being created. A NULL specification is not allowed. Do not specify an owner.

The specified name must not match the name of an existing apply component or messaging client.

Note: The apply_name setting cannot be altered after the apply component is created.

	
rule_set_name

	
The name of the positive rule set for the apply component. The positive rule set contains the rules that instruct the apply component to apply messages.

If you want to use a positive rule set for the apply component, then you must specify an existing rule set in the form [schema_name.]rule_set_name. For example, to specify a positive rule set in the hr schema named job_apply_rules, enter hr.job_apply_rules. If the schema is not specified, then the current user is the default.

If you specify NULL, and no negative rule set is specified, then the apply component applies either all captured messages or all messages in the persistent queue, depending on the setting of the apply_captured parameter.

An error is returned if the specified rule set does not exist. You can create a rule set and add rules to it using the DBMS_STREAMS_ADM package or the DBMS_RULE_ADM package.

	
message_handler

	
A user-defined procedure that processes non-LCR messages in the queue for the apply component.

See "Usage Notes" for more information about a message handler procedure.

	
ddl_handler

	
A user-defined procedure that processes DDL logical change record (DDL LCRs) in the queue for the apply component.

All applied DDL LCRs commit automatically. Therefore, if a DDL handler calls the EXECUTE member procedure of a DDL LCR, then a commit is performed automatically.

See "Usage Notes" for more information about a DDL handler procedure.

	
apply_user

	
The user who applies all DML and DDL changes that satisfy the apply component rule sets and who runs user-defined apply handlers. If NULL, then the user who runs the CREATE_APPLY procedure is used.

The apply user is the user in whose security domain an apply component dequeues messages that satisfy its rule sets, applies messages directly to database objects, runs custom rule-based transformations configured for apply component rules, and runs apply handlers configured for the apply component. This user must have the necessary privileges to apply changes. This procedure grants the apply user dequeue privilege on the queue used by the apply component and configures the user as a secure queue user of the queue.

In addition to the privileges granted by this procedure, you also should grant the following privileges to the apply user:

	
The necessary privileges to perform DML and DDL changes on the apply objects

	
EXECUTE privilege on the rule sets used by the apply component

	
EXECUTE privilege on all rule-based transformation functions used in the rule set

	
EXECUTE privilege on all apply handler procedures

These privileges can be granted directly to the apply user, or they can be granted through roles.

In addition, the apply user must be granted EXECUTE privilege on all packages, including Oracle-supplied packages, that are invoked in subprograms run by the apply component. These privileges must be granted directly to the apply user. They cannot be granted through roles.

Note: If the apply user for an apply component is dropped using DROP USER . . . CASCADE, then the apply component is also dropped automatically.

See "Usage Notes" for more information about this parameter.

	
apply_database_link

	
The database at which the apply component applies messages. This parameter is used by an apply component when applying changes from Oracle to non-Oracle systems, such as Sybase. Set this parameter to NULL to specify that the apply component applies messages at the local database.

Note: The apply_database_link setting cannot be altered after the apply component is created.

	
apply_tag

	
A binary tag that is added to redo entries generated by the specified apply component. The tag is a binary value that can be used to track LCRs.

The tag is relevant only if a capture process at the database where the apply component is running captures changes made by the apply component. If so, then the captured changes include the tag specified by this parameter.

By default, the tag for an apply component is the hexadecimal equivalent of '00' (double zero).

The following is an example of a tag with a hexadecimal value of 17:

HEXTORAW('17')

If NULL, then the apply component generates redo entries with NULL tags.

See Also: Oracle Streams Replication Administrator's Guide for more information about tags

	
apply_captured

	
Either TRUE or FALSE.

If TRUE, then the apply component applies only the captured LCRs in the queue. Captured LCRs are LCRs that were captured by an Oracle Streams capture process.

If FALSE, then the apply component applies only the messages in a persistent queue. These are messages that were not captured by an Oracle Streams capture process, such as persistent LCRs or user messages.

To apply both captured LCRs and messages in a persistent queue, you must create at least two apply components.

Note: The apply_captured setting cannot be altered after the apply component is created.

See Also: Oracle Streams Concepts and Administration for more information about processing messages with an apply component

	
precommit_handler

	
A user-defined procedure that can receive internal commit directives in the queue for the apply component before they are processed by the apply component. Typically, precommit handlers are used for auditing commit information for transactions processed by an apply component.

An internal commit directive is enqueued in the following ways:

	
When a capture process captures row LCRs, the capture process enqueues the commit directive for the transaction that contains the row LCRs.

	
When a synchronous capture captures row LCRs, the persistent LCRs that were enqueued by the synchronous capture are organized into a message group. The synchronous capture records the transaction identifier in each persistent LCR in a transaction.

	
When a user or application enqueues messages and then issues a COMMIT statement, the commit directive is enqueued automatically.

For a row LCR captured by a capture process or synchronous capture, a commit directive contains the commit SCN of the transaction from the source database. For a message enqueued by a user or application, the commit SCN is generated by the apply component.

The precommit handler procedure must conform to the following restrictions:

	
Any work that commits must be an autonomous transaction.

	
Any rollback must be to a named savepoint created in the procedure.

If a precommit handler raises an exception, then the entire apply transaction is rolled back, and all of the messages in the transaction are moved to the error queue.

See "Usage Notes" for more information about a precommit handler procedure.

	
negative_rule_set_name

	
The name of the negative rule set for the apply component. The negative rule set contains the rules that instruct the apply component to discard messages.

If you want to use a negative rule set for the apply component, then you must specify an existing rule set in the form [schema_name.]rule_set_name. For example, to specify a negative rule set in the hr schema named neg_apply_rules, enter hr.neg_apply_rules. If the schema is not specified, then the current user is the default.

If you specify NULL, and no positive rule set is specified, then the apply component applies either all captured LCRs or all of the messages in the persistent queue, depending on the setting of the apply_captured parameter.

An error is returned if the specified rule set does not exist. You can create a rule set and add rules to it using the DBMS_STREAMS_ADM package or the DBMS_RULE_ADM package.

If you specify both a positive and a negative rule set for an apply component, then the negative rule set is always evaluated first.

	
source_database

	
The global name of the source database for the changes that will be applied by the apply component. The source database is the database where the changes originated. If an apply component applies captured messages, then the apply component can apply messages from only one capture process at one source database.

If NULL, then the source database name of the first LCR received by the apply component is used for the source database.

If you do not include the domain name, then the procedure appends it to the database name automatically. For example, if you specify DBS1 and the domain is NET, then the procedure specifies DBS1.NET automatically.

The rules in the apply component rule sets determine which messages are dequeued by the apply component. If the apply component dequeues an LCR with a source database that is different than the source database for the apply component, then an error is raised. You can determine the source database for an apply component by querying the DBA_APPLY_PROGRESS data dictionary view.

Usage Notes

The following sections describe usage notes for this procedure:

	
DBA Role Requirement

	
Handler Procedure Names

	
Message Handler and DDL Handler Procedure

	
Precommit Handler Procedure

	
The CREATE_APPLY Procedure and XStream Outbound Servers

	
The CREATE_APPLY Procedure and XStream Inbound Servers

DBA Role Requirement

If the user who invokes this procedure is different from the user specified in the apply_user parameter, then the invoking user must be granted the DBA role. If the user who invokes this procedure is the same as the user specified in the apply_user parameter, then the DBA role is not required for the invoking user. Only the SYS user can set the apply_user to SYS.

Handler Procedure Names

For the message_handler, ddl_handler, and precommit_handler parameters, specify an existing procedure in one of the following forms:

	
[schema_name.]procedure_name

	
[schema_name.]package_name.procedure_name

If the procedure is in a package, then the package_name must be specified. For example, to specify a procedure in the apply_pkg package in the hr schema named process_ddls, enter hr.apply_pkg.process_ddls. An error is returned if the specified procedure does not exist.

The user who invokes the CREATE_APPLY procedure must have EXECUTE privilege on a specified handler procedure. Also, if the schema_name is not specified, then the user who invokes the CREATE_APPLY procedure is the default.

Message Handler and DDL Handler Procedure

The procedure specified in both the message_handler parameter and the ddl_handler parameter must have the following signature:

PROCEDURE handler_procedure (
 parameter_name IN ANYDATA);

Here, handler_procedure stands for the name of the procedure and parameter_name stands for the name of the parameter passed to the procedure. For the message handler, the parameter passed to the procedure is a ANYDATA encapsulation of a user message. For the DDL handler procedure, the parameter passed to the procedure is a ANYDATA encapsulation of a DDL LCR.

	
See Also:

Chapter 248, "Logical Change Record TYPEs" for information about DDL LCRs

Precommit Handler Procedure

The procedure specified in the precommit_handler parameter must have the following signature:

PROCEDURE handler_procedure (
 parameter_name IN NUMBER);

Here, handler_procedure stands for the name of the procedure and parameter_name stands for the name of the parameter passed to the procedure. The parameter passed to the procedure is the commit SCN of a commit directive.

The CREATE_APPLY Procedure and XStream Outbound Servers

This procedure cannot create an XStream outbound servers. To create an XStream outbound server, use the DBMS_XSTREAM_ADM package.

The CREATE_APPLY Procedure and XStream Inbound Servers

The following usage notes apply to this procedure and XStream inbound servers:

	
The CREATE_APPLY procedure always creates an apply process. The apply process remains an apply process if it receives messages from a source other than an XStream client application, such as a capture process. The apply process can become an inbound server if an XStream client application attaches to it before it receives messages from any other source. After the initial contact, an apply process cannot be changed into an inbound server, and an inbound server cannot be changed into an apply process.

	
When creating an inbound server using the CREATE_APPLY procedure, set the apply_captured parameter to TRUE. Inbound servers only process LCRs captured by a capture process.

	
Inbound servers can use apply handlers. However, inbound servers only process LCRs. Therefore, inbound servers ignore message handlers specified in the message_handler parameter.

CREATE_OBJECT_DEPENDENCY Procedure

This procedure creates an object dependency. An object dependency is a virtual dependency definition that defines a parent-child relationship between two objects at a destination database.

An apply component schedules execution of transactions that involve the child object after all transactions with a lower commit system change number (commit SCN) that involve the parent object have been committed. An apply component uses the object identifier of the objects in the logical change records (LCRs) to detect dependencies. The apply component does not use column values in the LCRs to detect dependencies.

	
Note:

An error is raised if NULL is specified for either of the procedure parameters.

	
See Also:

	
DROP_OBJECT_DEPENDENCY Procedure

	
Oracle Streams Concepts and Administration

Syntax

DBMS_APPLY_ADM.CREATE_OBJECT_DEPENDENCY(
 object_name IN VARCHAR2,
 parent_object_name IN VARCHAR2);

Parameters

Table 21-6 CREATE_OBJECT_DEPENDENCY Procedure Parameters

	Parameter	Description
	
object_name

	
The name of the child database object, specified as [schema_name.]object_name. For example, hr.employees. If the schema is not specified, then the current user is the default.

	
parent_object_name

	
The name of the parent database object, specified as [schema_name.]object_name. For example, hr.departments. If the schema is not specified, then the current user is the default.

Usage Notes

The following usage notes apply to this procedure:

	
The CREATE_OBJECT_DEPENDENCY Procedure and XStream Outbound Servers

	
The CREATE_OBJECT_DEPENDENCY Procedure and XStream Inbound Servers

The CREATE_OBJECT_DEPENDENCY Procedure and XStream Outbound Servers

This procedure has no effect on XStream outbound servers.

The CREATE_OBJECT_DEPENDENCY Procedure and XStream Inbound Servers

This procedure functions the same way for apply processes and inbound servers.

DELETE_ALL_ERRORS Procedure

This procedure deletes all the error transactions for the specified apply component.

Syntax

DBMS_APPLY_ADM.DELETE_ALL_ERRORS(
 apply_name IN VARCHAR2 DEFAULT NULL);

Parameter

Table 21-7 DELETE_ALL_ERRORS Procedure Parameter

	Parameter	Description
	
apply_name

	
The name of the apply component that raised the errors while processing the transactions. Do not specify an owner.

If NULL, then all error transactions for all apply components are deleted.

Usage Notes

The following usage notes apply to this procedure:

	
The DELETE_ALL_ERRORS Procedure and XStream Outbound Servers

	
The DELETE_ALL_ERRORS Procedure and XStream Inbound Servers

The DELETE_ALL_ERRORS Procedure and XStream Outbound Servers

Outbound servers do not enqueue error transactions into an error queue. This procedure has no effect on XStream outbound servers.

The DELETE_ALL_ERRORS Procedure and XStream Inbound Servers

This procedure functions the same way for apply processes and inbound servers.

DELETE_ERROR Procedure

This procedure deletes the specified error transaction.

Syntax

DBMS_APPLY_ADM.DELETE_ERROR(
 local_transaction_id IN VARCHAR2);

Parameter

Table 21-8 DELETE_ERROR Procedure Parameter

	Parameter	Description
	
local_transaction_id

	
The identification number of the error transaction to delete. If the specified transaction does not exist in the error queue, then an error is raised.

Usage Notes

The following usage notes apply to this procedure:

The DELETE_ERROR Procedure and XStream Outbound Servers

Outbound servers do not enqueue error transactions into an error queue. This procedure has no effect on XStream outbound servers.

The DELETE_ERROR Procedure and XStream Inbound Servers

This procedure functions the same way for apply processes and inbound servers.

DROP_APPLY Procedure

This procedure drops an apply component.

Syntax

 DBMS_APPLY_ADM.DROP_APPLY(
 apply_name IN VARCHAR2,
 drop_unused_rule_sets IN BOOLEAN DEFAULT FALSE);

Parameters

Table 21-9 DROP_APPLY Procedure Parameters

	Parameter	Description
	
apply_name

	
The name of the apply component being dropped. You must specify an existing apply component name. Do not specify an owner.

	
drop_unused_rule_sets

	
If TRUE, then the procedure drops any rule sets, positive and negative, used by the specified apply component if these rule sets are not used by any other Oracle Streams or XStream component. These components include capture processes, propagations, apply processes, inbound servers, and messaging clients. If this procedure drops a rule set, then this procedure also drops any rules in the rule set that are not in another rule set.

If FALSE, then the procedure does not drop the rule sets used by the specified apply component, and the rule sets retain their rules.

Usage Notes

The following usage notes apply to this procedure:

	
The DROP_APPLY Procedure and Rules

	
The DROP_APPLY Procedure and XStream Outbound Servers

	
The DROP_APPLY Procedure and XStream Inbound Servers

The DROP_APPLY Procedure and Rules

When you use this procedure to drop an apply component, information about rules created for the apply component using the DBMS_STREAMS_ADM package is removed from the data dictionary views for rules. Information about such a rule is removed even if the rule is not in either the positive or negative rule set for the apply component. The following are the data dictionary views for rules:

	
ALL_STREAMS_GLOBAL_RULES

	
DBA_STREAMS_GLOBAL_RULES

	
ALL_STREAMS_MESSAGE_RULES

	
DBA_STREAMS_MESSAGE_RULES

	
ALL_STREAMS_SCHEMA_RULES

	
DBA_STREAMS_SCHEMA_RULES

	
ALL_STREAMS_TABLE_RULES

	
DBA_STREAMS_TABLE_RULES

	
See Also:

Oracle Streams Concepts and Administration for more information about Oracle Streams data dictionary views

The DROP_APPLY Procedure and XStream Outbound Servers

When the DROP_APPLY procedure is executed on an outbound server, it runs the DROP_OUTBOUND procedure in the DBMS_XSTREAM_ADM package. Therefore, it might also drop the outbound server's capture process and queue.

The DROP_APPLY Procedure and XStream Inbound Servers

When the DROP_APPLY procedure is executed on an inbound server, it runs the DROP_INBOUND procedure in the DBMS_XSTREAM_ADM package. Therefore, it might also drop the inbound server's queue.

DROP_OBJECT_DEPENDENCY Procedure

This procedure drops an object dependency. An object dependency is a virtual dependency definition that defines a parent-child relationship between two objects at a destination database.

	
Note:

	
An error is raised if an object dependency does not exist for the specified database objects.

	
An error is raised if NULL is specified for either of the procedure parameters.

	
See Also:

	
CREATE_OBJECT_DEPENDENCY Procedure

	
Oracle Streams Concepts and Administration

Syntax

 DBMS_APPLY_ADM.DROP_OBJECT_DEPENDENCY(
 object_name IN VARCHAR2,
 parent_object_name IN VARCHAR2);

Parameters

Table 21-10 DROP_OBJECT_DEPENDENCY Procedure Parameters

	Parameter	Description
	
object_name

	
The name of the child database object, specified as [schema_name.]object_name. For example, hr.employees. If the schema is not specified, then the current user is the default.

	
parent_object_name

	
The name of the parent database object, specified as [schema_name.]object_name. For example, hr.departments. If the schema is not specified, then the current user is the default.

Usage Notes

The following usage notes apply to this procedure:

The DROP_OBJECT_DEPENDENCY Procedure and XStream Outbound Servers

This procedure has no effect on XStream outbound servers.

The DROP_OBJECT_DEPENDENCY Procedure and XStream Inbound Servers

This procedure functions the same way for apply processes and inbound servers.

EXECUTE_ALL_ERRORS Procedure

This procedure reexecutes the error transactions in the error queue for the specified apply component.

The transactions are reexecuted in commit SCN order. Error reexecution stops if an error is raised.

	
See Also:

Oracle Streams Concepts and Administration for more information about the error queue

Syntax

DBMS_APPLY_ADM.EXECUTE_ALL_ERRORS(
 apply_name IN VARCHAR2 DEFAULT NULL,
 execute_as_user IN BOOLEAN DEFAULT FALSE);

Parameters

Table 21-11 EXECUTE_ALL_ERRORS Procedure Parameters

	Parameter	Description
	
apply_name

	
The name of the apply component that raised the errors while processing the transactions. Do not specify an owner.

If NULL, then all error transactions for all apply components are reexecuted.

	
execute_as_user

	
If TRUE, then the procedure reexecutes the transactions in the security context of the current user.

If FALSE, then the procedure reexecutes each transaction in the security context of the original receiver of the transaction. The original receiver is the user who was processing the transaction when the error was raised. The DBA_APPLY_ERROR data dictionary view lists the original receiver for each error transaction.

The user who executes the transactions must have privileges to perform DML and DDL changes on the apply objects and to run any apply handlers. This user must also have dequeue privileges on the queue used by the apply component.

Usage Notes

The following usage notes apply to this procedure:

	
The EXECUTE_ALL_ERRORS Procedure and XStream Outbound Servers

	
The EXECUTE_ALL_ERRORS Procedure and XStream Inbound Servers

The EXECUTE_ALL_ERRORS Procedure and XStream Outbound Servers

Outbound servers do not enqueue error transactions into an error queue. This procedure cannot be used with XStream outbound servers.

The EXECUTE_ALL_ERRORS Procedure and XStream Inbound Servers

This procedure functions the same way for apply processes and inbound servers.

EXECUTE_ERROR Procedure

This procedure reexecutes the specified error transaction in the error queue.

	
See Also:

Oracle Streams Concepts and Administration for more information about the error queue

Syntax

DBMS_APPLY_ADM.EXECUTE_ERROR(
 local_transaction_id IN VARCHAR2,
 execute_as_user IN BOOLEAN DEFAULT FALSE,
 user_procedure IN VARCHAR2 DEFAULT NULL);

Parameters

Table 21-12 EXECUTE_ERROR Procedure Parameters

	Parameter	Description
	
local_transaction_id

	
The identification number of the error transaction to execute. If the specified transaction does not exist in the error queue, then an error is raised.

	
execute_as_user

	
If TRUE, then the procedure reexecutes the transaction in the security context of the current user.

If FALSE, then the procedure reexecutes the transaction in the security context of the original receiver of the transaction. The original receiver is the user who was processing the transaction when the error was raised. The DBA_APPLY_ERROR data dictionary view lists the original receiver for each error transaction.

The user who executes the transaction must have privileges to perform DML and DDL changes on the apply objects and to run any apply handlers. This user must also have dequeue privileges on the queue used by the apply component.

	
user_procedure

	
A user-defined procedure that modifies the error transaction so that it can be successfully executed.

Specify NULL to execute the error transaction without running a user procedure.

See Also: "Usage Notes" for more information about the user procedure

Usage Notes

The following usage notes apply to this procedure:

	
The User Procedure

	
The EXECUTE_ERROR Procedure and XStream Outbound Servers

	
The EXECUTE_ERROR Procedure and XStream Inbound Servers

The User Procedure

You must specify the full procedure name for the user_procedure parameter in one of the following forms:

	
[schema_name.]package_name.procedure_name

	
[schema_name.]procedure_name

If the procedure is in a package, then the package_name must be specified. The user who invokes the EXECUTE_ERROR procedure must have EXECUTE privilege on the specified procedure. Also, if the schema_name is not specified, then the user who invokes the EXECUTE_ERROR procedure is the default.

For example, suppose the procedure_name has the following properties:

	
strmadmin is the schema_name.

	
fix_errors is the package_name.

	
fix_hr_errors is the procedure_name.

In this case, specify the following:

strmadmin.fix_errors.fix_hr_errors

The procedure you create for error handling must have the following signature:

PROCEDURE user_procedure (
 in_anydata IN ANYDATA,
 error_record IN DBA_APPLY_ERROR%ROWTYPE,
 error_message_number IN NUMBER,
 messaging_default_processing IN OUT BOOLEAN,
 out_anydata OUT ANYDATA);

The user procedure has the following parameters:

	
in_anydata: The ANYDATA encapsulation of a message that the apply component passes to the procedure. A single transaction can include multiple messages. A message can be a row logical change record (row LCR), a DDL logical change record (DDL LCR), or a user message.

	
error_record: The row in the DBA_APPLY_ERROR data dictionary view that identifies the transaction

	
error_message_number: The message number of the ANYDATA object in the in_anydata parameter, starting at 1

	
messaging_default_processing: If TRUE, then the apply component continues processing the message in the in_anydata parameter, which can include executing DML or DDL statements and invoking apply handlers.

If FALSE, then the apply component skips processing the message in the in_anydata parameter and moves on to the next message in the in_anydata parameter.

	
out_anydata: The ANYDATA object processed by the user procedure and used by the apply component if messaging_default_processing is TRUE.

If an LCR is executed using the EXECUTE LCR member procedure in the user procedure, then the LCR is executed directly, and the messaging_default_processing parameter should be set to FALSE. In this case, the LCR is not passed to any apply handlers.

Processing an error transaction with a user procedure results in one of the following outcomes:

	
The user procedure modifies the transaction so that it can be executed successfully.

	
The user procedure fails to make the necessary modifications, and an error is raised when transaction execution is attempted. In this case, the transaction is rolled back and remains in the error queue.

The following restrictions apply to the user procedure:

	
Do not execute COMMIT or ROLLBACK statements. Doing so can endanger the consistency of the transaction.

	
Do not modify LONG, LONG RAW or LOB column data in an LCR.

	
If the ANYDATA object in the in_anydata parameter is a row LCR, then the out_anydata parameter must be row LCR if the messaging_default_processing parameter is set to TRUE.

	
If the ANYDATA object in the in_anydata parameter is a DDL LCR, then the out_anydata parameter must be DDL LCR if the messaging_default_processing parameter is set to TRUE.

	
The user who runs the user procedure must have SELECT privilege on the DBA_APPLY_ERROR data dictionary view.

	
Note:

LCRs containing transactional directives, such as COMMIT and ROLLBACK, are not passed to the user procedure.

The EXECUTE_ERROR Procedure and XStream Outbound Servers

Outbound servers do not enqueue error transactions into an error queue. This procedure cannot be used with XStream outbound servers.

The EXECUTE_ERROR Procedure and XStream Inbound Servers

This procedure functions the same way for apply processes and inbound servers.

GET_ERROR_MESSAGE Function

This function returns the message payload from the error queue for the specified message number and transaction identifier. The message can be a logical change record (LCR) or a non-LCR message.

This function is overloaded. One version of this function contains two OUT parameters. These OUT parameters contain the destination queue into which the message should be enqueued, if one exists, and whether the message should be executed. The destination queue is specified using the SET_ENQUEUE_DESTINATION procedure, and the execution directive is specified using the SET_EXECUTE procedure.

	
See Also:

	
SET_ENQUEUE_DESTINATION Procedure

	
SET_EXECUTE Procedure

Syntax

DBMS_APPLY_ADM.GET_ERROR_MESSAGE(
 message_number IN NUMBER,
 local_transaction_id IN VARCHAR2,
 destination_queue_name OUT VARCHAR2,
 execute OUT BOOLEAN)
RETURN ANYDATA;

DBMS_APPLY_ADM.GET_ERROR_MESSAGE(
 message_number IN NUMBER,
 local_transaction_id IN VARCHAR2)
RETURN ANYDATA;

Parameters

Table 21-13 GET_ERROR_MESSAGE Function Parameters

	Parameter	Description
	
message_number

	
The identification number of the message. This number identifies the position of the message in the transaction. Query the DBA_APPLY_ERROR data dictionary view to view the message number of each apply error.

	
local_transaction_id

	
Identifier of the error transaction for which to return a message

	
destination_queue_name

	
Contains the name of the queue into which the message should be enqueued. If the message should not be enqueued into a queue, then this parameter contains NULL.

	
execute

	
Contains TRUE if the message should be executed

Contains FALSE if the message should not be executed

Usage Notes

The following usage notes apply to this procedure:

	
The GET_ERROR_MESSAGE Procedure and XStream Outbound Servers

	
The GET_ERROR_MESSAGE Procedure and XStream Inbound Servers

The GET_ERROR_MESSAGE Procedure and XStream Outbound Servers

Outbound servers do not enqueue error transactions into an error queue. This procedure cannot be used with XStream outbound servers.

The GET_ERROR_MESSAGE Procedure and XStream Inbound Servers

This procedure functions the same way for apply processes and inbound servers.

REMOVE_STMT_HANDLER

This procedure removes a statement DML handler for a specified operation on a specified database object from a single apply component or from all apply components in the database.

	
See Also:

	
Chapter 147, "DBMS_STREAMS_HANDLER_ADM"

	
Oracle Streams Concepts and Administration

Syntax

DBMS_APPLY_ADM.REMOVE_STMT_HANDLER(
 object_name IN VARCHAR2,
 operation_name IN VARCHAR2,
 handler_name IN VARCHAR2,
 apply_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 21-14 REMOVE_STMT_HANDLER Procedure Parameters

	Parameter	Description
	
object_name

	
The name of the source object specified as [schema_name.]object_name. For example, hr.employees. If the schema is not specified, then the current user is the default. The specified object does not need to exist when you run this procedure.

If NULL, then the procedure raises an error.

	
operation_name

	
The name of the operation, which can be specified as:

	
INSERT

	
UPDATE

	
DELETE

If NULL, then the procedure raises an error.

	
handler_name

	
The name of the statement DML handler.

If NULL, then the procedure raises an error.

	
apply_name

	
The name of the apply component that uses the statement DML handler.

If NULL, then the procedure removes the statement DML handler from all apply components in the database.

Usage Notes

The following usage notes apply to this procedure:

	
The REMOVE_STMT_HANDLER Procedure and XStream Outbound Servers

	
The REMOVE_STMT_HANDLER Procedure and XStream Inbound Servers

The REMOVE_STMT_HANDLER Procedure and XStream Outbound Servers

Outbound servers ignore all apply handlers. This procedure has no effect on XStream outbound servers.

The REMOVE_STMT_HANDLER Procedure and XStream Inbound Servers

This procedure functions the same way for apply processes and inbound servers.

SET_CHANGE_HANDLER Procedure

This procedure sets or unsets a change handler that tracks changes for a specified operation on a specified database object for a single apply component.

A change handler is a special type of statement DML handler that tracks table changes and was created by either the DBMS_STREAMS_ADM.MAINTAIN_CHANGE_TABLE procedure or this SET_CHANGE_HANDLER procedure. Information about change handlers is stored in the ALL_APPLY_CHANGE_HANDLERS and DBA_APPLY_CHANGE_HANDLERS views.

This procedure automatically generates the statement that is added to the change handler based on values specified in the procedure parameters. You should only run this procedure when a configuration that tracks database changes exists.

	
Note:

Use the MAINTAIN_CHANGE_TABLE Procedure to configure an environment that tracks table changes

Syntax

DBMS_APPLY_ADM.SET_CHANGE_HANDLER(
 change_table_name IN VARCHAR2,
 source_table_name IN VARCHAR2,
 capture_values IN VARCHAR2,
 apply_name IN VARCHAR2,
 operation_name IN VARCHAR2,
 change_handler_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 21-15 SET_CHANGE_HANDLER Procedure Parameters

	Parameter	Description
	
change_table_name

	
The table that records changes to the source table.

Specify the table as [schema_name.]table_name. For example, hr.jobs_change_table. If the schema is not specified, then the current user is the default.

If NULL, then the procedure raises an error.

	
source_table_name

	
The table at the source database for which changes are recorded.

Specify the table as [schema_name.]table_name. For example, hr.jobs. If the schema is not specified, then the current user is the default.

If NULL, then the procedure raises an error.

	
capture_values

	
Specify which values to record in the change table when update operations are performed on the source table:

	
old - To record the original values for an updated column in the source table

	
new - To record the new values for an updated column in the source table

	
* - To record both the original and the new values for an updated column in the source table

If NULL, then the procedure raises an error.

Note: For insert operations, only new column values are captured. For delete operations, only old column values are captured.

	
apply_name

	
The name of the apply component that applies changes to the change table. Do not specify an owner.

If NULL, then the procedure raises an error.

	
operation_name

	
The name of the operation, which can be specified as:

	
INSERT

	
UPDATE

	
DELETE

If NULL, then the procedure raises an error.

Note: Change handlers cannot be specified for LOB operations.

	
change_handler_name

	
The name of the change handler.

If the specified change handler exists, then a statement is added to the existing handler. Ensure that the existing change handler is for the same operation on the same table as the settings for the operation_name and source_table_name parameters, respectively. If the existing handler is for a different operation or table, then an apply error results when the handler is invoked.

If non-NULL and the specified change handler does not exist, then this procedure creates the change handler.

If NULL and a change handler exists for the same operation on the same table as the settings for the operation_name and source_table_name parameters, respectively, then the existing change handler is removed.

If NULL and the specified change handler does not exist, then the procedure raises an error.

See Also: "Usage Notes" for more information about this parameter.

Usage Notes

The following usage notes apply to this procedure:

	
Checking for an Existing Change Handler

	
The SET_CHANGE_HANDLER Procedure and XStream Outbound Servers

	
The SET_CHANGE_HANDLER Procedure and XStream Inbound Servers

Checking for an Existing Change Handler

To check for an existing change handler for a specific operation on a specific source table, run the following query:

 SELECT HANDLER_NAME, APPLY_NAME FROM DBA_APPLY_CHANGE_HANDLERS
 WHERE operation_name = 'operation'
 AND source_table_owner = 'source_table_owner'
 AND source_table_name = 'source_table_name'
 AND change_table_owner = 'change_table_owner'
 AND change_table_name = 'change_table_name';

where:

	
operation is operation specified for the new handler, either INSERT, UPDATE, or DELETE

	
source_table_owner is the owner of the source table

	
source_table_name is the name of the source table

	
change_table_owner is the owner of the change table

	
change_table_owner is the owner of the change table

The SET_CHANGE_HANDLER Procedure and XStream Outbound Servers

Outbound servers ignore all apply handlers. This procedure has no effect on XStream outbound servers.

The SET_CHANGE_HANDLER Procedure and XStream Inbound Servers

This procedure functions the same way for apply processes and inbound servers.

SET_DML_HANDLER Procedure

This procedure sets or unsets a user procedure as a procedure DML handler for a specified operation on a specified database object for a single apply component or for all apply components in the database. The user procedure alters the apply behavior for the specified operation on the specified object.

Syntax

DBMS_APPLY_ADM.SET_DML_HANDLER(
 object_name IN VARCHAR2,
 object_type IN VARCHAR2,
 operation_name IN VARCHAR2,
 error_handler IN BOOLEAN DEFAULT FALSE,
 user_procedure IN VARCHAR2,
 apply_database_link IN VARCHAR2 DEFAULT NULL,
 apply_name IN VARCHAR2 DEFAULT NULL,
 assemble_lobs IN BOOLEAN DEFAULT TRUE);

Parameters

Table 21-16 SET_DML_HANDLER Procedure Parameters

	Parameter	Description
	
object_name

	
The name of the source object specified as [schema_name.]object_name. For example, hr.employees. If the schema is not specified, then the current user is the default. The specified object does not need to exist when you run this procedure.

	
object_type

	
The type of the source object. Currently, TABLE is the only possible source object type.

	
operation_name

	
The name of the operation, which can be specified as:

	
INSERT

	
UPDATE

	
DELETE

	
LOB_UPDATE

	
DEFAULT

For example, suppose you run this procedure twice for the hr.employees table. In one call, you set operation_name to UPDATE and user_procedure to employees_update. In another call, you set operation_name to INSERT and user_procedure to employees_insert. Both times, you set error_handler to FALSE. In this case, the employees_update procedure is run for UPDATE operations on the hr.employees table, and the employees_insert procedure is run for INSERT operations on the hr.employees table.

Specify DEFAULT to set the procedure as the default procedure DML handler for the database object. In this case, the procedure DML handler is used for any INSERT, UPDATE, DELETE, and LOB_WRITE on the database object, if another procedure DML handler is not specifically set for the operation on the database object.

	
error_handler

	
If TRUE, then the specified user procedure is run when a row logical change record (row LCR) involving the specified operation on the specified object raises an apply error. You can code the user procedure to resolve possible error conditions, notify administrators of the error, log the error, or any combination of these actions.

If FALSE, then the handler being set is run for all row LCRs involving the specified operation on the specified object.

	
user_procedure

	
A user-defined procedure that is invoked during apply for the specified operation on the specified object. If the procedure is a procedure DML handler, then it is invoked instead of the default apply performed by Oracle. If the procedure is an error handler, then it is invoked when an apply error is encountered.

Specify NULL to unset a procedure DML handler that is set for the specified operation on the specified object.

	
apply_database_link

	
The name of the database link to a non-Oracle database. This parameter should be set only when the destination database is a non-Oracle database.

	
apply_name

	
The name of the apply component that uses the procedure DML handler or error handler.

If NULL, then the procedure sets the procedure DML handler or error handler as a general handler for all apply components in the database.

If the user_procedure parameter is set to NULL to unset a handler, and the handler being unset is set for a specific apply component, then use the apply_name parameter to specify the apply component to unset the handler.

	
assemble_lobs

	
If TRUE, then LOB assembly is used for LOB columns in LCRs processed by the handler. LOB assembly combines multiple LCRs for a LOB column resulting from a single row change into one row LCR before passing the LCR to the handler. Database compatibility must be 10.2.0 or higher to use LOB assembly.

If FALSE, then LOB assembly is not used for LOB columns in LCRs processed by the handler.

Usage Notes

The following usage notes apply to this procedure:

	
Run the SET_DML_HANDLER Procedure at the Destination Database

	
Procedure DML Handlers and Error Handlers

	
The apply_name Parameter

	
Signature of a DML Handler Procedure or Error Handler Procedure

	
LOB Assembly

	
The SET_DML_HANDLER Procedure and XStream Outbound Servers

	
The SET_DML_HANDLER Procedure and XStream Inbound Servers

Run the SET_DML_HANDLER Procedure at the Destination Database

Run this procedure at the destination database. The SET_DML_HANDLER procedure provides a way for users to apply logical change records containing DML changes (row LCRs) using a customized apply.

Procedure DML Handlers and Error Handlers

If the error_handler parameter is set to TRUE, then it specifies that the user procedure is an error handler. An error handler is invoked only when a row LCR raises an apply error. Such an error can result from a data conflict if no conflict handler is specified or if the update conflict handler cannot resolve the conflict. If the error_handler parameter is set to FALSE, then the user procedure is a procedure DML handler, not an error handler, and a procedure DML handler is always run instead of performing the specified operation on the specified object.

This procedure either sets a procedure DML handler or an error handler for a particular operation on an object. It cannot set both a procedure DML handler and an error handler for the same object and operation.

	
Note:

Currently, setting an error handler for an apply component that is applying changes to a non-Oracle database is not supported.

The apply_name Parameter

If the apply_name parameter is non-NULL, then the procedure DML handler or error handler is set for the specified apply component. In this case, this handler is not invoked for other apply components at the local destination database. If the apply_name parameter is NULL, the default, then the handler is set as a general handler for all apply components at the destination database. When a handler is set for a specific apply component, then this handler takes precedence over any general handlers. For example, consider the following scenario:

	
A procedure DML handler named handler_hr is specified for an apply component named apply_hr for UPDATE operations on the hr.employees table.

	
A general procedure DML handler named handler_gen also exists for UPDATE operations on the hr.employees table.

In this case, the apply_hr apply component uses the handler_hr procedure DML handler for UPDATE operations on the hr.employees table.

At the source database, you must specify an unconditional supplemental log group for the columns needed by a DML or error handler.

Signature of a DML Handler Procedure or Error Handler Procedure

You can use the SET_DML_HANDLER procedure to set either a procedure DML handler or an error handler for row LCRs that perform a specified operation on a specified object. The signatures of a DML handler procedure and of an error handler procedure are described following this section.

In either case, you must specify the full procedure name for the user_procedure parameter in one of the following forms:

	
[schema_name.]package_name.procedure_name

	
[schema_name.]procedure_name

If the procedure is in a package, then the package_name must be specified. The user who invokes the SET_DML_HANDLER procedure must have EXECUTE privilege on the specified procedure. Also, if the schema_name is not specified, then the user who invokes the SET_DML_HANDLER procedure is the default.

For example, suppose the procedure_name has the following properties:

	
hr is the schema_name.

	
apply_pkg is the package_name.

	
employees_default is the procedure_name.

In this case, specify the following:

hr.apply_pkg.employees_default

The following restrictions apply to the user procedure:

	
Do not execute COMMIT or ROLLBACK statements. Doing so can endanger the consistency of the transaction that contains the LCR.

	
If you are manipulating a row using the EXECUTE member procedure for the row LCR, then do not attempt to manipulate more than one row in a row operation. You must construct and execute manually any DML statements that manipulate more than one row.

	
If the command type is UPDATE or DELETE, then row operations resubmitted using the EXECUTE member procedure for the LCR must include the entire key in the list of old values. The key is the primary key or the smallest unique index that has at least one NOT NULL column, unless a substitute key has been specified by the SET_KEY_COLUMNS procedure. If there is no specified key, then the key consists of all non LOB, non LONG, and non LONG RAW columns.

	
If the command type is INSERT, then row operations resubmitted using the EXECUTE member procedure for the LCR should include the entire key in the list of new values. Otherwise, duplicate rows are possible. The key is the primary key or the smallest unique index that has at least one NOT NULL column, unless a substitute key has been specified by the SET_KEY_COLUMNS procedure. If there is no specified key, then the key consists of all of the table columns, except for columns of the following data types: LOB, LONG, LONG RAW, user-defined types (including object types, REFs, varrays, nested tables), and Oracle-supplied types (including Any types, XML types, spatial types, and media types).

	
See Also:

Oracle Streams Replication Administrator's Guide for information about and restrictions regarding procedure DML handlers and LOB, LONG, and LONG RAW data types

The procedure specified in the user_procedure parameter must have the following signature:

PROCEDURE user_procedure (
 parameter_name IN ANYDATA);

Here, user_procedure stands for the name of the procedure and parameter_name stands for the name of the parameter passed to the procedure. The parameter passed to the procedure is a ANYDATA encapsulation of a row LCR.

	
See Also:

Chapter 248, "Logical Change Record TYPEs" for more information about LCRs

The procedure you create for error handling must have the following signature:

PROCEDURE user_procedure (
 message IN ANYDATA,
 error_stack_depth IN NUMBER,
 error_numbers IN DBMS_UTILITY.NUMBER_ARRAY,
 error_messages IN emsg_array);

If you want to retry the DML operation within the error handler, then have the error handler procedure run the EXECUTE member procedure for the LCR. The last error raised is on top of the error stack. To specify the error message at the top of the error stack, use error_numbers(1) and error_messages(1).

	
Note:

	
Each parameter is required and must have the specified data type. However, you can change the names of the parameters.

	
The emsg_array value must be a user-defined array that is a table of type VARCHAR2 with at least 76 characters.

Running an error handler results in one of the following outcomes:

	
The error handler successfully resolves the error and returns control to the apply component.

	
The error handler fails to resolve the error, and the error is raised. The raised error causes the transaction to be rolled back and placed in the error queue.

LOB Assembly

Do not modify LONG, LONG RAW, or nonassembled LOB column data in an LCR with procedure DML handlers, error handlers, or custom rule-based transformation functions. Procedure DML handlers and error handlers can modify LOB columns in row LCRs that have been constructed by LOB assembly.

The SET_DML_HANDLER Procedure and XStream Outbound Servers

Outbound servers ignore all apply handlers. This procedure has no effect on XStream outbound servers.

The SET_DML_HANDLER Procedure and XStream Inbound Servers

This procedure functions the same way for apply processes and inbound servers.

SET_ENQUEUE_DESTINATION Procedure

This procedure sets the queue where the apply component automatically enqueues a message that satisfies the specified rule.

This procedure modifies the specified rule's action context to specify the queue. A rule action context is optional information associated with a rule that is interpreted by the client of the rules engine after the rule evaluates to TRUE for a message. In this case, the client of the rules engine is an apply component. The information in an action context is an object of type SYS.RE$NV_LIST, which consists of a list of name-value pairs.

A queue destination specified by this procedure always consists of the following name-value pair in an action context:

	
The name is APPLY$_ENQUEUE.

	
The value is an ANYDATA instance containing the queue name specified as a VARCHAR2.

Syntax

DBMS_APPLY_ADM.SET_ENQUEUE_DESTINATION(
 rule_name IN VARCHAR2,
 destination_queue_name IN VARCHAR2);

Parameters

Table 21-17 SET_ENQUEUE_DESTINATION Procedure Parameters

	Parameter	Description
	
rule_name

	
The name of the rule, specified as [schema_name.]rule_name. For example, to specify a rule named hr5 in the hr schema, enter hr.hr5 for this parameter. If the schema is not specified, then the current user is the default.

	
destination_queue_name

	
The name of the queue into which the apply component enqueues the message. Specify the queue in the form [schema_name.]queue_name. Only local queues can be specified.

For example, to specify a queue in the hr schema named streams_queue, enter hr.streams_queue. If the schema is not specified, then the current user is the default.

If NULL, then an existing name-value pair with the name APPLY$_ENQUEUE is removed. If no name-value pair exists with the name APPLY$_ENQUEUE for the rule, then no action is taken.

If non-NULL and a name-value pair exists for the rule with the name APPLY$_ENQUEUE, then it is removed, and a new name-value pair with the value specified by this parameter is added.

Usage Notes

The following usage notes apply to this procedure:

	
The SET_ENQUEUE_DESTINATION Procedure and Apply Handlers

	
Considerations for the SET_ENQUEUE_DESTINATION Procedure

	
The SET_ENQUEUE_DESTINATION Procedure and XStream Outbound Servers

	
The SET_ENQUEUE_DESTINATION Procedure and XStream Inbound Servers

The SET_ENQUEUE_DESTINATION Procedure and Apply Handlers

If an apply handler, such as a procedure DML handler, DDL handler, or message handler, processes a message that also is enqueued into a destination queue, then the apply handler processes the message before it is enqueued.

Considerations for the SET_ENQUEUE_DESTINATION Procedure

The following are considerations for using this procedure:

	
This procedure does not verify that the specified queue exists. If the queue does not exist, then an error is raised when an apply component tries to enqueue a message into it.

	
Oracle Streams capture processes, propagations, and messaging clients ignore the action context created by this procedure.

	
The apply user of the apply component using the specified rule must have the necessary privileges to enqueue messages into the specified queue. If the queue is a secure queue, then the apply user must be a secure queue user of the queue.

	
The specified rule must be in the positive rule set for an apply component. If the rule is in the negative rule set for an apply component, then the apply component does not enqueue the message into the destination queue.

	
If the commit SCN for a message is less than or equal to the relevant instantiation SCN for the message, then the message is not enqueued into the destination queue, even if the message satisfies the apply component rule sets.

The SET_ENQUEUE_DESTINATION Procedure and XStream Outbound Servers

This procedure has no effect on XStream outbound servers.

The SET_ENQUEUE_DESTINATION Procedure and XStream Inbound Servers

This procedure functions the same way for apply processes and inbound servers.

SET_EXECUTE Procedure

This procedure specifies whether a message that satisfies the specified rule is executed by an apply component.

This procedure modifies the specified rule's action context to specify message execution. A rule action context is optional information associated with a rule that is interpreted by the client of the rules engine after the rule evaluates to TRUE for a message. In this case, the client of the rules engine is an apply component. The information in an action context is an object of type SYS.RE$NV_LIST, which consists of a list of name-value pairs.

A message execution directive specified by this procedure always consists of the following name-value pair in an action context:

	
The name is APPLY$_EXECUTE.

	
The value is an ANYDATA instance that contains NO as a VARCHAR2. When the value is NO, an apply component does not execute the message and does not send the message to any apply handler.

Syntax

DBMS_APPLY_ADM.SET_EXECUTE(
 rule_name IN VARCHAR2,
 execute IN BOOLEAN);

Parameters

Table 21-18 SET_EXECUTE Procedure Parameters

	Parameter	Description
	
rule_name

	
The name of the rule, specified as [schema_name.]rule_name. For example, to specify a rule named hr5 in the hr schema, enter hr.hr5 for this parameter. If the schema is not specified, then the current user is the default.

	
execute

	
If TRUE, then the procedure removes the name-value pair with the name APPLY$_EXECUTE for the specified rule. Removing the name-value pair means that the apply component executes messages that satisfy the rule. If no name-value pair with name APPLY$_EXECUTE exists for the rule, then no action is taken.

If FALSE, then the procedure adds a name-value pair to the rule's action context. The name is APPLY$_EXECUTE and the value is NO. An apply component does not execute a message that satisfies the rule and does not send the message to any apply handler. If a name-value pair exists for the rule with the name APPLY$_EXECUTE, then it is removed, and a new one with the value NO is added.

If NULL, then the procedure raises an error.

Usage Notes

The following usage notes apply to this procedure:

	
Considerations for the SET_EXECUTE Procedure

	
The SET_EXECUTE Procedure and XStream Outbound Servers

	
The SET_EXECUTE Procedure and XStream Inbound Servers

Considerations for the SET_EXECUTE Procedure

The following are considerations for using this procedure:

	
If the message is a logical change record (LCR) and the message is not executed, then the change encapsulated in the LCR is not made to the relevant local database object. Also, if the message is not executed, then it is not sent to any apply handler.

	
Oracle Streams capture processes, propagations, and messaging clients ignore the action context created by this procedure.

	
The specified rule must be in the positive rule set for an apply component for the apply component to follow the execution directive. If the rule is in the negative rule set for an apply component, then the apply component ignores the execution directive for the rule.

The SET_EXECUTE Procedure and XStream Outbound Servers

This procedure has no effect on XStream outbound servers.

The SET_EXECUTE Procedure and XStream Inbound Servers

This procedure functions the same way for apply processes and inbound servers.

SET_GLOBAL_INSTANTIATION_SCN Procedure

This procedure records the specified instantiation SCN for the specified source database and, optionally, for the schemas at the source database and the tables owned by these schemas. This procedure overwrites any existing instantiation SCN for the database, and, if it sets the instantiation SCN for a schema or a table, then it overwrites any existing instantiation SCN for the schema or table.

This procedure gives you precise control over which DDL logical change records (DDL LCRs) from a source database are ignored and which DDL LCRs are applied by an apply component.

Syntax

DBMS_APPLY_ADM.SET_GLOBAL_INSTANTIATION_SCN(
 source_database_name IN VARCHAR2,
 instantiation_scn IN NUMBER,
 apply_database_link IN VARCHAR2 DEFAULT NULL,
 recursive IN BOOLEAN DEFAULT FALSE);

Parameters

Table 21-19 SET_GLOBAL_INSTANTIATION_SCN Procedure Parameters

	Parameter	Description
	
source_database_name

	
The global name of the source database. For example, DBS1.NET.

If you do not include the domain name, then the procedure appends it to the database name automatically. For example, if you specify DBS1 and the domain is NET, then the procedure specifies DBS1.NET automatically.

	
instantiation_scn

	
The instantiation SCN. Specify NULL to remove the instantiation SCN metadata for the source database from the data dictionary.

	
apply_database_link

	
The name of the database link to a non-Oracle database. This parameter should be set only when the destination database of a local apply component is a non-Oracle database.

	
recursive

	
If TRUE, then the procedure sets the instantiation SCN for the source database, all schemas in the source database, and all tables owned by the schemas in the source database. This procedure selects the schemas and tables from the ALL_USERS and ALL_TABLES data dictionary views, respectively, at the source database under the security context of the current user.

If FALSE, then the procedure sets the global instantiation SCN for the source database, but does not set the instantiation SCN for any schemas or tables

Note: If recursive is set to TRUE, then a database link from the destination database to the source database is required. This database link must have the same name as the global name of the source database and must be accessible to the current user. Also, a table must be accessible to the current user in either the ALL_TABLES or DBA_TABLES data dictionary view at the source database for this procedure to set the instantiation SCN for the table at the destination database.

Usage Notes

The following usage notes apply to this procedure:

	
Instantiation SCNs and DDL LCRs

	
The recursive Parameter

	
Considerations for the SET_GLOBAL_INSTANTIATION_SCN Procedure

	
The SET_GLOBAL_INSTANTIATION_SCN Procedure and XStream Outbound Servers

	
The SET_GLOBAL_INSTANTIATION_SCN Procedure and XStream Inbound Servers

	
See Also:

	
SET_SCHEMA_INSTANTIATION_SCN Procedure

	
SET_TABLE_INSTANTIATION_SCN Procedure

	
LCR$_DDL_RECORD Type for more information about DDL LCRs

	
Oracle Streams Replication Administrator's Guide

Instantiation SCNs and DDL LCRs

If the commit SCN of a DDL LCR for a database object from a source database is less than or equal to the instantiation SCN for that source database at a destination database, then the apply component at the destination database disregards the DDL LCR. Otherwise, the apply component applies the DDL LCR.

The global instantiation SCN specified by this procedure is used for a DDL LCR only if the DDL LCR does not have object_owner, base_table_owner, and base_table_name specified. For example, the global instantiation SCN set by this procedure is used for DDL LCRs with a command_type of CREATE USER.

The recursive Parameter

If the recursive parameter is set to TRUE, then this procedure sets the instantiation SCN for each schema at a source database and for the tables owned by these schemas. This procedure uses the SET_SCHEMA_INSTANTIATION_SCN procedure to set the instantiation SCN for each schema, and it uses the SET_TABLE_INSTANTIATION_SCN procedure to set the instantiation SCN for each table. Each schema instantiation SCN is used for DDL LCRs on the schema, and each table instantiation SCN is used for DDL LCRs and row LCRs on the table.

If the recursive parameter is set to FALSE, then this procedure does not set the instantiation SCN for any schemas or tables.

Considerations for the SET_GLOBAL_INSTANTIATION_SCN Procedure

The following are considerations for using this procedure:

	
Any instantiation SCN specified by this procedure is used only for LCRs captured by a capture process. It is not used for user-created LCRs.

	
The instantiation SCN is not set for the SYS or SYSTEM schemas.

The SET_GLOBAL_INSTANTIATION_SCN Procedure and XStream Outbound Servers

Instantiation SCNs are not required for database objects processed by an outbound server. If an instantiation SCN is set for a database object, then the outbound server only sends the LCRs for the database object with SCN values that are greater than the instantiation SCN value. If a database object does not have an instantiation SCN set, then the outbound server skips the instantiation SCN check and sends all LCRs for that database object. In both cases, the outbound server only sends LCRs that satisfy its rule sets.

The apply_database_link parameter must be set to NULL or to the local database for this procedure to set an instantiation SCN for an outbound server.

	
See Also:

Oracle Database XStream Guide for more information about outbound servers and instantiation SCNs

The SET_GLOBAL_INSTANTIATION_SCN Procedure and XStream Inbound Servers

Inbound servers ignore instantiation SCNs. This procedure has no effect on XStream inbound servers.

SET_KEY_COLUMNS Procedures

This procedure records the set of columns to be used as the substitute primary key for apply purposes and removes existing substitute primary key columns for the specified object if they exist.

This procedure is overloaded. The column_list and column_table parameters are mutually exclusive.

Syntax

DBMS_APPLY_ADM.SET_KEY_COLUMNS(
 object_name IN VARCHAR2,
 column_list IN VARCHAR2,
 apply_database_link IN VARCHAR2 DEFAULT NULL);

DBMS_APPLY_ADM.SET_KEY_COLUMNS(
 object_name IN VARCHAR2,
 column_table IN DBMS_UTILITY.NAME_ARRAY,
 apply_database_link IN VARCHAR2 DEFAULT NULL);

Parameters

Table 21-20 SET_KEY_COLUMNS Procedure Parameters

	Parameter	Description
	
object_name

	
The name of the table specified as [schema_name.]object_name. For example, hr.employees. If the schema is not specified, then the current user is the default. If the apply component is applying changes to a non-Oracle database in a heterogeneous environment, then the object name is not verified.

	
column_list

	
A comma-delimited list of the columns in the table to use as the substitute primary key, with no spaces between the column names.

If the column_list parameter is empty or NULL, then the current set of key columns is removed.

	
column_table

	
A PL/SQL associative array of type DBMS_UTILITY.NAME_ARRAY of the columns in the table to use as the substitute primary key. The index for column_table must be 1-based, increasing, dense, and terminated by a NULL.

If the column_table parameter is empty or NULL, then the current set of key columns is removed.

	
apply_database_link

	
The name of the database link to a non-Oracle database. This parameter should be set only when the destination database is a non-Oracle database.

Usage Notes

The following usage notes apply to this procedure:

	
Considerations for the SET_KEY_COLUMNS Procedure

	
Duplicate Rows and Substitute Primary Key Columns

	
The SET_KEY_COLUMNS Procedure and XStream Outbound Servers

	
The SET_KEY_COLUMNS Procedure and XStream Inbound Servers

Considerations for the SET_KEY_COLUMNS Procedure

The following are considerations for using this procedure:

	
When not empty, the specified set of columns takes precedence over any primary key for the specified object. Do not specify substitute key columns if the object has primary key columns and you want to use those primary key columns as the key.

	
Run this procedure at the destination database. At the source database, you must specify an unconditional supplemental log group for the substitute key columns.

	
Unlike true primary keys, columns specified as substitute key column columns can contain NULLs. However, Oracle recommends that each column you specify as a substitute key column be a NOT NULL column. You also should create a single index that includes all of the columns in a substitute key. Following these guidelines improves performance for updates, deletes, and piecewise updates to LOBs because Oracle can locate the relevant row more efficiently.

	
Do not permit applications to update the primary key or substitute key columns of a table. This ensures that Oracle can identify rows and preserve the integrity of the data.

	
If there is neither a primary key, nor a unique index that has at least one NOT NULL column, nor a substitute key for a table, then the key consists of all of the table columns, except for columns of the following data types: LOB, LONG, LONG RAW, user-defined types (including object types, REFs, varrays, nested tables), and Oracle-supplied types (including Any types, XML types, spatial types, and media types).

Duplicate Rows and Substitute Primary Key Columns

A table has duplicate rows when all of the column values are identical for two or more rows in the table, excluding LOB, LONG, and LONG RAW columns. You can specify substitute primary key columns for a table at a destination database using by the SET_KEY_COLUMNS procedure. When substitute primary key columns are specified for a table with duplicate rows at a destination database, and the allow_duplicate_rows apply component parameter is set to Y, meet the following requirements to keep the table data synchronized at the source and destination databases:

	
Ensure that supplemental logging is specified at source database for the columns specified as substitute key columns at the destination database. The substitute key columns must be in an unconditional log group at the source database.

	
Ensure that the substitute key columns uniquely identify each row in the table at the destination database.

The rest of this section provides more details about these requirements.

When there is no key for a table and the allow_duplicate_rows apply component parameter is set to Y, a single row LCR with an UPDATE or DELETE command type only is applied to one of the duplicate rows. In this case, if the table at the source database and the table at the destination database have corresponding duplicate rows, then a change that changes all of the duplicate rows at the source database also changes all the duplicate rows at the destination database when the row LCRs resulting from the change are applied.

For example, suppose a table at a source database has two duplicate rows. An update is performed on the duplicate rows, resulting in two row LCRs. At the destination database, one row LCR is applied to one of the duplicate rows. At this point, the rows are no longer duplicate at the destination database because one of the rows has changed. When the second row LCR is applied at the destination database, the rows are duplicate again. Similarly, if a delete is performed on these duplicate rows at the source database, then both rows are deleted at the destination database when the row LCRs resulting from the source change are applied.

When substitute primary key columns are specified for a table, row LCRs are identified with rows in the table during apply using the substitute primary key columns. If substitute primary key columns are specified for a table with duplicate rows at a destination database, and the allow_duplicate_rows apply component parameter is set to Y, then an update performed on duplicate rows at the source database can result in different changes when the row LCRs are applied at the destination database. Specifically, if the update does not change one of the columns specified as a substitute primary key column, then the same duplicate row can be updated multiple times at the destination database, while other duplicate rows might not be updated.

Also, if the substitute key columns do not identify each row in the table at the destination database uniquely, then a row LCR identified with multiple rows can update any one of the rows. In this case, the update in the row LCR might not be applied to the correct row in the table at the destination database.

An apply component ignores substitute primary key columns when it determines whether rows in a table are duplicates. An apply component determines that rows are duplicates only if all of the column values in the rows are identical (excluding LOB, LONG, and LONG RAW columns). Therefore, an apply component always raises an error if a single update or delete changes two or more nonduplicate rows in a table.

For example, consider a table with columns c1, c2, and c3 on which the SET_KEY_COLUMNS procedure is used to designate column c1 as the substitute primary key. If two rows have the same key value for the c1 column, but different value for the c2 or c3 columns, then an apply component does not treat the rows as duplicates. If an update or delete modifies more than one row because the c1 values in the rows are the same, then the apply component raises an error regardless of the setting for the allow_duplicate_rows apply component parameter.

	
See Also:

SET_PARAMETER Procedure for more information about the allow_duplicate_rows apply component parameter

The SET_KEY_COLUMNS Procedure and XStream Outbound Servers

This procedure has no effect on XStream outbound servers.

The SET_KEY_COLUMNS Procedure and XStream Inbound Servers

This procedure functions the same way for apply processes and inbound servers.

SET_PARAMETER Procedure

This procedure sets an apply parameter to the specified value.

Syntax

DBMS_APPLY_ADM.SET_PARAMETER (
 apply_name IN VARCHAR2,
 parameter IN VARCHAR2,
 value IN VARCHAR2 DEFAULT NULL);

Parameters

Table 21-21 SET_PARAMETER Procedure Parameters

	Parameter	Description
	
apply_name

	
The apply component name. Do not specify an owner.

	
parameter

	
The name of the parameter you are setting. See "Apply Component Parameters" for a list of these parameters.

	
value

	
The value to which the parameter is set.

If NULL, then the parameter is set to its default value.

Apply Component Parameters

The following table lists the parameters for an apply component.

	
Note:

Starting with Oracle Database 11g Release 2 (11.2.0.2), this subprogram includes the following new parameters: apply_sequence_nextval, compare_key_only, grouptransops, ignore_transaction, and max_sga_size.

Table 21-22 Apply Component Parameters

	Parameter Name	Possible Values	Default	Description
	
allow_duplicate_rows

	
Y or N

	
N

	
If Y and more than one row is changed by a single row logical change record (row LCR) with an UPDATE or DELETE command type, then the apply component only updates or deletes one of the rows.

If N, then the apply component raises an error when it encounters a single row LCR with an UPDATE or DELETE command type that changes more than one row in a table.

Note: Regardless of the setting for this parameter, apply components do not allow changes to duplicate rows for tables with LOB, LONG, or LONG RAW columns.

See Also: "Usage Notes" and "Duplicate Rows and Substitute Primary Key Columns"

	
apply_sequence_nextval

	
Y or N

	
N for apply processes

Y for XStream outbound servers and XStream inbound servers

	
Controls whether the apply component checks and adjusts sequence values.

If Y, then the apply component checks and adjusts sequence values.

For ascending sequences, setting this parameter to Y ensures that the destination sequence values are equal to or greater than the source sequence values.

For descending sequences, setting this parameter to Y ensures that the destination sequence values are equal to or less than the source sequence values.

If N, then the apply component does not check or adjust sequence values.

Note: This parameter is intended for XStream. Do not set this parameter to Y for an apply process in an Oracle Streams replication environment unless XStream capabilities are enabled by the DBMS_XSTREAM_ADM.ENABLE_GG_XSTREAM_FOR_STREAMS procedure. See Oracle Database XStream Guide for information about enabling XStream capabilities.

See Also: SET_PARAMETER Procedure for information about the capture_sequence_nextval capture process parameter

	
commit_serialization

	
DEPENDENT_TRANSACTIONS or FULL

	
DEPENDENT_TRANSACTIONS

	
The order in which applied transactions are committed.

Apply servers can apply nondependent transactions at the destination database in an order that is different from the commit order at the source database. Dependent transactions are always applied at the destination database in the same order as they were committed at the source database.

You control whether the apply servers can apply nondependent transactions in a different order at the destination database using the commit_serialization apply parameter. This parameter has the following settings:

	
DEPENDENT_TRANSACTIONS - The apply component can commit nondependent transactions in any order. Performance is best if you specify DEPENDENT_TRANSACTIONS.

	
FULL - The apply component commits applied transactions in the order in which they were committed at the source database.

Regardless of the specification, applied transactions can execute in parallel subject to data dependencies and constraint dependencies.

If you specify DEPENDENT_TRANSACTIONS, then a destination database might commit changes in a different order than the source database. For example, suppose two nondependent transactions are committed at the source database in the following order:

	
Transaction A

	
Transaction B

At the destination database, these transactions might be committed in the opposite order:

	
Transaction B

	
Transaction A

If you specify DEPENDENT_TRANSACTIONS and there are application constraints that are not enforced by the database, then use virtual dependency definitions or add RELY constraints to account for the application constraints. See Oracle Streams Concepts and Administration for information about virtual dependency definitions and Oracle Database Data Warehousing Guide for information about RELY constraints.

Note: The NONE value is deprecated for this parameter. It is replaced by the DEPENDENT_TRANSACTIONS value.

See Also: "Usage Notes"

	
compare_key_only

	
Y or N

	
N for apply processes

Y for XStream inbound servers

	
If Y, then disables automatic conflict detection and only uses primary and unique key columns to identify the table row for a row LCR.

If N, then enables automatic conflict detection and uses all of the old values in a row LCR to identify the table row for a row LCR.

Note: The COMPARE_OLD_VALUES procedure in this package can disable comparison of old values for specified columns during apply. See COMPARE_OLD_VALUES Procedure.

See Also: "Usage Notes" and Oracle Streams Replication Administrator's Guide for information about automatic conflict detection

	
disable_on_error

	
Y or N

	
Y

	
If Y, then the apply component is disabled on the first unresolved error, even if the error is not irrecoverable.

If N, then the apply component continues regardless of unresolved errors.

See Also: "Usage Notes"

	
disable_on_limit

	
Y or N

	
N

	
If Y, then the apply component is disabled if the apply component terminates because it reached a value specified by the time_limit parameter or transaction_limit parameter.

If N, then the apply component is restarted immediately after stopping because it reached a limit.

When an apply component is restarted, it gets a new session identifier, and the processes associated with the apply component also get new session identifiers. However, the coordinator process number (APnn) remains the same.

	
grouptransops

	
A positive integer from 1 to 10000

	
250 for apply processes and XStream inbound servers

10000 for XStream outbound servers

	
The minimum number of LCRs that can be grouped into a single transaction. The commit LCR for a transaction is not included in the LCR count for the transaction.

This parameter enables an apply component to group LCRs from multiple transactions into a single transaction. The apply component groups only LCRs that are part of committed transactions.

If a transaction has more LCRs than the setting for this parameter, then the transaction is applied as a single transaction. The apply component does not split a transaction into separate transactions.

This parameter only takes effect if the parallelism parameter setting is 1. The grouptransops parameter is ignored if the parallelism parameter setting is greater than 1.

Note: This parameter is intended for XStream outbound servers and inbound servers. An Oracle Streams apply process ignores this parameter unless XStream capabilities are enabled by the DBMS_XSTREAM_ADM.ENABLE_GG_XSTREAM_FOR_STREAMS procedure. See Oracle Database XStream Guide for information about enabling XStream capabilities.

See Also: "Usage Notes"

	
ignore_transaction

	
A valid source transaction ID or NULL

	
NULL

	
Instructs the apply component to ignore the specified transaction from the source database, effective immediately.

Use caution when setting this parameter because ignoring a transaction might lead to data divergence between the source database and destination database.

To ignore multiple transactions, specify each transaction in a separate call to the SET_PARAMETER procedure. The DBA_APPLY_PARAMETERS view displays a comma-delimited list of all transactions to be ignored. To clear the list of ignored transactions, run the SET_PARAMETER procedure and specify NULL for the ignore_transaction parameter.

If NULL, then the apply component ignores this parameter.

Note: An apply component ignores this parameter for transactions that were not captured by an Oracle Streams capture process.

See Also: "Usage Notes"

	
max_sga_size

	
A positive integer

	
INFINITE

	
Controls the amount of system global area (SGA) memory allocated specifically to the apply component, in megabytes.

The memory is allocated for the duration of the apply component's session and is released when the apply component becomes disabled.

Note: The sum of SGA memory allocated for all components on a database must be less than the value set for the STREAMS_POOL_SIZE initialization parameter.

If NULL, then the apply component uses the original default value. A NULL value has the same effect as resetting the parameter to its default value.

Note: This parameter is intended for XStream. Do not use this parameter in an Oracle Streams replication environment unless XStream capabilities are enabled by the DBMS_XSTREAM_ADM.ENABLE_GG_XSTREAM_FOR_STREAMS procedure. See Oracle Database XStream Guide for information about enabling XStream capabilities.

See Also: "Usage Notes"

	
maximum_scn

	
A valid SCN or INFINITE

	
INFINITE

	
The apply component is disabled before applying a transaction with a commit SCN greater than or equal to the value specified.

If INFINITE, then the apply component runs regardless of the SCN value.

See Also: "Usage Notes"

	
parallelism

	
A positive integer

	
4

	
The number of apply servers that can concurrently apply transactions.

The reader server and the apply server process names are ASnn, where nn can include letters and numbers. The total number of ASnn processes is the value of the parallelism parameter plus one.

For example, if parallelism is set to 4, then an apply component uses a total of five ASnn processes. In this case, there is one reader server and four apply servers.

Setting the parallelism parameter to a number higher than the number of available operating system user processes can disable the apply component. Make sure the PROCESSES initialization parameter is set appropriately when you set the parallelism parameter.

Note: When the value of this parameter is changed from 1 to a higher value for a running apply component, the apply component is stopped and restarted automatically. This can take some time depending on the size of the transactions currently being applied. When the value of this parameter is greater than 1, and the parameter value is decreased or increased, the apply component does not restart.

See Also: "Usage Notes"

	
preserve_encryption

	
Y or N

	
Y

	
Whether to preserve encryption for columns encrypted using transparent data encryption.

If Y, then columns in tables at the destination database must be encrypted when corresponding columns in row LCRs are encrypted. If columns are encrypted in row LCRs but the corresponding columns are not encrypted in the tables at the destination database, then an error is raised when the apply component tries to apply the row LCRs.

If N, then columns in tables at the destination database do not need to be encrypted when corresponding columns in row LCRs are encrypted. If columns are encrypted in row LCRs but the corresponding columns are not encrypted in the tables at the destination database, then the apply component applies the changes in the row LCRs.

Note: When the value of this parameter is changed for a running apply component, the apply component is stopped and restarted automatically. This can take some time depending on the size of the transactions currently being applied.

See Also: "Usage Notes"

	
rtrim_on_implicit_conversion

	
Y or N

	
Y

	
Whether to remove blank padding from the right end of a column when automatic data type conversion is performed during apply.

If Y, then blank padding is removed when a CHAR or NCHAR source column in a row LCR is converted to a VARCHAR2, NVARCHAR2, or CLOB column in a table.

If N, then blank padding is preserved in the column.

See Also: "Usage Notes" and Oracle Streams Concepts and Administration for information about automatic data type conversion during apply

	
startup_seconds

	
0, a positive integer, or INFINITE

	
0

	
The maximum number of seconds to wait for another instantiation of the same apply component to finish. If the other instantiation of the same apply component does not finish within this time, then the apply component does not start.

If INFINITE, then an apply component does not start until another instantiation of the same apply component finishes.

See Also: "Usage Notes"

	
time_limit

	
A positive integer or INFINITE

	
INFINITE

	
The apply component stops as soon as possible after the specified number of seconds since it started.

If INFINITE, then the apply component continues to run until it is stopped explicitly.

See Also: "Usage Notes"

	
trace_level

	
0 or a positive integer

	
0

	
Set this parameter only under the guidance of Oracle Support Services.

See Also: "Usage Notes"

	
transaction_limit

	
A positive integer or INFINITE

	
INFINITE

	
The apply component stops after applying the specified number of transactions.

If INFINITE, then the apply component continues to run regardless of the number of transactions applied.

See Also: "Usage Notes"

	
txn_age_spill_threshold

	
A positive integer or INFINITE

	
900

	
The apply component begins to spill messages from memory to hard disk for a particular transaction when the amount of time that any message in the transaction has been in memory exceeds the specified number. The parameter specifies the age in seconds.

When the reader server spills messages from memory, the messages are stored in a database table on the hard disk. These messages are not spilled from memory to a queue table.

Message spilling occurs at the transaction level. For example, if this parameter is set to 900, and the reader server of an apply component detects that one message in a transaction has been in memory longer than 900 seconds, then all of the messages in the transaction spill from memory to hard disk.

If INFINITE, then the apply component does not spill messages to the hard disk based on the age of the messages.

Query the DBA_APPLY_SPILL_TXN data dictionary view for information about transactions spilled by an apply component.

See Also: "Usage Notes"

	
txn_lcr_spill_threshold

	
A positive integer or INFINITE

	
10000

	
The apply component begins to spill messages from memory to hard disk for a particular transaction when the number of messages in memory for the transaction exceeds the specified number. The number of messages in first chunk of messages spilled from memory equals the number specified for this parameter, and the number of messages spilled in future chunks is either 100 or the number specified for this parameter, whichever is less.

If the reader server of an apply component has the specified number of messages in memory for a particular transaction, then when it detects the next message for this transaction, it spills the messages that are in memory to the hard disk. For example, if this parameter is set to 10000, and a transaction has 10,200 messages, then the reader server handles the transaction in the following way:

	
Reads the first 10,000 messages in the transaction into memory

	
Spills messages 1 - 10,000 to hard disk when it detects message 10,000

	
Reads the next 100 messages in the transaction into memory

	
Spills messages 10,001 - 10,100 to hard disk when it detects message 10,100

	
Reads the next 100 messages in the transaction into memory

The apply component applies the first 10,100 messages from the hard disk and the last 100 messages from memory.

When the reader server spills messages from memory, the messages are stored in a database table on the hard disk. These messages are not spilled from memory to a queue table.

Message spilling occurs at the transaction level. For example, if this parameter is set to 10000, and the reader server of an apply component is assembling two transactions, one with 7,500 messages and another with 8,000 messages, then it does not spill any messages.

If INFINITE, then the apply component does not spill messages to the hard disk based on the number of messages in a transaction.

Query the DBA_APPLY_SPILL_TXN data dictionary view for information about transactions spilled by an apply component.

See Also: "Usage Notes"

	
write_alert_log

	
Y or N

	
Y

	
If Y, then the apply component writes a message to the alert log on exit.

If N, then the apply component does not write a message to the alert log on exit.

The message specifies the reason why the apply component stopped.

Usage Notes

The following usage notes apply to this procedure:

	
Delays Are Possible Before New Parameter Settings Take Effect

	
Parameters Interpreted as Positive Integers

	
Parameters with a System Change Number (SCN) Setting

	
The SET_PARAMETER Procedure and XStream Outbound Servers

	
The SET_PARAMETER Procedure and XStream Inbound Servers

Delays Are Possible Before New Parameter Settings Take Effect

When you alter a parameter value, a short amount of time might pass before the new value for the parameter takes effect.

Parameters Interpreted as Positive Integers

For all parameters that are interpreted as positive integers, the maximum possible value is 4,294,967,295. Where applicable, specify INFINITE for larger values.

Parameters with a System Change Number (SCN) Setting

For parameters that require an SCN setting, any valid SCN value can be specified.

The SET_PARAMETER Procedure and XStream Outbound Servers

Outbound servers ignore the settings for the following apply parameters:

	
allow_duplicate_rows

	
commit_serialization

	
compare_key_only

	
disable_on_error

	
parallelism

	
preserve_encryption

	
rtrim_on_implicit_conversion

The commit_serialization parameter is always set to FULL for an outbound server, and the parallelism parameter is always set to 1 for an outbound server.

You can use the other apply parameters with outbound servers.

	
Note:

Using XStream requires purchasing a license for the Oracle GoldenGate product. See Oracle Database XStream Guide.

The SET_PARAMETER Procedure and XStream Inbound Servers

Inbound servers ignore the settings for the ignore_transaction and maximum_scn apply component parameters. You can use all of the other apply component parameters with inbound servers.

The default setting for the compare_key_only parameter for an inbound server is Y.

The default setting for the parallelism parameter for an inbound server is 4.

	
Note:

Using XStream requires purchasing a license for the Oracle GoldenGate product. See Oracle Database XStream Guide.

SET_SCHEMA_INSTANTIATION_SCN Procedure

This procedure records the specified instantiation SCN for the specified schema in the specified source database and, optionally, for the tables owned by the schema at the source database. This procedure overwrites any existing instantiation SCN for the schema, and, if it sets the instantiation SCN for a table, it overwrites any existing instantiation SCN for the table.

This procedure gives you precise control over which DDL logical change records (LCRs) for a schema are ignored and which DDL LCRs are applied by an apply component.

Syntax

DBMS_APPLY_ADM.SET_SCHEMA_INSTANTIATION_SCN(
 source_schema_name IN VARCHAR2,
 source_database_name IN VARCHAR2,
 instantiation_scn IN NUMBER,
 apply_database_link IN VARCHAR2 DEFAULT NULL,
 recursive IN BOOLEAN DEFAULT FALSE);

Parameters

Table 21-23 SET_SCHEMA_INSTANTIATION_SCN Procedure Parameters

	Parameter	Description
	
source_schema_name

	
The name of the source schema. For example, hr.

When setting an instantiation SCN for schema, always specify the name of the schema at the source database, even if a rule-based transformation or apply handler is configured to change the schema name.

	
source_database_name

	
The global name of the source database. For example, DBS1.NET.

If you do not include the domain name, then the procedure appends it to the database name automatically. For example, if you specify DBS1 and the domain is NET, then the procedure specifies DBS1.NET automatically.

	
instantiation_scn

	
The instantiation SCN. Specify NULL to remove the instantiation SCN metadata for the source schema from the data dictionary.

	
apply_database_link

	
The name of the database link to a non-Oracle database. This parameter should be set only when the destination database of a local apply component is a non-Oracle database.

	
recursive

	
If TRUE, then the procedure sets the instantiation SCN for the specified schema and all tables owned by the schema in the source database. This procedure selects the tables owned by the specified schema from the ALL_TABLES data dictionary view at the source database under the security context of the current user.

If FALSE, then the procedure sets the instantiation SCN for specified schema, but does not set the instantiation SCN for any tables

Note: If recursive is set to TRUE, then a database link from the destination database to the source database is required. This database link must have the same name as the global name of the source database and must be accessible to the current user. Also, a table must be accessible to the current user in either the ALL_TABLES or DBA_TABLES data dictionary view at the source database for this procedure to set the instantiation SCN for the table at the destination database.

Usage Notes

The following usage notes apply to this procedure:

	
The SET_SCHEMA_INSTANTIATION_SCN Procedure and LCRs

	
Instantiation SCNs and DDL LCRs

	
The recursive Parameter

	
The SET_SCHEMA_INSTANTIATION_SCN Procedure and XStream Outbound Servers

	
The SET_SCHEMA_INSTANTIATION_SCN Procedure and XStream Inbound Servers

	
See Also:

	
SET_GLOBAL_INSTANTIATION_SCN Procedure

	
SET_TABLE_INSTANTIATION_SCN Procedure

	
LCR$_DDL_RECORD Type for more information about DDL LCRs

	
Oracle Streams Replication Administrator's Guide

The SET_SCHEMA_INSTANTIATION_SCN Procedure and LCRs

Any instantiation SCN specified by this procedure is used only for LCRs captured by a capture process. It is not used for user-created LCRs.

Instantiation SCNs and DDL LCRs

If the commit SCN of a DDL LCR for a database object in a schema from a source database is less than or equal to the instantiation SCN for that database object at a destination database, then the apply component at the destination database disregards the DDL LCR. Otherwise, the apply component applies the DDL LCR.

The schema instantiation SCN specified by this procedure is used on the following types of DDL LCRs:

	
DDL LCRs with a command_type of CREATE TABLE

	
DDL LCRs with a non-NULL object_owner specified and neither base_table_owner nor base_table_name specified.

For example, the schema instantiation SCN set by this procedure is used for a DDL LCR with a command_type of CREATE TABLE and ALTER USER.

The schema instantiation SCN specified by this procedure is not used for DDL LCRs with a command_type of CREATE USER. A global instantiation SCN is needed for such DDL LCRs.

The recursive Parameter

If the recursive parameter is set to TRUE, then this procedure sets the table instantiation SCN for each table at the source database owned by the schema. This procedure uses the SET_TABLE_INSTANTIATION_SCN procedure to set the instantiation SCN for each table. Each table instantiation SCN is used for DDL LCRs and row LCRs on the table.

If the recursive parameter is set to FALSE, then this procedure does not set the instantiation SCN for any tables.

The SET_SCHEMA_INSTANTIATION_SCN Procedure and XStream Outbound Servers

Instantiation SCNs are not required for database objects processed by an outbound server. If an instantiation SCN is set for a database object, then the outbound server only sends the LCRs for the database object with SCN values that are greater than the instantiation SCN value. If a database object does not have an instantiation SCN set, then the outbound server skips the instantiation SCN check and sends all LCRs for that database object. In both cases, the outbound server only sends LCRs that satisfy its rule sets.

The apply_database_link parameter must be set to NULL or to the local database for this procedure to set an instantiation SCN for an outbound server.

	
See Also:

Oracle Database XStream Guide for more information about outbound servers and instantiation SCNs

The SET_SCHEMA_INSTANTIATION_SCN Procedure and XStream Inbound Servers

Inbound servers ignore instantiation SCNs. This procedure has no effect on XStream inbound servers.

SET_TABLE_INSTANTIATION_SCN Procedure

This procedure records the specified instantiation SCN for the specified table in the specified source database. This procedure overwrites any existing instantiation SCN for the particular table.

This procedure gives you precise control over which logical change records (LCRs) for a table are ignored and which LCRs are applied by an apply component.

Syntax

DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN(
 source_object_name IN VARCHAR2,
 source_database_name IN VARCHAR2,
 instantiation_scn IN NUMBER,
 apply_database_link IN VARCHAR2 DEFAULT NULL);

Parameters

Table 21-24 SET_TABLE_INSTANTIATION_SCN Procedure Parameters

	Parameter	Description
	
source_object_name

	
The name of the source object specified as [schema_name.]object_name. For example, hr.employees. If the schema is not specified, then the current user is the default.

When setting an instantiation SCN for a database object, always specify the name of the schema and database object at the source database, even if a rule-based transformation or apply handler is configured to change the schema name or database object name.

	
source_database_name

	
The global name of the source database. For example, DBS1.NET.

If you do not include the domain name, then the procedure appends it to the database name automatically. For example, if you specify DBS1 and the domain is NET, then the procedure specifies DBS1.NET automatically.

	
instantiation_scn

	
The instantiation SCN. Specify NULL to remove the instantiation SCN metadata for the source table from the data dictionary.

	
apply_database_link

	
The name of the database link to a non-Oracle database. This parameter should be set only when the destination database of a local apply component is a non-Oracle database.

Usage Notes

The following usage notes apply to this procedure:

	
Instantiation SCNs and LCRs

	
The SET_TABLE_INSTANTIATION_SCN Procedure and XStream Outbound Servers

	
The SET_TABLE_INSTANTIATION_SCN Procedure and XStream Inbound Servers

Instantiation SCNs and LCRs

If the commit SCN of an LCR for a table from a source database is less than or equal to the instantiation SCN for that table at some destination database, then the apply component at the destination database disregards the LCR. Otherwise, the apply component applies the LCR.

The table instantiation SCN specified by this procedure is used on the following types of LCRs:

	
Row LCRs for the table

	
DDL LCRs that have a non-NULL base_table_owner and base_table_name specified, except for DDL LCRs with a command_type of CREATE TABLE

For example, the table instantiation SCN set by this procedure is used for DDL LCRs with a command_type of ALTER TABLE or CREATE TRIGGER.

	
Note:

The instantiation SCN specified by this procedure is used only for LCRs captured by a capture process. It is not used for user-created LCRs.

	
See Also:

	
SET_GLOBAL_INSTANTIATION_SCN Procedure

	
SET_SCHEMA_INSTANTIATION_SCN Procedure

	
LCR$_ROW_RECORD Type for more information about row LCRs

	
LCR$_DDL_RECORD Type for more information about DDL LCRs

	
Oracle Streams Replication Administrator's Guide

The SET_TABLE_INSTANTIATION_SCN Procedure and XStream Outbound Servers

Instantiation SCNs are not required for database objects processed by an outbound server. If an instantiation SCN is set for a database object, then the outbound server only sends the LCRs for the database object with SCN values that are greater than the instantiation SCN value. If a database object does not have an instantiation SCN set, then the outbound server skips the instantiation SCN check and sends all LCRs for that database object. In both cases, the outbound server only sends LCRs that satisfy its rule sets.

The apply_database_link parameter must be set to NULL or to the local database for this procedure to set an instantiation SCN for an outbound server.

	
See Also:

Oracle Database XStream Guide for more information about outbound servers and instantiation SCNs

The SET_TABLE_INSTANTIATION_SCN Procedure and XStream Inbound Servers

Inbound servers ignore instantiation SCNs. This procedure has no effect on XStream inbound servers.

SET_UPDATE_CONFLICT_HANDLER Procedure

This procedure adds, modifies, or removes a prebuilt update conflict handler for the specified object.

Syntax

DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name IN VARCHAR2,
 method_name IN VARCHAR2,
 resolution_column IN VARCHAR2,
 column_list IN DBMS_UTILITY.NAME_ARRAY,
 apply_database_link IN VARCHAR2 DEFAULT NULL);

Parameters

Table 21-25 SET_UPDATE_CONFLICT_HANDLER Procedure Parameters

	Parameter	Description
	
object_name

	
The schema and name of the table, specified as [schema_name.]object_name, for which an update conflict handler is being added, modified, or removed.

For example, if an update conflict handler is being added for table employees owned by user hr, then specify hr.employees. If the schema is not specified, then the current user is the default.

	
method_name

	
Type of update conflict handler to create.

You can specify one of the prebuilt handlers, which determine whether the column list from the source database is applied for the row or whether the values in the row at the destination database are retained:

	
MAXIMUM: Applies the column list from the source database if it has the greater value for the resolution column. Otherwise, retains the values at the destination database.

	
MINIMUM: Applies the column list from the source database if it has the lesser value for the resolution column. Otherwise, retains the values at the destination database.

	
OVERWRITE: Applies the column list from the source database, overwriting the column values at the destination database.

	
DISCARD: Retains the column list from the destination database, discarding the column list from the source database.

If NULL, then the procedure removes any existing update conflict handler with the same object_name, resolution_column, and column_list. If non-NULL, then the procedure replaces any existing update conflict handler with the same object_name and resolution_column.

	
resolution_column

	
Name of the column used to uniquely identify an update conflict handler. For the MAXIMUM and MINIMUM prebuilt methods, the resolution column is also used to resolve the conflict. The resolution column must be one of the columns listed in the column_list parameter.

NULL is not allowed for this parameter. For the OVERWRITE and DISCARD prebuilt methods, you can specify any column in the column list.

	
column_list

	
List of columns for which the conflict handler is called.

The same column cannot be in more than one column list.

If a conflict occurs for one or more of the columns in the list when an apply component tries to apply a row logical change record (row LCR), then the conflict handler is called to resolve the conflict. The conflict handler is not called if a conflict occurs only for columns that are not in the list.

Note: Prebuilt update conflict handlers do not support LOB, LONG, LONG RAW, user-defined type, and Oracle-suppled type columns. Therefore, you should not include these types of columns in the column_list parameter.

	
apply_database_link

	
The name of the database link to a non-Oracle database. This parameter should be set only when the destination database is a non-Oracle database.

Note: Currently, conflict handlers are not supported when applying changes to a non-Oracle database.

Usage Notes

The following usage notes apply to this procedure:

	
Modifying an Existing Update Conflict Handler

	
Removing an Existing Update Conflict Handler

	
Series of Actions for Conflicts

	
Procedure DML Handlers for Conflicts

	
A Column Can Be in Only One Column List

	
Update Conflict Handlers and Non-Oracle Databases

	
The SET_UPDATE_CONFLICT_HANDLER Procedure and XStream Outbound Servers

	
The SET_UPDATE_CONFLICT_HANDLER Procedure and XStream Inbound Servers

	
See Also:

Oracle Streams Replication Administrator's Guide for more information about prebuilt and custom update conflict handlers

Modifying an Existing Update Conflict Handler

If you want to modify an existing update conflict handler, then you specify the table and resolution column of an the existing update conflict handler. You can modify the prebuilt method or the column list.

Removing an Existing Update Conflict Handler

If you want to remove an existing update conflict handler, then specify NULL for the prebuilt method and specify the table, column list, and resolution column of the existing update conflict handler.

Series of Actions for Conflicts

If an update conflict occurs, then Oracle completes the following series of actions:

	
Calls the appropriate update conflict handler to resolve the conflict

	
If no update conflict handler is specified or if the update conflict handler cannot resolve the conflict, then calls the appropriate error handler for the apply component, table, and operation to handle the error

	
If no error handler is specified or if the error handler cannot resolve the error, then raises an error and moves the transaction containing the row LCR that caused the error to the error queue

	
See Also:

"Signature of a DML Handler Procedure or Error Handler Procedure" for information about setting an error handler

Procedure DML Handlers for Conflicts

If you cannot use a prebuilt update conflict handler to meet your requirements, then you can create a PL/SQL procedure to use as a custom conflict handler. You use the SET_DML_HANDLER procedure to designate one or more custom conflict handlers for a particular table. In addition, a custom conflict handler can process LOB columns and use LOB assembly.

	
See Also:

SET_DML_HANDLER Procedure

A Column Can Be in Only One Column List

When a column is in a column list, and you try to add the same column to another column list, this procedure returns the following error:

ORA-00001: UNIQUE CONSTRAINT (SYS.APPLY$_CONF_HDLR_COLUMNS_UNQ1) VIOLATED

Update Conflict Handlers and Non-Oracle Databases

Setting an update conflict handler for an apply component that is applying to a non-Oracle database is not supported.

The SET_UPDATE_CONFLICT_HANDLER Procedure and XStream Outbound Servers

This procedure has no effect on XStream outbound servers.

The SET_UPDATE_CONFLICT_HANDLER Procedure and XStream Inbound Servers

This procedure functions the same way for apply processes and inbound servers.

Examples

The following is an example for setting an update conflict handler for the employees table in the hr schema:

DECLARE
 cols DBMS_UTILITY.NAME_ARRAY;
BEGIN
 cols(1) := 'salary';
 cols(2) := 'commission_pct';
 DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name => 'hr.employees',
 method_name => 'MAXIMUM',
 resolution_column => 'salary',
 column_list => cols);
END;
/

This example sets a conflict handler that is called if a conflict occurs for the salary or commission_pct column in the hr.employees table. If such a conflict occurs, then the salary column is evaluated to resolve the conflict. If a conflict occurs only for a column that is not in the column list, such as the job_id column, then this conflict handler is not called.

SET_VALUE_DEPENDENCY Procedure

This procedure sets or removes a value dependency. A value dependency is a virtual dependency definition that defines a relationship between the columns of two or more tables.

An apply component uses the name of a value dependencies to detect dependencies between row logical change records (row LCRs) that contain the columns defined in the value dependency. Value dependencies can define virtual foreign key relationships between tables, but, unlike foreign key relationships, value dependencies can involve more than two database objects.

This procedure is overloaded. The attribute_list and attribute_table parameters are mutually exclusive.

	
See Also:

Oracle Streams Concepts and Administration

Syntax

DBMS_APPLY_ADM.SET_VALUE_DEPENDENCY(
 dependency_name IN VARCHAR2,
 object_name IN VARCHAR2,
 attribute_list IN VARCHAR2);

DBMS_APPLY_ADM.SET_VALUE_DEPENDENCY(
 dependency_name IN VARCHAR2,
 object_name IN VARCHAR2,
 attribute_table IN DBMS_UTILITY.NAME_ARRAY);

Parameters

Table 21-26 SET_VALUE_DEPENDENCY Procedure Parameters

	Parameter	Description
	
dependency_name

	
The name of the value dependency.

If a dependency with the specified name does not exist, then it is created.

If a dependency with the specified name exists, then the specified object and attributes are added to the dependency.

If NULL, an error is raised.

	
object_name

	
The name of the table, specified as [schema_name.]table_name. For example, hr.employees. If the schema is not specified, then the current user is the default.

If NULL and the specified dependency exists, then the dependency is removed. If NULL and the specified dependency does not exist, then an error is raised.

If NULL, then attribute_list and attribute_table also must be NULL.

	
attribute_list

	
A comma-delimited list of column names in the table. There must be no spaces between entries.

	
attribute_table

	
A PL/SQL associative array of type DBMS_UTILITY.NAME_ARRAY that contains names of columns in the table. The first column name should be at position 1, the second at position 2, and so on. The table does not need to be NULL terminated.

Usage Notes

The following usage notes apply to this procedure:

	
The SET_VALUE_DEPENDENCY Procedure and XStream Outbound Servers

	
The SET_VALUE_DEPENDENCY Procedure and XStream Inbound Servers

The SET_VALUE_DEPENDENCY Procedure and XStream Outbound Servers

This procedure has no effect on XStream outbound servers.

The SET_VALUE_DEPENDENCY Procedure and XStream Inbound Servers

This procedure functions the same way for apply processes and inbound servers.

START_APPLY Procedure

This procedure directs the apply component to start applying messages.

Syntax

DBMS_APPLY_ADM.START_APPLY(
 apply_name IN VARCHAR2);

Parameter

Table 21-27 START_APPLY Procedure Parameter

	Parameter	Description
	
apply_name

	
The apply component name. A NULL setting is not allowed. Do not specify an owner.

Usage Notes

The following usage notes apply to this procedure:

	
Apply Component Status

	
The START_APPLY Procedure and XStream Outbound Servers

	
The START_APPLY Procedure and XStream Inbound Servers

Apply Component Status

The apply component status is persistently recorded. Hence, if the status is ENABLED, then the apply component is started upon database instance startup. An apply component (annn) is an Oracle background process. The enqueue and dequeue state of DBMS_AQADM.START_QUEUE and DBMS_AQADM.STOP_QUEUE have no effect on the start status of an apply component.

The START_APPLY Procedure and XStream Outbound Servers

This procedure functions the same way for apply processes and outbound servers.

The START_APPLY Procedure and XStream Inbound Servers

This procedure functions the same way for apply processes and inbound servers.

STOP_APPLY Procedure

This procedure stops the apply component from applying messages and rolls back any unfinished transactions being applied.

Syntax

DBMS_APPLY_ADM.STOP_APPLY(
 apply_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Table 21-28 STOP_APPLY Procedure Parameters

	Parameter	Description
	
apply_name

	
The apply component name. A NULL setting is not allowed. Do not specify an owner.

	
force

	
If TRUE, then the procedure stops the apply component as soon as possible.

If FALSE, then the procedure stops the apply component after ensuring that there are no gaps in the set of applied transactions.

The behavior of the apply component depends on the setting specified for the force parameter and the setting specified for the commit_serialization apply component parameter. See "Usage Notes" for more information.

Usage Notes

The following usage notes apply to this procedure:

	
Apply Component Status

	
Queue Subprograms Have No Effect on Apply Component Status

	
The STOP_APPLY force Parameter and the commit_serialization Apply Parameter

	
The STOP_APPLY Procedure and XStream Outbound Servers

	
The STOP_APPLY Procedure and XStream Inbound Servers

Apply Component Status

The apply component status is persistently recorded. Hence, if the status is DISABLED or ABORTED, then the apply component is not started upon database instance startup.

Queue Subprograms Have No Effect on Apply Component Status

The enqueue and dequeue state of DBMS_AQADM.START_QUEUE and DBMS_AQADM.STOP_QUEUE have no effect on the STOP status of an apply component.

The STOP_APPLY force Parameter and the commit_serialization Apply Parameter

The following table describes apply component behavior for each setting of the force parameter in the STOP_APPLY procedure and the commit_serialization apply component parameter. In all cases, the apply component rolls back any unfinished transactions when it stops.

	force	commit_serialization	Apply Component Behavior
	TRUE	FULL	The apply component stops immediately and does not apply any unfinished transactions.
	TRUE	DEPENDENT_TRANSACTIONS	When the apply component stops, some transactions that have been applied locally might have committed at the source database at a later point in time than some transactions that have not been applied locally.
	FALSE	FULL	The apply component stops after applying the next uncommitted transaction in the commit order, if any such transaction is in progress.
	FALSE	DEPENDENT_TRANSACTIONS	Before stopping, the apply component applies all of the transactions that have a commit time that is earlier than the applied transaction with the most recent commit time.

For example, assume that the commit_serialization apply component parameter is set to DEPENDENT_TRANSACTIONS and there are three transactions: transaction 1 has the earliest commit time, transaction 2 is committed after transaction 1, and transaction 3 has the latest commit time. Also assume that an apply component has applied transaction 1 and transaction 3 and is in the process of applying transaction 2 when the STOP_APPLY procedure is run. Given this scenario, if the force parameter is set to TRUE, then transaction 2 is not applied, and the apply component stops (transaction 2 is rolled back). If, however, the force parameter is set to FALSE, then transaction 2 is applied before the apply component stops.

A different scenario would result if the commit_serialization apply component parameter is set to FULL. For example, assume that the commit_serialization apply component parameter is set to FULL and there are three transactions: transaction A has the earliest commit time, transaction B is committed after transaction A, and transaction C has the latest commit time. In this case, the apply component has applied transaction A and is in the process of applying transactions B and C when the STOP_APPLY procedure is run. Given this scenario, if the force parameter is set to TRUE, then transactions B and C are not applied, and the apply component stops (transactions B and C are rolled back). If, however, the force parameter is set to FALSE, then transaction B is applied before the apply component stops, and transaction C is rolled back.

	
See Also:

SET_PARAMETER Procedure for more information about the commit_serialization apply component parameter

The STOP_APPLY Procedure and XStream Outbound Servers

This procedure functions the same way for apply processes and outbound servers.

The STOP_APPLY Procedure and XStream Inbound Servers

This procedure functions the same way for apply processes and inbound servers.

22 DBMS_AQ

The DBMS_AQ package provides an interface to Oracle Streams Advanced Queuing (AQ).

	
See Also:

	
Oracle Streams Advanced Queuing User's Guide

	
Oracle Streams AQ TYPEs for information about TYPEs to use with DBMS_AQ.

This chapter contains the following topics:

	
Using DBMS_AQ

	
Constants

	
Data Structures

	
Operational Notes

	
Summary of DBMS_AQ Subprograms

Using DBMS_AQ

	
Constants

	
Data Structures

	
Operational Notes

Constants

The DBMS_AQ package uses the constants shown in Table 22-1.

When using enumerated constants such as BROWSE, LOCKED, or REMOVE, the PL/SQL constants must be specified with the scope of the packages defining it. All types associated with the operational interfaces have to be prepended with DBMS_AQ. For example: DBMS_AQ.BROWSE.

	
Note:

The sequence_deviation attribute has no effect in releases prior to Oracle Streams AQ 10g Release 1 (10.1) if message_grouping parameter of DBMS_AQADM subprograms is set to TRANSACTIONAL. The sequence deviation feature is deprecated in Oracle Streams AQ 10g Release 2 (10.2).

Table 22-1 Enumerated Constants

	Parameter	Options	Type	Description
	
VISIBILITY

	
IMMEDIATE

	
	

	
.

	
ON_COMMIT

	
	

	
DEQUEUE_MODE

	
BROWSE

	
	

	
.

	
LOCKED

	
	

	
.

	
REMOVE

	
	

	
.

	
REMOVE_NODATA

	
	

	
NAVIGATION

	
FIRST_MESSAGE

	
	

	
.

	
NEXT_MESSAGE

	
	

	
STATE

	
WAITING

	
	

	
.

	
READY

	
	

	
.

	
PROCESSED

	
	

	
.

	
EXPIRED

	
	

	
SEQUENCE_DEVIATION

	
BEFORE

	
	

	
.

	
TOP

	
	

	
WAIT

	
FOREVER

	
BINARY_INTEGER

	

	
.

	
NO_WAIT

	
BINARY_INTEGER

	

	
DELAY

	
NO_DELAY

	
	

	
EXPIRATION

	
NEVER

	
	

	
NAMESPACE

	
NAMESPACE_AQ

	
	

	
.

	
NAMESPACE_ANONYMOUS

	
	

	
NTFN_GROUPING_CLASS

	
NFTN_GROUPING_CLASS_TIME

	
NUMBER

	

	
NTFN_GROUPING_TYPE

	
NTFN_GROUPING_TYPE_SUMMARY

	
NUMBER

	

	
.

	
NTFN_GROUPING_TYPE_LAST

	
NUMBER

	

	
NTFN_GROUPING_REPEAT_COUNT

	
NTFN_GROUPING_FOREVER

	
NUMBER

	

Data Structures

Table 22-2 DBMS_AQ Data Structures

	Data Structures	Description
	
Object Name

	
Names database objects

	
Type Name

	
Defines queue types

	
Oracle Streams AQ PL/SQL Callback

	
Specifies the user-defined PL/SQL procedure, defined in the database to be invoked on message notification

Object Name

The object_name data structure names database objects. It applies to queues, queue tables, agent names, and object types.

Syntax

object_name := VARCHAR2;
object_name := [schema_name.]name;

Usage Notes

Names for objects are specified by an optional schema name and a name. If the schema name is not specified, the current schema is assumed. The name must follow object name guidelines in Oracle Database SQL Language Reference with regard to reserved characters. Schema names, agent names, and object type names can be up to 30 bytes long. Queue names and queue table names can be up to 24 bytes long.

Type Name

The type_name data structure defines queue types.

Syntax

type_name := VARCHAR2;
type_name := object_type | "RAW";

Attributes

Table 22-3 Type Name Attributes

	Attribute	Description
	
object_type

	
Maximum number of attributes in the object type is limited to 900.

	
"RAW"

	
To store payload of type RAW, Oracle Streams AQ creates a queue table with a LOB column as the payload repository. The theoretical maximum size of the message payload is the maximum amount of data that can be stored in a LOB column. However, the maximum size of the payload is determined by which programmatic environment you use to access Oracle Streams AQ. For PL/SQL, Java and precompilers the limit is 32K; for the OCI the limit is 4G. Because the PL/SQL enqueue and dequeue interfaces accept RAW buffers as the payload parameters you will be limited to 32K bytes. In OCI, the maximum size of your RAW data will be limited to the maximum amount of contiguous memory (as an OCIRaw is simply an array of bytes) that the OCI Object Cache can allocate. Typically, this will be at least 32K bytes and much larger in many cases.

Because LOB columns are used for storing RAW payload, the Oracle Streams AQ administrator can choose the LOB tablespace and configure the LOB storage by constructing a LOB storage string in the storage_clause parameter during queue table creation time.

Oracle Streams AQ PL/SQL Callback

The plsqlcallback data structure specifies the user-defined PL/SQL procedure, defined in the database to be invoked on message notification.

Syntax

If a notification message is expected for a RAW payload enqueue, then the PL/SQL callback must have the following signature:

procedure plsqlcallback(
 context IN RAW,
 reginfo IN SYS.AQ$_REG_INFO,
 descr IN SYS.AQ$_DESCRIPTOR,
 payload IN RAW,
 payloadl IN NUMBER);

Attributes

Table 22-4 Oracle Streams AQ PL/SQL Callback Attributes

	Attribute	Description
	
context

	
Specifies the context for the callback function that was passed by dbms_aq.register. See AQ$_REG_INFO Type.

	
reginfo

	
See AQ$_REG_INFO Type.

	
descr

	
See AQ$_DESCRIPTOR Type

	
payload

	
If a notification message is expected for a raw payload enqueue then this contains the raw payload that was enqueued into a non persistent queue. In case of a persistent queue with raw payload this parameter will be null.

	
payloadl

	
Specifies the length of payload. If payload is null, payload1 = 0.

If the notification message is expected for an ADT payload enqueue, the PL/SQL callback must have the following signature:

procedure plsqlcallback(
 context IN RAW,
 reginfo IN SYS.AQ$_REG_INFO,
 descr IN SYS.AQ$_DESCRIPTOR,
 payload IN VARCHAR2,
 payloadl IN NUMBER);

Operational Notes

	
DBMS_AQ and DBMS_AQADM Java Classes

DBMS_AQ and DBMS_AQADM Java Classes

Java interfaces are available for DBMS_AQ and DBMS_AQADM. The Java interfaces are provided in the $ORACLE_HOME/rdbms/jlib/aqapi.jar. Users are required to have EXECUTE privileges on the DBMS_AQIN package to use these interfaces.

Summary of DBMS_AQ Subprograms

Table 22-5 DBMS_AQ Package Subprograms

	Subprograms	Description
	
BIND_AGENT Procedure

	
Creates an entry for an Oracle Streams AQ agent in the LDAP directory

	
DEQUEUE Procedure

	
Dequeues a message from the specified queue

	
DEQUEUE_ARRAY Function

	
Dequeues an array of messages from the specified queue

	
ENQUEUE Procedure

	
Adds a message to the specified queue

	
ENQUEUE_ARRAY Function

	
Adds an array of messages to the specified queue

	
LISTEN Procedures

	
Listen to one or more queues on behalf of a list of agents

	
POST Procedure

	
Posts to a anonymous subscription which allows all clients who are registered for the subscription to get notifications

	
REGISTER Procedure

	
Registers for message notifications

	
UNBIND_AGENT Procedure

	
Removes an entry for an Oracle Streams AQ agent from the LDAP directory

	
UNREGISTER Procedure

	
Unregisters a subscription which turns off notification

	
Note:

DBMS_AQ does not have a purity level defined; therefore, you cannot call any procedure in this package from other procedures that have RNDS, WNDS, RNPS or WNPS constraints defined.

BIND_AGENT Procedure

This procedure creates an entry for an Oracle Streams AQ agent in the LDAP server.

Syntax

DBMS_AQ.BIND_AGENT(
 agent IN SYS.AQ$_AGENT,
 certificate IN VARCHAR2 default NULL);

Parameters

Table 22-6 BIND_AGENT Procedure Parameters

	Parameter	Description
	
agent

	
Agent that is to be registered in LDAP server.

	
certificate

	
Location (LDAP distinguished name) of the "organizationalperson" entry in LDAP whose digital certificate (attribute usercertificate) is to be used for this agent. Example: "cn=OE, cn=ACME, cn=com" is a distinguished name for a OrganizationalPerson OE whose certificate will be used with the specified agent.

Usage Notes

In the LDAP server, digital certificates are stored as an attribute (usercertificate) of the OrganizationalPerson entity. The distinguished name for this OrganizationalPerson must be specified when binding the agent.

DEQUEUE Procedure

This procedure dequeues a message from the specified queue.

Syntax

DBMS_AQ.DEQUEUE (
 queue_name IN VARCHAR2,
 dequeue_options IN dequeue_options_t,
 message_properties OUT message_properties_t,
 payload OUT "<ADT_1>"
 msgid OUT RAW);

Parameters

Table 22-7 DEQUEUE Procedure Parameters

	Parameter	Description
	
queue_name

	
Specifies the name of the queue.

	
dequeue_options

	
See DEQUEUE_OPTIONS_T Type.

	
message_properties

	
See MESSAGE_PROPERTIES_T Type.

	
payload

	
Not interpreted by Oracle Streams AQ. The payload must be specified according to the specification in the associated queue table. For the definition of type_name refer to Type Name.

	
msgid

	
System generated identification of the message.

Usage Notes

The search criteria for messages to be dequeued is determined by the following parameters in dequeue_options:

	
consumer_name

	
msgid

Msgid uniquely identifies the message to be dequeued. Only messages in the READY state are dequeued unless msgid is specified.

	
correlation

Correlation identifiers are application-defined identifiers that are not interpreted by Oracle Streams AQ.

	
deq_condition

Dequeue condition is an expression based on the message properties, the message data properties and PL/SQL functions. A deq_condition is specified as a Boolean expression using syntax similar to the WHERE clause of a SQL query. This Boolean expression can include conditions on message properties, user data properties (object payloads only), and PL/SQL or SQL functions (as specified in the where clause of a SQL query). Message properties include priority, corrid and other columns in the queue table.

To specify dequeue conditions on a message payload (object payload), use attributes of the object type in clauses. You must prefix each attribute with tab.user_data as a qualifier to indicate the specific column of the queue table that stores the payload.

Example: tab.user_data.orderstatus='EXPRESS'

The dequeue order is determined by the values specified at the time the queue table is created unless overridden by the msgid and correlation ID in dequeue_options.

The database-consistent read mechanism is applicable for queue operations. For example, a BROWSE call may not see a message that is enqueued after the beginning of the browsing transaction.

The default NAVIGATION parameter during dequeue is NEXT_MESSAGE. This means that subsequent dequeues will retrieve the messages from the queue based on the snapshot obtained in the first dequeue. In particular, a message that is enqueued after the first dequeue command will be processed only after processing all the remaining messages in the queue. This is usually sufficient when all the messages have already been enqueued into the queue, or when the queue does not have a priority-based ordering. However, applications must use the FIRST_MESSAGE navigation option when the first message in the queue needs to be processed by every dequeue command. This usually becomes necessary when a higher priority message arrives in the queue while messages already-enqueued are being processed.

	
Note:

It may be more efficient to use the FIRST_MESSAGE navigation option when messages are concurrently enqueued. If the FIRST_MESSAGE option is not specified, Oracle Streams AQ continually generates the snapshot as of the first dequeue command, leading to poor performance. If the FIRST_MESSAGE option is specified, then Oracle Streams AQ uses a new snapshot for every dequeue command.

Messages enqueued in the same transaction into a queue that has been enabled for message grouping will form a group. If only one message is enqueued in the transaction, then this will effectively form a group of one message. There is no upper limit to the number of messages that can be grouped in a single transaction.

In queues that have not been enabled for message grouping, a dequeue in LOCKED or REMOVE mode locks only a single message. By contrast, a dequeue operation that seeks to dequeue a message that is part of a group will lock the entire group. This is useful when all the messages in a group need to be processed as an atomic unit.

When all the messages in a group have been dequeued, the dequeue returns an error indicating that all messages in the group have been processed. The application can then use the NEXT_TRANSACTION to start dequeuing messages from the next available group. In the event that no groups are available, the dequeue will time out after the specified WAIT period.

Using Secure Queues

For secure queues, you must specify consumer_name in the dequeue_options parameter. See DEQUEUE_OPTIONS_T Type for more information about consumer_name.

When you use secure queues, the following are required:

	
You must have created a valid Oracle Streams AQ agent using DBMS_AQADM.CREATE_AQ_AGENT. See CREATE_AQ_AGENT Procedure .

	
You must map the Oracle Streams AQ agent to a database user with dequeue privileges on the secure queue. Use DBMS_AQADM.ENABLE_DB_ACCESS to do this. See ENABLE_DB_ACCESS Procedure.

	
See Also:

Oracle Streams Concepts and Administration for information about secure queues

DEQUEUE_ARRAY Function

This function dequeues an array of messages and returns them in the form of an array of payloads, an array of message properties and an array of message IDs. This function returns the number of messages successfully dequeued.

Syntax

DBMS_AQ.DEQUEUE_ARRAY (
 queue_name IN VARCHAR2,
 dequeue_options IN dequeue_options_t,
 array_size IN pls_integer,
 message_properties_array OUT message_properties_array_t,
 payload_array OUT "<COLLECTION_1>",
 msgid_array OUT msgid_array_t,
 error_array OUT error_array_t)
RETURN pls_integer;

Parameters

Table 22-8 DEQUEUE_ARRAY Function Parameters

	Parameter	Description
	
queue_name

	
The queue name from which messages are dequeued (same as single-row dequeue).

	
dequeue_options

	
The set of options which will be applied to all messages in the array (same as single-row dequeue).

	
array_size

	
The number of elements to dequeue.

	
message_properties_array

	
A record containing an array corresponding to each message property. Each payload element has a corresponding set of message properties. See MESSAGE_PROPERTIES_ARRAY_T Type.

	
payload_array

	
An array of dequeued payload data. "<COLLECTION_1>" can be an associative array, varray or nested table in its PL/SQL representation.

	
msgid_array

	
An array of message IDs of the dequeued messages. See MSGID_ARRAY_T Type.

	
error_array

	
Currently not implemented

Usage Notes

A nonzero wait time, as specified in dequeue_options, is recognized only when there are no messages in the queue. If the queue contains messages that are eligible for dequeue, then the DEQUEUE_ARRAY function will dequeue up to array_size messages and return immediately.

Dequeue by message_id is not supported. See DEQUEUE Procedure for more information on the navigation parameter. Existing NAVIGATION modes are supported. In addition, two new NAVIGATION modes are supported for queues enabled for message grouping:

	
FIRST_MESSAGE_MULTI_GROUP

	
NEXT_MESSAGE_MULTI_GROUP

	
See Also:

ENQUEUE_OPTIONS_T Type

For transaction grouped queues and ONE_GROUP navigation, messages are dequeued from a single transaction group only, subject to the array_size limit. In MULTI_GROUP navigation, messages are dequeued across multiple transaction groups, still subject to the array_size limit. ORA-25235 is returned to indicate the end of a transaction group.

DEQUEUE_ARRAY is not supported for buffered messages, but you can still use this procedure on individual buffered messages by setting array_size to one message.

ENQUEUE Procedure

This procedure adds a message to the specified queue.

Syntax

DBMS_AQ.ENQUEUE (
 queue_name IN VARCHAR2,
 enqueue_options IN enqueue_options_t,
 message_properties IN message_properties_t,
 payload IN "<ADT_1>",
 msgid OUT RAW);

Parameters

Table 22-9 ENQUEUE Procedure Parameters

	Parameter	Description
	
queue_name

	
Specifies the name of the queue to which this message should be enqueued. The queue cannot be an exception queue.

	
enqueue_options

	
See ENQUEUE_OPTIONS_T Type.

	
message_properties

	
See MESSAGE_PROPERTIES_T Type.

	
payload

	
Not interpreted by Oracle Streams AQ. The payload must be specified according to the specification in the associated queue table. NULL is an acceptable parameter. For the definition of type_name refer to Type Name.

	
msgid

	
System generated identification of the message. This is a globally unique identifier that can be used to identify the message at dequeue time.

Usage Notes

The sequence_deviation parameter in enqueue_options can be used to change the order of processing between two messages. The identity of the other message, if any, is specified by the enqueue_options parameter relative_msgid. The relationship is identified by the sequence_deviation parameter.

Specifying sequence_deviation for a message introduces some restrictions for the delay and priority values that can be specified for this message. The delay of this message must be less than or equal to the delay of the message before which this message is to be enqueued. The priority of this message must be greater than or equal to the priority of the message before which this message is to be enqueued.

	
Note:

The sequence_deviation attribute has no effect in releases prior to Oracle Streams AQ 10g Release 1 (10.1) if message_grouping parameter of DBMS_AQADM subprograms is set to TRANSACTIONAL. The sequence deviation feature is deprecated in Oracle Streams AQ 10g Release 2 (10.2).

If a message is enqueued to a multiconsumer queue with no recipient, and if the queue has no subscribers (or rule-based subscribers that match this message), then Oracle error ORA_24033 is raised. This is a warning that the message will be discarded because there are no recipients or subscribers to whom it can be delivered.

Using Secure Queues

For secure queues, you must specify the sender_id in the messages_properties parameter. See MESSAGE_PROPERTIES_T Type for more information about sender_id.

When you use secure queues, the following are required:

	
You must have created a valid Oracle Streams AQ agent using DBMS_AQADM.CREATE_AQ_AGENT. See CREATE_AQ_AGENT Procedure .

	
You must map sender_id to a database user with enqueue privileges on the secure queue. Use DBMS_AQADM.ENABLE_DB_ACCESS to do this. See ENABLE_DB_ACCESS Procedure.

	
See Also:

Oracle Streams Concepts and Administration for information about secure queues

ENQUEUE_ARRAY Function

This function enqueues an array of payloads using a corresponding array of message properties. The output will be an array of message IDs of the enqueued messages.

Syntax

DBMS_AQ.ENQUEUE_ARRAY (
 queue_name IN VARCHAR2,
 enqueue_options IN enqueue_options_t,
 array_size IN pls_integer,
 message_properties_array IN message_properties_array_t,
 payload_array IN "<COLLECTION_1>",
 msgid_array OUT msgid_array_t,
 error_array OUT error_array_t)
RETURN pls_integer;

Parameters

Table 22-10 ENQUEUE_ARRAY Function Parameters

	Parameter	Description
	
queue_name

	
The queue name in which messages are enqueued (same as single-row enqueue).

	
enqueue_options

	
See ENQUEUE_OPTIONS_T Type.

	
array_size

	
The number of elements to enqueue.

	
message_properties_array

	
A record containing an array corresponding to each message property. For each property, the user must allocate array_size elements. See MESSAGE_PROPERTIES_ARRAY_T Type.

	
payload_array

	
An array of payload data. "<COLLECTION_1>" can be an associative array, VARRAY, or nested table in its PL/SQL representation.

	
msgid_array

	
An array of message IDs for the enqueued messages. If an error occurs for a particular message, then its corresponding message ID is null. See MSGID_ARRAY_T Type.

	
error_array

	
Currently not implemented

Usage Notes

ENQUEUE_ARRAY is not supported for buffered messages, but you can still use this procedure on individual buffered messages by setting array_size to one message.

LISTEN Procedures

This procedure listens on one or more queues on behalf of a list of agents. The address field of the agent indicates the queue the agent wants to monitor. Only local queues are supported as addresses. Protocol is reserved for future use.

Syntax

DBMS_AQ.LISTEN (
 agent_list IN AQ$_AGENT_LIST_T,
 wait IN BINARY_INTEGER DEFAULT DBMS_AQ.FOREVER,
 agent OUT SYS.AQ$_AGENT);

DBMS_AQ.LISTEN (
 agent_list IN AQ$_AGENT_LIST_T,
 wait IN BINARY_INTEGER DEFAULT FOREVER,
 listen_delivery_mode IN PLS_INTEGER DEFAULT DBMS_AQ.PERSISTENT,
 agent OUT SYS.AQ$_AGENT,
 message_delivery_mode OUT PLS_INTEGER);

TYPE aq$_agent_list_t IS TABLE of aq$_agent INDEXED BY BINARY_INTEGER;
TYPE aq$_agent_list_t IS TABLE of aq$_agent INDEXED BY BINARY_INTEGER;

Parameters

Table 22-11 LISTEN Procedure Parameters

	Parameter	Description
	
agent_list

	
List of agents to listen for

	
wait

	
Time out for the listen call in seconds. By default, the call will block forever.

	
listen_delivery_mode

	
The caller specifies whether it is interested in persistent, buffered messages or both types of messages, specifying a delivery mode of DBMS_AQ.PERSISTENT or DBMS_AQ.BUFFERED or DBMS_AQ.PERSISTENT_OR_BUFFERED

	
agent

	
Agent with a message available for consumption

	
message_delivery_mode

	
Returns the message type along with the queue and consumer for which there is a message

Usage Notes

If agent-address is a multiconsumer queue, then agent-name is mandatory. For single-consumer queues, agent-name must not be specified.

This procedure takes a list of agents as an argument. You specify the queue to be monitored in the address field of each agent listed. You also must specify the name of the agent when monitoring multiconsumer queues. For single-consumer queues, an agent name must not be specified. Only local queues are supported as addresses. Protocol is reserved for future use.

This is a blocking call that returns when there is a message ready for consumption for an agent in the list. If there are messages for more than one agent, only the first agent listed is returned. If there are no messages found when the wait time expires, an error is raised.

A successful return from the LISTEN call is only an indication that there is a message for one of the listed agents in one the specified queues. The interested agent must still dequeue the relevant message.

	
Note:

You cannot call LISTEN on nonpersistent queues.

POST Procedure

This procedure posts to a list of anonymous subscriptions that allows all clients who are registered for the subscriptions to get notifications.

Syntax

DBMS_AQ.POST (
 post_list IN SYS.AQ$_POST_INFO_LIST,
 post_count IN NUMBER);

Parameters

Table 22-12 POST Procedure Parameters

	Parameter	Description
	
post_list

	
Specifies the list of anonymous subscriptions to which you want to post. It is a list of AQ$_POST_INFO_LIST Type.

	
post_count

	
Specifies the number of entries in the post_list.

Usage Notes

This procedure is used to post to anonymous subscriptions which allows all clients who are registered for the subscriptions to get notifications. Several subscriptions can be posted to at one time.

REGISTER Procedure

This procedure registers an e-mail address, user-defined PL/SQL procedure, or HTTP URL for message notification.

Syntax

DBMS_AQ.REGISTER (
 reg_list IN SYS.AQ$_REG_INFO_LIST,
 count IN NUMBER);

Parameters

Table 22-13 REGISTER Procedure Parameters

	Parameter	Description
	
reg_list

	
Specifies the list of subscriptions to which you want to register for message notifications. It is a list of AQ$_REG_INFO Type.

	
count

	
Specifies the number of entries in the reg_list.

Usage Notes

	
This procedure is used to register for notifications. You can specify an e-mail address to which message notifications are sent, register a procedure to be invoked on a notification, or register an HTTP URL to which the notification is posted. Interest in several subscriptions can be registered at one time.

	
The procedure can also be used to register for grouping notifications using five grouping attributes:

	
Class – grouping criterion (currently only TIME criterion is supported)

	
Value – the value of the grouping criterion (currently only time in seconds for criterion TIME)

	
Type – summary or last, also contains count of notifications received in group (for AQ namespace only, not for DBCHANGE namespace)

	
Repeat count – how many times to perform grouping (Default is FOREVER)

	
Start time – when to start grouping (Default is current time)

	
If you register for e-mail notifications, you should set the host name and port name for the SMTP server that will be used by the database to send e-mail notifications. If required, you should set the send-from e-mail address, which is set by the database as the sent from field. You need a Java-enabled database to use this feature.

	
If you register for HTTP notifications, you may want to set the host name and port number for the proxy server and a list of no-proxy domains that will be used by the database to post HTTP notifications.

	
See Also:

Chapter 24, "DBMS_AQELM" for more information on e-mail and HTTP notifications

UNBIND_AGENT Procedure

This procedure removes the entry for an Oracle Streams AQ agent from the LDAP server.

Syntax

DBMS_AQ.UNBIND_AGENT(
 agent IN SYS.AQ$_AGENT);

Parameters

Table 22-14 BIND_AGENT Procedure Parameters

	Parameter	Description
	
agent

	
Agent that is to be removed from the LDAP server

UNREGISTER Procedure

This procedure unregisters a subscription which turns off notifications.

Syntax

DBMS_AQ.UNREGISTER (
 reg_list IN SYS.AQ$_REG_INFO_LIST,
 reg_count IN NUMBER);

Parameters

Table 22-15 UNREGISTER Procedure Parameters

	Parameter	Description
	
reg_list

	
Specifies the list of subscriptions to which you want to register for message notifications. It is a list of AQ$_REG_INFO Type.

	
reg_count

	
Specifies the number of entries in the reg_list.

Usage Notes

This procedure is used to unregister a subscription which turns off notifications. Several subscriptions can be unregistered from at one time.

23 DBMS_AQADM

The DBMS_AQADM package provides procedures to manage Oracle Streams Advanced Queuing (AQ) configuration and administration information.

	
See Also:

	
Oracle Streams Advanced Queuing User's Guide

	
Chapter 243, "Oracle Streams AQ TYPEs" for information about the TYPEs to use with DBMS_AQADM

This chapter contains the following topics:

	
Using DBMS_AQADM

	
Constants

	
Subprogram Groups

	
Queue Table Subprograms

	
Privilege Subprograms

	
Queue Subprograms

	
Subscriber Subprograms

	
Notification Subprograms

	
Propagation Subprograms

	
Oracle Streams AQ Agent Subprograms

	
Alias Subprograms

	
Summary of DBMS_AQADM Subprograms

Using DBMS_AQADM

This section contains the following topics.

	
Constants

Constants

When using enumerated constants, such as INFINITE, TRANSACTIONAL, or NORMAL_QUEUE, the symbol must be specified with the scope of the packages defining it. All types associated with the administrative interfaces must be prepended with DBMS_AQADM. For example: DBMS_AQADM.NORMAL_QUEUE.

Table 23-1 Enumerated Types in the Administrative Interface

	Parameter	Options
	
retention

	
0, 1, 2...INFINITE

	
message_grouping

	
TRANSACTIONAL, NONE

	
queue_type

	
NORMAL_QUEUE, EXCEPTION_QUEUE, NON_PERSISTENT_QUEUE

	
See Also:

For more information on the Java classes and data structures used in both DBMS_AQ and DBMS_AQADM, see the DBMS_AQ package.

Subprogram Groups

This DBMS_AQADM package is made up of the following subprogram groups:

	
Queue Table Subprograms

	
Privilege Subprograms

	
Queue Subprograms

	
Subscriber Subprograms

	
Notification Subprograms

	
Propagation Subprograms

	
Oracle Streams AQ Agent Subprograms

	
Alias Subprograms

Queue Table Subprograms

Table 23-2 Queue Table Subprograms

	Subprograms	Description
	
ALTER_QUEUE_TABLE Procedure

	
Alters the existing properties of a queue table

	
CREATE_QUEUE_TABLE Procedure

	
Creates a queue table for messages of a predefined type

	
DROP_QUEUE_TABLE Procedure

	
Drops an existing queue table

	
ENABLE_JMS_TYPES Procedure

	
A precondition for the enqueue of JMS types and XML types

	
MIGRATE_QUEUE_TABLE Procedure

	
Upgrades an 8.0-compatible queue table to an 8.1-compatible or higher queue table, or downgrades an 8.1-compatible or higher queue table to an 8.0-compatible queue table

	
PURGE_QUEUE_TABLE Procedure

	
Purges messages from queue tables

Privilege Subprograms

Table 23-3 Privilege Subprograms

	Subprograms	Description
	
GRANT_QUEUE_PRIVILEGE Procedure

	
Grants privileges on a queue to users and roles

	
GRANT_SYSTEM_PRIVILEGE Procedure

	
Grants Oracle Streams AQ system privileges to users and roles

	
REVOKE_QUEUE_PRIVILEGE Procedure

	
Revokes privileges on a queue from users and roles

	
REVOKE_SYSTEM_PRIVILEGE Procedure

	
Revokes Oracle Streams AQ system privileges from users and roles

Queue Subprograms

Table 23-4 Queue Subprograms

	Subprograms	Description
	
ALTER_QUEUE Procedure

	
Alters existing properties of a queue

	
CREATE_NP_QUEUE Procedure

	
Creates a nonpersistent RAW queue

	
CREATE_QUEUE Procedure

	
Creates a queue in the specified queue table

	
DROP_QUEUE Procedure

	
Drops an existing queue

	
QUEUE_SUBSCRIBERS Function

	
Returns the subscribers to an 8.0-compatible multiconsumer queue in the PL/SQL index by table collection type DBMS_AQADM.AQ$_subscriber_list_t

	
START_QUEUE Procedure

	
Enables the specified queue for enqueuing or dequeuing

	
STOP_QUEUE Procedure

	
Disables enqueuing or dequeuing on the specified queue

Subscriber Subprograms

Table 23-5 Subscriber Subprograms

	Subprograms	Description
	
ADD_SUBSCRIBER Procedure

	
Adds a default subscriber to a queue

	
ALTER_SUBSCRIBER Procedure

	
Alters existing properties of a subscriber to a specified queue

	
REMOVE_SUBSCRIBER Procedure

	
Removes a default subscriber from a queue

Notification Subprograms

Table 23-6 Notification Subprograms

	Subprograms	Description
	
GET_WATERMARK Procedure

	
Retrieves the value of watermark set by the SET_WATERMARK Procedure

	
SET_WATERMARK Procedure

	
Used for Oracle Streams AQ notification to specify and limit memory use

Propagation Subprograms

Table 23-7 Propagation Subprograms

	Subprograms	Description
	
ALTER_PROPAGATION_SCHEDULE Procedure

	
Alters parameters for a propagation schedule

	
DISABLE_PROPAGATION_SCHEDULE Procedure

	
Disables a propagation schedule

	
ENABLE_PROPAGATION_SCHEDULE Procedure

	
Enables a previously disabled propagation schedule

	
SCHEDULE_PROPAGATION Procedure

	
Schedules propagation of messages from a queue to a destination identified by a specific database link

	
UNSCHEDULE_PROPAGATION Procedure

	
Unschedules previously scheduled propagation of messages from a queue to a destination identified by a specific database link

	
VERIFY_QUEUE_TYPES Procedure

	
Verifies that the source and destination queues have identical types

Oracle Streams AQ Agent Subprograms

Table 23-8 Oracle Streams AQ Agent Subprograms

	Subprograms	Description
	
ALTER_AQ_AGENT Procedure

	
Alters an agent registered for Oracle Streams AQ Internet access, and an Oracle Streams AQ agent that accesses secure queues

	
CREATE_AQ_AGENT Procedure

	
Registers an agent for Oracle Streams AQ Internet access using HTTP/SMTP protocols, and creates an Oracle Streams AQ agent to access secure queues

	
DISABLE_DB_ACCESS Procedure

	
Revokes the privileges of a specific database user from an Oracle Streams AQ Internet agent

	
DROP_AQ_AGENT Procedure

	
Drops an agent that was previously registered for Oracle Streams AQ Internet access

	
ENABLE_DB_ACCESS Procedure

	
Grants an Oracle Streams AQ Internet agent the privileges of a specific database user

Alias Subprograms

Table 23-9 Alias Subprograms

	Subprograms	Description
	
ADD_ALIAS_TO_LDAP Procedure

	
Creates an alias for a queue, agent, or a JMS ConnectionFactory in LDAP

	
DEL_ALIAS_FROM_LDAP Procedure

	
Drops an alias for a queue, agent, or JMS ConnectionFactory in LDAP

Summary of DBMS_AQADM Subprograms

Table 23-10 DBMS_AQADM Package Subprograms

	Subprograms	Description
	
ADD_ALIAS_TO_LDAP Procedure

	
Creates an alias for a queue, agent, or a JMS ConnectionFactory in LDAP

	
ADD_SUBSCRIBER Procedure

	
Adds a default subscriber to a queue

	
ALTER_AQ_AGENT Procedure

	
Alters an agent registered for Oracle Streams AQ Internet access, and an Oracle Streams AQ agent that accesses secure queues

	
ALTER_PROPAGATION_SCHEDULE Procedure

	
Alters parameters for a propagation schedule

	
ALTER_QUEUE Procedure

	
Alters existing properties of a queue

	
ALTER_QUEUE_TABLE Procedure

	
Alters the existing properties of a queue table

	
ALTER_SUBSCRIBER Procedure

	
Alters existing properties of a subscriber to a specified queue

	
CREATE_AQ_AGENT Procedure

	
Registers an agent for Oracle Streams AQ Internet access using HTTP/SMTP protocols, and creates an Oracle Streams AQ agent to access secure queues

	
CREATE_NP_QUEUE Procedure

	
Creates a nonpersistent RAW queue

	
CREATE_QUEUE Procedure

	
Creates a queue in the specified queue table

	
CREATE_QUEUE_TABLE Procedure

	
Creates a queue table for messages of a predefined type

	
DEL_ALIAS_FROM_LDAP Procedure

	
Drops an alias for a queue, agent, or JMS ConnectionFactory in LDAP

	
DISABLE_DB_ACCESS Procedure

	
Revokes the privileges of a specific database user from an Oracle Streams AQ Internet agent

	
DISABLE_PROPAGATION_SCHEDULE Procedure

	
Disables a propagation schedule

	
DROP_AQ_AGENT Procedure

	
Drops an agent that was previously registered for Oracle Streams AQ Internet access

	
DROP_QUEUE Procedure

	
Drops an existing queue

	
DROP_QUEUE_TABLE Procedure

	
Drops an existing queue table

	
ENABLE_DB_ACCESS Procedure

	
Grants an Oracle Streams AQ Internet agent the privileges of a specific database user

	
ENABLE_JMS_TYPES Procedure

	
A precondition for the enqueue of JMS types and XML types

	
ENABLE_PROPAGATION_SCHEDULE Procedure

	
Enables a previously disabled propagation schedule

	
GET_WATERMARK Procedure

	
Retrieves the value of watermark set by the SET_WATERMARK Procedure

	
GRANT_QUEUE_PRIVILEGE Procedure

	
Grants privileges on a queue to users and roles

	
GRANT_SYSTEM_PRIVILEGE Procedure

	
Grants Oracle Streams AQ system privileges to users and roles

	
MIGRATE_QUEUE_TABLE Procedure

	
Upgrades an 8.0-compatible queue table to an 8.1-compatible or higher queue table, or downgrades an 8.1-compatible or higher queue table to an 8.0-compatible queue table

	
PURGE_QUEUE_TABLE Procedure

	
Purges messages from queue tables

	
QUEUE_SUBSCRIBERS Function

	
Returns the subscribers to an 8.0-compatible multiconsumer queue in the PL/SQL index by table collection type DBMS_AQADM.AQ$_subscriber_list_t

	
REMOVE_SUBSCRIBER Procedure

	
Removes a default subscriber from a queue

	
REVOKE_QUEUE_PRIVILEGE Procedure

	
Revokes privileges on a queue from users and roles

	
REVOKE_SYSTEM_PRIVILEGE Procedure

	
Revokes Oracle Streams AQ system privileges from users and roles

	
SCHEDULE_PROPAGATION Procedure

	
Schedules propagation of messages from a queue to a destination identified by a specific database link

	
SET_WATERMARK Procedure

	
Used for Oracle Streams AQ notification to specify and limit memory use

	
START_QUEUE Procedure

	
Enables the specified queue for enqueuing or dequeuing

	
STOP_QUEUE Procedure

	
Disables enqueuing or dequeuing on the specified queue

	
UNSCHEDULE_PROPAGATION Procedure

	
Unschedules previously scheduled propagation of messages from a queue to a destination identified by a specific database link

	
VERIFY_QUEUE_TYPES Procedure

	
Verifies that the source and destination queues have identical types

ADD_ALIAS_TO_LDAP Procedure

This procedure creates an alias for a queue, agent, or a JMS ConnectionFactory in LDAP. The alias will be placed directly under the database server's distinguished name in LDAP hierarchy.

Syntax

DBMS_AQADM.ADD_ALIAS_TO_LDAP(
 alias IN VARCHAR2,
 obj_location IN VARCHAR2);

Parameters

Table 23-11 ADD_ALIAS_TO_LDAP Procedure Parameters

	Parameter	Description
	
alias

	
Name of the alias. Example: west_shipping.

	
obj_location

	
The distinguished name of the object (queue, agent or connection factory) to which alias refers.

Usage Notes

This method can be used to create aliases for queues, agents, and JMS ConnectionFactory objects. These object must exist before the alias is created. These aliases can be used for JNDI lookup in JMS and Oracle Streams AQ Internet access.

ADD_SUBSCRIBER Procedure

This procedure adds a default subscriber to a queue.

Syntax

DBMS_AQADM.ADD_SUBSCRIBER (
 queue_name IN VARCHAR2,
 subscriber IN sys.aq$_agent,
 rule IN VARCHAR2 DEFAULT NULL,
 transformation IN VARCHAR2 DEFAULT NULL
 queue_to_queue IN BOOLEAN DEFAULT FALSE,
 delivery_mode IN PLS_INTEGER DEFAULT DBMS_AQADM.PERSISTENT);

Parameters

Table 23-12 ADD_SUBSCRIBER Procedure Parameters

	Parameter	Description
	
queue_name

	
Name of the queue.

	
subscriber

	
Agent on whose behalf the subscription is being defined.

	
rule

	
A conditional expression based on the message properties, the message data properties and PL/SQL functions. A rule is specified as a Boolean expression using syntax similar to the WHERE clause of a SQL query. This Boolean expression can include conditions on message properties, user data properties (object payloads only), and PL/SQL or SQL functions (as specified in the where clause of a SQL query). Currently supported message properties are priority and corrid.

To specify rules on a message payload (object payload), use attributes of the object type in clauses. You must prefix each attribute with tab.user_data as a qualifier to indicate the specific column of the queue table that stores the payload. The rule parameter cannot exceed 4000 characters.

	
transformation

	
Specifies a transformation that will be applied when this subscriber dequeues the message. The source type of the transformation must match the type of the queue. If the subscriber is remote, then the transformation is applied before propagation to the remote queue.

	
queue_to_queue

	
If TRUE, propagation is from queue-to-queue.

	
delivery_mode

	
The administrator may specify one of DBMS_AQADM.PERSISTENT, DBMS_AQADM.BUFFERED, or DBMS_AQADM.PERSISTENT_OR_BUFFERED for the delivery mode of the messages the subscriber is interested in. This parameter will not be modifiable by ALTER_SUBSCRIBER.

Usage Notes

A program can enqueue messages to a specific list of recipients or to the default list of subscribers. This operation only succeeds on queues that allow multiple consumers. This operation takes effect immediately, and the containing transaction is committed. Enqueue requests that are executed after the completion of this call will reflect the new behavior.

Any string within the rule must be quoted:

rule => 'PRIORITY <= 3 AND CORRID = ''FROM JAPAN'''

Note that these are all single quotation marks.

ALTER_AQ_AGENT Procedure

This procedure alters an agent registered for Oracle Streams AQ Internet access. It is also used to alter an Oracle Streams AQ agent that accesses secure queues.

	
See Also:

Oracle Streams Concepts and Administration for information about secure queues

Syntax

DBMS_AQADM.ALTER_AQ_AGENT (
 agent_name IN VARCHAR2,
 certificate_location IN VARCHAR2 DEFAULT NULL,
 enable_http IN BOOLEAN DEFAULT FALSE,
 enable_smtp IN BOOLEAN DEFAULT FALSE,
 enable_anyp IN BOOLEAN DEFAULT FALSE)

Parameters

Table 23-13 ALTER_AQ_AGENT Procedure Parameters

	Parameter	Description
	
agent_name

	
Specifies the username of the Oracle Streams AQ Internet agent.

	
certification_location

	
Agent's certificate location in LDAP (default is NULL). If the agent is allowed to access Oracle Streams AQ through SMTP, then its certificate must be registered in LDAP. For access through HTTP, the certificate location is not required.

	
enable_http

	
TRUE means the agent can access Oracle Streams AQ through HTTP. FALSE means the agent cannot access Oracle Streams AQ through HTTP.

	
enable_smtp

	
TRUE means the agent can access Oracle Streams AQ through SMTP (e-mail). FALSE means the agent cannot access Oracle Streams AQ through SMTP.

	
enable_anyp

	
TRUE means the agent can access Oracle Streams AQ through any protocol (HTTP or SMTP).

ALTER_PROPAGATION_SCHEDULE Procedure

This procedure alters parameters for a propagation schedule.

Syntax

DBMS_AQADM.ALTER_PROPAGATION_SCHEDULE (
 queue_name IN VARCHAR2,
 destination IN VARCHAR2 DEFAULT NULL,
 duration IN NUMBER DEFAULT NULL,
 next_time IN VARCHAR2 DEFAULT NULL,
 latency IN NUMBER DEFAULT 60,
 destination_queue IN VARCHAR2 DEFAULT NULL);

Parameters

Table 23-14 ALTER_PROPAGATION_SCHEDULE Procedure Parameters

	Parameter	Description
	
queue_name

	
Name of the source queue whose messages are to be propagated, including the schema name. If the schema name is not specified, then it defaults to the schema name of the user.

	
destination

	
Destination database link. Messages in the source queue for recipients at this destination are propagated. If it is NULL, then the destination is the local database and messages are propagated to other queues in the local database. The length of this field is currently limited to 128 bytes, and if the name is not fully qualified, then the default domain name is used.

	
duration

	
Duration of the propagation window in seconds. A NULL value means the propagation window is forever or until the propagation is unscheduled.

	
next_time

	
Date function to compute the start of the next propagation window from the end of the current window. If this value is NULL, then propagation is stopped at the end of the current window. For example, to start the window at the same time every day, next_time should be specified as SYSDATE + 1 - duration/86400.

	
latency

	
Maximum wait, in seconds, in the propagation window for a message to be propagated after it is enqueued. The default value is 60. Caution: if latency is not specified for this call, then latency will over-write any existing value with the default value.

For example, if the latency is 60 seconds and there are no messages to be propagated during the propagation window, then messages from that queue for the destination are not propagated for at least 60 more seconds. It will be at least 60 seconds before the queue will be checked again for messages to be propagated for the specified destination. If the latency is 600, then the queue will not be checked for 10 minutes and if the latency is 0, then a job queue process will be waiting for messages to be enqueued for the destination and as soon as a message is enqueued it will be propagated.

	
destination_queue

	
Name of the target queue to which messages are to be propagated in the form of a dblink

ALTER_QUEUE Procedure

This procedure alters existing properties of a queue. The parameters max_retries, retention_time, and retry_delay are not supported for nonpersistent queues.

Syntax

DBMS_AQADM.ALTER_QUEUE (
 queue_name IN VARCHAR2,
 max_retries IN NUMBER DEFAULT NULL,
 retry_delay IN NUMBER DEFAULT NULL,
 retention_time IN NUMBER DEFAULT NULL,
 auto_commit IN BOOLEAN DEFAULT TRUE,
 comment IN VARCHAR2 DEFAULT NULL);

Parameters

Table 23-15 ALTER_QUEUE Procedure Parameters

	Parameter	Description
	
queue_name

	
Name of the queue that is to be altered

	
max_retries

	
Limits the number of times a dequeue with REMOVE mode can be attempted on a message. The maximum value of max_retries is 2**31 -1.

A message is moved to an exception queue if RETRY_COUNT is greater than MAX_RETRIES. RETRY_COUNT is incremented when the application issues a rollback after executing the dequeue. If a dequeue transaction fails because the server process dies (including ALTER SYSTEM KILL SESSION) or SHUTDOWN ABORT on the instance, then RETRY_COUNT is not incremented.

Note that max_retries is supported for all single consumer queues and 8.1-compatible or higher multiconsumer queues but not for 8.0-compatible multiconsumer queues.

	
retry_delay

	
Delay time in seconds before this message is scheduled for processing again after an application rollback. The default is NULL, which means that the value will not be altered.

Note that retry_delay is supported for single consumer queues and 8.1-compatible or higher multiconsumer queues but not for 8.0-compatible multiconsumer queues.

	
retention_time

	
Retention time in seconds for which a message is retained in the queue table after being dequeued. The default is NULL, which means that the value will not be altered.

	
auto_commit

	
TRUE causes the current transaction, if any, to commit before the ALTER_QUEUE operation is carried out. The ALTER_QUEUE operation become persistent when the call returns. This is the default. FALSE means the operation is part of the current transaction and becomes persistent only when the caller enters a commit.

Caution: This parameter has been deprecated.

	
comment

	
User-specified description of the queue. This user comment is added to the queue catalog. The default value is NULL, which means that the value will not be changed.

ALTER_QUEUE_TABLE Procedure

This procedure alters the existing properties of a queue table.

Syntax

DBMS_AQADM.ALTER_QUEUE_TABLE (
 queue_table IN VARCHAR2,
 comment IN VARCHAR2 DEFAULT NULL,
 primary_instance IN BINARY_INTEGER DEFAULT NULL,
 secondary_instance IN BINARY_INTEGER DEFAULT NULL);

Parameters

Table 23-16 ALTER_QUEUE_TABLE Procedure Parameters

	Parameter	Description
	
queue_table

	
Name of a queue table to be created.

	
comment

	
Modifies the user-specified description of the queue table. This user comment is added to the queue catalog. The default value is NULL which means that the value will not be changed.

	
primary_instance

	
This is the primary owner of the queue table. Queue monitor scheduling and propagation for the queues in the queue table will be done in this instance. The default value is NULL, which means that the current value will not be changed.

	
secondary_instance

	
The queue table fails over to the secondary instance if the primary instance is not available. The default value is NULL, which means that the current value will not be changed.

ALTER_SUBSCRIBER Procedure

This procedure alters existing properties of a subscriber to a specified queue. Only the rule can be altered.

Syntax

DBMS_AQADM.ALTER_SUBSCRIBER (
 queue_name IN VARCHAR2,
 subscriber IN sys.aq$_agent,
 rule IN VARCHAR2
 transformation IN VARCHAR2);

Parameters

Table 23-17 ALTER_SUBSCRIBER Procedure Parameters

	Parameter	Description
	
queue_name

	
Name of the queue.

	
subscriber

	
Agent on whose behalf the subscription is being altered. See "AQ$_AGENT Type".

	
rule

	
A conditional expression based on the message properties, the message data properties and PL/SQL functions. The rule parameter cannot exceed 4000 characters. To eliminate the rule, set the rule parameter to NULL.

	
transformation

	
Specifies a transformation that will be applied when this subscriber dequeues the message. The source type of the transformation must match the type of the queue. If the subscriber is remote, then the transformation is applied before propagation to the remote queue.

Usage Notes

This procedure alters both the rule and the transformation for the subscriber. If you want to retain the existing value for either of them, you must specify its old value. The current values for rule and transformation for a subscriber can be obtained from the schema.AQ$queue_table_R and schema.AQ$queue_table_S views.

CREATE_AQ_AGENT Procedure

This procedure registers an agent for Oracle Streams AQ Internet access using HTTP/SMTP protocols. It is also used to create an Oracle Streams AQ agent to access secure queues.

	
See Also:

Oracle Streams Concepts and Administration for information about secure queues

Syntax

DBMS_AQADM.CREATE_AQ_AGENT (
 agent_name IN VARCHAR2,
 certificate_location IN VARCHAR2 DEFAULT NULL,
 enable_http IN BOOLEAN DEFAULT FALSE,
 enable_smtp IN BOOLEAN DEFAULT FALSE,
 enable_anyp IN BOOLEAN DEFAULT FALSE)

Parameters

Table 23-18 CREATE_AQ_AGENT Procedure Parameters

	Parameter	Description
	
agent_name

	
Specifies the username of the Oracle Streams AQ Internet agent.

	
certification_location

	
Agent's certificate location in LDAP (default is NULL). If the agent is allowed to access Oracle Streams AQ through SMTP, then its certificate must be registered in LDAP. For access through HTTP, the certificate location is not required.

	
enable_http

	
TRUE means the agent can access Oracle Streams AQ through HTTP. FALSE means the agent cannot access Oracle Streams AQ through HTTP.

	
enable_smtp

	
TRUE means the agent can access Oracle Streams AQ through SMTP (e-mail). FALSE means the agent cannot access Oracle Streams AQ through SMTP.

	
enable_anyp

	
TRUE means the agent can access Oracle Streams AQ through any protocol (HTTP or SMTP).

Usage Notes

The SYS.AQ$INTERNET_USERS view has a list of all Oracle Streams AQ Internet agents.

CREATE_NP_QUEUE Procedure

	
Note:

nonpersistent queues are deprecated as of Release 10gR2. Oracle recommends using buffered messaging.

This procedure creates a nonpersistent RAW queue.

Syntax

DBMS_AQADM.CREATE_NP_QUEUE (
 queue_name IN VARCHAR2,
 multiple_consumers IN BOOLEAN DEFAULT FALSE,
 comment IN VARCHAR2 DEFAULT NULL);

Parameters

Table 23-19 CREATE_NP_QUEUE Procedure Parameters

	Parameter	Description
	
queue_name

	
Name of the nonpersistent queue that is to be created. The name must be unique within a schema and must follow object name guidelines in Oracle Database SQL Language Reference.

	
multiple_consumers

	
FALSE means queues created in the table can only have one consumer for each message. This is the default. TRUE means queues created in the table can have multiple consumers for each message.

Note that this parameter is distinguished at the queue level, because a nonpersistent queue does not inherit this characteristic from any user-created queue table.

	
comment

	
User-specified description of the queue. This user comment is added to the queue catalog.

Usage Notes

The queue may be either single-consumer or multiconsumer queue. All queue names must be unique within a schema. The queues are created in a 8.1-compatible or higher system-created queue table (AQ$_MEM_SC or AQ$_MEM_MC) in the same schema as that specified by the queue name.

If the queue name does not specify a schema name, the queue is created in the login user's schema. After a queue is created with CREATE_NP_QUEUE, it can be enabled by calling START_QUEUE. By default, the queue is created with both enqueue and dequeue disabled.

You cannot dequeue from a nonpersistent queue. The only way to retrieve a message from a nonpersistent queue is by using the OCI notification mechanism. You cannot invoke the LISTEN call on a nonpersistent queue.

CREATE_QUEUE Procedure

This procedure creates a queue in the specified queue table.

Syntax

DBMS_AQADM.CREATE_QUEUE (
 queue_name IN VARCHAR2,
 queue_table IN VARCHAR2,
 queue_type IN BINARY_INTEGER DEFAULT NORMAL_QUEUE,
 max_retries IN NUMBER DEFAULT NULL,
 retry_delay IN NUMBER DEFAULT 0,
 retention_time IN NUMBER DEFAULT 0,
 dependency_tracking IN BOOLEAN DEFAULT FALSE,
 comment IN VARCHAR2 DEFAULT NULL,
 auto_commit IN BOOLEAN DEFAULT TRUE);

Parameters

Table 23-20 CREATE_QUEUE Procedure Parameters

	Parameter	Description
	
queue_name

	
Name of the queue that is to be created. The name must be unique within a schema and must follow object name guidelines in Oracle Database SQL Language Reference with regard to reserved characters.

	
queue_table

	
Name of the queue table that will contain the queue.

	
queue_type

	
Specifies whether the queue being created is an exception queue or a normal queue. NORMAL_QUEUE means the queue is a normal queue. This is the default. EXCEPTION_QUEUE means it is an exception queue. Only the dequeue operation is allowed on the exception queue.

	
max_retries

	
Limits the number of times a dequeue with the REMOVE mode can be attempted on a message. The maximum value of max_retries is 2**31 -1.

A message is moved to an exception queue if RETRY_COUNT is greater than MAX_RETRIES. RETRY_COUNT is incremented when the application issues a rollback after executing the dequeue. If a dequeue transaction fails because the server process dies (including ALTER SYSTEM KILL SESSION) or SHUTDOWN ABORT on the instance, then RETRY_COUNT is not incremented.

Note that max_retries is supported for all single consumer queues and 8.1-compatible or higher multiconsumer queues but not for 8.0-compatible multiconsumer queues.

	
retry_delay

	
Delay time, in seconds, before this message is scheduled for processing again after an application rollback.

The default is 0, which means the message can be retried as soon as possible. This parameter has no effect if max_retries is set to 0. Note that retry_delay is supported for single consumer queues and 8.1-compatible or higher multiconsumer queues but not for 8.0-compatible multiconsumer queues.

	
retention_time

	
Number of seconds for which a message is retained in the queue table after being dequeued from the queue. INFINITE means the message is retained forever. NUMBER is the number of seconds for which to retain the messages. The default is 0, no retention.

	
dependency_tracking

	
Reserved for future use. FALSE is the default. TRUE is not permitted in this release.

	
comment

	
User-specified description of the queue. This user comment is added to the queue catalog.

	
auto_commit

	
TRUE causes the current transaction, if any, to commit before the CREATE_QUEUE operation is carried out. The CREATE_QUEUE operation becomes persistent when the call returns. This is the default. FALSE means the operation is part of the current transaction and becomes persistent only when the caller enters a commit.

Caution: This parameter has been deprecated.

Usage Notes

All queue names must be unique within a schema. After a queue is created with CREATE_QUEUE, it can be enabled by calling START_QUEUE. By default, the queue is created with both enqueue and dequeue disabled.

CREATE_QUEUE_TABLE Procedure

This procedure creates a queue table for messages of a predefined type.

Syntax

DBMS_AQADM.CREATE_QUEUE_TABLE (
 queue_table IN VARCHAR2,
 queue_payload_type IN VARCHAR2,
 storage_clause IN VARCHAR2 DEFAULT NULL,
 sort_list IN VARCHAR2 DEFAULT NULL,
 multiple_consumers IN BOOLEAN DEFAULT FALSE,
 message_grouping IN BINARY_INTEGER DEFAULT NONE,
 comment IN VARCHAR2 DEFAULT NULL,
 auto_commit IN BOOLEAN DEFAULT TRUE,
 primary_instance IN BINARY_INTEGER DEFAULT 0,
 secondary_instance IN BINARY_INTEGER DEFAULT 0,
 compatible IN VARCHAR2 DEFAULT NULL,
 secure IN BOOLEAN DEFAULT FALSE);

Parameters

Table 23-21 CREATE_QUEUE_TABLE Procedure Parameters

	Parameter	Description
	
queue_table

	
Name of a queue table to be created

	
queue_payload_type

	
Type of the user data stored. See Type Name for valid values for this parameter.

	
storage_clause

	
Storage parameter. The storage parameter is included in the CREATE TABLE statement when the queue table is created. The storage_clause argument can take any text that can be used in a standard CREATE TABLE storage_clause argument.The storage parameter can be made up of any combinations of the following parameters: PCTFREE, PCTUSED, INITRANS, MAXTRANS, TABLEPSACE, LOB, and a table storage clause.

If a tablespace is not specified here, then the queue table and all its related objects are created in the default user tablespace. If a tablespace is specified here, then the queue table and all its related objects are created in the tablespace specified in the storage clause. See Oracle Database SQL Language Reference for the usage of these parameters.

	
sort_list

	
The columns to be used as the sort key in ascending order. This parameter has the following format:

'sort_column_1,sort_column_2'

The allowed column names are priority and enq_time. If both columns are specified, then sort_column_1 defines the most significant order.

After a queue table is created with a specific ordering mechanism, all queues in the queue table inherit the same defaults. The order of a queue table cannot be altered after the queue table has been created.

If no sort list is specified, then all the queues in this queue table are sorted by the enqueue time in ascending order. This order is equivalent to FIFO order.

Even with the default ordering defined, a dequeuer is allowed to choose a message to dequeue by specifying its msgid or correlation. msgid, correlation, and sequence_deviation take precedence over the default dequeueing order, if they are specified.

	
multiple_consumers

	
FALSE means queues created in the table can only have one consumer for each message. This is the default. TRUE means queues created in the table can have multiple consumers for each message.

	
message_grouping

	
Message grouping behavior for queues created in the table. NONE means each message is treated individually. TRANSACTIONAL means messages enqueued as part of one transaction are considered part of the same group and can be dequeued as a group of related messages.

	
comment

	
User-specified description of the queue table. This user comment is added to the queue catalog.

	
auto_commit

	
TRUE causes the current transaction, if any, to commit before the CREATE_QUEUE_TABLE operation is carried out. The CREATE_QUEUE_TABLE operation becomes persistent when the call returns. This is the default. FALSE means the operation is part of the current transaction and becomes persistent only when the caller enters a commit.

Note: This parameter has been deprecated.

	
primary_instance

	
The primary owner of the queue table. Queue monitor scheduling and propagation for the queues in the queue table are done in this instance.

The default value for primary instance is 0, which means queue monitor scheduling and propagation will be done in any available instance.

	
secondary_instance

	
The queue table fails over to the secondary instance if the primary instance is not available. The default value is 0, which means that the queue table will fail over to any available instance.

	
compatible

	
The lowest database version with which the queue is compatible. Currently the possible values are either 8.0, 8.1, or 10.0. If the database is in 10.1-compatible mode, the default value is 10.0. If the database is in 8.1-compatible or 9.2-compatible mode, the default value is 8.1. If the database is in 8.0 compatible mode, the default value is 8.0.

	
secure

	
This parameter must be set to TRUE if you want to use the queue table for secure queues. Secure queues are queues for which AQ agents must be associated explicitly with one or more database users who can perform queue operations, such as enqueue and dequeue. The owner of a secure queue can perform all queue operations on the queue, but other users cannot perform queue operations on a secure queue, unless they are configured as secure queue users.

Usage Notes

The sort keys for dequeue ordering, if any, must be defined at table creation time. The following objects are created at this time:

	
aq$_queue_table_name_e, a default exception queue associated with the queue table

	
aq$queue_table_name, a read-only view, which is used by Oracle Streams AQ applications for querying queue data

	
aq$_queue_table_name_t, an index (or an index organized table (IOT) in the case of multiple consumer queues) for the queue monitor operations

	
aq$_queue_table_name_i, an index (or an index organized table in the case of multiple consumer queues) for dequeue operations

For 8.1-compatible or higher queue tables, the following index-organized tables are created:

	
aq$_queue_table_name_s, a table for storing information about the subscribers

	
aq$_queue_table_name_r, a table for storing information about rules on subscriptions

aq$_queue_table_name_h, an index-organized table for storing the dequeue history data

CLOB, BLOB, and BFILE are valid attributes for Oracle Streams AQ object type payloads. However, only CLOB and BLOB can be propagated using Oracle Streams AQ propagation in Oracle8i release 8.1.5 or later. See the Oracle Streams Advanced Queuing User's Guide for more information.

The default value of the compatible parameter depends on the database compatibility mode in the init.ora. If the database is in 10.1-compatible mode, the default value is 10.0. If the database is in 8.1-compatible or 9.2-compatible mode, the default value is 8.1. If the database is in 8.0 compatible mode, the default value is 8.0

You can specify and modify the primary_instance and secondary_instance only in 8.1-compatible or higher mode. You cannot specify a secondary instance unless there is a primary instance.

DEL_ALIAS_FROM_LDAP Procedure

This procedure drops an alias for a queue, agent, or JMS ConnectionFactory in LDAP.

Syntax

DBMS_AQ.DEL_ALIAS_FROM_LDAP(
 alias IN VARCHAR2);

Parameters

Table 23-22 DEL_ALIAS_FROM_LDAP Procedure Parameters

	Parameter	Description
	
alias

	
The alias to be removed.

DISABLE_DB_ACCESS Procedure

This procedure revokes the privileges of a specific database user from an Oracle Streams AQ Internet agent.

Syntax

DBMS_AQADM.DISABLE_DB_ACCESS (
 agent_name IN VARCHAR2,
 db_username IN VARCHAR2)

Parameters

Table 23-23 DISABLE_DB_ACCESS Procedure Parameters

	Parameter	Description
	
agent_name

	
Specifies the username of the Oracle Streams AQ Internet agent.

	
db_username

	
Specifies the database user whose privileges are to be revoked from the Oracle Streams AQ Internet agent.

Usage Notes

The Oracle Streams AQ Internet agent should have been previously granted those privileges using the ENABLE_DB_ACCESS Procedure.

DISABLE_PROPAGATION_SCHEDULE Procedure

This procedure disables a propagation schedule.

Syntax

DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE (
 queue_name IN VARCHAR2,
 destination IN VARCHAR2 DEFAULT NULL,
 destination_queue IN VARCHAR2 DEFAULT NULL);

Parameters

Table 23-24 DISABLE_PROPAGATION_SCHEDULE Procedure Parameters

	Parameter	Description
	
queue_name

	
Name of the source queue whose messages are to be propagated, including the schema name. If the schema name is not specified, then it defaults to the schema name of the user.

	
destination

	
Destination database link. Messages in the source queue for recipients at this destination are propagated. If it is NULL, then the destination is the local database and messages are propagated to other queues in the local database. The length of this field is currently limited to 128 bytes, and if the name is not fully qualified, then the default domain name is used.

	
destination_queue

	
Name of the target queue to which messages are to be propagated in the form of a dblink

DROP_AQ_AGENT Procedure

This procedure drops an agent that was previously registered for Oracle Streams AQ Internet access.

Syntax

DBMS_AQADM.DROP_AQ_AGENT (
 agent_name IN VARCHAR2)

Parameters

Table 23-25 DROP_AQ_AGENT Procedure Parameters

	Parameter	Description
	
agent_name

	
Specifies the username of the Oracle Streams AQ Internet agent

DROP_QUEUE Procedure

This procedure drops an existing queue.

Syntax

DBMS_AQADM.DROP_QUEUE (
 queue_name IN VARCHAR2,
 auto_commit IN BOOLEAN DEFAULT TRUE);

Parameters

Table 23-26 DROP_QUEUE Procedure Parameters

	Parameter	Description
	
queue_name

	
Name of the queue that is to be dropped.

	
auto_commit

	
TRUE causes the current transaction, if any, to commit before the DROP_QUEUE operation is carried out. The DROP_QUEUE operation becomes persistent when the call returns. This is the default. FALSE means the operation is part of the current transaction and becomes persistent only when the caller enters a commit.

Caution: This parameter has been deprecated.

Usage Notes

DROP_QUEUE is not allowed unless STOP_QUEUE has been called to disable the queue for both enqueuing and dequeuing. All the queue data is deleted as part of the drop operation.

DROP_QUEUE_TABLE Procedure

This procedure drops an existing queue table.

Syntax

DBMS_AQADM.DROP_QUEUE_TABLE (
 queue_table IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE,
 auto_commit IN BOOLEAN DEFAULT TRUE);

Parameters

Table 23-27 DROP_QUEUE_TABLE Procedure Parameters

	Parameter	Description
	
queue_table

	
Name of a queue table to be dropped.

	
force

	
FALSE means the operation does not succeed if there are any queues in the table. This is the default. TRUE means all queues in the table are stopped and dropped automatically.

	
auto_commit

	
TRUE causes the current transaction, if any, to commit before the DROP_QUEUE_TABLE operation is carried out. The DROP_QUEUE_TABLE operation becomes persistent when the call returns. This is the default. FALSE means the operation is part of the current transaction and becomes persistent only when the caller enters a commit.

Caution: This parameter has been deprecated.

Usage Notes

All the queues in a queue table must be stopped and dropped before the queue table can be dropped. You must do this explicitly unless the force option is used, in which case this is done automatically.

ENABLE_DB_ACCESS Procedure

This procedure grants an Oracle Streams AQ Internet agent the privileges of a specific database user.

Syntax

DBMS_AQADM.ENABLE_DB_ACCESS (
 agent_name IN VARCHAR2,
 db_username IN VARCHAR2)

Parameters

Table 23-28 ENABLE_DB_ACCESS Procedure Parameters

	Parameter	Description
	
agent_name

	
Specifies the username of the Oracle Streams AQ Internet agent.

	
db_username

	
Specified the database user whose privileges are to be granted to the Oracle Streams AQ Internet agent.

Usage Notes

The Oracle Streams AQ Internet agent should have been previously created using the CREATE_AQ_AGENT Procedure.

For secure queues, the sender and receiver agent of the message must be mapped to the database user performing the enqueue or dequeue operation.

	
See Also:

Oracle Streams Concepts and Administration for information about secure queues

The SYS.AQ$INTERNET_USERS view has a list of all Oracle Streams AQ Internet agents and the names of the database users whose privileges are granted to them.

ENABLE_JMS_TYPES Procedure

Enqueue of JMS types and XML types does not work with Oracle Streams Sys.Anydata queues unless you call this procedure after DBMS_STREAMS_ADM.SET_UP_QUEUE. Enabling an Oracle Streams queue for these types may affect import/export of the queue table.

Syntax

DBMS_AQADM.ENABLE_JMS_TYPES (
 queue_table IN VARCHAR2);

Parameters

Table 23-29 ENABLE_JMS_TYPES Procedure Parameters

	Parameter	Description
	
queue_table

	
Specifies name of the queue table to be enabled for JMS and XML types.

ENABLE_PROPAGATION_SCHEDULE Procedure

This procedure enables a previously disabled propagation schedule.

Syntax

DBMS_AQADM.ENABLE_PROPAGATION_SCHEDULE (
 queue_name IN VARCHAR2,
 destination IN VARCHAR2 DEFAULT NULL,
 destination_queue IN VARCHAR2 DEFAULT NULL);

Parameters

Table 23-30 ENABLE_PROPAGATION_SCHEDULE Procedure Parameters

	Parameter	Description
	
queue_name

	
Name of the source queue whose messages are to be propagated, including the schema name. If the schema name is not specified, then it defaults to the schema name of the user.

	
destination

	
Destination database link. Messages in the source queue for recipients at this destination are propagated. If it is NULL, then the destination is the local database and messages are propagated to other queues in the local database. The length of this field is currently limited to 128 bytes, and if the name is not fully qualified, then the default domain name is used.

	
destination_queue

	
Name of the target queue to which messages are to be propagated in the form of a dblink

GET_WATERMARK Procedure

This procedure retrieves the value of watermark set by SET_WATERMARK.

Syntax

DBMS_AQADM.GET_WATERMARK (
 wmvalue OUT NUMBER);

Parameters

Table 23-31 GET_WATERMARK Procedure Parameter

	Parameter	Description
	
wmvalue

	
Watermark value in megabytes.

GRANT_QUEUE_PRIVILEGE Procedure

This procedure grants privileges on a queue to users and roles. The privileges are ENQUEUE or DEQUEUE. Initially, only the queue table owner can use this procedure to grant privileges on the queues.

Syntax

DBMS_AQADM.GRANT_QUEUE_PRIVILEGE (
 privilege IN VARCHAR2,
 queue_name IN VARCHAR2,
 grantee IN VARCHAR2,
 grant_option IN BOOLEAN := FALSE);

Parameters

Table 23-32 GRANT_QUEUE_PRIVILEGE Procedure Parameters

	Parameter	Description
	
privilege

	
The Oracle Streams AQ queue privilege to grant. The options are ENQUEUE, DEQUEUE, and ALL. ALL means both ENQUEUE and DEQUEUE.

	
queue_name

	
Name of the queue.

	
grantee

	
Grantee(s). The grantee(s) can be a user, a role, or the PUBLIC role.

	
grant_option

	
Specifies if the access privilege is granted with the GRANT option or not. If the privilege is granted with the GRANT option, then the grantee is allowed to use this procedure to grant the access privilege to other users or roles, regardless of the ownership of the queue table. The default is FALSE.

GRANT_SYSTEM_PRIVILEGE Procedure

This procedure grants Oracle Streams AQ system privileges to users and roles. The privileges are ENQUEUE_ANY, DEQUEUE_ANY, and MANAGE_ANY. Initially, only SYS and SYSTEM can use this procedure successfully.

Syntax

DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE (
 privilege IN VARCHAR2,
 grantee IN VARCHAR2,
 admin_option IN BOOLEAN := FALSE);

Parameters

Table 23-33 GRANT_SYSTEM_PRIVILEGE Procedure Parameters

	Parameter	Description
	
privilege

	
The Oracle Streams AQ system privilege to grant. The options are ENQUEUE_ANY, DEQUEUE_ANY, and MANAGE_ANY. ENQUEUE_ANY means users granted this privilege are allowed to enqueue messages to any queues in the database. DEQUEUE_ANY means users granted this privilege are allowed to dequeue messages from any queues in the database. MANAGE_ANY means users granted this privilege are allowed to run DBMS_AQADM calls on any schemas in the database.

	
grantee

	
Grantee(s). The grantee(s) can be a user, a role, or the PUBLIC role.

	
admin_option

	
Specifies if the system privilege is granted with the ADMIN option or not.

If the privilege is granted with the ADMIN option, then the grantee is allowed to use this procedure to grant the system privilege to other users or roles. The default is FALSE.

MIGRATE_QUEUE_TABLE Procedure

This procedure upgrades an 8.0-compatible queue table to an 8.1-compatible or higher queue table, or downgrades an 8.1-compatible or higher queue table to an 8.0-compatible queue table.

Syntax

DBMS_AQADM.MIGRATE_QUEUE_TABLE (
 queue_table IN VARCHAR2,
 compatible IN VARCHAR2);

Parameters

Table 23-34 MIGRATE_QUEUE_TABLE Procedure Parameters

	Parameter	Description
	
queue_table

	
Specifies name of the queue table to be migrated.

	
compatible

	
Set this to 8.1 to upgrade an 8.0-compatible queue table, or set this to 8.0 to downgrade an 8.1-compatible queue table.

PURGE_QUEUE_TABLE Procedure

This procedure purges messages from queue tables. You can perform various purge operations on both single-consumer and multiconsumer queue tables for persistent and buffered messages.

Syntax

DBMS_AQADM.PURGE_QUEUE_TABLE(
 queue_table IN VARCHAR2,
 purge_condition IN VARCHAR2,
 purge_options IN aq$_purge_options_t);

where type aq$_purge_options_t is described in Chapter 243, "Oracle Streams AQ TYPEs".

Parameters

Table 23-35 PURGE_QUEUE_TABLE Procedure Parameters

	Parameter	Description
	
queue_table

	
Specifies the name of the queue table to be purged.

	
purge_condition

	
Specifies the purge condition to use when purging the queue table. The purge condition must be in the format of a SQL WHERE clause, and it is case-sensitive. The condition is based on the columns of aq$queue_table_name view.

When specifying the purge_condition, qualify the column names in aq$queue_table_name view with qtview.

To purge all queues in a queue table, set purge_condition to either NULL (a bare null word, no quotes) or'' (two single quotes).

	
purge_options

	
Type aq$_purge_options_t contains a block parameter and a delivery_mode parameter.

	
If block is TRUE, then an exclusive lock on all the queues in the queue table is held while purging the queue table. This will cause concurrent enqueuers and dequeuers to block while the queue table is purged. The purge call always succeeds if block is TRUE. The default for block is FALSE. This will not block enqueuers and dequeuers, but it can cause the purge to fail with an error during high concurrency times.

	
delivery_mode is used to specify whether DBMS_AQADM.PERSISTENT, DBMS_AQADM.BUFFERED or DBMS_AQADM.PERSISTENT_OR_BUFFERED types of messages are to be purged. You cannot implement arbitrary purge conditions if buffered messages have to be purged.

Usage Notes

	
You an purge selected messages from the queue table by specifying a purge_condition. Table 23-35 describes these parameters. Messages can be enqueued to and dequeued from the queue table while the queue table is being purged.

	
A trace file is generated in the udump destination when you run this procedure. It details what the procedure is doing.

	
This procedure commits batches of messages in autonomous transactions. Several such autonomous transactions may get executed as a part of one purge_queue_table call depending on the number of messages in the queue table.

QUEUE_SUBSCRIBERS Function

This function returns the subscribers to an 8.0-compatible multiconsumer queue in the PL/SQL index by table collection type DBMS_AQADM.AQ$_subscriber_list_t. Each element of the collection is of type sys.aq$_agent. This functionality is provided for 8.1-compatible queues by the AQ$queue_table_name_S view.

Syntax

DBMS_AQADM.QUEUE_SUBSCRIBERS (
 queue_name IN VARCHAR2);
RETURN aq$_subscriber_list_t IS

Parameters

Table 23-36 QUEUE_SUBSCRIBERS Function Parameters

	Parameter	Description
	
queue_name

	
Specifies the queue whose subscribers are to be printed.

REMOVE_SUBSCRIBER Procedure

This procedure removes a default subscriber from a queue. This operation takes effect immediately, and the containing transaction is committed. All references to the subscriber in existing messages are removed as part of the operation.

Syntax

DBMS_AQADM.REMOVE_SUBSCRIBER (
 queue_name IN VARCHAR2,
 subscriber IN sys.aq$_agent);

Parameters

Table 23-37 REMOVE_SUBSCRIBER Procedure Parameters

	Parameter	Description
	
queue_name

	
Name of the queue.

	
subscriber

	
Agent who is being removed. See AQ$_AGENT Type.

REVOKE_QUEUE_PRIVILEGE Procedure

This procedure revokes privileges on a queue from users and roles. The privileges are ENQUEUE or DEQUEUE.

Syntax

DBMS_AQADM.REVOKE_QUEUE_PRIVILEGE (
 privilege IN VARCHAR2,
 queue_name IN VARCHAR2,
 grantee IN VARCHAR2);

Parameters

Table 23-38 REVOKE_QUEUE_PRIVILEGE Procedure Parameters

	Parameter	Description
	
privilege

	
The Oracle Streams AQ queue privilege to revoke. The options are ENQUEUE, DEQUEUE, and ALL. ALL means both ENQUEUE and DEQUEUE.

	
queue_name

	
Name of the queue.

	
grantee

	
Grantee(s). The grantee(s) can be a user, a role, or the PUBLIC role. If the privilege has been propagated by the grantee through the GRANT option, then the propagated privilege is also revoked.

Usage Notes

To revoke a privilege, the revoker must be the original grantor of the privilege. The privileges propagated through the GRANT option are revoked if the grantor's privileges are revoked.

REVOKE_SYSTEM_PRIVILEGE Procedure

This procedure revokes Oracle Streams AQ system privileges from users and roles. The privileges are ENQUEUE_ANY, DEQUEUE_ANY and MANAGE_ANY. The ADMIN option for a system privilege cannot be selectively revoked.

Syntax

DBMS_AQADM.REVOKE_SYSTEM_PRIVILEGE (
 privilege IN VARCHAR2,
 grantee IN VARCHAR2);

Parameters

Table 23-39 REVOKE_SYSTEM_PRIVILEGE Procedure Parameters

	Parameter	Description
	
privilege

	
The Oracle Streams AQ system privilege to revoke. The options are ENQUEUE_ANY, DEQUEUE_ANY, and MANAGE_ANY. The ADMIN option for a system privilege cannot be selectively revoked.

	
grantee

	
Grantee(s). The grantee(s) can be a user, a role, or the PUBLIC role.

SCHEDULE_PROPAGATION Procedure

This procedure schedules propagation of messages from a queue to a destination identified by a specific database link.

Syntax

DBMS_AQADM.SCHEDULE_PROPAGATION (
 queue_name IN VARCHAR2,
 destination IN VARCHAR2 DEFAULT NULL,
 start_time IN DATE DEFAULT SYSDATE,
 duration IN NUMBER DEFAULT NULL,
 next_time IN VARCHAR2 DEFAULT NULL,
 latency IN NUMBER DEFAULT 60,
 destination_queue IN VARCHAR2 DEFAULT NULL);

Parameters

Table 23-40 SCHEDULE_PROPAGATION Procedure Parameters

	Parameter	Description
	
queue_name

	
Name of the source queue whose messages are to be propagated, including the schema name. If the schema name is not specified, then it defaults to the schema name of the administrative user.

	
destination

	
Destination database link. Messages in the source queue for recipients at this destination are propagated. If it is NULL, then the destination is the local database and messages are propagated to other queues in the local database. The length of this field is currently limited to 128 bytes, and if the name is not fully qualified, then the default domain name is used.

	
start_time

	
Initial start time for the propagation window for messages from the source queue to the destination.

	
duration

	
Duration of the propagation window in seconds. A NULL value means the propagation window is forever or until the propagation is unscheduled.

	
next_time

	
Date function to compute the start of the next propagation window from the end of the current window. If this value is NULL, then propagation is stopped at the end of the current window. For example, to start the window at the same time every day, next_time should be specified as SYSDATE + 1 - duration/86400.

	
latency

	
Maximum wait, in seconds, in the propagation window for a message to be propagated after it is enqueued.

For example, if the latency is 60 seconds and there are no messages to be propagated during the propagation window, then messages from that queue for the destination are not propagated for at least 60 more seconds.

It is at least 60 seconds before the queue is checked again for messages to be propagated for the specified destination. If the latency is 600, then the queue is not checked for 10 minutes, and if the latency is 0, then a job queue process will be waiting for messages to be enqueued for the destination. As soon as a message is enqueued, it is propagated.

	
destination_queue

	
Name of the target queue to which messages are to be propagated in the form of a dblink

Usage Notes

Messages may also be propagated to other queues in the same database by specifying a NULL destination. If a message has multiple recipients at the same destination in either the same or different queues, the message is propagated to all of them at the same time.

SET_WATERMARK Procedure

This procedure is used for Oracle Streams AQ notification to specify and limit memory use.

Syntax

DBMS_AQADM.SET_WATERMARK (
 wmvalue IN NUMBER);

Parameters

Table 23-41 SET_WATERMARK Procedure Parameter

	Parameter	Description
	
wmvalue

	
Watermark value in megabytes.

START_QUEUE Procedure

This procedure enables the specified queue for enqueuing or dequeuing.

Syntax

DBMS_AQADM.START_QUEUE (
 queue_name IN VARCHAR2,
 enqueue IN BOOLEAN DEFAULT TRUE,
 dequeue IN BOOLEAN DEFAULT TRUE);

Parameters

Table 23-42 START_QUEUE Procedure Parameters

	Parameter	Description
	
queue_name

	
Name of the queue to be enabled

	
enqueue

	
Specifies whether ENQUEUE should be enabled on this queue. TRUE means enable ENQUEUE. This is the default. FALSE means do not alter the current setting.

	
dequeue

	
Specifies whether DEQUEUE should be enabled on this queue. TRUE means enable DEQUEUE. This is the default. FALSE means do not alter the current setting.

Usage Notes

After creating a queue, the administrator must use START_QUEUE to enable the queue. The default is to enable it for both ENQUEUE and DEQUEUE. Only dequeue operations are allowed on an exception queue. This operation takes effect when the call completes and does not have any transactional characteristics.

STOP_QUEUE Procedure

This procedure disables enqueuing or dequeuing on the specified queue.

Syntax

DBMS_AQADM.STOP_QUEUE (
 queue_name IN VARCHAR2,
 enqueue IN BOOLEAN DEFAULT TRUE,
 dequeue IN BOOLEAN DEFAULT TRUE,
 wait IN BOOLEAN DEFAULT TRUE);

Parameters

Table 23-43 STOP_QUEUE Procedure Parameters

	Parameter	Description
	
queue_name

	
Name of the queue to be disabled

	
enqueue

	
Specifies whether ENQUEUE should be disabled on this queue. TRUE means disable ENQUEUE. This is the default. FALSE means do not alter the current setting.

	
dequeue

	
Specifies whether DEQUEUE should be disabled on this queue. TRUE means disable DEQUEUE. This is the default. FALSE means do not alter the current setting.

	
wait

	
Specifies whether to wait for the completion of outstanding transactions. TRUE means wait if there are any outstanding transactions. In this state no new transactions are allowed to enqueue to or dequeue from this queue. FALSE means return immediately either with a success or an error.

Usage Notes

By default, this call disables both ENQUEUE and DEQUEUE. A queue cannot be stopped if there are outstanding transactions against the queue. This operation takes effect when the call completes and does not have any transactional characteristics.

UNSCHEDULE_PROPAGATION Procedure

This procedure unschedules previously scheduled propagation of messages from a queue to a destination identified by a specific database link.

Syntax

DBMS_AQADM.UNSCHEDULE_PROPAGATION (
 queue_name IN VARCHAR2,
 destination IN VARCHAR2 DEFAULT NULL
 destination_queue IN VARCHAR2 DEFAULT NULL);

Parameters

Table 23-44 UNSCHEDULE_PROPAGATION Procedure Parameters

	Parameter	Description
	
queue_name

	
Name of the source queue whose messages are to be propagated, including the schema name. If the schema name is not specified, then it defaults to the schema name of the administrative user.

	
destination

	
Destination database link. Messages in the source queue for recipients at this destination are propagated. If it is NULL, then the destination is the local database and messages are propagated to other queues in the local database. The length of this field is currently limited to 128 bytes, and if the name is not fully qualified, then the default domain name is used.

	
destination_queue

	
Name of the target queue to which messages are to be propagated in the form of a dblink

VERIFY_QUEUE_TYPES Procedure

This procedure verifies that the source and destination queues have identical types. The result of the verification is stored in the table sys.aq$_message_types, overwriting all previous output of this command.

Syntax

DBMS_AQADM.VERIFY_QUEUE_TYPES (
 src_queue_name IN VARCHAR2,
 dest_queue_name IN VARCHAR2,
 destination IN VARCHAR2 DEFAULT NULL,
 rc OUT BINARY_INTEGER);

Parameters

Table 23-45 VERIFY_QUEUE_TYPES Procedure Parameters

	Parameter	Description
	
src_queue_name

	
Name of the source queue whose messages are to be propagated, including the schema name. If the schema name is not specified, then it defaults to the schema name of the user.

	
dest_queue_name

	
Name of the destination queue where messages are to be propagated, including the schema name. If the schema name is not specified, then it defaults to the schema name of the user.

	
destination

	
Destination database link. Messages in the source queue for recipients at this destination are propagated. If it is NULL, then the destination is the local database and messages are propagated to other queues in the local database. The length of this field is currently limited to 128 bytes, and if the name is not fully qualified, then the default domain name is used.

	
rc

	
Return code for the result of the procedure. If there is no error, and if the source and destination queue types match, then the result is 1. If they do not match, then the result is 0. If an Oracle error is encountered, then it is returned in rc.

24 DBMS_AQELM

The DBMS_AQELM package provides subprograms to manage the configuration of Oracle Streams Advanced Queuing (AQ) asynchronous notification by e-mail and HTTP.

	
See Also:

Oracle Streams Advanced Queuing User's Guide for detailed information about DBMS_AQELM

This chapter contains the following topic:

	
Summary of DBMS_AQELM Subprograms

Summary of DBMS_AQELM Subprograms

Table 24-1 DBMS_ALERT Package Subprograms

	Subprogram	Description
	
SET_MAILHOST Procedure

	
Sets the host name for the SMTP server that the database will uses send out e-mail notifications

	
SET_MAILPORT Procedure

	
Sets the port number for the SMTP server

	
SET_SENDFROM Procedure

	
Sets the sent-from e-mail address

SET_MAILHOST Procedure

This procedure sets the host name for the SMTP server. The database uses this SMTP server host name to send out e-mail notifications.

Syntax

DBMS_AQELM.SET_MAILHOST (
 mailhost IN VARCHAR2);

Parameters

Table 24-2 SET_MAILHOST Procedure Parameters

	Parameter	Description
	
mailhost

	
SMTP server host name.

Usage Notes

As part of the configuration for e-mail notifications, a user with AQ_ADMINISTRATOR_ROLE or with EXECUTE permissions on the DBMS_AQELM package needs to set the host name before registering for e-mail notifications.

SET_MAILPORT Procedure

This procedure sets the port number for the SMTP server.

Syntax

DBMS_AQELM.SET_MAILPORT (
 mailport IN NUMBER);

Parameters

Table 24-3 SET_MAILPORT Procedure Parameters

	Parameter	Description
	
mailport

	
SMTP server port number.

Usage Notes

As part of the configuration for e-mail notifications, a user with AQ_ADMINISTRATOR_ROLE or with EXECUTE permissions on DBMS_AQELM package needs to set the port number before registering for e-mail notifications. The database uses this SMTP server port number to send out e-mail notifications. If not set, the SMTP mailport defaults to 25

SET_SENDFROM Procedure

This procedure sets the sent-from e-mail address. This e-mail address is used in the sent-from field in all the e-mail notifications sent out by the database to the registered e-mail addresses.

Syntax

DBMS_AQELM.SET_SENDFROM (
 sendfrom IN VARCHAR2);

Parameters

Table 24-4 SET_SENDFROM Procedure Parameters

	Parameter	Description
	
sendfrom

	
The sent-from e-mail address.

Usage Notes

As part of the configuration for e-mail notifications, a user with AQ_ADMINISTRATOR_ROLE or with EXECUTE permissions on the DBMS_AQELM package should set the sent-from address before registering for e-mail notifications

25 DBMS_AQIN

The DBMS_AQIN package plays a part in providing secure access to the Oracle JMS interfaces.

	
See Also:

Oracle Streams Advanced Queuing User's Guide for detailed information about DBMS_AQIN

This chapter contains the following topic:

	
Using DBMS_AQIN

	
Over view

Using DBMS_AQIN

This section contains topics which relate to using the DBMS_AQIN package.

	
Overview

Overview

While you should not call any subprograms in the DBMS_AQIN package directly, you must have the EXECUTE privilege on the DBMS_AQIN and DBMS_AQJMS packages to use the Oracle JMS interfaces. Use the following syntax to accomplish this with regard to the DBMS_AQIN package:

GRANT EXECUTE ON DBMS_AQIN to user;

Note that you can also acquire these rights through the AQ_USER_ROLE or the AQ_ADMINSTRATOR_ROLE.

26 DBMS_ASSERT

The DBMS_ASSERT package provides an interface to validate properties of the input value.

	
See Also:

Oracle Database PL/SQL Language Reference for more information about "Avoiding SQL Injection in PL/SQL"

This chapter contains the following topics:

	
Using DBMS_ASSERT

	
Operational Notes

	
Summary of DBMS_ASSERT Subprograms

Using DBMS_ASSERT

	
Operational Notes

Operational Notes

If the condition which determines the property asserted in a function is not met then a value error is raised. Otherwise the input value is returned through the return value. Most functions return the value unchanged, however, several functions modify the value.

Summary of DBMS_ASSERT Subprograms

Table 26-1 DBMS_APPLICATION_INFO Package Subprograms

	Subprogram	Description
	
ENQUOTE_LITERAL Function

	
Enquotes a string literal

	
ENQUOTE_NAME Function

	
Encloses a name in double quotes

	
NOOP Functions

	
Returns the value without any checking

	
QUALIFIED_SQL_NAME Function

	
Verifies that the input string is a qualified SQL name

	
SCHEMA_NAME Function

	
Verifies that the input string is an existing schema name

	
SIMPLE_SQL_NAME Function

	
Verifies that the input string is a simple SQL name

	
SQL_OBJECT_NAME Function

	
Verifies that the input parameter string is a qualified SQL identifier of an existing SQL object

ENQUOTE_LITERAL Function

This function enquotes a string literal.

Syntax

DBMS_ASSERT.ENQUOTE_LITERAL (
 str VARCHAR2)
RETURN VARCHAR2;

Parameters

Table 26-2 ENQUOTE_LITERAL Function Parameters

	Parameter	Description
	
str

	
String to enquote

Usage Notes

	
Add leading and trailing single quotes to a string literal.

	
Verify that all single quotes except leading and trailing characters are paired with adjacent single quotes.

ENQUOTE_NAME Function

This function encloses a name in double quotes.

Syntax

DBMS_ASSERT.ENQUOTE_NAME (
 str VARCHAR2,
 capitalize BOOLEAN DEFAULT TRUE)
RETURN VARCHAR2;

Parameters

Table 26-3 ENQUOTE_NAME Function Parameters

	Parameter	Description
	
str

	
String to enquote

	
capitalize

	
If TRUE or defaulted, alphabetic characters of str which was not in quotes are translated to upper case

NOOP Functions

This function returns the value without any checking.

Syntax

DBMS_ASSERT.NOOP (
 str VARCHAR2 CHARACTER SET ANY_CS)
 RETURN VARCHAR2 CHARACTER SET str%CHARSET;

DBMS_ASSERT.NOOP (
 str CLOB CHARACTER SET ANY_CS)
 RETURN CLOB CHARACTER SET str%CHARSET;

Parameters

Table 26-4 NOOP Function Parameters

	Parameter	Description
	
str

	
Input value

QUALIFIED_SQL_NAME Function

This function verifies that the input string is a qualified SQL name.

Syntax

DBMS_ASSERT.QUALIFIED_SQL_NAME (
 str VARCHAR2 CHARACTER SET ANY_CS)
 RETURN VARCHAR2 CHARACTER SET str%CHARSET;

Parameters

Table 26-5 QUALIFIED_SQL_NAME Function Parameters

	Parameter	Description
	
str

	
Input value

Exceptions

ORA44004: string is not a qualified SQL name

Usage Notes

A qualified SQL name <qualified name> can be expressed by the following grammar:

 <local qualified name> ::= <simple name> {'.' <simple name>}
 <database link name> ::= <local qualified name> ['@' <connection string>]
 <connection string> ::= <simple name>
 <qualified name> ::= <local qualified name> ['@' <database link name>]

SCHEMA_NAME Function

This function verifies that the input string is an existing schema name.

Syntax

DBMS_ASSERT.SCHEMA_NAME (
 str VARCHAR2 CHARACTER SET ANY_CS)
 RETURN VARCHAR2 CHARACTER SET str%CHARSET;

Parameters

Table 26-6 SCHEMA_NAME Function Parameters

	Parameter	Description
	
str

	
Input value

Exceptions

ORA44001: Invalid schema name

Usage Notes

By definition, a schema name need not be just a simple SQL name. For example, "FIRST LAST" is a valid schema name. As a consequence, care must be taken to quote the output of schema name before concatenating it with SQL text.

SIMPLE_SQL_NAME Function

This function verifies that the input string is a simple SQL name.

Syntax

DBMS_ASSERT.SIMPLE_SQL_NAME (
 str VARCHAR2 CHARACTER SET ANY_CS)
 RETURN VARCHAR2 CHARACTER SET str%CHARSET;

Parameters

Table 26-7 SIMPLE_SQL_NAME Function Parameters

	Parameter	Description
	
str

	
Input value

Exceptions

ORA44003: string is not a simple SQL name

Usage Notes

	
The input value must be meet the following conditions:

	
The name must begin with an alphabetic character. It may contain alphanumeric characters as well as the characters _, $, and # in the second and subsequent character positions.

	
Quoted SQL names are also allowed.

	
Quoted names must be enclosed in double quotes.

	
Quoted names allow any characters between the quotes.

	
Quotes inside the name are represented by two quote characters in a row, for example, "a name with "" inside" is a valid quoted name.

	
The input parameter may have any number of leading and/or trailing white space characters.

	
The length of the name is not checked.

SQL_OBJECT_NAME Function

This function verifies that the input parameter string is a qualified SQL identifier of an existing SQL object.

Syntax

DBMS_ASSERT.SQL_OBJECT_NAME (
 str VARCHAR2 CHARACTER SET ANY_CS)
 RETURN VARCHAR2 CHARACTER SET str%CHARSET;

Parameters

Table 26-8 SQL_OBJECT_NAME Function Parameters

	Parameter	Description
	
str

	
Input value

Exceptions

ORA44002: Invalid object name

Usage Notes

The use of synonyms requires that the base object exists.

27 DBMS_AUDIT_MGMT

The DBMS_AUDIT_MGMT package provides subprograms to manage audit trail records. These subprograms enable audit administrators to manage the various audit trail types like database audit trails, operating system (OS) audit trails, and XML audit trails.

	
See Also:

"Verifying Security Access with Auditing" in the Oracle Database Security Guide for more information on using the DBMS_AUDIT_MGMT package to manage audit trails

This chapter contains the following topics:

	
Using DBMS_AUDIT_MGMT

	
Overview

	
Security Model

	
Constants

	
Views

	
Subprogram Groups

	
Audit Trail Management Subprograms

	
Audit Trail Cleanup Subprograms

	
Summary of DBMS_AUDIT_MGMT Subprograms

Using DBMS_AUDIT_MGMT

This section contains topics which relate to using the DBMS_AUDIT_MGMT package. The following topics are included:

	
Overview

	
Security Model

	
Constants

	
Views

Overview

Database auditing helps meet your database security and compliance requirements. Audit records are written to database tables, operating system (OS) files, or XML files depending on the AUDIT_TRAIL initialization parameter setting.

When AUDIT_TRAIL is set to DB, database records are written to the AUD$ table. When AUDIT_TRAIL is set to OS, audit records are written to operating system files. When AUDIT_TRAIL is set to XML, audit records are written to operating system files in XML format.

	
See Also:

"Verifying Security Access with Auditing" in the Oracle Database Security Guide for more background information on database auditing

It is important to manage your audit records properly in order to ensure efficient performance and disk space management. The DBMS_AUDIT_MGMT subprograms enable you to efficiently manage your audit trail records.

The DBMS_AUDIT_MGMT package provides a subprogram that allows you to move the database audit trail tables out of the SYSTEM tablespace. This improves overall database performance by reducing the load on the SYSTEM tablespace. It also enables you to dedicate an optimized tablespace for audit records.

The DBMS_AUDIT_MGMT subprograms also enable you to manage your operating system and XML audit files. You can define properties like the maximum size and age of an audit file. This enables you to keep the file sizes of OS and XML audit files in check.

The DBMS_AUDIT_MGMT subprograms enable you to perform cleanup operations on all audit trail types. Audit trails can be cleaned based on the Last Archive Timestamp value. The Last Archive Timestamp represents the timestamp of the most recent audit record that was securely archived.

The DBMS_AUDIT_MGMT package provides a subprogram that enables audit administrators to set the last archive timestamp for archived audit records. This subprogram can also be used by external archival systems to set the last archive timestamp.

The DBMS_AUDIT_MGMT subprograms also enable you to configure jobs that periodically delete audit trail records. The frequency with which these jobs should run can be controlled by the audit administrator.

Security Model

All DBMS_AUDIT_MGMT subprograms require the user to have EXECUTE privilege over the DBMS_AUDIT_MGMT package. The SYSDBA role has EXECUTE privileges on the package by default.

Oracle strongly recommends that only audit administrators should have EXECUTE privileges over the DBMS_AUDIT_MGMT package.

Constants

The DBMS_AUDIT_MGMT package defines several enumerated constants that can be used for specifying parameter values. Enumerated constants must be prefixed with the package name, for example, DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD.

The DBMS_AUDIT_MGMT package includes the constants shown in the following tables:

	
DBMS_AUDIT_MGMT Constants - Audit Trail Types

	
DBMS_AUDIT_MGMT Constants - Audit Trail Properties

	
DBMS_AUDIT_MGMT Constants - Purge Job Status

Audit trails can be classified based on whether audit records are written to database tables, operating system files, or XML files. Table 27-1 lists the audit trail type constants.

Table 27-1 DBMS_AUDIT_MGMT Constants - Audit Trail Types

	Constant	Type	Description
	
AUDIT_TRAIL_ALL

	
PLS_INTEGER

	
All audit trail types. This includes the standard database audit trail (SYS.AUD$ and SYS.FGA_LOG$ tables), operating system (OS) audit trail, and XML audit trail.

	
AUDIT_TRAIL_AUD_STD

	
PLS_INTEGER

	
Standard database audit records in the SYS.AUD$ table

	
AUDIT_TRAIL_DB_STD

	
PLS_INTEGER

	
Both standard audit (SYS.AUD$) and FGA audit(SYS.FGA_LOG$) records

	
AUDIT_TRAIL_FGA_STD

	
PLS_INTEGER

	
Standard database fine-grained auditing (FGA) records in the SYS.FGA_LOG$ table

	
AUDIT_TRAIL_FILES

	
PLS_INTEGER

	
Both operating system (OS) and XML audit trails

	
AUDIT_TRAIL_OS

	
PLS_INTEGER

	
Operating system audit trail. This refers to the audit records stored in operating system files.

	
AUDIT_TRAIL_XML

	
PLS_INTEGER

	
XML audit trail. This refers to the audit records stored in XML files.

Audit trail properties determine the audit configuration settings. Table 27-2 lists the constants related to audit trail properties.

Table 27-2 DBMS_AUDIT_MGMT Constants - Audit Trail Properties

	Constant	Type	Description
	
CLEAN_UP_INTERVAL

	
PLS_INTEGER

	
Interval, in hours, after which the cleanup procedure is called to clear audit records in the specified audit trail

	
DB_DELETE_BATCH_SIZE

	
PLS_INTEGER

	
Specifies the batch size to be used for deleting audit records in database audit tables. The audit records are deleted in batches of size equal to DB_DELETE_BATCH_SIZE.

	
FILE_DELETE_BATCH_SIZE

	
PLS_INTEGER

	
Specifies the batch size to be used for deleting audit files in the audit directory. The audit files are deleted in batches of size equal to FILE_DELETE_BATCH_SIZE.

	
OS_FILE_MAX_AGE

	
PLS_INTEGER

	
Specifies the maximum number of days for which an operating system (OS) or XML audit file can be kept open before a new audit file gets created

	
OS_FILE_MAX_SIZE

	
PLS_INTEGER

	
Specifies the maximum size, in kilobytes (KB), to which an operating system (OS) or XML audit file can grow before a new file is opened

The audit trail purge job cleans the audit trail. Table 27-3 lists the constants related to purge job status values.

Table 27-3 DBMS_AUDIT_MGMT Constants - Purge Job Status

	Constant	Type	Description
	
PURGE_JOB_DISABLE

	
PLS_INTEGER

	
Disables a purge job

	
PURGE_JOB_ENABLE

	
PLS_INTEGER

	
Enables a purge job

Views

The views listed in Table 27-4 are used to display DBMS_AUDIT_MGMT configuration and cleanup events.

Table 27-4 Views used by DBMS_AUDIT_MGMT

	View	Description
	
DBA_AUDIT_MGMT_CLEAN_EVENTS

	
Displays the cleanup event history

	
DBA_AUDIT_MGMT_CLEANUP_JOBS

	
Displays the currently configured audit trail purge jobs

	
DBA_AUDIT_MGMT_CONFIG_PARAMS

	
Displays the currently configured audit trail properties

	
DBA_AUDIT_MGMT_LAST_ARCH_TS

	
Displays the last archive timestamps set for the audit trails

	
See Also:

Oracle Database Reference for more information on these views

Subprogram Groups

The DBMS_AUDIT_MGMT package subprograms can be grouped into the following categories:

	
Audit Trail Management Subprograms

	
Audit Trail Cleanup Subprograms

Audit Trail Management Subprograms

Audit trail management subprograms enable you to manage audit trail properties.

Table 27-5 Audit Trail Management Subprograms

	Subprogram	Description
	
CLEAR_AUDIT_TRAIL_PROPERTY Procedure

	
Clears the value for the audit trail property that you specify

	
SET_AUDIT_TRAIL_LOCATION Procedure

	
Moves the audit trail tables from their current tablespace to a user-specified tablespace

	
SET_AUDIT_TRAIL_PROPERTY Procedure

	
Sets an audit trail property for the audit trail type that you specify

The Summary of DBMS_AUDIT_MGMT Subprograms contains a complete listing of all subprograms in the package.

Audit Trail Cleanup Subprograms

Audit trail cleanup subprograms help you perform cleanup related operations on the audit trail records.

Table 27-6 Audit Trail Cleanup Subprograms

	Subprogram	Description
	
CLEAN_AUDIT_TRAIL Procedure

	
Deletes audit trail records/files that have been archived

	
CLEAR_LAST_ARCHIVE_TIMESTAMP Procedure

	
Clears the timestamp set by the SET_LAST_ARCHIVE_TIMESTAMP Procedure

	
CREATE_PURGE_JOB Procedure

	
Creates a purge job for periodically deleting the audit trail records/files

	
DEINIT_CLEANUP Procedure

	
Undoes the setup and initialization performed by the INIT_CLEANUP Procedure

	
DROP_PURGE_JOB Procedure

	
Drops the purge job created using the CREATE_PURGE_JOB Procedure

	
INIT_CLEANUP Procedure

	
Sets up the audit management infrastructure and sets a default cleanup interval for audit trail records/files

	
IS_CLEANUP_INITIALIZED Function

	
Checks to see if the INIT_CLEANUP Procedure has been run for an audit trail type

	
SET_LAST_ARCHIVE_TIMESTAMP Procedure

	
Sets a timestamp indicating when the audit records/files were last archived

	
SET_PURGE_JOB_INTERVAL Procedure

	
Sets the interval at which the CLEAN_AUDIT_TRAIL Procedure is called for the purge job that you specify

	
SET_PURGE_JOB_STATUS Procedure

	
Enables or disables the purge job that you specify

The Summary of DBMS_AUDIT_MGMT Subprograms contains a complete listing of all subprograms in the package.

Summary of DBMS_AUDIT_MGMT Subprograms

Table 27-7 DBMS_AUDIT_MGMT Package Subprograms

	Subprogram	Description
	
CLEAN_AUDIT_TRAIL Procedure

	
Deletes audit trail records that have been archived

	
CLEAR_AUDIT_TRAIL_PROPERTY Procedure

	
Clears the value for the audit trail property that you specify

	
CLEAR_LAST_ARCHIVE_TIMESTAMP Procedure

	
Clears the timestamp set by the SET_LAST_ARCHIVE_TIMESTAMP Procedure

	
CREATE_PURGE_JOB Procedure

	
Creates a purge job for periodically deleting the audit trail records

	
DEINIT_CLEANUP Procedure

	
Undoes the setup and initialization performed by the INIT_CLEANUP Procedure

	
DROP_PURGE_JOB Procedure

	
Drops the purge job created using the CREATE_PURGE_JOB Procedure

	
GET_AUDIT_COMMIT_DELAY Function

	
Returns the Audit Commit Delay as the number of seconds. This is the maximum time that it takes to COMMIT an audit record to the database audit trail.

	
INIT_CLEANUP Procedure

	
Sets up the audit management infrastructure and sets a default cleanup interval for audit trail records

	
IS_CLEANUP_INITIALIZED Function

	
Checks to see if the INIT_CLEANUP Procedure has been run for an audit trail type

	
SET_AUDIT_TRAIL_LOCATION Procedure

	
Moves the audit trail tables from their current tablespace to a user-specified tablespace

	
SET_AUDIT_TRAIL_PROPERTY Procedure

	
Sets the audit trail properties for the audit trail type that you specify

	
SET_LAST_ARCHIVE_TIMESTAMP Procedure

	
Sets a timestamp indicating when the audit records were last archived

	
SET_PURGE_JOB_INTERVAL Procedure

	
Sets the interval at which the CLEAN_AUDIT_TRAIL Procedure is called for the purge job that you specify

	
SET_PURGE_JOB_STATUS Procedure

	
Enables or disables the purge job that you specify

CLEAN_AUDIT_TRAIL Procedure

This procedure deletes audit trail records. The CLEAN_AUDIT_TRAIL procedure is usually called after the SET_LAST_ARCHIVE_TIMESTAMP Procedure has been used to set the last archived timestamp for the audit records.

Syntax

DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL(
 audit_trail_type IN PLS_INTEGER,
 use_last_arch_timestamp IN BOOLEAN DEFAULT TRUE) ;

Parameters

Table 27-8 CLEAN_AUDIT_TRAIL Procedure Parameters

	Parameter	Description
	
audit_trail_type

	
The audit trail type for which the cleanup operation needs to be performed. Audit trail types are listed in Table 27-1, "DBMS_AUDIT_MGMT Constants - Audit Trail Types" .

	
use_last_arch_timestamp

	
Specifies whether the last archived timestamp should be used for deciding on the records that should be deleted.

A value of TRUE indicates that only audit records created before the last archive timestamp should be deleted.

A value of FALSE indicates that all audit records should be deleted.

The default value is TRUE. Oracle recommends using this value, as this helps guard against inadvertent deletion of records.

Usage Notes

The following usage notes apply:

	
When cleaning up operating system (OS) or XML audit files, only files in the current audit directory, specified by the AUDIT_FILE_DEST parameter, are cleaned up.

	
For Windows platforms, no cleanup is performed when the audit_trail_type parameter is set to DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS. This is because operating system (OS) audit records on Windows are written to the Windows Event Viewer.

	
For Unix platforms, no cleanup is performed for cases where the operating system (OS) audit records are written to the syslog. When the audit_trail_type parameter is set to DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS, it removes only the *.aud files under the directory specified by the AUDIT_FILE_DEST initialization parameter.

	
See Also:

"AUDIT_SYSLOG_LEVEL" in the Oracle Database Reference

	
When the audit_trail_type parameter is set to DBMS_AUDIT_MGMT.AUDIT_TRAIL_XML, this procedure only removes XML audit files (*.xml) from the current audit directory.

Oracle database maintains a book-keeping file (adx_$ORACLE_SID.txt) for the XML audit files. This file is not removed by the cleanup procedure.

Examples

The following example calls the CLEAN_AUDIT_TRAIL procedure to clean up the operating system (OS) audit trail records that were updated before the last archive timestamp.

BEGIN
DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL(
 audit_trail_type => DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS,
 use_last_arch_timestamp => TRUE);
END;
/

CLEAR_AUDIT_TRAIL_PROPERTY Procedure

This procedure clears the value for the audit trail property that is specified. Audit trail properties are set using the SET_AUDIT_TRAIL_PROPERTY Procedure.

The CLEAR_AUDIT_TRAIL_PROPERTY procedure can optionally reset the property value to it's default value through the use_default_values parameter.

Syntax

DBMS_AUDIT_MGMT.CLEAR_AUDIT_TRAIL_PROPERTY(
 audit_trail_type IN PLS_INTEGER,
 audit_trail_property IN PLS_INTEGER,
 use_default_values IN BOOLEAN DEFAULT FALSE) ;

Parameters

Table 27-9 CLEAR_AUDIT_TRAIL_PROPERTY Procedure Parameters

	Parameter	Description
	
audit_trail_type

	
The audit trail type for which the property needs to be cleared. Audit trail types are listed in Table 27-1, "DBMS_AUDIT_MGMT Constants - Audit Trail Types"

	
audit_trail_property

	
The audit trail property whose value needs to be cleared. You cannot clear the value for the CLEANUP_INTERVAL property.

Audit trail properties are listed in Table 27-2, "DBMS_AUDIT_MGMT Constants - Audit Trail Properties"

	
use_default_values

	
Specifies whether the default value of the audit_trail_property should be used in place of the cleared value. A value of TRUE causes the default value of the parameter to be used. A value of FALSE causes the audit_trail_property to have no value.

The default value for this parameter is FALSE.

Usage Notes

The following usage notes apply:

	
You can use this procedure to clear the value for an audit trail property that you do not wish to use. For example, if you do not want a restriction on the operating system audit file size, then you can use this procedure to reset the OS_FILE_MAX_SIZE property.

You can also use this procedure to reset an audit trail property to it's default value. You need to set use_default_values to TRUE when invoking the procedure.

	
The DB_DELETE_BATCH_SIZE property needs to be individually cleared for the AUDIT_TRAIL_AUD_STD and AUDIT_TRAIL_FGA_STD audit trail types. You cannot clear this property collectively using the AUDIT_TRAIL_DB_STD and AUDIT_TRAIL_ALL audit trail types.

	
If you clear the value of the DB_DELETE_BATCH_SIZE property with use_default_value set to FALSE, the default value of DB_DELETE_BATCH_SIZE is still assumed. This is because audit records are always deleted in batches.

	
The FILE_DELETE_BATCH_SIZE property needs to be individually cleared for the AUDIT_TRAIL_OS and AUDIT_TRAIL_XML audit trail types. You cannot clear this property collectively using the AUDIT_TRAIL_FILES and AUDIT_TRAIL_ALL audit trail types.

	
If you clear the value of the FILE_DELETE_BATCH_SIZE property with use_default_value set to FALSE, the default value of FILE_DELETE_BATCH_SIZE is still assumed. This is because audit files are always deleted in batches.

	
You cannot clear the value for the CLEANUP_INTERVAL property.

Examples

The following example calls the CLEAR_AUDIT_TRAIL_PROPERTY procedure to clear the value for the audit trail property, OS_FILE_MAX_SIZE. The procedure uses a value of FALSE for the USE_DEFAULT_VALUES parameter. This means that there will be no maximum size threshold for operating system (OS) audit files.

BEGIN
DBMS_AUDIT_MGMT.CLEAR_AUDIT_TRAIL_PROPERTY(
 AUDIT_TRAIL_TYPE => DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS,
 AUDIT_TRAIL_PROPERTY => DBMS_AUDIT_MGMT.OS_FILE_MAX_SIZE,
 USE_DEFAULT_VALUES => FALSE);
END;
/

CLEAR_LAST_ARCHIVE_TIMESTAMP Procedure

This procedure clears the timestamp set by the SET_LAST_ARCHIVE_TIMESTAMP Procedure.

Syntax

DBMS_AUDIT_MGMT.CLEAR_LAST_ARCHIVE_TIMESTAMP(
 audit_trail_type IN PLS_INTEGER,
 rac_instance_number IN PLS_INTEGER DEFAULT NULL) ;

Parameters

Table 27-10 CLEAR_LAST_ARCHIVE_TIMESTAMP Procedure Parameters

	Parameter	Description
	
audit_trail_type

	
The audit trail type for which the timestamp needs to be cleared. Audit trail types are listed in Table 27-1, "DBMS_AUDIT_MGMT Constants - Audit Trail Types" .

	
rac_instance_number

	
The instance number for the Oracle Real Application Clusters (Oracle RAC) instance. The default value is NULL.

The rac_instance_number is not relevant for single instance databases.

Usage Notes

The following usage notes apply:

	
The timestamp for only one audit_trail_type can be cleared at a time.

	
The following are invalid audit_trail_type values for this procedure and cannot be used:

	
AUDIT_TRAIL_ALL

	
AUDIT_TRAIL_DB_STD

	
AUDIT_TRAIL_FILES

Examples

The following example calls the CLEAR_LAST_ARCHIVE_TIMESTAMP procedure to clear the timestamp value for the operating system (OS) audit trail type.

BEGIN
DBMS_AUDIT_MGMT.CLEAR_LAST_ARCHIVE_TIMESTAMP(
 audit_trail_type => DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS,
 rac_instance_number => 1);
END;
/

CREATE_PURGE_JOB Procedure

This procedure creates a purge job for periodically deleting the audit trail records.

This procedure carries out the cleanup operation at intervals specified by the user. It calls the CLEAN_AUDIT_TRAIL Procedure to perform the cleanup operation.

The SET_PURGE_JOB_INTERVAL Procedure is used to modify the frequency of the purge job.

The SET_PURGE_JOB_STATUS Procedure is used to enable or disable the purge job.

The DROP_PURGE_JOB Procedure is used to drop a purge job created with the CREATE_PURGE_JOB procedure.

Syntax

DBMS_AUDIT_MGMT.CREATE_PURGE_JOB(
 audit_trail_type IN PLS_INTEGER,
 audit_trail_purge_interval IN PLS_INTEGER,
 audit_trail_purge_name IN VARCHAR2,
 use_last_arch_timestamp IN BOOLEAN DEFAULT TRUE) ;

Parameters

Table 27-11 CREATE_PURGE_JOB Procedure Parameters

	Parameter	Description
	
audit_trail_type

	
The audit trail type for which the purge job needs to be created. Audit trail types are listed in Table 27-1, "DBMS_AUDIT_MGMT Constants - Audit Trail Types" .

	
audit_trail_purge_interval

	
The interval, in hours, at which the clean up procedure is called. A lower value means that the cleanup is performed more often.

	
audit_trail_purge_name

	
A name to identify the purge job.

	
use_last_arch_timestamp

	
Specifies whether the last archived timestamp should be used for deciding on the records that should be deleted.

A value of TRUE indicates that only audit records created before the last archive timestamp should be deleted.

A value of FALSE indicates that all audit records should be deleted.

The default value is TRUE.

Usage Notes

Use this procedure to schedule the CLEAN_AUDIT_TRAIL Procedure for your audit trail records.

Examples

The following example calls the CREATE_PURGE_JOB procedure to create a cleanup job called CLEANUP, for all audit trail types. It sets the audit_trail_purge_interval parameter to 100. This means that the cleanup job is invoked every 100 hours. It also sets the use_last_arch_timestamp parameter value to TRUE. This means that all audit records older than the last archive timestamp are deleted.

BEGIN
DBMS_AUDIT_MGMT.CREATE_PURGE_JOB(
 audit_trail_type => DBMS_AUDIT_MGMT.AUDIT_TRAIL_ALL,
 audit_trail_purge_interval => 100 /* hours */,
 audit_trail_purge_name => 'CLEANUP',
 use_last_arch_timestamp => TRUE);
END;
/

DEINIT_CLEANUP Procedure

This procedure undoes the setup and initialization performed by the INIT_CLEANUP Procedure. The DEINIT_CLEANUP procedure clears the value of the default_cleanup_interval parameter. However, when used for audit tables, it does not move the audit trail tables back to their original tablespace.

Syntax

DBMS_AUDIT_MGMT.DEINIT_CLEANUP(
 audit_trail_type IN PLS_INTEGER) ;

Parameters

Table 27-12 DEINIT_CLEANUP Procedure Parameters

	Parameter	Description
	
audit_trail_type

	
The audit trail type for which the procedure needs to be called.

Audit trail types are listed in Table 27-1, "DBMS_AUDIT_MGMT Constants - Audit Trail Types"

Examples

The following example clears the default_cleanup_interval parameter setting for the standard database audit trail:

BEGIN
DBMS_AUDIT_MGMT.DEINIT_CLEANUP(
 AUDIT_TRAIL_TYPE => DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD);
END;
/

DROP_PURGE_JOB Procedure

This procedure drops the purge job created using the CREATE_PURGE_JOB Procedure. The name of the purge job is passed as an argument.

Syntax

DBMS_AUDIT_MGMT.DROP_PURGE_JOB(
 audit_trail_purge_name IN VARCHAR2) ;

Parameters

Table 27-13 DROP_PURGE_JOB Procedure Parameters

	Parameter	Description
	
audit_trail_purge_name

	
The name of the purge job which is being deleted. This is the purge job name that you specified with the CREATE_PURGE_JOB Procedure.

Examples

The following example calls the DROP_PURGE_JOB procedure to drop the purge job called CLEANUP.

BEGIN
DBMS_AUDIT_MGMT.DROP_PURGE_JOB(
 AUDIT_TRAIL_PURGE_NAME => 'CLEANUP');
END;
/

GET_AUDIT_COMMIT_DELAY Function

This function returns the Audit Commit Delay as the number of seconds. Audit Commit Delay is the maximum time that it takes to COMMIT an audit record to the database audit trail. If it takes more time to COMMIT an audit record than defined by the Audit Commit Delay, then a copy of the audit record is written to the operating system (OS) audit trail.

The Audit Commit Delay value is useful when determining the last archive timestamp for database audit records.

Syntax

DBMS_AUDIT_MGMT.GET_AUDIT_COMMIT_DELAY
 RETURN NUMBER;

INIT_CLEANUP Procedure

This procedure sets up the audit management infrastructure and a default cleanup interval for the audit trail records. If the audit trail tables are in the SYSTEM tablespace, then the procedure moves them to the SYSAUX tablespace.

Moving the audit trail tables out of the SYSTEM tablespace enhances overall database performance. The INIT_CLEANUP procedure moves the audit trail tables to the SYSAUX tablespace. If the SET_AUDIT_TRAIL_LOCATION Procedure has already moved the audit tables elsewhere, then no tables are moved.

The SET_AUDIT_TRAIL_LOCATION Procedure enables you to specify an alternate target tablespace for the database audit tables.

The INIT_CLEANUP procedure is currently not relevant for the AUDIT_TRAIL_OS, AUDIT_TRAIL_XML, and AUDIT_TRAIL_FILES audit trail types. No preliminary set up is required for these audit trail types.

	
See Also:

Table 27-1, "DBMS_AUDIT_MGMT Constants - Audit Trail Types" for a list of all audit trail types

This procedure also sets a default cleanup interval for the audit trail records.

Syntax

DBMS_AUDIT_MGMT.INIT_CLEANUP(
 audit_trail_type IN PLS_INTEGER,
 default_cleanup_interval IN PLS_INTEGER);

Parameters

Table 27-14 INIT_CLEANUP Procedure Parameters

	Parameter	Description
	
audit_trail_type

	
The audit trail type for which the clean up operation needs to be initialized.

Audit trail types are listed in Table 27-1, "DBMS_AUDIT_MGMT Constants - Audit Trail Types"

	
default_cleanup_interval

	
The default time interval, in hours, after which the cleanup procedure should be called. The minimum value is 1 and the maximum is 999.

Usage Notes

The following usage notes apply:

	
This procedure may involve data movement across tablespaces. This can be a resource intensive operation especially if your database audit trail tables are already populated. Oracle recommends that you invoke the procedure during non-peak hours.

	
You should ensure that the SYSAUX tablespace, into which the audit trail tables are being moved, has sufficient space to accommodate the audit trail tables. You should also optimize the SYSAUX tablespace for frequent write operations.

	
You can change the default_cleanup_interval later using the SET_AUDIT_TRAIL_PROPERTY Procedure.

	
If you do not wish to move the audit trail tables to the SYSAUX tablespace, then you should use the DBMS_AUDIT_MGMT.SET_AUDIT_TRAIL_LOCATION procedure to move the audit trail tables to another tablespace before calling the INIT_CLEANUP procedure.

	
See Also:

"SET_AUDIT_TRAIL_LOCATION Procedure"

Examples

The following example calls the INIT_CLEANUP procedure to set a default_cleanup_interval of 12 hours for all audit trail types:

BEGIN
DBMS_AUDIT_MGMT.INIT_CLEANUP(
 audit_trail_type => DBMS_AUDIT_MGMT.AUDIT_TRAIL_ALL,
 default_cleanup_interval => 12 /* hours */);
END;
/

	
See Also:

Table 27-1, "DBMS_AUDIT_MGMT Constants - Audit Trail Types" for a list of all audit trail types

IS_CLEANUP_INITIALIZED Function

This function checks to see if the INIT_CLEANUP Procedure has been run for an audit trail type. The IS_CLEANUP_INITIALIZED function returns TRUE if the procedure has already been run for the audit trail type. It returns FALSE if the procedure has not been run for the audit trail type.

This function is currently not relevant for the AUDIT_TRAIL_OS, AUDIT_TRAIL_XML, and AUDIT_TRAIL_FILES audit trail types. The function always returns TRUE for these audit trail types. No preliminary set up is required for these audit trail types.

	
See Also:

Table 27-1, "DBMS_AUDIT_MGMT Constants - Audit Trail Types" for a list of all audit trail types

Syntax

DBMS_AUDIT_MGMT.DEINIT_CLEANUP(
 audit_trail_type IN PLS_INTEGER)
 RETURN BOOLEAN;

Parameters

Table 27-15 IS_CLEANUP_INITIALIZED Function Parameters

	Parameter	Description
	
audit_trail_type

	
The audit trail type for which the function needs to be called.

Audit trail types are listed in Table 27-1, "DBMS_AUDIT_MGMT Constants - Audit Trail Types"

Examples

The following example checks to see if the standard database audit trail type has been initialized for cleanup operation. If the audit trail type has not been initialized, then it calls the INIT_CLEANUP Procedure to initialize the audit trail type.

BEGIN
 IF
 NOT DBMS_AUDIT_MGMT.IS_CLEANUP_INITIALIZED(DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD)
 THEN
 DBMS_AUDIT_MGMT.INIT_CLEANUP(
 audit_trail_type => DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD,
 default_cleanup_interval => 12 /* hours */);
 END IF;
END;
/

SET_AUDIT_TRAIL_LOCATION Procedure

This procedure moves the audit trail tables from their current tablespace to a user-specified tablespace.

The SET_AUDIT_TRAIL_LOCATION procedure is currently not relevant for the AUDIT_TRAIL_OS, AUDIT_TRAIL_XML, and AUDIT_TRAIL_FILES audit trail types. The AUDIT_FILE_DEST initialization parameter is the only way you can specify the destination directory for these audit trail types.

	
See Also:

	
Table 27-1, "DBMS_AUDIT_MGMT Constants - Audit Trail Types" for a list of all audit trail types

	
"AUDIT_FILE_DEST" in the Oracle Database Reference

Syntax

DBMS_AUDIT_MGMT.SET_AUDIT_TRAIL_LOCATION(
 audit_trail_type IN PLS_INTEGER,
 audit_trail_location_value IN VARCHAR2) ;

Parameters

Table 27-16 SET_AUDIT_TRAIL_LOCATION Procedure Parameters

	Parameter	Description
	
audit_trail_type

	
The audit trail type for which the audit trail location needs to be set.

Audit trail types are listed in Table 27-1, "DBMS_AUDIT_MGMT Constants - Audit Trail Types"

	
audit_trail_location_value

	
The target location/tablespace for the audit trail records

Usage Notes

The following usage notes apply:

	
This procedure involves data movement across tablespaces. This can be a resource intensive operation especially if your database audit trail tables are already populated. Oracle recommends that you invoke the procedure during non-peak hours.

	
You should ensure that the target tablespace, into which the audit trail tables are being moved, has sufficient space to accommodate the audit trail tables. You should also optimize the target tablespace for frequent write operations.

	
This procedure is valid for the following audit_trail_type values only:

	
AUDIT_TRAIL_AUD_STD

	
AUDIT_TRAIL_FGA_STD

	
AUDIT_TRAIL_DB_STD

Examples

The following example moves the database audit trail tables, AUD$ and FGA_LOG$, from the current tablespace to a user-created tablespace called RECORDS:

BEGIN
DBMS_AUDIT_MGMT.SET_AUDIT_TRAIL_LOCATION(
 audit_trail_type => DBMS_AUDIT_MGMT.AUDIT_TRAIL_DB_STD,
 audit_trail_location_value => 'RECORDS');
END;
/

SET_AUDIT_TRAIL_PROPERTY Procedure

This procedure sets an audit trail property for the audit trail type that is specified.

The procedure sets properties like OS_FILE_MAX_SIZE, OS_FILE_MAX_AGE, and FILE_DELETE_BATCH_SIZE for operating system (OS) and XML audit trail types. The OS_FILE_MAX_SIZE and OS_FILE_MAX_AGE properties determine the maximum size and age of an audit trail file before a new audit trail file gets created. The FILE_DELETE_BATCH_SIZE property specifies the number of audit trail files that are deleted in one batch.

The procedure sets properties like DB_DELETE_BATCH_SIZE and CLEANUP_INTERVAL for the database audit trail type. DB_DELETE_BATCH_SIZE specifies the batch size in which records get deleted from audit trail tables. This ensures that if a cleanup operation gets interrupted midway, the process does not need to start afresh the next time it is invoked. This is because all batches before the last processed batch are already committed.

The CLEANUP_INTERVAL specifies the frequency, in hours, with which the cleanup procedure is called.

Syntax

DBMS_AUDIT_MGMT.SET_AUDIT_TRAIL_PROPERTY(
 audit_trail_type IN PLS_INTEGER,
 audit_trail_property IN PLS_INTEGER,
 audit_trail_property_value IN PLS_INTEGER) ;

Parameters

Table 27-17 SET_AUDIT_TRAIL_PROPERTY Procedure Parameters

	Parameter	Description
	
audit_trail_type

	
The audit trail type for which the property needs to be set. Audit trail types are listed in Table 27-1, "DBMS_AUDIT_MGMT Constants - Audit Trail Types"

	
audit_trail_property

	
The audit trail property that is being set. Audit trail properties are listed in Table 27-2, "DBMS_AUDIT_MGMT Constants - Audit Trail Properties"

	
audit_trail_property_value

	
The value of the property specified using audit_trail_property. The following are valid values for audit trail properties:

	
OS_FILE_MAX_SIZE can have a minimum value of 1 and maximum value of 2000000. The default value is 10000. OS_FILE_MAX_SIZE is measured in kilobytes (KB).

	
OS_FILE_MAX_AGE can have a minimum value of 1 and a maximum value of 497. The default value is 5. OS_FILE_MAX_AGE is measured in days.

	
DB_DELETE_BATCH_SIZE can have a minimum value of 100 and a maximum value of 1000000. The default value is 10000. DB_DELETE_BATCH_SIZE is measured as the number of audit records that are deleted in one batch.

	
FILE_DELETE_BATCH_SIZE can have a minimum value of 100 and a maximum value of 1000000. The default value is 1000. FILE_DELETE_BATCH_SIZE is measured as the number of audit files that are deleted in one batch.

	
CLEANUP_INTERVAL can have a minimum value of 1 and a maximum value of 999. The default value is set using the INIT_CLEANUP Procedure. CLEANUP_INTERVAL is measured in hours.

Usage Notes

The following usage notes apply:

	
The audit trail properties for which you do not explicitly set values use their default values.

	
If you have set both the OS_FILE_MAX_SIZE and OS_FILE_MAX_AGE properties for an operating system (OS) or XML audit trail type, then a new audit trail file gets created depending on which of these two limits is reached first.

For example, let us take a scenario where OS_FILE_MAX_SIZE is 10000 and OS_FILE_MAX_AGE is 5. If the operating system audit file is already more than 5 days old and has a size of 9000 KB, then a new audit file is opened. This is because one of the limits has been reached.

	
The DB_DELETE_BATCH_SIZE property needs to be individually set for the AUDIT_TRAIL_AUD_STD and AUDIT_TRAIL_FGA_STD audit trail types. You cannot set this property collectively using the AUDIT_TRAIL_DB_STD and AUDIT_TRAIL_ALL audit trail types.

	
The DB_DELETE_BATCH_SIZE property enables you to control the number of audit records that are deleted in one batch. Setting a large value for this parameter requires increased allocation for the undo log space.

	
The FILE_DELETE_BATCH_SIZE property needs to be individually set for the AUDIT_TRAIL_OS and AUDIT_TRAIL_XML audit trail types. You cannot set this property collectively using the AUDIT_TRAIL_FILES and AUDIT_TRAIL_ALL audit trail types.

	
The FILE_DELETE_BATCH_SIZE property enables you to control the number of audit files that are deleted in one batch. Setting a very large value may engage the GEN0 background process for a long time.

Examples

The following example calls the SET_AUDIT_TRAIL_PROPERTY procedure to set the OS_FILE_MAX_SIZE property for the operating system (OS) audit trail. It sets this property value to 102400. This means that a new audit file gets created every time the current audit file size reaches 100 MB.

BEGIN
DBMS_AUDIT_MGMT.SET_AUDIT_TRAIL_PROPERTY(
 audit_trail_type => DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS,
 audit_trail_property => DBMS_AUDIT_MGMT.OS_FILE_MAX_SIZE,
 audit_trail_property_value => 102400 /* 100MB*/);
END;
/

The following example calls the SET_AUDIT_TRAIL_PROPERTY procedure to set the OS_FILE_MAX_AGE property for the operating system (OS) audit trail. It sets this property value to 5. This means that a new audit file gets created every sixth day.

BEGIN
DBMS_AUDIT_MGMT.SET_AUDIT_TRAIL_PROPERTY(
 audit_trail_type => DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS,
 audit_trail_property => DBMS_AUDIT_MGMT.OS_FILE_MAX_AGE,
 audit_trail_property_value => 5 /* days */);
END;
/

The following example calls the SET_AUDIT_TRAIL_PROPERTY procedure to set the DB_DELETE_BATCH_SIZE property for the AUDIT_TRAIL_AUD_STD audit trail. It sets this property value to 100000. This means that during a cleanup operation, audit records are deleted from the SYS.AUD$ table in batches of size 100000.

BEGIN
DBMS_AUDIT_MGMT.SET_AUDIT_TRAIL_PROPERTY(
 audit_trail_type => DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD,
 audit_trail_property => DBMS_AUDIT_MGMT.DB_DELETE_BATCH_SIZE,
 audit_trail_property_value => 100000 /* delete batch size */);
END;
/

SET_LAST_ARCHIVE_TIMESTAMP Procedure

This procedure sets a timestamp indicating when the audit records were last archived. The audit administrator provides the timestamp to be attached to the audit records. The CLEAN_AUDIT_TRAIL Procedure uses this timestamp to decide on the audit records to be deleted.

Syntax

DBMS_AUDIT_MGMT.SET_LAST_ARCHIVE_TIMESTAMP(
 audit_trail_type IN PLS_INTEGER,
 last_archive_time IN TIMESTAMP,
 rac_instance_number IN PLS_INTEGER DEFAULT NULL) ;

Parameters

Table 27-18 SET_LAST_ARCHIVE_TIMESTAMP Procedure Parameters

	Parameter	Description
	
audit_trail_type

	
The audit trail type for which the timestamp needs to be set. Audit trail types are listed in Table 27-1, "DBMS_AUDIT_MGMT Constants - Audit Trail Types" .

	
last_archive_time

	
The TIMESTAMP value based on which the audit records or files should be deleted. This indicates the last time when the audit records/files were archived.

	
rac_instance_number

	
The instance number for the Oracle Real Application Clusters (Oracle RAC) instance.The default value is NULL.

The rac_instance_number is not relevant for the database audit trail type, as the database audit trail tables are shared by all Oracle RAC instances. The rac_instance_number is also not relevant for a single-instance database.

Usage Notes

The following usage notes apply:

	
The last_archive_time must be specified in Coordinated Universal Time (UTC) when the audit trail types are AUDIT_TRAIL_AUD_STD or AUDIT_TRAIL_FGA_STD. This is because the database audit trails store the timestamps in UTC. UTC is also known as Greenwich Mean Time (GMT).

	
The last_archive_time must be specified as the local time zone time when the audit trail types are AUDIT_TRAIL_OS or AUDIT_TRAIL_XML. The time zone must be the time zone of the machine where the OS or XML audit files were created. This is because the operating system audit files are cleaned based on the audit file's Last Modification Timestamp property. The Last Modification Timestamp property value is stored in the local time zone of the machine.

	
The following audit_trail_type values for valid for this procedure:

	
AUDIT_TRAIL_AUD_STD

	
AUDIT_TRAIL_FGA_STD

	
AUDIT_TRAIL_OS

	
AUDIT_TRAIL_XML

	
When using an Oracle Real Application Clusters (Oracle RAC) database, Oracle recommends that you use the Network Time Protocol (NTP) to synchronize individual Oracle RAC nodes.

Examples

The following example calls the SET_LAST_ARCHIVE_TIMESTAMP procedure to set the last archive timestamp for the operating system (OS) audit trail type on Oracle RAC instance 1. It uses the TO_TIMESTAMP function to convert a character string into a timestamp value.

A subsequent call to the CLEAN_AUDIT_TRAIL Procedure, with use_last_arch_timestamp set to TRUE, will delete all those OS audit files from the current AUDIT_FILE_DEST directory that were modified before 10-Sep-2007 14:10:10.0.

BEGIN
DBMS_AUDIT_MGMT.SET_LAST_ARCHIVE_TIMESTAMP(
 audit_trail_type => DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS,
 last_archive_time => TO_TIMESTAMP('10-SEP-0714:10:10.0','DD-MON-RRHH24:MI:SS.FF'),
 rac_instance_number => 1);
END;
/

SET_PURGE_JOB_INTERVAL Procedure

This procedure sets the interval at which the CLEAN_AUDIT_TRAIL Procedure is called for the purge job specified. The purge job must have already been created using the CREATE_PURGE_JOB Procedure.

Syntax

DBMS_AUDIT_MGMT.SET_PURGE_JOB_INTERVAL(
 audit_trail_purge_name IN VARCHAR2,
 audit_trail_interval_value IN PLS_INTEGER) ;

Parameters

Table 27-19 SET_PURGE_JOB_INTERVAL Procedure Parameters

	Parameter	Description
	
audit_trail_purge_name

	
The name of the purge job for which the interval is being set. This is the purge job name that you specified with the CREATE_PURGE_JOB Procedure.

	
audit_trail_interval_value

	
The interval, in hours, at which the clean up procedure should be called. This value modifies the audit_trail_purge_interval parameter set using the CREATE_PURGE_JOB Procedure

Usage Notes

Use this procedure to modify the audit_trail_purge_interval parameter set using the CREATE_PURGE_JOB Procedure.

Examples

The following example calls the SET_PURGE_JOB_INTERVAL procedure to change the frequency at which the purge job called CLEANUP is invoked. The new interval is set to 24 hours.

BEGIN
DBMS_AUDIT_MGMT.SET_PURGE_JOB_INTERVAL(
 AUDIT_TRAIL_PURGE_NAME => 'CLEANUP',
 AUDIT_TRAIL_INTERVAL_VALUE => 24);
END;
/

SET_PURGE_JOB_STATUS Procedure

This procedure enables or disables the specified purge job. The purge job must have already been created using the CREATE_PURGE_JOB Procedure.

Syntax

DBMS_AUDIT_MGMT.SET_PURGE_JOB_STATUS(
 audit_trail_purge_name IN VARCHAR2,
 audit_trail_status_value IN PLS_INTEGER) ;

Parameters

Table 27-20 SET_PURGE_JOB_STATUS Procedure Parameters

	Parameter	Description
	
audit_trail_purge_name

	
The name of the purge job for which the status is being set. This is the purge job name that you specified with the CREATE_PURGE_JOB Procedure.

	
audit_trail_status_value

	
One of the values specified in DBMS_AUDIT_MGMT Constants - Purge Job Status.

The value PURGE_JOB_ENABLE enables the specified purge job.

The value PURGE_JOB_DISABLE disables the specified purge job.

Examples

The following example calls the SET_PURGE_JOB_STATUS procedure to enable the CLEANUP purge job.

BEGIN
DBMS_AUDIT_MGMT.SET_PURGE_JOB_STATUS(
 audit_trail_purge_name => 'CLEANUP',
 audit_trail_status_value => DBMS_AUDIT_MGMT.PURGE_JOB_ENABLE);
END;
/

28 DBMS_AUTO_SQLTUNE

The DBMS_AUTO_SQLTUNE package is the interface for managing the Automatic SQL Tuning task. Unlike DBMS_SQLTUNE, the DBMS_AUTO_SQLTUNE package requires the DBA role.

	
Note:

This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2).

The chapter contains the following topics:

	
Using DBMS_AUTO_SQLTUNE

	
Overview

	
Security Model

	
Summary of DBMS_AUTO_SQLTUNE Subprograms

Using DBMS_AUTO_SQLTUNE

	
Overview

	
Security Model

Overview

The DBMS_AUTO_SQLTUNE package is the interface to SQL Tuning Advisor (DBMS_SQLTUNE) when run within the Autotask framework. The database creates the automated system task SYS_AUTO_SQL_TUNING_TASK as part of the catalog scripts. This task automatically chooses a set of high-load SQL from AWR and runs the SQL Tuning Advisor on this SQL. The automated task performs the same comprehensive analysis as any other SQL Tuning task.

The automated task tests any SQL profiles it finds by executing both the old and new query plans. Automatic SQL Tuning differs from manual SQL tuning in one important way. If automatic implementation of SQL profiles is enabled (the default is disabled), then the database implements any SQL profiles that promise a great performance benefit. The implementation occurs at tuning time so that the database can immediately benefit from the new plan. You can enable or disable automatic implementation by using the SET_AUTO_TUNING_TASK_PARAMETER API to set the ACCEPT_SQL_PROFILES parameter.

In each maintenance window, the automated tuning task stores its results as a new execution. Each execution result has the same task name but a different execution name. Query the DBA_ADVISOR_EXECUTIONS view for information about task executions. Use the REPORT_AUTO_TUNING_TASK Function to view reports that span multiple executions.

Security Model

This package is available to users with the DBA role. For other users, you must grant the EXECUTE privilege on the package explicitly. Note that the EXECUTE_AUTO_TUNING_TASK procedure is an exception: only SYS can invoke it.

Users can call APIs in this package to control how the automatic tuning task behaves when it runs, such as enabling automatic SQL profile creation and configuring the total and per-SQL time limits under which the task runs. Because these settings affect the overall performance of the database, it may not be appropriate for all users with the ADVISOR privilege to have access to this package.

Summary of DBMS_AUTO_SQLTUNE Subprograms

Table 28-1 DBMS_AUTO_SQLTUNE Package Subprograms

	Subprogram	Description
	
EXECUTE_AUTO_TUNING_TASK Function & Procedure

	
Executes the Automatic SQL Tuning task immediately (SYS only)

	
REPORT_AUTO_TUNING_TASK Function

	
Displays a text report of the automatic tuning task's history

	
SET_AUTO_TUNING_TASK_PARAMETER Procedures

	
Changes a task parameter value for the daily automatic runs

EXECUTE_AUTO_TUNING_TASK Function & Procedure

This function and procedure executes the Automatic SQL Tuning task (SYS_AUTO_SQL_TUNING_TASK). Both the function and the procedure run in the context of a new task execution. The difference is that the function returns that new execution name. Note that only SYS can invoke this subprogram.

Syntax

DBMS_AUTO_SQLTUNE.EXECUTE_AUTO_TUNING_TASK(
 execution_name IN VARCHAR2 := NULL,
 execution_params IN dbms_advisor.argList := NULL,
 execution_desc IN VARCHAR2 := NULL)
 RETURN VARCHAR2;

DBMS_AUTO_SQLTUNE.EXECUTE_AUTO_TUNING_TASK(
 execution_name IN VARCHAR2 := NULL,
 execution_params IN dbms_advisor.argList := NULL,
 execution_desc IN VARCHAR2 := NULL);

Parameters

Table 28-2 EXECUTE_TUNING_TASK Function & Procedure Parameters

	Parameter	Description
	
execution_name

	
A name to qualify and identify an execution. If not specified, it is generated by the advisor and returned by function.

	
execution_params

	
List of parameters (name, value) for the specified execution. The execution parameters have effect only on the execution for which they are specified. They override the values for the parameters stored in the task (set through the SET_AUTO_TUNING_TASK_PARAMETER Procedures).

	
execution_desc

	
A 256-length string describing the execution

Usage Notes

A tuning task can be executed multiple times without having to reset it.

Examples

EXEC DBMS_AUTO_SQLTUNE.EXECUTE_AUTO_TUNING_TASK(:exec_name);

REPORT_AUTO_TUNING_TASK Function

This procedure displays the results of an Automatic SQL Tuning task.

Syntax

DBMS_AUTO_SQLTUNE.REPORT_AUTO_TUNING_TASK(
 begin_exec IN VARCHAR2 := NULL,
 end_exec IN VARCHAR2 := NULL,
 type IN VARCHAR2 := 'TEXT',
 level IN VARCHAR2 := 'TYPICAL',
 section IN VARCHAR2 := ALL,
 object_id IN NUMBER := NULL,
 result_limit IN NUMBER := NULL)
RETURN CLOB;

Parameters

Table 28-3 REPORT_TUNING_TASK Function Parameters

	Parameter	Description
	
begin_exec

	
Name of the beginning task execution to use. If NULL, the report is generated for the most recent task execution.

	
end_exec

	
Name of the ending task execution to use. If NULL, the report is generated for the most recent task execution.

	
type

	
Type of the report to produce. Possible values are TEXT which produces a text report.

	
level

	
Level of detail in the report:

	
BASIC: simple version of the report. Just show info about the actions taken by the advisor.

	
TYPICAL: show information about every statement analyzed, including requests not implemented.

	
ALL: highly detailed report level, also provides annotations about statements skipped over.

	
section

	
Section of the report to include:

	
SUMMARY: summary information

	
FINDINGS: tuning findings

	
PLAN: explain plans

	
INFORMATION: general information

	
ERROR: statements with errors

	
ALL: all sections

	
object_id

	
Advisor framework object id that represents a single statement to restrict reporting to. NULL for all statements. Only valid for reports that target a single execution.

	
result_limit

	
Maximum number of SQL statements to show in the report

Return Values

A CLOB containing the desired report.

Examples

-- Get the whole report for the most recent execution
SELECT DBMS_AUTO_SQLTUNE.REPORT_AUTO_TUNING_TASK
FROM DUAL;

-- Show the summary for a range of executions
SELECT DBMS_AUTO_SQLTUNE.REPORT_AUTO_TUNING_TASK(:begin_exec, :end_exec, 'TEXT',
 'TYPICAL', 'SUMMARY')
FROM DUAL;

-- Show the findings for the statement of interest
SELECT DBMS_AUTO_SQLTUNE.REPORT_AUTO_TUNING_TASK(:exec, :exec, 'TEXT',
 'TYPICAL', 'FINDINGS', 5)
FROM DUAL;

SET_AUTO_TUNING_TASK_PARAMETER Procedures

This procedure updates the value of a SQL tuning parameter of type VARCHAR2 or NUMBER as used for the reserved auto tuning task, SYS_AUTO_SQL_TUNING_TASK.

Syntax

DBMS_AUTO_SQLTUNE.SET_AUTO_TUNING_TASK_PARAMETER(
 parameter IN VARCHAR2,
 value IN VARCHAR2);

DBMS_AUTO_SQLTUNE.SET_AUTO_TUNING_TASK_PARAMETER(
 parameter IN VARCHAR2,
 value IN NUMBER);

Parameters

Table 28-4 SET_AUTO_TUNING_TASK_PARAMETER Procedure Parameters

	Parameter	Description
	
parameter

	
Name of the parameter to set. The possible tuning parameters that can be set by this procedure using the parameter in the form VARCHAR2:

	
MODE: tuning scope (comprehensive, limited)

	
USERNAME: username under which the statement is parsed

	
DAYS_TO_EXPIRE: number of days until the task is deleted

	
EXECUTION_DAYS_TO_EXPIRE: number of days until the tasks's executions is deleted (without deleting the task)

	
DEFAULT_EXECUTION_TYPE: the task defaults to this type of execution when none is specified by the EXECUTE_AUTO_TUNING_TASK Function & Procedure.

	
TIME_LIMIT: global time out (seconds)

	
LOCAL_TIME_LIMIT: per-statement time out (seconds)

	
TEST_EXECUTE: FULL/AUTO/OFF.

* FULL - test-execute for as much time as necessary, up to the local time limit for the SQL (or the global task time limit if no SQL time limit is set)

* AUTO - test-execute for an automatically-chosen time proportional to the tuning time

* OFF - do not test-execute

	
BASIC_FILTER: basic filter for SQL tuning set

	
OBJECT_FILTER: object filter for SQL tuning set

	
PLAN_FILTER: plan filter for SQL tuning set (see SELECT_SQLSET for possible values)

	
RANK_MEASURE1: first ranking measure for SQL tuning set

	
RANK_MEASURE2: second possible ranking measure for SQL tuning set

	
RANK_MEASURE3: third possible ranking measure for SQL tuning set

	
RESUME_FILTER: a extra filter for SQL tuning sets besides BASIC_FILTER

	
SQL_LIMIT: maximum number of SQL statements to tune

	
SQL_PERCENTAGE: percentage filter of SQL tuning set statements

The following parameters are supported for the automatic tuning task only:

	
ACCEPT_SQL_PROFILES: TRUE/FALSE: whether the task should accept SQL profiles automatically

	
MAX_AUTO_SQL_PROFILES: maximum number of automatic SQL profiles allowed on the system, in sum

	
MAX_SQL_PROFILES_PER_EXEC: maximum number of SQL profiles that can be automatically implemented per execution of the task.

	
value

	
New value of the specified parameter

29 DBMS_AUTO_TASK_ADMIN

The DBMS_AUTO_TASK_ADMIN package provides an interface to AUTOTASK functionality. It is used by the DBA as well as Enterprise Manager to access the AUTOTASK controls. Enterprise Manager also uses the AUTOTASK Advisor.

	
See Also:

Oracle Database Administrator's Guide for more information about "Configuring Automated Maintenance Task"

This chapter contains the following sections:

	
Using DBMS_AUTO_TASK_ADMIN

	
Constants

	
Summary of DBMS_AUTO_TASK_ADMIN Subprograms

Using DBMS_AUTO_TASK_ADMIN

	
Constants

Constants

The DBMS_AUTO_TASK_ADMIN package uses the constants shown in Table 29-1:

Table 29-1 DBMS_AUTO_TASK_ADMIN Constants

	Name	Type	Value	Description
	
PRIORITY_MEDIUM

	
VARCHAR2

	
'MEDIUM'

	
Task with this priority should be executed as time permits

	
PRIORITY_HIGH

	
VARCHAR2

	
'HIGH'

	
Task with this priority should be executed within the current Maintenance Window

	
PRIORITY_URGENT

	
VARCHAR2

	
'URGENT'

	
Task with this priority is to be executed at the earliest opportunity

Summary of DBMS_AUTO_TASK_ADMIN Subprograms

Table 29-2 DBMS_XMLSTORE Package Subprograms

	Method	Description
	
DISABLE Procedures

	
Prevents AUTOTASK from executing any requests from a specified client or operation.

	
ENABLE Procedures

	
Allows a previously disabled client, operation, target type, or individual target to be enabled under AUTOTASK control

	
GET_CLIENT_ATTRIBUTES Procedure

	
Returns values of select client attributes

	
GET_P1_RESOURCES Procedure

	
Returns percent of resources allocated to each AUTOTASK High Priority Consumer Groups

	
OVERRIDE_PRIORITY Procedures

	
Manually overrides task priority.

	
SET_CLIENT_SERVICE Procedure

	
Associates an AUTOTASK Client with a specified Service

	
SET_P1_RESOURCES Procedure

	
Sets percentage-based resource allocation for each High Priority Consumer Group used by AUTOTASK Clients

DISABLE Procedures

This procedure prevents AUTOTASK from executing any requests from a specified client or operation.

Syntax

Disables all AUTOTASK functionality.

DBMS_AUTO_TASK_ADMIN.DISABLE;

Disables all tasks for the client or operation.

DBMS_AUTO_TASK_ADMIN.DISABLE (
 client_name IN VARCHAR2,
 operation IN VARCHAR2,
 window_name IN VARCHAR2);

Parameters

Table 29-3 DISABLE Procedure Parameters

	Parameter	Description
	
client_name

	
Name of the client, as found in DBA_AUTOTASK_CLIENT View

	
operation

	
Name of the operation as specified in DBA_AUTOTASK_OPERATION View

	
window_name

	
Optional name of the window in which client is to be disabled

Usage Notes

	
If operation and window_name are both NULL, the client is disabled.

	
If operation is not NULL, window_name is ignored and the operation is disabled

	
If operation is NULL and window_name is not NULL, the client is disabled in the specified window.

ENABLE Procedures

This procedure allows a previously disabled client, operation, target type, or individual target to be enabled under AUTOTASK control. Specifying the DEFERRED option postpones the effect of the call until the start of the next maintenance window. If IMMEDIATE option is specified the effect of this call is immediate – as long as there is a currently open maintenance window.

Syntax

Re-enabling AUTOTASK. This version enables the specified client. Note that any explicitly disabled tasks or operations must be re-enabled individually.

DBMS_AUTO_TASK_ADMIN.ENABLE;

Re-enabling a client or operation.Note that any explicitly disabled tasks or operations must be re-enabled individually.

DBMS_AUTO_TASK_ADMIN.ENABLE (
 client_name IN VARCHAR2,
 operation IN VARCHAR2,
 window_name IN VARCHAR2);

Parameters

Table 29-4 ENABLE Procedure Parameters

	Parameter	Description
	
client_name

	
Name of the client, as found in DBA_AUTOTASK_CLIENT View

	
operation

	
Name of the operation as specified in DBA_AUTOTASK_OPERATION View

	
window_name

	
Optional name of the window in which client is to be enabled

Usage Notes

	
If operation and window_name are both NULL, the client is enabled.

	
If operation is not NULL, window_name is ignored and the specified operation is enabled

	
If operation is NULL and window_name is not NULL, the client is enabled in the specified window.

GET_CLIENT_ATTRIBUTES Procedure

This procedure returns values of select client attributes.

Syntax

DBMS_AUTO_TASK_ADMIN.GET_CLIENT_ATTRIBUTES(
 client_name IN VARCHAR2, service_name OUT VARCHAR2, window_group OUT VARCHAR2);

Parameters

Table 29-5 GET_CLIENT_ATTRIBUTES Procedure Parameters

	Parameter	Description
	
client_name

	
Name of the client, as found in DBA_AUTOTASK_CLIENT View

	
service_name

	
Service name for client, may be NULL

	
window_group

	
Name of the window group in which the client is active

GET_P1_RESOURCES Procedure

This procedure returns percent of resources allocated to each AUTOTASK High Priority Consumer Group.

Syntax

DBMS_AUTO_TASK_ADMIN.GET_P1_RESOURCES(
 stats_group_pct OUT NUMBER,
 seg_group_pct OUT NUMBER,
 tune_group_pct OUT NUMBER,
 health_group_pct OUT NUMBER);

Parameters

Table 29-6 GET_P1_RESOURCES Procedure Parameters

	Parameter	Description
	
stats_group_pct

	
%resources for Statistics Gathering

	
seq_group_pct

	
%resources for Space Management

	
tune_group_pct

	
%resources for SQL Tuning

	
health_group_pct

	
%resources for Health Checks

Usage Notes

Values will add up to 100%.

OVERRIDE_PRIORITY Procedures

This procedure is used to manually override task priority. This can be done at the client, operation or individual task level. This priority assignment is honored during the next maintenance window in which the named client is active. Specifically, setting the priority to URGENT causes a high priority job to be generated at the start of the maintenance window. Setting priority to CLEAR removes the override.

Syntax

Override Priority for a Client.

DBMS_AUTO_TASK_ADMIN.OVERRIDE_PRIORITY (
 client_name IN VARCHAR2,
 priority IN VARCHAR2);

Override Priority for an Operation.

DBMS_AUTO_TASK_ADMIN.OVERRIDE_PRIORITY (
 client_name IN VARCHAR2,
 operation IN VARCHAR2,
 priority IN VARCHAR2);

Override Priority for a Task.

DBMS_AUTO_TASK_ADMIN.OVERRIDE_PRIORITY (
 client_name IN VARCHAR2,
 operation IN VARCHAR2,
 task_target_type IN VARCHAR2,
 task_target_name IN VARCHAR2,
 priority IN VARCHAR2);

Parameters

Table 29-7 OVERRIDE_PRIORITY Procedure Parameters

	Parameter	Description
	
client_name

	
Name of the client, as found in DBA_AUTOTASK_CLIENT View

	
priority

	
URGENT, HIGH, MEDIUM or LOW

	
operation

	
Name of the operation as specified in DBA_AUTOTASK_OPERATION View

	
task_target_type

	
Type of target to be affected, as found in V$AUTOTASK_TARGET_TYPE View

	
task_target_name

	
Name of the specific target to be affected

SET_CLIENT_SERVICE Procedure

This procedure associates an AUTOTASK Client with a specified Service.

Syntax

DBMS_AUTO_TASK_ADMIN.SET_CLIENT_SERVICE(
 client_name IN VARCHAR2,
 service_name IN VARCHAR2);

Parameters

Table 29-8 SET_CLIENT_SERVICE Procedure Parameters

	Parameter	Description
	
client_name

	
Name of the client, as found in DBA_AUTOTASK_CLIENT View

	
service_name

	
Service name for client, may be NULL

Usage Notes

All work performed on behalf of the Client takes place only on instances where the service is enabled.

SET_P1_RESOURCES Procedure

This procedure sets percentage-based resource allocation for each High Priority Consumer Group used by AUTOTASK Clients.

Syntax

DBMS_AUTO_TASK_ADMIN.SET_P1_RESOURCES(
 stats_group_pct OUT NUMBER,
 seg_group_pct OUT NUMBER,
 tune_group_pct OUT NUMBER,
 health_group_pct OUT NUMBER);

Parameters

Table 29-9 SET_P1_RESOURCES Procedure Parameters

	Parameter	Description
	
stats_group_pct

	
%resources for Statistics Gathering

	
seq_group_pct

	
%resources for Space Management

	
tune_group_pct

	
%resources for SQL Tuning

	
health_group_pct

	
%resources for Health Checks

Usage Notes

Values must be integers in the range 0 to 100, and must add up to 100 (percent), otherwise, an exception is raised.

30 DBMS_AUTO_TASK_IMMEDIATE

The DBMS_AUTO_TASK_IMMEDIATE package consists of one subprogram whose function is to initiate gathering of optimizer statistics without delay.

This chapter contains the following topics:

	
Summary of DBMS_AUTO_TASK_IMMEDIATE Subprograms

Summary of DBMS_AUTO_TASK_IMMEDIATE Subprograms

Table 30-1 DBMS_AUTO_TASK_IMMEDIATE Subprograms

	Subprogram	Description
	
GATHER_OPTIMIZER_STATS Procedure

	
Initiates gathering of optimizer statistics without waiting for the start of a maintenance window

GATHER_OPTIMIZER_STATS Procedure

This procedure initiates gathering of optimizer statistics without waiting for the start of a maintenance window.

Syntax

DBMS_AUTO_TASK_IMMEDIATE.GATHER_OPTIMIZER_STATS;

31 DBMS_AW_STATS

DBMS_AW_STATS contains subprograms for managing optimizer statistics for cubes and dimensions. Generating the statistics does not have a significant performance cost.

	
See Also:

Oracle OLAP User's Guide regarding use of the OLAP option to support business intelligence and analytical applications

This chapter contains the following topic:

	
Using DBMS_AW_STATS

	
Summary of DBMS_AW_STATS Subprograms

Using DBMS_AW_STATS

Cubes and dimensions are first class data objects that support multidimensional analytics. They are stored in a container called an analytic workspace. Multidimensional objects and analytics are available with the OLAP option to Oracle Database.

Optimizer statistics are used to create execution plans for queries that join two cube views or join a cube view to a table or a view of a table. They are also used for query rewrite to cube materialized views. You need to generate the statistics only for these types of queries.

Queries against a single cube do not use optimizer statistics. These queries are automatically optimized within the analytic workspace.

Summary of DBMS_AW_STATS Subprograms

Table 31-1 DBMS_AW_STATS Package Subprograms

	Subprogram	Description
	
ANALYZE Procedure

	
Generates optimizer statistics on cubes and cube dimensions.

	
CLEAR Procedure

	
Clears optimizer statistics from cubes and cube dimensions.

ANALYZE Procedure

This procedure generates optimizer statistics on a cube or a cube dimension. These statistics are used to generate some execution plans, as described in "Using DBMS_AW_STATS".

For a cube, the statistics are for all of the measures and calculated measures associated with the cube. These statistics include:

	
The average length of data values

	
The length of the largest data value

	
The minimum value

	
The number of distinct values

	
The number of null values

For a dimension, the statistics are for the dimension and its attributes, levels, and hierarchies. These statistics include:

	
The average length of a value

	
The length of the largest value

	
The minimum value

	
The maximum value

Syntax

DBMS_AW_STATS.ANALYZE
 (inname IN VARCHAR2);

Parameters

Table 31-2 ANALYZE Procedure Parameters

	Parameter	Description
	
inname

	
The qualified name of a cube or a dimension.

For a cube, the format of a qualified name is owner.cube_name.

For a dimension, the format is owner.dimension_name.

Usage Notes

Always analyze the dimensions first, then the cube.

After analyzing a dimension, analyze all cubes that use that dimension.

Example

This sample script generates optimizer statistics on UNITS_CUBE and its dimensions.

BEGIN
 DBMS_AW_STATS.ANALYZE('time');
 DBMS_AW_STATS.ANALYZE('customer');
 DBMS_AW_STATS.ANALYZE('product');
 DBMS_AW_STATS.ANALYZE('channel');
 DBMS_AW_STATS.ANALYZE('units_cube');
END;
/

The following statements create and display an execution plan for aSELECT statement that joins columns from UNITS_CUBE_VIEW, CUSTOMER_PRIMARY_VIEW, and the ACCOUNTS table:

EXPLAIN PLAN FOR SELECT
 cu.long_description customer,
 a.city city,
 a.zip_pc zip,
 cu.level_name "LEVEL",
 round(f.sales) sales
/* From dimension views and cube view */
FROM time_calendar_view t,
 product_primary_view p,
 customer_view cu,
 channel_view ch,
 units_cube_view f,
 account a
/* Create level filters instead of GROUP BY */
WHERE t.long_description = '2004'
 AND p.level_name ='TOTAL'
 AND cu.customer_account_id like 'COMP%'
 AND ch.level_name = 'TOTAL'
/* Join dimension views to cube view */
 AND t.dim_key = f.TIME
 AND p.dim_key = f.product
 AND cu.dim_key = f.customer
 AND ch.dim_key = f.channel
 AND a.account_id = cu.customer_account_id
ORDER BY zip;

SQL> SELECT plan_table_output FROM TABLE(dbms_xplan.display());

PLAN_TABLE_OUTPUT

Plan hash value: 3890178023

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT		1	89	6 (34)	00:00:01
1	SORT ORDER BY		1	89	6 (34)	00:00:01
* 2	HASH JOIN		1	89	5 (20)	00:00:01
3	JOINED CUBE SCAN PARTIAL OUTER					
4	CUBE ACCESS	UNITS_CUBE				
5	CUBE ACCESS	CHANNEL				
6	CUBE ACCESS	CUSTOMER				
7	CUBE ACCESS	PRODUCT				
* 8	CUBE ACCESS	TIME	1	55	2 (0)	00:00:01
* 9	TABLE ACCESS FULL	ACCOUNT	3	102	2 (0)	00:00:01

Predicate Information (identified by operation id):

 2 - access("A"."ACCOUNT_ID"=SYS_OP_ATG(VALUE(KOKBF$),39,40,2))
 8 - filter(SYS_OP_ATG(VALUE(KOKBF$),16,17,2)='2004' AND
 SYS_OP_ATG(VALUE(KOKBF$),39,40,2) LIKE 'COMP%' AND
 SYS_OP_ATG(VALUE(KOKBF$),47,48,2)='TOTAL' AND
 SYS_OP_ATG(VALUE(KOKBF$),25,26,2)='TOTAL')
 9 - filter("A"."ACCOUNT_ID" LIKE 'COMP%')

Note

 - dynamic sampling used for this statement

30 rows selected.

CLEAR Procedure

Clears the statistics generated by the ANALYZE Procedure.

Syntax

DBMS_AW_STATS.CLEAR (
 inname IN VARCHAR2;

Parameters

Table 31-3 CLEAR Procedure Parameters

	Parameter	Description
	
inname

	
The qualified name of a cube or a dimension.

For a cube, the format of a qualified name is owner.cube_name.

For a dimension, the format is owner.dimension_name.

Examples

The following scripts clears the statistics from UNITS_CUBE and its dimensions.

BEGIN
 DBMS_AW_STATS.clear('units_cube');
 DBMS_AW_STATS.clear('time');
 DBMS_AW_STATS.clear('customer');
 DBMS_AW_STATS.clear('product');
 DBMS_AW_STATS.clear('channel');
END;
/

32 DBMS_CAPTURE_ADM

The DBMS_CAPTURE_ADM package, one of a set of Oracle Streams packages, provides subprograms for starting, stopping, and configuring a capture process. The source of the captured changes is the redo logs, and the repository for the captured changes is a queue.

	
See Also:

Oracle Streams Concepts and Administration and Oracle Streams Replication Administrator's Guide for more information about this package and capture processes

This chapter contains the following topics:

	
Using DBMS_CAPTURE_ADM

	
Overview

	
Security Model

	
Summary of DBMS_CAPTURE_ADM Subprograms

Using DBMS_CAPTURE_ADM

This section contains topics which relate to using the DBMS_CAPTURE_ADM package.

	
Overview

	
Security Model

Overview

This package provides interfaces to start, stop, and configure a capture process or a synchronous capture. This package includes subprograms for preparing database objects for instantiation.

Security Model

Security on this package can be controlled in either of the following ways:

	
Granting EXECUTE on this package to selected users or roles.

	
Granting EXECUTE_CATALOG_ROLE to selected users or roles.

If subprograms in the package are run from within a stored procedure, then the user who runs the subprograms must be granted EXECUTE privilege on the package directly. It cannot be granted through a role.

When the DBMS_CAPTURE_ADM package is used to manage an Oracle Streams configuration, it requires that the user is granted the privileges of an Oracle Streams administrator.

When the DBMS_CAPTURE_ADM package is used to manage an XStream configuration, it requires that the user is granted the privileges of an XStream administrator.

	
Note:

	
The user must be granted additional privileges to perform some administrative tasks using the subprograms in this package, such as setting a capture user. If additional privileges are required for a subprogram, then the privileges are documented in the section that describes the subprogram.

	
Using XStream requires purchasing a license for the Oracle GoldenGate product. See Oracle Database XStream Guide.

	
See Also:

	
Oracle Streams Concepts and Administration for information about configuring an Oracle Streams administrator

	
Oracle Database XStream Guide for information about configuring an XStream administrator

Summary of DBMS_CAPTURE_ADM Subprograms

Table 32-1 DBMS_CAPTURE_ADM Package Subprograms

	Subprogram	Description
	
ABORT_GLOBAL_INSTANTIATION Procedure

	
Reverses the effects of running the PREPARE_GLOBAL_INSTANTIATION, PREPARE_SCHEMA_INSTANTIATION, and PREPARE_TABLE_INSTANTIATION procedures

	
ABORT_SCHEMA_INSTANTIATION Procedure

	
Reverses the effects of running the PREPARE_SCHEMA_INSTANTIATION and PREPARE_TABLE_INSTANTIATION procedures

	
ABORT_SYNC_INSTANTIATION Procedure

	
Reverses the effects of running the PREPARE_SYNC_INSTANTIATION procedure

	
ABORT_TABLE_INSTANTIATION Procedure

	
Reverses the effects of running the PREPARE_TABLE_INSTANTIATION procedure

	
ALTER_CAPTURE Procedure

	
Alters a capture process

	
ALTER_SYNC_CAPTURE Procedure

	
Alters a synchronous capture

	
BUILD Procedure

	
Extracts the data dictionary of the current database to the redo logs and automatically specifies database supplemental logging for all primary key and unique key columns

	
CREATE_CAPTURE Procedure

	
Creates a capture process

	
CREATE_SYNC_CAPTURE Procedure

	
Creates a synchronous capture

	
DROP_CAPTURE Procedure

	
Drops a capture process

	
INCLUDE_EXTRA_ATTRIBUTE Procedure

	
Includes or excludes an extra attribute in logical change records (LCRs) captured by the specified capture process or synchronous capture

	
PREPARE_GLOBAL_INSTANTIATION Procedure

	
Performs the synchronization necessary for instantiating all the tables in the database at another database and can enable supplemental logging for key columns or all columns in these tables

	
PREPARE_SCHEMA_INSTANTIATION Procedure

	
Performs the synchronization necessary for instantiating all tables in the schema at another database and can enable supplemental logging for key columns or all columns in these tables

	
PREPARE_SYNC_INSTANTIATION Function

	
Performs the synchronization necessary for instantiating one or more tables at another database and returns the prepare SCN

	
PREPARE_TABLE_INSTANTIATION Procedure

	
Performs the synchronization necessary for instantiating the table at another database and can enable supplemental logging for key columns or all columns in the table

	
SET_PARAMETER Procedure

	
Sets a capture process parameter to the specified value

	
START_CAPTURE Procedure

	
Starts the capture process, which mines redo logs and enqueues the mined redo information into the associated queue

	
STOP_CAPTURE Procedure

	
Stops the capture process from mining redo logs

	
Note:

All subprograms commit unless specified otherwise.

ABORT_GLOBAL_INSTANTIATION Procedure

This procedure reverses the effects of running the PREPARE_GLOBAL_INSTANTIATION, PREPARE_SCHEMA_INSTANTIATION, and PREPARE_TABLE_INSTANTIATION procedures.

Specifically, this procedure performs the following actions:

	
Removes data dictionary information related to the database, schema, and table instantiations

	
Removes any supplemental logging enabled by the PREPARE_GLOBAL_INSTANTIATION, PREPARE_SCHEMA_INSTANTIATION, and PREPARE_TABLE_INSTANTIATION procedures

Syntax

DBMS_CAPTURE_ADM.ABORT_GLOBAL_INSTANTIATION;

ABORT_SCHEMA_INSTANTIATION Procedure

This procedure reverses the effects of running the PREPARE_SCHEMA_INSTANTIATION procedure. It also reverses the effects of running the PREPARE_TABLE_INSTANTIATION procedure on tables in the specified schema.

Specifically, this procedure performs the following actions:

	
Removes data dictionary information related to schema instantiations and table instantiations of tables in the schema

	
Removes any supplemental logging enabled by the PREPARE_SCHEMA_INSTANTIATION procedure

	
Removes any supplemental logging enabled by the PREPARE_TABLE_INSTANTIATION procedure for tables in the specified schema

Syntax

DBMS_CAPTURE_ADM.ABORT_SCHEMA_INSTANTIATION(
 schema_name IN VARCHAR2);

Parameter

Table 32-2 ABORT_SCHEMA_INSTANTIATION Procedure Parameter

	Parameter	Description
	
schema_name

	
The name of the schema for which to abort the effects of preparing instantiation

ABORT_SYNC_INSTANTIATION Procedure

This procedure reverses the effects of running the PREPARE_SYNC_INSTANTIATION procedure. Specifically, this procedure removes data dictionary information related to the table instantiation.

This procedure is overloaded. The table_names parameter is VARCHAR2 data type in one version and DBMS_UTILITY.UNCL_ARRAY data type in the other version.

Syntax

DBMS_CAPTURE_ADM.ABORT_SYNC_INSTANTIATION(
 table_names IN VARCHAR2);

DBMS_CAPTURE_ADM.ABORT_SYNC_INSTANTIATION(
 table_names IN DBMS_UTILITY.UNCL_ARRAY);

Parameters

Table 32-3 ABORT_SYNC_INSTANTIATION Procedure Parameter

	Parameter	Description
	
table_names

	
When the table_names parameter is VARCHAR2 data type, a comma-delimited list of the tables for which to abort the effects of preparing instantiation. There must be no spaces between entries.

When the table_names parameter is DBMS_UTILITY.UNCL_ARRAY data type, specify a PL/SQL associative array of this type that contains the names of the tables for which to abort the effects of preparing instantiation. The first table name is at position 1, the second at position 2, and so on. The table does not need to be NULL terminated.

In either version of the procedure, specify the name of each table in the form [schema_name.]table_name. For example, hr.employees. If the schema is not specified, then the current user is the default.

ABORT_TABLE_INSTANTIATION Procedure

This procedure reverses the effects of running the PREPARE_TABLE_INSTANTIATION procedure.

Specifically, this procedure performs the following actions:

	
Removes data dictionary information related to the table instantiation

	
Removes any supplemental logging enabled by the PREPARE_TABLE_INSTANTIATION procedure

Syntax

DBMS_CAPTURE_ADM.ABORT_TABLE_INSTANTIATION(
 table_name IN VARCHAR2);

Parameter

Table 32-4 ABORT_TABLE_INSTANTIATION Procedure Parameter

	Parameter	Description
	
table_name

	
The name of the table for which to abort the effects of preparing instantiation, specified as [schema_name.]object_name. For example, hr.employees. If the schema is not specified, then the current user is the default.

ALTER_CAPTURE Procedure

This procedure alters a capture process.

	
Note:

Starting with Oracle Database 11g Release 2 (11.2.0.2), the start_time parameter is included in this procedure.

	
See Also:

Oracle Streams Concepts and Administration for more information about altering a capture process

Syntax

DBMS_CAPTURE_ADM.ALTER_CAPTURE(
 capture_name IN VARCHAR2,
 rule_set_name IN VARCHAR2 DEFAULT NULL,
 remove_rule_set IN BOOLEAN DEFAULT FALSE,
 start_scn IN NUMBER DEFAULT NULL,
 use_database_link IN BOOLEAN DEFAULT NULL,
 first_scn IN NUMBER DEFAULT NULL,
 negative_rule_set_name IN VARCHAR2 DEFAULT NULL,
 remove_negative_rule_set IN BOOLEAN DEFAULT FALSE,
 capture_user IN VARCHAR2 DEFAULT NULL,
 checkpoint_retention_time IN NUMBER DEFAULT NULL,
 start_time IN TIMESTAMP DEFAULT NULL);

Parameters

Table 32-5 ALTER_CAPTURE Procedure Parameters

	Parameter	Description
	
capture_name

	
The name of the capture process being altered. You must specify an existing capture process name. Do not specify an owner.

	
rule_set_name

	
The name of the positive rule set for the capture process. The positive rule set contains the rules that instruct the capture process to capture changes.

To change the positive rule set for the capture process, specify an existing rule set in the form [schema_name.]rule_set_name. For example, to specify a positive rule set in the hr schema named job_capture_rules, enter hr.job_capture_rules. If the schema is not specified, then the current user is the default.

An error is returned if the specified rule set does not exist. You can create a rule set and add rules to it using the DBMS_STREAMS_ADM package or the DBMS_RULE_ADM package.

If you specify NULL and the remove_rule_set parameter is set to FALSE, then the procedure retains any existing positive rule set. If you specify NULL and the remove_rule_set parameter is set to TRUE, then the procedure removes any existing positive rule set.

See Also: Oracle Streams Concepts and Administration for more information about the changes that can be captured by a capture process

	
remove_rule_set

	
If TRUE, then the procedure removes the positive rule set for the specified capture process. If you remove a positive rule set for a capture process, and the capture process does not have a negative rule set, then the capture process captures all supported changes to all objects in the database, excluding database objects in the SYS and SYSTEM schemas.

If you remove a positive rule set for a capture process, and the capture process has a negative rule set, then the capture process captures all supported changes that are not discarded by the negative rule set.

If FALSE, then the procedure retains the positive rule set for the specified capture process.

If the rule_set_name parameter is non-NULL, then ensure that this parameter is set to FALSE.

	
start_scn

	
A valid SCN for the database from which the capture process starts capturing changes. The SCN value must be greater than or equal to the first SCN for the capture process. Also, the capture process must be stopped before resetting its start SCN.

An error is returned if an invalid SCN is specified or if the capture process is enabled.

	
use_database_link

	
If TRUE, then the capture process at a downstream database uses a database link to the source database for administrative purposes relating to the capture process. If you want a capture process that is not using a database link currently to begin using a database link, then specify TRUE. In this case, a database link with the same name as the global name of the source database must exist at the downstream database.

If FALSE, then either the capture process is running on the source database, or the capture process at a downstream database does not use a database link to the source database. If you want a capture process that is using a database link currently to stop using a database link, then specify FALSE. In this case, you must prepare source database objects for instantiation manually when you add or change capture process rules that pertain to these objects.

If NULL, then the current value of this parameter for the capture process is not changed.

	
first_scn

	
The lowest SCN in the redo log from which a capture process can capture changes. If you specify a new first SCN for the capture process, then the specified first SCN must meet the following requirements:

	
It must be greater than the current first SCN for the capture process.

	
It must be less than or equal to the current applied SCN for the capture process. However, this requirement does not apply if the current applied SCN for the capture process is zero.

	
It must be less than or equal to the required checkpoint SCN for the capture process.

An error is returned if the specified SCN does not meet the first three requirements. See "Usage Notes" for information about determining an SCN value that meets all of these conditions.

When the first SCN is modified, the capture process purges information from its LogMiner data dictionary that is required to restart it at an earlier SCN. See BUILD Procedure for more information about a LogMiner data dictionary.

If the specified first SCN is higher than the current start SCN for the capture process, then the start SCN is set automatically to the new value of the first SCN.

	
negative_rule_set_name

	
The name of the negative rule set for the capture process. The negative rule set contains the rules that instruct the capture process to discard changes.

To change the negative rule set for the capture process, specify an existing rule set in the form [schema_name.]rule_set_name. For example, to specify a negative rule set in the hr schema named neg_capture_rules, enter hr.neg_capture_rules. If the schema is not specified, then the current user is the default.

An error is returned if the specified rule set does not exist. You can create a rule set and add rules to it using the DBMS_STREAMS_ADM package or the DBMS_RULE_ADM package.

If you specify NULL and the remove_negative_rule_set parameter is set to FALSE, then the procedure retains any existing negative rule set. If you specify NULL and the remove_negative_rule_set parameter is set to TRUE, then the procedure removes any existing negative rule set.

If you specify both a positive and a negative rule set for a capture process, then the negative rule set is always evaluated first.

	
remove_negative_rule_set

	
If TRUE, then the procedure removes the negative rule set for the specified capture process. If you remove a negative rule set for a capture process, and the capture process does not have a positive rule set, then the capture process captures all supported changes to all objects in the database, excluding database objects in the SYS and SYSTEM schemas.

If you remove a negative rule set for a capture process, and a positive rule set exists for the capture process, then the capture process captures all changes that are not discarded by the positive rule set.

If FALSE, then the procedure retains the negative rule set for the specified capture process.

If the negative_rule_set_name parameter is non-NULL, then ensure that this parameter is set to FALSE.

	
capture_user

	
The user in whose security domain a capture process captures changes that satisfy its rule sets and runs custom rule-based transformations configured for capture process rules. If NULL, then the capture user is not changed.

To change the capture user, the user who invokes the ALTER_CAPTURE procedure must be granted the DBA role. Only the SYS user can set the capture_user to SYS.

If you change the capture user, then this procedure grants the new capture user enqueue privilege on the queue used by the capture process and configures the user as a secure queue user of the queue. In addition, ensure that the capture user has the following privileges:

	
EXECUTE privilege on the rule sets used by the capture process

	
EXECUTE privilege on all rule-based transformation functions used in the rule set

These privileges can be granted directly to the capture user, or they can be granted through roles.

In addition, the capture user must be granted EXECUTE privilege on all packages, including Oracle-supplied packages, that are invoked in rule-based transformations run by the capture process. These privileges must be granted directly to the capture user. They cannot be granted through roles.

The capture process is stopped and restarted automatically when you change the value of this parameter.

Note: If the capture user for a capture process is dropped using DROP USER . . . CASCADE, then the capture process is also dropped automatically.

	
checkpoint_retention_time

	
Either the number of days that a capture process retains checkpoints before purging them automatically, or DBMS_CAPTURE_ADM.INFINITE if checkpoints should not be purged automatically. If NULL, then the checkpoint retention time is not changed.

If a number is specified, then a capture process purges a checkpoint the specified number of days after the checkpoint was taken. Partial days can be specified using decimal values. For example, .25 specifies 6 hours.

When a checkpoint is purged, LogMiner data dictionary information for the archived redo log file that corresponds to the checkpoint is purged, and the first_scn of the capture process is reset to the SCN value corresponding to the first change in the next archived redo log file.

See Also: Oracle Streams Concepts and Administration for more information about checkpoint retention time

	
start_time

	
A valid time from which the capture process starts capturing changes. The capture process must be stopped before resetting its start time.

An error is returned if an invalid time is specified or if the capture process is enabled.

The start_scn and start_time parameters are mutually exclusive.

Usage Notes

If you want to alter the first SCN for a capture process, then the value specified must meet the conditions in the description for the first_scn parameter.

Examples

The following query determines the current first SCN, applied SCN, and required checkpoint SCN for each capture process in a database:

SELECT CAPTURE_NAME, FIRST_SCN, APPLIED_SCN, REQUIRED_CHECKPOINT_SCN
 FROM DBA_CAPTURE;

ALTER_SYNC_CAPTURE Procedure

This procedure alters a synchronous capture.

	
See Also:

Oracle Streams Concepts and Administration for more information about altering a capture process

Syntax

DBMS_CAPTURE_ADM.ALTER_SYNC_CAPTURE(
 capture_name IN VARCHAR2,
 rule_set_name IN VARCHAR2 DEFAULT NULL,
 capture_user IN VARCHAR2 DEFAULT NULL);

Parameters

Table 32-6 ALTER_SYNC_CAPTURE Procedure Parameters

	Parameter	Description
	
capture_name

	
The name of the synchronous capture being altered. You must specify an existing synchronous capture name. Do not specify an owner.

	
rule_set_name

	
The name of the positive rule set for the synchronous capture. The positive rule set contains the rules that instruct the synchronous capture to capture changes.

To change the rule set for the synchronous capture, specify an existing rule set in the form [schema_name.]rule_set_name. For example, to specify a positive rule set in the strmadmin schema named sync_cap_rules, enter strmadmin.sync_cap_rules. If the schema is not specified, then the current user is the default.

An error is returned if the specified rule set does not exist. You must specify a rule set that was created using the DBMS_STREAMS_ADM package.

If NULL, then the rule set is not changed.

See Also: Oracle Streams Concepts and Administration for more information about the changes that can be captured by a synchronous capture

	
capture_user

	
The user in whose security domain a synchronous capture captures changes that satisfy its rule set and runs custom rule-based transformations configured for synchronous capture rules. If NULL, then the capture user is not changed.

To change the capture user, the user who invokes the ALTER_SYNC_CAPTURE procedure must be granted the DBA role. Only the SYS user can set the capture_user to SYS.

If you change the capture user, then this procedure grants the new capture user enqueue privilege on the queue used by the synchronous capture and configures the user as a secure queue user of the queue. In addition, ensure that capture user has the following privileges:

	
EXECUTE privilege on the rule sets used by the synchronous capture

	
EXECUTE privilege on all rule-based transformation functions used in the rule set

These privileges can be granted directly to the capture user, or they can be granted through roles.

In addition, the capture user must be granted EXECUTE privilege on all packages, including Oracle-supplied packages, that are invoked in rule-based transformations run by the synchronous capture. These privileges must be granted directly to the capture user. They cannot be granted through roles.

Usage Notes

If the capture user for a synchronous capture is dropped using DROP USER . . . CASCADE, then the synchronous capture is also dropped automatically.

BUILD Procedure

This procedure extracts the data dictionary of the current database to the redo log and automatically specifies database supplemental logging by running the following SQL statement:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

This procedure is overloaded. One version of this procedure contains the OUT parameter first_scn, and the other does not.

Syntax

DBMS_CAPTURE_ADM.BUILD(
 first_scn OUT NUMBER);

DBMS_CAPTURE_ADM.BUILD;

Parameters

Table 32-7 BUILD Procedure Parameter

	Parameter	Description
	
first_scn

	
Contains the lowest SCN value corresponding to the data dictionary extracted to the redo log that can be specified as a first SCN for a capture process

Usage Notes

The following usage notes apply to this procedure:

	
You can run this procedure multiple times at a source database.

	
If you plan to capture changes originating at a source database with a capture process, then this procedure must be executed at the source database at least once. When the capture process is started, either at a local source database or at a downstream database, the capture process uses the extracted information in the redo log to create a LogMiner data dictionary.

	
A LogMiner data dictionary is a separate data dictionary used by a capture process to determine the details of a change that it is capturing. The LogMiner data dictionary is necessary because the primary data dictionary of the source database might not be synchronized with the redo data being scanned by a capture process.

	
After executing this procedure, you can query the FIRST_CHANGE# column of the V$ARCHIVED_LOG dynamic performance view where the DICTIONARY_BEGIN column is YES to determine the lowest SCN value for the database that can be specified as a first SCN for a capture process. The first SCN for a capture process is the lowest SCN in the redo log from which the capture process can capture changes.You can specify the first SCN for a capture process when you run the CREATE_CAPTURE or ALTER_CAPTURE procedure in the DBMS_CAPTURE_ADM package.

CREATE_CAPTURE Procedure

This procedure creates a capture process.

	
Note:

Starting with Oracle Database 11g Release 2 (11.2.0.2), the start_time parameter is included in this procedure.

	
See Also:

	
Oracle Streams Replication Administrator's Guide for more information about creating a capture process

	
Chapter 127, "DBMS_RULE_ADM" for more information about rules and rule sets

Syntax

DBMS_CAPTURE_ADM.CREATE_CAPTURE(
 queue_name IN VARCHAR2,
 capture_name IN VARCHAR2,
 rule_set_name IN VARCHAR2 DEFAULT NULL,
 start_scn IN NUMBER DEFAULT NULL,
 source_database IN VARCHAR2 DEFAULT NULL,
 use_database_link IN BOOLEAN DEFAULT FALSE,
 first_scn IN NUMBER DEFAULT NULL,
 logfile_assignment IN VARCHAR2 DEFAULT 'implicit',
 negative_rule_set_name IN VARCHAR2 DEFAULT NULL,
 capture_user IN VARCHAR2 DEFAULT NULL,
 checkpoint_retention_time IN NUMBER DEFAULT 60,
 start_time IN TIMESTAMP DEFAULT NULL);

Parameters

Table 32-8 CREATE_CAPTURE Procedure Parameters

	Parameter	Description
	
queue_name

	
The name of the queue into which the capture process enqueues changes. You must specify an existing queue in the form [schema_name.]queue_name. For example, to specify a queue in the hr schema named streams_queue, enter hr.streams_queue. If the schema is not specified, then the current user is the default.

Note: The queue_name setting cannot be altered after the capture process is created.

	
capture_name

	
The name of the capture process being created. A NULL specification is not allowed. Do not specify an owner.

Note: The capture_name setting cannot be altered after the capture process is created.

	
rule_set_name

	
The name of the positive rule set for the capture process. The positive rule set contains the rules that instruct the capture process to capture changes.

If you want to use a positive rule set for the capture process, then you must specify an existing rule set in the form [schema_name.]rule_set_name. For example, to specify a positive rule set in the hr schema named job_capture_rules, enter hr.job_capture_rules. If the schema is not specified, then the current user is the default.

An error is returned if the specified rule set does not exist. You can create a rule set and add rules to it using the DBMS_STREAMS_ADM package or the DBMS_RULE_ADM package.

If you specify NULL, and no negative rule set is specified, then the capture process captures all supported changes to all objects in the database, excluding database objects in the SYS and SYSTEM schemas.

If you specify NULL, and a negative rule set exists for the capture process, then the capture process captures all changes that are not discarded by the negative rule set.

See Also: Oracle Streams Concepts and Administration for more information about the changes that can be captured by a capture process

	
start_scn

	
A valid SCN for the database from which the capture process starts capturing changes.

An error is returned if an invalid SCN is specified.

The start_scn and start_time parameters are mutually exclusive.

See Also: "Usage Notes" for more information setting the start_scn parameter

	
source_database

	
The global name of the source database. The source database is where the changes to be captured originated.

If you do not include the domain name, then the procedure appends it to the database name automatically. For example, if you specify DBS1 and the domain is .EXAMPLE.COM, then the procedure specifies DBS1.EXAMPLE.COM automatically.

If NULL, or if the specified name is the same as the global name of the current database, then local capture is assumed and only the default values for use_database_link and first_scn can be specified.

	
use_database_link

	
If TRUE, then the capture process at a downstream database uses a database link to the source database for administrative purposes relating to the capture process. A database link with the same name as the global name of the source database must exist at the downstream database.

The capture process uses the database link to prepare database objects for instantiation at the source database and run the DBMS_CAPTURE_ADM.BUILD procedure at the source database, if necessary.

During the creation of a downstream capture process, if the first_scn parameter is set to NULL, then the use_database_link parameter must be set to TRUE. Otherwise, an error is returned.

If FALSE, then either the capture process is running on the source database, or the capture process at a downstream database does not use a database link to the source database. In this case, you must perform the following administrative tasks manually:

	
Run the DBMS_CAPTURE_ADM.BUILD procedure at the source database to extract the data dictionary at the source database to the redo log when a capture process is created.

	
Obtain the first SCN for the downstream capture process if the first SCN is not specified during capture process creation. The first SCN is needed to create and maintain a capture process.

	
Prepare source database objects for instantiation.

	
first_scn

	
The lowest SCN in the redo log from which a capture process can capture changes. A non-NULL value for this parameter is valid only if the DBMS_CAPTURE_ADM.BUILD procedure has been run at least once at the source database.

You can query the FIRST_CHANGE# column of the V$ARCHIVED_LOG dynamic performance view where the DICTIONARY_BEGIN column is YES to determine whether the DBMS_CAPTURE_ADM.BUILD procedure has been run on a source database. Any of the values returned by such a query can be used as a first_scn value if the redo log containing that SCN value is still available.

See Also: "Usage Notes" for more information setting the first_scn parameter

	
logfile_assignment

	
If implicit, which is the default, then the capture process at a downstream database scans all redo log files added by redo transport services or manually from the source database to the downstream database.

If explicit, then a redo log file is scanned by a capture process at a downstream database only if the capture process name is specified in the FOR logminer_session_name clause. If explicit, then the redo log file must be added manually to the downstream database, and redo transport services cannot be used to add redo log files to the capture process being created.

If you specify explicit for this parameter for a local capture process, then the local capture process cannot use the online redo log to find changes. In this case, the capture process must use the archived redo log.

See Also: "Usage Notes" for information about adding redo log files manually

	
negative_rule_set_name

	
The name of the negative rule set for the capture process. The negative rule set contains the rules that instruct the capture process to discard changes.

If you want to use a negative rule set for the capture process, then you must specify an existing rule set in the form [schema_name.]rule_set_name. For example, to specify a negative rule set in the hr schema named neg_capture_rules, enter hr.neg_capture_rules. If the schema is not specified, then the current user is the default.

If you specify NULL, and no positive rule set is specified, then the capture process captures all supported changes to all objects in the database, excluding database objects in the SYS and SYSTEM schemas.

If you specify NULL, and a positive rule set exists for the capture process, then the capture process captures all changes that are not discarded by the positive rule set.

An error is returned if the specified rule set does not exist. You can create a rule set and add rules to it using the DBMS_STREAMS_ADM package or the DBMS_RULE_ADM package.

If you specify both a positive and a negative rule set for a capture process, then the negative rule set is always evaluated first.

	
capture_user

	
The user in whose security domain a capture process captures changes that satisfy its rule sets and runs custom rule-based transformations configured for capture process rules. If NULL, then the user who runs the CREATE_CAPTURE procedure is used.

Note: If the capture user for a capture process is dropped using DROP USER . . . CASCADE, then the capture process is also dropped automatically.

See Also: "Usage Notes" for more information about this parameter.

	
checkpoint_retention_time

	
Either specify the number of days that a capture process retains checkpoints before purging them automatically, or specify DBMS_CAPTURE_ADM.INFINITE if checkpoints should not be purged automatically.

If a number is specified, then a capture process purges a checkpoint the specified number of days after the checkpoint was taken. Partial days can be specified using decimal values. For example, .25 specifies 6 hours.

When a checkpoint is purged, LogMiner data dictionary information for the archived redo log file that corresponds to the checkpoint is purged, and the first_scn of the capture process is reset to the SCN value corresponding to the first change in the next archived redo log file.

See Also: Oracle Streams Concepts and Administration for more information about checkpoint retention time

	
start_time

	
A valid time from which the capture process starts capturing changes.

An error is returned if an invalid time is specified.

The start_scn and start_time parameters are mutually exclusive.

See Also: "Usage Notes" for more information setting the start_time parameter

Usage Notes

Consider the following usage notes when you run this procedure:

	
DBA Role Requirement

	
Capture User Requirements

	
First SCN and Start SCN Settings

	
Explicit Log File Assignment

DBA Role Requirement

If the user who invokes this procedure is different from the user specified in the capture_user parameter, then the invoking user must be granted the DBA role. If the user who invokes this procedure is the same as the user specified in the capture_user parameter, then the DBA role is not required for the invoking user. Only the SYS user can set the capture_user to SYS.

Capture User Requirements

The capture_user parameter specifies the user who captures changes that satisfy the capture process rule sets. This user must have the necessary privileges to capture changes. This procedure grants the capture user enqueue privilege on the queue used by the capture process and configures the user as a secure queue user of the queue.

In addition, ensure that the capture user has the following privileges:

	
EXECUTE privilege on the rule sets used by the capture process

	
EXECUTE privilege on all rule-based transformation functions used in the positive rule set

These privileges can be granted directly to the capture user, or they can be granted through roles.

In addition, the capture user must be granted EXECUTE privilege on all packages, including Oracle-supplied packages, that are invoked in rule-based transformations run by the capture process. These privileges must be granted directly to the capture user. They cannot be granted through roles.

	
Note:

	
A capture user does not require privileges on a database object to capture changes to the database object. The capture process can pass these changes to a rule-based transformation function. Therefore, ensure that you consider security implications when you configure a capture process.

	
Creation of the first capture process in a database might take some time because the data dictionary is duplicated during this creation.

First SCN and Start SCN Settings

When you create a capture process using this procedure, you can specify the first SCN and start SCN for the capture process. A capture process scans the redo data from the first SCN or an existing capture process checkpoint forward, even if the start SCN is higher than the first SCN or the checkpoint SCN. In this case, the capture process does not capture any changes in the redo data before the start SCN. Oracle recommends that, at capture process creation time, the difference between the first SCN and start SCN be as small as possible to keep the amount of redo scanned by the capture process to a minimum.

	
Note:

When you specify the start_time parameter instead of the start_scn parameter, the start_time corresponds with a specific SCN. In this case, the information in this section also applies to the SCN that corresponds with the specified start_time.

In some cases, the behavior of the capture process is different depending on the settings of these SCN values and on whether the capture process is local or downstream.

The following table describes capture process behavior for SCN value settings:

	first_scn Setting	start_scn Setting	Capture Process Type	Description
	Non-NULL	NULL	Local or Downstream	The new capture process is created at the local database with a new LogMiner session starting from the value specified for the first_scn parameter. The start SCN is set to the specified first SCN value automatically, and the new capture process does not capture changes that were made before this SCN.
The BUILD procedure in the DBMS_CAPTURE_ADM package is not run automatically. This procedure must have been run at least once before on the source database, and the specified first SCN must correspond to the SCN value of a previous build that is still available in the redo log. When the new capture process is started for the first time, it creates a new LogMiner data dictionary using the data dictionary information in the redo log. If the BUILD procedure has not been run at least once on the source database, then an error is raised when the capture process is started.

Capture process behavior is the same for a local capture process and a downstream capture process created with these SCN settings, except that a local capture process is created at the source database and a downstream capture process is created at the downstream database.

	Non-NULL	Non-NULL	Local or Downstream	If the specified value for the start_scn parameter is greater than or equal to the specified value for the first_scn parameter, then the new capture process is created at the local database with a new LogMiner session starting from the specified first SCN. In this case, the new capture process does not capture changes that were made before the specified start SCN. If the specified value for the start_scn parameter is less than the specified value for the first_scn parameter, then an error is raised.
The BUILD procedure in the DBMS_CAPTURE_ADM package is not run automatically. This procedure must have been called at least once before on the source database, and the specified first_scn must correspond to the SCN value of a previous build that is still available in the redo log. When the new capture process is started for the first time, it creates a new LogMiner data dictionary using the data dictionary information in the redo log. If the BUILD procedure has not been run at least once on the source database, then an error is raised.

Capture process behavior is the same for a local capture process and a downstream capture process created with these SCN settings, except that a local capture process is created at the source database and a downstream capture process is created at the downstream database.

	NULL	Non-NULL	Local	The new capture process creates a new LogMiner data dictionary if either one of the following conditions is true:
	
There is no existing capture process for the local source database, and the specified value for the start_scn parameter is greater than or equal to the current SCN for the database.

	
There are existing capture processes, but none of the capture processes have taken a checkpoint yet, and the specified value for the start_scn parameter is greater than or equal to the current SCN for the database.

In either of these cases, the BUILD procedure in the DBMS_CAPTURE_ADM package is run during capture process creation. The new capture process uses the resulting build of the source data dictionary in the redo log to create a LogMiner data dictionary the first time it is started, and the first SCN corresponds to the SCN of the data dictionary build. If there are any in-flight transactions, then the BUILD procedure waits until these transactions commit before completing. An in-flight transaction is one that is active during capture process creation or a data dictionary build.

However, if there is at least one existing local capture process for the local source database that has taken a checkpoint, then the new capture process shares an existing LogMiner data dictionary with one or more of the existing capture processes. In this case, a capture process with a first SCN that is lower than or equal to the specified start SCN must have been started successfully at least once. Also, if there are any in-flight transactions, then the capture process is created after these transactions commit.

If there is no existing capture process for the local source database (or if no existing capture processes have taken a checkpoint yet), and the specified start SCN is less than the current SCN for the database, then an error is raised.

	NULL	Non-NULL	Downstream	When the CREATE_CAPTURE procedure creates a downstream capture process, the use_database_link parameter must be set to TRUE when the first_scn parameter is set to NULL. Otherwise, an error is raised. The database link is used to obtain the current SCN of the source database.
The new capture process creates a new LogMiner data dictionary if either one of the following conditions is true:

	
There is no existing capture process that captures changes to the source database at the downstream database, and the specified value for the start_scn parameter is greater than or equal to the current SCN for the source database.

	
There are existing capture processes that capture changes to the source database at the downstream database, but none of the capture processes have taken a checkpoint yet, and the specified value for the start_scn parameter is greater than or equal to the current SCN for the source database.

In either of these cases, the BUILD procedure in the DBMS_CAPTURE_ADM package is run during capture process creation. The first time you start the new capture process, it uses the resulting build of the source data dictionary in the redo log files copied to the downstream database to create a LogMiner data dictionary. Here, the first SCN for the new capture process corresponds to the SCN of the data dictionary build. If there are any in-flight transactions, then the BUILD procedure waits until these transactions commit before completing.

However, if at least one existing capture process has taken a checkpoint and captures changes to the source database at the downstream database, then the new capture process shares an existing LogMiner data dictionary with one or more of these existing capture processes. In this case, one of these existing capture processes with a first SCN that is lower than or equal to the specified start SCN must have been started successfully at least once. Also, if there are any in-flight transactions, then the capture process is created after these transactions commit.

If there is no existing capture process that captures changes to the source database at the downstream database (or no existing capture process has taken a checkpoint), and the specified start_scn parameter value is less than the current SCN for the source database, then an error is raised.

	NULL	NULL	Local or Downstream	The behavior is the same as setting the first_scn parameter to NULL and setting the start_scn parameter to the current SCN of the source database.

	
Note:

When you create a capture process using the DBMS_STREAMS_ADM package, both the first SCN and the start SCN are set to NULL during capture process creation.

	
See Also:

BUILD Procedure for more information about the BUILD procedure and the LogMiner data dictionary

Explicit Log File Assignment

If you specify explicit for the logfile_assignment parameter, then you add a redo log file manually to a downstream database using the following statement:

ALTER DATABASE REGISTER LOGICAL LOGFILE
 file_name FOR capture_process;

Here, file_name is the name of the redo log file being added and capture_process is the name of the capture process that will use the redo log file at the downstream database. The capture_process is equivalent to the logminer_session_name and must be specified. The redo log file must be present at the site running the downstream database. You must transfer this file manually to the site running the downstream database using the DBMS_FILE_TRANSFER package, FTP, or some other transfer method.

	
See Also:

Oracle Database SQL Language Reference for more information about the ALTER DATABASE statement and Oracle Data Guard Concepts and Administration for more information registering redo log files

CREATE_SYNC_CAPTURE Procedure

This procedure creates a synchronous capture.

	
See Also:

Oracle Streams Replication Administrator's Guide for more information about creating a synchronous capture

Syntax

DBMS_CAPTURE_ADM.CREATE_SYNC_CAPTURE(
 queue_name IN VARCHAR2,
 capture_name IN VARCHAR2,
 rule_set_name IN VARCHAR2,
 capture_user IN VARCHAR2 DEFAULT NUL);

Parameters

Table 32-9 CREATE_SYNC_CAPTURE Procedure Parameters

	Parameter	Description
	
queue_name

	
The name of the queue into which the synchronous capture enqueues changes. You must specify an existing queue in the form [schema_name.]queue_name. For example, to specify a queue in the strmadmin schema named streams_queue, enter strmadmin.streams_queue. If the schema is not specified, then the current user is the default.

Note: The queue_name setting cannot be altered after the synchronous capture is created.

	
capture_name

	
The name of the synchronous capture being created. A NULL specification is not allowed. Do not specify an owner.

Note: The capture_name setting cannot be altered after the synchronous capture is created.

	
rule_set_name

	
The name of the positive rule set for the synchronous capture. The positive rule set contains the rules that instruct the synchronous capture to capture changes.

Specify an existing rule set in the form [schema_name.]rule_set_name. For example, to specify a positive rule set in the strmadmin schema named sync_cap_rules, enter strmadmin.sync_cap_rules. If the schema is not specified, then the current user is the default.

An error is returned if the specified rule set does not exist. You must specify a rule set that was created using the DBMS_STREAMS_ADM package.

If NULL, then an error is returned.

Note: Synchronous capture rules must be added to the synchronous capture rule set using the ADD_TABLE_RULES or ADD_SUBSET_RULES procedure in the DBMS_STREAMS_ADM package. A synchronous capture ignores rules added to the rule set with other procedures.

See Also: Oracle Streams Concepts and Administration for more information about the changes that can be captured by a synchronous capture

	
capture_user

	
The user in whose security domain the synchronous capture captures changes that satisfy its rule set and runs custom rule-based transformations configured for synchronous capture rules. If NULL, then the user who runs the CREATE_SYNC_CAPTURE procedure is used.

Only a user who is granted the DBA role can set a capture user. Only the SYS user can set the capture_user to SYS.

Note: If the capture user for a synchronous capture is dropped using DROP USER . . . CASCADE, then the synchronous capture is also dropped automatically.

See Also: "Usage Notes" for more information about this parameter.

Usage Notes

When the CREATE_SYNC_CAPTURE procedure creates a synchronous capture, the procedure must obtain an exclusive lock on each table for which it will capture changes. The rules in the specified rule set for the synchronous capture determine these tables. If there are outstanding transactions on a table for which the synchronous capture will capture changes, then the procedure waits until it can obtain a lock.

The capture_user parameter specifies the user who captures changes that satisfy the synchronous capture rule set. This user must have the necessary privileges to capture changes.

In addition, ensure that the capture user has the following privileges:

	
ENQUEUE privilege on the queue specified in the queue_name parameter

	
EXECUTE privilege on the rule set used by the synchronous capture

	
EXECUTE privilege on all rule-based transformation functions used in the rule set

These privileges can be granted directly to the capture user, or they can be granted through roles.

In addition, the capture user must be granted EXECUTE privilege on all packages, including Oracle-supplied packages, that are invoked in rule-based transformations run by the synchronous capture. These privileges must be granted directly to the capture user. These privileges cannot be granted through roles.

	
Note:

A capture user does not require privileges on a database object to capture changes to the database object. The synchronous capture can pass these changes to a rule-based transformation function. Therefore, ensure that you consider security implications when you configure a synchronous capture.

DROP_CAPTURE Procedure

This procedure drops a capture process.

Syntax

DBMS_CAPTURE_ADM.DROP_CAPTURE(
 capture_name IN VARCHAR2,
 drop_unused_rule_sets IN BOOLEAN DEFAULT FALSE);

Parameters

Table 32-10 DROP_CAPTURE Procedure Parameters

	Parameter	Description
	
capture_name

	
The name of the capture process being dropped. Specify an existing capture process name. Do not specify an owner.

	
drop_unused_rule_sets

	
If TRUE, then the procedure drops any rule sets, positive and negative, used by the specified capture process if these rule sets are not used by any other Oracle Streams client. Oracle Streams clients include capture processes, propagations, apply processes, and messaging clients. If this procedure drops a rule set, then this procedure also drops any rules in the rule set that are not in another rule set.

If FALSE, then the procedure does not drop the rule sets used by the specified capture process, and the rule sets retain their rules.

Usage Notes

The following usage notes apply to this procedure:

	
The Capture Process Must Be Stopped Before It Is Dropped

	
The DROP_CAPTURE Procedure and Rules-related Information

The Capture Process Must Be Stopped Before It Is Dropped

A capture process must be stopped before it can be dropped.

	
See Also:

STOP_CAPTURE Procedure

The DROP_CAPTURE Procedure and Rules-related Information

When you use this procedure to drop a capture process, rules-related information for the capture process created by the DBMS_STREAMS_ADM package is removed from the data dictionary views for Oracle Streams rules. Information about such a rule is removed even if the rule is not in either rule set for the capture process.

The following are the data dictionary views for Oracle Streams rules:

	
ALL_STREAMS_GLOBAL_RULES

	
DBA_STREAMS_GLOBAL_RULES

	
ALL_STREAMS_MESSAGE_RULES

	
DBA_STREAMS_MESSAGE_RULES

	
ALL_STREAMS_SCHEMA_RULES

	
DBA_STREAMS_SCHEMA_RULES

	
ALL_STREAMS_TABLE_RULES

	
DBA_STREAMS_TABLE_RULES

	
ALL_STREAMS_RULES

	
DBA_STREAMS_RULES

	
See Also:

Oracle Streams Concepts and Administration for more information about Oracle Streams data dictionary views

INCLUDE_EXTRA_ATTRIBUTE Procedure

This procedure includes or excludes an extra attribute in logical change records (LCRs) captured by the specified capture process or synchronous capture.

Syntax

DBMS_CAPTURE_ADM.INCLUDE_EXTRA_ATTRIBUTE(
 capture_name IN VARCHAR2,
 attribute_name IN VARCHAR2,
 include IN BOOLEAN DEFAULT TRUE);

Parameters

Table 32-11 INCLUDE_EXTRA_ATTRIBUTE Procedure Parameters

	Parameter	Description
	
capture_name

	
The name of the capture process or synchronous capture. Specify an existing capture process name or synchronous capture name. Do not specify an owner.

	
attribute_name

	
The name of the attribute to be included in or excluded from LCRs captured by the capture process or synchronous capture. The following names are valid settings:

	
row_id

The rowid of the row changed in a row LCR. This attribute is not included in DDL LCRs, or in row LCRs for index-organized tables. The type is VARCHAR2.

	
serial#

The serial number of the session that performed the change captured in the LCR. The type is NUMBER.

	
session#

The identifier of the session that performed the change captured in the LCR. The type is NUMBER.

	
thread#

The thread number of the instance in which the change captured in the LCR was performed. Typically, the thread number is relevant only in an Oracle Real Application Clusters (Oracle RAC) environment. The type is NUMBER.

	
tx_name

The name of the transaction that includes the LCR. The type is VARCHAR2.

	
username

The name of the user who performed the change captured in the LCR. The type is VARCHAR2.

	
include

	
If TRUE, then the specified attribute is included in LCRs captured by the capture process or synchronous capture.

If FALSE, then the specified attribute is excluded from LCRs captured by the capture process or synchronous capture.

Usage Notes

Some information is not captured by a capture process or synchronous capture unless you use this procedure to specify that the information should be captured. If you want to exclude an extra attribute that is being captured by a capture process or synchronous capture, then specify the attribute and specify FALSE for the include parameter.

PREPARE_GLOBAL_INSTANTIATION Procedure

This procedure performs the synchronization necessary for instantiating all the tables in the database at another database and can enable supplemental logging for key columns or all columns in these tables. This procedure prepares the tables in the database for instantiation when a capture process will be used to capture changes to the tables in the database.

This procedure records the lowest SCN of each object in the database for instantiation. SCNs after the lowest SCN for an object can be used for instantiating the object. Running this procedure prepares all current and future objects in the database for instantiation.

	
See Also:

Oracle Streams Replication Administrator's Guide for more information about instantiation and supplemental logging

Syntax

DBMS_CAPTURE_ADM.PREPARE_GLOBAL_INSTANTIATION
 supplemental_logging IN VARCHAR2 DEFAULT 'KEYS');

Parameter

Table 32-12 PREPARE_GLOBAL_INSTANTIATION Procedure Parameter

	Parameter	Description
	
supplemental_logging

	
Either NONE, KEYS, or ALL.

If NONE is specified, then this procedure does not enable supplemental logging for any columns in the tables in the database. This procedure does not remove existing supplemental logging specifications for these tables.

If KEYS is specified, then this procedure enables supplemental logging for primary key, unique key, bitmap index, and foreign key columns in the tables in the database and for any table added to the database in the future. Primary key columns are logged unconditionally. Unique key, bitmap index, and foreign key columns are logged conditionally. Specifying KEYS does not enable supplemental logging of bitmap join index columns.

If ALL is specified, then this procedure enables supplemental logging for all columns in the tables in the database and for any table added to the database in the future. The columns are logged unconditionally. Supplemental logging is not enabled for columns of the following types: LOB, LONG, LONG RAW, user-defined types, and Oracle-supplied types.

Usage Notes

Run this procedure at the source database.

If you use a capture process to capture all of the changes to a database, then use this procedure to prepare the tables in the database for instantiation after the capture process has been configured.

PREPARE_SCHEMA_INSTANTIATION Procedure

This procedure performs the synchronization necessary for instantiating all tables in the schema at another database and can enable supplemental logging for key columns or all columns in these tables. This procedure prepares the tables in the schema for instantiation when a capture process will be used to capture changes to the tables in the schema.

This procedure records the lowest SCN of each object in the schema for instantiation. SCNs after the lowest SCN for an object can be used for instantiating the object. Running this procedure prepares all current and future objects in the schema for instantiation.

	
See Also:

Oracle Streams Replication Administrator's Guide for more information about instantiation and supplemental logging

Syntax

DBMS_CAPTURE_ADM.PREPARE_SCHEMA_INSTANTIATION(
 schema_name IN VARCHAR2,
 supplemental_logging IN VARCHAR2 DEFAULT 'KEYS');

Parameters

Table 32-13 PREPARE_SCHEMA_INSTANTIATION Procedure Parameters

	Parameter	Description
	
schema_name

	
The name of the schema. For example, hr.

	
supplemental_logging

	
Either NONE, KEYS, or ALL.

If NONE is specified, then this procedure does not enable supplemental logging for any columns in the tables in the schema. This procedure does not remove existing supplemental logging specifications for these tables.

If KEYS is specified, then this procedure enables supplemental logging for primary key, unique key, bitmap index, and foreign key columns in the tables in the schema and for any table added to this schema in the future. Primary key columns are logged unconditionally. Unique key, bitmap index, and foreign key columns are logged conditionally. Specifying KEYS does not enable supplemental logging of bitmap join index columns.

If ALL is specified, then this procedure enables supplemental logging for all columns in the tables in the schema and for any table added to this schema in the future. The columns are logged unconditionally. Supplemental logging is not enabled for columns of the following types: LOB, LONG, LONG RAW, user-defined types, and Oracle-supplied types.

Usage Notes

Run this procedure at the source database. If you use a capture process to capture all of the changes to a schema, then use this procedure to prepare the tables in the schema for instantiation after the capture process has been configured.

PREPARE_SYNC_INSTANTIATION Function

This function performs the synchronization necessary for instantiating one or more tables at another database. This function returns the prepare system change number (SCN) for the table or tables being prepared for instantiation.

This function prepares one or more tables for instantiation when a synchronous capture will be used to capture changes to the tables.

This function records the lowest SCN of each table for instantiation (prepare SCN). SCNs after the lowest SCN for an object can be used for instantiating the object.

This function is overloaded. The table_names parameter is VARCHAR2 data type in one version and DBMS_UTILITY.UNCL_ARRAY data type in the other version.

	
See Also:

Oracle Streams Replication Administrator's Guide for more information about instantiation

Syntax

DBMS_CAPTURE_ADM.PREPARE_SYNC_INSTANTIATION(
 table_names IN VARCHAR2)
RETURN NUMBER;

DBMS_CAPTURE_ADM.PREPARE_SYNC_INSTANTIATION(
 table_names IN DBMS_UTILITY.UNCL_ARRAY)
RETURN NUMBER;

Parameters

Table 32-14 PREPARE_SYNC_INSTANTIATION Function Parameter

	Parameter	Description
	
table_names

	
When the table_names parameter is VARCHAR2 data type, a comma-delimited list of the tables to prepare for instantiation. There must be no spaces between entries.

When the table_names parameter is DBMS_UTILITY.UNCL_ARRAY data type, specify a PL/SQL associative array of this type that contains the names of the tables to prepare for instantiation. The first table name is at position 1, the second at position 2, and so on. The table does not need to be NULL terminated.

In either version of the function, specify the name of each table in the form [schema_name.]table_name. For example, hr.employees. If the schema is not specified, then the current user is the default.

PREPARE_TABLE_INSTANTIATION Procedure

This procedure performs the synchronization necessary for instantiating the table at another database and can enable supplemental logging for key columns or all columns in the table. This procedure prepares the table for instantiation when a capture process will be used to capture changes to the table.

This procedure records the lowest SCN of the table for instantiation. SCNs after the lowest SCN for an object can be used for instantiating the object.

	
See Also:

Oracle Streams Replication Administrator's Guide for more information about instantiation and supplemental logging

Syntax

DBMS_CAPTURE_ADM.PREPARE_TABLE_INSTANTIATION(
 table_name IN VARCHAR2,
 supplemental_logging IN VARCHAR2 DEFAULT 'KEYS');

Parameters

Table 32-15 PREPARE_TABLE_INSTANTIATION Procedure Parameters

	Parameter	Description
	
table_name

	
The name of the table specified as [schema_name.]object_name. For example, hr.employees. If the schema is not specified, then the current user is the default.

	
supplemental_logging

	
Either NONE, KEYS, or ALL.

If NONE is specified, then this procedure does not enable supplemental logging for any columns in the table. This procedure does not remove existing supplemental logging specifications for the table.

If KEYS is specified, then this procedure enables supplemental logging for primary key, unique key, bitmap index, and foreign key columns in the table. The procedure places the key columns for the table in three separate log groups: the primary key columns in an unconditional log group, the unique key columns and bitmap index columns in a conditional log group, and the foreign key columns in a conditional log group. Specifying KEYS does not enable supplemental logging of bitmap join index columns.

If ALL is specified, then this procedure enables supplemental logging for all columns in the table. The procedure places all of the columns for the table in an unconditional log group. Supplemental logging is not enabled for columns of the following types: LOB, LONG, LONG RAW, user-defined types, and Oracle-supplied types.

Usage Notes

Run this procedure at the source database. If you use a capture process to capture all of the changes to a table, then use this procedure to prepare the table for instantiation after the capture process has been configured.

SET_PARAMETER Procedure

This procedure sets a capture process parameter to the specified value.

Syntax

DBMS_CAPTURE_ADM.SET_PARAMETER(
 capture_name IN VARCHAR2,
 parameter IN VARCHAR2,
 value IN VARCHAR2 DEFAULT NULL);

Parameters

Table 32-16 SET_PARAMETER Procedure Parameters

	Parameter	Description
	
capture_name

	
The name of the capture process. Do not specify an owner.

	
parameter

	
The name of the parameter you are setting. See "Capture Process Parameters" for a list of these parameters.

	
value

	
The value to which the parameter is set.

If NULL, then the parameter is set to its default value.

Capture Process Parameters

The following table lists the parameters for the capture process.

	
Note:

Starting with Oracle Database 11g Release 2 (11.2.0.2), this subprogram includes the following new capture process parameters: capture_idkey_objects, capture_sequence_nextval, excludeuserid, excludeuser, excludetrans, getapplops, getreplicates, ignore_transaction, ignore_unsupported_table, and max_sga_size.

Table 32-17 Capture Process Parameters

	Parameter Name	Possible Values	Default	Description
	
capture_idkey_objects

	
Y or N

	
N

	
If Y, then the capture process captures ID key logical change records (LCRs).

If N, then the capture process does not capture ID key LCRs.

Capture processes do not fully support capturing changes to some data types from the redo log. ID key LCRs enable an XStream configuration to capture these changes and process them with an XStream client application.

Note: This parameter is intended for XStream. Do not use this parameter in an Oracle Streams replication environment unless XStream capabilities are enabled by the DBMS_XSTREAM_ADM.ENABLE_GG_XSTREAM_FOR_STREAMS procedure.

See Also: "Usage Notes" for more information about this parameter and Oracle Database XStream Guide for more information about ID key LCRs

	
capture_sequence_nextval

	
Y or N

	
N

	
If Y, then the capture process captures sequence LCRs for all of the sequences in the database, except for sequences in Oracle-supplied, administrative schemas such as SYS and SYSTEM. The capture process's rule sets can filter sequence LCRs in the same way that they filter row LCRs and DDL LCRs.

If N, then the capture process does not capture sequence LCRs.

An apply process or XStream inbound server can use sequence LCRs to ensure that the sequence values at a destination database use the appropriate values. For increasing sequences, the sequence values at the destination are equal to or greater than the sequence values at the source database. For decreasing sequences, the sequence values at the destination are less than or equal to the sequence values at the source database.

Note: This parameter is intended for XStream. Do not use this parameter in an Oracle Streams replication environment unless XStream capabilities are enabled by the DBMS_XSTREAM_ADM.ENABLE_GG_XSTREAM_FOR_STREAMS procedure.

See Also: "Usage Notes" for more information about this parameter and "SET_PARAMETER Procedure" for information about the apply_sequence_nextval apply process parameter

	
disable_on_limit

	
Y or N

	
N

	
If Y, then the capture process is disabled because it reached a value specified by the time_limit parameter or message_limit parameter.

If N, then the capture process is restarted immediately after stopping because it reached a limit.

When a capture process is restarted, it starts to capture changes at the point where it last stopped. A restarted capture process gets a new session identifier, and the processes associated with the capture process also get new session identifiers. However, the capture process number (CPnn) remains the same.

	
downstream_real_time_mine

	
Y or N

	
Y for local capture processes

N for downstream capture processes

	
If Y, then the capture process is a real-time downstream capture process. After setting this parameter to Y, switch the redo log file at the source database using the SQL statement ALTER SYSTEM ARCHIVE LOG CURRENT to begin real-time downstream capture. If this parameter is set to Y, then redo data from the source database must be sent to the standby redo log at the downstream database. See Oracle Streams Replication Administrator's Guide for information about creating a real-time downstream capture process.

If N, then the capture process is an archived-log downstream capture process.

An error is raised if an attempt is made to set this parameter for a local capture process.

	
excludeuserid

	
Comma-delimited list of user ID values

	
NULL

	
Controls whether the capture process captures data manipulation language (DML) changes made by the specified users.

Whether the capture process captures these changes depends on the settings for the getapplops and getreplicates parameters.

To view the user ID for a user, query the USER_ID column in the ALL_USERS data dictionary view.

If NULL, then the capture process ignores this parameter.

Note: This parameter is intended for XStream. Do not use this parameter in an Oracle Streams replication environment unless XStream capabilities are enabled by the DBMS_XSTREAM_ADM.ENABLE_GG_XSTREAM_FOR_STREAMS procedure.

See Also: "Usage Notes" for more information about this parameter

	
excludeuser

	
Comma-delimited list of user names

	
NULL

	
Controls whether the capture process captures DML changes made by the specified users.

Whether the capture process captures these changes depends on the settings for the getapplops and getreplicates parameters.

Specify an exact pattern match for each user name. The pattern match is case sensitive. For example, specify HR for the hr user.

If NULL, then the capture process ignores this parameter.

Note: This parameter is intended for XStream. Do not use this parameter in an Oracle Streams replication environment unless XStream capabilities are enabled by the DBMS_XSTREAM_ADM.ENABLE_GG_XSTREAM_FOR_STREAMS procedure.

See Also: "Usage Notes" for more information about this parameter

	
excludetrans

	
Comma-delimited list of transaction names

	
NULL

	
Controls whether the capture process captures DML changes in the specified transactions.

Whether the capture process captures these changes depends on the settings for the getapplops and getreplicates parameters.

If NULL, then the capture process ignores this parameter.

Note: This parameter is intended for XStream. Do not use this parameter in an Oracle Streams replication environment unless XStream capabilities are enabled by the DBMS_XSTREAM_ADM.ENABLE_GG_XSTREAM_FOR_STREAMS procedure.

See Also: "Usage Notes" for more information about this parameter

	
getapplops

	
Y or N

	
Y

	
If Y, then the capture process captures DML changes if the original user is not specified in the excludeuserid or excludeuser parameters and the transaction name is not specified in the excludetrans parameter.

If N, then the capture process ignores DML changes if the original user is not specified in the excludeuserid or excludeuser parameters and the transaction name is not specified in the excludetrans parameter.

In either case, the capture process captures a DML change only if it satisfies the capture process's rule sets.

Note: This parameter is intended for XStream. Do not use this parameter in an Oracle Streams replication environment unless XStream capabilities are enabled by the DBMS_XSTREAM_ADM.ENABLE_GG_XSTREAM_FOR_STREAMS procedure.

See Also: "Usage Notes" for more information about this parameter

	
getreplicates

	
Y or N

	
N

	
If Y, then the capture process captures DML changes if the original user is specified in the excludeuserid or excludeuser parameters and the transaction name is specified in the excludetrans parameter.

If N, then the capture process ignores DML changes if the original user is specified in the excludeuserid or excludeuser parameters and the transaction name is specified in the excludetrans parameter.

In either case, the capture process captures a DML change only if it satisfies the capture process's rule sets.

Note: This parameter is intended for XStream. Do not use this parameter in an Oracle Streams replication environment unless XStream capabilities are enabled by the DBMS_XSTREAM_ADM.ENABLE_GG_XSTREAM_FOR_STREAMS procedure.

See Also: "Usage Notes" for more information about this parameter

	
ignore_transaction

	
A valid transaction ID or NULL

	
NULL

	
Instructs the capture process to ignore the specified transaction from the source database, effective immediately.

The capture process eliminates all subsequent LCRs for the transaction. If the specified transaction is committed successfully at the source database, the destination database will receive a ROLLBACK statement instead, and any LCRs from the transaction that were enqueued before the ignore transaction request are rolled backed at the destination database.

If NULL, then the capture process ignores this parameter.

Use caution when setting this parameter because ignoring a transaction might lead to data divergence between the source database and destination database.

To ignore multiple transactions, specify each transaction in a separate call to the SET_PARAMETER procedure. The DBA_CAPTURE_PARAMETERS view displays a comma-delimited list of all transactions to be ignored. To clear the list of ignored transactions, run the SET_PARAMETER procedure and specify NULL for the ignore_transaction parameter.

	
ignore_unsupported_table

	
A fully qualified table name, *, or -

	
*

	
Controls the behavior of the capture process when it tries to capture changes to a specified table or to an unsupported table.

A capture process tries to capture changes to an unsupported table when its rule sets instruct it to do so. If you do not want the capture process to try to capture changes to unsupported tables, then ensure that the capture process's rule sets exclude unsupported tables.

When a table name is specified, the capture process does not capture changes to the specified table. The table name must be entered in the form table_owner. table_name. For example. hr.employees. To specify multiple tables, specify each table in a separate call to the SET_PARAMETER procedure.

When * is specified and the capture process tries to capture a change to an unsupported table, the capture process ignores the change and continues to run. The change to the unsupported table is not captured, and the capture process records the unsupported table in the alert log.

When - is specified and the capture process tries to capture a change to an unsupported table, the capture process aborts.

	
max_sga_size

	
A positive integer

	
INFINITE

	
Controls the amount of system global area (SGA) memory allocated specifically to the capture process, in megabytes. The capture process attempts to allocate memory up to this limit. A capture process uses Oracle LogMiner to scan for changes in the redo log.

The memory is allocated for the duration of the capture process session and is released when the capture process becomes disabled.

Note: The sum of system global area (SGA) memory allocated for all components on a database must be less than the value set for the STREAMS_POOL_SIZE initialization parameter.

If NULL, then the capture component uses the original default value. A NULL value has the same effect as resetting the parameter to its default value.

Note: This parameter is intended for XStream. Do not use or attempt to set this parameter in an Oracle Streams replication environment unless XStream capabilities are enabled by the DBMS_XSTREAM_ADM.ENABLE_GG_XSTREAM_FOR_STREAMS procedure.

See Also: "Usage Notes" for more information about this parameter

	
maximum_scn

	
A valid SCN or INFINITE

	
INFINITE

	
The capture process is disabled before capturing a change record with an SCN greater than or equal to the value specified.

If INFINITE, then the capture process runs regardless of the SCN value.

	
merge_threshold

	
A negative integer, 0, a positive integer, or INFINITE

	
60

	
The amount of time, in seconds, between the message creation time of the original capture process and the message creation time of the cloned capture process.

Specifically, if the difference, in seconds, between the CAPTURE_MESSAGE_CREATE_TIME of the cloned capture process and the original capture process is less than or equal to the value specified for this parameter, then automatic merge begins by running the MERGE_STREAMS procedure. If the difference is greater than the value specified by this parameter, then automatic merge does not begin, and the value is recorded in the LAG column of the DBA_STREAMS_SPLIT_MERGE view. The CAPTURE_MESSAGE_CREATE_TIME is recorded in the V$STREAMS_CAPTURE view.

This parameter is relevant only when changes captured by the capture process are applied by two or more apply processes and the split_threshold parameter is set to a value other than INFINITE.

If a negative value is specified, then automatic merge is disabled.

If 0 (zero) is specified, then there must be no lag between the original capture process and the cloned capture process to begin the merge.

If INFINITE is specified, then automatic merging starts immediately.

See Also: Oracle Streams Replication Administrator's Guide

	
message_limit

	
A positive integer or INFINITE

	
INFINITE

	
The capture process stops after capturing the specified number of messages.

If INFINITE, then the capture process continues to run regardless of the number of messages captured.

	
message_tracking_frequency

	
0 or a positive integer

	
2000000

	
The frequency at which messages captured by the capture process are tracked automatically.

For example, if this parameter is set to the default value of 2000000, then every two-millionth message is tracked automatically.

The tracking label used for automatic message tracking is capture_process_name:AUTOTRACK, where capture_process_name is the name of the capture process. Only the first 20 bytes of the capture process name are used; the rest is truncated if it exceeds 20 bytes.

If 0 (zero), then no messages are tracked automatically.

See Oracle Streams Replication Administrator's Guide for more information about message tracking.

	
parallelism

	
A positive integer

	
1

	
The number of preparer servers that can concurrently mine the redo log for the capture process.

A capture process consists of one reader server, one or more preparer servers, and one builder server. The preparer servers concurrently format changes found in the redo log into logical change records (LCRs). Each reader server, preparer server, and builder server is a process, and the number of preparer servers equals the number specified for the parallelism capture process parameter. So, if parallelism is set to 5, then a capture process uses a total of seven processes: one reader server, five preparer servers, and one builder server.

Setting the parallelism parameter to a number higher than the number of available parallel execution servers might disable the capture process. Ensure that the PROCESSES initialization parameter is set appropriately when you set the parallelism capture process parameter.

Note: When you change the value of this parameter, the capture process is stopped and restarted automatically.

See Also: Oracle Streams Concepts and Administration for more information about capture process components

	
skip_autofiltered_table_ddl

	
Y or N

	
Y

	
If Y, then the capture process does not capture data definition language (DDL) changes to tables that are automatically filtered by the capture process.

If N, then the capture process can capture DDL changes to tables that are automatically filtered by the capture process if the DDL changes satisfy the capture process rule sets.

The AUTO_FILTERED column in the DBA_STREAMS_UNSUPPORTED data dictionary view shows which tables are automatically filtered by capture processes.

	
split_threshold

	
0, a positive integer, or INFINITE

	
1800

	
The amount of time, in seconds, that a stream is broken before the stream is automatically split from other streams that flow from the capture process. When a stream is split, the capture process, queue, and propagation are cloned.

In this case, a stream is a flow of logical change records (LCRs) that flows from a capture process to an apply. A stream is broken when LCRs captured by the capture process cannot reach the apply process. For example, a stream is broken when the relevant propagation or apply process is disabled.

This parameter is relevant only when changes captured by the capture process are applied by two or more apply processes.

If 0 (zero), then automatic splitting starts immediately.

If INFINITE, then automatic splitting is disabled. The stream is not split regardless of the amount of time that it is broken.

This parameters is designed to be used with the merge_threshold parameter. You can monitor an automatic split and merge operation by querying the DBA_STREAMS_SPLIT_MERGE view.

See Also: Oracle Streams Replication Administrator's Guide

	
startup_seconds

	
0, a positive integer, or INFINITE

	
0

	
The maximum number of seconds to wait for another instantiation of the same capture process to finish. If the other instantiation of the same capture process does not finish within this time, then the capture process does not start. This parameter is useful only if you are starting the capture process manually.

If INFINITE, then the capture process does not start until another instantiation of the same capture process finishes.

	
time_limit

	
A positive integer or INFINITE

	
INFINITE

	
The capture process stops as soon as possible after the specified number of seconds since it started.

If INFINITE, then the capture process continues to run until it is stopped explicitly.

	
trace_level

	
0 or a positive integer

	
0

	
Set this parameter only under the guidance of Oracle Support Services.

	
write_alert_log

	
Y or N

	
Y

	
If Y, then the capture process writes a message to the alert log on exit.

If N, then the capture process does not write a message to the alert log on exit.

The message specifies the reason the capture process stopped.

	
xout_client_exists

	
Y or N

	
Y if the capture process sends LCRs to XStream outbound servers

N if the capture process sends LCRs to Oracle Streams apply processes

	
Y indicates that the capture process sends LCRs to one or more XStream outbound servers.

N indicates that the capture process sends LCRs to one or more Oracle Streams apply processes.

A single capture process cannot send LCRs to both outbound servers and apply processes.

In an XStream configuration where an outbound server runs on a different database than its capture process, set this parameter to Y to enable the capture process to send LCRs to the outbound server.

Note: Using XStream requires purchasing a license for the Oracle GoldenGate product. See Oracle Database XStream Guide.

Usage Notes

The following usage notes apply to the SET_PARAMETER procedure:

	
Delays Are Possible Before New Parameter Settings Take Effect

	
Parameters Interpreted as Positive Integers

	
Parameters with a System Change Number (SCN) Setting

	
Parameters that Require XStream Capabilities

Delays Are Possible Before New Parameter Settings Take Effect

When you alter a parameter value, a short amount of time might pass before the new value for the parameter takes effect.

Parameters Interpreted as Positive Integers

For all parameters that are interpreted as positive integers, the maximum possible value is 4,294,967,295. Where applicable, specify INFINITE for larger values.

Parameters with a System Change Number (SCN) Setting

For parameters that require an SCN setting, any valid SCN value can be specified.

Parameters that Require XStream Capabilities

A capture process uses the following parameters only when the capture process is sending logical change records (LCRs) to an XStream outbound server or when XStream capabilities are enabled for Oracle Streams components:

	
capture_idkey_lcrs

	
capture_sequence_nextval

	
excludeuserid

	
excludeuser

	
excludetrans

	
getapplops

	
getreplicates

	
max_sga_size

The DBMS_XSTREAM_ADM.ENABLE_GG_XSTREAM_FOR_STREAMS procedure enables XStream capabilities for Oracle Streams. When XStream capabilities are not enabled by the DBMS_XSTREAM_ADM.ENABLE_GG_XSTREAM_FOR_STREAMS procedure, a capture process raises an error if one of these parameters is set to any value other than its default value.

When XStream capabilities are enabled for Oracle Streams and the capture_idkey_lcrs parameter is set to Y, a capture process can capture ID key LCRs. ID key LCRs do not contain all of the columns for a row change. Instead, they contain the rowid of the changed row, a group of key columns to identify the row in the table, and the data for the scalar columns of the table that are supported by capture processes. An apply process can apply these changes using the information available the ID key LCRs.

To determine the database objects for which a capture process will capture ID key LCRs, run the following query on the source database:

SELECT OWNER, OBJECT_NAME
 FROM DBA_XSTREAM_OUT_SUPPORT_MODE
 WHERE SUPPORT_MODE='ID KEY';

	
Note:

Using XStream requires purchasing a license for the Oracle GoldenGate product. See Oracle Database XStream Guide.

START_CAPTURE Procedure

This procedure starts the capture process, which mines redo logs and enqueues the mined redo information into the associated queue.

The start status is persistently recorded. Hence, if the status is ENABLED, then the capture process is started upon database instance startup.

The capture process is a background Oracle process and is prefixed by c.

The enqueue and dequeue state of DBMS_AQADM.START_QUEUE and DBMS_AQADM.STOP_QUEUE have no effect on the start status of a capture process.

	
See Also:

Chapter 144, "DBMS_STREAMS_ADM"

Syntax

DBMS_CAPTURE_ADM.START_CAPTURE(
 capture_name IN VARCHAR2);

Parameters

Table 32-18 START_CAPTURE Procedure Parameter

	Parameter	Description
	
capture_name

	
The name of the capture process. Do not specify an owner.

The capture process uses LogMiner to capture changes in the redo information. A NULL setting is not allowed.

Usage Notes

The capture process status is persistently recorded. Hence, if the status is ENABLED, then the capture process is started upon database instance startup. A capture process (cnnn) is an Oracle background process.

STOP_CAPTURE Procedure

This procedure stops the capture process from mining redo logs.

Syntax

DBMS_CAPTURE_ADM.STOP_CAPTURE(
 capture_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Table 32-19 STOP_CAPTURE Procedure Parameters

	Parameter	Description
	
capture_name

	
The name of the capture process. A NULL setting is not allowed. Do not specify an owner.

	
force

	
If TRUE, then the procedure stops the capture process as soon as possible. If the capture process cannot stop normally, then it aborts.

If FALSE, then the procedure stops the capture process as soon as possible. If the capture process cannot stop normally, then an ORA-26672 error is returned, and the capture process might continue to run.

Usage Notes

The following usage notes apply to this procedure:

	
The capture process status is persistently recorded. Hence, if the status is DISABLED or ABORTED, then the capture process is not started upon database instance startup.

	
A capture process is an Oracle background process with a name in the form CPnn, where nn can include letters and numbers.

	
The enqueue and dequeue state of DBMS_AQADM.START_QUEUE and DBMS_AQADM.STOP_QUEUE have no effect on the stop status of a capture process.

33 DBMS_CDC_PUBLISH

	
Note:

Oracle Change Data Capture will be de-supported in a future release of Oracle Database and will be replaced with Oracle GoldenGate. Therefore, Oracle strongly recommends that you use Oracle GoldenGate for new applications.
For Oracle Database 11g Release 2 (11.2), Change Data Capture continues to function as in earlier releases. If you are currently using Change Data Capture, then you will be able to continue to do so for the foreseeable future. However, Change Data Capture will not be further enhanced, and will only be supported based on the current, documented functionality.

The DBMS_CDC_PUBLISH package, one of a set of Change Data Capture packages, is used by a publisher to set up an Oracle Change Data Capture system to capture and publish change data from one or more Oracle relational source tables.

Change Data Capture captures and publishes only committed data. Oracle Change Data Capture identifies new data that has been added to, updated in, or removed from relational tables, and publishes the change data in a form that is usable by subscribers.

Typically, a Change Data Capture system has one publisher who captures and publishes changes for any number of Oracle relational source tables. The publisher then provides subscribers (applications or individuals) with access to the published data. Subscribers access the published data using the DBMS_CDC_SUBSCRIBE package.

	
See Also:

Oracle Database Data Warehousing Guide for information regarding Oracle Change Data Capture

This chapter contains the following topics:

	
Using DBMS_CDC_PUBLISH

	
Overview

	
Deprecated Subprograms

	
Security Model

	
Views

	
Summary of DBMS_CDC_PUBLISH Subprograms

Using DBMS_CDC_PUBLISH

This section contains the following topics, which relate to using the DBMS_CDC_PUBLISH package:

	
Overview

	
Deprecated Subprograms

	
Security Model

	
Views

Overview

Through the DBMS_CDC_PUBLISH package, the publisher creates and maintains change sources, change sets, and change tables, and eventually drops them when they are no longer useful.

The publisher, typically a database administrator, is concerned primarily with the source of the data and with creating the schema objects that describe the structure of the capture system: change sources, change sets, and change tables.

Most Change Data Capture systems have one publisher and many subscribers. The publisher accomplishes the following main objectives:

	
Determines which source table changes need to be published.

	
Decides whether to capture changes asynchronously or synchronously.

	
Uses the subprograms in the DBMS_CDC_PUBLISH package to capture change data from the source tables and make it available by creating and administering the change source, change set, and change table objects.

	
Allows controlled access to subscribers by using the SQL GRANT and REVOKE statements to grant and revoke the SELECT privilege on change tables for users and roles. (This is necessary to allow the subscribers to subscribe to the change data using the DBMS_CDC_SUBSCRIBE package.)

	
See Also:

Chapter 34, "DBMS_CDC_SUBSCRIBE" for information on the package used to subscribe to published change data

Deprecated Subprograms

	
Note:

Oracle recommends that you do not use deprecated procedures in new applications. Support for deprecated features is for backward compatibility only.

The following subprograms are deprecated with Oracle Database 11g:

	
DBMS_CDC_PUBLISH.DROP_SUBSCRIPTION with a subscription handle

When dropping a subscription, the publisher should now specify the name of the subscription to be dropped, not the subscription handle.

	
DBMS_CDC_PUBLISH.DROP_SUBSCRIBER_VIEW

Dropping a subscriber view is now performed automatically by Change Data Capture.

Security Model

You must have the EXECUTE_CATALOG_ROLE role to use the DBMS_CDC_PUBLISH package. Additional privileges and roles are required depending on the publishing mode and whether the publisher is on the source or staging database. See the section on Granting Privileges and Roles to the Publisher in Oracle Database Data Warehousing Guide for details.

Views

The DBMS_CDC_PUBLISH package uses the views listed in the section on Getting Information About the Change Data Capture Environment in Oracle Database Data Warehousing Guide.

Summary of DBMS_CDC_PUBLISH Subprograms

Table 33-1 describes the subprograms in the DBMS_CDC_PUBLISH supplied package and the mode or modes with which each can be used. A value of All in the Mode column indicates that the subprogram can be used with synchronous and all modes of asynchronous Change Data Capture, a value of Asynchronous in the Mode column indicates that the subprogram can be used with all modes of asynchronous Change Data Capture (HotLog, Distributed HotLog, and AutoLog).

Table 33-1 DBMS_CDC_PUBLISH Package Subprograms

	Subprogram	Mode	Description
	
ALTER_AUTOLOG_CHANGE_SOURCE Procedure

	
Asynchronous AutoLog

	
Changes one or more properties of an existing AutoLog change source

	
ALTER_CHANGE_SET Procedure

	
All

	
Changes one or more of the properties of an existing change set

	
ALTER_CHANGE_TABLE Procedure

	
All

	
Adds or drops columns for an existing change table, or changes the properties of an existing change table

	
ALTER_HOTLOG_CHANGE_SOURCE Procedure

	
Asynchronous Distributed HotLog

	
Changes one or more properties of an existing Distributed HotLog change source

	
CREATE_AUTOLOG_CHANGE_SOURCE Procedure

	
Asynchronous AutoLog

	
Creates an AutoLog change source

	
CREATE_CHANGE_SET Procedure

	
All

	
Creates a change set

	
CREATE_CHANGE_TABLE Procedure

	
All

	
Creates a change table in a specified schema

	
CREATE_HOTLOG_CHANGE_SOURCE Procedure

	
Asynchronous Distributed HotLog

	
Creates a Distributed HotLog change source

	
DROP_CHANGE_SET Procedure

	
All

	
Drops an existing change set

	
DROP_CHANGE_SOURCE Procedure

	
Asynchronous Autolog and Asynchronous Distributed Hotlog

	
Drops an existing AutoLog or Distributed HotLog change source

	
DROP_CHANGE_TABLE Procedure

	
All

	
Drops an existing change table

	
DROP_SUBSCRIPTION Procedure

	
All

	
Allows a publisher to drop a subscription that was created by a subscriber

	
GET_DDLOPER Function

	
All

	
Converts a binary integer into a user friendly string that describes the DDL operation that actually took place

	
PURGE Procedure

	
All

	
Removes unneeded rows from all change tables in the staging database

	
PURGE_CHANGE_SET Procedure

	
All

	
Removes unneeded rows from all change tables in a specified change set

	
PURGE_CHANGE_TABLE Procedure

	
All

	
Removes unneeded rows from a specified change table

ALTER_AUTOLOG_CHANGE_SOURCE Procedure

This procedure changes the properties of an existing AutoLog change source.

Syntax

DBMS_CDC_PUBLISH.ALTER_AUTOLOG_CHANGE_SOURCE(
 change_source_name IN VARCHAR2,
 description IN VARCHAR2 DEFAULT NULL,
 remove_description IN CHAR DEFAULT 'N',
 first_scn IN NUMBER DEFAULT NULL);

Parameters

Table 33-2 ALTER_AUTOLOG_CHANGE_SOURCE Procedure Parameters

	Parameter	Description
	
change_source_name

	
Name of an existing AutoLog change source. Change source names follow Oracle schema object naming rules.

	
description

	
New description of the change source. The description must be specified using 255 or fewer characters.

	
remove_description

	
A value of 'Y' or 'N'.

If the value is 'Y', then the current description is changed to NULL. If the value is 'N', then the current description is unchanged.

Do not specify the description parameter with this parameter.

	
first_scn

	
New first SCN.

Exceptions

Table 33-3 ALTER_AUTOLOG_CHANGE_SOURCE Procedure Exceptions

	Exception	Description
	
ORA-31401

	
Specified change source is not an existing change source

	
ORA-31445

	
Invalid lock handle while acquiring lock on string

	
ORA-31452

	
Invalid value for parameter, expecting: Y or N

	
ORA-31497

	
Invalid value specified for first_scn

	
ORA-31498

	
The description and remove_description parameters cannot both be specified

	
ORA-31499

	
Null value specified for required parameter

	
ORA-31501

	
Specified change source is not an AutoLog change source

	
ORA-31504

	
Cannot alter or drop predefined change source

	
ORA-31507

	
Specified parameter value longer than maximum length

Usage Notes

	
Properties supplied to this procedure with a NULL value are unchanged.

	
This procedure can be used to change more than one property at a time.

	
This procedure can be used in making SCN adjustments after determining which redo logs are no longer needed for an asynchronous AutoLog change set.

	
See Also:

The section on asynchronous Change Data Capture and redo log files in Oracle Database Data Warehousing Guide for information on how the publisher can use the ALTER_AUTOLOG_CHANGE_SOURCE procedure in making SCN adjustments after determining which redo logs are no longer needed for an asynchronous AutoLog change set.

ALTER_CHANGE_SET Procedure

This procedure changes the properties of an existing change set that was created with the CREATE_CHANGE_SET procedure.

Syntax

DBMS_CDC_PUBLISH.ALTER_CHANGE_SET(
 change_set_name IN VARCHAR2,
 description IN VARCHAR2 DEFAULT NULL,
 remove_description IN CHAR DEFAULT 'N',
 enable_capture IN CHAR DEFAULT NULL,
 recover_after_error IN CHAR DEFAULT NULL,
 remove_ddl IN CHAR DEFAULT NULL,
 stop_on_ddl IN CHAR DEFAULT NULL);

Parameters

Table 33-4 ALTER_CHANGE_SET Procedure Parameters

	Parameter	Description
	
change_set_name

	
Name of an existing change set. Change set names follow the Oracle schema object naming rules.

	
description

	
New description of the change set. Specify using 255 or fewer characters.

	
remove_description

	
A value of 'Y' or 'N'.

If the value is 'Y', then the current description is changed to NULL. If the value is 'N', then the current description is unchanged.

Do not specify the description parameter with this parameter.

	
enable_capture

	
A value of 'Y' or 'N'.

If the value is 'Y', then change data capture is enabled for this change set.

If the value is 'N', then change data capture is disabled for this change set.

Synchronous change sets are created with change data capture enabled.

Asynchronous change sets are created with change data capture disabled.

	
recover_after_error

	
A value of 'Y' or 'N'.

If the value is 'Y', then Change Data Capture will attempt to recover from earlier capture errors.

If the value is 'N', then Change Data Capture will not attempt to recover from earlier capture errors.

	
remove_ddl

	
A value of 'Y' or 'N'.

If the value is 'Y' and the value of the recover_after_error parameter is 'Y', then any DDL records that may have caused capture errors will be filtered out during recovery.

If the value is 'N', then DDL records that may have caused capture errors will not be filtered out during recovery.

This parameter has meaning only when the recover_after_error parameter is specified with a value of 'Y'.

	
stop_on_ddl

	
A value of 'Y' or 'N'.

If the value is 'Y', then Change Data Capture stops when a DDL event is detected.

If the value is 'N', then Change Data Capture continues when a DDL event is detected.

See the Usage Notes for additional information about this parameter.

Exceptions

Table 33-5 ALTER_CHANGE_SET Procedure Exceptions

	Exception	Description
	
ORA-31410

	
Specified change set is not an existing change set

	
ORA-31452

	
Invalid value for parameter, expecting: Y or N

	
ORA-31445

	
Invalid lock handle while acquiring lock on string

	
ORA-31468

	
Cannot process DDL change record

	
ORA-31469

	
Cannot enable Change Data Capture for change set

	
ORA-31485

	
Invalid database link

	
ORA-31498

	
The description and remove_description parameters cannot both be specified

	
ORA-31499

	
Null value specified for required parameter

	
ORA-31505

	
Cannot alter or drop predefined change set

	
ORA-31507

	
Specified parameter value longer than maximum length

	
ORA-31508

	
Invalid parameter value for synchronous change set

	
ORA-31514

	
Change set disabled due to capture error

Usage Notes

	
The publisher can use this procedure for asynchronous and synchronous Change Data Capture. However, the predefined synchronous change set, SYNC_SET, cannot be altered, and the following parameters cannot be altered for publisher-defined synchronous change sets: enable_capture, recover_after_error, remove_ddl, and stop_on_ddl.

	
Properties supplied to this procedure with a NULL value are unchanged.

	
This procedure can alter more than one parameter at a time.

	
Enabling or disabling an asynchronous HotLog or AutoLog change set starts or stops the Oracle Streams capture process and apply process underlying the change set. Enabling or disabling an asynchronous Distributed HotLog change set starts or stops the Oracle Streams apply process underlying the change set.

	
The effect of the stop_on_ddl parameter is as follows:

	
When the stop_on_ddl parameter is set to 'Y', asynchronous Change Data Capture stops if DDL is encountered during change data capture. Some DDL statements can adversely affect capture, such as a statement that drops a source table column that is being captured. The publisher has an opportunity to analyze and adjust to DDL changes that may adversely affect change tables while capture is stopped, thereby preventing possible errors during capture.

Because these statements do not affect the column data itself, Change Data Capture does not stop capturing change data when the stop_on_ddl parameter is set to 'Y' and any of the following statements is encountered:

	
ANALYZE TABLE

	
LOCK TABLE

	
GRANT privileges to access a table

	
REVOKE privileges to access a table

	
COMMENT on a table

	
COMMENT on a column

These statements can be issued on the source database without concern for their impact on Change Data Capture processing.

	
When the stop_on_ddl parameter is set to 'N', Change Data Capture does not stop if DDL is encountered during change data capture. If a change set does not stop on DDL, but a DDL change occurs that affects change tables, that change can result in a capture error. There are also system conditions that can cause capture errors, such as being out of disk space.

	
See Also:

Oracle Database Data Warehousing Guide for information on the effects of, and how to recover from, a capture error

Whenever a DDL statement causes processing to stop, a message is written to the alert log indicating for which change set processing has been stopped and the DDL statement that caused it to be stopped. Similarly, whenever DDL statements are ignored by Change Data Capture and processing continues, a message is written to the alert log indicating which DDL statement was ignored.

	
The publisher can attempt to recover an asynchronous change set after a capture error by specifying 'Y' for the recover_after_error parameter. Capture errors can occur when any of the following is true:

	
The stop_on_ddl parameter is set to 'Y' and there is a DDL record in the change data. In this case, to recover from the error, the publisher must also specify 'Y' for the remove_ddl parameter.

	
The stop_on_ddl parameter is set to 'N' and there is a DDL record that affects capture. For example, if the publisher drops and re-creates a change table, it causes an error the next time that Change Data Capture attempts to add change data to the named change table.

	
A miscellaneous error occurs, such as running out of disk space, or a redo log file error (such as ORA-01688: unable to extend table string.string partition string by string in tablespace string).

	
See Also:

Oracle Database Data Warehousing Guide for more information on how to recover from a capture error.

ALTER_CHANGE_TABLE Procedure

This procedure adds columns to, or drops columns from, or changes the properties of, a change table that was created with the CREATE_CHANGE_TABLE procedure.

Syntax

DBMS_CDC_PUBLISH.ALTER_CHANGE_TABLE(
 owner IN VARCHAR2,
 change_table_name IN VARCHAR2,
 operation IN VARCHAR2,
 column_list IN VARCHAR2,
 rs_id IN CHAR,
 row_id IN CHAR,
 user_id IN CHAR,
 timestamp IN CHAR,
 object_id IN CHAR,
 source_colmap IN CHAR,
 target_colmap IN CHAR,
 ddl_markers IN CHAR DEFAULT NULL);

Parameters

Table 33-6 ALTER_CHANGE_TABLE Procedure Parameters

	Parameter	Description
	
owner

	
The schema that owns the change table.

	
change_table_name

	
The change table that is being altered. Change table names follow the Oracle schema object naming rules.

	
operation

	
Either the value ADD or DROP to indicate whether to add or drop the user columns specified with the column_list parameter and any control columns specified by other parameters.

	
column_list

	
User column names and datatypes for each column of the source table that should be added to, or dropped from, the change table. The list is comma-delimited.

	
rs_id

row_id

user_id

timestamp

object_id

source_colmap

target_colmap

ddl_markers

	
Each listed parameter specifies a particular control column, as follows:

	
The rs_id parameter specifies the RSID$ control column.

	
The row_id parameter specifies the ROW_ID$ control column.

	
The user_id parameter specifies the USERNAME$ control column.

	
The timestamp parameter specifies the TIMESTAMP$ control column.

	
The object_id parameter specifies the SYS_NC_OID$ control column.

	
The source_colmap parameter specifies the SOURCE_COLMAP$ control column.

	
The target_colmap parameter specifies the TARGET_COLMAP$ control column.

	
The ddl_markers parameter tracks all DDL operations on the source table and stores information about those operations in the change table. These are the three additional control columns you get when ddl_markers is enabled. There are three values: DDLOPER$ is a bit vector that indicates what kind of DDL operation happened. (Use the procedure DBMS_CDC_PUBLISH.GET_DDLOPER(ddloper$) to get the name of the DDL operation.) DDLDESC$ is a CLOB containing the actual DDL statement executed. DDLPDOBJN$ is not used in this release.

Each parameter must have a value of either 'Y' or 'N', where:

	
'Y': Adds the specified control column to, or drops it from the change table, as indicated by the operation parameter.

	
'N': Neither adds the specified control column, nor drops it from the change table.

	
See Also:

Oracle Database Data Warehousing Guide for a complete description of control columns.

Exceptions

Table 33-7 ALTER_CHANGE_TABLE Procedure Exceptions

	Exception	Description
	
ORA-31403

	
Specified change table already contains the specified column

	
ORA-31409

	
One or more values for input parameters are incorrect

	
ORA-31415

	
Specified change set does not exist

	
ORA-31416

	
Invalid SOURCE_COLMAP value

	
ORA-31417

	
Column list contains control column control-column-name

	
ORA-31421

	
Change table does not exist

	
ORA-31422

	
Specified owner schema does not exist

	
ORA-31423

	
Specified change table does not contain the specified column

	
ORA-31454

	
Invalid value specified for operation parameter, expecting ADD or DROP

	
ORA-31455

	
Nothing to alter

	
ORA-31456

	
Error executing a procedure in the DBMS_CDC_UTILITY package

	
ORA-31459

	
System triggers for DBMS_CDC_PUBLISH package are not installed

	
ORA-31471

	
Invalid OBJECT_ID value

Usage Notes

	
The publisher can use this procedure for asynchronous and synchronous Change Data Capture.

	
The publisher cannot add and drop user columns in the same call to the ALTER_CHANGE_TABLE procedure; these schema changes require separate calls.

	
The publisher must not specify the name of the control columns in the column_ list parameter.

	
When altering an asynchronous change table, the publisher must accept the default value or specify 'N' for the source_colmap and object_id parameters. In addition, for the asynchronous Distributed HotLog mode, the publisher also must accept the default value or specify 'N' for the row_id and username parameters when the change source is 9.2 or 10.1.

	
See Also:

Oracle Database Data Warehousing Guide for information about the impact on subscriptions when a publisher adds a column to a change table.

ALTER_HOTLOG_CHANGE_SOURCE Procedure

This procedure changes the properties of an existing Distributed HotLog change source.

Syntax

DBMS_CDC_PUBLISH.ALTER_HOTLOG_CHANGE_SOURCE(
 change_source_name IN VARCHAR2,
 description IN VARCHAR2 DEFAULT NULL,
 remove_description IN CHAR DEFAULT 'N',
 enable_source IN CHAR DEFAULT NULL);

Parameters

Table 33-8 ALTER_HOTLOG_CHANGE_SOURCE Procedure Parameters

	Parameter	Description
	
change_source_name

	
Name of an existing Distributed HotLog change source. Change source names follow Oracle schema object naming rules.

	
description

	
New description of the change source. The description must be specified using 255 or fewer characters.

	
remove_description

	
A value of 'Y' or 'N'.

If the value is 'Y', then the current description is changed to NULL. If the value is 'N', then the current description is unchanged.

Do not specify the description parameter with this parameter.

	
enable_source

	
A value of 'Y' or 'N'.

If the value is 'Y', then the change source is enabled. If the value is 'N', then the change source is disabled.

Exceptions

Table 33-9 ALTER_HOTLOG_CHANGE_SOURCE Procedure Exceptions

	Exception	Description
	
ORA-31401

	
Change source is not an existing change source

	
ORA-31455

	
Nothing to ALTER

	
ORA-31480

	
Staging database and source database cannot be the same

	
ORA-31481

	
Change source is not a HotLog change source

	
ORA-31482

	
Invalid option for non-distributed HotLog change source

	
ORA-31484

	
Source database must be at least 9.2.0.6 or greater

	
ORA-31485

	
Invalid database link

	
ORA-31498

	
The description and remove_description parameters cannot both be specified

	
ORA-31499

	
Null value specified for required parameter

	
ORA-31504

	
Cannot alter or drop predefined change source

	
ORA-31507

	
Parameter value longer than maximum length

	
ORA-31532

	
Cannot enable change source

	
ORA-31534

	
Change Data Capture publisher is missing DBA role

Usage Notes

	
Properties supplied to this procedure with a NULL value are unchanged.

	
This procedure can be used to change more than one property at a time.

	
Enabling or disabling a Distributed HotLog change source starts or stops the Oracle Streams capture process that underlies the change source.

	
This procedure cannot be used to alter the change source for the asynchronous HotLog mode of Change Database Capture. The change source for the asynchronous HotLog mode is the predefined change source, HOTLOG_SOURCE, which cannot be altered.

CREATE_AUTOLOG_CHANGE_SOURCE Procedure

This procedure creates an AutoLog change source. An AutoLog change source is based on of a set of redo log files automatically copied by redo transport services to the system on which the staging database resides.

Syntax

DBMS_CDC_PUBLISH.CREATE_AUTOLOG_CHANGE_SOURCE(
 change_source_name IN VARCHAR2,
 description IN VARCHAR2 DEFAULT NULL,
 source_database IN VARCHAR2,
 first_scn IN NUMBER,
 online_log IN CHAR DEFAULT 'N');

Parameters

Table 33-10 CREATE_AUTOLOG_CHANGE_SOURCE Procedure Parameters

	Parameter	Description
	
change_source_name

	
Name of the change source. Change source names follow the Oracle schema object naming rules.

	
description

	
Description of the change source. Specify using 255 or fewer characters.

	
source_database

	
Global name of the change source's source database instance.

	
first_scn

	
The SCN of the start of a LogMiner dictionary that is in the change source's archived redo log files.

	
online_log

	
A value of 'Y' or 'N' If the value is 'Y', then the change source uses the AutoLog online option to hot-mine the source database online redo log to gather change data. There can only be one change source with online_log='Y' on a given staging database.

If the value is 'N', then the change source uses the AutoLog archive option to get change data from archived redo log files. There can be one or more change sources with online_log='N' on a given staging database.

Exceptions

Table 33-11 CREATE_AUTOLOG_CHANGE_SOURCE Procedure Exceptions

	Exception	Description
	
ORA-31436

	
Duplicate change source specified

	
ORA-31497

	
Invalid value specified for first_scn

	
ORA-31499

	
Null value specified for required parameter

	
ORA-31507

	
Specified parameter value is longer than the maximum length

	
ORA-31508

	
Invalid parameter value for synchronous change set

	
ORA-31535

	
Cannot support change source in this configuration

Usage Notes

	
The publisher can use this procedure for asynchronous Change Data Capture only.

	
The publisher must take care when specifying a value for the source_database parameter. Change Data Capture does not validate this value when creating the change source. The publisher can query the GLOBAL_NAME column in the GLOBAL_NAME view at the source database for the source_database parameter value.

	
The publisher must configure redo transport services to automatically copy the log files to the system on which the staging database resides.

	
See Also:

The section on performing asynchronous AutoLog publishing in Oracle Database Data Warehousing Guide for information on configuring redo transport services to automatically copy the log files to the system on which the staging database resides.

	
An AutoLog change source must begin with an archived redo log file that contains a LogMiner dictionary. The CREATE_AUTOLOG_CHANGE_SOURCE first_scn parameter indicates the SCN for this dictionary extraction and is the point at which the change source can begin capturing changes. The publisher can determine the value for the first_scn parameter using either of the following methods:

	
Direct DBMS_CAPTURE_ADM.BUILD to return the value when the dictionary is built:

SET SERVEROUTPUT ON
VARIABLE FSCN NUMBER;
BEGIN
 :FSCN := 0;
 DBMS_CAPTURE_ADM.BUILD(:FSCN);
 DBMS_OUTPUT.PUT_LINE('The first_scn value is ' || :FSCN);
END;
/
The first_scn value is 207722

	
Make the following query on the source database. If this query returns multiple distinct values for first_change#, then the data dictionary has been extracted more than once and the publisher should choose the first_change# value that is the most appropriate to the change source.

SELECT DISTINCT FIRST_CHANGE#, NAME
 FROM V$ARCHIVED_LOG
 WHERE DICTIONARY_BEGIN = 'YES';

	
See Also:

The section on performing asynchronous AutoLog publishing in Oracle Database Data Warehousing Guide for information on archived redo log files and the LogMiner dictionary.

	
For the asynchronous mode of Change Data Capture, the amount of change data captured is dependent on the level of supplemental logging enabled at the source database.

	
See Also:

Oracle Database Data Warehousing Guide for information about supplemental logging.

CREATE_CHANGE_SET Procedure

This procedure allows the publisher to create a change set. For asynchronous HotLog and AutoLog Change Data Capture, the publisher can optionally provide beginning and ending date values at which to begin and end change data capture.

Syntax

DBMS_CDC_PUBLISH.CREATE_CHANGE_SET(
 change_set_name IN VARCHAR2,
 description IN VARCHAR2 DEFAULT NULL,
 change_source_name IN VARCHAR2,
 stop_on_ddl IN CHAR DEFAULT 'N',
 begin_date IN DATE DEFAULT NULL,
 end_date IN DATE DEFAULT NULL);

Parameters

Table 33-12 CREATE_CHANGE_SET Procedure Parameters

	Parameter	Description
	
change_set_name

	
Name of the change set. Change set names follow the Oracle schema object naming rules.

	
description

	
Description of the change set. Specify using 255 or fewer characters.

	
change_source_name

	
Name of the existing change source to contain this change set.

	
stop_on_ddl

	
A value of 'Y' or 'N'.

If the value is 'Y', then Change Data Capture stops when a DDL event is detected.

If the value is 'N', then Change Data Capture continues when a DDL event is detected.

See the Usage Notes for additional information about this parameter.

	
begin_date

	
Date on which the publisher wants the change set to begin capturing changes. A value for this parameter is valid for the asynchronous HotLog and AutoLog modes of Change Data Capture only.

	
end_date

	
Date on which the publisher wants the change set to stop capturing changes. A value for this parameter is valid for the asynchronous HotLog and AutoLog modes of Change Data Capture only.

Exceptions

Table 33-13 CREATE_CHANGE_SET Procedure Exceptions

	Exception	Description
	
ORA-31401

	
Specified change source is not an existing change source

	
ORA-31407

	
The end_date must be greater than the begin_date

	
ORA-31408

	
Invalid value specified for begin_scn or end_scn

	
ORA-31437

	
Duplicate change set specified

	
ORA-31452

	
Invalid value for parameter, expecting: Y or N

	
ORA-31483

	
Cannot have spaces in the parameter

	
ORA-31485

	
Invalid database link

	
ORA-31487

	
Cannot support begin dates or end dates in this configuration

	
ORA-31488

	
Cannot support change set in this configuration

	
ORA-31499

	
Null value specified for required parameter

	
ORA-31503

	
Invalid date supplied for begin_date or end_date

	
ORA-31507

	
Specified parameter value longer than maximum length

	
ORA-31508

	
Invalid parameter value for synchronous change set

Usage Notes

	
The publisher can use this procedure for asynchronous and synchronous Change Data Capture. However, the default values for the following parameters are the only supported values for synchronous change sets: begin_date, end_date, and stop_on_ddl. The default values for the following parameters are the only supported values for asynchronous Distributed HotLog change sets: begin_date and end_date.

	
When the change source is Distributed HotLog on a release of Oracle Database earlier than 10.2, Change Data Capture inserts rows into the CHANGE_PROPAGATION and CHANGE_PROPAGATION_SETS views on the staging database.

	
An AutoLog online change source (created with online_log='Y') can only contain one change set.

	
The begin_date and end_date parameters are optional. The publisher can specify neither of them, one of them, or both. The effect of these parameters is as follows:

	
When a begin_date is specified, changes from transactions that begin on or after that date are captured.

	
When a begin_date is not specified, capture starts with the earliest available change data.

	
When an end_date is specified, changes from transactions that are committed on or before that date are captured.

	
When an end_date is not specified, Change Data Capture continues indefinitely.

	
The effect of the stop_on_ddl parameter is as follows:

	
When the stop_on_ddl parameter is set to 'Y', asynchronous Change Data Capture stops if DDL is encountered during change data capture. Some DDL statements can adversely affect capture, such as a statement that drops a source table column that is being captured. The publisher has an opportunity to analyze and adjust to DDL changes that may adversely affect change tables while capture is stopped, thereby preventing possible errors during capture.

Because these statements do not affect the column data itself, Change Data Capture does not stop capturing change data when the stop_on_ddl parameter is set to 'Y' and any of the following statements is encountered:

	
ANALYZE TABLE

	
LOCK TABLE

	
GRANT privileges to access a table

	
REVOKE privileges to access a table

	
COMMENT on a table

	
COMMENT on a column

These statements can be issued on the source database without concern for their impact on Change Data Capture processing.

	
When the stop_on_ddl parameter is set to 'N', Change Data Capture does not stop if DDL is encountered during change data capture. If a change set does not stop on DDL, but a DDL change occurs that affects capture, that change can result in a capture error.

	
See Also:

Oracle Database Data Warehousing Guide for information on the effects of, and how to recover from, a capture error.

Whenever a DDL statement causes processing to stop, a message is written to the alert log indicating for which change set processing has been terminated and the DDL statement that caused it to be terminated. Similarly, whenever DDL statements are ignored by Change Data Capture and processing continues, a message is written to the alert log indicating which DDL statement was ignored.

CREATE_CHANGE_TABLE Procedure

This procedure creates a change table in a specified schema.

	
Note:

Oracle recommends that the publisher be certain that the source table that will be referenced in a CREATE_CHANGE_TABLE procedure has been created prior to calling this procedure, particularly if the change set that will be specified in the procedure has the stop_on_ddl parameter set to 'Y'.

Syntax

DBMS_CDC_PUBLISH.CREATE_CHANGE_TABLE(
 owner IN VARCHAR2,
 change_table_name IN VARCHAR2,
 change_set_name IN VARCHAR2,
 source_schema IN VARCHAR2,
 source_table IN VARCHAR2,
 column_type_list IN VARCHAR2,
 capture_values IN VARCHAR2,
 rs_id IN CHAR,
 row_id IN CHAR,
 user_id IN CHAR,
 timestamp IN CHAR,
 object_id IN CHAR,
 source_colmap IN CHAR,
 target_colmap IN CHAR,
 options_string IN VARCHAR2,
 ddl_markers IN CHAR DEFAULT 'Y');

Parameters

Table 33-14 CREATE_CHANGE_TABLE Procedure Parameters

	Parameter	Description
	
owner

	
Name of the schema that owns the change table.

	
change_table_name

	
Name of the change table that is being created. Change table names follow the Oracle schema object naming rules.

	
change_set_name

	
Name of the change set in which this change table resides.

	
source_schema

	
The schema where the source table is located.

	
source_table

	
The source table from which the change records are captured.

	
column_type_list

	
The user columns and datatypes that are being tracked. Specify using a comma-delimited list.

	
capture_values

	
One of the following capture values for update operations:

	
OLD: Captures the original values from the source table.

	
NEW: Captures the changed values from the source table.

	
BOTH: Captures the original and changed values from the source table.

	
rs_id

row_id

user_id

timestamp

object_id

source_colmap

target_colmap

ddl_markers

	
Each listed parameter specifies a particular control column as follows:

	
The rs_id parameter specifies the RSID$ control column.

	
The row_id parameter specifies the ROW_ID$ control column.

	
The user_id parameter specifies the USERNAME$ control column.

	
The timestamp parameter specifies the TIMESTAMP$ control column.

	
The object_id parameter specifies the SYS_NC_OID$ control column.

	
The source_colmap parameter specifies the SOURCE_COLMAP$ control column.

	
The target_colmap parameter specifies the TARGET_COLMAP$ control column.

	
The ddl_markers parameter tracks all DDL operations on the source table and stores information about those operations in the change table. There are three values: DDLOPER$ is a bit vector that indicates what kind of DDL operation happened. (Use the procedure DBMS_CDC_PUBLISH.GET_DDLOPER(ddloper$) to get the name of the DDL operation.) DDLDESC$ is a CLOB containing the actual DDL statement executed. DDLPDOBJN$ is not used in this release.

Each parameter can have a value of 'Y' or 'N', where:

	
'Y': Adds the specified control column to the change table.

	
'N': Does not add the specified control column to the change table.

	
options_string

	
The syntactically correct options to be passed to a CREATE TABLE DDL statement. The options string is appended to the generated CREATE TABLE DDL statement after the closing parenthesis that defines the columns of the table. See the Usage Notes for more information.

	
See Also:

Oracle Database Data Warehousing Guide for a complete description of control columns

Exceptions

Table 33-15 CREATE_CHANGE_TABLE Procedure Exceptions

	Exception	Description
	
ORA-31402

	
Unrecognized parameter specified

	
ORA-31409

	
One or more values for input parameters are incorrect

	
ORA-31415

	
Specified change set does not exist

	
ORA-31416

	
Invalid SOURCE_COLMAP value

	
ORA-31417

	
Column list contains control column control-column-name

	
ORA-31418

	
Specified source schema does not exist

	
ORA-31419

	
Specified source table does not exist

	
ORA-31420

	
Unable to submit the purge job

	
ORA-31421

	
Change table does not exist

	
ORA-31422

	
Owner schema does not exist

	
ORA-31438

	
Duplicate change table

	
ORA-31447

	
Cannot create change tables in the SYS schema

	
ORA-31450

	
Invalid value for change_table_name

	
ORA-31451

	
Invalid value for capture_values, expecting: OLD, NEW, or BOTH

	
ORA-31452

	
Invalid value for parameter, expecting: Y or N

	
ORA-31459

	
System triggers for DBMS_CDC_PUBLISH package are not installed

	
ORA-31467

	
No column found in the source table

	
ORA-31471

	
Invalid OBJECT_ID value

Usage Notes

	
The publisher can use this procedure for asynchronous and synchronous Change Data Capture.

	
A change table is a database table that contains the change data resulting from DML statements (INSERT, UPDATE, and DELETE) made to a source table. A given change table can capture changes from only one source table.

	
A change table is a database table that contains two types of columns:

	
User columns, which are copies of actual columns of source tables that reside in the change table.

	
Control columns, which maintain special metadata for each change row in the change table. Information such as the DML operation performed, the capture time (time stamp), and changed column vectors are examples of control columns. The publisher must not specify the name of the control columns in the user column list.

	
If there are multiple publishers on the staging database for the Distributed HotLog mode of Change Data capture, and one publisher defines a change table in another publisher's Distributed HotLog change set, then Change Data Capture uses the database link established by the publisher who created the change set to access the source database. Therefore, the database link to the source database established by the publisher who created the change set must be intact for the change table to be successfully created. If the change set publisher's database link is not present when creating a change table, an error is returned indicating that the connection description for the remote database was not found.

	
The publisher must not attempt to control a change table's partitioning properties. Change Data Capture automatically manages the change table partitioning as part of its change table management.

	
When creating a change table for any mode of asynchronous Change Data Capture, the publisher must accept the default value or specify 'N' for the source_colmap and object_id parameters. In addition, for the asynchronous Distributed HotLog mode of Change Data Capture, the publisher also must accept the default value or specify 'N' for the row_id and username parameters when the change source is 9.2 or 10.1.

	
When the publisher specifies the rs_id parameter, the RSID$ column is added to the change table. The RSID$ column value reflects an operation's capture order within a transaction, but not across transactions. The publisher cannot use the RSID$ column value by itself to order committed operations across transactions; it must be used in conjunction with the CSCN$ column value.

	
The publisher can control a change table's physical properties, tablespace properties, and so on, by specifying the options_string parameter. With the options_string parameter, the publisher can set any option that is valid for the CREATE TABLE DDL statement (except for partitioning properties).

	
Note:

How the publisher defines the options_string parameter can have an effect on the performance and operations in a Change Data Capture system. For example, if the publisher places several constraints in the options column, it can have a noticeable effect on performance. Also, if the publisher uses NOT NULL constraints and a particular column is not changed in an incoming change row, then the constraint can cause the INSERT operation to fail and the transaction that contains the INSERT operation to be rolled back.

	
Oracle recommends that change tables not be created in system tablespaces. This can be accomplished if the publisher's default tablespace is not the system tablespace or if the publisher specifies a tablespace in the options_string parameter. If a tablespace is not specified by the publisher, and the publisher's default table space is the system tablespace, then Change Data Capture creates change tables in the system tablespace.

	
See Also:

Oracle Database Data Warehousing Guide for more information on, and examples of, creating change tables in tablespaces managed by the publisher.

CREATE_HOTLOG_CHANGE_SOURCE Procedure

This procedure creates a Distributed HotLog change source on the source database when the publisher runs this procedure from the staging database. A Distributed HotLog change source is based on data in the online redo log files that is automatically transferred to the staging database by Oracle Streams propagation.

Syntax

DBMS_CDC_PUBLISH.CREATE_HOTLOG_CHANGE_SOURCE(
 change_source_name IN VARCHAR2,
 description IN VARCHAR2 DEFAULT NULL,
 source_database IN VARCHAR2);

Parameters

Table 33-16 CREATE_HOTLOG_CHANGE_SOURCE Procedure Parameters

	Parameters	Description
	
change_source_name

	
Name of the Distributed HotLog change source to be created. Each change source name must be unique and must follow the Oracle schema object naming rules.

	
description

	
Description of the change source. Specify using 255 or fewer characters.

	
source_database

	
The name of the database link defined from the staging database to the source database, where the source database is Oracle9i Database, Database 10g Release 1, Oracle Database 10g Release 2, or Oracle Database 11g Release 1. See Oracle Database Data Warehousing Guide for information on creating database links for the Distributed HotLog mode of Change Data Capture.

Exceptions

Table 33-17 CREATE_HOTLOG_CHANGE_SOURCE Procedure Exceptions

	Exception	Description
	
ORA-31436

	
Duplicate change source

	
ORA-31480

	
Staging database and source database cannot be the same

	
ORA-31483

	
Cannot have spaces in the parameter

	
ORA-31484

	
Source database must be at least 9.2.0.6 or greater

	
ORA-31485

	
Invalid database link

	
ORA-31499

	
Null value specified for required parameter

	
ORA-31507

	
Parameter value longer than the maximum length

	
ORA-31534

	
Change Data Capture publisher is missing DBA role

Usage Notes

	
The publisher can use this procedure for the asynchronous Distributed HotLog mode of Change Data Capture only.

This procedure cannot be used to create a change source for the asynchronous HotLog mode of Change Database Capture. The publisher must use the predefined change source, HOTLOG_SOURCE, for the asynchronous HotLog mode of Change Data Capture.

	
A Distributed HotLog change source can contain one or more change sets, but they must all be on the same staging database.

	
A staging database publisher cannot create multiple Distributed HotLog change sources with the same name, even when those change sources are on different source databases.

	
When the publisher creates a change source on a release of Oracle Database earlier than 10.2, Change Data Capture:

	
Generates names for the Streams capture process, capture queue, and propagation based on the change source name. If a generated name is already in use, an error indicating that the capture process, queue, or propagation cannot be created is returned.

	
Inserts a row into the CHANGE_SOURCES view on the staging database where the SOURCE_TYPE column of the inserted row indicates that the source Oracle Database release is earlier than 10.2.

	
Note that the database link indicated by the source_database parameter must exist when creating, altering, or dropping a Distributed HotLog change source and the change sets and change tables it contains. However, this database link is not required for change capture to occur. Once the required Distributed HotLog change sources, change sets and change tables are in place and enabled, this database link can be dropped without interrupting change capture. This database link would need to be recreated to create, alter, or drop Distributed HotLog change sources, change sets and change tables.

DROP_CHANGE_SET Procedure

This procedure drops an existing change set that was created with the CREATE_CHANGE_SET procedure.

Syntax

DBMS_CDC_PUBLISH.DROP_CHANGE_SET(
 change_set_name IN VARCHAR2);

Parameters

Table 33-18 DROP_CHANGE_SET Procedure Parameters

	Parameter	Description
	
change_set_name

	
Name of the change set to be dropped. Change set names follow the Oracle schema object naming rules.

Exceptions

Table 33-19 DROP_CHANGE_SET Procedure Exceptions

	Exception	Description
	
ORA-31410

	
Specified change set is not an existing change set

	
ORA-31411

	
Specified change set is referenced by a change table

	
ORA-31485

	
Invalid database link

	
ORA-31499

	
Null value specified for required parameter

	
ORA-31505

	
Cannot alter or drop predefined change set

	
ORA-31507

	
Specified parameter value is longer than maximum length

Usage Notes

	
The publisher can use this procedure for asynchronous and synchronous Change Data Capture.

	
The change set to be dropped cannot contain any change tables.

	
The predefined synchronous change set, SYNC_SET, cannot be dropped.

DROP_CHANGE_SOURCE Procedure

This procedure drops an existing AutoLog change source that was created with the CREATE_AUTOLOG_CHANGE_SOURCE procedure or an existing Distributed HotLog change source that was created with the CREATE_HOTLOG_CHANGE_SOURCE procedure.

Syntax

DBMS_CDC_PUBLISH.DROP_CHANGE_SOURCE(
 change_source_name IN VARCHAR2);

Parameters

Table 33-20 DROP_CHANGE_SOURCE Procedure Parameters

	Parameter	Description
	
change_source_name

	
Name of the change source to be dropped. Change source names follow the Oracle schema object naming rules.

Exceptions

Table 33-21 DROP_CHANGE_SOURCE Procedure Exceptions

	Exception	Description
	
ORA-31401

	
Specified change source is not an existing change source

	
ORA-31406

	
Specified change source is referenced by a change set

	
ORA-31499

	
Null value specified for required parameter

	
ORA-31504

	
Cannot alter or drop predefined change source

	
ORA-31507

	
Specified parameter value longer than maximum length

Usage Notes

	
The change source to be dropped cannot contain any change sets.

	
The predefined change sources, HOTLOG_SOURCE and SYNC_SOURCE, cannot be dropped.

DROP_CHANGE_TABLE Procedure

This procedure drops an existing change table that was created with the CREATE_CHANGE_TABLE procedure.

Syntax

DBMS_CDC_PUBLISH.DROP_CHANGE_TABLE(
 owner IN VARCHAR2,
 change_table_name IN VARCHAR2,
 force_flag IN CHAR);

Parameters

Table 33-22 DROP_CHANGE_TABLE Procedure Parameters

	Parameter	Description
	
owner

	
Name of the schema that owns the change table.

	
change_table_name

	
Name of the change table to be dropped. Change table names follow the Oracle schema object naming rules.

	
force_flag

	
Drops the change table, depending on whether or not there are subscriptions to it, as follows:

	
'Y': Drops the change table even if there are subscriptions to it.

	
'N': Drops the change table only if there are no subscriptions to it.

Exceptions

Table 33-23 DROP_CHANGE_TABLE Procedure Exceptions

	Exception	Description
	
ORA-31421

	
Change table does not exist

	
ORA-31422

	
Specified owner schema does not exist

	
ORA-31424

	
Change table has active subscriptions

	
ORA-31441

	
Table is not a change table

Usage Notes

	
The publisher can use this procedure for asynchronous and synchronous Change Data Capture.

	
If the publisher wants to drop a change table while there are active subscriptions to that table, he or she must call the DROP_CHANGE_TABLE procedure using the force_flag => 'Y' parameter. This tells Change Data Capture to override its normal safeguards and allow the change table to be dropped despite active subscriptions. The subscriptions that include the dropped table will no longer be valid, and subscribers will lose access to the change data.

DROP_SUBSCRIPTION Procedure

This procedure allows a publisher to drop a subscription that was created by a subscriber with a prior call to the DBMS_CDC_SUBSCRIBE.CREATE_SUBSCRIPTION procedure.

Syntax

DBMS_CDC_PUBLISH.DROP_SUBSCRIPTION(
 subscription_name IN VARCHAR2);

Parameters

Table 33-24 DROP_SUBSCRIPTION Procedure Parameters

	Parameter	Description
	
subscription_name

	
Name of the subscription that was specified by a previous call to the DBMS_CDC_SUBSCRIBE.CREATE_SUBSCRIPTION procedure. Subscription names follow the Oracle schema object naming rules.

Exceptions

Table 33-25 DROP_SUBSCRIPTION Procedure Exceptions

	Exception	Description
	
ORA-31409

	
One or more values for input parameters are incorrect

	
ORA-31425

	
Subscription does not exist

	
ORA-31432

	
Invalid source table

Usage Notes

	
The publisher can use this procedure for asynchronous and synchronous Change Data Capture.

	
This procedure works the same way as the DBMS_CDC_SUBSCRIBE.DROP_SUBSCRIPTION procedure.

	
This procedure provides the publisher with a way to drop subscriptions that have not been dropped by the subscriber. It is possible that a subscription that is no longer needed still exists and is holding change data in a change table indefinitely. The publisher can use this procedure to remove such a subscription so that a purge operation can clean up its change data. Oracle recommends that the publisher attempt to verify that the subscription is not needed prior to dropping it. If that is not possible, the publisher should inform the subscription owner that the subscription has been dropped. Ideally, subscribers drop subscriptions that are no longer needed using the DBMS_CDC_SUBSCRIBE.DROP_SUBSCRIPTION procedure and the publisher need not use the DBMS_CDC_SUBSCRIBE.DROP_SUBSCRIPTION procedure.

GET_DDLOPER Function

This function converts a binary integer into a user friendly string that describes the DDL operation that actually took place.

Syntax

DBMS_CDC_PUBLISH.GET_DDLOPER (ddloper IN BINARY_INTEGER)
 RETURN VARCHAR2;

Parameters

Table 33-26 Function Parameters

	Parameter	Description
	
ddloper

	
An integer value representing what DDL operation actually occurred. This value is obtained from the ddloper$ column in the subscriber's view.

Example

The following illustrates how to use change markers. First, you execute a DDL statement and then verify that it has been captured.

ALTER TABLE cdc_psales DROP PARTITION Dec_06;

SELECT ddloper$, DECODE(ddloper$, NULL, 'NULL',
 DBMS_CDC_PUBLISH.GET_DDLOPER(ddloper$))
 AS DDL_OPER
FROM cdc_psales_act
WHERE DDLOPER$ IS NOT NULL
ORDER BY cscn$;

ddloper$ DDL_OPER

512 Drop Partition
1 row selected.

SELECT ddldesc$
FROM cdc_psales_act
WHERE ddloper$
IS NOT NULL
ORDER BY cscn;

DDLDESC$

alter table cdc_psales drop partition Dec_06
1 row selected.

Usage Notes

	
If an invalid value for ddloper is given, then 'Invalid value for DDLOPR$' will be returned by this function.

	
This function only works for asynchronous Change Data Capture.

PURGE Procedure

This procedure monitors change table usage by all subscriptions, determines which rows are no longer needed by any subscriptions, and removes the unneeded rows to prevent change tables from growing indefinitely. When called, this procedure purges all change tables on the staging database.

Syntax

DBMS_CDC_PUBLISH.PURGE;

Exceptions

Only standard Oracle exceptions (for example, a privilege violation) are returned during a purge operation.

Usage Notes

	
The publisher can use this procedure for asynchronous and synchronous Change Data Capture.

	
The publisher can run this procedure manually or automatically:

	
The publisher can run this procedure manually from the command line to purge data from change tables.

	
The publisher can run this procedure in a script to routinely perform a purge operation and control the growth of change tables.

	
Note that the DBMS_CDC_PUBLISH.PURGE procedure (used by the publisher and the Change Data Capture default purge job) is distinct from the DBMS_CDC_SUBSCRIBE.PURGE_WINDOW procedure (used by subscribers). A call to the DBMS_CDC_PUBLISH.PURGE procedure physically removes unneeded rows from change tables. A call to the DBMS_CDC_SUBSCRIBE.PURGE_WINDOW procedure, logically removes change rows from a subscription window, but does not physically remove rows from the underlying change tables.

PURGE_CHANGE_SET Procedure

This procedure removes unneeded rows from all change tables in the named change set. This procedure allows a finer granularity purge operation than the basic PURGE procedure.

Syntax

DBMS_CDC_PUBLISH.PURGE_CHANGE_SET(

 change_set_name IN VARCHAR2,
 force IN CHAR DEFAULT 'Y',
 purge_date IN DATE DEFAULT NULL);

Parameters

Table 33-27 PURGE_CHANGE_SET Procedure Parameters

	Parameter	Description
	
change_set_name

	
Name of an existing change set. Change set names follow the Oracle schema object naming rules.

	
force

	
If 'Y', try to use partition split/drop, but if the required lock cannot be acquired, use a delete statement to purge. If 'N', only use split/drop partition statements to purge. If a lock cannot be acquired, then no data will be purged.

	
purge_date

	
All records that have a commit_timestamp of less than or equal to this date will be purged.

Exceptions

Table 33-28 PURGE_CHANGE_SET Procedure Exceptions

	Exception	Description
	
ORA-31410

	
Change set is not an existing change set

Usage Notes

	
The publisher can use this procedure for asynchronous and synchronous Change Data Capture.

	
The publisher can run this procedure manually from the command line or in a script to purge unneeded rows from change tables in a specific change set.

	
Note that the DBMS_CDC_PUBLISH.PURGE_CHANGE_SET procedure (used by the publisher) is distinct from the DBMS_CDC_SUBSCRIBE.PURGE_WINDOW procedure (used by subscribers). A call to the DBMS_CDC_PUBLISH.PURGE_CHANGE_SET procedure physically removes unneeded rows from change tables in the specified change set. A call to the DBMS_CDC_SUBSCRIBE.PURGE_WINDOW procedure, logically removes change rows from a subscription window, but does not physically remove rows from the underlying change tables.

PURGE_CHANGE_TABLE Procedure

This procedure removes unneeded rows from the named change table. This procedure allows a finer granularity purge operation than the basic PURGE procedure or the PURGE_CHANGE_SET procedure.

Syntax

DBMS_CDC_PUBLISH.PURGE_CHANGE_TABLE(
 owner IN VARCHAR2,
 change_table_name IN VARCHAR2,
 force IN CHAR DEFAULT 'Y',
 purge_date IN DATE DEFAULT NULL);

Parameters

Table 33-29 PURGE_CHANGE_TABLE Procedure Parameters

	Parameter	Description
	
owner

	
Owner of the named change table.

	
change_table_name

	
Name of an existing change table. Change table names follow the Oracle schema object naming rules.

	
force

	
If 'Y', try to use partition split/drop, but if the required lock cannot be acquired, use a delete statement to purge. If 'N', only use split/drop partition statements to purge. If a lock cannot be acquired, then no data will be purged.

	
purge_date

	
All records that have a commit_timestamp of less than or equal to this date will be purged.

Exceptions

Table 33-30 PURGE_CHANGE_TABLE Procedure Exceptions

	Exception	Description
	
ORA-31421

	
Change table does not exist

Usage Notes

	
The publisher can use this procedure for asynchronous and synchronous Change Data Capture.

	
The publisher can run this procedure manually from the command line or in a script to purge unneeded rows from a specified change table.

	
Note that the DBMS_CDC_PUBLISH.PURGE_CHANGE_TABLE procedure (used by the publisher) is distinct from the DBMS_CDC_SUBSCRIBE.PURGE_WINDOW procedure (used by subscribers). A call to the DBMS_CDC_PUBLISH.PURGE_CHANGE_TABLE procedure physically removes unneeded rows from the specified change table. A call to the DBMS_CDC_SUBSCRIBE.PURGE_WINDOW procedure, logically removes change rows from a subscription window, but does not physically remove rows from the underlying change tables.

34 DBMS_CDC_SUBSCRIBE

	
Note:

Oracle Change Data Capture will be de-supported in a future release of Oracle Database and will be replaced with Oracle GoldenGate. Therefore, Oracle strongly recommends that you use Oracle GoldenGate for new applications.
For Oracle Database 11g Release 2 (11.2), Change Data Capture continues to function as in earlier releases. If you are currently using Change Data Capture, then you will be able to continue to do so for the foreseeable future. However, Change Data Capture will not be further enhanced, and will only be supported based on the current, documented functionality.

The DBMS_CDC_SUBSCRIBE package, one of a set of Change Data Capture packages, lets subscribers view and query change data that was captured and published with the DBMS_CDC_PUBLISH package.

A Change Data Capture system usually has one publisher and many subscribers. The subscribers (applications or individuals), use the Oracle supplied package, DBMS_CDC_SUBSCRIBE, to access published data.

	
See Also:

Oracle Database Data Warehousing Guide for information regarding Oracle Change Data Capture.

This chapter contains the following topics:

	
Using DBMS_CDC_SUBSCRIBE

	
Overview

	
Deprecated Subprograms

	
Security Model

	
Views

	
Summary of DBMS_CDC_SUBSCRIBE Subprograms

Using DBMS_CDC_SUBSCRIBE

This section contains the following topics, which relate to using the DBMS_CDC_SUBSCRIBE package:

	
Overview

	
Deprecated Subprograms

	
Security Model

	
Views

Overview

The primary role of the subscriber is to use the change data. Through the DBMS_CDC_SUBSCRIBE package, each subscriber registers interest in source tables by subscribing to them.

Once the publisher sets up the system to capture data into change tables (which are viewed as publications by subscribers) and grants subscribers access to the change tables, subscribers can access and query the published change data for any of the source tables of interest. Using the subprograms in the DBMS_CDC_SUBSCRIBE package, the subscriber accomplishes the following main objectives:

	
Indicates the change data of interest by creating a subscription and associated subscriber views on published source tables and source columns

	
Activates the subscription to indicate that the subscriber is ready to receive change data

	
Extends the subscription window to receive a new set of change data

	
Uses SQL SELECT statements to retrieve change data from the subscriber views

	
Purges the subscription window when finished processing a block of changes

	
Drops the subscription when finished with the subscription

Figure 34-1 provides a graphical flowchart of the order in which subscribers most typically use the subprograms in the DBMS_CDC_SUBSCRIBE package (which are listed in Table 34-1). A subscriber would typically create a subscription, subscribe to one or more source tables and columns, activate the subscription, extend the subscription window, query the subscriber views, purge the subscription window, and then either extend the subscription window again or drop the subscription.

	
Note:

If a subscriber uses the PURGE_WINDOW procedure immediately after using an EXTEND_WINDOW procedure, then change data may be lost without ever being processed.

	
See Also:

Chapter 34, "DBMS_CDC_SUBSCRIBE" for information on the package for publishing change data.

Figure 34-1 Subscription Flow

[image: Description of Figure 34-1 follows]

Deprecated Subprograms

The following subprograms are deprecated with Oracle Database 11g:

	
DROP_SUBSCRIBER_VIEW

Subscribers no longer need to drop subscriber views. This work is now done automatically by Change Data Capture.

	
GET_SUBSCRIPTION_HANDLE

Subscribers no longer explicitly specify subscription handles. Subscribers should use the CREATE_SUBSCRIPTION procedure instead to specify a subscription name.

	
PREPARE_SUBSCRIBER_VIEW

Subscribers no longer need to prepare subscriber views. This work is now done automatically by Change Data Capture.

Security Model

Change Data Capture grants EXECUTE privileges to PUBLIC on the DBMS_CDC_SUBSCRIBE package.

Views

The DBMS_CDC_SUBSCRIBE package uses the views listed in the section on Getting Information About the Change Data Capture Environment in Oracle Database Data Warehousing Guide.

Summary of DBMS_CDC_SUBSCRIBE Subprograms

Table 34-1 DBMS_CDC_SUBSCRIBE Package Subprograms

	Subprogram	Description
	
ACTIVATE_SUBSCRIPTION Procedure

	
Indicates that a subscription is ready to start accessing change data

	
CREATE_SUBSCRIPTION Procedure

	
Creates a subscription and associates it with one change set

	
DROP_SUBSCRIPTION Procedure

	
Drops a subscription that was created with a prior call to the CREATE_SUBSCRIPTION procedure

	
EXTEND_WINDOW Procedure

	
Sets a subscription window high boundary so that new change data can be seen

	
PURGE_WINDOW Procedure

	
Sets the low boundary for a subscription window to notify Change Data Capture that the subscriber is finished processing a set of change data

	
SUBSCRIBE Procedure

	
Specifies a source table and the source columns for which the subscriber wants to access change data and specifies the subscriber view through which the subscriber sees change data for the source table

ACTIVATE_SUBSCRIPTION Procedure

This procedure indicates that a subscription is ready to start accessing change data.

Syntax

DBMS_CDC_SUBSCRIBE.ACTIVATE_SUBSCRIPTION (
 subscription_name IN VARCHAR2);

Parameters

Table 34-2 ACTIVATE_SUBSCRIPTION Procedure Parameters

	Parameter	Description
	
subscription_name

	
The name of the subscription that was specified for a previous call to the CREATE_SUBSCRIPTION procedure. Subscription names follow the Oracle schema object naming rules.

Exceptions

Table 34-3 ACTIVATE_SUBSCRIPTION Procedure Exceptions

	Exception	Description
	
ORA-31409

	
One or more values for input parameters are incorrect

	
ORA-31425

	
Subscription does not exist

	
ORA-31426

	
Cannot modify active subscriptions

	
ORA-31469

	
Cannot enable Change Data Capture for change set

	
ORA-31514

	
Change set disabled due to capture error

Usage Notes

	
The ACTIVATE_SUBSCRIPTION procedure indicates that the subscriber is finished subscribing to tables, and the subscription is ready to start accessing change data.

	
Once the subscriber activates the subscription:

	
No additional source tables can be added to the subscription.

	
Change Data Capture holds the available data for the source tables and sets the subscription window to empty.

	
The subscriber must use the EXTEND_WINDOW procedure to see the initial set of change data.

	
The subscription cannot be activated again.

	
A subscription cannot be activated if the underlying change set has reached its end_date parameter value.

CREATE_SUBSCRIPTION Procedure

This procedure creates a subscription that is associated with one change set. This procedure replaces the deprecated GET_SUBSCRIPTION_HANDLE procedure.

Syntax

DBMS_CDC_SUBSCRIBE.CREATE_SUBSCRIPTION (
 change_set_name IN VARCHAR2,
 description IN VARCHAR2,
 subscription_name IN VARCHAR2);

Parameters

Table 34-4 CREATE_SUBSCRIPTION Procedure Parameters

	Parameter	Description
	
change_set_name

	
The name of an existing change set to which the subscriber subscribes

	
description

	
A description of the subscription (which might include, for example, the purpose for which it is used). The description must be specified using 255 or fewer characters.

	
subscription_name

	
A unique name for a subscription that must consist of 30 characters or fewer and cannot have a prefix of CDC$. Subscription names follow the Oracle schema object naming rules.

Exceptions

Table 34-5 CREATE_SUBSCRIPTION Procedure Exceptions

	Exception	Description
	
ORA-31409

	
One or more values for input parameters are incorrect

	
ORA-31415

	
Specified change set does not exist

	
ORA-31449

	
Invalid value for change_set_name

	
ORA-31457

	
Maximum length of description field exceeded

	
ORA-31469

	
Cannot enable Change Data Capture for change set

	
ORA-31506

	
Duplicate subscription name specified

	
ORA-31510

	
Name uses reserved prefix CDC$

	
ORA-31511

	
Name exceeds maximum length of 30 characters

Usage Notes

	
The CREATE_SUBSCRIPTION procedure allows a subscriber to register interest in a change set associated with source tables of interest.

	
A subscriber can query the ALL_PUBLISHED_COLUMNS view to see all the published source tables for which the subscriber has privileges and the change sets in which the source table columns are published.

	
Subscriptions are not shared among subscribers; rather, each subscription name is validated against a given subscriber's login ID.

	
Subscriptions cannot be created if the underlying change set has reached its end_date parameter value.

DROP_SUBSCRIPTION Procedure

This procedure drops a subscription.

Syntax

DBMS_CDC_SUBSCRIBE.DROP_SUBSCRIPTION (
 subscription_name IN VARCHAR2);

Parameters

Table 34-6 DROP_SUBSCRIPTION Procedure Parameters

	Parameter	Description
	
subscription_name

	
The name of the subscription that was specified for a previous call to the CREATE_SUBSCRIPTION procedure. Subscription names follow the Oracle schema object naming rules.

Exceptions

Table 34-7 DROP_SUBSCRIPTION Procedure Exceptions

	Exception	Description
	
ORA-31409

	
One or more values for input parameters are incorrect

	
ORA-31425

	
Subscription does not exist

Usage Notes

Subscribers should be diligent about dropping subscriptions that are no longer needed so that change data will not be held in the change tables unnecessarily.

EXTEND_WINDOW Procedure

This procedure sets the subscription window high boundary so that new change data can be seen.

Syntax

DBMS_CDC_SUBSCRIBE.EXTEND_WINDOW (
 subscription_name IN VARCHAR2,
 upper_bound IN DATE DEFAULT NULL);

Parameters

Table 34-8 EXTEND_WINDOW Procedure Parameters

	Parameter	Description
	
subscription_name

	
The unique name of the subscription that was specified by a previous call to the CREATE_SUBSCRIPTION procedure. Subscription names follow the Oracle schema object naming rules.

	
upper_bound

	
A date/timestamp to move the upper bound of the subscription window to.

Exceptions

Table 34-9 EXTEND_WINDOW Procedure Exceptions

	Exception	Description
	
ORA-31409

	
One or more values for input parameters are incorrect

	
ORA-31425

	
Subscription does not exist

	
ORA-31429

	
Subscription has not been activated

	
ORA-31432

	
Invalid source table

	
ORA-31469

	
Cannot enable Change Data Capture for change set

	
ORA-31508

	
Invalid parameter value for synchronous change set

	
ORA-31509

	
Publication does not exist

	
ORA-31514

	
Change set disabled due to capture error

Usage Notes

	
Until the subscriber calls the EXTEND_WINDOW procedure to begin receiving change data, the subscription window remains empty.

	
The first time that the subscriber calls the EXTEND_WINDOW procedure, it establishes the initial boundaries for the subscription window.

	
Subsequent calls to the EXTEND_WINDOW procedure extend the high boundary of the subscription window so that new change data can be seen.

	
Oracle recommends that subscribers not view change tables directly. Instead, subscribers should use the DBMS_CDC_SUBSCRIBE package and access data through subscriber views only. Control column values are guaranteed to be consistent only when viewed through subscriber views that have been updated with a call to the EXTEND_WINDOW procedure.

	
When the underlying change set for a subscription has reached its end_date parameter value, subsequent calls to the EXTEND_WINDOW procedure will not raise the high boundary.

	
Subscriptions employing synchronous Change Data Capture are not allowed to extend the window to a specified date. Hence, the upper_bound parameter should not be specified.

PURGE_WINDOW Procedure

This procedure sets the low boundary of the subscription window so that the subscription no longer sees any change data, effectively making the subscription window empty. The subscriber calls this procedure to notify Change Data Capture that the subscriber is finished processing a block of change data.

Syntax

DBMS_CDC_SUBSCRIBE.PURGE_WINDOW (
 subscription_name IN VARCHAR2,
 lower_bound IN DATE DEFAULT NULL);

Parameters

Table 34-10 PURGE_WINDOW Procedure Parameters

	Parameter	Description
	
subscription_name

	
The name of the subscription that was specified for a previous call to the CREATE_SUBSCRIPTION procedure. Subscription names follow the Oracle schema object naming rules.

	
lower_bound

	
A date/timestamp to move the lower bound of the subscription window to.

Exceptions

Table 34-11 PURGE_WINDOW Procedure Exceptions

	Exception	Description
	
ORA-31409

	
One or more values for input parameters are incorrect

	
ORA-31425

	
Subscription does not exist

	
ORA-31429

	
Subscription has not been activated

	
ORA-31432

	
Invalid source table

	
ORA-31469

	
Cannot enable Change Data Capture for change set

	
ORA-31514

	
Change set disabled due to capture error

Usage Notes

	
When finished with a set of changes, the subscriber purges the subscription window with the PURGE_WINDOW procedure. By this action, the subscriber performs the following functions:

	
Informs Change Data Capture that the subscriber is finished with the current set of change data.

	
Enables Change Data Capture to remove change data that is no longer needed by any subscribers.

Change Data Capture manages the change data to ensure that it is available as long as there are subscribers who need it.

	
When the underlying change set for a subscription has reached its end_date parameter value, subsequent calls to the PURGE_WINDOW procedure will not move the low boundary.

SUBSCRIBE Procedure

This procedure specifies a source table and the source columns for which the subscriber wants to access change data. In addition, it specifies the subscriber view through which the subscriber sees change data for the source table.

Syntax

There are two versions of syntax for the SUBSCRIBE procedure, as follow:

	
Using source schema and source table

When this syntax is used, Change Data Capture will attempt to find a single publication ID that contains the specified source_table and column_list. If such a publication cannot be found, then Change Data Capture returns an error.

DBMS_CDC_SUBSCRIBE.SUBSCRIBE (
 subscription_name IN VARCHAR2,
 source_schema IN VARCHAR2,
 source_table IN VARCHAR2,
 column_list IN VARCHAR2,
 subscriber_view IN VARCHAR2);

	
Using publication IDs

When this syntax is used, Change Data Capture will use the publication ID to identify the change table. If the columns specified in the column_list parameter are not in the identified change table, then Change Data Capture returns an error.

DBMS_CDC_SUBSCRIBE.SUBSCRIBE (
 subscription_name IN VARCHAR2,
 publication_id IN NUMBER,
 column_list IN VARCHAR2,
 subscriber_view IN VARCHAR2);

Parameters

Table 34-12 SUBSCRIBE Procedure Parameters

	Parameter	Description
	
subscription_name

	
The name of a subscription that was specified for, or returned by, a previous call to the CREATE_SUBSCRIPTION procedure. Subscription names follow the Oracle schema object naming rules.

	
source_schema

	
The name of the schema where the source table resides

	
source_table

	
The name of a published source table

	
column_list

	
A comma-delimited list of columns from the published source table or publication

	
subscriber_view

	
Unique name for the subscriber view for this source table or publication that must consist of 30 or fewer characters and must not have a prefix of CDC$. Subscriber view names follow the Oracle schema object naming rules.

	
publication_id

	
A valid publication_id, which the subscriber can obtain from the ALL_PUBLISHED_COLUMNS view.

Exceptions

Table 34-13 SUBSCRIBE Procedure Exceptions

	Exception	Description
	
ORA-31409

	
One or more values for input parameters are incorrect

	
ORA-31425

	
Subscription does not exist

	
ORA-31426

	
Cannot modify active subscriptions

	
ORA-31427

	
Publication string already subscribed

	
ORA-31428

	
No publication contains all the specified columns

	
ORA-31432

	
Invalid source table

	
ORA-31466

	
No publications found

	
ORA-31469

	
Cannot enable Change Data Capture for change set

	
ORA-31510

	
Name uses reserved prefix CDC$

	
ORA-31511

	
Name exceeds maximum length of 30 characters

Usage Notes

	
The SUBSCRIBE procedure allows a subscriber to subscribe to one or more published source tables and to specific columns in each source table. Each call to the SUBSCRIBE procedure can specify only a single source table or publication ID. The subscriber can make multiple calls to the SUBSCRIBE procedure to include multiple source tables or publications IDs in a subscription.

	
If the columns of interest are all in a single publication, the subscriber can call the SUBSCRIBE procedure using the source_schema and source_table parameters or using the publication_id parameter. However, if there are multiple publications on a single source table and these publications share some columns, and if any of the shared columns will be used by a single subscription, then the subscriber should call the SUBSCRIBE procedure using the publication_id parameter.

	
The subscriber can subscribe to any valid publication ID on which the subscriber has privileges to access. The subscriber can find valid publication IDs on which the subscriber has access by querying the ALL_PUBLISHED_COLUMNS view.

	
A subscriber can query the ALL_PUBLISHED_COLUMNS view to see all the published source table columns accessible to the subscriber.

	
Subscriptions must be created before a subscriber calls the SUBSCRIBE procedure. Change Data Capture does not guarantee that there will be any change data available at the moment the subscription is created.

	
Subscribers can subscribe only to published columns from the source table. All of the columns specified in a single call to the SUBSCRIBE procedure must come from the same publication. Any control columns associated with the underlying change table are added to the subscription automatically.

	
All specified source tables or publications must be in the change set that is associated with the named subscription.

	
A single source table can have more than one publication defined on it. A subscriber can subscribe to one or more of these publications. However a subscriber can subscribe to a particular publication only once.

	
Each publication in a subscription has its own subscriber view. Subscriber views are used to query the change data encompassed by the subscription's current window. Subscriber views are created in the schema of the subscriber.

	
A subscriber cannot subscribe to a publication within a change set that has reached its end_date parameter value.

35 DBMS_COMPARISON

The DBMS_COMPARISON package provides interfaces to compare and converge database objects at different databases.

This chapter contains the following topics:

	
Using DBMS_COMPARISON

	
Overview

	
Security Model

	
Constants

	
Views

	
Operational Notes

	
Data Structures

	
Summary of DBMS_COMPARISON Subprograms

	
See Also:

	
Oracle Database 2 Day + Data Replication and Integration Guide for information about using the basic features of this package

	
Oracle Streams Replication Administrator's Guide for information about using the advanced features of this package

Using DBMS_COMPARISON

This section contains topics which relate to using the DBMS_COMPARISON package.

	
Overview

	
Security Model

	
Constants

	
Views

	
Operational Notes

Overview

The DBMS_COMPARISON package is an Oracle-supplied package that you can use to compare database objects at two databases. This package also enables you converge the database objects so that they are consistent at different databases. Typically, this package is used in environments that share a database object at multiple databases. When copies of the same database object exist at multiple databases, the database object is a shared database object. Several data dictionary views contain information about comparisons made with the DBMS_COMPARISON package.

Shared database objects might be maintained by data replication. For example, materialized views or Oracle Streams components might replicate the database objects and maintain them at multiple databases. A custom application might also maintain shared database objects. When a database object is shared, it can diverge at the databases that share it. You can use this package to identify differences in the shared database objects. After identifying the differences, you can optionally use this package to synchronize the shared database objects.

To compare a database object that is shared at two different databases, complete the following general steps:

	
Run the CREATE_COMPARE procedure in this package to create a comparison. The comparison identifies the database objects to compare and specifies parameters for the comparison.

	
Run the COMPARE function in this package to compare the database object at the two databases and identify differences. This function returns TRUE when no differences are found and FALSE when differences are found. This function also populates data dictionary views with comparison results. Separate comparison results are generated for each execution of the COMPARE function.

	
If you want to examine the comparison results, query the following data dictionary views:

	
DBA_COMPARISON_SCAN

	
USER_COMPARISON_SCAN

	
DBA_COMPARISON_SCAN_VALUES

	
USER_COMPARISON_SCAN_VALUES

	
DBA_COMPARISON_ROW_DIF

	
USER_COMPARISON_ROW_DIF

	
If there are differences, and you want to synchronize the database objects at the two databases, then run the CONVERGE procedure in this package.

After you create a comparison with the CREATE_COMPARISON procedure in the DBMS_COMPARISON package, you can run the comparison at any time using the COMPARE function. Each time you run the COMPARE function, it records comparison results in the appropriate data dictionary views. Comparison results might be modified when subprograms in this package are invoked and the scans in the comparison results are specified. For example, comparison results might be modified when you run the RECHECK function.

The comparison results for a single execution of the COMPARE function can include one or more scans. A scan checks for differences in some or all of the rows in a shared database object at a single point in time. You can compare database objects multiple times, and a unique scan ID identifies each scan in the comparison results.

A bucket is a range of rows in a database object that is being compared. Buckets improve performance by splitting the database object into ranges and comparing the ranges independently. Every comparison divides the rows being compared into an appropriate number of buckets, and each bucket is compared by a scan.

Each time the COMPARE function splits a bucket into smaller buckets, it performs new scans of the smaller buckets. The scan that analyzes a larger bucket is the parent scan of each scan that analyzes the smaller buckets into which the larger bucket was split. The root scan in the comparison results is the highest level parent scan. The root scan does not have a parent.

You can recheck a scan using the RECHECK function, and you can converge a scan using the CONVERGE procedure. When you want to recheck or converge all of the rows comparison results, specify the root scan ID for the comparison results in the appropriate subprogram. When you want to recheck or converge a portion of the rows in comparison results, specify the scan ID of the scan that contains the differences.

	
See Also:

Oracle Streams Replication Administrator's Guide for more information about comparisons, including detailed information about scans, buckets, parent scans, and root scans

Security Model

Security on this package can be controlled in either of the following ways:

	
Granting EXECUTE on this package to selected users or roles.

	
Granting EXECUTE_CATALOG_ROLE to selected users or roles.

If subprograms in the package are run from within a stored procedure, then the user who runs the subprograms must be granted EXECUTE privilege on the package directly. It cannot be granted through a role.

Each subprogram in the DBMS_COMPARISON package has a comparison_name parameter. The current user must be the owner of the specified comparison to run a subprogram in the DBMS_COMPARISON package.

To run the COMPARE function, RECHECK function, or CONVERGE procedure, the following users must have SELECT privilege on each copy of the shared database object:

	
The comparison owner at the local database

	
When a database link is used, the user at the remote database to which the comparison owner connects through a database link

The CONVERGE procedure also requires additional privileges for one of these users at the database where it makes changes to the shared database object. The user must have INSERT, UPDATE, and DELETE privileges on the shared database object at this database.

In addition, when the CONVERGE procedure is run with either the local_converge_tag or remote_converge_tag parameter set to a non-NULL value, then the following additional requirements must be met:

	
If the local table "wins," then the user at the remote database to which the invoker of the CONVERGE procedure connects through a database link must be granted either EXECUTE_CATALOG_ROLE or EXECUTE privilege on the DBMS_STREAMS_ADM package.

	
If the remote table "wins," then the invoker of the CONVERGE procedure at the local database must be granted either EXECUTE_CATALOG_ROLE or EXECUTE privilege on the DBMS_STREAMS_ADM package.

Constants

The DBMS_COMPARISON package defines several enumerated constants to use specifying parameter values. Enumerated constants must be prefixed with the package name. For example, DBMS_COMPARISON.CMP_SCAN_MODE_FULL.

Table 35-1 lists the parameters and enumerated constants.

Table 35-1 DBMS_COMPARISON Parameters with Enumerated Constants

	Parameter	Option	Type	Description
	
comparison_mode

	
	
CMP_COMPARE_MODE_OBJECT

	
VARCHAR2(30)

	
CMP_COMPARE_MODE_OBJECT is a database object. This constant can be specified as 'OBJECT'.

	
scan_mode

	
	
CMP_SCAN_MODE_FULL

	
CMP_SCAN_MODE_RANDOM

	
CMP_SCAN_MODE_CYCLIC

	
CMP_SCAN_MODE_CUSTOM

	
VARCHAR2(30)

	
CMP_SCAN_MODE_FULL indicates that the entire database object is compared. This constant can be specified as 'FULL'.

CMP_SCAN_MODE_RANDOM indicates that a random portion of the database object is compared. This constant can be specified as 'RANDOM'.

CMP_SCAN_MODE_CYCLIC indicates that a portion of the database object is compared when you perform a single comparison. When you compare the database object again, another portion of the database object is compared, starting where the last comparison ended. This constant can be specified as 'CYCLIC'.

CMP_SCAN_MODE_CUSTOM indicates that the user who runs the subprogram specifies the range to compare in the database object. This constant can be specified as 'CUSTOM'.

	
converge_options

	
	
CMP_CONVERGE_LOCAL_WINS

	
CMP_CONVERGE_REMOTE_WINS

	
VARCHAR2(30)

	
CMP_CONVERGE_LOCAL_WINS indicates that the column values at the local database replace the column values at the remote database when these column values are different. This constant can be specified as 'LOCAL'.

CMP_CONVERGE_REMOTE_WINS indicates that the column values at the remote database replace the column values at the local database when these column values are different. This constant can be specified as 'REMOTE'.

	
null_value

	
	
CMP_NULL_VALUE_DEF

	
VARCHAR2(100)

	
CMP_NULL_VALUE_DEF indicates that ORA$STREAMS$NV is substituted for NULL values in database objects during comparison. This constant can be specified as 'ORA$STREAMS$NV'.

	
max_num_buckets

	
	
CMP_MAX_NUM_BUCKETS

	
INTEGER

	
CMP_MAX_NUM_BUCKETS indicates that the maximum number of buckets is 1,000. This constant can be specified as 1000.

	
min_rows_in_bucket

	
	
CMP_MIN_ROWS_IN_BUCKET

	
INTEGER

	
CMP_MIN_ROWS_IN_BUCKET indicates that the minimum number of rows in a bucket is 10,000. This constant can be specified as 10000.

Views

The DBMS_COMPARISON package uses the following views:

	
DBA_COMPARISON

	
USER_COMPARISON

	
DBA_COMPARISON_COLUMNS

	
USER_COMPARISON_COLUMNS

	
DBA_COMPARISON_SCAN

	
USER_COMPARISON_SCAN

	
DBA_COMPARISON_SCAN_VALUES

	
USER_COMPARISON_SCAN_VALUES

	
DBA_COMPARISON_ROW_DIF

	
USER_COMPARISON_ROW_DIF

	
See Also:

Oracle Database Reference

Operational Notes

This section contains the following operational notes for the DBMS_COMPARISON package:

	
Oracle Database Release Requirements for the DBMS_COMPARISON Package

	
Database Character Set Requirements for the DBMS_COMPARISON Package

	
Database Object Requirements for the DBMS_COMPARISON Package

	
Index Column Requirements for the DBMS_COMPARISON Package

	
Data Type Requirements for the DBMS_COMPARISON Package

	
Only Converge Rows That Are Not Being Updated

Oracle Database Release Requirements for the DBMS_COMPARISON Package

Meet the following Oracle Database release requirements when running the subprograms in the DBMS_COMPARISON package:

	
The local database that runs the subprograms in the DBMS_COMPARISON package must be an Oracle Database 11g Release 1 (11.1) database.

	
The remote database must be an Oracle Database 10g Release 1 (10.1) or later database. Oracle databases before this release and non-Oracle databases are not supported.

Database Character Set Requirements for the DBMS_COMPARISON Package

The database character sets must be the same for the databases that contain the database objects being compared.

	
See Also:

Oracle Database Globalization Support Guide for information about database character sets

Database Object Requirements for the DBMS_COMPARISON Package

The DBMS_COMPARISON package can compare the following types of database objects:

	
Tables

	
Single-table views

	
Materialized views

	
Synonyms for tables, single-table views, and materialized views

Database objects of different types can be compared and converged at different databases. For example, a table at one database and a materialized view at another database can be compared and converged with this package.

To run the subprograms in the DBMS_COMPARISON package, the specified database objects must have the same shape at each database. Specifically, the database objects must have the same number of columns at each database, and the data types of corresponding columns must match.

If a database object being compared contains columns that do not exist in the other database object, then you can compare the database objects by excluding the extra columns during comparison creation. Use the column_list parameter in the CREATE_COMPARISON procedure to list only the columns that exist in both database objects.

	
See Also:

CREATE_COMPARISON Procedure

Index Column Requirements for the DBMS_COMPARISON Package

This section discusses number, timestamp, and interval columns. These include the following data types:

	
Number columns are of the following data types: NUMBER, FLOAT, BINARY_FLOAT, and BINARY_DOUBLE.

	
Timestamp columns are of the following data types: TIMESTAMP, TIMESTAMP WITH TIME ZONE, and TIMESTAMP WITH LOCAL TIME ZONE

	
Interval columns are of the following data types: INTERVAL YEAR TO MONTH and INTERVAL DAY TO SECOND.

For all scan modes to be supported by the DBMS_COMPARISON package, the database objects must have one of the following types of indexes:

	
A single-column index on a number, timestamp, interval, or DATE data type column

	
A composite index that only includes number, timestamp, interval, or DATE data type columns. Each column in the composite index must either have a NOT NULL constraint or be part of the primary key.

For the scan modes CMP_SCAN_MODE_FULL and CMP_SCAN_MODE_CUSTOM to be supported, the database objects must have one of the following types of indexes:

	
A single-column index on a number, timestamp, interval, DATE, VARCHAR2, or CHAR data type column

	
A composite index that only includes number, timestamp, interval, DATE, VARCHAR2, or CHAR columns. Each column in the composite index must either have a NOT NULL constraint or be part of the primary key.

If the database objects do not have one of these types of indexes, then the DBMS_COMPARISON package does not support the database objects. For example, if the database objects only have a single index on an NVARCHAR2 column, then the DBMS_COMPARISON package does not support them. Or, if the database objects have only one index, and it is a composite index that includes a NUMBER column and an NCHAR column, then the DBMS_COMPARISON package does not support them.

You can specify an index when you create a comparison using the index_schema_name and index_name parameters in the CREATE_COMPARISON procedure. If you specify an index, then make sure the columns in the index meet the requirements of the scan mode used for the comparison.

The index columns in a comparison must uniquely identify every row involved in a comparison. The following constraints satisfy this requirement:

	
A primary key constraint

	
A unique constraint on one or more non-NULL columns

If these constraints are not present on a table, then use the index_schema_name and index_name parameters in the CREATE_COMPARISON procedure to specify an index whose columns satisfy this requirement.

When a single index value identifies both a local row and a remote row, the two rows must be copies of the same row in the replicated tables. In addition, each pair of copies of the same row must always have the same index value.

The DBMS_COMPARISON package can use an index only if all of the columns in the index are included in the column_list parameter when the comparison is created with the CREATE_COMPARISON procedure.

After a comparison is created, you can determine the index column or columns for it by running the following query:

SELECT COLUMN_NAME, COLUMN_POSITION FROM DBA_COMPARISON_COLUMNS
 WHERE COMPARISON_NAME = 'COMPARE_CUSTOM' AND
 INDEX_COLUMN = 'Y';

If there are multiple index columns, then the index column with 1 for the COLUMN_POSITION is the lead index column in the composite index.

	
See Also:

	
"Constants" for information about scan modes

	
CREATE_COMPARISON Procedure for information about specifying an index for a comparison

Data Type Requirements for the DBMS_COMPARISON Package

The DBMS_COMPARISON package can compare data in columns of the following data types:

	
VARCHAR2

	
NVARCHAR2

	
NUMBER

	
FLOAT

	
DATE

	
BINARY_FLOAT

	
BINARY_DOUBLE

	
TIMESTAMP

	
TIMESTAMP WITH TIME ZONE

	
TIMESTAMP WITH LOCAL TIME ZONE

	
INTERVAL YEAR TO MONTH

	
INTERVAL DAY TO SECOND

	
RAW

	
CHAR

	
NCHAR

If a column with data type TIMESTAMP WITH LOCAL TIME ZONE is compared, then the two databases must use the same time zone. Also, if a column with data type NVARCHAR2 or NCHAR is compared, then the two databases must use the same national character set.

The DBMS_COMPARISON package cannot compare data in columns of the following data types:

	
LONG

	
LONG RAW

	
ROWID

	
UROWID

	
CLOB

	
NCLOB

	
BLOB

	
BFILE

	
User-defined types (including object types, REFs, varrays, and nested tables)

	
Oracle-supplied types (including any types, XML types, spatial types, and media types)

You can compare database objects that contain unsupported columns by excluding the unsupported columns during comparison creation. Use the column_list parameter in the CREATE_COMPARISON procedure to list only the supported columns in a shared database object.

	
See Also:

	
CREATE_COMPARISON Procedure

	
Oracle Database SQL Language Reference for more information about data types

	
Oracle Database Globalization Support Guide for information about national character sets

Only Converge Rows That Are Not Being Updated

You should only converge rows that are not being updated on either database. For example, if the shared database object is updated by replication components, then only converge rows for which replication changes have been applied and make sure no new changes are in the process of being replicated for these rows. If you compare replicated database objects, then it is typically best to compare them during a time of little or no replication activity to identify persistent differences.

	
Attention:

If a scan identifies that a row is different in the shared database object at two databases, and the row is modified after the scan, then it can result in unexpected data in the row after the CONVERGE procedure is run.

	
See Also:

Oracle Streams Replication Administrator's Guide for information about the DBMS_COMPARISON package in an Oracle Streams replication environment

Data Structures

The DBMS_COMPARISON package defines a RECORD type.

RECORD Types

	
COMPARISON_TYPE Record Type

COMPARISON_TYPE Record Type

Contains information returned by the COMPARE function or CONVERGE procedure in the DBMS_COMPARISON package.

	
Note:

The COMPARE function only returns a value for the scan_id field.

Syntax

TYPE COMPARISON_TYPE IS RECORD(
 scan_id NUMBER,
 loc_rows_merged NUMBER,
 rmt_rows_merged NUMBER,
 loc_rows_deleted NUMBER,
 rmt_rows_deleted NUMBER);

Fields

Table 35-2 COMPARISON_TYPE Attributes

	Field	Description
	
scan_id

	
The scan ID of the scan

	
loc_rows_merged

	
The number of rows in the local database object updated with information from the database object at the remote site

	
rmt_rows_merged

	
The number of rows in the database object updated at the remote site with information from the database object at the local site

	
loc_rows_deleted

	
The number of rows deleted from the local database object

	
rmt_rows_deleted

	
The number of rows deleted from the remote database object

Summary of DBMS_COMPARISON Subprograms

Table 35-3 DBMS_COMPARISON Package Subprograms

	Subprogram	Description
	
COMPARE Function

	
Performs the specified comparison

	
CONVERGE Procedure

	
Executes data manipulation language (DML) changes to synchronize the portion of the database object that was compared in the specified scan

	
CREATE_COMPARISON Procedure

	
Creates a comparison

	
DROP_COMPARISON Procedure

	
Drops a comparison

	
PURGE_COMPARISON Procedure

	
Purges the comparison results, or a subset of the comparison results, for a comparison

	
RECHECK Function

	
Rechecks the differences in a specified scan for a comparison

COMPARE Function

This function performs the specified comparison.

Each time a comparison is performed, it results in at least one new scan, and each scan has a unique scan ID. You can define and name a comparison using the CREATE_COMPARISON procedure.

	
See Also:

	
"Overview"

	
CREATE_COMPARISON Procedure

Syntax

DBMS_COMPARISON.COMPARE(
 comparison_name IN VARCHAR2,
 scan_info OUT COMPARISON_TYPE,
 min_value IN VARCHAR2 DEFAULT NULL,
 max_value IN VARCHAR2 DEFAULT NULL,
 perform_row_dif IN BOOLEAN DEFAULT FALSE)
RETURN BOOLEAN;

Parameters

Table 35-4 COMPARE Function Parameters

	Parameter	Description
	
comparison_name

	
The name of the comparison.

	
scan_info

	
Information about the compare operation returned in the COMPARISON_TYPE data type.

See COMPARISON_TYPE Record Type.

	
min_value

	
When the scan mode for the comparison is set to CMP_SCAN_MODE_CUSTOM, specify the minimum index column value for the range of rows that are being compared. To determine the index column for a comparison, query the DBA_COMPARISON_COLUMNS data dictionary view. For a composite index, specify a value for the column with column_position equal to 1 in the DBA_COMPARISON_COLUMNS view. See "Index Column Requirements for the DBMS_COMPARISON Package".

If the scan mode is set to a value other than CMP_SCAN_MODE_CUSTOM, then this parameter must be set to NULL.

If NULL and the scan_mode parameter is set to CMP_SCAN_MODE_CUSTOM, then an error is raised.

To determine the scan mode for the comparison, query the DBA_COMPARISON data dictionary view.

See Constants for information about scan modes.

	
max_value

	
When the scan mode for the comparison is set to CMP_SCAN_MODE_CUSTOM, specify the maximum index column value for the range of rows that are being compared. To determine the index column for a comparison, query the DBA_COMPARISON_COLUMNS data dictionary view. For a composite index, specify a value for the column with column_position equal to 1 in the DBA_COMPARISON_COLUMNS view. See "Index Column Requirements for the DBMS_COMPARISON Package".

If the scan mode is set to a value other than CMP_SCAN_MODE_CUSTOM, then this parameter must be set to NULL.

If NULL and the scan_mode parameter is set to CMP_SCAN_MODE_CUSTOM, then an error is raised.

To determine the scan mode for the comparison, query the DBA_COMPARISON data dictionary view.

See Constants for information about scan modes.

	
perform_row_dif

	
If TRUE, then compares each row individually in the database object being compared after reaching the smallest possible bucket for the comparison.

If FALSE, then compares buckets for differences but does not compare each row individually when differences are found in the smallest possible bucket.

See "Overview" for information about buckets.

Return Values

This function returns TRUE when no differences are found in the database objects being compared. This function returns FALSE when differences are found in the database objects being compared.

CONVERGE Procedure

This procedure executes data manipulation language (DML) changes to synchronize the portion of the database objects that was compared in the specified scan.

Syntax

DBMS_COMPARISON.CONVERGE(
 comparison_name IN VARCHAR2,
 scan_id IN NUMBER,
 scan_info OUT COMPARISON_TYPE,
 converge_options IN VARCHAR2 DEFAULT CMP_CONVERGE_LOCAL_WINS,
 perform_commit IN BOOLEAN DEFAULT TRUE,
 local_converge_tag IN RAW DEFAULT NULL,
 remote_converge_tag IN RAW DEFAULT NULL);

Parameters

Table 35-5 CONVERGE Procedure Parameters

	Parameter	Description
	
comparison_name

	
The name of the comparison.

	
scan_id

	
The identifier for the scan that contains the differences between the database objects being converged.

See "Overview" for more information about specifying a scan ID in this parameter.

	
scan_info

	
Information about the converge operation returned in the COMPARISON_TYPE data type.

See COMPARISON_TYPE Record Type.

	
converge_options

	
Either the CMP_CONVERGE_LOCAL_WINS constant or the CMP_CONVERGE_REMOTE_WINS constant.

See "Constants" for information about these constants.

	
perform_commit

	
If TRUE, then performs a COMMIT periodically while making the DML changes. The CONVERGE procedure might perform more than one COMMIT when this parameter is set to TRUE.

If FALSE, then does not perform a COMMIT after making DML changes.

	
local_converge_tag

	
The Oracle Streams tag to set in the session on the local database before performing any changes to converge the data in the database objects being converged.

If non-NULL, then this parameter setting takes precedence over the local_converge_tag parameter in the CREATE_COMPARISON procedure that created the comparison.

If NULL, then this parameter is ignored, and the local_converge_tag parameter in the CREATE_COMPARISON procedure that created the comparison is used.

See "Security Model" for information about security requirement related to this parameter, and see the Oracle Streams Replication Administrator's Guide for more information about tags.

	
remote_converge_tag

	
The Oracle Streams tag to set in the session on the remote database before performing any changes to converge the data in the database objects being converged.

If non-NULL, then this parameter setting takes precedence over the remote_converge_tag parameter in the CREATE_COMPARISON procedure that created the comparison.

If NULL, then this parameter is ignored, and the remote_converge_tag parameter in the CREATE_COMPARISON procedure that created the comparison is used.

See "Security Model" for information about security requirement related to this parameter, and see the Oracle Streams Replication Administrator's Guide for more information about tags.

Usage Notes

If one of the database objects being converged is a read-only materialized view, then the converge_options parameter must be set to ensure that the read-only materialized view "wins" in the converge operation. The CONVERGE procedure raises an error if it tries to make changes to a read-only materialized view.

CREATE_COMPARISON Procedure

This procedure creates a comparison.

Syntax

DBMS_COMPARISON.CREATE_COMPARISON(
 comparison_name IN VARCHAR2,
 schema_name IN VARCHAR2,
 object_name IN VARCHAR2,
 dblink_name IN VARCHAR2,
 index_schema_name IN VARCHAR2 DEFAULT NULL,
 index_name IN VARCHAR2 DEFAULT NULL,
 remote_schema_name IN VARCHAR2 DEFAULT NULL,
 remote_object_name IN VARCHAR2 DEFAULT NULL,
 comparison_mode IN VARCHAR2 DEFAULT CMP_COMPARE_MODE_OBJECT,
 column_list IN VARCHAR2 DEFAULT '*',
 scan_mode IN VARCHAR2 DEFAULT CMP_SCAN_MODE_FULL,
 scan_percent IN NUMBER DEFAULT NULL,
 null_value IN VARCHAR2 DEFAULT CMP_NULL_VALUE_DEF,
 local_converge_tag IN RAW DEFAULT NULL,
 remote_converge_tag IN RAW DEFAULT NULL,
 max_num_buckets IN NUMBER DEFAULT CMP_MAX_NUM_BUCKETS,
 min_rows_in_bucket IN NUMBER DEFAULT CMP_MIN_ROWS_IN_BUCKET);

Parameters

Table 35-6 CREATE_COMPARISON Procedure Parameters

	Parameter	Description
	
comparison_name

	
The name of the comparison.

	
schema_name

	
The name of the schema that contains the local database object to compare.

	
object_name

	
The name of the local database object to compare.

	
dblink_name

	
Database link to the remote database. The specified database object in the remote database is compared with the database object in the local database.

If NULL, then the comparison is configured to compare two database objects in the local database. In this case, parameters that specify the remote database object apply to the second database object in the comparison and to operations on the second database object. For example, specify the second database object in this procedure by using the remote_schema_name and remote_object_name parameters.

	
index_schema_name

	
The name of the schema that contains the index.

If NULL, then the schema specified in the schema_name parameter is used.

	
index_name

	
The name of the index.

If NULL, then the system determines the index columns for the comparison automatically.

If the index_schema_name parameter is non-NULL, then the index_name parameter must also be non-NULL. Otherwise, an error is raised.

See Also: "Usage Notes" for more information about specifying an index

	
remote_schema_name

	
The name of the schema that contains the database object at the remote database. Specify a non-NULL value if the schema names are different at the two databases.

If NULL, then the schema specified in the schema_name parameter is used.

	
remote_object_name

	
The name of the database object at the remote database. Specify a non-NULL value if the database object names are different at the two databases.

If NULL, then the database object specified in the object_name parameter is used.

	
comparison_mode

	
Specify the default value CMP_COMPARE_MODE_OBJECT. Additional modes might be added in future releases.

	
column_list

	
Specify '*' to include all of the columns in the database objects being compared.

To compare a subset of columns in the database objects, specify a comma-delimited list of the columns to check. Any columns that are not in the list are ignored during a comparison and convergence.

See "Usage Notes" for information about columns that are required in the column_list parameter.

	
scan_mode

	
Either CMP_SCAN_MODE_FULL, CMP_SCAN_MODE_RANDOM, CMP_SCAN_MODE_CYCLIC, or CMP_SCAN_MODE_CUSTOM.

If you specify CMP_SCAN_MODE_CUSTOM, then make sure you specify an index using the index_schema_name and index_name parameters. Specifying an index ensures that you can specify the correct min_value and max_value for the lead index column when you run the COMPARE or RECHECK function.

See "Constants" for information about these constants.

	
scan_percent

	
The percentage of the database object to scan for comparison when the scan_mode parameter is set to either CMP_SCAN_MODE_RANDOM or CMP_SCAN_MODE_CYCLIC. For these scan_mode settings, a non-NULL value that is greater than 0 (zero) and less than 100 is required.

If NULL and the scan_mode parameter is set to CMP_SCAN_MODE_FULL, then the entire database object is scanned for comparison.

If NULL and the scan_mode parameter is set to CMP_SCAN_MODE_CUSTOM, then the portion of the database object scanned for comparison is specified when the COMPARE function is run.

If non-NULL and the scan_mode parameter is set to either CMP_SCAN_MODE_FULL or CMP_SCAN_MODE_CUSTOM, then the scan_percent parameter is ignored.

Note: When the scan_percent parameter is non-NULL, and the lead index column for the comparison does not distribute the rows in the database object evenly, the portion of the database object that is compared might be smaller or larger than the specified scan_percent value. See "Index Column Requirements for the DBMS_COMPARISON Package" for more information about the lead index column.

	
null_value

	
The value to substitute for each NULL in the database objects being compared. Specify a value or use the CMP_NULL_VALUE_DEF constant.

If a column being compared can contain NULLs, then the value specified for this parameter must be different than any non-NULL value in the column. Otherwise, if the value specified for this parameter can appear in the column, some row differences might not be found.

See "Constants" for information about this constant.

	
local_converge_tag

	
The Oracle Streams tag to set in the session on the local database before performing any changes to converge the data in the database objects being compared.

If the local_converge_tag parameter is non-NULL in the CONVERGE procedure when comparison results for this comparison are converged, then the setting in the CONVERGE procedure takes precedence. See CONVERGE Procedure for more information.

See the Oracle Streams Replication Administrator's Guide for more information about tags.

	
remote_converge_tag

	
The Oracle Streams tag to set in the session on the remote database before performing any changes to converge the data in the database objects being compared.

If the remote_converge_tag parameter is non-NULL in the CONVERGE procedure when comparison results for this comparison are converged, then the setting in the CONVERGE procedure takes precedence. See CONVERGE Procedure for more information.

See the Oracle Streams Replication Administrator's Guide for more information about tags.

	
max_num_buckets

	
Specify the maximum number of buckets to use. Specify a value or use the CMP_MAX_NUM_BUCKETS constant. See "Constants" for information about this constant.

See "Overview" for information about buckets.

Note: If an index column for a comparison is a VARCHAR2 or CHAR column, then the number of buckets might exceed the value specified for the max_num_buckets parameter.

	
min_rows_in_bucket

	
Specify the minimum number of rows in each bucket. Specify a value or use the CMP_MIN_ROWS_IN_BUCKET constant. See "Constants" for information about this constant.

See "Overview" for information about buckets.

Usage Notes

This section contains usage notes for the CREATE_COMPARISON procedure.

Usage Notes for the index_schema_name and index_name Parameters

When you specify an index for a comparison with the index_schema_name and index_name parameters, the specified index determines the comparison's index columns and their ordering. The order of the columns in the index determines the index column ordering for the comparison. Therefore, the column in column position 1 in the index is the lead column for the comparison.

The index columns and their ordering affect the details of each SQL statement generated and executed for a comparison. For each SQL statement, the optimizer decides whether to use indexes. If the optimizer decides to use indexes, then the optimizer decides which particular indexes to use. An index specified in column_list parameter might or might not be used.

The columns in the specified index must meet the requirements described in "Index Column Requirements for the DBMS_COMPARISON Package". If the index columns do not meet these requirements, then an error is raised.

	
Note:

If you do not specify an index when you create a comparison, then the CREATE_COMPARISON procedure selects either the primary key, if it exists, or an existing unique index. The procedure never selects a non-unique index. However, if you specify an index, then the CREATE_COMPARISON procedure does not check its uniqueness. Therefore, if you specify a non-unique index, and duplicate index keys exist, then the results might be incorrect when the CONVERGE procedure synchronizes data.

Usage Notes for the column_list Parameter

When the column_list parameter is set to a value other than '*', the following columns are required in the column_list parameter:

	
Any columns that are required to meet the index column requirements for the DBMS_COMPARISON package. If the index_name parameter is non-NULL, then the columns in the specified index must be in the column list. If the index_name parameter is NULL, then see "Index Column Requirements for the DBMS_COMPARISON Package".

	
If you plan to use the CONVERGE procedure to make changes to a database object based on the comparison, then any columns in this database object that have a NOT NULL constraint but no default value must be included in the column list. If these columns are not included, then the CONVERGE procedure returns an error. See CONVERGE Procedure.

DROP_COMPARISON Procedure

This procedure drops a comparison.

Syntax

DBMS_COMPARISON.DROP_COMPARISON(
 comparison_name IN VARCHAR2);

Parameters

Table 35-7 DROP_COMPARISON Procedure Parameters

	Parameter	Description
	
comparison_name

	
The name of the comparison.

PURGE_COMPARISON Procedure

This procedure purges the comparison results, or a subset of the comparison results, for a comparison.

	
Note:

At least one of the following parameters must be set to NULL: scan_id or purge_time. If both the scan_id and purge_time parameters are NULL, then this procedure purges all comparison results for the comparison.

Syntax

DBMS_COMPARISON.PURGE_COMPARISON(
 comparison_name IN VARCHAR2,
 scan_id IN NUMBER DEFAULT NULL,
 purge_time IN TIMESTAMP DEFAULT NULL);

Parameters

Table 35-8 PURGE_COMPARISON Procedure Parameters

	Parameter	Description
	
comparison_name

	
The name of the comparison.

	
scan_id

	
The scan ID of the scan for which results are purged. The scan ID must identify a root scan. If the scan ID does not identify a root scan, then an error is raised. When a root scan ID is specified, it is purged, and all direct and indirect child scans of the specified root scan are purged.

If NULL, then no scan ID is considered when purging comparison results for the comparison.

See "Overview" for information about scans.

	
purge_time

	
The date before which results are purged.

If NULL, then no date is considered when purging comparison results for the comparison.

RECHECK Function

This function rechecks the differences in a specified scan for a comparison.

This function performs one of the following actions:

	
If the specified scan completed successfully the last time it ran, then this function checks the previously identified differences in the scan.

	
If the specified scan completed partially, then this function continues to check the database object from the point where the previous scan ended.

	
Note:

This function does not compare the shared database object for differences that were not recorded in the specified comparison scan. To check for those differences, run the COMPARE function.

	
See Also:

	
Oracle Streams Replication Administrator's Guide

	
COMPARE Function

Syntax

DBMS_COMPARISON.RECHECK(
 comparison_name IN VARCHAR2,
 scan_id IN NUMBER,
 perform_row_dif IN BOOLEAN DEFAULT FALSE)
RETURN BOOLEAN;

Parameters

Table 35-9 RECHECK Function Parameters

	Parameter	Description
	
comparison_name

	
The name of the comparison.

	
scan_id

	
The scan ID of the scan to recheck.

See "Overview" for more information about specifying a scan ID in this parameter.

	
perform_row_dif

	
If TRUE, then compares each row individually in the database objects being compared after reaching the smallest possible bucket for the comparison.

If FALSE, then compares buckets for differences but does not compare each row individually when differences are found in the smallest possible bucket.

See "Overview" for information about buckets.

Return Values

This function returns TRUE when no differences are found in the database objects being compared. This function returns FALSE when differences are found in the database objects being compared.

36 DBMS_COMPRESSION

The DBMS_COMPRESSION package provides an interface to facilitate choosing the correct compression level for an application.

	
See Also:

	
Oracle Database Administrator's Guide

	
Oracle Database Concepts

	
Oracle Database SQL Language Reference

	
Oracle Database 2 Day + Data Warehousing Guide

	
Oracle Database Data Warehousing Guide

	
Oracle Database VLDB and Partitioning Guide

	
Oracle Database Reference

This chapter contains the following topics:

	
Using DBMS_COMPRESSION

	
Overview

	
Security Model

	
Constants

	
Views

	
Summary of DBMS_COMPRESSION Subprograms

Using DBMS_COMPRESSION

	
Overview

	
Security Model

	
Constants

	
Views

Overview

The DBMS_COMPRESSION package gathers compression-related information within a database environment. This includes tools for estimating compressibility of a table for both partitioned and non-partitioned tables, and gathering row-level compression information on previously compressed tables. This gives the user with adequate information to make compression-related decision.

Security Model

The DBMS_COMPRESSSION package is owned by user SYS, and must be created by SYS. The execution privilege is granted to PUBLIC. Subprograms in this package are executed using the privileges of the current user.

Constants

The DBMS_COMPRESSION package uses the constants shown in Table 36-1, "DBMS_COMPRESSION Constants - Compression Types"e:

Table 36-1 DBMS_COMPRESSION Constants - Compression Types

	Constant	Type	Value	Description
	
COMP_NOCOMPRESS

	
NUMBER

	
1

	
No compression

	
COMP_FOR_OLTP

	
NUMBER

	
2

	
OLTP compression

	
COMP_FOR_QUERY_HIGH

	
NUMBER

	
4

	
High compression level for query operations

	
COMP_FOR_QUERY_LOW

	
NUMBER

	
8

	
Low compression level for query operations

	
COMP_FOR_ARCHIVE_HIGH

	
NUMBER

	
16

	
High compression level for archive operations

	
COMP_FOR_ARCHIVE_LOW

	
NUMBER

	
32

	
Low compression level for archive operations

	
Note:

Hybrid columnar compression is a feature of certain Oracle storage systems. See Oracle Database Concepts for more information.

Views

The DBMS_DST package uses views described in the Oracle Database Reference. The twenty catalog views that contain a COMPRESS_FOR or DEF_COMPRESS_FOR will have a list of valid displayed values to be one of the following:

	
BASIC

	
OLTP

	
QUERY LOW

	
QUERY HIGH

	
ARCHIVE LOW

	
ARCHIVE LOW

The affected views are:

	
ALL_ALL_TABLES

	
ALL_OBJECT_TABLES

	
ALL_PART_TABLES

	
ALL_TABLES

	
ALL_TAB_PARTITIONS

	
ALL_TAB_SUBPARTITIONS

	
DBA_ALL_TABLES

	
DBA_OBJECT_TABLES

	
DBA_PART_TABLES

	
DBA_TABLES

	
DBA_TAB_PARTITIONS

	
DBA_TAB_SUBPARTITIONS

	
DBA_TABLESPACES

	
USER_OBJECT_TABLES

	
USER_PART_TABLES

	
USER_TABLES

	
USER_TAB_PARTITIONS

	
USER_TABLESPACES

Summary of DBMS_COMPRESSION Subprograms

Table 36-2 DBMS_COMPRESSION Package Subprograms

	Subprogram	Description
	
GET_COMPRESSION_RATIO Procedure

	
Analyzes the compression ratio of a table, and gives information about compressibility of a table

	
GET_COMPRESSION_TYPE Function

	
Returns the compression type for a specified row

GET_COMPRESSION_RATIO Procedure

This procedure analyzes the compression ratio of a table, and gives information about compressibility of a table. Various parameters can be provided by the user to selectively analyze different compression types.

Syntax

DBMS_COMPRESSION.GET_COMPRESSION_RATIO (
 scratchtbsname IN VARCHAR2,
 ownname IN VARCHAR2,
 tabname IN VARCHAR2,
 partname IN VARCHAR2,
 comptype IN NUMBER,
 blkcnt_cmp OUT PLS_INTEGER,
 blkcnt_uncmp OUT PLS_INTEGER,
 row_perblk_cmp OUT PLS_INTEGER,
 row_perblk_uncmp OUT PLS_INTEGER,
 cmp_ratio OUT NUMBER,
 comptype_str OUT varchar2);

Parameters

Table 36-3 GET_COMPRESSION_RATIO Procedure Parameters

	Parameter	Description
	
scratchtbsname

	
Temporary scratch tablespace that can be used for analysis

	
ownname

	
Schema of the table to analyze

	
tabname

	
Name of the table to analyze

	
partname

	
In case of partitioned tables, the related partition name

	
comptype

	
Compression types for which analysis should be performed

	
blkcnt_cmp

	
Number of blocks used by compressed sample of the table

	
blkcnt_uncmp

	
Number of blocks used by uncompressed sample of the table

	
row_perblk_cmp

	
Number of rows in a block in compressed sample of the table

	
row_perblk_uncmp

	
Number of rows in a block in uncompressed sample of the table

	
cmp_ratio

	
Compression ratio, blkcnt_uncmp divided by blkcnt_cmp

	
comptype_str

	
String describing the compression type

Usage Notes

The procedure creates different tables in the scratch tablespace and runs analysis on these objects. It does not modify anything in the user-specified tables.

GET_COMPRESSION_TYPE Function

This function returns the compression type for a specified row. If the row is chained, the function returns the compression type of the head piece only, and does not examine the intermediate or the tail piece since head pieces can be differently compressed.

Syntax

DBMS_COMPRESSION.GET_COMPRESSION_TYPE (
 ownname IN VARCHAR2,
 tabname IN VARCHAR2,
 row_id IN ROWID)
 RETURN NUMBER;

Parameters

Table 36-4 GET_COMPRESSION_TYPE Function Parameters

	Parameter	Description
	
ownname

	
Schema name of the table

	
tabname

	
Name of table

	
rowid

	
Rowid of the row

Return Values

Flag to indicate the compression type (see DBMS_COMPRESSION Constants - Compression Types).

37 DBMS_CONNECTION_POOL

The DBMS_CONNECTION_POOL package provides an interface to manage Database Resident Connection Pool.

	
See Also:

Oracle Database Concepts for more information on "Database Resident Connection Pooling"

This chapter contains the following topic:

	
Summary of DBMS_CONNECTION_POOL Subprograms

Summary of DBMS_CONNECTION_POOL Subprograms

Table 37-1 DBMS_CONNECTION_POOL Package Subprograms

	Subprogram	Description
	
ALTER_PARAM Procedure

	
Alters a specific configuration parameter as a standalone unit and does not affect other parameters

	
CONFIGURE_POOL Procedure

	
Configures the pool with advanced options

	
START_POOL Procedure

	
Starts the pool for operations. It is only after this call that the pool could be used by connection clients for creating sessions

	
STOP_POOL Procedure

	
Stops the pool and makes it unavailable for the registered connection clients

	
RESTORE_DEFAULTS Procedure

	
Restores the pool to default settings

ALTER_PARAM Procedure

This procedure alters a specific configuration parameter as a standalone unit and does not affect other parameters.

Syntax

DBMS_CONNECTION_POOL.ALTER_PARAM (
 pool_name IN VARCHAR2 DEFAULT 'SYS_DEFAULT_CONNECTION_POOL', param_name IN VARCHAR2, param_value IN VARCHAR2);

Parameters

Table 37-2 ALTER_PARAM Procedure Parameters

	Parameter	Description
	
pool_name

	
Pool to be configured. Currently only the default pool name is supported.

	
param_name

	
Any parameter name from CONFIGURE_POOL

	
param_value

	
Parameter value for param_name.

Exceptions

Table 37-3 ALTER_PARAM Procedure Exceptions

	Exception	Description
	
ORA-56500

	
Connection pool not found

	
ORA-56504

	
Invalid connection pool configuration parameter name

	
ORA-56505

	
Invalid connection pool configuration parameter value

	
ORA-56507

	
Connection pool alter configuration failed

Examples

DBMS_CONNECTION_POOL.ALTER_PARAM(
 'SYS_DEFAULT_CONNECTION_POOL', 'MAX_LIFETIME_SESSION', '120');

CONFIGURE_POOL Procedure

This procedure configures the pool with advanced options.

Syntax

DBMS_CONNECTION_POOL.CONFIGURE_POOL (
 pool_name IN VARCHAR2 DEFAULT 'SYS_DEFAULT_CONNECTION_POOL',
 minsize IN NUMBER DEFAULT 4,
 maxsize IN NUMBER DEFAULT 40,
 incrsize IN NUMBER DEFAULT 2,
 session_cached_cursors IN NUMBER DEFAULT 20,
 inactivity_timeout IN NUMBER DEFAULT 300,
 max_think_time IN NUMBER DEFAULT 120,
 max_use_session IN NUMBER DEFAULT 500000,
 max_lifetime_session IN NUMBER DEFAULT 86400);

Parameters

Table 37-4 CONFIGURE_POOL Procedure Parameters

	Parameter	Description
	
pool_name

	
Pool to be configured. Currently only the default pool name is supported.

	
minsize

	
Minimum number of pooled servers in the pool

	
maxsize

	
Maximum allowed pooled servers in the pool

	
incrsize

	
Pool would increment by this number of pooled server when pooled server are unavailable at application request time

	
session_cached_cursors

	
Turn on SESSION_CACHED_CURSORS for all connections in the pool. This is an existing init.ora parameter

	
inactivity_timeout

	
TTL (Time to live) for an idle session in the pool. This parameter helps to shrink the pool when it is not used to its maximum capacity. If a connection remains in the pool idle for this time, it is killed.

	
max_think_time

	
Maximum time of inactivity by the client after getting a session from the pool. If the client does not issue a database call after grabbing a server from the pool, the client will be forced to relinquish control of the pooled server and will get an ORA-xxxxx error. The freed up server may or may not be returned to the pool.

	
max_use_session

	
Maximum number of times a connection can be taken and released to the pool

	
max_lifetime_session

	
TTL (Time to live) for a pooled session

Exceptions

Table 37-5 CONFIGURE_POOL Procedure Exceptions

	Exception	Description
	
ORA-56500

	
Connection pool not found

	
ORA-56507

	
Connection pool alter configuration failed

Usage Notes

	
All expressions of time are in seconds

	
All of the parameters should be set based on statistical request patterns.

	
minsize should be set keeping in mind that it puts a lower bound on server resource consumption. This is to prevent the timeout from dragging the pool too low, because of a brief period of inactivity.

	
maxsize should be set keeping in mind that it puts an upper bound on concurrency and response-times and also server resource consumption.

	
session_cached_cursors is typically set to the number of most frequently used statements. It occupies cursor resource on the server

	
In doubt, do not set the increment and inactivity_timeout. The pool will have reasonable defaults.

	
max_use_session and max_lifetime_session allow for software rejuvenation or defensive approaches to potential bugs, leaks, accumulations, and like problems, by getting brand new sessions once in a while.

	
The connection pool reserves 5% of the pooled servers for authentication, and at least one pooled server is always reserved for authentication. When setting the maxsize parameter, ensure that there are enough pooled servers for both authentication and connections.

START_POOL Procedure

This procedure starts the pool for operations. It is only after this call that the pool could be used by connection classes for creating sessions.

Syntax

DBMS_CONNECTION_POOL.START_POOL (
 pool_name IN VARCHAR2 DEFAULT 'SYS_DEFAULT_CONNECTION_POOL');

Parameters

Table 37-6 START_POOL Procedure Parameters

	Parameter	Description
	
pool_name

	
Pool to be started. Currently only the default pool name is supported.

Exceptions

Table 37-7 START_POOL Procedure Exceptions

	Exception	Description
	
ORA-56500

	
Connection pool not found

	
ORA-56501

	
Connection pool startup failed

Usage Notes

If the instance is restarted (shutdown followed by startup), the pool is automatically started.

STOP_POOL Procedure

This procedure stops the pool and makes it unavailable for the registered connection classes.

Syntax

DBMS_CONNECTION_POOL.STOP_POOL (
 pool_name IN VARCHAR2 DEFAULT 'SYS_DEFAULT_CONNECTION_POOL');

Parameters

Table 37-8 STOP_POOL Procedure Parameters

	Parameter	Description
	
pool_name

	
Pool to be stopped. Currently only the default pool name is supported.

Exceptions

Table 37-9 STOP_POOL Procedure Exceptions

	Exception	Description
	
ORA-56500

	
Connection pool not found

	
ORA-56506

	
Connection pool shutdown failed

Usage Notes

This stops the pool and takes it offline. This does not destroy the persistent data (such as, the pool name and configuration parameters) associated with the pool.

RESTORE_DEFAULTS Procedure

This procedure restores the pool to default settings.

Syntax

DBMS_CONNECTION_POOL.RESTORE_DEFAULTS (
 pool_name IN VARCHAR2 DEFAULT 'SYS_DEFAULT_CONNECTION_POOL');

Parameters

Table 37-10 RESTORE_DEFAULTS Procedure Parameters

	Parameter	Description
	
pool_name

	
Pool to be restored. Currently only the default pool name is supported.

Exceptions

Table 37-11 RESTORE_DEFAULTS Procedure Exceptions

	Exception	Description
	
ORA-56500

	
Connection pool not found

	
ORA-56507

	
Connection pool alter configuration failed

Usage Notes

If the instance is restarted (shutdown followed by startup), the pool is automatically started.

38 DBMS_CQ_NOTIFICATION

The DBMS_CQ_NOTIFICATION package is part of the database change notification feature that provides the functionality to create registration on queries designated by a client application and so to receive notifications in response to DML or DDL changes on the objects associated with the queries. The notifications are published by the database when the DML or DDL transaction commits.

	
See Also:

Oracle Database Advanced Application Developer's Guide regarding implementing database change notification.

This chapter contains the following topics:

	
Using DBMS_CQ_NOTIFICATION

	
Overview

	
Security Model

	
Constants

	
Operational Notes

	
Examples

	
Data Structures

	
OBJECT Types

	
Summary of DBMS_CQ_NOTIFICATION Subprograms

Using DBMS_CQ_NOTIFICATION

	
Overview

	
Security Model

	
Constants

	
Operational Notes

	
Examples

Overview

The DBMS_CQ_NOTIFICATION package provides PL/SQL based registration interfaces. A client can use this interface to create registrations on queries based on objects of interest and specify a PL/SQL callback handler to receive notifications. In case of object level registration, when a transaction changes any of the objects associated with the registered queries and |COMMIT|s, the PL/SQL callback, specified during registration for those objects, is invoked. The application can define client-specific processing inside the implementation of its PL/SQL callback handler.

The interface lets you define a registration block (using a mechanism similar to a BEGIN-END block). The recipient of notifications namely the name of the PL/SQL callback handler and a few other registration properties like time-outs can be specified during the BEGIN phase. Any queries executed subsequently (inside the registration block) are considered "interesting queries" and objects referenced by those queries during query execution are registered. The registration is completed by ENDing the registration block.The registration block lets you create new registrations or add objects to existing registrations.

When a registration is created through the PL/SQL interface, a unique registration ID is assigned to the registration by the RDBMS. The client application can use the registration ID to keep track of registrations created by it. When a notification is published by the RDBMS, the registration ID will be part of the notification.

Typical Applications

This functionality is useful for example to applications that cache query result sets on mostly read-only objects in the mid-tier to avoid network round trips to the database. Such an application can create a registration on the queries it is interested in caching. On changes to objects referenced inside those queries, the database publishes a notification when the underlying transaction commits. In response to the notification, the mid-tier application can refresh its cache by re-executing the query/queries.

Security Model

The DBMS_CQ_NOTIFICATION package requires that the user have the CHANGE NOTIFICATION system privilege in order to receive notifications, and be granted EXECUTE privilege on the DBMS_CQ_NOTIFICATION package.

In addition the user is required to have SELECT privileges on all objects to be registered. Note that if the SELECT privilege on an object was granted at the time of registration creation but lost subsequently (due to a revoke), then the registration will be purged and a notification to that effect will be published.

Constants

The DBMS_CQ_NOTIFICATION package uses the constants shown in Table 38-1. The constants are used as flag parameters either during registration or when received during the notification.

The DBMS_CQ_NOTIFICATION package has sets of constants:

	
EVENT_STARTUP, EVENT_SHUTDOWN, EVENT_SHUTDOWN_ANY, EVENT_DEREG describe the type of the notification published by the database.

	
INSERTOP, DELETEOP, UPDATEOP, ALTEROP, DROPOP and UNKNOWNOP describe the type of operation on a table (during a notification published by the database).

	
QOS_RELIABLE, QOS_DEREG_NFY, QOS_ROWIDs describe registration Quality of Service properties that the client requires. These are specified during registration.

Table 38-1 DBMS_CQ_NOTIFICATION Constants

	Name	Type	Value	Description
	
ALL_OPERATIONS

	
BINARY_INTEGER

	
0

	
Interested in being notified on all operations, specified as a parameter during registration

	
ALL_ROWS

	
BINARY_INTEGER

	
1

	
All rows within the table may have been potentially modified

	
EVENT_STARTUP

	
BINARY_INTEGER

	
1

	
Instance startup notification

	
EVENT_SHUTDOWN

	
BINARY_INTEGER

	
2

	
Instance shutdown notification

	
EVENT_SHUTDOWN_ANY

	
BINARY_INTEGER

	
3

	
Any instance shutdown when running Oracle Real Application Clusters (Oracle RAC)

	
EVENT_DEREG

	
BINARY_INTEGER

	
5

	
Registration has been removed

	
EVENT_OBJCHANGE

	
BINARY_INTEGER

	
6

	
Notification for object change

	
EVENT_QUERYCHANGE

	
BINARY_INTEGER

	
7

	
Notification for query result set change

	
INSERTOP

	
BINARY_INTEGER

	
2

	
Insert operation

	
UPDATEOP

	
BINARY_INTEGER

	
4

	
Update operation

	
DELETEOP

	
BINARY_INTEGER

	
8

	
Delete operation

	
ALTEROP

	
BINARY_INTEGER

	
16

	
Table altered

	
DROPOP

	
BINARY_INTEGER

	
32

	
Table dropped

	
UNKNOWNOP

	
BINARY_INTEGER

	
64

	
Unknown operation

	
QOS_RELIABLE

	
BINARY_INTEGER

	
1

	
Reliable or persistent notification. Also implies that the notifications will be inserted into the persistent storage atomically with the committing transaction that results in an object change.

	
QOS_DEREG_NFY

	
BINARY_INTEGER

	
2

	
Purge registration on first notification

	
QOS_ROWIDS

	
BINARY_INTEGER

	
4

	
Require rowids of modified rows

	
QOS_QUERY

	
BINARY_INTEGER

	
8

	
Register at query granularity

	
QOS_BEST_EFFORT

	
BINARY_INTEGER

	
16

	
Best effort evaluation

	
NTFN_GROUPING_CLASS_TIME

	
BINARY_INTEGER

	
1

	
Group notifications by time

	
NTFN_GROUPING_TYPE_SUMMARY

	
BINARY_INTEGER

	
1

	
Summary grouping of notifications

	
NTFN_GROUPING_TYPE_LAST

	
BINARY_INTEGER

	
2

	
Last notification in the group

	
NTFN_GROUPING_FOREVER

	
BINARY_INTEGER

	
-1

	
Repeat notifications forever

Operational Notes

With regard to object level registration:

	
The notifications are published by the database when a transaction changes the registered objects and COMMITs.

	
All objects referenced in the queries executed inside the registration block starting from the previous NEW_REG_START or ENABLE_REG to REG_END are considered interesting objects and added to the registration.

With regard to query result change registration:

	
The notifications are published by the database when a transaction changes the result set of the registered query and COMMITs.

Troubleshooting

If you have created a registration and seem to not receive notifications when the underlying tables are changed, please check the following.

	
Is the job_queue_processes parameter set to a nonzero value? This parameter needs to be configured to a nonzero value in order to receive PL/SQL notifications through the handler.

	
Are the registrations being created as a non-SYS user?

	
If you are attempting DML changes on the registered object, are you COMMITing the transaction? Please note that the notifications are transactional and will be generated when the transaction COMMITs.

	
It maybe possible that there are run-time errors during the execution of the PL/SQL callback due to implementation errors. If so, they would be logged to the trace file of the JOBQ process that attempts to execute the procedure. The trace file would be usually named <ORACLE_SID>_j*_<PID>.trc. '

For example, if the ORACLE_SID is 'dbs1' and the process is 12483, the trace file might be named 'dbs1_j000_12483.trc.

Suppose a registration is created with 'chnf_callback as the notification handler and with registration_id 100. Let us suppose the user forgets to define the chnf_callback procedure. Then the JOBQ trace file might contain a message of the following form.

Runtime error during execution of PL/SQL cbk chnf_callback for reg CHNF100
 Error in PLSQL notification of msgid:
 Queue :
 Consumer Name :
 PLSQL function :chnf_callback
 Exception Occured, Error msg:
 ORA-00604: error occurred at recursive SQL level 2
 ORA-06550: line 1, column 7:
 PLS-00201: identifier 'CHNF_CALLBACK' must be declared
 ORA-06550: line 1, column 7:
 PL/SQL: Statement ignored

	
See Also:

For more information about troubleshooting Database Change Notification, see Oracle Database Advanced Application Developer's Guide.

Examples

Object Change Registration Example

Suppose that a mid-tier application has a lot of queries on the HR.EMPLOYEES table. If the EMPLOYEES table is infrequently updated, it can obtain better performance by caching rows from the table because that would avoid a round-trip to the backend database server and server side execution latency. Let us assume that the application has implemented a mid-tier HTTP listener that listens for notifications and updates the mid-tier cache in response to a notification.

The DBMS_CQ_NOTIFICATION package can be utilized in this scenario to send notifications about changes to the table by means of the following steps:

	
Implement a mid-tier listener component of the cache management system (for example, using HTTP) that listens to notification messages sent from the database and refreshes the mid-tier cache in response to the notification.

	
Create a server side stored procedure to process notifications

CONNECT system;
Enter password: password
GRANT CHANGE NOTIFICATION TO hr;
GRANT EXECUTE ON DBMS_CQ_NOTIFICATION TO hr;

Rem Enable job queue processes to receive notifications.
ALTER SYSTEM SET "job_queue_processes"=2;

CONNECT hr;
Enter password: password
Rem Create a table to record notification events
CREATE TABLE nfevents(regid number, event_type number);

Rem create a table to record changes to registered tables
CREATE TABLE nftablechanges(regid number, table_name varchar2(100),
 table_operation number);

Rem create a table to record rowids of changed rows.
CREATE TABLE nfrowchanges(regid number, table_name varchar2(100),
 row_id varchar2(30));

Rem Create a PL/SQL callback handler to process notifications.
CREATE OR REPLACE PROCEDURE chnf_callback(ntfnds IN SYS.CHNF$_DESC) IS
 regid NUMBER;
 tbname VARCHAR2(60);
 event_type NUMBER;
 numtables NUMBER;
 operation_type NUMBER;
 numrows NUMBER;
 row_id VARCHAR2(20);
 BEGIN
 regid := ntfnds.registration_id;
 numtables := ntfnds.numtables;
 event_type := ntfnds.event_type;

 INSERT INTO nfevents VALUES(regid, event_type);
 IF (event_type = DBMS_CQ_NOTIFICATION.EVENT_OBJCHANGE) THEN
 FOR i IN 1..numtables LOOP
 tbname := ntfnds.table_desc_array(i).table_name;
 operation_type := ntfnds.table_desc_array(I). Opflags;
 INSERT INTO nftablechanges VALUES(regid, tbname, operation_type);
 /* Send the table name and operation_type to client side listener using UTL_HTTP */
 /* If interested in the rowids, obtain them as follows */
 IF (bitand(operation_type, DBMS_CQ_NOTIFICATION.ALL_ROWS) = 0) THEN
 numrows := ntfnds.table_desc_array(i).numrows;
 ELSE
 numrows :=0; /* ROWID INFO NOT AVAILABLE */
 END IF;

 /* The body of the loop is not executed when numrows is ZERO */
 FOR j IN 1..numrows LOOP
 Row_id := ntfnds.table_desc_array(i).row_desc_array(j).row_id;
 INSERT INTO nfrowchanges VALUES(regid, tbname, Row_id);
 /* optionally Send out row_ids to client side listener using UTL_HTTP; */
 END LOOP;

 END LOOP;
 END IF;
 COMMIT;
END;
/

In Step 2 we can send as much information about the invalidation as the mid-tier application needs based on the information obtained from the notification descriptor.

Notes

	
In the above example, a registration was created on the EMPLOYEES table with 'chnf_callback' as the PL/SQL handler for notifications. During registration, the client specified reliable notifications (QOS_RELIABLE) and rowid notifications (QOS_ROWIDS)

	
The handler accesses the table descriptor array from the notification descriptor only if the notification type is of EVENT_OBJCHANGE. In all other cases (e.g EVENT_DEREG, EVENT_SHUTDOWN), the table descriptor array should not be accessed.

	
The handler accesses the row descriptor array from the table notification descriptor only if the ALL_ROWS bit is not set in the table operation flag. If the ALL_ROWS bit is set in the table operation flag, then it means that all rows within the table may have been potentially modified. In addition to operations like TRUNCATE that affect all rows in the tables, this bit may also be set if individual rowids have been rolled up into a FULL table invalidation.

This can occur if too many rows were modified on a given table in a single transaction (more than 80) or the total shared memory consumption due to rowids on the RDBMS is determined too large (exceeds 1% of the dynamic shared pool size). In this case, the recipient must conservatively assume that the entire table has been invalidated and the callback/application must be able to handle this condition.

Also note that the implementation of the user defined callback is up to the developer. In the above example, the callback was used to record event details into database tables. The application can additionally send the notification details to a mid-tier HTTP listener of its cache management system (as in the example) using UTL_HTTP. The listener could then refresh its cache by querying from the back-end database.

	
Create a registrations on the tables that we wish to be notified about. We pass in the previously defined procedure name (chnf_callback) as the name of the server side PL/SQL procedure to be executed when a notification is generated.

Rem Create a REGISTRATION on the EMPLOYEES TABLE
DECLARE
 REGDS SYS.CHNF$_REG_INFO;
 regid NUMBER;
 mgr_id NUMBER;
 dept_id NUMBER;
 qosflags NUMBER;
BEGIN
 qosflags := DBMS_CQ_NOTIFICATION.QOS_RELIABLE +
 DBMS_CQ_NOTIFICATION.QOS_ROWIDS;
REGDS := SYS.CHNF$_REG_INFO ('chnf_callback', qosflags, 0,0,0);
regid := DBMS_CQ_NOTIFICATION.NEW_REG_START (REGDS);
SELECT manager_id INTO mgr_id FROM EMPLOYEES WHERE employee_id = 200;
DBMS_CQ_NOTIFICATION.REG_END;
END;
/

Once the registration is created in Step 3 above, the server side PL/SQL procedure defined in Step 2 is executed in response to any COMMITted changes to the HR.EMPLOYEES table. As an example, let us assume that the following update is performed on the employees table.

UPDATE employees SET salary=salary*1.05 WHERE employee_id=203;COMMIT;

Once the notification is processed, you will find rows which might look like the following in the nfevents, nftablechanges and nfrowchanges tables.

SQL> SELECT * FROM nfevents;

 REGID EVENT_TYPE

 20045 6

SQL> SELECT * FROM nftablechanges;

 REGID TABLE_NAME TABLE_OPERATION

 20045 HR.EMPLOYEES 4

SQL> select * from nfrowchanges;

 REGID TABLE_NAME ROW_ID
--
 20045 HR.EMPLOYEES AAAKB/AABAAAJ8zAAF

Query Result Change Registration Example

	
Creating a Callback

CONNECT system;
Enter password: password
GRANT CHANGE NOTIFICATION TO hr;
GRANT EXECUTE ON DBMS_CQ_NOTIFICATION TO hr;
CONNECT hr;
Enter password: password
Rem Create a table to record notification events
CREATE TABLE nfevents(regid NUMBER, event_type NUMBER);

Rem Create a table to record notification queries
CREATE TABLE nfqueries (qid NUMBER, qop NUMBER);

Rem Create a table to record changes to registered tables
CREATE TABLE nftablechanges(
 qid NUMBER,
 table_name VARCHAR2(100),
 table_operation NUMBER);

Rem Create a table to record rowids of changed rows.
CREATE TABLE nfrowchanges(
 qid NUMBER,
 table_name VARCHAR2(100),
 row_id VARCHAR2(2000));

CREATE OR REPLACE PROCEDURE chnf_callback
 (ntfnds IN CQ_NOTIFICATION$_DESCRIPTOR)
IS
 regid NUMBER;
 tbname VARCHAR2(60);
 event_type NUMBER;
 numtables NUMBER;
 operation_type NUMBER;
 numrows NUMBER;
 row_id VARCHAR2(2000);
 numqueries NUMBER;
 qid NUMBER;
 qop NUMBER;

BEGIN
 regid := ntfnds.registration_id;
 event_type := ntfnds.event_type;
 INSERT INTO nfevents VALUES(regid, event_type);
 numqueries :=0;
 IF (event_type = DBMS_CQ_NOTIFICATION.EVENT_QUERYCHANGE) THEN
 numqueries := ntfnds.query_desc_array.count;
 FOR i in 1..numqueries LOOP
 qid := ntfnds.QUERY_DESC_ARRAY(i).queryid;
 qop := ntfnds.QUERY_DESC_ARRAY(i).queryop;
 INSERT INTO nfqueries VALUES(qid, qop);
 numtables := 0;
 numtables := ntfnds.QUERY_DESC_ARRAY(i).table_desc_array.count;
 FOR j IN 1..numtables LOOP
 tbname := ntfnds.QUERY_DESC_ARRAY(i).table_desc_array(j).table_name;
 operation_type := ntfnds.QUERY_DESC_ARRAY(i).table_desc_array(j).Opflags;
 INSERT INTO nftablechanges VALUES(qid, tbname, operation_type);
 IF (bitand(operation_type, DBMS_CQ_NOTIFICATION.ALL_ROWS) = 0)
 THEN
 numrows := ntfnds.query_desc_array(i).table_desc_array(j).numrows;
 ELSE
 numrows :=0; /* ROWID INFO NOT AVAILABLE */
 END IF;

 /* The body of the loop is not executed when numrows is ZERO */
 FOR k IN 1..numrows LOOP
 Row_id := ntfnds.query_desc_array(i).table_desc_array(j).row_desc_array(k).row_id;
 INSERT INTO nfrowchanges VALUES(qid, tbname, Row_id);

 END LOOP; /* loop over rows */
 END LOOP; /* loop over tables */
 END LOOP; /* loop over queries */
 END IF;
 COMMIT;
END;
/

	
Creates a query registration

DECLARE
 reginfo cq_notification$_reg_info;
 mgr_id NUMBER;
 dept_id NUMBER;
 v_cursor SYS_REFCURSOR;
 regid NUMBER;
 qosflags NUMBER;

BEGIN
 /* Register two queries for result-set-change notifications: */

 /* 1. Construct registration information.
 'chnf_callback' is name of notification handler.
 QOS_QUERY specifies result-set-change notifications. */

 qosflags := DBMS_CQ_NOTIFICATION.QOS_QUERY +
 DBMS_CQ_NOTIFICATION.QOS_ROWIDS;

 reginfo := cq_notification$_reg_info('chnf_callback', qosflags,0, 0, 0);

 /* 2. Create registration */

 regid := DBMS_CQ_NOTIFICATION.NEW_REG_START(reginfo);

 OPEN v_cursor FOR
 SELECT DBMS_CQ_NOTIFICATION.CQ_NOTIFICATION_QUERYID, manager_id
 FROM HR.employees
 WHERE employee_id = 7902;
 CLOSE v_cursor;

 OPEN v_cursor for
 SELECT DBMS_CQ_NOTIFICATION.CQ_NOTIFICATION_QUERYID, department_id
 FROM HR.departments
 WHERE department_name = 'IT';
 CLOSE v_cursor;

 DBMS_CQ_NOTIFICATION.REG_END;
END;
/

	
After creating the query registrations, the output from USER_CQ_NOTIFICATION_QUERIES would appear as follows.

SQL> SELECT queryid, regid, to_char(querytext)
 FROM user_cq_notification_queries;

 QUERYID REGID
---------- ----------
TO_CHAR(QUERYTEXT)
--
 22 41
 SELECT HR.DEPARTMENTS.DEPARTMENT_ID FROM HR.DEPARTMENTS WHERE HR.DEPARTMENTS.
DEPARTMENT_NAME = 'IT'

 21 41
 SELECT HR.EMPLOYEES.MANAGER_ID FROM HR.EMPLOYEES WHERE HR.EMPLOYEES.EMPLOYEE_
ID = 7902

Now, let us perform an UPDATE that changes the result of the query with queryid 22
by renaming the department with name 'IT' to FINANCE.

SQL> update departments set department_name = 'FINANCE' where department_name = 'IT';

1 row updated.

SQL> commit;

Commit complete.

Now we can query the notifications that we recorded in the callback.

SQL> select * from nfevents;

 REGID EVENT_TYPE
---------- ----------
 61 7

Event type 7 corresponds to EVENT_QUERYCHANGE

SQL> select * from nfqueries;

 QID QOP
---------- ----------
 42 7

Event type 7 corresponds to EVENT_QUERYCHANGE

SQL> select * from nftablechanges;
SQL> select * from nftablechanges;

 REGID

TABLE_NAME
--
TABLE_OPERATION

 42
HR.DEPARTMENTS
 4

TABLE_OPERATION 4 corresponds to UPDATEOP

SQL> select * from nfrowchanges;
 REGID

TABLE_NAME
--
ROW_ID
--
 61
HR.DEPARTMENTS
AAANkdAABAAALinAAF

Data Structures

The DBMS_CQ_NOTIFICATION package defines the following OBJECT types.

OBJECT Types

	
CQ_NOTIFICATION$_DESCRIPTOR Object Type

	
CQ_NOTIFICATION$_QUERY Object Type

	
CQ_NOTIFICATION$_QUERY_ARRAY Object (Array) Type

	
CQ_NOTIFICATION$_TABLE Object Type

	
CQ_NOTIFICATION$_TABLE_ARRAY Object (Array) Type

	
CQ_NOTIFICATION$_ROW Object Type

	
CQ_NOTIFICATION$_ROW_ARRAY Object (Array) Type

	
CQ_NOTIFICATION$_REG_INFO Object Type

CQ_NOTIFICATION$_DESCRIPTOR Object Type

This is the top level change notification descriptor type. It is a synonym for the SYS.CHNF$_DESC type.

Syntax

TYPE SYS.CHNF$_DESC IS OBJECT(
 registration_id NUMBER,
 transaction_id RAW(8),
 dbname VARCHAR2(30),
 event_type NUMBER,
 numtables NUMBER,
 table_desc_array CQ_NOTIFICATION$_TABLE_ARRAY,
 query_desc_array CQ_NOTIFICATION$_QUERY_ARRAY);

Attributes

Table 38-2 CQ_NOTIFICATION$_DESCRIPTOR Object Type

	Attribute	Description
	
registration_id

	
Registration ID returned during registration

	
transaction_id

	
Transaction ID. transaction_id of the transaction that made the change. Will be NULL unless the event_type is EVENT_OBJCHANGE or EVENT_QUERYCHANGE.

	
dbname

	
Name of database

	
event_type

	
Database event associated with the notification. Can be one of EVENT_OBJCHANGE (change to a registered object), EVENT_STARTUP, or EVENT_QUERYCHANGE, EVENT_SHUTDOWN or EVENT_DEREG (registration has been removed due to a timeout or other reason)

	
numtables

	
Number of modified tables. Will be NULL unless the event_type is EVENT_OBJCHANGE.

	
table_desc_array

	
Array of table descriptors. Will be NULL unless the event_type is EVENT_OBJCHANGE.

	
query_desc_array

	
Array of queries changed. This will be NULL unless event_type is EVENT_QUERYCHANGE

CQ_NOTIFICATION$_QUERY Object Type

The object type describes the changes to a query result caused by an event such as a transaction commit. An array of CQ_NOTIFICATION$_QUERY descriptors is embedded inside the top level notification descriptor (CQ_NOTIFICATION$_DESCRIPTOR) for events of type EVENT_QUERYCHANGE. The array corresponds to the SET of queryids which were invalidated as a result of the event.

This is a synonym for the base type SYS.CHNF$_QDESC.

Syntax

TYPE SYS.CHNF$_QDESC IS OBJECT (
 queryid NUMBER,
 queryop NUMBER,
 table_desc_array CQ_NOTIFICATION$_TABLE_ARRAY);

Attributes

Table 38-3 TYPE SYS.CQ_NOTIFICATION$_QUERY Object Type

	Attribute	Description
	
queryid

	
QueryId of the changed query

	
queryop

	
Operation describing change to the query

	
table_desc_array

	
Array of table changes which contributed to the query Result Set change

CQ_NOTIFICATION$_QUERY_ARRAY Object (Array) Type

This type corresponds to an array of CQ_NOTIFICATION$_QUERY objects. It is a synonym for the SYS.CHNF$_QUERY_ARRAY type.

Syntax

TYPE CQ_NOTIFICATION$_TABLE_ARRAY IS VARRAY (1073741824) OF CQ_NOTIFICATION$_TABLE;

CQ_NOTIFICATION$_TABLE Object Type

This descriptor type describes a change to a table and is embedded inside the top level change notification descriptor type for events of type EVENT_OBJCHANGE For query result set changes (event type will be set to EVENT_QUERYCHANGE), the array of table descriptors is embedded inside each query change descriptor.

Note that this is a synonym for the type previously named SYS.CHNF$_TDESC.

Syntax

TYPE SYS.CHNF$_TDESC IS OBJECT (
 opflags NUMBER,
 table_name VARCHAR2(2*M_IDEN+1),
 numrows NUMBER,
 row_desc_array CQ_NOTIFICATION$_ROW_ARRAY)

Attributes

Table 38-4 TYPE SYS.CQ_NOTIFICATION$_TABLE Object Type

	Attribute	Description
	
opflags

	
Table level operation flags. This is a flag field (bit-vector) that describes the operations that occurred on the table. It can be an OR of the following bit fields - INSERTOP, UPDATEOP, DELETEOP, DROPOP, ALTEROP, ALL_ROWS. If the ALL_ROWS (0x1) bit is set it means that either the entire table is modified (for example, DELETE * FROM t) or row level granularity of information is not requested or not available in the notification and the receiver has to conservatively assume that the entire table has been invalidated.

	
table_name

	
Name of modified table

	
numrows

	
Number of modified rows within the table. numrows will be NULL and hence should not be accessed if the ALL_ROWS bit is set in the table change descriptor.

	
row_desc_array

	
Array of row descriptors. This field will be NULL if the ALL_ROWS bit is set in opflags.

CQ_NOTIFICATION$_TABLE_ARRAY Object (Array) Type

This type corresponds to an array of CQ_NOTIFICATION$_TABLE objects. It is a synonym for the SYS.CHNF$_TDESC_ARRAY type.

Syntax

TYPE CQ_NOTIFICATION$_TABLE_ARRAY IS VARRAY (1073741824) OF CQ_NOTIFICATION$_TABLE;

CQ_NOTIFICATION$_ROW Object Type

An array of CQ_NOTIFICATION$_ROW is embedded inside a CQ_NOTIFICATION$_TABLE (table change descriptor) if the QOS_ROWIDS option was chosen at the time of registration and the ALL_ROWS bit is not set in the opflags field of the table change descriptor.

Note that this is a synonym for the type previously named SYS.CHNF$_RDESC.

Syntax

TYPE SYS.CHNF$_RDESC IS OBJECT (
 opflags NUMBER,
 row_id VARCAHR2 (2000));

Attributes

Table 38-5 TYPE SYS.CQ_NOTIFICATION$_ROW Object Type

	Attribute	Description
	
opflags

	
Row level operation flags. The flag field (bit vector) describes the operations in the row (could be INSERTOP, UPDATEOP or DELETEOP).

	
row_id

	
The rowid of the modified row

CQ_NOTIFICATION$_ROW_ARRAY Object (Array) Type

This object type corresponds to an array of CQ_NOTIFICATION$_ROW objects and is embedded inside the CQ_NOTIFICATION$_TABLE if QOS_ROWIDS was specified during registration and the ALL_ROWS bit is not set in the opflags field of the table change descriptor.

This type is a synonym for the SYS.CHNF$_RDESC_ARRAY type.

Syntax

TYPE CQ_NOTIFICATION$_ROW_ARRAY IS VARRAY (1073741824) OF CQ_NOTIFICATION$_ROW;

CQ_NOTIFICATION$_REG_INFO Object Type

The object type describes the attributes associated with creating a new registration. It is a synonym for the type previously named SYS.CHNF$_REG_INFO.

Syntax

TYPE SYS.CHNF$_REG_INFO IS OBJECT (
 callback VARCHAR2(20),
 quosflags NUMBER,
 timeout NUMBER,
 operations_filter NUMBER,
 transaction_lag NUMBER,
 ntfn_grouping_class NUMBER,
 ntfn_grouping_value NUMBER,
 ntfn_grouping_type NUMBER,
 ntfn_grouping_start_time TIMESTAMP WITH TIME ZONE,
 ntfn_grouping_repeat_count NUMBER);

Attributes

Table 38-6 TYPE CQ_NOTIFICATION$_REG_INFO Object Type

	Attribute	Description
	
callback

	
Name of the server side PL/SQL procedure to be executed on a notification. Prototype is <call_backname>(ntfnds IN SYS.chnf$_desc)

	
qosflags

	
Quality of service flags. Can be set to an OR of the following values:

	
QOS_RELIABLE (0x1): Notifications are reliable (persistent) and survive instance death. This means that on an instance death in an Oracle RAC cluster, surviving instances will be able to deliver any queued invalidations. Similarly, pending invalidations can be delivered on instance restart, in a single instance configuration. The disadvantage is that there is a CPU cost/ latency involved in inserting the invalidation message to a persistent store. If this parameter is false, then server side CPU and latency are minimized, because invalidations are buffered into an in memory queue but the client could lose invalidation messages on an instance shutdown.

	
QOS_DEREG_NFY (0x2): The registration will be expunged on the first notification

	
QOS_ROWIDS (0x4): The notification needs to include information about the rowids that were modified

	
QOS_QUERY (0x8): specifies query result change notification as opposed to object change notification

	
QOS_BEST_EFFORt (0x16): can register simplified versions of queries and minimizes evaluation with some false positives.

	
timeout

	
If set to a nonzero value, specifies the time in seconds after which the registration is automatically expunged by the database. If zero / NULL, the registration lives until explicitly deregistered. Note that the timeout option can be combined with the purge on notification (QOS_DEREG_NFY) option as well.

	
operations_filter

	
if nonzero, specifies a filter to be selectively notified on certain operations. These flags can be used to filter based on specific operation types:

	
0: Notify on all operations (DBMS_CQ_NOTIFICATION.ALL_OPERATIONS)

	
0x2: Notify on every INSERT (DBMS_CQ_NOTIFICATION.INSERTOP)

	
0x4: Notify on every UPDATE (DBMS_CQ_NOTIFICATION.UPDATEOP)

	
0x8: Notify on every DELETE (DBMS_CQ_NOTIFICATION.DELETEOP)

A combination of operations can be specified by using a bitwise OR.

Caution: This parameter will be honored for object level registrations but ignored for query result change registrations. To implement notification flow control in 11g, the applications can use the "GROUPING notification" option.

	
transaction_lag

	
Lag between consecutive notifications in units of transactions. Can be used to specify the number of transactions/database changes, by which the client is willing to lag behind the database. If 0, it means that the client needs to receive an invalidation message as soon as it is generated.

Caution: This parameter will be honored for object level registrations but ignored for query result change notification registrations.

	
ntfn_grouping_class

	
When grouping notifications, the class based on which the group is derived. Currently, the only allowed value is DBMS_CQ_NOTIFICATION.NTFN_GROUPING_CLASS_TIME by which notifications are grouped by time.

	
ntfn_grouping_value

	
The grouping value. This describes the time interval that defines the group in seconds. For example, if this were set to 900, it would mean that notifications that were generated in each 15 minute interval would be grouped together.

	
ntfn_grouping_type

	
The type of grouping desired. It can be one of two allowed values

	
DBMS_CQ_NOTIFICATION.NTFN_GROUPING_TYPE_SUMMARY - all notifications in the group are summarized into a single notification

	
DBMS_CQ_NOTIFICATION.NTFN_GROUPING_TYPE_LAST - only the last notification in the group is published and the earlier ones discarded

	
ntfn_grouping_start_time

	
When to start generating notifications. If specified as NULL, it defaults to the current system generated time.

	
ntfn_grouping_repeat_count

	
How many times the notification should be repeated. Set this to DBMS_CQ_NOTIFICATION.NTFN_GROUPING_FOREVER to receive notifications for the life time of the registration. Set to a nonzero value if only a certain number of notifications are desired for the life time of the registration.

Usage Notes

	
The type declaration incorporates three other alternative constructors. In the first case all other parameters default to their default values.

TYPE CQ_NOTIFICATION$_REG_INFO IS OBJECT (
 callback VARCHAR2(20),
 quosflags NUMBER,
 timeout NUMBER);

The second option applies to the type constructor defined in a previous release, and which is retained for backward compatibility:

TYPE CQ_NOTIFICATION$_REG_INFO IS OBJECT (
 callback VARCHAR2(20),
 quosflags NUMBER,
 timeout NUMBER,
 operations_filter NUMBER,
 transaction_lag NUMBER);

The third definition contains all the members of the type except transaction_lag which is being deprecated:

TYPE CQ_NOTIFICATION$_REG_INFO IS OBJECT (
 callback VARCHAR2(20),
 quosflags NUMBER,
 timeout NUMBER,
 operations_filter NUMBER,
 ntfn_grouping_class NUMBER,
 ntfn_grouping_value NUMBER,
 ntfn_grouping_type NUMBER,
 ntfn_grouping_start_time TIMESTAMP WITH TIME ZONE,
 ntfn_grouping_repeat_count NUMBER);

	
In response to a database change, the server side PL/SQL procedure specified by "callback" is executed. The PL/SQL procedure name has to be specified in the format schema_name.procedure_name. The procedure must have the following signature:

PROCEDURE <procedure_name>(ntfnds IN SYS.chnf$_desc)

CHNF$_DESC describes the change notification descriptor.

	
The init.ora parameter job_queue_processes must be set to a nonzero value to receive PL/SQL notifications, because the specified procedure is executed inside a job queue process when a notification is generated.

Summary of DBMS_CQ_NOTIFICATION Subprograms

Table 38-7 DBMS_CQ_NOTIFICATION Package Subprograms

	Subprogram	Description
	
CQ_NOTIFICATION_QUERYID Function

	
Returns the queryid of the most recent query that was attempted to be registered in a registration block

	
DEREGISTER Procedure

	
De-subscribes the client with the supplied registration identifier (ID)

	
ENABLE_REG Procedure

	
Begins a registration block using an existing registration identifier (ID)

	
NEW_REG_START Function

	
Begins a new registration block

	
REG_END Procedure

	
Ends the registration boundary

	
SET_ROWID_THRESHOLD Procedure

	
Configures the maximum number of rows of a table published in a change notification if the rows of the table are modified in a transaction

CQ_NOTIFICATION_QUERYID Function

This function returns the queryid of the most recent query that was attempted to be registered in a registration block.

Syntax

DBMS_CQ_NOTIFICATION.CQ_NOTIFICATION_QUERYID
 RETURN NUMBER;

Return Values

Returns the queryid of the most recently registered query.

DEREGISTER Procedure

This procedure desubscribes the client with the specified registration identifier (ID).

Syntax

DBMS_CQ_NOTIFICATION.DEREGISTER (
 regid IN NUMBER);

Parameters

Table 38-8 DEREGISTER Procedure Parameters

	Parameter	Description
	
regid

	
Client registration ID

Usage Notes

Only the user that created the registration (or the SYS user) will be able to desubscribe the registration.

ENABLE_REG Procedure

This procedure adds objects to an existing registration identifier (ID). It is similar to the interface for creating a new registration, except that it takes an existing regid to which to add objects.Subsequent execution of queries causes the objects referenced in the queries to be added to the specified regid, and the registration is completed on invoking the REG_END Procedure.

Syntax

DBMS_CQ_NOTIFICATION.ENABLE_REG (
 regid IN NUMBER);

Parameters

Table 38-9 ENABLE_REG Procedure Parameters

	Parameter	Description
	
regid

	
Client registration ID

Usage Notes

Only the user that created the registration will be able to add further objects to the registration.

NEW_REG_START Function

This procedure begins a new registration block. Any objects referenced by queries executed within the registration block are considered interesting objects and added to the registration. The registration block ends upon calling the REG_END procedure.

Syntax

DBMS_CQ_NOTIFICATION.NEW_REG_START (
 regds IN sys.chnf$_reg_info)
 RETURN NUMBER;

Parameters

Table 38-10 NEW_REG_START Function Parameters

	Parameter	Description
	
sys.chnf$_reg_info

	
Registration descriptor describing the notification handler and other properties of the registration

Return Values

The procedure returns a registration-id which is a unique integer assigned by the database to this registration. The registration-id will be echoed back in every notification received for this registration.

Usage Notes

	
The only operations permitted inside a registration block are queries (the ones the user wishes to register). DML and DDL operations are not permitted.

	
The registration block is a session property and implicitly terminates upon exiting the session. While the registration block is a session property, the registration itself is a persistent database entity. Once created, the registration survives until explicitly deregistered by the client application or timed-out or removed by the database for some other reason (such as loss of privileges).

	
The user must have the CHANGE NOTIFICATION system privilege and SELECT privileges on any objects to be registered.

	
The SYS user will not be permitted to create new registrations.

	
Nesting of registration block is not permitted.

REG_END Procedure

This procedure marks the end of the registration block. No newly executed queries are tracked.

Syntax

DBMS_CQ_NOTIFICATION.REG_END;

SET_ROWID_THRESHOLD Procedure

This procedure configures the maximum number of rows of a table published in a change notification if the rows of the table are modified in a transaction.

Syntax

DBMS_CQ_NOTIFICATION.SET_ROWID_THRESHOLD (
 tbname IN VARCHAR2,
 threshold IN NUMBER);

Parameters

Table 38-11 SET_ROWID_THRESHOLD Procedure Parameters

	Parameter	Description
	
tbname

	
Table name qualified by the schema name in the form schemaname.tablename

	
threshold

	
Maximum number of modified rows of the table to be published in the change notification

Usage Notes

	
The table needs to be registered for change notification either at object change granularity or at query result set granularity.

	
The threshold set by means of this subprogram applies to that instance only and does not persist across instance startup/shutdown.

The script content on this page is for navigation purposes only and does not alter the content in any way.

39 DBMS_CRYPTO

DBMS_CRYPTO provides an interface to encrypt and decrypt stored data, and can be used in conjunction with PL/SQL programs running network communications. It provides support for several industry-standard encryption and hashing algorithms, including the Advanced Encryption Standard (AES) encryption algorithm. AES has been approved by the National Institute of Standards and Technology (NIST) to replace the Data Encryption Standard (DES).

	
See Also:

Oracle Database Security Guide for further information about using this package and about encrypting data in general.

This chapter contains the following topics:

	
Using the DBMS_CRYPTO Subprograms

	
Overview

	
Security Model

	
Types

	
Algorithms

	
Restrictions

	
Exceptions

	
Operational Notes

	
Summary of DBMS_CRYPTO Subprograms

Using the DBMS_CRYPTO Subprograms

	
Overview

	
Security Model

	
Types

	
Algorithms

	
Restrictions

	
Exceptions

	
Operational Notes

Overview

DBMS_CRYPTO contains basic cryptographic functions and procedures. To use this package correctly and securely, a general level of security expertise is assumed.

The DBMS_CRYPTO package enables encryption and decryption for common Oracle datatypes, including RAW and large objects (LOBs), such as images and sound. Specifically, it supports BLOBs and CLOBs. In addition, it provides Globalization Support for encrypting data across different database character sets.

The following cryptographic algorithms are supported:

	
Data Encryption Standard (DES), Triple DES (3DES, 2-key and 3-key)

	
Advanced Encryption Standard (AES)

	
MD5, MD4, and SHA-1 cryptographic hashes

	
MD5 and SHA-1 Message Authentication Code (MAC)

Block cipher modifiers are also provided with DBMS_CRYPTO. You can choose from several padding options, including PKCS (Public Key Cryptographic Standard) #5, and from four block cipher chaining modes, including Cipher Block Chaining (CBC).

Table 39-1 lists the DBMS_CRYPTO package features in comparison to the other PL/SQL encryption package, the DBMS_OBFUSCATION_TOOLKIT.

Table 39-1 DBMS_CRYPTO and DBMS_OBFUSCATION_TOOLKIT Feature Comparison

	Package Feature	DBMS_CRYPTO	DBMS_OBFUSCATION_TOOLKIT
	
Cryptographic algorithms

	
DES, 3DES, AES, RC4, 3DES_2KEY

	
DES, 3DES

	
Padding forms

	
PKCS5, zeroes

	
none supported

	
Block cipher chaining modes

	
CBC, CFB, ECB, OFB

	
CBC

	
Cryptographic hash algorithms

	
MD5, SHA-1, MD4

	
MD5

	
Keyed hash (MAC) algorithms

	
HMAC_MD5, HMAC_SH1

	
none supported

	
Cryptographic pseudo-random number generator

	
RAW, NUMBER, BINARY_INTEGER

	
RAW, VARCHAR2

	
Database types

	
RAW, CLOB, BLOB

	
RAW, VARCHAR2

DBMS_CRYPTO is intended to replace the DBMS_OBFUSCATION_TOOLKIT, providing greater ease of use and support for a range of algorithms to accommodate new and existing systems. Specifically, 3DES_2KEY and MD4 are provided for backward compatibility. It is not recommended that you use these algorithms because they do not provide the same level of security as provided by 3DES, AES, MD5, or SHA-1.

Security Model

Oracle Database installs this package in the SYS schema. You can then grant package access to existing users and roles as needed.

Types

Parameters for the DBMS_CRYPTO subprograms use these datatypes:

Table 39-2 DBMS_CRYPTO Datatypes

	Type	Description
	
BLOB

	
A source or destination binary LOB

	
CLOB

	
A source or destination character LOB (excluding NCLOB)

	
PLS_INTEGER

	
Specifies a cryptographic algorithm type (used with BLOB, CLOB, and RAW datatypes)

	
RAW

	
A source or destination RAW buffer

Algorithms

The following cryptographic algorithms, modifiers, and cipher suites are predefined in this package.

Table 39-3 DBMS_CRYPTO Cryptographic Hash Functions

	Name	Description
	
HASH_MD4

	
Produces a 128-bit hash, or message digest of the input message

	
HASH_MD5

	
Also produces a 128-bit hash, but is more complex than MD4

	
HASH_SH1

	
Secure Hash Algorithm (SHA). Produces a 160-bit hash.

Table 39-4 DBMS_CRYPTO MAC (Message Authentication Code) Functions

	Name	Description
	
HMAC_MD5Foot 1

	
Same as MD5 hash function, except it requires a secret key to verify the hash value.

	
HMAC_SH1Footref 1

	
Same as SHA hash function, except it requires a secret key to verify the hash value.

Footnote 1 Complies with IETF RFC 2104 standard

Table 39-5 DBMS_CRYPTO Encryption Algorithms

	Name	Description
	
ENCRYPT_DES

	
Data Encryption Standard. Block cipher. Uses key length of 56 bits.

	
ENCRYPT_3DES_2KEY

	
Data Encryption Standard. Block cipher. Operates on a block 3 times with 2 keys. Effective key length of 112 bits.

	
ENCRYPT_3DES

	
Data Encryption Standard. Block cipher. Operates on a block 3 times.

	
ENCRYPT_AES128

	
Advanced Encryption Standard. Block cipher. Uses 128-bit key size.

	
ENCRYPT_AES192

	
Advanced Encryption Standard. Block cipher. Uses 192-bit key size.

	
ENCRYPT_AES256

	
Advanced Encryption Standard. Block cipher. Uses 256-bit key size.

	
ENCRYPT_RC4

	
Stream cipher. Uses a secret, randomly generated key unique to each session.

Table 39-6 DBMS_CRYPTO Block Cipher Suites

	Name	Description
	
DES_CBC_PKCS5

	
ENCRYPT_DESFoot 2 + PAD_PKCS5Foot 3

	
DES3_CBC_PKCS5

	
ENCRYPT_3DESFootref 2 + PAD_PKCS5Footref 3

Footnote 1 See Table 39-5, "DBMS_CRYPTO Encryption Algorithms"

Footnote 2 See Table 39-7, "DBMS_CRYPTO Block Cipher Chaining Modifiers"

Footnote 3 See Table 39-8, "DBMS_CRYPTO Block Cipher Padding Modifiers"

Table 39-7 DBMS_CRYPTO Block Cipher Chaining Modifiers

	Name	Description
	
CHAIN_ECB

	
Electronic Codebook. Encrypts each plaintext block independently.

	
CHAIN_CBC

	
Cipher Block Chaining. Plaintext is XORed with the previous ciphertext block before it is encrypted.

	
CHAIN_CFB

	
Cipher-Feedback. Enables encrypting units of data smaller than the block size.

	
CHAIN_OFB

	
Output-Feedback. Enables running a block cipher as a synchronous stream cipher. Similar to CFB, except that n bits of the previous output block are moved into the right-most positions of the data queue waiting to be encrypted.

Table 39-8 DBMS_CRYPTO Block Cipher Padding Modifiers

	Name	Description
	
PAD_PKCS5

	
Provides padding which complies with the PKCS #5: Password-Based Cryptography Standard

	
PAD_NONE

	
Provides option to specify no padding. Caller must ensure that blocksize is correct, else the package returns an error.

	
PAD_ZERO

	
Provides padding consisting of zeroes.

Restrictions

The VARCHAR2 datatype is not directly supported by DBMS_CRYPTO. Before you can perform cryptographic operations on data of the type VARCHAR2, you must convert it to the uniform database character set AL32UTF8, and then convert it to the RAW datatype. After performing these conversions, you can then encrypt it with the DBMS_CRYPTO package.

	
See Also:

"Conversion Rules" for information about converting datatypes.

Exceptions

Table 39-9 lists exceptions that have been defined for DBMS_CRYPTO.

Table 39-9 DBMS_CRYPTO Exceptions

	Exception	Code	Description
	
CipherSuiteInvalid

	
28827

	
The specified cipher suite is not defined.

	
CipherSuiteNull

	
28829

	
No value has been specified for the cipher suite to be used.

	
KeyNull

	
28239

	
The encryption key has not been specified or contains a NULL value.

	
KeyBadSize

	
28234

	
DES keys: Specified key size is too short. DES keys must be at least 8 bytes (64 bits).

AES keys: Specified key size is not supported. AES keys must be 128, 192, or 256 bits in length.

	
DoubleEncryption

	
28233

	
Source data was previously encrypted.

Operational Notes

	
When to Use Encrypt and Decrypt Procedures or Functions

	
When to Use Hash or Message Authentication Code (MAC) Functions

	
About Generating and Storing Encryption Keys

	
Conversion Rules

When to Use Encrypt and Decrypt Procedures or Functions

This package includes both ENCRYPT and DECRYPT procedures and functions. The procedures are used to encrypt or decrypt LOB datatypes (overloaded for CLOB and BLOB datatypes). In contrast, the ENCRYPT and DECRYPT functions are used to encrypt and decrypt RAW datatypes. Data of type VARCHAR2 must be converted to RAW before you can use DBMS_CRYPTO functions to encrypt it.

When to Use Hash or Message Authentication Code (MAC) Functions

This package includes two different types of one-way hash functions: the HASH function and the MAC function. Hash functions operate on an arbitrary-length input message, and return a fixed-length hash value. One-way hash functions work in one direction only. It is easy to compute a hash value from an input message, but it is extremely difficult to generate an input message that hashes to a particular value. Note that hash values should be at least 128 bits in length to be considered secure.

You can use hash values to verify whether data has been altered. For example, before storing data, Laurel runs DBMS_CRYPTO.HASH against the stored data to create a hash value. When she returns the stored data at a later date, she can again run the hash function against it, using the same algorithm. If the second hash value is identical to the first one, then the data has not been altered. Hash values are similar to "file fingerprints" and are used to ensure data integrity.

The HASH function included with DBMS_CRYPTO, is a one-way hash function that you can use to generate a hash value from either RAW or LOB data. The MAC function is also a one-way hash function, but with the addition of a secret key. It works the same way as the DBMS_CRYPTO.HASH function, except only someone with the key can verify the hash value.

MACs can be used to authenticate files between users. They can also be used by a single user to determine if her files have been altered, perhaps by a virus. A user could compute the MAC of his files and store that value in a table. If the user did not use a MAC function, then the virus could compute the new hash value after infection and replace the table entry. A virus cannot do that with a MAC because the virus does not know the key.

About Generating and Storing Encryption Keys

The DBMS_CRYPTO package can generate random material for encryption keys, but it does not provide a mechanism for maintaining them. Application developers must take care to ensure that the encryption keys used with this package are securely generated and stored. Also note that the encryption and decryption operations performed by DBMS_CRYPTO occur on the server, not on the client. Consequently, if the key is sent over the connection between the client and the server, the connection must be protected by using network encryption. Otherwise, the key is vulnerable to capture over the wire.

Although DBMS_CRYPTO cannot generate keys on its own, it does provide tools you can use to aid in key generation. For example, you can use the RANDOMBYTES function to generate random material for keys. (Calls to the RANDOMBYTES function behave like calls to the DESGETKEY and DES3GETKEY functions of the DBMS_OBFUSCATION_TOOLKIT package.)

When generating encryption keys for DES, it is important to remember that some numbers are considered weak and semiweak keys. Keys are considered weak or semiweak when the pattern of the algorithm combines with the pattern of the initial key value to produce ciphertext that is more susceptible to cryptanalysis. To avoid this, filter out the known weak DES keys. Lists of the known weak and semiweak DES keys are available on several public Internet sites.

	
See Also:

	
Oracle Database Advanced Security Administrator's Guide for information about configuring network encryption and SSL.

	
"Key Management" for a full discussion about securely storing encryption keys

	
"RANDOMBYTES Function"

Conversion Rules

	
To convert VARCHAR2 to RAW, use the UTL_I18N.STRING_TO_RAW function to perform the following steps:

	
Convert VARCHAR2 in the current database character set to VARCHAR2 in the AL32UTF8 database character.

	
Convert VARCHAR2 in the AL32UTF8 database character set to RAW.

Syntax example:

UTL_I18N.STRING_TO_RAW (string, 'AL32UTF8');

	
To convert RAW to VARCHAR2, use the UTL_I18N.RAW_TO_CHAR function to perform the following steps:

	
Convert RAW to VARCHAR2 in the AL32UTF8 database character set.

	
Convert VARCHAR2 in the AL32UTF8 database character set to VARCHAR2 in the database character set you wish to use.

Syntax example:

UTL_I18N.RAW_TO_CHAR (data, 'AL32UTF8');

	
See Also:

Chapter 225, "UTL_I18N" for information about using the UTL_I18N PL/SQL package.

	
If you want to store encrypted data of the RAW datatype in a VARCHAR2 database column, then use RAWTOHEX or UTL_ENCODE.BASE64_ENCODE to make it suitable for VARCHAR2 storage. These functions expand data size by 2 and 4/3, respectively.

Examples

The following listing shows PL/SQL block encrypting and decrypting pre-defined 'input_string' using 256-bit AES algorithm with Cipher Block Chaining and PKCS#5 compliant padding.

DECLARE
 input_string VARCHAR2 (200) := 'Secret Message';
 output_string VARCHAR2 (200);
 encrypted_raw RAW (2000); -- stores encrypted binary text
 decrypted_raw RAW (2000); -- stores decrypted binary text
 num_key_bytes NUMBER := 256/8; -- key length 256 bits (32 bytes)
 key_bytes_raw RAW (32); -- stores 256-bit encryption key
 encryption_type PLS_INTEGER := -- total encryption type
 DBMS_CRYPTO.ENCRYPT_AES256
 + DBMS_CRYPTO.CHAIN_CBC
 + DBMS_CRYPTO.PAD_PKCS5;
BEGIN
 DBMS_OUTPUT.PUT_LINE ('Original string: ' || input_string);
 key_bytes_raw := DBMS_CRYPTO.RANDOMBYTES (num_key_bytes);
 encrypted_raw := DBMS_CRYPTO.ENCRYPT
 (
 src => UTL_I18N.STRING_TO_RAW (input_string, 'AL32UTF8'),
 typ => encryption_type,
 key => key_bytes_raw
);
 -- The encrypted value "encrypted_raw" can be used here

 decrypted_raw := DBMS_CRYPTO.DECRYPT
 (
 src => encrypted_raw,
 typ => encryption_type,
 key => key_bytes_raw
);
 output_string := UTL_I18N.RAW_TO_CHAR (decrypted_raw, 'AL32UTF8');

 DBMS_OUTPUT.PUT_LINE ('Decrypted string: ' || output_string);
END;

Summary of DBMS_CRYPTO Subprograms

Table 39-10 DBMS_CRYPTO Package Subprograms

	Subprogram	Description
	
DECRYPT Function

	
Decrypts RAW data using a stream or block cipher with a user supplied key and optional IV (initialization vector)

	
DECRYPT Procedures

	
Decrypts LOB data using a stream or block cipher with a user supplied key and optional IV

	
ENCRYPT Function

	
Encrypts RAW data using a stream or block cipher with a user supplied key and optional IV

	
ENCRYPT Procedures

	
Encrypts LOB data using a stream or block cipher with a user supplied key and optional IV

	
HASH Function

	
Applies one of the supported cryptographic hash algorithms (MD4, MD5, or SHA-1) to data

	
MAC Function

	
Applies Message Authentication Code algorithms (MD5 or SHA-1) to data to provide keyed message protection

	
RANDOMBYTES Function

	
Returns a RAW value containing a cryptographically secure pseudo-random sequence of bytes, and can be used to generate random material for encryption keys

	
RANDOMINTEGER Function

	
Returns a random BINARY_INTEGER

	
RANDOMNUMBER Function

	
Returns a random 128-bit integer of the NUMBER datatype

DECRYPT Function

This function decrypts RAW data using a stream or block cipher with a user supplied key and optional IV (initialization vector).

Syntax

DBMS_CRYPTO.DECRYPT(
 src IN RAW,
 typ IN PLS_INTEGER,
 key IN RAW,
 iv IN RAW DEFAULT NULL)
 RETURN RAW;

Pragmas

pragma restrict_references(decrypt,WNDS,RNDS,WNPS,RNPS);

Parameters

Table 39-11 DECRYPT Function Parameters

	Parameter Name	Description
	
src

	
RAW data to be decrypted.

	
typ

	
Stream or block cipher type and modifiers to be used.

	
key

	
Key to be used for decryption.

	
iv

	
Optional initialization vector for block ciphers. Default is NULL.

Usage Notes

	
To retrieve original plaintext data, DECRYPT must be called with the same cipher, modifiers, key, and IV that was used to encrypt the data originally.

	
See Also:

"Usage Notes" for the ENCRYPT function for additional information about the ciphers and modifiers available with this package.

	
If VARCHAR2 data is converted to RAW before encryption, then it must be converted back to the appropriate database character set by using the UTL_I18N package.

	
See Also:

"Conversion Rules" for a discussion of the VARCHAR2 to RAW conversion process.

DECRYPT Procedures

These procedures decrypt LOB data using a stream or block cipher with a user supplied key and optional IV (initialization vector).

Syntax

DBMS_CRYPTO.DECRYPT(
 dst IN OUT NOCOPY BLOB,
 src IN BLOB,
 typ IN PLS_INTEGER,
 key IN RAW,
 iv IN RAW DEFAULT NULL);

DBMS_CRYPT.DECRYPT(
 dst IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 src IN BLOB,
 typ IN PLS_INTEGER,
 key IN RAW,
 iv IN RAW DEFAULT NULL);

Pragmas

pragma restrict_references(decrypt,WNDS,RNDS,WNPS,RNPS);

Parameters

Table 39-12 DECRYPT Procedure Parameters

	Parameter Name	Description
	
dst

	
LOB locator of output data. The value in the output LOB <dst> will be overwritten.

	
src

	
LOB locator of input data.

	
typ

	
Stream or block cipher type and modifiers to be used.

	
key

	
Key to be used for decryption.

	
iv

	
Optional initialization vector for block ciphers. Default is all zeroes.

ENCRYPT Function

This function encrypts RAW data using a stream or block cipher with a user supplied key and optional IV (initialization vector).

Syntax

DBMS_CRYPTO.ENCRYPT(
 src IN RAW,
 typ IN PLS_INTEGER,
 key IN RAW,
 iv IN RAW DEFAULT NULL)
 RETURN RAW;

Pragmas

pragma restrict_references(encrypt,WNDS,RNDS,WNPS,RNPS);

Parameters

Table 39-13 ENCRYPT Function Parameters

	Parameter Name	Description
	
src

	
RAW data to be encrypted.

	
typ

	
Stream or block cipher type and modifiers to be used.

	
key

	
Encryption key to be used for encrypting data.

	
iv

	
Optional initialization vector for block ciphers. Default is NULL.

Usage Notes

	
Block ciphers may be modified with chaining and padding type modifiers. The chaining and padding type modifiers are added to the block cipher to produce a cipher suite. Cipher Block Chaining (CBC) is the most commonly used chaining type, and PKCS #5 is the recommended padding type. See Table 39-7 and Table 39-8 for block cipher chaining and padding modifier constants that have been defined for this package.

	
To improve readability, you can define your own package-level constants to represent the cipher suites you use for encryption and decryption. For example, the following example defines a cipher suite that uses DES, cipher block chaining mode, and no padding:

DES_CBC_NONE CONSTANT PLS_INTEGER := DBMS_CRYPTO.ENCRYPT_DES
 + DBMS_CRYPTO.CHAIN_CBC
 + DBMS_CRYPTO.PAD_NONE;

See Table 39-6 for the block cipher suites already defined as constants for this package.

	
To encrypt VARCHAR2 data, it should first be converted to the AL32UTF8 character set.

	
See Also:

"Conversion Rules" for a discussion of the conversion process.

	
Stream ciphers, such as RC4, are not recommended for stored data encryption.

ENCRYPT Procedures

These procedures encrypt LOB data using a stream or block cipher with a user supplied key and optional IV (initialization vector).

Syntax

DBMS_CRYPTO.ENCRYPT(
 dst IN OUT NOCOPY BLOB,
 src IN BLOB,
 typ IN PLS_INTEGER,
 key IN RAW,
 iv IN RAW DEFAULT NULL);

DBMS_CRYPTO.ENCRYPT(
 dst IN OUT NOCOPY BLOB,
 src IN CLOB CHARACTER SET ANY_CS,
 typ IN PLS_INTEGER,
 key IN RAW,
 iv IN RAW DEFAULT NULL);

Pragmas

pragma restrict_references(encrypt,WNDS,RNDS,WNPS,RNPS);

Parameters

Table 39-14 ENCRYPT Procedure Parameters

	Parameter Name	Description
	
dst

	
LOB locator of output data. The value in the output LOB <dst> will be overwritten.

	
src

	
LOB locator of input data.

	
typ

	
Stream or block cipher type and modifiers to be used.

	
key

	
Encryption key to be used for encrypting data.

	
iv

	
Optional initialization vector for block ciphers. Default is NULL.

Usage Notes

See "Conversion Rules" for usage notes about using the ENCRYPT procedure.

HASH Function

A one-way hash function takes a variable-length input string, the data, and converts it to a fixed-length (generally smaller) output string called a hash value. The hash value serves as a unique identifier (like a fingerprint) of the input data. You can use the hash value to verify whether data has been changed or not.

Note that a one-way hash function is a hash function that works in one direction. It is easy to compute a hash value from the input data, but it is hard to generate data that hashes to a particular value. Consequently, one-way hash functions work well to ensure data integrity. Refer to "When to Use Hash or Message Authentication Code (MAC) Functions" for more information about using one-way hash functions.

This function applies to data one of the supported cryptographic hash algorithms listed in Table 39-3.

Syntax

DBMS_CRYPTO.Hash (
 src IN RAW,
 typ IN PLS_INTEGER)
 RETURN RAW;

DBMS_CRYPTO.Hash (
 src IN BLOB,
 typ IN PLS_INTEGER)
 RETURN RAW;

DBMS_CRYPTO.Hash (
 src IN CLOB CHARACTER SET ANY_CS,
 typ IN PLS_INTEGER)
 RETURN RAW;

Pragmas

pragma restrict_references(hash,WNDS,RNDS,WNPS,RNPS);

Parameters

Table 39-15 HASH Function Parameters

	Parameter Name	Description
	
src

	
The source data to be hashed.

	
typ

	
The hash algorithm to be used.

Usage Note

Oracle recommends that you use the SHA-1 (Secure Hash Algorithm), specified with the constant, HASH_SH1, because it is more resistant to brute-force attacks than MD4 or MD5. If you must use a Message Digest algorithm, then MD5 provides greater security than MD4.

MAC Function

A Message Authentication Code, or MAC, is a key-dependent one-way hash function. MACs have the same properties as the one-way hash function described in "HASH Function", but they also include a key. Only someone with the identical key can verify the hash. Also refer to "When to Use Hash or Message Authentication Code (MAC) Functions" for more information about using MACs.

This function applies MAC algorithms to data to provide keyed message protection. See Table 39-4 for a list of MAC algorithms that have been defined for this package.

Syntax

DBMS_CRYPTO.MAC (
 src IN RAW,
 typ IN PLS_INTEGER,
 key IN RAW)
 RETURN RAW;

DBMS_CRYPTO.MAC (
 src IN BLOB,
 typ IN PLS_INTEGER
 key IN RAW)
 RETURN RAW;

DBMS_CRYPTO.MAC (
 src IN CLOB CHARACTER SET ANY_CS,
 typ IN PLS_INTEGER
 key IN RAW)
 RETURN RAW;

Pragmas

pragma restrict_references(mac,WNDS,RNDS,WNPS,RNPS);

Parameters

Table 39-16 MAC Function Parameters

	Parameter Name	Description
	
src

	
Source data to which MAC algorithms are to be applied.

	
typ

	
MAC algorithm to be used.

	
key

	
Key to be used for MAC algorithm.

RANDOMBYTES Function

This function returns a RAW value containing a cryptographically secure pseudo-random sequence of bytes, which can be used to generate random material for encryption keys. The RANDOMBYTES function is based on the RSA X9.31 PRNG (Pseudo-Random Number Generator).

Syntax

DBMS_CRYPTO.RANDOMBYTES (
 number_bytes IN POSITIVE)
 RETURN RAW;

Pragmas

pragma restrict_references(randombytes,WNDS,RNDS,WNPS,RNPS);

Parameters

Table 39-17 RANDOMBYTES Function Parameter

	Parameter Name	Description
	
number_bytes

	
The number of pseudo-random bytes to be generated.

Usage Note

The number_bytes value should not exceed the maximum length of a RAW variable.

RANDOMINTEGER Function

This function returns an integer in the complete range available for the Oracle BINARY_INTEGER datatype.

Syntax

DBMS_CRYPTO.RANDOMINTEGER
 RETURN BINARY_INTEGER;

Pragmas

pragma restrict_references(randominteger,WNDS,RNDS,WNPS,RNPS);

RANDOMNUMBER Function

This function returns an integer in the Oracle NUMBER datatype in the range of [0..2**128-1].

Syntax

DBMS_CRYPTO.RANDOMNUMBER
 RETURN NUMBER;

Pragmas

pragma restrict_references(randomnumber,WNDS,RNDS,WNPS,RNPS);

40 DBMS_CSX_ADMIN

The DBMS_CSX_ADMIN package provides an interface to customize the setup when transporting a tablespace containing binary XML data.

The chapter contains the following topics:

	
Using DBMS_CSX_ADMIN

	
Overview

	
Security Model

	
Constants

	
Summary of DBMS_CSX_ADMIN

Using DBMS_CSX_ADMIN

	
Overview

	
Security Model

	
Constants

Overview

This package can be used by DBAs to customize the setup when transporting a tablespace containing binary XML data. The use of the package is not required in order for a transportable tablespace job to run.

By default, all binary XML tables will use the default token table set, which will be replicated during transport on the target database. To avoid the cost of transporting a potentially large token table set, the DBA may opt for registering a new set of token tables for a given tablespace. The package provides routines for token table set registration and lookup.

Security Model

Owned by XDB, the DBMS_CSX_ADMIN package must be created by SYS or XDB. The EXECUTE privilege is granted to SYS or XDB or DBA. Subprograms in this package are executed using the privileges of the current user.

Constants

The DBMS_CSX_ADMIN package uses the constants shown in Table 40-1:

Table 40-1 DBMS_CSX_ADMIN Constants

	Name	Type	Value	Description
	
DEFAULT_LEVEL

	
BINARY_INTEGER

	
0

	
Default token table

	
TAB_LEVEL

	
BINARY_INTEGER

	
1

	
Token table set associated with tables, not tablespaces

	
TBS_LEVEL

	
BINARY_INTEGER

	
2

	
Token table set associated with a tablespace

	
NO_CREATE

	
BINARY_INTEGER

	
0

	
Token tables already exist, associate them with the given table/tablespace

	
NO_INDEXES

	
BINARY_INTEGER

	
1

	
Do not create indexes on the new set of token tables

	
WITH_INDEXES

	
BINARY_INTEGER

	
2

	
Create indexes on the token tables

	
DEFAULT_TOKS

	
BINARY_INTEGER

	
0

	
Prepopulate the token tables with default token mappings

	
NO_DEFAULT_TOKS

	
BINARY_INTEGER

	
1

	
Do not prepopulate the token tables with default token mappings

Examples

Example 1: Register a New Set of Token Tables for the Tablespace

To prepare a tablespace CSXTS for export, the DBA can register a new set of token tables for the tablespace with the following PL/SQL:

DECLARE
 tsno number;
 stmt varchar2(2000);
BEGIN
 stmt := 'SELECT ts# FROM ts$ WHERE (name = ''' || 'CSXTS' || ''')';
 EXECUTE IMMEDIATE stmt into tsno;
 DBMS_CSX_ADMIN.REGISTERTOKENTABLESET(
 tstabno => tsno,
 guid => NULL,
 flags => DBMS_CSX_ADMIN.TBS_LEVEL,
 tocreate => DBMS_CSX_ADMIN.WITH_INDEXES,
 defaulttoks => DBMS_CSX_ADMIN.DEFAULT_TOKS);
 COMMIT;
END;
/

In this example, the new token tables are indexed, populated with default token mappings, and associated with all tables in the CSXTS tablespace. All subsequent loads of binary XML data in CSXTS will make use of the new set of token tables. The advantage is that no loading of binary XML data in other tablespaces will affect the size of the token tables used by CSXTS and exported during a tablespace export of CSXTS. This setup is suited to the case in which the tablespace does not yet contain binary XML data.

Example 2: Copying the Default Token Tables in a New Set

If binary XML data already exists in the tablespace to be exported, the DBA has the option of copying the default token tables in a new set.

DECLARE
 tsno number;
 stmt varchar2(2000);
 qntab varchar2(34);
 nmtab varchar2(34);
 pttab varchar2(34);
BEGIN
 stmt := 'select ts# from ts$ where (name = ''' || 'CSXTS' || ''')';
 EXECUTE IMMEDIATE stmt INTO tsno;
 DBMS_CSX_ADMIN.COPYDEFAULTTOKENTABLESET(
 tstabno => tsno, qntab, nmtab, pttatb);
 COMMIT;
END;
/

This setup is suited to the case in which the DBA wishes to optimize the export of a tablespace that already contains binary XML data, and does not have associated a token table set. After cloning the default token table set, all subsequent loads of binary XML data in CSXTS will make use of the new set of token tables.

Summary of DBMS_CSX_ADMIN

Table 40-2 DBMS_CSX_ADMIN Package Subprograms

	Subprogram	Description
	
COPYDEFAULTTOKENTABLESET Procedure

	
Creates a new token table set associated with a given tablespace, and populates the token tables with the token mappings from the default token tables

	
GETTOKENTABLEINFO Procedure & Function

	
Returns the GUID of the token table set where token mappings for this table

	
GETTOKENTABLEINFOBYTABLESPACE Procedure

	
Returns the GUID and the token table names for this tablespace

	
NAMESPACEIDTABLE Function

	
Returns default namespace-ID token table

	
PATHIDTABLE Function

	
Returns the default path-ID token table

	
QNAMEIDTABLE Function

	
Returns the default qname-ID token table.

	
REGISTERTOKENTABLESET Procedure

	
Registers a new token table set, creates (if required) the token tables (with the corresponding indexes)

COPYDEFAULTTOKENTABLESET Procedure

This procedure creates a new token table set associated with a given tablespace, and populates the token tables with the token mappings from the default token tables.

Syntax

DBMS_CSX_ADMIN.COPYDEFAULTTOKENTABLESET (
 tsno IN NUMBER,
 qnametable OUT VARCHAR2,
 nmspctable OUT VARCHAR2,
 pttable OUT VARCHAR2);

Parameters

Table 40-3 COPYDEFAULTTOKENTABLESET Procedure Parameters

	Parameter	Description
	
tsno

	
Tablespace number the new set of token tables will be associated with

	
qnametable

	
Name of the qname-ID table in the new set

	
nmspctable

	
Name of the namespace-ID table in the new set

	
pttable

	
Name of the path-id table in the new set

GETTOKENTABLEINFO Procedure & Function

Given the table name and the owner, the first overload of the procedure returns the globally unique identifier (GUID) of the token table set where token mappings for this table can be found. The procedure returns also the names of the token tables, and whether the token table set is the default one.

Given the object number of a table, the second overload of the procedure returns the GUID of the token table set used by the table, and whether this is the default token table set.

Syntax

DBMS_CSX_ADMIN.GETTOKENTABLEINFO (
 ownername IN VARCHAR2,
 tablename IN VARCHAR2,
 guid OUT RAW,
 qnametable OUT VARCHAR2,
 nmspctable OUT VARCHAR2,
 level OUT NUMBER,
 tabno OUT NUMBER);

DBMS_CSX_ADMIN.GETTOKENTABLEINFO (
 tabno IN NUMBER,
 guid OUT RAW);
 RETURN BOOLEAN;

Parameters

Table 40-4 GETTOKENTABLEINFO Procedure & Function Parameters

	Parameter	Description
	
ownername

	
Owner of the table

	
tablename

	
Name of the table

	
guid

	
GUID of the token table set used by the given table

	
qnametable

	
Name of the qname-ID table in the new set

	
nmspctable

	
Name of the namespace-ID table in the new set

	
level

	
DEFAULT_LEVEL if default token table set, TBS_LEVEL if same token table set is used by all tables in the same tablespace as the given table, TAB_LEVEL otherwise

	
tabno

	
Table object number

GETTOKENTABLEINFOBYTABLESPACE Procedure

Given a tablespace number, this procedure returns the GUID and the token table names for this tablespace.

Syntax

DBMS_CSX_ADMIN.GETTOKENTABLEINFOBYTABLESPACE (
 tsname IN VARCHAR2,
 tablespaceno IN NUMBER,
 guid OUT RAW,
 qnametable OUT VARCHAR2,
 nmspctable OUT VARCHAR2,
 isdefault OUT BOOLEAN,
 containTokTab OUT BOOLEAN);

Parameters

Table 40-5 GETTOKENTABLEINFOBYTABLESPACE Procedure Parameters

	Parameter	Description
	
tsname

	
Tablespace name

	
tablespaceno

	
Tablespace number

	
guid

	
GUID of the token table set associated with this tablespace (if any)

	
qnametable

	
Name of the qname-ID table

	
nmspctable

	
Name of the namespace-ID table

	
isdefault

	
TRUE if the token table is the default one

	
containTokTab

	
TRUE if the tablespace contains its own token table set

NAMESPACEIDTABLE Function

This procedure returns default namespace-ID token table.

Syntax

DBMS_CSX_ADMIN.NAMESPACEIDTABLE
 RETURN VARCHAR2;

PATHIDTABLE Function

This procedure returns the default path-ID token table. This is used for granting permissions on the default path-ID token table for a user before executing EXPLAIN PLAN for a query on an XML table with an XML index.

Syntax

DBMS_CSX_ADMIN.PATHIDTABLE
 RETURN VARCHAR2;

QNAMEIDTABLE Function

This procedure returns the default qname-ID token table.

Syntax

DBMS_CSX_ADMIN.QNAMEIDTABLE
 RETURN VARCHAR2;

REGISTERTOKENTABLESET Procedure

This procedure registers a new token table set, creates (if required) the token tables (with the corresponding indexes).

Syntax

DBMS_CSX_ADMIN.REGISTERTOKENTABLESET (
 tstabno IN NUMBER DEFAULT NULL,
 guid IN RAW DEFAULT NULL,
 flags IN NUMBER DEFAULT TBS_LEVEL,
 tocreate IN NUMBER DEFAULT WITH_INDEXES,
 defaulttoks IN NUMBER DEFAULT DEFAULT_TOKS);

Parameters

Table 40-6 REGISTERTOKENTABLESET Procedure Parameters

	Parameter	Description
	
tstabno

	
Tablespace/table number of the tablespace/table using the set of token table we register

	
guid

	
GUID of the token table set. If NULL, a new identifier is created, provided the user is SYS.

	
flags

	
TAB_LEVEL for table level, TBS_LEVEL for tablespace level

	
tocreate

	
Possible values:

	
NO_CREATE if no token tables are created

	
NO_INDEXES if token tables are created, but no indexes

	
WITH_INDEXES if token tables and corresponding indexes are created

	
defaulttoks

	
If DEFAULT_TOKS, insert default token mappings

41 DBMS_CUBE

DBMS_CUBE contains subprograms that create OLAP cubes and dimensions, and that load and process the data for querying.

	
See Also:

Oracle OLAP User's Guide regarding use of the OLAP option to support business intelligence and analytical applications

This chapter contains the following topics:

	
Using DBMS_CUBE

	
Using SQL Aggregation Management

	
Upgrading Analytic Workspaces From OLAP 10g to OLAP 11g

	
Summary of DBMS_CUBE Subprograms

Using DBMS_CUBE

Cubes and cube dimensions are first class data objects that support multidimensional analytics. They are stored in a container called an analytic workspace. Multidimensional objects and analytics are available with the OLAP option to Oracle Database.

Cubes can be enabled as cube materialized views for automatic refresh of the cubes and dimensions, and for query rewrite. Several DBMS_CUBE subprograms support the creation and maintenance of cube materialized views as a replacement for relational materialized views. These subprograms are discussed in "Using SQL Aggregation Management".

The metadata for cubes and dimensions is defined in XML documents, called templates, which you can derive from relational materialized views using the CREATE_CUBE or DERIVE_FROM_MVIEW functions. Using a graphical tool named Analytic Workspace Manager, you can enhance the cube with analytic content or create the metadata for new cubes and cube dimensions from scratch.

Several other DBMS_CUBE subprograms provide a SQL alternative to Analytic Workspace Manager for creating an analytic workspace from an XML template and for refreshing the data stored in cubes and dimensions. The IMPORT_XML procedure creates an analytic workspace with its cubes and cube dimensions from an XML template. The BUILD procedure loads data into the cubes and dimensions from their data sources and performs whatever processing steps are needed to prepare the data for querying.

Security Model

The following roles and system privileges are required to use this package:

To create dimensional objects in the user's own schema:

	
OLAP_USER role

	
CREATE SESSION privilege

To create dimensional objects in different schemas:

	
OLAP_DBA role

	
CREATE SESSION privilege

To create cube materialized views in the user's own schema:

	
CREATE MATERIALIZED VIEW privilege

	
CREATE DIMENSION privilege

	
ADVISOR privilege

To create cube materialized views in different schemas:

	
CREATE ANY MATERIALIZED VIEW privilege

	
CREATE ANY DIMENSION privilege

	
ADVISOR privilege

If the source tables are in a different schema, then the owner of the dimensional objects needs SELECT object privileges on those tables.

Using SQL Aggregation Management

SQL Aggregation Management is a group of PL/SQL subprograms in DBMS_CUBE that supports the rapid deployment of cube materialized views from existing relational materialized views. Cube materialized views are cubes that have been enhanced to use the automatic refresh and query rewrite features of Oracle Database. A single cube materialized view can replace many of the relational materialized views of summaries on a fact table, providing uniform response time to all summary data.

Cube materialized views bring the fast update and fast query capabilities of the OLAP option to applications that query summaries of detail relational tables. The summary data is generated and stored in a cube, and query rewrite automatically redirects queries to the cube materialized views. Applications experience excellent querying performance.

In the process of creating the cube materialized views, DBMS_CUBE also creates a fully functional analytic workspace including a cube and the cube dimensions. The cube stores the data for a cube materialized view instead of the table that stores the data for a relational materialized view. A cube can also support a wide range of analytic functions that enhance the database with information-rich content.

Cube materialized views are registered in the data dictionary along with all other materialized views. A CB$ prefix identifies a cube materialized view.

The DBMS_CUBE subprograms also support life-cycle management of cube materialized views.

	
See Also:

Oracle OLAP User's Guide for more information about cube materialized views and enhanced OLAP analytics.

Subprograms in SQL Aggregation Management

These subprograms are included in SQL Aggregation Management:

	
CREATE_MVIEW Function

	
DERIVE_FROM_MVIEW Function

	
DROP_MVIEW Procedure

	
REFRESH_MVIEW Procedure

Requirements for the Relational Materialized View

SQL Aggregation Management uses an existing relational materialized view to derive all the information needed to generate a cube materialized view. The relational materialized view determines the detail level of data that is stored in the cube materialized view. The related relational dimension objects determine the scope of the aggregates, from the lowest level specified in the GROUP BY clause of the materialized view subquery, to the highest level of the dimension hierarchy.

The relational materialized view must conform to these requirements:

	
Explicit GROUP BY clause for one or more columns.

	
No expressions in the select list or GROUP BY clause.

	
At least one of these numeric aggregation methods: SUM, MIN, MAX, or AVG.

	
No outer joins.

	
Summary keys with at least one simple column associated with a relational dimension.

or

Summary keys with at least one simple column and no hierarchies or levels.

	
Numeric data type of any type for the fact columns. All facts are converted to NUMBER.

	
Eligible for rewrite. REWRITE_CAPABILITY should be GENERAL; it cannot be NONE. Refer to the ALL_MVIEWS entry in the Oracle Database Reference.

	
Cannot use the DISTINCT or UNIQUE keywords with an aggregate function in the defining query. For example, AVG(DISTINCT units) causes an error in STRICT mode and is ignored in LOOSE mode.

You can choose between two modes when rendering the cube materialized view, LOOSE and STRICT. In STRICT mode, any deviation from the requirements raises an exception and prevents the materialized view from being created. In LOOSE mode (the default), some deviations are allowed, but they affect the content of the materialized view. These elements in the relational materialized view generate warning messages:

	
Complex expressions in the defining query are ignored and do not appear in the cube materialized view.

	
The AVG function is changed to SUM and COUNT.

	
The COUNT function without a SUM, MIN, MAX, or AVG function is ignored.

	
The STDDEV and VARIANCE functions are ignored.

You can also choose how conditions in the WHERE clause are filtered. When filtering is turned off, the conditions are ignored. When turned on, valid conditions are rendered in the cube materialized view, but asymmetric conditions among dimension levels raise an exception.

Permissions for Managing and Querying Cube Materialized Views

To create cube materialized views, you must have these privileges:

	
CREATE [ANY] MATERIALIZED VIEW privilege

	
CREATE [ANY] DIMENSION privilege

	
ADVISOR privilege

To access cube materialized views from another schema using query rewrite, you must have these privileges:

	
GLOBAL QUERY REWRITE privilege

	
SELECT privilege on the relational source tables

	
SELECT privilege on the analytic workspace (AW$name) that supports the cube materialized view

	
SELECT privilege on the cube

	
SELECT privilege on the dimensions of the cube

Note that you need SELECT privileges on the database objects that support the cube materialized views, but not on the cube materialized views.

Example of SQL Aggregation Management

All examples for the SQL Aggregate Management subprograms use the sample Sales History schema, which is installed in Oracle Database with two relational materialized views: CAL_MONTH_SALES_MV and FWEEK_PSCAT_SALES_MV.

About Relational Materialized View CAL_MONTH_SALES_MV

This example uses CAL_MONTH_SALES_MV as the basis for creating a cube materialized view. The following query was used to create CAL_MONTH_SALES_MV. CAL_MONTH_SALES_MV summarizes the daily sales data stored in the SALES table by month.

SELECT query FROM user_mviews
 WHERE mview_name='CAL_MONTH_SALES_MV';

QUERY
--
SELECT t.calendar_month_desc
 , sum(s.amount_sold) AS dollars
 FROM sales s
 , times t
 WHERE s.time_id = t.time_id
 GROUP BY t.calendar_month_desc

DBMS_CUBE uses relational dimensions to derive levels and hierarchies for the cube materialized view. The SH schema has relational dimensions for most dimension tables in the schema, as shown by the following query.

SELECT dimension_name FROM user_dimensions;

DIMENSION_NAME

CUSTOMERS_DIM
PRODUCTS_DIM
TIMES_DIM
CHANNELS_DIM
PROMOTIONS_DIM

Creating the Cube Materialized View

This PL/SQL script uses the CREATE_MVIEW function to create a cube materialized view from CAL_MONTH_SALES_MV. CREATE_MVIEW sets the optional BUILD parameter to refresh the cube materialized view immediately.

SET serverout ON format wrapped

DECLARE
 salesaw varchar2(30);

BEGIN
 salesaw := dbms_cube.create_mview('SH', 'CAL_MONTH_SALES_MV',
 'build=immediate');
END;
/

These messages confirm that the script created and refreshed CB$CAL_MONTH_SALES successfully:

Completed refresh of cube mview "SH"."CB$CAL_MONTH_SALES" at 20081112 08:42:58.0
03.
Created cube organized materialized view "CB$CAL_MONTH_SALES" for rewrite at 200
81112 08:42:58.004.

The following query lists the materialized views in the SH schema:

SELECT mview_name FROM user_mviews;

MVIEW_NAME

CB$CAL_MONTH_SALES
CB$TIMES_DIM_D1_CAL_ROLLUP
CAL_MONTH_SALES_MV
FWEEK_PSCAT_SALES_MV

Two new materialized views are registered in the data dictionary:

	
CB$CAL_MONTH_SALES: Cube materialized view

	
CB$TIMES_DIM_D1_CAL_ROLLUP: Cube dimension materialized view for the TIME_DIM Calendar Rollup hierarchy

Cube dimension materialized views support refresh of the cube materialized view. You do not directly administer dimension materialized views.

Disabling the Relational Materialized Views

After creating a cube materialized view, disable query rewrite on all relational materialized views for the facts now supported by the cube materialized view. You can drop them when you are sure that you created the cube materialized view with the optimal parameters.

ALTER MATERIALIZED VIEW cal_month_sales_mv DISABLE QUERY REWRITE;

Materialized view altered.

You can also use the DISABLEQRW parameter in the CREATE_MVIEW function, which disables query rewrite on the source materialized view as described in Table 41-7.

Creating Execution Plans for Cube Materialized Views

You can create execution plans for cube materialized views the same as for relational materialized views. The following command generates an execution plan for a query against the SALES table, which contains data at the day level. The answer set requires data summarized by quarter. Query rewrite would not use the original relational materialized view for this query, because its data is summarized by month. However, query rewrite can use the new cube materialized view for summary data for months, quarters, years, and all years.

EXPLAIN PLAN FOR SELECT
 t.calendar_quarter_desc,
 sum(s.amount_sold) AS dollars
 FROM sales s,
 times t
 WHERE s.time_id = t.time_id
 AND t.calendar_quarter_desc LIKE '2001%'
 GROUP BY t.calendar_quarter_desc
 ORDER BY t.calendar_quarter_desc;

The query returns these results:

CALENDAR_QUARTER_DESC DOLLARS
--------------------- ----------
2001-01 6547097.44
2001-02 6922468.39
2001-03 7195998.63
2001-04 7470897.52

The execution plan shows that query rewrite returned the summary data from the cube materialized view, CB$CAL_MONTH_SALES, instead of recalculating it from the SALES table.

SELECT plan_table_output FROM TABLE(dbms_xplan.display());

PLAN_TABLE_OUTPUT

Plan hash value: 2999729407

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT		1	30	3 (34)	00:00:01
1	SORT GROUP BY		1	30	3 (34)	00:00:01
* 2	MAT_VIEW REWRITE CUBE ACCESS	CB$CAL_MONTH_SALES	1	30	2 (0)	00:00:01

Predicate Information (identified by operation id):

 2 - filter("CB$CAL_MONTH_SALES"."D1_CALENDAR_QUARTER_DESC" LIKE '2001%' AND
 "CB$CAL_MONTH_SALES"."SYS_GID"=63)

15 rows selected.

Maintaining Cube Materialized Views

You can create a cube materialized view that refreshes automatically. However, you can force a refresh at any time using the REFRESH_MVIEW Procedure:

BEGIN
 dbms_cube.refresh_mview('SH', 'CB$CAL_MONTH_SALES');
END;
/

Completed refresh of cube mview "SH"."CB$CAL_MONTH_SALES" at 20081112
14:30:59.534.

If you want to drop a cube materialized view, use the DROP_MVIEW Procedure so that all supporting database objects (analytic workspace, cube, cube dimensions, and so forth) are also dropped:

BEGIN
 dbms_cube.drop_mview('SH', 'CB$CAL_MONTH_SALES');
END;
/

Dropped cube organized materialized view "SH"."CAL_MONTH_SALES" including
container analytic workspace "SH"."CAL_MONTH_SALES_AW" at 20081112 13:38:47.878.

New Database Objects

The CREATE_MVIEW function creates several first class database objects in addition to the cube materialized views. You can explore these objects through the data dictionary by querying views such as ALL_CUBES and ALL_CUBE_DIMENSIONS.

This example created the following supporting objects:

	
Analytic workspace CAL_MONTH_SALES_AW (AW$CAL_MONTH_SALES_AW table)

	
Cube CAL_MONTH_SALES

	
Cube dimension TIMES_DIM_D1

	
Dimension hierarchy CAL_ROLLUP

	
Dimension levels ALL_TIMES_DIM, YEAR, QUARTER, and MONTH

	
Numerous attributes for levels in the CAL_ROLLUP hierarchy

Upgrading Analytic Workspaces From OLAP 10g to OLAP 11g

You can upgrade an Oracle OLAP 10g analytic workspace to OLAP 11g by saving the metadata in an XML template and using it to create a new analytic workspace. The original analytic workspace remains accessible and unchanged by the upgrade process.

	
Tip:

Oracle recommends using Analytic Workspace Manager for performing upgrades. See the Oracle OLAP User's Guide.

These subprograms in DBMS_CUBE support the upgrade process:

	
CREATE_EXPORT_OPTIONS Procedure

	
CREATE_IMPORT_OPTIONS Procedure

	
EXPORT_XML Procedure

	
EXPORT_XML_TO_FILE Procedure

	
IMPORT_XML Procedure

	
INITIALIZE_CUBE_UPGRADE Procedure

	
UPGRADE_AW Procedure

Prerequisites:

	
The OLAP 10g analytic workspace can use CWM metadata or OLAP standard form (AWXML) metadata.

	
Customizations to the OLAP 10g analytic workspace may not be exported to the XML template. You must re-create them in OLAP 11g.

	
The original relational source data must be available to load into the new analytic workspace. If the data is in a different schema or the table names are different, then you must remap the dimensional objects to the new relational sources after the upgrade.

	
You can create the OLAP 11g analytic workspace in the same schema as the OLAP 10g analytic workspace. However, if you prefer to create it in a different schema, then create a new user with the following privileges:

	
SELECT privileges on the OLAP 10g analytic workspace (GRANT SELECT ON schema.AW$analytic_workspace).

	
SELECT privileges on all database tables and views that contain the source data for the OLAP 10g analytic workspace.

	
Appropriate privileges for an OLAP administrator.

	
Same default tablespace as the Oracle 10g user.

See the Oracle OLAP User's Guide.

Correcting Naming Conflicts

The namespaces are different in OLAP 11g and OLAP 10g. For a successful upgrade, you must identify any 10g object names that are used multiple times under the 11g naming rules and provide unique names for them.

The following namespaces control the uniqueness of OLAP object names in Oracle 11g:

	
Schema: The names of cubes, dimensions, and measure folders must be unique within a schema. They cannot conflict with the names of tables, views, indexes, relational dimensions, or any other first class objects. However, these OLAP 11g object names do not need to be distinct from 10g object names, because they are in different namespaces.

	
Cube: The names of measures must be unique within a cube.

	
Dimension: The names of hierarchies, levels, and attributes must be unique within a dimension. For example, a dimension cannot have a hierarchy named Customers and a level named Customers.

You can use an initialization table and a rename table to rename objects in the upgraded 11g analytic workspace.

Initialization Table

The INITIALIZE_CUBE_UPGRADE procedure identifies ambiguous names under the OLAP 11g naming rules. For example, a 10g dimension might have a hierarchy and a level with the same name. Because hierarchies and levels are in the same 11g namespace, the name is not unique in 11g; to an 11g client, the hierarchy and the level cannot be differentiated by name.

INITIALIZE_CUBE_UPGRADE creates and populates a table named CUBE_UPGRADE_INFO with unique names for these levels, hierarchies, and attributes. By using the unique names provided in the table, an 11g client can browse the OLAP 11g metadata. You cannot attach an OLAP 11g client to the analytic workspace or perform an upgrade without a CUBE_UPGRADE_INFO table, if the 10g metadata contains ambiguous names.

You can edit CUBE_UPGRADE_INFO to change the default unique names to names of your choosing. You can also add rows to change the names of any other objects. When using an 11g client, you see the new object names. When using an 10g client, you see the original names. However, the INITIALIZE_CUBE_UPGRADE procedure overwrites this table, so you may prefer to enter customizations in a rename table.

During an upgrade from OLAP 10g, the unique object names in CUBE_UPGRADE_INFO are used as the names of 11g objects in the new analytic workspace. However, INITIALIZE_CUBE_UPGRADE does not automatically provide unique names for cubes, dimensions, and measure folders. To complete an upgrade, you must assure that these objects have unique names within the 11g namespace. You can provide these objects with new names in the CUBE_UPGRADE_INFO table or in a rename table.

OLAP 11g clients automatically use CUBE_UPGRADE_INFO when it exists in the same schema as the OLAP 10g analytic workspace.

	
See Also:

"INITIALIZE_CUBE_UPGRADE Procedure"

Rename Table

You can create a rename table that contains new object names for an OLAP 11g analytic workspace. You can then use the rename table in the CREATE_IMPORT_OPTIONS and UPGRADE_AW procedures.

When upgrading within the same schema, you must provide a unique name for the 11g analytic workspace. The UPGRADE_AW procedure provides a parameter for this purpose; otherwise, you must provide the new name in the rename table. The duplication of cube names does not create ambiguity because the 11g cubes are created in a different namespace than the 10g cubes.

The names provided in a rename table are used only during an upgrade and overwrite any names entered in the CUBE_UPGRADE_INFO table.

To create a rename table:

	
Open SQL*Plus or another SQL client, and connect to Oracle Database as the owner of the 10g analytic workspace.

	
Issue a command like the following:

CREATE TABLE table_name (
 source_id VARCHAR2(300),
 new_name VARCHAR2(30),
 object_type VARCHAR2(30));

	
Populate the rename table with the appropriate values, as follows.

table_name is the name of the rename table.

source_id is the identifier for an object described in the XML document supplied to IMPORT_XML. The identifier must have this format:

schema_name.object_name[.subobject_name]

new_name is the object name given during the import to the object specified by source_id.

object_type is the object type as described in the XML, such as StandardDimension or DerivedMeasure.

For example, these SQL statements populate the table with new names for the analytic workspace, a cube, and four dimensions:

INSERT INTO my_object_map VALUES('GLOBAL_AW.GLOBAL10.AW', 'GLOBAL11', 'AW');
INSERT INTO my_object_map VALUES('GLOBAL_AW.UNITS_CUBE', 'UNIT_SALES_CUBE', 'Cube');
INSERT INTO my_object_map VALUES('GLOBAL_AW.CUSTOMER', 'CUSTOMERS', 'StandardDimension');
INSERT INTO my_object_map VALUES('GLOBAL_AW.CHANNEL', 'CHANNELS', 'StandardDimension');
INSERT INTO my_object_map VALUES('GLOBAL_AW.PRODUCT', 'PRODUCTS', 'StandardDimension');
INSERT INTO my_object_map VALUES('GLOBAL_AW.TIME', 'TIME_PERIODS', 'TimeDimension');

	
See Also:

"CREATE_IMPORT_OPTIONS Procedure"

Simple Upgrade

A simple upgrade creates an OLAP 11g analytic workspace from an OLAP 10g analytic workspace.

To perform a simple upgrade of an Oracle OLAP 10g analytic workspace:

	
Open SQL*Plus or a similar SQL command-line interface and connect to Oracle Database 11g as the schema owner for the OLAP 11g analytic workspace.

	
To rename any objects in the 11g analytic workspace, create a rename table as described in "Rename Table". (Optional)

	
Perform the upgrade, as described in "UPGRADE_AW Procedure".

	
Use the DBMS_CUBE.BUILD procedure to load data into the cube.

Example 41-1 Performing a Simple Upgrade to the GLOBAL Analytic Workspace

This example creates an OLAP 11g analytic workspace named GLOBAL11 from an OLAP 10g analytic workspace named GLOBAL10. GLOBAL10 contains no naming conflicts between cubes, dimensions, measure folders, or tables in the schema, so a rename table is not needed in this example.

BEGIN

 -- Upgrade the analytic workspace
 dbms_cube.upgrade_aw(sourceaw =>'GLOBAL10', destaw => 'GLOBAL11');

 -- Load and aggregate the data
 dbms_cube.build(script => 'UNITS_CUBE, PRICE_AND_COST_CUBE');

END;
/

Custom Upgrade

A custom upgrade enables you to set the export and import options.

To perform a custom upgrade of an Oracle OLAP 10g analytic workspace:

	
Open SQL*Plus or a similar SQL command-line interface and connect to Oracle Database 11g as the schema owner of the OLAP 11g analytic workspace.

	
Generate an initialization table, as described in "Initialization Table". Review the new, default object names and modify them as desired.

	
Create a rename table, as described in "Rename Table". If you are upgrading in the same schema, you must use a rename table to provide a unique name for the 11g analytic workspace. Otherwise, a rename table is needed only if names are duplicated among the cubes, dimensions, and measure folders of the analytic workspace, or between those names and the existing cubes, dimensions, measure folders, or tables of the destination schema.

	
Create a SQL script that does the following:

	
Create an XML document for the export options, as described in "CREATE_EXPORT_OPTIONS Procedure". The SUPPRESS_NAMESPACE option must be set to TRUE for the upgrade to occur.

	
Create an XML document for the import options, as described in "CREATE_IMPORT_OPTIONS Procedure".

	
Create an XML template in OLAP 11g format, as described in "EXPORT_XML Procedure".

	
Create an OLAP 11g analytic workspace from the XML template, as described in "IMPORT_XML Procedure".

	
Load and aggregate the data in the new analytic workspace, as described in "BUILD Procedure".

Example 41-2 Performing a Custom Upgrade to the GLOBAL Analytic Workspace

This example upgrades the GLOBAL10 analytic workspace from OLAP 10g metadata to OLAP 11g metadata in the GLOBAL_AW schema.

The rename table provides the new name of the analytic workspace. These commands define the rename table.

CREATE TABLE my_object_map(
 source_id VARCHAR2(300),
 new_name VARCHAR2(30),
 object_type VARCHAR2(30));

INSERT INTO my_object_map VALUES('GLOBAL_AW.GLOBAL10.AW', 'GLOBAL11', 'AW');
COMMIT;

Following is the script for performing the upgrade.

set serverout on

DECLARE
 importClob clob;
 exportClob clob;
 exportOptClob clob;
 importOptClob clob;

BEGIN

 -- Create table of reconciled names
 dbms_cube.initialize_cube_upgrade;

 -- Create a CLOB containing the export options
 dbms_lob.createtemporary(exportOptClob, TRUE);
 dbms_cube.create_export_options(out_options_xml=>exportOptClob, suppress_namespace=>TRUE, preserve_table_owners=>TRUE);

 -- Create a CLOB containing the import options
 dbms_lob.createtemporary(importOptClob, TRUE);
 dbms_cube.create_import_options(out_options_xml=>importOptClob, rename_table => 'MY_OBJECT_MAP');

 -- Create CLOBs for the metadata
 dbms_lob.createtemporary(importClob, TRUE);
 dbms_lob.createtemporary(exportClob, TRUE);

 -- Export metadata from a 10g analytic workspace to a CLOB
 dbms_cube.export_xml(object_ids=>'GLOBAL_AW', options_xml=>exportOptClob, out_xml=>exportClob);

 -- Import metadata from the CLOB
 dbms_cube.import_xml(in_xml => exportClob, options_xml=>importOptClob, out_xml=>importClob);

 -- Load and aggregate the data
 dbms_cube.build('UNITS_CUBE, PRICE_AND_COST_CUBE');

END;
/

Summary of DBMS_CUBE Subprograms

Table 41-1 DBMS_CUBE Subprograms

	Subprogram	Description
	
BUILD Procedure

	
Loads data into one or more cubes and dimensions, and prepares the data for querying.

	
CREATE_EXPORT_OPTIONS Procedure

	
Creates an input XML document of processing options for the EXPORT_XML procedure.

	
CREATE_IMPORT_OPTIONS Procedure

	
Creates an input XML document of processing options for the IMPORT_XML procedure.

	
CREATE_MVIEW Function

	
Creates a cube materialized view from the definition of a relational materialized view.

	
DERIVE_FROM_MVIEW Function

	
Creates an XML template for a cube materialized view from the definition of a relational materialized view.

	
DROP_MVIEW Procedure

	
Drops a cube materialized view.

	
EXPORT_XML Procedure

	
Exports the XML of an analytic workspace to a CLOB.

	
EXPORT_XML_TO_FILE Procedure

	
Exports the XML of an analytic workspace to a file.

	
IMPORT_XML Procedure

	
Creates, modifies, or drops an analytic workspace by using an XML template

	
INITIALIZE_CUBE_UPGRADE Procedure

	
Processes Oracle OLAP 10g objects with naming conflicts to enable Oracle 11g clients to access them.

	
REFRESH_MVIEW Procedure

	
Refreshes a cube materialized view.

	
UPGRADE_AW Procedure

	
Upgrades an analytic workspace from Oracle OLAP 10g to 11g.

	
VALIDATE_XML Procedure

	
Checks the XML to assure that it is valid, without committing the results to the database.

BUILD Procedure

This procedure loads data into one or more cubes and dimensions, and generates aggregate values in the cubes. The results are automatically committed to the database.

Syntax

DBMS_CUBE.BUILD (
 script IN VARCHAR2,
 method IN VARCHAR2 DEFAULT NULL,
 refresh_after_errors IN BOOLEAN DEFAULT FALSE,
 parallelism IN BINARY_INTEGER DEFAULT 0,
 atomic_refresh IN BOOLEAN DEFAULT FALSE,
 automatic_order IN BOOLEAN DEFAULT TRUE,
 add_dimensions IN BOOLEAN DEFAULT TRUE,
 scheduler_job IN VARCHAR2 DEFAULT NULL,
 master_build_id IN BINARY_INTEGER DEFAULT 0,
 nested IN BOOLEAN DEFAULT FALSE);

Parameters

Table 41-2 BUILD Procedure Parameters

	Parameter	Description
	
script

	
A list of cubes and dimensions and their build options (see "SCRIPT Parameter").

	
method

	
A full or a fast (partial) refresh. In a fast refresh, only changed rows are inserted in the cube and the affected areas of the cube are re-aggregated.

You can specify a method for each cube and dimension in sequential order, or a single method to apply to all cubes and dimensions. If you list more objects than methods, then the last method applies to the additional objects.

	
C: Complete refresh clears all dimension values before loading. (Default)

	
F: Fast refresh of a cube materialized view, which performs an incremental refresh and re-aggregation of only changed rows in the source table.

	
?: Fast refresh if possible, and otherwise a complete refresh.

	
P: Recomputes rows in a cube materialized view that are affected by changed partitions in the detail tables.

	
S: Fast solve of a compressed cube. A fast solve reloads all the detail data and re-aggregates only the changed values.

See the "Usage Notes" for additional details.

Methods do not apply to dimensions.

	
refresh_after_errors

	
TRUE to roll back just the cube or dimension with errors, and then continue building the other objects.

FALSE to roll back all objects in the build.

	
parallelism

	
Number of parallel processes to allocate to this job (see Usage Notes).

	
atomic_refresh

	
TRUE prevents users from accessing intermediate results during a build. It freezes the current state of an analytic workspace at the beginning of the build to provide current sessions with consistent data. This option thaws the analytic workspace at the end of the build to give new sessions access to the refreshed data. If an error occurs during the build, then all objects are rolled back to the frozen state.

FALSE enables users to access intermediate results during an build.

	
automatic_order

	
TRUE enables optimization of the build order. Dimensions are loaded before cubes.

FALSE builds objects in the order you list them in the script.

	
add_dimensions

	
TRUE automatically includes all the dimensions of the cubes in the build, whether or not you list them in the script. If a cube materialized view with a particular dimension is fresh, then that dimension is not reloaded. You can list a cube once in the script.

FALSE includes only dimensions specifically listed in the script.

	
scheduler_job

	
Any text identifier for the job, which will appear in the log table. The string does not need to be unique.

	
master_build_id

	
A unique name for the build.

	
nested

	
TRUE performs nested refresh operations for the specified set of cube materialized views. Nested refresh operations refresh all the depending materialized views and the specified set of materialized views based on a dependency order to ensure the nested materialized views are truly fresh with respect to the underlying base tables.

All objects must reside in a single analytic workspace.

SCRIPT Parameter

The SCRIPT parameter identifies the objects that will be included in the build, and specifies the type of processing that will be performed on each one. The parameter has this syntax:

[VALIDATE | NO COMMIT] objects [USING (commands)][,...]

Where:

VALIDATE checks all steps of the build and sends the planned steps to CUBE_BUILD_LOG without executing the steps. You can view all generated SQL in the OUTPUT column of the log table.

NO COMMIT builds the objects in the current attach mode (or Read Only when the analytic workspace is not attached) but does not commit the changes. This option supports what-if analysis, since it enables you to change data values temporarily. See "SCRIPT Parameter: USING Clause: SET command".

objects is the qualified name of one or more cubes or dimensions, separated by commas, in the form [aw_name.]object, such as UNITS_CUBE or GLOBAL.UNITS_CUBE.

SCRIPT Parameter: USING Clause

The USING clause specifies the processing options. It consists of one or more commands separated by commas.

	
Note:

A cube with a rewrite materialized view cannot have a USING clause, except for the ANALYZE command. It uses the default build options.

The commands can be any of the following.

	
AGGREGATE USING [MEASURE]

Generates aggregate values using the syntax described in "SCRIPT Parameter: USING Clause: AGGREGATE command".

	
ANALYZE

Runs DBMS_AW_STATS.ANALYZE, which generates and stores optimizer statistics for cubes and dimensions.

	
CLEAR [VALUES | LEAVES | AGGREGATES] [SERIAL | PARALLEL]

Prepares the cube for a data refresh. It can also be used on dimensions, but CLEAR removes all dimension keys, and thus deletes all data values for cubes that use the dimension.

These optional arguments control the refresh method. If you omit the argument, then the behavior of CLEAR depends on the refresh method. The 'C' (complete) refresh method runs CLEAR VALUES, and all other refresh methods run CLEAR LEAVES.

	
VALUES: Clears all data in the cube. All facts must be reloaded and all aggregates must be recomputed. This option supports the COMPLETE refresh method. (Default for the C and F methods)

	
LEAVES: Clears the detail data and retains the aggregates. All facts must be reloaded, and the aggregates for any new or changed facts must be computed. This option supports the FAST refresh method. (Default for the ? method)

	
AGGREGATES: Retains the detail data and clears the aggregates. All aggregates must be recomputed.

These optional arguments control the load method, and can be combined with any of the refresh options:

	
PARALLEL: Each partition is cleared separately. (Default)

	
SERIAL: All partitions are cleared together.

If you omit the CLEAR command, DBMS_CUBE loads new and updated facts, but does not delete any old detail data. This is equivalent to a LOAD NO SYNC for dimensions.

	
COMPILE [SORT | NO SORT | SORT ONLY]

Creates the supporting structures for the dimension. (Dimensions only)

These options control the use of a sort order attribute:

	
SORT: The user-defined sort order attribute populates the sort column in the embedded-total (ET) view. (Default)

	
NO SORT: Any sort order attribute is ignored. This option is for very large dimensions where sorting could consume too many resources.

	
SORT ONLY: The compile step only runs the sort.

	
EXECUTE PLSQL string

Executes a PL/SQL command or script in the database.

	
EXECUTE OLAP DML string [PARALLEL | SERIAL]

Executes an OLAP DML command or program in the analytic workspace. The options control execution of the command or program:

	
PARALLEL: Execute the command or program once for each partition. This option can be used to provide a performance boost to complex DML operations, such as forecasts and models.

	
SERIAL: Execute the command or program once for the entire cube. (Default)

	
[INSERT | MERGE] INTO [ALL HIERARCHIES | HIERARCHIES (dimension.hierarchy)] VALUES (dim_key, level_name, parent)

Adds a dimension member to one or more hierarchies. INSERT throws an error if the member already exists, while MERGE does not. See "Dimension Maintenance Example".

dimension.hierarchy: The name of a hierarchy the new member belongs to. Enclose each part of the name in double quotes, for example, "PRODUCT"."PRIMARY".

dim_key: The DIM_KEY value of the dimension member.

level_name: The level of the dimension key.

parent: The parent of the dimension key.

	
UPDATE [ALL HIERARCHIES | HIERARCHIES (dimension.hierarchy)] SET PARENT = parent, LEVEL=level_name WHERE MEMBER = dim_key

Alters the level or parent of an existing dimension member. See INSERT for a description of the options. Also see "Dimension Maintenance Example".

	
DELETE FROM DIMENSION WHERE MEMBER=dim_key

Deletes a dimension member. See "Dimension Maintenance Example".

dim_key: The DIM_KEY value of the dimension member to be deleted.

	
SET dimension.attribute[qdr] = CAST('attribute_value' AS VARCHAR2))

Sets the value of an attribute for a dimension member. See "Dimension Maintenance Example".

dimension.attribute: The name of the attribute. Enclose each part of the name in double quotes, for example, "PRODUCT"."LONG_DESCRIPTION".

qdr: The dimension member being given an attribute value in the form of a qualified data reference, such as "PRODUCT"='OPT MOUSE'.

attribute_value: The value of the attribute, such as 'Optical Mouse'.

	
FOR dimension_clause measure_clause BUILD (commands)

Restricts the build to particular measures and dimension values, using the following arguments. See "FOR Clause Example".

	
dimension_clause:

dimension ALL | NONE | WHERE condition | LEVELS (level [, level...])

dimension is the name of a dimension of the cube.

ALL sets the dimension status to all members before executing the list of commands.

NONE loads values for no dimension members.

WHERE loads values for those dimension members that match the condition.

LEVELS loads values for dimension members in the named levels.

level is a level of the named dimension.

	
measure_clause:

MEASURES (measure [, measure...])

measure is the name of a measure in the cube.

	
commands: Any of the other USING commands.

	
LOAD [SYNCH | NO SYNCH] [PRUNE | PARALLEL | SERIAL] [WHERE condition]

Loads data into the dimension or cube.

	
WHERE limits the load to those values in the mapped relational table that match condition.

	
condition is a valid predicate based on the columns of the mapped table. See the "Examples".

These optional arguments apply only to dimensions:

	
SYNCH matches the dimension keys to the relational data source. (Default)

	
NO SYNCH loads new dimension keys but does not delete old keys.

These optional arguments apply only to cubes:

	
PRUNE: Runs a full table scan on the fact table to determine which partitions to load. For example, if a cube is partitioned by month and the fact table has values only for the last two months, then jobs are only started to load the partitions for the last two months.

	
PARALLEL: Each partition is loaded separately. (Default)

	
SERIAL: All partitions are loaded in one SELECT statement.

	
MODEL model_name [PARALLEL | SERIAL]

Executes a model previously created for the cube. It accepts these arguments:

	
PARALLEL: The model runs separately on each partition.

	
SERIAL: The model runs on all cubes at the same time. (Default)

	
SET

Supports write-back to the cube using the syntax described in "SCRIPT Parameter: USING Clause: SET command". (Cubes only)

	
SOLVE [PARALLEL | SERIAL]

Aggregates the cube using the rules defined for the cube, including the aggregation operator and the precompute specifications. (Cubes only)

It accepts these arguments:

	
PARALLEL: Each partition is solved separately. (Default)

	
SERIAL: All partitions are solved at the same time.

SCRIPT Parameter: USING Clause: AGGREGATE command

The AGGREGATE command in a script specifies the aggregation rules for one or more measures.

	
Note:

The AGGREGATE command is available only for uncompressed cubes.

AGGREGATE has the following syntax:

{ AGGREGATE USING MEASURE
 WHEN measure1 THEN operator1
 WHEN measure2 THEN operator2...
 ELSE default_operator
|
 [AGGREGATE USING] operator_clause }
processing_options
OVER { ALL | dimension | dimension HIERARCHIES (hierarchy)}

USING MEASURE Clause

This clause enables you to specify different aggregation operators for different measures in the cube.

Operator Clause

The operator_clause has this syntax:

operator(WEIGHTBY expression | SCALEBY expression)

WEIGHTBY multiplies each data value by an expression before aggregation.

SCALEBY adds the value of an expression to each data value before aggregation.

Table 41-3 Aggregation Operators

	Operator	Option	Description
	
AVG

	
WEIGHTBY

	
Adds data values, then divides the sum by the number of data values that were added together.

	
FIRST

	
WEIGHTBY

	
The first real data value.

	
HIER_AVG

	
WEIGHTBY

	
Adds data values, then divides the sum by the number of the children in the dimension hierarchy. Unlike AVERAGE, which counts only non-NA children, HAVERAGE counts all of the logical children of a parent, regardless of whether each child does or does not have a value.

	
HIER_FIRST

	
WEIGHTBY

	
The first data value in the hierarchy, even when that value is NA.

	
HIER_LAST

	
WEIGHTBY

	
The last data value in the hierarchy, even when that value is NA.

	
LAST

	
WEIGHTBY

	
The last real data value.

	
MAX

	
WEIGHTBY

	
The largest data value among the children of each parent.

	
MIN

	
WEIGHTBY

	
The smallest data value among the children of each parent.

	
SUM

	
SCALEBY | WEIGHTBY

	
Adds data values. (Default)

Processing Options

You can specify these processing options for aggregation:

	
(ALLOW | DISALLOW) OVERFLOW

Specifies whether to allow decimal overflow, which occurs when the result of a calculation is very large and can no longer be represented by the exponent portion of the numerical representation.

	
ALLOW: A calculation that generates overflow executes without error and produces null results. (Default)

	
DISALLOW: A calculation involving overflow stops executing and generates an error message.

	
(ALLOW | DISALLOW) DIVISION BY ZERO

Specifies whether to allow division by zero.

	
ALLOW: A calculation involving division by zero executes without error but returns a null value. (Default)

	
DISALLOW: A calculation involving division by zero stops executing and generates an error message.

	
(CONSIDER | IGNORE) NULLS

Specifies whether nulls are included in the calculations.

	
CONSIDER: Nulls are included in the calculations. A calculation that includes a null value returns a null value.

	
IGNORE: Only actual data values are used in calculations. Nulls are treated as if they do not exist. (Default)

	
MAINTAIN COUNT

Stores an up-to-date count of the number of dimension members for use in calculating averages. Omit this option to count the members on the fly.

SCRIPT Parameter: USING Clause: SET command

The SET command in a script assigns values to one or more cells in a stored measure. It has this syntax:

SET target = expression

Where:

target is a a measure or a qualified data reference.

expression returns values of the appropriate data type for target.

Qualified Data References

Qualified data references (QDRs) limit a dimensional object to a single member in one or more dimensions for the duration of a query.

A QDR has the following syntax:

expression [{ dimension = member }[, { dimension = member } ...]]

Where:

expression is a dimensional expression, typically the name of a measure.

dimension is a primary dimension of expression.

member is a value of dimension.

The outside square brackets shown in bold are literal syntax elements; they do not indicate an optional argument. The inside square brackets shown in regular text delimit an optional argument and are not syntax elements.

This example returns Sales values for calendar year 2007:

global.sales[global.time = 'CY2007'
]

The next example returns Sales values only for the United States in calendar year 2007:

sales[customer = 'US', time = 'CY2007'
]

See the Examples for qualified data references in SET commands.

Usage Notes

Build Methods

The C, S, and ? methods always succeed and can be used on any cube.

The F and P methods require that the cube have a materialized view that was created as a fast or a rewrite materialized view.

Parallelism

Partitioned cubes can be loaded and aggregated in parallel processes. For example, a cube with five partitions can use up to five processes. Dimensions are always loaded serially.

The number of parallel processes actually allocated by a build is controlled by the smallest of these factors:

	
Number of cubes in the build and the number of partitions in each cube.

	
Setting of the PARALLELISM argument of the BUILD procedure.

	
Setting of the JOB_QUEUE_PROCESSES database initialization parameter.

Suppose UNITS_CUBE has 12 partitions, PARALLELISM is set to 10, and JOB_QUEUE_PROCESSES is set to 4. OLAP uses four processes, which appear as slave processes in the build log.

The SQL engine may allocate additional processes when the PARALLEL_DEGREE_POLICY database initialization parameter is set to AUTO or LIMITED. For example, if OLAP allocates four processes, the SQL engine might determine that two of those processes should be done by four processes instead, for a total of six processes.

Build Logs

OLAP generates three logs that provide diagnostic information about builds:

	
Cube build log

	
Rejected values log

	
Cube dimension compile log

Analytic Workspace Manager creates these logs automatically as tables in the same schema as the analytic workspace. If you do not use Analytic Workspace Manager, you can create and manage the logs in PL/SQL using the DBMS_CUBE_LOG package.

You can also create the cube log file by running $ORACLE_HOME/olap/admin/utlolaplog.sql. This script creates three additional views:

	
CUBE_BUILD_LATEST: Returns rows only from the last build.

	
CUBE_BUILD_REPORT: Returns one row for each command with elapsed times.

	
CUBE_BUILD_REPORT_LATEST: Returns a report like CUBE_BUILD_REPORT only from the last build.

This report shows a successfully completed build of the objects in the GLOBAL analytic workspace, which has four dimensions and two cubes.

SELECT command, status, build_object, build_object_type type
 FROM cube_build_report_latest;

COMMAND STATUS BUILD_OBJECT TYPE
------------------------- ---------- ------------------------------ ----------
BUILD COMPLETED BUILD
FREEZE COMPLETED BUILD
LOAD NO SYNCH COMPLETED CHANNEL DIMENSION
COMPILE COMPLETED CHANNEL DIMENSION
UPDATE/COMMIT COMPLETED CHANNEL DIMENSION
LOAD NO SYNCH COMPLETED CUSTOMER DIMENSION
COMPILE COMPLETED CUSTOMER DIMENSION
UPDATE/COMMIT COMPLETED CUSTOMER DIMENSION
LOAD NO SYNCH COMPLETED PRODUCT DIMENSION
COMPILE COMPLETED PRODUCT DIMENSION
UPDATE/COMMIT COMPLETED PRODUCT DIMENSION
LOAD NO SYNCH COMPLETED TIME DIMENSION
COMPILE COMPLETED TIME DIMENSION
UPDATE/COMMIT COMPLETED TIME DIMENSION
COMPILE AGGMAP COMPLETED PRICE_CUBE CUBE
UPDATE/COMMIT COMPLETED PRICE_CUBE CUBE
COMPILE AGGMAP COMPLETED UNITS_CUBE CUBE
UPDATE/COMMIT COMPLETED UNITS_CUBE CUBE
DBMS_SCHEDULER.CREATE_JOB COMPLETED PRICE_CUBE CUBE
DBMS_SCHEDULER.CREATE_JOB COMPLETED UNITS_CUBE CUBE
BUILD COMPLETED BUILD
LOAD COMPLETED PRICE_CUBE CUBE
SOLVE COMPLETED PRICE_CUBE CUBE
UPDATE/COMMIT COMPLETED PRICE_CUBE CUBE
BUILD COMPLETED BUILD
LOAD COMPLETED UNITS_CUBE CUBE
SOLVE COMPLETED UNITS_CUBE CUBE
UPDATE/COMMIT COMPLETED UNITS_CUBE CUBE
ANALYZE COMPLETED PRICE_CUBE CUBE
ANALYZE COMPLETED UNITS_CUBE CUBE
THAW COMPLETED BUILD

31 rows selected.

Examples

This example uses the default parameters to build UNITS_CUBE.

EXECUTE DBMS_CUBE.BUILD('GLOBAL.UNITS_CUBE');

The next example builds UNITS_CUBE and explicitly builds two of its dimensions, TIME and CHANNEL. The dimensions use the complete (C) method, and the cube uses the fast solve (S) method.

BEGIN
 DBMS_CUBE.BUILD(
 script=>'GLOBAL."TIME", GLOBAL.CHANNEL, GLOBAL.UNITS_CUBE',
 method=>'CCS',
 parallelism=>2);
END;
/

The following example loads only the selection of data identified by the WHERE clause:

BEGIN
 DBMS_CUBE.BUILD(q'!
 GLOBAL."TIME",
 GLOBAL.CHANNEL,
 GLOBAL.CUSTOMER,
 GLOBAL.PRODUCT,
 GLOBAL.UNITS_CUBE USING (LOAD NO SYNCH
 WHERE UNITS_FACT.MONTH_ID LIKE '2006%'
 AND UNITS_FACT.SALES > 5000)!');
END;
/

FOR Clause Example

In this example, the Time dimension is partitioned by calendar year, and DBMS_CUBE builds only the partition identified by CY2006. The HIER_ANCESTOR is an analytic function in the OLAP expression syntax.

BEGIN
 dbms_cube.build(q'!
 UNITS_CUBE USING
 (
 FOR "TIME"
 WHERE HIER_ANCESTOR(WITHIN "TIME".CALENDAR LEVEL "TIME".CALENDAR_YEAR) = 'CY2006'
 BUILD (LOAD, SOLVE)
)!',
 parallelism=>1);
END;
/

The next example uses a FOR clause to limit the build to the SALES measure in 2006. All objects are built using the complete (C) method.

BEGIN
 DBMS_CUBE.BUILD(
 script => '
 GLOBAL."TIME",
 GLOBAL.CHANNEL,
 GLOBAL.CUSTOMER,
 GLOBAL.PRODUCT,
 GLOBAL.UNITS_CUBE USING
 (
 FOR MEASURES(GLOBAL.UNITS_CUBE.SALES)
 BUILD(LOAD NO SYNCH WHERE GLOBAL.UNITS_FACT.MONTH_ID LIKE ''2006%'')
)',
 method => 'C',
 parallelism => 2);
END;
/

Write-Back Examples

The following examples show various use of the SET command in a USING clause.

This example sets Sales Target to Sales increased by 5%:

DBMS_CUBE.BUILD('UNITS_CUBE USING(
 SET UNITS_CUBE.SALES_TARGET = UNITS_CUBE.SALES * 1.05, SOLVE)');

This example sets the price of the Deluxe Mouse in May 2007 to $29.99:

DBMS_CUBE.BUILD('PRICE_CUBE USING(
 SET PRICE_CUBE.UNIT_PRICE["TIME"=''2007.05'', "PRODUCT"=''DLX MOUSE'']
 = 29.99, SOLVE)');

The next example contains two SET commands, but does not reaggregate the cube:

DBMS_CUBE.BUILD('PRICE_CUBE USING(
 SET PRICE_CUBE.UNIT_PRICE["TIME"=''2006.12'', "PRODUCT"=''DLX MOUSE'']
 = 29.49,
 SET PRICE_CUBE.UNIT_PRICE["TIME"=''2007.05'', "PRODUCT"=''DLX MOUSE'']
 = 29.99)');

Dimension Maintenance Example

This script shows dimension maintenance. It adds a new dimension member named OPT MOUSE to all hierarchies, alters its position in the Primary hierarchy, assigns it a long description, then deletes it from the dimension.

BEGIN
dbms_output.put_line('Add optical mouse');
dbms_cube.build(q'!
 "PRODUCT" using (MERGE INTO ALL HIERARCHIES
 VALUES ('ITEM_OPT MOUSE', 'CLASS_SFT', "PRODUCT"."FAMILY"))
!');

dbms_output.put_line('Alter optical mouse');
dbms_cube.build(q'!
 "PRODUCT" using (UPDATE HIERARCHIES ("PRODUCT"."PRIMARY")
 SET PARENT = 'FAMILY_ACC', LEVEL = "PRODUCT"."ITEM"
 WHERE MEMBER = 'ITEM_OPT MOUSE')
!');

dbms_output.put_line('Provide attributes to optical mouse');
dbms_cube.build(q'!
 "PRODUCT" USING (SET "PRODUCT"."LONG_DESCRIPTION"["PRODUCT" = 'ITEM_OPT MOUSE']
 = CAST('Optical Mouse' AS VARCHAR2))
!');

dbms_output.put_line('Delete optical mouse');
dbms_cube.build(q'!
 "PRODUCT" USING (DELETE FROM DIMENSION WHERE MEMBER='ITEM_OPT MOUSE')
!');

END;
/

OLAP DML Example

This example uses the OLAP DML to add comments to the cube build log:

BEGIN
 DBMS_CUBE.BUILD(q'!
 global.units_cube USING (
 EXECUTE OLAP DML 'SHOW STATLEN(units_cube_prt_list)' PARALLEL,
 EXECUTE OLAP DML 'SHOW LIMIT(units_cube_prt_list KEEP ALL)' PARALLEL,
 EXECUTE OLAP DML 'SHOW STATLEN(time)' parallel,
 EXECUTE OLAP DML 'SHOW LIMIT(time KEEP time_levelrel ''CALENDAR_YEAR'')' parallel)!',
 parallelism=>2,
 add_dimensions=>false);
END;
/

This query shows the comments in the cube build log:

SELECT partition, slave_number, TO_CHAR(output) output
 FROM cube_build_log
 WHERE command = 'OLAP DML'
 AND status = 'COMPLETED'
 ORDER BY slave_number, time;

PARTITION SLAVE_NUMBER OUTPUT
------------ ------------ ---
P10:CY2007 1 <OLAPDMLExpression
 Expression="TO_CHAR(statlen(units_cube_prt_list))"
 Value="1"/>

P10:CY2007 1 <OLAPDMLExpression
 Expression="TO_CHAR(limit(units_cube_prt_list keep al
 l))"
 Value="P10"/>

P10:CY2007 1 <OLAPDMLExpression
 Expression="TO_CHAR(statlen(time))"
 Value="17"/>

P10:CY2007 1 <OLAPDMLExpression
 Expression="TO_CHAR(limit(time keep time_levelrel &ap
 os;CALENDAR_YEAR'))"
 Value="CALENDAR_YEAR_CY2007"/>

P9:CY2006 2 <OLAPDMLExpression
 Expression="TO_CHAR(statlen(units_cube_prt_list))"
 Value="1"/>

P9:CY2006 2 <OLAPDMLExpression
 Expression="TO_CHAR(limit(units_cube_prt_list keep al
 l))"
 Value="P9"/>

P9:CY2006 2 <OLAPDMLExpression
 Expression="TO_CHAR(statlen(time))"
 Value="17"/>
 .
 .
 .

CREATE_EXPORT_OPTIONS Procedure

This procedure creates an input XML document that describes processing options for the EXPORT_XML Procedure and the EXPORT_XML_TO_FILE Procedure.

Syntax

DBMS_CUBE.CREATE_EXPORT_OPTIONS (
 out_options_xml IN/OUT CLOB,
 target_version IN VARCHAR2 DEFAULT NULL,
 suppress_owner IN BOOLEAN DEFAULT FALSE,
 suppress_namespace IN BOOLEAN DEFAULT FALSE,
 preserve_table_owners IN BOOLEAN DEFAULT FALSE,
 metadata_changes IN CLOB DEFAULT NULL);

Parameters

Table 41-4 CREATE_EXPORT_OPTIONS Procedure Parameters

	Parameter	Description
	
out_options_xml

	
Contains the generated XML document, which can be passed into the options_xml parameter of the EXPORT_XML Procedure.

	
target_version

	
Specifies the version of Oracle Database in which the XML document generated by EXPORT_XML or EXPORT_XML_TO_FILE will be imported. You can specify two to five digits, such as 11.2 or 11.2.0.2.0. This parameter defaults to the current database version, and so can typically be omitted.

	
suppress_owner

	
Controls the use of the Owner attribute in XML elements and the owner qualifier in object names. Enter True to drop the owner from the XML, or enter False to retain it. Enter True if you plan to import the exported metadata into a different schema.

	
suppress_namespace

	
Controls the use of Namespace attributes in XML elements and the namespace qualifier in object names. Enter True to drop the namespace from the XML, or enter False to retain it (default). Enter True when upgrading to Oracle OLAP 11g metadata.

Namespaces allow objects created in Oracle 10g to coexist with objects created in Oracle 11g. You cannot set or change namespaces.

	
preserve_table_owners

	
Controls the use of the owner in qualifying table names in the mapping elements, such as GLOBAL.UNITS_HISTORY_FACT instead of UNITS_HISTORY_FACT. Enter True to retain the table owner, or enter False to default to the current schema for table mappings. If you plan to import the exported metadata to a different schema, you must set this option to True to load data from tables and views in the original schema, unless the destination schema has its own copies of the tables and views.

	
metadata_changes

	
Contains an 11g XML description of an object that overwrites the exported object description. The XML document must contain all parent XML elements of the modified element with the attributes needed to uniquely identify them. Use the Name attribute if it exists. See the Examples.

Examples

The following example generates an XML document of export options:

DECLARE
 optionsClob CLOB;

BEGIN
 dbms_lob.createtemporary(optionsClob, false, dbms_lob.CALL);
 dbms_cube.create_export_options(out_options_xml=>optionsClob, suppress_namespace=>TRUE);
 dbms_output.put_line(optionsClob);
END;
/

The DBMS_OUTPUT.PUT_LINE procedure displays this XML document (formatted for readability:

<?xml version="1.0"?>
<Export TargetVersion="11.2.0.2">
 <ExportOptions>
 <Option Name="SuppressOwner" Value="FALSE"/>
 <Option Name="SuppressNamespace" Value="TRUE"/>
 <Option Name="PreserveTableOwners" Value="FALSE"/>
 </ExportOptions>
</Export>

The next example generates an XML document with a metadata change to the mapping of the American long description attribute of the CHANNEL dimension.

DECLARE
 importClob clob;
 exportClob clob;
 overClob clob;
 exportOptClob clob;
 importOptClob clob;

BEGIN
 dbms_lob.createtemporary(overClob, TRUE);
 dbms_lob.open(overClob, DBMS_LOB.LOB_READWRITE);
 dbms_lob.writeappend(overClob,58, '<Metadata Version="1.3" MinimumDatabaseVersion="11.2.0.2">');
 dbms_lob.writeappend(overClob,34, '<StandardDimension Name="CHANNEL">');
 dbms_lob.writeappend(overClob,75, '<Description Type="Description" Language="AMERICAN" Value="Sales Channel"/>');
 dbms_lob.writeappend(overClob,20, '</StandardDimension>');
 dbms_lob.writeappend(overClob,11, '</Metadata>');
 dbms_lob.close(overClob);

 -- Enable 11g clients to access 10g metadata
 dbms_cube.initialize_cube_upgrade;

 -- Create a CLOB containing the export options
 dbms_lob.createtemporary(exportOptClob, TRUE);
 dbms_cube.create_export_options(out_options_xml=>exportOptClob, suppress_namespace=>TRUE, metadata_changes=>overClob);

 -- Create a CLOB containing the import options
 dbms_lob.createtemporary(importOptClob, TRUE);
 dbms_cube.create_import_options(out_options_xml=>importOptClob, rename_table => 'MY_OBJECT_MAP');

 -- Create CLOBs for the metadata
 dbms_lob.createtemporary(importClob, TRUE);
 dbms_lob.createtemporary(exportClob, TRUE);

 -- Export metadata from a 10g analytic workspace to a CLOB
 dbms_cube.export_xml(object_ids=>'GLOBAL_AW', options_xml=>exportOptClob, out_xml=>exportClob);

 -- Import metadata from the CLOB
 dbms_cube.import_xml(in_xml => exportClob, options_xml=>importOptClob, out_xml=>importClob);

 -- Load and aggregate the data
 dbms_cube.build(script=>'UNITS_CUBE, PRICE_AND_COST_CUBE');

END;
/

The following is the content of exportClob (formatting added for readability). The XML document changes the description of Channel to Sales Channel.

<Metadata Version="1.3" MinimumDatabaseVersion="11.2.0.2">
 <StandardDimension Name="CHANNEL">
 <Description Type="Description" Language="AMERICAN" Value="Sales Channel"/>
 </StandardDimension>
</Metadata>

CREATE_IMPORT_OPTIONS Procedure

This procedure creates an input XML document that describes processing options for the IMPORT_XML Procedure.

Syntax

DBMS_CUBE.CREATE_IMPORT_OPTIONS (
 out_options_xml IN/OUT CLOB,
 validate_only IN BOOLEAN DEFAULT FALSE,
 rename_table IN VARCHAR2 DEFAULT NULL);

Parameters

Table 41-5 CREATE_IMPORT_OPTIONS Procedure Parameters

	Parameter	Description
	
out_options_xml

	
Contains the generated XML document, which can be passed to the options_xml parameter of the IMPORT_XML Procedure.

	
validate_only

	
TRUE causes the IMPORT_XML procedure to validate the metadata described in the input file or the in_xml parameter, without committing the changes to the metadata.

	
rename_table

	
The name of a table identifying new names for the imported objects, in the form [schema_name.]table_name. The IMPORT_XML procedure creates objects using the names specified in the table instead of the ones specified in the XML document. See the Usage Notes for the format of the rename table.

Usage Notes

See "Rename Table".

Examples

This example specifies validation only and a rename table. For an example of the import CLOB being used in an import, see "IMPORT_XML Procedure".

DECLARE
importClob clob;

BEGIN
 dbms_lob.createtemporary(importClob, TRUE);

 dbms_cube.create_import_options(out_options_xml => importClob, rename_table => 'MY_OBJECT_MAP', validate_only => TRUE);

 dbms_output.put_line(importClob);
END;
/

It generates the following XML document:

<?xml version="1.0"?>
<Import>
 <ImportOptions>
 <Option Name="ValidateOnly" Value="TRUE"/>
 <Option Name="RenameTable" Value="MY_OBJECT_MAP"/>
 </ImportOptions>
</Import>

CREATE_MVIEW Function

This function creates a cube materialized view from the definition of a relational materialized view.

Syntax

DBMS_CUBE.CREATE_MVIEW (
 mvowner IN VARCHAR2,
 mvname IN VARCHAR2,
 sam_parameters IN CLOB DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 41-6 CREATE_MVIEW Function Parameters

	Parameter	Description
	
mvowner

	
Owner of the relational materialized view.

	
mvname

	
Name of the relational materialized view. For restrictions, see "Requirements for the Relational Materialized View".

A single cube materialized view can replace many of the relational materialized views for a table. Choose the materialized view that has the lowest levels of the dimension hierarchies that you want represented in the cube materialized view.

	
sam_parameters

	
Parameters in the form 'parameter1=value1, parameter2=value2,...'. See "SQL Aggregation Management Parameters".

SQL Aggregation Management Parameters

The CREATE_MVIEW and DERIVE_FROM_MVIEW functions use the SQL aggregation management (SAM) parameters described in Table 41-7. Some parameters support the development of cubes with advanced analytics. Other parameters support the development of Java applications. The default settings are appropriate for cube materialized views that are direct replacements for relational materialized views.

Table 41-7 SQL Aggregation Management Parameters

	Parameter	Description
	
ADDTOPS

	
Adds a top level and a level member to every dimension hierarchy in the cube. If the associated relational dimension has no hierarchy, then a dimension hierarchy is created.

TRUE: Creates levels named ALL_dimension with level members All_dimension. (Default)

FALSE: Creates only the hierarchies and levels identified by the relational dimensions.

	
ADDUNIQUEKEYPREFIX

	
Controls the creation of dimension keys.

TRUE: Creates cube dimension keys by concatenating the level name with the relational dimension key. This practice assures that the dimension keys are unique across all levels, such as CITY_NEW_YORK and STATE_NEW_YORK. (Default)

FALSE: Uses the relational dimension keys as cube dimension keys.

	
ATRMAPTYPE

	
Specifies whether attributes are mapped by hierarchy levels, dimension levels, or both.

HIER_LEVEL: Maps attributes to the levels of a particular dimension hierarchy. (Default)

DIM_LEVEL: Maps attributes to the levels of the dimension regardless of hierarchy.

BOTH: Maps attributes to both dimension and hierarchy levels.

AUTO: Maps attributes to the levels of the dimension for a star schema and to the levels of a particular dimension hierarchy for a snowflake schema.

	
AWNAME

	
Provides the name of the analytic workspace that owns the cube. Choose a simple database object name of 1 to 30 bytes. The default name is fact_tablename_AWn.

	
BUILD

	
Specifies whether a data refresh will immediately follow creation of the cube materialized view.

IMMEDIATE: Refreshes immediately.

DEFERRED: Does not perform a data refresh. (Default)

Note: Only the CREATE_MVIEW function uses this parameter.

	
CUBEMVOPTION

	
Controls validation and creation of a cube materialized view. Regardless of this setting, the function creates an analytic workspace containing a cube and its related cube dimensions.

COMPLETE_REFRESH: Creates a complete refresh cube materialized view (full update).

FAST_REFRESH: Creates a fast refresh materialized view (incremental update).

REWRITE_READY: Runs validation checks for a rewrite cube materialized view, but does not create it.

REWRITE: Creates a rewrite cube materialized view.

REWRITE_WITH_ATTRIBUTES: Creates a rewrite cube materialized view that includes columns with dimension attributes, resulting in faster query response times. (Default)

Note: The following settings do not create a cube materialized view. Use Analytic Workspace Manager to drop an analytic workspace that does not have a cube materialized view. You can use the DROP_MVIEW procedure to delete an analytic workspace only when it supports a cube materialized view.

NONE: Does not create a cube materialized view.

COMPLETE_REFRESH_READY: Runs validation checks for a complete refresh cube materialized view, but does not create it.

FAST_REFRESH_READY: Runs validation checks for fast refresh, but does not create the cube materialized view.

	
CUBENAME

	
Provides the name of the cube derived from the relational materialized view. Choose simple database object name of 1 to 30 bytes. The default name is fact_tablename_Cn.

	
DIMJAVABINDVARS

	
Supports access by Java programs to the XML document.

TRUE: Generates an XML template that uses Java bind variable notation for the names of dimensions. No XML validation is performed. You cannot use the IMPORT_XML procedure to create a cube using this template.

FALSE: Generates an XML template that does not support Java bind variables. (Default)

	
DISABLEQRW

	
Controls disabling of query rewrite on the source relational materialized view.

TRUE: Issues an ALTER MATERIALIZED VIEW mview_name DISABLE QUERY REWRITE command.

FALSE: No action.

Note: Only the CREATE_MVIEW function with BUILD=IMMEDIATE uses this parameter.

	
EXPORTXML

	
Exports the XML that defines the dimensional objects to a file, which you specify as dir/filename. Both the directory and the file name are case sensitive.

dir: Name of a database directory.

filename: The name of the file, typically given an XML filename extension.

	
FILTERPARTITIONANCESTORLEVELS

	
Controls the generation of aggregate values above the partitioning level of a partitioned cube.

TRUE: Removes levels above the partitioning level from the cube. Requests for summary values above the partitioning level are solved by SQL.

FALSE: All levels are retained in the cube. Requests for summary values are solved by OLAP. (Default)

	
LOGDEST

	
Directs and stores log messages. By default, the messages are not available.

SERVEROUT: Sends messages to server output (typically the screen), which is suitable when working interactively such as in SQL*Plus or SQL Developer.

TRACEFILE: Sends messages to the session trace file.

	
PARTITIONOPTION

	
Controls partitioning of the cube.

NONE: Prevents partitioning.

DEFAULT: Allows the Sparsity Advisor to determine whether partitioning is needed and how to partition the cube. (Default)

FORCE: Partitions the cube even when the Sparsity Advisor recommends against it. The Sparsity Advisor identifies the best dimension, hierarchy, and level to use for partitioning.

dimension.hierarchy.level: Partitions the cube using the specified dimension, hierarchy, and level.

	
POPULATELINEAGE

	
Controls the appearance of attributes in a cube materialized view.

TRUE: Includes all dimension attributes in the cube materialized view. (Default)

FALSE: Omits all dimension attributes from the cube materialized view.

	
PRECOMPUTE

	
Identifies a percentage of the data that is aggregated and stored. The remaining values are calculated as required by queries during the session.

precompute_percentage[:precompute_top_percentage]

Specify the top percentage for partitioned cubes. The default value is 35:0, which specifies precomputing 35% of the bottom partition and 0% of the top partition. If the cube is not partitioned, then the second number is ignored.

	
REMAPCOMPOSITEKEYS

	
Controls how multicolumn keys are rendered in the cube.

TRUE: Creates a unique key attribute whose values are concatenated string expressions with an underscore between the column values. For example, the value BOSTON_MA_USA might be an expression produced from a multicolumn key composed of CITY, STATE, and COUNTRY columns. In addition, an attribute is created for each individual column to store the relational keys. (Default)

FALSE: Creates a unique key attribute for each column.

	
RENDERINGMODE

	
Controls whether a loss in fidelity between the relational materialized view and the cube materialized view results in a warning message or an exception. See "Requirements for the Relational Materialized View".

LOOSE: Losses are noted in the optional logs generated by the CREATE_MVIEW Function and the DERIVE_FROM_MVIEW Function. No exceptions are raised. (Default)

STRICT: Any loss in fidelity raises an exception so that no XML template is created.

	
SEEFILTERS

	
Controls whether conditions in the WHERE clause of the relational materialized view's defining query are retained or ignored.

TRUE: Renders valid conditions in the XML template. (Default)

FALSE: Ignores all conditions.

	
UNIQUENAMES

	
Controls whether top level dimensional objects have unique names. Cross namespace conflicts may occur because dimensional objects have different namespaces than relational objects.

TRUE: Modifies all relational names when they are rendered in the cube.(Default)

FALSE: Duplicates relational names in the cube unless a naming conflict is detected. In that case, a unique name is created.

	
UNKNOWNKEYASDIM

	
Controls handling of simple columns with no levels or hierarchies in the GROUP BY clause of the relational materialized view's defining query.

TRUE: Renders a simple column without a relational dimension as a cube dimension with no levels or hierarchies.

FALSE: Raises an exception when no relational dimension is found for the column. (Default)

	
VALIDATEXML

	
Controls whether the generated XML document is validated.

TRUE: Validates the template using the VALIDATE_XML procedure. (Default)

FALSE: No validation is done.

Returns

The name of the cube materialized view created by the function.

Usage Notes

See "Using SQL Aggregation Management"

Examples

All examples for the SQL Aggregate Management subprograms use the sample Sales History schema, which is installed in Oracle Database with two relational materialized views: CAL_MONTH_SALES_MV and FWEEK_PSCAT_SALES_MV.

The following script creates a cube materialized view using CAL_MONTH_SALES_MV as the relational materialized view. It uses all default options.

SET serverout ON format wrapped

DECLARE
 salesaw varchar2(30);

BEGIN
 salesaw := dbms_cube.create_mview('SH', 'CAL_MONTH_SALES_MV');
END;
/

The next example sets several parameters for creating a cube materialized view from FWEEK_PSCAT_SALES_MV. These parameters change the cube materialized view in the following ways:

	
ADDTOPS: Adds a top level consisting of a single value to the hierarchies. All of the dimensions in Sales History have a top level already.

	
PRECOMPUTE: Changes the percentage of materialized aggregates from 35:0 to 40:10.

	
EXPORTXML: Creates a text file for the XML document.

	
BUILD: Performs a data refresh.

DECLARE
 salescubemv varchar2(30);
 sam_param clob := 'ADDTOPS=FALSE,
 PRECOMPUTE=40:10,
 EXPORTXML=WORK_DIR/sales.xml,
 BUILD=IMMEDIATE';

BEGIN
 salescubemv := dbms_cube.create_mview('SH', 'FWEEK_PSCAT_SALES_MV',
 sam_param);
END;
/

DERIVE_FROM_MVIEW Function

This function generates an XML template that defines a cube with materialized view capabilities, using the information derived from an existing relational materialized view.

Syntax

DBMS_CUBE.DERIVE_FROM_MVIEW (
 mvowner IN VARCHAR2,
 mvname IN VARCHAR2,
 sam_parameters IN CLOB DEFAULT NULL)
 RETURN CLOB;

Parameters

Table 41-8 DERIVE_FROM_MVIEW Function Parameters

	Parameter	Description
	
mvowner

	
Owner of the relational materialized view.

	
mvname

	
Name of the relational materialized view. For restrictions, see "Requirements for the Relational Materialized View".

A single cube materialized view can replace many of the relational materialized views for a table. Choose the materialized view that has the lowest levels of the dimension hierarchies that you want represented in the cube materialized view.

	
sam_parameters

	
Optional list of parameters in the form 'parameter1=value1, parameter2=value2,...'. See "SQL Aggregation Management Parameters".

Returns

An XML template that defines an analytic workspace containing a cube enabled as a materialized view.

Usage Notes

To create a cube materialized view from an XML template, use the IMPORT_XML procedure. Then use the REFRESH_MVIEW procedure to refresh the cube materialized view with data.

See "Using SQL Aggregation Management".

Examples

The following example generates an XML template named sales_cube.xml from the CAL_MONTH_SALES_MV relational materialized view in the SH schema.

DECLARE
 salescubexml clob := null;
 sam_param clob := 'exportXML=WORK_DIR/sales_cube.xml';

BEGIN
 salescubexml := dbms_cube.derive_from_mview('SH', 'CAL_MONTH_SALES_MV',
 sam_param);
END;
/

DROP_MVIEW Procedure

This procedure drops a cube materialized view and all associated objects from the database. These objects include the dimension materialized views, cubes, cube dimensions, levels, hierarchies, and the analytic workspace.

Syntax

DBMS_CUBE.DROP_MVIEW (
 mvowner IN VARCHAR2,
 mvname IN VARCHAR2,
 sam_parameters IN CLOB DEFAULT NULL);

Parameters

Table 41-9 DROP_MVIEW Procedure Parameters

	Parameter	Description
	
mvowner

	
Owner of the cube materialized view

	
mvname

	
Name of the cube materialized view

	
sam_parameters

	
EXPORTXML: Exports the XML that drops the dimensional objects to a file, which you specify as dir/filename. Both the directory and the file name are case sensitive.

dir: Name of a database directory.

filename: The name of the file, typically given an XML filename extension.

Usage Notes

Use this procedure to drop a cube materialized view that you created using the CREATE_MVIEW and DERIVE_FROM_MVIEW functions. If you make modifications to the cubes or dimensions, then DROP_MVIEW may not be able to drop the cube materialized view.

Some of the CUBEMVOPTION parameters used by the CREATE_MVIEW and DERIVE_FROM_MVIEW functions do not create a materialized view. Use Analytic Workspace Manager to drop the analytic workspace, cubes, and cube dimensions.

If you use the EXPORTXML parameter, then you can use the XML document to drop the cube materialized view, after you re-create it. Use the IMPORT_XML procedure.

See "Using SQL Aggregation Management".

Examples

The current schema has four materialized views. CB$CAL_MONTH_SALES is a cube materialized view for the SALES table. CB$TIMES_DIM_D1_CAL_ROLLUP is a cube dimension materialized view for the TIMES_DIM dimension on the TIMES dimension table. The others are relational materialized views.

SELECT mview_name FROM user_mviews;

MVIEW_NAME

CB$CAL_MONTH_SALES
CB$TIMES_DIM_D1_CAL_ROLLUP
CAL_MONTH_SALES_MV
FWEEK_PSCAT_SALES_MV

The following command drops both CB$CAL_MONTH_SALES and CB$TIMES_DIM_D1_CAL_ROLLUP.

EXECUTE dbms_cube.drop_mview('SH', 'CB$CAL_MONTH_SALES');

Dropped cube organized materialized view "SH"."CAL_MONTH_SALES"
including container analytic workspace "SH"."CAL_MONTH_SALES_AW"
at 20081110 16:31:40.056.

This query against the data dictionary confirms that the materialized views have been dropped.

SELECT mview_name FROM user_mviews;

MVIEW_NAME

CAL_MONTH_SALES_MV
FWEEK_PSCAT_SALES_MV

EXPORT_XML Procedure

This procedure writes OLAP metadata to a CLOB.

Syntax

DBMS_CUBE.EXPORT_XML
 (object_ids IN VARCHAR2,
 out_xml IN/OUT CLOB;

DBMS_CUBE.EXPORT_XML
 (object_ids IN VARCHAR2,
 options_xml IN CLOB,
 out_xml IN/OUT CLOB;

DBMS_CUBE.EXPORT_XML
 (object_ids IN VARCHAR2,
 options_dirname IN VARCHAR2,
 options_filename IN VARCHAR2,
 out_xml IN/OUT CLOB;

Parameters

Table 41-10 EXPORT_XML Procedure Parameters

	Parameter	Description
	
object_ids

	
Any of these identifiers.

	
The name of a schema, such as GLOBAL.

	
The fully qualified name of an analytic workspace in the form owner.aw_name.AW, such as GLOBAL.GLOBAL.AW.

	
Cube

	
Dimension

	
Named build process

	
Measure folder

You can specify multiple objects by separating the names with commas.

Note: When exporting an individual object, be sure to export any objects required to reconstruct it. For example, when exporting a cube, you must also export the dimensions of the cube.

	
options_dirname

	
The case-sensitive name of a database directory that contains options_filename.

	
options_filename

	
A file containing an XML document of export options.

	
options_xml

	
A CLOB variable that contains an XML document of export options. Use the CREATE_EXPORT_OPTIONS Procedure to generate this document.

	
out_xml

	
A CLOB variable that will store the XML document of OLAP metadata for the objects listed in object_ids.

Export Options

The default settings for the export options are appropriate in many cases, so you can omit the options_xml parameter or the options_dirname and options_filename parameters. However, when upgrading Oracle OLAP 10g metadata to OLAP 11g, you must specify an XML document that changes the default settings. This example changes all of the parameters from False to True; set them appropriately for your schema.

<?xml version="1.0"?>
<Export>
 <ExportOptions>
 <Option Name="SuppressNamespace" Value="True"/>
 <Option Name="SuppressOwner" Value="True"/>
 <Option Name="PreserveTableOwners" Value="True"/>
 </ExportOptions>
</Export>

You can create this XML document manually or by using the CREATE_EXPORT_OPTIONS Procedure.

Usage Notes

See "Upgrading Analytic Workspaces From OLAP 10g to OLAP 11g".

Example

For an example of using EXPORT_XML in an upgrade to the same schema, see "Upgrading Analytic Workspaces From OLAP 10g to OLAP 11g".

The following PL/SQL script copies an OLAP 11g analytic workspace named GLOBAL11 from the GLOBAL_AW schema to the GLOBAL schema. No upgrade is performed.

To upgrade into a different schema, change the example as follows:

	
Call the INITIALIZE_CUBE_UPGRADE procedure.

	
Call the CREATE_EXPORT_OPTIONS procedure with the additional parameter setting SUPPRESS_NAMESPACE=>TRUE.

The PL/SQL client must be connected to the database as GLOBAL. The GLOBAL user must have SELECT permissions on GLOBAL_AW.AW$GLOBAL and on all relational data sources.

BEGIN
 -- Create a CLOB for the export options
 dbms_lob.createtemporary(optionsClob, TRUE);
 dbms_cube.create_export_options(out_options_xml=>optionsClob, suppress_owner=>TRUE, preserve_table_owners=>TRUE);

 -- Create a CLOB for the XML template
 dbms_lob.createtemporary(exportClob, TRUE);

 -- Export metadata from an analytic workspace to a CLOB
 dbms_cube.export_xml(object_ids=>'GLOBAL_AW.GLOBAL11.AW', options_xml=>optionsClob, out_xml=>exportClob);

 -- Import metadata from the CLOB
 dbms_cube.import_xml(in_xml=>exportClob);

 -- Load and aggregate the data
 dbms_cube.build(script=>'GLOBAL.UNITS_CUBE, GLOBAL.PRICE_AND_COST_CUBE');

END;
/

EXPORT_XML_TO_FILE Procedure

This procedure exports OLAP metadata to a file. This file can be imported into a new or existing analytic workspace using the IMPORT_XML procedure. In this way, you can create a copy of the analytic workspace in another schema or database.

This procedure can also be used as part of the process for upgrading CWM or OLAP standard form (AWXML) metadata contained in an Oracle OLAP 10g analytic workspace to OLAP 11g format.

Syntax

DBMS_CUBE.EXPORT_XML_TO_FILE
 (object_ids IN VARCHAR2,
 output_dirname IN VARCHAR2,
 output_filename IN VARCHAR2;

DBMS_CUBE.EXPORT_XML_TO_FILE
 (object_ids IN VARCHAR2,
 options_dirname IN VARCHAR2,
 options_filename IN VARCHAR2,
 output_dirname IN VARCHAR2,
 output_filename IN VARCHAR2;

Parameters

Table 41-11 EXPORT_XML_TO_FILE Procedure Parameters

	Parameter	Description
	
object_ids

	
Any of these identifiers.

	
The name of a schema, such as GLOBAL.

	
The fully qualified name of an analytic workspace in the form owner.aw_name.AW, such as GLOBAL.GLOBAL.AW.

	
Cube

	
Dimension

	
Named build process

	
Measure folder

You can specify multiple objects by separating the names with commas.

Note: When exporting an individual object, be sure to export any objects required to reconstruct it. For example, when you export a cube, you must also export the dimensions of the cube.

	
options_dirname

	
The case-sensitive name of a database directory that contains options_filename. See "Export Options".

	
options_filename

	
The name of a file containing an XML document of export options. See "Export Options".

	
output_dirname

	
The case-sensitive name of a database directory where output_filename is created.

	
output_filename

	
The name of the template file created by the procedure.

Export Options

The default settings for the export options are appropriate in most cases, and you can omit the options_dirname and options_filename parameters. However, when upgrading Oracle OLAP 10g metadata to OLAP 11g, you must specify an XML document that changes the default settings, like the following:

<?xml version="1.0"?>
<Export>
 <ExportOptions>
 <Option Name="SuppressNamespace" Value="True"/>
 <Option Name="SuppressOwner" Value="True"/>
 <Option Name="PreserveTableOwners" Value="True"/>
 </ExportOptions>
</Export>

You can create this XML document manually or by using the CREATE_EXPORT_OPTIONS Procedure.

Usage Notes

See "Upgrading Analytic Workspaces From OLAP 10g to OLAP 11g".

Examples

The following example generates an XML file named global.xml in OLAP 11g format using the default export settings. The metadata is derived from all analytic workspaces and CWM metadata in the GLOBAL_AW schema. The output file is generated in the WORK_DIR database directory.

execute dbms_cube.export_xml_to_file('GLOBAL_AW', 'WORK_DIR', 'global.xml');

The next example also generates an XML file named global.xml in OLAP 11g format using the export options set in options.xml. The metadata is derived from the GLOBAL analytic workspace in the GLOBAL_AW schema. Both the options file and the output file are in the WORK_DIR database directory.

execute dbms_cube.export_xml_to_file('GLOBAL_AW.GLOBAL.AW', 'WORK_DIR', 'options.xml', 'WORK_DIR', 'global.xml');

IMPORT_XML Procedure

This procedure creates, modifies, or drops an analytic workspace by using an XML template.

Syntax

DBMS_CUBE.IMPORT_XML
 (dirname IN VARCHAR2,
 filename IN VARCHAR2);

DBMS_CUBE.IMPORT_XML
 (dirname IN VARCHAR2,
 filename IN VARCHAR2,
 out_xml IN/OUT CLOB);

DBMS_CUBE.IMPORT_XML
 (input_dirname IN VARCHAR2,
 input_filename IN VARCHAR2
 options_dirname IN VARCHAR2,
 options_filename IN VARCHAR2,
 out_xml IN/OUT CLOB);

DBMS_CUBE.IMPORT_XML
 (in_xml IN CLOB);

DBMS_CUBE.IMPORT_XML
 (in_xml IN CLOB,
 out_xml IN/OUT CLOB);

DBMS_CUBE.IMPORT_XML

 (in_xml IN CLOB,
 options_xml IN CLOB,
 out_xml IN/OUT CLOB);

Parameters

Table 41-12 IMPORT_XML Procedure Parameters

	Parameter	Description
	
dirname

	
The case-sensitive name of a database directory containing the XML document describing an analytic workspace.

	
filename

	
A file containing an XML document describing an analytic workspace.

	
in_xml

	
A CLOB containing an XML document describing an analytic workspace.

	
input_dirname

	
The case-sensitive name of a database directory containing the XML document describing an analytic workspace.

	
input_filename

	
A file containing an XML document describing an analytic workspace.

	
options_dirname

	
The case-sensitive name of a database directory containing a file of import options.

	
options_filename

	
A file of import options.

	
options_xml

	
An XML document describing the import options. Use the CREATE_IMPORT_OPTIONS Procedure to generate this document.

	
out_xml

	
An XML document that either describes the analytic workspace or, for validation only, describes any errors. It may contain changes that DBMS_CUBE made to the imported XML, such as setting default values or making minor corrections to the XML.

Usage Notes

The XML can define, modify, or drop an entire analytic workspace, or one or more cubes or dimensions. When defining just cubes or dimensions, you must do so within an existing analytic workspace.

You can also use IMPORT_XML to drop an analytic workspace by using the XML document generated by the DROP_MVIEW procedure with the EXPORTXML parameter.

See "Upgrading Analytic Workspaces From OLAP 10g to OLAP 11g".

Example

This example loads an XML template from a file named GLOBAL.XML and located in a database directory named XML_DIR.

EXECUTE dbms_cube.import_xml('XML_DIR', 'GLOBAL.XML');

The next example exports an OLAP 10g template and uses IMPORT_XML to validate it before an upgrade to 11g.

DECLARE

 exportOptClob clob;
 importOptClob clob;
 importClob clob;
 exportClob clob;

BEGIN

 -- Create a CLOB for the export options
 dbms_lob.createtemporary(exportOptClob, TRUE);
 dbms_cube.create_export_options(out_options_xml=>exportOptClob, suppress_namespace=>TRUE, preserve_table_owners=>TRUE);

 -- Create a CLOB for the XML template
 dbms_lob.createtemporary(exportClob, TRUE);

 -- Create a CLOB for import options
 dbms_lob.createtemporary(importOptClob, TRUE);
 dbms_cube.create_import_options(out_options_xml=>importOptClob, validate_only=>TRUE);

 -- Create a CLOB for the change log
 dbms_lob.createtemporary(importClob, TRUE);

 -- Enable 11g clients to access 10g metadata
 dbms_cube.initialize_cube_upgrade;

 -- Export metadata from an analytic workspace to a CLOB
 dbms_cube.export_xml(object_ids=>'GLOBAL_AW', options_xml=>exportOptClob, out_xml=>exportClob);

 /* Import metadata from the CLOB. No objects are committed to the database
 because the validate_only parameter of CREATE_IMPORT_OPTIONS is set to
 TRUE.
 */

 dbms_cube.import_xml(in_xml=>exportClob, options_xml=>importOptClob, out_xml=>importClob);

 -- Output the metadata changes
 dbms_output.put_line('This is the validation log:');
 dbms_output.put_line(importClob);

END;
/

The contents of importClob show that the XML is valid. Otherwise, error messages appear in the <RootCommitResult> element.

This is the validation log:
<?xml version="1.0" encoding="UTF-16"?>
<RootCommitResult>

</RootCommitResult>

For an example of IMPORT_XML within the context of an upgrade from 10g to 11g metadata, see "Custom Upgrade".

INITIALIZE_CUBE_UPGRADE Procedure

This procedure processes analytic workspaces created in Oracle OLAP 10g so they can be used by Oracle OLAP 11g clients. It processes all analytic workspaces in the current schema. Run this procedure once for each schema in which there are 10g analytic workspaces.

Without this processing step, 11g clients cannot connect to a database containing a 10g analytic workspace with subobjects of a dimension or cube having the same name. Additionally, some DBMS_CUBE procedures and functions, such as EXPORT_XML and EXPORT_XML_TO_FILE, do not work on the 10g metadata.

After processing, OLAP 11g clients can connect and use the alternate names provided by INITIALIZE_CUBE_UPGRADE for the conflicting subobjects. OLAP 10g clients continue to use the original names.

INITIALIZE_CUBE_UPGRADE does not upgrade any OLAP 10g objects to OLAP 11g format.

See "Upgrading Analytic Workspaces From OLAP 10g to OLAP 11g".

Syntax

DBMS_CUBE.INITIALIZE_CUBE_UPGRADE;

Usage Notes

This procedure creates and populates a table named CUBE_UPGRADE_INFO. If it already exists, the table is truncated and repopulated.

While the 10g namespace allowed subobjects with the same name in the same dimension or cube, the 11g namespace does not. When INITIALIZE_CUBE_UPGRADE detects a name conflict among subobjects such as levels, hierarchies, and dimension attributes, it creates a row in CUBE_UPGRADE_INFO providing a new, unique name for each one. Rows may also be created for objects that do not require renaming; these rows are distinguished by a value of 0 or null in the CONFLICT column. Top-level objects, such as dimensions and cubes, are not listed.

You can edit the table using SQL INSERT and UPDATE if you want to customize the names of OLAP 10g objects on OLAP 11g clients.

The UPGRADE_AW, EXPORT_XML and EXPORT_XML_TO_FILE procedures use the names specified in the NEW_NAME column of the table to identify objects in CWM or OLAP standard form (AWXML) analytic workspaces, rather than the original names.

The following table describes the columns of CUBE_UPGRADE_INFO.

	Column	Datatype	NULL	Description
	OWNER	VARCHAR2	NOT NULL	Owner of the analytic workspace.
	AW	VARCHAR2	NOT NULL	Name of the analytic workspace.
	AWXML_ID	VARCHAR2	NOT NULL	Full logical name of the object requiring modification, in the form simple_name.[subtype_name].object_type. For example, TIME.DIMENSION and PRODUCT.COLOR.ATTRIBUTE.
	NEW_NAME	VARCHAR2	NOT NULL	The name the object will have in Oracle 11g after the upgrade.
	OBJECT_CLASS	VARCHAR2	--	DerivedMeasure for calculated measures, or empty for all other object types.
	CONFLICT	NUMBER	--	Indicates the reason that the row was added to CUBE_UPGRADE_INFO:
	
0: The object does not have a naming conflict but appears in the table for other reasons.

	
1: Two objects have the same name and would create a conflict in the OLAP 11g namespace. The object type (such as level or hierarchy) will be added to the names.

Examples

The following command creates and populates the CUBE_UPGRADE_INFO table:

EXECUTE dbms_cube.initialize_cube_upgrade;

The table shows that the OLAP 10g analytic workspace has a hierarchy and a level named MARKET_SEGMENT, which will be renamed. The table also contains rows for calculated measures, but these objects do not require renaming: The value of CONFLICT is 0.

SELECT awxml_id, new_name, conflict FROM cube_upgrade_info;

AWXML_ID NEW_NAME CONFLICT
-- ------------------------- ----------
CUSTOMER.MARKET_SEGMENT.HIERARCHY MARKET_SEGMENT_HIERARCHY 1
CUSTOMER.MARKET_SEGMENT.LEVEL MARKET_SEGMENT_LEVEL 1
UNITS_CUBE.EXTENDED_COST.MEASURE EXTENDED_COST 0
UNITS_CUBE.EXTENDED_MARGIN.MEASURE EXTENDED_MARGIN 0
UNITS_CUBE.CHG_SALES_PP.MEASURE CHG_SALES_PP 0
UNITS_CUBE.CHG_SALES_PY.MEASURE CHG_SALES_PY 0
UNITS_CUBE.PCTCHG_SALES_PP.MEASURE PCTCHG_SALES_PP 0
UNITS_CUBE.PCTCHG_SALES_PY.MEASURE PCTCHG_SALES_PY 0
UNITS_CUBE.PRODUCT_SHARE.MEASURE PRODUCT_SHARE 0
UNITS_CUBE.CHANNEL_SHARE.MEASURE CHANNEL_SHARE 0
UNITS_CUBE.MARKET_SHARE.MEASURE MARKET_SHARE 0
UNITS_CUBE.CHG_EXTMRGN_PP.MEASURE CHG_EXTMRGN_PP 0
UNITS_CUBE.CHG_EXTMRGN_PY.MEASURE CHG_EXTMRGN_PY 0
UNITS_CUBE.PCTCHG_EXTMRGN_PP.MEASURE PCTCHG_EXTMRGN_PP 0
UNITS_CUBE.PCTCHG_EXTMRGN_PY.MEASURE PCTCHG_EXTMRGN_PY 0
UNITS_CUBE.CHG_UNITS_PP.MEASURE CHG_UNITS_PP 0
UNITS_CUBE.EXTMRGN_PER_UNIT.MEASURE EXTMRGN_PER_UNIT 0
UNITS_CUBE.SALES_YTD.MEASURE SALES_YTD 0
UNITS_CUBE.SALES_YTD_PY.MEASURE SALES_YTD_PY 0
UNITS_CUBE.PCTCHG_SALES_YTD_PY.MEASURE PCTCHG_SALES_YTD_PY 0
UNITS_CUBE.SALES_QTD.MEASURE SALES_QTD 0
UNITS_CUBE.CHG_UNITS_PY.MEASURE CHG_UNITS_PY 0

REFRESH_MVIEW Procedure

This procedure refreshes the data in a cube materialized view.

Syntax

DBMS_CUBE.REFRESH_MVIEW (
 mvowner IN VARCHAR2,
 mvname IN VARCHAR2,
 method IN VARCHAR2 DEFAULT NULL,
 refresh_after_errors IN BOOLEAN DEFAULT FALSE,
 parallelism IN BINARY_INTEGER DEFAULT 0,
 atomic_refresh IN BOOLEAN DEFAULT FALSE,
 scheduler_job IN VARCHAR2 DEFAULT NULL,
 sam_parameters IN CLOB DEFAULT NULL,
 nested IN BOOLEAN DEFAULT FALSE);

Parameters

Table 41-13 REFRESH_MVIEW Procedure Parameters

	Parameter	Description
	
mvowner

	
Owner of the cube materialized view.

	
mvname

	
Name of the cube materialized view.

	
method

	
A full or a fast (partial) refresh. In a fast refresh, only changed rows are inserted in the cube and the affected areas of the cube are re-aggregated.

You can specify a method for each cube in sequential order, or a single method to apply to all cubes. If you list more cubes than methods, then the last method applies to the additional cubes.

	
C: Complete refresh clears all dimension values before loading. (Default)

	
F: Fast refresh of a cube materialized view, which performs an incremental refresh and re-aggregation of only changed rows in the source table.

	
?: Fast refresh if possible, and otherwise a complete refresh.

	
P: Recomputes rows in a cube materialized view that are affected by changed partitions in the detail tables.

	
S: Fast solve of a compressed cube. A fast solve reloads all the detail data and re-aggregates only the changed values.

See the "Usage Notes" for the BUILD procedure for additional details.

	
refresh_after_errors

	
TRUE to roll back just the cube or dimension with errors, and then continue building the other objects.

FALSE to roll back all objects in the build.

	
parallelism

	
Number of parallel processes to allocate to this job.

See the "Usage Notes" for the BUILD procedure for additional details.

	
atomic_refresh

	
TRUE prevents users from accessing intermediate results during a build. It freezes the current state of an analytic workspace at the beginning of the build to provide current sessions with consistent data. This option thaws the analytic workspace at the end of the build to give new sessions access to the refreshed data. If an error occurs during the build, then all objects are rolled back to the frozen state.

FALSE enables users to access intermediate results during an build.

	
scheduler_job

	
Any text identifier for the job, which will appear in the log table. The string does not need to be unique.

	
sam_parameters

	
None.

	
nested

	
TRUE performs nested refresh operations for the specified set of cube materialized views. Nested refresh operations refresh all the depending materialized views and the specified set of materialized views based on a dependency order to ensure the nested materialized views are truly fresh with respect to the underlying base tables.

All objects must reside in a single analytic workspace.

Usage Notes

REFRESH_MVIEW changes mvname to the name of the cube, then passes the cube name and all parameters to the BUILD procedure. Thus, you can use the BUILD procedure to refresh a cube materialized view. See the "BUILD Procedure" for additional information about the parameters.

Examples

The following example uses the default settings to refresh a cube materialized view named CB$FWEEK_PSCAT_SALES.

SET serverout ON format wrapped

EXECUTE dbms_cube.refresh_mview('SH', 'CB$FWEEK_PSCAT_SALES');

The next example changes the refresh method to use fast refresh if possible, continue refreshing after an error, and use two parallel processes.

EXECUTE dbms_cube.refresh_mview('SH', 'CB$FWEEK_PSCAT_SALES', '?', TRUE, 2);

After successfully refreshing the cube materialized view, REFRESH_MVIEW returns a message like the following:

Completed refresh of cube mview "SH"."CB$FWEEK_PSCAT_SALES" at 20081114 15:04:46.370.

UPGRADE_AW Procedure

This procedure creates an Oracle OLAP 11g analytic workspace from a copy of the metadata contained in an OLAP 10g analytic workspace. The original OLAP 10g analytic workspace is not affected and can exist at the same time and in the same schema as the OLAP 11g analytic workspace.

UPGRADE_AW automatically runs INITIALIZE_CUBE_UPGRADE if the CUBE_UPGRADE_INFO table does not exist. If it does exist, then UPGRADE_AW does not overwrite it, thus preserving any changes you made to the table.

See "Upgrading Analytic Workspaces From OLAP 10g to OLAP 11g".

Syntax

DBMS_CUBE.UPGRADE_AW
 (sourceaw IN VARCHAR2,
 destaw IN VARCHAR2,
 upgoptions IN CLOB DEFAULT NULL);

Parameters

Table 41-14 UPGRADE_AW Procedure Parameters

	Parameter	Description
	
sourceaw

	
The name of a 10g analytic workspace.

	
destaw

	
A new name for the generated 11g analytic workspace. It cannot be the same as sourceaw.

	
upgoptions

	
One or more of these upgrade options, as a string in the form 'OPTION=VALUE'. Separate multiple options with commas.

	
PRESERVE_TABLE_OWNERS:

YES preserves the original source table mappings. Use this option when creating an OLAP 11g analytic workspace in a different schema from the 10g analytic workspace, and you want the new objects mapped to tables in the original schema. (Default)

NO removes the schema owner from the source table mappings. Use this option when creating an OLAP 11g analytic workspace in a different schema from the 10g analytic workspace, and you want the new objects mapped to tables in the destination schema.

	
RENAME_TABLE: The name of a table that specifies new names for objects as they are created in OLAP 11g format. These changes are in addition to those specified by the INITIALIZE_CUBE_UPGRADE procedure. See "CREATE_IMPORT_OPTIONS Procedure" for information about creating a rename table.

Examples

This example upgrades an OLAP 10g analytic workspace named GLOBAL10 to an OLAP 11g analytic workspace named GLOBAL11, using a rename table named MY_OBJECT_MAP:

BEGIN

 -- Upgrade the analytic workspace
 dbms_cube.upgrade_aw(sourceaw =>'GLOBAL10', destaw => 'GLOBAL11', upgoptions => 'RENAME_TABLE=MY_OBJECT_MAP');

 -- Load and aggregate the data
 dbms_cube.build(script=>'UNITS_CUBE, PRICE_AND_COST_CUBE');

END;
/

VALIDATE_XML Procedure

This procedure checks the XML to assure that it is valid without committing the results to the database. It does not create an analytic workspace.

Syntax

DBMS_CUBE.VALIDATE_XML
 (dirname IN VARCHAR2,
 filename IN VARCHAR2);

DBMS_CUBE.VALIDATE_XML
 (in_xml IN CLOB);

Parameters

Table 41-15 VALIDATE_XML Procedure Parameters

	Parameter	Description
	
dirname

	
The case-sensitive name of a database directory.

	
filename

	
The name of a file containing an XML template.

	
IN_XML

	
The name of a CLOB containing an XML template.

Usage Notes

You should always load a template into the same version and release of Oracle Database as the one used to generate the template. The XML may not be valid if it was generated by a different release of the software.

Example

This example reports a problem in the schema:

EXECUTE dbms_cube.validate_xml('UPGRADE_DIR', 'MYGLOBAL.XML');
BEGIN dbms_cube.validate_xml('UPGRADE_DIR', 'MYGLOBAL.XML'); END;

*
ERROR at line 1:
ORA-37162: OLAP error
'GLOBAL.PRICE_CUBE.$AW_ORGANIZATION': XOQ-01950: The AWCubeOrganization for
cube "GLOBAL.PRICE_CUBE" contains multiple BuildSpecifications with the same
name.
'GLOBAL.UNITS_CUBE.$AW_ORGANIZATION': XOQ-01950: The AWCubeOrganization for
cube "GLOBAL.UNITS_CUBE" contains multiple BuildSpecifications with the same
name.
XOQ-01400: invalid metadata objects
ORA-06512: at "SYS.DBMS_CUBE", line 411
ORA-06512: at "SYS.DBMS_CUBE", line 441
ORA-06512: at "SYS.DBMS_CUBE", line 501
ORA-06512: at "SYS.DBMS_CUBE", line 520
ORA-06512: at line 1

After the problems are corrected, the procedure reports no errors:

EXECUTE dbms_cube.validate_xml('UPGRADE_DIR', 'MYGLOBAL.XML');

PL/SQL procedure successfully completed.

This example loads an XML template into a temporary CLOB, then validates it. The script is named GLOBAL.XML, and it is located in a database directory named XML_DIR.

DEFINE xml_file = 'GLOBAL.XML';

SET ECHO ON;
SET SERVEROUT ON;

DECLARE
 xml_file BFILE := bfilename('XML_DIR', '&xml_file');
 in_xml CLOB;
 out_xml CLOB := NULL;
 dest_offset INTEGER := 1;
 src_offset INTEGER := 1;
 lang_context INTEGER := 0;
 warning INTEGER;
BEGIN
 -- Setup the clob from a file
 DBMS_LOB.CREATETEMPORARY(in_xml, TRUE);
 DBMS_LOB.OPEN(in_xml, DBMS_LOB.LOB_READWRITE);
 DBMS_LOB.OPEN(xml_file, DBMS_LOB.FILE_READONLY);
 DBMS_LOB.LOADCLOBFROMFILE(in_xml, xml_file, DBMS_LOB.LOBMAXSIZE,
 dest_offset, src_offset, 0, lang_context, warning);

 -- Validate the xml
 DBMS_CUBE.VALIDATE_XML(in_xml);
END;
/

42 DBMS_CUBE_ADVISE

DBMS_CUBE_ADVISE contains subprograms for evaluating cube materialized views to support log-based fast refresh and query rewrite.

This chapter contains the following topics:

	
Using DBMS_CUBE_ADVISE

	
Summary of DBMS_CUBE_ADVISE Subprograms

	
See Also:

Oracle OLAP User's Guide for information about cube materialized views

Using DBMS_CUBE_ADVISE

	
Security Model

Security Model

The MV_CUBE_ADVICE function requires the ADVISOR privilege.

Summary of DBMS_CUBE_ADVISE Subprograms

Table 42-1 Summary of DBMS_CUBE_ADVISE Subprograms

	Subprogram	Description
	
MV_CUBE_ADVICE Function

	
Evaluates the metadata of a cube materialized view and generates recommendations for constraints, SQL dimension objects, and materialized view logs to support a broad range of query rewrite and fast refresh opportunities.

	
SET_CNS_EXCEPTION_LOG Procedure

	
Identifies the name of an exception log used in validated constraints generated by MV_CUBE_ADVICE.

	
TRACE Procedure

	
Displays or suppresses diagnostic messages for MV_CUBE_ADVICE.

MV_CUBE_ADVICE Function

This table function evaluates the metadata for a specified cube materialized view. It generates recommendations and returns them as a SQL result set. These SQL statements can be used to create constraints, SQL dimension objects, and materialized view logs that allow the broadest range of query rewrite transformations and log-based fast refresh of the cube materialized view.

Syntax

DBMS_CUBE_ADVISE.MV_CUBE_ADVICE (
 owner IN VARCHAR2 DEFAULT USER,
 mvname IN VARCHAR2,
 reqtype IN VARCHAR2 DEFAULT '0',
 validate IN NUMBER DEFAULT 0)
 RETURN COAD_ADVICE_T PIPELINED;

Parameters

Table 42-2 MV_CUBE_ADVICE Function Parameters

	Parameter	Description
	
owner

	
Owner of the cube materialized view

	
mvname

	
Name of the cube, such as UNITS_CUBE, or the cube materialized view, such as CB$UNITS_CUBE

	
reqtype

	
Type of advice to generate:

	
0: All applicable advice types

	
1: Column NOT NULL constraints

	
2: Primary key constraints

	
3: Foreign key constraints

	
4: Relational dimension objects

	
5: Cube materialized view logs with primary key

	
validate

	
Validation option:

	
0: Validate the constraints

	
1: Do not validate the constraints

Returns

A table of type COAD_ADVICE_T, consisting of a set of rows of type COAD_ADVICE_REC. Table 42-3 describes the columns.

Table 42-3 MV_CUBE_ADVICE Return Values

	Column	Data Type	Description
	
OWNER

	
VARCHAR2(30)

	
Owner of the dimensional object identified in APIOBJECT.

	
APIOBJECT

	
VARCHAR2(30)

	
Name of a cube enhanced with materialized view capabilities, such as UNITS_CUBE.

	
SQLOBJOWN

	
VARCHAR2(30)

	
Owner of the relational object identified in SQLOBJECT.

	
SQLOBJECT

	
VARCHAR2(65)

	
Name of the master table, such as UNITS_FACT, or the cube materialized view, such as CB$UNITS_CUBE.

	
ADVICETYPE

	
NUMBER(38,0)

	
Type of recommendation:

	
1: Create NOT NULL constraints on the foreign key columns

	
2: Create primary key constraints on the master table

	
3: Create primary key constraints on the master view

	
4: Create foreign key constraints on the master table

	
5: Create foreign key constraints on the master view

	
6: Create relational dimensions on the master dimension tables

	
7: Create a materialized view log

	
8: Compile the materialized view

	
DISPOSITION

	
CLOB

	
Pre-existing conditions that conflict with the recommendations and should be resolved before SQLTEXT can be executed.

	
SQLTEXT

	
CLOB

	
SQL statement that implements the recommendation.

	
DROPTEXT

	
CLOB

	
SQL statement that reverses SQLTEXT.

Pre-existing conditions may prevent these statements from restoring the schema to its previous state.

Usage Notes

This function is available in Analytic Workspace Manager as the Materialized View Advisor, which will generate a SQL script with the recommendations.

You can query the returned rows the same as any other table, as shown in the example.

MV_CUBE_ADVICE generates unique object names each time it is called. You should execute the function once, capture the results, and work with those SQL statements.

Take care when dropping database objects. If a table already has a materialized view log, it will have the same name used in the SQL DROP MATERIALIZED VIEW LOG statement in the DROPTEXT column. You should avoid inadvertently dropping materialized view logs, especially when they may be used for remote data replication.

Examples

The following query displays the SQL statements recommended by MV_CUBE_ADVICE. UNITS_FACT is the master table for UNITS_CUBE, and MV_CUBE_ADVICE generates an ALTER TABLE command to add primary key constraints.

It also generates an ALTER MATERIALIZED VIEW command to compile the CB$UNITS_CUBE cube materialized view.

SQL> SELECT apiobject, sqlobject, sqltext
 FROM TABLE(dbms_cube_advise.mv_cube_advice('GLOBAL', 'CB$UNITS_CUBE'));

APIOBJECT SQLOBJECT SQLTEXT
------------ --------------- ---
UNITS_CUBE UNITS_FACT alter table "GLOBAL"."UNITS_FACT" add constra
 int "COAD_PK000208" PRIMARY KEY ("CHANNEL_ID"
 , "ITEM_ID", "SHIP_TO_ID", "MONTH_ID") rely d
 isable novalidate

UNITS_CUBE CB$UNITS_CUBE alter materialized view "GLOBAL"."CB$UNITS_CU
 BE" compile

SET_CNS_EXCEPTION_LOG Procedure

This procedure identifies the name of an exception log used in validated constraints generated by MV_CUBE_ADVICE.

Syntax

DBMS_CUBE_ADVISE.SET_CNS_EXCEPTION_LOG (
 exceptlogtab IN VARCHAR2 DEFAULT user.EXCEPTIONS);

Parameters

Table 42-4 SET_CNS_EXCEPTION_LOG Procedure Parameters

	Parameter	Description
	
exceptlogtab

	
The name of an existing exception log.

Usage Notes

To create an exception log, use the utlexcpt.sql or the utlexpt1.sql script before executing SET_CNS_EXCEPTION_LOG.

The validate parameter of MV_CUBE_ADVICE must be set to 1.

Examples

The utlexcpt.sql script creates a table named EXCEPTIONS, and the SET_CNS_EXCEPTION_LOG procedure identifies it as the exception log for MV_CUBE_ADVICE. The ALTER TABLE statement now includes the clause VALIDATE EXCEPTIONS INTO "GLOBAL"."EXCEPTIONS".

SQL> @utlexcpt
Table created.

SQL> EXECUTE dbms_cube_advise.set_cns_exception_log;
PL/SQL procedure successfully completed.

SQL> SELECT apiobject, sqlobject, advicetype type, sqltext
 FROM TABLE(
 dbms_cube_advise.mv_cube_advice('GLOBAL', 'CB$UNITS_CUBE', '2', 1));

APIOBJECT SQLOBJECT TYPE SQLTEXT
------------ --------------- ---- --
UNITS_CUBE UNITS_FACT 2 alter table "GLOBAL"."UNITS_FACT" add constrai
 nt "COAD_PK000219" PRIMARY KEY ("CHANNEL_ID",
 "ITEM_ID", "SHIP_TO_ID", "MONTH_ID") norely en
 able validate exceptions into "GLOBAL"."EXCEPT
 IONS"

UNITS_CUBE CB$UNITS_CUBE 8 alter materialized view "GLOBAL"."CB$UNITS_CUB
 E" compile

TRACE Procedure

This procedure turns on and off diagnostic messages to server output for the MV_CUBE_ADVICE function.

Syntax

DBMS_CUBE_ADVISE.TRACE (
 diaglevel IN BINARY_INTEGER DEFAULT 0);

Parameters

Table 42-5 TRACE Procedure Parameters

	Parameter	Description
	
diaglevel

	
0 to turn tracing off, or 1 to turn tracing on.

Examples

The following example directs the diagnostic messages to server output. The SQL*Plus SERVEROUTPUT setting displays the messages.

SQL> SET SERVEROUT ON FORMAT WRAPPED
SQL> EXECUTE dbms_cube_advise.trace(1);
DBMS_COAD_DIAG: Changing diagLevel from [0] to [1]

PL/SQL procedure successfully completed.

SQL> SELECT sqlobject, sqltext, droptext
 FROM TABLE(
 dbms_cube_advise.mv_cube_advice('GLOBAL', 'CB$UNITS_CUBE'))
 WHERE apiobject='UNITS_CUBE';

SQLOBJECT SQLTEXT DROPTEXT
--------------- -- --
UNITS_FACT alter table "GLOBAL"."UNITS_FACT" add co alter table "GLOBAL"."UNITS_FACT" drop c
 nstraint "COAD_PK000222" PRIMARY KEY ("C onstraint "COAD_PK000222" cascade
 HANNEL_ID", "ITEM_ID", "SHIP_TO_ID", "MO
 NTH_ID") rely disable novalidate

CB$UNITS_CUBE alter materialized view "GLOBAL"."CB$UNI alter materialized view "GLOBAL"."CB$UNI
 TS_CUBE" compile TS_CUBE" compile

20070706 07:25:27.462780000 DBMS_COAD_DIAG NOTE: Parameter mvOwner : GLOBAL
20070706 07:25:27.462922000 DBMS_COAD_DIAG NOTE: Parameter mvName : CB$UNITS_CUBE
20070706 07:25:27.462967000 DBMS_COAD_DIAG NOTE: Parameter factTab : .
20070706 07:25:27.463011000 DBMS_COAD_DIAG NOTE: Parameter cubeName : UNITS_CUBE
20070706 07:25:27.463053000 DBMS_COAD_DIAG NOTE: Parameter cnsState : rely disable novalidate
20070706 07:25:27.463094000 DBMS_COAD_DIAG NOTE: Parameter NNState : disable novalidate
20070706 07:25:27.462368000 DBMS_COAD_DIAG NOTE: Begin NN:
20070706 07:25:27.833530000 DBMS_COAD_DIAG NOTE: End NN:
20070706 07:25:27.833620000 DBMS_COAD_DIAG NOTE: Begin PK:
20070706 07:25:28.853418000 DBMS_COAD_DIAG NOTE: End PK:
20070706 07:25:28.853550000 DBMS_COAD_DIAG NOTE: Begin FK:
20070706 07:25:28.853282000 DBMS_COAD_DIAG NOTE: End FK:
20070706 07:25:28.853359000 DBMS_COAD_DIAG NOTE: Begin RD:
20070706 07:25:29.660471000 DBMS_COAD_DIAG NOTE: End RD:
20070706 07:25:29.661363000 DBMS_COAD_DIAG NOTE: Begin CM:
20070706 07:25:29.665106000 DBMS_COAD_DIAG NOTE: End CM:

SQL> EXECUTE dbms_cube_advise.trace(0);
DBMS_COAD_DIAG: Changing diagLevel from [1] to [0]

PL/SQL procedure successfully completed.

43 DBMS_CUBE_LOG

DBMS_CUBE_LOG contains subprograms for creating and managing logs for cubes and cube dimensions.

	
See Also:

Oracle OLAP User's Guide regarding use of the OLAP option to support business intelligence and analytical applications

This chapter contains the following topics:

	
Using DBMS_CUBE_LOG

	
Summary of DBMS_CUBE_LOG Subprograms

Using DBMS_CUBE_LOG

DBMS_CUBE_LOG manages several logs. These logs enable you to track the progress of long running processes, then use the results to profile performance characteristics. They provide information to help you diagnose and remedy problems that may occur during development and maintenance of a cube: Hierarchies that are improperly structured in the relational source tables, records that fail to load, or data refreshes that take too long to complete. They also help diagnose performance problems in querying cubes.

Analytic Workspace Manager creates the logs automatically using the default names and types. It also disables the logs when Analytic Workspace Manager is closed. To use the same logs outside of Analytic Workspace Manager, you must first enable them. Alternatively, you can create and manage different logs for use outside of Analytic Workspace Manager.

This section contains the following topics:

	
Logging Types

	
Logging Targets

	
Verbosity Levels

	
Security Model

	
Creating Cube Logs

	
Cube Build Log

	
Cube Dimension Compile Log

	
Cube Operations Log

	
Cube Rejected Records Log

Logging Types

Several logs are available, each one dedicated to storing messages of a particular type. You may use all of them or only those that you find particularly valuable. The logs and their contents are described later in this topic.

	
Cube Build Log

	
Cube Dimension Compile Log

	
Cube Operations Log

	
Cube Rejected Records Log

DBMS_CUBE_LOG provides functions that return the binary integer for each log type. You can produce more readable code by using these functions instead of integers for the argument values of other DBMS_CUBE_LOG procedures and functions. Refer to these descriptions:

	
TYPE_BUILD Function

	
TYPE_DIMENSION_COMPILE Function

	
TYPE_OPERATIONS Function

	
TYPE_REJECTED_RECORDS Function

Logging Targets

The TABLE_CREATE procedure creates database tables for storing the logs. Using the ENABLE procedure, you can create additional targets with changes in the destination or logging level. For example, you might target the Cube Operations log to both a table and a disk file. These are the available targets:

	
Disk file

	
LOB

	
Database table

	
Trace file

See "ENABLE Procedure" for more information about creating multiple targets.

DBMS_CUBE_LOG provides functions that return the binary integer for each target type. You can produce more readable code by using these functions instead of integers for the argument values of other DBMS_CUBE_LOG procedures and functions. Refer to these descriptions:

	
TARGET_FILE Function

	
TARGET_LOB Function

	
TARGET_TABLE Function

	
TARGET_TRACE Function

Verbosity Levels

You can decide how much information is recorded in a log. You may want fewer details when leaving a job to run overnight than when you are monitoring the success of a new build. You can choose from these verbosity levels. Each level adds to the preceding level.

	
LOWEST: Logs the status of each command used to build the cube dimensions and cubes, the use of slave processes, and summary records. This is the basic logging level.

	
LOW: Logs messages from the OLAP engine, such as start and finish records for SQL Import, Aggregate, and Update.

	
MEDIUM: Logs messages at the level used by Analytic Workspace Manager.

	
HIGH: Logs messages that provide tuning information, such as composite lengths, partitioning details, object sizes, and aggregation work lists. This level is intended for use by Oracle Field Services.

	
HIGHEST: Logs debugging messages and other information typically sent to a trace file. This level is intended for use by Oracle Support Services.

DBMS_CUBE_LOG provides functions that return the binary integer for each verbosity level. You can produce more readable code by using these functions instead of integers for the argument values of other DBMS_CUBE_LOG procedures and functions. Refer to these descriptions:

	
LEVEL_LOWEST Function

	
LEVEL_LOW Function

	
LEVEL_MEDIUM Function

	
LEVEL_HIGH Function

	
LEVEL_HIGHEST Function

Security Model

The TABLE_CREATE procedure requires the CREATE TABLE privilege.

Creating Cube Logs

To store logging information in a database table, you must create that table using the TABLE_CREATE procedure. Cube Build logs are always stored in tables. The ENABLE procedure creates the other target types for the other logs.

To create a Cube Build log:

	
Execute the TABLE_CREATE procedure.

The following command creates a Cube Build log with the default name of CUBE_BUILD_LOG:

EXECUTE dbms_cube_log.table_create(dbms_cube_log.type_build);

To create a Cube Dimension Compile log, Cube Operations log, or Cube Rejected Records log with a database table target:

	
Execute the TABLE_CREATE procedure to create the table.

	
Execute the ENABLE procedure to begin logging.

These commands create and enable a Cube Operations table with the default name of CUBE_OPERATIONS_LOG and the default verbosity level:

EXECUTE dbms_cube_log.table_create(dbms_cube_log.type_operations);
EXECUTE dbms_cube_log.enable(dbms_cube_log.type_operations);

To create a Cube Dimension Compile log, Cube Operations log, or Cube Rejected Records log with a trace file, disk file, or LOB target:

	
Execute the ENABLE procedure.

This command enables the Cube Rejected Records log, sets verbosity to the lowest level, and directs the output to a disk file named rejects.log in the WORK_DIR database directory:

EXECUTE dbms_cube_log.enable(dbms_cube_log.type_rejected_records, -
 dbms_cube_log.target_file, dbms_cube_log.level_lowest, -
 'WORK_DIR/rejects.log');

Cube Build Log

The Cube Build log provides information about what happened during a build. Use this log to determine whether the build produced the results you were expecting, and if not, why not.

The contents of the Cube Build log is refreshed continuously during a build. You can query the log at any time to evaluate the progress of the build and to estimate the time to completion.

The default name of the Cube Build log is CUBE_BUILD_LOG. The following table describes its contents.

	
Note:

To manage a Cube Build log, use only the TABLE_CREATE and VERSION procedures.

	Column	Datatype	NULL	Description
	BUILD_ID	NUMBER	--	A unique sequence number for the build. The same number is used for slave processes in a parallel build.
	SLAVE_NUMBER	NUMBER	--	A counter for slave processes in a parallel build: 0 is the master process, 1 is the first slave, 2 is the second slave, and so forth.
	STATUS	VARCHAR2(10)	--	The current status of the command: STARTED, COMPLETED, FAILED, or WORKING.
	COMMAND	VARCHAR2(25)	--	The name of the command being executed, such as BUILD, LOAD, and SOLVE.
	BUILD_OBJECT	VARCHAR2(500)	--	The name of the cube or cube dimension being processed.
	BUILD_OBJECT_TYPE	VARCHAR2(10)	--	The type of object: CUBE, DIMENSION, or BUILD.
	OUTPUT	CLOB	--	Information structured like an XML document about the command, or NULL when there is no additional information, such as for a STARTED row.
	AW	VARCHAR2(30)	--	The name of the analytic workspace that contains the objects of the build.
	OWNER	VARCHAR2(30)	
	The owner of the analytic workspace and all the objects of the build.
	PARTITION	VARCHAR2(10)	--	The name of the partition being processed, or NULL when the current operation does not correspond to a partition.
	SCHEDULER_JOB	VARCHAR2(100)	--	A user-specified string to identify the build.
	TIME	TIMESTAMP(6)	--	The time the row is added to the table.
	BUILD_SCRIPT	CLOB	--	The cube build script. Populated only in rows where COMMAND is BUILD.
	BUILD_TYPE	VARCHAR2(22)	--	The origin of the build: DBMS_CUBE, DBMS_MVIEW, JAVA, or SLAVE.
	COMMAND_DEPTH	NUMBER(2)	--	The nesting depth of the command. For example, COMPILE HIERARCHIES is a component step of COMPILE, so if COMPILE has a depth of 1, then COMPILE HIERARCHIES has a depth of 2.
	BUILD_SUB_OBJECT	VARCHAR2(30)	--	The name of a subobject being processed, such as a measure that does not inherit the aggregation rules of the cube.
	REFRESH_METHOD	VARCHAR2(1)	--	The refresh method, such as C or F, that is associated with the current command. The refresh method is important only for the CLEAR step.
	SEQ_NUMBER	NUMBER	--	Not currently used.
	COMMAND_NUMBER	NUMBER	--	The sequence number of the command in the current process, which can be used to distinguish the same command on different objects. For example, a LOAD on PRODUCT and a LOAD on TIME.
	IN_BRANCH	NUMBER(1)	--	Not currently used.
	COMMAND_STATUS_NUMBER	NUMBER	--	Identifies the sequence number of all rows for a particular command. For example, a particular command might be represented by four rows: The first row has a status of STARTED and the last row has a status of COMPLETED. This column is used for sorting.

Cube Dimension Compile Log

When solving a cube, OLAP checks the dimension hierarchies to make sure they are valid. Errors that occur during this validation are written to the Cube Dimension Compile log. The checks include:

	
Circularity: Hierarchies are defined by parent-child relations among dimension members. Circularity occurs when a dimension member is specified as its own ancestor or descendant.

	
Hierarchy type: Hierarchies can be level based or value based. You can define a cube so that only level-based hierarchies are valid, such as a cube materialized view.

	
Level options: Level-based hierarchies can be regular, ragged, or skip level. You can define a dimension so that only regular hierarchies are valid, such as a Time dimension.

The default name of the Cube Dimension Compile log is CUBE_DIMENSION_COMPILE. The following table describes its contents.

	Column	Datatype	NULL	Description
	ID	NUMBER	--	Current operation identifier
	SEQ_NUMBER	NUMBER	--	Sequence number in the Cube Build log
	ERROR#	NUMBER(8)	NOT NULL	Number of the error being reported
	ERROR_MESSAGE	VARCHAR2(2000)	--	Error message associated with the error
	DIMENSION	VARCHAR2(100)	--	Name of the dimension being compiled
	DIMENSION_MEMBER	VARCHAR2(100)	--	Faulty dimension member
	MEMBER_ANCESTOR	VARCHAR2(100)	--	Parent of DIMENSION_MEMBER
	HIERARCHY1	VARCHAR2(100)	--	First hierarchy involved in the error
	HIERARCHY2	VARCHAR2(100)	--	Second hierarchy involved in the error
	ERROR_CONTEXT	CLOB	--	Additional information about the error

Cube Operations Log

The Cube Operations log contains messages and debugging information for all OLAP engine events. You can track current operations at a very detailed level. Using the SQL_ID column, you can join the Cube Operations log to dynamic performance views such as VSQL, VSESSION, and V$SESSION_LONGOPS to see cube operations in the context of other database operations such as I/O Wait and CPU.

The default name of the Cube Operations log is CUBE_OPERATIONS_LOG. The following table describes its contents.

	Column	Datatype	NULL	Description
	INST_ID	NUMBER	NOT NULL	Instance identifier
	SID	NUMBER	NOT NULL	Session identifier
	SERIAL#	NUMBER	NOT NULL	Session serial number
	USER#	NUMBER	NOT NULL	User identifier
	SQL_ID	VARCHAR2(13)	--	Executing SQL statement identifier
	JOB	NUMBER	--	Job identifier
	ID	NUMBER	--	Current operation identifier
	PARENT_ID	NUMBER	--	Parent operation identifier
	SEQ_NUMBER	NUMBER	--	Sequence number in the Cube Build log
	TIME	TIMESTAMP(6) WITH TIME ZONE	NOT NULL	Time the record was added to the Cube Operations log
	LOG_LEVEL	NUMBER(4)	NOT NULL	Verbosity level of the record, as specified by the DBMS_CUBE_LOG.ENABLE procedure.
	DEPTH	NUMBER(4)	--	Nesting depth of the record. For example, a level of 0 indicates that the operation and suboperation are not nested within other operations and suboperations.
	OPERATION	VARCHAR2(15)	NOT NULL	Current operation, such as AGGREGATE, ROWSOURCE, or SQLIMPORT.
	SUBOPERATION	VARCHAR2(20)	--	Current suboperation, such as Loading or Import
	STATUS	VARCHAR2(10)	NOT NULL	Current status of the operation, such as START, TRACE, COMPLETED, or Failed.
	NAME	VARCHAR2(20)	NOT NULL	Name of the record, such as ROWS LOADED, AVE_ROW_LEN, and PAGEPOOLSIZE
	VALUE	VARCHAR2(4000)	--	Value of NAME
	DETAILS	CLOB	--	Additional information about NAME.

Cube Rejected Records Log

The Cube Rejected Records log contains a summary of the loader job and any records that were rejected because they did not meet the expected format.

A single row in the source table may have errors in more than one field. Each field will generates an error in log, resulting in multiple rows with the same rowid in the SOURCE_ROW column.

The default name of the Cube Rejected Records log is CUBE_REJECTED_RECORDS. The following table describes its contents.

	Column	Datatype	NULL	Description
	ID	NUMBER	--	Current operation identifier
	SEQ_NUMBER	NUMBER	--	Sequence number in the Cube Build log
	ERROR#	NUMBER(8)	NOT NULL	Number of the error triggered by the record
	ERROR_MESSAGE	VARCHAR2	--	Error message associated with the error
	RECORD#	NUMBER(38)	--	Input record number
	SOURCE_ROW	ROWID	--	Rowid of the row in the source table; null when the source is a view or a query

Summary of DBMS_CUBE_LOG Subprograms

Table 43-1 DBMS_CUBE_LOG Subprograms

	Subprogram	Description
	
DEFAULT_NAME Function

	
Returns the default table names of the various log types.

	
DISABLE Procedure

	
Turns logging off for the duration of a session.

	
ENABLE Procedure

	
Turns on logging for the duration of a session, redirects logging to additional output types, and changes the verbosity level in the logs.

	
FLUSH Procedure

	
Forces all buffered messages to be written to the logs.

	
GET_LOG Procedure

	
Returns the current settings for the level and location of a particular log.

	
GET_LOG_SPEC Function

	
Retrieves a description of all active logs.

	
GET_PARAMETER Function

	
Returns the current values of the options that control various aspects of logging.

	
LEVEL_HIGH Function

	
Returns the integer value of the high verbosity level.

	
LEVEL_HIGHEST Function

	
Returns the integer value of the highest verbosity level.

	
LEVEL_LOW Function

	
Returns the integer value of the low verbosity level.

	
LEVEL_LOWEST Function

	
Returns the integer value of the lowest verbosity level.

	
LEVEL_MEDIUM Function

	
Returns the integer value of the medium verbosity level.

	
SET_LOG_SPEC Procedure

	
Sets all logging to the values specified in the input string.

	
SET_PARAMETER Procedure

	
Sets options that control various aspects of logging.

	
TABLE_CREATE Procedure

	
Creates the table targets for the OLAP logs.

	
TARGET_FILE Function

	
Returns the integer value of a disk file target.

	
TARGET_LOB Function

	
Returns the integer value of a LOB target.

	
TARGET_TABLE Function

	
Returns the integer value of a database table target

	
TARGET_TRACE Function

	
Returns the integer value of a trace file target.

	
TYPE_BUILD Function

	
Returns the integer value of the Cube Build log.

	
TYPE_DIMENSION_COMPILE Function

	
Returns the integer value of the Cube Dimension Compile log.

	
TYPE_OPERATIONS Function

	
Returns the integer value of the Cube Operations log.

	
TYPE_REJECTED_RECORDS Function

	
Returns the integer value of the Cube Rejected Records log.

	
VERSION Function

	
Returns the version number of a specific log table or the current version number of a specific log type.

DEFAULT_NAME Function

This function returns the default table names of the various log types.

Syntax

DBMS_CUBE_LOG.DEFAULT_NAME (
 LOG_TYPE IN BINARY_INTEGER DEFAULT TYPE_OPERATIONS)
 RETURN VARCHAR2;

Parameters

Table 43-2 DEFAULT_NAME Function Parameters

	Parameter	Description
	
log_type

	
One of the following log types:

	
1: TYPE_OPERATIONS

	
2: TYPE_REJECTED_RECORDS

	
3: TYPE_DIMENSION_COMPILE

	
4: TYPE_BUILD

See "Logging Types".

Returns

The default table name of the specified log type.

Examples

This example returns the default name of the Cube Operations log:

SELECT dbms_cube_log.default_name FROM dual;

DEFAULT_NAME

CUBE_OPERATIONS_LOG

The next example returns the default name of the Cube Rejected Records log:

select dbms_cube_log.default_name(dbms_cube_log.type_rejected_records) -
 "Default Name" from dual;

Default Name

CUBE_REJECTED_RECORDS

DISABLE Procedure

This procedure turns logging off for the duration of a session, unless logging is explicitly turned on again with the ENABLE procedure.

Syntax

DBMS_CUBE_LOG.DISABLE (
 LOG_TYPE IN BINARY_INTEGER DEFAULT,
 LOG_TARGET IN BINARY_INTEGER DEFAULT);

Parameters

Table 43-3 DISABLE Procedure Parameters

	Parameter	Description
	
log_type

	
One of the following log types:

	
1: TYPE_OPERATIONS

	
2: TYPE_REJECTED_RECORDS

	
3: TYPE_DIMENSION_COMPILE

Note: You cannot disable the Cube Build log with this procedure.

See "Logging Types".

	
log_target

	
One of the following destinations for the logging records. The logs are sent to a table unless you previously specified a different target using the ENABLE procedure.

	
1: TARGET_TABLE

	
2: TARGET_TRACE

	
3: TARGET_FILE

	
4: TARGET_LOB

See "Logging Targets"

Example

This command disables the dimension compilation error log table:

EXECUTE dbms_cube_log.disable(dbms_cube_log.type_dimension_compile);

ENABLE Procedure

This procedure turns on logging for the duration of a session or until it is turned off using the DISABLE procedure.

The ENABLE procedure also allows you to direct logging to additional output types and to change the amount of detail in the logs. You can enable a log type to each of the log targets. For example, you can enable the Cube Operations log to the trace file, a table, and a file at different verbosity levels, but you cannot enable the Cube Operations log to two files at the same time.

This procedure also checks the format of the logs and updates them if necessary.

Syntax

DBMS_CUBE_LOG.ENABLE (
 LOG_TYPE IN BINARY_INTEGER DEFAULT NULL,
 LOG_TARGET IN BINARY_INTEGER DEFAULT NULL,
 LOG_LEVEL IN BINARY_INTEGER DEFAULT NULL);

DBMS_CUBE_LOG.ENABLE (
 LOG_TYPE IN BINARY_INTEGER DEFAULT NULL,
 LOG_TARGET IN BINARY_INTEGER DEFAULT NULL,
 LOG_LEVEL IN BINARY_INTEGER DEFAULT NULL,
 LOG_LOCATION IN VARCHAR2 DEFAULT NULL);

DBMS_CUBE_LOG.ENABLE (
 LOG_TYPE IN BINARY_INTEGER DEFAULT NULL,
 LOG_TARGET IN BINARY_INTEGER DEFAULT NULL,
 LOG_LEVEL IN BINARY_INTEGER DEFAULT NULL,
 LOG_LOCATION IN/OUT CLOB);

Parameters

Table 43-4 ENABLE Procedure Parameters

	Parameter	Description
	
log_type

	
One of the following log types:

	
1: TYPE_OPERATIONS

	
2: TYPE_REJECTED_RECORDS

	
3: TYPE_DIMENSION_COMPILE

Note: You cannot disable the Cube Build log with this procedure.

See "Logging Types".

	
log_target

	
One of the following destinations for the logging records. The logs are sent to a table unless you previously specified a different target using the ENABLE procedure.

	
1: TARGET_TABLE

	
2: TARGET_TRACE

	
3: TARGET_FILE

	
4: TARGET_LOB

See "Logging Targets"

	
log_level

	
One of the following log verbosity levels. Each level adds new types of messages to the previous level.

	
1: LEVEL_LOWEST

	
2: LEVEL_LOW

	
3: LEVEL_MEDIUM

	
4: LEVEL_HIGH

	
5: LEVEL_HIGHEST

See "Verbosity Levels".

	
log_location

	
The full identity of the log, such as owner.table_name when log_target is a table.

Examples

The following command enables all cube logs:

EXECUTE dbms_cube_log.enable;

The following PL/SQL procedure sets the log level to LEVEL_LOWEST:

BEGIN
 dbms_cube_log.disable(dbms_cube_log.type_rejected_records);
 dbms_cube_log.enable(dbms_cube_log.type_rejected_records,
 dbms_cube_log.target_table, dbms_cube_log.level_lowest);
END;
/

FLUSH Procedure

This procedure forces all buffered messages to be written to the logs. The buffers are flushed automatically throughout a session, but manually flushing them before viewing the logs assures that you can view all of the messages.

Syntax

DBMS_CUBE_LOG.FLUSH ();

Example

The following example flushes the buffers for all of the logs:

EXECUTE dbms_cube_log.flush;

GET_LOG Procedure

This procedure returns the current settings for the level and location of a particular log.

Syntax

DBMS_CUBE_LOG.GET_LOG (
 LOG_TYPE IN BINARY_INTEGER DEFAULT TYPE_OPERATIONS,
 LOG_TARGET IN BINARY_INTEGER DEFAULT TARGET_TABLE,
 LOG_LEVEL OUT BINARY_INTEGER,
 LOG_LOCATION OUT VARCHAR2);

Parameters

Table 43-5 GET_LOG Procedure Parameters

	Parameter	Description
	
log_type

	
One of the following log types:

	
1: TYPE_OPERATIONS

	
2: TYPE_REJECTED_RECORDS

	
3: TYPE_DIMENSION_COMPILE

See "Logging Types".

	
log_target

	
One of the following destinations for the logging records. The logs are sent to a table unless you previously specified a different target using the ENABLE procedure.

	
1: TARGET_TABLE

	
2: TARGET_TRACE

	
3: TARGET_FILE

	
4: TARGET_LOB

See "Logging Targets"

	
log_level

	
One of the following log verbosity levels. Each level adds new types of messages to the previous level.

	
1: LEVEL_LOWEST

	
2: LEVEL_LOW

	
3: LEVEL_MEDIUM

	
4: LEVEL_HIGH

	
5: LEVEL_HIGHEST

See "Verbosity Levels".

	
log_location

	
The full identity of the log, such as owner.table_name when log_target is a table.

Usage Notes

If log_type is not active, then log_level and log_location are null. Use DBMS_CUBE_LOG.ENABLE to activate a log.

Examples

This PL/SQL procedure provides information about the Cube Rejected Records log:

SET serverout ON format wrapped

DECLARE
 myloglevel binary_integer;
 mylogtarget varchar2(128);

BEGIN
 dbms_cube_log.get_log(dbms_cube_log.type_rejected_records,
 dbms_cube_log.target_table, myloglevel, mylogtarget);

 dbms_output.put_line('Log Level: ' || myloglevel);
 dbms_output.put_line('Log Target: ' || mylogtarget);
END;
/

The procedure generates results like the following:

Log Level: 5

Log Target: GLOBAL.CUBE_REJECTED_RECORDS

GET_LOG_SPEC Function

This function retrieves a description of all active Cube Operations logs, Cube Rejected Records logs, and Cube Dimension Compile logs.

Syntax

DBMS_CUBE_LOG.GET_LOG_SPEC ()
 RETURN VARCHAR2;

Returns

The type and target of all active logs.

Usage Notes

You can use the output from this function as the input to SET_LOG_SPEC.

Examples

The following example shows that the Cube Operations log, Cube Rejected Records log, and Cube Dimension Compile log are active. The Cube Operations log is stored in the session trace file and the other logs are stored in tables.

SELECT dbms_cube_log.get_log_spec FROM dual;

GET_LOG_SPEC
--
OPERATIONS(TABLE, TRACE) REJECTED_RECORDS(TABLE[DEBUG])

GET_PARAMETER Function

This function returns the current values of the options that control various aspects of logging. To set these options, use the SET_PARAMETER function.

Syntax

DBMS_CUBE_LOG.GET_PARAMETER (
 LOG_TYPE IN BINARY_INTEGER,
 LOG_PARAMETER IN BINARY_INTEGER)
 RETURN BINARY_INTEGER;

Parameters

Table 43-6 GET_PARAMETER Function Parameters

	Parameter	Description
	
log_type

	
One of the following log types:

	
1: TYPE_OPERATIONS

	
2: TYPE_REJECTED_RECORDS

	
3: TYPE_DIMENSION_COMPILE

See "Logging Types".

	
log_parameter

	
One of the following options:

	
1: MAX_ERRORS

	
2: FLUSH_INTERVAL

	
3: LOG_FULL_RECORD

	
4: LOG_EVERY_N

	
5: ALLOW_ERRORS

See "SET_PARAMETER Procedure".

Returns

The value of the specified log_parameter.

Examples

This example shows the current maximum number of errors in the Cube Rejected Records log before logging stops. This parameter was previously set with the SET_PARAMETER procedure.

SELECT dbms_cube_log.get_parameter(dbms_cube_log.type_rejected_records, 1) -
 "Maximum Records" FROM dual;

Maximum Records

 100

LEVEL_HIGH Function

This function returns the integer value of the high verbosity level.

Syntax

DBMS_CUBE_LOG.LEVEL_HIGH ()
 RETURN BINARY_INTEGER;

Returns

4

Usage Notes

Use this function instead of its binary integer equivalent for the LOG_LEVEL parameter in DBMS_CUBE_LOG subprograms. See "Verbosity Levels".

Example

This command sets the verbosity level of the cube operations table to high:

EXECUTE dbms_cube_log.enable(dbms_cube_log.type_operations, -
 dbms_cube_log.target_table, dbms_cube_log.level_high);

LEVEL_HIGHEST Function

This function returns the integer value of the highest verbosity level.

Syntax

DBMS_CUBE_LOG.LEVEL_HIGHEST ()
 RETURN BINARY_INTEGER;

Returns

5

Usage Notes

Use this function instead of its binary integer equivalent for the LOG_LEVEL parameter in DBMS_CUBE_LOG subprograms. See "Verbosity Levels".

Example

This command sets the verbosity level of the cube operations table to highest:

EXECUTE dbms_cube_log.enable(dbms_cube_log.type_operations, -
 dbms_cube_log.target_table, dbms_cube_log.level_highest);

LEVEL_LOW Function

This function returns the integer value of the low verbosity level.

Syntax

DBMS_CUBE_LOG.LEVEL_LOW ()
 RETURN BINARY_INTEGER;

Returns

2

Usage Notes

Use this function instead of its binary integer equivalent for the LOG_LEVEL parameter in DBMS_CUBE_LOG subprograms. See "Verbosity Levels".

Example

This command sets the verbosity level of the cube operations table to low:

EXECUTE dbms_cube_log.enable(dbms_cube_log.type_operations, -
 dbms_cube_log.target_table, dbms_cube_log.level_low);

LEVEL_LOWEST Function

This function returns the integer value of the lowest verbosity level. This level logs the status of each command used to build the cube dimensions and cubes, the use of slave processes, and summary records.

Syntax

DBMS_CUBE_LOG.LEVEL_LOWEST ()
 RETURN BINARY_INTEGER;

Returns

1

Usage Notes

Use this function instead of its binary integer equivalent for the LOG_LEVEL parameter in DBMS_CUBE_LOG subprograms. See "Verbosity Levels".

Example

This command sets the verbosity level of the cube operations table to lowest:

EXECUTE dbms_cube_log.enable(dbms_cube_log.type_operations, -
 dbms_cube_log.target_table, dbms_cube_log.level_lowest);

LEVEL_MEDIUM Function

This function returns the integer value of the medium verbosity level.

Syntax

DBMS_CUBE_LOG.LEVEL_MEDIUM ()
 RETURN BINARY_INTEGER;

Returns

3

Usage Notes

Use this function instead of its binary integer equivalent for the LOG_LEVEL parameter in DBMS_CUBE_LOG subprograms. See "Verbosity Levels".

Example

This command sets the verbosity level of the cube operations table to medium:

EXECUTE dbms_cube_log.enable(dbms_cube_log.type_operations, -
 dbms_cube_log.target_table, dbms_cube_log.level_medium);

SET_LOG_SPEC Procedure

This procedure sets all logging to the values specified in the input string.

Syntax

DBMS_CUBE_LOG.SET_LOG_SPEC (
 LOG_SPEC IN VARCHAR2);

Parameters

Table 43-7 SET_LOG_SPEC Procedure Parameters

	Parameter	Description
	
log_spec

	
A string consisting of type(target) pairs.

Type can be:

	
OPERATIONS

	
REJECTED_RECORDS

	
DIMENSION_COMPILE

Target can be:

	
TABLE

	
TRACE

	
FILE

	
LOB

Usage Notes

The GET_LOG_SPEC function returns a properly formatted string for SET_LOG_SPEC.

Examples

This PL/SQL procedure disables all logs, verifies that they are disabled, then activates the Cube Operations log and the Cube Rejected Records log.

BEGIN
 dbms_cube_log.disable;
 dbms_output.put_line('Cube Logs: ' || dbms_cube_log.get_log_spec);

 dbms_cube_log.set_log_spec('OPERATIONS(TRACE) REJECTED_RECORDS(TABLE)');
 dbms_output.put_line('Cube Logs: ' || dbms_cube_log.get_log_spec);
END;
/

The output from the procedure verifies that the DISABLE function de-activated all logs, and the SET_LOG_SPEC function activated two logs:

Cube Logs:

Cube Logs: OPERATIONS(TRACE) REJECTED_RECORDS(TABLE)

SET_PARAMETER Procedure

This procedure sets options that control various aspects of logging. To obtain the current value of these options, use the GET_PARAMETER function.

Syntax

DBMS_CUBE_LOG.SET_PARAMETER (
 LOG_TYPE IN BINARY_INTEGER,
 LOG_PARAMETER IN BINARY_INTEGER,
 VALUE IN BINARY_INTEGER);

Parameters

Table 43-8 SET_PARAMETER Procedure Parameters

	Parameter	Description
	
log_type

	
One of the following log types:

	
1: TYPE_OPERATIONS

	
2: TYPE_REJECTED_RECORDS

	
3: TYPE_DIMENSION_COMPILE

	
4: TYPE_BUILD

See "Logging Types".

	
log_parameter

	
One of the following parameters:

	
1: MAX_ERRORS

Maximum number of records before signalling an end to logging, such as the number of rejected records in the Cube Rejected Records log or the number of compilation errors in the dimension compilation error log.

	
2: FLUSH_INTERVAL

The number of seconds to buffer the records before writing them to a log. When this parameter is 0, the records are written directly to the logs without buffering.

	
3: LOG_FULL_RECORD

Controls logging of rejected records. Set this parameter to one of the following constants:

0: FULL_RECORD_AUTO: Log the full record when no row ID is available.

1: FULL_RECORD_ALWAYS: Always log the full record.

2: FULL_RECORD_NEVER: Never log the full record.

	
4: LOG_EVERY_N

Enters a progress message every n rows during data maintenance.

	
5: ALLOW_ERRORS: Displays logging errors, which are initially turned off to allow processing to proceed.

	
value

	
The new value of log_parameter.

Examples

This PL/SQL procedure sets the two parameters, then uses the GET_PARAMETER function to show the settings:

BEGIN
 dbms_cube_log.set_parameter(dbms_cube_log.type_rejected_records, 1, 150);
 dbms_cube_log.set_parameter(dbms_cube_log.type_rejected_records, 2, 5);

 dbms_output.put_line('Max rejected records: ' ||
 dbms_cube_log.get_parameter(dbms_cube_log.type_rejected_records, 1));

 dbms_output.put_line('Buffer time: ' ||
 dbms_cube_log.get_parameter(dbms_cube_log.type_rejected_records, 2) ||
 ' seconds');
END;
/

The procedure displays this information:

Max rejected records: 150

Buffer time: 5 seconds

TABLE_CREATE Procedure

This procedure creates the table targets for the OLAP logs. You must have the CREATE TABLE privilege to use this procedure.

TABLE_CREATE also upgrades existing log tables to the current version while preserving the data.

Syntax

DBMS_CUBE_LOG.TABLE_CREATE (
 LOG_TYPE IN BINARY_INTEGER DEFAULT,
 TBLNAME IN VARCHAR2 DEFAULT);

Parameters

Table 43-9 TABLE_CREATE Procedure Parameters

	Parameter	Description
	
log_type

	
One of the following log types:

	
1: TYPE_OPERATIONS

	
2: TYPE_REJECTED_RECORDS

	
3: TYPE_DIMENSION_COMPILE

	
4: TYPE_BUILD

See "Logging Types".

	
tblname

	
A table name for the log. These are the default names:

	
CUBE_OPERATIONS_LOG

	
CUBE_REJECTED_RECORDS

	
CUBE_DIMENSION_COMPILE

	
CUBE_BUILD_LOG

Examples

The

This example creates a Cube Operations log table named CUBE_OPERATIONS_LOG:

EXECUTE dbms_cube_log.table_create;

This example creates a Cube Rejected Records log table named CUBE_REJECTED_RECORDS:

EXECUTE dbms_cube_log.table_create(dbms_cube_log.type_rejected_records);

The next example creates a Cube Build log table named MY_BUILD_LOG:

EXECUTE dbms_cube_log.table_create -
 (dbms_cube_log.type_build, 'MY_BUILD_LOG');

TARGET_FILE Function

This function returns the integer value of a file target in DBMS_CUBE_LOG subprograms.

Syntax

DBMS_CUBE_LOG.TARGET_FILE ()
 RETURN BINARY_INTEGER;

Returns

3

Usage Notes

Use this function instead of its binary integer equivalent for the LOG_LEVEL parameter in DBMS_CUBE_LOG subprograms. See "Logging Targets".

Example

This command disables the Cube Operations log file:

EXECUTE dbms_cube_log.disable -
 (dbms_cube_log.type_operations, dbms_cube_log.target_file);

TARGET_LOB Function

This function returns the integer value of a LOB target.

Syntax

DBMS_CUBE_LOG.TARGET_LOB ()
 RETURN BINARY_INTEGER;

Returns

4

Usage Notes

Use this function instead of its binary integer equivalent for the LOG_LEVEL parameter in DBMS_CUBE_LOG subprograms. See "Logging Targets".

Example

This command disables the Cube Operations log LOB:

EXECUTE dbms_cube_log.disable -
 (dbms_cube_log.type_operations, dbms_cube_log.target_lob);

TARGET_TABLE Function

This function returns the integer value of a table target.

Syntax

DBMS_CUBE_LOG.TARGET_TABLE ()
 RETURN BINARY_INTEGER;

Returns

1

Usage Notes

Use this function instead of its binary integer equivalent for the LOG_TARGET parameter in DBMS_CUBE_LOG subprograms. See "Logging Targets".

Example

This command disables the Cube Operations log table:

EXECUTE dbms_cube_log.disable -
 (dbms_cube_log.type_operations, dbms_cube_log.target_table);

TARGET_TRACE Function

This function returns the integer value of a trace file target.

Syntax

DBMS_CUBE_LOG.TARGET_TRACE ()
 RETURN BINARY_INTEGER;

Returns

2

Usage Notes

Use this function instead of its binary integer equivalent for the LOG_TARGET parameter in DBMS_CUBE_LOG subprograms. See "Logging Targets".

Example

This command disables the Cube Operations log trace file:

EXECUTE dbms_cube_log.disable -
 (dbms_cube_log.type_operations, dbms_cube_log.target_trace);

TYPE_BUILD Function

This function returns the integer value of the Cube Build log.

Syntax

DBMS_CUBE_LOG.TYPE_BUILD ()
 RETURN BINARY_INTEGER;

Returns

4

Usage Notes

Use this function instead of its binary integer equivalent for the LOG_TYPE parameter in DBMS_CUBE_LOG subprograms. See "Logging Types".

Example

This query returns the default name of a Cube Build log:

SELECT dbms_cube_log.default_name(dbms_cube_log.type_build) "Log Name" -
 FROM dual;

Log Name

CUBE_BUILD_LOG

TYPE_DIMENSION_COMPILE Function

This function returns the integer value of the Cube Dimension Compile log.

Syntax

DBMS_CUBE_LOG.TYPE_DIMENSION_COMPILE ()
 RETURN BINARY_INTEGER;

Returns

3

Usage Notes

Use this function instead of its binary integer equivalent for the LOG_TYPE parameter in DBMS_CUBE_LOG subprograms. See "Logging Types".

Example

This query returns the default name of a Cube Dimension Compile log:

SELECT dbms_cube_log.default_name(dbms_cube_log.type_dimension_compile) -
 "Log Name" FROM dual;

Log Name

CUBE_DIMENSION_COMPILE

TYPE_OPERATIONS Function

This function returns the integer value of the Cube Operations log.

Syntax

DBMS_CUBE_LOG.TYPE_OPERATIONS ()
 RETURN BINARY_INTEGER;

Returns

1

Usage Notes

Use this function instead of its binary integer equivalent for the LOG_TYPE parameter in DBMS_CUBE_LOG subprograms. See "Logging Types".

Example

This query returns the default name of a Cube Dimension Compile log:

SELECT dbms_cube_log.default_name(dbms_cube_log.type_operations) "Log Name" -
 FROM dual;

Log Name

CUBE_OPERATIONS_LOG

TYPE_REJECTED_RECORDS Function

This function returns the integer value of the cube Cube Rejected Records log.

Syntax

DBMS_CUBE_LOG.TYPE_REJECTED_RECORDS ()
 RETURN BINARY_INTEGER;

Returns

2

Usage Notes

Use this function instead of its binary integer equivalent for the LOG_TYPE parameter in DBMS_CUBE_LOG subprograms. See "Logging Types".

Example

This query returns the default name of a Cube Rejected Records log:

SELECT dbms_cube_log.default_name(dbms_cube_log.type_rejected_records) -
 "Log Name" FROM dual;

Log Name

CUBE_REJECTED_RECORDS

VERSION Function

This function returns the version number of a specific log table or the current version number of a specific log type.

Syntax

DBMS_CUBE_LOG.VERSION (
 LOG_TYPE IN BINARY_INTEGER DEFAULT 1,
 TBLNAME IN VARCHAR2 DEFAULT NULL)
 RETURN BINARY_INTEGER;

Parameters

Table 43-10 VERSION Function Parameters

	Parameter	Description
	
log_type

	
One of the following log types:

	
1: TYPE_OPERATIONS

	
2: TYPE_REJECTED_RECORDS

	
3: TYPE_DIMENSION_COMPILE

	
4: TYPE_BUILD

See "Logging Types".

	
tblname

	
The name of the log table whose version is returned.

Returns

A version number

Examples

This example returns the current version of the Cube Operations log:

SELECT dbms_cube_log.version FROM dual;

 VERSION

 2

This example returns the version number of an existing Cube Rejected Records log named CUBE_REJECTED_RECORDS.

SELECT dbms_cube_log.version(dbms_cube_log.type_rejected_records, -
 'CUBE_REJECTED_RECORDS') version FROM dual;

 VERSION

 2

44 DBMS_DATA_MINING

Oracle Data Mining is an analytical technology that derives actionable information from data in an Oracle Database. You can use Oracle Data Mining to evaluate the probability of future events and discover unsuspected associations and groupings within your data.

The DBMS_DATA_MINING package is the programmatic interface for creating and managing data mining models (mining model schema objects). Oracle Data Mining also supports a family of SQL functions for deploying data mining models.

Oracle Data Miner, a graphical interface to Oracle Data Mining, is available for download from the Oracle Technology Network at: http://www.oracle.com/technetwork/database/options/odm/

	
See Also:

	
Chapter 45, "DBMS_DATA_MINING_TRANSFORM". This package supports data pre-processing for data mining models.

	
Chapter 104, "DBMS_PREDICTIVE_ANALYTICS". This package supports several routines that perform automated data mining.

	
Oracle Database SQL Language Reference for information about the SQL Data Mining scoring functions.

	
Oracle Data Mining Concepts for an introduction to Oracle Data Mining.

	
Oracle Data Mining Concepts for new features in Oracle Data Mining.

This chapter contains the following topics:

	
Using DBMS_DATA_MINING

	
Overview

	
Mining Model Objects

	
Security Model

	
Deprecated Subprograms

	
Mining Functions

	
Model Settings

	
Data Types

	
Summary of DBMS_DATA_MINING Subprograms

Using DBMS_DATA_MINING

This section contains topics that relate to using the DBMS_DATA_MINING package.

	
Overview

	
Mining Model Objects

	
Security Model

	
Deprecated Subprograms

	
Mining Functions

	
Model Settings

	
Data Types

Overview

Oracle Data Mining supports both supervised and unsupervised data mining. Supervised data mining predicts a target value based on historical data. Unsupervised data mining discovers natural groupings and does not use a target.

	
See Also:

Oracle Data Mining Concepts for more information

A data mining function refers to the methods for solving a given class of data mining problems. The mining function must be specified when a model is created. See "Mining Functions".

	
Note on Terminology:

In data mining terminology, a function is a general type of problem to be solved by a given approach to data mining. In SQL language terminology, a function is an operator that returns a value.
In Oracle Data Mining documentation, the term function, or mining function refers to a data mining function; the term SQL function or SQL Data Mining function refers to a SQL function for scoring (deploying) data mining models. The SQL Data Mining functions are documented in Oracle Database SQL Language Reference.

Supervised data mining functions include:

	
Classification

	
Regression

	
Attribute Importance

Unsupervised data mining functions include:

	
Clustering

	
Association

	
Feature Extraction

	
Anomaly Detection (one-class classification)

The steps you use to build and apply a mining model depend on the data mining function and the algorithm being used. The algorithms supported by Oracle Data Mining are listed in Table 44-1.

Table 44-1 Oracle Data Mining Algorithms

	Algorithm	Abbreviation	Function
	
Adaptive Bayes Network (deprecated)

	
ABN

	
Classification

	
Apriori

	
AP

	
Association

	
Decision Tree

	
DT

	
Classification

	
Generalized Linear Model

	
GLM

	
Classification and Regression

	
k-Means (default clustering algorithm)

	
KM

	
Clustering

	
Minimal Descriptor Length

	
MDL

	
Attribute Importance

	
Naive Bayes (default classification algorithm)

	
NB

	
Classification

	
Non-Negative Matrix Factorization

	
NMF

	
Feature Extraction

	
Orthogonal Partitioning Clustering

	
O-Cluster

	
Clustering

	
Support Vector Machine (default regression algorithm)

	
SVM

	
Classification and regression (and anomaly detection through one-class classification)

Mining Model Objects

Mining models are Oracle Database schema objects. They support the standard security features of Oracle Database. Mining models are also supported by SQL COMMENT and SQL AUDIT.

	
See Also:

	
Oracle Data Mining Administrator's Guide for information about mining model objects, SQL COMMENT, and SQL AUDIT

	
Oracle Data Mining Administrator's Guide for information about mining model security

	
Oracle Data Mining Administrator's Guide for information about the sample Data Mining programs

ALL_MINING_MODELS

You can query the data dictionary view ALL_MINING_MODELS to obtain a list of accessible mining models.

Example 44-1 ALL_MINING_MODELS

SQL> describe all_mining_models
 Name Null? Type
 --- -------- ----------------------------
 OWNER NOT NULL VARCHAR2(30)
 MODEL_NAME NOT NULL VARCHAR2(30)
 MINING_FUNCTION VARCHAR2(30)
 ALGORITHM VARCHAR2(30)
 CREATION_DATE NOT NULL DATE
 BUILD_DURATION NUMBER
 MODEL_SIZE NUMBER
 COMMENTS VARCHAR2(4000)

	
See Also:

Oracle Data Mining Application Developer's Guide for more information about ALL_MINING_MODELS and related views

Mining Model Naming Restrictions

The naming rules for models are more restrictive than the naming rules for most database schema objects. A model name must satisfy the following additional requirements:

	
It must be 25 or fewer characters long.

	
It must be a nonquoted identifier. Oracle requires that nonquoted identifiers contain only alphanumeric characters, the underscore (_), dollar sign ($), and pound sign (#); the initial character must be alphabetic. Oracle strongly discourages the use of the dollar sign and pound sign in nonquoted literals.

Naming requirements for schema objects are fully documented in Oracle Database SQL Language Reference.

ALL_MINING_MODEL_ATTRIBUTES

You can query the data dictionary view ALL_MINING_MODEL_ATTRIBUTES to obtain a list of the data attributes for each accessible mining model. Data attributes are the columns of data used by an algorithm to build a model. Some or all of these columns must be present in the data to which the model is applied.

Data attributes are referred to as the model signature. The ALL_MINING_MODEL_ATTRIBUTES view lists the data attributes in the model signature, including the target if the model is supervised.

An algorithm builds an internal representation of the data attributes and uses them as either categoricals (data that classifies or categorizes) or as numericals (continuous data). These internal model attributes can be viewed using the GET_MODEL_DETAILS functions.

Example 44-2 ALL_MINING_MODEL_ATTRIBUTES

SQL> describe all_mining_model_attributes
 Name Null? Type
 --- -------- ----------------------------
 OWNER NOT NULL VARCHAR2(30)
 MODEL_NAME NOT NULL VARCHAR2(30)
 ATTRIBUTE_NAME NOT NULL VARCHAR2(30)
 ATTRIBUTE_TYPE VARCHAR2(11)
 DATA_TYPE VARCHAR2(12)
 DATA_LENGTH NUMBER
 DATA_PRECISION NUMBER
 DATA_SCALE NUMBER
 USAGE_TYPE VARCHAR2(8)
 TARGET VARCHAR2(3)

	
See Also:

Oracle Data Mining Application Developer's Guide for more information about attributes and ALL_MINING_MODEL_ATTRIBUTES

ALL_MINING_MODEL_SETTINGS

The view ALL_MINING_MODEL_SETTINGS returns the settings for each accessible mining model. Settings control various characteristics of mining models.

All settings have default values. The values of some settings are generated by the algorithm by default. You can override the default value of a setting by specifying its value in a settings table for the model. All settings, both default and user-specified, are listed in ALL_MINING_MODEL_SETTINGS.

Example 44-3 ALL_MINING_MODEL_SETTINGS

SQL> describe all_mining_model_settings
 Name Null? Type
 --- -------- ----------------------------
 OWNER NOT NULL VARCHAR2(30)
 MODEL_NAME NOT NULL VARCHAR2(30)
 SETTING_NAME NOT NULL VARCHAR2(30)
 SETTING_VALUE VARCHAR2(4000)
 SETTING_TYPE VARCHAR2(7)

	
See Also:

	
Model Settings

	
Oracle Data Mining Application Developer's Guide for more information about ALL_MINING_MODEL_SETTINGS

Security Model

The DBMS_DATA_MINING package is owned by user SYS and is installed as part of database installation. Execution privilege on the package is granted to public. The routines in the package are run with invokers' rights (run with the privileges of the current user).

The DBMS_DATA_MINING package exposes APIs that are leveraged by the Oracle Data Mining option. Users who wish to create mining models in their own schema require the CREATE MINING MODEL system privilege (as well as the CREATE TABLE and CREATE VIEW system privilege). Users who wish to create mining models in other schemas require the CREATE ANY MINING MODEL system privilege (as well as the corresponding table and view creation privileges).

Users have full control over managing models that exist within their own schema. Additional system privileges necessary for managing data mining models in other schemas include ALTER ANY MINING MODEL, DROP ANY MINING MODEL, SELECT ANY MINING MODEL, COMMENT ANY MINING MODEL, and AUDIT ANY.

Individual object privileges on mining models, ALTER MINING MODEL and SELET MINING MODEL, can be used to selectively grant privileges on a model to a different user.

	
See Also:

Oracle Data Mining Administrator's Guide for more information about the security features of Oracle Data Mining

Deprecated Subprograms

The following subprograms were deprecated in Oracle Data Mining 11g Release 1 (11.1).

	
GET_DEFAULT_SETTINGS

Replaced with data dictionary views: USER/ALL/DBA_MINING_MODEL_SETTINGS

	
GET_MODEL_SETTINGS

Replaced with data dictionary views: USER/ALL/DBA_MINING_MODEL_SETTINGS

	
GET_MODEL_SIGNATURE

Replaced with data dictionary views: USER/ALL/DBA_MINING_MODEL_ATTRIBUTES

The following view was deprecated in Oracle Data Mining 11g Release 1 (11.1).

	
DM_USER_MODELS

Replaced with data dictionary views: USER/ALL/DBA_MINING_MODELS

The Adaptive Bayes Network algorithm was deprecated in Oracle Data Mining 11g Release 1 (11.1).

	
Note:

Oracle recommends that you do not use deprecated procedures in new applications. Support for deprecated features is for backward compatibility only.

Since 11g Release 1 (11.1), the DMSYS schema is no longer present in the database. Oracle Data Mining metadata now resides in SYS.

Mining Functions

The constants that specify the mining function of a model are listed in Table 44-2. The concept of a "mining function" is introduced in "Overview".

All models are created with a mining function. The mining function is a required argument to the CREATE_MODEL Procedure.

Table 44-2 Mining Functions

	Value	Description
	
ASSOCIATION

	
Association is a descriptive mining function. An association model identifies relationships and the probability of their occurrence within a data set.

Association models use the Apriori algorithm.

	
ATTRIBUTE_IMPORTANCE

	
Attribute Importance is a predictive mining function. An attribute importance model identifies the relative importance of an attribute in predicting a given outcome.

Attribute Importance models use the Minimal Descriptor Length algorithm.

	
CLASSIFICATION

	
Classification is a predictive mining function. A classification model uses historical data to predict a categorical target.

Classification models can use: Naive Bayes, Adaptive Bayes Network (deprecated), Decision Tree, Logistic Regression, or Support Vector Machine algorithms. The default is Naive Bayes.

The classification function can also be used for anomaly detection. In this case, the SVM algorithm with a null target is used (One-Class SVM).

	
CLUSTERING

	
Clustering is a descriptive mining function. A clustering model identifies natural groupings within a data set.

Clustering models can use: k-Means or O-Cluster algorithms. The default is k-Means.

	
FEATURE_EXTRACTION

	
Feature Extraction is a descriptive mining function. A feature extraction model creates an optimized data set on which to base a model.

Feature extraction models use the Non-Negative Matrix Factorization algorithm.

	
REGRESSION

	
Regression is a predictive mining function. A regression model uses historical data to predict a numerical target.

Regression models can use Support Vector Machine or Linear Regression. The default is Support Vector Machine.

Model Settings

Oracle Data Mining uses settings to specify the algorithm and other characteristics of a model. Some settings are general, some are specific to a mining function, and some are specific to an algorithm.

All settings have default values. If you want to override one or more of the settings for a model, you must create a settings table. The settings table must have the column names and data types shown in Table 44-3.

Table 44-3 Required Columns in the Model Settings Table

	Column Name	Data Type
	
SETTING_NAME

	
VARCHAR2(30)

	
SETTING_VALUE

	
VARCHAR2(4000)

The information you provide in the settings table is used by the model at build time. The name of the settings table is an optional argument to the CREATE_MODEL Procedure.

You can find the settings used by a model by querying the data dictionary view ALL_MINING_MODEL_SETTINGS. This view lists the model settings used by the mining models to which you have access. All the setting values are included in the view, whether default or user-specified. See "ALL_MINING_MODEL_SETTINGS".

Algorithm Names

The ALGO_NAME setting specifies the model algorithm. The values for the ALGO_NAME setting are listed in Table 44-4.

Table 44-4 Algorithm Names

	ALGO_NAME Value	Description	Mining Function
	
ALGO_ADAPTIVE_BAYES_NETWORK

	
Adaptive Bayes Network (deprecated)

	
Classification

	
ALGO_DECISION_TREE

	
Decision Tree

	
Classification

	
ALGO_NAIVE_BAYES

	
Naive Bayes

	
Classification

	
ALGO_GENERALIZED_LINEAR_MODEL

	
Generalized Linear Model

	
Classification and Regression

	
ALGO_SUPPORT_VECTOR_MACHINES

	
Support Vector Machine

	
Classification and Regression

	
ALGO_KMEANS

	
Enhanced k_Means

	
Clustering

	
ALGO_O_CLUSTER

	
O-Cluster

	
Clustering

	
ALGO_AI_MDL

	
Minimum Description Length

	
Attribute Importance

	
ALGO_APRIORI_ASSOCIATION_RULES

	
Apriori

	
Association Rules

	
ALGO_NONNEGATIVE_MATRIX_FACTOR

	
Non-Negative Matrix Factorization

	
Feature Extraction

Oracle Data Mining supports more than one algorithm for the classification, regression, and clustering mining functions. Each of these mining functions has a default algorithm, as shown in Table 44-5.

Table 44-5 Default Algorithms

	Mining Function	Default Algorithm
	
Classification

	
Naive Bayes

	
Regression

	
Support Vector Machine

	
Clustering

	
k-Means

Automatic Data Preparation

The PREP_AUTO setting indicates whether or not the model will use Automatic Data Preparation (ADP). By default ADP is disabled.

When you enable ADP, the model uses heuristics to transform the build data according to the requirements of the algorithm. The transformation instructions are stored with the model and reused whenever the model is applied. You can view the transformation instructions in the model details.

You can choose to supplement automatic data preparations by specifying additional transformations in the xform_list parameter when you build the model. (See "CREATE_MODEL Procedure".)

If you do not use ADP (default) and do not specify transformations in the xform_list parameter to CREATE_MODEL (also the default), you will continue to operate in 10.2 mode. This means that you must implement your own transformations separately in the build, test, and scoring data; you must take special care to implement the exact same transformations in each data set.

If you do not use ADP, but you do specify transformations in the xform_list parameter to CREATE_MODEL, Oracle Data Mining embeds the transformation definitions in the model and prepares the test and scoring data to match the build data. Because of automatic and embedded data preparation, mining models are known as supermodels.

The values for the PREP_AUTO setting are described in Table 44-6.

Table 44-6 PREP_AUTO Setting

	PREP_AUTO Value	Description
	
PREP_AUTO_OFF

	
Disable Automatic Data Preparation (default).

	
PREP_AUTO_ON

	
Enable Automatic Data Preparation.

	
See Also:

Oracle Data Mining Concepts for information about data preparation

Mining Function Settings

The settings described in Table 44-7 apply to a mining function.

Table 44-7 Mining Function Settings

	Mining Function	Setting Name	Setting Value	Description
	
Association

	
ASSO_MAX_RULE_LENGTH

	
TO_CHAR(2<= numeric_expr <=20)

	
Maximum rule length for association rules.

Default is 4.

	
Association

	
ASSO_MIN_CONFIDENCE

	
TO_CHAR(0<= numeric_expr <=1)

	
Minimum confidence for association rules.

Default is 0.1.

	
Association

	
ASSO_MIN_SUPPORT

	
TO_CHAR(0<= numeric_expr <=1)

	
Minimum support for association rules.

Default is 0.1.

	
Classification

	
CLAS_COST_TABLE_NAME

	
table_name

	
(Decision Tree only) Name of a table that stores a cost matrix to be used by the algorithm in building the model. The cost matrix specifies the costs associated with misclassifications.

Only Decision Tree models can use a cost matrix at build time. All classification algorithms can use a cost matrix at apply time.

The cost matrix table is user-created. See "ADD_COST_MATRIX Procedure" for the column requirements.

See Oracle Data Mining Concepts for information about costs.

	
Classification

	
CLAS_PRIORS_TABLE_NAME

	
table_name

	
(Naive Bayes) Name of a table that stores prior probabilities to offset differences in distribution between the build data and the scoring data.

The priors table is user-created. See Oracle Data Mining Application Developer's Guide for the column requirements. See Oracle Data Mining Concepts for additional information about priors.

	
Classification

	
CLAS_WEIGHTS_TABLE_NAME

	
table_name

	
(GLM and SVM only) Name of a table that stores weighting information for individual target values in SVM classification and GLM logistic regression models. The weights are used by the algorithm to bias the model in favor of higher weighted classes.

The class weights table is user-created. See Oracle Data Mining Application Developer's Guide for the column requirements. See Oracle Data Mining Concepts for additional information about class weights.

	
Clustering

	
CLUS_NUM_CLUSTERS

	
TO_CHAR(numeric_expr >=1)

	
Maximum number of leaf clusters generated by a clustering algorithm. (Oracle Data Mining clustering algorithms are hierarchical, as described in Oracle Data Mining Concepts .)

Enhanced k-Means usually produces the exact number of clusters specified by CLUS_NUM_CLUSTERS, unless there are fewer distinct data points.

O-Cluster may produce fewer clusters than the number specified by CLUS_NUM_CLUSTERS, depending on the data.

Default is 10.

	
Feature Extraction

	
FEAT_NUM_FEATURES

	
TO_CHAR(numeric_expr >=1)

	
Number of features to be extracted by a feature extraction model.

The default is estimated from the data by the algorithm.

	
See Also:

Oracle Data Mining Concepts for information about mining functions

Global Settings

The settings in Table 44-8 are applicable to any type of model, but are currently only implemented for specific algorithms.

You can query the data dictionary view *_MINING_MODEL_SETTINGS (using the ALL, USER, or DBA prefix) to find the setting values for a model. See Oracle Data Mining Application Developer's Guide for information about *_MINING_MODEL_SETTINGS.

Table 44-8 Global Settings

	Setting Name	Setting Value	Description
	
ODMS_ITEM_ID_COLUMN_NAME

	
column_name

	
(Association Rules only) Name of a column that contains the items in a transaction. When this setting is specified, the algorithm expects the data to be presented in native transactional format, consisting of two columns:

	
Case ID, either categorical or numerical

	
Item ID, either categorical or numerical, specified by ODMS_ITEM_ID_COLUMN_NAME

A typical example of transactional data is market basket data, wherein a case represents a basket that may contain many items. Each item is stored in a separate row, and many rows may be needed to represent a case. The case ID values do not uniquely identify each row. Transactional data is also called multi-record case data.

Association Rules is normally used with transactional data, but it can also be applied to single-record case data (similar to other algorithms).

For more information about single-record and multi-record case data, see Oracle Data Mining Application Developer's Guide.

	
ODMS_ITEM_VALUE_COLUMN_NAME

	
column_name

	
(Association Rules only) Name of a column that contains a value associated with each item in a transaction. This setting is only used when a value has been specified for ODMS_ITEM_ID_COLUMN_NAME indicating that the data is presented in native transactional format.

When ODMS_ITEM_VALUE_COLUMN_NAME is specified, the algorithm expects the build data to consist of three columns:

	
Case ID, either categorical or numerical

	
Item ID, either categorical or numerical, specified by ODMS_ITEM_ID_COLUMN_NAME

	
Item value, either categorical or numerical, specified by ODMS_ITEM_VALUE_COLUMN_NAME

The item value column may specify information such as the number of items (for example, three apples) or the type of the item (for example, macintosh apples).

	
ODMS_MISSING_VALUE_TREATMENT

	
ODMS_MISSING_VALUE_MEAN_MODE

ODMS_MISSING_VALUE_DELETE_ROW

	
(GLM only) How to treat missing values in the training data. This setting does not affect the scoring data.

Oracle Data Mining replaces missing values with the mean (numeric attributes) or the mode (categorical attributes) both at build time and apply time. You can set ODMS_MISSING_VALUE_TREATMENT to ODMS_MISSING_VALUE_DELETE_ROW to override this behavior in the training data. When ODMS_MISSING_VALUE_TREATMENT is set to ODMS_MISSING_VALUE_DELETE_ROW, the rows in the training data that contain missing values are deleted. However, if you want to replicate this missing value treatment in the scoring data, you must perform the transformation explicitly. For instructions, see Oracle Data Mining Concepts.

The value ODMS_MISSING_VALUE_DELETE_ROW is only valid for tables without nested columns. If this value is used with nested data, an exception is raised.

	
ODMS_ROW_WEIGHT_COLUMN_NAME

	
column_name

	
(GLM only) Name of a column in the training data that contains a weighting factor for the rows.

Row weights can be used as a compact representation of repeated rows, as in the design of experiments where a specific configuration is repeated several times. Row weights can also be used to emphasize certain rows during model construction. For example, to bias the model towards rows that are more recent and away from potentially obsolete data.

	
See Also:

Oracle Data Mining Concepts for information about GLM

Oracle Data Mining Concepts for information about Association Rules

Algorithm Settings: Adaptive Bayes Network (deprecated)

These settings affect the behavior of the Adaptive Bayes Network algorithm.

You can query the data dictionary view *_MINING_MODEL_SETTINGS (using the ALL, USER, or DBA prefix) to find the setting values for a model. See Oracle Data Mining Application Developer's Guide for information about *_MINING_MODEL_SETTINGS.

Table 44-9 ABN Settings

	Setting	Value	Description
	
ABNS_MAX_BUILD_MINUTES

	
TO_CHAR(numeric_expr >=0)

	
Maximum time to complete an ABN model build.

Default is 0, which implies no time limit.

	
ABNS_MAX_NB_PREDICTORS

	
TO_CHAR(numeric_expr >0)

	
Maximum number of predictors, measured by their MDL ranking, to be considered for building an ABN model of type abns_naive_bayes.

Default is 10.

	
ABNS_MAX_PREDICTORS

	
TO_CHAR(numeric_expr >0)

	
Maximum number of predictors, measured by their MDL ranking, to be considered for building an ABN model of type abns_single_feature or abns_multi_feature.

Default is 25.

	
ABNS_MODEL_TYPE

	
ABNS_MULTI_FEATURE

ABNS_NAIVE_BAYES

ABNS_SINGLE_FEATURE

	
Type of ABN model.

The default is multi_feature.

Algorithm Settings: Decision Tree

These settings affect the behavior of the Decision Tree algorithm.

You can query the data dictionary view *_MINING_MODEL_SETTINGS (using the ALL, USER, or DBA prefix) to find the setting values for a model. See Oracle Data Mining Application Developer's Guide for information about *_MINING_MODEL_SETTINGS.

Table 44-10 Decision Tree Settings

	Setting	Value	Description
	
TREE_IMPURITY_METRIC

	
TREE_IMPURITY_ENTROPY

TREE_IMPURITY_GINI

	
Tree impurity metric for Decision Tree.

Tree algorithms seek the best test question for splitting data at each node. The best splitter and split value are those that result in the largest increase in target value homogeneity (purity) for the entities in the node. Purity is measured in accordance with a metric. Decision trees can use either gini (TREE_IMPURITY_GINI) or entropy (TREE_IMPURITY_ENTROPY) as the purity metric. By default, the algorithm uses gini.

	
TREE_TERM_MAX_DEPTH

	
TO_CHAR(2<= numeric_expr <=20)

	
Criteria for splits: maximum tree depth (the maximum number of nodes between the root and any leaf node, including the leaf node).

Default is 7.

	
TREE_TERM_MINPCT_MODE

	
TO_CHAR(0<= numeric_expr <=10)

	
No child shall have fewer records than this number, which is expressed as a percentage of the training rows.

Default is 0.05, indicating 0.05%.

	
TREE_TERM_MINPCT_SPLIT

	
TO_CHAR(0 <= numeric_expr <=20)

	
Criteria for splits: minimum number of records in a parent node expressed as a percent of the total number of records used to train the model. No split is attempted if number of records is below this value.

Default is 0.1, indicating 0.1%.

	
TREE_TERM_MINREC_NODE

	
TO_CHAR(numeric_expr >=0)

	
No child shall have fewer records than this number.

Default is 10.

	
TREE_TERM_MINREC_SPLIT

	
TO_CHAR(numeric_expr >=0)

	
Criteria for splits: minimum number of records in a parent node expressed as a value. No split is attempted if number of records is below this value.

Default is 20.

Algorithm Settings: Generalized Linear Models

These settings affect the behavior of GLM models. GLM can be used for classification (logistic regression) or regression (linear regression).

You can query the data dictionary view *_MINING_MODEL_SETTINGS (using the ALL, USER, or DBA prefix) to find the setting values for a model. See Oracle Data Mining Application Developer's Guide for information about *_MINING_MODEL_SETTINGS.

Table 44-11 GLM Settings

	Setting Name	Setting Value	Description
	
GLMS_CONF_LEVEL

	
TO_CHAR(0< numeric_expr <1)

	
The confidence level for coefficient confidence intervals.

The default confidence level is 0.95.

	
GLMS_DIAGNOSTICS_TABLE_NAME

	
table_name

	
The name of a table to contain row-level diagnostic information for a GLM model. The table is created during model build.

If you want to create a diagnostics table, you must specify a case ID when you build the model. (See the CREATE_MODEL Procedure.) If you specify a diagnostics table but do not provide a case ID, an exception is raised.

For information on GLM diagnostics, see Oracle Data Mining Concepts.

	
GLMS_REFERENCE_CLASS_NAME

	
target_value

	
The target value to be used as the reference value in a logistic regression model. Probabilities will be produced for the other (non-reference) class.

By default, the algorithm chooses the value with the highest prevalence (the most cases) for the reference class.

	
GLMS_RIDGE_REGRESSION

	
GLMS_RIDGE_REG_ENABLE

GLMS_RIDGE_REG_DISABLE

	
Whether or not ridge regression will be enabled.

By default, the algorithm determines whether or not to use ridge. You can explicitly enable ridge by setting GLMS_RIDGE_REGRESSION to GLMS_RIDGE_REG_ENABLE.

Ridge applies to both regression and classification mining functions.

When ridge is enabled, no prediction bounds are produced by the PREDICTION_BOUNDS SQL operator.

	
GLMS_RIDGE_VALUE

	
TO_CHAR(0< numeric_expr)

	
The value for the ridge parameter used by the algorithm. This setting is only used when you explicitly enable ridge regression by setting GLMS_RIDGE_REGRESSION to GLMS_RIDGE_REG_ENABLE.

If ridge regression is enabled internally by the algorithm, the ridge parameter is determined by the algorithm.

	
GLMS_VIF_FOR_RIDGE

	
GLMS_VIF_RIDGE_ENABLE

GLMS_VIF_RIDGE_DISABLE

	
(Linear regression only) Whether or not to produce Variance Inflation Factor (VIF) statistics when ridge is being used.

By default, VIF is not produced when ridge is enabled.

When you explicitly enable ridge regression by setting GLMS_RIDGE_REGRESSION to GLMS_RIDGE_REG_ENABLE, you can request VIF statistics by setting GLMS_VIF_FOR_RIDGE to GLMS_VIF_RIDGE_ENABLE; the algorithm will produce VIF if enough system resources are available.

	
See Also:

Oracle Data Mining Concepts for information about GLM

Algorithm Settings: k-Means

These settings affect the behavior of the k-Means algorithm.

You can query the data dictionary view *_MINING_MODEL_SETTINGS (using the ALL, USER, or DBA prefix) to find the setting values for a model. See Oracle Data Mining Application Developer's Guide for information about *_MINING_MODEL_SETTINGS.

Table 44-12 k-Means Settings

	Setting Name	Setting Value	Description
	
KMNS_BLOCK_GROWTH

	
TO_CHAR(1< numeric_expr <=5)

	
Growth factor for memory allocated to hold cluster data

Default value is 2

	
KMNS_CONV_TOLERANCE

	
TO_CHAR(0< numeric_expr <=0.5)

	
Convergence tolerance for k-Means algorithm

Default is 0.01

	
KMNS_DISTANCE

	
KMNS_COSINE

KMNS_EUCLIDEAN

KMNS_FAST_COSINE

	
Distance Function for k-Means Clustering. The default is euclidean.

	
KMNS_ITERATIONS

	
TO_CHAR(0< numeric_expr <=20)

	
Number of iterations for k-Means algorithm

Default is 3

	
KMNS_MIN_PCT_ATTR_SUPPORT

	
TO_CHAR(0<= numeric_expr <=1)

	
The fraction of attribute values that must be non-null in order for the attribute to be included in the rule description for the cluster.

Setting the parameter value too high in data with missing values can result in very short or even empty rules.

Default is 0.1.

	
KMNS_NUM_BINS

	
TO_CHAR(numeric_expr >0)

	
Number of histogram bins. Specifies the number of bins in the attribute histogram produced by k-Means. The bin boundaries for each attribute are computed globally on the entire training data set. The binning method is equi-width. All attributes have the same number of bins with the exception of attributes with a single value that have only one bin.

Default is 10.

	
KMNS_SPLIT_CRITERION

	
KMNS_SIZE

KMNS_VARIANCE

	
Split criterion for k-Means Clustering. The default criterion is the variance.

	
See Also:

Oracle Data Mining Concepts for information about k-Means.

Algorithm Settings: Naive Bayes

These settings affect the behavior of the Naive Bayes Algorithm.

You can query the data dictionary view *_MINING_MODEL_SETTINGS (using the ALL, USER, or DBA prefix) to find the setting values for a model. See Oracle Data Mining Application Developer's Guide for information about *_MINING_MODEL_SETTINGS.

Table 44-13 Naive Bayes Settings

	Setting Name	Setting Value	Description
	
NABS_PAIRWISE_THRESHOLD

	
TO_CHAR(0<= numeric_expr <=1)

	
Value of pairwise threshold for NB algorithm

Default is 0.01.

	
NABS_SINGLETON_THRESHOLD

	
TO_CHAR(0<= numeric_expr <=1)

	
Value of singleton threshold for NB algorithm

Default value is 0.01

	
See Also:

Oracle Data Mining Concepts for information about Naive Bayes

Algorithm Settings: Non-Negative Matrix Factorization

These settings affect the behavior of the Non-Negative Matrix Factorization algorithm.

You can query the data dictionary view *_MINING_MODEL_SETTINGS (using the ALL, USER, or DBA prefix) to find the setting values for a model. See Oracle Data Mining Application Developer's Guide for information about *_MINING_MODEL_SETTINGS.

Table 44-14 NMF Settings

	Setting Name	Setting Value	Description
	
NMFS_CONV_TOLERANCE

	
TO_CHAR(0< numeric_expr <=0.5)

	
Convergence tolerance for NMF algorithm

Default is 0.05

	
NMFS_NONNEGATIVE_SCORING

	
NMFS_NONNEG_SCORING_ENABLE

NMFS_NONNEG_SCORING_DISABLE

	
Whether negative numbers should be allowed in scoring results. When set to NMFS_NONNEG_SCORING_ENABLE, negative feature values will be replaced with zeros. When set to NMFS_NONNEG_SCORING_DISABLE, negative feature values will be allowed.

Default is NMFS_NONNEG_SCORING_ENABLE

	
NMFS_NUM_ITERATIONS

	
TO_CHAR(1 <= numeric_expr <=500)

	
Number of iterations for NMF algorithm

Default is 50

	
NMFS_RANDOM_SEED

	
TO_CHAR(numeric_expr)

	
Random seed for NMF algorithm.

Default is –1.

	
See Also:

Oracle Data Mining Concepts for information about NMF

Algorithm Settings: O-Cluster

These settings affect the behavior of the O-Cluster algorithm.

You can query the data dictionary view *_MINING_MODEL_SETTINGS (using the ALL, USER, or DBA prefix) to find the setting values for a model. See Oracle Data Mining Application Developer's Guide for information about *_ALL_MINING_MODEL_SETTINGS.

Table 44-15 O-CLuster Settings

	Setting Name	Setting Value	Description
	
OCLT_MAX_BUFFER

	
TO_CHAR(numeric_expr >0)

	
Buffer size for O-Cluster.

Default is 50,000.

	
OCLT_SENSITIVITY

	
TO_CHAR(0 <=numeric_expr <=1)

	
A fraction that specifies the peak density required for separating a new cluster. The fraction is related to the global uniform density.

Default is 0.5.

	
See Also:

Oracle Data Mining Concepts for information about O-Cluster

Algorithm Settings: Support Vector Machine

These settings affect the behavior of the Support Vector Machine algorithm. SVM can be used for classification or regression, or for anomaly detection (classification with a null target).

You can query the data dictionary view *_MINING_MODEL_SETTINGS (using the ALL, USER, or DBA prefix) to find the setting values for a model. See Oracle Data Mining Application Developer's Guide for information about *_MINING_MODEL_SETTINGS.

Table 44-16 SVM Settings

	Setting Name	Setting Value	Description
	
SVMS_ACTIVE_LEARNING

	
SVMS_AL_DISABLE

SVMS_AL_ENABLE

	
Whether active learning is enabled or disabled. By default, active learning is enabled.

When active learning is enabled, the SVM algorithm uses active learning to build a reduced size model. When active learning is disabled, the SVM algorithm builds a standard model.

	
SVMS_COMPLEXITY_FACTOR

	
TO_CHAR(numeric_expr >0)

	
Value of complexity factor for SVM algorithm (both classification and regression).

Default value estimated from the data by the algorithm.

	
SVMS_CONV_TOLERANCE

	
TO_CHAR(numeric_expr >0)

	
Convergence tolerance for SVM algorithm.

Default is 0.001.

	
SVMS_EPSILON

	
TO_CHAR(numeric_expr >0)

	
Value of epsilon factor for SVM regression.

Default value estimated from the data by the algorithm.

	
SVMS_KERNEL_CACHE_SIZE

	
TO_CHAR(numeric_expr >0)

	
Value of kernel cache size for SVM algorithm. Applies to Gaussian kernel only.

Default is 50000000 bytes.

	
SVMS_KERNEL_FUNCTION

	
svm_gaussian

svms_linear

	
Kernel for Support Vector Machine. The default is determined by the algorithm based on the number of attributes in the training data. When there are many attributes, the algorithm uses a linear kernel, otherwise it uses a nonlinear (Gaussian) kernel.

The number of attributes does not correspond to the number of columns in the training data. The algorithm explodes categorical attributes to binary, numeric attributes. In addition, Oracle Data Mining handles each row in a nested column as a separate attribute. SVM takes these factors into account when choosing the kernel function.

	
SVMS_OUTLIER_RATE

	
TO_CHAR(0< numeric_expr <1)

	
The desired rate of outliers in the training data. Valid for One-Class SVM models only (anomaly detection).

Default is.1.

	
SVMS_STD_DEV

	
TO_CHAR(numeric_expr >0)

	
Value of standard deviation for SVM algorithm.

This is applicable only for Gaussian kernel.

Default value estimated from the data by the algorithm.

	
See Also:

Oracle Data Mining Concepts for information about SVM

Data Types

The DBMS_DATA_MINING package uses object data types to store information about model attributes. Most of these types are returned by the table functions GET_n, where n identifies the type of information to return. These functions take a model name as input and return the requested information as a collection of rows.

For a list of the GET functions, see "Summary of DBMS_DATA_MINING Subprograms".

Oracle Data Mining also uses object data types for handling transactional data. These types, DM_NESTED_NUMERICALS and DM_NESTED_CATEGORICALS specify nested tables that can be used for storing a set of mining attributes in a single column. For more information on nested tables, see the Oracle Data Mining Application Developer's Guide.

All the table functions use pipelining, which causes each row of output to be materialized as it is read from model storage, without waiting for the generation of the complete table object. For more information on pipelined, parallel table functions, consult the Oracle Database PL/SQL Language Reference.

The Data Mining object data types are described in Table 44-17.

Table 44-17 DBMS_DATA_MINING Summary of Data Types

	Data Type	Description
	
DM_ABN_DETAIL

	
Information about an attribute in an Adaptive Bayes Network model.

	
DM_ABN_DETAILS

	
A collection of DM_ABN_DETAIL. Returned by GET_MODEL_DETAILS_ABN Function.

	
DM_CENTROID

	
The centroid of a cluster.

	
DM_CENTROIDS

	
A collection of DM_CENTROID. A member of DM_CLUSTER.

	
DM_CHILD

	
A child node of a cluster.

	
DM_CHILDREN

	
A collection of DM_CHILD. A member of DM_CLUSTER.

	
DM_CLUSTER

	
A cluster. A cluster includes DM_PREDICATES, DM_CHILDREN, DM_CENTROIDS, and DM_HISTOGRAMS. It also includes a DM_RULE.

	
DM_CLUSTERS

	
A collection of DM_CLUSTER. Returned by GET_MODEL_DETAILS_KM Function and GET_MODEL_DETAILS_OC Function.

	
DM_CONDITIONAL

	
The conditional probability of an attribute in a Naive Bayes model.

	
DM_CONDITIONALS

	
A collection of DM_CONDITIONAL. Returned by GET_MODEL_DETAILS_NB Function.

	
DM_COST_ELEMENT

	
The actual and predicted values in a cost matrix.

	
DM_COST_MATRIX

	
A collection of DM_COST_ELEMENT. Returned by GET_MODEL_COST_MATRIX Function.

	
DM_GLM_COEFF

	
The coefficient and associated statistics of an attribute in a Generalized Linear Model.

	
DM_GLM_COEFF_SET

	
A collection of DM_GLM_COEFF. Returned by GET_MODEL_DETAILS_GLM Function.

	
DM_HISTOGRAM_BIN

	
A histogram associated with a cluster.

	
DM_HISTOGRAMS

	
A collection of DM_HISTOGRAM_BIN. A member of DM_CLUSTER.

	
DM_ITEM

	
An item in an association rule.

	
DM_ITEMS

	
A collection of DM_ITEM.

	
DM_ITEMSET

	
A collection of DM_ITEMS.

	
DM_ITEMSETS

	
A collection of DM_ITEMSET. Returned by GET_FREQUENT_ITEMSETS Function.

	
DM_MODEL_GLOBAL_DETAIL

	
High-level statistics about a model.

	
DM_MODEL_GLOBAL_DETAILS

	
A collection of DM_MODEL_GLOBAL_DETAIL. Returned by GET_MODEL_DETAILS_GLOBAL Function.

	
DM_MODEL_SETTING

	
A model setting.

	
DM_MODEL_SETTINGS

	
A collection of DM_MODEL_SETTING. Returned by GET_MODEL_SETTINGS Function and GET_DEFAULT_SETTINGS Function.

	
DM_MODEL_SIGNATURE_ATTRIBUTE

	
An attribute in the model signature.

	
DM_MODEL_SIGNATURE

	
A collection of DM_MODEL_SIGNATURE. Returned by GET_MODEL_SIGNATURE Function.

	
DM_NB_DETAIL

	
Information about an attribute in a Naive Bayes model.

	
DM_NB_DETAILS

	
A collection of DM_DB_DETAIL. Returned by GET_MODEL_DETAILS_NB Function.

	
DM_NESTED_CATEGORICAL

	
The name and value of a categorical attribute.

	
DM_NESTED_CATEGORICALS

	
A collection of DM_NESTED_CATEGORICAL. A collection of attributes defined as a single model attribute. Transactional data must be defined as nested attributes for Data Mining.

	
DM_NESTED_NUMERICAL

	
The name and value of a numerical attribute.

	
DM_NESTED_NUMERICALS

	
A collection of DM_NESTED_NUMERICAL. A collection of attributes defined as a single model attribute. Transactional data must be defined as nested attributes for Data Mining.

	
DM_NMF_ATTRIBUTE

	
An attribute in a feature of a Non-Negative Matrix Factorization model.

	
DM_NMF_ATTRIBUTE_SET

	
A collection of DM_NMF_ATTRIBUTE. A member of DM_NMF_FEATURE.

	
DM_NMF_FEATURE

	
A feature in a Non-Negative Matrix Factorization model.

	
DM_NMF_FEATURE_SET

	
A collection of DM_NMF_FEATURE. Returned by GET_MODEL_DETAILS_NMF Function.

	
DM_PREDICATE

	
Antecedent and consequent attributes.

	
DM_PREDICATES

	
A collection of DM_PREDICATE. A member of DM_RULE, DM_CLUSTER, and DM_ABN_DETAIL.

	
DM_RANKED_ATTRIBUTE

	
An attribute ranked by its importance in an Attribute Importance model.

	
DM_RANKED_ATTRIBUTES

	
A collection of DM_RANKED_ATTRIBUTE. Returned by GET_MODEL_DETAILS_AI Function.

	
DM_RULE

	
A rule that defines a conditional relationship.

The rule can be one of the association rules returned by GET_ASSOCIATION_RULES Function, or it can be a rule associated with a cluster in the collection of clusters returned by GET_MODEL_DETAILS_KM Function and GET_MODEL_DETAILS_OC Function.

	
DM_RULES

	
A collection of DM_RULE. Returned by GET_ASSOCIATION_RULES Function.

	
DM_SVM_ATTRIBUTE

	
The name, value, and coefficient of an attribute in a Support Vector Machine model.

	
DM_SVM_ATTRIBUTE_SET

	
A collection of DM_SVM_ATTRIBUTE. Returned by GET_MODEL_DETAILS_SVM Function. Also a member of DM_SVM_LINEAR_COEFF.

	
DM_SVM_LINEAR_COEFF

	
The linear coefficient of each attribute in a Support Vector Machine model.

	
DM_SVM_LINEAR_COEFF_SET

	
A collection of DM_SVM_LINEAR_COEFF. Returned by GET_MODEL_DETAILS_SVM Function for an SVM model built using the linear kernel.

	
DM_TRANSFORM

	
The transformation and reverse transformation expressions for an attribute.

	
DM_TRANSFORMS

	
A collection of DM_TRANSFORM. Returned by GET_MODEL_TRANSFORMATIONS Function.

	
TRANSFORM_LIST

	
A list of user-specified transformations for a model. Accepted as a parameter by the CREATE_MODEL Procedure.

This collection type is defined in the DBMS_DATA_MINING_TRANSFORM package.

Summary of DBMS_DATA_MINING Subprograms

Table 44-18 summarizes the subprograms included in the DBMS_DATA_MINING package.

Table 44-18 DBMS_DATA_MINING Package Subprograms

	Data Type	Purpose
	
ADD_COST_MATRIX Procedure

	
Adds a cost matrix to a classification model

	
ALTER_REVERSE_EXPRESSION Procedure

	
Changes the reverse transformation expression to an expression that you specify

	
APPLY Procedure

	
Applies a model to a data set (scores the data)

	
COMPUTE_CONFUSION_MATRIX Procedure

	
Computes the confusion matrix from the APPLY results on test data for a classification model; also provides the accuracy of the model

	
COMPUTE_LIFT Procedure

	
Computes lift for a given positive target value from the APPLY results on test data for a classification model

	
COMPUTE_ROC Procedure

	
Computes Receiver Operating Characteristic (ROC) for a classification model

	
CREATE_MODEL Procedure

	
Creates (builds) a model

	
DROP_MODEL Procedure

	
Drops a model

	
EXPORT_MODEL Procedure

	
Exports a model to a dump file

	
GET_ASSOCIATION_RULES Function

	
Returns the rules from an association model

	
GET_DEFAULT_SETTINGS Function

	
Returns all the default settings for all mining functions and algorithms

	
GET_FREQUENT_ITEMSETS Function

	
Returns the frequent itemsets for an association model

	
GET_MODEL_COST_MATRIX Function

	
Returns the cost matrix for a model

	
GET_MODEL_DETAILS_ABN Function

	
Returns the details of an Adaptive Bayes Network model

	
GET_MODEL_DETAILS_AI Function

	
Returns the details of an Attribute Importance model

	
GET_MODEL_DETAILS_GLM Function

	
Returns the details of a Generalized Linear Model

	
GET_MODEL_DETAILS_GLOBAL Function

	
Returns high-level statistics about a model

	
GET_MODEL_DETAILS_KM Function

	
Returns the details of a k-Means model

	
GET_MODEL_DETAILS_NB Function

	
Returns the details of a Naive Bayes model

	
GET_MODEL_DETAILS_NMF Function

	
Returns the details of an NMF model

	
GET_MODEL_DETAILS_OC Function

	
Returns the details of an O-Cluster model

	
GET_MODEL_DETAILS_SVM Function

	
Returns the details of an SVM model with a linear kernel

	
GET_MODEL_DETAILS_XML Function

	
Returns the details of a Decision Tree model

	
GET_MODEL_SETTINGS Function

	
Returns the settings used to build a model

	
GET_MODEL_SIGNATURE Function

	
Returns the signature of a model

	
GET_MODEL_TRANSFORMATIONS Function

	
Returns the user-specified transformation definitions embedded in the model, as well as many of the ADP transformations

	
GET_TRANSFORM_LIST Procedure

	
Converts between two different transformation specification formats

	
IMPORT_MODEL Procedure

	
Imports a model into a user schema

	
RANK_APPLY Procedure

	
Ranks the predictions from the APPLY results for a classification model

	
REMOVE_COST_MATRIX Procedure

	
Removes a cost matrix from a model

	
RENAME_MODEL Procedure

	
Renames a model

ADD_COST_MATRIX Procedure

This procedure associates a cost matrix table with a classification model. The cost matrix biases the model by assigning costs or benefits to specific model outcomes.

The cost matrix is stored with the model and taken into account when the model is scored. The stored cost matrix is the default scoring matrix for the model.

You can also specify a cost matrix inline when you invoke a Data Mining SQL function for scoring. When an inline cost matrix is specified, it is used instead of the default, stored cost matrix (if one exists).

To obtain the default scoring matrix for a model, use the GET_MODEL_COST_MATRIX function. To remove the default scoring matrix from a model, use the REMOVE_COST_MATRIX procedure. See "GET_MODEL_COST_MATRIX Function" and "REMOVE_COST_MATRIX Procedure".

	
See Also:

	
"Biasing a Classification Model" in Oracle Data Mining Concepts for more information about costs

	
Oracle Database SQL Language Reference for syntax of inline cost matrix

Syntax

DBMS_DATA_MINING.ADD_COST_MATRIX (
 model_name IN VARCHAR2,
 cost_matrix_table_name IN VARCHAR2,
 cost_matrix_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 44-19 ADD_COST_MATRIX Procedure Parameters

	Parameter	Description
	
model_name

	
Name of the model in the form [schema_name.]model_name. If you do not specify a schema, your own schema is assumed.

	
cost_matrix_table_name

	
Name of the cost matrix table (described in Table 44-20).

	
cost_matrix_schema_name

	
Schema of the cost matrix table. If no schema is specified, the current schema is used.

Usage Notes

	
If the model is not in your schema, then ADD_COST_MATRIX requires the ALTER ANY MINING MODEL system privilege or the ALTER object privilege for the mining model.

	
The cost matrix table must have the columns shown in Table 44-20. Note that the actual and predicted target values must have the same data type.

Table 44-20 Required Columns in a Cost Matrix Table

	Column Name	Data Type
	
ACTUAL_TARGET_VALUE

	
VARCHAR2(4000) for categorical targets

NUMBER for numeric targets

	
PREDICTED_TARGET_VALUE

	
VARCHAR2(4000)for categorical targets

NUMBER for numeric targets

	
COST

	
NUMBER

	
Since a benefit can be viewed as a negative cost, you can specify a benefit for a given outcome by providing a negative number in the costs column of the cost matrix table.

	
All classification algorithms can use a cost matrix for scoring. The Decision Tree algorithm can also use a cost matrix at build time.If you want to build a Decision Tree model with a cost matrix, specify the cost matrix table name in the CLAS_COST_TABLE_NAME setting in the settings table for the model. See Table 44-7, "Mining Function Settings".

The cost matrix used to create a Decision Tree model becomes the default scoring matrix for the model. If you want to specify different costs for scoring, use the REMOVE_COST_MATRIX procedure to remove the cost matrix and the ADD_COST_MATRIX procedure to add a new one.

Example

This example creates a cost matrix table called COSTS_NB and adds it to a Naive Bayes model called NB_SH_CLAS_SAMPLE. The model has a binary target: 1 means that the customer responds to a promotion; 0 means that the customer does not respond. The cost matrix assigns a cost of .25 to misclassifications of customers who do not respond and a cost of .75 to misclassifications of customers who do respond. This means that it is three times more costly to misclassify responders than it is to misclassify non-responders.

CREATE TABLE costs_nb (
 actual_target_value NUMBER,
 predicted_target_value NUMBER,
 cost NUMBER);
INSERT INTO costs_nb values (0, 0, 0);
INSERT INTO costs_nb values (0, 1, .25);
INSERT INTO costs_nb values (1, 0, .75);
INSERT INTO costs_nb values (1, 1, 0);
COMMIT;

EXEC dbms_data_mining.add_cost_matrix('nb_sh_clas_sample', 'costs_nb');

SELECT cust_gender, COUNT(*) AS cnt, ROUND(AVG(age)) AS avg_age
 FROM mining_data_apply_v
 WHERE PREDICTION(nb_sh_clas_sample COST MODEL
 USING cust_marital_status, education, household_size) = 1
 GROUP BY cust_gender
 ORDER BY cust_gender;

C CNT AVG_AGE
- ---------- ----------
F 72 39
M 555 44

ALTER_REVERSE_EXPRESSION Procedure

This procedure replaces a reverse transformation expression with an expression that you specify. If the attribute does not have a reverse expression, the procedure creates one from the specified expression.

You can also use this procedure to customize the output of clustering, feature extraction, and anomaly detection models.

Syntax

DBMS_DATA_MINING. ALTER_REVERSE_EXPRESSION (
 model_name VARCHAR2,
 expression CLOB,
 attribute_name VARCHAR2 DEFAULT NULL,
 attribute_subname VARCHAR2 DEFAULT NULL);

Parameters

Table 44-21 ALTER_REVERSE_EXPRESSION Procedure Parameters

	Parameter	Description
	
model_name

	
Name of the model in the form [schema_name.]model_name. If you do not specify a schema, your own schema is used.

	
expression

	
A SQL expression

	
attribute_name

	
Name of the attribute. Specify NULL if you wish to apply expression to a cluster, feature, or One-Class SVM prediction.

	
attribute_subname

	
Name of the nested attribute if attribute_name is a nested column, otherwise NULL.

Usage Notes

	
For purposes of model transparency, Oracle Data Mining provides reverse transformations for transformations that are embedded in a model. Reverse transformations are used in model details and in the results of scoring.

	
See Also:

About Transformation Lists in Chapter 45

	
Note:

Use caution when altering the reverse expression for the target of a model that has a cost matrix. If you specify a reverse expression that is inconsistent with the target values in the cost matrix table, you will not be able to score the model.
See "ADD_COST_MATRIX Procedure" and Oracle Data Mining Concepts for information about cost matrixes.

	
To prevent reverse transformation of an attribute, you can specify NULL for expression.

	
You can use ALTER_REVERSE_EXPRESSION to label clusters produced by clustering models and features produced by feature extraction.

You can use ALTER_REVERSE_EXPRESSION to replace the zeros and ones returned by anomaly-detection models. By default, anomaly-detection models label anomalous records with 0 and all other records with 1.

	
See Also:

Oracle Data Mining Concepts for information about anomaly detection

Examples

	
In this example, the target (affinity_card) of the model CLASS_MODEL is manipulated internally as yes or no instead of 1 or 0 but returned as 1s and 0s when scored. The ALTER_REVERSE_EXPRESSION procedure causes the target values to be returned as TRUE or FALSE.

The data sets MINING_DATA_BUILD and MINING_DATA_TEST are included with the Oracle Data Mining sample programs. See Oracle Data Mining Administrator's Guide for information about the sample programs.

DECLARE
 v_xlst dbms_data_mining_transform.TRANSFORM_LIST;
 BEGIN
 dbms_data_mining_transform.SET_TRANSFORM(v_xlst,
 'affinity_card', NULL,
 'decode(affinity_card, 1, ''yes'', ''no'')',
 'decode(affinity_card, ''yes'', 1, 0)');
 dbms_data_mining.CREATE_MODEL(
 model_name => 'CLASS_MODEL',
 mining_function => dbms_data_mining.classification,
 data_table_name => 'mining_data_build',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 settings_table_name => NULL,
 data_schema_name => 'dmuser',
 settings_schema_name => NULL,
 xform_list => v_xlst);
 END;
/
SELECT cust_income_level, occupation,
 PREDICTION(CLASS_MODEL USING *) predict_response
 FROM mining_data_test WHERE age = 60 AND cust_gender IN 'M'
 ORDER BY cust_income_level;

CUST_INCOME_LEVEL OCCUPATION PREDICT_RESPONSE
------------------------------ --------------------- --------------------
A: Below 30,000 Transp. 1
E: 90,000 - 109,999 Transp. 1
E: 90,000 - 109,999 Sales 1
G: 130,000 - 149,999 Handler 0
G: 130,000 - 149,999 Crafts 0
H: 150,000 - 169,999 Prof. 1
J: 190,000 - 249,999 Prof. 1
J: 190,000 - 249,999 Sales 1

BEGIN
 dbms_data_mining.ALTER_REVERSE_EXPRESSION (
 model_name => 'CLASS_MODEL',
 expression => 'decode(affinity_card, ''yes'', ''TRUE'', ''FALSE'')',
 attribute_name => 'affinity_card');
END;
/
column predict_response on
column predict_response format a20
SELECT cust_income_level, occupation,
 PREDICTION(CLASS_MODEL USING *) predict_response
 FROM mining_data_test WHERE age = 60 AND cust_gender IN 'M'
 ORDER BY cust_income_level;

CUST_INCOME_LEVEL OCCUPATION PREDICT_RESPONSE
------------------------------ --------------------- --------------------
A: Below 30,000 Transp. TRUE
E: 90,000 - 109,999 Transp. TRUE
E: 90,000 - 109,999 Sales TRUE
G: 130,000 - 149,999 Handler FALSE
G: 130,000 - 149,999 Crafts FALSE
H: 150,000 - 169,999 Prof. TRUE
J: 190,000 - 249,999 Prof. TRUE
J: 190,000 - 249,999 Sales TRUE

	
This example specifies labels for the clusters that result from the sh_clus model. The labels consist of the word "Cluster" and the internal numeric identifier for the cluster.

BEGIN
 dbms_data_mining.ALTER_REVERSE_EXPRESSION('sh_clus', '''Cluster ''||value');
END;
/

SELECT cust_id, cluster_id(sh_clus using *) cluster_id
 FROM sh_aprep_num
 WHERE cust_id < 100011
 ORDER by cust_id;

CUST_ID CLUSTER_ID
------- --
 100001 Cluster 18
 100002 Cluster 14
 100003 Cluster 14
 100004 Cluster 18
 100005 Cluster 19
 100006 Cluster 7
 100007 Cluster 18
 100008 Cluster 14
 100009 Cluster 8
 100010 Cluster 8

APPLY Procedure

This procedure applies a mining model to the data of interest, and generates the results in a table. The apply process is also referred to as scoring.

For predictive mining functions, the apply process generates predictions in a target column. For descriptive mining functions such as clustering, the apply process assigns each case to a cluster with a probability.

In Oracle Data Mining, the apply operation is not applicable to association models and attribute importance models.

	
Note:

Scoring can also be performed directly in SQL using the Data Mining functions. See
	
"Data Mining Functions" in Oracle Database SQL Language Reference

	
"Scoring and Deployment" in Oracle Data Mining Application Developer's Guide and

Syntax

DBMS_DATA_MINING.APPLY (
 model_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 result_table_name IN VARCHAR2,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 44-22 APPLY Procedure Parameters

	Parameter	Description
	
model_name

	
Name of the model in the form [schema_name.]model_name. If you do not specify a schema, your own schema is used.

	
data_table_name

	
Name of table or view representing data to be scored

	
case_id_column_name

	
Name of the case identifier column

	
result_table_name

	
Name of the table to store apply results

	
data_schema_name

	
Name of the schema containing the data to be scored

Usage Notes

	
The data provided for APPLY must undergo the same preprocessing as the data used to create and test the model. When you use Automatic Data Preparation, the preprocessing required by the algorithm is handled for you by the model — both at build time and apply time. (See "Automatic Data Preparation".)

	
APPLY creates a table in the user's schema to hold the results. The columns are algorithm-specific.

The columns in the results table are listed in Table 44-23 through Table 44-27. The case ID column name in the results table will match the case ID column name provided by you. The type of the incoming case ID column is also preserved in APPLY output.

	
Note:

Make sure that the case ID column does not have the same name as one of the columns that will be created by APPLY. For example, when applying a classification model, the case ID in the scoring data must not be 'PREDICTION' or 'PROBABILITY' (See Table 44-23).

	
The data type for the 'PREDICTION', 'CLUSTER_ID', and 'FEATURE_ID' output columns is influenced by any reverse expression that is embedded in the model by the user. If the user does not provide a reverse expression that alters the scored value type, then the types will conform to the descriptions in the following tables. See "ALTER_REVERSE_EXPRESSION Procedure".

Classification

The results table for classification has the columns described in Table 44-23. If the target of the model is categorical, the PREDICTION column will have a VARCHAR2 data type. If the target is numerical, the PREDICTION column will have a NUMBER data type.

Table 44-23 APPLY Results Table for Classification

	Column Name	Data Type
	
Case ID column name

	
VARCHAR2 or NUMBER

	
PREDICTION

	
VARCHAR2 or NUMBER

	
PROBABILITY

	
NUMBER

One-Class SVM (Anomaly Detection)

The results table for anomaly detection has the columns described in Table 44-24.

Table 44-24 APPLY Results Table for Anomaly Detection

	Column Name	Data Type
	
Case ID column name

	
VARCHAR2 or NUMBER

	
PREDICTION

	
NUMBER

	
PROBABILITY

	
NUMBER

Values in the PREDICTION column can be either 0 or 1. When the prediction is 1, the case is a typical example. When the prediction is 0, the case is an outlier.

Regression using SVM or GLM

The results table for regression has the columns described in Table 44-25.

Table 44-25 APPLY Results Table for Regression

	Column Name	Data Type
	
Case ID column name

	
VARCHAR2 or NUMBER

	
PREDICTION

	
NUMBER

Clustering using k-Means or O-Cluster

Clustering is an unsupervised mining function, and hence there are no targets. The results of an APPLY operation will contain simply the cluster identifier corresponding to a case, and the associated probability. The results table has the columns described in Table 44-26.

Table 44-26 APPLY Results Table for Clustering

	Column Name	Data Type
	
Case ID column name

	
VARCHAR2 or NUMBER

	
CLUSTER_ID

	
NUMBER

	
PROBABILITY

	
NUMBER

Feature Extraction using NMF

Feature extraction is also an unsupervised mining function, and hence there are no targets. The results of an APPLY operation will contain simply the feature identifier corresponding to a case, and the associated match quality. The results table has the columns described in Table 44-27.

Table 44-27 APPLY Results Table for Feature Extraction

	Column Name	Data Type
	
Case ID column name

	
VARCHAR2 or NUMBER

	
FEATURE_ID

	
NUMBER

	
MATCH_QUALITY

	
NUMBER

Examples

This example applies the GLM regression model GLMR_SH_REGR_SAMPLE to the data in the MINING_DATA_APPLY_V view. The apply results are output to the table REGRESSION_APPLY_RESULT.

SQL> BEGIN
 DBMS_DATA_MINING.APPLY (
 model_name => 'glmr_sh_regr_sample',
 data_table_name => 'mining_data_apply_v',
 case_id_column_name => 'cust_id',
 result_table_name => 'regression_apply_result');
 END;
 /

SQL> SELECT * FROM regression_apply_result WHERE cust_id > 101485;

 CUST_ID PREDICTION
---------- ----------
 101486 22.8048824
 101487 25.0261101
 101488 48.6146619
 101489 51.82595
 101490 22.6220714
 101491 61.3856816
 101492 24.1400748
 101493 58.034631
 101494 45.7253149
 101495 26.9763318
 101496 48.1433425
 101497 32.0573434
 101498 49.8965531
 101499 56.270656
 101500 21.1153047

COMPUTE_CONFUSION_MATRIX Procedure

This procedure computes a confusion matrix, stores it in a table in the user's schema, and returns the model accuracy.

A confusion matrix is a test metric for classification models. It compares the predictions generated by the model with the actual target values in a set of test data. The matrix is n-by-n, where n is the number of classes. The confusion matrix lists the number of times each class was correctly predicted and the number of times it was predicted to be one of the other classes.

COMPUTE_CONFUSION_MATRIX accepts three input streams:

	
The predictions generated on the test data. The information is passed in three columns:

	
Case ID column

	
Prediction column

	
Scoring criterion column containing either probabilities or costs

	
The known target values in the test data. The information is passed in two columns:

	
Case ID column

	
Target column containing the known target values

	
(Optional) A cost matrix table with predefined columns. See the Usage Notes for the column requirements.

	
See Also:

Oracle Data Mining Concepts for more details about confusion matrixes and other test metrics for classification

"COMPUTE_LIFT Procedure"

"COMPUTE_ROC Procedure"

Syntax

DBMS_DATA_MINING.COMPUTE_CONFUSION_MATRIX (
 accuracy OUT NUMBER,
 apply_result_table_name IN VARCHAR2,
 target_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 target_column_name IN VARCHAR2,
 confusion_matrix_table_name IN VARCHAR2,
 score_column_name IN VARCHAR2 DEFAULT 'PREDICTION',
 score_criterion_column_name IN VARCHAR2 DEFAULT 'PROBABILITY',
 cost_matrix_table_name IN VARCHAR2 DEFAULT NULL,
 apply_result_schema_name IN VARCHAR2 DEFAULT NULL,
 target_schema_name IN VARCHAR2 DEFAULT NULL,
 cost_matrix_schema_name IN VARCHAR2 DEFAULT NULL,
 score_criterion_type IN VARCHAR2 DEFAULT 'PROBABILITY');

Parameters

Table 44-28 COMPUTE_CONFUSION_MATRIX Procedure Parameters

	Parameter	Description
	
accuracy

	
Output parameter containing the overall percentage accuracy of the predictions.

	
apply_result_table_name

	
Table containing the predictions.

	
target_table_name

	
Table containing the known target values from the test data.

	
case_id_column_name

	
Case ID column in the apply results table. Must match the case identifier in the targets table.

	
target_column_name

	
Target column in the targets table. Contains the known target values from the test data.

	
confusion_matrix_table_name

	
Table containing the confusion matrix. The table will be created by the procedure in the user's schema.

The columns in the confusion matrix table are described in the Usage Notes.

	
score_column_name

	
Column containing the predictions in the apply results table.

The default column name is PREDICTION, which is the default name created by the APPLY procedure (See "APPLY Procedure").

	
score_criterion_column_name

	
Column containing the scoring criterion in the apply results table. Contains either the probabilities or the costs that determine the predictions.

By default, scoring is based on probability; the class with the highest probability is predicted for each case. If scoring is based on cost, the class with the lowest cost is predicted.

The score_criterion_type parameter indicates whether probabilities or costs will be used for scoring.

The default column name is 'PROBABILITY', which is the default name created by the APPLY procedure (See "APPLY Procedure").

See the Usage Notes for additional information.

	
cost_matrix_table_name

	
(Optional) Table that defines the costs associated with misclassifications. If a cost matrix table is provided and the score_criterion_type parameter is set to 'COSTS', the costs in this table will be used as the scoring criteria.

The columns in a cost matrix table are described in the Usage Notes.

	
apply_result_schema_name

	
Schema of the apply results table.

If null, the user's schema is assumed.

	
target_schema_name

	
Schema of the table containing the known targets.

If null, the user's schema is assumed.

	
cost_matrix_schema_name

	
Schema of the cost matrix table, if one is provided.

If null, the user's schema is assumed.

	
score_criterion_type

	
Whether to use probabilities or costs as the scoring criterion. Probabilities or costs are passed in the column identified in the score_criterion_column_name parameter.

The default value of score_criterion_type is 'PROBABILITY'. To use costs as the scoring criterion, specify 'COST'.

If score_criterion_type is set to 'COST' but no cost matrix is provided and if there is a scoring cost matrix associated with the model, then the associated costs are used for scoring.

See the Usage Notes and the Examples.

Usage Notes

	
The predictive information you pass to COMPUTE_CONFUSION_MATRIX may be generated using SQL PREDICTION functions, the DBMS_DATA_MINING.APPLY procedure, or some other mechanism. As long as you pass the appropriate data, the procedure can compute the confusion matrix.

	
Instead of passing a cost matrix to COMPUTE_CONFUSION_MATRIX, you can use a scoring cost matrix associated with the model. A scoring cost matrix can be embedded in the model or it can be defined dynamically when the model is applied. To use a scoring cost matrix, invoke the SQL PREDICTION_COST function to populate the score criterion column.

	
The predictions that you pass to COMPUTE_CONFUSION_MATRIX are in a table or view specified in apply_result_table_name.

CREATE TABLE apply_result_table_name AS (
 case_id_column_name VARCHAR2,
 score_column_name VARCHAR2,
 score_criterion_column_name VARCHAR2);

	
A cost matrix must have the columns described in Table 44-29.

Table 44-29 Columns in a Cost Matrix

	Column Name	Data Type
	
actual_target_value

	
NUMBER or VARCHAR2

	
predicted_target_value

	
NUMBER or VARCHAR2

	
cost

	
NUMBER

	
See Also:

Oracle Data Mining Concepts for more information about cost matrixes

	
The confusion matrix created by COMPUTE_CONFUSION_MATRIX has the columns described in Table 44-30.

Table 44-30 Columns in a Confusion Matrix

	Column Name	Data Type
	
actual_target_value

	
NUMBER or VARCHAR2

	
predicted_target_value

	
NUMBER or VARCHAR2

	
value

	
NUMBER

	
See Also:

Oracle Data Mining Concepts for more information about confusion matrixes

Examples

These examples use the Naive Bayes model nb_sh_clas_sample, which is created by one of the Oracle Data Mining sample programs.

Compute a Confusion Matrix Based on Probabilities

The following statement applies the model to the test data and stores the predictions and probabilities in a table.

CREATE TABLE nb_apply_results AS
 SELECT cust_id,
 PREDICTION(nb_sh_clas_sample USING *) prediction,
 PREDICTION_PROBABILITY(nb_sh_clas_sample USING *) probability
 FROM mining_data_test_v;

Using probabilities as the scoring criterion, you can compute the confusion matrix as follows.

DECLARE
 v_accuracy NUMBER;
 BEGIN
 DBMS_DATA_MINING.COMPUTE_CONFUSION_MATRIX (
 accuracy => v_accuracy,
 apply_result_table_name => 'nb_apply_results',
 target_table_name => 'mining_data_test_v',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 confusion_matrix_table_name => 'nb_confusion_matrix',
 score_column_name => 'PREDICTION',
 score_criterion_column_name => 'PROBABILITY'
 cost_matrix_table_name => null,
 apply_result_schema_name => null,
 target_schema_name => null,
 cost_matrix_schema_name => null,
 score_criterion_type => 'PROBABILITY');
 DBMS_OUTPUT.PUT_LINE('**** MODEL ACCURACY ****: ' || ROUND(v_accuracy,4));
 END;
 /

The confusion matrix and model accuracy are shown as follows.

 **** MODEL ACCURACY ****: .7847

SQL>SELECT * from nb_confusion_matrix;
ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE VALUE
------------------- ---------------------- ----------
 1 0 60
 0 0 891
 1 1 286
 0 1 263

Compute a Confusion Matrix Based on a Cost Matrix Table

The confusion matrix in the previous example shows a high rate of false positives. For 263 cases, the model predicted 1 when the actual value was 0. You could use a cost matrix to minimize this type of error.

The cost matrix table nb_cost_matrix specifies that a false positive is 3 times more costly than a false negative.

SQL> SELECT * from nb_cost_matrix;
ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE COST
------------------- ---------------------- ----------
 0 0 0
 0 1 .75
 1 0 .25
 1 1 0

This statement shows how to generate the predictions using APPLY.

BEGIN
 DBMS_DATA_MINING.APPLY(
 model_name => 'nb_sh_clas_sample',
 data_table_name => 'mining_data_test_v',
 case_id_column_name => 'cust_id',
 result_table_name => 'nb_apply_results');
 END;
/

This statement computes the confusion matrix using the cost matrix table. The score criterion column is named 'PROBABILITY', which is the name generated by APPLY.

DECLARE
 v_accuracy NUMBER;
 BEGIN
 DBMS_DATA_MINING.COMPUTE_CONFUSION_MATRIX (
 accuracy => v_accuracy,
 apply_result_table_name => 'nb_apply_results',
 target_table_name => 'mining_data_test_v',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 confusion_matrix_table_name => 'nb_confusion_matrix',
 score_column_name => 'PREDICTION',
 score_criterion_column_name => 'PROBABILITY',
 cost_matrix_table_name => 'nb_cost_matrix',
 apply_result_schema_name => null,
 target_schema_name => null,
 cost_matrix_schema_name => null,
 score_criterion_type => 'COST');
 DBMS_OUTPUT.PUT_LINE('**** MODEL ACCURACY ****: ' || ROUND(v_accuracy,4));
 END;
 /

The resulting confusion matrix shows a decrease in false positives (212 instead of 263).

**** MODEL ACCURACY ****: .798

SQL> SELECT * FROM nb_confusion_matrix;
ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE VALUE
------------------- ---------------------- ----------
 1 0 91
 0 0 942
 1 1 255
 0 1 212

Compute a Confusion Matrix Based on Embedded Costs

You can use the ADD_COST_MATRIX procedure to embed a cost matrix in a model. The embedded costs can be used instead of probabilities for scoring. This statement adds the previously-defined cost matrix to the model.

BEGIN DBMS_DATA_MINING.ADD_COST_MATRIX ('nb_sh_clas_sample', 'nb_cost_matrix');END;/

The following statement applies the model to the test data using the embedded costs and stores the results in a table.

CREATE TABLE nb_apply_results AS
 SELECT cust_id,
 PREDICTION(nb_sh_clas_sample COST MODEL USING *) prediction,
 PREDICTION_COST(nb_sh_clas_sample COST MODEL USING *) cost
 FROM mining_data_test_v;

You can compute the confusion matrix using the embedded costs.

DECLARE
 v_accuracy NUMBER;
 BEGIN
 DBMS_DATA_MINING.COMPUTE_CONFUSION_MATRIX (
 accuracy => v_accuracy,
 apply_result_table_name => 'nb_apply_results',
 target_table_name => 'mining_data_test_v',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 confusion_matrix_table_name => 'nb_confusion_matrix',
 score_column_name => 'PREDICTION',
 score_criterion_column_name => 'COST',
 cost_matrix_table_name => null,
 apply_result_schema_name => null,
 target_schema_name => null,
 cost_matrix_schema_name => null,
 score_criterion_type => 'COST');
 END;
 /

The results are:

**** MODEL ACCURACY ****: .798

SQL> SELECT * FROM nb_confusion_matrix;
ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE VALUE
------------------- ---------------------- ----------
 1 0 91
 0 0 942
 1 1 255
 0 1 212

COMPUTE_LIFT Procedure

This procedure computes lift and stores the results in a table in the user's schema.

Lift is a test metric for binary classification models. To compute lift, one of the target values must be designated as the positive class. COMPUTE_LIFT compares the predictions generated by the model with the actual target values in a set of test data. Lift measures the degree to which the model's predictions of the positive class are an improvement over random chance.

Lift is computed on scoring results that have been ranked by probability (or cost) and divided into quantiles. Each quantile includes the scores for the same number of cases.

COMPUTE_LIFT calculates quantile-based and cumulative statistics. The number of quantiles and the positive class are user-specified. Additionally, COMPUTE_LIFT accepts three input streams:

	
The predictions generated on the test data. The information is passed in three columns:

	
Case ID column

	
Prediction column

	
Scoring criterion column containing either probabilities or costs associated with the predictions

	
The known target values in the test data. The information is passed in two columns:

	
Case ID column

	
Target column containing the known target values

	
(Optional) A cost matrix table with predefined columns. See the Usage Notes for the column requirements.

	
See Also:

Oracle Data Mining Concepts for more details about lift and test metrics for classification

"COMPUTE_CONFUSION_MATRIX Procedure"

"COMPUTE_ROC Procedure"

Syntax

DBMS_DATA_MINING.COMPUTE_LIFT (
 apply_result_table_name IN VARCHAR2,
 target_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 target_column_name IN VARCHAR2,
 lift_table_name IN VARCHAR2,
 positive_target_value IN VARCHAR2,
 score_column_name IN VARCHAR2 DEFAULT 'PREDICTION',
 score_criterion_column_name IN VARCHAR2 DEFAULT 'PROBABILITY',
 num_quantiles IN NUMBER DEFAULT 10,
 cost_matrix_table_name IN VARCHAR2 DEFAULT NULL,
 apply_result_schema_name IN VARCHAR2 DEFAULT NULL,
 target_schema_name IN VARCHAR2 DEFAULT NULL,
 cost_matrix_schema_name IN VARCHAR2 DEFAULT NULL
 score_criterion_type IN VARCHAR2 DEFAULT 'PROBABILITY');

Parameters

Table 44-31 COMPUTE_LIFT Procedure Parameters

	Parameter	Description
	
apply_result_table_name

	
Table containing the predictions.

	
target_table_name

	
Table containing the known target values from the test data.

	
case_id_column_name

	
Case ID column in the apply results table. Must match the case identifier in the targets table.

	
target_column_name

	
Target column in the targets table. Contains the known target values from the test data.

	
lift_table_name

	
Table containing the lift statistics. The table will be created by the procedure in the user's schema.

The columns in the lift table are described in the Usage Notes.

	
positive_target_value

	
The positive class. This should be the class of interest, for which you want to calculate lift.

If the target column is a NUMBER, you can use the TO_CHAR() operator to provide the value as a string.

	
score_column_name

	
Column containing the predictions in the apply results table.

The default column name is 'PREDICTION', which is the default name created by the APPLY procedure (See "APPLY Procedure").

	
score_criterion_column_name

	
Column containing the scoring criterion in the apply results table. Contains either the probabilities or the costs that determine the predictions.

By default, scoring is based on probability; the class with the highest probability is predicted for each case. If scoring is based on cost, the class with the lowest cost is predicted.

The score_criterion_type parameter indicates whether probabilities or costs will be used for scoring.

The default column name is 'PROBABILITY', which is the default name created by the APPLY procedure (See "APPLY Procedure").

See the Usage Notes for additional information.

	
num_quantiles

	
Number of quantiles to be used in calculating lift. The default is 10.

	
cost_matrix_table_name

	
(Optional) Table that defines the costs associated with misclassifications. If a cost matrix table is provided and the score_criterion_type parameter is set to 'COST', the costs will be used as the scoring criteria.

The columns in a cost matrix table are described in the Usage Notes.

	
apply_result_schema_name

	
Schema of the apply results table.

If null, the user's schema is assumed.

	
target_schema_name

	
Schema of the table containing the known targets.

If null, the user's schema is assumed.

	
cost_matrix_schema_name

	
Schema of the cost matrix table, if one is provided.

If null, the user's schema is assumed.

	
score_criterion_type

	
Whether to use probabilities or costs as the scoring criterion. Probabilities or costs are passed in the column identified in the score_criterion_column_name parameter.

The default value of score_criterion_type is 'PROBABILITY'. To use costs as the scoring criterion, specify 'COST'.

If score_criterion_type is set to 'COST' but no cost matrix is provided and if there is a scoring cost matrix associated with the model, then the associated costs are used for scoring.

See the Usage Notes and the Examples.

Usage Notes

	
The predictive information you pass to COMPUTE_LIFT may be generated using SQL PREDICTION functions, the DBMS_DATA_MINING.APPLY procedure, or some other mechanism. As long as you pass the appropriate data, the procedure can compute the lift.

	
Instead of passing a cost matrix to COMPUTE_LIFT, you can use a scoring cost matrix associated with the model. A scoring cost matrix can be embedded in the model or it can be defined dynamically when the model is applied. To use a scoring cost matrix, invoke the SQL PREDICTION_COST function to populate the score criterion column.

	
The predictions that you pass to COMPUTE_LIFT are in a table or view specified in apply_results_table_name.

CREATE TABLE apply_result_table_name AS (
 case_id_column_name VARCHAR2,
 score_column_name VARCHAR2,
 score_criterion_column_name VARCHAR2);

	
A cost matrix must have the columns described in Table 44-32.

Table 44-32 Columns in a Cost Matrix

	Column Name	Data Type
	
actual_target_value

	
NUMBER or VARCHAR2

	
predicted_target_value

	
NUMBER or VARCHAR2

	
cost

	
NUMBER

	
See Also:

Oracle Data Mining Concepts for more information about cost matrixes

	
The table created by COMPUTE_LIFT has the columns described in Table 44-33

Table 44-33 Columns in a Lift Table

	Column Name	Data Type
	
quantile_number

	
NUMBER

	
probability_threshold

	
NUMBER

	
gain_cumulative

	
NUMBER

	
quantile_total_count

	
NUMBER

	
quantile_target_count

	
NUMBER

	
percent_records_cumulative

	
NUMBER

	
lift_cumulative

	
NUMBER

	
target_density_cumulative

	
NUMBER

	
targets_cumulative

	
NUMBER

	
non_targets_cumulative

	
NUMBER

	
lift_quantile

	
NUMBER

	
target_density

	
NUMBER

	
See Also:

Oracle Data Mining Concepts for details about the information in the lift table

	
When a cost matrix is passed to COMPUTE_LIFT, the cost threshold is returned in the probability_threshold column of the lift table.

Examples

This example uses the Naive Bayes model nb_sh_clas_sample, which is created by one of the Oracle Data Mining sample programs.

The example illustrates lift based on probabilities. For examples that show computation based on costs, see "COMPUTE_CONFUSION_MATRIX Procedure".

The following statement applies the model to the test data and stores the predictions and probabilities in a table.

CREATE TABLE nb_apply_results AS
 SELECT cust_id, t.prediction, t.probability
 FROM mining_data_test_v, TABLE(PREDICTION_SET(nb_sh_clas_sample USING *)) t;

Using probabilities as the scoring criterion, you can compute lift as follows.

BEGIN
 DBMS_DATA_MINING.COMPUTE_LIFT (
 apply_result_table_name => 'nb_apply_results',
 target_table_name => 'mining_data_test_v',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 lift_table_name => 'nb_lift',
 positive_target_value => to_char(1),
 score_column_name => 'PREDICTION',
 score_criterion_column_name => 'PROBABILITY',
 num_quantiles => 10,
 cost_matrix_table_name => null,
 apply_result_schema_name => null,
 target_schema_name => null,
 cost_matrix_schema_name => null,
 score_criterion_type => 'PROBABILITY');
 END;
 /

This query displays some of the statistics from the resulting lift table.

SQL>SELECT quantile_number, probability_threshold, gain_cumulative,
 quantile_total_count
 FROM nb_lift;

QUANTILE_NUMBER PROBABILITY_THRESHOLD GAIN_CUMULATIVE QUANTILE_TOTAL_COUNT
--------------- --------------------- --------------- --------------------
 1 .989335775 .15034965 55
 2 .980534911 .26048951 55
 3 .968506098 .374125874 55
 4 .958975196 .493006993 55
 5 .946705997 .587412587 55
 6 .927454174 .66958042 55
 7 .904403627 .748251748 55
 8 .836482525 .839160839 55
 10 .500184953 1 54

COMPUTE_ROC Procedure

This procedure computes receiver operating characteristic (ROC), stores the results in a table in the user's schema, and returns a measure of the model accuracy.

ROC is a test metric for binary classification models. To compute ROC, one of the target values must be designated as the positive class. COMPUTE_ROC compares the predictions generated by the model with the actual target values in a set of test data.

ROC measures the impact of changes in the probability threshold. The probability threshold is the decision point used by the model for predictions. In binary classification, the default probability threshold is 0.5. The value predicted for each case is the one with a probability greater than 50%.

ROC can be plotted as a curve on an X-Y axis. The false positive rate is placed on the X axis. The true positive rate is placed on the Y axis. A false positive is a positive prediction for a case that is negative in the test data. A true positive is a positive prediction for a case that is positive in the test data.

COMPUTE_ROC accepts two input streams:

	
The predictions generated on the test data. The information is passed in three columns:

	
Case ID column

	
Prediction column

	
Scoring criterion column containing probabilities

	
The known target values in the test data. The information is passed in two columns:

	
Case ID column

	
Target column containing the known target values

	
See Also:

Oracle Data Mining Concepts for more details about ROC and test metrics for classification

"COMPUTE_CONFUSION_MATRIX Procedure"

"COMPUTE_LIFT Procedure"

Syntax

DBMS_DATA_MINING.COMPUTE_ROC (
 roc_area_under_curve OUT NUMBER,
 apply_result_table_name IN VARCHAR2,
 target_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 target_column_name IN VARCHAR2,
 roc_table_name IN VARCHAR2,
 positive_target_value IN VARCHAR2,
 score_column_name IN VARCHAR2 DEFAULT 'PREDICTION',
 score_criterion_column_name IN VARCHAR2 DEFAULT 'PROBABILITY',
 apply_result_schema_name IN VARCHAR2 DEFAULT NULL,
 target_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 44-34 COMPUTE_ROC Procedure Parameters

	Parameter	Description
	
roc_area_under_the_curve

	
Output parameter containing the area under the ROC curve (AUC). The AUC measures the likelihood that an actual positive will be predicted as positive.

The greater the AUC, the greater the flexibility of the model in accommodating trade-offs between positive and negative class predictions. AUC can be especially important when one target class is rarer or more important to identify than another.

	
apply_result_table_name

	
Table containing the predictions.

	
target_table_name

	
Table containing the known target values from the test data.

	
case_id_column_name

	
Case ID column in the apply results table. Must match the case identifier in the targets table.

	
target_column_name

	
Target column in the targets table. Contains the known target values from the test data.

	
roc_table_name

	
Table containing the ROC output. The table will be created by the procedure in the user's schema.

The columns in the ROC table are described in the Usage Notes.

	
positive_target_value

	
The positive class. This should be the class of interest, for which you want to calculate ROC.

If the target column is a NUMBER, you can use the TO_CHAR() operator to provide the value as a string.

	
score_column_name

	
Column containing the predictions in the apply results table.

The default column name is 'PREDICTION', which is the default name created by the APPLY procedure (See "APPLY Procedure").

	
score_criterion_column_name

	
Column containing the scoring criterion in the apply results table. Contains the probabilities that determine the predictions.

The default column name is 'PROBABILITY', which is the default name created by the APPLY procedure (See "APPLY Procedure").

	
apply_result_schema_name

	
Schema of the apply results table.

If null, the user's schema is assumed.

	
target_schema_name

	
Schema of the table containing the known targets.

If null, the user's schema is assumed.

Usage Notes

	
The predictive information you pass to COMPUTE_ROC may be generated using SQL PREDICTION functions, the DBMS_DATA_MINING.APPLY procedure, or some other mechanism. As long as you pass the appropriate data, the procedure can compute the receiver operating characteristic.

	
The predictions that you pass to COMPUTE_ROC are in a table or view specified in apply_results_table_name.

CREATE TABLE apply_result_table_name AS (
 case_id_column_name VARCHAR2,
 score_column_name VARCHAR2,
 score_criterion_column_name VARCHAR2);

	
The table created by COMPUTE_ROC has the columns shown in Table 44-35.

Table 44-35 COMPUTE_ROC Output

	Column	Data Type
	
probability

	
NUMBER

	
true_positives

	
NUMBER

	
false_negatives

	
NUMBER

	
false_positives

	
NUMBER

	
true_negatives

	
NUMBER

	
true_positive_fraction

	
NUMBER

	
false_positive_fraction

	
NUMBER

	
See Also:

Oracle Data Mining Concepts for details about the output of COMPUTE_ROC

	
ROC is typically used to determine the most desirable probability threshold. This can be done by examining the true positive fraction and the false positive fraction. The true positive fraction is the percentage of all positive cases in the test data that were correctly predicted as positive. The false positive fraction is the percentage of all negative cases in the test data that were incorrectly predicted as positive.

Given a probability threshold, the following statement returns the positive predictions in an apply result table ordered by probability.

SELECT case_id_column_name
 FROM apply_result_table_name
 WHERE probability > probability_threshold
 ORDER BY probability DESC;

	
There are two approaches to identifying the most desirable probability threshold. Which approach you use depends on whether or not you know the relative cost of positive versus negative class prediction errors.

If the costs are known, you can apply the relative costs to the ROC table to compute the minimum cost probability threshold. Suppose the relative cost ratio is: Positive Class Error Cost / Negative Class Error Cost = 20. Then execute a query like this.

WITH cost AS (
 SELECT probability_threshold, 20 * false_negatives + false_positives cost
 FROM ROC_table
 GROUP BY probability_threshold),
 minCost AS (
 SELECT min(cost) minCost
 FROM cost)
 SELECT max(probability_threshold)probability_threshold
 FROM cost, minCost
 WHERE cost = minCost;

If relative costs are not well known, you can simply scan the values in the ROC table (in sorted order) and make a determination about which of the displayed trade-offs (misclassified positives versus misclassified negatives) is most desirable.

SELECT * FROM ROC_table
 ORDER BY probability_threshold;

Examples

This example uses the Naive Bayes model nb_sh_clas_sample, which is created by one of the Oracle Data Mining sample programs.

The following statement applies the model to the test data and stores the predictions and probabilities in a table.

CREATE TABLE nb_apply_results AS
 SELECT cust_id, t.prediction, t.probability
 FROM mining_data_test_v, TABLE(PREDICTION_SET(nb_sh_clas_sample USING *)) t;

Using the predictions and the target values from the test data, you can compute ROC as follows.

DECLARE
 v_area_under_curve NUMBER;
 BEGIN
 DBMS_DATA_MINING.COMPUTE_ROC (
 roc_area_under_curve => v_area_under_curve,
 apply_result_table_name => 'nb_apply_results',
 target_table_name => 'mining_data_test_v',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 roc_table_name => 'nb_roc',
 positive_target_value => '1',
 score_column_name => 'PREDICTION',
 score_criterion_column_name => 'PROBABILITY');
 DBMS_OUTPUT.PUT_LINE('**** AREA UNDER ROC CURVE ****: ' ||
 ROUND(v_area_under_curve,4));
 END;
 /

The resulting AUC and a selection of columns from the ROC table are shown as follows.

**** AREA UNDER ROC CURVE ****: .8212

SQL> SELECT probability, true_positive_fraction, false_positive_fraction
 FROM nb_roc;

PROBABILITY TRUE_POSITIVE_FRACTION FALSE_POSITIVE_FRACTION
----------- ---------------------- -----------------------
 .00000 1 1
 .50018 .826589595 .227902946
 .53851 .823699422 .221837088
 .54991 .820809249 .217504333
 .55628 .815028902 .215771231
 .55628 .817919075 .215771231
 .57563 .800578035 .214904679
 .57563 .812138728 .214904679
 . . .
 . . .
 . . .

CREATE_MODEL Procedure

This procedure creates a mining model with a given mining function.

By passing an xform_list to CREATE_MODEL, you can specify a list of transformations to be performed on the input data. If the PREP_AUTO setting is on, the transformations are used in addition to the automatic transformations. If the PREP_AUTO setting is off, the specified transformations are the only ones implemented by the model. In both cases, the transformation definitions are embedded in the model and executed automatically whenever the model is applied. See "Automatic Data Preparation".

Syntax

DBMS_DATA_MINING.CREATE_MODEL (
 model_name IN VARCHAR2,
 mining_function IN VARCHAR2,
 data_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 target_column_name IN VARCHAR2 DEFAULT NULL,
 settings_table_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 settings_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_list IN TRANSFORM_LIST DEFAULT NULL);

Parameters

Table 44-36 CREATE_MODEL Procedure Parameters

	Parameter	Description
	
model_name

	
Name of the model in the form [schema_name.]model_name. If you do not specify a schema, your own schema is used. See also "Mining Model Naming Restrictions".

	
mining_function

	
The mining function. Values are listed in Table 44-2, "Mining Functions".

	
data_table_name

	
Table or view containing the build data.

	
case_id_column_name

	
Case identifier column in the build data.

	
target_column_name

	
For supervised models, the target column in the build data. NULL for unsupervised models.

	
settings_table_name

	
Table containing build settings for the model. NULL if there is no settings table (only default settings are used).

	
data_schema_name

	
Schema hosting the build data. If NULL, the user's schema is assumed.

	
settings_schema_name

	
Schema hosting the settings table. If NULL, the user's schema is assumed.

	
xform_list

	
A list of transformations to be used in addition to or instead of automatic transformations, depending on the value of the PREP_AUTO setting. (See "Automatic Data Preparation".)

The data type is TRANSFORM_LIST, which consists of records of type TRANSFORM_REC.

TYPE
 TRANFORM_REC IS RECORD (
 attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 expression EXPRESSION_REC,
 reverse_expression EXPRESSION_REC,
 attribute_spec VARCHAR2(4000));

Each TRANSFORM_REC describes the transformation and reverse transformation for an attribute. EXPRESSION_REC stores a SQL expression.

The SQL expression stored in EXPRESSION_REC can be manipulated using routines in the DBMS_DATA_MINING_TRANSFORM package. Examples are: SET_EXPRESSION, GET_EXPRESSION, and SET_TRANSFORM.

You can use ATTRIBUTE_SPEC to disable Automatic Data Preparation (ADP) for an individual attribute. Specify 'NOPREP' to prevent automatic preparation of this attribute when ADP is on. When ADP is off, the ' NOPREP' value is ignored.

The 'NOPREP' value cannot be used for an individual subname of a nested attribute. If 'NOPREP' is specified for an individual subname when ADP is on, an error is generated.

Usage Notes

You can obtain information about a model by querying these data dictionary views.

ALL_MINING_MODELS

ALL_MINING_MODEL_ATTRIBUTES

ALL_MINING_MODEL_SETTINGS

Specify the USER prefix instead of ALL to obtain information about models in your own schema only.

	
See Also:

Oracle Data Mining Application Developer's Guide for information on the data dictionary views

Examples

The first example builds a classification model using the Support Vector Machine algorithm.

-- Create the settings table
CREATE TABLE svm_model_settings (
 setting_name VARCHAR2(30),
 setting_value VARCHAR2(30));

-- Populate the settings table
-- Specify SVM. By default, Naive Bayes is used for classification.
-- Specify ADP. By default, ADP is not used.
BEGIN
 INSERT INTO svm_model_settings (setting_name, setting_value) VALUES
 (dbms_data_mining.algo_name, dbms_data_mining.algo_support_vector_machines);
 INSERT INTO svm_model_settings (setting_name, setting_value) VALUES
 (dbms_data_mining.prep_auto,dbms_data_mining.prep_auto_on);
 COMMIT;
END;
/
-- Create the model using the specified settings
BEGIN
 DBMS_DATA_MINING.CREATE_MODEL(
 model_name => 'svm_model',
 mining_function => dbms_data_mining.classification,
 data_table_name => 'mining_data_build_v',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 settings_table_name => 'svm_model_settings');
END;
/

You can display the model settings with the following query.

SELECT * FROM user_mining_model_settings
 WHERE model_name IN 'SVM_MODEL';

MODEL_NAME SETTING_NAME SETTING_VALUE SETTING
------------- ---------------------- ----------------------------- -------
SVM_MODEL ALGO_NAME ALGO_SUPPORT_VECTOR_MACHINES INPUT
SVM_MODEL SVMS_KERNEL_CACHE_SIZE 50000000 DEFAULT
SVM_MODEL SVMS_ACTIVE_LEARNING SVMS_AL_ENABLE DEFAULT
SVM_MODEL SVMS_STD_DEV 3.004524 DEFAULT
SVM_MODEL PREP_AUTO ON INPUT
SVM_MODEL SVMS_COMPLEXITY_FACTOR 1.887389 DEFAULT
SVM_MODEL SVMS_KERNEL_FUNCTION SVMS_GAUSSIAN DEFAULT
SVM_MODEL SVMS_CONV_TOLERANCE .001 DEFAULT

The second example creates an anomaly detection model. Anomaly detection uses SVM classification without a target. This example uses the same settings table created for the SVM classification model in the first example.

BEGIN
 DBMS_DATA_MINING.CREATE_MODEL(
 model_name => 'anomaly_detect_model',
 mining_function => dbms_data_mining.classification,
 data_table_name => 'mining_data_build_v',
 case_id_column_name => 'cust_id',
 target_column_name => null,
 settings_table_name => 'svm_model_settings');
END;
/

This query shows that the models created in these examples are the only ones in your schema.

SELECT model_name, mining_function, algorithm FROM user_mining_models;

MODEL_NAME MINING_FUNCTION ALGORITHM
---------------------- -------------------- ------------------------------
SVM_MODEL CLASSIFICATION SUPPORT_VECTOR_MACHINES
ANOMALY_DETECT_MODEL CLASSIFICATION SUPPORT_VECTOR_MACHINES

This query shows that only the SVM classification model has a target.

SELECT model_name, attribute_name, attribute_type, target
 FROM user_mining_model_attributes
 WHERE target = 'YES';

MODEL_NAME ATTRIBUTE_NAME ATTRIBUTE_TYPE TARGET
------------------ --------------- ----------------- ------
SVM_MODEL AFFINITY_CARD CATEGORICAL YES

DROP_MODEL Procedure

This procedure deletes the specified mining model.

Syntax

DBMS_DATA_MINING.DROP_MODEL (model_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Table 44-37 DROP_MODEL Procedure Parameters

	Parameter	Description
	
model_name

	
Name of the mining model in the form [schema_name.]model_name. If you do not specify a schema, your own schema is used.

	
force

	
Forces the mining model to be dropped even if it is invalid. A mining model may be invalid if a serious system error interrupted the model build process.

Usage Note

To drop a mining model, you must be the owner or you must have the DROP ANY MINING MODEL privilege. See Oracle Data Mining Administrator's Guide for information about privileges for data mining.

Example

You can use the following command to delete a valid mining model named nb_sh_clas_sample that exists in your schema.

BEGIN
 DBMS_DATA_MINING.DROP_MODEL(model_name => 'nb_sh_clas_sample');
END;
/

EXPORT_MODEL Procedure

This procedure exports the specified data mining models to a dump file set. To import the models from the dump file set, use the IMPORT_MODEL Procedure. EXPORT_MODEL and IMPORT_MODEL use Oracle Data Pump technology.

When Oracle Data Pump is used to export/import an entire schema or database, the mining models in the schema or database are included. However, EXPORT_MODEL and IMPORT_MODEL are the only utilities that support the export/import of individual models.

	
See Also:

Oracle Database Utilities for information about Oracle Data Pump

Oracle Data Mining Administrator's Guide for more information about exporting and importing mining models

Syntax

DBMS_DATA_MINING.EXPORT_MODEL (
 filename IN VARCHAR2,
 directory IN VARCHAR2,
 model_filter IN VARCHAR2 DEFAULT NULL,
 filesize IN VARCHAR2 DEFAULT NULL,
 operation IN VARCHAR2 DEFAULT NULL,
 remote_link IN VARCHAR2 DEFAULT NULL,
 jobname IN VARCHAR2 DEFAULT NULL);

Parameters

Table 44-38 EXPORT_MODEL Procedure Parameters

	Parameter	Description
	
filename

	
Name of the dump file set to which the models should be exported. The name must be unique within the schema.

The dump file set can contain one or more files. The number of files in a dump file set is determined by the size of the models being exported (both metadata and data) and a specified or estimated maximum file size. You can specify the file size in the filesize parameter, or you can use the operation parameter to cause Oracle Data Pump to estimate the file size. If the size of the models to export is greater than the maximum file size, one or more additional files are created.

When the export operation completes successfully, the name of the dump file set is automatically expanded to filename01.dmp, even if there is only one file in the dump set. If there are additional files, they are named sequentially as filename02.dmp, filename03.dmp, and so forth.

	
directory

	
Name of a pre-defined directory object that specifies where the dump file set should be created.

The exporting user must have read/write privileges on the directory object and on the file system directory that it identifies.

See Oracle Database SQL Language Reference for information about directory objects.

	
model_filter

	
Optional parameter that specifies which model or models to export. If you do not specify a value for model_filter, all models in the schema are exported. You can also specify NULL (the default) or 'ALL' to export all models.

You can export individual models by name and groups of models based on mining function or algorithm. For instance, you could export all regression models or all Naive Bayes models. Examples are provided in Table 44-39.

	
filesize

	
Optional parameter that specifies the maximum size of a file in the dump file set. The size may be specified in bytes, kilobytes (K), megabytes (M), or gigabytes (G). The default size is 50 MB.

If the size of the models to export is larger than filesize, one or more additional files are created within the dump set. See the description of the filename parameter for more information.

	
operation

	
Optional parameter that specifies whether or not to estimate the size of the files in the dump set. By default the size is not estimated and the value of the filesize parameter determines the size of the files.

You can specify either of the following values for operation:

	
'EXPORT' — Export all or the specified models. (Default)

	
'ESTIMATE' — Estimate the size of the exporting models.

	
remote_link

	
Optional parameter not used in this release. Set to NULL.

	
jobname

	
Optional parameter that specifies the name of the export job. By default, the name has the form username_exp_nnnn, where nnnn is a number. For example, a job name in the SCOTT schema might be SCOTT_exp_134.

If you specify a job name, it must be unique within the schema. The maximum length of the job name is 30 characters.

A log file for the export job, named jobname.log, is created in the same directory as the dump file set.

Usage Notes

The model_filter parameter specifies which models to export. You can list the models by name, or you can specify all models that have the same mining function or algorithm. You can query the USER_MINING_MODELS view to list the models in your schema.

SQL> describe user_mining_models
 Name Null? Type
 --- -------- ----------------------------
 MODEL_NAME NOT NULL VARCHAR2(30)
 MINING_FUNCTION VARCHAR2(30)
 ALGORITHM VARCHAR2(30)
 CREATION_DATE NOT NULL DATE
 BUILD_DURATION NUMBER
 MODEL_SIZE NUMBER
 COMMENTS VARCHAR2(4000)

For more information on data dictionary views of mining models, see "Mining Model Objects".

Examples of model filters are provided in Table 44-39.

Table 44-39 Sample Values for the Model Filter Parameter

	Sample Value	Meaning
	
'mymodel'

	
Export the model named mymodel

	
'name= ''mymodel'''

	
Export the model named mymodel

	
'name IN (''mymodel2'',''mymodel3'')'

	
Export the models named mymodel2 and mymodel3

	
'ALGORITHM_NAME = ''NAIVE_BAYES'''

	
Export all Naive Bayes models. See Table 44-4 for a list of algorithm names.

	
'FUNCTION_NAME =''CLASSIFICATION'''

	
Export all classification models. See Table 44-2 for a list of mining functions.

Examples

The following statement exports all the models in the DMUSER3 schema to a dump file set called models_out in the directory $ORACLE_HOME/rdbms/log. This directory is mapped to a directory object called DATA_PUMP_DIR. The DMUSER3 user has read/write access to the directory and to the directory object.

SQL>execute dbms_data_mining.export_model ('models_out', 'DATA_PUMP_DIR');

You can exit SQL*Plus and list the resulting dump file and log file.

SQL>exit
>cd $ORACLE_HOME/rdbms/log
>ls
>DMUSER3_exp_1027.log models_out01.dmp

The following example uses the same directory object and is executed by the same user. It exports the models called NMF_SH_SAMPLE and SVMR_SH_REGR_SAMPLE to a different dump file set in the same directory.

SQL>execute dbms_data_mining.export_model ('models2_out', 'DATA_PUMP_DIR',
 'name in (''NMF_SH_SAMPLE'', ''SVMR_SH_REGR_SAMPLE'')');
SQL>exit
>cd $ORACLE_HOME/rdbms/log
>ls
>DMUSER3_exp_1027.log models_out01.dmp
 DMUSER3_exp_924.log models2_out01.dmp

GET_ASSOCIATION_RULES Function

This table function returns the rules from an association model.

You can specify filtering criteria to cause GET_ASSOCIATION_RULES to return a subset of the rules. Filtering criteria can improve the performance of the table function. If the number of rules is large, the greatest performance improvement will result from specifying the topn parameter.

Syntax

DBMS_DATA_MINING.GET_ASSOCIATION_RULES (
 model_name IN VARCHAR2,
 topn IN NUMBER DEFAULT NULL,
 rule_id IN INTEGER DEFAULT NULL,
 min_confidence IN NUMBER DEFAULT NULL,
 min_support IN NUMBER DEFAULT NULL,
 max_rule_length IN INTEGER DEFAULT NULL,
 min_rule_length IN INTEGER DEFAULT NULL,
 sort_order IN ORA_MINING_VARCHAR2_NT DEFAULT NULL,
 antecedent_items IN DM_ITEMS DEFAULT NULL,
 consequent_items IN DM_ITEMS DEFAULT NULL,
 min_lift IN NUMBER DEFAULT NULL)
 RETURN DM_RULES PIPELINED;

Parameters

Table 44-40 GET_ASSOCIATION_RULES Function Parameters

	Parameter	Description
	
model_name

	
Name of the model in the form [schema_name.]model_name. If you do not specify a schema, your own schema is used.

This is the only required parameter of GET_ASSOCIATION_RULES. All other parameters specify optional filters on the rules to return.

	
topn

	
Return the n top rules ordered by confidence and then support, both descending. If you specify a sort order, the top n rules are derived after the sort is performed.

If topn is specified and no maximum or minimum rule length is specified, then the only columns allowed in the sort order are RULE_CONFIDENCE and RULE_SUPPORT. If topn is specified and a maximum or minimum rule length is specified, then RULE_CONFIDENCE, RULE_SUPPORT, and NUMBER_OF_ITEMS are allowed in the sort order.

	
rule_id

	
Identifier of the rule to return. If you specify a value for rule_id, do not specify values for the other filtering parameters.

	
min_confidence

	
Return the rules with confidence greater than or equal to this number

	
min_support

	
Return the rules with support greater than or equal to this number

	
max_rule_length

	
Return the rules with a length less than or equal to this number.

Rule length refers to the number of items in the rule (See NUMBER_OF_ITEMS in Table 44-41). For example, in the rule A=>B (if A, then B), the number of items is 2.

If max_rule_length is specified, then the NUMBER_OF_ITEMS column is permitted in the sort order.

	
min_rule_length

	
Return the rules with a length greater than or equal to this number. See max_rule_length for a description of rule length.

If min_rule_length is specified, then the NUMBER_OF_ITEMS column is permitted in the sort order.

	
sort_order

	
Sort the rules by the values in one or more of the returned columns. Specify one or more column names, each followed by ASC for ascending order or DESC for descending order.

For example, to sort the result set in descending order first by the NUMBER_OF_ITEMS column, then by the RULE_CONFIDENCE column, you would specify:

ORA_MINING_VARCHAR2_NT('NUMBER_OF_ITEMS DESC', 'RULE_CONFIDENCE DESC')

If you specify topn, the results will vary depending on the sort order.

By default, the results are sorted by confidence in descending order, then by support in descending order.

See the examples.

	
antecedent_items

	
Return the rules with these items in the antecedent. See the examples.

	
consequent_items

	
Return the rules with this item in the consequent. See the examples.

	
min_lift

	
Return the rules with lift greater than or equal to this number.

Return Values

Table 44-41 GET_ASSOCIATION RULES Function Return Values

	Return Value	Description
	
DM_RULES

	
Represents a set of rows of type DM_RULE. The rows have the following columns:

(rule_id INTEGER,
 antecedent DM_PREDICATES,
 consequent DM_PREDICATES,
 rule_support NUMBER,
 rule_confidence NUMBER,
 rule_lift NUMBER,
 antecedent_support NUMBER,
 consequent_support NUMBER,
 number_of_items INTEGER)

	
	
The antecedent and consequent columns each return nested tables of type DM_PREDICATES.The rows, of type DM_PREDICATE, have the following columns:

 (attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 conditional_operator CHAR(2)/*=,<>,<,>,<=,>=*/,
 attribute_num_value NUMBER,
 attribute_str_value VARCHAR2(4000),
 attribute_support NUMBER,
 attribute_confidence NUMBER)

Usage Notes

This table function pipes out rows of type DM_RULES. For information on Data Mining data types and piped output from table functions, see "Data Types".

The ORA_MINING_VARCHAR2_NT type is defined as a table of VARCHAR2(4000).

Examples

The following example demonstrates an Association model build followed by several invocations of the GET_ASSOCIATION_RULES table function.

-- prepare a settings table to override default settings
CREATE TABLE market_settings AS
SELECT *
 FROM TABLE(DBMS_DATA_MINING.GET_DEFAULT_SETTINGS)
 WHERE setting_name LIKE 'ASSO_%';
BEGIN
-- update the value of the minimum confidence
UPDATE census_settings
 SET setting_value = TO_CHAR(0.081)
 WHERE setting_name = DBMS_DATA_MINING.asso_min_confidence;

-- build an AR model
DBMS_DATA_MINING.CREATE_MODEL(
 model_name => 'market_model',
 function => DBMS_DATA_MINING.ASSOCIATION,
 data_table_name => 'market_build',
 case_id_column_name => 'item_id',
 target_column_name => NULL,
 settings_table_name => 'census_settings');
END;
/
-- View the (unformatted) rules
SELECT rule_id, antecedent, consequent, rule_support,
 rule_confidence
 FROM TABLE(DBMS_DATA_MINING.GET_ASSOCIATION_RULES('market_model'));

In the previous example, you view all rules. To view just the top 20 rules, use the following statement.

-- View the top 20 (unformatted) rules
SELECT rule_id, antecedent, consequent, rule_support,
 rule_confidence
 FROM TABLE(DBMS_DATA_MINING.GET_ASSOCIATION_RULES('market_model', 20));

The following query uses the association model AR_SH_SAMPLE, which is created from one of the Oracle Data Mining sample programs. (See Oracle Data Mining Administrator's Guide for information about the sample programs.)

SELECT * FROM TABLE (
 DBMS_DATA_MINING.GET_ASSOCIATION_RULES (
 'AR_SH_SAMPLE', 10, NULL, 0.5, 0.01, 2, 1,
 ORA_MINING_VARCHAR2_NT (
 'NUMBER_OF_ITEMS DESC', 'RULE_CONFIDENCE DESC', 'RULE_SUPPORT DESC'),
 DM_ITEMS(DM_ITEM('CUSTPRODS', 'Mouse Pad', 1, NULL),
 DM_ITEM('CUSTPRODS', 'Standard Mouse', 1, NULL)),
 DM_ITEMS(DM_ITEM('CUSTPRODS', 'Extension Cable', 1, NULL))));

The query returns three rules, shown as follows.

13 DM_PREDICATES(
 DM_PREDICATE('CUSTPRODS', 'Mouse Pad', '= ', 1, NULL, NULL, NULL),
 DM_PREDICATE('CUSTPRODS', 'Standard Mouse', '= ', 1, NULL, NULL, NULL))
 DM_PREDICATES(
 DM_PREDICATE('CUSTPRODS', 'Extension Cable', '= ', 1, NULL, NULL, NULL))
 .15532 .84393 2.7075 .18404 .3117 2

11 DM_PREDICATES(
 DM_PREDICATE('CUSTPRODS', 'Standard Mouse', '= ', 1, NULL, NULL, NULL))
 DM_PREDICATES(
 DM_PREDICATE('CUSTPRODS', 'Extension Cable', '= ', 1, NULL, NULL, NULL))
 .18085 .56291 1.8059 .32128 .3117 1

9 DM_PREDICATES(
 DM_PREDICATE('CUSTPRODS', 'Mouse Pad', '= ', 1, NULL, NULL, NULL))
 DM_PREDICATES(
 DM_PREDICATE('CUSTPRODS', 'Extension Cable', '= ', 1, NULL, NULL, NULL))
 .17766 .55116 1.7682 .32234 .3117 1

GET_DEFAULT_SETTINGS Function

The GET_DEFAULT_SETTINGS function was deprecated in Oracle Data Mining 11g Release 1 (11.1). It was replaced with the data dictionary view *_MINING_MODEL_SETTINGS. USER_, ALL_, and DBA_ versions of the view are available. See Oracle Data Mining Application Developer's Guide.

Oracle recommends that you do not use deprecated procedures in new applications. Support for deprecated features is for backward compatibility only.

	
Note:

See "Deprecated Subprograms"

This table function returns the default settings for all mining functions and algorithms supported in the DBMS_DATA_MINING package.

Syntax

DBMS_DATA_MINING.GET_DEFAULT_SETTINGS
 RETURN DM_MODEL_SETTINGS PIPELINED;

Return Values

Table 44-42 GET_DEFAULT_SETTINGS Function Return Values

	Return Value	Description
	
DM_MODEL_SETTINGS

	
Represents a set of rows of type DM_MODEL_SETTING. The rows have the following columns:

(setting_name VARCHAR2(30),
 setting_value VARCHAR2(128))

Usage Notes

This table function pipes out rows of type DM_MODEL_SETTING. For information on Data Mining data types and piped output from table functions, see "Data Types".

This function is particularly useful if you do not know what settings are associated with a particular function or algorithm, and you want to override some or all of them.

Examples

For example, if you want to override some or all of k-Means clustering settings, you can create a settings table as shown, and update individual settings as required.

BEGIN
 CREATE TABLE mysettings AS
 SELECT *
 FROM TABLE(DBMS_DATA_MINING.GET_DEFAULT_SETTINGS)
 WHERE setting_name LIKE 'KMNS%';
 -- now update individual settings as required
 UPDATE mysettings
 SET setting_value = 0.02
 WHERE setting_name = DBMS_DATA_MINING.KMNS_MIN_PCT_ATTR_SUPPORT;
END;
/

GET_FREQUENT_ITEMSETS Function

This table function returns a set of rows that represent the frequent itemsets from an Association model. For a detailed description of frequent itemsets, consult Oracle Data Mining Concepts.

Syntax

DBMS_DATA_MINING.GET_FREQUENT_ITEMSETS (
 model_name IN VARCHAR2,
 topn IN NUMBER DEFAULT NULL,
 max_itemset_length IN NUMBER DEFAULT NULL)
 RETURN DM_ITEMSETS PIPELINED;

Parameters

Table 44-43 GET_FREQUENT_ITEMSETS Function Parameters

	Parameter	Description
	
model_name

	
Name of the model in the form [schema_name.]model_name. If you do not specify a schema, your own schema is used.

	
topn

	
When not NULL, return the top n rows ordered by support in descending order

	
max_itemset_length

	
Maximum length of an item set.

Return Values

Table 44-44 GET_FREQUENT_ITEMSETS Function Return Values

	Return Value	Description
	
DM_ITEMSETS

	
Represents a set of rows of type DM_ITEMSET. The rows have the following columns:

(itemsets_id NUMBER,
items DM_ITEMS,
support NUMBER,
number_of_items NUMBER)

The items column returns a nested table of type DM_ITEMS. The rows have type DM_ITEM:

(attribute_name VARCHAR2(4000),
attribute_subname VARCHAR2(4000),
attribute_num_value NUMBER,
attribute_str_value VARCHAR2(4000))

Usage Notes

This table function pipes out rows of type DM_ITEMSETS. For information on Data Mining data types and piped output from table functions, see "Data Types".

Examples

The following example demonstrates an Association model build followed by an invocation of GET_FREQUENT_ITEMSETS table function from Oracle SQL.

-- prepare a settings table to override default settings
CREATE TABLE market_settings AS

 SELECT *

 FROM TABLE(DBMS_DATA_MINING.GET_DEFAULT_SETTINGS)
 WHERE setting_name LIKE 'ASSO_%';
BEGIN
-- update the value of the minimum confidence
UPDATE market_settings
 SET setting_value = TO_CHAR(0.081)
 WHERE setting_name = DBMS_DATA_MINING.asso_min_confidence;

/* build a AR model */
DBMS_DATA_MINING.CREATE_MODEL(
 model_name => 'market_model',
 function => DBMS_DATA_MINING.ASSOCIATION,
 data_table_name => 'market_build',
 case_id_column_name => 'item_id',
 target_column_name => NULL,
 settings_table_name => 'census_settings');
END;
/

-- View the (unformatted) Itemsets from SQL*Plus
SELECT itemset_id, items, support, number_of_items
 FROM TABLE(DBMS_DATA_MINING.GET_FREQUENT_ITEMSETS('market_model'));

In the example above, you view all itemsets. To view just the top 20 itemsets, use the following statement:

-- View the top 20 (unformatted) Itemsets from SQL*Plus
SELECT itemset_id, items, support, number_of_items
 FROM TABLE(DBMS_DATA_MINING.GET_FREQUENT_ITEMSETS('market_model', 20));

GET_MODEL_COST_MATRIX Function

This function returns the rows of the default scoring matrix associated with the specified model.

By default, this function returns the scoring matrix that was added to the model with the ADD_COST_MATRIX procedure. If you wish to obtain the cost matrix used to create a model, specify cost_matrix_type_create as the matrix_type. See Table 44-45.

See also ADD_COST_MATRIX Procedure.

Syntax

DBMS_DATA_MINING.GET_MODEL_COST_MATRIX (
 model_name IN VARCHAR2,
 matrix_type IN VARCHAR2 DEFAULT cost_matrix_type_score)
RETURN DM_COST_MATRIX PIPELINED;

Parameters

Table 44-45 GET_MODEL_COST_MATRIX Function Parameters

	Parameter	Description
	
model_name

	
Name of the model in the form [schema_name.]model_name. If you do not specify a schema, your own schema is used.

	
matrix_type

	
The type of cost matrix.

COST_MATRIX_TYPE_SCORE — cost matrix used for scoring. (Default.)

COST_MATRIX_TYPE_CREATE — cost matrix used to create the model (Decision Tree only).

Return Values

Table 44-46 GET_MODEL_COST_MATRIX Function Return Values

	Return Value	Description
	
DM_COST_MATRIX

	
Represents a set of rows of type DM_COST_ELEMENT. The rows have the following columns:

actual VARCHAR2(4000), predicted VARCHAR2(4000), cost NUMBER)

Usage Notes

Only Decision Tree models can be built with a cost matrix. If you want to build a Decision Tree model with a cost matrix, specify the cost matrix table name in the CLAS_COST_TABLE_NAME setting in the settings table for the model. See Table 44-7, "Mining Function Settings".

The cost matrix used to create a Decision Tree model becomes the default scoring matrix for the model. If you want to specify different costs for scoring, you can modify the values in the cost matrix table or you can use the REMOVE_COST_MATRIX procedure to remove the cost matrix and the ADD_COST_MATRIX procedure to add a new one

Example

This example returns the scoring cost matrix associated with the Naive Bayes model NB_SH_CLAS_SAMPLE.

column actual format a10
column predicted format a10
SELECT *
 FROM TABLE(dbms_data_mining.get_model_cost_matrix('nb_sh_clas_sample'))
 ORDER BY predicted, actual;

ACTUAL PREDICTED COST
---------- ---------- -----
0 0 .00
1 0 .75
0 1 .25
1 1 .00

GET_MODEL_DETAILS_ABN Function

The Adaptive Bayes Network algorithm ABN algorithm was deprecated in Oracle Data Mining 11g Release 1 (11.1).

Oracle recommends that you do not use deprecated procedures in new applications. Support for deprecated features is for backward compatibility only.

	
Note:

See "Deprecated Subprograms"

This table function returns a set of rows that provide the details of an Adaptive Bayes Network model.

Syntax

DBMS_DATA_MINING.GET_MODEL_DETAILS_ABN (
 model_name IN VARCHAR2)
 RETURN DM_ABN_DETAILS PIPELINED;

Parameters

Table 44-47 GET_MODEL_DETAILS_ABN Function Parameters

	Parameter	Description
	
model_name

	
Name of the model in the form [schema_name.]model_name. If you do not specify a schema, your own schema is used.

Return Values

Table 44-48 GET_MODEL_DETAILS_ABN Function Return Values

	Return Value	Description
	
DM_ABN_DETAILS

	
Represents a set of rows of type DM_ABN_DETAIL. The rows have the following columns:

(rule_id INTEGER,
 antecedent DM_PREDICATES,
 consequent DM_PREDICATES,
 rule_support NUMBER)

	
	
The antecedent and consequent columns of DM_ABN_DETAIL each return nested tables of type DM_PREDICATES. The rows, of type DM_PREDICATE, have the following columns:

 (attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 conditional_operator CHAR(2), /*=,<>,<,>,<=,>=*/
 attribute_num_value NUMBER,
 attribute_str_value VARCHAR2(4000),
 attribute_support NUMBER,
 attribute_confidence NUMBER)

Usage Notes

This table function pipes out rows of type DM_ABN_DETAIL. For information on Data Mining data types and piped output from table functions, see "Data Types".

This function returns details only for a single feature ABN model.

Examples

The following example demonstrates an ABN model build followed by an invocation of GET_MODEL_DETAILS_ABN table function from Oracle SQL.

BEGIN
 -- prepare a settings table to override default algorithm and model type
 CREATE TABLE abn_settings (setting_name VARCHAR2(30),
 setting_value
VARCHAR2(128));
 INSERT INTO abn_settings VALUES (DBMS_DATA_MINING.ALGO_NAME,
 DBMS_DATA_MINING.ALGO_ADAPTIVE_BAYES_NETWORK);
 INSERT INTO abn_settings VALUES (DBMS_DATA_MINING.ABNS_MODEL_TYPE, DBMS_DATA_MINING.ABNS_SINGLE_FEATURE);
 COMMIT;
 -- create a model
 DBMS_DATA_MINING.CREATE_MODEL (
 model_name => 'abn_model',
 function => DBMS_DATA_MINING.CLASSIFICATION,
 data_table_name => 'abn_build',
 case_id_column_name => 'id',
 target_column_name => NULL,
 settings_table_name => 'abn_settings');
END;
/
-- View the (unformatted) results from SQL*Plus
SELECT *
 FROM TABLE(DBMS_DATA_MINING.GET_MODEL_DETAILS_ABN('abn_model'));

GET_MODEL_DETAILS_AI Function

This table function returns a set of rows that provide the details of an Attribute Importance model.

Syntax

DBMS_DATA_MINING.GET_MODEL_DETAILS_AI (
 model_name IN VARCHAR2)
 RETURN DM_RANKED_ATTRIBUTES PIPELINED;

Parameters

Table 44-49 GET_MODEL_DETAILS_AI Function Parameters

	Parameter	Description
	
model_name

	
Name of the model in the form [schema_name.]model_name. If you do not specify a schema, your own schema is used.

Return Values

Table 44-50 GET_MODEL_DETAILS_AI Function Return Values

	Return Value	Description
	
DM_RANKED_ATTRIBUTES

	
Represents a set of rows of type DM_RANKED_ATTRIBUTE. The rows have the following columns:

(attribute_name VARCHAR2(4000,
 attribute_subname VARCHAR2(4000),
 importance_value NUMBER,
 rank NUMBER(38))

Examples

The following example returns model details for the attribute importance model AI_SH_sample, which was created by the sample program dmaidemo.sql. For information about the sample programs, see Oracle Data Mining Administrator's Guide.

SELECT attribute_name, importance_value, rank
 FROM TABLE(DBMS_DATA_MINING.GET_MODEL_DETAILS_AI('AI_SH_sample'))
 ORDER BY RANK;

ATTRIBUTE_NAME IMPORTANCE_VALUE RANK
-- ---------------- ----------
HOUSEHOLD_SIZE .151685183 1
CUST_MARITAL_STATUS .145294546 2
YRS_RESIDENCE .07838928 3
AGE .075027496 4
Y_BOX_GAMES .063039952 5
EDUCATION .059605314 6
HOME_THEATER_PACKAGE .056458722 7
OCCUPATION .054652937 8
CUST_GENDER .035264741 9
BOOKKEEPING_APPLICATION .019204751 10
PRINTER_SUPPLIES 0 11
OS_DOC_SET_KANJI -.00050013 12
FLAT_PANEL_MONITOR -.00509564 13
BULK_PACK_DISKETTES -.00540822 14
COUNTRY_NAME -.01201116 15
CUST_INCOME_LEVEL -.03951311 16

GET_MODEL_DETAILS_GLM Function

This table function returns the coefficient statistics for a Generalized Linear Model.

The same set of statistics is returned for both linear and logistic regression, but statistics that do not apply to the mining function are returned as NULL. For more details, see the Usage Notes.

Syntax

DBMS_DATA_MINING.GET_MODEL_DETAILS_GLM (
 model_name VARCHAR2)
RETURN DM_GLM_COEFF_SET PIPELINED;

Parameters

Table 44-51 GET_MODEL_DETAILS_GLM Function Parameters

	Parameter	Description
	
model_name

	
Name of the model in the form [schema_name.]model_name. If you do not specify a schema, your own schema is used.

Return Values

Table 44-52 GET_MODEL_DETAILS_GLM Return Values

	Return Value	Description
	
DM_GLM_COEFF_SET

	
Represents a set of rows of type DM_GLM_COEFF. The rows have the following columns:

(class VARCHAR2(4000),
 attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 attribute_value VARCHAR2(4000),
 coefficient NUMBER,
 std_error NUMBER,
 test_statistic NUMBER,
 p_value NUMBER,
 VIF NUMBER,
 std_coefficient NUMBER,
 lower_coeff_limit NUMBER,
 upper_coeff_limit NUMBER,
 exp_coefficient BINARY_DOUBLE,
 exp_lower_coeff_limit BINARY_DOUBLE,
 exp_upper_coeff_limit BINARY_DOUBLE)

GET_MODEL_DETAILS_GLM returns a row of statistics for each attribute and one extra row for the intercept, which is identified by a null value in the attribute name. Each row has the DM_GLM_COEFF data type. The statistics are described in Table 44-53.

Table 44-53 DM_GLM_COEFF Data Type Description

	Column	Description
	
class

	
The non-reference target class for logistic regression. The model is built to predict the probability of this class.

The other class (the reference class) is specified in the model setting GLMS_REFERENCE_CLASS_NAME. See Table 44-11, "GLM Settings".

For linear regression, class is null.

	
attribute_name

	
The attribute name when there is no subname, or first part of the attribute name when there is a subname. The value of attribute_name is also the name of the column in the case table that is the source for this attribute.

For the intercept, attribute_name is null. Intercepts are equivalent to the bias term in SVM models.

	
attribute_subname

	
The name of an attribute in a nested table. The full name of a nested attribute has the form:

attribute_name.attribute_subname

where attribute_name is the name of the nested column in the case table that is the source for this attribute.

If the attribute is not nested, attribute_subname is null. If the attribute is an intercept, both the attribute_name and the attribute_subname are null.

	
attribute_value

	
The value of the attribute (categorical attribute only).

For numerical attributes, attribute_value is null.

	
coefficient

	
The linear coefficient estimate.

	
std_error

	
Standard error of the coefficient estimate.

	
test_statistic

	
For linear regression, the t-value of the coefficient estimate.

For logistic regression, the Wald chi-square value of the coefficient estimate.

	
p-value

	
Probability of the test_statistic. Used to analyze the significance of specific attributes in the model.

	
VIF

	
Variance Inflation Factor. The value is zero for the intercept. For logistic regression, VIF is null.

	
std_coefficient

	
Standardized estimate of the coefficient.

	
lower_coeff_limit

	
Lower confidence bound of the coefficient.

	
upper_coeff_limit

	
Upper confidence bound of the coefficient.

	
exp_coefficient

	
Exponentiated coefficient for logistic regression. For linear regression, exp_coefficient is null.

	
exp_lower_coeff_limit

	
Exponentiated coefficient for lower confidence bound of the coefficient for logistic regression. For linear regression, exp_lower_coeff_limit is null.

	
exp_upper_coeff_limit

	
Exponentiated coefficient for upper confidence bound of the coefficient for logistic regression. For linear regression, exp_lower_coeff_limit is null.

Usage Notes

Not all statistics are necessarily returned for each coefficient. Statistics will be null if:

	
They do not apply to the mining function. For example, exp_coefficient does not apply to linear regression.

	
They cannot be computed from a theoretical standpoint. For example, when ridge regression is enabled, the coefficient values are returned with no statistics except VIF if it is enabled. (For information on ridge regression, see Table 44-11, "GLM Settings".)

	
They cannot be computed because of limitations in system resources.

	
Their values would be infinity.

Examples

The following example returns some of the model details for the GLM regression model GLMR_SH_Regr_sample, which was created by the sample program dmglrdem.sql. For information about the sample programs, see Oracle Data Mining Administrator's Guide.

SQL> SELECT *
 FROM (SELECT class, attribute_name, attribute_value, coefficient, std_error
 FROM TABLE(dbms_data_mining.get_model_details_glm(
 'GLMR_SH_Regr_sample'))
 ORDER BY class, attribute_name, attribute_value)
 WHERE ROWNUM < 11;

CLASS ATTRIBUTE_NAME ATTRIBUTE_VALUE COEFFICIENT STD_ERROR
--------- ------------------ ---------------- ----------- ----------
 AFFINITY_CARD -.60686139 .531250033
 BULK_PACK_DISKETTES -1.9729645 .924531227
 COUNTRY_NAME Argentina -1.3340963 1.1942193
 COUNTRY_NAME Australia -.340504 5.13688361
 COUNTRY_NAME Brazil 5.3855269 1.93197882
 COUNTRY_NAME Canada 4.13393291 2.41283125
 COUNTRY_NAME China .74409259 3.59923638
 COUNTRY_NAME Denmark -2.5287879 3.18569293
 COUNTRY_NAME France -1.0908689 7.18471003
 COUNTRY_NAME Germany -1.7472166 2.53689456

GET_MODEL_DETAILS_GLOBAL Function

This table function returns statistics about the model as a whole. Global details are available for GLM and for association rules.

Separate global details are returned for linear and logistic regression. When ridge regression is enabled, fewer global details are returned. For information about ridge, see Table 44-11, "GLM Settings".

Syntax

DBMS_DATA_MINING.GET_MODEL_DETAILS_GLOBAL (
 model_name IN VARCHAR2)
RETURN DM_MODEL_GLOBAL_DETAILS PIPELINED;

Parameters

Table 44-54 GET_MODEL_DETAILS_GLOBAL Function Parameters

	Parameter	Description
	
model_name

	
Name of the model in the form [schema_name.]model_name. If you do not specify a schema, your own schema is used.

Return Values

Table 44-55 GET_MODEL_DETAILS_GLOBAL Function Return Values

	Return Value	Description
	
DM_MODEL_GLOBAL_DETAILS

	
A collection of rows of type DM_MODEL_GLOBAL_DETAIL. The rows have the following columns:

(global_detail_name VARCHAR2(30),
 global_detail_value NUMBER)

Global Details for GLM: Linear Regression

Table 44-56 Global Details for Linear Regression

	GLOBAL_DETAIL_NAME	Description
	
MODEL_DF

	
Model degrees of freedom

	
MODEL_SUM_SQUARES

	
Model sum of squares

	
MODEL_MEAN_SQUARE

	
Model mean square

	
F_VALUE

	
Model F value statistic

	
MODEL_F_P_VALUE

	
Model F value probability

	
ERROR_DF

	
Error degrees of freedom

	
ERROR_SUM_SQUARES

	
Error sum of squares

	
ERROR_MEAN_SQUARE

	
Error mean square

	
CORRECTED_TOTAL_DF

	
Corrected total degrees of freedom

	
CORRECTED_TOT_SS

	
Corrected total sum of squares

	
ROOT_MEAN_SQ

	
Root mean square error

	
DEPENDENT_MEAN

	
Dependent mean

	
COEFF_VAR

	
Coefficient of variation

	
R_SQ

	
R-Square

	
ADJUSTED_R_SQUARE

	
Adjusted R-Square

	
AIC

	
Akaike's information criterion

	
SBIC

	
Schwarz's Bayesian information criterion

	
GMSEP

	
Estimated mean square error of the prediction, assuming multivariate normality

	
HOCKING_SP

	
Hocking Sp statistic

	
J_P

	
JP statistic (the final prediction error)

	
NUM_PARAMS

	
Number of parameters (the number of coefficients, including the intercept)

	
NUM_ROWS

	
Number of rows

	
MODEL_CONVERGED

	
Whether or not the model converged. Value is 1 if it converged, or 0 if it did not converge

	
VALID_COVARIANCE_MATRIX

	
Valid covariance matrix. Value is 1 if the covariance matrix was computed, or 0 if it was not computed

Global Details for GLM: Logistic Regression

Table 44-57 Global Details for Logistic Regression

	GLOBAL_DETAIL_NAME	Description
	
AIC_INTERCEPT

	
Akaike's criterion for the fit of the intercept only model

	
AIC_MODEL

	
Akaike's criterion for the fit of the intercept and the covariates (predictors) mode

	
SC_INTERCEPT

	
Schwarz's Criterion for the fit of the intercept only model

	
SC_MODEL

	
Schwarz's Criterion for the fit of the intercept and the covariates (predictors) model

	
NEG2_LL_INTERCEPT

	
-2 log likelihood of the intercept only model

	
NEG2_LL_MODEL

	
-2 log likelihood of the model

	
LR_DF

	
Likelihood ratio degrees of freedom

	
LR_CHI_SQ

	
Likelihood ratio chi-square value

	
LR_CHI_SQ_P_VALUE

	
Likelihood ratio chi-square probability value

	
PSEUDO_R_SQ_CS

	
Pseudo R-square Cox and Snell

	
PSEUDO_R_SQ_N

	
Pseudo R-square Nagelkerke

	
DEPENDENT_MEAN

	
Dependent mean

	
PCT_CORRECT

	
Percent of correct predictions

	
PCT_INCORRECT

	
Percent of incorrectly predicted rows

	
PCT_TIED

	
Percent of cases where probability for both cases is the same

	
NUM_PARAMS

	
Number of parameters (the number of coefficients, including the intercept)

	
NUM_ROWS

	
Number of rows

	
MODEL_CONVERGED

	
Whether or not the model converged. Value is 1if it converged, or 0 if it did not converge.

	
VALID_COVARIANCE_MATRIX

	
Valid covariance matrix. Value is 1 if the covariance matrix was computed, or 0 if the covariance matrix not computed

Global Detail for Association Rules

A single global detail is produced by an Association model.

Table 44-58 Global Detail for Association Rules

	GLOBAL_DETAIL_NAME	Description
	
RULE_COUNT

	
The number of association rules in the model.

Examples

The following example returns the global model details for the GLM regression model GLMR_SH_Regr_sample, which was created by the sample program dmglrdem.sql. For information about the sample programs, see Oracle Data Mining Administrator's Guide.

SELECT *
 FROM TABLE(dbms_data_mining.get_model_details_global(
 'GLMR_SH_Regr_sample'))
ORDER BY global_detail_name;
GLOBAL_DETAIL_NAME GLOBAL_DETAIL_VALUE
------------------------------ -------------------
ADJUSTED_R_SQUARE .731412557
AIC 5931.814
COEFF_VAR 18.1711243
CORRECTED_TOTAL_DF 1499
CORRECTED_TOT_SS 278740.504
DEPENDENT_MEAN 38.892
ERROR_DF 1433
ERROR_MEAN_SQUARE 49.9440956
ERROR_SUM_SQUARES 71569.8891
F_VALUE 62.8492452
GMSEP 52.280819
HOCKING_SP .034877162
J_P 52.1749319
MODEL_CONVERGED 1
MODEL_DF 66
MODEL_F_P_VALUE 0
MODEL_MEAN_SQUARE 3138.94871
MODEL_SUM_SQUARES 207170.615
NUM_PARAMS 67
NUM_ROWS 1500
ROOT_MEAN_SQ 7.06711367
R_SQ .743238288
SBIC 6287.79977
VALID_COVARIANCE_MATRIX 1

GET_MODEL_DETAILS_KM Function

This table function returns a set of rows that provide the details of a k-Means clustering model.

You can provide input to GET_MODEL_DETAILS_KM to request specific information about the model, thus improving the performance of the query. If you do not specify filtering parameters, GET_MODEL_DETAILS_KM returns all the information about the model.

Syntax

DBMS_DATA_MINING.GET_MODEL_DETAILS_KM (
 model_name VARCHAR2,
 cluster_id NUMBER DEFAULT NULL,
 attribute VARCHAR2 DEFAULT NULL,
 centroid NUMBER DEFAULT 1,
 histogram NUMBER DEFAULT 1,
 rules NUMBER DEFAULT 2,
 attribute_subname VARCHAR2 DEFAULT NULL)
RETURN DM_CLUSTERS PIPELINED;

Parameters

Table 44-59 GET_MODEL_DETAILS_KM Function Parameters

	Parameter	Description
	
model_name

	
Name of the model in the form [schema_name.]model_name. If you do not specify a schema, your own schema is used.

	
cluster_id

	
The ID of a cluster in the model. When a valid cluster ID is specified, only the details of this cluster are returned. Otherwise the details for all clusters are returned.

	
attribute

	
The name of an attribute. When a valid attribute name is specified, only the details of this attribute are returned. Otherwise the details for all attributes are returned

	
centroid

	
This parameter accepts the following values:

	
1 — Details about centroids are returned (default)

	
0 — Details about centroids are not returned

	
histogram

	
This parameter accepts the following values:

	
1 — Details about histograms are returned (default)

	
0 — Details about histograms are not returned

	
rules

	
This parameter accepts the following values:

	
2 — Details about rules are returned (default)

	
1 — Rule summaries are returned

	
0 — No information about rules is returned

Return Values

Table 44-60 GET_MODEL_DETAILS_KM Function Return Values

	Return Value	Description
	
DM_CLUSTERS

	
Represents a set of rows of type DM_CLUSTER. The rows have the following columns:

(id NUMBER,
 cluster_id VARCHAR2(4000),
 record_count NUMBER,
 parent NUMBER,
 tree_level NUMBER,
 dispersion NUMBER,
 split_predicate DM_PREDICATES,
 child DM_CHILDREN,
 centroid DM_CENTROIDS,
 histogram DM_HISTOGRAMS,
 rule DM_RULE)

		
The split_predicate column of DM_CLUSTER returns a nested table of type DM_PREDICATES. Each row, of type DM_PREDICATE, has the following columns:

 (attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 conditional_operator CHAR(2) /*=,<>,<,>,<=,>=*/,
 attribute_num_value NUMBER,
 attribute_str_value VARCHAR2(4000),
 attribute_support NUMBER,
 attribute_confidence NUMBER)

	
	
The child column of DM_CLUSTER returns a nested table of type DM_CHILDREN. The rows, of type DM_CHILD, have a single column of type NUMBER, which contains the identifiers of each child.

	
	
The centroid column of DM_CLUSTER returns a nested table of type DM_CENTROIDS. The rows, of type DM_CENTROID, have the following columns:

 (attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 mean NUMBER,
 mode_value VARCHAR2(4000),
 variance NUMBER)

	
	
The histogram column of DM_CLUSTER returns a nested table of type DM_HISTOGRAMS. The rows, of type DM_HISTOGRAM_BIN, have the following columns:

 (attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 bin_id NUMBER,
 lower_bound NUMBER,
 upper_bound NUMBER,
 label VARCHAR2(4000),
 count NUMBER)

		
The rule column of DM_CLUSTER returns a single row of type DM_RULE. The columns are:

 (rule_id INTEGER,
 antecedent DM_PREDICATES,
 consequent DM_PREDICATES,
 rule_support NUMBER,
 rule_confidence NUMBER,
 rule_lift NUMBER,
 antecedent_support NUMBER,
 consequent_support NUMBER,
 number_of_items INTEGER)

	
	
The antecedent and consequent columns of DM_RULE each return nested tables of type DM_PREDICATES. The rows, of type DM_PREDICATE, have the following columns:

 (attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 conditional_operator CHAR(2)/*=,<>,<,>,<=,>=*/,
 attribute_num_value NUMBER,
 attribute_str_value VARCHAR2(4000),
 attribute_support NUMBER,
 attribute_confidence NUMBER)

Usage Notes

The table function pipes out rows of type DM_CLUSTERS. For information on Data Mining data types and piped output from table functions, see "Data Types".

Examples

The following example returns model details for the k-Means clustering model KM_SH_Clus_sample, which was created by the sample program dmkmdemo.sql. For information about the sample programs, see Oracle Data Mining Administrator's Guide.

SELECT T.id clu_id,
 T.record_count rec_cnt,
 T.parent parent,
 T.tree_level tree_level,
 T.dispersion dispersion
 FROM (SELECT *
 FROM TABLE(DBMS_DATA_MINING.GET_MODEL_DETAILS_KM(
 'KM_SH_Clus_sample'))
 ORDER BY id) T
 WHERE ROWNUM < 6;

 CLU_ID REC_CNT PARENT TREE_LEVEL DISPERSION
---------- ---------- ---------- ---------- ----------
 1 1500 1 5.9152211
 2 638 1 2 3.98458982
 3 862 1 2 5.83732097
 4 376 3 3 5.05192137
 5 486 3 3 5.42901522

GET_MODEL_DETAILS_NB Function

This table function returns a set of rows that provide the details of a Naive Bayes model.

Syntax

DBMS_DATA_MINING.GET_MODEL_DETAILS_NB (
 model_name IN VARCHAR2)
 RETURN DM_NB_DETAILS PIPELINED;

Parameters

Table 44-61 GET_MODEL_DETAILS_NB Function Parameters

	Parameter	Description
	
model_name

	
Name of the model in the form [schema_name.]model_name. If you do not specify a schema, your own schema is used.

Return Values

Table 44-62 GET_MODEL_DETAILS_NB Function Return Values

	Return Value	Description
	
DM_NB_DETAILS

	
Represents a set of rows of type DM_NB_DETAIL. The rows have the following columns:

(target_attribute_name VARCHAR2(30),
 target_attribute_str_value VARCHAR2(4000),
 target_attribute_num_value NUMBER,
 prior_probability NUMBER,
 conditionals DM_CONDITIONALS)

		
The conditionals column of DM_NB_DETAIL returns a nested table of type DM_CONDITIONALS. The rows, of type DM_CONDITIONAL, have the following columns:

 (attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 attribute_str_value VARCHAR2(4000),
 attribute_num_value NUMBER,
 conditional_probability NUMBER)

Usage Notes

The table function pipes out rows of type DM_NB_DETAILS. For information on Data Mining data types and piped output from table functions, see "Data Types".

Examples

The following query is from the sample program dmnbdemo.sql. It returns model details about the model NB_SH_Clas_sample. For information about the sample programs, see Oracle Data Mining Administrator's Guide.

The query creates labels from the bin boundary tables that were used to bin the training data. It replaces the attribute values with the labels. For numeric bins, the labels are (lower_boundary,upper_boundary]; for categorical bins, the label matches the value it represents. (This method of categorical label representation will only work for cases where one value corresponds to one bin.) The target was not binned.

WITH
 bin_label_view AS (
 SELECT col, bin, (DECODE(bin,'1','[','(') || lv || ',' || val || ']') label
 FROM (SELECT col,
 bin,
 LAST_VALUE(val) OVER (
 PARTITION BY col ORDER BY val
 ROWS BETWEEN UNBOUNDED PRECEDING AND 1 PRECEDING) lv,
 val
 FROM nb_sh_sample_num)
 UNION ALL
 SELECT col, bin, val label
 FROM nb_sh_sample_cat
),
 model_details AS (
 SELECT T.target_attribute_name tname,
 TO_CHAR(
 NVL(T.target_attribute_num_value,T.target_attribute_str_value)) tval,
 C.attribute_name pname,
 NVL(L.label, NVL(C.attribute_str_value, C.attribute_num_value)) pval,
 T.prior_probability priorp,
 C.conditional_probability condp
 FROM TABLE(DBMS_DATA_MINING.GET_MODEL_DETAILS_NB('NB_SH_Clas_sample')) T,
 TABLE(T.conditionals) C,
 bin_label_view L
 WHERE C.attribute_name = L.col (+) AND
 (NVL(C.attribute_str_value,C.attribute_num_value) = L.bin(+))
 ORDER BY 1,2,3,4,5,6
)
 SELECT tname, tval, pname, pval, priorp, condp
 FROM model_details
 WHERE ROWNUM < 11;

TNAME TVAL PNAME PVAL PRIORP CONDP
-------------- ---- ------------------------- ------------- ------- -------
AFFINITY_CARD 0 AGE (24,30] .6500 .1714
AFFINITY_CARD 0 AGE (30,35] .6500 .1509
AFFINITY_CARD 0 AGE (35,40] .6500 .1125
AFFINITY_CARD 0 AGE (40,46] .6500 .1134
AFFINITY_CARD 0 AGE (46,53] .6500 .1071
AFFINITY_CARD 0 AGE (53,90] .6500 .1312
AFFINITY_CARD 0 AGE [17,24] .6500 .2134
AFFINITY_CARD 0 BOOKKEEPING_APPLICATION 0 .6500 .1500
AFFINITY_CARD 0 BOOKKEEPING_APPLICATION 1 .6500 .8500
AFFINITY_CARD 0 BULK_PACK_DISKETTES 0 .6500 .3670

GET_MODEL_DETAILS_NMF Function

This table function returns a set of rows that provide the details of a Non-Negative Matrix Factorization model.

Syntax

DBMS_DATA_MINING.GET_MODEL_DETAILS_NMF (
 model_name IN VARCHAR2)
 RETURN DM_NMF_FEATURE_SET PIPELINED;

Parameters

Table 44-63 GET_MODEL_DETAILS_NMF Function Parameters

	Parameter	Description
	
model_name

	
Name of the model in the form [schema_name.]model_name. If you do not specify a schema, your own schema is used.

Return Values

Table 44-64 GET_MODEL_DETAILS_NMF Function Return Values

	Return Value	Description
	
DM_NMF_FEATURE_SET

	
Represents a set of rows of DM_NMF_FEATURE. The rows have the following columns:

(feature_id NUMBER,
 mapped_feature_id VARCHAR2(4000),
 attribute_set DM_NMF_ATTRIBUTE_SET)

	
	
The attribute_set column of DM_NMF_FEATURE returns a nested table of type DM_NMF_ATTRIBUTE_SET. The rows, of type DM_NMF_ATTRIBUTE, have the following columns:

 (attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 attribute_value VARCHAR2(4000),
 coefficient NUMBER)

Usage Notes

The table function pipes out rows of type DM_NMF_FEATURE_SET. For information on Data Mining data types and piped output from table functions, see "Data Types".

Examples

The following example returns model details for the feature extraction model NMF_SH_Sample, which was created by the sample program dmnmdemo.sql. For information about the sample programs, see Oracle Data Mining Administrator's Guide.

SELECT * FROM (
SELECT F.feature_id,
 A.attribute_name,
 A.attribute_value,
 A.coefficient
 FROM TABLE(DBMS_DATA_MINING.GET_MODEL_DETAILS_NMF('NMF_SH_Sample')) F,
 TABLE(F.attribute_set) A
ORDER BY feature_id,attribute_name,attribute_value
) WHERE ROWNUM < 11;

FEATURE_ID ATTRIBUTE_NAME ATTRIBUTE_VALUE COEFFICIENT
--------- ----------------------- ---------------- -------------------
 1 AFFINITY_CARD .051208078859308
 1 AGE .0390513260041573
 1 BOOKKEEPING_APPLICATION .0512734004239326
 1 BULK_PACK_DISKETTES .232471260895683
 1 COUNTRY_NAME Argentina .00766817464479959
 1 COUNTRY_NAME Australia .000157637881096675
 1 COUNTRY_NAME Brazil .0031409632415604
 1 COUNTRY_NAME Canada .00144213099311427
 1 COUNTRY_NAME China .000102279310968754
 1 COUNTRY_NAME Denmark .000242424084307513

GET_MODEL_DETAILS_OC Function

This table function returns a set of rows that provide the details of an O-Cluster clustering model. The rows are an enumeration of the clustering patterns generated during the creation of the model.

You can provide input to GET_MODEL_DETAILS_OC to request specific information about the model, thus improving the performance of the query. If you do not specify filtering parameters, GET_MODEL_DETAILS_OC returns all the information about the model.

Syntax

DBMS_DATA_MINING.GET_MODEL_DETAILS_OC (
 model_name VARCHAR2,
 cluster_id NUMBER DEFAULT NULL,
 attribute VARCHAR2 DEFAULT NULL,
 centroid NUMBER DEFAULT 1,
 histogram NUMBER DEFAULT 1,
 rules NUMBER DEFAULT 2)
RETURN DM_CLUSTERS PIPELINED;

Parameters

Table 44-65 GET_MODEL_DETAILS_OC Function Parameters

	Parameter	Description
	
model_name

	
Name of the model in the form [schema_name.]model_name. If you do not specify a schema, your own schema is used.

	
cluster_id

	
The ID of a cluster in the model. When a valid cluster ID is specified, only the details of this cluster are returned. Otherwise the details for all clusters are returned.

	
attribute

	
The name of an attribute. When a valid attribute name is specified, only the details of this attribute are returned. Otherwise the details for all attributes are returned

	
centroid

	
This parameter accepts the following values:

	
1 — Details about centroids are returned (default)

	
0 — Details about centroids are not returned

	
histogram

	
This parameter accepts the following values:

	
1 — Details about histograms are returned (default)

	
0 — Details about histograms are not returned

	
rules

	
This parameter accepts the following values:

	
2 — Details about rules are returned (default)

	
1 — Rule summaries are returned

	
0 — No information about rules is returned

Return Values

Table 44-66 GET_MODEL_DETAILS_OC Function Return Values

	Return Value	Description
	
DM_CLUSTERS

	
Represents a set of rows of type DM_CLUSTER. The rows have the following columns:

(id NUMBER,
 cluster_id VARCHAR2(4000),
 record_count NUMBER,
 parent NUMBER,
 tree_level NUMBER,
 dispersion NUMBER,
 split_predicate DM_PREDICATES,
 child DM_CHILDREN,
 centroid DM_CENTROIDS,
 histogram DM_HISTOGRAMS,
 rule DM_RULE)

		
The split_predicate column of DM_CLUSTER returns a nested table of type DM_PREDICATES. Each row, of type DM_PREDICATE, has the following columns:

 (attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 conditional_operator CHAR(2) /*=,<>,<,>,<=,>=*/,
 attribute_num_value NUMBER,
 attribute_str_value VARCHAR2(4000),
 attribute_support NUMBER,
 attribute_confidence NUMBER)

	
	
The child column of DM_CLUSTER returns a nested table of type DM_CHILDREN. The rows, of type DM_CHILD, have a single column of type NUMBER, which contains the identifiers of each child.

	
	
The centroid column of DM_CLUSTER returns a nested table of type DM_CENTROIDS. The rows, of type DM_CENTROID, have the following columns:

 (attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 mean NUMBER,
 mode_value VARCHAR2(4000),
 variance NUMBER)

	
	
The histogram column of DM_CLUSTER returns a nested table of type DM_HISTOGRAMS. The rows, of type DM_HISTOGRAM_BIN, have the following columns:

 (attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 bin_id NUMBER,
 lower_bound NUMBER,
 upper_bound NUMBER,
 label VARCHAR2(4000),
 count NUMBER)

	
	
The rule column of DM_CLUSTER returns a single row of type DM_RULE. The columns are:

 (rule_id INTEGER,
 antecedent DM_PREDICATES,
 consequent DM_PREDICATES,
 rule_support NUMBER,
 rule_confidence NUMBER,
 rule_lift NUMBER,
 antecedent_support NUMBER,
 consequent_support NUMBER,
 number_of_items INTEGER)

	
	
The antecedent and consequent columns each return nested tables of type DM_PREDICATES.The rows, of type DM_PREDICATE, have the following columns:

 (attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 conditional_operator CHAR(2)/*=,<>,<,>,<=,>=*/,
 attribute_num_value NUMBER,
 attribute_str_value VARCHAR2(4000),
 attribute_support NUMBER,
 attribute_confidence NUMBER)

Usage Notes

The table function pipes out rows of type DM_CLUSTER. For information about Data Mining data types and piped output from table functions, see "Data Types".

Examples

The following example returns model details for the clustering model OC_SH_Clus_sample, which was created by the sample program dmocdemo.sql. For information about the sample programs, see Oracle Data Mining Administrator's Guide.

For each cluster in this example, the split predicate indicates the attribute and the condition used to assign records to the cluster's children during model build. It provides an important piece of information on how the population within a cluster can be divided up into two smaller clusters.

SELECT clu_id, attribute_name, op, s_value
 FROM (SELECT a.id clu_id, sp.attribute_name, sp.conditional_operator op,
 sp.attribute_str_value s_value
 FROM TABLE(DBMS_DATA_MINING.GET_MODEL_DETAILS_OC(
 'OC_SH_Clus_sample')) a,
 TABLE(a.split_predicate) sp
 ORDER BY a.id, op, s_value)
 WHERE ROWNUM < 11;

 CLU_ID ATTRIBUTE_NAME OP S_VALUE
----------- -------------------- ---------------------------------
 1 OCCUPATION IN ?
 1 OCCUPATION IN Armed-F
 1 OCCUPATION IN Cleric.
 1 OCCUPATION IN Crafts
 2 OCCUPATION IN ?
 2 OCCUPATION IN Armed-F
 2 OCCUPATION IN Cleric.
 3 OCCUPATION IN Exec.
 3 OCCUPATION IN Farming
 3 OCCUPATION IN Handler

GET_MODEL_DETAILS_SVM Function

This table function returns a set of rows that provide the details of a linear Support Vector Machine (SVM) model. If invoked for nonlinear SVM, it returns ORA-40215.

In linear SVM models, only nonzero coefficients are stored. This reduces storage and speeds up model loading. As a result, if an attribute is missing in the coefficient list returned by GET_MODEL_DETAILS_SVM, then the coefficient of this attribute should be interpreted as zero.

Syntax

DBMS_DATA_MINING.GET_MODEL_DETAILS_SVM (
 model_name VARCHAR2,
 reverse_coef NUMBER DEFAULT 0)
 RETURN DM_SVM_LINEAR_COEFF_SET PIPELINED;

Parameters

Table 44-67 GET_MODEL_DETAILS_SVM Function Parameters

	Parameter	Description
	
model_name

	
Name of the model in the form [schema_name.]model_name. If you do not specify a schema, your own schema is used.

	
reverse_coef

	
Whether or not GET_MODEL_DETAILS_SVM should transform the attribute coefficients using the original attribute transformations.

When reverse_coef is set to 0 (default), GET_MODEL_DETAILS_SVM returns the coefficients directly from the model without applying transformations.

When reverse_coef is set to 1, GET_MODEL_DETAILS_SVM transforms the coefficients and bias by applying the normalization shifts and scales that were generated using automatic data preparation.

See Usage Note 4.

Return Values

Table 44-68 GET_MODEL_DETAILS_SVM Function Return Values

	Return Value	Description
	
DM_SVM_LINEAR_COEFF_SET

	
Represents a set of rows of type DM_SVM_LINEAR_COEFF. The rows have the following columns:

(class VARCHAR2(4000),
 attribute_set DM_SVM_ATTRIBUTE_SET)

	
	
The attribute_set column returns a nested table of type DM_SVM_ATTRIBUTE_SET. The rows, of type DM_SVM_ATTRIBUTE, have the following columns:

 (attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 attribute_value VARCHAR2(4000),
 coefficient NUMBER)

See Usage Notes.

Usage Notes

	
This table function pipes out rows of type DM_SVM_LINEAR_COEFF. For information on Data Mining data types and piped output from table functions, see "Data Types".

	
The class column of DM_SVM_LINEAR_COEFF contains classification target values. For SVM regression models, class is null. For each classification target value, a set of coefficients is returned. For binary classification, one-class classification, and regression models, only a single set of coefficients is returned.

	
The attribute_value column in DM_SVM_ATTRIBUTE_SET is used for categorical attributes.

	
GET_MODEL_DETAILS functions preserve model transparency by automatically reversing the transformations applied during the build process. Thus the attributes returned in the model details are the original attributes (or a close approximation of the original attributes) used to build the model.

The coefficients are related to the transformed, not the original, attributes. When returned directly with the model details, the coefficients may not provide meaningful information. If you want GET_MODEL_DETAILS_SVM to transform the coefficients such that they relate to the original attributes, set the reverse_coef parameter to 1.

Examples

The following example returns model details for the SVM classification model SVMC_SH_Clas_sample, which was created by the sample program dmsvcdem.sql. For information about the sample programs, see Oracle Data Mining Administrator's Guide.

WITH
 mod_dtls AS (
 SELECT *
 FROM TABLE(DBMS_DATA_MINING.GET_MODEL_DETAILS_SVM('SVMC_SH_Clas_sample'))
),
 model_details AS (
 SELECT D.class, A.attribute_name, A.attribute_value, A.coefficient
 FROM mod_dtls D,
 TABLE(D.attribute_set) A
 ORDER BY D.class, ABS(A.coefficient) DESC
)
 SELECT class, attribute_name aname, attribute_value aval, coefficient coeff
 FROM model_details
 WHERE ROWNUM < 11;

CLASS ANAME AVAL COEFF
---------- ------------------------- ------------------------- -----
1 -2.85
1 BOOKKEEPING_APPLICATION 1.11
1 OCCUPATION Other -.94
1 HOUSEHOLD_SIZE 4-5 .88
1 CUST_MARITAL_STATUS Married .82
1 YRS_RESIDENCE .76
1 HOUSEHOLD_SIZE 6-8 -.74
1 OCCUPATION Exec. .71
1 EDUCATION 11th -.71
1 EDUCATION Masters .63

GET_MODEL_DETAILS_XML Function

This function returns an XML object that provides the details of a Decision Tree model.

Syntax

DBMS_DATA_MINING.GET_MODEL_DETAILS_XML (
 model_name IN VARCHAR2)
 RETURN XMLTYPE;

Parameters

Table 44-69 GET_MODEL_DETAILS_XML Function Parameters

	Parameter	Description
	
model_name

	
Name of the model in the form [schema_name.]model_name. If you do not specify a schema, your own schema is used.

Return Values

Table 44-70 GET_MODEL_DETAILS_XML Function Return Value

	Return Value	Description
	
XMLTYPE

	
The XML definition for the decision tree model. See Chapter 259, "XMLTYPE" for details.

The XML conforms to the Data Mining Group Predictive Model Markup Language (PMML) version 2.1 specification. The specification is available at http://www.dmg.org.

Usage Notes

Special characters that cannot be displayed by Oracle XML are converted to '#'.

Examples

The following statements in SQL*Plus return the details of the decision tree model dt_sh_clas_sample. This model is created by the program dmdtdemo.sql, one of the sample data mining programs provided with Oracle Database Examples.

Note: The """ characters you will see in the XML output are a result of SQL*Plus behavior. To display the XML in proper format, cut and past it into a file and open the file in a browser.

column dt_details format a320
SELECT
 dbms_data_mining.get_model_details_xml('dt_sh_clas_sample')
 AS DT_DETAILS
FROM dual;

DT_DETAILS
--
<PMML version="2.1">
 <Header copyright="Copyright (c) 2004, Oracle Corporation. All rights
 reserved."/>
 <DataDictionary numberOfFields="9">
 <DataField name="AFFINITY_CARD" optype="categorical"/>
 <DataField name="AGE" optype="continuous"/>
 <DataField name="BOOKKEEPING_APPLICATION" optype="continuous"/>
 <DataField name="CUST_MARITAL_STATUS" optype="categorical"/>
 <DataField name="EDUCATION" optype="categorical"/>
 <DataField name="HOUSEHOLD_SIZE" optype="categorical"/>
 <DataField name="OCCUPATION" optype="categorical"/>
 <DataField name="YRS_RESIDENCE" optype="continuous"/>
 <DataField name="Y_BOX_GAMES" optype="continuous"/>
 </DataDictionary>
 <TreeModel modelName="DT_SH_CLAS_SAMPLE" functionName="classification"
 splitCharacteristic="binarySplit">
 <Extension name="buildSettings">
 <Setting name="TREE_IMPURITY_METRIC" value="TREE_IMPURITY_GINI"/>
 <Setting name="TREE_TERM_MAX_DEPTH" value="7"/>
 <Setting name="TREE_TERM_MINPCT_NODE" value=".05"/>
 <Setting name="TREE_TERM_MINPCT_SPLIT" value=".1"/>
 <Setting name="TREE_TERM_MINREC_NODE" value="10"/>
 <Setting name="TREE_TERM_MINREC_SPLIT" value="20"/>
 <costMatrix>
 <costElement>
 <actualValue>0</actualValue>
 <predictedValue>0</predictedValue>
 <cost>0</cost>
 </costElement>
 <costElement>
 <actualValue>0</actualValue>
 <predictedValue>1</predictedValue>
 <cost>1</cost>
 </costElement>
 <costElement>
 <actualValue>1</actualValue>
 <predictedValue>0</predictedValue>
 <cost>8</cost>
 </costElement>
 <costElement>
 <actualValue>1</actualValue>
 <predictedValue>1</predictedValue>
 <cost>0</cost>
 </costElement>
 </costMatrix>
 </Extension>
 <MiningSchema>
 .
 .
 .
 .
 .
 .
 </Node>
 </Node>
 </TreeModel>
</PMML>

GET_MODEL_SETTINGS Function

The GET_MODEL_SETTINGS function was deprecated in Oracle Data Mining 11g Release 1 (11.1). It was replaced with the data dictionary view *_MINING_MODEL_SETTINGS. USER_, ALL_, and DBA_ versions of the view are available. See Oracle Data Mining Application Developer's Guide.

Oracle recommends that you do not use deprecated procedures in new applications. Support for deprecated features is for backward compatibility only.

	
Note:

See "Deprecated Subprograms"

This table function returns the list of settings that were used to build the model.

Syntax

DBMS_DATA_MINING.GET_MODEL_SETTINGS(
 model_name IN VARCHAR2)
 RETURN DM_MODEL_SETTINGS PIPELINED;

Parameters

Table 44-71 GET_MODEL_SETTINGS Function Parameters

	Parameter	Description
	
model_name

	
Name of the model in the form [schema_name.]model_name. If you do not specify a schema, your own schema is used.

Return Values

Table 44-72 GET_MODEL_SETTINGS Function Return Values

	Return Value	Description
	
DM_MODEL_SETTINGS

	
Represents a set of rows of type DM_MODEL_SETTING. The rows have the following columns:

(setting_name VARCHAR2(30),
setting_value VARCHAR2(128))

Usage Notes

The table function pipes out rows of type DM_MODEL_SETTING. For information about Data Mining data types and piped output from table functions, see "Data Types".

You can use this table function to determine the settings that were used to build the model. This is purely for informational purposes only — you cannot alter the model to adopt new settings.

Examples

Assume that you have built a classification model census_model using the Naive Bayes algorithm. You can retrieve the model settings using Oracle SQL as follows:

SELECT setting_name, setting_value
 FROM TABLE(DBMS_DATA_MINING.GET_MODEL_SETTINGS('census_model'));

GET_MODEL_SIGNATURE Function

The GET_MODEL_SIGNATURE function was deprecated in Oracle Data Mining 11g Release 1 (11.1). It was replaced with the data dictionary view *_MINING_MODEL_ATTRIBUTES. USER_, ALL_, and DBA_ versions of the view are available. See Oracle Data Mining Application Developer's Guide.

Oracle recommends that you do not use deprecated procedures in new applications. Support for deprecated features is for backward compatibility only.

	
Note:

See "Deprecated Subprograms"

This table function returns the model signature, which lists the column attributes used to build the model and which should be present in the scoring data.

The case identifier is not considered a mining attribute. For classification and regression models, the target attribute is also not considered part of the model signature.

	
See Also:

Instead of using the GET_MODEL_SIGNATURE function, you can query the data dictionary view, ALL_MINING_MODEL_ATTRIBUTES. See the Oracle Data Mining Application Developer's Guide.

Syntax

DBMS_DATA_MINING.GET_MODEL_SIGNATURE(
 model_name IN VARCHAR2)
RETURN DM_MODEL_SIGNATURE PIPELINED;

Parameters

Table 44-73 GET_MODEL_SIGNATURE Function Parameters

	Parameter	Description
	
model_name

	
Name of the model in the form [schema_name.]model_name. If you do not specify a schema, your own schema is used.

Return Values

Table 44-74 GET_MODEL_SIGNATURE Function Return Values

	Return Value	Description
	
DM_MODEL_SIGNATURE

	
Represents a set of rows of type DM_MODEL_SIGNATURE_ATTRIBUTE. The rows have the following columns:

(attribute_name VARCHAR2(30),
 attribute_type VARCHAR2(106))

Usage Notes

This table function pipes out rows of type DM_MODEL_SIGNATURE. For information on Data Mining data types and piped output from table functions, see "Data Types".

Examples

Assume that you have built a classification model census_model using the Naive Bayes algorithm. You can retrieve the model details using Oracle SQL as follows:

SELECT attribute_name, attribute_type
 FROM TABLE(DBMS_DATA_MINING.GET_MODEL_SIGNATURE('census_model');

GET_MODEL_TRANSFORMATIONS Function

This function returns the transformation expressions embedded in the specified model.

	
See Also:

"About Transformation Lists"

"GET_TRANSFORM_LIST Procedure"

"CREATE_MODEL Procedure"

Syntax

DBMS_DATA_MINING.GET_MODEL_TRANSFORMATIONS (
 model_name IN VARCHAR2)
RETURN DM_TRANSFORMS PIPELINED;

Parameters

Table 44-75 GET_MODEL_TRANSFORMATIONS Function Parameters

	Parameter	Description
	
model_name

	
Name of the model in the form [schema_name.]model_name. If you do not specify a schema, your own schema is used.

Return Values

Table 44-76 GET_MODEL_TRANSFORMATIONS Function Return Value

	Return Value	Description
	
DM_TRANSFORMS

	
The transformation expressions embedded in model_name.

The DM_TRANSFORMS type is a table of DM_TRANSFORM objects. Each DM_TRANSFORM has these fields:

attribute_name VARCHAR2(4000)
attribute_subname VARCHAR2(4000)
expression CLOB
reverse_expression CLOB

Usage Notes

When Automatic Data Preparation (ADP) is enabled, both automatic and user-defined transformations may be associated with an attribute. In this case, the user-defined transformations are evaluated before the automatic transformations.

Examples

In this example, several columns in the SH.CUSTOMERS table are used to create a Naive Bayes model. A transformation expression is specified for one of the columns. The model does not use ADP.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_year_of_birth, cust_income_level,cust_credit_limit
 FROM sh.customers;

describe mining_data
 Name Null? Type
 -------------------------------------- -------- --------------------------
 CUST_ID NOT NULL NUMBER
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)
 CUST_INCOME_LEVEL VARCHAR2(30)
 CUST_CREDIT_LIMIT NUMBER

CREATE TABLE settings_nb(
 setting_name VARCHAR2(30),
 setting_value VARCHAR2(30));
BEGIN
 INSERT INTO settings_nb (setting_name, setting_value) VALUES
 (dbms_data_mining.algo_name, dbms_data_mining.algo_naive_bayes);
 INSERT INTO settings_nb (setting_name, setting_value) VALUES
 (dbms_data_mining.prep_auto, dbms_data_mining.prep_auto_off);
 COMMIT;
END;
/
DECLARE
 mining_data_xforms dbms_data_mining_transform.TRANSFORM_LIST;
 BEGIN
 dbms_data_mining_transform.SET_TRANSFORM (
 xform_list => mining_data_xforms,
 attribute_name => 'cust_year_of_birth',
 attribute_subname => null,
 expression => 'cust_year_of_birth + 10',
 reverse_expression => 'cust_year_of_birth - 10');
 dbms_data_mining.CREATE_MODEL (
 model_name => 'new_model',
 mining_function => dbms_data_mining.classification,
 data_table_name => 'mining_data',
 case_id_column_name => 'cust_id',
 target_column_name => 'cust_income_level',
 settings_table_name => 'settings_nb',
 data_schema_name => nulL,
 settings_schema_name => null,
 xform_list => mining_data_xforms);
 END;
 /
SELECT attribute_name, TO_CHAR(expression), TO_CHAR(reverse_expression)
 FROM TABLE (dbms_data_mining.GET_MODEL_TRANSFORMATIONS('new_model'));

ATTRIBUTE_NAME TO_CHAR(EXPRESSION) TO_CHAR(REVERSE_EXPRESSION)
------------------ ------------------------ -----------------------------
CUST_YEAR_OF_BIRTH cust_year_of_birth + 10 cust_year_of_birth - 10

GET_TRANSFORM_LIST Procedure

This procedure converts transformation expressions specified as DM_TRANSFORMS to a transformation list (TRANSFORM_LIST) that can be used in creating a model. DM_TRANSFORMS is returned by the GET_MODEL_TRANSFORMATIONS function.

You can also use routines in the DBMS_DATA_MINING_TRANSFORM package to construct a transformation list.

	
See Also:

"About Transformation Lists"

"GET_MODEL_TRANSFORMATIONS Function"

"CREATE_MODEL Procedure"

Syntax

DBMS_DATA_MINING.GET_TRANSFORM_LIST (
 xform_list OUT NOCOPY TRANSFORM_LIST,
 model_xforms IN DM_TRANSFORMS);

Parameters

Table 44-77 GET_TRANSFORM_LIST Procedure Parameters

	Parameter	Description
	
xform_list

	
A list of transformation specifications that can be embedded in a model. Accepted as a parameter to the CREATE_MODEL Procedure.

The TRANSFORM_LIST type is a table of TRANSFORM_REC objects. Each TRANSFORM_REC has these fields:

attribute_name VARCHAR2(30)
attribute_subname VARCHAR2(4000)
expression EXPRESSION_REC
reverse_expression EXPRESSION_REC
attribute_spec VARCHAR2(4000)

For details about the TRANSFORM_LIST collection type, see Table 45-1, "Data Types in DBMS_DATA_MINING_TRANSFORM".

	
model_xforms

	
A list of embedded transformation expressions returned by the GET_MODEL_TRANSFORMATIONS Function for a specific model.

The DM_TRANSFORMS type is a table of DM_TRANSFORM objects. Each DM_TRANSFORM has these fields:

attribute_name VARCHAR2(4000)
attribute_subname VARCHAR2(4000)
expression CLOB
reverse_expression CLOB

Examples

In this example, a model mod1 is trained using several columns in the SH.CUSTOMERS table. The model uses ADP, which automatically bins one of the columns.

A second model mod2 is trained on the same data without ADP, but it uses a transformation list that was obtained from mod1. As a result, both mod1 and mod2 have the same embedded transformation expression.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_year_of_birth, cust_income_level, cust_credit_limit
 FROM sh.customers;

describe mining_data
 Name Null? Type
 --- -------- ----------------------------
 CUST_ID NOT NULL NUMBER
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)
 CUST_INCOME_LEVEL VARCHAR2(30)
 CUST_CREDIT_LIMIT NUMBER

CREATE TABLE setmod1(setting_name VARCHAR2(30),setting_value VARCHAR2(30));
BEGIN
 INSERT INTO setmod1 VALUES (dbms_data_mining.algo_name, dbms_data_mining.algo_naive_bayes);
 INSERT INTO setmod1 VALUES (dbms_data_mining.prep_auto,dbms_data_mining.prep_auto_on);
 dbms_data_mining.CREATE_MODEL (
 model_name => 'mod1',
 mining_function => dbms_data_mining.classification,
 data_table_name => 'mining_data',
 case_id_column_name => 'cust_id',
 target_column_name => 'cust_income_level',
 settings_table_name => 'setmod1');
 COMMIT;
END;
/
CREATE TABLE setmod2(setting_name VARCHAR2(30),setting_value VARCHAR2(30));
BEGIN
 INSERT INTO setmod2
 VALUES (dbms_data_mining.algo_name, dbms_data_mining.algo_naive_bayes);
 COMMIT;
END;
/
DECLARE
 v_xform_list dbms_data_mining_transform.TRANSFORM_LIST;
 dmxf DM_TRANSFORMS;
BEGIN
 EXECUTE IMMEDIATE
 'SELECT dm_transform(attribute_name, attribute_subname,expression, reverse_expression)
 FROM TABLE(dbms_data_mining.GET_MODEL_TRANSFORMATIONS (''mod1''))'
 BULK COLLECT INTO dmxf;
 dbms_data_mining.GET_TRANSFORM_LIST (
 xform_list => v_xform_list,
 model_xforms => dmxf);
 dbms_data_mining.CREATE_MODEL(
 model_name => 'mod2',
 mining_function => dbms_data_mining.classification,
 data_table_name => 'mining_data',
 case_id_column_name => 'cust_id',
 target_column_name => 'cust_income_level',
 settings_table_name => 'setmod2',
 xform_list => v_xform_list);
END;
/

-- Transformation expression embedded in mod1
SELECT TO_CHAR(expression) FROM TABLE (dbms_data_mining.GET_MODEL_TRANSFORMATIONS('mod1'));

TO_CHAR(EXPRESSION)
--
CASE WHEN "CUST_YEAR_OF_BIRTH"<1915 THEN 0 WHEN "CUST_YEAR_OF_BIRTH"<=1915 THEN 0
WHEN "CUST_YEAR_OF_BIRTH"<=1920.5 THEN 1 WHEN "CUST_YEAR_OF_BIRTH"<=1924.5 THEN 2
.
.
.
.5 THEN 29 WHEN "CUST_YEAR_OF_BIRTH" IS NOT NULL THEN 30 END

-- Transformation expression embedded in mod2
SELECT TO_CHAR(expression) FROM TABLE (dbms_data_mining.GET_MODEL_TRANSFORMATIONS('mod2'));

TO_CHAR(EXPRESSION)
--
CASE WHEN "CUST_YEAR_OF_BIRTH"<1915 THEN 0 WHEN "CUST_YEAR_OF_BIRTH"<=1915 THEN 0
WHEN "CUST_YEAR_OF_BIRTH"<=1920.5 THEN 1 WHEN "CUST_YEAR_OF_BIRTH"<=1924.5 THEN 2
.
.
.
.5 THEN 29 WHEN "CUST_YEAR_OF_BIRTH" IS NOT NULL THEN 30 END

-- Reverse transformation expression embedded in mod1
SELECT TO_CHAR(reverse_expression)FROM TABLE (dbms_data_mining.GET_MODEL_TRANSFORMATIONS('mod1'));

TO_CHAR(REVERSE_EXPRESSION)
--
DECODE("CUST_YEAR_OF_BIRTH",0,'(; 1915), [1915; 1915]',1,'(1915; 1920.5]',2,'(1
920.5; 1924.5]',3,'(1924.5; 1928.5]',4,'(1928.5; 1932.5]',5,'(1932.5; 1936.5]',6
.
.
.
8,'(1987.5; 1988.5]',29,'(1988.5; 1989.5]',30,'(1989.5;)',NULL,'NULL')

-- Reverse transformation expression embedded in mod2
SELECT TO_CHAR(reverse_expression) FROM TABLE (dbms_data_mining.GET_MODEL_TRANSFORMATIONS('mod2'));

TO_CHAR(REVERSE_EXPRESSION)
--
DECODE("CUST_YEAR_OF_BIRTH",0,'(; 1915), [1915; 1915]',1,'(1915; 1920.5]',2,'(1
920.5; 1924.5]',3,'(1924.5; 1928.5]',4,'(1928.5; 1932.5]',5,'(1932.5; 1936.5]',6
.
.
.
8,'(1987.5; 1988.5]',29,'(1988.5; 1989.5]',30,'(1989.5;)',NULL,'NULL')

IMPORT_MODEL Procedure

This procedure imports one or more data mining models. The procedure is overloaded. You can call it to import mining models from a dump file set, or you can call it to import a single mining model from a PMML document.

Import from a dump file set

You can import mining models from a dump file set that was created by the EXPORT_MODEL Procedure. IMPORT_MODEL and EXPORT_MODEL use Oracle Data Pump technology to export to and import from a dump file set.

When Oracle Data Pump is used directly to export/import an entire schema or database, the mining models in the schema or database are included. EXPORT_MODEL and IMPORT_MODEL export/import mining models only.

Import from PMML

This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2) Data Mining.

You can import a mining model represented in Predictive Model Markup Language (PMML). The model must be of type RegressionModel, either linear regression or binary logistic regression.

PMML is an XML-based standard specified by the Data Mining Group (http://www.dmg.org). Applications that are PMML-compliant can deploy PMML-compliant models that were created by any vendor. Oracle Data Mining supports the core features of PMML 3.1 for regression models.

	
See Also:

Oracle Data Mining Administrator's Guide for more information about exporting and importing mining models

Oracle Database Utilities for information about Oracle Data Pump

http://www.dmg.org/faq.html for more information about PMML

Syntax

Imports a mining model from a dump file set:

DBMS_DATA_MINING.IMPORT_MODEL (
 filename IN VARCHAR2,
 directory IN VARCHAR2,
 model_filter IN VARCHAR2 DEFAULT NULL,
 operation IN VARCHAR2 DEFAULT NULL,
 remote_link IN VARCHAR2 DEFAULT NULL,
 jobname IN VARCHAR2 DEFAULT NULL,
 schema_remap IN VARCHAR2 DEFAULT NULL);

Imports a mining model from a PMML document:

DBMS_DATA_MINING.IMPORT_MODEL (
 model_name IN VARCHAR2,
 pmmldoc IN XMLTYPE);

Parameters

Table 44-78 IMPORT_MODEL Procedure Parameters

	Parameter	Description
	
filename

	
Name of the dump file set from which the models should be imported. The dump file set must have been created by the EXPORT_MODEL procedure or the expdp export utility of Oracle Data Pump.

The dump file set can contain one or more files. (Refer to "EXPORT_MODEL Procedure" for details.) If the dump file set contains multiple files, you can specify 'filename%U' instead of listing them. For example, if your dump file set contains 3 files, archive01.dmp, archive02.dmp, and archive03.dmp, you can import them by specifying 'archive%U'.

	
directory

	
Name of a pre-defined directory object that specifies where the dump file set is located. Both the exporting and the importing user must have read/write access to the directory object and to the file system directory that it identifies.

Note: The target database must have also have read/write access to the file system directory.

	
model_filter

	
Optional parameter that specifies one or more models to import. If you do not specify a value for model_filter, all models in the dump file set are imported. You can also specify NULL (the default) or 'ALL' to import all models.

The value of model_filter can be one or more model names. The following are valid filters.

'mymodel1'
'name IN (''mymodel2'',''mymodel3'')'

The first causes IMPORT_MODEL to import a single model named mymodel1. The second causes IMPORT_MODEL to import two models, mymodel2 and mymodel3.

	
operation

	
Optional parameter that specifies whether to import the models or the SQL statements that create the models. By default, the models are imported.

You can specify either of the following values for operation:

	
'IMPORT' — Import the models (Default)

	
'SQL_FILE'— Write the SQL DDL for creating the models to a text file. The text file is named job_name.sql and is located in the dump set directory.

	
remote_link

	
Optional parameter not used in this release. Set to NULL

	
jobname

	
Optional parameter that specifies the name of the import job. By default, the name has the form username_imp_nnnn, where nnnn is a number. For example, a job name in the SCOTT schema might be SCOTT_imp_134.

If you specify a job name, it must be unique within the schema. The maximum length of the job name is 30 characters.

A log file for the import job, named jobname.log, is created in the same directory as the dump file set.

	
schema_remap

	
Optional parameter for importing into a different schema. By default, models are exported and imported within the same schema.

If the dump file set belongs to a different schema, you must specify a schema mapping in the form export_user:import_user. For example, you would specify 'SCOTT:MARY' to import a model exported by SCOTT into the MARY schema.

Note: In some cases, you may need to have the IMP_FULL_DATABASE privilege or the SYS role to import a model from a different schema.

	
model_name

	
Name for the new model that will be created in the database as a result of an import from PMML The name must be unique within the user's schema.

	
pmmldoc

	
The PMML document representing the model to be imported. The PMML document has an XMLTYPE object type. See Chapter 259, "XMLTYPE" for details.

Usage Notes

The following notes pertain to mining model import based on Oracle Data Pump.

Mining models are stored in the default tablespace of the mining model owner, or in a tablespace to which the owner has access. The tablespace must also exist in the target database, and the target user must have access to it. If the tablespace does not exist in the target database, you must create it before importing the models.

For example, if the models were created in schema DMUSER and the default tablespace for DMUSER is USERS, then the USERS tablespace must exist in the target database. You can create the USERS tablespace and grant access to a target user with appropriate tablespace quota as follows.

connect / as sysdba;
create tablespace USERS datafile 'data_file_name' size 200M autoextend on;
alter user target_user quota unlimited on USERS;

Examples

	
This example shows a model being exported and imported within the schema dmuser2. Then the same model is imported into the dmuser3 schema. The dmuser3 user has the IMP_FULL_DATABASE privilege.

SQL> connect dmuser2
Enter password: dmuser2_password
Connected.
SQL> select model_name from user_mining_models;

MODEL_NAME

NMF_SH_SAMPLE
SVMO_SH_CLAS_SAMPLE
SVMR_SH_REGR_SAMPLE

-- export the model called NMF_SH_SAMPLE to a dump file in same schema
SQL>EXECUTE DBMS_DATA_MINING.EXPORT_MODEL ('NMF_SH_SAMPLE_out', 'DATA_PUMP_DIR',
 'name = ''NMF_SH_SAMPLE''');
-- import the model back into the same schema
SQL>EXECUTE DBMS_DATA_MINING.IMPORT_MODEL ('NMF_SH_SAMPLE_out01.dmp',
 'DATA_PUMP_DIR', 'name = ''NMF_SH_SAMPLE''');

-- connect as different user
-- import same model into that schema
SQL> connect dmuser3
Enter password: dmuser3_password
Connected.
SQL>EXECUTE DBMS_DATA_MINING.IMPORT_MODEL ('NMF_SH_SAMPLE_out01.dmp',
 'DATA_PUMP_DIR', 'name = ''NMF_SH_SAMPLE''',
 'IMPORT', NULL, 'nmf_imp_job', 'dmuser2:dmuser3');

The following example shows user MARY importing all models from a dump file, model_exp_001.dmp, which was created by user SCOTT. The dump file is located in the file system directory mapped to a directory object called DM_DUMP. If user MARY does not have IMP_FULL_DATABASE privileges, IMPORT_MODEL will raise an error.

-- import all models
DECLARE
 file_name VARCHAR2(40);
BEGIN
 file_name := 'model_exp_001.dmp';
 DBMS_DATA_MINING.IMPORT_MODEL(
 filename=>file_name,
 directory=>'DM_DUMP', schema_remap=>'SCOTT:MARY');
 DBMS_OUTPUT.PUT_LINE(
'DBMS_DATA_MINING.IMPORT_MODEL of all models from SCOTT done!');
END;
/

	
This example shows how a PMML document called SamplePMML1.xml could be imported from a location referenced by directory object PMMLDIR into the schema of the current user. The imported model will be called PMMLMODEL1.

BEGIN
 dbms_data_mining.import_model ('PMMLMODEL1',
 XMLType (bfilename ('PMMLDIR', 'SamplePMML1.xml'),
 nls_charset_id ('AL32UTF8')
));
END;

RANK_APPLY Procedure

This procedure ranks the results of an APPLY operation based on a top-N specification for predictive and descriptive model results. For classification models, you can provide a cost matrix as input, and obtain the ranked results with costs applied to the predictions.

Syntax

DBMS_DATA_MINING.RANK_APPLY (
 apply_result_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 score_column_name IN VARCHAR2,
 score_criterion_column_name IN VARCHAR2,
 ranked_apply_table_name IN VARCHAR2,
 top_N IN INTEGER DEFAULT 1,
 cost_matrix_table_name IN VARCHAR2 DEFAULT NULL,
 apply_result_schema_name IN VARCHAR2 DEFAULT NULL,
 cost_matrix_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 44-79 RANK_APPLY Procedure Parameters

	Parameter	Description
	
apply_result_table_name

	
Name of the table or view containing the results of an APPLY operation on the test dataset (see Usage Notes)

	
case_id_column_name

	
Name of the case identifier column. This must be the same as the one used for generating APPLY results.

	
score_column_name

	
Name of the prediction column in the apply results table

	
score_criterion_column_name

	
Name of the probability column in the apply results table

	
ranked_apply_result_tab_name

	
Name of the table containing the ranked apply results

	
top_N

	
Top N predictions to be considered from the APPLY results for precision recall computation

	
cost_matrix_table_name

	
Name of the cost matrix table

	
apply_result_schema_name

	
Name of the schema hosting the APPLY results table

	
cost_matrix_schema_name

	
Name of the schema hosting the cost matrix table

Usage Notes

You can use RANK_APPLY to generate ranked apply results, based on a top-N filter and also with application of cost for predictions, if the model was built with costs.

The behavior of RANK_APPLY is similar to that of APPLY with respect to other DDL-like operations such as CREATE_MODEL, DROP_MODEL, and RENAME_MODEL. The procedure does not depend on the model; the only input of relevance is the apply results generated in a fixed schema table from APPLY.

The main intended use of RANK_APPLY is for the generation of the final APPLY results against the scoring data in a production setting. You can apply the model against test data using APPLY, compute various test metrics against various cost matrix tables, and use the candidate cost matrix for RANK_APPLY.

The schema for the apply results from each of the supported algorithms is listed in subsequent sections. The case_id column will be the same case identifier column as that of the apply results.

Classification Models — NB, ABN, SVM

For numerical targets, the ranked results table will have the definition as shown:

(case_id VARCHAR2/NUMBER,
prediction NUMBER,
probability NUMBER,
cost NUMBER,
rank INTEGER)

For categorical targets, the ranked results table will have the following definition:

(case_id VARCHAR2/NUMBER,
prediction VARCHAR2,
probability NUMBER,
cost NUMBER,
rank INTEGER)

Clustering using k-Means or O-Cluster

Clustering is an unsupervised mining function, and hence there are no targets. The results of an APPLY operation contains simply the cluster identifier corresponding to a case, and the associated probability. Cost matrix is not considered here. The ranked results table will have the definition as shown, and contains the cluster ids ranked by top-N.

(case_id VARCHAR2/NUMBER,
cluster_id NUMBER,
probability NUMBER,
rank INTEGER)

Feature Extraction using NMF

Feature extraction is also an unsupervised mining function, and hence there are no targets. The results of an APPLY operation contains simply the feature identifier corresponding to a case, and the associated match quality. Cost matrix is not considered here. The ranked results table will have the definition as shown, and contains the feature ids ranked by top-N.

(case_id VARCHAR2/NUMBER,
feature_id NUMBER,
match_quality NUMBER,
rank INTEGER)

Examples

BEGIN
/* build a model with name census_model.
 * (See example under CREATE_MODEL)
 */

/* if training data was pre-processed in any manner,
 * perform the same pre-processing steps on apply
 * data also.
 * (See examples in the section on DBMS_DATA_MINING_TRANSFORM)
 */

/* apply the model to data to be scored */
DBMS_DATA_MINING.RANK_APPLY(
 apply_result_table_name => 'census_apply_result',
 case_id_column_name => 'person_id',
 score_column_name => 'prediction',
 score_criterion_column_name => 'probability
 ranked_apply_result_tab_name => 'census_ranked_apply_result',
 top_N => 3,
 cost_matrix_table_name => 'census_cost_matrix');
END;
/

-- View Ranked Apply Results
SELECT *
 FROM census_ranked_apply_result;

REMOVE_COST_MATRIX Procedure

Removes the default scoring matrix from a classification model.

	
See Also:

	
"ADD_COST_MATRIX Procedure"

	
"REMOVE_COST_MATRIX Procedure"

Syntax

DBMS_DATA_MINING.REMOVE_COST_MATRIX (
 model_name IN VARCHAR2);

Parameters

Table 44-80 Remove_Cost_Matrix Procedure Parameters

	Parameter	Description
	
model_name

	
Name of the model in the form [schema_name.]model_name. If you do not specify a schema, your own schema is used.

Usage Notes

If the model is not in your schema, then REMOVE_COST_MATRIX requires the ALTER ANY MINING MODEL system privilege or the ALTER object privilege for the mining model.

Example

The Naive Bayes model NB_SH_CLAS_SAMPLE has an associated cost matrix that can be used for scoring the model.

SQL>SELECT *
 FROM TABLE(dbms_data_mining.get_model_cost_matrix('nb_sh_clas_sample'))
 ORDER BY predicted, actual;

ACTUAL PREDICTED COST
---------- ---------- ----------
0 0 0
1 0 .75
0 1 .25
1 1 0

You can remove the cost matrix with REMOVE_COST_MATRIX.

SQL>EXECUTE dbms_data_mining.remove_cost_matrix('nb_sh_clas_sample');

SQL>SELECT *
 FROM TABLE(dbms_data_mining.get_model_cost_matrix('nb_sh_clas_sample'))
 ORDER BY predicted, actual;

no rows selected

RENAME_MODEL Procedure

This procedure renames a mining model to a new name that you specify.

The model name is in the form [schema_name.]model_name. If you do not specify a schema, your own schema is used. For mining model naming restrictions, see "Mining Model Naming Restrictions".

Syntax

DBMS_DATA_MINING.RENAME_MODEL (
 model_name IN VARCHAR2,
 new_model_name IN VARCHAR2);

Parameters

Table 44-81 RENAME_MODEL Procedure Parameters

	Parameter	Description
	
model_name

	
Old name of the model

	
new_model_name

	
New name of the model.

Usage Notes

If an APPLY operation is using a model, and you attempt to rename the model during that time, the RENAME will succeed and APPLY will return indeterminate results.

Examples

Assume the existence of a model census_model. The following example shows how to rename this model.

BEGIN
 DBMS_DATA_MINING.RENAME_MODEL(
 model_name => 'census_model',
 new_model_name => 'census_new_model');
END;
/

45 DBMS_DATA_MINING_TRANSFORM

DBMS_DATA_MINING_TRANSFORM implements a set of transformations that are commonly used in data mining and provides a framework that you can use for specifying your own transformations.

	
See Also:

	
Chapter 44, "DBMS_DATA_MINING"

	
Oracle Data Mining Concepts

This chapter contains the following topics:

	
Using DBMS_DATA_MINING_TRANSFORM

	
Overview

	
Operational Notes

	
Security Model

	
Types

	
Constants

	
Summary of DBMS_DATA_MINING_TRANSFORM Subprograms

Using DBMS_DATA_MINING_TRANSFORM

This section contains topics that relate to using the DBMS_DATA_MINING_TRANSFORM package.

	
Overview

	
Operational Notes

	
Security Model

	
Types

	
Constants

Overview

A transformation is a SQL expression that modifies the data in one or more columns.

Data must typically undergo certain transformations before it can be used to build a mining model. Many data mining algorithms have specific transformation requirements.

Data that will be scored must be transformed in the same way as the data that was used to create (train) the model.

External or Embedded Transformations

DBMS_DATA_MINING_TRANSFORM offers two approaches to implementing transformations. For a given model, you can either:

	
Create a list of transformation expressions and pass it to the CREATE_MODEL Procedure

or

	
Create a view that implements the transformations and pass the name of the view to the CREATE_MODEL Procedure

If you create a transformation list and pass it to CREATE_MODEL, the transformation expressions are embedded in the model and automatically implemented whenever the model is applied.

If you create a view, the transformation expressions are external to the model. You will need to re-create the transformations whenever you apply the model.

	
Note:

Embedded transformations significantly enhance the model's usability while simplifying the process of model management.

Automatic Transformations

Oracle Data Mining supports an Automatic Data Preparation (ADP) mode. When ADP is enabled, most algorithm-specific transformations are automatically embedded. Any additional transformations must be explicitly provided in an embedded transformation list or in a view.

If ADP is enabled and you create a model with a transformation list, both sets of transformations are embedded. The model will execute the user-specified transformations from the transformation list before executing the automatic transformations specified by ADP.

Within a transformation list, you can selectively disable ADP for individual attributes.

	
See Also:

"Automatic Data Preparation"

Oracle Data Mining Concepts for a list of the algorithm-specific transformations implemented by ADP

"About Transformation Lists"

Transformations in DBMS_DATA_MINING_TRANSFORM

The transformations supported by DBMS_DATA_MINING_TRANSFORM are summarized in this section.

Binning

Binning refers to the mapping of continuous or discrete values to discrete values of reduced cardinality.

	
Supervised Binning (Categorical and Numerical)

Binning is based on intrinsic relationships in the data as determined by a decision tree model.

See "INSERT_BIN_SUPER Procedure".

	
Top-N Frequency Categorical Binning

Binning is based on the number of cases in each category.

See "INSERT_BIN_CAT_FREQ Procedure"

	
Equi-Width Numerical Binning

Binning is based on equal-range partitions.

See "INSERT_BIN_NUM_EQWIDTH Procedure".

	
Quantile Numerical Binning

Binning is based on quantiles computed using the SQL NTILE function.

See "INSERT_BIN_NUM_QTILE Procedure".

Linear Normalization

Normalization is the process of scaling continuous values down to a specific range, often between zero and one. Normalization transforms each numerical value by subtracting a number (the shift) and dividing the result by another number (the scale).

x_new = (x_old-shift)/scale

	
Min-Max Normalization

Normalization is based on the minimum and maximum with the following shift and scale:

shift = min
scale = max-min

See "INSERT_NORM_LIN_MINMAX Procedure".

	
Scale Normalization

Normalization is based on the minimum and maximum with the following shift and scale:

shift = 0
scale = max{abs(max), abs(min)}

See "INSERT_NORM_LIN_SCALE Procedure".

	
Z-Score Normalization

Normalization is based on the mean and standard deviation with the following shift and scale:

shift = mean
scale = standard_deviation

See "INSERT_NORM_LIN_ZSCORE Procedure".

Outlier Treatment

An outlier is a numerical value that is located far from the rest of the data. Outliers can artificially skew the results of data mining.

	
Winsorizing

Outliers are replaced with the nearest value that is not an outlier.

See "INSERT_CLIP_WINSOR_TAIL Procedure"

	
Trimming

Outliers are set to NULL.

See "INSERT_CLIP_TRIM_TAIL Procedure".

Missing Value Treatment

Missing data may indicate sparsity or it may indicate that some values are missing at random. DBMS_DATA_MINING_TRANSFORM supports the following transformations for minimizing the effects of missing values:

	
Missing numerical values are replaced with the mean.

See "INSERT_MISS_NUM_MEAN Procedure".

	
Missing categorical values are replaced with the mode.

See "INSERT_MISS_CAT_MODE Procedure".

	
Note:

Oracle Data Mining also has default mechanisms for handling missing data. See Oracle Data Mining Application Developer's Guide for details.

Operational Notes

The DBMS_DATA_MINING_TRANSFORM package offers a flexible framework for specifying data transformations. If you choose to embed transformations in the model (the preferred method), you will create a transformation list object and pass it to the CREATE_MODEL Procedure. If you choose to transform the data without embedding, you will create a view.

When specified in a transformation list, the transformation expressions are executed by the model. When specified in a view, the transformation expressions are executed by the view.

Transformation Definitions

Transformation definitions are used to generate the SQL expressions that transform the data. For example, the transformation definitions for normalizing a numeric column are the shift and scale values for that data.

With the DBMS_DATA_MINING_TRANSFORM package, you can call procedures to compute the transformation definitions, or you can compute them yourself, or you can do both.

Transformation Definition Tables

DBMS_DATA_MINING_TRANSFORM provides INSERT procedures that compute transformation definitions and insert them in transformation definition tables. You can modify the values in the transformation definition tables or populate them yourself.

XFORM routines use populated definition tables to transform data in external views. STACK routines use populated definition tables to build transformation lists.

To specify transformations based on definition tables, follow these steps:

	
Use CREATE routines to create transformation definition tables.

The tables have columns to hold the transformation definitions for a given type of transformation. For example, the CREATE_BIN_NUM Procedure creates a definition table that has a column for storing data values and another column for storing the associated bin identifiers.

	
Use INSERT routines to compute and insert transformation definitions in the tables.

Each INSERT routine uses a specific technique for computing the transformation definitions. For example, the INSERT_BIN_NUM_EQWIDTH Procedure computes bin boundaries by identifying the minimum and maximum values then setting the bin boundaries at equal intervals.

	
Use STACK or XFORM routines to generate transformation expressions based on the information in the definition tables:

	
Use STACK routines to add the transformation expressions to a transformation list. Pass the transformation list to the CREATE_MODEL Procedure. The transformation expressions will be assembled into one long SQL query and embedded in the model.

	
Use XFORM routines to execute the transformation expressions within a view. The transformations will be external to the model and will need to be re-created whenever the model is applied to new data.

Transformations Without Definition Tables

STACK routines are not the only method for adding transformation expressions to a transformation list. You can also build a transformation list without using definition tables.

To specify transformations without using definition tables, follow these steps:

	
Write a SQL expression for transforming an attribute.

	
Write a SQL expression for reversing the transformation. (See "Reverse Transformations and Model Transparency".)

	
Determine whether or not to disable ADP for the attribute. By default ADP is enabled for the attribute if it is specified for the model. (See "Disabling Automatic Data Preparation".)

	
Specify the SQL expressions and ADP instructions in a call to the SET_TRANSFORM Procedure, which adds the information to a transformation list.

	
Repeat steps 1 through 4 for each attribute that you wish to transform.

	
Pass the transformation list to the CREATE_MODEL Procedure. The transformation expressions will be assembled into one long SQL query and embedded in the model.

	
Note:

SQL expressions that you specify with SET_TRANSFORM must fit within a VARCHAR2. To specify a longer expression, you can use the SET_EXPRESSION Procedure. With SET_EXPRESSION, you can build an expression by appending rows to a VARCHAR2 array.

About Transformation Lists

The elements of a transformation list are transformation records. Each transformation record provides all the information needed by the model for managing the transformation of a single attribute.

Each transformation record includes the following fields:

	
attribute_name — Name of the column of data to be transformed

	
attribute_subname — Name of the nested attribute if attribute_name is a nested column, otherwise NULL

	
expression — SQL expression for transforming the attribute

	
reverse_expression — SQL expression for reversing the transformation

	
attribute_spec — When set to NOPREP, disables ADP for the attribute

	
See Also:

Table 45-1 for details about the TRANSFORM_LIST and TRANSFORM_REC object types

Reverse Transformations and Model Transparency

An algorithm manipulates transformed attributes to train and score a model. The transformed attributes, however, may not be meaningful to an end user. For example, if attribute x has been transformed into bins 1 — 4, the bin names 1, 2 , 3, and 4 are manipulated by the algorithm, but a user is probably not interested in the model details about bins 1 — 4 or in predicting the numbers 1 — 4.

To return original attribute values in model details and predictions, you can provide a reverse expression in the transformation record for the attribute. For example, if you specify the transformation expression 'log(10, y)' for attribute y, you could specify the reverse transformation expression 'power(10, y)'.

Reverse transformations enable model transparency. They make internal processing transparent to the user.

	
Note:

STACK procedures automatically reverse normalization transformations, but they do not provide a mechanism for reversing binning, clipping, or missing value transformations.
You can use the DBMS_DATA_MINING.ALTER_REVERSE_EXPRESSION procedure to specify or update reverse transformations expressions for an existing model.

	
See Also:

Example 45-1, "Stacking a Clipping Transformation"

"ALTER_REVERSE_EXPRESSION Procedure"

"Summary of DBMS_DATA_MINING Subprograms" for links to the model details functions

Disabling Automatic Data Preparation

ADP is controlled by a model-specific setting (PREP_AUTO). The PREP_AUTO setting affects all model attributes unless you disable it for individual attributes.

If ADP is enabled and you set attribute_spec to NOPREP, only the transformations that you specify for that attribute will be evaluated. If ADP is enabled and you do not set attribute_spec to NOPREP, the automatic transformations will be evaluated after the transformations that you specify for the attribute.

If ADP is not enabled for the model, the attribute_spec field of the transformation record is ignored.

	
See Also:

"Automatic Data Preparation" for information about the PREP_AUTO setting

Adding Transformation Records to a Transformation List

A transformation list is a stack of transformation records. When a new transformation record is added, it is appended to the top of the stack. (See "About Stacking" for details.)

When you use SET_TRANSFORM to add a transformation record to a transformation list, you can specify values for all the fields in the transformation record.

When you use STACK procedures to add transformation records to a transformation list, only the transformation expression field is populated. For normalization transformations, the reverse transformation expression field is also populated.

You can use both STACK procedures and SET_TRANSFORM to build one transformation list. Each STACK procedure call adds transformation records for all the attributes in a specified transformation definition table. Each SET_TRANSFORM call adds a transformation record for a single attribute.

About Stacking

Transformation lists are built by stacking transformation records. Transformation lists are evaluated from bottom to top. Each transformation expression depends on the result of the transformation expression below it in the stack.

Stack Procedures

STACK procedures create transformation records from the information in transformation definition tables. For example STACK_BIN_NUM builds a transformation record for each attribute specified in a definition table for numeric binning. STACK procedures stack the transformation records as follows:

	
If an attribute is specified in the definition table but not in the transformation list, the STACK procedure creates a transformation record, computes the reverse transformation (if possible), inserts the transformation and reverse transformation in the transformation record, and appends the transformation record to the top of the transformation list.

	
If an attribute is specified in the transformation list but not in the definition table, the STACK procedure takes no action.

	
If an attribute is specified in the definition table and in the transformation list, the STACK procedure stacks the transformation expression from the definition table on top of the transformation expression in the transformation record and updates the reverse transformation. See Example 45-1, "Stacking a Clipping Transformation"and Example 45-4, "Stacking a Nested Normalization Transformation".

Example 45-1 Stacking a Clipping Transformation

This example shows how STACK_CLIP Procedure would add transformation records to a transformation list. Note that the clipping transformations are not reversed in COL1 and COL2 after stacking (as described in "Reverse Transformations and Model Transparency").

Refer to:

	
CREATE_CLIP Procedure — Creates the definition table

	
INSERT_CLIP_TRIM_TAIL Procedure — Inserts definitions in the table

	
INSERT_CLIP_WINSOR_TAIL Procedure — Inserts definitions in the table

	
Table 45-1 — Describes the structure of the transformation list (TRANSFORM_LIST object)

Assume a clipping definition table populated as follows.

	col	att	lcut	lval	rcut	rval
	COL1	null	-1.5	-1.5	4.5	4.5
	COL2	null	0	0	1	1

Assume the following transformation list before stacking.

transformation record #1:

 attribute_name = COL1
 attribute_subname = null
 expression = log(10, COL1)
 reverse_expression = power(10, COL1)

transformation record #2:

 attribute_name = COL3
 attribute_subname = null
 expression = ln(COL3)
 reverse_expression = exp(COL3)

After stacking, the transformation list is as follows.

transformation record #1:

 attribute_name = COL1
 attribute_subname = null
 expression = CASE WHEN log(10, COL1) < -1.5 THEN -1.5
 WHEN log(10, COL1) > 4.5 THEN 4.5
 ELSE log(10, COL1)
 END;
 reverse_expression = power(10, COL1)

transformation record #2:

 attribute_name = COL3
 attribute_subname = null
 expression = ln(COL3)
 reverse_expression = exp(COL3)

transformation record #3:

 attribute_name = COL2
 attribute_subname = null
 expression = CASE WHEN COL2 < 0 THEN 0
 WHEN COL2 > 1 THEN 1
 ELSE COL2
 END;
 reverse_expression = null

Nested Data Transformations

The CREATE routines create transformation definition tables that include two columns, col and att, for identifying attributes. The column col holds the name of a column in the data table. If the data column is not nested, then att is null, and the name of the attribute is col. If the data column is nested, then att holds the name of the nested attribute, and the name of the attribute is col.att.

The INSERT and XFORM routines ignore the att column in the definition tables. Neither the INSERT nor the XFORM routines support nested data.

Only the STACK procedures and SET_TRANSFORM support nested data. Nested data transformations are always embedded in the model.

Nested columns in Oracle Data Mining can have either of the following types:

DM_NESTED_NUMERICALS
DM_NESTED_CATEGORICALS

	
See Also:

"Constants"

Oracle Data Mining Application Developer's Guide for details about nested attributes in Oracle Data Mining

Specifying Nested Attributes in a Transformation Record

A transformation record (TRANSFORM_REC) includes two fields, attribute_name and attribute_subname, for identifying the attribute. The field attribute_name holds the name of a column in the data table. If the data column is not nested, then attribute_subname is null, and the name of the attribute is attribute_name. If the data column is nested, then attribute_subname holds the name of the nested attribute, and the name of the attribute is attribute_name.attribute_subname.

Transforming Individual Nested Attributes

You can specify different transformations for different attributes in a nested column, and you can specify a default transformation for all the remaining attributes in the column. To specify a default nested transformation, specify null in the attribute_name field and the name of the nested column in the attribute_subname field as shown in Example 45-2. Note that the keyword VALUE is used to represent the value of a nested attribute in a transformation expression.

Example 45-2 Transforming a Nested Column

The following statement transforms two of the nested attributes in COL_N1. Attribute ATTR1 is transformed with normalization; Attribute ATTR2 is set to null, which causes attribute removal transformation (ATTR2 is not used in training the model). All the remaining attributes in COL_N1 are divided by 10.

DECLARE
 stk dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.SET_TRANSFORM(
 stk,'COL_N1', 'ATTR1', '(VALUE - (-1.5))/20', 'VALUE *20 + (-1.5)');
 dbms_data_mining_transform.SET_TRANSFORM(
 stk,'COL_N1', 'ATTR2', NULL, NULL);
 dbms_data_mining_transform.SET_TRANSFORM(
 stk, NULL, 'COL_N1', 'VALUE/10', 'VALUE*10');
END;
/

The following SQL is generated from this statement.

CAST(MULTISET(SELECT DM_NESTED_NUMERICAL(
 "ATTRIBUTE_NAME",
 DECODE("ATTRIBUTE_NAME",
 'ATTR1', ("VALUE" - (-1.5))/20,
 "VALUE"/10))
 FROM TABLE("COL_N1")
 WHERE "ATTRIBUTE_NAME" IS NOT IN ('ATTR2'))
 AS DM_NESTED_NUMERICALS)

If transformations are not specified for COL_N1.ATTR1 and COL_N1.ATTR2, then the default transformation is used for all the attributes in COL_N1, and the resulting SQL does not include a DECODE.

 CAST(MULTISET(SELECT DM_NESTED_NUMERICAL(
 "ATTRIBUTE_NAME",
 "VALUE"/10)
 FROM TABLE("COL_N1"))
 AS DM_NESTED_NUMERICALS)

Since DECODE is limited to 256 arguments, multiple DECODE functions are nested to support an arbitrary number of individual nested attribute specifications.

Adding a Nested Column

You can specify a transformation that adds a nested column to the data, as shown in Example 45-3.

Example 45-3 Adding a Nested Column to a Transformation List

DECLARE
 v_xlst dbms_data_mining_transform.TRANSFORM_LIST;
 BEGIN
 dbms_data_mining_transform.SET_TRANSFORM(v_xlst,
 'YOB_CREDLIM', NULL,
 'dm_nested_numericals(
 dm_nested_numerical(
 ''CUST_YEAR_OF_BIRTH'', cust_year_of_birth),
 dm_nested_numerical(
 ''CUST_CREDIT_LIMIT'', cust_credit_limit))',
 NULL);
 dbms_data_mining_transform.SET_TRANSFORM(
 v_xlst, 'CUST_YEAR_OF_BIRTH', NULL, NULL, NULL);
 dbms_data_mining_transform.SET_TRANSFORM(
 v_xlst, 'CUST_CREDIT_LIMIT', NULL, NULL, NULL);
 dbms_data_mining_transform.XFORM_STACK(
 v_xlst, 'mining_data', 'mining_data_v');
END;
/

set long 2000
SELECT text FROM user_views WHERE view_name IN 'MINING_DATA_V';

TEXT

SELECT "CUST_ID","CUST_POSTAL_CODE",dm_nested_numericals(
 dm_nested_numerical(
 'CUST_YEAR_OF_BIRTH', cust_year_of_birth),
 dm_nested_numerical(
 'CUST_CREDIT_LIMIT', cust_credit_limit)) "YOB_CREDLIM" FROM mining_data

SELECT * FROM mining_data_v WHERE cust_id = 104500;

CUST_ID CUST_POSTAL_CODE YOB_CREDLIM(ATTRIBUTE_NAME, VALUE)
------- ---------------- ---
 104500 68524 DM_NESTED_NUMERICALS(DM_NESTED_NUMERICAL(
 'CUST_YEAR_OF_BIRTH', 1962),
 DM_NESTED_NUMERICAL('CUST_CREDIT_LIMIT', 15000))

Stacking Nested Transformations

Example 45-4 shows how the STACK_NORM_LIN Procedure would add transformation records for nested column COL_N to a transformation list.

Refer to:

	
CREATE_NORM_LIN Procedure — Creates the definition table

	
INSERT_NORM_LIN_MINMAX Procedure — Inserts definitions in the table

	
INSERT_NORM_LIN_SCALE Procedure — Inserts definitions in the table

	
INSERT_NORM_LIN_ZSCORE Procedure — Inserts definitions in the table

	
Table 45-1 — Describes the structure of the transformation list

Example 45-4 Stacking a Nested Normalization Transformation

Assume a linear normalization definition table populated as follows.

	col	att	shift	scale
	COL_N	ATT2	0	20
	null	COL_N	0	10

Assume the following transformation list before stacking.

transformation record #1:

 attribute_name = COL_N
 attribute_subname = ATT1
 expression = log(10, VALUE)
 reverse_expression = power(10, VALUE)

transformation record #2:

 attribute_name = null
 attribute_subname = COL_N
 expression = ln(VALUE)
 reverse_expression = exp(VALUE)

After stacking, the transformation list is as follows.

transformation record #1:

 attribute_name = COL_N
 attribute_subname = ATT1
 expression = (log(10, VALUE) - 0)/10
 reverse_expression = power(10, VALUE*10 + 0)

transformation record #2:

 attribute_name = NULL
 attribute_subname = COL_N
 expression = (ln(VALUE)- 0)/10
 reverse_expression = exp(VALUE *10 + 0)

transformation record #3:

 attribute_name = COL_N
 attribute_subname = ATT2
 expression = (ln(VALUE) - 0)/20
 reverse_expression = exp(VALUE * 20 + 0)

Security Model

The DBMS_DATA_MINING_TRANSFORM package is owned by user SYS and is installed as part of database installation. Execution privilege on the package is granted to public. The routines in the package are run with invokers' rights (run with the privileges of the current user).

The DBMS_DATA_MINING_TRANSFORM.INSERT_* procedures have a data_table_name parameter that enables the user to provide the input data for transformation purposes. The value of data_table_name can be the name of a physical table or a view. The data_table_name parameter can also accept an inline query.

	
Important:

Because an inline query can be used to specify the data for transformation, Oracle strongly recommends that the calling routine perform any necessary SQL injection checks on the input string.

	
See Also:

"Operational Notes" for a description of the DBMS_DATA_MINING_TRANSFORM.INSERT_* procedures

Types

DBMS_DATA_MINING_TRANSFORM defines the data types described in Table 45-1.

Table 45-1 Data Types in DBMS_DATA_MINING_TRANSFORM

	List Type	List Elements	Description
	

COLUMN_
LIST

	

VARRAY(1000) OF varchar2(32)

	
COLUMN_LIST stores quoted and non-quoted identifiers for column names.

COLUMN_LIST is the data type of the exclude_list parameter in the INSERT procedures. See "INSERT_AUTOBIN_NUM_EQWIDTH Procedure" for an example.

See Oracle Database PL/SQL Language Reference for information about populating VARRAY structures.

	

DESCRIBE_
LIST

	

DBMS_SQL.DESC_TAB2

TYPE desc_tab2 IS TABLE OF desc_rec2
INDEX BY BINARY_INTEGER

TYPE desc_rec2 IS RECORD (
col_type BINARY_INTEGER := 0,
col_max_len BINARY_INTEGER := 0,
col_name VARCHAR2(32767):= '',
col_name_len BINARY_INTEGER := 0,
col_schema_name VARCHAR2(32) := '',
col_schema_name_len BINARY_INTEGER := 0,
col_precision BINARY_INTEGER := 0,
col_scale BINARY_INTEGER := 0,
col_charsetid BINARY_INTEGER := 0,
col_charsetform BINARY_INTEGER := 0,
col_null_ok BOOLEAN := TRUE);

	
DESCRIBE_LIST describes the columns of the data table after the transformation list has been applied. A DESCRIBE_LIST is returned by the DESCRIBE_STACK Procedure.

The DESC_TAB2 and DESC_REC2 types are defined in the DBMS_SQL package. See "DESC_REC2 Record Type".

The col_type field of DESC_REC2 identifies the data type of the column. The data type is expressed as a numeric constant that represents a built-in data type. For example, a 1 indicates a variable length character string. The codes for Oracle built-in data types are listed in Oracle Database SQL Language Reference. The codes for the Oracle Data Mining nested types are described in "Constants".

The col_name field of DESC_REC2 identifies the column name. It may be populated with a column name, an alias, or an expression. If the column name is a SELECT expression, it may be very long. If the expression is longer than 30 bytes, it cannot be used in a view unless it is given an alias.

	

TRANSFORM_
LIST

	

TABLE OF transform_rec

TYPE transform_rec IS RECORD (
attribute_name VARCHAR2(30),
attribute_subname VARCHAR2(4000),
expression EXPRESSION_REC,
reverse_expression EXPRESSION_REC,
attribute_spec VARCHAR2(4000));

TYPE expression_rec IS RECORD (
lstmt DBMS_SQL.VARCHAR2A,
lb BINARY_INTEGER DEFAULT 1,
ub BINARY_INTEGER DEFAULT 0);

TYPE varchar2a IS TABLE OF VARCHAR2(32767)
INDEX BY BINARY_INTEGER;

	
TRANSFORM_LIST is a list of transformations that can be embedded in a model. A TRANSFORM_LIST is accepted as an argument by the CREATE_MODEL Procedure.

Each element in a TRANSFORM_LIST is a TRANSFORM_REC that specifies how to transform a single attribute. The attribute_name is a column name. The attribute_subname is the nested attribute name if the column is nested, otherwise attribute_subname is null.

The expression field holds a SQL expression for transforming the attribute. See "About Transformation Lists" for an explanation of reverse expressions.

The attribute_spec field can be used to disable ADP for this attribute. Specify the keyword NOPREP to disable ADP. By default attribute_spec is null.

The expressions in a TRANSFORM_REC have type EXPRESSION_REC. The lstmt field stores a VARCHAR2A, which is a table of VARCHAR2(32767). The VARCHAR2A data type allows transformation expressions to be very long, as they can be broken up across multiple rows of VARCHAR2. The VARCHAR2A type is defined in the DBMS_SQL package. See "VARCHAR2A Table Type".

The ub (upper bound) and lb (lower bound) fields indicate how many rows there are in the VARCHAR2A table. If ub < lb (default) the EXPRESSION_REC is empty; if lb=ub=1 there is one row; if lb=1 and ub=2 there are 2 rows, and so on.

Constants

DBMS_DATA_MINING_TRANSFORM defines the constants described in Table 45-2.

Table 45-2 Constants in DBMS_DATA_MINING_TRANSFORM

	Constant	Value	Description
	
NEST_NUM_COL_TYPE

	
100001

	
Indicates that an attribute in the transformation list comes from a row in a column of DM_NESTED_NUMERICALS.

Nested numerical attributes are defined as follows:

attribute_name VARCHAR2(4000)
value NUMBER

	
NEST_CAT_COL_TYPE

	
100002

	
Indicates that an attribute in the transformation list comes from a row in a column of DM_NESTED_CATAGORICALS.

Nested categorical attributes are defined as follows:

attribute_name VARCHAR2(4000)
value VARCHAR2(4000)

	
See Also:

Oracle Data Mining Application Developer's Guide for information about nested data in Oracle Data Mining

Summary of DBMS_DATA_MINING_TRANSFORM Subprograms

Table 45-3 DBMS_DATA_MINING_TRANSFORM Package Subprograms

	Subprogram	Purpose
	
CREATE_BIN_CAT Procedure

	
Creates a transformation definition table for categorical binning

	
CREATE_BIN_NUM Procedure

	
Creates a transformation definition table for numerical binning

	
CREATE_CLIP Procedure

	
Creates a transformation definition table for clipping

	
CREATE_COL_REM Procedure

	
Creates a transformation definition table for column removal

	
CREATE_MISS_CAT Procedure

	
Creates a transformation definition table for categorical missing value treatment

	
CREATE_MISS_NUM Procedure

	
Creates a transformation definition table for numerical missing values treatment

	
CREATE_NORM_LIN Procedure

	
Creates a transformation definition table for linear normalization

	
DESCRIBE_STACK Procedure

	
Describes the transformation list

	
GET_EXPRESSION Function

	
Returns a VARCHAR2 chunk from a transformation expression

	
INSERT_AUTOBIN_NUM_EQWIDTH Procedure

	
Inserts numeric automatic equi-width binning definitions in a transformation definition table

	
INSERT_BIN_CAT_FREQ Procedure

	
Inserts categorical frequency-based binning definitions in a transformation definition table

	
INSERT_BIN_NUM_EQWIDTH Procedure

	
Inserts numeric equi-width binning definitions in a transformation definition table

	
INSERT_BIN_NUM_QTILE Procedure

	
Inserts numeric quantile binning expressions in a transformation definition table

	
INSERT_BIN_SUPER Procedure

	
Inserts supervised binning definitions in numerical and categorical transformation definition tables

	
INSERT_CLIP_TRIM_TAIL Procedure

	
Inserts numerical trimming definitions in a transformation definition table

	
INSERT_CLIP_WINSOR_TAIL Procedure

	
Inserts numerical winsorizing definitions in a transformation definition table

	
INSERT_MISS_CAT_MODE Procedure

	
Inserts categorical missing value treatment definitions in a transformation definition table

	
INSERT_MISS_NUM_MEAN Procedure

	
Inserts numerical missing value treatment definitions in a transformation definition table

	
INSERT_NORM_LIN_MINMAX Procedure

	
Inserts linear min-max normalization definitions in a transformation definition table

	
INSERT_NORM_LIN_SCALE Procedure

	
Inserts linear scale normalization definitions in a transformation definition table

	
INSERT_NORM_LIN_ZSCORE Procedure

	
Inserts linear zscore normalization definitions in a transformation definition table

	
SET_EXPRESSION Procedure

	
Adds a VARCHAR2 chunk to an expression

	
SET_TRANSFORM Procedure

	
Adds a transformation record to a transformation list

	
STACK_BIN_CAT Procedure

	
Adds a categorical binning expression to a transformation list

	
STACK_BIN_NUM Procedure

	
Adds a numerical binning expression to a transformation list

	
STACK_CLIP Procedure

	
Adds a clipping expression to a transformation list

	
STACK_COL_REM Procedure

	
Adds a column removal expression to a transformation list

	
STACK_MISS_CAT Procedure

	
Adds a categorical missing value treatment expression to a transformation list

	
STACK_MISS_NUM Procedure

	
Adds a numerical missing value treatment expression to a transformation list

	
STACK_NORM_LIN Procedure

	
Adds a linear normalization expression to a transformation list

	
XFORM_BIN_CAT Procedure

	
Creates a view of the data table with categorical binning transformations

	
XFORM_BIN_NUM Procedure

	
Creates a view of the data table with numerical binning transformations

	
XFORM_CLIP Procedure

	
Creates a view of the data table with clipping transformations

	
XFORM_COL_REM Procedure

	
Creates a view of the data table with column removal transformations

	
XFORM_EXPR_NUM Procedure

	
Creates a view of the data table with the specified numeric transformations

	
XFORM_EXPR_STR Procedure

	
Creates a view of the data table with the specified categorical transformations

	
XFORM_MISS_CAT Procedure

	
Creates a view of the data table with categorical missing value treatment

	
XFORM_MISS_NUM Procedure

	
Creates a view of the data table with numerical missing value treatment

	
XFORM_NORM_LIN Procedure

	
Creates a view of the data table with linear normalization transformations

	
XFORM_STACK Procedure

	
Creates a view of the transformation list

CREATE_BIN_CAT Procedure

This procedure creates a transformation definition table for categorical binning. The columns are described in Table 45-4.

Table 45-4 Columns in a Transformation Definition Table for Categorical Binning

	Name	Data Type	Description
	
col

	
VARCHAR2(30)

	
Name of a column of CHAR, VARCHAR2, or DM_NESTED_CATEGORICALS in the data to be mined.

If col is CHAR or VARCHAR2, the column name is also the attribute name.

For information about attribute names, see Oracle Data Mining Application Developer's Guide. Refer especially to the section, "Scoping of Model Attribute Name".

	
att

	
VARCHAR2(4000)

	
The attribute subname if col is a nested column of DM_NESTED_CATEGORICALS. If col is nested, the attribute name is col.att.

If col is not nested, att is null.

	
val

	
VARCHAR2(4000)

	
Values of the attribute

	
bin

	
VARCHAR2(4000)

	
Bin assignments for the values

Syntax

DBMS_DATA_MINING_TRANSFORM.CREATE_BIN_CAT (
 bin_table_name IN VARCHAR2,
 bin_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 45-5 CREATE_BIN_CAT Procedure Parameters

	Parameter	Description
	
bin_table_name

	
Name of the transformation definition table to be created

	
bin_schema_name

	
Schema of bin_table_name. If no schema is specified, the current schema is used.

Usage Notes

You can use the following procedures to populate the transformation definition table:

	
INSERT_BIN_CAT_FREQ Procedure — frequency-based binning

	
INSERT_BIN_SUPER Procedure — supervised binning

	
See Also:

"Binning"

"Operational Notes"

Examples

The following statement creates a table called bin_cat_xtbl in the current schema. The table has columns that can be populated with bin assignments for categorical attributes.

BEGIN
 DBMS_DATA_MINING_TRANSFORM.CREATE_BIN_CAT('bin_cat_xtbl');
END;
/
DESCRIBE bin_cat_xtbl
 Name Null? Type
 --- -------- ----------------------------
 COL VARCHAR2(30)
 ATT VARCHAR2(4000)
 VAL VARCHAR2(4000)
 BIN VARCHAR2(4000)

CREATE_BIN_NUM Procedure

This procedure creates a transformation definition table for numerical binning. The columns are described in Table 45-6.

Table 45-6 Columns in a Transformation Definition Table for Numerical Binning

	Name	Data Type	Description
	
col

	
VARCHAR2(30)

	
Name of a column of NUMBER, FLOAT, or DM_NESTED_NUMERICALS in the data to be mined.

If the column is NUMBER or FLOAT, the column name is also the attribute name.

For information about attribute names, see Oracle Data Mining Application Developer's Guide. Refer especially to the section, "Scoping of Model Attribute Name".

	
att

	
VARCHAR2(4000)

	
The attribute subname if col is a nested column of DM_NESTED_NUMERICALS. If col is nested, the attribute name is col.att.

If col is not nested, att is null.

	
val

	
NUMBER

	
Values of the attribute

	
bin

	
VARCHAR2(4000)

	
Bin assignments for the values

Syntax

DBMS_DATA_MINING_TRANSFORM.CREATE_BIN_NUM (
 bin_table_name IN VARCHAR2,
 bin_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 45-7 CREATE_BIN_NUM Procedure Parameters

	Parameter	Description
	
bin_table_name

	
Name of the transformation definition table to be created

	
bin_schema_name

	
Schema of bin_table_name. If no schema is specified, the current schema is used.

Usage Notes

You can use the following procedures to populate the transformation definition table:

	
INSERT_AUTOBIN_NUM_EQWIDTH Procedure — automatic equi-width binning

	
INSERT_BIN_NUM_EQWIDTH Procedure — user-specified equi-width binning

	
INSERT_BIN_NUM_QTILE Procedure — quantile binning

	
INSERT_BIN_SUPER Procedure — supervised binning

	
See Also:

"Binning"

"Operational Notes"

Examples

The following statement creates a table called bin_num_xtbl in the current schema. The table has columns that can be populated with bin assignments for numerical attributes.

BEGIN
 DBMS_DATA_MINING_TRANSFORM.CREATE_BIN_NUM('bin_num_xtbl');
END;
/

DESCRIBE bin_num_xtbl
 Name Null? Type
 --- -------- ----------------------------
 COL VARCHAR2(30)
 ATT VARCHAR2(4000)
 VAL NUMBER
 BIN VARCHAR2(4000)

CREATE_CLIP Procedure

This procedure creates a transformation definition table for clipping or winsorizing to minimize the effect of outliers. The columns are described in Table 45-8.

Table 45-8 Columns in a Transformation Definition Table for Clipping or Winsorizing

	Name	Data Type	Description
	
col

	
VARCHAR2(30)

	
Name of a column of NUMBER, FLOAT, or DM_NESTED_NUMERICALS in the data to be mined.

If col is NUMBER or FLOAT, the column name is also the attribute name.

For information about attribute names, see Oracle Data Mining Application Developer's Guide. Refer especially to the section, "Scoping of Model Attribute Name".

	
att

	
VARCHAR2(4000)

	
The attribute subname if col is a nested column of DM_NESTED_NUMERICALS. If col is nested, the attribute name is col.att.

If col is not nested, att is null.

	
lcut

	
NUMBER

	
The lowest typical value for the attribute.

If the attribute values were plotted on an xy axis, lcut would be the left-most boundary of the range of values considered typical for this attribute.

Any values to the left of lcut are outliers.

	
lval

	
NUMBER

	
Value assigned to an outlier to the left of lcut

	
rcut

	
NUMBER

	
The highest typical value for the attribute

If the attribute values were plotted on an xy axis, rcut would be the right-most boundary of the range of values considered typical for this attribute.

Any values to the right of rcut are outliers.

	
rval

	
NUMBER

	
Value assigned to an outlier to the right of rcut

Syntax

DBMS_DATA_MINING_TRANSFORM.CREATE_CLIP (
 clip_table_name IN VARCHAR2,
 clip_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 45-9 CREATE_CLIP Procedure Parameters

	Parameter	Description
	
clip_table_name

	
Name of the transformation definition table to be created

	
clip_schema_name

	
Schema of clip_table_name. If no schema is specified, the current schema is used.

Usage Notes

You can use the following procedures to populate the transformation definition table:

	
INSERT_CLIP_TRIM_TAIL Procedure — replaces outliers with nulls

	
INSERT_CLIP_WINSOR_TAIL Procedure — replaces outliers with an average value

	
See Also:

"Outlier Treatment"

"Operational Notes"

Examples

The following statement creates a table called clip_xtbl in the current schema. The table has columns that can be populated with clipping instructions for numerical attributes.

BEGIN
 DBMS_DATA_MINING_TRANSFORM.CREATE_CLIP('clip_xtbl');
END;
/

DESCRIBE clip_xtbl
 Name Null? Type
 --- -------- ----------------------------
 COL VARCHAR2(30)
 ATT VARCHAR2(4000)
 LCUT NUMBER
 LVAL NUMBER
 RCUT NUMBER
 RVAL NUMBER

CREATE_COL_REM Procedure

This procedure creates a transformation definition table for removing columns from the data table. The columns are described in Table 45-10.

Table 45-10 Columns in a Transformation Definition Table for Column Removal

	Name	Data Type	Description
	
col

	
VARCHAR2(30)

	
Name of a column in the data to be mined. If col is not nested, the column name is also the attribute name.

For information about attribute names, see Oracle Data Mining Application Developer's Guide. Refer especially to the section, "Scoping of Model Attribute Name".

	
att

	
VARCHAR2(4000)

	
The attribute subname if col is nested (DM_NESTED_NUMERICALS or DM_NESTED_CATEGORICALS). If col is nested, the attribute name is col.att.

If col is not nested, att is null.

Syntax

DBMS_DATA_MINING_TRANSFORM.CREATE_COL_REM (
 rem_table_name VARCHAR2,
 rem_schema_name VARCHAR2 DEFAULT NULL);

Parameters

Table 45-11 CREATE_COL_REM Procedure Parameters

	Parameter	Description
	
rem_table_name

	
Name of the transformation definition table to be created

	
rem_schema_name

	
Schema of rem_table_name. If no schema is specified, the current schema is used.

Usage Notes

See "Operational Notes".

Examples

The following statement creates a table called rem_att_xtbl in the current schema. The table has columns that can be populated with the names of attributes to exclude from the data to be mined.

BEGIN
 DBMS_DATA_MINING_TRANSFORM.CREATE_COL_REM ('rem_att_xtbl');
END;
 /
DESCRIBE rem_att_xtbl
 Name Null? Type
 --- -------- ----------------------------
 COL VARCHAR2(30)
 ATT VARCHAR2(4000)

CREATE_MISS_CAT Procedure

This procedure creates a transformation definition table for replacing categorical missing values. The columns are described in Table 45-12.

Table 45-12 Columns in a Transformation Definition Table for Categorical Missing Value Treatment

	Name	Data Type	Description
	
col

	
VARCHAR2(30)

	
Name of a column of CHAR, VARCHAR2, or DM_NESTED_CATEGORICALS in the data to be mined.

If col is CHAR or VARCHAR2, the column name is also the attribute name.

For information about attribute names, see Oracle Data Mining Application Developer's Guide. Refer especially to the section, "Scoping of Model Attribute Name".

	
att

	
VARCHAR2(4000)

	
The attribute subname if col is a nested column of DM_NESTED_CATEGORICALS. If col is nested, the attribute name is col.att.

If col is not nested, att is null.

	
val

	
VARCHAR2(4000)

	
Replacement for missing values in the attribute

Syntax

DBMS_DATA_MINING_TRANSFORM.CREATE_MISS_CAT (
 miss_table_name IN VARCHAR2,
 miss_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 45-13 CREATE_MISS_CAT Procedure Parameters

	Parameter	Description
	
miss_table_name

	
Name of the transformation definition table to be created

	
miss_schema_name

	
Schema of miss_table_name. If no schema is specified, the current schema is used.

Usage Notes

You can use the INSERT_MISS_CAT_MODE Procedure to populate the transformation definition table.

	
See Also:

"Missing Value Treatment"

"Operational Notes"

Examples

The following statement creates a table called miss_cat_xtbl in the current schema. The table has columns that can be populated with values for missing data in categorical attributes.

BEGIN

 DBMS_DATA_MINING_TRANSFORM.CREATE_MISS_CAT('miss_cat_xtbl');
END;
/

DESCRIBE miss_cat_xtbl
 Name Null? Type
 --- -------- ----------------------------
 COL VARCHAR2(30)
 ATT VARCHAR2(4000)
 VAL VARCHAR2(4000)

CREATE_MISS_NUM Procedure

This procedure creates a transformation definition table for replacing numerical missing values. The columns are described in Table 45-14.

Table 45-14 Columns in a Transformation Definition Table for Numerical Missing Value Treatment

	Name	Data Type	Description
	
col

	
VARCHAR2(30)

	
Name of a column of NUMBER, FLOAT, or DM_NESTED_NUMERICALS in the data to be mined.

If the column is NUMBER or FLOAT, the column name is also the attribute name.

For information about attribute names, see Oracle Data Mining Application Developer's Guide. Refer especially to the section, "Scoping of Model Attribute Name".

	
att

	
VARCHAR2(4000)

	
The attribute subname if col is a nested column of DM_NESTED_NUMERICALS. If col is nested, the attribute name is col.att.

If col is not nested, att is null.

	
val

	
NUMBER

	
Replacement for missing values in the attribute

Syntax

DBMS_DATA_MINING_TRANSFORM.CREATE_MISS_NUM (
 miss_table_name IN VARCHAR2,
 miss_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 45-15 CREATE_MISS_NUM Procedure Parameters

	Parameter	Description
	
miss_table_name

	
Name of the transformation definition table to be created

	
miss_schema_name

	
Schema of miss_table_name. If no schema is specified, the current schema is used.

Usage Notes

You can use the INSERT_MISS_NUM_MEAN Procedure to populate the transformation definition table.

	
See Also:

"Missing Value Treatment"

"Operational Notes"

Example

The following statement creates a table called miss_num_xtbl in the current schema. The table has columns that can be populated with values for missing data in numerical attributes.

BEGIN
 DBMS_DATA_MINING_TRANSFORM.CREATE_MISS_NUM('miss_num_xtbl');
END;
/

DESCRIBE miss_num_xtbl
 Name Null? Type
 --- -------- ----------------------------
 COL VARCHAR2(30)
 ATT VARCHAR2(4000)
 VAL NUMBER

CREATE_NORM_LIN Procedure

This procedure creates a transformation definition table for linear normalization. The columns are described in Table 45-16.

Table 45-16 Columns in a Transformation Definition Table for Linear Normalization

	Name	Data Type	Description
	
col

	
VARCHAR2(30)

	
Name of a column of NUMBER, FLOAT, or DM_NESTED_NUMERICALS in the data to be mined.

If the column is NUMBER or FLOAT, the column name is also the attribute name.

For information about attribute names, see Oracle Data Mining Application Developer's Guide. Refer especially to the section, "Scoping of Model Attribute Name".

	
att

	
VARCHAR2(4000)

	
The attribute subname if col is a nested column of DM_NESTED_NUMERICALS. If col is nested, the attribute name is col.att.

If col is not nested, att is null.

	
shift

	
NUMBER

	
A constant to subtract from the attribute values

	
scale

	
NUMBER

	
A constant by which to divide the shifted values

Syntax

DBMS_DATA_MINING_TRANSFORM.CREATE_NORM_LIN (
 norm_table_name IN VARCHAR2,
 norm_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 45-17 CREATE_NORM_LIN Procedure Parameters

	Parameter	Description
	
norm_table_name

	
Name of the transformation definition table to be created

	
norm_schema_name

	
Schema of norm_table_name. If no schema is specified, the current schema is used.

Usage Notes

You can use the following procedures to populate the transformation definition table:

	
INSERT_NORM_LIN_MINMAX Procedure — Uses linear min-max normalization

	
INSERT_NORM_LIN_SCALE Procedure — Uses linear scale normalization

	
INSERT_NORM_LIN_ZSCORE Procedure — Uses linear zscore normalization

	
See Also:

"Linear Normalization"

"Operational Notes"

Examples

The following statement creates a table called norm_xtbl in the current schema. The table has columns that can be populated with shift and scale values for normalizing numerical attributes.

BEGIN
 DBMS_DATA_MINING_TRANSFORM.CREATE_NORM_LIN('norm_xtbl');
END;
/

DESCRIBE norm_xtbl
 Name Null? Type
 --- -------- ----------------------------
 COL VARCHAR2(30)
 ATT VARCHAR2(4000)
 SHIFT NUMBER
 SCALE NUMBER

DESCRIBE_STACK Procedure

This procedure describes the columns of the data table after a list of transformations has been applied.Only the columns that are specified in the transformation list are transformed. The remaining columns in the data table are included in the output without changes.

To create a view of the data table after the transformations have been applied, use the XFORM_STACK Procedure.

Syntax

DBMS_DATA_MINING_TRANSFORM.DESCRIBE_STACK (
 xform_list IN TRANSFORM_LIST,
 data_table_name IN VARCHAR2,
 describe_list OUT DESCRIBE_LIST,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 45-18 DESCRIBE_STACK Procedure Parameters

	Parameter	Description
	
xform_list

	
A list of transformations. See Table 45-1 for a description of the TRANSFORM_LIST object type.

	
data_table_name

	
Name of the table containing the data to be transformed

	
describe_list

	
Descriptions of the columns in the data table after the transformations specified in xform_list have been applied. See Table 45-1 for a description of the DESCRIBE_LIST object type.

	
data_schema_name

	
Schema of data_table_name. If no schema is specified, the current schema is used.

Usage Notes

See "Operational Notes" for information about transformation lists and embedded transformations.

Examples

This example shows the column name and data type, the column name length, and the column maximum length for the view dmuser.cust_info after the transformation list has been applied. All the transformations are user-specified. The results of DESCRIBE_STACK do not include one of the columns in the original table, because the SET_TRANSFORM procedure sets that column to NULL.

CREATE OR REPLACE VIEW cust_info AS
 SELECT a.cust_id, c.country_id, c.cust_year_of_birth,
 CAST(COLLECT(DM_Nested_Numerical(
 b.prod_name, 1))
 AS DM_Nested_Numericals) custprods
 FROM sh.sales a, sh.products b, sh.customers c
 WHERE a.prod_id = b.prod_id AND
 a.cust_id=c.cust_id and
 a.cust_id between 100001 AND 105000
 GROUP BY a.cust_id, country_id, cust_year_of_birth;

describe cust_info
 Name Null? Type
 --- -------- ----------------------------
 CUST_ID NOT NULL NUMBER
 COUNTRY_ID NOT NULL NUMBER
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)
 CUSTPRODS SYS.DM_NESTED_NUMERICALS

DECLARE
 cust_stack dbms_data_mining_transform.TRANSFORM_LIST;
 cust_cols dbms_data_mining_transform.DESCRIBE_LIST;
BEGIN
 dbms_data_mining_transform.SET_TRANSFORM (cust_stack,
 'country_id', NULL, 'country_id/10', 'country_id*10');
 dbms_data_mining_transform.SET_TRANSFORM (cust_stack,
 'cust_year_of_birth', NULL, NULL, NULL);
 dbms_data_mining_transform.SET_TRANSFORM (cust_stack,
 'custprods', 'Mouse Pad', 'value*100', 'value/100');
 dbms_data_mining_transform.DESCRIBE_STACK(
 xform_list => cust_stack,
 data_table_name => 'cust_info',
 describe_list => cust_cols);
 dbms_output.put_line('====');
 for i in 1..cust_cols.COUNT loop
 dbms_output.put_line('COLUMN_NAME: '||cust_cols(i).col_name);
 dbms_output.put_line('COLUMN_TYPE: '||cust_cols(i).col_type);
 dbms_output.put_line('COLUMN_NAME_LEN: '||cust_cols(i).col_name_len);
 dbms_output.put_line('COLUMN_MAX_LEN: '||cust_cols(i).col_max_len);
 dbms_output.put_line('====');
 END loop;
END;
/
====
COLUMN_NAME: CUST_ID
COLUMN_TYPE: 2
COLUMN_NAME_LEN: 7
COLUMN_MAX_LEN: 22
====
COLUMN_NAME: COUNTRY_ID
COLUMN_TYPE: 2
COLUMN_NAME_LEN: 10
COLUMN_MAX_LEN: 22
====
COLUMN_NAME: CUSTPRODS
COLUMN_TYPE: 100001
COLUMN_NAME_LEN: 9
COLUMN_MAX_LEN: 40
====

 GET_EXPRESSION Function

This function returns a row from a VARCHAR2 array that stores a transformation expression. The array is built by calls to the SET_EXPRESSION Procedure.

The array can be used for specifying SQL expressions that are too long to be used with the SET_TRANSFORM Procedure.

Syntax

DBMS_DATA_MINING_TRANSFORM.GET_EXPRESSION (
 expression IN EXPRESSION_REC,
 chunk_num IN PLS_INTEGER DEFAULT NULL);
 RETURN VARCHAR2;

Parameters

Table 45-19 GET_EXPRESSION Function Parameters

	Parameter	Description
	
expression

	
An expression record (EXPRESSION_REC) that specifies a transformation expression or a reverse transformation expression for an attribute. Each expression record includes a VARCHAR2 array and index fields for specifying upper and lower boundaries within the array.

There are two EXPRESSION_REC fields within a transformation record (TRANSFORM_REC): one for the transformation expression; the other for the reverse transformation expression.

See Table 45-1 for a description of the EXPRESSION_REC type.

	
chunk

	
A VARCHAR2 chunk (row) to be appended to expression.

Usage Notes

	
Chunk numbering starts with one. For chunks outside of the range, the return value is null. When a chunk number is null the whole expression is returned as a string. If the expression is too big, a VALUE_ERROR is raised.

	
See "About Transformation Lists".

	
See "Operational Notes".

Examples

See the example for the SET_EXPRESSION Procedure.

INSERT_AUTOBIN_NUM_EQWIDTH Procedure

This procedure performs numerical binning and inserts the transformation definitions in a transformation definition table. The procedure identifies the minimum and maximum values and computes the bin boundaries at equal intervals.

INSERT_AUTOBIN_NUM_EQWIDTH computes the number of bins separately for each column. If you want to use equi-width binning with the same number of bins for each column, use the INSERT_BIN_NUM_EQWIDTH Procedure.

INSERT_AUTOBIN_NUM_EQWIDTH bins all the NUMBER and FLOAT columns in the data source unless you specify a list of columns to ignore.

Syntax

DBMS_DATA_MINING_TRANSFORM.INSERT_AUTOBIN_NUM_EQWIDTH (
 bin_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 bin_num IN PLS_INTEGER DEFAULT 3,
 max_bin_num IN PLS_INTEGER DEFAULT 100,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 round_num IN PLS_INTEGER DEFAULT 6,
 sample_size IN PLS_INTEGER DEFAULT 50000,
 bin_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 rem_table_name IN VARCHAR2 DEFAULT NULL,
 rem_schema_name IN VARCHAR2 DEFAULT NULL));

Parameters

Table 45-20 INSERT_AUTOBIN_NUM_EQWIDTH Procedure Parameters

	Parameter	Description
	
bin_table_name

	
Name of the transformation definition table for numerical binning. You can use the CREATE_BIN_NUM Procedure to create the definition table. The following columns are required:

COL VARCHAR2(30)
VAL NUMBER
BIN VARCHAR2(4000)

CREATE_BIN_NUM creates an additional column, ATT, which may be used for specifying nested attributes. This column is not used by INSERT_AUTOBIN_NUM_EQWIDTH.

	
data_table_name

	
Name of the table containing the data to be transformed

	
bin_num

	
Minimum number of bins. If bin_num is 0 or NULL, it is ignored.

The default value of bin_num is 3.

	
max_bin_num

	
Maximum number of bins. If max_bin_num is 0 or NULL, it is ignored.

The default value of max_bin_num is 100.

	
exclude_list

	
List of numeric columns to be excluded from the binning process. If you do not specify exclude_list, all numeric columns in the data source are binned.

The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

	
round_num

	
Specifies how to round the number in the VAL column of the transformation definition table.

When round_num is positive, it specifies the most significant digits to retain. When round_num is negative, it specifies the least significant digits to remove. In both cases, the result is rounded to the specified number of digits. See the Usage Notes for an example.

The default value of round_num is 6.

	
sample_size

	
Size of the data sample. If sample_size is less than the total number of non-NULL values in the column, then sample_size is used instead of the SQL COUNT function in computing the number of bins. If sample_size is 0 or NULL, it is ignored. See the Usage Notes.

The default value of sample_size is 50,000.

	
bin_schema_name

	
Schema of bin_table_name. If no schema is specified, the current schema is used.

	
data_schema_name

	
Schema of data_table_name. If no schema is specified, the current schema is used.

	
rem_table_name

	
Name of a transformation definition table for column removal. The table must have the columns described in "CREATE_COL_REM Procedure".

INSERT_AUTOBIN_NUM_EQWIDTH ignores columns with all nulls or only one unique value. If you specify a value for rem_table_name, these columns are removed from the mining data. If you do not specify a value for rem_table_name, these unbinned columns remain in the data.

	
rem_schema_name

	
Schema of rem_table_name. If no schema is specified, the current schema is used.

Usage Notes

	
INSERT_AUTOBIN_NUM_EQWIDTH computes the number of bins for a column based on the number of non-null values (COUNT), the maximum (MAX), the minimum (MIN), the standard deviation (STDDEV), and the constant C=3.49/0.9:

N=floor(power(COUNT,1/3)*(max-min)/(c*dev))

If the sample_size parameter is specified, it is used instead of COUNT.

See Oracle Database SQL Language Reference for information about the COUNT, MAX, MIN, STDDEV, FLOOR, and POWER functions.

	
INSERT_AUTOBIN_NUM_EQWIDTH uses absolute values to compute the number of bins. The sign of the parameters bin_num, max_bin_num, and sample_size has no effect on the result.

	
In computing the number of bins, INSERT_AUTOBIN_NUM_EQWIDTH evaluates the following criteria in the following order:

	
The minimum number of bins (bin_num)

	
The maximum number of bins (max_bin_num)

	
The maximum number of bins for integer columns, calculated as the number of distinct values in the range max-min+1.

	
The round_num parameter controls the rounding of column values in the transformation definition table, as follows:

For a value of 308.162:
when round_num = 1 result is 300
when round_num = 2 result is 310
when round_num = 3 result is 308
when round_num = 0 result is 308.162
when round_num = -1 result is 308.16
when round_num = -2 result is 308.2

Examples

In this example, INSERT_AUTOBIN_NUM_EQWIDTH computes the bin boundaries for the cust_year_of_birth column in sh.customers and inserts the transformations in a transformation definition table. The STACK_BIN_NUM Procedure creates a transformation list from the contents of the definition table. The CREATE_MODEL Procedure embeds the transformation list in a new model called nb_model.

The transformation and reverse transformation expressions embedded in nb_model are returned by the GET_MODEL_TRANSFORMATIONS Function.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_year_of_birth, cust_postal_code
 FROM sh.customers;

DESCRIBE mining_data
 Name Null? Type
 ----------------------------- -------- ----------------------------
 CUST_ID NOT NULL NUMBER
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)
 CUST_POSTAL_CODE NOT NULL VARCHAR2(10)

BEGIN
 dbms_data_mining_transform.CREATE_BIN_NUM(
 bin_table_name => 'bin_tbl');
 dbms_data_mining_transform.INSERT_AUTOBIN_NUM_EQWIDTH (
 bin_table_name => 'bin_tbl',
 data_table_name => 'mining_data',
 bin_num => 3,
 max_bin_num => 5,
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id'));
END;
/

set numwidth 4
column val off
SELECT col, val, bin FROM bin_tbl
 ORDER BY val ASC;

COL VAL BIN
------------------------- ---- -----
CUST_YEAR_OF_BIRTH 1913
CUST_YEAR_OF_BIRTH 1928 1
CUST_YEAR_OF_BIRTH 1944 2
CUST_YEAR_OF_BIRTH 1959 3
CUST_YEAR_OF_BIRTH 1975 4
CUST_YEAR_OF_BIRTH 1990 5

DECLARE
 year_birth_xform dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_BIN_NUM (
 bin_table_name => 'bin_tbl',
 xform_list => year_birth_xform);
 dbms_data_mining.CREATE_MODEL(
 model_name => 'nb_model',
 mining_function => dbms_data_mining.classification,
 data_table_name => 'mining_data',
 case_id_column_name => 'cust_id',
 target_column_name => 'cust_postal_code',
 settings_table_name => null,
 data_schema_name => null,
 settings_schema_name => null,
 xform_list => year_birth_xform);
END;
/

SELECT attribute_name
 FROM TABLE(dbms_data_mining.GET_MODEL_TRANSFORMATIONS('nb_model'));

ATTRIBUTE_NAME

CUST_YEAR_OF_BIRTH

SELECT expression
 FROM TABLE(dbms_data_mining.GET_MODEL_TRANSFORMATIONS('nb_model'));

EXPRESSION
--
CASE WHEN "CUST_YEAR_OF_BIRTH"<1913 THEN NULL WHEN "CUST_YEAR_OF_BIRTH"<=1928.4
 THEN '1' WHEN "CUST_YEAR_OF_BIRTH"<=1943.8 THEN '2' WHEN "CUST_YEAR_OF_BIRTH"
<=1959.2 THEN '3' WHEN "CUST_YEAR_OF_BIRTH"<=1974.6 THEN '4' WHEN
"CUST_YEAR_OF_BIRTH" <=1990 THEN '5' END

SELECT reverse_expression
 FROM TABLE(dbms_data_mining.GET_MODEL_TRANSFORMATIONS('nb_model'));

REVERSE_EXPRESSION
--
DECODE("CUST_YEAR_OF_BIRTH",'5','(1974.6; 1990]','1','[1913; 1928.4]','2','(1928
.4; 1943.8]','3','(1943.8; 1959.2]','4','(1959.2; 1974.6]',NULL,'(; 1913), (199
0;), NULL')

INSERT_BIN_CAT_FREQ Procedure

This procedure performs categorical binning and inserts the transformation definitions in a transformation definition table. The procedure computes the bin boundaries based on frequency.

INSERT_BIN_CAT_FREQ bins all the CHAR and VARCHAR2 columns in the data source unless you specify a list of columns to ignore.

Syntax

DBMS_DATA_MINING_TRANSFORM.INSERT_BIN_CAT_FREQ (
 bin_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 bin_num IN PLS_INTEGER DEFAULT 9,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 default_num IN PLS_INTEGER DEFAULT 2,
 bin_support IN NUMBER DEFAULT NULL,
 bin_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 45-21 INSERT_BIN_CAT_FREQ Procedure Parameters

	Parameter	Description
	
bin_table_name

	
Name of the transformation definition table for categorical binning. You can use the CREATE_BIN_CAT Procedure to create the definition table.The following columns are required:

COL VARCHAR2(30)
VAL VARCHAR2(4000)
BIN VARCHAR2(4000)

CREATE_BIN_CAT creates an additional column, ATT, which may be used for specifying nested attributes. This column is not used by INSERT_BIN_CAT_FREQ.

	
data_table_name

	
Name of the table containing the data to be transformed

	
bin_num

	
The number of bins to fill using frequency-based binning The total number of bins will be bin_num+1. The additional bin is the default bin. Classes that are not assigned to a frequency-based bin will be assigned to the default bin.

The default binning order is from highest to lowest: the most frequently occurring class is assigned to the first bin, the second most frequently occurring class is assigned to the second bin, and so on.You can reverse the binning order by specifying a negative number for bin_num. The negative sign causes the binning order to be from lowest to highest.

If the total number of distinct values (classes) in the column is less than bin_num, then a separate bin will be created for each value and the default bin will be empty.

If you specify NULL or 0 for bin_num, no binning is performed.

The default value of bin_num is 9.

	
exclude_list

	
List of CHAR and VARCHAR2 columns to be excluded from the binning process. If you do not specify exclude_list, all CHAR and VARCHAR2 columns in the data source are binned.

The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

	
default_num

	
The number of class occurrences (rows of the same class) required for assignment to the default bin

By default, default_num is the minimum number of occurrences required for assignment to the default bin. For example, if default_num is 3 and a given class occurs only once, it will not be assigned to the default bin. You can change the occurrence requirement from minimum to maximum by specifying a negative number for default_num. For example, if default_num is -3 and a given class occurs only once, it will be assigned to the default bin, but a class that occurs four or more times will not be included.

If you specify NULL or 0 for default_bin, there are no requirements for assignment to the default bin.

The default value of default_num is 2.

	
bin_support

	
The number of class occurrences (rows of the same class) required for assignment to a frequency-based bin. bin_support is expressed as a fraction of the total number of rows.

By default, bin_support is the minimum percentage required for assignment to a frequency-based bin. For example, if there are twenty rows of data and you specify.2 for bin_support, then there must be four or more occurrences of a class (.2*20) in order for it to be assigned to a frequency-based bin. You can change bin_support from a minimum percentage to a maximum percentage by specifying a negative number for bin_support. For example, if there are twenty rows of data and you specify -.2 for bin_support, then there must be four or less occurrences of a class in order for it to be assigned to a frequency-based bin.

Classes that occur less than a positive bin_support or more than a negative bin_support will be assigned to the default bin.

If you specify NULL or 0 for bin_support, then there is no support requirement for frequency-based binning.

The default value of bin_support is NULL.

	
bin_schema_name

	
Schema of bin_table_name. If no schema is specified, the current schema is used.

	
data_schema_name

	
Schema of data_table_name. If no schema is specified, the current schema is used.

Usage Notes

If values occur with the same frequency, INSERT_BIN_CAT_FREQ assigns them in descending order when binning is from most to least frequent, or in ascending order when binning is from least to most frequent.

Examples

	
In this example, INSERT_BIN_CAT_FREQ computes the bin boundaries for the cust_postal_code and cust_city columns in sh.customers and inserts the transformations in a transformation definition table. The STACK_BIN_CAT Procedure creates a transformation list from the contents of the definition table, and the CREATE_MODEL Procedure embeds the transformation list in a new model called nb_model.

The transformation and reverse transformation expressions embedded in nb_model are returned by the GET_MODEL_TRANSFORMATIONS Function.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_year_of_birth, cust_postal_code, cust_city
 FROM sh.customers;

DESCRIBE mining_data
 Name Null? Type
 ------------------------------------- -------- -----------------------------
 CUST_ID NOT NULL NUMBER
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)
 CUST_POSTAL_CODE NOT NULL VARCHAR2(10)
 CUST_CITY NOT NULL VARCHAR2(30)

BEGIN
 dbms_data_mining_transform.CREATE_BIN_CAT(
 bin_table_name => 'bin_tbl_1');
 dbms_data_mining_transform.INSERT_BIN_CAT_FREQ (
 bin_table_name => 'bin_tbl_1',
 data_table_name => 'mining_data',
 bin_num => 4);
END;
/

column col format a18
column val format a15
column bin format a10
SELECT col, val, bin
 FROM bin_tbl_1
 ORDER BY col ASC, bin ASC;

COL VAL BIN
------------------ --------------- ----------
CUST_CITY Los Angeles 1
CUST_CITY Greenwich 2
CUST_CITY Killarney 3
CUST_CITY Montara 4
CUST_CITY 5
CUST_POSTAL_CODE 38082 1
CUST_POSTAL_CODE 63736 2
CUST_POSTAL_CODE 55787 3
CUST_POSTAL_CODE 78558 4
CUST_POSTAL_CODE 5

DECLARE
 city_xform dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_BIN_CAT (
 bin_table_name => 'bin_tbl_1',
 xform_list => city_xform);
 dbms_data_mining.CREATE_MODEL(
 model_name => 'nb_model',
 mining_function => dbms_data_mining.classification,
 data_table_name => 'mining_data',
 case_id_column_name => 'cust_id',
 target_column_name => 'cust_city',
 settings_table_name => null,
 data_schema_name => null,
 settings_schema_name => null,
 xform_list => city_xform);
END;
/

SELECT attribute_name
 FROM TABLE(dbms_data_mining.GET_MODEL_TRANSFORMATIONS('nb_model'));

ATTRIBUTE_NAME

CUST_CITY
CUST_POSTAL_CODE

SELECT expression
 FROM TABLE(dbms_data_mining.GET_MODEL_TRANSFORMATIONS('nb_model'));

EXPRESSION

DECODE("CUST_CITY",'Greenwich','2','Killarney','3','Los Angeles','1',
'Montara','4',NULL,NULL,'5')
DECODE("CUST_POSTAL_CODE",'38082','1','55787','3','63736','2','78558','4',NULL,NULL,'5')

SELECT reverse_expression
 FROM TABLE(dbms_data_mining.GET_MODEL_TRANSFORMATIONS('nb_model'));

REVERSE_EXPRESSION

DECODE("CUST_CITY",'2','''Greenwich''','3','''Killarney''','1',
'''Los Angeles''','4','''Montara''',NULL,'NULL','5','DEFAULT')
DECODE("CUST_POSTAL_CODE",'1','''38082''','3','''55787''','2','''63736''',
'4','''78558''',NULL,'NULL','5','DEFAULT')

	
The binning order in example 1 is from most frequent to least frequent. The following example shows reverse order binning (least frequent to most frequent). The binning order is reversed by setting bin_num to -4 instead of 4.

BEGIN
 dbms_data_mining_transform.CREATE_BIN_CAT(
 bin_table_name => 'bin_tbl_reverse');
 dbms_data_mining_transform.INSERT_BIN_CAT_FREQ (
 bin_table_name => 'bin_tbl_reverse',
 data_table_name => 'mining_data',
 bin_num => -4);
 END;
 /

column col format a20
SELECT col, val, bin
 FROM bin_tbl_reverse
 ORDER BY col ASC, bin ASC;

COL VAL BIN
-------------------- --------------- ----------
CUST_CITY Tokyo 1
CUST_CITY Sliedrecht 2
CUST_CITY Haarlem 3
CUST_CITY Diemen 4
CUST_CITY 5
CUST_POSTAL_CODE 49358 1
CUST_POSTAL_CODE 80563 2
CUST_POSTAL_CODE 74903 3
CUST_POSTAL_CODE 71349 4
CUST_POSTAL_CODE 5

INSERT_BIN_NUM_EQWIDTH Procedure

This procedure performs numerical binning and inserts the transformation definitions in a transformation definition table. The procedure identifies the minimum and maximum values and computes the bin boundaries at equal intervals.

INSERT_BIN_NUM_EQWIDTH computes a specified number of bins (n) and assigns (max-min)/n values to each bin. The number of bins is the same for each column. If you want to use equi-width binning, but you want the number of bins to be calculated on a per-column basis, use the INSERT_AUTOBIN_NUM_EQWIDTH Procedure.

INSERT_BIN_NUM_EQWIDTH bins all the NUMBER and FLOAT columns in the data source unless you specify a list of columns to ignore.

Syntax

DBMS_DATA_MINING_TRANSFORM.INSERT_BIN_NUM_EQWIDTH (
 bin_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 bin_num IN PLS_INTEGER DEFAULT 10,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 round_num IN PLS_INTEGER DEFAULT 6,
 bin_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 45-22 INSERT_BIN_NUM_EQWIDTH Procedure Parameters

	Parameter	Description
	
bin_table_name

	
Name of the transformation definition table for numerical binning. You can use the CREATE_BIN_NUM Procedure to create the definition table. The following columns are required:

COL VARCHAR2(30)
VAL NUMBER
BIN VARCHAR2(4000)

CREATE_BIN_NUM creates an additional column, ATT, which may be used for specifying nested attributes. This column is not used by INSERT_BIN_NUM_EQWIDTH.

	
data_table_name

	
Name of the table containing the data to be transformed

	
bin_num

	
Number of bins. No binning occurs if bin_num is 0 or NULL.

The default number of bins is 10.

	
exclude_list

	
List of numeric columns to be excluded from the binning process. If you do not specify exclude_list, all numeric columns in the data source are binned.

The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

	
round_num

	
Specifies how to round the number in the VAL column of the transformation definition table.

When round_num is positive, it specifies the most significant digits to retain. When round_num is negative, it specifies the least significant digits to remove. In both cases, the result is rounded to the specified number of digits. See the Usage Notes for an example.

The default value of round_num is 6.

	
bin_schema_name

	
Schema of bin_table_name. If no schema is specified, the current schema is used.

	
data_schema_name

	
Schema of data_table_name. If no schema is specified, the current schema is used.

Usage Notes

	
The round_num parameter controls the rounding of column values in the transformation definition table, as follows:

For a value of 308.162:
when round_num = 1 result is 300
when round_num = 2 result is 310
when round_num = 3 result is 308
when round_num = 0 result is 308.162
when round_num = -1 result is 308.16
when round_num = -2 result is 308.2

	
INSERT_BIN_NUM_EQWIDTH ignores columns with all NULL values or only one unique value.

Examples

In this example, INSERT_BIN_NUM_EQWIDTH computes the bin boundaries for the affinity_card column in mining_data_build and inserts the transformations in a transformation definition table. The STACK_BIN_NUM Procedure creates a transformation list from the contents of the definition table. The CREATE_MODEL Procedure embeds the transformation list in a new model called glm_model.

The transformation and reverse transformation expressions embedded in glm_model are returned by the GET_MODEL_TRANSFORMATIONS Function.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_income_level, cust_gender, affinity_card
 FROM mining_data_build;

DESCRIBE mining_data
 Name Null? Type
 ------------------------- -------- -----------------
 CUST_ID NOT NULL NUMBER
 CUST_INCOME_LEVEL VARCHAR2(30)
 CUST_GENDER VARCHAR2(1)
 AFFINITY_CARD NUMBER(10)

BEGIN
 dbms_data_mining_transform.CREATE_BIN_NUM(
 bin_table_name => 'bin_tbl');
 dbms_data_mining_transform.INSERT_BIN_NUM_EQWIDTH (
 bin_table_name => 'bin_tbl',
 data_table_name => 'mining_data',
 bin_num => 4,
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id'));
END;
/

set numwidth 10
column val off
column col format a20
column bin format a10
SELECT col, val, bin FROM bin_tbl
 ORDER BY val ASC;

COL VAL BIN
-------------------- ---------- ----------
AFFINITY_CARD 0
AFFINITY_CARD .25 1
AFFINITY_CARD .5 2
AFFINITY_CARD .75 3
AFFINITY_CARD 1 4

CREATE TABLE glmsettings(
 setting_name VARCHAR2(30),
 setting_value VARCHAR2(30));

BEGIN
 INSERT INTO glmsettings (setting_name, setting_value) VALUES
 (dbms_data_mining.algo_name, dbms_data_mining.algo_generalized_linear_model);
 COMMIT;
END;
/

DECLARE
 xforms dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_BIN_NUM (
 bin_table_name => 'bin_tbl',
 xform_list => xforms,
 literal_flag => TRUE);
 dbms_data_mining.CREATE_MODEL(
 model_name => 'glm_model',
 mining_function => dbms_data_mining.regression,
 data_table_name => 'mining_data',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 settings_table_name => 'glmsettings',
 data_schema_name => null,
 settings_schema_name => null,
 xform_list => xforms);
END;
/

SELECT attribute_name
 FROM TABLE(dbms_data_mining.GET_MODEL_TRANSFORMATIONS('glm_model'));

ATTRIBUTE_NAME

AFFINITY_CARD

SELECT expression
 FROM TABLE(dbms_data_mining.GET_MODEL_TRANSFORMATIONS('glm_model'));

EXPRESSION
--
CASE WHEN "AFFINITY_CARD"<0 THEN NULL WHEN "AFFINITY_CARD"<=.25 THEN 1 WHEN
"AFFINITY_CARD"<=.5 THEN 2 WHEN "AFFINITY_CARD"<=.75 THEN 3 WHEN
"AFFINITY_CARD"<=1 THEN 4 END

SELECT reverse_expression
 FROM TABLE(dbms_data_mining.GET_MODEL_TRANSFORMATIONS('glm_model'));

REVERSE_EXPRESSION
--
DECODE("AFFINITY_CARD",4,'(.75; 1]',1,'[0; .25]',2,'(.25; .5]',3,'(.5; .75]',
NULL,'(; 0), (1;), NULL')

INSERT_BIN_NUM_QTILE Procedure

This procedure performs numerical binning and inserts the transformation definitions in a transformation definition table. The procedure calls the SQL NTILE function to order the data and divide it equally into the specified number of bins (quantiles).

INSERT_BIN_NUM_QTILE bins all the NUMBER and FLOAT columns in the data source unless you specify a list of columns to ignore.

Syntax

DBMS_DATA_MINING_TRANSFORM.INSERT_BIN_NUM_QTILE (
 bin_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 bin_num IN PLS_INTEGER DEFAULT 10,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 bin_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 45-23 INSERT_BIN_NUM_QTILE Procedure Parameters

	Parameter	Description
	
bin_table_name

	
Name of the transformation definition table for numerical binning. You can use the CREATE_BIN_NUM Procedure to create the definition table. The following columns are required:

COL VARCHAR2(30)
VAL NUMBER
BIN VARCHAR2(4000)

CREATE_BIN_NUM creates an additional column, ATT, which may be used for specifying nested attributes. This column is not used by INSERT_BIN_NUM_QTILE.

	
data_table_name

	
Name of the table containing the data to be transformed

	
bin_num

	
Number of bins. No binning occurs if bin_num is 0 or NULL.

The default number of bins is 10.

	
exclude_list

	
List of numeric columns to be excluded from the binning process. If you do not specify exclude_list, all numeric columns in the data source are binned.

The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

	
bin_schema_name

	
Schema of bin_table_name. If no schema is specified, the current schema is used.

	
data_schema_name

	
Schema of data_table_name. If no schema is specified, the current schema is used.

Usage Notes

	
After dividing the data into quantiles, the NTILE function distributes any remainder values one for each quantile, starting with the first. See Oracle Database SQL Language Reference for details.

	
Columns with all NULL values are ignored by INSERT_BIN_NUM_QTILE.

Examples

In this example, INSERT_BIN_NUM_QTILE computes the bin boundaries for the cust_year_of_birth and cust_credit_limit columns in sh.customers and inserts the transformations in a transformation definition table. The STACK_BIN_NUM Procedure creates a transformation list from the contents of the definition table.

The SQL expression that computes the transformation is shown in STACK_VIEW. The view is for display purposes only; it cannot be used to embed the transformations in a model.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_year_of_birth, cust_credit_limit, cust_city
 FROM sh.customers;

DESCRIBE mining_data
 Name Null? Type
 --------------------------------------- -------- -----------------------------
 CUST_ID NOT NULL NUMBER
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)
 CUST_CREDIT_LIMIT NUMBER
 CUST_CITY NOT NULL VARCHAR2(30)

BEGIN
 dbms_data_mining_transform.CREATE_BIN_NUM(
 bin_table_name => 'bin_tbl');
 dbms_data_mining_transform.INSERT_BIN_NUM_QTILE (
 bin_table_name => 'bin_tbl',
 data_table_name => 'mining_data',
 bin_num => 3,
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id'));
END;
/

set numwidth 8
column val off
column col format a20
column bin format a10
SELECT col, val, bin
 FROM bin_tbl
 ORDER BY col ASC, val ASC;

COL VAL BIN
-------------------- -------- ----------
CUST_CREDIT_LIMIT 1500
CUST_CREDIT_LIMIT 3000 1
CUST_CREDIT_LIMIT 9000 2
CUST_CREDIT_LIMIT 15000 3
CUST_YEAR_OF_BIRTH 1913
CUST_YEAR_OF_BIRTH 1949 1
CUST_YEAR_OF_BIRTH 1965 2
CUST_YEAR_OF_BIRTH 1990 3

DECLARE
 xforms dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_BIN_NUM (
 bin_table_name => 'bin_tbl',
 xform_list => xforms);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => xforms,
 data_table_name => 'mining_data',
 xform_view_name => 'stack_view');
END;
/

set long 3000
SELECT text FROM user_views WHERE view_name in 'STACK_VIEW';

TEXT
--
SELECT "CUST_ID",CASE WHEN "CUST_YEAR_OF_BIRTH"<1913 THEN NULL WHEN "CUST_YEAR_O
F_BIRTH"<=1949 THEN '1' WHEN "CUST_YEAR_OF_BIRTH"<=1965 THEN '2' WHEN "CUST_YEAR
_OF_BIRTH"<=1990 THEN '3' END "CUST_YEAR_OF_BIRTH",CASE WHEN "CUST_CREDIT_LIMIT"
<1500 THEN NULL WHEN "CUST_CREDIT_LIMIT"<=3000 THEN '1' WHEN "CUST_CREDIT_LIMIT"
<=9000 THEN '2' WHEN "CUST_CREDIT_LIMIT"<=15000 THEN '3' END "CUST_CREDIT_LIMIT"
,"CUST_CITY" FROM mining_data

INSERT_BIN_SUPER Procedure

This procedure performs numerical and categorical binning and inserts the transformation definitions in transformation definition tables. The procedure computes bin boundaries based on intrinsic relationships between predictors and a target.

INSERT_BIN_SUPER uses an intelligent binning technique known as supervised binning. It builds a single-predictor decision tree and derives the bin boundaries from splits within the tree.

INSERT_BIN_SUPER bins all the VARCHAR2, CHAR, NUMBER, and FLOAT columns in the data source unless you specify a list of columns to ignore.

Syntax

DBMS_DATA_MINING_TRANSFORM.INSERT_BIN_SUPER (
 num_table_name IN VARCHAR2,
 cat_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 target_column_name IN VARCHAR2,
 max_bin_num IN PLS_INTEGER DEFAULT 1000,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 num_schema_name IN VARCHAR2 DEFAULT NULL,
 cat_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 rem_table_name IN VARCHAR2 DEFAULT NULL,
 rem_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 45-24 INSERT_BIN_SUPER Procedure Parameters

	Parameter	Description
	
num_table_name

	
Name of the transformation definition table for numerical binning. You can use the CREATE_BIN_NUM Procedure to create the definition table. The following columns are required:

COL VARCHAR2(30)
VAL VNUMBER
BIN VARCHAR2(4000)

CREATE_BIN_NUM creates an additional column, ATT, which may be used for specifying nested attributes. This column is not used by INSERT_BIN_SUPER.

	
cat_table_name

	
Name of the transformation definition table for categorical binning. You can use the CREATE_BIN_CAT Procedure to create the definition table. The following columns are required:

COL VARCHAR2(30)
VAL VARCHAR2(4000)
BIN VARCHAR2(4000)

CREATE_BIN_CAT creates an additional column, ATT, which is used for specifying nested attributes. This column is not used by INSERT_BIN_SUPER.

	
data_table_name

	
Name of the table containing the data to be transformed

	
target_column_name

	
Name of a column to be used as the target for the decision tree models

	
max_bin_num

	
The maximum number of bins. The default is 1000.

	
exclude_list

	
List of columns to be excluded from the binning process. If you do not specify exclude_list, all CHAR, VARCHAR2, NUMBER, and FLOAT columns in the data source are binned.

The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

	
num_schema_name

	
Schema of num_table_name. If no schema is specified, the current schema is used.

	
cat_schema_name

	
Schema of cat_table_name. If no schema is specified, the current schema is used.

	
data_schema_name

	
Schema of data_table_name. If no schema is specified, the current schema is used.

	
rem_table_name

	
Name of a column removal definition table. The table must have the columns described in "CREATE_COL_REM Procedure". You can use CREATE_COL_REM to create the table. See Usage Notes.

	
rem_schema_name

	
Schema of rem_table_name. If no schema is specified, the current schema is used.

Usage Notes

	
Columns that have no significant splits are not binned. You can remove the unbinned columns from the mining data by specifying a column removal definition table. If you do not specify a column removal definition table, the unbinned columns remain in the mining data.

	
See Oracle Data Mining Concepts to learn more about decision trees in Oracle Data Mining

Examples

In this example, INSERT_BIN_SUPER computes the bin boundaries for predictors of cust_credit_limit and inserts the transformations in transformation definition tables. One predictor is numerical, the other is categorical. (INSERT_BIN_SUPER determines that the cust_postal_code column is not a significant predictor.) STACK procedures create transformation lists from the contents of the definition tables.

The SQL expressions that compute the transformations are shown in the views MINING_DATA_STACK_NUM and MINING_DATA_STACK_CAT. The views are for display purposes only; they cannot be used to embed the transformations in a model.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_year_of_birth, cust_marital_status,
 cust_postal_code, cust_credit_limit
 FROM sh.customers;

DESCRIBE mining_data
 Name Null? Type
 -------------------------------- -------- ------------------------------------
 CUST_ID NOT NULL NUMBER
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)
 CUST_MARITAL_STATUS VARCHAR2(20)
 CUST_POSTAL_CODE NOT NULL VARCHAR2(10)
 CUST_CREDIT_LIMIT NUMBER

BEGIN
 dbms_data_mining_transform.CREATE_BIN_NUM(
 bin_table_name => 'bin_num_tbl');
 dbms_data_mining_transform.CREATE_BIN_CAT(
 bin_table_name => 'bin_cat_tbl');
 dbms_data_mining_transform.CREATE_COL_REM(
 rem_table_name => 'rem_tbl');
END;
/

BEGIN
 COMMIT;
 dbms_data_mining_transform.INSERT_BIN_SUPER (
 num_table_name => 'bin_num_tbl',
 cat_table_name => 'bin_cat_tbl',
 data_table_name => 'mining_data',
 target_column_name => 'cust_credit_limit',
 max_bin_num => 4,
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id'),
 num_schema_name => 'dmuser',
 cat_schema_name => 'dmuser',
 data_schema_name => 'dmuser',
 rem_table_name => 'rem_tbl',
 rem_schema_name => 'dmuser');
 COMMIT;
END;
/

set numwidth 8
column val off
SELECT col, val, bin FROM bin_num_tbl
 ORDER BY bin ASC;

COL VAL BIN
-------------------- -------- ----------
CUST_YEAR_OF_BIRTH 1923.5 1
CUST_YEAR_OF_BIRTH 1923.5 1
CUST_YEAR_OF_BIRTH 1945.5 2
CUST_YEAR_OF_BIRTH 1980.5 3
CUST_YEAR_OF_BIRTH 4

column val on
column val format a20
SELECT col, val, bin FROM bin_cat_tbl
 ORDER BY bin ASC;

COL VAL BIN
-------------------- -------------------- ----------
CUST_MARITAL_STATUS married 1
CUST_MARITAL_STATUS single 2
CUST_MARITAL_STATUS Mar-AF 3
CUST_MARITAL_STATUS Mabsent 3
CUST_MARITAL_STATUS Divorc. 3
CUST_MARITAL_STATUS Married 3
CUST_MARITAL_STATUS Widowed 3
CUST_MARITAL_STATUS NeverM 3
CUST_MARITAL_STATUS Separ. 3
CUST_MARITAL_STATUS divorced 4
CUST_MARITAL_STATUS widow 4

SELECT col from rem_tbl;

COL

CUST_POSTAL_CODE

DECLARE
 xforms_num dbms_data_mining_transform.TRANSFORM_LIST;
 xforms_cat dbms_data_mining_transform.TRANSFORM_LIST;
 BEGIN
 dbms_data_mining_transform.STACK_BIN_NUM (
 bin_table_name => 'bin_num_tbl',
 xform_list => xforms_num);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => xforms_num,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack_num');
 dbms_data_mining_transform.STACK_BIN_CAT (
 bin_table_name => 'bin_cat_tbl',
 xform_list => xforms_cat);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => xforms_cat,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack_cat');
 END;
 /

set long 3000
SELECT text FROM user_views WHERE view_name IN 'MINING_DATA_STACK_NUM';

TEXT
--
SELECT "CUST_ID",CASE WHEN "CUST_YEAR_OF_BIRTH"<1923.5 THEN '1' WHEN "CUST_YEAR_
OF_BIRTH"<=1923.5 THEN '1' WHEN "CUST_YEAR_OF_BIRTH"<=1945.5 THEN '2' WHEN "CUST
_YEAR_OF_BIRTH"<=1980.5 THEN '3' WHEN "CUST_YEAR_OF_BIRTH" IS NOT NULL THEN '4'
END "CUST_YEAR_OF_BIRTH","CUST_MARITAL_STATUS","CUST_POSTAL_CODE","CUST_CREDIT_L
IMIT" FROM mining_data

SELECT text FROM user_views WHERE view_name IN 'MINING_DATA_STACK_CAT';

TEXT
--
SELECT "CUST_ID","CUST_YEAR_OF_BIRTH",DECODE("CUST_MARITAL_STATUS",'Divorc.','3'
,'Mabsent','3','Mar-AF','3','Married','3','NeverM','3','Separ.','3','Widowed','3
','divorced','4','married','1','single','2','widow','4') "CUST_MARITAL_STATUS","
CUST_POSTAL_CODE","CUST_CREDIT_LIMIT" FROM mining_data

INSERT_CLIP_TRIM_TAIL Procedure

This procedure replaces numeric outliers with nulls and inserts the transformation definitions in a transformation definition table.

INSERT_CLIP_TRIM_TAIL computes the boundaries of the data based on a specified percentage. It removes the values that fall outside the boundaries (tail values) from the data. If you wish to replace the tail values instead of removing them, use the INSERT_CLIP_WINSOR_TAIL Procedure.

INSERT_CLIP_TRIM_TAIL clips all the NUMBER and FLOAT columns in the data source unless you specify a list of columns to ignore.

Syntax

DBMS_DATA_MINING_TRANSFORM.INSERT_CLIP_TRIM_TAIL (
 clip_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 tail_frac IN NUMBER DEFAULT 0.025,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 clip_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 45-25 INSERT_CLIP_TRIM_TAIL Procedure Parameters

	Parameter	Description
	
clip_table_name

	
Name of the transformation definition table for numerical clipping. You can use the CREATE_CLIP Procedure to create the definition table. The following columns are required:

 COL VARCHAR2(30)
 LCUT NUMBER
 LVAL NUMBER
 RCUT NUMBER
 RVAL NUMBER

CREATE_CLIP creates an additional column, ATT, which may be used for specifying nested attributes. This column is not used by INSERT_CLIP_TRIM_TAIL.

	
data_table_name

	
Name of the table containing the data to be transformed

	
tail_frac

	
The percentage of non-null values to be designated as outliers at each end of the data. For example, if tail_frac is .01, then 1% of the data at the low end and 1% of the data at the high end will be treated as outliers.

If tail_frac is greater than or equal to .5, no clipping occurs.

The default value of tail_frac is 0.025.

	
exclude_list

	
List of NUMBER columns to be excluded from the clipping process. If you do not specify exclude_list, all NUMBER columns in the data are clipped.

The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

	
clip_schema_name

	
Schema of clip_table_name. If no schema is specified, the current schema is used.

	
data_schema_name

	
Schema of data_table_name. If no schema is specified, the current schema is used.

Usage Notes

The DBMS_DATA_MINING_TRANSFORM package provides two clipping procedures: INSERT_CLIP_TRIM_TAIL and INSERT_CLIP_WINSOR_TAIL. Both procedures compute the boundaries as follows:

	
Count the number of non-null values, n, and sort them in ascending order

	
Calculate the number of outliers, t, as n*tail_frac

	
Define the lower boundary lcut as the value at position 1+floor(t)

	
Define the upper boundary rcut as the value at position n-floor(t)

(The SQL FLOOR function returns the largest integer less than or equal to t.)

	
All values that are <= lcut or => rcut are designated as outliers.

INSERT_CLIP_TRIM_TAIL replaces the outliers with nulls, effectively removing them from the data.

INSERT_CLIP_WINSOR_TAIL assigns lcut to the low outliers and rcut to the high outliers.

Examples

In this example, INSERT_CLIP_TRIM_TAIL trims 10% of the data in two columns (5% from the high end and 5% from the low end) and inserts the transformations in a transformation definition table. The STACK_CLIP Procedure creates a transformation list from the contents of the definition table.

The SQL expression that computes the trimming is shown in the view MINING_DATA_STACK. The view is for display purposes only; it cannot be used to embed the transformations in a model.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_year_of_birth, cust_credit_limit, cust_city
 FROM sh.customers;

DESCRIBE mining_data
 Name Null? Type
 ------------------------------- -------- -------------------
 CUST_ID NOT NULL NUMBER
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)
 CUST_CREDIT_LIMIT NUMBER
 CUST_CITY NOT NULL VARCHAR2(30)

BEGIN
 dbms_data_mining_transform.CREATE_CLIP(
 clip_table_name => 'clip_tbl');
 dbms_data_mining_transform.INSERT_CLIP_TRIM_TAIL(
 clip_table_name => 'clip_tbl',
 data_table_name => 'mining_data',
 tail_frac => 0.05,
 exclude_list => DBMS_DATA_MINING_TRANSFORM.COLUMN_LIST('cust_id'));
END;
/

SELECT col, lcut, lval, rcut, rval
 FROM clip_tbl
 ORDER BY col ASC;

COL LCUT LVAL RCUT RVAL
-------------------- -------- -------- -------- --------
CUST_CREDIT_LIMIT 1500 11000
CUST_YEAR_OF_BIRTH 1934 1982

DECLARE
 xforms dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_CLIP (
 clip_table_name => 'clip_tbl',
 xform_list => xforms);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => xforms,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack');
 END;
 /

set long 3000
SELECT text FROM user_views WHERE view_name IN 'MINING_DATA_STACK';

TEXT
--
SELECT "CUST_ID",CASE WHEN "CUST_YEAR_OF_BIRTH" < 1934 THEN NULL WHEN "CUST_YEAR
_OF_BIRTH" > 1982 THEN NULL ELSE "CUST_YEAR_OF_BIRTH" END "CUST_YEAR_OF_BIRTH",C
ASE WHEN "CUST_CREDIT_LIMIT" < 1500 THEN NULL WHEN "CUST_CREDIT_LIMIT" > 11000 T
HEN NULL ELSE "CUST_CREDIT_LIMIT" END "CUST_CREDIT_LIMIT","CUST_CITY" FROM minin
g_data

INSERT_CLIP_WINSOR_TAIL Procedure

This procedure replaces numeric outliers with the upper or lower boundary values. It inserts the transformation definitions in a transformation definition table.

INSERT_CLIP_WINSOR_TAIL computes the boundaries of the data based on a specified percentage. It replaces the values that fall outside the boundaries (tail values) with the related boundary value. If you wish to set tail values to null, use the INSERT_CLIP_TRIM_TAIL Procedure.

INSERT_CLIP_WINSOR_TAIL clips all the NUMBER and FLOAT columns in the data source unless you specify a list of columns to ignore.

Syntax

DBMS_DATA_MINING_TRANSFORM.INSERT_CLIP_WINSOR_TAIL (
 clip_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 tail_frac IN NUMBER DEFAULT 0.025,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 clip_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 45-26 INSERT_CLIP_WINSOR_TAIL Procedure Parameters

	Parameter	Description
	
clip_table_name

	
Name of the transformation definition table for numerical clipping. You can use the CREATE_CLIP Procedure to create the definition table. The following columns are required:

 COL VARCHAR2(30)
 LCUT NUMBER
 LVAL NUMBER
 RCUT NUMBER
 RVAL NUMBER

CREATE_CLIP creates an additional column, ATT, which may be used for specifying nested attributes. This column is not used by INSERT_CLIP_WINSOR_TAIL.

	
data_table_name

	
Name of the table containing the data to be transformed

	
tail_frac

	
The percentage of non-null values to be designated as outliers at each end of the data. For example, if tail_frac is .01, then 1% of the data at the low end and 1% of the data at the high end will be treated as outliers.

If tail_frac is greater than or equal to .5, no clipping occurs.

The default value of tail_frac is 0.025.

	
exclude_list

	
List of NUMBER columns to be excluded from the clipping process. If you do not specify exclude_list, all NUMBER columns in the data are clipped.

The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

	
clip_schema_name

	
Schema of clip_table_name. If no schema is specified, the current schema is used.

	
data_schema_name

	
Schema of data_table_name. If no schema is specified, the current schema is used.

Usage Notes

The DBMS_DATA_MINING_TRANSFORM package provides two clipping procedures: INSERT_CLIP_WINSOR_TAIL and INSERT_CLIP_TRIM_TAIL. Both procedures compute the boundaries as follows:

	
Count the number of non-null values, n, and sort them in ascending order

	
Calculate the number of outliers, t, as n*tail_frac

	
Define the lower boundary lcut as the value at position 1+floor(t)

	
Define the upper boundary rcut as the value at position n-floor(t)

(The SQL FLOOR function returns the largest integer less than or equal to t.)

	
All values that are <= lcut or => rcut are designated as outliers.

INSERT_CLIP_WINSOR_TAIL assigns lcut to the low outliers and rcut to the high outliers.

INSERT_CLIP_TRIM_TAIL replaces the outliers with nulls, effectively removing them from the data.

Examples

In this example, INSERT_CLIP_WINSOR_TAIL winsorizes 10% of the data in two columns (5% from the high end, and 5% from the low end) and inserts the transformations in a transformation definition table. The STACK_CLIP Procedure creates a transformation list from the contents of the definition table.

The SQL expression that computes the transformation is shown in the view MINING_DATA_STACK. The view is for display purposes only; it cannot be used to embed the transformations in a model.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_year_of_birth, cust_credit_limit, cust_city
 FROM sh.customers;

describe mining_data
 Name Null? Type
 -- -------- -------------
 CUST_ID NOT NULL NUMBER
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)
 CUST_CREDIT_LIMIT NUMBER
 CUST_CITY NOT NULL VARCHAR2(30)

BEGIN
 dbms_data_mining_transform.CREATE_CLIP(
 clip_table_name => 'clip_tbl');
 dbms_data_mining_transform.INSERT_CLIP_WINSOR_TAIL(
 clip_table_name => 'clip_tbl',
 data_table_name => 'mining_data',
 tail_frac => 0.05,
 exclude_list => DBMS_DATA_MINING_TRANSFORM.COLUMN_LIST('cust_id'));
END;
/

SELECT col, lcut, lval, rcut, rval FROM clip_tbl
 ORDER BY col ASC;
COL LCUT LVAL RCUT RVAL
------------------------------ -------- -------- -------- --------
CUST_CREDIT_LIMIT 1500 1500 11000 11000
CUST_YEAR_OF_BIRTH 1934 1934 1982 1982

DECLARE
 xforms dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_CLIP (
 clip_table_name => 'clip_tbl',
 xform_list => xforms);
dbms_data_mining_transform.XFORM_STACK (
 xform_list => xforms,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack');
END;
/

set long 3000
SQL> SELECT text FROM user_views WHERE view_name IN 'MINING_DATA_STACK';

TEXT
--
SELECT "CUST_ID",CASE WHEN "CUST_YEAR_OF_BIRTH" < 1934 THEN 1934 WHEN "CUST_YEAR
_OF_BIRTH" > 1982 THEN 1982 ELSE "CUST_YEAR_OF_BIRTH" END "CUST_YEAR_OF_BIRTH",C
ASE WHEN "CUST_CREDIT_LIMIT" < 1500 THEN 1500 WHEN "CUST_CREDIT_LIMIT" > 11000 T
HEN 11000 ELSE "CUST_CREDIT_LIMIT" END "CUST_CREDIT_LIMIT","CUST_CITY" FROM mini
ng_data

INSERT_MISS_CAT_MODE Procedure

This procedure replaces missing categorical values with the value that occurs most frequently in the column (the mode). It inserts the transformation definitions in a transformation definition table.

INSERT_MISS_CAT_MODE replaces missing values in all VARCHAR2 and CHAR columns in the data source unless you specify a list of columns to ignore.

Syntax

DBMS_DATA_MINING_TRANSFORM.INSERT_MISS_CAT_MODE (
 miss_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 miss_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 45-27 INSERT_MISS_CAT_MODE Procedure Parameters

	Parameter	Description
	
miss_table_name

	
Name of the transformation definition table for categorical missing value treatment. You can use the CREATE_MISS_CAT Procedure to create the definition table. The following columns are required:

 COL VARCHAR2(30)
 VAL VARCHAR2(4000)

CREATE_MISS_CAT creates an additional column, ATT, which may be used for specifying nested attributes. This column is not used by INSERT_MISS_CAT_MODE.

	
data_table_name

	
Name of the table containing the data to be transformed

	
exclude_list

	
List of VARCHAR2 and CHAR columns to be excluded from missing value treatment. If you do not specify exclude_list, all VARCHAR2 and CHAR columns are transformed.

The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

	
miss_schema_name

	
Schema of miss_table_name. If no schema is specified, the current schema is used.

	
data_schema_name

	
Schema of data_table_name. If no schema is specified, the current schema is used.

Usage Notes

If you wish to replace categorical missing values with a value other than the mode, you can edit the transformation definition table.

	
See Also:

Oracle Data Mining Application Developer's Guide for information about default missing value treatment in Oracle Data Mining

Example

In this example, INSERT_MISS_CAT_MODE computes missing value treatment for cust_city and inserts the transformation in a transformation definition table. The STACK_MISS_CAT Procedure creates a transformation list from the contents of the definition table.

The SQL expression that computes the transformation is shown in the view MINING_DATA_STACK. The view is for display purposes only; it cannot be used to embed the transformations in a model.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_year_of_birth, cust_city
 FROM sh.customers;

describe mining_data
 Name Null? Type
 -------------------------------- -------- ----------------
 CUST_ID NOT NULL NUMBER
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)
 CUST_CITY NOT NULL VARCHAR2(30)

BEGIN
 dbms_data_mining_transform.create_miss_cat(
 miss_table_name => 'missc_tbl');
 dbms_data_mining_transform.insert_miss_cat_mode(
 miss_table_name => 'missc_tbl',
 data_table_name => 'mining_data');
END;
/

SELECT stats_mode(cust_city) FROM mining_data;

STATS_MODE(CUST_CITY)

Los Angeles

SELECT col, val
 from missc_tbl;

COL VAL
------------------------------ ------------------------------
CUST_CITY Los Angeles

DECLARE
 xforms dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_MISS_CAT (
 miss_table_name => 'missc_tbl',
 xform_list => xforms);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => xforms,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack');
END;
/

set long 3000
SELECT text FROM user_views WHERE view_name IN 'MINING_DATA_STACK';

TEXT
--
SELECT "CUST_ID","CUST_YEAR_OF_BIRTH",NVL("CUST_CITY",'Los Angeles') "CUST_CITY"
 FROM mining_data

INSERT_MISS_NUM_MEAN Procedure

This procedure replaces missing numerical values with the average (the mean) and inserts the transformation definitions in a transformation definition table.

INSERT_MISS_NUM_MEAN replaces missing values in all NUMBER and FLOAT columns in the data source unless you specify a list of columns to ignore.

Syntax

DBMS_DATA_MINING_TRANSFORM.INSERT_MISS_NUM_MEAN (
 miss_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 round_num IN PLS_INTEGER DEFAULT 6,
 miss_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 45-28 INSERT_MISS_NUM_MEAN Procedure Parameters

	Parameter	Description
	
miss_table_name

	
Name of the transformation definition table for numerical missing value treatment. You can use the CREATE_MISS_NUM Procedure to create the definition table.

The following columns are required by INSERT_MISS_NUM_MEAN:

 COL VARCHAR2(30)
 VAL NUMBER

CREATE_MISS_NUM creates an additional column, ATT, which may be used for specifying nested attributes. This column is not used by INSERT_MISS_NUM_MEAN.

	
data_table_name

	
Name of the table containing the data to be transformed

	
exclude_list

	
List of NUMBER columns to be excluded from missing value treatment. If you do not specify exclude_list, all NUMBER columns are transformed.

The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

	
round_num

	
The number of significant digits to use for the mean.

The default number is 6.

	
miss_schema_name

	
Schema of miss_table_name. If no schema is specified, the current schema is used.

	
data_schema_name

	
Schema of data_table_name. If no schema is specified, the current schema is used.

Usage Notes

If you wish to replace numerical missing values with a value other than the mean, you can edit the transformation definition table.

	
See Also:

Oracle Data Mining Application Developer's Guide for information about default missing value treatment in Oracle Data Mining

Example

In this example, INSERT_MISS_NUM_MEAN computes missing value treatment for cust_year_of_birth and inserts the transformation in a transformation definition table. The STACK_MISS_NUM Procedure creates a transformation list from the contents of the definition table.

The SQL expression that computes the transformation is shown in the view MINING_DATA_STACK. The view is for display purposes only; it cannot be used to embed the transformations in a model.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_year_of_birth, cust_city
 FROM sh.customers;

DESCRIBE mining_data
 Name Null? Type
 -- -------- -------------------
 CUST_ID NOT NULL NUMBER
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)
 CUST_CITY NOT NULL VARCHAR2(30)

BEGIN
 dbms_data_mining_transform.create_miss_num(
 miss_table_name => 'missn_tbl');
 dbms_data_mining_transform.insert_miss_num_mean(
 miss_table_name => 'missn_tbl',
 data_table_name => 'mining_data',
 exclude_list => DBMS_DATA_MINING_TRANSFORM.COLUMN_LIST('cust_id'));
END;
/

set numwidth 4
column val off
SELECT col, val
 FROM missn_tbl;

COL VAL
-------------------- ----
CUST_YEAR_OF_BIRTH 1957

SELECT avg(cust_year_of_birth) FROM mining_data;

AVG(CUST_YEAR_OF_BIRTH)

 1957

DECLARE
 xforms dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_MISS_NUM (
 miss_table_name => 'missn_tbl',
 xform_list => xforms);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => xforms,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack');
END;
/

set long 3000
SELECT text FROM user_views WHERE view_name IN 'MINING_DATA_STACK';

TEXT
--
SELECT "CUST_ID",NVL("CUST_YEAR_OF_BIRTH",1957.4) "CUST_YEAR_OF_BIRTH","CUST_CIT
Y" FROM mining_data

INSERT_NORM_LIN_MINMAX Procedure

This procedure performs linear normalization and inserts the transformation definitions in a transformation definition table. INSERT_NORM_LIN_MINMAX computes the minimum and maximum values from the data and sets the value of shift and scale as follows:

shift = min
scale = max - min

Normalization is computed as:

x_new = (x_old - shift)/scale

INSERT_NORM_LIN_MINMAX rounds the value of scale to a specified number of significant digits before storing it in the transformation definition table.

INSERT_NORM_LIN_MINMAX normalizes all the NUMBER and FLOAT columns in the data source unless you specify a list of columns to ignore.

Syntax

DBMS_DATA_MINING_TRANSFORM.INSERT_NORM_LIN_MINMAX (
 norm_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 round_num IN PLS_INTEGER DEFAULT 6,
 norm_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 45-29 INSERT_NORM_LIN_MINMAX Procedure Parameters

	Parameter	Description
	
norm_table_name

	
Name of the transformation definition table for linear normalization. You can use the CREATE_NORM_LIN Procedure to create the definition table. The following columns are required:

 COL VARCHAR2(30)
 SHIFT NUMBER
 SCALE NUMBER

CREATE_NORM_LIN creates an additional column, ATT, which may be used for specifying nested attributes. This column is not used by INSERT_NORM_LIN_MINMAX.

	
data_table_name

	
Name of the table containing the data to be transformed

	
exclude_list

	
List of NUMBER columns to be excluded from normalization. If you do not specify exclude_list, all NUMBER columns are transformed.

The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

	
round_num

	
The number of significant digits to use for the minimum and maximum. The default number is 6.

	
norm_schema_name

	
Schema of norm_table_name. If no schema is specified, the current schema is used.

	
data_schema_name

	
Schema of data_table_name. If no schema is specified, the current schema is used.

Examples

In this example, INSERT_NORM_LIN_MINMAX normalizes the cust_year_of_birth column and inserts the transformation in a transformation definition table. The STACK_NORM_LIN Procedure creates a transformation list from the contents of the definition table.

The SQL expression that computes the transformation is shown in the view MINING_DATA_STACK. The view is for display purposes only; it cannot be used to embed the transformations in a model.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_gender, cust_year_of_birth
 FROM sh.customers;

describe mining_data
 Name Null? Type
 ------------------------------------ -------- ----------------
 CUST_ID NOT NULL NUMBER
 CUST_GENDER NOT NULL CHAR(1)
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)

BEGIN
 dbms_data_mining_transform.CREATE_NORM_LIN(
 norm_table_name => 'norm_tbl');
 dbms_data_mining_transform.INSERT_NORM_LIN_MINMAX(
 norm_table_name => 'norm_tbl',
 data_table_name => 'mining_data',
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id'),
 round_num => 3);
END;
/

SELECT col, shift, scale FROM norm_tbl;

COL SHIFT SCALE
------------------------------ ---------- ----------
CUST_YEAR_OF_BIRTH 1910 77

DECLARE
 xforms dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_NORM_LIN (
 norm_table_name => 'norm_tbl',
 xform_list => xforms);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => xforms,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack');
END;
/

set long 3000
SELECT text FROM user_views WHERE view_name IN 'MINING_DATA_STACK';

TEXT
--
SELECT "CUST_ID","CUST_GENDER",("CUST_YEAR_OF_BIRTH"-1910)/77 "CUST_YEAR_OF_BIRT
H" FROM mining_data

INSERT_NORM_LIN_SCALE Procedure

This procedure performs linear normalization and inserts the transformation definitions in a transformation definition table. INSERT_NORM_LIN_SCALE computes the minimum and maximum values from the data and sets the value of shift and scale as follows:

shift = 0
scale = max(abs(max), abs(min))

Normalization is computed as:

x_new = (x_old)/scale

INSERT_NORM_LIN_SCALE rounds the value of scale to a specified number of significant digits before storing it in the transformation definition table.

INSERT_NORM_LIN_SCALE normalizes all the NUMBER and FLOAT columns in the data source unless you specify a list of columns to ignore.

Syntax

DBMS_DATA_MINING_TRANSFORM.INSERT_NORM_LIN_SCALE (
 norm_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 round_num IN PLS_INTEGER DEFAULT 6,
 norm_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 45-30 INSERT_NORM_LIN_SCALE Procedure Parameters

	Parameter	Description
	
norm_table_name

	
Name of the transformation definition table for linear normalization. You can use the CREATE_NORM_LIN Procedure to create the definition table. The following columns are required:

 COL VARCHAR2(30)
 SHIFT NUMBER
 SCALE NUMBER

CREATE_NORM_LIN creates an additional column, ATT, which may be used for specifying nested attributes. This column is not used by INSERT_NORM_LIN_SCALE.

	
data_table_name

	
Name of the table containing the data to be transformed

	
exclude_list

	
List of NUMBER columns to be excluded from normalization. If you do not specify exclude_list, all NUMBER columns are transformed.

The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

	
round_num

	
The number of significant digits to use for scale. The default number is 6.

	
norm_schema_name

	
Schema of norm_table_name. If no schema is specified, the current schema is used.

	
data_schema_name

	
Schema of data_table_name. If no schema is specified, the current schema is used.

Examples

In this example, INSERT_NORM_LIN_SCALE normalizes the cust_year_of_birth column and inserts the transformation in a transformation definition table. The STACK_NORM_LIN Procedure creates a transformation list from the contents of the definition table.

The SQL expression that computes the transformation is shown in the view MINING_DATA_STACK. The view is for display purposes only; it cannot be used to embed the transformations in a model.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_gender, cust_year_of_birth
 FROM sh.customers;

DESCRIBE mining_data
 Name Null? Type
 ---------------------------------- -------- ------------------
 CUST_ID NOT NULL NUMBER
 CUST_GENDER NOT NULL CHAR(1)
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)

BEGIN
 dbms_data_mining_transform.CREATE_NORM_LIN(
 norm_table_name => 'norm_tbl');
 dbms_data_mining_transform.INSERT_NORM_LIN_SCALE(
 norm_table_name => 'norm_tbl',
 data_table_name => 'mining_data',
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id'),
 round_num => 3);
 END;
 /

SELECT col, shift, scale FROM norm_tbl;

COL SHIFT SCALE
-------------------- ----- -----
CUST_YEAR_OF_BIRTH 0 1990

DECLARE
 xforms dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_NORM_LIN (
 norm_table_name => 'norm_tbl',
 xform_list => xforms);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => xforms,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack');
END;
/

set long 3000
SELECT text FROM user_views WHERE view_name IN 'MINING_DATA_STACK';

TEXT
--
SELECT "CUST_ID","CUST_GENDER",("CUST_YEAR_OF_BIRTH"-0)/1990 "CUST_YEAR_OF_BIRTH
" FROM mining_data

INSERT_NORM_LIN_ZSCORE Procedure

This procedure performs linear normalization and inserts the transformation definitions in a transformation definition table. INSERT_NORM_LIN_ZSCORE computes the mean and the standard deviation from the data and sets the value of shift and scale as follows:

shift = mean
scale = stddev

Normalization is computed as:

x_new = (x_old - shift)/scale

INSERT_NORM_LIN_ZSCORE rounds the value of scale to a specified number of significant digits before storing it in the transformation definition table.

INSERT_NORM_LIN_ZSCORE normalizes all the NUMBER and FLOAT columns in the data unless you specify a list of columns to ignore.

Syntax

DBMS_DATA_MINING_TRANSFORM.INSERT_NORM_LIN_ZSCORE (
 norm_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 round_num IN PLS_INTEGER DEFAULT 6,
 norm_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 45-31 INSERT_NORM_LIN_ZSCORE Procedure Parameters

	Parameter	Description
	
norm_table_name

	
Name of the transformation definition table for linear normalization. You can use the CREATE_NORM_LIN Procedure to create the definition table. The following columns are required:

 COL VARCHAR2(30)
 SHIFT NUMBER
 SCALE NUMBER

CREATE_NORM_LIN creates an additional column, ATT, which may be used for specifying nested attributes. This column is not used by INSERT_NORM_LIN_ZSCORE.

	
data_table_name

	
Name of the table containing the data to be transformed

	
exclude_list

	
List of NUMBER columns to be excluded from normalization. If you do not specify exclude_list, all NUMBER columns are transformed.

The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

	
round_num

	
The number of significant digits to use for scale. The default number is 6.

	
norm_schema_name

	
Schema of norm_table_name. If no schema is specified, the current schema is used.

	
data_schema_name

	
Schema of data_table_name. If no schema is specified, the current schema is used.

Examples

In this example, INSERT_NORM_LIN_ZSCORE normalizes the cust_year_of_birth column and inserts the transformation in a transformation definition table. The STACK_NORM_LIN Procedure creates a transformation list from the contents of the definition table.

The SQL expression that computes the transformation is shown in the view MINING_DATA_STACK. The view is for display purposes only; it cannot be used to embed the transformations in a model.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_gender, cust_year_of_birth
 FROM sh.customers;

DESCRIBE mining_data
 Name Null? Type
 ----------------------------------- -------- --------------------
 CUST_ID NOT NULL NUMBER
 CUST_GENDER NOT NULL CHAR(1)
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)

BEGIN
 dbms_data_mining_transform.CREATE_NORM_LIN(
 norm_table_name => 'norm_tbl');
 dbms_data_mining_transform.INSERT_NORM_LIN_ZSCORE(
 norm_table_name => 'norm_tbl',
 data_table_name => 'mining_data',
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id'),
 round_num => 3);
END;
/

SELECT col, shift, scale FROM norm_tbl;

COL SHIFT SCALE
-------------------- ----- -----
CUST_YEAR_OF_BIRTH 1960 15

DECLARE
 xforms dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_NORM_LIN (
 norm_table_name => 'norm_tbl',
 xform_list => xforms);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => xforms,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack');
END;
/

set long 3000
SQL> SELECT text FROM user_views WHERE view_name IN 'MINING_DATA_STACK';

TEXT
--
SELECT "CUST_ID","CUST_GENDER",("CUST_YEAR_OF_BIRTH"-1960)/15 "CUST_YEAR_OF_BIRT
H" FROM mining_data

SET_EXPRESSION Procedure

This procedure appends a row to a VARCHAR2 array that stores a SQL expression. The array can be used for specifying a transformation expression that is too long to be used with the SET_TRANSFORM Procedure.

The GET_EXPRESSION Function returns a row in the array.

When you use SET_EXPRESSION to build a transformation expression, you must build a corresponding reverse transformation expression, create a transformation record, and add the transformation record to a transformation list.

Syntax

DBMS_DATA_MINING_TRANSFORM.SET_EXPRESSION (
 expression IN OUT NOCOPY EXPRESSION_REC,
 chunk VARCHAR2 DEFAULT NULL);

Parameters

Table 45-32 SET_EXPRESSION Procedure Parameters

	Parameter	Description
	
expression

	
An expression record (EXPRESSION_REC) that specifies a transformation expression or a reverse transformation expression for an attribute. Each expression record includes a VARCHAR2 array and index fields for specifying upper and lower boundaries within the array.

There are two EXPRESSION_REC fields within a transformation record (TRANSFORM_REC): one for the transformation expression; the other for the reverse transformation expression.

See Table 45-1 for a description of the EXPRESSION_REC type.

	
chunk

	
A VARCHAR2 chunk (row) to be appended to expression.

Notes

	
You can pass NULL in the chunk argument to SET_EXPRESSION to clear the previous chunk. The default value of chunk is NULL.

	
See "About Transformation Lists".

	
See "Operational Notes".

Examples

In this example, two calls to SET_EXPRESSION construct a transformation expression and two calls construct the reverse transformation.

	
Note:

This example is for illustration purposes only. It shows how SET_EXPRESSION appends the text provided in chunk to the text that already exists in expression. The SET_EXPRESSION procedure is meant for constructing very long transformation expressions that cannot be specified in a VARCHAR2 argument to SET_TRANSFORM.
Similarly while transformation lists are intended for embedding in a model, the transformation list v_xlst is shown in an external view for illustration purposes.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_year_of_birth, cust_postal_code, cust_credit_limit
 FROM sh.customers;

DECLARE
 v_expr dbms_data_mining_transform.EXPRESSION_REC;
 v_rexp dbms_data_mining_transform.EXPRESSION_REC;
 v_xrec dbms_data_mining_transform.TRANSFORM_REC;
 v_xlst dbms_data_mining_transform.TRANSFORM_LIST :=
 dbms_data_mining_transform.TRANSFORM_LIST(NULL);
BEGIN
 dbms_data_mining_transform.SET_EXPRESSION(
 EXPRESSION => v_expr,
 CHUNK => '("CUST_YEAR_OF_BIRTH"-1910)');
 dbms_data_mining_transform.SET_EXPRESSION(
 EXPRESSION => v_expr,
 CHUNK => '/77');
 dbms_data_mining_transform.SET_EXPRESSION(
 EXPRESSION => v_rexp,
 CHUNK => '"CUST_YEAR_OF_BIRTH"*77');
 dbms_data_mining_transform.SET_EXPRESSION(
 EXPRESSION => v_rexp,
 CHUNK => '+1910');

 v_xrec := null;
 v_xrec.attribute_name := 'CUST_YEAR_OF_BIRTH';
 v_xrec.expression := v_expr;
 v_xrec.reverse_expression := v_rexp;
 v_xlst.TRIM;
 v_xlst.extend(1);
 v_xlst(1) := v_xrec;

 dbms_data_mining_transform.XFORM_STACK (
 xform_list => v_xlst,
 data_table_name => 'mining_data',
 xform_view_name => 'v_xlst_view');

 dbms_output.put_line('====');
 FOR i IN 1..v_xlst.count LOOP
 dbms_output.put_line('ATTR: '||v_xlst(i).attribute_name);
 dbms_output.put_line('SUBN: '||v_xlst(i).attribute_subname);
 FOR j IN v_xlst(i).expression.lb..v_xlst(i).expression.ub LOOP
 dbms_output.put_line('EXPR: '||v_xlst(i).expression.lstmt(j));
 END LOOP;
 FOR j IN v_xlst(i).reverse_expression.lb..
 v_xlst(i).reverse_expression.ub LOOP
 dbms_output.put_line('REXP: '||v_xlst(i).reverse_expression.lstmt(j));
 END LOOP;
 dbms_output.put_line('====');
 END LOOP;
 END;
/
====
ATTR: CUST_YEAR_OF_BIRTH
SUBN:
EXPR: ("CUST_YEAR_OF_BIRTH"-1910)
EXPR: /77
REXP: "CUST_YEAR_OF_BIRTH"*77
REXP: +1910
====

SET_TRANSFORM Procedure

This procedure appends the transformation instructions for an attribute to a transformation list.

Syntax

DBMS_DATA_MINING_TRANSFORM.SET_TRANSFORM (
 xform_list IN OUT NOCOPY TRANSFORM_LIST,
 attribute_name VARCHAR2,
 attribute_subname VARCHAR2,
 expression VARCHAR2,
 reverse_expression VARCHAR2,
 attribute_spec VARCHAR2 DEFAULT NULL);

Parameters

Table 45-33 SET_TRANSFORM Procedure Parameters

	Parameter	Description
	
xform_list

	
A transformation list. See Table 45-1for a description of the TRANSFORM_LIST object type.

	
attribute_name

	
Name of the attribute to be transformed

	
attribute_subname

	
Name of the nested attribute if attribute_name is a nested column, otherwise NULL.

	
expression

	
A SQL expression that specifies the transformation of the attribute.

	
reverse_expression

	
A SQL expression that reverses the transformation for readability in model details and in the target of a supervised model (if the attribute is a target)

	
attribute_spec

	
You can specify the value NOPREP for attribute_spec to prevent this attribute from being automatically transformed when Automatic Data Preparation is being used.

Usage Notes

	
See "Operational Notes". The following sections are especially relevant:

	
"About Transformation Lists"

	
"Nested Data Transformations"

	
As shown in the following example, you can eliminate an attribute by specifying a null transformation expression and reverse expression. You can also use the STACK interface to remove a column (CREATE_COL_REM Procedure and STACK_COL_REM Procedure).

Examples

This example uses SET_TRANSFORM to append transformations to cust_stack for the data set cust_info and displays one row of the transformed data.

SET_TRANSFORM divides the country_id column by 10, removes the cust_year_of_birth column, and multiplies the nested attribute'custprods.mouse pad' by 10. (See "DESCRIBE_STACK Procedure" for the definition of cust_info.)

describe cust_info
 Name Null? Type
 --- -------- ----------------------------
 CUST_ID NOT NULL NUMBER
 COUNTRY_ID NOT NULL NUMBER
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)
 CUSTPRODS SYS.DM_NESTED_NUMERICALS

DECLARE
 cust_stack dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.SET_TRANSFORM (cust_stack,
 'country_id', NULL, 'country_id/10', 'country_id*10');
 dbms_data_mining_transform.SET_TRANSFORM (cust_stack,
 'cust_year_of_birth', NULL, NULL, NULL);
 dbms_data_mining_transform.SET_TRANSFORM (cust_stack,
 'custprods', 'Mouse Pad', 'value*100', 'value/100');
 dbms_data_mining_transform.XFORM_STACK (cust_stack,
 'cust_info', 'xform_cust_view');
END;
/

select * from xform_cust_view where cust_id = 100004;

CUST_ID COUNTRY_ID CUSTPRODS(ATTRIBUTE_NAME, VALUE)
------- ---------- --
100004 5279 DM_NESTED_NUMERICALS(DM_NESTED_NUMERICAL
 ('External 8X CD-ROM', 1),
 DM_NESTED_NUMERICAL('Keyboard Wrist Rest', 1))

STACK_BIN_CAT Procedure

This procedure adds categorical binning transformations to a transformation list.

Syntax

DBMS_DATA_MINING_TRANSFORM.STACK_BIN_CAT (
 bin_table_name IN VARCHAR2,
 xform_list IN OUT NOCOPY TRANSFORM_LIST,
 literal_flag IN BOOLEAN DEFAULT FALSE,
 bin_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 45-34 STACK_BIN_CAT Procedure Parameters

	Parameter	Description
	
bin_table_name

	
Name of the transformation definition table for categorical binning. You can use the CREATE_BIN_CAT Procedure to create the definition table. The table must be populated with transformation definitions before you call STACK_BIN_CAT. To populate the table, you can use one of the INSERT procedures for categorical binning or you can write your own SQL.

See Table 45-4, "Columns in a Transformation Definition Table for Categorical Binning"

	
xform_list

	
A transformation list. See Table 45-1 for a description of the TRANSFORM_LIST object type.

	
literal_flag

	
Indicates whether the values in the bin column in the transformation definition table are valid SQL literals. When literal_flag is FALSE (the default), the bin identifiers will be transformed to SQL literals by surrounding them with single quotes.

Set literal_flag to TRUE if the bin identifiers are numbers that should have a numeric data type, as is the case for an O-Cluster model.

See "INSERT_BIN_NUM_EQWIDTH Procedure" for an example.

	
bin_schema_name

	
Schema of bin_table_name. If no schema is specified, the current schema is used.

Usage Notes

See "Operational Notes". The following sections are especially relevant:

	
"About Transformation Lists"

	
"About Stacking"

	
"Nested Data Transformations"

Examples

This example shows how a binning transformation for the categorical column cust_postal_code could be added to a stack called mining_data_stack.

	
Note:

This example invokes the XFORM_STACK Procedure to show how the data is transformed by the stack. XFORM_STACK simply generates an external view of the transformed data. The actual purpose of the STACK procedures is to assemble a list of transformations for embedding in a model. The transformations are passed to CREATE_MODEL in the xform_list parameter. See INSERT_BIN_NUM_EQWIDTH Procedure for an example.

CREATE or REPLACE VIEW mining_data AS
 SELECT cust_id, cust_postal_code, cust_credit_limit
 FROM sh.customers
 WHERE cust_id BETWEEN 100050 AND 100100;
BEGIN
 dbms_data_mining_transform.CREATE_BIN_CAT ('bin_cat_tbl');
 dbms_data_mining_transform.INSERT_BIN_CAT_FREQ (
 bin_table_name => 'bin_cat_tbl',
 data_table_name => 'mining_data',
 bin_num => 3);
 END;
/
DECLARE
 MINING_DATA_STACK dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_BIN_CAT (
 bin_table_name => 'bin_cat_tbl',
 xform_list => mining_data_stack);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => mining_data_stack,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack_view');
 END;
/
-- Before transformation
column cust_postal_code format a16
SELECT * from mining_data
 WHERE cust_id BETWEEN 100050 AND 100053
 ORDER BY cust_id;

 CUST_ID CUST_POSTAL_CODE CUST_CREDIT_LIMIT
---------- ---------------- -----------------
 100050 76486 1500
 100051 73216 9000
 100052 69499 5000
 100053 45704 7000

-- After transformation
SELECT * FROM mining_data_stack_view
 WHERE cust_id BETWEEN 100050 AND 100053
 ORDER BY cust_id;

 CUST_ID CUST_POSTAL_CODE CUST_CREDIT_LIMIT
---------- ---------------- -----------------
 100050 4 1500
 100051 1 9000
 100052 4 5000
 100053 4 7000

STACK_BIN_NUM Procedure

This procedure adds numerical binning transformations to a transformation list.

Syntax

DBMS_DATA_MINING_TRANSFORM.STACK_BIN_NUM (
 bin_table_name IN VARCHAR2,
 xform_list IN OUT NOCOPY TRANSFORM_LIST,
 literal_flag IN BOOLEAN DEFAULT FALSE,
 bin_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 45-35 STACK_BIN_NUM Procedure Parameters

	Parameter	Description
	
bin_table_name

	
Name of the transformation definition table for numerical binning. You can use the CREATE_BIN_NUM Procedure to create the definition table. The table must be populated with transformation definitions before you call STACK_BIN_NUM. To populate the table, you can use one of the INSERT procedures for numerical binning or you can write your own SQL.

See Table 45-6, "Columns in a Transformation Definition Table for Numerical Binning".

	
xform_list

	
A transformation list. See Table 45-1 for a description of the TRANSFORM_LIST object type.

	
literal_flag

	
Indicates whether the values in the bin column in the transformation definition table are valid SQL literals. When literal_flag is FALSE (the default), the bin identifiers will be transformed to SQL literals by surrounding them with single quotes.

Set literal_flag to TRUE if the bin identifiers are numbers that should have a numeric data type, as is the case for an O-Cluster model.

See "INSERT_BIN_NUM_EQWIDTH Procedure" for an example.

	
bin_schema_name

	
Schema of bin_table_name. If no schema is specified, the current schema is used.

Usage Notes

See "Operational Notes". The following sections are especially relevant:

	
"About Transformation Lists"

	
"About Stacking"

	
"Nested Data Transformations"

Examples

This example shows how a binning transformation for the numerical column cust_credit_limit could be added to a stack called mining_data_stack.

	
Note:

This example invokes the XFORM_STACK Procedure to show how the data is transformed by the stack. XFORM_STACK simply generates an external view of the transformed data. The actual purpose of the STACK procedures is to assemble a list of transformations for embedding in a model. The transformations are passed to CREATE_MODEL in the xform_list parameter. See INSERT_BIN_NUM_EQWIDTH Procedure for an example.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_postal_code, cust_credit_limit
 FROM sh.customers
 WHERE cust_id BETWEEN 100050 and 100100;
BEGIN
 dbms_data_mining_transform.create_bin_num ('bin_num_tbl');
 dbms_data_mining_transform.insert_bin_num_qtile (
 bin_table_name => 'bin_num_tbl',
 data_table_name => 'mining_data',
 bin_num => 5,
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id'));
END;
/
DECLARE
 MINING_DATA_STACK dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_BIN_CAT (
 bin_table_name => 'bin_num_tbl',
 xform_list => mining_data_stack);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => mining_data_stack,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack_view');
END;
/
-- Before transformation
SELECT cust_id, cust_postal_code, ROUND(cust_credit_limit) FROM mining_data
 WHERE cust_id BETWEEN 100050 AND 100055
 ORDER BY cust_id;
CUST_ID CUST_POSTAL_CODE ROUND(CUST_CREDIT_LIMIT)
------- ----------------- -------------------------
100050 76486 1500
100051 73216 9000
100052 69499 5000
100053 45704 7000
100055 74673 11000
100055 74673 11000

-- After transformation
SELECT cust_id, cust_postal_code, ROUND(cust_credit_limit)
 FROM mining_data_stack_view
 WHERE cust_id BETWEEN 100050 AND 100055
 ORDER BY cust_id;
CUST_ID CUST_POSTAL_CODE ROUND(CUST_CREDIT_LIMITT)
------- ---------------- -------------------------
100050 76486
100051 73216 2
100052 69499 1
100053 45704
100054 88021 3
100055 74673 3

STACK_CLIP Procedure

This procedure adds clipping transformations to a transformation list.

Syntax

DBMS_DATA_MINING_TRANSFORM.STACK_CLIP (
 clip_table_name IN VARCHAR2,
 xform_list IN OUT NOCOPY TRANSFORM_LIST,
 clip_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 45-36 STACK_CLIP Procedure Parameters

	Parameter	Description
	
clip_table_name

	
Name of the transformation definition table for clipping.You can use the CREATE_CLIP Procedure to create the definition table. The table must be populated with transformation definitions before you call STACK_CLIP. To populate the table, you can use one of the INSERT procedures for clipping or you can write your own SQL.

See Table 45-8, "Columns in a Transformation Definition Table for Clipping or Winsorizing"

	
xform_list

	
A transformation list. See Table 45-1 for a description of the TRANSFORM_LIST object type.

	
clip_schema_name

	
Schema of clip_table_name. If no schema is specified, the current schema is used.

Usage Notes

See "Operational Notes". The following sections are especially relevant:

	
"About Transformation Lists"

	
"About Stacking"

	
"Nested Data Transformations"

Examples

This example shows how a clipping transformation for the numerical column cust_credit_limit could be added to a stack called mining_data_stack.

	
Note:

This example invokes the XFORM_STACK Procedure to show how the data is transformed by the stack. XFORM_STACK simply generates an external view of the transformed data. The actual purpose of the STACK procedures is to assemble a list of transformations for embedding in a model. The transformations are passed to CREATE_MODEL in the xform_list parameter. See INSERT_BIN_NUM_EQWIDTH Procedure for an example.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_postal_code, cust_credit_limit
 FROM sh.customers
 WHERE cust_id BETWEEN 100050 AND 100100;
BEGIN
 dbms_data_mining_transform.create_clip ('clip_tbl');
 dbms_data_mining_transform.insert_clip_winsor_tail (
 clip_table_name => 'clip_tbl',
 data_table_name => 'mining_data',
 tail_frac => 0.25,
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id'));
END;
/
DECLARE
 MINING_DATA_STACK dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_CLIP (
 clip_table_name => 'clip_tbl',
 xform_list => mining_data_stack);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => mining_data_stack,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack_view');
END;
/
-- Before transformation
SELECT cust_id, cust_postal_code, round(cust_credit_limit)
 FROM mining_data
 WHERE cust_id BETWEEN 100050 AND 100054
 ORDER BY cust_id;

CUST_ID CUST_POSTAL_CODE ROUND(CUST_CREDIT_LIMIT)
------- ---------------- ------------------------
100050 76486 1500
100051 73216 9000
100052 69499 5000
100053 45704 7000
100054 88021 11000

-- After transformation
SELECT cust_id, cust_postal_code, round(cust_credit_limit)
 FROM mining_data_stack_view
 WHERE cust_id BETWEEN 100050 AND 100054
 ORDER BY cust_id;

CUST_ID CUST_POSTAL_CODE ROUND(CUST_CREDIT_LIMIT)
------- ---------------- ------------------------
100050 76486 5000
100051 73216 9000
100052 69499 5000
100053 45704 7000
100054 88021 11000

STACK_COL_REM Procedure

This procedure adds column removal transformations to a transformation list.

Syntax

DBMS_DATA_MINING_TRANSFORM.STACK_COL_REM (
 rem_table_name IN VARCHAR2,
 xform_list IN OUT NOCOPY TRANSFORM_LIST,
 rem_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 45-37 STACK_COL_REM Procedure Parameters

	Parameter	Description
	
rem_table_name

	
Name of the transformation definition table for column removal. You can use the CREATE_COL_REM Procedure to create the definition table. See Table 45-10, "Columns in a Transformation Definition Table for Column Removal".

The table must be populated with column names before you call STACK_COL_REM. The INSERT_BIN_SUPER Procedure and the INSERT_AUTOBIN_NUM_EQWIDTH Procedure can optionally be used to populate the table. You can also use SQL INSERT statements.

	
xform_list

	
A transformation list. See Table 45-1 for a description of the TRANSFORM_LIST object type.

	
rem_schema_name

	
Schema of rem_table_name. If no schema is specified, the current schema is used.

Usage Notes

See "Operational Notes". The following sections are especially relevant:

	
"About Transformation Lists"

	
"About Stacking"

	
"Nested Data Transformations"

Examples

This example shows how the column cust_credit_limit could be removed in a transformation list called mining_data_stack.

	
Note:

This example invokes the XFORM_STACK Procedure to show how the data is transformed by the stack. XFORM_STACK simply generates an external view of the transformed data. The actual purpose of the STACK procedures is to assemble a list of transformations for embedding in a model. The transformations are passed to CREATE_MODEL in the xform_list parameter. See INSERT_BIN_NUM_EQWIDTH Procedure for an example.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, country_id, cust_postal_code, cust_credit_limit
 FROM sh.customers;

BEGIN
 dbms_data_mining_transform.create_col_rem ('rem_tbl');
END;
/

INSERT into rem_tbl VALUES (upper('cust_postal_code'), null);

DECLARE
 MINING_DATA_STACK dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.stack_col_rem (
 rem_table_name => 'rem_tbl',
 xform_list => mining_data_stack);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => mining_data_stack,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack_view');
END;
/

SELECT * FROM mining_data
 WHERE cust_id BETWEEN 100050 AND 100051
 ORDER BY cust_id;

CUST_ID COUNTRY_ID CUST_POSTAL_CODE CUST_CREDIT_LIMIT
------- ---------- ---------------- -----------------
100050 52773 76486 1500
100051 52790 73216 9000

SELECT * FROM mining_data_stack_view
 WHERE cust_id BETWEEN 100050 AND 100051
 ORDER BY cust_id;

CUST_ID COUNTRY_ID CUST_CREDIT_LIMIT
------- ---------- -----------------
100050 52773 1500
100051 52790 9000

STACK_MISS_CAT Procedure

This procedure adds categorical missing value transformations to a transformation list.

Syntax

DBMS_DATA_MINING_TRANSFORM.STACK_MISS_CAT (
 miss_table_name IN VARCHAR2,
 xform_list IN OUT NOCOPY TRANSFORM_LIST,
 miss_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 45-38 STACK_MISS_CAT Procedure Parameters

	Parameter	Description
	
miss_table_name

	
Name of the transformation definition table for categorical missing value treatment. You can use the CREATE_MISS_CAT Procedure to create the definition table. The table must be populated with transformation definitions before you call STACK_MISS_CAT. To populate the table, you can use the INSERT_MISS_CAT_MODE Procedure or you can write your own SQL.

See Table 45-12, "Columns in a Transformation Definition Table for Categorical Missing Value Treatment".

	
xform_list

	
A transformation list. See Table 45-1 for a description of the TRANSFORM_LIST object type.

	
miss_schema_name

	
Schema of miss_table_name. If no schema is specified, the current schema is used.

Usage Notes

See "Operational Notes". The following sections are especially relevant:

	
"About Transformation Lists"

	
"About Stacking"

	
"Nested Data Transformations"

Examples

This example shows how the missing values in the column cust_marital_status could be replaced with the mode in a transformation list called mining_data_stack.

	
Note:

This example invokes the XFORM_STACK Procedure to show how the data is transformed by the stack. XFORM_STACK simply generates an external view of the transformed data. The actual purpose of the STACK procedures is to assemble a list of transformations for embedding in a model. The transformations are passed to CREATE_MODEL in the xform_list parameter. See INSERT_BIN_NUM_EQWIDTH Procedure for an example.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, country_id, cust_marital_status
 FROM sh.customers
 where cust_id BETWEEN 1 AND 10;

BEGIN
 dbms_data_mining_transform.create_miss_cat ('miss_cat_tbl');
 dbms_data_mining_transform.insert_miss_cat_mode ('miss_cat_tbl', 'mining_data');
END;
/

DECLARE
 MINING_DATA_STACK dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.stack_miss_cat (
 miss_table_name => 'miss_cat_tbl',
 xform_list => mining_data_stack);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => mining_data_stack,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack_view');
END;
/
SELECT * FROM mining_data
 ORDER BY cust_id;

CUST_ID COUNTRY_ID CUST_MARITAL_STATUS
------- ---------- --------------------
 1 52789
 2 52778
 3 52770
 4 52770
 5 52789
 6 52769 single
 7 52790 single
 8 52790 married
 9 52770 divorced
 10 52790 widow

SELECT * FROM mining_data_stack_view
 ORDER By cust_id;

CUST_ID COUNTRY_ID CUST_MARITAL_STATUS
------- ----------- --------------------
 1 52789 single
 2 52778 single
 3 52770 single
 4 52770 single
 5 52789 single
 6 52769 single
 7 52790 single
 8 52790 married
 9 52770 divorced
 10 52790 widow

STACK_MISS_NUM Procedure

This procedure adds numeric missing value transformations to a transformation list.

Syntax

DBMS_DATA_MINING_TRANSFORM.STACK_MISS_NUM (
 miss_table_name IN VARCHAR2,
 xform_list IN OUT NOCOPY TRANSFORM_LIST,
 miss_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 45-39 STACK_MISS_NUM Procedure Parameters

	Parameter	Description
	
miss_table_name

	
Name of the transformation definition table for numerical missing value treatment. You can use the CREATE_MISS_NUM Procedure to create the definition table. The table must be populated with transformation definitions before you call STACK_MISS_NUM. To populate the table, you can use the INSERT_MISS_NUM_MEAN Procedure or you can write your own SQL.

See Table 45-14, "Columns in a Transformation Definition Table for Numerical Missing Value Treatment".

	
xform_list

	
A transformation list. See Table 45-1 for a description of the TRANSFORM_LIST object type.

	
miss_schema_name

	
Schema of miss_table_name. If no schema is specified, the current schema is used.

Usage Notes

See "Operational Notes". The following sections are especially relevant:

	
"About Transformation Lists"

	
"About Stacking"

	
"Nested Data Transformations"

Examples

This example shows how the missing values in the column cust_credit_limit could be replaced with the mean in a transformation list called mining_data_stack.

	
Note:

This example invokes the XFORM_STACK Procedure to show how the data is transformed by the stack. XFORM_STACK simply generates an external view of the transformed data. The actual purpose of the STACK procedures is to assemble a list of transformations for embedding in a model. The transformations are passed to CREATE_MODEL in the xform_list parameter. See INSERT_BIN_NUM_EQWIDTH Procedure for an example.

describe mining_data
 Name Null? Type
 --- -------- -----
 CUST_ID NOT NULL NUMBER
 CUST_CREDIT_LIMIT NUMBER

BEGIN
 dbms_data_mining_transform.create_miss_num ('miss_num_tbl');
 dbms_data_mining_transform.insert_miss_num_mean ('miss_num_tbl','mining_data');
END;
/
SELECT * FROM miss_num_tbl;

COL ATT VAL
-------------------- ----- ------
CUST_ID 5.5
CUST_CREDIT_LIMIT 185.71

DECLARE
 MINING_DATA_STACK dbms_data_mining_transform.TRANSFORM_LIST;
 BEGIN
 dbms_data_mining_transform.STACK_MISS_NUM (
 miss_table_name => 'miss_num_tbl',
 xform_list => mining_data_stack);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => mining_data_stack,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack_view');
END;
/
-- Before transformation
SELECT * FROM mining_data
 ORDER BY cust_id;
CUST_ID CUST_CREDIT_LIMIT
------- -----------------
 1 100
 2
 3 200
 4
 5 150
 6 400
 7 150
 8
 9 100
 10 200

-- After transformation
SELECT * FROM mining_data_stack_view
 ORDER BY cust_id;
CUST_ID CUST_CREDIT_LIMIT
------- -----------------
 1 100
 2 185.71
 3 200
 4 185.71
 5 150
 6 400
 7 150
 8 185.71
 9 100
 10 200

STACK_NORM_LIN Procedure

This procedure adds linear normalization transformations to a transformation list.

Syntax

DBMS_DATA_MINING_TRANSFORM.STACK_NORM_LIN (
 norm_table_name IN VARCHAR2,
 xform_list IN OUT NOCOPY TRANSFORM_LIST,
 norm_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 45-40 STACK_NORM_LIN Procedure Parameters

	Parameter	Description
	
norm_table_name

	
Name of the transformation definition table for linear normalization. You can use the CREATE_NORM_LIN Procedure to create the definition table. The table must be populated with transformation definitions before you call STACK_NORM_LIN.To populate the table, you can use one of the INSERT procedures for normalization or you can write your own SQL.

See Table 45-16, "Columns in a Transformation Definition Table for Linear Normalization".

	
xform_list

	
A transformation list. See Table 45-1 for a description of the TRANSFORM_LIST object type.

	
norm_schema_name

	
Schema of norm_table_name. If no schema is specified, the current schema is used.

Usage Notes

See "Operational Notes". The following sections are especially relevant:

	
"About Transformation Lists"

	
"About Stacking"

	
"Nested Data Transformations"

Examples

This example shows how the column cust_credit_limit could be normalized in a transformation list called mining_data_stack.

	
Note:

This example invokes the XFORM_STACK Procedure to show how the data is transformed by the stack. XFORM_STACK simply generates an external view of the transformed data. The actual purpose of the STACK procedures is to assemble a list of transformations for embedding in a model. The transformations are passed to CREATE_MODEL in the xform_list parameter. See INSERT_BIN_NUM_EQWIDTH Procedure for an example.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, country_id, cust_postal_code, cust_credit_limit
 FROM sh.customers;
BEGIN
 dbms_data_mining_transform.create_norm_lin ('norm_lin_tbl');
 dbms_data_mining_transform.insert_norm_lin_minmax (
 norm_table_name => 'norm_lin_tbl',
 data_table_name => 'mining_data',
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id',
 'country_id'));
END;
/
SELECT * FROM norm_lin_tbl;
COL ATT SHIFT SCALE
-------------------- ----- ------ ------
CUST_CREDIT_LIMIT 1500 13500

DECLARE
 MINING_DATA_STACK dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.stack_norm_lin (
 norm_table_name => 'norm_lin_tbl',
 xform_list => mining_data_stack);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => mining_data_stack,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack_view');
END;
/
SELECT * FROM mining_data
 WHERE cust_id between 1 and 10
 ORDER BY cust_id;
CUST_ID COUNTRY_ID CUST_POSTAL_CODE CUST_CREDIT_LIMIT
------- ---------- -------------------- -----------------
 1 52789 30828 9000
 2 52778 86319 10000
 3 52770 88666 1500
 4 52770 87551 1500
 5 52789 59200 1500
 6 52769 77287 1500
 7 52790 38763 1500
 8 52790 58488 3000
 9 52770 63033 3000
 10 52790 52602 3000

SELECT * FROM mining_data_stack_view
 WHERE cust_id between 1 and 10
 ORDER BY cust_id;
CUST_ID COUNTRY_ID CUST_POSTAL_CODE CUST_CREDIT_LIMIT
------- ---------- -------------------- -----------------
 1 52789 30828 .55556
 2 52778 86319 .62963
 3 52770 88666 0
 4 52770 87551 0
 5 52789 59200 0
 6 52769 77287 0
 7 52790 38763 0
 8 52790 58488 .11111
 9 52770 63033 .11111
 10 52790 52602 .11111

XFORM_BIN_CAT Procedure

This procedure creates a view that implements the categorical binning transformations specified in a definition table. Only the columns that are specified in the definition table are transformed; the remaining columns from the data table are present in the view, but they are not changed.

Syntax

DBMS_DATA_MINING_TRANSFORM.XFORM_BIN_CAT (
 bin_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 xform_view_name IN VARCHAR2,
 literal_flag IN BOOLEAN DEFAULT FALSE,
 bin_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 45-41 XFORM_BIN_CAT Procedure Parameters

	Parameter	Description
	
bin_table_name

	
Name of the transformation definition table for categorical binning. You can use the CREATE_BIN_CAT Procedure to create the definition table. The table must be populated with transformation definitions before you call XFORM_BIN_CAT. To populate the table, you can use one of the INSERT procedures for categorical binning or you can write your own SQL.

See Table 45-4, "Columns in a Transformation Definition Table for Categorical Binning".

	
data_table_name

	
Name of the table containing the data to be transformed.

	
xform_view_name

	
Name of the view to be created. The view presents columns in data_table_name with the transformations specified in bin_table_name.

	
literal_flag

	
Indicates whether the values in the bin column in the transformation definition table are valid SQL literals. When literal_flag is FALSE (the default), the bin identifiers will be transformed to SQL literals by surrounding them with single quotes.

Set literal_flag to TRUE if the bin identifiers are numbers that should have a numeric data type, as is the case for an O-Cluster model.

See "INSERT_BIN_NUM_EQWIDTH Procedure" for an example.

	
bin_schema_name

	
Schema of bin_table_name. If no schema is specified, the current schema is used.

	
data_schema_name

	
Schema of data_table_name. If no schema is specified, the current schema is used.

	
xform_schema_name

	
Schema of xform_view_name. If no schema is specified, the current schema is used.

Usage Notes

See "Operational Notes".

Examples

This example creates a view that bins the cust_postal_code column. The data source consists of three columns from sh.customer.

describe mining_data
 Name Null? Type
 -------------------------------------- -------- ------------------------
 CUST_ID NOT NULL NUMBER
 CUST_POSTAL_CODE NOT NULL VARCHAR2(10)
 CUST_CREDIT_LIMIT NUMBER

SELECT * FROM mining_data WHERE cust_id between 104066 and 104069;

 CUST_ID CUST_POSTAL_CODE CUST_CREDIT_LIMIT
--------- -------------------- -----------------
 104066 69776 7000
 104067 52602 9000
 104068 55787 11000
 104069 55977 5000

BEGIN
 dbms_data_mining_transform.create_bin_cat(
 bin_table_name => 'bin_cat_tbl');
 dbms_data_mining_transform.insert_bin_cat_freq(
 bin_table_name => 'bin_cat_tbl',
 data_table_name => 'mining_data',
 bin_num => 10);
 dbms_data_mining_transform.xform_bin_cat(
 bin_table_name => 'bin_cat_tbl',
 data_table_name => 'mining_data',
 xform_view_name => 'bin_cat_view');
END;
/

SELECT * FROM bin_cat_view WHERE cust_id between 104066 and 104069;

 CUST_ID CUST_POSTAL_CODE CUST_CREDIT_LIMIT
---------- -------------------- -----------------
 104066 6 7000
 104067 11 9000
 104068 3 11000
 104069 11 5000

SELECT text FROM user_views WHERE view_name IN 'BIN_CAT_VIEW';

TEXT
--
SELECT "CUST_ID",DECODE("CUST_POSTAL_CODE",'38082','1','45704','9','48346','5','
55787','3','63736','2','67843','7','69776','6','72860','10','78558','4','80841',
'8',NULL,NULL,'11') "CUST_POSTAL_CODE","CUST_CREDIT_LIMIT" FROM mining_data

XFORM_BIN_NUM Procedure

This procedure creates a view that implements the numerical binning transformations specified in a definition table. Only the columns that are specified in the definition table are transformed; the remaining columns from the data table are present in the view, but they are not changed.

Syntax

DBMS_DATA_MINING_TRANSFORM.XFORM_BIN_NUM (
 bin_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 xform_view_name IN VARCHAR2,
 literal_flag IN BOOLEAN DEFAULT FALSE,
 bin_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 45-42 XFORM_BIN_NUM Procedure Parameters

	Parameter	Description
	
bin_table_name

	
Name of the transformation definition table for numerical binning. You can use the CREATE_BIN_NUM Procedure to create the definition table. The table must be populated with transformation definitions before you call XFORM_BIN_NUM. To populate the table, you can use one of the INSERT procedures for numerical binning or you can write your own SQL.

See "Columns in a Transformation Definition Table for Numerical Binning".

	
data_table_name

	
Name of the table containing the data to be transformed

	
xform_view_name

	
Name of the view to be created. The view presents columns in data_table_name with the transformations specified in bin_table_name.

	
literal_flag

	
Indicates whether the values in the bin column in the transformation definition table are valid SQL literals. When literal_flag is FALSE (the default), the bin identifiers will be transformed to SQL literals by surrounding them with single quotes.

Set literal_flag to TRUE if the bin identifiers are numbers that should have a numeric data type, as is the case for an O-Cluster model.

See "INSERT_BIN_NUM_EQWIDTH Procedure" for an example.

	
bin_schema_name

	
Schema of bin_table_name. If no schema is specified, the current schema is used.

	
data_schema_name

	
Schema of data_table_name. If no schema is specified, the current schema is used.

	
xform_schema_name

	
Schema of xform_view_name. If no schema is specified, the current schema is used.

Usage Notes

See "Operational Notes".

Examples

This example creates a view that bins the cust_credit_limit column. The data source consists of three columns from sh.customer.

describe mining_data
 Name Null? Type
 -------------------------------------- -------- ------------------------
 CUST_ID NOT NULL NUMBER
 CUST_POSTAL_CODE NOT NULL VARCHAR2(10)
 CUST_CREDIT_LIMIT NUMBER

column cust_credit_limit off
SELECT * FROM mining_data WHERE cust_id between 104066 and 104069;

 CUST_ID CUST_POSTAL_CODE CUST_CREDIT_LIMIT
--------- ------------------ --------------------
 104066 69776 7000
 104067 52602 9000
 104068 55787 11000
 104069 55977 5000

BEGIN
 dbms_data_mining_transform.create_bin_num(
 bin_table_name => 'bin_num_tbl');
 dbms_data_mining_transform.insert_autobin_num_eqwidth(
 bin_table_name => 'bin_num_tbl',
 data_table_name => 'mining_data',
 bin_num => 5,
 max_bin_num => 10,
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id'));
 dbms_data_mining_transform.xform_bin_num(
 bin_table_name => 'bin_num_tbl',
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_view');
END;
/
describe mining_data_view
 Name Null? Type
 ------------------------------------ -------- ------------------------
 CUST_ID NOT NULL NUMBER
 CUST_POSTAL_CODE NOT NULL VARCHAR2(10)
 CUST_CREDIT_LIMIT VARCHAR2(2)

col cust_credit_limit on
col cust_credit_limit format a25
SELECT * FROM mining_data_view WHERE cust_id between 104066 and 104069;

 CUST_ID CUST_POSTAL_CODE CUST_CREDIT_LIMIT
---------- -------------------- -------------------------
 104066 69776 5
 104067 52602 6
 104068 55787 8
 104069 55977 3

set long 2000
SELECT text FROM user_views WHERE view_name IN 'MINING_DATA_VIEW';

TEXT
--
SELECT "CUST_ID","CUST_POSTAL_CODE",CASE WHEN "CUST_CREDIT_LIMIT"<1500 THEN NULL
 WHEN "CUST_CREDIT_LIMIT"<=2850 THEN '1' WHEN "CUST_CREDIT_LIMIT"<=4200 THEN '2'
 WHEN "CUST_CREDIT_LIMIT"<=5550 THEN '3' WHEN "CUST_CREDIT_LIMIT"<=6900 THEN '4'
 WHEN "CUST_CREDIT_LIMIT"<=8250 THEN '5' WHEN "CUST_CREDIT_LIMIT"<=9600 THEN '6'
 WHEN "CUST_CREDIT_LIMIT"<=10950 THEN '7' WHEN "CUST_CREDIT_LIMIT"<=12300 THEN '
8' WHEN "CUST_CREDIT_LIMIT"<=13650 THEN '9' WHEN "CUST_CREDIT_LIMIT"<=15000 THEN
 '10' END "CUST_CREDIT_LIMIT" FROM mining_data

XFORM_CLIP Procedure

This procedure creates a view that implements the clipping transformations specified in a definition table. Only the columns that are specified in the definition table are transformed; the remaining columns from the data table are present in the view, but they are not changed.

Syntax

DBMS_DATA_MINING_TRANSFORM.XFORM_CLIP (
 clip_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 xform_view_name IN VARCHAR2,
 clip_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2,DEFAULT NULL,
 xform_schema_name IN VARCHAR2,DEFAULT NULL);

Parameters

Table 45-43 XFORM_CLIP Procedure Parameters

	Parameter	Description
	
clip_table_name

	
Name of the transformation definition table for clipping. You can use the CREATE_CLIP Procedure to create the definition table. The table must be populated with transformation definitions before you call XFORM_CLIP. To populate the table, you can use one of the INSERT procedures for clipping you can write your own SQL.

See Table 45-8, "Columns in a Transformation Definition Table for Clipping or Winsorizing".

	
data_table_name

	
Name of the table containing the data to be transformed

	
xform_view_name

	
Name of the view to be created. The view presents columns in data_table_name with the transformations specified in clip_table_name.

	
clip_schema_name

	
Schema of clip_table_name. If no schema is specified, the current schema is used.

	
data_schema_name

	
Schema of data_table_name. If no schema is specified, the current schema is used.

	
xform_schema_name

	
Schema of xform_view_name. If no schema is specified, the current schema is used.

Examples

This example creates a view that clips the cust_credit_limit column. The data source consists of three columns from sh.customer.

describe mining_data
 Name Null? Type
 ------------------------------ -------- -------------------------
 CUST_ID NOT NULL NUMBER
 CUST_POSTAL_CODE NOT NULL VARCHAR2(10)
 CUST_CREDIT_LIMIT NUMBER

BEGIN
 dbms_data_mining_transform.create_clip(
 clip_table_name => 'clip_tbl');
 dbms_data_mining_transform.insert_clip_trim_tail(
 clip_table_name => 'clip_tbl',
 data_table_name => 'mining_data',
 tail_frac => 0.05,
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id'));
 dbms_data_mining_transform.xform_clip(
 clip_table_name => 'clip_tbl',
 data_table_name => 'mining_data',
 xform_view_name => 'clip_view');
END;
/
describe clip_view
 Name Null? Type
 ----------------------------- -------- --------------------------
 CUST_ID NOT NULL NUMBER
 CUST_POSTAL_CODE NOT NULL VARCHAR2(10)
 CUST_CREDIT_LIMIT NUMBER

SELECT MIN(cust_credit_limit), MAX(cust_credit_limit) FROM mining_data;

MIN(CUST_CREDIT_LIMIT) MAX(CUST_CREDIT_LIMIT)
---------------------- ----------------------
 1500 15000

SELECT MIN(cust_credit_limit), MAX(cust_credit_limit) FROM clip_view;

MIN(CUST_CREDIT_LIMIT) MAX(CUST_CREDIT_LIMIT)
---------------------- ----------------------
 1500 11000

set long 2000
SELECT text FROM user_views WHERE view_name IN 'CLIP_VIEW';

TEXT
--
SELECT "CUST_ID","CUST_POSTAL_CODE",CASE WHEN "CUST_CREDIT_LIMIT" < 1500 THEN NU
LL WHEN "CUST_CREDIT_LIMIT" > 11000 THEN NULL ELSE "CUST_CREDIT_LIMIT" END "CUST
_CREDIT_LIMIT" FROM mining_data

XFORM_COL_REM Procedure

This procedure creates a view that implements the column removal transformations specified in a definition table. Only the columns that are specified in the definition table are removed; the remaining columns from the data table are present in the view.

Syntax

DBMS_DATA_MINING_TRANSFORM.XFORM_COL_REM (
 rem_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 xform_view_name IN VARCHAR2,
 rem_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 45-44 XFORM_COL_REM Procedure Parameters

	Parameter	Description
	
rem_table_name

	
Name of the transformation definition table for column removal. You can use the CREATE_COL_REM Procedure to create the definition table. See Table 45-10, "Columns in a Transformation Definition Table for Column Removal".

The table must be populated with column names before you call XFORM_COL_REM. The INSERT_BIN_SUPER Procedure and the INSERT_AUTOBIN_NUM_EQWIDTH Procedure can optionally be used to populate the table. You can also use SQL INSERT statements.

	
data_table_name

	
Name of the table containing the data to be transformed

	
xform_view_name

	
Name of the view to be created. The view presents the columns in data_table_name that are not specified in rem_table_name.

	
rem_schema_name

	
Schema of rem_table_name. If no schema is specified, the current schema is used.

	
data_schema_name

	
Schema of data_table_name. If no schema is specified, the current schema is used.

	
xform_schema_name

	
Schema of xform_view_name. If no schema is specified, the current schema is used.

Usage Notes

See "Operational Notes".

Examples

This example creates a view that includes all but one column from the table customers in the current schema.

describe customers
 Name Null? Type
 --- -------- ----------------------------
 CUST_ID NOT NULL NUMBER
 CUST_MARITAL_STATUS VARCHAR2(20)
 OCCUPATION VARCHAR2(21)
 AGE NUMBER
 YRS_RESIDENCE NUMBER

BEGIN
 DBMS_DATA_MINING_TRANSFORM.CREATE_COL_REM ('colrem_xtbl');
END;
 /
INSERT INTO colrem_xtbl VALUES('CUST_MARITAL_STATUS', null);

BEGIN
 DBMS_DATA_MINING_TRANSFORM.XFORM_COL_REM (
 rem_table_name => 'colrem_xtbl',
 data_table_name => 'customers',
 xform_view_name => 'colrem_view');
END;
/
describe colrem_view

 Name Null? Type
 --- -------- ----------------------------
 CUST_ID NOT NULL NUMBER
 OCCUPATION VARCHAR2(21)
 AGE NUMBER
 YRS_RESIDENCE NUMBER

XFORM_EXPR_NUM Procedure

This procedure creates a view that implements the specified numeric transformations. Only the columns that you specify are transformed; the remaining columns from the data table are present in the view, but they are not changed.

Syntax

DBMS_DATA_MINING_TRANSFORM.XFORM_EXPR_NUM (
 expr_pattern IN VARCHAR2,
 data_table_name IN VARCHAR2,
 xform_view_name IN VARCHAR2,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 include_list IN COLUMN_LIST DEFAULT NULL,
 col_pattern IN VARCHAR2 DEFAULT ':col',
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 45-45 XFORM_EXPR_NUM Procedure Parameters

	Parameter	Description
	
expr_pattern

	
A numeric transformation expression

	
data_table_name

	
Name of the table containing the data to be transformed

	
xform_view_name

	
Name of the view to be created. The view presents columns in data_table_name with the transformations specified in expr_pattern and col_pattern.

	
exclude_list

	
List of numeric columns to exclude. If NULL, no numeric columns are excluded.

The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

	
include_list

	
List of numeric columns to include. If NULL, all numeric columns are included.

The format of include_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

	
col_pattern

	
The value within expr_pattern that will be replaced with a column name. The value of col_pattern is case-sensitive.

The default value of col_pattern is ':col'

	
data_schema_name

	
Schema of data_table_name. If no schema is specified, the current schema is used.

	
xform_schema_name

	
Schema of xform_view_name. If no schema is specified, the current schema is used.

Usage Notes

	
The XFORM_EXPR_NUM procedure constructs numeric transformation expressions from the specified expression pattern (expr_pattern) by replacing every occurrence of the specified column pattern (col_pattern) with an actual column name.

XFORM_EXPR_NUM uses the SQL REPLACE function to construct the transformation expressions.

REPLACE (expr_pattern,col_pattern,'"column_name"') || '"column_name"'

If there is a column match, then the replacement is made in the transformation expression; if there is not a match, then the column is used without transformation.

	
See:

Oracle Database SQL Language Reference for information about the REPLACE function

	
Because of the include and exclude list parameters, the XFORM_EXPR_NUM and XFORM_EXPR_STR procedures allow you to easily specify individual columns for transformation within large data sets. The other XFORM_* procedures support an exclude list only. In these procedures, you must enumerate every column that you do not want to transform.

	
See "Operational Notes"

Examples

This example creates a view that transforms the data type of numeric columns.

describe customers
 Name Null? Type
 ----------------------------------- -------- ------------------------
 CUST_ID NOT NULL NUMBER
 CUST_MARITAL_STATUS VARCHAR2(20)
 OCCUPATION VARCHAR2(21)
 AGE NUMBER
 YRS_RESIDENCE NUMBER

BEGIN
 DBMS_DATA_MINING_TRANSFORM.XFORM_EXPR_NUM(
 expr_pattern => 'to_char(:col)',
 data_table_name => 'customers',
 xform_view_name => 'cust_nonum_view',
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id'),
 include_list => null,
 col_pattern => ':col');
END;
/
describe cust_nonum_view
 Name Null? Type
 ----------------------------------- -------- ------------------------
 CUST_ID NOT NULL NUMBER
 CUST_MARITAL_STATUS VARCHAR2(20)
 OCCUPATION VARCHAR2(21)
 AGE VARCHAR2(40)
 YRS_RESIDENCE VARCHAR2(40)

XFORM_EXPR_STR Procedure

This procedure creates a view that implements the specified categorical transformations. Only the columns that you specify are transformed; the remaining columns from the data table are present in the view, but they are not changed.

Syntax

DBMS_DATA_MINING_TRANSFORM.XFORM_EXPR_STR (
 expr_pattern IN VARCHAR2,
 data_table_name IN VARCHAR2,
 xform_view_name IN VARCHAR2,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 include_list IN COLUMN_LIST DEFAULT NULL,
 col_pattern IN VARCHAR2 DEFAULT ':col',
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 45-46 XFORM_EXPR_STR Procedure Parameters

	Parameter	Description
	
expr_pattern

	
A character transformation expression

	
data_table_name

	
Name of the table containing the data to be transformed

	
xform_view_name

	
Name of the view to be created. The view presents columns in data_table_name with the transformations specified in expr_pattern and col_pattern.

	
exclude_list

	
List of character columns to exclude. If NULL, no character columns are excluded.

The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

	
include_list

	
List of character columns to include. If NULL, all character columns are included.

The format of include_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

	
col_pattern

	
The value within expr_pattern that will be replaced with a column name. The value of col_pattern is case-sensitive.

The default value of col_pattern is ':col'

	
data_schema_name

	
Schema of data_table_name. If no schema is specified, the current schema is used.

	
xform_schema_name

	
Schema of xform_view_name. If no schema is specified, the current schema is used.

Usage Notes

	
The XFORM_EXPR_STR procedure constructs character transformation expressions from the specified expression pattern (expr_pattern) by replacing every occurrence of the specified column pattern (col_pattern) with an actual column name.

XFORM_EXPR_STR uses the SQL REPLACE function to construct the transformation expressions.

REPLACE (expr_pattern,col_pattern,'"column_name"') || '"column_name"'

If there is a column match, then the replacement is made in the transformation expression; if there is not a match, then the column is used without transformation.

	
See:

Oracle Database SQL Language Reference for information about the REPLACE function

	
Because of the include and exclude list parameters, the XFORM_EXPR_STR and XFORM_EXPR_NUM procedures allow you to easily specify individual columns for transformation within large data sets. The other XFORM_* procedures support an exclude list only. In these procedures, you must enumerate every column that you do not want to transform.

	
See "Operational Notes"

Examples

This example creates a view that transforms character columns to upper case.

describe customers
 Name Null? Type
 ----------------------------------- -------- ------------------------
 CUST_ID NOT NULL NUMBER
 CUST_MARITAL_STATUS VARCHAR2(20)
 OCCUPATION VARCHAR2(21)
 AGE NUMBER
 YRS_RESIDENCE NUMBER

SELECT cust_id, cust_marital_status, occupation FROM customers
 WHERE cust_id > 102995
 ORDER BY cust_id desc;

CUST_ID CUST_MARITAL_STATUS OCCUPATION
------- -------------------- ---------------------
 103000 Divorc. Cleric.
 102999 Married Cleric.
 102998 Married Exec.
 102997 Married Exec.
 102996 NeverM Other

BEGIN
 DBMS_DATA_MINING_TRANSFORM.XFORM_EXPR_STR(
 expr_pattern => 'upper(:col)',
 data_table_name => 'customers',
 xform_view_name => 'cust_upcase_view');
END;
/
describe cust_upcase_view
 Name Null? Type
 ----------------------------- -------- --------------------
 CUST_ID NOT NULL NUMBER
 CUST_MARITAL_STATUS VARCHAR2(20)
 OCCUPATION VARCHAR2(21)
 AGE NUMBER
 YRS_RESIDENCE NUMBER

SELECT cust_id, cust_marital_status, occupation FROM cust_upcase_view
 WHERE cust_id > 102995
 ORDER BY cust_id desc;

CUST_ID CUST_MARITAL_STATUS OCCUPATION
------- -------------------- ---------------------
 103000 DIVORC. CLERIC.
 102999 MARRIED CLERIC.
 102998 MARRIED EXEC.
 102997 MARRIED EXEC.
 102996 NEVERM OTHER

XFORM_MISS_CAT Procedure

This procedure creates a view that implements the categorical missing value treatment transformations specified in a definition table. Only the columns that are specified in the definition table are transformed; the remaining columns from the data table are present in the view, but they are not changed.

Syntax

DBMS_DATA_MINING_TRANSFORM.XFORM_MISS_CAT (
 miss_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 xform_view_name IN VARCHAR2,
 miss_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_schema_name IN VARCHAR2 DEFAULT NULL;

Parameters

Table 45-47 XFORM_MISS_CAT Procedure Parameters

	Parameter	Description
	
miss_table_name

	
Name of the transformation definition table for categorical missing value treatment. You can use the CREATE_MISS_CAT Procedure to create the definition table. The table must be populated with transformation definitions before you call XFORM_MISS_CAT. To populate the table, you can use the INSERT_MISS_CAT_MODE Procedure or you can write your own SQL.

See Table 45-12, "Columns in a Transformation Definition Table for Categorical Missing Value Treatment".

	
data_table_name

	
Name of the table containing the data to be transformed

	
xform_view_name

	
Name of the view to be created. The view presents columns in data_table_name with the transformations specified in miss_table_name.

	
miss_schema_name

	
Schema of miss_table_name. If no schema is specified, the current schema is used.

	
data_schema_name

	
Schema of data_table_name. If no schema is specified, the current schema is used.

	
xform_schema_name

	
Schema of xform_view_name. If no schema is specified, the current schema is used.

Usage Notes

See "Operational Notes".

Examples

This example creates a view that replaces missing categorical values with the mode.

SELECT * FROM geog;

REG_ID REGION
------ ------------------------------
 1 NE
 2 SW
 3 SE
 4 SW
 5
 6 NE
 7 NW
 8 NW
 9
 10
 11 SE
 12 SE
 13 NW
 14 SE
 15 SE

SELECT STATS_MODE(region) FROM geog;

STATS_MODE(REGION)

SE

BEGIN
 DBMS_DATA_MINING_TRANSFORM.CREATE_MISS_CAT('misscat_xtbl');
 DBMS_DATA_MINING_TRANSFORM.INSERT_MISS_CAT_MODE (
 miss_table_name => 'misscat_xtbl',
 data_table_name => 'geog');
END;
/

SELECT col, val FROM misscat_xtbl;

COL VAL
---------- ----------
REGION SE

BEGIN
 DBMS_DATA_MINING_TRANSFORM.XFORM_MISS_CAT (
 miss_table_name => 'misscat_xtbl',
 data_table_name => 'geog',
 xform_view_name => 'geogxf_view');
END;
/

SELECT * FROM geogxf_view;

REG_ID REGION
------ ------------------------------
 1 NE
 2 SW
 3 SE
 4 SW
 5 SE
 6 NE
 7 NW
 8 NW
 9 SE
 10 SE
 11 SE
 12 SE
 13 NW
 14 SE
 15 SE

XFORM_MISS_NUM Procedure

This procedure creates a view that implements the numerical missing value treatment transformations specified in a definition table. Only the columns that are specified in the definition table are transformed; the remaining columns from the data table are present in the view, but they are not changed.

Syntax

DBMS_DATA_MINING_TRANSFORM.XFORM_MISS_NUM (
 miss_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 xform_view_name IN VARCHAR2,
 miss_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_schema_name IN VARCHAR2 DEFAULT NULL;

Parameters

Table 45-48 XFORM_MISS_NUM Procedure Parameters

	Parameter	Description
	
miss_table_name

	
Name of the transformation definition table for numerical missing value treatment. You can use the CREATE_MISS_NUM Procedure to create the definition table. The table must be populated with transformation definitions before you call XFORM_MISS_NUM. To populate the table, you can use the INSERT_MISS_NUM_MEAN Procedure or you can write your own SQL.

See Table 45-14, "Columns in a Transformation Definition Table for Numerical Missing Value Treatment".

	
data_table_name

	
Name of the table containing the data to be transformed

	
xform_view_name

	
Name of the view to be created. The view presents columns in data_table_name with the transformations specified in miss_table_name.

	
miss_schema_name

	
Schema of miss_table_name. If no schema is specified, the current schema is used.

	
data_schema_name

	
Schema of data_table_name. If no schema is specified, the current schema is used.

	
xform_schema_name

	
Schema of xform_view_name. If no schema is specified, the current schema is used.

Usage Notes

See "Operational Notes".

Examples

This example creates a view that replaces missing numerical values with the mean.

SELECT * FROM items;

ITEM_ID QTY
---------- ------
aa 200
bb 200
cc 250
dd
ee
ff 100
gg 250
hh 200
ii
jj 200

SELECT AVG(qty) FROM items;

AVG(QTY)

 200

BEGIN
 DBMS_DATA_MINING_TRANSFORM.CREATE_MISS_NUM('missnum_xtbl');
 DBMS_DATA_MINING_TRANSFORM.INSERT_MISS_NUM_MEAN (
 miss_table_name => 'missnum_xtbl',
 data_table_name => 'items');
END;
/

SELECT col, val FROM missnum_xtbl;

COL VAL
---------- ------
QTY 200

BEGIN
 DBMS_DATA_MINING_TRANSFORM.XFORM_MISS_NUM (
 miss_table_name => 'missnum_xtbl',
 data_table_name => 'items',
 xform_view_name => 'items_view');
END;
/

SELECT * FROM items_view;

ITEM_ID QTY
---------- ------
aa 200
bb 200
cc 250
dd 200
ee 200
ff 100
gg 250
hh 200
ii 200
jj 200

XFORM_NORM_LIN Procedure

This procedure creates a view that implements the linear normalization transformations specified in a definition table. Only the columns that are specified in the definition table are transformed; the remaining columns from the data table are present in the view, but they are not changed.

Syntax

DBMS_DATA_MINING_TRANSFORM.XFORM_NORM_LIN (
 norm_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 xform_view_name IN VARCHAR2,
 norm_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 45-49 XFORM_NORM_LIN Procedure Parameters

	Parameter	Description
	
norm_table_name

	
Name of the transformation definition table for linear normalization. You can use the CREATE_NORM_LIN Procedure to create the definition table. The table must be populated with transformation definitions before you call XFORM_NORM_LIN. To populate the table, you can use one of the INSERT procedures for normalization or you can write your own SQL.

See Table 45-12, "Columns in a Transformation Definition Table for Categorical Missing Value Treatment".

	
data_table_name

	
Name of the table containing the data to be transformed

	
xform_view_name

	
Name of the view to be created. The view presents columns in data_table_name with the transformations specified in miss_table_name.

	
norm_schema_name

	
Schema of miss_table_name. If no schema is specified, the current schema is used.

	
data_schema_name

	
Schema of data_table_name. If no schema is specified, the current schema is used.

	
xform_schema_name

	
Schema of xform_view_name. If no schema is specified, the current schema is used.

Usage Notes

See "Operational Notes".

Examples

This example creates a view that normalizes the cust_year_of_birth and cust_credit_limit columns. The data source consists of three columns from sh.customer.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_year_of_birth, cust_credit_limit
 FROM sh.customers;

describe mining_data
 Name Null? Type
 -------------------------------------- -------- --------------------------
 CUST_ID NOT NULL NUMBER
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)
 CUST_CREDIT_LIMIT NUMBER

SELECT * FROM mining_data WHERE cust_id > 104495
 ORDER BY cust_year_of_birth;

 CUST_ID CUST_YEAR_OF_BIRTH CUST_CREDIT_LIMIT
-------- ------------------ -----------------
 104496 1947 3000
 104498 1954 10000
 104500 1962 15000
 104499 1970 3000
 104497 1976 3000

BEGIN
 dbms_data_mining_transform.CREATE_NORM_LIN(
 norm_table_name => 'normx_tbl');
 dbms_data_mining_transform.INSERT_NORM_LIN_MINMAX(
 norm_table_name => 'normx_tbl',
 data_table_name => 'mining_data',
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id'),
 round_num => 3);
END;
/

SELECT col, shift, scale FROM normx_tbl;

COL SHIFT SCALE
------------------------------ -------- --------
CUST_YEAR_OF_BIRTH 1910 77
CUST_CREDIT_LIMIT 1500 13500

BEGIN
 DBMS_DATA_MINING_TRANSFORM.XFORM_NORM_LIN (
 norm_table_name => 'normx_tbl',
 data_table_name => 'mining_data',
 xform_view_name => 'norm_view');
END;
/

SELECT * FROM norm_view WHERE cust_id > 104495
 ORDER BY cust_year_of_birth;

 CUST_ID CUST_YEAR_OF_BIRTH CUST_CREDIT_LIMIT
-------- ------------------ -----------------
 104496 .4805195 .1111111
 104498 .5714286 .6296296
 104500 .6753247 1
 104499 .7792208 .1111111
 104497 .8571429 .1111111

set long 2000
SQL> SELECT text FROM user_views WHERE view_name IN 'NORM_VIEW';

TEXT

SELECT "CUST_ID",("CUST_YEAR_OF_BIRTH"-1910)/77 "CUST_YEAR_OF_BIRTH",("CUST
_CREDIT_LIMIT"-1500)/13500 "CUST_CREDIT_LIMIT" FROM mining_data

XFORM_STACK Procedure

This procedure creates a view that implements the transformations specified by the stack. Only the columns and nested attributes that are specified in the stack are transformed. Any remaining columns and nested attributes from the data table appear in the view without changes.

To create a list of objects that describe the transformed columns, use the DESCRIBE_STACK Procedure.

	
See Also:

"Overview"

Oracle Data Mining Application Developer's Guide for more information about data mining attributes

Syntax

DBMS_DATA_MINING_TRANSFORM.XFORM_STACK (
 xform_list IN TRANSFORM_list,
 data_table_name IN VARCHAR2,
 xform_view_name IN VARCHAR2,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 45-50 XFORM_STACK Procedure Parameters

	Parameter	Description
	
xform_list

	
The transformation list. See Table 45-1 for a description of the TRANSFORM_LIST object type.

	
data_table_name

	
Name of the table containing the data to be transformed

	
xform_view_name

	
Name of the view to be created. The view applies the transformations in xform_list to data_table_name.

	
data_schema_name

	
Schema of data_table_name. If no schema is specified, the current schema is used.

	
xform_schema_name

	
Schema of xform_view_name. If no schema is specified, the current schema is used.

Usage Notes

See "Operational Notes". The following sections are especially relevant:

	
"About Transformation Lists"

	
"About Stacking"

	
"Nested Data Transformations"

Examples

This example applies a transformation list to the view dmuser.cust_info and shows how the data is transformed.The CREATE statement for cust_info is shown in "DESCRIBE_STACK Procedure".

BEGIN
 dbms_data_mining_transform.CREATE_BIN_NUM ('birth_yr_bins');
 dbms_data_mining_transform.INSERT_BIN_NUM_QTILE (
 bin_table_name => 'birth_yr_bins',
 data_table_name => 'cust_info',
 bin_num => 6,
 exclude_list => dbms_data_mining_transform.column_list(
 'cust_id','country_id'));
END;
/
SELECT * FROM birth_yr_bins;

COL ATT VAL BIN
-------------------- ----- ------ ----------
CUST_YEAR_OF_BIRTH 1922
CUST_YEAR_OF_BIRTH 1951 1
CUST_YEAR_OF_BIRTH 1959 2
CUST_YEAR_OF_BIRTH 1966 3
CUST_YEAR_OF_BIRTH 1973 4
CUST_YEAR_OF_BIRTH 1979 5
CUST_YEAR_OF_BIRTH 1986 6

DECLARE
 cust_stack dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.SET_TRANSFORM (cust_stack,
 'country_id', NULL, 'country_id/10', 'country_id*10');
 dbms_data_mining_transform.STACK_BIN_NUM ('birth_yr_bins',
 cust_stack);
 dbms_data_mining_transform.SET_TRANSFORM (cust_stack,
 'custprods', 'Mouse Pad', 'value*100', 'value/100');
 dbms_data_mining_transform.XFORM_STACK(
 xform_list => cust_stack,
 data_table_name => 'cust_info',
 xform_view_name => 'cust_xform_view');
 END;
/

-- Two rows of data without transformations
SELECT * from cust_info WHERE cust_id BETWEEN 100010 AND 100011;

CUST_ID COUNTRY_ID CUST_YEAR_OF_BIRTH CUSTPRODS(ATTRIBUTE_NAME, VALUE)
------- ---------- ------------------ ---
 100010 52790 1975 DM_NESTED_NUMERICALS(
 DM_NESTED_NUMERICAL(
 '18" Flat Panel Graphics Monitor', 1),
 DM_NESTED_NUMERICAL(
 'SIMM- 16MB PCMCIAII card', 1))
 100011 52775 1972 DM_NESTED_NUMERICALS(
 DM_NESTED_NUMERICAL(
 'External 8X CD-ROM', 1),
 DM_NESTED_NUMERICAL(
 'Mouse Pad', 1),
 DM_NESTED_NUMERICAL(
 'SIMM- 16MB PCMCIAII card', 1),
 DM_NESTED_NUMERICAL(
 'Keyboard Wrist Rest', 1),
 DM_NESTED_NUMERICAL(
 '18" Flat Panel Graphics Monitor', 1),
 DM_NESTED_NUMERICAL(
 'O/S Documentation Set - English', 1))

-- Same two rows of data with transformations
SELECT * FROM cust_xform_view WHERE cust_id BETWEEN 100010 AND 100011;

CUST_ID COUNTRY_ID C CUSTPRODS(ATTRIBUTE_NAME, VALUE)
------- ---------- - --
 100010 5279 5 DM_NESTED_NUMERICALS(
 DM_NESTED_NUMERICAL(
 '18" Flat Panel Graphics Monitor', 1),
 DM_NESTED_NUMERICAL(
 'SIMM- 16MB PCMCIAII card', 1))
 100011 5277.5 4 DM_NESTED_NUMERICALS(
 DM_NESTED_NUMERICAL(
 'External 8X CD-ROM', 1),
 DM_NESTED_NUMERICAL(
 'Mouse Pad', 100),
 DM_NESTED_NUMERICAL(
 'SIMM- 16MB PCMCIAII card', 1),
 DM_NESTED_NUMERICAL(
 'Keyboard Wrist Rest', 1),
 DM_NESTED_NUMERICAL(
 '18" Flat Panel Graphics Monitor', 1),
 DM_NESTED_NUMERICAL(
 'O/S Documentation Set - English', 1))

46 DBMS_DATAPUMP

The DBMS_DATAPUMP package is used to move all, or part of, a database between databases, including both data and metadata.

	
See Also:

Oracle Database Utilities for more information on the concepts behind the DBMS_DATAPUMP API, how it works, and how it is implemented in the Data Pump Export and Import utilities

This chapter contains the following topics:

	
Using DBMS_DATAPUMP

	
Overview

	
Security Model

	
Constants

	
Data Structures

	
Data Structures - Object Types

	
Summary of DBMS_DATAPUMP Subprograms

Using DBMS_DATAPUMP

This section contains topics that relate to using the DBMS_DATAPUMP package.

	
Overview

	
Security Model

	
Constants

Overview

The support and functionality provided by DBMS_DATAPUMP is as follows:

	
The source and target databases can have different hardware, operating systems, character sets, and time zones.

	
All object types and data types existing in Oracle Database 11g are supported.

	
Data and metadata can be transferred between databases without using any intermediary files.

	
A subset of a database can be moved based upon object type and names of objects.

	
Schema names, datafile names, and tablespace names can be transformed at import time.

	
Previously aborted export and import jobs can be restarted without duplicating or omitting any data or metadata from the original job.

	
The resources applied to an export or import job can be modified.

	
Data in an Oracle proprietary format can be unloaded and loaded.

Security Model

Security for the DBMS_DATAPUMP package is implemented through roles.

Roles

The DATAPUMP_EXP_FULL_DATABASE and DATAPUMP_IMP_FULL_DATABASE roles allow privileged users to take full advantage of the API. The Data Pump API will use these roles to determine whether privileged application roles should be assigned to the processes comprising the job.

DATAPUMP_EXP_FULL_DATABASE

The DATAPUMP_EXP_FULL_DATABASE role affects only Export operations. It allows users running these operations to do the following:

	
Perform the operation outside of the scope of their schema

	
Monitor jobs that were initiated by another user

	
Export objects (for example, TABLESPACE definitions) that unprivileged users cannot reference

Although the SYS schema does not have the DATAPUMP_EXP_FULL_DATABASE role assigned to it, all security checks performed by Data Pump that require the DATAPUMP_EXP_FULL_DATABASE role will also grant access to the SYS schema.

DATAPUMP_IMP_FULL_DATABASE

The DATAPUMP_IMP_FULL_DATABASE role affects only Import and SQL_FILE operations. It allows users running these operations to do the following:

	
Perform the operation outside of the scope of their schema

	
Monitor jobs that were initiated by another user

	
Import objects (for example, DIRECTORY definitions) that unprivileged users cannot create

Although the SYS schema does not have the DATAPUMP_IMP_FULL_DATABASE role assigned to it, all security checks performed by Data Pump that require the DATAPUMP_IMP_FULL_DATABASE role will also grant access to the SYS schema.

Constants

There are several public constants defined for use with the DBMS_DATAPUMP.GET_STATUS procedure. All such constants are defined as part of the DBMS_DATAPUMP package. Any references to these constants must be prefixed by DBMS_DATAPUMP. and followed by the symbols in the following lists:

Mask Bit Definitions

The following mask bit definitions are used for controlling the return of data through the DBMS_DATAPUMP.GET_STATUS procedure.

	
KU$_STATUS_WIP CONSTANT BINARY_INTEGER := 1;

	
KU$_STATUS_JOB_DESC CONSTANT BINARY_INTEGER := 2;

	
KU$_STATUS_JOB_STATUS CONSTANT BINARY_INTEGER := 4;

	
KU$_STATUS_JOB_ERROR CONSTANT BINARY_INTEGER := 8;

Dump File Type Definitions

The following definitions are used for identifying types of dump files returned through the DBMS_DATAPUMP.GET_STATUS procedure.

	
KU$_DUMPFILE_TYPE_DISK CONSTANT BINARY_INTEGER := 0;

	
KU$_DUMPFILE_TYPE_TEMPLATE CONSTANT BINARY_INTEGER := 3;

Data Structures

The DBMS_DATAPUMP package defines OBJECT types. The types described in this section are defined in the SYS schema for use by the GET_STATUS function. The way in which these types are defined and used may be different than what you are accustomed to. Be sure to read this section carefully.

The collection of types defined for use with the GET_STATUS procedure are version-specific and include version information in the names of the types. Once introduced, these types will always be provided and supported in future versions of Oracle Database and will not change. However, in future releases of Oracle Database, new versions of these types might be created that provide new or different information. The new versions of these types will have different version information embedded in the type names.

For example, in Oracle Database 10g, release 1 (10.1), there is a sys.ku$_Status1010 type, and in the next Oracle Database release, there could be a sys.ku$_Status1110 type defined. Both types could be used with the GET_STATUS procedure.

Public synonyms have been defined for each of the types used with the GET_STATUS procedure. This makes it easier to use the types and means that you do not have to be concerned with changes to the actual type names or schemas where they reside. Oracle recommends that you use these synonyms whenever possible.

For each of the types, there is a version-specific synonym and a generic synonym. For example, the version-specific synonym ku$_Status1010 is defined for the sys.ku$_Status1010 type.

The generic synonym always describes the latest version of that type. For example, in Oracle Database 10g, release 1, the generic synonym ku$_Status is defined as ku$_Status1010. In a future release, there might be a ku$_Status1110 synonym for sys.ku$Status1110. Because the ku$_Status generic synonym always points to the latest definition, it would now point to ku$_Status1110 rather than to ku$_Status1010.

The choice of whether to use version-specific synonyms or generic synonyms makes a significant difference in how you work. Using version-specific names protects your code from changes in future releases of Oracle Database because those types will continue to exist and be supported. However, access to new information will require code changes to use new synonym names for each of the types. Using the generic names implies that you always want the latest definition of the types and are prepared to deal with changes in different releases of Oracle Database.

When the version of Oracle Database that you are using changes, any C code that accesses types through generic synonym names will need to be recompiled.

	
Note:

Languages other than PL/SQL must ensure that their type definitions are properly aligned with the version-specific definitions.

	
See Also:

GET_STATUS Procedure for additional information about how types are used

Data Structures - Object Types

The DBMS_DATAPUMP package defines the following kinds of OBJECT types:

	
Worker Status Types

	
Log Entry and Error Types

	
Job Status Types

	
Job Description Types

	
Status Types

Worker Status Types

The worker status types describe what each worker process in a job is doing. The schema, object name, and object type of an object being processed will be provided. For workers processing user data, the partition name for a partitioned table (if any), the number of bytes processed in the partition, and the number of rows processed in the partition are also returned. Workers processing metadata provide status on the last object that was processed. No status for idle threads is returned.

The percent_done refers to the amount completed for the current data item being processed. It is not updated for metadata objects.

The worker status types are defined as follows:

CREATE TYPE sys.ku$_WorkerStatus1010 AS OBJECT (
 worker_number NUMBER,
 process_name VARCHAR2(30),
 state VARCHAR2(30),
 schema VARCHAR2(30),
 name VARCHAR2(4000),
 object_type VARCHAR2(200),
 partition VARCHAR2(30),
 completed_objects NUMBER,
 total_objects NUMBER,
 completed_rows NUMBER,
 completed_bytes NUMBER,
 percent_done NUMBER)

CREATE OR REPLACE PUBLIC SYNONYM ku$_WorkerStatus1010
 FOR sys.ku$_WorkerStatus1010;

CREATE TYPE sys.ku$_WorkerStatus1020 AS OBJECT (
 worker_number NUMBER, -- Worker process identifier
 process_name VARCHAR2(30), -- Worker process name
 state VARCHAR2(30), -- Worker process state
 schema VARCHAR2(30), -- Schema name
 name VARCHAR2(4000),-- Object name
 object_type VARCHAR2(200), -- Object type
 partition VARCHAR2(30), -- Partition name
 completed_objects NUMBER, -- Completed number of objects
 total_objects NUMBER, -- Total number of objects
 completed_rows NUMBER, -- Number of rows completed
 completed_bytes NUMBER, -- Number of bytes completed
 percent_done NUMBER, -- Percent done current object
 degree NUMBER -- Degree of parallelism)

CREATE OR REPLACE PUBLIC SYNONYM ku$_WorkerStatus1020
 FOR sys.ku$_WorkerStatus1020;

CREATE OR REPLACE PUBLIC SYNONYM ku$_WorkerStatus FOR ku$_WorkerStatus1020;

CREATE TYPE sys.ku$_WorkerStatusList1010 AS TABLE OF sys.ku$_WorkerStatus1010

CREATE TYPE sys.ku$_WorkerStatusList1020 AS TABLE OF sys.ku$_WorkerStatus1020

CREATE OR REPLACE PUBLIC SYNONYM ku$_WorkerStatusList1010
 FOR sys.ku$_WorkerStatusList1010;
CREATE OR REPLACE PUBLIC SYNONYM ku$_WorkerStatusList1020
 FOR sys.ku$_WorkerStatusList1020;

CREATE OR REPLACE PUBLIC SYNONYM ku$_WorkerStatusList
 FOR ku$_WorkerStatusList1020;

Log Entry and Error Types

These types provide informational and error text to attached clients and the log stream. The ku$LogLine.errorNumber type is set to NULL for informational messages but is specified for error messages. Each log entry may contain several lines of text messages.

The log entry and error types are defined as follows:

CREATE TYPE sys.ku$_LogLine1010 AS OBJECT (
 logLineNumber NUMBER,
 errorNumber NUMBER,
 LogText VARCHAR2(2000))

CREATE OR REPLACE PUBLIC SYNONYM ku$_LogLine1010 FOR sys.ku$_LogLine1010;
CREATE OR REPLACE PUBLIC SYNONYM ku$_LogLine1020 FOR sys.ku$_LogLine1010;
CREATE OR REPLACE PUBLIC SYNONYM ku$_LogLine FOR ku$_LogLine1010;
CREATE TYPE sys.ku$_LogEntry1010 AS TABLE OF sys.ku$_LogLine1010

CREATE OR REPLACE PUBLIC SYNONYM ku$_LogEntry1010 FOR sys.ku$_LogEntry1010;
CREATE OR REPLACE PUBLIC SYNONYM ku$_LogEntry1020 FOR sys.ku$_LogEntry1010;
CREATE OR REPLACE PUBLIC SYNONYM ku$_LogEntry FOR ku$_LogEntry1010;

Job Status Types

The job status type returns status about a job. Usually, the status concerns a running job but it could also be about a stopped job when a client attaches. It is typically requested at attach time, when the client explicitly requests status from interactive mode and every N seconds when the client has requested status periodically.

The job status types are defined as follows (percent_done applies to data only):

CREATE TYPE sys.ku$_DumpFile1010 IS OBJECT (
 file_name VARCHAR2(4000), -- Fully-qualified name
 file_type NUMBER, -- 0=Disk, 1=Pipe, etc.
 file_size NUMBER, -- Its length in bytes
 file_bytes_written NUMBER -- Bytes written so far)

CREATE OR REPLACE PUBLIC SYNONYM ku$_DumpFile1010 FOR sys.ku$_DumpFile1010;
CREATE OR REPLACE PUBLIC SYNONYM ku$_DumpFile1020 FOR sys.ku$_DumpFile1010;
CREATE OR REPLACE PUBLIC SYNONYM ku$_DumpFile FOR ku$_DumpFile1010;

CREATE TYPE sys.ku$_DumpFileSet1010 AS TABLE OF sys.ku$_DumpFile1010;

CREATE OR REPLACE PUBLIC SYNONYM ku$_DumpFileSet1010 FOR
 sys.ku$_DumpFileSet1010;
CREATE OR REPLACE PUBLIC SYNONYM ku$_DumpFileSet1020 FOR
 sys.ku$_DumpFileSet1010;

CREATE OR REPLACE PUBLIC SYNONYM ku$_DumpFileSet FOR ku$_DumpFileSet1010;

CREATE TYPE sys.ku$_JobStatus1010 IS OBJECT (
 job_name VARCHAR2(30),
 operation VARCHAR2(30),
 job_mode VARCHAR2(30),
 bytes_processed NUMBER,
 percent_done NUMBER,
 degree NUMBER,
 error_count NUMBER,
 state VARCHAR2(30),
 phase NUMBER,
 restart_count NUMBER,
 worker_status_list ku$_WorkerStatusList1010,
 files ku$_DumpFileSet1010)

CREATE PUBLIC SYNONYM ku$_JobStatus1010 FOR
 sys.ku$_JobStatus1010;

CREATE TYPE sys.ku$_JobStatus1020 IS OBJECT (
 job_name VARCHAR2(30), -- Name of the job
 operation VARCHAR2(30), -- Current operation
 job_mode VARCHAR2(30), -- Current mode
 bytes_processed NUMBER, -- Bytes so far
 total_bytes NUMBER, -- Total bytes for job
 percent_done NUMBER, -- Percent done
 degree NUMBER, -- Of job parallelism
 error_count NUMBER, -- #errors so far
 state VARCHAR2(30), -- Current job state
 phase NUMBER, -- Job phase
 restart_count NUMBER, -- #Job restarts
 worker_status_list ku$_WorkerStatusList1020, -- job worker processes
 files ku$_DumpFileSet1010 -- Dump file info)

CREATE OR REPLACE PUBLIC SYNONYM ku$_JobStatus1020 FOR sys.ku$_JobStatus1020;

CREATE OR REPLACE PUBLIC SYNONYM ku$_JobStatus FOR ku$_JobStatus1020;

Job Description Types

The job description type holds all the environmental information about the job such as parameter settings and dump file set members. There are a couple of subordinate types required as well.

The job description types are defined as follows:

CREATE TYPE sys.ku$_ParamValue1010 AS OBJECT (
 param_name VARCHAR2(30),
 param_op VARCHAR2(30),
 param_type VARCHAR2(30),
 param_length NUMBER,
 param_value_n NUMBER,
 param_value_t VARCHAR2(4000));

CREATE OR REPLACE PUBLIC SYNONYM ku$_ParamValue1010 FOR sys.ku$_ParamValue1010;
CREATE OR REPLACE PUBLIC SYNONYM ku$_ParamValue1020 FOR sys.ku$_ParamValue1010;
CREATE OR REPLACE PUBLIC SYNONYM ku$_ParamValue FOR ku$_ParamValue1010;

CREATE TYPE sys.ku$_ParamValues1010 AS TABLE OF sys.ku$_ParamValue1010;

CREATE OR REPLACE PUBLIC SYNONYM ku$_ParamValues1010 FOR
 sys.ku$_ParamValues1010;
CREATE OR REPLACE PUBLIC SYNONYM ku$_ParamValues1020 FOR
 sys.ku$_ParamValues1010;
CREATE OR REPLACE PUBLIC SYNONYM ku$_ParamValues FOR ku$_ParamValues1010;

CREATE TYPE sys.ku$_JobDesc1010 AS OBJECT (
 job_name VARCHAR2(30),
 guid RAW(16),
 operation VARCHAR2(30),
 job_mode VARCHAR2(30),
 remote_link VARCHAR2(4000),
 owner VARCHAR2(30),
 instance VARCHAR2(16),
 db_version VARCHAR2(30),
 creator_privs VARCHAR2(30),
 start_time DATE,
 max_degree NUMBER,
 log_file VARCHAR2(4000),
 sql_file VARCHAR2(4000),
 params ku$_ParamValues1010)

CREATE OR REPLACE PUBLIC SYNONYM ku$_JobDesc1010 FOR sys.ku$_JobDesc1010;

CREATE TYPE sys.ku$_JobDesc1020 IS OBJECT (
 job_name VARCHAR2(30), -- The job name
 guid RAW(16), -- The job GUID
 operation VARCHAR2(30), -- Current operation
 job_mode VARCHAR2(30), -- Current mode
 remote_link VARCHAR2(4000), -- DB link, if any
 owner VARCHAR2(30), -- Job owner
 platform VARCHAR2(101), -- Current job platform
 exp_platform VARCHAR2(101), -- Export platform
 global_name VARCHAR2(4000), -- Global name of DB
 exp_global_name VARCHAR2(4000), -- Export global name
 instance VARCHAR2(16), -- The instance name
 db_version VARCHAR2(30), -- Version of objects
 exp_db_version VARCHAR2(30), -- Export version
 scn NUMBER, -- Job SCN
 creator_privs VARCHAR2(30), -- Privs of job
 start_time DATE, -- This job start time
 exp_start_time DATE, -- Export start time
 term_reason NUMBER, -- Job termination code
 max_degree NUMBER, -- Max. parallelism
 log_file VARCHAR2(4000), -- Log file name
 sql_file VARCHAR2(4000), -- SQL file name
 params ku$_ParamValues1010 -- Parameter list)

CREATE OR REPLACE PUBLIC SYNONYM ku$_JobDesc1020 FOR sys.ku$_JobDesc1020;
CREATE OR REPLACE PUBLIC SYNONYM ku$_JobDesc FOR ku$_JobDesc1020;

Status Types

The status type is an aggregate of some the previous types defined and is the return value for the GET_STATUS call. The mask attribute indicates which types of information are being returned to the caller. It is created by a client's shadow process from information it retrieves off the status queue or directly from the master table.

For errors, the ku$_LogEntry that is returned has already had its log lines ordered for proper output. That is, the original ku$_LogEntry objects have been ordered from outermost context to innermost.

The status types are defined as follows:

CREATE TYPE sys.ku$_Status1010 AS OBJECT
(
mask NUMBER, /* Indicates which status types are present*/
wip ku$_LogEntry1010, /* Work-In-Progress: std. exp/imp msgs */
job_description ku$_JobDesc1010, /* Complete job description */
job_status ku$_JobStatus1010, /* Detailed job status + per-worker sts */
error ku$_LogEntry1010 /* Multi-level contextual errors */
)

CREATE OR REPLACE PUBLIC SYNONYM ku$_Status1010 FOR sys.ku$_Status1010;

CREATE TYPE sys.ku$_Status1020 IS OBJECT
 (
 mask NUMBER, -- Status types present
 wip ku$_LogEntry1010, -- Work in progress
 job_description ku$_JobDesc1020, -- Complete job description
 job_status ku$_JobStatus1020, -- Detailed job status
 error ku$_LogEntry1010 -- Multi-level context errors
)

CREATE OR REPLACE PUBLIC SYNONYM ku$_Status1020 FOR sys.ku$_Status1020;

CREATE OR REPLACE PUBLIC SYNONYM ku$_Status FOR ku$_Status1020;

Summary of DBMS_DATAPUMP Subprograms

Table 46-1 DBMS_DATAPUMP Package Subprograms

	Subprogram	Description
	
ADD_FILE Procedure

	
Adds dump files to the dump file set for an Export, Import, or SQL_FILE operation. In addition to dump files, other types of files can also be added by using the FILETYPE parameter provided with this procedure.

	
ATTACH Function

	
Used to gain access to a Data Pump job that is in the Defining, Executing, Idling, or Stopped state

	
DATA_FILTER Procedures

	
Specifies restrictions on the rows that are to be retrieved

	
DETACH Procedure

	
Specifies that the user has no further interest in using the handle

	
GET_DUMPFILE_INFO Procedure

	
Retrieves information about a specified dump file

	
GET_STATUS Procedure

	
Monitors the status of a job or waits for the completion of a job or for more details on API errors

	
LOG_ENTRY Procedure

	
Inserts a message into the log file

	
METADATA_FILTER Procedure

	
Provides filters that allow you to restrict the items that are included in a job

	
METADATA_REMAP Procedure

	
Specifies a remapping to be applied to objects as they are processed in the specified job

	
METADATA_TRANSFORM Procedure

	
Specifies transformations to be applied to objects as they are processed in the specified job

	
OPEN Function

	
Declares a new job using the Data Pump API, the handle returned being used as a parameter for calls to all other procedures (but not to the ATTACH function)

	
SET_PARALLEL Procedure

	
Adjusts the degree of parallelism within a job

	
SET_PARAMETER Procedures

	
Specifies job-processing options

	
START_JOB Procedure

	
Begins or resumes execution of a job

	
STOP_JOB Procedure

	
Terminates a job, but optionally, preserves the state of the job

	
WAIT_FOR_JOB Procedure

	
Runs a job until it either completes normally or stops for some other reason

ADD_FILE Procedure

This procedure adds files to the dump file set for an Export, Import, or SQL_FILE operation or specifies the log file or the output file for a SQL_FILE operation.

Syntax

DBMS_DATAPUMP.ADD_FILE (
 handle IN NUMBER,
 filename IN VARCHAR2,
 directory IN VARCHAR2,
 filesize IN VARCHAR2 DEFAULT NULL,
 filetype IN NUMBER DEFAULT DBMS_DATAPUMP.KU$_FILE_TYPE_DUMP_FILE),
 reusefile IN NUMBER DEFAULT NULL;

Parameters

Table 46-2 ADD_FILE Procedure Parameters

	Parameter	Description
	
handle

	
The handle of a job. The current session must have previously attached to the handle through a call to either the OPEN or ATTACH function.

	
filename

	
The name of the file being added. filename must be a simple filename without any directory path information. For dump files, the filename can include a substitution variable, %U, which indicates that multiple files may be generated with the specified filename as a template. The %U is expanded in the resulting file names into a two-character, fixed-width, incrementing integer starting at 01. For example, the dump filename of export%U would cause export01, export02, export03, and so on, to be created depending on how many files are needed to perform the export. For filenames containing the % character, the % must be represented as %% to avoid ambiguity. Any % in a filename must be followed by either a % or a U.

	
directory

	
The name of a directory object within the database that is used to locate filename. A directory must be specified. See the Data Pump Export chapter in Oracle Database Utilities for information about the DIRECTORY command-line parameter.

	
filesize

	
The size of the dump file that is being added. It may be specified as the number of bytes, number of kilobytes (if followed by K), number of megabytes (if followed by M) or number of gigabytes (if followed by G). An Export operation will write no more than the specified number of bytes to the file. Once the file is full, it will be closed. If there is insufficient space on the device to write the specified number of bytes, the Export operation will fail, but it can be restarted. If not specified, filesize will default to an unlimited size. For Import and SQL_FILE operations, filesize is ignored. The minimum value for filesize is ten times the default Data Pump block size, which is 4 kilobytes. A filesize can only be specified for dump files.

	
filetype

	
The type of the file to be added. The legal values are as follows and must be preceded by DBMS_DATAPUMP.:

	
KU$_FILE_TYPE_DUMP_FILE (dump file for a job)

	
KU$_FILE_TYPE_LOG_FILE (log file for a job)

	
KU$_FILE_TYPE_SQL_FILE (output for SQL_FILE job)

	
reusefile

	
If 0, a preexisting file will cause an error. If 1, a preexisting file will be overwritten. If NULL, the default action for the file type will be applied (that is, dump files will not be overwritten). This parameter should only be non-NULL for dump files. The reusefile parameter is restricted to export jobs.

Exceptions

	
INVALID_HANDLE. The specified handle is not attached to a Data Pump job.

	
INVALID_ARGVAL. An invalid value was supplied for an input parameter.

	
INVALID_STATE. The job is completing, or the job is past the defining state for an import or SQL_FILE job or is past the defining state for LOG and SQL files.

	
INVALID_OPERATION. A dump file was specified for a Network Import or ESTIMATE_ONLY export operation.

	
SUCCESS_WITH_INFO. The procedure succeeded, but further information is available through the GET_STATUS procedure.

	
NO_SUCH_JOB. The specified job does not exist.

Usage Notes

	
Adds files to a Data Pump job. Three types of files may be added to jobs: Dump files to contain the data that is being moved, log files to record the messages associated with an operation, and SQL files to record the output of a SQL_FILE operation. Log and SQL files will overwrite previously existing files. Dump files will never overwrite previously existing files. Instead, an error will be generated.

	
Import and SQL_FILE operations require that all dump files be specified during the definition phase of the job. For Export operations, dump files can be added at any time. For example, if the user ascertains that the file space is running low during an Export, additional dump files may be added through this API. If the specified dump file already exists for an Export operation and reusefile is not set to 1, an error will be returned.

	
For Export operations, the parallelism setting should be less than or equal to the number of dump files in the dump file set. If there are not enough dump files, the job will not be able to maximize parallelism to the degree specified by the SET_PARALLEL procedure.

	
For Import operations, the parallelism setting should also be less than or equal to the number of dump files in the dump file set. If there are not enough dump files, the performance will not be optimal as multiple threads of execution try to access the same dump file.

	
If the substitution variable (%U) is included in a filename, multiple dump files may be specified through a single call to ADD_FILE. For Export operations, the new dump files will be created as they are needed. Enough dump files will be created to allow all of the processes specified by the current SET_PARALLEL value to be active. If one of the dump files fills, it will be closed and a new dump file (with a new generated name) will be created to take its place. If multiple ADD_FILEs with substitution variables have been specified for dump files in a job, they will be used to generate dump files in a round robin fashion. For example, if expa%U, expb%U and expc%U were all specified for a job having a parallelism of 6, the initial dump files created would look like: expa01, expb01, expc01, expa02, expb02, and expc02.

	
If presented with dump file specifications, expa%U, expb%U and expc%U, an Import or SQL_FILE operation will begin by attempting to open the dump files, expa01, expb01, and expc01.If the dump file containing the master table is not found in this set, the operation will expand its search for dump files by incrementing the substitution variable and looking up the new filenames (for example, expa02, expb02, and expc02). The DataPump API will keep expanding the search until it locates the dump file containing the master table. If the DataPump API determines that the dump file does not exist or is not part of the current dump set at any iteration, the DataPump API will stop incrementing the substitution variable for the dump file specification that was in error. Once the master table is found, the master table will be used to ascertain when all of dump files in the dump file set have been located.

ATTACH Function

This function gains access to a previously-created job.

Syntax

DBMS_DATAPUMP.ATTACH(
 job_name IN VARCHAR2 DEFAULT NULL,
 job_owner IN VARCHAR2 DEFAULT NULL)
 RETURN NUMBER;

Parameters

Table 46-3 ATTACH Function Parameters

	Parameter	Description
	
job_name

	
The name of the job. The default is the job name owned by the user who is specified in the job_owner parameter (assuming that user has only one job in the Defining, Executing, or Idling states).

	
job_owner

	
The user who originally started the job. If NULL, the value defaults to the owner of the current session. To specify a job owner other than yourself, you must have either the DATAPUMP_EXP_FULL_DATABASE role (for export operations) or the DATAPUMP_IMP_FULL_DATABASE role (for import and SQL_FILE operations). Being a privileged user allows you to monitor another user's job, but you cannot restart another user's job.

Return Values

An opaque handle for the job. This handle is used as input to the following procedures: ADD_FILE, DATA_FILTER, DETACH, GET_STATUS, LOG_ENTRY, METADATA_FILTER, METADATA_REMAP, METADATA_TRANSFORM, SET_PARALLEL, SET_PARAMETER,START_JOB, STOP_JOB, and WAIT_FOR_JOB.

Exceptions

	
INVALID_ARGVAL. An invalid value was supplied for an input parameter.

	
OBJECT_NOT_FOUND. The specified job no longer exists or the user specified a job owned by another schema, but the user did not have the DATAPUMP_EXP_FULL_DATABASE or DATAPUMP_IMP_FULL_DATABASE role.

	
SUCCESS_WITH_INFO. The function succeeded, but further information is available through the GET_STATUS procedure.

	
NO_SUCH_JOB. The specified job does not exist.

Usage Notes

	
If the job was in the Stopped state, the job is placed into the Idling state. Once the ATTACH succeeds, you can monitor the progress of the job or control the job. The stream of KU$_STATUS_WIP and KU$_STATUS_JOB_ERROR messages returned through the GET_STATUS procedure will be returned to the newly attached job starting at the approximate time of the client's attachment. There will be no repeating of status and error messages that were processed before the client attached to a job.

	
If you want to perform a second attach to a job, you must do so from a different session.

	
If the ATTACH fails, use a null handle in a subsequent call to GET_STATUS for more information about the failure.

DATA_FILTER Procedures

This procedure specifies restrictions on the rows that are to be retrieved.

Syntax

DBMS_DATAPUMP.DATA_FILTER (
 handle IN NUMBER,
 name IN VARCHAR2,
 value IN NUMBER,
 table_name IN VARCHAR2 DEFAULT NULL,
 schema_name IN VARCHAR2 DEFAULT NULL);

DBMS_DATAPUMP.DATA_FILTER(
 handle IN NUMBER,
 name IN VARCHAR2,
 value IN VARCHAR2,
 table_name IN VARCHAR2 DEFAULT NULL,
 schema_name IN VARCHAR2 DEFAULT NULL);

DBMS_DATAPUMP.DATA_FILTER(
 handle IN NUMBER,
 name IN VARCHAR2,
 value IN CLOB,
 table_name IN VARCHAR2 DEFAULT NULL,
 schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 46-4 DATA_FILTER Procedure Parameters

	Parameter	Description
	
handle

	
The handle that is returned from the OPEN function

	
name

	
The name of the filter

	
value

	
The value of the filter

	
table_name

	
The name of the table on which the data filter is applied. If no table name is supplied, the filter applies to all tables in the job.

	
schema_name

	
The name of the schema that owns the table on which the filter is applied. If no schema name is specified, the filter applies to all schemas in the job. If you supply a schema name you must also supply a table name.

Exceptions

	
INVALID_ARGVAL. There can be several reasons for this message:

	
A bad filter name is specified

	
The mode is TRANSPORTABLE, which does not support data filters

	
The specified table does not exist

	
The filter has already been set for the specified values of schema_name and table_name

	
INVALID_STATE. The user called DATA_FILTER when the job was not in the Defining state.

	
INCONSISTENT_ARGS. The value parameter is missing or its datatype does not match the filter name. Or a schema name was supplied, but not a table name.

	
PRIVILEGE_ERROR. A schema name was supplied, but the user did not have the DATAPUMP_EXP_FULL_DATABASE or DATAPUMP_IMP_FULL_DATABASE role.

	
SUCCESS_WITH_INFO. The procedure succeeded, but further information is available through the GET_STATUS procedure.

	
NO_SUCH_JOB. The specified job does not exist.

Usage Notes

	
Each data filter can only appear once in each table (for example, you cannot supply multiple SUBQUERY filters to a table) or once in each job. If different filters using the same name are applied to both a particular table and to the whole job, the filter parameter supplied for the specific table will take precedence.

With the exception of the INCLUDE_ROWS filter, data filters are not supported on tables having nested tables or domain indexes defined upon them. Data filters are not supported in jobs performed in Transportable Tablespace mode.

The available data filters are described in Table 46-5.

Table 46-5 Data Filters

	Name	Datatype	Operations that Support Filter	Description
	
INCLUDE_ROWS

	
NUMBER

	
EXPORT, IMPORT

	
If nonzero, this filter specifies that user data for the specified table should be included in the job. The default is 1.

	
PARTITION_EXPR

PARTITION_LIST

	
text

	
EXPORT, IMPORT

	
For Export jobs, these filters specify which partitions are unloaded from the database. For Import jobs, they specify which table partitions are loaded into the database. Partition names are included in the job if their names satisfy the specified expression (for PARTITION_EXPR) or are included in the list (for PARTITION_LIST). Whereas the expression version of the filter offers more flexibility, the list version provides for full validation of the partition names.

Double quotation marks around partition names are required only if the partition names contain special characters.

PARTITION_EXPR is not supported on jobs across a network link.

Default=All partitions are processed

	
SAMPLE

	
NUMBER

	
EXPORT, IMPORT

	
For Export jobs, specifies a percentage for sampling the data blocks to be moved. This filter allows subsets of large tables to be extracted for testing purposes.

	
SUBQUERY

	
text

	
EXPORT, IMPORT

	
Specifies a subquery that is added to the end of the SELECT statement for the table. If you specify a WHERE clause in the subquery, you can restrict the rows that are selected. Specifying an ORDER BY clause orders the rows dumped in the export which improves performance when migrating from heap-organized tables to index-organized tables.

DATA_REMAP Procedure

This procedure specifies transformations to be applied to column data as it is exported from, or imported into, a database.

Syntax

DBMS_DATAPUMP.DATA_REMAP(
 handle IN NUMBER,
 name IN VARCHAR2,
 table_name IN VARCHAR2,
 column IN VARCHAR2,
 remap_function IN VARCHAR2),
 schema IN VARCHAR2 DEFAULT NULL);

Parameters

Table 46-6 DATA_REMAP Procedure Parameters

	Parameter	Description
	
handle

	
The handle of the current job. The current session must have previously attached to the handle through a call to an OPEN function.

	
name

	
The name of the remap

	
table_name

	
The table containing the column to be remapped

	
column

	
The name of the column to be remapped

	
remap_function

	
The meaning of remap_function is dependent upon the value of name. See Table 46-7 for a list of possible names.

	
schema

	
The schema containing the column to be remapped. If NULL, the remapping applies to all schemas moved in the job that contain the specified table.

Exceptions

	
INVALID_ARGVAL. The mode is transportable (which does not support data modifications) or it has specified that no data to be included in the job. An invalid remap name was supplied.

	
INVALID_OPERATION. Data remaps are only supported for Export and Import operations.

	
INVALID_STATE. The DATA_REMAP procedure was called after the job started (that is, it was not in the defining state).

	
NO_SUCH_JOB. The job handle is no longer valid.

Usage Notes

	
The DATA_REMAP procedure is only supported for Export and Import operations. It allows you to manipulate user data being exported or imported. The name of the remap determines the remap operation to be performed.

	
For export operations, you might wish to define a data remap to obscure sensitive data such as credit card numbers from a dump file, but leave the remainder of the data so that it can be read. To accomplish this, the remapping should convert each unique source number into a distinct generated number. So that the mapping is consistent across the dump file set, the same function should be called for every column that contains the credit card number.

	
For import operations, you might wish to define a data remap to reset the primary key when data is being merged into an existing table that contains colliding primary keys. A single remapping function should be provided for all columns defining or referencing the primary key to ensure that remapping is consistent.

	
Note:

If the called function uses package state variables, then to ensure that remapping is performed consistently across all tables, the job should be run with a SET_PARALLEL value of 1 and no restart operations should be performed.

The Data Remap functions are listed in Table 46-7.

Table 46-7 Names of Data Remap Functions

	Name	Meaning of remap_function	Meaning
	
COLUMN_FUNCTION

	
String having the format:

[schema.]package.function

	
The name parameter references a PL/SQL package function which is called to modify the data for the specified column. The function accepts a single parameter, which has the same datatype as the remapped column, and returns a value having the same datatype as the remapped column. Note that the default for the schema is the schema of the user performing the export.

DETACH Procedure

This procedure specifies that the user has no further interest in using the handle.

Syntax

DBMS_DATAPUMP.DETACH(
 handle IN NUMBER);

Parameters

Table 46-8 DETACH Procedure Parameters

	Parameter	Description
	
handle

	
The handle of the job. The current session must have previously attached to the handle through a call to either an OPEN or ATTACH function.

Exceptions

	
INVALID_HANDLE. The specified handle is not attached to a Data Pump job.

	
SUCCESS_WITH_INFO. The procedure succeeded, but further information is available through the GET_STATUS procedure.

	
NO_SUCH_JOB. The specified job does not exist.

Usage Notes

	
Through this call, you specify that you have no further interest in using the handle. Resources associated with a completed job cannot be reclaimed until all users are detached from the job. An implicit detach from a handle is performed when the user's session is exited or aborted. An implicit detach from a handle is also performed upon the expiration of the timeout associated with a STOP_JOB that was applied to the job referenced by the handle. All previously allocated DBMS_DATAPUMP handles are released when an instance is restarted.

GET_DUMPFILE_INFO Procedure

This procedure retrieves information about a specified dump file.

Syntax

DBMS_DATAPUMP.GET_DUMPFILE_INFO(
 filename IN VARCHAR2,
 directory IN VARCHAR2,
 info_table OUT ku$_dumpfile_info,
 filetype OUT NUMBER);

Parameters

Table 46-9 GET_DUMPFILE_INFO Procedure Parameters

	Parameter	Description
	
filename

	
A simple filename with no directory path information

	
directory

	
A directory object that specifies where the file can be found

	
info_table

	
A PL/SQL table for storing information about the dump file

	
filetype

	
The type of file (Data Pump dump file, original Export dump file, or unknown)

Exceptions

The GET_DUMPFILE_INFO procedure is a utility routine that operates outside the context of any Data Pump job. Exceptions are handled differently for this procedure than for procedures associated in some way with a Data Pump job. A full exception stack should be available directly, without the need to call the GET_STATUS procedure to retrieve the detailed information. The exception for this procedure is as follows:

	
NO_DUMPFILE_INFO. Unable to retrieve dump file information as specified.

Usage Notes

You can use the GET_DUMPFILE_INFO procedure to request information about a specific file. If the file is not recognized as any type of dump file, then a filetype of zero will be returned and the dump file info_table will remain empty.

A filetype value of one indicates a Data Pump dump file. A file type value of two indicates an original Export dump file. In both cases, the dump file info_table will be populated with information retrieved from the dump file header. Rows of this table consist of item code and value pairs, where the item code indicates the type of information and the value column is a VARCHAR2 containing the actual data (converted to a string in some cases). The table is defined as follows:

CREATE TYPE sys.ku$_dumpfile_item IS OBJECT (
 item_code NUMBER, -- Identifies header item
 value VARCHAR2(2048) -- Text string value)/

GRANT EXECUTE ON sys.ku$_dumpfile_item TO PUBLIC;
CREATE OR REPLACE PUBLIC SYNONYM ku$_dumpfile_item FOR sys.ku$_dumpfile_item;

CREATE TYPE sys.ku$_dumpfile_info AS TABLE OF sys.ku$_dumpfile_item/

GRANT EXECUTE ON sys.ku$_dumpfile_info TO PUBLIC;
CREATE OR REPLACE PUBLIC SYNONYM ku$_dumpfile_info FOR sys.ku$_dumpfile_info;

The item codes, which can easily be extended to provide more information as needed, are currently defined as follows (prepended with the package name, DBMS_DATAPUMP.):

KU$_DFHDR_FILE_VERSION CONSTANT NUMBER := 1;
KU$_DFHDR_MASTER_PRESENT CONSTANT NUMBER := 2;
KU$_DFHDR_GUID CONSTANT NUMBER := 3;
KU$_DFHDR_FILE_NUMBER CONSTANT NUMBER := 4;
KU$_DFHDR_CHARSET_ID CONSTANT NUMBER := 5;
KU$_DFHDR_CREATION_DATE CONSTANT NUMBER := 6;
KU$_DFHDR_FLAGS CONSTANT NUMBER := 7;
KU$_DFHDR_JOB_NAME CONSTANT NUMBER := 8;
KU$_DFHDR_PLATFORM CONSTANT NUMBER := 9;
KU$_DFHDR_INSTANCE CONSTANT NUMBER := 10;
KU$_DFHDR_LANGUAGE CONSTANT NUMBER := 11;
KU$_DFHDR_BLOCKSIZE CONSTANT NUMBER := 12;
KU$_DFHDR_DIRPATH CONSTANT NUMBER := 13;
KU$_DFHDR_METADATA_COMPRESSED CONSTANT NUMBER := 14;
KU$_DFHDR_DB_VERSION CONSTANT NUMBER := 15;
KU$_DFHDR_MAX_ITEM_CODE CONSTANT NUMBER := 20;
KU$_DFHDR_MASTER_PIECE_COUNT CONSTANT NUMBER := 16;
KU$_DFHDR_MASTER_PIECE_NUMBER CONSTANT NUMBER := 17;
KU$_DFHDR_DATA_COMPRESSED CONSTANT NUMBER := 18;
KU$_DFHDR_METADATA_ENCRYPTED CONSTANT NUMBER := 19;
KU$_DFHDR_DATA_ENCRYPTED CONSTANT NUMBER := 20;

GET_STATUS Procedure

This procedure monitors the status of a job or waits for the completion of a job.

Syntax

DBMS_DATAPUMP.GET_STATUS(
 handle IN NUMBER,
 mask IN BINARY_INTEGER,
 timeout IN NUMBER DEFAULT NULL,
 job_state OUT VARCHAR2,
 status OUT ku$_Status1010);

Parameters

Table 46-10 GET_STATUS Procedure Parameters

	Parameter	Description
	
handle

	
The handle of a job. The current session must have previously attached to the handle through a call to either the OPEN or ATTACH function. A null handle can be used to retrieve error information after OPEN and ATTACH failures.

	
mask

	
A bit mask that indicates which of four types of information to return:

	
KU$_STATUS_WIP

	
KU$_STATUS_JOB_DESC

	
KU$_STATUS_JOB_STATUS

	
KU$_STATUS_JOB_ERROR

Each status has a numerical value. You can request multiple types of information by adding together different combinations of values. See Data Structures - Object Types.

	
timeout

	
Maximum number of seconds to wait before returning to the user. A value of 0 requests an immediate return. A value of -1 requests an infinite wait. If KU$_STATUS_WIP or KU$_STATUS_JOB_ERROR information is requested and becomes available during the timeout period, then the procedure returns before the timeout period is over.

	
job_state

	
Current state of the job. If only the job state is needed, it is much more efficient to use this parameter than to retrieve the full ku$_Status structure.

	
status

	
A ku$_Status is returned. The ku$_Status mask indicates what kind of information is included. This could be none if only KU$_STATUS_WIP or KU$_STATUS_JOB_ERROR information is requested and the timeout period expires. This can be a ku$_Status1010 or ku$_Status1020 object type.

Exceptions

	
INVALID_HANDLE. The specified handle is not attached to a Data Pump job.

	
INVALID_VALUE. The mask or timeout contains an illegal value.

	
SUCCESS_WITH_INFO. The procedure succeeded, but further information is available through the GET_STATUS procedure.

	
NO_SUCH_JOB. The specified job does not exist.

Usage Notes

The GET_STATUS procedure is used to monitor the progress of an ongoing job and to receive error notification. You can request various type of information using the mask parameter. The KU$_STATUS_JOB_DESC and KU$_STATUS_JOB_STATUS values are classified as synchronous information because the information resides in the master table. The KU$_STATUS_WIP and KU$_STATUS_JOB_ERROR values are classified as asynchronous because the messages that embody these types of information can be generated at any time by various layers in the Data Pump architecture.

	
If synchronous information only is requested, the interface will ignore the timeout parameter and simply return the requested information.

	
If asynchronous information is requested, the interface will wait a maximum of timeout seconds before returning to the client. If a message of the requested asynchronous information type is received, the call will complete prior to timeout seconds. If synchronous information was also requested, it will be returned whenever the procedure returns.

	
If the job_state returned by GET_STATUS does not indicate a terminating job, it is possible that the job could still terminate before the next call to GET_STATUS. This would result in an INVALID_HANDLE exception. Alternatively, the job could terminate during the call to GET_STATUS, which would result in a NO_SUCH_JOB exception. Callers should be prepared to handle these cases.

Error Handling

There are two types of error scenarios that need to be handled using the GET_STATUS procedure:

	
Errors resulting from other procedure calls: For example, the SET_PARAMETER procedure may produce an INCONSISTENT_ARGS exception. The client should immediately call GET_STATUS with mask=8 (errors) and timeout=0. The returned ku$_Status.error will contain a ku$_LogEntry that describes the inconsistency in more detail.

	
Errors resulting from events asynchronous to the client(s): An example might be Table already exists when trying to create a table. The ku$_Status.error will contain a ku$_LogEntry with all error lines (from all processing layers that added context about the error) properly ordered.

After a job has begun, a client's main processing loop will typically consist of a call to GET_STATUS with an infinite timeout (-1) "listening" for KU$_STATUS_WIP and KU$_STATUS_JOB_ERROR messages. If status was requested, then JOB_STATUS information will also be in the request.

When the ku$_Status is interpreted, the following guidelines should be used:

	
ku$_Status.ku$_JobStatus.percent_done refers only to the amount of data that has been processed in a job. Metadata is not considered in the calculation. It is determined using the following formulas:

	
EXPORT or network IMPORT--(bytes_processed/estimated_bytes) * 100

	
IMPORT--(bytes_processed/total_expected_bytes) * 100

	
SQL_FILE or estimate-only EXPORT--0.00 if not done or 100.00 if done

The effects of the QUERY and PARTITION_EXPR data filters are not considered in computing percent_done.

It is expected that the status returned will be transformed by the caller into more user-friendly status. For example, when percent done is not zero, an estimate of completion time could be produced using the following formula:

((SYSDATE - start time) / ku$_Status.ku$_JobStatus.percent_done) * 100

	
The caller should not use ku$_Status.ku$_JobStatus.percent_done for determining whether the job has completed. Instead, the caller should only rely on the state of the job as found in job_state.

LOG_ENTRY Procedure

This procedure inserts a message into the log file.

Syntax

DBMS_DATAPUMP.LOG_ENTRY(
 handle IN NUMBER,
 message IN VARCHAR2
 log_file_only IN NUMBER DEFAULT 0);

Parameters

Table 46-11 LOG_ENTRY Procedure Parameters

	Parameter	Description
	
handle

	
The handle of a job. The current session must have previously attached to the handle through a call to either the OPEN or ATTACH function.

	
message

	
A text line to be added to the log file

	
log_file_only

	
Specified text should be written only to the log file. It should not be returned in GET_STATUS work-in-progress (KU$_STATUS_WIP) messages.

Exceptions

	
INVALID_HANDLE. The specified handle is not attached to a Data Pump job.

	
SUCCESS_WITH_INFO. The procedure succeeded, but further information is available through the GET_STATUS procedure.

	
NO_SUCH_JOB. The specified job does not exist.

Usage Notes

The message is added to the log file. If log_file_only is zero (the default), the message is also broadcast as a KU$_STATUS_WIP message through the GET_STATUS procedure to all users attached to the job.

The LOG_ENTRY procedure allows applications to tailor the log stream to match the abstractions provided by the application. For example, the command-line interface supports INCLUDE and EXCLUDE parameters defined by the user. Identifying these values as calls to the underlying METADATA_FILTER procedure would be confusing to users. Instead, the command-line interface can enter text into the log describing the settings for the INCLUDE and EXCLUDE parameters.

Lines entered in the log stream from LOG_ENTRY are prefixed by the string, ";;; "

METADATA_FILTER Procedure

This procedure provides filters that allow you to restrict the items that are included in a job.

Syntax

DBMS_DATAPUMP.METADATA_FILTER(
 handle IN NUMBER,
 name IN VARCHAR2,
 value IN VARCHAR2,
 object_path IN VARCHAR2 DEFAULT NULL);

DBMS_DATAPUMP.METADATA_FILTER(
 handle IN NUMBER,
 name IN VARCHAR2,
 value IN CLOB,
 object_path IN VARCHAR2 DEFAULT NULL);

Parameters

Table 46-12 METADATA_FILTER Procedure Parameters

	Parameter	Description
	
handle

	
The handle returned from the OPEN function

	
name

	
The name of the filter. See Table 46-13 for descriptions of the available filters.

	
value

	
The value of the filter

	
object_path

	
The object path to which the filter applies. If the default is used, the filter applies to all applicable objects. Lists of the object paths supported for each mode are contained in the catalog views for DATABASE_EXPORT_OBJECTS, SCHEMA_EXPORT_OBJECTS, and TABLE_EXPORT_OBJECTS. (Note that the TABLE_EXPORT_OBJECTS view is applicable to both Table and Tablespace mode because their object paths are the same.)

For an import operation, object paths reference the mode used to create the dump file rather than the mode being used for the import.

Table 46-13 describes the name, the object type, and the meaning of the filters available with the METADATA_FILTER procedure. The datatype for all the filters is a text expression. All operations support all filters.

Table 46-13 Filters Provided by METADATA_FILTER Procedure

	Name	Object Type	Meaning
	
NAME_EXPR

NAME_LIST

	
Named objects

	
Defines which object names are included in the job. You use the object type parameter to limit the filter to a particular object type.

For Table mode, identifies which tables are to be processed.

	
SCHEMA_EXPR

SCHEMA_LIST

	
Schema objects

	
Restricts the job to objects whose owning schema name is satisfied by the expression.

For Table mode, only a single SCHEMA_EXPR filter is supported. If specified, it must only specify a single schema (for example, 'IN (''SCOTT'')').

For Schema mode, identifies which users are to be processed.

	
TABLESPACE_EXPR

TABLESPACE_LIST

	
TABLE, CLUSTER, INDEX, ROLLBACK_SEGMENT

	
Restricts the job to objects stored in a tablespace whose name is satisfied by the expression.

For Tablespace mode, identifies which tablespaces are to be processed. If a partition of an object is stored in the tablespace, the entire object is added to the job.

For Transportable mode, identifies which tablespaces are to be processed. If a table has a single partition in the tablespace set, all partitions must be in the tablespace set. An index is not included within the tablespace set unless all of its partitions are in the tablespace set. A domain index is not included in the tablespace set unless all of its secondary objects are included in the tablespace set.

	
INCLUDE_PATH_EXPR

INCLUDE_PATH_LIST

EXCLUDE_PATH_EXPR

EXCLUDE_PATH_LIST

	
All

	
Defines which object paths are included in, or excluded from, the job. You use these filters to select only certain object types from the database or dump file set. Objects of paths satisfying the condition are included (INCLUDE_PATH_*) or excluded (EXCLUDE_PATH_*) from the operation. The object_path parameter is not supported for these filters.

Exceptions

	
INVALID_HANDLE. The specified handle is not attached to a Data Pump job.

	
INVALID_ARGVAL. This exception can indicate any of the following conditions:

	
An object_path was specified for an INCLUDE_PATH_EXPR or EXCLUDE_PATH_EXPR filter.

	
The specified object_path is not supported for the current mode.

	
The SCHEMA_EXPR filter specified multiple schemas for a Table mode job.

	
INVALID_STATE. The user called the METADATA_FILTER procedure after the job left the defining state.

	
INCONSISTENT_ARGS. The filter value is of the wrong datatype or is missing.

	
SUCCESS_WITH_INFO. The procedure succeeded but further information is available through the GET_STATUS procedure.

	
NO_SUCH_JOB. The specified job does not exist.

Usage Notes

	
Metadata filters identify a set of objects to be included or excluded from a Data Pump operation. Except for EXCLUDE_PATH_EXPR and INCLUDE_PATH_EXPR, dependent objects of an identified object will be processed along with the identified object. For example, if an index is identified for inclusion by a filter, grants upon that index will also be included by the filter. Likewise, if a table is excluded by a filter, then indexes, constraints, grants and triggers upon the table will also be excluded by the filter.

	
Two versions of each filter are supported: SQL expression and List. The SQL expression version of the filters offer maximum flexibility for identifying objects (for example the use of LIKE to support use of wild cards). The names of the expression filters are as follows:

	
NAME_EXPR

	
SCHEMA_EXPR

	
TABLESPACE_EXPR

	
INCLUDE_PATH_EXPR

	
EXCLUDE_PATH_EXPR

The list version of the filters allow maximum validation of the filter. An error will be reported if one of the elements in the filter is not found within the source database (for Export and network-based jobs) or is not found within the dump file (for file-based Import and SQLFILE jobs). The names of the list filters are as follows:

	
NAME_LIST

	
SCHEMA_LIST

	
TABLESPACE_LIST

	
INCLUDE_PATH_LIST

	
EXCLUDE_PATH_LIST

	
Filters allow a user to restrict the items that are included in a job. For example, a user could request a full export, but without Package Specifications or Package Bodies.

	
If multiple filters are specified for a object type, they are implicitly 'ANDed' together (that is, objects participating in the job must pass all of the filters applied to their object types).

	
The same filter name can be specified multiple times within a job. For example, specifying NAME_EXPR as '!=''EMP''' and NAME_EXPR as '!=''DEPT''' on a Table mode export would produce a file set containing all of the tables except for EMP and DEPT.

METADATA_REMAP Procedure

This procedure specifies a remapping to be applied to objects as they are processed in the specified job.

Syntax

DBMS_DATAPUMP.METADATA_REMAP (
 handle IN NUMBER,
 name IN VARCHAR2,
 old_value IN VARCHAR2,
 value IN VARCHAR2,
 object_type IN VARCHAR2 DEFAULT NULL);

Parameters

Table 46-14 METADATA_REMAP Procedure Parameters

	Parameter	Description
	
handle

	
The handle for the current job. The current session must have previously attached to the handle through a call to the OPEN function.

	
name

	
The name of the remap. See Table 46-15 for descriptions of the available remaps.

	
old_value

	
Specifies which value in the dump file set should be reset to value

	
value

	
The value of the parameter for the remap. This signifies the new value that old_value should be translated into.

	
object_type

	
Designates the object type to which the remap applies. The list of object types supported for each mode are contained in the DATABASE_EXPORT_OBJECTS, SCHEMA_EXPORT_OBJECTS, TABLE_EXPORT_OBJECTS, and TABLESPACE_EXPORT_OBJECTS catalog views.

By default, the remap applies to all applicable objects within the job. The object_type parameter allows a caller to specify different parameters for different object types within a job. Remaps that explicitly specify an object type override remaps that apply to all object types.

Table 46-15 describes the remaps provided by the METADATA_REMAP procedure.

Table 46-15 Remaps Provided by the METADATA_REMAP Procedure

	Name	Datatype	Object Type	Meaning
	
REMAP_SCHEMA

	
Text

	
Schema objects

	
Any schema object in the job that matches the object_type parameter and was located in the old_value schema will be moved to the value schema.

Privileged users can perform unrestricted schema remaps.

Nonprivileged users can perform schema remaps only if their schema is the target schema of the remap.

For example, SCOTT can remap his BLAKE's objects to SCOTT, but SCOTT cannot remap SCOTT's objects to BLAKE.

	
REMAP_TABLESPACE

	
Text

	
TABLE, INDEX, ROLLBACK_SEGMENT, MATERIALIZED_VIEW, MATERIALIZED_VIEW_LOG,TABLE_SPACE

	
Any storage segment in the job that matches the object_type parameter and was located in the old_value tablespace will be relocated to the value tablespace.

	
REMAP_DATAFILE

	
Text

	
LIBRARY, TABLESPACE, DIRECTORY

	
Any datafile reference in the job that matches the object_type parameter and referenced the old_value datafile will be redefined to use the value datafile.

	
REMAP_TABLE

	
Text

	
TABLE

	
Any reference to a table in the job that matches the old_value table name will be replaced with the value table name. The old_value parameter may refer to a partition such as employees.low. This allows names for tables constructed the by PARTITION_OPTIONS=DEPARTITION parameter to be specified by the user.

Exceptions

	
INVALID_HANDLE. The specified handle is not attached to a Data Pump job.

	
INVALID_ARGVAL. This message can indicate any of the following:

	
The job's mode does not include the specified object_type.

	
The remap has already been specified for the specified old_value and object_type.

	
INVALID_OPERATION. Remaps are only supported for SQL_FILE and Import operations. The job's operation was Export, which does not support the use of metadata remaps.

	
INVALID_STATE. The user called METADATA_REMAP after the job had started (that is, the job was not in the defining state).

	
INCONSISTENT_ARGS. There was no value supplied or it was of the wrong datatype for the remap.

	
PRIVILEGE_ERROR. A nonprivileged user attempted to do a REMAP_SCHEMA to a different user's schema or a REMAP_DATAFILE.

	
SUCCESS_WITH_INFO. The procedure succeeded, but further information is available through the GET_STATUS procedure.

	
NO_SUCH_JOB. The specified job does not exist.

Usage Notes

	
The METADATA_REMAP procedure is only supported for Import and SQL_FILE operations. It enables you to apply commonly desired, predefined remappings to the definition of objects as part of the transfer. If you need remaps that are not supported within this procedure, you should do a preliminary SQL_FILE operation to produce a SQL script corresponding to the dump file set. By editing the DDL directly and then executing it, you can produce any remappings that you need.

	
Transforms for the DataPump API are a subset of the remaps implemented by the DBMS_METADATA.SET_TRANSFORM_PARAMETER API. Multiple remaps can be defined for a single job. However, each remap defined must be unique according its parameters. That is, two remaps cannot specify conflicting or redundant remaps.

METADATA_TRANSFORM Procedure

This procedure specifies transformations to be applied to objects as they are processed in the specified job.

Syntax

DBMS_DATAPUMP.METADATA_TRANSFORM (
 handle IN NUMBER,
 name IN VARCHAR2,
 value IN VARCHAR2,
 object_type IN VARCHAR2 DEFAULT NULL);

DBMS_DATAPUMP.METADATA_TRANSFORM (
 handle IN NUMBER,
 name IN VARCHAR2,
 value IN NUMBER,
 object_type IN VARCHAR2 DEFAULT NULL);

Parameters

Table 46-16 METADATA_TRANSFORM Procedure Parameters

	Parameter	Description
	
handle

	
The handle for the current job. The current session must have previously attached to the handle through a call to the OPEN function.

	
name

	
The name of the transformation. See Table 46-17 for descriptions of the available transforms.

	
value

	
The value of the parameter for the transform

	
object_type

	
Designates the object type to which the transform applies. The list of object types supported for each mode are contained in the DATABASE_EXPORT_OBJECTS, SCHEMA_EXPORT_OBJECTS, TABLE_EXPORT_OBJECTS, and TABLESPACE_EXPORT_OBJECTS catalog views.

By default, the transform applies to all applicable objects within the job. The object_type parameter allows a caller to specify different transform parameters for different object types within a job. Transforms that explicitly specify an object type override transforms that apply to all object types.

Table 46-17 describes the transforms provided by the METADATA_TRANSFORM procedure.

Table 46-17 Transforms Provided by the METADATA_TRANFORM Procedure

	Name	Datatype	Object Type	Meaning
	
PCTSPACE

	
NUMBER

	
TABLE

INDEX

TABLESPACE

	
Specifies a percentage multiplier used to alter extent allocations and datafile sizes. Used to shrink large tablespaces for testing purposes.

Defaults to 100.

	
SEGMENT_ATTRIBUTES

	
NUMBER

	
TABLE, INDEX

	
If nonzero (TRUE), emit storage segment parameters.

Defaults to 1.

	
STORAGE

	
NUMBER

	
TABLE

	
If nonzero (TRUE), emit storage clause. (Ignored if SEGMENT_ATTRIBUTES is zero.)

Defaults to nonzero (TRUE).

	
OID

	
NUMBER

	
TYPE

TABLE

	
If zero, inhibits the assignment of the exported OID during type or table creation. Instead, a new OID will be assigned.

Use of this transform on Object Tables will cause breakage in REF columns that point to the table.

Defaults to 1.

	
SEGMENT_CREATION

	
NUMBER

	
TABLE

	
If nonzero (TRUE), the SQL SEGMENT CREATION clause is added to the CREATE TABLE statement. That is, the CREATE TABLE statement will explicitly say either SEGMENT CREATION DEFERRED or SEGMENT CREATION IMMEDIATE.

If the value is FALSE, then the SEGMENT CREATION clause is omitted from the CREATE TABLE statement. Set this parameter to FALSE to use the default segment creation attributes for the table(s) being loaded.

Defaults to nonzero (TRUE).

(This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2).)

Exceptions

	
INVALID_HANDLE. The specified handle is not attached to a Data Pump job.

	
INVALID_ARGVAL. This message can indicate any of the following:

	
The mode is transportable, which doesn't support transforms.

	
The job's mode does not include the specified object_type.

	
The transform has already been specified for the specified value and object_type.

	
INVALID_OPERATION. Transforms are only supported for SQL_FILE and Import operations. The job's operation was Export which does not support the use of metadata transforms.

	
INVALID_STATE. The user called METADATA_TRANSFORM after the job had started (that is, the job was not in the defining state).

	
INCONSISTENT_ARGS. There was no value supplied or it was of the wrong datatype for the transform.

	
PRIVILEGE_ERROR. A nonprivileged user attempted to do a REMAP_SCHEMA to a different user's schema or a REMAP_DATAFILE.

	
SUCCESS_WITH_INFO. The procedure succeeded, but further information is available through the GET_STATUS procedure.

	
NO_SUCH_JOB. The specified job does not exist.

Usage Notes

	
The METADATA_TRANSFORM procedure is only supported for Import and SQL_FILE operations. It enables you to apply commonly desired, predefined transformations to the definition of objects as part of the transfer. If you need transforms that are not supported within this procedure, you should do a preliminary SQL_FILE operation to produce a SQL script corresponding to the dump file set. By editing the DDL directly and then executing it, you can produce any transformations that you need.

	
Transforms for the DataPump API are a subset of the transforms implemented by the DBMS_METADATA.SET_TRANSFORM_PARAMETER API. Multiple transforms can be defined for a single job. However, each transform defined must be unique according its parameters. That is, two transforms cannot specify conflicting or redundant transformations.

OPEN Function

This function is used to declare a new job using the Data Pump API. The handle that is returned is used as a parameter for calls to all other procedures (but not to the ATTACH function).

Syntax

DBMS_DATAPUMP.OPEN (
 operation IN VARCHAR2,
 job_mode IN VARCHAR2,
 remote_link IN VARCHAR2 DEFAULT NULL,
 job_name IN VARCHAR2 DEFAULT NULL,
 version IN VARCHAR2 DEFAULT 'COMPATIBLE'
 RETURN NUMBER;

Parameters

Table 46-18 OPEN Function Parameters

	Parameter	Meaning
	
operation

	
The type of operation to be performed. Table 46-19 contains descriptions of valid operation types.

	
job_mode

	
The scope of the operation to be performed. Table 46-20 contains descriptions of valid modes. Specifying NULL generates an error.

	
remote_link

	
If the value of this parameter is non-null, it provides the name of a database link to the remote database that will be the source of data and metadata for the current job.

	
job_name

	
The name of the job. The name is limited to 30 characters; it will be truncated if more than 30 characters are used. It may consist of printable characters and spaces. It is implicitly qualified by the schema of the user executing the OPEN function and must be unique to that schema (that is, there cannot be other Data Pump jobs using the same name).

The name is used to identify the job both within the API and with other database components such as identifying the job in the DBA_RESUMABLE view if the job becomes suspended through lack of resources. If no name is supplied, a system generated name will be provided for the job in the following format: "SYS_<OPERATION>_<MODE>_%N".

The default job name is formed where %N expands to a two-digit incrementing integer starting at '01' (for example, "SYS_IMPORT_FULL_03"). The name supplied for the job will also be used to name the master table and other resources associated with the job.

	
version

	
The version of database objects to be extracted. This option is only valid for Export, network Import, and SQL_FILE operations. Database objects or attributes that are incompatible with the version will not be extracted. Legal values for this parameter are as follows:

	
COMPATIBLE - (default) the version of the metadata corresponds to the database compatibility level and the compatibility release level for feature (as given in the V$COMPATIBILITY view). Database compatibility must be set to 9.2 or higher.

	
LATEST - the version of the metadata corresponds to the database version.

	
A specific database version, for example, '10.0.0'. In Oracle Database10g, this value cannot be lower than 10.0.0.

Table 46-19 describes the valid operation types for the OPEN function.

Table 46-19 Valid Operation Types for the OPEN Function

	Operation	Description
	
EXPORT

	
Saves data and metadata to a dump file set or obtains an estimate of the size of the data for an operation.

	
IMPORT

	
Restores data and metadata from a dump file set or across a database link.

	
SQL_FILE

	
Displays the metadata within a dump file set, or from across a network link, as a SQL script. The location of the SQL script is specified through the ADD_FILE procedure.

Table 46-20 describes the valid modes for the OPEN function.

Table 46-20 Valid Modes for the OPEN Function

	Mode	Description
	
FULL

	
Operates on the full database or full dump file set except for the SYS, XDB,ORDSYS, MDSYS, CTXSYS, ORDPLUGINS, and LBACSYS schemas.

	
SCHEMA

	
Operates on a set of selected schemas. Defaults to the schema of the current user. All objects in the selected schemas are processed. Users cannot specify SYS, XDB, ORDSYS, MDSYS, CTXSYS, ORDPLUGINS, or LBACSYS schemas for this mode.

	
TABLE

	
Operates on a set of selected tables. Defaults to all of the tables in the current user's schema. Only tables and their dependent objects are processed.

	
TABLESPACE

	
Operates on a set of selected tablespaces. No defaulting is performed. Tables that have storage in the specified tablespaces are processed in the same manner as in Table mode.

	
TRANSPORTABLE

	
Operates on metadata for tables (and their dependent objects) within a set of selected tablespaces to perform a transportable tablespace export/import.

Return Values

	
An opaque handle for the job. This handle is used as input to the following procedures: ADD_FILE, CREATE_JOB_VIEW, DATA_FILTER, DETACH, GET_STATUS, LOG_ENTRY, LOG_ERROR,METADATA_FILTER, METADATA_REMAP, METADATA_TRANSFORM, SET_PARALLEL,SET_PARAMETER, START_JOB,STOP_JOB, and WAIT_FOR_JOB

Exceptions

	
INVALID_ARGVAL. An invalid operation or mode was specified. A NULL or invalid value was supplied for an input parameter. The error message text identifies the parameter.

	
JOB_EXISTS. A table already exists with the specified job name.

	
PRIVILEGE_ERROR. The user does not have the necessary privileges or roles to use the specified mode.

	
INTERNAL_ERROR. The job was created under the wrong schema or the master table was of the wrong format.

	
SUCCESS_WITH_INFO. The function succeeded, but further information is available through the GET_STATUS procedure.

	
NO_SUCH_JOB. The specified job does not exist.

Usage Notes

	
When the job is created, a master table is created for the job under the caller's schema within the caller's default tablespace. A handle referencing the job is returned that attaches the current session to the job. Once attached, the handle remains valid until either an explicit or implicit detach occurs. The handle is only valid in the caller's session. Other handles can be attached to the same job from a different session by using the ATTACH function.

	
If the call to the OPEN function fails, call the GET_STATUS procedure with a null handle to retrieve additional information about the failure.

SET_PARALLEL Procedure

This procedure adjusts the degree of parallelism within a job.

Syntax

DBMS_DATAPUMP.SET_PARALLEL(
 handle IN NUMBER,
 degree IN NUMBER);

Parameters

Table 46-21 SET_PARALLEL Procedure Parameters

	Parameter	Description
	
handle

	
The handle of a job. The current session must have previously attached to the handle through a call to either the OPEN or ATTACH function.

	
degree

	
The maximum number of worker processes that can be used for the job. You use this parameter to adjust the amount of resources used for a job.

Exceptions

	
INVALID_HANDLE. The specified handle is not attached to a Data Pump job.

	
INVALID_OPERATION. The SET_PARALLEL procedure is only valid for export and import operations.

	
INVALID_ARGVAL. An invalid value was supplied for an input parameter.

	
SUCCESS_WITH_INFO. The procedure succeeded, but further information is available through the GET_STATUS procedure.

	
NO_SUCH_JOB. The specified job does not exist.

Usage Notes

	
The SET_PARALLEL procedure is only available in the Enterprise Edition of the Oracle database.

	
The SET_PARALLEL procedure can be executed by any session attached to a job. The job must be in one of the following states: Defining, Idling, or Executing.

	
The effect of decreasing the degree of parallelism may be delayed because ongoing work needs to find an orderly completion point before SET_PARALLEL can take effect.

	
Decreasing the parallelism will not result in fewer worker processes associated with the job. It will only decrease the number of worker processes that will be executing at any given time.

	
Increasing the parallelism will take effect immediately if there is work that can be performed in parallel.

	
The degree of parallelism requested by a user may be decreased based upon settings in the resource manager or through limitations introduced by the PROCESSES or SESSIONS initialization parameters in the init.ora file.

	
To parallelize an Export job to a degree of n, the user should supply n files in the dump file set or specify a substitution variable in a file specification. Otherwise, some of the worker processes will be idle while waiting for files.

	
SQL_FILE operations always operate with a degree of 1. Jobs running in the Transportable mode always operate with a degree of 1.

SET_PARAMETER Procedures

This procedure is used to specify job-processing options.

Syntax

DBMS_DATAPUMP.SET_PARAMETER(
 handle IN NUMBER,
 name IN VARCHAR2,
 value IN VARCHAR2);

DBMS_DATAPUMP.SET_PARAMETER (
 handle IN NUMBER,
 name IN VARCHAR2,
 value IN NUMBER);

Parameters

Table 46-22 SET_PARAMETER Procedure Parameters

	Parameter	Description
	
handle

	
The handle of a job. The current session must have previously attached to the handle through a call to the OPEN function.

	
name

	
The name of the parameter. Table 46-23 describes the valid parameter names.

	
value

	
The value for the specified parameter

Table 46-23 describes the valid options for the name parameter of the SET_PARAMETER procedure.

Table 46-23 Valid Options for the name Parameter in the SET_PARAMETER Procedure

	Parameter Name	Datatype	Supported Operations	Meaning
	
CLIENT_COMMAND

	
Text

	
All

	
An opaque string used to describe the current operation from the client's perspective. The command-line procedures will use this string to store the original command used to invoke the job.

	
COMPRESSION

	
Text

	
Export

	
Allows you to trade off the size of the dump file set versus the time it takes to perform export and import operations.

The DATA_ONLY option compresses only user data in the dump file set.

The METADATA_ONLY option compresses only metadata in the dump file set.

The ALL option compresses both user data and metadata.

The NONE option stores the dump file set in an uncompressed format.

The METADATA_ONLY and NONE options require a job version of 10.2 or later. All other options require a job version of 11.1 or later.

Default=METADATA_ONLY

	
DATA_OPTIONS

	
Number

	
Export and Import

	
A bitmask to supply special options for processing the job. The possible values are as follows:

	
KU$_DATAOPT_SKIP_CONST_ERR

	
KU$_DATAOPT_XMLTYPE_CLOB

	
KU$_DATAOPT_DISABL_APPEND_HINT

Export supports the value KU$_DATAOPT_XMLTYPE_CLOB. This option stores compressed XMLType columns in the dump file as CLOBs rather than as XML documents.

Import supports the value KU$_DATAOPT_SKIP_CONST_ERR. This option specifies that if constraint violations occur while data is being imported into user tables, the rows that cause the violations will be rejected and the load will continue. If this option is not set, a constraint error will abort the loading of the entire partition (or table for unpartitioned tables). Setting this option may affect performance, especially for pre-existing tables with unique indexes or constraints.

Import also supports the value KU$_DATAOPT_DISABL_APPEND_HINT. This option prevents the append hint from being applied to the data load. Disabling the APPEND hint can be useful if there is a small set of data objects to load that already exist in the database and some other application may be concurrently accessing one or more of the data objects.

Use of this parameter requires that the version on the OPEN function be set to 11.1 or later.

Default=0

	
ENCRYPTION

	
Text

	
Export

	
Specifies what to encrypt in the dump file set, as follows:

ALL enables encryption for all data and metadata in the export operation.

DATA_ONLY specifies that only data is written to the dump file set in encrypted format.

ENCRYPTED_COLUMNS_ONLY specifies that only encrypted columns are written to the dump file set in encrypted format.

METADATA_ONLY specifies that only metadata is written to the dump file set in encrypted format.

NONE specifies that no data is written to the dump file set in encrypted format.

This parameter requires a job version of 11.1 or later.

The default value depends upon the combination of encryption-related parameters that are used. To enable encryption, either ENCRYPTION or ENCRYPTION_PASSWORD or both, must be specified. If only ENCRYPTION_PASSWORD is specified, then ENCRYPTION defaults to ALL. If neither ENCRYPTION nor ENCRYPTION_PASSWORD is specified, then ENCRYPTION defaults to NONE.

To specify ALL, DATA_ONLY, or METADATA_ONLY, the COMPATIBLE initialization parameter must be set to at least 11.1.

NOTE: If the data being exported includes SecureFiles that you want to be encrypted, then you must specify ENCRYPTION=ALL to encrypt the entire dump file set. Encryption of the entire dump file set is the only way to achieve encryption security for SecureFiles during a Data Pump export operation.

	
ENCRYPTION_ALGORITHM

	
Text

	
Export

	
Identifies which cryptographic algorithm should be used to perform encryption. Possible values are AES128, AES192, and AES256.

The ENCRYPTION_ALGORITHM parameter requires that you also specify either ENCRYPTION or ENCRYPTION_PASSWORD; otherwise an error is returned. See Oracle Database Advanced Security Administrator's Guide for information about encryption algorithms.

This parameter requires a job version of 11.1 or later.

Default=AES128

	
ENCRYPTION_MODE

	
Text

	
Export

	
Identifies the types of security used for encryption and decryption. The values are as follows:

PASSWORD requires that you provide a password when creating encrypted dump file sets. You will need to provide the same password when you import the dump file set. PASSWORD mode requires that you also specify the ENCRYPTION_PASSWORD parameter. The PASSWORD mode is best suited for cases in which the dump file set will be imported into a different or remote database, but which must remain secure in transit.

TRANSPARENT allows an encrypted dump file set to be created without any intervention from a database administrator (DBA), provided the required Oracle Encryption Wallet is available. Therefore, the ENCRYPTION_PASSWORD parameter is not required, and will in fact, cause an error if it is used in TRANSPARENT mode. This encryption mode is best suited for cases in which the dump file set will be imported into the same database from which it was exported.

DUAL creates a dump file set that can later be imported using either the Oracle Encryption Wallet or the password that was specified with the ENCRYPTION_PASSWORD parameter. DUAL mode is best suited for cases in which the dump file set will be imported on-site using the Oracle Encryption Wallet, but which may also need to be imported offsite where the Oracle Encryption Wallet is not available.

When you use the ENCRYPTION_MODE parameter, you must also use either the ENCRYPTION or ENCRYPTION_PASSWORD parameter. Otherwise, an error is returned.

To use DUAL or TRANSPARENT mode, the COMPATIBLE initialization parameter must be set to at least 11.1.

The default mode depends on which other encryption-related parameters are used. If only ENCRYPTION is specified, then the default mode is TRANSPARENT. If ENCRYPTION_PASSWORD is specified and the Oracle Encryption Wallet is open, then the default is DUAL. If ENCRYPTION_PASSWORD is specified and the Oracle Encryption Wallet is closed, then the default is PASSWORD.

	
ENCRYPTION_PASSWORD

	
Text

	
Export and Import

	
Specifies a key for re-encrypting encrypted table columns, metadata, or table data so that they are not written as clear text in the dump file set. If the export operation involves encrypted table columns, but an encryption password is not supplied, then the encrypted columns will be written to the dump file set as clear text and a warning will be issued.

NOTE: Data Pump encryption functionality has changed as of Oracle Database 11g release 1 (11.1). Prior to release 11.1, the ENCRYPTION_PASSWORD parameter applied only to encrypted columns. However, as of release 11.1, the new ENCRYPTION parameter provides options for encrypting other types of data. This means that if you now specify ENCRYPTION_PASSWORD without also specifying ENCRYPTION and a specific option, then all data written to the dump file will be encrypted (equivalent to specifying ENCRYPTION=ALL). If you want to re-encrypt only encrypted columns, you must now specify ENCRYPTION=ENCRYPTED_COLUMNS_ONLY in addition to ENCRYPTION_PASSWORD.

For export operations, this parameter is required if ENCRYPTION_MODE is set to either PASSWORD or DUAL.

If ENCRYPTION_PASSWORD is specified but ENCRYPTION_MODE is not specified, then it is not necessary to have Transparent Data Encryption set up since ENCRYPTION_MODE will default to PASSWORD.

The ENCRYPTION_PASSWORD parameter is not valid if the requested encryption mode is TRANSPARENT.

To use the ENCRYPTION_PASSWORD parameter if ENCRYPTION_MODE is set to DUAL, you must have Transparent Data Encryption set up. See Oracle Database Advanced Security Administrator's Guide for more information about Transparent Data Encryption.

For network exports, the ENCRYPTION_PASSWORD parameter in conjunction with ENCRYPTION=ENCRYPTED_COLUMNS_ONLY is not supported with user-defined external tables that have encrypted columns. The table will be skipped and an error message will be displayed, but the job will continue.

Encryption attributes for all columns must match between the exported table definition and the target table.

This parameter requires a job version of 10.2 or later.

	
ESTIMATE

	
Text

	
Export and Import

	
Specifies that the estimate method for the size of the tables should be performed before starting the job.

If BLOCKS, a size estimate for the user tables is calculated using the count of blocks allocated to the user tables.

If STATISTICS, a size estimate for the user tables is calculated using the statistics associated with each table. If no statistics are available for a table, the size of the table is estimated using BLOCKS.

The ESTIMATE parameter cannot be used in Transportable Tablespace mode.

Default=BLOCKS

	
ESTIMATE_ONLY

	
Number

	
Export

	
Specifies that only the estimation portion of an export job should be performed. This option is useful for estimating the size of dump files when the size of the export is unknown.

	
FLASHBACK_SCN

	
NUMBER

	
Export and network Import

	
System change number (SCN) to serve as transactionally consistent point for reading user data. If neither FLASHBACK_SCN nor FLASHBACK_TIME is specified, there will be no transactional consistency between partitions, except for logical standby databases and Streams targets. FLASHBACK_SCN is not supported in Transportable mode.

	
FLASHBACK_TIME

	
Text

	
Export and network Import

	
Either the date and time used to determine a consistent point for reading user data or a string of the form TO_TIMESTAMP(...).

If neither FLASHBACK_SCN nor FLASHBACK_TIME is specified, there will be no transactional consistency between partitions.

FLASHBACK_SCN and FLASHBACK_TIME cannot both be specified for the same job. FLASHBACK_TIME is not supported in Transportable mode.

	
INCLUDE_METADATA

	
NUMBER

	
Export and Import

	
If nonzero, metadata for objects will be moved in addition to user table data.

If zero, metadata for objects will not moved. This parameter converts an Export operation into an unload of user data and an Import operation into a load of user data.

INCLUDE_METADATA is not supported in Transportable mode.

Default=1

	
PARTITION_OPTIONS

	
Text

	
Import

	
Specifies how partitioned tables should be handled during an import operation. The options are as follows:

NONE means that partitioning is reproduced on the target database as it existed in the source database.

DEPARTITION means that each partition or subpartition that contains storage in the job is reproduced as a separate unpartitioned table. Intermediate partitions that are subpartitioned are not re-created (although their subpartitions are converted into tables). The names of the resulting tables are system-generated from the original table names and partition names unless the name is overridden by the REMAP_TABLE metadata transform.

MERGE means that each partitioned table is re-created in the target database as an unpartitioned table. The data from all of the source partitions is merged into a single storage segment. This option is not supported for transportable jobs or when the TRANSPORTABLE parameter is set to ALWAYS.

This parameter requires a job version of 11.1 or later.

Default=NONE

	
SKIP_UNUSABLE_INDEXES

	
NUMBER

	
Import

	
If nonzero, rows will be inserted into tables having unusable indexes. SKIP_UNUSABLE_INDEXES is not supported in Transportable mode.

Default=1

	
SOURCE_EDITION

	
Text

	
Export and network Import

	
The application edition that will be used for determining the objects that will be unloaded for export and for network import.

	
TABLE_EXISTS_ACTION

	
Text

	
Import

	
Specifies the action to be performed when data is loaded into a preexisting table. The possible actions are: TRUNCATE, REPLACE, APPEND, and SKIP.

If INCLUDE_METADATA=0, only TRUNCATE and APPEND are supported.

If TRUNCATE, rows are removed from a preexisting table before inserting rows from the Import.

Note that if TRUNCATE is specified on tables referenced by foreign key constraints, the TRUNCATE will be modified into a REPLACE.

If REPLACE, preexisting tables are replaced with new definitions. Before creating the new table, the old table is dropped.

If APPEND, new rows are added to the existing rows in the table.

If SKIP, the preexisting table is left unchanged.

TABLE_EXISTS_ACTION is not supported in Transportable mode.

The default is SKIP if metadata is included in the import. The default is APPEND if INCLUDE_METADATA is set to 0.

	
TABLESPACE_DATAFILE

	
Text

	
Import

	
Specifies the full file specification for a datafile in the transportable tablespace set. TABLESPACE_DATAFILE is only valid for transportable mode imports.

TABLESPACE_DATAFILE can be specified multiple times, but the value specified for each occurrence must be different.

	
TARGET_EDITION

	
Text

	
Import

	
The application edition that will be used for determining where the objects will be loaded for import and for network import.

	
TRANSPORTABLE

	
Text

	
Export

	
For export operations done in table mode, allows the data to be moved using transportable tablespaces. Storage segments in the moved tablespaces that are not associated with the parent schemas (tables) will be reclaimed at import time. If individual partitions are selected in a table-mode job, only the tablespaces referenced by those partitions will be moved. During import, the moved partitions can only be reconstituted as tables by using the PARTITION_OPTIONS=DEPARTITION parameter.

Use of the TRANSPORTABLE parameter prohibits the subsequent import of the dump file into a database at a lower version or using different character sets. Additionally, the data files may need to be converted if the target database is on a different platform. The TRANSPORTABLE parameter is not allowed if a network link is supplied on the OPEN call.

The possible values for this parameter are as follows:

ALWAYS - data is always moved by moving data files

NEVER - data files are never used for copying user data

This parameter requires a job version of 11.1 or later

Default=NEVER

	
TTS_FULL_CHECK

	
NUMBER

	
Export

	
If nonzero, verifies that a transportable tablespace set has no dependencies (specifically, IN pointers) on objects outside the set, and vice versa. Only valid for Transportable mode Exports.

Default=0

	
USER_METADATA

	
NUMBER

	
Export and network Import

	
For schema-mode operations, specifies that the metadata to re-create the users' schemas (for example, privilege grants to the exported schemas) should also be part of the operation if set to nonzero. Users must be privileged to explicitly set this parameter.

The USER_METADATA parameter cannot be used in Table, Tablespace, or Transportable Tablespace mode.

Default=1 if user has DATAPUMP_EXP_FULL_DATABASE role; 0 otherwise.

Exceptions

	
INVALID_HANDLE. The specified handle is not attached to a Data Pump job.

	
INVALID_ARGVAL. This exception could be due to any of the following causes:

	
An invalid name was supplied for an input parameter

	
The wrong datatype was used for value

	
A value was not supplied

	
The supplied value was not allowed for the specified parameter name

	
A flashback parameter had been established after a different flashback parameter had already been established

	
A parameter was specified that did not support duplicate definitions

	
INVALID_OPERATION. The operation specified is invalid in this context.

	
INVALID_STATE. The specified job is not in the Defining state.

	
INCONSISTENT_ARGS. Either the specified parameter is not supported for the current operation type or it is not supported for the current mode.

	
PRIVILEGE_ERROR. The user does not have the DATAPUMP_EXP_FULL_DATABASE or DATAPUMP_IMP_FULL_DATABASE role required for the specified parameter.

	
SUCCESS_WITH_INFO. The procedure succeeded, but further information is available through the GET_STATUS procedure.

	
NO_SUCH_JOB. The specified job does not exist.

Usage Notes

	
The SET_PARAMETER procedure is used to specify optional features for the current job. See Table 46-23 for a list of supported options.

START_JOB Procedure

This procedure begins or resumes execution of a job.

Syntax

DBMS_DATAPUMP.START_JOB (
 handle IN NUMBER,
 skip_current IN NUMBER DEFAULT 0,
 abort_step IN NUMBER DEFAULT 0,
 cluster_ok IN NUMBER DEFAULT 1,
 service_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 46-24 START_JOB Procedure Parameters

	Parameter	Description
	
handle

	
The handle of a job. The current session must have previously attached to the handle through a call to either the OPEN or ATTACH function.

	
skip_current

	
If nonzero, causes actions that were 'in progress' on a previous execution of the job to be skipped when the job restarts. The skip will only be honored for Import jobs. This mechanism allows the user to skip actions that trigger fatal bugs and cause the premature termination of a job. Multiple actions can be skipped on a restart. The log file will identify which actions are skipped. If a domain index was being processed, all pieces of the domain index are skipped even if the error occurred in only a subcomponent of the domain index.

A description of the actions skipped is entered into the log file. skip_current is ignored for the initial START_JOB in a job.

If zero, no data or metadata is lost upon a restart.

	
abort_step

	
Value must be 0. Inserting values other than 0 into this argument will have unintended consequences.

	
cluster_ok

	
If = 0, all workers are started on the current instance. Otherwise, workers are started on instances usable by the job.

	
service_name

	
If specified, indicates a service name used to constrain the job to specific instances or to a specific resource group.

Exceptions

	
INVALID_HANDLE. The specified handle is not attached to a Data Pump job.

	
INVALID_STATE. The causes of this exception can be any of the following:

	
No files have been defined for an Export, non-network Import, or SQL_FILE job

	
An ADD_FILE procedure has not been called to define the output for a SQL_FILE job

	
A TABLESPACE_DATAFILE parameter has not been defined for a Transportable Import job

	
A TABLESPACE_EXPR metadata filter has not been defined for a Transportable or Tablespace mode Export or Network job

	
The dump file set on an Import or SQL_FILE job was either incomplete or missing a master table specification

	
INVALID_OPERATION. Unable to restore master table from a dump file set.

	
INTERNAL_ERROR. An inconsistency was detected when the job was started. Additional information may be available through the GET_STATUS procedure.

	
SUCCESS_WITH_INFO. The procedure succeeded, but further information is available through the GET_STATUS procedure.

	
NO_SUCH_JOB. The specified job does not exist.

Usage Notes

	
When this procedure is called to request that the corresponding job be started or restarted, the state of the job is changed from either the Defining or Idling state to the Executing state.

	
If the SET_PARALLEL procedure was not called prior to the START_JOB procedure, the initial level of parallelism used in the job will be 1. If SET_PARALLEL was called prior to the job starting, the degree specified by the last SET_PARALLEL call determines the parallelism for the job. On restarts, the parallelism is determined by the previous parallel setting for the job, unless it is overridden by another SET_PARALLEL call.

	
To restart a stopped job, an ATTACH function must be performed prior to executing the START_JOB procedure.

STOP_JOB Procedure

This procedure terminates a job, but optionally, preserves the state of the job.

Syntax

DBMS_DATAPUMP.STOP_JOB (
 handle IN NUMBER,
 immediate IN NUMBER DEFAULT 0,
 keep_master IN NUMBER DEFAULT NULL,
 delay IN NUMBER DEFAULT 60);

Parameters

Table 46-25 STOP_JOB Procedure Parameters

	Parameter	Description
	
handle

	
The handle of a job. The current session must have previously attached to the handle through a call to either the OPEN or ATTACH function. At the end of the procedure, the user is detached from the handle.

	
immediate

	
If nonzero, the worker processes are aborted immediately. This halts the job quickly, but parts of the job will have to be rerun if the job is ever restarted.

If zero, the worker processes are allowed to complete their current work item (either metadata or table data) before they are terminated. The job is placed in a Stop Pending state while the workers finish their current work.

	
keep_master

	
If nonzero, the master table is retained when the job is stopped. If zero, the master table is dropped when the job is stopped. If the master table is dropped, the job will not be restartable. If the master table is dropped during an export job, the created dump files are deleted.

	
delay

	
The number of seconds to wait until other attached sessions are forcibly detached. The delay allows other sessions attached to the job to be notified that a stop has been performed. The job keeps running until either all clients have detached or the delay has been satisfied. If no delay is specified, then the default delay is 60 seconds. If a shorter delay is used, clients might not be able to retrieve the final messages for the job through the GET_STATUS procedure.

Exceptions

	
INVALID_HANDLE. The specified handle is not attached to a Data Pump job.

	
INVALID STATE. The job is already in the process of being stopped or completed.

	
SUCCESS_WITH_INFO. The procedure succeeded, but further information is available through the GET_STATUS procedure.

	
NO_SUCH_JOB. The specified job does not exist.

Usage Notes

	
This procedure is used to request that the corresponding job stop executing.

	
The termination of a job that is in an Executing state may take several minutes to complete in an orderly fashion.

	
For jobs in the Defining, Idling, or Completing states, this procedure is functionally equivalent to the DETACH procedure.

	
Once a job is stopped, it can be restarted using the ATTACH function and START_JOB procedures, provided the master table and the dump file set are left intact.

	
If the KEEP_MASTER parameter is not specified, and the job is in the Defining state or has a mode of Transportable, the master table is dropped. Otherwise, the master table is retained.

WAIT_FOR_JOB Procedure

This procedure runs a job until it either completes normally or stops for some other reason.

Syntax

DBMS_DATAPUMP.WAIT_FOR_JOB (
 handle IN NUMBER,
 job_state OUT VARCHAR2);

Parameters

Table 46-26 WAIT_FOR_JOB Procedure Parameters

	Parameter	Description
	
handle

	
The handle of the job. The current session must have previously attached to the handle through a call to either the OPEN or ATTACH function. At the end of the procedure, the user is detached from the handle.

	
job_state

	
The state of the job when it has stopped executing. This will be either Stopped or Completed.

Exceptions

	
SUCCESS_WITH_INFO. The procedure succeeded, but further information is available through the GET_STATUS API.

	
INVALID_HANDLE. The job handle is no longer valid.

Usage Notes

This procedure provides the simplest mechanism for waiting for the completion of a Data Pump job. The job should be started before calling WAIT_FOR_JOB. When WAIT_FOR_JOB returns, the job will no longer be executing. If the job completed normally, the final status will be Completed. If the job stopped executing because of a STOP_JOB request or an internal error, the final status will be Stopped.

47 DBMS_DBFS_CONTENT

The DBMS_DBFS_CONTENT package provides an interface comprising a file system-like abstraction backed by one or more Store Providers.

	
See Also:

	
Oracle Database SecureFiles and Large Objects Developer's Guide

This chapter contains the following topics:

	
Using DBMS_DBFS_CONTENT

	
Overview

	
Security Model

	
Constants

	
Exceptions

	
Operational Notes

	
Data Structures

	
Summary of DBMS_DBFS_CONTENT Subprograms

Using DBMS_DBFS_CONTENT

	
Overview

	
Security Model

	
Constants

	
Exceptions

	
Operational Notes

Overview

The DBMS_DBFS_CONTENT package provides an interface comprising a file system-like abstraction backed by one or more Store Providers. The "Content" in the DBFS Content interface refers to a file including metadata, and it can map to a BLOB (and other columns) in a table or be dynamically created by user-written plug-ins in Java or PL/SQL that run inside the database. This latter form is referred to as a "Store Provider."

For applications that already use LOBs as columns in their schema, the DBFS Content interface comes with a default implementation to access the BLOB columns. This enables existing applications to easily add PL/SQL provider implementations and provide access through the DBFS Content interface without rewriting their schema or their business logic. Additionally, applications can read and write content that is stored in other (third party) stores through the standard DBFS Content programming interface.

Examples of providers include:

	
Content applications like Content DB

	
Packaged applications that want to surface data through file

	
Custom applications that want to leverage the file system interface -- for example, an application that stores medical image

The DBS_DBFS_CONTENT package abstracts out the common features of various stores into a simple and minimalist interface used to build portable client applications while insulated from store-specific libraries and implementation.

The content interface aggregates the path namespace of one or more stores into a single unified namespace, using the first component of the path name as a disambiguator, and presents this namespace to client-applications.

This allows clients to access the underlying documents using either a full-absolute path name as a single string:

/store-name/store-specific-path-name

or a store-qualified path name as a string 2-tuple:

["store-name","/store-specific-path-name"]

The interface then takes care of correctly dispatching various operations on path names to the appropriate stores, and integrating the results back into the client-desired namespace.

Store service providers must conform to the Service Provider Interface (SPI) as declared by the package DBMS_DBFS_CONTENT_SPI - the SPI is not a client-side interface and serves as a private contract between the implementation of the content interface and various stores that wish to be pluggable into it.

The content interface defines client-visible behavior (normal and exceptional) of various store operations, while allowing different stores to implement as rich a set of features as they choose - the interface allows stores to self-describe their capabilities and allows intelligent client applications to tune their behavior based on these capabilities (rather than hard-code logic specific to stores identified by name or by implementation).

Security Model

The DBMS_DBFS_CONTENT package runs under AUTHID CURRENT_USER.

Constants

The DBMS_DBFS_CONTENT package uses the constants shown in the following tables:

	
DBMS_DBFS_CONTENT Constants - Path Names

	
DBMS_DBFS_CONTENT Constants - ContentID

	
DBMS_DBFS_CONTENT Constants - Properties

	
DBMS_DBFS_CONTENT Constants - Path Name Types

	
DBMS_DBFS_CONTENT Constants - Store Features

	
DBMS_DBFS_CONTENT Constants - Lock Types

	
DBMS_DBFS_CONTENT Constants - Standard Properties

	
DBMS_DBFS_CONTENT Constants - Optional Properties

	
DBMS_DBFS_CONTENT Constants - Property Access Flags

	
DBMS_DBFS_CONTENT Constants - Operation Codes

Path Name Constants and Types

The following constants are useful for declaring paths and item names. Paths are limited to 1024 characters and item names are limited to 256 characters.

Table 47-1 DBMS_DBFS_CONTENT Constants - Path Names

	Constant	Type	Value	Description
	
NAME_MAX

	
PLS_INTEGER

	
256

	
Maximum length of an absolute path name visible to clients

	
NAME_T

	
VARCHAR2(256)

	
NAME_MAX

	
Portable alias for string that can represent component names

	
PATH_MAX

	
PLS_INTEGER

	
1024

	
Maximum length of any individual component of an absolute path name visible to clients

	
PATH_T

	
VARCHAR2(1024)

	
PATH_MAX

	
Portable alias for string that can represent path names

ContentID Constants

Stores may expose to the user a unique identifier that represents a particular path item in the store. These identifiers are limited to 128 characters.

Table 47-2 DBMS_DBFS_CONTENT Constants - ContentID

	Constant	Type	Value	Description
	
CONTENT_ID_MAX

	
PLS_INTEGER

	
128

	
Maximum length of a store-specific provider-generated contentID that identifies a file-type content item

	
CONTENT_ID_T

	
RAW(128)

	
CONTENT_ID_MAX

	
Portable alias for raw buffers that can represent contentID values

Properties Constants

Every path name in a store is associated with a set of properties. For simplicity and to provide generic basis, each property is identified by a string "name", has a string "value" (which might be NULL if unset or undefined or unsupported by a specific store implementation) and a value "typecode" (a numeric discriminant for the actual type of value held in the "value" string.)

Coercing property values to strings has the advantage of making the various interfaces uniform and compact (and can even simplify implementation of the underlying stores), but has the disadvantage of the potential for information loss during conversions to and from strings.

It is expected that clients and stores use well-defined database conventions for these conversions, and use the typecode field as appropriate.

A typecode is a numeric value representing the true type of a string-coerced property value. Simple scalar types (numbers, dates, timestamps, etc.) can be depended on by clients and must be implemented by stores.

Since standard RDBMS typecodes are positive integers, the DBMS_DBFS_CONTENT interface allows negative integers to represent client-defined types by negative typecodes. These typecodes do not conflict with standard typecodes, are maintained persistently and returned to the client as needed, but need not be interpreted by the DBFS content API or any particular store. Portable client applications should not use user-defined typecodes as a back door way of passing information to specific stores.

Table 47-3 DBMS_DBFS_CONTENT Constants - Properties

	Constant	Type	Value	Description
	
PROPNAME_MAX

	
PLS_INTEGER

	
32

	
Maximum length of a property name

	
PROPNAME_T

	
VARCHAR2(32)

	
PROPNAME_MAX

	
Portable alias for string that can represent property names

	
PROPVAL_MAX

	
PLS_INTEGER

	
1024

	
Maximum length of the string value of a property

	
PROPVAL_T

	
VARCHAR2(1024)

	
PATH_MAX

	
Portable alias for string that can represent property values

Path Name Types

Path items in a store have a item type associated with them. These types represent the kind of entry the item represents in the store.

Table 47-4 DBMS_DBFS_CONTENT Constants - Path Name Types

	Constant	Type	Value	Description
	
TYPE_FILE

	
PLS_INTEGER

	
1

	
A regular file storing content (a logically linear sequence of bytes accessed as a BLOB

	
TYPE_DIRECTORY

	
PLS_INTEGER

	
2

	
A container of other path name types, including file types

	
TYPE_LINK

	
PLS_INTEGER

	
3

	
A symbolic link (that is, an uninterpreted string value associated with a path name). Since symbolic links may represent path names that fall outside the scope of any given store (or even the entire aggregation of stores managed by the DBMS_DBFS_CONTENT interface), or may not even represent path names, clients must be careful in creating symbolic links, and stores must be careful in trying to resolve these links internally.

	
TYPE_REFERENCE

	
PLS_INTEGER

	
4

	
A hard link which is always a valid path name alias to content

Store Features

In order to provide a common programmatic interface to as many different types of stores as possible, the DBFS content API leaves some of the behavior of various operations to individual store providers to define and implement.

However, it is still important to provide client-side programmers with an API that is sufficiently rich and conducive to portable applications.

The DBFS content API achieves this by allowing different store service providers (and different stores) to describe themselves through a "feature set" (a bitmask indicating which features they support and which ones they do not).

Using the feature set, it is possible, albeit tricky, for client applications to compensate for the feature deficiencies of specific stores by implementing additional logic on the client-side, and deferring complex operations to stores capable of supporting them.

Table 47-5 DBMS_DBFS_CONTENT Constants - Store Features

	Constant	Type	Value	Description
	
FEATURE_FOLDERS

	
PLS_INTEGER

	
1

	
Set if the store supports folders (or directories) as part of hierarchical path names

	
FEATURE_FOIAT

	
PLS_INTEGER

	
2

	
Set if implicit folder operations within the store (performed as part of a client-requested operation) runs inside autonomous transactions.In general, the use of autonomous transactions is a compromise between (a) simplicity in the implementation and client-controlled transaction scope for all operations, at the cost of greatly reduced concurrency (FEATURE_FOIAT not set), versus (b) more complex implementation and smaller client-controlled transaction scope, at the benefit of greatly increased concurrency (FEATURE_FOIAT set).

	
FEATURE_NOWAIT

	
PLS_INTEGER

	
4

	
Set if the store allows nowait gets of path elements. The default behavior is to wait for row locks; if nowait gets are implemented, the get operation raises an ORA-54 exception if the path element is already locked by another transaction.

	
FEATURE_ACLS

	
PLS_INTEGER

	
8

	
Set if the store supports Access Control Lists (ACLs) and internal authorization or checking based on these ACLs. ACLs are standard properties but a store may do nothing more than store and retrieve the ACLs without interpreting them in any way.

	
FEATURE_LINKS

	
PLS_INTEGER

	
16

	
Set if the store supports symbolic links, and if certain types of symbolic links (specifically non-absolute path names) can be internally resolved by the store itself

	
FEATURE_LINK_DEREF

	
PLS_INTEGER

	
32

	
Set if the store supports symbolic links, and if certain types of symbolic links (specifically non-absolute path names) can be internally resolved by the store itself

	
FEATURE_REFERENCES

	
PLS_INTEGER

	
64

	
Set if the store supports hard links

	
FEATURE_LOCKING

	
PLS_INTEGER

	
128

	
Set if the store supports user-level locks (read-only, write-only, read-write) that can be applied on various items of the store, and if the store uses these lock settings to control various types of access to the locked items. User-level locks are orthogonal to transaction locks and persist beyond the scope of any specific transaction, session, or connection — this implies that the store itself may not be able to clean up after dangling locks, and client-applications need to perform any garbage collection.

	
FEATURE_LOCK_HIERARCHY

	
PLS_INTEGER

	
256

	
Set if the store allows a user-lock to control access to the entire sub-tree under the locked path name. A simpler locking model would have locking semantics apply only to a specific path name, and depend on the locks placed on its parents or children (unless the requested operation would implicitly need to modify these parents or children).

	
FEATURE_LOCK_CONVERT

	
PLS_INTEGER

	
512

	
Set if the store supports upgrade or downgrade of locks from one mode to another

	
FEATURE_VERSIONING

	
PLS_INTEGER

	
1024

	
Set if the store supports at least a linear versioning and version management. Different versions of the same path name are identified by monotonic version numbers, with a version-nonqualified path name representing the latest version.

	
FEATURE_VERSION_PATH

	
PLS_INTEGER

	
2048

	
Set if the store supports a hierarchical namespace for different versions of a path name

	
FEATURE_SOFT_DELETES

	
PLS_INTEGER

	
4096

	
Set if the store supports a "soft-delete", that is, the ability to delete a path name and make it invisible to normal operations, but retain the ability to restore the path name later (as long as it has not been overwritten by a new create operation). The store also supports purging soft-deleted path names (making them truly deleted), and navigation modes that show soft-deleted items.

	
FEATURE_HASHING

	
PLS_INTEGER

	
8192

	
Set if the store automatically computes and maintains some type of a secure hash of the contents of a path name (typically a TYPE_FILE path).

	
FEATURE_HASH_LOOKUP

	
PLS_INTEGER

	
16384

	
Set if the store allows "content-based addressing", that is, the ability to locate a content item based, not on its path name, but on its content hash.

	
FEATURE_FILTERING

	
PLS_INTEGER

	
32768

	
Set if the store allows clients to pass a filter function (a PL/SQL function conforming to the signature below) that returns a logical boolean indicating if a given store item satisfies a selection predicate. Stores that support filtering may be able to more efficiently perform item listing, directory navigation, and deletions by embedding the filtering logic inside their implementation. If filtering is not supported, clients can retrieve more items than necessary and perform the filtering checks themselves, albeit less efficiently.

A filter predicate is a function with the following signature:

function filterFunction(
 path IN VARCHAR2,
 store_name IN VARCHAR2,
 opcode IN INTEGER,
 item_type IN INTEGER,
 properties IN DBMS_DBFS_CONTENT_PROPERTIES_T,
 content IN BLOB)
 RETURN INTEGER;

Any PL/SQL function conforming to this signature can examine the contents and properties of a store item, and determine if the item satisfies the selection criterion for the current operation. Any nonzero return value results in the DBMS_DBFS_CONTENT interface processing the item as part of the current operation; a return value that is zero or NULL results in the item being skipped from processing.

	
FEATURE_SEARCHING

	
PLS_INTEGER

	
65536

	
Set if the store allows clients to pass a text-search filter query to locate type_file path names based on their content. Stores that support searching may use indexes to accelerate such searches; otherwise, clients need to build their own indexes, or else search a potentially larger set of items to locate the ones of interest for the current search.

	
FEATURE_ASOF

	
PLS_INTEGER

	
131072

	
Set if the store allows clients to use a flashback timestamp in query operations (non-mutating GETPATH Procedures, LIST Function, SEARCH Function).

	
FEATURE_PROVIDER_PROPS

	
PLS_INTEGER

	
262144

	
Set if the store allows per-operation properties (that control the behavior of the store with regard to the current operation, as opposed to properties associated with individual items).

	
FEATURE_SNAPSHOTS

	
PLS_INTEGER

	
524288

	
Set if the store allows the use of named, read-only snapshots of its contents. It is up to the provider to implement snapshots using any suitable means (including creating immediate copies of the content, or using copy-on-write) and managing dependencies between snapshots and its parent content view.

	
FEATURE_CLONES

	
PLS_INTEGER

	
1048576

	
Set if the store allows the use of named, writable clones of its contents. It is up to the provider to implement clones using any suitable means (including creating immediate copies of the content, or using copy-on-write) and managing dependencies between clones and its parent content view.

	
FEATURE_LOCATOR

	
PLS_INTEGER

	
2097152

	
Set if the store allows direct access to file contents through a LOB locator. Stores that internally manipulate the file contents, perhaps by shredding or reassembling them in separate pieces, performing other transformations, and so on, cannot transparently give out a LOB locator to clients. The file contents of these stores should be accessed using the buffer-based interfaces.

	
FEATURE_CONTENT_ID

	
PLS_INTEGER

	
4194304

	
Set if the store allows a "pathless", contentID-based access to files (there is no notion of a directory, link, or reference in this model)

	
FEATURE_LAZY_PATH

	
PLS_INTEGER

	
8388608

	
Set if the store allows a lazy binding of a path name to file content elements that are otherwise identified by a contentID; this feature makes sense only in conjunction with FEATURE_CONTENT_ID

Lock types

Stores that support locking should implement 3 types of locks: LOCK_READ_ONLY, LOCK_WRITE_ONLY, and LOCK_READ_WRITE.

User-locks (of one of these 3 types) can be associated with a user-supplied lock_data. This is not interpreted by the store, but can be used by client applications for their own purposes. For example, the user-data could indicate the time at which the lock was placed, assuming some part of the client application is interested in later using this information to control its actions, such as garbage collect stale locks or explicitly break locks.

In the simplest locking model, a LOCK_READ_ONLY prevents all explicit modifications to a path name (but allows implicit modifications, and changes to parent/child path names). A LOCK_WRITE_ONLY prevents all explicit reads to the path name (but allows implicit reads, and reads to parent/child path names). A LOCK_WREAD_WRITE allows both.

All locks are associated with a "principal" performing the locking operation; stores that support locking are expected to preserve this information, and use it to perform read or write lock checking (see opt_locker).

More complex lock models: multiple read-locks, lock-scoping across path name hierarchies, lock conversions, group-locking, and other strategies, are possible but currently not defined by the content interface.

Table 47-6 DBMS_DBFS_CONTENT Constants - Lock Types

	Constant	Type	Value	Description
	
LOCK_READ_ONLY

	
PLS_INTEGER

	
1

	
Locks as read-only

	
LOCK_WRITE_ONLY

	
PLS_INTEGER

	
2

	
Locks as write-only

	
LOCK_READ_WRITE

	
PLS_INTEGER

	
3

	
Locks as read-write

Standard properties

Standard properties are well-defined, mandatory properties associated with all content path names that all stores should support (in the manner described by the content interface), with some concessions. For example, a read-only store need not implement a modification_time or creation_time; stores created against tables with a fixed-schema may choose reasonable defaults for as many of these properties as needed, and so on.

All standard properties informally use the STD namespace. Clients and stores should avoid using this namespace to define their own properties since this can cause conflicts in future.

The menu of standard properties is expected to be fairly stable over time.

Table 47-7 DBMS_DBFS_CONTENT Constants - Standard Properties

	Constant	Type	Value	Description
	
STD_ACCESS_TIME

	
VARCHAR2(32)

	
'std:access_time'

	
TYPECODE_TIMESTAMP in UTC: The time of last access of a path name's contents

	
STD_ACL

	
VARCHAR2(32)

	
'std:acl'

	
TYPECODE_VARCHAR2: The access control list (in standard ACL syntax) associated with the path name

	
STD_CANONICAL_PATH

	
VARCHAR2(32)

	
'std:canonical_path'

	
TYPECODE_VARCHAR2: The canonical store-specific path name of an item, suitably cleaned up (leading or trailing "/" collapsed or trimmed, and so on)

	
STD_CHANGE_TIME

	
VARCHAR2(32)

	
'std:change_time'

	
TYPECODE_TIMESTAMP in UTC: The time of last change to the metadata of a path name

	
STD_CHILDREN

	
VARCHAR2(32)

	
'std:children'

	
TYPECODE_NUMBER: The number of child directories/folders a directory/folder path has (this property should be available in providers that support the FEATURE_FOLDERS feature)

	
STD_CONTENT_TYPE

	
VARCHAR2(32)

	
'std:content_type'

	
TYPECODE_NUMBER: The number of child directories/folders a directory/folder path has (this property should be available in providers that support the FEATURE_FOLDERS feature)

	
STD_CREATION_TIME

	
VARCHAR2(32)

	
'std:creation_time'

	
TYPECODE_TIMESTAMP in UTC: The time at which the item was created (once set, this value never changes for the lifetime of the path name)

	
STD_DELETED

	
VARCHAR2(32)

	
'std:deleted'

	
TYPECODE_NUMBER as a BOOLEAN: Set to a nonzero number if the path name has been soft-deleted but not yet purged.

	
STD_GUID

	
VARCHAR2(32)

	
'std:guid'

	
TYPECODE_NUMBER: A store-specific unique identifier for a path name. Clients must not depend on the GUID being unique across different stores, but a given (store-name, store-specific-path name) has a stable and unique GUID for its lifetime.

	
STD_LENGTH

	
VARCHAR2(32)

	
'std:length'

	
TYPECODE_NUMBER: The length of the content (BLOB) of a TYPE_FILE/TYPE_REFERENCE path, or the length of the referent of a TYPE_LINK symbolic link. Directories do not have a well-defined length and stores are free to set this property to zero, NULL, or any other value.

	
STD_MODIFICATION_TIME

	
VARCHAR2(32)

	
'std:modification_time'

	
TYPECODE_TIMESTAMP in UTC: The time of last change to the data associated with a path name. Change to the content of a TYPE_FILE/TYPE_REFERENCE path, the referent of the TYPE_LINK path, and addition or deletion of immediate children in a TYPE_DIRECTORY path, all constitute data changes.

	
STD_OWNER

	
VARCHAR2(32)

	
'std:owner'

	
TYPECODE_VARCHAR2: A client-supplied (or implicit) owner name for the path name. The owner name may be used (along with the current "principal") for access checks by stores that support ACLs, locking, or both.

	
STD_PARENT_GUID

	
VARCHAR2(32)

	
'std:parent_guid'

	
TYPECODE_NUMBER: A store-specific unique identifier for the parent of a path name. Clients must not depend on the GUID being unique across different stores, but a given (store-name, store-specific-path name) has a stable and unique GUID for its lifetime.

STD_PARENT_GUID(path name) == STD_GUID(parent(path name))

	
STD_REFERENT

	
VARCHAR2(32)

	
'std:referent'

	
TYPECODE_VARCHAR2: The content of the symbolic link of a TYPE_LINK path; NULL otherwise. As mentioned, the STD_REFERENT can be an arbitrary string and must not necessarily be interpreted as path name by clients (or such interpretation should be done with great care).

Optional Properties

Optional properties are well-defined but non-mandatory properties associated with all content path names that all stores are free to support (but only in the manner described by the DBFS content API). Clients should be prepared to deal with stores that support none of the optional properties.

All optional properties informally use the "opt:" namespace. Clients and stores should avoid using this namespace to define their own properties since this can cause conflicts in the future.

The menu of optional properties is expected to be expand over time.

Table 47-8 DBMS_DBFS_CONTENT Constants - Optional Properties

	Constant	Type	Value	Description
	
OPT_HASH_TYPE

	
VARCHAR2(32)

	
'opt:hash_type'

	
TYPECODE_NUMBER: The number of (compatible) locks placed on a path name. If different principals are allowed to place compatible (read) locks on a path, the opt_locker must specify all lockers (with repeats so that lock counts can be correctly maintained).

	
OPT_HASH_VALUE

	
VARCHAR2(32)

	
'opt:hash_value'

	
TYPECODE_NUMBER: The hash value of type OPT_HASH_TYPE describing the content of the path name.

	
OPT_LOCK_COUNT

	
VARCHAR2(32)

	
'opt:lock_count'

	
TYPECODE_NUMBER: The number of (compatible) locks placed on a path name. If different principals are allowed to place compatible (read) locks on a path, the opt_locker must specify all lockers (with repeats so that lock counts can be correctly maintained).

	
OPT_LOCK_DATA

	
VARCHAR2(32)

	
'opt:lock_data'

	
TYPECODE_NUMBER: The client-supplied user-data associated with a user-lock, uninterpreted by the store.

	
OPT_LOCKER

	
VARCHAR2(32)

	
'opt:locker'

	
TYPECODE_NUMBER: One or more implicit or client-specified principals that applied a user-lock on a path name.

	
OPT_LOCK_STATUS

	
VARCHAR2(32)

	
'opt:lock_status'

	
TYPECODE_NUMBER: One of the LOCK_READ_ONLY, LOCK_WRITE_ONLY, LOCK_READ_WRITE values describing the type of lock currently applied on a path name.

	
OPT_VERSION

	
VARCHAR2(32)

	
'opt:version'

	
TYPECODE_NUMBER: A sequence number for linear versioning of a path name.

	
OPT_VERSION_PATH

	
VARCHAR2(32)

	
'opt:version_path'

	
TYPECODE_NUMBER: A version-path name for hierarchical versioning of a path name.

	
OPT_CONTENT_ID

	
VARCHAR2(32)

	
'opt:content_id'

	
TYPECODE_NUMBER: A provider-generated store-specific unique contentID in the form of a string for a file content element (that may optionally not be associated with a path; see FEATURE_CONTENT_ID and FEATURE_LAZY_PATH).

Property Access Flags

Content interface methods to get or set properties can use combinations of property access flags to fetch properties from different name spaces in a single interface call.

Table 47-9 DBMS_DBFS_CONTENT Constants - Property Access Flags

	Constant	Type	Value	Description
	
PROP_NONE

	
PLS_INTEGER

	
0

	
None: used when the client is not interested in any properties, and is invoking the content access method for other reasons (path name existence or lockability validation, data access, and so on)

	
PROP_STD

	
PLS_INTEGER

	
1

	
Mandatory: used when the client is interested in the standard properties; all standard properties are retrieved if this flag is specified.

	
PROP_OPT

	
PLS_INTEGER

	
2

	
Optional: used when the client is interested in the optional properties; all optional properties are retrieved if this flag is specified.

	
PROP_USR

	
PLS_INTEGER

	
3

	
User-defined: used when the client is interested in the user-defined properties; all user-defined properties are retrieved if this flag is specified.

	
PROP_ALL

	
PLS_INTEGER

	
PROP_STD + PROP_OPT + PROP_USR;

	
All: an alias for the combination of all standard, optional, and user-defined properties

	
PROP_DATA

	
PLS_INTEGER

	
8

	
Content: used when the client is interested only in data access, and does not care about properties

	
PROP_SPC

	
PLS_INTEGER

	
16

	
Specific: used when the client is interested in a mix-and-match of different subsets of various property name spaces; the names of the specific properties to fetch are passed into the content interface method call as arguments, and only these property values are fetched and returned to the client. This is useful in cases where there are a very large number of properties potentially accessible, but the client is interested in only a small number of them (and knows the names of these "interesting" properties beforehand).

PROP_SPC is applicable only to the various GETPATH operations. Other operations that specify properties ignore PROP_SPC specifications.

Operation Codes

All of the operations in the DBFS content API are represented as abstract opcodes.

Clients can use these opcodes to directly and explicitly by invoking the CHECKACCESS Function to verify if a particular operation can be invoked by a given principal on a particular path name.

Table 47-10 DBMS_DBFS_CONTENT Constants - Operation Codes

	Constant	Type	Value	Description
	
OP_CREATE

	
PLS_INTEGER

	
1

	
Create a path item

	
OP_CREATEFILE

	
PLS_INTEGER

	
OP_CREATE

	
Create a file

	
OP_CREATELINK

	
PLS_INTEGER

	
OP_CREATE

	
Create a soft link

	
OP_CREATEREFERENCE

	
PLS_INTEGER

	
OP_CREATE

	
Create a reference (hard link)

	
OP_DELETE

	
PLS_INTEGER

	
2

	
Soft-deletion, purge, and restore operations are all represented by OP_DELETE

	
OP_DELETEFILE

	
PLS_INTEGER

	
OP_DELETE

	
Delete a file

	
OP_DELETEDIRECTORY

	
PLS_INTEGER

	
OP_DELETE

	
Delete a directory

	
OP_RESTORE

	
PLS_INTEGER

	
OP_DELETE

	
Restore a soft-deleted path item

	
OP_PURGE

	
PLS_INTEGER

	
OP_DELETE

	
Purge a soft-deleted path item

	
OP_READ

	
PLS_INTEGER

	
3

	
Read from a path item

	
OP_GET

	
PLS_INTEGER

	
OP_READ

	
Get a path item for either read or update operations

	
OP_WRITE

	
PLS_INTEGER

	
4

	
Write a path item

	
OP_PUT

	
PLS_INTEGER

	
OP_WRITE

	
Put (write) to a path item

	
OP_RENAME

	
PLS_INTEGER

	
5

	
Rename a path item

	
OP_RENAMEFROM

	
PLS_INTEGER

	
OP_RENAME

	
Operations performed on the source of a rename

	
OP_RENAMETO

	
PLS_INTEGER

	
OP_RENAME

	
Operations performed on the destination of a rename

	
OP_SETPATH

	
PLS_INTEGER

	
OP_RENAME

	
Set a path item name

	
OP_LIST

	
PLS_INTEGER

	
6

	
Perform a path listing

	
OP_SEARCH

	
PLS_INTEGER

	
7

	
Perform a search

	
OP_LOCK

	
PLS_INTEGER

	
8

	
Lock a path item

	
OP_UNLOCK

	
PLS_INTEGER

	
9

	
Unlock a path item

	
OP_ACL

	
PLS_INTEGER

	
10

	
An implicit operation invoked during an OP_CREATE or OP_PUT that specifies a STD_ACL property; the operation tests to see if the principal is allowed to set or change the ACL of a store item

	
OP_STORE

	
PLS_INTEGER

	
11

	
A catch-all category for miscellaneous store operations that do not fall under any of the other operational interfaces

Exceptions

DBFS content API operations can raise any one of the following top-level exceptions.

Clients can program against these specific exceptions in their error handlers without worrying about the specific store implementations of the underlying error signally code.

Store service providers, for their part, should do their best to trap or wrap any internal exceptions into one of the following exception types, as appropriate

Table 47-11 DBMS_DBFS_CONTENT Exceptions

	Exception	Code	Description
	
PATH_EXISTS

	
64000

	
A specified path name already exists

	
INVALID_PARENT

	
64001

	
Parent of a specified path name does not exist

	
INVALID_PATH

	
64002

	
Specified path name does not exist, or is not valid

	
UNSUPPORTED_OPERATION

	
64003

	
An operation unsupported by a store was invoked

	
INVALID_ARGUMENTS

	
64004

	
An operation was invoked with invalid arguments

	
INVALID_ACCESS

	
64005

	
Access control checks failed for the current operation

	
LOCK_CONFLICT

	
64006

	
Current operation failed lock conflict check

	
INVALID_STORE

	
64007

	
An invalid store name was specified

	
INVALID_MOUNT

	
64008

	
An invalid mount point was specified

	
INVALID_PROVIDER

	
64009

	
An invalid provider-package was specified

	
READONLY_PATH

	
64010

	
A mutating operation was invoked on a read-only mount or store

Operational Notes

	
Implementation

	
Path Names

	
Creation Operations

	
Deletion Operations

	
Get (Retrieve) and Put (Insert) Operations

	
Rename and Move Operations

	
Directory Navigation and Search

	
Locking Operations

	
Access Check Operation

Implementation

Since the interconnection of the DBMS_DBFS_CONTENT interface and the provider SPI is a 1-to-many pluggable architecture, the interface uses dynamic SQL to invoke methods in the provider SPI, this can lead to runtime errors.

There are no explicit INIT or FINI methods to indicate when the DBMS_DBFS_CONTENT interface plugs or unplugs a particular provider SPI. Provider SPIs must be willing to auto-initialize themselves at any SPI entry-point.

All operations performed by a service provider are "stateless" in that they are complete operations unto themselves. If state is necessary to be maintained for some reason, then the state must be maintained in data structures such as auxiliary tables that can be queried as needed.

Path Names

All path names used in the provider SPI are store-qualified in pair form (store_name, pathname) where the path name is rooted within the store namespace.

Stores and their providers that support contentID-based access (see FEATURE_CONTENT_ID in DBMS_DBFS_CONTENT Constants - Store Features) also support a form of addressing that is not based on path names. Content items are identified by an explicit store name, a NULL path name, and possibly a contentID specified as a parameter or by way of the OPT_CONTENT_ID (see DBMS_DBFS_CONTENT Constants - Optional Properties) property.

Not all operations are supported with contentID-based access, and applications should depend only on the simplest create or delete functionality being available.

Creation Operations

The provider SPI must allow the DBFS content API to create directory, file, link, and reference elements subject to store feature support.

All of the creation subprograms require a valid path name, but note the special exemption for contentID-based access. Creation subprograms can optionally specify properties to be associated with the path name as it is created. It is also possible for clients to returns item properties after the creation completes so that automatically generated properties, such as STD_CREATION_TIME (see DBMS_DBFS_CONTENT Constants - Standard Properties) are immediately available to clients. The exact set of properties fetched back is controlled by the various PROP_XXX bitmasks in the prop_flags parameter.

Links and references require an additional path name to associate with the primary path name.

File path names can optionally specify a BLOB value to use to initially populate the underlying file content (the provided BLOB may be any valid LOB). On creation, the underlying LOB is returned to the client, provided that PROP_DATA is specified in the prop_flags parameter.

Nondirectory path names require that their parent directory be created first. Directory path names themselves can be recursively created with the path name hierarchy leading up to a directory created in one call.

Attempts to create paths that already exist is an error; the sole exception is path names that are "soft-deleted" (as discussed in the context of Deletion Operations) In these cases, the soft-deleted item is implicitly purged, and the new item creation is attempted.

Stores and their providers that support contentID-based access accept an explicit store name and a NULL path to create a new content element. The contentID generated for this element is available by means of the OPT_CONTENT_ID property (see DBMS_DBFS_CONTENT Constants - Optional Properties), contentID-based creation being automatically implied by PROP_OPT property in the prop_flags parameter).

The newly created element may also have an internally generated path name if FEATURE_LAZY_PATH property is not supported (see DBMS_DBFS_CONTENT Constants - Store Features) and this path is available by way of the STD_CANONICAL_PATH property (see DBMS_DBFS_CONTENT Constants - Standard Properties).

Only file elements are candidates for contentID-based access.

Deletion Operations

The provider SPI must allow the DBFS content API to delete directory, file, link, and reference elements (subject to store feature support).

By default, the deletions are permanent, removing the successfully deleted items on transaction commit, but stores may also support "soft-delete" features. If requested by the client, soft-deleted items are retained by the store, although they are not typically visible in normal listings or searches.

Soft-deleted items can be restored, or explicitly purged.

Directory path names can be recursively deleted, with the path name hierarchy below a directory deleted in one call. Non-recursive deletions can be performed only on empty directories. Recursive soft-deletions apply the soft-delete to all of the items being deleted.

Individual path names, as well as all soft-deleted path names under a directory, can be restored or purged by means of the various restore and purge subprograms.

Providers that support filtering can use the provider filter to identify subsets of items to delete. This makes most sense for bulk operations such as the DELETEDIRECTORY Procedure, PROPVARCHAR2 Function, and RESTOREALL Procedure, but all of the deletion-related operations accept a filter argument.

Stores and their providers that support contentID-based access can also allow file items to be deleted by specifying their contentID.

Get (Retrieve) and Put (Insert) Operations

Existing path items can be accessed (for query or for update) and modified using simple get and put subprograms. All path names allow their metadata (properties) to be read and modified. On completion of the call, the client can request specific properties to be fetched by means of the prop_flags parameter.

File path names allow their data (content) to be read and modified. On completion of the call, the client can use the PROP_DATA bitmasks in the prop_flags parameter to request a new BLOB locator to continue data access.

Files can also be read or written without using BLOB locators by explicitly specifying logical offsets, buffer amounts, and a suitably sized buffer.

Update accesses must specify the forUpdate flag. Access to link path names can be implicitly and internally de-referenced by stores (subject to feature support) if the deref flag is specified, however, this may have undetermined outcomes since symbolic links are not always resolvable.

The read methods, such as the GETPATH Procedures where forUpdate is specified as 0, also accepts a valid asof timestamp in the ctx parameter that can be used by stores to implement "as of" style flashback queries. Mutating versions of the GETPATH Procedures and the PUTPATH Procedures methods do not support "as of" modes of operation.

The GETPATHNOWAIT Procedures implies that the operation is for an update, and, if implemented (see FEATURE_NOWAIT in DBMS_DBFS_CONTENT Constants - Store Features), this allows providers to return an exception (ORA-00054) rather than wait for row locks.

Rename and Move Operations

Path names can be renamed or moved, possibly across directory hierarchies and mount-points, but within the same store.

Nondirectory path names previously accessible by way of specifying the oldPath parameter are renamed as a single item subsequently accessible by specifying newPath, assuming that newPath does not already exist.

If newPath exists and is not a directory, the action of renaming implicitly deletes the existing item before renaming oldPath. If the newPath exists and is a directory, oldPath is moved into the target directory.

Directory path names previously accessible by way of oldPath are renamed by moving the directory and all of its children to newPath (if it does not already exist) or as children of newPath (if it exists and is a directory).

Stores and their providers that support contentID-based access and lazy path name binding also support the SETPATH Procedures that associates an existing contentID with a new "path".

Directory Navigation and Search

The DBMS_DBFS_CONTENT interface can list or search the contents of directory path names, optionally operating recursively into sub-directories, optionally seeing soft-deleted items, optionally using flashback "as of" a provided timestamp, and optionally filtering items in or out within the store based on list or search predicates.

Locking Operations

Clients of the DBMS_DBFS_CONTENT interface can apply user-level locks to any valid path name (subject to store feature support), associate the lock with user-data, and subsequently unlock these path names.

The status of locked items is available using various optional properties (note the previous discussion regarding opt_lock).

It is the responsibility of the store (assuming it supports user-defined lock checking) to ensure that lock and unlock operations are performed in a consistent manner.

Access Check Operation

This operation ascertains if a given path name (store_name, path, pathtype) can be manipulated by operation (see the various DBMS_DBFS_CONTENT.OP_XXX opcodes in DBMS_DBFS_CONTENT Constants - Optional Properties) by the user acting on the store utilizing the principal parameter. This is a convenience function for the DBMS_DBFS_CONTENT interface; a store that supports access control still internally performs these checks to guarantee security.

Data Structures

The DBMS_DBFS_CONTENT package defines RECORD types and TABLE types.

RECORD Types

	
FEATURE_T Record Type

	
MOUNT_T Record Type

	
PATH_ITEM_T Record Type

	
PROP_ITEM_T Record Type

	
PROPERTY_T Record Type

	
STORE_T Record Type

TABLE Types

	
FEATURES_T Table Type

	
MOUNTS_T Table Type

	
PATH_ITEMS_T Table Type

	
PROP_ITEMS_T Table Type

	
PROPERTIES_T Table Type

	
STORES_T Table Type

Usage Notes

There is an approximate correspondence between DBMS_DBFS_CONTENT_PROPERTY_T and PROPERTY_T — the former is a SQL object type that describes the full property tuple, while the latter is a PL/SQL record type that describes only the property value component.

Likewise, there is an approximate correspondence between DBMS_DBFS_CONTENT_PROPERTIES_T and PROPERTIES_T — the former is a SQL nested table type, while the latter is a PL/SQL hash table type.

Dynamic SQL calling conventions force the use of SQL types, but PL/SQL code may be implemented more conveniently in terms of the hash-table types.

The DBMS_DBFS_CONTENT interface provides convenient utility functions to convert between DBMS_DBFS_CONTENT_PROPERTIES_T and PROPERTIES_T (see propertiesT2H and propertiesH2T).

Clients can query the DBMS_DBFS_CONTENT interface for the list of available stores, determine which store is to handle access to a given path name, and determine the feature set for the store.

FEATURE_T Record Type

This type describes a store mount point and its properties.

Syntax

TYPE feature_t IS RECORD (
 feature_name VARCHAR2(32),
 feature_mask INTEGER,
 feature_state VARCHAR2(3));

Fields

Table 47-12 MOUNT_T Fields

	Field	Description
	
feature_name

	
Name of feature

	
feature_mask

	
Value used to mask off all other bits other than this feature in the feature value

	
feature_state

	
'YES' or 'NO' depending on whether the feature is supported on this store

MOUNT_T Record Type

This type describes a store mount point and its properties.

Syntax

TYPE mount_t IS RECORD (
 store_name VARCHAR2(32),
 store_id NUMBER,
 provider_name VARCHAR2(32),
 provider_pkg VARCHAR2(32),
 provider_id NUMBER,
 provider_version VARCHAR2(32),
 store_features INTEGER,
 store_guid NUMBER,
 store_mount NAME_T,
 mount_properties DBMS_DBFS_CONTENT_PROPERTIES_T);

Fields

Table 47-13 MOUNT_T Fields

	Field	Description
	
store_name

	
Name of store

	
store_id

	
ID of store

	
provider_name

	
Name of the content store

	
provider_pkg

	
PL/SQL package name for the content store

	
provider_id

	
Unique identifier for the content store

	
provider_version

	
Version number for the content store

	
respos_features

	
Features supported by this content store

	
store_guid

	
Unique ID for this instance of the store

	
store_mount

	
Location at which this store instance is mounted

	
mount_properties

	
Properties for this mount point (see DBMS_DBFS_CONTENT_PROPERTIES_T Table Type)

PATH_ITEM_T Record Type

A PATH_ITEM_T is a tuple describing a (store, mount) qualified path in a store, with all standard and optional properties associated with it.

Syntax

TYPE path_item_t IS RECORD (
 store NAME_T,
 mount NAME_T,
 pathname PATH_T,
 pathtype VARCHAR2(32),
 filedata BLOB,
 std_access_time TIMESTAMP,
 std_acl VARCHAR2(1024),
 std_change_time TIMESTAMP,
 std_children NUMBER,
 std_content_type VARCHAR2(1024),
 std_creation_time TIMESTAMP,
 std_deleted INTEGER,
 std_guid INTEGER,
 std_modification_time TIMESTAMP,
 std_owner VARCHAR2(32),
 std_parent_guid INTEGER,
 std_referent VARCHAR2(1024),
 opt_hash_type VARCHAR2(32),
 opt_hash_value VARCHAR2(128),
 opt_lock_count INTEGER,
 opt_lock_data VARCHAR2(128),
 opt_locker VARCHAR2(128),
 opt_lock_status INTEGER,
 opt_version INTEGER,
 opt_version_path PATH_T,
 opt_content_id CONTENT_ID_T);

Fields

Table 47-14 PATH_ITEM_T Fields

	Field	Description
	
store

	
Name of store

	
mount

	
Location at which instance of store is mounted

	
pathname

	
Name of path to item

	
pathtype

	
Type of object path (see DBMS_DBFS_CONTENT Constants - Path Name Types)

	
filedata

	
BLOB locator that can be used to access data in the path item

	
std_access_time

	
Time of last access of a pathname's contents

	
std_acl

	
Access Control List (in standard ACL syntax)

	
std_change_time

	
Time of last change to the metadata of a path name

	
std_children

	
Number of child directories or folders a directory or folder path (this property should be available in providers thatsupport the feature_folders feature).

	
std_content_type

	
One or more client-supplied mime-types (in standard RFC syntax) describing the path name which is typically of type_file. The content type s not necessarily interpreted by the store.

	
std_creation_time

	
Time at which the item was created. Once set, this value remains the same for the lifetime of the path name.

	
std_deleted

	
Set to a nonzero number if the path name has been soft-deleted but not yet purged (see DBMS_DBFS_CONTENT Constants - Store Features)

	
std_guid

	
Store-specific unique identifier for a path name. Clients must not depend on the GUID being unique across different stores, but a given store-name, store-specific-pathname has a stable and unique GUID for its lifetime.

	
std_modification_time

	
Time of last change to the data associated with a path name. Changes to the content of a type_file or type_reference path, the referent of the type_link path, and addition or deletion of immediate children in a type_directory path, all constitute data changes.

	
std_owner

	
Client-supplied (or implicit) owner name for the path name

	
std_parent_guid

	
Store-specific unique identifier for the parent of a path name. Clients must not depend on the GUID being unique across different stores, but a given store-name, store-specific-pathname has a stable and unique GUID for its lifetime.

std_parent_guid(pathname) == std_guid(parent(pathname))

	
std_referent

	
Content of the symbolic link of a type_link path, otherwise NULL. As mentioned before, the std_referent can be an arbitrary string and must not necessarily be interpreted as pathname by clients (or such interpretation should be done with great care).

	
opt_hash_type

	
Type of hash provided in the opt_hash_value property (see DBMS_CRYPTO for possible options)

	
opt_hash_value

	
Hash value of type opt_hash_type describing the content of the path name

	
opt_lock_count

	
Number of compatible locks placed on a path name. If different principals are allowed to place compatible (read) locks on a path, the opt_locker must specify all lockers with repeats so that lock counts can be correctly maintained.

	
opt_lock_data

	
Client-supplied user-data associated with a user-lock, uninterpreted by the store

	
opt_locker

	
One or more implicit or client-specified principals that applied a user-lock on a path name

	
opt_lock_status

	
One of the lock_read_only, lock_write_only, lock_read_write values describing the type of lock currently applied on a path name

	
opt_version

	
Sequence number for linear versioning of a path name

	
opt_version_path

	
Version path name for hierarchical versioning of a path name

	
opt_content_id

	
Stringified provider-generated store-specific unique contentID for a file element (that may optionally not be associated with a path (see FEATURE_CONTENT_ID and FEATURE_LAZY_PATH in DBMS_DBFS_CONTENT Constants - Store Features)

PROP_ITEM_T Record Type

A PROP_ITEM_T is a tuple describing a (store, mount) qualified path in a store, with all user-defined properties associated with it, expanded out into individual (name, value, type) tuples.

Syntax

TYPE prop_item_t IS RECORD (
 store NAME_T,
 mount NAME_T,
 pathname PATH_T,
 property_name PROPNAME_T,
 property_value PROPVAL_T,
 property_type INTEGER);

Fields

Table 47-15 PROP_ITEM_T Fields

	Field	Description
	
store

	
Name of store

	
mount

	
Location at which instance of store is mounted

	
pathname

	
Name of path to item

	
property_name

	
Name of the property

	
property_value

	
Value of the property

	
property_type

	
PL/SQL typecode for the property value

PROPERTY_T Record Type

This type describes a single (value, typecode) property value tuple; the property name is implied (see PROPERTIES_T Table Type).

Syntax

TYPE property_t IS RECORD (
 propvalue PROPVAL_T,
 typecode INTEGER);

Fields

Table 47-16 PROPERTY_T Fields

	Field	Description
	
propvalue

	
Value of property

	
typecode

	
Typecode

STORE_T Record Type

This type describes a store registered with and managed by the DBMS_DBFS_CONTENT interface.

Syntax

TYPE store_t IS RECORD (
 store_name VARCHAR2(32),
 store_id NUMBER,
 provider_name VARCHAR2(32),
 provider_pkg VARCHAR2(32),
 provider_id NUMBER,
 provider_version VARCHAR2(32),
 store_features INTEGER,
 store_guid NUMBER);

Fields

Table 47-17 STORET_T Fields

	Field	Description
	
store_name

	
Name of store

	
store_name

	
ID of store

	
provider_name

	
Name of the content store

	
provider_pkg

	
PL/SQL package name for the content store

	
provider_id

	
Unique identifier for the content store

	
provider_version

	
Version number for the content store

	
respos_features

	
Features supported by this content store

	
store_guid

	
Unique ID for this instance of the store

FEATURES_T Table Type

A table type of FEATURE_T Record Type.

Syntax

TYPE features_t IS TABLE OF feature_t;

MOUNTS_T Table Type

A table type of MOUNT_T Record Type.

Syntax

TYPE mounts_t IS TABLE OF mount_t;

PATH_ITEMS_T Table Type

A table type of PATH_ITEM_T Record Type

Syntax

TYPE path_items_t IS TABLE OF path_item_t;

PROP_ITEMS_T Table Type

A table type of PATH_ITEM_T Record Type.

Syntax

TYPE prop_items_t IS TABLE OF prop_item_t;

PROPERTIES_T Table Type

This is a name-indexed hash table of property tuples. The implicit hash-table association between the index and the value allows the client to build up the full DBMS_DBFS_CONTENT_PROPERTY_T tuples for a PROPERTIES_T.

Syntax

TYPE properties_t IS TABLE OF property_t INDEX BY propname_t;

STORES_T Table Type

This type describes a store registered with and managed by the DBMS_DBFS_CONTENT interface.

Syntax

TYPE stores_t IS TABLE OF store_t;

Summary of DBMS_DBFS_CONTENT Subprograms

Table 47-18 DBMS_DBFS_CONTENT Package Subprograms

	Subprogram	Description
	
CHECKACCESS Function

	
Reports if the user (principal) can perform the specified operation on the given path

	
CHECKSPI Functions and Procedures

	
Checks if a user-provided package implements all of the DBMS_DBFS_CONTENT_SPI subprograms with the proper signatures, and reports on the conformance.

	
CREATEDIRECTORY Procedures

	
Creates a directory

	
CREATEFILE Procedures

	
Creates a file

	
CREATELINK Procedures

	
Creates a new reference to the source file system element

	
CREATEREFERENCE Procedures

	
Creates a physical link to an already existing file system element

	
DECODEFEATURES Function

	
Given a feature bit set integer value, returns a FEATURES_T table of the feature bits as FEATURE_T records

	
DELETECONTENT Procedure

	
Deletes the file specified by the given contentID

	
DELETEDIRECTORY Procedure

	
Deletes a directory

	
DELETEFILE Procedure

	
Deletes a file

	
FEATURENAME Function

	
Given a feature bit, returns a VARCHAR2 of that feature's name

	
FLUSHSTATS Function

	
Flushes DBMS_DBFS_CONTENT statistics to disk

	
GETDEFAULTACL Procedure

	
Returns the ACL parameter of the default context

	
GETDEFAULTASOF Procedure

	
Returns the asof parameter of the default context

	
GETTDEFAULTCONTEXT Procedure

	
Returns the default context

	
GETDEFAULTOWNER Procedure

	
Returns the owner parameter of the default context

	
GETDEFAULTPRINCIPAL Procedure

	
Returns the principal parameter of the default context

	
GETFEATURESBYMOUNT Function

	
Returns features of a store by mount point

	
GETFEATURESBYNAME Function

	
Returns features of a store by store name

	
GETFEATURESBYPATH Function

	
Returns features of a store by path

	
GETPATHBYMOUNTID Function

	
Returns the full absolute path name

	
GETPATH Procedures

	
Returns existing path items (such as files and directories)

	
GETPATHBYSTOREID Function

	
If the underlying GUID is found in the underlying store, returns the store-qualified path name

	
GETPATHNOWAIT Procedures

	
Implies that the operation is for an update, and, if implemented, allows providers to return an exception (ORA-00054) rather than wait for row locks.

	
GETSTOREBYMOUNT Function

	
Returns a store by way of its mount point

	
GETSTOREBYNAME Function

	
Returns a store by way of its name

	
GETSTOREBYPATH Function

	
Returns a store by way of its path

	
GETSTATS Procedure

	
Returns information about DBMS_DBFS_CONTENT statistics collection

	
GETTRACE Function

	
Returns whether or not DBMS_DBFS_CONTENT tracing is turned on

	
GETVERSION Function

	
Returns the version of the DBMS_DBFS_CONTENT interface in a standardized format associated with a store

	
LIST Function

	
Lists the path items in the specified path meeting the specified filter and other criteria

	
LISTALLCONTENT Function

	
Lists all path items in all mounts

	
LISTALLPROPERTIES Function

	
Returns a table of all properties for all path items in all mounts

	
LISTMOUNTS Function

	
Lists all available mount points, their backing stores, and the store features

	
LISTSTORES Function

	
Lists all available stores and their features

	
LOCKPATH Procedure

	
Applies user-level locks to the given valid path name

	
MOUNTSTORE Procedure

	
Mounts a previously registered store and binds it to the mount point

	
NORMALIZEPATH Functions

	
Converts a store-specific or full-absolute path name into normalized form

	
PROPANY Functions

	
Provides constructors that take one of a variety of types and return a PROPERTY_T

	
PROPERTIESH2T Function

	
Converts a PROPERTY_T hash to a DBMS_DBFS_CONTENT_PROPERTIES_T table

	
PROPERTIEST2H Function

	
Converts a DBMS_DBFS_CONTENT_PROPERTIES_T table to a PROPERTY_T hash

	
PROPNUMBER Function

	
Is a constructor that takes a NUMBER and returns a PROPERTY_T

	
PROPRAW Function

	
Is a constructor that takes a RAW and returns a PROPERTY_T

	
PROPTIMESTAMP Function

	
Is a constructor that takes a TIMESTAMP and returns a PROPERTY_T

	
PROPVARCHAR2 Function

	
Is a constructor that takes a VARCAHR2 and returns a PROPERTY_T

	
PURGEALL Procedure

	
Purges all soft-deleted entries matching the path and optional filter criteria

	
PURGEPATH Procedure

	
Purges any soft-deleted versions of the given path item

	
PUTPATH Procedures

	
Creates a new path item

	
REGISTERSTORE Procedure

	
Registers a new store

	
RENAMEPATH Procedures

	
Renames or moves a path

	
RESTOREALL Procedure

	
Restores all soft-deleted path items meeting the path and filter criteria

	
RESTOREPATH Procedure

	
Restores all soft-deleted path items that match the given path and filter criteria

	
SEARCH Function

	
Searches for path items matching the given path and filter criteria

	
SETDEFAULTACL Procedure

	
Sets the ACL parameter of the default context

	
SETDEFAULTASOF Procedure

	
Sets the "as of" parameter of the default context

	
SETDEFAULTCONTEXT Procedure

	
Sets the default context

	
SETDEFAULTOWNER Procedure

	
Sets the "owner" parameter of the default context

	
SETDEFAULTPRINCIPAL Procedure

	
Sets the "principal" parameter of the default context

	
SETPATH Procedures

	
Assigns a path name to a path item represented by contentID

	
SETSTATS Procedure

	
Enables and disables statistics collection

	
SETTRACE Procedure

	
Sets DBMS_DBFS_CONTENT tracing on or off

	
SPACEUSAGE Procedure

	
Queries file system space usage statistics

	
TRACE Procedure

	
Returns a CLOB that contains the evaluation results

	
TRACEENABLED Function

	
Determines if the current trace "severity" set by the SETTRACE Procedure is at least as high as the given trace level

	
UNLOCKPATH Procedure

	
Unlocks path items that were previously locked with the LOCKPATH Procedure

	
UNMOUNTSTORE Procedure

	
Unmounts a registered store

	
UNREGISTERSTORE Procedure

	
Unregisters a store

CHECKACCESS Function

This function reports if the user (principal) can perform the specified operation on the given path. This enables verifying the validity of an operation without attempting to perform the operation. If CHECKACCESS returns 0, then the subprogram invoked to implement that operation should fail with an error.

Syntax

DBMS_DBFS_CONTENT.CHECKACCESS (
 path IN VARCHAR2,
 pathtype IN INTEGER,
 operation IN VARCHAR2,
 principal IN VARCHAR2,
 store_name IN VARCHAR2 DEFAULT NULL)
 RETURN BOOLEAN;

Parameters

Table 47-19 CHECKACCESS Procedure Parameters

	Parameter	Description
	
path

	
Name of path to check for access

	
pathtype

	
Type of object path represents (see DBMS_DBFS_CONTENT Constants - Path Name Types)

	
operation

	
Operation to be checked (see DBMS_DBFS_CONTENT Constants - Optional Properties)

	
principal

	
File system user for whom the access check is made

	
store_name

	
Name of store

Usage Notes

Whether or not the user invokes this function, a store that supports access control internally performs these checks to guarantee security.

CHECKSPI Functions and Procedures

Given the name of a putative DBMS_DBFS_CONTENT_SPI conforming package, this function or procedure checks whether the package implements all of the provider subprograms with the proper signatures, and reports on the conformance.

Syntax

DBMS_DBFS_CONTENT.CHECKSPI (
 package_name IN VARCHAR2)
 RETURN CLOB;

DBMS_DBFS_CONTENT.CHECKSPI (
 schema_name IN VARCHAR2,
 package_name IN VARCHAR2)
 return clob;

DBMS_DBFS_CONTENT.CHECKSPI (
 package_name IN VARCHAR2,
 chk IN OUT NOCOPY CLOB);

DBMS_DBFS_CONTENT.CHECKSPI (
 schema_name in VARCHAR2,
 package_name in VARCHAR2,
 chk in out nocopy CLOB);

Parameters

Table 47-20 CHECKSPI Procedure Parameters

	Parameter	Description
	
package_name

	
Name of package

	
schema_name

	
Name of schema

	
chk

	
CLOB that contains the evaluation results

Usage Notes

	
The functional form returns a cached temporary LOB of session duration with the results of the analysis. The caller is expected to manage the lifetime of this LOB, as needed.

	
The procedural form generates the results of the analysis into the chk LOB parameter; if the value passed in is NULL, the results are written to the foreground trace file provided that DBMS_DBFS_CONTENT interface tracing is enabled. If neither tracing is enabled nor a valid LOB passed in, the checker does not provide any useful indication of the analysis (other than raise exceptions if it encounters a serious error).

	
If schema_name is NULL, standard name resolution rules (current schema, private synonym, public synonym) are used to try and locate a suitable package to analyze.

CREATEDIRECTORY Procedures

This procedure creates a directory.

Syntax

DBMS_DBFS_CONTENT.CREATEDIRECTORY (
 path IN VARCHAR2,
 properties IN OUT NOCOPY DBMS_DBFS_CONTENT_PROPERTIES_T,
 prop_flags IN INTEGER DEFAULT PROP_STD,
 recurse IN BOOLEAN DEFAULT FALSE,
 store_name IN VARCHAR2 DEFAULT NULL,
 principal IN VARCHAR2 DEFAULT NULL);

DBMS_DBFS_CONTENT.CREATEDIRECTORY (
 path IN VARCHAR2,
 properties IN OUT NOCOPY PROPERTIES_T,
 prop_flags IN INTEGER DEFAULT PROP_STD,
 recurse IN BOOLEAN DEFAULT FALSE,
 store_name IN VARCHAR2 DEFAULT NULL,
 principal IN VARCHAR2 DEFAULT NULL);

Parameters

Table 47-21 CREATEDIRECTORY Procedure Parameters

	Parameter	Description
	
path

	
Name of path to the directory

	
properties

	
One or more properties and their values to be set, returned, or both, depending on prop_flags (see DBMS_DBFS_CONTENT_PROPERTIES_T Table Type)

	
prop_flags

	
Determines which properties are set, returned, or both. Default is PROP_STD. Specify properties to be returned by setting PROP_SPC (see DBMS_DBFS_CONTENT Constants - Property Access Flags), and providing an instance of the DBMS_DBFS_CONTENT_PROPERTIES_T Table Type with properties whose values are of interest.

	
recurse

	
If 0, do not execute recursively; otherwise, recursively create the directories above the given directory

	
store_name

	
Name of store

	
principal

	
File system user for whom the access check is made

CREATEFILE Procedures

This procedure creates a file.

Syntax

DBMS_DBFS_CONTENT.CREATEFILE (
 path IN VARCHAR2,
 properties IN OUT NOCOPY DBMS_DBFS_CONTENT_PROPERTIES_T,
 content IN OUT NOCOPY BLOB,
 prop_flags IN INTEGER DEFAULT (PROP_STD + PROP_DATA),
 store_name IN VARCHAR2 DEFAULT NULL,
 principal IN VARCHAR2 DEFAULT NULL);

DBMS_DBFS_CONTENT.CREATEFILE (
 path IN VARCHAR2,
 properties IN OUT NOCOPY PROPERTIES_T,
 content IN OUT NOCOPY BLOB,
 prop_flags IN INTEGER DEFAULT (PROP_STD + PROP_DATA),
 store_name IN VARCHAR2 DEFAULT NULL,
 principal IN VARCHAR2 DEFAULT NULL);

Parameters

Table 47-22 CREATEFILE Procedure Parameters

	Parameter	Description
	
path

	
Name of path to the file

	
properties

	
One or more properties and their values to be set, returned, or both, depending on prop_flags (see DBMS_DBFS_CONTENT_PROPERTIES_T Table Type)

	
content

	
BLOB holding data with which to populate the file (optional)

	
prop_flags

	
Determines which properties are set, returned, or both. Default is PROP_STD. Specify properties to be returned by setting prop_spec, and providing an instance of the DBMS_DBFS_CONTENT_PROPERTIES_T Table Type with properties whose values are of interest.

	
store_name

	
Name of store

	
principal

	
File system user for whom the access check is made

CREATELINK Procedures

This procedure creates a new reference to the source file system element (such as a file, or directory). The resulting reference points to the source element but does not directly share metadata with the source element. This is analogous to a UNIX file system symbolic link.

Syntax

DBMS_DBFS_CONTENT.CREATELINK (
 srcPath IN VARCHAR2,
 dstPath IN VARCHAR2,
 properties IN OUT NOCOPY DBMS_DBFS_CONTENT_PROPERTIES_T,
 prop_flags IN INTEGER DEFAULT PROP_STD,
 store_name IN VARCHAR2 DEFAULT NULL,
 principal IN VARCHAR2 DEFAULT NULL);

DBMS_DBFS_CONTENT.CREATELINK (
 srcPath IN VARCHAR2,
 dstPath IN VARCHAR2,
 properties IN OUT NOCOPY PROPERTIES_T,
 prop_flags IN INTEGER DEFAULT PROP_STD,
 store_name IN VARCHAR2 DEFAULT NULL,
 principal IN VARCHAR2 DEFAULT NULL);

Parameters

Table 47-23 CREATELINK Procedure Parameters

	Parameter	Description
	
srcPath

	
File system entry with which to link

	
dstPath

	
Path of the new link element to be created

	
properties

	
One or more properties and their values to be set, returned depending, or both, on prop_flags (see DBMS_DBFS_CONTENT_PROPERTIES_T Table Type)

	
prop_flags

	
Determines which properties are set, returned, or both. Default is PROP_STD. Specify properties to be returned by setting prop_spec, and providing an instance of the DBMS_DBFS_CONTENT_PROPERTIES_T Table Type with properties whose values are of interest.

	
store_name

	
Name of store

	
principal

	
File system user for whom the access check is made

CREATEREFERENCE Procedures

This procedure creates a physical link to an already existing file system element (such as file or directory). The resulting entry shares the same metadata structures as the value of the srcPath parameter, and so is similar to incrementing a reference count on the file system element. This is analogous to a UNIX file system hard link.

Syntax

DBMS_DBFS_CONTENT.CREATEREFERENCE (
 srcPath IN VARCHAR2,
 dstPath IN VARCHAR2,
 properties IN OUT NOCOPY DBMS_DBFS_CONTENT_PROPERTIES_T,
 prop_flags IN INTEGER DEFAULT PROP_STD,
 store_name IN VARCHAR2 DEFAULT NULL,
 principal IN VARCHAR2 DEFAULT NULL);

DBMS_DBFS_CONTENT.CREATEREFERENCE (
 srcPath IN VARCHAR2,
 dstPath IN VARCHAR2,
 properties IN OUT NOCOPY PROPERTIES_T,
 prop_flags IN INTEGER DEFAULT PROP_STD,
 store_name IN VARCHAR2 DEFAULT NULL,
 principal IN VARCHAR2 DEFAULT NULL);

Parameters

Table 47-24 CREATEREFERENCE Procedure Parameters

	Parameter	Description
	
srcPath

	
File system entry with which to link

	
dstPath

	
Path of the new link element to be created

	
properties

	
One or more properties and their values to be set, returned, or both, depending on prop_flags (see DBMS_DBFS_CONTENT_PROPERTIES_T Table Type)

	
prop_flags

	
Determines which properties are set, returned. Default is PROP_STD. Specify properties to be returned by setting prop_spec, and providing an instance of the DBMS_DBFS_CONTENT_PROPERTIES_T Table Type with properties whose values are of interest.

	
store_name

	
Name of store

	
principal

	
File system user for whom the access check is made

DECODEFEATURES Function

Given a feature bit set integer value, this function returns a FEATURES_T table of the feature bits as FEATURE_T records.

Syntax

DBMS_DBFS_CONTENT.DECODEFEATURES (
 featureSet IN INTEGER)
 RETURN FEATURES_T DETERMINISTIC PIPELINED;

Parameters

Table 47-25 DECODEFEATURES Function Parameters

	Parameter	Description
	
featureSet

	
Feature set

Return Values

FEATURES_T Table Type

DELETECONTENT Procedure

This procedure deletes the file specified by the given contentID.

Syntax

DBMS_DBFS_CONTENT.DELETECONTENT (
 store_name IN VARCHAR2 DEFAULT NULL,
 contentID IN RAW,
 filter IN VARCHAR2 DEFAULT NULL,
 soft_delete IN BOOLEAN DEFAULT NULL,
 principal IN VARCHAR2 DEFAULT NULL);

Parameters

Table 47-26 DELETECONTENT Procedure Parameters

	Parameter	Description
	
store_name

	
Name of store

	
contentID

	
Unique identifier for the file to be deleted

	
filter

	
A filter, if any, to be applied

	
soft_delete

	
If 0, execute a hard (permanent) delete. For any value other than 0, perform a soft delete (see "Deletion Operations").

	
principal

	
File system user for whom the access check is made

DELETEDIRECTORY Procedure

This procedure deletes a directory. If recurse is nonzero, it recursively deletes all elements of the directory. A filter, if supplied, determines which elements of the directory are deleted.

Syntax

DBMS_DBFS_CONTENT.DELETEDIRECTORY (
 path IN VARCHAR2,
 filter IN VARCHAR2 DEFAULT NULL,
 soft_delete IN BOOLEAN DEFAULT NULL,
 recurse IN BOOLEAN DEFAULT FALSE,
 store_name IN VARCHAR2 DEFAULT NULL,
 principal IN VARCHAR2 DEFAULT NULL);

Parameters

Table 47-27 DELETEDIRECTORY Procedure Parameters

	Parameter	Description
	
path

	
Name of path to the directory

	
filter

	
A filter, if any, to be applied

	
soft_delete

	
If 0, execute a hard (permanent) delete. For any value other than 0, perform a soft delete (see "Deletion Operations").

	
recurse

	
If 0, do not execute recursively. Otherwise, recursively delete the directories and files below the given directory.

	
store_name

	
Name of store

	
principal

	
File system user for whom the access check is made

DELETEFILE Procedure

This procedure deletes the specified file.

Syntax

DBMS_DBFS_CONTENT.DELETEFILE (
 path IN VARCHAR2,
 filter IN VARCHAR2 DEFAULT NULL,
 soft_delete IN BOOLEAN DEFAULT NULL,
 store_name IN VARCHAR2 DEFAULT NULL,
 principal IN VARCHAR2 DEFAULT NULL);

Parameters

Table 47-28 DELETEFILE Procedure Parameters

	Parameter	Description
	
path

	
Name of path to the file

	
filter

	
A filter, if any, to be applied

	
soft_delete

	
If 0, execute a hard (permanent) delete. For any value other than 0, perform a soft delete (see "Deletion Operations").

	
store_name

	
Name of store

	
principal

	
File system user for whom the access check is made

FEATURENAME Function

Given a feature bit, this function returns a VARCHAR2 of that feature's name.

Syntax

DBMS_DBFS_CONTENT.FEATURENAME (
 featureBit IN INTEGER)
 RETURN VARCHAR2 DETERMINISTIC;

Parameters

Table 47-29 FEATURENAME Function Parameters

	Parameter	Description
	
featureBit

	
Bit representation of the feature (see DBMS_DBFS_CONTENT Constants - Store Features)

Return Values

Name of the feature

FLUSHSTATS Function

This procedure flushes DBMS_DBFS_CONTENT statistics to disk.

Syntax

DBMS_DBFS_CONTENT.FLUSHSTATS;

GETDEFAULTACL Procedure

This procedure returns the ACL parameter of the default context. This information can be inserted explicitly by way of argument into other method calls, allowing for a more fine-grained control.

Syntax

DBMS_DBFS_CONTENT.GETDEFAULTACL (
 acl OUT NOCOPY VARCHAR2);

Parameters

Table 47-30 GETDEFAULTACL Procedure Parameters

	Parameter	Description
	
acl

	
ACL for all new elements created (implicitly or explicitly) by the current operation

GETDEFAULTASOF Procedure

This procedure returns the "as of" parameter of the default context. This information can be inserted explicitly by way of argument into other method calls, allowing for a more fine-grained control.

Syntax

DBMS_DBFS_CONTENT.GETDEFAULTASOF (
 asof OUT NOCOPY TIMESTAMP);

Parameters

Table 47-31 GETDEFAULTASOF Procedure Parameters

	Parameter	Description
	
asof

	
The "as of" timestamp at which the underlying read-only operation (or its read-only sub-components) executes

GETTDEFAULTCONTEXT Procedure

This procedure returns the default context. The information contained in the context can be inserted explicitly by way of arguments to the various method calls, allowing for fine-grained control over individual operations.

Syntax

DBMS_DBFS_CONTENT.GETTDEFAULTCONTEXT (
 principal OUT NOCOPY VARCHAR2,
 owner OUT NOCOPY VARCHAR2,
 acl OUT NOCOPY VARCHAR2,
 asof OUT NOCOPY TIMESTAMP);

Parameters

Table 47-32 GETTDEFAULTCONTEXT Procedure Parameters

	Parameter	Description
	
principal

	
Agent (principal) invoking the current operation

	
owner

	
Owner for new elements created (implicitly or explicitly) by the current operation

	
acl

	
ACL for all new elements created (implicitly or explicitly) by the current operation

	
asof

	
The "as of" timestamp at which the underlying read-only operation (or its read-only sub-components) executes

GETDEFAULTOWNER Procedure

This procedure returns the "owner" parameter of the default context. This information can be inserted explicitly by way of argument into other method calls, allowing for a more fine-grained control.

Syntax

DBMS_DBFS_CONTENT.GETDEFAULTOWNER (
 principal IN VARCHAR2);

Parameters

Table 47-33 GETDEFAULTOWNER Procedure Parameters

	Parameter	Description
	
owner

	
Owner for new elements created (implicitly or explicitly) by the current operation

GETDEFAULTPRINCIPAL Procedure

This procedure returns the "principal" parameter of the default context. This information contained can be inserted explicitly by way of argument into other method calls, allowing for a more fine-grained control.

Syntax

DBMS_DBFS_CONTENT.GETDEFAULTPRINCIPAL (
 principal OUT NOCOPY VARCHAR2);

Parameters

Table 47-34 GETDEFAULTPRINCIPAL Procedure Parameters

	Parameter	Description
	
principal

	
Agent (principal) invoking the current operation

GETFEATURESBYMOUNT Function

This function returns features of a store by mount point.

Syntax

DBMS_DBFS_CONTENT.GETFEATURESBYMOUNT (
 store_mount IN VARCHAR2)
 RETURN INTEGER;

Parameters

Table 47-35 GETFEATURESBYMOUNT Function Parameters

	Parameter	Description
	
store_mount

	
Mount point

Return Values

A bit mask of supported features (see FEATURES_T Table Type)

GETFEATURESBYNAME Function

This function returns features of a store by store name.

Syntax

DBMS_DBFS_CONTENT.GETFEATURESBYNAME (
 store_name IN VARCHAR2)
 RETURN INTEGER;

Parameters

Table 47-36 GETFEATURESBYNAME Function Parameters

	Parameter	Description
	
store_name

	
Name of store

Return Values

A bit mask of supported features (see FEATURES_T Table Type)

GETFEATURESBYPATH Function

This function returns features of a store by path.

Syntax

DBMS_DBFS_CONTENT.GETFEATURESBYPATH (
 path IN PATH_T)
 RETURN INTEGER;

Parameters

Table 47-37 GETFEATURESBYPATH Function Parameters

	Parameter	Description
	
path

	
PATH_T

Return Values

A bit mask of supported features (see FEATURES_T Table Type)

GETPATH Procedures

This procedure returns existing path items (such as files and directories). This includes both data and metadata (properties).

The client can request (using prop_flags) that specific properties be returned. File path names can be read either by specifying a BLOB locator using the prop_data bitmask in prop_flags (see DBMS_DBFS_CONTENT Constants - Property Access Flags) or by passing one or more RAW buffers.

When forUpdate is 0, this procedure also accepts a valid asof timestamp parameter as part of ctx that can be used by stores to implement "as of" style flashback queries. Mutating versions of the GETPATH Procedures do not support these modes of operation.

Syntax

DBMS_DBFS_CONTENT.GETPATH (
 path IN VARCHAR2,
 properties IN OUT NOCOPY DBMS_DBFS_CONTENT_PROPERTIES_T,
 content OUT NOCOPY BLOB,
 item_type OUT INTEGER,
 prop_flags IN INTEGER DEFAULT (PROP_STD +
 PROP_OPT +
 PROP_DATA),
 asof IN TIMESTAMP DEFAULT NULL,
 forUpdate IN BOOLEAN DEFAULT FALSE,
 deref IN BOOLEAN DEFAULT FALSE,
 store_name IN VARCHAR2 DEFAULT NULL,
 principal IN VARCHAR2 DEFAULT NULL);

DBMS_DBFS_CONTENT.GETPATH (
 path IN VARCHAR2,
 properties IN OUT NOCOPY PROPERTIES_T,
 content OUT NOCOPY BLOB,
 item_type OUT INTEGER,
 prop_flags IN INTEGER DEFAULT (PROP_STD +
 PROP_OPT +
 PROP_DATA),
 asof IN TIMESTAMP DEFAULT NULL,
 forUpdate IN BOOLEAN DEFAULT FALSE,
 deref IN BOOLEAN DEFAULT FALSE,
 store_name IN VARCHAR2 DEFAULT NULL,
 principal IN VARCHAR2 DEFAULT NULL);

DBMS_DBFS_CONTENT.GETPATH (
 path IN VARCHAR2,
 properties IN OUT NOCOPY DBMS_DBFS_CONTENT_PROPERTIES_T,
 amount IN OUT NUMBER,
 offset IN NUMBER,
 buffers OUT NOCOPY RAW,
 prop_flags IN INTEGER DEFAULT (PROP_STD +
 PROP_OPT +
 PROP_DATA),
 asof IN TIMESTAMP DEFAULT NULL,
 store_name IN VARCHAR2 DEFAULT NULL,
 principal IN VARCHAR2 DEFAULT NULL);

DBMS_DBFS_CONTENT.GETPATH (
 path IN VARCHAR2,
 properties IN OUT NOCOPY PROPERTIES_T,
 amount IN OUT NUMBER,
 offset IN NUMBER,
 buffers OUT NOCOPY RAW,
 prop_flags IN INTEGER DEFAULT (PROP_STD +
 PROP_OPT +
 PROP_DATA),
 asof IN TIMESTAMP DEFAULT NULL,
 store_name IN VARCHAR2 DEFAULT NULL,
 principal IN VARCHAR2 DEFAULT NULL);

DBMS_DBFS_CONTENT.GETPATH (
 path IN VARCHAR2,
 properties IN OUT NOCOPY DBMS_DBFS_CONTENT_PROPERTIES_T,
 amount IN OUT NUMBER,
 offset IN NUMBER,
 buffers OUT NOCOPY DBMS_DBFS_CONTENT_RAW_T,
 prop_flags IN INTEGER DEFAULT (PROP_STD +
 PROP_OPT +
 PROP_DATA),
 asof IN TIMESTAMP DEFAULT NULL,
 store_name IN VARCHAR2 DEFAULT NULL,
 principal IN VARCHAR2 DEFAULT NULL);

DBMS_DBFS_CONTENT.GETPATH (
 path IN VARCHAR2,
 properties IN OUT NOCOPY PROPERTIES_T,
 amount IN OUT NUMBER,
 offset IN NUMBER,
 buffers OUT NOCOPY DBMS_DBFS_CONTENT_RAW_T,
 prop_flags IN INTEGER DEFAULT (PROP_STD +
 PROP_OPT +
 PROP_DATA),
 asof IN TIMESTAMP DEFAULT NULL,
 store_name IN VARCHAR2 DEFAULT NULL,
 principal IN VARCHAR2 DEFAULT NULL);

Parameters

Table 47-38 GETPATH Procedure Parameters

	Parameter	Description
	
path

	
Name of path to path items

	
properties

	
One or more properties and their values to be returned depending on prop_flags (see DBMS_DBFS_CONTENT_PROPERTIES_T Table Type)

	
content

	
BLOB holding data which populates the file (optional)

	
item_type

	
Type of the path item specified (see DBMS_DBFS_CONTENT Constants - Path Name Types)

	
amount

	
On input, number of bytes to be read. On output, number of bytes read

	
offset

	
Byte offset from which to begin reading

	
buffer

	
Buffer to which to write

	
buffers

	
Buffers to which to write

	
prop_flags

	
Determines which properties are set, returned, or both. Default is PROP_STD. Specify properties to be returned by setting prop_spec, and providing an instance of the DBMS_DBFS_CONTENT_PROPERTIES_T Table Type with properties whose values are of interest.

	
asof

	
The "as of" timestamp at which the underlying read-only operation (or its read-only sub-components) executes

	
forUpdate

	
Specifies that a lock should be taken to signify exclusive write access to the path item

	
deref

	
If nonzero, attempts to resolve the given path item to actual data provided it is a reference

	
store_name

	
Name of store

	
principal

	
Agent (principal) invoking the current operation

GETPATHBYMOUNTID Function

If the underlying GUID is found in the underlying store, this function returns the full absolute path name.

Syntax

DBMS_DBFS_CONTENT.GETPATHBYMOUNTID (
 store_mount IN VARCHAR2,
 guid IN INTEGER)
 RETURN VARCHAR2;

Parameters

Table 47-39 GETPATHBYMOUNTID Function Parameters

	Parameter	Description
	
store_mount

	
Mount point in which the path item with guid resides

	
guid

	
Unique ID for the path item

Usage Notes

If the GUID is unknown, a NULL value is returned. Clients are expected to handle this as appropriate.

Return Values

Path of the path item represented by GUID in store_mount

GETPATHBYSTOREID Function

If the underlying GUID is found in the underlying store, this function returns the store-qualified path name.

Syntax

DBMS_DBFS_CONTENT.GETPATHBYSTOREID (
 store_name IN VARCHAR2,
 guid IN INTEGER)
 RETURN VARCHAR2;

Parameters

Table 47-40 GETPATHBYSTOREID Function Parameters

	Parameter	Description
	
store_name

	
Name of store

	
guid

	
Unique ID representing the desired path item

Usage Notes

If the GUID is unknown, a NULL value is returned. Clients are expected to handle this as appropriate.

Return Values

Store-qualified path name represented by the GUID

GETPATHNOWAIT Procedures

This procedure implies that the operation is for an update, and, if implemented (see FEATURE_NOWAIT in DBMS_DBFS_CONTENT Constants - Store Features), allows providers to return an exception (ORA-00054) rather than wait for row locks.

Syntax

DBMS_DBFS_CONTENT.GETPATHNOWAIT (
 path IN VARCHAR2,
 properties IN OUT NOCOPY DBMS_DBFS_CONTENT_PROPERTIES_T,
 content OUT NOCOPY BLOB,
 item_type OUT INTEGER,
 prop_flags IN INTEGER DEFAULT (PROP_STD +
 PROP_OPT +
 PROP_DATA),
 deref IN BOOLEAN DEFAULT FALSE,
 store_name IN VARCHAR2 DEFAULT NULL,
 principal IN VARCHAR2 DEFAULT NULL);

DBMS_DBFS_CONTENT.GETPATHNOWAIT (
 path IN VARCHAR2,
 properties IN OUT NOCOPY PROPERTIES_T,
 content OUT NOCOPY BLOB,
 item_type OUT INTEGER,
 prop_flags IN INTEGER DEFAULT (PROP_STD +
 PROP_OPT +
 PROP_DATA),
 deref IN BOOLEAN DEFAULT FALSE,
 store_name IN VARCHAR2 DEFAULT NULL,
 principal IN VARCHAR2 DEFAULT NULL);

Parameters

Table 47-41 GETPATHNOWAIT Procedure Parameters

	Parameter	Description
	
path

	
Name of path to path items

	
properties

	
One or more properties and their values to be returned depending on prop_flags (see DBMS_DBFS_CONTENT_PROPERTIES_T Table Type)

	
content

	
BLOB holding data which populates the file (optional)

	
item_type

	
Type of the path item specified (see DBMS_DBFS_CONTENT Constants - Path Name Types)

	
prop_flags

	
Determines which properties are returned. Default is PROP_STD. Specify properties to be returned by setting prop_spec, and providing an instance of the DBMS_DBFS_CONTENT_PROPERTIES_T Table Type with properties whose values are of interest.

	
asof

	
The "as of" timestamp at which the underlying read-only operation (or its read-only sub-components) executes

	
deref

	
If nonzero, attempts to resolve the given path item to actual data provided it is a reference

	
store_name

	
Name of store

	
principal

	
Agent (principal) invoking the current operation

GETSTOREBYMOUNT Function

This function returns a store by way of its name.

Syntax

DBMS_DBFS_CONTENT.GETSTOREBYMOUNT (
 store_mount IN VARCHAR2)
 RETURN STORE_T;

Parameters

Table 47-42 GETSTOREBYMOUNT Function Parameters

	Parameter	Description
	
store_mount

	
Name of store

Return Values

STORE_T Record Type

GETSTOREBYNAME Function

This function returns a store by way of its name.

Syntax

DBMS_DBFS_CONTENT.GETSTOREBYNAME (
 store_name IN VARCHAR2)
 RETURN STORE_T;

Parameters

Table 47-43 GETSTOREBYNAME Function Parameters

	Parameter	Description
	
store_name

	
Name of store

Return Values

STORE_T Record Type

GETSTOREBYPATH Function

This function returns a store by way of its path.

Syntax

DBMS_DBFS_CONTENT.GETSTOREBYPATH (
 path IN PATH_T)
 RETURN STORE_T;

Parameters

Table 47-44 GETSTOREBYPATH Function Parameters

	Parameter	Description
	
path

	
PATH_T s

Return Values

STORE_T Record Type

GETSTATS Procedure

This procedure returns information about DBMS_DBFS_CONTENT statistics collection.

Syntax

DBMS_DBFS_CONTENT.GETSTATS (
 enabled OUT BOOLEAN,
 flush_time OUT INTEGER,
 flush_count OUT INTEGER);

Parameters

Table 47-45 GETSTATS Procedure Parameters

	Parameter	Description
	
enabled

	
Whether statistics collection is enabled

	
flush_time

	
How often to flush the statistics to disk in centiseconds

	
flush_count

	
Number of operations to allow between statistics flushes

GETTRACE Function

This function returns whether DBMS_DBFS_CONTENT tracing is turned on or not.

Syntax

DBMS_DBFS_CONTENT.GETTRACE
 RETURN INTEGER.

Return Values

Returns 0 if tracing is off, non-zero if tracing is on.

GETVERSION Function

This function marks each version of the DBMS_DBFS_CONTENT interface.

Syntax

DBMS_DBFS_CONTENT.GETVERSION (
 RETURN VARCHAR2;

Return Values

A string enumerating the version of the DBMS_DBFS_CONTENT interface in standard naming convention: string: a.b.c corresponding to major, minor, and patch components.

LIST Function

This function lists the path items in the specified path meeting the specified filter and other criteria.

Syntax

DBMS_DBFS_CONTENT.LIST (
 path IN VARCHAR2,
 filter IN VARCHAR2 DEFAULT NULL,
 recurse IN INTEGER DEFAULT 0,
 asof IN TIMESTAMP DEFAULT NULL,
 store_name IN VARCHAR2 DEFAULT NULL,
 principal IN VARCHAR2 DEFAULT NULL)
 RETURN DBMS_DBFS_CONTENT_LIST_ITEMS_T PIPELINED;

Parameters

Table 47-46 LIST Function Parameters

	Parameter	Description
	
path

	
Name of path to directories

	
filter

	
A filter, if any, to be applied

	
recurse

	
If 0, do not execute recursively. Otherwise, recursively list the contents of directories and files below the given directory.

	
asof

	
The "as of" timestamp at which the underlying read-only operation (or its read-only sub-components) executes

	
store_name

	
Name of respository

	
principal

	
Agent (principal) invoking the current operation

Return Values

DBMS_DBFS_CONTENT_LIST_ITEMS_T Table Type

LISTALLPROPERTIES Function

This function returns a table of all properties for all path items in all mounts

Syntax

DBMS_DBFS_CONTENT.LISTALLPROPERTIES
 RETURN PROP_ITEMS_T PIPELINED;

Return Values

PROP_ITEMS_T Table Type

LISTALLCONTENT Function

This function lists all path items in all mounts.

Syntax

DBMS_DBFS_CONTENT.LISTALLCONTENT
 RETURN PATH_ITEMS_T PIPELINED;

Return Values

PATH_ITEMS_T Table Type

LISTMOUNTS Function

This function lists all available mount points, their backing stores, and the store features.

Syntax

DBMS_DBFS_CONTENT.LISTMOUNTS
 RETURN MOUNTS_T PIPELINED;

Return Values

MOUNTS_T Table Type

Usage Notes

A single mount results in a single returned row, with its store_mount field of the returned records set to NULL.

LISTSTORES Function

This function lists all available stores and their features.

Syntax

DBMS_DBFS_CONTENT.LISTSTORES
 RETURN STORES_T PIPELINED;

Return Values

STORES_T Table Type

Usage Notes

The store_mount field of the returned records is set to NULL (since mount-points are separate from stores themselves).

LOCKPATH Procedure

This procedure applies user-level locks to the given valid path name (subject to store feature support), and optionally associates user-data with the lock.

Syntax

DBMS_DBFS_CONTENT.LOCKPATH (
 path IN VARCHAR2,
 lock_type IN INTEGER DEFAULT LOCK_READ_ONLY,
 lock_data IN VARCHAR2 DEFAULT NULL,
 store_name IN VARCHAR2 DEFAULT NULL,
 principal IN VARCHAR2 DEFAULT NULL);

Parameters

Table 47-47 LOCKPATH Procedure Parameters

	Parameter	Description
	
path

	
Name of path to file items

	
lock_type

	
One of the available lock types (see DBMS_DBFS_CONTENT Constants - Lock Types)

	
lock_data

	
Optional user data to be associated with the lock

	
store_name

	
Name of store

	
principal

	
Agent (principal) invoking the current operation

MOUNTSTORE Procedure

This procedure mounts a previously registered store and binds it to the mount point.

Syntax

DBMS_DBFS_CONTENT.MOUNTSTORE (
 store_mount in VARCHAR2 DEFAULT NULL,
 singleton in BOOLEAN DEFAULT FALSE,
 principal in VARCHAR2 DEFAULT NULL,
 owner in VARCHAR2 DEFAULT NULL,
 acl in VARCHAR2 DEFAULT NULL,
 asof in TIMESTAMP DEFAULT NULL,
 read_only in BOOLEAN DEFAULT FALSE);

Parameters

Table 47-48 MOUNTSTORE Procedure Parameters

	Parameter	Description
	
store_mount

	
Path name to use to mount this store

	
singleton

	
Whether the mount is a single backend store on the system

	
principal

	
Agent (principal) invoking the current operation

	
owner

	
Owner for new elements created (implicitly or explicitly) by the current operation

	
acl

	
ACL for all new elements created (implicitly or explicitly) by the current operation

	
asof

	
The "as of" timestamp at which the underlying read-only operation (or its read-only sub-components) executes

	
read_only

	
Whether the mount is read-only

Usage Notes

	
Once mounted, accesses to path names of the form /store_mount/xyz... are redirected to store_name and its content provider.

	
Store mount points must be unique, and a syntactically valid path name component (specifically, a NAME_T with no embedded /).

	
If a mount point is not specified (NULL), the invoked subprogram attempts to use the store name itself as the mount point name (subject to the uniqueness and syntactic constraints).

	
A special empty mount point is available for single stores, specifically a scenario where the content interface manages a single backend store - in such cases, the client can directly deal with full path names of the form /xyz... since there is no ambiguity in how to redirect these accesses.

	
Singleton mount points are indicated by the "singleton" boolean argument, and the store_mount argument is ignored.

	
The same store can be mounted multiple times, obviously at different mount points.

	
Mount properties can be used to specify the execution environment, specifically, the default values of the principal, owner, ACL, and asof for a particular mount point. Mount properties can also be used to specify a read-only mount. If a flashback mount is specified (through asof), it implies a read-only mount.

NORMALIZEPATH Functions

This function converts a store-specific or full-absolute path name into normalized form:

	
verifies that the path name is absolute, and so starts with "/"

	
collapses multiple consecutive "/" into a single "/"

	
strips trailing "/"

	
breaks up a store-specific normalized path name into 2 components - parent pathname, trailing component name

	
breaks up a full-absolute normalized path name into 3 components - store name, parent pathname, trailing component name

Syntax

DBMS_DBFS_CONTENT.NORMALIZEPATH (
 path IN VARCHAR2,
 parent OUT NOCOPY VARCHAR2,
 tpath OUT NOCOPY VARCHAR2)
 RETURN VARCHAR2;

DBMS_DBFS_CONTENT.NORMALIZEPATH (
 path IN VARCHAR2,
 store_name OUT NOCOPY VARCHAR2,
 parent OUT NOCOPY VARCHAR2,
 tpath OUT NOCOPY VARCHAR2)
 RETURN VARCHAR2;

Parameters

Table 47-49 NORMALIZEPATH Function Parameters

	Parameter	Description
	
path

	
Name of path to file items

	
store_name

	
Name of store

	
parent

	
Parent path name

	
tpath

	
Name of trailing path item

Return Values

The completely normalized store-specific or full-absolute path name

PROPANY Functions

This function provides constructors that take one of a variety of types and return a PROPERTY_T.

Syntax

DBMS_DBFS_CONTENT.PROPANY (
 val IN NUMBER)
RETURN PROPERTY_T;

DBMS_DBFS_CONTENT.PROPANY (
 val IN VARCHAR2)
RETURN PROPERTY_T;

DBMS_DBFS_CONTENT.PROPANY (
 val IN TIMESTAMP)
RETURN PROPERTY_T;

DBMS_DBFS_CONTENT.PROPANY (
 val IN RAW)
RETURN PROPERTY_T;

Parameters

Table 47-50 PROPANY Function Parameters

	Parameter	Description
	
val

	
Value

Return Values

PROPERTY_T Record Type

PROPERTIESH2T Function

This function converts a PROPERTY_T hash to a DBMS_DBFS_CONTENT_PROPERTIES_T table.

Syntax

DBMS_DBFS_CONTENT.PROPERTIEST2H (
 pprops IN PROPERTIES_T)
RETURN DBMS_DBFS_CONTENT_PROPERTIES_T;

Parameters

Table 47-51 PROPERTIEST2H Function Parameters

	Parameter	Description
	
sprops

	
A PROPERTIES_T hash

Return Values

DBMS_DBFS_CONTENT_PROPERTIES_T Table Type

PROPERTIEST2H Function

This function converts a DBMS_DBFS_CONTENT_PROPERTIES_T table to a PROPERTY_T hash.

Syntax

DBMS_DBFS_CONTENT.PROPERTIEST2H (
 sprops IN DBMS_DBFS_CONTENT_PROPERTIES_T)
RETURN properties_t;

Parameters

Table 47-52 PROPERTIEST2H Function Parameters

	Parameter	Description
	
sprops

	
A DBMS_DBFS_CONTENT_PROPERTIES_T table

Return Values

PROPERTIES_T Table Type

PROPNUMBER Function

This function is a constructor that takes a number and returns a PROPERTY_T.

Syntax

DBMS_DBFS_CONTENT.PROPNUMBER (
 val IN NUMBER)
RETURN PROPERTY_T;

Parameters

Table 47-53 PROPNUMBER Function Parameters

	Parameter	Description
	
val

	
Value

Return Values

PROPERTY_T Record Type

PROPRAW Function

This function is a constructor that takes a RAW and returns a PROPERTY_T.

Syntax

DBMS_DBFS_CONTENT.PROPRAW (
 val IN RAW)
RETURN PROPERTY_T;

Parameters

Table 47-54 PROPRAW Function Parameters

	Parameter	Description
	
val

	
Value

Return Values

PROPERTY_T Record Type

PROPTIMESTAMP Function

This function is a constructor that takes a TIMESTAMP and returns a PROPERTY_T.

Syntax

DBMS_DBFS_CONTENT.PROPTIMESTAMP (
 val IN TIMESTAMP)
RETURN PROPERTY_T;

Parameters

Table 47-55 PROPTIMESTAMP Function Parameters

	Parameter	Description
	
val

	
Value

Return Values

PROPERTY_T Record Type

PROPVARCHAR2 Function

This function is a constructor that takes a VARCHAR2 and returns a PROPERTY_T.

Syntax

DBMS_DBFS_CONTENT.PROPVARCHAR2 (
 val IN VARCHAR2)
RETURN PROPERTY_T;

Parameters

Table 47-56 PROPNUMBER Function Parameters

	Parameter	Description
	
val

	
Value

Return Values

PROPERTY_T Record Type

PURGEALL Procedure

This procedure purges all soft-deleted entries matching the path and optional filter criteria.

Syntax

DBMS_DBFS_CONTENT.PURGEALL (
 path IN VARCHAR2,
 filter IN VARCHAR2 DEFAULT NULL,
 store_name IN VARCHAR2 DEFAULT NULL,
 principal IN VARCHAR2 DEFAULT NULL);

Parameters

Table 47-57 PURGEALL Procedure Parameters

	Parameter	Description
	
path

	
Name of path to file items

	
filter

	
A filter, if any, to be applied based on specified criteria

	
store_name

	
Name of store

	
principal

	
Agent (principal) invoking the current operation

PURGEPATH Procedure

This procedure purges any soft-deleted versions of the given path item.

Syntax

DBMS_DBFS_CONTENT.PURGEPATH (
 path IN VARCHAR2,
 filter IN VARCHAR2 DEFAULT NULL,
 store_name IN VARCHAR2 DEFAULT NULL,
 principal IN VARCHAR2 DEFAULT NULL);

Parameters

Table 47-58 PURGEPATH Procedure Parameters

	Parameter	Description
	
path

	
Name of path to file items

	
filter

	
A filter, if any, to be applied

	
store_name

	
Name of store

	
principal

	
Agent (principal) invoking the current operation

PUTPATH Procedures

This procedure creates a new path item.

Syntax

DBMS_DBFS_CONTENT.PUTPATH (
 path IN VARCHAR2,
 properties IN OUT NOCOPY DBMS_DBFS_CONTENT_PROPERTIES_T,
 content IN OUT NOCOPY BLOB,
 item_type OUT INTEGER,
 prop_flags IN INTEGER DEFAULT (PROP_STD +
 PROP_OPT +
 PROP_DATA),
 store_name IN VARCHAR2 DEFAULT NULL,
 principal IN VARCHAR2 DEFAULT NULL);

DBMS_DBFS_CONTENT.PUTPATH (
 path IN VARCHAR2,
 properties IN OUT NOCOPY PROPERTIES_T,
 content IN OUT NOCOPY BLOB,
 item_type OUT INTEGER,
 prop_flags IN INTEGER DEFAULT (PROP_STD +
 PROP_OPT +
 PROP_DATA),
 store_name IN VARCHAR2 DEFAULT NULL,
 principal IN VARCHAR2 DEFAULT NULL);

DBMS_DBFS_CONTENT.PUTPATH (
 path IN VARCHAR2,
 properties IN OUT NOCOPY DBMS_DBFS_CONTENT_PROPERTIES_T,
 amount IN NUMBER,
 offset IN NUMBER,
 buffer IN RAW,
 prop_flags IN INTEGER DEFAULT (PROP_STD +
 PROP_OPT),
 store_name IN VARCHAR2 DEFAULT NULL,
 principal IN VARCHAR2 DEFAULT NULL);

DBMS_DBFS_CONTENT.PUTPATH (
 path IN VARCHAR2,
 properties IN OUT NOCOPY PROPERTIES_T,
 amount IN NUMBER,
 offset IN NUMBER,
 buffer IN RAW,
 prop_flags IN INTEGER DEFAULT (PROP_STD +
 PROP_OPT),
 store_name IN VARCHAR2 DEFAULT NULL,
 principal IN VARCHAR2 DEFAULT NULL);

DBMS_DBFS_CONTENT.PUTPATH (
 path IN VARCHAR2,
 properties IN OUT NOCOPY DBMS_DBFS_CONTENT_PROPERTIES_T,
 written OUT NUMBER,
 offset IN NUMBER,
 buffers IN DBMS_DBFS_CONTENT_RAW_T,
 prop_flags IN INTEGER DEFAULT (PROP_STD +
 PROP_OPT),
 store_name IN VARCHAR2 DEFAULT NULL,
 principal IN VARCHAR2 DEFAULT NULL);

DBMS_DBFS_CONTENT.PUTPATH (
 path IN VARCHAR2,
 properties IN OUT NOCOPY PROPERTIES_T,
 written OUT NUMBER,
 offset IN NUMBER,
 buffers IN DBMS_DBFS_CONTENT_RAW_T,
 prop_flags IN INTEGER DEFAULT (PROP_STD +
 PROP_OPT),
 store_name IN VARCHAR2 DEFAULT NULL,
 principal IN VARCHAR2 DEFAULT NULL);

Parameters

Table 47-59 PUTPATH Procedure Parameters

	Parameter	Description
	
path

	
Name of path to file items

	
properties

	
One or more properties and their values to be set depending on prop_flags (see DBMS_DBFS_CONTENT_PROPERTIES_T Table Type)

	
content

	
BLOB holding data which populates the file (optional)

	
item_type

	
Type of the path item specified (see DBMS_DBFS_CONTENT Constants - Path Name Types)

	
amount

	
Number of bytes to be read

	
offset

	
Byte offset from which to begin reading

	
buffer

	
Buffer to which to write

	
buffers

	
Buffers to which to write

	
prop_flags

	
Determines which properties are set. Default is PROP_STD. Specify properties to be returned by setting prop_spec, and providing an instance of the DBMS_DBFS_CONTENT_PROPERTIES_T Table Type with properties whose values are of interest.

	
store_name

	
Name of store

	
principal

	
Agent (principal) invoking the current operation

REGISTERSTORE Procedure

This procedure registers a new store backed by a provider that uses a store service provider (conforming to the DBMS_DBFS_CONTENT_SPI package signature). This method is to be used primarily by service providers after they have created a new store.

Syntax

DBMS_DBFS_CONTENT.REGISTERSTORE (
 store_name IN VARCHAR2,
 provider_name IN VARCHAR2,
 provider_package IN VARCHAR2);

Parameters

Table 47-60 REGISTERSTORE Procedure Parameters

	Parameter	Description
	
store_name

	
Name of store, must be unique

	
provider_name

	
Name of provider

	
provider_package

	
Store service provider

RENAMEPATH Procedures

This procedure renames or moves a path. This operation can be performed across directory hierarchies and mount-points as long as it is within the same store.

	
Note:

See "Rename and Move Operations"

Syntax

DBMS_DBFS_CONTENT.RENAMEPATH (
 oldPath IN VARCHAR2,
 newPath IN VARCHAR2,
 properties IN OUT NOCOPY DBMS_DBFS_CONTENT_PROPERTIES_T,
 store_name IN VARCHAR2 DEFAULT NULL,
 principal IN VARCHAR2 DEFAULT NULL);

DBMS_DBFS_CONTENT.RENAMEPATH (
 oldPath IN VARCHAR2,
 newPath IN VARCHAR2,
 properties IN OUT NOCOPY PROPERTIES_T,
 store_name IN VARCHAR2 DEFAULT NULL,
 principal IN VARCHAR2 DEFAULT NULL);

Parameters

Table 47-61 RENAMEPATH Procedure Parameters

	Parameter	Description
	
oldPath

	
Name of path prior to renaming

	
newPath

	
Name of path after renaming

	
properties

	
One or more properties and their values to be set depending on prop_flags (see DBMS_DBFS_CONTENT_PROPERTIES_T Table Type)

	
store_name

	
Name of store, must be unique

	
principal

	
Agent (principal) invoking the current operation

RESTOREALL Procedure

This procedure restores all soft-deleted path items meeting the path and optional filter criteria.

Syntax

DBMS_DBFS_CONTENT.RESTOREALL (
 path IN VARCHAR2,
 filter IN VARCHAR2 DEFAULT NULL,
 store_name IN VARCHAR2 DEFAULT NULL,
 principal IN VARCHAR2 DEFAULT NULL);

Parameters

Table 47-62 RESTOREALL Procedure Parameters

	Parameter	Description
	
path

	
Name of path to file items

	
filter

	
A filter, if any, to be applied

	
store_name

	
Name of store

	
principal

	
Agent (principal) invoking the current operation

RESTOREPATH Procedure

This procedure restores all soft-deleted path items that match the given path and optional filter criteria.

Syntax

DBMS_DBFS_CONTENT.RESTOREPATH (
 path IN VARCHAR2,
 filter IN VARCHAR2 DEFAULT NULL,
 store_name IN VARCHAR2 DEFAULT NULL,
 principal IN VARCHAR2 DEFAULT NULL);

Parameters

Table 47-63 RESTOREPATH Procedure Parameters

	Parameter	Description
	
path

	
Name of path to file items

	
filter

	
A filter, if any, to be applied

	
store_name

	
Name of store

	
principal

	
Agent (principal) invoking the current operation

SEARCH Function

This function...

Syntax

DBMS_DBFS_CONTENT.SEARCH (
 path IN VARCHAR2,
 filter IN VARCHAR2 DEFAULT NULL,
 recurse IN INTEGER DEFAULT 0,
 asof IN TIMESTAMP DEFAULT NULL,
 store_name IN VARCHAR2 DEFAULT NULL,
 principal IN VARCHAR2 DEFAULT NULL)
 RETURN DBMS_DBFS_CONTENT_LIST_ITEMS_T PIPELINED;

Parameters

Table 47-64 LIST Function Parameters

	Parameter	Description
	
path

	
Name of path to file items

	
filter

	
A filter, if any, to be applied

	
recurse

	
If 0, do not execute recursively. Otherwise, recursively search the contents of directories and files below the given directory.

	
asof

	
The "as of" timestamp at which the underlying read-only operation (or its read-only sub-components) executes

	
store_name

	
Name of store

	
principal

	
Agent (principal) invoking the current operation

Return Values

DBMS_DBFS_CONTENT_LIST_ITEMS_T

SETDEFAULTACL Procedure

This procedure sets the ACL parameter of the default context. This information can be inserted explicitly by way of argument into other method calls, allowing for a more fine-grained control.

Syntax

DBMS_DBFS_CONTENT.SETDEFAULTACL (
 acl IN VARCHAR2);

Parameters

Table 47-65 SETDEFAULTACL Procedure Parameters

	Parameter	Description
	
acl

	
ACL for all new elements created (implicitly or explicitly) by the current operation

Usage Notes

	
NULL by default, this parameter be can be cleared by setting it to NULL.

	
The parameters, once set, remain as a default for the duration of the session, and is inherited by all operations for which the default is not explicitly overridden.

SETDEFAULTASOF Procedure

This procedure sets the "as of" parameter of the default context. This information can be inserted explicitly by way of argument into other method calls, allowing for a more fine-grained control.

Syntax

DBMS_DBFS_CONTENT.SETDEFAULTASOF (
 asof IN TIMESTAMP);

Parameters

Table 47-66 SETDEFAULTASOF Procedure Parameters

	Parameter	Description
	
asof

	
The "as of" timestamp at which the underlying read-only operation (or its read-only sub-components) executes

Usage Notes

	
NULL by default, this parameter be can be cleared by setting it to NULL.

	
The parameters, once set, remain as a default for the duration of the session, and is inherited by all operations for which the default is not explicitly overridden.

SETDEFAULTCONTEXT Procedure

This procedure sets the default context. The information contained in the context can be inserted explicitly by way of arguments to the various method calls, allowing for fine-grained control over individual operations.

Syntax

DBMS_DBFS_CONTENT.SETDEFAULTCONTEXT (
 principal IN VARCHAR2,
 owner IN VARCHAR2,
 acl IN VARCHAR2,
 asof IN TIMESTAMP);

Parameters

Table 47-67 SETDEFAULTCONTEXT Procedure Parameters

	Parameter	Description
	
principal

	
Agent (principal) invoking the current operation

	
owner

	
Owner for new elements created (implicitly or explicitly) by the current operation

	
acl

	
ACL for all new elements created (implicitly or explicitly) by the current operation

	
asof

	
The "as of" timestamp at which the underlying read-only operation (or its read-only sub-components) executes

Usage Notes

	
All of the context parameters are NULL by default, and be can be cleared by setting them to NULL.

	
The context parameters, once set, remain as defaults for the duration of the session, and are inherited by all operations for which the defaults are not explicitly overridden.

SETDEFAULTOWNER Procedure

This procedure sets the "owner" parameter of the default context. This information can be inserted explicitly by way of argument into other method calls, allowing for a more fine-grained control.

Syntax

DBMS_DBFS_CONTENT.SETDEFAULTOWNER (
 principal IN VARCHAR2);

Parameters

Table 47-68 SETDEFAULTOWNER Procedure Parameters

	Parameter	Description
	
owner

	
Owner for new elements created (implicitly or explicitly) by the current operation

Usage Notes

	
NULL by default, this parameter be can be cleared by setting it to NULL.

	
The parameters, once set, remain as a default for the duration of the session, and is inherited by all operations for which the default is not explicitly overridden.

SETDEFAULTPRINCIPAL Procedure

This procedure sets the "principal" parameter of the default context. This information contained can be inserted explicitly by way of argument into other method calls, allowing for a more fine-grained control.

Syntax

DBMS_DBFS_CONTENT.SETDEFAULTPRINCIPAL (
 principal IN VARCHAR2);

Parameters

Table 47-69 SETDEFAULTPRINCIPAL Procedure Parameters

	Parameter	Description
	
principal

	
Agent (principal) invoking the current operation

Usage Notes

	
NULL by default, this parameter be can be cleared by setting it to NULL.

	
The parameters, once set, remain as a default for the duration of the session, and is inherited by all operations for which the default is not explicitly overridden.

SETPATH Procedures

This procedure assigns a path name to a path item represented by contentID.

Stores and their providers that support contentID-based access and lazy path name binding also support the SETPATH Procedure that associates an existing contentID with a new path.

	
Note:

See "Rename and Move Operations"

Syntax

DBMS_DBFS_CONTENT.SETPATH (
 store_name IN VARCHAR2,
 contentID IN RAW,
 path IN VARCHAR2,
 properties IN OUT NOCOPY DBMS_DBFS_CONTENT_PROPERTIES_T,
 principal IN VARCHAR2 DEFAULT NULL);

DBMS_DBFS_CONTENT.SETPATH (
 store_name IN VARCHAR2,
 contentID IN RAW,
 path IN VARCHAR2,
 properties IN OUT NOCOPY PROPERTIES_T,
 principal IN VARCHAR2 DEFAULT NULL);

Parameters

Table 47-70 SETPATH Procedure Parameters

	Parameter	Description
	
store_name

	
Name of the store

	
contentID

	
Unique identifier for the item to be associated

	
path

	
Name of path to path item

	
properties

	
One or more properties and their values to be set depending on prop_flags (see DBMS_DBFS_CONTENT_PROPERTIES_T Table Type)

	
principal

	
Agent (principal) invoking the current operation

SETSTATS Procedure

This procedure enables and disables statistics collection. The client can optionally control the flush settings by specifying non-NULL values for the time, count or both parameters.

Syntax

DBMS_DBFS_CONTENT.SETSTATS (
 enable IN BOOLEAN,
 flush_time IN INTEGER,
 flush_count IN INTEGER);

Parameters

Table 47-71 SETSTATS Procedure Parameters

	Parameter	Description
	
enable

	
If TRUE, enable statistics collection. If FALSE, disable statistics collection.

	
flush_time

	
How often to flush the statistics to disk in centiseconds

	
flush_count

	
Number of operations to allow between statistics flushes

Usage Notes

The SETSTATS Procedure buffers statistics in-memory for a maximum of flush_time centiseconds or a maximum of flush_count operations (whichever limit is reached first), or both, at which time the buffers are implicitly flushed to disk.

SETTRACE Procedure

This procedure sets the DBMS_DBFS_CONTENT tracing severity to the given level, 0 being "off".

Syntax

DBMS_DBFS_CONTENT.SETTRACE
 trclvl IN INTEGER);

Parameters

Table 47-72 SETTRACE Procedure Parameters

	Parameter	Description
	
trclvl

	
Level of the tracing, higher values implying more tracing

SPACEUSAGE Procedure

This procedure queries file system space usage statistics. Providers are expected to support this subprogram for their stores (and to make a best effort determination of space usage, especially if the store consists of multiple tables, indexes, LOBs, and so on).

Syntax

DBMS_DBFS_CONTENT.SPACEUSAGE (
 path IN VARCHAR2,
 blksize OUT INTEGER,
 tbytes OUT INTEGER,
 fbytes OUT INTEGER,
 nfile OUT INTEGER,
 ndir OUT INTEGER,
 nlink OUT INTEGER,
 nref OUT INTEGER,
 store_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 47-73 SPACEUSAGE Procedure Parameters

	Parameter	Description
	
path

	
Name of path to file items

	
blksize

	
Natural tablespace blocksize that holds the store. If multiple tablespaces with different blocksizes are used, any valid blocksize is acceptable.

	
tbytes

	
Total size of the store in bytes computed over all segments that comprise the store

	
fbytes

	
Free or unused size of the store in bytes computed over all segments that comprise the store

	
nfile

	
Number of currently available files in the store

	
ndir

	
Number of currently available directories in the store

	
nlink

	
Number of currently available links in the store

	
nref

	
Number of currently available references in the store

	
store_name

	
Name of store

Usage Notes

	
A space usage query on the top-level root directory returns a combined summary of the space usage of all available distinct stores under it (if the same store is mounted multiple times, is still counted only once).

	
Since database objects are dynamically expandable, it is not easy to estimate the division between "free" space and "used" space.

TRACE Procedure

This procedure outputs tracing to the current foreground trace file.

Syntax

DBMS_DBFS_CONTENT.TRACE
 sev IN INTEGER,
 msg0 IN VARCHAR2,
 msg1 IN VARCHAR DEFAULT '',
 msg2 IN VARCHAR DEFAULT '',
 msg3 IN VARCHAR DEFAULT '',
 msg4 IN VARCHAR DEFAULT '',
 msg5 IN VARCHAR DEFAULT '',
 msg6 IN VARCHAR DEFAULT '',
 msg7 IN VARCHAR DEFAULT '',
 msg8 IN VARCHAR DEFAULT '',
 msg9 IN VARCHAR DEFAULT '',
 msg10 IN VARCHAR DEFAULT '');

Parameters

Table 47-74 TRACE Procedure Parameters

	Parameter	Description
	
sev

	
Severity at which trace message is output

	
msg*

	
One or more message strings to be output. If more than one message is specified, all are output.

Usage Notes

	
Trace information is written to the foreground trace file, with varying levels of detail as specified by the trace level arguments.

	
The global trace level consists of 2 components: "severity" and "detail". These can be thought of as additive bitmasks.

The "severity" allows the separation of top level as compared to low-level tracing of different components, and allows the amount of tracing to be increased as needed. There are no semantics associated with different levels, and users are free to set trace at any severity they choose, although a good rule of thumb would use severity "1" for top level API entry and exit traces, "2" for internal operations, and "3" or greater for very low-level traces.

The "detail" controls how much additional information: timestamps, short-stack, etc. is dumped along with each trace record.

TRACEENABLED Function

This function determines if the current trace "severity" set by the SETTRACE Procedure is at least as high as the given trace level.

Syntax

DBMS_DBFS_CONTENT.TRACEENABLED(
 sev IN INTEGER)
 RETURN INTEGER;

Parameters

Table 47-75 TRACEENABLED Procedure Parameters

	Parameter	Description
	
sev

	
Severity at which trace message is output

Return Values

Returns 0 if the requested severity level is lower than the currently set trace severity level; 1 otherwise.

UNLOCKPATH Procedure

This procedure unlocks path items that were previously locked with the LOCKPATH Procedure.

Syntax

DBMS_DBFS_CONTENT.UNLOCKPATH (
 path IN VARCHAR2,
 store_name IN VARCHAR2 DEFAULT NULL,
 principal IN VARCHAR2 DEFAULT NULL);

Parameters

Table 47-76 UNLOCKPATH Procedure Parameters

	Parameter	Description
	
path

	
Name of path to file items

	
store_name

	
Name of store

	
principal

	
Agent (principal) invoking the current operation

UNMOUNTSTORE Procedure

This procedure unmounts a registered store, either by name or by mount point.

Syntax

DBMS_DBFS_CONTENT.UNMOUNTSTORE (
 store_name IN VARCHAR2 DEFAULT NULL,
 store_mount IN VARCHAR2 DEFAULT NULL,
 ignore_unknown IN BOOLEAN DEFAULT FALSE);

Parameters

Table 47-77 UNMOUNTSTORE Procedure Parameters

	Parameter	Description
	
store_name

	
Name of store

	
store_mount

	
Location at which the store instance is mounted

	
ignore_unknown

	
If TRUE, attempts to unregister unknown stores will not raise an exception.

Usage Notes

	
Single stores can be unmounted only by store name (since they have no mount-points).

	
Attempting to unmount a store by name unmounts all mount points associated with the store.

	
Once unmounted all access to the store (or mount point) are not guaranteed to work.

	
If the ignore_unknown argument is TRUE, attempts to unregister unknown stores or mounts do not raise an exception.

UNREGISTERSTORE Procedure

This procedure unregisters a previously registered store (invalidating all mount points associated with it).

Syntax

DBMS_DBFS_CONTENT.UNREGISTERSTORE (
 store_name IN VARCHAR2,
 ignore_unknown IN BOOLEAN DEFAULT FALSE);

Parameters

Table 47-78 UNREGISTERSTORE Procedure Parameters

	Parameter	Description
	
store_name

	
Name of store

	
ignore_unknown

	

Usage Notes

	
Once unregistered all access to the store (and its mount points) are not guaranteed to work

	
If the ignore_unknown argument is TRUE, attempts to unregister unknown stores do not raise an exception.

48 DBMS_DBFS_CONTENT_SPI

The DBMS_DBFS_CONTENT_SPI package provides the Application Programming Interface (API) specification for DBMS_DBFS_CONTENT service providers. Application designers can create PL/SQL packages conforming to this API to extend DBMS_CONTENT to utilize custom service providers.

	
See Also:

	
Oracle Database SecureFiles and Large Objects Developer's Guide

This chapter contains the following topics:

	
Using DBMS_DBFS_CONTENT_SPI

	
Overview

	
Security Model

	
Operational Notes

	
Summary of DBMS_DBFS_CONTENT_SPI Subprograms

Using DBMS_DBFS_CONTENT_SPI

	
Overview

	
Security Model

	
Operational Notes

Overview

The DBMS_DBFS_CONTENT_SPI package describes an internal contract between the implementation of the DBMS_DBFS_CONTENT interface and individual service providers, and whichever package contains their code.

Since PL/SQL does not allow a compile-time, declarative type-conformation between package signatures, store providers should informally conform to the SPI, which is to say, they should implement the SPI by means of a package that contains all of the methods specified in package DBMS_DBFS_CONTENT_SPI, with the same method signatures and semantics.

Obviously, these provider packages can implement other methods and expose other interfaces, however, these interfaces are not to be used by the DBMS_CONTENT interface itself.

Since the provider SPI is merely a contract specification, there is no package body for DBMS_DBFS_CONTENT_SPI, and it is not possible to actually invoke any methods using this package.

The SPI references various elements (constants, types, exceptions) defined by the DBMS_CONTENT interface.

Additionally, there is an almost one-to-one correspondence between the client API exported by the DBMS_CONTENT interface and the provider interface that the DBMS_CONTENT interface itself expects to work against.

The main distinction in the method naming conventions is that all path name references are always store-qualified. That is, the notion of mount-points and full-absolute path names have been normalized and converted to store-qualified path names by the DBMS_CONTENT interface before it invokes any of the provider SPI methods.

Since the interconnection of the DBMS_DBFS_CONTENT interface and the provider SPI is a 1-to-many pluggable architecture, and the interface uses dynamic SQL to invoke methods in the provider SPI, this can lead to runtime errors.

Security Model

Implementations of the DBMS_DBFS_CONTENT_SPI package should be created as AUTHID CURRENT_USER.

Operational Notes

	
Implementation

	
Path Names

	
Creation Operations

	
Deletion Operations

	
Get (Retrieve) and Put (Insert) Operations

	
Rename and Move Operations

	
Directory Navigation and Search

	
Locking Operations

	
Access Check Operation

Implementation

Since the interconnection of the DBMS_DBFS_CONTENT interface and the provider SPI is a 1-to-many pluggable architecture, the interface uses dynamic SQL to invoke methods in the provider SPI, this can lead to runtime errors.

There are no explicit INIT or FINI methods to indicate when the DBMS_DBFS_CONTENT interface plugs or unplugs a particular provider SPI. Provider SPIs must be willing to auto-initialize themselves at any SPI entry-point.

All operations performed by a service provider are "stateless" in that they are complete operations unto themselves. If state is necessary to be maintained for some reason, then the state must be maintained in data structures such as auxiliary tables that can be queried as needed.

Path Names

All path names used in the provider SPI are store-qualified in pair form (store_name, pathname) where the path name is rooted within the store namespace.

Stores and their providers that support contentID-based access (see FEATURE_CONTENT_ID in DBMS_DBFS_CONTENT Constants - Store Features) also support a form of addressing that is not based on path names. Content items are identified by an explicit store name, a NULL path name, and possibly a contentID specified as a parameter or by way of the OPT_CONTENT_ID (seeDBMS_DBFS_CONTENT Constants - Optional Properties) property.

Not all operations are supported with contentID-based access, and applications should depend only on the simplest create or delete functionality being available.

Creation Operations

The provider SPI must allow the DBFS content API to create directory, file, link, and reference elements subject to store feature support.

All of the creation subprograms require a valid path name, but note the special exemption for contentID-based access. Creation subprograms can optionally specify properties to be associated with the path name as it is created. It is also possible for clients to returns item properties after the creation completes so that automatically generated properties, such as STD_CREATION_TIME (see DBMS_DBFS_CONTENT Constants - Standard Properties) are immediately available to clients. The exact set of properties fetched back is controlled by the various PROP_XXX bitmasks in the prop_flags parameter.

Links and references require an additional path name to associate with the primary path name.

File path names can optionally specify a BLOB value to use to initially populate the underlying file content (the provided BLOB may be any valid LOB). On creation, the underlying LOB is returned to the client, provided that PROP_DATA is specified in the prop_flags parameter.

Non-directory path names require that their parent directory be created first. Directory path names themselves can be recursively created with the path name hierarchy leading up to a directory created in one call.

Attempts to create paths that already exist is an error; the sole exception is path names that are "soft-deleted" (as discussed in the context of Deletion Operations) In these cases, the soft-deleted item is implicitly purged, and the new item creation is attempted.

Stores and their providers that support contentID-based access accept an explicit store name and a NULL path to create a new content element. The contentID generated for this element is available by means of the OPT_CONTENT_ID property (see DBMS_DBFS_CONTENT Constants - Optional Properties), contentID-based creation being automatically implied by PROP_OPT property in the prop_flags parameter).

The newly created element may also have an internally generated path name if FEATURE_LAZY_PATH property is not supported (see DBMS_DBFS_CONTENT Constants - Store Features) and this path is available by way of the STD_CANONICAL_PATH property (see DBMS_DBFS_CONTENT Constants - Standard Properties).

Only file elements are candidates for contentID-based access.

Deletion Operations

The provider SPI must allow the DBFS content API to delete directory, file, link, and reference elements (subject to store feature support).

By default, the deletions are permanent, removing the successfully deleted items on transaction commit, but stores may also support "soft-delete" features. If requested by the client, soft-deleted items are retained by the store, although they are not typically visible in normal listings or searches.

Soft-deleted items can be restored, or explicitly purged.

Directory path names can be recursively deleted, with the path name hierarchy below a directory deleted in one call. Non-recursive deletions can be performed only on empty directories. Recursive soft-deletions apply the soft-delete to all of the items being deleted.

Individual path names, as well as all soft-deleted path names under a directory, can be restored or purged by means of the various restore and purge subprograms.

Providers that support filtering can use the provider filter to identify subsets of items to delete. This makes most sense for bulk operations such as the DELETEDIRECTORY Procedure, PURGEALL Procedure, and RESTOREALL Procedure, but all of the deletion-related operations accept a filter argument.

Stores and their providers that support contentID-based access can also allow file items to be deleted by specifying their contentID.

Get (Retrieve) and Put (Insert) Operations

Existing path items can be accessed (for query or for update) and modified using simple get and put subprograms. All path names allow their metadata (properties) to be read and modified. On completion of the call, the client can request specific properties to be fetched by means of the prop_flags parameter.

File path names allow their data (content) to be read and modified. On completion of the call, the client can use the PROP_DATA bitmasks in the prop_flags parameter to request a new BLOB locator to continue data access.

Files can also be read or written without using BLOB locators by explicitly specifying logical offsets or buffer-amounts and a suitably sized buffer.

Update accesses must specify the forUpdate flag. Access to link path names can be implicitly and internally de-referenced by stores (subject to feature support) if the deref flag is specified, however, this may have undetermined outcomes since symbolic links are not always resolvable.

The read methods, such as the GETPATH Procedures where forUpdate is specified as 0, also accepts a valid asof timestamp in the ctx parameter that can be used by stores to implement "as of" style flashback queries. Mutating versions of the GETPATH Procedures and the PUTPATH Procedures methods do not support "as of" modes of operation.

The GETPATHNOWAIT Procedure implies that the operation is for an update, and, if implemented (see FEATURE_NOWAIT in DBMS_DBFS_CONTENT Constants - Store Features), this allows providers to return an exception (ORA-00054) rather than wait for row locks.

Rename and Move Operations

Path names can be renamed or moved, possibly across directory hierarchies and mount-points, but within the same store.

Non-directory path names previously accessible by way of specifying the oldPath parameter are renamed as a single item subsequently accessible by specifying newPath, assuming that newPath does not already exist.

If newPath exists and is not a directory, the action of renaming implicitly deletes the existing item before renaming oldPath. If the newPath exists and is a directory, oldPath is moved into the target directory.

Directory path names previously accessible by way of oldPath are renamed by moving the directory and all of its children to newPath (if it does not already exist) or as children of newPath (if it exists and is a directory).

Stores and their providers that support contentID-based access and lazy path name binding also support the SETPATH Procedure that associates an existing contentID with a new "path".

Directory Navigation and Search

The DBMS_CONTENT interface can list or search the contents of directory path names, with the option of doing so recursively into sub-directories, optionally seeing soft-deleted items, optionally using flashback "as of" a provided timestamp, and optionally filtering items in or out within the store based on list or search predicates.

Locking Operations

Clients of the DBMS_CONTENT interface can apply user-level locks to any valid path name (subject to store feature support), associate the lock with user-data, and subsequently unlock these path names.

The status of locked items is available using various optional properties (note the previous discussion regarding opt_lock).

It is the responsibility of the store (assuming it supports user-defined lock checking) to ensure that lock and unlock operations are performed in a consistent manner.

Access Check Operation

This operation ascertains if a given path name (store_name, path, pathtype) can be manipulated by operation (see the various DBMS_CONTENT.OP_XXX opcodes in DBMS_DBFS_CONTENT Constants - Optional Properties) by the user acting on the store utilizing the principal parameter. This is a convenience function for the DBMS_CONTENT interface; a store that supports access control still internally performs these checks to guarantee security.

Summary of DBMS_DBFS_CONTENT_SPI Subprograms

Table 48-1 DBMS_DBFS_CONTENT_SPI Package Subprograms

	Subprogram	Description
	
CHECKACCESS Function

	
Reports if the user (principal) can perform the specified operation on the given path

	
CREATEDIRECTORY Procedure

	
Creates a directory

	
CREATEFILE Procedure

	
Creates a file

	
CREATELINK Procedure

	
Creates a physical link to an already existing file system element

	
CREATEREFERENCE Procedure

	
Creates a new reference to the source file system element

	
DELETECONTENT Procedure

	
Deletes the file specified by the given contentID

	
DELETEDIRECTORY Procedure

	
Deletes a directory

	
DELETEFILE Procedure

	
Deletes a file

	
GETFEATURES Function

	
Returns the features of a store

	
GETPATH Procedures

	
Returns existing path items (such as files and directories)

	
GETPATHBYSTOREID Function

	
If the underlying GUID is found in the underlying store, returns the store-qualified path name

	
GETPATHNOWAIT Procedure

	
Implies that the operation is for an update, and, if implemented, allows providers to return an exception (ORA-00054) rather than wait for row locks.

	
GETSTOREID Function

	
Returns the ID of a store

	
GETVERSION Function

	
Returns the version associated with a store

	
LIST Function

	
Lists the contents of a directory path name

	
LOCKPATH Procedure

	
Applies user-level locks to the given valid path name

	
PURGEALL Procedure

	
Purges all soft-deleted entries matching the path and optional filter criteria

	
PURGEPATH Procedure

	
Purges any soft-deleted versions of the given path item

	
PUTPATH Procedures

	
Creates a new path item

	
RENAMEPATH Procedure

	
Renames or moves a path

	
RESTOREALL Procedure

	
Restores all soft-deleted path items meeting the path and filter criteria

	
RESTOREPATH Procedure

	
Restores all soft-deleted path items that match the given path and filter criteria

	
SEARCH Function

	
Searches for path items matching the given path and filter criteria

	
SETPATH Procedure

	
Assigns a path name to a path item represented by contentID

	
SPACEUSAGE Procedure

	
Queries file system space usage statistics

	
UNLOCKPATH Procedure

	
Unlocks path items that were previously locked with the LOCKPATH Procedure

CHECKACCESS Function

This function reports if the user (principal) can perform the specified operation on the given path. This enables verifying the validity of an operation without attempting to perform the operation. If CHECKACCESS returns 0, then the subprogram invoked to implement that operation should fail with an error.

Syntax

DBMS_DBFS_CONTENT_SPI.CHECKACCESS (
 store_name IN VARCHAR2 DEFAULT NULL,
 path IN VARCHAR2,
 pathtype IN INTEGER,
 operation IN VARCHAR2,
 principal IN VARCHAR2)
 RETURN INTEGER;

Parameters

Table 48-2 CHECKACCESS Procedure Parameters

	Parameter	Description
	
store_name

	
Name of store

	
path

	
Name of path to check for access

	
pathtype

	
Type of object path represents (see DBMS_DBFS_CONTENT Constants - Path Name Types)

	
operation

	
Operation to be checked (see DBMS_DBFS_CONTENT Constants - Optional Properties)

	
principal

	
File system user for whom the access check is made

Usage Notes

Whether or not the user invokes this function, a store that supports access control internally performs these checks to guarantee security.

CREATEDIRECTORY Procedure

This procedure creates a directory.

Syntax

DBMS_DBFS_CONTENT_SPI.CREATEDIRECTORY (
 store_name IN VARCHAR2,
 path IN VARCHAR2,
 properties IN OUT NOCOPY DBMS_CONTENT_PROPERTIES_T,
 prop_flags IN INTEGER,
 recurse IN INTEGER,
 ctx IN DBMS_CONTENT_CONTEXT_T);

Parameters

Table 48-3 CREATEDIRECTORY Procedure Parameters

	Parameter	Description
	
store_name

	
Name of store

	
path

	
Name of path to the directory

	
properties

	
One or more properties and their values to be set, returned, or both, depending on prop_flags (see DBMS_DBFS_CONTENT_PROPERTIES_T Table Type)

	
prop_flags

	
Determines which properties are set, returned, or both. Default is PROP_STD. Specify properties to be returned by setting PROP_SPC (see DBMS_DBFS_CONTENT Constants - Property Access Flags), and providing an instance of the DBMS_DBFS_CONTENT_PROPERTIES_T Table Type with properties whose values are of interest.

	
recurse

	
If 0, do not execute recursively; otherwise, recursively create the directories above the given directory

	
ctx

	
Context with which to create the directory (see DBMS_DBFS_CONTENT_CONTEXT_T Object Type)

CREATEFILE Procedure

This procedure creates a file.

Syntax

DBMS_DBFS_CONTENT_SPI.CREATEFILE (
 store_name IN VARCHAR2,
 path IN VARCHAR2,
 properties IN OUT NOCOPY DBMS_CONTENT_PROPERTIES_T,
 content IN OUT NOCOPY BLOB,
 prop_flags IN INTEGER,
 ctx IN DBMS_CONTENT_CONTEXT_T);

Parameters

Table 48-4 CREATEFILE Procedure Parameters

	Parameter	Description
	
store_name

	
Name of store

	
path

	
Name of path to the file

	
properties

	
One or more properties and their values to be set, returned or both depending, or both on prop_flags (see DBMS_DBFS_CONTENT_PROPERTIES_T Table Type)

	
content

	
BLOB holding data with which to populate the file (optional)

	
prop_flags

	
Determines which properties are set, returned, or both. Default is PROP_STD. Specify properties to be returned by setting prop_spec, and providing an instance of the DBMS_DBFS_CONTENT_PROPERTIES_T Table Type with properties whose values are of interest.

	
ctx

	
Context with which to create the file (see DBMS_DBFS_CONTENT_CONTEXT_T Object Type)

CREATELINK Procedure

This procedure creates a physical link to an already existing file system element (such as file or directory). The resulting entry shares the same metadata structures as the value of the srcPath parameter, and so is similar to incrementing a reference count on the file system element. This is analogous to a UNIX file system hard link.

Syntax

DBMS_DBFS_CONTENT_SPI.CREATELINK (
 store_name IN VARCHAR2,
 srcPath IN VARCHAR2,
 dstPath IN VARCHAR2,
 properties IN OUT NOCOPY DBMS_CONTENT_PROPERTIES_T,
 prop_flags IN INTEGER,
 ctx IN DBMS_CONTENT_CONTEXT_T);

Parameters

Table 48-5 CREATELINK Procedure Parameters

	Parameter	Description
	
store_name

	
Name of store

	
srcPath

	
File system entry with which to link

	
dstPath

	
Path of the new link element to be created

	
properties

	
One or more properties and their values to be set, returned, or both, depending on prop_flags (see DBMS_DBFS_CONTENT_PROPERTIES_T Table Type)

	
prop_flags

	
Determines which properties are set, returned, or both. Default is PROP_STD. Specify properties to be returned by setting prop_spec, and providing an instance of the DBMS_DBFS_CONTENT_PROPERTIES_T Table Type with properties whose values are of interest.

	
ctx

	
Context with which to create the link (see DBMS_DBFS_CONTENT_CONTEXT_T Object Type)

CREATEREFERENCE Procedure

This procedure creates a new reference to the source file system element (such as a file, or directory). The resulting reference points to the source element but does not directly share metadata with the source element. This is analogous to a UNIX file system symbolic link.

Syntax

DBMS_DBFS_CONTENT_SPI.CREATEREFERENCE (
 srcPath IN VARCHAR2,
 dstPath IN VARCHAR2,
 properties IN OUT NOCOPY DBMS_CONTENT_PROPERTIES_T,
 prop_flags IN INTEGER,
 store_name IN VARCHAR2,
 ctx IN DBMS_CONTENT_CONTEXT_T);

Parameters

Table 48-6 CREATEREFERENCE Procedure Parameters

	Parameter	Description
	
store_name

	
Name of store

	
srcPath

	
File system entry with which to link

	
dstPath

	
Path of the new link element to be created

	
properties

	
One or more properties and their values to be set, returned, or both, depending on prop_flags (see DBMS_DBFS_CONTENT_PROPERTIES_T Table Type)

	
prop_flags

	
Determines which properties are set, returned, or both. Default is PROP_STD. Specify properties to be returned by setting prop_spec, and providing an instance of the DBMS_DBFS_CONTENT_PROPERTIES_T Table Type with properties whose values are of interest.

	
ctx

	
Context with which to create the reference (see DBMS_DBFS_CONTENT_CONTEXT_T Object Type)

DELETECONTENT Procedure

This procedure deletes the file specified by the given contentID.

Syntax

DBMS_DBFS_CONTENT_SPI.DELETECONTENT (
 store_name IN VARCHAR2,
 contentID IN RAW,
 filter IN VARCHAR2,
 soft_delete IN INTEGER,
 ctx IN DBMS_CONTENT_CONTEXT_T);

Parameters

Table 48-7 DELETECONTENT Procedure Parameters

	Parameter	Description
	
store_name

	
Name of store

	
contentID

	
Unique identifier for the file to be deleted

	
filter

	
A filter, if any, to be applied

	
soft_delete

	
If 0, execute a hard (permanent) delete. For any value other than 0, perform a soft delete (see "Deletion Operations").

	
ctx

	
Context with which to delete the file (see DBMS_DBFS_CONTENT_CONTEXT_T Object Type)

DELETEDIRECTORY Procedure

This procedure deletes a directory. If recurse is nonzero, it recursively deletes all elements of the directory. A filter, if supplied, determines which elements of the directory are deleted.

Syntax

DBMS_DBFS_CONTENT_SPI.DELETEDIRECTORY (
 store_name IN VARCHAR2,
 path IN VARCHAR2,
 filter IN VARCHAR2,
 soft_delete IN INTEGER,
 recurse IN INTEGER,
 ctx IN DBMS_CONTENT_CONTEXT_T);

Parameters

Table 48-8 DELETEDIRECTORY Procedure Parameters

	Parameter	Description
	
store_name

	
Name of store

	
path

	
Name of path to the directory

	
filter

	
A filter, if any, to be applied

	
soft_delete

	
If 0, execute a hard (permanent) delete. For any value other than 0, perform a soft delete (see "Deletion Operations").

	
recurse

	
If 0, do not execute recursively. Otherwise, recursively delete the directories and files below the given directory.

	
ctx

	
Context with which to delete the directory (see DBMS_DBFS_CONTENT_CONTEXT_T Object Type)

DELETEFILE Procedure

This procedure deletes the specified file.

Syntax

DBMS_DBFS_CONTENT_SPI.DELETEFILE (
 store_name IN VARCHAR2,
 path IN VARCHAR2,
 filter IN VARCHAR2,
 soft_delete IN BOOLEAN,
 ctx IN DBMS_CONTENT_CONTEXT_T);

Parameters

Table 48-9 DELETEFILE Procedure Parameters

	Parameter	Description
	
store_name

	
Name of store

	
path

	
Name of path to the file

	
filter

	
A filter, if any, to be applied

	
soft_delete

	
If 0, execute a hard (permanent) delete. For any value other than 0, perform a soft delete (see "Deletion Operations").

	
ctx

	
Context with which to delete the file (see DBMS_DBFS_CONTENT_CONTEXT_T Object Type)

GETFEATURES Function

This function returns the features of a store.

Syntax

DBMS_DBFS_CONTENT_SPI.GETFEATURES (
 store_name IN VARCHAR2)
 RETURN INTEGER;

Parameters

Table 48-10 GETFEATURES Function Parameters

	Parameter	Description
	
store_name

	
Name of store

Return Values

DBMS_CONTENT.FEATURE_* features supported by the Service Provider

GETPATH Procedures

This procedure returns existing path items (such as files and directories). This includes both data and metadata (properties).

The client can request (using prop_flags) that specific properties be returned. File path names can be read either by specifying a BLOB locator using the prop_data bitmask in prop_flags (see DBMS_DBFS_CONTENT Constants - Property Access Flags) or by passing one or more RAW buffers.

When forUpdate is 0, this procedure also accepts a valid "as of" timestamp parameter as part of ctx that can be used by stores to implement "as of" style flashback queries. Mutating versions of the GETPATH Procedures do not support these modes of operation.

Syntax

DBMS_DBFS_CONTENT_SPI.GETPATH (
 store_name IN VARCHAR2,
 path IN VARCHAR2,
 properties IN OUT NOCOPY DBMS_CONTENT_PROPERTIES_T,
 content OUT NOCOPY BLOB,
 item_type OUT INTEGER,
 prop_flags IN INTEGER,
 forUpdate IN INTEGER,
 deref IN INTEGER,
 ctx IN DBMS_CONTENT_CONTEXT_T);

DBMS_DBFS_CONTENT_SPI.GETPATH (
 store_name IN VARCHAR2,
 path IN VARCHAR2,
 properties IN OUT NOCOPY DBMS_CONTENT_PROPERTIES_T,
 amount IN OUT NUMBER,
 offset IN NUMBER,
 buffer OUT NOCOPY RAW,
 prop_flags IN INTEGER,
 ctx IN DBMS_CONTENT_CONTEXT_T);

DBMS_DBFS_CONTENT_SPI.GETPATH (
 store_name IN VARCHAR2,
 path IN VARCHAR2,
 properties IN OUT NOCOPY DBMS_CONTENT_PROPERTIES_T,
 amount IN OUT NUMBER,
 offset IN NUMBER,
 buffers OUT NOCOPY DBMS_CONTENT_RAW_T,
 prop_flags IN INTEGER,
 ctx IN DBMS_CONTENT_CONTEXT_T);

Parameters

Table 48-11 GETPATH Procedure Parameters

	Parameter	Description
	
store_name

	
Name of store

	
path

	
Name of path to path items

	
properties

	
One or more properties and their values to be returned depending on prop_flags (see DBMS_DBFS_CONTENT_PROPERTIES_T Table Type)

	
content

	
BLOB holding data which populates the file (optional)

	
item_type

	
Type of the path item specified (see DBMS_DBFS_CONTENT Constants - Path Name Types)

	
amount

	
On input, number of bytes to be read. On output, number of bytes read

	
offset

	
Byte offset from which to begin reading

	
buffer

	
Buffer to which to write

	
buffers

	
Buffers to which to write

	
prop_flags

	
Determines which properties are set, returned, or both. Default is PROP_STD. Specify properties to be returned by setting prop_spec, and providing an instance of the DBMS_DBFS_CONTENT_PROPERTIES_T Table Type with properties whose values are of interest.

	
forUpdate

	
Specifies that a lock should be taken to signify exclusive write access to the path item

	
deref

	
If nonzero, attempts to resolve the given path item to actual data provided it is a reference (symbolic link)

	
ctx

	
Context with which to access the path items (see DBMS_DBFS_CONTENT_CONTEXT_T Object Type)

GETPATHBYSTOREID Function

If the underlying GUID is found in the underlying store, this function returns the store-qualified path name.

Syntax

DBMS_DBFS_CONTENT_SPI.GETPATHBYSTOREID (
 store_name IN VARCHAR2,
 guid IN INTEGER)
 RETURN VARCHAR2;

Parameters

Table 48-12 GETPATHBYSTOREID Function Parameters

	Parameter	Description
	
store_name

	
Name of store

	
guid

	
Unique ID representing the desired path item

Return Values

Store-qualified path name represented by the GUID

Usage Notes

If the STD_GUID is unknown, a NULL value is returned. Clients are expected to handle this as appropriate.

GETPATHNOWAIT Procedure

This procedure implies that the operation is for an update, and, if implemented (see FEATURE_NOWAIT in DBMS_DBFS_CONTENT Constants - Store Features), allows providers to return an exception (ORA-00054) rather than wait for row locks.

Syntax

DBMS_DBFS_CONTENT_SPI.GETPATHNOWAIT (
 store_name IN VARCHAR2,
 path IN VARCHAR2,
 properties IN OUT NOCOPY DBMS_CONTENT_PROPERTIES_T,
 content OUT NOCOPY BLOB,
 item_type OUT INTEGER,
 prop_flags IN INTEGER,
 deref IN INTEGER,
 ctx IN DBMS_CONTENT_CONTEXT_T);

Parameters

Table 48-13 GETPATHNOWAIT Procedure Parameters

	Parameter	Description
	
store_name

	
Name of store

	
path

	
Name of path to path items

	
properties

	
One or more properties and their values to be returned depending on prop_flags (see DBMS_DBFS_CONTENT_PROPERTIES_T Table Type)

	
content

	
BLOB holding data which populates the file (optional)

	
item_type

	
Type of the path item specified (see DBMS_DBFS_CONTENT Constants - Path Name Types)

	
prop_flags

	
Determines which properties are returned. Default is PROP_STD. Specify properties to be returned by setting prop_spec, and providing an instance of the DBMS_DBFS_CONTENT_PROPERTIES_T Table Type with properties whose values are of interest.

	
deref

	
If nonzero, attempts to resolve the given path item to actual data provided it is a reference (symbolic link)

	
ctx

	
Context with which to access the path items (see DBMS_DBFS_CONTENT_CONTEXT_T Object Type)

GETSTOREID Function

This function returns the ID of a store.

Syntax

DBMS_DBFS_CONTENT_SPI.GETSTOREID (
 store_name IN VARCHAR2)
 RETURN NUMBER;

Parameters

Table 48-14 GETSTOREID Function Parameters

	Parameter	Description
	
store_name

	
Name of store

Return Values

ID of the Store

Usage Notes

A store ID identifies a provider-specific store, across registrations and mounts, but independent of changes to the store contents. For this reason, changes to the store table or tables should be reflected in the store ID, but re-initialization of the same store table or tables should preserve the store ID.

GETVERSION Function

This function returns the version associated with a store.

Syntax

DBMS_DBFS_CONTENT_SPI.GETVERSION (
 store_name IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Table 48-15 GETVERSION Function Parameters

	Parameter	Description
	
store_name

	
Name of store

Return Values

A "version" (either specific to a provider package, or to an individual store) based on a standard a.b.c naming convention (for major, minor, and patch components)

LIST Function

This function lists the contents of a directory path name.

The invoker of the subprogram has the option to investigate recursively into sub-directories, to make soft-deleted items visible, to use a flashback "as of" a specified timestamp, and to filter items within the store based on list predicates.

Syntax

DBMS_DBFS_CONTENT_SPI.LIST (
 store_name IN VARCHAR2,
 path IN VARCHAR2,
 filter IN VARCHAR2,
 recurse IN INTEGER,
 ctx IN DBMS_CONTENT_CONTEXT_T)
 RETURN DBMS_CONTENT_LIST_ITEMS_T PIPELINED;

Parameters

Table 48-16 LIST Function Parameters

	Parameter	Description
	
store_name

	
Name of respository

	
path

	
Name of path to directories

	
filter

	
A filter, if any, to be applied

	
recurse

	
If 0, do not execute recursively. Otherwise, recursively list the contents of directories and files below the given directory.

	
ctx

	
Context with which to access the path items (see DBMS_DBFS_CONTENT_CONTEXT_T Object Type)

Return Values

Path items found that match the path, filter and criteria for executing recursively (see DBMS_DBFS_CONTENT_LIST_ITEMS_T Table Type)

Usage Notes

This function returns only list items; the client is expected to explicitly use one of the GETPATH Procedures to access the properties or content associated with an item.

LOCKPATH Procedure

This procedure applies user-level locks to the given valid path name (subject to store feature support), and optionally associates user-data with the lock.

Syntax

DBMS_DBFS_CONTENT_SPI.LOCKPATH (
 store_name IN VARCHAR2,
 path IN VARCHAR2,
 lock_type IN INTEGER,
 lock_data IN VARCHAR2,
 ctx IN DBMS_CONTENT_CONTEXT_T);

Parameters

Table 48-17 LOCKPATH Procedure Parameters

	Parameter	Description
	
store_name

	
Name of store

	
path

	
Path name of items to be locked

	
lock_type

	
One of the available lock types (see DBMS_DBFS_CONTENT Constants - Lock Types)

	
lock_data

	
Optional user data to be associated with the lock

	
ctx

	
Context with which to access the path items (see DBMS_DBFS_CONTENT_CONTEXT_T Object Type)

Usage Notes

	
It is the responsibility of the store and its providers (assuming it supports user-defined lock checking) to ensure that lock and unlock operations are performed in a consistent manner.

	
The status of locked items is available by means of various optional properties (see OPT_LOCK* in DBMS_DBFS_CONTENT Constants - Optional Properties).

PURGEALL Procedure

This procedure purges all soft-deleted entries matching the path and optional filter criteria.

Syntax

DBMS_DBFS_CONTENT_SPI.PURGEALL (
 store_name IN VARCHAR2,
 path IN VARCHAR2,
 filter IN VARCHAR2,
 ctx IN DBMS_CONTENT_CONTEXT_T);

Parameters

Table 48-18 PURGEALL Procedure Parameters

	Parameter	Description
	
store_name

	
Name of store

	
path

	
Name of path to file items

	
filter

	
A filter, if any, to be applied based on specified criteria

	
ctx

	
Context with which to access the path items (see DBMS_DBFS_CONTENT_CONTEXT_T Object Type)

PURGEPATH Procedure

This procedure purges any soft-deleted versions of the given path item.

Syntax

DBMS_DBFS_CONTENT_SPI.PURGEPATH (
 path IN VARCHAR2,
 filter IN VARCHAR2,
 store_name IN VARCHAR2,
 ctx IN DBMS_CONTENT_CONTEXT_T);

Parameters

Table 48-19 PURGEPATH Procedure Parameters

	Parameter	Description
	
store_name

	
Name of store

	
path

	
Name of path to file items

	
filter

	
A filter, if any, to be applied

	
ctx

	
Context with which to access the path items (see DBMS_DBFS_CONTENT_CONTEXT_T Object Type)

PUTPATH Procedures

This procedure creates a new path item.

Syntax

DBMS_DBFS_CONTENT_SPI.PUTPATH (
 store_name IN VARCHAR2,
 path IN VARCHAR2,
 properties IN OUT NOCOPY DBMS_CONTENT_PROPERTIES_T,
 content IN OUT NOCOPY BLOB,
 item_type OUT INTEGER,
 prop_flags IN INTEGER,
 ctx IN DBMS_CONTENT_CONTEXT_T);

DBMS_DBFS_CONTENT_SPI.PUTPATH (
 store_name IN VARCHAR2,
 path IN VARCHAR2,
 properties IN OUT NOCOPY DBMS_CONTENT_PROPERTIES_T,
 amount IN NUMBER,
 offset IN NUMBER,
 buffer IN RAW,
 prop_flags IN INTEGER,
 ctx IN DBMS_CONTENT_CONTEXT_T);

DBMS_DBFS_CONTENT_SPI.PUTPATH (
 store_name IN VARCHAR2,
 path IN VARCHAR2,
 properties IN OUT NOCOPY DBMS_CONTENT_PROPERTIES_T,
 written OUT NUMBER,
 offset IN NUMBER,
 buffers IN DBMS_CONTENT_RAW_T,
 prop_flags IN INTEGER,
 ctx IN DBMS_CONTENT_CONTEXT_T);

Parameters

Table 48-20 PUTPATH Procedure Parameters

	Parameter	Description
	
store_name

	
Name of store

	
path

	
Path name of item to be put

	
properties

	
One or more properties and their values to be set depending on prop_flags (see DBMS_DBFS_CONTENT_PROPERTIES_T Table Type)

	
content

	
BLOB holding data which populates the file (optional)

	
item_type

	
Type of the path item specified (see DBMS_DBFS_CONTENT Constants - Path Name Types)

	
amount

	
Number of bytes to be read

	
written

	
Number of bytes written

	
offset

	
Byte offset from which to begin reading

	
buffer

	
Buffer to which to write

	
buffers

	
Buffers to which to write

	
prop_flags

	
Determines which properties are set. Default is PROP_STD. Specify properties to be returned by setting prop_spec, and providing an instance of the DBMS_DBFS_CONTENT_PROPERTIES_T Table Type with properties whose values are of interest.

	
ctx

	
Context with which to access the path items (see DBMS_DBFS_CONTENT_CONTEXT_T Object Type)

Usage Notes

	
All path names allow their metadata (properties) to be read and modified. On completion of the call, the client can access specific properties using prop_flags (see DBMS_DBFS_CONTENT Constants - Property Access Flags).

	
On completion of the call, the client can request a new BLOB locator that can be used to continue data access using the prop_data bitmask in prop_flags (see DBMS_DBFS_CONTENT Constants - Property Access Flags).

	
Files can also be written without using BLOB locators, by explicitly specifying logical offsets or buffer-amounts, and a suitably sized buffer.

RENAMEPATH Procedure

This procedure renames or moves a path. This operation can be performed across directory hierarchies and mount-points as long as it is within the same store.

	
Note:

See "Rename and Move Operations"

Syntax

DBMS_DBFS_CONTENT_SPI.RENAMEPATH (
 store_name IN VARCHAR2,
 oldPath IN VARCHAR2,
 newPath IN VARCHAR2,
 properties IN OUT NOCOPY DBMS_CONTENT_PROPERTIES_T,
 ctx IN DBMS_CONTENT_CONTEXT_T);

Parameters

Table 48-21 RENAMEPATH Procedure Parameters

	Parameter	Description
	
store_name

	
Name of store, must be unique

	
oldPath

	
Name of path prior to renaming

	
newPath

	
Name of path after renaming

	
properties

	
One or more properties and their values to be set depending on prop_flags (see DBMS_DBFS_CONTENT_PROPERTIES_T Table Type)

	
ctx

	
Context with which to access the path items (see DBMS_DBFS_CONTENT_CONTEXT_T Object Type)

RESTOREALL Procedure

This procedure restores all soft-deleted path items meeting the path and optional filter criteria.

Syntax

DBMS_DBFS_CONTENT_SPI.RESTOREALL (
 store_name IN VARCHAR2,
 path IN VARCHAR2,
 filter IN VARCHAR2,
 ctx IN DBMS_CONTENT_CONTEXT_T);

Parameters

Table 48-22 RESTOREALL Procedure Parameters

	Parameter	Description
	
store_name

	
Name of store

	
path

	
Name of path to path items

	
filter

	
A filter, if any, to be applied

	
ctx

	
Context with which to access the path items (see DBMS_DBFS_CONTENT_CONTEXT_T Object Type)

RESTOREPATH Procedure

This procedure restores all soft-deleted path items that match the given path and optional filter criteria.

Syntax

DBMS_DBFS_CONTENT_SPI.RESTOREPATH (
 store_name IN VARCHAR2,
 path IN VARCHAR2,
 filter IN VARCHAR2,
 ctx IN DBMS_CONTENT_CONTEXT_T);

Parameters

Table 48-23 RESTOREPATH Procedure Parameters

	Parameter	Description
	
store_name

	
Name of store

	
path

	
Name of path to path items

	
filter

	
A filter, if any, to be applied

	
ctx

	
Context with which to access the path items (see DBMS_DBFS_CONTENT_CONTEXT_T Object Type)

SEARCH Function

This function searches for path items matching the given path and filter criteria.

Syntax

DBMS_DBFS_CONTENT_SPI.SEARCH (
 store_name IN VARCHAR2,
 path IN VARCHAR2,
 filter IN VARCHAR2,
 recurse IN INTEGER,
 ctx IN DBMS_CONTENT_CONTEXT_T)
 RETURN DBMS_CONTENT_LIST_ITEMS_T PIPELINED;

Parameters

Table 48-24 LIST Function Parameters

	Parameter	Description
	
store_name

	
Name of store

	
path

	
Name of path to the path items

	
filter

	
A filter, if any, to be applied

	
recurse

	
If 0, do not execute recursively. Otherwise, recursively search the contents of directories and files below the given directory.

	
ctx

	
Context with which to access the path items (see DBMS_DBFS_CONTENT_CONTEXT_T Object Type)

Return Values

Path items matching the given path and filter criteria (see DBMS_DBFS_CONTENT_LIST_ITEMS_T Table Type)

SETPATH Procedure

This procedure assigns a path name to a path item represented by contentID.

Stores and their providers that support contentID-based access and lazy path name binding also support the SETPATH Procedure that associates an existing contentID with a new path.

	
Note:

See "Rename and Move Operations"

Syntax

DBMS_DBFS_CONTENT_SPI.SETPATH (
 store_name IN VARCHAR2,
 contentID IN RAW,
 path IN VARCHAR2,
 properties IN OUT NOCOPY DBMS_CONTENT_PROPERTIES_T,
 ctx IN DBMS_CONTENT_CONTEXT_T);

Parameters

Table 48-25 SETPATH Procedure Parameters

	Parameter	Description
	
store_name

	
Name of the store

	
contentID

	
Unique identifier for the item to be associated

	
path

	
Name of path to path item

	
properties

	
One or more properties and their values to be set depending on prop_flags (see DBMS_DBFS_CONTENT_PROPERTIES_T Table Type)

	
ctx

	
Context with which to access the path items (seE DBMS_DBFS_CONTENT_CONTEXT_T Object Type)

SPACEUSAGE Procedure

This procedure queries file system space usage statistics. Providers are expected to support this subprogram for their stores and to make a best effort determination of space usage, especially if the store consists of multiple tables, indexes, LOBs, and so on.

Syntax

DBMS_DBFS_CONTENT_SPI.SPACEUSAGE (
 store_name IN VARCHAR2,
 blksize OUT INTEGER,
 tbytes OUT INTEGER,
 fbytes OUT INTEGER,
 nfile OUT INTEGER,
 ndir OUT INTEGER,
 nlink OUT INTEGER,
 nref OUT INTEGER);

Parameters

Table 48-26 SPACEUSAGE Procedure Parameters

	Parameter	Description
	
store_name

	
Name of store

	
blksize

	
Natural tablespace blocksize that holds the store. If multiple tablespaces with different blocksizes are used, any valid blocksize is acceptable.

	
tbytes

	
Total size of the store in bytes computed over all segments that comprise the store

	
fbytes

	
Free or unused size of the store in bytes computed over all segments that comprise the store

	
nfile

	
Number of currently available files in the store

	
ndir

	
Number of currently available directories in the store

	
nlink

	
Number of currently available links in the store

	
nref

	
Number of currently available references in the store

Usage Notes

	
A space usage query on the top-level root directory returns a combined summary of the space usage of all available distinct stores under it (if the same store is mounted multiple times, it is still counted only once).

	
Since database objects are dynamically expandable, it is not easy to estimate the division between "free" space and "used" space.

UNLOCKPATH Procedure

This procedure unlocks path items that were previously locked with the LOCKPATH Procedure.

Syntax

DBMS_DBFS_CONTENT_SPI.UNLOCKPATH (
 store_name IN VARCHAR2,
 path IN VARCHAR2,
 ctx IN DBMS_CONTENT_CONTEXT_T);

Parameters

Table 48-27 UNLOCKPATH Procedure Parameters

	Parameter	Description
	
store_name

	
Name of store

	
path

	
Name of path to the path items

	
ctx

	
Context with which to access the path items (see DBMS_DBFS_CONTENT_CONTEXT_T Object Type)

49 DBMS_DBFS_HS

The Oracle Database File System Hierarchical Store is implemented in the DBMS_DBFS_HS package. This package provides users the ability to use tape or Amazon S3 Web service as a storage tier when doing Information Lifecycle Management for their database tables.

	
See Also:

	
Oracle Database SecureFiles and Large Objects Developer's Guide

This chapter contains the following topics:

	
Using DBMS_DBFS_HS

	
Overview

	
Security Model

	
Constants

	
Operational Notes

	
Summary of DBMS_DBFS_HS Subprograms

Using DBMS_DBFS_HS

	
Overview

	
Security Model

	
Constants

	
Operational Notes

Overview

The DBMS_DBFS_HS package is a service provider underneath the DBMS_DBFS_CONTENT package that enables use of tape or Amazon S3 Web service as storage for data.

The data on tape or Amazon S3 Web service is part of the Oracle Database and can be accessed through all standard interfaces, but only through the database. The package allows users to use tape or Amazon S3 Web service as a storage tier when doing Information Lifecycle Management of their content.

The package initially stores all content files in level-1 cache. As the level-1 cache fills up, content files are moved to level-2 cache and then to an external storage device using bulk writes.

Security Model

The DBMS_DBFS_HS package runs with invoker's rights.

Constants

The DBMS_DBFS_HS package uses the constants shown in following tables:

	
DBMS_DBFS_HS Constants - Used by the CREATESTORE Procedure

	
DBMS_DBFS_HS Constants - Used by the SETSTOREPROPERTY Procedure and the GETSTOREPROPERTY Function

	
DBMS_DBFS_HS Constants - Used by the REGISTERSTORECOMMAND Function

	
DBMS_DBFS_HS Constants - Failure/Success/Error

Table 49-1 DBMS_DBFS_HS Constants - Used by the CREATESTORE Procedure

	Constant	Type	Value	Description
	
STORETYPE_TAPE

	
VARCHAR2(50)

	
'HS_TAPE'

	
Use tape as a storage tier

	
STORETYPE_AMAZONS3

	
VARCHAR2(50)

	
'HS_S3'

	
Use Amazon S3 Web service as a storage tier

Table 49-2 DBMS_DBFS_HS Constants - Used by the SETSTOREPROPERTY Procedure and the GETSTOREPROPERTY Function

	Constant	Type	Value	Description
	
PROPNAME_BUCKET

	
VARCHAR2(50)

	
'BUCKET'

	
Specifies the AWS bucket to be used as a storage tier by the Hierarchical Store.

Restrictions on bucket name are:

1) Bucket names can only contain lowercase letters, numbers, periods (.) and dashes(-). Note that underscores (_) are invalid.

2) Bucket names must start with a number or letter.

3) Bucket names cannot be in an IP address style (192.168.5.4).

4) Bucket names must be between 3 and 63 characters long.

5) Bucket names should not end with a dash.

6) Dashes cannot appear next to periods. For example, my-.bucket.com is invalid.

	
PROPNAME_CACHESIZE

	
VARCHAR2(50)

	
'CACHE_SIZE'

	
Specifies the cumulative cache size used for the Hierarchical Store. This property is set by the CREATESTORE Procedure and can be modified by the RECONFIGCACHE Procedure. It cannot be modified by the SETSTOREPROPERTY Procedure, though its value can be queried by the GETSTOREPROPERTY Function.

	
PROPNAME_COMPRESSLEVEL

	
VARCHAR2(50)

	
'COMPRESSION_LEVEL'

	
Use to enable compression of files stored in the DBFS hierarchical store. It specifies the compression level to be used for compressing the files

	
PROPNAME_ENABLECLEANUPONDELETE

	
VARCHAR2(50)

	
'ENABLE_CLEANUP_ON_DELETE'

	
If this property is set to 'TRUE', whenever the user invokes the DELETEFILE Procedure in the DBMS_DBFS_CONTENT interface on a file residing in the DBMS_DBFS_HS store, the DBMS_DBFS_HS removes the file on the external storage that contains this user file provided that the file has no other useful data.By default, the property is set to 'TRUE' for STORETYPE_AMAZONS3 and 'FALSE' for STORETYPE_TAPE.

	
PROPNAME_HTTPPROXY

	
VARCHAR2(50)

	
'HTTP_PROXY'

	
Specifies the DNS name of the HTTP proxy, if any, that is needed to access the Amazon S3 storage service

	
PROPNAME_LICENSEID

	
VARCHAR2(50)

	
'LICENSE_ID'

	
Specifies the license ID associated with the library libosbws11.so.

	
PROPNAME_LOBCACHE_QUOTA

	
VARCHAR2(50)

	
'LOBCACHE_QUOTA'

	
Specifies fraction of the cache_size which is allocated for level 1 cache. The default value of this parameter is NULL which means that 0.8 (= 80%) of the cache_size is used for level 1 cache.

This property cannot be modified by the SETSTOREPROPERTY Procedurethough its value can be queried by the GETSTOREPROPERTY Function. Its value is set by CREATESTORE Procedure and can be modified by the RECONFIGCACHE Procedure.

	
PROPNAME_MEDIAPOOL

	
VARCHAR2(50)

	
'MEDIA_POOL'

	
Specifies the media pool number to use for storing the content

	
PROPVAL_COMPLVL_NONE

	
VARCHAR2(50)

	
'NONE'

	
Indicates no compression

	
PROPVAL_COMPLVL_LOW

	
VARCHAR2(50)

	
'LOW'

	
Use to set the compression level to LOW. This is expected to have the best performance while still providing a good compression ratio.

	
PROPVAL_COMPLVL_MEDIUM

	
VARCHAR2(50)

	
'MEDIUM'

	
Use to set the compression level to MEDIUM. This compression level is expected to provide better compression ratio than LOW but the time required for compression will be higher than compression level LOW.

	
PROPVAL_COMPLVL_HIGH

	
VARCHAR2(50)

	
'HIGH'

	
Use to set the compression level to HIGH. This compression level is expected to provide the best compression ratio but compression time will in general be highest among the 3 compression levels.

	
PROPNAME_OPTTARBALLSIZE

	
VARCHAR2(50)

	
'OPTIMAL_TARBALL_SIZE'

	
Specifies optimal_tarball_size as the maximum possible size of an archive file.

Multiple content files are bundled together into one archive file and then the archive file is transferred to tape or Amazon S3. This is because creating one file on tape or Amazon S3 for every content file in the store is a prohibitively expensive operation.

This property cannot be modified by the SETSTOREPROPERTY Procedurethough its value can be queried by the GETSTOREPROPERTY Function. Its value is set by CREATESTORE Procedure and can be modified by the RECONFIGCACHE Procedure.

	
PROPNAME_READCHUNKSIZE

	
VARCHAR2(50)

	
'READ_CHUNK_SIZE'

	
Specifies the size used by the SBT protocol to transfer data from tape or S3.This chunk is allocated in memory per transaction for retrieval of content files from an archive store, so the value of this property should be conservative. The default size of 1MB is typically good for most users.

	
PROPNAME_S3HOST

	
VARCHAR2(50)

	
'S3_HOST'

	
Specifies the HOST name of the Amazon S3 storage service. It must be s3.amazonaws.com.

	
PROPNAME_SBT_LIBRARY

	
VARCHAR2(50)

	
'SBT_LIBRARY'

	
Specifies the path of the shared library used by RMAN to communicate with Amazon S3. It is named libosbws11.so and is available in rdbms/lib directory.

	
PROPNAME_STREAMABLE

	
VARCHAR2(50)

	
'STREAMABLE'

	
Indicates whether buffer-based PUT or GET should be done on this store. Valid values for are TRUE and FALSE. The default value of this property is TRUE.

	
PROPNAME_WALLET

	
VARCHAR2(50)

	
'WALLET'

	
The value of this property should be of the form:

LOCATION=file:filename CREDENTIAL_ALIAS=access/secret_alias

PROXY_AUTH_ALIAS=proxyusername/password alias

Defines the Oracle Wallet which contains the credentials of the Amazon S3 account associated with the store under consideration.

LOCATION: The directory path that contains the Oracle wallet. The format is file:directory-path

The format of wallet_path in Windows is, for example:

file:c:\WINNT\Profiles\username\WALLETS

In UNIX or Linux it is, for example:

file:/home/username/wallets

When the package is executed in the Oracle database server, the wallet is accessed from the database server.

PASSWORD: Defines the wallet password. If auto-login is enabled in wallet (this can be changed using the OWM utility), this parameter does not have to be specified. By default, the mkstore utility enables auto-login.

CREDENTIAL_ALIAS: Defines the credential alias for ACCESS_KEY and SECRET_KEY

	
PROPNAME_WRITECHUNKSIZ

	
VARCHAR2(50)

	
'WRITE_CHUNK_SIZE'

	
Specifies the size used by the SBT protocol to transfer data to tape or S3.

This chunk is allocated in memory per transaction for PUT of Content Files to an archive store so the value should be conservative.

The default size of 1MB is typically good for most users.

Table 49-3 DBMS_DBFS_HS Constants - Used by the REGISTERSTORECOMMAND Function

	Constant	Type	Value	Description
	
BEFORE_PUT

	
NUMBER

	
'1'

	
Specified operation must be performed before writing a SECUREFILE to the remote store

	
BEFORE_GET

	
NUMBER

	
'2'

	
Specified operation must be performed before a retrieval operation such as reading a SECUREFILE from the remote device

Table 49-4 DBMS_DBFS_HS Constants - Failure/Success/Error

	Constant	Type	Value	Description
	
FAIL

	
NUMBER

	
'0'

	
Procedure or function did not execute successfully

	
SUCCESS

	
NUMBER

	
'1'

	
Procedure or function completed successfully

	
ERROR

	
NUMBER

	
'2'

	
Procedure or function returned an error

Operational Notes

When the DBMS_DBFS_HS package is executed in the Oracle database server, the wallet is accessed from the database server.

Summary of DBMS_DBFS_HS Subprograms

Table 49-5 DBMS_DBFS_HS Package Subprograms

	Subprogram	Description
	
CLEANUPUNUSEDBACKUPFILES Procedure

	
Removes files created on the external storage device that hold no currently used data

	
CREATEBUCKET Procedure

	
Creates an AWS bucket, associated with a store of type STORETYPE_AMAZONS3 into which the Hierarchical Store can then move data

	
CREATESTORE Procedure

	
Creates a new hierarchical store

	
DEREGSTORECOMMAND Function

	
Removes a command that had been previously associated with a store through the RECONFIGCACHE Procedure

	
DROPSTORE Procedure

	
Deletes a previously created hierarchical store

	
FLUSHCACHE Procedure

	
Flushes (writes out) dirty contents from the level-1 cache.

	
GETSTOREPROPERTY Function

	
Retrieves the values of a property of a store

	
RECONFIGCACHE Procedure

	
Reconfigures the parameters of the database cache used by the store

	
REGISTERSTORECOMMAND Procedure

	
Registers commands for a store with the Hierarchical Store to be sent to the Media Manager for the external storage device associated with the store

	
SENDCOMMAND Procedures

	
Sends a command to be executed on the external storage device's Media Manager

	
SETSTOREPROPERTY Procedure

	
Stores properties of a store in the database

	
STOREPUSH Procedure

	
Pushes locally staged data to the remote storage

CLEANUPUNUSEDBACKUPFILES Procedure

This procedure removes files created on the external storage device that hold no currently used data in them.

Syntax

DBMS_DBFS_HS.CLEANUPUNUSEDBACKUPFILES (
 store_name IN VARCHAR2);

Parameters

Table 49-6 CLEANUPUNUSEDBACKUPFILES Procedure Parameters

	Parameter	Description
	
store_name

	
Name of store

Usage Notes

	
The action of removing files from external storage device can not be rolled back.

	
This method can be executed periodically to clear space on the external storage device. Asynchronously deleting content from the external storage device is useful because it has minimal impact on the OLTP performance. The periodic scheduling can be accomplished using the DBMS_SCHEDULER package.

CREATEBUCKET Procedure

This procedure creates an AWS bucket, associated with a store of type STORETYPE_AMAZONS3 into which the Hierarchical Store can then move data.

Syntax

DBMS_DBFS_HS.CREATEBUCKET (
 store_name IN VARCHAR2);

Parameters

Table 49-7 CREATEBUCKET Procedure Parameters

	Parameter	Description
	
store_name

	
Name of store

Usage Notes

	
The PROPNAME_BUCKET property of the store should be set before this subprogram is called.

	
Once this procedure has successfully created a bucket in Amazon S3, the bucket can only be deleted using out-of-band methods, such as logging-in to S3 and deleting data (directories, files, and other items) for the bucket.

CREATESTORE Procedure

This procedure creates a new hierarchical store store_name of type STORE_TYPE (STORETYPE_TAPE or STORETYPE_AMAZONS3) in schema schema_name (defaulting to current schema) under the ownership of the invoking session user.

Syntax

DBMS_DBFS_HS.CREATESTORE (
 store_name IN VARCHAR2,
 store_type IN VARCHAR2,
 tbl_name IN VARCHAR2,
 tbs_name IN VARCHAR2,
 cache_size IN NUMBER,
 lob_cache_quota IN NUMBER DEFAULT NULL,
 optimal_tarball_size IN NUMBER DEFAULT NULL,
 schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 49-8 CREATESTORE Procedure Parameters

	Parameter	Description
	
store_name

	
Name of store

	
store_type

	
STORETYPE_TAPE or STORETYPE_AMAZONS3

	
tbl_name

	
Table for store entries

	
tbs_name

	
Tablespace for the store

	
cache_size

	
Amount of space used by the store to cache content in given tablespace

	
lob_cache_quota

	
Fraction of the cache_size which is allocated for level 1 cache. The default value of this parameter is NULL which means that 0.8 (= 80%) of the cache_size is used for level 1 cache.

	
optimal_tarball_size

	
Maximum possible size of the archive file.

Multiple content files are bundled together into one archive file, and then the archive file is transferred to tape or Amazon S3. This is because creating one file on tape or Amazon S3 for every content file in the store is a prohibitively expensive operation.

The value of is set by default to 10GB for tape and to 100MB for Amazon S3.

	
schema_name

	
Schema for the store

Usage Notes

	
Store names must be unique for an owner. The same store names can be used for different stores owned by different owners.

	
Once a table space has been specified to store the store's content in a database, it cannot be changed later.

	
This subprogram will execute like a DDL statement, performing an automatic COMMIT before and after execution.

	
Stores using DBMS_DBFS_HS must not use singleton mount. This means that the singleton parameter should be FALSE and the store_mount parameter should have a non-NULL value in a call to the DBMS_DBFS_CONTENT.MOUNTSTORE Procedure.

DEREGSTORECOMMAND Function

This procedure removes a command that had been previously associated with a store through the RECONFIGCACHE Procedure.

Syntax

DBMS_DBFS_HS.DEREGSTORECOMMAND (
 store_name IN VARCHAR2,
 message IN VARCHAR2);

Parameters

Table 49-9 DEREGSTORECOMMAND Procedure Parameters

	Parameter	Description
	
store_name

	
Name of store

	
message

	
Message to be deregistered

Usage Notes

If this subprogram successfully executes, its actions cannot be rolled back by the user. If the user wants to restore the previous state, the user must call the REGISTERSTORECOMMAND Procedure.

DROPSTORE Procedure

This procedure deletes a previously created hierarchical store specified by name and owned by the invoking session user.

Syntax

DBMS_DBFS_HS.DROPSTORE (
 store_name IN VARCHAR2,
 opt_flags IN INTEGER DEFAULT 0);

Parameters

Table 49-10 DROPSTORE Procedure Parameters

	Parameter	Description
	
store_name

	
Name of store owned by the invoking session user

	
opt_flags

	
User can specify optional flags. If DISABLE_CLEANUPBACKUPFILES is specified as one of the optional flags, the call to the CLEANUPUNUSEDBACKUPFILES Procedure is not issued. By default, when this flag is not set, the procedure implicitly cleans-up all unused backup files.

Usage Notes

	
The procedure executes like a DDL in that it auto-commits before and after its execution.

	
If CLEANUPBACKUPFILES is disabled during the procedure, the user must resort to out-of-band techniques to cleanup unused backup files. No further invocations of CLEANUPBACKFILES for a dropped store are possible through hierarchical store.

	
This subprogram will un-register the store from DBMS_DBFS_CONTENT package. All files in the given store are deleted from the store (Tape or Amazon S3 Web service). The database table holding the store's entries in the database, is also dropped by this subprogram.

FLUSHCACHE Procedure

This procedure flushes out dirty contents from level-1 cache, which can be locked, to level-2 cache, thereby freeing-up space in level 1 cache.

Syntax

DBMS_DBFS_HS.FLUSHCACHE (
 store_name IN VARCHAR2);

Parameters

Table 49-11 FLUSHCACHE Procedure Parameters

	Parameter	Description
	
store_name

	
Name of store

GETSTOREPROPERTY Function

This function retrieves the values of a property.

Syntax

DBMS_DBFS_HS.GETSTOREPROPERTY (
 store_name IN VARCHAR2,
 property_name IN VARCHAR2,
 noexcp IN BOOLEAN DEFAULT FALSE) RETURN VARCHAR2;

Parameters

Table 49-12 GETSTOREPROPERTY Function Parameters

	Parameter	Description
	
store_name

	
Name of store

	
property_name

	
Name of property

	
noexcp

	
If set to FALSE, raises an exception if the property does not exist in the database. If noexcp is set to TRUE, returns NULL if the property does not exist.

Return Values

The values of a property.

Usage Notes

The specified store must already have been created.

RECONFIGCACHE Procedure

This procedure reconfigures the parameters of the database cache being used by the store.

Syntax

DBMS_DBFS_HS.RECONFIGCACHE (
 store_name IN VARCHAR2,
 cache_size IN NUMBER DEFAULT NULL,
 lobcache_quota IN NUMBER DEFAULT NULL,
 optimal_tarball_size IN NUMBER DEFAULT NULL);

Parameters

Table 49-13 RECONFIGCACHE Procedure Parameters

	Parameter	Description
	
store_name

	
Name of store

	
cache_size

	
Cumulative cache size used for the Hierarchical Store

	
lobcache_quota

	
Fraction of the cache size that are assigned to level 1 cache

	
optimal_tarball_size

	
Maximum possible size of an archive file. Since creating one file for every content file in the store is a prohibitively expensive operation, multiple content files are bundled together into one archive file for transfer to tape or Amazon S3.

Usage Notes

	
The specified store must already have been created before reconfiguration.

	
The Hierarchical Store uses a level 1 cache and a level 2 cache. The level 1 cache subsumes most of the working set and the level 2 cache is used to perform bulk writes to the backend device.

	
If any of the last 3 parameters is NULL, its value specified during store creation is used. If the parameter was NULL when the call to the CREATESTORE Procedure was issued, the DBMS_DBFS_HS package assigns a default value.

The DBMS_DBFS_HS package optimistically tries to allocate more than 1 tarball's worth of size for level 2 cache to facilitate concurrency, though a minimum of 1 tarball size is necessary for level 2 cache.

The values for cumulative cache size and LOB cache quota decide allocation of space for the two caches. If values are not provided, a user might see an INSUFFICIENT_CACHE exception. In that case, it is better to revise the cache parameters in order to have a working store.

	
If this subprogram successfully executes, its actions cannot be rolled back by the user. In that case, the user should call RECONFIGCACHE again with new or modified parameters.

REGISTERSTORECOMMAND Procedure

This procedure registers commands for a store with the Hierarchical Store. These commands are sent to the Media Manager for the external storage device associated with the store.

Syntax

DBMS_DBFS_HS.REGISTERSTORECOMMAND (
 store_name IN VARCHAR2,
 message IN VARCHAR2,
 flags IN NUMBER);

Parameters

Table 49-14 REGISTERSTORECOMMAND Procedure Parameters

	Parameter	Description
	
store_name

	
Name of store

	
message

	
Message to be sent to the Media Manager of the external store

	
flags

	
Valid values:

	
BEFORE_PUT CONSTANT NUMBER := 1;

	
BEFORE_GET CONSTANT NUMBER := 2;

Usage Notes

	
These commands are sent before the next read or write of content. When the Hierarchical Store wants to push (or get) data to (or from) the storage device, it begins a session (to communicate with the device). After beginning the session, it sends all registered commands for the to the relevant device before writing (or getting) any data.

	
If this method successfully executes, its actions cannot be rolled back by the user. To restore the previous state the user must call the DEREGSTORECOMMAND Function.

SENDCOMMAND Procedures

This procedure sends a command to be executed on the external storage device's Media Manager.

Syntax

DBMS_DBFS_HS.SENDCOMMAND (
 store_name IN VARCHAR2,
 message IN VARCHAR2);

Parameters

Table 49-15 SENDCOMMAND Procedure Parameters

	Parameter	Description
	
store_name

	
Name of store

	
message

	
Message string to be executed

SETSTOREPROPERTY Procedure

This procedure stores properties of a store in the database as name-value pairs.

Syntax

DBMS_DBFS_HS.SETSTOREPROPERTY (
 store_name IN VARCHAR2,
 property_name IN VARCHAR2,
 property_value IN VARCHAR2);

Parameters

Table 49-16 SETSTOREPROPERTY Procedure Parameters

	Parameter	Description
	
store_name

	
Name of store

	
property_name

	
For a store using Tape device, there are three properties whose values must be set by the user, and four properties that have default values. Stores of type STORETYPE_AMAZONS3 have properties with default values. The various options for both types of stores are detailed under property_value.

	
property_value

	
Stores using a Tape Device

The values for the following properties must be set by the user:

	
PROPNAME_SBTLIBRARY - This should point to the shared library used by RMAN to communicate with the external tape device. It is usually named libobk.so.

	
PROPNAME_MEDIAPOOL - Media pool number for storing content

	
PROPNAME_CACHE_SIZE - Amount of space, in bytes, used for the cache of this store

The following properties, which have default values assigned to them when a store is created, benefit from tuning:

	
PROPNAME_READCHUNKSIZE and PROPNAME_WRITECHUNKSIZE - These are the sizes used by the SBT protocol to transfer data to and from the tapes. These chunks are allocated in memory per transaction, so the values should be conservative. The default size is 1MB.

	
PROPNAME_STREAMABLE – Indicates whether DBFS_LINKs can perform read operations (for example SELECT or DBMS_LOB.READ) directly from the store, or if the data must be copied back into the database before it can be read

	
PROPNAME_ENABLECLEANUPONDELETE - Indicates if unused files on the external storage device should be deleted by DBMS_DBFS_HS. Valid values for this property are 'FALSE' for STORETYPE_TAPE.

	
PROPNAME_COMPRESSLEVEL - Describes how files written to Tape should be compressed. It can be set to PROPVAL_COMPLVL_NONE, PROPVAL_COMPLVL_LOW, PROPVAL_COMPLVL_MEDIUM or PROPVAL_COMPLVL_HIGH. By default it is set to PROPVAL_COMPLVL_NONE.

	
(cont) property_value

	
Stores of type STORETYPE_AMAZONS3

It is mandatory that the following properties have assigned values, and default values are provided:

	
PROPNAME_SBTLIBRARY - Specifies the path of the shared library used by RMAN to communicate with Amazon S3. It is named libosbws11.so and is available in rdbms/lib directory.

	
PROPNAME_S3HOST - Defines the HOST name of the Amazon S3 storage service. It must be s3.amazonaws.com.

	
PROPNAME_BUCKET - Defines the AWS bucket used as a storage tier by the Hierarchical Store. Restrictions on bucket names are:

-- Bucket names can only contain lowercase letters, numbers, periods (.) and dashes (-). Use of an underscore (_) is invalid.

-- Bucket names must start with a number or letter

-- Bucket names cannot be in an IP address style ("192.168.5.4")

-- Bucket names must be between 3 and 63 characters in length

-- Bucket names should not end with a dash

-- Dashes cannot appear next to periods. For example, "my-.bucket.com" is invalid.

	
PROPNAME_LICENSEID - Specifies the license ID associated with the library libosbws11.so.

	
PROPNAME_WALLET - Has the form: 'LOCATION=file:<filename> CREDENTIAL_ALIAS=<access/secret_alias> PROXY_AUTH_ALIAS=<proxyusername/password alias>'

-- LOCATION - Directory path that contains the Oracle wallet. The format is file:directory-path. See Examples for variations in format.

-- PASSWORD - Defines the wallet password. If auto-login is enabled in the wallet (this can be changed using the user's own utility), and does not have to be specified. By default, the mkstore utility enables auto-login.

-- CREDENTIAL_ALIAS - Defines the credential alias for ACCESS_KEY and SECRET_KEY

-- PROXY_AUTH_ALIAS - Defines authentication credentials for the proxy server, if applicable.

	
(property_value (contd.)

	
The following properties are optional:

	
PROPNAME_HTTPPROXY - Defines the DNS name of the HTTP proxy, if any, that is needed to access the Amazon S3 storage service.

	
PROPNAME_STREAMABLE – Indicates whether buffer-based PUT or GET operation should be done on this store. Valid values for this property are TRUE (default) and FALSE.

	
PROPNAME_ENABLECLEANUPONDELETE - Indicates if unused files on the external storage device should be deleted by DBMS_DBFS_HS. Valid values for this property are 'FALSE' for STORETYPE_TAPE.

	
PROPNAME_COMPRESSLEVEL - Describes how files written to Tape should be compressed. It can be set to PROPVAL_COMPLVL_NONE, PROPVAL_COMPLVL_LOW, PROPVAL_COMPLVL_MEDIUM or PROPVAL_COMPLVL_HIGH. By default it is set to PROPVAL_COMPLVL_NONE.

Usage Notes

	
The specified store must already have been created.

	
If this subprogram successfully executes, its actions cannot be rolled back by the user.

	
The same property can be set multiple times to the same or different values using this subprogram

Examples

Format

The format of wallet_path in Windows is, for example:

file:c:\WINNT\Profiles\<username>\WALLETS

The format of wallet_path in UNIX or Linux is, for example:

file:/home/username/wallets

STOREPUSH Procedure

This procedure pushes locally staged data to the remote storage.

Syntax

DBMS_DBFS_HS.STOREPUSH (
 store_name IN VARCHAR2,
 path IN VARCHAR2 DEFAULT NULL);

Parameters

Table 49-17 STOREPUSH Procedure Parameters

	Parameter	Description
	
store_name

	
Name of store whose content the client writes from local cache to the external store

	
path

	
A non-mount qualified (without mount point) path within the store. By default, its value is NULL which corresponds to the root path of the store.

Usage Notes

	
The Hierarchical Store caches the content files locally in database tables. When enough content is amassed in the cache to make it efficient to write to the external storage device (or the cache is completely filled), the Hierarchical Store creates a tarball out of the local content and writes these tarballs as files on the external device. The size of the tarball created by the Hierarchical Store is controlled by the store property PROPNAME_OPTTARBALLSIZE.

	
When the amount of free space in the cache is such that the caching of a content file will push the space used above cache_size, the Hierarchical Store will internally call STOREPUSH. The STOREPUSH Procedure creates tarball(s) out of the existing dirty or modified content files in the cache and writes them out to the external device. A STOREPUSH call is not guaranteed to write all the dirty content from local cache to the external storage, since some files may be locked by other sessions.

	
STOREPUSH has a built-in ability feature allowing it to automatically resume operation. If a STOREPUSH call is interrupted (say by a network outage) after it has transferred some tarballs to the external device, it can be restarted after the outage and will then resume transferring data from the point it was interrupted. In other words, work done before the outage is not lost. STOREPUSH can safely be restarted and the effect is such as if the outage never occurred.

	
If this method successfully executes, its actions cannot be rolled back by the user.

	
By default, when path is NULL, all files in the store are candidates for STOREPUSH. If path has a valid input value, all files which are under the namespace of given path are written from the local cache to the external store. If a given path is an existing file, it is pushed out again to the remote store.

50 DBMS_DBFS_SFS

The DBMS_DBFS_SFS package provides an interface to operate a SecureFile-based store (SFS) for the content interface described in the DBMS_DBFS_CONTENT package.

	
See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide

This chapter contains the following topics:

	
Using DBMS_DBFS_SFS

	
Overview

	
Security Model

	
Constants

	
Summary of DBMS_DBFS_SFS Subprograms

Using DBMS_DBFS_SFS

	
Overview

	
Security Model

	
Constants

Overview

The DBMS_DBFS_SFS package is a sample implementation of a package that implements and extends the DBMS_DBFS_CONTENT_SPI interface. It provides a POSIX-compliant file system stored in the RDBMS.

Security Model

The DBMS_DBFS_SFS package runs with AUTHID CURRENT_USER.

Constants

The DBMS_DBFS_SFS package uses the constants shown in following tables:

	
DBMS_DBFS_SFS Constants - Compression Levels

	
DBMS_DBFS_SFS Constants - Used by the encryption Parameter

	
DBMS_DBFS_SFS Constants - Used by the npartitions Parameter

	
DBMS_DBFS_SFS Constants - Used by the partition_key Parameter

Table 50-1 DBMS_DBFS_SFS Constants - Compression Levels

	Constant	Type	Value	Description
	
COMPRESSION_DEFAULT

	
VARCHAR2(32)

	
''

	
Use the default SecureFile compression level

	
COMPRESSION_LOW

	
VARCHAR2(32)

	
'LOW'

	
Use compression level 'LOW'

	
COMPRESSION_MEDIUM

	
VARCHAR2(32)

	
'MEDIUM'

	
Use compression level 'MEDIUM'

	
COMPRESSION_HIGH

	
VARCHAR2(32)

	
'HIGH'

	
Use compression level 'HIGH'

Table 50-2 DBMS_DBFS_SFS Constants - Used by the encryption Parameter

	Constant	Type	Value	Description
	
ENCRYPTION_DEFAULT

	
VARCHAR2(32)

	
''

	
Use the default SecureFile encryption algorithm

	
ENCRYPTION_3DES168

	
VARCHAR2(32)

	
'3DES168'

	
Use encryption 3DES 168 bit

	
ENCRYPTION_AES128

	
VARCHAR2(32)

	
'AES128'

	
Use encryption AES 128 bit

	
ENCRYPTION_AES192

	
VARCHAR2(32)

	
'AES192'

	
Use encryption AES 192 bit

	
ENCRYPTION_AES256

	
VARCHAR2(32)

	
'AES256'

	
Use encryption AES 256 bit

Table 50-3 DBMS_DBFS_SFS Constants - Used by the npartitions Parameter

	Constant	Type	Value	Description
	
DEFAULT_PARTITIONS

	
INTEGER

	
16

	
Default to 16 partitions

Table 50-4 DBMS_DBFS_SFS Constants - Used by the partition_key Parameter

	Constant	Type	Value	Description
	
PARTITION_BY_ITEM

	
INTEGER

	
1

	
Use a hash of the item name for the partition key

	
PARTITION_BY_PATH

	
INTEGER

	
2

	
Use a hash of the path name for the partition key

	
PARTITION_BY_GUID

	
INTEGER

	
3

	
Use a hash of the GUID as the partition key

Summary of DBMS_DBFS_SFS Subprograms

Table 50-5 DBMS_DBFS_SFS Package Subprograms

	Subprogram	Description
	
CREATEFILESYSTEM Procedure

	
Creates a file system store

	
CREATESTORE Procedure

	
Creates a new DBFS SFS store

	
DROPFILESYSTEM Procedures

	
Drops the DBFS SFS store

	
INITFS Procedure

	
Initializes a POSIX file system store

CREATEFILESYSTEM Procedure

This procedure creates a file system store.

Syntax

DBMS_DBFS_SFS.CREATEFILESYSTEM (
 store_name IN VARCHAR2,
 schema_name IN VARCHAR2 DEFAULT NULL,
 tbl_name IN VARCHAR2 DEFAULT NULL,
 tbl_tbs IN VARCHAR2 DEFAULT NULL,
 lob_tbs IN VARCHAR2 DEFAULT NULL,
 use_bf IN BOOLEAN DEFAULT FALSE,
 properties IN DBMS_DBFS_CONTENT_PROPERTIES_T DEFAULT NULL,
 create_only IN BOOLEAN FALSE,
 use_objects IN BOOLEAN DEFAULT FALSE,
 with_grants IN BOOLEAN DEFAULT FALSE,
 do_dedup IN BOOLEAN DEFAULT FALSE,
 do_compress IN BOOLEAN DEFAULT FALSE
 compression IN VARCHAR2 DEFAULT COMPRESSION_DEFAULT,
 do_encrypt IN BOOLEAN DEFAULT FALSE,
 encryption IN VARCHAR2 DEFAULT ENCRYPTION_DEFAULT,
 do_partition IN BOOLEAN DEFAULT FALSE,
 npartitions IN NUMBER DEFAULTDEFAULT_PARTITIONS,
 partition_key IN NUMBER DEFAULT PARTITION_BY_ITEM,
 partition_guidi IN BOOLEAN DEFAULT FALSE,
 partition_pathi IN BOOLEAN DEFAULT FALSE,
 partition_prop IN BOOLEAN DEFAULT TRUE);

Parameters

Table 50-6 CREATEFILESYSTEM Procedure Parameters

	Parameter	Description
	
store_name

	
Name of store

	
schema_name

	
Schema for the store, defaulting to the current schema

	
tbl_name

	
Table for store entries. If not specified, an internally generated name is used.

	
tbl_tb

	
Tablespace for the store, defaulting to the schema's default tablespace

	
lob_tbs

	
Tablespace in which to create the LOB segment. It defaults to the user's default tablespace.

	
use_bf

	
If TRUE, a BasicFile LOB is used; otherwise a SecureFile LOB is used.

	
properties

	
Table of (name, value, typecode) tuples used to configure the store properties. Currently no such properties are defined or used.

	
create_only

	
If TRUE, the file system is created, but not registered with the current user

	
use_objects

	
If TRUE, a single base-table with an object-type column (using a nested table) is created to backup the new file system. Otherwise, a pair of (parent, child) tables is used to backup the file system. In both cases, the object type nested table or the child table is used only for user-defined properties.

	
with_grants

	
If TRUE, DML and query access permissions are granted to the DBFS_ROLE as part of creating the file system. Otherwise, explicit grants (or existing permissions) are required to access the file system.

	
do_dedup

	
If TRUE, do deduplication the underlying SecureFile column

	
do_compress

	
If TRUE, do compression the underlying SecureFile column

	
compression

	
Compression algorithm to use (see DBMS_DBFS_SFS Constants - Compression Levels)

	
do_encrypt

	
If TRUE, encrypt the underlying SecureFile column

	
encryption

	
encryption algorithm to use (see DBMS_DBFS_SFS Constants - Used by the encryption Parameter)

	
do_partition

	
If TRUE, partition the table used for storage

	
npartitions

	
Number of partitions to create for the table (see DBMS_DBFS_SFS Constants - Used by the npartitions Parameter).

	
partition_key

	
How to partition the table: by item name, by path name, or by GUID (see DBMS_DBFS_SFS Constants - Used by the partition_key Parameter).

	
partition_guidi

	
If TRUE, build an index on GUID

	
partition_pathi

	
If TRUE, build an index on path name

	
partition_prop

	
If TRUE, partition the properties table

Usage Notes

The procedure executes like a DDL in that it auto-commits before and after its execution.

CREATESTORE Procedure

This procedure creates a new DBFS SFS store owned by the invoking session user.

Syntax

DBMS_DBFS_SFS.CREATESTORE (
 store_name IN VARCHAR2,
 tbl_name IN VARCHAR2 DEFAULT NULL,
 tbs_name in VARCHAR2 DEFAULT NULL,
 use_bf in BOOLEAN DEFAULT FALSE,
 stgopts in VARCHAR2 DEFAULT '');

Parameters

Table 50-7 CREATESTORE Procedure Parameters

	Parameter	Description
	
store_name

	
Name of store

	
store_type

	
STORETYPE_TAPE or STORETYPE_AMAZONS3

	
tbl_name

	
Placeholder for the store content cached in database

	
tbs_name

	
Named tablespace

	
use_bf

	
If TRUE, a BasicFile LOB is used; otherwise a SecureFile LOB is used.

	
stgopts

	
Currently non-operational, reserved for future use

DROPFILESYSTEM Procedures

This procedure drops the DBFS SFS store, purging all dictionary information associated with the store, and dropping the underlying file system table.

Syntax

DBMS_DBFS_SFS.DROPFILESYSTEM (
 schema_name IN VARCHAR2 DEFAULT NULL,
 tbl_name IN INTEGER);

DBMS_DBFS_SFS.DROPFILESYSTEM (
 store_name IN VARCHAR2);

Parameters

Table 50-8 DROPFILESYSTEM Procedure Parameters

	Parameter	Description
	
schema_name

	
Name of schema

	
tbl_name

	
Name of tablespace

	
store_name

	
Name of store path

Usage Notes

	
If the specified store table is registered by the current user, it will be unregistered from the content interface described in the DBMS_DBFS_CONTENT package and the POSIX metadata tables.

	
Subsequent to unregistration, an attempt will be made to store table(s). This operation may fail if other users are currently using this store table.

	
The user attempting a drop of the tables underlying the store must actually have the privileges to complete the drop operation (either as the owner of the tables, or as a sufficiently privileged user for cross-schema operations).

	
The procedure executes like a DDL in that it auto-commits before and after its execution.

INITFS Procedure

This procedure initialize a POSIX file system store. The table associated with the POSIX file system store store_name is truncated and reinitialized with a single "root" directory entry.

Syntax

DBMS_DBFS_SFS.INITFS (
 store_name IN VARCHAR2);

Parameters

Table 50-9 INITFS Procedure Parameters

	Parameter	Description
	
store_name

	
Name of store

Usage Notes

The procedure executes like a DDL in that it auto-commits before and after its execution.

51 DBMS_DB_VERSION

The DBMS_DB_VERSION package specifies the Oracle version numbers and other information useful for simple conditional compilation selections based on Oracle versions.

	
See Also:

PL/SQL Users Guide and Reference regarding conditional compilation

This package contains the following topics

	
Using DBMS_DB_VERSION

	
Overview

	
Constants

	
Examples

Using DBMS_DB_VERSION

	
Overview

	
Constants

Overview

The DBMS_DB_VERSION package specifies the Oracle version numbers and other information useful for simple conditional compilation selections based on Oracle versions.

The package for the Oracle Database 11g Release 1 version is shown below.

PACKAGE DBMS_DB_VERSION IS
 VERSION CONSTANT PLS_INTEGER := 11; -- RDBMS version number
 RELEASE CONSTANT PLS_INTEGER := 1; -- RDBMS release number
 ver_le_9_1 CONSTANT BOOLEAN := FALSE;
 ver_le_9_2 CONSTANT BOOLEAN := FALSE;
 ver_le_9 CONSTANT BOOLEAN := FALSE;
 ver_le_10_1 CONSTANT BOOLEAN := FALSE;
 ver_le_10_2 CONSTANT BOOLEAN := FALSE;
 ver_le_10 CONSTANT BOOLEAN := FALSE;
 ver_le_11_1 CONSTANT BOOLEAN := TRUE;
 ver_le_11 CONSTANT BOOLEAN := TRUE;
END DBMS_DB_VERSION;

The boolean constants follow a naming convention. Each constant gives a name for a boolean expression. For example:

	
VER_LE_9_1 represents version <= 9 and release <= 1

	
VER_LE_10_2 represents version <= 10 and release <= 2

	
VER_LE_10 represents version <= 10

A typical usage of these boolean constants is:

$IF DBMS_DB_VERSION.VER_LE_10 $THEN
 version 10 and earlier code
$ELSIF DBMS_DB_VERSION.VER_LE_11 $THEN
 version 11 code
$ELSE
 version 12 and later code
$END

This code structure will protect any reference to the code for hypothetical version 12. It also prevents the controlling package constant DBMS_DB_VERSION.VER_LE_11 from being referenced when the program is compiled under version 10. A similar observation applies to version 11. This scheme works even though the static constant VER_LE_11 is not defined in version 10 database because conditional compilation protects the $ELSIF from evaluation if DBMS_DB_VERSION.VER_LE_10 is TRUE.

Constants

The DBMS_DB_VERSION package contains different constants for different Oracle Database releases. The Oracle Database 11g Release 1 version of the DBMS_DB_VERSION package uses the constants shown in Table 51-1.

Table 51-1 DBMS_DB_VERSION Constants

	Name	Type	Value	Description
	
VERSION

	
PLS_INTEGER

	
10

	
Current version

	
RELEASE

	
PLS_INTEGER

	
2

	
Current release

	
VER_LE_9

	
BOOLEAN

	
FALSE

	
Version <= 9

	
VER_LE_9_1

	
BOOLEAN

	
FALSE

	
Version <= 9 and release <= 1

	
VER_LE_9_2

	
BOOLEAN

	
FALSE

	
Version <= 9 and release <= 2

	
VER_LE_10

	
BOOLEAN

	
TRUE

	
Version <= 10

	
VER_LE_10_1

	
BOOLEAN

	
FALSE

	
Version <= 10 and release <= 1

	
VER_LE_10_2

	
BOOLEAN

	
TRUE

	
Version <=10 and release <= 2

	
VER_LE_11

	
BOOLEAN

	
FALSE

	
Version <= 11

	
VER_LE_11_1

	
BOOLEAN

	
TRUE

	
Version <=11 and release <= 1

Examples

This example uses conditional compilation to guard new features.

CREATE OR REPLACE PROCEDURE whetstone IS

 -- Notice that conditional compilation constructs
 -- can interrupt a regular PL/SQL statement.
 -- You can locate a conditional compilation directive anywhere
 -- there is whitespace in the regular statement.

 SUBTYPE my_real IS
 $IF DBMS_DB_VERSION.VER_LE_9 $THEN NUMBER
 $ELSE BINARY_DOUBLE
 $END;

 t CONSTANT my_real := $IF DBMS_DB_VERSION.VER_LE_9 $THEN 0.499975
 $ELSE 0.499975d
 $END;

 t2 CONSTANT my_real := $if DBMS_DB_VERSION.VER_LE_9 $THEN 2.0
 $ELSE 2.0d
 $END;

 x CONSTANT my_real := $IF DBMS_DB_VERSION.VER_LE_9 $THEN 1.0
 $ELSE 1.0d
 $END;

 y CONSTANT my_real := $IF DBMS_DB_VERSION.VER_LE_9 $THEN 1.0
 $ELSE 1.0d
 $END;

 z MY_REAL;

 PROCEDURE P(x IN my_real, y IN my_real, z OUT NOCOPY my_real) IS
 x1 my_real;
 y1 my_real;
 BEGIN
 x1 := x;
 y1 := y;
 x1 := t * (x1 + y1);
 y1 := t * (x1 + y1);
 z := (x1 + y1)/t2;
 END P;
BEGIN
 P(x, y, z);
 DBMS_OUTPUT.PUT_LINE ('z = '|| z);
END whetstone;
/

52 DBMS_DEBUG

DBMS_DEBUG is a PL/SQL interface to the PL/SQL debugger layer, Probe, in the Oracle server.

This API is primarily intended to implement server-side debuggers and it provides a way to debug server-side PL/SQL program units.

	
Note:

The term program unit refers to a PL/SQL program of any type (procedure, function, package, package body, trigger, anonymous block, object type, or object type body).

This chapter contains the following topics:

	
Using DBMS_DEBUG

	
Overview

	
Constants

	
Variables

	
Exceptions

	
Operational Notes

	
Data Structures

	
RECORD Types

	
TABLE Types

	
Summary of DBMS_DEBUG Subprograms

Using DBMS_DEBUG

	
Overview

	
Constants

	
Variables

	
Exceptions

	
Operational Notes

Overview

To debug server-side code, you must have two database sessions: one session to run the code in debug mode (the target session), and a second session to supervise the target session (the debug session).

The target session becomes available for debugging by making initializing calls with DBMS_DEBUG. This marks the session so that the PL/SQL interpreter runs in debug mode and generates debug events. As debug events are generated, they are posted from the session. In most cases, debug events require return notification: the interpreter pauses awaiting a reply.

Meanwhile, the debug session must also initialize itself using DBMS_DEBUG: This tells it which target session to supervise. The debug session may then call entry points in DBMS_DEBUG to read events that were posted from the target session and to communicate with the target session.

The following subprograms are run in the target session (the session that is to be debugged):

	
SYNCHRONIZE Function

	
DEBUG_ON Procedure

	
DEBUG_OFF Procedure

DBMS_DEBUG does not provide an interface to the PL/SQL compiler, but it does depend on debug information optionally generated by the compiler. Without debug information, it is not possible to examine or modify the values of parameters or variables.

Constants

A breakpoint status may have the following value:

	
breakpoint_status_unused—breakpoint is not in use

Otherwise, the status is a mask of the following values:

	
breakpoint_status_active—a line breakpoint

	
breakpoint_status_disabled—breakpoint is currently disabled

	
breakpoint_status_remote—a shadow breakpoint (a local representation of a remote breakpoint)

Variables

The DBMS_DEBUG uses the variables shown in Table 52-1.

Table 52-1 DBMS_DEBUG Variables

	Variable	Description
	
default_timeout

	
The timeout value (used by both sessions).The smallest possible timeout is 1 second. If this value is set to 0, then a large value (3600) is used.

Exceptions

These values are returned by the various functions called in the debug session (SYNCHRONIZE, CONTINUE, SET_BREAKPOINT, and so on). If PL/SQL exceptions worked across client/server and server/server boundaries, then these would all be exceptions rather than error codes.

	Value	Description
	success	Normal termination

Statuses returned by GET_VALUE and SET_VALUE:

	Status	Description
	error_bogus_frame	No such entrypoint on the stack
	error_no_debug_info	Program was compiled without debug symbols
	error_no_such_object	No such variable or parameter
	error_unknown_type	Debug information is unreadable
	error_indexed_table	Returned by GET_VALUE if the object is a table, but no index was provided
	error_illegal_index	No such element exists in the collection
	error_nullcollection	Table is atomically NULL
	error_nullvalue	Value is NULL

Statuses returned by SET_VALUE:

	Status	Description
	error_illegal_value	Constraint violation
	error_illegal_null	Constraint violation
	error_value_malformed	Unable to decipher the given value
	error_other	Some other error
	error_name_incomplete	Name did not resolve to a scalar

Statuses returned by the breakpoint functions:

	Status	Description
	error_no_such_breakpt	No such breakpoint
	error_idle_breakpt	Cannot enable or disable an unused breakpoint
	error_bad_handle	Unable to set breakpoint in given program (nonexistent or security violation)

General error codes (returned by many of the DBMS_DEBUG subprograms):

	Status	Description
	error_unimplemented	Functionality is not yet implemented
	error_deferred	No program running; operation deferred
	error_exception	An exception was raised in the DBMS_DEBUG or Probe packages on the server
	error_communication	Some error other than a timeout occurred
	error_timeout	Timout occurred

	Exception	Description
	illegal_init	DEBUG_ON was called prior to INITIALIZE

The following exceptions are raised by procedure SELF_CHECK:

	Exception	Description
	pipe_creation_failure	Could not create a pipe
	pipe_send_failure	Could not write data to the pipe
	pipe_receive_failure	Could not read data from the pipe
	pipe_datatype_mismatch	Datatype in the pipe was wrong
	pipe_data_error	Data got garbled in the pipe

Operational Notes

There are two ways to ensure that debug information is generated: through a session switch, or through individual recompilation.

To set the session switch, enter the following statement:

ALTER SESSION SET PLSQL_DEBUG = true;

This instructs the compiler to generate debug information for the remainder of the session. It does not recompile any existing PL/SQL.

To generate debug information for existing PL/SQL code, use one of the following statements (the second recompiles a package or type body):

ALTER [PROCEDURE | FUNCTION | PACKAGE | TRIGGER | TYPE] <name> COMPILE DEBUG;
ALTER [PACKAGE | TYPE] <name> COMPILE DEBUG BODY;

Figure 52-1 and Figure 52-2 illustrate the flow of operations in the session to be debugged and in the debugging session.

Figure 52-1 Target Session

[image: Description of Figure 52-1 follows]

Figure 52-2 Debug Session

[image: Description of Figure 52-2 follows]

Figure 52-3 Debug Session (Cont.)

[image: Description of Figure 52-3 follows]

Control of the Interpreter

The interpreter pauses execution at the following times:

	
At startup of the interpreter so any deferred breakpoints may be installed prior to execution.

	
At any line containing an enabled breakpoint.

	
At any line where an interesting event occurs. The set of interesting events is specified by the flags passed to DBMS_DEBUG.CONTINUE in the breakflags parameter.

Session Termination

There is no event for session termination. Therefore, it is the responsibility of the debug session to check and make sure that the target session has not ended. A call to DBMS_DEBUG.SYNCHRONIZE after the target session has ended causes the debug session to hang until it times out.

Deferred Operations

The diagram suggests that it is possible to set breakpoints prior to having a target session. This is true. In this case, Probe caches the breakpoint request and transmits it to the target session at first synchronization. However, if a breakpoint request is deferred in this fashion, then:

	
SET_BREAKPOINT does not set the breakpoint number (it can be obtained later from SHOW_BREAKPOINTS if necessary).

	
SET_BREAKPOINT does not validate the breakpoint request. If the requested source line does not exist, then an error silently occurs at synchronization, and no breakpoint is set.

Diagnostic Output

To debug Probe, there are diagnostics parameters to some of the calls in DBMS_DEBUG. These parameters specify whether to place diagnostic output in the RDBMS tracefile. If output to the RDBMS tracefile is disabled, these parameters have no effect.

Common and Debug Session Sections

	
Common Section

	
Target Session

	
Debug Session Section

Common Section

The following subprograms may be called in either the target or the debug session:

	
PROBE_VERSION Procedure

	
SELF_CHECK Procedure

	
SET_TIMEOUT Function

Target Session

The following subprograms may be called only in the target session:

	
INITIALIZE Function

	
DEBUG_ON Procedure

	
SET_TIMEOUT_BEHAVIOUR Procedure

	
GET_TIMEOUT_BEHAVIOUR Function

Debug Session Section

The following subprograms should be run in the debug session only:

	
ATTACH_SESSION Procedure

	
SYNCHRONIZE Function

	
SHOW_FRAME_SOURCE Procedure

	
SHOW_SOURCE Procedures

	
GET_MORE_SOURCE Procedure

	
PRINT_BACKTRACE Procedure

	
CONTINUE Function

	
SET_BREAKPOINT Function

	
DELETE_BREAKPOINT Function

	
SET_OER_BREAKPOINT Function

	
DELETE_OER_BREAKPOINT Function

	
ENABLE_BREAKPOINT Function

	
DISABLE_BREAKPOINT Function

	
SHOW_BREAKPOINTS Procedures

	
SET_VALUE Functionn

	
GET_VALUE Function

	
TARGET_PROGRAM_RUNNING Procedure

	
DETACH_SESSION Procedure

	
GET_RUNTIME_INFO Function

	
PRINT_INSTANTIATIONS Procedure

	
PING Procedure

	
GET_LINE_MAP Function

	
GET_RUNTIME_INFO Function

	
GET_INDEXES Function

	
EXECUTE Procedure

OER Breakpoints

Exceptions that are declared in PL/SQL programs are known as user-defined exceptions. In addition, there are Oracle Errors (OERs) that are returned from the Oracle kernel. To tie the two mechanisms together, PL/SQL provides the exception_init pragma that turns a user-defined exception into an OER, so that a PL/SQL handler may be used for it, and so that the PL/SQL engine can return OERs to the Oracle kernel. As of the current release, the only information available about an OER is its number. If two user-defined exceptions are exception_init'd to the same OER, they are indistinguishable.

Namespaces

Program units on the server reside in different namespaces. When setting a breakpoint, specify the desired namespace.

	
Namespace_cursor contains cursors (anonymous blocks).

	
Namespace_pgkspec_or_toplevel contains:

	
Package specifications.

	
Procedures and functions that are not nested inside other packages, procedures, or functions.

	
Object types.

	
Namespace_pkg_body contains package bodies and type bodies.

	
Namespace_trigger contains triggers.

Libunit Types

These values are used to disambiguate among objects in a given namespace. These constants are used in PROGRAM_INFO when Probe is giving a stack backtrace.

	
LibunitType_cursor

	
LibunitType_procedure

	
LibunitType_function

	
LibunitType_package

	
LibunitType_package_body

	
LibunitType_trigger

	
LibunitType_Unknown

Breakflags

These are values to use for the breakflags parameter to CONTINUE, in order to tell Probe what events are of interest to the client. These flags may be combined.

	Value	Description
	break_next_line	Break at next source line (step over calls)
	break_any_call	Break at next source line (step into calls)
	break_any_return	Break after returning from current entrypoint (skip over any entrypoints called from the current routine)
	break_return	Break the next time an entrypoint gets ready to return. (This includes entrypoints called from the current one. If interpreter is running Proc1, which calls Proc2, then break_return stops at the end of Proc2.)
	break_exception	Break when an exception is raised
	break_handler	Break when an exception handler is executed
	abort_execution	Stop execution and force an 'exit' event as soon as DBMS_DEBUG.CONTINUE is called.

Information Flags

These are flags which may be passed as the info_requested parameter to SYNCHRONIZE, CONTINUE, and GET_RUNTIME_INFO.

	Flag	Description
	info_getStackDepth	Get the current depth of the stack
	info_getBreakpoint	Get the breakpoint number
	info_getLineinfo	Get program unit information

Reasons for Suspension

After CONTINUE is run, the program either runs to completion or breaks on some line.

	Reason	Description
	reason_none	-
	reason_interpreter_starting	Interpreter is starting
	reason_breakpoint	Hit a breakpoint
	reason_enter	Procedure entry
	reason_return	Procedure is about to return
	reason_finish	Procedure is finished
	reason_line	Reached a new line
	reason_interrupt	An interrupt occurred
	reason_exception	An exception was raised
	reason_exit	Interpreter is exiting (old form)
	reason_knl_exit	Kernel is exiting
	reason_handler	Start exception-handler
	reason_timeout	A timeout occurred
	reason_instantiate	Instantiation block
	reason_abort	Interpreter is aborting

Data Structures

The DBMS_DEBUG package defines RECORD types and TABLE types.

RECORD Types

	
BREAKPOINT_INFO Record Type

	
PROGRAM_INFO Record Type

	
RUNTIME_INFO Record Type

TABLE Types

	
BACKTRACE_TABLE Table Type

	
BREAKPOINT_TABLE Table Type

	
INDEX_TABLE Table Type

	
VC2_TABLE Table Type

BREAKPOINT_INFO Record Type

This type gives information about a breakpoint, such as its current status and the program unit in which it was placed.

Syntax

TYPE breakpoint_info IS RECORD (
 name VARCHAR2(30),
 owner VARCHAR2(30),
 dblink VARCHAR2(30),
 line# BINARY_INTEGER,
 libunittype BINARY_INTEGER,
 status BINARY_INTEGER);

Fields

Table 52-2 BREAKPOINT_INFO Fields

	Field	Description
	
name

	
Name of the program unit

	
owner

	
Owner of the program unit

	
dblink

	
Database link, if remote

	
line#

	
Line number

	
libunittype

	
NULL, unless this is a nested procedure or function

	
status

	
See Constants for values of breakpoint_status_*

PROGRAM_INFO Record Type

This type specifies a program location. It is a line number in a program unit. This is used for stack backtraces and for setting and examining breakpoints. The read-only fields are currently ignored by Probe for breakpoint operations. They are set by Probe only for stack backtraces.

Syntax

TYPE program_info IS RECORD(
 -- The following fields are used when setting a breakpoint
 namespace BINARY_INTEGER,
 name VARCHAR2(30),
 owner VARCHAR2(30),
 dblink VARCHAR2(30),
 line# BINARY_INTEGER,
 -- Read-only fields (set by Probe when doing a stack backtrace)
 libunittype BINARY_INTEGER,
 entrypointname VARCHAR2(30));

Fields

Table 52-3 PROGRAM_INFO Fields

	Field	Description
	
namespace

	
See Namespaces

	
name

	
Name of the program unit

	
owner

	
Owner of the program unit

	
dblink

	
Database link, if remote

	
line#

	
Line number

	
libunittype

	
A read-only field, NULL, unless this is a nested procedure or function

	
entrypointname

	
A read-only field, to disambiguate among objects that share the same namespace (for example, procedure and package specifications).

See the Libunit Types for more information.

RUNTIME_INFO Record Type

This type gives context information about the running program.

Syntax

TYPE runtime_info IS RECORD(
 line# BINARY_INTEGER,
 terminated binary_integer,
 breakpoint binary_integer,
 stackdepth BINARY_INTEGER,
 interpreterdepth BINARY_INTEGER,
 reason BINARY_INTEGER,
 program program_info);

Fields

Table 52-4 RUNTIME_INFO Fields

	Field	Description
	
line#

	
Duplicate of program.line#

	
terminated

	
Whether the program has terminated

	
breakpoint

	
Breakpoint number

	
stackdepth

	
Number of frames on the stack

	
interpreterdepth

	
[A reserved field]

	
reason

	
Reason for suspension

	
program

	
Source location

BACKTRACE_TABLE Table Type

This type is used by PRINT_BACKTRACE.

Syntax

TYPE backtrace_table IS TABLE OF program_info INDEX BY BINARY_INTEGER;

BREAKPOINT_TABLE Table Type

This type is used by SHOW_BREAKPOINTS.

Syntax

TYPE breakpoint_table IS TABLE OF breakpoint_info INDEX BY BINARY_INTEGER;

INDEX_TABLE Table Type

This type is used by GET_INDEXES to return the available indexes for an indexed table.

Syntax

TYPE index_table IS table of BINARY_INTEGER INDEX BY BINARY_INTEGER;

VC2_TABLE Table Type

This type is used by SHOW_SOURCE.

Syntax

TYPE vc2_table IS TABLE OF VARCHAR2(90) INDEX BY BINARY_INTEGER;

Summary of DBMS_DEBUG Subprograms

Table 52-5 DBMS_DEBUG Package Subprograms

	Subprogram	Description
	
ATTACH_SESSION Procedure

	
Notifies the debug session about the target debugID

	
CONTINUE Function

	
Continues execution of the target program

	
DEBUG_OFF Procedure

	
Turns debug-mode off

	
DEBUG_ON Procedure

	
Turns debug-mode on

	
DELETE_BREAKPOINT Function

	
Deletes a breakpoint

	
DELETE_OER_BREAKPOINT Function

	
Deletes an OER breakpoint

	
DETACH_SESSION Procedure

	
Stops debugging the target program

	
DISABLE_BREAKPOINT Function

	
Disables a breakpoint

	
ENABLE_BREAKPOINT Function

	
Activates an existing breakpoint

	
EXECUTE Procedure

	
Executes SQL or PL/SQL in the target session

	
GET_INDEXES Function

	
Returns the set of indexes for an indexed table

	
GET_MORE_SOURCE Procedure

	
Provides additional source in the event of buffer overflow when using SHOW_SOURCE

	
GET_LINE_MAP Function

	
Returns information about line numbers in a program unit

	
GET_RUNTIME_INFO Function

	
Returns information about the current program

	
GET_TIMEOUT_BEHAVIOUR Function

	
Returns the current timeout behavior

	
GET_VALUE Function

	
Gets a value from the currently-running program

	
INITIALIZE Function

	
Sets debugID in target session

	
PING Procedure

	
Pings the target session to prevent it from timing out

	
PRINT_BACKTRACE Procedure

	
Prints a stack backtrace

	
PRINT_INSTANTIATIONS Procedure

	
Prints a stack backtrace

	
PROBE_VERSION Procedure

	
Returns the version number of DBMS_DEBUG on the server

	
SELF_CHECK Procedure

	
Performs an internal consistency check

	
SET_BREAKPOINT Function

	
Sets a breakpoint in a program unit

	
SET_OER_BREAKPOINT Function

	
Sets an OER breakpoint

	
SET_TIMEOUT Function

	
Sets the timeout value

	
SET_TIMEOUT_BEHAVIOUR Procedure

	
Tells Probe what to do with the target session when a timeout occurs

	
SET_VALUE Function

	
Sets a value in the currently-running program

	
SHOW_BREAKPOINTS Procedures

	
Returns a listing of the current breakpoints

	
SHOW_FRAME_SOURCE Procedure

	
Fetches the frame source

	
SHOW_SOURCE Procedures

	
Fetches program source

	
SYNCHRONIZE Function

	
Waits for program to start running

	
TARGET_PROGRAM_RUNNING Procedure

	
Returns TRUE if the target session is currently executing a stored procedure, or FALSE if it is not

ATTACH_SESSION Procedure

This procedure notifies the debug session about the target program.

Syntax

DBMS_DEBUG.ATTACH_SESSION (
 debug_session_id IN VARCHAR2,
 diagnostics IN BINARY_INTEGER := 0);

Parameters

Table 52-6 ATTACH_SESSION Procedure Parameters

	Parameter	Description
	
debug_session_id

	
Debug ID from a call to INITIALIZE in target session

	
diagnostics

	
Generate diagnostic output if nonzero

CONTINUE Function

This function passes the given breakflags (a mask of the events that are of interest) to Probe in the target process. It tells Probe to continue execution of the target process, and it waits until the target process runs to completion or signals an event.

If info_requested is not NULL, then calls GET_RUNTIME_INFO.

Syntax

DBMS_DEBUG.CONTINUE (
 run_info IN OUT runtime_info,
 breakflags IN BINARY_INTEGER,
 info_requested IN BINARY_INTEGER := NULL)
 RETURN BINARY_INTEGER;

Parameters

Table 52-7 CONTINUE Function Parameters

	Parameter	Description
	
run_info

	
Information about the state of the program

	
breakflags

	
Mask of events that are of interest (see "Breakflags")

	
info_requested

	
Which information should be returned in run_info when the program stops (see "Information Flags")

Return Values

Table 52-8 CONTINUE Function Return Values

	Return	Description
	
success

	

	
error_timeout

	
Timed out before the program started running

	
error_communication

	
Other communication error

DEBUG_OFF Procedure

	
Caution:

There must be a debug session waiting if immediate is TRUE.

This procedure notifies the target session that debugging should no longer take place in that session. It is not necessary to call this function before ending the session.

Syntax

DBMS_DEBUG.DEBUG_OFF;

Usage Notes

The server does not handle this entrypoint specially. Therefore, it attempts to debug this entrypoint.

DEBUG_ON Procedure

This procedure marks the target session so that all PL/SQL is run in debug mode. This must be done before any debugging can take place.

Syntax

DBMS_DEBUG.DEBUG_ON (
 no_client_side_plsql_engine BOOLEAN := TRUE,
 immediate BOOLEAN := FALSE);

Parameters

Table 52-9 DEBUG_ON Procedure Parameters

	Parameter	Description
	
no_client_side_plsql_engine

	
Should be left to its default value unless the debugging session is taking place from a client-side PL/SQL engine

	
immediate

	
If this is TRUE, then the interpreter immediately switches itself into debug-mode, instead of continuing in regular mode for the duration of the call.

DELETE_BREAKPOINT Function

This function deletes a breakpoint.

Syntax

DBMS_DEBUG.DELETE_BREAKPOINT (
 breakpoint IN BINARY_INTEGER)
 RETURN BINARY_INTEGER;

Parameters

Table 52-10 DELETE_BREAKPOINT Function Parameters

	Parameter	Description
	
breakpoint

	
Breakpoint number from a previous call to SET_BREAKPOINT

Return Values

Table 52-11 DELETE_BREAKPOINT Function Return Values

	Return	Description
	
success

	

	
error_no_such_breakpt

	
No such breakpoint exists

	
error_idle_breakpt

	
Cannot delete an unused breakpoint

	
error_stale_breakpt

	
The program unit was redefined since the breakpoint was set

DELETE_OER_BREAKPOINT Function

This function deletes an OER breakpoint.

Syntax

DBMS_DEBUG.DELETE_OER_BREAKPOINT (
 oer IN PLS_INTEGER)
RETURN PLS_INTEGER;

Parameters

Table 52-12 DELETE_OER_BREAKPOINT Function Parameters

	Parameter	Description
	
oer

	
The OER (positive 4-byte number) to delete

DETACH_SESSION Procedure

This procedure stops debugging the target program. This procedure may be called at any time, but it does not notify the target session that the debug session is detaching itself, and it does not terminate execution of the target session. Therefore, care should be taken to ensure that the target session does not hang itself.

Syntax

DBMS_DEBUG.DETACH_SESSION;

DISABLE_BREAKPOINT Function

This function makes an existing breakpoint inactive but leaves it in place.

Syntax

DBMS_DEBUG.DISABLE_BREAKPOINT (
 breakpoint IN BINARY_INTEGER)
 RETURN BINARY_INTEGER;

Parameters

Table 52-13 DISABLE_BREAKPOINT Function Parameters

	Parameter	Description
	
breakpoint

	
Breakpoint number from a previous call to SET_BREAKPOINT

Return Values

Table 52-14 DISABLE_BREAKPOINT Function Return Values

	Returns	Description
	
success

	

	
error_no_such_breakpt

	
No such breakpoint exists

	
error_idle_breakpt

	
Cannot disable an unused breakpoint

ENABLE_BREAKPOINT Function

This function is the reverse of disabling. This enables a previously disabled breakpoint.

Syntax

DBMS_DEBUG.ENABLE_BREAKPOINT (
 breakpoint IN BINARY_INTEGER)
 RETURN BINARY_INTEGER;

Parameters

Table 52-15 ENABLE_BREAKPOINT Function Parameters

	Parameter	Description
	
breakpoint

	
Breakpoint number from a previous call to SET_BREAKPOINT

Return Values

Table 52-16 ENABLE_BREAKPOINT Function Return Values

	Return	Description
	
success

	
Success

	
error_no_such_breakpt

	
No such breakpoint exists

	
error_idle_breakpt

	
Cannot enable an unused breakpoint

EXECUTE Procedure

This procedure executes SQL or PL/SQL code in the target session. The target session is assumed to be waiting at a breakpoint (or other event). The call to DBMS_DEBUG.EXECUTE occurs in the debug session, which then asks the target session to execute the code.

Syntax

DBMS_DEBUG.EXECUTE (
 what IN VARCHAR2,
 frame# IN BINARY_INTEGER,
 bind_results IN BINARY_INTEGER,
 results IN OUT NOCOPY dbms_debug_vc2coll,
 errm IN OUT NOCOPY VARCHAR2);

Parameters

Table 52-17 EXECUTE Procedure Parameters

	Parameter	Description
	
what

	
SQL or PL/SQL source to execute

	
frame#

	
The context in which to execute the code. Only -1 (global context) is supported at this time.

	
bind_results

	
Whether the source wants to bind to results in order to return values from the target session:

0 = No

1 = Yes

	
results

	
Collection in which to place results, if bind_results is not 0

	
errm

	
Error message, if an error occurred; otherwise, NULL

Examples

Example 1

This example executes a SQL statement. It returns no results.

DECLARE
 coll sys.dbms_debug_vc2coll; -- results (unused)
 errm VARCHAR2(100);
BEGIN
 dbms_debug.execute('insert into emp(ename,empno,deptno) ' ||
 'values(''LJE'', 1, 1)',
 -1, 0, coll, errm);
END;

Example 2

This example executes a PL/SQL block, and it returns no results. The block is an autonomous transaction, which means that the value inserted into the table becomes visible in the debug session.

DECLARE
 coll sys.dbms_debug_vc2coll;
 errm VARCHAR2(100);
BEGIN
 dbms_debug.execute(
 'DECLARE PRAGMA autonomous_transaction; ' ||
 'BEGIN ' ||
 ' insert into emp(ename, empno, deptno) ' ||
 ' values(''LJE'', 1, 1); ' ||
 ' COMMIT; ' ||
 'END;',
 -1, 0, coll, errm);
END;

Example 3

This example executes a PL/SQL block, and it returns some results.

DECLARE
 coll sys.dbms_debug_vc2coll;
 errm VARCHAR2(100);
BEGIN
 dbms_debug.execute(
 'DECLARE ' ||
 ' pp SYS.dbms_debug_vc2coll := SYS.dbms_debug_vc2coll(); ' ||
 ' x PLS_INTEGER; ' ||
 ' i PLS_INTEGER := 1; ' ||
 'BEGIN ' ||
 ' SELECT COUNT(*) INTO x FROM emp; ' ||
 ' pp.EXTEND(x * 6); ' ||
 ' FOR c IN (SELECT * FROM emp) LOOP ' ||
 ' pp(i) := ''Ename: '' || c.ename; i := i+1; ' ||
 ' pp(i) := ''Empno: '' || c.empno; i := i+1; ' ||
 ' pp(i) := ''Job: '' || c.job; i := i+1; ' ||
 ' pp(i) := ''Mgr: '' || c.mgr; i := i+1; ' ||
 ' pp(i) := ''Sal: '' || c.sal; i := i+1; ' ||
 ' pp(i) := null; i := i+1; ' ||
 ' END LOOP; ' ||
 ' :1 := pp;' ||
 'END;',
 -1, 1, coll, errm);
 each := coll.FIRST;
 WHILE (each IS NOT NULL) LOOP
 dosomething(coll(each));
 each := coll.NEXT(each);
 END LOOP;
END;

GET_INDEXES Function

Given a name of a variable or parameter, this function returns the set of its indexes, if it is an indexed table. An error is returned if it is not an indexed table.

Syntax

DBMS_DEBUG.GET_INDEXES (
 varname IN VARCHAR2,
 frame# IN BINARY_INTEGER,
 handle IN program_info,
 entries OUT index_table)
RETURN BINARY_INTEGER;

Parameters

Table 52-18 GET_INDEXES Function Parameters

	Parameter	Description
	
varname

	
Name of the variable to get index information about

	
frame#

	
Number of frame in which the variable or parameter resides; NULL for a package variable

	
handle

	
Package description, if object is a package variable

	
entries

	
1-based table of the indexes: if non-NULL, then entries(1) contains the first index of the table, entries(2) contains the second index, and so on.

Return Values

Table 52-19 GET_INDEXES Function Return Values

	Return	Description
	
error_no_such_object

	
One of the following:

- The package does not exist

- The package is not instantiated

- The user does not have privileges to debug the package

- The object does not exist in the package

GET_MORE_SOURCE Procedure

When source does not fit in the buffer provided by that version of the SHOW_SOURCE Procedures which produce a formatted buffer, this procedure provides additional source.

Syntax

DBMS_DEBUG.GET_MORE_SOURCE (
 buffer IN OUT VARCHAR2,
 buflen IN BINARY_INTEGER,
 piece# IN BINARY_INTEGER);

Parameters

Table 52-20 GET_MORE_SOURCE Procedure Parameters

	Parameter	Description
	
buffer

	
The buffer

	
buflen

	
The length of the buffer

	
piece#

	
A value between 2 and the value returned in the parameter pieces from the call to the relevant version of the SHOW_SOURCE Procedures

Usage Notes

This procedure should be called only after the version of SHOW_SOURCE that returns a formatted buffer.

GET_LINE_MAP Function

This function finds line and entrypoint information about a program so that a debugger can determine the source lines at which it is possible to place breakpoints.

Syntax

DBMS_DEBUG.GET_LINE_MAP (
 program IN program_info,
 maxline OUT BINARY_INTEGER,
 number_of_entry_points OUT BINARY_INTEGER,
 linemap OUT RAW)
 RETURN BINARY_INTEGER;

Parameters

Table 52-21 GET_LINE_MAP Function Parameters

	Parameter	Description
	
program

	
A top-level program unit (procedure / package / function / package body, and so on). Its Namespace, Name, and Owner fields must be initialized, the remaining fields are ignored.

	
maxline

	
The largest source code line number in 'program'

	
number_of_entry_points

	
The number of subprograms in 'program'

	
linemap

	
A bitmap representing the executable lines of 'program'. If line number N is executable, bit number N MOD 8 will be set to 1 at linemap position N / 8. The length of returned linemap is either maxline divided by 8 (plus one if maxline MOD 8 is not zero) or 32767 in the unlikely case of maxline being larger than 32767 * 8.

Return Values

Table 52-22 GET_LINE_MAP Function Return Values

	Return	Description
	
success

	
A successful completion

	
error_no_debug_info

	
The program unit exists, but has no debug info

	
error_bad_handle

	
No such program unit exists

GET_RUNTIME_INFO Function

This function returns information about the current program. It is only needed if the info_requested parameter to SYNCHRONIZE or CONTINUE was set to 0.

	
Note:

This is currently only used by client-side PL/SQL.

Syntax

DBMS_DEBUG.GET_RUNTIME_INFO (
 info_requested IN BINARY_INTEGER,
 run_info OUT runtime_info)
 RETURN BINARY_INTEGER;

Parameters

Table 52-23 GET_RUNTIME_INFO Function Parameters

	Parameter	Description
	
info_requested

	
Which information should be returned in run_info when the program stops (see "Information Flags")

	
run_info

	
Information about the state of the program

GET_TIMEOUT_BEHAVIOUR Function

This procedure returns the current timeout behavior. This call is made in the target session.

Syntax

DBMS_DEBUG.GET_TIMEOUT_BEHAVIOUR
 RETURN BINARY_INTEGER;

Parameters

Table 52-24 GET_TIMEOUT_BEHAVIOUR Function Parameters

	Parameter	Description
	
oer

	
The OER (a 4-byte positive number)

Return Values

Table 52-25 GET_TIMEOUT_BEHAVIOUR Function Return Values

	Return	Description
	
success

	
A successful completion

Information Flags

info_getOerInfo CONSTANT PLS_INTEGER:= 32;

Usage Notes

Less functionality is supported on OER breakpoints than on code breakpoints. In particular, note that:

	
No "breakpoint number" is returned - the number of the OER is used instead. Thus it is impossible to set duplicate breakpoints on a given OER (it is a no-op).

	
It is not possible to disable an OER breakpoint (although clients are free to simulate this by deleting it).

	
OER breakpoints are deleted using delete_oer_breakpoint.

GET_VALUE Function

This function gets a value from the currently-running program. There are two overloaded GET_VALUE functions.

Syntax

DBMS_DEBUG.GET_VALUE (
 variable_name IN VARCHAR2,
 frame# IN BINARY_INTEGER,
 scalar_value OUT VARCHAR2,
 format IN VARCHAR2 := NULL)
RETURN BINARY_INTEGER;

Parameters

Table 52-26 GET_VALUE Function Parameters

	Parameter	Description
	
variable_name

	
Name of the variable or parameter

	
frame#

	
Frame in which it lives; 0 means the current procedure

	
scalar_value

	
Value

	
format

	
Optional date format to use, if meaningful

Return Values

Table 52-27 GET_VALUE Function Return Values

	Return	Description
	
success

	
A successful completion

	
error_bogus_frame

	
Frame does not exist

	
error_no_debug_info

	
Entrypoint has no debug information

	
error_no_such_object

	
variable_name does not exist in frame#

	
error_unknown_type

	
The type information in the debug information is illegible

	
error_nullvalue

	
Value is NULL

	
error_indexed_table

	
The object is a table, but no index was provided

This form of GET_VALUE is for fetching package variables. Instead of a frame#, it takes a handle, which describes the package containing the variable.

Syntax

DBMS_DEBUG.GET_VALUE (
 variable_name IN VARCHAR2,
 handle IN program_info,
 scalar_value OUT VARCHAR2,
 format IN VARCHAR2 := NULL)
RETURN BINARY_INTEGER;

Parameters

Table 52-28 GET_VALUE Function Parameters

	Parameter	Description
	
variable_name

	
Name of the variable or parameter

	
handle

	
Description of the package containing the variable

	
scalar_value

	
Value

	
format

	
Optional date format to use, if meaningful

Return Values

Table 52-29 GET_VALUE Function Return Values

	Return	Description
	
error_no_such_object

	
One of the following:

- Package does not exist

- Package is not instantiated

- User does not have privileges to debug the package

- Object does not exist in the package

	
error_indexed_table

	
The object is a table, but no index was provided

Examples

This example illustrates how to get the value with a given package PACK in schema SCOTT, containing variable VAR:

DECLARE
 handle dbms_debug.program_info;
 resultbuf VARCHAR2(500);
 retval BINARY_INTEGER;
BEGIN
 handle.Owner := 'SCOTT';
 handle.Name := 'PACK';
 handle.namespace := dbms_debug.namespace_pkgspec_or_toplevel;
 retval := dbms_debug.get_value('VAR', handle, resultbuf, NULL);
END;

INITIALIZE Function

This function initializes the target session for debugging.

Syntax

DBMS_DEBUG.INITIALIZE (
 debug_session_id IN VARCHAR2 := NULL,
 diagnostics IN BINARY_INTEGER := 0)
 RETURN VARCHAR2;

Parameters

Table 52-30 INITIALIZE Function Parameters

	Parameter	Description
	
debug_session_id

	
Name of session ID. If NULL, then a unique ID is generated.

	
diagnostics

	
Indicates whether to dump diagnostic output to the tracefile:

0 = (default) no diagnostics

1 = print diagnostics

Return Values

The newly-registered debug session ID (debugID)

Usage Notes

You cannot use DBMS_DEBUG and the JDWP-based debugging interface simultaneously. This call will either fail with an ORA-30677 error if the session is currently being debugged with the JDWP-based debugging interface or, if the call succeeds, any further use of the JDWP-based interface to debug this session will be disallowed.

Calls to DBMS_DEBUG will succeed only if either the caller or the specified debug role carries the DEBUG CONNECT SESSION privilege. Failing that, an ORA-1031 error will be raised. Other exceptions are also possible if a debug role is specified but the password does not match, or if the calling user has not been granted the role, or the role is application-enabled and this call does not originate from within the role-enabling package.

The CREATE ANY PROCEDURE privilege does not affect the visibility of routines through the debugger. A privilege DEBUG for each object has been introduced with a corresponding DEBUG ANY PROCEDURE variant. These are required in order to see routines owned by users other than the session's login user.

Authentication of the debug role and the check for DEBUG CONNECT SESSION privilege will be done in the context of the caller to this routine. If the caller is a definer's rights routine or has been called from one, only privileges granted to the defining user, the debug role, or PUBLIC will be used to check for DEBUG CONNECT SESSION. If this call is from within a definer's rights routine, the debug role, if specified, must be one that has been granted to that definer, but it need not also have been granted to the session login user or be enabled in the calling session at the time the call is made.

The checks made by the debugger after this call is made looking for the DEBUG privilege on individual procedures will be done in the context of the session's login user, the roles that were enabled at session level at the moment this call was made (even if those roles were not available within a definer's rights environment of the call), and the debug role.

PING Procedure

This procedure pings the target session to prevent it from timing out. Use this procedure when execution is suspended in the target session, for example at a breakpoint.

If the timeout_behaviour is set to retry_on_timeout then this procedure is not necessary.

Syntax

DBMS_DEBUG.PING;

Exceptions

Oracle will display the no_target_program exception if there is no target program or if the target session is not currently waiting for input from the debug session.

Usage Notes

Timeout options for the target session are registered with the target session by calling set_timeout_behaviour:

	
retry_on_timeout - Retry. Timeout has no effect. This is like setting the timeout to an infinitely large value.

	
continue_on_timeout - Continue execution, using same event flags.

	
nodebug_on_timeout - Turn debug-mode OFF (in other words, call debug_off) and then continue execution. No more events will be generated by this target session unless it is re-initialized by calling debug_on.

	
abort_on_timeout - Continue execution, using the abort_execution flag, which should cause the program to terminate immediately. The session remains in debug-mode.

retry_on_timeout CONSTANT BINARY_INTEGER:= 0;

continue_on_timeout CONSTANT BINARY_INTEGER:= 1;

nodebug_on_timeout CONSTANT BINARY_INTEGER:= 2;

abort_on_timeout CONSTANT BINARY_INTEGER:= 3;

PRINT_BACKTRACE Procedure

This procedure prints a backtrace listing of the current execution stack. This should only be called if a program is currently running.

There are two overloaded PRINT_BACKTRACE procedures.

Syntax

DBMS_DEBUG.PRINT_BACKTRACE (
 listing IN OUT VARCHAR2);

DBMS_DEBUG.PRINT_BACKTRACE (
 backtrace OUT backtrace_table);

Parameters

Table 52-31 PRINT_BACKTRACE Procedure Parameters

	Parameter	Description
	
listing

	
A formatted character buffer with embedded newlines

	
backtrace

	
1-based indexed table of backtrace entries. The currently-running procedure is the last entry in the table (that is, the frame numbering is the same as that used by GET_VALUE). Entry 1 is the oldest procedure on the stack.

PRINT_INSTANTIATIONS Procedure

This procedure returns a list of the packages that have been instantiated in the current session.

Syntax

DBMS_DEBUG.PRINT_INSTANTIATIONS (
 pkgs IN OUT NOCOPY backtrace_table,
 flags IN BINARY_INTEGER);

Parameters

Table 52-32 PRINT_INSTANTIATIONS Procedure Parameters

	Parameter	Description
	
pkgs

	
The instantiated packages

	
flags

	
Bitmask of options:

	
1 - show specs

	
2 - show bodies

	
4 - show local instantiations

	
8 - show remote instantiations (NYI)

	
16 - do a fast job. The routine does not test whether debug information exists or whether the libunit is shrink-wrapped.

Exceptions

no_target_program - target session is not currently executing

Usage Notes

On return, pkgs contains a program_info for each instantiation. The valid fields are: Namespace, Name, Owner, and LibunitType.

In addition, Line# contains a bitmask of:

	
1 - the libunit contains debug info

	
2 - the libunit is shrink-wrapped

PROBE_VERSION Procedure

This procedure returns the version number of DBMS_DEBUG on the server.

Syntax

DBMS_DEBUG.PROBE_VERSION (
 major out BINARY_INTEGER,
 minor out BINARY_INTEGER);

Parameters

Table 52-33 PROBE_VERSION Procedure Parameters

	Parameter	Description
	
major

	
Major version number

	
minor

	
Minor version number: increments as functionality is added

SELF_CHECK Procedure

This procedure performs an internal consistency check. SELF_CHECK also runs a communications test to ensure that the Probe processes are able to communicate.

If SELF_CHECK does not return successfully, then an incorrect version of DBMS_DEBUG was probably installed on this server. The solution is to install the correct version (pbload.sql loads DBMS_DEBUG and the other relevant packages).

Syntax

DBMS_DEBUG.SELF_CHECK (
 timeout IN binary_integer := 60);

Parameters

Table 52-34 SELF_CHECK Procedure Parameters

	Parameter	Description
	
timeout

	
The timeout to use for the communication test. Default is 60 seconds.

Exceptions

Table 52-35 SELF_CHECK Procedure Exceptions

	Exception	Description
	
OER-6516

	
Probe version is inconsistent

	
pipe_creation_failure

	
Could not create a pipe

	
pipe_send_failure

	
Could not write data to the pipe

	
pipe_receive_failure

	
Could not read data from the pipe

	
pipe_datatype_mismatch

	
Datatype in the pipe was wrong

	
pipe_data_error

	
Data got garbled in the pipe

All of these exceptions are fatal. They indicate a serious problem with Probe that prevents it from working correctly.

SET_BREAKPOINT Function

This function sets a breakpoint in a program unit, which persists for the current session. Execution pauses if the target program reaches the breakpoint.

Syntax

DBMS_DEBUG.SET_BREAKPOINT (
 program IN program_info,
 line# IN BINARY_INTEGER,
 breakpoint# OUT BINARY_INTEGER,
 fuzzy IN BINARY_INTEGER := 0,
 iterations IN BINARY_INTEGER := 0)
 RETURN BINARY_INTEGER;

Parameters

Table 52-36 SET_BREAKPOINT Function Parameters

	Parameter	Description
	
program

	
Information about the program unit in which the breakpoint is to be set. (In version 2.1 and later, the namespace, name, owner, and dblink may be set to NULL, in which case the breakpoint is placed in the currently-running program unit.)

	
line#

	
Line at which the breakpoint is to be set

	
breakpoint#

	
On successful completion, contains the unique breakpoint number by which to refer to the breakpoint

	
fuzzy

	
Only applicable if there is no executable code at the specified line:

0 means return error_illegal_line

1 means search forward for an adjacent line at which to place the breakpoint

-1 means search backward for an adjacent line at which to place the breakpoint

	
iterations

	
Number of times to wait before signalling this breakpoint

Return Values

	
Note:

The fuzzy and iterations parameters are not yet implemented

Table 52-37 SET_BREAKPOINT Function Return Values

	Return	Description
	
success

	
A successful completion

	
error_illegal_line

	
Cannot set a breakpoint at that line

	
error_bad_handle

	
No such program unit exists

SET_OER_BREAKPOINT Function

This function sets an OER breakpoint.

Syntax

DBMS_DEBUG.SET_OER_BREAKPOINT (
 oer IN PLS_INTEGER)
RETURN PLS_INTEGER;

Parameters

Table 52-38 SET_OER_BREAKPOINT Function Parameters

	Parameter	Description
	
oer

	
The OER (positive 4-byte number) to set

Return Values

Table 52-39 SET_OER_BREAKPOINT Function Return Values

	Return	Description
	
success

	
A successful completion

	
error_no_such_breakpt

	
No such OER breakpoint exists

SET_TIMEOUT Function

This function sets the timeout value and returns the new timeout value.

Syntax

DBMS_DEBUG.SET_TIMEOUT (
 timeout BINARY_INTEGER)
 RETURN BINARY_INTEGER;

Parameters

Table 52-40 SET_TIMEOUT Function Parameters

	Parameter	Description
	
timeout

	
The timeout to use for communication between the target and debug sessions

SET_TIMEOUT_BEHAVIOUR Procedure

This procedure tells Probe what to do with the target session when a timeout occurs. This call is made in the target session.

Syntax

DBMS_DEBUG.SET_TIMEOUT_BEHAVIOUR (
 behaviour IN PLS_INTEGER);

Parameters

Table 52-41 SET_TIMEOUT_BEHAVIOUR Procedure Parameters

	Parameter	Description
	
behaviour - One of the following:

	

	
retry_on_timeout

	
Retry. Timeout has no effect. This is like setting the timeout to an infinitely large value.

	
continue_on_timeout

	
Continue execution, using same event flags

	
nodebug_on_timeout

	
Turn debug-mode OFF (in other words, call debug_off) and continue execution. No more events will be generated by this target session unless it is re-initialized by calling debug_on.

	
abort_on_timeout

	
Continue execution, using the abort_execution flag, which should cause the program to terminate immediately. The session remains in debug-mode.

Exceptions

unimplemented - the requested behavior is not recognized

Usage Notes

The default behavior (if this procedure is not called) is continue_on_timeout, since it allows a debugger client to reestablish control (at the next event) but does not cause the target session to hang indefinitely.

SET_VALUE Function

This function sets a value in the currently-running program. There are two overloaded SET_VALUE functions.

Syntax

DBMS_DEBUG.SET_VALUE (
 frame# IN binary_integer,
 assignment_statement IN varchar2)
 RETURN BINARY_INTEGER;

DBMS_DEBUG.SET_VALUE (
 handle IN program_info,
 assignment_statement IN VARCHAR2)
 RETURN BINARY_INTEGER;

Parameters

Table 52-42 SET_VALUE Function Parameters

	Parameter	Description
	
frame#

	
Frame in which the value is to be set; 0 means the currently executing frame.

	
handle

	
Description of the package containing the variable

	
assignment_statement

	
An assignment statement (which must be legal PL/SQL) to run in order to set the value. For example, 'x := 3;'.

Only scalar values are supported in this release. The right side of the assignment statement must be a scalar.

Return Values

Table 52-43 SET_VALUE Function Return Values

	Return	Description
	
success

	
-

	
error_illegal_value

	
Not possible to set it to that value

	
error_illegal_null

	
Cannot set to NULL because object type specifies it as 'not NULL'

	
error_value_malformed

	
Value is not a scalar

	
error_name_incomplete

	
The assignment statement does not resolve to a scalar. For example, 'x := 3;', if x is a record.

	
error_no_such_object

	
One of the following:

- Package does not exist

- Package is not instantiated

- User does not have privileges to debug the package

- Object does not exist in the package

Usage Notes

In some cases, the PL/SQL compiler uses temporaries to access package variables, and does not guarantee to update such temporaries. It is possible, although unlikely, that modification to a package variable using SET_VALUE might not take effect for a line or two.

Examples

To set the value of SCOTT.PACK.var to 6:

DECLARE
 handle dbms_debug.program_info;
 retval BINARY_INTEGER;
BEGIN
 handle.Owner := 'SCOTT';
 handle.Name := 'PACK';
 handle.namespace := dbms_debug.namespace_pkgspec_or_toplevel;
 retval := dbms_debug.set_value(handle, 'var := 6;');
END;

SHOW_BREAKPOINTS Procedures

There are two overloaded procedures that return a listing of the current breakpoints. There are three overloaded SHOW_BREAKPOINTS procedures.

Syntax

DBMS_DEBUG.SHOW_BREAKPOINTS (
 listing IN OUT VARCHAR2);

DBMS_DEBUG.SHOW_BREAKPOINTS (
 listing OUT breakpoint_table);

DBMS_DEBUG.SHOW_BREAKPOINTS (
 code_breakpoints OUT breakpoint_table,
 oer_breakpoints OUT oer_table);

Parameters

Table 52-44 SHOW_BREAKPOINTS Procedure Parameters

	Parameter	Description
	
listing

	
A formatted buffer (including newlines) of the breakpoints.

Indexed table of breakpoint entries. The breakpoint number is indicated by the index into the table. Breakpoint numbers start at 1 and are reused when deleted.

	
code_breakpoints

	
The indexed table of breakpoint entries, indexed by breakpoint number

	
oer_breakpoints

	
The indexed table of OER breakpoints, indexed by OER

SHOW_FRAME_SOURCE Procedure

The procedure gets the source code. There are two overloaded SHOW_SOURCE procedures.

Syntax

DBMS_DEBUG.SHOW_FRAME_SOURCE (
 first_line IN BINARY_INTEGER,
 last_line IN BINARY_INTEGER,
 source IN OUT NOCOPY vc2_table,
 frame_num IN BINARY_INTEGER);

Parameters

Table 52-45 SHOW_FRAME_SOURCE Procedure Parameters

	Parameter	Description
	
first_line

	
Line number of first line to fetch (PL/SQL programs always start at line 1 and have no holes)

	
last_line

	
Line number of last line to fetch. No lines are fetched past the end of the program.

	
source

	
The resulting table, which may be indexed by line#

	
frame_num

	
1-based frame number

Usage Notes

	
You use this function only when backtrace shows an anonymous unit is executing at a given frame position and you need to view the source in order to set a breakpoint.

	
If frame number is top of the stack and it's an anonymous block then SHOW_SOURCE can also be used.

	
If it's a stored PLSQL package/function/procedure then use SQL as described in the Usage Notes to SHOW_SOURCE Procedures.

SHOW_SOURCE Procedures

The procedure gets the source code. There are two overloaded SHOW_SOURCE procedures.

Syntax

DBMS_DEBUG.SHOW_SOURCE (
 first_line IN BINARY_INTEGER,
 last_line IN BINARY_INTEGER,
 source OUT vc2_table);

DBMS_DEBUG.SHOW_SOURCE (
 first_line IN BINARY_INTEGER,
 last_line IN BINARY_INTEGER,
 window IN BINARY_INTEGER,
 print_arrow IN BINARY_INTEGER,
 buffer IN OUT VARCHAR2,
 buflen IN BINARY_INTEGER,
 pieces OUT BINARY_INTEGER);

Parameters

Table 52-46 SHOW_SOURCE Procedure Parameters

	Parameter	Description
	
first_line

	
Line number of first line to fetch (PL/SQL programs always start at line 1 and have no holes)

	
last_line

	
Line number of last line to fetch. No lines are fetched past the end of the program.

	
source

	
The resulting table, which may be indexed by line#

	
window

	
'Window' of lines (the number of lines around the current source line)

	
print_arrow

	
Nonzero means to print an arrow before the current line

	
buffer

	
Buffer in which to place the source listing

	
buflen

	
Length of buffer

	
pieces

	
Set to nonzero if not all the source could be placed into the given buffer

Return Values

An indexed table of source-lines. The source lines are stored starting at first_line. If any error occurs, then the table is empty.

Usage Notes

The best way to get the source code (for a program that is being run) is to use SQL. For example:

DECLARE
 info DBMS_DEBUG.runtime_info;
BEGIN
 -- call DBMS_DEBUG.SYNCHRONIZE, CONTINUE,
 -- or GET_RUNTIME_INFO to fill in 'info'
 SELECT text INTO <buffer> FROM all_source
 WHERE owner = info.Program.Owner
 AND name = info.Program.Name
 AND line = info.Line#;
END;

However, this does not work for nonpersistent programs (for example, anonymous blocks and trigger invocation blocks). For nonpersistent programs, call SHOW_SOURCE. There are two flavors: one returns an indexed table of source lines, and the other returns a packed (and formatted) buffer.

The second overloading of SHOW_SOURCE returns the source in a formatted buffer, complete with line-numbers. It is faster than the indexed table version, but it does not guarantee to fetch all the source.

If the source does not fit in bufferlength (buflen), then additional pieces can be retrieved using the GET_MORE_SOURCE procedure (pieces returns the number of additional pieces that need to be retrieved).

SYNCHRONIZE Function

This function waits until the target program signals an event. If info_requested is not NULL, then it calls GET_RUNTIME_INFO.

Syntax

DBMS_DEBUG.SYNCHRONIZE (
 run_info OUT runtime_info,
 info_requested IN BINARY_INTEGER := NULL)
 RETURN BINARY_INTEGER;

Parameters

Table 52-47 SYNCHRONIZE Function Parameters

	Parameter	Description
	
run_info

	
Structure in which to write information about the program. By default, this includes information about what program is running and at which line execution has paused.

	
info_requested

	
Optional bit-field in which to request information other than the default (which is info_getStackDepth + info_getLineInfo). 0 means that no information is requested at all (see "Information Flags").

Return Values

Table 52-48 SYNCHRONIZE Function Return Values

	Return	Description
	
success

	
A successful completion

	
error_timeout

	
Timed out before the program started execution

	
error_communication

	
Other communication error

TARGET_PROGRAM_RUNNING Procedure

This procedure returns TRUE if the target session is currently executing a stored procedure, or FALSE if it is not.

Syntax

DBMS_DEBUG.TARGET_PROGRAM_RUNNING
 RETURN BOOLEAN;

53 DBMS_DDL

This package provides access to some SQL data definition language (DDL) statements from stored procedures. It also provides special administration operations that are not available as Data Definition Language statements (DDLs).

This chapter contains the following topics:

	
Using DBMS_DDL

	
Deprecated Subprograms

	
Security Model

	
Operational Notes

	
Summary of DBMS_DDL Subprograms

Using DBMS_DDL

This section contains topics which relate to using the DBMS_DDL package.

	
Deprecated Subprograms

	
Security Model

	
Operational Notes

Deprecated Subprograms

Oracle recommends that you do not use deprecated subprograms in new applications. Support for deprecated features is for backward compatibility only

The following subprograms are deprecated with release Release 10gR2:

	
ALTER_COMPILE Procedure

Security Model

This package runs with the privileges of the calling user, rather than the package owner SYS.

Operational Notes

The ALTER_COMPILE procedure commits the current transaction, performs the operation, and then commits again.

Summary of DBMS_DDL Subprograms

Table 53-1 DBMS_DDL Package Subprograms

	Subprogram	Description
	
ALTER_COMPILE Procedure

	
Compiles the PL/SQL object

	
ALTER_TABLE_NOT_REFERENCEABLE Procedure

	
Reorganizes object tables

	
ALTER_TABLE_REFERENCEABLE Procedure

	
Reorganizes object tables

	
CREATE_WRAPPED Procedures

	
Takes as input a single CREATE OR REPLACE statement that specifies creation of a PL/SQL package specification, package body, function, procedure, type specification or type body, generates a CREATE OR REPLACE statement with the PL/SQL source text obfuscated and executes the generated statement

	
IS_TRIGGER_FIRE_ONCE Function

	
Returns TRUE if the specified DML or DDL trigger is set to fire once. Otherwise, returns FALSE

	
SET_TRIGGER_FIRING_PROPERTY Procedures

	
Sets the specified DML or DDL trigger's firing property

	
WRAP Functions

	
Takes as input a CREATE OR REPLACE statement that specifies creation of a PL/SQL package specification, package body, function, procedure, type specification or type body and returns a CREATE OR REPLACE statement where the text of the PL/SQL unit has been obfuscated

ALTER_COMPILE Procedure

This procedure is equivalent to the following SQL statement:

ALTER PROCEDURE|FUNCTION|PACKAGE [<schema>.] <name> COMPILE [BODY]

	
Note:

This procedure is deprecated in Release 10gR2. While the procedure remains available in the package, Oracle recommends using the DDL equivalent in a dynamic SQL statement.

Syntax

DBMS_DDL.ALTER_COMPILE (
 type VARCHAR2,
 schema VARCHAR2,
 name VARCHAR2
 reuse_settings BOOLEAN := FALSE);

Parameters

Table 53-2 ALTER_COMPILE Procedure Parameters

	Parameter	Description
	
type

	
Must be either PROCEDURE, FUNCTION, PACKAGE, PACKAGE BODY or TRIGGER

	
schema

	
Schema name

If NULL, then use current schema (case-sensitive)

	
name

	
Name of the object (case-sensitive)

	
reuse_settings

	
Indicates whether the session settings in the objects should be reused, or whether the current session settings should be adopted instead

Exceptions

Table 53-3 ALTER_COMPILE Procedure Exceptions

	Exception	Description
	
ORA-20000:

	
Insufficient privileges or object does not exist

	
ORA-20001:

	
Remote object, cannot compile

	
ORA-20002:

	
Bad value for object type: should be either PACKAGE, PACKAGE BODY, PROCEDURE, FUNCTION, or TRIGGER

ALTER_TABLE_NOT_REFERENCEABLE Procedure

This procedure alters the given object table table_schema.table_name so it becomes not the default referenceable table for the schema affected_schema. This is equivalent to SQL

ALTER TABLE [<table_schema>.]<table_name> NOT REFERENCEABLE FOR <affected_schema>

which is currently not supported or available as a DDL statement.

Syntax

DBMS_DDL.ALTER_TABLE_NOT_REFERENCEABLE (
 table_name IN VARCHAR2,
 table_schema IN DEFAULT NULL,
 affected_schema IN DEFAULT NULL);

Parameters

Table 53-4 ALTER_TABLE_NOT_REFERENCEABLE Procedure Parameters

	Parameter	Description
	
table_name

	
Name of the table to be altered. Cannot be a synonym. Must not be NULL. Case sensitive.

	
table_schema

	
Name of the schema owning the table to be altered. If NULL then the current schema is used. Case sensitive.

	
affected_schema

	
Name of the schema affected by this alteration. If NULL then the current schema is used. Case sensitive.

Usage Notes

This procedure simply reverts for the affected schema to the default table referenceable for PUBLIC; that is., it simply undoes the previous ALTER_TABLE_REFERENCEABLE call for this specific schema. The affected schema must a particular schema (cannot be PUBLIC).

The user that executes this procedure must own the table (that is, the schema is the same as the user), and the affected schema must be the same as the user.

If the user executing this procedure has ALTER ANY TABLE and SELECT ANY TABLE and DROP ANY TABLE privileges, the user doesn't have to own the table and the affected schema can be any valid schema.

ALTER_TABLE_REFERENCEABLE Procedure

This procedure alters the given object table table_schema.table_name so it becomes the referenceable table for the given schema affected_schema. This is equivalent to SQL

ALTER TABLE [<table_schema>.]<table_name> REFERENCEABLE FOR <affected_schema>

which is currently not supported or available as a DDL statement.

Syntax

DBMS_DDL.ALTER_TABLE_REFERENCEABLE
 table_name IN VARCHAR2,
 table_schema IN DEFAULT NULL,
 affected_schema IN DEFAULT NULL);

Parameters

Table 53-5 ALTER_TABLE_REFERENCEABLE Procedure Parameters

	Parameter	Description
	
table_name

	
Name of the table to be altered. Cannot be a synonym. Must not be NULL. Case sensitive.

	
table_schema

	
Name of the schema owning the table to be altered. If NULL then the current schema is used. Case sensitive.

	
affected_schema

	
Name of the schema affected by this alteration. If NULL then the current schema is used. Case sensitive.

Usage Notes

When you create an object table, it automatically becomes referenceable, unless you use the OID AS clause when creating the table. The OID AS clause makes it possible for you to create an object table and to assign to the new table the same EOID as another object table of the same type. After you create a new table using the OID AS clause, you end up with two object table with the same EOID; the new table is not referenceable, the original one is. All references that used to point to the objects in the original table still reference the same objects in the same original table.

If you execute this procedure on the new table, it makes the new table the referenceable table replacing the original one; thus, those references now point to the objects in the new table instead of the original table.

CREATE_WRAPPED Procedures

The procedure takes as input a single CREATE OR REPLACE statement that specifies creation of a PL/SQL package specification, package body, function, procedure, type specification or type body. It then generates a CREATE OR REPLACE statement with the PL/SQL source text obfuscated and executes the generated statement. In effect, this procedure bundles together the operations of wrapping the text and creating the PL/SQL unit.

	
See Also:

WRAP Functions

This procedure has 3 overloads. Each of the three functions provides better performance than using a combination of individual WRAP Functions and DBMS_SQL.PARSE (or EXECUTE IMMEDIATE) calls. The different functionality of each form of syntax is presented with the definition.

Syntax

Is a shortcut for EXECUTE IMMEDIATE SYS.DBMS_DDL.WRAP(ddl):

DBMS_DDL.CREATE_WRAPPED (
 ddl VARCHAR2);

Is a shortcut for DBMS_SQL.PARSE(cursor, SYS.DBMS_DDL.WRAP (input, lb, ub)):

DBMS_DDL.CREATE_WRAPPED(
 ddl DBMS_SQL.VARCHAR2A,
 lb PLS_INTEGER,
 ub PLS_INTEGER);

Is a shortcut for DBMS_SQL.PARSE(cursor, SYS.DBMS_DDL.WRAP (input, lb, ub)):

DBMS_DDL.CREATE_WRAPPED(
 ddl DBMS_SQL.VARCHAR2S,
 lb PLS_INTEGER,
 ub PLS_INTEGER);

Parameters

Table 53-6 CREATE_WRAPPED Procedure Parameters

	Parameter	Description
	
ddl

	
A CREATE OR REPLACE statement that specifies creation of a PL/SQL package specification, package body, function, procedure, type specification or type body

	
lb

	
Lower bound for indices in the string table that specify the CREATE OR REPLACE statement

	
ub

	
Upper bound for indices in the string table that specify the CREATE OR REPLACE statement.

Usage Notes

	
The CREATE OR REPLACE statement is executed with the privileges of the user invoking DBMS_DDL.CREATE_WRAPPED.

	
Any PL/SQL code that attempts to call these interfaces should use the fully qualified package name SYS.DBMS_DDL to avoid the possibility that the name DBMS_DDL is captured by a locally-defined unit or by redefining the DBMS_DDL public synonym.

	
Each invocation of any accepts only a single PL/SQL unit. By contrast, the PL/SQL wrap utility accepts a entire SQL*Plus file and obfuscates the PL/SQL units within the file leaving all other text as-is. These interfaces are intended to be used in conjunction with or as a replacement for PL/SQL's dynamic SQL interfaces (EXECUTE IMMEDIATE and DBMS_SQL.PARSE). Since these dynamic SQL interfaces only accept a single unit at a time (and do not understand the SQL*Plus "/" termination character), both the CREATE_WRAPPED Procedures and the WRAP Functions require input to be a single unit.

Exceptions

ORA-24230: If the input is not a CREATE OR REPLACE statement specifying a PL/SQL unit, exception DBMS_DDL.MALFORMED_WRAP_INPUT is raised.

Examples

DECLARE
 ddl VARCHAR2(32767);
BEGIN
 ddl := GENERATE_PACKAGE(...);
 SYS.DBMS_DDL.CREATE_WRAPPED(ddl); -- Instead of EXECUTE IMMEDIATE ddl
END;

IS_TRIGGER_FIRE_ONCE Function

This function returns TRUE if the specified DML or DDL trigger is set to fire once. Otherwise, it returns FALSE.

A fire once trigger fires in a user session but does not fire in the following cases:

	
For changes made by a Streams apply process

	
For changes made by executing one or more Streams apply errors using the EXECUTE_ERROR or EXECUTE_ALL_ERRORS procedure in the DBMS_APPLY_ADM package

	
For changes made by a Logical Standby apply process

	
Note:

Only DML and DDL triggers can be fire once. All other types of triggers always fire.

	
See Also:

"SET_TRIGGER_FIRING_PROPERTY Procedures"

Syntax

DBMS_DDL.IS_TRIGGER_FIRE_ONCE
 trig_owner IN VARCHAR2,
 trig_name IN VARCHAR2)
 RETURN BOOLEAN;

Parameters

Table 53-7 IS_TRIGGER_FIRE_ONCE Function Parameters

	Parameter	Description
	
trig_owner

	
Schema of trigger

	
trig_name

	
Name of trigger

SET_TRIGGER_FIRING_PROPERTY Procedures

This procedure sets the specified DML or DDL trigger's firing property whether or not the property is set for the trigger. Use this procedure to control a DML or DDL trigger's firing property for changes:

	
Applied by a Streams apply process

	
Made by executing one or more Streams apply errors using the EXECUTE_ERROR or EXECUTE_ALL_ERRORS procedure in the DBMS_APPLY_ADM package.

	
Applied by a Logical Standby apply process

Syntax

DBMS_DDL.SET_TRIGGER_FIRING_PROPERTY (
 trig_owner IN VARCHAR2,
 trig_name IN VARCHAR2,
 fire_once IN BOOLEAN);

DBMS_DDL.SET_TRIGGER_FIRING_PROPERTY (
 trig_owner IN VARCHAR2,
 trig_name IN VARCHAR2,
 property IN INTEGER,
 setting IN BOOLEAN);

Parameters

Table 53-8 SET_TRIGGER_FIRING_PROPERTY Procedure Parameters

	Parameter	Description
	
trig_owner

	
Schema of the trigger to set

	
trig_name

	
Name of the trigger to set

	
fire_once

	
	
If TRUE, the trigger is set to fire once. By default, the fire_once parameter is set to TRUE for DML and DDL triggers.

	
If FALSE, the trigger is set to always fire unless apply_server_only property is set to TRUE, which overrides fire_once property setting.

	
property

	
	
DBMS_DDL.fire_once to set the fire_once property of the trigger

	
DBMS_DDL.apply_server_only to indicate whether trigger fires only in the context of SQL apply processes maintaining a logical standby database or Streams apply processes

	
setting

	
Value of property being set

Usage Notes

DML triggers created on a table have their fire-once property set to TRUE. In this case, the triggers only fire when the table is modified by an user process, and they are automatically disabled inside Oracle processes maintaining either a logical standby database (SQL Apply) or Oracle processes doing replication (Streams Apply) processes, and thus do not fire when a SQL Apply or a Streams Apply process modifies the table. There are two ways for a user to fire a trigger as a result of SQL Apply or a Streams Apply process making a change to a maintained table: (a) setting the fire-once property of a trigger to FALSE, which allows it fire both in the context of a user process or a SQL or Streams Apply process, or (b) by setting the apply-server-only property to TRUE and thus making the trigger fire only in the context of a SQL Apply or a Streams Apply process and not in the context of a user process.

	
FIRE_ONCE=TRUE, APPLY_SERVER_ONLY=FALSE

This is the default property setting for a DML trigger. The trigger only fires when user process modifies the base table.

	
FIRE_ONCE=TRUE or FALSE, APPLY_SERVER_ONLY=TRUE

The trigger only fires when SQL Apply or Streams Apply process modifies the base table. The trigger does not fire when a user process modifies the base table.Thus the apply-server-only property overrides the fire-once property of a trigger.

	
Note:

	
If you dequeue an error transaction from the error queue and execute it without using the DBMS_APPLY_ADM package, then relevant changes resulting from this execution cause a trigger to fire, regardless of the trigger firing property.

	
Only DML and DDL triggers can be fire once. All other types of triggers always fire.

	
See Also:

Oracle Streams Concepts and Administration for more information about the apply process and controlling a trigger's firing property

WRAP Functions

This function takes as input a single CREATE OR REPLACE statement that specifies creation of a PL/SQL package specification, package body, function, procedure, type specification or type body and returns a CREATE OR REPLACE statement where the text of the PL/SQL unit has been obfuscated.

The function has 3 overloads to allow for the different ways in which DDL statements can be generated dynamically and presented to DBMS_SQL or EXECUTE IMMEDIATE. The different functionality of each form of syntax is presented with the definition.

	
See Also:

CREATE_WRAPPED Procedures

Syntax

Provides basic functionality:

DBMS_DDL.WRAP(
 ddl VARCHAR2)
 RETURN VARCHAR2;

Provides the same functionality as the first form, but allows for larger inputs. This function is intended to be used with the PARSE Procedures in the DBMS_SQL package and its argument list follows the convention of DBMS_SQL.PARSE:

DBMS_DDL.WRAP(
 ddl DBMS_SQL.VARCHAR2S,
 lb PLS_INTEGER,
 ub PLS_INTEGER)
 RETURN DBMS_SQL.VARCHAR2S;

Provides the same functionality as the second form and is provided for compatibility with multiple forms of the PARSE Procedures in the DBMS_SQL package:

DBMS_DDL.WRAP(
 ddl DBMS_SQL.VARCHAR2A,
 lb PLS_INTEGER,
 ub PLS_INTEGER)
 RETURN DBMS_SQL.VARCHAR2A;

Parameters

Table 53-9 WRAP Function Parameters

	Parameter	Description
	
ddl

	
A CREATE OR REPLACE statement that specifies creation of a PL/SQL package specification, package body, function, procedure, type specification or type body

	
lb

	
Lower bound for indices in the string table that specify the CREATE OR REPLACE statement

	
ub

	
Upper bound for indices in the string table that specify the CREATE OR REPLACE statement.

Return Values

A CREATE OR REPLACE statement with the text obfuscated. In the case of the second and third form, the return value is a table of strings that need to be concatenated in order to construct the CREATE OR REPLACE string containing obfuscated source text.

Usage Notes

	
Any PL/SQL code that attempts to call these interfaces should use the fully qualified package name SYS.DBMS_DDL to avoid the possibility that the name DBMS_DDL is captured by a locally-defined unit or by redefining the DBMS_DDL public synonym.

	
Each invocation of any accepts only a single PL/SQL unit. By contrast, the PL/SQL wrap utility accepts a full SQL file and obfuscates the PL/SQL units within the file leaving all other text as-is. These interfaces are intended to be used in conjunction with or as a replacement for PL/SQL's dynamic SQL interfaces (EXECUTE IMMEDIATE and DBMS_SQL.PARSE). Since these dynamic SQL interfaces only accept a single unit at a time (and do not understand the SQL*Plus "/" termination character), both the CREATE_WRAPPED Procedures and the WRAP Functions require input to be a single unit.

Exceptions

ORA-24230: If the input is not a CREATE OR REPLACE statement specifying a PL/SQL unit, exception DBMS_DDL.MALFORMED_WRAP_INPUT is raised.

Examples

DECLARE
 ddl VARCHAR2(32767);
BEGIN
 ddl := GENERATE_PACKAGE(...);
EXECUTE IMMEDIATE SYS.DBMS_DDL.WRAP(ddl); -- Instead of EXECUTE IMMEDIATE ddl
END;

54 DBMS_DEFER

DBMS_DEFER is the user interface to a replicated transactional deferred remote procedure call facility. Replicated applications use the calls in this interface to queue procedure calls for later transactional execution at remote nodes.

These procedures are typically called from either after row triggers or application specified update procedures.

	
Documentation of DBMS_DEFER

Documentation of DBMS_DEFER

For a complete description of this package within the context of Replication, see DBMS_DEFER in the Oracle Database Advanced Replication Management API Reference.

55 DBMS_DEFER_QUERY

DBMS_DEFER_QUERY enables you to query the deferred transactions queue data that is not exposed through views.

	
Documentation of DBMS_DEFER_QUERY

Documentation of DBMS_DEFER_QUERY

For a complete description of this package within the context of Replication, see DBMS_DEFER_QUERY in the Oracle Database Advanced Replication Management API Reference.

56 DBMS_DEFER_SYS

DBMS_DEFER_SYS subprograms manage default replication node lists. This package is the system administrator interface to a replicated transactional deferred remote procedure call facility. Administrators and replication daemons can execute transactions queued for remote nodes using this facility, and administrators can control the nodes to which remote calls are destined.

	
Documentation of DBMS_DEFER_SYS

Documentation of DBMS_DEFER_SYS

For a complete description of this package within the context of Replication, see DBMS_DEFER_SYS in the Oracle Database Advanced Replication Management API Reference.

57 DBMS_DESCRIBE

You can use the DBMS_DESCRIBE package to get information about a PL/SQL object. When you specify an object name, DBMS_DESCRIBE returns a set of indexed tables with the results. Full name translation is performed and security checking is also checked on the final object.

This chapter contains the following topics:

	
Using DBMS_DESCRIBE

	
Overview

	
Security Model

	
Types

	
Exceptions

	
Examples

	
Summary of DBMS_DESCRIBE Subprograms

Using DBMS_DESCRIBE

	
Overview

	
Security Model

	
Types

	
Exceptions

	
Examples

Overview

This package provides the same functionality as the Oracle Call Interface OCIDescribeAny call.

	
See Also:

Oracle Call Interface Programmer's Guide

Security Model

This package is available to PUBLIC and performs its own security checking based on the schema object being described.

Types

The DBMS_DESCRIBE package declares two PL/SQL table types, which are used to hold data returned by DESCRIBE_PROCEDURE in its OUT parameters. The types are:

TYPE VARCHAR2_TABLE IS TABLE OF VARCHAR2(30)
 INDEX BY BINARY_INTEGER;

TYPE NUMBER_TABLE IS TABLE OF NUMBER
 INDEX BY BINARY_INTEGER;

Exceptions

DBMS_DESCRIBE can raise application errors in the range -20000 to -20004.

Table 57-1 DBMS_DESCRIBE Errors

	Error	Description
	
ORA-20000

	
ORU 10035: cannot describe a package ('X') only a procedure within a package.

	
ORA-20001

	
ORU-10032: procedure 'X' within package 'Y' does not exist.

	
ORA-20002

	
ORU-10033: object 'X' is remote, cannot describe; expanded name 'Y'.

	
ORA-20003

	
ORU-10036: object 'X' is invalid and cannot be described.

	
ORA-20004

	
Syntax error attempting to parse 'X'.

Examples

One use of the DESCRIBE_PROCEDURE procedure is as an external service interface.

For example, consider a client that provides an OBJECT_NAME of SCOTT.ACCOUNT_UPDATE, where ACCOUNT_UPDATE is an overloaded function with specification:

TABLE account (account_no NUMBER, person_id NUMBER,
 balance NUMBER(7,2))
TABLE person (person_id number(4), person_nm varchar2(10))

FUNCTION ACCOUNT_UPDATE (account_no NUMBER,
 person person%rowtype,
 amounts DBMS_DESCRIBE.NUMBER_TABLE,
 trans_date DATE)
 return account.balance%type;

FUNCTION ACCOUNT_UPDATE (account_no NUMBER,
 person person%rowtype,
 amounts DBMS_DESCRIBE.NUMBER_TABLE,
 trans_no NUMBER)
 return account.balance%type;

This procedure might look similar to the following output:

overload position argument level datatype length prec scale rad
-------- --------- -------- ------ -------- ------ ---- ----- ---
 1 0 0 2 22 7 2 10
 1 1 ACCOUNT 0 2 0 0 0 0
 1 2 PERSON 0 250 0 0 0 0
 1 1 PERSON_ID 1 2 22 4 0 10
 1 2 PERSON_NM 1 1 10 0 0 0
 1 3 AMOUNTS 0 251 0 0 0 0
 1 1 1 2 22 0 0 0
 1 4 TRANS_DATE 0 12 0 0 0 0
 2 0 0 2 22 7 2 10
 2 1 ACCOUNT_NO 0 2 22 0 0 0
 2 2 PERSON 0 2 22 4 0 10
 2 3 AMOUNTS 0 251 22 4 0 10
 2 1 1 2 0 0 0 0
 2 4 TRANS_NO 0 2 0 0 0 0

The following PL/SQL procedure has as its parameters all of the PL/SQL datatypes:

CREATE OR REPLACE PROCEDURE p1 (
 pvc2 IN VARCHAR2,
 pvc OUT VARCHAR,
 pstr IN OUT STRING,
 plong IN LONG,
 prowid IN ROWID,
 pchara IN CHARACTER,
 pchar IN CHAR,
 praw IN RAW,
 plraw IN LONG RAW,
 pbinint IN BINARY_INTEGER,
 pplsint IN PLS_INTEGER,
 pbool IN BOOLEAN,
 pnat IN NATURAL,
 ppos IN POSITIVE,
 pposn IN POSITIVEN,
 pnatn IN NATURALN,
 pnum IN NUMBER,
 pintgr IN INTEGER,
 pint IN INT,
 psmall IN SMALLINT,
 pdec IN DECIMAL,
 preal IN REAL,
 pfloat IN FLOAT,
 pnumer IN NUMERIC,
 pdp IN DOUBLE PRECISION,
 pdate IN DATE,
 pmls IN MLSLABEL) AS

BEGIN
 NULL;
END;

If you describe this procedure using the following:

CREATE OR REPLACE PACKAGE describe_it AS

 PROCEDURE desc_proc (name VARCHAR2);

END describe_it;

CREATE OR REPLACE PACKAGE BODY describe_it AS

 PROCEDURE prt_value(val VARCHAR2, isize INTEGER) IS
 n INTEGER;
 BEGIN
 n := isize - LENGTHB(val);
 IF n < 0 THEN
 n := 0;
 END IF;
 DBMS_OUTPUT.PUT(val);
 FOR i in 1..n LOOP
 DBMS_OUTPUT.PUT(' ');
 END LOOP;
 END prt_value;

 PROCEDURE desc_proc (name VARCHAR2) IS

 overload DBMS_DESCRIBE.NUMBER_TABLE;
 position DBMS_DESCRIBE.NUMBER_TABLE;
 c_level DBMS_DESCRIBE.NUMBER_TABLE;
 arg_name DBMS_DESCRIBE.VARCHAR2_TABLE;
 dty DBMS_DESCRIBE.NUMBER_TABLE;
 def_val DBMS_DESCRIBE.NUMBER_TABLE;
 p_mode DBMS_DESCRIBE.NUMBER_TABLE;
 length DBMS_DESCRIBE.NUMBER_TABLE;
 precision DBMS_DESCRIBE.NUMBER_TABLE;
 scale DBMS_DESCRIBE.NUMBER_TABLE;
 radix DBMS_DESCRIBE.NUMBER_TABLE;
 spare DBMS_DESCRIBE.NUMBER_TABLE;
 idx INTEGER := 0;

 BEGIN
 DBMS_DESCRIBE.DESCRIBE_PROCEDURE(
 name,
 null,
 null,
 overload,
 position,
 c_level,
 arg_name,
 dty,
 def_val,
 p_mode,
 length,
 precision,
 scale,
 radix,
 spare);

 DBMS_OUTPUT.PUT_LINE('Position Name DTY Mode');
 LOOP
 idx := idx + 1;
 prt_value(TO_CHAR(position(idx)), 12);
 prt_value(arg_name(idx), 12);
 prt_value(TO_CHAR(dty(idx)), 5);
 prt_value(TO_CHAR(p_mode(idx)), 5);
 DBMS_OUTPUT.NEW_LINE;
 END LOOP;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.NEW_LINE;
 DBMS_OUTPUT.NEW_LINE;

 END desc_proc;
END describe_it;

Then the results list all the numeric codes for the PL/SQL datatypes:

Position Name Datatype_Code Mode
1 PVC2 1 0
2 PVC 1 1
3 PSTR 1 2
4 PLONG 8 0
5 PROWID 11 0
6 PCHARA 96 0
7 PCHAR 96 0
8 PRAW 23 0
9 PLRAW 24 0
10 PBININT 3 0
11 PPLSINT 3 0
12 PBOOL 252 0
13 PNAT 3 0
14 PPOS 3 0
15 PPOSN 3 0
16 PNATN 3 0
17 PNUM 2 0
18 PINTGR 2 0
19 PINT 2 0
20 PSMALL 2 0
21 PDEC 2 0
22 PREAL 2 0
23 PFLOAT 2 0
24 PNUMER 2 0
25 PDP 2 0
26 PDATE 12 0
27 PMLS 106 0

Summary of DBMS_DESCRIBE Subprograms

Table 57-2 DBMS_DESCRIBE Package Subprograms

	Subprogram	Description
	
DESCRIBE_PROCEDURE Procedure

	
Provides a brief description of a PL/SQL stored procedure

DESCRIBE_PROCEDURE Procedure

The procedure DESCRIBE_PROCEDURE provides a brief description of a PL/SQL stored procedure. It takes the name of a stored procedure and returns information about each parameter of that procedure.

Syntax

DBMS_DESCRIBE.DESCRIBE_PROCEDURE(
 object_name IN VARCHAR2,
 reserved1 IN VARCHAR2,
 reserved2 IN VARCHAR2,
 overload OUT NUMBER_TABLE,
 position OUT NUMBER_TABLE,
 level OUT NUMBER_TABLE,
 argument_name OUT VARCHAR2_TABLE,
 datatype OUT NUMBER_TABLE,
 default_value OUT NUMBER_TABLE,
 in_out OUT NUMBER_TABLE,
 length OUT NUMBER_TABLE,
 precision OUT NUMBER_TABLE,
 scale OUT NUMBER_TABLE,
 radix OUT NUMBER_TABLE,
 spare OUT NUMBER_TABLE
 include_string_constraints OUT BOOLEAN DEFAULT FALSE);

Parameters

Table 57-3 DBMS_DESCRIBE.DESCRIBE_PROCEDURE Parameters

	Parameter	Description
	
object_name

	
Name of the procedure being described.

The syntax for this parameter follows the rules used for identifiers in SQL. The name can be a synonym. This parameter is required and may not be null. The total length of the name cannot exceed 197 bytes. An incorrectly specified OBJECT_NAME can result in one of the following exceptions:

ORA-20000 - A package was specified. You can only specify a stored procedure, stored function, packaged procedure, or packaged function.

ORA-20001 - The procedure or function that you specified does not exist within the given package.

ORA-20002 - The object that you specified is a remote object. This procedure cannot currently describe remote objects.

ORA-20003 - The object that you specified is invalid and cannot be described.

ORA-20004 - The object was specified with a syntax error.

	
reserved1 reserved2

	
Reserved for future use -- must be set to NULL or the empty string.

	
overload

	
A unique number assigned to the procedure's signature.

If a procedure is overloaded, then this field holds a different value for each version of the procedure.

	
position

	
Position of the argument in the parameter list.

Position 0 returns the values for the return type of a function.

	
level

	
If the argument is a composite type, such as record, then this parameter returns the level of the datatype. See the Oracle Call Interface Programmer's Guide for a description of the ODESSP call for an example.

	
argument_name

	
Name of the argument associated with the procedure that you are describing.

	
datatype

	
Oracle datatype of the argument being described. The datatypes and their numeric type codes are:

0 placeholder for procedures with no arguments
1 VARCHAR, VARCHAR, STRING
2 NUMBER, INTEGER, SMALLINT, REAL, FLOAT, DECIMAL
3 BINARY_INTEGER, PLS_INTEGER, POSITIVE, NATURAL
8 LONG
11 ROWID
12 DATE
23 RAW
24 LONG RAW
58 OPAQUE TYPE
96 CHAR (ANSI FIXED CHAR), CHARACTER
106 MLSLABEL
121 OBJECT
122 NESTED TABLE
123 VARRAY
178 TIME
179 TIME WITH TIME ZONE
180 TIMESTAMP
181 TIMESTAMP WITH TIME ZONE
231 TIMESTAMP WITH LOCAL TIME ZONE
250 PL/SQL RECORD
251 PL/SQL TABLE
252 PL/SQL BOOLEAN

	
default_value

	
1 if the argument being described has a default value; otherwise, the value is 0.

	
in_out

	
Describes the mode of the parameter:

0 IN
1 OUT
2 IN OUT

	
length

	
For %rowtype formal arguments, the length constraint is returned, otherwise 0 is returned.If the include_string_constraints parameter is set to TRUE, the argument's formal length constraint is passed back if it is of the appropriate type. Those are the string types: 1;8;23;24;96

	
precision

	
If the argument being described is of datatype 2 (NUMBER), then this parameter is the precision of that number.

	
scale

	
If the argument being described is of datatype 2 (NUMBER), then this parameter is the scale of that number.

	
radix

	
If the argument being described is of datatype 2 (NUMBER), then this parameter is the radix of that number.

	
spare

	
Reserved for future functionality.

	
include_string_constraints

	
The default is FALSE. If the parameter is set to TRUE, the arguments' formal type constraints is passed back if it is of the appropriate type.Those are the string types: 1;8;23;24;96

Return Values

All values from DESCRIBE_PROCEDURE are returned in its OUT parameters. The datatypes for these are PL/SQL tables, to accommodate a variable number of parameters.

58 DBMS_DG

The DBMS_DG package allows applications to notify the primary database in an Oracle Data Guard broker environment to initiate a fast-start failover when the application encounters a condition that warrants a failover.

	
See Also:

Oracle Data Guard Broker for more information about performing a fast-start failover in a broker configuration

This chapter contains the following topics:

	
Using DBMS_DG

	
Security Model

	
Summary of the DBMS_DG Subprogram

Using DBMS_DG

There are conditions detectable by applications running outside of the Oracle database that may warrant the Oracle Data Guard broker to perform a fast-start failover. Because the range of possible conditions is virtually unlimited, it is left to the applications to determine which conditions warrant a fast-start failover.

When such conditions occur, the application calls the DBMS_DG.INITIATE_FS_FAILOVER procedure to alert the primary database that the application wants a fast-start failover to occur immediately. The primary database then notifies the observer, which immediately initiates a fast-start failover as long as the standby database is in a valid fast-start failover state ("observed" and either "synchronized" or "within lag") to accept a failover.If the configuration is not in a valid fast-start failover state, the INITIATE_FS_FAILOVER subprogram returns an ORA error message (it will not signal an exception) to inform the calling application that a fast-start failover could not be performed.

Security Model

The DBMS_DG package runs with invoker's rights and requires the SYSDBA privilege.

Summary of the DBMS_DG Subprogram

Table 58-1 DBMS_DG Package Subprogram

	Subprogram	Description
	
INITIATE_FS_FAILOVER Procedure

	
Enables an application to notify the primary database that a fast-start failover is necessary when the application encounters conditions that warrant a failover.

INITIATE_FS_FAILOVER Procedure

Use this procedure to specify a condition string that, when encountered by an application, allows the application to request the primary database to immediately invoke a fast-start failover.

Syntax

DBMS_DG.INITIATE_FS_FAILOVER (
 condstr IN VARCHAR2)
RETURN BINARY_INTEGER;

Parameters

Table 58-2 INITIATE_FS_FAILOVER Procedure Parameters

	Parameter	Description
	
condstr

	
Specifies the condition string for which a fast-start failover should be requested. If no condition string argument is supplied, the default string of "Application Failover Requested" will be logged in the broker log file and in the database alert log of the primary database.

Usage Notes

	
This procedure returns a binary integer.

	
Query the V$FS_FAILOVER_STATS view to see the time of the last fast-start failover and the reason it was performed.

Errors

Table 58-3 INITIATE_FS_FAILOVER Procedure Errors

	Error	Description
	
ORA-00000: normal, successful completion

	
The request to initiate a fast-start failover has been posted to the observer.

	
ORA-16646: fast-start failover is disabled

	
Either a broker configuration does not exist or fast-start failover has not been enabled.

	
ORA-16666: unable to initiate fast-start failover on a standby database

	
DBMS_DG.INITIATE_FS_FAILOVER was invoked on a standby site.

	
ORA-16817: unsynchronized fast-start failover configuration

	
DBMS_DG.INITIATE_FS_FAILOVER was invoked in a maximum available fast-start failover configuration when the configuration was not synchronized.

	
ORA-16819: fast-start failover observer not started

	
DBMS_DG.INITIATE_FS_FAILOVER was invoked but an observer had not yet been started.

	
ORA-16820: fast-start failover observer is no longer observing this database

	
DBMS_DG.INITIATE_FS_FAILOVER was invoked but the configuration detects that the observer may not be running.

	
ORA-16829: lagging fast-start failover configuration

	
DBMS_DG.INITIATE_FS_FAILOVER was invoked in a maximum performance fast-start failover configuration when the configuration was not in the user-specified redo lag limit.

Example

In this example, the program attempts to initiate a fast-start failover when fast-start failover is disabled. To use this example, connect as user SYS with SYDDBA privileges.

set serveroutput on

declare
status integer;

begin
status := dbms_dg.initiate_fs_failover(''Failover Requested'');

dbms_output.put_line(''Fast-Start Failover is disabled: Expected status = ORA-16646'');
dbms_output.put_line('' Actual Status = ORA-'' || status);

end;
/
exit;

59 DBMS_DIMENSION

DBMS_DIMENSION enables you to verify dimension relationships and provides an alternative to the Enterprise Manager Dimension Wizard for displaying a dimension definition.

	
See Also:

Oracle Database Data Warehousing Guide for detailed conceptual and usage information about the DBMS_DIMENSION package

This chapter contains the following topics:

	
Using DBMS_DIMENSION

	
Security Model

	
Summary of DBMS_DIMENSION Subprograms

Using DBMS_DIMENSION

This section contains topics which relate to using the DBMS_DIMENSION package.

	
Security Model

Security Model

Security on this package can be controlled by granting EXECUTE to selected users or roles.

A user can validate or describe all the dimensions in his own schema. To validate or describe a dimension in another schema, you must have either an object privilege on the dimension or one of the following system privileges: CREATE ANY DIMENSION, ALTER ANY DIMENSION, and DROP ANY DIMENSION.

Summary of DBMS_DIMENSION Subprograms

Table 59-1 DBMS_DIMENSION Package Subprograms

	Subprogram	Description
	
DESCRIBE_DIMENSION Procedure

	
Prints out the definition of the input dimension, including dimension owner and name, levels, hierarchies, and attributes

	
VALIDATE_DIMENSION Procedure

	
Verifies that the relationships specified in a dimension are correct

DESCRIBE_DIMENSION Procedure

This procedure displays the definition of the dimension, including dimension name, levels, hierarchies, and attributes. It displays the output using the DBMS_OUTPUT package.

Syntax

DBMS_DIMENSION.DESCRIBE_DIMENSION (
 dimension IN VARCHAR2);

Parameters

Table 59-2 DESCRIBE_DIMENSION Procedure Parameter

	Parameter	Description
	
dimension

	
The owner and name of the dimension in the format of owner.name.

VALIDATE_DIMENSION Procedure

This procedure verifies that the relationships specified in a dimension are valid. The rowid for any row that is found to be invalid will be stored in the table DIMENSION_EXCEPTIONS in the user's schema.

Syntax

DBMS_DIMENSION.VALIDATE_DIMENSION (
 dimension IN VARCHAR2,
 incremental IN BOOLEAN := TRUE,
 check_nulls IN BOOLEAN := FALSE,
 statement_id IN VARCHAR2 := NULL);

Parameters

Table 59-3 VALIDATE_DIMENSION Procedure Parameters

	Parameter	Description
	
dimension

	
The owner and name of the dimension in the format of owner.name.

	
incremental

	
If TRUE, check only the new rows for tables of this dimension. If FALSE, check all the rows.

	
check_nulls

	
If TRUE, then all level columns are verified to be non-null.

If FALSE, this check is omitted. Specify FALSE when non-NULLness is guaranteed by other means, such as NOT NULL constraints.

	
statement_id

	
A client-supplied unique identifier to associate output rows with specific invocations of the procedure.

60 DBMS_DST

The DBMS_DST package provides an interface to apply the Daylight Saving Time (DST) patch to the Timestamp with Time Zone data type.

	
See Also:

	
Oracle Database Globalization Support Guide

	
Oracle Database Reference

This chapter contains the following topics:

	
Using DBMS_DST

	
Overview

	
Security Model

	
Views

	
Summary of DBMS_DST Subprograms

Using DBMS_DST

	
Overview

	
Security Model

	
Views

Overview

The transition period during which Daylight Saving Time comes into effect, or stops being in effect, has the potential for problems, such as data loss, when handling timestamps with time zone data. The DBMS_DST package enables working with these transitions in the context of a set of rules.

Security Model

The DBMS_DST package is an invoker's rights package.

	
See Also:

Oracle Database PL/SQL Language Reference for more information about using Invoker Rights or Definer Rights

The execute privilege on the package is granted to the EXECUTE_CATALOG_ROLE role. This role is normally granted to selected users to allow EXECUTE privileges for packages and procedures in the data dictionary.

The user that invokes the package must have the following privileges:

	
CREATE ANY TABLE

	
ALTER ANY TABLE

	
DROP ANY TABLE

	
SELECT ANY TABLE

	
LOCK ANY TABLE

	
ALTER ANY INDEX

	
ALTER ANY TRIGGER

	
UPDATE ANY TABLE

	
EXECUTE ANY TYPE

Views

The DBMS_DST package uses the views shown in Table 60-1, "Views used by DBMS_DST", further described in the Oracle Database Reference:

Table 60-1 Views used by DBMS_DST

	View	Description
	
DBA_TSTZ_TABLES

	
Displays information about all tables in the database, which have columns defined on TIMESTAMP WITH TIME ZONE data types or object types containing attributes of TIMESTAMP WITH TIME ZONE data types. Its columns are the same as those in ALL_TSTZ_TABLES

	
USER_TSTZ_TABLES

	
Displays information about the tables owned by the current user, which have columns defined on TIMESTAMP WITH TIME ZONE data types or object types containing attributes of TIMESTAMP WITH TIME ZONE data types. Its columns (except for OWNER) are the same as those in ALL_TSTZ_TABLES.

	
ALL_TSTZ_TABLES

	
Displays information about the tables accessible to the current user, which have columns defined on TIMESTAMP WITH TIME ZONE data types or object types containing attributes of TIMESTAMP WITH TIME ZONE data types

Summary of DBMS_DST Subprograms

Table 60-2 DBMS_DST Package Subprograms

	Subprogram	Description
	
BEGIN_PREPARE Procedure

	
Starts a prepare window

	
BEGIN_UPGRADE Procedure

	
Starts an upgrade window

	
CREATE_AFFECTED_TABLE Procedure

	
Creates a table that has the schema shown in the comments for the FIND_AFFECTED_TABLES Procedure

	
CREATE_ERROR_TABLE Procedure

	
Creates a log error table

	
CREATE_TRIGGER_TABLE Procedure

	
Creates a table that is used to record active triggers disabled before performing upgrade on the table, having not been enabled due to fatal failure during the upgrading process

	
END_PREPARE Procedure

	
Ends a prepare window

	
END_UPGRADE Procedure

	
Ends an upgrade window

	
FIND_AFFECTED_TABLES Procedure

	
Finds all the tables that have affected TSTZ data due to the new timezone version

	
UPGRADE_DATABASE Procedure

	
Upgrades all tables in the database that have one or more columns defined on the TSTZ type, or an ADT containing the TSTZ type

	
UPGRADE_SCHEMA Procedure

	
Upgrades tables in a specified list of schemas that has one or more columns defined on the TSTZ type, or an ADT containing the TSTZ type

	
UPGRADE_TABLE Procedure

	
Upgrades a specified list of tables that has one or more columns defined on the TSTZ type or an ADT containing the TSTZ type

BEGIN_PREPARE Procedure

This procedure starts a prepare window. Once a prepare window is started successfully, the database property 'DST_UPGRADE_STATE' is set to 'PREPARE', and the database property 'SECONDARY_TT_VERSION' is set to a new timezone version.

The prepare window lets a DBA investigate data affected by the upgrade, and so judge when it is optimal to perform the upgrade. The prepare window can overlap normal database operation.

Syntax

DBMS_DST.BEGIN_PREPARE (
 new_version IN BINARY_INTEGER);

Parameters

Table 60-3 BEGIN_PREPARE Procedure Parameters

	Parameter	Description
	
new_version

	
New timezone version to which the database is to be prepared to upgrade

BEGIN_UPGRADE Procedure

This procedure starts an upgrade window. When an upgraded window is started successfully, the TSTZ data in the dictionary tables is upgraded to reflect the new timezone version, and the database property 'DST_UPGRADE_STATE' is set to 'UPGRADE'. Once BEGIN_UPGRADE has been performed successfully, the user must re-start the database. After a successful restart, the database property 'PRIMARY_TT_VERSION' is the new timezone version, and 'SECONDARY_TT_VERSION' is the old timezone version.

The procedure operates atomically, and upgrades all or none of the dictionary tables and the database properties. It must be called in the database in OPEN MIGRATE mode.

Syntax

DBMS_DST.BEGIN_UPGRADE (
 new_version IN BINARY_INTEGER,
 error_on_overlap_time IN BOOLEAN := FALSE,
 error_on_nonexisting_time IN BOOLEAN := FALSE);

Parameters

Table 60-4 BEGIN_UPGRADE Procedure Parameters

	Parameter	Description
	
new_version

	
New timezone version to which the database is to be upgraded

	
error_on_overlap_time

	
Boolean flag indicating whether to report errors on the 'overlap' time semantic conversion error. The default is TRUE. For more information about boundary cases, see Oracle Database SQL Language Reference.

	
error_on_nonexisting_time

	
Boolean flag indicating whether to report errors on the 'non-existing' time semantic conversion error.

The default is TRUE.

CREATE_AFFECTED_TABLE Procedure

This procedure creates a table that has the schema shown in the comments for the FIND_AFFECTED_TABLES Procedure.

Syntax

DBMS_DST.CREATE_AFFECTED_TABLE (
 table_name IN VARCHAR2);

Parameters

Table 60-5 CREATE_AFFECTED_TABLE Procedure Parameters

	Parameter	Description
	
table_name

	
Name of the table created

Usage Notes

This procedures takes a table_name without schema qualification, creating a table within the current user schema.

CREATE_ERROR_TABLE Procedure

This procedure creates a log error table which has the following schema:

CREATE TABLE dst$error_table(
 table_owner VARCHAR2(30),
 table_name VARCHAR2(30),
 column_name VARCHAR2(4000),
 rid ROWID,
 error_number NUMBER)

Syntax

DBMS_DST.CREATE_ERROR_TABLE (
 table_name IN VARCHAR2);

Parameters

Table 60-6 CREATE_ERROR_TABLE Procedure Parameters

	Parameter	Description
	
table_name

	
Name of the table created

Usage Notes

	
This procedures takes a table_name without schema qualification, creating a table within the current user schema.

	
The error number is found when upgrading time zone file and timestamp with time zone data. For more information about error handling when upgrading time zone file and timestamp with time zone data, see Oracle Database Globalization Support Guide

CREATE_TRIGGER_TABLE Procedure

This procedure creates a table that has the following schema.

CREATE TABLE dst_trigger_table (
trigger_owner VARCHAR2(30),
trigger_name VARCHAR2(30));

This table is used to record active triggers that are disabled before performing upgrade on the table, having not been enabled due to fatal failure during the upgrading process.

Syntax

DBMS_DST.CREATE_TRIGGER_TABLE (
 table_name IN VARCHAR2);

Parameters

Table 60-7 CREATE_TRIGGER_TABLE Procedure Parameters

	Parameter	Description
	
table_name

	
Name of table to be created

Usage Notes

This procedures takes a table_name without schema qualification, creating a table within the current user schema.

END_PREPARE Procedure

This procedure ends a prepare window.

Syntax

DBMS_DST.BEGIN_PREPARE;

END_UPGRADE Procedure

This procedure ends an upgrade window. An upgraded window is ended if all the affected user tables have been upgraded. Otherwise, the OUT parameter num_of_failures indicates how many tables have not been converted.

Syntax

DBMS_DST.END_UPGRADE (
 num_of_failures OUT BINARY_INTEGER);

Parameters

Table 60-8 END_UPGRADE Procedure Parameters

	Parameter	Description
	
num_of_failures

	
Number of tables that fail to complete

FIND_AFFECTED_TABLES Procedure

This procedure finds all the tables which have affected TSTZ data due to the new timezone version. This procedure can only be invoked during a prepare window. The tables which have affected TSTZ data are recorded into a table indicated by parameter affected_tables. If semantic errors must be logged, they are recorded into a table indicated by parameter log_errors_table.

Syntax

DBMS_DST.FIND_AFFECTED_TABLES (
 affected_tables IN VARCHAR2 =: 'sys.dst$affected_tables',
 log_errors IN BOOLEAN := FALSE,
 log_errors_table IN VARCHAR2 =: 'sys.dst$error_table');

Parameters

Table 60-9 FIND_AFFECTED_TABLES Procedure Parameters

	Parameter	Description
	
affected_tables

	
Name of table with the following schema:

CREATE TABLE dst$affected_tables (
table_owner VARCHAR2(30),
table_name VARCHAR2(30),
column_name VARCHAR2(4000),
row_count NUMBER,
error_count NUMBER)

The table can be created with the CREATE_AFFECTED_TABLE Procedure.

	
log_errors

	
Boolean flag indicating whether to log errors during upgrade. If FALSE, no error is logged into the log_errors_table after aborting conversion of the current table. If TRUE, the error is logged to the log_errors_table.

The default is FALSE.

	
log_errors_table

	
Table name with the following schema:

CREATE TABLE dst$error_table (
table_owner VARCHAR2(30),
table_name VARCHAR2(30),
column_name VARCHAR2(4000),
rid ROWID,
error_number NUMBER)

The table can be created with the CREATE_ERROR_TABLE Procedure. The rid column records the rowids of the offending rows, and the error_number column records the corresponding error number.

UPGRADE_DATABASE Procedure

This procedure upgrades all tables in the database, which have one or more columns defined on the TSTZ type or an ADT containing the TSTZ type. This procedure can only be invoked after an upgrade window has been started. Each table is upgraded in an atomic transaction. Note that, a base table and its materialized view log table are upgraded in an atomic transaction.

Syntax

DBMS_DST.UPGRADE_DATABASE (
 num_of_failures OUT BINARY_INTEGER,
 upgrade_data IN BOOLEAN := TRUE,
 parallel IN BOOLEAN := FALSE,
 continue_after_errors IN BOOLEAN := TRUE,
 log_errors IN BOOLEAN := FALSE,
 log_errors_table IN VARCHAR2 =: 'sys.dst$error_table' ,
 error_on_overlap_time IN BOOLEAN := FALSE,
 error_on_nonexisting_time IN BOOLEAN := FALSE,
 log_triggers_table IN VARCHAR2 := 'sys.dst$trigger_table');

Parameters

Table 60-10 UPGRADE_DATABASE Procedure Parameters

	Parameter	Description
	
num_of_failures

	
Number of tables that fail to complete

	
upgrade_data

	
Boolean flag indicating whether to convert TSTZ data using the new Time Zone patch File (TRUE), or to leave it unconverted (FALSE).The default is TRUE.

	
parallel

	
Boolean flag indicating whether to convert tables using PDML (Parallel DML) or Serial DML.The default is FALSE.

	
continue_after_errors

	
Boolean flag indicating whether to continue after upgrade fails on the current table.

The default is TRUE.

	
log_errors

	
Boolean flag indicating whether to log errors during upgrade. If FALSE, no error is logged into the log_errors_table after aborting conversion of the current table. If TRUE, errors are logged to the log_errors_table.

The default is FALSE.

	
log_errors_table

	
Table name with the following schema:

CREATE TABLE dst$error_table (
table_owner VARCHAR2(30),
table_name VARCHAR2(30),
column_name VARCHAR2(4000),
rid ROWID,
error_number NUMBER)

The table can be created with the CREATE_ERROR_TABLE Procedure. The rid column records the rowids of the offending rows, and the error_number column records the corresponding error number.

	
error_on_overlap_time

	
Boolean flag indicating whether to report errors on the 'overlap' time semantic conversion error.

The default is TRUE.

	
error_on_nonexisting_time

	
Boolean flag indicating whether to report errors on the 'non-existing' time semantic conversion error.

The default is TRUE.

	
log_triggers_table

	
Table to log triggers which are disabled before upgrade, having not been enabled due to a fatal failure when performing an upgrade

UPGRADE_SCHEMA Procedure

This procedure upgrades tables in a specified list of schemas that have one or more columns defined on the TSTZ type, or an ADT containing the TSTZ type. This procedure can be invoked only after an upgrade window has been started. Each table is upgraded in an atomic transaction. Note that a base table and its materialized view log table are upgraded in an atomic transaction.

Syntax

DBMS_DST.UPGRADE_SCHEMA (
 num_of_failures OUT BINARY_INTEGER,
 schema_list IN VARCHAR2,
 upgrade_data IN BOOLEAN := TRUE,
 parallel IN BOOLEAN := FALSE,
 continue_after_errors IN BOOLEAN := TRUE,
 log_errors IN BOOLEAN := FALSE,
 log_errors_table IN VARCHAR2 =: 'sys.dst$error_table' ,
 error_on_overlap_time IN BOOLEAN := FALSE,
 error_on_nonexisting_time IN BOOLEAN := FALSE,
 log_triggers_table IN VARCHAR2 := 'sys.dst$trigger_table');

Parameters

Table 60-11 UPGRADE_SCHEMA Procedure Parameters

	Parameter	Description
	
num_of_failures

	
Number of tables that fail to complete

	
schema_list

	
Schema name list (comma separated strings)

	
upgrade_data

	
Boolean flag indicating whether to convert TSTZ data using the new Time Zone patch File (TRUE) or to leave unconverted (FALSE).The default is TRUE.

	
parallel

	
Boolean flag indicating whether to convert tables using PDML (Parallel DML) or Serial DML.The default is FALSE.

	
continue_after_errors

	
Boolean flag indicating whether to continue after upgrade fails on the current table.The default is TRUE.

	
log_errors

	
Boolean flag indicating whether to log errors during upgrade. If FALSE, no error is logged into the log_errors_table after aborting conversion of the current table. If TRUE, the error is logged to the log_errors_table.

The default is FALSE.

	
log_errors_table

	
Table name with the following schema:

CREATE TABLE dst$error_table (
table_owner VARCHAR2(30),
table_name VARCHAR2(30),
column_name VARCHAR2(4000),
rid ROWID,
error_number NUMBER)

The table can be created with the CREATE_ERROR_TABLE Procedure. The rid column records the rowids of the offending rows, and the error_number column records the corresponding error number.

	
error_on_overlap_time

	
Boolean flag indicating whether to report errors on the 'overlap' time semantic conversion error.

The default is TRUE.

	
error_on_nonexisting_time

	
Boolean flag indicating whether to report errors on the 'non-existing' time semantic conversion error.

The default is TRUE.

	
log_triggers_table

	
Table to log triggers that are disabled before upgrade, having not been enabled due to a fatal failure when performing an upgrade

UPGRADE_TABLE Procedure

This procedure upgrades a specified list of tables that have one or more columns defined on the TSTZ type, or an ADT containing the TSTZ type.

Syntax

DBMS_DST.UPGRADE_TABLE (
 num_of_failures OUT BINARY_INTEGER,
 table_list IN VARCHAR2,
 upgrade_data IN BOOLEAN := TRUE,
 parallel IN BOOLEAN := FALSE,
 continue_after_errors IN BOOLEAN := TRUE,
 log_errors IN BOOLEAN := FALSE,
 log_errors_table IN VARCHAR2 =: 'sys.dst$error_table' ,
 error_on_overlap_time IN BOOLEAN := FALSE,
 error_on_nonexisting_time IN BOOLEAN := FALSE,
 log_triggers_table IN VARCHAR2 := 'sys.dst$trigger_table',
 atomic_upgrade IN BOOLEAN := FALSE);

Parameters

Table 60-12 UPGRADE_TABLE Procedure Parameters

	Parameter	Description
	
num_of_failures

	
Number of tables that fail to complete

	
table_list

	
Table name list (comma separated strings)

	
upgrade_data

	
Boolean flag indicating whether to convert TSTZ data using the new Time Zone patch File (TRUE), or to leave unconverted (FALSE).

The default is TRUE.

	
parallel

	
Boolean flag indicating whether to convert tables using PDML (Parallel DML), or Serial DML.

The default is FALSE.

	
continue_after_errors

	
Boolean flag indicating whether to continue after upgrade fails on the current table.

The default is TRUE.

	
log_errors

	
Boolean flag indicating whether to log errors during upgrade. If FALSE, no error is logged into the log_errors_table after aborting conversion of the current table. If TRUE, the error is logged to the log_errors_table.

The default is FALSE.

	
log_errors_table

	
Table name with the following schema:

CREATE TABLE dst$error_table (
table_owner VARCHAR2(30),
table_name VARCHAR2(30),
column_name VARCHAR2(4000),
rid ROWID,
error_number NUMBER)

The table can be created with the CREATE_ERROR_TABLE Procedure. The rid parameter records the rowids of the offending rows and the corresponding error number.

	
error_on_overlap_time

	
Boolean flag indicating whether to report errors on the 'overlap' time semantic conversion error.

The default is TRUE.

	
error_on_nonexisting_time

	
Boolean flag indicating whether to report errors on the 'non-existing' time semantic conversion error.

The default is TRUE.

	
log_triggers_table

	
Table to log triggers that are disabled before upgrade, having not been enabled due to a fatal failure when performing an upgrade

	
atomic_upgrade

	
Boolean flag indicating whether to convert the listed tables atomically (in a single transaction). If FALSE, each table is converted in its own transaction.

The default is FALSE.

Usage Notes

This procedure can only be invoked after an upgrade window has been started. The table list has to satisfy the following partial ordering:

	
If a base table has a materialized view log table, the log table must be the next item in the list.

	
If the container table for a materialized view appears in the list, the materialized view's 'non-upgraded' base tables and log tables must appear in the table list and before the container table.

A base table and its materialized view log table need to be upgraded in an atomic transaction by specifying atomic_upgrade to TRUE.

61 DBMS_DISTRIBUTED_TRUST_ADMIN

DBMS_DISTRIBUTED_TRUST_ADMIN procedures maintain the Trusted Servers List. Use these procedures to define whether a server is trusted. If a database is not trusted, Oracle refuses current user database links from the database.

This chapter contains the following topics:

	
Using DBMS_DISTRIBUTED_TRUST_ADMIN

	
Overview

	
Security Model

	
Examples

	
Summary of DBMS_DISTRIBUTED_TRUST_ADMIN Subprograms

Using DBMS_DISTRIBUTED_TRUST_ADMIN

	
Overview

	
Security Model

	
Examples

Overview

Oracle uses local Trusted Servers Lists, along with enterprise domain membership lists stored in the enterprise LDAP directory service, to determine if another database is trusted. The LDAP directory service entries are managed with the Enterprise Security Manager Tool in Oracle Enterprise Manager.

Oracle considers another database to be "trusted" if it meets the following criteria:

	
It is in the same enterprise domain in the directory service as the local database.

	
The enterprise domain is marked as trusted in the directory service.

	
It is not listed as untrusted in the local Trusted Servers List. Current user database links will only be accepted from another database if both databases involved trust each other.

You can list a database server locally in the Trusted Servers List regardless of what is listed in the directory service. However, if you list a database that is not in the same domain as the local database, or if that domain is untrusted, the entry will have no effect.

This functionality is part of the Enterprise User Security feature of the Oracle Advanced Security Option.

Security Model

To execute DBMS_DISTRIBUTED_TRUST_ADMIN, the EXECUTE_CATALOG_ROLE role must be granted to the DBA. To select from the view TRUSTED_SERVERS, the SELECT_CATALOG_ROLE role must be granted to the DBA.

It is important to know whether all servers are trusted or not trusted. Trusting a particular server with the ALLOW_SERVER procedure does not have any effect if the database already trusts all databases, or if that database is already trusted. Similarly, denying a particular server with the DENY_SERVER procedure does not have any effect if the database already does not trust any database or if that database is already untrusted.

The procedures DENY_ALL and ALLOW_ALL delete all entries (in other words, server names) that are explicitly allowed or denied using the ALLOW_SERVER procedure or DENY_SERVER procedure respectively.

Examples

If you have not yet used the package DBMS_DISTRIBUTED_TRUST_ADMIN to change the trust listing, by default you trust all databases in the same enterprise domain if that domain it listed as trusted in the directory service:

SELECT * FROM TRUSTED_SERVERS;
TRUST NAME
--------- ---------------------
Trusted All

Because all servers are currently trusted, you can execute the DENY_SERVER Procedure and specify that a particular server is not trusted:

EXECUTE DBMS_DISTRIBUTED_TRUST_ADMIN.DENY_SERVER
 ('SALES.US.AMERICAS.ACME_AUTO.COM');
PL/SQL procedure successfully completed.

SELECT * FROM TRUSTED_SERVERS;
TRUST NAME
--------- ---
Untrusted SALES.US.AMERICAS.ACME_AUTO.COM

By executing the DENY_ALL Procedure, you can choose to not trust any database server:

EXECUTE DBMS_DISTRIBUTED_TRUST_ADMIN.DENY_ALL;

PL/SQL procedure successfully completed.

SELECT * FROM TRUSTED_SERVERS;

TRUST NAME
--------- ---
Untrusted All

The ALLOW_SERVER Procedure can be used to specify that one particular database is to be trusted:

EXECUTE DBMS_DISTRIBUTED_TRUST_ADMIN.ALLOW_SERVER
 ('SALES.US.AMERICAS.ACME_AUTO.COM');
PL/SQL procedure successfully completed.

SELECT * FROM TRUSTED_SERVERS;
TRUST NAME
--------- --
Trusted SALES.US.AMERICAS.ACME_AUTO.COM

Summary of DBMS_DISTRIBUTED_TRUST_ADMIN Subprograms

Table 61-1 DBMS_DISTRIBUTED_TRUST_ADMIN Package Subprograms

	Subprogram	Description
	
ALLOW_ALL Procedure

	
Empties the list and inserts a row indicating that all servers should be trusted

	
ALLOW_SERVER Procedure

	
Enables a specific server to be allowed access even though deny all is indicated in the list

	
DENY_ALL Procedure

	
Empties the list and inserts a row indicating that all servers should be untrusted

	
DENY_SERVER Procedure

	
Enables a specific server to be denied access even though allow all is indicated in the list

ALLOW_ALL Procedure

This procedure empties the Trusted Servers List and specifies that all servers that are members of a trusted domain in an enterprise directory service and that are in the same domain are allowed access.

The view TRUSTED_SERVERS will show "TRUSTED ALL" indicating that the database trusts all servers that are currently trusted by the enterprise directory service.

Syntax

DBMS_DISTRIBUTED_TRUST_ADMIN.ALLOW_ALL;

Usage Notes

ALLOW_ALL only applies to servers listed as trusted in the enterprise directory service and in the same enterprise domain.

ALLOW_SERVER Procedure

This procedure ensures that the specified server is considered trusted (even if you have previously specified "deny all").

Syntax

DBMS_DISTRIBUTED_TRUST_ADMIN.ALLOW_SERVER (
 server IN VARCHAR2);

Parameters

Table 61-2 ALLOW_SERVER Procedure Parameters

	Parameter	Description
	
server

	
Unique, fully-qualified name of the server to be trusted.

Usage Notes

If the Trusted Servers List contains the entry "deny all", then this procedure adds a specification indicating that a specific database (for example, DBx) is to be trusted.

If the Trusted Servers List contains the entry "allow all", and if there is no "deny DBx" entry in the list, then executing this procedure causes no change.

If the Trusted Servers List contains the entry "allow all", and if there is a "deny DBx" entry in the list, then that entry is deleted.

DENY_ALL Procedure

This procedure empties the Trusted Servers List and specifies that all servers are denied access.

The view TRUSTED_SERVERS will show "UNTRUSTED ALL" indicating that no servers are currently trusted.

Syntax

DBMS_DISTRIBUTED_TRUST_ADMIN.DENY_ALL;

DENY_SERVER Procedure

This procedure ensures that the specified server is considered untrusted (even if you have previously specified allow all).

Syntax

DBMS_DISTRIBUTED_TRUST_ADMIN.DENY_SERVER (
 server IN VARCHAR2);

Parameters

Table 61-3 DENY_SERVER Procedure Parameters

	Parameter	Description
	
server

	
Unique, fully-qualified name of the server to be untrusted.

Usage Notes

If the Trusted Servers List contains the entry allow all, then this procedure adds an entry indicating that the specified database (for example, DBx) is not to be trusted.

If the Trusted Servers List contains the entry "deny all", and if there is no "allow DBx" entry in the list, then this procedure causes no change.

If the Trusted Servers List contains the entry "deny all", and if there is an "allow DBx" entry, then this procedure causes that entry to be deleted.

62 DBMS_EDITIONS_UTILITIES

The DBMS_EDITIONS_UTILITIES package implements the Edition API which provides helper functions for edition-related operations.

The chapter contains the following topics:

	
Using DBMS_EDITIONS_UTILITIES

	
Overview

	
Security Model

	
Exceptions

	
Summary of DBMS_EDITIONS_UTILITIES Subprograms

Using DBMS_EDITIONS_UTILITIES

	
Overview

	
Security Model

	
Exceptions

Overview

The DBMS_EDITIONS_UTILITIES package implements the Edition API which provides helper functions for edition-related operations.

Security Model

This package is owned by SYS with execute access granted to PUBLIC. It runs with invokers rights, that is, with the security profile of the caller.

Exceptions

Table 62-1 DBMS_EDITIONS_UTILITIES Error Messages

	Error	Description
	
ORA-38817

	
Insufficient privileges

	
ORA-942

	
Missing table

Summary of DBMS_EDITIONS_UTILITIES Subprograms

Table 62-2 DBMS_EDITIONS_UTILITIES Package Subprograms

	Subprogram	Description
	
SET_EDITIONING_VIEWS_READ_ONLY Procedure

	
Given the schema name and table name, this procedure sets the corresponding editioning views in all editions to READ ONLY or READ/WRITE

SET_EDITIONING_VIEWS_READ_ONLY Procedure

Given the schema name and table name, this procedure sets the corresponding editioning views in all editions to READ ONLY or READ/WRITE.

Syntax

DBMS_EDITIONS_UTILITIES.SET_EDITIONING_VIEWS_READ_ONLY (
 table_name IN VARCHAR2,
 owner IN VARCHAR2 DEFAULT NULL,
 read_only IN BOOLEAN DEFAULT TRUE);

Parameters

Table 62-3 SET_EDITIONING_VIEWS_READ_ONLY Procedure Parameters

	Parameter	Description
	
table_name

	
Base table of the editioning views

	
owner

	
Base table schema. The default (or NULL) is the current schema.

	
read_only

	
TRUE to set the views to read-only; FALSE (or NULL) sets the views to READ/WRITE. Default is TRUE.

Usage Notes

The user must have the following privileges:

	
Owner of the table, or have the ALTER ANY TABLE system privileges

	
USE object privilege on all the editions for which the views are defined

63 DBMS_EPG

The DBMS_EPG package implements the embedded PL/SQL gateway that enables a Web browser to invoke a PL/SQL stored procedure through an HTTP listener.

This chapter contains the following topics:

	
Using DBMS_EPG

	
Overview

	
Security Model

	
Exceptions

	
Data Structures

	
VARCHAR2_TABLE Table Type

	
Subprogram Groups

	
Configuration Subprograms

	
Authorization Subprograms

	
Summary of DBMS_EPG Subprograms

Using DBMS_EPG

	
Overview

	
Security Model

	
Exceptions

Overview

The DBMS_EPG package is a platform on which PL/SQL users develop and deploy PL/SQL Web applications. The embedded PL/SQL gateway is an embedded version of the gateway that runs in the XML database HTTP server in the Oracle database. It provides the core features of mod_plsql in the database but does not require the Oracle HTTP server powered by Apache.

In order to make a PL/SQL application accessible from a browser by way of HTTP, a Database Access Descriptor (DAD) must be created and mapped to a virtual path. A DAD is a set of configuration values used for database access and the virtual path mapping makes the application accessible under a virtual path of the XML DB HTTP Server. A DAD is represented as a servlet in XML DB HTTP Server.

Security Model

The XDBADMIN role is required to invoke the configuration interface. It may invoked by the database user "XDB".

The authorization interface can be invoked by any user.

Exceptions

The following table lists the exceptions raised by the DBMS_EPG package.

Table 63-1 DBMS_EPG Exceptions

	Exception	Error Code	Description
	
DAD_NOT_FOUND

	
20000

	
Database Access Descriptor (DAD) %s not found. Ensure that the name of the DAD is correct and that it exists.

Data Structures

The DBMS_EPG package defines a TABLE type.

VARCHAR2_TABLE Table Type

This type is used by the procedures GET_ALL_GLOBAL_ATTRIBUTES, GET_ALL_DAD_ATTRIBUTES, GET_ALL_DAD_MAPPINGS, and GET_DAD_LIST to return lists of attribute names, attribute values, virtual paths, and database access descriptors (DAD).

TYPE VARCHAR2_TABLE IS TABLE OF VARCHAR2(4000) INDEX BY BINARY_INTEGER;

Subprogram Groups

The DBMS_EPG consists of two interfaces:

	
Configuration Subprograms

	
Authorization Subprograms

Configuration Subprograms

The Configuration subprogram group contain the subprogram interfaces to examine and modify the global and database access descriptor (DAD) specific settings of the embedded PL/SQL gateway.

Table 63-2 Configuration Subprogram Group

	Subprogram	Description
	
CREATE_DAD Procedure

	
Creates a new DAD

	
DELETE_DAD_ATTRIBUTE Procedure

	
Deletes a DAD attribute

	
DELETE_GLOBAL_ATTRIBUTE Procedure

	
Deletes a global attribute

	
DROP_DAD Procedure

	
Drops a DAD

	
GET_ALL_DAD_ATTRIBUTES Procedure

	
Retrieves all the attributes of a DAD.

	
GET_ALL_DAD_MAPPINGS Procedure

	
Retrieves all virtual paths to which the specified DAD is mapped.

	
GET_ALL_GLOBAL_ATTRIBUTES Procedure

	
Retrieves all global attributes and values

	
GET_DAD_ATTRIBUTE Function

	
Retrieves the value of a DAD attribute

	
GET_DAD_LIST Procedure

	
Retrieves a list of all DADs for an Embedded Gateway instance.

	
GET_GLOBAL_ATTRIBUTE Function

	
Retrieves the value of a global attribute

	
MAP_DAD Procedure

	
Maps a DAD to the specified virtual path.

	
SET_DAD_ATTRIBUTE Procedure

	
Sets the value for a DAD

	
SET_GLOBAL_ATTRIBUTE Procedure

	
Sets the value of a global attribute

	
UNMAP_DAD Procedure

	
Unmaps a DAD from the specified virtual path

Authorization Subprograms

The Authorization subprogram group contains the subprogram interfaces to authorize and deauthorize the use of a database user's privileges by the embedded PL/SQL gateway through a specific database access descriptor (DAD)

Table 63-3 Authorization Subprogram Group

	Subprogram	Description
	
AUTHORIZE_DAD Procedure

	
Authorizes a DAD to invoke procedures and access document tables with a database user's privileges

	
DEAUTHORIZE_DAD Procedure

	
Deauthorizes a DAD with regard to invoking procedures and accessing document tables with a database user's privileges

Summary of DBMS_EPG Subprograms

Table 63-4 DBMS_EPG Package Subprograms

	Subprogram	Description
	
AUTHORIZE_DAD Procedure

	
authorizes a DAD to invoke procedures and access document tables with a database user's privileges

	
CREATE_DAD Procedure

	
Creates a new DAD

	
DEAUTHORIZE_DAD Procedure

	
Deauthorizes a DAD with regard to invoking procedures and accessing document tables with a database user's privileges

	
DELETE_DAD_ATTRIBUTE Procedure

	
Deletes a DAD attribute

	
DELETE_GLOBAL_ATTRIBUTE Procedure

	
Deletes a global attribute

	
DROP_DAD Procedure

	
Drops a DAD

	
GET_ALL_DAD_ATTRIBUTES Procedure

	
Retrieves all the attributes of a DAD.

	
GET_ALL_DAD_MAPPINGS Procedure

	
Retrieves all virtual paths to which the specified DAD is mapped.

	
GET_ALL_GLOBAL_ATTRIBUTES Procedure

	
Retrieves all global attributes and values

	
GET_DAD_ATTRIBUTE Function

	
Retrieves the value of a DAD attribute

	
GET_DAD_LIST Procedure

	
Retrieves a list of all DADs for an Embedded Gateway instance.

	
GET_GLOBAL_ATTRIBUTE Function

	
Retrieves the value of a global attribute

	
MAP_DAD Procedure

	
Maps a DAD to the specified virtual path.

	
SET_DAD_ATTRIBUTE Procedure

	
Sets the value for a DAD

	
SET_GLOBAL_ATTRIBUTE Procedure

	
Sets the value of a global attribute

	
UNMAP_DAD Procedure

	
Unmaps a DAD from the specified virtual path

AUTHORIZE_DAD Procedure

This procedure authorizes a DAD to invoke procedures and access document tables with a database user's privileges. The invoker can always authorize the use of her/his own privileges.

	
See Also:

Authorization Subprograms for other subprograms in this group

Syntax

DBMS_EPG.AUTHORIZE_DAD (
 dad_name IN VARCHAR2,
 path IN VARCHAR2 DEFAULT NULL);

Parameters

Table 63-5 AUTHORIZE_DAD Procedure Parameters

	Parameter	Description
	
dad_name

	
The name of the DAD to create

	
user

	
The user whose privileges to deauthorize. If use, the invoker is assumed.

Usage Notes

	
To authorize the use of another user's privileges, the invoker must have the ALTER USER system privilege.

	
The DAD must exist but its "database-username" DAD attribute does not have to be set to user to authorize.

	
Multiple users can authorize the same DAD and it is up to the DAD's "database-username" setting to decide which user's privileges to use.

Exceptions

Raises an error if the DAD or user does not exist, or the invoker does not have the needed system privilege.

Examples

DBMS_EPG.AUTHORIZE_DAD('HR');

CREATE_DAD Procedure

This procedure creates a new DAD.

	
See Also:

Configuration Subprograms for other subprograms in this group

Syntax

DBMS_EPG.CREATE_DAD (
 dad_name IN VARCHAR2,
 path IN VARCHAR2 DEFAULT NULL);

Parameters

Table 63-6 CREATE_DAD Procedure Parameters

	Parameter	Description
	
dad_name

	
The name of the DAD to create

	
path

	
The virtual path to which to map the DAD

DEAUTHORIZE_DAD Procedure

This procedure deauthorizes a DAD with regard to invoking procedures and accessing document tables with a database user's privileges. The invoker can always deauthorize the use of his own privileges.

	
See Also:

Authorization Subprograms for other subprograms in this group

Syntax

DBMS_EPG.DEAUTHORIZE_DAD (
 dad_name IN VARCHAR2,
 path IN VARCHAR2 DEFAULT NULL);

Parameters

Table 63-7 DEAUTHORIZE_DAD Procedure Parameters

	Parameter	Description
	
dad_name

	
The name of the DAD for which to deauthorize use

	
user

	
The user whose privileges to deauthorize. If use, the invoker is assumed.

Usage Notes

To deauthorize the use of another user's privileges, the invoker must have the ALTER USER system privilege.

Exceptions

Raises an error if the DAD or user does not exist, or the invoker does not have the needed system privilege.

Examples

DBMS_EPG.DEAUTHORIZE_DAD('HR');

DELETE_DAD_ATTRIBUTE Procedure

This procedure deletes a DAD attribute.

	
See Also:

Configuration Subprograms for other subprograms in this group

Syntax

DBMS_EPG.DELETE_DAD_ATTRIBUTE (
 dad_name IN VARCHAR2,
 attr_name IN VARCHAR2);

Parameters

Table 63-8 DELETE_DAD_ATTRIBUTE Procedure Parameters

	Parameter	Description
	
dad_name

	
The name of the DAD for which to delete a DAD attribute

	
attr_name

	
The name of the DAD attribute to delete

Exceptions

Raises an error if DAD does not exist

DELETE_GLOBAL_ATTRIBUTE Procedure

This procedure deletes a global attribute.

	
See Also:

Configuration Subprograms for other subprograms in this group

Syntax

DBMS_EPG.DELETE_GLOBAL_ATTRIBUTE (
 attr_name IN VARCHAR2);

Parameters

Table 63-9 DELETE_GLOBAL_ATTRIBUTE Procedure Parameters

	Parameter	Description
	
attr_name

	
The global attribute to delete

DROP_DAD Procedure

This procedure drops a DAD. All the virtual-path mappings of the DAD will be dropped also

	
See Also:

Configuration Subprograms for other subprograms in this group

Syntax

DBMS_EPG.DROP_DAD (
 dadname IN VARCHAR2);

Parameters

Table 63-10 DROP_DAD Procedure Parameters

	Parameter	Description
	
dad_name

	
The DAD to drop

Exceptions

Raises an error if the DAD does not exist.

GET_ALL_DAD_ATTRIBUTES Procedure

This procedure retrieves all the attributes of a DAD. The outputs are 2 correlated index-by tables of the name/value pairs.

	
See Also:

Configuration Subprograms for other subprograms in this group

Syntax

DBMS_EPG.GET_ALL_DAD_ATTRIBUTES (
 dad_name IN VARCHAR2,
 attr_names OUT NOCOPY VARCHAR2_TABLE,
 attr_values OUT NOCOPY VARCHAR2_TABLE);

Parameters

Table 63-11 GET_ALL_DAD_ATTRIBUTES Procedure Parameters

	Parameter	Description
	
dad_names

	
The name of the DAD

	
attr_names

	
The attribute names

	
attr_values

	
The attribute values

Exceptions

Raises an error if DAD does not exist.

Usage Notes

If the DAD has no attributes set, then attr_names and attr_values will be set to empty arrays.

GET_ALL_DAD_MAPPINGS Procedure

This procedure retrieves all virtual paths to which the specified DAD is mapped.

	
See Also:

Configuration Subprograms for other subprograms in this group

Syntax

DBMS_EPG.GET_ALL_DAD_MAPPINGS (
 dad_name IN VARCHAR2,
 paths OUT NOCOPY VARCHAR2_TABLE);

Parameters

Table 63-12 GET_ALL_DAD_MAPPINGS Procedure Parameters

	Parameter	Description
	
dad_names

	
The name of the DAD

	
paths

	
The virtual paths to which h the DAD is mapped

Exceptions

Raises an error if DAD does not exist.

Usage Notes

If the DAD is not mapped to any virtual path, paths will be set to empty arrays.

GET_ALL_GLOBAL_ATTRIBUTES Procedure

This procedure retrieves all global attributes and values. The outputs are 2 correlated index-by tables of the name/value pairs.

	
See Also:

Configuration Subprograms for other subprograms in this group

Syntax

DBMS_EPG.GET_ALL_GLOBAL_ATTRIBUTES (
 attr_names OUT NOCOPY VARCHAR2_TABLE,
 attr_values OUT NOCOPY VARCHAR2_TABLE);

Parameters

Table 63-13 GET_ALL_GLOBAL_ATTRIBUTES Procedure Parameters

	Parameter	Description
	
attr_names

	
The global attribute names

	
attr_values

	
The values of the global attributes

Usage Notes

If the gateway instance has no global attributes set, then attr_names and attr_values will be set to empty arrays.

GET_DAD_ATTRIBUTE Function

This procedure retrieves the value of a DAD attribute.

	
See Also:

Configuration Subprograms for other subprograms in this group

Syntax

DBMS_EPG.GET_DAD_ATTRIBUTE (
 dad_name IN VARCHAR2,
 attr_name IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Table 63-14 GET_DAD_ATTRIBUTE Function Parameters

	Parameter	Description
	
dad_name

	
The name of the DAD for which to delete an attribute

	
attr_name

	
The name of the attribute to delete

Return values

Returns the DAD attribute value. Returns NULL if attribute is unknown or has not been set.

Exceptions

Raises an error if DAD does not exist.

GET_DAD_LIST Procedure

This procedure retrieves a list of all DADs for an Embedded Gateway instance.

	
See Also:

Configuration Subprograms for other subprograms in this group

Syntax

DBMS_EPG.GET_DAD_LIST (
 dad_names OUT NOCOPY VARCHAR2_TABLE);

Parameters

Table 63-15 GET_DAD_LIST Procedure Parameters

	Parameter	Description
	
dad_names

	
The list of all DADs

Usage Notes

If no DADs exist then dad_names will be set to an empty array.

GET_GLOBAL_ATTRIBUTE Function

This function retrieves the value of a global attribute.

	
See Also:

Configuration Subprograms for other subprograms in this group

Syntax

DBMS_EPG.GET_GLOBAL_ATTRIBUTE (
 attr_name IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Table 63-16 GET_GLOBAL_ATTRIBUTE Procedure Parameters

	Parameter	Description
	
attr_name

	
The global attribute to retrieve

Return Values

Returns the global attribute value. Returns NULL if attribute has not been set or is not a valid attribute.

MAP_DAD Procedure

This procedure maps a DAD to the specified virtual path. If the virtual path exists already, the old virtual-path mapping will be overridden.

	
See Also:

Configuration Subprograms for other subprograms in this group

Syntax

DBMS_EPG.MAP_DAD (
 dad_name IN VARCHAR2,
 path IN VARCHAR2);

Parameters

Table 63-17 MAP_DAD Procedure Parameters

	Parameter	Description
	
dad_name

	
The name of the DAD to map

	
path

	
The virtual path to map

Exceptions

Raises and error if the DAD does not exist.

SET_DAD_ATTRIBUTE Procedure

This procedure sets the value for a DAD.

	
See Also:

Configuration Subprograms for other subprograms in this group

Syntax

DBMS_EPG.SET_DAD_ATTRIBUTE (
 dad_name IN VARCHAR2,
 attr_name IN VARCHAR2, attr_value IN VARCHAR2);

Parameters

Table 63-18 SET_DAD_ATTRIBUTE Procedure Parameters

	Parameter	Description
	
dad_name

	
The name of the DAD for which to set the attribute

	
attr_name

	
The name of the attribute to set

	
attr_value

	
The attribute value to set

Table 63-19 Mapping Between mod_plsql and Embedded PL/SQL Gateway DAD Attributes

	mod_plsql DAD Attribute	Embedded PL/SQL Gateway DAD Attribute	Allows Multiple Occurr-ences	Legal Values
	
PlsqlAfterProcedure

	
after-procedure

	
No

	
String

	
PlsqlAlwaysDescribeProcedure

	
always-describe-procedure

	
No

	
Enumeration of On, Off

	
PlsqlAuthenticationMode

	
authentication-mode

	
No

	
Enumeration of Basic, SingleSignOn, GlobalOwa, CustomOwa, PerPackageOwa

	
PlsqlBeforeProcedure

	
before-procedure

	
No

	
String

	
PlsqlBindBucketLengths

	
bind-bucket-lengths

	
Yes

	
Unsigned integer

	
PlsqlBindBucketWidths

	
bind-bucket-widths

	
Yes

	
Unsigned integer

	
PlsqlCGIEnvironmentList

	
cgi-environment-list

	
Yes

	
String

	
PlsqlCompatibilityMode

	
compatibility-mode

	
No

	
Unsigned integer

	
PlsqlDatabaseUsername

	
database-username

	
No

	
String

	
PlsqlDefaultPage

	
default-page

	
No

	
String

	
PlsqlDocumentPath

	
document-path

	
No

	
String

	
PlsqlDocumentProcedure

	
document-procedure

	
No

	
String

	
PlsqlDocumentTablename

	
document-table-name

	
No

	
String

	
PlsqlErrorStyle

	
error-style

	
No

	
Enumeration of ApacheStyle, ModplsqlStyle, DebugStyle

	
PlsqlExclusionList

	
exclusion-list

	
Yes

	
String

	
PlsqlFetchBufferSize

	
fetch-buffer-size

	
No

	
Unsigned integer

	
PlsqlInfoLogging

	
info-logging

	
No

	
Enumeration of InfoDebug

	
PlsqlOWADebugEnable

	
owa-debug-enable

	
No

	
Enumeration of On, Off

	
PlsqlMaxRequestsPerSession

	
max-requests-per-session

	
No

	
Unsigned integer

	
PlsqlNLSLanguage

	
nls-language

	
No

	
String

	
PlsqlPathAlias

	
path-alias

	
No

	
String

	
PlsqlPathAliasProcedure

	
path-alias-procedure

	
No

	
String

	
PlsqlRequestValidationFunction

	
request-validation-function

	
No

	
String

	
PlsqlSessionCookieName

	
session-cookie-name

	
No

	
String

	
PlsqlSessionStateManagement

	
session-state-management

	
No

	
Enumeration of StatelessWithResetPackageState, StatelessWithFastRestPackageState, StatelessWithPreservePackageState

	
PlsqlTransferMode

	
transfer-mode

	
No

	
Enumeration of Char, Raw

	
PlsqlUploadAsLongRaw

	
upload-as-long-raw

	
No

	
String

Exceptions

Raises an error if DAD does not exist or the attribute is unknown.

Usage Notes

	
If attr_name attribute has been set before, then the old value will be overwritten with the new attr_value argument.

	
The embedded gateway assumes default values when the attributes are not set. The default values of the DAD attributes should be sufficient for most users of the embedded gateway. mod_plsql users should note the following

	
The PlsqlDatabasePassword attribute is not needed.

	
The PlsqlDatabaseConnectString attribute is not needed because the embedded gateway does not support logon to external databases.

Examples

DBMS_EPG.SET_DAD_ATTRIBUTE('HR', 'default-page', 'HRApp.home');

SET_GLOBAL_ATTRIBUTE Procedure

This procedure sets the value of a global attribute.

	
See Also:

Configuration Subprograms for other subprograms in this group

Syntax

DBMS_EPG.SET_GLOBAL_ATTRIBUTE (
 attr_name IN VARCHAR2,
 attr_value IN VARCHAR2);

Parameters

Table 63-20 SET_GLOBAL_ATTRIBUTE Procedure Parameters

	Parameter	Description
	
attr_name

	
The global attribute to set

	
attr_value

	
The attribute value to set

Table 63-21 Mapping Between mod_plsql and Embedded PL/SQL Gateway Global Attributes

	mod_plsql Global Attribute	Embedded PL/SQL Gateway Global Attribute	Allows Multiple Occurr-ences	Legal Values
	
PlsqlLogLevel

	
log-level

	
No

	
Unsigned integer

	
PlsqlMaxParameters

	
max-parameters

	
No

	
Unsigned integer

Usage Notes

	
The attribute name is case sensitive. The value may or may not be case-sensitive depending on the attribute.

	
If attr_name attribute has been set before, then the old value will be overwritten with the new attr_value argument.

Exceptions

Raises an error if the attribute is unknown.

Examples

dbms_epg.set_global_attribute('max-parameters', '100');

UNMAP_DAD Procedure

This procedure unmaps a DAD from the specified virtual path. If path is NULL, the procedure removes all virtual-path mappings for the DAD but keeps the DAD.

	
See Also:

Configuration Subprograms for other subprograms in this group

Syntax

DBMS_EPG.UNMAP_DAD (
 dad_name IN VARCHAR2,
 path IN VARCHAR2 DEFAULT NULL);

Parameters

Table 63-22 UNMAP_DAD Procedure Parameters

	Parameter	Description
	
dad_name

	
The name of the DAD to unmap

	
path

	
The virtual path to unmap

Usage Notes

Raises and error if the DAD does not exist.

64 DBMS_ERRLOG

The DBMS_ERRLOG package provides a procedure that enables you to create an error logging table so that DML operations can continue after encountering errors rather than abort and roll back. This enables you to save time and system resources.

	
See Also:

Oracle Database Data Warehousing Guide for more information regarding how to use DBMS_ERRLOG and Oracle Database SQL Language Reference for error_logging_clause syntax

This chapter contains the following topics:

	
Using DBMS_ERRLOG

	
Security Model

	
Summary of DBMS_ERRLOG Subprograms

Using DBMS_ERRLOG

This section contains topics which relate to using the DBMS_ERRLOG package.

	
Security Model

Security Model

Security on this package can be controlled by granting EXECUTE on this package to selected users or roles. The EXECUTE privilege is granted publicly. However, to create an error logging table, you need SELECT access on the base table or view, the CREATE TABLE privilege, as well as tablespace quota for the target tablespace.

Summary of DBMS_ERRLOG Subprograms

Table 64-1 DBMS_ERRLOG Package Subprograms

	Subprogram	Description
	
CREATE_ERROR_LOG Procedure

	
Creates the error logging table used in DML error logging

CREATE_ERROR_LOG Procedure

This procedure creates the error logging table needed to use the DML error logging capability.

LONG, CLOB, BLOB, BFILE, and ADT datatypes are not supported in the columns.

Syntax

DBMS_ERRLOG.CREATE_ERROR_LOG (
 dml_table_name IN VARCHAR2,
 err_log_table_name IN VARCHAR2 := NULL,
 err_log_table_owner IN VARCHAR2 := NULL,
 err_log_table_space IN VARCHAR2 := NULL,
 skip_unsupported IN BOOLEAN := FALSE);

Parameters

Table 64-2 CREATE_ERROR_LOG Procedure Parameters

	Parameter	Description
	
dml_table_name

	
The name of the DML table to base the error logging table on. The name can be fully qualified (for example, emp, scott.emp, "EMP", "SCOTT"."EMP"). If a name component is enclosed in double quotes, it will not be upper cased.

	
err_log_table_name

	
The name of the error logging table you will create.

The default is the first 25 characters in the name of the DML table prefixed with 'ERR$_'. Examples are the following:

dml_table_name: 'EMP', err_log_table_name: 'ERR$_EMP'

dml_table_name: '"Emp2"', err_log_table_name: 'ERR$_Emp2'

	
err_log_table_owner

	
The name of the owner of the error logging table. You can specify the owner in dml_table_name. Otherwise, the schema of the current connected user is used.

	
err_log_table_space

	
The tablespace the error logging table will be created in. If not specified, the default tablespace for the user owning the DML error logging table will be used.

	
skip_unsupported

	
When set to TRUE, column types that are not supported by error logging will be skipped over and not added to the error logging table.

When set to FALSE, an unsupported column type will cause the procedure to terminate.

The default is FALSE.

Examples

First, create an error log table for the channels table in the SH schema, using the default name generation.

Then, see all columns of the table channels:

SQL> DESC channels
Name Null? Type
--------------------------- ------- -----
CHANNEL_ID NOT NULL CHAR(1)
CHANNEL_DESC NOT NULL VARCHAR2(20)
CHANNEL_CLASS VARCHAR2(20)

Finally, see all columns of the generated error log table. Note the mandatory control columns that are created by the package:

SQL> DESC ERR$_CHANNELS
Name Null? Type
----------------- ---- ----ORA_ERR_NUMBER$ NUMBER
ORA_ERR_MESG$ VARCHAR2(2000)
ORA_ERR_ROWID$ ROWID
ORA_ERR_OPTYP$ VARCHAR2(2)
ORA_ERR_TAG$ VARCHAR2(2000)
CHANNEL_ID VARCHAR2(4000)
CHANNEL_DESC VARCHAR2(4000)
CHANNEL_CLASS VARCHAR2(4000)

See Oracle Database Administrator's Guide for more information regarding control columns.

65 DBMS_EXPFIL

	
Note:

This functionality is deprecated with Oracle Database Release 11.2 and obsoleted with Release 12.1. For details regarding obsolescence, seeMy Oracle Support Note ID 1244535.1

The DBMS_EXPFIL package contains all the procedures used to manage attribute sets, expression sets, expression indexes, optimizer statistics, and privileges by Expression Filter.

	
See Also:

Oracle Database Rules Manager and Expression Filter Developer's Guide for more information.

This chapter contains the following topics:

	
Using DBMS_EXPFIL

	
Summary of Expression Filter Subprograms

Using DBMS_EXPFIL

This section contains topics that relate to using the Rules Manager DBMS_EXPFIL package.

	
Security Model

Security Model

The Oracle Database installation runs the catexf.sql script to load the DBMS_EXPFIL package and create the required Expression Filter schema objects in the EXFSYS schema.

DBMS_EXPFIL is an EXFSYS-owned package compiled with AUTHID CURRENT_USER. Any DBMS_EXPFIL subprogram called from an anonymous PL/SQL block is run using the privileges of the current user.

Before you issue COPY_ATTRIBUTE_SET procedure, the user must have the EXECUTE privilege for the object type associated with the original attribute set.

A user requires SELECT privileges on a table storing expressions to evaluate them. The SQL EVALUATE operator evaluates expressions with the privileges of the owner of the table that stores the expressions. The privileges of the user issuing the query are not considered. The owner of the table can insert, update, and delete expressions. Other users must have INSERT and UPDATE privileges for the table and INSERT EXPRESSION and UPDATE EXPRESSION privilege for a specific Expression column in the table to be able to make modifications to it.

Using the GRANT_PRIVILEGE procedure, the owner of the table can grant INSERT EXPRESSION or UPDATE EXPRESSION privileges on one or more Expression columns to other users. Both privileges can be granted to a user by specifying ALL for the privilege type.

A user with CREATE INDEX privileges on a table cannot create an Expression Filter index unless the user is the owner of the table.

A user must have EXECUTE privilege on the CTX_DDL package for successful synchronization of the text indexes using the DBMS_EXPFIL.SYNC_TEXT_INDEXES procedure.

The USER_EXPFIL_PRIVILEGES view lists the privileges of the current user on expression sets belonging to other schemas and the privileges of other users on the expression sets owned by the current user.

Summary of Expression Filter Subprograms

Table 65-1 describes the subprograms in the DBMS_EXPFIL package.

All the values and names passed to the procedures defined in the DBMS_EXPFIL package are not case sensitive, unless otherwise mentioned. To preserve the case, you use double quotation marks around the values.

Table 65-1 DBMS_EXPFIL Package Subprograms

	Subprogram	Description
	
ADD_ELEMENTARY_ATTRIBUTE Procedures

	
Adds the specified attribute to the attribute set

	
ADD_FUNCTIONS Procedure

	
Adds a function, type, or package to the approved list of functions with an attribute set

	
ASSIGN_ATTRIBUTE_SET Procedure

	
Assigns an attribute set to a column storing expressions

	
BUILD_EXCEPTIONS_TABLE Procedure

	
Creates an exception table to hold references to invalid expressions

	
CLEAR_EXPRSET_STATS Procedure

	
Clears the predicate statistics for an expression set

	
COPY_ATTRIBUTE_SET Procedure

	
Makes a copy of the attribute set

	
CREATE_ATTRIBUTE_SET Procedure

	
Creates an attribute set

	
DEFAULT_INDEX_PARAMETERS Procedure

	
Assigns default index parameters to an attribute set

	
DEFAULT_XPINDEX_PARAMETERS Procedure

	
Assigns default XPath index parameters to an attribute set

	
DEFRAG_INDEX Procedure

	
Rebuilds the bitmap indexes online to reduce fragmentation

	
DROP_ATTRIBUTE_SET Procedure

	
Drops an unused attribute set

	
GET_EXPRSET_STATS Procedure

	
Collects predicate statistics for an expression set

	
GRANT_PRIVILEGE Procedure

	
Grants an expression DML privilege to a user

	
INDEX_PARAMETERS Procedure

	
Assigns index parameters to an expression set

	
MODIFY_OPERATOR_LIST Procedure

	
Modifies the list of common operators used in predicates with a certain attribute

	
REVOKE_PRIVILEGE Procedure

	
Revokes an expression DML privilege from a user

	
SYNC_TEXT_INDEXES Procedure

	
Synchronizes the indexes defined to process the predicates involving the CONTAINS operator in stored expressions

	
UNASSIGN_ATTRIBUTE_SET Procedure

	
Breaks the association between a column storing expressions and the attribute set

	
VALIDATE_EXPRESSIONS Procedure

	
Validates expression metadata and the expressions stored in a column

	
XPINDEX_PARAMETERS Procedure

	
Assigns XPath index parameters to an expression set

ADD_ELEMENTARY_ATTRIBUTE Procedures

This procedure adds the specified attribute to the attribute set. The procedure is overloaded. The different functionality of each form of syntax is presented along with the definitions.

Syntax

Adds the specified elementary attribute to the attribute set:

DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE (
 attr_set IN VARCHAR2,
 attr_name IN VARCHAR2,
 attr_type IN VARCHAR2,
 attr_defv1 IN VARCHAR2 DEFAULT NULL);

Identifies the elementary attributes that are table aliases and adds them to the attribute set:

DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE (
 attr_set IN VARCHAR2,
 attr_name IN VARCHAR2,
 tab_alias IN exf$table_alias);

Allows addition of text attributes to the attribute set:

DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE (
 attr_set IN VARCHAR2,
 attr_name IN VARCHAR2,
 attr_type IN VARCHAR2,
 text_pref IN EXF$TEXT);

Parameters

Table 65-2 ADD_ELEMENTARY_ATTRIBUTE Procedure Parameters

	Parameter	Description
	
attr_set

	
Name of the attribute set to which this attribute is added

	
attr_name

	
Name of the elementary attribute to be added. No two attributes in a set can have the same name.

	
attr_type

	
Datatype of the attribute. This argument accepts any standard SQL datatype or the name of an object type that is accessible to the current user.

	
attr_defv1

	
Default value for the elementary attribute

	
tab_alias

	
Type that identifies the database table to which the attribute is aliased

	
text_pref

	
Text preferences such as LEXER and WORDLIST specification.

Usage Notes

	
If the attribute set receiving the elementary attribute was originally created from an existing object type, then additional attributes cannot be added.

	
One or more, or all elementary attributes in an attribute set can be table aliases. If an elementary attribute is a table alias, then the value assigned to the elementary attribute is a ROWID from the corresponding table. An attribute set with one or more table alias attributes cannot be created from an existing object type. For more information about table aliases, see Oracle Database Rules Manager and Expression Filter Developer's Guide.

	
Elementary attributes cannot be added to an attribute set that is already assigned to a column storing expressions.

	
The default value specification for an attribute is similar to a default value specification for a table column. The resulting default values should agree with the datatype of the attribute. For example, valid default values for an attribute of DATE datatype are SYSDATE and to_date('01-01-2004','DD-MM-YYYY').

	
See the section on defining attribute sets in Oracle Database Rules Manager and Expression Filter Developer's Guide for more information about adding elementary attributes.

	
Related views: USER_EXPFIL_ATTRIBUTE_SETS and USER_EXPFIL_ATTRIBUTES.

	
This procedure with a text preference bound to the text_pref argument creates a text attribute in the attribute set. The data type for such an attribute should be a VARCHAR2 or a CLOB. The preferences specified with this procedure are validated only when an Expression Filter index is created using this attribute set.

	
These preferences are used in the creation of the CTXRULE index that processes the predicates involving CONTAINS operator. The valid preferences are those that are valid in the PARAMETERS clause of CTXRULE index creation. See Oracle Text Application Developer's Guide for the syntax.

Examples

The following commands add two elementary attributes to an attribute set:

BEGIN
 DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE (
 attr_set => 'HRAttrSet',
 attr_name => 'HRREP',
 attr_type => 'VARCHAR2(30)'
 attr_defv1 => 'Betty Smith');
 DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE (
 attr_set => 'HRAttrSet',
 attr_name => 'DEPT',
 tab_alias => exf$table_alias('DEPT'));
END;
/

The following commands define a CreationTime elementary attribute that takes the database time as the default value.

BEGIN
 DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE (
 attr_set => 'PurchaseOrder',
 attr_name => 'CreationTime',
 attr_type => 'DATE',
 attr_defvl => 'SYSDATE');
END;
/

Alternately, the following commands initialize the CreationTime attribute to a specific value when it is not explicitly specified in the data item passed to the EVALUATE operator.

BEGIN
 DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE (
 attr_set => 'PurchaseOrder',
 attr_name => 'CreationTime',
 attr_type => 'DATE',
 attr_defvl => 'to_date(''01-01-2004'',''DD-MM-YYYY'')');
END;
/

The following commands create an attribute set with a Model attribute of VARCHAR2 data type and an InsReport attribute configured for text predicates.

BEGIN
 DBMS_EXPFIL.CREATE_EVENT_STRUT(event_struct => 'Car4Sale');
 // create scalar attributes
 DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE(
 attr_set => 'Car4Sale',
 attr_name => 'Model',
 attr_type => 'VARCHAR2(30)');

 //create text attribute
 DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE(
 attr_set => 'Car4Sale',
 attr_name => 'InsReport',
 attr_type => 'CLOB',
 attr_type => exf$text(
 'LEXER insrpt_lexer
 WORDLIST insrpt_wordlist'));
END;
/

ADD_FUNCTIONS Procedure

This procedure adds a user-defined function, package, or type representing a set of functions to the attribute set.

Syntax

DBMS_EXPFIL.ADD_FUNCTIONS (
 attr_set IN VARCHAR2,
 funcs_name IN VARCHAR2);

Parameters

Table 65-3 ADD_FUNCTIONS Procedure Parameters

	Parameter	Description
	
attr_set

	
Name of the attribute set to which the functions are added

	
funcs_name

	
Name of a function, package, or type (representing a function set) or its synonyms

Usage Notes

	
By default, an attribute set implicitly allows references to all Oracle Database supplied SQL functions for use by the expression set. If the expression set refers to a user-defined function, the function must be explicitly added to the attribute set.

	
The ADD_FUNCTIONS procedure adds a user-defined function or a package (or type) representing a set of functions to the attribute set. Any new or modified expressions are validated using this list. The function added to the attribute set, and thus used in the stored expressions, should not perform any DML or DDL (database state changing) operations. Oracle Database catches violations to this rule only at run-time while evaluating the expressions. Violations are not checked during the ADD_FUNCTIONS procedure call.

	
The function or the package name can be specified with a schema extension. If a function name is specified without a schema extension, only such references in the expression set are considered valid. The expressions in a set can be restricted to use a synonym to a function or a package by adding the corresponding synonym to the attribute set. This preserves the portability of the expression set to other schemas.

	
See the section on defining attribute sets in Oracle Database Rules Manager and Expression Filter Developer's Guide for more information about adding functions to an attribute set.

	
Related views: USER_EXPFIL_ATTRIBUTE_SETS and USER_EXPFIL_EXPRESSION_SETS

Examples

The following commands add two functions to the attribute set:

BEGIN
 DBMS_EXPFIL.ADD_FUNCTIONS (
 attr_set => 'Car4Sale',
 funcs_name => 'HorsePower');
 DBMS_EXPFIL.ADD_FUNCTIONS (
 attr_set => 'Car4Sale',
 funcs_name => 'Scott.CrashTestRating');
END;
/

ASSIGN_ATTRIBUTE_SET Procedure

This procedure assigns an attribute set to a VARCHAR2 column in a user table to create an Expression column.

Syntax

DBMS_EXPFIL.ASSIGN_ATTRIBUTE_SET (
 attr_set IN VARCHAR2,
 expr_tab IN VARCHAR2,
 expr_col IN VARCHAR2,
 force IN VARCHAR2 DEFAULT 'FALSE');

Parameters

Table 65-4 ASSIGN_ATTRIBUTE_SET Procedure Parameters

	Parameter	Description
	
attr_set

	
Name of the attribute set

	
expr_tab

	
Name of table storing the expression set

	
expr_col

	
Name of column in the table that stores the expressions

	
force

	
Argument used to trust the existing expressions in a table (and skip validation)

Usage Notes

	
The ASSIGN_ATTRIBUTE_SET procedure assigns an attribute set to a VARCHAR2 column in a user table to create an Expression column. The attribute set contains the elementary attribute names and their data types and any functions used in the expressions. The Expression column, the column named by the expr_col parameter to store the expression, uses the attribute set to validate changes and additions to the expression set.

	
An attribute set can be assigned only to a table column in the same schema as the attribute set. An attribute set can be assigned to one or more table columns. Assigning an attribute set to a column storing expressions implicitly creates methods for the associated object type. For this operation to succeed, the object type cannot have any dependent objects before the attribute set is assigned.

	
By default, the column should not have any expressions at the time of association. However, if the values in the column are known to be valid expressions, you can use a value of 'TRUE' for the force argument to assign the attribute set to a column containing expressions.

	
See the information about defining Expression columns in Oracle Database Rules Manager and Expression Filter Developer's Guide for more information about adding elementary attributes.

	
Related views: USER_EXPFIL_ATTRIBUTE_SETS and USER_EXPFIL_EXPRESSION_SETS

Examples

The following command assigns the attribute set to a column storing expressions. The expression set should be empty at the time of association.

BEGIN
 DBMS_EXPFIL.ASSIGN_ATTRIBUTE_SET (attr_set => 'Car4Sale',
 expr_tab => 'consumer',
 expr_col => 'interest');
END;
/

BUILD_EXCEPTIONS_TABLE Procedure

This procedure creates the exception table, used in validation, in the current schema.

Syntax

DBMS_EXPFIL.BUILD_EXCEPTIONS_TABLE (
 exception_tab IN VARCHAR2);

Parameters

Table 65-5 BUILD_EXCEPTIONS_TABLE Procedure Parameter

	Parameter	Description
	
exception_tab

	
Name of the exception table

Usage Notes

	
During expression validation, you can optionally provide the name of the exception table in which the references to the invalid expressions are stored. The BUILD_EXCEPTIONS_TABLE procedure creates the exception table in the current schema.

	
See the section on evaluation semantics in Oracle Database Rules Manager and Expression Filter Developer's Guide and VALIDATE_EXPRESSIONS Procedure for more information.

	
Related view: USER_TABLES

Examples

The following command creates the exception table, InterestExceptions, in the current schema:

BEGIN
 DBMS_EXPFIL.BUILD_EXCEPTIONS_TABLE (exception_tab => 'InterestExceptions');
END;
/

CLEAR_EXPRSET_STATS Procedure

This procedure clears the predicate statistics for the expression set stored in a table column.

Syntax

DBMS_EXPFIL.CLEAR_EXPRSET_STATS (
 expr_tab IN VARCHAR2,
 expr_col IN VARCHAR2);

Parameters

Table 65-6 CLEAR_EXPRSET_STATS Procedure Parameters

	Parameter	Description
	
expr_tab

	
Name of table storing the expression set

	
expr_col

	
Name of column in the table that stores the expressions

Usage Notes

	
See also GET_EXPRSET_STATS Procedure for information about gathering the statistics.

	
Related views: USER_EXPFIL_EXPRESSION_SETS and USER_EXPFIL_EXPRSET_STATS

Examples

The following command clears the predicate statistics for the expression set stored in interest column of the consumer table:

BEGIN
 DBMS_EXPFIL.CLEAR_EXPRSET_STATS (expr_tab => 'consumer',
 expr_col => 'interest');
END;
/

COPY_ATTRIBUTE_SET Procedure

This procedure copies an attribute set along with its user-defined function list and default index parameters to another set.

Syntax

DBMS_EXPFIL.COPY_ATTRIBUTE_SET (
 from_set IN VARCHAR2,
 to_set IN VARCHAR2);

Parameters

Table 65-7 COPY_ATTRIBUTE_SET Procedure Parameters

	Parameter	Description
	
from_set

	
Name of an existing attribute set to be copied

	
to_set

	
Name of the new attribute set

Usage Notes

	
A schema-extended name can be used for the from_set argument to copy an attribute set across schemas. Before you issue this command, you must have the EXECUTE privilege for the object type associated with the original attribute set. Ensure that any references to schema objects (user-defined functions, tables, and embedded objects) are valid in the new schema.

	
The default index parameters and the user-defined function list of the new set can be changed independent of the original set.

	
Related views: ALL_EXPFIL_ATTRIBUTE_SETS and ALL_EXPFIL_ATTRIBUTES.

Examples

The following command makes a copy of the Car4Sale attribute set:

BEGIN
 DBMS_EXPFIL.COPY_ATTRIBUTE_SET (from_set => 'Car4Sale',
 to_set => 'Vehicle');
END;
/

CREATE_ATTRIBUTE_SET Procedure

This procedure creates an empty attribute set or an attribute set with a complete set of elementary attributes derived from an object type with a matching name.

Syntax

DBMS_EXPFIL.CREATE_ATTRIBUTE_SET (
 attr_set IN VARCHAR2,
 from_type IN VARCHAR2 DEFAULT 'NO');

Parameters

Table 65-8 CREATE_ATTRIBUTE_SET Procedure Parameters

	Parameter	Description
	
attr_set

	
Name of the attribute set to be created

	
from_type

	
YES, if the attributes for the attribute set should be derived from an existing object type

Usage Notes

	
The object type used for an attribute set cannot contain any user methods, and it should not be an evolved type (with the use of ALTER TYPE command). This object type should not have any dependent objects at the time of the attribute set creation. If the attribute set is not derived from an existing object type, this procedure creates an object type with a matching name.

	
An attribute set with one or more table alias attributes cannot be derived from an object type. For this purpose, create an empty attribute set and add one elementary attribute at a time using the DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE procedure. (See Oracle Database Rules Manager and Expression Filter Developer's Guide for more information.)

	
See the section on defining attribute sets in Oracle Database Rules Manager and Expression Filter Developer's Guide and ADD_ELEMENTARY_ATTRIBUTE Procedures for more information.

	
Related views: USER_EXPFIL_ATTRIBUTE_SETS and USER_EXPFIL_ATTRIBUTES.

Examples

The following commands create an attribute set with all the required elementary attributes derived from the Car4Sale type:

CREATE OR REPLACE TYPE Car4Sale AS OBJECT
 (Model VARCHAR2(20),
 Year NUMBER,
 Price NUMBER,
 Mileage NUMBER);
/

BEGIN
 DBMS_EXPFIL.CREATE_ATTRIBUTE_SET(attr_set => 'Car4Sale',
 from_type => 'YES');
END;
/

Assuming that the Car4Sale type does not exist, the attribute set can be created from scratch as shown in the following example:

BEGIN
 DBMS_EXPFIL.CREATE_ATTRIBUTE_SET(attr_set => 'Car4Sale');
 DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE(
 attr_set => 'Car4Sale',
 attr_name => 'Model',
 attr_type => 'VARCHAR2(20)');
 DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE(
 attr_set => 'Car4Sale',
 attr_name => 'Year',
 attr_type => 'NUMBER');
 DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE(
 attr_set => 'Car4Sale',
 attr_name => 'Price',
 attr_type => 'NUMBER');
 DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE(
 attr_set => 'Car4Sale',
 attr_name => 'Mileage',
 attr_type => 'NUMBER');
END;
/

DEFAULT_INDEX_PARAMETERS Procedure

This procedure assigns default index parameters to an attribute set. It also adds or drops a partial list of stored and indexed attributes to or from the default list associated with the attribute list.

Syntax

DBMS_EXPFIL.DEFAULT_INDEX_PARAMETERS (
 attr_set IN VARCHAR2,
 attr_list IN EXF$ATTRIBUTE_LIST,
 operation IN VARCHAR2 DEFAULT 'ADD');

Parameters

Table 65-9 DEFAULT_INDEX_PARAMETERS Procedure Parameters

	Parameter	Description
	
attr_set

	
Name of the attribute set

	
attr_list

	
An instance of EXF$ATTRIBUTE_LIST with a partial list of (default) stored and indexed attributes for an Expression Filter index

	
operation

	
Operation to be performed on the list of index parameters. Default value: ADD. Valid values: ADD and DROP.

Usage Notes

	
Existing Expression Filter indexes are not modified when the default parameters for the corresponding attribute set are changed. The new index defaults are used when a new Expression Filter index is created and when an existing index is rebuilt. (See the section on alter index rebuild in Oracle Database Rules Manager and Expression Filter Developer's Guide for more information about rebuilding indexes.)

	
See the section on creating an index from default parameters in Oracle Database Rules Manager and Expression Filter Developer's Guide for more information about assigning default index parameters to an attribute set.

	
Related views: USER_EXPFIL_ATTRIBUTE_SETS and USER_EXPFIL_DEF_INDEX_PARAMS

Examples

The following command adds the specified stored and indexed attributes to the attribute set's default index parameters list:

BEGIN
 DBMS_EXPFIL.DEFAULT_INDEX_PARAMETERs(
 attr_set => 'Car4Sale',
 attr_list => exf$attribute_list (
 exf$attribute (attr_name => 'Model',
 attr_oper => exf$indexoper('='),
 attr_indexed => 'TRUE'),
 exf$attribute (attr_name => 'Price',
 attr_oper => exf$indexoper('all'),
 attr_indexed => 'TRUE'),
 exf$attribute (attr_name => 'HorsePower(Model, Year)',
 attr_oper => exf$indexoper('=','<','>','>=','<='),
 attr_indexed => 'FALSE'),
 exf$attribute (attr_name => 'CrashTestRating(Model, Year)',
 attr_oper => exf$indexoper('=','<','>','>=','<='),
 attr_indexed => 'FALSE')),
 operation => 'ADD');
END;
/

The following command drops the CrashTestRating(Model, Year) attribute (stored or indexed) from the previous list.

BEGIN
 DBMS_EXPFIL.DEFAULT_INDEX_PARAMETERS(
 attr_set => 'Car4Sale',
 attr_list => exf$attribute_list (
 exf$attribute (attr_name => 'CrashTestRating(Model, Year)')),
 operation => 'DROP');
END;
/

DEFAULT_XPINDEX_PARAMETERS Procedure

This procedure adds (or drops) a partial list of XPath parameters to the default index parameters associated with the attribute set.

Syntax

DBMS_EXPFIL.DEFAULT_XPINDEX_PARAMETERS (
 attr_set IN VARCHAR2,
 xmlt_attr IN VARCHAR2,
 xptag_list IN EXF$XPATH_TAGS,
 operation IN VARCHAR2 DEFAULT 'ADD');

Parameters

Table 65-10 DEFAULT_XPINDEX_PARAMETERS Procedure Parameters

	Parameter	Description
	
attr_set

	
Name of the attribute set

	
xmlt_attr

	
Name of the attribute with the XMLType datatype

	
xptag_list

	
An instance of EXF$XPATH_TAGS type with a partial list of XML elements and attributes to be configured for the Expression Filter index

	
operation

	
Operation to be performed on the list of index parameters. Default value: ADD. Valid values: ADD and DROP.

Usage Notes

	
The attribute set used for an expression set may have one or more XML type attributes (defined with XMLType datatype) and the corresponding expressions may contain XPath predicates on these attributes. The Expression Filter index created for the expression set can be tuned to process these XPath predicates efficiently by using some XPath-specific index parameters (in addition to some non-XPath index parameters).

	
The DEFAULT_XPINDEX_PARAMETERS procedure adds (or drops) a partial list of XPath parameters to the default index parameters associated with the attribute set. The XPath parameters are assigned to a specific XMLType attribute in the attribute set and this information can be viewed using the USER_EXPFIL_DEF_INDEX_PARAMS view. The DEFAULT_INDEX_PARAMETERS procedure and the DEFAULT_XPINDEX_PARAMETERS procedure can be used independent of each other. They maintain a common list of default index parameters for the attribute set.

	
See the section on index tuning for XPath predicates in Oracle Database Rules Manager and Expression Filter Developer's Guide for more information about XPath parameters to the default index parameters of an attribute set. See also DEFAULT_INDEX_PARAMETERS Procedure for more information about default index parameters.

	
Related views: USER_EXPFIL_ATTRIBUTES and USER_EXPFIL_DEF_INDEX_PARAMS.

	
Note:

The values assigned to the tag_name argument of exf$xpath_tag type are case sensitive.

Examples

The following command adds the specified XML tags to the default index parameters list along with their preferences such as positional or value filter and indexed or stored predicate group:

BEGIN
 DBMS_EXPFIL.DEFAULT_XPINDEX_PARAMETERS(
 attr_set => 'Car4Sale',
 xmlt_attr => 'Details',
 xptag_list => --- XPath tag list
 exf$xpath_tags(
 exf$xpath_tag(tag_name => 'stereo@make', --- XML attribute
 tag_indexed => 'TRUE',
 tag_type => 'VARCHAR(15)'), --- value filter
 exf$xpath_tag(tag_name => 'stereo', --- XML element
 tag_indexed => 'FALSE',
 tag_type => null), --- positional filter
 exf$xpath_tag(tag_name => 'memory', --- XML element
 tag_indexed => 'TRUE',
 tag_type => 'VARCHAR(10)'), --- value filter
 exf$xpath_tag(tag_name => 'GPS',
 tag_indexed => 'TRUE',
 tag_type => null)
)
);
END;
/

The following command drops the stereo@make tag from the default index parameters:

BEGIN
 DBMS_EXPFIL.DEFAULT_XPINDEX_PARAMETERS(
 attr_set => 'Car4Sale',
 xmlt_attr => 'Details',
 xptag_list => --- XPath tag list
 exf$xpath_tags(
 exf$xpath_tag(tag_name => 'stereo@make')
),
 operation => 'DROP'
);
END;
/

DEFRAG_INDEX Procedure

This procedure rebuilds the bitmap indexes online and thus reduces the fragmentation.

Syntax

DBMS_EXPFIL.DEFRAG_INDEX (
 idx_name IN VARCHAR2);

Parameters

Table 65-11 DEFRAG_INDEX Procedure Parameter

	Parameter	Description
	
idx_name

	
Name of the Expression Filter index

Usage Notes

	
The bitmap indexes defined for the indexed attributes of an Expression Filter index become fragmented as additions and updates are made to the expression set. This can affect performance. The DEFRAG_INDEX procedure rebuilds the bitmap indexes online and thus reduces the fragmentation.

	
Indexes can be defragmented when the expression set is being modified. However, you should schedule defragmentation when the workload is relatively light, such as 2 a.m.

	
See the section on index storage and maintenance in Oracle Database Rules Manager and Expression Filter Developer's Guide for more information about rebuilding indexes.

	
Related views: USER_EXPFIL_INDEXES and USER_INDEXES.

Examples

The following command is issued to defragment the bitmap indexes associated with the Expression Filter index:

BEGIN
 DBMS_EXPFIL.DEFRAG_INDEX (idx_name => 'InterestIndex');
END;
/

DROP_ATTRIBUTE_SET Procedure

This procedure drops an attribute set not being used for any expression set.

Syntax

DBMS_EXPFIL.DROP_ATTRIBUTE_SET (
 attr_set IN VARCHAR2);

Parameters

Table 65-12 DROP_ATTRIBUTE_SET Procedure Parameter

	Parameter	Description
	
attr_set

	
Name of the attribute set to be dropped

Usage Notes

	
The DROP_ATTRIBUTE_SET procedure drops an attribute set not being used for any expression set. If the attribute set was initially created from an existing object type, the object type remains after dropping the attribute set. Otherwise, the object type is dropped with the attribute set.

	
Related views: USER_EXPFIL_ATTRIBUTE_SETS and USER_EXPFIL_EXPRESSION_SETS.

Examples

Assuming that the attribute set is not used by an Expression column, the following command drops the attribute set:

BEGIN
 DBMS_EXPFIL.DROP_ATTRIBUTE_SET(attr_set => 'Car4Sale');
END;
/

GET_EXPRSET_STATS Procedure

This procedure computes the predicate statistics for an expression set and stores them in the expression filter dictionary.

Syntax

DBMS_EXPFIL.GET_EXPRSET_STATS (
 expr_tab IN VARCHAR2,
 expr_col IN VARCHAR2);

Parameters

Table 65-13 GET_EXPRSET_STATS Procedure Parameters

	Parameter	Description
	
expr_tab

	
Name of table storing the expression set

	
expr_col

	
Name of column in the table that stores the expressions

Usage Notes

	
When a representative set of expressions are stored in a table column, you can use predicate statistics for those expressions to configure the corresponding Expression Filter index (using the TOP parameters clause). The GET_EXPRSET_STATS procedure computes the predicate statistics for an expression set and stores them in the expression filter dictionary.

	
See the section on creating an index from statistics in Oracle Database Rules Manager and Expression Filter Developer's Guide for more information about using predicate statistics.

	
Related views: USER_EXPFIL_EXPRESSION_SETS and USER_EXPFIL_EXPRSET_STATS.

Examples

The following command computes the predicate statistics for the expressions stored in the interest column of the consumer table:

BEGIN
 DBMS_EXPFIL.GET_EXPRSET_STATS (expr_tab => 'consumer',
 expr_col => 'interest');
END;
/

GRANT_PRIVILEGE Procedure

This procedure grants privileges on one or more Expression columns to other users.

Syntax

DBMS_EXPFIL.GRANT_PRIVILEGE (
 expr_tab IN VARCHAR2,
 expr_col IN VARCHAR2,
 priv_type IN VARCHAR2,
 to_user IN VARCHAR2);

Parameters

Table 65-14 GRANT_PRIVILEGE Procedure Parameters

	Parameter	Description
	
expr_tab

	
Name of table storing the expression set

	
expr_col

	
Name of column in the table that stores the expressions

	
priv_type

	
Type of the privilege to be granted. Valid values: INSERT EXPRESSION, UPDATE EXPRESSION, ALL.

	
to_user

	
User to whom the privilege is to be granted

Usage Notes

	
The SQL EVALUATE operator evaluates expressions with the privileges of the owner of the table that stores the expressions. The privileges of the user issuing the query are not considered. The owner of the table can insert, update, and delete expressions. Other users must have INSERT and UPDATE privileges for the table and INSERT EXPRESSION and UPDATE EXPRESSION privilege for a specific Expression column in the table.

	
Using the GRANT_PRIVILEGE procedure, the owner of the table can grant INSERT EXPRESSION or UPDATE EXPRESSION privileges on one or more Expression columns to other users. Both the privileges can be granted to a user by specifying ALL for the privilege type.

	
See REVOKE_PRIVILEGE Procedure and the section on granting and revoking privileges in Oracle Database Rules Manager and Expression Filter Developer's Guide for more information about granting and revoking privileges.

	
Related views: USER_EXPFIL_EXPRESSION_SETS and USER_EXPFIL_PRIVILEGES.

Examples

The owner of consumer table can grant INSERT EXPRESSION privileges to user SCOTT with the following command. User SCOTT should also have INSERT privileges on the table so that he can add new expressions to the set.

BEGIN
 DBMS_EXPFIL.GRANT_PRIVILEGE (expr_tab => 'consumer',
 expr_col => 'interest',
 priv_type => 'INSERT EXPRESSION',
 to_user => 'SCOTT');
END;

INDEX_PARAMETERS Procedure

This procedure fine-tunes the index parameters for each expression set before index creation.

Syntax

DBMS_EXPFIL.INDEX_PARAMETERS (
 expr_tab IN VARCHAR2,
 expr_col IN VARCHAR2,
 attr_list IN EXF$ATTRIBUTE_LIST,
 operation IN VARCHAR2 DEFAULT 'ADD');

Parameters

Table 65-15 INDEX_PARAMETERS Procedure Parameters

	Parameter	Description
	
expr_tab

	
Name of table storing the expression set

	
expr_col

	
Name of column in the table that stores the expressions.

	
attr_list

	
An instance of EXF$ATTRIBUTE_LIST with a partial list of stored and indexed attributes

	
operation

	
Operation to be performed on the list of index parameters. Default value: ADD. Valid values: ADD and DROP.

Usage Notes

	
An attribute set can be used by multiple expression sets stored in different columns of user tables. By default, the index parameters associated with the attribute set are used to define an Expression Filter index on an expression set. If you need to fine-tune the index for each expression set, you can specify a small list of the index parameters in the PARAMETERS clause of the CREATE INDEX statement. However, when an Expression Filter index uses a large number of index parameters or if the index is configured for XPath predicates, fine-tuning the parameters with the CREATE INDEX statement is not possible.

	
The INDEX_PARAMETERS procedure fine-tunes the index parameters for each expression set before index creation. This procedure can be used to copy the defaults from the corresponding attribute set and selectively add (or drop) additional index parameters for the expression set. (You use the XPINDEX_PARAMETERS procedure to add and drop XPath index parameters.) The Expression Filter index defined for an expression set with a non-empty list of index parameters always uses these parameters. The INDEX_PARAMETERS procedure cannot be used when the Expression Filter index is already defined for the column storing expressions.

	
The operations allowed with this procedure include:

	
Deriving the current list of default index parameters (including any XPath-specific parameters) from the corresponding attribute set and assigning them to the specified expression set (a value of DEFAULT for the operation argument).

	
Adding (or dropping) one or more attributes to (or from) the current list of parameters assigned to the expression set (values of ADD or DROP for the operation argument).

	
Clearing the index parameters assigned to the expression set. This enables the user to start using default parameters or tune the parameters from scratch (a value of CLEAR for the operation argument).

	
Note:

This procedure is useful only when an attribute set is shared across multiple expression sets. In all other cases, the defaults assigned to the attribute set can be tuned for the expression set using it.

	
See the section on creating an index from exact parameters in Oracle Database Rules Manager and Expression Filter Developer's Guide and XPINDEX_PARAMETERS Procedure for more information.

	
Related views: USER_EXPFIL_EXPRESSION_SETS, USER_EXPFIL_DEF_INDEX_PARAMS and USER_EXPFIL_INDEX_PARAMS.

Examples

The following command synchronizes the expression set's index parameters with the defaults associated with the corresponding attribute set:

BEGIN
 DBMS_EXPFIL.INDEX_PARAMETERS(expr_tab => 'consumer',
 expr_col => 'interest',
 attr_list => null,
 operation => 'DEFAULT');
END;
/

The following command adds a stored attribute to the expression set's index parameters.

BEGIN
 DBMS_EXPFIL.INDEX_PARAMETERS(expr_tab => 'consumer',
 expr_col => 'interest',
 attr_list =>
 exf$attribute_list (
 exf$attribute (
 attr_name => 'CrashTestRating(Model, Year)',
 attr_oper => exf$indexoper('all'),
 attr_indexed => 'FALSE')),
 operation => 'ADD');
END;
/

The following command clears the index parameters associated with the expression set:

BEGIN
 DBMS_EXPFIL.INDEX_PARAMETERS(expr_tab => 'consumer',
 expr_col => 'interest',
 attr_list => null,
 operation => 'CLEAR');
END;
/

A subsequent index creation will use the default index parameters assigned to the corresponding attribute set.

MODIFY_OPERATOR_LIST Procedure

This procedure modifies the list of common operators associated with a certain attribute in the attribute set.

Syntax

DBMS_EXPFIL.MODIFY_OPERATOR_LIST (
 attr_set IN VARCHAR2,
 attr_name IN VARCHAR2,
 attr_oper IN EXF$INDEXOPER);

Parameters

Table 65-16 MODIFY_OPERATOR_LIST Procedure Parameters

	Parameter	Description
	
attr_set

	
Name of the attribute set

	
attr_name

	
Name of the stored or indexed attribute being modified

	
attr_oper

	
New list of operators that are frequently used in the predicates with the attribute

Usage Notes

	
The MODIFY_OPERATOR_LIST procedure modifies the operator list for the stored and indexed attributes defined in the default index parameters of the attribute set. Existing Expression Filter indexes are not affected when an attribute's operator list is modified. The updated index defaults are used when a new Expression Filter index is created or when an existing index is rebuilt.

	
Related views: USER_EXPFIL_DEF_INDEX_PARAMS

Examples

The following command modifies the operator list associated with the HorsePower(Model,Year) attribute defined in the Car4Sale attribute set.

BEGIN
 DBMS_EXPFIL.MODIFY_OPERATOR_LIST (
 attr_set => 'Car4Sale',
 attr_name => 'HorsePower(Model, Year)',
 attr_oper => exf$indexoper('=','<','>', 'between'));
END;
/

REVOKE_PRIVILEGE Procedure

This procedure revokes an expression privilege previously granted by the owner.

Syntax

DBMS_EXPFIL.REVOKE_PRIVILEGE (
 expr_tab IN VARCHAR2,
 expr_col IN VARCHAR2,
 priv_type IN VARCHAR2,
 from_user IN VARCHAR2);

Parameters

Table 65-17 REVOKE_PRIVILEGE Procedure Parameters

	Parameter	Description
	
expr_tab

	
Name of table storing the expression set

	
expr_col

	
Name of column in the table that stores the expressions

	
priv_type

	
Type of privilege to be revoked

	
from_user

	
User from whom the privilege is to be revoked

Usage Notes

	
See GRANT_PRIVILEGE Procedure and the section on granting and revoking privileges in Oracle Database Rules Manager and Expression Filter Developer's Guide for more information about granting and revoking privileges.

	
Related views: USER_EXPFIL_EXPRESSION_SETS and USER_EXPFIL_PRIVILEGES.

Examples

The following command revokes the INSERT EXPRESSION privilege on the interest column of the consumer table from user SCOTT:

BEGIN
 DBMS_EXPFIL.REVOKE_PRIVILEGE (expr_tab => 'consumer',
 expr_col => 'interest',
 priv_type => 'INSERT EXPRESSION',
 from_user => 'SCOTT');
END;/

SYNC_TEXT_INDEXES Procedure

This procedure synchronizes the indexes defined to process the predicates involving the CONTAINS operator in stored expressions.

Syntax

DBMS_EXPFIL.SYNC_TEXT_INDEXES (
 expr_tab IN VARCHAR2);

Parameters

Table 65-18 SYNC_TEXT_INDEXES Procedure Parameters

	Parameter	Description
	
expr_tab

	
Name of table with expression columns containing text predicates

Usage Notes

	
When an expression filter index is defined on a column storing expressions, any text predicates in the expressions are indexed using a CTXRULE index. Unlike the other types of indexes (bitmap for scalar and XML predicates or spatial for spatial predicates) used to process the predicates in the expression set, the CTXRULE index defined to process the text predicates is not transactional in nature. That is, when the text predicates are updated with DML operations on the table storing expressions, the new predicates are not automatically reflected in the corresponding CTXRULE index. This could result in inconsistent results until the CTXRULE index is synchronized. This procedure can be used to synchronize all the CTXRULE indexes associated with a table with one or more expression columns. This procedure identifies all the CTXRULE indexes and invokes the CTX_DDL.SYNC_INDEX procedure on each of these indexes.

You must have the EXECUTE privilege on the CTX_DDL package for successful synchronization of the text indexes.

Examples

The following command synchronizes the text indexes associated with the expression columns in the consumer table:

BEGIN
 DBMS_EXPFIL.SYNC_TEXT_INDEXES (expr_tab => 'consumer');
END;
/

UNASSIGN_ATTRIBUTE_SET Procedure

This procedure unassigns an attribute set from a column storing expressions.

Syntax

DBMS_EXPFIL.UNASSIGN_ATTRIBUTE_SET (
 expr_tab IN VARCHAR2,
 expr_col IN VARCHAR2);

Parameters

Table 65-19 UNASSIGN_ATTRIBUTE_SET Procedure Parameters

	Parameter	Description
	
expr_tab

	
Name of table storing the expression set

	
expr_col

	
Name of column in the table that stores the expressions

Usage Notes

	
A column of an expression data type can be converted back to a VARCHAR2 type by unassigning the attribute set. You can unassign an attribute set from a column storing expressions if an Expression Filter index is not defined on the column.

	
See ASSIGN_ATTRIBUTE_SET Procedure for information about assigning attribute sets.

	
Related views: USER_EXPFIL_EXPRESSION_SETS and USER_EXPFIL_INDEXES.

Examples

The following command unassigns the attribute set previously assigned to the interest column of the consumer table. (See the section on bulk loading of expression data in Oracle Database Rules Manager and Expression Filter Developer's Guide.)

BEGIN
 DBMS_EXPFIL.UNASSIGN_ATTRIBUTE_SET (expr_tab => 'consumer',
 expr_col => 'interest');
END;
/

VALIDATE_EXPRESSIONS Procedure

This procedure validates all the expressions in a set.

Syntax

DBMS_EXPFIL.VALIDATE_EXPRESSIONS (
 expr_tab IN VARCHAR2,
 expr_col IN VARCHAR2,
 exception_tab IN VARCHAR2 DEFAULT NULL);

Parameters

Table 65-20 VALIDATE_EXPRESSIONS Procedure Parameters

	Parameter	Description
	
expr_tab

	
Name of table storing the expression set

	
expr_col

	
Name of column in the table that stores the expressions

	
exception_tab

	
Name of the exception table. This table is created using the BUILD_EXCEPTIONS_TABLE procedure.

Usage Notes

	
The expressions stored in a table may have references to schema objects like user-defined functions and tables. When these schema objects are dropped or modified, the expressions could become invalid and the subsequent evaluation (query with EVALUATE operator) could fail.

	
By default, the expression validation procedure fails on the first expression that is invalid. Optionally, the caller can pass an exception table to store references to all the invalid expressions. In addition to validating expressions in the set, this procedure validates the parameters (stored and indexed attributes) of the associated index and the approved list of user-defined functions. Any errors in the index parameters or the user-defined function list are immediately reported to the caller.

	
See the section on evaluation semantics in Oracle Database Rules Manager and Expression Filter Developer's Guide and BUILD_EXCEPTIONS_TABLE Procedure for more information.

	
Related views: USER_EXPFIL_EXPRESSION_SETS, USER_EXPFIL_ASET_FUNCTIONS, and USER_EXPFIL_PREDTAB_ATTRIBUTES.

Examples

The following command validates the expressions stored in the interest column of the consumer table.

BEGIN
 DBMS_EXPFIL.VALIDATE_EXPRESSIONS (expr_tab => 'consumer',
 expr_col => 'interest');
END;
/

XPINDEX_PARAMETERS Procedure

This procedure is used in conjunction with the INDEX_PARAMETERS procedure to fine-tune the XPath-specific index parameters for each expression set.

Syntax

DBMS_EXPFIL.XPINDEX_PARAMETERS (
 expr_tab IN VARCHAR2,
 expr_col IN VARCHAR2,
 xmlt_attr IN VARCHAR2,
 xptag_list IN EXF$XPATH_TAGS,
 operation IN VARCHAR2 DEFAULT 'ADD');

Parameters

Table 65-21 XPINDEX_PARAMETERS Procedure Parameters

	Parameter	Description
	
exp_tab

	
Name of table storing the expression set

	
expr_col

	
Name of column in the table that stores the expressions

	
xmlt_attr

	
Name of the attribute with the XMLType datatype

	
xptag_list

	
An instance of EXF$XPATH_TAGS type with a partial list of XML elements and attributes

	
operation

	
Operation to be performed on the list of index parameters. Default value: ADD. Valid values: ADD and DROP.

Usage Notes

	
When an attribute set is shared by multiple expression sets, the INDEX_PARAMETERS procedure can be used to tune the simple (non-XPath) index parameters for each expression set. The XPINDEX_PARAMETERS procedure is used in conjunction with the INDEX_PARAMETERS procedure to fine-tune the XPath-specific index parameters for each expression set.

	
See also INDEX_PARAMETERS Procedure and the section on index tuning for XPath predicates in Oracle Database Rules Manager and Expression Filter Developer's Guide for more information.

	
Related views: USER_EXPFIL_ATTRIBUTES, USER_EXPFIL_DEF_INDEX_PARAMS, and USER_EXPFIL_INDEX_PARAMS.

	
Note:

The values assigned to the tag_name argument of exf$xpath_tag type are case-sensitive.

Examples

The following command synchronizes the index parameters of the expression set (XPath and non-XPath) with the defaults associated with the corresponding attribute set:

BEGIN
 DBMS_EXPFIL.INDEX_PARAMETERS(expr_tab => 'consumer',
 expr_col => 'interest',
 attr_list => null,
 operation => 'DEFAULT');
END;
/

The following command adds an XPath-specific index parameter to the expression set:

BEGIN
 DBMS_EXPFIL.XPINDEX_PARAMETERS(expr_tab => 'consumer',
 expr_col => 'interest',
 xmlt_attr => 'details',
 xptag_list =>
 exf$xpath_tags(
 exf$xpath_tag(tag_name => 'GPS',
 tag_indexed => 'TRUE',
 tag_type => NULL)),
 operation => 'ADD');
END;
/

66 DBMS_FGA

The DBMS_FGA package provides fine-grained security functions.

This chapter contains the following topics:

	
Using DBMS_FGA

	
Security Model

	
Operational Notes

	
Summary of DBMS_FGA Subprograms

Using DBMS_FGA

	
Security Model

	
Operational Notes

Security Model

Execute privilege on DBMS_FGA is needed for administering audit policies. Because the audit function can potentially capture all user environment and application context values, policy administration should be executable by privileged users only. The policy event handler module will be executed with the module owner's privilege.

Operational Notes

This package is available for only cost-based optimization. The rule-based optimizer may generate unnecessary audit records since audit monitoring can occur before row filtering. For both the rule-based optimizer and the cost-based optimizer, you can refer to DBA_FGA_AUDIT_TRAIL to analyze the SQL text and corresponding bind variables that are issued.

Summary of DBMS_FGA Subprograms

Table 66-1 DBMS_FGA Package Subprograms

	Subprogram	Description
	
ADD_POLICY Procedure

	
Creates an audit policy using the supplied predicate as the audit condition

	
DISABLE_POLICY Procedure

	
Disables an audit policy

	
DROP_POLICY Procedure

	
Drops an audit policy

	
ENABLE_POLICY Procedure

	
Enables an audit policy

ADD_POLICY Procedure

This procedure creates an audit policy using the supplied predicate as the audit condition. The maximum number of FGA policies on any table or view object is 256.

Syntax

DBMS_FGA.ADD_POLICY(
 object_schema VARCHAR2,
 object_name VARCHAR2,
 policy_name VARCHAR2,
 audit_condition VARCHAR2,
 audit_column VARCHAR2,
 handler_schema VARCHAR2,
 handler_module VARCHAR2,
 enable BOOLEAN,
 statement_types VARCHAR2,
 audit_trail BINARY_INTEGER IN DEFAULT,
 audit_column_opts BINARY_INTEGER IN DEFAULT);

Parameters

Table 66-2 ADD_POLICY Procedure Parameters

	Parameter	Description	Default Value
	
object_schema

	
The schema of the object to be audited. (If NULL, the current log-on user schema is assumed.)

	
NULL

	
object_name

	
The name of the object to be audited.

	
-

	
policy_name

	
The unique name of the policy.

	
-

	
audit_condition

	
A condition in a row that indicates a monitoring condition. NULL is allowed and acts as TRUE.

	
NULL

	
audit_column

	
The columns to be checked for access. These can include OLS hidden columns or object type columns. The default, NULL, causes audit if any column is accessed or affected.

	
NULL

	
handler_schema

	
The schema that contains the event handler. The default, NULL, causes the current schema to be used.

	
NULL

	
handler_module

	
The function name of the event handler; includes the package name if necessary. This function is invoked only after the first row that matches the audit condition in the query is processed. If the procedure fails with an exception, the user SQL statement will fail as well.

	
NULL

	
enable

	
Enables the policy if TRUE, which is the default.

	
TRUE

	
statement_types

	
The SQL statement types to which this policy is applicable: INSERT, UPDATE, DELETE, or SELECT only.

	
SELECT

	
audit_trail

	
Destination (DB or XML) of fine grained audit records. Also specifies whether to populate LSQLTEXT and LSQLBIND in fga_log$.

	
DB+EXTENDED

	
audit_column_opts

	
Establishes whether a statement is audited when the query references any column specified in the audit_column parameter or only when all such columns are referenced.

	
ANY_COLUMNS

Usage Notes

	
If object_schema is not specified, the current log-on user schema is assumed.

	
An FGA policy should not be applied to out-of-line columns such as LOB columns.

	
Each audit policy is applied to the query individually. However, at most one audit record may be generated for each policy, no matter how many rows being returned satisfy that policy's audit_condition. In other words, whenever any number of rows being returned satisfy an audit condition defined on the table, a single audit record will be generated for each such policy.

	
If a table with an FGA policy defined on it receives a Fast Path insert or a vectored update, the hint is automatically disabled before any such operations. Disabling the hint allows auditing to occur according to the policy's terms. (One example of a Fast Path insert is the statement INSERT-WITH-APPEND-hint.)

	
The audit_condition must be a boolean expression that can be evaluated using the values in the row being inserted, updated, or deleted. The expression can also use functions, such as the USER or SYS_CONTEXT functions.

The expression must not combine conditions using operators such as AND and OR. audit_condition can be NULL (or omitted), which is interpreted as TRUE, but it cannot contain the following elements:

	
Subqueries or sequences

	
The following attributes of the USERENV namespace when accessed using the SYS_CONTEXT function:

	
CURRENT_SQL

	
CURRENT_SQL_LENGTH

	
CURRENT_BIND

	
Any use of the pseudo columns LEVEL, PRIOR, or ROWNUM.

Specifying an audit condition of "1=1" to force auditing of all specified statements ("statement_types") affecting the specified column ("audit_column") is no longer needed to achieve this purpose. A NULL value for audit_condition causes audit to happen even if no rows are processed, so that all actions on a table with this policy are audited.

	
The audit_condition is evaluated using the privileges of the user who creates the policy.

	
The audit function (handler_module) is an alerting mechanism for the administrator. The required interface for such a function is as follows:

PROCEDURE fname (object_schema VARCHAR2, object_name VARCHAR2, policy_name VARCHAR2) AS ...

where fname is the name of the procedure, object_schema is the name of the schema of the table audited, object_name is the name of the table to be audited, and policy_name is the name of the policy being enforced. The audit function will be executed with the function owner's privilege.

	
See Also:

"Tutorial: Adding an E-Mail Alert to a Fine-Grained Audit Policy" in Oracle Database Security Guide for an example of creating an e-mail alert handler for a fine-grained audit policy

	
The audit_trail parameter specifies both where the fine-grained audit trail will be written and whether it is to include the query's SQL Text and SQL Bind variable information (typically in columns named LSQLTEXT and LSQLBIND):

	
If audit_trail includes XML, then fine-grained audit records are written to XML-format operating system files stored in the directory specified by an AUDIT_FILE_DEST statement in SQL. (The default AUDIT_FILE_DEST is $ORACLE_BASE/admin/$DB_UNIQUE_NAME/adump on Unix-based systems, and $ORACLE_BASE\admin\$DB_UNIQUE_NAME\adump on Windows systems.)

	
If audit_trail includes DB instead, then the audit records are written to the SYS.FGA_LOG$ table in the database. However, for read-only databases, Oracle Database writes the fine-grained audit records to XML files, regardless of the audit_trail settings.

	
If audit_trail includes EXTENDED, then the query's SQL Text and SQL Bind variable information are included in the audit trail.

Note that the SQL Text information could include sensitive data, such as credit card numbers, in the audit trail. See "Auditing Sensitive Information" in Oracle Database Security Guide for ways in which you can handle this.

	
For example:

	
Setting audit_trail to DBMS_FGA.DB sends the audit trail to the SYS.FGA_LOG$ table in the database and omits SQL Text and SQL Bind.

	
Setting audit_trail to DBMS_FGA.DB + DBMS_FGA.EXTENDED sends the audit trail to the SYS.FGA_LOG$ table in the database and includes SQL Text and SQL Bind.

	
Setting audit_trail to DBMS_FGA.XML writes the audit trail in XML files sent to the operating system and omits SQL Text and SQL Bind.

	
Setting audit_trail to DBMS_FGA.XML + DBMS_FGA.EXTENDED writes the audit trail in XML files sent to the operating system and includes SQL Text and SQL Bind.

The audit_trail parameter appears in the ALL_AUDIT_POLICIES view.

	
You can change the operating system destination using the following command:

ALTER SYSTEM SET AUDIT_FILE_DEST = '<New Directory>' DEFERRED

	
On many platforms, XML audit files are named <process_name>_<processId>.xml, for example, ora_2111.xml, or s002_11.xml. On Windows, the XML audit files are named <process_name>_<ThreadId>.xml (or <process_name>_ProcessId>.xml if the process is not running as a thread).

	
The audit_column_opts parameter establishes whether a statement is audited

	
when the query references any column specified in the audit_column parameter (audit_column_opts = DBMS_FGA.ANY_COLUMNS), or

	
only when all such columns are referenced (audit_column_opts = DBMS_FGA.ALL_COLUMNS).

The default is DBMS_FGA.ANY_COLUMNS.

The ALL_AUDIT_POLICIES view also shows audit_column_opts.

	
When audit_column_opts is set to DBMS_FGA.ALL_COLUMNS, a SQL statement is audited only when all the columns mentioned in audit_column have been explicitly referenced in the statement. And these columns must be referenced in the same SQL-statement or in the sub-select.

Also, all these columns must refer to a single table/view or alias.

Thus, if a SQL statement selects the columns from different table aliases, the statement will not be audited.

V$XML_AUDIT_TRAIL View

The new values for the audit_trail parameter (XML and XML+EXTENDED) cause fine-grained auditing records to be written to operating system files in XML format.

Audit records stored in operating system files can be more secure than database-stored audit records because access can require file permissions that DBAs do not have. Operating system storage for audit records also offers higher availability, since such records remain available even if the database is temporarily inaccessible.

A new dynamic view, V$XML_AUDIT_TRAIL, makes such audit records from XML files available to DBAs through SQL query, providing enhanced usability. Querying this view causes all XML files (all files with an.xml extension) in the AUDIT_FILE_DEST directory to be parsed and presented in relational table format.

The DBA_COMMON_AUDIT_TRAIL view includes the contents of the V$XML_AUDIT_TRAIL dynamic view for standard and fine-grained audit records.

Since the audit XML files are stored in files with extension.xml on all platforms, the dynamic view presents audit information similarly on all platforms, using the following schema:

Table 66-3 Elements in the V$XML_AUDIT_TRAIL Dynamic View

	Element	Type
	
AUDIT_TYPE

	
VARCHAR2(18)

	
SESSION_ID

	
NUMBER

	
PROXY_SESSIONID

	
NUMBER

	
STATEMENTID

	
NUMBER

	
ENTRYID

	
NUMBER

	
EXTENDED_TIMESTAMP

	
TIMESTAMP(6) WITH TIME ZONE

	
GLOBAL_UID

	
VARCHAR2(32)

	
DB_USER

	
VARCHAR2(30)

	
CLIENT_ID

	
VARCHAR2(64)

	
EXT_NAME

	
VARCHAR2(4000)

	
OS_USER

	
VARCHAR2(255)

	
USERHOST

	
VARCHAR2(128)

	
OS_PROCESS

	
VARCHAR2(16)

	
TERMINAL

	
VARCHAR2(255)

	
INSTANCE_NUMBER

	
NUMBER

	
OBJECT_SCHEMA

	
VARCHAR2(30)

	
OBJECT_NAME

	
VARCHAR2(128)

	
POLICY_NAME

	
VARCHAR2(30)

	
STATEMENT_TYPE

	
VARCHAR2(28)

	
TRANSACTIONID

	
RAW(8)

	
SCN

	
NUMBER

	
COMMENT_TEXT

	
VARCHAR2(4000)

	
SQL_BIND

	
VARCHAR2(4000)

	
SQL_TEXT

	
VARCHAR2(4000)

Usage Notes

	
Every XML audit record contains the elements AUDIT_TYPE and EXTENDED_TIMESTAMP, with the latter printed in UTC zone (with no timezone information). Values retrieved using V$XML_AUDIT_TRAIL view are converted to session timezone and printed.

	
For SQL_TEXT and SQL_BIND element values (CLOB type columns), the dynamic view shows only the first 4000 characters. The underlying XML file may have more than 4000 characters for such SQL_TEXT and SQL_BIND values.

	
For large numbers of XML audit files, querying V$XML_AUDIT_TRAIL is faster when they are loaded into a database table using SQL*Loader or a similar tool. XML audit files are larger than the equivalent written to OS files when AUDIT_TRAIL=OS.

	
Error handling is the same as when AUDIT_TRAIL=OS. If any error occurs in writing an audit record to disk, including the directory identified by AUDIT_FILE_DEST being full, the auditing operation fails. An alert message is logged.

	
The policy event handler module will be executed with the module owner's privilege.

Examples

DBMS_FGA.ADD_POLICY (
 object_schema => 'scott',
 object_name => 'emp',
 policy_name => 'mypolicy1',
 audit_condition => 'sal < 100',
 audit_column => 'comm,sal',
 handler_schema => NULL,
 handler_module => NULL,
 enable => TRUE,
 statement_types => 'INSERT, UPDATE',
 audit_trail => DBMS_FGA.XML + DBMS_FGA.EXTENDED,
 audit_column_opts => DBMS_FGA.ANY_COLUMNS);

DISABLE_POLICY Procedure

This procedure disables an audit policy.

Syntax

DBMS_FGA.DISABLE_POLICY(
 object_schema VARCHAR2,
 object_name VARCHAR2,
 policy_name VARCHAR2);

Parameters

Table 66-4 DISABLE_POLICY Procedure Parameters

	Parameter	Description
	
object_schema

	
The schema of the object to be audited. (If NULL, the current log-on user schema is assumed.)

	
object_name

	
The name of the object to be audited.

	
policy_name

	
The unique name of the policy.

The default value for object_schema is NULL. (If NULL, the current log-on user schema is assumed.)

Examples

DBMS_FGA.DISABLE_POLICY (
object_schema => 'scott',
object_name => 'emp',
policy_name => 'mypolicy1');

DROP_POLICY Procedure

This procedure drops an audit policy.

Syntax

DBMS_FGA.DROP_POLICY(
 object_schema VARCHAR2,
 object_name VARCHAR2,
 policy_name VARCHAR2);

Parameters

Table 66-5 DROP_POLICY Procedure Parameters

	Parameter	Description
	
object_schema

	
The schema of the object to be audited. (If NULL, the current log-on user schema is assumed.)

	
object_name

	
The name of the object to be audited.

	
policy_name

	
The unique name of the policy.

Usage Notes

The DBMS_FGA procedures cause current DML transactions, if any, to commit before the operation unless they are inside a DDL event trigger. With DDL transactions, the DBMS_FGA procedures are part of the DDL transaction. The default value for object_schema is NULL. (If NULL, the current log-on user schema is assumed.)

	
Note:

Oracle Database automatically drops the audit policy if you remove the object specified in the object_name parameter of the DBMS_FGA.ADD_POLICY procedure, or if you drop the user who created the audit policy.

Examples

DBMS_FGA.DROP_POLICY (
object_schema => 'scott',
object_name => 'emp',
policy_name => 'mypolicy1');

ENABLE_POLICY Procedure

This procedure enables an audit policy.

Syntax

DBMS_FGA.ENABLE_POLICY(
 object_schema VARCHAR2,
 object_name VARCHAR2,
 policy_name VARCHAR2,
 enable BOOLEAN);

Parameters

Table 66-6 ENABLE_POLICY Procedure Parameters

	Parameter	Description
	
object_schema

	
The schema of the object to be audited. (If NULL, the current log-on user schema is assumed.)

	
object_name

	
The name of the object to be audited.

	
policy_name

	
The unique name of the policy.

	
enable

	
Defaults to TRUE to enable the policy.

Examples

DBMS_FGA.ENABLE_POLICY (
object_schema => 'scott',
object_name => 'emp',
policy_name => 'mypolicy1',
enable => TRUE);

67 DBMS_FILE_GROUP

The DBMS_FILE_GROUP package, one of a set of Oracle Streams packages, provides administrative interfaces for managing file groups, file group versions, and files. A file group repository is a collection of all of the file groups in a database and can contain multiple versions of a particular file group. You can use this package to create and manage file group repositories.

This chapter contains the following topics:

	
Using DBMS_FILE_GROUP

	
Overview

	
Security Model

	
Constants

	
Summary of DBMS_FILE_GROUP Subprograms

Using DBMS_FILE_GROUP

This section contains topics which relate to using the DBMS_FILE_GROUP package.

	
Overview

	
Security Model

	
Constants

Overview

The following terms pertain to the DBMS_FILE_GROUP package:

File

A file is a reference to a file stored on hard disk. A file is composed of a file name, a directory object, and a file type. The directory object references the directory in which the file is stored on hard disk. For example, a file might have the following components:

	
The file name is expdat.dmp.

	
The directory object that contains the file is db_files.

	
The file type is DBMS_FILE_GROUP.EXPORT_DUMP_FILE.

Version

A version is a collection of related files. For example, a version might consist of a set of datafiles and a Data Pump export dump file generated by a Data Pump transportable tablespace export. Only one Data Pump export dump file is allowed in a version.

File Group

A file group is a collection of versions. A file group can logically group a set of versions. For example, a file group named financial_quarters can keep track of quarterly financial data by logically grouping versions of files related to a tablespace set. The tablespaces containing the data can be exported at the end of each quarter and versioned under names such as Q1FY04, Q2FY04, and so on.

	
See Also:

Oracle Streams Concepts and Administration

Security Model

Security on this package can be controlled in either of the following ways:

	
Granting EXECUTE on this package to selected users or roles.

	
Granting EXECUTE_CATALOG_ROLE to selected users or roles.

If subprograms in the package are run from within a stored procedure, then the user who runs the subprograms must be granted EXECUTE privilege on the package directly. It cannot be granted through a role.

Constants

The DBMS_FILE_GROUP package defines several enumerated constants for specifying parameter values. Enumerated constants must be prefixed with the package name. For example, DBMS_FILE_GROUP.EXPORT_DUMP_FILE.

Table 67-1 lists the parameters and enumerated constants.

Table 67-1 DBMS_FILE_GROUP Parameters with Enumerated Constants

	Parameter	Option	Type	Description
	
file_type

new_file_type

	
	
DATAFILE

	
EXPORT_DUMP_FILE

	
DATAPUMP_LOG_FILE

	
VARCHAR2(30)

	
DATAFILE is a datafile for a database. This constant can be specified as 'DATAFILE'.

EXPORT_DUMP_FILE is a Data Pump export dump file. This constant can be specified as 'DUMPSET'.

DATAPUMP_LOG_FILE is a Data Pump export log file. This constant can be specified as 'DATAPUMPLOG'.

	
max_versions

retention_days

	
	
INFINITE

	
NUMBER

	
INFINITE specifies no limit. The max_versions or retention_days can increase without reaching a limit.

	
privilege

	
System privilege specified in the GRANT_SYSTEM_PRIVILEGE procedure:

	
READ_ANY_FILE_GROUP

	
MANAGE_ANY_FILE_GROUP

	
MANAGE_FILE_GROUP

Object privilege specified in the GRANT_OBJECT_PRIVILEGE procedure:

	
READ_ON_FILE_GROUP

	
MANAGE_ON_FILE_GROUP

	
BINARY_INTEGER

	
READ_ANY_FILE_GROUP grants the privilege to view information about any file group in any schema in the data dictionary.

MANAGE_ANY_FILE_GROUP grants the privilege to create, manage, and drop any file group in any schema.

MANAGE_FILE_GROUP grants the privilege to create, manage, and drop file groups in the user's schema.

READ_ON_FILE_GROUP grants the privilege to view information about a specific file group in the data dictionary.

MANAGE_ON_FILE_GROUP grants the privilege to manage a specific file group in a schema other than the user's schema.

Summary of DBMS_FILE_GROUP Subprograms

Table 67-2 DBMS_FILE_GROUP Package Subprograms

	Subprogram	Description
	
ADD_FILE Procedure

	
Adds a file to a version of a file group

	
ALTER_FILE Procedure

	
Alters a file in a version of a file group

	
ALTER_FILE_GROUP Procedure

	
Alters a file group

	
ALTER_VERSION Procedure

	
Alters a version of a file group

	
CREATE_FILE_GROUP Procedure

	
Creates a file group

	
CREATE_VERSION Procedure

	
Creates a version of a file group

	
DROP_FILE_GROUP Procedure

	
Drops a file group

	
DROP_VERSION Procedure

	
Drops a version of a file group

	
GRANT_OBJECT_PRIVILEGE Procedure

	
Grants object privileges on a file group to a user

	
GRANT_SYSTEM_PRIVILEGE Procedure

	
Grants system privileges for file group operations to a user

	
PURGE_FILE_GROUP Procedure

	
Purges a file group using the file group's retention policy

	
REMOVE_FILE Procedure

	
Removes a file from a version of a file group

	
REVOKE_OBJECT_PRIVILEGE Procedure

	
Revokes object privileges on a file group from a user

	
REVOKE_SYSTEM_PRIVILEGE Procedure

	
Revokes system privileges for file group operations from a user

	
Note:

All subprograms commit unless specified otherwise.

ADD_FILE Procedure

This procedure adds a file to a version of a file group.

Syntax

DBMS_FILE_GROUP.ADD_FILE(
 file_group_name IN VARCHAR2,
 file_name IN VARCHAR2,
 file_type IN VARCHAR2 DEFAULT NULL,
 file_directory IN VARCHAR2 DEFAULT NULL,
 version_name IN VARCHAR2 DEFAULT NULL,
 comments IN VARCHAR2 DEFAULT NULL);

Parameters

Table 67-3 ADD_FILE Procedure Parameters

	Parameter	Description
	
file_group_name

	
The name of the file group that contains the version, specified as [schema_name.]file_group_name. For example, if the schema is hq_dba and the file group name is sales_tbs, then specify hq_dba.sales_tbs. If the schema is not specified, then the current user is the default.

	
file_name

	
The name of the file being added to the version. Each file name in a version must be unique.

	
file_type

	
The file type. The following are reserved file types:

	
If the file is a datafile, then enter the following:

'DATAFILE'

	
If the file is a Data Pump export dump file, then enter the following:

'DUMPSET'

Data Pump metadata is populated when a Data Pump export dump file is imported.

	
If the file is a Data Pump export log file, then enter the following:

'DATAPUMPLOG'

If the file type is not one of the reserved file types, then either enter a text description of the file type, or specify NULL to omit a file type description.

See "Constants" for more information about the reserved file types.

	
file_directory

	
The name of the directory object that corresponds to the directory containing the file.

If NULL, then the procedure uses the default directory object for the version.

If NULL and no default directory object exists for the version, then the procedure uses the default directory object for the file group.

If NULL and no default directory object exists for the version or file group, then the procedure raises an error.

	
version_name

	
The name of the version to which the file is added.

If a positive integer is specified as a VARCHAR2 value, then the integer is interpreted as a version number. For example, if '1' is specified, then the file is added to version 1 of the file group.

If NULL, then the procedure uses the version with the latest creation time for the file group.

	
comments

	
Comments about the file being added

Usage Notes

To run this procedure with either DBMS_FILE_GROUP.EXPORT_DUMP_FILE or 'DUMPSET' specified for the file_type parameter, a user must meet the following requirements:

	
Have the appropriate privileges to import the Data Pump export dump file

	
Have READ privilege on the directory object that contains the Data Pump export dump file

	
See Also:

Oracle Database Utilities for more information about Data Pump privileges

ALTER_FILE Procedure

This procedure alters a file in a version of a file group.

Syntax

DBMS_FILE_GROUP.ALTER_FILE(
 file_group_name IN VARCHAR2,
 file_name IN VARCHAR2,
 version_name IN VARCHAR2 DEFAULT NULL,
 new_file_name IN VARCHAR2 DEFAULT NULL,
 new_file_directory IN VARCHAR2 DEFAULT NULL,
 new_file_type IN VARCHAR2 DEFAULT NULL,
 remove_file_type IN VARCHAR2 DEFAULT 'N',
 new_comments IN VARCHAR2 DEFAULT NULL,
 remove_comments IN VARCHAR2 DEFAULT 'N');

Parameters

Table 67-4 ALTER_FILE Procedure Parameters

	Parameter	Description
	
file_group_name

	
The name of the file group that contains the version, specified as [schema_name.]file_group_name. For example, if the schema is hq_dba and the file group name is sales_tbs, then specify hq_dba.sales_tbs. If the schema is not specified, then the current user is the default.

	
file_name

	
The name of the file being altered in the version

	
version_name

	
The name of the version that contains the file being altered.

If a positive integer is specified as a VARCHAR2 value, then the integer is interpreted as a version number. For example, if '1' is specified, then the file in version 1 of the file group is altered.

If NULL, then the procedure uses the version with the latest creation time for the file group.

	
new_file_name

	
The new name of the file if the file name is being changed. Each file name in a version must be unique.

If NULL, then the procedure does not change the file name.

Note: When a non-NULL new file name is specified, this procedure changes the metadata for the file name in the data dictionary, but it does not change the file name on the hard disk.

	
new_file_directory

	
The new name of the directory object that corresponds to the directory containing the file, if the directory object is being changed.

If NULL, then the procedure does not change the directory object name.

Note: When a non-NULL new file directory is specified, this procedure changes the metadata for the file directory in the data dictionary, but it does not change the file directory on the hard disk.

	
new_file_type

	
The file type. The following are reserved file types:

	
If the file is a datafile, then enter the following:

'DATAFILE'

	
If the file is a Data Pump export dump file, then enter the following:

'DUMPSET'

	
If the file is a Data Pump export log file, then enter the following:

'DATAPUMPLOG'

If the file type is not one of the reserved file types, then enter a text description of the file type.

If NULL, then the procedure does not change the file type.

See Also: "Constants" for more information about the reserved file types.

	
remove_file_type

	
If Y, then the procedure removes the file type. If Y and the new_file_type parameter is non-NULL, then the procedure raises an error.

If N, then the procedure does not remove the file type.

	
new_comments

	
New comments about the file being altered. If non-NULL, then the procedure replaces the existing comments with the specified comments.

If NULL, then the procedure does not change the existing comments.

	
remove_comments

	
If Y, then the procedure removes the comments for the file. If Y and the new_comments parameter is non-NULL, then the procedure raises an error.

If N, then the procedure does not change the existing comments.

Usage Notes

If the file type is changed to DBMS_FILE_GROUP.EXPORT_DUMP_FILE or 'DUMPSET', then Data Pump metadata for the file is populated. If the file type is changed from DBMS_FILE_GROUP.EXPORT_DUMP_FILE or 'DUMPSET', then Data Pump metadata for the file is purged.

To run this procedure with DBMS_FILE_GROUP.EXPORT_DUMP_FILE or 'DUMPSET' specified for the new_file_type parameter, a user must meet the following requirements:

	
Have the appropriate privileges to import the Data Pump export dump file

	
Have READ privilege on the directory object that contains the Data Pump export dump file

	
See Also:

Oracle Database Utilities for more information about Data Pump privileges

ALTER_FILE_GROUP Procedure

This procedure alters a file group.

Syntax

DBMS_FILE_GROUP.ALTER_FILE_GROUP(
 file_group_name IN VARCHAR2,
 keep_files IN VARCHAR2 DEFAULT NULL,
 min_versions IN NUMBER DEFAULT NULL,
 max_versions IN NUMBER DEFAULT NULL,
 retention_days IN NUMBER DEFAULT NULL,
 new_default_directory IN VARCHAR2 DEFAULT NULL,
 remove_default_directory IN VARCHAR2 DEFAULT 'N',
 new_comments IN VARCHAR2 DEFAULT NULL,
 remove_comments IN VARCHAR2 DEFAULT 'N');

Parameters

Table 67-5 ALTER_FILE_GROUP Procedure Parameters

	Parameter	Description
	
file_group_name

	
The name of the file group being altered, specified as [schema_name.]file_group_name. For example, if the schema is hq_dba and the file group name is sales_tbs, then specify hq_dba.sales_tbs. If the schema is not specified, then the current user is the default.

	
keep_files

	
If Y, then the files in the file group are retained on hard disk if the file group or a version of the file group is dropped or purged.

If N, then the files in the file group are deleted from hard disk if the file group or a version of the file group is dropped or purged.

If NULL, then this parameter is not changed.

Note: If the file group is dropped because of a DROP USER CASCADE statement, then the setting of this parameter determines whether the files are dropped from the hard disk.

	
min_versions

	
The minimum number of versions to retain. The specified value must be greater than or equal to 1.

If NULL, then the procedure does not change the min_versions setting for the file group.

	
max_versions

	
The maximum number of versions to retain. The specified value must be greater than or equal to the value specified for min_versions. When the number of versions exceeds the specified max_versions, the oldest version is purged.

Specify DBMS_FILE_GROUP.INFINITE for no limit to the number of versions.

If NULL, then the procedure does not change the max_versions setting for the file group.

	
retention_days

	
The maximum number of days to retain a version. The specified value must be greater than or equal to 0 (zero). When the age of a version exceeds the specified retention_days and there are more versions than the number specified in min_versions, the version is purged. The age of a version is calculated by subtracting the creation time from the current time.

A decimal value can specify a fraction of a day. For example, 1.25 specifies one day and six hours.

Specify DBMS_FILE_GROUP.INFINITE for no limit to the number of days a version can exist.

If NULL, then the procedure does not change the retention_days setting for the file group.

	
new_default_directory

	
The default directory object used when files are added to a file group if no directory is specified when the files are added, and no default directory object is specified for the version.

If NULL, then the procedure does not change the default directory.

	
remove_default_directory

	
If Y, then the procedure removes the default directory for the file group. If Y and the new_default_directory parameter is set to a non-NULL value, then the procedure raises an error.

If N, then the procedure does not remove the default directory for the file group.

	
new_comments

	
Comments about the file group. If non-NULL, then the new comments replace the existing comments for the file group.

If NULL, then the procedure does not change the existing comments.

	
remove_comments

	
If Y, then the comments for the file group are removed. If Y and the new_comments parameter is set to a non-NULL value, then the procedure raises an error.

If N, then the procedure does not change the comments for the file group.

Usage Notes

If min_versions is set to 1, then the only version of the file group can be purged when a new version is added. If the addition of the new version is not complete when the existing version is purged, then there can be a period of time when no version of the file group is available. Therefore, set min_versions to at least 2 if a version of the file group must be available at all times.

ALTER_VERSION Procedure

This procedure alters a version of a file group.

Syntax

DBMS_FILE_GROUP.ALTER_VERSION(
 file_group_name IN VARCHAR2,
 version_name IN VARCHAR2 DEFAULT NULL,
 new_version_name IN VARCHAR2 DEFAULT NULL,
 remove_version_name IN VARCHAR2 DEFAULT 'N',
 new_default_directory IN VARCHAR2 DEFAULT NULL,
 remove_default_directory IN VARCHAR2 DEFAULT 'N',
 new_comments IN VARCHAR2 DEFAULT NULL,
 remove_comments IN VARCHAR2 DEFAULT 'N');

Parameters

Table 67-6 ALTER_VERSION Procedure Parameters

	Parameter	Description
	
file_group_name

	
The name of the file group that contains the version, specified as [schema_name.]file_group_name. For example, if the schema is hq_dba and the file group name is sales_tbs, then specify hq_dba.sales_tbs. If the schema is not specified, then the current user is the default.

	
version_name

	
The name of the version being altered.

If a positive integer is specified as a VARCHAR2 value, then the integer is interpreted as a version number. For example, if '1' is specified, then version 1 of the file group is altered.

If '*' is specified, then the procedure alters all versions, and the new_version_name parameter must be NULL.

If NULL, then the procedure uses the version with the latest creation time for the file group.

	
new_version_name

	
The new name of the version. Do not specify a schema.

The specified version name cannot be a positive integer or an asterisk ('*').

If NULL, then the procedure does not change the version name.

	
remove_version_name

	
If Y, then the procedure removes the version name. If the version name is removed, then the version number must be used to manage the version. If Y and the new_version_name parameter is set to a non-NULL value, then the procedure raises an error.

If N, then the procedure does not remove the version name.

	
new_default_directory

	
The default directory object used when files are added to a version if no directory is specified when the files are added.

If NULL, then the procedure does not change the default directory.

	
remove_default_directory

	
If Y, then the procedure removes the default directory. If Y and the new_default_directory parameter is set to a non-NULL value, then the procedure raises an error.

If N, then the procedure does not remove the default directory.

	
new_comments

	
Comments about the version. If non-NULL, then the new comments replace the existing comments for the version.

If NULL, then the procedure does not change the comments.

	
remove_comments

	
If Y, then the procedure removes the comments for the version. If Y and the new_comments parameter is set to a non-NULL value, then the procedure raises an error.

If N, then the procedure does not remove the comments for the version.

CREATE_FILE_GROUP Procedure

This procedure creates a file group.

Syntax

DBMS_FILE_GROUP.CREATE_FILE_GROUP(
 file_group_name IN VARCHAR2,
 keep_files IN VARCHAR2 DEFAULT 'Y',
 min_versions IN NUMBER DEFAULT 2,
 max_versions IN NUMBER DEFAULT DBMS_FILE_GROUP.INFINITE,
 retention_days IN NUMBER DEFAULT DBMS_FILE_GROUP.INFINITE,
 default_directory IN VARCHAR2 DEFAULT NULL,
 comments IN VARCHAR2 DEFAULT NULL);

Parameters

Table 67-7 CREATE_FILE_GROUP Procedure Parameters

	Parameter	Description
	
file_group_name

	
The name of the file group, specified as [schema_name.]file_group_name. For example, if the schema is hq_dba and the file group name is sales_tbs, then specify hq_dba.sales_tbs. If the schema is not specified, then the current user is the default.

	
keep_files

	
If Y, then the files in the file group are retained on hard disk if the file group or a version of the file group is dropped or purged.

If N, then the files in the file group are deleted from hard disk if the file group or a version of the file group is dropped or purged.

Note: If the file group is dropped because of a DROP USER CASCADE statement, then the setting of this parameter determines whether the files are dropped from the hard disk.

	
min_versions

	
The minimum number of versions to retain. The specified value must be greater than or equal to 1.

	
max_versions

	
The maximum number of versions to retain. The specified value must be greater than or equal to the value specified for min_versions. When the number of versions exceeds the specified max_versions, the oldest version is purged.

Specify DBMS_FILE_GROUP.INFINITE for no limit to the number of versions.

	
retention_days

	
The maximum number of days to retain a version. The specified value must be greater than or equal to 0 (zero). When the age of a version exceeds the specified retention_days and there are more versions than the number specified in min_versions, the version is purged. The age of a version is calculated by subtracting the creation time from the current time.

A decimal value can specify a fraction of a day. For example, 1.25 specifies one day and six hours.

Specify DBMS_FILE_GROUP.INFINITE for no limit to the number of days a version can exist.

	
default_directory

	
The default directory object used when files are added to a file group if no directory is specified when the files are added, and no default directory object is specified for the version.

	
comments

	
Comments about the file group being created.

Usage Notes

If min_versions is set to 1, then the only version of the file group can be purged when a new version is added. If the addition of the new version is not complete when the existing version is purged, then there can be a period of time when no version of the file group is available. Therefore, set min_versions to at least 2 if a version of the file group must be available at all times.

CREATE_VERSION Procedure

This procedure creates a version of a file group.

This procedure automatically runs the PURGE_FILE_GROUP procedure. Therefore, versions can be purged based on the file group's retention policy.

This procedure is overloaded. One version of the procedure contains the OUT parameter version_out, and the other does not.

	
See Also:

PURGE_FILE_GROUP Procedure

Syntax

DBMS_FILE_GROUP.CREATE_VERSION(
 file_group_name IN VARCHAR2,
 version_name IN VARCHAR2 DEFAULT NULL,
 default_directory IN VARCHAR2 DEFAULT NULL,
 comments IN VARCHAR2 DEFAULT NULL);

DBMS_FILE_GROUP.CREATE_VERSION(
 file_group_name IN VARCHAR2,
 version_name IN VARCHAR2 DEFAULT NULL,
 default_directory IN VARCHAR2 DEFAULT NULL,
 comments IN VARCHAR2 DEFAULT NULL,
 version_out OUT VARCHAR2);

Parameters

Table 67-8 CREATE_VERSION Procedure Parameters

	Parameter	Description
	
file_group_name

	
The name of the file group to which the new version is added, specified as [schema_name.]file_group_name. For example, if the schema is hq_dba and the file group name is sales_tbs, then specify hq_dba.sales_tbs. If the schema is not specified, then the current user is the default.

	
version_name

	
The name of the version being created. Do not specify a schema.

The specified version name cannot be a positive integer because, when a version is created, a version number is generated automatically. The specified version name cannot be an asterisk ('*').

	
default_directory

	
The default directory object used when files are added to a version if no directory is specified when the files are added.

	
comments

	
Comments about the version being created

	
version_out

	
If the version_name parameter is set to a non-NULL value, then this parameter contains the specified version name.

If the version_name parameter is set to NULL, then this parameter contains the generated version number.

DROP_FILE_GROUP Procedure

This procedure drops a file group.

Syntax

DBMS_FILE_GROUP.DROP_FILE_GROUP(
 file_group_name IN VARCHAR2,
 keep_files IN VARCHAR2 DEFAULT NULL);

Parameters

Table 67-9 DROP_FILE_GROUP Procedure Parameters

	Parameter	Description
	
file_group_name

	
The name of the file group being dropped, specified as [schema_name.]file_group_name. For example, if the schema is hq_dba and the file group name is sales_tbs, then specify hq_dba.sales_tbs. If the schema is not specified, then the current user is the default.

	
keep_files

	
If Y, then the procedure retains the files in the file group on hard disk.

If N, then the procedure deletes the files in the file group from hard disk.

If NULL, then the procedure uses the default keep files property of the file group.

Usage Notes

If this procedure deletes files on hard disk, then the user who runs the procedure must have WRITE privilege on the directory object that contains the files.

DROP_VERSION Procedure

This procedure drops a version of a file group.

Syntax

DBMS_FILE_GROUP.DROP_VERSION(
 file_group_name IN VARCHAR2,
 version_name IN VARCHAR2 DEFAULT NULL,
 keep_files IN VARCHAR2 DEFAULT NULL);

Parameters

Table 67-10 DROP_VERSION Procedure Parameters

	Parameter	Description
	
file_group_name

	
The name of the file group that contains the version, specified as [schema_name.]file_group_name. For example, if the schema is hq_dba and the file group name is sales_tbs, then specify hq_dba.sales_tbs. If the schema is not specified, then the current user is the default.

	
version_name

	
The name of the version being dropped.

If a positive integer is specified as a VARCHAR2 value, then the integer is interpreted as a version number. For example, if '1' is specified, then version 1 of the file group is dropped.

If NULL, then the procedure uses the version with the oldest creation time for the file group.

If '*', then the procedure drops all versions.

	
keep_files

	
If Y, then the procedure retains the files in the version on hard disk.

If N, then the procedure deletes the files in the version from hard disk.

If NULL, then the procedure uses the default keep files property of the file group.

Usage Notes

If this procedure deletes files on hard disk, then the user who runs the procedure must have WRITE privilege on the directory object that contains the files.

GRANT_OBJECT_PRIVILEGE Procedure

This procedure grants object privileges on a file group to a user.

Syntax

DBMS_FILE_GROUP.GRANT_OBJECT_PRIVILEGE(
 object_name IN VARCHAR2,
 privilege IN BINARY_INTEGER,
 grantee IN VARCHAR2,
 grant_option IN BOOLEAN DEFAULT FALSE);

Parameters

Table 67-11 GRANT_OBJECT_PRIVILEGE Procedure Parameters

	Parameter	Description
	
object_name

	
The name of the file group on which the privilege is granted, specified as [schema_name.]file_group_name. For example, if the schema is hq_dba and the file group name is sales_tbs, then specify hq_dba.sales_tbs. If the schema is not specified, then the current user is the default.

	
privilege

	
The constant that specifies the privilege. See "Constants" for valid privileges.

	
grantee

	
The name of the user or role for which the privilege is granted. The specified user cannot be the owner of the object.

	
grant_option

	
If TRUE, then the specified user granted the specified privilege can grant this privilege to others.

If FALSE, then the specified user granted the specified privilege cannot grant this privilege to others.

Usage Notes

To run this procedure, a user must meet at least one of the following requirements:

	
Be the owner of the object on which the privilege is granted

	
Have the same privilege as the privilege being granted with the grant option

GRANT_SYSTEM_PRIVILEGE Procedure

This procedure grants system privileges for file group operations to a user.

	
Note:

When you grant a privilege on "ANY" object (for example, ALTER_ANY_RULE), and the initialization parameter O7_DICTIONARY_ACCESSIBILITY is set to FALSE, you give the user access to that type of object in all schemas, except the SYS schema. By default, the initialization parameter O7_DICTIONARY_ACCESSIBILITY is set to FALSE.
If you want to grant access to an object in the SYS schema, then you can grant object privileges explicitly on the object. Alternatively, you can set the O7_DICTIONARY_ACCESSIBILITY initialization parameter to TRUE. Then privileges granted on "ANY" object allows access to any schema, including SYS. Set the O7_DICTIONARY_ACCESSIBILITY initialization parameter with caution.

Syntax

DBMS_FILE_GROUP.GRANT_SYSTEM_PRIVILEGE(
 privilege IN BINARY_INTEGER,
 grantee IN VARCHAR2,
 grant_option IN BOOLEAN DEFAULT FALSE);

Parameters

Table 67-12 GRANT_SYSTEM_PRIVILEGE Procedure Parameters

	Parameter	Description
	
privilege

	
The constant that specifies the privilege. See "Constants" for valid privileges.

	
grantee

	
The name of the user or role for which the privilege is granted. The user who runs the procedure cannot be specified.

	
grant_option

	
If TRUE, then the specified user granted the specified privilege can grant this privilege to others.

If FALSE, then the specified user granted the specified privilege cannot grant this privilege to others.

PURGE_FILE_GROUP Procedure

This procedure purges a file group using the file group's retention policy.

A file group's retention policy is determined by its settings for the max_versions, min_versions, and retention_days parameters. The following versions of a file group are removed when a file group is purged:

	
All versions greater than the max_versions setting for the file group when versions are ordered in descending order by creation time. Therefore, the older versions are purged before the newer versions.

	
All versions older than the retention_days setting for the file group unless purging a version would cause the number of versions to drop below the min_versions setting for the file group.

A job named SYS.FGR$AUTOPURGE_JOB automatically purges all file groups in a database periodically according to the job's schedule. You can adjust this job's schedule using the DBMS_SCHEDULER package. Alternatively, you can create a job that runs the PURGE_FILE_GROUP procedure periodically.

Syntax

DBMS_FILE_GROUP.PURGE_FILE_GROUP(
 file_group_name IN VARCHAR2);

Parameter

Table 67-13 PURGE_FILE_GROUP Procedure Parameter

	Parameter	Description
	
file_group_name

	
The name of the file group, specified as [schema_name.]file_group_name. For example, if the schema is hq_dba and the file group name is sales_tbs, then specify hq_dba.sales_tbs. If the schema is not specified, then the current user is the default.

If NULL and this procedure is run by SYS user, then the procedure purges all file groups.

Usage Notes

If this procedure deletes files on hard disk, then the user who runs the procedure must have WRITE privilege on the directory object that contains the files. Files are deleted when a version is purged and the keep_files parameter is set to N for the version's file group.

REMOVE_FILE Procedure

This procedure removes a file from a version of a file group.

Syntax

DBMS_FILE_GROUP.REMOVE_FILE(
 file_group_name IN VARCHAR2,
 file_name IN VARCHAR2,
 version_name IN VARCHAR2 DEFAULT NULL,
 keep_file IN VARCHAR2 DEFAULT NULL);

Parameters

Table 67-14 REMOVE_FILE Procedure Parameters

	Parameter	Description
	
file_group_name

	
The name of the file group that contains the version, specified as [schema_name.]file_group_name. For example, if the schema is hq_dba and the file group name is sales_tbs, then specify hq_dba.sales_tbs. If the schema is not specified, then the current user is the default.

	
file_name

	
The name of the file being removed from the version

	
version_name

	
The name of the version from which the file is removed.

If a positive integer is specified as a VARCHAR2 value, then the integer is interpreted as a version number. For example, if '1' is specified, then the file is removed from version 1 of the file group.

If NULL, then the procedure uses the version with the latest creation time for the file group.

If '*', then the procedure removes the file from all versions.

	
keep_file

	
If Y, then the procedure retains the file on hard disk.

If N, then the procedure deletes the file from hard disk.

If NULL, then the procedure uses the default keep files property of the file group.

Usage Notes

If this procedure deletes files on hard disk, then the user who runs the procedure must have WRITE privilege on the directory object that contains the files.

REVOKE_OBJECT_PRIVILEGE Procedure

This procedure revokes object privileges on a file group from a user.

Syntax

DBMS_FILE_GROUP.REVOKE_OBJECT_PRIVILEGE(
 object_name IN VARCHAR2,
 privilege IN BINARY_INTEGER,
 revokee IN VARCHAR2);

Parameters

Table 67-15 REVOKE_OBJECT_PRIVILEGE Procedure Parameters

	Parameter	Description
	
object_name

	
The name of the file group on which the privilege is revoked, specified as [schema_name.]file_group_name. For example, if the schema is hq_dba and the file group name is sales_tbs, then specify hq_dba.sales_tbs. If the schema is not specified, then the current user is the default.

	
privilege

	
The constant that specifies the privilege. See "Constants" for valid privileges.

	
revokee

	
The name of the user or role from which the privilege is revoked. The user who owns the object cannot be specified.

REVOKE_SYSTEM_PRIVILEGE Procedure

This procedure revokes system privileges for file group operations from a user.

Syntax

DBMS_FILE_GROUP.REVOKE_SYSTEM_PRIVILEGE(
 privilege IN BINARY_INTEGER,
 revokee IN VARCHAR2);

Parameters

Table 67-16 REVOKE_SYSTEM_PRIVILEGE Procedure Parameters

	Parameter	Description
	
privilege

	
The constant that specifies the privilege. See "Constants" for valid privileges.

	
revokee

	
The name of the user or role from which the privilege is revoked. The user who runs the procedure cannot be specified.

68 DBMS_FILE_TRANSFER

The DBMS_FILE_TRANSFER package provides procedures to copy a binary file within a database or to transfer a binary file between databases.

	
See Also:

	
Oracle Database Administrator's Guide for instructions about using file transfer

	
Oracle Streams Concepts and Administration for applications of file transfer.

This chapter contains the following topic:

	
Using DBMS_FILE_TRANSFER

	
Operating Notes

	
Summary of DBMS_FILE_TRANSFER Subprograms

Using DBMS_FILE_TRANSFER

	
Operating Notes

Operating Notes

	
Caution:

DBMS_FILE_TRANSFER supports online backup. You should therefore be careful in copying or transferring a file that is being modified by the database because this can result in an inconsistent file, and require recovery. To guarantee consistency, bring files offline when the database is in use.
If you want to use DBMS_FILE_TRANSFER for performing backups, note that you are implementing self-managed backups, and should therefore put the files in hot backup mode.

Summary of DBMS_FILE_TRANSFER Subprograms

Table 68-1 DBMS_FILE_TRANSFER Package Subprograms

	Subprogram	Description
	
COPY_FILE Procedure

	
Reads a file from a source directory and creates a copy of it in a destination directory. The source and destination directories can both be in a local file system, or both be in an Automatic Storage Management (ASM) disk group, or between local file system and ASM with copying in either direction.

	
GET_FILE Procedure

	
Contacts a remote database to read a remote file and then creates a copy of the file in the local file system or ASM

	
PUT_FILE Procedure

	
Reads a local file or ASM and contacts a remote database to create a copy of the file in the remote file system

COPY_FILE Procedure

This procedure reads a file from a source directory and creates a copy of it in a destination directory. The source and destination directories can both be in a local file system, or both be in an Automatic Storage Management (ASM) disk group, or between local file system and ASM with copying in either direction.

You can copy any type of file to and from a local file system. However, you can copy only database files (such as datafiles, tempfiles, controlfiles, and so on) to and from an ASM disk group.

The destination file is not closed until the procedure completes successfully.

Syntax

DBMS_FILE_TRANSFER.COPY_FILE(
 source_directory_object IN VARCHAR2,
 source_file_name IN VARCHAR2,
 destination_directory_object IN VARCHAR2,
 destination_file_name IN VARCHAR2);

Parameters

Table 68-2 COPY_FILE Procedure Parameters

	Parameter	Description
	
source_directory_object

	
The directory object that designates the source directory. The directory object must already exist. (You create directory objects with the CREATE DIRECTORY command).

	
source_file_name

	
The name of the file to copy. This file must exist in the source directory.

	
destination_directory_object

	
The directory object that designates the destination directory. The directory object must already exist. If the destination is ASM, the directory object must designate either a disk group name (for example, +diskgroup1) or a directory created for alias names. In the case of a directory, the full path to the directory must be specified (for example: +diskgroup1/dbs/control).

	
destination_file_name

	
The name to assign to the file in the destination directory. A file with the same name must not exist in the destination directory. If the destination is ASM:

	
The file is given a fully qualified ASM filename and created in the appropriate directory (depending on the database name and file type)

	
The file type tag assigned to the file is COPY_FILE

	
The value of the destination_file_name argument becomes the file's alias name in the designated destination directory

The file name can be followed by an ASM template name in parentheses. The file is then given the attributes specified by the template.

Usage Notes

To run this procedure successfully, the current user must have the following privileges:

	
READ privilege on the directory object specified in the source_directory_object parameter

	
WRITE privilege on directory object specified in the destination_directory_object parameter

This procedure converts directory object parameters to uppercase unless they are surrounded by double quotation marks, but this procedure does not convert file names to uppercase.

Also, the copied file must meet the following requirements:

	
The size of the copied file must be a multiple of 512 bytes.

	
The size of the copied file must be less than or equal to two terabytes.

Transferring the file is not transactional. The copied file is treated as a binary file, and no character set conversion is performed. To monitor the progress of a long file copy, query the V$SESSION_LONGOPS dynamic performance view.

	
See Also:

Oracle Automatic Storage Management Administrator's Guide for instructions about using file transfer

Examples

SQL> create directory DGROUP as '+diskgroup1/dbs/backup';

Directory created.

SQL> BEGIN
 2 DBMS_FILE_TRANSFER.COPY_FILE('SOURCEDIR','t_xdbtmp.f', 'DGROUP',
 't_xdbtmp.f');
 3 END;
 4 /

PL/SQL procedure successfully completed.

SQL> EXIT
$ASMCMD
ASMCMD> ls
DISKGROUP1/
ASMCMD> cd diskgroup1/dbs/backup
ASMCMD> ls
t_xdbtmp.f => +DISKGROUP1/ORCL/TEMPFILE/COPY_FILE.267.546546525

GET_FILE Procedure

This procedure contacts a remote database to read a remote file and then creates a copy of the file in the local file system or ASM. The file that is copied is the source file, and the new file that results from the copy is the destination file. The destination file is not closed until the procedure completes successfully.

Syntax

DBMS_FILE_TRANSFER.GET_FILE
 source_directory_object IN VARCHAR2,
 source_file_name IN VARCHAR2,
 source_database IN VARCHAR2,
 destination_directory_object IN VARCHAR2,
 destination_file_name IN VARCHAR2);

Parameters

Table 68-3 GET_FILE Procedure Parameters

	Parameter	Description
	
source_directory_object

	
The directory object from which the file is copied at the source site. This directory object must exist at the source site.

	
source_file_name

	
The name of the file that is copied in the remote file system. This file must exist in the remote file system in the directory associated with the source directory object.

	
source_database

	
The name of a database link to the remote database where the file is located.

	
destination_directory_object

	
The directory object into which the file is placed at the destination site. This directory object must exist in the local file system.

	
destination_file_name

	
The name of the file copied to the local file system. A file with the same name must not exist in the destination directory in the local file system.

Usage Notes

To run this procedure successfully, the following users must have the following privileges:

	
The connected user at the source database must have read privilege on the directory object specified in the source_directory_object parameter.

	
The current user at the local database must have write privilege on the directory object specified in the destination_directory_object parameter.

This procedure converts directory object parameters to uppercase unless they are surrounded by double quotation marks, but this procedure does not convert file names to uppercase.

Also, the copied file must meet the following requirements:

	
The size of the copied file must be a multiple of 512 bytes.

	
The size of the copied file must be less than or equal to two terabytes.

Transferring the file is not transactional. The copied file is treated as a binary file, and no character set conversion is performed. To monitor the progress of a long file transfer, query the V$SESSION_LONGOPS dynamic performance view.

Examples

CREATE OR REPLACE DIRECTORY df AS '+datafile' ;
GRANT WRITE ON DIRECTORY df TO "user";
CREATE DIRECTORY DSK_FILES AS ''^t_work^'';
GRANT WRITE ON DIRECTORY dsk_files TO "user";

-- asumes that dbs2 link has been created and we are connected to the instance.
-- dbs2 could be a loopback or point to another instance.

BEGIN
-- asm file to an os file
-- get an asm file from dbs1.asm/a1 to dbs2.^t_work^/oa5.dat
 DBMS_FILE_TRANSFER.GET_FILE ('df' , 'a1' , 'dbs1', 'dsk_files' , 'oa5.dat');

-- os file to an os file
-- get an os file from dbs1.^t_work^/a2.dat to dbs2.^t_work^/a2back.dat
 DBMS_FILE_TRANSFER.GET_FILE ('dsk_files' , 'a2.dat' , 'dbs1', 'dsk_files' , 'a2back.dat');

END ;
/

PUT_FILE Procedure

This procedure reads a local file or ASM and contacts a remote database to create a copy of the file in the remote file system. The file that is copied is the source file, and the new file that results from the copy is the destination file. The destination file is not closed until the procedure completes successfully.

Syntax

DBMS_FILE_TRANSFER.PUT_FILE(
 source_directory_object IN VARCHAR2,
 source_file_name IN VARCHAR2,
 destination_directory_object IN VARCHAR2,
 destination_file_name IN VARCHAR2,
 destination_database IN VARCHAR2);

Parameters

Table 68-4 PUT_FILE Procedure Parameters

	Parameter	Description
	
source_directory_object

	
The directory object from which the file is copied at the local source site. This directory object must exist at the source site.

	
source_file_name

	
The name of the file that is copied from the local file system. This file must exist in the local file system in the directory associated with the source directory object.

	
destination_directory_object

	
The directory object into which the file is placed at the destination site. This directory object must exist in the remote file system.

	
destination_file_name

	
The name of the file placed in the remote file system. A file with the same name must not exist in the destination directory in the remote file system.

	
destination_database

	
The name of a database link to the remote database to which the file is copied.

Usage Notes

To run this procedure successfully, the following users must have the following privileges:

	
The current user at the local database must have read privilege on the directory object specified in the source_directory_object parameter.

	
The connected user at the destination database must have write privilege to the directory object specified in the destination_directory_object parameter.

This procedure converts directory object parameters to uppercase unless they are surrounded by double quotation marks, but this procedure does not convert file names to uppercase.

Also, the copied file must meet the following requirements:

	
The size of the copied file must be a multiple of 512 bytes.

	
The size of the copied file must be less than or equal to two terabytes.

Transferring the file is not transactional. The copied file is treated as a binary file, and no character set conversion is performed. To monitor the progress of a long file transfer, query the V$SESSION_LONGOPS dynamic performance view.

Examples

CREATE OR REPLACE DIRECTORY df AS '+datafile' ;
GRANT WRITE ON DIRECTORY df TO "user";
CREATE OR REPLACE DIRECTORY ft1 AS '+datafile/ft1' ;
GRANT READ,WRITE ON DIRECTORY ft1 TO "user";
CREATE OR REPLACE DIRECTORY ft1_1 AS '+datafile/ft1/ft1_1' ;

CONNECT user;
Enter password: password

-- - put a1.dat to a4.dat (using dbs2 dblink)
-- - level 2 sub dir to parent dir
-- - user has read privs on ft1_1 at dbs1 and write on df in dbs2
BEGIN
 DBMS_FILE_TRANSFER.PUT_FILE ('ft1_1' , 'a2.dat' , 'df' , 'a4.dat' ,
 'dbs2') ;
END ;

69 DBMS_FLASHBACK

Using DBMS_FLASHBACK, you can flash back to a version of the database at a specified wall-clock time or a specified system change number (SCN).

	
See Also:

For detailed information about DBMS_FLASHBACK:
	
Oracle Database Advanced Application Developer's Guide

	
Oracle Database SQL Language Reference.

This chapter contains the following topics:

	
Using DBMS_FLASHBACK

	
Overview

	
Security Model

	
Types

	
Exceptions

	
Operational Notes

	
Examples

	
Summary of DBMS_FLASHBACK Subprograms

Using DBMS_FLASHBACK

	
Overview

	
Security Model

	
Types

	
Exceptions

	
Operational Notes

	
Examples

Overview

DBMS_FLASHBACK provides an interface for the user to view the database at a particular time in the past, with the additional capacity provided by transaction backout features that allow for selective removal of the effects of individual transactions. This should not be confused this with a flashback database which actually moves the database back in time.

When DBMS_FLASHBACK is enabled, the user session uses the Flashback version of the database, and applications can execute against the Flashback version of the database.

You may want to use DBMS_FLASHBACK for the following reasons:

	
Self-service repair: If you accidentally delete rows from a table, you can recover the deleted rows.

	
Packaged applications such as e-mail and voicemail: You can use Flashback to restore deleted e-mail by re-inserting the deleted message into the current message box.

	
Decision support system (DSS) and online analytical processing (OLAP) applications: You can perform data analysis or data modeling to track seasonal demand.

Security Model

To use this package, a database administrator must grant EXECUTE privileges for DBMS_FLASHBACK.

Types

The following types are used by DBMS_FLASHBACK subprograms:

Table 69-1 DBMS_FLASHBACK

	Type	Description
	
TXNAME_ARRAY

	
Creates a VARRAY for holding Transaction Names or Identifiers (XIDs)

Exceptions

Table 69-2 DBMS_FLASHBACK Error Messages

	Error	Description
	
ORA-08180

	
Time specified is too old

	
ORA-08181

	
Invalid system change number specified

	
ORA-08182

	
User cannot begin read-only or serializable transactions in Flashback mode

	
ORA-08183

	
User cannot enable Flashback within an uncommitted transaction

	
ORA-08184

	
User cannot enable Flashback within another Flashback session

	
ORA-08185

	
SYS cannot enable Flashback mode

Operational Notes

DBMS_FLASHBACK is automatically turned off when the session ends, either by disconnection or by starting another connection.

PL/SQL cursors opened in Flashback mode return rows as of the flashback time or SCN. Different concurrent sessions (connections) in the database can perform Flashback to different wall-clock times or SCNs. DML and DDL operations and distributed operations are not allowed while a session is running in Flashback mode. You can use PL/SQL cursors opened before disabling Flashback to perform DML.

Under Automatic Undo Management (AUM) mode, you can use retention control to control how far back in time to go for the version of the database you need.If you need to perform a Flashback over a 24-hour period, the DBA should set the undo_retention parameter to 24 hours. This way, the system retains enough undo information to regenerate the older versions of the data.

You can set the RETENTION GUARANTEE clause for the undo tablespace to ensure that unexpired undo is not discarded.UNDO_RETENTION is not in itself a complete guarantee because, if the system is under space pressure, unexpired undo may be overwritten with freshly generated undo. In such cases, RETENTION GUARANTEE prevents this. For more information, see the Oracle Database Administrator's Guide

In a Flashback-enabled session, SYSDATE is not affected; it continues to provide the current time.

DBMS_FLASHBACK can be used within logon triggers to enable Flashback without changing the application code.

Examples

The following example illustrates how Flashback can be used when the deletion of a senior employee triggers the deletion of all the personnel reporting to him. Using the Flashback feature, you can recover and re-insert the missing employees.

DROP TABLE employee;
DROP TABLE keep_scn;

REM -- Keep_scn is a temporary table to store scns that we are interested in

CREATE TABLE keep_scn (scn number);
SET ECHO ON
CREATE TABLE employee (
 employee_no number(5) PRIMARY KEY,
 employee_name varchar2(20),
 employee_mgr number(5)
 CONSTRAINT mgr_fkey REFERENCES EMPLOYEE ON DELETE CASCADE,
 salary number,
 hiredate date
);

REM -- Populate the company with employees
INSERT INTO employee VALUES (1, 'John Doe', null, 1000000, '5-jul-81');
INSERT INTO employee VALUES (10, 'Joe Johnson', 1, 500000, '12-aug-84');
INSERT INTO employee VALUES (20, 'Susie Tiger', 10, 250000, '13-dec-90');
INSERT INTO employee VALUES (100, 'Scott Tiger', 20, 200000, '3-feb-86');
INSERT INTO employee VALUES (200, 'Charles Smith', 100, 150000, '22-mar-88');
INSERT INTO employee VALUES (210, 'Jane Johnson', 100, 100000, '11-apr-87');
INSERT INTO employee VALUES (220, 'Nancy Doe', 100, 100000, '18-sep-93');
INSERT INTO employee VALUES (300, 'Gary Smith', 210, 75000, '4-nov-96');
INSERT INTO employee VALUES (310, 'Bob Smith', 210, 65000, '3-may-95');
COMMIT;

REM -- Show the entire org
SELECT lpad(' ', 2*(level-1)) || employee_name Name
FROM employee
CONNECT BY PRIOR employee_no = employee_mgr
START WITH employee_no = 1
ORDER BY LEVEL;

REM -- Sleep for a short time (approximately 10 to 20 seconds) to avoid
REM -- querying close to table creation

EXECUTE DBMS_LOCK.SLEEP(10);

REM -- Store this snapshot for later access through Flashback
DECLARE
I NUMBER;
BEGIN
I := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER;
INSERT INTO keep_scn VALUES (I);
COMMIT;
END;
/

REM -- Scott decides to retire but the transaction is done incorrectly
DELETE FROM EMPLOYEE WHERE employee_name = 'Scott Tiger';
COMMIT;

REM -- notice that all of scott's employees are gone
SELECT lpad(' ', 2*(level-1)) || employee_name Name
FROM EMPLOYEE
CONNECT BY PRIOR employee_no = employee_mgr
START WITH employee_no = 1
ORDER BY LEVEL;

REM -- Flashback to see Scott's organization
DECLARE
 restore_scn number;
BEGIN
 SELECT scn INTO restore_scn FROM keep_scn;
 DBMS_FLASHBACK.ENABLE_AT_SYSTEM_CHANGE_NUMBER (restore_scn);
END;
/

REM -- Show Scott's org.
SELECT lpad(' ', 2*(level-1)) || employee_name Name
FROM employee
CONNECT BY PRIOR employee_no = employee_mgr
START WITH employee_no =
 (SELECT employee_no FROM employee WHERE employee_name = 'Scott Tiger')
ORDER BY LEVEL;

REM -- Restore scott's organization.
DECLARE
 scotts_emp NUMBER;
 scotts_mgr NUMBER;
 CURSOR c1 IS
 SELECT employee_no, employee_name, employee_mgr, salary, hiredate
 FROM employee
 CONNECT BY PRIOR employee_no = employee_mgr
 START WITH employee_no =
 (SELECT employee_no FROM employee WHERE employee_name = 'Scott Tiger');
 c1_rec c1 % ROWTYPE;
BEGIN
 SELECT employee_no, employee_mgr INTO scotts_emp, scotts_mgr FROM employee
 WHERE employee_name = 'Scott Tiger';
 /* Open c1 in flashback mode */
 OPEN c1;
 /* Disable Flashback */
 DBMS_FLASHBACK.DISABLE;
 LOOP
 FETCH c1 INTO c1_rec;
 EXIT WHEN c1%NOTFOUND;
 /*
 Note that all the DML operations inside the loop are performed
 with Flashback disabled
 */
 IF (c1_rec.employee_mgr = scotts_emp) then
 INSERT INTO employee VALUES (c1_rec.employee_no,
 c1_rec.employee_name,
 scotts_mgr,
 c1_rec.salary,
 c1_rec.hiredate);
 ELSE
 IF (c1_rec.employee_no != scotts_emp) THEN
 INSERT INTO employee VALUES (c1_rec.employee_no,
 c1_rec.employee_name,
 c1_rec.employee_mgr,
 c1_rec.salary,
 c1_rec.hiredate);
 END IF;
 END IF;
 END LOOP;
END;
/

REM -- Show the restored organization.
select lpad(' ', 2*(level-1)) || employee_name Name
FROM employee
CONNECT BY PRIOR employee_no = employee_mgr
START WITH employee_no = 1
ORDER BY LEVEL;

Summary of DBMS_FLASHBACK Subprograms

Table 69-3 DBMS_FLASHBACK Package Subprograms

	Subprogram	Description
	
DISABLE Procedure

	
Disables the Flashback mode for the entire session

	
ENABLE_AT_SYSTEM_CHANGE_NUMBER Procedure

	
Enables Flashback for the entire session. Takes an SCN as an Oracle number and sets the session snapshot to the specified number. Inside the Flashback mode, all queries return data consistent as of the specified wall-clock time or SCN

	
ENABLE_AT_TIME Procedure

	
Enables Flashback for the entire session. The snapshot time is set to the SCN that most closely matches the time specified in query_time

	
GET_SYSTEM_CHANGE_NUMBER Function

	
Returns the current SCN as an Oracle number. You can use the SCN to store specific snapshots

	
TRANSACTION_BACKOUT Procedures

	
Provides the mechanism to backout a transaction

DISABLE Procedure

This procedure disables the Flashback mode for the entire session.

Syntax

DBMS_FLASHBACK.DISABLE;

Examples

The following example queries the salary of an employee, Joe, on August 30, 2000:

EXECUTE dbms_flashback.enable_at_time('30-AUG-2000');
SELECT salary FROM emp where name = 'Joe'
EXECUTE dbms_flashback.disable;

ENABLE_AT_SYSTEM_CHANGE_NUMBER Procedure

This procedure takes an SCN as an input parameter and sets the session snapshot to the specified number. In the Flashback mode, all queries return data consistent as of the specified wall-clock time or SCN. It enables Flashback for the entire session.

Syntax

DBMS_FLASHBACK.ENABLE_AT_SYSTEM_CHANGE_NUMBER (
 query_scn IN NUMBER);

Parameters

Table 69-4 ENABLE_AT_SYSTEM_CHANGE_NUMBER Procedure Parameters

	Parameter	Description
	
query_scn

	
The system change number (SCN), a version number for the database that is incremented on every transaction commit.

ENABLE_AT_TIME Procedure

This procedure enables Flashback for the entire session. The snapshot time is set to the SCN that most closely matches the time specified in query_time.It enables Flashback for the entire session.

Syntax

DBMS_FLASHBACK.ENABLE_AT_TIME (
 query_time IN TIMESTAMP);

Parameters

Table 69-5 ENABLE_AT_TIME Procedure Parameters

	Parameter	Description
	
query_time

	
This is an input parameter of type TIMESTAMP. A time stamp can be specified in the following ways:

	
Using the TIMESTAMP constructor

EXECUTE DBMS_FLASHBACK.ENABLE_AT_TIME(TIMESTAMP '2001-01-09 12:31:00').

Use the Globalization Support (NLS) format and supply a string. The format depends on the Globalization Support settings.

	
Using the TO_TIMESTAMP function:

EXECUTE DBMS_FLASHBACK.ENABLE_AT_TIME(TO_TIMESTAMP('12-02-2001 14:35:00', 'DD-MM-YYYY HH24:MI:SS'))

You provide the format you want to use. This example shows the TO_TIMESTAMP function for February 12, 2001, 2:35 PM.

	
If the time is omitted from query time, it defaults to the beginning of the day, that is, 12:00 A.M.

	
Note that if the query time contains a time zone, the time zone information is truncated.

GET_SYSTEM_CHANGE_NUMBER Function

This function returns the current SCN as an Oracle number datatype. You can obtain the current change number and store it for later use. This helps you retain specific snapshots.

Syntax

DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER
 RETURN NUMBER;

TRANSACTION_BACKOUT Procedures

This procedure provides a mechanism to backout a set of transactions. The user can call these procedures with either transaction names or transaction identifiers (XIDS).

The procedure analyzes the transactional dependencies, perform DML's and generates an extensive report on the operation performed by the subprogram. This procedure does not commit the DML's performed as part of transaction backout. However it holds all the required locks on rows and tables in the right form, so that no other dependencies can enter the system. To make the changes permanent the user needs to explicitly commit the transaction.

A report is generated in the system tables DBA_FLASHBACK_TRANSACTION_STATE and DBA_FLASHBACK_TRANSACTION_REPORT.

Syntax

DBMS_FLASHBACK.TRANSACTION_BACKOUT
 numtxns NUMBER,
 xids XID_ARRAY,
 options NUMBER default NOCASCADE,
 timeHint TIMESTAMP default MINTIME);

DBMS_FLASHBACK.TRANSACTION_BACKOUT
 numtxns NUMBER,
 xids XID_ARRAY,
 options NUMBER default NOCASCADE,
 scnHint TIMESTAMP default 0);

DBMS_FLASHBACK.TRANSACTION_BACKOUT
 numtxns NUMBER,
 txnnames TXNAME_ARRAY,
 options NUMBER default NOCASCADE,
 timehint TIMESTAMP MINTIME);

DBMS_FLASHBACK.TRANSACTION_BACKOUT
 numtxns NUMBER,
 txnNames TXNAME_ARRAY,
 options NUMBER default NOCASCADE,
 scnHint NUMBER 0);

Parameters

Table 69-6 TRANSACTION_BACKOUT Procedure Parameters

	Parameter	Description
	
numtxns

	
Number of transactions passed as input

	
xids

	
List of transaction IDs in the form of an array

	
txnnames

	
List of transaction names in the form of an array

	
options

	
Backout dependent transactions:

	
NOCASCADE - The user expects no dependency. If a dependency is found, this raises an error, with the first dependent transaction provided in the report.

	
NOCASCADE_FORCE - The user forcibly backs out the given transactions without considering the dependent transactions. The RDBMS executes the UNDO SQL for the given transactions in reverse order of their commit times. If no constraints break, and the result is satisfactory, the user can either COMMIT the changes or else ROLL BACK.

	
NONCONFLICT_ONLY - This option lets the user backout the changes to the non-conflicting rows of the given transactions. Note that a transaction dependency happens due to a row conflict, whether either through WAW or primary/unique key constraints. If the user chooses to back out only the non-conflicting rows, this should not cause any problem with database consistency, although transaction atomicity is lost. As this is a recovery operation, the user can correct the data.

	
CASCADE - This completely removes the given transactions including their dependents in a post order fashion (reverse order of commit times).

	
timehint

	
Time hint on the start of the transaction

	
scnhint

	
SCN hint on the start of the transaction

Usage Notes

	
Note:

For information about restrictions in using TRANSACTION_BACKOUT, see "Using Flashback Transaction" in the Oracle Database Advanced Application Developer's Guide.

	
If transaction name is used, a time hint must be provided. The time hint should be a time before the start of all the given transactions to back out.

	
If the SCN hint is provided, it must be before the start of the earliest transaction in the specified input set, or this raises an error and terminate. If it is not provided and the transaction has committed within undo retention, the database system is able to determine the start time.

70 DBMS_FLASHBACK_ARCHIVE

The DBMS_FLASHBACK_ARCHIVE package contains two simple procedures for disassociation and reassociation of a Flashback Data Archive (FDA) enabled table from/with its underlying FDA respectively.

	
See Also:

Oracle Database Advanced Application Developer's Guide

This chapter contains the following topics:

	
Using DBMS_FLASHBACK_ARCHIVE

	
Overview

	
Security Model

	
Examples

	
Summary of DBMS_FLASHBACK_ARCHIVE Subprograms

Using DBMS_FLASHBACK_ARCHIVE

	
Overview

	
Security Model

	
Examples

Overview

The Flashback Data Archive feature, which is available through the Total Recall option, provides strict protection on the internal history tables that it creates and maintains for users.

The read-only semantics provided prohibits users, including a DBA, from doing updates, deletes, and inserts on the Flashback Data Archive internal history tables. The feature also prohibits users from issuing any DDL statements on these tables. This strict security enforcement by Flashback Data Archive meets the requirements of regulatory-compliance type of applications. The feature supports a lot of common DDL statements, including some DDL statements that alter table definition or incur data movement, on user tables that are enabled for Flashback Data Archive. However, there are some DDL statements that are not supported on tables enabled for the feature. Since most applications schemas evolve as they release new versions of their software, the ability to perform DDL operations on the base table is a key customer requirement.

In order to support user applications' schema evolution during application upgrade and other table maintenance tasks beyond DDL statements supported by Flashback Data Archive, the DBMS_FLASHBACK_ARCHIVE package provides a set of simple-to-use PL/SQL procedures:

	
To disassociate a Flashback Data Archive enabled base table from the underlying FDA.

	
To reassociate a temporarily disassociated base table with its underlying FDA.

After a user has disassociated the base table from its FDA, it's possible to issue any DDL statements on the base table or the history tables in the FDA. Having finished with the schema changes, the user can then reassociate the base table with its FDA so that Flashback Data Archive protection is in operation and automatic tracking and archiving is resumed.

Security Model

Users with the FLASHBACK ARCHIVE ADMINISTER system privilege can execute the disassociation and reassociation PL/SQL procedures. Once a table is disassociated, normal users can perform DDL and DML statements as long as they have the necessary privileges on the tables.

Examples

Normally, users cannot perform any modification to the history table:

SQL> DELETE FROM scott.SYS_FBA_HIST_61527;

ERROR at line 1:
ORA-55622: DML, ALTER and CREATE UNIQUE INDEX operations are not allowed on table "SCOTT"."SYS_FBA_HIST_61527"

Users also cannot issue DDL statements on history tables:

SQL> ALTER TABLE scott.SYS_FBA_HIST_61527 DROP COLUMN comm;

ERROR at line 1:
ORA-55622: DML, ALTER and CREATE UNIQUE INDEX operations are not allowed on table "SCOTT"."SYS_FBA_HIST_61527"

Use the DISASSOCIATE_FBA Procedure to disassociate the scott.emp_test table:

SQL> EXEC DBMS_FLASHBACK_ARCHIVE.DISASSOCIATE_FBA('scott','emp_test');

PL/SQL procedure successfully completed.

Now a user can perform table structural modifications (through DDL statements) to the user base table:

SQL> ALTER TABLE scott.emp_test RENAME COLUMN sal TO salary;

Table altered.

Users can also modify the contents in the history table that they couldn't modify previously.

SQL> DELETE FROM scott.SYS_FBA_HIST_61527 WHERE empno=3968;

2 rows deleted.

If a user tries to reassociate the history table with the base table, this will fail as the user has not performed corresponding structural modifications (through DDL statements) to the history table:

SQL> EXEC DBMS_FLASHBACK_ARCHIVE.REASSOCIATE_FBA('scott','emp_test');
BEGIN DBMS_FLASHBACK_ARCHIVE.REASSOCIATE_FBA('scott','emp_test');
END;

ERROR at line 1:
ORA-55636: Flashback Data Archive enabled table "SCOTT"."EMP_TEST" has different definition from its history table
ORA-06512: at "SYS.DBMS_FLASHBACK_ARCHIVE", line 17
ORA-06512: at line 1

Disassociate the table and fix the table definition problem:

SQL> EXEC DBMS_FLASHBACK_ARCHIVE.DISASSOCIATE_FBA('scott','emp_test');

PL/SQL procedure successfully completed.

Perform the same rename column DDL on the history table to make its definition conform to its base table scott.emp_test:

SQL> ALTER TABLE scott.SYS_FBA_HIST_61527 RENAME COLUMN sal TO salary;

Table altered.

Finally, reassociate the base table with its history table successfully:

SQL> EXEC DBMS_FLASHBACK_ARCHIVE.REASSOCIATE_FBA('scott','emp_test')

PL/SQL procedure successfully completed.

Summary of DBMS_FLASHBACK_ARCHIVE Subprograms

Table 70-1 DBMS_FLASHBACK_ARCHIVE Package Subprograms

	Subprogram	Description
	
DISASSOCIATE_FBA Procedure

	
Disassociates the given table from the flashback data archive

	
REASSOCIATE_FBA Procedure

	
Reassociates the given table with the flashback data archive

DISASSOCIATE_FBA Procedure

This procedure disassociates the given table from the flashback data archive.

Syntax

DBMS_FLASHBACK_ARCHIVE.DISASSOCIATE_FBA (
 owner_name VARCHAR2,
 table_name VARCHAR2);

Parameters

Table 70-2 DISASSOCIATE_FBA Procedure Parameters

	Parameter	Description
	
owner_name

	
Schema of the Flashback Data Archive enabled base table

	
table_name

	
Name of the Flashback Data Archive enabled base table

Exceptions

Table 70-3 DISASSOCIATE_FBA Procedure Exceptions

	Parameter	Description
	
ORA-55602

	
User table is not enabled for Flashback Data Archive

	
ORA-55634

	
Cannot acquire the lock on the table for disassociation

REASSOCIATE_FBA Procedure

This procedure reassociates the given table with the flashback data archive.

Syntax

DBMS_FLASHBACK_ARCHIVE.REASSOCIATE_FBA (
 owner_name VARCHAR2,
 table_name VARCHAR2);

Parameters

Table 70-4 REASSOCIATE_FBA Procedure Parameters

	Parameter	Description
	
owner_name

	
Schema of the Flashback Data Archive enabled base table

	
table_name

	
Name of the Flashback Data Archive enabled base table

Exceptions

Table 70-5 REASSOCIATE_FBA Procedure Exceptions

	Parameter	Description
	
ORA-55602

	
User table is not enabled for Flashback Data Archive

	
ORA-55636

	
table definition validation failed

Usage Notes

	
The procedure will signal an error if the base table and the history table do not have identical data definitions. For example when columns are added or table is split, the resulting base table and history table need to have the same schema.

	
The FDA internal history table schema has some row versions metadata columns. The procedure will signal an error if any of the metadata columns is dropped by users.

71 DBMS_FREQUENT_ITEMSET

The DBMS_FREQUENT_ITEMSET package enables frequent itemset counting. The two functions are identical except in the input cursor format difference.

This chapter contains the following topics:

	
Summary of DBMS_FREQUENT_ITEMSET Subprograms

Summary of DBMS_FREQUENT_ITEMSET Subprograms

Table 71-1 DBMS_FREQUENT_ITEMSET Package Subprograms

	Subprogram	Description
	
FI_HORIZONTAL Function

	
Counts all frequent itemsets given a cursor for input data which is in 'HORIZONTAL' row format, support threshold, minimum itemset length, maximum itemset length, items to be included, items to be excluded

	
FI_TRANSACTIONAL Function

	
Counts all frequent itemsets given a cursor for input data which is in 'TRANSACTIONAL' row format, support threshold, minimum itemset length, maximum itemset length, items to be included, items to be excluded

FI_HORIZONTAL Function

The purpose of this table function is to count all frequent itemsets given a cursor for input data which is in 'HORIZONTAL' row format, support threshold, minimum itemset length, maximum itemset length, items to be included, items to be excluded. The result will be a table of rows in form of itemset, support, length, total transactions counted.

In 'HORIZONTAL' row format, each row contains all of the item ids for a single transaction. Since all of the items come together, no transaction id is necessary.

The benefit of this table function is that if an application already has data in horizontal format, the database can skip the step of transforming rows that are in transactional format into horizontal format.

Syntax

DBMS_FREQUENT_ITEMSET.FI_HORIZONTAL(
 tranx_cursor IN SYSREFCURSOR,
 support_threshold IN NUMBER,
 itemset_length_min IN NUMBER,
 itemset_length_max IN NUMBER,
 including_items IN SYS_REFCURSOR DEFAULT NULL,
 excluding_items IN SYS_REFCURSOR DEFAULT NULL)
 RETURN TABLE OF ROW (
 itemset [Nested Table of Item Type DERIVED FROM tranx_cursor],
 support NUMBER,
 length NUMBER,
 total_tranx NUMBER);

Parameters

Table 71-2 FI_HORIZONTAL Function Parameters

	Parameter	Description
	
tranx_cursor

	
The cursor parameter that the user will supply when calling the function. There is no limits on the number of returning columns.Each column of cursor represents an item. All columns of the cursor must be of the same data type. The item id must be number or character type (for example, VARCHAR2(n)).

	
support_threshold

	
A fraction number of total transaction count. An itemset is termed "frequent" if [the number of transactions it occurs in] divided by [the total number of transactions] exceed the fraction. The parameter must be a NUMBER.

	
itemset_length_min

	
The minimum length for interested frequent itemset. The parameter must be a NUMBER between 1 and 20, inclusive.

	
itemset_length_max

	
The maximum length for interested frequent itemset. This parameter must be a NUMBER between 1 and 20, inclusive, and must not be less than itemset_length_min.

	
including_items

	
A cursor from which a list of items can be fetched. At least one item from the list must appear in frequent itemsets that are returned. The default is NULL.

	
excluding_items

	
A cursor from which a list of items can be fetched. No item from the list can appear in frequent itemsets that are returned.The default is NULL.

Return Values

Table 71-3 FI_HORIZONTAL Return Values

	Parameter	Description
	

support

	
The number of transactions in which a frequent itemset occurs. This will be returned as a NUMBER.

	

itemset

	
A collection of items which is computed as frequent itemset. This will be returned as a nested table of item type which is the item column type of the input cursor.

	

length

	
Number of items in a frequent itemset. This will be returned as a NUMBER.

	

total_tranx

	
The total transaction count. This will be returned as a NUMBER.

Example

Suppose you have a table horiz_table_in.

horiz_table_in(iid1 VARCHAR2(30), iid2 VARCHAR2(30), iid3 VARCHAR2(30), iid4
VARCHAR2(30), iid5 VARCHAR2(30));

and the data in horiz_table_in looks as follows:

('apple', 'banana', NULL, NULL, NULL)
('apple', 'milk', 'banana', NULL, NULL)
('orange', NULL, NULL, NULL, NULL)

Suppose you want to find out what combinations of items is frequent with a given support threshold of 30%, requiring itemset containing at least one of ('apple','banana','orange'), but excluding any of ('milk') in any itemset. You use the following query:

CREATE TYPE fi_varchar_nt AS TABLE OF VARCHAR2(30);
SELECT CAST(itemset as FI_VARCHAR_NT)itemset, support, length, total_tranx
 FROM table(DBMS_FREQUENT_ITEMSET.FI_HORIZONTAL(
 CURSOR(SELECT iid1, iid2, iid3, iid4, iid5
 FROM horiz_table_in),
 0.3,
 2,
 5,
 CURSOR(SELECT * FROM table(FI_VARCHAR_NT
 ('apple','banana','orange'))),
 CURSOR(SELECT * FROM table(FI_VARCHAR_NT('milk')))));

FI_TRANSACTIONAL Function

This procedure counts all frequent itemsets given a cursor for input data which is in 'TRANSACTIONAL' row format, support threshold, minimum itemset length, maximum itemset length, items to be included, items to be excluded. The result will be a table of rows in form of itemset, support, length, total number of transactions.

In 'TRANSACTIONAL' row format, each transaction is spread across multiple rows. All the rows of a given transaction have the same transaction id, and each row has a different item id. Combining all of the item ids which share a given transaction id results in a single transaction.

Syntax

DBMS_FREQUENT_ITEMSET.FI_TRANSACTIONAL (
 tranx_cursor IN SYSREFCURSOR,
 support_threshold IN NUMBER,
 itemset_length_min IN NUMBER,
 itemset_length_max IN NUMBER,
 including_items IN SYS_REFCURSOR DEFAULT NULL,
 excluding_items IN SYS_REFCURSOR DEFAULT NULL)
 RETURN TABLE OF ROW (
 itemset [Nested Table of Item Type DERIVED FROM tranx_cursor],
 support NUMBER,
 length NUMBER,
 total_tranx NUMBER);

Parameters

Table 71-4 FI_TRANSACTIONAL Function Parameters

	Parameter	Description
	
tranx_cursor

	
The cursor parameter that the user will supply when calling the function. It should return two columns in its returning row, the first column being the transaction id, the second column being the item id. The item id must be number or character type (for example, VARCHAR2(n)).

	
support_threshold

	
A fraction number of total transaction count. An itemset is termed "frequent" if [the number of transactions it occurs in] divided by [the total number of transactions] exceed the fraction. The parameter must be a NUMBER.

	
itemset_length_min

	
The minimum length for interested frequent itemset. The parameter must be a NUMBER between 1 and 20, inclusive.

	
itemset_length_max

	
The maximum length for interested frequent itemset. This parameter must be a NUMBER between 1 and 20, inclusive, and must not be less than itemset_length_min.

	
including_items

	
A cursor from which a list of items can be fetched. At least one item from the list must appear in frequent itemsets that will be returned. The default is NULL.

	
excluding_items

	
A cursor from which a list of items can be fetched. No item from the list can appear in frequent itemsets that will returned. The default is NULL.

Return Values

Table 71-5 FI_TRANSACTIONAL Return Values

	Parameter	Description
	

support

	
The number of transactions in which a frequent itemset occurs. This will be returned as a NUMBER.

	

itemset

	
A collection of items which is computed as frequent itemset. This will be returned as a nested table of item type which is the item column type of the input cursor.

	

length

	
Number of items in a frequent itemset. This will be returned as a NUMBER.

	

total_tranx

	
The total transaction count. This will be returned as a NUMBER, and will be the same for all returned rows, similar to a reporting aggregate.

Usage Notes

Applications must predefine a nested table type of the input item type and cast the output itemset into this predefined nested table type before further processing, such as loading into a table.

Examples

Suppose that the input table tranx_table_in looks as follows:

(1, 'apple')
(1, 'banana')
(2, 'apple')
(2, 'milk')
(2, 'banana')
(3, 'orange')

and the user is trying to find itemsets that satisfy a support-threshold of 60% and have the itemset-length greater than 1 (namely, (apple, banana)).

The output of this function would contain the following output row:

itemset=('apple','banana'), support=2, length=2, total_tranx=3

You need to create a nested table of item type before you submit a query to perform the frequent itemset counting. In this example, since item is of VARCHAR2(30), you must create a nested table of VARCHAR2(30):

CREATE TYPE fi_varchar_nt AS TABLE OF VARCHAR2(30);
SELECT CAST(itemset as FI_VARCHAR_NT) itemset, support, length, total_tranx
 FROM table(DBMS_FREQUENT_ITEMSET.FI_TRANSACTIONAL(
 cursor(SELECT tid, iid FROM tranx_table_in),
 0.6,
 2,
 5,
 NULL,
 NULL));

Here is another example to illustrate how to include certain items and exclude certain items in the counting.

SELECT CAST(itemset as FI_VARCHAR_NT)itemset, support, length, total_tranx
 FROM table(DBMS_FREQUENT_ITEMSET.FI_TRANSACTIONAL(
 CURSOR(SELECT tid, iid FROM tranx_table_in),
 0.6,
 2,
 5,
 CURSOR(SELECT * FROM table(FI_VARCHAR_NT
 ('apple','banana','orange'))),
 CURSOR(SELECT * FROM table(FI_VARCHAR_NT('milk')))));

Using the including/excluding items parameter, you are able to further optimize the execution by ignoring itemsets that are not expected by application.

You can also use transactional output through collection unnesting:

 SELECT
 bt.setid, nt.*
 FROM
 (SELECT cast(Itemset as FI_VARCHAR_NT) itemset, rownum setid
 FROM table(
 DBMS_FREQUENT_ITEMSET.FI_TRANSACTIONAL(
 CURSOR(SELECT tid, iid FROM tranx_table_in), 0.6, 2, 5,
 NULL, NULL))) bt,
 table(bt.itemset) nt;

If you want to use an insert statement to load frequent itemsets into a nested table, it is better to use the NESTED_TABLE_FAST_INSERT hint for performance:

 CREATE TABLE fq_nt (coll FI_VARCHAR_NT) NESTED TABLE coll STORE AS
 coll_nest;
 INSERT /*+ NESTED_TABLE_FAST_INSERT */ INTO fq_nt
 SELECT cast(itemset as FI_VARCHAR_NT)
 FROM table(DBMS_FREQUENT_ITEMSET.FI_TRANSACTIONAL(
 cursor(SELECT tid, iid FROM tranx_table_in), 0.6, 2, 5,
 NULL, NULL));

Note that if you want to use the package inside a PL/SQL cursor, you must cast the return type of the table function:

 CREATE TYPE fi_res AS OBJECT (
 itemset FI_VARCHAR_NT,
 support NUMBER,
 length NUMBER,
 total_tranx NUMBER
);
 /
 CREATE TYPE fi_coll AS TABLE OF fi_res;
 /

 DECLARE
 cursor freqC is
 SELECT Itemset
 FROM table(
 CAST(DBMS_FREQUENT_ITEMSET.FI_TRANSACTIONAL(
 cursor(SELECT tid, iid FROM tranx_table_in), 0.6, 2, 5,
 NULL, NULL) AS fi_coll));
 coll_nt FI_VARCHAR_NT;
 num_rows int;
 num_itms int;
 BEGIN
 num_rows := 0;
 num_itms := 0;
 OPEN freqC;
 LOOP
 FETCH freqC INTO coll_nt;
 EXIT WHEN freqC%NOTFOUND;
 num_rows := num_rows + 1;
 num_itms := num_itms + coll_nt.count;
 END LOOP;
 CLOSE freqC;
 DBMS_OUTPUT.PUT_LINE('Totally ' || num_rows || ' rows ' || num_itms || '
items were produced.');
END;
/

72 DBMS_HM

This package contains constants and procedure declarations for health check management. Health Monitor provides facilities to run a check store and retrieve the reports through DBMS_HM package

	
See Also:

Oracle Database Administrator's Guide for more information about "Health Monitor"

This chapter contains the following topics:

	
Using DBMS_HM

	
Security Model

	
Summary of DBMS_HM Subprograms

Using DBMS_HM

	
Security Model

Security Model

Users must have EXECUTE privilege to run the procedures of DBMS_HM package.

Summary of DBMS_HM Subprograms

Table 72-1 DBMS_HM Package Subprograms

	Subprogram	Description
	
GET_RUN_REPORT Function

	
Returns the report for the specified checker run

	
RUN_CHECK Procedure

	
Runs the specified checker with the given arguments

GET_RUN_REPORT Function

This function returns the report for the specified checker run.

Syntax

DBMS_HM.GET_RUN_REPORT (
 run_name IN VARCHAR2,
 type IN VARCHAR2 := 'TEXT',
 level IN VARCHAR2 := 'BASIC',)
 RETURN CLOB;

Parameters

Table 72-2 GET_RUN_REPORT Function Parameters

	Parameter	Description
	
run_name

	
Name of the check's run

	
type

	
Report format type. Possible values are 'HTML', 'XML' and 'TEXT'. Default report type is 'TEXT'.

	
level

	
Details of report, possible value are 'BASIC' and 'DETAIL'. Caution: Currently only 'BASIC' level is supported.

RUN_CHECK Procedure

This procedure runs the specified checker with the given arguments. It lets user to specify a name for the run, inputs needed and maximum timeout for the run. The run's report will be maintained persistently in database.

Syntax

DBMS_HM.RUN_CHECK (
 check_name IN VARCHAR2,
 run_name IN VARCHAR2 := NULL,
 timeout IN NUMBER := NULL,
 input_params IN VARCHAR2 := NULL);

Parameters

Table 72-3 RUN_CHECK Procedure Parameters

	Parameter	Description
	
check_name

	
Name of the check to be invoked. Check names and their parameters can be accessed from the V$HM_CHECK and V$HM_CHECK_PARAM views. Users can run all checks which are not internal in nature: SELECT name FROM V$HM_CHECK WHERE INTERNAL_CHECK = 'N' retrieves the list of checks that can be run manually by users.

	
run_name

	
Name with which external users can uniquely identify this check's run. If NULL value is passed, then HM creates a unique name and associates with this check's run.

	
timeout

	
Maximum amount of time (in units of seconds), this checker run is allowed to run. HM will interrupt the run, if it the specified time elapses for the run. If NULL value is passed, HM doesn't impose any timeout limits on the run.

	
input_params

	
Input string: which consists of name, value pairs de-limited by a special character ';'.

Example ('Data Block Integrity Check' invocation may take following type of input parameters.

'BLC_DF_NUM=1;BLC_BL_NUM=23456'

Input parameters BLC_DF_NUM and BLC_BL_NUM have values '1' and '23456' respectively.

Every check will have well defined set of inputs associated with it. These Input parameters, their types, default values and descriptions can be obtained using V$HM_CHECK_PARAM view.

Example: The following query gets the list of parameters, their default values and descriptions for a 'Data Block Integrity Check'

SELECT a.* FROM v$hm_check_param a, v$hm_check b
WHERE a.check_id = b.id
AND b.name = 'Data Block Integrity Check';

73 DBMS_HPROF

The DBMS_HPROF package provides an interface for profiling the execution of PL/SQL applications. It provides services for collecting the hierarchical profiler data, analyzing the raw profiler output and profiling information generation.

	
See Also:

Oracle Database Advanced Application Developer's Guide for more information about the "PL/SQL Hierarchical Profiler"

This chapter contains the following topic:

	
Summary of DBMS_HPROF Subprograms

Summary of DBMS_HPROF Subprograms

This table list the package subprograms in alphabetical order.

Table 73-1 DBMS_HPROF Package Subprograms

	Subprogram	Description
	
ANALYZE Function

	
Analyzes the raw profiler output and produces hierarchical profiler information in database tables

	
START_PROFILING Procedure

	
Starts hierarchical profiler data collection in the user's session

	
STOP_PROFILING Procedure

	
Stops profiler data collection in the user's session.s

ANALYZE Function

This function analyzes the raw profiler output and produces hierarchical profiler information in database tables.

Syntax

DBMS_HPROF.ANALYZE (
 location VARCHAR2,
 filename VARCHAR2,
 summary_mode BOOLEAN DEFAULT FALSE,
 trace VARCHAR2 DEFAULT NULL,
 skip PLS_INTEGER DEFAULT 0,
 collect PLS_INTEGER DEFAULT NULL,
 run_comment VARCHAR2 DEFAULT NULL)
 RETURN NUMBER;

Parameters

Table 73-2 ANALYZE Function Parameters

	Parameter	Description
	
location

	
Name of a directory object. The raw profiler data file is read from the file system directory mapped to this directory object. Output files are also written to this directory.

	
filename

	
Name of the raw profiler data file to be analyzed. The file must exist in the directory specified by the location parameter.

	
summary_mode

	
By default (that is, when summary_mode is FALSE), the detailed analysis is done.When summary_mode is TRUE, only top-level summary information is generated into the database table.

	
trace

	
Analyze only the subtrees rooted at the specified trace entry. By default (when trace is NULL), the analysis/reporting is generated for the entire run.

The trace entry must be specified in a special quoted qualified format (including the schema name, module name & function name) as in for example, '"SCOTT"."PKG"."FOO"' or '"".""."__plsql_vm"'. If multiple overloads exist for the specified name, all of them will be analyzed.

	
skip

	
Used only when trace is specified.Analyze only the subtrees rooted at the specified trace, but ignore the first skip invocations to trace. The default value for skip is 0.

	
collect

	
Used only when trace is specified.

Analyze collect number of invocations of traces (starting from skip+1'th invocation). By default only 1 invocation is collected.

	
run_comment

	
User-provided comment for this run

Return Values

A unique run identifier for this run of the analyzer. This can then be used to look up the results corresponding to this run from the hierarchical profiler tables.

Usage Notes

	
Use the dbmshptab.sql script located in the rdbms/admin directory to create the hierarchical profiler database tables and other data structures required for persistently storing the results of analyzing the raw profiler data.

	
Running dbmshptab.sql drops the any previously created hierarchical profiler tables.

Examples

The following snippet installs the hierarchical profiler tables in HR schema.

connect HR/HR;
@?/rdbms/admin/dbmshptab.sql

START_PROFILING Procedure

This procedure starts hierarchical profiler data collection in the user's session.

Syntax

DBMS_HPROF.START_PROFILING (
 location VARCHAR2 DEFAULT NULL,
 filename VARCHAR2 DEFAULT NULL,
 max_depth PLS_INTEGER DEFAULT NULL);

Parameters

Table 73-3 START_PROFILING Procedure Parameters

	Parameter	Description
	
location

	
Name of a directory object. The file system directory mapped to this directory object is where the raw profiler output is generated.

	
filename

	
Output filename for the raw profiler data. The file is created in the directory specified by the location parameter.

	
max_depth

	
By default (that is, when max_depth value is NULL) profile information is gathered for all functions irrespective of their call depth. When a non-NULL value is specified for max_depth, the profiler collects data only for functions up to a call depth level of max_depth.

Usage Notes

Even though the profiler does not individually track functions at depth greater than max_depth, the time spent in such functions is charged to the ancestor function at depth max_depth.

STOP_PROFILING Procedure

This procedure stops profiler data collection in the user's session. This subprogram also has the side effect of flushing data collected so far in the session, and it signals the end of a run.

Syntax

DBMS_HPROF.STOP_PROFILING;

74 DBMS_HS_PARALLEL

The DBMS_HS_PARALLEL PL/SQL package enables parallel processing for heterogeneous targets access. This package is designed to improve performance when retrieving data from a large foreign table.

This chapter discusses the following topics:

	
Using DBMS_HS_PARALLEL

	
Summary of DBMS_HS_PARALLEL Subprograms

Using DBMS_HS_PARALLEL

DBMS_HS_PARALLEL is compiled with the authorization ID of CURRENT_USER, which uses invoker's rights. In other words, all procedures in this package are executed with the privileges of the calling user.

Summary of DBMS_HS_PARALLEL Subprograms

Table 74-1 DBMS_HS_PARALLEL Package Subprograms

	Subprogram	Description
	
CREATE_OR_REPLACE_VIEW

	
Creates (or replaces) a read-only view to be referenced for retrieving the data from a remote table in parallel.

	
CREATE_TABLE_TEMPLATE

	
Writes out a CREATE TABLE template based on information gathered from the remote table. You can use the information to add any optimal Oracle CREATE TABLE clauses.

	
DROP_VIEW

	
Drops the view and internal objects created by the CREATE_OR_REPLACE_VIEW procedure. If the view has not already been created by the CREATE_OR_REPLACE_VIEW procedure, an error message is returned.

	
LOAD_TABLE

	
Loads the data from a remote table to a local Oracle table in parallel. If the local Oracle table does not already exist, it is created automatically.

CREATE_OR_REPLACE_VIEW

This procedure creates (or replaces) a read-only view to be referenced for retrieving the data from a remote table in parallel.

Syntax

CREATE_OR_REPLACE_VIEW (remote_table, database_link, oracle_view, parallel_degree)

Parameters

Table 74-2 CREATE_OR_REPLACE_VIEW Parameter

	Parameter	Value	Description
	
remote_table

	
IN VARCHAR2 NOT NULL

	
The name of the remote database table. It is specified as [remote_schema_name.]remote_table_name.

	
database_link

	
IN VARCHAR2 NOT NULL

	
The remote database link name. The call can only be applied to a heterogeneous services database link.

	
oracle_view

	
IN VARCHAR2

	
The name of the Oracle view. It is specified as [schema_name.]oracle_view_name. The default schema name is the current user. If the oracle_view parameter is not specified, the remote table name will be used as the view name.

	
parallel_degree

	
IN NUMBER

	
The number of parallel processes for the operation is computed based on the range-partition number if applicable, or the number of CPUs. The range of values is 2 to 16.

Usage Notes

	
The specified Oracle view is created and future reference of this view utilizes internal database objects for parallel retrieval of remote non-Oracle table data. If the Oracle view already exists, the following Oracle error message is raised:

ORA-00955: name is already used by an existing object

	
This view is created as a read-only view. If you attempt to insert and update the view, the following Oracle error message is raised:

ORA-01733: virtual column not allowed here

	
If the remote table or the database link does not exist, one of the following Oracle error messages is raised:

ORA-00942: table or view does not exist
or
ORA-02019: connection description for remote database not found

	
You need the CREATE VIEW, CREATE TABLE, CREATE TYPE, CREATE PACKAGE, and CREATE FUNCTION privileges to execute the CREATE_OR_REPLACE_VIEW procedure.

	
If you encounter either of the following Oracle error messages, increase the PROCESSES and SESSIONS parameter in the Oracle initialization parameter file:

ORA-12801: error signaled in parallel query server P003
or
ORA-00018: maximum number of session exceeded

	
Because the CREATE_OR_REPLACE_VIEW procedure creates some internal objects, use the DROP_VIEW procedure to drop the view and the internal objects. The SQL DROP VIEW statement only drops the view and not the internal objects.

CREATE_TABLE_TEMPLATE

This procedure writes out a CREATE TABLE template based on information gathered from the remote table. You can use the information to add any optimal Oracle CREATE TABLE clauses.

Syntax

CREATE_TABLE_TEMPLATE (remote_table, database_link, oracle_table, create_table_template_string)

Parameters

Table 74-3 CREATE_TABLE_TEMPLATE Parameter

	Parameter	Value	Description
	
remote_table

	
IN VARCHAR2 NOT NULL

	
The name of the remote database table. It is specified as [remote_schema_name.]remote_table_name.

	
database_link

	
IN VARCHAR2 NOT NULL

	
The remote database link name. The call can only be applied to a heterogeneous services database link.

	
oracle_table

	
IN VARCHAR2

	
The name of the local Oracle table the data will be loaded into. It is specified as [schema_name.]oracle_table_name. The default schema name is the current user. If the oracle_table parameter is not specified, the remote table name will be used as the local Oracle name.

	
create_table_template_string

	
OUT VARCHAR2

	
Contains the Oracle CREATE TABLE SQL template when the procedure is returned.

DROP_VIEW

This procedure drops the view and internal objects created by the CREATE_OR_REPLACE_VIEW procedure. If the view has not already been created by the CREATE_OR_REPLACE_VIEW procedure, an error message is returned.

Syntax

DROP_VIEW (oracle_view)

Parameters

Table 74-4 DROP_VIEW Parameter

	Parameter	Value	Description
	
oracle_view

	
IN VARCHAR2 NOT NULL

	
The name of the Oracle view created by the CREATE_OR_REPLACE_VIEW procedure. If the view has not been created by the CREATE_OR_REPLACE_VIEW procedure, an error is returned.

LOAD_TABLE

This procedure loads the data from a remote table to a local Oracle table in parallel. If the local Oracle table does not already exist, it is created automatically.

Syntax

LOAD_TABLE (remote_table, database_link, oracle_table, truncate, parallel_degree, row_count)

Parameters

Table 74-5 LOAD_TABLE Parameters

	Parameter	Value	Description
	
remote_table

	
IN VARCHAR2 NOT NULL

	
The name of the remote database table. It is specified as [remote_schema_name.]remote_table_name

	
database_link

	
IN VARCHAR2 NOT NULL

	
The remote database link name. The call can only be applied to a heterogeneous services database link.

	
oracle_table

	
IN VARCHAR2

	
The name of the local Oracle table the data will be loaded into. It is specified as [schema_name.]oracle_table_name. The default schema name is the current user. If the oracle_table parameter is not specified, the remote table name will be used as the local Oracle name.

	
truncate

	
IN BOOLEAN

	
Determines whether the Oracle table is truncated before the data is loaded. The value is either TRUE or FALSE. The default value is TRUE which means the Oracle table is truncated first. When set to FALSE, the Oracle table will not be truncated before the data is loaded.

	
parallel_degree

	
IN NUMBER

	
The number of parallel processes for the operation is computed based on the range-partition number if applicable, or the number of CPUs. The range of values is 2 to 16.

	
row_count

	
OUT NUMBER

	
Contains the number of rows just added with the load table operation.

Usage Notes

	
This procedure only loads the remote table data into Oracle local table. It does not create a key, index, constraints or any other dependencies such as triggers. It is recommended that you create these dependencies after the table data is loaded as performance will improve greatly. You will need to decide whether to create the dependencies before or after the data is loaded based on your knowledge of the remote table data and dependencies.

	
If the local table does not exist, the LOAD_TABLE procedure creates a simple (non-partitioned) local table based on the exact column matching of the remote table after which the data is inserted into the local table.

	
If the remote table or the database link does not exist, an error message is returned.

	
If the local table is incompatible with the remote table, an error message is returned.

	
You need the CREATE TABLE, CREATE TYPE, CREATE PACKAGE, and CREATE FUNCTION privileges to execute the LOAD_TABLE procedure.

	
If you encounter either of the following Oracle error messages, increase the PROCESSES and SESSIONS parameter in Oracle initialization parameter file:

ORA-12801: error signaled in parallel query server P003
or
ORA-00018: maximum number of session exceeded

	
One of the following is required for parallel processing:

	
The remote table is range partitioned.

	
Histogram information for a numeric column is available.

	
There is a numeric index or primary key.

	
To drop the local table, use the DROP TABLE SQL statement.

75 DBMS_HS_PASSTHROUGH

The DBMS_HS_PASSTHROUGH PL/SQL package allows you to send a statement directly to a non-Oracle system without being interpreted by the Oracle server. This can be useful if the non-Oracle system allows operations in statements for which there is no equivalent in Oracle.

This chapter discusses the following topics:

	
Using DBMS_HS_PASSTHROUGH

	
Overview

	
Operational Notes

	
Summary of DBMS_HS_PASSTHROUGH Subprograms

	
See Also:

Oracle Database Heterogeneous Connectivity User's Guide for more information about this package

Using DBMS_HS_PASSTHROUGH

This section contains topics which relate to using the DBMS_HS_PASSTHROUGH package.

Overview

You can execute passthrough SQL statements directly at the non-Oracle system using the PL/SQL package DBMS_HS_PASSTHROUGH. Any statement executed with this package is executed in the same transaction as standard SQL statements.

	
See Also:

Oracle Database Heterogeneous Connectivity User's Guide for information about this package

Operational Notes

The DBMS_HS_PASSTHROUGH package is a virtual package. It conceptually resides at the non-Oracle system. In reality, however, calls to this package are intercepted by Heterogeneous Services and mapped to one or more Heterogeneous Services calls. The driver, in turn, maps these Heterogeneous Services calls to the API of the non-Oracle system. The client application should invoke the procedures in the package through a database link in exactly the same way as it would invoke a non-Oracle system stored procedure. The special processing done by Heterogeneous Services is transparent to the user.

Summary of DBMS_HS_PASSTHROUGH Subprograms

Table 75-1 DBMS_HS_PASSTHROUGH Package Subprograms

	Subprogram	Description
	
BIND_INOUT_VARIABLE Procedure

	
Binds IN OUT bind variables

	
BIND_INOUT_VARIABLE_RAW Procedure

	
Binds IN OUT bind variables of data type RAW

	
BIND_OUT_VARIABLE Procedure

	
Binds an OUT variable with a PL/SQL program variable

	
BIND_OUT_VARIABLE_RAW Procedure

	
Binds an OUT variable of data type RAW with a PL/SQL program variable

	
BIND_VARIABLE Procedure

	
Binds an IN variable positionally with a PL/SQL program variable

	
BIND_VARIABLE_RAW Procedure

	
Binds IN variables of type RAW

	
CLOSE_CURSOR Procedure

	
Closes the cursor and releases associated memory after the SQL statement has been run at the non-Oracle system

	
EXECUTE_IMMEDIATE Procedure

	
Runs a (non-SELECT) SQL statement immediately, without bind variables

	
EXECUTE_NON_QUERY Function

	
Runs a (non-SELECT) SQL statement

	
FETCH_ROW Function

	
Fetches rows from a query

	
GET_VALUE Procedure

	
Retrieves column value from SELECT statement, or retrieves OUT bind parameters

	
GET_VALUE_RAW Procedure

	
Similar to GET_VALUE, but for data type RAW

	
OPEN_CURSOR Function

	
Opens a cursor for running a passthrough SQL statement at the non-Oracle system

	
PARSE Procedure

	
Parses SQL statement at non-Oracle system

BIND_INOUT_VARIABLE Procedure

This procedure binds IN OUT bind variables.

Syntax

DBMS_HS_PASSTHROUGH.BIND_INOUT_VARIABLE (
 c IN BINARY_INTEGER NOT NULL,
 p IN BINARY_INTEGER NOT NULL,
 v IN OUT <dty>,
 n IN VARCHAR2);

<dty> is either DATE, NUMBER, or VARCHAR2.

	
See Also:

For binding IN OUT variables of data type RAW see BIND_INOUT_VARIABLE_RAW Procedure.

Parameters

Table 75-2 BIND_INOUT_VARIABLE Procedure Parameters

	Parameter	Description
	
c

	
Cursor associated with the passthrough SQL statement. Cursor must be opened and parsed, using the routines OPEN_CURSOR and PARSE respectively.

	
p

	
Position of the bind variable in the SQL statement: Starts at 1.

	
v

	
This value is used for two purposes:

- To provide the IN value before the SQL statement is run.

- To determine the size of the out value.

	
n

	
(Optional) Name of the bind variable.

For example, in SELECT * FROM emp WHERE ename=:ename, the position of the bind variable :ename is 1, the name is :ename. This parameter can be used if the non-Oracle system supports "named binds" instead of positional binds. Passing the position is still required.

Exceptions

Table 75-3 BIND_INOUT_VARIABLE Procedure Exceptions

	Exception	Description
	
ORA-28550

	
The cursor passed is invalid.

	
ORA-28552

	
Procedure is not run in right order. (Did you first open the cursor and parse the SQL statement?)

	
ORA-28553

	
The position of the bind variable is out of range.

	
ORA-28555

	
A NULL value was passed for a NOT NULL parameter.

Pragmas

Purity level defined : WNDS, RNDS

BIND_INOUT_VARIABLE_RAW Procedure

This procedure binds IN OUT bind variables of data type RAW.

Syntax

DBMS_HS_PASSTHROUGH.BIND_INOUT_VARIABLE_RAW (
 c IN BINARY_INTEGER NOT NULL,
 p IN BINARY_INTEGER NOT NULL,
 v IN OUT RAW,
 n IN VARCHAR2);

Parameters

Table 75-4 BIND_INOUT_VARIABLE_RAW Procedure Parameters

	Parameter	Description
	
c

	
Cursor associated with the passthrough SQL statement. Cursor must be opened and parsed using the routines OPEN_CURSOR and PARSE respectively.

	
p

	
Position of the bind variable in the SQL statement: Starts at 1.

	
v

	
This value is used for two purposes:

- To provide the IN value before the SQL statement is run.

- To determine the size of the out value.

	
n

	
(Optional) Name the bind variable.

For example, in SELECT * FROM emp WHERE ename=:ename, the position of the bind variable :ename is 1, the name is :ename. This parameter can be used if the non-Oracle system supports "named binds" instead of positional binds. Passing the position is still required.

Exceptions

Table 75-5 BIND_INOUT_VARIABLE_RAW Procedure Exceptions

	Exception	Description
	
ORA-28550

	
The cursor passed is invalid.

	
ORA-28552

	
Procedure is not run in right order. (Did you first open the cursor and parse the SQL statement?)

	
ORA-28553

	
The position of the bind variable is out of range.

	
ORA-28555

	
A NULL value was passed for a NOT NULL parameter.

Pragmas

Purity level defined : WNDS, RNDS

BIND_OUT_VARIABLE Procedure

This procedure binds an OUT variable with a PL/SQL program variable.

Syntax

DBMS_HS_PASSTHROUGH.BIND_OUT_VARIABLE (
 c IN BINARY_INTEGER NOT NULL,
 p IN BINARY_INTEGER NULL,
 v OUT <dty>,
 n IN VARCHAR2);

<dty> is either DATE, NUMBER, or VARCHAR2.

	
See Also:

For binding OUT variables of data type RAW, see BIND_OUT_VARIABLE_RAW Procedure.

Parameters

Table 75-6 BIND_OUT_VARIABLE Procedure Parameters

	Parameter	Description
	
c

	
Cursor associated with the passthrough SQL statement. Cursor must be opened and parsed, using the routines OPEN_CURSOR and PARSE respectively.

	
p

	
Position of the bind variable in the SQL statement: Starts at 1.

	
v

	
Variable in which the OUT bind variable stores its value. The package remembers only the "size" of the variable. After the SQL statement is run, you can use GET_VALUE to retrieve the value of the OUT parameter. The size of the retrieved value should not exceed the size of the parameter that was passed using BIND_OUT_VARIABLE.

	
n

	
(Optional) Name of the bind variable.

For example, in SELECT * FROM emp WHERE ename=:ename, the position of the bind variable :ename is 1, the name is :ename. This parameter can be used if the non-Oracle system supports "named binds" instead of positional binds. Passing the position is still required.

Exceptions

Table 75-7 BIND_OUT_VARIABLE Procedure Exceptions

	Exception	Description
	
ORA-28550

	
The cursor passed is invalid.

	
ORA-28552

	
Procedure is not run in right order. (Did you first open the cursor and parse the SQL statement?)

	
ORA-28553

	
The position of the bind variable is out of range.

	
ORA-28555

	
A NULL value was passed for a NOT NULL parameter.

Pragmas

Purity level defined : WNDS, RNDS

BIND_OUT_VARIABLE_RAW Procedure

This procedure binds an OUT variable of data type RAW with a PL/SQL program variable.

Syntax

DBMS_HS_PASSTHROUGH.BIND_OUT_VARIABLE_RAW (
 c IN BINARY_INTEGER NOT NULL,
 p IN BINARY_INTEGER NOT NULL,
 v OUT RAW,
 n IN VARCHAR2);

Parameters

Table 75-8 BIND_OUT_VARIABLE_RAW Procedure Parameters

	Parameter	Description
	
c

	
Cursor associated with the passthrough SQL statement. Cursor must be opened and parsed, using the routines OPEN_CURSOR and PARSE respectively.

	
p

	
Position of the bind variable in the SQL statement: Starts at 1.

	
v

	
Variable in which the OUT bind variable stores its value. The package remembers only the "size" of the variable. After the SQL statement is run, you can use GET_VALUE to retrieve the value of the OUT parameter. The size of the retrieved value should not exceed the size of the parameter that was passed using BIND_OUT_VARIABLE_RAW.

	
n

	
(Optional) Name of the bind variable.

For example, in SELECT * FROM emp WHERE ename=:ename, the position of the bind variable :ename is 1, the name is :ename. This parameter can be used if the non-Oracle system supports "named binds" instead of positional binds. Passing the position is still required.

Exceptions

Table 75-9 BIND_OUT_VARIABLE_RAW Procedure Exceptions

	Exception	Description
	
ORA-28550

	
The cursor passed is invalid.

	
ORA-28552

	
Procedure is not run in right order. (Did you first open the cursor and parse the SQL statement?)

	
ORA-28553

	
The position of the bind variable is out of range.

	
ORA-28555

	
A NULL value was passed for a NOT NULL parameter.

Pragmas

Purity level defined : WNDS, RNDS

BIND_VARIABLE Procedure

This procedure binds an IN variable positionally with a PL/SQL program variable.

Syntax

DBMS_HS_PASSTHROUGH.BIND_VARIABLE (
 c IN BINARY_INTEGER NOT NULL,
 p IN BINARY_INTEGER NOT NULL,
 v IN <dty>,
 n IN VARCHAR2);

<dty> is either DATE, NUMBER, or VARCHAR2.

	
See Also:

To bind RAW variables use BIND_VARIABLE_RAW Procedure.

Parameters

Table 75-10 BIND_VARIABLE Procedure Parameters

	Parameter	Description
	
c

	
Cursor associated with the passthrough SQL statement. Cursor must be opened and parsed using the routines OPEN_CURSOR and PARSE respectively.

	
p

	
Position of the bind variable in the SQL statement: Starts at 1.

	
v

	
Value that must be passed to the bind variable name.

	
n

	
(Optional) Name of the bind variable.

For example, in SELECT * FROM emp WHERE ename=:ename, the position of the bind variable :ename is 1, the name is :ename. This parameter can be used if the non-Oracle system supports "named binds" instead of positional binds. Passing the position is still required.

Exceptions

Table 75-11 BIND_VARIABLE Procedure Exceptions

	Exception	Description
	
ORA-28550

	
The cursor passed is invalid.

	
ORA-28552

	
Procedure is not run in right order. (Did you first open the cursor and parse the SQL statement?)

	
ORA-28553

	
The position of the bind variable is out of range.

	
ORA-28555

	
A NULL value was passed for a NOT NULL parameter.

Pragmas

Purity level defined: WNDS, RNDS

BIND_VARIABLE_RAW Procedure

This procedure binds IN variables of type RAW.

Syntax

DBMS_HS_PASSTHROUGH.BIND_VARIABLE_RAW (
 c IN BINARY_INTEGER NOT NULL,
 p IN BINARY_INTEGER NOT NULL,
 v IN RAW,
 n IN VARCHAR2);

Parameters

Table 75-12 BIND_VARIABLE_RAW Procedure Parameters

	Parameter	Description
	
c

	
Cursor associated with the passthrough SQL statement. Cursor must be opened and parsed, using the routines OPEN_CURSOR and PARSE respectively.

	
p

	
Position of the bind variable in the SQL statement: Starts at 1.

	
v

	
Value that must be passed to the bind variable.

	
n

	
(Optional) Name of the bind variable.

For example, in SELECT * FROM emp WHERE ename=:ename, the position of the bind variable :ename is 1, the name is :ename. This parameter can be used if the non-Oracle system supports "named binds" instead of positional binds. Passing the position is still required.

Exceptions

Table 75-13 BIND_VARIABLE_RAW Procedure Exceptions

	Exception	Description
	
ORA-28550

	
The cursor passed is invalid.

	
ORA-28552

	
Procedure is not run in right order. (Did you first open the cursor and parse the SQL statement?)

	
ORA-28553

	
The position of the bind variable is out of range.

	
ORA-28555

	
A NULL value was passed for a NOT NULL parameter.

Pragmas

Purity level defined : WNDS, RNDS

CLOSE_CURSOR Procedure

This function closes the cursor and releases associated memory after the SQL statement has been run at the non-Oracle system. If the cursor was not open, then the operation is a "no operation".

Syntax

DBMS_HS_PASSTHROUGH.CLOSE_CURSOR (
 c IN BINARY_INTEGER NOT NULL);

Parameters

Table 75-14 CLOSE_CURSOR Procedure Parameters

	Parameter	Description
	
c

	
Cursor to be released.

Exceptions

Table 75-15 CLOSE_CURSOR Procedure Exceptions

	Exception	Description
	
ORA-28555

	
A NULL value was passed for a NOT NULL parameter.

Pragmas

Purity level defined : WNDS, RNDS

EXECUTE_IMMEDIATE Procedure

This function runs a SQL statement immediately. Any valid SQL command except SELECT can be run immediately. The statement must not contain any bind variables. The statement is passed in as a VARCHAR2 in the argument. Internally the SQL statement is run using the PASSTHROUGH SQL protocol sequence of OPEN_CURSOR, PARSE, EXECUTE_NON_QUERY, CLOSE_CURSOR.

Syntax

DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIATE (
 s IN VARCHAR2 NOT NULL)
RETURN BINARY_INTEGER;

Parameters

Table 75-16 EXECUTE_IMMEDIATE Procedure Parameters

	Parameter	Description
	
s

	
VARCHAR2 variable with the statement to be executed immediately.

Return Values

The number of rows affected by the execution of the SQL statement.

Exceptions

Table 75-17 EXECUTE_IMMEDIATE Procedure Exceptions

	Exception	Description
	
ORA-28551

	
SQL statement is invalid.

	
ORA-28554

	
Max open cursors.

	
ORA-28555

	
A NULL value was passed for a NOT NULL parameter.

EXECUTE_NON_QUERY Function

This function runs a SQL statement. The SQL statement cannot be a SELECT statement. A cursor has to be open and the SQL statement has to be parsed before the SQL statement can be run.

Syntax

DBMS_HS_PASSTHROUGH.EXECUTE_NON_QUERY (
 c IN BINARY_INTEGER NOT NULL)
 RETURN BINARY_INTEGER;

Parameters

Table 75-18 EXECUTE_NON_QUERY Function Parameters

	Parameter	Description
	
c

	
Cursor associated with the passthrough SQL statement. Cursor must be opened and parsed, using the routines OPEN_CURSOR and PARSE respectively.

Return Values

The number of rows affected by the SQL statement in the non-Oracle system

Exceptions

Table 75-19 EXECUTE_NON_QUERY Function Exceptions

	Exception	Description
	
ORA-28550

	
The cursor passed is invalid.

	
ORA-28552

	
BIND_VARIABLE procedure is not run in right order. (Did you first open the cursor and parse the SQL statement?)

	
ORA-28555

	
A NULL value was passed for a NOT NULL parameter.

FETCH_ROW Function

This function fetches rows from a result set. The result set is defined with a SQL SELECT statement. When there are no more rows to be fetched, the exception NO_DATA_FOUND is raised. Before the rows can be fetched, a cursor has to be opened, and the SQL statement has to be parsed.

Syntax

DBMS_HS_PASSTHROUGH.FETCH_ROW (
 c IN BINARY_INTEGER NOT NULL,
 f IN BOOLEAN)
 RETURN BINARY_INTEGER;

Parameters

Table 75-20 FETCH_ROW Function Parameters

	Parameter	Description
	
c

	
Cursor associated with the passthrough SQL statement. Cursor must be opened and parsed, using the routines OPEN_CURSOR and PARSE respectively.

	
first

	
(Optional) Reexecutes SELECT statement. Possible values:

- TRUE: reexecute SELECT statement.

- FALSE: fetch the next row, or if run for the first time, then execute and fetch rows (default).

Return Values

The returns the number of rows fetched. The function returns "0" if the last row was already fetched.

Exceptions

Table 75-21 FETCH_ROW Function Exceptions

	Exception	Description
	
ORA-28550

	
The cursor passed is invalid.

	
ORA-28552

	
Procedure is not run in right order. (Did you first open the cursor and parse the SQL statement?)

	
ORA-28555

	
A NULL value was passed for a NOT NULL parameter.

Pragmas

Purity level defined : WNDS

GET_VALUE Procedure

This procedure has two purposes:

	
It retrieves the select list items of SELECT statements, after a row has been fetched.

	
It retrieves the OUT bind values, after the SQL statement has been run.

Syntax

DBMS_HS_PASSTHROUGH.GET_VALUE (
 c IN BINARY_INTEGER NOT NULL,
 p IN BINARY_INTEGER NOT NULL,
 v OUT <dty>);

<dty> is either DATE, NUMBER, or VARCHAR2.

	
See Also:

For retrieving values of data type RAW, see GET_VALUE_RAW Procedure.

Parameters

Table 75-22 GET_VALUE Procedure Parameters

	Parameter	Description
	
c

	
Cursor associated with the passthrough SQL statement. Cursor must be opened and parsed, using the routines OPEN_CURSOR and PARSE respectively.

	
p

	
Position of the bind variable or select list item in the SQL statement: Starts at 1.

	
v

	
Variable in which the OUT bind variable or select list item stores its value.

Exceptions

Table 75-23 GET_VALUE Procedure Exceptions

	Exception	Description
	
ORA-1403

	
Returns NO_DATA_FOUND exception when running the GET_VALUE after the last row was fetched (that is, FETCH_ROW returned "0").

	
ORA-28550

	
The cursor passed is invalid.

	
ORA-28552

	
Procedure is not run in right order. (Did you first open the cursor and parse the SQL statement?)

	
ORA-28553

	
The position of the bind variable is out of range.

	
ORA-28555

	
A NULL value was passed for a NOT NULL parameter.

Pragmas

Purity level defined : WNDS

GET_VALUE_RAW Procedure

This procedure is similar to GET_VALUE, but for data type RAW.

Syntax

DBMS_HS_PASSTHROUGH.GET_VALUE_RAW (
 c IN BINARY_INTEGER NOT NULL,
 p IN BINARY_INTEGER NOT NULL,
 v OUT RAW);

Parameters

Table 75-24 GET_VALUE_RAW Procedure Parameters

	Parameter	Description
	
c

	
Cursor associated with the passthrough SQL statement. Cursor must be opened and parsed, using the routines OPEN_CURSOR and PARSE respectively.

	
p

	
Position of the bind variable or select list item in the SQL statement: Starts at 1.

	
v

	
Variable in which the OUT bind variable or select list item stores its value.

Exceptions

Table 75-25 GET_VALUE_RAW Procedure Exceptions

	Exception	Description
	
ORA-1403

	
Returns NO_DATA_FOUND exception when running the GET_VALUE after the last row was fetched (that is, FETCH_ROW returned "0").

	
ORA-28550

	
The cursor passed is invalid.

	
ORA-28552

	
Procedure is not run in right order. (Did you first open the cursor and parse the SQL statement?)

	
ORA-28553

	
The position of the bind variable is out of range.

	
ORA-28555

	
A NULL value was passed for a NOT NULL parameter.

Pragmas

Purity level defined : WNDS

OPEN_CURSOR Function

This function opens a cursor for running a passthrough SQL statement at the non-Oracle system. This function must be called for any type of SQL statement.

The function returns a cursor, which must be used in subsequent calls. This call allocates memory. To deallocate the associated memory, call the procedure CLOSE_CURSOR.

Syntax

DBMS_HS_PASSTHROUGH.OPEN_CURSOR
 RETURN BINARY_INTEGER;

Return Values

The cursor to be used on subsequent procedure and function calls.

Exceptions

Table 75-26 OPEN_CURSOR Function Exceptions

	Exception	Description
	
ORA-28554

	
Maximum number of open cursor has been exceeded. Increase Heterogeneous Services' OPEN_CURSORS initialization parameter.

Pragmas

Purity level defined : WNDS, RNDS

PARSE Procedure

This procedure parses SQL statement at non-Oracle system.

Syntax

DBMS_HS_PASSTHROUGH.PARSE (
 c IN BINARY_INTEGER NOT NULL,
 stmt IN VARCHAR2 NOT NULL);

Parameters

Table 75-27 PARSE Procedure Parameters

	Parameter	Description
	
c

	
Cursor associated with the passthrough SQL statement. Cursor must be opened using function OPEN_CURSOR.

	
stmt

	
Statement to be parsed.

Exceptions

Table 75-28 PARSE Procedure Exceptions

	Exception	Description
	
ORA-28550

	
The cursor passed is invalid.

	
ORA-28551

	
SQL statement is illegal.

	
ORA-28555

	
A NULL value was passed for a NOT NULL parameter.

Pragmas

Purity level defined : WNDS, RNDS

76 DBMS_IOT

The DBMS_IOT package creates a table into which references to the chained rows for an index-organized table can be placed using the ANALYZE command. DBMS_IOT can also create an exception table into which references to the rows of an index-organized table that violate a constraint can be placed during the enable_constraint operation.

DBMS_IOT is not loaded during database installation. To install DBMS_IOT, run dbmsiotc.sql, available in the ADMIN directory.

This chapter contains the following topics:

	
Summary of DBMS_IOT Subprograms

	
Note:

With the introduction of logical-rowids for IOTs with Oracle Database Release 8.1, you no longer need to use the procedures contained in this package which is retained for backward compatibility only. It is however required for servers running with Oracle Database Release 8.0.

Summary of DBMS_IOT Subprograms

Table 76-1 DBMS_IOT Package Subprograms

	Subprogram	Description
	
BUILD_CHAIN_ROWS_TABLE Procedure

	
Creates a table into which references to the chained rows for an index-organized table can be placed using the ANALYZE command

	
BUILD_EXCEPTIONS_TABLE Procedure

	
Creates an exception table into which rows of an index-organized table that violate a constraint can be placed

BUILD_CHAIN_ROWS_TABLE Procedure

This procedure creates a table into which references to the chained rows for an index-organized table can be placed using the ANALYZE command.

Syntax

DBMS_IOT.BUILD_CHAIN_ROWS_TABLE (
 owner IN VARCHAR2,
 iot_name IN VARCHAR2,
 chainrow_table_name IN VARCHAR2 default 'IOT_CHAINED_ROWS');

Parameters

Table 76-2 BUILD_CHAIN_ROWS_TABLE Procedure Parameters

	Parameter	Description
	
owner

	
Owner of the index-organized table.

	
iot_name

	
Index-organized table name.

	
chainrow_table_name

	
Intended name for the chained-rows table.

Usage Notes

You should create a separate chained-rows table for each index-organized table to accommodate its primary key.

Examples

CREATE TABLE l(a char(16),b char(16), c char(16), d char(240),
PRIMARY KEY(a,b,c)) ORGANIZATION INDEX pctthreshold 10 overflow;
EXECUTE DBMS_IOT.BUILD_CHAIN_ROWS_TABLE('SYS','L','LC');

A chained-row table is created with the following columns:

Column Name Null? Type
------------------------------ -------- ----
OWNER_NAME VARCHAR2(30)
TABLE_NAME VARCHAR2(30)
CLUSTER_NAME VARCHAR2(30)
PARTITION_NAME VARCHAR2(30)
SUBPARTITION_NAME VARCHAR2(30)
HEAD_ROWID ROWID
TIMESTAMP DATE
A CHAR(16)
B CHAR(16)
C CHAR(16)

BUILD_EXCEPTIONS_TABLE Procedure

This procedure creates an exception table into which rows of an index-organized table that violate a constraint can be placed during the execution of the following SQL statements:

	
ALTER TABLE ... ENABLE CONSTRAINT ... EXCEPTIONS INTO

	
ALTER TABLE ... ADD CONSTRAINT ... EXCEPTIONS INTO

Syntax

DBMS_IOT.BUILD_EXCEPTIONS_TABLE (
 owner IN VARCHAR2,
 iot_name IN VARCHAR2,
 exceptions_table_name IN VARCHAR2 default 'IOT_EXCEPTIONS');

Parameters

Table 76-3 BUILD_EXCEPTIONS_TABLE Procedure Parameters

	Parameter	Description
	
owner

	
Owner of the index-organized table.

	
iot_name

	
Index-organized table name.

	
exceptions_table_name

	
Intended name for exception-table.

Usage Notes

You should create a separate exception table for each index-organized table to accommodate its primary key.

Examples

EXECUTE DBMS_IOT.BUILD_EXCEPTIONS_TABLE('SYS','L','LE');

An exception table for the preceding index-organized table with the following columns:

Column Name Null? Type
------------------------------ -------- ----
ROW_ID VARCHAR2(30)
OWNER VARCHAR2(30)
TABLE_NAME VARCHAR2(30)
CONSTRAINT VARCHAR2(30)
A CHAR(16)
B CHAR(16)
C CHAR(16)

77 DBMS_JAVA

The DBMS_JAVA package provides a PL/SQL interface for accessing database functionality from Java.

	
Documentation of DBMS_JAVA

Documentation of DBMS_JAVA

For a complete description of this package within the context of DBMS_JAVA, see DBMS_JAVA in the Oracle Database Java Developer's Guide.

78 DBMS_JOB

The DBMS_JOB package schedules and manages jobs in the job queue.

	
Note:

The DBMS_JOB package has been superseded by the DBMS_SCHEDULER package. In particular, if you are administering jobs to manage system load, you should consider disabling DBMS_JOB by revoking the package execution privilege for users.
For more information, see Chapter 128, "DBMS_SCHEDULER" and "Moving from DBMS_JOB to DBMS_SCHEDULER" in Oracle Database Administrator's Guide.

This chapter contains the following topics:

	
Using DBMS_JOB

	
Security Model

	
Operational Notes

	
Summary of DBMS_JOB Subprograms

Using DBMS_JOB

	
Security Model

	
Operational Notes

Security Model

No specific system privileges are required to use DBMS_JOB. No system privileges are available to manage DBMS_JOB. Jobs cannot be altered or deleted other than jobs owned by the user. This is true for all users including those users granted DBA privileges.

You can execute procedures that are owned by the user or for which the user is explicitly granted EXECUTE. However, procedures for which the user is granted the execute privilege through roles cannot be executed.

Note that, once a job is started and running, there is no easy way to stop the job.

Operational Notes

	
Working with Oracle Real Application Clusters

	
Stopping a Job

Working with Oracle Real Application Clusters

DBMS_JOB supports multi-instance execution of jobs. By default jobs can be executed on any instance, but only one single instance will execute the job. In addition, you can force instance binding by binding the job to a particular instance. You implement instance binding by specifying an instance number to the instance affinity parameter. Note, however, that in Oracle Database 10g Release 1 (10.1) instance binding is not recommended. Service affinity is preferred. This concept is implemented in the DBMS_SCHEDULER package.

The following procedures can be used to create, alter or run jobs with instance affinity. Note that not specifying affinity means any instance can run the job.

DBMS_JOB.SUBMIT

To submit a job to the job queue, use the following syntax:

DBMS_JOB.SUBMIT(
 job OUT BINARY_INTEGER,
 what IN VARCHAR2, NEXT_DATE IN DATE DEFAULTSYSDATE,
 interval IN VARCHAR2 DEFAULT 'NULL',
 no_parse IN BOOLEAN DEFAULT FALSE,
 instance IN BINARY_INTEGER DEFAULT ANY_INSTANCE,
 force IN BOOLEAN DEFAULT FALSE);

Use the parameters instance and force to control job and instance affinity. The default value of instance is 0 (zero) to indicate that any instance can execute the job. To run the job on a certain instance, specify the instance value. Oracle displays error ORA-23319 if the instance value is a negative number or NULL.

The force parameter defaults to false. If force is TRUE, any positive integer is acceptable as the job instance. If force is FALSE, the specified instance must be running, or Oracle displays error number ORA-23428.

DBMS_JOB.INSTANCE

To assign a particular instance to execute a job, use the following syntax:

 DBMS_JOB.INSTANCE(JOB IN BINARY_INTEGER,
 instance IN BINARY_INTEGER,
 force IN BOOLEAN DEFAULT FALSE);

The FORCE parameter in this example defaults to FALSE. If the instance value is 0 (zero), job affinity is altered and any available instance can execute the job despite the value of force. If the INSTANCE value is positive and the FORCE parameter is FALSE, job affinity is altered only if the specified instance is running, or Oracle displays error ORA-23428.

If the force parameter is TRUE, any positive integer is acceptable as the job instance and the job affinity is altered. Oracle displays error ORA-23319 if the instance value is negative or NULL.

DBMS_JOB.CHANGE

To alter user-definable parameters associated with a job, use the following syntax:

 DBMS_JOB.CHANGE(JOB IN BINARY_INTEGER,
 what IN VARCHAR2 DEFAULT NULL,
 next_date IN DATE DEFAULT NULL,
 interval IN VARCHAR2 DEFAULT NULL,
 instance IN BINARY_INTEGER DEFAULT NULL,
 force IN BOOLEAN DEFAULT FALSE);

Two parameters, instance and force, appear in this example. The default value of instance is null indicating that job affinity will not change.

The default value of force is FALSE. Oracle displays error ORA-23428 if the specified instance is not running and error ORA-23319 if the instance number is negative.

DBMS_JOB.RUN

The force parameter for DBMS_JOB.RUN defaults to FALSE. If force is TRUE, instance affinity is irrelevant for running jobs in the foreground process. If force is FALSE, the job can run in the foreground only in the specified instance. Oracle displays error ORA-23428 if force is FALSE and the connected instance is the incorrect instance.

 DBMS_JOB.RUN(
 job IN BINARY_INTEGER,
 force IN BOOLEAN DEFAULT FALSE);

Stopping a Job

Note that, once a job is started and running, there is no easy way to stop the job.

Summary of DBMS_JOB Subprograms

Table 78-1 DBMS_JOB Package Subprograms

	Subprogram	Description
	
BROKEN Procedure

	
Disables job execution

	
CHANGE Procedure

	
Alters any of the user-definable parameters associated with a job

	
INSTANCE Procedure

	
Assigns a job to be run by a instance

	
INTERVAL Procedure

	
Alters the interval between executions for a specified job

	
NEXT_DATE Procedure

	
Alters the next execution time for a specified job

	
REMOVE Procedure

	
Removes specified job from the job queue

	
RUN Procedure

	
Forces a specified job to run

	
SUBMIT Procedure

	
Submits a new job to the job queue

	
USER_EXPORT Procedures

	
Re-creates a given job for export, or re-creates a given job for export with instance affinity

	
WHAT Procedure

	
Alters the job description for a specified job

BROKEN Procedure

This procedure sets the broken flag. Broken jobs are never run.

Syntax

DBMS_JOB.BROKEN (
 job IN BINARY_INTEGER,
 broken IN BOOLEAN,
 next_date IN DATE DEFAULT SYSDATE);

Parameters

Table 78-2 BROKEN Procedure Parameters

	Parameter	Description
	
job

	
Number of the job being run.

	
broken

	
Job broken: IN value is FALSE.

	
next_date

	
Date of the next refresh.

	
Note:

If you set job as broken while it is running, Oracle resets the job's status to normal after the job completes. Therefore, only execute this procedure for jobs that are not running.

Usage Notes

You must issue a COMMIT statement immediately after the statement.

CHANGE Procedure

This procedure changes any of the fields a user can set in a job.

Syntax

DBMS_JOB.CHANGE (
 job IN BINARY_INTEGER,
 what IN VARCHAR2,
 next_date IN DATE,
 interval IN VARCHAR2,
 instance IN BINARY_INTEGER DEFAULT NULL,
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Table 78-3 CHANGE Procedure Parameters

	Parameter	Description
	
job

	
Number of the job being run.

	
what

	
PL/SQL procedure to run.

	
next_date

	
Date of the next refresh.

	
interval

	
Date function; evaluated immediately before the job starts running.

	
instance

	
When a job is submitted, specifies which instance can run the job. This defaults to NULL, which indicates that instance affinity is not changed.

	
force

	
If this is FALSE, then the specified instance (to which the instance number change) must be running. Otherwise, the routine raises an exception.

If this is TRUE, then any positive integer is acceptable as the job instance.

Usage Notes

	
You must issue a COMMIT statement immediately after the statement.

	
The parameters instance and force are added for job queue affinity. Job queue affinity gives users the ability to indicate whether a particular instance or any instance can run a submitted job.

	
If the parameters what, next_date, or interval are NULL, then leave that value as it is.

Example

BEGIN
 DBMS_JOB.CHANGE(14144, null, null, 'sysdate+3');
 COMMIT;
END;

INSTANCE Procedure

This procedure changes job instance affinity.

Syntax

DBMS_JOB.INSTANCE (
 job IN BINARY_INTEGER,
 instance IN BINARY_INTEGER,
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Table 78-4 INSTANCE Procedure Parameters

	Parameter	Description
	
job

	
Number of the job being run.

	
instance

	
When a job is submitted, a user can specify which instance can run the job.

	
force

	
If this is TRUE, then any positive integer is acceptable as the job instance. If this is FALSE (the default), then the specified instance must be running; otherwise the routine raises an exception.

Usage Notes

You must issue a COMMIT statement immediately after the statement.

INTERVAL Procedure

This procedure changes how often a job runs.

Syntax

DBMS_JOB.INTERVAL (
 job IN BINARY_INTEGER,
 interval IN VARCHAR2);

Parameters

Table 78-5 INTERVAL Procedure Parameters

	Parameter	Description
	
job

	
Number of the job being run.

	
interval

	
Date function, evaluated immediately before the job starts running.

Usage Notes

	
If the job completes successfully, then this new date is placed in next_date. interval is evaluated by plugging it into the statement select interval into next_date from dual;

	
The interval parameter must evaluate to a time in the future. Legal intervals include:

	Interval	Description
	'sysdate + 7'	Run once a week.
	'next_day(sysdate,''TUESDAY'')'	Run once every Tuesday.
	'null'	Run only once.

	
If interval evaluates to NULL and if a job completes successfully, then the job is automatically deleted from the queue.

	
You must issue a COMMIT statement immediately after the statement.

NEXT_DATE Procedure

This procedure changes when an existing job next runs.

Syntax

DBMS_JOB.NEXT_DATE (
 job IN BINARY_INTEGER,
 next_date IN DATE);

Parameters

Table 78-6 NEXT_DATE Procedure Parameters

	Parameter	Description
	
job

	
Number of the job being run.

	
next_date

	
Date of the next refresh: it is when the job will be automatically run, assuming there are background processes attempting to run it.

Usage Notes

You must issue a COMMIT statement immediately after the statement.

REMOVE Procedure

This procedure removes an existing job from the job queue. This currently does not stop a running job.

Syntax

DBMS_JOB.REMOVE (
 job IN BINARY_INTEGER);

Parameters

Table 78-7 REMOVE Procedure Parameters

	Parameter	Description
	
job

	
Number of the job being run.

Usage Notes

You must issue a COMMIT statement immediately after the statement.

Example

BEGIN
 DBMS_JOB.REMOVE(14144);
 COMMIT;
END;

RUN Procedure

This procedure runs job JOB now. It runs it even if it is broken.

Running the job recomputes next_date. See view user_jobs.

Syntax

DBMS_JOB.RUN (
 job IN BINARY_INTEGER,
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Table 78-8 RUN Procedure Parameters

	Parameter	Description
	
job

	
Number of the job being run.

	
force

	
If this is TRUE, then instance affinity is irrelevant for running jobs in the foreground process. If this is FALSE, then the job can be run in the foreground only in the specified instance.

Example

EXECUTE DBMS_JOB.RUN(14144);

	
Caution:

This re-initializes the current session's packages.

Exceptions

An exception is raised if force is FALSE, and if the connected instance is the wrong one.

SUBMIT Procedure

This procedure submits a new job. It chooses the job from the sequence sys.jobseq.

Syntax

DBMS_JOB.SUBMIT (
 job OUT BINARY_INTEGER,
 what IN VARCHAR2,
 next_date IN DATE DEFAULT sysdate,
 interval IN VARCHAR2 DEFAULT 'null',
 no_parse IN BOOLEAN DEFAULT FALSE,
 instance IN BINARY_INTEGER DEFAULT any_instance,
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Table 78-9 SUBMIT Procedure Parameters

	Parameter	Description
	
job

	
Number of the job being run.

	
what

	
PL/SQL procedure to run.

	
next_date

	
Next date when the job will be run.

	
interval

	
Date function that calculates the next time to run the job. The default is NULL. This must evaluate to a either a future point in time or NULL.

	
no_parse

	
A flag. The default is FALSE. If this is set to FALSE, then Oracle parses the procedure associated with the job. If this is set to TRUE, then Oracle parses the procedure associated with the job the first time that the job is run.

For example, if you want to submit a job before you have created the tables associated with the job, then set this to TRUE.

	
instance

	
When a job is submitted, specifies which instance can run the job.

	
force

	
If this is TRUE, then any positive integer is acceptable as the job instance. If this is FALSE (the default), then the specified instance must be running; otherwise the routine raises an exception.

Usage Notes

	
You must issue a COMMIT statement immediately after the statement.

	
The parameters instance and force are added for job queue affinity. Job queue affinity gives users the ability to indicate whether a particular instance or any instance can run a submitted job.

Example

This submits a new job to the job queue. The job calls the procedure DBMS_DDL.ANALYZE_OBJECT to generate optimizer statistics for the table DQUON.ACCOUNTS. The statistics are based on a sample of half the rows of the ACCOUNTS table. The job is run every 24 hours:

VARIABLE jobno number;
BEGIN
 DBMS_JOB.SUBMIT(:jobno,
 'dbms_ddl.analyze_object(''TABLE'',
 ''DQUON'', ''ACCOUNTS'',
 ''ESTIMATE'', NULL, 50);'
 SYSDATE, 'SYSDATE + 1');
 COMMIT;
END;
/
Statement processed.
print jobno
JOBNO

14144

USER_EXPORT Procedures

There are two overloaded procedures. The first produces the text of a call to re-create the given job. The second alters instance affinity (8i and after) and preserves the compatibility.

Syntax

DBMS_JOB.USER_EXPORT (
 job IN BINARY_INTEGER,
 mycall IN OUT VARCHAR2);

DBMS_JOB.USER_EXPORT (
 job IN BINARY_INTEGER,
 mycall IN OUT VARCHAR2,
 myinst IN OUT VARCHAR2);

Parameters

Table 78-10 USER_EXPORT Procedure Parameter

	Parameter	Description
	
job

	
Number of the job being run.

	
mycall

	
Text of a call to re-create the given job.

	
myinst

	
Text of a call to alter instance affinity.

WHAT Procedure

This procedure changes what an existing job does, and replaces its environment.

Syntax

DBMS_JOB.WHAT (
 job IN BINARY_INTEGER,
 what IN VARCHAR2);

Parameters

Table 78-11 WHAT Procedure Parameters

	Parameter	Description
	
job

	
Number of the job being run.

	
what

	
PL/SQL procedure to run.

Usage Notes

	
You must issue a COMMIT statement immediately after the statement.

	
Some legal values of what (assuming the routines exist) are:

	
'myproc(''10-JAN-82'', next_date, broken);'

	
'scott.emppackage.give_raise(''JENKINS'', 30000.00);'

	
'dbms_job.remove(job);'

79 DBMS_LDAP

The DBMS_LDAP package lets you access data from LDAP servers.

	
Documentation of DBMS_LDAP

Documentation of DBMS_LDAP

For a complete description of this package within the context of Oracle Internet Directory, see DBMS_LDAP in the Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management.

80 DBMS_LDAP_UTL

The DBMS_LDAP_UTL package contains the Oracle Extension utility functions.

	
Documentation of DBMS_LDAP_UTL

Documentation of DBMS_LDAP_UTL

For a complete description of this package within the context of Oracle Internet Directory, see DBMS_LDAP_UTL in the Oracle Internet Directory Application Developer's Guide.

81 DBMS_LIBCACHE

The DBMS_LIBCACHE package consists of one subprogram that prepares the library cache on an Oracle instance by extracting SQL and PL/SQL from a remote instance and compiling this SQL locally without execution. The value of compiling the cache of an instance is to prepare the information the application requires to execute in advance of failover or switchover.

This chapter contains the following topics:

	
Using DBMS_LIBCACHE

	
Overview

	
Security Model

	
Summary of DBMS_LIBCACHE Subprograms

Using DBMS_LIBCACHE

	
Overview

	
Security Model

Overview

Compiling a shared cursor consists of open, parse, and bind operations, plus the type-checking and execution plan functions performed at the first execution. All of these steps are executed in advance by the package DBMS_LIBCACHE for SELECT statements. The open and parse functions are executed in advance for PL/SQL and DML. For PL/SQL, executing the parse phase has the effect of loading all library cache heaps other than the MCODE.

Security Model

To execute DBMS_LIBCACHE you must directly access the same objects as do SQL statements. You can best accomplish this by utilizing the same user id as the original system on the remote system.

When there are multiple schema users, DBMS_LIBCACHE should be called for each.

Alternatively, DBMS_LIBCACHE may be called with the generic user PARSER. However, this user cannot parse the SQL that uses objects with access granted though roles. This is a standard PL/SQL security limitation.

Summary of DBMS_LIBCACHE Subprograms

Table 81-1 DBMS_LIBCACHE Package Subprograms

	Subprogram	Description
	
COMPILE_FROM_REMOTE Procedure

	
Extracts SQL in batch from the source instance and compiles the SQL at the target instance

COMPILE_FROM_REMOTE Procedure

This procedure extracts SQL in batch from the source instance and compiles the SQL at the target instance.

Syntax

DBMS_LIBCACHE.COMPILE_FROM_REMOTE (
 p_db_link IN dbms_libcache$def.db_link%type,
 p_username IN VARCHAR2 default null,
 p_threshold_executions IN NATURAL default 3,
 p_threshold_sharable_mem IN NATURAL default 1000,
 p_parallel_degree IN NATURAL default 1);

Parameters

Table 81-2 COMPILE_FROM_REMOTE Procedure Parameters

	Parameter	Description
	
p_db_link

	
Database link to the source name (mandatory). The database link pointing to the instance that will be used for extracting the SQL statements. The user must have the role SELECT_ON_CATALOG at the source instance. For improved security, the connection may use a password file or LDAP authentication. The database link is mandatory only for releases with dbms_libcache$def.ACCESS_METHOD = DB_LINK_METHOD

	
p_instance_name

	
(Reserved for future use). The name of the instance that will be used for extracting the SQL statements. The instance name must be unique for all instances excluding the local instance. The name is not case sensitive.

	
p_username

	
Source username (default is all users). The name of the username that will be used for extracting the SQL statements. The username is an optional parameter that is used to ensure the parsing user id is the same as that on the source instance. For an application where users connect as a single user_id, for example APPS, APPS is the parsing user_id that is recorded in the shared pool. To select only SQL statements parsed by APPS, enter the string 'APPS' in this field. To also select statements executed by batch, repeat the executing the procedure with the schema owner, for example GL. If the username is supplied, it must be valid. The name is not case sensitive.

	
p_threshold_executions

	
The lower bound for the number of executions, below which a SQL statement will not be selected for parsing. This parameter is optional. It allows the application to extract and compile statements with executions, for example, greater than 3. The default value is 1. This means SQL statements that have never executed, including invalid SQL statements, will not be extracted.

	
p_threshold_sharable_mem

	
The lower bound for the size of the shared memory consumed by the cursors on the source instance. Below this value a SQL statement will not be selected for parsing. This parameter is optional. It allows the application to extract and compile statements with shared memory for example, greater than 10000 bytes.

	
p_parallel_degree

	
The number of parallel jobs that execute to complete the parse operation. These tasks are spawned as parallel jobs against a sub-range of the SQL statements selected for parsing. This parameter is reserved for parallel compile jobs which are currently not implemented.

82 DBMS_LOB

The DBMS_LOB package provides subprograms to operate on BLOBs, CLOBs, NCLOBs, BFILEs, and temporary LOBs. You can use DBMS_LOB to access and manipulation specific parts of a LOB or complete LOBs.

	
See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide

This chapter contains the following topics:

	
Using DBMS_LOB

	
Overview

	
Security Model

	
Constants

	
Datatypes

	
Operational Notes

	
Rules and Limits

	
Exceptions

	
Summary of DBMS_LOB Subprograms

Using DBMS_LOB

	
Overview

	
Security Model

	
Constants

	
Datatypes

	
Operational Notes

	
Rules and Limits

	
Exceptions

Overview

DBMS_LOB can read and modify BLOBs, CLOBs, and NCLOBs; it provides read-only operations for BFILEs. The bulk of the LOB operations are provided by this package.

Security Model

This package must be created under SYS. Operations provided by this package are performed under the current calling user, not under the package owner SYS.

Any DBMS_LOB subprogram called from an anonymous PL/SQL block is executed using the privileges of the current user. Any DBMS_LOB subprogram called from a stored procedure is executed using the privileges of the owner of the stored procedure.

When creating the procedure, users can set the AUTHID to indicate whether they want definer's rights or invoker's rights. For example:

CREATE PROCEDURE proc1 AUTHID DEFINER ...

or

CREATE PROCEDURE proc1 AUTHID CURRENT_USER ...

	
See Also:

For more information on AUTHID and privileges, see Oracle Database PL/SQL Language Reference

You can provide secure access to BFILEs using the DIRECTORY feature discussed in BFILENAME function in the Oracle Database SecureFiles and Large Objects Developer's Guide and the Oracle Database SQL Language Reference.

For information about the security model pertaining to temporary LOBs, see Operational Notes.

Constants

The DBMS_LOB package uses the constants shown in following tables:

	
Table 82-1, "DBMS_LOB Constants - Basic"

	
Table 82-2, "DBMS_LOB Constants - Option Types"

	
Table 82-3, "DBMS_LOB Constants - Option Values"

	
Table 82-4, "DBMS_LOB Constants - DBFS State Value Types"

	
Table 82-5, "DBMS_LOB Constants - DBFS Cache Flags"

	
Table 82-6, "DBMS_LOB Constants - Maximum 1-Byte ASCII Characters for Contenttype"

Table 82-1 DBMS_LOB Constants - Basic

	Constant	Type	Value	Description
	
CALL

	
PLS_INTEGER

	
12

	
Create the TEMP LOB with call duration

	
FILE_READONLY

	
BINARY_INTEGER

	
0

	
Open the specified BFILE read-only

	
LOB_READONLY

	
BINARY_INTEGER

	
0

	
Open the specified LOB read-only

	
LOB_READWRITE

	
BINARY_INTEGER

	
1

	
Open the specified LOB read-write

	
LOBMAXSIZE

	
INTEGER

	
18446744073709551615

	
Maximum size of a LOB in bytes

	
SESSION

	
PLS_INTEGER

	
10

	
Create the TEMP LOB with session duration

Table 82-2 DBMS_LOB Constants - Option Types

	Constant	Definition	Value	Description
	
OPT_COMPRESS

	
BINARY_INTEGER

	
1

	
Set/Get the SECUREFILE compress option value

	
OPT_DEDUPLICATE

	
BINARY_INTEGER

	
4

	
Set/Get the SECUREFILE Deduplicate option value

	
OPT_ENCRYPT

	
BINARY_INTEGER

	
2

	
Get the SECUREFILE encrypt option value

Table 82-3 DBMS_LOB Constants - Option Values

	Constant	Definition	Value	Description
	
COMPRESS_OFF

	
BINARY_INTEGER

	
0

	
For SETOPTIONS Procedures, set compress off; for GETOPTIONS Functions, compress is off

	
COMPRESS_ON

	
BINARY_INTEGER

	
1

	
For SETOPTIONS Procedures, set compress on; for GETOPTIONS Functions, compress is on

	
DEDUPLICATE_OFF

	
BINARY_INTEGER

	
0

	
For SETOPTIONS Procedures, set deduplicate is off; for GETOPTIONS Functions, deduplicate is off

	
DEDUPLICATE_ON

	
BINARY_INTEGER

	
4

	
For SETOPTIONS Procedures, set deduplicate is on; for GETOPTIONS Functions, deduplicate is on

	
ENCRYPT_OFF

	
BINARY_INTEGER

	
0

	
For GETOPTIONS Functions, encrypt is off

	
ENCRYPT_ON

	
BINARY_INTEGER

	
2

	
For GETOPTIONS Functions, encrypt is on

Table 82-4 DBMS_LOB Constants - DBFS State Value Types

	Constant	Definition	Value	Description
	
DBFS_LINK_NEVER

	
PLS_INTEGER

	
0

	
LOB has never been archived

	
DBFS_LINK_NO

	
PLS_INTEGER

	
2

	
LOB was archived, but as been read back in to the RDBMS

	
DBFS_LINK_YES

	
PLS_INTEGER

	
1

	
LOB is currently archived

Table 82-5 DBMS_LOB Constants - DBFS Cache Flags

	Constant	Definition	Value	Description
	
DBFS_LINK_CACHE

	
PLS_INTEGER

	
1

	
Put the LOB data to the archive, but keep the data in the RDBMS as a cached version

	
DBFS_LINK_NOCACHE

	
PLS_INTEGER

	
0

	
Put the LOB data to the archive, and remove the data from the RDBMS.

Table 82-6 DBMS_LOB Constants - Maximum 1-Byte ASCII Characters for Contenttype

	Constant	Definition	Value	Description
	
CONTENTTYPE_MAX_SIZE

	
PLS_INTEGER

	
128

	
Maximum number of bytes allowed in the content type string

Datatypes

The DBMS_LOB package uses the datatypes shown in Table 82-7.

Table 82-7 Datatypes Used by DBMS_LOB

	Type	Description
	
BLOB

	
Source or destination binary LOB.

	
RAW

	
Source or destination RAW buffer (used with BLOB).

	
CLOB

	
Source or destination character LOB (including NCLOB).

	
VARCHAR2

	
Source or destination character buffer (used with CLOB and NCLOB).

	
INTEGER

	
Specifies the size of a buffer or LOB, the offset into a LOB, or the amount to access.

	
BFILE

	
Large, binary object stored outside the database.

The DBMS_LOB package defines no special types.

An NCLOB is a CLOB for holding fixed-width and varying-width, multibyte national character sets.

The clause ANY_CS in the specification of DBMS_LOB subprograms for CLOBs enables the CLOB type to accept a CLOB or NCLOB locator variable as input.

Operational Notes

All DBMS_LOB subprograms work based on LOB locators. For the successful completion of DBMS_LOB subprograms, you must provide an input locator that represents a LOB that already exists in the database tablespaces or external file system. See also Chapter 1 of Oracle Database SecureFiles and Large Objects Developer's Guide.

To use LOBs in your database, you must first use SQL data definition language (DDL) to define the tables that contain LOB columns.

	
Internal LOBs

	
External LOBs

	
Temporary LOBs

Internal LOBs

To populate your table with internal LOBs after LOB columns are defined in a table, you use the SQL data manipulation language (DML) to initialize or populate the locators in the LOB columns.

External LOBs

For an external LOB (BFILE) to be represented by a LOB locator, you must:

	
Ensure that a DIRECTORY object representing a valid, existing physical directory has been defined, and that physical files (the LOBs you plan to add) exist with read permission for the database. If your operating system uses case-sensitive path names, then be sure you specify the directory in the correct format.

	
Pass the DIRECTORY object and the filename of the external LOB you are adding to the BFILENAME function to create a LOB locator for your external LOB.

Once you have completed these tasks, you can insert or update a row containing a LOB column using the specified LOB locator.

After the LOBs are defined and created, you can then SELECT from a LOB locator into a local PL/SQL LOB variable and use this variable as an input parameter to DBMS_LOB for access to the LOB value.

For details on the different ways to do this, you must refer to the section of the Oracle Database SecureFiles and Large Objects Developer's Guide that describes "Accessing External LOBs (BFILEs)."

Temporary LOBs

The database supports the definition, creation, deletion, access, and update of temporary LOBs. Your temporary tablespace stores the temporary LOB data. Temporary LOBs are not permanently stored in the database. Their purpose is mainly to perform transformations on LOB data.

For temporary LOBs, you must use the OCI, PL/SQL, or another programmatic interface to create or manipulate them. Temporary LOBs can be either BLOBs, CLOBs, or NCLOBs.

A temporary LOB is empty when it is created. By default, all temporary LOBs are deleted at the end of the session in which they were created. If a process dies unexpectedly or if the database crashes, then temporary LOBs are deleted, and the space for temporary LOBs is freed.

There is also an interface to let you group temporary LOBs together into a logical bucket. The duration represents this logical store for temporary LOBs. Each temporary LOB can have separate storage characteristics, such as CACHE/ NOCACHE. There is a default store for every session into which temporary LOBs are placed if you don't specify a specific duration. Additionally, you are able to perform a free operation on durations, which causes all contents in a duration to be freed.

There is no support for consistent read (CR), undo, backup, parallel processing, or transaction management for temporary LOBs. Because CR and rollbacks are not supported for temporary LOBs, you must free the temporary LOB and start over again if you encounter an error.

Because CR, undo, and versions are not generated for temporary LOBs, there is potentially a performance impact if you assign multiple locators to the same temporary LOB. Semantically, each locator should have its own copy of the temporary LOB.

A copy of a temporary LOB is created if the user modifies the temporary LOB while another locator is also pointing to it. The locator on which a modification was performed now points to a new copy of the temporary LOB. Other locators no longer see the same data as the locator through which the modification was made. A deep copy was not incurred by permanent LOBs in these types of situations, because CR snapshots and version pages enable users to see their own versions of the LOB cheaply.

You can gain pseudo-REF semantics by using pointers to locators in OCI and by having multiple pointers to locators point to the same temporary LOB locator, if necessary. In PL/SQL, you must avoid using more than one locator for each temporary LOB. The temporary LOB locator can be passed by reference to other procedures.

Because temporary LOBs are not associated with any table schema, there are no meanings to the terms in-row and out-of-row temporary LOBs. Creation of a temporary LOB instance by a user causes the engine to create and return a locator to the LOB data. The PL/SQL DBMS_LOB package, PRO*C/C++, OCI, and other programmatic interfaces operate on temporary LOBs through these locators just as they do for permanent LOBs.

There is no support for client side temporary LOBs. All temporary LOBs reside in the server.

Temporary LOBs do not support the EMPTY_BLOB or EMPTY_CLOB functions that are supported for permanent LOBs. The EMPTY_BLOB function specifies the fact that the LOB is initialized, but not populated with any data.

A temporary LOB instance can only be destroyed by using OCI or the DBMS_LOB package by using the appropriate FREETEMPORARY or OCIDurationEnd statement.

A temporary LOB instance can be accessed and modified using appropriate OCI and DBMS_LOB statements, just as for regular permanent internal LOBs. To make a temporary LOB permanent, you must explicitly use the OCI or DBMS_LOB COPY command, and copy the temporary LOB into a permanent one.

Security is provided through the LOB locator. Only the user who created the temporary LOB is able to see it. Locators are not expected to be able to pass from one user's session to another. Even if someone did pass a locator from one session to another, they would not access the temporary LOBs from the original session. Temporary LOB lookup is localized to each user's own session. Someone using a locator from somewhere else is only able to access LOBs within his own session that have the same LOB ID. Users should not try to do this, but if they do, they are not able to affect anyone else's data.

The database keeps track of temporary LOBs for each session in a v$ view called V$TEMPORARY_LOBS, which contains information about how many temporary LOBs exist for each session. V$ views are for DBA use. From the session, the database can determine which user owns the temporary LOBs. By using V$TEMPORARY_LOBS in conjunction with DBA_SEGMENTS, a DBA can see how much space is being used by a session for temporary LOBs. These tables can be used by DBAs to monitor and guide any emergency cleanup of temporary space used by temporary LOBs.

The following notes are specific to temporary LOBs:

	
All functions in DBMS_LOB return NULL if any of the input parameters are NULL. All procedures in DBMS_LOB raise an exception if the LOB locator is input as NULL.

	
Operations based on CLOBs do not verify if the character set IDs of the parameters (CLOB parameters, VARCHAR2 buffers and patterns, and so on) match. It is the user's responsibility to ensure this.

	
Data storage resources are controlled by the DBA by creating different temporary tablespaces. DBAs can define separate temporary tablespaces for different users, if necessary.

	
See Also:

Oracle Database PL/SQL Language Reference for more information on NOCOPY syntax

Rules and Limits

	
General Rules and Limits

	
Rules and Limits Specific to External Files (BFILEs)

	
Maximum LOB Size

	
Maximum Buffer Size

General Rules and Limits

	
Oracle Database does not support constraints on columns or attributes whose type is a LOB, with the following exception: NOT NULL constraints are supported for a LOB column or attribute.

	
The following rules apply in the specification of subprograms in this package:

	
length, offset, and amount parameters for subprograms operating on BLOBs and BFILEs must be specified in terms of bytes.

	
length, offset, and amount parameters for subprograms operating on CLOBs must be specified in terms of characters.

In multi-byte character sets, it is not possible to interpret these offsets correctly. As a result, SUBSTR raises the following error: ORA-22998: CLOB or NCLOB in multibyte character set not supported.

	
A subprogram raises an INVALID_ARGVAL exception if the following restrictions are not followed in specifying values for parameters (unless otherwise specified):

	
Only positive, absolute offsets from the beginning of LOB data are permitted: Negative offsets from the tail of the LOB are not permitted.

	
Only positive, nonzero values are permitted for the parameters that represent size and positional quantities, such as amount, offset, newlen, nth, and so on. Negative offsets and ranges observed in SQL string functions and operators are not permitted.

	
The value of offset, amount, newlen, nth must not exceed the value lobmaxsize 18446744073709551615 (264) in any DBMS_LOB subprogram.

	
For CLOBs consisting of fixed-width multibyte characters, the maximum value for these parameters must not exceed (lobmaxsize/character_width_in_bytes) characters.

For example, if the CLOB consists of 2-byte characters, such as:

JA16SJISFIXED

Then, the maximum amount value should not exceed:

18446744073709551615/2 = 9223372036854775807

	
PL/SQL language specifications stipulate an upper limit of 32767 bytes (not characters) for RAW and VARCHAR2 parameters used in DBMS_LOB subprograms. For example, if you declare a variable to be:

charbuf VARCHAR2(3000)

Then, charbuf can hold 3000 single byte characters or 1500 2-byte fixed width characters. This has an important consequence for DBMS_LOB subprograms for CLOBs and NCLOBs.

	
The %CHARSET clause indicates that the form of the parameter with %CHARSET must match the form of the ANY_CS parameter to which it refers.

For example, in DBMS_LOB subprograms that take a VARCHAR2 buffer parameter, the form of the VARCHAR2 buffer must match the form of the CLOB parameter. If the input LOB parameter is of type NCLOB, then the buffer must contain NCHAR data. Conversely, if the input LOB parameter is of type CLOB, then the buffer must contain CHAR data.

For DBMS_LOB subprograms that take two CLOB parameters, both CLOB parameters must have the same form; that is, they must both be NCLOBs, or they must both be CLOBs.

	
If the value of amount plus the offset exceeds the maximum LOB size allowed by the database, then access exceptions are raised.

Under these input conditions, read subprograms, such as READ, COMPARE, INSTR, and SUBSTR, read until End of Lob/File is reached. For example, for a READ operation on a BLOB or BFILE, if the user specifies offset value of 3 GB and an amount value of 2 GB on a LOB that is 4GB in size, then READ returns only 1GB (4GB-3GB) bytes.

	
Functions with NULL or invalid input values for parameters return a NULL. Procedures with NULL values for destination LOB parameters raise exceptions.

	
Operations involving patterns as parameters, such as COMPARE, INSTR, and SUBSTR do not support regular expressions or special matching characters (such as % in the LIKE operator in SQL) in the pattern parameter or substrings.

	
The End Of LOB condition is indicated by the READ procedure using a NO_DATA_FOUND exception. This exception is raised only upon an attempt by the user to read beyond the end of the LOB. The READ buffer for the last read contains 0 bytes.

	
For consistent LOB updates, you must lock the row containing the destination LOB before making a call to any of the procedures (mutators) that modify LOB data.

	
Unless otherwise stated, the default value for an offset parameter is 1, which indicates the first byte in the BLOB or BFILE data, and the first character in the CLOB or NCLOB value. No default values are specified for the amount parameter — you must input the values explicitly.

	
You must lock the row containing the destination internal LOB before calling any subprograms that modify the LOB, such as APPEND, COPY, ERASE, TRIM, or WRITE. These subprograms do not implicitly lock the row containing the LOB.

Rules and Limits Specific to External Files (BFILEs)

	
The subprograms COMPARE, INSTR, READ, SUBSTR, FILECLOSE, FILECLOSEALL and LOADFROMFILE operate only on an opened BFILE locator; that is, a successful FILEOPEN call must precede a call to any of these subprograms.

	
For the functions FILEEXISTS, FILEGETNAME and GETLENGTH, a file's open/close status is unimportant; however, the file must exist physically, and you must have adequate privileges on the DIRECTORY object and the file.

	
DBMS_LOB does not support any concurrency control mechanism for BFILE operations.

	
In the event of several open files in the session whose closure has not been handled properly, you can use the FILECLOSEALL subprogram to close all files opened in the session and resume file operations from the beginning.

	
If you are the creator of a DIRECTORY, or if you have system privileges, then use the CREATE OR REPLACE, DROP, and REVOKE statements in SQL with extreme caution.

If you, or other grantees of a particular directory object, have several open files in a session, then any of the preceding commands can adversely affect file operations. In the event of such abnormal termination, your only choice is to invoke a program or anonymous block that calls FILECLOSEALL, reopen your files, and restart your file operations.

	
All files opened during a user session are implicitly closed at the end of the session. However, Oracle strongly recommends that you close the files after both normal and abnormal termination of operations on the BFILE.

In the event of normal program termination, proper file closure ensures that the number of files that are open simultaneously in the session remains less than SESSION_MAX_OPEN_FILES.

In the event of abnormal program termination from a PL/SQL program, it is imperative that you provide an exception handler that ensures closure of all files opened in that PL/SQL program. This is necessary because after an exception occurs, only the exception handler has access to the BFILE variable in its most current state.

After the exception transfers program control outside the PL/SQL program block, all references to the open BFILEs are lost. The result is a larger open file count which may or may not exceed the SESSION_MAX_OPEN_FILES value.

For example, consider a READ operation past the end of the BFILE value, which generates a NO_DATA_FOUND exception:

-- This assumes a directory 'DDD' whose path is already known
DECLARE
 fil BFILE:= bfilename('DDD', 'filename.foo');
 pos INTEGER;
 amt BINARY_INTEGER;
 buf RAW(40);
BEGIN
 SELECT ad_graphic INTO fil FROM print_media WHERE product_id = 3106;
 dbms_lob.open(fil, dbms_lob.lob_readonly);
 amt := 40; pos := 1 + dbms_lob.getlength(fil); buf := '';
 dbms_lob.read(fil, amt, pos, buf);
 dbms_output.put_line('Read F1 past EOF: '||
 utl_raw.cast_to_varchar2(buf));
 dbms_lob.close(fil);
END;

ORA-01403: no data found
ORA-06512: at "SYS.DBMS_LOB", line 373
ORA-06512: at line 10

After the exception has occurred, the BFILE locator variable file goes out of scope, and no further operations on the file can be done using that variable. Therefore, the solution is to use an exception handler:

DECLARE
 fil BFILE;
 pos INTEGER;
 amt BINARY_INTEGER;
 buf RAW(40);
BEGIN
 SELECT ad_graphic INTO fil FROM print_media WHERE product_id = 3106;
 dbms_lob.open(fil, dbms_lob.lob_readonly);
 amt := 40; pos := 1 + dbms_lob.getlength(fil); buf := '';
 dbms_lob.read(fil, amt, pos, buf);
 dbms_output.put_line('Read F1 past EOF: '||
 utl_raw.cast_to_varchar2(buf));
 dbms_lob.close(fil);
 exception
 WHEN no_data_found
 THEN
 BEGIN
 dbms_output.put_line('End of File reached. Closing file');
 dbms_lob.fileclose(fil);
 -- or dbms_lob.filecloseall if appropriate
 END;
END;
 /

Statement processed.
End of File reached. Closing file

In general, you should ensure that files opened in a PL/SQL block using DBMS_LOB are closed before normal or abnormal termination of the block.

Maximum LOB Size

The maximum size for LOBs supported by the database is equal to the value of the blocksize of the tablespace the LOB column resides in times the value 232-1 (4294967295). This allows for a maximum LOB size ranging from 8 terabytes to 128 terabytes.

Maximum Buffer Size

The maximum buffer size, 32767 bytes, is represented by maxbufsize.

Exceptions

Table 82-8 DBMS_LOB Exceptions

	Exception	Code	Description
	
ACCESS_ERROR

	
22925

	
You are trying to write too much data to the LOB: LOB size is limited to 4 gigabytes.

	
BUFFERING_ENABLED

	
22279

	
Cannot perform operation with LOB buffering enabled

	
CONTENTTYPE_TOOLONG

	
43859

	
The length of the contenttype string exceeds the defined maximum. Modify the length of the contenttype string and retry the operation.

	
CONTENTTYPEBUF_WRONG

	
43862

	
The length of the contenttype buffer is less than defined constant. Modify the length of the contenttype buffer and retry the operation.

	
INVALID_ARGVAL

	
21560

	
The argument is expecting a non-NULL, valid value but the argument value passed in is NULL, invalid, or out of range.

	
INVALID_DIRECTORY

	
22287

	
The directory used for the current operation is not valid if being accessed for the first time, or if it has been modified by the DBA since the last access.

	
NO_DATA_FOUND

	
1403

	
ENDOFLOB indicator for looping read operations. This is not a hard error.

	
NOEXIST_DIRECTORY

	
22285

	
The directory leading to the file does not exist.

	
NOPRIV_DIRECTORY

	
22286

	
The user does not have the necessary access privileges on the directory or the file for the operation.

	
OPEN_TOOMANY

	
22290

	
The number of open files has reached the maximum limit.

	
OPERATION_FAILED

	
22288

	
The operation attempted on the file failed.

	
QUERY_WRITE

	
14553

	
Cannot perform a LOB write inside a query or PDML slave

	
SECUREFILE_BADLOB

	
43856

	
A non-SECUREFILE LOB type was used in a SECUREFILE only call

	
SECUREFILE_BADPARAM

	
43857

	
An invalid argument was passed to a SECUREFILE subprogram

	
SECUREFILE_MARKERASED

	
43861

	
The mark provided to a FRAGMENT_* operation has been deleted

	
SECUREFILE_OUTOFBOUNDS

	
43883

	
Attempted to perform a FRAGMENT_* operation past the LOB end

	
UNOPENED_FILE

	
22289

	
The file is not open for the required operation to be performed.

	
VALUE_ERROR

	
6502

	
PL/SQL error for invalid values to subprogram's parameters.

Summary of DBMS_LOB Subprograms

Table 82-9 DBMS_LOB Package Subprograms

	Subprogram	Description
	
APPEND Procedures

	
Appends the contents of the source LOB to the destination LOB

	
CLOSE Procedure

	
Closes a previously opened internal or external LOB

	
COMPARE Functions

	
Compares two entire LOBs or parts of two LOBs

	
CONVERTTOBLOB Procedure

	
Reads character data from a source CLOB or NCLOB instance, converts the character data to the specified character, writes the converted data to a destination BLOB instance in binary format, and returns the new offsets

	
CONVERTTOCLOB Procedure

	
Takes a source BLOB instance, converts the binary data in the source instance to character data using the specified character, writes the character data to a destination CLOB or NCLOB instance, and returns the new offsets

	
COPY Procedures

	
Copies all, or part, of the source LOB to the destination LOB

	
COPY_DBFS_LINK Procedures

	
Copies the DBFS link in the source LOB to the destination LOB

	
COPY_FROM_DBFS_LINK

	
Retrieves the data for the LOB from the DBFS store

	
CREATETEMPORARY Procedures

	
Creates a temporary BLOB or CLOB and its corresponding index in the user's default temporary tablespace

	
DBFS_LINK_GENERATE_PATH Functions

	
Returns a unique file path name for use in creating a DBFS Link

	
ERASE Procedures

	
Erases all or part of a LOB

	
FILECLOSE Procedure

	
Closes the file

	
FILECLOSEALL Procedure

	
Closes all previously opened files

	
FILEEXISTS Function

	
Checks if the file exists on the server

	
FILEGETNAME Procedure

	
Gets the directory object name and file name

	
FILEISOPEN Function

	
Checks if the file was opened using the input BFILE locators

	
FILEOPEN Procedure

	
Opens a file

	
FRAGMENT_DELETE Procedure

	
Deletes the data at the specified offset for the specified length from the LOB

	
FRAGMENT_INSERT Procedures

	
Inserts the specified data (limited to 32K) into the LOB at the specified offset

	
FRAGMENT_MOVE Procedure

	
Moves the amount of bytes (BLOB) or characters (CLOB/NCLOB) from the specified offset to the new offset specified

	
FRAGMENT_REPLACE Procedures

	
Replaces the data at the specified offset with the specified data (not to exceed 32k)

	
FREETEMPORARY Procedures

	
Frees the temporary BLOB or CLOB in the default temporary tablespace

	
GET_DBFS_LINK Functions

	
Returns the DBFS Link path associated with the specified SecureFile

	
GET_DBFS_LINK_STATE Procedures

	
Retrieves the current DBFS Link state of the specified SecureFile

	
GETCHUNKSIZE Functions

	
Returns the amount of space used in the LOB chunk to store the LOB value

	
GETCONTENTTYPE Functions

	
Returns the content ID string previously set by means of the SETCONTENTTYPE Procedure

	
GETLENGTH Functions

	
Gets the length of the LOB value

	
GETOPTIONS Functions

	
Obtains settings corresponding to the option_type field for a particular LOB

	
GET_STORAGE_LIMIT Function

	
Returns the storage limit for LOBs in your database configuration

	
INSTR Functions

	
Returns the matching position of the nth occurrence of the pattern in the LOB

	
ISOPEN Functions

	
Checks to see if the LOB was already opened using the input locator

	
ISTEMPORARY Functions

	
Checks if the locator is pointing to a temporary LOB

	
LOADBLOBFROMFILE Procedure

	
Loads BFILE data into an internal BLOB

	
LOADCLOBFROMFILE Procedure

	
Loads BFILE data into an internal CLOB

	
LOADFROMFILE Procedure

	
Loads BFILE data into an internal LOB

	
MOVE_TO_DBFS_LINK Procedures

	
Writes the specified SecureFile data to the DBFS store

	
OPEN Procedures

	
Opens a LOB (internal, external, or temporary) in the indicated mode

	
READ Procedures

	
Reads data from the LOB starting at the specified offset

	
SET_DBFS_LINK Procedures

	
Links the specified SecureFile to the specified path name. It does not copy the data to the path

	
SETCONTENTTYPE Procedure

	
Sets the content type string for the data in the LOB

	
SETOPTIONS Procedures

	
Enables CSCE features on a per-LOB basis, overriding the default LOB column settings

	
SUBSTR Functions

	
Returns part of the LOB value starting at the specified offset

	
TRIM Procedures

	
Trims the LOB value to the specified shorter length

	
WRITE Procedures

	
Writes data to the LOB from a specified offset

	
WRITEAPPEND Procedures

	
Writes a buffer to the end of a LOB

APPEND Procedures

This procedure appends the contents of a source internal LOB to a destination LOB. It appends the complete source LOB.

Syntax

DBMS_LOB.APPEND (
 dest_lob IN OUT NOCOPY BLOB,
 src_lob IN BLOB);

DBMS_LOB.APPEND (
 dest_lob IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 src_lob IN CLOB CHARACTER SET dest_lob%CHARSET);

Parameters

Table 82-10 APPEND Procedure Parameters

	Parameter	Description
	
dest_lob

	
Locator for the internal LOB to which the data is to be appended.

	
src_lob

	
Locator for the internal LOB from which the data is to be read.

Exceptions

Table 82-11 APPEND Procedure Exceptions

	Exception	Description
	
VALUE_ERROR

	
Either the source or the destination LOB is NULL.

	
QUERY_WRITE

	
Cannot perform a LOB write inside a query or PDML slave

	
BUFFERING_ENABLED

	
Cannot perform operation with LOB buffering enabled if buffering is enabled on either LOB

Usage Notes

	
It is not mandatory that you wrap the LOB operation inside the Open/Close interfaces. If you did not open the LOB before performing the operation, the functional and domain indexes on the LOB column are updated during the call. However, if you opened the LOB before performing the operation, you must close it before you commit or rollback the transaction. When an internal LOB is closed, it updates the functional and domain indexes on the LOB column.

If you do not wrap the LOB operation inside the Open/Close API, the functional and domain indexes are updated each time you write to the LOB. This can adversely affect performance. Therefore, it is recommended that you enclose write operations to the LOB within the OPEN or CLOSE statement.

	
If APPEND is called on a LOB that has been archived, it implicitly gets the LOB before the first byte is written

	
See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for additional details on usage of this procedure

CLOSE Procedure

This procedure closes a previously opened internal or external LOB.

Syntax

DBMS_LOB.CLOSE (
 lob_loc IN OUT NOCOPY BLOB);

DBMS_LOB.CLOSE (
 lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS);

DBMS_LOB.CLOSE (
 file_loc IN OUT NOCOPY BFILE);

Parameters

Table 82-12 CLOSE Procedure Parameters

	Parameter	Description
	
lob_loc

	
LOB locator. For more information, see Operational Notes.

Exceptions

No error is returned if the BFILE exists but is not opened. An error is returned if the LOB is not open.

Usage Notes

CLOSE requires a round-trip to the server for both internal and external LOBs. For internal LOBs, CLOSE triggers other code that relies on the close call, and for external LOBs (BFILEs), CLOSE actually closes the server-side operating system file.

It is not mandatory that you wrap all LOB operations inside the Open/Close interfaces. However, if you open a LOB, you must close it before you commit or rollback the transaction; an error is produced if you do not. When an internal LOB is closed, it updates the functional and domain indexes on the LOB column.

It is an error to commit the transaction before closing all opened LOBs that were opened by the transaction. When the error is returned, the openness of the open LOBs is discarded, but the transaction is successfully committed. Hence, all the changes made to the LOB and non-LOB data in the transaction are committed, but the domain and function-based indexes are not updated. If this happens, you should rebuild the functional and domain indexes on the LOB column.

	
See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for additional details on usage of this procedure

COMPARE Functions

This function compares two entire LOBs or parts of two LOBs.

Syntax

DBMS_LOB.COMPARE (
 lob_1 IN BLOB,
 lob_2 IN BLOB,
 amount IN INTEGER := DBMS_LOB.LOBMAXSIZE,
 offset_1 IN INTEGER := 1,
 offset_2 IN INTEGER := 1)
 RETURN INTEGER;

DBMS_LOB.COMPARE (
 lob_1 IN CLOB CHARACTER SET ANY_CS,
 lob_2 IN CLOB CHARACTER SET lob_1%CHARSET,
 amount IN INTEGER := DBMS_LOB.LOBMAXSIZE,
 offset_1 IN INTEGER := 1,
 offset_2 IN INTEGER := 1)
 RETURN INTEGER;

DBMS_LOB.COMPARE (
 lob_1 IN BFILE,
 lob_2 IN BFILE,
 amount IN INTEGER,
 offset_1 IN INTEGER := 1,
 offset_2 IN INTEGER := 1)
 RETURN INTEGER;

Pragmas

pragma restrict_references(COMPARE, WNDS, WNPS, RNDS, RNPS);

Parameters

Table 82-13 COMPARE Function Parameters

	Parameter	Description
	
lob_1

	
LOB locator of first target for comparison.

	
lob_2

	
LOB locator of second target for comparison.

	
amount

	
Number of bytes (for BLOBs) or characters (for CLOBs/NCLOBSs) to compare.

	
offset_1

	
Offset in bytes or characters on the first LOB (origin: 1) for the comparison.

	
offset_2

	
Offset in bytes or characters on the second LOB (origin: 1) for the comparison.

Return Values

	
INTEGER: 0 if the comparison succeeds, nonzero if not.

	
NULL, if any of amount, offset_1 or offset_2 is not a valid LOB offset value. A valid offset is within the range of 1 to LOBMAXSIZE inclusive.

Usage Notes

	
You can only compare LOBs of the same datatype (LOBs of BLOB type with other BLOBs, and CLOBs with CLOBs, and BFILEs with BFILEs). For BFILEs, the file must be already opened using a successful FILEOPEN operation for this operation to succeed.

	
COMPARE returns 0 if the data exactly matches over the range specified by the offset and amount parameters. COMPARE returns -1 if the first CLOB is less than the second, and 1 if it is greater.

	
For fixed-width n-byte CLOBs, if the input amount for COMPARE is specified to be greater than (DBMS_LOB.LOBMAXSIZE/n), then COMPARE matches characters in a range of size (DBMS_LOB.LOBMAXSIZE/n), or Max(length(clob1), length(clob2)), whichever is lesser.

	
If COMPARE is called on any LOB that has been archived, it implicitly gets the LOB before the compare begins.

Exceptions

Table 82-14 COMPARE Function Exceptions for BFILE operations

	Exception	Description
	
UNOPENED_FILE

	
File was not opened using the input locator.

	
NOEXIST_DIRECTORY

	
Directory does not exist.

	
NOPRIV_DIRECTORY

	
You do not have privileges for the directory.

	
INVALID_DIRECTORY

	
Directory has been invalidated after the file was opened.

	
INVALID_OPERATION

	
File does not exist, or you do not have access privileges on the file.

	
BUFFERING_ENABLED

	
Cannot perform operation with LOB buffering enabled if buffering is enabled on either LOB

	
See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for additional details on usage of this procedure

CONVERTTOBLOB Procedure

This procedure reads character data from a source CLOB or NCLOB instance, converts the character data to the character set you specify, writes the converted data to a destination BLOB instance in binary format, and returns the new offsets. You can use this interface with any combination of persistent or temporary LOB instances as the source or destination.

Syntax

DBMS_LOB.CONVERTTOBLOB(
 dest_lob IN OUT NOCOPY BLOB,
 src_clob IN CLOB CHARACTER SET ANY_CS,
 amount IN INTEGER,
 dest_offset IN OUT INTEGER,
 src_offset IN OUT INTEGER,
 blob_csid IN NUMBER,
 lang_context IN OUT INTEGER,
 warning OUT INTEGER);

Parameters

Table 82-15 CONVERTTOBLOB Procedure Parameters

	Parameter	Description
	
dest_lob

	
LOB locator of the destination LOB instance.

	
src_clob

	
LOB locator of the source LOB instance.

	
amount

	
Number of characters to convert from the source LOB.

If you want to copy the entire LOB, pass the constant DBMS_LOB.LOBMAXSIZE. If you pass any other value, it must be less than or equal to the size of the LOB.

	
dest_offset

	
(IN) Offset in bytes in the destination LOB for the start of the write. Specify a value of 1 to start at the beginning of the LOB.

(OUT) The new offset in bytes after the end of the write.

	
src_offset

	
(IN) Offset in characters in the source LOB for the start of the read.

(OUT) Offset in characters in the source LOB right after the end of the read.

	
blob_csid

	
Desired character set ID of the converted data.

	
lang_context

	
(IN) Language context, such as shift status, for the current conversion.

(OUT) The language context at the time when the current conversion is done.

This information is returned so you can use it for subsequent conversions without losing or misinterpreting any source data. For the very first conversion, or if do not care, use the default value of zero.

	
warning

	
(OUT) Warning message. This parameter indicates when something abnormal happened during the conversion. You are responsible for checking the warning message.

Currently, the only possible warning is — inconvertible character. This occurs when the character in the source cannot be properly converted to a character in destination. The default replacement character (for example, '?') is used in place of the inconvertible character. The return value of this error message is defined as the constant warn_inconvertible_char in the DBMS_LOB package.

Usage Notes

Preconditions

Before calling the CONVERTTOBLOB procedure, the following preconditions must be met:

	
Both the source and destination LOB instances must exist.

	
If the destination LOB is a persistent LOB, the row must be locked. To lock the row, select the LOB using the FOR UPDATE clause of the SELECT statement.

Constants and Defaults

All parameters are required. You must pass a variable for each OUT or IN OUT parameter. You must pass either a variable or a value for each IN parameter.

Table 82-16 gives a summary of typical values for each parameter. The first column lists the parameter, the second column lists the typical value, and the last column describes the result of passing the value. Note that constants are used for some values. These constants are defined in the dbmslob.sql package specification file.

Table 82-16 DBMS_LOB.CONVERTTOBLOB Typical Values

	Parameter	Value	Description
	
amount

	
LOBMAXSIZE (IN)

	
convert the entire file

	
dest_offset

	
1 (IN)

	
start from the beginning

	
src_offset

	
1 (IN)

	
start from the beginning

	
blob_csid

	
DEFAULT_CSID (IN)

	
default CSID, use same CSID as source LOB

	
lang_context

	
DEFAULT_LANG_CTX (IN)

	
default language context

	
warning

	
NO_WARNING (OUT)

WARN_INCONVERTIBLE_CHAR (OUT)

	
no warning message, success

character in source cannot be properly converted

General Notes

	
You must specify the desired character set for the destination LOB in the blob_csid parameter. You can pass a zero value for blob_csid. When you do so, the database assumes that the desired character set is the same as the source LOB character set.

	
You must specify the offsets for both the source and destination LOBs, and the number of characters to copy from the source LOB. The amount and src_offset values are in characters and the dest_offset is in bytes. To convert the entire LOB, you can specify LOBMAXSIZE for the amount parameter.

	
CONVERTTOBLOB gets the source and/or destination LOBs as necessary prior to conversion and write of the data.

Exceptions

Table 82-17 gives possible exceptions this procedure can throw. The first column lists the exception string and the second column describes the error conditions that can cause the exception.

Table 82-17 CONVERTTOBLOB Procedure Exceptions

	Exception	Description
	
VALUE_ERROR

	
Any of the input parameters are NULL or INVALID.

	
INVALID_ARGVAL

	
One or more of the following:

- src_offset or dest_offset < 1.

- src_offset or dest_offset > LOBMAXSIZE.

- amount < 1.

- amount > LOBMAXSIZE.

	
See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for more information on using LOBs in application development

CONVERTTOCLOB Procedure

This procedure takes a source BLOB instance, converts the binary data in the source instance to character data using the character set you specify, writes the character data to a destination CLOB or NCLOB instance, and returns the new offsets. You can use this interface with any combination of persistent or temporary LOB instances as the source or destination.

Syntax

DBMS_LOB.CONVERTTOCLOB(
 dest_lob IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 src_blob IN BLOB,
 amount IN INTEGER,
 dest_offset IN OUT INTEGER,
 src_offset IN OUT INTEGER,
 blob_csid IN NUMBER,
 lang_context IN OUT INTEGER,
 warning OUT INTEGER);

Parameters

Table 82-18 CONVERTTOCLOB Procedure Parameters

	Parameter	Description
	
dest_lob

	
LOB locator of the destination LOB instance.

	
src_blob

	
LOB locator of the source LOB instance.

	
amount

	
Number of bytes to convert from the source LOB.

If you want to copy the entire BLOB, pass the constant DBMS_LOB.LOBMAXSIZE. If you pass any other value, it must be less than or equal to the size of the BLOB.

	
dest_offset

	
(IN) Offset in characters in the destination LOB for the start of the write. Specify a value of 1 to start at the beginning of the LOB.

(OUT) The new offset in characters after the end of the write. This offset always points to the beginning of the first complete character after the end of the write.

	
src_offset

	
(IN) Offset in bytes in the source LOB for the start of the read.

(OUT) Offset in bytes in the source LOB right after the end of the read.

	
blob_csid

	
The character set ID of the source data

	
lang_context

	
(IN) Language context, such as shift status, for the current conversion.

(OUT) The language context at the time when the current conversion is done.

This information is returned so you can use it for subsequent conversions without losing or misinterpreting any source data. For the very first conversion, or if do not care, use the default value of zero.

	
warning

	
Warning message. This parameter indicates when something abnormal happened during the conversion. You are responsible for checking the warning message.

Currently, the only possible warning is — inconvertible character. This occurs when the character in the source cannot be properly converted to a character in destination. The default replacement character (for example, '?') is used in place of the inconvertible character. The return value of this error message is defined as the constant warn_inconvertible_char in the DBMS_LOB package.

Usage Notes

Preconditions

Before calling the CONVERTTOCLOB procedure, the following preconditions must be met:

	
Both the source and destination LOB instances must exist.

	
If the destination LOB is a persistent LOB, the row must be locked before calling the CONVERTTOCLOB procedure. To lock the row, select the LOB using the FOR UPDATE clause of the SELECT statement.

Constants and Defaults

All parameters are required. You must pass a variable for each OUT or IN OUT parameter. You must pass either a variable or a value for each IN parameter.

Table 82-19 gives a summary of typical values for each parameter. The first column lists the parameter, the second column lists the typical value, and the last column describes the result of passing the value. Note that constants are used for some values. These constants are defined in the dbmslob.sql package specification file.

Table 82-19 DBMS_LOB.CONVERTTOCLOB Typical Values

	Parameter	Value	Description
	
amount

	
LOBMAXSIZE (IN)

	
convert the entire file

	
dest_offset

	
1 (IN)

	
start from the beginning

	
src_offset

	
1 (IN)

	
start from the beginning

	
csid

	
DEFAULT_CSID (IN)

	
default CSID, use destination CSID

	
lang_context

	
DEFAULT_LANG_CTX (IN)

	
default language context

	
warning

	
NO_WARNING (OUT)

WARN_INCONVERTIBLE_CHAR (OUT)

	
no warning message, success

character in source cannot be properly converted

General Notes

	
You must specify the desired character set for the destination LOB in the blob_csid parameter. You can pass a zero value for blob_csid. When you do so, the database assumes that the desired character set is the same as the source LOB character set.

	
You must specify the offsets for both the source and destination LOBs, and the number of characters to copy from the source LOB. The amount and src_offset values are in characters and the dest_offset is in bytes. To convert the entire LOB, you can specify LOBMAXSIZE for the amount parameter.

	
CONVERTTOCLOB gets the source and/or destination LOBs as necessary prior to conversion and write of the data.

Exceptions

Table 82-20 CONVERTTOCLOB Procedure Exceptions

	Exception	Description
	
VALUE_ERROR

	
Any of the input parameters are NULL or INVALID.

	
INVALID_ARGVAL

	
One or more of the following:

- src_offset or dest_offset < 1.

- src_offset or dest_offset > LOBMAXSIZE.

- amount < 1.

- amount > LOBMAXSIZE.

	
See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for more information on using LOBs in application development

COPY Procedures

This procedure copies all, or a part of, a source internal LOB to a destination internal LOB. You can specify the offsets for both the source and destination LOBs, and the number of bytes or characters to copy.

Syntax

DBMS_LOB.COPY (
 dest_lob IN OUT NOCOPY BLOB,
 src_lob IN BLOB,
 amount IN INTEGER,
 dest_offset IN INTEGER := 1,
 src_offset IN INTEGER := 1);

DBMS_LOB.COPY (
 dest_lob IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 src_lob IN CLOB CHARACTER SET dest_lob%CHARSET,
 amount IN INTEGER,
 dest_offset IN INTEGER := 1,
 src_offset IN INTEGER := 1);

Parameters

Table 82-21 COPY Procedure Parameters

	Parameter	Description
	
dest_lob

	
LOB locator of the copy target.

	
src_lob

	
LOB locator of source for the copy.

	
amount

	
Number of bytes (for BLOBs) or characters (for CLOBs) to copy.

	
dest_offset

	
Offset in bytes or characters in the destination LOB (origin: 1) for the start of the copy.

	
src_offset

	
Offset in bytes or characters in the source LOB (origin: 1) for the start of the copy.

Exceptions

Table 82-22 COPY Procedure Exceptions

	Exception	Description
	
VALUE_ERROR

	
Any of the input parameters are NULL or invalid.

	
INVALID_ARGVAL

	
Either:

- src_offset or dest_offset < 1

- src_offset or dest_offset > LOBMAXSIZE

- amount < 1

- amount > LOBMAXSIZE

	
QUERY_WRITE

	
Cannot perform a LOB write inside a query or PDML slave

	
BUFFERING_ENABLED

	
Cannot perform operation with LOB buffering enabled if buffering is enabled on either LOB

Usage Notes

	
If the offset you specify in the destination LOB is beyond the end of the data currently in this LOB, then zero-byte fillers or spaces are inserted in the destination BLOB or CLOB respectively. If the offset is less than the current length of the destination LOB, then existing data is overwritten.

	
It is not an error to specify an amount that exceeds the length of the data in the source LOB. Thus, you can specify a large amount to copy from the source LOB, which copies data from the src_offset to the end of the source LOB.

	
It is not mandatory that you wrap the LOB operation inside the Open/Close interfaces. If you did not open the LOB before performing the operation, the functional and domain indexes on the LOB column are updated during the call. However, if you opened the LOB before performing the operation, you must close it before you commit or rollback the transaction. When an internal LOB is closed, it updates the functional and domain indexes on the LOB column.

	
If you do not wrap the LOB operation inside the Open/Close API, the functional and domain indexes are updated each time you write to the LOB. This can adversely affect performance. Therefore, it is recommended that you enclose write operations to the LOB within the OPEN or CLOSE statement.

	
Prior to copy, the source and destination LOBs are gotten, if they are currently archived. For a complete over-write, the destination LOB is not be retrieved.

	
See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for additional details on usage of this procedure

COPY_DBFS_LINK Procedures

This procedure copies the DBFS link in the source LOB to the destination LOB.

Syntax

DBMS_LOB.COPY_DBFS_LINK (
 lob_loc_dst IN OUT BLOB,
 lob_loc_src IN BLOB,
 flags IN PLS_INTEGER DEFAULT DBFS_LINK_NOCACHE);

DBMS_LOB.COPY_DBFS_LINK (
 lob_loc_dst IN OUT CLOB CHARACTER SET ANY_CS,
 lob_loc_src IN CLOB CHARACTER SET ANY_CS,
 flags IN PLS_INTEGER DEFAULT DBFS_LINK_NOCACHE);

Parameters

Table 82-23 COPY_DBFS_LINK Procedure Parameters

	Parameter	Description
	
lob_loc_dst

	
LOB to be made to reference the same storage data as lob_loc_src

	
lob_loc_src

	
LOB from which to copy the reference

	
flags

	
Options to COPY_DBFS_LINK:

	
DBFS_LINK_NOCACHE specifies to only copy the DBFS Link

	
DBFS_LINK_CACHE specifies to copy the DBFS Link and read the data into the database LOB specified by lob_loc_dst so that the data is cached

Exceptions

Table 82-24 COPY_DBFS_LINK Procedure Exceptions

	Exception	Description
	
SECUREFILE_BADLOB

	
Either lob_loc_src or lob_loc_dst is not a SECUREFILE

	
INVALID_ARGVAL

	
lob_loc_src LOB has not been archived

	
ORA-01555

	
If the source LOB has been retrieved, never archived, or if the LOB has been migrated in and out (modified or not) since the locator was gotten.

COPY_FROM_DBFS_LINK

This procedure reads the archived data from the DBFS store and writes it back into the LOB.

Syntax

DBMS_LOB.COPY_FROM_DBFS_LINK (
 lob_loc IN OUT BLOB);

DBMS_LOB.COPY_FROM_DBFS_LINK (
 lob_loc IN OUT CLOB CHARACTER SET ANY_CS);

Parameters

Table 82-25 COPY_FROM_DBFS_LINK Procedure Parameters

	Parameter	Description
	
lob_loc

	
LOB to be retrieved from the archive

Usage Note

Note that COPY_FROM_DBFS_LINK does not remove the underlying DBFS file.

Exceptions

Table 82-26 COPY_FROM_DBFS_LINK Procedure Exceptions

	Exception	Description
	
SECUREFILE_BADLOB

	
lob_loc is not a SECUREFILE

	
ORA-01555

	
If the LOB has already been retrieved and has been modified since retrieval, if the LOB has been migrated in and out (modified or not) since the locator was retrieved

CREATETEMPORARY Procedures

This procedure creates a temporary BLOB or CLOB and its corresponding index in your default temporary tablespace.

Syntax

DBMS_LOB.CREATETEMPORARY (
 lob_loc IN OUT NOCOPY BLOB,
 cache IN BOOLEAN,
 dur IN PLS_INTEGER := DBMS_LOB.SESSION);

DBMS_LOB.CREATETEMPORARY (
 lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 cache IN BOOLEAN,
 dur IN PLS_INTEGER := 10);

Parameters

Table 82-27 CREATETEMPORARY Procedure Parameters

	Parameter	Description
	
lob_loc

	
LOB locator. For more information, see Operational Notes.

	
cache

	
Specifies if LOB should be read into buffer cache or not.

	
dur

	
1 of 3 predefined duration values (SESSION, TRANSACTION, or CALL) which specifies a hint as to whether the temporary LOB is cleaned up at the end of the session, transaction or call.

If dur is omitted, then the session duration is used.

	
See Also:

	
Oracle Database SecureFiles and Large Objects Developer's Guide for additional details on usage of this procedure

	
Oracle Database PL/SQL Language Reference for more information about NOCOPY and passing temporary lobs as parameters

DBFS_LINK_GENERATE_PATH Functions

This subprogram returns a unique file path name for use in creating a DBFS Link.

Syntax

DBMS_LOB.DBFS_LINK_GENERATE_PATH (
 lob_loc IN BLOB,
 storage_dir IN VARCHAR2)
 RETURN VARCHAR2;

DBMS_LOB.DBFS_LINK_GENERATE_PATH (
 lob_loc IN CLOB CHARACTER SET ANY_CS,
 storage_dir IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Table 82-28 DBFS_LINK_GENERATE_PATH Function Parameters

	Parameter	Description
	
lob_loc

	
LOB to be retrieved from DBFS

	
storage_dir

	
DBFS directory that will be the parent directory of the file

Exceptions

Table 82-29 DBFS_LINK_GENERATE_PATH Function Exceptions

	Exception	Description
	
SECUREFILE_WRONGTYPE

	
lob_loc is not a SECUREFILE

ERASE Procedures

This procedure erases an entire internal LOB or part of an internal LOB.

Syntax

DBMS_LOB.ERASE (
 lob_loc IN OUT NOCOPY BLOB,
 amount IN OUT NOCOPY INTEGER,
 offset IN INTEGER := 1);

DBMS_LOB.ERASE (
 lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 amount IN OUT NOCOPY INTEGER,
 offset IN INTEGER := 1);

Parameters

Table 82-30 ERASE Procedure Parameters

	Parameter	Description
	
lob_loc

	
Locator for the LOB to be erased.For more information, see Operational Notes.

	
amount

	
Number of bytes (for BLOBs or BFILES) or characters (for CLOBs or NCLOBs) to be erased.

	
offset

	
Absolute offset (origin: 1) from the beginning of the LOB in bytes (for BLOBs) or characters (CLOBs).

Usage Notes

	
When data is erased from the middle of a LOB, zero-byte fillers or spaces are written for BLOBs or CLOBs respectively.

	
The actual number of bytes or characters erased can differ from the number you specified in the amount parameter if the end of the LOB value is reached before erasing the specified number. The actual number of characters or bytes erased is returned in the amount parameter.

	
ERASE gets the LOB if it is archived, unless the erase covers the entire LOB.

	
Note:

The length of the LOB is not decreased when a section of the LOB is erased. To decrease the length of the LOB value, see the "TRIM Procedures".

Exceptions

Table 82-31 ERASE Procedure Exceptions

	Exception	Description
	
VALUE_ERROR

	
Any input parameter is NULL.

	
INVALID_ARGVAL

	
Either:

- amount < 1 or amount > LOBMAXSIZE

- offset < 1 or offset > LOBMAXSIZE

	
QUERY_WRITE

	
Cannot perform a LOB write inside a query or PDML slave

	
BUFFERING_ENABLED

	
Cannot perform operation with LOB buffering enabled if buffering is enabled on the LOB

Usage Notes

It is not mandatory that you wrap the LOB operation inside the Open/Close interfaces. If you did not open the LOB before performing the operation, the functional and domain indexes on the LOB column are updated during the call. However, if you opened the LOB before performing the operation, you must close it before you commit or rollback the transaction. When an internal LOB is closed, it updates the functional and domain indexes on the LOB column.

If you do not wrap the LOB operation inside the Open/Close API, the functional and domain indexes are updated each time you write to the LOB. This can adversely affect performance. Therefore, it is recommended that you enclose write operations to the LOB within the OPEN or CLOSE statement.

	
See Also:

	
"TRIM Procedures"

	
Oracle Database SecureFiles and Large Objects Developer's Guide for additional details on usage of this procedure

FILECLOSE Procedure

This procedure closes a BFILE that has already been opened through the input locator.

	
Note:

The database has only read-only access to BFILEs. This means that BFILEs cannot be written through the database.

Syntax

DBMS_LOB.FILECLOSE (
 file_loc IN OUT NOCOPY BFILE);

Parameters

Table 82-32 FILECLOSE Procedure Parameters

	Parameter	Description
	
file_loc

	
Locator for the BFILE to be closed.

Exceptions

Table 82-33 FILECLOSE Procedure Exceptions

	Exception	Description
	
VALUE_ERROR

	
NULL input value for file_loc.

	
UNOPENED_FILE

	
File was not opened with the input locator.

	
NOEXIST_DIRECTORY

	
Directory does not exist.

	
NOPRIV_DIRECTORY

	
You do not have privileges for the directory.

	
INVALID_DIRECTORY

	
Directory has been invalidated after the file was opened.

	
INVALID_OPERATION

	
File does not exist, or you do not have access privileges on the file.

	
See Also:

	
"FILEOPEN Procedure"

	
"FILECLOSEALL Procedure"

	
Oracle Database SecureFiles and Large Objects Developer's Guide for additional details on usage of this procedure

FILECLOSEALL Procedure

This procedure closes all BFILEs opened in the session.

Syntax

DBMS_LOB.FILECLOSEALL;

Exceptions

Table 82-34 FILECLOSEALL Procedure Exception

	Exception	Description
	
UNOPENED_FILE

	
No file has been opened in the session.

	
See Also:

	
"FILEOPEN Procedure"

	
"FILECLOSE Procedure"

	
Oracle Database SecureFiles and Large Objects Developer's Guide for additional details on usage of this procedure

FILEEXISTS Function

This function finds out if a specified BFILE locator points to a file that actually exists on the server's file system.

Syntax

DBMS_LOB.FILEEXISTS (
 file_loc IN BFILE)
 RETURN INTEGER;

Pragmas

pragma restrict_references(FILEEXISTS, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 82-35 FILEEXISTS Function Parameter

	Parameter	Description
	
file_loc

	
Locator for the BFILE.

Return Values

Table 82-36 FILEEXISTS Function Return Values

	Return	Description
	
0

	
Physical file does not exist.

	
1

	
Physical file exists.

Exceptions

Table 82-37 FILEEXISTS Function Exceptions

	Exception	Description
	
NOEXIST_DIRECTORY

	
Directory does not exist.

	
NOPRIV_DIRECTORY

	
You do not have privileges for the directory.

	
INVALID_DIRECTORY

	
Directory has been invalidated after the file was opened.

	
See Also:

	
"FILEISOPEN Function".

	
Oracle Database SecureFiles and Large Objects Developer's Guide for additional details on usage of this procedure

FILEGETNAME Procedure

This procedure determines the directory object and filename, given a BFILE locator. This function only indicates the directory object name and filename assigned to the locator, not if the physical file or directory actually exists.

The maximum constraint values for the dir_alias buffer is 30, and for the entire path name, it is 2000.

Syntax

DBMS_LOB.FILEGETNAME (
 file_loc IN BFILE,
 dir_alias OUT VARCHAR2,
 filename OUT VARCHAR2);

Parameters

Table 82-38 FILEGETNAME Procedure Parameters

	Parameter	Description
	
file_loc

	
Locator for the BFILE

	
dir_alias

	
Directory object name

	
filename

	
Name of the BFILE

Exceptions

Table 82-39 FILEGETNAME Procedure Exceptions

	Exception	Description
	
VALUE_ERROR

	
Any of the input parameters are NULL or INVALID.

	
INVALID_ARGVAL

	
dir_alias or filename are NULL.

	
See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for additional details on usage of this procedure

FILEISOPEN Function

This function finds out whether a BFILE was opened with the specified FILE locator.

Syntax

DBMS_LOB.FILEISOPEN (
 file_loc IN BFILE)
 RETURN INTEGER;

Pragmas

PRAGMA RESTRICT_REFERENCES(fileisopen, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 82-40 FILEISOPEN Function Parameter

	Parameter	Description
	
file_loc

	
Locator for the BFILE.

Return Values

INTEGER: 0 = file is not open, 1 = file is open

Usage Notes

If the input FILE locator was never passed to the FILEOPEN procedure, then the file is considered not to be opened by this locator. However, a different locator may have this file open. In other words, openness is associated with a specific locator.

Exceptions

Table 82-41 FILEISOPEN Function Exceptions

	Exception	Description
	
NOEXIST_DIRECTORY

	
Directory does not exist.

	
NOPRIV_DIRECTORY

	
You do not have privileges for the directory.

	
INVALID_DIRECTORY

	
Directory has been invalidated after the file was opened.

	
See Also:

	
"FILEEXISTS Function"

	
Oracle Database SecureFiles and Large Objects Developer's Guide for additional details on usage of this procedure

FILEOPEN Procedure

This procedure opens a BFILE for read-only access. BFILE data may not be written through the database.

Syntax

DBMS_LOB.FILEOPEN (
 file_loc IN OUT NOCOPY BFILE,
 open_mode IN BINARY_INTEGER := file_readonly);

Parameters

Table 82-42 FILEOPEN Procedure Parameters

	Parameter	Description
	
file_loc

	
Locator for the BFILE.

	
open_mode

	
File access is read-only.

Exceptions

Table 82-43 FILEOPEN Procedure Exceptions

	Exception	Description
	
VALUE_ERROR

	
file_loc or open_mode is NULL.

	
INVALID_ARGVAL

	
open_mode is not equal to FILE_READONLY.

	
OPEN_TOOMANY

	
Number of open files in the session exceeds session_max_open_files.

	
NOEXIST_DIRECTORY

	
Directory associated with file_loc does not exist.

	
INVALID_DIRECTORY

	
Directory has been invalidated after the file was opened.

	
INVALID_OPERATION

	
File does not exist, or you do not have access privileges on the file.

	
See Also:

	
"FILECLOSE Procedure"

	
"FILECLOSEALL Procedure"

	
Oracle Database SecureFiles and Large Objects Developer's Guide for additional details on usage of this procedure

FRAGMENT_DELETE Procedure

This procedure deletes the data at the specified offset for the specified length from the LOB without having to rewrite all the data in the LOB following the specified offset.

Syntax

DBMS_LOB.FRAGMENT_DELETE (
 lob_loc IN OUT NOCOPY BLOB,
 amount IN INTEGER,
 offset IN INTEGER);

DBMS_LOB.FRAGMENT_DELETE (
 lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 amount IN INTEGER,
 offset IN INTEGER);

Parameters

Table 82-44 FRAGMENT_DELETE Procedure Parameters

	Parameter	Description
	
lob_loc

	
LOB locator. For more information, see Operational Notes.

	
amount

	
Number of bytes (BLOB) or characters (CLOB/NCLOB) to be removed from the LOB

	
offset

	
Offset into the LOB in bytes (BLOB) or characters (CLOB/NCLOB) to begin the deletion

Exceptions

Table 82-45 FRAGMENT_DELETE Procedure Exceptions

	Exception	Description
	
INVALID_ARGVAL

	
A parameter value was invalid

	
QUERY_WRITE

	
Cannot perform operation during a query

	
BUFFERING_ENABLED

	
Cannot perform operation with LOB buffering enabled

	
SECUREFILE_BADLOB

	
A non-SECUREFILE LOB was used in a SECUREFILE LOB only call

	
SECUREFILE_OUTOFBOUNDS

	
Attempted to perform a FRAGMENT_* operation past LOB end

FRAGMENT_INSERT Procedures

This procedure inserts the specified data (limited to 32K) into the LOB at the specified offset.

Syntax

DBMS_LOB.FRAGMENT_INSERT (
 lob_loc IN OUT NOCOPY BLOB,
 amount IN INTEGER,
 offset IN INTEGER,
 buffer IN RAW);

DBMS_LOB.FRAGMENT_INSERT (
 lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 amount IN INTEGER,
 offset IN INTEGER,
 buffer IN VARCHAR2 CHARACTER SET lob_loc%CHARSET);

Parameters

Table 82-46 FRAGMENT_INSERT Procedure Parameters

	Parameter	Description
	
lob_loc

	
LOB locator.For more information, see Operational Notes.

	
amount

	
Number of bytes (BLOB) or characters (CLOB/NCLOB) to be inserted into the LOB

	
offset

	
Offset into the LOB in bytes (BLOB) or characters (CLOB/NCLOB) to begin the insertion

	
buffer

	
Data to insert into the LOB

Exceptions

Table 82-47 FRAGMENT_INSERT Procedure Exceptions

	Exception	Description
	
INVALID_ARGVAL

	
A parameter value was invalid

	
QUERY_WRITE

	
Cannot perform operation during a query

	
BUFFERING_ENABLED

	
Cannot perform operation with LOB buffering enabled

	
SECUREFILE_BADLOB

	
A non-SECUREFILE LOB was used in a SECUREFILE LOB only call

	
SECUREFILE_OUTOFBOUNDS

	
Attempted to perform a FRAGMENT_* operation past LOB end

Usage Notes

FRAGMENT_INSERT gets the LOB, if necessary, before performing operations on the LOB.

FRAGMENT_MOVE Procedure

This procedure moves the amount of bytes (BLOB) or characters (CLOB/NCLOB) from the specified offset to the new offset specified.

Syntax

DBMS_LOB.FRAGMENT_MOVE (
 lob_loc IN OUT NOCOPY BLOB,
 amount IN INTEGER,
 src_offset IN INTEGER,
 dest_offset IN INTEGER);

DBMS_LOB.FRAGMENT_MOVE (
 lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 amount IN INTEGER,
 src_offset IN INTEGER,
 dest_offset IN INTEGER);

Parameters

Table 82-48 FRAGMENT_MOVE Procedure Parameters

	Parameter	Description
	
lob_loc

	
LOB locator. For more information, see Operational Notes.

	
amount

	
Number of bytes (BLOB) or characters (CLOB/NCLOB) to be moved in the LOB

	
src_offset

	
Beginning offset into the LOB in bytes (BLOB) or characters (CLOB/NCLOB) to put the data

	
dest_offset

	
Beginning offset into the LOB in bytes (BLOB) or characters (CLOB/NCLOB) to remove the data

Exceptions

Table 82-49 FRAGMENT_MOVE Procedure Exceptions

	Exception	Description
	
INVALID_ARGVAL

	
A parameter value was invalid

	
QUERY_WRITE

	
Cannot perform operation during a query

	
BUFFERING_ENABLED

	
Cannot perform operation with LOB buffering enabled

	
SECUREFILE_BADLOB

	
A non-SECUREFILE LOB was used in a SECUREFILE LOB only call

	
SECUREFILE_OUTOFBOUNDS

	
Attempted to perform a FRAGMENT_* operation past LOB end

Usage Notes

	
All offsets are pre-move offsets.

	
Offsets of more than 1 past the end of the LOB are not permitted.

	
FRAGMENT_MOVE gets the LOB, if necessary, before performing operations on the LOB.

FRAGMENT_REPLACE Procedures

This procedure replaces the data at the specified offset with the specified data (not to exceed 32k).

Syntax

DBMS_LOB.FRAGMENT_REPLACE (
 lob_loc IN OUT NOCOPY BLOB,
 old_amount IN INTEGER,
 new_amount IN INTEGER,
 offset IN INTEGER,
 buffer IN RAW);

DBMS_LOB.FRAGMENT_REPLACE (
 lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS, old_amount IN INTEGER,
 new_amount IN INTEGER,
 offset IN INTEGER,
 buffer IN VARCHAR2 CHARACTER SET lob_loc%CHARSET);

Parameters

Table 82-50 FRAGMENT_REPLACE Function Parameters

	Parameter	Description
	
lob_loc

	
LOB locator. For more information, see Operational Notes.

	
old_amount

	
Number of bytes (BLOB) or characters (CLOB/NCLOB) to be replaced in the LOB

	
new_amount

	
Number of bytes (BLOB) or characters (CLOB/NCLOB) to written to the LOB

	
offset

	
Beginning offset into the LOB in bytes (BLOB) or characters (CLOB/NCLOB) to put the data

	
buffer

	
Data to insert into the LOB

Exceptions

Table 82-51 FRAGMENT_REPLACE Procedure Exceptions

	Exception	Description
	
INVALID_ARGVAL

	
A parameter value was invalid

	
QUERY_WRITE

	
Cannot perform operation during a query

	
BUFFERING_ENABLED

	
Cannot perform operation with LOB buffering enabled

	
SECUREFILE_BADLOB

	
A non-SECUREFILE LOB was used in a SECUREFILE LOB only call

	
SECUREFILE_OUTOFBOUNDS

	
Attempted to perform a FRAGMENT_* operation past LOB end

Usage Notes

	
Invoking this procedure is equivalent to deleting the old amount of bytes/characters at offset and then inserting the new amount of bytes/characters at offset.

	
FRAGMENT_REPLACE gets the LOB, if necessary, before performing operations on the LOB.

FREETEMPORARY Procedures

This procedure frees the temporary BLOB or CLOB in the default temporary tablespace.

Syntax

DBMS_LOB.FREETEMPORARY (
 lob_loc IN OUT NOCOPY BLOB);

DBMS_LOB.FREETEMPORARY (
 lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS);

Parameters

Table 82-52 FREETEMPORARY Procedure Parameters

	Parameter	Description
	
lob_loc

	
LOB locator.For more information, see Operational Notes.

Usage Notes

	
When a new temporary LOB is created, and there is currently no temporary LOB in use with the same duration (session, transaction, call), a new temporary LOB segment is created. When the temporary LOB is freed, the space it consumed is released to the temporary segment. If there are no other temporary LOBs for the same duration, the temporary segment is also freed.

	
After the call to FREETEMPORARY, the LOB locator that was freed is marked as invalid.

	
If an invalid LOB locator is assigned to another LOB locator using OCILobLocatorAssign in OCI or through an assignment operation in PL/SQL, then the target of the assignment is also freed and marked as invalid.

	
See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for additional details on usage of this procedure

GET_DBFS_LINK Functions

This function returns the DBFS Link path associated with the specified SecureFile.

Syntax

DBMS_LOB.GET_DBFS_LINK (
 lob_loc IN BLOB,
 storage_path OUT VARCHAR2(DBFS_LINK_PATH_MAX_SIZE),
 lob_length OUT NUMBER);

DBMS_LOB.GET_DBFS_LINK (
 lob_loc IN CLOB CHARACTER SET ANY_CS,
 storage_path OUT VARCHAR2(DBFS_LINK_PATH_MAX_SIZE),
 lob_length OUT NUMBER);

Parameters

Table 82-53 GET_DBFS_LINK Function Parameters

	Parameter	Description
	
lob_loc

	
LOB to be retrieved from DBFS

	
storage_path

	
Path where the LOB is stored in DBFS

	
lob_length

	
LOB length at the time of write to DBFS

Return Values

The Archive ID

Exceptions

Table 82-54 GET_DBFS_LINK Function Exceptions

	Exception	Description
	
SECUREFILE_BADLOB

	
lob_loc is not a SECUREFILE

	
ORA-01555

	
If the LOB has already been retrieved and has been modified since retrieval, if the LOB has been migrated in and out (modified or not) since the locator was retrieved

GET_DBFS_LINK_STATE Procedures

This procedure retrieves the current DBFS Link state of the specified SecureFile.

Syntax

DBMS_LOB.GET_DBFS_LINK_STATE (
 lob_loc IN BLOB,
 storage_path OUT VARCHAR2(DBFS_LINK_PATH_MAX_SIZE),
 state OUT NUMBER,
 cached OUT BOOLEAN);

DBMS_LOB.GET_DBFS_LINK_STATE (
 lob_loc IN CLOB CHARACTER SET ANY_CS,
 storage_path OUT VARCHAR2(DBFS_LINK_PATH_MAX_SIZE),
 state OUT NUMBER,
 cached OUT BOOLEAN);

Parameters

Table 82-55 GET_DBFS_LINK_STATE Procedure Parameters

	Parameter	Description
	
lob_loc

	
LOB to be retrieved from the archive

	
storage_path

	
Path where the LOB is stored in DBFS

	
state

	
One of DBFS_LINK_NEVER, DBFS_LINK_NO or DBFS_LINK_YES

	
cached

	
If the LOB is archived and the data was specified to be cashed on put

Exceptions

Table 82-56 GET_DBFS_LINK_STATE Procedure Exceptions

	Exception	Description
	
SECUREFILE_BADLOB

	
lob_loc is not a SECUREFILE

Usage Notes

	
If the LOB has never been archived, state is set to DBMS_LOB.DBFS_LINK_NEVER. If the LOB has been archived, state is set to DBMS_LOB.DBFS_LINK_YES. If the LOB has been previously retrieved from the archive, state is set to DBFS_LINK_NO.

	
If the LOB was archived, but the data was left in the RDBMS, cached is set to TRUE. Cached is set to FALSE if the data was removed after the put, and NULL if state is DBMS_LOB.DBFS_LINK_NEVER.

GETCONTENTTYPE Functions

This procedure returns the content type string previously set by means of the SETCONTENTTYPE Procedure.

Syntax

DBMS_LOB.GETCONTENTTYPE (
 lob_loc IN BLOB)
 RETURN VARCHAR2;

DBMS_LOB.GETCONTENTTYPE (
 lob_loc IN CLOB CHARACTER SET ANY_CS)
 RETURN VARCHAR2;

Pragmas

PRAGMA RESTRICT_REFERENCES(getcontenttype, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 82-57 GETCONTENTTYPE Function Parameters

	Parameter	Description
	
lob_loc

	
LOB whose content type is to be retrieved

Return Values

The returned content type.

Exceptions

Table 82-58 GETCONTENTTYPE Function Exceptions

	Exception	Description
	
SECUREFILE_BADLOB

	
lob_loc is not a SECUREFILE

GET_STORAGE_LIMIT Function

This function returns the LOB storage limit for the specified LOB.

Syntax

DBMS_LOB.GET_STORAGE_LIMIT (
 lob_loc IN CLOB CHARACTER SET ANY_CS)
 RETURN INTEGER;

DBMS_LOB.GET_STORAGE_LIMIT (
 lob_loc IN BLOB)
 RETURN INTEGER;

Pragmas

PRAGMA RESTRICT_REFERENCES(get_storage_limit, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 82-59 GET_STORAGE_LIMIT Function Parameters

	Parameter	Description
	
lob_loc

	
LOB locator. For more information, see Operational Notes.

Return Value

The value returned from this function is the maximum allowable size for specified LOB locator. For BLOBs, the return value depends on the block size of the tablespace the LOB resides in and is calculated as (232)-1 (4294967295) times the block size of the tablespace. For CLOBs/NCLOBs, the value returned is the(232)-1 (4294967295) times the block size of the tablespace divided by the character width of the CLOB/NCLOB.

Usage

	
See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for details on LOB storage limits

GETCHUNKSIZE Functions

When creating the table, you can specify the chunking factor, a multiple of tablespace blocks in bytes. This corresponds to the chunk size used by the LOB data layer when accessing or modifying the LOB value. Part of the chunk is used to store system-related information, and the rest stores the LOB value.

This function returns the amount of space used in the LOB chunk to store the LOB value.

Syntax

DBMS_LOB.GETCHUNKSIZE (
 lob_loc IN BLOB)
 RETURN INTEGER;

DBMS_LOB.GETCHUNKSIZE (
 lob_loc IN CLOB CHARACTER SET ANY_CS)
 RETURN INTEGER;

Pragmas

PRAGMA RESTRICT_REFERENCES(getchunksize, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 82-60 GETCHUNKSIZE Function Parameters

	Parameter	Description
	
lob_loc

	
LOB locator. For more information, see Operational Notes.

Return Values

The return value is a usable chunk size in bytes.

Usage Notes

	
With regard to basic LOB files, performance is improved if you enter read/write requests using a multiple of this chunk size. For writes, there is an added benefit, because LOB chunks are versioned, and if all writes are done on a chunk basis, then no extra or excess versioning is done or duplicated. You could batch up the WRITE until you have enough for a chunk, instead of issuing several WRITE calls for the same chunk.

These tactics of performance improvement do not apply to SecureFiles.

	
Note that chunk size is independent of LOB type (BLOB, CLOB, NCLOB, Unicode or other character set).

	
See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for additional details on usage of this procedure

Exceptions

Table 82-61 GETCHUNKSIZE Procedure Exceptions

	Exception	Description
	
BUFFERING_ENABLED

	
Cannot perform operation with LOB buffering enabled if buffering is enabled on the LOB

GETLENGTH Functions

This function gets the length of the specified LOB. The length in bytes or characters is returned.

The length returned for a BFILE includes the EOF, if it exists. Any 0-byte or space filler in the LOB caused by previous ERASE or WRITE operations is also included in the length count. The length of an empty internal LOB is 0.

Syntax

DBMS_LOB.GETLENGTH (
 lob_loc IN BLOB)
 RETURN INTEGER;

DBMS_LOB.GETLENGTH (
 lob_loc IN CLOB CHARACTER SET ANY_CS)
 RETURN INTEGER;

DBMS_LOB.GETLENGTH (
 file_loc IN BFILE)
 RETURN INTEGER;

Pragmas

pragma restrict_references(GETLENGTH, WNDS, WNPS, RNDS, RNPS);

Parameters

Table 82-62 GETLENGTH Function Parameter

	Parameter	Description
	
file_loc

	
The file locator for the LOB whose length is to be returned.

Return Values

The length of the LOB in bytes or characters as an INTEGER. NULL is returned if the input LOB is NULL or if the input lob_loc is NULL. An error is returned in the following cases for BFILEs:

	
lob_loc does not have the necessary directory and operating system privileges

	
lob_loc cannot be read because of an operating system read error

	
See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for additional details on usage of this procedure

Exceptions

Table 82-63 GETLENGHTH Procedure Exceptions

	Exception	Description
	
BUFFERING_ENABLED

	
Cannot perform operation with LOB buffering enabled if buffering is enabled on the LOB

GETOPTIONS Functions

This function obtains settings corresponding to the option_type field for a particular LOB.

Syntax

DBMS_LOB.GETOPTIONS (
 lob_loc IN BLOB,
 option_types IN PLS_INTEGER)
 RETURN PLS_INTEGER;

DBMS_LOB.GETOPTIONS (
 lob_loc IN CLOB HARACTER SET ANY_CS,
 option_types IN PLS_INTEGER)
RETURN PLS_INTEGER;

Parameters

Table 82-64 GETOPTIONS Function Parameter

	Parameter	Description
	
lob_loc

	
Locator for the LOB to be examined. For more information, see Operational Notes.

	
option_type

	
See DBMS_LOB Constants - Option Types

Return Values

The return values are a combination of COMPRESS_ON, ENCRYPT_ON and DEDUPLICATE_ON (see DBMS_LOB Constants - Option Values) depending on which option types (see DBMS_LOB Constants - Option Types) are passed in.

Exceptions

Table 82-65 GETOPTIONS Procedure Exceptions

	Exception	Description
	
INVALID_ARGVAL

	
A parameter value was invalid

	
QUERY_WRITE

	
Cannot perform operation during a query

	
BUFFERING_ENABLED

	
Cannot perform operation with LOB buffering enabled

	
SECUREFILE_BADLOB

	
A non-SECUREFILE LOB was used in a SECUREFILE LOB only call

Usage Notes

You cannot turn compression or deduplication on or off for a SecureFile column that does not have those features on. The GetOptions Functions and SETOPTIONS Procedures work on individual SecureFiles. You can turn off a feature on a particular SecureFile and turn on a feature that has already been turned off by SetOptions, but you cannot turn on an option that has not been given to the SecureFile when the table was created.

INSTR Functions

This function returns the matching position of the nth occurrence of the pattern in the LOB, starting from the offset you specify.

Syntax

DBMS_LOB.INSTR (
 lob_loc IN BLOB,
 pattern IN RAW,
 offset IN INTEGER := 1,
 nth IN INTEGER := 1)
 RETURN INTEGER;

DBMS_LOB.INSTR (
 lob_loc IN CLOB CHARACTER SET ANY_CS,
 pattern IN VARCHAR2 CHARACTER SET lob_loc%CHARSET,
 offset IN INTEGER := 1,
 nth IN INTEGER := 1)
 RETURN INTEGER;

DBMS_LOB.INSTR (
 file_loc IN BFILE,
 pattern IN RAW,
 offset IN INTEGER := 1,
 nth IN INTEGER := 1)
 RETURN INTEGER;

Pragmas

pragma restrict_references(INSTR, WNDS, WNPS, RNDS, RNPS);

Parameters

Table 82-66 INSTR Function Parameters

	Parameter	Description
	
lob_loc

	
Locator for the LOB to be examined. For more information, see Operational Notes.

	
file_loc

	
The file locator for the LOB to be examined.

	
pattern

	
Pattern to be tested for. The pattern is a group of RAW bytes for BLOBs, and a character string (VARCHAR2) for CLOBs.The maximum size of the pattern is 16383 bytes.

	
offset

	
Absolute offset in bytes (BLOBs) or characters (CLOBs) at which the pattern matching is to start. (origin: 1)

	
nth

	
Occurrence number, starting at 1.

Return Values

Table 82-67 INSTR Function Return Values

	Return	Description
	
INTEGER

	
Offset of the start of the matched pattern, in bytes or characters.

It returns 0 if the pattern is not found.

	
NULL

	
Either:

-any one or more of the IN parameters was NULL or INVALID.

-offset < 1 or offset > LOBMAXSIZE.

-nth < 1.

-nth > LOBMAXSIZE.

Usage Notes

The form of the VARCHAR2 buffer (the pattern parameter) must match the form of the CLOB parameter. In other words, if the input LOB parameter is of type NCLOB, then the buffer must contain NCHAR data. Conversely, if the input LOB parameter is of type CLOB, then the buffer must contain CHAR data.

For BFILEs, the file must be already opened using a successful FILEOPEN operation for this operation to succeed.

Operations that accept RAW or VARCHAR2 parameters for pattern matching, such as INSTR, do not support regular expressions or special matching characters (as in the case of SQL LIKE) in the pattern parameter or substrings.

Exceptions

Table 82-68 INSTR Function Exceptions for BFILES

	Exception	Description
	
UNOPENED_FILE

	
File was not opened using the input locator.

	
NOEXIST_DIRECTORY

	
Directory does not exist.

	
NOPRIV_DIRECTORY

	
You do not have privileges for the directory.

	
INVALID_DIRECTORY

	
Directory has been invalidated after the file was opened.

	
INVALID_OPERATION

	
File does not exist, or you do not have access privileges on the file.

	
BUFFERING_ENABLED

	
Cannot perform operation with LOB buffering enabled if buffering is enabled on the LOB

	
See Also:

	
"SUBSTR Functions"

	
Oracle Database SecureFiles and Large Objects Developer's Guide for additional details on usage of this procedure

ISOPEN Functions

This function checks to see if the LOB was already opened using the input locator. This subprogram is for internal and external LOBs.

Syntax

DBMS_LOB.ISOPEN (
 lob_loc IN BLOB)
 RETURN INTEGER;

DBMS_LOB.ISOPEN (
 lob_loc IN CLOB CHARACTER SET ANY_CS)
 RETURN INTEGER;

DBMS_LOB.ISOPEN (
 file_loc IN BFILE)
 RETURN INTEGER;

Pragmas

PRAGMA RESTRICT_REFERENCES(isopen, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 82-69 ISOPEN Function Parameters

	Parameter	Description
	
lob_loc

	
LOB locator. For more information, see Operational Notes.

	
file_loc

	
File locator.

Return Values

The return value is 1 if the LOB is open, 0 otherwise.

Usage Notes

For BFILES, openness is associated with the locator. If the input locator was never passed to OPEN, the BFILE is not considered to be opened by this locator. However, a different locator may have opened the BFILE. More than one OPEN can be performed on the same BFILE using different locators.

For internal LOBs, openness is associated with the LOB, not with the locator. If locator1 opened the LOB, then locator2 also sees the LOB as open. For internal LOBs, ISOPEN requires a round-trip, because it checks the state on the server to see if the LOB is indeed open.

For external LOBs (BFILEs), ISOPEN also requires a round-trip, because that's where the state is kept.

	
See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for additional details on usage of this procedure

ISTEMPORARY Functions

This function determines whether a LOB instance is temporary.

Syntax

DBMS_LOB.ISTEMPORARY (
 lob_loc IN BLOB)
 RETURN INTEGER;

DBMS_LOB.ISTEMPORARY (
 lob_loc IN CLOB CHARACTER SET ANY_CS)
 RETURN INTEGER;

Pragmas

PRAGMA RESTRICT_REFERENCES(istemporary, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 82-70 ISTEMPORARY Procedure Parameters

	Parameter	Description
	
lob_loc

	
LOB locator. For more information, see Operational Notes.

Return Values

The return value is 1 if the LOB is temporary and exists; 0 if the LOB is not temporary or does not exist; NULL if the given locator is NULL.

Usage Notes

When you free a Temporary LOB with FREETEMPORARY, the LOB locator is not set to NULL. Consequently, ISTEMPORARY will return 0 for a locator that has been freed but not explicitly reset to NULL.

	
See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for additional details on usage of this procedure

LOADBLOBFROMFILE Procedure

This procedure loads data from BFILE to internal BLOB. This achieves the same outcome as LOADFROMFILE, and returns the new offsets.

Syntax

DBMS_LOB.LOADBLOBFROMFILE (
 dest_lob IN OUT NOCOPY BLOB,
 src_bfile IN BFILE,
 amount IN INTEGER,
 dest_offset IN OUT INTEGER,
 src_offset IN OUT INTEGER);

Parameters

Table 82-71 LOADBLOBFROMFILE Procedure Parameters

	Parameter	Description
	
dest_lob

	
BLOB locator of the target for the load.

	
src_bfile

	
BFILE locator of the source for the load.

	
amount

	
Number of bytes to load from the BFILE. You can also use DBMS_LOB.LOBMAXSIZE to load until the end of the BFILE.

	
dest_offset

	
(IN) Offset in bytes in the destination BLOB (origin: 1) for the start of the write. (OUT) New offset in bytes in the destination BLOB right after the end of this write, which is also where the next write should begin.

	
src_offset

	
(IN) Offset in bytes in the source BFILE (origin: 1) for the start of the read.(OUT) Offset in bytes in the source BFILE right after the end of this read, which is also where the next read should begin.

Usage Notes

	
You can specify the offsets for both the source and destination LOBs, and the number of bytes to copy from the source BFILE. The amount and src_offset, because they refer to the BFILE, are in terms of bytes, and the dest_offset is in bytes for BLOBs.

	
If the offset you specify in the destination LOB is beyond the end of the data currently in this LOB, then zero-byte fillers or spaces are inserted in the destination BLOB. If the offset is less than the current length of the destination LOB, then existing data is overwritten.

	
There is an error if the input amount plus offset exceeds the length of the data in the BFILE (unless the amount specified is LOBMAXSIZE which you can specify to continue loading until the end of the BFILE is reached).

	
It is not mandatory that you wrap the LOB operation inside the OPEN/CLOSE operations. If you did not open the LOB before performing the operation, the functional and domain indexes on the LOB column are updated during the call. However, if you opened the LOB before performing the operation, you must close it before you commit or rollback the transaction. When an internal LOB is closed, it updates the functional and domain indexes on the LOB column.

	
If you do not wrap the LOB operation inside the OPEN/CLOSE, the functional and domain indexes are updated each time you write to the LOB. This can adversely affect performance. Therefore, it is recommended that you enclose write operations to the LOB within the OPEN or CLOSE statement.

	
LOADFROMFILE gets the destination LOB prior to the load unless the load covers the entire LOB.

Constants and Defaults

There is no easy way to omit parameters. You must either declare a variable for IN/OUT parameter or provide a default value for the IN parameter. Here is a summary of the constants and the defaults that can be used.

Table 82-72 Suggested Values of the Parameter

	Parameter	Default Value	Description
	
amount

	
DBMS_LOB.LOBMAXSIZE (IN)

	
Load the entire file

	
dest_offset

	
1 (IN)

	
start from the beginning

	
src_offset

	
1 (IN)

	
start from the beginning

Constants defined in DBMSLOB.SQL

lobmaxsize CONSTANT INTEGER := DBMS_LOB.LOBMAXSIZE;

Exceptions

Table 82-73 LOADBLOBFROMFILE Procedure Exceptions

	Exception	Description
	
VALUE_ERROR

	
Any of the input parameters are NULL or INVALID.

	
INVALID_ARGVAL

	
Either:

- src_offset or dest_offset < 1.

- src_offset or dest_offset > LOBMAXSIZE.

- amount < 1.

- amount > LOBMAXSIZE.

	
BUFFERING_ENABLED

	
Cannot perform operation with LOB buffering enabled if buffering is enabled on the BLOB

	
See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for additional details on usage of this procedure

LOADCLOBFROMFILE Procedure

This procedure loads data from a BFILE to an internal CLOB/NCLOB with necessary character set conversion and returns the new offsets.

Syntax

DBMS_LOB.LOADCLOBFROMFILE (
 dest_lob IN OUT NOCOPY NOCOPY CLOB CHARACTER SET ANY_CS,
 src_bfile IN BFILE,
 amount IN INTEGER,
 dest_offset IN OUT INTEGER,
 src_offset IN OUT INTEGER,
 bfile_csid IN NUMBER,
 lang_context IN OUT INTEGER,
 warning OUT INTEGER);

Parameters

Table 82-74 LOADCLOBFROMFILE Procedure Parameters

	Parameter	Description
	
dest_lob

	
CLOB/NCLOB locator of the target for the load.

	
src_bfile

	
BFILE locator of the source for the load.

	
amount

	
Number of bytes to load from the BFILE. Use DBMS_LOB.LOBMAXSIZE of load until the end of the BFILE.

	
dest_offset

	
(IN) Offset in characters in the destination CLOB (origin: 1) for the start of the write. (OUT) The new offset in characters right after the end of this load, which is also where the next load should start. It always points to the beginning of the first complete character after the end of load. If the last character is not complete, offset goes back to the beginning of the partial character.

	
src_offset

	
(IN) Offset in bytes in the source BFILE (origin: 1) for the start of the read.(OUT)Offset in bytes in the source BFILE right after the end of this read, which is also where the next read should begin.

	
bfile_csid

	
Character set id of the source (BFILE) file.

	
lang_context

	
(IN) Language context, such as shift status, for the current load.

(OUT) The language context at the time when the current load stopped, and what the next load should be using if continuing loading from the same source. This information is returned to the user so that they can use it for the continuous load without losing or misinterpreting any source data. For the very first load or if do not care, simply use the default 0. The details of this language context is hidden from the user. One does not need to know what it is or what's in it in order to make the call

	
warning

	
(OUT) Warning message. This indicates something abnormal happened during the loading. It may or may not be caused by the user's mistake. The loading is completed as required, and it's up to the user to check the warning message. Currently, the only possible warning is the inconvertible character. This happens when the character in the source cannot be properly converted to a character in destination, and the default replacement character (for example, '?') is used in place. The message is defined the constant value DBMS_LOB.WARN_INCONVERTIBLE_CHAR.

Usage Notes

You can specify the offsets for both the source and destination LOBs, and the number of bytes to copy from the source BFILE. The amount and src_offset, because they refer to the BFILE, are in terms of bytes, and the dest_offset is in characters for CLOBs.

If the offset you specify in the destination LOB is beyond the end of the data currently in this LOB, then zero-byte fillers or spaces are inserted in the destination CLOB. If the offset is less than the current length of the destination LOB, then existing data is overwritten.

There is an error if the input amount plus offset exceeds the length of the data in the BFILE (unless the amount specified is LOBMAXSIZE which you can specify to continue loading until the end of the BFILE is reached).

Note the following requirements:

	
The destination character set is always the same as the database character set in the case of CLOB and national character set in the case of NCLOB.

	
csid=0 indicates the default behavior that uses database csid for CLOB and national csid for NCLOB in the place of source csid. Conversion is still necessary if it is of varying width

	
It is not mandatory that you wrap the LOB operation inside the OPEN/CLOSE operations. If you did not open the LOB before performing the operation, the functional and domain indexes on the LOB column are updated during the call. However, if you opened the LOB before performing the operation, you must close it before you commit or rollback the transaction. When an internal LOB is closed, it updates the functional and domain indexes on the LOB column.

If you do not wrap the LOB operation inside the OPEN/CLOSE, the functional and domain indexes are updated each time you write to the LOB. This can adversely affect performance. Therefore, it is recommended that you enclose write operations to the LOB within the OPEN or CLOSE statement.

The source BFILE can contain data in the Unicode character set. The Unicode standard defines many encoding schemes that provide mappings from Unicode characters to sequences of bytes. Table 82-75, "Supported Unicode Encoding Schemes" lists Unicode encodings schemes supported by this subprogram.

Table 82-75 Supported Unicode Encoding Schemes

	Encoding Scheme	Oracle Name	bfile_csid Value
	
UTF-8

	
AL32UTF8

	
873

	
UTF-16BE

	
AL16UTF16

	
2000

	
UTF-16LE

	
AL16UTF16LE

	
2002

	
CESU-8

	
UTF8

	
871

	
UTF-EBCDIC

	
UTFE

	
872

	
UTF-16

	
UTF16

	
1000

All three UTF-16 encoding schemes encode Unicode characters as 2-byte unsigned integers. Integers can be stored in big-endian or in little-endian byte order. The UTF-16BE encoding scheme defines big-endian data. The UTF-16LE scheme defines little-endian data. The UTF-16 scheme requires that the source BFILE contains the Byte Order Mark (BOM) character in the first two bytes to define the byte order. The BOM code is 0xFEFF. If the code is stored as {0xFE,0xFF}, the data is interpreted as big-endian. If it is stored as {0xFF,0xFE}, the data is interpreted as little-endian.

In UTF-8 and in CESU-8 encodings the Byte Order Mark is stored as {0xEF,0xBB, 0xBF}. With any of the Unicode encodings, the corresponding BOM sequence at the beginning of the file is recognized and not loaded into the destination LOB.

Constants

Here is a summary of the constants and the suggested values that can be used.

Table 82-76 Suggested Values of the Parameter

	Parameter	Suggested Value	Description
	
amount

	
DBMS_LOB.LOBMAXSIZE (IN)

	
Load the entire file

	
dest_offset

	
1 (IN)

	
start from the beginning

	
src_offset

	
1 (IN)

	
start from the beginning

	
csid

	
0 (IN)

	
default csid, use destination csid

	
lang_context

	
0 (IN)

	
default language context

	
warning

	
0 (OUT)

	
no warning message, everything is ok

Constants defined in DBMSLOB.SQL

lobmaxsize CONSTANT INTEGER := 18446744073709551615;
warn_inconvertible_char CONSTANT INTEGER := 1;
default_csid CONSTANT INTEGER := 0;
default_lang_ctx CONSTANT INTEGER := 0;
no_warning CONSTANT INTEGER := 0;

Exceptions

Table 82-77 LOADCLOBFROMFILE Procedure Exceptions

	Exception	Description
	
VALUE_ERROR

	
Any of the input parameters are NULL or INVALID.

	
INVALID_ARGVAL

	
Either:

- src_offset or dest_offset < 1.

- src_offset or dest_offset > LOBMAXSIZE.

- amount < 1.

- amount > LOBMAXSIZE.

	
BUFFERING_ENABLED

	
Cannot perform operation with LOB buffering enabled if buffering is enabled on the CLOB

	
See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for additional details on usage of this procedure

LOADFROMFILE Procedure

This procedure copies all, or a part of, a source external LOB (BFILE) to a destination internal LOB.

Syntax

DBMS_LOB.LOADFROMFILE (
 dest_lob IN OUT NOCOPY BLOB,
 src_file IN BFILE,
 amount IN INTEGER,
 dest_offset IN INTEGER := 1,
 src_offset IN INTEGER := 1);

Parameters

Table 82-78 LOADFROMFILE Procedure Parameters

	Parameter	Description
	
dest_lob

	
LOB locator of the target for the load.

	
src_file

	
BFILE locator of the source for the load.

	
amount

	
Number of bytes to load from the BFILE.

	
dest_offset

	
Offset in bytes or characters in the destination LOB (origin: 1) for the start of the load.

	
src_offset

	
Offset in bytes in the source BFILE (origin: 1) for the start of the load.

Usage Notes

You can specify the offsets for both the source and destination LOBs, and the number of bytes to copy from the source BFILE. The amount and src_offset, because they refer to the BFILE, are in terms of bytes, and the dest_offset is either in bytes or characters for BLOBs and CLOBs respectively.

	
Note:

The input BFILE must have been opened prior to using this procedure. No character set conversions are performed implicitly when binary BFILE data is loaded into a CLOB. The BFILE data must already be in the same character set as the CLOB in the database. No error checking is performed to verify this.

If the offset you specify in the destination LOB is beyond the end of the data currently in this LOB, then zero-byte fillers or spaces are inserted in the destination BLOB or CLOB respectively. If the offset is less than the current length of the destination LOB, then existing data is overwritten.

There is an error if the input amount plus offset exceeds the length of the data in the BFILE.

	
Note:

If the character set is varying width, UTF-8 for example, the LOB value is stored in the fixed-width UCS2 format. Therefore, if you are using DBMS_LOB.LOADFROMFILE, the data in the BFILE should be in the UCS2 character set instead of the UTF-8 character set. However, you should use sql*loader instead of LOADFROMFILE to load data into a CLOB or NCLOB because sql*loader provides the necessary character set conversions.

It is not mandatory that you wrap the LOB operation inside the Open/Close interfaces. If you did not open the LOB before performing the operation, the functional and domain indexes on the LOB column are updated during the call. However, if you opened the LOB before performing the operation, you must close it before you commit or rollback the transaction. When an internal LOB is closed, it updates the functional and domain indexes on the LOB column.

If you do not wrap the LOB operation inside the Open/Close API, the functional and domain indexes are updated each time you write to the LOB. This can adversely affect performance. Therefore, it is recommended that you enclose write operations to the LOB within the OPEN or CLOSE statement.

Exceptions

Table 82-79 LOADFROMFILE Procedure Exceptions

	Exception	Description
	
VALUE_ERROR

	
Any of the input parameters are NULL or INVALID.

	
INVALID_ARGVAL

	
Either:

- src_offset or dest_offset < 1.

- src_offset or dest_offset > LOBMAXSIZE.

- amount < 1.

- amount > LOBMAXSIZE.

	
See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for additional details on usage of this procedure

MOVE_TO_DBFS_LINK Procedures

This procedure writes the specified SecureFile data to the DBFS store.

Syntax

DBMS_LOB.MOVE_TO_DBFS_LINK (
 lob_loc IN OUT BLOB,
 storage_path IN VARCHAR2(dbfs_link_path_max_size),
 flags IN BINARY INTEGER DEFAULT DBFS_LINK_NOCACHE);

DBMS_LOB.MOVE_TO_DBFS_LINK (
 lob_loc IN OUT CLOB CHARACTER SET ANY_CS,
 storage_path IN VARCHAR2(dbfs_link_path_max_size),
 flags IN BINARY INTEGER DEFAULT DBFS_LINK_NOCACHE);

Parameters

Table 82-80 MOVE_TO_DBFS_LINK Procedure Parameters

	Parameter	Description
	
lob_loc

	
LOB to be archived

	
storage_path

	
Path where the LOB will be be stored

	
flags

	
Either DBFS_LINK_CACHE or DBFS_LINK_NOCACHE. If DBFS_LINK_CACHE is specified, the LOB data continues to be stored in the RDBMS as well as being written to the DBFS store. DBFS_LINK_NOCACHE specifies that the LOB data should be deleted from the RDBMS once written to the DBFS.

Exceptions

Table 82-81 MOVE_TO_DBFS_LINK Procedure Exceptions

	Exception	Description
	
SECUREFILE_BADLOB

	
lob_loc is not a SECUREFILE

Usage Notes

	
If the LOB is already archived, the procedure silently returns as if the put was successful. In that case, if DBFS_LINK_NOCACHE is specified, or flags is defaulted, the LOB data is removed from the RDBMS.

	
Calling this procedure multiple times on the same LOB with the same flags has no effect.

	
Calling the procedure on a LOB that is already archived causes the LOB to be cached (DBFS_LINK_CACHE) or removed (DBFS_LINK_NOCACHE) according to the flag setting.

OPEN Procedures

This procedure opens a LOB, internal or external, in the indicated mode. Valid modes include read-only, and read/write.

Syntax

DBMS_LOB.OPEN (
 lob_loc IN OUT NOCOPY BLOB,
 open_mode IN BINARY_INTEGER);

DBMS_LOB.OPEN (
 lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 open_mode IN BINARY_INTEGER);

DBMS_LOB.OPEN (
 file_loc IN OUT NOCOPY BFILE,
 open_mode IN BINARY_INTEGER := file_readonly);

Parameters

Table 82-82 OPEN Procedure Parameters

	Parameter	Description
	
lob_loc

	
LOB locator. For more information, see Operational Notes.

	
open_mode

	
Mode in which to open.

For BLOB and CLOB types, the mode can be either: LOB_READONLY or LOB_READWRITE.

For BFILE types, the mode must be FILE_READONLY.

Usage Notes

	
Note:

If the LOB was opened in read-only mode, and if you try to write to the LOB, then an error is returned. BFILE can only be opened with read-only mode.

OPEN requires a round-trip to the server for both internal and external LOBs. For internal LOBs, OPEN triggers other code that relies on the OPEN call. For external LOBs (BFILEs), OPEN requires a round-trip because the actual operating system file on the server side is being opened.

It is not mandatory that you wrap all LOB operations inside the Open/Close interfaces. However, if you open a LOB, you must close it before you commit or rollback the transaction; an error is produced if you do not. When an internal LOB is closed, it updates the functional and domain indexes on the LOB column.

It is an error to commit the transaction before closing all opened LOBs that were opened by the transaction. When the error is returned, the openness of the open LOBs is discarded, but the transaction is successfully committed. Hence, all the changes made to the LOB and non-LOB data in the transaction are committed, but the domain and function-based indexes are not updated. If this happens, you should rebuild the functional and domain indexes on the LOB column.

	
See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for additional details on usage of this procedure

READ Procedures

This procedure reads a piece of a LOB, and returns the specified amount into the buffer parameter, starting from an absolute offset from the beginning of the LOB.

The number of bytes or characters actually read is returned in the amount parameter. If the input offset points past the End of LOB, then amount is set to 0, and a NO_DATA_FOUND exception is raised.

Syntax

DBMS_LOB.READ (
 lob_loc IN BLOB,
 amount IN OUT NOCOPY INTEGER,
 offset IN INTEGER,
 buffer OUT RAW);

DBMS_LOB.READ (
 lob_loc IN CLOB CHARACTER SET ANY_CS,
 amount IN OUT NOCOPY INTEGER,
 offset IN INTEGER,
 buffer OUT VARCHAR2 CHARACTER SET lob_loc%CHARSET);

DBMS_LOB.READ (
 file_loc IN BFILE,
 amount IN OUT NOCOPY INTEGER,
 offset IN INTEGER,
 buffer OUT RAW);

Parameters

Table 82-83 READ Procedure Parameters

	Parameter	Description
	
lob_loc

	
Locator for the LOB to be read. For more information, see Operational Notes.

	
file_loc

	
The file locator for the LOB to be examined.

	
amount

	
Number of bytes (for BLOBs) or characters (for CLOBs) to read, or number that were read.

	
offset

	
Offset in bytes (for BLOBs) or characters (for CLOBs) from the start of the LOB (origin: 1).

	
buffer

	
Output buffer for the read operation.

Exceptions

Table 82-84 lists exceptions that apply to any LOB instance. Table 82-85 lists exceptions that apply only to BFILEs.

Table 82-84 READ Procedure Exceptions

	Exception	Description
	
VALUE_ERROR

	
Any of lob_loc, amount, or offset parameters are NULL.

	
INVALID_ARGVAL

	
Either:

- amount < 1

- amount > MAXBUFSIZE

- offset < 1

- offset > LOBMAXSIZE

- amount is greater, in bytes or characters, than the capacity of buffer.

	
NO_DATA_FOUND

	
End of the LOB is reached, and there are no more bytes or characters to read from the LOB: amount has a value of 0.

Table 82-85 READ Procedure Exceptions for BFILEs

	Exception	Description
	
UNOPENED_FILE

	
File is not opened using the input locator.

	
NOEXIST_DIRECTORY

	
Directory does not exist.

	
NOPRIV_DIRECTORY

	
You do not have privileges for the directory.

	
INVALID_DIRECTORY

	
Directory has been invalidated after the file was opened.

	
INVALID_OPERATION

	
File does not exist, or you do not have access privileges on the file.

	
BUFFERING_ENABLED

	
Cannot perform operation with LOB buffering enabled if buffering is enabled on the LOB

Usage Notes

	
The form of the VARCHAR2 buffer must match the form of the CLOB parameter. In other words, if the input LOB parameter is of type NCLOB, then the buffer must contain NCHAR data. Conversely, if the input LOB parameter is of type CLOB, then the buffer must contain CHAR data.

	
When calling DBMS_LOB.READ from the client (for example, in a BEGIN/END block from within SQL*Plus), the returned buffer contains data in the client's character set. The database converts the LOB value from the server's character set to the client's character set before it returns the buffer to the user.

	
READ get s the LOB, if necessary, before the read.

	
See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for additional details on usage of this procedure

SET_DBFS_LINK Procedures

This function links the specified SecureFile to the specified path name. It does not copy the data to the path.

Syntax

DBMS_LOB.SET_DBFS_LINK (
 lob_loc IN OUT BLOB,
 archive_id IN RAW(1024));

DBMS_LOB.SET_DBFS_LINK(
 lob_loc_dst IN OUT CLOB CHARACTER SET ANY_CS,
 archive_id IN RAW(1024));

Parameters

Table 82-86 SET_DBFS_LINK Procedure Parameters

	Parameter	Description
	
lob_loc

	
LOB for which to store the reference value

	
archive_id

	
Archive ID as returned by calling either of the GET_DBFS_LINK Functions Functions

Exceptions

Table 82-87 SET_DBFS_LINK Procedure Exceptions

	Exception	Description
	
SECUREFILE_BADLOB

	
lob_loc is not a SECUREFILE

SETCONTENTTYPE Procedure

This procedure sets the content type string for the data in the LOB.

Syntax

DBMS_LOB.SETCONTENTTYPE (
 lob_loc IN OUT NOCOPY BLOB,
 contenttype IN VARCHAR2);

DBMS_LOB.SETCONTENTTYPE (
 lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 contenttype IN VARCHAR2);

Parameters

Table 82-88 SETCONTENTTYPE Procedure Parameters

	Parameter	Description
	
lob_loc

	
LOB to be assigned the content type

	
contenttype

	
String to be assigned

Exceptions

Table 82-89 SETCONTENTTYPE Procedure Exceptions

	Exception	Description
	
SECUREFILE_BADLOB

	
lob_loc is not a SECUREFILE

Usage Notes

To clear an existing contenttype associated with a SECUREFILE, invoke SETCONTENTTYPE with contenttype set to empty string.

SETOPTIONS Procedures

This procedure enables/disables CSCE features on a per-LOB basis, overriding the default LOB column settings.

Syntax

DBMS_LOB.SETOPTIONS (
 lob_loc IN BLOB,
 option_types IN PLS_INTEGER,
 options IN PLS_INTEGER);

DBMS_LOB.SETOPTIONS (
 lob_loc IN CLOB CHARACTER SET ANY_CS,
 option_types IN PLS_INTEGER,
 options IN PLS_INTEGER);

Parameters

Table 82-90 SETOPTIONS Procedure Parameter

	Parameter	Description
	
lob_loc

	
Locator for the LOB to be examined. For more information, see Operational Notes.

	
option_type

	
See DBMS_LOB Constants - Option Types

	
options

	
See DBMS_LOB Constants - Option Values

Exceptions

Table 82-91 SETOPTIONS Procedure Exceptions

	Exception	Description
	
SECUREFILE_BADLOB

	
Unsupported object type for the operation

	
INVALID_ARGVAL

	
A parameter value was invalid

	
QUERY_WRITE

	
Cannot perform operation during a query

	
BUFFERING_ENABLED

	
Cannot perform operation with LOB buffering enabled

Usage Notes

	
DBMS_LOB.SETOPTIONS cannot be used to enable or disable encryption on individual LOBs.

	
You cannot turn compression or deduplication on or off for a SecureFile column that does not have those features on. The GETOPTIONS Functions and SetOptions Procedures work on individual SecureFiles. You can turn off a feature on a particular SecureFile and turn on a feature that has already been turned off by SetOptions, but you cannot turn on an option that has not been given to the SecureFile when the table was created.

SUBSTR Functions

This function returns amount bytes or characters of a LOB, starting from an absolute offset from the beginning of the LOB.

For fixed-width n-byte CLOBs, if the input amount for SUBSTR is greater than (32767/n), then SUBSTR returns a character buffer of length (32767/n), or the length of the CLOB, whichever is lesser. For CLOBs in a varying-width character set, n is the maximum byte-width used for characters in the CLOB.

Syntax

DBMS_LOB.SUBSTR (
 lob_loc IN BLOB,
 amount IN INTEGER := 32767,
 offset IN INTEGER := 1)
 RETURN RAW;

DBMS_LOB.SUBSTR (
 lob_loc IN CLOB CHARACTER SET ANY_CS,
 amount IN INTEGER := 32767,
 offset IN INTEGER := 1)
 RETURN VARCHAR2 CHARACTER SET lob_loc%CHARSET;

DBMS_LOB.SUBSTR (
 file_loc IN BFILE,
 amount IN INTEGER := 32767,
 offset IN INTEGER := 1)
 RETURN RAW;

Pragmas

pragma restrict_references(SUBSTR, WNDS, WNPS, RNDS, RNPS);

Parameters

Table 82-92 SUBSTR Function Parameters

	Parameter	Description
	
lob_loc

	
Locator for the LOB to be read. For more information, see Operational Notes.

	
file_loc

	
The file locator for the LOB to be examined.

	
amount

	
Number of bytes (for BLOBs) or characters (for CLOBs) to be read.

	
offset

	
Offset in bytes (for BLOBs) or characters (for CLOBs) from the start of the LOB (origin: 1).

Return Values

Table 82-93 SUBSTR Function Return Values

	Return	Description
	
RAW

	
Function overloading that has a BLOB or BFILE in parameter.

	
VARCHAR2

	
CLOB version.

	
NULL

	
Either:

- any input parameter is NULL

- amount < 1

- amount > 32767

- offset < 1

- offset > LOBMAXSIZE

Exceptions

Table 82-94 SUBSTR Function Exceptions for BFILE operations

	Exception	Description
	
UNOPENED_FILE

	
File is not opened using the input locator.

	
NOEXIST_DIRECTORY

	
Directory does not exist.

	
NOPRIV_DIRECTORY

	
You do not have privileges for the directory.

	
INVALID_DIRECTORY

	
Directory has been invalidated after the file was opened.

	
INVALID_OPERATION

	
File does not exist, or you do not have access privileges on the file.

	
BUFFERING_ENABLED

	
Cannot perform operation with LOB buffering enabled if buffering is enabled on the LOB

Usage Notes

	
The form of the VARCHAR2 buffer must match the form of the CLOB parameter. In other words, if the input LOB parameter is of type NCLOB, then the buffer must contain NCHAR data. Conversely, if the input LOB parameter is of type CLOB, then the buffer must contain CHAR data.

	
When calling DBMS_LOB.SUBSTR from the client (for example, in a BEGIN/END block from within SQL*Plus), the returned buffer contains data in the client's character set. The database converts the LOB value from the server's character set to the client's character set before it returns the buffer to the user.

	
DBMS_LOB.SUBSTR will return 8191 or more characters based on the characters stored in the LOBs. If all characters are not returned as a consequence of the character byte size exceeding the available buffer, the user should either call DBMS_LOB.SUBSTR with a new offset to read the remaining characters, or call the subprogram on loop until all the data is extracted.

	
SUBSTR get s the LOB, if necessary, before read.

	
See Also:

	
"INSTR Functions"

	
"READ Procedures"

	
Oracle Database SecureFiles and Large Objects Developer's Guide for additional details on usage of this procedure

TRIM Procedures

This procedure trims the value of the internal LOB to the length you specify in the newlen parameter. Specify the length in bytes for BLOBs, and specify the length in characters for CLOBs.

	
Note:

The TRIM procedure decreases the length of the LOB to the value specified in the newlen parameter.

If you attempt to TRIM an empty LOB, then nothing occurs, and TRIM returns no error. If the new length that you specify in newlen is greater than the size of the LOB, then an exception is raised.

Syntax

DBMS_LOB.TRIM (
 lob_loc IN OUT NOCOPY BLOB,
 newlen IN INTEGER);

DBMS_LOB.TRIM (
 lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 newlen IN INTEGER);

Parameters

Table 82-95 TRIM Procedure Parameters

	Parameter	Description
	
lob_loc

	
Locator for the internal LOB whose length is to be trimmed. For more information, see Operational Notes.

	
newlen

	
New, trimmed length of the LOB value in bytes for BLOBs or characters for CLOBs.

Exceptions

Table 82-96 TRIM Procedure Exceptions

	Exception	Description
	
VALUE_ERROR

	
lob_loc is NULL.

	
INVALID_ARGVAL

	
Either:

- new_len < 0

- new_len > LOBMAXSIZE

	
QUERY_WRITE

	
Cannot perform a LOB write inside a query or PDML slave

	
BUFFERING_ENABLED

	
Cannot perform operation with LOB buffering enabled if buffering is enabled on the LOB

Usage Notes

	
It is not mandatory that you wrap the LOB operation inside the Open/Close interfaces. If you did not open the LOB before performing the operation, the functional and domain indexes on the LOB column are updated during the call. However, if you opened the LOB before performing the operation, you must close it before you commit or rollback the transaction. When an internal LOB is closed, it updates the functional and domain indexes on the LOB column.

	
If you do not wrap the LOB operation inside the Open/Close API, the functional and domain indexes are updated each time you write to the LOB. This can adversely affect performance. Therefore, it is recommended that you enclose write operations to the LOB within the OPEN or CLOSE statement.

	
TRIM gets the LOB, if necessary, before altering the length of the LOB, unless the new length specified is '0'

	
See Also:

	
"ERASE Procedures"

	
"WRITEAPPEND Procedures"

	
Oracle Database SecureFiles and Large Objects Developer's Guide for additional details on usage of this procedure

WRITE Procedures

This procedure writes a specified amount of data into an internal LOB, starting from an absolute offset from the beginning of the LOB. The data is written from the buffer parameter.

WRITE replaces (overwrites) any data that already exists in the LOB at the offset, for the length you specify.

Syntax

DBMS_LOB.WRITE (
 lob_loc IN OUT NOCOPY BLOB,
 amount IN INTEGER,
 offset IN INTEGER,
 buffer IN RAW);

DBMS_LOB.WRITE (
 lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 amount IN INTEGER,
 offset IN INTEGER,
 buffer IN VARCHAR2 CHARACTER SET lob_loc%CHARSET);

Parameters

Table 82-97 WRITE Procedure Parameters

	Parameter	Description
	
lob_loc

	
Locator for the internal LOB to be written to. For more information, see Operational Notes

	
amount

	
Number of bytes (for BLOBs) or characters (for CLOBs) to write

	
offset

	
Offset in bytes (for BLOBs) or characters (for CLOBs) from the start of the LOB (origin: 1) for the write operation.

	
buffer

	
Input buffer for the write

Exceptions

Table 82-98 WRITE Procedure Exceptions

	Exception	Description
	
VALUE_ERROR

	
Any of lob_loc, amount, or offset parameters are NULL, out of range, or INVALID.

	
INVALID_ARGVAL

	
Either:

- amount < 1

- amount > MAXBUFSIZE

- offset < 1

- offset > LOBMAXSIZE

	
QUERY_WRITE

	
Cannot perform a LOB write inside a query or PDML slave

	
BUFFERING_ENABLED

	
Cannot perform operation with LOB buffering enabled if buffering is enabled on the LOB

	
SECUREFILE_OUTOFBOUNDS

	
Attempted to perform a write operation past the end of a LOB having FRAGMENT_* on it

Usage Notes

	
There is an error if the input amount is more than the data in the buffer. If the input amount is less than the data in the buffer, then only amount bytes or characters from the buffer is written to the LOB. If the offset you specify is beyond the end of the data currently in the LOB, then zero-byte fillers or spaces are inserted in the BLOB or CLOB respectively.

	
The form of the VARCHAR2 buffer must match the form of the CLOB parameter. In other words, if the input LOB parameter is of type NCLOB, then the buffer must contain NCHAR data. Conversely, if the input LOB parameter is of type CLOB, then the buffer must contain CHAR data.

	
When calling DBMS_LOB.WRITE from the client (for example, in a BEGIN/END block from within SQL*Plus), the buffer must contain data in the client's character set. The database converts the client-side buffer to the server's character set before it writes the buffer data to the LOB.

	
It is not mandatory that you wrap the LOB operation inside the Open/Close interfaces. If you did not open the LOB before performing the operation, the functional and domain indexes on the LOB column are updated during the call. However, if you opened the LOB before performing the operation, you must close it before you commit or rollback the transaction. When an internal LOB is closed, it updates the functional and domain indexes on the LOB column.

	
If you do not wrap the LOB operation inside the Open/Close API, the functional and domain indexes are updated each time you write to the LOB. This can adversely affect performance. Therefore, it is recommended that you enclose write operations to the LOB within the OPEN or CLOSE statement.

	
WRITE gets the LOB, if necessary, before writing the LOB, unless the write is specified to overwrite the entire LOB.

	
See Also:

	
"APPEND Procedures"

	
"COPY Procedures"

	
Oracle Database SecureFiles and Large Objects Developer's Guide for additional details on usage of this procedure

WRITEAPPEND Procedures

This procedure writes a specified amount of data to the end of an internal LOB. The data is written from the buffer parameter.

Syntax

DBMS_LOB.WRITEAPPEND (
 lob_loc IN OUT NOCOPY BLOB,
 amount IN INTEGER,
 buffer IN RAW);

DBMS_LOB.WRITEAPPEND (
 lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 amount IN INTEGER,
 buffer IN VARCHAR2 CHARACTER SET lob_loc%CHARSET);

Parameters

Table 82-99 WRITEAPPEND Procedure Parameters

	Parameter	Description
	
lob_loc

	
Locator for the internal LOB to be written to. For more information, see Operational Notes

	
amount

	
Number of bytes (for BLOBs) or characters (for CLOBs) to write

	
buffer

	
Input buffer for the write

Usage Notes

There is an error if the input amount is more than the data in the buffer. If the input amount is less than the data in the buffer, then only amount bytes or characters from the buffer are written to the end of the LOB.

Exceptions

Table 82-100 WRITEAPPEND Procedure Exceptions

	Exception	Description
	
VALUE_ERROR

	
Any of lob_loc, amount, or offset parameters are NULL, out of range, or INVALID.

	
INVALID_ARGVAL

	
Either:

- amount < 1

- amount > MAXBUFSIZE

	
QUERY_WRITE

	
Cannot perform a LOB write inside a query or PDML slave

	
BUFFERING_ENABLED

	
Cannot perform operation with LOB buffering enabled if buffering is enabled on the LOB

Usage Notes

	
The form of the VARCHAR2 buffer must match the form of the CLOB parameter. In other words, if the input LOB parameter is of type NCLOB, then the buffer must contain NCHAR data. Conversely, if the input LOB parameter is of type CLOB, then the buffer must contain CHAR data.

	
When calling DBMS_LOB.WRITEAPPEND from the client (for example, in a BEGIN/END block from within SQL*Plus), the buffer must contain data in the client's character set. The database converts the client-side buffer to the server's character set before it writes the buffer data to the LOB.

	
It is not mandatory that you wrap the LOB operation inside the Open/Close interfaces. If you did not open the LOB before performing the operation, the functional and domain indexes on the LOB column are updated during the call. However, if you opened the LOB before performing the operation, you must close it before you commit or rollback the transaction. When an internal LOB is closed, it updates the functional and domain indexes on the LOB column.

	
If you do not wrap the LOB operation inside the Open/Close API, the functional and domain indexes are updated each time you write to the LOB. This can adversely affect performance. Therefore, it is recommended that you enclose write operations to the LOB within the OPEN or CLOSE statement.

	
WRITEAPPEND gets the LOB, if necessary, before appending to the LOB.

	
See Also:

	
"APPEND Procedures"

	
"COPY Procedures"

	
"WRITE Procedures"

	
Oracle Database SecureFiles and Large Objects Developer's Guide for additional details on usage of this procedure

83 DBMS_LOCK

The DBMS_LOCK package provides an interface to Oracle Lock Management services. You can request a lock of a specific mode, give it a unique name recognizable in another procedure in the same or another instance, change the lock mode, and release it.

	
See Also:

For more information, and an example of how to use the DBMS_LOCK package, see "About User Locks" in Oracle Database Advanced Application Developer's Guide

This chapter contains the following topics:

	
Using DBMS_LOCK

	
Overview

	
Security Model

	
Constants

	
Rules and Limits

	
Operational Notes

	
Summary of DBMS_LOCK Subprograms

Using DBMS_LOCK

	
Overview

	
Security Model

	
Constants

	
Rules and Limits

	
Operational Notes

Overview

Some uses of user locks:

	
Providing exclusive access to a device, such as a terminal

	
Providing application-level enforcement of read locks

	
Detecting when a lock is released and cleanup after the application

	
Synchronizing applications and enforcing sequential processing

Security Model

There might be operating system-specific limits on the maximum number of total locks available. This must be considered when using locks or making this package available to other users. Consider granting the EXECUTE privilege only to specific users or roles.

A better alternative would be to create a cover package limiting the number of locks used and grant EXECUTE privilege to specific users. An example of a cover package is documented in the DBMS_LOCK.SQL package specification file. The abbreviations for these locks as they appear in Enterprise Manager monitors are in parentheses.

Constants

The DBMS_LOCK package uses the constants shown in Table 83-1.

Table 83-1 DBMS_LOCK Constants

	Name	Alternate Name(s)	Type	Value	OEM Abbreviation	Description
	
NL_MODE

	
NuL1

	
INTEGER

	
1

	
-

	
-

	
SS_MODE

	
Sub Shared

	
INTEGER

	
2

	
ULRS

	
This can be used on an aggregate object to indicate that share locks are being acquired on subparts of the object.

	
SX_MODE

	
	
Sub eXclusive

	
Row Exclusive Mode

	
INTEGER

	
3

	
ULRX

	
This can be used on an aggregate object to indicate that exclusive locks are being acquired on sub-parts of the object.

	
S_MODE

	
	
Shared

	
Row Exclusive Mode

	
Intended Exclusive

	
INTEGER

	
4

	
ULRSX

	
-

	
SSX_MODE

	
	
Shared Sub eXclusive

	
Share Row Exclusive Mode

	
INTEGER

	
5

	
-

	
This indicates that the entire aggregate object has a share lock, but some of the sub-parts may additionally have exclusive locks.

	
X_MODE

	
Exclusive

	
INTEGER

	
6

	
ULX

	
-

These are the various lock modes (nl -> "NuLl", ss -> "Sub Shared", sx -> "Sub eXclusive", s -> "Shared", ssx -> "Shared Sub eXclusive", x -> "eXclusive").

Rules and Limits

When another process holds "held", an attempt to get "get" does the following:

Table 83-2 Lock Compatibility

	HELD MODE	GET NL	GET SS	GET SX	GET S	GET SSX	GET X
	
NL

	
Success

	
Success

	
Success

	
Success

	
Success

	
Success

	
SS

	
Success

	
Success

	
Success

	
Success

	
Success

	
Fail

	
SX

	
Success

	
Success

	
Success

	
Fail

	
Fail

	
Fail

	
S

	
Success

	
Success

	
Fail

	
Success

	
Fail

	
Fail

	
SSX

	
Success

	
Success

	
Fail

	
Fail

	
Fail

	
Fail

	
X

	
Success

	
Fail

	
Fail

	
Fail

	
Fail

	
Fail

maxwait constant integer := 32767;

The constant maxwait waits forever.

Operational Notes

User locks never conflict with Oracle locks because they are identified with the prefix "UL". You can view these locks using the Enterprise Manager lock monitor screen or the appropriate fixed views. User locks are automatically released when a session terminates.The lock identifier is a number in the range of 0 to 1073741823.

Because a reserved user lock is the same as an Oracle lock, it has all the functionality of an Oracle lock, such as deadlock detection. Be certain that any user locks used in distributed transactions are released upon COMMIT, or an undetected deadlock may occur.

DBMS_LOCK is most efficient with a limit of a few hundred locks for each session. Oracle strongly recommends that you develop a standard convention for using these locks in order to avoid conflicts among procedures trying to use the same locks. For example, include your company name as part of your lock names.

Summary of DBMS_LOCK Subprograms

Table 83-3 DBMS_LOCK Package Subprograms

	Subprogram	Description
	
ALLOCATE_UNIQUE Procedure

	
Allocates a unique lock ID to a named lock

	
CONVERT Function

	
Converts a lock from one mode to another

	
RELEASE Function

	
Releases a lock

	
REQUEST Function

	
Requests a lock of a specific mode.

	
SLEEP Procedure

	
Puts a session to sleep for a specific time

ALLOCATE_UNIQUE Procedure

This procedure allocates a unique lock identifier (in the range of 1073741824 to 1999999999) a specifiedlock name. Lock identifiers are used to enable applications to coordinate their use of locks. This is provided because it may be easier for applications to coordinate their use of locks based on lock names rather than lock numbers.

Syntax

DBMS_LOCK.ALLOCATE_UNIQUE (
 lockname IN VARCHAR2,
 lockhandle OUT VARCHAR2,
 expiration_secs IN INTEGER DEFAULT 864000);

Parameters

Table 83-4 ALLOCATE_UNIQUE Procedure Parameters

	Parameter	Description
	
lockname

	
Name of the lock for which you want to generate a unique ID.

Do not use lock names beginning with ORA$; these are reserved for products supplied by Oracle.

	
lockhandle

	
Returns the handle to the lock ID generated by ALLOCATE_UNIQUE.

You can use this handle in subsequent calls to REQUEST, CONVERT, and RELEASE.

A handle is returned instead of the actual lock ID to reduce the chance that a programming error accidentally creates an incorrect, but valid, lock ID. This provides better isolation between different applications that are using this package.

LOCKHANDLE can be up to VARCHAR2 (128).

All sessions using a lock handle returned by ALLOCATE_UNIQUE with the same lock name are referring to the same lock. Therefore, do not pass lock handles from one session to another.

	
expiration_specs

	
Number of seconds to wait after the last ALLOCATE_UNIQUE has been performed on a specified lock, before permitting that lock to be deleted from the DBMS_LOCK_ALLOCATED table.

The default waiting period is 10 days. You should not delete locks from this table. Subsequent calls to ALLOCATE_UNIQUE may delete expired locks to recover space.

Usage Notes

If you choose to identify locks by name, you can use ALLOCATE_UNIQUE to generate a unique lock identification number for these named locks.

The first session to call ALLOCATE_UNIQUE with a new lock name causes a unique lock ID to be generated and stored in the dbms_lock_allocated table. Subsequent calls (usually by other sessions) return the lock ID previously generated.

A lock name is associated with the returned lock ID for at least expiration_secs (defaults to 10 days) past the last call to ALLOCATE_UNIQUE with the specified lock name. After this time, the row in the dbms_lock_allocated table for this lock name may be deleted in order to recover space. ALLOCATE_UNIQUE performs a commit.

	
Note:

Named user locks may be less efficient, because Oracle uses SQL to determine the lock associated with a specified name.

Exceptions

ORA-20000, ORU-10003: Unable to find or insert lock <lockname> into catalog dbms_lock_allocated.

CONVERT Function

This function converts a lock from one mode to another. CONVERT is an overloaded function that accepts either a user-defined lock identifier, or the lock handle returned by the ALLOCATE_UNIQUE procedure.

Syntax

DBMS_LOCK.CONVERT(
 id IN INTEGER ||
 lockhandle IN VARCHAR2,
 lockmode IN INTEGER,
 timeout IN NUMBER DEFAULT MAXWAIT)
 RETURN INTEGER;

Parameters

Table 83-5 CONVERT Function Parameters

	Parameter	Description
	
id or lockhandle

	
User assigned lock identifier, from 0 to 1073741823, or the lock handle, returned by ALLOCATE_UNIQUE, of the lock mode you want to change

	
lockmode

	
New mode that you want to assign to the specified lock.

For the available modes and their associated integer identifiers, see Constants.

	
timeout

	
Number of seconds to continue trying to change the lock mode.

If the lock cannot be converted within this time period, then the call returns a value of 1 (timeout).

Return Values

Table 83-6 CONVERT Function Return Values

	Return Value	Description
	
0

	
Success

	
1

	
Timeout

	
2

	
Deadlock

	
3

	
Parameter error

	
4

	
Don't own lock specified by id or lockhandle

	
5

	
Illegal lock handle

RELEASE Function

This function explicitly releases a lock previously acquired using the REQUEST function. Locks are automatically released at the end of a session. RELEASE is an overloaded function that accepts either a user-defined lock identifier, or the lock handle returned by the ALLOCATE_UNIQUE procedure.

Syntax

DBMS_LOCK.RELEASE (
 id IN INTEGER)
 RETURN INTEGER;

DBMS_LOCK.RELEASE (
 lockhandle IN VARCHAR2)
 RETURN INTEGER;

Parameters

Table 83-7 RELEASE Function Parameter

	Parameter	Description
	
id or lockhandle

	
User assigned lock identifier, from 0 to 1073741823, or the lock handle, returned by ALLOCATE_UNIQUE, of the lock mode you want to change

Return Values

Table 83-8 RELEASE Function Return Values

	Return Value	Description
	
0

	
Success

	
3

	
Parameter error

	
4

	
Do not own lock specified by id or lockhandle

	
5

	
Illegal lock handle

REQUEST Function

This function requests a lock with a specified mode. REQUEST is an overloaded function that accepts either a user-defined lock identifier, or the lock handle returned by the ALLOCATE_UNIQUE procedure.

Syntax

DBMS_LOCK.REQUEST(
 id IN INTEGER ||
 lockhandle IN VARCHAR2,
 lockmode IN INTEGER DEFAULT X_MODE,
 timeout IN INTEGER DEFAULT MAXWAIT,
 release_on_commit IN BOOLEAN DEFAULT FALSE)
 RETURN INTEGER;

The current default values, such as X_MODE and MAXWAIT, are defined in the DBMS_LOCK package specification.

Parameters

Table 83-9 REQUEST Function Parameters

	Parameter	Description
	
id or lockhandle

	
User assigned lock identifier, from 0 to 1073741823, or the lock handle, returned by ALLOCATE_UNIQUE, of the lock mode you want to change

	
lockmode

	
Mode that you are requesting for the lock.

For the available modes and their associated integer identifiers, see Constants.

	
timeout

	
Number of seconds to continue trying to grant the lock.

If the lock cannot be granted within this time period, then the call returns a value of 1 (timeout).

	
release_on_commit

	
Set this parameter to TRUE to release the lock on commit or roll-back.

Otherwise, the lock is held until it is explicitly released or until the end of the session.

Return Values

Table 83-10 REQUEST Function Return Values

	Return Value	Description
	
0

	
Success

	
1

	
Timeout

	
2

	
Deadlock

	
3

	
Parameter error

	
4

	
Already own lock specified by id or lockhandle

	
5

	
Illegal lock handle

SLEEP Procedure

This procedure suspends the session for a specified period of time.

Syntax

DBMS_LOCK.SLEEP (
 seconds IN NUMBER);

Parameters

Table 83-11 SLEEP Procedure Parameters

	Parameter	Description
	
seconds

	
Amount of time, in seconds, to suspend the session.

The smallest increment can be entered in hundredths of a second; for example, 1.95 is a legal time value.

84 DBMS_LOGMNR

The DBMS_LOGMNR package, one of a set of LogMiner packages, contains the subprograms you use to initialize the LogMiner tool and to begin and end a LogMiner session.

	
See Also:

Oracle Database Utilities for information regarding LogMiner.

This chapter contains the following topics:

	
Using DBMS_LOGMNR

	
Overview

	
Security Model

	
Constants

	
Views

	
Operational Notes

	
Summary of DBMS_LOGMNR Subprograms

Using DBMS_LOGMNR

This section contains the following topics, which relate to using the DBMS_LOGMNR package:

	
Overview

	
Security Model

	
Constants

	
Views

	
Operational Notes

Overview

Oracle LogMiner, which is part of Oracle Database, enables you to query online and archived redo log files through a SQL interface. The DBMS_LOGMNR package provides the majority of the tools needed to start and stop LogMiner and specify the redo log files of interest.

All changes made to user data or to the database dictionary are recorded in the Oracle redo log files so that database recovery operations can be performed. You can take advantage of the data recorded in the redo log files to accomplish other tasks, such as:

	
Pinpointing when a logical corruption to a database, such as errors made at the application level, may have begun

	
Determining what actions you would have to take to perform fine-grained recovery at the transaction level.

	
Performance tuning and capacity planning through trend analysis.

	
Track any data manipulation language (DML) and data definition language (DDL) statements executed on the database, the order in which they were executed, and who executed them.

	
See Also:

Chapter 85, "DBMS_LOGMNR_D" for information on the package subprograms that extract a LogMiner dictionary and re-create LogMiner tables in alternate tablespaces

Security Model

You must have the EXECUTE_CATALOG_ROLE role to use the DBMS_LOGMNR package.

Constants

The DBMS_LOGMNR package defines several enumerated constants for specifying parameter values. Enumerated constants must be prefixed with the package name, for example, DBMS_LOGMNR.NEW.

Table 84-1 describes the constants for the ADD_LOGFILE options flag in the DBMS_LOGMNR package.

Table 84-1 Constants for ADD_LOGFILE Options Flag

	Constant	Description
	
NEW

	
Implicitly calls the DBMS_LOGMNR.END_LOGMNR procedure to end the current LogMiner session and then creates a new session. The new session starts a new list of redo log files to be analyzed, beginning with the redo log file you specify.

	
ADDFILE

	
Adds the specified redo log file to the list of redo log files to be analyzed. Any attempt to add a duplicate file raises an exception (ORA-01289). This is the default if no options flag is specified.

Table 84-2 describes the constants for the START_LOGMNR options flag in the DBMS_LOGMNR package.

Table 84-2 Constants for START_LOGMNR Options Flag

	Constant	Description
	
COMMITTED_DATA_ONLY

	
If set, DML statements corresponding to committed transactions are returned. DML statements corresponding to a committed transaction are grouped together. Transactions are returned in their commit order. Transactions that are rolled back or in-progress are filtered out, as are internal redo records (those related to index operations, management, and so on).

If this option is not set, all rows for all transactions (committed, rolled back, and in-progress) are returned in the order in which they are found in the redo logs (in order of SCN values).

	
SKIP_CORRUPTION

	
Directs a select operation on the V$LOGMNR_CONTENTS view to skip any corruptions in the redo log file being analyzed and continue processing. This option works only when a block in the redo log file (and not the header of the redo log file) is corrupt. You should check the INFO column in the V$LOGMNR_CONTENTS view to determine the corrupt blocks skipped by LogMiner. When a corruption in the redo log file is skipped, the OPERATION column contains the value CORRUPTED_BLOCKS, and the STATUS column contains the value 1343.

	
DDL_DICT_TRACKING

	
If the LogMiner dictionary in use is a flat file or in the redo log files, LogMiner updates its internal dictionary if a DDL event occurs. This ensures that correct SQL_REDO and SQL_UNDO information is maintained for objects that are modified after the LogMiner internal dictionary is built. The database to which LogMiner is connected must be open.

This option cannot be used in conjunction with the DICT_FROM_ONLINE_CATALOG option and cannot be used when the LogMiner dictionary being used is one that was extracted to a flat file prior to Oracle9i.

	
DICT_FROM_ONLINE_CATALOG

	
Directs LogMiner to use the current online database dictionary rather than a LogMiner dictionary contained in a flat file or in the redo log files being analyzed.

This option cannot be used in conjunction with the DDL_DICT_TRACKING option. The database to which LogMiner is connected must be the same one that generated the redo log files.

Expect to see a value of 2 in the STATUS column of the V$LOGMNR_CONTENTS view if the table definition in the database does not match the table definition in the redo log file.

	
DICT_FROM_REDO_LOGS

	
If set, LogMiner expects to find a LogMiner dictionary in the redo log files that were specified. The redo log files are specified with the DBMS_LOGMNR.ADD_LOGFILE procedure or with the DBMS_LOGMNR.START_LOGMNR procedure with the CONTINUOUS_MINE option.

	
NO_SQL_DELIMITER

	
If set, the SQL delimiter (a semicolon) is not placed at the end of reconstructed SQL statements. This is helpful for applications that open a cursor and then execute the reconstructed statements.

	
NO_ROWID_IN_STMT

	
If set, the ROWID clause is not included in the reconstructed SQL statements. The redo log file may already contain logically unique identifiers for modified rows if supplemental logging is enabled.

When using this option, you must be sure that supplemental logging was enabled in the source database at the appropriate level and that no duplicate rows exist in the tables of interest. LogMiner does not make any guarantee regarding the uniqueness of logical row identifiers.

	
PRINT_PRETTY_SQL

	
If set, LogMiner formats the reconstructed SQL statements for ease of reading. These reconstructed SQL statements are not executable.

	
CONTINUOUS_MINE

	
Directs LogMiner to automatically add redo log files, as needed, to find the data of interest. You only need to specify the first log to start mining, or just the starting SCN or date to indicate to LogMiner where to begin mining logs. You are not required to specify any redo log files explicitly. LogMiner automatically adds and mines the (archived and online) redo log files for the data of interest. This option requires that LogMiner is connected to the same database instance that is generating the redo log files. It also requires that the database be mounted and that archiving be enabled.

Beginning with Oracle Database release 10.1, the CONTINUOUS_MINE options is supported for use in an Oracle Real Application Clusters (Oracle RAC) environment.

	
STRING_LITERALS_IN_STMT

	
If set, SQL_REDO and SQL_UNDO use literals for numbers and datetime and interval column types.

Views

The DBMS_LOGMNR package uses the views listed in the section on Accessing LogMiner Operational Information in Views in Oracle Database Utilities.

Operational Notes

A LogMiner session begins with a call to DBMS_LOGMNR.ADD_LOGFILE or DBMS_LOGMNR.START_LOGMNR (the former if you plan to specify log files explicitly; the latter if you plan to use continuous mining). The session ends with a call to DBMS_LOGMNR.END_LOGMNR. Within a LogMiner session, you can specify the redo log files to be analyzed and the SCN or time range of interest; then you can issue SQL SELECT statements against the V$LOGMNR_CONTENTS view to retrieve the data of interest.

Summary of DBMS_LOGMNR Subprograms

Table 84-3 DBMS_LOGMNR Package Subprograms

	Subprogram	Description
	
ADD_LOGFILE Procedure

	
Adds a redo log file to the existing or newly created list of redo log files for LogMiner to process, so that if a new list is created, this marks the beginning of a LogMiner session

	
COLUMN_PRESENT Function

	
Call this function for any row returned from the V$LOGMNR_CONTENTS view to determine if undo or redo column values exist for the column specified by the column_name input parameter to this function

	
END_LOGMNR Procedure

	
Finishes a LogMiner session

	
MINE_VALUE Function

	
Call this function for any row returned from the V$LOGMNR_CONTENTS view to retrieve the undo or redo column value of the column specified by the column_name input parameter to this function

	
REMOVE_LOGFILE Procedure

	
Removes a redo log file from the list of redo log files for LogMiner to process

	
START_LOGMNR Procedure

	
Initializes the LogMiner utility and starts LogMiner (unless the session was already started with a call to DBMS_LOGMNR.ADD_LOGFILE)

ADD_LOGFILE Procedure

This procedure adds a file to an existing or newly created list of log files for LogMiner to process.

Syntax

DBMS_LOGMNR.ADD_LOGFILE (
 LogFileName IN VARCHAR2,
 options IN BINARY_INTEGER default ADDFILE);

Parameters

Table 84-4 ADD_LOGFILE Procedure Parameters

	Parameter	Description
	
LogFileName

	
Specifies the name of the redo log file to add to the list of redo log files to be analyzed during this session.

	
options

	
Does one of the following:

	
Starts a new LogMiner session and a new list of redo log files for analysis (DBMS_LOGMNR.NEW)

	
Adds a file to an existing list of redo log files for analysis (DBMS_LOGMNR.ADDFILE)

See Table 84-1, "Constants for ADD_LOGFILE Options Flag".

Exceptions

Table 84-5 ADD_LOGFILE Procedure Exceptions

	Exception	Description
	
ORA-01284

	
Specified file cannot be opened.

	
ORA-01287

	
Specified file is from a different database incarnation.

	
ORA-01289

	
Specified file has already been added to the list. Duplicate redo log files cannot be added.

	
ORA-01290

	
Specified file is not in the current list and therefore cannot be removed from the list.

	
ORA-01324

	
Specified file cannot be added to the list because there is a DB_ID mismatch.

Usage Notes

	
Before querying the V$LOGMNR_CONTENTS view, you must make a successful call to the DBMS_LOGMNR.START_LOGMNR procedure (within the current LogMiner session).

	
Unless you specify the CONTINUOUS_MINE option, the LogMiner session must be set up with a list of redo log files to be analyzed. Use the ADD_LOGFILE procedure to specify the list of redo log files to analyze.

	
If you are not using the CONTINUOUS_MINE option and you want to analyze more than one redo log file, you must call the ADD_LOGFILE procedure separately for each redo log file. The redo log files do not need to be registered in any particular order.

	
Both archived and online redo log files can be mined.

	
After you have added the first redo log file to the list, each additional redo log file that you add to the list must be associated with the same database and database RESETLOGS SCN as the first redo log file. (The database RESETLOGS SCN uniquely identifies each execution of an ALTER DATABASE OPEN RESETLOGS statement. When the online redo logs are reset, Oracle creates a new and unique incarnation of the database.)

	
To analyze the redo log files from a different database (or a database incarnation with a different database RESETLOGS SCN) than that with which the current list of redo log files is associated, use the END_LOGMNR procedure to end the current LogMiner session, and then build a new list using the ADD_LOGFILE procedure.

	
LogMiner matches redo log files by the log sequence number. Thus, two redo log files with different names but with the same log sequence number will return the ORA-01289 exception. For instance, the online counterpart of an archived redo log file has a different name from the archived redo log file, but attempting to register it with LogMiner after registering the archived counterpart will result in the ORA-01289 exception being returned.

COLUMN_PRESENT Function

This function is designed to be used in conjunction with the MINE_VALUE function.

If the MINE_VALUE function returns a NULL value, it can mean either:

	
The specified column is not present in the redo or undo portion of the data.

	
The specified column is present and has a NULL value.

To distinguish between these two cases, use the COLUMN_PRESENT function, which returns a 1 if the column is present in the redo or undo portion of the data. Otherwise, it returns a 0.

Syntax

DBMS_LOGMNR.COLUMN_PRESENT (
 sql_redo_undo IN RAW,
 column_name IN VARCHAR2 default '') RETURN NUMBER;

Parameters

Table 84-6 COLUMN_PRESENT Function Parameters

	Parameter	Description
	
sql_redo_undo

	
Specifies either the REDO_VALUE or the UNDO_VALUE column in the V$LOGMNR_CONTENTS view from which to extract data values. See the Usage Notes for more information.

	
column_name

	
Specifies the fully qualified name (schema.table.column) of the column for which this function will return information.

Return Values

Table 84-7 describes the return values for the COLUMN_PRESENT function. The COLUMN_PRESENT function returns 1 if the self-describing record (the first parameter) contains the column specified in the second parameter. This can be used to determine the meaning of NULL values returned by the DBMS_LOGMNR.MINE_VALUE function.

Table 84-7 Return Values for COLUMN_PRESENT Function

	Return	Description
	
0

	
Specified column is not present in this row of V$LOGMNR_CONTENTS.

	
1

	
Column is present in this row of V$LOGMNR_CONTENTS.

Exceptions

Table 84-8 COLUMN_PRESENT Function Exceptions

	Exception	Description
	
ORA-01323

	
Currently, a LogMiner dictionary is not associated with the LogMiner session. You must specify a LogMiner dictionary for the LogMiner session.

	
ORA-00904

	
Value specified for the column_name parameter is not a fully qualified column name.

Usage Notes

	
To use the COLUMN_PRESENT function, you must have successfully started LogMiner.

	
The COLUMN_PRESENT function must be invoked in the context of a select operation on the V$LOGMNR_CONTENTS view.

	
The COLUMN_PRESENT function does not support LONG, LOB, ADT, or COLLECTION datatypes.

	
The value for the sql_redo_undo parameter depends on the operation performed and the data of interest:

	
If an update operation was performed and you want to know what the value was prior to the update operation, specify UNDO_VALUE.

	
If an update operation was performed and you want to know what the value is after the update operation, specify REDO_VALUE.

	
If an insert operation was performed, typically you would specify REDO_VALUE (because the value of a column prior to an insert operation will always be NULL).

	
If a delete operation was performed, typically you would specify UNDO_VALUE (because the value of a column after a delete operation will always be NULL).

END_LOGMNR Procedure

This procedure finishes a LogMiner session. Because this procedure performs cleanup operations that may not otherwise be done, you must use it to properly end a LogMiner session. This procedure is called automatically when you log out of a database session or when you call DBMS_LOGMNR.ADD_LOGFILE and specify the NEW option.

Syntax

DBMS_LOGMNR.END_LOGMNR;

Exceptions

Table 84-9 END_LOGMNR Procedure Exception

	Exception	Description
	
ORA-01307

	
No LogMiner session is currently active. The END_LOGMNR procedure was called without adding any log files or before the START_LOGMNR procedure was called

MINE_VALUE Function

This function facilitates queries based on a column's data value. This function takes two arguments. The first one specifies whether to mine the redo (REDO_VALUE) or undo (UNDO_VALUE) portion of the data. The second argument is a string that specifies the fully qualified name of the column to be mined. The MINE_VALUE function always returns a string that can be converted back to the original datatype.

Syntax

DBMS_LOGMNR.MINE_VALUE (
 sql_redo_undo IN RAW,
 column_name IN VARCHAR2 default '') RETURN VARCHAR2;

Parameters

Table 84-10 MINE_VALUE Function Parameters

	Parameter	Description
	
sql_redo_undo

	
Specifies either the REDO_VALUE or the UNDO_VALUE column in the V$LOGMNR_CONTENTS view from which to extract data values. See the Usage Notes for more information.

	
column_name

	
Specifies the fully qualified name (schema.table.column) of the column for which this function will return information.

Return Values

Table 84-11 Return Values for MINE_VALUE Function

	Return	Description
	
NULL

	
The column is not contained within the self-describing record, or the column value is NULL. To distinguish between the two different null possibilities, use the DBMS_LOGMNR.COLUMN_PRESENT function.

	
NON-NULL

	
The column is contained within the self-describing record; the value is returned in string format.

Exceptions

Table 84-12 MINE_VALUE Function Exceptions

	Exception	Description
	
ORA-01323

	
Invalid state. Currently, a LogMiner dictionary is not associated with the LogMiner session. You must specify a LogMiner dictionary for the LogMiner session.

	
ORA-00904

	
Invalid identifier. The value specified for the column_name parameter was not a fully qualified column name.

Usage Notes

	
To use the MINE_VALUE function, you must have successfully started LogMiner.

	
The MINE_VALUE function must be invoked in the context of a select operation from the V$LOGMNR_CONTENTS view.

	
The MINE_VALUE function does not support LONG, LOB, ADT, or COLLECTION datatypes.

	
The value for the sql_redo_undo parameter depends on the operation performed and the data of interest:

	
If an update operation was performed and you want to know what the value was prior to the update operation, specify UNDO_VALUE.

	
If an update operation was performed and you want to know what the value is after the update operation, specify REDO_VALUE.

	
If an insert operation was performed, typically you would specify REDO_VALUE (because the value of a column prior to an insert operation will always be null).

	
If a delete operation was performed, typically you would specify UNDO_VALUE (because the value of a column after a delete operation will always be null).

REMOVE_LOGFILE Procedure

This procedure removes a redo log file from an existing list of redo log files for LogMiner to process.

	
Note:

This procedure replaces the REMOVEFILE constant that was an option on the ADD_LOGFILE procedure prior to Oracle Database 10g.

Syntax

DBMS_LOGMNR.REMOVE_LOGFILE (
 LogFileName IN VARCHAR2);

Parameters

Table 84-13 REMOVE_LOGFILE Procedure Parameters

	Parameter	Description
	
LogFileName

	
Specifies the name of the redo log file to be removed from the list of redo log files to be analyzed during this session.

Exceptions

Table 84-14 REMOVE_LOGFILE Procedure Exception

	Exception	Description
	
ORA-01290

	
Cannot remove unlisted log file

Usage Notes

	
Before querying the V$LOGMNR_CONTENTS view, you must make a successful call to the DBMS_LOGMNR.START_LOGMNR procedure (within the current LogMiner session).

	
You can use this procedure to remove a redo log file from the list of redo log files for LogMiner to process if you know that redo log file does not contain any data of interest.

	
Multiple redo log files can be removed by calling this procedure repeatedly.

	
The redo log files do not need to be removed in any particular order.

	
To start a new list of redo log files for analysis, use the END_LOGMNR procedure to end the current LogMiner session, and then build a new list using the ADD_LOGFILE procedure.

	
Even if you remove all redo log files from the list, any subsequent calls you make to the ADD_LOGFILE procedure must match the database ID and RESETLOGS SCN of the removed redo log files. Therefore, to analyze the redo log files from a different database (or a database incarnation with a different database RESETLOGS SCN) than that with which the current list of redo log files is associated, use the END_LOGMNR procedure to end the current LogMiner session, and then build a new list using the ADD_LOGFILE procedure.

START_LOGMNR Procedure

This procedure starts LogMiner by loading the dictionary that LogMiner will use to translate internal schema object identifiers to names.

Syntax

DBMS_LOGMNR.START_LOGMNR (
 startScn IN NUMBER default 0,
 endScn IN NUMBER default 0,
 startTime IN DATE default '01-jan-1988',
 endTime IN DATE default '31-dec-2110',
 DictFileName IN VARCHAR2 default '',
 Options IN BINARY_INTEGER default 0);

Parameters

Table 84-15 START_LOGMNR Procedure Parameters

	Parameter	Description
	
startScn

	
Directs LogMiner to return only redo records with an SCN greater than or equal to the startScn specified. This fails if there is no redo log file containing the specified startScn value. (You can query the FILENAME, LOW_SCN, and NEXT_SCN columns in the V$LOGMNR_LOGS view for each redo log file to determine the range of SCN values contained in each redo log file.)

	
endScn

	
Directs LogMiner to return only redo records with an SCN less than or equal to the endScn specified. If you specify an endScn value that is beyond the value in any redo log file, then LogMiner uses the greatest endScn value in the redo log file that contains the most recent changes. (You can query the FILENAME, LOW_SCN, and NEXT_SCN columns in the V$LOGMNR_LOGS view for each redo log file to determine the range of SCN values contained in each redo log file.)

	
startTime

	
Directs LogMiner to return only redo records with a timestamp greater than or equal to the startTime specified. This fails if there is no redo log file containing the specified startTime value. (You can query the FILENAME, LOW_TIME, and HIGH_TIME columns in the V$LOGMNR_LOGS view for each redo log file to determine the range of time covered in each redo log file.)

This parameter is ignored if startScn is specified. See the Usage Notes for additional information.

	
endTime

	
Directs LogMiner to return only redo records with a timestamp less than or equal to the endTime specified. If you specify an endTime value that is beyond the value in any redo log file, then LogMiner will use the greatest endTime in the redo log file that contains the most recent changes. You can query the FILENAME, LOW_TIME, and HIGH_TIME columns in the V$LOGMNR_LOGS view for each redo log file to determine the range of time covered in each redo log file.)

This parameter is ignored if endScn is specified. See the Usage Notes for additional information.

	
DictFileName

	
Specifies the flat file that contains the LogMiner dictionary. It is used to reconstruct SQL_REDO and SQL_UNDO columns in V$LOGMNR_CONTENTS, as well as to fully translate SEG_NAME, SEG_OWNER, SEG_TYPE_NAME, TABLE_NAME, and TABLE_SPACE columns. The fully qualified path name for the LogMiner dictionary file must be specified. (This file must have been created previously through the DBMS_LOGMNR_D.BUILD procedure.)

You need to specify this parameter only if neither DICT_FROM_REDO_LOGS nor DICT_FROM_ONLINE_CATALOG is specified.

	
options

	
See Table 84-2, "Constants for START_LOGMNR Options Flag".

Exceptions

Table 84-16 START_LOGMNR Procedure Exceptions

	Exception	Description
	
ORA-01280

	
Internal error encountered.

	
ORA-01281

	
startScn or endScn parameter value is not a valid SCN, or endScn is less than startScn.

	
ORA-01282

	
value for the startTime parameter was greater than the value specified for the endTime parameter, or there was no redo log file that was compatible with the date range specified with the startTime and endTime parameters.

	
ORA-01283

	
Options parameter specified is invalid.

	
ORA-01284

	
LogMiner dictionary file specified in the DictFileName parameter has a full path length greater than 256 characters, or the file cannot be opened.

	
ORA-01285

	
Error reading specified file.

	
ORA-01291

	
Redo log files that are needed to satisfy the user's requested SCN or time range are missing.

	
ORA-01292

	
No log file has been specified for the current LogMiner session.

	
ORA-01293

	
Mounted database required for specified LogMiner options.

	
ORA-01294

	
Error occurred while processing information in the specified dictionary file, possible corruption.

	
ORA-01295

	
Specified LogMiner dictionary does not correspond to the database that produced the log files being analyzed.

	
ORA-01296

	
Character set mismatch between specified LogMiner dictionary and log files.

	
ORA-01297

	
Redo version mismatch between LogMiner dictionary and log files.

	
ORA-01299

	
Specified LogMiner dictionary corresponds to a different database incarnation.

	
ORA-01300

	
Writable database required for specified LogMiner options.

Usage Notes

	
LogMiner can use a dictionary that you previously extracted to the redo log files or to a flat file, or you can specify that LogMiner use the online catalog if LogMiner is mining data from the source system. See Oracle Database Utilities and Chapter 85, "DBMS_LOGMNR_D" in this manual for more information about the LogMiner dictionary.

	
After executing the START_LOGMNR procedure, you can query the following views:

	
V$LOGMNR_CONTENTS - contains history of information in redo log files

	
V$LOGMNR_DICTIONARY - contains current information about the LogMiner dictionary file extracted to a flat file

	
V$LOGMNR_PARAMETERS - contains information about the LogMiner session

(You can query the V$LOGMNR_LOGS view after a redo log file list has been added to the list of files that LogMiner is to mine.)

	
Parameters and options are not persistent across calls to DBMS_LOGMNR.START_LOGMNR. You must specify all desired parameters and options (including SCN and time ranges) each time you call DBMS_LOGMNR.START_LOGMNR

	
Be aware that specifying redo log files using a timestamp is not precise.

	
The CONTINUOUS_MINE option directs LogMiner to automatically add redo log files, as needed, to find the data of interest. You need to specify only the first log to start mining, or just the starting SCN or date to indicate to LogMiner where to begin mining logs. Keep the following in mind when using the CONTINUOUS_MINE option:

	
The database control file will hold information about a limited number of archived redo log files, although the number of entries can be quite large. Query the V$ARCHIVED_LOGS view to determine which redo log file entries will be found by LogMiner.

Even if an entry is listed in the database control file (and the V$ARCHIVED_LOGS view), the archived redo log file may not be accessible by LogMiner for various reasons. For example, the archived redo log file may have been deleted or moved from its location (maybe because of a backup operation to tape), or the directory where it resides may not be not available.

	
If you specify the CONTINUOUS_MINE option and an ending time or SCN that will occur in the future (or you do not specify an end time or SCN), a query of the V$LOGMNR_CONTENTS view will not finish until the database has generated redo log files beyond the specified time or SCN. In this scenario, LogMiner will automatically add archived redo log files to the LogMiner redo log file list as they are generated. In addition, in this scenario only, LogMiner may automatically remove redo log files from the list to keep it at 50 processed redo files. This is to save PGA memory as LogMiner automatically adds redo log files to the list. If LogMiner did not perform automated removal, memory could eventually be exhausted.

	
LogMiner can mine online redo logs. However, if the CONTINUOUS_MINE option is not specified, it is possible that the database is writing to the online redo log file at the same time that LogMiner is reading the online redo log file. If a log switch occurs while LogMiner is reading an online redo log file, the database will overwrite what LogMiner is attempting to read. The data that LogMiner returns if the file it is trying to read gets overwritten by the database is unpredictable.

	
Keep the following in mind regarding starting and ending times or SCN ranges:

	
If you specify neither a startTime nor a startScn parameter, LogMiner will set the startScn parameter to use the lowest SCN value from the redo log file that contains the oldest changes.

	
If you specify both time and SCN values, LogMiner uses the SCN value or values and ignores the time values.

	
If you specify starting and ending time or SCN values and they are found in the LogMiner redo log file list, then LogMiner mines the logs indicated by those values.

	
If you specify starting and ending times or SCN values that are not in the LogMiner redo log file list, and you specify DBMS_LOGMNR.START_LOGMNR without the CONTINUOUS_MINE option, and you specify:

	
0 for the startTime or startScn value, then the lowest SCN in the LogMiner redo log file list will be used as the startScn

	
A nonzero number for the startTime or startScn value, then an error is returned

	
0 or a nonzero number for the endTime or endScn value, then the highest SCN in the LogMiner redo log file list will be used as the endScn

	
If you specify starting and ending times or SCN values and they are not found in the LogMiner redo log file list, and you specify DBMS_LOGMNR.START_LOGMNR with the CONTINUOUS_MINE option, and you specify:

	
0 for the startTime or startScn value, then an error is returned.

	
A startTime or startScn value that is greater than any value in the database's archived redo log files, then LogMiner starts mining in the online redo log file. LogMiner will continue to process the online redo log file until it finds a change at, or beyond, the requested starting point before it returns rows from the V$LOGMNR_CONTENTS view.

	
An endTime or endScn parameter value that indicates a time or SCN in the future, then LogMiner includes the online redo log files when it mines. When you query the V$LOGMNR_CONTENTS view, rows will be returned from this view as changes are made to the database, and will not stop until LogMiner sees a change beyond the requested ending point.

	
0 for the endTime or endScn parameter value, then LogMiner includes the online redo log files when it mines. When you query the V$LOGMNR_CONTENTS view, rows will be returned from this view as changes are made to the database, and will not stop until you enter CTL+C or you terminate the PL/SQL cursor.

85 DBMS_LOGMNR_D

The DBMS_LOGMNR_D package, one of a set of LogMiner packages, contains two subprograms:

	
The BUILD procedure extracts the LogMiner data dictionary to either the redo log files or to a flat file. This information is saved in preparation for future analysis of redo log files using the LogMiner tool.

	
The SET_TABLESPACE procedure re-creates all LogMiner tables in an alternate tablespace.

The LogMiner data dictionary consists of the memory data structures and the database tables that are used to store and retrieve information about objects and their versions. It is referred to as the LogMiner dictionary throughout the LogMiner documentation.

	
See Also:

Oracle Database Utilities for information regarding LogMiner.

This chapter contains the following topics:

	
Using DBMS_LOGMNR_D

	
Overview

	
Security Model

	
Summary of DBMS_LOGMNR_D Subprograms

Using DBMS_LOGMNR_D

This section contains the following topics, which relate to using the DBMS_LOGMNR_D package:

	
Overview

	
Security Model

Overview

LogMiner requires a dictionary to translate object IDs into object names when it returns redo data to you. LogMiner gives you three options for supplying the dictionary:

	
Using the online catalog

	
Extracting a LogMiner dictionary to the redo log files

	
Extracting a LogMiner dictionary to a flat file

Use the BUILD procedure to extract the LogMiner dictionary to the redo log files or a flat file. If you want to specify the online catalog as the dictionary source, you do so when you start LogMiner with the DBMS_LOGMNR.START_LOGMNR package.

Use the SET_TABLESPACE procedure if you want LogMiner tables to use a tablespace other than the default SYSAUX tablespace.

	
See Also:

DBMS_LOGMNR for information on the package subprograms used in running a LogMiner session.

Security Model

You must have the EXECUTE_CATALOG_ROLE role to use the DBMS_LOGMNR_D package.

Summary of DBMS_LOGMNR_D Subprograms

Table 85-1 DBMS_LOGMNR_D Package Subprograms

	Subprogram	Description
	
BUILD Procedure

	
Extracts the LogMiner dictionary to either a flat file or one or more redo log files

	
SET_TABLESPACE Procedure

	
Re-creates all LogMiner tables in an alternate tablespace

BUILD Procedure

This procedure extracts the LogMiner data dictionary to either the redo log files or to a flat file.

Syntax

DBMS_LOGMNR_D.BUILD (
 dictionary_filename IN VARCHAR2,
 dictionary_location IN VARCHAR2,
 options IN NUMBER);

Parameters

Table 85-2 BUILD Procedure Parameters

	Parameter	Description
	
dictionary_filename

	
Specifies the name of the LogMiner dictionary file.

	
dictionary_location

	
Specifies the path to the LogMiner dictionary file directory.

	
options

	
Specifies that the LogMiner dictionary is written to either a flat file (STORE_IN_FLAT_FILE) or the redo log files (STORE_IN_REDO_LOGS).

Exceptions

Table 85-3 BUILD Procedure Exceptions

	Exception	Description
	
ora-01302

	
Dictionary build options are missing or incorrect.

This error is returned under the following conditions:

	
If the value of the OPTIONS parameter is not one of the supported values (STORE_IN_REDO_LOGS, STORE_IN_FLAT_FILE) or is not specified

	
If the STORE_IN_REDO_LOGS option is not specified and neither the dictionary_filename nor the dictionary_location parameter is specified

	
If the STORE_IN_REDO_LOGS option is specified and either the dictionary_filename or the dictionary_location parameter is specified

	
ora-01308

	
Initialization parameter UTL_FILE_DIR is not set.

	
ora-01336

	
Specified dictionary file cannot be opened.

This error is returned under the following conditions:

	
The specified value for the dictionary_location does not exist.

	
The UTL_FILE_DIR initialization parameter is not set to have access to the dictionary_location

	
The dictionary file is read-only.

Usage Notes

	
To extract the LogMiner dictionary to a flat file, you must supply a filename and location.

To extract the LogMiner dictionary to the redo log files, specify only the STORE_IN_REDO_LOGS option. The size of the LogMiner dictionary may cause it to be contained in multiple redo log files.

The combinations of parameters used result in the following behavior:

	
If you do not specify any parameters, an error is returned.

	
If you specify a filename and location, without any options, the LogMiner dictionary is extracted to a flat file with that name.

	
If you specify a filename and location, as well as the STORE_IN_FLAT_FILE option, the LogMiner dictionary is extracted to a flat file with the specified name.

	
If you do not specify a filename and location, but do specify the STORE_IN_REDO_LOGS option, the LogMiner dictionary is extracted to the redo log files.

	
If you specify a filename and location, as well as the STORE_IN_REDO_LOGS option, an error is returned.

	
If you do not specify a filename and location, but do specify the STORE_IN_FLAT_FILE option, an error is returned.

	
Ideally, the LogMiner dictionary file will be created after all database dictionary changes have been made and prior to the creation of any redo log files that are to be analyzed. As of Oracle9i release 1 (9.0.1), you can use LogMiner to dump the LogMiner dictionary to the redo log files or a flat file, perform DDL operations, and dynamically apply the DDL changes to the LogMiner dictionary.

	
Do not run the DBMS_LOGMNR_D.BUILD procedure if there are any ongoing DDL operations.

	
The database must be open when you run the DBMS_LOGMNR_D.BUILD procedure.

	
When extracting a LogMiner dictionary to a flat file, the procedure queries the dictionary tables of the current database and creates a text-based file containing the contents of the tables. To extract a LogMiner dictionary to a flat file, the following conditions must be met:

	
You must specify a directory for use by the PL/SQL procedure. To do so, set the initialization parameter UTL_FILE_DIR in the initialization parameter file. For example:

UTL_FILE_DIR = /oracle/dictionary

After setting the parameter, you must shut down and restart the database for this parameter to take effect. If you do not set this parameter, the procedure will fail.

	
You must ensure that no DDL operations occur while the LogMiner dictionary build is running. Otherwise, the LogMiner dictionary file may not contain a consistent snapshot of the database dictionary.

Be aware that the DDL_DICT_TRACKING option to the DBMS_LOGMNR.START_LOGMNR procedure is not supported for flat file dictionaries created prior to Oracle9i. If you attempt to use the DDL_DICT_TRACKING option with a LogMiner database extracted to a flat file prior to Oracle9i, the ORA-01330 error (problem loading a required build table) is returned.

	
To extract a LogMiner dictionary file to the redo log files, the following conditions must be met:

	
The DBMS_LOGMNR_D.BUILD procedure must be run on a system that is running Oracle9i or later.

	
Archivelog mode must be enabled in order to generate usable redo log files.

	
The COMPATIBLE parameter in the initialization parameter file must be set to 9.2.0 or higher.

	
The database to which LogMiner is attached must be Oracle9i or later.

In addition, supplemental logging (at least the minimum level) should be enabled to ensure that you can take advantage of all the features that LogMiner offers. See Oracle Database Utilities for information about using supplemental logging with LogMiner.

Examples

Example 1: Extracting the LogMiner Dictionary to a Flat File

The following example extracts the LogMiner dictionary file to a flat file named dictionary.ora in a specified path (/oracle/database).

SQL> EXECUTE dbms_logmnr_d.build('dictionary.ora', -
 '/oracle/database/', -
 options => dbms_logmnr_d.store_in_flat_file);

Example 2: Extracting the LogMiner Dictionary to the Redo Log Files

The following example extracts the LogMiner dictionary to the redo log files.

SQL> EXECUTE dbms_logmnr_d.build(-
 options => dbms_logmnr_d.store_in_redo_logs);

SET_TABLESPACE Procedure

By default, all LogMiner tables are created to use the SYSAUX tablespace. However, it may be desirable to have LogMiner tables use an alternate tablespace. Use this procedure to move LogMiner tables to an alternate tablespace.

Syntax

DBMS_LOGMNR_D.SET_TABLESPACE (
 new_tablespace IN VARCHAR2);

Parameters

Table 85-4 SET_TABLESPACE Parameter

	Parameter	Description
	
new_tablespace

	
A string naming a preexisting tablespace. To move all LogMiner tables to employ this tablespace, supply this parameter.

Usage Notes

	
Users upgrading from earlier versions of Oracle Database may find LogMiner tables in the SYSTEM tablespace. Oracle encourages such users to consider using the SET_TABLESPACE procedure to move the tables to the SYSAUX tablespace once they are confident that they will not be downgrading to an earlier version of Oracle Database.

	
Users of this routine must supply an existing tablespace.

	
See Also:

Oracle Database Concepts and Oracle Database SQL Language Reference for information about tablespaces and how to create them

Example: Using the DBMS_LOGMNR_D.SET_TABLESPACE Procedure

The following example shows the creation of an alternate tablespace and execution of the DBMS_LOGMNR_D.SET_TABLESPACE procedure.

SQL> CREATE TABLESPACE logmnrts$ datafile '/usr/oracle/dbs/logmnrts.f'
 SIZE 25 M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;

SQL> EXECUTE dbms_logmnr_d.set_tablespace('logmnrts$');

The script content on this page is for navigation purposes only and does not alter the content in any way.

86 DBMS_LOGSTDBY

The DBMS_LOGSTDBY package provides subprograms for configuring and managing the logical standby database environment.

	
See Also:

Oracle Data Guard Concepts and Administration for more information about SQL Apply and logical standby databases

This chapter contains the following topics:

	
Using DBMS_LOGSTDBY

	
Overview

	
Security Model

	
Summary of DBMS_LOGSTDBY Subprograms

Using DBMS_LOGSTDBY

This section contains topics which relate to using the DBMS_LOGSTDBY package.

	
Overview

	
Secutity Model

Overview

The DBMS_LOGSTDBY package helps you manage the SQL Apply (logical standby database) environment. The subprograms in the DBMS_LOGSTDBY package help you to accomplish the following main objectives:

	
Manage configuration parameters used by SQL Apply.

For example, controlling how transactions are applied on the logical standby database, how much shared pool is used, and how many processes are used by SQL Apply to mine and apply the changes.

	
Ensure an appropriate level of supplemental logging is enabled, and a LogMiner dictionary is built correctly for logical standby database creation.

	
Provide a way to skip the application of changes to selected tables or entire schemas in the logical standby database, and specify ways to handle exceptions encountered by SQL Apply.

	
Allow controlled access to tables in the logical standby database that may require maintenance.

Secutity Model

You must have the DBA role to use the DBMS_LOGSTDBY package.

A prototype role, LOGSTDBY_ADMINISTRATOR, is created by default with RESOURCE, and EXECUTE privileges on DBMS_LOGSTDBY. If you choose to use this role, consider granting ALTER DATABASE and ALTER SESSION privileges to the role so that the grantee can start and stop SQL Apply and can enable and disable the database guard.

The procedures associated with skipping transactions (SKIP and UNSKIP, SKIP_ERROR and UNSKIP_ERROR, and SKIP_TRANSACTION and UNSKIP_TRANSACTION) all require DBA privileges to execute because their scope may contain wildcard schemas. Oracle recommends that where SKIP procedures are specified, these be owned by a secure account with appropriate privileges on the schemas they act on (for example, SYS).

Summary of DBMS_LOGSTDBY Subprograms

Table 86-1 DBMS_LOGSTDBY Package Subprograms

	Subprogram	Description
	
APPLY_SET Procedure

	
Sets the values of various parameters that configure and maintain SQL Apply

	
APPLY_UNSET Procedure

	
Restores the default values of various parameters that configure and maintain SQL Apply

	
BUILD Procedure

	
Ensures supplemental logging is enabled properly and builds the LogMiner dictionary

	
INSTANTIATE_TABLE Procedure

	
Creates and populates a table in the standby database from a corresponding table in the primary database

	
IS_APPLY_SERVER Function

	
This function returns TRUE if it is executed from PL/SQL in the context of a logical standby apply server process. This function is used in conjunction with triggers that have the fire_once parameter in the DBMS_DDL.SET_TRIGGER_FIRING_PROPERTY subprogram set to FALSE (the default is TRUE). Such triggers are executed when the relevant target is updated by an apply process. This function can be used within the body of the trigger to ensure that the trigger takes different (or no) actions on the primary or on the standby.

	
MAP_PRIMARY_SCN Function

	
Maps an SCN relevant to the primary database to a corresponding SCN at the logical standby database. The mapped SCN is conservative in nature, and can thus be used to flash back the logical standby database to compensate for a flashback database operation performed at the primary database.

	
PREPARE_FOR_NEW_PRIMARY Procedure

	
Used after a failover, this procedure ensures a local logical standby database that was not involved in the failover has not processed more redo than the new primary database and reports the set of archive redo log files that must be replaced to ensure consistency

	
PURGE_SESSION Procedure

	
Identifies the archived redo log files that have been applied to the logical standby database and are no longer needed by SQL Apply

	
REBUILD Procedure

	
Records relevant metadata (including the LogMiner dictionary) in the redo stream in case a database that has recently changed its role to a primary database following a failover operation fails to do so during the failover process

	
SET_TABLESPACE Procedure

	
Moves metadata tables required by SQL Apply to the user-specified tablespace. By default, the metadata tables are created in the SYSAUX tablespace.

	
SKIP Procedure

	
Specifies rules that control database operations that should not be applied to the logical standby database

	
SKIP_ERROR Procedure

	
Specifies rules regarding what action to take upon encountering errors

	
SKIP_TRANSACTION Procedure

	
Specifies transactions that should not be applied on the logical standby database. Be careful in using this procedure, because not applying specific transactions may cause data corruption at the logical standby database.

	
UNSKIP Procedure

	
Deletes rules specified by the SKIP procedure

	
UNSKIP_ERROR Procedure

	
Deletes rules specified by the SKIP_ERROR procedure

	
UNSKIP_TRANSACTION Procedure

	
Deletes rules specified by the SKIP_TRANSACTION procedure

APPLY_SET Procedure

Use this procedure to set values of parameters that configure and manage SQL Apply in a logical standby database environment. All parameters, except for PRESERVE_COMMIT_ORDER, can be changed without having to stop SQL Apply.

Syntax

DBMS_LOGSTDBY.APPLY_SET (
 inname IN VARCHAR,
 value IN VARCHAR);

Parameters

Table 86-2 APPLY_SET Procedure Parameters

	Parameter	Description
	
APPLY_SERVERS

	
Controls the number of APPLIER processes used to apply changes. The maximum number allowed is 1024, provided the MAX_SERVERS parameter is set to accommodate this.

	
EVENT_LOG_DEST

	
Controls where SQL Apply records the occurrence of an interesting event. It takes the following values:

	
DEST_ALL - All events will be recorded in the DBA_LOGSTDBY_EVENTS view and in the alert log.

	
DEST_EVENTS_TABLE - All events that contain information about user data will be recorded only in the DBA_LOGSTDBY_EVENTS view. This is the default value.

For example, if SQL Apply receives an ORA-1403 error, the whole event is recorded in the DBA_LOGSTDBY_EVENTS view. Whereas, the alert log records only that SQL Apply stopped because of ORA-1403. No information regarding the user table or offending statement is logged in the alert log. However, if you stop the SQL Apply engine, it gets recorded in both the DBA_LOGSTDBY_EVENTS view and in the alert log.

Note that this parameter affects the behavior of the following parameters: RECORD_APPLIED_DDL, RECORD_SKIP_DDL, RECORD_SKIP_ERRORS, and RECORD_UNSUPPORTED_OPERATIONS. For example, if RECORD_APPLIED_DDL is set to TRUE, but EVENT_LOG_DEST is set to DEST_EVENTS_TABLE, then the applied DDL string will only be recorded in the DBA_LOGSTDBY_EVENTS view.

	
LOG_AUTO_DEL_RETENTION_TARGET

	
This parameter setting is only meaningful if LOG_AUTO_DELETE has been set to TRUE. The value you supply for this parameter controls how long (in minutes) a remote archived log that is received from the primary database will be retained at the logical standby database once all redo records contained in the log have been applied at the logical standby database. The default value is 1440 minutes.

	
LOG_AUTO_DELETE

	
Automatically deletes foreign archived redo log files as soon as they have been applied on the logical standby database. By default, a foreign archived redo log file is not deleted until 24 hours (the default value of LOG_AUTO_DEL_RETENTION_TARGET parameter) after it has been applied at the logical standby database. Set to TRUE to enable automatic deletion of archived redo log files. Set to FALSE to disable automatic deletion. The default value is TRUE.

	
MAX_EVENTS_RECORDED

	
Number of recent events that will be visible through the DBA_LOGSTDBY_EVENTS view. To record all events encountered by SQL Apply, use the DBMS_LOGSTDBY.MAX_EVENTS constant as the number value. The default value is 10,000.

	
MAX_SERVERS

	
Number of processes that SQL Apply uses to read and apply redo. The default value is 9. The maximum number allowed is 2048.

	
MAX_SGA

	
Number of megabytes from shared pool in System Global Area (SGA) that SQL Apply will use. The default value is 30 megabytes or one quarter of the value set for SHARED_POOL_SIZE, whichever is lower. The maximum size allowed is 4095 megabytes.

	
PREPARE_SERVERS

	
Controls the number of PREPARER processes used to prepare changes. The maximum number allowed is 1024, provided the MAX_SERVERS parameter is set to accommodate this.

	
PRESERVE_COMMIT_ORDER

	
TRUE: Transactions are applied to the logical standby database in the exact order in which they were committed on the primary database. This is the default parameter setting.

FALSE: Transactions containing non-overlapping sets of rows may be committed in a different order than they were committed on the primary database.

Regardless of the level chosen, modifications done to the same row are always applied in the same order as they happened on the primary database. See the Usage Notes for details and recommendations.

You cannot modify this parameter while SQL Apply is running.

	
RECORD_APPLIED_DDL

	
Controls whether DDL statements that have been applied to the logical standby database are recorded in the location specified by the EVENT_LOG_DEST parameter. Specify one of the following values:

TRUE: Indicates that DDL statements applied to the logical standby database are recorded in the DBA_LOGSTDBY_EVENTS table and the alert log.

FALSE: Indicates that applied DDL statements are not recorded. This is the default parameter setting.

	
RECORD_SKIP_DDL

	
Controls whether skipped DDL statements are recorded in the location specified by the EVENT_LOG_DEST parameter. Specify one of the following values:

TRUE: Skipped DDL statements are recorded in the DBA_LOGSTDBY_EVENTS table and the alert log. This is the default parameter setting.

FALSE: Skipped DDL statements are not recorded in the DBA_LOGSTDBY_EVENTS table and the alert log.

	
RECORD_SKIP_ERRORS

	
Controls whether skipped errors (as described by the SKIP_ERROR procedure) are recorded in the location specified by the EVENT_LOG_DEST parameter. Specify one of the following values:

TRUE: Skipped errors are recorded in the DBA_LOGSTDBY_EVENTS table and the alert log. This is the default parameter setting.

FALSE: Skipped errors are not recorded in the DBA_LOGSTDBY_EVENTS table and the alert log.

	
RECORD_UNSUPPORTED_OPERATIONS

	
Captures information about transactions running on the primary database that will not be supported by a logical standby database. This procedure records its information as events in the DBA_LOGSTDBY_EVENTS table.

If a parameter is changed while SQL Apply is running, the change will take effect at some point in the future. In such a case, an informational row is inserted into the DBA_LOGSTDBY_EVENTS view at the time the parameter change takes effect.

Additionally, if you are modifying a parameter while SQL Apply is running on an Oracle RAC configuration, you must be connected to the same instance where SQL Apply is running.

Exceptions

Table 86-3 APPLY_SET Procedure Exceptions

	Exception	Description
	
ORA-16103

	
Logical Standby apply must be stopped to allow this operation

	
ORA-16104

	
invalid Logical Standby option requested

	
ORA-16236

	
Logical Standby metadata operation in progress

Usage Notes

	
Use the APPLY_UNSET procedure to restore the default settings of a parameter.

	
See Oracle Data Guard Concepts and Administration for help with tuning SQL Apply and for information about setting appropriate values for different parameters.

Examples

To record DDLs in the DBA_LOGSTDBY_EVENTS view and in the alert log, issue the following statement:

SQL> EXECUTE DBMS_LOGSTDBY.APPLY_SET('RECORD_APPLIED_DDL', TRUE);

APPLY_UNSET Procedure

Use the APPLY_UNSET procedure to restore the default values of the parameters that you changed with the APPLY_SET procedure.

Syntax

DBMS_LOGSTDBY.APPLY_UNSET (
 inname IN VARCHAR);

Parameters

The parameter information for the APPLY_UNSET procedure is the same as that described for the APPLY_SET procedure. See Table 86-2 for complete parameter information.

Exceptions

Table 86-4 APPLY_UNSET Procedure Exceptions

	Exception	Description
	
ORA-16103

	
Logical Standby apply must be stopped to allow this operation

	
ORA-16104

	
invalid Logical Standby option requested

	
ORA-16236

	
Logical Standby metadata operation in progress

Usage Notes

	
Use the APPLY_SET procedure to specify a nondefault value for a parameter.

Examples

If you previously specified that applied DDLs show up in the DBA_LOGSTDBY_EVENTS view and the alert log, you can restore the default behavior of SQL Apply regarding applied DDL statements with the following statement:

SQL> EXECUTE DBMS_LOGSTDBY.APPLY_UNSET('RECORD_APPLIED_DDL');

BUILD Procedure

Use this procedure on the primary database to record relevant metadata (LogMiner dictionary) information in the redo log, which will subsequently be used by SQL Apply. This procedure will enable database-wide primary- and unique-key supplemental logging, if necessary.

Syntax

DBMS_LOGSTDBY.BUILD;

Usage Notes

	
Supplemental log information includes extra information in the redo logs that uniquely identifies a modified row in the logical standby database, and also includes information that helps efficient application of changes to the logical standby database.

	
LogMiner dictionary information allows SQL Apply to interpret data in the redo logs.

	
DBMS_LOGSTDBY.BUILD should be run only once for each logical standby database you want to create. You do not need to use DBMS_LOGSTDBY.BUILD for each Oracle RAC instance.

	
DBMS_LOGSTDBY.BUILD waits for all transactions (including distributed transactions) that are active at the time of the procedure invocation to complete before returning. See Oracle Database Administrator's Guide for information about how to handle in-doubt transactions.

Examples

To build the LogMiner dictionary in the redo stream of the primary database and to record additional information so that a logical standby database can be instantiated, issue the following SQL statement at the primary database

SQL> EXECUTE DBMS_LOGSTDBY.BUILD;

INSTANTIATE_TABLE Procedure

This procedure creates and populates a table in the standby database from a corresponding table in the primary database. The table requires the name of the database link (dblink) as an input parameter. If the table already exists in the logical standby database, it will be dropped and re-created based on the table definition at the primary database. This procedure only brings over the data associated with the table, and not the associated indexes and constraints.

Use the INSTANTIATE_TABLE procedure to:

	
Add a table to a standby database.

	
Re-create a table in a standby database.

Syntax

DBMS_LOGSTDBY.INSTANTIATE_TABLE (
 schema_name IN VARCHAR2,
 table_name IN VARCHAR2,
 dblink IN VARCHAR2);

Parameters

Table 86-5 INSTANTIATE_TABLE Procedure Parameters

	Parameter	Description
	
schema_name

	
Name of the schema

	
table_name

	
Name of the table to be created or re-created in the standby database

	
dblink

	
Name of the database link account that has privileges to read and lock the table in the primary database, as well as the SELECT_CATALOG_ROLE on the primary database

Exceptions

Table 86-6 INSTANTIATE_TABLE Procedure Exceptions

	Exception	Description
	
ORA-16103

	
Logical Standby apply must be stopped to allow this operation

	
ORA-16236

	
Logical Standby metadata operation in progress

	
ORA-16276

	
Specified database link does not correspond to primary database

	
ORA-16277

	
Specified table is not supported by logical standby database

	
ORA-16278

	
Specified table has a multi-object skip rule defined

Usage Notes

	
Use this procedure to create and populate a table in a way that keeps the data on the standby database transactionally consistent with the primary database.

	
This table will not be synchronized with the rest of the tables being maintained by SQL Apply and SQL Apply will not start to maintain it until SQL Apply encounters redo that occurred after the table was instantiated from the primary. The SCN at which the table was instantiated from the primary database is available in the DBA_LOGSTDBY_EVENTS view.

	
The specified table must be a table that is supported by logical standby (that is, it does not appear in the DBA_LOGSTDBY_UNSUPPORTED_TABLES view on the primary database).

	
If there are any skip rules that specifically name this table (without any wildcards), those skip rules will be dropped as part of INSTANTIATE_TABLE, so that the table will be properly maintained by SQL Apply in the future. If there are skip rules that indirectly reference this table (match a skip rule with a wildcard in the schema_name or table_name, and have a TABLE, DML, or SCHEMA_DDL statement type), INSTANTIATE_TABLE will fail with an ORA-16278 error. Any multiobject skip rules that pertain to the table must be dropped or changed before re-attempting the INSTANTIATE_TABLE call.

Examples

SQL> EXECUTE DBMS_LOGSTDBY.INSTANTIATE_TABLE (-
 SCHEMA_NAME => 'HR', TABLE_NAME => 'EMPLOYEES', -
 DBLINK => 'INSTANTIATE_TBL_LINK');

IS_APPLY_SERVER Function

This function returns TRUE if it is executed from PL/SQL in the context of a logical standby apply server process. This function is used in conjunction with triggers that have the fire_once parameter in the DBMS_DDL.SET_TRIGGER_FIRING_PROPERTY subprogram set to FALSE (the default is TRUE). Such triggers are executed when the relevant target is updated by an apply process. This function can be used within the body of the trigger to ensure that the trigger takes different (or no) actions on the primary or on the standby.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about the DBMS_DDL.SET_TRIGGER_FIRING_PROPERTY subprogram.

Syntax

DBMS_LOGSTDBY.IS_APPLY_SERVER
RETURN BOOLEAN;

Parameters

None

MAP_PRIMARY_SCN Function

Returns an SCN on the standby that predates the supplied SCN from the primary database by at least 5 minutes. This function can be used to determine a safe SCN to use in a compensating flashback database operation at the logical standby database, following a flashback database operation or a point-in-time recovery operation at the primary database.

Syntax

DBMS_LOGSTDBY.MAP_PRIMARY_SCN(primary_scn NUMBER) RETURN NUMBER;

Exceptions

Table 86-7 MAP_PRIMARY_SCN Function Exceptions

	Exception	Description
	
ORA-20001

	
Primary SCN is before mapped range

	
ORA-20002

	
SCN mapping requires PRESERVE_COMMIT_ORDER to be TRUE

Usage Notes

Use this function to get a conservative SCN at the logical standby database that corresponds to an SCN at the primary database. This function is useful in the context of doing compensating flashback database operations at the logical standby following a flashback database or a point-in-time recovery operation done at the primary database.

PREPARE_FOR_NEW_PRIMARY Procedure

The PREPARE_FOR_NEW_PRIMARY procedure must be invoked at a logical standby database following a failover if that standby database was not the target of the failover operation. Such a standby database must process the exact same set of redo logs processed at the new primary database. This routine ensures that the local logical standby database has not processed more redo than the new primary database and reports the set of archive logs that must be replaced to ensure consistency. The set of replacement logs will be reported in the alert.log. These logs must be copied to the logical standby and registered using the ALTER DATABASE REGISTER LOGICAL LOGFILE statement.

Syntax

DBMS_LOGSTDBY.PREPARE_FOR_NEW_PRIMARY (
 FORMER_STANDBY_TYPE IN VARCHAR2,
 DBLINK IN VARCHAR2);

Parameters

Table 86-8 PREPARE_FOR_NEW_PRIMARY Procedure Parameters

	Parameter	Description
	
FORMER_STANDBY_TYPE

	
The type of standby database that was the target of the failover operation to become the new primary database. Valid values are 'PHYSICAL' if the new primary was formerly a physical standby, and 'LOGICAL' if the new primary database was formerly a logical standby database.

	
DBLINK

	
The name of a database link to the new primary database

Exceptions

Table 86-9 PREPARE_FOR_NEW_PRIMARY Procedure Exceptions

	Exception	Description
	
ORA-16104

	
Invalid Logical Standby option.

	
ORA-16109

	
Failed to apply log data from previous primary.

Usage Notes

	
This routine is intended only for logical standby systems.This routine will fail if the new primary database was formerly a logical standby database and the LogMiner dictionary build has not completed successfully.Log files displayed in the alert log will be referred to as terminal logs. Users should keep in mind that file paths are relative to the new primary database and may not resolve locally.Upon manual registration of the terminal logs, users should complete the process by calling either START LOGICAL STANDBY APPLY if the new primary database was formerly a physical standby database or START LOGICAL STANDBY APPLY NEW PRIMARY if the new primary database was formerly a logical standby database.See the alert log for more details regarding the reasons for any exception.

Examples

SQL> EXECUTE DBMS_LOGSTDBY.PREPARE_FOR_NEW_PRIMARY (-
 FORMER_STANDBY_TYPE => 'LOGICAL', -
 DBLINK => 'dblink_to_newprimary');

PURGE_SESSION Procedure

Identifies all archived redo log files that have been applied to the logical standby database and are no longer needed by SQL Apply. Once identified, you can issue operating system commands to delete some or all of the unnecessary archived redo log files.

Syntax

DBMS_LOGSTDBY.PURGE_SESSION;

Exceptions

Table 86-10 PURGE_SESSION Procedure Exceptions

	Exception	Description
	
ORA-01309

	
Invalid session

Usage Notes

	
This procedure does not delete the archived redo log files. You must issue operating system commands to delete unneeded files.

	
This procedure updates the DBA_LOGMNR_PURGED_LOG view that displays the archived redo log files that have been applied to the logical standby database.

	
In Oracle Database 10g Release 2, metadata related to the archived redo log files (and the actual archived redo log files) are purged automatically based on the default setting of the LOG_AUTO_DELETE parameter described in the DBMS_LOGSTDBY.APPLY_SET procedure described.

Example

To identify and remove unnecessary files:

	
Enter the following statement on the logical standby database:

SQL> EXECUTE DBMS_LOGSTDBY.PURGE_SESSION;

	
Query the DBA_LOGMNR_PURGED_LOG view to list the archived redo log files that can be removed:

SQL> SELECT * FROM DBA_LOGMNR_PURGED_LOG;

FILE_NAME

 /boston/arc_dest/arc_1_40_509538672.log
 /boston/arc_dest/arc_1_41_509538672.log
 /boston/arc_dest/arc_1_42_509538672.log
 /boston/arc_dest/arc_1_43_509538672.log
 /boston/arc_dest/arc_1_44_509538672.log
 /boston/arc_dest/arc_1_45_509538672.log
 /boston/arc_dest/arc_1_46_509538672.log
 /boston/arc_dest/arc_1_47_509538672.log

	
Use operating system-specific commands to delete archived redo log files from the file system.

REBUILD Procedure

This procedure is used if a database that has recently changed its role to a primary database following a failover operation fails to record relevant metadata (including the LogMiner dictionary) in the redo stream required for other logical standby databases.

Syntax

DBMS_LOGSTDBY.REBUILD;

Usage Notes

	
LogMiner dictionary information is logged in the redo log files.The standby redo log files (if present) are archived.

Examples

SQL> EXECUTE DBMS_LOGSTDBY.REBUILD;

SET_TABLESPACE Procedure

Moves metadata tables required by SQL Apply to the user-specified tablespace. By default, the metadata tables are created in the SYSAUX tablespace. SQL Apply cannot be running when you invoke this procedure.

Syntax

DBMS_LOGSTDBY.SET_TABLESPACE(
 NEW_TABLESPACE IN VARCHAR2)

Parameters

Table 86-11 SET_TABLE SPACE Procedure Parameters

	Parameter	Description
	
NEW_TABLESPACE

	
Name of the new tablespace where metadata tables will reside.

Exceptions

Table 86-12 SET_TABLESPACE Procedure Exceptions

	Exception	Description
	
ORA-16103

	
Logical Standby apply must be stopped to allow this operation

	
ORA-16236

	
Logical Standby metadata operation in progress

Examples

To move metadata tables to a new tablespace named LOGSTDBY_TBS, issue the following statement:

SQL> EXECUTE DBMS_LOGSTDBY.SET_TABLESPACE (new_tablespace => 'LOGSTDBY_TBS');

SKIP Procedure

The SKIP procedure can be used to define rules that will be used by SQL Apply to skip the application of certain changes to the logical standby database. For example, the SKIP procedure can be used to skip changes to a subset of tables in the logical standby database. It can also be used to specify DDL statements that should not be applied at the logical standby database or should be modified before they are applied in the logical standby database. One reason why a DDL statement may need to be modified is to accommodate a different directory structure on the logical standby database.

Syntax

DBMS_LOGSTDBY.SKIP (
 stmt IN VARCHAR2,
 schema_name IN VARCHAR2 DEFAULT NULL,
 object_name IN VARCHAR2 DEFAULT NULL,
 proc_name IN VARCHAR2 DEFAULT NULL,
 use_like IN BOOLEAN DEFAULT TRUE,
 esc IN CHAR1 DEFAULT NULL);

Parameters

Table 86-13 SKIP Procedure Parameters

	Parameter	Description
	
stmt

	
Either a keyword that identifies a set of SQL statements or a specific SQL statement. The use of keywords simplifies configuration since keywords, generally defined by the database object, identify all SQL statements that operate on the specified object. Table 86-14 shows a list of keywords and the equivalent SQL statements, either of which is a valid value for this parameter.

The keyword PL/SQL is used for the execution of Oracle-supplied packages which are supported for replication. See Oracle Data Guard Concepts and Administration for information about supported packages.

	
schema_name

	
The name of one or more schemas (wildcards are permitted) associated with the SQL statements identified by the stmt parameter. If not applicable, this value must be set to NULL.

	
object_name

	
The name of one or more objects (wildcards are permitted) associated with the SQL statements identified by the stmt. If not applicable, this value must be set to NULL.

	
proc_name

	
Name of a stored procedure to call when SQL Apply determines that a particular statement matches the filter defined by the stmt, schema_name, and object_name parameters. Specify the procedure in the following format:

'schema.package.procedure'

This procedure returns a value that directs SQL Apply to perform one of the following: execute the statement, skip the statement, or execute a replacement statement.

For DDLs, SQL Apply calls the stored procedure with the following call signature:

	
IN STATEMENT VARCHAR2 -- The SQL statement that matches the filter

	
IN STATEMENT_TYPE VARCHAR2 -- The stmt of the filter

	
IN SCHEMA VARCHAR2 -- The schema_name of the filter, if applicable

	
IN NAME VARCHAR2 -- The object_name of the filter, if applicable

	
IN XIDUSN NUMBER -- Transaction ID part 1

	
IN XIDSLT NUMBER -- Transaction ID part 2

	
IN XIDSQN NUMBER -- Transaction ID part 3

	
OUT SKIP_ACTION NUMBER -- Action to be taken by SQL Apply upon completion of this routine. Valid values are:

SKIP_ACTION_APPLY -- Execute the statement

SKIP_ACTION_SKIP -- Skip the statement

SKIP_ACTION_ERROR -- Halt apply so the DBA can take appropriate steps (for example, take compensating action)

SKIP_ACTION_REPLACE -- Execute the replacement statement supplied in the NEW_STATEMENT output parameter

For PL/SQL, SQL Apply calls the stored procedure with the following call signature:

	
IN STATEMENT VARCHAR2 -- The SQL statement that matches the filter

	
IN PACKAGE_SCHEMA VARCHAR2 -- The schema of the package being skipped (for example, SYS or XDB)

	
IN PACKAGE_NAME VARCHAR2 -- The name of the package being skipped (for example, DBMS_RLS)

	
IN PROCEDURE_NAME VARCHAR2 – The name of the procedure being skipped (for example, ADD_POLICY)

	
IN CURRENT_SCHEMA VARCHAR2 – The name of the current schema in which the PL/SQL was executed on the primary

	
IN XIDUSN NUMBER – Transaction ID part 1

	
IN XIDSLT NUMBER -- Transaction ID part 2

	
IN XIDSQN NUMBER -- Transaction ID part 3

	
IN EXIT_STATUS – 0 (Zero) if the PL/SQL succeeded on the primary, or 1

	
proc_name (cont.)

	
	
OUT SKIP_ACTION NUMBER -- Action to be taken by SQL Apply upon completion of this routine. Valid return values are:

SKIP_ACTION_APPLY -- Execute the statement

SKIP_ACTION_APPLY -- Execute the statement

SKIP_ACTION_ERROR – Raise an error which halts apply so that the DBA can take appropriate steps

Note 1: SKIP_ACTION_REPLACE is not supported for PL/SQL.

Note 2: SQL Apply calls the skip handler when the procedure's exit is processed.

Note 3: The use_like parameter must be set to FALSE for PL/SQL since wildcarding PL/SQL is not supported.

The following example shows how to have a conditional skip rule on DBMS_RLS.DROP_POLICY:

Create or replace procedure sec_mgr.skip_drop_policy (
statement in varchar2,
pkgown in varchar2,
pkgname in varchar2,
procnm in varchar2,
cuser in varchar2,
xidusn in number,
xidslt in number,
xidsqn in number,
exstatus in number,
skip_action out number) Is
Begin
 If 0 = exstatus Then
 Insert Into sec_mgr.logit Values
 ('Success: '||pkgown||'.'||pkgname||'.'||procnm|| ' by '||cuser);

 If cuser != 'TESTSCHEMA' Then
 skip_action := DBMS_LOGSTDBY.SKIP_ACTION_APPLY;
 Else
 skip_action := DBMS_LOGSTDBY.SKIP_ACTION_SKIP;
 End If;
 End If;
End skip_drop_policy;

EXECUTE DBMS_LOGSTDBY.SKIP(-
 stmt => 'PL/SQL', -
 schema_name => 'SYS', -
 object_name => 'DBMS_RLS.DROP_POLICY', -
 proc_name => 'SEC_MGR.SKIP_DROP_POLICY' -
 use_like=> FALSE);

	
use_like

	
Allows pattern matching to isolate the tables that you want to skip on the logical standby database. The use_like parameter matches a portion of one character value to another by searching the first value for the pattern specified by the second, and calculates strings using characters as defined by the input character set. This parameter follows the same rules for pattern matching described in the Oracle Database SQL Language Reference.

	
esc

	
Identifies an escape character (such as the character "/") that you can use for pattern matching. If the escape character appears in the pattern before the character "%" or "_" then Oracle interprets this character literally in the pattern, rather than as a special pattern matching character. SeeOracle Database SQL Language Reference for more information about pattern matching.

Usage Notes

	
This procedure requires DBA privileges to execute.

	
You cannot associate a stored procedure to be invoked in the context of a DML statement. For example, the following statement returns the ORA-16104: invalid Logical Standby option requested error:

SQL> EXECUTE DBMS_LOGSTDBY.SKIP(-
 stmt => 'DML', -
 schema_name => 'HR', -
 object_name => 'EMPLOYEES', -
 proc_name => 'DML_HANDLER');

Also, if an event matches multiple rules either because of the use of wildcards while specifying the rule or because of a specification of overlapping rules. For example, if you specify a rule for the SCHEMA_DDL event for the HR.EMPLOYEES table, and a rule for the ALTER TABLE event for the HR.EMPLOYEES table, only one of the matching procedures will be invoked (alphabetically, by procedure). In the following code example, consider the following rules:

SQL> EXECUTE DBMS_LOGSTDBY.SKIP(-
 stmt => 'SCHEMA DDL', -
 schema_name => 'HR', -
 object_name => 'EMPLOYEES', -
 proc_name => 'SCHEMA_DDL_HANDLER');
SQL> EXECUTE DBMS_LOGSTDBY.SKIP(-
 stmt => 'ALTER TABLE', -
 schema_name => 'HR', -
 object_name => 'EMPLOYEES', -
 proc_name => 'TABLE_ALTER_HANDLER');

On encountering an ALTER TABLE statement, the schema_ddl_handler procedure will be invoked because its name will be at the top of an alphabetically sorted list of procedures that are relevant to the statement.Collisions on a rule set because of a specification containing wildcard entries are resolved in a similar fashion. For example, the rules in the following example will result in the empddl_handler procedure being invoked upon encountering the ALTER TABLE HR.EMPLOYEES ADD COLUMN RATING NUMBER statement:

SQL> EXECUTE DBMS_LOGSTDBY.SKIP(-
 stmt => 'ALTER TABLE', -
 schema_name => 'HR', -
 object_name => 'EMP%', -
 proc_name => 'EMPDDL_HANDLER');
SQL> EXECUTE DBMS_LOGSTDBY.SKIP(-
 stmt => 'ALTER TABLE', -
 schema_name => 'HR', -
 object_name => 'EMPLOYEES', -
 proc_name => 'EMPLOYEE_DDL_HANDLER');

	
Use the SKIP procedure with caution, particularly when skipping DDL statements. If a CREATE TABLE statement is skipped, for example, you must also specify other DDL statements that refer to that table in the SKIP procedure. Otherwise, the statements will fail and cause an exception. When this happens, SQL Apply stops running.

	
Before calling the SKIP procedure, SQL Apply must be halted. Do this by issuing an ALTER DATABASE STOP LOGICAL STANDBY APPLY statement. Once all desired filters have been specified, issue an ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE statement to start SQL Apply using the new filter settings.

	
See the UNSKIP procedure for information about reversing (undoing) the settings of the SKIP procedure.

	
For USER statements, the SCHEMA_NAME parameter will be the user and specify '%' for the OBJECT_NAME parameter.

	
If the PROC_NAME parameter is supplied, it must already exist in DBA_PROCEDURES and it must execute with DEFINER rights. If the procedure is declared with INVOKER rights, the ORA-1031: insufficient privileges message will be returned.

	
If the procedure returns a REPLACEMENT statement, the REPLACEMENT statement will be executed using the SYSTEM and OBJECT privileges of the owner of the procedure.

	
The PL/SQL block of a SKIP procedure cannot contain transaction control statements (for example, COMMIT, ROLLBACK, SAVEPOINT, and SET CONSTRAINT) unless the block is declared to be an autonomous transaction.

Skip Statement Options

Table 86-14 lists the supported values for the stmt parameter of the SKIP procedure. The left column of the table lists the keywords that may be used to identify the set of SQL statements to the right of the keyword. In addition, any of the SQL statements listed in the sys.audit_actions table (shown in the right column of Table 86-14) are also valid values. Note that keywords are generally defined by database object.

Table 86-14 Supported Values for the stmt Parameter

	Keyword	Associated SQL Statements
	
There is no keyword for this group of SQL statements.

	

GRANT
REVOKE
ANALYZE TABLE
ANALYZE INDEX
ANALYZE CLUSTER

	
CLUSTER

	

AUDIT CLUSTER
CREATE CLUSTER
DROP CLUSTER
TRUNCATE CLUSTER

	
CONTEXT

	

CREATE CONTEXT
DROP CONTEXT

	
DATABASE LINK

	

CREATE DATABASE LINK
CREATE PUBLIC DATABASE LINK
DROP DATABASE LINK
DROP PUBLIC DATABASE LINK

	
DIMENSION

	

ALTER DIMENSION
CREATE DIMENSION
DROP DIMENSION

	
DIRECTORYFoot 1

	

CREATE DIRECTORY
DROP DIRECTORY

	
DML

	
Includes DML statements on a table (for example: INSERT, UPDATE, and DELETE)

	
INDEX

	

ALTER INDEX
CREATE INDEX
DROP INDEX

	
NON_SCHEMA_DDL

	
All DDL that does not pertain to a particular schema

Note: SCHEMA_NAME and OBJECT_NAME must be null

	
PL/SQLFoot 2

	
Execute Oracle-supplied package.

	
PROCEDUREFoot 3

	

ALTER FUNCTION
ALTER PACKAGE
ALTER PACKAGE BODY
ALTER PROCEDURE
CREATE FUNCTION
CREATE LIBRARY
CREATE PACKAGE
CREATE PACKAGE BODY
CREATE PROCEDURE
DROP FUNCTION
DROP LIBRARY
DROP PACKAGE
DROP PACKAGE BODY
DROP PROCEDURE

	
PROFILE

	

ALTER PROFILE
CREATE PROFILE
DROP PROFILE

	
ROLE

	

ALTER ROLE
CREATE ROLE
DROP ROLE
SET ROLE

	
ROLLBACK STATEMENT

	

ALTER ROLLBACK SEGMENT
CREATE ROLLBACK SEGMENT
DROP ROLLBACK SEGMENT

	
SCHEMA_DDL

	
All DDL statements that create, modify, or drop schema objects (for example: tables, indexes, and columns)

Note: SCHEMA_NAME and OBJECT_NAME must not be null

	
SEQUENCE

	

ALTER SEQUENCE
CREATE SEQUENCE
DROP SEQUENCE

	
SYNONYM

	

CREATE PUBLIC SYNONYM
CREATE SYNONYM
DROP PUBLIC SYNONYM
DROP SYNONYM

	
SYSTEM AUDIT

	

AUDIT SQL_statements
NOAUDIT SQL_statements

	
TABLE

	

CREATE TABLE
ALTER TABLE
DROP TABLE
TRUNCATE TABLE

	
TABLESPACE

	

CREATE TABLESPACE
DROP TABLESPACE
ALTER TABLESPACE

	
TRIGGER

	

ALTER TRIGGER
CREATE TRIGGER
DISABLE ALL TRIGGERS
DISABLE TRIGGER
DROP TRIGGER
ENABLE ALL TRIGGERS
ENABLE TRIGGER

	
TYPE

	

ALTER TYPE
ALTER TYPE BODY
CREATE TYPE
CREATE TYPE BODY
DROP TYPE
DROP TYPE BODY

	
USER

	

ALTER USER
CREATE USER
DROP USER

	
VIEW

	

CREATE VIEW
DROP VIEW

	
VIEW

	

CREATE VIEW
DROP VIEW

Footnote 1 All directory objects are owned by SYS, but for the purpose of filtering them with a skip directive the schema should be specified as '%'".

Footnote 2 See Oracle Data Guard Concepts and Administration for information about supported packages.

Footnote 3 Java schema objects (sources, classes, and resources) are considered the same as procedure for purposes of skipping (ignoring) SQL statements.

Exceptions

Table 86-15 DBMS_LOGSTDBY.SKIP Procedure Exceptions

	Exception	Description
	
ORA-01031

	
Insufficient privileges:

	
Procedure used INVOKER rights

	
Procedure needs DBA privileges

	
ORA-16103

	
Logical standby apply must be stopped to allow this operation.

	
ORA-16104

	
Invalid logical standby option requested.

	
ORA-16203

	
"Unable to interpret SKIP procedure return values."

Indicates that a SKIP procedure has either generated an exception or has returned ambiguous values. You can identify the offending procedure by examining the DBA_LOGSTDBY_EVENTS view.

	
ORA-16236

	
Logical standby metadata operation in progress.

Examples

	
	Example 1 Skipping all DML and DDL changes made to a schema
	
The following example shows how to specify rules so that SQL Apply will skip both DDL and DML statements made to the HR schema.

SQL> EXECUTE DBMS_LOGSTDBY.SKIP(STMT => 'SCHEMA DDL', -
 schema_name => 'HR', -
 object_name => '%', -
 proc_name => null);
SQL> EXECUTE DBMS_LOGSTDBY.SKIP(STMT => 'DML', -
 schema_name => 'HR', -
 object_name => '%', -
 proc_name => null);

	
	Example 2 Creating a procedure to handle different file system organization
	
For example, if the file system organization in the logical standby database is different than that in the primary database, you can write a SKIP procedure to handle DDL statements with file specifications transparently.The following procedure can handle DDL statements as long as you follow a specific naming convention for the file specification string.

	
Create the SKIP procedure to handle tablespace DDL statements:

CREATE OR REPLACE PROCEDURE sys.handle_tbs_ddl (

 old_stmt IN VARCHAR2,
 stmt_typ IN VARCHAR2,
 schema IN VARCHAR2,
 name IN VARCHAR2,
 xidusn IN NUMBER,
 xidslt IN NUMBER,
 xidsqn IN NUMBER,
 action OUT NUMBER,
 new_stmt OUT VARCHAR2
) AS
BEGIN

-- All primary file specification that contains a directory
-- /usr/orcl/primary/dbs
-- should go to /usr/orcl/stdby directory specification

 new_stmt = replace(old_stmt,
 '/usr/orcl/primary/dbs',
 '/usr/orcl/stdby');

 action := DBMS_LOGSTDBY.SKIP_ACTION_REPLACE;

EXCEPTION
 WHEN OTHERS THEN
 action := DBMS_LOGSTDBY.SKIP_ACTION_ERROR;
 new_stmt := NULL;
END handle_tbs_ddl;

	
Register the SKIP procedure with SQL Apply:

SQL> EXECUTE DBMS_LOGSTDBY.SKIP (stmt => 'TABLESPACE', -
 proc_name => 'SYS.HANDLE_TBS_DDL');

SKIP_ERROR Procedure

Upon encountering an error, the logical standby database uses the criteria contained in this procedure to determine a course of action. The default action when a match is found is to skip the error and continue with applying changes. However, if a procedure is supplied, then SKIP_ERROR can take other actions depending on the situation. It can do nothing, which causes SQL Apply to stop, or it can change the error message text and stop SQL Apply, or it can actually skip the error.

Syntax

DBMS_LOGSTDBY.SKIP_ERROR (
 stmt IN VARCHAR2,
 schema_name IN VARCHAR2 DEFAULT NULL,
 object_name IN VARCHAR2 DEFAULT NULL,
 proc_name IN VARCHAR2 DEFAULT NULL,
 use_like IN BOOLEAN DEFAULT NULL,
 esc IN CHAR1 DEFAULT NULL);

Parameters

Table 86-16 SKIP_ERROR Procedure Parameters

	Parameter	Description
	
stmt

	
Either a keyword that identifies a set of SQL statements or a specific SQL statement. The use of keywords simplifies configuration because keywords, generally defined by the database object, identify all SQL statements that operate on the specified object. Table 86-14 shows a list of keywords and the equivalent SQL statements, either of which is a valid value for this parameter.

	
schema_name

	
The name of one or more schemas (wildcards are permitted) associated with the SQL statements identified by the stmt parameter. If not applicable, this value must be set to NULL.

	
object_name

	
The name of one or more objects (wildcards are permitted) associated with the SQL statements identified by the stmt. If not applicable, this value must be set to NULL.

	
proc_name

	
Name of a stored procedure to call when SQL Apply encounters an error and determines a particular statement matches the filter defined by the stmt, schema_name, and object_name parameters. Specify the procedure in the following format:

'"schema"."package"."procedure"'

This procedure returns an error message that directs SQL Apply to perform one of the following actions:

	
Silently skip the error and continue with SQL Apply

	
Replace the error message that would have been created with a custom one, and stop SQL Apply

	
Do nothing, causing SQL Apply to stop and the original error message to be logged

SQL Apply calls the stored procedure with the following call signature:

	
IN STATEMENT VARCHAR(4000) -- The first 4K of the statement

	
IN STATEMENT_TYPE VARCHAR2 -- The stmt of the filter

	
IN SCHEMA VARCHAR2 -- The schema_name of the filter, if applicable

	
IN NAME VARCHAR2 -- The object_name of the filter, if applicable

	
IN XIDUSN NUMBER -- Transaction ID part 1

	
IN XIDSLT NUMBER -- Transaction ID part 2

	
IN XIDSQN NUMBER -- Transaction ID part 3

	
IN ERROR VARCHAR(4000) -- Text of the original error to be recorded

	
OUT NEW_ERROR VARCHAR(4000) -- Null or modified error text

	
use_like

	
Allows pattern matching to isolate the tables that you want to skip on the logical standby database. The use_like parameter matches a portion of one character value to another by searching the first value for the pattern specified by the second, and calculates strings using characters as defined by the input character set. This parameter follows the same rules for pattern matching described in the Oracle Database SQL Language Reference.

	
esc

	
Identifies an escape character (such as the characters "%" or "_") that you can use for pattern matching. If the escape character appears in the pattern before the character "%" or "_" then Oracle interprets this character literally in the pattern, rather than as a special pattern matching character. SeeOracle Database SQL Language Reference for more information about pattern matching.

Usage Notes

	
A stored procedure provided to the SKIP_ERROR procedure is called when SQL Apply encounters an error that could shut down the application of redo logs to the standby database.

	
Running this stored procedure affects the error being written in the STATUS column of the DBA_LOGSTDBY_EVENTS table. The STATUS_CODE column remains unchanged. If the stored procedure is to have no effect, that is, apply will be stopped, then the NEW_ERROR is written to the events table. To truly have no effect, set NEW_ERROR to ERROR in the procedure.

	
If the stored procedure requires that a shutdown be avoided, then you must set NEW_ERROR to NULL.

	
This procedure requires DBA privileges to execute.

	
For USER statements, the SCHEMA_NAME parameter will be the user and you should specify '%' for the OBJECT_NAME parameter.

	
If the PROC_NAME parameter is specified, it must already exist in DBA_PROCEDURES and it must execute with DEFINERS rights. If the procedure is declared with INVOKERS rights, the ORA-1031: insufficient privileges message will be returned.

	
The PL/SQL block of a SKIP_ERROR procedure cannot contain transaction control statements (for example: COMMIT, ROLLBACK, SAVEPOINT, and SET CONSTRAINT) unless the block is declared to be an autonomous transaction using the following syntax:

PRAGMA AUTONOMOUS_TRANSACTION

Exceptions

Table 86-17 SKIP_ERROR Procedure Exceptions

	Exception	Description
	
ORA-01031

	
Insufficient privileges:

	
Procedure used INVOKER rights

	
Procedure needs DBA privileges

	
ORA-16103

	
Logical Standby apply must be stopped to allow this operation

	
ORA-16104

	
invalid Logical Standby option requested

	
ORA-16236

	
Logical Standby metadata operation in progress

Example 1

The following example shows how to specify rules so that SQL Apply will skip any error raised from any GRANT DDL command.

SQL> EXECUTE DBMS_LOGSTDBY.SKIP_ERROR('GRANT')

Example 2

To skip errors on GRANT statements on SYS or HR schemas, define a procedure handle_error_ddl and register it. In the following example, assume that handle_error_ddl is a free-standing procedure in the SYS schema.

	
Create the error-handler procedure:

CREATE OR REPLACE PROCEDURE sys.handle_error_ddl (
old_stmt IN VARCHAR2,
stmt_type IN VARCHAR2,
schema IN VARCHAR2,
name IN VARCHAR2,
xidusn IN NUMBER,
xidslt IN NUMBER,
xidsqn IN NUMBER,
error IN VARCHAR2,
new_error OUT VARCHAR2
) AS
BEGIN
-- Default to what we already have
new_error := error;
-- Ignore any GRANT errors on SYS or HR schemas
IF INSTR(UPPER(old_stmt),'GRANT') > 0
THEN
IF schema IS NULL
OR (schema IS NOT NULL AND
(UPPER(schema) = 'SYS' OR UPPER(schema) = 'HR')
THEN
new_error := NULL;
-- record the fact that we just skipped an error on 'SYS' or 'HR' schemas
-- code not shown here
END IF;
END IF;
END handle_error_ddl;
/

	
Register the error handler with SQL Apply:

SQL> EXECUTE DBMS_LOGSTDBY.SKIP_ERROR (-
 statement => 'NON_SCHEMA_DDL', -
 schema_name => NULL, -
 object_name => NULL, -
 proc_name => 'SYS.HANDLE_ERROR_DDL');

SKIP_TRANSACTION Procedure

This procedure provides a way to skip (ignore) applying transactions to the logical standby database. You can skip specific transactions by specifying transaction identification information.

Syntax

DBMS_LOGSTDBY.SKIP_TRANSACTION (
 xidusn IN NUMBER,
 xidslt IN NUMBER,
 xidsqn IN NUMBER);

Parameters

Table 86-18 SKIP_TRANSACTION Procedure Parameters

	Parameter	Description
	
XIDUSN NUMBER

	
Transaction ID undo segment number of the transaction being skipped

	
XIDSLT NUMBER

	
Transaction ID slot number of the transaction being skipped

	
XIDSQN NUMBER

	
Transaction ID sequence number of the transaction being skipped

Usage Notes

If SQL Apply stops due to a particular transaction (for example, a DDL transaction), you can specify that transaction ID and then continue to apply. You can call this procedure multiple times for as many transactions as you want SQL Apply to ignore.

	
CAUTION:

SKIP_TRANSACTION is an inherently dangerous operation. Do not invoke this procedure unless you have examined the transaction in question through the V$LOGMNR_CONTENTS view and have taken compensating actions at the logical standby database. SKIP_TRANSACTION is not the appropriate procedure to invoke to skip DML changes to a table.

To skip a DML failure, use a SKIP procedure, such as SKIP('DML','MySchema','MyFailed Table'). Using the SKIP_TRANSACTION procedure for DML transactions may skip changes for other tables, thus logically corrupting them.

	
This procedure requires DBA privileges to execute.

	
Use the DBA_LOGSTDBY_SKIP_TRANSACTION view to list the transactions that are going to be skipped by SQL Apply.

	
Also, see the ALTER DATABASE START LOGICAL STANDBY SKIP FAILED TRANSACTION statement in Oracle Database SQL Language Reference.

Exceptions

Table 86-19 SKIP_TRANSACTION Procedure Exceptions

	Exception	Description
	
ORA-01031

	
Need DBA privileges

	
ORA-16103

	
Logical Standby apply must be stopped to allow this operation

	
ORA-16104

	
invalid Logical Standby option requested

Examples

To skip a DDL transaction with (XIDUSN, XIDSLT, XIDSQN) of (1.13.1726) you can register a rule as shown in the following example:

SQL> EXECUTE DBMS_LOGSTDBY.SKIP_TRANSACTION (-
 XIDUSN => 1, XIDSLT => 13, XIDSQN => 1726);

UNSKIP Procedure

Use the UNSKIP procedure to delete rules specified earlier with the SKIP procedure. The parameters specified in the UNSKIP procedure must match exactly for it to delete an already-specified rule.

Syntax

DBMS_LOGSTDBY.UNSKIP (
 stmt IN VARCHAR2,
 schema_name IN VARCHAR2 DEFAULT NULL,
 object_name IN VARCHAR2 DEFUALT NULL);

Parameters

The parameter information for the UNSKIP procedure is the same as that described for the SKIP procedure. See Table 86-13 for complete parameter information.

Exceptions

Table 86-20 UNSKIP Procedure Exceptions

	Exception	Description
	
ORA-01031

	
need DBA privileges to execute this procedure

	
ORA-16103

	
Logical Standby apply must be stopped to allow this operation

	
ORA-16104

	
invalid Logical Standby option requested

Usage Notes

	
CAUTION:

If DML changes for a table have been skipped and not compensated for, you must follow the call to the UNSKIP procedure with a call to the INSTANTIATE_TABLE procedure to synchronize this table with those maintained by SQL Apply.

	
This procedure requires DBA privileges to execute.

	
Wildcards passed in the schema_name or the object_name parameter are not expanded. The wildcard character is matched at the character level. Thus, you can delete only one specified rule by invoking the UNSKIP procedure, and you will need a distinct UNSKIP procedure call to delete each rule that was previously specified.

For example, assume you have specified the following two rules to skip applying DML statements to the HR.EMPLOYEE and HR.EMPTEMP tables:

SQL> EXECUTE DBMS_LOGSTDBY.SKIP (STMT => 'DML',-
 SCHEMA_NAME => 'HR', -
 OBJECT_NAME => 'EMPLOYEE', -
 PROC_NAME => null);
SQL> EXECUTE DBMS_LOGSTDBY.SKIP (STMT => 'DML',-
 SCHEMA_NAME => 'HR', -
 OBJECT_NAME => 'EMPTEMP', -
 PROC_NAME => null);

In the following example, the wildcard in the TABLE_NAME parameter cannot be used to delete the rules that were specified:

SQL> EXECUTE DBMS_LOGSTDBY.UNSKIP (STMT => 'DML',-
 SCHEMA_NAME => 'HR', -
 OBJECT_NAME => 'EMP%');

In fact, this UNSKIP procedure matches neither of the rules, because the wildcard character in the TABLE_NAME parameter is not expanded. Instead, the wildcard character will be used in an exact match to find the corresponding SKIP rule.

UNSKIP_ERROR Procedure

Use the UNSKIP_ERROR procedure to delete rules specified earlier with the SKIP_ERROR procedure. The parameters specified in the UNSKIP_ERROR procedure must match exactly for the procedure to delete an already-specified rule.

Syntax

DBMS_LOGSTDBY.UNSKIP_ERROR (
 stmt IN VARCHAR2,
 schema_name IN VARCHAR2 DEFAULT NULL,
 object_name IN VARCHAR2 DEFAULT NULL);

Parameters

The parameter information for the UNSKIP_ERROR procedure is the same as that described for the SKIP_ERROR procedure. See Table 86-16 for complete parameter information.

Exceptions

Table 86-21 UNSKIP_ERROR Procedure Exceptions

	Exception	Description
	
ORA-01031

	
Need DBA privileges

	
ORA-16103

	
Logical Standby apply must be stopped to allow this operation

	
ORA-16104

	
invalid Logical Standby option requested

Usage Notes

	
This procedure requires DBA privileges to execute.

	
Wildcards passed in the schema_name or the object_name parameters are not expanded. Instead, the wildcard character is treated as any other character and an exact match is made. Thus, you can delete only one specified rule by invoking the UNSKIP_ERROR procedure, and you need a distinct UNSKIP_ERROR procedure call to delete each rule that you previously specified.

For example, assume you have specified the following two rules to handle the HR.EMPLOYEE and HR.EMPTEMP tables:

SQL> EXECUTE DBMS_LOGSTDBY.SKIP_ERROR (STMT => 'DML',-
 SCHEMA_NAME => 'HR', -
 OBJECT_NAME => 'EMPLOYEE', -
 PROC_NAME => 'hr_employee_handler');
SQL> EXECUTE DBMS_LOGSTDBY.SKIP_ERROR (STMT => 'DML',-
 SCHEMA_NAME => 'HR', -
 OBJECT_NAME => 'EMPTEMP', -
 PROC_NAME => 'hr_tempemp_handler');

In this case, the following UNSKIP procedure cannot be used to delete the rules that you have specified:

SQL> EXECUTE DBMS_LOGSTDBY.UNSKIP_ERROR (STMT => 'DML',-
 SCHEMA_NAME => 'HR', -
 OBJECT_NAME => 'EMP%');

In fact, the UNSKIP procedure will match neither of the rules, because the wildcard character in the OBJECT_NAME parameter will not be expanded.

Example

To remove a handler that was previously registered with SQL Apply from getting called on encountering an error, you can issue the following statement:

DBMS_LOGSTDBY.UNSKIP_ERROR (-
 statement => 'NON_SCHEMA_DDL', -
 schema_name => NULL, -
 object_name => NULL);

UNSKIP_TRANSACTION Procedure

Use the UNSKIP_TRANSACTION procedure to delete rules specified earlier with the SKIP_TRANSACTION procedure. The parameters specified in the UNSKIP_TRANSACTION procedure must match exactly for the procedure to delete an already-specified rule.

Syntax

DBMS_LOGSTDBY.UNSKIP_TRANSACTION (
 xidusn_p IN NUMBER,
 xidslt_p IN NUMBER,
 xidsqn_p IN NUMBER);

Parameters

Table 86-22 UNSKIP_TRANSACTION Procedure Parameters

	Parameter	Description
	
XIDUSN

	
Transaction ID undo segment number of the transaction being skipped

	
XIDSLT

	
Transaction ID slot number of the transaction being skipped

	
XIDSQN

	
Transaction ID sequence number of the transaction being skipped

Exceptions

Table 86-23 UNSKIP_TRANSACTION Procedure Exceptions

	Exception	Description
	
ORA-01031

	
need DBA privileges to execute this procedure

	
ORA-16103

	
Logical Standby apply must be stopped to allow this operation

	
ORA-16104

	
invalid Logical Standby option requested

Usage Notes

	
This procedure requires DBA privileges to execute.

	
Query the DBA_LOGSTDBY_SKIP_TRANSACTION view to list the transactions that are going to be skipped by SQL Apply.

Examples

To remove a rule that was originally specified to skip the application of a transaction with (XIDUSN, XIDSLT, XIDSQN) of (1.13.1726) issue the following statement:

SQL> DBMS_LOGSTDBY.UNSKIP_TRANSACTION (XIDUSN => 1, XIDSLT => 13, XIDSQN => 1726);

87 DBMS_METADATA

The DBMS_METADATA package provides a way for you to retrieve metadata from the database dictionary as XML or creation DDL and to submit the XML to re-create the object.

	
See Also:

Oracle Database Utilities for more information and for examples of using the Metadata API

This chapter contains the following topics:

	
Using DBMS_METADATA

	
Overview

	
Security Model

	
Rules and Limits

	
Data Structures - Object and Table Types

	
Subprogram Groupings

	
Subprograms for Retrieving Multiple Objects From the Database

	
Subprograms for Submitting XML to the Database

	
Summary of All DBMS_METADATA Subprograms

Using DBMS_METADATA

This section contains topics which relate to using the DBMS_METADATA package.

	
Overview

	
Security Model

	
Rules and Limits

Overview

You can use the DBMS_METADATA package to retrieve metadata and also to submit XML, as described in the following sections.

	
Retrieving Metadata

	
Submitting XML

Retrieving Metadata

If you are retrieving metadata, you can specify:

	
The kind of object to be retrieved. This can be either a particular object type (such as a table, index, or procedure) or a heterogeneous collection of object types that form a logical unit (such as a database export or schema export).

	
Optional selection criteria, such as owner or name.

	
Parse items (attributes of the returned objects to be parsed and returned separately).

	
Optional transformations on the output, implemented by XSLT (Extensible Stylesheet Language Transformation) scripts. By default the output is represented in XML, but you can specify transformations (into SQL DDL, for example), which are implemented by XSLT stylesheets stored in the database or externally.

DBMS_METADATA provides the following retrieval interfaces:

	
For programmatic use: OPEN, SET_FILTER, SET_COUNT, GET_QUERY, SET_PARSE_ITEM, ADD_TRANSFORM, SET_TRANSFORM_PARAM,SET_REMAP_PARAM, FETCH_xxx, and CLOSE retrieve multiple objects.

	
For use in SQL queries and for browsing: GET_XML, GET_DDL and GET_SXML return metadata for a single named object. The GET_DEPENDENT_XML, GET_DEPENDENT_DDL, GET_GRANTED_XML, and GET_GRANTED_DDL interfaces return metadata for one or more dependent or granted objects. These procedures do not support heterogeneous object types.

Submitting XML

If you are submitting XML, you specify:

	
The type of object

	
Optional transform parameters to modify the object (for example, changing the object's owner)

	
Parse items (attributes of the submitted objects to be parsed and submitted separately)

	
Whether to execute the operation or simply return the generated DDL

DBMS_METADATA provides a programmatic interface for submission of XML. It is comprised of the following procedures: OPENW, ADD_TRANSFORM, SET_TRANSFORM_PARAM, SET_REMAP_PARAM, SET_PARSE_ITEM, CONVERT, PUT, and CLOSE.

Security Model

The DBMS_METADATA package considers a privileged user to be one who is connected as user SYS or who has the SELECT_CATALOG_ROLE role. The object views of the Oracle metadata model implement security as follows:

	
Nonprivileged users can see the metadata of only their own objects.

	
Nonprivileged users can also retrieve public synonyms, system privileges granted to them, and object privileges granted to them or by them to others. This also includes privileges granted to PUBLIC.

	
If callers request objects they are not privileged to retrieve, no exception is raised; the object is simply not retrieved.

	
If nonprivileged users are granted some form of access to an object in someone else's schema, they will be able to retrieve the grant specification through the Metadata API, but not the object's actual metadata.

	
In stored procedures, functions, and definers-rights packages, roles (such as SELECT_CATALOG_ROLE) are disabled. Therefore, such a PL/SQL program can only fetch metadata for objects in its own schema. If you want to write a PL/SQL program that fetches metadata for objects in a different schema (based on the invoker's possession of SELECT_CATALOG_ROLE), you must make the program invokers-rights.

	
For all objects that have passwords (for example, db links, users, and roles), the following rules apply:

	
A user who has the SELECT_CATALOG_ROLE can see all metadata for an object except the passwords for that object.

	
The SYS user, users who have the EXP_FULL_DATABASE role, and users who own an object can see all metadata for that object, including passwords.

Rules and Limits

In an Oracle Shared Server (OSS) environment, the DBMS_METADATA package must disable session migration and connection pooling. This results in any shared server process that is serving a session running the package to effectively become a default, dedicated server for the life of the session. You should ensure that sufficient shared servers are configured when the package is used and that the number of servers is not artificially limited by too small a value for the MAX_SHARED_SERVERS initialization parameter.

Data Structures - Object and Table Types

The DBMS_METADATA package defines, in the SYS schema, the following OBJECT and TABLE types.

CREATE TYPE sys.ku$_parsed_item AS OBJECT (
 item VARCHAR2(30),
 value VARCHAR2(4000),
 object_row NUMBER)
/

CREATE PUBLIC SYNONYM ku$_parsed_item FOR sys.ku$_parsed_item;

CREATE TYPE sys.ku$_parsed_items IS TABLE OF sys.ku$_parsed_item
/

CREATE PUBLIC SYNONYM ku$_parsed_items FOR sys.ku$_parsed_items;

CREATE TYPE sys.ku$_ddl AS OBJECT (
 ddlText CLOB,
parsedItem sys.ku$_parsed_items)
/

CREATE PUBLIC SYNONYM ku$_ddl FOR sys.ku$_ddl;

CREATE TYPE sys.ku$_ddls IS TABLE OF sys.ku$_ddl
/

CREATE PUBLIC SYNONYM ku$_ddls FOR sys.ku$_ddls;

CREATE TYPE sys.ku$_multi_ddl AS OBJECT (
 object_row NUMBER,
 ddls sys.ku$_ddls)
/

CREATE OR REPLACE PUBLIC SYNONYM ku$_multi_ddl FOR sys.ku$_multi_ddl;

CREATE TYPE sys.ku$_multi_ddls IS TABLE OF sys.ku$_multi_ddl;
/

CREATE OR REPLACE PUBLIC SYNONYM ku$_multi_ddls FOR
 sys.ku$_multi_ddls;

CREATE TYPE sys.ku$_ErrorLine IS OBJECT (
 errorNumber NUMBER,
 errorText VARCHAR2(2000))
/

CREATE PUBLIC SYNONYM ku$_ErrorLine FOR sys.ku$_ErrorLine;

CREATE TYPE sys.ku$_ErrorLines IS TABLE OF sys.ku$_ErrorLine
/
CREATE PUBLIC SYNONYM ku$ErrorLines FOR sys.ku$_ErrorLines;

CREATE TYPE sys.ku$_SubmitResult AS OBJECT (
 ddl sys.ku$_ddl,
 errorLines sys.ku$_ErrorLines);
/

CREATE TYPE sys.ku$_SubmitResults IS TABLE OF sys.ku$_SubmitResult
/

CREATE PUBLIC SYNONYM ku$_SubmitResults FOR sys.ku$_SubmitResults;

Subprogram Groupings

The DBMS_METADATA subprograms are used to retrieve objects from, and submit XML to, a database. Some subprograms are used for both activities, while others are used only for retrieval or only for submission.

	
Table 87-1 provides a summary, in alphabetical order, of DBMS_METADATA subprograms used to retrieve multiple objects from a database.

	
Table 87-2 provides a summary, in alphabetical order, of DBMS_METADATA subprograms used to submit XML metadata to a database.

Subprograms for Retrieving Multiple Objects From the Database

Table 87-1 lists the subprograms used for retrieving multiple objects from the database.

Table 87-1 DBMS_METADATA Subprograms for Retrieving Multiple Objects

	Subprogram	Description
	
ADD_TRANSFORM Function

	
Specifies a transform that FETCH_xxx applies to the XML representation of the retrieved objects

	
CLOSE Procedure2

	
Invalidates the handle returned by OPEN and cleans up the associated state

	
FETCH_xxx Functions and Procedures

	
Returns metadata for objects meeting the criteria established by OPEN, SET_FILTER, SET_COUNT, ADD_TRANSFORM, and so on

	
GET_QUERY Function

	
Returns the text of the queries that are used by FETCH_xxx

	
GET_xxx Functions

	
Fetches the metadata for a specified object as XML, SXML, or DDL, using only a single call

	
OPEN Function

	
Specifies the type of object to be retrieved, the version of its metadata, and the object model

	
SET_COUNT Procedure

	
Specifies the maximum number of objects to be retrieved in a single FETCH_xxx call

	
SET_FILTER Procedure

	
Specifies restrictions on the objects to be retrieved, for example, the object name or schema

	
SET_PARSE_ITEM Procedure

	
Enables output parsing by specifying an object attribute to be parsed and returned

	
SET_TRANSFORM_PARAM and SET_REMAP_PARAM Procedures

	
Specifies parameters to the XSLT stylesheets identified by transform_handle

Subprograms for Submitting XML to the Database

Table 87-2 lists the subprograms used for submitting XML to the database.

Table 87-2 DBMS_METADATA Subprograms for Submitting XML

	Subprogram	Description
	
ADD_TRANSFORM Function

	
Specifies a transform for the XML documents

	
CLOSE Procedure2

	
Closes the context opened with OPENW

	
CONVERT Functions and Procedures

	
Converts an XML document to DDL

	
OPENW Function

	
Opens a write context

	
PUT Function

	
Submits an XML document to the database

	
SET_PARSE_ITEM Procedure

	
Specifies an object attribute to be parsed

	
SET_TRANSFORM_PARAM and SET_REMAP_PARAM Procedures

	
SET_TRANSFORM_PARAM specifies a parameter to a transform

SET_REMAP_PARAM specifies a remapping for a transform

Summary of All DBMS_METADATA Subprograms

Table 87-3 DBMS_METADATA Package Subprograms

	Subprogram	Description
	
ADD_TRANSFORM Function

	
Specifies a transform that FETCH_xxx applies to the XML representation of the retrieved objects

	
CLOSE Procedure2

	
Invalidates the handle returned by OPEN and cleans up the associated state

	
CONVERT Functions and Procedures

	
Converts an XML document to DDL.

	
FETCH_xxx Functions and Procedures

	
Returns metadata for objects meeting the criteria established by OPEN, SET_FILTER, SET_COUNT, ADD_TRANSFORM, and so on

	
GET_xxx Functions

	
Fetches the metadata for a specified object as XML, SXML, or DDL, using only a single call

	
GET_QUERY Function

	
Returns the text of the queries that are used by FETCH_xxx

	
OPEN Function

	
Specifies the type of object to be retrieved, the version of its metadata, and the object model

	
OPENW Function

	
Opens a write context

	
PUT Function

	
Submits an XML document to the database

	
SET_COUNT Procedure

	
Specifies the maximum number of objects to be retrieved in a single FETCH_xxx call

	
SET_FILTER Procedure

	
Specifies restrictions on the objects to be retrieved, for example, the object name or schema

	
SET_PARSE_ITEM Procedure

	
Enables output parsing by specifying an object attribute to be parsed and returned

	
SET_TRANSFORM_PARAM and SET_REMAP_PARAM Procedures

	
Specifies parameters to the XSLT stylesheets identified by transform_handle

ADD_TRANSFORM Function

This function is used for both retrieval and submission:

	
When this procedure is used to retrieve objects, it specifies a transform that FETCH_xxx applies to the XML representation of the retrieved objects.

	
When used to submit objects, it specifies a transform that CONVERT or PUT applies to the XML representation of the submitted objects. It is possible to add more than one transform.

	
See Also:

For more information about related subprograms:
	
Subprograms for Retrieving Multiple Objects From the Database

	
Subprograms for Submitting XML to the Database

Syntax

DBMS_METADATA.ADD_TRANSFORM (
 handle IN NUMBER,
 name IN VARCHAR2,
 encoding IN VARCHAR2 DEFAULT NULL,
 object_type IN VARCHAR2 DEFAULT NULL)
 RETURN NUMBER;

Parameters

Table 87-4 ADD_TRANSFORM Function Parameters

	Parameters	Description
	
handle

	
The handle returned from OPEN when this transform is used to retrieve objects. Or the handle returned from OPENW when this transform is used in the submission of XML metadata.

	
name

	
The name of the transform. If name contains a period, colon, or forward slash, it is interpreted as the URL of a user-supplied XSLT script. See Oracle XML DB Developer's Guide.

Otherwise, name designates a transform implemented by DBMS_METADATA. The following transforms are defined:

	
ALTERDDL - The document is converted from ALTER_XML format to SQL DDL.

	
ALTERXML - The document is converted from SXML difference format to ALTER_XML format. See the DBMS_METADATA_DIFF PL/SQL package for more information about SXML difference format.

	
DDL - The document is transformed to DDL that creates the object. The output of this transform is not an XML document.

	
MODIFY - The document is modified as directed by transform and remap parameters. The output of this transform is an XML document. If no transform or remap parameters are specified, the document is unchanged.

	
MODIFYSXML - The SXML format document is modified as directed by transform and remap parameters. The output of this transform is an XML document. If no transform or remap parameters are specified, the document is unchanged.

	
SXML - The document is converted to SXML format. This transform is only valid for a subset of object types. Valid type names are CLUSTER, CONTEXT, DB_LINK, FGA_POLICY, INDEX, MATERIALIZED_VIEW, MATERIALIZED_VIEW_LOG, QUEUE, QUEUE_TABLE, RLS_CONTEXT, RLS_GROUP, RLS_POLICY, ROLE, SEQUENCE, SYNONYM, TABLE, TABLESPACE, TRIGGER, TYPE, TYPE_SPEC, TYPE_BODY, USER, and VIEW.

	
SXMLDDL - The SXML format document is transformed to DDL that creates the object.

	
encoding

	
The name of the Globalization Support character set in which the stylesheet pointed to by name is encoded. This is only valid if name is a URL. If left NULL and the URL is external to the database, UTF-8 encoding is assumed. If left NULL and the URL is internal to the database (that is, it begins with /oradb/), then the encoding is assumed to be the database character set.

	
object_type

	
The definition of this parameter depends upon whether you are retrieving objects or submitting XML metadata.

	
When you use ADD_TRANFORM to retrieve objects, the following definition of object_type applies:

Designates the object type to which the transform applies. (Note that this is an object type name, not a path name.) By default the transform applies to the object type of the OPEN handle. When the OPEN handle designates a heterogeneous object type, the following behavior can occur:

	
if object_type is omitted, the transform applies to all object types within the heterogeneous collection

	
if object_type is specified, the transform only applies to that specific object type within the collection

If you omit this parameter you can add the DDL transform to all objects in a heterogeneous collection with a single call. If you supply this parameter, you can add a transform for a specific object type.

	
When you use ADD_TRANSFORM in the submission of XML metadata, this parameter is the object type to which the transform applies. By default, it is the object type of the OPENW handle. Because the OPENW handle cannot designate a heterogeneous object type, the caller would normally leave this parameter NULL in the ADD_TRANSFORM calls.

Return Values

The opaque handle that is returned is used as input to SET_TRANSFORM_PARAM and SET_REMAP_PARAM. Note that this handle is different from the handle returned by OPEN or OPENW; it refers to the transform, not the set of objects to be retrieved.

Usage Notes

	
With no transforms added, objects are returned by default as XML documents. You call ADD_TRANSFORM to specify the XSLT stylesheets to be used to transform the returned XML documents.

	
You can call ADD_TRANSFORM more than once to apply multiple transforms to XML documents. Transforms are applied in the order in which they were specified, the output of the first transform being used as input to the second, and so on.

	
The output of a DDL transform is not an XML document. Therefore, no transform should be added after the DDL transform.

	
Each transform expects a certain format XML document as input. If the input document is unspecified, metadata XML format is assumed.

Exceptions

	
INVALID_ARGVAL. A NULL or invalid value was supplied for an input parameter. The error message text identifies the parameter.

	
INVALID_OPERATION. ADD_TRANSFORM was called after the first call to FETCH_xxx for the OPEN context. After the first call to FETCH_xxx is made, no further calls to ADD_TRANSFORM for the current OPEN context are permitted.

	
INCONSISTENT_ARGS. The arguments are inconsistent. Possible inconsistencies include the following:

	
encoding is specified even though name is not a URL

	
object_type is not part of the collection designated by handle

CLOSE Procedure

This procedure is used for both retrieval and submission. This procedure invalidates the handle returned by OPEN (or OPENW) and cleans up the associated state.

	
See Also:

For more information about related subprograms:
	
Subprograms for Retrieving Multiple Objects From the Database

	
Subprograms for Submitting XML to the Database

Syntax

DBMS_METADATA.CLOSE (
 handle IN NUMBER);

Parameters

Table 87-5 CLOSE Procedure Parameters

	Parameter	Description
	
handle

	
The handle returned from OPEN (or OPENW).

Usage Notes

	
Note:

The following notes apply only to object retrieval

You can prematurely terminate the stream of objects established by OPEN or (OPENW).

	
If a call to FETCH_xxx returns NULL, indicating no more objects, a call to CLOSE is made transparently. In this case, you can still call CLOSE on the handle and not get an exception. (The call to CLOSE is not required.)

	
If you know that only one specific object will be returned, you should explicitly call CLOSE after the single FETCH_xxx call to free resources held by the handle.

Exceptions

	
INVALID_ARGVAL. The value for the handle parameter is NULL or invalid.

CONVERT Functions and Procedures

The CONVERT functions and procedures transform input XML documents. The CONVERT functions return creation DDL. The CONVERT procedures return either XML or DDL, depending on the specified transforms.

	
See Also:

For more information about related subprograms:
	
Subprograms for Submitting XML to the Database

Syntax

The CONVERT functions are as follows:

DBMS_METADATA.CONVERT (
 handle IN NUMBER,
 document IN sys.XMLType)
 RETURN sys.ku$_multi_ddls;

DBMS_METADATA.CONVERT (
 handle IN NUMBER,
 document IN CLOB)
 RETURN sys.ku$_multi_ddls;

The CONVERT procedures are as follows:

DBMS_METADATA.CONVERT (
 handle IN NUMBER,
 document IN sys.XMLType,
 result IN OUT NOCOPY CLOB);

DBMS_METADATA.CONVERT (
 handle IN NUMBER,
 document IN CLOB,
 result IN OUT NOCOPY CLOB);

Parameters

Table 87-6 CONVERT Subprogram Parameters

	Parameter	Description
	
handle

	
The handle returned from OPENW.

	
document

	
The XML document containing object metadata of the type of the OPENW handle.

	
result

	
The converted document.

Return Values

Either XML or DDL, depending on the specified transforms.

Usage Notes

You can think of CONVERT as the second half of FETCH_xxx, either FETCH_DDL (for the function variants) or FETCH_CLOB (for the procedure variants). There are two differences:

	
FETCH_xxx gets its XML document from the database, but CONVERT gets its XML document from the caller

	
FETCH_DDL returns its results in a sys.ku$_ddls nested table, but CONVERT returns a sys.ku$_multi_ddls nested table

The transforms specified with ADD_TRANSFORM are applied in turn, and the result is returned to the caller. For the function variants, the DDL transform must be specified. If parse items were specified, they are returned in the parsedItems column. Parse items are ignored by the procedure variants.

The encoding of the XML document is embedded in its CLOB or XMLType representation. The version of the metadata is embedded in the XML. The generated DDL is valid for the database version specified in OPENW.

Exceptions

	
INVALID_ARGVAL. A NULL or invalid value was supplied for an input parameter. The error message text identifies the parameter.

	
INCONSISTENT_OPERATION. No transform was specified. The DDL transform was not specified (function variants only).

	
INCOMPATIBLE_DOCUMENT. The version of the XML document is not compatible with this version of the software.

FETCH_xxx Functions and Procedures

These functions and procedures return metadata for objects meeting the criteria established by OPEN, SET_FILTER, SET_COUNT, ADD_TRANSFORM, and so on. See "Usage Notes" for the variants.

	
See Also:

For more information about related subprograms:
	
Subprograms for Retrieving Multiple Objects From the Database

Syntax

The FETCH functions are as follows:

DBMS_METADATA.FETCH_XML (
 handle IN NUMBER)
RETURN sys.XMLType;

	
See Also:

Oracle XML DB Developer's Guide for a description of XMLType

DBMS_METADATA.FETCH_DDL (
 handle IN NUMBER)
RETURN sys.ku$_ddls;

DBMS_METADATA.FETCH_CLOB (
 handle IN NUMBER,
 cache_lob IN BOOLEAN DEFAULT TRUE,
 lob_duration IN PLS INTEGER DEFAULT DBMS_LOB.SESSION)
RETURN CLOB;

The FETCH procedures are as follows:

DBMS_METADATA.FETCH_CLOB (
 handle IN NUMBER,
 doc IN OUT NOCOPY CLOB);

DBMS_METADATA.FETCH_XML_CLOB (
 handle IN NUMBER,
 doc IN OUT NOCOPY CLOB,
 parsed_items OUT sys.ku$_parsed_items,
 object_type_path OUT VARCHAR2);

Parameters

Table 87-7 FETCH_xxx Function Parameters

	Parameters	Description
	
handle

	
The handle returned from OPEN.

	
cache_lob

	
TRUE=read LOB into buffer cache

	
lob_duration

	
The duration for the temporary LOB created by FETCH_CLOB, either DBMS_LOB.SESSION (the default) or DBMS_LOB.CALL.

	
doc

	
The metadata for the objects, or NULL if all objects have been returned.

	
parsed_items

	
A nested table containing the items specified by SET_PARSE_ITEM. If SET_PARSE_ITEM was not called, a NULL is returned.

	
object_type_path

	
For heterogeneous object types, this is the full path name of the object type for the objects returned by the call to FETCH_XXX. If handle designates a homogeneous object type, a NULL is returned.

Return Values

The metadata for the objects or NULL if all objects have been returned.

Usage Notes

These functions and procedures return metadata for objects meeting the criteria established by the call to OPEN that returned the handle, and subsequent calls to SET_FILTER, SET_COUNT, ADD_TRANSFORM, and so on. Each call to FETCH_xxx returns the number of objects specified by SET_COUNT (or less, if fewer objects remain in the underlying cursor) until all objects have been returned. After the last object is returned, subsequent calls to FETCH_xxx return NULL and cause the stream created by OPEN to be transparently closed.

There are several different FETCH_xxx functions and procedures:

	
The FETCH_XML function returns the XML metadata for an object as an XMLType. It assumes that if any transform has been specified, that transform will produce an XML document. In particular, it assumes that the DDL transform has not been specified.

	
The FETCH_DDL function returns the DDL (to create the object) in a sys.ku$_ddls nested table. It assumes that the DDL transform has been specified. Each row of the sys.ku$_ddls nested table contains a single DDL statement in the ddlText column; if requested, parsed items for the DDL statement will be returned in the parsedItems column. Multiple DDL statements may be returned under the following circumstances:

	
When you call SET_COUNT to specify a count greater than 1

	
When an object is transformed into multiple DDL statements. For example, A TYPE object that has a DDL transform applied to it can be transformed into both CREATE TYPE and CREATE TYPE BODY statements. A TABLE object can be transformed into a CREATE TABLE, and one or more ALTER TABLE statements

	
The FETCH_CLOB function simply returns the object, transformed or not, as a CLOB. By default, the CLOB is read into the buffer cache and has session duration, but these defaults can be overridden with the cache_lob and lob_duration parameters.

	
The FETCH_CLOB procedure returns the objects by reference in an IN OUT NOCOPY parameter. This is faster than the function variant, which returns LOBs by value, a practice that involves an expensive LOB copy.

	
The FETCH_XML_CLOB procedure returns the XML metadata for the objects as a CLOB in an IN OUT NOCOPY parameter. This helps to avoid LOB copies, which can consume a lot of resources. It also returns a nested table of parse items and the full path name of the object type of the returned objects.

	
All LOBs returned by FETCH_xxx are temporary LOBs. You must free the LOB. If the LOB is supplied as an IN OUT NOCOPY parameter, you must also create the LOB.

	
If SET_PARSE_ITEM was called, FETCH_DDL and FETCH_XML_CLOB return attributes of the object's metadata (or the DDL statement) in a sys.ku$_parsed_items nested table. For FETCH_XML_CLOB, the nested table is an OUT parameter. For FETCH_DDL, it is a column in the returned sys.ku$_ddls nested table. Each row of the nested table corresponds to an item specified by SET_PARSE_ITEM and contains the following columns:

	
item—the name of the attribute as specified in the name parameter to SET_PARSE_ITEM.

	
value—the attribute value, or NULL if the attribute is not present in the DDL statement.

	
object-row—a positive integer indicating the object to which the parse item applies. If multiple objects are returned by FETCH_xxx, (because SET_COUNT specified a count greater than 1) then object_row=1 for all items for the first object, 2 for the second, and so on.

	
The rows of the sys.ku$_parsed_items nested table are ordered by ascending object_row, but otherwise the row order is undetermined. To find a particular parse item within an object row the caller must search the table for a match on item.

	
In general there is no guarantee that a requested parse item will be returned. For example, the parse item may not apply to the object type or to the particular line of DDL, or the item's value may be NULL.

	
If SET_PARSE_ITEM was not called, NULL is returned as the value of the parsed items nested table.

	
It is expected that the same variant of FETCH_xxx will be called for all objects selected by OPEN. That is, programs will not intermix calls to FETCH_XML, FETCH_DDL, FETCH_CLOB, and so on using the same OPEN handle. The effect of calling different variants is undefined; it might do what you expect, but there are no guarantees.

	
Every object fetched will be internally consistent with respect to on-going DDL (and the subsequent recursive DML) operations against the dictionary. In some cases, multiple queries may be issued, either because the object type is heterogeneous or for performance reasons (for example, one query for heap tables, one for index-organized tables). Consequently the FETCH_xxx calls may in fact be fetches from different underlying cursors (meaning that read consistency is not guaranteed).

Exceptions

Most exceptions raised during execution of the query are propagated to the caller. Also, the following exceptions may be raised:

	
INVALID_ARGVAL. A NULL or invalid value was supplied for an input parameter. The error message text identifies the parameter.

	
INCONSISTENT_OPERATION. Either FETCH_XML was called when the DDL transform had been specified, or FETCH_DDL was called when the DDL transform had not been specified.

GET_xxx Functions

The following GET_xxx functions let you fetch metadata for objects with a single call:

	
GET_XML

	
GET_DDL

	
GET_SXML

	
GET_DEPENDENT_XML

	
GET_DEPENDENT_DDL

	
GET_GRANTED_XML

	
GET_GRANTED_DDL

	
See Also:

For more information about related subprograms:
	
Subprograms for Retrieving Multiple Objects From the Database

Syntax

DBMS_METADATA.GET_XML (
object_type IN VARCHAR2,
name IN VARCHAR2,
schema IN VARCHAR2 DEFAULT NULL,
version IN VARCHAR2 DEFAULT 'COMPATIBLE',
model IN VARCHAR2 DEFAULT 'ORACLE',
transform IN VARCHAR2 DEFAULT NULL)
RETURN CLOB;

DBMS_METADATA.GET_DDL (
object_type IN VARCHAR2,
name IN VARCHAR2,
schema IN VARCHAR2 DEFAULT NULL,
version IN VARCHAR2 DEFAULT 'COMPATIBLE',
model IN VARCHAR2 DEFAULT 'ORACLE',
transform IN VARCHAR2 DEFAULT 'DDL')
RETURN CLOB;

DBMS_METADATA.GET_SXML (
object_type IN VARCHAR2,
name IN VARCHAR2 DEFAULT NULL,
schema IN VARCHAR2 DEFAULT NULL,
version IN VARCHAR2 DEFAULT 'COMPATIBLE',
model IN VARCHAR2 DEFAULT 'ORACLE',
transform IN VARCHAR2 DEFAULT 'SXML')
RETURN CLOB;

DBMS_METADATA.GET_DEPENDENT_XML (
object_type IN VARCHAR2,
base_object_name IN VARCHAR2,
base_object_schema IN VARCHAR2 DEFAULT NULL,
version IN VARCHAR2 DEFAULT 'COMPATIBLE',
model IN VARCHAR2 DEFAULT 'ORACLE',
transform IN VARCHAR2 DEFAULT NULL,
object_count IN NUMBER DEFAULT 10000)
RETURN CLOB;

DBMS_METADATA.GET_DEPENDENT_DDL (
object_type IN VARCHAR2,
base_object_name IN VARCHAR2,
base_object_schema IN VARCHAR2 DEFAULT NULL,
version IN VARCHAR2 DEFAULT 'COMPATIBLE',
model IN VARCHAR2 DEFAULT 'ORACLE',
transform IN VARCHAR2 DEFAULT 'DDL',
object_count IN NUMBER DEFAULT 10000)
RETURN CLOB;

DBMS_METADATA.GET_GRANTED_XML (
object_type IN VARCHAR2,
grantee IN VARCHAR2 DEFAULT NULL,
version IN VARCHAR2 DEFAULT 'COMPATIBLE',
model IN VARCHAR2 DEFAULT 'ORACLE',
transform IN VARCHAR2 DEFAULT NULL,
object_count IN NUMBER DEFAULT 10000)
RETURN CLOB;

DBMS_METADATA.GET_GRANTED_DDL (
object_type IN VARCHAR2,
grantee IN VARCHAR2 DEFAULT NULL,
version IN VARCHAR2 DEFAULT 'COMPATIBLE',
model IN VARCHAR2 DEFAULT 'ORACLE',
transform IN VARCHAR2 DEFAULT 'DDL',
object_count IN NUMBER DEFAULT 10000)
RETURN CLOB;

Parameters

Table 87-8 GET_xxx Function Parameters

	Parameter	Description
	
object_type

	
The type of object to be retrieved. This parameter takes the same values as the OPEN object_type parameter, except that it cannot be a heterogeneous object type. The attributes of the object type must be appropriate to the function. That is, for GET_xxx it must be a named object.

	
name

	
The object name. It is used internally in a NAME filter. (If the name is longer than 30 characters, it will be used in a LONGNAME filter.) If this parameter is NULL, then no NAME or LONGNAME filter is specifiedSee Table 87-17 for a list of filters.

	
schema

	
The object schema. It is used internally in a SCHEMA filter. The default is the current user.

	
version

	
The version of metadata to be extracted. This parameter takes the same values as the OPEN version parameter.

	
model

	
The object model to use. This parameter takes the same values as the OPEN model parameter.

	
transform

	
The name of a transformation on the output. This parameter takes the same values as the ADD_TRANSFORM name parameter. For GET_XML this must not be DDL.

	
base_object_name

	
The base object name. It is used internally in a BASE_OBJECT_NAME filter.

	
base_object_schema

	
The base object schema. It is used internally in a BASE_OBJECT_SCHEMA filter. The default is the current user.

	
grantee

	
The grantee. It is used internally in a GRANTEE filter. The default is the current user.

	
object_count

	
The maximum number of objects to return. See SET_COUNT Procedure .

Return Values

The metadata for the specified object as XML or DDL.

Usage Notes

	
These functions allow you to fetch metadata for objects with a single call. They encapsulate calls to OPEN, SET_FILTER, and so on. The function you use depends on the characteristics of the object type and on whether you want XML, SXML, or DDL.

	
GET_xxx is used to fetch named objects, especially schema objects (tables, views).

	
GET_DEPENDENT_xxx is used to fetch dependent objects (audits, object grants).

	
GET_GRANTED_xxx is used to fetch granted objects (system grants, role grants).

	
For some object types you can use more than one function. For example, you can use GET_xxx to fetch an index by name, or GET_DEPENDENT_xxx to fetch the same index by specifying the table on which it is defined.

	
GET_xxx only returns a single named object.

	
For GET_DEPENDENT_xxx and GET_GRANTED_xxx, an arbitrary number of dependent or granted objects can match the input criteria. You can specify an object count when fetching these objects. (The default count of 10000 should be adequate in most cases.)

	
If the DDL transform is specified, session-level transform parameters are inherited.

	
If you invoke these functions from SQL*Plus, you should set the PAGESIZE to 0 and set LONG to some large number to get complete, uninterrupted output.

Exceptions

	
INVALID_ARGVAL. A NULL or invalid value was supplied for an input parameter. The error message text identifies the parameter.

	
OBJECT_NOT_FOUND. The specified object was not found in the database.

Examples

Example: Fetch the XML Representation of SCOTT.EMP

To generate complete, uninterrupted output, set the PAGESIZE to 0 and set LONG to some large number, as shown, before executing your query.

SET LONG 2000000
SET PAGESIZE 0
SELECT DBMS_METADATA.GET_XML('TABLE','EMP','SCOTT')
FROM DUAL;

Example: Fetch the DDL for all Complete Tables in the Current Schema, Filter Out Nested Tables and Overflow Segments

This example fetches the DDL for all "complete" tables in the current schema, filtering out nested tables and overflow segments. The example uses SET_TRANSFORM_PARAM (with the handle value = DBMS_METADATA.SESSION_TRANSFORM meaning "for the current session") to specify that storage clauses are not to be returned in the SQL DDL. Afterwards, the example resets the session-level parameters to their defaults.

To generate complete, uninterrupted output, set the PAGESIZE to 0 and set LONG to some large number, as shown, before executing your query.

SET LONG 2000000
SET PAGESIZE 0
EXECUTE DBMS_METADATA.SET_TRANSFORM_PARAM(DBMS_METADATA.SESSION_TRANSFORM,'STORAGE',false);
SELECT DBMS_METADATA.GET_DDL('TABLE',u.table_name)
 FROM USER_ALL_TABLES u
 WHERE u.nested='NO'
 AND (u.iot_type is null or u.iot_type='IOT');
EXECUTE DBMS_METADATA.SET_TRANSFORM_PARAM(DBMS_METADATA.SESSION_TRANSFORM,'DEFAULT');

Example: Fetch the DDL For All Object Grants On HR.EMPLOYEES

SELECT DBMS_METADATA.GET_DEPENDENT_DDL('OBJECT_GRANT',
 'EMPLOYEES','HR') FROM DUAL;

Example: Fetch the DDL For All System Grants Granted To SCOTT

SELECT DBMS_METADATA.GET_GRANTED_DDL('SYSTEM_GRANT','SCOTT')
 FROM DUAL;

GET_QUERY Function

This function returns the text of the queries that are used by FETCH_xxx. This function assists in debugging.

	
See Also:

For more information about related subprograms:
	
Subprograms for Retrieving Multiple Objects From the Database

Syntax

DBMS_METADATA.GET_QUERY (
 handle IN NUMBER)
 RETURN VARCHAR2;

Parameters

Table 87-9 GET_QUERY Function Parameters

	Parameter	Description
	
handle

	
The handle returned from OPEN. It cannot be the handle for a heterogeneous object type.

Return Values

The text of the queries that will be used by FETCH_xxx.

Exceptions

	
INVALID_ARGVAL. A NULL or invalid value was supplied for the handle parameter.

OPEN Function

This function specifies the type of object to be retrieved, the version of its metadata, and the object model. The return value is an opaque context handle for the set of objects to be used in subsequent calls.

	
See Also:

For more information about related subprograms:
	
Subprograms for Retrieving Multiple Objects From the Database

Syntax

DBMS_METADATA.OPEN (
 object_type IN VARCHAR2,
 version IN VARCHAR2 DEFAULT 'COMPATIBLE',
 model IN VARCHAR2 DEFAULT 'ORACLE',
 network_link IN VARCHAR2 DEFAULT NULL)
 RETURN NUMBER;

Parameters

Table 87-10 Open Function Parameters

	Parameter	Description
	
object_type

	
The type of object to be retrieved. Table 87-11 lists the valid type names and their meanings. These object types will be supported for the ORACLE model of metadata (see model in this table).

The Attributes column in Table 87-11 specifies some object type attributes:

	
Schema objects, such as tables, belong to schemas.

	
Named objects have unique names (if they are schema objects, the name is unique to the schema).

	
Dependent objects, such as indexes, are defined with reference to a base schema object.

	
Granted objects are granted or assigned to a user or role and therefore have a named grantee.

	
Heterogeneous object types denote a collection of related objects of different types. See Table 87-12 for a listing of object types returned for the heterogeneous object type.

These attributes are relevant when choosing object selection criteria. See "SET_FILTER Procedure" for more information.

	
version

	
The version of metadata to be extracted. Database objects or attributes that are incompatible with the version will not be extracted. Legal values for this parameter are as follows:

COMPATIBLE (default)—the version of the metadata corresponds to the database compatibility level.

LATEST—the version of the metadata corresponds to the database version.

A specific database version. The value cannot be lower than 9.2.0.

	
model

	
Specifies which view to use, because the API can support multiple views on the metadata. Only the ORACLE model is supported.

	
network_link

	
The name of a database link to the database whose metadata is to be retrieved. If NULL (the default), metadata is retrieved from the database on which the caller is running

Table 87-11 provides the name, meaning, attributes, and notes for the DBMS_METADATA package object types. In the attributes column, S represents a schema object, N represents a named object, D represents a dependent object, G represents a granted object, and H represents a heterogeneous object.

Table 87-11 DBMS_METADATA: Object Types

	Type Name	Meaning	Attributes	Notes
	
AQ_QUEUE

	
queues

	
SND

	
Dependent on table

	
AQ_QUEUE_TABLE

	
additional metadata for queue tables

	
ND

	
Dependent on table

	
AQ_TRANSFORM

	
transforms

	
SN

	
None

	
ASSOCIATION

	
associate statistics

	
D

	
None

	
AUDIT

	
audits of SQL statements

	
DG

	
Modeled as dependent, granted object. The base object name is the statement audit option name (for example, ALTER SYSTEM). There is no base object schema. The grantee is the user or proxy whose statements are audited.

	
AUDIT_OBJ

	
audits of schema objects

	
D

	
None

	
CLUSTER

	
clusters

	
SN

	
None

	
COMMENT

	
comments

	
D

	
None

	
CONSTRAINT

	
constraints

	
SND

	
Does not include:

	
primary key constraint for IOT

	
column NOT NULL constraints

	
certain REF SCOPE and WITH ROWID constraints for tables with REF columns

	
CONTEXT

	
application contexts

	
N

	
None

	
DATABASE_EXPORT

	
all metadata objects in a database

	
H

	
Corresponds to a full database export

	
DB_LINK

	
database links

	
SN

	
Modeled as schema objects because they have owners. For public links, the owner is PUBLIC. For private links, the creator is the owner.

	
DEFAULT_ROLE

	
default roles

	
G

	
Granted to a user by ALTER USER

	
DIMENSION

	
dimensions

	
SN

	
None

	
DIRECTORY

	
directories

	
N

	
None

	
FGA_POLICY

	
fine-grained audit policies

	
D

	
Not modeled as named object because policy names are not unique.

	
FUNCTION

	
stored functions

	
SN

	
None

	
INDEX_STATISTICS

	
precomputed statistics on indexes

	
D

	
The base object is the index's table.

	
INDEX

	
indexes

	
SND

	
None

	
INDEXTYPE

	
indextypes

	
SN

	
None

	
JAVA_SOURCE

	
Java sources

	
SN

	
None

	
JOB

	
jobs

	
S

	
None

	
LIBRARY

	
external procedure libraries

	
SN

	
None

	
MATERIALIZED_VIEW

	
materialized views

	
SN

	
None

	
MATERIALIZED_VIEW_LOG

	
materialized view logs

	
D

	
None

	
OBJECT_GRANT

	
object grants

	
DG

	
None

	
OPERATOR

	
operators

	
SN

	
None

	
PACKAGE

	
stored packages

	
SN

	
By default, both package specification and package body are retrieved. See "SET_FILTER Procedure".

	
PACKAGE_SPEC

	
package specifications

	
SN

	
None

	
PACKAGE_BODY

	
package bodies

	
SN

	
None

	
PROCEDURE

	
stored procedures

	
SN

	
None

	
PROFILE

	
profiles

	
N

	
None

	
PROXY

	
proxy authentications

	
G

	
Granted to a user by ALTER USER

	
REF_CONSTRAINT

	
referential constraint

	
SND

	
None

	
REFRESH_GROUP

	
refresh groups

	
SN

	
None

	
RESOURCE_COST

	
resource cost info

	
	
None

	
RLS_CONTEXT

	
driving contexts for enforcement of fine-grained access-control policies

	
D

	
Corresponds to the DBMS_RLS.ADD_POLICY_CONTENT procedure

	
RLS_GROUP

	
fine-grained access-control policy groups

	
D

	
Corresponds to the DBMS_RLS.CREATE_GROUP procedure

	
RLS_POLICY

	
fine-grained access-control policies

	
D

	
Corresponds to DBMS_RLS.ADD_GROUPED_POLICY. Not modeled as named objects because policy names are not unique.

	
RMGR_CONSUMER_GROUP

	
resource consumer groups

	
SN

	
Data Pump does not use these object types. Instead, it exports resource manager objects as procedural objects.

	
RMGR_INTITIAL_CONSUMER_GROUP

	
assign initial consumer groups to users

	
G

	
None

	
RMGR_PLAN

	
resource plans

	
SN

	
None

	
RMGR_PLAN_DIRECTIVE

	
resource plan directives

	
D

	
Dependent on resource plan

	
ROLE

	
roles

	
N

	
None

	
ROLE_GRANT

	
role grants

	
G

	
None

	
ROLLBACK_SEGMENT

	
rollback segments

	
N

	
None

	
SCHEMA_EXPORT

	
all metadata objects in a schema

	
H

	
Corresponds to user-mode export.

	
SEQUENCE

	
sequences

	
SN

	
None

	
SYNONYM

	
synonyms

	
See notes

	
Private synonyms are schema objects. Public synonyms are not, but for the purposes of this API, their schema name is PUBLIC. The name of a synonym is considered to be the synonym itself. For example, in CREATE PUBLIC SYNONYM FOO FOR BAR, the resultant object is considered to have name FOO and schema PUBLIC.

	
SYSTEM_GRANT

	
system privilege grants

	
G

	
None

	
TABLE

	
tables

	
SN

	
None

	
TABLE_DATA

	
metadata describing row data for a table, nested table, or partition

	
SND

	
For partitions, the object name is the partition name.

For nested tables, the object name is the storage table name. The base object is the top-level table to which the table data belongs. For nested tables and partitioning, this is the top-level table (not the parent table or partition). For nonpartitioned tables and non-nested tables this is the table itself.

	
TABLE_EXPORT

	
metadata for a table and its associated objects

	
H

	
Corresponds to table-mode export

	
TABLE_STATISTICS

	
precomputed statistics on tables

	
D

	
None

	
TABLESPACE

	
tablespaces

	
N

	
None

	
TABLESPACE_QUOTA

	
tablespace quotas

	
G

	
Granted with ALTER USER

	
TRANSPORTABLE_EXPORT

	
metadata for objects in a transportable tablespace set

	
H

	
Corresponds to transportable tablespace export

	
TRIGGER

	
triggers

	
SND

	
None

	
TRUSTED_DB_LINK

	
trusted links

	
N

	
None

	
TYPE

	
user-defined types

	
SN

	
By default, both type and type body are retrieved. See "SET_FILTER Procedure".

	
TYPE_SPEC

	
type specifications

	
SN

	
None

	
TYPE_BODY

	
type bodies

	
SN

	
None

	
USER

	
users

	
N

	
None

	
VIEW

	
views

	
SN

	
None

	
XMLSCHEMA

	
XML schema

	
SN

	
The object's name is its URL (which may be longer than 30 characters). Its schema is the user who registered it.

Table 87-12 lists the types of objects returned for the major heterogeneous object types. For SCHEMA_EXPORT, certain object types are only returned if the INCLUDE_USER filter is specified at TRUE. In the table, such object types are marked INCLUDE_USER.

Table 87-12 Object Types Returned for the Heterogeneous Object Type

	Object Type	DATABASE_EXPORT	SCHEMA_EXPORT	TABLE_EXPORT	TRANSPORTABLE_EXPORT
	
ASSOCIATION

	
Yes

	
No

	
No

	
No

	
AUDIT

	
Yes

	
No

	
No

	
No

	
AUDIT_OBJ

	
Yes

	
Yes

	
Yes

	
Yes

	
CLUSTER

	
Yes

	
Yes

	
No

	
Yes

	
COMMENT

	
Yes

	
Yes

	
Yes

	
Yes

	
CONSTRAINT

	
Yes

	
Yes

	
Yes

	
Yes

	
CONTEXT

	
Yes

	
No

	
No

	
No

	
DB_LINK

	
Yes

	
Yes

	
No

	
No

	
DEFAULT_ROLE

	
Yes

	
INCLUDE_USER

	
No

	
No

	
DIMENSION

	
Yes

	
Yes

	
No

	
No

	
DIRECTORY

	
Yes

	
No

	
No

	
No

	
FGA_POLICY

	
Yes

	
No

	
No

	
Yes

	
FUNCTION

	
Yes

	
Yes

	
No

	
No

	
INDEX_STATISTICS

	
Yes

	
Yes

	
Yes

	
Yes

	
INDEX

	
Yes

	
Yes

	
Yes

	
Yes

	
INDEXTYPE

	
Yes

	
Yes

	
No

	
No

	
JAVA_SOURCE

	
Yes

	
Yes

	
No

	
No

	
JOB

	
Yes

	
Yes

	
No

	
No

	
LIBRARY

	
Yes

	
Yes

	
No

	
No

	
MATERIALIED_VIEW

	
Yes

	
Yes

	
No

	
No

	
MATERIALIZED_VIEW_LOG

	
Yes

	
Yes

	
No

	
No

	
OBJECT_GRANT

	
Yes

	
Yes

	
Yes

	
Yes

	
OPERATOR

	
Yes

	
Yes

	
No

	
No

	
PACKAGE

	
Yes

	
Yes

	
No

	
No

	
PACKAGE_SPEC

	
Yes

	
Yes

	
No

	
No

	
PACKAGE_BODY

	
Yes

	
Yes

	
No

	
No

	
PASSWORD_HISTORY

	
Yes

	
INCLUDE_USER

	
No

	
No

	
PASSWORD_VERIFY_FUNCTION

	
Yes

	
No

	
No

	
No

	
PROCEDURE

	
Yes

	
Yes

	
No

	
No

	
PROFILE

	
Yes

	
No

	
No

	
No

	
PROXY

	
Yes

	
No

	
No

	
No

	
REF_CONSTRAINT

	
Yes

	
Yes

	
Yes

	
Yes

	
REFRESH_GROUP

	
Yes

	
Yes

	
No

	
No

	
RESOURCE_COST

	
Yes

	
No

	
No

	
No

	
RLS_CONTEXT

	
Yes

	
No

	
No

	
Yes

	
RLS_GROUP

	
Yes

	
No

	
No

	
Yes

	
RLS_POLICY

	
Yes

	
Table data is retrieved according to policy

	
Table data is retrieved according to policy

	
Yes

	
ROLE

	
Yes

	
No

	
No

	
No

	
ROLE_GRANT

	
Yes

	
No

	
No

	
No

	
ROLLBACK_SEGMENT

	
Yes

	
No

	
No

	
No

	
SEQUENCE

	
Yes

	
Yes

	
No

	
No

	
SYNONYM

	
Yes

	
Yes

	
No

	
No

	
SYSTEM_GRANT

	
Yes

	
INCLUDE_USER

	
No

	
No

	
TABLE

	
Yes

	
Yes

	
Yes

	
Yes

	
TABLE_DATA

	
Yes

	
Yes

	
Yes

	
Yes

	
TABLE_STATISTICS

	
Yes

	
Yes

	
Yes

	
Yes

	
TABLESPACE

	
Yes

	
No

	
No

	
No

	
TABLESPACE_QUOTA

	
Yes

	
INCLUDE_USER

	
No

	
No

	
TRIGGER

	
Yes

	
Yes

	
Yes

	
Yes

	
TRUSTED_DB_LINK

	
Yes

	
No

	
No

	
No

	
TYPE

	
Yes

	
Yes

	
No

	
Yes, if the types are used by tables in the transportable set

	
TYPE_SPEC

	
Yes

	
Yes

	
No

	
Yes, if the types are used by tables in the transportable set

	
TYPE_BODY

	
Yes

	
Yes

	
No

	
Yes, if the types are used by tables in the transportable set

	
USER

	
Yes

	
INCLUDE_USER

	
No

	
No

	
VIEW

	
Yes

	
Yes

	
No

	
No

	
XMLSCHEMA

	
Yes

	
Yes

	
No

	
No

Return Values

An opaque handle to the class of objects. This handle is used as input to SET_FILTER, SET_COUNT, ADD_TRANSFORM, GET_QUERY, SET_PARSE_ITEM, FETCH_xxx, and CLOSE.

Exceptions

	
INVALID_ARGVAL. A NULL or invalid value was supplied for an input parameter. The error message text identifies the parameter.

	
INVALID_OBJECT_PARAM. The version or model parameter was not valid for the object_type.

OPENW Function

This function specifies the type of object to be submitted and the object model. The return value is an opaque context handle.

	
See Also:

For more information about related subprograms:
	
Subprograms for Submitting XML to the Database

Syntax

DBMS_METADATA.OPENW
 (object_type IN VARCHAR2,
 version IN VARCHAR2 DEFAULT 'COMPATIBLE',
 model IN VARCHAR2 DEFAULT 'ORACLE')
 RETURN NUMBER;

Parameters

Table 87-13 OPENW Function Parameters

	Parameter	Description
	
object_type

	
The type of object to be submitted. Valid types names and their meanings are listed in Table 87-11. The type cannot be a heterogeneous object type.

	
version

	
The version of DDL to be generated by the CONVERT function. DDL clauses that are incompatible with the version will not be generated. The legal values for this parameter are as follows:

	
COMPATIBLE - This is the default. The version of the DDL corresponds to the database compatibility level. Database compatibility must be set to 9.2.0 or higher.

	
LATEST - The version of the DDL corresponds to the database version.

	
A specific database version. The value cannot be lower than 9.2.0.

	
model

	
Specifies which view to use. Only the Oracle proprietary (ORACLE) view is supported by DBMS_METADATA.

Return Values

An opaque handle to write context. This handle is used as input to the ADD_TRANSFORM, CONVERT, PUT, and CLOSE procedures.

Exceptions

	
INVALID_ARGVAL. A NULL or invalid value was supplied for an input parameter. The error message text identifies the parameter.

	
INVALID_OBJECT_PARAM. The model parameter was not valid for the object_type.

PUT Function

This function submits an XML document containing object metadata to the database to create the object.

	
See Also:

For more information about related subprograms:
	
Subprograms for Submitting XML to the Database

Syntax

DBMS_METADATA.PUT (
 handle IN NUMBER,
 document IN sys.XMLType,
 flags IN NUMBER,
 results IN OUT NOCOPY sys.ku$_SubmitResults)
 RETURN BOOLEAN;

DBMS_METADATA.PUT (
 handle IN NUMBER,
 document IN CLOB,
 flags IN NUMBER,
 results IN OUT NOCOPY sys.ku$_SubmitResults)
 RETURN BOOLEAN;

Parameters

Table 87-14 PUT Function Parameters

	Parameter	Description
	
handle

	
The handle returned from OPENW.

	
document

	
The XML document containing object metadata for the type of the OPENW handle.

	
flags

	
Reserved for future use

	
results

	
Detailed results of the operation.

Return Values

TRUE if all SQL operations succeeded; FALSE if there were any errors.

Usage Notes

The PUT function converts the XML document to DDL just as CONVERT does (applying the specified transforms in turn) and then submits each resultant DDL statement to the database. As with CONVERT, the DDL transform must be specified. The DDL statements and associated parse items are returned in the sys.ku$_SubmitResults nested table. With each DDL statement is a nested table of error lines containing any errors or exceptions raised by the statement.

The encoding of the XML document is embedded in its CLOB or XMLType representation. The version of the metadata is embedded in the XML. The generated DDL is valid for the database version specified in OPENW.

Exceptions

	
INVALID_ARGVAL. A NULL or invalid value was supplied for an input parameter. The error message text identifies the parameter.

	
INCONSISTENT_OPERATION. The DDL transform was not specified.

	
INCOMPATIBLE_DOCUMENT. The version of the XML document is not compatible with this version of the software.

SET_COUNT Procedure

This procedure specifies the maximum number of objects to be retrieved in a single FETCH_xxx call. By default, each call to FETCH_xxx returns one object. You can use the SET_COUNT procedure to override this default. If FETCH_xxx is called from a client, specifying a count value greater than 1 can result in fewer server round trips and, therefore, improved performance.

For heterogeneous object types, a single FETCH_xxx operation only returns objects of a single object type.

	
See Also:

For more information about related subprograms:
	
Subprograms for Retrieving Multiple Objects From the Database

Syntax

DBMS_METADATA.SET_COUNT (
 handle IN NUMBER,
 value IN NUMBER,
 object_type_path IN VARCHAR2 DEFAULT NULL);

Parameters

Table 87-15 SET_COUNT Procedure Parameters

	Parameter	Description
	
handle

	
The handle returned from OPEN.

	
value

	
The maximum number of objects to retrieve.

	
object_type_path

	
A path name designating the object types to which the count value applies. By default, the count value applies to the object type of the OPEN handle. When the OPEN handle designates a heterogeneous object type, behavior can be either of the following:

	
if object_type_path is omitted, the count applies to all object types within the heterogeneous collection

	
if object_type_path is specified, the count only applies to the specific node (or set of nodes) within the tree of object types forming the heterogeneous collection

Exceptions

	
INVALID_ARGVAL. A NULL or invalid value was supplied for an input parameter. The error message text identifies the parameter.

	
INVALID_OPERATION. SET_COUNT was called after the first call to FETCH_xxx for the OPEN context. After the first call to FETCH_xxx is made, no further calls to SET_COUNT for the current OPEN context are permitted.

	
INCONSISTENT_ARGS. object_type parameter is not consistent with handle.

SET_FILTER Procedure

This procedure specifies restrictions on the objects to be retrieved, for example, the object name or schema.

	
See Also:

For more information about related subprograms:
	
Subprograms for Retrieving Multiple Objects From the Database

Syntax

DBMS_METADATA.SET_FILTER (
 handle IN NUMBER,
 name IN VARCHAR2,
 value IN VARCHAR2,
 object_type_path IN VARCHAR2 DEFAULT NULL);

DBMS_METADATA.SET_FILTER (
 handle IN NUMBER,
 name IN VARCHAR2,
 value IN BOOLEAN DEFAULT TRUE,
 object_type_path IN VARCHAR2 DEFAULT NULL);

DBMS_METADATA.SET_FILTER (
 handle IN NUMBER,
 name IN VARCHAR2,
 value IN NUMBER,
 object_type_path IN VARCHAR2 DEFAULT NULL);

Parameters

Table 87-16 SET_FILTER Procedure Parameters

	Parameter	Description
	
handle

	
The handle returned from OPEN.

	
name

	
The name of the filter. For each filter, Table 87-17 lists the object_type it applies to, its name, its datatype (text or Boolean) and its meaning or effect (including its default value, if any).

The Datatype column of Table 87-17 also indicates whether a text filter is an expression filter. An expression filter is the right-hand side of a SQL comparison (that is, a SQL comparison operator (=, !=, and so on.)) and the value compared against. The value must contain parentheses and quotation marks where appropriate. Note that in PL/SQL and SQL*Plus, two single quotes (not a double quote) are needed to represent an apostrophe. For example, an example of a NAME_EXPR filter in PL/SQL is as follows:

'IN (''DEPT'',''EMP'')'

The filter value is combined with a particular object attribute to produce a WHERE condition in the query that fetches the objects. In the preceding example, the filter is combined with the attribute corresponding to an object name; objects named 'DEPT' and 'EMP' are selected.

	
value

	
The value of the filter. Text, Boolean, and Numeric filters are supported.

	
object_type_path

	
A path name designating the object types to which the filter applies. By default, the filter applies to the object type of the OPEN handle. When the OPEN handle designates a heterogeneous object type, you can use this parameter to specify a filter for a specific node or set of nodes within the tree of object types that form the heterogeneous collection. See Table 87-18 for a listing of some of the values for this parameter.

Table 87-17 describes the object type, name, datatype, and meaning of the filters available with the SET_FILTER procedure.

Table 87-17 SET_FILTER: Filters

	Object Type	Name	Datatype	Meaning
	
Named objects

	
NAME

	
text

	
Objects with this exact name are selected.

	
Named objects

	
NAME_EXPR

	
text expression

	
The filter value is combined with the object attribute corresponding to the object name to produce a WHERE condition in the query that fetches the objects.

By default, all named objects of object_type are selected.

	
Named objects

	
EXCLUDE_NAME_EXPR

	
text expression

	
The filter value is combined with the attribute corresponding to the object name to specify objects that are to be excluded from the set of objects fetched.

By default, all named objects of the object type are selected.

	
Schema objects

	
SCHEMA

	
text

	
Objects in this schema are selected. If the object type is SYNONYM, specify PUBLIC to select public synonyms.

	
Schema objects

	
SCHEMA_EXPR

	
text expression

	
The filter value is combined with the attribute corresponding to the object's schema.

The default is determined as follows:

- if BASE_OBJECT_SCHEMA is specified, then objects in that schema are selected;

- otherwise, objects in the current schema are selected.

	
PACKAGE, TYPE

	
SPECIFICATION

	
Boolean

	
If TRUE, retrieve the package or type specification. Defaults to TRUE.

	
PACKAGE, TYPE

	
BODY

	
Boolean

	
If TRUE, retrieve the package or type body. Defaults to TRUE.

	
TABLE, CLUSTER, INDEX, TABLE_DATA, TABLE_EXPORT, TRANSPORTABLE_EXPORT

	
TABLESPACE

	
text

	
Objects in this tablespace (or having a partition in this tablespace) are selected.

	
TABLE, CLUSTER, INDEX,TABLE_DATA, TABLE_EXPORT, TRANSPORTABLE_EXPORT

	
TABLESPACE_EXPR

	
text expression

	
The filter value is combined with the attribute corresponding to the object's tablespace (or in the case of a partitioned table or index, the partition's tablespaces). By default, objects in all tablespaces are selected.

	
TABLE, objects dependent on tables

	
PRIMARY

	
Boolean

	
If TRUE, retrieve primary tables (that is, tables for which the secondary object bit in obj$ is clear.

Defaults to TRUE.

	
TABLE, objects dependent on tables

	
SECONDARY

	
Boolean

	
If TRUE, retrieve secondary tables (that is, tables for which the secondary object bit in obj$ is set).

Defaults to TRUE.

	
Dependent Objects

	
BASE_OBJECT_NAME

	
text

	
Objects are selected that are defined or granted on objects with this name. Specify SCHEMA for triggers on schemas. Specify DATABASE for database triggers. Column-level comments cannot be selected by column name; the base object name must be the name of the table, view, or materialized view containing the column.

	
Dependent Objects

	
BASE_OBJECT_SCHEMA

	
text

	
Objects are selected that are defined or granted on objects in this schema. If BASE_OBJECT_NAME is specified with a value other than SCHEMA or DATABASE, this defaults to the current schema.

	
Dependent Objects

	
BASE_OBJECT_NAME_EXPR

	
text expression

	
The filter value is combined with the attribute corresponding to the name of the base object.

Not valid for schema and database triggers.

	
Dependent Objects

	
EXCLUDE_BASE_OBJECT_NAME_EXPR

	
text expression

	
The filter value is combined with the attribute corresponding to the name of the base object to specify objects that are to be excluded from the set of objects fetched.

Not valid for schema and database triggers.

	
Dependent Objects

	
BASE_OBJECT_SCHEMA_EXPR

	
text expression

	
The filter value is combined with the attribute corresponding to the schema of the base object.

	
Dependent Objects

	
BASE_OBJECT_TYPE

	
text

	
The object type of the base object.

	
Dependent Objects

	
BASE_OBJECT_TYPE_EXPR

	
text expression

	
The filter value is combined with the attribute corresponding to the object type of the base object.

By default no filtering is done on object type.

	
Dependent Objects

	
BASE_OBJECT_TABLESPACE

	
text

	
The tablespace of the base object.

	
Dependent Objects

	
BASE_OBJECT_TABLESPACE_EXPR

	
text expression

	
The filter value is combined with the attribute corresponding to the tablespaces of the base object. By default, no filtering is done on the tablespace.

	
INDEX, TRIGGER

	
SYSTEM_GENERATED

	
Boolean

	
If TRUE, select indexes or triggers even if they are system-generated. If FALSE, omit system-generated indexes or triggers. Defaults to TRUE.

	
Granted Objects

	
GRANTEE

	
text

	
Objects are selected that are granted to this user or role. Specify PUBLIC for grants to PUBLIC.

	
Granted Objects

	
PRIVNAME

	
text

	
The name of the privilege or role to be granted. For TABLESPACE_QUOTA, only UNLIMITED can be specified.

	
Granted Objects

	
PRIVNAME_EXPR

	
text expression

	
The filter value is combined with the attribute corresponding to the privilege or role name. By default, all privileges/roles are returned.

	
Granted Objects

	
GRANTEE_EXPR

	
text expression

	
The filter value is combined with the attribute corresponding to the grantee name.

	
Granted Objects

	
EXCLUDE_GRANTEE_EXPR

	
text expression

	
The filter value is combined with the attribute corresponding to the grantee name to specify objects that are to be excluded from the set of objects fetched.

	
OBJECT_GRANT

	
GRANTOR

	
text

	
Object grants are selected that are granted by this user.

	
SYNONYM, JAVA_SOURCE, XMLSCHEMA

	
LONGNAME

	
text

	
A name longer than 30 characters. Objects with this exact name are selected. If the object name is 30 characters or less, the NAME filter must be used.

	
SYNONYM, JAVA_SOURCE, XMLSCHEMA

	
LONGNAME_EXPR

	
text

	
The filter value is combined with the attribute corresponding to the object's long name. By default, no filtering is done on the long name of an object.

	
All objects

	
CUSTOM_FILTER

	
text

	
The text of a WHERE condition. The condition is appended to the query that fetches the objects. By default, no custom filter is used.

The other filters are intended to meet the needs of the majority of users. Use CUSTOM_FILTER when no defined filters exists for your purpose. Of necessity such a filter depends on the detailed structure of the UDTs and views used in the query. Because filters may change from version to version, upward compatibility is not guaranteed.

	
All objects

	
EDITION

	
text

	
The edition filter is accepted for any object type, but affects only objects that support editions. The filter is only accepted for local objects (that is, the network_link parameter is not specified in the OPEN call). The edition name must be a valid edition name. If an edition is not specified, the edition of the active session is used.

	
SCHEMA_EXPORT

	
SCHEMA

	
text

	
The schema whose objects are selected.

	
SCHEMA_EXPORT

	
SCHEMA_EXPR

	
text expression

	
The filter value is either:

combined with the attribute corresponding to a schema name to produce a WHERE condition in the query that fetches schema objects,

combined with the attribute corresponding to a base schema name to produce a WHERE condition in the query that fetches dependent objects.

By default the current user's objects are selected.

	
SCHEMA_EXPORT

	
INCLUDE_USER

	
Boolean

	
If TRUE, retrieve objects containing privileged information about the user. For example, USER, PASSWORD_HISTORY, TABLESPACE_QUOTA.

Defaults to FALSE.

	
TABLE_EXPORT

	
SCHEMA

	
text

	
Objects (tables and their dependent objects) in this schema are selected.

	
TABLE_EXPORT

	
SCHEMA_EXPR

	
text expression

	
The filter value is either:

combined with the attribute corresponding to a schema name to produce a WHERE condition in the query that fetches the tables,

combined with the attribute corresponding to a base schema name to produce a WHERE condition in the query that fetches the tables' dependent objects.

By default the current user's objects are selected.

	
TABLE_EXPORT

	
NAME

	
text

	
The table with this exact name is selected along with its dependent objects.

	
TABLE_EXPORT

	
NAME_EXPR

	
text expression

	
The filter value is combined with the attribute corresponding to a table name in the queries that fetch tables and their dependent objects.

By default all tables in the selected schemas are selected, along with their dependent objects.

	
Heterogeneous objects

	
BEGIN_WITH

	
text

	
The fully qualified path name of the first object type in the heterogeneous collection to be retrieved. Objects normally fetched prior to this object type will not be retrieved.

	
Heterogeneous objects

	
BEGIN_AFTER

	
text

	
The fully qualified path name of an object type after which the heterogeneous retrieval should begin. Objects of this type will not be retrieved, nor will objects normally fetched prior to this object type.

	
Heterogeneous objects

	
END_BEFORE

	
text

	
The fully qualified path name of an object type where the heterogeneous retrieval should end. Objects of this type will not be retrieved, nor will objects normally fetched after this object type.

	
Heterogeneous objects

	
END_WITH

	
text

	
The fully qualified path name of the last object type in the heterogeneous collection to be retrieved. Objects normally fetched after this object type will not be retrieved.

	
Heterogeneous objects

	
INCLUDE_PATH_EXPR, EXCLUDE_PATH_EXPR

	
text expression

	
For these two filters, the filter value is combined with the attribute corresponding to an object type path name to produce a WHERE condition in the query that fetches the object types belonging to the heterogeneous collection. Objects of types satisfying this condition are included (INCLUDE_PATH_EXPR) or excluded (EXCLUDE_PATH_EXPR) from the set of object types fetched. Path names in the filter value do not have to be fully qualified. See Table 87-18 for valid path names that can be used with these filters.

BEGIN_WITH, BEGIN_AFTER, END_BEFORE, END_WITH, INCLUDE_PATH_EXPR, and EXCLUDE_PATH_EXPR all restrict the set of object types in the heterogeneous collection. By default, objects of all object types in the heterogeneous collection are retrieved.

Usage Notes

	
Each call to SET_FILTER causes a WHERE condition to be added to the underlying query that fetches the set of objects. The WHERE conditions are ANDed together, so you can use multiple SET_FILTER calls to refine the set of objects to be returned. For example to specify that you want the object named EMP in schema SCOTT, do the following:

 SET_FILTER(handle,'SCHEMA','SCOTT');
 SET_FILTER(handle,'NAME','EMP');

	
You can use the same text expression filter multiple times with different values. All the filter conditions will be applied to the query. For example, to get objects with names between Felix and Oscar, do the following:

SET_FILTER(handle,'NAME_EXPR','>=''FELIX''');
SET_FILTER(handle,'NAME_EXPR','<=''OSCAR''');

	
With SET_FILTER, you can specify the schema of objects to be retrieved, but security considerations may override this specification. If the caller is SYS or has SELECT_CATALOG_ROLE, then any object can be retrieved; otherwise, only the following can be retrieved:

	
Schema objects owned by the current user

	
Public synonyms

	
System privileges granted to the current user or to PUBLIC

	
Grants on objects for which the current user is owner, grantor, or grantee (either explicitly or as PUBLIC).

	
SCHEMA_EXPORT where the name is the current user

	
TABLE_EXPORT where SCHEMA is the current user

If you request objects that you are not privileged to retrieve, no exception is raised; the object is not retrieved, as if it did not exist.

In stored procedures, functions, and definers-rights packages, roles (such as SELECT_CATALOG_ROLE) are disabled. Therefore, such a PL/SQL program can only fetch metadata for objects in its own schema. If you want to write a PL/SQL program that fetches metadata for objects in a different schema (based on the invoker's possession of SELECT_CATALOG_ROLE), you must make the program invokers-rights.

	
For heterogeneous object types, the BEGIN_WITH and BEGIN_AFTER filters allow restart on an object type boundary. Appropriate filter values are returned by the FETCH_XML_CLOB procedure.

Filters on heterogeneous objects provide default values for filters on object types within the collection. You can override this default for a particular object type by specifying the appropriate filter for the specific object type path. For example, for SCHEMA_EXPORT the NAME filter specifies the schema to be fetched including all the tables in the schema, but you can further restrict this set of tables by supplying a NAME_EXPR filter explicitly for the TABLE object type path. Table 87-18 lists valid object type path names for the major heterogeneous object types along with an explanation of the scope of each path name. (The same information is available in the following catalog views: DATABASE_EXPORT_OBJECTS, SCHEMA_EXPORT_OBJECTS, and TABLE_EXPORT_OBJECTS.) See Table 87-17 for filters defined for each path name. These path names are valid in the INCLUDE_PATH_EXPR and EXCLUDE_PATH_EXPR filters. Path names marked with an asterisk (*) are only valid in those filters; they cannot be used as values of the SET_FILTER object_type_path parameter.

Table 87-18 Object Type Path Names for Heterogeneous Object Types

	Heterogeneous Type	Path Name (*=valid only in xxx_PATH_EXPR)	Scope
	
TABLE_EXPORT

	
AUDIT_OBJ

	
Object audits on the selected tables

	
TABLE_EXPORT

	
COMMENT

	
Table and column comments for the selected tables

	
TABLE_EXPORT

	
CONSTRAINT

	
Constraints (including referential constraints) on the selected tables

	
TABLE_EXPORT

	
*GRANT

	
Object grants on the selected tables

	
TABLE_EXPORT

	
INDEX

	
Indexes (including domain indexes) on the selected tables

	
TABLE_EXPORT

	
OBJECT_GRANT

	
Object grants on the selected tables

	
TABLE_EXPORT

	
REF_CONSTRAINT

	
Referential (foreign key) constraints on the selected tables

	
TABLE_EXPORT

	
STATISTICS

	
Statistics on the selected tables

	
TABLE_EXPORT

	
TABLE_DATA

	
Row data for the selected tables

	
TABLE_EXPORT

	
TRIGGER

	
Triggers on the selected tables

	
SCHEMA_EXPORT

	
ASSOCIATION

	
Statistics type associations for objects in the selected schemas

	
SCHEMA_EXPORT

	
AUDIT_OBJ

	
Audits on all objects in the selected schemas

	
SCHEMA_EXPORT

	
CLUSTER

	
Clusters in the selected schemas and their indexes

	
SCHEMA_EXPORT

	
COMMENT

	
Comments on all objects in the selected schemas

	
SCHEMA_EXPORT

	
CONSTRAINT

	
Constraints (including referential constraints) on all objects in the selected schemas

	
SCHEMA_EXPORT

	
DB_LINK

	
Private database links in the selected schemas

	
SCHEMA_EXPORT

	
DEFAULT_ROLE

	
Default roles granted to users associated with the selected schemas

	
SCHEMA_EXPORT

	
DIMENSION

	
Dimensions in the selected schemas

	
SCHEMA_EXPORT

	
FUNCTION

	
Functions in the selected schemas and their dependent grants and audits

	
SCHEMA_EXPORT

	
*GRANT

	
Grants on objects in the selected schemas

	
SCHEMA_EXPORT

	
INDEX

	
Indexes (including domain indexes) on tables and clusters in the selected schemas

	
SCHEMA_EXPORT

	
INDEXTYPE

	
Indextypes in the selected schemas and their dependent grants and audits

	
SCHEMA_EXPORT

	
JAVA_SOURCE

	
Java sources in the selected schemas and their dependent grants and audits

	
SCHEMA_EXPORT

	
JOB

	
Jobs in the selected schemas

	
SCHEMA_EXPORT

	
LIBRARY

	
External procedure libraries in the selected schemas

	
SCHEMA_EXPORT

	
MATERIALIZED_VIEW

	
Materialized views in the selected schemas

	
SCHEMA_EXPORT

	
MATERIALIZED_VIEW_LOG

	
Materialized view logs on tables in the selected schemas

	
SCHEMA_EXPORT

	
OBJECT_GRANT

	
Grants on objects in the selected schemas

	
SCHEMA_EXPORT

	
OPERATOR

	
Operators in the selected schemas and their dependent grants and audits

	
SCHEMA_EXPORT

	
PACKAGE

	
Packages (both specification and body) in the selected schemas, and their dependent grants and audits

	
SCHEMA_EXPORT

	
PACKAGE_BODY

	
Package bodies in the selected schemas

	
SCHEMA_EXPORT

	
PACKAGE_SPEC

	
Package specifications in the selected schemas

	
SCHEMA_EXPORT

	
PASSWORD_HISTORY

	
The password history for users associated with the selected schemas

	
SCHEMA_EXPORT

	
PROCEDURE

	
Procedures in the selected schemas and their dependent grants and audits

	
SCHEMA_EXPORT

	
REF_CONSTRAINT

	
Referential (foreign key) constraints on tables in the selected schemas

	
SCHEMA_EXPORT

	
REFRESH_GROUP

	
Refresh groups in the selected schemas

	
SCHEMA_EXPORT

	
SEQUENCE

	
Sequences in the selected schemas and their dependent grants and audits

	
SCHEMA_EXPORT

	
STATISTICS

	
Statistics on tables and indexes in the selected schemas

	
SCHEMA_EXPORT

	
SYNONYM

	
Private synonyms in the selected schemas

	
SCHEMA_EXPORT

	
TABLE

	
Tables in the selected schemas and their dependent objects (indexes, constraints, triggers, grants, audits, comments, table data, and so on)

	
SCHEMA_EXPORT

	
TABLE_DATA

	
Row data for tables in the selected schemas

	
SCHEMA_EXPORT

	
TABLESPACE_QUOTA

	
Tablespace quota granted to users associated with the selected schemas

	
SCHEMA_EXPORT

	
TRIGGER

	
Triggers on tables in the selected schemas

	
SCHEMA_EXPORT

	
TYPE

	
Types (both specification and body) in the selected schemas, and their dependent grants and audits

	
SCHEMA_EXPORT

	
TYPE_BODY

	
Type bodies in the selected schemas

	
SCHEMA_EXPORT

	
TYPE_SPEC

	
Type specifications in the selected schemas

	
SCHEMA_EXPORT

	
USER

	
User definitions for users associated with the selected schemas

	
SCHEMA_EXPORT

	
VIEW

	
Views in the selected schemas and their dependent objects (grants, constraints, comments, audits)

	
DATABASE_EXPORT

	
ASSOCIATION

	
Statistics type associations for objects in the database

	
DATABASE_EXPORT

	
AUDIT

	
Audits of SQL statements

	
DATABASE_EXPORT

	
AUDIT_OBJ

	
Audits on all objects in the database

	
DATABASE_EXPORT

	
CLUSTER

	
Clusters and their indexes

	
DATABASE_EXPORT

	
COMMENT

	
Comments on all objects

	
DATABASE_EXPORT

	
CONSTRAINT

	
Constraints (including referential constraints)

	
DATABASE_EXPORT

	
CONTEXT

	
Application contexts

	
DATABASE_EXPORT

	
DB_LINK

	
Private and public database links

	
DATABASE_EXPORT

	
DEFAULT_ROLE

	
Default roles granted to users in the database

	
DATABASE_EXPORT

	
DIMENSION

	
Dimensions in the database

	
DATABASE_EXPORT

	
DIRECTORY

	
Directory objects in the database

	
DATABASE_EXPORT

	
FGA_POLICY

	
Fine-grained audit policies

	
DATABASE_EXPORT

	
FUNCTION

	
Functions

	
DATABASE_EXPORT

	
* GRANT

	
Object and system grants

	
DATABASE_EXPORT

	
INDEX

	
Indexes (including domain indexes) on tables and clusters

	
DATABASE_EXPORT

	
INDEXTYPE

	
Indextypes and their dependent grants and audits

	
DATABASE_EXPORT

	
JAVA_SOURCE

	
Java sources and their dependent grants and audits

	
DATABASE_EXPORT

	
JOB

	
Jobs

	
DATABASE_EXPORT

	
LIBRARY

	
External procedure libraries

	
DATABASE_EXPORT

	
MATERIALIZED_VIEW

	
Materialized views

	
DATABASE_EXPORT

	
MATERIALIZED_VIEW_LOG

	
Materialized view logs

	
DATABASE_EXPORT

	
OBJECT_GRANT

	
All object grants in the database

	
DATABASE_EXPORT

	
OPERATOR

	
Operators and their dependent grants and audits

	
DATABASE_EXPORT

	
PACKAGE

	
Packages (both specification and body) and their dependent grants and audits

	
DATABASE_EXPORT

	
PACKAGE_BODY

	
Package bodies

	
DATABASE_EXPORT

	
PACKAGE_SPEC

	
Package specifications

	
DATABASE_EXPORT

	
PASSWORD_HISTORY

	
Password histories for database users

	
DATABASE_EXPORT

	
*PASSWORD_VERIFY_FUNCTION

	
The password complexity verification function

	
DATABASE_EXPORT

	
PROCEDURE

	
Procedures and their dependent grants and objects

	
DATABASE_EXPORT

	
PROFILE

	
Profiles

	
DATABASE_EXPORT

	
PROXY

	
Proxy authentications

	
DATABASE_EXPORT

	
REF_CONSTRAINT

	
Referential (foreign key) constraints on tables in the database

	
DATABASE_EXPORT

	
REFRESH_GROUP

	
Refresh groups

	
DATABASE_EXPORT

	
*RESOURCE_ COST

	
Resource cost information

	
DATABASE_EXPORT

	
RLS_CONTEXT

	
Fine-grained access-control driving contexts

	
DATABASE_EXPORT

	
RLS_GROUP

	
Fine-grained access-control policy groups

	
DATABASE_EXPORT

	
RLS_POLICY

	
Fine-grained access-control policies

	
DATABASE_EXPORT

	
ROLE

	
Roles

	
DATABASE_EXPORT

	
ROLE_GRANT

	
Role grants to users in the database

	
DATABASE_EXPORT

	
ROLLBACK_SEGMENT

	
Rollback segments

	
DATABASE_EXPORT

	
*SCHEMA (named object)

	
Database schemas including for each schema all related and dependent objects: user definitions and their attributes (default roles, role grants, tablespace quotas, and so on), objects in the schema (tables, view, packages, types, and so on), and their dependent objects (grants, audits, indexes, constraints, and so on). The NAME and NAME_EXPR filters can be used with this object type path name to designate the database schemas to be fetched.

	
DATABASE_EXPORT

	
SEQUENCE

	
Sequences

	
DATABASE_EXPORT

	
STATISTICS

	
Statistics on tables and indexes

	
DATABASE_EXPORT

	
SYNONYM

	
Public and private synonyms

	
DATABASE_EXPORT

	
SYSTEM_GRANT

	
System privilege grants

	
DATABASE_EXPORT

	
TABLE

	
Tables and their dependent objects (indexes, constraints, triggers, grants, audits, comments, table data, and so on)

	
DATABASE_EXPORT

	
TABLE_DATA

	
Row data for all tables

	
DATABASE_EXPORT

	
TABLESPACE

	
Tablespace definitions

	
DATABASE_EXPORT

	
TABLESPACE_QUOTA

	
Tablespace quota granted to users in the database

	
DATABASE_EXPORT

	
TRIGGER

	
Triggers on the database, on schemas, and on schema objects

	
DATABASE_EXPORT

	
TRUSTED_DB_LINK

	
Trusted links

	
DATABASE_EXPORT

	
TYPE

	
Types (both specification and body) and their dependent grants and audits

	
DATABASE_EXPORT

	
TYPE_BODY

	
Type bodies

	
DATABASE_EXPORT

	
TYPE_SPEC

	
Type specifications

	
DATABASE_EXPORT

	
USER

	
User definitions

	
DATABASE_EXPORT

	
VIEW

	
Views

Exceptions

	
INVALID_ARGVAL. A NULL or invalid value was supplied for an input parameter. The error message text identifies the parameter.

	
INVALID_OPERATION. SET_FILTER was called after the first call to FETCH_xxx for the OPEN context. After the first call to FETCH_xxx is made, no further calls to SET_FILTER are permitted.

	
INCONSISTENT_ARGS. The arguments are inconsistent. Possible inconsistencies include the following:

	
filter name not valid for the object type associated with the OPEN context

	
filter name not valid for the object_type_path

	
object_type_path not part of the collection designated by handle

	
filter value is the wrong datatype

SET_PARSE_ITEM Procedure

This procedure is used for both retrieval and submission. This procedure enables output parsing and specifies an object attribute to be parsed and returned.

	
See Also:

For more information about related subprograms:
	
Subprograms for Retrieving Multiple Objects From the Database

	
Subprograms for Submitting XML to the Database

Syntax

The following syntax applies when SET_PARSE_ITEM is used for object retrieval:

DBMS_METADATA.SET_PARSE_ITEM (
 handle IN NUMBER,
 name IN VARCHAR2,
 object_type IN VARCHAR2 DEFAULT NULL);

The following syntax applies when SET_PARSE_ITEM is used for XML submission:

DBMS_METADATA.SET_PARSE_ITEM (
 handle IN NUMBER,
 name IN VARCHAR2);

Parameters

Table 87-19 SET_PARSE_ITEM Procedure Parameters

	Parameter	Description
	
handle

	
The handle returned from OPEN (or OPENW).

	
name

	
The name of the object attribute to be parsed and returned. See Table 87-20 for the attribute object type, name, and meaning.

	
object_type

	
Designates the object type to which the parse item applies (this is an object type name, not a path name). By default, the parse item applies to the object type of the OPEN handle. When the OPEN handle designates a heterogeneous object type, behavior can be either of the following:

	
if object_type is omitted, the parse item applies to all object types within the heterogeneous collection

	
if object_type is specified, the parse item only applies to that specific object type within the collection

This parameter only applies when SET_PARSE_ITEM is used for object retrieval.

Table 87-20 describes the object type, name, and meaning of the items available in the SET_PARSE_ITEM procedure.

Table 87-20 SET_PARSE_ITEM: Parse Items

	Object Type	Name	Meaning
	
All objects

	
VERB

	
If FETCH_XML_CLOB is called, no value is returned.

If FETCH_DDL is called, then for every row in the sys.ku$_ddls nested table returned by FETCH_DDL the verb in the corresponding ddlText is returned. If the ddlText is a SQL DDL statement, then the SQL verb (for example, CREATE, GRANT, AUDIT) is returned. If the ddlText is a procedure call (for example, DBMS_AQADM.CREATE_QUEUE_TABLE()) then the package.procedure-name is returned.

	
All objects

	
OBJECT_TYPE

	
If FETCH_XML_CLOB is called, an object type name from Table 87-11 is returned.

If FETCH_DDL is called and the ddlText is a SQL DDL statement whose verb is CREATE or ALTER, the object type as used in the DDL statement is returned (for example, TABLE, PACKAGE_BODY, and so on). Otherwise, an object type name from Table 87-11 is returned.

	
Schema objects

	
SCHEMA

	
The object schema is returned. If the object is not a schema object, no value is returned.

	
Named objects

	
NAME

	
The object name is returned. If the object is not a named object, no value is returned.

	
TABLE, TABLE_DATA, INDEX

	
TABLESPACE

	
The name of the object's tablespace or, if the object is a partitioned table, the default tablespace is returned. For a TABLE_DATA object, this is always the tablespace where the rows are stored.

	
TRIGGER

	
ENABLE

	
If the trigger is enabled, ENABLE is returned. If the trigger is disabled, DISABLE is returned.

	
OBJECT_GRANT, TABLESPACE_QUOTA

	
GRANTOR

	
The grantor is returned.

	
Dependent objects (including domain index secondary tables)

	
BASE_OBJECT_NAME

	
The name of the base object is returned. If the object is not a dependent object, no value is returned.

	
Dependent objects (including domain index secondary tables)

	
BASE_OBJECT_SCHEMA

	
The schema of the base object is returned. If the object is not a dependent object, no value is returned.

	
Dependent objects (including domain index secondary tables)

	
BASE_OBJECT_TYPE

	
The object type of the base object is returned. If the object is not a dependent object, no value is returned.

	
Granted objects

	
GRANTEE

	
The grantee is returned. If the object is not a granted object, no value is returned.

Usage Notes

These notes apply when using SET_PARSE_ITEM to retrieve objects.

By default, the FETCH_xxx routines return an object's metadata as XML or creation DDL. By calling SET_PARSE_ITEM you can request that individual attributes of the object be returned as well.

You can call SET_PARSE_ITEM multiple times to ask for multiple items to be parsed and returned. Parsed items are returned in the sys.ku$_parsed_items nested table.

For TABLE_DATA objects, the following parse item return values are of interest:

	If Object Is	NAME, SCHEMA	BASE_OBJECT_NAME, BASE_OBJECT_SCHEMA
	nonpartitioned table	table name, schema	table name, schema
	table partition	partition name, schema	table name, schema
	nested table	storage table name, schema	name and schema of top-level table (not the parent nested table)

Tables are not usually thought of as dependent objects. However, secondary tables for domain indexes are dependent on the domain indexes. Consequently, the BASE_OBJECT_NAME, BASE_OBJECT_SCHEMA and BASE_OBJECT_TYPE parse items for secondary TABLE objects return the name, schema, and type of the domain index.

	
See Also:

	
"FETCH_xxx Functions and Procedures"

	
Oracle Database Utilities for information about using the Metadata API

By default, the CONVERT and PUT procedures simply transform an object's XML metadata to DDL. By calling SET_PARSE_ITEM you can request that individual attributes of the object be returned as well.

Exceptions

	
INVALID_ARGVAL. A NULL or invalid value was supplied for an input parameter. The error message text identifies the parameter.

	
INVALID_OPERATION. SET_PARSE_ITEM was called after the first call to FETCH_xxx for the OPEN context. After the first call to FETCH_xxx is made, no further calls to SET_PARSE_ITEM are permitted.

	
INCONSISTENT_ARGS. The attribute name is not valid for the object type associated with the OPEN context.

SET_TRANSFORM_PARAM and SET_REMAP_PARAM Procedures

These procedures are used for both retrieval and submission. SET_TRANSFORM_PARAM and SET_REMAP_PARAM specify parameters to the XSLT stylesheet identified by transform_handle.Use them to modify or customize the output of the transform.

	
See Also:

For more information about related subprograms:
	
Subprograms for Retrieving Multiple Objects From the Database

	
Subprograms for Submitting XML to the Database

Syntax

DBMS_METADATA.SET_TRANSFORM_PARAM (
 transform_handle IN NUMBER,
 name IN VARCHAR2,
 value IN VARCHAR2,
 object_type IN VARCHAR2 DEFAULT NULL);

DBMS_METADATA.SET_TRANSFORM_PARAM (
 transform_handle IN NUMBER,
 name IN VARCHAR2,
 value IN BOOLEAN DEFAULT TRUE,
 object_type IN VARCHAR2 DEFAULT NULL);

DBMS_METADATA.SET_TRANSFORM_PARAM (
 transform_handle IN NUMBER,
 name IN VARCHAR2,
 value IN NUMBER,
 object_type IN VARCHAR2 DEFAULT NULL);

DBMS_METADATA.SET_REMAP_PARAM (
 transform_handle IN NUMBER,
 name IN VARCHAR2,
 old_value IN VARCHAR2,
 new_value IN VARCHAR2,
 object_type IN VARCHAR2 DEFAULT NULL);

Parameters

Table 87-21 describes the parameters for the SET_TRANSFORM_PARAM and SET_REMAP_PARAM procedures.

Table 87-21 SET_TRANSFORM_PARAM and SET_REMAP_PARAM Parameters

	Parameters	Description
	
transform_handle

	
Either (1) the handle returned from ADD_TRANSFORM, or (2) the enumerated constant SESSION_TRANSFORM that designates the DDL transform for the whole session.

Note that the handle returned by OPEN is not a valid transform handle.

For SET_REMAP_PARAM, the transform handle must designate the MODIFY transform.

	
name

	
The name of the parameter.

Table 87-22 lists the transform parameters defined for the DDL transform, specifying the object_type it applies to, its datatype, and its meaning or effect. This includes its default value, if any, and whether the parameter is additive.

Table 87-23 describes the parameters for the MODIFY transform in the SET_TRANSFORM_PARAM procedure.

Table 87-24 describes the parameters for the MODIFY transform in the SET_REMAP_PARAM procedure.

	
value

	
The value of the transform. This parameter is valid only for SET_TRANSFORM_PARAM.

	
old_value

	
The old value for the remapping. This parameter is valid only for SET_REMAP_PARAM.

	
new_value

	
The new value for the remapping. This parameter is valid only for SET_REMAP_PARAM.

	
object_type

	
Designates the object type to which the transform or remap parameter applies. By default, it applies to the same object type as the transform. In cases where the transform applies to all object types within a heterogeneous collection, the following apply:

	
If object_type is omitted, the parameter applies to all applicable object types within the heterogeneous collection.

	
If object_type is specified, the parameter only applies to that object type.

This allows a caller who has added a transform to a heterogeneous collection to specify different transform parameters for different object types within the collection.

Table 87-22 describes the object type, name, datatype, and meaning of the parameters for the DDL transform in the SET_TRANSFORM_PARAM procedure.

Table 87-22 SET_TRANSFORM_PARAM: Transform Parameters for the DDL Transform

	Object Type	Name	Datatype	Meaning
	
All objects

	
PRETTY

	
BOOLEAN

	
If TRUE, format the output with indentation and line feeds. Defaults to TRUE.

	
All objects

	
SQLTERMINATOR

	
BOOLEAN

	
If TRUE, append a SQL terminator (; or /) to each DDL statement. Defaults to FALSE.

	
TABLE

	
SEGMENT_ATTRIBUTES

	
BOOLEAN

	
If TRUE, include segment attributes clauses in the DDL. If FALSE, omit them. Defaults to TRUE.

	
TABLE

	
STORAGE

	
BOOLEAN

	
If TRUE, include storage clauses in the DDL. If FALSE, omit them. Defaults to TRUE. (Ignored if SEGMENT_ATTRIBUTES is FALSE.)

	
TABLE

	
TABLESPACE

	
BOOLEAN

	
If TRUE, include tablespace clauses in the DDL. If FALSE, omit them. (Ignored if SEGMENT_ATTRIBUTES is FALSE.) Defaults to TRUE.

	
TABLE

	
CONSTRAINTS

	
BOOLEAN

	
If TRUE, include all non-referential table constraints in the DDL. If FALSE, omit them. Defaults to TRUE.

	
TABLE

	
REF_CONSTRAINTS

	
BOOLEAN

	
If TRUE, include all referential constraints (foreign keys) in the DDL. If FALSE, omit them. Defaults to TRUE.

	
TABLE

	
CONSTRAINTS_AS_ALTER

	
BOOLEAN

	
If TRUE, include table constraints as separate ALTER TABLE (and, if necessary, CREATE INDEX) statements. If FALSE, specify table constraints as part of the CREATE TABLE statement. Defaults to FALSE. Requires that CONSTRAINTS be TRUE.

	
TABLE

	
OID

	
BOOLEAN

	
If TRUE, include the OID clause for object tables in the DDL. If FALSE, omit it. Defaults to FALSE.

	
TABLE

	
SIZE_BYTE_KEYWORD

	
BOOLEAN

	
If TRUE, include the BYTE keyword as part of the size specification of CHAR and VARCHAR2 columns that use byte semantics. If FALSE, omit the keyword. Defaults to FALSE.

	
TABLE, INDEX

	
PARTITIONING

	
BOOLEAN

	
If TRUE, include partitioning clauses in the DDL. If FALSE, omit them. Defaults to TRUE.

	
INDEX, CONSTRAINT, ROLLBACK_SEGMENT, CLUSTER, TABLESPACE

	
SEGMENT_ATTRIBUTES

	
BOOLEAN

	
If TRUE, include segment attributes clauses (physical attributes, storage attributes, tablespace, logging) in the DDL. If FALSE, omit them. Defaults to TRUE.

	
INDEX, CONSTRAINT, ROLLBACK_SEGMENT, CLUSTER

	
STORAGE

	
BOOLEAN

	
If TRUE, include storage clauses in the DDL. If FALSE, omit them. (Ignored if SEGMENT_ATTRIBUTES is FALSE.) Defaults to TRUE.

	
INDEX, CONSTRAINT, ROLLBACK_SEGMENT, CLUSTER

	
TABLESPACE

	
BOOLEAN

	
If TRUE, include tablespace clauses in the DDL. If FALSE, omit them. (Ignored if SEGMENT_ATTRIBUTES is FALSE.) Defaults to TRUE.

	
TYPE

	
SPECIFICATION

	
BOOLEAN

	
If TRUE, include the type specification in the DDL. If FALSE, omit it. Defaults to TRUE.

	
TYPE

	
BODY

	
BOOLEAN

	
If TRUE, include the type body in the DDL. If FALSE, omit it. Defaults to TRUE.

	
TYPE

	
OID

	
BOOLEAN

	
If TRUE, include the OID clause in the DDL. If FALSE, omit it. Defaults to FALSE.

	
PACKAGE

	
SPECIFICATION

	
BOOLEAN

	
If TRUE, include the package specification in the DDL. If FALSE, omit it. Defaults to TRUE.

	
PACKAGE

	
BODY

	
BOOLEAN

	
If TRUE, include the package body in the DDL. If FALSE, omit it. Defaults to TRUE.

	
VIEW

	
FORCE

	
BOOLEAN

	
If TRUE, use the FORCE keyword in the CREATE VIEW statement. If FALSE, do not use the FORCE keyword in the CREATE VIEW statement. Defaults to TRUE.

	
OUTLINE

	
INSERT

	
BOOLEAN

	
If TRUE, include the INSERT statements into the OL$ dictionary tables that will create the outline and its hints. If FALSE, omit a CREATE OUTLINE statement. Defaults to FALSE.

Note: This object type is being deprecated.

	
All objects

	
DEFAULT

	
BOOLEAN

	
Calling SET_TRANSFORM_PARAM with this parameter set to TRUE has the effect of resetting all parameters for the transform to their default values. Setting this FALSE has no effect. There is no default.

	
All objects

	
INHERIT

	
BOOLEAN

	
If TRUE, inherits session-level parameters. Defaults to FALSE. If an application calls ADD_TRANSFORM to add the DDL transform, then by default the only transform parameters that apply are those explicitly set for that transform handle. This has no effect if the transform handle is the session transform handle.

	
ROLE

	
REVOKE_FROM

	
Text

	
The name of a user from whom the role must be revoked. If this is a non-null string and if the CREATE ROLE statement grants you the role, a REVOKE statement is included in the DDL after the CREATE ROLE statement.

Note: When you issue a CREATE ROLE statement, Oracle may grant you the role. You can use this transform parameter to undo the grant.

Defaults to null string.

	
TABLESPACE

	
REUSE

	
BOOLEAN

	
If TRUE, include the REUSE parameter for datafiles in a tablespace to indicate that existing files can be reused. If FALSE, omit the REUSE parameter.

Defaults to FALSE.

	
CLUSTER, INDEX, ROLLBACK_SEGMENT, TABLE, TABLESPACE

	
PCTSPACE

	
NUMBER

	
A number representing the percentage by which space allocation for the object type is to be modified. The value is the number of one-hundreths of the current allocation. For example, 100 means 100%.

If the object type is TABLESPACE, the following size values are affected:

- in file specifications, the value of SIZE

- MINIMUM EXTENT

- EXTENT MANAGEMENT LOCAL UNIFORM SIZE

For other object types, INITIAL and NEXT are affected.

Table 87-23 describes the object type, name, datatype, and meaning of the parameters for the MODIFY transform in the SET_TRANSFORM_PARAM procedure.

Table 87-23 SET_TRANSFORM_PARAM: Transform Parameters for the MODIFY Transform

	Object Type	Name	Datatype	Meaning
	
All objects

	
OBJECT_ROW

	
NUMBER

	
A number designating the object row for an object. The object in the document that corresponds to this number will be copied to the output document.

This parameter is additive.

By default, all objects are copied to the output document.

Table 87-24 describes the object type, name, datatype, and meaning of the parameters for the MODIFY transform in the SET_REMAP_PARAM procedure.

Table 87-24 SET_REMAP_PARAM: Transform Parameters for the MODIFY Transform

	Object Type	Name	Datatype	Meaning
	
LIBRARY, TABLESPACE, DIRECTORY

	
REMAP_DATAFILE

	
Text

	
Objects in the document will have their filespecs renamed as follows: any filespec matching old_value will be changed to new_value. Filespecs should not be enclosed in quotes.

This parameter is additive.

By default, filespecs are not renamed.

	
Schema Objects, Dependent Objects, Granted Objects, USER

	
REMAP_SCHEMA

	
Text

	
Any schema object in the document whose name matches old_value will have its schema name changed to new_value.

Any dependent object whose base object schema name matches old_value will have its base object schema name changed to new_value.

Any granted object whose grantee name matches old_value will have its grantee name changed to new_value.

Any user whose name matches old_value will have its name changed to new_value.

This parameter is additive.

By default, schemas are not remapped.

	
TABLE, CLUSTER, CONSTRAINT, INDEX, ROLLBACK_SEGMENT, MATERIALIZED_VIEW, MATERIALIZED_VIEW_LOG, TABLESPACE_QUOTA

	
REMAP_TABLESPACE

	
Text

	
Objects in the document will have their tablespaces renamed as follows: any tablespace name matching old_value will be changed to new_value.

This parameter is additive.

By default, tablespaces are not remapped.

	
Named objects and all objects dependent on named objects

	
REMAP_NAME

	
Text

	
Any named object in the document whose name matches old_value will have its name changed to new_value.

Any dependent object whose base object name matches old_value will have its base schema name changed to new_value.

This parameter is additive.

By default, names are not remapped.

(Use REMAP_TABLESPACE to remap the name of a TABLESPACE object.)

Exceptions

	
INVALID_ARGVAL. A NULL or invalid value was supplied for an input parameter. The error message text identifies the parameter.

	
INVALID_OPERATION. Either SET_TRANSFORM_PARAM or SET_REMAP_PARAM was called after the first call to FETCH_xxx for the OPEN context. After the first call to FETCH_xxx is made, no further calls to SET_TRANSFORM_PARAM or SET_REMAP_PARAM are permitted.

	
INCONSISTENT_ARGS. The arguments are inconsistent. This can mean the following:

	
The transform parameter name is not valid for the object type associated with the OPEN context or for the transform associated with the transform handle.

	
The transform applies to all object types in a heterogeneous collection, but object_type is not part of the collection.

Usage Notes

XSLT allows parameters to be passed to stylesheets. You call SET_TRANSFORM_PARAM or SET_REMAP_PARAM to specify the value of a parameter to be passed to the stylesheet identified by transform_handle.

Normally, if you call SET_TRANSFORM_PARAMETER multiple times for the same parameter name, each call overrides the prior call. For example, the following sequence simply sets the STORAGE transform parameter to TRUE.

SET_TRANSFORM_PARAM(tr_handle,'STORAGE',false);
SET_TRANSFORM_PARAM(tr_handle,'STORAGE',true);

However, some transform parameters are additive which means that all specified parameter values are applied to the document, not just the last one. For example, the OBJECT_ROW parameter to the MODIFY transform is additive. If you specify the following, then both specified rows are copied to the output document.

SET_TRANSFORM_PARAM(tr_handle,'OBJECT_ROW',5);
SET_TRANSFORM_PARAM(tr_handle,'OBJECT_ROW',8);

The REMAP_TABLESPACE parameter is also additive. If you specify the following, then tablespaces TBS1 and TBS3 are changed to TBS2 and TBS4, respectively.

SET_REMAP_PARAM(tr_handle,'REMAP_TABLESPACE','TBS1','TBS2');
SET_REMAP_PARAM(tr_handle,'REMAP_TABLESPACE','TBS3','TBS4');

The order in which the transformations are performed is undefined. For example, if you specify the following, the result is undefined.

SET_REMAP_PARAM(tr_handle,'REMAP_TABLESPACE','TBS1','TBS2');
SET_REMAP_PARAM(tr_handle,'REMAP_TABLESPACE','TBS2','TBS3');

	
Note:

The number of remap parameters that can be specified for a MODIFY transform is limited to ten. That is, you can specify up to ten REMAP_DATAFILE parameters, up to ten REMAP_SCHEMA parameters and so on. Additional instances are ignored. To work around this, you can perform another DBMS_METADATA.ADD_TRANSFORM and specify additional remap parameters.

The GET_DDL, GET_DEPENDENT_DDL, and GET_GRANTED_DDL functions allow the casual browser to extract the creation DDL for an object. So that you can specify transform parameters, this package defines an enumerated constant SESSION_TRANSFORM as the handle of the DDL transform at the session level. You can call SET_TRANSFORM_PARAM using DBMS_METADATA.SESSION_TRANSFORM as the transform handle to set transform parameters for the whole session. GET_DDL, GET_DEPENDENT_DDL, and GET GRANTED_DDL inherit these parameters when they invoke the DDL transform.

	
Note:

The enumerated constant must be prefixed with the package name DBMS_METADATA.SESSION_TRANSFORM.

88 DBMS_METADATA_DIFF

The DBMS_METADATA_DIFF package contains the interfaces for comparing two metadata documents in SXML format.

	
See Also:

Oracle Database Utilities for more information and for examples of using the Metadata API

This chapter contains the following topics:

	
Using DBMS_METADATA_DIFF

	
Overview

	
Security Model

	
Browsing APIs for Fetching and Comparing Objects

	
Summary of DBMS_METADATA_DIFF Subprograms

Using DBMS_METADATA_DIFF

This section contains topics which relate to using the DBMS_METADATA_DIFF package.

	
Overview

	
Security Model

Overview

You can use the interfaces contained in the DBMS_METADATA_DIFF package to compare two metadata documents in SXML format. The result of the comparison is an SXML difference document. This document can be converted to other formats using the DBMS_METADATA submit interface and the CONVERT API.

Security Model

The browsing interface of the DBMS_METADATA_DIFF package actually uses the DBMS_METADATA package to fetch the metadata to be compared. Therefore, the security model used for DBMS_METADATA also applies to DBMS_METADATA_DIFF. (Note, however, that DBMS_METADATA_DIFF does not support all object types.)

	
See Also:

DBMS_METADATA for information about the DBMS_METADATA security model

Browsing APIs for Fetching and Comparing Objects

These functions allow you to compare the metadata for two objects with a single call.

Syntax

DBMS_METADATA_DIFF.COMPARE_SXML(
object_type IN VARCHAR2,
name1 IN VARCHAR2,
name2 IN VARCHAR2,
schema1 IN VARCHAR2 DEFAULT NULL,
schema2 IN VARCHAR2 DEFAULT NULL,
network_link1 IN VARCHAR2 DEFAULT NULL,
network_link2 IN VARCHAR2 DEFAULT NULL)
RETURN CLOB;

DBMS_METADATA_DIFF.COMPARE_ALTER(
object_type IN VARCHAR2,
name1 IN VARCHAR2,
name2 IN VARCHAR2,
schema1 IN VARCHAR2 DEFAULT NULL,
schema2 IN VARCHAR2 DEFAULT NULL,
network_link1 IN VARCHAR2 DEFAULT NULL,
network_link2 IN VARCHAR2 DEFAULT NULL)
RETURN CLOB;

DBMS_METADATA_DIFF.COMPARE_ALTER_XML(
object_type IN VARCHAR2,
name1 IN VARCHAR2,
name2 IN VARCHAR2,
schema1 IN VARCHAR2 DEFAULT NULL,
schema2 IN VARCHAR2 DEFAULT NULL,
network_link1 IN VARCHAR2 DEFAULT NULL,
network_link2 IN VARCHAR2 DEFAULT NULL)
RETURN CLOB;

Parameters

Table 88-1 COMPARE_xxx Function Parameters

	Parameters	Description
	
object_type

	
The type of object to be compared. Valid type names are CLUSTER, CONTEXT, DB_LINK, FGA_POLICY, INDEX, MATERIALIZED_VIEW, MATERIALIZED_VIEW_LOG, QUEUE, QUEUE_TABLE, RLS_CONTEXT, RLS_GROUP, RLS_POLICY, ROLE, SEQUENCE, SYNONYM, TABLE, TABLESPACE, TRIGGER, TYPE, TYPE_SPEC, TYPE_BODY, USER, and VIEW.

	
name1

	
The name of the first object in the comparison.

	
name2

	
The name of the second object in the comparison.

	
schema1

	
The schema of the first object in the comparison. The default is the current user.

	
schema2

	
The schema of the second object in the comparison. The default is the value of schema1.

	
network_link1

	
The name of a database link to the database on which the first object resides. If NULL (the default), then the object is assumed to be in the database on which the caller is running.

	
network_link2

	
The name of a database link to the database on which the second object resides. The default is the value of network_link1.

Return Values

DBMS_METADATA_DIFF.COMPARE_xxx returns the differences between two objects.

Exceptions

	
INVALID_ARGVAL

A NULL or invalid value was supplied for an input parameter. The error message text identifies the parameter.

	
OBJECT_NOT_FOUND

The specified object was not found in the database.

Usage Notes

These functions encapsulate calls to both DBMS_METADATA and DBMS_METADATA_DIFF functions and procedures to fetch the metadata for each of the two objects and compare them.

Which function you use depends on the comparison format you want:

	
COMPARE_SXML returns an SXML difference document.

	
COMPARE_ALTER returns a set of ALTER statements for making the first object like the second object.

	
COMPARE_ALTER_XML returns an ALTER_XML document.

Summary of DBMS_METADATA_DIFF Subprograms

The DBMS_METADATA_DIFF subprograms are used to:

	
Specify the type of objects to be compared

	
Specify the SXML documents to be compared

	
Show the differences between the compared documents

	
Clean up after the comparison

Table 88-2 provides a summary of DBMS_METADATA_DIFF subprograms.

Table 88-2 DBMS_METADATA_DIFF Package Subprograms

	Subprogram	Description
	
OPENC Function

	
Specifies the type of objects to be compared

	
ADD_DOCUMENT Procedure

	
Specifies an SXML document to be compared

	
FETCH_CLOB Functions and Procedures

	
Returns a CLOB showing the differences between the two documents specified by ADD_DOCUMENT

	
CLOSE Procedure

	
Invalidates the handle returned by OPENC and cleans up associated state

OPENC Function

This function specifies the type of objects to be compared. The return value is an opaque context handle.

Syntax

DBMS_METADATA_DIFF.OPENC (
object_type IN VARCHAR2)
RETURN NUMBER;

Parameters

Table 88-3 OPENC Function Parameters

	Parameters	Description
	
object_type

	
The type of object to be compared. Valid type names are CLUSTER, CONTEXT, DB_LINK, FGA_POLICY, INDEX, MATERIALIZED_VIEW, MATERIALIZED_VIEW_LOG, QUEUE, QUEUE_TABLE, RLS_CONTEXT, RLS_GROUP, RLS_POLICY, ROLE, SEQUENCE, SYNONYM, TABLE, TABLESPACE, TRIGGER, TYPE, TYPE_SPEC, TYPE_BODY, USER, and VIEW.

Return Values

The opaque handle that is returned is used as input to ADD_DOCUMENT, FETCH_xxx and CLOSE.

Exceptions

	
INVALID_ARGVAL

A NULL or invalid value was supplied for an input parameter. The error message text identifies the parameter.

ADD_DOCUMENT Procedure

This procedure specifies an SXML document to be compared.

Syntax

DBMS_METADATA_DIFF.ADD_DOCUMENT(
handle IN NUMBER, document IN sys.XMLType);

DBMS_METADATA_DIFF.ADD_DOCUMENT(
handle IN NUMBER, document IN CLOB);

Parameters

Table 88-4 CLOSE Procedure Parameters

	Parameter	Description
	
handle

	
The handle returned from OPENC

	
document

	
A document to be compared. The document must be of the type specified in OPENC.

Usage Notes

Because the comparison interface allows you to compare exactly two SXML documents, a program must call ADD_DOCUMENT exactly twice for each OPENC handle. In the comparison result, the document specified by the first call is document 1, and the document specified by the second call is document 2.

Exceptions

	
INVALID_ARGVAL

A NULL or invalid value was supplied for an input parameter. The error message text identifies the parameter.

FETCH_CLOB Functions and Procedures

The FETCH_CLOB functions and procedures return a CLOB showing the differences between the two documents specified by ADD_DOCUMENT.

Syntax

DBMS_METADATA_DIFF.FETCH_CLOB(
handle IN NUMBER)
RETURN CLOB;

DBMS_METADATA_DIFF.FETCH_CLOB(

handle IN NUMBER,
doc IN OUT NOCOPY CLOB);

DBMS_METADATA_DIFF.FETCH_CLOB(
handle IN NUMBER,
doc IN OUT NOCOPY CLOB
diffs OUT BOOLEAN);

Parameters

Table 88-5 CONVERT Subprogram Parameters

	Parameter	Description
	
handle

	
The handle returned from OPENC.

	
doc

	
A CLOB containing the differences between documents 1 and 2.

	
diffs

	
TRUE if the documents are different or FALSE if they are identical.

Return Values

The differences between documents 1 and 2.

Exceptions

	
INVALID_ARGVAL

A NULL or invalid value was supplied for an input parameter. The error message text identifies the parameter.

CLOSE Procedure

This procedure invalidates the handle returned by OPENC and cleans up associated state.

Syntax

DBMS_METADATA_DIFF.CLOSE(
handle IN NUMBER);

Parameters

Table 88-6 FETCH_xxx Function Parameters

	Parameters	Description
	
handle

	
The handle returned from OPENC

Exceptions

	
INVALID_ARGVAL

A NULL or invalid value was supplied for an input parameter. The error message text identifies the parameter.

[bookmark: CHDBHGCI][bookmark: ARPLS283]
89 DBMS_MGD_ID_UTL

The DBMS_MGD_ID_UTL package[bookmark: sthref5767][bookmark: sthref5768] contains various functions and procedures that comprise the following utility subprograms:

	
A logging utility that sets and gets Java and PL/SQL logging levels.

	
A proxy utility consisting of two procedures used to set and unset the host and port of the proxy server.

	
A metadata utility consisting of functions and procedures used for managing metadata.

	
See Also:

Oracle Database Advanced Application Developer's Guide for more information.

This chapter describes each of these utility subprograms and contains the following topics:

	
Using DBMS_MGD_ID_UTL

	
Security Model

	
Constants

	
Exceptions

	
Summary of DBMS_MGD_ID_UTL Subprograms

The examples in this chapter assume that the user has run the following set of commands before running the contents of each script:

SQL> connect / as sysdba;
Connected.
SQL> create user mgduser identified by password;
SQL> grant connect, resource to mgduser;
SQL> connect mgduser
Enter password: mgduserpassword
Connected.
SQL> set serveroutput on;

[bookmark: BABHFFFJ][bookmark: ARPLS66927]

Using DBMS_MGD_ID_UTL

	
Security Model

	
Constants

	
Exceptions

[bookmark: CIHGIHIA][bookmark: ARPLS73296]

Security Model

You must run the catmgd.sql script to load the DBMS_MGD_ID_UTL package and Identity Code Package schema objects in the MGDSYS schema.

DBMS_MGD_ID_UTL is a MGDSYS-owned package. Any DBMS_MGD_ID_UTL subprogram called from an anonymous PL/SQL block is run using the privileges of the current user.

A user must be granted connect and resource roles to use the DBMS_MGD_ID_UTL package and its subprograms.

EXECUTE privilege is granted to PUBLIC for these ADTs: MGD_ID, MGD_ID_COMPONENT, MGD_ID_COMPONENT_VARRAY, and for this package DBMS_MGD_ID_UTL.

SELECT privilege is granted to PUBLIC for these read-only views: MGD_ID_CATEGORY and MGD_ID_SCHEME and for these metadata views: USER_MGD_ID_CATEGORY and USER_MGD_ID_SCHEME, and for table MGD_ID_XML_VALIDATOR, and for sequence MGD$SEQUENCE_CATEGORY.

INSERT, UPDATE and DELETE privilege is granted to PUBLIC for these metadata views: USER_MGD_ID_CATEGORY and USER_MGD_ID_SCHEME.

Public synonyms, by the same name, are created for these ADTs: MGD_ID, MGD_ID_COMPONENT, MGD_ID_COMPONENT_VARRAY and for this package DBMS_MGD_ID_UTL, as well as for these read-only views: MGD_ID_CATEGORY and MGD_ID_SCHEME and for these metadata views: USER_MGD_ID_CATEGORY and USER_MGD_ID_SCHEME, and for table MGD_ID_XML_VALIDATOR.

[bookmark: CACIJGIE][bookmark: ARPLS66928]

Constants

DBMS_MGD_ID_UTL uses the constants shown in Table 89-1.

[bookmark: ARPLS66929][bookmark: sthref5769][bookmark: CACJIEGD]
Table 89-1 DBMS_MGD_ID_UTL Constants

	Name
	Value

	
Installed Category IDs and Names

	

	
EPC_ENCODING_CATEGORY_ID

	
1

	
EPC_ENCODING_CATEGORY_NAME

	
EPC

	

	

	
Logging Levels

	

	
LOGGING_LEVEL_OFF

	
0

	
LOGGING_LEVEL_SEVERE

	
1

	
LOGGING_LEVEL_WARNING

	
2

	
LOGGING_LEVEL_INFO

	
3

	
LOGGING_LEVEL_FINE

	
4

	
LOGGING_LEVEL_FINER

	
5

	
LOGGING_LEVEL_FINEST

	
6

	
LOGGING_LEVEL_ALL

	
7

[bookmark: BABHBGHE][bookmark: ARPLS66930]

Exceptions

Table 89-2 lists the DBMS_MGD_ID_UTL exceptions.

[bookmark: ARPLS66931][bookmark: sthref5770][bookmark: BABDHCJJ]
Table 89-2 Exceptions Raised by DBMS_MGD_ID_UTL Package

	Name
	Error Code
	Description

	
TDTJavaException

	
-55200

	
During the tag data translation, a Java exception was raised.

	
TDTCategoryNotFound

	
-55201

	
The specified category was not found.

	
TDTSchemeNotFound

	
-55202

	
During the tag data translation, the specified scheme was not found.

	
TDTLevelNotFound

	
-55203

	
During the tag data translation, the specified level was not found.

	
TDTOptionNotFound

	
-55204

	
During the tag data translation, the specified option was not found.

	
TDTFieldValidationException

	
-55205

	
During the tag data translation, the validation operation failed on a field.

	
TDTUndefinedField

	
-55206

	
During the tag data translation, an undefined field was detected.

	
TDTRuleEvaluationFailed

	
-55207

	
During the tag data translation, the rule evaluation operation failed.

	
TDTTooManyMatchingLevels

	
-55208

	
During the tag data translation, too many matching levels were found.

[bookmark: BABFIIII][bookmark: ARPLS66932]

Summary of DBMS_MGD_ID_UTL Subprograms

Table 89-3 describes the utility subprograms in the DBMS_MGD_ID_UTL package.

All the values and names passed to the procedures defined in the DBMS_MGD_ID_UTL package are case insensitive unless otherwise mentioned. To preserve the case, enclose the values with double quotation marks.

[bookmark: ARPLS66933][bookmark: sthref5771][bookmark: CACHGFGD]
Table 89-3 DBMS_MGD_ID_UTL Package Subprograms

	Subprogram
	Description

	
ADD_SCHEME Procedure

	
Adds a tag data translation scheme to an existing category

	
CREATE_CATEGORY Function

	
Creates a new category or a new version of a category

	
EPC_TO_ORACLE_SCHEME Function

	
Converts the EPCglobal tag data translation (TDT) XML to Oracle tag data translation XML

	
GET_CATEGORY_ID Function

	
Returns the category ID given the category name and the category version

	
GET_COMPONENTS Function

	
Returns all relevant separated component names separated by semicolon (';') for the specified scheme

	
GET_ENCODINGS Function

	
Returns a list of semicolon (';') separated encodings (formats) for the specified scheme

	
GET_JAVA_LOGGING_LEVEL Function

	
Returns an integer representing the current Java trace logging level

	
GET_PLSQL_LOGGING_LEVEL Function

	
Returns an integer representing the current PL/SQL trace logging level

	
GET_SCHEME_NAMES Function

	
Returns a list of semicolon (';') separated scheme names for the specified category

	
GET_TDT_XML Function

	
Returns the Oracle tag data translation XML for the specified scheme

	
GET_VALIDATOR Function

	
Returns the Oracle Database tag data translation schema

	
REFRESH_CATEGORY Function

	
Refreshes the metadata information on the Java stack for the specified category

	
REMOVE_CATEGORY Procedure

	
Removes a category including all the related TDT XML if the value of category_version parameter is NULL

	
REMOVE_PROXY Procedure

	
Unsets the host and port of the proxy server

	
REMOVE_SCHEME Procedure

	
Removes a tag data translation scheme from a category

	
SET_JAVA_LOGGING_LEVEL Procedure

	
Sets the Java logging level

	
SET_PLSQL_LOGGING_LEVEL Procedure

	
Sets the PL/SQL tracing logging level

	
SET_PROXY Procedure

	
Sets the host and port of the proxy server for Internet access

	
VALIDATE_SCHEME Function

	
Validates the input tag data translation XML against the Oracle tag data translation schema

[bookmark: CACIEGFA][bookmark: ARPLS420]

[bookmark: sthref5772][bookmark: sthref5773]ADD_SCHEME Procedure

This procedure adds a tag data translation scheme to an existing category.

[bookmark: sthref5774]
Syntax

procedure DBMS_MGD_ID_UTL.ADD_SCHEME (
 category_id IN VARCHAR2,
 tdt_xml IN CLOB);

[bookmark: sthref5775]
Parameters

[bookmark: ARPLS66934][bookmark: sthref5776][bookmark: sthref5777]
Table 89-4 ADD_SCHEME Procedure Parameters

	Parameter
	Description

	
category_id

	
Category ID

	
tdt_xml

	
Tag data translation XML

[bookmark: sthref5778]
Usage Notes

None.

[bookmark: sthref5779]
Examples

This example performs the following actions:

	
Creates a category.

	
Adds a contractor scheme and an employee scheme to the MGD_SAMPLE_CATEGORY category.

	
Validates the MGD_SAMPLE_CATEGORY scheme.

	
Tests the tag translation of the contractor scheme and the employee scheme.

	
Removes the contractor scheme.

	
Tests the tag translation of the contractor scheme and this returns the expected exception for the removed contractor scheme.

	
Tests the tag translation of the employee scheme and this returns the expected values.

	
Removes the MGD_SAMPLE_CATEGORY category.

--contents of add_scheme2.sql
SET LINESIZE 160

---CREATE CATEGORY, ADD_SCHEME, REMOVE_SCHEME, REMOVE_CATEGORY-------

DECLARE
 amt NUMBER;
 buf VARCHAR2(32767);
 pos NUMBER;
 tdt_xml CLOB;
 validate_tdtxml VARCHAR2(1042);
 category_id VARCHAR2(256);
BEGIN
 -- remove the testing category if already existed
 DBMS_MGD_ID_UTL.remove_category('MGD_SAMPLE_CATEGORY', '1.0');
 -- Step 1. Create the testing category 'MGD_SAMPLE_CATEGORY', version 1.0.
 category_id := DBMS_MGD_ID_UTL.CREATE_CATEGORY('MGD_SAMPLE_CATEGORY', '1.0', 'Oracle',
'http://www.oracle.com/mgd/sample');
 -- Step 2. Add contractor scheme to the category.
 DBMS_LOB.CREATETEMPORARY(tdt_xml, true);
 DBMS_LOB.OPEN(tdt_xml, DBMS_LOB.LOB_READWRITE);

 buf := '<?xml version="1.0" encoding="UTF-8"?>
<TagDataTranslation version="0.04" date="2005-04-18T16:05:00Z"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema"
 xmlns="oracle.mgd.idcode">
 <scheme name="CONTRACTOR_TAG" optionKey="1" xmlns="">
 <level type="URI" prefixMatch="example.contractor.">
 <option optionKey="1" pattern="example.contractor.([0-9]*).([0-9]*)"
 grammar="''example.contractor.'' contractorID ''.'' divisionID">
 <field seq="1" characterSet="[0-9]*" name="contractorID"/>
 <field seq="2" characterSet="[0-9]*" name="divisionID"/>
 </option>
 </level>
 <level type="BINARY" prefixMatch="11">
 <option optionKey="1" pattern="11([01]{7})([01]{6})"
 grammar="''11'' contractorID divisionID ">
 <field seq="1" characterSet="[01]*" name="contractorID"/>
 <field seq="2" characterSet="[01]*" name="divisionID"/>
 </option>
 </level>
 </scheme>
</TagDataTranslation>';

 amt := length(buf);
 pos := 1;
 DBMS_LOB.WRITE(tdt_xml, amt, pos, buf);
 DBMS_LOB.CLOSE(tdt_xml);

 DBMS_MGD_ID_UTL.ADD_SCHEME(category_id, tdt_xml);

 -- Add the employee scheme to the category.
 DBMS_LOB.CREATETEMPORARY(tdt_xml, true);
 DBMS_LOB.OPEN(tdt_xml, DBMS_LOB.LOB_READWRITE);

 buf := '<?xml version="1.0" encoding="UTF-8"?>
<TagDataTranslation version="0.04" date="2005-04-18T16:05:00Z"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema"
 xmlns="oracle.mgd.idcode">
 <scheme name="EMPLOYEE_TAG" optionKey="1" xmlns="">
 <level type="URI" prefixMatch="example.employee.">
 <option optionKey="1" pattern="example.employee.([0-9]*).([0-9]*)"
 grammar="''example.employee.'' employeeID ''.'' divisionID">
 <field seq="1" characterSet="[0-9]*" name="employeeID"/>
 <field seq="2" characterSet="[0-9]*" name="divisionID"/>
 </option>
 </level>
 <level type="BINARY" prefixMatch="01">
 <option optionKey="1" pattern="01([01]{7})([01]{6})"
 grammar="''01'' employeeID divisionID ">
 <field seq="1" characterSet="[01]*" name="employeeID"/>
 <field seq="2" characterSet="[01]*" name="divisionID"/>
 </option>
 </level>
 </scheme>
</TagDataTranslation>';

 amt := length(buf);
 pos := 1;
 DBMS_LOB.WRITE(tdt_xml, amt, pos, buf);
 DBMS_LOB.CLOSE(tdt_xml);
 DBMS_MGD_ID_UTL.ADD_SCHEME(category_id, tdt_xml);

 -- Step 3. Validate the scheme.
 dbms_output.put_line('Validate the MGD_SAMPLE_CATEGORY Scheme');
 validate_tdtxml := DBMS_MGD_ID_UTL.validate_scheme(tdt_xml);
 dbms_output.put_line(validate_tdtxml);
 dbms_output.put_line('Length of scheme xml is: '||DBMS_LOB.GETLENGTH(tdt_xml));

 -- Step 4. Test tag translation of contractor scheme.
 dbms_output.put_line(
 mgd_id.translate('MGD_SAMPLE_CATEGORY', NULL,
 'example.contractor.123.45',
 NULL, 'BINARY'));

 dbms_output.put_line(
 mgd_id.translate('MGD_SAMPLE_CATEGORY', NULL,
 '111111011101101',
 NULL, 'URI'));

 -- Test tag translation of employee scheme.
 dbms_output.put_line(
 mgd_id.translate('MGD_SAMPLE_CATEGORY', NULL,
 'example.employee.123.45',
 NULL, 'BINARY'));

 dbms_output.put_line(
 mgd_id.translate('MGD_SAMPLE_CATEGORY', NULL,
 '011111011101101',
 NULL, 'URI'));

 DBMS_MGD_ID_UTL.REMOVE_SCHEME(category_id, 'CONTRACTOR_TAG');

 -- Step 6. Test tag translation of contractor scheme. Doesn't work any more.
 BEGIN
 dbms_output.put_line(
 mgd_id.translate('MGD_SAMPLE_CATEGORY', NULL,
 'example.contractor.123.45',
 NULL, 'BINARY'));

 dbms_output.put_line(
 mgd_id.translate('MGD_SAMPLE_CATEGORY', NULL,
 '111111011101101',
 NULL, 'URI'));
 EXCEPTION
 WHEN others THEN
 dbms_output.put_line('Contractor tag translation failed: '||SQLERRM);
 END;

 -- Step 7. Test tag translation of employee scheme. Still works.
 BEGIN
 dbms_output.put_line(
 mgd_id.translate('MGD_SAMPLE_CATEGORY', NULL,
 'example.employee.123.45',
 NULL, 'BINARY'));
 dbms_output.put_line(
 mgd_id.translate('MGD_SAMPLE_CATEGORY', NULL,
 '011111011101101',
 NULL, 'URI'));
 EXCEPTION
 WHEN others THEN
 dbms_output.put_line('Employee tag translation failed: '||SQLERRM);
 END;

 -- Step 8. Remove the testing category, which also removes all the associated schemes
 DBMS_MGD_ID_UTL.remove_category('MGD_SAMPLE_CATEGORY', '1.0');
END;
/
SHOW ERRORS;

SQL> @add_scheme3.sql
.
.
.
Validate the MGD_SAMPLE_CATEGORY Scheme
EMPLOYEE_TAG;URI,BINARY;divisionID,employeeID
Length of scheme xml is: 933
111111011101101
example.contractor.123.45
011111011101101
example.employee.123.45
Contractor tag translation failed: ORA-55203: Tag data translation level not found
ORA-06512: at "MGDSYS.DBMS_MGD_ID_UTL", line 54
ORA-06512: at "MGDSYS.MGD_ID", line 242
ORA-29532: Java call terminated by uncaught Java
exception: oracle.mgd.idcode.exceptions.TDTLevelNotFound: Matching level not
found for any configured scheme
011111011101101
example.employee.123.45
.
.
.

[bookmark: CACBICJJ][bookmark: ARPLS421]

[bookmark: sthref5780][bookmark: sthref5781]CREATE_CATEGORY Function

This function creates a new category or a new version of a category.

[bookmark: sthref5782]
Syntax

function DBMS_MGD_ID_UTL.CREATE_CATEGORY (
 category_name IN VARCHAR2,
 category_version IN VARCHAR2,
 agency IN VARCHAR2,
 URI IN VARCHAR2)
RETURN VARCHAR2;

[bookmark: sthref5783]
Parameters

[bookmark: ARPLS66935][bookmark: sthref5784][bookmark: sthref5785]
Table 89-5 CREATE_CATEGORY Function Parameters

	Parameter
	Description

	
category_name

	
Name of category

	
category_version

	
Category version

	
agency

	
Organization that owns the category. For example, EPCglobal owns the category EPC.

	
URI

	
URI that provides additional information about the category

[bookmark: sthref5786]
Usage Notes

The return value is the category ID.

[bookmark: sthref5787]
Examples

See the ADD_SCHEME Procedure for an example of creating the MGD_SAMPLE_CATEGORY category.

[bookmark: CIHCEJEH][bookmark: ARPLS422]

[bookmark: sthref5788][bookmark: sthref5789]EPC_TO_ORACLE_SCHEME Function

This function converts the EPCglobal tag data translation (TDT) XML to Oracle Database tag data translation XML.

[bookmark: sthref5790]
Syntax

function DBMS_MGD_ID_UTL.EPC_TO_ORACLE_SCHEME (
 xml_scheme IN CLOB)
RETURN CLOB;

[bookmark: sthref5791]
Parameters

[bookmark: ARPLS66936][bookmark: sthref5792][bookmark: sthref5793]
Table 89-6 EPC_TO_ORACLE_SCHEME Function Parameters

	Parameter
	Description

	
xml_scheme

	
Name of EPC tag scheme to be converted

[bookmark: sthref5794]
Usage Notes

The return value is the contents of the CLOB containing the Oracle Datanase tag data translation XML.

[bookmark: sthref5795]
Examples

The following example converts standard EPCglobal Tag Data Translation (TDT) files into Oracle Database TDT files:

--Contents of MGD_ID_DOC2.sql

-- EPC_TO_ORACLE_SCHEME --

call DBMS_MGD_ID_UTL.set_proxy('www-proxy.us.oracle.com', '80');

BEGIN
 DBMS_JAVA.set_output(1000000);
 DBMS_OUTPUT.ENABLE(1000000);
 DBMS_MGD_ID_UTL.set_java_logging_level(DBMS_MGD_ID_UTL.LOGGING_LEVEL_SEVERE);
END;
/

DECLARE
 epcScheme CLOB;
 oracleScheme CLOB;
 amt NUMBER;
 buf VARCHAR2(32767);
 pos NUMBER;
 seq BINARY_INTEGER;
 validate_epcscheme VARCHAR2(256);
 validate_oraclescheme VARCHAR2(256);
BEGIN

 DBMS_LOB.CREATETEMPORARY(epcScheme, true);
 DBMS_LOB.OPEN(epcScheme, DBMS_LOB.LOB_READWRITE);

 buf := '<?xml version="1.0" encoding="UTF-8"?>
<epcTagDataTranslation version="0.04" date="2005-04-18T16:05:00Z"
 epcTDSVersion="1.1r1.27"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema"
 xsi:noNamespaceSchemaLocation="EpcTagDataTranslation.xsd">
 <scheme name="GID-96" optionKey="1" tagLength="96">
 <level type="BINARY" prefixMatch="00110101"
 requiredFormattingParameters="taglength">
 <option optionKey="1" pattern="00110101([01]{28})([01]{24})([01]{36})"
 grammar="''00110101'' generalmanager objectclass serial">
 <field seq="1" decimalMinimum="0" decimalMaximum="268435455"
 characterSet="[01]*" bitLength="28" name="generalmanager"/>
 <field seq="2" decimalMinimum="0" decimalMaximum="16777215"
 characterSet="[01]*" bitLength="24" name="objectclass"/>
 <field seq="3" decimalMinimum="0" decimalMaximum="68719476735"
 characterSet="[01]*" bitLength="36" name="serial"/>
 </option>
 </level>
 <level type="TAG_ENCODING" prefixMatch="urn:epc:tag:gid-96"
 requiredFormattingParameters="taglength">
 <option optionKey="1"
 pattern="urn:epc:tag:gid-96:([0-9]*)\.([0-9]*)\.([0-9]*)"
 grammar="''urn:epc:tag:gid-96:'' generalmanager ''.'' objectclass ''.'' serial">
 <field seq="1" decimalMinimum="0" decimalMaximum="268435455"
 characterSet="[0-9]*" name="generalmanager"/>
 <field seq="2" decimalMinimum="0" decimalMaximum="16777215"
 characterSet="[0-9]*" name="objectclass"/>
 <field seq="3" decimalMinimum="0" decimalMaximum="68719476735"
 characterSet="[0-9]*" name="serial"/>
 </option>
 </level>
 <level type="PURE_IDENTITY" prefixMatch="urn:epc:id:gid">
 <option optionKey="1"
 pattern="urn:epc:id:gid:([0-9]*)\.([0-9]*)\.([0-9]*)"
 grammar="''urn:epc:id:gid:'' generalmanager ''.'' objectclass ''.'' serial">
 <field seq="1" decimalMinimum="0" decimalMaximum="268435455"
 characterSet="[0-9]*" name="generalmanager"/>
 <field seq="2" decimalMinimum="0" decimalMaximum="16777215"
 characterSet="[0-9]*" name="objectclass"/>
 <field seq="3" decimalMinimum="0" decimalMaximum="68719476735"
 characterSet="[0-9]*" name="serial"/>
 </option>
 </level>
 <level type="LEGACY" prefixMatch="generalmanager=">
 <option optionKey="1"
 pattern="generalmanager=([0-9]*);objectclass=([0-9]*);serial=([0-9]*)"
 grammar="''generalmanager=''generalmanager'';objectclass=''objectclass '';serial='' serial">
 <field seq="1" decimalMinimum="0" decimalMaximum="268435455"
 characterSet="[0-9]*" name="generalmanager"/>
 <field seq="2" decimalMinimum="0" decimalMaximum="16777215"
 characterSet="[0-9]*" name="objectclass"/>
 <field seq="3" decimalMinimum="0" decimalMaximum="68719476735"
 characterSet="[0-9]*" name="serial"/>
 </option>
 </level>
 </scheme>
</epcTagDataTranslation>';
 amt := length(buf);
 pos := 1;
 DBMS_LOB.WRITE(epcScheme, amt, pos, buf);
 DBMS_LOB.CLOSE(epcScheme);
 oracleScheme := DBMS_MGD_ID_UTL.epc_to_oracle_scheme(epcScheme);
 dbms_output.put_line('Length of oracle scheme xml is: '||DBMS_LOB.GETLENGTH(oracleScheme));
 dbms_output.put_line(DBMS_LOB.SUBSTR(oracleScheme, DBMS_LOB.GETLENGTH(oracleScheme), 1));
 dbms_output.put_line(' ');
 dbms_output.put_line('Validate the Oracle Scheme');
 validate_oraclescheme := DBMS_MGD_ID_UTL.validate_scheme(oracleScheme);
 dbms_output.put_line('Validation result: '||validate_oraclescheme);
END;
/
SHOW ERRORS;

SQL> @mgd_id_doc2.sql
PL/SQL procedure successfully completed.

Length of oracle scheme xml is: 2475
<?xml version = '1.0' encoding = 'UTF-8'?>
<TagDataTranslation version="0.04"
date="2005-04-18T16:05:00Z" xmlns:xsi="http://www.w3.org/2001/XMLSchema"
xmlns="oracle.mgd.idcode"><scheme name="GID-96" optionKey="1" xmlns=""><level
type="BINARY" prefixMatch="00110101" requiredFormattingParameters=""><option
optionKey="1" pattern="00110101([01]{28})([01]{24})([01]{36})"
grammar="'00110101' generalmanager objectclass serial"><field seq="1"
decimalMinimum="0" decimalMaximum="268435455" characterSet="[01]*"
bitLength="28" name="generalmanager"/><field seq="2" decimalMinimum="0"
decimalMaximum="16777215" characterSet="[01]*" bitLength="24"
name="objectclass"/><field seq="3" decimalMinimum="0"
decimalMaximum="68719476735" characterSet="[01]*" bitLength="36"
name="serial"/></option></level><level type="TAG_ENCODING"
prefixMatch="urn:epc:tag:gid-96" requiredFormattingParameters=""><option
optionKey="1" pattern="urn:epc:tag:gid-96:([0-9]*)\.([0-9]*)\.([0-9]*)"
grammar="'urn:epc:tag:gid-96:' generalmanager '.' objectclass '.' serial"><field
seq="1" decimalMinimum="0" decimalMaximum="268435455" characterSet="[0-9]*"
name="generalmanager"/><field seq="2" decimalMinimum="0"
decimalMaximum="16777215" characterSet="[0-9]*" name="objectclass"/><field
seq="3" decimalMinimum="0" decimalMaximum="68719476735" characterSet="[0-9]*"
name="serial"/></option></level><level type="PURE_IDENTITY"
prefixMatch="urn:epc:id:gid"><option optionKey="1"
pattern="urn:epc:id:gid:([0-9]*)\.([0-9]*)\.([0-9]*)" grammar="'urn:epc:id:gid:'
generalmanager '.' objectclass '.' serial"><field seq="1" decimalMinimum="0"
decimalMaximum="268435455" characterSet="[0-9]*" name="generalmanager"/><field
seq="2" decimalMinimum="0" decimalMaximum="16777215" characterSet="[0-9]*"
name="objectclass"/><field seq="3" decimalMinimum="0"
decimalMaximum="68719476735" characterSet="[0-9]*"
name="serial"/></option></level><level type="LEGACY"
prefixMatch="generalmanager="><option optionKey="1"
pattern="generalmanager=([0-9]*);objectclass=([0-9]*);serial=([0-9]*)"
grammar="'generalmanager='generalmanager';objectclass='objectclass ';serial='
serial"><field seq="1" decimalMinimum="0" decimalMaximum="268435455"
characterSet="[0-9]*" name="generalmanager"/><field seq="2" decimalMinimum="0"
decimalMaximum="16777215" characterSet="[0-9]*" name="objectclass"/><field
seq="3" decimalMinimum="0" decimalMaximum="68719476735" characterSet="[0-9]*"
name="serial"/></option></level></scheme></TagDataTranslation>
Validate the Oracle Scheme
Validation result:
GID-96;LEGACY,TAG_ENCODING,PURE_IDENTITY,BINARY;objectclass,generalmanager,serial,

PL/SQL procedure successfully completed.
.
.
.

[bookmark: CHEDHCEC][bookmark: ARPLS423]

[bookmark: sthref5796][bookmark: sthref5797]GET_CATEGORY_ID Function

This function returns the category ID for a given category name and category version.

[bookmark: sthref5798]
Syntax

function DBMS_MGD_ID_UTL.GET_CATEGORY_ID (
 category name IN VARCHAR2,
 category_version IN VARCHAR2)
RETURN VARCHAR2;

[bookmark: sthref5799]
Parameters

[bookmark: ARPLS66937][bookmark: sthref5800][bookmark: sthref5801]
Table 89-7 GET_CATEGORY_ID Function Parameters

	Parameter
	Description

	
category_name

	
Name of category

	
category_version

	
Category version

[bookmark: sthref5802]
Usage Notes

	
If the value of category_version is NULL, then the ID of the latest version of the specified category is returned.

	
The return value is the category ID for the specified category name.

[bookmark: sthref5803]
Examples

The following example returns a category ID given a category name and its version:

-- Contents of get_category1.sql file
SELECT DBMS_MGD_ID_UTL.get_category_id('EPC', NULL) FROM DUAL;

SQL> @get_category1.sql
.
.
.
DBMS_MGD_ID_UTL.GET_CATEGORY_ID('EPC',NULL)--1
.
.
.

[bookmark: CACICHDJ][bookmark: ARPLS424]

[bookmark: sthref5804][bookmark: sthref5805]GET_COMPONENTS Function

This function returns all relevant separated component names separated by semicolon (;) for the specified scheme.

[bookmark: sthref5806]
Syntax

function DBMS_MGD_ID_UTL.GET_COMPONENTS (
 category_id IN VARCHAR2,
 scheme_name IN VARCHAR2)
RETURN VARCHAR2;

[bookmark: sthref5807]
Parameters

[bookmark: ARPLS66938][bookmark: sthref5808][bookmark: sthref5809]
Table 89-8 GET_COMPONENTS Function Parameters

	Parameter
	Description

	
category_id

	
Category ID

	
scheme_name

	
Name of scheme

[bookmark: sthref5810]
Usage Notes

The return value contains the component names separated by a semicolon (;) for the specified scheme.

[bookmark: sthref5811]
Examples

The following example gets the components:

--Contents of get_components.sql
DECLARE
 id mgd_id;
 getcomps VARCHAR2(1000);
 getencodings VARCHAR2(1000);
 getschemenames VARCHAR2(1000);
BEGIN
 DBMS_MGD_ID_UTL.set_java_logging_level(DBMS_MGD_ID_UTL.LOGGING_LEVEL_OFF);
 DBMS_MGD_ID_UTL.refresh_category(DBMS_MGD_ID_UTL.get_category_id('EPC', NULL));
 getcomps := DBMS_MGD_ID_UTL.get_components(1,'SGTIN-64');
 dbms_output.put_line('Component names are: ' || getcomps);
 getencodings := DBMS_MGD_ID_UTL.get_encodings(1,'SGTIN-64');
 dbms_output.put_line('Encodings are: ' || getencodings);
 getschemenames := DBMS_MGD_ID_UTL.get_scheme_names(1);
 dbms_output.put_line('Scheme names are: ' || getschemenames);
END;
/
SHOW ERRORS;

SQL> @get_components.sql
.
.
.
Component names are:
filter,gtin,companyprefixlength,companyprefix,companyprefixindex,itemref,serial
Encodings are: ONS_HOSTNAME,LEGACY,TAG_ENCODING,PURE_IDENTITY,BINARY
Scheme names are:
GIAI-64,GIAI-96,GID-96,GRAI-64,GRAI-96,SGLN-64,SGLN-96,SGTIN-64,SGTIN-96,SSCC-64
,SSCC-96,USDOD-64,USDOD-96
PL/SQL procedure successfully completed.
.
.
.

[bookmark: CACDFBFG][bookmark: ARPLS425]

[bookmark: sthref5812][bookmark: sthref5813]GET_ENCODINGS Function

This function returns a list of semicolon (;) separated encodings (formats) for the specified scheme.

[bookmark: sthref5814]
Syntax

function DBMS_MGD_ID_UTL.GET_ENCODINGS (
 category_id IN VARCHAR2,
 scheme_name IN VARCHAR2)
RETURN VARCHAR2;

[bookmark: sthref5815]
Parameters

[bookmark: ARPLS66939][bookmark: sthref5816][bookmark: sthref5817]
Table 89-9 GET_ENCODINGS Function Parameters

	Parameter
	Description

	
category_id

	
Category ID

	
scheme_name

	
Name of scheme

[bookmark: sthref5818]
Usage Notes

The return value contains the encodings separated by a semicolon (;) for the specified scheme.

[bookmark: sthref5819]
Examples

See the GET_COMPONENTS Function for an example.

[bookmark: CACHGFBC][bookmark: ARPLS426]

[bookmark: sthref5820][bookmark: sthref5821]GET_JAVA_LOGGING_LEVEL Function

This function returns an integer representing the current trace logging level.

[bookmark: sthref5822]
Syntax

function DBMS_MGD_ID_UTL.GET_JAVA_LOGGING_LEVEL
RETURN INTEGER;

[bookmark: sthref5823]
Parameters

None.

[bookmark: sthref5824]
Usage Notes

The return value is the integer value denoting the current Java logging level.

[bookmark: sthref5825]
Examples

The following example gets the Java logging level.

--Contents of getjavalogginglevel.sql
DECLARE
 loglevel NUMBER;
BEGIN
 DBMS_MGD_ID_UTL.set_java_logging_level(DBMS_MGD_ID_UTL.LOGGING_LEVEL_OFF);
 loglevel := DBMS_MGD_ID_UTL.get_java_logging_level();
 dbms_output.put_line('Java logging level = ' ||loglevel);
END;
/
SHOW ERRORS;

SQL> @getjavalogginglevel.sql
.
.
.
Java logging level = 0
PL/SQL procedure successfully completed.
.
.
.

[bookmark: CACFFJBE][bookmark: ARPLS427]

[bookmark: sthref5826][bookmark: sthref5827]GET_PLSQL_LOGGING_LEVEL Function

This function returns an integer representing the current PL/SQL trace logging level.

[bookmark: sthref5828]
Syntax

function DBMS_MGD_ID_UTL.GET_PLSQL_LOGGING_LEVEL
RETURN INTEGER;
PRAGMA restrict_references(get_plsql_logging_level, WNDS);

[bookmark: sthref5829]
Parameters

None.

[bookmark: sthref5830]
Usage Notes

The return value is the integer value denoting the current PL/SQL logging level.

[bookmark: sthref5831]
Examples

The following example gets the PL/SQL logging level.

--Contents of getplsqllogginglevel.sql
DECLARE
 loglevel NUMBER;
BEGIN
 DBMS_MGD_ID_UTL.set_plsql_logging_level(0);
 loglevel := DBMS_MGD_ID_UTL.get_plsql_logging_level();
 dbms_output.put_line('PL/SQL logging level = ' ||loglevel);
END;
/
SHOW ERRORS;

SQL> @getplsqllogginglevel.sql
.
.
.
PL/SQL logging level = 0
PL/SQL procedure successfully completed.
.
.
.

[bookmark: CACFAAGF][bookmark: ARPLS428]

[bookmark: sthref5832][bookmark: sthref5833]GET_SCHEME_NAMES Function

This function returns a list of semicolon (;) separated scheme names for the specified category.

[bookmark: sthref5834]
Syntax

function DBMS_MGD_ID_UTL.GET_SCHEME_NAMES (
 category_id IN VARCHAR2)
RETURN VARCHAR2;

[bookmark: sthref5835]
Parameters

[bookmark: ARPLS66940][bookmark: sthref5836][bookmark: sthref5837]
Table 89-10 GET_SCHEME_NAMES Function Parameters

	Parameter
	Description

	
category_id

	
Category ID

[bookmark: sthref5838]
Usage Notes

The return value contains the scheme names for the specified category ID.

[bookmark: sthref5839]
Examples

See the GET_COMPONENTS Function for an example.

[bookmark: CACJFDGE][bookmark: ARPLS429]

[bookmark: sthref5840][bookmark: sthref5841]GET_TDT_XML Function

This function returns the Oracle Database tag data translation XML for the specified scheme.

[bookmark: sthref5842]
Syntax

function DBMS_MGD_ID_UTL.GET_TDT_XML (
 category_id IN VARCHAR2,
 scheme_name IN VARCHAR2)
RETURN CLOB;

[bookmark: sthref5843]
Parameters

[bookmark: ARPLS66941][bookmark: sthref5844][bookmark: sthref5845]
Table 89-11 GET_TDT_XML Function Parameters

	Parameter
	Description

	
category_id

	
Category ID

	
scheme_name

	
Name of scheme

[bookmark: sthref5846]
Usage Notes

The return value contains the Oracle Database tag data translation XML for the specified scheme.

[bookmark: sthref5847]
Examples

The following example gets the Oracle Database TDT XML for the specified scheme:

--Contents of get_tdtxml.sql
DECLARE
 gettdtxml CLOB;

BEGIN
 gettdtxml := DBMS_MGD_ID_UTL.get_tdt_xml(1,'SGTIN-64');
 dbms_output.put_line('Length of tdt XML is '||DBMS_LOB.GETLENGTH(gettdtxml));
 dbms_output.put_line(DBMS_LOB.SUBSTR(gettdtxml, DBMS_LOB.GETLENGTH(gettdtxml), 1));
END;
/
SHOW ERRORS;

SQL> @get_tdtxml.sql
.
.
.
Length of tdt XML is 22884
<?xml version = '1.0' encoding = "UTF-8"?>
<TagDataTranslation version="0.04"
date="2005-04-18T16:05:00Z" xmlns:xsi="http://www.w3.org/2001/XMLSchema"
xmlns="oracle.mgd.idcode"><scheme name="SGTIN-64"
optionKey="companyprefixlength" xmlns="">
 <level type="BINARY"
prefixMatch="10" requiredFormattingParameters="filter">
 <option
optionKey="12" pattern="10([01]{3})([01]{14})([01]{20})([01]{25})" grammar="'10'
filter companyprefixindex itemref serial">
 <field seq="1"
decimalMinimum="0" decimalMaximum="7" characterSet="[01]*" bitLength="3"
length="1" padChar="0" padDir="LEFT" name="filter"/>
 <field seq="2"
decimalMinimum="0" decimalMaximum="16383" characterSet="[01]*" bitLength="14"
name="companyprefixindex"/>
 <field seq="3" decimalMinimum="0"
decimalMaximum="9" characterSet="[01]*" bitLength="20" length="1" padChar="0"
padDir="LEFT" name="itemref"/>
 <field seq="4" decimalMinimum="0"
decimalMaximum="33554431" characterSet="[01]*" bitLength="25" name="serial"/>
.
.
.
 <field seq="1" decimalMinimum="0" decimalMaximum="9999999" characterSet="[0-9]*"
length="7" padChar="0" padDir="LEFT" name="itemref"/>
 <field seq="2" decimalMinimum="0" decimalMaximum="999999" characterSet="[0-9]*" length="6"
padChar="0" padDir="LEFT" name="companyprefix"/>
 </option>
 </level>

</scheme></TagDataTranslation>
PL/SQL procedure successfully completed.
.
.
.

[bookmark: CACCIHBB][bookmark: ARPLS430]

[bookmark: sthref5848][bookmark: sthref5849]GET_VALIDATOR Function

This function returns the Oracle Database tag data translation schema.

[bookmark: sthref5850]
Syntax

function DBMS_MGD_ID_UTL.GET_VALIDATOR
RETURN CLOB;

[bookmark: sthref5851]
Parameters

None.

[bookmark: sthref5852]
Usage Notes

The return value contains the Oracle Database tag data translation schema.

[bookmark: sthref5853]
Examples

This example returns the Oracle Database TDT schema.

--Contents of get_validator.sql
DECLARE
 getvalidator CLOB;
BEGIN
 getvalidator := DBMS_MGD_ID_UTL.get_validator;
 dbms_output.put_line('Length of validated oracle scheme xml is '||DBMS_LOB.GETLENGTH(getvalidator));
 dbms_output.put_line(DBMS_LOB.SUBSTR(getvalidator, DBMS_LOB.GETLENGTH(getvalidator), 1));
END;
/
SHOW ERRORS;

SQL> @get_validator.sql
.
.
.
Length of validated oracle scheme xml is 5780
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema
targetNamespace="oracle.mgd.idcode"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:tdt="oracle.mgd.idcode" elementFormDefault="unqualified"

attributeFormDefault="unqualified" version="1.0">
 <xsd:annotation>

<xsd:documentation>
DBMS_MGWADM

90 DBMS_MGWADM

DBMS_MGWADM defines the Messaging Gateway administrative interface. The package and object types are owned by SYS.

	
Note:

You must run the catmgw.sql script to load the Messaging Gateway packages and types into the database.

	
See Also:

Oracle Streams Advanced Queuing User's Guide contains information on loading database objects and using DBMS_MGWADM

This chapter contains the following topics:

	
Using DBMS_MGWADM

	
Constants

	
Deprecated Subprograms

	
Data Structures

	
Summary of DBMS_MGWADM Subprograms

Using DBMS_MGWADM

	
Deprecated Subprograms

	
Constants

Deprecated Subprograms

Oracle recommends that you do not use deprecated procedures in new applications. Support for deprecated features is for backward compatibility only.

The following subprograms are deprecated with Oracle Database 11g Release 1having been superseded by improved technology:

	
ADD_SUBSCRIBER Procedure - use instead CREATE_JOB Procedure

	
ALTER_PROPAGATION_SCHEDULE Procedure - use instead ALTER_JOB Procedure

	
ALTER_SUBSCRIBER Procedure - use instead ALTER_JOB Procedure

	
DB_CONNECT_INFO Procedure - use instead ALTER_AGENT Procedures

	
DISABLE_PROPAGATION_SCHEDULE Procedure - use instead DISABLE_JOB Procedure

	
ENABLE_PROPAGATION_SCHEDULE Procedure - use instead ENABLE_JOB Procedure

	
REMOVE_SUBSCRIBER Procedure - use instead REMOVE_JOB Procedure

	
RESET_SUBSCRIBER Procedure - use instead RESET_JOB Procedure

	
SCHEDULE_PROPAGATION Procedure - use instead CREATE_JOB Procedure

	
UNSCHEDULE_PROPAGATION Procedure - use instead REMOVE_JOB Procedure

Constants

	
DBMS_MGWADM Constants—Cleanup Actions

	
DBMS_MGWADM Constants—Force Values

	
DBMS_MGWADM Constants—Logging Levels

	
DBMS_MGWADM Constants—Named Property Constants

	
DBMS_MGWADM Constants—Other Constants

	
DBMS_MGWADM Constants—Propagation Types

	
DBMS_MGWADM Constants—Queue Domain Types

	
DBMS_MGWADM Constants—Shutdown Modes

	
DBMS_MGWADM Constants—WebSphere MQ Interface Types

	
DBMS_MGWADM Constants—target_type Argument of SET_OPTION and REMOVE_OPTION Procedures

	
DBMS_MGWADM Constants—conntype Argument of CREATE_AGENT and ALTER_AGENT Procedures

Table 90-1 DBMS_MGWADM Constants—Cleanup Actions

	Name	Type	Description
	
CLEAN_STARTUP_STATE

	
CONSTANT BINARY_INTEGER

	
Sets the Messaging Gateway agent to a known state so that it can be started

	
CLEAN_LOG_QUEUES

	
CONSTANT BINARY_INTEGER

	
Messaging Gateway agent will clean log queues for all configured messaging system links

	
RESET_SUB_MISSING_LOG_REC

	
CONSTANT BINARY_INTEGER

	
Messaging Gateway agent recovers a Messaging Gateway subscriber that has failed due to a missing log record

	
RESET_SUB_MISSING_MESSAGE

	
CONSTANT BINARY_INTEGER

	
Messaging Gateway agent recovers a Messaging Gateway subscriber that has failed due to a missing persistent source message

Table 90-2 DBMS_MGWADM Constants—Force Values

	Name	Type	Description
	
FORCE

	
CONSTANT BINARY_INTEGER

	
Represents a forced action

	
NO_FORCE

	
CONSTANT BINARY_INTEGER

	
Represents a normal, nonforced action

Table 90-3 DBMS_MGWADM Constants—Logging Levels

	Name	Type	Description
	
BASIC_LOGGING

	
CONSTANT BINARY_INTEGER

	
The standard (the least) information written to the log file

	
TRACE_DEBUG_LOGGING

	
CONSTANT BINARY_INTEGER

	
The greatest information written to the log file

	
TRACE_HIGH_LOGGING

	
CONSTANT BINARY_INTEGER

	
The third level of detail of logging information written to the log file

	
TRACE_LITE_LOGGING

	
CONSTANT BINARY_INTEGER

	
The second level detail of logging information written to the log file

Table 90-4 DBMS_MGWADM Constants—Named Property Constants

	Name	Type	Description
	
MGWPROP_PREFIX

	
CONSTANT VARCHAR2

	
A constant (MGWPROP$_) for the reserved property name prefix

	
MGWPROP_REMOVE

	
CONSTANT VARCHAR2

	
A constant (MGWPROP$_REMOVE) for the reserved property name used to remove an existing property

	
MGWPROP_REMOVE_ALL

	
CONSTANT VARCHAR2

	
A constant (MGWPROP$_REMOVE_ALL) for the reserved property name used to remove all properties

Table 90-5 DBMS_MGWADM Constants—Other Constants

	Name	Type	Description
	
JMS_CONNECTION

	
CONSTANT BINARY_INTEGER

	
Used to indicate that JMS connections will be used to access JMS destinations in a domain-independent manner that supports a unified messaging model

	
JMS_QUEUE_CONNECTION

	
CONSTANT BINARY_INTEGER

	
Used to indicate that JMS queue connections will be used to access JMS destinations

	
JMS_TOPIC_CONNECTION

	
CONSTANT BINARY_INTEGER

	
Used to indicate that JMS topic connections will be used to access JMS destinations

	
NO_CHANGE

	
CONSTANT VARCHAR2

	
Indicates that an existing value should be preserved (not changed). This is used for certain APIs where the desire is to change one or more parameters but leave others unchanged.

	
DEFAULT_AGENT

	
CONSTANT VARCHAR2

	
Name of the Messaging Gateway default agent

Table 90-6 DBMS_MGWADM Constants—Propagation Types

	Name	Type	Description
	
INBOUND_PROPAGATION

	
CONSTANT BINARY_INTEGER

	
Represents the propagation type for non-Oracle to Oracle Streams AQ propagation. The propagation source is a queue in a foreign (non-Oracle) messaging system and the destination is a local Oracle Streams AQ queue.

	
OUTBOUND_PROPAGATION

	
CONSTANT BINARY_INTEGER

	
Represents the propagation type for Oracle Streams AQ to non-Oracle propagation. The propagation source is a local Oracle Streams AQ queue and the destination is a queue in a foreign (non-Oracle) messaging system.

Table 90-7 DBMS_MGWADM Constants—Queue Domain Types

	Name	Type	Description
	
DOMAIN_QUEUE

	
CONSTANT BINARY_INTEGER

	
Represents a queue destination. A JMS queue (point-to-point model) is classified as a queue.

	
DOMAIN_TOPIC

	
CONSTANT BINARY_INTEGER

	
Represents a topic destination. A JMS topic (publish-subscribe model) is classified as a topic.

Table 90-8 DBMS_MGWADM Constants—Shutdown Modes

	Name	Type	Description
	
SHUTDOWN_IMMEDIATE

	
CONSTANT BINARY_INTEGER

	
Represents the immediate shutdown mode

	
SHUTDOWN_NORMAL

	
CONSTANT BINARY_INTEGER

	
Represents the normal shutdown mode

Table 90-9 DBMS_MGWADM Constants—WebSphere MQ Interface Types

	Name	Type	Description
	
MQSERIES_BASE_JAVA_INTERFACE

	
CONSTANT BINARY_INTEGER

	
Represents the Base Java interface for the WebSphere MQ messaging system

Table 90-10 DBMS_MGWADM Constants—target_type Argument of SET_OPTION and REMOVE_OPTION Procedures

	Name	Type	Description
	
AGENT_JAVA_PROP

	
CONSTANT PLS_INTEGER

	
Used for an agent option used to set a Java System property

	
MSGLINK_OPTION

	
CONSTANT PLS_INTEGER

	
Used for a messaging system link option

	
JOB_OPTION

	
CONSTANT PLS_INTEGER

	
Used for a propagation job option

Table 90-11 DBMS_MGWADM Constants—conntype Argument of CREATE_AGENT and ALTER_AGENT Procedures

	Name	Type	Description
	
JDBC_OCI

	
CONSTANT VARCHAR2

	
Used to specify the JDBC OCI driver

	
JDBC_THIN

	
CONSTANT VARCHAR2

	
Used to specify the JDBC Thin driver

Data Structures

The DBMS_MGWADM package defines the following OBJECT types.

Object Types

	
SYS.MGW_MQSERIES_PROPERTIES Object Type

	
SYS.MGW_PROPERTIES Object Type

	
SYS.MGW_PROPERTY Object Type

	
SYS.MGW_TIBRV_PROPERTIES Object Type

SYS.MGW_MQSERIES_PROPERTIES Object Type

This type specifies basic properties for a WebSphere MQ messaging system link.

Syntax

TYPE SYS.MGW_MQSERIES_PROPERTIES IS OBJECT (
 queue_manager VARCHAR2(64),
 hostname VARCHAR2(64),
 port INTEGER,
 channel VARCHAR2(64),
 interface_type INTEGER,
 max_connections INTEGER,
 username VARCHAR2(64),
 password VARCHAR2(64),
 inbound_log_queue VARCHAR2(64),
 outbound_log_queue VARCHAR2(64),

-- Methods
STATIC FUNCTION construct
RETURN SYS.MGW_MQSERIES_PROPERTIES,

STATIC FUNCTION alter_construct
RETURN SYS.MGW_MQSERIES_PROPERTIES);

Attributes

Table 90-12 SYS.MGW_MQSERIES_PROPERTIES Attributes

	Attribute	Description
	
queue_manager

	
The name of the WebSphere MQ queue manager

	
hostname

	
The host on which the WebSphere MQ messaging system resides. If hostname is NULL, then a WebSphere MQ bindings connection is used. If not NULL, then a client connection is used and requires that a port and channel be specified.

	
port

	
The port number. This is used only for client connections; that is, when hostname is not NULL.

	
channel

	
The channel used when establishing a connection to the queue manager. This is used only for client connections; that is, when hostname is not NULL.

	
interface_type

	
The type of messaging interface to use. Values:

	
DBMS_MGWADM.MQSERIES_BASE_JAVA_INTERFACE if the WebSphere MQ Base Java interface should be used.

	
DBMS_MGWADM.JMS_CONNECTION if the link is to be used to access JMS destinations in a unified, domain-independent manner.

	
DBMS_MGWADM.JMS_QUEUE_CONNECTION if the link is to be used for accessing JMS queues

	
DBMS_MGWADM.JMS_TOPIC_CONNECTION if the link is to be used for accessing JMS topics.

	
max_connections

	
The maximum number of messaging connections to the WebSphere MQ messaging system

	
username

	
The username used for authentication to the WebSphere MQ messaging system

	
password

	
The password used for authentication to the WebSphere MQ messaging system

	
inbound_log_queue

	
The name of the WebSphere MQ queue used for propagation recovery purposes when this messaging link is used for inbound propagation; that is, when queues associated with this link serve as a propagation source:

	
For MQSERIES_BASE_JAVA_INTERFACE, this is the name of a physical WebSphere MQ queue created using WebSphere MQ administration tools.

	
For the JMS_CONNECTION interface and the JMS_QUEUE_CONNECTION interface, this is the name of a physical WebSphere MQ queue created using WebSphere MQ administration tools.

	
For JMS_TOPIC_CONNECTION interface, this specifies the name of a WebSphere MQ JMS topic. The physical WebSphere MQ queue used by subscribers of that topic must be created using WebSphere MQ administration tools. By default, the physical queue used is SYSTEM.JMS.D.SUBSCRIBER.QUEUE.

	
outbound_log_queue

	
The name of the WebSphere MQ queue used for propagation recovery purposes when this messaging link is used for outbound propagation; that is, when queues associated with this link serve as a propagation destination:

	
For MQSERIES_BASE_JAVA_INTERFACE, this is the name of a physical WebSphere MQ queue created using WebSphere MQ administration tools.

	
For the JMS_CONNECTION interface and the JMS_QUEUE_CONNECTION interface, this is the name of a physical WebSphere MQ queue created using WebSphere MQ administration tools.

	
For JMS_TOPIC_CONNECTION interface, this specifies the name of a WebSphere MQ JMS topic. The physical WebSphere MQ queue used by subscribers of that topic must be created using WebSphere MQ administration tools. By default, the physical queue used is SYSTEM.JMS.D.SUBSCRIBER.QUEUE.

Methods

Table 90-13 SYS.MGW_MQSERIES_PROPERTIES Methods

	Method	Description
	
construct

	
Constructs a new SYS.MGW_MQSERIES_PROPERTIES instance. All attributes are assigned a value of NULL

	
alter_construct

	
Constructs a new SYS.MGW_MQSERIES_PROPERTIES instance for altering the properties of an existing messaging link. All attributes having a VARCHAR2 data type are assigned a value of DBMS_MGWADM.NO_CHANGE. Attributes of other data types are assigned a value of NULL.

SYS.MGW_PROPERTIES Object Type

This type specifies an array of properties.

Syntax

TYPE SYS.MGW_PROPERTIES AS VARRAY (2000) OF SYS.MGW_PROPERTY;

Attributes

Table 90-14 SYS.MGW_PROPERTIES Attributes

	Attribute	Description
	
name

	
Property name

	
value

	
Property value

Usage Notes

Unless noted otherwise, Messaging Gateway uses named properties as follows:

	
Names with the MGWPROP$_ prefix are reserved. They are used for special purposes and are invalid when used as a normal property name.

	
A property name can exist only once in a property list; that is, a list can contain only one value for a given name. The name is case-insensitive.

	
In general, a property list is order-independent, and the property names may appear in any order. An alter property list is an exception.

	
You can use a new property list to alter an existing property list. Each new property modifies the original list in one of the following ways: adds a new property, modifies a property, removes a property, or removes all properties.

The alter list is processed in order, from the first element to the last element. Thus the order in which the elements appear in the alter list is meaningful, especially when the alter list is used to remove properties from an existing list.

The property name and value are used to determine how that element affects the original list. The following rules apply:

	
Add or modify property

MGW_PROPERTY.NAME = property_name
MGW_PROPERTY.VALUE = property_value

If a property of the given name already exists, then the current value is replaced with the new value; otherwise the new property is added to the end of the list.

	
Remove property

MGW_PROPERTY.NAME = 'MGWPROP$_REMOVE'
MGW_PROPERTY.VALUE = name_of_property_to_remove

No action is taken if the property name does not exist in the original list.

	
Remove all properties

MGW_PROPERTY.NAME = 'MGWPROP$_REMOVE_ALL'
MGW_PROPERTY.VALUE = not used

	
See Also:

"The DBMS_MGWADM package defines constants to represent the reserved property names on Table 90-4, "DBMS_MGWADM Constants—Named Property Constants"

SYS.MGW_PROPERTY Object Type

This type specifies a named property which is used to specify optional properties for messaging links, foreign queues, and subscribers.

Syntax

TYPE SYS.MGW_PROPERTY IS OBJECT(
 name VARCHAR2(500),
 value VARCHAR2(4000),

-- Methods
STATIC FUNCTION construct --- (1)
RETURN SYS.MGW_PROPERTY,

STATIC FUNCTION construct(--- (2)
 p_name IN VARCHAR2,
 p_value IN VARCHAR2)
RETURN SYS.MGW_PROPERTY);

Attributes

Table 90-15 SYS.MGW_PROPERTY Attributes

	Attribute	Description
	
name

	
Property name

	
value

	
Property value

Methods

Table 90-16 SYS.MGW_PROPERTY Methods

	Method	Description
	
construct --- (1)

	
Constructs a new MGW_PROPERTY instance. All attributes are assigned a value of NULL

	
construct --- (2)

	
Constructs a new MGW_PROPERTY instance initialized using the given parameters

SYS.MGW_TIBRV_PROPERTIES Object Type

A type that specifies basic properties for a TIB/Rendezvous messaging system link. The Messaging Gateway agent creates a TIB/Rendezvous transport of type TibrvRvdTransport for each Messaging Gateway link.

Syntax

TYPE SYS.MGW_TIBRV_PROPERTIES IS OBJECT(
 service VARCHAR2(128),
 daemon VARCHAR2(128),
 network VARCHAR2(256),
 cm_name VARCHAR2(256),
 cm_ledger VARCHAR2(256),

-- Methods
STATIC FUNCTION construct
RETURN SYS.MGW_TIBRV_PROPERTIES,

STATIC FUNCTION alter_construct
RETURN SYS.MGW_TIBRV_PROPERTIES);

Attributes

Table 90-17 SYS.MGW_TIBRV_PROPERTIES Attributes

	Attribute	Description
	
service

	
The service parameter for the rvd transport

	
daemon

	
The daemon parameter for the rvd transport

	
network

	
The network parameter for the rvd transport

	
cm_name

	
The CM correspondent name. Reserved for future use.

	
cm_ledger

	
The CM ledger file name. Reserved for future use.

Methods

Table 90-18 SYS.MGW_TIBRV_PROPERTIES Methods

	Method	Description
	
construct

	
Constructs a new SYS.MGW_TIBRV_PROPERTIES instance. All attributes will be assigned a value of NULL.

	
alter_construct

	
Constructs a new SYS.MGW_TIBRV_PROPERTIES instance. This function is useful for altering the properties of an existing messaging link. All attributes having a VARCHAR2 data type will be assigned a value of DBMS_MGWADM.NO_CHANGE. Attributes of other data types will be assigned a value of NULL.

Summary of DBMS_MGWADM Subprograms

Table 90-19 DBMS_MGWADM Package Subprograms

	Subprogram	Description
	
ADD_SUBSCRIBER Procedure

	
Adds a subscriber used to consume messages from a source queue for propagation to a destination

	
ALTER_AGENT Procedures

	
Alters Messaging Gateway agent parameters

	
ALTER_JOB Procedure

	
Alters the properties of a propagation job

	
ALTER_MSGSYSTEM_LINK Procedure for TIB/Rendezvous

	
Alters the properties of a TIB/Rendezvous messaging system link

	
ALTER_MSGSYSTEM_LINK Procedure for WebSphere MQ

	
Alters the properties of a WebSphere MQ messaging system link

	
ALTER_PROPAGATION_SCHEDULE Procedure

	
Alters a propagation schedule

	
ALTER_SUBSCRIBER Procedure

	
Alters the parameters of a subscriber used to consume messages from a source queue for propagation to a destination

	
CLEANUP_GATEWAY Procedures

	
Cleans up Messaging Gateway

	
CREATE_AGENT Procedure

	
Creates a Messaging Gateway agent that will be used to process propagation jobs

	
CREATE_JOB Procedure

	
Creates a job used to propagate message from a source to a destination

	
CREATE_MSGSYSTEM_LINK Procedures for TIB/Rendezvous

	
Creates a messaging system link to a TIB/Rendezvous messaging system

	
CREATE_MSGSYSTEM_LINK Procedures for WebSphere MQ

	
Creates a messaging system link to a WebSphere MQ messaging system

	
DB_CONNECT_INFO Procedure

	
Configures connection information used by the Messaging Gateway agent for connections to Oracle Database

	
DISABLE_JOB Procedure

	
Disables a propagation job

	
DISABLE_PROPAGATION_SCHEDULE Procedure

	
Disables a propagation schedule

	
ENABLE_JOB Procedure

	
Enables a propagation job

	
ENABLE_PROPAGATION_SCHEDULE Procedure

	
Enables a propagation schedule

	
REGISTER_FOREIGN_QUEUE Procedure

	
Registers a non-Oracle queue entity in Messaging Gateway

	
REMOVE_AGENT Procedure

	
Removes a Messaging Gateway agent

	
REMOVE_JOB Procedure

	
Removes a propagation job

	
REMOVE_MSGSYSTEM_LINK Procedure

	
Removes a messaging system link for a non-Oracle messaging system

	
REMOVE_OPTION Procedure

	
Removes a Messaging Gateway configuration option

	
REMOVE_SUBSCRIBER Procedure

	
Removes a subscriber used to consume messages from a source queue for propagation to a destination

	
RESET_JOB Procedure

	
Resets the propagation error state for a propagation job

	
RESET_SUBSCRIBER Procedure

	
Resets the propagation error state for a subscriber

	
SCHEDULE_PROPAGATION Procedure

	
Schedules message propagation from a source to a destination

	
SET_LOG_LEVEL Procedures

	
Dynamically alters the Messaging Gateway agent logging level

	
SET_OPTION Procedure

	
Sets a Messaging Gateway configuration option

	
SHUTDOWN Procedures

	
Shuts down the Messaging Gateway agent

	
STARTUP Procedures

	
Starts the Messaging Gateway agent

	
UNREGISTER_FOREIGN_QUEUE Procedure

	
Removes a non-Oracle queue entity in Messaging Gateway

	
UNSCHEDULE_PROPAGATION Procedure

	
Removes a propagation schedule

ADD_SUBSCRIBER Procedure

This procedure adds a subscriber used to consume messages from a source queue for propagation to a destination.

	
Note:

This subprogram has been deprecated as a result of improved technology (see CREATE_JOB Procedure), and is retained only for reasons of backward compatibility.

Syntax

DBMS_MGWADM.ADD_SUBSCRIBER(
 subscriber_id IN VARCHAR2,
 propagation_type IN BINARY_INTEGER,
 queue_name IN VARCHAR2,
 destination IN VARCHAR2,
 rule IN VARCHAR2 DEFAULT NULL,
 transformation IN VARCHAR2 DEFAULT NULL,
 exception_queue IN VARCHAR2 DEFAULT NULL
 options IN SYS.MGW_PROPERTIES DEFAULT NULL);

Parameters

Table 90-20 ADD_SUBSCRIBER Procedure Parameters

	Parameter	Description
	
subscriber_id

	
Specifies a user-defined name that identifies this subscriber

	
propagation_type

	
Specifies the type of message propagation. DBMS_MGWADM.OUTBOUND_PROPAGATION is for Oracle Streams AQ to non-Oracle propagation. DBMS_MGWADM.INBOUND_PROPAGATION is for non-Oracle to Oracle Streams AQ propagation

	
queue_name

	
Specifies the source queue to which this subscriber is being added. The syntax and interpretation of this parameter depend on the value specified for propagation_type.

	
destination

	
Specifies the destination queue to which messages consumed by this subscriber are propagated. The syntax and interpretation of this parameter depend on the value specified for propagation_type.

	
rule

	
Specifies an optional subscription rule used by the subscriber to dequeue messages from the source queue. This is NULL if no rule is needed. The syntax and interpretation of this parameter depend on the value specified for propagation_type.

	
transformation

	
Specifies the transformation needed to convert between the Oracle Streams AQ payload and an ADT defined by Messaging Gateway. The type of transformation needed depends on the value specified for propagation_type.

If NULL, then the Oracle Streams AQ payload type must be supported by Messaging Gateway.

	
exception_queue

	
Specifies a queue used for exception message logging purposes. This queue must be on the same messaging system as the propagation source. If NULL, then an exception queue is not used and propagation stops if a problem occurs. The syntax and interpretation of this parameter depend on the value specified for propagation_type.

The source queue and exception queue cannot be the same queue.

	
options

	
Optional subscriber properties. NULL if there are none. Typically these are lesser used configuration properties supported by the messaging system.

Usage Notes

	
See Also:

"Handling Arbitrary Payload Types Using Message Transformations", in Oracle Streams Advanced Queuing User's Guide for more information regarding message conversion and transformation

If the non-Oracle messaging link being accessed for the subscriber uses a JMS interface, then the Messaging Gateway agent will use the Oracle JMS interface to access the Oracle Streams AQ queues. Otherwise the native Oracle Streams AQ interface will be used. Parameters are interpreted differently when the Messaging Gateway agent uses Oracle JMS for JMS connections.

Transformations are not currently supported if the Oracle JMS interface is used for propagation. The transformation parameter must be NULL.

	
See Also:

For additional information regarding subscriber options
	
"WebSphere MQ System Properties" in Oracle Streams Advanced Queuing User's Guide

	
"TIB/Rendezvous System Properties" in Oracle Streams Advanced Queuing User's Guide

OUTBOUND_PROPAGATION Subscribers

The parameters for a subscriber used for outbound propagation are interpreted as follows:

	
queue_name specifies the local Oracle Streams AQ queue that is the propagation source. This must have a syntax of schema.queue.

	
destination specifies the foreign queue to which messages are propagated. This must have a syntax of registered_queue@message_link.

	
rule specifies an optional Oracle Streams AQ subscriber rule if the native Oracle Streams AQ interface is used, or a JMS selector if the Oracle JMS interface is used. If NULL, then no rule or selector is used.

	
transformation specifies the transformation used to convert the Oracle Streams AQ payload to an ADT defined by Messaging Gateway.

Messaging Gateway propagation dequeues messages from the Oracle Streams AQ queue using the transformation to convert the Oracle Streams AQ payload to a known ADT defined by Messaging Gateway. The message is then enqueued in the foreign messaging system based on the Messaging Gateway ADT.

	
exception_queue specifies the name of a local Oracle Streams AQ queue to which messages are moved if an exception occurs. This must have a syntax of schema.queue.

If the native Oracle Streams AQ interface is used, then a subscriber will be added to the Oracle Streams AQ queue when this procedure is called, whether or not Messaging Gateway is running. The local subscriber will be of the form sys.aq$_agent('MGW_subscriber_id', NULL, NULL).

If the Oracle JMS interface is used, then the Messaging Gateway agent will create a JMS durable subscriber with the name of MGW_subscriber_id. If the agent is not running when this procedure is called, then the durable subscriber will be created the next time the agent starts.

The exception queue has the following caveats:

	
The user is responsible for creating the Oracle Streams AQ queue to be used as the exception queue.

	
The payload type of the source and exception queue must match.

	
The exception queue must be created as a queue type of DBMS_AQADM.NORMAL_QUEUE rather than DBMS_AQADM.EXCEPTION_QUEUE. Enqueue restrictions prevent Messaging Gateway propagation from using an Oracle Streams AQ queue of type EXCEPTION_QUEUE as a Messaging Gateway exception queue.

INBOUND_PROPAGATION Subscribers

The parameters for a subscriber used for inbound propagation are interpreted as follows:

	
queue_name specifies the foreign queue that is the propagation source. This must have a syntax of registered_queue@message_link.

	
destination specifies the local Oracle Streams AQ queue to which messages are propagated. This must have a syntax of schema.queue.

	
rule specifies an optional subscriber rule that is valid for the foreign messaging system. This is NULL if no rule is needed.

	
transformation specifies the transformation used to convert an ADT defined by Messaging Gateway to the Oracle Streams AQ payload type.

Messaging Gateway propagation dequeues messages from the foreign messaging system and converts the message body to a known ADT defined by Messaging Gateway. The transformation is used to convert the Messaging Gateway ADT to an Oracle Streams AQ payload type when the message is enqueued to the Oracle Streams AQ queue.

	
exception_queue specifies the name of a foreign queue to which messages are moved if an exception occurs. This must have a syntax of registered_queue@message_link.

Whether or not a subscriber is needed depends on the requirements of the non-Oracle messaging system. If a durable subscriber is necessary, then it will be created by the Messaging Gateway agent. If the agent is not running at the time this procedure is called, then the creation of the subscriber on the non-Oracle messaging system will occur when the agent next starts.

The exception queue has the following caveats:

	
The exception queue must be a registered non-Oracle queue.

	
The source and exception queues must use the same messaging system link.

ALTER_AGENT Procedures

This procedure configures Messaging Gateway agent parameters.

Syntax

DBMS_MGWADM.ALTER_AGENT (
 max_connections IN BINARY_INTEGER DEFAULT NULL,
 max_memory IN BINARY_INTEGER DEFAULT NULL,
 max_threads IN BINARY_INTEGER DEFAULT NULL,
 service IN VARCHAR2 DEFAULT DBMS_MGWADM.NO_CHANGE);

DBMS_MGWADM.ALTER_AGENT (
 agent_name IN VARCHAR2,
 username IN VARCHAR2 DEFAULT DBMS_MGWADM.NO_CHANGE,
 password IN VARCHAR2 DEFAULT DBMS_MGWADM.NO_CHANGE,
 database IN VARCHAR2 DEFAULT DBMS_MGWADM.NO_CHANGE,
 conntype IN VARCHAR2 DEFAULT DBMS_MGWADM.NO_CHANGE,
 max_memory IN PLS_INTEGER DEFAULT NULL,
 max_threads IN PLS_INTEGER DEFAULT NULL,
 service IN VARCHAR2 DEFAULT DBMS_MGWADM.NO_CHANGE,
 initfile IN VARCHAR2 DEFAULT DBMS_MGWADM.NO_CHANGE,
 comment IN VARCHAR2 DEFAULT DBMS_MGWADM.NO_CHANGE);

Parameters

Table 90-21 ALTER_AGENT Procedure Parameters

	Parameter	Description
	
max_connections

	
The maximum number of messaging connections to Oracle Database used by the Messaging Gateway agent. If it is NULL, then the current value is unchanged.

Caution: This parameter has been deprecated.

	
max_memory

	
The maximum heap size, in MB, used by the Messaging Gateway agent. If it is NULL, then the current value is unchanged.

	
max_threads

	
The number of messaging threads that the Messaging Gateway agent creates. If it is NULL, then the current value is unchanged.

	
service

	
Specifies the database service that the Oracle Scheduler job class used by this agent will have affinity to. In an Oracle RAC environment, this means that the Messaging Gateway agent will run on only those database instances that are assigned to the service. If NULL, the job class used by this agent will be altered to belong to the default service which is mapped to every instance. If DBMS_MGWADM.NO_CHANGE, the current value is unchanged.

	
agent_name

	
Identifies the Messaging Gateway agent. DBMS_MGWADM.DEFAULT_AGENT specifies the default agent.

	
username

	
Specifies the username used for connections to the Oracle Database. NULL is not allowed. If DBMS_MGWADM.NO_CHANGE, then the current value is unchanged. If a username is specified then a password must also be specified.

	
password

	
Specifies the password used for connections to the Oracle Database. NULL is not allowed. If DBMS_MGWADM.NO_CHANGE, then the current value is unchanged. A password must be specified if a username is specified.

	
database

	
Specifies the database connect string used for connections to the Oracle Database. NULL indicates that a local connection should be used. If DBMS_MGWADM.NO_CHANGE, then the current value is unchanged.Oracle strongly recommends that a connect string, rather than NULL, be specified. Usually it will be a net service name from tnsnames.ora.

	
conntype

	
Specifies the type of connection to the Oracle Database, DBMS_MGWADM.JDBC_OCI or DBMS_MGWADM.JDBC_THIN. If DBMS_MGWADM.NO_CHANGE, then the current value is unchanged

	
initfile

	
Specifies a Messaging Gateway initialization file used by this agent. NULL indicates that the default initialization file is used. If a value is specified, it should be the full path name of the file. If DBMS_MGWADM.NO_CHANGE, then the current value is unchanged.

	
comment

	
Optional comments for this agent. NULL if a comment is not desired. If DBMS_MGWADM.NO_CHANGE, then the current value is unchanged.

	
Note:

The max_connections parameter included in previous versions of this subprogram has been deprecated and is non-operational

Usage Notes

	
Default values for these configuration parameters are set when the Messaging Gateway agent is installed.

	
Changes to the max_memory and max_threads parameters take effect the next time the Messaging Gateway agent is active. If the Messaging Gateway agent is currently active, then it must be shut down and restarted for the changes to take effect.

	
The service parameter is used to set an Oracle Scheduler job class attribute. The job class is used to create a Scheduler job that starts the Messaging Gateway agent. An Oracle administrator must create the database service. If the value is NULL, the job class will belong to an internal service that is mapped to all instances.

	
The max_connections parameter is being deprecated as of the Oracle RDBMS 11g release. The number of messaging connections used by the Messaging Gateway Agent is based on the value of the max_threads parameter.

	
The username, password, and database parameters specify connection information used by the Messaging Gateway agent for connections to the Oracle Database. An Oracle administrator should create the user and grant it the role MGW_AGENT_ROLE.

ALTER_JOB Procedure

This procedure alters the properties of a propagation job.

Syntax

DBMS_MGWADM.ALTER_JOB (
 job_name IN VARCHAR2,
 rule IN VARCHAR2 DEFAULT DBMS_MGWADM.NO_CHANGE,
 transformation IN VARCHAR2 DEFAULT DBMS_MGWADM.NO_CHANGE,
 exception_queue IN VARCHAR2 DEFAULT DBMS_MGWADM.NO_CHANGE,
 poll_interval IN PLS_INTEGER DEFAULT 0,
 options IN SYS.MGW_PROPERTIES DEFAULT NULL,
 comments IN VARCHAR2 DEFAULT DBMS_MGWADM.NO_CHANGE);

Parameters

Table 90-22 ALTER_JOB Procedure Parameters

	Parameter	Description
	
job_name

	
Identifies the propagation job

	
rule

	
Specifies an optional subscription rule used to dequeue messages from the propagation source. The syntax and interpretation of this parameter depend on the propagation type. A NULL value indicates that no subscription rule is needed. If DBMS_MGWADM.NO_CHANGE, then the current value is unchanged.

	
transformation

	
Specifies the transformation needed to convert between the Oracle Streams AQ payload and an ADT defined by Messaging Gateway. The type of transformation needed depends on the value specified for propagation_type.

A NULL value indicates that no transformation is needed. If DBMS_MGWADM.NO_CHANGE, the current value is unchanged.

	
exception_queue

	
Specifies a queue used for exception message logging purposes. This queue must be on the same messaging system as the propagation source. In cases in which no exception queue is associated with the job, propagation stops if a problem occurs. The syntax and interpretation of this parameter depend on the propagation type.

A NULL value indicates that no exception queue is used. If DBMS_MGWADM.NO_CHANGE, the current value is unchanged.

	
poll_interval

	
Specifies the polling interval, in seconds, used by the Messaging Gateway agent when checking for messages in the source queue. If no messages are available the agent will not poll again until the polling interval has passed. Once the agent detects a message it will continue propagating messages as long as any are available.

Values: NULL, 0, or value > 0:

	
If zero (default), the current value will not be changed.

	
If NULL, the current value will be reset and the Messaging Gateway default polling interval will be used. The default polling interval is 5 seconds and can be overridden by the Messaging Gateway initialization file.

	
options

	
Optional job properties. If NULL, no options will be changed. If not NULL, then the properties specified in this list are combined with the current optional properties to form a new set of job options.

	
comments

	
An optional comment for this agent, or NULL if one is not desired. If DBMS_MGWADM.NO_CHANGE, the current value will not be changed.

Usage Notes

	
If the non-Oracle messaging link being accessed for the propagation job uses a JMS interface, then the Messaging Gateway agent will use the Oracle JMS interface to access the Oracle Streams AQ queues. Otherwise the native Oracle Streams AQ interface will be used. Parameters are interpreted differently when the Messaging Gateway agent uses Oracle JMS for JMS connections.

	
The subscriber rule cannot be altered when propagating from a JMS source. Instead, the propagation job must be dropped and re-created with the new rule. For JMS, changing the message selector on a durable subscription is equivalent to deleting and re-creating the subscription.

	
Transformations are not currently supported if the Oracle JMS interface is used for propagation. The transformation parameter must be DBMS_MGWADM.NO_CHANGE (the default value).

	
The options parameter specifies a set of properties used to alter the current optional properties. Each property affects the current property list in a particular manner; add a new property, replace an existing property, remove an existing property or remove all properties.

	
See Also:

	
SYS.MGW_PROPERTY Object Type for more information about the options parameter

	
OUTBOUND_PROPAGATION Jobs for outbound propagation parameter interpretation

	
INBOUND_PROPAGATION Jobs for inbound propagation parameter interpretation

ALTER_MSGSYSTEM_LINK Procedure for TIB/Rendezvous

Alters the properties of a TIB/Rendezvous messaging system link.

Syntax

DBMS_MGWADM.ALTER_MSGSYSTEM_LINK (
 linkname IN VARCHAR2,
 properties IN SYS.MGW_TIBRV_PROPERTIES,
 options IN SYS.MGW_PROPERTIES DEFAULT NULL,
 comment IN VARCHAR2 DEFAULT DBMS_MGWADM.NO_CHANGE);

Parameters

Table 90-23 ALTER_MSGSYSTEM_LINK Procedure Parameters for TIB/Rendezvous

	Parameters	Description
	
linkname

	
The messaging system link name

	
properties

	
Basic properties for a TIB/Rendezvous messaging system link. If NULL, then no link properties will be changed.

	
options

	
Optional link properties. If NULL, then no options will be changed. If not NULL, then the properties specified in this list are combined with the current options properties to form a new set of link options.

	
comment

	
A user-specified description, or NULL if one is not desired. If DBMS_MGWADM.NO_CHANGE, then the current value will not be changed.

Usage Notes

To retain an existing value for a messaging link property with a VARCHAR2 data type, specify DBMS_MGWADM.NO_CHANGE for that particular property. To preserve an existing value for a property of another data type, specify NULL for that property.

The options parameter specifies a set of properties used to alter the current optional properties. Each property affects the current property list in a particular manner: add a new property, replace an existing property, remove an existing property, or remove all properties.

	
See Also:

SYS.MGW_PROPERTIES Object Type

Some properties cannot be modified, and this procedure will fail if an attempt is made to alter such a property. For properties and options that can be changed, a few are dynamic, and Messaging Gateway uses the new values immediately. Others require the Messaging Gateway agent to be shut down and restarted before they take effect.

	
See Also:

"TIB/Rendezvous System Properties" in Oracle Streams Advanced Queuing User's Guide for more information about the messaging system properties and options

ALTER_MSGSYSTEM_LINK Procedure for WebSphere MQ

This procedure alters the properties of a WebSphere MQ messaging system link.

Syntax

DBMS_MGWADM.ALTER_MSGSYSTEM_LINK (
 linkname IN VARCHAR2,
 properties IN SYS.MGW_MQSERIES_PROPERTIES,
 options IN SYS.MGW_PROPERTIES DEFAULT NULL,
 comment IN VARCHAR2 DEFAULT DBMS_MGWADM.NO_CHANGE);

Parameters

Table 90-24 ALTER_MSGSYSTEM_LINK Procedure Parameters for WebSphere MQ

	Parameters	Description
	
linkname

	
The messaging system link name

	
properties

	
Basic properties for a WebSphere MQ messaging system link. If it is NULL, then no link properties are changed.

	
options

	
Optional link properties. NULL if no options are changed. If not NULL, then the properties specified in this list are combined with the current options properties to form a new set of link options.

	
comment

	
An optional description or NULL if not desired. If DBMS_MGWADM.NO_CHANGE is specified, then the current value is not changed.

Usage Notes

To retain an existing value for a messaging link property with a VARCHAR2 data type, specify DBMS_MGWADM.NO_CHANGE for that particular property. To preserve an existing value for a property of another data type, specify NULL for that property.

The options parameter specifies a set of properties used to alter the current optional properties. Each property affects the current property list in a particular manner: add a new property, replace an existing property, remove an existing property, or remove all properties.

	
See Also:

SYS.MGW_PROPERTIES Object Type

Some properties cannot be modified, and this procedure will fail if an attempt is made to alter such a property. For properties and options that can be changed, a few are dynamic, and Messaging Gateway uses the new values immediately. Others require the Messaging Gateway agent to be shut down and restarted before they take effect.

	
See Also:

"WebSphere MQ System Properties" in Oracle Streams Advanced Queuing User's Guide for more information about the messaging system properties and options

ALTER_PROPAGATION_SCHEDULE Procedure

This procedure alters a propagation schedule.

	
Note:

This subprogram has been deprecated as a result of improved technology (see ALTER_JOB Procedure), and is retained only for reasons of backward compatibility.

Syntax

DBMS_MGWADM.ALTER_PROPAGATION_SCHEDULE (
 schedule_id IN VARCHAR2,
 duration IN NUMBER DEFAULT NULL,
 next_time IN VARCHAR2 DEFAULT NULL,
 latency IN NUMBER DEFAULT NULL);

Parameters

Table 90-25 ALTER_PROPAGATION_SCHEDULE Procedure Parameters

	Parameter	Description
	
schedule_id

	
Identifies the propagation schedule to be altered

	
duration

	
Reserved for future use

	
next_time

	
Reserved for future use

	
latency

	
Specifies the polling interval, in seconds, used by the Messaging Gateway agent when checking for messages in the source queue. If no messages are available in the source queue, then the agent will not poll again until the polling interval has passed. Once the agent detects a message it will continue propagating messages as long as any are available.

Values: NULL or value > 0. If latency is NULL, then the Messaging Gateway agent default polling interval will be used. The default polling interval is 5 seconds, but it can be overridden by the Messaging Gateway initialization file.

Usage Notes

This procedure always overwrites the existing value for each parameter. If a given parameter is not specified, then the existing values are overwritten with the default value.

ALTER_SUBSCRIBER Procedure

This procedure alters the parameters of a subscriber used to consume messages from a source queue for propagation to a destination.

	
Note:

This subprogram has been deprecated as a result of improved technology (see ALTER_JOB Procedure), and is retained only for reasons of backward compatibility.

Syntax

DBMS_MGWADM.ALTER_SUBSCRIBER (
 subscriber_id IN VARCHAR2,
 rule IN VARCHAR2 DEFAULT DBMS_MGWADM.NO_CHANGE,
 transformation IN VARCHAR2 DEFAULT DBMS_MGWADM.NO_CHANGE,
 exception_queue IN VARCHAR2 DEFAULT DBMS_MGWADM.NO_CHANGE,
 options IN SYS.MGW_PROPERTIES DEFAULT NULL);

Parameters

Table 90-26 ALTER_SUBSCRIBER Procedure Parameters

	Parameter	Description
	
subscriber_id

	
Identifies the subscriber to be altered

	
rule

	
Specifies an optional subscription rule used by the subscriber to dequeue messages from the source queue. The syntax and interpretation of this parameter depend on the subscriber propagation type.

A NULL value indicates that no subscription rule is needed. If DBMS_MGWADM.NO_CHANGE, then the current value is unchanged.

	
transformation

	
Specifies the transformation needed to convert between the Oracle Streams AQ payload and an ADT defined by Messaging Gateway. The type of transformation needed depends on the subscriber propagation type.

A NULL value indicates that no transformation is needed. If DBMS_MGWADM.NO_CHANGE, then the current value is unchanged.

	
exception_queue

	
Specifies a queue used for exception message logging. This queue must be on the same messaging system as the propagation source. If no exception queue is associated with the subscriber, then propagation stops if a problem occurs. The syntax and interpretation of this parameter depend on the subscriber propagation type.

A NULL value indicates that no exception queue is used. If DBMS_MGWADM.NO_CHANGE, then the current value is unchanged.

The source queue and exception queue cannot be the same queue.

	
options

	
Optional subscriber properties. If NULL, then no options will be changed. If not NULL, then the properties specified in this list are combined with the current optional properties to form a new set of subscriber options.

Usage Notes

If the non-Oracle messaging link being accessed for the subscriber uses a JMS interface, then the Messaging Gateway agent will use the Oracle JMS interface to access the Oracle Streams AQ queues. Otherwise the native Oracle Streams AQ interface will be used. Parameters are interpreted differently when the Messaging Gateway agent uses Oracle JMS for JMS connections.

When propagating from a JMS source, the subscriber rule cannot be altered. Instead, the subscriber must be removed and added with the new rule. For JMS, changing the message selector on a durable subscription is equivalent to deleting and re-creating the subscription.

Transformations are not currently supported if the Oracle JMS interface is used for propagation. The transformation parameter must be DBMS_MGWADM.NO_CHANGE (the default value).

The options parameter specifies a set of properties used to alter the current optional properties. Each property affects the current property list in a particular manner: add a new property, replace an existing property, remove an existing property, or remove all properties.

	
See Also:

	
SYS.MGW_PROPERTIES Object Type for more information on the options parameter

	
"WebSphere MQ System Properties" in Oracle Streams Advanced Queuing User's Guide for more information about WebSphere MQ subscriber options

	
"TIB/Rendezvous System Properties" in Oracle Streams Advanced Queuing User's Guide for more information about TIB/Rendezvous subscriber options

	
"OUTBOUND_PROPAGATION Subscribers for outbound propagation parameter interpretation

	
"INBOUND_PROPAGATION Subscribers for inbound propagation parameter interpretation

CLEANUP_GATEWAY Procedures

This procedure cleans up Messaging Gateway. The procedure performs cleanup or recovery actions that may be needed when Messaging Gateway is left in some abnormal or unexpected condition. The MGW_GATEWAY view lists Messaging Gateway status and configuration information that pertains to the cleanup actions.

Syntax

DBMS_MGWADM.CLEANUP_GATEWAY(
 action IN BINARY_INTEGER,
 sarg IN VARCHAR2 DEFAULT NULL);

DBMS_MGWADM.CLEANUP_GATEWAY(
 agent_name IN VARCHAR2, action IN BINARY_INTEGER, sarg IN VARCHAR2 DEFAULT NULL);

Parameters

Table 90-27 CLEANUP_GATEWAY Procedure Parameters

	Parameter	Description
	
action

	
The cleanup action to be performed. Values:

	
DBMS_MGWADM.CLEAN_STARTUP_STATE for Messaging Gateway start up state recovery

	
DBMS_MGWADM.CLEAN_LOG_QUEUES for log queue cleanup

	
DBMS_MGWADM.RESET_SUB_MISSING_LOG_REC for propagation job recovery due to missing log record

	
DBMS_MGWADM.RESET_SUB_MISSING_MESSAGE for propagation job recovery due to missing message

	
sarg

	
Optional argument whose meaning depends on the value specified for action. This should be NULL if it is not used for the specified action.

	
agent_name

	
Identifies the Messaging Gateway agent. DBMS_MGWADM.DEFAULT_AGENT specifies the default agent.

Usage Notes

CLEAN_STARTUP_STATE

sarg is not used and must be NULL.

The CLEAN_STARTUP_STATE action recovers Messaging Gateway to a known state when the Messaging Gateway agent has crashed or some other abnormal event occurs, and Messaging Gateway cannot be restarted. This should be done only when the Messaging Gateway agent has been started but appears to have crashed or has been nonresponsive for an extended period of time.

The CLEAN_STARTUP_STATE action may be needed when the MGW_GATEWAY view shows that the AGENT_STATUS value is something other than NOT_STARTED or START_SCHEDULED, and the AGENT_PING value is UNREACHABLE for an extended period of time.

If the AGENT_STATUS value is BROKEN, then the Messaging Gateway agent cannot be started until the problem has been resolved and the CLEAN_STARTUP_STATE action used to reset the agent status. A BROKEN status can indicate that the Messaging Gateway start job detected a Messaging Gateway agent already running. This condition that should never occur under normal use.

Cleanup tasks include:

	
Removing the Scheduler job used to start the external Messaging Gateway agent process.

	
Setting certain configuration information to a known state. For example, setting the agent status to NOT_STARTED.

Execution of this command fails if:

	
The agent status is NOT_STARTED or START_SCHEDULED.

	
No shutdown attempt has been made prior to calling this procedure, except if the agent status is STARTING.

	
The Messaging Gateway agent is successfully contacted.

The assumption is that the agent is active, and this procedure fails. If the agent does not respond after several attempts have been made, then the cleanup tasks are performed. This procedure takes at least several seconds and possibly up to one minute. This is expected behavior under conditions where this particular cleanup action is appropriate and necessary.

	
Note:

Terminate any Messaging Gateway agent process that may still be running after a CLEAN_STARTUP_STATE action has been successfully performed. This should be done before calling DBMS_MGWADM.STARTUP to start Messaging Gateway. The process is usually named extprocmgwextproc.

CLEAN_LOG_QUEUES

sarg is not used and must be NULL.

The Messaging Gateway agent will clean log queues for all configured messaging system links. The agent will temporarily stop all propagation activity and then remove all obsolete and bad log records from the log queues for all links. The procedure will fail if the Messaging Gateway agent is not running.

This cleanup action is automatically performed each time the Messaging Gateway agent is started.

	
Note:

The CLEAN_LOG_QUEUES action is performed only on agent startup. If this procedure is called when the agent is running, then the Messaging Gateway agent ignores it.

RESET_SUB_MISSING_LOG_REC

sarg specifies a Messaging Gateway job name (or subscriber ID) to be reset. It must not be NULL.

The Messaging Gateway agent recovers a Messaging Gateway propagation job that has failed due to a missing log record. The agent will reset the source and destination log records. The procedure will fail if the Messaging Gateway agent is not running.

	
Caution:

If the messages in the source queue had already been propagated to the destination queue, then this action may result in duplicate messages.

RESET_SUB_MISSING_MESSAGE

sarg specifies a Messaging Gateway job name (or subscriber ID) to be reset. It must not be NULL.

The Messaging Gateway agent recovers a Messaging Gateway propagation job that has failed due to a missing persistent source message. The agent will treat the message as a non-persistent message and continue processing that propagation job. The procedure will fail if the Messaging Gateway agent is not running.

CREATE_AGENT Procedure

This procedure creates a Messaging Gateway agent that will be used to process propagation jobs.

Syntax

DBMS_MGWADM.CREATE_AGENT (
 agent_name IN VARCHAR2,
 username IN VARCHAR2 DEFAULT NULL,
 password IN VARCHAR2 DEFAULT NULL,
 database IN VARCHAR2 DEFAULT NULL,
 conntype IN VARCHAR2 DEFAULT DBMS_MGWADM.JDBC_OCI,
 max_memory IN PLS_INTEGER DEFAULT 64,
 max_threads IN PLS_INTEGER DEFAULT 1,
 service IN VARCHAR2 DEFAULT NULL,
 initfile IN VARCHAR2 DEFAULT NULL,
 comment IN VARCHAR2 DEFAULT NULL);

Parameters

Table 90-28 CREATE_AGENT Procedure Parameters

	Parameter	Description
	
agent_name

	
A name used to identify the agent

	
username

	
Specifies the username used for connections to the Oracle Database

	
password

	
Specifies the password used for connections to the Oracle Database. A password must be specified if a username is specified.

	
database

	
Specifies the database connect string used for connections to the Oracle Database. NULL indicates that a local connection should be used. A value can be specified only if username is specified. Oracle strong recommends that a connect string, rather than NULL be specified. Usually it will be a net service name from tnsnames.ora.

	
conntype

	
Specifies the type of connection to the Oracle Database.Values: DBMS_MGWADM.JDBC_OCI, DBMS_MGWADM.JDBC_THIN

	
max_memory

	
Specifies the maximum heap size, in MB, used by the Messaging Gateway agent

	
max_threads

	
Specifies the number of messaging threads that the Messaging Gateway agent creates. This determines the number of propagation jobs that the agent can concurrently process.

	
service

	
Specifies the database service that the Oracle Scheduler job class used by this agent will have affinity to. In an Oracle RAC environment, this means that the Messaging Gateway agent will only run on those database instances that are assigned to the service. If NULL, then the job class will belong to the default service which is mapped to every instance.

	
initfile

	
Specifies a Messaging Gateway initialization file used by this agent. NULL indicates that the default initialization file is used. If a value is specified, it should be the full path name of the file.

	
comment

	
An optional comment for this agent. NULL if one is not desired.

Usage Notes

	
The Messaging Gateway automatically configures a default agent when Messaging Gateway is installed. The name of the default agent is DEFAULT_AGENT. This procedure can be used to create additional agents.

	
The username, password, and database parameters specify connection information used by the Messaging Gateway agent for connections to the Oracle Database. An Oracle administrator should create the database user and grant it the role MGW_AGENT_ROLE. It is not mandatory that the connection information be specified when this procedure is called but it must be set before the agent can be started.

	
The service parameter is used to create an Oracle Scheduler job class. The job class is used to create a Scheduler job that starts the Messaging Gateway agent. An Oracle administrator must create the database service. If the value is NULL, the job class will belong to an internal service that is mapped to all instances.

CREATE_JOB Procedure

This procedure creates a job used to propagate message from a source to a destination.

Syntax

DBMS_MGWADM.CREATE_JOB (
 job_name IN VARCHAR2,
 propagation_type IN PLS_INTEGER,
 source IN VARCHAR2,
 destination IN VARCHAR2,
 rule IN VARCHAR2 DEFAULT NULL,
 transformation IN VARCHAR2 DEFAULT NULL,
 exception_queue IN VARCHAR2 DEFAULT NULL,
 poll_interval IN PLS_INTEGER DEFAULT NULL,
 options IN SYS.MGW_PROPERTIES DEFAULT NULL,
 enabled IN BOOLEAN DEFAULT TRUE,
 comments IN VARCHAR2 DEFAULT NULL);

Parameters

Table 90-29 CREATE_JOB Procedure Parameters

	Parameter	Description
	
job_name

	
A user defined name to identify the propagation job

	
propagation_type

	
Specifies the type of message propagation.

	
DBMS_MGWADM.OUTBOUND_PROPAGATION for Oracle Streams AQ to non-Oracle propagation.

	
DBMS_MGWADM.INBOUND_PROPAGATION for non-Oracle to Oracle Streams AQ propagation.

	
source

	
Specifies the source queue whose messages are to be propagated. The syntax and interpretation of this parameter depend on the value specified for propagation_type.

	
destination

	
Specifies the destination queue to which messages are propagated. The syntax and interpretation of this parameter depend on the value specified for propagation_type.

	
rule

	
Specifies an optional subscription rule used to dequeue messages from the source queue. This should be NULL if no rule is needed. The syntax and interpretation of this parameter depend on the value specified for propagation_type.

	
transformation

	
Specifies the transformation needed to convert between the Oracle Streams AQ payload and an ADT defined by Messaging Gateway. The type of transformation needed depends on the value specified for propagation_type.

If no transformation is specified the Oracle Streams AQ payload type must be supported by Messaging Gateway.

	
exception_queue

	
Specifies a queue used for exception message logging purposes. This queue must be on the same messaging system as the propagation source. If NULL, an exception queue will not be used and propagation will stop if a problem occurs. The syntax and interpretation of this parameter depend on the value specified for propagation_type.

The source queue and exception queue cannot be the same queue.

	
poll_interval

	
Specifies the polling interval, in seconds, used by the Messaging Gateway agent when checking for messages in the source queue. If no messages are available the agent will not poll again until the polling interval has passed. Once the agent detects a message it will continue propagating messages as long as any are available.

Values: NULL or value > 0. If NULL, then the Messaging Gateway default polling interval will be used. The default polling interval is 5 seconds and can be overridden by the Messaging Gateway initialization file.

	
options

	
Optional job properties, NULL if there are none. Typically these are lesser used configuration properties supported by the messaging system.

	
enabled

	
Specifies whether this propagation job is enabled after creation. Values: TRUE, FALSE.

	
If TRUE (default), the job will be enabled after it is created.

	
If FALSE, the job will be disabled after it is created. A propagation job must be enabled and the Messaging Gateway agent running before messages can be propagated.

	
comments

	
An optional comment for this job. NULL if one is not desired.

Usage Notes

	
The job must be enabled and Messaging Gateway agent started in order for messages to be propagated.

	
If the non-Oracle messaging link being accessed for the propagation job uses a JMS interface, then the Messaging Gateway agent will use the Oracle JMS interface to access the Oracle Streams AQ queues. Otherwise the native Oracle Streams AQ interface will be used. Parameters are interpreted differently when the Messaging Gateway agent uses Oracle JMS for JMS connections.

	
Transformations are not currently supported if the Oracle JMS interface is used for propagation. The transformation parameter must be NULL.

OUTBOUND_PROPAGATION Jobs

The parameters for an outbound propagation job are interpreted as follows:

	
source specifies the local Oracle Streams AQ queue that is the propagation source. This must have syntax of schema.queue. This can be either a multiple consumer queue or a single consumer queue.

	
destination specifies the non-Oracle queue to which messages are propagated. This must have syntax of registered_queue@message_link.

	
rule specifies an optional Oracle Streams AQ subscriber rule if the native Oracle Stream AQ interface is used, or a JMS selector if the Oracle JMS interface is used. If NULL, then no rule or selector is used. This parameter must be NULL if the native Oracle Stream AQ interface is used and the propagation source is a single consumer queue.

	
transformation specifies the transformation used to convert the Oracle Streams AQ payload to an ADT defined by Messaging Gateway. The full transformation name (schema.name) should be used if one is specified.

Messaging Gateway propagation dequeues messages from the Oracle Streams AQ queue using the transformation to convert the Oracle Streams AQ payload to a known ADT defined by Messaging Gateway. The message is then enqueued in the non-Oracle messaging system based on the Messaging Gateway ADT.

	
exception_queue specifies the name of a local Oracle Streams AQ queue to which messages are moved if an exception occurs. The syntax must be schema.queue.

If the native Oracle Streams AQ interface is used and the source is a multiple consumer queue, then a subscriber will be added to the Oracle Streams AQ queue when this procedure is called, whether or not the Messaging Gateway agent is running. The local subscriber will be of the form sys.aq$_agent('MGW_job_name', NULL, NULL).

If the Oracle JMS interface is used, then the Messaging Gateway agent will create a JMS durable subscriber with the name of MGW_job_name. If the agent is not running when this procedure is called, then the durable subscriber will be created the next time the agent starts.

The exception queue has the following conditions:

	
The user is responsible for creating the Oracle Streams AQ queue to be used as the exception queue.

	
The payload type of the source queue and exception queue must match.

	
The exception queue must be created as a queue type of DBMS_AQADM.NORMAL_QUEUE. Enqueue restrictions prevent Messaging Gateway from using an Oracle Streams AQ queue of type DBMS_AQADM.EXCEPTION_QUEUE as a Messaging Gateway exception queue.

INBOUND_PROPAGATION Jobs

The parameters for an inbound propagation job are interpreted as follows:

	
source specifies the non-Oracle queue that is the propagation source. The syntax must be registered_queue@message_link.

	
destination specifies the local Oracle Streams AQ queue to which messages are propagated. The syntax must be schema.queue.

	
rule specifies an optional subscriber rule that is valid for the non-Oracle messaging system. This should be NULL if no rule is needed.

	
transformation specifies the transformation used to convert an ADT defined by Messaging Gateway to the Oracle Streams AQ payload type. The full transformation name (schema.name) should be used if one is specified

Messaging Gateway propagation dequeues messages from the non-Oracle messaging system and converts the message body to a known ADT defined by Messaging Gateway. The transformation is used to convert the Messaging Gateway ADT to an Oracle Streams AQ payload type when the message is enqueued to the Oracle Streams AQ queue.

	
exception_queue specifies the name of a registered non-Oracle queue to which messages are moved if an exception occurs. The syntax must be registered_queue@message_link.

Whether or not a subscriber is needed for the source queue depends on the requirements of the non-Oracle messaging system. If a durable subscriber is necessary, then the Messaging Gateway agent will create it. If the agent is not running when this procedure is called, then the subscriber will be created on the non-Oracle messaging system the next time the agent starts.

The exception queue has the following conditions:

	
The exception queue must be a registered non-Oracle queue.

	
The source queue and exception queue must use the same messaging system link.

CREATE_MSGSYSTEM_LINK Procedures for TIB/Rendezvous

Creates a link to a TIB/Rendezvous messaging system.

Syntax

DBMS_MGWADM.CREATE_MSGSYSTEM_LINK (
 linkname IN VARCHAR2,
 properties IN SYS.MGW_TIBRV_PROPERTIES,
 options IN SYS.MGW_PROPERTIES DEFAULT NULL,
 comment IN VARCHAR2 DEFAULT NULL);

DBMS_MGWADM.CREATE_MSGSYSTEM_LINK (
 linkname IN VARCHAR2,
 agent_name IN VARCHAR2,
 properties IN SYS.MGW_TIBRV_PROPERTIES,
 options IN SYS.MGW_PROPERTIES DEFAULT NULL,
 comment IN VARCHAR2 DEFAULT NULL);

Parameters

Table 90-30 CREATE_MSGSYSTEM_LINK Procedure Parameters for TIB/Rendezvous

	Parameter	Description
	
linkname

	
A user-defined name to identify this messaging system link

	
properties

	
Basic properties of a TIB/Rendezvous messaging system link.

	
options

	
Optional link properties. NULL if there are none. These are less frequently used configuration properties supported by the messaging system

	
comment

	
A user-specified description. NULL if one is not desired.

	
agent_name

	
Specifies the Messaging Gateway agent that will be used to process all propagation jobs associated with this link. DBMS_MGWADM.DEFAULT_AGENT specifies the default agent.

Usage Notes

The Messaging Gateway default agent will process the propagation jobs associated with this link if an agent name is not specified.

	
See Also:

"TIB/Rendezvous System Properties" in Oracle Streams Advanced Queuing User's Guide for more information about the messaging system properties and options

CREATE_MSGSYSTEM_LINK Procedures for WebSphere MQ

This procedure creates a messaging system link to a WebSphere MQ messaging system.

Syntax

DBMS_MGWADM.CREATE_MSGSYSTEM_LINK(
 linkname IN VARCHAR2,
 properties IN SYS.MGW_MQSERIES_PROPERTIES,
 options IN SYS.MGW_PROPERTIES DEFAULT NULL,
 comment IN VARCHAR2 DEFAULT NULL);

DBMS_MGWADM.CREATE_MSGSYSTEM_LINK(
 linkname IN VARCHAR2,
 agent_name IN VARCHAR2,
 properties IN SYS.MGW_MQSERIES_PROPERTIES,
 options IN SYS.MGW_PROPERTIES DEFAULT NULL,
 comment IN VARCHAR2 DEFAULT NULL);

Parameters

Table 90-31 CREATE_MSGSYSTEM_LINK Procedure Parameters for WebSphere MQ

	Parameter	Description
	
linkname

	
A user-defined name to identify the messaging system link

	
properties

	
Basic properties of a WebSphere MQ messaging system link

	
options

	
Optional link properties. NULL if there are none. These are less frequently used configuration properties supported by the messaging system.

	
comment

	
A user-specified description. NULL if one is not desired

	
agent_name

	
Specifies the Messaging Gateway agent that will be used to process all propagation jobs associated with this link. DBMS_MGWADM.DEFAULT_AGENT specifies the default agent.

Usage Notes

The Messaging Gateway default agent will process the propagation jobs associated with this link if an agent name is not specified.

	
See Also:

"WebSphere MQ System Properties" in Oracle Streams Advanced Queuing User's Guide for more information about the messaging system properties and options

DB_CONNECT_INFO Procedure

This procedure configures connection information used by the Messaging Gateway default agent for connections to Oracle Database.

	
Note:

This subprogram has been deprecated as a result of improved technology (see ALTER_AGENT Procedures), and is retained only for reasons of backward compatibility.

Syntax

DBMS_MGWADM.DB_CONNECT_INFO (
 username IN VARCHAR2,
 password IN VARCHAR2,
 database IN VARCHAR2 DEFAULT NULL);

Parameters

Table 90-32 DB_CONNECT_INFO Procedure Parameters

	Parameter	Description
	
username

	
The username used for connections to Oracle Database. NULL is not allowed

	
password

	
The password used for connections to Oracle Database. NULL is not allowed

	
database

	
The database connect string used by the Messaging Gateway agent. NULL indicates that a local connection should be used.

Oracle strongly recommends that a not NULL value be specified. Usually it will be a net service name from tnsnames.ora.

Usage Notes

The Messaging Gateway agent connects to Oracle Database as the user configured by this procedure. An Oracle administrator should create the user, grant it the role MGW_AGENT_ROLE, and then call this procedure to configure Messaging Gateway. Role MGW_AGENT_ROLE is used to grant this user special privileges needed to access Messaging Gateway configuration information stored in the database, enqueue or dequeue messages to and from Oracle Streams AQ queues, and perform certain Oracle Streams AQ administration tasks.

DISABLE_JOB Procedure

This procedure disables a propagation job.

Syntax

DBMS_MGWADM.DISABLE_JOB (
 job_name IN VARCHAR2);

Parameters

Table 90-33 DISABLE_JOB Procedure Parameters

	Parameter	Description
	
job_name

	
Identifies the propagation job

DISABLE_PROPAGATION_SCHEDULE Procedure

This procedure disables a propagation schedule.

	
Note:

This subprogram has been deprecated as a result of improved technology (see DISABLE_JOB Procedure), and is retained only for reasons of backward compatibility.

Syntax

DBMS_MGWADM.DISABLE_PROPAGATION_SCHEDULE (
 schedule_id IN VARCHAR2);

Parameters

Table 90-34 DISABLE_PROPAGATION_SCHEDULE Procedure Parameters

	Parameter	Description
	
schedule_id

	
Identifies the propagation schedule to be disabled

ENABLE_JOB Procedure

This procedure enables a propagation job.

Syntax

DBMS_MGWADM.ENABLE_JOB (
 job_name IN VARCHAR2);

Parameters

Table 90-35 ENABLE_JOB Procedure Parameters

	Parameter	Description
	
job_name

	
Identifies the propagation job

ENABLE_PROPAGATION_SCHEDULE Procedure

This procedure enables a propagation schedule.

	
Note:

This subprogram has been deprecated as a result of improved technology (see ENABLE_JOB Procedure), and is retained only for reasons of backward compatibility.

Syntax

DBMS_MGWADM.ENABLE_PROPAGATION_SCHEDULE (
 schedule_id IN VARCHAR2);

Parameters

Table 90-36 ENABLE_PROPAGATION_SCHEDULE Procedure Parameters

	Parameter	Description
	
schedule_id

	
Identifies the propagation schedule to be enabled

REGISTER_FOREIGN_QUEUE Procedure

This procedure registers a non-Oracle queue entity in Messaging Gateway.

Syntax

DBMS_MGWADM.REGISTER_FOREIGN_QUEUE(
 name IN VARCHAR2,
 linkname IN VARCHAR2,
 provider_queue IN VARCHAR2 DEFAULT NULL,
 domain IN INTEGER DEFAULT NULL,
 options IN SYS.MGW_PROPERTIES DEFAULT NULL,
 comment IN VARCHAR2 DEFAULT NULL);

Parameters

Table 90-37 REGISTER_FOREIGN_QUEUE Procedure Parameters

	Parameters	Description
	
name

	
The registered queue name. This name identifies the foreign queue within Messaging Gateway and need not match the name of the queue in the foreign messaging system.

	
linkname

	
The link name for the messaging system on which this queue exists

	
provider_queue

	
The message provider (native) queue name. If NULL, then the value provided for the name parameter is used as the provider queue name.

	
domain

	
The domain type of the queue. NULL means the domain type is automatically determined based on the messaging system of the queue. DBMS_MGWADM.DOMAIN_QUEUE is for a queue (point-to-point model). DBMS_MGWADM.DOMAIN_TOPIC is for a topic (publish-subscribe model).

	
options

	
Optional queue properties

	
comment

	
A user-specified description. Can be NULL.

Usage Notes

This procedure does not create the physical queue in the non-Oracle messaging system. The non-Oracle queue must be created using the administration tools for that messaging system.

	
See Also:

For more information when registering queues for the WebSphere MQ messaging system or the TIB/Rendezvous messaging system, specifically "Optional Foreign Queue Configuration Properties" in Oracle Streams Advanced Queuing User's Guide.

REMOVE_AGENT Procedure

This procedure removes a Messaging Gateway agent.

Syntax

DBMS_MGWADM.REMOVE_AGENT(
 agent_name IN VARCHAR2);

Parameters

Table 90-38 REMOVE_AGENT Procedure Parameters

	Parameters	Description
	
agent_name

	
Identifies the Messaging Gateway agent

Usage Notes

All messaging system links associated with this Messaging Gateway agent must be removed and the agent must be stopped before it can be removed. The Messaging Gateway default agent cannot be removed.

REMOVE_JOB Procedure

This procedure removes a propagation job.

Syntax

DBMS_MGWADM.REMOVE_JOB(
 job_name IN VARCHAR2, force IN PLS_INTEGER DEFAULT DBMS_MGWADM.NO_FORCE);

Parameters

Table 90-39 REMOVE_JOB Procedure Parameters

	Parameters	Description
	
job_name

	
Identifies the propagation job

	
force

	
Specifies whether the procedure should succeed even if Messaging Gateway is not able to perform all cleanup actions pertaining to this propagation job.

Values: DBMS_MGWADM.NO_FORCE, DBMS_MGWADM.FORCE

	
NO_FORCE (default) means the job is not removed if Messaging Gateway is unable to clean up successfully

	
FORCE means the job is removed even though all cleanup actions may not be done

Usage Notes

	
The Messaging Gateway agent uses various resources of the Oracle Database and the non-Oracle messaging system for its propagation work. These resources need to be released when the job is removed. For example, Messaging Gateway may create a durable subscriber on the source queue that should be removed when the job is removed. Therefore, this procedure should normally be called when the Messaging Gateway agent is running and able to access the non-Oracle messaging system associated with this job.

	
For outbound propagation, a local subscriber is removed from the Oracle Streams AQ queue when the propagation source is a multiple consumer queue.

REMOVE_MSGSYSTEM_LINK Procedure

This procedure removes a messaging system link for a non-Oracle messaging system.

Syntax

DBMS_MGWADM.REMOVE_MSGSYSTEM_LINK(
 linkname IN VARCHAR2);

Parameters

Table 90-40 REMOVE_MSGSYSTEM_LINK Procedure Parameters

	Parameters	Description
	
linkname

	
The messaging system link name

Usage Notes

All registered queues associated with this link must be removed before the messaging system link can be removed. This procedure fails if there is a registered foreign (non-Oracle) queue that references this link.

REMOVE_OPTION Procedure

This procedure removes a Messaging Gateway configuration option. It can be used to remove an agent option, a messaging link option, or a propagation job option.

Syntax

DBMS_MGWADM.REMOVE_OPTION (
 target_type IN PLS_INTEGER,
 target_name IN VARCHAR2,
 option_name IN VARCHAR2);

Parameters

Table 90-41 REMOVE_OPTION Procedure Parameters

	Parameter	Description
	
target_type

	
Specifies the target type of the Messaging Gateway entity:

	
DBMS_MGWADM.AGENT_JAVA_PROP to remove a Java System property for a Messaging Gateway agent

	
DBMS_MGWADM.MSGLINK_OPTION to remove a messaging link option

	
DBMS_MGWADM.JOB_OPTION to remove a propagation job option

	
target_name

	
Name or identifier of the target. The value for this parameter depends on the value specified for target_type parameter. This must not be NULL.

	
option_name

	
Option name. This must not be NULL.

	
See Also:

Table 90-10, "DBMS_MGWADM Constants—target_type Argument of SET_OPTION and REMOVE_OPTION Procedures" regarding options for the option_type parameter

Usage Notes

DBMS_MGWADM.AGENT_JAVA_PROP Target

The procedure removes an agent option used to set a Java System property when the Messaging Gateway agent is started. The agent must be restarted for the change to take effect.

The parameters are interpreted as follows:

	
target_name specifies the name of the Messaging Gateway agent. DBMS_MGWADM.DEFAULT_AGENT can be used for the default agent.

	
option_name specifies the Java System property

	
encrypted can be either TRUE or FALSE

DBMS_MGWADM.MSGLINK_OPTION Target

The procedure removes a single option for a Messaging Gateway messaging system link. This is equivalent to calling DBMS_MGWADM.ALTER_MSGSYSTEM_LINK and using the options parameter to remove an option.

The parameters are interpreted as follows:

	
target_name specifies the name of the message system link

	
option_name specifies the option to set

	
encrypted must be FALSE

DBMS_MGWADM.JOB_OPTION Target

The procedure removes a single option for a Messaging Gateway propagation job. This is equivalent to calling DBMS_MGWADM.ALTER_JOB and using the options parameter to remove an option.

The parameters are interpreted as follows:

	
target_name specifies the name of the propagation job

	
option_name specifies the option to set

	
encrypted must be FALSE

REMOVE_SUBSCRIBER Procedure

This procedure removes a subscriber used to consume messages from a source queue for propagation to a destination.

	
Note:

This subprogram has been deprecated as a result of improved technology (see REMOVE_JOB Procedure), and is retained only for reasons of backward compatibility.

Syntax

DBMS_MGWADM.REMOVE_SUBSCRIBER (
 subscriber_id IN VARCHAR2,
 force IN BINARY_INTEGER DEFAULT DBMS_MGWADM.NO_FORCE);

Parameters

Table 90-42 REMOVE_SUBSCRIBER Procedure Parameters

	Parameter	Description
	
subscriber_id

	
Identifies the subscriber to be removed

	
force

	
Specifies whether this procedure should succeed even if Messaging Gateway is not able to perform all cleanup actions pertaining to this subscriber.

Values: DBMS_MGWADM.NO_FORCE, DBMS_MGWADM.FORCE

	
NO_FORCE means the subscriber is not removed if Messaging Gateway is unable to clean up successfully (default)

	
FORCE means the subscriber is removed even though all cleanup actions may not be done

Usage Notes

	
The Messaging Gateway agent uses various resources of Oracle Database and the non-Oracle messaging system for its propagation work. These resources are typically associated with each subscriber and need to be released when the subscriber is no longer needed. Therefore, this procedure should only be called when the Messaging Gateway agent is running and able to access the non-Oracle messaging system associated with this subscriber.

	
For outbound propagation, a local subscriber is removed from the Oracle Streams AQ queue.

RESET_JOB Procedure

This procedure resets the propagation error state for a propagation job.

Syntax

DBMS_MGWADM.RESET_JOB (
 job_name IN VARCHAR2);

Parameters

Table 90-43 RESET_JOB Procedure Parameters

	Parameter	Description
	
job_name

	
Identifies the propagation job

Usage Notes

This procedure can be used to reset a propagation job that has been set to a failed state and propagation activities have been stopped. The administrator should correct the problem and then call this procedure to allow the agent to retry the propagation job. The STATUS field of the MGW_JOBS view indicates the job status.

RESET_SUBSCRIBER Procedure

This procedure resets the propagation error state for a subscriber.

	
Note:

This subprogram has been deprecated as a result of improved technology (see RESET_JOB Procedure), and is retained only for reasons of backward compatibility.

Syntax

DBMS_MGWADM.RESET_SUBSCRIBER (
 subscriber_id IN VARCHAR2);

Parameters

Table 90-44 RESET_SUBSCRIBER Procedure Parameters

	Parameter	Description
	
subscriber_id

	
Identifies the subscriber

SCHEDULE_PROPAGATION Procedure

This procedure schedules message propagation from a source to a destination. The schedule must be enabled and Messaging Gateway started in order for messages to be propagated.

	
Note:

This subprogram has been deprecated as a result of improved technology (see CREATE_JOB Procedure), and is retained only for reasons of backward compatibility.

Syntax

DBMS_MGWADM.SCHEDULE_PROPAGATION (
 schedule_id IN VARCHAR2,
 propagation_type IN BINARY_INTEGER,
 source IN VARCHAR2,
 destination IN VARCHAR2,
 start_time IN DATE DEFAULT SYSDATE,
 duration IN NUMBER DEFAULT NULL,
 next_time IN VARCHAR2 DEFAULT NULL,
 latency IN NUMBER DEFAULT NULL);

Parameters

Table 90-45 SCHEDULE_PROPAGATION Procedure Parameters

	Parameter	Description
	
schedule_id

	
Specifies a user-defined name that identifies the schedule

	
propagation_type

	
Specifies the type of message propagation. DBMS_MGWADM.OUTBOUND_PROPAGATION is for Oracle Streams AQ to non-Oracle propagation. DBMS_MGWADM.INBOUND_PROPAGATION is for non-Oracle to Oracle Streams AQ propagation.

	
source

	
Specifies the source queue whose messages are to be propagated. The syntax and interpretation of this parameter depend on the value specified for propagation_type.

	
destination

	
Specifies the destination queue to which messages are propagated. The syntax and interpretation of this parameter depend on the value specified for propagation_type.

	
start_time

	
Reserved for future use

	
duration

	
Reserved for future use

	
next_time

	
Reserved for future use

	
latency

	
Specifies the polling interval, in seconds, used by the Messaging Gateway agent when checking for messages in the source queue. If no messages are available in the source queue, then the agent will not poll again until the polling interval has passed. Once the agent detects a message it will continue propagating messages as long as any are available.

Values: NULL or value > 0. If latency is NULL, then the Messaging Gateway agent default polling interval will be used. The default polling interval is 5 seconds but it can be overridden by the Messaging Gateway initialization file.

Usage Notes

For outbound propagation, parameters are interpreted as follows:

	
source specifies the local Oracle Streams AQ queue from which messages are propagated. This must have a syntax of schema.queue.

	
destination specifies the foreign queue to which messages are propagated. This must have a syntax of registered_queue@message_link.

For inbound propagation, parameters are interpreted as follows:

	
source specifies the foreign queue from which messages are propagated. This must have a syntax of registered_queue@message_link.

	
destination specifies the local Oracle Streams AQ queue to which messages are propagated. This must have a syntax of schema.queue.

The schedule is set to an enabled state when it is created.

SET_LOG_LEVEL Procedures

This procedure dynamically alters the Messaging Gateway agent logging level. The Messaging Gateway agent must be running.

Syntax

DBMS_MGWADM.SET_LOG_LEVEL (
 log_level IN BINARY_INTEGER);

DBMS_MGWADM.SET_LOG_LEVEL (
 agent_name IN VARCHAR2,
 log_level IN BINARY_INTEGER);

Parameters

Table 90-46 SET_LOG_LEVEL Procedure Parameters

	Parameter	Description
	
log_level

	
Level at which the Messaging Gateway agent logs information. DBMS_MGWADM.BASIC_LOGGING generates the least information while DBMS_MGWADM.TRACE_DEBUG_LOGGING generates the most information.

	
agent_name

	
Identifies the Messaging Gateway agent. DBMS_MGWADM.DEFAULT_AGENT specifies the default agent.

	
See Also:

Table 90-3, "DBMS_MGWADM Constants—Logging Levels" for details on the log_level parameter

SET_OPTION Procedure

This procedure sets a Messaging Gateway configuration option. It can be used to set an agent option, a messaging link option, or a propagation job option.

Syntax

DBMS_MGWADM.SET_OPTION (
 target_type IN PLS_INTEGER,
 target_name IN VARCHAR2,
 option_name IN VARCHAR2,
 option_value IN VARCHAR2,
 encrypted IN BOOLEAN DEFAULT FALSE);

Parameters

Table 90-47 SET_OPTION Procedure Parameters

	Parameter	Description
	
target_type

	
Specifies the target type of the Messaging Gateway entity:

	
DBMS_MGWADM.AGENT_JAVA_PROP to set a Java System property for a Messaging Gateway agent

	
DBMS_MGWADM.MSGLINK_OPTION to set a messaging link option

	
DBMS_MGWADM.JOB_OPTION to set a propagation job option

	
target_name

	
Name or identifier of the target. The value for this parameter depends on the value specified for target_type parameter. This must not be NULL.

	
option_name

	
Option name. This must not be NULL.

	
option_value

	
Option value

	
encrypted

	
Indicates whether the value should be stored as encrypted:

	
TRUE if the value should be stored in an encrypted form

	
FALSE if the value should be stored in a cleartext form

	
See Also:

Table 90-10, "DBMS_MGWADM Constants—target_type Argument of SET_OPTION and REMOVE_OPTION Procedures" regarding options for the option_type parameter

Usage Notes

DBMS_MGWADM.AGENT_JAVA_PROP Target

The procedure will store an agent option used to set a Java System property when the Messaging Gateway agent is started. The agent must be restarted for the change to take effect.

The parameters are interpreted as follows:

	
target_name specifies the name of the Messaging Gateway agent. DBMS_MGWADM.DEFAULT_AGENT can be used for the default agent.

	
option_name specifies the Java System property

	
encrypted can be either TRUE or FALSE

DBMS_MGWADM.MSGLINK_OPTION Target

The procedure will set or alter a single option for a Messaging Gateway messaging system link. This is equivalent to calling DBMS_MGWADM.ALTER_MSGSYSTEM_LINK and using the options parameter to set an option.

The parameters are interpreted as follows:

	
target_name specifies the name of the message system link

	
option_name specifies the option to set

	
encrypted must be FALSE

DBMS_MGWADM.JOB_OPTION Target

The procedure will set or alter a single option for a Messaging Gateway propagation job. This is equivalent to calling DBMS_MGWADM.ALTER_JOB and using the options parameter to set an option.

The parameters are interpreted as follows:

	
target_name specifies the name of the propagation job

	
option_name specifies the option to set

	
encrypted must be FALSE

SHUTDOWN Procedures

This procedure shuts down the Messaging Gateway agent. No propagation activity occurs until Messaging Gateway is restarted.

Syntax

DBMS_MGWADM.SHUTDOWN (
 sdmode IN BINARY_INTEGER DEFAULT DBMS_MGWADM.SHUTDOWN_NORMAL);

DBMS_MGWADM.SHUTDOWN (
 agent_name IN VARCHAR2);

Parameters

Table 90-48 SHUTDOWN Procedure Parameters

	Parameter	Description
	
sdmode

	
The shutdown mode. The only value currently supported is DBMS_MGWADM.SHUTDOWN_NORMAL for normal shutdown. The Messaging Gateway agent may attempt to complete any propagation work currently in progress.

	
agent_name

	
Identifies the Messaging Gateway agent. DBMS_MGWADM.DEFAULT_AGENT specifies the default agent.

Usage Notes

The Messaging Gateway default agent is shut down if no agent name is specified.

STARTUP Procedures

This procedure starts the Messaging Gateway agent. It must be called before any propagation activity can take place.

Syntax

DBMS_MGWADM.STARTUP(
 instance IN BINARY_INTEGER DEFAULT 0,
 force IN BINARY_INTEGER DEFAULT DBMS_MGWADM.NO_FORCE);

DBMS_MGWADM.STARTUP(
 agent_name IN VARCHAR2);

Parameters

Table 90-49 STARTUP Procedure Parameters

	Parameter	Description
	
instance

	
Specifies which instance can run the job queue job used to start the Messaging Gateway agent. If this is zero, then the job can be run by any instance.

Caution: This parameter has been deprecated.

	
force

	
If this is DBMS_MGWADM.FORCE, then any positive integer is acceptable as the job instance. If this is DBMS_MGWADM.NO_FORCE (the default), then the specified instance must be running; otherwise the routine raises an exception.

Caution: This parameter has been deprecated.

	
agent_name

	
Identifies the Messaging Gateway agent. DBMS_MGWADM.DEFAULT_AGENT specifies the default agent.

Usage Notes

	
The Messaging Gateway default agent will be started if an agent name is not specified.

	
The force and instance parameters are no longer used and will be ignored. If the instance affinity parameters were being used to start the default agent on a specific instance, the administrator will need to create a database service and then assign that service to the default agent using the DBMS_MGWADM.ALTER_AGENT procedure.

	
The Messaging Gateway agent cannot be started until an agent user has been configured by the DBMS_MGWADM.CREATE_AGENT or DBMS_MGWADM.ALTER_AGENT subprograms.

UNREGISTER_FOREIGN_QUEUE Procedure

This procedure removes a non-Oracle queue entity in Messaging Gateway.

Syntax

DBMS_MGWADM.UNREGISTER_FOREIGN_QUEUE(
 name IN VARCHAR2,
 linkname IN VARCHAR2);

Parameters

Table 90-50 UNREGISTER_FOREIGN_QUEUE Procedure Parameters

	Parameter	Description
	
name

	
The queue name

	
linkname

	
The link name for the messaging system on which the queue exists

Usage Notes

	
This procedure does not remove the physical queue in the non-Oracle messaging system.

	
All propagation jobs, subscribers and schedules referencing this queue must be removed before it can be unregistered. This procedure fails if a propagation job, subscriber, or propagation schedule references the non-Oracle queue.

UNSCHEDULE_PROPAGATION Procedure

This procedure removes a propagation schedule.

	
Note:

This subprogram has been deprecated as a result of improved technology (see REMOVE_JOB Procedure), and is retained only for reasons of backward compatibility.

Syntax

DBMS_MGWADM.UNSCHEDULE_PROPAGATION (
 schedule_id IN VARCHAR2);

Parameters

Table 90-51 UNSCHEDULE_PROPAGATION Procedure Parameters

	Parameter	Description
	
schedule_id

	
Identifies the propagation schedule to be removed

DBMS_MGWMSG

91 DBMS_MGWMSG

DBMS_MGWMSG provides:

	
Object types used by the canonical message types to convert message bodies.

	
Methods, constants, and subprograms for working with Messaging Gateway message types.

	
See Also:

Chapter 90, "DBMS_MGWADM" which describes the Messaging Gateway administrative interface, DBMS_MGWADM

This chapter contains the following topics:

	
Using DBMS_MGWMSG

	
Security Model

	
Constants

	
Types

	
Summary of DBMS_MGWMSG Subprograms

Using DBMS_MGWMSG

	
Security Model

	
Constants

	
Types

Security Model

The EXECUTE privilege is granted to PUBLIC on all types defined in the DBMS_MGWMSG package as well as the canonical types. The DBMS_MGWMSG packages and object types are owned by SYS.

	
Note:

You must run the catmgw.sql script to load the Messaging Gateway packages and object types into the database. Refer to the Oracle Streams Advanced Queuing User's Guide for information on loading database objects and using DBMS_MGWMSG.

Constants

Table 91-1 DBMS_MGWMSG Constants: Value Types and Constants Representing the Type of Value for a SYS.MGW_NAME_VALUE_T Object

	Value	Constant
	
TEXT_VALUE

	
CONSTANT BINARY_INTEGER := 1

	
RAW_VALUE

	
CONSTANT BINARY_INTEGER := 2

	
BOOLEAN_VALUE

	
CONSTANT BINARY_INTEGER := 3

	
BYTE_VALUE

	
CONSTANT BINARY_INTEGER := 4

	
SHORT_VALUE

	
CONSTANT BINARY_INTEGER := 5

	
INTEGER_VALUE

	
CONSTANT BINARY_INTEGER := 6

	
LONG_VALUE

	
CONSTANT BINARY_INTEGER := 7

	
FLOAT_VALUE

	
CONSTANT BINARY_INTEGER := 8

	
DOUBLE_VALUE

	
CONSTANT BINARY_INTEGER := 9

	
DATE_VALUE

	
CONSTANT BINARY_INTEGER := 10

Table 91-2 DBMS_MGWMSG Constants: Boolean Values—Constants Representing a Boolean as a Numeric Value

	Value	Constant
	
BOOLEAN_FALSE

	
CONSTANT BINARY_INTEGER := 0

	
BOOLEAN_TRUE

	
CONSTANT BINARY_INTEGER := 1

Table 91-3 DBMS_MGWMSG Constants: Case Comparisons

	Value	Constant
	
CASE_SENSITIVE

	
CONSTANT BINARY_INTEGER := 0

	
CASE_INSENSITIVE

	
CONSTANT BINARY_INTEGER := 1

Table 91-4 Constants for the TIB/Rendezvous field type

	Value	Constant
	
TIBRVMSG_BOOL

	
CONSTANT INTEGER := 1

	
TIBRVMSG_F32

	
CONSTANT INTEGER := 2

	
TIBRVMSG_F64

	
CONSTANT INTEGER := 3

	
TIBRVMSG_I8

	
CONSTANT INTEGER := 4

	
TIBRVMSG_I16

	
CONSTANT INTEGER := 5

	
TIBRVMSG_I32

	
CONSTANT INTEGER := 6

	
TIBRVMSG_I64

	
CONSTANT INTEGER := 7

	
TIBRVMSG_IPADDR32

	
CONSTANT INTEGER := 8

	
TIBRVMSG_IPPORT16

	
CONSTANT INTEGER := 9

	
TIBRVMSG_DATETIME

	
CONSTANT INTEGER := 10

	
TIBRVMSG_F32ARRAY

	
CONSTANT INTEGER := 11

	
TIBRVMSG_F64ARRAY

	
CONSTANT INTEGER := 12

	
TIBRVMSG_I8ARRAY

	
CONSTANT INTEGER := 13

	
TIBRVMSG_I16ARRAY

	
CONSTANT INTEGER := 14

	
TIBRVMSG_I32ARRAY

	
CONSTANT INTEGER := 15

	
TIBRVMSG_I64ARRAY

	
CONSTANT INTEGER := 16

	
TIBRVMSG_OPAQUE

	
CONSTANT INTEGER := 17

	
TIBRVMSG_STRING

	
CONSTANT INTEGER := 18

	
TIBRVMSG_XML

	
CONSTANT INTEGER := 19

Types

	
SYS.MGW_NAME_VALUE_T Type

	
SYS.MGW_NAME_VALUE_T Type-Attribute Mapping

	
SYS.MGW_NAME_TYPE_ARRAY_T Type

	
SYS.MGW_TEXT_VALUE_T Type

	
SYS.MGW_RAW_VALUE_T Type

	
SYS.MGW_BASIC_MSG_T Type

	
SYS.MGW_NUMBER_ARRAY_T Type

	
SYS.MGW_TIBRV_FIELD_T Type

	
SYS.MGW_TIBRV_MSG_T Type

SYS.MGW_NAME_VALUE_T Type

This type specifies a named value. The name attribute, type attribute, and one of the <>_value attributes are typically not NULL.

Syntax

TYPE SYS.MGW_NAME_VALUE_T IS OBJECT(
 name VARCHAR2(250),
 type INTEGER,
 integer_value INTEGER,
 number_value NUMBER,
 text_value VARCHAR2(4000),
 raw_value RAW(2000),
 date_value DATE,

-- Methods
STATIC FUNCTION CONSTRUCT
RETURN SYS.MGW_NAME_VALUE_T,

STATIC FUNCTION CONSTRUCT_BOOLEAN (
 name IN VARCHAR2,
 value IN INTEGER)
RETURN SYS.MGW_NAME_VALUE_T,

STATIC FUNCTION CONSTRUCT_BYTE (
 name IN VARCHAR2,
 value IN INTEGER)
RETURN SYS.MGW_NAME_VALUE_T,

STATIC FUNCTION CONSTRUCT_SHORT (
 name IN VARCHAR2,
 value IN INTEGER)
RETURN SYS.MGW_NAME_VALUE_T,

STATIC FUNCTION CONSTRUCT_INTEGER (
 name IN VARCHAR2,
 value IN INTEGER)
RETURN SYS.MGW_NAME_VALUE_T,

STATIC FUNCTION CONSTRUCT_LONG (
 name IN VARCHAR2,
 value IN NUMBER)
RETURN SYS.MGW_NAME_VALUE_T,

STATIC FUNCTION CONSTRUCT_FLOAT (
 name IN VARCHAR2,
 value IN NUMBER)
RETURN SYS.MGW_NAME_VALUE_T,

STATIC FUNCTION CONSTRUCT_DOUBLE (
 name IN VARCHAR2,
 value IN NUMBER)
RETURN SYS.MGW_NAME_VALUE_T,

STATIC FUNCTION CONSTRUCT_TEXT (
 name IN VARCHAR2,
 value IN VARCHAR2)
RETURN SYS.MGW_NAME_VALUE_T,

STATIC FUNCTION CONSTRUCT_RAW (
 name IN VARCHAR2,
 value IN RAW)
RETURN SYS.MGW_NAME_VALUE_T,

STATIC FUNCTION CONSTRUCT_DATE (
 name IN VARCHAR2,
 value IN DATE)
RETURN SYS.MGW_NAME_VALUE_T);

Attributes

Table 91-5 SYS.MGW_NAME_VALUE_T Attributes

	Attribute	Description
	
name

	
Name associated with the value

	
type

	
Value type. Refer to the DBMS_MGWMSG.<>_VALUE constants in Table 91-1. This indicates which Java datatype and class are associated with the value. It also indicates which attribute stores the value.

	
integer_value

	
Stores a numeric integer value

	
number_value

	
Stores a numeric float or large integer value

	
text_value

	
Stores a text value

	
raw_value

	
Stores a RAW (bytes) value

	
date_value

	
Stores a date value

SYS.MGW_NAME_VALUE_T Type-Attribute Mapping

Table 91-6 shows the mapping between the value type and the attribute used to store the value.

Table 91-6 SYS.MGW_NAME_VALUE_T Type Attribute Mapping

	Type	Value Stored in Attribute
	
DBMS_MGWMSG.TEXT_VALUE

	
text_value

	
DBMS_MGWMSG.RAW_VALUE

	
raw_value

	
DBMS_MGWMSG.BOOLEAN_VALUE

	
integer_value

	
DBMS_MGWMSG.BYTE_VALUE

	
integer_value

	
DBMS_MGWMSG.SHORT_VALUE

	
integer_value

	
DBMS_MGWMSG.INTEGER_VALUE

	
integer_value

	
DBMS_MGWMSG.LONG_VALUE

	
number_value

	
DBMS_MGWMSG.FLOAT_VALUE

	
number_value

	
DBMS_MGWMSG.DOUBLE_VALUE

	
number_value

	
DBMS_MGWMSG.DATE_VALUE

	
date_value

CONSTRUCT Method

This method constructs a new SYS.MGW_NAME_VALUE_T instance. All attributes are assigned a value of NULL.

Syntax

STATIC FUNCTION CONSTRUCT
RETURN SYS.MGW_NAME_VALUE_T;

CONSTRUCT_TYPE Methods

These methods construct a new SYS.MGW_NAME_VALUE_T instance initialized with the value of a specific type. Each method sets the name and type attributes and one of the <>_value attributes, as shown in the mappings in Table 91-6.

Syntax

STATIC FUNCTION CONSTRUCT_<> (
 name IN VARCHAR2,
 value IN datatype)
RETURN SYS.MGW_NAME_VALUE_T;

Usage Notes

The construct_boolean method sets the value to either DBMS_MGWMSG.BOOLEAN_TRUE or DBMS_MGWMSG.BOOLEAN_FALSE.

SYS.MGW_NAME_TYPE_ARRAY_T Type

This type specifies an array of name-value pairs. An object of SYS.MGW_NAME_VALUE_ARRAY_T type can have up to 1024 elements.

Syntax

TYPE SYS.MGW_NAME_VALUE_ARRAY_T
 AS VARRAY (1024) OF SYS.MGW_NAME_VALUE_T;

SYS.MGW_TEXT_VALUE_T Type

This type specifies a TEXT value. It can store a large value as a CLOB or a smaller value (size <= 4000) as VARCHAR2. Only one of the < >_ value attributes should be set.

Syntax

TYPE SYS.MGW_TEXT_VALUE_T IS OBJECT(
 small_value VARCHAR2(4000),
 large_value CLOB,

-- Methods
STATIC FUNCTION CONSTRUCT
RETURN SYS.MGW_TEXT_VALUE_T);

Attributes

Table 91-7 SYS.MGW_TEXT_VALUE_T Attributes

	Attribute	Description
	
small_value

	
Small TEXT value. Used for values <= 4000.

	
large_value

	
Large TEXT value. Used when the value is too large for the small_value attribute.

CONSTRUCT Method

This method constructs a new SYS.MGW_TEXT_VALUE_T instance. All attributes are assigned a value of NULL.

Syntax

STATIC FUNCTION CONSTRUCT
RETURN SYS.MGW_TEXT_VALUE_T;

SYS.MGW_RAW_VALUE_T Type

This type specifies a RAW value. This type can store a large value as a BLOB or a smaller value (size <= 2000) as RAW. You must set no more than one of the < >_value attributes.

Syntax

TYPE SYS.MGW_RAW_VALUE_T IS OBJECT(
 small_value RAW(2000),
 large_value BLOB,

--Methods
STATIC FUNCTION CONSTRUCT
RETURN SYS.MGW_RAW_VALUE_T);

Attributes

Table 91-8 SYS.MGW_RAW_VALUE_T Attributes

	Attribute	Description
	
small_value

	
Small RAW (bytes) value <= 2000

	
large_value

	
Large RAW value. Used when the value is too large for the small_value attribute.

CONSTRUCT Method

This method constructs a new SYS.MGW_RAW_VALUE_T instance. All attributes are assigned a value of NULL.

Syntax

STATIC FUNCTION CONSTRUCT
RETURN SYS.MGW_RAW_VALUE_T;

SYS.MGW_BASIC_MSG_T Type

This is a canonical type for a basic TEXT or RAW message. Only a single TEXT or RAW value is typically set. An object of this type must not have both TEXT and RAW set to a not NULL value at the same time.

Syntax

TYPE SYS.MGW_BASIC_MSG_T IS OBJECT(
 header SYS.MGW_NAME_VALUE_ARRAY_T,
 text_body SYS.MGW_TEXT_VALUE_T,
 raw_body SYS.MGW_RAW_VALUE_T,

--Methods
STATIC FUNCTION CONSTRUCT
RETURN SYS.MGW_BASIC_MSG_T);

Attributes

Table 91-9 SYS.MGW_BASIC_MSG_T Attributes

	Attribute	Description
	
header

	
Message header information as an array of name-value pairs

	
text_body

	
Message body for a TEXT message

	
raw_body

	
Message body for a RAW (bytes) message

CONSTRUCT Method

This method constructs a new SYS.MGW_BASIC_MSG_T instance. All attributes are assigned a value of NULL.

Syntax

STATIC FUNCTION CONSTRUCT
RETURN SYS.MGW_BASIC_MSG_T;

SYS.MGW_NUMBER_ARRAY_T Type

A type that specifies an array of numbers.

Syntax

TYPE SYS.MGW_NUMBER_ARRAY_T AS VARRAY(1024) OF NUMBER;

SYS.MGW_TIBRV_FIELD_T Type

A type representing a TIB/Rendezvous message field, typically used in a read-only fashion to retrieve field information from a SYS.MGW_TIBRV_MSG_T instance.

Syntax

TYPE SYS.MGW_TIBRV_FIELD_T IS OBJECT(
 field_name VARCHAR2(256),
 field_id INTEGER,
 field_type INTEGER,
 number_value NUMBER,
 number_array_value SYS.MGW_NUMBER_ARRAY_T,
 text_value VARCHAR2(4000),
 raw_value RAW(2000),
 date_value DATE,
 clob_value CLOB,
 blob_value BLOB);

Attributes

Table 91-10 SYS.MGW_TIBRV_FIELD_T Attributes

	Attribute	Description
	
field_name

	
Field name. This will be NULL if the field has no name.

	
field_id

	
Field identifier. If the field identifier is zero (0), then that field is considered not to have a field identifier. Otherwise the field identifier is a nonzero value that is unique for all fields of that message.

	
field_type

	
Field wire format datatype. The DBMS_MGWMSG.TIBRVMSG_<> constants represent valid values for this attribute. The value of this field discriminates which value attribute is used to store the field data.

	
number_value

	
Used to store a numeric value

	
number_array_value

	
Used to store a numeric array value

	
text_value

	
Used to store a small text value

	
raw_value

	
Used to store a small raw value

	
date_value

	
Used to store a date value

	
clob_value

	
Used to store a large text value. This is used when the text data will not fit in text_value, that is, when size is larger than 4000.

	
blob_value

	
Used to store a large raw value. This is used when the raw data will not fit in raw_value; that is, when size is larger than 2000.

SYS.MGW_TIBRV_FIELD_T Type and Attribute Mapping

Table 91-11 describes the mapping in type SYS.MGW_TIBRV_FIELD_T between the field type and attribute used to store the value.

Table 91-11 SYS.MGW_TIBRV_FIELD_T Type and Attribute Mapping

	Field Type (DBMS_MGWMSG constant)	Value Stored in Attribute
	
TIBRVMSG_BOOL

	
number_value

	
TIBRVMSG_F32

	
number_value

	
TIBRVMSG_F64

	
number_value

	
TIBRVMSG_I8

	
number_value

	
TIBRVMSG_I16

	
number_value

	
TIBRVMSG_I32

	
number_value

	
TIBRVMSG_I64

	
number_value

	
TIBRVMSG_IPADDR32

	
text_value

	
TIBRVMSG_IPPORT16

	
number_value

	
TIBRVMSG_DATETIME

	
date_value

	
TIBRVMSG_F32ARRAY

	
number_array_value

	
TIBRVMSG_F64ARRAY

	
number_array_value

	
TIBRVMSG_I8ARRAY

	
number_array_value

	
TIBRVMSG_I16ARRAY

	
number_array_value

	
TIBRVMSG_I32ARRAY

	
number_array_value

	
TIBRVMSG_I64ARRAY

	
number_array_value

	
TIBRVMSG_OPAQUE

	
raw_value or blob_value

	
TIBRVMSG_STRING

	
text_value or clob_value

	
TIBRVMSG_XML

	
raw_value or blob_value

SYS.MGW_TIBRV_MSG_T Type

A type representing a TIB/Rendezvous message. You must never directly reference the attributes of this type. Instead use the type methods.

Syntax

TYPE SYS.MGW_TIBRV_MSG_T IS OBJECT(
 send_subject VARCHAR2(256),
 reply_subject VARCHAR2(256),
 cm_time_limit NUMBER,
 cm_sender_name VARCHAR2(256),
 cm_sequence_num NUMBER,
 fields SYS.MGW_TIBRV_IFIELDS_T,
 clob_data1 CLOB,
 clob_data2 CLOB,
 clob_data3 CLOB,
 blob_data1 BLOB,
 blob_data2 BLOB,
 blob_data3 BLOB,

STATIC FUNCTION construct
RETURN SYS.MGW_TIBRV_MSG_T,

MEMBER PROCEDURE add_bool (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN INTEGER),

MEMBER PROCEDURE add_f32 (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN FLOAT),

MEMBER PROCEDURE add_f64 (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN DOUBLE),

MEMBER PROCEDURE add_i8 (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN INTEGER),

MEMBER PROCEDURE add_i16 (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN INTEGER),

MEMBER PROCEDURE add_i32 (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN INTEGER),

MEMBER PROCEDURE add_i64 (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN NUMBER),

MEMBER PROCEDURE add_ipaddr32 (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN VARCHAR2),

MEMBER PROCEDURE add_ipport16 (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN INTEGER),

MEMBER PROCEDURE add_datetime (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN DATE),

MEMBER PROCEDURE add_f32array (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN SYS.MGW_NUMBER_ARRAY_T),

MEMBER PROCEDURE add_f64array (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN SYS.MGW_NUMBER_ARRAY_T),

MEMBER PROCEDURE add_i8array (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN SYS.MGW_NUMBER_ARRAY_T),

MEMBER PROCEDURE add_i16array (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN SYS.MGW_NUMBER_ARRAY_T),

MEMBER PROCEDURE add_i32array (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN SYS.MGW_NUMBER_ARRAY_T),

MEMBER PROCEDURE add_i64array (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN SYS.MGW_NUMBER_ARRAY_T),

MEMBER PROCEDURE add_string (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN VARCHAR2),

MEMBER PROCEDURE add_string (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN CLOB),

MEMBER PROCEDURE add_opaque (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN RAW),

MEMBER PROCEDURE add_opaque (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN BLOB),

MEMBER PROCEDURE add_xml (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN RAW),

MEMBER PROCEDURE add_xml (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN BLOB),

MEMBER PROCEDURE set_send_subject (
 value IN VARCHAR2),

MEMBER PROCEDURE set_reply_subject (
 value IN VARCHAR2),

MEMBER PROCEDURE set_cm_time_limit (
 value IN NUMBER),

MEMBER PROCEDURE set_cm_sender_name (
 value IN VARCHAR2),

MEMBER PROCEDURE set_cm_sequence_num (
 value IN NUMBER),

MEMBER FUNCTION get_send_subject
RETURN VARCHAR2,

MEMBER FUNCTION get_reply_subject
RETURN VARCHAR2,

MEMBER FUNCTION get_cm_time_limit
RETURN NUMBER,

MEMBER FUNCTION get_cm_sender_name
RETURN VARCHAR2,

MEMBER FUNCTION get_cm_sequence_num
RETURN NUMBER,

MEMBER FUNCTION get_field_count
RETURN INTEGER,

MEMBER FUNCTION get_field (
 idx IN INTEGER)
RETURN SYS.MGW_TIBRV_FIELD_T,

MEMBER FUNCTION get_field_by_name (
 name IN VARCHAR2)
RETURN SYS.MGW_TIBRV_FIELD_T,

MEMBER FUNCTION get_field_by_id (
 id IN INTEGER)
RETURN SYS.MGW_TIBRV_FIELD_T,

MEMBER FUNCTION find_field_name (
 name IN VARCHAR2,
 start_idx IN INTEGER)
RETURN INTEGER,

MEMBER FUNCTION find_field_id (
 id IN INTEGER,
 start_idx IN INTEGER)
RETURN INTEGER
);

Attributes

Table 91-12 SYS.MGW_TIBRV_MSG_T Type Attributes

	Attribute	Description
	
send_subject

	
Send subject name

	
reply_subject

	
Reply subject name

	
cm_time_limit

	
Time limit for a certified message

	
cm_sender_name

	
Sender name of a certified message

	
cm_sequence_num

	
Sequence number of a certified message

	
fields

	
Collection of message fields

	
clob_data1

	
Used to store a large text value

	
clob_data2

	
Used to store a large text value

	
clob_data3

	
Used to store a large text value

	
blob_data1

	
Used to store a large raw value

	
blob_data2

	
Used to store a large raw value

	
blob_data3

	
Used to store a large raw value

Construct Method

Constructs a new SYS.MGW_TIBRV_MSG_T instance. All attributes are set to NULL.

Syntax

STATIC FUNCTION construct
RETURN SYS.MGW_TIBRV_MSG_T;

ADD_<> Methods

Adds a new field to the message.

Syntax

MEMBER PROCEDURE ADD_<> (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN datatype);

Parameters

Table 91-13 SYS.MGW_TIBRV_MSG_T ADD_<> Method Parameters

	Parameter	Description
	
name

	
Field name

	
id

	
Field identifier

	
value

	
Field data

Table 91-14 shows, for each add method, the field type that will be assigned and valid values for the field data.

Table 91-14 MGW_TIBRV_MSG_T Add Method Field Types

	Method Name	Field Type Assigned	Comment
	
add_bool

	
TIBRVMSG_BOOL

	
Valid values: 0 (false), 1 (true)

	
add_f32

	
TIBRVMSG_F32

	
n/a

	
add_f64

	
TIBRVMSG_F64

	
n/a

	
add_i8

	
TIBRVMSG_I8

	
Valid range: -128...127

	
add_i16

	
TIBRVMSG_I16

	
Valid range: -32768...32767

	
add_i32

	
TIBRVMSG_I32

	
Valid range: -2147483648... 2147483647

	
add_i64

	
TIBRVMSG_I64

	
n/a

	
add_ipaddr32

	
TIBRVMSG_IPADDR32

	
n/a

	
add_ipport16

	
TIBRVMSG_IPPORT16

	
n/a

	
add_datetime

	
TIBRVMSG_DATETIME

	
n/a

	
add_f32array

	
TIBRVMSG_F32ARRAY

	
n/a

	
add_f64array

	
TIBRVMSG_F64ARRAY

	
n/a

	
add_i8array

	
TIBRVMSG_I8ARRAY

	
Valid range: -128...127

	
add_i16array

	
TIBRVMSG_I16ARRAY

	
Valid range: -32768...32767

	
add_i32array

	
TIBRVMSG_I32ARRAY

	
Valid range: -2147483648... 2147483647

	
add_i64array

	
TIBRVMSG_I64ARRAY

	
n/a

	
add_opaque

	
TIBRVMSG_OPAQUE

	
Value stored as RAW if size < 2000; otherwise value stored in BLOB

	
add_string

	
TIBRVMSG_STRING

	
Value stored as VARCHAR2 if size < 4000; otherwise value stored in CLOB

	
add_xml

	
TIBRVMSG_XML

	
Value stored as RAW if size < 2000; otherwise value stored in BLOB

SET_<> Methods

Accessor methods to set an instance attribute to a specific value.

Syntax

MEMBER PROCEDURE SET_<> (
 value IN datatype);

Parameters

Table 91-15 SYS.MGW_TIBRV_MSG_T SET_<> Method Parameters

	Parameter	Description
	
value

	
Value to be assigned

GET_<> Methods

Accessor methods to retrieve the value for an instance attribute.

Syntax

MEMBER PROCEDURE GET_<>
RETURN datatype;

Parameters

None

Return Values

Returns the attribute value.

GET_FIELD_COUNT Function

Gets the number of message fields.

Syntax

MEMBER PROCEDURE get_field_count
RETURN INTEGER;

Parameters

None

Return Values

Returns the number of fields, or zero (0) if there are none.

GET_FIELD Function

Retrieves field information for the field having a given field collection index. This method should only be called if the GET_FIELD_COUNT Function returns a nonzero value and idx must specify a valid collection index; that is, 1<=idx<=get_field_count().

Syntax

MEMBER PROCEDURE get_field (
 idx IN INTEGER)
RETURN SYS.MGW_TIBRV_FIELD_T;

Parameters

Table 91-16 SYS.MGW_TIBRV_MSG_T GET_FIELD Function Parameters

	Parameter	Description
	
idx

	
Specifies the 1-based field collection index of the field to retrieve

	
Note:

A 1-based index begins at one (1) instead of zero (0).

Return Values

Returns the field information.

GET_FIELD_BY_NAME Function

Retrieves field information for the first field that has a given field name. The name comparison is case-sensitive.

Syntax

MEMBER PROCEDURE get_field_by_name (
 name IN VARCHAR2)
RETURN SYS.MGW_TIBRV_FIELD_T;

Parameters

Table 91-17 SYS.MGW_TIBRV_MSG_T GET_FIELD_BY_NAME Function Parameters

	Parameter	Description
	
name

	
Specifies the field name to search for. This can be NULL to find the first field that does not have a field name.

Return Values

Returns the field information, or NULL if no match was found.

GET_FIELD_BY_ID Function

Retrieves field information for the first field that has a given field identifier.

A field can have either a unique identifier or no identifier. If the field identifier value is zero (0) or NULL, then the field is considered to have no identifier. Otherwise, the identifier is a nonzero value that is unique for all the fields of this message.

Syntax

MEMBER PROCEDURE get_field_by_id (
 id IN INTEGER)
RETURN SYS.MGW_TIBRV_FIELD_T;

Parameters

Table 91-18 SYS.MGW_TIBRV_MSG_T GET_FIELD_BY_ID Function Parameters

	Parameter	Description
	
id

	
Specifies the field identifier to search for. This can be zero (0) or NULL to find the first field that does not have an identifier.

Return Values

Returns the field information, or NULL if no match was found.

FIND_FIELD_NAME Function

Searches for a field with a given field name, starting from a given index of the field collection. It returns the index of that field. The name comparison is case-sensitive. This function is useful for finding all the fields that have the same name.

Syntax

MEMBER PROCEDURE find_field_name (
 name IN VARCHAR2,
 start_idx IN INTEGER)
RETURN INTEGER;

Parameters

Table 91-19 SYS.MGW_TIBRV_MSG_T FIND_FIELD_NAME Function Parameters

	Parameter	Description
	
name

	
Specifies the field name to search for. This can be NULL to search for a field that does not have a field name.

	
start_idx

	
Specifies the 1-based field collection index from which the search should start.

Return Values

Returns the field index (> 0) if a match was found, or zero (0) if no match was found.

FIND_FIELD_ID Function

Searches for a field with a given field identifier, starting from a given index of the field collection. It returns the index of that field.

Syntax

MEMBER PROCEDURE find_field_id (
 id IN INTEGER,
 start_idx IN INTEGER)
RETURN INTEGER;

Parameters

Table 91-20 SYS.MGW_TIBRV_MSG_T FIND_FIELD_ID Function Parameters

	Parameter	Description
	
id

	
Specifies the field identifier to search for. This can be zero (0) or NULL to find a field that does not have an identifier.

	
start_idx

	
Specifies the 1-based field collection index from which the search should start.

Return Values

Returns the field index (> 0) if a match was found, or zero (0) if no match was found.

Summary of DBMS_MGWMSG Subprograms

Table 91-21 DBMS_MGWMSG Package Subprograms

	Subprogram	Description
	
LCR_TO_XML Function

	
Converts a SYS.ANYDATA object encapsulating a row LCR (LCR$_ROW_RECORD) or a DDL LCR (LCR$_DDL_RECORD) to a SYS.XMLTYPE object

	
NVARRAY_ADD Procedure

	
Appends a name-value element to the end of a name-value array

	
NVARRAY_FIND_NAME Function

	
Searches a name-value array for the element with the name you specify in p_name

	
NVARRAY_FIND_NAME_TYPE Function

	
Searches a name-value array for an element with the name and value type you specify

	
NVARRAY_GET Function

	
Gets the name-value element of the name you specify in p_name from a name-value array

	
NVARRAY_GET_BOOLEAN Function

	
Gets the value of the name-value array element that you specify in p_name and with the BOOLEAN_VALUE value type

	
NVARRAY_GET_BYTE Function

	
Gets the value of the name-value array element that you specify in p_name and with the BYTE_VALUE value type

	
NVARRAY_GET_DATE Function

	
Gets the value of the name-value array element that you specify in p_name and with the DATE_VALUE value type

	
NVARRAY_GET_DOUBLE Function

	
Gets the value of the name-value array element that you specify in p_name and with the DOUBLE_VALUE value type

	
NVARRAY_GET_FLOAT Function

	
Gets the value of the name-value array element that you specify in p_name and with the FLOAT_VALUE value type

	
NVARRAY_GET_INTEGER Function

	
Gets the value of the name-value array element that you specify in p_name and with the INTEGER_VALUE value type

	
NVARRAY_GET_LONG Function

	
Gets the value of the name-value array element that you specify in p_name and with the LONG_VALUE value type

	
NVARRAY_GET_RAW Function

	
Gets the value of the name-value array element that you specify in p_name and with the RAW_VALUE value type

	
NVARRAY_GET_SHORT Function

	
Gets the value of the name-value array element that you specify in p_name and with the SHORT_VALUE value type

	
NVARRAY_GET_TEXT Function

	
Gets the value of the name-value array element that you specify in p_name and with the TEXT_VALUE value type

	
XML_TO_LCR Function

	
Converts a SYS.XMLTYPE object to a SYS.ANYDATA object encapsulating a row LCR (LCR$_ROW_RECORD) or a DDL LCR (LCR$_DDL_RECORD)

LCR_TO_XML Function

This function converts a SYS.ANYDATA object encapsulating a row LCR (Logical Change Record, in this case a LCR$_ROW_RECORD) or a DDL LCR (LCR$_DDL_RECORD) to a SYS.XMLTYPE object.

	
See Also:

XML_TO_LCR Function

Syntax

DBMS_MGWMSG.LCR_TO_XML (
 p_anydata IN SYS.ANYDATA)
 RETURN SYS.XMLTYPE;

Parameters

Table 91-22 LCR_TO_XML Function Parameters

	Parameter	Description
	
p_anydata

	
An ANYDATA object to be converted

Return Values

Returns a SYS.XMLTYPE object.

Usage Notes

An exception is raised if the encapsulated type p_anydata is not an LCR.

NVARRAY_ADD Procedure

This procedure appends a name-value element to the end of a name-value array.

Syntax

DBMS_MGWMSG.NVARRAY_ADD (
 p_array IN OUT SYS.MGW_NAME_VALUE_ARRAY_T,
 p_value IN SYS.MGW_NAME_VALUE_T);

Parameters

Table 91-23 NVARRAY_ADD Procedure Parameters

	Parameter	Description
	
p_array

	
On input, the name-value array instance to modify. If NULL, then a new array is created. On output, the modified name-value array instance.

	
p_value

	
The value to add. If NULL, then p_array is not changed.

NVARRAY_FIND_NAME Function

This function searches a name-value array for the element with the name you specify in p_name.

Syntax

DBMS_MGWMSG.NVARRAY_FIND_NAME (
 p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
 p_name IN VARCHAR2,
 p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)
RETURN BINARY_INTEGER;

Parameters

Table 91-24 NVARRAY_FIND_NAME Function Parameters

	Parameters	Description
	
p_array

	
The name-value array to search

	
p_name

	
The name to find

	
p_compare

	
Name comparison method. Values are CASE_SENSITIVE and CASE_INSENSITIVE.

Return Values

Returns a positive integer that is the array index of the matching element or zero (0) if the specified name is not found.

NVARRAY_FIND_NAME_TYPE Function

This function searches a name-value array for an element with the name and value type you specify.

Syntax

DBMS_MGWMSG.NVARRAY_FIND_NAME_TYPE (
 p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
 p_name IN VARCHAR2,
 p_type IN BINARY_INTEGER
 p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)
RETURN BINARY_INTEGER;

Parameters

Table 91-25 NVARRAY_FIND_NAME_TYPE Function Parameters

	Parameter	Description
	
p_array

	
The name-value array to search

	
p_name

	
The name to find

	
p_type

	
The value type. Refer to the value type constants in Table 91-1 .

	
p_compare

	
Name comparison method. Values are CASE_SENSITIVE and CASE_INSENSITIVE.

Return Values

Returns a positive integer that is the array index of the matching element, zero (0) if the specified name is not found, or negative one (-1) if the specified name is found but a type mismatch exists.

NVARRAY_GET Function

This function gets the name-value element of the name you specify in p_name from a name-value array.

Syntax

DBMS_MGWMSG.NVARRAY_GET (
 p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
 p_name IN VARCHAR2,
 p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)
RETURN SYS.MGW_NAME_VALUE_T;

Parameters

Table 91-26 NVARRAY_GET Function Parameters

	Parameter	Description
	
p_array

	
The name-value array

	
p_name

	
The value name

	
p_compare

	
Name comparison method. Values are CASE_SENSITIVE and CASE_INSENSITIVE.

Return Values

Returns the matching element, or NULL if the specified name is not found.

NVARRAY_GET_BOOLEAN Function

This function gets the value of the name-value array element that you specify in p_name and with the BOOLEAN_VALUE value type.

Syntax

DBMS_MGWMSG.NVARRAY_GET_BOOLEAN (
 p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
 p_name IN VARCHAR2,
 p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)
RETURN INTEGER;

Parameters

Table 91-27 NVARRAY_GET_BOOLEAN Function Parameters

	Parameter	Description
	
p_array

	
The name-value array

	
p_name

	
The value name

	
p_compare

	
Name comparison method. Values are CASE_SENSITIVE and CASE_INSENSITIVE.

Return Values

Returns the value, or NULL if either the specified name is not found or a type mismatch exists.

NVARRAY_GET_BYTE Function

This function gets the value of the name-value array element that you specify in p_name and with the BYTE_VALUE value type.

Syntax

DBMS_MGWMSG.NVARRAY_GET_BYTE (
 p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
 p_name IN VARCHAR2,
 p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)
RETURN INTEGER;

Parameters

Table 91-28 NVARRAY_GET_BYTE Function Parameters

	Parameter	Description
	
p_array

	
The name-value array

	
p_name

	
The value name

	
p_compare

	
Name comparison method. Values are CASE_SENSITIVE and CASE_INSENSITIVE.

Return Values

Returns the value, or NULL if either the specified name is not found or a type mismatch exists.

NVARRAY_GET_DATE Function

This function gets the value of the name-value array element that you specify in p_name and with the DATE_VALUE value type.

Syntax

DBMS_MGWMSG.NVARRAY_GET_DATE (
 p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
 p_name IN VARCHAR2,
 p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)
RETURN DATE;

Parameters

Table 91-29 NVARRAY_GET_DATE Function Parameters

	Parameters	Description
	
p_array

	
The name-value array

	
p_name

	
The value name

	
p_compare

	
Name comparison method. Values are CASE_SENSITIVE and CASE_INSENSITIVE.

Return Values

Returns the value, or NULL if either the specified name is not found or a type mismatch exists.

NVARRAY_GET_DOUBLE Function

This function gets the value of the name-value array element that you specify in p_name and with the DOUBLE_VALUE value type.

Syntax

DBMS_MGWMSG.NVARRAY_GET_DOUBLE (
 p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
 p_name IN VARCHAR2,
 p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)
RETURN NUMBER;

Parameters

Table 91-30 NVARRAY_GET_DOUBLE Function Parameters

	Parameter	Description
	
p_array

	
The name-value array

	
p_name

	
The value name

	
p_compare

	
Name comparison method. Values are CASE_SENSITIVE and CASE_INSENSITIVE.

Return Values

Returns the value, or NULL if either the specified name is not found or a type mismatch exists.

NVARRAY_GET_FLOAT Function

This function gets the value of the name-value array element that you specify in p_name and with the FLOAT_VALUE value type.

Syntax

DBMS_MGWMSG.NVARRAY_GET_FLOAT (
 p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
 p_name IN VARCHAR2,
 p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)
RETURN NUMBER;

Parameters

Table 91-31 NVARRAY_GET_FLOAT Function Parameters

	Parameter	Description
	
p_array

	
The name-value array

	
p_name

	
The value name

	
p_compare

	
Name comparison method. Values are CASE_SENSITIVE and CASE_INSENSITIVE.

Return Values

Returns the value, or NULL if either the specified name is not found or a type mismatch exists.

NVARRAY_GET_INTEGER Function

This function gets the value of the name-value array element that you specify in p_name and with the INTEGER_VALUE value type.

Syntax

DBMS_MGWMSG.NVARRAY_GET_INTEGER (
 p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
 p_name IN VARCHAR2,
 p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)
RETURN INTEGER;

Parameters

Table 91-32 NVARRAY_GET_INTEGER Function Parameters

	Parameter	Description
	
p_array

	
The name-value array

	
p_name

	
The value name

	
p_compare

	
Name comparison method. Values are CASE_SENSITIVE and CASE_INSENSITIVE.

Return Values

Returns the value, or NULL if either the specified name is not found or a type mismatch exists.

NVARRAY_GET_LONG Function

This function gets the value of the name-value array element that you specify in p_name and with the LONG_VALUE value type.

Syntax

DBMS_MGWMSG.NVARRAY_GET_LONG (
 p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
 p_name IN VARCHAR2,
 p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)
RETURN NUMBER;

Parameters

Table 91-33 NVARRAY_GET_LONG Function Parameters

	Parameter	Description
	
p_array

	
The name-value array

	
p_name

	
The value name

	
p_compare

	
Name comparison method. Values are CASE_SENSITIVE and CASE_INSENSITIVE.

Return Values

Returns the value, or NULL if either the specified name is not found or a type mismatch exists.

NVARRAY_GET_RAW Function

This function gets the value of the name-value array element that you specify in p_name and with the RAW_VALUE value type.

Syntax

DBMS_MGWMSG.NVARRAY_GET_RAW (
 p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
 p_name IN VARCHAR2,
 p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)
RETURN RAW;

Parameters

Table 91-34 NVARRAY_GET_RAW Function Parameters

	Parameter	Description
	
p_array

	
The name-value array

	
p_name

	
The value name

	
p_compare

	
Name comparison method. Values are CASE_SENSITIVE and CASE_INSENSITIVE.

Return Values

Returns the value, or NULL if either the specified name is not found or a type mismatch exists.

NVARRAY_GET_SHORT Function

This function gets the value of the name-value array element that you specify in p_name and with the SHORT_VALUE value type.

Syntax

DBMS_MGWMSG.NVARRAY_GET_SHORT (
 p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
 p_name IN VARCHAR2,
 p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)
RETURN INTEGER;

Parameters

Table 91-35 NVARRAY_GET_SHORT Function Parameters

	Parameter	Description
	
p_array

	
The name-value array

	
p_name

	
The value name

	
p_compare

	
Name comparison method. Values are CASE_SENSITIVE and CASE_INSENSITIVE.

Return Values

Returns the value, or NULL if either the specified name is not found or a type mismatch exists.

NVARRAY_GET_TEXT Function

This function gets the value of the name-value array element that you specify in p_name and with the TEXT_VALUE value type.

Syntax

DBMS_MGWMSG.NVARRAY_GET_TEXT (
 p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
 p_name IN VARCHAR2,
 p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)
RETURN VARCHAR2;

Parameters

Table 91-36 NVARRAY_GET_TEXT Function Parameters

	Parameter	Description
	
p_array

	
The name-value array

	
p_name

	
The value name

	
p_compare

	
Name comparison method. Values are CASE_SENSITIVE and CASE_INSENSITIVE.

Return Values

Returns the value, or NULL if either the specified name is not found or a type mismatch exists.

XML_TO_LCR Function

This function converts a SYS.XMLTYPE object to a SYS.ANYDATA object encapsulating a row LCR (LCR$_ROW_RECORD) or a DDL LCR (LCR$_DDL_RECORD).

	
See Also:

LCR_TO_XML Function

Syntax

DBMS_MGWMSG.XML_TO_LCR (
 p_xmldata IN SYS.XMLTYPE)
 RETURN SYS.ANYDATA;

Parameters

Table 91-37 XML_TO_LCR Function Parameters

	Parameter	Description
	
p_xmldata

	
An XMLTYPE object representing an LCR

Return Values

Returns a SYS.ANYDATA object.

Usage Notes

An exception is raised if p_xmldata cannot be converted to an LCR.

DBMS_MONITOR

92 DBMS_MONITOR

The DBMS_MONITOR package let you use PL/SQL for controlling additional tracing and statistics gathering.

The chapter contains the following topics:

	
Summary of DBMS_MONITOR Subprograms

Summary of DBMS_MONITOR Subprograms

Table 92-1 DBMS_MONITOR Package Subprograms

	Subprogram	Description
	
CLIENT_ID_STAT_DISABLE Procedure

	
Disables statistic gathering previously enabled for a given Client Identifier

	
CLIENT_ID_STAT_ENABLE Procedure

	
Enables statistic gathering for a given Client Identifier

	
CLIENT_ID_TRACE_DISABLE Procedure

	
Disables the trace previously enabled for a given Client Identifier globally for the database

	
CLIENT_ID_TRACE_ENABLE Procedure

	
Enables the trace for a given Client Identifier globally for the database

	
DATABASE_TRACE_DISABLE Procedure

	
Disables SQL trace for the whole database or a specific instance

	
DATABASE_TRACE_ENABLE Procedure

	
Enables SQL trace for the whole database or a specific instance

	
SERV_MOD_ACT_STAT_DISABLE Procedure

	
Disables statistic gathering enabled for a given combination of Service Name, MODULE and ACTION

	
SERV_MOD_ACT_STAT_ENABLE Procedure

	
Enables statistic gathering for a given combination of Service Name, MODULE and ACTION

	
SERV_MOD_ACT_TRACE_DISABLE Procedure

	
Disables the trace for ALL enabled instances for a or a given combination of Service Name, MODULE and ACTION name globally

	
SERV_MOD_ACT_TRACE_ENABLE Procedure

	
Enables SQL tracing for a given combination of Service Name, MODULE and ACTION globally unless an instance_name is specified

	
SESSION_TRACE_DISABLE Procedure

	
Disables the previously enabled trace for a given database session identifier (SID) on the local instance

	
SESSION_TRACE_ENABLE Procedure

	
Enables the trace for a given database session identifier (SID) on the local instance

CLIENT_ID_STAT_DISABLE Procedure

This procedure will disable statistics accumulation for all instances and remove the accumulated results from V$CLIENT_STATS view enabled by the CLIENT_ID_STAT_ENABLE Procedure.

Syntax

DBMS_MONITOR.CLIENT_ID_STAT_DISABLE(
 client_id IN VARCHAR2);

Parameters

Table 92-2 CLIENT_ID_STAT_DISABLE Procedure Parameters

	Parameter	Description
	
client_id

	
Client Identifier for which statistic aggregation is disabled

Examples

To disable accumulation:

EXECUTE DBMS_MONITOR.CLIENT_ID_STAT_DISABLE('janedoe');

CLIENT_ID_STAT_ENABLE Procedure

This procedure enables statistic gathering for a given Client Identifier. Statistics gathering is global for the database and persistent across instance starts and restarts. That is, statistics are enabled for all instances of the same database, including restarts. Statistics are viewable through V$CLIENT_STATS views.

Syntax

DBMS_MONITOR.CLIENT_ID_STAT_ENABLE(
 client_id IN VARCHAR2);

Parameters

Table 92-3 CLIENT_ID_STAT_ENABLE Procedure Parameters

	Parameter	Description
	
client_id

	
Client Identifier for which statistic aggregation is enabled

Examples

To enable statistic accumulation for a client with a given client ID:

EXECUTE DBMS_MONITOR.CLIENT_ID_STAT_ENABLE('janedoe');

CLIENT_ID_TRACE_DISABLE Procedure

This procedure will disable tracing enabled by the CLIENT_ID_TRACE_ENABLE Procedure.

Syntax

DBMS_MONITOR.CLIENT_ID_TRACE_DISABLE(
 client_id IN VARCHAR2);

Parameters

Table 92-4 CLIENT_ID_TRACE_DISABLE Procedure Parameters

	Parameter	Description
	
client_id

	
Client Identifier for which SQL tracing is disabled

Examples

EXECUTE DBMS_MONITOR.CLIENT_ID_TRACE_DISABLE ('janedoe');

CLIENT_ID_TRACE_ENABLE Procedure

This procedure will enable the trace for a given client identifier globally for the database.

Syntax

DBMS_MONITOR.CLIENT_ID_TRACE_ENABLE(
 client_id IN VARCHAR2,
 waits IN BOOLEAN DEFAULT TRUE,
 binds IN BOOLEAN DEFAULT FALSE,
 plan_stat IN VARCHAR2 DEFAULT NULL);

Parameters

Table 92-5 CLIENT_ID_TRACE_ENABLE Procedure Parameters

	Parameter	Description
	
client_id

	
Database Session Identifier for which SQL tracing is enabled

	
waits

	
If TRUE, wait information is present in the trace

	
binds

	
If TRUE, bind information is present in the trace

	
plan_stat

	
Frequency at which we dump row source statistics. Value should be 'NEVER', 'FIRST_EXECUTION' (equivalent to NULL) or 'ALL_EXECUTIONS'.

Usage Notes

	
The trace will be written to multiple trace files because more than one Oracle shadow process can work on behalf of a given client identifier.

	
The tracing is enabled for all instances and persistent across restarts.

Examples

EXECUTE DBMS_MONITOR.CLIENT_ID_TRACE_ENABLE('janedoe', TRUE,
FALSE);

DATABASE_TRACE_DISABLE Procedure

This procedure disables SQL trace for the whole database or a specific instance.

Syntax

DBMS_MONITOR.DATABASE_TRACE_DISABLE(
 instance_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 92-6 DATABASE_TRACE_DISABLE Procedure Parameters

	Parameter	Description
	
instance_name

	
Disables tracing for the named instance

DATABASE_TRACE_ENABLE Procedure

This procedure enables SQL trace for the whole database or a specific instance.

Syntax

DBMS_MONITOR.DATABASE_TRACE_ENABLE(
 waits IN BOOLEAN DEFAULT TRUE,
 binds IN BOOLEAN DEFAULT FALSE,
 instance_name IN VARCHAR2 DEFAULT NULL,
 plan_stat IN VARCHAR2 DEFAULT NULL);

Parameters

Table 92-7 DATABASE_TRACE_ENABLE Procedure Parameters

	Parameter	Description
	
waits

	
If TRUE, wait information will be present in the trace

	
binds

	
If TRUE, bind information will be present in the trace

	
instance_name

	
If set, restricts tracing to the named instance

	
plan_stat

	
Frequency at which we dump row source statistics. Value should be 'NEVER', 'FIRST_EXECUTION' (equivalent to NULL) or 'ALL_EXECUTIONS'.

SERV_MOD_ACT_STAT_DISABLE Procedure

This procedure will disable statistics accumulation and remove the accumulated results from V$SERV_MOD_ACT_STATS view. Statistics disabling is persistent for the database. That is, service statistics are disabled for instances of the same database (plus dblinks that have been activated as a result of the enable).

Syntax

DBMS_MONITOR.SERV_MOD_ACT_STAT_DISABLE(
 service_name IN VARCHAR2,
 module_name IN VARCHAR2,
 action_name IN VARCHAR2 DEFAULT ALL_ACTIONS);

Parameters

Table 92-8 SERV_MOD_ACT_STAT_DISABLE Procedure Parameters

	Parameter	Description
	
service_name

	
Name of the service for which statistic aggregation is disabled

	
module_name

	
Name of the MODULE. An additional qualifier for the service. It is a required parameter.

	
action_name

	
Name of the ACTION. An additional qualifier for the Service and MODULE name. Omitting the parameter (or supplying ALL_ACTIONS constant) means enabling aggregation for all Actions for a given Service/MODULE combination. In this case, statistics are aggregated on the module level.

Usage Notes

Regarding statistics gathering, when you change the module or action, the change takes effect when the next user call is executed in the session. For example, if a module is set to 'module 1' in a session, and the module is reset to 'module 2' in a user call in the session, then the module remains 'module 1' during this user call. The module is changed to 'module 2' in the next user call in the session.

SERV_MOD_ACT_STAT_ENABLE Procedure

This procedure enables statistic gathering for a given combination of Service Name, MODULE and ACTION. Calling this procedure enables statistic gathering for a hierarchical combination of Service name, MODULE name, and ACTION name on all instances for the same database. Statistics are accessible by means of the V$SERV_MOD_ACT_STATS view.

Syntax

DBMS_MONITOR.SERV_MOD_ACT_STAT_ENABLE(
 service_name IN VARCHAR2,
 module_name IN VARCHAR2,
 action_name IN VARCHAR2 DEFAULT ALL_ACTIONS);

Parameters

Table 92-9 SERV_MOD_ACT_STAT_ENABLE Procedure Parameters

	Parameter	Description
	
service_name

	
Name of the service for which statistic aggregation is enabled

	
module_name

	
Name of the MODULE. An additional qualifier for the service. It is a required parameter.

	
action_name

	
Name of the ACTION. An additional qualifier for the Service and MODULE name. Omitting the parameter (or supplying ALL_ACTIONS constant) means enabling aggregation for all Actions for a given Service/MODULE combination. In this case, statistics are aggregated on the module level.

Usage Notes

Enabling statistic aggregation for the given combination of Service/Module/Action names is slightly complicated by the fact that the Module/Action values can be empty strings which are indistinguishable from NULLs. For this reason, we adopt the following conventions:

A special constant (unlikely to be a real action names) is defined:

ALL_ACTIONS constant VARCHAR2 := '###ALL_ACTIONS';

Using ALL_ACTIONS for an action specification means that aggregation is enabled for all actions with a given module name, while using NULL (or empty string) means that aggregation is enabled for an action whose name is an empty string.

Regarding statistics gathering, when you change the module or action, the change takes effect when the next user call is executed in the session. For example, if a module is set to 'module 1' in a session, and the module is reset to 'module 2' in a user call in the session, then the module remains 'module 1' during this user call. The module is changed to 'module 2' in the next user call in the session.

Examples

To enable statistic accumulation for a given combination of Service name and MODULE:

EXECUTE DBMS_MONITOR.SERV_MOD_ACT_STAT_ENABLE('APPS1','PAYROLL');

To enable statistic accumulation for a given combination of Service name, MODULE and ACTION:

EXECUTE
DBMS_MONITOR.SERV_MOD_ACT_STAT_ENABLE('APPS1','GLEDGER','DEBIT_ENTRY');

If both of the preceding commands are issued, statistics are accumulated as follows:

	
For the APPS1 service, because accumulation for each Service Name is the default.

	
For all actions in the PAYROLL Module.

	
For the DEBIT_ENTRY Action within the GLEDGER Module.

SERV_MOD_ACT_TRACE_DISABLE Procedure

This procedure will disable the trace at ALL enabled instances for a given combination of Service Name, MODULE, and ACTION name globally.

Syntax

DBMS_MONITOR.SERV_MOD_ACT_TRACE_DISABLE(
 service_name IN VARCHAR2,
 module_name IN VARCHAR2,
 action_name IN VARCHAR2 DEFAULT ALL_ACTIONS,
 instance_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 92-10 SERV_MOD_ACT_TRACE_DISABLE Procedure Parameters

	Parameter	Description
	
service_name

	
Name of the service for which tracing is disabled.

	
module_name

	
Name of the MODULE. An additional qualifier for the service

	
action_name

	
Name of the ACTION. An additional qualifier for the Service and MODULE name.

	
instance_name

	
If set, this restricts tracing to the named instance_name

Usage Notes

Specifying NULL for the module_name parameter means that statistics will no longer be accumulated for the sessions which do not set the MODULE attribute.

Examples

To enable tracing for a Service named APPS1:

EXECUTE DBMS_MONITOR.SERV_MOD_ACT_TRACE_ENABLE('APPS1',
 DBMS_MONITOR.ALL_MODULES, DBMS_MONITOR.ALL_ACTIONS,TRUE,
FALSE,NULL);

To disable tracing specified in the previous step:

EXECUTE DBMS_MONITOR.SERV_MOD_ACT_TRACE_DISABLE('APPS1');

To enable tracing for a given combination of Service and MODULE (all ACTIONs):

EXECUTE DBMS_MONITOR.SERV_MOD_ACT_TRACE_ENABLE('APPS1','PAYROLL',
 DBMS_MONITOR.ALL_ACTIONS,TRUE,FALSE,NULL);

To disable tracing specified in the previous step:

EXECUTE DBMS_MONITOR.SERV_MOD_ACT_TRACE_DISABLE('APPS1','PAYROLL');

SERV_MOD_ACT_TRACE_ENABLE Procedure

This procedure will enable SQL tracing for a given combination of Service Name, MODULE and ACTION globally unless an instance_name is specified.

Syntax

DBMS_MONITOR.SERV_MOD_ACT_TRACE_ENABLE(
 service_name IN VARCHAR2,
 module_name IN VARCHAR2 DEFAULT ANY_MODULE,
 action_name IN VARCHAR2 DEFAULT ANY_ACTION,
 waits IN BOOLEAN DEFAULT TRUE,
 binds IN BOOLEAN DEFAULT FALSE,
 instance_name IN VARCHAR2 DEFAULT NULL,
 plan_stat IN VARCHAR2 DEFAULT NULL);

Parameters

Table 92-11 SERV_MOD_ACT_TRACE_ENABLE Procedure Parameters

	Parameter	Description
	
service_name

	
Name of the service for which SQL trace is enabled

	
module_name

	
Name of the MODULE for which SQL trace is enabled. An optional additional qualifier for the service. If omitted, SQL trace is enabled or all modules and actions in a given service.

	
action_name

	
Name of the ACTION for which SQL trace is enabled. An optional additional qualifier for the Service and MODULE name. If omitted, SQL trace is enabled for all actions in a given module.

	
waits

	
If TRUE, wait information is present in the trace

	
binds

	
If TRUE, bind information is present in the trace

	
instance_name

	
If set, this restricts tracing to the named instance_name

	
plan_stat

	
Frequency at which we dump row source statistics. Value should be 'NEVER', 'FIRST_EXECUTION' (equivalent to NULL) or 'ALL_EXECUTIONS'.

Usage Notes

	
The procedure enables a trace for a given combination of Service, MODULE and ACTION name. The specification is strictly hierarchical: Service Name or Service Name/MODULE, or Service Name, MODULE, and ACTION name must be specified. Omitting a qualifier behaves like a wild-card, so that not specifying an ACTION means all ACTIONs. Using the ALL_ACTIONS constant achieves the same purpose.

	
This tracing is useful when an application MODULE and optionally known ACTION is experiencing poor service levels.

	
By default, tracing is enabled globally for the database. The instance_name parameter is provided to restrict tracing to named instances that are known, for example, to exhibit poor service levels.

	
Tracing information is present in multiple trace files and you must use the trcsess tool to collect it into a single file.

	
Specifying NULL for the module_name parameter means that statistics will be accumulated for the sessions which do not set the MODULE attribute.

Examples

To enable tracing for a Service named APPS1:

EXECUTE DBMS_MONITOR.SERV_MOD_ACT_TRACE_ENABLE('APPS1',
 DBMS_MONITOR.ALL_MODULES, DBMS_MONITOR.ALL_ACTIONS,TRUE,
FALSE,NULL);

To enable tracing for a given combination of Service and MODULE (all ACTIONs):

EXECUTE DBMS_MONITOR.SERV_MOD_ACT_TRACE_ENABLE('APPS1','PAYROLL',
 DBMS_MONITOR.ALL_ACTIONS,TRUE,FALSE,NULL);

SESSION_TRACE_DISABLE Procedure

This procedure will disable the trace for a given database session at the local instance.

Syntax

DBMS_MONITOR.SESSION_TRACE_DISABLE(
 session_id IN BINARY_INTEGER DEFAULT NULL,
 serial_num IN BINARY_INTEGER DEFAULT NULL);

Parameters

Table 92-12 SESSION_TRACE_DISABLE Procedure Parameters

	Parameter	Description
	
session_id

	
Database Session Identifier for which SQL trace is disabled

	
serial_num

	
Serial number for this session

Usage Notes

If serial_num is NULL but session_id is specified, a session with a given session_id is no longer traced irrespective of its serial number. If both session_id and serial_num are NULL, the current user session is no longer traced. It is illegal to specify NULL session_id and non-NULL serial_num. In addition, the NULL values are default and can be omitted.

Examples

To enable tracing for a client with a given client session ID:

EXECUTE DBMS_MONITOR.SESSION_TRACE_ENABLE(7,4634, TRUE, FALSE);

To disable tracing specified in the previous step:

EXECUTE DBMS_MONITOR.SESSION_TRACE_DISABLE(7,4634);;

SESSION_TRACE_ENABLE Procedure

This procedure enables a SQL trace for the given Session ID on the local instance

Syntax

DBMS_MONITOR.SESSION_TRACE_ENABLE(
 session_id IN BINARY_INTEGER DEFAULT NULL,
 serial_num IN BINARY_INTEGER DEFAULT NULL,
 waits IN BOOLEAN DEFAULT TRUE,
 binds IN BOOLEAN DEFAULT FALSE,
 plan_stat IN VARCHAR2 DEFAULT NULL);

Parameters

Table 92-13 SESSION_TRACE_ENABLE Procedure Parameters

	Parameter	Description
	
session_id

	
Client Identifier for which SQL trace is enabled. If omitted (or NULL), the user's own session is assumed.

	
serial_num

	
Serial number for this session. If omitted (or NULL), only the session ID is used to determine a session.

	
waits

	
If TRUE, wait information is present in the trace

	
binds

	
If TRUE, bind information is present in the trace

	
plan_stat

	
Frequency at which we dump row source statistics. Value should be 'NEVER', 'FIRST_EXECUTION' (equivalent to NULL) or 'ALL_EXECUTIONS'.

Usage Notes

The procedure enables a trace for a given database session, and is still useful for client/server applications. The trace is enabled only on the instance to which the caller is connected, since database sessions do not span instances. This tracing is strictly local to an instance.

If serial_num is NULL but session_id is specified, a session with a given session_id is traced irrespective of its serial number. If both session_id and serial_num are NULL, the current user session is traced. It is illegal to specify NULL session_id and non-NULL serial_num. In addition, the NULL values are default and can be omitted.

Examples

To enable tracing for a client with a given client session ID:

EXECUTE DBMS_MONITOR.SESSION_TRACE_ENABLE(7,4634, TRUE, FALSE);

To disable tracing specified in the previous step:

EXECUTE DBMS_MONITOR.SESSION_TRACE_DISABLE(7,4634);

Either

EXECUTE DBMS_MONITOR.SESSION_TRACE_ENABLE(5);

or

EXECUTE DBMS_MONITOR.SESSION_TRACE_ENABLE(5, NULL);

traces the session with session ID of 5, while either

EXECUTE DBMS_MONITOR.SESSION_TRACE_ENABLE();

or

EXECUTE DBMS_MONITOR.SESSION_TRACE_ENABLE(NULL, NULL);

traces the current user session. Also,

EXECUTE DBMS_MONITOR.SESSION_TRACE_ENABLE(NULL, NULL, TRUE, TRUE);

traces the current user session including waits and binds. The same can be also expressed using keyword syntax:

EXECUTE DBMS_MONITOR.SESSION_TRACE_ENABLE(binds=>TRUE);

DBMS_MVIEW

93 DBMS_MVIEW

DBMS_MVIEW enables you to understand capabilities for materialized views and potential materialized views, including their rewrite availability. It also enables you to refresh materialized views that are not part of the same refresh group and purge logs.

	
Note:

DBMS_MVIEW is a synonym for DBMS_SNAPSHOT.

	
See Also:

	
Oracle Database Advanced Replication for more information about using materialized views in a replication environment

	
Oracle Database Data Warehousing Guide for more information about using materialized views in a data warehousing environment

This chapter contains the following topics:

	
Using DBMS_MVIEW

	
Operational Notes

	
Security Model

	
Rules and Limits

	
Summary of DBMS_MVIEW Subprograms

Using DBMS_MVIEW

This section contains topics which relate to using the DBMS_MVIEW package.

	
Operational Notes

	
Security Model

	
Rules and Limits

Operational Notes

If a query is less than 256 characters long, you can invoke EXPLAIN_REWRITE using the EXECUTE command from SQL*Plus. Otherwise, the recommended method is to use a PL/SQL BEGIN..END block, as shown in the examples in /rdbms/demo/smxrw.sql.

Security Model

The DBMS_MVIEW package consists of a number of materialized view-related subprograms, each of which has different functionality and privilege requirements. The privilege model is generally based on the invoker's right. Each package subprogram is executed by first checking the privileges against the invoker. If all the required privileges are met, the subprogram will be executed. Otherwise, an insufficient privileges error will be thrown.

Rules and Limits

The EXPLAIN_REWRITE procedure cannot accept queries longer than 32627 characters. These restrictions also apply when passing the defining query of a materialized view to the EXPLAIN_MVIEW procedure.

Summary of DBMS_MVIEW Subprograms

Table 93-1 DBMS_MVIEW Package Subprograms

	Subprogram	Description
	
BEGIN_TABLE_REORGANIZATION Procedure

	
Performs a process to preserve materialized view data needed for refresh

	
END_TABLE_REORGANIZATION Procedure

	
Ensures that the materialized view data for the master table is valid and that the master table is in the proper state

	
ESTIMATE_MVIEW_SIZE Procedure

	
Estimates the size of a materialized view that you might create, in bytes and rows

	
EXPLAIN_MVIEW Procedure

	
Explains what is possible with a materialized view or potential materialized view

	
EXPLAIN_REWRITE Procedure

	
Explains why a query failed to rewrite or why the optimizer chose to rewrite a query with a particular materialized view or materialized views

	
I_AM_A_REFRESH Function

	
Returns the value of the I_AM_REFRESH package state

	
PMARKER Function

	
Returns a partition marker from a rowid, and is used for Partition Change Tracking (PCT)

	
PURGE_DIRECT_LOAD_LOG Procedure

	
Purges rows from the direct loader log after they are no longer needed by any materialized views (used with data warehousing)

	
PURGE_LOG Procedure

	
Purges rows from the materialized view log

	
PURGE_MVIEW_FROM_LOG Procedure

	
Purges rows from the materialized view log

	
REFRESH Procedures

	
Refreshes one or more materialized views that are not members of the same refresh group

	
REFRESH_ALL_MVIEWS Procedure

	
Refreshes all materialized views that do not reflect changes to their master table or master materialized view

	
REFRESH_DEPENDENT Procedures

	
Refreshes all table-based materialized views that depend on a specified master table or master materialized view, or list of master tables or master materialized views

	
REGISTER_MVIEW Procedure

	
Enables the administration of individual materialized views

	
UNREGISTER_MVIEW Procedure

	
Enables the administration of individual materialized views once invoked at a master site or master materialized view site to unregister a materialized view

BEGIN_TABLE_REORGANIZATION Procedure

This procedure performs a process to preserve materialized view data needed for refresh. It must be called before a master table is reorganized.

Syntax

DBMS_MVIEW.BEGIN_TABLE_REORGANIZATION (
 tabowner IN VARCHAR2,
 tabname IN VARCHAR2);

Parameters

Table 93-2 BEGIN_TABLE_REORGANIZATION Procedure Parameters

	Parameter	Description
	
tabowner

	
Owner of the table being reorganized

	
tabname

	
Name of the table being reorganized

END_TABLE_REORGANIZATION Procedure

This procedure ensures that the materialized view data for the master table is valid and that the master table is in the proper state. It must be called after a master table is reorganized.

Syntax

DBMS_MVIEW.END_TABLE_REORGANIZATION (
 tabowner IN VARCHAR2,
 tabname IN VARCHAR2);

Parameters

Table 93-3 END_TABLE_REORGANIZATION Procedure Parameters

	Parameter	Description
	
tabowner

	
Owner of the table being reorganized

	
tabname

	
Name of the table being reorganized

ESTIMATE_MVIEW_SIZE Procedure

This procedure estimates the size of a materialized view that you might create, in bytes and number of rows.

Syntax

DBMS_MVIEW.ESTIMATE_MVIEW_SIZE (
 stmt_id IN VARCHAR2,
 select_clause IN VARCHAR2,
 num_rows OUT NUMBER,
 num_bytes OUT NUMBER);

Parameters

Table 93-4 ESTIMATE_MVIEW_SIZE Procedure Parameters

	Parameter	Description
	
stmt_id

	
Arbitrary string used to identify the statement in an EXPLAIN PLAN

	
select_clause

	
The SELECT statement to be analyzed

	
num_rows

	
Estimated cardinality

	
num_bytes

	
Estimated number of bytes

EXPLAIN_MVIEW Procedure

This procedure enables you to learn what is possible with a materialized view or potential materialized view. For example, you can determine if a materialized view is fast refreshable and what types of query rewrite you can perform with a particular materialized view.

Using this procedure is straightforward. You simply call DBMS_MVIEW.EXPLAIN_MVIEW, passing in as parameters the schema and materialized view name for an existing materialized view. Alternatively, you can specify the SELECT string or CREATE MATERIALIZED VIEW statement for a potential materialized view. The materialized view or potential materialized view is then analyzed and the results are written into either a table called MV_CAPABILITIES_TABLE, which is the default, or to an array called MSG_ARRAY.

The procedure is overloaded:

	
The first version is for explaining an existing or potential materialized view with output to MV_CAPABILITIES_TABLE.

	
The second version is for explaining an existing or potential materialized view with output to a VARRAY.

Syntax

DBMS_MVIEW.EXPLAIN_MVIEW (
 mv IN VARCHAR2,
 statement_id IN VARCHAR2:= NULL);

DBMS_MVIEW.EXPLAIN_MVIEW (
 mv IN VARCHAR2,
 msg_array OUT SYS.ExplainMVArrayType);

Parameters

Table 93-5 EXPLAIN_MVIEW Procedure Parameters

	Parameter	Description
	
mv

	
The name of an existing materialized view (optionally qualified with the owner name separated by a ".") or a SELECT statement or a CREATE MATERIALIZED VIEW statement for a potential materialized view.

	
statement_id

	
A client-supplied unique identifier to associate output rows with specific invocations of EXPLAIN_MVIEW

	
msg_array

	
The PL/SQL VARRAY that receives the output. Use this parameter to direct EXPLAIN_MVIEW's output to a PL/SQL VARRAY rather than MV_CAPABILITIES_TABLE.

Usage Notes

You must run the utlxmv.sql script to create MV_CAPABILITIES_TABLE in the current schema prior to calling EXPLAIN_MVIEW except when you direct output to a VARRAY. The script is found in the ADMIN directory.

EXPLAIN_REWRITE Procedure

This procedure enables you to learn why a query failed to rewrite, or, if it rewrites, which materialized views will be used. Using the results from the procedure, you can take the appropriate action needed to make a query rewrite if at all possible. The query specified in the EXPLAIN_REWRITE statement is never actually executed.

A demo file, xrwutl.sql, is available to help format the output from EXPLAIN_REWRITE.

Syntax

You can obtain the output from DBMS_MVIEW.EXPLAIN_REWRITE in two ways. The first is to use a table, while the second is to create a VARRAY. The following shows the basic syntax for using an output table:

DBMS_MVIEW.EXPLAIN_REWRITE (
 query VARCHAR2,
 mv VARCHAR2(30),
 statement_id VARCHAR2(30));

You can create an output table called REWRITE_TABLE by executing the utlxrw.sql script.

The query parameter is a text string representing the SQL query. The parameter, mv, is a fully qualified materialized view name in the form of schema.mv. This is an optional parameter. When it is not specified, EXPLAIN_REWRITE returns any relevant messages regarding all the materialized views considered for rewriting the given query. When schema is omitted and only mv is specified, EXPLAIN_REWRITE looks for the materialized view in the current schema.

If you want to direct the output of EXPLAIN_REWRITE to a VARRAY instead of a table, you should call the procedure as follows:

DBMS_MVIEW.EXPLAIN_REWRITE (
 query [VARCHAR2 | CLOB],
 mv VARCHAR2(30),
 output_array SYS.RewriteArrayType);

Note that if the query is less than 256 characters long, EXPLAIN_REWRITE can be easily invoked with the EXECUTE command from SQL*Plus. Otherwise, the recommended method is to use a PL/SQL BEGIN... END block, as shown in the examples in /rdbms/demo/smxrw*.

You can also use EXPLAIN_REWRITE with multiple materialized views, in which case the syntax will be the same as with a single materialized view, except that the materialized views are specified by a comma-delimited string. For example, to find out whether a given set of materialized views mv1, mv2, and mv3 could be used to rewrite the query, query_txt, and, if not, why not, use EXPLAIN_REWRITE as follows:

DBMS_MVIEW.EXPLAIN_REWRITE(query_txt, 'mv1, mv2, mv3')

See Oracle Database Data Warehousing Guide for more information on using the EXPLAIN_REWRITE procedure.

Parameters

Table 93-6 EXPLAIN_REWRITE Procedure Parameters

	Parameter	Description
	
query

	
SQL SELECT statement to be explained

	
mv

	
The fully qualified name of an existing materialized view in the form of SCHEMA.MV. For multiple materialized views, you can provide a comma-delimited list of names.

	
statement_id

	
A client-supplied unique identifier to distinguish output messages

	
msg_array

	
The PL/SQL VARRAY that receives the output. Use this parameter to direct EXPLAIN_REWRITE's output to a PL/SQL VARRAY.

Usage Notes

To obtain the output into a table, you must run the utlxrw.sql script before calling EXPLAIN_REWRITE. This script creates a table named REWRITE_TABLE in the current schema.

I_AM_A_REFRESH Function

This function returns the value of the I_AM_REFRESH package state.

Syntax

DBMS_MVIEW.I_AM_A_REFRESH
 RETURN BOOLEAN;

Return Values

A return value of true indicates that all local replication triggers for materialized views are effectively disabled in this session because each replication trigger first checks this state. A return value of false indicates that these triggers are enabled.

PMARKER Function

This function returns a partition marker from a rowid. It is used for Partition Change Tracking (PCT).

Syntax

DBMS_MVIEW.PMARKER(
 rid IN ROWID)
 RETURN NUMBER;

Parameters

Table 93-7 PMARKER Function Parameters

	Parameter	Description
	
rid

	
The rowid of a row entry in a master table

PURGE_DIRECT_LOAD_LOG Procedure

This procedure removes entries from the direct loader log after they are no longer needed for any known materialized view. This procedure usually is used in environments using Oracle's data warehousing technology.

	
See Also:

Oracle Database Data Warehousing Guide for more information

Syntax

DBMS_MVIEW.PURGE_DIRECT_LOAD_LOG();

PURGE_LOG Procedure

This procedure purges rows from the materialized view log.

Syntax

DBMS_MVIEW.PURGE_LOG (
 master IN VARCHAR2,
 num IN BINARY_INTEGER := 1,
 flag IN VARCHAR2 := 'NOP');

Parameters

Table 93-8 PURGE_LOG Procedure Parameters

	Parameter	Description
	
master

	
Name of the master table or master materialized view.

	
num

	
Number of least recently refreshed materialized views whose rows you want to remove from materialized view log. For example, the following statement deletes rows needed to refresh the two least recently refreshed materialized views:

DBMS_MVIEW.PURGE_LOG('master_table', 2);

To delete all rows in the materialized view log, indicate a high number of materialized views to disregard, as in this example:

DBMS_MVIEW.PURGE_LOG('master_table',9999);

This statement completely purges the materialized view log that corresponds to master_table if fewer than 9999 materialized views are based on master_table. A simple materialized view whose rows have been purged from the materialized view log must be completely refreshed the next time it is refreshed.

	
flag

	
Specify delete to guarantee that rows are deleted from the materialized view log for at least one materialized view. This parameter can override the setting for the parameter num. For example, the following statement deletes rows from the materialized view log that has dependency rows in the least recently refreshed materialized view:

DBMS_MVIEW.PURGE_LOG('master_table',1,'delete');

PURGE_MVIEW_FROM_LOG Procedure

This procedure is called on the master site or master materialized view site to delete the rows in materialized view refresh related data dictionary tables maintained at the master for the specified materialized view identified by its mview_id or the combination of the mviewowner, mviewname, and the mviewsite. If the materialized view specified is the oldest materialized view to have refreshed from any of the master tables or master materialized views, then the materialized view log is also purged. This procedure does not unregister the materialized view.

Syntax

DBMS_MVIEW.PURGE_MVIEW_FROM_LOG (
 mview_id IN BINARY_INTEGER |
 mviewowner IN VARCHAR2,
 mviewname IN VARCHAR2,
 mviewsite IN VARCHAR2);

	
Note:

This procedure is overloaded. The mview_id parameter is mutually exclusive with the three remaining parameters: mviewowner, mviewname, and mviewsite.

Parameters

Table 93-9 PURGE_MVIEW_FROM_LOG Procedure Parameters

	Parameter	Description
	
mview_id

	
If you want to execute this procedure based on the identification of the target materialized view, specify the materialized view identification using the mview_id parameter. Query the DBA_BASE_TABLE_MVIEWS view at the materialized view log site for a listing of materialized view IDs.

Executing this procedure based on the materialized view identification is useful if the target materialized view is not listed in the list of registered materialized views (DBA_REGISTERED_MVIEWS).

	
mviewowner

	
If you do not specify an mview_id, enter the owner of the target materialized view using the mviewowner parameter. Query the DBA_REGISTERED_MVIEWS view at the materialized view log site to view the materialized view owners.

	
mviewname

	
If you do not specify an mview_id, enter the name of the target materialized view using the mviewname parameter. Query the DBA_REGISTERED_MVIEWS view at the materialized view log site to view the materialized view names.

	
mviewsite

	
If you do not specify an mview_id, enter the site of the target materialized view using the mviewsite parameter. Query the DBA_REGISTERED_MVIEWS view at the materialized view log site to view the materialized view sites.

Usage Notes

If there is an error while purging one of the materialized view logs, the successful purge operations of the previous materialized view logs are not rolled back. This is to minimize the size of the materialized view logs. In case of an error, this procedure can be invoked again until all the materialized view logs are purged.

REFRESH Procedures

This procedure refreshes a list of materialized views.

Syntax

DBMS_MVIEW.REFRESH (
 { list IN VARCHAR2,
 | tab IN DBMS_UTILITY.UNCL_ARRAY,}
 method IN VARCHAR2 := NULL,
 rollback_seg IN VARCHAR2 := NULL,
 push_deferred_rpc IN BOOLEAN := true,
 refresh_after_errors IN BOOLEAN := false,
 purge_option IN BINARY_INTEGER := 1,
 parallelism IN BINARY_INTEGER := 0,
 heap_size IN BINARY_INTEGER := 0,
 atomic_refresh IN BOOLEAN := true,
 nested IN BOOLEAN := false);

	
Note:

This procedure is overloaded. The list and tab parameters are mutually exclusive.

Parameters

Table 93-10 REFRESH Procedure Parameters

	Parameter	Description
	
list | tab

	
Comma-delimited list of materialized views that you want to refresh. (Synonyms are not supported.) These materialized views can be located in different schemas and have different master tables or master materialized views. However, all of the listed materialized views must be in your local database.

Alternatively, you may pass in a PL/SQL index-by table of type DBMS_UTILITY.UNCL_ARRAY, where each element is the name of a materialized view.

	
method

	
A string of refresh methods indicating how to refresh the listed materialized views. An f indicates fast refresh, ? indicates force refresh, C or c indicates complete refresh, and A or a indicates always refresh. A and C are equivalent. P or p refreshes by recomputing the rows in the materialized view affected by changed partitions in the detail tables.

If a materialized view does not have a corresponding refresh method (that is, if more materialized views are specified than refresh methods), then that materialized view is refreshed according to its default refresh method. For example, consider the following EXECUTE statement within SQL*Plus:

DBMS_MVIEW.REFRESH
 ('countries_mv,regions_mv,hr.employees_mv','cf');

This statement performs a complete refresh of the countries_mv materialized view, a fast refresh of the regions_mv materialized view, and a default refresh of the hr.employees materialized view.

	
rollback_seg

	
Name of the materialized view site rollback segment to use while refreshing materialized views

	
push_deferred_rpc

	
Used by updatable materialized views only. Set this parameter to true if you want to push changes from the materialized view to its associated master tables or master materialized views before refreshing the materialized view. Otherwise, these changes may appear to be temporarily lost.

	
refresh_after_errors

	
If this parameter is true, an updatable materialized view continues to refresh even if there are outstanding conflicts logged in the DEFERROR view for the materialized view's master table or master materialized view. If this parameter is true and atomic_refresh is false, this procedure continues to refresh other materialized views if it fails while refreshing a materialized view.

	
purge_option

	
If you are using the parallel propagation mechanism (in other words, parallelism is set to 1 or greater), 0 means do not purge, 1 means lazy purge, and 2 means aggressive purge. In most cases, lazy purge is the optimal setting. Set purge to aggressive to trim the queue if multiple master replication groups are pushed to different target sites, and updates to one or more replication groups are infrequent and infrequently pushed. If all replication groups are infrequently updated and pushed, then set this parameter to 0 and occasionally execute PUSH with this parameter set to 2 to reduce the queue.

	
parallelism

	
0 specifies serial propagation.

n > 1 specifies parallel propagation with n parallel processes.

1 specifies parallel propagation using only one parallel process.

	
heap_size

	
Maximum number of transactions to be examined simultaneously for parallel propagation scheduling. Oracle automatically calculates the default setting for optimal performance.

Note: Do not set this parameter unless directed to do so by Oracle Support Services.

	
atomic_refresh

	
If this parameter is set to true, then the list of materialized views is refreshed in a single transaction. All of the refreshed materialized views are updated to a single point in time. If the refresh fails for any of the materialized views, none of the materialized views are updated.

If this parameter is set to false, then each of the materialized views is refreshed in a separate transaction.

As part of complete refresh, if truncate is used (non-atomic refresh), unique index rebuild is executed. INDEX REBUILD automatically computes statistics. Thus, statistics are updated for truncated tables.

	
nested

	
If true, then perform nested refresh operations for the specified set of materialized views. Nested refresh operations refresh all the depending materialized views and the specified set of materialized views based on a dependency order to ensure the nested materialized views are truly fresh with respect to the underlying base tables.

REFRESH_ALL_MVIEWS Procedure

This procedure refreshes all materialized views that have the following properties:

	
The materialized view has not been refreshed since the most recent change to a master table or master materialized view on which it depends.

	
The materialized view and all of the master tables or master materialized views on which it depends are local.

	
The materialized view is in the view DBA_MVIEWS.

This procedure is intended for use with data warehouses.

Syntax

DBMS_MVIEW.REFRESH_ALL_MVIEWS (
 number_of_failures OUT BINARY_INTEGER,
 method IN VARCHAR2 := NULL,
 rollback_seg IN VARCHAR2 := NULL,
 refresh_after_errors IN BOOLEAN := false,
 atomic_refresh IN BOOLEAN := true);

Parameters

Table 93-11 REFRESH_ALL_MVIEWS Procedure Parameters

	Parameter	Description
	
number_of_failures

	
Returns the number of failures that occurred during processing

	
method

	
A single refresh method indicating the type of refresh to perform for each materialized view that is refreshed. F or f indicates fast refresh, ? indicates force refresh, C or c indicates complete refresh, and A or a indicates always refresh. A and C are equivalent. If no method is specified, a materialized view is refreshed according to its default refresh method. P or p refreshes by recomputing the rows in the materialized view affected by changed partitions in the detail tables.

	
rollback_seg

	
Name of the materialized view site rollback segment to use while refreshing materialized views

	
refresh_after_errors

	
If this parameter is true, an updatable materialized view continues to refresh even if there are outstanding conflicts logged in the DEFERROR view for the materialized view's master table or master materialized view. If this parameter is true and atomic_refresh is false, this procedure continues to refresh other materialized views if it fails while refreshing a materialized view.

	
atomic_refresh

	
If this parameter is set to true, then the refreshed materialized views are refreshed in a single transaction. All of the refreshed materialized views are updated to a single point in time. If the refresh fails for any of the materialized views, none of the materialized views are updated.

If this parameter is set to false, then each of the refreshed materialized views is refreshed in a separate transaction.

REFRESH_DEPENDENT Procedures

This procedure refreshes all materialized views that have the following properties:

	
The materialized view depends on a master table or master materialized view in the list of specified masters.

	
The materialized view has not been refreshed since the most recent change to a master table or master materialized view on which it depends.

	
The materialized view and all of the master tables or master materialized views on which it depends are local.

	
The materialized view is in the view DBA_MVIEWS.

This procedure is intended for use with data warehouses.

Syntax

DBMS_MVIEW.REFRESH_DEPENDENT (
 number_of_failures OUT BINARY_INTEGER,
 { list IN VARCHAR2,
 | tab IN DBMS_UTILITY.UNCL_ARRAY,}
 method IN VARCHAR2 := NULL,
 rollback_seg IN VARCHAR2 := NULL,
 refresh_after_errors IN BOOLEAN := false,
 atomic_refresh IN BOOLEAN := true,
 nested IN BOOLEAN := false);

	
Note:

This procedure is overloaded. The list and tab parameters are mutually exclusive.

Parameters

Table 93-12 REFRESH_DEPENDENT Procedure Parameters

	Parameter	Description
	
number_of_failures

	
Returns the number of failures that occurred during processing

	
list | tab

	
Comma-delimited list of master tables or master materialized views on which materialized views can depend. (Synonyms are not supported.) These tables and the materialized views that depend on them can be located in different schemas. However, all of the tables and materialized views must be in your local database.

Alternatively, you may pass in a PL/SQL index-by table of type DBMS_UTILITY.UNCL_ARRAY, where each element is the name of a table.

	
method

	
A string of refresh methods indicating how to refresh the dependent materialized views. All of the materialized views that depend on a particular table are refreshed according to the refresh method associated with that table. F or f indicates fast refresh, ? indicates force refresh, C or c indicates complete refresh, and A or a indicates always refresh. A and C are equivalent. P or p refreshes by recomputing the rows in the materialized view affected by changed partitions in the detail tables.

If a table does not have a corresponding refresh method (that is, if more tables are specified than refresh methods), then any materialized view that depends on that table is refreshed according to its default refresh method. For example, the following EXECUTE statement within SQL*Plus:

DBMS_MVIEW.REFRESH_DEPENDENT
 ('employees,deptartments,hr.regions','cf');

performs a complete refresh of the materialized views that depend on the employees table, a fast refresh of the materialized views that depend on the departments table, and a default refresh of the materialized views that depend on the hr.regions table.

	
rollback_seg

	
Name of the materialized view site rollback segment to use while refreshing materialized views

	
refresh_after_errors

	
If this parameter is true, an updatable materialized view continues to refresh even if there are outstanding conflicts logged in the DEFERROR view for the materialized view's master table or master materialized view. If this parameter is true and atomic_refresh is false, this procedure continues to refresh other materialized views if it fails while refreshing a materialized view.

	
atomic_refresh

	
If this parameter is set to true, then the refreshed materialized views are refreshed in a single transaction. All of the refreshed materialized views are updated to a single point in time. If the refresh fails for any of the materialized views, none of the materialized views are updated.

If this parameter is set to false, then each of the refreshed materialized views is refreshed in a separate transaction.

	
nested

	
If true, then perform nested refresh operations for the specified set of tables. Nested refresh operations refresh all the depending materialized views of the specified set of tables based on a dependency order to ensure the nested materialized views are truly fresh with respect to the underlying base tables.

REGISTER_MVIEW Procedure

This procedure enables the administration of individual materialized views. It is invoked at a master site or master materialized view site to register a materialized view.

Note that, typically, a materialized view is registered automatically during materialized view creation. You should only run this procedure to manually register a materialized view if the automatic registration failed or if the registration information was deleted.

Syntax

DBMS_MVIEW.REGISTER_MVIEW (
 mviewowner IN VARCHAR2,
 mviewname IN VARCHAR2,
 mviewsite IN VARCHAR2,
 mview_id IN DATE | BINARY_INTEGER,
 flag IN BINARY_INTEGER,
 qry_txt IN VARCHAR2,
 rep_type IN BINARY_INTEGER := DBMS_MVIEW.REG_UNKNOWN);

Parameters

Table 93-13 REGISTER_MVIEW Procedure Parameters

	Parameter	Description
	
mviewowner

	
Owner of the materialized view.

	
mviewname

	
Name of the materialized view.

	
mviewsite

	
Name of the materialized view site for a materialized view registering at an Oracle database version 8.x and higher master site or master materialized view site. This name should not contain any double quotes.

	
mview_id

	
The identification number of the materialized view. Specify an Oracle database version 8.x and higher materialized view as a BINARY_INTEGER. Specify an Oracle database version 7 materialized view registering at an Oracle database version 8.x and higher master sites or master materialized view sites as a DATE.

	
flag

	
A constant that describes the properties of the materialized view being registered. Valid constants that can be assigned include the following:

DBMS_MVIEW.REG_ROWID_MVIEW for a rowid materialized view

DBMS_MVIEW.REG_PRIMARY_KEY_MVIEW for a primary key materialized view

DBMS_MVIEW.REG_OBJECT_ID_MVIEW for an object id materialized view

DBMS_MVIEW.REG_FAST_REFRESHABLE_MVIEW for a materialized view that can be fast refreshed

DBMS_MVIEW.REG_UPDATABLE_MVIEW for a materialized view that is updatable

A materialized view can have more than one of these properties. In this case, use the plus sign (+) to specify more than one property. For example, if a primary key materialized view can be fast refreshed, you can enter the following for this parameter:

DBMS_MVIEW.REG_PRIMARY_KEY_MVIEW + DBMS_MVIEW.REG_FAST_REFRESHABLE_MVIEW

You can determine the properties of a materialized view by querying the ALL_MVIEWS data dictionary view.

	
qry_txt

	
The first 32,000 bytes of the materialized view definition query.

	
rep_type

	
Version of the materialized view. Valid constants that can be assigned include the following:

DBMS_MVIEW.REG_V7_SNAPSHOT if the materialized view is at an Oracle database version 7 site

	
DBMS_MVIEW.REG_V8_SNAPSHOT

if the materialized view is at an Oracle database version 8.x or higher site

DBMS_MVIEW.REG_UNKNOWN (the default) if you do not know whether the materialized view is at an Oracle database version 7 site or an Oracle database version 8.x (or higher) site

Usage Notes

This procedure is invoked at the master site or master materialized view site by a remote materialized view site using a remote procedure call. If REGISTER_MVIEW is called multiple times with the same mviewowner, mviewname, and mviewsite, then the most recent values for mview_id, flag, and qry_txt are stored. If a query exceeds the maximum VARCHAR2 size, then qry_txt contains the first 32000 characters of the query and the remainder is truncated. When invoked manually, the value of mview_id must be looked up in the materialized view data dictionary views by the person who calls the procedure.

UNREGISTER_MVIEW Procedure

This procedure enables the administration of individual materialized views. It is invoked at a master site or master materialized view site to unregister a materialized view.

Syntax

DBMS_MVIEW.UNREGISTER_MVIEW (
 mviewowner IN VARCHAR2,
 mviewname IN VARCHAR2,
 mviewsite IN VARCHAR2);

Parameters

Table 93-14 UNREGISTER_MVIEW Procedure Parameters

	Parameters	Description
	
mviewowner

	
Owner of the materialized view

	
mviewname

	
Name of the materialized view

	
mviewsite

	
Name of the materialized view site

DBMS_NETWORK_ACL_ADMIN

94 DBMS_NETWORK_ACL_ADMIN

The DBMS_NETWORK_ACL_ADMIN package provides the interface to administer the network Access Control List (ACL).

	
See Also:

For more information, see "Managing Fine-grained Access to External Network Services" in Oracle Database Security Guide

The chapter contains the following topics:

	
Using DBMS_NETWORK_ACL_ADMIN

	
Examples

	
Summary of DBMS_NETWORK_ACL_ADMIN Subprograms

Using DBMS_NETWORK_ACL_ADMIN

	
Examples

Examples

Example1

Grant the connect and resolve privileges for host www.us.oracle.com to SCOTT.

BEGIN
 DBMS_NETWORK_ACL_ADMIN.CREATE_ACL(acl => 'www.xml',
 description => 'WWW ACL',
 principal => 'SCOTT',
 is_grant => true,
 privilege => 'connect');

 DBMS_NETWORK_ACL_ADMIN.ADD_PRIVILEGE(acl => 'www.xml',
 principal => 'SCOTT',
 is_grant => true,
 privilege => 'resolve');

 DBMS_NETWORK_ACL_ADMIN.ASSIGN_ACL(acl => 'www.xml',
 host => 'www.us.oracle.com');
END;
/
COMMIT;

Example 2

Grant the resolve privilege for www.us.oracle.com to ADAMS. Since an ACL for www.us.oracle.com exists already, just add the privilege for ADAMS.

BEGIN
 DBMS_NETWORK_ACL_ADMIN.ADD_PRIVILEGE(acl => 'www.xml',
 principal => 'ADAMS',
 is_grant => true,
 privilege => 'resolve');
END;
/
COMMIT;

Example 3

Assign the ACL www.xml to www-proxy.us.oracle.com so that SCOTT and ADAMS can access www-proxy.us.oracle.com also.

BEGIN
 DBMS_NETWORK_ACL_ADMIN.ASSIGN_ACL(acl => 'www.xml',
 host => 'www-proxy.us.oracle.com');
END;
/
COMMIT;

Example 4

Unassign the ACL from www.us.oracle.com so that no access to www.us.oracle.com is allowed.

BEGIN
 DBMS_NETWORK_ACL_ADMIN.UNASSIGN_ACL(host => 'www.us.oracle.com');
END;
/
COMMIT;

Example 5

The DOMAINS Function in the DBMS_NETWORK_ACL_UTLILITY package returns all the domains to which a host belongs. It can be used in conjunction with the CHECK_PRIVILEGE_ACLID Function in this package to determine the privilege assignments affecting a user's permission to access a network host. The function DOMAIN_LEVEL Function in the DBMS_NETWORK_ACL_UTILITY package returns the level of each domain and can be used to order the ACL assignments by their precedence.

For example, for SCOTT's permission to connect to www.us.oracle.com:

 SELECT host, lower_port, upper_port, acl,
 DECODE(
 DBMS_NETWORK_ACL_ADMIN.CHECK_PRIVILEGE_ACLID(aclid, 'SCOTT', 'connect'),
 1, 'GRANTED', 0, 'DENIED', NULL) privilege
 FROM dba_network_acls
 WHERE host IN
 (SELECT * FROM
 TABLE(DBMS_NETWORK_ACL_UTILITY.DOMAINS('www.us.oracle.com')))
 ORDER BY DBMS_NETWORK_ACL_UTILITY.DOMAIN_LEVEL(host) desc, lower_port,
 upper_port;

 HOST LOWER_PORT UPPER_PORT ACL PRIVILEGE
 -------------------- ---------- ---------- -------------------- ---------
 www.us.oracle.com 80 80 /sys/acls/www.xml GRANTED
 www.us.oracle.com 3000 3999 /sys/acls/www.xml GRANTED
 www.us.oracle.com /sys/acls/www.xml GRANTED
 *.oracle.com /sys/acls/all.xml
 * /sys/acls/all.xml

Example 6

For example, for SCOTT's permission to do domain name resolution for www.us.oracle.com:

 SELECT host, acl,
 DECODE(
 DBMS_NETWORK_ACL_ADMIN.CHECK_PRIVILEGE_ACLID(aclid, 'SCOTT', 'resolve'),
 1, 'GRANTED', 0, 'DENIED', NULL) privilege
 FROM dba_network_acls
 WHERE host IN
 (SELECT * FROM
 TABLE(DBMS_NETWORK_ACL_UTILITY.DOMAINS('www.us.oracle.com'))) and
 lower_port IS NULL AND upper_port IS NULL
 ORDER BY DBMS_NETWORK_ACL_UTILITY.DOMAIN_LEVEL(host) desc;

 HOST ACL PRIVILEGE
 -------------------- -------------------- ---------
 www.us.oracle.com /sys/acls/www.xml GRANTED
 *.oracle.com /sys/acls/all.xml
 * /sys/acls/all.xml

Note that the 'resolve' privilege takes effect only in ACLs assigned without any port range (when lower_port and upper_port are NULL). For this reason, the example does not include lower_port and upper_port columns in the query.

Summary of DBMS_NETWORK_ACL_ADMIN Subprograms

Table 94-1 DBMS_NETWORK_ACL_ADMIN Package Subprograms

	Subprogram	Description
	
ADD_PRIVILEGE Procedure

	
Adds a privilege to grant or deny the network access to the user in an access control list (ACL)

	
ASSIGN_ACL Procedure

	
Assigns an access control list (ACL) to a network host, and optionally specific to a TCP port range

	
ASSIGN_WALLET_ACL Procedure

	
Assigns an access control list (ACL) to a wallet

	
CHECK_PRIVILEGE Function

	
Checks if a privilege is granted to or denied from the user in an access control list (ACL)

	
CHECK_PRIVILEGE_ACLID Function

	
Checks if a privilege is granted to or denied from the user in an ACL by specifying the object ID of the access control list

	
CREATE_ACL Procedure

	
Creates an access control list (ACL) with an initial privilege setting

	
DELETE_PRIVILEGE Procedure

	
Deletes a privilege in an access control list (ACL)

	
DROP_ACL Procedure

	
Drops an access control list (ACL)

	
UNASSIGN_ACL Procedure

	
Unassigns the access control list (ACL) currently assigned to a network host

	
UNASSIGN_WALLET_ACL Procedure

	
Unassigns the access control list (ACL) currently assigned to a wallet

ADD_PRIVILEGE Procedure

This procedure adds a privilege to grant or deny the network access to the user. The access control entry (ACE) is created if it does not exist.

Syntax

DBMS_NETWORK_ACL_ADMIN.ADD_PRIVILEGE (
 acl IN VARCHAR2,
 principal IN VARCHAR2,
 is_grant IN BOOLEAN,
 privilege IN VARCHAR2,
 position IN PLS_INTEGER DEFAULT NULL,
 start_date IN TIMESTAMP WITH TIMESTAMP DEFAULT NULL,
 end_date IN TIMESTAMP WITH TIMESTAMP DEFAULT NULL);

Parameters

Table 94-2 ADD_PRIVILEGE Function Parameters

	Parameter	Description
	
acl

	
Name of the ACL. Relative path will be relative to "/sys/acls"

	
principal

	
Principal (database user or role) to whom the privilege is granted or denied. Case sensitive.

	
is_grant

	
Network privilege to be granted or denied - 'connect | resolve' (case sensitive). A database user needs the connect privilege to an external network host computer if he or she is connecting using the UTL_TCP, UTL_HTTP, UTL_SMTP, and UTL_MAIL utility packages. To resolve a host name that was given a host IP address, or the IP address that was given a host name, with the UTL_INADDR package, grant the database user the resolve privilege.

	
privilege

	
Network privilege to be granted or denied

	
position

	
Position (1-based) of the ACE. If a non-NULL value is given, the privilege will be added in a new ACE at the given position and there should not be another ACE for the principal with the same is_grant (grant or deny). If a NULL value is given, the privilege will be added to the ACE matching the principal and the is_grant if one exists, or to the end of the ACL if the matching ACE does not exist.

	
start_date

	
Start date of the access control entry (ACE). When specified, the ACE will be valid only on and after the specified date. The start_date will be ignored if the privilege is added to an existing ACE.

	
end_date

	
End date of the access control entry (ACE). When specified, the ACE expires after the specified date. The end_date must be greater than or equal to the start_date. The end_date will be ignored if the privilege is added to an existing ACE.

Usage Notes

To remove the permission, use the DELETE_PRIVILEGE Procedure.

Examples

BEGIN
 DBMS_NETWORK_ACL_ADMIN.ADD_PRIVILEGE(
 acl => 'us-oracle-com-permissions.xml',
 principal => 'ST_USERS',
 is_grant => TRUE,
 privilege => 'connect')
END;

ASSIGN_ACL Procedure

This procedure assigns an access control list (ACL) to a host computer, domain, or IP subnet, and if specified, the TCP port range.

Syntax

DBMS_NETWORK_ACL_ADMIN.ASSIGN_ACL (
 acl IN VARCHAR2,
 host IN VARCHAR2,
 lower_port IN PLS_INTEGER DEFAULT NULL,
 upper_port IN PLS_INTEGER DEFAULT NULL);

Parameters

Table 94-3 ASSIGN_ACL Function Parameters

	Parameter	Description
	
acl

	
Name of the ACL. Relative path will be relative to "/sys/acls".

	
host

	
Host to which the ACL is to be assigned. The host can be the name or the IP address of the host. A wildcard can be used to specify a domain or a IP subnet. The host or domain name is case-insensitive.

	
lower_port

	
Lower bound of a TCP port range if not NULL

	
upper_port

	
Upper bound of a TCP port range. If NULL, lower_port is assumed.

Usage Notes

	
Only one ACL can be assigned to any host computer, domain, or IP subnet, and if specified, the TCP port range. When you assign a new access control list to a network target, Oracle Database unassigns the previous access control list that was assigned to the same target. However, Oracle Database does not drop the access control list. You can drop the access control list by using the DROP_ACL Procedure. To remove an access control list assignment, use the UNASSIGN_ACL Procedure.

	
The ACL assigned to a domain takes a lower precedence than the other ACLs assigned sub-domains, which take a lower precedence than the ACLs assigned to the individual hosts. So for a given host, for example, "www.us.oracle.com", the following domains are listed in decreasing precedences:

- www.us.oracle.com

- *.us.oracle.com

- *.oracle.com

- *.com

- *

In the same way, the ACL assigned to an subnet takes a lower precedence than the other ACLs assigned smaller subnets, which take a lower precedence than the ACLs assigned to the individual IP addresses. So for a given IP address, for example, "192.168.0.100", the following subnets are listed in decreasing precedences:

- 192.168.0.100

- 192.168.0.*

- 192.168.*

- 192.*

- *

	
The port range is applicable only to the "connect" privilege assignments in the ACL. The "resolve" privilege assignments in an ACL have effects only when the ACL is assigned to a host without a port range.

For the "connect" privilege assignments, an ACL assigned to the host without a port range takes a lower precedence than other ACLs assigned to the same host with a port range.

	
When specifying a TCP port range, both lower_port and upper_port must not be NULL and upper_port must be greater than or equal to lower_port. The port range must not overlap with any other port ranges for the same host assigned already.

	
To remove the assignment, use UNASSIGN_ACL Procedure.

Examples

BEGIN
 DBMS_NETWORK_ACL_ADMIN.ASSIGN_ACL(
 acl => 'us-oracle-com-permissions.xml',
 host => '*.us.oracle.com',
 lower_port => 80);
END;

ASSIGN_WALLET_ACL Procedure

This procedure assigns an access control list (ACL) to a wallet.

Syntax

UTL_HTTP.ASSIGN_WALLET_ACL (
 acl IN VARCHAR2,
 wallet_path IN VARCHAR2);

Parameters

Table 94-4 ASSIGN_WALLET_ACL Procedure Parameters

	Parameter	Description
	
acl

	
Name of the ACL. Relative path will be relative to "/sys/acls"

	
wallet_path

	
Directory path of the wallet to which the ACL is to be assigned. The path is case-sensitive and of the format file:directory-path.

Usage Notes

To remove the assignment, use the UNASSIGN_WALLET_ACL Procedure.

Examples

BEGIN
 DBMS_NETWORK_ACL_ADMIN.CREATE_ACL(
 acl => 'wallet-acl.xml',
 description => 'Wallet ACL',
 principal => 'SCOTT',
 is_grant => TRUE,
 privilege => 'use-client-certificates');

 DBMS_NETWORK_ACL_ADMIN.ADD_PRIVILEGE(
 acl => 'wallet-acl.xml',
 principal => 'SCOTT',
 is_grant => TRUE,
 privilege => 'use-passwords');

 DBMS_NETWORK_ACL_ADMIN.ASSIGN_WALLET_ACL(
 acl => 'wallet-acl.xml',
 wallet_path => 'file:/oracle/wallets/test_wallet');
END;

CHECK_PRIVILEGE Function

This function checks if a privilege is granted to or denied from the user in an ACL.

Syntax

DBMS_NETWORK_ACL_ADMIN.CHECK_PRIVILEGE (
 acl IN VARCHAR2,
 user IN VARCHAR2,
 privilege IN VARCHAR2)
 RETURN NUMBER;

Parameters

Table 94-5 CHECK_PRIVILEGE Function Parameters

	Parameter	Description
	
acl

	
Name of the ACL. Relative path will be relative to "/sys/acls".

	
user

	
User to check against. If the user is NULL, the invoker is assumed. The username is case-sensitive as in the USERNAME column of the ALL_USERS view.

	
privilege

	
Network privilege to check

Return Values

Returns 1 when the privilege is granted; 0 when the privilege is denied; NULL when the privilege is neither granted or denied.

Examples

SELECT DECODE(
 DBMS_NETWORK_ACL_ADMIN.CHECK_PRIVILEGE(
 'us-oracle-com-permissions.xml', 'SCOTT', 'resolve'),
 1, 'GRANTED', 0, 'DENIED', NULL) PRIVILEGE
FROM DUAL;

CHECK_PRIVILEGE_ACLID Function

This function checks if a privilege is granted to or denied from the user in an ACL by specifying the object ID of the access control list.

Syntax

DBMS_NETWORK_ACL_ADMIN.CHECK_PRIVILEGE_ACLID (
 aclid IN RAW,
 user IN VARCHAR2 DEFAULT NULL)
 privilege IN VARCHAR2,
 RETURN NUMBER;

Parameters

Table 94-6 CHECK_PRIVILEGE_ACLID Function Parameters

	Parameter	Description
	
aclid

	
Object ID of the ACL

	
user

	
User to check against. If the user is NULL, the invoker is assumed. The username is case-sensitive as in the USERNAME column of the ALL_USERS view.

	
privilege

	
Network privilege to check

Return Values

Returns 1 when the privilege is granted; 0 when the privilege is denied; NULL when the privilege is neither granted or denied.

CREATE_ACL Procedure

This procedure creates an access control list (ACL) with an initial privilege setting. An ACL must have at least one privilege setting. The ACL has no access control effect unless it is assigned to the network target.

Syntax

DBMS_NETWORK_ACL_ADMIN.CREATE_ACL (
 acl IN VARCHAR2,
 description IN VARCHAR2,
 principal IN VARCHAR2,
 is_grant IN BOOLEAN,
 privilege IN VARCHAR2,
 start_date IN TIMESTAMP WITH TIMEZONE DEFAULT NULL,
 end_date IN TIMESTAMP WITH TIMEZONE DEFAULT NULL);

Parameters

Table 94-7 CREATE_ACL Procedure Parameters

	Parameter	Description
	
acl

	
Name of the ACL. Relative path will be relative to "/sys/acls".

	
description

	
Description attribute in the ACL

	
principal

	
Principal (database user or role) to whom the privilege is granted or denied. Case sensitive.

	
is_grant

	
Privilege is granted or not (denied)

	
privilege

	
Network privilege to be granted or denied - 'connect | resolve' (case sensitive). A database user needs the connect privilege to an external network host computer if he or she is connecting using the UTL_TCP, UTL_HTTP, UTL_SMTP, and UTL_MAIL utility packages. To resolve a host name that was given a host IP address, or the IP address that was given a host name, with the UTL_INADDR package, grant the database user the resolve privilege.

	
start_date

	
Start date of the access control entry (ACE). When specified, the ACE is valid only on and after the specified date.

	
end_date

	
End date of the access control entry (ACE). When specified, the ACE expires after the specified date. The end_date must be greater than or equal to the start_date.

Usage Notes

To drop the access control list, use the DROP_ACL Procedure.

Examples

BEGIN
 DBMS_NETWORK_ACL_ADMIN.CREATE_ACL(
 acl => 'us-oracle-com-permissions.xml',
 description => 'Network permissions for *.us.oracle.com',
 principal => 'SCOTT',
 is_grant => TRUE,
 privilege => 'connect');
END;

DELETE_PRIVILEGE Procedure

This procedure deletes a privilege in an access control list.

Syntax

DBMS_NETWORK_ACL_ADMIN.DELETE_PRIVILEGE (
 acl IN VARCHAR2,
 principal IN VARCHAR2,
 is_grant IN BOOLEAN DEFAULT NULL,
 privilege IN VARCHAR2 DEFAULT NULL);

Parameters

Table 94-8 DELETE_PRIVILEGE Function Parameters

	Parameter	Description
	
acl

	
Name of the ACL. Relative path will be relative to "/sys/acls".

	
principal

	
Principal (database user or role) for whom all the ACE will be deleted

	
is_grant

	
Privilege is granted or not (denied). If a NULL value is given, the deletion is applicable to both granted or denied privileges.

	
privilege

	
Network privilege to be deleted. If a NULL value is given, the deletion is applicable to all privileges.

Examples

BEGIN
 DBMS_NETWORK_ACL_ADMIN.DELETE_PRIVILEGE(
 acl => 'us-oracle-com-permissions.xml',
 principal => 'ST_USERS')
END;

DROP_ACL Procedure

This procedure drops an access control list (ACL).

Syntax

DBMS_NETWORK_ACL_ADMIN.DROP_ACL (
 acl IN VARCHAR2);

Parameters

Table 94-9 DROP_ACL Procedure Parameters

	Parameter	Description
	
acl

	
Name of the ACL. Relative path will be relative to "/sys/acls".

Examples

BEGIN
 DBMS_NETWORK_ACL_ADMIN.DROP_ACL(
 acl => 'us-oracle-com-permissions.xml');
END;

UNASSIGN_ACL Procedure

This procedure unassigns the access control list (ACL) currently assigned to a network host.

Syntax

DBMS_NETWORK_ACL_ADMIN.UNASSIGN_ACL (
 acl IN VARCHAR2 DEFAULT NULL,
 host IN VARCHAR2 DEFAULT NULL,
 lower_port IN PLS_INTEGER DEFAULT NULL,
 upper_port IN PLS_INTEGER DEFAULT NULL);

Parameters

Table 94-10 UNASSIGN_ACL Function Parameters

	Parameter	Description
	
acl

	
Name of the ACL. Relative path will be relative to "/sys/acls". If ACL is NULL, any ACL assigned to the host is unassigned.

	
host

	
Host from which the ACL is to be removed. The host can be the name or the IP address of the host. A wildcard can be used to specify a domain or a IP subnet. The host or domain name is case-insensitive. If host is NULL, the ACL will be unassigned from any host. If both host and acl are NULL, all ACLs assigned to any hosts are unassigned.

	
lower_port

	
Lower bound of a TCP port range if not NULL

	
upper_port

	
Upper bound of a TCP port range. If NULL, lower_port is assumed.

Examples

BEGIN
 DBMS_NETWORK_ACL_ADMIN.UNASSIGN_ACL(
 host => '*.us.oracle.com',
 lower_port => 80);
END;

UNASSIGN_WALLET_ACL Procedure

This procedure unassigns the access control list (ACL) currently assigned to a wallet.

Syntax

UTL_HTTP.UNASSIGN_WALLET_ACL (
 acl IN VARCHAR2 DEFAULT NULL,
 wallet_path IN VARCHAR2 DEFAULT NULL);

Parameters

Table 94-11 UNASSIGN_WALLET_ACL Procedure Parameters

	Parameter	Description
	
acl

	
Name of the ACL. Relative path will be relative to "/sys/acls". If acl is NULL, any ACL assigned to the wallet is unassigned

	
wallet_path

	
Directory path of the wallet to which the ACL is assigned. The path is case-sensitive and of the format file:directory-path. If both acl and wallet_path are NULL, all ACLs assigned to any wallets are unassigned.

Examples

BEGIN
 DBMS_NETWORK_ACL_ADMIN.UNASSIGN_WALLET_ACL(
 acl => 'wallet-acl.xml',
 wallet_path => 'file:/oracle/wallets/test_wallet');
END;

DBMS_NETWORK_ACL_UTILITY

95 DBMS_NETWORK_ACL_UTILITY

The DBMS_NETWORK_ACL_UTILITY package provides the utility functions to facilitate the evaluation of access control list (ACL) assignments governing TCP connections to network hosts.

	
See Also:

For more information, see ""Managing Fine-grained Access to External Network Services"" in Oracle Database Security Guide

The chapter contains the following topics:

	
Using DBMS_NETWORK_ACL_UTILITY

	
Examples

	
Summary of DBMS_NETWORK_ACL_UTILITY Subprograms

Using DBMS_NETWORK_ACL_UTILITY

	
Examples

Examples

The CONTAINS_HOST Function in this package indicates if a domain or subnet contains a given host or IP address. It can be used in conjunction with the CHECK_PRIVILEGE_ACLID Function in the DBMS_NETWORK_ACL_ADMIN package to determine the privilege assignments affecting a user's permission to access a network host. The return value of the CONTAINS_HOST Function in can also be used to order the ACL assignments by their precedence.

Example 1

For example, for SCOTT's permission to connect to www.hr.example.com:

 SELECT host, lower_port, upper_port, acl,
 DECODE(
 DBMS_NETWORK_ACL_ADMIN.CHECK_PRIVILEGE_ACLID(aclid, 'SCOTT', 'connect'),
 1, 'GRANTED', 0, 'DENIED', NULL) privilege
 FROM (SELECT host, acl, aclid, lower_port, upper_port,
 DBMS_NETWORK_ACL_UTILITY.CONTAINS_HOST('www.hr.example.com', host)
 precedence
 FROM dba_network_acls)
 WHERE precedence > 0
 ORDER BY precedence DESC, lower_port nulls LAST;

 HOST LOWER_PORT UPPER_PORT ACL PRIVILEGE
 -------------------- ---------- ---------- -------------------- ---------
 www.hr.example.com 80 80 /sys/acls/www.xml GRANTED
 www.hr.example.com 3000 3999 /sys/acls/www.xml GRANTED
 www.hr.example.com /sys/acls/www.xml GRANTED
 *.hr.example.com /sys/acls/all.xml
 *.example.com /sys/acls/all.xml

Example 2

For example, for SCOTT's permission to do domain name resolution for www.hr.example.com:

SELECT host, acl,
 DECODE(
 DBMS_NETWORK_ACL_ADMIN.CHECK_PRIVILEGE_ACLID(aclid, 'SCOTT', 'resolve'),
 1, 'GRANTED', 0, 'DENIED', null) privilege
 FROM (SELECT host, acl, aclid,
 DBMS_NETWORK_ACL_UTILITY.CONTAINS_HOST('www.hr.example.com', host)
 precedence
 FROM dba_network_acls
 WHERE lower_port IS NULL AND upper_port IS NULL)
 WHERE precedence > 0
 ORDER BY precedence DESC;

HOST ACL PRIVILEGE
---------------------- ---------------------------- ---------
www.hr.example.com /sys/acls/hr-www.xml GRANTED
*.hr.example.com /sys/acls/hr-domain.xml
*.example.com /sys/acls/corp-domain.xml

Note that the "resolve" privilege takes effect only in ACLs assigned without any port range (when lower_port and upper_port are NULL). For this reason, the example does not include lower_port and upper_port columns in the query.

Summary of DBMS_NETWORK_ACL_UTILITY Subprograms

Table 95-1 DBMS_NETWORK_ACL_UTILITY Package Subprograms

	Subprogram	Description
	
CONTAINS_HOST Function

	
Determines if the given host is equal to or contained in the given host, domain, or subnet

	
DOMAIN_LEVEL Function

	
Returns the domain level of the given host name, domain, or subnet

	
DOMAINS Function

	
For a given host, this function returns the domains whose ACL assigned is used to determine if a user has the privilege to access the given host or not.

	
EQUALS_HOST Function

	
Determines if the two given hosts, domains, or subnets are equal

CONTAINS_HOST Function

This function determines if the given host is equal to or contained in the given host, domain, or subnet. It handles different representation of the same IP address or subnet. For example, an IPv4-mapped IPv6 address is considered equal to the IPv4-native address it represents. It does not perform domain name resolution when evaluating the host or domain.

Syntax

DBMS_NETWORK_ACL_UTILITY.CONTAINS_HOST (
 host IN VARCHAR2,
 domain IN VARCHAR2)
 RETURN NUMBER;

Parameters

Table 95-2 CONTAINS_HOST Function Parameters

	Parameter	Description
	
host

	
Network host

	
domain

	
Network host, domain, or subnet

Return Values

Returns a non-NULL value if the given host is equal to or contained in the related host, domain, or subnet:

	
If domain is a hostname, returns the level of its domain + 1

	
If domain is a domain name, returns the domain level

	
If domain is an IP address or subnet, return the number of significant address bits of the IP address or subnet

	
If domain is the wildcard "*", returns 0

The non-NULL value returned indicates the precedence of the domain or subnet for ACL assignment. The higher the value, the higher is the precedence. NULL will be returned if the host is not equal to or contained in the given host, domain or subnet.

Examples

SELECT host, acl, precedence
 FROM (select host, acl,
 DBMS_NETWORK_ACL_UTILITY.CONTAINS_HOST('192.0.2.3', host)
 precedence
 FROM dba_network_acls)
 WHERE precedence > 0
 ORDER BY precedence DESC;

HOST ACL PRECEDENCE
---------------------- -------------------------- ----------
192.0.2.3 /sys/acls/hr-www.xml 32
::ffff:192.0.2.0/120 /sys/acls/hr-domain.xml 24
::ffff:192.0.0.0/104 /sys/acls/corp-domain.xml 8

DOMAIN_LEVEL Function

This function returns the domain level of the given host name, domain, or subnet.

Syntax

DBMS_NETWORK_ACL_UTILITY.DOMAIN_LEVEL (
 host IN VARCHAR2)
 RETURN NUMBER;

Parameters

Table 95-3 DOMAIN_LEVEL Function Parameters

	Parameter	Description
	
host

	
Network host, domain, or subnet

Return Values

The domain level of the given host, domain, or subnet.

Usage Notes

Note that this function cannot handle IPv6 addresses and subnets, and subnets in CIDR notation.

Examples

SELECT host, acl, domain_level
 FROM (select host, acl,
 DBMS_NETWORK_ACL_UTILITY.DOMAIN_LEVEL(host) domain_level
 FROM dba_network_acls)
 order by domain_level desc;

HOST ACL DOMAIN_LEVEL
---------------------- ---------------------------- ------------
www.hr.example.com /sys/acls/hr-www.xml 4
*.hr.example.com /sys/acls/hr-domain.xml 3
*.example.com /sys/acls/corp-domain.xml 2

DOMAINS Function

For a given host, this function returns the domains whose ACL assigned determines if a user has the privilege to access the given host or not. When the IP address of the host is given, return the subnets instead.

Syntax

DBMS_NETWORK_ACL_UTILITY.DOMAINS (
 host IN VARCHAR2)
 RETURN DOMAIN_TABLE PIPELINED;

Parameters

Table 95-4 DOMAINS Function Parameters

	Parameter	Description
	
host

	
Network host

Return Values

The domains or subnets for the given host.

Usage Notes

Note that this function cannot handle IPv6 addresses. Nor can it generate subnets of arbitrary number of prefix bits for an IPv4 address.

Examples

select * from table(dbms_network_acl_utility.domains('www.hr.example.com'));

DOMAINS

www.hr.example.com
*.hr.example.com
*.example.com
*.com
*

EQUALS_HOST Function

This function determines if the two given hosts, domains, or subnets are equal. It handles different representation of the same IP address or subnet. For example, an IPv4-mapped IPv6 address is considered equal to the IPv4- native address it represents. It does not perform domain name resolution when comparing the two hosts or domains.

Syntax

DBMS_NETWORK_ACL_UTILITY.EQUALS_HOST (
 host1 IN VARCHAR2,
 host2 IN VARCHAR2)
 RETURN NUMBER;

Parameters

Table 95-5 EQUALS_HOST Function Parameters

	Parameter	Description
	
host1

	
Network host, domain, or subnet to compare

	
host2

	
Network host, domain, or subnet to compare

Return Values

1 if the two hosts, domains, or subnets are equal. 0 otherwise.

Examples

SELECT host, acl
 FROM dba_network_acls
 WHERE DBMS_NETWORK_ACL_UTILITY.EQUALS_HOST('192.0.2.*', host) = 1;

HOST ACL
---------------------- ----------------------------
::ffff:192.0.2.0/120 /sys/acls/hr-domain.xml

DBMS_OBFUSCATION_TOOLKIT

96 DBMS_OBFUSCATION_TOOLKIT

DBMS_OBFUSCATION_TOOLKIT enables an application to encrypt data using either the Data Encryption Standard (DES) or the Triple DES algorithms.

	
Note:

DBMS_OBFUSCATION_TOOLKIT is deprecated. DBMS_CRYPTO is intended to replace the DBMS_OBFUSCATION_TOOLKIT, providing greater ease of use and support for a range of algorithms to accommodate new and existing systems. See Chapter 39, "DBMS_CRYPTO" for more information.

This chapter contains the following topics:

	
Using DBMS_OBFUSCATION_TOOLKIT

	
Overview

	
Security Model

	
Operational Notes

	
Summary of DBMS_OBFUSCATION Subprograms

Using DBMS_OBFUSCATION_TOOLKIT

	
Overview

	
Security Model

	
Operational Notes

Overview

The Data Encryption Standard (DES), also known as the Data Encryption Algorithm (DEA) by the American National Standards Institute (ANSI) and DEA-1 by the International Standards Organization (ISO), has been a worldwide encryption standard for over 20 years. The banking industry has also adopted DES-based standards for transactions between private financial institutions, and between financial institutions and private individuals. DES will eventually be replaced by a new Advanced Encryption Standard (AES).

DES is a symmetric key cipher; that is, the same key is used to encrypt data as well as decrypt data. DES encrypts data in 64-bit blocks using a 56-bit key. The DES algorithm ignores 8 bits of the 64-bit key that is supplied; however, you must supply a 64-bit key to the algorithm.

Triple DES (3DES) is a far stronger cipher than DES; the resulting ciphertext (encrypted data) is much harder to break using an exhaustive search: 2**112 or 2**168 attempts instead of 2**56 attempts. Triple DES is also not as vulnerable to certain types of cryptanalysis as is DES.

Security Model

Oracle installs this package in the SYS schema. You can then grant package access to existing users and roles as needed. The package also grants access to the PUBLIC role so no explicit grant needs to be done.

Operational Notes

	
Key Management

	
Storing the Key in the Database

	
Storing the Key in the Operating System

	
User-Supplied Keys

Key Management

Key management, including both generation and secure storage of cryptographic keys, is one of the most important aspects of encryption. If keys are poorly chosen or stored improperly, then it is far easier for a malefactor to break the encryption. Rather than using an exhaustive key search attack (that is, cycling through all the possible keys in hopes of finding the correct decryption key), cryptanalysts typically seek weaknesses in the choice of keys, or the way in which keys are stored.

Key generation is an important aspect of encryption. Typically, keys are generated automatically through a random-number generator. Provided that the random number generation is cryptographically secure, this can be an acceptable form of key generation. However, if random numbers are not cryptographically secure, but have elements of predictability, the security of the encryption may be easily compromised.

The DBMS_OBFUSCATION_TOOLKIT package includes tools for generating random material that can be used for encryption keys, but it does not provide a mechanism for maintaining them. Care must be taken by the application developer to ensure the secure generation and storage of encryption keys used with this package. Furthermore, the encryption and decryption done by the DBMS_OBFUSCATION_TOOLKIT takes place on the server, not the client. If the key is passed over the connection between the client and the server, the connection must be protected by using network encryption. Otherwise, the key is vulnerable to capture over the wire. See Oracle Database Advanced Security Administrator's Guide for information about configuring and using network encryption for Oracle Net.

Key storage is one of the most important, yet difficult aspects of encryption and one of the hardest to manage properly. To recover data encrypted with a symmetric key, the key must be accessible to the application or user seeking to decrypt data. The key needs to be easy enough to retrieve that users can access encrypted data when they need to without significant performance degradation. The key also needs to be secure enough that it is not easily recoverable by unauthorized users trying to access encrypted data that they are not supposed to see.

The three options available are:

	
Store the key in the database

	
Store the key in the operating system

	
Have the user manage the key

Storing the Key in the Database

Storing the keys in the database cannot always provide bullet-proof security if you are trying to protect data against the DBA accessing encrypted data (since an all-privileged DBA can access tables containing encryption keys), but it can provide security against the casual snooper, or against someone compromising the database files on the operating system. Furthermore, the security you can obtain by storing keys in the database does not have to be bullet-proof in order to be extremely useful.

For example, suppose you want to encrypt an employee's social security number, one of the columns in table EMP. You could encrypt each employee's SSN using a key which is stored in a separate column in EMP. However, anyone with SELECT access on the EMP table could retrieve the encryption key and decrypt the matching social security number. Alternatively, you could store the encryption keys in another table, and use a package to retrieve the correct key for the encrypted data item, based on a primary key-foreign key relationship between the tables.

You can envelope both the DBMS_OBFUSCATION_TOOLKIT package and the procedure to retrieve the encryption keys supplied to the package. Furthermore, the encryption key itself could be transformed in some way (for example, XORed with the foreign key to the EMP table) so that the key itself is not stored in easily recoverable form.

Oracle recommends using the wrap utility of PL/SQL to obfuscate the code within a PL/SQL package itself that does the encryption. That prevents people from breaking the encryption by looking at the PL/SQL code that handles keys, calls encrypting routines, and so on. In other words, use the wrap utility to obfuscate the PL/SQL packages themselves. This scheme is secure enough to prevent users with SELECT access to EMP from reading unencrypted sensitive data, and a DBA from easily retrieving encryption keys and using them to decrypt data in the EMP table. It can be made more secure by changing encryption keys regularly, or having a better key storage algorithm (so the keys themselves are encrypted, for example).

Storing the Key in the Operating System

Storing keys in a flat file in the operating system is another option. You can make callouts from PL/SQL, which you can use to retrieve encryption keys. If you store keys in a file and make callouts to retrieve the keys, the security of your encrypted data is only as secure as the protection of the key file on the operating system. Of course, a user retrieving keys from the operating system would have to be able to either access the Oracle database files (to decrypt encrypted data), or be able to gain access to the table in which the encrypted data is stored as a legitimate user.

User-Supplied Keys

If you ask a user to supply the key, it is crucial that you use network encryption, such as that provided by Oracle Advanced Security, so the key is not passed from client to server in the clear. The user must remember the key, or your data is not recoverable.

Summary of DBMS_OBFUSCATION Subprograms

Table 96-1 DBMS_OBFUSCATION Package Subprograms

	Subprogram	Description
	
DES3DECRYPT Procedures and Functions

	
Generates the decrypted form of the input data

	
DES3ENCRYPT Procedures and Functions

	
Generates the encrypted form of the input data by passing it through the Triple DES encryption algorithm

	
DES3GETKEY Procedures and Functions

	
Takes a random value and uses it to generate an encryption key, using Triple DES

	
DESDECRYPT Procedures and Functions

	
Generates the decrypted form of the input data

	
DESENCRYPT Procedures and Functions

	
Generates the encrypted form of the input data

	
DESGETKEY Procedures and Functions

	
Takes a random value and uses it to generate an encryption key

	
MD5 Procedures and Functions

	
Generates MD5 hashes of data

DES3DECRYPT Procedures and Functions

These subprograms generate the decrypted form of the input data.

For a discussion of the initialization vector that you can use with this procedure, see the section, "DES3ENCRYPT Procedures and Functions".

Syntax

DBMS_OBFUSCATION_TOOLKIT.DES3DECRYPT(
 input IN RAW,
 key IN RAW,
 decrypted_data OUT RAW,
 which IN PLS_INTEGER DEFAULT TwoKeyMode
 iv IN RAW DEFAULT NULL);

DBMS_OBFUSCATION_TOOLKIT.DES3DECRYPT(
 input_string IN VARCHAR2,
 key_string IN VARCHAR2,
 decrypted_string OUT VARCHAR2,
 which IN PLS_INTEGER DEFAULT TwoKeyMode
 iv_string IN VARCHAR2 DEFAUTL NULL);

DBMS_OBFUSCATION_TOOLKIT.DES3DECRYPT(
 input IN RAW,
 key IN RAW,
 which IN PLS_INTEGER DEFAULT TwoKeyMode
 iv IN RAW DEFAULT NULL)
 RETURN RAW;

DBMS_OBFUSCATION_TOOLKIT.DES3DECRYPT(
 input_string IN VARCHAR2,
 key_string IN VARCHAR2,
 which IN PLS_INTEGER DEFAULT TwoKeyMode
 iv_string IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 96-2 DES3DECRYPT Parameters for Raw Data

	Parameter	Description
	
input

	
Data to be decrypted

	
key

	
Decryption key

	
decrypted_data

	
Decrypted data

	
which

	
If = 0, (default), then TwoKeyMode is used. If = 1, then ThreeKeyMode is used.

	
iv

	
Initialization vector

	
input_string

	
String to be decrypted

	
key_string

	
Decryption key string

	
decrypted_string

	
Decrypted string

	
iv_string

	
Initialization vector

Usage Notes

If the input data or key given to the DES3DECRYPT procedure is empty, then the procedure raises the error ORA-28231 "Invalid input to Obfuscation toolkit."

If the input data given to the DES3DECRYPT procedure is not a multiple of 8 bytes, the procedure raises the error ORA-28232 "Invalid input size for Obfuscation toolkit." ORA-28233 is NOT applicable for the DES3DECRYPT function.

If the key length is missing or is less than 8 bytes, then the procedure raises the error ORA-28234 "Key length too short." Note that if larger keys are used, extra bytes are ignored. So a 9-byte key will not generate an exception.

If an incorrect value is specified for the WHICH parameter, ORA-28236 "Invalid Triple DES mode" is generated. Only the values 0 (TwoKeyMode) and 1 (ThreeKeyMode) are valid.

Restrictions

You must supply a single key of either 128 bits for a 2-key implementation (of which only 112 are used), or a single key of 192 bits for a 3-key implementation (of which 168 bits are used). Oracle automatically truncates the supplied key into 56-bit lengths for decryption. This key length is fixed and cannot be altered.

	
Note:

Both the key length limitation and the prevention of multiple encryption passes are requirements of U.S. regulations governing the export of cryptographic products.

DES3ENCRYPT Procedures and Functions

These subprograms generate the encrypted form of the input data by passing it through the Triple DES (3DES) encryption algorithm.

Oracle's implementation of 3DES supports either a 2-key or 3-key implementation, in outer cipher-block-chaining (CBC) mode.

Syntax

DBMS_OBFUSCATION_TOOLKIT.DES3Encrypt(
 input IN RAW,
 key IN RAW,
 encrypted_data OUT RAW,
 which IN PLS_INTEGER DEFAULT TwoKeyMode
 iv IN RAW DEFAULT NULL);

DBMS_OBFUSCATION_TOOLKIT.DES3Encrypt(
 input_string IN VARCHAR2,
 key_string IN VARCHAR2,
 encrypted_string OUT VARCHAR2,
 which IN PLS_INTEGER DEFAULT TwoKeyMode
 iv_string IN VARCHAR2 DEFAULT NULL);

DBMS_OBFUSCATION_TOOLKIT.DES3Encrypt(
 input IN RAW,
 key IN RAW,
 which IN PLS_INTEGER DEFAULT TwoKeyMode
 iv IN RAW DEFAULT NULL)
 RETURN RAW;

DBMS_OBFUSCATION_TOOLKIT.DES3Encrypt(
 input_string IN VARCHAR2,
 key_string IN VARCHAR2,
 which IN PLS_INTEGER DEFAULT TwoKeyMode
 iv_string IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 96-3 DES3ENCRYPT Parameters Procedure and Function

	Parameter	Description
	
input

	
Data to be encrypted.

	
key

	
Encryption key.

	
encrypted_data

	
Encrypted data.

	
which

	
If = 0, (default), then TwoKeyMode is used. If = 1, then ThreeKeyMode is used.

	
iv

	
Initialization vector.

	
input_string

	
String to be encrypted.

	
key_string

	
Encryption key string.

	
encrypted_string

	
Encrypted string.

	
iv_string

	
Initialization vector.

Usage Notes

If you are using Oracle's 3DES interface with a 2-key implementation, you must supply a single key of 128 bits as an argument to the DES3ENCRYPT procedure. With a 3-key implementation, you must supply a single key of 192 bits. Oracle then breaks the supplied key into two 64-bit keys. As with DES, the 3DES algorithm throws away 8 bits of each derived key. However, you must supply a single 128-bit key for the 2-key 3DES implementation or a single 192-bit key for the 3-key 3DES implementation; otherwise the package will raise an error. The DES3ENCRYPT procedure uses the 2-key implementation by default.

You also have the option of providing an initialization vector (IV) with the DES3ENCRYPT procedure. An IV is a block of random data prepended to the data you intend to encrypt. The IV has no meaning. It is there to make each message unique. Prepending an IV to your input data avoids starting encrypted blocks of data with common header information, which may give cryptanalysts information they can use to decrypt your data.

If the input data or key given to the PL/SQL DES3ENCRYPT procedure is empty, then the procedure raises the error ORA-28231 "Invalid input to Obfuscation toolkit."

If the input data given to the DES3ENCRYPT procedure is not a multiple of 8 bytes, the procedure raises the error ORA-28232 "Invalid input size for Obfuscation toolkit."

If you try to double encrypt data using the DES3ENCRYPT procedure, then the procedure raises the error ORA-28233 "Double encryption not supported."

If the key length is missing or is less than 8 bytes, then the procedure raises the error ORA-28234 "Key length too short." Note that if larger keys are used, extra bytes are ignored. So a 9-byte key will not generate an exception.

If an incorrect value is specified for the which parameter, ORA-28236 "Invalid Triple DES mode" is generated. Only the values 0 (TwoKeyMode) and 1 (ThreeKeyMode) are valid.

Restrictions

The DES3ENCRYPT procedure has two restrictions. The first is that the DES key length for encryption is fixed at 128 bits (for 2-key DES) or 192 bits (for 3-key DES); you cannot alter these key lengths.

The second is that you cannot execute multiple passes of encryption using 3DES. (Note: the 3DES algorithm itself encrypts data multiple times; however, you cannot call the DES3ENCRYPT function itself more than once to encrypt the same data using 3DES.)

	
Note:

Both the key length limitation and the prevention of multiple encryption passes are requirements of U.S. regulations governing the export of cryptographic products.

DES3GETKEY Procedures and Functions

These subprograms take a random value and uses it to generate an encryption key. For Triple DES, you specify the mode so that the returned key has the proper length.

Syntax

DBMS_OBFUSCATION_TOOLKIT.DES3GetKey(
 which IN PLS_INTEGER DEFAULT TwoKeyMode,
 seed IN RAW,
 key OUT RAW);

DBMS_OBFUSCATION_TOOLKIT.DES3GetKey(
 which IN PLS_INTEGER DEFAULT TwoKeyMode,
 seed_string IN VARCHAR2,
 key OUT VARCHAR2);

DBMS_OBFUSCATION_TOOLKIT.DES3GetKey(
 which IN PLS_INTEGER DEFAULT TwoKeyMode,
 seed IN RAW)
 RETURN RAW;

DBMS_OBFUSCATION_TOOLKIT.DES3GetKey(
 which IN PLS_INTEGER DEFAULT TwoKeyMode,
 seed_string IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Table 96-4 DES3GETKEY Procedure and Function Parameters

	Parameter	Description
	
which

	
If = 0, (default), then TwoKeyMode is used. If = 1, then ThreeKeyMode is used.

	
seed

	
A value at least 80 characters long.

	
key

	
Encryption key.

	
seed_string

	
A value at least 80 characters long.

	
key

	
Encryption key.

DESDECRYPT Procedures and Functions

These subprograms generate the decrypted form of the input data.

Syntax

DBMS_OBFUSCATION_TOOLKIT.DESDecrypt(
 input IN RAW,
 key IN RAW,
 decrypted_data OUT RAW);

DBMS_OBFUSCATION_TOOLKIT.DESDecrypt(
 input_string IN VARCHAR2,
 key_string IN VARCHAR2,
 decrypted_string OUT VARCHAR2);

DBMS_OBFUSCATION_TOOLKIT.DESDecrypt(
 input IN RAW,
 key IN RAW)
 RETURN RAW;

DBMS_OBFUSCATION_TOOLKIT.DESDecrypt(
 input_string IN VARCHAR2,
 key_string IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Table 96-5 DESDECRYPT Procedure and Function Parameters

	Parameter	Description
	
input

	
Data to be decrypted.

	
key

	
Decryption key.

	
decrypted_data

	
Decrypted data.

	
input_string

	
String to be decrypted.

	
key_string

	
Decryption key string.

	
decrypted_string

	
Decrypted string.

Usage Notes

If the input data or key given to the PL/SQL DESDECRYPT function is empty, then Oracle raises ORA error 28231 "Invalid input to Obfuscation toolkit."

If the input data given to the DESDECRYPT function is not a multiple of 8 bytes, Oracle raises ORA error 28232 "Invalid input size for Obfuscation toolkit."

If the key length is missing or is less than 8 bytes, then the procedure raises the error ORA-28234 "Key length too short." Note that if larger keys are used, extra bytes are ignored. So a 9-byte key will not generate an exception.

	
Note:

ORA-28233 is not applicable to the DESDECRYPT function.

Restrictions

The DES key length for encryption is fixed at 64 bits (of which 56 bits are used); you cannot alter this key length.

	
Note:

The key length limitation is a requirement of U.S. regulations governing the export of cryptographic products.

DESENCRYPT Procedures and Functions

These subprograms generate the encrypted form of the input data.

Syntax

DBMS_OBFUSCATION_TOOLKIT.DESEncrypt(
 input IN RAW,
 key IN RAW,
 encrypted_data OUT RAW);

DBMS_OBFUSCATION_TOOLKIT.DESEncrypt(
 input_string IN VARCHAR2,
 key_string IN VARCHAR2,
 encrypted_string OUT VARCHAR2);

DBMS_OBFUSCATION_TOOLKIT.DESEncrypt(
 input IN RAW,
 key IN RAW)
 RETURN RAW;

DBMS_OBFUSCATION_TOOLKIT.DESEncrypt(
 input_string IN VARCHAR2,
 key_string IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Table 96-6 DESENCRYPT Procedure and Function Parameters

	Parameter	Description
	
input

	
Data to be encrypted.

	
key

	
Encryption key.

	
encrypted_data

	
Encrypted data.

	
input_string

	
String to be encrypted.

	
key_string

	
Encryption key string.

	
encrypted_string

	
Encrypted string.

Usage Notes

The DES algorithm encrypts data in 64-bit blocks using a 56-bit key. The DES algorithm throws away 8 bits of the supplied key (the particular bits which are thrown away is beyond the scope of this documentation). However, when using the algorithm, you must supply a 64-bit key or the package will raise an error.

If the input data or key given to the PL/SQL DESEncrypt procedure is empty, then the procedure raises the error ORA-28231 "Invalid input to Obfuscation toolkit".

If the input data given to the DESENCRYPT procedure is not a multiple of 8 bytes, the procedure raises the error ORA-28232 "Invalid input size for Obfuscation toolkit."

If you try to double-encrypt data using the DESENCRYPT procedure, then the procedure raises the error ORA-28233 "Double encryption not supported."

If the key length is missing or is less than 8 bytes, then the procedure raises the error ORA-28234 "Key length too short." Note that if larger keys are used, extra bytes are ignored. So a 9-byte key will not generate an exception.

Restrictions

The DESENCRYPT procedure has the following restrictions:

	
The DES key length for encryption is fixed at 56 bits; you cannot alter this key length.

	
You cannot execute multiple passes of encryption. That is, you cannot re-encrypt previously encrypted data by calling the function twice.

	
Note:

Both the key length limitation and the prevention of multiple encryption passes are requirements of U.S. regulations governing the export of cryptographic products.

DESGETKEY Procedures and Functions

These subprograms take a random value and use it to generate an encryption key.

Syntax

DBMS_OBFUSCATION_TOOLKIT.DESGetKey(
 seed IN RAW,
 key OUT RAW);

DBMS_OBFUSCATION_TOOLKIT.DESGetKey(
 seed_string IN VARCHAR2,
 key OUT VARCHAR2);

DBMS_OBFUSCATION_TOOLKIT.DESGetKey(
 seed IN RAW)
 RETURN RAW;

DBMS_OBFUSCATION_TOOLKIT.DESGetKey(
 seed_string IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Table 96-7 DESGETKEY Procedure and Function Parameters

	Parameter	Description
	
seed

	
A value at least 80 characters long.

	
key

	
Encryption key.

	
seed_string

	
A value at least 80 characters long.

	
key

	
Encryption key.

MD5 Procedures and Functions

These subprograms generate MD5 hashes of data. The MD5 algorithm ensures data integrity by generating a 128-bit cryptographic message digest value from given data.

Syntax

DBMS_OBFUSCATION_TOOLKIT.MD5(
 input IN RAW,
 checksum OUT raw_checksum);

DBMS_OBFUSCATION_TOOLKIT.MD5(
 input_string IN VARCHAR2,
 checksum_string OUT varchar2_checksum);

DBMS_OBFUSCATION_TOOLKIT.MD5(
 input IN RAW)
 RETURN raw_checksum;

DBMS_OBFUSCATION_TOOLKIT.MD5(
 input_string IN VARCHAR2)
 RETURN varchar2_checksum;

Parameters

Table 96-8 MD5 Procedure and Function Parameters

	Parameter Name	Description
	
input

	
Data to be hashed

	
checksum

	
128-bit cryptographic message digest

	
input_string

	
String to be hashed

	
checksum_string

	
128-bit cryptographic message digest

DBMS_ODCI

97 DBMS_ODCI

DBMS_ODCI package contains a single user function related to the use of Data Cartridges.

	
See Also:

	
Oracle Database Data Cartridge Developer's Guide

This chapter contains the following topic:

	
Summary of DBMS_ODCI Subprograms

Summary of DBMS_ODCI Subprograms

Table 97-1 DBMS_ODCI Package Subprograms

	Subprogram	Description
	
ESTIMATE_CPU_UNITS Function

	
Returns the approximate number of CPU instructions (in thousands) corresponding to a specified time interval (in seconds)

ESTIMATE_CPU_UNITS Function

This function returns the approximate number of CPU instructions (in thousands) corresponding to a specified time interval (in seconds). This information can be used to associate the CPU cost with a user-defined function for the extensible optimizer.

The function takes as input the elapsed time of the user function, measures CPU units by multiplying the elapsed time by the processor speed of the machine, and returns the approximate number of CPU instructions that should be associated with the user function. For a multiprocessor machine, ESTIMATE_CPU_UNITS considers the speed of a single processor.

Syntax

DBMS_ODCI.ESTIMATE_CPU_UNITS(
 elapsed_time NUMBER)
 RETURN NUMBER;

Parameters

	Parameter	Description
	elapsed_time	The elapsed time in seconds that it takes to execute a function.

Usage Notes

When associating CPU cost with a user-defined function, use the full number of CPU units rather than the number of thousands of CPU units returned by ESTIMATE_CPU_UNITS; multiply the number returned by ESTIMATE_CPU_UNITS by 1,000.

DBMS_OFFLINE_OG

98 DBMS_OFFLINE_OG

The DBMS_OFFLINE_OG package contains the public interface for offline instantiation of master groups.

This chapter contains the following topics:

	
Documentation of DBMS_OFFLINE_OG

Documentation of DBMS_OFFLINE_OG

For a complete description of this package within the context of Replication, see DBMS_OFFLINE_OG in the Oracle Database Advanced Replication Management API Reference.

DBMS_OUTLN

99 DBMS_OUTLN

The DBMS_OUTLN package, synonymous with OUTLN_PKG, contains the functional interface for subprograms associated with the management of stored outlines.

	
See Also:

For more information about using the DBMS_OUTLN package, see "Using Plan Stability" in Oracle Database Performance Tuning Guide.

	
Note:

Stored outlines will be desupported in a future release in favor of SQL plan management. In Oracle Database 11g Release 1 (11.1), stored outlines continue to function as in past releases. However, Oracle strongly recommends that you use SQL plan management for new applications. SQL plan management creates SQL plan baselines, which offer superior SQL performance and stability compared with stored outlines.If you have existing stored outlines, please consider migrating them to SQL plan baselines by using the LOAD_PLANS_FROM_CURSOR_CACHE Functions or LOAD_PLANS_FROM_SQLSET Function of the DBMS_SPM package. When the migration is complete, you should disable or remove the stored outlines.

This chapter contains the following topics:

	
Using DBMS_OUTLN

	
Overview

	
Security Model

	
Summary of DBMS_OUTLN Subprograms

Using DBMS_OUTLN

	
Overview

	
Security Model

Overview

A stored outline is the stored data that pertains to an execution plan for a given SQL statement. It enables the optimizer to repeatedly re-create execution plans that are equivalent to the plan originally generated along with the outline.The data stored in an outline consists, in part, of a set of hints that are used to achieve plan stability.

Stored outlines will be de-supported in a future release in favor of SQL plan management. As of 11g R1, stored outlines continue to function as in past releases, but Oracle strongly recommends that you use SQL plan management for new applications. SQL plan management creates SQL plan baselines, which offer superior SQL performance and stability compared with stored outlines.If you have existing stored outlines, please consider migrating them to SQL plan baselines by using the LOAD_PLANS_FROM_CURSOR_CACHE Functions or the LOAD_PLANS_FROM_SQLSET Function of the DBMS_SPM package. When the migration is complete, you should disable or remove the stored outlines.

Security Model

DBMS_OUTLN contains management procedures that should be available to appropriate users only. EXECUTE privilege is not extended to the general user community unless the DBA explicitly does so.

PL/SQL functions that are available for outline management purposes can be executed only by users with EXECUTE privilege on the procedure (or package).

Summary of DBMS_OUTLN Subprograms

Table 99-1 DBMS_OUTLN Package Subprograms

	Subprogram	Description
	
CLEAR_USED Procedure

	
Clears the outline 'used' flag

	
CREATE_OUTLINE Procedure

	
Generates outlines from the shared cursor identified by hash value and child number

	
DROP_BY_CAT Procedure

	
Drops outlines that belong to a specified category

	
DROP_UNUSED Procedure

	
Drops outlines that have never been applied in the compilation of a SQL statement

	
EXACT_TEXT_SIGNATURES Procedure

	
Updates outline signatures to those that compute based on exact text matching

	
UPDATE_BY_CAT Procedure

	
Changes the category of outlines in one category to a new category

	
UPDATE_SIGNATURES Procedure

	
Updates outline signatures to the current version's signature

CLEAR_USED Procedure

This procedure clears the outline 'used' flag.

Syntax

DBMS_OUTLN.CLEAR_USED (
 name IN VARCHAR2);

Parameters

Table 99-2 CLEAR_USED Procedure Parameters

	Parameter	Description
	
name

	
Name of the outline.

CREATE_OUTLINE Procedure

This procedure generates an outline by reparsing the SQL statement from the shared cursor identified by hash value and child number.

Syntax

DBMS_OUTLN.CREATE_OUTLINE (
 hash_value IN NUMBER,
 child_number IN NUMBER,
 category IN VARCHAR2 DEFAULT 'DEFAULT');

Parameters

Table 99-3 CREATE_OUTLINE Procedure Parameters

	Parameter	Description
	
hash_value

	
Hash value identifying the target shared cursor.

	
child_number

	
Child number of the target shared cursor.

	
category

	
Category in which to create outline (optional).

DROP_BY_CAT Procedure

This procedure drops outlines that belong to a particular category. While outlines are put into the DEFAULT category unless otherwise specified, users have the option of grouping their outlines into groups called categories.

Syntax

DBMS_OUTLN.DROP_BY_CAT (
 cat VARCHAR2);

Parameters

Table 99-4 DROP_BY_CAT Procedure Parameters

	Parameter	Description
	
cat

	
Category of outlines to drop.

Usage Notes

This procedure purges a category of outlines in a single call.

Examples

This example drops all outlines in the DEFAULT category:

DBMS_OUTLN.DROP_BY_CAT('DEFAULT');

DROP_UNUSED Procedure

This procedure drops outlines that have never been applied in the compilation of a SQL statement.

Syntax

DBMS_OUTLN.DROP_UNUSED;

Usage Notes

You can use DROP_UNUSED for outlines generated by an application for one-time use SQL statements created as a result of dynamic SQL. These outlines are never used and take up valuable disk space.

EXACT_TEXT_SIGNATURES Procedure

This procedure updates outline signatures to those that compute based on exact text matching.

Syntax

DBMS.OUTLN.EXACT_TEXT_SIGNATURES;

Usage Notes

This procedure is relevant only for downgrading an outline to 8.1.6 or earlier.

UPDATE_BY_CAT Procedure

This procedure changes the category of all outlines in one category to a new category.

Syntax

DBMS.OUTLN.UPDATE_BY_CAT (
 oldcat VARCHAR2 default 'DEFAULT',
 newcat VARCHAR2 default 'DEFAULT');

Parameters

Table 99-5 UPDATE_BY_CAT Procedure Parameters

	Parameter	Description
	
oldcat

	
The current category of outlines.

	
newcat

	
The new category of outlines.

UPDATE_SIGNATURES Procedure

This procedure updates outline signatures to the current version's signature.

Syntax

DBMS.OUTLN.UPDATE_SIGNATURES;

Usage Notes

You should execute this procedure if you have imported outlines generated in an earlier release to ensure that the signatures are compatible with the current release's computation algorithm.

DBMS_OUTPUT

100 DBMS_OUTPUT

The DBMS_OUTPUT package enables you to send messages from stored procedures, packages, and triggers. The package is especially useful for displaying PL/SQL debugging information.

This chapter contains the following topics:

	
Using DBMS_OUTPUT

	
Overview

	
Security Model

	
Operational Notes

	
Exceptions

	
Rules and Limits

	
Examples

	
Data Structures

	
TABLE Types

	
OBJECT Types

	
Summary of DBMS_OUTPUT Subprograms

Using DBMS_OUTPUT

This section contains topics which relate to using the DBMS_OUTPUT package.

	
Overview

	
Security Model

	
Operational Notes

	
Exceptions

	
Rules and Limits

	
Examples

Overview

The package is typically used for debugging, or for displaying messages and reports to SQL*DBA or SQL*Plus (such as are produced by applying the SQL command DESCRIBE to procedures).

The PUT Procedure and PUT_LINE Procedure in this package enable you to place information in a buffer that can be read by another trigger, procedure, or package. In a separate PL/SQL procedure or anonymous block, you can display the buffered information by calling the GET_LINE Procedure and GET_LINES Procedure.

If the package is disabled, all calls to subprograms are ignored. In this way, you can design your application so that subprograms are available only when a client is able to process the information.

Security Model

The dbmsotpt.sql script must be run as user SYS. This creates the public synonym DBMS_OUTPUT, and EXECUTE permission on this package is granted to public.

Operational Notes

	
If you do not call GET_LINE, or if you do not display the messages on your screen in SQL*Plus, the buffered messages are ignored.

	
SQL*Plus calls GET_LINES after issuing a SQL statement or anonymous PL/SQL calls.

	
Typing SET SERVEROUTPUT ON in SQL*Plus has the effect of invoking

DBMS_OUTPUT.ENABLE (buffer_size => NULL);

with no limit on the output.

	
You should generally avoid having application code invoke either the DISABLE Procedure or ENABLE Procedure because this could subvert the attempt of an external tool like SQL*Plus to control whether or not to display output.

	
Note:

Messages sent using DBMS_OUTPUT are not actually sent until the sending subprogram or trigger completes. There is no mechanism to flush output during the execution of a procedure.

Exceptions

DBMS_OUTPUT subprograms raise the application error ORA-20000, and the output procedures can return the following errors:

Table 100-1 DBMS_OUTPUT Errors

	Error	Description
	
ORU-10027:

	
Buffer overflow

	
ORU-10028:

	
Line length overflow

Rules and Limits

	
The maximum line size is 32767 bytes.

	
The default buffer size is 20000 bytes. The minimum size is 2000 bytes and the maximum is unlimited.

Examples

Example 1: Using a Trigger to Produce Output

You can use a trigger to print out some output from the debugging process. For example, you could code the trigger to invoke:

DBMS_OUTPUT.PUT_LINE('I got here:'||:new.col||' is the new value');

If you have enabled the DBMS_OUTPUT package, then the text produced by this PUT_LINE would be buffered, and you could, after executing the statement (presumably some INSERT, DELETE, or UPDATE that caused the trigger to fire), retrieve the line of information. For example:

BEGIN
 DBMS_OUTPUT.GET_LINE(:buffer, :status);
END;

You could then optionally display the buffer on the screen. You repeat calls to GET_LINE until status comes back as nonzero. For better performance, you should use calls to GET_LINES Procedure which can return an array of lines.

Example 2: Debugging Stored Procedures and Triggers

The DBMS_OUTPUT package is commonly used to debug stored procedures and triggers. This package can also be used to enable you to retrieve information about an object and format this output, as shown in "Example 3: Retrieving Information About an Object".

This function queries the employee table and returns the total salary for a specified department. The function includes several calls to the PUT_LINE procedure:

CREATE FUNCTION dept_salary (dnum NUMBER) RETURN NUMBER IS
 CURSOR emp_cursor IS
 SELECT sal, comm FROM emp WHERE deptno = dnum;
 total_wages NUMBER(11, 2) := 0;
 counter NUMBER(10) := 1;
BEGIN

 FOR emp_record IN emp_cursor LOOP
 emp_record.comm := NVL(emp_record.comm, 0);
 total_wages := total_wages + emp_record.sal
 + emp_record.comm;
 DBMS_OUTPUT.PUT_LINE('Loop number = ' || counter ||
 '; Wages = '|| TO_CHAR(total_wages)); /* Debug line */
 counter := counter + 1; /* Increment debug counter */
 END LOOP;
 /* Debug line */
 DBMS_OUTPUT.PUT_LINE('Total wages = ' ||
 TO_CHAR(total_wages));
 RETURN total_wages;

END dept_salary;

Assume the EMP table contains the following rows:

EMPNO SAL COMM DEPT
----- ------- -------- -------
1002 1500 500 20
1203 1000 30
1289 1000 10
1347 1000 250 20

Assume the user executes the following statements in SQL*Plus:

SET SERVEROUTPUT ON
VARIABLE salary NUMBER;
EXECUTE :salary := dept_salary(20);

The user would then see the following information displayed in the output pane:

Loop number = 1; Wages = 2000
Loop number = 2; Wages = 3250
Total wages = 3250

PL/SQL procedure successfully executed.

Example 3: Retrieving Information About an Object

In this example, the user has used the EXPLAIN PLAN command to retrieve information about the execution plan for a statement and has stored it in PLAN_TABLE. The user has also assigned a statement ID to this statement. The example EXPLAIN_OUT procedure retrieves the information from this table and formats the output in a nested manner that more closely depicts the order of steps undergone in processing the SQL statement.

 /**/
/* Create EXPLAIN_OUT procedure. User must pass STATEMENT_ID to */
/* to procedure, to uniquely identify statement. */
/**/
CREATE OR REPLACE PROCEDURE explain_out
 (statement_id IN VARCHAR2) AS

 -- Retrieve information from PLAN_TABLE into cursor EXPLAIN_ROWS.

 CURSOR explain_rows IS
 SELECT level, id, position, operation, options,
 object_name
 FROM plan_table
 WHERE statement_id = explain_out.statement_id
 CONNECT BY PRIOR id = parent_id
 AND statement_id = explain_out.statement_id
 START WITH id = 0
 ORDER BY id;

BEGIN

 -- Loop through information retrieved from PLAN_TABLE:

 FOR line IN explain_rows LOOP

 -- At start of output, include heading with estimated cost.

 IF line.id = 0 THEN
 DBMS_OUTPUT.PUT_LINE ('Plan for statement '
 || statement_id
 || ', estimated cost = ' || line.position);
 END IF;

 -- Output formatted information. LEVEL determines indention level.

 DBMS_OUTPUT.PUT_LINE (lpad(' ',2*(line.level-1)) ||
 line.operation || ' ' || line.options || ' ' ||
 line.object_name);
 END LOOP;

END;

	
See Also:

Chapter 223, "UTL_FILE"

Data Structures

The DBMS_OUTPUT package declares 2 collection types for use with the GET_LINES Procedure.

TABLE Types

CHARARR Table Type

OBJECT Types

DBMSOUTPUT_LINESARRAY Object Type

CHARARR Table Type

This package type is to be used with the GET_LINES Procedure to obtain text submitted through the PUT Procedure and PUT_LINE Procedure.

Syntax

TYPE CHARARR IS TABLE OF VARCHAR2(32767) INDEX BY BINARY_INTEGER;

DBMSOUTPUT_LINESARRAY Object Type

This package type is to be used with the GET_LINES Procedure to obtain text submitted through the PUT Procedure and PUT_LINE Procedure.

Syntax

TYPE DBMSOUTPUT_LINESARRAY IS
 VARRAY(2147483647) OF VARCHAR2(32767);

Summary of DBMS_OUTPUT Subprograms

Table 100-2 DBMS_OUTPUT Package Subprograms

	Subprogram	Description
	
DISABLE Procedure

	
Disables message output

	
ENABLE Procedure

	
Enables message output

	
GET_LINE Procedure

	
Retrieves one line from buffer

	
GET_LINES Procedure

	
Retrieves an array of lines from buffer

	
NEW_LINE Procedure

	
Terminates a line created with PUT

	
PUT Procedure

	
Places a partial line in the buffer

	
PUT_LINE Procedure

	
Places line in buffer

	
Note:

The PUT Procedure that take a number are obsolete and, while currently supported, are included in this release for legacy reasons only.

DISABLE Procedure

This procedure disables calls to PUT, PUT_LINE, NEW_LINE, GET_LINE, and GET_LINES, and purges the buffer of any remaining information.

As with the ENABLE Procedure, you do not need to call this procedure if you are using the SERVEROUTPUT option of SQL*Plus.

Syntax

DBMS_OUTPUT.DISABLE;

Pragmas

pragma restrict_references(disable,WNDS,RNDS);

ENABLE Procedure

This procedure enables calls to PUT, PUT_LINE, NEW_LINE, GET_LINE, and GET_LINES. Calls to these procedures are ignored if the DBMS_OUTPUT package is not activated.

Syntax

DBMS_OUTPUT.ENABLE (
 buffer_size IN INTEGER DEFAULT 20000);

Pragmas

pragma restrict_references(enable,WNDS,RNDS);

Parameters

Table 100-3 ENABLE Procedure Parameters

	Parameter	Description
	
buffer_size

	
Upper limit, in bytes, the amount of buffered information. Setting buffer_size to NULL specifies that there should be no limit.

Usage Notes

	
It is not necessary to call this procedure when you use the SET SERVEROUTPUT option of SQL*Plus.

	
If there are multiple calls to ENABLE, then buffer_size is the last of the values specified. The maximum size is 1,000,000, and the minimum is 2,000 when the user specifies buffer_size (NOT NULL).

	
NULL is expected to be the usual choice. The default is 20,000 for backwards compatibility with earlier database versions that did not support unlimited buffering.

GET_LINE Procedure

This procedure retrieves a single line of buffered information.

Syntax

DBMS_OUTPUT.GET_LINE (
 line OUT VARCHAR2,
 status OUT INTEGER);

Parameters

Table 100-4 GET_LINE Procedure Parameters

	Parameter	Description
	
line

	
Returns a single line of buffered information, excluding a final newline character. You should declare the actual for this parameter as VARCHAR2 (32767) to avoid the risk of "ORA-06502: PL/SQL: numeric or value error: character string buffer too small".

	
status

	
If the call completes successfully, then the status returns as 0. If there are no more lines in the buffer, then the status is 1.

Usage Notes

	
You can choose to retrieve from the buffer a single line or an array of lines. Call the GET_LINE procedure to retrieve a single line of buffered information. To reduce the number of calls to the server, call the GET_LINES procedure to retrieve an array of lines from the buffer.

	
You can choose to automatically display this information if you are using SQL*Plus by using the special SET SERVEROUTPUT ON command.

	
After calling GET_LINE or GET_LINES, any lines not retrieved before the next call to PUT, PUT_LINE, or NEW_LINE are discarded to avoid confusing them with the next message.

GET_LINES Procedure

This procedure retrieves an array of lines from the buffer.

Syntax

DBMS_OUTPUT.GET_LINES (
 lines OUT CHARARR,
 numlines IN OUT INTEGER);

DBMS_OUTPUT.GET_LINES (
 lines OUT DBMSOUTPUT_LINESARRAY,
 numlines IN OUT INTEGER);

Parameters

Table 100-5 GET_LINES Procedure Parameters

	Parameter	Description
	
lines

	
Returns an array of lines of buffered information. The maximum length of each line in the array is 32767 bytes. It is recommended that you use the VARRAY overload version in a 3GL host program to execute the procedure from a PL/SQL anonymous block.

	
numlines

	
Number of lines you want to retrieve from the buffer.

After retrieving the specified number of lines, the procedure returns the number of lines actually retrieved. If this number is less than the number of lines requested, then there are no more lines in the buffer.

Usage Notes

	
You can choose to retrieve from the buffer a single line or an array of lines. Call the GET_LINE procedure to retrieve a single line of buffered information. To reduce the number of calls to the server, call the GET_LINES procedure to retrieve an array of lines from the buffer.

	
You can choose to automatically display this information if you are using SQL*Plus by using the special SET SERVEROUTPUT ON command.

	
After calling GET_LINE or GET_LINES, any lines not retrieved before the next call to PUT, PUT_LINE, or NEW_LINE are discarded to avoid confusing them with the next message.

NEW_LINE Procedure

This procedure puts an end-of-line marker. The GET_LINE Procedure and the GET_LINES Procedure return "lines" as delimited by "newlines". Every call to the PUT_LINE Procedure or NEW_LINE Procedure generates a line that is returned by GET_LINE(S).

Syntax

DBMS_OUTPUT.NEW_LINE;

PUT Procedure

This procedure places a partial line in the buffer.

	
Note:

The PUT procedure that takes a NUMBER is obsolete and, while currently supported, is included in this release for legacy reasons only.

Syntax

DBMS_OUTPUT.PUT (
 item IN VARCHAR2);

Parameters

Table 100-6 PUT Procedure Parameters

	Parameter	Description
	
item

	
Item to buffer.

Exceptions

Table 100-7 PUT Procedure Exceptions

	Error	Description
	
ORA-20000, ORU-10027:

	
Buffer overflow, limit of <buf_limit> bytes.

	
ORA-20000, ORU-10028:

	
Line length overflow, limit of 32767 bytes for each line.

Usage Notes

	
You can build a line of information piece by piece by making multiple calls to PUT, or place an entire line of information into the buffer by calling PUT_LINE.

	
When you call PUT_LINE the item you specify is automatically followed by an end-of-line marker. If you make calls to PUT to build a line, then you must add your own end-of-line marker by calling NEW_LINE. GET_LINE and GET_LINES do not return lines that have not been terminated with a newline character.

	
If your lines exceed the line limit, you receive an error message.

	
Output that you create using PUT or PUT_LINE is buffered. The output cannot be retrieved until the PL/SQL program unit from which it was buffered returns to its caller.

For example, SQL*Plus does not display DBMS_OUTPUT messages until the PL/SQL program completes. There is no mechanism for flushing the DBMS_OUTPUT buffers within the PL/SQL program.

SQL> SET SERVEROUTPUT ON
SQL> BEGIN
 2 DBMS_OUTPUT.PUT_LINE ('hello');
 3 DBMS_LOCK.SLEEP (10);
 4 END;

PUT_LINE Procedure

This procedure places a line in the buffer.

	
Note:

The PUT_LINE procedure that takes a NUMBER is obsolete and, while currently supported, is included in this release for legacy reasons only.

Syntax

DBMS_OUTPUT.PUT_LINE (
 item IN VARCHAR2);

Parameters

Table 100-8 PUT_LINE Procedure Parameters

	Parameter	Description
	
item

	
Item to buffer.

Exceptions

Table 100-9 PUT_LINE Procedure Exceptions

	Error	Description
	
ORA-20000, ORU-10027:

	
Buffer overflow, limit of <buf_limit> bytes.

	
ORA-20000, ORU-10028:

	
Line length overflow, limit of 32767 bytes for each line.

Usage Notes

	
You can build a line of information piece by piece by making multiple calls to PUT, or place an entire line of information into the buffer by calling PUT_LINE.

	
When you call PUT_LINE the item you specify is automatically followed by an end-of-line marker. If you make calls to PUT to build a line, then you must add your own end-of-line marker by calling NEW_LINE. GET_LINE and GET_LINES do not return lines that have not been terminated with a newline character.

	
If your lines exceeds the line limit, you receive an error message.

	
Output that you create using PUT or PUT_LINE is buffered. The output cannot be retrieved until the PL/SQL program unit from which it was buffered returns to its caller.

For example, SQL*Plus does not display DBMS_OUTPUT messages until the PL/SQL program completes. There is no mechanism for flushing the DBMS_OUTPUT buffers within the PL/SQL program. For example:

SQL> SET SERVEROUTPUT ON
SQL> BEGIN
 2 DBMS_OUTPUT.PUT_LINE ('hello');
 3 DBMS_LOCK.SLEEP (10);
 4 END;

DBMS_PARALLEL_EXECUTE

101 DBMS_PARALLEL_EXECUTE

The DBMS_PARALLEL_EXECUTE package enables the user to incrementally update table data in parallel.

	
See Also:

	
Oracle Database Advanced Application Developer's Guide

	
Oracle Database Reference

This chapter contains the following topics:

	
Using DBMS_PARALLEL_EXECUTE

	
Overview

	
Security Model

	
Constants

	
Views

	
Exceptions

	
Examples

	
Summary of DBMS_PARALLEL_EXECUTE Subprograms

Using DBMS_PARALLEL_EXECUTE

	
Overview

	
Security Model

	
Constants

	
Views

	
Exceptions

	
Examples

Overview

This package enables the user to incrementally update table data in parallel, in two high level steps:

	
Group sets of rows in the table into smaller sized chunks.

	
Run a user specified statement on these chunks in parallel, and commit when finished processing each chunk.

This package introduces the notion of parallel execution task. This task groups the various steps associated with the parallel execution of a PL/SQL block, which is typically updating table data.

All of the package subroutines (except the GENERATE_TASK_NAME Function and the TASK_STATUS Procedure) perform a commit.

Security Model

DBMS_PARALLEL_EXECUTE is a SYS-owned package which is granted to PUBLIC.

Any user can create or operate his own parallel execution tasks and access the USER view.

Users who have the ADM_PARALLEL_EXECUTE_TASK role can perform administrative routines (qualified by the prefix ADM_) and access the DBA view.

Apart from the administrative routines, all the subprograms refer to tasks owned by the current user.

To execute chunks in parallel, the user must have CREATE JOB system privilege.

The CHUNK_BY_SQL, RUN_TASK, and RESUME_TASK subprograms require a query, and are executed using DBMS_SQL. Invokers of the DBMS_SQL interface must ensure that none of the queries passed-in contains SQL injection.

Constants

The DBMS_PARALLEL_EXECUTE package uses the constants shown in following tables:

	
Table 101-1, "DBMS_PARALLEL_EXECUTE Constants - Chunk Status Value"

	
Table 101-2, "DBMS_PARALLEL_EXECUTE Constants - Task Status Value"

Table 101-1 DBMS_PARALLEL_EXECUTE Constants - Chunk Status Value

	Constant	Type	Value	Description
	
ASSIGNED

	
NUMBER

	
1

	
Chunk has been assigned for processing

	
PROCESSED

	
NUMBER

	
2

	
Chunk has been processed successfully

	
PROCESSED_WITH_ERROR

	
NUMBER

	
3

	
Chunk has been processed, but an error occurred during processing

	
UNASSIGNED

	
NUMBER

	
0

	
Chunk is unassigned

Table 101-2 DBMS_PARALLEL_EXECUTE Constants - Task Status Value

	Constant	Type	Value	Description
	
CHUNKED

	
NUMBER

	
4

	
Table associated with the task has been chunked, but none of the chunk has been assigned for processing

	
CHUNKING

	
NUMBER

	
2

	
Table associated with the task is being chunked

	
CHUNKING_FAILED

	
NUMBER

	
3

	
Chunking failed

	
CRASHED

	
NUMBER

	
8

	
Only applicable if parallel execution is used, this occurs if a job slave crashes or if the database crashes during EXECUTE, leaving a chunk in ASSIGNED or UNASSIGNED state.

	
CREATED

	
NUMBER

	
1

	
The task has been created by the CREATE_TASK Procedure

	
FINISHED

	
NUMBER

	
6

	
All chunks processed without error

	
FINISHED_WITH_ERROR

	
NUMBER

	
7

	
All chunks processed, but with errors in some cases

	
PROCESSING

	
NUMBER

	
5

	
Part of the chunk assigned for processing, or which has been processed

Views

The DBMS_PARALLEL_EXECUTE package uses views listed in the Oracle Database Reference:

	
DBA_PARALLEL_EXECUTE_CHUNKS

	
DBA_PARALLEL_EXECUTE_TASKS

	
USER_PARALLEL_EXECUTE_CHUNKS

	
USER_PARALLEL_EXECUTE_TASKS

Exceptions

The following table lists the exceptions raised by DBMS_PARALLEL_EXECUTE.

Table 101-3 Exceptions Raised by DBMS_PARALLEL_EXECUTE

	Exception	Error Code	Description
	
CHUNK_NOT_FOUND

	
29499

	
Specified chunk does not exist

	
DUPLICATE_TASK_NAME

	
29497

	
Same task name has been used by an existing task

	
INVALID_STATE_FOR_CHUNK

	
29492

	
Attempts to chunk a table that is not in CREATED or CHUNKING_FAILED state

	
INVALID_STATE_FOR_REDSUME

	
29495

	
Attempts to resume execution, but the task is not in FINISHED_WITH_ERROR or CRASHED state

	
INVALID_STATE_FOR_RUN

	
29494

	
Attempts to execute the task that is not in CHUNKED state

	
INVALID_STATUS

	
29493

	
Attempts to set an invalid value to the chunk status

	
INVALID_TABLE

	
29491

	
Attempts to chunk a table by rowid in cases in which the table is not a physical table, or the table is an IOT

	
MISSING_ROLE

	
29490

	
User does not have the necessary ADM_PARALLEL_EXECUTE role

	
TASK_NOT_FOUND

	
29498

	
Specified task_name does not exist

Examples

The following examples run on the Human Resources (HR) schema of the Oracle Database Sample Schemas. It requires that the HR schema be created with the JOB SYSTEM privilege.

Chunk by ROWID

This example shows the most common usage of this package. After calling the RUN_TASK Procedure, it checks for errors and re-runs in the case of error.

DECLARE
 l_sql_stmt VARCHAR2(1000);
 l_try NUMBER;
 l_status NUMBER;
BEGIN

 -- Create the TASK
 DBMS_PARALLEL_EXECUTE.CREATE_TASK ('mytask');

 -- Chunk the table by ROWID
 DBMS_PARALLEL_EXECUTE.CREATE_CHUNKS_BY_ROWID('mytask', 'HR', 'EMPLOYEES', true, 100);

 -- Execute the DML in parallel
 l_sql_stmt := 'update /*+ ROWID (dda) */ EMPLOYEES e
 SET e.salary = e.salary + 10
 WHERE rowid BETWEEN :start_id AND :end_id';
 DBMS_PARALLEL_EXECUTE.RUN_TASK('mytask', l_sql_stmt, DBMS_SQL.NATIVE,
 parallel_level => 10);

 -- If there is an error, RESUME it for at most 2 times.
 L_try := 0;
 L_status := DBMS_PARALLEL_EXECUTE.TASK_STATUS('mytask');
 WHILE(l_try < 2 and L_status != DBMS_PARALLEL_EXECUTE.FINISHED)
 LOOP
 L_try := l_try + 1;
 DBMS_PARALLEL_EXECUTE.RESUME_TASK('mytask');
 L_status := DBMS_PARALLEL_EXECUTE.TASK_STATUS('mytask');
 END LOOP;

 -- Done with processing; drop the task
 DBMS_PARALLEL_EXECUTE.DROP_TASK('mytask');

END;
/

Chunk by User-Provided SQL

A user can specify their own chunk algorithm by using the CREATE_CHUNKS_BY_SQL Procedure. This example shows that rows with the same manager_id are grouped together and processed in one chunk.

DECLARE
 l_chunk_sql VARCHAR2(1000);
 l_sql_stmt VARCHAR2(1000);
 l_try NUMBER;
 l_status NUMBER;
BEGIN

 -- Create the TASK
 DBMS_PARALLEL_EXECUTE.CREATE_TASK ('mytask');

 -- Chunk the table by MANAGER_ID
 l_chunk_sql := 'SELECT distinct manager_id, manager_id FROM employees';
 DBMS_PARALLEL_EXECUTE.CREATE_CHUNKS_BY_SQL('mytask', l_chunk_sql, false);

 -- Execute the DML in parallel
 -- the WHERE clause contain a condition on manager_id, which is the chunk
 -- column. In this case, grouping rows is by manager_id.
 l_sql_stmt := 'update /*+ ROWID (dda) */ EMPLOYEES e
 SET e.salary = e.salary + 10
 WHERE manager_id between :start_id and :end_id';
 DBMS_PARALLEL_EXECUTE.RUN_TASK('mytask', l_sql_stmt, DBMS_SQL.NATIVE,
 parallel_level => 10);

 -- If there is error, RESUME it for at most 2 times.
 L_try := 0;
 L_status := DBMS_PARALLEL_EXECUTE.TASK_STATUS('mytask');
 WHILE(l_try < 2 and L_status != DBMS_PARALLEL_EXECUTE.FINISHED)
 Loop
 L_try := l_try + 1;
 DBMS_PARALLEL_EXECUTE.RESUME_TASK('mytask');
 L_status := DBMS_PARALLEL_EXECUTE.TASK_STATUS('mytask');
 END LOOP;

 -- Done with processing; drop the task
 DBMS_PARALLEL_EXECUTE.DROP_TASK('mytask');

end;
/

Executing Chunks in an User-defined Framework

The user can execute chunks in his own defined framework without using the RUN_TASK Procedure. This example shows how to use GET_ROWID_CHUNK Procedure, EXECUTE IMMEDIATE, SET_CHUNK_STATUS Procedure to execute the chunks.

DECLARE
 l_sql_stmt varchar2(1000);
 l_try number;
 l_status number;
 l_chunk_id number;
 l_start_rowid rowid;
 l_end_rowid rowid;
 l_any_rows boolean;
 CURSOR c1 IS SELECT chunk_id
 FROM user_parallel_execute_chunks
 WHERE task_name = 'mytask'
 AND STATUS IN (DBMS_PARALLEL_EXECUTE.PROCESSED_WITH_ERROR,
 DBMS_PARALLEL_EXECUTE.ASSIGNED);
BEGIN

 -- Create the Objects, task, and chunk by ROWID
 DBMS_PARALLEL_EXECUTE.CREATE_TASK ('mytask');
 DBMS_PARALLEL_EXECUTE.CREATE_CHUNKS_BY_ROWID('mytask', 'HR', 'EMPLOYEES', true, 100);

 l_sql_stmt := 'update /*+ ROWID (dda) */ EMPLOYEES e
 SET e.salary = e.salary + 10
 WHERE rowid BETWEEN :start_id AND :end_id';

 -- Execute the DML in his own framework
 --
 -- Process each chunk and commit.
 -- After processing one chunk, repeat this process until
 -- all the chunks are processed.
 --
 <<main_processing>>
 LOOP
 --
 -- Get a chunk to process; if there is nothing to process, then exit the
 -- loop;
 --
 DBMS_PARALLEL_EXECUTE.GET_ROWID_CHUNK('mytask',
 l_chunk_id,
 l_start_rowid,
 l_end_rowid,
 l_any_rows);
 IF (l_any_rows = false) THEN EXIT; END IF;

 --
 -- The chunk is specified by start_id and end_id.
 -- Bind the start_id and end_id and then execute it
 --
 -- If no error occured, set the chunk status to PROCESSED.
 --
 -- Catch any exception. If an exception occured, store the error num/msg
 -- into the chunk table and then continue to process the next chunk.
 --
 BEGIN
 EXECUTE IMMEDIATE l_sql_stmt using l_start_rowid, l_end_rowid;
 DBMS_PARALLEL_EXECUTE.SET_CHUNK_STATUS('mytask',l_chunk_id,
 DBMS_PARALLEL_EXECUTE.PROCESSED);
 EXCEPTION WHEN OTHERS THEN
 DBMS_PARALLEL_EXECUTE.SET_CHUNK_STATUS('mytask', l_chunk_id,
 DBMS_PARALLEL_EXECUTE.PROCESSED_WITH_ERROR, SQLCODE, SQLERRM);
 END;

 --
 -- Finished processing one chunk; Commit here
 --
 COMMIT;
 END LOOP;

Summary of DBMS_PARALLEL_EXECUTE Subprograms

Table 101-4 DBMS_PARALLEL_EXECUTE Package Subprograms

	Subprogram	Description
	
ADM_DROP_CHUNKS Procedure

	
Drops all chunks of the specified task owned by the specified owner

	
ADM_DROP_TASK Procedure

	
Drops the task of the given user and all related chunks

	
ADM_TASK_STATUS Procedure

	
Returns the task status

	
ADM_STOP_TASK Procedure

	
Stops the task of the given owner and related job slaves

	
CREATE_TASK Procedure

	
Creates a task for the current user

	
CREATE_CHUNKS_BY_NUMBER_COL Procedure

	
Chunks the table associated with the given task by the specified column.

	
CREATE_CHUNKS_BY_ROWID Procedure

	
Chunks the table associated with the given task by ROWID

	
CREATE_CHUNKS_BY_SQL Procedure

	
Chunks the table associated with the given task by means of a user-provided SELECT statement

	
DROP_TASK Procedure

	
Drops the task and all related chunks

	
DROP_CHUNKS Procedure

	
Drops the task's chunks

	
GENERATE_TASK_NAME Function

	
Returns a unique name for a task

	
GET_NUMBER_COL_CHUNK Procedure

	
Picks an unassigned NUMBER chunk and changes it to ASSIGNED

	
GET_ROWID_CHUNK Procedure

	
Picks an unassigned ROWID chunk and changes it to ASSIGNED

	
PURGE_PROCESSED_CHUNKS Procedure

	
Deletes all the processed chunks whose status is PROCESSED or PROCESSED_WITH_ERROR

	
RESUME_TASK Procedures

	
Retries the given the task if the RUN_TASK Procedure finished with error, or resumes the task if a crash has occurred.

	
RUN_TASK Procedure

	
Executes the specified SQL statement on the chunks in parallel

	
SET_CHUNK_STATUS Procedure

	
Sets the status of the chunk

	
STOP_TASK Procedure

	
Stops the task and related job slaves

	
TASK_STATUS Procedure

	
Returns the task status

ADM_DROP_CHUNKS Procedure

This procedure drops all chunks of the specified task owned by the specified owner.

Syntax

DBMS_PARALLEL_EXECUTE.ADM_DROP_CHUNKS (
 task_owner IN VARCHAR2,
 task_name IN VARCHAR2);

Parameters

Table 101-5 ADM_DROP_CHUNKS Procedure Parameters

	Parameter	Description
	
task_owner

	
Owner of the task

	
task_name

	
Name of the task

ADM_DROP_TASK Procedure

This procedure drops the task of the specified user and all related chunks.

Syntax

DBMS_PARALLEL_EXECUTE.ADM_DROP_TASK (
 task_owner IN VARCHAR2,
 task_name IN VARCHAR2);

Parameters

Table 101-6 ADM_DROP_TASK Procedure Parameters

	Parameter	Description
	
task_owner

	
Owner of the task

	
task_name

	
Name of the task

ADM_TASK_STATUS Procedure

This function returns the task status.

Syntax

DBMS_PARALLEL_EXECUTE.ADM_TASK_STATUS (
 task_owner IN VARCHAR2,
 task_name IN VARCHAR2)
 RETURN NUMBER;

Parameters

Table 101-7 ADM_TASK_STATUS Function Parameters

	Parameter	Description
	
task_owner

	
Owner of the task

	
task_name

	
Name of the task

ADM_STOP_TASK Procedure

This procedure stops the task of the specified owner and related job slaves.

Syntax

DBMS_PARALLEL_EXECUTE.ADM_STOP_TASK (
 task_owner IN VARCHAR2,
 task_name IN VARCHAR2);

Parameters

Table 101-8 ADM_STOP_TASK Procedure Parameters

	Parameter	Description
	
task_owner

	
Owner of the task

	
task_name

	
Name of the task

CREATE_TASK Procedure

This procedure creates a task for the current user. The pairing of task_name and current_user must be unique.

Syntax

DBMS_PARALLEL_EXECUTE.CREATE_TASK (
 task_name IN VARCHAR2,
 comment IN VARCHAR2 DEFAULT NULL);

Parameters

Table 101-9 CREATE_TASK Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task. The task_name can be any string in which related length must be less than or equal to 128 bytes.

	
comment

	
Comment field. The comment must be less than 4000 bytes.

CREATE_CHUNKS_BY_NUMBER_COL Procedure

This procedure chunks the table (associated with the specified task) by the specified column. The specified column must be a NUMBER column. This procedure takes the MIN and MAX value of the column, and then divide the range evenly according to chunk_size. The chunks are:

START_ID END_ID
--------------------------- ---------------------------
min_id_val min_id_val+1*chunk_size-1
min_id_val+1*chunk_size min_id_val+2*chunk_size-1
… …
min_id_val+i*chunk_size max_id_val

Syntax

DBMS_PARALLEL_EXECUTE.CREATE_CHUNKS_BY_NUMBER_COL (
 task_name IN VARCHAR2,
 table_owner IN VARCHAR2,
 table_name IN VARCHAR2,
 table_column IN VARCHAR2,
 chunk_size IN NUMBER);

Parameters

Table 101-10 CREATE_CHUNKS_BY_NUMBER_COL Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task

	
table_owner

	
Owner of the table

	
table_name

	
Name of the table

	
table_column

	
Name of the NUMBER column

	
chunk_size

	
Range of each chunk

CREATE_CHUNKS_BY_ROWID Procedure

This procedure chunks the table (associated with the specified task) by ROWID. num_row and num_block are approximate guidance for the size of each chunk. The table to be chunked must be a physical table with physical ROWID having views and table functions. Index Organized Tables are not allowed.

Syntax

DBMS_PARALLEL_EXECUTE.CREATE_CHUNKS_BY_ROWID (
 task_name IN VARCHAR2,
 table_owner IN VARCHAR2,
 table_name IN VARCHAR2,
 by_row IN BOOLEAN,
 chunk_size IN NUMBER);

Parameters

Table 101-11 CREATE_CHUNKS_BY_ROWID Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task

	
table_owner

	
Owner of the table

	
table_name

	
Name of the table

	
by_row

	
TRUE if chunk_size refers to the number of rows, otherwise, chunk_size refers to the number of blocks

	
chunk_size

	
Approximate number of rows/blocks to process for each commit cycle

CREATE_CHUNKS_BY_SQL Procedure

This procedure chunks the table (associated with the specified task) by means of a user-provided SELECT statement. The select statement which returns the range of each chunk must have two columns: start_id and end_id. If task is to chunk by ROWID, then the two columns must be of ROWID type. If the task is to chunk the table by NUMBER column, then the two columns must be of NUMBER type. The procedure provides the flexibility to users who want to deploy user-defined chunk algorithms.

Syntax

DBMS_PARALLEL_EXECUTE.CREATE_CHUNKS_BY_SQL (
 task_name IN VARCHAR2,
 sql_statement IN CLOB,
 by_rowid IN BOOLEAN);

Parameters

Table 101-12 CREATE_CHUNKS_BY_SQL Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task

	
sql_statment

	
SQL which returns the chunk ranges

	
by_rowid

	
TRUE if the table is chunked by rowids

DROP_TASK Procedure

This procedure drops the task and all related chunks.

Syntax

DBMS_PARALLEL_EXECUTE.DROP_TASK (
 task_name IN VARCHAR2);

Parameters

Table 101-13 DROP_TASK Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task

DROP_CHUNKS Procedure

This procedure drops the task's chunks.

Syntax

DBMS_PARALLEL_EXECUTE.DROP_CHUNKS (
 task_name IN VARCHAR2);

Parameters

Table 101-14 DROP_CHUNKS Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task

GENERATE_TASK_NAME Function

This function returns a unique name for a task. The name is of the form prefixN where N is a number from a sequence. If no prefix is specified, the generated name is, by default, be TASK$_1, TASK$_2, TASK$_3, and so on. If 'SCOTT' is specified as the prefix, the name is SCOTT1, SCOTT2, and so on.

Syntax

DBMS_PARALLEL_EXECUTE.GENERATE_TASK_NAME (
 prefix IN VARCHAR2 DEFAULT 'TASK$_')
 RETURN VARCHAR2;

Parameters

Table 101-15 GENERATE_TASK_NAME Function Parameters

	Parameter	Description
	
prefix

	
The prefix to use when generating the task name

GET_NUMBER_COL_CHUNK Procedure

This procedure picks an unassigned NUMBER chunk and changes it to ASSIGNED. If there are no more chunks to assign, any_rows is set to FALSE. Otherwise, the chunk_id, start and end_id of the chunk is returned as OUT parameters. The chunk info in DBMS_PARALLEL_EXECUTE_CHUNKS$ is updated as follows: STATUS becomes ASSIGNED; START_TIMESTAMP records the current time; END_TIMESTAMP is cleared.

	
See Also:

Views

Syntax

DBMS_PARALLEL_EXECUTE.GET_NUMBER_COL_CHUNK (
 task_name IN VARCHAR2,
 chunk_id OUT NUMBER,
 start_rowid OUT ROWID,
 end_id OUT ROWID,
 any_rows OUT BOOLEAN);

Parameters

Table 101-16 GET_NUMBER_COL_CHUNK Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task

	
chunk_id

	
Chunk_id of the chunk

	
start_rowid

	
Start rowid in the returned range

	
end_id

	
End rowid in the returned range

	
any_rows

	
Indicating if there could be any rows to process in the range

Usage Notes

If the task is chunked by ROWID, then get_rowid_range should be used. If the task is chunked by NUMBER column, then get_number_col_range should be used. If the user makes the wrong function call, the returning chunk_id and any_rows has a valid value but start/end_(row)id is NULL.

GET_ROWID_CHUNK Procedure

This procedure picks an unassigned ROWID chunk and changes it to ASSIGNED. If there are no more chunks to assign, any_rows is set to FALSE. Otherwise, the chunk_id, start and end_id of the chunk is returned as OUT parameters. The chunk info in DBMS_PARALLEL_EXECUTE_CHUNKS$ is updated as follows: STATUS becomes ASSIGNED; START_TIMESTAMP records the current time; END_TIMESTAMP is cleared.

	
See Also:

Views

Syntax

DBMS_PARALLEL_EXECUTE.GET_ROWID_CHUNK (
 task_name IN VARCHAR2,
 chunk_id OUT NUMBER,
 start_rowid OUT ROWID,
 end_id OUT ROWID,
 any_rows OUT BOOLEAN);

Parameters

Table 101-17 GET_ROWID_CHUNK Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task

	
chunk_id

	
Chunk_id of the chunk

	
start_rowid

	
Start rowid in the returned range

	
end_id

	
End rowid in the returned range

	
any_rows

	
Indicating if there could be any rows to process in the range

Usage Notes

If the task is chunked by ROWID, then get_rowid_range should be used. If the task is chunked by NUMBER column, then get_number_col_range should be used. If the user makes the wrong function call, the returning chunk_id and any_rows still have valid value but start/end_(row)id is NULL.

PURGE_PROCESSED_CHUNKS Procedure

This procedure deletes all the processed chunks whose status is PROCESSED or PROCESSED_WITH_ERROR.

Syntax

DBMS_PARALLEL_EXECUTE.PURGE_PROCESSED_CHUNKS (
 task_name IN VARCHAR2);

Parameters

Table 101-18 PURGE_PROCESSED_CHUNKS Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task

RESUME_TASK Procedures

This procedure retries the specified the task if the RUN_TASK Procedure finished with error, or resumes the task if a crash has occurred. The user can only invoke this procedure if the task is in a CRASHED or FINISHED_WITH_ERROR state. For a crashed serial execution, the state remains in processing. The FORCE option allows user to resume any task in PROCESSING state. However, it is the user's responsibility to determine that a crash has occurred.The procedure resumes processing the chunks which have not been processed. Also, chunks which are in PROCESSED_WITH_ERROR or ASSIGNED (due to crash) state are processed because those chunks did not commit.This procedure takes the same argument as the RUN_TASK Procedure.The overload which takes task_name as the only input argument re-uses the arguments provided in the previous invoking of the RUN_TASK Procedure or RESUME_TASK Procedures.

	
See Also:

Table 101-2, "DBMS_PARALLEL_EXECUTE Constants - Task Status Value"

Syntax

DBMS_PARALLEL_EXECUTE.RESUME_TASK (
 task_name IN VARCHAR2,
 sql_stmt IN CLOB, language_flag IN NUMBER, edition IN VARCHAR2 DEFAULT NULL, apply_crossedition_trigger IN VARCHAR2 DEFAULT NULL, fire_apply_trigger IN BOOLEAN DEFAULT TRUE, parallel_level IN NUMBER DEFAULT 0, job_class IN VARCHAR2 DEFAULT 'DEFAULT_JOB_CLASS',
 force IN BOOLEAN DEFAULT FALSE);

DBMS_PARALLEL_EXECUTE.RESUME_TASK (
 task_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Table 101-19 RESUME_TASK Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task

	
sql_stmt

	
SQL statement; must have :start_id and :end_id placeholder

	
language_flag

	
Determines how Oracle handles the SQL statement. The following options are recognized:

	
V6 (or 0) specifies version 6 behavior

	
NATIVE (or 1) specifies normal behavior for the database to which the program is connected

	
V7 (or 2) specifies Oracle database version 7 behavior

	
edition

	
Specifies the edition to run the statement in. Default is the current edition.

	
apply_crossedition_trigger

	
Specifies the unqualified name of a forward crossedition trigger that is to be applied to the specified SQL. The name is resolved using the edition and current_schema setting in which the statement is to be executed. The trigger must be owned by the user who executes the statement.

	
fire_apply_trigger

	
Indicates whether the specified apply_crossedition_trigger is itself to be executed, or should only be a guide used in selecting other triggers

	
parallel_level

	
Number of parallel jobs; zero if run in serial; NULL uses the default parallelism

	
job_class

	
If running in parallel, the jobs all belong to the specified job class

	
force

	
If TRUE, do not raise an error if the status is PROCESSING.

Examples

Suppose the chunk table contains the following chunk ranges:

START_ID END_ID
--------------------------- ---------------------------
1 10
11 20
21 30

And the specified SQL statement is:

UPDATE employees
 SET salary = salary + 10
 WHERE e.employee_id BETWEEN :start_id AND :end_id

This procedure executes the following statements in parallel:

UPDATE employees
 SET salary =.salary + 10 WHERE employee_id BETWEEN 1 and 10;
 COMMIT;

UPDATE employees
 SET salary =.salary + 10 WHERE employee_id between 11 and 20;
 COMMIT;

UPDATE employees
 SET salary =.salary + 10 WHERE employee_id between 21 and 30;
 COMMIT;

RUN_TASK Procedure

This procedure executes the specified statement (sql_stmt) on the chunks in parallel. It commits after processing each chunk. The specified statement must have two placeholders called start_id, and end_id respectively, which represent the range of the chunk to be processed. The types of the placeholder must be rowid where ROWID based chunking was used, or NUMBER where number based chunking was used. The specified statement should not commit unless it is idempotent.

The SQL statement is executed as the current user.

If apply_crossedition_trigger is specified, DBMS_CROSSEDITION_TRIGGER.IS_APPLYING returns true for the sessions executing the SQL. Therefore, for parallel execution, DBMS_CROSSEDITION_TRIGGER.IS_APPLYING returns true in the Job slaves session.

Chunks can be executed in parallel by DBMS_SCHEDULER Job slaves. Therefore, parallel execution requires CREATE JOB system privilege. The Job slaves is created under the current user. The default number of Job slaves is computed as the product of Oracle parameters cpu_count and parallel_threads_per_cpu. On a Real Application Clusters installation, the number of Job slaves is the sum of individual settings on each node in the cluster. This procedure returns only when all the chunks are processed. In parallel cases, this procedure returns only when all the Job slaves finished.

Syntax

DBMS_PARALLEL_EXECUTE.RUN_TASK (
 task_name IN VARCHAR2,
 sql_stmt IN CLOB, language_flag IN NUMBER, edition IN VARCHAR2 DEFAULT NULL, apply_crossedition_trigger IN VARCHAR2 DEFAULT NULL, fire_apply_trigger IN BOOLEAN DEFAULT TRUE, parallel_level IN NUMBER DEFAULT 0, job_class IN VARCHAR2 DEFAULT 'DEFAULT_JOB_CLASS');

Parameters

Table 101-20 RUN_TASK Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task

	
sql_stmt

	
SQL statement; must have :start_id and :end_id placeholder

	
language_flag

	
Determines how Oracle handles the SQL statement. The following options are recognized:

	
V6 (or 0) specifies version 6 behavior

	
NATIVE (or 1) specifies normal behavior for the database to which the program is connected

	
V7 (or 2) specifies Oracle database version 7 behavior

	
edition

	
Specifies the edition to run the statement in. Default is the current edition.

	
apply_crossedition_trigger

	
Specifies the unqualified name of a forward crossedition trigger that is to be applied to the specified SQL. The name is resolved using the edition and current_schema setting in which the statement is to be executed. The trigger must be owned by the user executes the statement.

	
fire_apply_trigger

	
Indicates whether the specified apply_crossedition_trigger is itself to be executed, or should only be a guide used in selecting other triggers.

	
parallel_level

	
Number of parallel jobs; zero if run in serial; NULL uses the default parallelism.\

	
job_class

	
If running in parallel, the jobs belong to the specified job class

Examples

Suppose the chunk table contains the following chunk ranges:

START_ID END_ID
--------------------------- ---------------------------
1 10
11 20
21 30

And the specified SQL statement is:

UPDATE employees
 SET salary = salary + 10
 WHERE e.employee_id BETWEEN :start_id AND :end_id

This procedure executes the following statements in parallel:

UPDATE employees
 SET salary =.salary + 10 WHERE employee_id BETWEEN 1 and 10;
 COMMIT;

UPDATE employees
 SET salary =.salary + 10 WHERE employee_id between 11 and 20;
 COMMIT;

UPDATE employees
 SET salary =.salary + 10 WHERE employee_id between 21 and 30;
 COMMIT;

SET_CHUNK_STATUS Procedure

This procedure sets the status of the chunk. The START_TIMESTAMP and END_TIMESTAMP of the chunk is updated according to the new status:

Value of the new Status Side Effect
--------------------------- ---------------------------
UNASSIGNED START_TIMESTAMP and END_TIMESTAMP
 will be cleared
ASSIGNED START_TIMESTAMP will be the current time
 and END_TIMESTAMP will be cleared.
PROCESSED or PROCESSED_WITH_ERROR The current time will be recorded
 in END_TIMESTAMP

	
See Also:

Views

Syntax

DBMS_PARALLEL_EXECUTE.SET_CHUNK_STATUS (
 task_name IN VARCHAR2,
 chunk_id OUT NUMBER,
 status IN NUMBER,
 err_num IN NUMBER DEFAULT NULL,
 err_msg IN VARCHAR2 DEFAULT NULL);

Parameters

Table 101-21 SET_CHUNK_STATUS Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task

	
chunk_id

	
Chunk_id of the chunk

	
status

	
Status of the chunk: UNASSIGNED, ASSIGNED, PROCESSED PROCESSED_WITH_ERROR

	
err_num

	
Error code returned during the processing of the chunk

	
err_msg

	
Error message returned during the processing of the chunk

STOP_TASK Procedure

This procedure stops the task and related job slaves.

Syntax

DBMS_PARALLEL_EXECUTE.STOP_TASK (
 task_name IN VARCHAR2);

Parameters

Table 101-22 STOP_TASK Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task

TASK_STATUS Procedure

This function returns the task status.

Syntax

DBMS_PARALLEL_EXECUTE.TASK_STATUS (
 task_name IN VARCHAR2);

Parameters

Table 101-23 TASK_STATUS Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task

DBMS_PCLXUTIL

102 DBMS_PCLXUTIL

The DBMS_PCLXUTIL package provides intra-partition parallelism for creating partition-wise local indexes. DBMS_PCLXUTIL circumvents the limitation that, for local index creation, the degree of parallelism is restricted to the number of partitions as only one slave process for each partition is used.

	
See Also:

There are several rules concerning partitions and indexes. For more information, see Oracle Database Concepts and Oracle Database Administrator's Guide.

This chapter contains the following topics:

	
Using DBMS_PCLXUTIL

	
Overview

	
Security Model

	
Operational Notes

	
Rules and Limits

	
Summary of DBMS_PCLXUTIL Subprograms

Using DBMS_PCLXUTIL

	
Overview

	
Security Model

	
Operational Notes

	
Rules and Limits

Overview

DBMS_PCLXUTIL uses the DBMS_JOB package to provide a greater degree of parallelism for creating a local index for a partitioned table. This is achieved by asynchronous inter-partition parallelism using the background processes (with DBMS_JOB), in combination with intra-partition parallelism using the parallel query slave processes.

DBMS_PCLXUTIL works with both range and range-hash composite partitioning.

The DBMS_PCLXUTIL package can be used during the following DBA tasks:

	
Local index creation

The procedure BUILD_PART_INDEX assumes that the dictionary information for the local index already exists. This can be done by issuing the create index SQL command with the UNUSABLE option.

CREATE INDEX <idx_name> on <tab_name>(...) local(...) unusable;

This causes the dictionary entries to be created without "building" the index itself, the time consuming part of creating an index. Now, invoking the procedure BUILD_PART_INDEX causes a concurrent build of local indexes with the specified degree of parallelism.

EXECUTE dbms_pclxutil.build_part_index(4,4,<tab_name>,<idx_name>,FALSE);

For composite partitions, the procedure automatically builds local indexes for all subpartitions of the composite table.

	
Local index maintenance

By marking desired partitions usable or unusable, the BUILD_PART_INDEX procedure also enables selective rebuilding of local indexes. The force_opt parameter provides a way to override this and build local indexes for all partitions.

ALTER INDEX <idx_name> local(...) unusable;

Rebuild only the desired (sub)partitions (that are marked unusable):

EXECUTE dbms_pclxutil.build_part_index(4,4,<tab_name>,<idx_name>,FALSE);

Rebuild all (sub)partitions using force_opt = TRUE:

EXECUTE dbms_pclxutil.build_part_index(4,4,<tab_name>,<idx_name>,TRUE);

A progress report is produced, and the output appears on screen when the program is ended (because the DBMS_OUTPUT package writes messages to a buffer first, and flushes the buffer to the screen only upon termination of the program).

Security Model

This utility can be run only as table owner, and not as any other user.

Operational Notes

DBMS_PCLXUTIL submits a job for each partition. It is the responsibility of the user/dba to control the number of concurrent jobs by setting the INIT.ORA parameter JOB_QUEUE_PROCESSES correctly. There is minimal error checking for correct syntax. Any errors are reported in the job queue process trace files.

Rules and Limits

	
Note:

For range partitioning, the minimum compatibility mode is 8.0; for range-hash composite partitioning, the minimum compatibility mode is 8i.

Because DBMS_PCLXUTIL uses the DBMS_JOB package, you must be aware of the following limitations pertaining to DBMS_JOB:

	
You must decide appropriate values for the job_queue_processes initialization parameter. Clearly, if the job processes are not started before calling BUILD_PART_INDEX(), then the package will not function properly. The background processes are specified by the following init.ora parameters:

 job_queue_processes=n #the number of background processes = n

	
Failure conditions are reported only in the trace files (a DBMS_JOB limitation), making it impossible to give interactive feedback to the user. This package prints a failure message, removes unfinished jobs from the queue, and requests the user to take a look at the j*.trc trace files.

Summary of DBMS_PCLXUTIL Subprograms

Table 102-1 DBMS_PCLXUTIL Package Subprograms

	Subprogram	Description
	
BUILD_PART_INDEX Procedure

	
Provides intra-partition parallelism for creating partition-wise local indexes

BUILD_PART_INDEX Procedure

This procedure provides intra-partition parallelism for creating partition-wise local indexes.

Syntax

DBMS_PCLXUTIL.BUILD_PART_INDEX (
 jobs_per_batch IN NUMBER DEFAULT 1,
 procs_per_job IN NUMBER DEFAULT 1,
 tab_name IN VARCHAR2 DEFAULT NULL,
 idx_name IN VARCHAR2 DEFAULT NULL,
 force_opt IN BOOLEAN DEFAULT FALSE);

Parameters

Table 102-2 BUILD_PART_INDEX Procedure Parameters

	Parameter	Description
	
jobs_per_batch

	
The number of concurrent partition-wise "local index builds".

	
procs_per_job

	
The number of parallel query slaves to be utilized for each local index build (1 <= procs_per_job <= max_slaves).

	
tab_name

	
The name of the partitioned table (an exception is raised if the table does not exist or not partitioned).

	
idx_name

	
The name given to the local index (an exception is raised if a local index is not created on the table tab_name).

	
force_opt

	
If TRUE, then force rebuild of all partitioned indexes; otherwise, rebuild only the partitions marked 'UNUSABLE'.

Usage Notes

This utility can be run only as table owner, and not as any other user.

Examples

Suppose a table PROJECT is created with two partitions PROJ001 and PROJ002, along with a local index IDX.

A call to the procedure BUILD_PART_INDEX(2,4,'PROJECT','IDX',TRUE) produces the following output:

SQLPLUS> EXECUTE dbms_pclxutil.build_part_index(2,4,'PROJECT','IDX',TRUE);
Statement processed.
INFO: Job #21 created for partition PROJ002 with 4 slaves
INFO: Job #22 created for partition PROJ001 with 4 slaves

DBMS_PIPE

103 DBMS_PIPE

The DBMS_PIPE package lets two or more sessions in the same instance communicate. Oracle pipes are similar in concept to the pipes used in UNIX, but Oracle pipes are not implemented using the operating system pipe mechanisms.

This chapter contains the following topics:

	
Using DBMS_PIPE

	
Overview

	
Security Model

	
Constants

	
Operational Notes

	
Exceptions

	
Examples

	
Summary of DBMS_PIPE Subprograms

Using DBMS_PIPE

	
Overview

	
Security Model

	
Constants

	
Operational Notes

	
Exceptions

	
Examples

Overview

Pipe functionality has several potential applications:

	
External service interface: You can communicate with user-written services that are external to the RDBMS. This can be done effectively in a shared server process, so that several instances of the service are executing simultaneously. Additionally, the services are available asynchronously. The requestor of the service does not need to block a waiting reply. The requestor can check (with or without time out) at a later time. The service can be written in any of the 3GL languages that Oracle supports.

	
Independent transactions: The pipe can communicate to a separate session which can perform an operation in an independent transaction (such as logging an attempted security violation detected by a trigger).

	
Alerters (non-transactional): You can post another process without requiring the waiting process to poll. If an "after-row" or "after-statement" trigger were to alert an application, then the application would treat this alert as an indication that the data probably changed. The application would then read the data to get the current value. Because this is an "after" trigger, the application would want to do a "SELECT FOR UPDATE" to make sure it read the correct data.

	
Debugging: Triggers and stored procedures can send debugging information to a pipe. Another session can keep reading out of the pipe and display it on the screen or write it to a file.

	
Concentrator: This is useful for multiplexing large numbers of users over a fewer number of network connections, or improving performance by concentrating several user-transactions into one DBMS transaction.

Security Model

Security can be achieved by use of GRANT EXECUTE on the DBMS_PIPE package by creating a pipe using the private parameter in the CREATE_PIPE function and by writing cover packages that only expose particular features or pipenames to particular users or roles.

Depending upon your security requirements, you may choose to use either Public Pipes or Private Pipes.

Constants

maxwait constant integer := 86400000; /* 1000 days */

This is the maximum time to wait attempting to send or receive a message.

Operational Notes

Information sent through Oracle pipes is buffered in the system global area (SGA). All information in pipes is lost when the instance is shut down.

	
Caution:

Pipes are independent of transactions. Be careful using pipes when transaction control can be affected.

The operation of DBMS_PIPE is considered with regard to the following topics:

	
Public Pipes

	
Writing and Reading Pipes

	
Private Pipes

Public Pipes

You may create a public pipe either implicitly or explicitly. For implicit public pipes, the pipe is automatically created when it is referenced for the first time, and it disappears when it no longer contains data. Because the pipe descriptor is stored in the SGA, there is some space usage overhead until the empty pipe is aged out of the cache.

You create an explicit public pipe by calling the CREATE_PIPE function with the private flag set to FALSE. You must deallocate explicitly-created pipes by calling the REMOVE_PIPE function.

The domain of a public pipe is the schema in which it was created, either explicitly or implicitly.

Writing and Reading Pipes

Each public pipe works asynchronously. Any number of schema users can write to a public pipe, as long as they have EXECUTE permission on the DBMS_PIPE package, and they know the name of the public pipe. However, once buffered information is read by one user, it is emptied from the buffer, and is not available for other readers of the same pipe.

The sending session builds a message using one or more calls to the PACK_MESSAGE procedure. This procedure adds the message to the session's local message buffer. The information in this buffer is sent by calling the SEND_MESSAGE function, designating the pipe name to be used to send the message. When SEND_MESSAGE is called, all messages that have been stacked in the local buffer are sent.

A process that wants to receive a message calls the RECEIVE_MESSAGE function, designating the pipe name from which to receive the message. The process then calls the UNPACK_MESSAGE procedure to access each of the items in the message.

Private Pipes

You explicitly create a private pipe by calling the CREATE_PIPE function. Once created, the private pipe persists in shared memory until you explicitly deallocate it by calling the REMOVE_PIPE function. A private pipe is also deallocated when the database instance is shut down.

You cannot create a private pipe if an implicit pipe exists in memory and has the same name as the private pipe you are trying to create. In this case, CREATE_PIPE returns an error.

Access to a private pipe is restricted to:

	
Sessions running under the same userid as the creator of the pipe

	
Stored subprograms executing in the same userid privilege domain as the pipe creator

	
Users connected as SYSDBA

An attempt by any other user to send or receive messages on the pipe, or to remove the pipe, results in an immediate error. Any attempt by another user to create a pipe with the same name also causes an error.

As with public pipes, you must first build your message using calls to PACK_MESSAGE before calling SEND_MESSAGE. Similarly, you must call RECEIVE_MESSAGE to retrieve the message before accessing the items in the message by calling UNPACK_MESSAGE.

Exceptions

DBMS_PIPE package subprograms can return the following errors:

Table 103-1 DBMS_PIPE Errors

	Error	Description
	
ORA-23321:

	
Pipename may not be null. This can be returned by the CREATE_PIPE function, or any subprogram that takes a pipe name as a parameter.

	
ORA-23322:

	
Insufficient privilege to access pipe. This can be returned by any subprogram that references a private pipe in its parameter list.

Examples

	
Example 1: Debugging - PL/SQL

	
Example 3: Execute System Commands

	
Example 4: External Service Interface

Example 1: Debugging - PL/SQL

This example shows the procedure that a PL/SQL program can call to place debugging information in a pipe.

CREATE OR REPLACE PROCEDURE debug (msg VARCHAR2) AS
 status NUMBER;
BEGIN
 DBMS_PIPE.PACK_MESSAGE(LENGTH(msg));
 DBMS_PIPE.PACK_MESSAGE(msg);
 status := DBMS_PIPE.SEND_MESSAGE('plsql_debug');
 IF status != 0 THEN
 raise_application_error(-20099, 'Debug error');
 END IF;
END debug;

Example 2: Debugging - Pro*C

The following Pro*C code receives messages from the PLSQL_DEBUG pipe in the previous example, and displays the messages. If the Pro*C session is run in a separate window, then it can be used to display any messages that are sent to the debug procedure from a PL/SQL program executing in a separate session.

#include <stdio.h>
#include <string.h>

EXEC SQL BEGIN DECLARE SECTION;
 VARCHAR username[20];
 int status;
 int msg_length;
 char retval[2000];
EXEC SQL END DECLARE SECTION;

EXEC SQL INCLUDE SQLCA;

void sql_error();

main()
{

-- Prepare username:
 strcpy(username.arr, "SCOTT/TIGER");
 username.len = strlen(username.arr);

 EXEC SQL WHENEVER SQLERROR DO sql_error();
 EXEC SQL CONNECT :username;

 printf("connected\n");

-- Start an endless loop to look for and print messages on the pipe:
 FOR (;;)
 {
 EXEC SQL EXECUTE
 DECLARE
 len INTEGER;
 typ INTEGER;
 sta INTEGER;
 chr VARCHAR2(2000);
 BEGIN
 chr := '';
 sta := dbms_pipe.receive_message('plsql_debug');
 IF sta = 0 THEN
 DBMS_PIPE.UNPACK_MESSAGE(len);
 DBMS_PIPE.UNPACK_MESSAGE(chr);
 END IF;
 :status := sta;
 :retval := chr;
 IF len IS NOT NULL THEN
 :msg_length := len;
 ELSE
 :msg_length := 2000;
 END IF;
 END;
 END-EXEC;
 IF (status == 0)
 printf("\n%.*s\n", msg_length, retval);
 ELSE
 printf("abnormal status, value is %d\n", status);
 }
}

void sql_error()
{
 char msg[1024];
 int rlen, len;
 len = sizeof(msg);
 sqlglm(msg, &len, &rlen);
 printf("ORACLE ERROR\n");
 printf("%.*s\n", rlen, msg);
 exit(1);
}

Example 3: Execute System Commands

This example shows PL/SQL and Pro*C code let a PL/SQL stored procedure (or anonymous block) call PL/SQL procedures to send commands over a pipe to a Pro*C program that is listening for them.

The Pro*C program sleeps and waits for a message to arrive on the named pipe. When a message arrives, the Pro*C program processes it, carrying out the required action, such as executing a UNIX command through the system() call or executing a SQL command using embedded SQL.

DAEMON.SQL is the source code for the PL/SQL package. This package contains procedures that use the DBMS_PIPE package to send and receive message to and from the Pro*C daemon. Note that full handshaking is used. The daemon always sends a message back to the package (except in the case of the STOP command). This is valuable, because it allows the PL/SQL procedures to be sure that the Pro*C daemon is running.

You can call the DAEMON packaged procedures from an anonymous PL/SQL block using SQL*Plus or Enterprise Manager. For example:

SQLPLUS> variable rv number
SQLPLUS> execute :rv := DAEMON.EXECUTE_SYSTEM('ls -la');

On a UNIX system, this causes the Pro*C daemon to execute the command system("ls -la").

Remember that the daemon needs to be running first. You might want to run it in the background, or in another window beside the SQL*Plus or Enterprise Manager session from which you call it.

The DAEMON.SQL also uses the DBMS_OUTPUT package to display the results. For this example to work, you must have execute privileges on this package.

DAEMON.SQL Example. This is the code for the PL/SQL DAEMON package:

CREATE OR REPLACE PACKAGE daemon AS
 FUNCTION execute_sql(command VARCHAR2,
 timeout NUMBER DEFAULT 10)
 RETURN NUMBER;

 FUNCTION execute_system(command VARCHAR2,
 timeout NUMBER DEFAULT 10)
 RETURN NUMBER;

 PROCEDURE stop(timeout NUMBER DEFAULT 10);
END daemon;
/
CREATE OR REPLACE PACKAGE BODY daemon AS

 FUNCTION execute_system(command VARCHAR2,
 timeout NUMBER DEFAULT 10)
 RETURN NUMBER IS

 status NUMBER;
 result VARCHAR2(20);
 command_code NUMBER;
 pipe_name VARCHAR2(30);
 BEGIN
 pipe_name := DBMS_PIPE.UNIQUE_SESSION_NAME;

 DBMS_PIPE.PACK_MESSAGE('SYSTEM');
 DBMS_PIPE.PACK_MESSAGE(pipe_name);
 DBMS_PIPE.PACK_MESSAGE(command);
 status := DBMS_PIPE.SEND_MESSAGE('daemon', timeout);
 IF status <> 0 THEN
 RAISE_APPLICATION_ERROR(-20010,
 'Execute_system: Error while sending. Status = ' ||
 status);
 END IF;

 status := DBMS_PIPE.RECEIVE_MESSAGE(pipe_name, timeout);
 IF status <> 0 THEN
 RAISE_APPLICATION_ERROR(-20011,
 'Execute_system: Error while receiving.
 Status = ' || status);
 END IF;

 DBMS_PIPE.UNPACK_MESSAGE(result);
 IF result <> 'done' THEN
 RAISE_APPLICATION_ERROR(-20012,
 'Execute_system: Done not received.');
 END IF;

 DBMS_PIPE.UNPACK_MESSAGE(command_code);
 DBMS_OUTPUT.PUT_LINE('System command executed. result = ' ||
 command_code);
 RETURN command_code;
 END execute_system;

 FUNCTION execute_sql(command VARCHAR2,
 timeout NUMBER DEFAULT 10)
 RETURN NUMBER IS

 status NUMBER;
 result VARCHAR2(20);
 command_code NUMBER;
 pipe_name VARCHAR2(30);

 BEGIN
 pipe_name := DBMS_PIPE.UNIQUE_SESSION_NAME;

 DBMS_PIPE.PACK_MESSAGE('SQL');
 DBMS_PIPE.PACK_MESSAGE(pipe_name);
 DBMS_PIPE.PACK_MESSAGE(command);
 status := DBMS_PIPE.SEND_MESSAGE('daemon', timeout);
 IF status <> 0 THEN
 RAISE_APPLICATION_ERROR(-20020,
 'Execute_sql: Error while sending. Status = ' || status);
 END IF;

 status := DBMS_PIPE.RECEIVE_MESSAGE(pipe_name, timeout);

 IF status <> 0 THEN
 RAISE_APPLICATION_ERROR(-20021,
 'execute_sql: Error while receiving.
 Status = ' || status);
 END IF;

 DBMS_PIPE.UNPACK_MESSAGE(result);
 IF result <> 'done' THEN
 RAISE_APPLICATION_ERROR(-20022,
 'execute_sql: done not received.');
 END IF;

 DBMS_PIPE.UNPACK_MESSAGE(command_code);
 DBMS_OUTPUT.PUT_LINE
 ('SQL command executed. sqlcode = ' || command_code);
 RETURN command_code;
 END execute_sql;

 PROCEDURE stop(timeout NUMBER DEFAULT 10) IS
 status NUMBER;
 BEGIN
 DBMS_PIPE.PACK_MESSAGE('STOP');
 status := DBMS_PIPE.SEND_MESSAGE('daemon', timeout);
 IF status <> 0 THEN
 RAISE_APPLICATION_ERROR(-20030,
 'stop: error while sending. status = ' || status);
 END IF;
 END stop;
END daemon;

daemon.pc Example. This is the code for the Pro*C daemon. You must precompile this using the Pro*C Precompiler, Version 1.5.x or later. You must also specify the USERID and SQLCHECK options, as the example contains embedded PL/SQL code.

	
Note:

To use a VARCHAR output host variable in a PL/SQL block, you must initialize the length component before entering the block.

proc iname=daemon userid=scott/tiger sqlcheck=semantics

Then C-compile and link in the normal way.

#include <stdio.h>
#include <string.h>

EXEC SQL INCLUDE SQLCA;

EXEC SQL BEGIN DECLARE SECTION;
 char *uid = "scott/tiger";
 int status;
 VARCHAR command[20];
 VARCHAR value[2000];
 VARCHAR return_name[30];
EXEC SQL END DECLARE SECTION;

void
connect_error()
{
 char msg_buffer[512];
 int msg_length;
 int buffer_size = 512;

 EXEC SQL WHENEVER SQLERROR CONTINUE;
 sqlglm(msg_buffer, &buffer_size, &msg_length);
 printf("Daemon error while connecting:\n");
 printf("%.*s\n", msg_length, msg_buffer);
 printf("Daemon quitting.\n");
 exit(1);
}

void
sql_error()
{
 char msg_buffer[512];
 int msg_length;
 int buffer_size = 512;

 EXEC SQL WHENEVER SQLERROR CONTINUE;
 sqlglm(msg_buffer, &buffer_size, &msg_length);
 printf("Daemon error while executing:\n");
 printf("%.*s\n", msg_length, msg_buffer);
 printf("Daemon continuing.\n");
}
main()
{
command.len = 20; /*initialize length components*/
value.len = 2000;
return_name.len = 30;
 EXEC SQL WHENEVER SQLERROR DO connect_error();
 EXEC SQL CONNECT :uid;
 printf("Daemon connected.\n");

 EXEC SQL WHENEVER SQLERROR DO sql_error();
 printf("Daemon waiting...\n");
 while (1) {
 EXEC SQL EXECUTE
 BEGIN
 :status := DBMS_PIPE.RECEIVE_MESSAGE('daemon');
 IF :status = 0 THEN
 DBMS_PIPE.UNPACK_MESSAGE(:command);
 END IF;
 END;
 END-EXEC;
 IF (status == 0)
 {
 command.arr[command.len] = '\0';
 IF (!strcmp((char *) command.arr, "STOP"))
 {
 printf("Daemon exiting.\n");
 break;
 }

 ELSE IF (!strcmp((char *) command.arr, "SYSTEM"))
 {
 EXEC SQL EXECUTE
 BEGIN
 DBMS_PIPE.UNPACK_MESSAGE(:return_name);
 DBMS_PIPE.UNPACK_MESSAGE(:value);
 END;
 END-EXEC;
 value.arr[value.len] = '\0';
 printf("Will execute system command '%s'\n", value.arr);

 status = system(value.arr);
 EXEC SQL EXECUTE
 BEGIN
 DBMS_PIPE.PACK_MESSAGE('done');
 DBMS_PIPE.PACK_MESSAGE(:status);
 :status := DBMS_PIPE.SEND_MESSAGE(:return_name);
 END;
 END-EXEC;

 IF (status)
 {
 printf
 ("Daemon error while responding to system command.");
 printf(" status: %d\n", status);
 }
 }
 ELSE IF (!strcmp((char *) command.arr, "SQL")) {
 EXEC SQL EXECUTE
 BEGIN
 DBMS_PIPE.UNPACK_MESSAGE(:return_name);
 DBMS_PIPE.UNPACK_MESSAGE(:value);
 END;
 END-EXEC;
 value.arr[value.len] = '\0';
 printf("Will execute sql command '%s'\n", value.arr);

 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL EXECUTE IMMEDIATE :value;
 status = sqlca.sqlcode;

 EXEC SQL WHENEVER SQLERROR DO sql_error();
 EXEC SQL EXECUTE
 BEGIN
 DBMS_PIPE.PACK_MESSAGE('done');
 DBMS_PIPE.PACK_MESSAGE(:status);
 :status := DBMS_PIPE.SEND_MESSAGE(:return_name);
 END;
 END-EXEC;

 IF (status)
 {
 printf("Daemon error while responding to sql command.");
 printf(" status: %d\n", status);
 }
 }
 ELSE
 {
 printf
 ("Daemon error: invalid command '%s' received.\n",
 command.arr);
 }
 }
 ELSE
 {
 printf("Daemon error while waiting for signal.");
 printf(" status = %d\n", status);
 }
 }
 EXEC SQL COMMIT WORK RELEASE;
 exit(0);

Example 4: External Service Interface

Put the user-written 3GL code into an OCI or Precompiler program. The program connects to the database and executes PL/SQL code to read its request from the pipe, computes the result, and then executes PL/SQL code to send the result on a pipe back to the requestor.

Below is an example of a stock service request. The recommended sequence for the arguments to pass on the pipe for all service requests is:

 protocol_version VARCHAR2 - '1', 10 bytes or less
 returnpipe VARCHAR2 - 30 bytes or less
 service VARCHAR2 - 30 bytes or less
 arg1 VARCHAR2/NUMBER/DATE
 ...
 argn VARCHAR2/NUMBER/DATE

The recommended format for returning the result is:

 success VARCHAR2 - 'SUCCESS' if OK,
 otherwise error message
 arg1 VARCHAR2/NUMBER/DATE
 ...
 argn VARCHAR2/NUMBER/DATE

The "stock price request server" would do, using OCI or PRO* (in pseudo-code):

 <loop forever>
 BEGIN dbms_stock_server.get_request(:stocksymbol); END;
 <figure out price based on stocksymbol (probably from some radio
 signal), set error if can't find such a stock>
 BEGIN dbms_stock_server.return_price(:error, :price); END;

A client would do:

 BEGIN :price := stock_request('YOURCOMPANY'); end;

The stored procedure, dbms_stock_server, which is called by the preceding "stock price request server" is:

 CREATE OR REPLACE PACKAGE dbms_stock_server IS
 PROCEDURE get_request(symbol OUT VARCHAR2);
 PROCEDURE return_price(errormsg IN VARCHAR2, price IN VARCHAR2);
 END;

 CREATE OR REPLACE PACKAGE BODY dbms_stock_server IS
 returnpipe VARCHAR2(30);

 PROCEDURE returnerror(reason VARCHAR2) IS
 s INTEGER;
 BEGIN
 dbms_pipe.pack_message(reason);
 s := dbms_pipe.send_message(returnpipe);
 IF s <> 0 THEN
 raise_application_error(-20000, 'Error:' || to_char(s) ||
 ' sending on pipe');
 END IF;
 END;

 PROCEDURE get_request(symbol OUT VARCHAR2) IS
 protocol_version VARCHAR2(10);
 s INTEGER;
 service VARCHAR2(30);
 BEGIN
 s := dbms_pipe.receive_message('stock_service');
 IF s <> 0 THEN
 raise_application_error(-20000, 'Error:' || to_char(s) ||
 'reading pipe');
 END IF;
 dbms_pipe.unpack_message(protocol_version);
 IF protocol_version <> '1' THEN
 raise_application_error(-20000, 'Bad protocol: ' ||
 protocol_version);
 END IF;
 dbms_pipe.unpack_message(returnpipe);
 dbms_pipe.unpack_message(service);
 IF service != 'getprice' THEN
 returnerror('Service ' || service || ' not supported');
 END IF;
 dbms_pipe.unpack_message(symbol);
 END;

 PROCEDURE return_price(errormsg in VARCHAR2, price in VARCHAR2) IS
 s INTEGER;
 BEGIN
 IF errormsg is NULL THEN
 dbms_pipe.pack_message('SUCCESS');
 dbms_pipe.pack_message(price);
 ELSE
 dbms_pipe.pack_message(errormsg);
 END IF;
 s := dbms_pipe.send_message(returnpipe);
 IF s <> 0 THEN
 raise_application_error(-20000, 'Error:'||to_char(s)||
 ' sending on pipe');
 END IF;
 END;
 END;

The procedure called by the client is:

 CREATE OR REPLACE FUNCTION stock_request (symbol VARCHAR2)
 RETURN VARCHAR2 IS
 s INTEGER;
 price VARCHAR2(20);
 errormsg VARCHAR2(512);
 BEGIN
 dbms_pipe.pack_message('1'); -- protocol version
 dbms_pipe.pack_message(dbms_pipe.unique_session_name); -- return pipe
 dbms_pipe.pack_message('getprice');
 dbms_pipe.pack_message(symbol);
 s := dbms_pipe.send_message('stock_service');
 IF s <> 0 THEN
 raise_application_error(-20000, 'Error:'||to_char(s)||
 ' sending on pipe');
 END IF;
 s := dbms_pipe.receive_message(dbms_pipe.unique_session_name);
 IF s <> 0 THEN
 raise_application_error(-20000, 'Error:'||to_char(s)||
 ' receiving on pipe');
 END IF;
 dbms_pipe.unpack_message(errormsg);
 IF errormsg <> 'SUCCESS' THEN
 raise_application_error(-20000, errormsg);
 END IF;
 dbms_pipe.unpack_message(price);
 RETURN price;
 END;

You would typically only GRANT EXECUTE on DBMS_STOCK_SERVICE to the stock service application server, and would only GRANT EXECUTE on stock_request to those users allowed to use the service.

	
See Also:

Chapter 19, "DBMS_ALERT"

Summary of DBMS_PIPE Subprograms

Table 103-2 DBMS_PIPE Package Subprograms

	Subprogram	Description
	
CREATE_PIPE Function

	
Creates a pipe (necessary for private pipes)

	
NEXT_ITEM_TYPE Function

	
Returns datatype of next item in buffer

	
PACK_MESSAGE Procedures

	
Builds message in local buffer

	
PURGE Procedure

	
Purges contents of named pipe

	
RECEIVE_MESSAGE Function

	
Copies message from named pipe into local buffer

	
REMOVE_PIPE Function

	
Removes the named pipe

	
RESET_BUFFER Procedure

	
Purges contents of local buffer

	
SEND_MESSAGE Function

	
Sends message on named pipe: This implicitly creates a public pipe if the named pipe does not exist

	
UNIQUE_SESSION_NAME Function

	
Returns unique session name

	
UNPACK_MESSAGE Procedures

	
Accesses next item in buffer

CREATE_PIPE Function

This function explicitly creates a public or private pipe. If the private flag is TRUE, then the pipe creator is assigned as the owner of the private pipe.

Explicitly-created pipes can only be removed by calling REMOVE_PIPE, or by shutting down the instance.

Syntax

DBMS_PIPE.CREATE_PIPE (
 pipename IN VARCHAR2,
 maxpipesize IN INTEGER DEFAULT 8192,
 private IN BOOLEAN DEFAULT TRUE)
RETURN INTEGER;

Pragmas

pragma restrict_references(create_pipe,WNDS,RNDS);

Parameters

Table 103-3 CREATE_PIPE Function Parameters

	Parameter	Description
	
pipename

	
Name of the pipe you are creating.

You must use this name when you call SEND_MESSAGE and RECEIVE_MESSAGE. This name must be unique across the instance.

Caution: Do not use pipe names beginning with ORA$. These are reserved for use by procedures provided by Oracle. Pipename should not be longer than 128 bytes, and is case insensitive. At this time, the name cannot contain Globalization Support characters.

	
maxpipesize

	
The maximum size allowed for the pipe, in bytes.

The total size of all of the messages on the pipe cannot exceed this amount. The message is blocked if it exceeds this maximum. The default maxpipesize is 8192 bytes.

The maxpipesize for a pipe becomes a part of the characteristics of the pipe and persists for the life of the pipe. Callers of SEND_MESSAGE with larger values cause the maxpipesize to be increased. Callers with a smaller value use the existing, larger value.

	
private

	
Uses the default, TRUE, to create a private pipe.

Public pipes can be implicitly created when you call SEND_MESSAGE.

Return Values

Table 103-4 CREATE_PIPE Function Return Values

	Return	Description
	
0

	
Successful.

If the pipe already exists and the user attempting to create it is authorized to use it, then Oracle returns 0, indicating success, and any data already in the pipe remains.

If a user connected as SYSDBA/SYSOPER re-creates a pipe, then Oracle returns status 0, but the ownership of the pipe remains unchanged.

	
ORA-23322

	
Failure due to naming conflict.

If a pipe with the same name exists and was created by a different user, then Oracle signals error ORA-23322, indicating the naming conflict.

Exceptions

Table 103-5 CREATE_PIPE Function Exception

	Exception	Description
	
Null pipe name

	
Permission error: Pipe with the same name already exists, and you are not allowed to use it.

NEXT_ITEM_TYPE Function

This function determines the datatype of the next item in the local message buffer.

After you have called RECEIVE_MESSAGE to place pipe information in a local buffer, call NEXT_ITEM_TYPE.

Syntax

DBMS_PIPE.NEXT_ITEM_TYPE
 RETURN INTEGER;

Pragmas

pragma restrict_references(next_item_type,WNDS,RNDS);

Return Values

Table 103-6 NEXT_ITEM_TYPE Function Return Values

	Return	Description
	
0

	
No more items

	
6

	
NUMBER

	
9

	
VARCHAR2

	
11

	
ROWID

	
12

	
DATE

	
23

	
RAW

PACK_MESSAGE Procedures

This procedure builds your message in the local message buffer. To send a message, first make one or more calls to PACK_MESSAGE. Then, call SEND_MESSAGE to send the message in the local buffer on the named pipe.

The procedure is overloaded to accept items of type VARCHAR2, NCHAR, NUMBER, DATE., RAW and ROWID items. In addition to the data bytes, each item in the buffer requires one byte to indicate its type, and two bytes to store its length. One additional byte is needed to terminate the message.The overhead for all types other than VARCHAR is 4 bytes.

Syntax

DBMS_PIPE.PACK_MESSAGE (
 item IN VARCHAR2);

DBMS_PIPE.PACK_MESSAGE (
 item IN NCHAR);

DBMS_PIPE.PACK_MESSAGE (
 item IN NUMBER);

DBMS_PIPE.PACK_MESSAGE (
 item IN DATE);

DBMS_PIPE.PACK_MESSAGE_RAW (
 item IN RAW);

DBMS_PIPE.PACK_MESSAGE_ROWID (
 item IN ROWID);

Pragmas

pragma restrict_references(pack_message,WNDS,RNDS);
pragma restrict_references(pack_message_raw,WNDS,RNDS);
pragma restrict_references(pack_message_rowid,WNDS,RNDS);

Parameters

Table 103-7 PACK_MESSAGE Procedure Parameters

	Parameter	Description
	
item

	
Item to pack into the local message buffer.

Usage Notes

In Oracle database version 8.x, the char-set-id (2 bytes) and the char-set-form (1 byte) are stored with each data item. Therefore, the overhead when using Oracle database version 8.x is 7 bytes.

When you call SEND_MESSAGE to send this message, you must indicate the name of the pipe on which you want to send the message. If this pipe already exists, then you must have sufficient privileges to access this pipe. If the pipe does not already exist, then it is created automatically.

Exceptions

ORA-06558 is raised if the message buffer overflows (currently 4096 bytes). Each item in the buffer takes one byte for the type, two bytes for the length, plus the actual data. There is also one byte needed to terminate the message.

PURGE Procedure

This procedure empties the contents of the named pipe.

An empty implicitly-created pipe is aged out of the shared global area according to the least-recently-used algorithm. Thus, calling PURGE lets you free the memory associated with an implicitly-created pipe.

Syntax

DBMS_PIPE.PURGE (
 pipename IN VARCHAR2);

Pragmas

pragma restrict_references(purge,WNDS,RNDS);

Parameters

Table 103-8 PURGE Procedure Parameters

	Parameter	Description
	
pipename

	
Name of pipe from which to remove all messages.

The local buffer may be overwritten with messages as they are discarded. Pipename should not be longer than 128 bytes, and is case-insensitive.

Usage Notes

Because PURGE calls RECEIVE_MESSAGE, the local buffer might be overwritten with messages as they are purged from the pipe. Also, you can receive an ORA-23322 (insufficient privileges) error if you attempt to purge a pipe with which you have insufficient access rights.

Exceptions

Permission error if pipe belongs to another user.

RECEIVE_MESSAGE Function

This function copies the message into the local message buffer.

Syntax

DBMS_PIPE.RECEIVE_MESSAGE (
 pipename IN VARCHAR2,
 timeout IN INTEGER DEFAULT maxwait)
RETURN INTEGER;

Pragmas

pragma restrict_references(receive_message,WNDS,RNDS);

Parameters

Table 103-9 RECEIVE_MESSAGE Function Parameters

	Parameter	Description
	
pipename

	
Name of the pipe on which you want to receive a message.

Names beginning with ORA$ are reserved for use by Oracle

	
timeout

	
Time to wait for a message, in seconds.

The default value is the constant MAXWAIT, which is defined as 86400000 (1000 days). A timeout of 0 lets you read without blocking.

Return Values

Table 103-10 RECEIVE_MESSAGE Function Return Values

	Return	Description
	
0

	
Success

	
1

	
Timed out. If the pipe was implicitly-created and is empty, then it is removed.

	
2

	
Record in the pipe is too large for the buffer. (This should not happen.)

	
3

	
An interrupt occurred.

	
ORA-23322

	
User has insufficient privileges to read from the pipe.

Usage Notes

To receive a message from a pipe, first call RECEIVE_MESSAGE. When you receive a message, it is removed from the pipe; hence, a message can only be received once. For implicitly-created pipes, the pipe is removed after the last record is removed from the pipe.

If the pipe that you specify when you call RECEIVE_MESSAGE does not already exist, then Oracle implicitly creates the pipe and waits to receive the message. If the message does not arrive within a designated timeout interval, then the call returns and the pipe is removed.

After receiving the message, you must make one or more calls to UNPACK_MESSAGE to access the individual items in the message. The UNPACK_MESSAGE procedure is overloaded to unpack items of type DATE, NUMBER, VARCHAR2, and there are two additional procedures to unpack RAW and ROWID items. If you do not know the type of data that you are attempting to unpack, then call NEXT_ITEM_TYPE to determine the type of the next item in the buffer.

Exceptions

Table 103-11 RECEIVE_MESSAGE Function Exceptions

	Exception	Description
	
Null pipe name

	
Permission error. Insufficient privilege to remove the record from the pipe. The pipe is owned by someone else.

RESET_BUFFER Procedure

This procedure resets the PACK_MESSAGE and UNPACK_MESSAGE positioning indicators to 0.

Because all pipes share a single buffer, you may find it useful to reset the buffer before using a new pipe. This ensures that the first time you attempt to send a message to your pipe, you do not inadvertently send an expired message remaining in the buffer.

Syntax

DBMS_PIPE.RESET_BUFFER;

Pragmas

pragma restrict_references(reset_buffer,WNDS,RNDS);

REMOVE_PIPE Function

This function removes explicitly-created pipes.

Pipes created implicitly by SEND_MESSAGE are automatically removed when empty. However, pipes created explicitly by CREATE_PIPE are removed only by calling REMOVE_PIPE, or by shutting down the instance. All unconsumed records in the pipe are removed before the pipe is deleted.

This is similar to calling PURGE on an implicitly-created pipe.

Syntax

DBMS_PIPE.REMOVE_PIPE (
 pipename IN VARCHAR2)
RETURN INTEGER;

Pragmas

pragma restrict_references(remove_pipe,WNDS,RNDS);

Parameters

Table 103-12 REMOVE_PIPE Function Parameters

	Parameter	Description
	
pipename

	
Name of pipe that you want to remove.

Return Values

Table 103-13 REMOVE_PIPE Function Return Values

	Return	Description
	
0

	
Success

If the pipe does not exist, or if the pipe already exists and the user attempting to remove it is authorized to do so, then Oracle returns 0, indicating success, and any data remaining in the pipe is removed.

	
ORA-23322

	
Insufficient privileges.

If the pipe exists, but the user is not authorized to access the pipe, then Oracle signals error ORA-23322, indicating insufficient privileges.

Exceptions

Table 103-14 REMOVE_PIPE Function Exception

	Exception	Description
	
Null pipe name

	
Permission error: Insufficient privilege to remove pipe. The pipe was created and is owned by someone else.

SEND_MESSAGE Function

This function sends a message on the named pipe.

The message is contained in the local message buffer, which was filled with calls to PACK_MESSAGE. You can create a pipe explicitly using CREATE_PIPE, otherwise, it is created implicitly.

Syntax

DBMS_PIPE.SEND_MESSAGE (
 pipename IN VARCHAR2,
 timeout IN INTEGER DEFAULT MAXWAIT,
 maxpipesize IN INTEGER DEFAULT 8192)
 RETURN INTEGER;

Pragmas

pragma restrict_references(send_message,WNDS,RNDS);

Parameters

Table 103-15 SEND_MESSAGE Function Parameters

	Parameter	Description
	
pipename

	
Name of the pipe on which you want to place the message.

If you are using an explicit pipe, then this is the name that you specified when you called CREATE_PIPE.

Caution: Do not use pipe names beginning with 'ORA$'. These names are reserved for use by procedures provided by Oracle. Pipename should not be longer than 128 bytes, and is case-insensitive. At this time, the name cannot contain Globalization Support characters.

	
timeout

	
Time to wait while attempting to place a message on a pipe, in seconds.

The default value is the constant MAXWAIT, which is defined as 86400000 (1000 days).

	
maxpipesize

	
Maximum size allowed for the pipe, in bytes.

The total size of all the messages on the pipe cannot exceed this amount. The message is blocked if it exceeds this maximum. The default is 8192 bytes.

The maxpipesize for a pipe becomes a part of the characteristics of the pipe and persists for the life of the pipe. Callers of SEND_MESSAGE with larger values cause the maxpipesize to be increased. Callers with a smaller value simply use the existing, larger value.

Specifying maxpipesize as part of the SEND_MESSAGE procedure eliminates the need for a separate call to open the pipe. If you created the pipe explicitly, then you can use the optional maxpipesize parameter to override the creation pipe size specifications.

Return Values

Table 103-16 SEND_MESSAGE Function Return Values

	Return	Description
	
0

	
Success.

If the pipe already exists and the user attempting to create it is authorized to use it, then Oracle returns 0, indicating success, and any data already in the pipe remains.

If a user connected as SYSDBS/SYSOPER re-creates a pipe, then Oracle returns status 0, but the ownership of the pipe remains unchanged.

	
1

	
Timed out.

This procedure can timeout either because it cannot get a lock on the pipe, or because the pipe remains too full to be used. If the pipe was implicitly-created and is empty, then it is removed.

	
3

	
An interrupt occurred.

If the pipe was implicitly created and is empty, then it is removed.

	
ORA-23322

	
Insufficient privileges.

If a pipe with the same name exists and was created by a different user, then Oracle signals error ORA-23322, indicating the naming conflict.

Exceptions

Table 103-17 SEND_MESSAGE Function Exception

	Exception	Description
	
Null pipe name

	
Permission error. Insufficient privilege to write to the pipe. The pipe is private and owned by someone else.

UNIQUE_SESSION_NAME Function

This function receives a name that is unique among all of the sessions that are currently connected to a database.

Multiple calls to this function from the same session always return the same value. You might find it useful to use this function to supply the PIPENAME parameter for your SEND_MESSAGE and RECEIVE_MESSAGE calls.

Syntax

DBMS_PIPE.UNIQUE_SESSION_NAME
 RETURN VARCHAR2;

Pragmas

pragma restrict_references(unique_session_name,WNDS,RNDS,WNPS);

Return Values

This function returns a unique name. The returned name can be up to 30 bytes.

UNPACK_MESSAGE Procedures

This procedure retrieves items from the buffer.

After you have called RECEIVE_MESSAGE to place pipe information in a local buffer, call UNPACK_MESSAGE.

	
Note:

The UNPACK_MESSAGE procedure is overloaded to return items of type VARCHAR2, NCHAR, NUMBER, or DATE. There are two additional procedures to unpack RAW and ROWID items.

Syntax

DBMS_PIPE.UNPACK_MESSAGE (
 item OUT VARCHAR2);

DBMS_PIPE.UNPACK_MESSAGE (
 item OUT NCHAR);

DBMS_PIPE.UNPACK_MESSAGE (
 item OUT NUMBER);

DBMS_PIPE.UNPACK_MESSAGE (
 item OUT DATE);

DBMS_PIPE.UNPACK_MESSAGE_RAW (
 item OUT RAW);

DBMS_PIPE.UNPACK_MESSAGE_ROWID (
 item OUT ROWID);

Pragmas

pragma restrict_references(unpack_message,WNDS,RNDS);
pragma restrict_references(unpack_message_raw,WNDS,RNDS);
pragma restrict_references(unpack_message_rowid,WNDS,RNDS);

Parameters

Table 103-18 UNPACK_MESSAGE Procedure Parameters

	Parameter	Description
	
item

	
Argument to receive the next unpacked item from the local message buffer.

Exceptions

ORA-06556 or 06559 are generated if the buffer contains no more items, or if the item is not of the same type as that requested.

DBMS_PREDICTIVE_ANALYTICS

104 DBMS_PREDICTIVE_ANALYTICS

Data mining can discover useful information buried in vast amounts of data. However, it is often the case that both the programming interfaces and the data mining expertise required to obtain these results are too complex for use by the wide audiences that can obtain benefits from using Oracle Data Mining.

The DBMS_PREDICTIVE_ANALYTICS package addresses both of these complexities by automating the entire data mining process from data preprocessing through model building to scoring new data. This package provides an important tool that makes data mining possible for a broad audience of users, in particular, business analysts.

	
See Also:

Oracle Data Mining Concepts for an overview of Oracle predictive analytics, including information about the Oracle Spreadsheet Add-In for Predictive Analytics.

This chapter contains the following topics:

	
Using DBMS_PREDICTIVE_ANALYTICS

	
Overview

	
Security Model

	
Summary of DBMS_PREDICTIVE_ANALYTICS Subprograms

Using DBMS_PREDICTIVE_ANALYTICS

This section contains topics that relate to using the DBMS_PREDICTIVE_ANALYTICS package.

	
Overview

	
Security Model

Overview

Data mining, according to a commonly used process model, requires the following steps:

	
Understand the business problem.

	
Understand the data.

	
Prepare the data for mining.

	
Create models using the prepared data.

	
Evaluate the models.

	
Deploy and use the model to score new data.

DBMS_PREDICTIVE_ANALYTICS automates parts of step 3 — 5 of this process.

Predictive analytics procedures analyze and prepare the input data, create and test mining models using the input data, and then use the input data for scoring. The results of scoring are returned to the user. The models and supporting objects are not preserved after the operation completes.

Security Model

The DBMS_PREDICTIVE_ANALYTICS package is owned by user SYS and is installed as part of database installation. Execution privilege on the package is granted to public. The routines in the package are run with invokers' rights (run with the privileges of the current user).

The DBMS_PREDICTIVE_ANALYTICS package exposes APIs which are leveraged by the Oracle Data Mining option. Users who wish to invoke procedures in this package require the CREATE MINING MODEL system privilege (as well as the CREATE TABLE and CREATE VIEW system privilege).

Summary of DBMS_PREDICTIVE_ANALYTICS Subprograms

Table 104-1 DBMS_PREDICTIVE_ANALYTICS Package Subprograms

	Subprogram	Purpose
	
EXPLAIN Procedure

	
Ranks attributes in order of influence in explaining a target column.

	
PREDICT Procedure

	
Predicts the value of a target column based on values in the input data.

	
PROFILE Procedure

	
Generates rules that identify the records that have the same target value.

EXPLAIN Procedure

The EXPLAIN procedure identifies the attributes that are important in explaining the variation in values of a target column.

The input data must contain some records where the target value is known (not NULL). These records are used by the procedure to train a model that calculates the attribute importance.

	
Note:

EXPLAIN supports DATE and TIMESTAMP data types in addition to the numeric, character, and nested data types supported by Oracle Data Mining models.
Data requirements for Oracle Data Mining are described in Oracle Data Mining Application Developer's Guide.

The EXPLAIN procedure creates a result table that lists the attributes in order of their explanatory power. The result table is described in the Usage Notes.

Syntax

DBMS_PREDICTIVE_ANALYTICS.EXPLAIN (
 data_table_name IN VARCHAR2,
 explain_column_name IN VARCHAR2,
 result_table_name IN VARCHAR2,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 104-2 EXPLAIN Procedure Parameters

	Parameter	Description
	
data_table_name

	
Name of input table or view

	
explain_column_name

	
Name of the column to be explained

	
result_table_name

	
Name of the table where results are saved

	
data_schema_name

	
Name of the schema where the input table or view resides and where the result table is created. Default: the current schema.

Usage Notes

The EXPLAIN procedure creates a result table with the columns described in Table 104-3.

Table 104-3 EXPLAIN Procedure Result Table

	Column Name	Data Type	Description
	
ATTRIBUTE_NAME

	
VARCHAR2(30)

	
Name of a column in the input data; all columns except the explained column are listed in the result table.

	
EXPLANATORY_VALUE

	
NUMBER

	
Value indicating how useful the column is for determining the value of the explained column. Higher values indicate greater explanatory power. Value can range from 0 to 1.

An individual column's explanatory value is independent of other columns in the input table. The values are based on how strong each individual column correlates with the explained column. The value is affected by the number of records in the input table, and the relations of the values of the column to the values of the explain column.

An explanatory power value of 0 implies there is no useful correlation between the column's values and the explain column's values. An explanatory power of 1 implies perfect correlation; such columns should be eliminated from consideration for PREDICT. In practice, an explanatory power equal to 1 is rarely returned.

	
RANK

	
NUMBER

	
Ranking of explanatory power. Rows with equal values for explanatory_value have the same rank. Rank values are not skipped in the event of ties.

Example

The following example performs an EXPLAIN operation on the SUPPLEMENTARY_DEMOGRAPHICS table of Sales History.

--Perform EXPLAIN operation
BEGIN
 DBMS_PREDICTIVE_ANALYTICS.EXPLAIN(
 data_table_name => 'supplementary_demographics',
 explain_column_name => 'home_theater_package',
 result_table_name => 'demographics_explain_result');
END;
/
--Display results
SELECT * FROM demographics_explain_result;

ATTRIBUTE_NAME EXPLANATORY_VALUE RANK
-- ----------------- ----------
Y_BOX_GAMES .524311073 1
YRS_RESIDENCE .495987246 2
HOUSEHOLD_SIZE .146208506 3
AFFINITY_CARD .0598227 4
EDUCATION .018462703 5
OCCUPATION .009721543 6
FLAT_PANEL_MONITOR .00013733 7
PRINTER_SUPPLIES 0 8
OS_DOC_SET_KANJI 0 8
BULK_PACK_DISKETTES 0 8
BOOKKEEPING_APPLICATION 0 8
COMMENTS 0 8
CUST_ID 0 8

The results show that Y_BOX_GAMES, YRS_RESiDENCE, and HOUSEHOLD_SIZE are the best predictors of HOME_THEATER_PACKAGE.

PREDICT Procedure

The PREDICT procedure predicts the values of a target column.

The input data must contain some records where the target value is known (not NULL). These records are used by the procedure to train and test a model that makes the predictions.

	
Note:

PREDICT supports DATE and TIMESTAMP data types in addition to the numeric, character, and nested data types supported by Oracle Data Mining models.
Data requirements for Oracle Data Mining are described in Oracle Data Mining Application Developer's Guide.

The PREDICT procedure creates a result table that contains a predicted target value for every record. The result table is described in the Usage Notes.

Syntax

DBMS_PREDICTIVE_ANALYTICS.PREDICT (
 accuracy OUT NUMBER,
 data_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 target_column_name IN VARCHAR2,
 result_table_name IN VARCHAR2,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 104-4 PREDICT Procedure Parameters

	Parameter	Description
	
accuracy

	
Output parameter that returns the predictive confidence, a measure of the accuracy of the predicted values. The predictive confidence for a categorical target is the most common target value; the predictive confidence for a numerical target is the mean.

	
data_table_name

	
Name of the input table or view.

	
case_id_column_name

	
Name of the column that uniquely identifies each case (record) in the input data.

	
target_column_name

	
Name of the column to predict.

	
result_table_name

	
Name of the table where results will be saved.

	
data_schema_name

	
Name of the schema where the input table or view resides and where the result table is created. Default: the current schema.

Usage Notes

The PREDICT procedure creates a result table with the columns described in Table 104-5.

Table 104-5 PREDICT Procedure Result Table

	Column Name	Data Type	Description
	
Case ID column name

	
VARCHAR2 or NUMBER

	
The name of the case ID column in the input data.

	
PREDICTION

	
VARCHAR2 or NUMBER

	
The predicted value of the target column for the given case.

	
PROBABILITY

	
NUMBER

	
For classification (categorical target), the probability of the prediction. For regression problems (numerical target), this column contains NULL.

	
Note:

Make sure that the name of the case ID column is not 'PREDICTION' or 'PROBABILITY'.

Predictions are returned for all cases whether or not they contained target values in the input.

Predicted values for known cases may be interesting in some situations. For example, you could perform deviation analysis to compare predicted values and actual values.

Example

The following example performs a PREDICT operation and displays the first 10 predictions. The results show an accuracy of 79% in predicting whether each customer has an affinity card.

--Perform PREDICT operation
DECLARE
 v_accuracy NUMBER(10,9);
BEGIN
 DBMS_PREDICTIVE_ANALYTICS.PREDICT(
 accuracy => v_accuracy,
 data_table_name => 'supplementary_demographics',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 result_table_name => 'pa_demographics_predict_result');
 DBMS_OUTPUT.PUT_LINE('Accuracy = ' || v_accuracy);
END;
/

Accuracy = .788696903

--Display results
SELECT * FROM pa_demographics_predict_result WHERE rownum < 10;

 CUST_ID PREDICTION PROBABILITY
---------- ---------- -----------
 101501 1 .834069848
 101502 0 .991269965
 101503 0 .99978311
 101504 1 .971643388
 101505 1 .541754127
 101506 0 .803719133
 101507 0 .999999303
 101508 0 .999999987
 101509 0 .999953074

PROFILE Procedure

The PROFILE procedure generates rules that describe the cases (records) from the input data. For example, if a target column CHURN has values 'Yes' and 'No', PROFILE generates a set of rules describing the expected outcomes. Each profile includes a rule, record count, and a score distribution.

The input data must contain some cases where the target value is known (not NULL). These cases are used by the procedure to build a model that calculates the rules.

	
Note:

PROFILE does not support nested types or dates.
Data requirements for Oracle Data Mining are described in Oracle Data Mining Application Developer's Guide.

The PROFILE procedure creates a result table that specifies rules (profiles) and their corresponding target values. The result table is described in the Usage Notes.

Syntax

DBMS_PREDICTIVE_ANALYTICS.PROFILE (
 data_table_name IN VARCHAR2,
 target_column_name IN VARCHAR2,
 result_table_name IN VARCHAR2,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 104-6 PROFILE Procedure Parameters

	Parameter	Description
	
data_table_name

	
Name of the table containing the data to be analyzed.

	
target_column_name

	
Name of the target column.

	
result_table_name

	
Name of the table where the results will be saved.

	
data_schema_name

	
Name of the schema where the input table or view resides and where the result table is created. Default: the current schema.

Usage Notes

The PROFILE procedure creates a result table with the columns described in Table 104-7.

Table 104-7 PROFILE Procedure Result Table

	Column Name	Data Type	Description
	
PROFILE_ID

	
NUMBER

	
A unique identifier for this profile (rule).

	
RECORD_COUNT

	
NUMBER

	
The number of records described by the profile.

	
DESCRIPTION

	
SYS.XMLTYPE

	
The profile rule. See "XML Schema for Profile Rules".

XML Schema for Profile Rules

The DESCRIPTION column of the result table contains XML that conforms to the following XSD:

<xs:element name="SimpleRule">
 <xs:complexType>
 <xs:sequence>
 <xs:group ref="PREDICATE"/>
 <xs:element ref="ScoreDistribution" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:string" use="optional"/>
 <xs:attribute name="score" type="xs:string" use="required"/>
 <xs:attribute name="recordCount" type="NUMBER" use="optional"/>
 </xs:complexType>
</xs:element>

Example

This example generates a rule describing customers who are likely to use an affinity card (target value is 1) and a set of rules describing customers who are not likely to use an affinity card (target value is 0). The rules are based on only two predictors: education and occupation.

SET serveroutput ON
SET trimspool ON
SET pages 10000
SET long 10000
SET pagesize 10000
SET linesize 150
CREATE VIEW cust_edu_occ_view AS
 SELECT cust_id, education, occupation, affinity_card
 FROM sh.supplementary_demographics;
BEGIN
 DBMS_PREDICTIVE_ANALYTICS.PROFILE(
 DATA_TABLE_NAME => 'cust_edu_occ_view',
 TARGET_COLUMN_NAME => 'affinity_card',
 RESULT_TABLE_NAME => 'profile_result');
END;
/

This example generates eight rules in the result table profile_result. Seven of the rules suggest a target value of 0; one rule suggests a target value of 1. The score attribute on a rule identifies the target value.

This SELECT statement returns all the rules in the result table.

SELECT a.profile_id, a.record_count, a.description.getstringval()
 FROM profile_result a;

This SELECT statement returns the rules for a target value of 0.

SELECT *
 FROM profile_result t
 WHERE extractvalue(t.description, '/SimpleRule/@score') = 0;

To obtain more readable output, you can cut and paste the XML for a rule into a text file, save it with the .xml extension, and view the rule in a browser. The eight rules generated by this example are displayed as follows.

<SimpleRule id="1" score="0" recordCount="443">
 <CompoundPredicate booleanOperator="and">
 <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn">
 <Array type="string">"Armed-F" "Exec." "Prof." "Protec."
 </Array>
 </SimpleSetPredicate>
 <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn">
 <Array type="string">"< Bach." "Assoc-V" "HS-grad"
 </Array>
 </SimpleSetPredicate>
 </CompoundPredicate>
 <ScoreDistribution value="0" recordCount="297" />
 <ScoreDistribution value="1" recordCount="146" />
</SimpleRule>

<SimpleRule id="2" score="0" recordCount="18">
 <CompoundPredicate booleanOperator="and">
 <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn">
 <Array type="string">"Armed-F" "Exec." "Prof." "Protec."
 </Array>
 </SimpleSetPredicate>
 <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn">
 <Array type="string">"10th" "11th" "12th" "1st-4th" "5th-6th" "7th-8th" "9th" "Presch."
 </Array>
 </SimpleSetPredicate>
 </CompoundPredicate>
 <ScoreDistribution value="0" recordCount="18" />
</SimpleRule>

<SimpleRule id="3" score="0" recordCount="458">
 <CompoundPredicate booleanOperator="and">
 <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn">
 <Array type="string">"Armed-F" "Exec." "Prof." "Protec."
 </Array>
 </SimpleSetPredicate>
 <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn">
 <Array type="string">"Assoc-A" "Bach."
 </Array>
 </SimpleSetPredicate>
 </CompoundPredicate>
 <ScoreDistribution value="0" recordCount="248" />
 <ScoreDistribution value="1" recordCount="210" />
</SimpleRule>

<SimpleRule id="4" score="1" recordCount="276">
 <CompoundPredicate booleanOperator="and">
 <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn">
 <Array type="string">"Armed-F" "Exec." "Prof." "Protec."
 </Array>
 </SimpleSetPredicate>
 <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn">
 <Array type="string">"Masters" "PhD" "Profsc"
 </Array>
 </SimpleSetPredicate>
 </CompoundPredicate>
 <ScoreDistribution value="1" recordCount="183" />
 <ScoreDistribution value="0" recordCount="93" />
</SimpleRule>

<SimpleRule id="5" score="0" recordCount="307">
 <CompoundPredicate booleanOperator="and">
 <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn">
 <Array type="string">"Assoc-A" "Bach." "Masters" "PhD" "Profsc"
 </Array>
 </SimpleSetPredicate>
 <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn">
 <Array type="string">"Crafts" "Sales" "TechSup" "Transp."
 </Array>
 </SimpleSetPredicate>
 </CompoundPredicate>
 <ScoreDistribution value="0" recordCount="184" />
 <ScoreDistribution value="1" recordCount="123" />
</SimpleRule>

<SimpleRule id="6" score="0" recordCount="243">
 <CompoundPredicate booleanOperator="and">
 <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn">
 <Array type="string">"Assoc-A" "Bach." "Masters" "PhD" "Profsc"
 </Array>
 </SimpleSetPredicate>
 <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn">
 <Array type="string">"?" "Cleric." "Farming" "Handler" "House-s" "Machine" "Other"
 </Array>
 </SimpleSetPredicate>
 </CompoundPredicate>
 <ScoreDistribution value="0" recordCount="197" />
 <ScoreDistribution value="1" recordCount="46" />
</SimpleRule>

<SimpleRule id="7" score="0" recordCount="2158">
 <CompoundPredicate booleanOperator="and">
 <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn">
 <Array type="string">
 "10th" "11th" "12th" "1st-4th" "5th-6th" "7th-8th" "9th" "< Bach." "Assoc-V" "HS-grad"
 "Presch."
 </Array>
 </SimpleSetPredicate>
 <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn">
 <Array type="string">"?" "Cleric." "Crafts" "Farming" "Machine" "Sales" "TechSup" " Transp."
 </Array>
 </SimpleSetPredicate>
 </CompoundPredicate>
 <ScoreDistribution value="0" recordCount="1819"/>
 <ScoreDistribution value="1" recordCount="339"/>
</SimpleRule>

<SimpleRule id="8" score="0" recordCount="597">
 <CompoundPredicate booleanOperator="and">
 <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn">
 <Array type="string">
 "10th" "11th" "12th" "1st-4th" "5th-6th" "7th-8th" "9th" "< Bach." "Assoc-V" "HS-grad"
 "Presch."
 </Array>
 </SimpleSetPredicate>
 <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn">
 <Array type="string">"Handler" "House-s" "Other"
 </Array>
 </SimpleSetPredicate>
 </CompoundPredicate>
<ScoreDistribution value="0" recordCount="572"/>
<ScoreDistribution value="1" recordCount="25"/>
</SimpleRule>

DBMS_PREPROCESSOR

105 DBMS_PREPROCESSOR

The DBMS_PREPROCESSOR package provides an interface to print or retrieve the source text of a PL/SQL unit in its post-processed form.

This package contains the following topics

	
Using DBMS_PREPROCESSOR

	
Overview

	
Operating Notes

	
Data Structures

	
Table Types

	
Summary of DBMS_PREPROCESSOR Subprograms

Using DBMS_PREPROCESSOR

	
Overview

	
Operating Notes

Overview

There are three styles of subprograms.

	
Subprograms that take a schema name, a unit type name, and the unit name.

	
Subprograms that take a VARCHAR2 string which contains the source text of an arbitrary PL/SQL compilation unit.

	
Subprograms that take a VARCHAR2 index-by table which contains the segmented source text of an arbitrary PL/SQL compilation unit.

Subprograms of the first style are used to print or retrieve the post-processed source text of a stored PL/SQL unit. The user must have the privileges necessary to view the original source text of this unit. The user must also specify the schema in which the unit is defined, the type of the unit, and the name of the unit. If the schema is null, then the current user schema is used. If the status of the stored unit is VALID and the user has the required privilege, then the post-processed source text is guaranteed to be the same as that of the unit the last time it was compiled. Subprograms of the second or third style are used to generate post-processed source text in the current user schema. The source text is passed in as a single VARCHAR2 string in the second style, or as a VARCHAR2 index-by table in the third style. The source text can represent an arbitrary PL/SQL compilation unit. A typical usage is to pass the source text of an anonymous block and generate its post-processed source text in the current user schema. The third style can be useful when the source text exceeds the VARCHAR2 length limit.

Operating Notes

	
For subprograms of the first style, the status of the stored PL/SQL unit does not need to be VALID. Likewise, the source text passed in as a VARCHAR2 string or a VARCHAR2 index-by table may contain compile time errors. If errors are found when generating the post-processed source, the error message text will also appear at the end of the post-processed source text. In some cases, the preprocessing can be aborted because of errors. When this happens, the post-processed source text will appear to be incomplete and the associated error message can help to indicate that an error has occurred during preprocessing.

	
For subprograms of the second or third style, the source text can represent any arbitrary PL/SQL compilation unit. However, the source text of a valid PL/SQL compilation unit cannot include commonly used prefixes such as CREATE OR REPLACE. In general, the input source should be syntactically prepared in a way as if it were obtained from the ALL_SOURCE view. The following list gives some examples of valid initial syntax for some PL/SQL compilation units.

 anonymous block (BEGIN | DECLARE) ...
 package PACKAGE <name> ...
 package body PACKAGE BODY <name> ...
 procedure PROCEDURE <name> ...
 function FUNCTION <name> ...
 type TYPE <name> ...
 type body TYPE BODY <name> ...
 trigger (BEGIN | DECLARE) ...

If the source text represents a named PL/SQL unit that is valid, that unit will not be created after its post-processed source text is generated.

	
If the text of a wrapped PL/SQL unit is obtained from the ALL_SOURCE view, the keyword WRAPPED always immediately follows the name of the unit, as in this example:

PROCEDURE "some proc" WRAPPED
a000000
b2
...

If such source text is presented to one of the GET_POST_PROCESSED_SOURCE Functions or to one of the PRINT_POST_PROCESSED_SOURCE Procedures, the exception DBMS_PREPROCESSOR.WRAPPED_INPUT is raised.

Data Structures

The DBMS_PREPROCESSOR package defines a TABLE type.

Table Types

SOURCE_LINES_T Table Type

SOURCE_LINES_T Table Type

This table type stores lines of post-processed source text. It is used to hold PL/SQL source text both before and after it is processed. It is especially useful in cases in which the amount of text exceeds 32K.

Syntax

TYPE source_lines_t IS
 TABLE OF VARCHAR2(32767) INDEX BY BINARY_INTEGER;

Summary of DBMS_PREPROCESSOR Subprograms

Table 105-1 DBMS_PREPROCESSOR Package Subprograms

	Subprogram	Description
	
GET_POST_PROCESSED_SOURCE Functions

	
Returns the post-processed source text

	
PRINT_POST_PROCESSED_SOURCE Procedures

	
Prints post-processed source text

GET_POST_PROCESSED_SOURCE Functions

This overloaded function returns the post-processed source text. The different functionality of each form of syntax is presented along with the definition.

Syntax

Returns post-processed source text of a stored PL/SQL unit:

DBMS_PREPROCESSOR.GET_POST_PROCESSED_SOURCE (
 object_type IN VARCHAR2,
 schema_name IN VARCHAR2,
 object_name IN VARCHAR2)
 RETURN source_lines_t;

Returns post-processed source text of a compilation unit:

DBMS_PREPROCESSOR.GET_POST_PROCESSED_SOURCE (
 source IN VARCHAR2)
 RETURN source_lines_t;

Returns post-processed source text of an INDEX-BY table containing the source text of the compilation unit:

DBMS_PREPROCESSOR.GET_POST_PROCESSED_SOURCE (
 source IN source_lines_t)
 RETURN source_lines_t;

Parameters

Table 105-2 GET_POST_PROCESSED_SOURCE Function Parameters

	Parameter	Description
	
object_type

	
Must be one of PACKAGE, PACKAGE BODY, PROCEDURE, FUNCTION, TYPE, TYPE, BODY or TRIGGER. Case sensitive.

	
schema_name

	
The schema name. Case insensitive unless a quoted identifier is used. If NULL, use current schema.

	
object_name

	
The name of the object.The object_type is always case insensitive. Case insensitive unless a quoted identifier is used.

	
source

	
The source text of the compilation unit

	
source_lines_t

	
INDEX-BY table containing the source text of the compilation unit. The source text is a concatenation of all the non-NULL INDEX-BY table elements in ascending index order.

Return Values

The function returns an INDEX-BY table containing the lines of the post-processed source text starting from index 1.

Usage Notes

	
Newline characters are not removed.

	
Each line in the post-processed source text is mapped to a row in the INDEX-BY table.

	
In the post-processed source, unselected text will have blank lines.

Exceptions

Table 105-3 GET_POST_PROCESSED_SOURCE Function Exceptions

	Exception	Description
	
ORA-24234

	
Insufficient privileges or object does not exist

	
ORA-24235

	
Bad value for object type. Should be one of PACKAGE, PACKAGE BODY, PROCEDURE, FUNCTION, TYPE, TYPE, BODY or TRIGGER.

	
ORA-24236

	
The source text is empty

	
ORA-00931

	
Missing identifier. The object_name should not be NULL.

	
ORA-06502

	
Numeric or value error:

	
Character string buffer too small

	
A line is too long (> 32767 bytes)

PRINT_POST_PROCESSED_SOURCE Procedures

This overloaded procedure calls DBMS_OUTPUT.PUT_LINE to let you view post-processed source text. The different functionality of each form of syntax is presented along with the definition.

Syntax

Prints post-processed source text of a stored PL/SQL unit:

DBMS_PREPROCESSOR.PRINT_POST_PROCESSED_SOURCE (
 object_type IN VARCHAR2,
 schema_name IN VARCHAR2,
 object_name IN VARCHAR2);

Prints post-processed source text of a compilation unit:

DBMS_PREPROCESSOR.PRINT_POST_PROCESSED_SOURCE (
 source IN VARCHAR2);

Prints post-processed source text of an INDEX-BY table containing the source text of the compilation unit:

DBMS_PREPROCESSOR.PRINT_POST_PROCESSED_SOURCE (
 source IN source_lines_t);

Parameters

Table 105-4 PRINT_POST_PROCESSED_SOURCE Procedure Parameters

	Parameter	Description
	
object_type

	
Must be one of PACKAGE, PACKAGE BODY, PROCEDURE, FUNCTION, TYPE, TYPE, BODY or TRIGGER. Case sensitive.

	
schema_name

	
The schema name. Case insensitive unless a quoted identifier is used. If NULL, use current schema.

	
object_name

	
The name of the object.The object_type is always case insensitive. Case insensitive unless a quoted identifier is used.

	
source

	
The source text of the compilation unit

	
source_lines_t

	
INDEX-BY table containing the source text of the compilation unit. The source text is a concatenation of all the non-NULL INDEX-BY table elements in ascending index order.

Exceptions

Table 105-5 PRINT_POST_PROCESSED_SOURCE Procedure Exceptions

	Exception	Description
	
ORA-24234

	
Insufficient privileges or object does not exist

	
ORA-24235

	
Bad value for object type. Should be one of PACKAGE, PACKAGE BODY, PROCEDURE, FUNCTION, TYPE, TYPE, BODY or TRIGGER.

	
ORA-24236

	
The source text is empty

	
ORA-00931

	
Missing identifier. The object_name should not be NULL.

	
ORA-06502

	
Numeric or value error:

	
Character string buffer too small

	
A line is too long (> 32767 bytes)

Usage Notes

The index-by table may contain holes. NULL elements are ignored when doing the concatenation.

DBMS_PROFILER

106 DBMS_PROFILER

The DBMS_PROFILER package provides an interface to profile existing PL/SQL applications and identify performance bottlenecks. You can then collect and persistently store the PL/SQL profiler data.

This chapter contains the following topics:

	
Using DBMS_PROFILER

	
Overview

	
Security Model

	
Operational Notes

	
Exceptions

	
Summary of DBMS_PROFILER Subprograms

Using DBMS_PROFILER

	
Overview

	
Security Model

	
Operational Notes

	
Exceptions

Overview

This package enables the collection of profiler (performance) data for performance improvement or for determining code coverage for PL/SQL applications. Application developers can use code coverage data to focus their incremental testing efforts.

With this interface, you can generate profiling information for all named library units that are executed in a session. The profiler gathers information at the PL/SQL virtual machine level. This information includes the total number of times each line has been executed, the total amount of time that has been spent executing that line, and the minimum and maximum times that have been spent on a particular execution of that line.

	
Note:

It is possible to infer the code coverage figures for PL/SQL units for which data has been collected.

The profiling information is stored in database tables. This enables querying on the data: you can build customizable reports (summary reports, hottest lines, code coverage data, and so on. And you can analyze the data.

The PROFTAB.SQL script creates tables with the columns, datatypes, and definitions as shown in Table 106-1, Table 106-2, and Table 106-3.

Table 106-1 Columns in Table PLSQL_PROFILER_RUNS

	Column	Datatype	Definition
	
runid

	
NUMBER PRIMARY KEY

	
Unique run identifier from plsql_profiler_runnumber

	
related_run

	
NUMBER

	
Runid of related run (for client/server correlation)

	
run_owner

	
VARCHAR2(32),

	
User who started run

	
run_date

	
DATE

	
Start time of run

	
run_comment

	
VARCHAR2(2047)

	
User provided comment for this run

	
run_total_time

	
NUMBER

	
Elapsed time for this run in nanoseconds

	
run_system_info

	
VARCHAR2(2047)

	
Currently unused

	
run_comment1

	
VARCHAR2(2047)

	
Additional comment

	
spare1

	
VARCHAR2(256)

	
Unused

Table 106-2 Columns in Table PLSQL_PROFILER_UNITS

	Column	Datatype	Definition
	
runid

	
NUMBER

	
Primary key, references plsql_profiler_runs,

	
unit_number

	
NUMBER

	
Primary key, internally generated library unit #

	
unit_type

	
VARCHAR2(32)

	
Library unit type

	
unit_owner

	
VARCHAR2(32)

	
Library unit owner name

	
unit_name

	
VARCHAR2(32)

	
Library unit name timestamp on library unit

	
unit_timestamp

	
DATE

	
In the future will be used to detect changes to unit between runs

	
total_time

	
NUMBER

	
Total time spent in this unit in nanoseconds. The profiler does not set this field, but it is provided for the convenience of analysis tools.

	
spare1

	
NUMBER

	
Unused

	
spare2

	
NUMBER

	
Unused

Table 106-3 Columns in Table PLSQL_PROFILER_DATA

	Column	Datatype	Definition
	
runid

	
NUMBER

	
Primary key, unique (generated) run identifier

	
unit_number

	
NUMBER

	
Primary key, internally generated library unit number

	
line#

	
NUMBER

	
Primary key, not null, line number in unit

	
total_occur

	
NUMBER

	
Number of times line was executed

	
total_time

	
NUMBER

	
Total time spent executing line in nanoseconds

	
min_time

	
NUMBER

	
Minimum execution time for this line in nanoseconds

	
max_time

	
NUMBER

	
Maximum execution time for this line in nanoseconds

	
spare1

	
NUMBER

	
Unused

	
spare2

	
NUMBER

	
Unused

	
spare3

	
NUMBER

	
Unused

	
spare4

	
NUMBER

	
Unused

With Oracle database version 8.x, a sample textual report writer(profrep.sql) is provided with the PL/SQL demo scripts.

Security Model

The profiler only gathers data for units for which a user has CREATE privilege; you cannot use the package to profile units for which EXECUTE ONLY access has been granted. In general, if a user can debug a unit, the same user can profile it. However, a unit can be profiled whether or not it has been compiled DEBUG. Oracle advises that modules that are being profiled should be compiled DEBUG, since this provides additional information about the unit in the database.

	
Note:

DBMS_PROFILER treats any program unit that is compiled in NATIVE mode as if you do not have CREATE privilege, that is, you will not get any output.

Operational Notes

	
Typical Run

	
Two Methods of Exception Generation

Typical Run

Improving application performance is an iterative process. Each iteration involves the following steps:

	
Running the application with one or more benchmark tests with profiler data collection enabled.

	
Analyzing the profiler data and identifying performance problems.

	
Fixing the problems.

The PL/SQL profiler supports this process using the concept of a "run". A run involves running the application through benchmark tests with profiler data collection enabled. You can control the beginning and the ending of a run by calling the START_PROFILER and STOP_PROFILER functions.

A typical run involves:

	
Starting profiler data collection in the run.

	
Executing PL/SQL code for which profiler and code coverage data is required.

	
Stopping profiler data collection, which writes the collected data for the run into database tables

	
Note:

The collected profiler data is not automatically stored when the user disconnects. You must issue an explicit call to the FLUSH_DATA or the STOP_PROFILER function to store the data at the end of the session. Stopping data collection stores the collected data.

As the application executes, profiler data is collected in memory data structures that last for the duration of the run. You can call the FLUSH_DATA function at intermediate points during the run to get incremental data and to free memory for allocated profiler data structures.

Flushing the collected data involves storing collected data in database tables. The tables should already exist in the profiler user's schema. The PROFTAB.SQL script creates the tables and other data structures required for persistently storing the profiler data.

Note that running PROFTAB.SQL drops the current tables. The PROFTAB.SQL script is in the RDBMS/ADMIN directory. Some PL/SQL operations, such as the first execution of a PL/SQL unit, may involve I/O to catalog tables to load the byte code for the PL/SQL unit being executed. Also, it may take some time executing package initialization code the first time a package procedure or function is called.

To avoid timing this overhead, "warm up" the database before collecting profile data. To do this, run the application once without gathering profiler data.

You can allow profiling across all users of a system, for example, to profile all users of a package, independent of who is using it. In such cases, the SYSADMIN should use a modified PROFLOAD.SQL script which:

	
Creates the profiler tables and sequence

	
Grants SELECT/INSERT/UPDATE on those tables and sequence to all users

	
Defines public synonyms for the tables and sequence

	
Note:

Do not alter the actual fields of the tables.

	
See Also:

"FLUSH_DATA Function and Procedure".

Two Methods of Exception Generation

Each routine in this package has two versions that allow you to determine how errors are reported.

	
A function that returns success/failure as a status value and will never raise an exception

	
A procedure that returns normally if it succeeds and raises an exception if it fails

In each case, the parameters of the function and procedure are identical. Only the method by which errors are reported differs. If there is an error, there is a correspondence between the error codes that the functions return, and the exceptions that the procedures raise.

To avoid redundancy, the following section only provides details about the functional form.

Exceptions

Table 106-4 DBMS_PROFILER Exceptions

	Exception	Description
	
version_mismatch

	
Corresponds to error_version.

	
profiler_error

	
Corresponds to either "error_param" or "error_io".

A 0 return value from any function denotes successful completion; a nonzero return value denotes an error condition. The possible errors are as follows:

	
'A subprogram was called with an incorrect parameter.'

 error_param constant binary_integer := 1;

	
'Data flush operation failed. Check whether the profiler tables have been created, are accessible, and that there is adequate space.'

 error_io constant binary_integer := 2;

	
There is a mismatch between package and database implementation. Oracle returns this error if an incorrect version of the DBMS_PROFILER package is installed, and if the version of the profiler package cannot work with this database version. The only recovery is to install the correct version of the package.

 error_version constant binary_integer := -1;

Summary of DBMS_PROFILER Subprograms

Table 106-5 DBMS_PROFILER Package Subprograms

	Subprogram	Description
	
FLUSH_DATA Function and Procedure

	
Flushes profiler data collected in the user's session

	
GET_VERSION Procedure

	
Gets the version of this API

	
INTERNAL_VERSION_CHECK Function

	
Verifies that this version of the DBMS_PROFILER package can work with the implementation in the database

	
PAUSE_PROFILER Function and Procedure

	
Pauses profiler data collection

	
RESUME_PROFILER Function and Procedure

	
Resumes profiler data collection

	
START_PROFILER Functions and Procedures

	
Starts profiler data collection in the user's session

	
STOP_PROFILER Function and Procedure

	
Stops profiler data collection in the user's session

FLUSH_DATA Function and Procedure

This function flushes profiler data collected in the user's session. The data is flushed to database tables, which are expected to preexist.

	
Note:

Use the PROFTAB.SQL script to create the tables and other data structures required for persistently storing the profiler data.

Syntax

DBMS_PROFILER.FLUSH_DATA
 RETURN BINARY_INTEGER;

DBMS_PROFILER.FLUSH_DATA;

GET_VERSION Procedure

This procedure gets the version of this API.

Syntax

DBMS_PROFILER.GET_VERSION (
 major OUT BINARY_INTEGER,
 minor OUT BINARY_INTEGER);

Parameters

Table 106-6 GET_VERSION Procedure Parameters

	Parameter	Description
	
major

	
Major version of DBMS_PROFILER.

	
minor

	
Minor version of DBMS_PROFILER.

INTERNAL_VERSION_CHECK Function

This function verifies that this version of the DBMS_PROFILER package can work with the implementation in the database.

Syntax

DBMS_PROFILER.INTERNAL_VERSION_CHECK
 RETURN BINARY_INTEGER;

PAUSE_PROFILER Function and Procedure

This function pauses profiler data collection.

Syntax

DBMS_PROFILER.PAUSE_PROFILER
 RETURN BINARY_INTEGER;

DBMS_PROFILER.PAUSE_PROFILER;

RESUME_PROFILER Function and Procedure

This function resumes profiler data collection.

Syntax

DBMS_PROFILER.RESUME_PROFILER
 RETURN BINARY_INTEGER;

DBMS_PROFILER.RESUME_PROFILER;

START_PROFILER Functions and Procedures

This function starts profiler data collection in the user's session.

There are two overloaded forms of the START_PROFILER function; one returns the run number of the started run, as well as the result of the call. The other does not return the run number. The first form is intended for use with GUI-based tools controlling the profiler.

Syntax

DBMS_PROFILER.START_PROFILER(
 run_comment IN VARCHAR2 := sysdate,
 run_comment1 IN VARCHAR2 :='',
 run_number OUT BINARY_INTEGER)
 RETURN BINARY_INTEGER;

DBMS_PROFILER.START_PROFILER(
 run_comment IN VARCHAR2 := sysdate,
 run_comment1 IN VARCHAR2 :='')
RETURN BINARY_INTEGER;

DBMS_PROFILER.START_PROFILER(
 run_comment IN VARCHAR2 := sysdate,
 run_comment1 IN VARCHAR2 :='',
 run_number OUT BINARY_INTEGER);

DBMS_PROFILER.START_PROFILER(
 run_comment IN VARCHAR2 := sysdate,
 run_comment1 IN VARCHAR2 :='');

Parameters

Table 106-7 START_PROFILER Function Parameters

	Parameter	Description
	
run_comment

	
Each profiler run can be associated with a comment. For example, the comment could provide the name and version of the benchmark test that was used to collect data.

	
run_number

	
Stores the number of the run so you can store and later recall the run's data.

	
run_comment1

	
Allows you to make interesting comments about the run.

STOP_PROFILER Function and Procedure

This function stops profiler data collection in the user's session.

This function has the side effect of flushing data collected so far in the session, and it signals the end of a run.

Syntax

DBMS_PROFILER.STOP_PROFILER
 RETURN BINARY_INTEGER;

DBMS_PROFILER.STOP_PROFILER;

DBMS_PROPAGATION_ADM

107 DBMS_PROPAGATION_ADM

The DBMS_PROPAGATION_ADM package, one of a set of Oracle Streams packages, provides administrative interfaces for configuring a propagation from a source queue to a destination queue.

This chapter contains the following topics:

	
Using DBMS_PROPAGATION_ADM

	
Overview

	
Security Model

	
Summary of DBMS_PROPAGATION_ADM Subprograms

Using DBMS_PROPAGATION_ADM

This section contains topics which relate to using the DBMS_CAPTURE_ADM package.

	
Overview

	
Security Model

Overview

This package provides interfaces to start, stop, and configure a propagation.

	
See Also:

Oracle Streams Concepts and Administration and Oracle Streams Replication Administrator's Guide for more information about this package and propagations

Security Model

Security on this package can be controlled in either of the following ways:

	
Granting EXECUTE on this package to selected users or roles.

	
Granting EXECUTE_CATALOG_ROLE to selected users or roles.

If subprograms in the package are run from within a stored procedure, then the user who runs the subprograms must be granted EXECUTE privilege on the package directly. It cannot be granted through a role.

When the DBMS_PROPAGATION_ADM package is used to manage an Oracle Streams configuration, it requires that the user is granted the privileges of an Oracle Streams administrator.

	
See Also:

Oracle Streams Concepts and Administration for information about configuring an Oracle Streams administrator

Summary of DBMS_PROPAGATION_ADM Subprograms

Table 107-1 DBMS_PROPAGATION_ADM Package Subprograms

	Subprogram	Description
	
ALTER_PROPAGATION Procedure

	
Adds, alters, or removes a rule set for a propagation

	
CREATE_PROPAGATION Procedure

	
Creates a propagation and specifies the source queue, destination queue, and rule set for the propagation

	
DROP_PROPAGATION Procedure

	
Drops a propagation

	
START_PROPAGATION Procedure

	
Starts a propagation

	
STOP_PROPAGATION Procedure

	
Stops a propagation

	
Note:

All subprograms commit unless specified otherwise.

ALTER_PROPAGATION Procedure

This procedure adds, alters, or removes a rule set for a propagation.

	
See Also:

Oracle Streams Concepts and Administration and Chapter 127, "DBMS_RULE_ADM" for more information about rules and rule sets

Syntax

 DBMS_PROPAGATION_ADM.ALTER_PROPAGATION(
 propagation_name IN VARCHAR2,
 rule_set_name IN VARCHAR2 DEFAULT NULL,
 remove_rule_set IN BOOLEAN DEFAULT FALSE,
 negative_rule_set_name IN VARCHAR2 DEFAULT NULL,
 remove_negative_rule_set IN BOOLEAN DEFAULT FALSE);

Parameters

Table 107-2 ALTER_PROPAGATION Procedure Parameters

	Parameter	Description
	
propagation_name

	
The name of the propagation you are altering. You must specify an existing propagation name. Do not specify an owner.

	
rule_set_name

	
The name of the positive rule set for the propagation. The positive rule set contains the rules that instruct the propagation to propagate messages.

If you want to use a positive rule set for the propagation, then you must specify an existing rule set in the form [schema_name.]rule_set_name. For example, to specify a positive rule set in the hr schema named prop_rules, enter hr.prop_rules. If the schema is not specified, then the current user is the default.

An error is returned if the specified rule set does not exist. You can create a rule set and add rules to it using the DBMS_STREAMS_ADM package or the DBMS_RULE_ADM package.

If you specify NULL and the remove_rule_set parameter is set to FALSE, then the procedure retains any existing positive rule set. If you specify NULL and the remove_rule_set parameter is set to TRUE, then the procedure removes any existing positive rule set.

	
remove_rule_set

	
If TRUE, then the procedure removes the positive rule set for the specified propagation. If you remove a positive rule set for a propagation, and the propagation does not have a negative rule set, then the propagation propagates all messages.

If you remove a positive rule set for a propagation, and a negative rule set exists for the propagation, then the propagation propagates all messages in its queue that are not discarded by the negative rule set.

If FALSE, then the procedure retains the positive rule set for the specified propagation.

If the rule_set_name parameter is non-NULL, then this parameter should be set to FALSE.

	
negative_rule_set_name

	
The name of the negative rule set for the propagation. The negative rule set contains the rules that instruct the propagation to discard messages.

If you want to use a negative rule set for the propagation, then you must specify an existing rule set in the form [schema_name.]rule_set_name. For example, to specify a negative rule set in the hr schema named neg_rules, enter hr.neg_rules. If the schema is not specified, then the current user is the default.

An error is returned if the specified rule set does not exist. You can create a rule set and add rules to it using the DBMS_STREAMS_ADM package or the DBMS_RULE_ADM package.

If you specify NULL and the remove_negative_rule_set parameter is set to FALSE, then the procedure retains any existing negative rule set. If you specify NULL and the remove_negative_rule_set parameter is set to TRUE, then the procedure removes any existing negative rule set.

If you specify both a positive and a negative rule set for a propagation, then the negative rule set is always evaluated first.

	
remove_negative_rule_set

	
If TRUE, then the procedure removes the negative rule set for the specified propagation. If you remove a negative rule set for a propagation, and the propagation does not have a positive rule set, then the propagation propagates all messages.

If you remove a negative rule set for a propagation, and a positive rule set exists for the propagation, then the propagation propagates all messages in its queue that are not discarded by the positive rule set.

If FALSE, then the procedure retains the negative rule set for the specified propagation.

If the negative_rule_set_name parameter is non-NULL, then this parameter should be set to FALSE.

CREATE_PROPAGATION Procedure

This procedure creates a propagation and specifies the source queue, destination queue, and any rule set for the propagation. A propagation propagates messages in a local source queue to a destination queue. The destination queue might or might not be in the same database as the source queue.

Syntax

 DBMS_PROPAGATION_ADM.CREATE_PROPAGATION(
 propagation_name IN VARCHAR2,
 source_queue IN VARCHAR2,
 destination_queue IN VARCHAR2,
 destination_dblink IN VARCHAR2 DEFAULT NULL,
 rule_set_name IN VARCHAR2 DEFAULT NULL,
 negative_rule_set_name IN VARCHAR2 DEFAULT NULL,
 queue_to_queue IN BOOLEAN DEFAULT NULL,
 original_propagation_name IN VARCHAR2 DEFAULT NULL,
 auto_merge_threshold IN NUMBER DEFAULT NULL);

Parameters

Table 107-3 CREATE_PROPAGATION Procedure Parameters

	Parameter	Description
	
propagation_name

	
The name of the propagation you are creating. A NULL setting is not allowed. Do not specify an owner.

Note: The propagation_name setting cannot be altered after the propagation is created.

	
source_queue

	
The name of the source queue, specified as [schema_name.]queue_name. The current database must contain the source queue.

For example, to specify a source queue named streams_queue in the strmadmin schema, enter strmadmin.streams_queue for this parameter. If the schema is not specified, then the current user is the default.

	
destination_queue

	
The name of the destination queue, specified as [schema_name.]queue_name.

For example, to specify a destination queue named streams_queue in the strmadmin schema, enter strmadmin.streams_queue for this parameter. If the schema is not specified, then the current user is the default.

	
destination_dblink

	
The name of the database link that will be used by the propagation. The database link is from the database that contains the source queue to the database that contains the destination queue.

If NULL, then the source queue and destination queue must be in the same database.

Note: Connection qualifiers are not allowed.

	
rule_set_name

	
The name of the positive rule set for the propagation. The positive rule set contains the rules that instruct the propagation to propagate messages.

If you want to use a positive rule set for the propagation, then you must specify an existing rule set in the form [schema_name.]rule_set_name. For example, to specify a positive rule set in the hr schema named prop_rules, enter hr.prop_rules. If the schema is not specified, then the current user is the default.

An error is returned if the specified rule set does not exist. You can create a rule set and add rules to it using the DBMS_STREAMS_ADM package or the DBMS_RULE_ADM package.

If you specify NULL, and no negative rule set exists for the propagation, then the propagation propagates all messages in its queue.

If you specify NULL, and a negative rule set exists for the propagation, then the propagation propagates all messages in its queue that are not discarded by the negative rule set.

	
negative_rule_set_name

	
The name of the negative rule set for the propagation. The negative rule set contains the rules that instruct the propagation to discard messages.

If you want to use a negative rule set for the propagation, then you must specify an existing rule set in the form [schema_name.]rule_set_name. For example, to specify a negative rule set in the hr schema named neg_rules, enter hr.neg_rules. If the schema is not specified, then the current user is the default.

An error is returned if the specified rule set does not exist. You can create a rule set and add rules to it using the DBMS_STREAMS_ADM package or the DBMS_RULE_ADM package.

If you specify NULL, and no positive rule set exists for the propagation, then the propagation propagates all messages in its queue.

If you specify NULL, and a positive rule set exists for the propagation, then the propagation propagates all messages in its queue that are not discarded by the positive rule set.

If you specify both a positive and a negative rule set for a propagation, then the negative rule set is always evaluated first.

	
queue_to_queue

	
If TRUE or NULL, then the propagation is a queue to queue propagation. A queue-to-queue propagation always has its own propagation job and uses a service for automatic failover when the destination queue is a buffered queue in an Oracle Real Application Clusters (Oracle RAC) database.

If FALSE, then the propagation is a queue-to-dblink propagation. A queue-to-dblink propagation can share a propagation job with other propagations that use the same database link and does not support automatic failover in an Oracle RAC environment.

See Also: Oracle Streams Concepts and Administration for more information about queue-to-queue propagations

	
original_propagation_name

	
Specify the original propagation name if the propagation being created is part of a split and merge operation initiated by the SPLIT_STREAMS procedure in the DBMS_STREAMS_ADM package. The split operation clones the original propagation under a new name. The name of the original propagation is important when the cloned propagation is copied back to the original stream using the MERGE_STREAMS procedure in the DBMS_STREAMS_ADM package.

Specify NULL if the propagation being created is not part of a split and merge operation.

See Also: SPLIT_STREAMS Procedure and MERGE_STREAMS Procedure

	
auto_merge_theshold

	
Specify a positive number if both of the following conditions are met:

	
The propagation being created is part of a split and merge operation initiated by the SPLIT_STREAMS procedure in the DBMS_STREAMS_ADM package.

	
The stream will be merged back to the original stream automatically.

Specify NULL if either of the following conditions are met:

	
The propagation being created is not part of a split and merge operation.

	
The propagation being created is part of a split and merge operation, but the stream being split off will not be merged back to the original stream automatically.

See Also: SPLIT_STREAMS Procedure and MERGE_STREAMS Procedure

Usage Notes

This procedure starts propagation and might create a propagation job. If this procedure creates a propagation job, then it establishes a default schedule for the propagation job. Each propagation job is an Oracle Scheduler job. You can adjust the schedule of a propagation job using Oracle Scheduler.

The user who owns the source queue is the user who propagates messages. This user must have the necessary privileges to propagate messages.

	
See Also:

	
Chapter 127, "DBMS_RULE_ADM"

	
Oracle Streams Concepts and Administration for more information about propagations, the privileges required to propagate messages, propagation jobs, and propagation schedules

DROP_PROPAGATION Procedure

This procedure drops a propagation and deletes all messages for the destination queue in the source queue. This procedure also removes the schedule for propagation from the source queue to the destination queue.

Syntax

DBMS_PROPAGATION_ADM.DROP_PROPAGATION(
 propagation_name IN VARCHAR2,
 drop_unused_rule_sets IN BOOLEAN DEFAULT FALSE);

Parameters

Table 107-4 DROP_PROPAGATION Procedure Parameters

	Parameter	Description
	
propagation_name

	
The name of the propagation you are dropping. You must specify an existing propagation name. Do not specify an owner.

	
drop_unused_rule_sets

	
If TRUE, then the procedure drops any rule sets, positive and negative, used by the specified propagation if these rule sets are not used by any other Oracle Streams client, which includes capture processes, propagations, apply processes, and messaging clients. If this procedure drops a rule set, then this procedure also drops any rules in the rule set that are not in another rule set.

If FALSE, then the procedure does not drop the rule sets used by the specified propagation, and the rule sets retain their rules.

Usage Notes

When you use this procedure to drop a propagation, information about rules created for the propagation using the DBMS_STREAMS_ADM package is removed from the data dictionary views for Oracle Streams rules. Information about such a rule is removed even if the rule is not in either rule set for the propagation.

	
See Also:

Oracle Streams Concepts and Administration for more information about Oracle Streams data dictionary views

The following are the data dictionary views for Oracle Streams rules:

	
ALL_STREAMS_GLOBAL_RULES

	
DBA_STREAMS_GLOBAL_RULES

	
ALL_STREAMS_MESSAGE_RULES

	
DBA_STREAMS_MESSAGE_RULES

	
ALL_STREAMS_SCHEMA_RULES

	
DBA_STREAMS_SCHEMA_RULES

	
ALL_STREAMS_TABLE_RULES

	
DBA_STREAMS_TABLE_RULES

	
Note:

When you drop a propagation, the propagation job used by the propagation is dropped automatically, if no other propagations are using the propagation job.

START_PROPAGATION Procedure

This procedure starts a propagation.

Syntax

DBMS_PROPAGATION_ADM.START_PROPAGATION(
 propagation_name IN VARCHAR2);

Parameter

Table 107-5 START_PROPAGATION Procedure Parameter

	Parameter	Description
	
propagation_name

	
The name of the propagation you are starting. You must specify an existing propagation name. Do not specify an owner.

Usage Notes

The propagation status is persistently recorded. Hence, if the status is ENABLED, then the propagation is started upon database instance startup.

STOP_PROPAGATION Procedure

This procedure stops a propagation.

Syntax

DBMS_PROPAGATION_ADM.STOP_PROPAGATION(
 propagation_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE);

Parameter

Table 107-6 STOP_PROPAGATION Procedure Parameter

	Parameter	Description
	
propagation_name

	
The name of the propagation you are stopping. You must specify an existing propagation name. Do not specify an owner.

	
force

	
If TRUE, then the procedure stops the propagation and clears the statistics for the propagation.

If FALSE, then the procedure stops the propagation without clearing the statistics for the propagation.

Usage Notes

The propagation status is persistently recorded. Hence, if the status is DISABLED or ABORTED, then the propagation is not started upon database instance startup.

DBMS_RANDOM

108 DBMS_RANDOM

The DBMS_RANDOM package provides a built-in random number generator. DBMS_RANDOM is not intended for cryptography.

This chapter contains the following topics:

	
Using DBMS_RANDOM

	
Deprecated Subprograms

	
Security Model

	
Operational Notes

	
Summary of DBMS_RANDOM Subprograms

Using DBMS_RANDOM

	
Deprecated Subprograms

	
Security Model

	
Operational Notes

Deprecated Subprograms

	
Note:

Oracle recommends that you do not use deprecated procedures in new applications. Support for deprecated features is for backward compatibility only.

The following subprograms are deprecated with Oracle Database 11g:

	
INITIALIZE Procedure

	
RANDOM Procedure

	
TERMINATE Procedure

Security Model

This package should be installed as SYS. By default, the package is initialized with the current user name, current time down to the second, and the current session. Oracle recommends that users who need to execute this package should be given EXECUTE privilege explicitly and should not rely on PUBLIC EXECUTE privilege.

Operational Notes

	
DBMS_RANDOM.RANDOM produces integers in [-2^^31, 2^^31).

	
DBMS_RANDOM.VALUE produces numbers in [0,1) with 38 digits of precision.

DBMS_RANDOM can be explicitly initialized, but does not need to be initialized before calling the random number generator. It will automatically initialize with the date, user ID, and process ID if no explicit initialization is performed.

If this package is seeded twice with the same seed, then accessed in the same way, it will produce the same results in both cases.

In some cases, such as when testing, you may want the sequence of random numbers to be the same on every run. In that case, you seed the generator with a constant value by calling one of the overloads of DBMS_RANDOM.SEED. To produce different output for every run, simply to omit the call to "Seed" and the system will choose a suitable seed for you.

Summary of DBMS_RANDOM Subprograms

Table 108-1 DBMS_RANDOM Package Subprograms

	Subprogram	Description
	
INITIALIZE Procedure

	
Initializes the package with a seed value

	
NORMAL Function

	
Returns random numbers in a normal distribution

	
RANDOM Procedure

	
Generates a random number

	
SEED Procedures

	
Resets the seed

	
STRING Function

	
Gets a random string

	
TERMINATE Procedure

	
Terminates package

	
VALUE Functions

	
Gets a random number, greater than or equal to 0 and less than 1, with 38 digits to the right of the decimal (38-digit precision), while the overloaded function gets a random Oracle number x, where x is greater than or equal to low and less than high

INITIALIZE Procedure

This procedure initializes the generator.

	
Note:

This procedure is deprecated with Release 11gR1 and, although currently supported, it should not be used.

Syntax

DBMS_RANDOM.INITIALIZE (
 val IN BINARY_INTEGER);

Pragmas

PRAGMA restrict_references (initialize, WNDS);

Parameters

Table 108-2 INITIALIZE Procedure Parameters

	Parameter	Description
	
val

	
Seed number used to generate a random number

Usage Notes

This procedure is obsolete as it simply calls the SEED Procedures.

NORMAL Function

This function returns random numbers in a standard normal distribution.

Syntax

DBMS_RANDOM.NORMAL
 RETURN NUMBER;

Pragmas

PRAGMA restrict_references (normal, WNDS);

Return Values

Table 108-3 NORMAL Function Parameters

	Parameter	Description
	
number

	
Returns a random number

RANDOM Procedure

This procedure generates a random number.

	
Note:

This procedure is deprecated with Release 11gR1 and, although currently supported, it should not be used.

Syntax

DBMS_RANDOM.RANDOM
 RETURN binary_integer;

Pragmas

PRAGMA restrict_references (random, WNDS);

Return Values

Table 108-4 RANDOM Procedure Parameters

	Parameter	Description
	
binary_integer

	
Returns a random integer greater or equal to -power(2,31) and less than power(2,31)

SEED Procedures

This procedure resets the seed.

Syntax

DBMS_RANDOM.SEED (
 val IN BINARY_INTEGER);

DBMS_RANDOM.SEED (
 val IN VARCHAR2);

Pragmas

PRAGMA restrict_references (seed, WNDS);

Parameters

Table 108-5 SEED Procedure Parameters

	Parameter	Description
	
val

	
Seed number or string used to generate a random number

Usage Notes

The seed can be a string up to length 2000.

STRING Function

This function gets a random string.

Syntax

DBMS_RANDOM.STRING
 opt IN CHAR,
 len IN NUMBER)
 RETURN VARCHAR2;

Pragmas

PRAGMA restrict_references (string, WNDS);

Parameters

Table 108-6 STRING Function Parameters

	Parameter	Description
	
opt

	
Specifies what the returning string looks like:

	
'u', 'U' - returning string in uppercase alpha characters

	
'l', 'L' - returning string in lowercase alpha characters

	
'a', 'A' - returning string in mixed case alpha characters

	
'x', 'X' - returning string in uppercase alpha-numeric characters

	
'p', 'P' - returning string in any printable characters.

Otherwise the returning string is in uppercase alpha characters.

	
len

	
Length of the returning string

Return Values

Table 108-7 STRING Function Return Values

	Parameter	Description
	
VARCHAR2

	
Returns a VARCHAR2

TERMINATE Procedure

When you are finished with the package, call the TERMINATE procedure.

	
Note:

This procedure is deprecated with Release 11gR1 and, although currently supported, it should not be used.

Syntax

DBMS_RANDOM.TERMINATE;

VALUE Functions

The basic function gets a random number, greater than or equal to 0 and less than 1, with 38 digits to the right of the decimal (38-digit precision). Alternatively, you can get a random Oracle number x, where x is greater than or equal to low and less than high.

Syntax

DBMS_RANDOM.VALUE
 RETURN NUMBER;

DBMS_RANDOM.VALUE(
 low IN NUMBER,
 high IN NUMBER)
RETURN NUMBER;

Parameters

Table 108-8 VALUE Function Parameters

	Parameter	Description
	
low

	
Lowest number in a range from which to generate a random number. The number generated may be equal to low

	
high

	
Highest number below which to generate a random number. The number generated will be less than high

Return Values

Table 108-9 VALUE Function Return Values

	Parameter	Description
	
NUMBER

	
Returns an Oracle Number

DBMS_RECTIFIER_DIFF

109 DBMS_RECTIFIER_DIFF

The DBMS_RECTIFIER_DIFF package provides an interface used to detect and resolve data inconsistencies between two replicated sites.

	
Documentation of DBMS_RECTIFIER_DIFF

Documentation of DBMS_RECTIFIER_DIFF

For a complete description of this package within the context of Replication, see DBMS_RECTIFIER_DIFF in the Oracle Database Advanced Replication Management API Reference.

DBMS_REDEFINITION

110 DBMS_REDEFINITION

The DBMS_REDEFINITION package provides an interface to perform an online redefinition of tables.

	
See Also:

Oracle Database Administrator's Guide for more information about online redefinition of tables

This chapter contains the following topics:

	
Using DBMS_REDEFINITION

	
Overview

	
Constants

	
Operational Notes

	
Summary of DBMS_REDEFINITION Subprograms

Using DBMS_REDEFINITION

	
Overview

	
Constants

	
Operational Notes

Overview

To achieve online redefinition, incrementally maintainable local materialized views are used. These logs keep track of the changes to the master tables and are used by the materialized views during refresh synchronization.

Constants

The DBMS_REDEFINITION package uses the constantsshown in Table 110-1, "DBMS_REDEFINITION Constants":

Table 110-1 DBMS_REDEFINITION Constants

	Constant	Type	Value	Description
	
CONS_CONSTRAINT

	
PLS_INTEGER

	
3

	
Used to specify that dependent object type is a constraint

	
CONS_INDEX

	
PLS_INTEGER

	
2

	
Used to specify that dependent object type is a index

	
CONS_MVLOG

	
PLS_INTEGER

	
10

	
Used to (un)register a materialized view log, as a dependent object of the table, through the REGISTER_DEPENDENT_OBJECT Procedureand the UNREGISTER_DEPENDENT_OBJECT Procedure.

	
CONS_ORIG_PARAMS

	
PLS_INTEGER

	
1

	
Used to specify that indexes should be cloned with their original storage parameters

	
CONS_TRIGGER

	
PLS_INTEGER

	
4

	
Used to specify that dependent object type is a trigger

	
CONS_USE_PK

	
BINARY_INTEGER

	
1

	
Used to indicate that the redefinition should be done using primary keys or pseudo-primary keys (unique keys with all component columns having not-NULL constraints)

	
CONS_USE_ROWID

	
BINARY_INTEGER

	
2

	
Used to indicate that the redefinition should be done using rowids

Operational Notes

	
CONS_USE_PK and CONS_USE_ROWID are constants used as input to the "options_flag" parameter in both the START_REDEF_TABLE Procedure and CAN_REDEF_TABLE Procedure. CONS_USE_ROWID is used to indicate that the redefinition should be done using rowids while CONS_USE_PK implies that the redefinition should be done using primary keys or pseudo-primary keys (which are unique keys with all component columns having NOT NULL constraints).

	
CONS_INDEX, CONS_MVLOG,CONS_TRIGGER and CONS_CONSTRAINT are used to specify the type of the dependent object being (un)registered in REGISTER_DEPENDENT_OBJECT Procedure and UNREGISTER_DEPENDENT_OBJECT Procedure (parameter "dep_type").

CONS_INDEX ==> dependent object is of type INDEX

CONS_TRIGGER ==> dependent object is of type TRIGGER

CONS_CONSTRAINT==> dependent object type is of type CONSTRAINT

CONS_MVLOG ==> dependent object is of type MATERIALIZED VIEW LOG

	
CONS_ORIG_PARAMS as used as input to the "copy_indexes" parameter in COPY_TABLE_DEPENDENTS Procedure. Using this parameter implies that the indexes on the original table be copied onto the interim table using the same storage parameters as that of the original index.

Rules and Limits

For information about various rules and limits that apply to implementation of this package, see the Oracle Database Administrator's Guide.

Summary of DBMS_REDEFINITION Subprograms

Table 110-2 DBMS_REDEFINITION Package Subprograms

	Subprogram	Description
	
ABORT_REDEF_TABLE Procedure

	
Cleans up errors that occur during the redefinition process and removes all temporary objects created by the reorganization process

	
CAN_REDEF_TABLE Procedure

	
Determines if a given table can be redefined online

	
COPY_TABLE_DEPENDENTS Procedure

	
Copies the dependent objects of the original table onto the interim table

	
FINISH_REDEF_TABLE Procedure

	
Completes the redefinition process.

	
REGISTER_DEPENDENT_OBJECT Procedure

	
Registers a dependent object (index, trigger, constraint or materialized view log) on the table being redefined and the corresponding dependent object on the interim table

	
START_REDEF_TABLE Procedure

	
Initiates the redefinition process

	
SYNC_INTERIM_TABLE Procedure

	
Keeps the interim table synchronized with the original table

	
UNREGISTER_DEPENDENT_OBJECT Procedure

	
Unregisters a dependent object (index, trigger, constraint or materialized view log) on the table being redefined and the corresponding dependent object on the interim table

ABORT_REDEF_TABLE Procedure

This procedure cleans up errors that occur during the redefinition process. This procedure can also be used to terminate the redefinition process any time after the START_REDEF_TABLE Procedure has been called and before the FINISH_REDEF_TABLE Procedure is called. This process will remove the temporary objects that are created by the redefinition process such as materialized view logs.

Syntax

DBMS_REDEFINITION.ABORT_REDEF_TABLE (
 uname IN VARCHAR2,
 orig_table IN VARCHAR2,
 int_table IN VARCHAR2,
 part_name IN VARCHAR2 := NULL);

Parameters

Table 110-3 ABORT_REDEF_TABLE Procedure Parameters

	Parameter	Description
	
uname

	
Schema name of the tables

	
orig_table

	
Name of the table to be redefined

	
int_table

	
Name of the interim table

	
part_name

	
Name of the partition being redefined. If redefining only a single partition of a table, specify the partition name in this parameter. NULL implies the entire table is being redefined.

CAN_REDEF_TABLE Procedure

This procedure determines if a given table can be redefined online. This is the first step of the online redefinition process. If the table is not a candidate for online redefinition, an error message is raised.

Syntax

DBMS_REDEFINITION.CAN_REDEF_TABLE (
 uname IN VARCHAR2,
 tname IN VARCHAR2,
 options_flag IN PLS_INTEGER := 1,
 part_name IN VARCHAR2 := NULL);

Parameters

Table 110-4 CAN_REDEF_TABLE Procedure Parameters

	Parameter	Description
	
uname

	
Schema name of the table

	
tname

	
Name of the table to be re-organized

	
options_flag

	
Indicates the type of redefinition method to use.

	
If dbms_redefinition.cons_use_pk, the redefinition is done using primary keys or pseudo-primary keys (unique keys with all component columns having NOT NULL constraints). The default method of redefinition is using primary keys.

	
If dbms_redefinition.cons_use_rowid, the redefinition is done using rowids.

	
part_name

	
Name of the partition being redefined. If redefining only a single partition of a table, specify the partition name in this parameter. NULL implies the entire table is being redefined.

Exceptions

If the table is not a candidate for online redefinition, an error message is raised.

COPY_TABLE_DEPENDENTS Procedure

This procedure clones the dependent objects of the table being redefined onto the interim table and registers the dependent objects. This procedure does not clone the already registered dependent objects.

This subprogram is used to clone the dependent objects like grants, triggers, constraints and privileges from the table being redefined to the interim table (which represents the post-redefinition table).

Syntax

DBMS_REDEFINITION.COPY_TABLE_DEPENDENTS(
 uname IN VARCHAR2,
 orig_table IN VARCHAR2,
 int_table IN VARCHAR2,
 copy_indexes IN PLS_INTEGER := 1,
 copy_triggers IN BOOLEAN := TRUE,
 copy_constraints IN BOOLEAN := TRUE,
 copy_privileges IN BOOLEAN := TRUE,
 ignore_errors IN BOOLEAN := FALSE,
 num_errors OUT PLS_INTEGER,
 copy_statistics IN BOOLEAN := FALSE,
 copy_mvlog IN BOOLEAN := FALSE);

Parameters

Table 110-5 COPY_TABLE_DEPENDENTS Procedure Parameters

	Parameter	Description
	
uname

	
Schema name of the tables

	
orig_table

	
Name of the table being redefined

	
int_table

	
Name of the interim table

	
copy_indexes

	
Flag indicating whether to copy the indexes

	
0 - do not copy any index

	
dbms_redefinition.cons_orig_params – copy the indexes using the physical parameters of the source indexes

	
copy_triggers

	
TRUE = clone triggers, FALSE = do nothing

	
copy_constraints

	
TRUE = clone constraints, FALSE = do nothing. If compatibility setting is 10.2 or higher, then clone CHECK and NOT NULL constraints

	
copy_privileges

	
TRUE = clone privileges, FALSE = do nothing

	
ignore_errors

	
TRUE = if an error occurs while cloning a particular dependent object, then skip that object and continue cloning other dependent objects. FALSE = that the cloning process should stop upon encountering an error.

	
num_errors

	
Number of errors that occurred while cloning dependent objects

	
copy_statistics

	
TRUE = copy statistics, FALSE = do nothing

	
copy_mvlog

	
TRUE = copy materialized view log, FALSE = do nothing

Usage Notes

	
The user must check the column num_errors before proceeding to ensure that no errors occurred during the cloning of the objects.

	
In case of an error, the user should fix the cause of the error and call the COPY_TABLE_DEPENDENTS Procedure again to clone the dependent object. Alternatively the user can manually clone the dependent object and then register the manually cloned dependent object using the REGISTER_DEPENDENT_OBJECT Procedure.

	
All cloned referential constraints involving the interim tables will be created disabled (they will be automatically enabled after the redefinition) and all triggers on interim tables will not fire till the redefinition is completed. After the redefinition is complete, the cloned objects will be renamed to the corresponding pre-redefinition names of the objects (from which they were cloned from).

	
It is the user's responsibility that the cloned dependent objects are unaffected by the redefinition. All the triggers will be cloned and it is the user's responsibility that the cloned triggers are unaffected by the redefinition.

FINISH_REDEF_TABLE Procedure

This procedure completes the redefinition process. Before this step, you can create new indexes, triggers, grants, and constraints on the interim table. The referential constraints involving the interim table must be disabled. After completing this step, the original table is redefined with the attributes and data of the interim table. The original table is locked briefly during this procedure.

Syntax

DBMS_REDEFINITION.FINISH_REDEF_TABLE (
 uname IN VARCHAR2,
 orig_table IN VARCHAR2,
 int_table IN VARCHAR2,
 part_name IN VARCHAR2 := NULL);

Parameters

Table 110-6 FINISH_REDEF_TABLE Procedure Parameters

	Parameters	Description
	
uname

	
Schema name of the tables

	
orig_table

	
Name of the table to be redefined

	
int_table

	
Name of the interim table

	
part_name

	
Name of the partition being redefined. If redefining only a single partition of a table, specify the partition name in this parameter. NULL implies the entire table is being redefined.

REGISTER_DEPENDENT_OBJECT Procedure

This procedure registers a dependent object (index, trigger, constraint or materialized view log) on the table being redefined and the corresponding dependent object on the interim table.

This can be used to have the same object on each table but with different attributes. For example: for an index, the storage and tablespace attributes could be different but the columns indexed remain the same

Syntax

DBMS_REDEFINITION.REGISTER_DEPEPENDENT_OBJECT(
 uname IN VARCHAR2,
 orig_table IN VARCHAR2,
 int_table IN VARCHAR2,
 dep_type IN PLS_INTEGER,
 dep_owner IN VARCHAR2,
 dep_orig_name IN VARCHAR2,
 dep_int_name IN VARCHAR2);

Parameters

Table 110-7 REGISTER_DEPENDENT_OBJECT Procedure Parameters

	Parameters	Description
	
uname

	
Schema name of the tables

	
orig_table

	
Name of the table to be redefined

	
int_table

	
Name of the interim table

	
dep_type

	
Type of the dependent object (see Constants and Operational Notes)

	
dep_owner

	
Owner of the dependent object

	
dep_orig_name

	
Name of the original dependent object

	
dep_int_name

	
Name of the interim dependent object

Usage Notes

	
Attempting to register an already registered object will raise an error.

	
Registering a dependent object will automatically remove that object from DBA_REDEFINITION_ERRORS if an entry exists for that object.

START_REDEF_TABLE Procedure

Prior to calling this procedure, you must manually create an empty interim table (in the same schema as the table to be redefined) with the desired attributes of the post-redefinition table, and then call this procedure to initiate the redefinition.

Syntax

DBMS_REDEFINITION.START_REDEF_TABLE (
 uname IN VARCHAR2,
 orig_table IN VARCHAR2,
 int_table IN VARCHAR2,
 col_mapping IN VARCHAR2 := NULL,
 options_flag IN BINARY_INTEGER := 1,
 orderby_cols IN VARCHAR2 := NULL,
 part_name IN VARCHAR2 := NULL);

Parameters

Table 110-8 START_REDEF_TABLE Procedure Parameters

	Parameter	Description
	
uname

	
Schema name of the tables

	
orig_table

	
Name of the table to be redefined

	
int_table

	
Name of the interim table

	
col_mapping

	
Mapping information from the columns in the original table to the columns in the interim table. (This is similar to the column list on the SELECT clause of a query.) If NULL, all the columns in the original table are selected and have the same name after redefinition.

	
options_flag

	
Indicates the type of redefinition method to use:

	
If dbms_redefinition.cons_use_pk, the redefinition is done using primary keys or pseudo-primary keys (unique keys with all component columns having NOT NULL constraints). The default method of redefinition is using primary keys.

	
If dbms_redefinition.cons_use_rowid, the redefinition is done using rowids.

	
orderby_cols

	
This optional parameter accepts the list of columns (along with the optional keyword(s) ascending/descending) with which to order by the rows during the initial instantiation of the interim table (the order by is only done for the initial instantiation and not for subsequent synchronizations)

	
part_name

	
Name of the partition being redefined. If redefining only a single partition of a table, specify the partition name in this parameter. NULL implies the entire table is being redefined.

SYNC_INTERIM_TABLE Procedure

This procedure keeps the interim table synchronized with the original table.

Syntax

DBMS_REDEFINITION.SYNC_INTERIM_TABLE (
 uname IN VARCHAR2,
 orig_table IN VARCHAR2,
 int_table IN VARCHAR2,
 part_name IN VARCHAR2 := NULL);

Parameters

Table 110-9 SYNC_INTERIM_TABLE Procedure Parameters

	Parameter	Description
	
uname

	
Schema name of the table

	
orig_table

	
Name of the table to be redefined

	
int_table

	
Name of the interim table

	
part_name

	
Name of the partition being redefined. If redefining only a single partition of a table, specify the partition name in this parameter. NULL implies the entire table is being redefined.

Usage Notes

	
This step is useful in minimizing the amount of synchronization needed to be done by the FINISH_REDEF_TABLE Procedure before completing the online redefinition.

	
This procedure can be called between long running operations (such as CREATE INDEX) on the interim table to sync it up with the data in the original table and speed up subsequent operations.

UNREGISTER_DEPENDENT_OBJECT Procedure

This procedure unregisters a dependent object (index, trigger, constraint or materialized view log) on the table being redefined and the corresponding dependent object on the interim table.

Syntax

DBMS_REDEFINITION.UNREGISTER_DEPEPENDENT_OBJECT(
 uname IN VARCHAR2,
 orig_table IN VARCHAR2,
 int_table IN VARCHAR2,
 dep_type IN PLS_INTEGER,
 dep_owner IN VARCHAR2,
 dep_orig_name IN VARCHAR2,
 dep_int_name IN VARCHAR2);

Parameters

Table 110-10 UNREGISTER_DEPENDENT_OBJECT Procedure Parameters

	Parameters	Description
	
uname

	
Schema name of the tables

	
orig_table

	
Name of the table to be redefined

	
int_table

	
Name of the interim table

	
dep_type

	
Type of the dependent object

	
dep_owner

	
Owner of the dependent object

	
dep_orig_name

	
Name of the original dependent object

	
dep_int_name

	
Name of the interim dependent object

DBMS_REFRESH

111 DBMS_REFRESH

The DBMS_REFRESH package enables you to create groups of materialized views that can be refreshed together to a transactionally consistent point in time.

	
Documentation of DBMS_REFRESH

Documentation of DBMS_REFRESH

For a complete description of this package within the context of Replication, see DBMS_REFRESH in the Oracle Database Advanced Replication Management API Reference.

DBMS_REPAIR

112 DBMS_REPAIR

The DBMS_REPAIR package contains data corruption repair procedures that enable you to detect and repair corrupt blocks in tables and indexes. You can address corruptions where possible and continue to use objects while you attempt to rebuild or repair them.

	
See Also:

For detailed information about using the DBMS_REPAIR package, see Oracle Database Administrator's Guide.

This chapter contains the following topics:

	
Using DBMS_REPAIR

	
Overview

	
Security Model

	
Constants

	
Operating Notes

	
Exceptions

	
Examples

	
Summary of DBMS_REPAIR Subprograms

Using DBMS_REPAIR

	
Overview

	
Security Model

	
Constants

	
Operating Notes

	
Exceptions

	
Examples

Overview

	
Note:

The DBMS_REPAIR package is intended for use by database administrators only. It is not intended for use by application developers.

Security Model

The package is owned by SYS. Execution privilege is not granted to other users.

Constants

The DBMS_REPAIR package defines several enumerated constants that should be used for specifying parameter values. Enumerated constants must be prefixed with the package name. For example, DBMS_REPAIR.TABLE_OBJECT.

Table 112-1 lists the parameters and the enumerated constants.

Table 112-1 DBMS_REPAIR Parameters with Enumerated Constants

	Parameter	Option	Type	Description
	
object_type

	
	
TABLE_OBJECT

	
INDEX_OBJECT

	
CLUSTER_OBJECT

	
BINARY_INTEGER

	
-

	
action

	
	
CREATE_ACTION

	
DROP_ACTION

	
PURGE_ACTION

	
BINARY_INTEGER

	
-

	
table_type

	
	
REPAIR_TABLE

	
ORPHAN_TABLE

	
BINARY_INTEGER

	
-

	
flags

	
	
SKIP_FLAG

	
NOSKIP_FLAG

	
BINARY_INTEGER

	
-

	
object_id

	
	
ALL_INDEX_ID := 0

	
BINARY_INTEGER

	
Clean up all objects that qualify

	
wait_for_lock

	
	
LOCK_WAIT := 1

	
LOCK_NOWAIT := 0

	
BINARY_INTEGER

	
Specifies whether to try getting DML locks on underlying table [[sub]partition] object

	
Note:

The default table_name will be REPAIR_TABLE when table_type is REPAIR_TABLE, and will be ORPHAN_KEY_TABLE when table_type is ORPHAN_TABLE.

Operating Notes

The procedure to create the ORPHAN_KEYS_TABLE is similar to the one used to create the REPAIR_TABLE.

CONNECT / AS SYSDBA;
EXEC DBMS_REPAIR.ADMIN_TABLES('ORPHAN_KEYS_TABLE', DBMS_REPAIR.ORPHAN_TABLE,
 DBMS_REPAIR.CREATE_ACTION);
EXEC DBMS_REPAIR.ADMIN_TABLES('REPAIR_TABLE', DBMS_REPAIR.REPAIR_TABLE,
 DBMS_REPAIR.CREATE_ACTION);
DESCRIBE ORPHAN_KEYS_TABLE;
DESCRIBE REPAIR_TABLE;
SELECT * FROM ORPHAN_KEYS_TABLE;
SELECT * FROM REPAIR_TABLE;

The DBA would create the repair and orphan keys tables once. Subsequent executions of the CHECK_OBJECT Procedure would add rows into the appropriate table indicating the types of errors found.

The name of the repair and orphan keys tables can be chosen by the user, with the following restriction: the name of the repair table must begin with the 'REPAIR_' prefix, and the name of the orphan keys table must begin with the 'ORPHAN_' prefix. The following code is also legal:

CONNECT / AS SYSDBA;
EXEC DBMS_REPAIR.ADMIN_TABLES('ORPHAN_FOOBAR', DBMS_REPAIR.ORPHAN_TABLE,
 DBMS_REPAIR.CREATE_ACTION);
EXEC DBMS_REPAIR.ADMIN_TABLES('REPAIR_ABCD', DBMS_REPAIR.REPAIR_TABLE,
 DBMS_REPAIR.CREATE_ACTION);
DESCRIBE ORPHAN_FOOBAR;
DESCRIBE REPAIR_ABCD;
SELECT * FROM ORPHAN_FOOBAR;
SELECT * FROM REPAIR_ABCD;

When invoking the CHECK_OBJECT Procedure the name of the repair and orphan keys tables that were created should be specified correctly, especially if the default values were not used in the ADMIN_TABLES Procedure or CREATE_ACTION.

Other actions in the ADMIN_TABLES Procedure can be used to purge/delete the REPAIR_TABLE and the ORPHAN_KEYS_TABLE.

Exceptions

Table 112-2 DBMS_REPAIR Exceptions

	Exception	Description	Action
	
942

	
Reported by DBMS_REPAIR.ADMIN_TABLES during a DROP_ACTION when the specified table doesn't exist.

	
-

	
955

	
Reported by DBMS_REPAIR. CREATE_ACTION when the specified table already exists.

	
-

	
24120

	
An invalid parameter was passed to the specified DBMS_REPAIR procedure.

	
Specify a valid parameter value or use the parameter's default.

	
24122

	
An incorrect block range was specified.

	
Specify correct values for the BLOCK_START and BLOCK_END parameters.

	
24123

	
An attempt was made to use the specified feature, but the feature is not yet implemented.

	
Do not attempt to use the feature.

	
24124

	
An invalid ACTION parameter was specified.

	
Specify CREATE_ACTION, PURGE_ACTION or DROP_ACTION for the ACTION parameter.

	
24125

	
An attempt was made to fix corrupt blocks on an object that has been dropped or truncated since DBMS_REPAIR.CHECK_OBJECT was run.

	
Use DBMS_REPAIR.ADMIN_TABLES to purge the repair table and run DBMS_REPAIR.CHECK_OBJECT to determine whether there are any corrupt blocks to be fixed.

	
24127

	
TABLESPACE parameter specified with an ACTION other than CREATE_ACTION.

	
Do not specify TABLESPACE when performing actions other than CREATE_ACTION.

	
24128

	
A partition name was specified for an object that is not partitioned.

	
Specify a partition name only if the object is partitioned.

	
24129

	
An attempt was made to pass a table name parameter without the specified prefix.

	
Pass a valid table name parameter.

	
24130

	
An attempt was made to specify a repair or orphan table that does not exist.

	
Specify a valid table name parameter.

	
24131

	
An attempt was made to specify a repair or orphan table that does not have a correct definition.

	
Specify a table name that refers to a properly created table.

	
24132

	
An attempt was made to specify a table name is greater than 30 characters long.

	
Specify a valid table name parameter.

Examples

/* Fix the bitmap status for all the blocks in table mytab in schema sys */

EXECUTE DBMS_REPAIR.SEGMENT_FIX_STATUS('SYS', 'MYTAB');

/* Mark block number 45, filenumber 1 for table mytab in sys schema as FULL.*/

EXECUTE DBMS_REPAIR.SEGMENT_FIX_STATUS('SYS', 'MYTAB', TABLE_OBJECT,1, 45, 1);

Summary of DBMS_REPAIR Subprograms

Table 112-3 DBMS_REPAIR Package Subprograms

	Subprogram	Description
	
ADMIN_TABLES Procedure

	
Provides administrative functions for the DBMS_REPAIR package repair and orphan key tables, including create, purge, and drop functions

	
CHECK_OBJECT Procedure

	
Detects and reports corruptions in a table or index

	
DUMP_ORPHAN_KEYS Procedure

	
Reports on index entries that point to rows in corrupt data blocks

	
FIX_CORRUPT_BLOCKS Procedure

	
Marks blocks software corrupt that have been previously detected as corrupt by CHECK_OBJECT

	
ONLINE_INDEX_CLEAN Function

	
Performs a manual cleanup of failed or interrupted online index builds or rebuilds

	
REBUILD_FREELISTS Procedure

	
Rebuilds an object's freelists

	
SEGMENT_FIX_STATUS Procedure

	
Fixes the corrupted state of a bitmap entry

	
SKIP_CORRUPT_BLOCKS Procedure

	
Sets whether to ignore blocks marked corrupt during table and index scans or to report ORA-1578 when blocks marked corrupt are encountered

ADMIN_TABLES Procedure

This procedure provides administrative functions for the DBMS_REPAIR package repair and orphan key tables.

Syntax

DBMS_REPAIR.ADMIN_TABLES (
 table_name IN VARCHAR2,
 table_type IN BINARY_INTEGER,
 action IN BINARY_INTEGER,
 tablespace IN VARCHAR2 DEFAULT NULL);

Parameters

Table 112-4 ADMIN_TABLES Procedure Parameters

	Parameter	Description
	
table_name

	
Name of the table to be processed. Defaults to ORPHAN_KEY_TABLE or REPAIR_TABLE based on the specified table_type. When specified, the table name must have the appropriate prefix: ORPHAN_ or REPAIR_.

	
table_type

	
Type of table; must be either ORPHAN_TABLE or REPAIR_TABLE.

See "Constants".

	
action

	
Indicates what administrative action to perform.

Must be either CREATE_ACTION, PURGE_ACTION, or DROP_ACTION. If the table already exists, and if CREATE_ACTION is specified, then an error is returned. PURGE_ACTION indicates to delete all rows in the table that are associated with non-existent objects. If the table does not exist, and if DROP_ACTION is specified, then an error is returned.

When CREATE_ACTION and DROP_ACTION are specified, an associated view named DBA_<table_name> is created and dropped respectively. The view is defined so that rows associated with non-existent objects are eliminated.

Created in the SYS schema.

See "Constants".

	
tablespace

	
Indicates the tablespace to use when creating a table.

By default, the SYS default tablespace is used. An error is returned if the tablespace is specified and if the action is not CREATE_ACTION.

CHECK_OBJECT Procedure

This procedure checks the specified objects and populates the repair table with information about corruptions and repair directives.

Validation consists of block checking all blocks in the object.

Syntax

DBMS_REPAIR.CHECK_OBJECT (
 schema_name IN VARCHAR2,
 object_name IN VARCHAR2,
 partition_name IN VARCHAR2 DEFAULT NULL,
 object_type IN BINARY_INTEGER DEFAULT TABLE_OBJECT,
 repair_table_name IN VARCHAR2 DEFAULT 'REPAIR_TABLE',
 flags IN BINARY_INTEGER DEFAULT NULL,
 relative_fno IN BINARY_INTEGER DEFAULT NULL,
 block_start IN BINARY_INTEGER DEFAULT NULL,
 block_end IN BINARY_INTEGER DEFAULT NULL,
 corrupt_count OUT BINARY_INTEGER);

Parameters

Table 112-5 CHECK_OBJECT Procedure Parameters

	Parameter	Description
	
schema_name

	
Schema name of the object to be checked.

	
object_name

	
Name of the table or index to be checked.

	
partition_name

	
Partition or subpartition name to be checked.

If this is a partitioned object, and if partition_name is not specified, then all partitions and subpartitions are checked. If this is a partitioned object, and if the specified partition contains subpartitions, then all subpartitions are checked.

	
object_type

	
Type of the object to be processed. This must be either TABLE_OBJECT (default) or INDEX_OBJECT.

See "Constants".

	
repair_table_name

	
Name of the repair table to be populated.

The table must exist in the SYS schema. Use the ADMIN_TABLES Procedure to create a repair table. The default name is REPAIR_TABLE.

	
flags

	
Reserved for future use.

	
relative_fno

	
Relative file number: Used when specifying a block range.

	
block_start

	
First block to process if specifying a block range. May be specified only if the object is a single table, partition, or subpartition.

	
block_end

	
Last block to process if specifying a block range. May be specified only if the object is a single table, partition, or subpartition. If only one of block_start or block_end is specified, then the other defaults to the first or last block in the file respectively.

	
corrupt_count

	
Number of corruptions reported.

Usage Notes

You may optionally specify a DBA range, partition name, or subpartition name when you want to check a portion of an object.

DUMP_ORPHAN_KEYS Procedure

This procedure reports on index entries that point to rows in corrupt data blocks. For each such index entry encountered, a row is inserted into the specified orphan table.

If the repair table is specified, then any corrupt blocks associated with the base table are handled in addition to all data blocks that are marked software corrupt. Otherwise, only blocks that are marked corrupt are handled.

This information may be useful for rebuilding lost rows in the table and for diagnostic purposes.

Syntax

DBMS_REPAIR.DUMP_ORPHAN_KEYS (
 schema_name IN VARCHAR2,
 object_name IN VARCHAR2,
 partition_name IN VARCHAR2 DEFAULT NULL,
 object_type IN BINARY_INTEGER DEFAULT INDEX_OBJECT,
 repair_table_name IN VARCHAR2 DEFAULT 'REPAIR_TABLE',
 orphan_table_name IN VARCHAR2 DEFAULT 'ORPHAN_KEYS_TABLE',
 flags IN BINARY_INTEGER DEFAULT NULL,
 key_count OUT BINARY_INTEGER);

Parameters

Table 112-6 DUMP_ORPHAN_KEYS Procedure Parameters

	Parameter	Description
	
schema_name

	
Schema name.

	
object_name

	
Object name.

	
partition_name

	
Partition or subpartition name to be processed.

If this is a partitioned object, and if partition_name is not specified, then all partitions and subpartitions are processed. If this is a partitioned object, and if the specified partition contains subpartitions, then all subpartitions are processed.

	
object_type

	
Type of the object to be processed. The default is INDEX_OBJECT

See "Constants".

	
repair_table_name

	
Name of the repair table that has information regarding corrupt blocks in the base table.

The specified table must exist in the SYS schema. The ADMIN_TABLES Procedure is used to create the table.

	
orphan_table_name

	
Name of the orphan key table to populate with information regarding each index entry that refers to a row in a corrupt data block.

The specified table must exist in the SYS schema. The ADMIN_TABLES Procedure is used to create the table.

	
flags

	
Reserved for future use.

	
key_count

	
Number of index entries processed.

FIX_CORRUPT_BLOCKS Procedure

This procedure fixes the corrupt blocks in specified objects based on information in the repair table that was previously generated by the CHECK_OBJECT Procedure.

Prior to effecting any change to a block, the block is checked to ensure the block is still corrupt. Corrupt blocks are repaired by marking the block software corrupt. When a repair is effected, the associated row in the repair table is updated with a fix timestamp.

Syntax

DBMS_REPAIR.FIX_CORRUPT_BLOCKS (
 schema_name IN VARCHAR2,
 object_name IN VARCHAR2,
 partition_name IN VARCHAR2 DEFAULT NULL,
 object_type IN BINARY_INTEGER DEFAULT TABLE_OBJECT,
 repair_table_name IN VARCHAR2 DEFAULT 'REPAIR_TABLE',
 flags IN BINARY_INTEGER DEFAULT NULL,
 fix_count OUT BINARY_INTEGER);

Parameters

Table 112-7 FIX_CORRUPT_BLOCKS Procedure Parameters

	Parameter	Description
	
schema_name

	
Schema name.

	
object_name

	
Name of the object with corrupt blocks to be fixed.

	
partition_name

	
Partition or subpartition name to be processed.

If this is a partitioned object, and if partition_name is not specified, then all partitions and subpartitions are processed. If this is a partitioned object, and if the specified partition contains subpartitions, then all subpartitions are processed.

	
object_type

	
Type of the object to be processed. This must be either TABLE_OBJECT (default) or INDEX_OBJECT.

See "Constants".

	
repair_table_name

	
Name of the repair table with the repair directives.

Must exist in the SYS schema.

	
flags

	
Reserved for future use.

	
fix_count

	
Number of blocks fixed.

ONLINE_INDEX_CLEAN Function

This function performs a manual cleanup of failed or interrupted online index builds or rebuilds. This action is also performed periodically by SMON, regardless of user-initiated cleanup.

This function returns TRUE if all indexes specified were cleaned up and FALSE if one or more indexes could not be cleaned up.

Syntax

DBMS_REPAIR.ONLINE_INDEX_CLEAN (
 object_id IN BINARY_INTEGER DEFAULT ALL_INDEX_ID,
 wait_for_lock IN BINARY_INTEGER DEFAULT LOCK_WAIT)
 RETURN BOOLEAN;

Parameters

Table 112-8 ONLINE_INDEX_CLEAN Function Parameters

	Parameter	Description
	
object_id

	
Object id of index to be cleaned up. The default cleans up all object ids that qualify.

	
wait_for_lock

	
This parameter specifies whether to try getting DML locks on underlying table [[sub]partition] object. The default retries up to an internal retry limit, after which the lock get will give up. If LOCK_NOWAIT is specified, then the lock get does not retry.

REBUILD_FREELISTS Procedure

This procedure rebuilds the freelists for the specified object. All free blocks are placed on the master freelist. All other freelists are zeroed.

If the object has multiple freelist groups, then the free blocks are distributed among all freelists, allocating to the different groups in round-robin fashion.

Syntax

DBMS_REPAIR.REBUILD_FREELISTS (
 schema_name IN VARCHAR2,
 object_name IN VARCHAR2,
 partition_name IN VARCHAR2 DEFAULT NULL,
 object_type IN BINARY_INTEGER DEFAULT TABLE_OBJECT);

Parameters

Table 112-9 REBUILD_FREELISTS Procedure Parameters

	Parameter	Description
	
schema_name

	
Schema name.

	
object_name

	
Name of the object whose freelists are to be rebuilt.

	
partition_name

	
Partition or subpartition name whose freelists are to be rebuilt.

If this is a partitioned object, and partition_name is not specified, then all partitions and subpartitions are processed. If this is a partitioned object, and the specified partition contains subpartitions, then all subpartitions are processed.

	
object_type

	
Type of the object to be processed. This must be either TABLE_OBJECT (default) or INDEX_OBJECT.

See"Constants".

SEGMENT_FIX_STATUS Procedure

With this procedure you can fix the corrupted state of a bitmap entry. The procedure either recalculates the state based on the current contents of the corresponding block or sets the state to a specific value.

Syntax

DBMS_REPAIR.SEGMENT_FIX_STATUS (
 segment_owner IN VARCHAR2,
 segment_name IN VARCHAR2,
 segment_type IN BINARY_INTEGER DEFAULT TABLE_OBJECT,
 file_number IN BINARY_INTEGER DEFAULT NULL,
 block_number IN BINARY_INTEGER DEFAULT NULL,
 status_value IN BINARY_INTEGER DEFAULT NULL,
 partition_name IN VARCHAR2 DEFAULT NULL,);

Parameters

Table 112-10 SEGMENT_FIX_STATUS Procedure Parameters

	Parameter	Description
	
schema_owner

	
Schema name of the segment.

	
segment_name

	
Segment name.

	
partition_name

	
Optional. Name of an individual partition. NULL for nonpartitioned objects. Default is NULL.

	
segment_type

	
Optional Type of the segment (for example, TABLE_OBJECT or INDEX_OBJECT). Default is NULL.

	
file_number

	
(optional) The tablespace-relative file number of the data block whose status has to be fixed. If omitted, all the blocks in the segment will be checked for state correctness and fixed.

	
block_number

	
(optional) The file-relative block number of the data block whose status has to be fixed. If omitted, all the blocks in the segment will be checked for state correctness and fixed.

	
status_value

	
(optional) The value to which the block status described by the file_number and block_number will be set. If omitted, the status will be set based on the current state of the block. This is almost always the case, but if there is a bug in the calculation algorithm, the value can be set manually. Status values:

	
1 = block is full

	
2 = block is 0-25% free

	
3 = block is 25-50% free

	
4 = block is 50-75% free

	
5 = block is 75-100% free

The status for bitmap blocks, segment headers, and extent map blocks cannot be altered. The status for blocks in a fixed hash area cannot be altered. For index blocks, there are only two possible states: 1 = block is full and 3 = block has free space.

SKIP_CORRUPT_BLOCKS Procedure

This procedure enables or disables the skipping of corrupt blocks during index and table scans of the specified object.

When the object is a table, skip applies to the table and its indexes. When the object is a cluster, it applies to all of the tables in the cluster, and their respective indexes.

	
Note:

When Oracle performs an index range scan on a corrupt index after DBMS_REPAIR.SKIP_CORRUPT_BLOCKS has been set for the base table, corrupt branch blocks and root blocks are not skipped. Only corrupt non-root leaf blocks are skipped.

Syntax

DBMS_REPAIR.SKIP_CORRUPT_BLOCKS (
 schema_name IN VARCHAR2,
 object_name IN VARCHAR2,
 object_type IN BINARY_INTEGER DEFAULT TABLE_OBJECT,
 flags IN BINARY_INTEGER DEFAULT SKIP_FLAG);

Parameters

Table 112-11 SKIP_CORRUPT_BLOCKS Procedure Parameters

	Parameter	Description
	
schema_name

	
Schema name of the object to be processed.

	
object_name

	
Name of the object.

	
object_type

	
Type of the object to be processed. This must be either TABLE_OBJECT (default) or CLUSTER_OBJECT.

See "Constants".

	
flags

	
If SKIP_FLAG is specified, then it turns on the skip of software corrupt blocks for the object during index and table scans. If NOSKIP_FLAG is specified, then scans that encounter software corrupt blocks return an ORA-1578.

See"Constants".

DBMS_REPCAT

113 DBMS_REPCAT

The DBMS_REPCAT package provides routines to administer and update the replication catalog and environment.

	
Documentation of DBMS_REPCAT

Documentation of DBMS_REPCAT

For a complete description of this package within the context of Replication, see DBMS_REPCAT in the Oracle Database Advanced Replication Management API Reference.

DBMS_REPCAT_ADMIN

114 DBMS_REPCAT_ADMIN

The DBMS_REPCAT_ADMIN package enables you to create users with the privileges needed by the symmetric replication facility.

	
Documentation of DBMS_REPCAT_ADMIN

Documentation of DBMS_REPCAT_ADMIN

For a complete description of this package within the context of Replication, see DBMS_REPCAT_ADMIN in the Oracle Database Advanced Replication Management API Reference.

DBMS_REPCAT_INSTANTIATE

115 DBMS_REPCAT_INSTANTIATE

The DBMS_REPCAT_INSTANTIATE package instantiates deployment templates.

	
Documentation of DBMS_REPCAT_INSTANTIATE

Documentation of DBMS_REPCAT_INSTANTIATE

For a complete description of this package within the context of Replication, see DBMS_REPCAT_INSTANTIATE in the Oracle Database Advanced Replication Management API Reference.

DBMS_REPCAT_RGT

116 DBMS_REPCAT_RGT

The DBMS_REPCAT_RGT package controls the maintenance and definition of refresh group templates.

	
Documentation of DBMS_REPCAT_RGT

Documentation of DBMS_REPCAT_RGT

For a complete description of this package within the context of Replication, see DBMS_REPCAT_RGT in the Oracle Database Advanced Replication Management API Reference.

DBMS_REPUTIL

117 DBMS_REPUTIL

The DBMS_REPUTIL package contains subprograms to generate shadow tables, triggers, and packages for table replication, as well as subprograms to generate wrappers for replication of standalone procedure invocations and packaged procedure invocations. This package is referenced only by the generated code.

	
Documentation of DBMS_REPUTIL

Documentation of DBMS_REPUTIL

For a complete description of this package within the context of Replication, see DBMS_REPUTIL in the Oracle Database Advanced Replication Management API Reference.

DBMS_RESCONFIG

118 DBMS_RESCONFIG

The DBMS_RESCONFIG package provides an interface to operate on the resource configuration list, and to retrieve listener information for a resource.

	
See Also:

Oracle XML DB Developer's Guide for more information about "Resource Configuration".

This chapter contains the following topics:

	
Using DBMS_RESCONFIG

	
Overview

	
Summary of DBMS_RESCONFIG Subprograms

Using DBMS_RESCONFIG

	
Overview

Overview

The DBMS_RESCONFIG package contains functions and procedures to manage the resource configuration lists of individual resources and the repository.

Summary of DBMS_RESCONFIG Subprograms

This table list the package subprograms in alphabetical order.

Table 118-1 DBMS_RESCONFIG Package Subprograms

	Subprogram	Description
	
ADDREPOSITORYRESCONFIG Procedure

	
Inserts the resource configuration specified by absolute path at the given position of the repository's configuration list

	
ADDRESCONFIG Procedure

	
Inserts the resource configuration specified by the absolute path at the given position in the target resource's configuration list

	
APPENDRESCONFIG Procedure

	
Appends the resource configuration specified by rcpath to the target resource's configuration list if it is not already included in the list

	
DELETEREPOSITORYRESCONFIG Procedure

	
Removes the configuration at the given position in the repository's configuration list.

	
DELETERESCONFIG Procedures

	
Removes the configuration at the given position in the target resource's configuration list. I

	
GETLISTENERS Function

	
Returns the list of listeners applicable for a given resource

	
GETREPOSITORYRESCONFIG Function

	
Returns the resource configuration at the specified position of the repository's configuration list

	
GETREPOSITORYRESCONFIGPATHS Function

	
Returns a list of resource configuration paths defined for the repository

	
GETRESCONFIG Function

	
Returns the resource configuration at the specified position of the target resource's configuration list

	
GETRESCONFIGPATHS Function

	
Returns a list of resource configuration paths defined in the target resource's configuration list

	
PATCHREPOSITORYRESCONFIGLIST Procedure

	
Removes invalid references from the repository resource configuration list, and makes the repository available

ADDREPOSITORYRESCONFIG Procedure

This procedure inserts the resource configuration specified by absolute path of the resource configuration at the specified position of the repository's configuration list. It shifts the element currently at that position (if any) and any subsequent elements to the right.

Syntax

DBMS_RESCONFIG.ADDREPOSITORYRESCONFIG(
 rcpath IN VARCHAR2,
 pos IN PLS_INTEGER := NULL);

Parameters

Table 118-2 ADDREPOSITORYRESCONFIG Function Parameters

	Parameter	Description
	
rcpath

	
Absolute path of the resource configuration to be inserted. An exception is raised if rcpath already exists in the target's configuration list.

	
pos

	
Index at which the new configuration is to be inserted. If this parameter is not specified then the new configuration is appended to the end of the list. An exception is raised if the index is out of range (pos < 0 or pos > the size of the target resource's configuration list).

Usage Notes

	
An error is raised if the document referenced by rcpath is not based on XDBResConfig.xsd schema.

	
Users must have XDBADMIN role and READ privilege on the resource configuration to be inserted; otherwise, an error is returned.

ADDRESCONFIG Procedure

This procedure inserts the resource configuration specified by the absolute path of the resource configuration at the given position in the target resource's configuration list. It shifts the element currently at that position (if any) and any subsequent elements to the right.

Syntax

DBMS_RESCONFIG.ADDRESCONFIG(
 respath IN VARCHAR2,
 rcpath IN VARCHAR2,
 pos IN PLS_INTEGER := NULL);

Parameters

Table 118-3 ADDRESCONFIG Function Parameters

	Parameter	Description
	
respath

	
Absolute path of the target resource

	
rcpath

	
Absolute path of the resource configuration to be inserted. An exception is raised if rcpath already exists in the target's configuration list.

	
pos

	
Index at which the new configuration is to be inserted. If this parameter is not specified then the new configuration is appended to the end of the list. An exception is raised if the index is out of range (pos < 0 or pos > the size of the target resource's configuration list).

Usage Notes

	
An error is raised if the document referenced by rcpath is not based on XDBResConfig.xsd schema.

	
Users must have WRITE-CONFIG privilege on the target resource and read privilege on the resource configuration to be inserted; otherwise, an error is returned.

APPENDRESCONFIG Procedure

This procedure appends the resource configuration specified by rcpath to the target resource's configuration list if it is not already included in the list.

Syntax

DBMS_RESCONFIG.ADDRESCONFIG(
 respath IN VARCHAR2,
 rcpath IN VARCHAR2,
 appendOption IN PLS_INTEGER);

Parameters

Table 118-4 ADDRESCONFIG Function Parameters

	Parameter	Description
	
respath

	
Absolute path of the target resource

	
rcpath

	
Absolute path of the resource configuration to be appended at the end of the target's configuration list. If rcpath already exists in the list then nothing is appended.

	
appendOption

	
Either APPEND_RESOURCE or APPEND_RECURSIVE. If APPEND_RESOURCE is specified then only the target resource is affected. If APPEND_RECURSIVE is specified then the target resource and all its descendents will be affected.

Usage Notes

	
An error is raised if the document referenced by rcpath is not based on XDBResConfig.xsd schema.

	
Users must have WRITE-CONFIG privilege on all affected resources and required read privilege on the resource configuration to be inserted; otherwise, an error is returned.

DELETEREPOSITORYRESCONFIG Procedure

This procedure removes the configuration at the given position in the repository's configuration list. It shifts any subsequent elements to the left.

Syntax

DBMS_RESCONFIG.DELETEREPOSITORYRESCONFIG(
 pos IN PLS_INTEGER);

Parameters

Table 118-5 DELETEREPOSITORYRESCONFIG Function Parameters

	Parameter	Description
	
pos

	
The index of the configuration to be removed. An exception is raised if the index is out of range (pos < 0 or pos >= the size of the target resource's configuration list).

Usage Notes

	
Users must have XDBADMIN role to execute this.

	
This statement is treated as if it is a DDL statement. This means the system will implicitly commit before and after this statement.

DELETERESCONFIG Procedures

This procedure removes the configuration at the given position in the target resource's configuration list. It shifts any subsequent elements to the left. Users can use the overloaded for recursive deletion.

Syntax

DBMS_RESCONFIG.DELETERESCONFIG(
 respath IN VARCHAR2,
 pos IN PLS_INTEGER);

DBMS_RESCONFIG.DELETERESCONFIG(
 respath IN VARCHAR2,
 rcpath IN VARCHAR2,
 deleteOption IN PLS_INTEGER);

Parameters

Table 118-6 DELETERESCONFIG Procedure Parameters

	Parameter	Description
	
respath

	
Absolute path of the target resource

	
pos

	
The index of the configuration to be removed. An exception is raised if the index is out of range (pos < 0 or pos >= the size of the target resource's configuration list).

	
rcpath

	
Absolute path of the resource configuration to be deleted if found in list.

	
deleteOption

	
Either DELETE_RESOURCE or DELETE_RECURSIVE. If DELETE_RESOURCE is specified then only the configuration list of the target resource is affected. If DELETE_RECURSIVE is specified then the configuration list of the target resource and all its descendents will be affected.

Usage Notes

Users must have WRITE-CONFIG privilege on the target resource to execute this.

GETLISTENERS Function

This function returns the list of listeners applicable for a given resource.

The value returned by this function is an XML document containing the <event-listeners> element of the XDBResconfig.xsd schema. It contains all the listeners applicable to the target resource, including repository-level listeners. From the returned XML document users can use the EXTRACT operator to retrieve the listeners defined for a specific event.

Syntax

DBMS_RESCONFIG.GETLISTENERS(
 path IN VARCHAR2)
 RETURN XMLTYPE;

Parameters

Table 118-7 GETLISTENERS Function Parameters

	Parameter	Description
	
path

	
Absolute path of the target resource

Usage Notes

Users must have the required access privilege on all resource configurations referenced by the repository and the target resource; otherwise, an error is returned.

GETREPOSITORYRESCONFIG Function

This function returns the resource configuration at the specified position of the repository's configuration list.

Syntax

DBMS_RESCONFIG.GETREPOSITORYRESCONFIG(
 pos IN PLS_INTEGER)
 RETURN XMLTYPE;

Parameters

Table 118-8 GETREPOSITORYRESCONFIG Function Parameters

	Parameter	Description
	
pos

	
Index of element to return. An exception is raised if the index is out of range (pos < 0 or pos >= the size of the repository's configuration list).

Usage Notes

Users must have the required read privilege on the requested resource configuration; otherwise, an error is returned.

GETREPOSITORYRESCONFIGPATHS Function

This function returns a list of resource configuration paths defined for the repository.

Syntax

DBMS_RESCONFIG.GETREPOSITORYRESCONFIGPATHS
 RETURN XDB$STRING_LIST_T;

Usage Notes

Users must be able to access all the referenced resource configurations; otherwise, an error is returned.

GETRESCONFIG Function

This function returns the resource configuration at the specified position of the target resource's configuration list.

Syntax

DBMS_RESCONFIG.GETRESCONFIG(
 respath IN VARCHAR2,
 pos IN PLS_INTEGER)
 RETURN XMLTYPE;

Parameters

Table 118-9 GETRESCONFIG Function Parameters

	Parameter	Description
	
respath

	
Absolute path of the target resource

	
pos

	
Index of element to return. An exception is raised if the index is out of range (pos < 0 or pos >= the size of the target resource's configuration list).

Usage Notes

Users must have the required read privilege on the requested resource configuration; otherwise, an error is returned.

GETRESCONFIGPATHS Function

This function returns a list of resource configuration paths defined in the target resource's configuration list.

Syntax

DBMS_RESCONFIG.GETRESCONFIGPATHS(
 respath IN VARCHAR2)
 RETURN XDB$STRING_LIST_T;

Parameters

Table 118-10 GETRESCONFIGPATHS Function Parameters

	Parameter	Description
	
respath

	
Absolute path of the target resource

Usage Notes

Users must be able to access all the referenced resource configurations; otherwise, an error is returned.

PATCHREPOSITORYRESCONFIGLIST Procedure

Under normal circumstances, deletion of a resource configuration resource cannot be performed if it is part of the repository resource configuration list. If, for some reason, the deletion of a resource configuration resource that is part of the repository resource configuration list succeeds, then any repository operation results in a 'dangling reference' error. This procedure removes invalid references from the repository resource configuration list, and makes the repository available. This procedure must be run as SYS.

Syntax

DBMS_RESCONFIG.PATCHREPOSITORYRESCONFIGLIST;

DBMS_RESOURCE_MANAGER

119 DBMS_RESOURCE_MANAGER

The DBMS_RESOURCE_MANAGER package maintains plans, consumer groups, and plan directives. It also provides semantics so that you may group together changes to the plan schema.

	
See Also:

For more information on using the Database Resource Manager, see Oracle Database Administrator's Guide.

This chapter contains the following topics:

	
Using DBMS_RESOURCE_MANAGER

	
Deprecated Subprograms

	
Security Model

	
Constants

	
Summary of DBMS_RESOURCE_MANAGER Subprograms

Using DBMS_RESOURCE_MANAGER

	
Deprecated Subprograms

	
Security Model

	
Constants

Deprecated Subprograms

	
Note:

Oracle recommends that you do not use deprecated procedures in new applications. Support for deprecated features is for backward compatibility only.

The following subprograms are deprecated with Oracle Database 11g:

	
SET_INITIAL_CONSUMER_GROUP Procedure

Security Model

The invoker must have the ADMINISTER_RESOURCE_MANAGER system privilege to execute these procedures. The procedures to grant and revoke this privilege are in the package Chapter 120, "DBMS_RESOURCE_MANAGER_PRIVS".

Constants

Table 119-1 DBMS_RESOURCE_MANAGER Constants

	Constant	Type	Value	Description
	
CLIENT_MACHINE

	
VARCHAR2(30)

	
CLIENT_MACHINE

	
Name of the computer from which the client is making the connection

	
CLIENT_OS_USER

	
VARCHAR2(30)

	
CLIENT_OS_USER

	
Operating system user name of the client that is logging in

	
CLIENT_PROGRAM

	
VARCHAR2(30)

	
CLIENT_PROGRAM

	
Name of the client program used to log in to the server

	
MODULE_NAME

	
VARCHAR2(30)

	
MODULE_NAME

	
Module name in the currently running application as set by the SET_MODULE Procedure in the DBMS_APPLICATION_INFO package, or the equivalent OCI attribute setting

	
MODULE_NAME_ACTION

	
VARCHAR2(30)

	
MODULE_NAME_ACTION

	
A combination of the current module and the action being performed as set by either of the following procedures in the DBMS_APPLICATION_INFO package, or their equivalent OCI attribute setting:

	
SET_MODULE Procedure

	
SET_ACTION Procedure

The attribute is specified as the module name followed by a period (.), followed by the action name (module_name.action_name).

	
ORACLE_FUNCTION

	
VARCHAR2(30)

	
ORACLE_FUNCTION

	
Function the session is currently executing. Valid functions are the BACKUP, COPY, and DATALOAD. BACKUP is set for sessions that are doing backup operations using RMAN. COPY is set for sessions that are doing image copies using RMAN. DATALOAD is set for sessions that are loading data using datapump.

	
ORACLE_USER

	
VARCHAR2(30)

	
ORACLE_USER

	
Oracle Database user name

	
SERVICE_MODULE

	
VARCHAR2(30)

	
SERVICE_MODULE

	
Combination of service and module names in this form: service_name.module_name

	
SERVICE_MODULE_ACTION

	
VARCHAR2(30)

	
SERVICE_MODULE_ACTION

	
Combination of service name, module name, and action name, in this form: service_name.module_name.action_name

	
SERVICE_NAME

	
VARCHAR2(30)

	
SERVICE_NAME

	
Service name used by the client to establish a connection

	
PERFORMANCE_CLASS

	
VARCHAR2(30)

	
PERFORMANCE_CLASS

	
Oracle Database user name

Summary of DBMS_RESOURCE_MANAGER Subprograms

Table 119-2 DBMS_RESOURCE_MANAGER Package Subprograms

	Subprogram	Description
	
BEGIN_SQL_BLOCK Procedure

	
Indicates the start of a block of SQL statements to be treated as a group by resource manager

	
CALIBRATE_IO Procedure

	
Calibrates the I/O capabilities of storage

	
CLEAR_PENDING_AREA Procedure

	
Clears the work area for the resource manager

	
CREATE_CATEGORY Procedure

	
Creates a new resource consumer group category

	
CREATE_CONSUMER_GROUP Procedure

	
Creates entries which define resource consumer groups

	
CREATE_PENDING_AREA Procedure

	
Creates a work area for changes to resource manager objects

	
CREATE_PLAN Procedure

	
Creates entries which define resource plans

	
CREATE_PLAN_DIRECTIVE Procedure

	
Creates resource plan directives

	
CREATE_SIMPLE_PLAN Procedure

	
Creates a single-level resource plan containing up to eight consumer groups in one step

	
DELETE_CATEGORY Procedure

	
Deletes an existing resource consumer group category

	
DELETE_CONSUMER_GROUP Procedure

	
Deletes entries which define resource consumer groups

	
DELETE_PLAN Procedure

	
Deletes the specified plan as well as all the plan directives it refers to

	
DELETE_PLAN_CASCADE Procedure

	
Deletes the specified plan as well as all its descendants (plan directives, subplans, consumer groups)

	
DELETE_PLAN_DIRECTIVE Procedure

	
Deletes resource plan directives

	
END_SQL_BLOCK Procedure

	
Indicates the end of a block of SQL statements that should be treated as a group by resource manager

	
SET_CONSUMER_GROUP_MAPPING Procedure

	
Adds, deletes, or modifies entries for the login and run-time attribute mappings

	
SET_CONSUMER_GROUP_MAPPING_PRI Procedure

	
Creates the session attribute mapping priority list

	
SET_INITIAL_CONSUMER_GROUP Procedure

	
Assigns the initial resource consumer group for a user (Caution: Deprecated Subprogram)

	
SUBMIT_PENDING_AREA Procedure

	
Submits pending changes for the resource manager

	
SWITCH_CONSUMER_GROUP_FOR_SESS Procedure

	
Changes the resource consumer group of a specific session

	
SWITCH_CONSUMER_GROUP_FOR_USER Procedure

	
Changes the resource consumer group for all sessions with a given user name

	
SWITCH_PLAN Procedure

	
Sets the current resource manager plan

	
UPDATE_CATEGORY Procedure

	
Updates an existing resource consumer group category

	
UPDATE_CONSUMER_GROUP Procedure

	
Updates entries which define resource consumer groups

	
UPDATE_PLAN Procedure

	
Updates entries which define resource plans

	
UPDATE_PLAN_DIRECTIVE Procedure

	
Updates resource plan directives

	
VALIDATE_PENDING_AREA Procedure

	
Validates pending changes for the resource manager

BEGIN_SQL_BLOCK Procedure

This procedure, to be used with parallel statement queuing, indicates the start of a block of SQL statements that should be treated as a group by resource manager.

	
Note:

This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2).

Syntax

DBMS_RESOURCE_MANAGER.BEGIN_SQL_BLOCK;

Usage Notes

For more information, see "Parallel Statement Queuing" and "Managing Parallel Statement Queuing with Resource Manager" in Oracle Database VLDB and Partitioning Guide.

CALIBRATE_IO Procedure

This procedure calibrates the I/O capabilities of storage. Calibration status is available from the V$IO_CALIBRATION_STATUS view and results for a successful calibration run are located in DBA_RSRC_IO_CALIBRATE table.

Syntax

DBMS_RESOURCE_MANAGER.CALIBRATE_IO (
 num_physical_disks IN PLS_INTEGER DEFAULT 1,
 max_latency IN PLS_INTEGER DEFAULT 20,
 max_iops OUT PLS_INTEGER,
 max_mbps OUT PLS_INTEGER,
 actual_latency OUT PLS_INTEGER);

Parameters

Table 119-3 CALIBRATE_IO Procedure Parameters

	Parameter	Description
	
num_physical_disks

	
Approximate number of physical disks in the database storage

	
max_latency

	
Maximum tolerable latency in milliseconds for database-block-sized IO requests

	
max_iops

	
Maximum number of I/O requests per second that can be sustained. The I/O requests are randomly-distributed, database-block-sized reads.

	
max_mbps

	
Maximum throughput of I/O that can be sustained, expressed in megabytes per second. The I/O requests are randomly-distributed, 1 megabyte reads.

	
actual_latency

	
Average latency of database-block-sized I/O requests at max_iops rate, expressed in milliseconds

Usage Notes

	
Only users with the SYSDBA privilege can run this procedure. Qualified users must also turn on timed_statistics, and ensure asynch_io is enabled for datafiles. This can be achieved by setting filesystemio_options to either ASYNCH or SETALL. One can also query the asynch_io status by means of the following SQL statement:

col name format a50
SELECT name, asynch_io FROM v$datafile f,v$iostat_file i
 WHERE f.file# = i.file_no
 AND filetype_name = 'Data File'
 /

	
Only one calibration can be run at a time. If another calibration is initiated at the same time, it will fail.

	
For an Oracle Real Application Clusters (Oracle RAC) database, the workload is simultaneously generated from all instances.

	
See Also:

Oracle Database Performance Tuning Guide for more information about calibration

Examples

Example of using I/O Calibration procedure

SET SERVEROUTPUT ON
DECLARE
 lat INTEGER;
 iops INTEGER;
 mbps INTEGER;
BEGIN
-- DBMS_RESOURCE_MANAGER.CALIBRATE_IO (<DISKS>, <MAX_LATENCY>, iops, mbps, lat);
 DBMS_RESOURCE_MANAGER.CALIBRATE_IO (2, 10, iops, mbps, lat);

 DBMS_OUTPUT.PUT_LINE ('max_iops = ' || iops);
 DBMS_OUTPUT.PUT_LINE ('latency = ' || lat);
 DBMS_OUTPUT.PUT_LINE ('max_mbps = ' || mbps);
end;
/

View for I/O calibration results

SQL> desc V$IO_CALIBRATION_STATUS
 Name Null? Type
 --- -------- ----------------------------
 STATUS VARCHAR2(13)
 CALIBRATION_TIME TIMESTAMP(3)

SQL> desc gv$io_calibration_status
 Name Null? Type
 --- -------- ----------------------------
 INST_ID NUMBER
 STATUS VARCHAR2(13)
 CALIBRATION_TIME TIMESTAMP(3)

Column explanation:

STATUS:
 IN PROGRESS : Calibration in Progress (Results from previous calibration
 run displayed, if available)
 READY : Results ready and available from earlier run
 NOT AVAILABLE : Calibration results not available.

CALIBRATION_TIME: End time of the last calibration run

DBA table that stores I/O Calibration results

SQL> desc DBA_RSRC_IO_CALIBRATE
 Name Null? Type
 --- -------- ----------------------------
 START_TIME TIMESTAMP(6)
 END_TIME TIMESTAMP(6)
 MAX_IOPS NUMBER
 MAX_MBPS NUMBER
 MAX_PMBPS NUMBER
 LATENCY NUMBER
 NUM_PHYSICAL_DISKS NUMBER

comment on table DBA_RSRC_IO_CALIBRATE is
'Results of the most recent I/O calibration'
/
comment on column DBA_RSRC_IO_CALIBRATE.START_TIME is
'start time of the most recent I/O calibration'
/
comment on column DBA_RSRC_IO_CALIBRATE.END_TIME is
'end time of the most recent I/O calibration'
/
comment on column DBA_RSRC_IO_CALIBRATE.MAX_IOPS is
'maximum number of data-block read requests that can be sustained per second'
/
comment on column DBA_RSRC_IO_CALIBRATE.MAX_MBPS is
'maximum megabytes per second of maximum-sized read requests that can be
sustained'
/
comment on column DBA_RSRC_IO_CALIBRATE.MAX_PMBPS is
'maximum megabytes per second of large I/O requests that
can be sustained by a single process'
/
comment on column DBA_RSRC_IO_CALIBRATE.LATENCY is
'latency for data-block read requests'
/
comment on column DBA_RSRC_IO_CALIBRATE.NUM_PHYSICAL_DISKS is
'number of physical disks in the storage subsystem (as specified by user)'
/

CLEAR_PENDING_AREA Procedure

This procedure clears pending changes for the resource manager.

Syntax

DBMS_RESOURCE_MANAGER.CLEAR_PENDING_AREA;

CREATE_CATEGORY Procedure

This procedure creates a new consumer group category. The primary purpose of this attribute is to support Exadata I/O Resource Manager category plans. The view DBA_RSRC_CATEGORIES defines the currently defined categories. The ADMINISTRATIVE, INTERACTIVE, BATCH, MAINTENANCE, and OTHER categories are available.

Syntax

DBMS_RESOURCE_MANAGER.CREATE_CATEGORY (
 category IN VARCHAR2,
 comment IN VARCHAR2);

Parameters

Table 119-4 CREATE_CATEGORY Procedure Parameters

	Parameter	Description
	
category

	
Name of consumer group category

	
comment

	
User's comment

CREATE_CONSUMER_GROUP Procedure

This procedure creates entries which define resource consumer groups.

Syntax

DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP (
 consumer_group IN VARCHAR2,
 comment IN VARCHAR2,
 cpu_mth IN VARCHAR2 DEFAULT NULL,
 mgmt_mth IN VARCHAR2 DEFAULT 'ROUND-ROBIN',
 category IN VARCHAR2 DEFAULT 'OTHER');

Parameters

Table 119-5 CREATE_CONSUMER_GROUP Procedure Parameters

	Parameter	Description
	
consumer_group

	
Name of the consumer group

	
comment

	
User's comment

	
cpu_mth

	
Name of CPU resource allocation method (deprecated)

	
mgmt_mth

	
Name of CPU resource allocation method

	
category

	
Describes the category of the consumer group. The primary purpose of this attribute is to support Exadata I/O Resource Manager category plans. The view DBA_RSRC_CATEGORIES defines the currently defined categories. Categories can be modified, using the CREATE_CATEGORY Procedure, UPDATE_CATEGORY Procedure, and DELETE_CATEGORY Procedure.

CREATE_PENDING_AREA Procedure

This procedure makes changes to resource manager objects.

All changes to the plan schema must be done within a pending area. The pending area can be thought of as a "scratch" area for plan schema changes. The administrator creates this pending area, makes changes as necessary, possibly validates these changes, and only when the submit is completed do these changes become active.

Syntax

DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA;

Usage Notes

You may, at any time while the pending area is active, view the current plan schema with your changes by selecting from the appropriate user views.

At any time, you may clear the pending area if you want to stop the current changes. You may also call the VALIDATE procedure to confirm whether the changes you have made are valid. You do not have to perform your changes in a given order to maintain a consistent group of entries. These checks are also implicitly done when the pending area is submitted.

	
Note:

Oracle allows "orphan" consumer groups (in other words, consumer groups that have no plan directives that refer to them). This is in anticipation that an administrator may want to create a consumer group that is not currently being used, but will be used in the future.

The following rules must be adhered to, and they are checked whenever the validate or submit procedures are executed:

	
No plan schema may contain any loops.

	
All plans and consumer groups referred to by plan directives must exist.

	
All plans must have plan directives that refer to either plans or consumer groups.

	
All percentages in any given level must not add up to greater than 100 for the emphasis resource allocation method.

	
No plan may be deleted that is currently being used as a top plan by an active instance.

	
The plan directive parameter, parallel_degree_limit_p1, may only appear in plan directives that refer to consumer groups (that is, not at subplans).

	
There cannot be more than 28 plan directives coming from any given plan (that is, no plan can have more than 28 children).

	
There cannot be more than 28 consumer groups in any active plan schema.

	
Plans and consumer groups use the same namespace; therefore, no plan can have the same name as any consumer group.

	
There must be a plan directive for OTHER_GROUPS somewhere in any active plan schema.This ensures that a session not covered by the currently active plan is allocated resources as specified by the OTHER_GROUPS directive.

If any of the preceding rules are broken when checked by the VALIDATE or SUBMIT procedures, then an informative error message is returned. You may then make changes to fix one or more problems and reissue the validate or submit procedures.

CREATE_PLAN Procedure

This procedure creates entries which define resource plans.

Syntax

DBMS_RESOURCE_MANAGER.CREATE_PLAN (
 plan IN VARCHAR2,
 comment IN VARCHAR2,
 cpu_mth IN VARCHAR2 DEFAULT NULL, -- deprecated
 active_sess_pool_mth IN VARCHAR2 DEFAULT 'ACTIVE_SESS_POOL_ABSOLUTE',
 parallel_degree_limit_mth IN VARCHAR2 DEFAULT
 'PARALLEL_DEGREE_LIMIT_ABSOLUTE',
 queueing_mth IN VARCHAR2 DEFAULT 'FIFO_TIMEOUT',
 mgmt_mth IN VARCHAR2 DEFAULT 'EMPHASIS',
 sub_plan IN BOOLEAN DEFAULT FALSE);

Parameters

Table 119-6 CREATE_PLAN Procedure Parameters

	Parameter	Description
	
plan

	
Name of the resource plan

	
comment

	
User's comment

	
cpu_mth

	
Allocation method for CPU resources (deprecated)

	
active_sess_pool_mth

	
Active session pool resource allocation method. Limits the number of active sessions. All other sessions are inactive and wait in a queue to be activated. ACTIVE_SESS_POOL_ABSOLUTE is the default and only method available.

	
parallel_degree_limit_mth

	
Resource allocation method for specifying a limit on the degree of parallelism of any operation. PARALLEL_DEGREE_LIMIT_ABSOLUTE is the default and only method available.

	
queueing_mth

	
Queuing resource allocation method. Controls order in which queued inactive sessions will execute. FIFO_TIMEOUT is the default and only method available

	
mgmt_mth

	
Resource allocation method for specifying how much resources (for example, CPU or I/O) each consumer group or sub-plan gets

	
EMPHASIS - for multilevel plans that use percentages to specify how I/O resources are distributed among consumer groups

	
RATIO - for single-level plans that use ratios to specify how I/O resources are distributed

	
sub_plan

	
If TRUE, indicates that this plan is only intended for use as a sub-plan. Sub-plans are not required to have an OTHER_GROUPS directive. Default is FALSE.

Usage Notes

If you want to use any default resource allocation method, then you do not need to specify it when creating or updating a plan.

CREATE_PLAN_DIRECTIVE Procedure

This procedure creates resource plan directives.

	
Note:

The functionality associated with the parallel_target_percentage and parallel_queue_timeout parameters is available starting with Oracle Database 11g Release 2 (11.2.0.2).

Syntax

DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (
 plan IN VARCHAR2,
 group_or_subplan IN VARCHAR2,
 comment IN VARCHAR2,
 cpu_p1 IN NUMBER DEFAULT NULL, -- deprecated
 cpu_p2 IN NUMBER DEFAULT NULL, -- deprecated
 cpu_p3 IN NUMBER DEFAULT NULL, -- deprecated
 cpu_p4 IN NUMBER DEFAULT NULL, -- deprecated
 cpu_p5 IN NUMBER DEFAULT NULL, -- deprecated
 cpu_p6 IN NUMBER DEFAULT NULL, -- deprecated
 cpu_p7 IN NUMBER DEFAULT NULL, -- deprecated
 cpu_p8 IN NUMBER DEFAULT NULL, -- deprecated
 active_sess_pool_p1 IN NUMBER DEFAULT NULL,
 queueing_p1 IN NUMBER DEFAULT NULL,
 parallel_degree_limit_p1 IN NUMBER DEFAULT NULL,
 switch_group IN VARCHAR2 DEFAULT NULL,
 switch_time IN NUMBER DEFAULT NULL,
 switch_estimate IN BOOLEAN DEFAULT FALSE,
 max_est_exec_time IN NUMBER DEFAULT NULL,
 undo_pool IN NUMBER DEFAULT NULL,
 max_idle_time IN NUMBER DEFAULT NULL,
 max_idle_blocker_time IN NUMBER DEFAULT NULL,
 switch_time_in_call IN NUMBER DEFAULT NULL, -- deprecated
 mgmt_p1 IN NUMBER DEFAULT NULL,
 mgmt_p2 IN NUMBER DEFAULT NULL,
 mgmt_p3 IN NUMBER DEFAULT NULL,
 mgmt_p4 IN NUMBER DEFAULT NULL,
 mgmt_p5 IN NUMBER DEFAULT NULL,
 mgmt_p6 IN NUMBER DEFAULT NULL,
 mgmt_p7 IN NUMBER DEFAULT NULL,
 mgmt_p8 IN NUMBER DEFAULT NULL,
 switch_io_megabytes IN NUMBER DEFAULT NULL,
 switch_io_reqs IN NUMBER DEFAULT NULL,
 switch_for_call IN BOOLEAN DEFAULT NULL,
 max_utilization_limit IN NUMBER DEFAULT NULL,
 parallel_target_percentage IN NUMBER DEFAULT NULL,
 parallel_queue_timeout IN NUMBER DEFAULT NULL);

Parameters

Table 119-7 CREATE_PLAN_DIRECTIVE Procedure Parameters

	Parameter	Description
	
plan

	
Name of the resource plan

	
group_or_subplan

	
Name of the consumer group or subplan

	
comment

	
Comment for the plan directive

	
cpu_p1

	
-- deprecated: use mgmt_p1 instead

	
cpu_p2

	
-- deprecated: use mgmt_p2 instead)

	
cpu_p3

	
-- deprecated: use mgmt_p3 instead)

	
cpu_p4

	
-- deprecated: use mgmt_p4 instead)

	
cpu_p5

	
-- deprecated: use mgmt_p5 instead)

	
cpu_p6

	
-- deprecated: use mgmt_p6 instead)

	
cpu_p7

	
-- deprecated: use mgmt_p7 instead)

	
cpu_p8

	
-- deprecated: use mgmt_p8 instead)

	
active_sess_pool_p1

	
Specifies maximum number of concurrently active sessions for a consumer group. Default is NULL, which means unlimited.

	
queueing_p1

	
Specified time (in seconds) after which a job in the inactive session queue (waiting for execution) will time out. Default is NULL, which means unlimited.

	
parallel_degree_limit_p1

	
Specifies a limit on the degree of parallelism for any operation. Default is NULL, which means unlimited.

	
switch_group

	
Specifies consumer group to switch to, once a switch condition is met. If the group name is 'CANCEL_SQL', then the current call is canceled when the switch condition is met. If the group name is 'KILL_SESSION', then the session is killed when the switch condition is met. Default is NULL.

	
switch_time

	
Specifies time (in CPU seconds) that a session can execute before an action is taken. Default is NULL, which means unlimited.

	
switch_estimate

	
If TRUE, tells Oracle to use its execution time estimate to automatically switch the consumer group of an operation before beginning its execution. Default is FALSE.

	
max_est_exec_time

	
Specifies the maximum execution time (in CPU seconds) allowed for a session. If the optimizer estimates that an operation will take longer than MAX_EST_EXEC_TIME, the operation is not started and ORA-07455 is issued. If the optimizer does not provide an estimate, this directive has no effect. Default is NULL, which means unlimited.

	
undo_pool

	
Limits the size in kilobytes of the undo records corresponding to uncommitted transactions by this consumer group

	
max_idle_time

	
Indicates the maximum session idle time. Default is NULL, which means unlimited.

	
max_idle_blocker_time

	
Maximum amount of time in seconds that a session can be idle while blocking another session's acquisition of a resource

	
switch_time_in_call

	
Deprecated. If this parameter is specified, switch_time is set to switch_time_in_call (in seconds) and switch_for_call is effectively set to TRUE. It is better to use switch_time and switch_for_call.

	
mgmt_p1

	
Resource allocation value for level 1 (replaces cpu_p1):

	
EMPHASIS - specifies the resource percentage at the first level

	
RATIO - specifies the weight of resource usage

	
mgmt_p2

	
Resource allocation value for level 2 (replaces cpu_p2)

	
EMPHASIS - specifies the resource percentage at the second level

	
RATIO - non-applicable

	
mgmt_p3

	
Resource allocation value for level 3 (replaces cpu_p3)

	
EMPHASIS - specifies the resource percentage at the third level

	
RATIO - non-applicable

	
mgmt_p4

	
Resource allocation value for level 4 (replaces cpu_p4)

	
EMPHASIS - specifies the resource percentage at the fourth level

	
RATIO - non-applicable

	
mgmt_p5

	
Resource allocation value for level 5 (replaces cpu_p5)

	
EMPHASIS - specifies the resource percentage at the fifth level

	
RATIO - non-applicable

	
mgmt_p6

	
Resource allocation value for level 6 (replaces cpu_p6)

	
EMPHASIS - specifies the resource percentage at the sixth level

	
RATIO - non-applicable

	
mgmt_p7

	
Resource allocation value for level 7 (replaces cpu_p7)

	
EMPHASIS - specifies the resource percentage at the seventh level

	
RATIO - non-applicable

	
mgmt_p8

	
Resource allocation value for level 8 (replaces cpu_p8)

	
EMPHASIS - specifies the resource percentage at the eighth level

	
RATIO - non-applicable

	
switch_io_megabytes

	
Specifies the amount of I/O (in MB) that a session can issue before an action is taken. Default is NULL, which means unlimited.

	
switch_io_reqs

	
Specifies the number of I/O requests that a session can issue before an action is taken. Default is NULL, which means unlimited.

	
switch_for_call

	
Specifies that if an action is taken because of the switch_time, switch_io_megabytes, or switch_io_reqs parameters, the consumer group is restored to its original consumer group at the end of the top call. Default is FALSE, which means that the original consumer group is not restored at the end of the top call.

	
max_utilization_limit

	
Specifies the maximum percentage of CPU that this Consumer Group or Sub-Plan can utilize. Valid values are 0% to 100%. NULL implies that there is no limit, or equivalently 100%. You can specify this attribute and leave mgmt_p1 through mgmt_p8 NULL.

	
parallel_target_percentage

	
Specifies the maximum percentage of the target number of parallel servers in an Oracle RAC environment that a consumer group can use. Any additional parallel statements that are launched from this consumer group will be queued. The default is NULL, which means that the limit is 100% of the target number. Valid values for queuing are in the range of 0 to 100 (%). For updates to the plan directive, the value of -1 will reset the value to NULL.

If a consumer group does not have any parallel statements running within an Oracle RAC database, the first parallel statement is allowed to exceed this limit.

The target number of parallel servers in an Oracle RAC environment is the sum of the parameter parallel_server_target across all instances.

	
parallel_queue_timeout

	
Specifies the time (in seconds) that a query may remain in its Consumer Group's parallel statement queue before it is removed and terminated with an error (ORA- 07454).

Usage Notes

	
All parameters default to NULL. However, for the EMPHASIS CPU resource allocation method, this case would severely limit resources to all the users.

	
For max_idle_time and max_idle_blocker_time, PMON will check these limits once a minute. If it finds a session that has exceeded one of the limits, it will forcibly kill the session and clean up all its state.

	
The parameter switch_time_in_call is mostly useful for three-tier applications where the mid-tier server is implementing session pooling. By using switch_time_in_call, the resource usage of one client will not affect a future client that happens to be executed on the same session.

CREATE_SIMPLE_PLAN Procedure

This procedure creates a single-level resource plan containing up to eight consumer groups in one step. You do not need to create a pending area manually before creating a resource plan, or use the CREATE_CONSUMER_GROUP and CREATE_RESOURCE_PLAN_DIRECTIVES procedures separately.

Syntax

DBMS_RESOURCE_MANAGER.CREATE_SIMPLE_PLAN (
 simple_plan IN VARCHAR2 DEFAULT NULL,
 consumer_group1 IN VARCHAR2 DEFAULT NULL,
 group1_cpu IN NUMBER DEFAULT NULL, -- deprecated
 consumer_group2 IN VARCHAR2 DEFAULT NULL,
 group2_cpu IN NUMBER DEFAULT NULL, -- deprecated
 consumer_group3 IN VARCHAR2 DEFAULT NULL,
 group3_cpu IN NUMBER DEFAULT NULL, -- deprecated
 consumer_group4 IN VARCHAR2 DEFAULT NULL,
 group4_cpu IN NUMBER DEFAULT NULL, -- deprecated
 consumer_group5 IN VARCHAR2 DEFAULT NULL,
 group5_cpu IN NUMBER DEFAULT NULL, -- deprecated
 consumer_group6 IN VARCHAR2 DEFAULT NULL,
 group6_cpu IN NUMBER DEFAULT NULL, -- deprecated
 consumer_group7 IN VARCHAR2 DEFAULT NULL,
 group7_cpu IN NUMBER DEFAULT NULL, -- deprecated
 consumer_group8 IN VARCHAR2 DEFAULT NULL,
 group8_cpu IN NUMBER DEFAULT NULL, -- deprecated
 group1_percent IN NUMBER DEFAULT NULL,
 group2_percent IN NUMBER DEFAULT NULL,
 group3_percent IN NUMBER DEFAULT NULL,
 group4_percent IN NUMBER DEFAULT NULL,
 group5_percent IN NUMBER DEFAULT NULL,
 group6_percent IN NUMBER DEFAULT NULL,
 group7_percent IN NUMBER DEFAULT NULL,
 group8_percent IN NUMBER DEFAULT NULL);

Parameters

Table 119-8 CREATE_SIMPLE_PLAN Procedure Parameters

	Parameter	Description
	
simple_plan

	
Name of the resource plan

	
consumer_group1

	
Name of the consumer group

	
group1_cpu

	
Percentage for group (deprecated)

	
consumer_group2

	
Name of the consumer group

	
group2_cpu

	
Percentage for group (deprecated)

	
consumer_group3

	
Name of the consumer group

	
group3_cpu

	
Percentage for group (deprecated)

	
consumer_group4

	
Name of the consumer group

	
group4_cpu

	
Percentage for group (deprecated)

	
consumer_group5

	
Name of the consumer group

	
group5_cpu

	
Percentage for group (deprecated)

	
consumer_group6

	
Name of the consumer group

	
group6_cpu

	
Percentage for group (deprecated)

	
consumer_group7

	
Name of the consumer group

	
group7_cpu

	
Percentage for group (deprecated)

	
consumer_group8

	
Name of the consumer group

	
group8_cpu

	
Percentage for group (deprecated)

	
group1_percent

	
Percentage of resources allocated for this consumer group

	
group2_percent

	
Percentage of resources allocated for this consumer group

	
group3_percent

	
Percentage of resources allocated for this consumer group

	
group4_percent

	
Percentage of resources allocated for this consumer group

	
group5_percent

	
Percentage of resources allocated for this consumer group

	
group6_percent

	
Percentage of resources allocated for this consumer group

	
group7_percent

	
Percentage of resources allocated for this consumer group

	
group8_percent

	
Percentage of resources allocated for this consumer group

DELETE_CATEGORY Procedure

This procedure deletes an existing resource consumer group category.

Syntax

DBMS_RESOURCE_MANAGER.DELETE_CATEGORY (
 category IN VARCHAR2,
 new_comment IN VARCHAR2 DEFAULT NULL);

Parameters

Table 119-9 DELETE_CATEGORY Procedure Parameters

	Parameter	Description
	
category

	
Name of consumer group category

DELETE_CONSUMER_GROUP Procedure

This procedure deletes entries which define resource consumer groups.

Syntax

DBMS_RESOURCE_MANAGER.DELETE_CONSUMER_GROUP (
 consumer_group IN VARCHAR2);

Parameters

Table 119-10 DELETE_CONSUMER_GROUP Procedure Parameters

	Parameters	Description
	
consumer_group

	
Name of the consumer group to be deleted

DELETE_PLAN Procedure

This procedure deletes the specified plan as well as all the plan directives to which it refers.

Syntax

DBMS_RESOURCE_MANAGER.DELETE_PLAN (
 plan IN VARCHAR2);

Parameters

Table 119-11 DELETE_PLAN Procedure Parameters

	Parameter	Description
	
plan

	
Name of the resource plan to delete

DELETE_PLAN_CASCADE Procedure

This procedure deletes the specified plan and all of its descendants (plan directives, subplans, consumer groups). Mandatory objects and directives are not deleted.

Syntax

DBMS_RESOURCE_MANAGER.DELETE_PLAN_CASCADE (
 plan IN VARCHAR2);

Parameters

Table 119-12 DELETE_PLAN_CASCADE Procedure Parameters

	Parameters	Description
	
plan

	
Name of the plan

Usage Notes

If DELETE_PLAN_CASCADE encounters any error, then it rolls back the operation, and nothing is deleted.

DELETE_PLAN_DIRECTIVE Procedure

This procedure deletes resource plan directives.

Syntax

DBMS_RESOURCE_MANAGER.DELETE_PLAN_DIRECTIVE (
 plan IN VARCHAR2,
 group_or_subplan IN VARCHAR2);

Parameters

Table 119-13 DELETE_PLAN_DIRECTIVE Procedure Parameters

	Parameter	Description
	
plan

	
Name of the resource plan

	
group_or_subplan

	
Name of the group or subplan

END_SQL_BLOCK Procedure

This procedure, to be used with parallel statement queuing, indicates the end of a block of SQL statements that should be treated as a group by resource manager.

	
Note:

This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2).

Syntax

DBMS_RESOURCE_MANAGER.END_SQL_BLOCK;

Usage Notes

For more information, see "Parallel Statement Queuing" and "Managing Parallel Statement Queuing with Resource Manager" in Oracle Database VLDB and Partitioning Guide.

SET_CONSUMER_GROUP_MAPPING Procedure

This procedure adds, deletes, or modifies entries that map sessions to consumer groups, based on the session's login and runtime attributes.

Syntax

DBMS_RESOURCE_MANAGER.SET_CONSUMER_GROUP_MAPPING(
 attribute IN VARCHAR2,
 value IN VARCHAR2,
 consumer_group IN VARCHAR2 DEFAULT NULL);

Parameters

Table 119-14 SET_CONSUMER_GROUP_MAPPING Procedure Parameters

	Parameters	Description
	
attribute

	
Mapping attribute to add or modify. It can be one of the Constants listed.

	
value

	
Attribute value to match. This includes both absolute mapping and regular expressions.

	
consumer_group

	
Name of the mapped consumer group, or NULL to delete a mapping

Usage Notes

	
If no mapping exists for the given attribute and value, a mapping to the given consumer group will be created. If a mapping already exists for the given attribute and value, the mapped consumer group will be updated to the one given. If the consumer_group argument is NULL, then any mapping from the given attribute and value will be deleted.

	
The subprogram supports simple regex expressions for the value parameter. It implements the same semantics as the SQL 'LIKE' operator. Specifically, it uses '%' as amulticharacter wildcard and '_' as a single character wildcard. The '\' character can be used to escape the wildcards. Note that wildcards can only be used if the attribute is one of the following:

	
CLIENT_OS_USER

	
CLIENT_PROGRAM

	
CLIENT_MACHINE

	
MODULE_NAME

	
MODULE_NAME_ACTION

	
SERVICE_MODULE

	
SERVICE_MODULE_ACTION

SET_CONSUMER_GROUP_MAPPING_PRI Procedure

Multiple attributes of a session can be used to map the session to a consumer group. This procedure prioritizes the attribute mappings.

Syntax

DBMS_RESOURCE_MANAGER.SET_CONSUMER_GROUP_MAPPING_PRI(
 explicit IN NUMBER,
 oracle_user IN NUMBER,
 service_name IN NUMBER,
 client_os_user IN NUMBER,
 client_program IN NUMBER,
 client_machine IN NUMBER,
 module_name IN NUMBER,
 module_name_action IN NUMBER,
 service_module IN NUMBER,
 service_module_action IN NUMBER);

Parameters

Table 119-15 SET_CONSUMER_GROUP_MAPPING_PRI Procedure Parameters

	Parameters	Description
	
explicit

	
Priority of the explicit mapping

	
oracle_user

	
Priority of the Oracle user name mapping

	
service_name

	
Priority of the client service name mapping

	
client_os_user

	
Priority of the client operating system user name mapping

	
client_program

	
Priority of the client program mapping

	
client_machine

	
Priority of the client machine mapping

	
module_name

	
Priority of the application module name mapping

	
module_name_action

	
Priority of the application module name and action mapping

	
service_module

	
Priority of the service name and application module name mapping

	
module_name_action

	
Priority of the service name, application module name, and application action mapping

Usage Notes

	
This procedure requires that you include the pseudo-attribute explicit as an argument. It must be set to 1. It indicates that explicit consumer group switches have the highest priority. You explicitly switch consumer groups with these package procedures:

	
DBMS_SESSION.SWITCH_CURRENT_CONSUMER_GROUP

	
DBMS_RESOURCE_MANAGER.SWITCH_CONSUMER_GROUP_FOR_SESS

	
DBMS_RESOURCE_MANAGER.SWITCH_CONSUMER_GROUP_FOR_USER

	
Each priority value must be a unique integer from 1 to 10. Together, they establish an ordering where 1 is the highest priority and 10 is the lowest.

SET_INITIAL_CONSUMER_GROUP Procedure

	
Note:

This procedure is deprecated in Release 11gR1. While the procedure remains available in the package, Initial Consumer Group is set by the session-to-consumer group mapping rules.

The initial consumer group of a user is the consumer group to which any session created by that user initially belongs. This procedure sets the initial resource consumer group for a user.

Syntax

DBMS_RESOURCE_MANAGER.SET_INITIAL_CONSUMER_GROUP (
 user IN VARCHAR2,
 consumer_group IN VARCHAR2);

Parameters

Table 119-16 SET_INITIAL_CONSUMER_GROUP Procedure Parameters

	Parameters	Description
	
user

	
Name of the user

	
consumer_group

	
User's initial consumer group

Usage Notes

	
The ADMINISTER_RESOURCE_MANAGER or the ALTER USER system privilege are required to be able to execute this procedure. The user, or PUBLIC, must be directly granted switch privilege to a consumer group before it can be set to be the user's initial consumer group. Switch privilege for the initial consumer group cannot come from a role granted to that user.

	
Note:

These semantics are similar to those for ALTER USER DEFAULT ROLE.

	
If the initial consumer group for a user has never been set, then the user's initial consumer group is automatically the consumer group: DEFAULT_CONSUMER_GROUP.

	
DEFAULT_CONSUMER_GROUP has switch privileges granted to PUBLIC; therefore, all users are automatically granted switch privilege for this consumer group. Upon deletion of a consumer group, all users having the deleted group as their initial consumer group now have DEFAULT_CONSUMER_GROUP as their initial consumer group. All currently active sessions belonging to a deleted consumer group are switched to DEFAULT_CONSUMER_GROUP.

SUBMIT_PENDING_AREA Procedure

This procedure submits pending changes for the resource manager. It clears the pending area after validating and committing the changes (if valid).

	
Note:

A call to SUBMIT_PENDING_AREA may fail even if VALIDATE_PENDING_AREA succeeds. This may happen if a plan being deleted is loaded by an instance after a call to VALIDATE_PENDING_AREA, but before a call to SUBMIT_PENDING_AREA.

Syntax

DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA;

SWITCH_CONSUMER_GROUP_FOR_SESS Procedure

This procedure changes the resource consumer group of a specific session. It also changes the consumer group of any (PQ) slave sessions that are related to the top user session.

Syntax

DBMS_RESOURCE_MANAGER.SWITCH_CONSUMER_GROUP_FOR_SESS (
 session_id IN NUMBER,
 session_serial IN NUMBER,
 consumer_group IN VARCHAR2);

Parameters

Table 119-17 SWITCH_CONSUMER_GROUP_FOR_SESS Procedure Parameters

	Parameter	Description
	
session_id

	
SID column from the view V$SESSION

	
session_serial

	
SERIAL# column from view V$SESSION.

	
consumer_group

	
Name of the consumer group to which to switch

SWITCH_CONSUMER_GROUP_FOR_USER Procedure

This procedure changes the resource consumer group for all sessions with a given user ID. It also changes the consumer group of any (PQ) slave sessions that are related to the top user session.

Syntax

DBMS_RESOURCE_MANAGER.SWITCH_CONSUMER_GROUP_FOR_USER (
 user IN VARCHAR2,
 consumer_group IN VARCHAR2);

Parameters

Table 119-18 SWITCH_CONSUMER_GROUP_FOR_USER Procedure Parameters

	Parameter	Description
	
user

	
Name of the user

	
consumer_group

	
Name of the consumer group to which to switch

Usage Notes

	
The SWITCH_CONSUMER_GROUP_FOR_SESS Procedure and the SWITCH_CONSUMER_GROUP_FOR_USER procedures let you raise or lower the allocation of CPU resources of certain sessions or users. This provides a functionality similar to the nice command on UNIX.

	
These procedures cause the session to be moved into the newly specified consumer group immediately.

SWITCH_PLAN Procedure

This procedure sets the current resource manager plan.

Syntax

DBMS_RESOURCE_MANAGER.SWITCH_PLAN(
 plan_name IN VARCHAR2,
 sid IN VARCHAR2 DEFAULT '*',
 allow_scheduler_plan_switches IN BOOLEAN DEFAULT TRUE);

Parameters

Table 119-19 SWITCH_PLAN Procedure Parameters

	Parameter	Description
	
plan_name

	
Name of the plan to which to switch. Passing in an empty string ('') for the plan_name, disables the resource manager

	
sid

	
The sid parameter is relevant only in an Oracle Real Application Clusters environment. This parameter lets you change the plan for a particular instance. Specify the sid of the instance where you want to change the plan. Or specify '*' if you want Oracle to change the plan for all instances.

	
allow_scheduler_plan_switches

	
FALSE - disables automated plan switches by the job scheduler at window boundaries. To reenable automated plan switches, switch_plan must be called again by the administrator with allow_scheduler_plan_switches set to TRUE. By default automated plan switches by the job scheduler are enabled.

UPDATE_CATEGORY Procedure

This procedure updates an existing resource consumer group category.

Syntax

DBMS_RESOURCE_MANAGER.UPDATE_CATEGORY (
 category IN VARCHAR2,
 new_comment IN VARCHAR2 DEFAULT NULL);

Parameters

Table 119-20 UPDATE_CATEGORY Procedure Parameters

	Parameter	Description
	
category

	
Name of consumer group category

	
new_comment

	
User's comment

UPDATE_CONSUMER_GROUP Procedure

This procedure updates entries which define resource consumer groups.

Syntax

DBMS_RESOURCE_MANAGER.UPDATE_CONSUMER_GROUP (
 consumer_group IN VARCHAR2,
 new_comment IN VARCHAR2 DEFAULT NULL,
 new_cpu_mth IN VARCHAR2 DEFAULT NULL,
 new_mgmt_mth IN VARCHAR2 DEFAULT NULL,
 new_category IN VARCHAR2 DEFAULT NULL);

Parameters

Table 119-21 UPDATE_CONSUMER_GROUP Procedure Parameter

	Parameter	Description
	
consumer_group

	
Name of consumer group

	
new_comment

	
New user's comment

	
new_cpu_mth

	
Name of new method for CPU resource allocation (deprecated)

	
new_mgmt_mth

	
Name of new method for CPU resource allocation

	
new_category

	
New consumer group category

Usage Notes

If the parameters to the UPDATE_CONSUMER_GROUP procedure are not specified, then they remain unchanged in the data dictionary.

UPDATE_PLAN Procedure

This procedure updates entries which define resource plans.

Syntax

DBMS_RESOURCE_MANAGER.UPDATE_PLAN (
 plan IN VARCHAR2,
 new_comment IN VARCHAR2 DEFAULT NULL,
 new_cpu_mth IN VARCHAR2 DEFAULT NULL, -- deprecated
 new_active_sess_pool_mth IN VARCHAR2 DEFAULT NULL,
 new_parallel_degree_limit_mth IN VARCHAR2 DEFAULT NULL,
 new_queueing_mth IN VARCHAR2 DEFAULT NULL,
 new_mgmt_mth IN VARCHAR2 DEFAULT NULL,
 new_sub_plan IN BOOLEAN DEFAULT FALSE);

Parameters

Table 119-22 UPDATE_PLAN Procedure Parameters

	Parameter	Description
	
plan

	
Name of resource plan

	
new_comment

	
New user's comment

	
new_cpu_mth

	
Name of new allocation method for CPU resources (deprecated)

	
new_active_sess_pool_mth

	
Name of new method for maximum active sessions

	
new_parallel_degree_limit_mth

	
Name of new method for degree of parallelism

	
new_queueing_mth

	
Specifies type of queuing policy to use with active session pool feature

	
new_mgmt_mth

	
Resource allocation method for specifying how much resources (for example, CPU or I/O) each consumer group or sub-plan gets

	
EMPHASIS - for multilevel plans that use percentages to specify how I/O resources are distributed among consumer groups.

	
RATIO - for single-level plans that use ratios to specify how I/O resources are distributed.

	
new_sub_plan

	
New setting for whether the plan is only intended for use as a sub-plan

Usage Notes

	
If the parameters to UPDATE_PLAN Procedure are not specified, then they remain unchanged in the data dictionary.

	
If you want to use any default resource allocation method, then you do not need to specify it when creating or updating a plan.

UPDATE_PLAN_DIRECTIVE Procedure

This procedure updates resource plan directives.

	
Note:

The functionality associated with the new_parallel_target_percentage and new_parallel_queue_timeout parameters is available starting with Oracle Database 11g Release 2 (11.2.0.2).

Syntax

DBMS_RESOURCE_MANAGER.UPDATE_PLAN_DIRECTIVE (
 plan IN VARCHAR2,
 group_or_subplan IN VARCHAR2,
 new_comment IN VARCHAR2 DEFAULT NULL,
 new_cpu_p1 IN NUMBER DEFAULT NULL, -- deprecated
 new_cpu_p2 IN NUMBER DEFAULT NULL, -- deprecated
 new_cpu_p3 IN NUMBER DEFAULT NULL, -- deprecated
 new_cpu_p4 IN NUMBER DEFAULT NULL, -- deprecated
 new_cpu_p5 IN NUMBER DEFAULT NULL, -- deprecated
 new_cpu_p6 IN NUMBER DEFAULT NULL, -- deprecated
 new_cpu_p7 IN NUMBER DEFAULT NULL, -- deprecated
 new_cpu_p8 IN NUMBER DEFAULT NULL, -- deprecated
 new_active_sess_pool_p1 IN NUMBER DEFAULT NULL,
 new_queueing_p1 IN NUMBER DEFAULT NULL,
 new_parallel_degree_limit_p1 IN NUMBER DEFAULT NULL,
 new_switch_group IN VARCHAR2 DEFAULT NULL,
 new_switch_time IN NUMBER DEFAULT NULL,
 new_switch_estimate IN BOOLEAN DEFAULT FALSE,
 new_max_est_exec_time IN NUMBER DEFAULT NULL,
 new_undo_pool IN NUMBER DEFAULT NULL,
 new_max_idle_time IN NUMBER DEFAULT NULL,
 new_max_idle_blocker_time IN NUMBER DEFAULT NULL,
 switch_time_in_call IN NUMBER DEFAULT NULL, -- deprecated
 new_mgmt_p1 IN NUMBER DEFAULT NULL,
 new_mgmt_p2 IN NUMBER DEFAULT NULL,
 new_mgmt_p3 IN NUMBER DEFAULT NULL,
 new_mgmt_p4 IN NUMBER DEFAULT NULL,
 new_mgmt_p5 IN NUMBER DEFAULT NULL,
 new_mgmt_p6 IN NUMBER DEFAULT NULL,
 new_mgmt_p7 IN NUMBER DEFAULT NULL,
 new_mgmt_p8 IN NUMBER DEFAULT NULL,
 new_switch_io_megabytes IN NUMBER DEFAULT NULL,
 new_switch_io_reqs IN NUMBER DEFAULT NULL,
 new_switch_for_call IN BOOLEAN DEFAULT NULL,
 new_max_utilization_limit IN NUMBER DEFAULT NULL,
 new_parallel_target_percentage IN NUMBER DEFAULT NULL,
 new parallel_queue_timeout IN NUMBER DEFAULT NULL);

Parameters

Table 119-23 UPDATE_PLAN_DIRECTIVE Procedure Parameters

	Parameter	Description
	
plan

	
Name of the resource plan

	
group_or_subplan

	
Name of the consumer group or subplan

	
new_comment

	
Comment for the plan directive

	
new_cpu_p1

	
First parameter for the CPU resources allocation method ((deprecated - use new_mgmt_p1 instead)

	
new_cpu_p2

	
Parameter for the CPU resources allocation method ((deprecated - use new_mgmt_p2 instead)

	
new_cpu_p3

	
Parameter for the CPU resources allocation method (deprecated - use new_mgmt_p3 instead)

	
new_cpu_p4

	
Parameter for the CPU resources allocation method (deprecated- use new_mgmt_p4 instead)

	
new_cpu_p5

	
Parameter for the CPU resources allocation method (deprecated - use new_mgmt_p5 instead)

	
new_cpu_p6

	
Parameter for the CPU resources allocation method (deprecated- use new_mgmt_p6 instead)

	
new_cpu_p7

	
Parameter for the CPU resources allocation method (deprecated- use new_mgmt_p7 instead)

	
new_cpu_p8

	
Parameter for the CPU resources allocation method (deprecated- use new_mgmt_p8 instead)

	
new_active_sess_pool_p1

	
Specifies maximum number of concurrently active sessions for a consumer group. Default is NULL, which means unlimited.

	
new_queueing_p1

	
Specified time (in seconds) after which a job in the inactive session queue (waiting for execution) will time out. Default is NULL, which means unlimited.

	
new_parallel_degree_limit_p1

	
Specifies a limit on the degree of parallelism for any operation. Default is NULL, which means unlimited.

	
new_switch_group

	
Specifies consumer group to which this session is switched if other switch criteria are met. Default is NULL. If the group name is 'CANCEL_SQL', the current call will be canceled when other switch criteria are met. If the group name is 'KILL_SESSION', the session will be killed when other switch criteria are met.

	
new_switch_time

	
Specifies time (in CPU seconds) that a session can execute before an action is taken. Default is NULL, which means unlimited.

	
new_switch_estimate

	
If TRUE, tells Oracle to use its execution time estimate to automatically switch the consumer group of an operation before beginning its execution. Default is FALSE.

	
new_max_est_exec_time

	
Specifies the maximum execution time (in CPU seconds) allowed for a session. If the optimizer estimates that an operation will take longer than MAX_EST_EXEC_TIME, the operation is not started and ORA-07455 is issued. If the optimizer does not provide an estimate, this directive has no effect. Default is NULL, which means unlimited.

	
new_undo_pool

	
Limits the size in kilobytes of the undo records corresponding to uncommitted transactions by this consumer group

	
new_max_idle_time

	
Indicates the maximum session idle time. Default is NULL, which means unlimited.

	
new_max_idle_blocker_time

	
Maximum amount of time in seconds that a session can be idle while blocking another session's acquisition of a resource

	
new_switch_time_in_call

	
Deprecated. If this parameter is specified, new_switch_time will be effectively set to new_switch_time_in_call and new_switch_for_call will be effectively set to TRUE.

	
new_mgmt_p1

	
Resource allocation value for level 1 (replaces new_cpu_p1):

	
EMPHASIS - specifies the resource percentage at the first level

	
RATIO - specifies the weight of resource usage

	
new_mgmt_p2

	
Resource allocation value for level 2 (replaces new_cpu_p2)

	
EMPHASIS - specifies the resource percentage at the second level

	
RATIO - non-applicable

	
new_mgmt_p3

	
Resource allocation value for level 3 (replaces new_cpu_p3)

	
EMPHASIS - specifies the resource percentage at the third level

	
RATIO - non-applicable

	
new_mgmt_p4

	
Resource allocation value for level 4 (replaces new_cpu_p4)

	
EMPHASIS - specifies the resource percentage at the fourth level

	
RATIO - non-applicable

	
new_mgmt_p5

	
Resource allocation value for level 5 (replaces new_cpu_p5)

	
EMPHASIS - specifies the resource percentage at the fifth level

	
RATIO - non-applicable

	
new_mgmt_p6

	
Resource allocation value for level 6 (replaces new_cpu_p6)

	
EMPHASIS - specifies the resource percentage at the sixth level

	
RATIO - non-applicable

	
new_mgmt_p7

	
Resource allocation value for level 7 (replaces new_cpu_p7)

	
EMPHASIS - specifies the resource percentage at the seventh level

	
RATIO - non-applicable

	
new_mgmt_p8

	
Resource allocation value for level 8 (replaces new_cpu_p8)

	
EMPHASIS - specifies the resource percentage at the eighth level

	
RATIO - non-applicable

	
new_switch_io_megabytes

	
Specifies the amount of I/O (in MB) that a session can issue before an action is taken. Default is NULL, which means unlimited.

	
new_switch_io_reqs

	
Specifies the number of I/O requests that a session can issue before an action is taken. Default is NULL, which means unlimited.

	
new_switch_for_call

	
Specifies that if an action is taken because of the new_switch_time, new_switch_io_megabytes, or new_switch_io_reqs parameters, the consumer group is restored to its original consumer group at the end of the top call. Default is FALSE, which means that the original consumer group is not restored at the end of the top call.

	
new_max_utilization_limit

	
Specifies the maximum percentage of CPU that this Consumer Group or Sub-Plan can utilize. Valid values are 0% to 100%. To unset the limit, use -1.

	
new_parallel_target_percentage

	
Specifies the maximum percentage of the target number of parallel servers in an Oracle RAC environment a consumer group can use. Any additional parallel statements that are launched from this consumer group will be queued. The default is NULL, which means that the limit is 100% of the target number. Valid values for queuing are in the range of 0 to 100 (%). For updates to the plan directive, the value of -1 will reset the value to NULL.

If a consumer group does not have any parallel statements running within an Oracle RAC database, the first parallel statement is allowed to exceed this limit.

The target number of parallel servers in an Oracle RAC environment is the sum of the parameter parallel_server_target across all instances.

	
new_parallel_queue_timeout

	
Specifies the time (in seconds) that a query may remain in its Consumer Group's parallel statement queue before it is removed and terminated with an error (ORA- 07454).

Usage Notes

	
If the parameters for UPDATE_PLAN_DIRECTIVE are left unspecified, then they remain unchanged in the data dictionary.

	
For new_max_idle_time and new_max_idle_blocker_time, PMON will check these limits once a minute. If it finds a session that has exceeded one of the limits, it will forcibly kill the session and clean up all its state.

	
The parameter new_switch_time_in_call is mostly useful for three-tier applications where the mid-tier server is implementing session pooling. By turning on new_switch_time_in_call, the resource usage of one client will not affect the consumer group of a future client that happens to be executed on the same session.

	
To clear (zero or nullify) any numeric parameter in a resource plan directive, set it to -1 using the UPDATE_PLAN_DIRECTIVE Procedure.

VALIDATE_PENDING_AREA Procedure

This procedure validates pending changes for the resource manager.

Syntax

DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA;

DBMS_RESOURCE_MANAGER_PRIVS

120 DBMS_RESOURCE_MANAGER_PRIVS

The DBMS_RESOURCE_MANAGER_PRIVS package maintains privileges associated with the Resource Manager.

	
See Also:

For more information on using the Database Resource Manager, see Oracle Database Administrator's Guide.

This chapter contains the following topics:

	
Summary of DBMS_RESOURCE_MANAGER_PRIVS Subprograms

Summary of DBMS_RESOURCE_MANAGER_PRIVS Subprograms

Table 120-1 DBMS_RESOURCE_MANAGER_PRIVS Package Subprograms

	Subprogram	Description
	
GRANT_SWITCH_CONSUMER_GROUP Procedure

	
Grants the privilege to switch to resource consumer groups

	
GRANT_SYSTEM_PRIVILEGE Procedure

	
Performs a grant of a system privilege

	
REVOKE_SWITCH_CONSUMER_GROUP Procedure

	
Revokes the privilege to switch to resource consumer groups.

	
REVOKE_SYSTEM_PRIVILEGE Procedure

	
Performs a revoke of a system privilege

GRANT_SWITCH_CONSUMER_GROUP Procedure

This procedure grants the privilege to switch to a resource consumer group.

Syntax

DBMS_RESOURCE_MANAGER_PRIVS.GRANT_SWITCH_CONSUMER_GROUP (
 grantee_name IN VARCHAR2,
 consumer_group IN VARCHAR2,
 grant_option IN BOOLEAN);

Parameters

Table 120-2 GRANT_SWITCH_CONSUMER_GROUP Procedure Parameters

	Parameter	Description
	
grantee_name

	
Name of the user or role to whom privilege is to be granted.

	
consumer_group

	
Name of consumer group.

	
grant_option

	
TRUE if grantee should be allowed to grant access, FALSE otherwise.

Usage Notes

If you grant permission to switch to a particular consumer group to a user, then that user can immediately switch their current consumer group to the new consumer group.

If you grant permission to switch to a particular consumer group to a role, then any users who have been granted that role and have enabled that role can immediately switch their current consumer group to the new consumer group.

If you grant permission to switch to a particular consumer group to PUBLIC, then any user can switch to that consumer group.

If the grant_option parameter is TRUE, then users granted switch privilege for the consumer group may also grant switch privileges for that consumer group to others.

In order to set the initial consumer group of a user, you must grant the switch privilege for that group to the user.

	
See Also:

Chapter 119, "DBMS_RESOURCE_MANAGER"

Examples

BEGIN
DBMS_RESOURCE_MANAGER_PRIVS.GRANT_SWITCH_CONSUMER_GROUP (
 'scott', 'mail_maintenance_group', true);
DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();
DBMS_RESOURCE_MANAGER.set_consumer_group_mapping(
 dbms_resource_manager.oracle_user, 'scott','mail_maintenance_group');
DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();
END;
/

GRANT_SYSTEM_PRIVILEGE Procedure

This procedure performs a grant of a system privilege to a user or role.

Syntax

DBMS_RESOURCE_MANAGER_PRIVS.GRANT_SYSTEM_PRIVILEGE (
 grantee_name IN VARCHAR2,
 privilege_name IN VARCHAR2 DEFAULT 'ADMINISTER_RESOURCE_MANAGER',
 admin_option IN BOOLEAN);

Parameters

Table 120-3 GRANT_SYSTEM_PRIVILEGE Procedure Parameters

	Parameter	Description
	
grantee_name

	
Name of the user or role to whom privilege is to be granted.

	
privilege_name

	
Name of the privilege to be granted.

	
admin_option

	
TRUE if the grant is with admin_option, FALSE otherwise.

Usage Notes

Currently, Oracle provides only one system privilege for the Resource Manager: ADMINISTER_RESOURCE_MANAGER. Database administrators have this system privilege with the ADMIN option. The grantee and the revokee can either be a user or a role. Users that have been granted the system privilege with the ADMIN option can also grant this privilege to others.

Examples

The following call grants this privilege to a user called scott without the ADMIN option:

BEGIN
DBMS_RESOURCE_MANAGER_PRIVS.GRANT_SYSTEM_PRIVILEGE (
 grantee_name => 'scott',
 privilege_name => 'ADMINISTER_RESOURCE_MANAGER',
 admin_option => FALSE);
END;
/

REVOKE_SWITCH_CONSUMER_GROUP Procedure

This procedure revokes the privilege to switch to a resource consumer group.

Syntax

DBMS_RESOURCE_MANAGER_PRIVS.REVOKE_SWITCH_CONSUMER_GROUP (
 revokee_name IN VARCHAR2,
 consumer_group IN VARCHAR2);

Parameters

Table 120-4 REVOKE_SWITCH_CONSUMER_GROUP Procedure Parameter

	Parameter	Description
	
revokee_name

	
Name of user/role from which to revoke access.

	
consumer_group

	
Name of consumer group.

Usage Notes

If you revoke a user's switch privilege for a particular consumer group, then any subsequent attempts by that user to switch to that consumer group will fail.

If you revoke the initial consumer group from a user, then that user will automatically be part of the DEFAULT_CONSUMER_GROUP consumer group when logging in.

If you revoke the switch privilege for a consumer group from a role, then any users who only had switch privilege for the consumer group through that role will not be able to switch to that consumer group.

If you revoke the switch privilege for a consumer group from PUBLIC, then any users who could previously only use the consumer group through PUBLIC will not be able to switch to that consumer group.

Examples

The following example revokes the privileges to switch to mail_maintenance_group from Scott:

BEGIN
DBMS_RESOURCE_MANAGER_PRIVS.REVOKE_SWITCH_CONSUMER_GROUP (
 'scott', 'mail_maintenance_group');
END;
/

REVOKE_SYSTEM_PRIVILEGE Procedure

This procedure performs a revoke of a system privilege from a user or role.

Syntax

DBMS_RESOURCE_MANAGER_PRIVS.REVOKE_SYSTEM_PRIVILEGE (
 revokee_name IN VARCHAR2,
 privilege_name IN VARCHAR2 DEFAULT 'ADMINISTER_RESOURCE_MANAGER');

Parameters

Table 120-5 REVOKE_SYSTEM_PRIVILEGE Procedure Parameters

	Parameter	Description
	
revokee_name

	
Name of the user or role from whom privilege is to be revoked.

	
privilege_name

	
Name of the privilege to be revoked.

Examples

The following call revokes the ADMINISTER_RESOURCE_MANAGER from user scott:

BEGIN
DBMS_RESOURCE_MANAGER_PRIVS.REVOKE_SYSTEM_PRIVILEGE ('scott');
END;
/

DBMS_RESULT_CACHE

121 DBMS_RESULT_CACHE

The DBMS_RESULT_CACHE package provides an interface to allow the DBA to administer that part of the shared pool that is used by the SQL result cache and the PL/SQL function result cache. Both these caches use the same infrastructure. Therefore, for example, DBMS_RESULT_CACHE.BYPASS determines whether both caches are bypassed or both caches are used, and DBMS_RESULT_CACHE.FLUSH flushes both all the cached results for SQL queries and all the cached results for PL/SQL functions.

	
See Also:

	
Oracle Database PL/SQL Language Reference for more information about "Using the Cross-Session PL/SQL Function Result Cache"

	
Oracle Database Performance Tuning Guide for more information about "Result Cache Concepts"

This chapter contains the following topics:

	
Using DBMS_RESULT_CACHE

	
Constants

	
Summary of DBMS_RESULT_CACHE Subprograms

Using DBMS_RESULT_CACHE

	
Constants

Constants

Table 121-1 DBMS_RESULT_CACHE Constants

	Constant	Definition
	
STATUS_BYPS

	
CONSTANT VARCHAR(10) := 'BYPASS';

	
STATUS_DISA

	
CONSTANT VARCHAR(10) := 'DISABLED';

	
STATUS_ENAB

	
CONSTANT VARCHAR(10) := 'ENABLED';

	
STATUS_SYNC

	
CONSTANT VARCHAR(10) := 'SYNC';

Summary of DBMS_RESULT_CACHE Subprograms

Table 121-2 DBMS_RESULT_CACHE Package Subprograms

	Subprogram	Description
	
BYPASS Procedure

	
Sets the bypass mode for the Result Cache

	
FLUSH Function & Procedure

	
Attempts to remove all the objects from the Result Cache, and depending on the arguments retains or releases the memory and retains or clears the statistics

	
INVALIDATE Functions & Procedures

	
Invalidates all the result-set objects that dependent upon the specified dependency object

	
INVALIDATE_OBJECT Functions & Procedures

	
Invalidates the specified result-set object(s)

	
MEMORY_REPORT Procedure

	
Produces the memory usage report for the Result Cache

	
STATUS Function

	
Checks the status of the Result Cache

BYPASS Procedure

This procedure sets the bypass mode for the Result Cache:

	
When bypass mode is turned on, it implies that cached results are no longer used and that no new results are saved in the cache.

	
When bypass mode is turned off, the cache resumes normal operation.

Syntax

DBMS_RESULT_CACHE.BYPASS (
 bypass_mode IN BOOLEAN);

Parameters

Table 121-3 BYPASS Procedure Parameters

	Parameter	Description
	
bypass_mode

	
	
TRUE => Result Cache usage is bypassed

	
FALSE => Result Cache usage is turned on

Usage Notes

This operation is database instance specific.

Examples

This operation can be used when there is a need to hot patch PL/SQL code in a running system. If a code-patch is applied to a PL/SQL module on which a result cached function directly or transitively depends, then the cached results associated with the result cache function are not automatically flushed (if the instance is not restarted/bounced). This must be manually achieved.

To ensure correctness during the patching process follow these steps:

	
Place the result cache in bypass mode, and flush existing result.

BEGIN
 DBMS_RESULT_CACHE.BYPASS(TRUE);
 DBMS_RESULT_CACHE.FLUSH;
END;
/

This step must be performed on each instance if in a Oracle Real Application Clusters environment.

	
Apply the PL/SQL code patches.

	
Resume use of the result cache, by turning off the cache bypass mode.

BEGIN
 DBMS_RESULT_CACHE.BYPASS(FALSE);
END;
/

This step must be performed on each instance if in a Oracle Real Application Clusters environment.

FLUSH Function & Procedure

This function and procedure attempts to remove all the objects from the Result Cache, and depending on the arguments retains or releases the memory and retains or clears the statistics.

Syntax

DBMS_RESULT_CACHE.FLUSH (
 retainMem IN BOOLEAN DEFAULT FALSE,
 retainSta IN BOOLEAN DEFAULT FALSE)
 RETURN BOOLEAN;

DBMS_RESULT_CACHE.FLUSH (
 retainMem IN BOOLEAN DEFAULT FALSE,
 retainSta IN BOOLEAN DEFAULT FALSE);

Parameters

Table 121-4 FLUSH Function & Procedure Parameters

	Parameter	Description
	
retainMem

	
	
TRUE => retains the free memory in the cache

	
FALSE (default) => releases the free memory to the system

	
retainSta

	
	
TRUE => retains the existing cache statistics

	
FALSE (default) => clears the existing cache statistics

Return Values

TRUE if successful in removing all the objects.

INVALIDATE Functions & Procedures

This function and procedure invalidates all the result-set objects that dependent upon the specified dependency object.

Syntax

DBMS_RESULT_CACHE.INVALIDATE (
 owner IN VARCHAR2,
 name IN VARCHAR2)
 RETURN NUMBER;

DBMS_RESULT_CACHE.INVALIDATE (
 owner IN VARCHAR2,
 name IN VARCHAR2);

DBMS_RESULT_CACHE.INVALIDATE (
 object_id IN BINARY_INTEGER)
 RETURN NUMBER;

DBMS_RESULT_CACHE.INVALIDATE (
 object_id IN BINARY_INTEGER);

Parameters

Table 121-5 INVALIDATE Function & Procedure Parameters

	Parameter	Description
	
owner

	
Schema name

	
name

	
Object name

	
object_id

	
Dictionary object number

Return Values

The number of objects invalidated.

INVALIDATE_OBJECT Functions & Procedures

This function and procedure invalidates the specified result-set object(s).

Syntax

DBMS_RESULT_CACHE.INVALIDATE_OBJECT (
 id IN BINARY_INTEGER)
 RETURN NUMBER;

DBMS_RESULT_CACHE.INVALIDATE_OBJECT (
 id IN BINARY_INTEGER);

DBMS_RESULT_CACHE.INVALIDATE_OBJECT (
 cache_id IN VARCHAR2)
 RETURN NUMBER;

DBMS_RESULT_CACHE.INVALIDATE_OBJECT (
 cache_id IN VARCHAR2);

Parameters

Table 121-6 INVALIDATE Function & Procedure Parameters

	Parameter	Description
	
id

	
Address of the cache object in the Result Cache

	
cache_id

	
Cache-id

Return Values

The number of objects invalidated.

MEMORY_REPORT Procedure

This procedure produces the memory usage report for the Result Cache.

Syntax

DBMS_RESULT_CACHE.MEMORY_REPORT (
 detailed IN BOOLEAN DEFAULT FALSE);

Parameters

Table 121-7 MEMORY_REPORT Procedure Parameters

	Parameter	Description
	
detailed

	
	
TRUE => produces a more detailed report

	
FALSE (default) => produces the standard report

Usage Notes

Invoking this procedure from SQL*Plus requires that the serveroutput be turned on.

STATUS Function

This function checks the status of the Result Cache.

Syntax

DBMS_RESULT_CACHE.STATUS
 RETURN VARCHAR2;

Return Values

One of the following values:

	
STATUS_DISA - Cache is not available

	
STATUS_ENAB - Cache is available

	
STATUS_BYPS: Cache has been made temporarilyunavailable.

	
STATUS_SYNC - Cache is available, but synchronizing with Oracle RAC nodes

DBMS_RESUMABLE

122 DBMS_RESUMABLE

With the DBMS_RESUMABLE package, you can suspend large operations that run out of space or reach space limits after executing for a long time, fix the problem, and make the statement resume execution. In this way you can write applications without worrying about running into space-related errors.

This chapter contains the following topics:

	
Using DBMS_RESUMABLE

	
Operational Notes

	
Summary of DBMS_RESUMABLE Subprograms

Using DBMS_RESUMABLE

	
Operational Notes

Operational Notes

When you suspend a statement, you should log the suspension in the alert log. You should also register a procedure to be executed when the statement is suspended. Using a view, you can monitor the progress of the statement and indicate whether the statement is currently executing or suspended.

Suspending a statement automatically results in suspending the transaction. Thus all transactional resources are held during a statement suspend and resume. When the error condition disappears, the suspended statement automatically resumes execution. A resumable space allocation can be suspended and resumed multiple times during execution.

A suspension timeout interval is associated with resumable space allocations. A resumable space allocation that is suspended for the timeout interval (the default is two hours) wakes up and returns an exception to the user. A suspended statement may be forced to throw an exception using the DBMS_RESUMABLE.ABORT() procedure.

Summary of DBMS_RESUMABLE Subprograms

Table 122-1 DBMS_RESUMABLE Package Subprograms

	Subprogram	Description
	
ABORT Procedure

	
Aborts a suspended resumable space allocation

	
GET_SESSION_TIMEOUT Function

	
Returns the current timeout value of the resumable space allocations for a session with session_id

	
GET_TIMEOUT Function

	
Returns the current timeout value of resumable space allocations for the current session

	
SET_SESSION_TIMEOUT Procedure

	
Sets the timeout of resumable space allocations for a session with session_id

	
SET_TIMEOUT Procedure

	
Sets the timeout of resumable space allocations for the current session

	
SPACE_ERROR_INFO Function

	
Looks for space-related errors in the error stack, otherwise returning FALSE

ABORT Procedure

This procedure aborts a suspended resumable space allocation. The parameter session_id is the session ID in which the statement is executed. For a parallel DML/DDL, session_id is any session ID that participates in the parallel DML/DDL. This operation is guaranteed to succeed. The procedure can be called either inside or outside of the AFTER SUSPEND trigger.

Syntax

DBMS_RESUMABLE.ABORT (
 session_id IN NUMBER);

Parameters

Table 122-2 ABORT Procedure Parameters

	Parameter	Description
	
session_id

	
The session identifier of the resumable space allocation.

Usage Notes

To call an ABORT procedure, you must be the owner of the session with session_id, have ALTER SYSTEM privileges, or be a DBA.

GET_SESSION_TIMEOUT Function

This function returns the current timeout value of resumable space allocations for a session with session_id.

Syntax

DBMS_RESUMABLE.GET_SESSION_TIMEOUT (
 session_id IN NUMBER)
RETURN NUMBER;

Parameters

Table 122-3 GET_SESSION_TIMEOUT Function Parameters

	Parameter	Description
	
session_id

	
The session identifier of the resumable space allocation.

Return Values

Table 122-4 GET_SESSION_TIMEOUT Function Return Values

	Return Value	Description
	
NUMBER

	
The current timeout value of resumable space allocations for a session with session_id.The timeout is returned in seconds.

Usage Notes

If session_id does not exist, the GET_SESSION_TIMEOUT function returns -1.

GET_TIMEOUT Function

This function returns the current timeout value of resumable space allocations for the current session.

Syntax

DBMS_RESUMABLE.GET_TIMEOUT
 RETURN NUMBER;

Return Values

Table 122-5 GET_TIMEOUT Function Return Values

	Return Value	Description
	
NUMBER

	
The current timeout value of resumable space allocations for the current session. The returned value is in seconds.

Usage Notes

If the current session is not resumable enabled, the GET_TIMEOUT function returns -1.

SET_SESSION_TIMEOUT Procedure

This procedure sets the timeout of resumable space allocations for a session with session_id. The new timeout setting applies to the session immediately. If session_id does not exist, no operation occurs.

Syntax

DBMS_RESUMABLE.SET_SESSION_TIMEOUT (
 session_id IN NUMBER,
 timeout IN NUMBER);

Parameters

Table 122-6 SET_SESSION_TIMEOUT Procedure Parameters

	Parameter	Description
	
session_id

	
The session identifier of the resumable space allocation.

	
timeout

	
The timeout of the resumable space allocation.

SET_TIMEOUT Procedure

This procedure sets the timeout of resumable space allocations for the current session. The new timeout setting applies to the session immediately.

Syntax

DBMS_RESUMABLE.SET_TIMEOUT (
 timeout IN NUMBER);

Parameters

Table 122-7 SET_TIMEOUT Procedure Parameters

	Parameter	Description
	
timeout

	
The timeout of the resumable space allocation.

SPACE_ERROR_INFO Function

This function looks for space-related errors in the error stack. If it cannot find a space related error, it will return FALSE. Otherwise, TRUE is returned and information about the particular object that causes the space error is returned.

Syntax

DBMS_RESUMABLE.SPACE_ERROR_INFO
 error_type OUT VARCHAR2,
 object_type OUT VARCHAR2,
 object_owner OUT VARCHAR2,
 table_space_name OUT VARCHAR2,
 object_name OUT VARCHAR2,
 sub_object_name OUT VARCHAR2)
RETURN BOOLEAN;

Parameters

Table 122-8 SPACE_ERROR_INFO Function Parameters

	Parameter	Description
	
error_type

	
The space error type. It will be one of the following:

	
NO MORE SPACE

	
MAX EXTENTS REACHED

	
SPACE QUOTA EXCEEDED

	
object_type

	
The object type. It will be one of the following:

	
TABLE

	
INDEX

	
CLUSTER

	
TABLE SPACE

	
ROLLBACK SEGMENT

	
UNDO SEGMENT

	
LOB SEGMENT

	
TEMP SEGMENT

	
INDEX PARTITION

	
TABLE PARTITION

	
LOB PARTITION

	
TABLE SUBPARTITION

	
INDEX SUBPARTITION

	
LOB SUBPARTITION

The type can also be NULL if it does not apply.

	
object_owner

	
The owner of the object. NULL if it cannot be determined.

	
table_space_name

	
The table space where the object resides. NULL if it cannot be determined.

	
object_name

	
The name of rollback segment, temp segment, table, index, or cluster.

	
sub_object_name

	
The partition name or sub-partition name of LOB, TABLE, or INDEX. NULL if it cannot be determined.

DBMS_RLMGR

123 DBMS_RLMGR

	
Note:

This functionality is deprecated with Oracle Database Release 11.2 and obsoleted with Release 12.1. For details regarding obsolescence, seeMy Oracle Support Note ID 1244535.1

The DBMS_RLMGR package contains various procedures to create and manage rules and rule sessions by the Rules Manager.

	
See Also:

Oracle Database Rules Manager and Expression Filter Developer's Guide for more information.

This chapter contains the following topic:

	
Using DBMS_RLMGR

	
Summary of Rules Manager Subprograms

Using DBMS_RLMGR

This section contains topics that relate to using the Rules Manager DBMS_RLMGR package.

	
Security Model

Security Model

The Oracle Database installation runs the catrul.sql script to load the DBMS_RLMGR package and create the required Rules Manager schema objects in the EXFSYS Schema.

DBMS_RLMGR is an EXFSYS-owned package compiled with AUTHID CURRENT_USER. Any DBMS_RLMGR subprogram called from an anonymous PL/SQL block is run using the privileges of the current user.

A user must be granted CONNECT and RESOURCE roles, EXECUTE privilege on DBMS_LOCK, and CREATE VIEW privilege to use this package.

For successful creation of a rule class, you must have sufficient privileges to create views, object types, tables, packages, and procedures.

The owner of the rule class always has privileges to drop a rule class, process rules in a rule class, add rules and delete rules from a rules class. Only the owner of the rule class can drop a rule class and this privilege cannot be granted to another user. Rule class privileges cannot be revoked from the owner of the rule class.

A user who is not the owner of the rule class must be granted appropriate types of privileges to perform certain tasks. The types of privileges that can be granted are:

	
PROCESS RULES: A user with PROCESS RULES privilege on a rule class can process the rules in the rule class using the PROCESS_RULES procedure or the ADD_EVENT procedure. Also, the user with this privilege can select from the corresponding rule class results view.

	
ADD RULE: A user with ADD RULE privilege on a rule class can add rules to a rule class. Alternatively, the owner of the rule class can grant the INSERT privilege on one rule class table to other users.

	
DELETE RULE: A user with DELETE RULE privilege on a rule class can delete rules from a rule class. Alternatively, the owner of the rule class can grant the DELETE privilege on one rule class table to other users.

	
ALL: Granting the ALL privilege on a rule class is equivalent to granting all the above privileges on the rule class to the user.

A user must have the EXECUTE privilege on the primitive event types associated with a rule class before that user can make use of the corresponding rule class results view.

The owner of the rule class can add the rules using SQL INSERT statement on the rule class table (that shares the same name as the rule class). Note that the owner of the rule class can also grant direct DML privileges on the rule class table to other users. When you use the schema extended name for the rule class, the user must have the ADD RULE privilege on the rule class to add a rule to the rule class.

The owner of the rule class can use an SQL DELETE statement on one rule class table to delete a rule. When you use the schema extended name for the rule class, the user must have the DELETE RULE privilege on the rule class.

When the schema extended name is used for the rule class, the user must have PROCESS RULES privilege on the rule class.

A user must have EXECUTE privilege on the CTX_DDL package for successful synchronization of the text indexes using the DBMS_RLMGR.SYNC_TEXT_INDEXES procedure.

The USER_RLMGR_PRIVILEGES view lists privileges of the current user for the rule classes.

Summary of Rules Manager Subprograms

Table 123-1 describes the subprograms in the DBMS_RLMGR package.

All the values and names passed to the procedures defined in the DBMS_RLMGR package are case insensitive unless otherwise mentioned. To preserve the case, enclose the values with double quotation marks.

Table 123-1 DBMS_RLMGR Package Subprograms

	Subprogram	Description
	
ADD_ELEMENTARY_ATTRIBUTE Procedures

	
Adds the specified attribute to the event structure and the Expression Filter attribute set

	
ADD_EVENT Procedure

	
Adds an event to a rule class in an active session

	
ADD_FUNCTIONS Procedure

	
Adds a Function, a Type, or a Package to the approved list of functions with an event structure and to the Expression Filter attribute set

	
ADD_RULE Procedure

	
Adds a rule to the rule class

	
CONDITION_REF Function

	
Retrieves the primitive rule condition reference from a rule condition for composite events

	
CONSUME_EVENT Function

	
Consumes an event using its identifiers and prepares the corresponding rule for action execution

	
CONSUME_PRIM_EVENTS Function

	
Consumes one or more primitive events with all or none semantics

	
CREATE_CONDITIONS_TABLE Procedure

	
Creates a repository for the primitive rule conditions that can be shared by multiple rules from the same or different rule classes

	
CREATE_EVENT_STRUCT Procedure

	
Creates an event structure

	
CREATE_EXPFIL_INDEXES Procedure

	
Creates expression filter indexes for the rule class if the default indexes have been dropped

	
CREATE_INTERFACE Procedure

	
Creates a rule class interface package to directly operate on the rule class

	
CREATE_RULE_CLASS Procedure

	
Creates a rule class

	
DELETE_RULE Procedure

	
Deletes a rule from a rule class

	
DROP_CONDITIONS_TABLE Procedure

	
Drops the conditions table

	
DROP_EVENT_STRUCT Procedure

	
Drops an event structure

	
DROP_EXPFIL_INDEXES Procedure

	
Drops Expression Filter indexes for the rule conditions

	
DROP_INTERFACE Procedure

	
Drops the rule class interface package

	
DROP_RULE_CLASS Procedure

	
Drops a rule class

	
EXTEND_EVENT_STRUCT Procedure

	
Adds an attribute to the primitive event structure

	
GET_AGGREGATE_VALUE Function

	
Retrieves the aggregate value computed for a collection event

	
GRANT_PRIVILEGE Procedure

	
Grants a privilege on a rule class to another user

	
PROCESS_RULES Procedure

	
Process the rules for a given event

	
PURGE_EVENTS Procedure

	
Resets the rule class by removing all the events associated with the rule class and purging any state information pertaining to rules matching some events

	
RESET_SESSION Procedure

	
Starts a new rule session within a database session

	
REVOKE_PRIVILEGE Procedure

	
Revokes a privilege on a rule class from a user

	
SYNC_TEXT_INDEXES Procedure

	
Synchronizes the indexes defined to process the predicates involving the CONTAINS operator in rule conditions

ADD_ELEMENTARY_ATTRIBUTE Procedures

This procedure adds the specified attribute to an event structure, which is also the Expression Filter attribute set. The procedure is overloaded. The different functionality of each form of syntax is presented along with the definitions.

Syntax

Adds the specified elementary attribute to the attribute set:

DBMS_RLMGR.ADD_ELEMENTARY_ATTRIBUTE (
 event_struct IN VARCHAR2,
 attr_name IN VARCHAR2,
 attr_type IN VARCHAR2,
 attr_defvl IN VARCHAR2 default NULL);

Identifies the elementary attributes that are table aliases and adds them to the event structure:

DBMS_RLMGR.ADD_ELEMENTARY_ATTRIBUTE (
 event_struct IN VARCHAR2,
 attr_name IN VARCHAR2,
 tab_alias IN rlm$table_alias);

Allows addition of text attributes to the attribute set:

DBMS_RLMGR.ADD_ELEMENTARY_ATTRIBUTE (
 event_struct IN VARCHAR2,
 attr_name IN VARCHAR2,
 attr_type IN VARCHAR2,
 text_pref IN EXF$TEXT);

Parameters

Table 123-2 ADD_ELEMENTARY_ATTRIBUTE Procedure Parameters

	Parameter	Description
	
event_struct

	
Name of the event structure or attribute set to which this attribute is added

	
attr_name

	
Name of the elementary attribute to be added. No two attributes in a set can have the same name.

	
attr_type

	
Datatype of the attribute. This argument accepts any standard SQL datatype or the name of an object type that is accessible to the current user.

	
tab_alias

	
The type that identifies the database table to which the attribute is aliased

	
attr_defv1

	
Default value for the elementary attribute

	
text_pref

	
Text preferences such as LEXER and WORDLIST specification

Usage Notes

	
This procedure adds an elementary attribute to an event structure. The event structure is internally managed as the Expression Filter attribute set. If the event structure was originally created from an existing object type, then additional attributes cannot be added.

Elementary attributes cannot be added to an attribute set that is already assigned to a column storing expressions, which is equivalent to an event structure that is used for a rule class.

	
One or more, or all elementary attributes in an attribute set can be table aliases. If an elementary attribute is a table alias, then the value assigned to the elementary attribute is a ROWID from the corresponding table. An attribute set with one or more table alias attributes cannot be created from an existing object type. For more information about table aliases, see Oracle Database Rules Manager and Expression Filter Developer's Guide.

	
You cannot add elementary attributes to an attribute set that is already assigned to a column storing expressions.

	
See the section on defining attribute sets in Oracle Database Rules Manager and Expression Filter Developer's Guide for more information about adding elementary attributes.

	
Related views: USER_EXPFIL_ATTRIBUTE_SETS and USER_EXPFIL_ATTRIBUTES.

	
This procedure with a text preference bound to the text_pref argument creates a text attribute in the attribute set. The data type for such an attribute should be a VARCHAR2 or a CLOB. The preferences specified for a text attribute are used to process the predicates involving CONTAINS operator on the attributes. The valid preferences are those that are valid in the PARAMETERS clause of CTXRULE index creation. See Oracle Text Application Developer's Guide for the syntax.

Examples

The following command adds two elementary attributes to an attribute set:

BEGIN
 DBMS_RLMGR.ADD_ELEMENTARY_ATTRIBUTE (
 EVENT_STRUCT => 'HRAttrSet',
 ATTR_NAME => 'HRREP',
 attr_type => 'VARCHAR2');
 DBMS_RLMGR.ADD_ELEMENTARY_ATTRIBUTE (
 EVENT_STRUCT => 'HRAttrSet',
 ATTR_NAME => 'DEPT',
 TAB_ALIAS => RLM$TABLE_ALIAS('DEPT'));
END;

The following commands create an attribute set with each hotel reservation including some additional information, described as the AddlInfo attribute of CLOB data type. Rule conditions specified for this event structure can include text predicates on this attribute.

BEGIN
 DBMS_RLMGR.CREATE_EVENT_STRUCT (EVENT_STRUCT => 'AddFlight');
 DBMS_RLMGR.ADD_ELEMENTARY_ATTRIBUTE (
 EVENT_STRUCT => 'AddHotel',
 ATTR_NAME => 'CustId',
 ATTR_TYPE => 'NUMBER');
 DBMS_RLMGR.ADD_ELEMENTARY_ATTRIBUTE (
 EVENT_STRUCT => 'AddHotel',
 ATTR_NAME => 'Type',
 ATTR_TYPE => 'VARCHAR2(20)');
 . . .
 DBMS_RLMGR.ADD_ELEMENTARY_ATTRIBUTE (
 EVENT_STRUCT => 'AddHotel',
 ATTR_NAME => 'AddlInfo',
 ATTR_TYPE => 'CLOB',
 TEXT_PREF => EXF$TEXT('LEXER hotelreserv_lexer'));
END;

ADD_EVENT Procedure

This procedure adds a primitive event to a rule class in an active rule session. The procedure is overloaded. The different functionality of each form of syntax is presented along with the definitions.

Syntax

Adds a string representation of the primitive event instance to a rule class:

DBMS_RLMGR.ADD_EVENT (
 rule_class IN VARCHAR2,
 event_inst IN VARCHAR2,
 event_type IN VARCHAR2 default null);

Adds an AnyData representation of the primitive event instance to a rule class:

DBMS_RLMGR.ADD_EVENT (
 rule_class IN VARCHAR2,
 event_inst IN sys.AnyData);

Parameters

Table 123-3 ADD_EVENT Procedure Parameters

	Parameter	Description
	
rule_class

	
Name of the rule class. A schema extended rule class name can be used to refer to a rule class that does not belong to the current schema.

	
event_inst

	
String or AnyData representation of the event instance being added to the rule class

	
event_type

	
Type of event instance assigned to the event_inst argument when the string representation of the event instance is used for a rule class configured for composite events

Usage Notes

	
This procedure is used to add a primitive or a simple event to a rule class within an active rule session. By default, a rule session is the same as the database session. Optionally, multiple (sequential) rule sessions can be started within a database session by using the RESET_SESSION or PROCESS_RULES procedures.

	
When the rule class is configured for simple events (consisting of only one primitive event structure), the event_type argument for the ADD_EVENT procedure can be ignored. Also, when the AnyData format of the event instance is passed, the event type information is embedded in the AnyData instance. In all other cases, the name of the primitive event structure being added to the rule class should be assigned to the event_type argument.

	
For a valid event instance, the ADD_EVENT procedure processes the rules in the rule class and captures the results in the rule class results view (configured at the time of rule class creation). These results are preserved until the end of the rule session.When schema extended name is used for the rule class, you should have PROCESS RULES privilege on the rule class. See the GRANT_PRIVILEGE Procedure for additional information. The value specified for the event_type argument is always resolved in the rule class owner's schema and should not use schema extended names. When a composite event structure is configured with a table alias primitive event type, the name of the corresponding table should be assigned to the event_type argument.

Examples

The following commands add two events to the CompTravelPromo rule class that is configured for two types of primitive events (AddFlight and AddRentalCar).

BEGIN
 DBMS_RLMGR.ADD_EVENT(rule_class => 'CompTravelPromo',
 event_inst =>
 AddFlight.getVarchar(987, 'Abcair', 'Boston',
 'Orlando', '01-APR-2003', '08-APR-2003'),
 event_type => 'AddFlight');

DBMS_RLMGR.ADD_EVENT(rule_class => 'Scott.CompTravelPromo',
 event_inst =>
 AnyData.convertObject(
 AddRentalCar(987, 'Luxury', '03-APR-2003',
 '08-APR-2003', NULL)));
END;/

ADD_FUNCTIONS Procedure

This procedure adds a user-defined function, package, or type representing a set of functions to the event structure, which is also the Expression Filter attribute set.

Syntax

DBMS_RLMGR.ADD_FUNCTIONS (
 event_struct IN VARCHAR2,
 funcs_name IN VARCHAR2);

Parameters

Table 123-4 ADD_FUNCTIONS Procedure Parameters

	Parameter	Description
	
event_struct

	
Name of the event structure to which the functions are added

	
funcs_name

	
Name of a function, package, or type (representing a function set) or its synonyms

Usage Notes

	
By default, an attribute set implicitly allows references to all Oracle Database-supplied SQL functions for use in the rule conditions. If the expression set refers to a user-defined function, the expression set must be explicitly added to the attribute set.

	
The ADD_FUNCTIONS procedure adds a user-defined function or a package (or type) representing a set of functions to the attribute set. Any new or modified expressions are validated using this list.

	
You can specify the function or the package name with a schema extension. If you specify a function name without a schema extension, only such references in the rule condition are considered valid. You can restrict the conditional expression to use a synonym to a function or a package by adding the corresponding synonym to the attribute set. This preserves the portability of the expression set to other schemas.

	
See the section on defining attribute sets in Oracle Database Rules Manager and Expression Filter Developer's Guide for more information about adding functions to an attribute set.

	
Related views: USER_EXPFIL_ATTRIBUTE_SETS and USER_EXPFIL_ASET_FUNCTIONS

Examples

The following command adds two functions to the attribute set:

BEGIN
 DBMS_RLMGR.ADD_FUNCTIONS (attr_set => 'Car4Sale',
 funcs_name => 'HorsePower');
 DBMS_RLMGR.ADD_FUNCTIONS (attr_set => 'Car4Sale',
 funcs_name => 'Scott.CrashTestRating');
END;
/

ADD_RULE Procedure

This procedure adds new rules to a rule class.

Syntax

DBMS_RLMGR.ADD_RULE (
 rule_class IN VARCHAR2,
 rule_id IN VARCHAR2,
 rule_cond IN VARCHAR2,
 actprf_nml IN VARCHAR2 DEFAULT NULL,
 actprf_vall IN VARCHAR2 DEFAULT NULL);

Parameters

Table 123-5 ADD_RULE Procedure Parameters

	Parameter	Description
	
rule_class

	
Name of the rule class. A schema extended rule class name can be used to refer to a rule class that does not belong to the current schema.

	
rule_id

	
Unique identifier for the rule within the rule class

	
rule_cond

	
The condition for the rule. The condition uses the variables defined in the rule class's event structure.

	
actprf_nml

	
The list of action preference names for which values will be assigned through the actprf_vall argument

	
actprf_vall

	
The list of action preference values for the names list assigned to the actprf_nml argument

Usage Notes

	
This procedure is used to add new rules to the rule class. The rule condition passed to the ADD_RULE procedure is validated using the event structure associated with the rule class. The action preferences names list is a subset of action preference categories configured during rule class creation.

	
When schema extended name is used for the rule class, you should have ADD RULE privilege on the rule class. See the GRANT_PRIVILEGE Procedure for more information.

	
Alternately, the owner of the rule class can add the rules using SQL INSERT statement on the rule class table (that shares the same name as the rule class). Note that the owner of the rule class can also grant direct DML privileges on the rule class table to other users.

	
Note:

The AUTOCOMMIT property of the rule class is ignored if the new rules are added using the SQL INSERT statement instead of the ADD_RULE procedure.

	
See the CREATE_RULE_CLASS Procedure procedure for the structure of the rule class table.

Examples

The following command adds a rule to the rule class.

BEGIN
DBMS_RLMGR.ADD_RULE (
 rule_class => 'CompTravelPromo',
 rule_id => 'AB_AV_FL',
 rule_cond =>
 '<condition>
 <and join="Flt.CustId = Car.CustId">
 <object name="Flt">
 Airline=''Abcair'' and ToCity=''Orlando''
 </object>
 <object name="Car">
 CarType = ''Luxury''
 </object>
 </and>
 </condition>' ,
 actprf_nml => 'PromoType, OfferedBy',
 actprf_vall => '''RentalCar'', ''Acar''');
END;

With proper privileges, the following SQL INSERT statement can be used to add the rule to the rule class.

INSERT INTO CompTravelPromo (rlm$ruleid, rlm$rulecond, PromoType, OfferedBy)
 VALUES ('AB_AV_FL',
 '<condition>
 <and join="Flt.CustId = Car.CustId">
 <object name="Flt">
 Airline=''Abcair'' and ToCity=''Orlando''
 </object>
 <object name="Car">
 CarType = ''Luxury''
 </object>
 </and>
 </condition>',
 'RentalCar','Acar');

CONDITION_REF Function

This function retrieves the primitive rule condition reference from a rule condition for composite events.

Syntax

DBMS_RLMGR.CONDITION_REF (
 rule_cond IN VARCHAR2,
 eventnm IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Table 123-6 CONDITION_REF Function Parameters

	Parameter	Description
	
rule_cond

	
Rule condition in XML format

	
eventnm

	
Name of the event for which the reference should be retrieved

Usage Notes

	
For a rule condition in XML format, with a root <condition> element, this function retrieves the reference to a shared conditional expression on a particular primitive event.

	
Use this function in a query operating on the rule class table to find all the references to a given primitive rule condition. To speed-up such queries, one or more functional indexes are defined on the rlm$rulecond column of the rule class table using this function signature. In order to make use of the index for a lookup query, the value assigned to the eventnm argument should be case sensitive.

Examples

The following command joins the rule class table with the primitive conditions table to identify all the rule conditions that have references to the shareable primitive conditions (the query uses a functional index defined on the rlm$rulecond column). This query identifies all the rule conditions that refer to any shared conditions stored in the FlightConditions table.

select ctp.rlm$ruleid from CompTravelPromo ctp, FlightConditions fc
where dbms_rlmgr.condition_ref(ctp.rlm$rulecond, 'FLT') = fc.rlm$condid;

CONSUME_EVENT Function

This function consumes an event and prepares the corresponding rule for action execution. This is required only when the action (or rule execution) is carried by the user's application and not in the callback.

Syntax

DBMS_RLMGR.CONSUME_EVENT (
 rule_class IN VARCHAR2,
 event_ident IN VARCHAR2)
 RETURN NUMBER;

Parameters

Table 123-7 CONSUME_EVENT Function Parameters

	Parameter	Description
	
rule_class

	
Name of the rule class. A schema extended rule class name can be used to refer to a rule class that does not belong to the current schema.

	
event_ident

	
Event identifier obtained from the corresponding rule class results view (or arguments of the action callback procedure in the case of rule class configured for RULE based consumption policy)

Returns

The function returns:

	
1 -- If the event is successfully consumed.

	
0 -- If the event is expired (owing to duration policy) or consumed by another session prior to this call.

Usage Notes

	
When an EXCLUSIVE consumption policy is set for the events in a rule class, an event must be deleted from the system immediately after the rule it matched is executed (action is executed). When the rule action is carried in the rule class callback procedure by calling the PROCESS_RULES procedure, the rule manager automatically handles the consumption of the events. However, when you request the results from matching events with rules in a rule class results view using the ADD_EVENT procedure, you should take appropriate action to indicate the exact rule-event combination that is to be used for rule execution. The CONSUME_EVENT function performs the required housekeeping services when the unique identifier for the event used in a rule execution is passed in.

	
Because there could be a time lag between fetching the rule class matching results and the execution of the user initiated action, the application must execute the action only if the CONSUME_EVENT call succeeds in consuming the event. This avoids any race condition with parallel sessions trying to consume the same events. When the event is successfully consumed, this call returns 1. In all other cases, it returns 0. A return value of 0 implies that the event is already consumed by another session and hence it is not available for this session.

	
The CONSUME_EVENT function deletes the events configured with EXCLUSIVE consumption policy and does nothing for events configured for 4 consumption policy.

	
Unlike the EXCLUSIVE and SHARED consumption policies, which are determined at the rule class level, you use a RULE consumption policy to determine the consumption of an event on a rule by rule basis. That is a subset of the rules in a rule class may be configured such that when they are matched, the event is deleted from the system. At the same time the other set of rules could leave the event in the system even after executing the corresponding action. In this scenario, the action callback procedure implemented by the application developer can call CONSUME_EVENT function (with appropriate arguments) to conditionally consume the event for certain rules. Also see the use of CONSUME_PRIM_EVENTS Function for rule classes configured for RULE consumption policy

Examples

The following commands identify an event that is used for a rule execution and consumes it using its identifier.

var eventid VARCHAR(40);
var evtcnsmd NUMBER;

BEGIN
 SELECT rlm$eventid INTO :eventid FROM MatchingPromos WHERE rownum < 2;

 -- carry the required action for a rule matched by the above event --
 :evtcnsmd := DBMS_RLMGR.CONSUME_EVENT(rule_class => 'TravelPromotion',
 event_ident => :eventid);
END;

CONSUME_PRIM_EVENTS Function

This function consumes a set of primitive events with all or nothing semantics in the case of a rule class configured with RULE based consumption policy.

Syntax

DBMS_RLMGR.CONSUME_PRIM_EVENTS (
 rule_class IN VARCHAR2,
 event_idents IN RLM$EVENTIDS)
 RETURN NUMBER;

Parameters

Table 123-8 CONSUME_PRIM_EVENTS Function Parameters

	Parameter	Description
	
rule_class

	
Name of the rule class. A schema extended rule class name can be used to refer to a rule class that does not belong to the current schema.

	
event_ident

	
Event identifiers obtained from the corresponding rule class results view or the arguments of the action callback procedure

Returns

The function returns:

	
1 -- If all the events, the identifiers for which are passed in, are successfully consumed.

	
0 -- If one or more primitive event could not be consumed.

Usage Notes

	
When you configure the rule class for RULE based consumption policy, it uses the CONSUME_PRIM_EVENTS function to consume one or more primitive events that constitute a composite event. This operation succeeds only when all the events passed in are still valid and are available for consumption. Any user initiated action must be implemented after checking the return value of the CONSUME_PRIM_EVENTS call.

Examples

The following commands show the body of the action callback procedure for a rule class configured for RULE consumption policy. This demonstrates the use of CONSUME_PRIM_EVENTS function to consume the events before executing the action for the matched rules.

create or replace procedure PromoAction (
 Flt AddFlight,
 Flt_EvtId ROWID, --- rowid for the flight primitive event
 Car AddRentalCar,
 Car_EvtId ROWID,
 rlm$rule TravelPromotions%ROWTYPE) is
 evtcnsmd NUMBER;
BEGIN
 evtcnsmd := DBMS_RLMGR.CONSUME_PRIM_EVENTS(
 rule_class => 'TravelPromotions',
 event_idents => RLM$EVENTIDS(Flt_EvtId, Car_EvtId));

 if (evtcnsmd = 1) then
 -- consume operation was successful; perform the action ---
 OfferPromotion (Flt.CustId, rlm$rule.PromoType, rlm$rule.OfferedBy);
 end if;
END;
/

CREATE_CONDITIONS_TABLE Procedure

This procedure creates a conditions table, which is a repository for the primitive rule conditions that can be shared by multiple rules from the same or different rule classes. The procedure is overloaded. The different functionality of each form of syntax is presented along with the definitions.

Syntax

Creates a conditions table to store shareable primitive conditions defined for a primitive event.

DBMS_RLMGR.CREATE_CONDITIONS_TABLE (
 cond_table IN VARCHAR2,
 pevent_struct IN VARCHAR2,
 stg_clause IN VARCHAR2 DEFAULT NULL);

Creates a conditions table to store shareable primitive conditions defined for a relational table identified through table aliases.

DBMS_RLMGR.CREATE_CONDITIONS_TABLE (
 cond_table IN VARCHAR2,
 tab_alias IN rlm$table_alias,
 stg_clause IN VARCHAR2 DEFAULT NULL);

Parameters

Table 123-9 CREATE_CONDITIONS_TABLE Procedure Parameters

	Parameter	Description
	
pevent_struct

	
Primitive event structure for which the shareable primitive rule conditions are defined

	
cond_table

	
Name of the table storing the primitive rule conditions

	
stg_clause

	
Storage clause for the conditions table

	
tab_alias

	
Type that identifies the database table for which the shareable primitive rule conditions are defined

Usage Notes

	
This procedure creates a relational table to store the primitive rule conditions that can be shared by multiple rules. It creates the table with the user specified name and it has a VARCHAR2 column to store the unique identifier for each primitive rule condition (rlm$condid), an expression data type column to store the conditional expressions (rlm$condition), and a VARCHAR2 column to store the descriptions for the primitive rule conditions in plain text (rlm$conddesc).

	
Once it creates the table, the primitive rule condition can be added or modified using standard DML operations on the conditions table. The conditions table is configured to validate the primitive rule conditions (in the rlm$condition column) using the primitive event structure specified for the pevent_struct argument.

	
A rule class configured with a primitive event structure can include some rule conditions that refer to rows in the conditions table using corresponding identifiers.

Examples

The following command creates a conditions table that can store shareable primitive rule conditions for the AddRentalCar event structure:

BEGIN
 DBMS_RLMGR.CREATE_CONDITIONS_TABLE (
 cond_table => 'FlightConditions',
 pevent_struct => 'AddFlight',
 stg_clause => 'TABLESPACE TBS_1');
END;
/

CREATE_EVENT_STRUCT Procedure

This procedure creates an event structure.

Syntax

DBMS_RLMGR.CREATE_EVENT_STRUCT (
 event_struct IN VARCHAR2);

Parameters

Table 123-10 CREATE_EVENT_ STRUCT Procedure Parameter

	Parameter	Description
	
event_struct

	
Name of the event structure to be created in the current schema

Usage Notes

	
This procedure creates a dummy event structure in the current schema. One or more attributes can be added to this event structure using the ADD_ELEMENTARY_ATTRIBUTE procedure.

Examples

The following command creates the event structure.

BEGIN DBMS_RLMGR.CREATE_EVENT_STRUCT(event_struct => 'AddFlight');
END;

CREATE_EXPFIL_INDEXES Procedure

This procedure creates expression filter indexes for the rule class if the default indexes have been dropped. If a representative set of rules is stored in the rule class table, the indexes can be tuned for these expressions by collecting statistics.

Syntax

DBMS_RLMGR.CREATE_EXPFIL_INDEXES (
 rule_class IN VARCHAR2,
 coll_stats IN VARCHAR2 default 'NO');

Parameters

Table 123-11 CREATE_EXPFIL_INDEXES Procedure Parameter

	Parameter	Description
	
rule_class

	
Name of the rule class

	
coll_stats

	
To collect expression statistics for building the indexes

Usage Notes

	
Expression filter indexes are used to identify the rule conditions in a rule class for appropriate events. The default indexes created at the time of rule class creation assume that all types of predicates (equality, inequality, and so forth) involving scalar attributes in an event structure are equally likely. The performance of a rule class can be improved by tuning the expression filter indexes for a specific workload. This is achieved either by collecting statistics on a representative workload or by identifying the most common predicate constructs with some domain knowledge.

	
The default expression filter indexes created for the rule class can be dropped using the DBMS_RLMGR.DROP_EXPFIL_INDEXES procedure. Once the indexes are dropped, they can be recreated using the DBMS_RLMGR.CREATE_EXPFIL_INDEXES procedure. When the coll_stats argument of the CREATE_EXPFIL_INDEXES procedure is set to YES, rule condition statistics are collected for the most common predicate constructs and the indexes are created using these statistics. Alternately, a domain expert can manually set the index parameters by identifying the most common and discriminating predicate constructs and then create the indexes with these parameters. Note that the index parameters can be set for each of the primitive event structures associated with the rule class. The index parameters can be assigned to the event structure (which is also the Expression Filter attribute set) using the DBMS_EXPFIL.DEFAULT_INDEX_PARAMETERS procedure. When the coll_stats argument of the CREATE_EXPFIL_INDEXES procedure is set to NO, the expression filter indexes created for the rule class make use of the default index parameters associated with each primitive event structure. (See the chapter on indexing expressions in Oracle Database Rules Manager and Expression Filter Developer's Guide for additional information on tuning the Expression Filter indexes for better performance).

	
Related view: USER_EXPFIL_DEF_INDEX_PARAMS

Examples

The following commands collect the statistics for the rules defined in the CompTravelPromo rule class and create the expression filter indexes that are based on the most common predicates in the set.

BEGIN
DBMS_RLMGR.CREATE_EXPFIL_INDEXES (rule_class => 'CompTravelPromo',
 coll_stats => 'yes');
END;
/

This is an Expression Filter tuning example where the domain knowledge is used to assign specific index parameters. The following commands associate specific index parameters to the AddFlight event structure such that the expression filter index created for corresponding expressions are optimized accordingly. The subsequent CREATE_EXPFIL_INDEXES step makes use of these index parameters.

BEGIN
 DBMS_EXPFIL.DEFAULT_INDEX_PARAMETERS('AddFlight',
 exf$attribute_list (
 exf$attribute (attr_name => 'Airline',
 attr_oper => exf$indexoper('='),
 attr_indexed => 'TRUE'),
 exf$attribute (attr_name => 'ToCity',
 attr_oper => exf$indexoper('='),
 attr_indexed => 'TRUE'),
 exf$attribute (attr_name => 'Depart',
 attr_oper => exf$indexoper('=','<','>','>=','<='),
 attr_indexed => 'FALSE')
)
);
 -- create the indexes after assigning the index parameters --
 DBMS_RLMGR.CREATE_EXPFIL_INDEXES (rule_class => 'CompTravelPromo');
END;
/

CREATE_INTERFACE Procedure

This procedure creates a rule class interface package that can be used to directly operate on the rule class for efficiency and ease of use.

Syntax

DBMS_RLMGR.CREATE_INTERFACE (
 rule_class IN VARCHAR2,
 interface_nm IN VARCHAR2);

Parameters

Table 123-12 CREATE_INTERFACE Procedure Parameter

	Parameter	Description
	
rule_class

	
Name of the rule class for which the interface package is created

	
interface_nm

	
Name of the PL/SQL package that acts as the interface to the rule application

Usage Notes

	
The common set of DBMS_RLMGR procedures used for runtime operations such as processing the rules for some events, consuming the events and resetting the session make use of the rule class name passed in as one of the arguments and associate them to the corresponding operations on the rule class. You can the overhead involved in this step by creating a rule class interface package that is used to directly operate on the rule class.

	
The rule class interface package is a PL/SQL package that has procedures or functions to process rules (PROCESS_RULES), add event (ADD_EVENT), consume events (CONSUME_EVENT, CONSUME_PRIM_EVENTS) and reset rule session (RESET_SESSION). The operational characteristics of these procedures and functions are the same as those of DBMS_RLMGR procedures and functions with matching names with two exceptions. Since the rule class interface package is created for a specific rule class, the rule class name is implicit and it need not be passed in as an argument to the procedures and functions of the rule class interface package. Additionally, the rule class interface package has separate PROCESS_RULES and ADD_EVENT procedures to accept each primitive event type configured with the rule class. This is in contrast to the same procedures in the DBMS_RLMGR package, which are generalized to accept the event instances only as a VARCHAR or an AnyData instance.

Examples

The following commands create the rule class interface package for the CompTravelPromo rule class.

 BEGIN
 DBMS_RLMGR.CREATE_INTERFACE (rule_class => 'CompTravelPromo',
 interface_nm => 'TravelPromoRules');
 END;

The following commands make use of the interface created in previous step to process the rules for an instance of AddFlight event.

 BEGIN
 TravelPromoRules.process_rules (event_inst =>
 AddFlight(987, 'Abcair', 'Boston', 'Orlando',
 '01-APR-2009', '08-APR-2009');
 END;

CREATE_RULE_CLASS Procedure

This procedure creates a rule class.

Syntax

DBMS_RLMGR.CREATE_RULE_CLASS (
 rule_class IN VARCHAR2,
 event_struct IN VARCHAR2,
 action_cbk IN VARCHAR2,
 actprf_spec IN VARCHAR2 default null,
 rslt_viewnm IN VARCHAR2 default null,
 rlcls_prop IN VARCHAR2 default <simple/>);

Parameters

Table 123-13 CREATE_RULE_CLASS Procedure Parameters

	Parameter	Description
	
rule_class

	
Name of the rule class to be created in the current schema

	
event_struct

	
Name of the object type or an Expression Filter attribute set in the current schema that represents the event structure for the rule class

	
action_cbk

	
Name of the action callback procedure to be created for the rule class

	
actprf_spec

	
Specification (name and SQL datatype pairs) for the action preferences associated with the rule class

	
rlst_viewnm

	
Name of rule class results view that lists the matching events and rules within a session. A view with this name is created in the current schema.

	
rlcls_prop

	
XML document for setting the rule class properties. By default, the rule class created is for simple events (non-composite).

Usage Notes

	
For successful creation of a rule class, you must have sufficient privileges to create views, object types, tables, packages, and procedures.

	
This command creates the rule class and its dependent objects in the user's schema. For this operation to succeed the name specified for the event structure must refer to an existing object type or an Expression Filter attribute set in the user's schema. When an object type is used for an event structure, the CREATE_RULE_CLASS procedure implicitly creates an attribute set for the object type. In the case of a rule class configured for composite events, the previous procedure also creates attribute sets for the object types that are directly embedded in the event structure's object type (or the attribute set). A maximum of 32 embedded objects (and or or table aliases) can be specified with an event structure that is used for a composite rule class. The types of dependent objects created with this procedure and their structure depend on the properties of the rule class and its event structure. The minimum set of dependent objects created for a rule class is as follows:

	
Rule class table – A rule class table that shares the name of the rule class is created in the user's schema to store the rule definitions (rule identifiers, rule conditions, rule descriptions, and action preferences). This table implicitly has four columns, rlm$ruleid, rlm$rulecond, rlm$enabled, and rlm$ruledesc to store the rule identifiers, rule conditions, rule states, and rule descriptions respectively. In addition to these four columns, the rule class table has few columns according to the action preference specification for the rule class. For example, if a TravelPromotion rule class uses 'PromoType VARCHAR(20), OfferedBy VARCHAR(20)' as its action preference specification (assigned to actpref_spec argument), the rule class table is created with the following structure.

TABLE TravelPromotion (
 rlm$ruleid VARCHAR(100), -- rule identifier column --
 PromoType VARCHAR(20), -- action preference 1 --
 OfferedBy VARCHAR(20), -- action preference 2 --
 rlm$rulecond VARCHAR(4000), -- rule condition –-
 rlm$ruledesc VARCHAR(1000), -- rule description --
 rlm$enabled CHAR(1)); -- rule status --

The rule class table structure varies from one rule class to another based on the exact list of action preference categories specified for the rule class.

	
Action Callback Procedure – You create the skeleton for the action callback procedure with the given name in the user's schema and it is associated with the rule class. During rule evaluation, the callback procedure is called for each matching rule and event. You must implement the body of the action callback procedure to perform the appropriate action for each rule. The exact action for a rule can be determined based on the event that matched the rule and rule definition along with its action preferences. This information is passed to the action callback procedure through its arguments. Hence, the argument list for the action callback procedure depends on the event structure associated with the rule class and the rule class itself.

In the case of a rule class configured for simple events (<simple/> assigned to the properties of the rule class), the event that matches a rule is passed through a rlm$event argument that is declared to be of the same type as the event structure. Additionally, the rule definitions are passed to the action callback procedure using an rlm$rule argument that is declared as ROWTYPE of the corresponding rule class table. For example, the structure of the PromoAction action callback procedure created for a TravelPromotion rule class configured for a simple (non-composite) AddFlight event structure is as follows:

PROCEDURE PromoAction (rlm$event AddFlight,
 rlm$rule TravlePromotion%ROWTYPE);

In the case of a rule class created for composite events (<composite/> assigned to the properties of the rule class), the action callback procedure is created to pass each primitive event as a separate argument. For example, the CompPromoAction action callback procedure created for a rule class CompTravelPromo configured for a composite event with AddFlight and AddRentalCar primitive events are shown as follows:

-- composite event structure --
TYPE TSCompEvent (Flt AddFlight,
 Car AddRentalCar);
-- corresponding action callback procedure --
PROCEDURE PromoAction (Flt AddFlight,
 Car AddRentalCar,
 rlm$rule CompTravelPromo%ROWTYPE)

The action callback procedure includes additional arguments when the rule class is configured for the RULE consumption policy or when the rule class is enabled for one or more collection events. The arguments in these cases include the identifiers for the events (ROWID data type) in addition to the event instances. You can use these event identifiers to further operate on the matched rules. For example, in the case of the rule class configured for rule consumption, the event identifiers are used to consume the events with DBMS_RLMGR.CONSUME_PRIM_EVENTS function. In the case of rule class enabled for collection events, the same identifiers for the collection events can be used to fetch specific aggregate values with the DBMS_RLMGR.GET_AGGREGATE_VALUE function.

	
Rule class results view – A view to display the results from matching some events with rules is created in the same schema as the rule class. By default, this view is created with a system-generated name. Optionally, the rule class creator can specify a name for this view with the rlst_viewnm argument of the CREATE_RULE_CLASS procedure. When the events are added to the rule manager within a rule session using the ADD_EVENT procedure, the list of matching events and rules are displayed in the rule class results view.

The structure of the view defined for the rule class results depends on the event structure and the action preferences configured with the rule class. Minimally, the view has three columns to display the system generated event identifier (rlm$evenetid), the identifier of the rule it matches (rlm$ruleid), and the rule condition (rlm$rulecond). Additionally, it has columns to display the event information and the rule action preferences.

In the case of a rule class configured for simple events, the event information is displayed as rlm$event that is declared to be of the event structure type. So, a MatchingPromos view created for the TravelPromotion rule class configured for a simple AddFlight event structure is as follows:

VIEW MatchingPromos (
 rlm$eventid ROWID,
 rlm$event AddFlight,
 rlm$ruleid VARCHAR(100),
 PromoType VARCHAR(30), -- action preference 1 --
 OffredBy VARCHAR(30), -- action preference 2 --
 rlm$rulecond VARCHAR(4000),
 rlm$ruledesc VARCHAR(1000)
);

In the case of a rule class configured for composite events, the primitive events matching a rule are displayed separately using corresponding columns. For the above CompTravelPromo rule class, a MatchingCompPromos view is created with the following structure.

VIEW MatchingCompPromos (
 rlm$eventid ROWID,
 Flt AddFlight,
 Car AddRentalCar,
 rlm$ruleid VARCHAR(100),
 PromoType VARCHAR(30), -- action preference 1 --
 OffredBy VARCHAR(30), -- action preference 2 --
 rlm$rulecond VARCHAR(4000),
 rlm$ruledesc VARCHAR(1000)
);

The values from the rlm$eventid column are used to enforce rule class consumption policies when the corresponding rule is executed. See the CONSUME_EVENT Function for more information.

Examples

The following commands create a rule class for simple events (of AddFlight type).

CREATE or REPLACE TYPE AddFlight AS OBJECT (
 CustId NUMBER,
 Airline VARCHAR(20),
 FromCity VARCHAR(30),
 ToCity VARCHAR(30),
 Depart DATE,
 Return DATE);
BEGIN
 DBMS_RLMGR.CREATE_RULE_CLASS (
 rule_class => 'TravelPromotion', -- rule class name --
 event_struct => 'AddFlight', -- event struct name --
 action_cbk => 'PromoAction', -- callback proc name –-
 rslt_viewnm => 'MatchingPromos', -- results view --
 actprf_spec => 'PromoType VARCHAR(20),
 OfferedBy VARCHAR(20)');
END;

The following commands create a rule class for composite events consisting of two primitive events (AddFlight and AddRentalCar).

CREATE or REPLACE TYPE TSCompEvent (Flt AddFlight,
 Car AddRentalCar);
BEGIN
 DBMS_RLMGR.CREATE_RULE_CLASS (
 rule_class => 'CompTravelPromo', -- rule class name --
 event_struct => 'TSCompEvent', -- event struct name --
 action_cbk => 'CompPromoAction', -- callback proc name –-
 rslt_viewnm => 'MatchingCompPromos', -- results view --
 actprf_spec => 'PromoType VARCHAR(20),
 OfferedBy VARCHAR(20)',
 properties => '<composite/>');
END;

DELETE_RULE Procedure

This procedure deletes a rule from a rule class.

Syntax

DBMS_RLMGR.DELETE_RULE (
 rule_class IN VARCHAR2,
 rule_id IN VARCHAR2);

Parameters

Table 123-14 DELETE_RULE Procedure Parameters

	Parameter	Description
	
rule_class

	
Name of the rule class. A schema extended rule class name can be used to refer to a rule class that does not belong to the current schema.

	
rule_id

	
Identifier for the rule to be deleted

Usage Notes

	
Use this procedure to delete a rule from the rule class. The identifier for the rule to be deleted can be obtained by querying the rule class table (that shares the same name as the rule class). Alternately, the owner of the rule class can use a SQL DELETE statement on one rule class table to delete a rule.When you use the schema extended name for the rule class, you must have the DELETE RULE privilege on the rule class. See the GRANT_PRIVILEGE Procedure for more information.

	
Note:

AUTOCOMMIT property of the rule class is ignored if the rules are deleted with the SQL DELETE statement instead of the DELETE_RULE procedure.

	
See the CREATE_RULE_CLASS Procedure for the structure of the rule class table.

Examples

The following command deletes a rule from the rule class.

BEGIN
 DBMS_RLMGR.DELETE_RULE (
 rule_class => 'CompTravelPromo',
 rule_id => 'AB_AV_FL');
END;

Alternately, you can issue the following SQL DELETE statement to delete the above rule from the rule class.

DELETE FROM CompTravelPromo WHERE rlm$ruleid = 'AB_AV_FL';

DROP_CONDITIONS_TABLE Procedure

This procedure drops the conditions table.

Syntax

DBMS_RLMGR.DROP_CONDITIONS_TABLE (
 cond_table IN VARCHAR2);

Parameters

Table 123-15 DROP_CONDITIONS_TABLE Procedure Parameters

	Parameter	Description
	
cond_table

	
Name of conditions table in the user schema

Usage Notes

	
This procedure drops the table that stores the shareable conditional expressions. If one of the conditional expressions in this table is used to form a rule condition in a rule class, the drop operation fails with an appropriate error.

Examples

The following command drops the conditions table:

BEGIN
 DBMS_RLMGR.DROP_CONDITIONS_TABLE (cond_table => 'FlightConditions');
END;
/

DROP_EVENT_STRUCT Procedure

This procedure drops an event structure.

Syntax

DBMS_RLMGR.DROP_EVENT_STRUCT (
 event_struct IN VARCHAR2);

Parameters

Table 123-16 DROP_EVENT_ STRUCT Procedure Parameter

	Parameter	Description
	
event_struct

	
Name of event structure in the current schema

Usage Notes

	
This procedure drops the event structure from the current schema. This drops all the dependent objects created to manage the event structure.

Examples

The following command drops the event structure.

BEGIN DBMS_RLMGR.DROP_EVENT_STRUCT(event_struct => 'AddFlight');
END;

DROP_EXPFIL_INDEXES Procedure

This procedure drops the expression filter indexes created for a rule class.

Syntax

DBMS_RLMGR.DROP_EXPFIL_INDEXES (
 rule_class IN VARCHAR2);

Parameters

Table 123-17 DROP_EXPFIL_INDEXES Procedure Parameter

	Parameter	Description
	
rule_class

	
Name of the rule class

Usage Notes

This procedure drops all the expression filter indexes associated with a rule class. You can recreate the indexes using the DBMS_RLMGR.CREATE_EXPFIL_INDEXES call.

Examples

The following command drops the expression filter indexes created for the CompTravelPromo rule class.

BEGIN
DBMS_RLMGR.DROP_EXPFIL_INDEXES (rule_class => 'CompTravelPromo');
END;
/

DROP_INTERFACE Procedure

This procedure drops the rule class interface package created for a rules application.

Syntax

DBMS_RLMGR.DROP_INTERFACE (
 interface_nm IN VARCHAR2);

Parameters

Table 123-18 DROP_INTERFACE Procedure Parameter

	Parameter	Description
	
interface_nm

	
Name of the PL/SQL package that acts as the interface to the rule application

Usage Notes

This procedure drops the rule class interface package created with the DBMS_RLMGR.CREATE_INTERFACE call.

Examples

The following command drops the rule class interface package TravelPromoRules.

 BEGIN
 DBMS_RLMGR.DROP_INTERFACE (interface_nm => 'TravelPromoRules'
 END;

DROP_RULE_CLASS Procedure

This procedure drops a rule class.

Syntax

DBMS_RLMGR.DROP_RULE_CLASS (
 rule_class IN VARCHAR2);

Parameters

Table 123-19 DROP_RULE_CLASS Procedure Parameter

	Parameter	Description
	
rule_class

	
Name of rule class in the current schema

Usage Notes

	
This procedure drops the rule class from the current schema. This drops all the dependent objects created to manage the rule class. Because an event structure in a user's schema can be shared across multiple rule classes, the event structure is not dropped with this command. You must use the DROP_EVENT_STRUCTURE procedure for the composite event as well as the individual primitive events to cleanup unused event structures.

Examples

The following command drops the rule class.

BEGIN DBMS_RLMGR.DROP_RULE_CLASS(rule_class => 'CompTravelPromo');
END;

EXTEND_EVENT_STRUCT Procedure

This is used to extend the primitive event structure used by one or more rule classes by adding a new attribute.

Syntax

DBMS_RLMGR.EXTEND_EVENT_STRUCT (
 event_struct IN VARCHAR2,
 attr_name IN VARCHAR2,
 attr_type IN VARCHAR2,
 attr_defvl IN VARCHAR2 default NULL);

Parameters

Table 123-20 EXTEND_EVENT_ STRUCT Procedure Parameter

	Parameter	Description
	
event_struct

	
Name of the event structure to which this attribute is added

	
attr_name

	
Name of the elementary attribute to be added. No two attributes in a set can have the same name.

	
attr_type

	
Data type of the attribute. This argument accepts any standard SQL data type or the name of an object type that is accessible to the current user.

	
attr_defvl

	
Default value for the elementary attribute

Usage Notes

	
This procedure extends a primitive event structure already associated with a rule class to include a new attribute. You can use this procedure mostly to migrate a fully developed rules application to use extended event structures and you should not use it in the place of the ADD_ELEMENTARY_ATTRIBUTE call. Unlike the ADD_ELEMENTARY_ATTRIBUTE call, which builds an event structure one attribute at a time, the EXTEND_EVENT_STRUCT call evolves the object type associated with the event structure to include the new attributes and performs some maintenance operations on the dependent objects.

	
The usage of the EXTEND_EVENT_STRUCT call is similar to that of the ADD_ELEMENTARY_ATTRIBUTE call with the same set of arguments. Table alias attributes and attributes of text and spatial data types cannot be added to the event structure using the EXTEND_EVENT_STRUCT call.

Examples

The following commands add an attribute to the AddRentalCar event structure that is used by the CompTravelPromo rule class.

 BEGIN
 DBMS_RLMGR.EXTEND_EVENT_STRUCT (
 event_struct => 'AddRentalCar',
 attr_name => 'PrefMemberId',
 attr_type => 'VARCHAR2(30)');
 END;

GET_AGGREGATE_VALUE Function

This function retrieves the aggregate value computed for a collection event.

Syntax

DBMS_RLMGR.GRANT_PRIVILEGE (
 rule_class IN VARCHAR2,
 event_ident IN VARCHAR2,
 aggr_func IN VARCHAR2) RETURN VARCHAR2;

Parameters

Table 123-21 GET_AGGREGATE_VALUE Function Parameters

	Parameter	Description
	
rule_class

	
Name of the rule class for the collection event

	
event_ident

	
System-generated identifier for the collection event

	
aggr_func

	
Signature for the aggregate value to be retrieved

Usage Notes

	
When a rule condition with collection construct matches a set of events, an instance representing the collection event and a system-generated identifier for the collection event are passed into the action callback procedure. This event identifier can be used to fetch any aggregate values that are computed as part of the collection event evaluation.

	
Within a collection construct in a rule condition, the aggregate functions can be included in the HAVING clause or in the COMPUTE clause. For example, the following rule condition computes three aggregate values for sum(amount), count(*), and max(amount). At the time of action execution, these values can be obtained using the identifier for the collection event that represents all the instances of BankTransaction with the same subjectId (the attribute on which the events are grouped).

<condition>
 <collection name="bank" groupby="subjectId"
 having="sum(amount) > 10000"
 compute="max(amount), count(*)"/>
</condition>

	
The signature for the aggregate function is bound to the aggr_func argument of the GET_AGGREGATE_VALUE function to fetch the specific aggregate value. If the value is a NUMBER or a DATE data type, it returns the equivalent VARCHAR representation. It returns a NULL value if an attempt was made to fetch an aggregate value that is never computed as part of the collection event.

Examples

The following example shows a sample implementation of the action callback procedure that prints the computed aggregate values as part of action execution. In this particular case, the BankTransaction primitive event is enabled for collections.

CREATE OR REPLACE PROCEDURE LAWENFORCEMENTCBK (
 bank banktransaction,
 bankcollid rowid,
 transport transportation,
 fldrpt fieldreport,
 rlm$rule LawEnforcementRC%ROWTYPE) IS
 aggrval VARCHAR(30);
begin
 dbms_ouput.put_line('Mathing Rule :'||rlm$rule.rlm$ruleid||chr(10));

 if (bank is not null) then
 dbms_ouput.put_line('-->Bank Transactions by ('||bank.subjectId||')'||chr(10);

 aggrval := dbms_rlmgr.get_aggregate_value(rule_class =>'LawEnforcementRC',
 event_ident => bankcollid,
 aggr_func => 'sum(amount)');
 if (aggrval is not null) then
 dbms_ouput.put_line('---> Sum of the amounts is :'||aggrval||chr(10));
 end if;
 . . .
 end if;
end;

GRANT_PRIVILEGE Procedure

This procedure grants privileges on a rule class to another user.

Syntax

DBMS_RLMGR.GRANT_PRIVILEGE (
 rule_class IN VARCHAR2,
 priv_type IN VARCHAR2,
 to_user IN VARCHAR2);

Parameters

Table 123-22 GRANT_PRIVILEGE Procedure Parameters

	Parameter	Description
	
rule_class

	
Name of the rule class in the current schema

	
priv_type

	
Type of rule class privilege to be granted

	
to_user

	
User to whom the privilege is to be granted

Usage Notes

	
This procedure grants appropriate privileges to a user who is not the owner of the rule class. The types of privileges that can be granted to a user are:

	
PROCESS RULES: A user with PROCESS RULES privilege on a rule class can process the rules in the rule class using the PROCESS_RULES procedure or the ADD_EVENT procedure. Also, the user with this privilege can select from the corresponding rule class results view.

	
ADD RULE: A user with ADD RULE privilege on a rule class can add rules to a rule class. Alternatively, the owner of the rule class can grant the INSERT privilege on one rule class table to other users.

	
DELETE RULE: A user with DELETE RULE privilege on a rule class can delete rules from a rule class. Alternatively, the owner of the rule class can grant the DELETE privilege on one rule class table to other users.

	
ALL: Granting the ALL privilege on a rule class is equivalent to granting all the above privileges on the rule class to the user.

	
The owner of the rule class always has privileges to drop a rule class, process rules in a rule class, add rules and delete rules from a rules class. Only the owner of the rule class can drop a rule class and this privilege cannot be granted to another user.

	
You must have the EXECUTE privilege on the primitive event types associated with a rule class before you make use of the corresponding rule class results view.

Examples

The following command grants PROCESS RULES privilege on TravelPromo rule class to the user SCOTT.

BEGIN
 DBMS_RLMGR.GRANT_PRIVILEGE(rule_class => 'TravelPromo',
 priv_type => 'PROCESS RULES',
 to_user => 'SCOTT');
END;

PROCESS_RULES Procedure

This procedure processes the rules for a given event. The procedure is overloaded. The different functionality of each form of syntax is presented along with the definitions.

Syntax

Processes the rules for a string representation of the event instance being added to the rule class:

DBMS_RLMGR.PROCESS_RULES (
 rule_class IN VARCHAR2,
 event_inst IN VARCHAR2,
 event_type IN VARCHAR2 default null);

Processes the rules for an AnyData representation of the event instance being added to the rule class:

DBMS_RLMGR.PROCESS_RULES (
 rule_class IN VARCHAR2,
 event_inst IN sys.AnyData);

Parameters

Table 123-23 PROCESS_RULES Procedure Parameters

	Parameter	Description
	
rule_class

	
Name of the rule class. A schema extended rule class name can be used to refer to a rule class that does not belong to the current schema.

	
event_inst

	
String or AnyData representation of the event instance being added to the rule class

	
event_type

	
Type of event instance assigned to the event_inst argument when the string representation of the event instance is used for a rule class configured for composite events

Usage Notes

	
This procedure is used to process the rules in a rule class for an event instance assigned to the event_inst argument.

	
In the case of a rule class configured for simple events (non-composite), the event instance is an instantiation of the corresponding event structure. The rules are evaluated (conclusively) for this event and the corresponding action callback procedure is called for each matching rule. If the event does not match any rule, no further action is performed. If the event matches two or more rules, the ordering clause configured for the rule class is used to order them accordingly to invoke the action callback procedure. If the rule class is configured for EXCLUSIVE consumption policy, once the first rule in this order is executed (and the corresponding action callback procedure is called), the rest of the rules that matched the event are ignored.

	
In the case of a rule class configured for composite events, the event instance assigned to the event_inst argument is an instantiation of one of the primitive type within the composite event. When the instance is represented as a string, the corresponding type name should be assigned to the event_type argument. The PROCESS_RULES call on a rule class configured for composite events performs various actions depending on the state of the rule class and the kind of rules in the rule class. Note the following.

	
The rules operating only on the primitive event passed in are evaluated conclusively and the action callback procedure is called for the matching rules, as described in previous paragraph.

	
In the case of a rule operating on more than one primitive event, the event instance passed through PROCESS_RULES procedure could match only a part of the rule.

	
If there are other primitive event instances that matches the rest of the rule, the current event instance is combined with the other instances to form a complete composite event that matches a rule in the rule class. So, the event instance assigned to the event_inst argument of the PROCESS_RULES procedure could be combined with various other primitive events (previously processed) to evaluate one or more rules conclusively. The action callback procedure for the rule class is called for each such combination of primitive events (composite event) and the rule. The ordering clause for the rule class and the consumption policy for the primitive events in taken into account while invoking the action callback procedure.

	
If there is no other primitive event that matches the rest of the rule, the current event instance and its (incremental) evaluation results are recorded in the database. These results are preserved until either the event is consumed or deleted from the system owing to the duration policy used for the rule class.

Examples

The following command processes the rules in the TravelPromotion rule class for the given events.

BEGIN
 DBMS_RLMGR.PROCESS_RULES (
 rule_class => 'TravelPromotion',
 event_inst =>
 AddFlight.getVarchar(987, 'Abcair', 'Boston', 'Orlando',
 '01-APR-2003', '08-APR-2003'));
END;

The following commands process the rules in the CompTravelPromo rule class for the two primitive events shown.

BEGIN
 DBMS_RLMGR.PROCESS_RULES(
 rule_class => 'CompTravelPromo',
 event_inst =>
 AddFlight.getVarchar(987, 'Abcair', 'Boston', 'Orlando',
 '01-APR-2003', '08-APR-2003'),
 event_type => 'AddFlight');
 DBMS_RLMGR.PROCESS_RULES(
 rule_class => 'Scott.CompTravelPromo',
 event_inst =>
 AnyData.convertObject(AddRentalCar(987, 'Luxury', '03-APR-2003',
 '08-APR-2003', NULL)));
END;

PURGE_EVENTS Procedure

This procedure resets the incremental state maintained by the rule class by removing all the events associated with the rule class and purging any state information pertaining to rules matching some events.

Syntax

DBMS_RLMGR.PURGE_EVENTS (
 rule_class IN VARCHAR2);

Parameters

Table 123-24 PURGE_EVENTS Procedure Parameters

	Parameter	Description
	
rule_class

	
Name of rule class in the current schema

Usage Notes

	
Use this procedure while developing rules applications using Rules Manager. You can test the rules defined in the rule class with hypothetical events and then remove all these events by issuing this procedure call. This call cleans up all the events in the events repository and purges any partial state information associated with the matching rules.

Examples

The following command removes the events associated with the CompTravelPromo rule class:

BEGIN
 DBMS_RLMGR.PURGE_EVENTS (rule_class => 'CompTravelPromo');
END;
/

RESET_SESSION Procedure

This procedure starts a new session and thus discards the results in the rule class results view.

Syntax

DBMS_RLMGR.RESET_SESSION (
 rule_class IN VARCHAR2);

Parameters

Table 123-25 RESET_SESSION Procedure Parameter

	Parameter	Description
	
rule_class

	
Name of rule class. A schema extended rule class name can be used to refer to a rule class that does not belong to the current schema.

Usage Notes

	
When you use the ADD_EVENT procedure to add events to the rule class, the results from matching rules with events are recorded in the rule class results view. By default, these results are reset at the end of the database session. Alternately, you can use the RESET_SESSION Procedure to reset and start a new rule session within a database session.This procedure is only applicable while using ADD_EVENT Procedure to evaluate the rules.

Examples

The following command resets a rule class session.

BEGIN DBMS_RLMGR.RESET_SESSION(
 rule_class => 'CompTravelPromo');
END;

REVOKE_PRIVILEGE Procedure

This procedure revokes privileges on a rule class from another user.

Syntax

DBMS_RLMGR.REVOKE_PRIVILEGE (
 rule_class IN VARCHAR2,
 priv_type IN VARCHAR2,
 from_user IN VARCHAR2);

Parameters

Table 123-26 REVOKE_PRIVILEGE Procedure Parameters

	Parameter	Description
	
rule_class

	
Name of the rule class in the current schema

	
priv_type

	
Type of rule class privilege to be revoked

	
from_user

	
User from whom the privilege is to be revoked

Usage Notes

	
This procedure revokes appropriate privileges from a user. The types of privileges that can be revoked are the same as the types listed in the description of the GRANT_PRIVILEGE Procedure. Rule class privileges cannot be revoked from the owner of the rule class.

Examples

The following command revokes PROCESS RULES privilege on TravelPromo rule class from the user SCOTT.

BEGIN
 DBMS_RLMGR.REVOKE_PRIVILEGE(rule_class => 'TravelPromo',
 priv_type => 'PROCESS RULES',
 from_user => 'SCOTT');
END;

SYNC_TEXT_INDEXES Procedure

This procedure synchronizes the indexes defined to process the predicates involving the CONTAINS operator in rule conditions.

Syntax

DBMS_RLMGR.SYNC_TEXT_INDEXES (
 rule_class IN VARCHAR2);

Parameters

Table 123-27 SYNC_TEXT_INDEXES Procedure Parameters

	Parameter	Description
	
rule_class

	
Name of the rule class in the current schema

Usage Notes

	
When a rule class is configured for events with one or more text attributes, the text predicates in the corresponding rule conditions are processed using CTXRULE indexes. Unlike other types of indexes (bitmap for scalar and XML predicates or spatial for spatial predicates) used to process other types of predicates in the rule conditions, the CTXRULE indexes are not transactional in nature. That is, if the text predicates in a rule condition are modified in a database transaction, the new predicates are not automatically reflected in the corresponding CTXRULE index. This could result in inconsistent results while matching events with the rule conditions. All the CTXRULE indexes associated with a rule class can be synchronized with the latest rule conditions using this procedure.

You must have EXECUTE privilege on the CTX_DDL package for successful synchronization of the text indexes.

Examples

The following command synchronizes any text indexes associated CompTravelPromo rule class:

BEGIN
 DBMS_RLMGR.SYNC_TEXT_INDEXES (rule_class => 'CompTravelPromo');
END;
/

DBMS_RLS

124 DBMS_RLS

The DBMS_RLS package contains the fine-grained access control administrative interface, which is used to implement Virtual Private Database (VPD). DBMS_RLS is available with the Enterprise Edition only.

	
See Also:

Oracle Database Security Guide for usage information on DBMS_RLS.

This chapter contains the following topics:

	
Using DBMS_RLS

	
Overview

	
Security Model

	
Operational Notes

	
Summary of DBMS_RLS Subprograms

Using DBMS_RLS

	
Overview

	
Security Model

	
Operational Notes

Overview

The functionality to support fine-grained access control is based on dynamic predicates, where security rules are not embedded in views, but are acquired at the statement parse time, when the base table or view is referenced in a DML statement.

A dynamic predicate for a table, view, or synonym is generated by a PL/SQL function, which is associated with a security policy through a PL/SQL interface. For example:

DBMS_RLS.ADD_POLICY (
 'hr', 'employees', 'emp_policy', 'hr', 'emp_sec', 'select');

Whenever the EMPLOYEES table, under the HR schema, is referenced in a query or subquery (SELECT), the server calls the EMP_SEC function (under the HR schema). This function returns a predicate specific to the current user for the EMP_POLICY policy. The policy function may generate the predicates based on the session environment variables available during the function call. These variables usually appear in the form of application contexts. The policy can specify any combination of security-relevant columns and of these statement types: INDEX, SELECT, INSERT, UPDATE, or DELETE.

The server then produces a transient view with the text:

SELECT * FROM hr.employees WHERE P1

Here, P1 (for example, where SAL > 10000, or even a subquery) is the predicate returned from the EMP_SEC function. The server treats the EMPLOYEES table as a view and does the view expansion just like the ordinary view, except that the view text is taken from the transient view instead of the data dictionary.

If the predicate contains subqueries, then the owner (definer) of the policy function is used to resolve objects within the subqueries and checks security for those objects. In other words, users who have access privilege to the policy-protected objects do not need to know anything about the policy. They do not need to be granted object privileges for any underlying security policy. Furthermore, the users do not require EXECUTE privilege on the policy function, because the server makes the call with the function definer's right.

	
Note:

The transient view can preserve the updatability of the parent object because it is derived from a single table or view with predicate only; that is, no JOIN, ORDER BY, GROUP BY, and so on.

DBMS_RLS also provides the interface to drop or enable security policies. For example, you can drop or enable the EMP_POLICY with the following PL/SQL statements:

DBMS_RLS.DROP_POLICY('hr', 'employees', 'emp_policy');
DBMS_RLS.ENABLE_POLICY('hr', 'employees', 'emp_policy', TRUE);

Security Model

A security check is performed when the transient view is created with a subquery. The schema owning the policy function, which generates the dynamic predicate, is the transient view's definer for security check and object lookup.

Operational Notes

The DBMS_RLS procedures cause current DML transactions, if any, to commit before the operation. However, the procedures do not cause a commit first if they are inside a DDL event trigger. With DDL transactions, the DBMS_RLS procedures are part of the DDL transaction.

For example, you may create a trigger for CREATE TABLE. Inside the trigger, you may add a column through ALTER TABLE, and you can add a policy through DBMS_RLS. All these operations are in the same transaction as CREATE TABLE, even though each one is a DDL statement. The CREATE TABLE succeeds only if the trigger is completed successfully.

Views of current cursors and corresponding predicates are available from v$vpd_policies.

A synonym can reference only a view or a table.

Summary of DBMS_RLS Subprograms

Table 124-1 DBMS_RLS Package Subprograms

	Subprogram	Description
	
ADD_GROUPED_POLICY Procedure

	
Adds a policy associated with a policy group

	
ADD_POLICY Procedure

	
Adds a fine-grained access control policy to a table, view, or synonym

	
ADD_POLICY_CONTEXT Procedure

	
Adds the context for the active application

	
CREATE_POLICY_GROUP Procedure

	
Creates a policy group

	
DELETE_POLICY_GROUP Procedure

	
Deletes a policy group

	
DISABLE_GROUPED_POLICY Procedure

	
Disables a row-level group security policy

	
DROP_GROUPED_POLICY Procedure

	
Drops a policy associated with a policy group

	
DROP_POLICY Procedure

	
Drops a fine-grained access control policy from a table, view, or synonym

	
DROP_POLICY_CONTEXT Procedure

	
Drops a driving context from the object so that it will have one less driving context

	
ENABLE_GROUPED_POLICY Procedure

	
Enables or disables a row-level group security policy

	
ENABLE_POLICY Procedure

	
Enables or disables a fine-grained access control policy

	
REFRESH_GROUPED_POLICY Procedure

	
Reparses the SQL statements associated with a refreshed policy

	
REFRESH_POLICY Procedure

	
Causes all the cached statements associated with the policy to be reparsed

ADD_GROUPED_POLICY Procedure

This procedure adds a policy associated with a policy group.

Syntax

DBMS_RLS.ADD_GROUPED_POLICY(
 object_schema IN VARCHAR2 NULL,
 object_name IN VARCHAR2,
 policy_group IN VARCHAR2 'SYS_DEFAULT',
 policy_name IN VARCHAR2,
 function_schema IN VARCHAR2 NULL,
 policy_function IN VARCHAR2,
 statement_types IN VARCHAR2 NULL,
 update_check IN BOOLEAN FALSE,
 enable IN BOOLEAN TRUE,
 static_policy IN BOOLEAN FALSE,
 policy_type IN BINARY_INTEGER NULL,
 long_predicate BOOLEAN FALSE,
 sec_relevant_cols IN VARCHAR2,
 sec_relevant_cols_opt IN BINARY_INTEGER NULL);

Parameters

Table 124-2 ADD_GROUPED_POLICY Procedure Parameters

	Parameter	Description
	
object_schema

	
The schema containing the table, view, or synonym. The default is NULL, which means that the current user schema is used as the object_schema.

	
object_name

	
The name of the table, view, or synonym to which the policy is added.

	
policy_group

	
The name of the policy group that the policy belongs to.

	
policy_name

	
The name of the policy; must be unique for the same table or view.

	
function_schema

	
The schema owning the policy function. The default is NULL, which means that the current user schema is used as the function_schema.

	
policy_function

	
The name of the function that generates a predicate for the policy. If the function is defined within a package, the name of the package must be present.

	
statement_types

	
Statement types to which the policy applies. It can be any combination of INDEX, SELECT, INSERT, UPDATE, or DELETE. The default is to apply to all of these types except INDEX.

	
update_check

	
For INSERT and UPDATE statements only, setting update_check to TRUE causes the server to check the policy against the value after INSERT or UPDATE.

	
enable

	
Indicates if the policy is enable when it is added. The default is TRUE.

	
static_policy

	
The default is FALSE. If it is set to TRUE, the server assumes that the policy function for the static policy produces the same predicate string for anyone accessing the object, except for SYS or the privilege user who has the EXEMPT ACCESS POLICY privilege.

	
policy_type

	
Default is NULL, which means policy_type is decided by the value of static_policy. The available policy types are listed in Table 124-4. Specifying any of these policy types overrides the value of static_policy.

	
long_predicate

	
Default is FALSE, which means the policy function can return a predicate with a length of up to 4000 bytes. TRUE means the predicate text string length can be up to 32K bytes.Policies existing prior to the availability of this parameter retain a 32K limit.

	
sec_relevant_cols

	
Enables column-level Virtual Private Database (VPD), which enforces security policies when a column containing sensitive information is referenced in a query. Applies to tables and views, but not to synonyms. Specify a list of comma- or space-separated valid column names of the policy-protected object. The policy is enforced only if a specified column is referenced (or, for an abstract datatype column, its attributes are referenced) in the user SQL statement or its underlying view definition. Default is all the user-defined columns for the object.

	
sec_relevant_cols_opt

	
Use with sec_relevant_cols to display all rows for column-level VPD filtered queries (SELECT only), but where sensitive columns appear as NULL. Default is set to NULL, which allows the filtering defined with sec_relevant_cols to take effect. Set to dbms_rls.ALL_ROWS to display all rows, but with sensitive column values, which are filtered by sec_relevant_cols, displayed as NULL. See "Usage Notes" for restrictions and additional information about this option.

Usage Notes

	
This procedure adds a policy to the specified table, view, or synonym and associates the policy with the specified policy group.

	
The policy group must have been created by using the CREATE_POLICY_GROUP Procedure.

	
The policy name must be unique within a policy group for a specific object.

	
Policies from the default policy group, SYS_DEFAULT, are always executed regardless of the active policy group; however, fine-grained access control policies do not apply to users with EXEMPT ACCESS POLICY system privilege.

	
If no object_schema is specified, the current user's schema is assumed.

	
If no function_schema is specified, the current user's schema is assumed.

ADD_POLICY Procedure

This procedure adds a fine-grained access control policy to a table, view, or synonym.

The procedure causes the current transaction, if any, to commit before the operation is carried out. However, this does not cause a commit first if it is inside a DDL event trigger.

	
See Also:

Operational Notes

A COMMIT is also performed at the end of the operation.

Syntax

DBMS_RLS.ADD_POLICY (
 object_schema IN VARCHAR2 NULL,
 object_name IN VARCHAR2,
 policy_name IN VARCHAR2,
 function_schema IN VARCHAR2 NULL,
 policy_function IN VARCHAR2,
 statement_types IN VARCHAR2 NULL,
 update_check IN BOOLEAN FALSE,
 enable IN BOOLEAN TRUE,
 static_policy IN BOOLEAN FALSE,
 policy_type IN BINARY_INTEGER NULL,
 long_predicate IN BOOLEAN FALSE,
 sec_relevant_cols IN VARCHAR2 NULL,
 sec_relevant_cols_opt IN BINARY_INTEGER NULL);

Parameters

Table 124-3 ADD_POLICY Procedure Parameters

	Parameter	Description
	
object_schema

	
Schema containing the table, view, or synonym. If no object_schema is specified, the current user's schema is assumed.

	
object_name

	
Name of table, view, or synonym to which the policy is added.

	
policy_name

	
Name of policy to be added. It must be unique for the same table or view.

	
function_schema

	
Schema of the policy function (current default schema, if NULL). If no function_schema is specified, the current user's schema is assumed.

	
policy_function

	
Name of a function which generates a predicate for the policy. If the function is defined within a package, then the name of the package must be present.

	
statement_types

	
Statement types to which the policy applies. It can be any combination of INDEX, SELECT, INSERT, UPDATE, or DELETE. The default is to apply to all of these types except INDEX.

	
update_check

	
Optional argument for INSERT or UPDATE statement types. The default is FALSE. Setting update_check to TRUE causes the server to also check the policy against the value after insert or update.

	
enable

	
Indicates if the policy is enabled when it is added. The default is TRUE.

	
static_policy

	
The default is FALSE. If it is set to TRUE, the server assumes that the policy function for the static policy produces the same predicate string for anyone accessing the object, except for SYS or the privileged user who has the EXEMPT ACCESS POLICY privilege.

	
policy_type

	
Default is NULL, which means policy_type is decided by the value of static_policy. The available policy types are listed in Table 124-4. Specifying any of these policy types overrides the value of static_policy.

	
long_predicate

	
Default is FALSE, which means the policy function can return a predicate with a length of up to 4000 bytes. TRUE means the predicate text string length can be up to 32K bytes.Policies existing prior to the availability of this parameter retain a 32K limit.

	
sec_relevant_cols

	
Enables column-level Virtual Private Database (VPD), which enforces security policies when a column containing sensitive information is referenced in a query. Applies to tables and views, but not to synonyms. Specify a list of comma- or space-separated valid column names of the policy-protected object. The policy is enforced only if a specified column is referenced (or, for an abstract datatype column, its attributes are referenced) in the user SQL statement or its underlying view definition. Default is all the user-defined columns for the object.

	
sec_relevant_cols_opt

	
Use with sec_relevant_cols to display all rows for column-level VPD filtered queries (SELECT only), but where sensitive columns appear as NULL. Default is set to NULL, which allows the filtering defined with sec_relevant_cols to take effect. Set to dbms_rls.ALL_ROWS to display all rows, but with sensitive column values, which are filtered by sec_relevant_cols, displayed as NULL. See "Usage Notes" for restrictions and additional information about this option.

Table 124-4 DBMS_RLS.ADD_POLICY Policy Types

	Policy Type	Description
	
STATIC

	
Predicate is assumed to be the same regardless of the runtime environment. Static policy functions are executed once and then cached in SGA. Statements accessing the same object do not reexecute the policy function. However, each execution of the same cursor could produce a different row set even for the same predicate because the predicate may filter the data differently based on attributes such as SYS_CONTEXT or SYSDATE. Applies to only one object.

	
SHARED_STATIC

	
Same as STATIC except that the server first looks for a cached predicate generated by the same policy function of the same policy type. Shared across multiple objects.

	
CONTEXT_SENSITIVE

	
Server re-evaluates the policy function at statement execution time if it detects context changes since the last use of the cursor. For session pooling where multiple clients share a database session, the middle tier must reset context during client switches. Note that the server does not cache the value returned by the function for this policy type; it always executes the policy function on statement parsing. Applies to only one object.

	
SHARED_CONTEXT_SENSITIVE

	
Same as CONTEXT_SENSITIVE except that the server first looks for a cached predicate generated by the same policy function of the same policy type within the same database session. If the predicate is found in the session memory, the policy function is not reexecuted and the cached value is valid until session private application context changes occur. Shared across multiple objects.

	
DYNAMIC

	
The default policy type. Server assumes the predicate may be affected by any system or session environment at any time, and so always reexecutes the policy function upon each statement parsing and execution. Applies to only one object.

Usage Notes

	
SYS is free of any security policy.

	
If no object_schema is specified, the current user's schema is assumed.

	
If no function_schema is specified, the current user's schema is assumed.

	
The policy functions are called by the server. Following is the interface for the function:

 FUNCTION policy_function (object_schema IN VARCHAR2, object_name VARCHAR2)
 RETURN VARCHAR2
 --- object_schema is the schema owning the table or view.
 --- object_name is the name of table, view, or synonym to which the policy applies.

	
The policy functions must have the purity level of WNDS (write no database state).

	
See Also:

The Oracle Database Advanced Application Developer's Guide has more details about the RESTRICT_REFERENCES pragma.

	
Predicates generated from different VPD policies for the same object have the combined effect of a conjunction (ANDed) of all the predicates.

	
The security check and object lookup are performed against the owner of the policy function for objects in the subqueries of the dynamic predicates.

	
If the function returns a zero length predicate, then it is interpreted as no restriction being applied to the current user for the policy.

	
When a table alias is required (for example, parent object is a type table) in the predicate, the name of the table or view itself must be used as the name of the alias. The server constructs the transient view as something like

"select c1, c2, ... from tab tab where <predicate>"

	
Validity of the function is checked at runtime for ease of installation and other dependency issues during import and export.

	
Column-level VPD column masking behavior (specified with sec_relevant_cols_opt => dbms_rls.ALL_ROWS) is fundamentally different from all other VPD policies, which return only a subset of rows. Instead the column masking behavior returns all rows specified by the user's query, but the sensitive column values display as NULL. The restrictions for this option are as follows:

	
Only applies to SELECT statements

	
Unlike regular VPD predicates, the masking condition that is generated by the policy function must be a simple boolean expression.

	
If your application performs calculations, or does not expect NULL values, then you should use the default behavior of column-level VPD, which is specified with the sec_relevant_cols parameter.

	
If you use UPDATE AS SELECT with this option, then only the values in the columns you are allowed to see will be updated.

	
This option may prevent some rows from displaying. For example:

select * from employees
where salary = 10

This query may not return rows if the salary column returns a NULL value because the column masking option has been set.

	
When you add a VPD policy to a synonym, it causes all the dependent objects of the synonym, including policy functions that reference the synonym, to be marked INVALID.

Examples

As the first of two examples, the following creates a policy that applies to the hr.employee table. This is a column-level VPD policy that will be enforced only if a SELECT or an INDEX statement refers to the salary, birthdate, or SSN columns of the table explicitly, or implicitly through a view. It is also a CONTEXT_SENSITIVE policy, so the server will invoke the policy function hr.hrfun at parse time. During execution, it will only invoke the function if there has been any session private context change since the last use of the statement cursor. The predicate generated by the policy function must not exceed 4000 bytes, the default length limit, since the long_predicate parameter is omitted from the call.

BEGIN
dbms_rls.add_policy(object_schema => 'hr',

object_name => 'employee',
policy_name => 'hr_policy',
function_schema =>'hr',
policy_function => 'hrfun',
statement_types =>'select,index',
policy_type => dbms_rls.CONTEXT_SENSITIVE,
sec_relevant_cols=>'salary,birthdate,ssn');

END;
/

As the second example, the following command creates another policy that applies to the same object for hosting, so users can access only data based on their subscriber ID. Since it is defined as a SHARED_STATIC policy type, the server will first try to find the predicate in the SGA cache. The server will only invoke the policy function, subfun, if that search fails.

BEGIN
dbms_rls.add_policy(object_schema => 'hr',
object_name => 'employee',
policy_name => 'hosting_policy',
function_schema =>'hr',
policy_function => 'subfun',
policy_type => dbms_rls.SHARED_STATIC);
END;
/

ADD_POLICY_CONTEXT Procedure

This procedure adds the context for the active application.

Syntax

DBMS_RLS.ADD_POLICY_CONTEXT (
 object_schema IN VARCHAR2 NULL,
 object_name IN VARCHAR2,
 namespace IN VARCHAR2,
 attribute IN VARCHAR2);

Parameters

Table 124-5 ADD_POLICY_CONTEXT Procedure Parameters

	Parameter	Description
	
object_schema

	
The schema containing the table, view, or synonym.

	
object_name

	
The name of the table, view, or synonym to which the policy is added.

	
namespace

	
The namespace of the driving context

	
attribute

	
The attribute of the driving context.

Usage Notes

Note the following:

	
This procedure indicates the application context that drives the enforcement of policies; this is the context that determines which application is running.

	
If no object_schema is specified, the current user's schema is assumed.

	
The driving context can be session or global.

	
At execution time, the server retrieves the name of the active policy group from the value of this context.

	
There must be at least one driving context defined for each object that has fine-grained access control policies; otherwise, all policies for the object will be executed.

	
Adding multiple context to the same object will cause policies from multiple policy groups to be enforced.

	
If the driving context is NULL, policies from all policy groups are used.

	
If the driving context is a policy group with policies, all enabled policies from that policy group will be applied, along with all policies from the SYS_DEFAULT policy group.

	
To add a policy to table hr.employees in group access_control_group, the following command is issued:

DBMS_RLS.ADD_GROUPED_POLICY('hr','employees','access_control_group','policy1','SYS', 'HR.ACCESS');

CREATE_POLICY_GROUP Procedure

This procedure creates a policy group.

Syntax

DBMS_RLS.CREATE_POLICY_GROUP (
 object_schema IN VARCHAR2 NULL,
 object_name IN VARCHAR2,
 policy_group IN VARCHAR2);

Parameters

Table 124-6 CREATE_POLICY_GROUP Procedure Parameters

	Parameter	Description
	
object_schema

	
Schema containing the table, view, or synonym.

	
object_name

	
Name of the table, view, or synonym to which the policy is added.

	
policy_group

	
Name of the policy group that the policy belongs to.

Usage Notes

The group must be unique for each table or view.

DELETE_POLICY_GROUP Procedure

This procedure deletes a policy group.

Syntax

DBMS_RLS.DELETE_POLICY_GROUP (
 object_schema IN VARCHAR2 NULL,
 object_name IN VARCHAR2,
 policy_group IN VARCHAR2);

Parameters

Table 124-7 DELETE_POLICY_GROUP Procedure Parameters

	Parameter	Description
	
object_schema

	
The schema containing the table, view, or synonym.

	
object_name

	
The name of the table, view, or synonym to which the policy is added.

	
policy_group

	
The name of the policy group that the policy belongs to.

Usage Notes

Note the following:

	
This procedure deletes a policy group for the specified table, view, or synonym.

	
No policy can be in the policy group.

DISABLE_GROUPED_POLICY Procedure

This procedure disables a row-level group security policy.

Syntax

DBMS_RLS.DISABLE_GROUPED_POLICY (
 object_schema IN VARCHAR2 NULL,
 object_name IN VARCHAR2,
 group_name IN VARCHAR2,
 policy_name IN VARCHAR2);

Parameters

Table 124-8 ENABLE_GROUPED_POLICY Procedure Parameters

	Parameter	Description
	
object_schema

	
The schema containing the table, view, or synonym.

	
object_name

	
The name of the table, view, or synonym with which the policy is associated.

	
group_name

	
The name of the group of the policy.

	
policy_name

	
The name of the policy to be enabled or disabled.

Usage Notes

	
The procedure causes the current transaction, if any, to commit before the operation is carried out.

	
A commit is performed at the end of the operation.

	
A policy is disabled when this procedure is executed or when the ENABLE_GROUPED_POLICY procedure is executed with "enable" set to FALSE.

DROP_GROUPED_POLICY Procedure

This procedure drops a policy associated with a policy group.

Syntax

DBMS_RLS.DROP_GROUPED_POLICY (
 object_schema IN VARCHAR2 NULL,
 object_name IN VARCHAR2,
 policy_group IN VARCHAR2 'SYS_DEFAULT',
 policy_name IN VARCHAR2);

Parameters

Table 124-9 DROP_GROUPED_POLICY Procedure Parameters

	Parameter	Description
	
object_schema

	
The schema containing the table, view, or synonym.

	
object_name

	
The name of the table, view, or synonym to which the policy is dropped.

	
policy_group

	
The name of the policy group that the policy belongs to.

	
policy_name

	
The name of the policy.

DROP_POLICY Procedure

This procedure drops a fine-grained access control policy from a table, view, or synonym.

The procedure causes the current transaction, if any, to commit before the operation is carried out. However, this does not cause a commit first if it is inside a DDL event trigger.

	
See Also:

Operational Notes

A COMMIT is also performed at the end of the operation.

Syntax

DBMS_RLS.DROP_POLICY (
 object_schema IN VARCHAR2 NULL,
 object_name IN VARCHAR2,
 policy_name IN VARCHAR2);

Parameters

Table 124-10 DROP_GROUPED_POLICY Procedure Parameters

	Parameter	Description
	
object_schema

	
Schema containing the table, view or synonym. If no object_schema is specified, or NULL is provided, then the current user's schema is assumed.

	
object_name

	
Name of the table, view, or synonym for which the policy is dropped.

	
policy_name

	
Name of policy to be dropped from table, view, or synonym.

Usage Notes

	
When you drop a VPD policy from a synonym, it causes all the dependent objects of the synonym, including policy functions that reference the synonym, to be marked INVALID.

DROP_POLICY_CONTEXT Procedure

This procedure drops a driving context from the object so that it will have one less driving context.

Syntax

DBMS_RLS.DROP_POLICY_CONTEXT (
 object_schema IN VARCHAR2 NULL,
 object_name IN VARCHAR2,
 namespace IN VARCHAR2,
 attribute IN VARCHAR2);

Parameters

Table 124-11 DROP_POLICY_CONTEXT Procedure Parameters

	Parameter	Description
	
object_schema

	
The schema containing the table, view, or synonym. If no object_schema is specified, or NULL is provided, then the current user's schema is assumed.

	
object_name

	
The name of the table, view, or synonym to which the policy is dropped.

	
namespace

	
The namespace of the driving context.

	
attribute

	
The attribute of the driving context.

ENABLE_GROUPED_POLICY Procedure

This procedure enables or disables a row-level group security policy.

Syntax

DBMS_RLS.ENABLE_GROUPED_POLICY (
 object_schema IN VARCHAR2 NULL,
 object_name IN VARCHAR2,
 group_name IN VARCHAR2,
 policy_name IN VARCHAR2,
 enable IN BOOLEAN TRUE);

Parameters

Table 124-12 ENABLE_GROUPED_POLICY Procedure Parameters

	Parameter	Description
	
object_schema

	
The schema containing the table, view, or synonym. If no object_schema is specified, or NULL is provided, then the current user's schema is assumed.

	
object_name

	
The name of the table, view, or synonym with which the policy is associated.

	
group_name

	
The name of the group of the policy.

	
policy_name

	
The name of the policy to be enabled or disabled.

	
enable

	
TRUE enables the policy; FALSE disables the policy.

Usage Notes

	
The procedure causes the current transaction, if any, to commit before the operation is carried out.

	
A commit is performed at the end of the operation.

	
A policy is enabled when it is created.

ENABLE_POLICY Procedure

This procedure enables or disables a fine-grained access control policy. A policy is enabled when it is created.

The procedure causes the current transaction, if any, to commit before the operation is carried out. However, this does not cause a commit first if it is inside a DDL event trigger.

	
See Also:

Operational Notes

A COMMIT is also performed at the end of the operation.

Syntax

DBMS_RLS.ENABLE_POLICY (
 object_schema IN VARCHAR2 NULL,
 object_name IN VARCHAR2,
 policy_name IN VARCHAR2,
 enable IN BOOLEAN TRUE);

Parameters

Table 124-13 ENABLE_POLICY Procedure Parameters

	Parameter	Description
	
object_schema

	
Schema containing table, view, or synonym. If no object_schema is specified, or NULL is provided, then the current user's schema is assumed.

	
object_name

	
Name of table, view, or synonym with which the policy is associated.

	
policy_name

	
Name of policy to be enabled or disabled.

	
enable

	
TRUE to enable the policy, FALSE to disable the policy.

REFRESH_GROUPED_POLICY Procedure

This procedure reparses the SQL statements associated with a refreshed policy.

Syntax

DBMS_RLS.REFRESH_GROUPED_POLICY (
 object_schema IN VARCHAR2 NULL,
 object_name IN VARCHAR2 NULL,
 group_name IN VARCHAR2 NULL,
 policy_name IN VARCHAR2 NULL);

Parameters

Table 124-14 REFRESH_GROUPED_POLICY Procedure Parameters

	Parameter	Description
	
object_schema

	
The schema containing the table, view, or synonym. If no object_schema is specified, or NULL is provided, then the current user's schema is assumed.

	
object_name

	
The name of the table, view, or synonym with which the policy is associated.

	
group_name

	
The name of the group of the policy.

	
policy_name

	
The name of the policy.

Usage Notes

	
This procedure causes all the cached statements associated with the policy to be reparsed. This guarantees that the latest change to the policy has immediate effect after the procedure is executed.

	
The procedure causes the current transaction, if any, to commit before the operation is carried out.

	
A commit is performed at the end of the operation.

	
The procedure returns an error if it tries to refresh a disabled policy.

REFRESH_POLICY Procedure

This procedure causes all the cached statements associated with the policy to be reparsed. This guarantees that the latest change to this policy will have immediate effect after the procedure is executed.

The procedure causes the current transaction, if any, to commit before the operation is carried out. However, this does not cause a commit first if it is inside a DDL event trigger.

	
See Also:

Operational Notes

A COMMIT is also performed at the end of the operation.

Syntax

DBMS_RLS.REFRESH_POLICY (
 object_schema IN VARCHAR2 NULL,
 object_name IN VARCHAR2 NULL,
 policy_name IN VARCHAR2 NULL);

Parameters

Table 124-15 REFRESH_POLICY Procedure Parameters

	Parameter	Description
	
object_schema

	
Schema containing the table, view, or synonym. If no object_schema is specified, or NULL is provided, then the current user's schema is assumed.

	
object_name

	
Name of table, view, or synonym with which the policy is associated.

	
policy_name

	
Name of policy to be refreshed.

Usage Notes

The procedure returns an error if it tries to refresh a disabled policy.

DBMS_ROWID

125 DBMS_ROWID

The DBMS_ROWID package lets you create ROWIDs and obtain information about ROWIDs from PL/SQL programs and SQL statements. You can find the data block number, the object number, and other ROWID components without writing code to interpret the base-64 character external ROWID. DBMS_ROWID is intended for upgrading from Oracle database version 7 to Oracle database version 8.X.

	
Note:

DBMS_ROWID is not to be used with universal ROWIDs (UROWIDs).

This chapter contains the following topics:

	
Using DBMS_ROWID

	
Security Model

	
Types

	
Exceptions

	
Operational Notes

	
Examples

	
Summary of DBMS_ROWID Subprograms

Using DBMS_ROWID

	
Security Model

	
Types

	
Exceptions

	
Operational Notes

	
Examples

Security Model

This package runs with the privileges of calling user, rather than the package owner SYS.

Types

	
Extension and Restriction Types

	
Verification Types

	
Object Types

	
Conversion Types

Extension and Restriction Types

The types are as follows:

	
RESTRICTED—restricted ROWID

	
EXTENDED—extended ROWID

For example:

rowid_type_restricted constant integer := 0;
rowid_type_extended constant integer := 1;

	
Note:

Extended ROWIDs are only used in Oracle database version 8.Xi and higher.

Verification Types

Table 125-1 Verification Types

	Result	Description
	
VALID

	
Valid ROWID

	
INVALID

	
Invalid ROWID

For example:

rowid_is_valid constant integer := 0;
rowid_is_invalid constant integer := 1;

Object Types

Table 125-2 Object Types

	Result	Description
	
UNDEFINED

	
Object Number not defined (for restricted ROWIDs)

For example:

rowid_object_undefined constant integer := 0;

Conversion Types

Table 125-3 Conversion Types

	Result	Description
	
INTERNAL

	
Convert to/from column of ROWID type

	
EXTERNAL

	
Convert to/from string format

For example:

rowid_convert_internal constant integer := 0;
rowid_convert_external constant integer := 1;

Exceptions

Table 125-4 Exceptions

	Exception	Description
	
ROWID_INVALID

	
Invalid rowid format

	
ROWID_BAD_BLOCK

	
Block is beyond end of file

For example:

ROWID_INVALID exception;
 pragma exception_init(ROWID_INVALID, -1410);

ROWID_BAD_BLOCK exception;
 pragma exception_init(ROWID_BAD_BLOCK, -28516);

Operational Notes

	
Some of the functions in this package take a single parameter, such as a ROWID. This can be a character or a PL/SLQ ROWID, either restricted or extended, as required.

	
You can call the DBMS_ROWID functions and procedures from PL/SQL code, and you can also use the functions in SQL statements.

	
Note:

ROWID_INFO is a procedure. It can only be used in PL/SQL code.

	
You can use functions from the DBMS_ROWID package just like built-in SQL functions; in other words, you can use them wherever you can use an expression. In this example, the ROWID_BLOCK_NUMBER function is used to return just the block number of a single row in the EMP table:

SELECT DBMS_ROWID.ROWID_BLOCK_NUMBER(rowid)
 FROM emp
 WHERE ename = 'KING';

	
If Oracle returns the error "ORA:452, 0, 'Subprogram '%s' violates its associated pragma' for pragma restrict_references, it could mean the violation is due to:

	
A problem with the current procedure or function

	
Calling a procedure or function without a pragma or due to calling one with a less restrictive pragma

	
Calling a package procedure or function that touches the initialization code in a package or that sets the default values

Examples

This example returns the ROWID for a row in the EMP table, extracts the data object number from the ROWID, using the ROWID_OBJECT function in the DBMS_ROWID package, then displays the object number:

DECLARE
 object_no INTEGER;
 row_id ROWID;
 ...
BEGIN
 SELECT ROWID INTO row_id FROM emp
 WHERE empno = 7499;
 object_no := DBMS_ROWID.ROWID_OBJECT(row_id);
 DBMS_OUTPUT.PUT_LINE('The obj. # is '|| object_no);
 ...

Summary of DBMS_ROWID Subprograms

Table 125-5 DBMS_ROWID Package Subprograms

	Subprogram	Description
	
ROWID_BLOCK_NUMBER Function

	
Returns the block number of a ROWID

	
ROWID_CREATE Function

	
Creates a ROWID, for testing only

	
ROWID_INFO Procedure

	
Returns the type and components of a ROWID

	
ROWID_OBJECT Function

	
Returns the object number of the extended ROWID

	
ROWID_RELATIVE_FNO Function

	
Returns the file number of a ROWID

	
ROWID_ROW_NUMBER Function

	
Returns the row number

	
ROWID_TO_ABSOLUTE_FNO Function

	
Returns the absolute file number associated with the ROWID for a row in a specific table

	
ROWID_TO_EXTENDED Function

	
Converts a ROWID from restricted format to extended

	
ROWID_TO_RESTRICTED Function

	
Converts an extended ROWID to restricted format

	
ROWID_TYPE Function

	
Returns the ROWID type: 0 is restricted, 1 is extended

	
ROWID_VERIFY Function

	
Checks if a ROWID can be correctly extended by the ROWID_TO_EXTENDED function

ROWID_BLOCK_NUMBER Function

This function returns the database block number for the input ROWID.

Syntax

DBMS_ROWID.ROWID_BLOCK_NUMBER (
 row_id IN ROWID,
 ts_type_in IN VARCHAR2 DEFAULT 'SMALLFILE')
 RETURN NUMBER;

Pragmas

 pragma RESTRICT_REFERENCES(rowid_block_number,WNDS,RNDS,WNPS,RNPS);

Parameters

Table 125-6 ROWID_BLOCK_NUMBER Function Parameters

	Parameter	Description
	
row_id

	
ROWID to be interpreted

	
ts_type_in

	
The type of the tablespace (bigfile/smallfile) to which the row belongs

Examples

The example SQL statement selects the block number from a ROWID and inserts it into another table:

INSERT INTO T2 (SELECT dbms_rowid.rowid_block_number(ROWID, 'BIGFILE')
 FROM some_table
 WHERE key_value = 42);

ROWID_CREATE Function

This function lets you create a ROWID, given the component parts as parameters.

This is useful for testing ROWID operations, because only the Oracle Server can create a valid ROWID that points to data in a database.

Syntax

DBMS_ROWID.ROWID_CREATE (
 rowid_type IN NUMBER,
 object_number IN NUMBER,
 relative_fno IN NUMBER,
 block_number IN NUMBER,
 row_number IN NUMBER)
 RETURN ROWID;

Pragmas

pragma RESTRICT_REFERENCES(rowid_create,WNDS,RNDS,WNPS,RNPS);

Parameters

Table 125-7 ROWID_CREATE Function Parameters

	Parameter	Description
	
rowid_type

	
Type (restricted or extended)

Set the rowid_type parameter to 0 for a restricted ROWID. Set it to 1 to create an extended ROWID.

If you specify rowid_type as 0, then the required object_number parameter is ignored, and ROWID_CREATE returns a restricted ROWID.

	
object_number

	
Data object number (rowid_object_undefined for restricted)

	
relative_fno

	
Relative file number

	
block_number

	
Block number in this file

	
row_number

	
Returns row number in this block

Examples

Create a dummy extended ROWID:

 my_rowid := DBMS_ROWID.ROWID_CREATE(1, 9999, 12, 1000, 13);

Find out what the rowid_object function returns:

 obj_number := DBMS_ROWID.ROWID_OBJECT(my_rowid);

The variable obj_number now contains 9999.

ROWID_INFO Procedure

This procedure returns information about a ROWID, including its type (restricted or extended), and the components of the ROWID. This is a procedure, and it cannot be used in a SQL statement.

Syntax

DBMS_ROWID.ROWID_INFO (
 rowid_in IN ROWID,
 rowid_type OUT NUMBER,
 object_number OUT NUMBER,
 relative_fno OUT NUMBER,
 block_number OUT NUMBER,
 row_number OUT NUMBER);

Pragmas

 pragma RESTRICT_REFERENCES(rowid_info,WNDS,RNDS,WNPS,RNPS);

Parameters

Table 125-8 ROWID_INFO Procedure Parameters

	Parameter	Description
	
rowid_in

	
ROWID to be interpreted. This determines if the ROWID is a restricted (0) or extended (1) ROWID.

	
rowid_type

	
Returns type (restricted/extended)

	
object_number

	
Returns data object number (rowid_object_undefined for restricted)

	
relative_fno

	
Returns relative file number

	
block_number

	
Returns block number in this file

	
row_number

	
Returns row number in this block

	
See Also:

"ROWID_TYPE Function"

Examples

This example reads back the values for the ROWID that you created in the ROWID_CREATE:

DBMS_ROWID.ROWID_INFO (
 my_rowid, rid_type, obj_num, file_num, block_num, row_num, 'BIGFILE');

ROWID_OBJECT Function

This function returns the data object number for an extended ROWID. The function returns zero if the input ROWID is a restricted ROWID.

Syntax

DBMS_ROWID.ROWID_OBJECT (
 rowid_id IN ROWID)
 RETURN NUMBER;

Pragmas

 pragma RESTRICT_REFERENCES(rowid_object,WNDS,RNDS,WNPS,RNPS);

Parameters

Table 125-9 ROWID_OBJECT Function Parameters

	Parameter	Description
	
row_id

	
ROWID to be interpreted

	
Note:

The ROWID_OBJECT_UNDEFINED constant is returned for restricted ROWIDs.

Examples

SELECT dbms_rowid.rowid_object(ROWID)
 FROM emp
 WHERE empno = 7499;

ROWID_RELATIVE_FNO Function

This function returns the relative file number of the ROWID specified as the IN parameter. (The file number is relative to the tablespace.)

Syntax

DBMS_ROWID.ROWID_RELATIVE_FNO (
 rowid_id IN ROWID,
 ts_type_in IN VARCHAR2 DEFAULT 'SMALLFILE')
 RETURN NUMBER;

Pragmas

 pragma RESTRICT_REFERENCES(rowid_relative_fno,WNDS,RNDS,WNPS,RNPS);

Parameters

Table 125-10 ROWID_RELATIVE_FNO Function Parameters

	Parameter	Description
	
row_id

	
ROWID to be interpreted

	
ts_type_in

	
Type of the tablespace (bigfile/smallfile) to which the row belongs

Examples

The example PL/SQL code fragment returns the relative file number:

DECLARE
 file_number INTEGER;
 rowid_val ROWID;
BEGIN
 SELECT ROWID INTO rowid_val
 FROM dept
 WHERE loc = 'Boston';
 file_number :=
 dbms_rowid.rowid_relative_fno(rowid_val, 'SMALLFILE');
 ...

ROWID_ROW_NUMBER Function

This function extracts the row number from the ROWID IN parameter.

Syntax

DBMS_ROWID.ROWID_ROW_NUMBER (
 row_id IN ROWID)
 RETURN NUMBER;

Pragmas

 PRAGMA RESTRICT_REFERENCES(rowid_row_number,WNDS,RNDS,WNPS,RNPS);

Parameters

Table 125-11 ROWID_ROW_NUMBER Function Parameters

	Parameter	Description
	
row_id

	
ROWID to be interpreted.

Examples

Select a row number:

SELECT dbms_rowid.rowid_row_number(ROWID)
 FROM emp
 WHERE ename = 'ALLEN';

ROWID_TO_ABSOLUTE_FNO Function

This function extracts the absolute file number from a ROWID, where the file number is absolute for a row in a given schema and table. The schema name and the name of the schema object (such as a table name) are provided as IN parameters for this function.

Syntax

DBMS_ROWID.ROWID_TO_ABSOLUTE_FNO (
 row_id IN ROWID,
 schema_name IN VARCHAR2,
 object_name IN VARCHAR2)
 RETURN NUMBER;

Pragmas

 pragma RESTRICT_REFERENCES(rowid_to_absolute_fno,WNDS,WNPS,RNPS);

Parameters

Table 125-12 ROWID_TO_ABSOLUTE_FNO Function Parameters

	Parameter	Description
	
row_id

	
ROWID to be interpreted

	
schema_name

	
Name of the schema which contains the table

	
object_name

	
Table name

Examples

DECLARE
 abs_fno INTEGER;
 rowid_val CHAR(18);
 object_name VARCHAR2(20) := 'EMP';
BEGIN
 SELECT ROWID INTO rowid_val
 FROM emp
 WHERE empno = 9999;
 abs_fno := dbms_rowid.rowid_to_absolute_fno(
 rowid_val, 'SCOTT', object_name);

	
Note:

For partitioned objects, the name must be a table name, not a partition or a sub/partition name.

ROWID_TO_EXTENDED Function

This function translates a restricted ROWID that addresses a row in a schema and table that you specify to the extended ROWID format. Later, it may be removed from this package into a different place.

Syntax

DBMS_ROWID.ROWID_TO_EXTENDED (
 old_rowid IN ROWID,
 schema_name IN VARCHAR2,
 object_name IN VARCHAR2,
 conversion_type IN INTEGER)
 RETURN ROWID;

Pragmas

 pragma RESTRICT_REFERENCES(rowid_to_extended,WNDS,WNPS,RNPS);

Parameters

Table 125-13 ROWID_TO_EXTENDED Function Parameters

	Parameter	Description
	
old_rowid

	
ROWID to be converted

	
schema_name

	
Name of the schema which contains the table (optional)

	
object_name

	
Table name (optional).

	
conversion_type

	
The following constants are defined:

ROWID_CONVERT_INTERNAL (:=0)

ROWID_CONVERT_EXTERNAL (:=1)

Return Values

ROWID_TO_EXTENDED returns the ROWID in the extended character format. If the input ROWID is NULL, then the function returns NULL. If a zero-valued ROWID is supplied (00000000.0000.0000), then a zero-valued restricted ROWID is returned.

Examples

Assume that there is a table called RIDS in the schema SCOTT, and that the table contains a column ROWID_COL that holds ROWIDs (restricted), and a column TABLE_COL that point to other tables in the SCOTT schema. You can convert the ROWIDs to extended format with the statement:

UPDATE SCOTT.RIDS
 SET rowid_col =
 dbms_rowid.rowid_to_extended (
 rowid_col, 'SCOTT", TABLE_COL, 0);

Usage Notes

	
If the schema and object names are provided as IN parameters, then this function verifies SELECT authority on the table named, and converts the restricted ROWID provided to an extended ROWID, using the data object number of the table. That ROWID_TO_EXTENDED returns a value, however, does not guarantee that the converted ROWID actually references a valid row in the table, either at the time that the function is called, or when the extended ROWID is actually used.

	
If the schema and object name are not provided (are passed as NULL), then this function attempts to fetch the page specified by the restricted ROWID provided. It treats the file number stored in this ROWID as the absolute file number. This can cause problems if the file has been dropped, and its number has been reused prior to the migration. If the fetched page belongs to a valid table, then the data object number of this table is used in converting to an extended ROWID value. This is very inefficient, and Oracle recommends doing this only as a last resort, when the target table is not known. The user must still know the correct table name at the time of using the converted value.

	
If an extended ROWID value is supplied, the data object number in the input extended ROWID is verified against the data object number computed from the table name parameter. If the two numbers do not match, the INVALID_ROWID exception is raised. If they do match, the input ROWID is returned.

	
ROWID_TO_EXTENDED cannot be used with partition tables.

	
See Also:

The ROWID_VERIFY Function has a method to determine if a given ROWID can be converted to the extended format.

ROWID_TO_RESTRICTED Function

This function converts an extended ROWID into restricted ROWID format.

Syntax

DBMS_ROWID.ROWID_TO_RESTRICTED (
 old_rowid IN ROWID,
 conversion_type IN INTEGER)
 RETURN ROWID;

Pragmas

 pragma RESTRICT_REFERENCES(rowid_to_restricted,WNDS,RNDS,WNPS,RNPS);

Parameters

Table 125-14 ROWID_TO_RESTRICTED Function Parameters

	Parameter	Description
	
old_rowid

	
ROWID to be converted

	
conversion_type

	
The following constants are defined:

ROWID_CONVERT_INTERNAL (:=0)

ROWID_CONVERT_EXTERNAL (:=1)

ROWID_TYPE Function

This function returns 0 if the ROWID is a restricted ROWID, and 1 if it is extended.

Syntax

DBMS_ROWID.ROWID_TYPE (
 rowid_id IN ROWID)
 RETURN NUMBER;

Pragmas

 pragma RESTRICT_REFERENCES(rowid_type,WNDS,RNDS,WNPS,RNPS);

Parameters

Table 125-15 ROWID_TYPE Function Parameters

	Parameter	Description
	
row_id

	
ROWID to be interpreted

Examples

IF DBMS_ROWID.ROWID_TYPE(my_rowid) = 1 THEN
 my_obj_num := DBMS_ROWID.ROWID_OBJECT(my_rowid);

ROWID_VERIFY Function

This function verifies the ROWID. It returns 0 if the input restricted ROWID can be converted to extended format, given the input schema name and table name, and it returns 1 if the conversion is not possible.

	
Note:

You can use this function in a WHERE clause of a SQL statement, as shown in the example.

Syntax

DBMS_ROWID.ROWID_VERIFY (
 rowid_in IN ROWID,
 schema_name IN VARCHAR2,
 object_name IN VARCHAR2,
 conversion_type IN INTEGER
 RETURN NUMBER;

Pragmas

 pragma RESTRICT_REFERENCES(rowid_verify,WNDS,WNPS,RNPS);

Parameters

Table 125-16 ROWID_VERIFY Function Parameters

	Parameter	Description
	
rowid_in

	
ROWID to be verified

	
schema_name

	
Name of the schema which contains the table

	
object_name

	
Table name

	
conversion_type

	
The following constants are defined:

ROWID_CONVERT_INTERNAL (:=0)

ROWID_CONVERT_EXTERNAL (:=1)

Examples

Considering the schema in the example for the ROWID_TO_EXTENDED function, you can use the following statement to find bad ROWIDs prior to conversion. This enables you to fix them beforehand.

SELECT ROWID, rowid_col
 FROM SCOTT.RIDS
 WHERE dbms_rowid.rowid_verify(rowid_col, NULL, NULL, 0) =1;

	
See Also:

Chapter 232, "UTL_RAW", Chapter 234, "UTL_REF"

DBMS_RULE

126 DBMS_RULE

The DBMS_RULE package contains subprograms that enable the evaluation of a rule set for a specified event.

This chapter contains the following topics:

	
Using DBMS_RULE

	
Overview

	
Security Model

	
Summary of DBMS_RULE Subprograms

Using DBMS_RULE

This section contains topics which relate to using the DBMS_RULE package.

	
Overview

	
Security Model

Overview

This package contains subprograms that enable the evaluation of a rule set for a specified event.

	
See Also:

	
Chapter 256, "Rule TYPEs" for more information about the types used with the DBMS_RULE package

	
Chapter 127, "DBMS_RULE_ADM" and Oracle Streams Concepts and Administration for more information about this package and rules

Security Model

PUBLIC is granted EXECUTE privilege on this package.

	
See Also:

Oracle Database Security Guide for more information about user group PUBLIC

Summary of DBMS_RULE Subprograms

Table 126-1 DBMS_RULE Package Subprograms

	Subprogram	Description
	
CLOSE_ITERATOR Procedure

	
Closes an open iterator

	
EVALUATE Procedures

	
Evaluates the rules in the specified rule set that use the evaluation context specified

	
GET_NEXT_HIT Function

	
Returns the next rule that evaluated to TRUE from a true rules iterator, or returns the next rule that evaluated to MAYBE from a maybe rules iterator; returns NULL if there are no more rules that evaluated to TRUE or MAYBE.

CLOSE_ITERATOR Procedure

This procedure closes an open iterator.

Syntax

DBMS_RULE.CLOSE_ITERATOR(
 iterator IN BINARY_INTEGER);

Parameter

Table 126-2 CLOSE_ITERATOR Procedure Parameter

	Parameter	Description
	
iterator

	
The iterator to be closed

Usage Notes

This procedure requires an open iterator that was returned by an earlier call to DBMS_RULE.EVALUATE in the same session. The user who runs this procedure does not require any privileges on the rule set being evaluated.

Closing an iterator frees resources, such as memory, associated with the iterator. Therefore, Oracle recommends that you close an iterator when it is no longer needed.

	
See Also:

EVALUATE Procedures

EVALUATE Procedures

This procedure evaluates the rules in the specified rule set that use the evaluation context specified for a specified event.

This procedure is overloaded. The true_rules and maybe_rules parameters are mutually exclusive with the true_rules_iterator and maybe_rules_iterator parameters. In addition, the procedure with the true_rules and maybe_rules parameters includes the stop_on_first_hit parameter, but the other procedure does not.

Syntax

DBMS_RULE.EVALUATE(
 rule_set_name IN VARCHAR2,
 evaluation_context IN VARCHAR2,
 event_context IN SYS.RE$NV_LIST DEFAULT NULL,
 table_values IN SYS.RE$TABLE_VALUE_LIST DEFAULT NULL,
 column_values IN SYS.RE$COLUMN_VALUE_LIST DEFAULT NULL,
 variable_values IN SYS.RE$VARIABLE_VALUE_LIST DEFAULT NULL,
 attribute_values IN SYS.RE$ATTRIBUTE_VALUE_LIST DEFAULT NULL,
 stop_on_first_hit IN BOOLEAN DEFAULT FALSE,
 simple_rules_only IN BOOLEAN DEFAULT FALSE,
 true_rules OUT SYS.RE$RULE_HIT_LIST,
 maybe_rules OUT SYS.RE$RULE_HIT_LIST);

DBMS_RULE.EVALUATE(
 rule_set_name IN VARCHAR2,
 evaluation_context IN VARCHAR2,
 event_context IN SYS.RE$NV_LIST DEFAULT NULL,
 table_values IN SYS.RE$TABLE_VALUE_LIST DEFAULT NULL,
 column_values IN SYS.RE$COLUMN_VALUE_LIST DEFAULT NULL,
 variable_values IN SYS.RE$VARIABLE_VALUE_LIST DEFAULT NULL,
 attribute_values IN SYS.RE$ATTRIBUTE_VALUE_LIST DEFAULT NULL,
 simple_rules_only IN BOOLEAN DEFAULT FALSE,
 true_rules_iterator OUT BINARY_INTEGER,
 maybe_rules_iterator OUT BINARY_INTEGER);

Parameters

Table 126-3 EVALUATE Procedure Parameters

	Parameter	Description
	
rule_set_name

	
Name of the rule set in the form [schema_name.]rule_set_name. For example, to evaluate all of the rules in a rule set named hr_rules in the hr schema, enter hr.hr_rules for this parameter. If the schema is not specified, then the schema of the current user is used.

	
evaluation_context

	
An evaluation context name in the form [schema_name.]evaluation_context_name. If the schema is not specified, then the name of the current user is used.

Only rules that use the specified evaluation context are evaluated.

	
event_context

	
A list of name-value pairs that identify events that cause evaluation

	
table_values

	
Contains the data for table rows using the table aliases specified when the evaluation context was created. Each table alias in the list must be unique.

	
column_values

	
Contains the partial data for table rows. It must not contain column values for tables, whose values are already specified in table_values.

	
variable_values

	
A list containing the data for variables.

The only way for an explicit variable value to be known is to specify its value in this list.

If an implicit variable value is not specified in the list, then the function used to obtain the value of the implicit variable is invoked. If an implicit variable value is specified in the list, then this value is used and the function is not invoked.

	
attribute_values

	
Contains the partial data for variables. It must not contain attribute values for variables whose values are already specified in variable_values.

	
stop_on_first_hit

	
If TRUE, then the rules engine stops evaluation as soon as it finds a TRUE rule.

If TRUE and there are no TRUE rules, then the rules engine stops evaluation as soon as it finds a rule that may evaluate to TRUE given more data.

If FALSE, then the rules engine continues to evaluate rules even after it finds a TRUE rule.

	
simple_rules_only

	
If TRUE, then only those rules that are simple enough to be evaluated fast (without issuing SQL) are considered for evaluation.

If FALSE, then evaluates all rules.

	
true_rules

	
Receives the output of the EVALUATE procedure into a varray of RE$RULE_HIT_LIST type.

If no rules evaluate to TRUE, then true_rules is empty.

If at least one rule evaluates to TRUE and stop_on_first_hit is TRUE, then true_rules contains one rule that evaluates to TRUE.

If stop_on_first_hit is FALSE, then true_rules contains all rules that evaluate to TRUE.

	
maybe_rules

	
If all rules can be evaluated completely, without requiring any additional data, then maybe_rules is empty.

If stop_on_first_hit is TRUE, then if there is at least one rule that may evaluate to TRUE given more data, and no rules evaluate to TRUE, then maybe_rules contains one rule that may evaluate to TRUE.

If stop_on_first_hit is FALSE, then maybe_rules contains all rules that may evaluate to TRUE given more data.

	
true_rules_iterator

	
Contains the iterator for accessing rules that are TRUE

	
maybe_rules_iterator

	
Contains the iterator for accessing rules that may be TRUE given additional data or the ability to issue SQL

Usage Notes

	
Note:

Rules in the rule set that use an evaluation context different from the one specified are not considered for evaluation.

The rules in the rule set are evaluated using the data specified for table_values, column_values, variable_values, and attribute_values. These values must refer to tables and variables in the specified evaluation context. Otherwise, an error is raised.

The caller may specify, using stop_on_first_hit, if evaluation must stop as soon as the first TRUE rule or the first MAYBE rule (if there are no TRUE rules) is found.

The caller may also specify, using simple_rules_only, if only rules that are simple enough to be evaluated fast (which means without SQL) should be considered for evaluation. This makes evaluation faster, but causes rules that cannot be evaluated without SQL to be returned as MAYBE rules.

Partial evaluation is supported. The EVALUATE procedure can be called with data for only some of the tables, columns, variables, or attributes. In such a case, rules that cannot be evaluated because of a lack of data are returned as MAYBE rules, unless they can be determined to be TRUE or FALSE based on the values of one or more simple expressions within the rule. For example, given a value of 1 for attribute "a.b" of variable "x", a rule with the following rule condition can be returned as TRUE, without a value for table "tab":

(:x.a.b = 1) or (tab.c > 10)

The results of an evaluation are the following:

	
TRUE rules, which is the list of rules that evaluate to TRUE based on the given data. These rules are returned either in the OUT parameter true_rules, which returns all of the rules that evaluate to TRUE, or in the OUT parameter true_rules_iterator, which returns each rule that evaluates to TRUE one at a time.

	
MAYBE rules, which is the list of rules that could not be evaluated for one of the following reasons:

	
The rule refers to data that was unavailable. For example, a variable attribute "x.a.b" is specified, but no value is specified for the variable "x", the attribute "a", or the attribute "a.b".

	
The rule is not simple enough to be evaluated fast (without SQL) and simple_rules_only is specified as TRUE, or partial data is available.

Maybe rules are returned either in the OUT parameter maybe_rules, which returns all of the rules that evaluate to MAYBE, or in the OUT parameter maybe_rules_iterator, which returns each rule that evaluates to MAYBE one at a time.

The caller may specify whether the procedure returns all of the rules that evaluate to TRUE and MAYBE for the event or an iterator for rules that evaluate to TRUE and MAYBE. A true rules iterator enables the client to fetch each rule that evaluates to TRUE one at a time, and a maybe rules iterator enables the client to fetch each rule that evaluates to MAYBE one at a time.

If you use an iterator, then you use the GET_NEXT_HIT function in the DBMS_RULE package to retrieve the next rule that evaluates to TRUE or MAYBE from an iterator. Oracle recommends that you close an iterator if it is no longer needed to free resources, such as memory, used by the iterator. An iterator can be closed in the following ways:

	
The CLOSE_ITERATOR procedure in the DBMS_RULE package is run with the iterator specified.

	
The iterator returns NULL because no more rules evaluate to TRUE or MAYBE.

	
The session in which the iterator is running ends.

To run the DBMS_RULE.EVALUATE procedure, a user must meet at least one of the following requirements:

	
Have EXECUTE_ON_RULE_SET privilege on the rule set

	
Have EXECUTE_ANY_RULE_SET system privilege

	
Be the rule set owner

	
Note:

The rules engine does not invoke any actions. An action context can be returned with each returned rule, but the client of the rules engine must invoke any necessary actions.

	
See Also:

	
Chapter 256, "Rule TYPEs" for more information about the types used with the DBMS_RULE package

	
GET_NEXT_HIT Function

	
CLOSE_ITERATOR Procedure

GET_NEXT_HIT Function

This function returns the next rule that evaluated to TRUE from a true rules iterator, or returns the next rule that evaluated to MAYBE from a maybe rules iterator. The function returns NULL if there are no more rules that evaluated to TRUE or MAYBE.

Syntax

DBMS_RULE.GET_NEXT_HIT(
 iterator IN BINARY_INTEGER)
RETURN SYS.RE$RULE_HIT;

Parameter

Table 126-4 GET_NEXT_HIT Function Parameter

	Parameter	Description
	
iterator

	
The iterator from which the rule that evaluated to TRUE or MAYBE is retrieved

Usage Notes

This procedure requires an open iterator that was returned by an earlier call to DBMS_RULE.EVALUATE in the same session. The user who runs this procedure does not require any privileges on the rule set being evaluated.

When an iterator returns NULL, it is closed automatically. If an open iterator is no longer needed, then use the CLOSE_ITERATOR procedure in the DBMS_RULE package to close it.

	
Note:

This function raises an error if the rule set being evaluated was modified after the call to the DBMS_RULE.EVALUATE procedure that returned the iterator. Modifications to a rule set include added rules to the rule set, changing existing rules in the rule set, dropping rules from the rule set, and dropping the rule set.

	
See Also:

	
Chapter 256, "Rule TYPEs" for more information about the types used with the DBMS_RULE package

	
EVALUATE Procedures

	
CLOSE_ITERATOR Procedure

DBMS_RULE_ADM

127 DBMS_RULE_ADM

The DBMS_RULE_ADM package provides the subprograms for creating and managing rules, rule sets, and rule evaluation contexts.

This chapter contains the following topics:

	
Using DBMS_RULE_ADM

	
Overview

	
Security Model

	
Summary of DBMS_RULE_ADM Subprograms

Using DBMS_RULE_ADM

This section contains topics which relate to using the DBMS_RULE_ADM package.

	
Overview

	
Security Model

Overview

This package provides the subprograms for creating and managing rules, rule sets, and rule evaluation contexts.

	
See Also:

	
Chapter 256, "Rule TYPEs" for more information about the types used with the DBMS_RULE_ADM package

	
Chapter 126, "DBMS_RULE" and Oracle Streams Concepts and Administration for more information about this package and rules

Security Model

PUBLIC is granted EXECUTE privilege on this package.

	
See Also:

Oracle Database Security Guide for more information about user group PUBLIC

Summary of DBMS_RULE_ADM Subprograms

Table 127-1 DBMS_RULE_ADM Package Subprograms

	Subprogram	Description
	
ADD_RULE Procedure

	
Adds the specified rule to the specified rule set

	
ALTER_EVALUATION_CONTEXT Procedure

	
Alters a rule evaluation context

	
ALTER_RULE Procedure

	
Changes one or more aspects of the specified rule

	
CREATE_EVALUATION_CONTEXT Procedure

	
Creates a rule evaluation context

	
CREATE_RULE Procedure

	
Creates a rule with the specified name

	
CREATE_RULE_SET Procedure

	
Creates a rule set with the specified name

	
DROP_EVALUATION_CONTEXT Procedure

	
Drops the rule evaluation context with the specified name

	
DROP_RULE Procedure

	
Drops the rule with the specified name

	
DROP_RULE_SET Procedure

	
Drops the rule set with the specified name

	
GRANT_OBJECT_PRIVILEGE Procedure

	
Grants the specified object privilege on the specified object to the specified user or role

	
GRANT_SYSTEM_PRIVILEGE Procedure

	
Grants the specified system privilege to the specified user or role

	
REMOVE_RULE Procedure

	
Removes the specified rule from the specified rule set

	
REVOKE_OBJECT_PRIVILEGE Procedure

	
Revokes the specified object privilege on the specified object from the specified user or role

	
REVOKE_SYSTEM_PRIVILEGE Procedure

	
Revokes the specified system privilege from the specified user or role

	
Note:

All subprograms commit unless specified otherwise.

ADD_RULE Procedure

This procedure adds the specified rule to the specified rule set.

Syntax

DBMS_RULE_ADM.ADD_RULE(
 rule_name IN VARCHAR2,
 rule_set_name IN VARCHAR2,
 evaluation_context IN VARCHAR2 DEFAULT NULL,
 rule_comment IN VARCHAR2 DEFAULT NULL);

Parameters

Table 127-2 ADD_RULE Procedure Parameters

	Parameter	Description
	
rule_name

	
The name of the rule you are adding to the rule set, specified as [schema_name.]rule_name. For example, to add a rule named all_a in the hr schema, enter hr.all_a for this parameter. If the schema is not specified, then the current user is the default.

	
rule_set_name

	
The name of the rule set to which you are adding the rule, specified as [schema_name.]rule_set_name. For example, to add the rule to a rule set named apply_rules in the hr schema, enter hr.apply_rules for this parameter. If the schema is not specified, then the current user is the default.

	
evaluation_context

	
An evaluation context name in the form [schema_name.]evaluation_context_name. If the schema is not specified, then the current user is the default.

Only specify an evaluation context if the rule itself does not have an evaluation context and you do not want to use the rule set's evaluation context for the rule.

	
rule_comment

	
Optional description, which can contain the reason for adding the rule to the rule set

Usage Notes

To run this procedure, a user must meet at least one of the following requirements:

	
Have ALTER_ON_RULE_SET privilege on the rule set

	
Have ALTER_ANY_RULE_SET system privilege

	
Be the owner of the rule set

Also, the rule set owner must meet at least one of the following requirements:

	
Have EXECUTE_ON_RULE privilege on the rule

	
Have EXECUTE_ANY_RULE system privilege

	
Be the rule owner

If the rule has no evaluation context and no evaluation context is specified when you run this procedure, then the rule uses the evaluation context associated with the rule set. In such a case, the rule owner must have the necessary privileges on all the base objects accessed by the rule using the evaluation context.

If an evaluation context is specified, then the rule set owner must meet at least one of the following requirements:

	
Have EXECUTE_ON_EVALUATION_CONTEXT privilege on the evaluation context

	
Have EXECUTE_ANY_EVALUATION_CONTEXT system privilege, and the owner of the evaluation context must not be SYS

	
Be the evaluation context owner

Also, the rule owner must have the necessary privileges on all the base objects accessed by the rule using the evaluation context.

ALTER_EVALUATION_CONTEXT Procedure

This procedure alters a rule evaluation context. A rule evaluation context defines external data that can be referenced in rule conditions. The external data can either exist as variables or as table data.

Syntax

DBMS_RULE_ADM.ALTER_EVALUATION_CONTEXT(
 evaluation_context_name IN VARCHAR2,
 table_aliases IN SYS.RE$TABLE_ALIAS_LIST DEFAULT NULL,
 remove_table_aliases IN BOOLEAN DEFAULT FALSE,
 variable_types IN SYS.RE$VARIABLE_TYPE_LIST DEFAULT NULL,
 remove_variable_types IN BOOLEAN DEFAULT FALSE,
 evaluation_function IN VARCHAR2 DEFAULT NULL,
 remove_evaluation_function IN BOOLEAN DEFAULT FALSE,
 evaluation_context_comment IN VARCHAR2 DEFAULT NULL,
 remove_eval_context_comment IN BOOLEAN DEFAULT FALSE);

Parameters

Table 127-3 ALTER_EVALUATION_CONTEXT Procedure Parameters

	Parameter	Description
	
evaluation_context_name

	
The name of the evaluation context you are altering, specified as [schema_name.]evaluation_context_name.

For example, to alter an evaluation context named dept_eval_context in the hr schema, enter hr.dept_eval_context for this parameter. If the schema is not specified, then the current user is the default.

	
table_aliases

	
If NULL and remove_table_aliases is FALSE, then the procedure retains the existing table aliases. If NULL and remove_table_aliases is TRUE, then the procedure removes the existing table aliases.

If non-NULL, then the procedure replaces the existing table aliases for the evaluation context with the specified table aliases.

Table aliases specify the tables in an evaluation context. The table aliases can be used to reference tables in rule conditions.

	
remove_table_aliases

	
If TRUE and table_aliases is NULL, then the procedure removes the existing table aliases for the evaluation context. If TRUE and table_aliases is non-NULL, then the procedure raises an error.

If FALSE, then the procedure does not remove table aliases.

	
variable_types

	
If NULL and remove_variable_types is FALSE, then the procedure retains the variable types. If NULL and remove_variable_types is TRUE, then the procedure removes the existing variable types.

If non-NULL, then the procedure replaces the existing variable types for the evaluation context with the specified variable types.

	
remove_variable_types

	
If TRUE and variable_types is NULL, then the procedure removes the existing variable types for the evaluation context. If TRUE and variable_types is non-NULL, then the procedure raises an error.

If FALSE, then the procedure does not remove the variable types.

	
evaluation_function

	
If NULL and remove_evaluation_function is FALSE, then the procedure retains the existing evaluation function. If NULL and remove_evaluation_function is TRUE, then the procedure removes the existing evaluation function.

If non-NULL, then the procedure replaces the existing evaluation function for the evaluation context with the specified evaluation function.

An evaluation function is an optional function that will be called to evaluate rules that use the evaluation context. It must have the same form as the DBMS_RULE.EVALUATE procedure. If the schema is not specified, then the current user is the default.

See CREATE_EVALUATION_CONTEXT Procedurefor more information about evaluation functions.

	
remove_evaluation_function

	
If TRUE and evaluation_function is NULL, then the procedure removes the existing evaluation function for the evaluation context. If TRUE and evaluation_function is non-NULL, then the procedure raises an error.

If FALSE, then the procedure does not remove the evaluation function.

	
evaluation_context_comment

	
If NULL and remove_eval_context_comment is FALSE, then the procedure retains the existing evaluation context comment. If NULL and remove_evaluation_function is TRUE, then the procedure removes the existing evaluation context comment.

If non-NULL, then the procedure replaces the existing comment for the evaluation context with the specified comment.

An evaluation context comment is an optional description of the rule evaluation context.

	
remove_eval_context_comment

	
If TRUE and evaluation_context_comment is NULL, then the procedure removes the existing comment for the evaluation context. If TRUE and evaluation_context_comment is non-NULL, then the procedure raises an error.

If FALSE, then the procedure does not remove the evaluation context comment.

Usage Notes

To run this procedure, a user must meet at least one of the following requirements:

	
Be the owner of the evaluation context being altered

	
Have ALL_ON_EVALUATION_CONTEXT or ALTER_ON_EVALUATION_CONTEXT object privilege on an evaluation context owned by another user

	
Have ALTER_ANY_EVALUATION_CONTEXT system privilege

	
See Also:

Chapter 256, "Rule TYPEs" for more information about the types used with the DBMS_RULE_ADM package

ALTER_RULE Procedure

This procedure changes one or more aspects of the specified rule.

Syntax

DBMS_RULE_ADM.ALTER_RULE(
 rule_name IN VARCHAR2,
 condition IN VARCHAR2 DEFAULT NULL,
 evaluation_context IN VARCHAR2 DEFAULT NULL,
 remove_evaluation_context IN BOOLEAN DEFAULT FALSE,
 action_context IN SYS.RE$NV_LIST DEFAULT NULL,
 remove_action_context IN BOOLEAN DEFAULT FALSE,
 rule_comment IN VARCHAR2 DEFAULT NULL,
 remove_rule_comment IN BOOLEAN DEFAULT FALSE);

Parameters

Table 127-4 ALTER_RULE Procedure Parameters

	Parameter	Description
	
rule_name

	
The name of the rule you are altering, specified as [schema_name.]rule_name. For example, to alter a rule named all_a in the hr schema, enter hr.all_a for this parameter. If the schema is not specified, then the current user is the default.

	
condition

	
The condition to be associated with the rule.

If non-NULL, then the procedure replaces the existing condition of the rule with the specified condition.

	
evaluation_context

	
An evaluation context name in the form [schema_name.]evaluation_context_name. If the schema is not specified, then the current user is the default.

If non-NULL, then the procedure replaces the existing evaluation context of the rule with the specified evaluation context.

	
remove_evaluation_context

	
If TRUE, then the procedure sets the evaluation context for the rule to NULL, which effectively removes the evaluation context from the rule.

If FALSE, then the procedure retains any evaluation context for the specified rule.

If the evaluation_context parameter is non-NULL, then this parameter should be set to FALSE.

	
action_context

	
If non-NULL, then the procedure changes the action context associated with the rule. A rule action context is information associated with a rule that is interpreted by the client of the rules engine when the rule is evaluated.

	
remove_action_context

	
If TRUE, then the procedure sets the action context for the rule to NULL, which effectively removes the action context from the rule.

If FALSE, then the procedure retains any action context for the specified rule.

If the action_context parameter is non-NULL, then this parameter should be set to FALSE.

	
rule_comment

	
If non-NULL, then the existing comment of the rule is replaced by the specified comment.

	
remove_rule_comment

	
If TRUE, then the procedure sets the comment for the rule to NULL, which effectively removes the comment from the rule.

If FALSE, then the procedure retains any comment for the specified rule.

If the rule_comment parameter is non-NULL, then this parameter should be set to FALSE.

Usage Notes

To run this procedure, a user must meet at least one of the following requirements:

	
Have ALTER_ON_RULE privilege on the rule

	
Have ALTER_ANY_RULE system privilege

	
Be the owner of the rule being altered

If an evaluation context is specified, then the rule owner must meet at least one of the following requirements:

	
Have EXECUTE_ON_EVALUATION_CONTEXT privilege on the evaluation context

	
Have EXECUTE_ANY_EVALUATION_CONTEXT system privilege, and the owner of the evaluation context must not be SYS

	
Be the evaluation context owner

Also, the rule owner must have the necessary privileges on all the base objects accessed by the rule using the evaluation context.

	
See Also:

Chapter 256, "Rule TYPEs" for more information about the types used with the DBMS_RULE_ADM package

CREATE_EVALUATION_CONTEXT Procedure

This procedure creates a rule evaluation context. A rule evaluation context defines external data that can be referenced in rule conditions. The external data can either exist as variables or as table data.

Syntax

DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT(
 evaluation_context_name IN VARCHAR2,
 table_aliases IN SYS.RE$TABLE_ALIAS_LIST DEFAULT NULL,
 variable_types IN SYS.RE$VARIABLE_TYPE_LIST DEFAULT NULL,
 evaluation_function IN VARCHAR2 DEFAULT NULL,
 evaluation_context_comment IN VARCHAR2 DEFAULT NULL);

Parameters

Table 127-5 CREATE_EVALUATION_CONTEXT Procedure Parameters

	Parameter	Description
	
evaluation_context_name

	
The name of the evaluation context you are creating, specified as [schema_name.]evaluation_context_name.

For example, to create an evaluation context named dept_eval_context in the hr schema, enter hr.dept_eval_context for this parameter. If the schema is not specified, then the current user is the default.

	
table_aliases

	
Table aliases that specify the tables in an evaluation context. The table aliases can be used to reference tables in rule conditions.

	
variable_types

	
A list of variables for the evaluation context

	
evaluation_function

	
An optional function that will be called to evaluate rules using the evaluation context. It must have the same form as the DBMS_RULE.EVALUATE procedure. If the schema is not specified, then the current user is the default.

See "Usage Notes" for more information about the evaluation function.

	
evaluation_context_comment

	
An optional description of the rule evaluation context.

Usage Notes

To run this procedure, a user must meet at least one of the following requirements:

	
Be the owner of the evaluation context being created and have CREATE_EVALUATION_CONTEXT_OBJ system privilege

	
Have CREATE_ANY_EVALUATION_CONTEXT system privilege

	
See Also:

Chapter 256, "Rule TYPEs" for more information about the types used with the DBMS_RULE_ADM package

The evaluation function must have the following signature:

FUNCTION evaluation_function_name(
 rule_set_name IN VARCHAR2,
 evaluation_context IN VARCHAR2,
 event_context IN SYS.RE$NV_LIST DEFAULT NULL,
 table_values IN SYS.RE$TABLE_VALUE_LIST DEFAULT NULL,
 column_values IN SYS.RE$COLUMN_VALUE_LIST DEFAULT NULL,
 variable_values IN SYS.RE$VARIABLE_VALUE_LIST DEFAULT NULL,
 attribute_values IN SYS.RE$ATTRIBUTE_VALUE_LIST DEFAULT NULL,
 stop_on_first_hit IN BOOLEAN DEFAULT FALSE,
 simple_rules_only IN BOOLEAN DEFAULT FALSE,
 true_rules OUT SYS.RE$RULE_HIT_LIST,
 maybe_rules OUT SYS.RE$RULE_HIT_LIST);
RETURN BINARY_INTEGER;

	
Note:

Each parameter is required and must have the specified data type. However, you can change the names of the parameters.

The return value of the function must be one of the following:

	
DBMS_RULE_ADM.EVALUATION_SUCCESS: The user specified evaluation function completed the rule set evaluation successfully. The rules engine returns the results of the evaluation obtained by the evaluation function to the rules engine client using the DBMS_RULE.EVALUATE procedure.

	
DBMS_RULE_ADM.EVALUATION_CONTINUE: The rules engine evaluates the rule set as if there were no evaluation function. The evaluation function is not used, and any results returned by the evaluation function are ignored.

	
DBMS_RULE_ADM.EVALUATION_FAILURE: The user specified evaluation function failed. Rule set evaluation stops, and an error is raised.

CREATE_RULE Procedure

This procedure creates a rule.

Syntax

DBMS_RULE_ADM.CREATE_RULE(
 rule_name IN VARCHAR2,
 condition IN VARCHAR2,
 evaluation_context IN VARCHAR2 DEFAULT NULL,
 action_context IN SYS.RE$NV_LIST DEFAULT NULL,
 rule_comment IN VARCHAR2 DEFAULT NULL);

Parameters

Table 127-6 CREATE_RULE Procedure Parameters

	Parameter	Description
	
rule_name

	
The name of the rule you are creating, specified as [schema_name.]rule_name. For example, to create a rule named all_a in the hr schema, enter hr.all_a for this parameter. If the schema is not specified, then the current user is the default.

	
condition

	
The condition to be associated with the rule. A condition evaluates to TRUE or FALSE and can be any condition allowed in the WHERE clause of a SELECT statement. For example, the following is a valid rule condition:

department_id = 30

Ensure that the proper case is used for text in rule conditions.

Note: Do not include the word "WHERE" in the condition.

	
evaluation_context

	
An optional evaluation context name in the form [schema_name.]evaluation_context_name, which is associated with the rule. If the schema is not specified, then the current user is the default.

If evaluation_context is not specified, then the rule inherits the evaluation context from its rule set.

	
action_context

	
The action context associated with the rule. A rule action context is information associated with a rule that is interpreted by the client of the rules engine when the rule is evaluated.

	
rule_comment

	
An optional description of the rule

Usage Notes

To run this procedure, a user must meet at least one of the following requirements:

	
Be the owner of the rule being created and have the CREATE_RULE_OBJ system privilege

	
Have CREATE_ANY_RULE system privilege

If an evaluation context is specified, then the rule owner must meet at least one of the following requirements:

	
Have EXECUTE_ON_EVALUATION_CONTEXT privilege on the evaluation context

	
Have EXECUTE_ANY_EVALUATION_CONTEXT system privilege, and the owner of the evaluation context must not be SYS.

	
Be the evaluation context owner

Also, the rule owner must have the necessary privileges on all the base objects accessed by the rule using the evaluation context.

	
See Also:

Chapter 256, "Rule TYPEs" for more information about the types used with the DBMS_RULE_ADM package

CREATE_RULE_SET Procedure

This procedure creates a rule set.

Syntax

DBMS_RULE_ADM.CREATE_RULE_SET(
 rule_set_name IN VARCHAR2,
 evaluation_context IN VARCHAR2 DEFAULT NULL,
 rule_set_comment IN VARCHAR2 DEFAULT NULL);

Parameters

Table 127-7 CREATE_RULE_SET Procedure Parameters

	Parameter	Description
	
rule_set_name

	
The name of the rule set you are creating, specified as [schema_name.]rule_set_name. For example, to create a rule set named apply_rules in the hr schema, enter hr.apply_rules for this parameter. If the schema is not specified, then the current user is the default.

	
evaluation_context

	
An optional evaluation context name in the form [schema_name.]evaluation_context_name, which applies to all rules in the rule set that are not associated with an evaluation context explicitly. If the schema is not specified, then the current user is the default.

	
rule_set_comment

	
An optional description of the rule set

Usage Notes

To run this procedure, a user must meet at least one of the following requirements:

	
Be the owner of the rule set being created and have CREATE_RULE_SET_OBJ system privilege

	
Have CREATE_ANY_RULE_SET system privilege

If an evaluation context is specified, then the rule set owner must meet at least one of the following requirements:

	
Have EXECUTE_ON_EVALUATION_CONTEXT privilege on the evaluation context

	
Have EXECUTE_ANY_EVALUATION_CONTEXT system privilege, and the owner of the evaluation context must not be SYS

	
Be the evaluation context owner

DROP_EVALUATION_CONTEXT Procedure

This procedure drops a rule evaluation context.

Syntax

DBMS_RULE_ADM.DROP_EVALUATION_CONTEXT(
 evaluation_context_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Table 127-8 DROP_EVALUATION_CONTEXT Procedure Parameters

	Parameter	Description
	
evaluation_context_name

	
The name of the evaluation context you are dropping, specified as [schema_name.]evaluation_context_name.

For example, to drop an evaluation context named dept_eval_context in the hr schema, enter hr.dept_eval_context for this parameter. If the schema is not specified, then the current user is the default.

	
force

	
If TRUE, then the procedure removes the rule evaluation context from all rules and rule sets that use it.

If FALSE and no rules or rule sets use the rule evaluation context, then the procedure drops the rule evaluation context.

If FALSE and one or more rules or rule sets use the rule evaluation context, then the procedure raises an exception.

Caution: Setting force to TRUE can result in rules and rule sets that do not have an evaluation context. If neither a rule nor the rule set it is in has an evaluation context, and no evaluation context was specified for the rule by the ADD_RULE procedure, then the rule cannot be evaluated.

Usage Notes

To run this procedure, a user must meet at least one of the following requirements:

	
Be the owner of the evaluation context

	
Have DROP_ANY_EVALUATION_CONTEXT system privilege

DROP_RULE Procedure

This procedure drops a rule.

Syntax

DBMS_RULE_ADM.DROP_RULE(
 rule_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Table 127-9 DROP_RULE Procedure Parameters

	Parameter	Description
	
rule_name

	
The name of the rule you are dropping, specified as [schema_name.]rule_name. For example, to drop a rule named all_a in the hr schema, enter hr.all_a for this parameter. If the schema is not specified, then the current user is the default.

	
force

	
If TRUE, then the procedure removes the rule from all rule sets that contain it.

If FALSE and no rule sets contain the rule, then the procedure drops the rule.

If FALSE and one or more rule sets contain the rule, then the procedure raises an exception.

Usage Notes

To run this procedure, a user must meet at least one of the following requirements:

	
Be the owner of the rule

	
Have DROP_ANY_RULE system privilege

	
Note:

	
To remove a rule from a rule set without dropping the rule from the database, use the REMOVE_RULE procedure.

	
The rule evaluation context associated with the rule, if any, is not dropped when you run this procedure.

DROP_RULE_SET Procedure

This procedure drops a rule set.

Syntax

DBMS_RULE_ADM.DROP_RULE_SET(
 rule_set_name IN VARCHAR2,
 delete_rules IN BOOLEAN DEFAULT FALSE);

Parameters

Table 127-10 DROP_RULE_SET Procedure Parameters

	Parameter	Description
	
rule_set_name

	
The name of the rule set you are dropping, specified as [schema_name.]rule_set_name. For example, to drop a rule set named apply_rules in the hr schema, enter hr.apply_rules for this parameter. If the schema is not specified, then the current user is the default.

	
delete_rules

	
If TRUE, then the procedure drops any rules that are in the rule set. If any of the rules in the rule set are also in another rule set, then these rules are not dropped.

If FALSE, then the procedure does not drop the rules in the rule set.

Usage Notes

To run this procedure, a user must meet at least one of the following requirements:

	
Have DROP_ANY_RULE_SET system privilege

	
Be the owner of the rule set

	
Note:

The rule evaluation context associated with the rule set, if any, is not dropped when you run this procedure.

GRANT_OBJECT_PRIVILEGE Procedure

This procedure grants the specified object privilege on the specified object to the specified user or role. If a user owns the object, then the user automatically is granted all privileges on the object, with grant option.

Syntax

DBMS_RULE_ADM.GRANT_OBJECT_PRIVILEGE(
 privilege IN BINARY_INTEGER,
 object_name IN VARCHAR2,
 grantee IN VARCHAR2,
 grant_option IN BOOLEAN DEFAULT FALSE);

Parameters

Table 127-11 GRANT_OBJECT_PRIVILEGE Procedure Parameters

	Parameter	Description
	
privilege

	
The name of the object privilege to grant to the grantee on the object. See "Usage Notes" for the available object privileges.

	
object_name

	
The name of the object for which you are granting the privilege to the grantee, specified as [schema_name.]object_name. For example, to grant the privilege on a rule set named apply_rules in the hr schema, enter hr.apply_rules for this parameter. If the schema is not specified, then the current user is the default. The object must be an existing rule, rule set, or evaluation context.

	
grantee

	
The name of the user or role for which the privilege is granted. The specified user cannot be the owner of the object.

	
grant_option

	
If TRUE, then the specified user or users granted the specified privilege can grant this privilege to others.

If FALSE, then the specified user or users granted the specified privilege cannot grant this privilege to others.

Usage Notes

To run this procedure, a user must meet at least one of the following requirements:

	
Be the owner of the object on which the privilege is granted

	
Have the same privilege as the privilege being granted with the grant option

In addition, if the object is a rule set, then the user must have EXECUTE privilege on all the rules in the rule set with grant option or must own the rules in the rule set.

Table 127-12 lists the object privileges.

Table 127-12 Object Privileges for Evaluation Contexts, Rules, and Rule Sets

	Privilege	Description
	
SYS.DBMS_RULE_ADM.ALL_ON_EVALUATION_CONTEXT

	
Alter and execute a particular evaluation context in another user's schema

	
SYS.DBMS_RULE_ADM.ALL_ON_RULE

	
Alter and execute a particular rule in another user's schema

	
SYS.DBMS_RULE_ADM.ALL_ON_RULE_SET

	
Alter and execute a particular rule set in another user's schema

	
SYS.DBMS_RULE_ADM.ALTER_ON_EVALUATION_CONTEXT

	
Alter a particular evaluation context in another user's schema

	
SYS.DBMS_RULE_ADM.ALTER_ON_RULE

	
Alter a particular rule in another user's schema

	
SYS.DBMS_RULE_ADM.ALTER_ON_RULE_SET

	
Alter a particular rule set in another user's schema

	
SYS.DBMS_RULE_ADM.EXECUTE_ON_EVALUATION_CONTEXT

	
Execute a particular evaluation context in another user's schema

	
SYS.DBMS_RULE_ADM.EXECUTE_ON_RULE

	
Execute a particular rule in another user's schema

	
SYS.DBMS_RULE_ADM.EXECUTE_ON_RULE_SET

	
Execute a particular rule set in another user's schema

Examples

For example, to grant the HR user the privilege to alter a rule named hr_dml in the strmadmin schema, enter the following:

BEGIN
 DBMS_RULE_ADM.GRANT_OBJECT_PRIVILEGE(
 privilege => SYS.DBMS_RULE_ADM.ALTER_ON_RULE,
 object_name => 'strmadmin.hr_dml',
 grantee => 'hr',
 grant_option => FALSE);
END;
/

GRANT_SYSTEM_PRIVILEGE Procedure

This procedure grant the specified system privilege to the specified user or role.

Syntax

DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege IN BINARY_INTEGER,
 grantee IN VARCHAR2,
 grant_option IN BOOLEAN DEFAULT FALSE);

Parameters

Table 127-13 GRANT_SYSTEM_PRIVILEGE Procedure Parameters

	Parameter	Description
	
privilege

	
The name of the system privilege to grant to the grantee.

	
grantee

	
The name of the user or role for which the privilege is granted

	
grant_option

	
If TRUE, then the specified user or users granted the specified privilege can grant the system privilege to others.

If FALSE, then the specified user or users granted the specified privilege cannot grant the system privilege to others.

Usage Notes

Table 127-14 lists the system privileges.

Table 127-14 System Privileges for Evaluation Contexts, Rules, and Rule Sets

	Privilege	Description
	
SYS.DBMS_RULE_ADM.ALTER_ANY_EVALUATION_CONTEXT

	
Alter any evaluation context owned by any user

	
SYS.DBMS_RULE_ADM.ALTER_ANY_RULE

	
Alter any rule owned by any user

	
SYS.DBMS_RULE_ADM.ALTER_ANY_RULE_SET

	
Alter any rule set owned by any user

	
SYS.DBMS_RULE_ADM.CREATE_ANY_EVALUATION_CONTEXT

	
Create a new evaluation context in any schema

	
SYS.DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT_OBJ

	
Create a new evaluation context in the grantee's schema

	
SYS.DBMS_RULE_ADM.CREATE_ANY_RULE

	
Create a new rule in any schema

	
SYS.DBMS_RULE_ADM.CREATE_RULE_OBJ

	
Create a new rule in the grantee's schema

	
SYS.DBMS_RULE_ADM.CREATE_ANY_RULE_SET

	
Create a new rule set in any schema

	
SYS.DBMS_RULE_ADM.CREATE_RULE_SET_OBJ

	
Create a new rule set in the grantee's schema

	
SYS.DBMS_RULE_ADM.DROP_ANY_EVALUATION_CONTEXT

	
Drop any evaluation context in any schema

	
SYS.DBMS_RULE_ADM.DROP_ANY_RULE

	
Drop any rule in any schema

	
SYS.DBMS_RULE_ADM.DROP_ANY_RULE_SET

	
Drop any rule set in any schema

	
SYS.DBMS_RULE_ADM.EXECUTE_ANY_EVALUATION_CONTEXT

	
Execute any evaluation context owned by any user

	
SYS.DBMS_RULE_ADM.EXECUTE_ANY_RULE

	
Execute any rule owned by any user

	
SYS.DBMS_RULE_ADM.EXECUTE_ANY_RULE_SET

	
Execute any rule set owned by any user

For example, to grant the strmadmin user the privilege to create a rule set in any schema, enter the following:

BEGIN
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => SYS.DBMS_RULE_ADM.CREATE_ANY_RULE_SET,
 grantee => 'strmadmin',
 grant_option => FALSE);
END;
/

	
Note:

When you grant a privilege on "ANY" object (for example, ALTER_ANY_RULE), and the initialization parameter O7_DICTIONARY_ACCESSIBILITY is set to FALSE, you give the user access to that type of object in all schemas except the SYS schema. By default, the initialization parameter O7_DICTIONARY_ACCESSIBILITY is set to FALSE.
If you want to grant access to an object in the SYS schema, then you can grant object privileges explicitly on the object. Alternatively, you can set the O7_DICTIONARY_ACCESSIBILITY initialization parameter to TRUE. Then privileges granted on "ANY" object allows access to any schema, including SYS.

REMOVE_RULE Procedure

This procedure removes the specified rule from the specified rule set.

Syntax

DBMS_RULE_ADM.REMOVE_RULE(
 rule_name IN VARCHAR2,
 rule_set_name IN VARCHAR2,
 evaluation_context IN VARCHAR2 DEFAULT NULL,
 all_evaluation_contexts IN BOOLEAN DEFAULT FALSE);

Parameters

Table 127-15 REMOVE_RULE Procedure Parameters

	Parameter	Description
	
rule_name

	
The name of the rule you are removing from the rule set, specified as [schema_name.]rule_name. For example, to remove a rule named all_a in the hr schema, enter hr.all_a for this parameter. If the schema is not specified, then the current user is the default.

	
rule_set_name

	
The name of the rule set from which you are removing the rule, specified as [schema_name.]rule_set_name. For example, to remove the rule from a rule set named apply_rules in the hr schema, enter hr.apply_rules for this parameter. If the schema is not specified, then the current user is the default.

	
evaluation_context_name

	
The name of the evaluation context associated with the rule you are removing, specified as [schema_name.]evaluation_context_name. For example, to specify an evaluation context named dept_eval_context in the hr schema, enter hr.dept_eval_context for this parameter. If the schema is not specified, then the current user is the default.

If an evaluation context was specified for the rule you are removing when you added the rule to the rule set using the ADD_RULE procedure, then specify the same evaluation context. If you added the same rule more than once with different evaluation contexts, then specify the rule with the evaluation context you want to remove. If you specify an evaluation context that is not associated with the rule, then the procedure raises an error.

Specify NULL if you did not specify an evaluation context when you added the rule to the rule set. If you specify NULL and there are one or more evaluation contexts associated with the rule, then the procedure raises an error.

	
all_evaluation_contexts

	
If TRUE, then the procedure removes the rule from the rule set with all of its associated evaluation contexts.

If FALSE, then the procedure only removes the rule with the specified evaluation context.

This parameter is relevant only if the same rule is added more than once to the rule set with different evaluation contexts.

Usage Notes

To run this procedure, a user must meet at least one of the following requirements:

	
Have ALTER_ON_RULE_SET privilege on the rule set

	
Have ALTER_ANY_RULE_SET system privilege

	
Be the owner of the rule set

	
Note:

This procedure does not drop a rule from the database. To drop a rule from the database, use the DROP_RULE procedure.

REVOKE_OBJECT_PRIVILEGE Procedure

This procedure revokes the specified object privilege on the specified object from the specified user or role.

Syntax

DBMS_RULE_ADM.REVOKE_OBJECT_PRIVILEGE(
 privilege IN BINARY_INTEGER,
 object_name IN VARCHAR2,
 revokee IN VARCHAR2);

Parameters

Table 127-16 REVOKE_OBJECT_PRIVILEGE Procedure Parameters

	Parameter	Description
	
privilege

	
The name of the object privilege on the object to revoke from the revokee. See GRANT_OBJECT_PRIVILEGE Procedure for a list of the object privileges.

	
object_name

	
The name of the object for which you are revoking the privilege from the revokee, specified as [schema_name.]object_name. For example, to revoke an object privilege on a rule set named apply_rules in the hr schema, enter hr.apply_rules for this parameter. If the schema is not specified, then the current user is the default. The object must be an existing rule, rule set, or evaluation context.

	
revokee

	
The name of the user or role from which the privilege is revoked. The user who owns the object cannot be specified.

REVOKE_SYSTEM_PRIVILEGE Procedure

This procedure revokes the specified system privilege from the specified user or role.

Syntax

DBMS_RULE_ADM.REVOKE_SYSTEM_PRIVILEGE(
 privilege IN BINARY_INTEGER,
 revokee IN VARCHAR2);

Parameters

Table 127-17 REVOKE_SYSTEM_PRIVILEGE Procedure Parameters

	Parameter	Description
	
privilege

	
The name of the system privilege to revoke from the revokee. See GRANT_SYSTEM_PRIVILEGE Procedure for a list of the system privileges.

	
revokee

	
The name of the user or role from which the privilege is revoked

DBMS_SCHEDULER

128 DBMS_SCHEDULER

The DBMS_SCHEDULER package provides a collection of scheduling functions and procedures that can be called from any PL/SQL program.

	
See Also:

Oracle Database Administrator's Guide for more information regarding how to use DBMS_SCHEDULER

This chapter contains the following topics:

	
Data Structures

	
Using DBMS_SCHEDULER

	
Security Model

	
Rules and Limits

	
Operational Notes

	
Summary of DBMS_SCHEDULER Subprograms

Data Structures

The DBMS_SCHEDULER package defines OBJECT types and TABLE types.

OBJECT Types

	
JOBARG Object Type

	
JOB Object Type

	
JOB_DEFINITION Object Type

	
JOBATTR Object Type

	
SCHEDULER$_STEP_TYPE Object Type

	
SCHEDULER$_EVENT_INFO Object Type

	
SCHEDULER_FILEWATCHER_RESULT Object Type

	
SCHEDULER_FILEWATCHER_REQUEST Object Type

TABLE Types

	
JOBARG_ARRAY Table Type

	
JOB_ARRAY Table Type

	
JOB_DEFINITION_ARRAY Table Type

	
JOBATTR_ARRAY Table Type

	
SCHEDULER$_STEP_TYPE_LIST Table Type

JOBARG Object Type

This type is used by the JOB and JOBATTR object types. It represents a job argument in a batch of job arguments.

Syntax

TYPE jobarg IS OBJECT (
 arg_position NUMBER,
 arg_text_value VARCHAR2(4000),
 arg_anydata_value ANYDATA,
 arg_operation VARCHAR2(5));

Attributes

Table 128-1 JOBARG Object Type Attributes

	Attribute	Description
	
arg_position

	
Position of the argument

	
arg_text_value

	
Value of the argument if the type is VARCHAR2

	
arg_anydata_value

	
Value of the argument if the type is AnyData

	
arg_operation

	
Type of the operation:

	
SET

	
RESET

JOBARG Constructor Function

This constructor function constructs a job argument. It is overloaded to construct job arguments with different types of values.

Syntax

Constructs a job argument with a text value.

constructor function jobarg (
 arg_position IN POSITIVEN,
 arg_value IN VARCHAR2)
 RETURN SELF AS RESULT;

Constructs a job argument with an AnyData value.

constructor function jobarg (
 arg_position IN POSITIVEN,
 arg_value IN ANYDATA)
 RETURN SELF AS RESULT;

Constructs a job argument with a NULL value.

constructor function jobarg (
 arg_position IN POSITIVEN,
 arg_reset IN BOOLEAN DEFAULT FALSE)
 RETURN SELF AS RESULT;

Parameters

Table 128-2 JOBARG Constructor Function Parameters

	Parameter	Description
	
arg_position

	
Position of the argument

	
arg_value

	
Value of the argument

	
arg_reset

	
If arg_reset is TRUE, then the argument at that position is reset.

Setting arg_reset to FALSE (which is the default) will create an argument with a NULL value.

JOBARG_ARRAY Table Type

Syntax

TYPE jobarg_array IS TABLE OF jobarg;

JOB Object Type

**** Deprecated. Use the JOB_DEFINITION object type instead.

JOB_ARRAY Table Type

*** Deprecated. Use the JOB_DEFINITION_ARRAY table type instead.

JOB_DEFINITION Object Type

This type is used by the CREATE_JOBS procedure and represents a job in a batch of jobs.

Syntax

TYPE job_definition IS OBJECT (
 job_name VARCHAR2(100),
 job_class VARCHAR2(32),
 job_style VARCHAR2(11),
 program_name VARCHAR2(100),
 job_action VARCHAR2(4000),
 job_type VARCHAR2(20),
 schedule_name VARCHAR2(65),
 repeat_interval VARCHAR2(4000),
 schedule_limit INTERVAL DAY TO SECOND,
 start_date TIMESTAMP WITH TIME ZONE,
 end_date TIMESTAMP WITH TIME ZONE,
 event_condition VARCHAR2(4000),
 queue_spec VARCHAR2(100),
 number_of_arguments NUMBER,
 arguments SYS.JOBARG_ARRAY,
 job_priority NUMBER,
 job_weight NUMBER,
 max_run_duration INTERVAL DAY TO SECOND,
 max_runs NUMBER,
 max_failures NUMBER,
 logging_level NUMBER,
 restartable VARCHAR2(5),
 stop_on_window_close VARCHAR2(5),
 raise_events NUMBER,
 comments VARCHAR2(240),
 auto_drop VARCHAR2(5),
 enabled VARCHAR2(5),
 follow_default_timezone VARCHAR2(5),
 parallel_instances VARCHAR2(5),
 aq_job VARCHAR2(5),
 instance_id NUMBER,
 credential_name VARCHAR2(65),
 destination VARCHAR2(4000),
 database_role VARCHAR2(20),
 allow_runs_in_restricted_mode VARCHAR2(5));

Object Attributes

Table 128-3 provides brief descriptions of the attributes of the JOB_DEFINITION object type. For more complete information about these attributes, see the "CREATE_JOB Procedure" and the "SET_ATTRIBUTE Procedure".

Table 128-3 JOB_DEFINITION Object Type Attributes

	Attribute	Description
	
job_name

	
Name of the job

	
job_class

	
Name of the job class

	
job_style

	
Style of the job:

	
REGULAR

	
LIGHTWEIGHT

	
program_name

	
Name of the program that the job runs

	
job_action

	
Inline action of the job. This is either the code for an anonymous PL/SQL block or the name of a stored procedure, external executable, or chain.

	
job_type

	
Job action type ('PLSQL_BLOCK', 'STORED_PROCEDURE', 'EXECUTABLE', or 'CHAIN')

	
schedule_name

	
Name of the schedule that specifies when the job has to execute

	
repeat_interval

	
Inline time-based schedule

	
schedule_limit

	
Maximum delay time between scheduled and actual job start before a job run is canceled

	
start_date

	
Start date and time of the job

	
end_date

	
End date and time of the job

	
event_condition

	
Event condition for event-based jobs

	
queue_spec

	
File watcher name or queue specification for event-based jobs

	
number_of_arguments

	
Number of job arguments

	
arguments

	
Array of job arguments

	
job priority

	
Job priority

	
job_weight

	
*** Deprecated in Oracle Database 11gR2. Do not change the value of this attribute from the default, which is 1.

Weight of the job for parallel execution.

	
max_run_duration

	
Maximum run duration of the job

	
max_runs

	
Maximum number of runs before the job is marked as completed

	
max_failures

	
Maximum number of failures tolerated before the job is marked as broken

	
logging_level

	
Job logging level

	
restartable

	
Indicates whether the job is restartable (TRUE) or not (FALSE)

	
stop_on_window_exit

	
Indicates whether the job is stopped when the window that it runs in ends (TRUE) or not (FALSE). Equivalent to the stop_on_window_close job attribute described in the SET_ATTRIBUTE Procedure.

	
raise_events

	
State changes that raise events

	
comments

	
Comments on the job

	
auto_drop

	
If TRUE (the default), indicates that the job should be dropped once completed

	
enabled

	
Indicates whether the job should be enabled immediately after creating it (TRUE) or not (FALSE)

	
follow_default_timezone

	
If TRUE and if the job start_date is null, then when the default_timezone scheduler attribute is changed, the Scheduler recomputes the next run date and time for this job so that it is in accordance with the new time zone.

	
parallel_instances

	
For event-based jobs only.

If TRUE, on the arrival of the specified event, the Scheduler creates a new lightweight job to handle that event, so multiple instances of the same event-based job can run in parallel.

If FALSE, then an event is discarded if it is raised while the job that handles it is already running,

	
aq_job

	
For internal use only

	
instance_id

	
The instance ID of the instance that the job must run on

	
credential_name

	
The credential to use for a single destination or the default credential for a group of destinations

	
destination

	
The name of a single external destination or database destination, or a group name of type external destination or database destination

	
database_role

	
In an Oracle Data Guard environment, the database role ('PRIMARY' or 'LOGICAL STANDBY') for which the job runs

	
allow_runs_in_restricted_mode

	
If TRUE, the job is permitted to run when the database is in restricted mode, provided that the job owner is permitted to log in during this mode

JOB_DEFINITION Constructor Function

This constructor function constructs a job_definition object.

Syntax

constructor function job_definition (
 job_name IN VARCHAR2,
 job_style IN VARCHAR2 DEFAULT 'REGULAR',
 program_name IN VARCHAR2 DEFAULT NULL,
 job_action IN VARCHAR2 DEFAULT NULL,
 job_type IN VARCHAR2 DEFAULT NULL,
 schedule_name IN VARCHAR2 DEFAULT NULL,
 repeat_interval IN VARCHAR2 DEFAULT NULL,
 event_condition IN VARCHAR2 DEFAULT NULL,
 queue_spec IN VARCHAR2 DEFAULT NULL,
 start_date IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
 end_date IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
 number_of_arguments IN NATURAL DEFAULT NULL,
 arguments IN SYS.JOBARG_ARRAY DEFAULT NULL,
 job_class IN VARCHAR2 DEFAULT 'DEFAULT_JOB_CLASS',
 schedule_limit IN INTERVAL DAY TO SECOND DEFAULT NULL,
 job_priority IN NATURAL DEFAULT NULL,
 job_weight IN NATURAL DEFAULT NULL,
 max_run_duration IN INTERVAL DAY TO SECOND DEFAULT NULL,
 max_runs IN NATURAL DEFAULT NULL,
 max_failures IN NATURAL DEFAULT NULL,
 logging_level IN NATURALN DEFAULT 64,
 restartable IN BOOLEAN DEFAULT FALSE,
 stop_on_window_close IN BOOLEAN DEFAULT FALSE,
 raise_events IN NATURAL DEFAULT NULL,
 comments IN VARCHAR2 DEFAULT NULL,
 auto_drop IN BOOLEAN DEFAULT TRUE,
 enabled IN BOOLEAN DEFAULT FALSE,
 follow_default_timezone IN BOOLEAN DEFAULT FALSE,
 parallel_instances IN BOOLEAN DEFAULT FALSE,
 aq_job IN BOOLEAN DEFAULT FALSE,
 instance_id IN NATURAL DEFAULT NULL,
 credential_name IN VARCHAR2 DEFAULT NULL,
 destination IN VARCHAR2 DEFAULT NULL,
 database_role IN VARCHAR2 DEFAULT NULL,
 allow_runs_in_restricted_mode IN BOOLEAN DEFAULT FALSE)
 RETURN SELF AS RESULT;

JOB_DEFINITION_ARRAY Table Type

Syntax

TYPE job_definition_array IS TABLE OF job_definition;

JOBATTR Object Type

This type is used by the SET_JOB_ATTRIBUTES procedure and represents a job attribute in a batch of job attributes.

Syntax

TYPE jobattr IS OBJECT (
 job_name VARCHAR2(100),
 attr_name VARCHAR2(30),
 char_value VARCHAR2(4000),
 char_value2 VARCHAR2(4000),
 args_value JOBARG_ARRAY,
 num_value NUMBER,
 timestamp_value TIMESTAMP(6) WITH TIME ZONE,
 interval_value INTERVAL DAY(2) TO SECOND(6));

Attributes

Table 128-4 JOBATTR Object Type Attributes

	Attribute	Description
	
job_name

	
Name of the job

	
attr_name

	
Name of the attribute

	
char_value

	
Value of the argument if the type is VARCHAR2

	
char_value2

	
Second VARCHAR2 attribute value

	
args_value

	
Value of the argument if the type is a JOBARG array

	
num_value

	
Value of the argument if the type is NUMBER

	
timestamp_value

	
Value of the argument if the type is TIMESTAMP WITH TIME ZONE

	
interval_value

	
Value of the argument if the type is INTERVAL DAY TO SECOND

JOBATTR Constructor Function

This constructor function constructs a job attribute. It is overloaded to create attribute values of the following types: VARCHAR2, NUMBER, TIMESTAMP WITH TIME ZONE, INTERVAL DAY TO SECOND, and an array of JOBARG types.

Syntax

constructor function jobattr (
 job_name IN VARCHAR2,
 attr_name IN VARCHAR2,
 attr_value IN VARCHAR2,
 attr_value2 IN VARCHAR2 DEFAULT NULL)
 RETURN SELF AS RESULT;

constructor function jobattr (
 job_name IN VARCHAR2,
 attr_name IN VARCHAR2,
 attr_value IN [NUMBER, BOOLEAN,
 TIMESTAMP WITH TIME ZONE,
 INTERVAL DAY TO SECOND, JOBARG_ARRAY])
 RETURN SELF AS RESULT;

constructor function jobattr (
 job_name IN VARCHAR2,
 attr_name IN VARCHAR2)
 RETURN SELF AS RESULT;

Parameters

Table 128-5 JOBATTR Constructor Function Parameters

	Parameter	Description
	
job_name

	
Name of the job

	
attr_name

	
Name of the argument

	
attr_value

	
Value of the argument

	
attr_value2

	
Most attributes have only one value associated with them, but some can have two. The attr_value2 argument is for this optional second value.

JOBATTR_ARRAY Table Type

Syntax

TYPE jobattr_array IS TABLE OF jobattr;

SCHEDULER$_STEP_TYPE Object Type

This type is used by RUN_CHAIN to return a list of chain steps with an initial state.

Syntax

TYPE scheduler$_step_type IS OBJECT (
 step_name VARCHAR2(32),
 step_type VARCHAR2(32));

Attributes

Table 128-6 SCHEDULER$_STEP_TYPE Object Type Attributes

	Attribute	Description
	
step_name

	
Name of the step

	
step_type

	
State of the step

SCHEDULER$_STEP_TYPE_LIST Table Type

Syntax

TYPE scheduler$_step_type_list IS TABLE OF scheduler$_step_type;

SCHEDULER$_EVENT_INFO Object Type

This the data type of the Scheduler event queue SYS.SCHEDULER$_EVENT_QUEUE, from which your application consumes job state events raised by the Scheduler. It is a secure queue owned by SYS.

Syntax

TYPE SCHEDULER$_EVENT_INFO IS OBJECT (
 event_type VARCHAR2(4000),
 object_owner VARCHAR2(4000),
 object_name VARCHAR2(4000),
 event_timestamp TIMESTAMP WITH TIME ZONE,
 error_code NUMBER,
 error_msg VARCHAR2(4000),
 event_status NUMBER,
 log_id NUMBER,
 run_count NUMBER,
 failure_count NUMBER,
 retry_count NUMBER,
 spare1 NUMBER,
 spare2 NUMBER,
 spare3 VARCHAR2(4000),
 spare4 VARCHAR2(4000),
 spare5 TIMESTAMP WITH TIME ZONE,
 spare6 TIMESTAMP WITH TIME ZONE,
 spare7 RAW(2000),
 spare8 RAW(2000));

Attributes

Table 128-7 SCHEDULER_EVENT_INFO Object Type Attributes

	Attribute	Description
	
event_type

	
One of "JOB_STARTED", "JOB_SUCCEEDED", "JOB_FAILED", "JOB_BROKEN", "JOB_COMPLETED", "JOB_STOPPED", "JOB_SCH_LIM_REACHED", "JOB_DISABLED", "JOB_CHAIN_STALLED", "JOB_OVER_MAX_DUR".

For descriptions of these event types, see Table 128-82, "Event Types Raised by the Scheduler".

	
object_owner

	
Owner of the job that raised the event

	
object_name

	
Name of the job that raised the event

	
event_timestamp

	
Time at which the event occurred

	
error_code

	
Applicable only when an error is thrown during job execution. Contains the top-level error code.

	
error_msg

	
Applicable only when an error is thrown during job execution. Contains the entire error stack.

	
event_status

	
Adds further qualification to the event type. If event_type is "JOB_STARTED," status 1 indicates that it is a normal start, and status 2 indicates that it is a retry.

If event_type is "JOB_FAILED," status 4 indicates that it was a failure due to an error that was thrown during job execution, and status 8 indicates that it was an abnormal termination of some kind.

If event_type is "JOB_STOPPED," status 16 indicates that it was a normal stop, and status 32 indicates that it was a stop with the FORCE option set to TRUE.

	
log_id

	
Points to the ID in the scheduler job log from which additional information can be obtained. Note that there need not always be a log entry corresponding to an event. In such cases, log_id is NULL.

	
run_count

	
Run count for the job when the event was raised.

	
failure_count

	
Failure count for the job when the event was raised.

	
retry_count

	
Retry count for the job when the event was raised.

	
spare1 – spare8

	
Not currently in use.

SCHEDULER_FILEWATCHER_RESULT Object Type

This is the data type of a file arrival event message. You access the event message as a parameter of an event-based job (or a parameter of a program referenced by an event-based job). The message contains information needed to locate and process a file that arrived on a local or remote system.

Syntax

TYPE scheduler_filewatcher_result IS OBJECT (
 destination VARCHAR2(4000),
 directory_path VARCHAR2(4000),
 actual_file_name VARCHAR2(4000),
 file_size NUMBER,
 file_timestamp TIMESTAMP WITH TIME ZONE,
 ts_ms_from_epoch NUMBER,
 matching_requests SYS.SCHEDULER_FILEWATCHER_REQ_LIST);

Attributes

Table 128-8 SCHEDULER_FILEWATCHER_RESULT Object Type Attributes

	Attribute	Description
	
destination

	
Destination at which the file was found, expressed as a host name or IP address.

	
directory_path

	
Absolute path of directory in which the file was found.

	
actual_file_name

	
Actual name of the file that was found. If the file name specified in the file watcher did not contain wildcards, then this is the same as the name specified in the file watcher.

	
file_size

	
Size of the file that was found, in bytes.

	
file_timestamp

	
Timestamp assigned to the file when the file watcher considered the file found, based on the minimum file size and steady state duration attributes.

	
ts_ms_from_epoch

	
For internal use only.

	
matching_requests

	
List of matching requests. This is a TABLE of type objects SCHEDULER_FILEWATCHER_REQUEST. Each matching request corresponds to a file watcher whose destination, directory_path, and file_name attributes matched the arrived file. See "SCHEDULER_FILEWATCHER_REQUEST Object Type".

SCHEDULER_FILEWATCHER_REQUEST Object Type

This type is returned in the matching_requests attribute of the SCHEDULER_FILEWATCHER_RESULT Object Type. Its attributes are similar to the attributes of a file watcher.

Syntax

TYPE scheduler_filewatcher_request IS OBJECT (
 owner VARCHAR2(4000),
 name VARCHAR2(4000),
 requested_path_name VARCHAR2(4000),
 requested_file_name VARCHAR2(4000),
 credential_owner VARCHAR2(4000),
 credential_name VARCHAR2(4000),
 min_file_size NUMBER,
 steady_state_dur NUMBER);

Attributes

Table 128-9 SCHEDULER_FILEWATCHER_RESULT Object Type Attributes

	Attribute	Description
	
owner

	
Owner of the matched file watcher.

	
name

	
Name of the matched file watcher.

	
requested_path_name

	
Value of the directory_path attribute of the matched file watcher.

	
requested_file_name

	
Value of the file_name attribute of the matched file watcher.

	
credential_owner

	
Owner of the credential referenced by the matched file watcher.

	
credential_name

	
Name of the credential referenced by the matched file watcher.

	
min_file_size

	
Value of the min_file_size attribute of the matched file watcher.

	
steady_state_dur

	
Value of the steady_state_duration attribute of the matched file watcher.

Using DBMS_SCHEDULER

This section contains:

	
Security Model

	
Rules and Limits

	
Operational Notes

Security Model

The DBMS_SCHEDULER package ignores privileges granted on scheduler objects, such as jobs or chains, through roles. Object privileges must be granted directly to the user.

Rules and Limits

The following rules apply when using the DBMS_SCHEDULER package:

	
Only SYS can perform actions on objects in the SYS schema.

	
Several of the procedures accept comma-delimited lists of object names. If you provide a list of names, then the Scheduler stops executing the list at the first object that returns an error. Therefore, the Scheduler does not perform the tasks needed for the remaining objects on the list.

For example, consider the statement DBMS_SCHEDULER.STOP_JOB ('job1, job2, job3, sys.jobclass1, sys.jobclass2, sys.jobclass3');

If job3 cannot be stopped, then the jobs that follow it, jobclass1, jobclass2, and jobclass3 cannot be stopped. The jobs that preceded job3, job1 and job2, are stopped.

	
Performing an action on an object that does not exist returns a PL/SQL exception stating that the object does not exist.

Operational Notes

The Scheduler uses a rich calendaring syntax to enable you to define repeating schedules, such as "every Tuesday and Friday at 4:00 p.m." or "the second Wednesday of every month." This calendaring syntax is used in calendaring expressions in the repeat_interval argument of a number of package subprograms. Evaluating a calendaring expression results in a set of discrete timestamps.

See Oracle Database Administrator's Guide for examples of the calendaring syntax.

Calendaring Syntax

This section starts with the calendaring syntax. It is followed by descriptions of various parts of the syntax.

In the calendaring syntax, * means 0 or more.

repeat_interval = regular_schedule | combined_schedule

regular_schedule = frequency_clause
[";" interval_clause] [";" bymonth_clause] [";" byweekno_clause]
[";" byyearday_clause] [";" bydate_clause] [";" bymonthday_clause]
[";" byday_clause] [";" byhour_clause] [";" byminute_clause]
[";" bysecond_clause] [";" bysetpos_clause] [";" include_clause]
[";" exclude_clause] [";" intersect_clause][";" periods_clause]
[";" byperiod_clause]

combined_schedule = schedule_list

frequency_clause = "FREQ" "=" (predefined_frequency | user_defined_frequency)
predefined_frequency = "YEARLY" | "MONTHLY" | "WEEKLY" | "DAILY" |
 "HOURLY" | "MINUTELY" | "SECONDLY"
user_defined_frequency = named_schedule

interval_clause = "INTERVAL" "=" intervalnum
 intervalnum = 1 through 99
bymonth_clause = "BYMONTH" "=" monthlist
 monthlist = month ("," month)*
 month = numeric_month | char_month
 numeric_month = 1 | 2 | 3 ... 12
 char_month = "JAN" | "FEB" | "MAR" | "APR" | "MAY" | "JUN" |
 "JUL" | "AUG" | "SEP" | "OCT" | "NOV" | "DEC"
byweekno_clause = "BYWEEKNO" "=" weeknumber_list
 weeknumber_list = weeknumber ("," weeknumber)*
 weeknumber = [minus] weekno
 weekno = 1 through 53
byyearday_clause = "BYYEARDAY" "=" yearday_list
 yearday_list = yearday ("," yearday)*
 yearday = [minus] yeardaynum
 yeardaynum = 1 through 366
bydate_clause = "BYDATE" "=" date_list
 date_list = date ("," date)*
 date = [YYYY]MMDD [offset | span]
bymonthday_clause = "BYMONTHDAY" "=" monthday_list
 monthday_list = monthday ("," monthday)*
 monthday = [minus] monthdaynum
 monthdaynum = 1 through 31
byday_clause = "BYDAY" "=" byday_list
 byday_list = byday ("," byday)*
 byday = [weekdaynum] day
 weekdaynum = [minus] daynum
 daynum = 1 through 53 /* if frequency is yearly */
 daynum = 1 through 5 /* if frequency is monthly */
 day = "MON" | "TUE" | "WED" | "THU" | "FRI" | "SAT" | "SUN"
byhour_clause = "BYHOUR" "=" hour_list
 hour_list = hour ("," hour)*
 hour = 0 through 23
byminute_clause = "BYMINUTE" "=" minute_list
 minute_list = minute ("," minute)*
 minute = 0 through 59
bysecond_clause = "BYSECOND" "=" second_list
 second_list = second ("," second)*
 second = 0 through 59
bysetpos_clause = "BYSETPOS" "=" setpos_list
 setpos_list = setpos ("," setpos)*
 setpos = [minus] setpos_num
 setpos_num = 1 through 9999

include_clause = "INCLUDE" "=" schedule_list
exclude_clause = "EXCLUDE" "=" schedule_list
intersect_clause = "INTERSECT" "=" schedule_list
schedule_list = schedule_clause ("," schedule_clause)*
schedule_clause = named_schedule [offset]
named_schedule = [schema "."] schedule
periods_clause = "PERIODS" "=" periodnum
byperiod_clause = "BYPERIOD" "=" period_list
period_list = periodnum ("," periodnum)*
periodnum = 1 through 100

offset = ("+" | "-") ["OFFSET:"] duration_val
span = ("+" | "-" | "^") "SPAN:" duration_val
duration_val = dur-weeks | dur_days
dur_weeks = numofweeks "W"
dur_days = numofdays "D"
numofweeks = 1 through 53
numofdays = 1 through 376
minus = "-"

Table 128-10 Values for repeat_interval

	Name	Description
	
FREQ

	
This specifies the type of recurrence. It must be specified. The possible predefined frequency values are YEARLY, MONTHLY, WEEKLY, DAILY, HOURLY, MINUTELY, and SECONDLY. Alternatively, specifies an existing schedule to use as a user-defined frequency.

	
INTERVAL

	
This specifies a positive integer representing how often the recurrence repeats. The default is 1, which means every second for secondly, every day for daily, and so on. The maximum value is 99.

	
BYMONTH

	
This specifies which month or months you want the job to execute in. You can use numbers such as 1 for January and 3 for March, as well as three-letter abbreviations such as FEB for February and JUL for July.

	
BYWEEKNO

	
This specifies the week of the year as a number. It follows ISO-8601, which defines the week as starting with Monday and ending with Sunday; and the first week of a year as the first week, which is mostly within the Gregorian year. The first week is equivalent to the following two variants: the week that contains the first Thursday of the Gregorian year; and the week containing January 4th.

The ISO-8601 week numbers are integers from 1 to 52 or 53; parts of week 1 may be in the previous calendar year; parts of week 52 may be in the following calendar year; and if a year has a week 53, parts of it must be in the following calendar year.

As an example, in the year 1998, the ISO week 1 began on Monday December 29th, 1997; and the last ISO week (week 53) ended on Sunday January 3rd, 1999. So December 29th, 1997, is in the ISO week 1998-01, and January 1st, 1999, is in the ISO week 1998-53.

byweekno is only valid for YEARLY.

Examples of invalid specifications are "FREQ=YEARLY; BYWEEKNO=1; BYMONTH=12" and "FREQ=YEARLY;BYWEEKNO=53;BYMONTH=1".

	
BYYEARDAY

	
This specifies the day of the year as a number. Valid values are 1 to 366. An example is 69, which is March 10 (31 for January, 28 for February, and 10 for March). 69 evaluates to March 10 for non-leap years and March 9 in leap years. -2 will always evaluate to December 30th independent of whether it is a leap year.

	
BYDATE

	
This specifies a list of dates, where each date is of the form [YYYY]MMDD. A list of consecutive dates can be generated by using the SPAN modifier, and a date can be adjusted with the OFFSET modifier. An example of a simple BYDATE clause follows:

BYDATE=0115,0315,0615,0915,1215,20060115

The following SPAN example is equivalent to BYDATE=0110,0111,0112,0113,0114, which is a span of 5 days starting at 1/10:

BYDATE=0110+SPAN:5D

The plus sign in front of the SPAN keyword indicates a span starting at the supplied date. The minus sign indicates a span ending at the supplied date, and the "^" sign indicates a span of n days or weeks centered around the supplied date. If n is an even number, it is adjusted up to the next odd number.

Offsets adjust the supplied date by adding or subtracting n days or weeks. BYDATE=0205-OFFSET:2W is equivalent to BYDATE=0205-14D (the OFFSET: keyword is optional), which is also equivalent to BYDATE=0122.

	
BYMONTHDAY

	
This specifies the day of the month as a number. Valid values are 1 to 31. An example is 10, which means the 10th day of the selected month. You can use the minus sign (-) to count backward from the last day, so, for example, BYMONTHDAY=-1 means the last day of the month and BYMONTHDAY=-2 means the next to last day of the month.

	
BYDAY

	
This specifies the day of the week from Monday to Sunday in the form MON, TUE, and so on. Using numbers, you can specify the 26th Friday of the year, if using a YEARLY frequency, or the 4th THU of the month, using a MONTHLY frequency. Using the minus sign, you can say the second to last Friday of the month. For example, -1 FRI is the last Friday of the month.

	
BYHOUR

	
This specifies the hour on which the job is to run. Valid values are 0 to 23. As an example, 10 means 10 a.m.

	
BYMINUTE

	
This specifies the minute on which the job is to run. Valid values are 0 to 59. As an example, 45 means 45 minutes past the chosen hour.

	
BYSECOND

	
This specifies the second on which the job is to run. Valid values are 0 to 59. As an example, 30 means 30 seconds past the chosen minute.

	
BYSETPOS

	
This selects one or more items, by position, in the list of timestamps that result after the whole calendaring expression is evaluated. It is useful for requirements such as running a job on the last workday of the month. Rather than attempting to express this with the other BY clauses, you can code the calendaring expression to evaluate to a list of every workday of the month, and then add the BYSETPOS clause to select only the last item of that list. Assuming that workdays are Monday through Friday, the syntax would then be:

FREQ=MONTHLY; BYDAY=MON,TUE,WED,THU,FRI; BYSETPOS=-1

Valid values are 1 through 9999. A negative number selects an item from the end of the list (-1 is the last item, -2 is the next to last item, and so on) and a positive number selects from the front of the list. The BYSETPOS clause is always evaluated last. BYSETPOS is only supported with the MONTHLY and YEARLY frequencies.

The BYSETPOS clause is applied to the list of timestamps once per frequency period. For example, when the frequency is defined as MONTHLY, the Scheduler determines all valid timestamps for the month, orders that list, and then applies the BYSETPOS clause. The Scheduler then moves on to the next month and repeats the procedure. Assuming a start date of Jun 10, 2004, the example evaluates to: Jun 30, Jul 30, Aug 31, Sep 30, Oct 29, and so on.

	
INCLUDE

	
This includes one or more named schedules in the calendaring expression. That is, the set of timestamps defined by each included named schedule is added to the results of the calendaring expression. If an identical timestamp is contributed by both an included schedule and the calendaring expression, it is included in the resulting set of timestamps only once. The named schedules must have been defined with the CREATE_SCHEDULE procedure.

	
EXCLUDE

	
This excludes one or more named schedules from the calendaring expression. That is, the set of timestamps defined by each excluded named schedule is removed from the results of the calendaring expression. The named schedules must have been defined with the CREATE_SCHEDULE procedure.

	
INTERSECT

	
This specifies an intersection between the calendaring expression results and the set of timestamps defined by one or more named schedules. Only the timestamps that appear both in the calendaring expression and in one of the named schedules are included in the resulting set of timestamps.

For example, assume that the named schedule last_sat indicates the last Saturday in every month, and that for the year 2005, the only months where the last day of the month is also a Saturday are April and December. Assume also that the named schedule end_qtr indicates the last day of each quarter in 2005:

3/31/2005, 6/30/2005, 9/30/2005, 12/31/2005

These calendaring expressions result in the dates that follow:

3/31/2005, 4/30/2005, 6/30/2005, 9/30/2005, 12/31/2005

FREQ=MONTHLY; BYMONTHDAY=-1; INTERSECT=last_sat,end_qtr

In this example, the terms FREQ=MONTHLY; BYMONTHDAY=-1 indicate the last day of each month.

	
PERIODS

	
This identifies the number of periods that together form one cycle of a user-defined frequency. It is used in the repeat_interval expression of the schedule that defines the user-defined frequency. It is mandatory when the repeat_interval expression in the main schedule contains a BYPERIOD clause. The following example defines the quarters of a fiscal year.

FREQ=YEARLY;BYDATE=0301,0601,0901,1201;PERIODS=4

	
BYPERIOD

	
This selects periods from a user-defined frequency. For example, if a main schedule names a user-defined frequency schedule that defines the fiscal quarters shown in the previous example, the clause BYPERIOD=2,4 in the main schedule selects the 2nd and 4th fiscal quarters.

Combining Schedules There are two ways to combine schedules:

	
Using a combined schedule expression, which is a list of individual schedules

For example, to create a schedule for all company holidays, you provide a list of individual schedules, where each schedule in the list defines a single holiday. The Scheduler evaluates each individual schedule, and then returns a union of the timestamps returned by each individual schedule.

	
Embedding other schedules into the main schedule using include, exclude, and intersect clauses

With this method, the embedded schedules inherit certain attributes from the main schedule.

	
Timestamps generated by the INCLUDE clause that fall into periods that are skipped by the main schedule are ignored. This is the case when the main schedule skips periods due to the INTERVAL clause, the BYPERIOD clause, or the BYMONTH clause for freq=monthly.

	
Days that are added by the INCLUDE clause follow the hourly/minutely/secondly execution pattern of the main schedule.

	
When the INCLUDE clause is present, no date-specific defaults are retrieved from the start date (but time-specific defaults can be). (See "Start Dates and Repeat Intervals", later in this section.) For example, a repeat_interval of FREQ=MONTHLY;INCLUDE=HOLIDAY executes only on holidays and not on the month/day defaults retrieved from the start date.

The following is an example:

BEGIN
dbms_scheduler.create_schedule('embed_sched', repeat_interval =>
 'FREQ=YEARLY;BYDATE=0130,0220,0725');
dbms_scheduler.create_schedule('main_sched', repeat_interval =>
 'FREQ=MONTHLY;INTERVAL=2;BYMONTHDAY=15;BYHOUR=9,17;INCLUDE=embed_sched');
END;
/

In this example, the dates 1/30, 2/20, and 7/25 are added to the main schedule. However, the Scheduler does not include dates that fall in months that are skipped by the INTERVAL clause. If the start date of the main schedule is 1/1/2005, then 2/20 is not added. On the dates that are added, the embedded schedule follows the execution pattern of the main schedule: jobs are executed at 9:00 a.m. and 5:00 p.m. on 1/30 and 7/25. If the embedded schedule does not itself have a start date, it inherits the start date from the main schedule.

User-Defined Frequencies Instead of using predefined frequencies like DAILY, WEEKLY, MONTHLY, and so on, you can create your own frequencies by creating a schedule that returns the start date of each period. For example, the following repeat_interval expression is used in a schedule named fiscal_year that defines the start of each quarter in a fiscal year:

FREQ=YEARLY;BYDATE=0301,0601,0901,1201;PERIODS=4

To return the last Wednesday of every quarter, you create a schedule (the "main schedule") that uses the fiscal_year schedule as a user-defined frequency:

FREQ=fiscal_year;BYDAY=-1WED

Periods in a user-defined frequency do not have to be equal in length. In the main schedule, the BYSETPOS clause and numbered weekdays are recalculated based on the size of each period. To select dates in specific periods, you must use the BYPERIOD clause in the main schedule. To enable this, the schedule that is used as the user-defined frequency must include a PERIODS clause, and it must set its start date appropriately. The first date returned by this schedule is used as the starting point of period 1.

As another example, assuming work days are Monday through Friday, to get the last work day of the 2nd and 4th quarters of the fiscal year, the repeat_interval clause in the main schedule is the following:

FREQ=fiscal_year;BYDAY=MON,TUE,WED,THU,FRI;BYPERIOD=2,4;BYSETPOS=-1

Start Dates and Repeat Intervals The Scheduler retrieves the date and time from the job or schedule start date and incorporates them as defaults into the repeat_interval. For example, if the specified frequency is yearly and there is no BYMONTH or BYMONTHDAY clause in the repeat interval, then the month and day that the job runs on are retrieved from the start date. Similarly, if frequency is monthly but there is no BYMONTHDAY clause in the repeat interval, then the day of the month that the job runs on is retrieved from the start date. If present, BYHOUR, BYMINUTE, and BYSECOND defaults are also retrieved from the start date, and used if those clauses are not specified. Note that if the INCLUDE, EXCLUDE, or INTERSECT clauses are present, no date-related defaults are retrieved from the start date, but time-related defaults are.The following are some examples:

start_date: 4/15/05 9:00:00
repeat_interval: freq=yearly

is expanded internally to:

freq=yearly;bymonth=4;bymonthday=15;byhour=9;byminute=0;bysecond=0

The preceding schedule executes on 04/15/05 9:00:00, 04/15/06 9:00:00, 04/15/07 9:00:00, and so on.

For the next example, assume that schedule S1 has a repeat_interval of FREQ=YEARLY;BYDATE=0701.

start_date: 01/20/05 9:00:00
repeat_interval: freq=yearly;include=S1

is expanded internally to:

freq=yearly;byhour=9;byminute=0;bysecond=0;include=S1

Because an INCLUDE clause is present, date-related information is not retrieved from the start date. However, time-specific information is, so the preceding schedule executes on 07/01/05 9:00:00, 07/01/06 9:00:00, 07/01/08 9:00:00, and so on.

General Rules When using a calendaring expression, consider the following rules:

	
For a regular schedule (as opposed to a combined schedule), the calendar string must start with the frequency clause. All other clauses are optional and can be put in any order.

	
All clauses are separated by a semicolon, and each clause can be present at most once, with the exception of the include, exclude, and intersect clauses.

	
Spaces are allowed between syntax elements and the strings are case-insensitive.

	
The list of values for a specific BY clause do not need to be ordered.

	
When not enough BY clauses are present to determine what the next date is, this information is retrieved from the start date. For example, "FREQ=YEARLY" with a start date of 02/15/2003 becomes "FREQ=YEARLY;BYMONTH=FEB; BYMONTHDAY=15", which means every year on the 15th of February.

"FREQ=YEARLY;BYMONTH=JAN,JUL" with start date 01/21/2003 becomes "FREQ=YEARLY;BYMONTH=JAN,JUL;BYMONTHDAY=21", which means every year on January 21 and July 21.

	
The byweekno clause is only allowed if the frequency is YEARLY. It cannot be used with other frequencies. When it is present, it will return all days in that week number. If you want to limit it to specific days within the week, you have to add a BYDAY clause. For example, "FREQ=YEARLY;BYWEEKNO=2" with a start date of 01/01/2003 will return:

01/06/2003, 01/07/2003, 01/08/2003, 01/09/2003, 01/10/2003, 01/11/2003, 01/12/2003, 01/05/2004, 01/06/2004, 01/07/2004, and so on.

Note that when the byweekno clause is used, it is possible that the dates returned are from a year other than the current year. For example, if returning dates for the year 2004 and the calendar string is "FREQ=YEARLY;BYWEEKNO=1,53" for the specified week numbers in 2004, it will return the dates:

12/29/03, 12/30/03, 12/31/03, 01/01/04, 01/02/04, 01/03/04, 01/04/04, 12/27/04, 12/28/04, 12/29/04, 12/30/04, 12/31/04, 01/01/05, 01/02/05

	
For those BY clauses that do not have a consistent range of values, you can count backward by putting a "-" in front of the numeric value. For example, specifying BYMONTHDAY=31 will not give you the last day of every month, because not every month has 31 days. Instead, BYMONTHDAY=-1 will give you the last day of the month.

This is not supported for BY clauses that are fixed in size. In other words, BYMONTH, BYHOUR, BYMINUTE, and BYSECOND are not supported.

	
The basic values for the BYDAY clause are the days of the week. When the frequency is YEARLY, or MONTHLY, you are allowed to specify a positive or negative number in front of each day of the week. In the case of YEARLY, BYDAY=40MON, indicates the 40th Monday of the year. In the case of MONTHLY, BYDAY=-2SAT, indicates the second to last Saturday of the month.

Note that positive or negative numbers in front of the weekdays are not supported for other frequencies and that in the case of yearly, the number ranges from -53 ... -1, 1 ... 53, whereas for the monthly frequency it is limited to -5 ... -1, 1... 5.

If no number is present in front of the weekday it specifies, every occurrence of that weekday in the specified frequency.

	
The first day of the week is Monday.

	
Repeating jobs with frequencies smaller than daily follow their frequencies exactly across daylight savings adjustments. For example, suppose that a job is scheduled to repeat every 3 hours, the clock is moved forward from 1:00 a.m. to 2:00 a.m., and the last time the job ran was midnight. Its next scheduled time will be 4:00 a.m. Thus, the 3 hour period between subsequent job runs is retained. The same applies when the clock is moved back. This behavior is not the case for repeating jobs that have frequencies of daily or larger. For example, if a repeating job is supposed to be executed on a daily basis at midnight, it will continue to run at midnight if the clock is moved forward or backward. When the execution time of such a daily (or larger frequency) job happens to fall inside a window where the clock is moved forward, the job executes at the end of the window.

	
The calendaring syntax does not allow you to specify a time zone. Instead the Scheduler retrieves the time zone from the start_date argument. If jobs must follow daylight savings adjustments, then you must specify a region name for the time zone of the start_date. For example specifying the start_date time zone as 'US/Eastern' in New York ensures that daylight saving adjustments are automatically applied. If instead, the time zone of the start_date is set to an absolute offset, such as '-5:00', then daylight savings adjustments are not followed and your job execution is off by an hour for half the year.

	
When start_date is NULL, the Scheduler determines the time zone for the repeat interval as follows:

	
It checks whether or not the session time zone is a region name. The session time zone can be set by either:

	
Issuing an ALTER SESSION statement, for example:

SQL> ALTER SESSION SET time_zone = 'Asia/Shanghai';

	
Setting the ORA_SDTZ environment variable.

	
If the session time zone is an absolute offset instead of a region name, the Scheduler uses the value of the DEFAULT_TIMEZONE Scheduler attribute. For more information, see the SET_SCHEDULER_ATTRIBUTE Procedure.

	
If the DEFAULT_TIMEZONE attribute is NULL, the Scheduler uses the time zone of systimestamp when the job or window is enabled.

BYSETPOS Clause Rules The following are rules for the BYSETPOS clause.

	
The BYSETPOS clause is the last clause to be evaluated. It is processed after all other BY clauses and the INCLUDE, EXCLUDE and INTERSECT clauses have been evaluated.

	
The INTERVAL clause does not change the size of the period to which the BYSETPOS clause is applied. For example, when the frequency is set to monthly and interval is set to 3, the list of timestamps to which BYSETPOS is applied is generated from a month, not a quarter. The only impact of the INTERVAL clause is to cause months to be skipped. However, you can still select the second to last workday of the quarter like this:

FREQ=MONTHLY;INTERVAL=3;BYDAY=MON,TUE,WED,THU,FRI;BYSETPOS=-2

provided that you set the start date in the right month. This example returns the next to last workday of a month, and repeats once a quarter.

	
To get consistent results, the set to which BYSETPOS is applied is determined from the beginning of the frequency period independently of when the evaluation occurs. Whether the Scheduler evaluates

FREQ=MONTHLY;BYDAY=MON,TUE,FRI;BYSETPOS=1,3

on 01/01/2004 or 01/15/2004, in both cases the expression evaluates to Friday 01/02/2004, and Tuesday 01/06/2004. The only difference is that when the expression is evaluated on 01/15/2004, the Scheduler determines that there are no matches in January because the timestamps found are in the past, and it moves on to the matches in the next month, February.

BYDATE Clause Rules The following are rules for the BYDATE clause.

	
If dates in the BYDATE clause do not have their optional year component, the job runs on those dates every year.

	
The job execution times on the included dates are derived from the BY clauses in the calendaring expression. For example, if repeat_interval is defined as

freq=daily;byhour=8,13,18;byminute=0;bysecond=0;bydate=0502,0922

then the execution times on 05/02 and 09/22 are 8:00 a.m., 1:00 p.m., and 6:00 p.m.

EXCLUDE Clause Rules Excluded dates without a time component are 24 hour periods. All timestamps that fall on an excluded date are removed. In the following example, jan_fifteen is a named schedule that resolves to the single date of 01/15:

freq=monthly;bymonthday=15,30;byhour=8,13,18;byminute=0;bysecond=0;
 exclude=jan_fifteenth

In this case, all three instances of the job are removed for 01/15.

OFFSET Rules You can adjust the dates of individual named schedules by adding positive offsets to them. For example, to execute JOB2 exactly 15 days after every occurrence of JOB1, add +OFFSET:15D to the schedule of JOB1, as follows:

BEGIN
dbms_scheduler.create_schedule('job2_schedule', repeat_interval =>
 'job1_schedule+OFFSET:15D');
END;
/

Note that negative offsets to named schedules are not supported.

Example 128-1 Putting It All Together

This example demonstrates the use of user-defined frequencies, spans, offsets, and the BYSETPOS and INCLUDE clauses. (Note that the OFFSET: keyword is optional in an offset clause.)

Many companies in the retail industry share the same fiscal year. The fiscal year starts on the Sunday closest to February 1st, and subsequent quarters start exactly 13 weeks later. The fiscal year schedule for the retail industry can be defined as the following:

begin
 dbms_scheduler.create_schedule('year_start', repeat_interval=>
 'FREQ=YEARLY;BYDATE=0201^SPAN:1W;BYDAY=SUN');
 dbms_scheduler.create_schedule('retail_fiscal_year',
 to_timestamp_tz('15-JAN-2005 12:00:00','DD-MON-YYYY HH24:MI:SS'),
 'year_start,year_start+13w,year_start+26w,year_start+39w;periods=4');
end;
/

The following schedule can be used to execute a job on the 5th day off in the 2nd and the 4th quarters of the retail industry. This assumes that Saturday and Sunday are off days as well as the days in the existing holiday schedule.

begin
 dbms_scheduler.create_schedule('fifth_day_off', repeat_interval=>
 'FREQ=retail_fiscal_year;BYDAY=SAT,SUN;INCLUDE=holiday;
 BYPERIOD=2,4;BYSETPOS=5');
end;
/

Summary of DBMS_SCHEDULER Subprograms

Table 128-11 DBMS_SCHEDULER Package Subprograms

	Subprogram	Description
	
ADD_EVENT_QUEUE_SUBSCRIBER Procedure

	
Adds a user as a subscriber to the Scheduler event queue SYS.SCHEDULER$_EVENT_QUEUE

	
ADD_GROUP_MEMBER Procedure

	
Adds one or more members to an existing group

	
ADD_JOB_EMAIL_NOTIFICATION Procedure

	
Adds e-mail notifications for a job for a list of recipients and a list of job state events

	
ADD_WINDOW_GROUP_MEMBER Procedure

	
***Deprecated. Use CREATE_GROUP and ADD_GROUP_MEMBER instead

	
ALTER_CHAIN Procedure

	
Alters specified steps of a chain

	
ALTER_RUNNING_CHAIN Procedure

	
Alters specified steps of a running chain

	
CLOSE_WINDOW Procedure

	
Closes an open window prematurely

	
COPY_JOB Procedure

	
Copies an existing job

	
CREATE_CHAIN Procedure

	
Creates a chain, which is a named series of programs that are linked together for a combined objective

	
CREATE_CREDENTIAL Procedure

	
Creates a credential

	
CREATE_DATABASE_DESTINATION Procedure

	
Creates a database destination for use with remote database jobs

	
CREATE_EVENT_SCHEDULE Procedure

	
Creates an event schedule, which is a schedule that starts a job based on the detection of an event

	
CREATE_FILE_WATCHER Procedure

	
Creates a file watcher, which is a Scheduler object that defines the location, name, and other properties of a file whose arrival on a system causes the Scheduler to start a job

	
CREATE_GROUP Procedure

	
Creates a group

	
CREATE_JOB Procedure

	
Creates a single job

	
CREATE_JOB_CLASS Procedure

	
Creates a job class, which provides a way to group jobs for resource allocation and prioritization

	
CREATE_JOBS Procedure

	
Creates multiple jobs

	
CREATE_PROGRAM Procedure

	
Creates a program

	
CREATE_SCHEDULE Procedure

	
Creates a schedule

	
CREATE_WINDOW Procedure

	
Creates a window, which provides a way to automatically activate different resource plans at different times

	
CREATE_WINDOW_GROUP Procedure

	
*** Deprecated. Use CREATE_GROUP

	
DEFINE_ANYDATA_ARGUMENT Procedure

	
Defines a program argument whose value is of a complex type and must be passed encapsulated in an AnyData object

	
DEFINE_CHAIN_EVENT_STEP Procedure

	
Adds or replaces a chain step and associates it with an event schedule or inline event. See also: DEFINE_CHAIN_STEP.

	
DEFINE_CHAIN_RULE Procedure

	
Adds a rule to an existing chain

	
DEFINE_CHAIN_STEP Procedure

	
Defines a chain step, which can be a program or another (nested) chain. See also: DEFINE_CHAIN_EVENT_STEP.

	
DEFINE_METADATA_ARGUMENT Procedure

	
Defines a special metadata argument for the program. You can retrieve specific metadata through this argument.

	
DEFINE_PROGRAM_ARGUMENT Procedure

	
Defines a program argument whose value can be passed as a string literal to the program

	
DISABLE Procedure

	
Disables a program, job, chain, window, database destination, external destination, file watcher, or group

	
DROP_AGENT_DESTINATION Procedure

	
Drops one or more external destinations. Use only when the preferred method of dropping external destinations—unregistering the Scheduler agent with the database—fails.

	
DROP_CHAIN Procedure

	
Drops an existing chain

	
DROP_CHAIN_RULE Procedure

	
Removes a rule from an existing chain

	
DROP_CHAIN_STEP Procedure

	
Drops a chain step

	
DROP_CREDENTIAL Procedure

	
Drops a credential

	
DROP_DATABASE_DESTINATION Procedure

	
Drops one or more database destinations

	
DROP_FILE_WATCHER Procedure

	
Drops one or more file watchers

	
DROP_GROUP Procedure

	
Drops one or more groups

	
DROP_JOB Procedure

	
Drops a job or all jobs in a job class

	
DROP_JOB_CLASS Procedure

	
Drops a job class

	
DROP_PROGRAM Procedure

	
Drops a program

	
DROP_PROGRAM_ARGUMENT Procedure

	
Drops a program argument

	
DROP_SCHEDULE Procedure

	
Drops a schedule

	
DROP_WINDOW Procedure

	
Drops a window

	
DROP_WINDOW_GROUP Procedure

	
*** Deprecated. Use CREATE_GROUP and DROP_GROUP instead.

	
ENABLE Procedure

	
Enables a program, job, chain, window, database destination, external destination, file watcher, or group

	
END_DETACHED_JOB_RUN Procedure

	
Ends a running detached job

	
EVALUATE_CALENDAR_STRING Procedure

	
Evaluates the calendar string and tells you what the next execution date of a job or window will be

	
EVALUATE_RUNNING_CHAIN Procedure

	
Forces reevaluation of the rules of a running chain to trigger any rules for conditions that have been satisfied

	
GENERATE_JOB_NAME Function

	
Generates a unique name for a job. This enables you to identify jobs by adding a prefix, so, for example, Sally's jobs would be named sally1, sally2, and so on

	
"GET_AGENT_INFO Function"

	
Returns job information specific to an agent, such as how many are running and so on, depending on the attribute selected

	
"GET_AGENT_VERSION Function"

	
Returns the version string of a Scheduler agent that is registered with the database and is currently running

	
GET_ATTRIBUTE Procedure

	
Retrieves the value of an attribute of an object

	
GET_FILE Procedure

	
Retrieves a file from a host

	
GET_SCHEDULER_ATTRIBUTE Procedure

	
Retrieves the value of a Scheduler attribute

	
OPEN_WINDOW Procedure

	
Opens a window prematurely. The window is opened immediately for the duration

	
PURGE_LOG Procedure

	
Purges specific rows from the job and window logs

	
PUT_FILE Procedure

	
Saves a file to one or more hosts

	
REMOVE_EVENT_QUEUE_SUBSCRIBER Procedure

	
Unsubscribes a user from the Scheduler event queue SYS.SCHEDULER$_EVENT_QUEUE

	
REMOVE_GROUP_MEMBER Procedure

	
Removes one or more members from a group

	
REMOVE_JOB_EMAIL_NOTIFICATION Procedure

	
Removes e-mail notifications for a job

	
REMOVE_WINDOW_GROUP_MEMBER Procedure

	
***Deprecated. Use CREATE_GROUP and REMOVE_GROUP_MEMBER instead

	
RESET_JOB_ARGUMENT_VALUE Procedure

	
Resets the current value assigned to an argument defined with the associated program

	
RUN_CHAIN Procedure

	
Immediately runs a chain by creating a run-once job

	
RUN_JOB Procedure

	
Runs a job immediately

	
SET_AGENT_REGISTRATION_PASS Procedure

	
Sets the agent registration password for a database

	
SET_ATTRIBUTE Procedure

	
Changes an attribute of a job, schedule, or other Scheduler object

	
SET_ATTRIBUTE_NULL Procedure

	
Changes an attribute of an object to NULL

	
SET_JOB_ANYDATA_VALUE Procedure

	
Sets the value of a job argument encapsulated in an AnyData object

	
SET_JOB_ARGUMENT_VALUE Procedure

	
Sets the value of a job argument

	
SET_JOB_ATTRIBUTES Procedure

	
Sets the value of a job attribute

	
SET_SCHEDULER_ATTRIBUTE Procedure

	
Sets the value of a Scheduler attribute

	
STOP_JOB Procedure

	
Stops a currently running job or all jobs in a job class

ADD_EVENT_QUEUE_SUBSCRIBER Procedure

This procedure adds a user as a subscriber to the Scheduler event queue SYS.SCHEDULER$_EVENT_QUEUE, and grants the user permission to dequeue from this queue using the designated agent.

Syntax

DBMS_SCHEDULER.ADD_EVENT_QUEUE_SUBSCRIBER (
 subscriber_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 128-12 ADD_EVENT_QUEUE_SUBSCRIBER Procedure Parameters

	Parameter	Description
	
subscriber_name

	
Name of the Oracle Streams Advanced Queuing (AQ) agent to be used to subscribe to the Scheduler event queue. If NULL, an agent is created and assigned the user name of the calling user.

Usage Notes

The subscription is rule-based. The rule permits the user to see only events raised by jobs that the user owns, and filters out all other messages. If an AQ agent with the same name already exists, an error is raised.

ADD_GROUP_MEMBER Procedure

This procedure adds one or more members to an existing group.

Syntax

DBMS_SCHEDULER.ADD_GROUP_MEMBER (
 group_name IN VARCHAR2,
 member IN VARCHAR2);

Parameters

Table 128-13 ADD_GROUP_MEMBER Procedure Parameters

	Parameter	Description
	
group_name

	
The name of the group.

	
member

	
A comma-separated list of members to add to the group. Members must match the group type. A group of the same type can be a member. The Scheduler immediately expands the included group name into its list of members.

An error is returned if any of the members do not exist. A member that is already in the group is skipped, and no error is generated.

The keyword LOCAL can be included as a member for database destination or external destination groups. See the "CREATE_GROUP Procedure" for information about this keyword.

Usage Notes

The following users may add members to a group:

	
The group owner

	
A user that has been granted the ALTER object privilege on the group

	
A user with the CREATE ANY JOB system privilege

You must have the MANAGE SCHEDULER privilege to add a member to a group of type WINDOW.

	
See Also:

"CREATE_GROUP Procedure"

ADD_JOB_EMAIL_NOTIFICATION Procedure

This procedure adds e-mail notifications for a job. E-mails are then sent to the specified list of recipients whenever any of the specified job state events is raised.

Syntax

DBMS_SCHEDULER.ADD_JOB_EMAIL_NOTIFICATION (
 job_name IN VARCHAR2,
 recipients IN VARCHAR2,
 sender IN VARCHAR2 DEFAULT NULL,
 subject IN VARCHAR2 DEFAULT DBMS_SCHEDULER.DEFAULT_NOTIFICATION_SUBJECT,
 body IN VARCHAR2 DEFAULT DBMS_SCHEDULER.DEFAULT_NOTIFICATION_BODY,
 events IN VARCHAR2 DEFAULT 'JOB_FAILED,JOB_BROKEN,JOB_SCH_LIM_REACHED,
 JOB_CHAIN_STALLED,JOB_OVER_MAX_DUR',
 filter_condition IN VARCHAR2 DEFAULT NULL);

Parameters

Table 128-14 ADD_JOB_EMAIL_NOTIFICATION Procedure Parameters

	Parameter	Description
	
job_name

	
Name of the job that e-mail notifications are added for. Cannot be NULL.

	
recipients

	
Comma-separated list of e-mail addresses to send notifications to. E-mail notifications for all listed events are sent to all recipients. Cannot be NULL.

	
sender

	
e-mail address to use as the sender address (the From: address) in the e-mail header. If NULL or omitted, the e-mail address specified in the Scheduler attribute email_sender is used. See Oracle Database Administrator's Guide for more information on this Scheduler attribute.

	
subject

	
The subject to use in the e-mail header. Table 128-15 describes the variables that you can include within this parameter. The Scheduler assigns values to these variables before sending the notification. If subject is omitted, the default subject is used. The default subject is the following text, where text enclosed in the '%' character represents a variable:

'Oracle Scheduler Job Notification - %job_owner%.%job_name%.%job_subname% %event_type%'

	
body

	
The body of the e-mail message. Table 128-15 describes the variables that you can include within this parameter. The Scheduler assigns values to these variables before sending the notification. If body is omitted, the default body is used. The default body is the following text, where text enclosed in the '%' character represents a variable:

'Job: %job_owner%.%job_name%.%job_subname%
Event: %event_type%
Date: %event_timestamp%
Log id: %log_id%
Job class: %job_class_name%
Run count: %run_count%
Failure count: %failure_count%
Retry count: %retry_count%
Error code: %error_code%
Error message: %error_message%'

	
events

	
Comma-separate list of job state events to send e-mail notifications for. Cannot be NULL. A notification is sent to all recipients if any of the listed events is raised. Table 128-82 lists the valid events for this parameter. If events is omitted, notifications are sent for the following default events:

JOB_FAILED,JOB_BROKEN,JOB_SCH_LIM_REACHED,JOB_CHAIN_STALLED,JOB_OVER_MAX_DUR

	
filter_condition

	
Used to filter events to send e-mail notifications for. If NULL, all occurrences of the specified events cause e-mail notifications to be sent. filter_condition must be a boolean SQL WHERE clause that may refer to the :event bind variable. This bind variable is automatically bound to an object of type SCHEDULER$_EVENT_INFO that represents the raised event.

For example, to send an e-mail notification only when the error number in an event is 600 or 700, use the following filter_condition:

:event.error_code=600 or :event.error_code=700

See "SCHEDULER$_EVENT_INFO Object Type".

Table 128-15 lists the variables that you can use in the subject and body arguments.

Table 128-15 Variables Used in the SUBJECT and BODY Parameters

	Variable	Comment
	
%job_owner%

	
Schema in which job was created

	
%job_name%

	
Name of the job that e-mail notifications are added for

	
%job_subname%

	
Present for event-based jobs with the parallel_instances attribute set and for chain steps

	
%event_type%

	
Valid values are listed in Table 128-82

	
%event_timestamp%

	
Time at which the event occurred

	
%log_id%

	
Refers to the LOG_ID column in views *_SCHEDULER_JOB_LOG and *_SCHEDULER_JOB_RUN_DETAILS

	
%error_code%

	
Number of the error code.

	
%error_message%

	
The text of the error message

	
%run_count%

	
Run count for the job when the event was raised

	
%failure_count%

	
Failure count for the job when the event was raised

	
%retry_count%

	
Retry count for the job when the event was raised

Usage Notes

You can call ADD_JOB_EMAIL_NOTIFICATION once for each different set of notifications that you want to configure for a particular job. For example, you may want to send notifications for the JOB_FAILED, JOB_BROKEN, JOB_SCH_LIM_REACHED, and JOB_CHAIN_STALLED events to the principle DBA and all senior DBAs, but send a notification for the JOB_OVER_MAX_DUR event only to the principle DBA.

This procedure succeeds only if the Scheduler attribute email_server is set to a valid SMTP server. See Oracle Database Administrator's Guide for more information.

To call this procedure, you must be the job owner or have the CREATE ANY JOB system privilege or have the ALTER object privilege on the job.

ADD_WINDOW_GROUP_MEMBER Procedure

*** Deprecated in Oracle Database 11g Release 2. Use ADD_GROUP_MEMBER instead.

This procedure adds one or more windows to an existing window group.

Syntax

DBMS_SCHEDULER.ADD_WINDOW_GROUP_MEMBER (
 group_name IN VARCHAR2,
 window_list IN VARCHAR2);

Parameters

Table 128-16 ADD_WINDOW_GROUP_MEMBER Procedure Parameters

	Parameter	Description
	
group_name

	
The name of the window group

	
window_list

	
The name of the window or windows

Usage Notes

If an already open window is added to a window group, the Scheduler will not pick up jobs that point to this window group until the next window in the window group opens.

Adding a window to a group requires the MANAGE SCHEDULER privilege.

Note that a window group cannot be a member of another window group.

ALTER_CHAIN Procedure

This procedure alters an attribute of the specified steps of a chain. This affects all future runs of the specified steps, both in the currently running chain job and in future runs of the same chain job or other chain jobs that point to the chain.

Syntax

Alters the value of a boolean attribute of one or more steps:

DBMS_SCHEDULER.ALTER_CHAIN (
 chain_name IN VARCHAR2,
 step_name IN VARCHAR2,
 attribute IN VARCHAR2,
 value IN BOOLEAN);

Alters the value of a character attribute of one or more steps:

DBMS_SCHEDULER.ALTER_CHAIN (
 chain_name IN VARCHAR2,
 step_name IN VARCHAR2,
 attribute IN VARCHAR2,
 char_value IN VARCHAR2);

Parameters

Table 128-17 ALTER_CHAIN Procedure Parameters

	Parameter	Description
	
chain_name

	
The name of the chain to alter

	
step_name

	
The name of the step or a comma-separated list of steps to alter. This cannot be NULL.

	
attribute

	
The attribute of the steps to change. Must be one of the following:

	
'PAUSE'

If set to TRUE for a step, after the step has run, its state changes to PAUSED (and the completed attribute remains FALSE).

If PAUSE is reset to FALSE for a paused chain step (using ALTER_RUNNING_CHAIN), the state is set to its completion state (SUCCEEDED, FAILED, or STOPPED) and the completed attribute is set to TRUE.

Setting PAUSE has no effect on steps that have already run. This allows execution of a chain to be suspended after the execution of certain steps.

	
'PAUSED_BEFORE'

If set to TRUE for a step and if any of the rule conditions that start the step are true, then its state changes to PAUSED and the step does not run.

If PAUSE_BEFORE is reset to FALSE for a chain step that has paused before starting (using ALTER_RUNNING_CHAIN), then the step starts running if any of the rule conditions that start the step are true.

Setting PAUSE_BEFORE has no effect on steps that are running or have already run. This allows execution of a chain to be suspended before the execution of certain steps.

	
'SKIP'

If set to TRUE for a step, when the step condition is met, instead of being run, the step is treated as if it has immediately succeeded. Setting SKIP to TRUE has no effect for a step that is running, scheduled to run after a delay, or has already run. If SKIP is set TRUE for a step that PAUSE is also set for, when the step condition is met, the step immediately changes to state PAUSED.

	
'RESTART_ON_FAILURE'

If set to TRUE for a step and the step fails due to an application error, then the step is retried using the normal Scheduler retry mechanism (after 1 second, after 10 seconds, after 100 seconds, and so on, up to a maximum of 6 times). If all 6 retries fail (after about 30 hours), then the chain step is marked FAILED.

If set to FALSE (the default), a failed chain step is immediately marked FAILED.

	
'RESTART_ON_RECOVERY'

If set to TRUE for a step and the step is stopped by a database shutdown, then the step is restarted when the database is recovered.

If set to FALSE, and the step is stopped by a database shutdown, then the step is marked as stopped when the database is recovered and the chain continues.

	
'DESTINATION_NAME'

The name of an existing database destination or external destination. You can view external destination names in the view ALL_SCHEDULER_EXTERNAL_DESTS, and database destination names in the views *_SCHEDULER_DB_DESTS. You cannot specify a destination group for this attribute. This parameter is NULL by default.

	
'CREDENTIAL_NAME'

The credential to use when running this step. NULL by default.

	
value

	
The value to set for the attribute (for a boolean attribute).

	
char_value

	
The value to set for the attribute (for a character attribute).

Usage Notes

Altering a chain requires ALTER privileges on the chain either by being the owner of the chain, or by having the ALTER object privilege on the chain or by having the CREATE ANY JOB system privilege.

ALTER_RUNNING_CHAIN Procedure

This procedure alters an attribute of the specified steps of a chain. This affects only steps of the instance of the chain for the specified running chain job.

Syntax

DBMS_SCHEDULER.ALTER_RUNNING_CHAIN (
 job_name IN VARCHAR2,
 step_name IN VARCHAR2,
 attribute IN VARCHAR2,
 value IN {BOOLEAN|VARCHAR2});

Parameters

Table 128-18 ALTER_RUNNING_CHAIN Procedure Parameters

	Parameter	Description
	
job_name

	
The name of the job that is running the chain

	
step_name

	
The name of the step or a comma-separated list of steps to alter. If this is set to NULL and attribute is PAUSE or SKIP, then all steps of the running chain are altered.

	
attribute

	
The attribute of the steps to change. Valid values are:

	
'PAUSE'

If the PAUSE attribute is set TRUE for a step, then after the step runs, its state changes to PAUSED (and the completed attribute remains false).

If PAUSE is reset to FALSE for a paused chain step (using ALTER_RUNNING_CHAIN), the state is set to completion (SUCCEEDED, FAILED, or STOPPED) and the completed attribute is set to TRUE. Setting PAUSE has no effect on steps that have already run. This allows execution of a chain to be suspended after the execution of certain steps. If step_name is set to NULL, PAUSE is set to TRUE for all steps of this running chain.

	
'PAUSE_BEFORE'

If set to TRUE for a step that has not yet run and if any of the rule conditions that start the step are true, then its state changes to PAUSED and the step does not run.

If PAUSE_BEFORE is reset to FALSE for a chain step that has paused before starting, then the step starts running if any of the rule conditions that start the step are true.

Setting PAUSE_BEFORE has no effect on steps that are running or have already run. This allows execution of a chain to be suspended before the execution of certain steps.

If step_name is set to NULL, then PAUSE_BEFORE is set to the specified value for all steps of this running chain.

	
attribute CONTINUED

	
	
'SKIP'

If the SKIP attribute is set to TRUE for a step, when the step condition is met, instead of being run, the step is treated as if it has immediately succeeded. Setting SKIP to TRUE has no effect for a step that is running, scheduled to run after a delay, or has already run.

If step_name is set to NULL, SKIP is set TRUE for all steps of this running chain. If SKIP is set TRUE for a step that PAUSE is also set for, when the step condition is met the step immediately changes to state PAUSED.

	
'RESTART_ON_FAILURE'

If set to TRUE for a step and the step fails due to an application error, then the step is retried using the normal Scheduler retry mechanism (after 1 second, after 10 seconds, after 100 seconds, and so on, up to a maximum of 6 times). If all 6 retries fail (after about 30 hours), then the chain step is marked FAILED.

If set to FALSE (the default), a failed chain step is immediately marked FAILED.

	
'RESTART_ON_RECOVERY'

If the RESTART_ON_RECOVERY attribute is set to TRUE for a step, then if the step is stopped by a database shutdown, it is restarted when the database is recovered.

If set to FALSE, then if the step is stopped by a database shutdown, the step is marked as stopped when the database is recovered and the chain continues.

	
'STATE'

This changes the state of the steps. The state can only be changed if the step is not running. The state can only be changed to one of the following:

'NOT_STARTED', 'SUCCEEDED', 'FAILED error_code'

If the state is being changed to FAILED, an error code must be included (this must be a positive integer).

	
value

	
The value to set for the attribute. Valid values are: TRUE, FALSE, 'NOT_STARTED', 'SUCCEEDED', or 'FAILED error_code'

Usage Notes

Altering a running chain requires you to have alter privileges on the job that is running (either as the owner, or as a user with ALTER privileges on the job or the CREATE ANY JOB system privilege).

CLOSE_WINDOW Procedure

This procedure closes an open window prematurely. A closed window means that it is no longer in effect. When a window is closed, the Scheduler switches the resource plan to the one that is in effect outside the window, or in the case of overlapping windows, to another window.

Syntax

DBMS_SCHEDULER.CLOSE_WINDOW (
 window_name IN VARCHAR2);

Parameters

Table 128-19 CLOSE_WINDOW Procedure Parameters

	Parameter	Description
	
window_name

	
The name of the window

Usage Notes

If you try to close a window that does not exist or is not open, an error is generated.

A job that is running does not stop when the window it is running in closes, unless the attribute stop_on_window_close is set to TRUE for the job. However, the resources allocated to the job can change if the resource plan changes.

When a running job has a group of type WINDOW as its schedule, the job is not stopped when its window is closed if another window in the same window group becomes active. This is the case even if the job has the attribute stop_on_window_close set to TRUE.

Closing a window requires the MANAGE SCHEDULER privilege.

COPY_JOB Procedure

This procedure copies all attributes of an existing job to a new job. The new job is created disabled, while the state of the existing job is unaltered.

Syntax

DBMS_SCHEDULER.COPY_JOB (
 old_job IN VARCHAR2,
 new_job IN VARCHAR2);

Parameters

Table 128-20 COPY_JOB Procedure Parameters

	Parameter	Description
	
old_job

	
The name of the existing job

	
new_job

	
The name of the new job

Usage Notes

To copy a job, you must have privileges to create a job in the schema of the new job (the CREATE JOB system privilege if it is in your own schema, otherwise, the CREATE ANY JOB system privilege). If the old job is not in the your own schema, then you must also have ALTER privileges on the old job or the CREATE ANY JOB system privilege.

CREATE_CHAIN Procedure

This procedure creates a new chain. The chain name can be optionally qualified with a schema name (for example, myschema.myname).

A chain is always created as disabled and must be enabled with the ENABLE Procedure before it can be used.

Syntax

DBMS_SCHEDULER.CREATE_CHAIN (
 chain_name IN VARCHAR2,
 rule_set_name IN VARCHAR2 DEFAULT NULL,
 evaluation_interval IN INTERVAL DAY TO SECOND DEFAULT NULL,
 comments IN VARCHAR2 DEFAULT NULL);

Parameters

Table 128-21 CREATE_CHAIN Procedure Parameters

	Parameter	Description
	
chain_name

	
The name to assign to the new chain, which can optionally be qualified with a schema. This must be unique in the SQL namespace, therefore, there cannot already be a table or other object with this name and schema.

	
rule_set_name

	
In the normal case, no rule set should be passed in. The Scheduler automatically creates a rule set and associated empty evaluation context. You then use DEFINE_CHAIN_RULE to add rules and DROP_CHAIN_RULE to remove them.

Advanced users can create a rule set that describes their chain dependencies and pass it in here. This allows greater flexibility in defining rules. For example, conditions can refer to external variables, and tables can be exposed through the evaluation context. If you pass in a rule set, you must ensure that it is in the format of a chain rule set. (For example, all steps must be listed as variables in the evaluation context). If no rule set is passed in, the rule set created is of the form SCHED_RULESET${N} and the evaluation context created is of the form SCHED_EVCTX${N}

See Oracle Streams Concepts and Administration for information on rules and rule sets.

	
evaluation_interval

	
If this is NULL, reevaluation of the rules of a running chain are performed only when the job starts and when a step completes. A non-NULL value causes rule evaluations to also occur periodically at the specified interval. Because evaluation may be CPU-intensive, this should be conservatively set to the highest possible value or left at NULL if possible. evaluation_interval cannot be less than a minute or greater than a day.

	
comments

	
An optional comment describing the purpose of the chain

Usage Notes

To create a chain in your own schema, you must have the CREATE JOB system privilege. To create a chain in a different schema you must have the CREATE ANY JOB system privilege. If you do not provide a rule_set_name, a rule set and evaluation context is created in the schema that the chain is being created in, so you must have the privileges required to create these objects. See the DBMS_RULE_ADM.CREATE_RULE_SET and DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT procedures for more information.

CREATE_CREDENTIAL Procedure

This procedure creates a stored username/password pair. Credentials are assigned to jobs so that they can authenticate with a local or remote host operating system or a remote Oracle database.

Syntax

DBMS_SCHEDULER.CREATE_CREDENTIAL (
 credential_name IN VARCHAR2,
 username IN VARCHAR2,
 password IN VARCHAR2,
 database_role IN VARCHAR2 DEFAULT NULL,
 windows_domain IN VARCHAR2 DEFAULT NULL,
 comments IN VARCHAR2 DEFAULT NULL);

Parameters

Table 128-22 CREATE_CREDENTIAL Procedure Parameters

	Parameter	Description
	
credential_name

	
The name to assign to the credential. It can optionally be prefixed with a schema name. It cannot be set to NULL. It is converted to uppercase unless enclosed in double-quotes.

	
username

	
The user name for logging into to the host operating system or remote Oracle database. This cannot be set to NULL and is case-sensitive. It cannot contain double quotes or spaces. Maximum length is 64.

	
password

	
The password for the user name. This cannot be set to NULL and is case sensitive. The password is stored obfuscated and is not displayed in the Scheduler dictionary views. Maximum length is 128.

	
database_role

	
The value of the database_role attribute is used as the system privilege for logging into a remote database to run a remote database job.

Valid values are: SYSDBA and SYSOPER

	
windows_domain

	
For a Windows remote executable target, this is the domain that the specified user belongs to. The domain is converted to uppercase automatically. Maximum length is 64.

	
comments

	
A text string that can be used to describe the credential. Scheduler does not use this parameter. Maximum length is 240.

Usage Notes

Credentials reside in a particular schema and can be created by any user with the CREATE JOB system privilege. To create a credential in a schema other than your own, you must have the CREATE ANY JOB privilege.

CREATE_DATABASE_DESTINATION Procedure

This procedure creates a database destination. A database destination represents an Oracle database on which remote database jobs run.

The host that the remote database resides on must have a running Scheduler agent that is registered with the database that this procedure is called from.

Syntax

DBMS_SCHEDULER.CREATE_DATABASE_DESTINATION (
 destination_name IN VARCHAR2,
 agent IN VARCHAR2,
 tns_name IN VARCHAR2,
 comments IN VARCHAR2 DEFAULT NULL);

Parameters

Table 128-23 CREATE_DATABASE_DESTINATION Procedure Parameters

	Parameter	Description
	
destination_name

	
The name to assign to the database destination. It can optionally be prefixed with a schema name. Cannot be NULL. It is converted to uppercase unless enclosed in double-quotes.

	
agent

	
The external destination name of the Scheduler agent to connect. Equivalent to an agent name.

The external destination must already exist. The external destination representing an agent is created automatically on a database instance when the agent registers with that instance.

An agent's name is specified in its agent configuration file. If it is not specified, it defaults to the first part (before the first period) of the name of the host it resides on.

	
tns_name

	
An Oracle Net connect identifier that is resolved to the Oracle database instance being connected to. The exact syntax depends on the Oracle Net configuration.The connect identifier can be a complete Oracle Net connect descriptor (network address and database service name) or a net service name, which is an alias for a connect descriptor. The alias must be resolved in the tnsnames.ora file on the local computer. The maximum size for tns_name is 2000 characters.

If tns_name is NULL, the agent connects to the default Oracle database on its host. You specify the default database by assigning values to the ORACLE_HOME and ORACLE_SID parameters in the agent configuration file, schagent.conf, located in the agent home directory.

See Oracle Database Net Services Administrator's Guide for more information on connect identifiers.

	
comments

	
A text string that describes the database destination. Scheduler does not use this argument.

Usage Notes

Database destinations reside in a particular schema and can be created by any user with the CREATE JOB system privilege. To create a database destination in a schema other than your own, you must have the CREATE ANY JOB privilege.

CREATE_EVENT_SCHEDULE Procedure

This procedure creates an event schedule, which is used to start a job when a particular event is raised.

Syntax

DBMS_SCHEDULER.CREATE_EVENT_SCHEDULE (
 schedule_name IN VARCHAR2,
 start_date IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
 event_condition IN VARCHAR2 DEFAULT NULL,
 queue_spec IN VARCHAR2,
 end_date IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
 comments IN VARCHAR2 DEFAULT NULL);

Parameters

Table 128-24 CREATE_EVENT_SCHEDULE Parameters

	Parameter	Description
	
schedule_name

	
The name to assign to the schedule. The name must be unique in the SQL namespace. For example, a schedule cannot have the same name as a table in a schema. If no name is specified, then an error occurs.

	
start_date

	
This attribute specifies the date and time that this schedule becomes valid. Occurrences of the event before this date and time are ignored in the context of this schedule.

	
event_condition

	
This is a conditional expression based on the columns of the event source queue table. The expression must have the syntax of an Advanced Queuing rule. Accordingly, you can include user data properties in the expression, provided that the message payload is an object type, and that you prefix object attributes in the expression with tab.user_data. For more information on rules, see the DBMS_AQADM.ADD_SUBSCRIBER procedure.

	
queue_spec

	
This argument specifies either a file watcher name or the queue into which events that start this particular job are enqueued (the source queue). If the source queue is a secure queue, the queue_spec argument is a string containing a pair of values of the form queue_name, agent name. For non-secure queues, only the queue name need be provided. If a fully qualified queue name is not provided, the queue is assumed to be in the job owner's schema. In the case of secure queues, the agent name provided should belong to a valid agent that is currently subscribed to the queue.

	
end_date

	
The date and time after which jobs do not run and windows do not open.

An event schedule that has no end_date is valid forever.

end_date must be after the start_date. If it is not, then an error is generated when the schedule is created.

	
comments

	
This attribute specifies an optional comment about the schedule. By default, this attribute is NULL.

Usage Notes

You must have the CREATE JOB privilege to create a schedule in your own schema or the CREATE ANY JOB privilege to create a schedule in someone else's schema by specifying schema.schedule_name. Once a schedule has been created, it can be used by other users. The schedule is created with access to PUBLIC. Therefore, there is no need to explicitly grant access to the schedule.

	
See Also:

"CREATE_FILE_WATCHER Procedure"

CREATE_FILE_WATCHER Procedure

This procedure creates a file watcher, which is a Scheduler object that defines the location, name, and other properties of a file whose arrival on a system causes the Scheduler to start a job. After you create a file watcher, you reference it in an event-based job or event schedule.

Syntax

DBMS_SCHEDULER.CREATE_FILE_WATCHER (
 file_watcher_name IN VARCHAR2,
 directory_path IN VARCHAR2,
 file_name IN VARCHAR2,
 credential_name IN VARCHAR2,
 destination IN VARCHAR2 DEFAULT NULL,
 min_file_size IN PLS_INTEGER DEFAULT 0,
 steady_state_duration IN INTERVAL DAY TO SECOND DEFAULT NULL,
 comments IN VARCHAR2 DEFAULT NULL,
 enabled IN BOOLEAN DEFAULT TRUE);

Parameters

Table 128-25 CREATE_FILE_WATCHER Parameters

	Parameter	Description
	
file_watcher_name

	
The name to assign to the file watcher. The name must be unique in the SQL namespace. For example, a file watcher cannot have the same name as a table in a schema. This can optionally be prefixed with a schema name. Cannot be NULL.

	
directory_path

	
Directory in which the file is expected to arrive. The single wildcard '?' at the beginning of the path denotes the Oracle home path. For example, '?/rdbms/log' denotes the rdbms/log subdirectory of the Oracle home directory.

	
file_name

	
Name of the file to look for. Two wildcards are permitted anywhere in the file name: '?' denotes any single character, and '*' denotes zero or more characters. This attribute cannot be NULL.

	
credential_name

	
Name of a valid Scheduler credential object.

The file watcher uses the credential to authenticate itself with the host operating system to access the watched-for file. The file watcher owner must have EXECUTE privileges on the credential. Cannot be NULL.

	
destination

	
Name of an external destination. You create an external destination by registering a remote Scheduler agent with the database. See the view ALL_SCHEDULER_EXTERNAL_DESTS for valid external destination names. If this parameter is NULL, the file watcher is created on the local host.

	
min_file_size

	
Minimum size in bytes that the file must be before the file watcher considers the file found. Default is 0.

	
steady_state_duration

	
Minimum time interval that the file must remain unchanged before the file watcher considers the file found. Cannot exceed one hour. If NULL, an internal value is used.

	
comments

	
Optional comment.

	
enabled

	
If TRUE (the default), the file watcher is enabled.

Usage Notes

You must have the CREATE JOB system privilege to create a file watcher in your own schema. You require the CREATE ANY JOB system privilege to create a file watcher in a schema different from your own (except the SYS schema, which is disallowed).

CREATE_GROUP Procedure

This procedure creates a group. Groups contain members, which you can specify when you create the group or at a later time. There are three types of groups: window groups, database destination groups, and external destination groups.

You can use a group name in other DBMS_SCHEDULER package procedures to specify a list of objects. For example, to specify multiple destinations for a remote database job, you provide a group name for the DESTINATION_NAME parameter of the job.

Syntax

DBMS_SCHEDULER.CREATE_GROUP (
 group_name IN VARCHAR2,
 group_type IN VARCHAR2,
 member IN VARCHAR2 DEFAULT NULL,
 comments IN VARCHAR2 DEFAULT NULL);

Parameters

Table 128-26 CREATE_GROUP Procedure Parameters

	Parameter	Description
	
group_name

	
The name to assign to the group. It can optionally be prefixed with a schema name. It cannot be NULL. It is converted to uppercase unless enclosed in double-quotes.

	
group_type

	
The type of members in the group. All members must be of the same type. Possible types are:

	
'DB_DEST'

Database destination: Members are database destinations, for running remote database jobs.

	
'EXTERNAL_DEST

External destination: Members are external destinations, for running remote external jobs.

	
'WINDOW'

Members are Scheduler windows. You must have the MANAGE SCHEDULER privilege to create a group of this type.

Members in database destination and external destination groups have the following format:

[[schema.]credential@][schema.]destination

where:

	
credential is the name of an existing credential.

	
destination is the name of an existing database destination or external destination.

The credential portion of a destination member is optional. If omitted, the job using this destination member uses its default credential.

Members in window groups are window names. Because all Scheduler windows reside in the SYS schema, you do not specify a schema name for windows.

	
member

	
Optional comma-separated list of group members. The default is NULL. If NULL, use the ADD_GROUP_MEMBER procedure to add members. You can also use ADD_GROUP_MEMBER to add additional members at a later time.

The keyword LOCAL can be used as a member in database destination groups and external destination groups.

	
In database destination groups, LOCAL represents the source database on which the job is created. It cannot be preceded with a credential.

	
In external destination groups, LOCAL represents the host on which the source database resides. It can be optionally preceded with a credential name. If no credential is provided, jobs that use this group as their destination must have a default credential.

	
comments

	
A text string that describes the group. Scheduler does not use this argument.

Usage Notes

Groups reside in a particular schema and can be created by any user with the CREATE JOB system privilege. To create a group in a schema other than your own, you must have the CREATE ANY JOB privilege. The group name must be unique among all Scheduler objects.

You can grant the SELECT privilege on a group so that other users can reference the group when creating jobs or schedules. To enable other users to modify a group, you can grant the ALTER privilege on the group.

Each group member must be unique within the group. For destination groups, the credential/destination name pairs must be unique within the group. An error is generated if any of the group members do not exist. For destination groups, both the credential and destination portions of a member must exist.

Another group of the same type can be a group member. The Scheduler immediately expands the included group name into its list of members.

Groups are created enabled, but you can disable them.

This procedure supersedes the procedure CREATE_WINDOW_GROUP, which is deprecated in Oracle Database 11g Release 2.

Example

The following PL/SQL block creates a group named production_dest1, whose members are database destinations for a collection of production databases.

BEGIN
 DBMS_SCHEDULER.CREATE_GROUP(
 GROUP_NAME => 'production_dest1',
 GROUP_TYPE => 'DB_DEST',
 MEMBER => 'LOCAL, oracle_cred@prodhost1, prodhost2',
 COMMENTS => 'All sector1 production machines');
END;

CREATE_JOB Procedure

This procedure creates a single job (regular or lightweight). If you create the job as enabled by setting the enabled attribute to TRUE, the Scheduler automatically runs the job according to its schedule. If you create the job disabled, the job does not run until you enable it with the SET_ATTRIBUTE Procedure.

The procedure is overloaded. The different functionality of each form of syntax is presented along with the syntax declaration.

Syntax

Creates a job in a single call without using an existing program or schedule:

DBMS_SCHEDULER.CREATE_JOB (
 job_name IN VARCHAR2,
 job_type IN VARCHAR2,
 job_action IN VARCHAR2,
 number_of_arguments IN PLS_INTEGER DEFAULT 0,
 start_date IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
 repeat_interval IN VARCHAR2 DEFAULT NULL,
 end_date IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
 job_class IN VARCHAR2 DEFAULT 'DEFAULT_JOB_CLASS',
 enabled IN BOOLEAN DEFAULT FALSE,
 auto_drop IN BOOLEAN DEFAULT TRUE,
 comments IN VARCHAR2 DEFAULT NULL,
 credential_name IN VARCHAR2 DEFAULT NULL,
 destination_name IN VARCHAR2 DEFAULT NULL);

Creates a job using a named schedule object and a named program object:

DBMS_SCHEDULER.CREATE_JOB (
 job_name IN VARCHAR2,
 program_name IN VARCHAR2,
 schedule_name IN VARCHAR2,
 job_class IN VARCHAR2 DEFAULT 'DEFAULT_JOB_CLASS',
 enabled IN BOOLEAN DEFAULT FALSE,
 auto_drop IN BOOLEAN DEFAULT TRUE,
 comments IN VARCHAR2 DEFAULT NULL,
 job_style IN VARCHAR2 DEFAULT 'REGULAR',
 credential_name IN VARCHAR2 DEFAULT NULL,
 destination_name IN VARCHAR2 DEFAULT NULL);

Creates a job using a named program object and an inlined schedule:

DBMS_SCHEDULER.CREATE_JOB (
 job_name IN VARCHAR2,
 program_name IN VARCHAR2,
 start_date IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
 repeat_interval IN VARCHAR2 DEFAULT NULL,
 end_date IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
 job_class IN VARCHAR2 DEFAULT 'DEFAULT_JOB_CLASS',
 enabled IN BOOLEAN DEFAULT FALSE,
 auto_drop IN BOOLEAN DEFAULT TRUE,
 comments IN VARCHAR2 DEFAULT NULL,
 job_style IN VARCHAR2 DEFAULT 'REGULAR',
 credential_name IN VARCHAR2 DEFAULT NULL,
 destination_name IN VARCHAR2 DEFAULT NULL);

Creates a job using a named schedule object and an inlined program:

DBMS_SCHEDULER.CREATE_JOB (
 job_name IN VARCHAR2,
 schedule_name IN VARCHAR2,
 job_type IN VARCHAR2,
 job_action IN VARCHAR2,
 number_of_arguments IN PLS_INTEGER DEFAULT 0,
 job_class IN VARCHAR2 DEFAULT 'DEFAULT_JOB_CLASS',
 enabled IN BOOLEAN DEFAULT FALSE,
 auto_drop IN BOOLEAN DEFAULT TRUE,
 comments IN VARCHAR2 DEFAULT NULL,
 credential_name IN VARCHAR2 DEFAULT NULL,
 destination_name IN VARCHAR2 DEFAULT NULL);

Creates a job using an inlined program and an event:

DBMS_SCHEDULER.CREATE_JOB (
 job_name IN VARCHAR2,
 job_type IN VARCHAR2,
 job_action IN VARCHAR2,
 number_of_arguments IN PLS_INTEGER DEFAULT 0,
 start_date IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
 event_condition IN VARCHAR2 DEFAULT NULL,
 queue_spec IN VARCHAR2,
 end_date IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
 job_class IN VARCHAR2 DEFAULT 'DEFAULT_JOB_CLASS',
 enabled IN BOOLEAN DEFAULT FALSE,
 auto_drop IN BOOLEAN DEFAULT TRUE,
 comments IN VARCHAR2 DEFAULT NULL,
 credential_name IN VARCHAR2 DEFAULT NULL,
 destination_name IN VARCHAR2 DEFAULT NULL);

Creates a job using a named program object and an event:

DBMS_SCHEDULER.CREATE_JOB (
 job_name IN VARCHAR2,
 program_name IN VARCHAR2,
 start_date IN TIMESTAMP WITH TIME ZONE,
 event_condition IN VARCHAR2,
 queue_spec IN VARCHAR2,
 end_date IN TIMESTAMP WITH TIME ZONE,
 job_class IN VARCHAR2 DEFAULT 'DEFAULT_JOB_CLASS',
 enabled IN BOOLEAN DEFAULT FALSE,
 auto_drop IN BOOLEAN DEFAULT TRUE,
 comments IN VARCHAR2 DEFAULT NULL,
 job_style IN VARCHAR2 DEFAULT 'REGULAR',
 credential_name IN VARCHAR2 DEFAULT NULL,
 destination_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 128-27 CREATE_JOB Procedure Parameters

	Parameter	Description
	
job_name

	
The name to assign to the job. The name must be unique in the SQL namespace. For example, a job cannot have the same name as a table in a schema. If the job being created will reside in another schema, it must be qualified with the schema name.

If job_name is not specified, an error is generated. If you want to have a name generated by the Scheduler, you can use the GENERATE_JOB_NAME procedure to generate a name and then use the output in the CREATE_JOB procedure. The GENERATE_JOB_NAME procedure generates a number from a sequence, which is the job name. You can prefix the number with a string. The job name will then be the string with the number from the sequence appended to it. See "GENERATE_JOB_NAME Function" for more information.

	
job_type

	
This attribute specifies the type of job that you are creating. If it is not specified, an error is generated. The supported values are:

	
'PLSQL_BLOCK'

This specifies that the job is an anonymous PL/SQL block. Job or program arguments are not supported when the job or program type is PLSQL_BLOCK. In this case, the number of arguments must be 0.

	
'STORED_PROCEDURE'

This specifies that the job is a PL/SQL or Java stored procedure, or an external C subprogram. Only procedures, not functions with return values, are supported.

	
'EXECUTABLE'

This specifies that the job is external to the database. External jobs are anything that can be executed from the command line of the operating system. Anydata arguments are not supported with a job or program type of EXECUTABLE. The job owner must have the CREATE EXTERNAL JOB system privilege before the job can be enabled or run.

	
'CHAIN'

This specifies that the job is a chain. Arguments are not supported for a chain, so number_of_arguments must be 0.

	
job_action

	
This attribute specifies the action of the job. If job_action is not specified for an inline program, then an error is generated when creating the job.

The following actions are possible:

	
For a PL/SQL block:

The action is to execute PL/SQL code. These blocks must end with a semicolon. For example, my_proc(); or BEGIN my_proc(); END; or DECLARE arg pls_integer:= 10; BEGIN my_proc2(arg); END;.

Note that the Scheduler wraps job_action in its own block and passes the following to PL/SQL for execution: DECLARE ... BEGIN job_action END; This is done to declare some internal Scheduler variables. You can include any Scheduler metadata attribute except event_message in your PL/SQL code. You use the attribute name as you use any other PL/SQL identifier, and the Scheduler assigns it a value.

See Table 128-39 for details on available metadata attributes.

	
For a stored procedure:

The action is the name of the stored procedure. You have to specify the schema if the procedure resides in another schema than the job. If case sensitivity is needed, enclose the schema name and the store procedure name in double quotes. For example, job_action_action=>'"Schema"."Procedure"'.

PL/SQL procedures with INOUT or OUT arguments are not supported as job_action when the job or program type is STORED_PROCEDURE.

	
For an executable:

The action is the name of the external executable, including the full path name, but excluding any command-line arguments. If the action starts with a single question mark ('?'), the question mark is replaced by the path to the Oracle home directory for a local job or to the Scheduler agent home for a remote job. If the action contains an at-sign ('@') and the job is local, the at-sign is replaced with the SID of the current Oracle instance.

	
For a chain:

The action is the name of a Scheduler chain object. You must specify the schema of the chain if it resides in a different schema than the job.

	
number_of_arguments

	
This attribute specifies the number of arguments that the job expects. The range is 0-255, with the default being 0.

	
program_name

	
The name of the program associated with this job. If the program is of type EXECUTABLE, the job owner must have the CREATE EXTERNAL JOB system privilege before the job can be enabled or run.

	
start_date

	
This attribute specifies the first date and time on which this job is scheduled to start. If start_date and repeat_interval are left null, then the job is scheduled to run as soon as the job is enabled.

For repeating jobs that use a calendaring expression to specify the repeat interval, start_date is used as a reference date. The first time the job runs is the first match of the calendaring expression that is on or after the current date and time.

The Scheduler cannot guarantee that a job executes on an exact time because the system may be overloaded and thus resources unavailable.

	
event_condition

	
This is a conditional expression based on the columns of the event source queue table. The expression must have the syntax of an Advanced Queuing rule. Accordingly, you can include user data properties in the expression provided that the message payload is an object type, and that you prefix object attributes in the expression with tab.user_data. For more information on rules, see the DBMS_AQADM.ADD_SUBSCRIBER procedure.

	
queue_spec

	
This argument specifies either of the following:

	
The source queue where events that start this particular job are enqueued. If it is secure, then the queue_spec argument is a pair of values of the form queue_name, agent name. If it is not secure, then only the queue name need be provided. If a fully qualified queue name is not provided, the queue is assumed to be in the job owner's schema. In the case of secure queues, the agent name provided should belong to a valid agent that is currently subscribed to the queue.

	
A file watcher name. For more information on this option, see Oracle Database Administrator's Guide.

	
repeat_interval

	
This attribute specifies how often the job repeats. You can specify the repeat interval by using calendaring or PL/SQL expressions.

The expression specified is evaluated to determine the next time the job should run. If repeat_interval is not specified, the job runs only once at the specified start date. See "Calendaring Syntax" for further information.

	
schedule_name

	
The name of the schedule, window, or window group associated with this job.

	
job_class

	
The class this job is associated with.

	
end_date

	
This attribute specifies the date and time after which the job expires and is no longer run. After the end_date, if auto_drop is TRUE, the job is dropped. If auto_drop is FALSE, the job is disabled and the STATE of the job is set to COMPLETED.

If no value for end_date is specified, the job repeats forever unless max_runs or max_failures is set, in which case the job stops when either value is reached.

The value for end_date must be after the value for start_date. If it is not, an error is generated when the job is enabled.

	
comments

	
This attribute specifies a comment about the job. By default, this attribute is NULL.

	
job_style

	
Style of the job being created. This argument can have one of the following values:

	
'REGULAR' creates a regular job. This is the default.

	
'LIGHTWEIGHT' creates a lightweight job. This value is permitted only when the job references a program object. Use lightweight jobs when you have many short-duration jobs that run frequently. Under certain circumstances, using lightweight jobs can deliver a small performance gain.

	
credential_name

	
The default credential to use with the job. Applicable only to remote database jobs, remote external jobs, local external jobs, and event-based jobs that process file arrival events. The credential must exist.

For local database jobs, it must be NULL.

For local external jobs only, if this attribute is NULL (the default), then a preferred (default) credential is selected. See Oracle Database Administrator's Guide for information about preferred credentials for local external jobs.

See also: "CREATE_CREDENTIAL Procedure"

	
destination_name

	
The database destination or external destination for the job. Use for remote database jobs and remote external jobs only. Must be NULL for jobs running on the local database or for local external jobs (executables).

This attribute can be a single destination name or the name of a group of type 'EXTERNAL_DEST' or 'DB_DEST'. The single destination or group must already exist.

The following applies to this attribute:

	
If it is a database destination, it must have been created by the CREATE_DATABASE_DESTINATION Procedure.

	
If it is an external destination, it must have been implicitly created by registering a remote Scheduler agent with the local database.

	
If it is a group, each member of the group must exist, and the job must run on all destinations named in the group. See "CREATE_GROUP Procedure".

destination_name cannot reference a destination group when:

	
The job type is 'CHAIN'

	
The job style is 'LIGHTWEIGHT'

If the credential_name argument of CREATE_JOB is NULL, each destination must be preceded by a credential, in the following format:

credential.destination

The credential must already exist. If the credential_name argument is provided, then it serves as the default credential for every destination that is not preceded by a credential.

You can query the views *_SCHEDULER_DB_DESTS and ALL_SCHEDULER_EXTERNAL DESTS for existing destinations and *_SCHEDULER_GROUP_MEMBERS for existing groups and their members.

*** destination_name supersedes the destination job attribute, which is deprecated in Oracle Database 11gR2.

	
enabled

	
This attribute specifies whether the job is created enabled or not. The possible settings are TRUE or FALSE. By default, this attribute is set to FALSE and, therefore, the job is created as disabled. A disabled job means that the metadata about the job has been captured, and the job exists as a database object. However, the Scheduler ignores the job and the job coordinator does not pick it for processing. In order for the job coordinator to process the job, the job must be enabled. You can enable a job by setting this argument to TRUE or by using the ENABLE procedure.

	
auto_drop

	
This flag, if TRUE, causes a job to be automatically dropped after it has completed or has been automatically disabled. A job is considered completed if:

	
Its end date (or the end date of the job schedule) has passed.

	
It has run max_runs number of times. max_runs must be set with SET_ATTRIBUTE.

	
It is not a repeating job and has run once.

A job is disabled when it has failed max_failures times. max_failures is also set with SET_ATTRIBUTE.

If this flag is set to FALSE, the jobs are not dropped and their metadata is kept until the job is explicitly dropped with the DROP_JOB procedure.

By default, jobs are created with auto_drop set to TRUE.

Usage Notes

Jobs are created as disabled by default. You must explicitly enable them so that they will become active and scheduled. Before enabling a job, ensure that all program arguments, if any, are defined, either by defining default values in the program object or by supplying values with the job.

The JOB_QUEUE_PROCESSES initialization parameter specifies the maximum number of processes that can be created for the execution of jobs. Beginning with Oracle Database 11g Release 2, JOB_QUEUE_PROCESSES applies to DBMS_SCHEDULER jobs. Setting this parameter to 0 disables DBMS_SCHEDULER jobs.

To create a job in your own schema, you need to have the CREATE JOB privilege. A user with the CREATE ANY JOB privilege can create a job in any schema. If the job being created will reside in another schema, the job name must be qualified with the schema name. For a job of type EXECUTABLE (or for a job that points to a program of type EXECUTABLE), the job owner must have the CREATE EXTERNAL JOB system privilege before the job can be enabled or run.

Associating a job with a particular class or program requires EXECUTE privileges for that class or program.

Not all possible job attributes can be set with CREATE_JOB. Some must be set after the job is created. For example, job arguments must be set with the SET_JOB_ARGUMENT_VALUE Procedure or the SET_JOB_ANYDATA_VALUE Procedure. Other job attributes, such as job_priority and max_runs, are set with the SET_ATTRIBUTE Procedure.

To create multiple jobs efficiently, use the CREATE_JOBS procedure.

	
Note:

The Scheduler runs event-based jobs for each occurrence of an event that matches the event condition of the job. However, events that occur while the job is already running are ignored; the event gets consumed, but does not trigger another run of the job.

CREATE_JOB_CLASS Procedure

This procedure creates a job class. Job classes are created in the SYS schema.

Syntax

DBMS_SCHEDULER.CREATE_JOB_CLASS (
 job_class_name IN VARCHAR2,
 resource_consumer_group IN VARCHAR2 DEFAULT NULL,
 service IN VARCHAR2 DEFAULT NULL,
 logging_level IN PLS_INTEGER
 DEFAULT DBMS_SCHEDULER.LOGGING_RUNS,
 log_history IN PLS_INTEGER DEFAULT NULL,
 comments IN VARCHAR2 DEFAULT NULL);

Parameters

Table 128-28 CREATE_JOB_CLASS Procedure Parameters

	Parameter	Description
	
job_class_name

	
The name to assign to the job class. Job classes can only be created in the SYS schema.

This attribute specifies the name of the job class and uniquely identifies the job class. The name must be unique in the SQL namespace. For example, a job class cannot have the same name as a table in a schema.

	
resource_consumer_group

	
This attribute specifies the resource consumer group that his class is associated with. A resource consumer group is a set of synchronous or asynchronous sessions that are grouped together based on their processing needs. A job class has a many-to-one relationship with a resource consumer group. The resource consumer group that the job class associates with determines the resources that are allocated to the job class.

If a resource consumer group is dropped, job classes associated with it are then associated with the default resource consumer group.

If no resource consumer group is specified, job classes are associated with the default resource consumer group.

If the specified resource consumer group does not exist when creating the job class, an error occurs.

	
service

	
This attribute specifies the database service that the jobs in this class have affinity to. In an Oracle RAC environment, this means that the jobs in this class only run on those database instances that are assigned to the specific service.

Note that a service can be mapped to a resource consumer group, so you can also control resources allocated to jobs by specifying a service. See DBMS_RESOURCE_MANAGER.SET_CONSUMER_GROUP_MAPPING for details. If both the resource_consumer_group and service attributes are specified, and if the service is mapped to a resource consumer group, the resource_consumer_group attribute takes precedence.

If no service is specified, the job class belongs to the default service, which means it has no service affinity and any one of the database instances within the cluster might run the job. If the service that a job class belongs to is dropped, the job class will then belong to the default service.

If the specified service does not exist when creating the job class, then an error occurs.

	
logging_level

	
This attribute specifies how much information is logged. The possible options are:

	
DBMS_SCHEDULER.LOGGING_OFF

No logging is performed for any jobs in this class.

	
DBMS_SCHEDULER.LOGGING_RUNS

The Scheduler writes detailed information to the job log for all runs of each job in this class. This is the default.

	
DBMS_SCHEDULER.LOGGING_FAILED_RUNS

The Scheduler logs only jobs that failed in this class.

	
DBMS_SCHEDULER.LOGGING_FULL

In addition to recording every run of a job, the Scheduler records all operations performed on all jobs in this class. Every time a job is created, enabled, disabled, altered (with SET_ATTRIBUTE), stopped, and so, an entry is recorded in the log.

	
log_history

	
This attribute controls the number of days that job log entries for jobs in this class are retained. It helps prevent the job log from growing indiscriminately.

The range of valid values is 0 through1000000. If set to 0, no history is kept. If NULL (the default), retention days are set by the log_history Scheduler attribute (set with SET_SCHEDULER_ATTRIBUTE).

	
comments

	
This attribute is for an optional comment about the job class. By default, this attribute is NULL.

Usage Notes

For users to create jobs that belong to a job class, the job owner must have EXECUTE privileges on the job class. Therefore, after the job class has been created, EXECUTE privileges must be granted on the job class so that users create jobs belonging to that class. You can also grant the EXECUTE privilege to a role.

Creating a job class requires the MANAGE SCHEDULER system privilege.

CREATE_JOBS Procedure

This procedure creates multiple jobs (regular or lightweight) and sets the values of their arguments in a single call.

Syntax

DBMS_SCHEDULER.CREATE_JOBS (
 jobdef_array IN SYS.JOB_DEFINITION_ARRAY,
 commit_semantics IN VARCHAR2 DEFAULT 'STOP_ON_FIRST_ERROR');

Parameters

Table 128-29 CREATE_JOBS Procedure Parameters

	Parameter	Description
	
jobdef_array

	
The array of job definitions. See "Data Structures" for a description of the JOB_DEFINITION_ARRAY and JOB_DEFINITION data types.

	
commit_semantics

	
The commit semantics. The following types are supported:

	
STOP_ON_FIRST_ERROR returns on the first error. Previous successfully created jobs are committed to disk. This is the default.

	
TRANSACTIONAL returns on the first error and everything that happened before that error is rolled back.

	
ABSORB_ERRORS tries to absorb any errors and attempts to create the rest of the jobs on the list. It commits all successfully created jobs. If errors occur, you can query the view SCHEDULER_BATCH_ERRORS for details.

Usage Notes

This procedure creates many jobs in the context of a single transaction. To realize the desired performance gains, the jobs being created must be grouped in batches of sufficient size. Calling CREATE_JOBS with a small array size may not be much faster than calling CREATE_JOB once for each job.

You cannot use this procedure to create multiple-destination jobs. That is, the destination attribute of the job_definition object cannot reference a destination group.

Examples

See Oracle Database Administrator's Guide.

CREATE_PROGRAM Procedure

This procedure creates a program.

Syntax

DBMS_SCHEDULER.CREATE_PROGRAM (
 program_name IN VARCHAR2,
 program_type IN VARCHAR2,
 program_action IN VARCHAR2,
 number_of_arguments IN PLS_INTEGER DEFAULT 0,
 enabled IN BOOLEAN DEFAULT FALSE,
 comments IN VARCHAR2 DEFAULT NULL);

Parameters

Table 128-30 CREATE_PROGRAM Procedure Parameters

	Parameter	Description
	
program_name

	
The name to assign to the program. The name must be unique in the SQL namespace. For example, a program cannot have the same name as a table in a schema. If no name is specified, then an error occurs.

	
program_type

	
This attribute specifies the type of program you are creating. If it is not specified then you get an error. There are three supported values for program_type:

	
'PLSQL_BLOCK'

This specifies that the program is a PL/SQL block. Job or program arguments are not supported when the job or program type is PLSQL_BLOCK. In this case, the number of arguments must be 0.

	
'STORED_PROCEDURE'

This specifies that the program is a PL/SQL or Java stored procedure, or an external C subprogram. Only procedures, not functions with return values, are supported. PL/SQL procedures with INOUT or OUT arguments are not supported.

	
'EXECUTABLE'

This specifies that the program is external to the database. External programs imply anything that can be executed from the operating system command line. AnyData arguments are not supported with job or program type EXECUTABLE.

	
program_action

	
This attribute specifies the action of the program. The following actions are possible:

	
For a PL/SQL block, the action is to execute PL/SQL code. These blocks must end with a semicolon.

For example, my_proc(); or BEGIN my_proc(); END; or DECLARE arg pls_integer:= 10; BEGIN my_proc2(arg); END;.

Note that the Scheduler wraps job_action in its own block and passes the following to PL/SQL for execution: DECLARE ... BEGIN job_action END; This is done to declare some internal Scheduler variables. You can include any Scheduler metadata attribute except event_message in your PL/SQL code. You use the attribute name as you use any other PL/SQL identifier, and the Scheduler assigns it a value. See Table 128-39 for details on available metadata attributes.

If it is an anonymous block, special Scheduler metadata may be accessed using the following variable names: job_name, job_owner, job_start, window_start, window_end. For more information, see the "DEFINE_METADATA_ARGUMENT Procedure".

	
For a stored procedure, the action is the name of the stored procedure. You have to specify the schema if the procedure resides in a schema other than the job.

If case sensitivity is needed, enclose the schema name and the store procedure name in double quotes. For example, program_action=>'"Schema"."Procedure"'.

	
For an executable, the action is the name of the external executable, including the full path name, but excluding any command-line arguments. If the action starts with a single question mark ('?'), the question mark is replaced by the path to the Oracle home directory for a local job or to the Scheduler agent home for a remote job. If the action contains an at sign ('@') and the job is local, the at sign is replaced with the SID of the current Oracle instance.

If program_action is not specified, an error is generated

	
number_of_arguments

	
This attribute specifies the number of arguments the program takes. If this parameter is not specified, then the default is 0. A program can have a maximum of 255 arguments.

If the program_type is PLSQL_BLOCK, then this parameter is ignored.

	
enabled

	
This flag specifies whether the program should be created as enabled or not. If the flag is set to TRUE, then validity checks are made and the program is created as ENABLED if all the checks be successful. By default, this flag is set to FALSE, meaning not created enabled. You can also call the ENABLE procedure to enable the program before it can be used.

	
comments

	
A comment about the program. By default, this attribute is NULL.

Usage Notes

To create a program in their own schema, users need the CREATE JOB privilege. A user with the CREATE ANY JOB privilege can create a program in any schema. A program is created in a disabled state by default (unless the enabled parameter is set to TRUE). It cannot be executed by a job until it is enabled.

To use your programs, other users must have EXECUTE privileges, therefore once a program has been created, you have to grant EXECUTE privileges on it.

	
See Also:

"DEFINE_PROGRAM_ARGUMENT Procedure"

CREATE_SCHEDULE Procedure

This procedure creates a schedule.

Syntax

DBMS_SCHEDULER.CREATE_SCHEDULE (
 schedule_name IN VARCHAR2,
 start_date IN TIMESTAMP WITH TIMEZONE DEFAULT NULL,
 repeat_interval IN VARCHAR2,
 end_date IN TIMESTAMP WITH TIMEZONE DEFAULT NULL,
 comments IN VARCHAR2 DEFAULT NULL);

Parameters

Table 128-31 CREATE_SCHEDULE Procedure Parameters

	Parameter	Description
	
schedule_name

	
The name to assign to the schedule. The name must be unique in the SQL namespace. For example, a schedule cannot have the same name as a table in a schema. If no name is specified, then an error occurs.

	
start_date

	
This attribute specifies the first date and time on which this schedule becomes valid. For a repeating schedule, the value for start_date is a reference date. In this case, the start of the schedule is not the start_date; it depends on the repeat interval specified. start_date is used to determine the first instance of the schedule.

If start_date is specified in the past and no value for repeat_interval is specified, the schedule is invalid. For a repeating job or window, start_date can be derived from the repeat_interval if it is not specified.

If start_date is null, then the date that the job or window is enabled is used. start_date and repeat_interval cannot both be null.

	
repeat_interval

	
This attribute specifies how often the schedule repeats. It is expressed using calendaring syntax. See "Calendaring Syntax" for further information. PL/SQL expressions are not allowed as repeat intervals for named schedules.

	
end_date

	
The date and time after which jobs will not run and windows will not open.

A non-repeating schedule that has no end_date is valid forever.

end_date has to be after the start_date. If this is not the case, then an error is generated when the schedule is created.

	
comments

	
This attribute specifies an optional comment about the schedule. By default, this attribute is NULL.

Usage Notes

This procedure requires the CREATE JOB privilege to create a schedule in your own schema or the CREATE ANY JOB privilege to create a schedule in someone else's schema by specifying schema.schedule_name. Once a schedule has been created, it can be used by other users. The schedule is created with access to PUBLIC. Therefore, there is no need to explicitly grant access to the schedule.

CREATE_WINDOW Procedure

This procedure creates a recurring time window and associates it with a resource plan. You can then use the window to schedule jobs that run under the associated resource plan. Windows are created in the SYS schema.

The procedure is overloaded.

Syntax

Creates a window using a named schedule object:

DBMS_SCHEDULER.CREATE_WINDOW (
 window_name IN VARCHAR2,
 resource_plan IN VARCHAR2,
 schedule_name IN VARCHAR2,
 duration IN INTERVAL DAY TO SECOND,
 window_priority IN VARCHAR2 DEFAULT 'LOW',
 comments IN VARCHAR2 DEFAULT NULL);

Creates a window using an inlined schedule:

DBMS_SCHEDULER.CREATE_WINDOW (
 window_name IN VARCHAR2,
 resource_plan IN VARCHAR2,
 start_date IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
 repeat_interval IN VARCHAR2,
 end_date IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
 duration IN INTERVAL DAY TO SECOND,
 window_priority IN VARCHAR2 DEFAULT 'LOW',
 comments IN VARCHAR2 DEFAULT NULL);

Parameters

Table 128-32 CREATE_WINDOW Procedure Parameters

	Parameter	Description
	
window_name

	
The name to assign to the window. The name must be unique in the SQL namespace. All windows are in the SYS schema, so the preface 'SYS' is optional.

	
resource_plan

	
This attribute specifies the resource plan that automatically activates when the window opens. When the window closes, the system switches to the appropriate resource plan, which is usually the plan that was in effect before the window opened, but can also be the plan of a different window.

Only one resource plan can be associated with a window. It may be NULL or the empty string (""). When it is NULL, the resource plan in effect when the window opens stays in effect for the duration of the window. When it is the empty string, the resource manager is disabled for the duration of the window.

If the window is open and the resource plan is dropped, then the resource allocation for the duration of the window is not affected.

	
start_date

	
This attribute specifies the first date and time on which this window is scheduled to open. If the value for start_date specified is in the past or is not specified, the window opens as soon as it is created.

For repeating windows that use a calendaring expression to specify the repeat interval, the value for start_date is a reference date. The first time the window opens depends on the repeat interval specified and the value for start_date.

	
duration

	
This attribute specifies how long the window stays open. For example, 'interval '5' hour' for five hours. There is no default value for this attribute. Therefore, if no value is specified when the window is created, an error occurs. The duration is of type interval day to seconds and ranges from one minute to 99 days.

	
schedule_name

	
This attribute specifies the name of the schedule associated with the window.

	
repeat_interval

	
This attribute specifies how often the window repeats. It is expressed using the Scheduler calendaring syntax. See "Calendaring Syntax" for more information.

A PL/SQL expression cannot be used to specify the repeat interval for a window.

The expression specified is evaluated to determine the next time the window opens. If no repeat_interval is specified, the window opens only once at the specified start date.

	
end_date

	
This attribute specifies the date and time after which the window no longer opens. When the value for end_date is reached, the window is disabled. In the *_SCHEDULER_WINDOWS views, the enabled flag of the window is set to FALSE.

A non-repeating window that has no value for end_date opens only once for the duration of the window. For a repeating window, if no end_date is specified, then the window keeps repeating forever.

The end_date must be after the start_date. If it is not, then an error is generated when the window is created.

	
window_priority

	
This attribute is only relevant when two windows overlap. Because only one window can be in effect at one time, the window priority determines which window opens. The two possible values for this attribute are 'HIGH' and 'LOW'. A high priority window has precedence over a low priority window, therefore, the low priority window does not open if it overlaps a high priority window. By default, windows are created with priority 'LOW'.

	
comments

	
This attribute specifies an optional comment about the window. By default, this attribute is NULL.

Usage Notes

Creating a window requires the MANAGE SCHEDULER privilege.

Scheduler windows are the principal mechanism used to automatically switch resource plans according to a schedule. You can also manually activate a resource plan by using the ALTER SYSTEM SET RESOURCE_MANAGER_PLAN statement or the DBMS_RESOURCE_MANAGER.SWITCH_PLAN package procedure. Note that either of these manual methods can also disable resource plan switching by Scheduler windows. For more information, see Oracle Database Administrator's Guide and "SWITCH_PLAN Procedure".

CREATE_WINDOW_GROUP Procedure

*** Deprecated in Oracle Database 11g Release 2. Use CREATE_GROUP instead.

This procedure creates a new window group. A window group is defined by a list of Scheduler windows. You can assign a window group as a job schedule. The job then runs when any of the windows in the group become active.

Window groups are created in the SYS schema.

Syntax

DBMS_SCHEDULER.CREATE_WINDOW_GROUP (
 group_name IN VARCHAR2,
 window_list IN VARCHAR2 DEFAULT NULL,
 comments IN VARCHAR2 DEFAULT NULL);

Parameters

Table 128-33 CREATE_WINDOW_GROUP Procedure Parameters

	Parameter	Description
	
group_name

	
The name to assign to the window group

	
window_list

	
A list of the windows assigned to the window group. If a window that does not exist is specified, an error is generated and the window group is not created.

Windows can also be added using the ADD_WINDOW_GROUP_MEMBER procedure. A window group cannot be a member of another window group.

Can be NULL.

	
comments

	
A comment about the window group

Usage Notes

Creating a window group requires the MANAGE SCHEDULER privilege. Window groups, like windows, are created with access to PUBLIC, therefore, no privileges are required to access window groups.

A window group cannot contain another window group.

DEFINE_ANYDATA_ARGUMENT Procedure

This procedure defines a name or default value for a program argument that is of a complex type and must be encapsulated within an ANYDATA object. A job that references the program can override the default value.

Syntax

DBMS_SCHEDULER.DEFINE_ANYDATA_ARGUMENT (
 program_name IN VARCHAR2,
 argument_position IN PLS_INTEGER,
 argument_name IN VARCHAR2 DEFAULT NULL,
 argument_type IN VARCHAR2,
 default_value IN SYS.ANYDATA,
 out_argument IN BOOLEAN DEFAULT FALSE);

Parameters

Table 128-34 DEFINE_ANYDATA_ARGUMENT Procedure Parameters

	Parameter	Description
	
program_name

	
The name of the program to be altered. A program with this name must exist.

	
argument_position

	
The position of the argument as it is passed to the executable. Argument numbers go from one to the number_of_arguments specified for the program. This must be unique, so it can replace any argument already defined at this position.

	
argument_name

	
The name to assign to the argument. It is optional, but must be unique for the program if it is specified. If you assign a name, the name can then be used by other package procedures, including the SET_JOB_ANYDATA_VALUE Procedure.

	
argument_type

	
The data type of the argument being defined. This is not verified or used by the Scheduler. It is only used by the user of the program when deciding what value to assign to the argument.

	
default_value

	
The default value to be assigned to the argument encapsulated within an AnyData object. This is optional.

	
out_argument

	
This parameter is reserved for future use. It must be set to FALSE.

Usage Notes

All program arguments from one to the number_of_arguments value must be defined before a program can be enabled. If a default value for an argument is not defined with this procedure, a value must be defined in the job.

Defining a program argument requires that you be the owner of the program or have ALTER privileges on that program. You can also define a program argument if you have the CREATE ANY JOB privilege.

	
See Also:

	
"DEFINE_PROGRAM_ARGUMENT Procedure"

	
"SET_JOB_ANYDATA_VALUE Procedure"

DEFINE_CHAIN_EVENT_STEP Procedure

This procedure adds or replaces a chain step and associates it with an event schedule or an inline event. Once started in a running chain, this step does not complete until the specified event has occurred. Every step in a chain must be defined before the chain can be enabled and used. Defining a step gives it a name and specifies what happens during the step. If a step already exists with this name, the new step replaces the old one.

Syntax

DBMS_SCHEDULER.DEFINE_CHAIN_EVENT_STEP (
 chain_name IN VARCHAR2,
 step_name IN VARCHAR2,
 event_schedule_name IN VARCHAR2,
 timeout IN INTERVAL DAY TO SECOND DEFAULT NULL);

DBMS_SCHEDULER.DEFINE_CHAIN_EVENT_STEP (
 chain_name IN VARCHAR2,
 step_name IN VARCHAR2,
 event_condition IN VARCHAR2,
 queue_spec IN VARCHAR2,
 timeout IN INTERVAL DAY TO SECOND DEFAULT NULL);

Parameters

Table 128-35 DEFINE_CHAIN_EVENT_STEP Procedure Parameters

	Parameter	Description
	
chain_name

	
The name of the chain that the step is in

	
step_name

	
The name of the step

	
event_schedule_name

	
The name of the event schedule that the step waits for

	
timeout

	
This parameter is reserved for future use

	
event_condition

	
See the CREATE_EVENT_SCHEDULE Procedure

	
queue_spec

	
See the CREATE_EVENT_SCHEDULE Procedure

Usage Notes

Defining a chain step requires ALTER privileges on the chain either as the owner of the chain, or as a user with the ALTER object privilege on the chain or the CREATE ANY JOB system privilege.

You can base a chain step on a file watcher as well. To do this, provide the file watcher name directly in the queue_spec parameter, or use a file watcher schedule for the event_schedule_name parameter.

	
See Also:

"DEFINE_CHAIN_STEP Procedure"

DEFINE_CHAIN_RULE Procedure

This procedure adds a new rule to an existing chain, specified as a condition-action pair. The condition is expressed using either SQL or the Scheduler chain condition syntax and indicates the prerequisites for the action to occur. The action is a result of the condition being met.

An actual rule object is created to store the rule in the schema where the chain resides. If a rule name is given, this name is used for the rule object. If an existing rule name in the schema of the chain is given, the existing rule is altered. (A schema different than the schema of the chain cannot be specified). If no rule name is given, one is generated in the form SCHED_RULE${N}.

Syntax

DBMS_SCHEDULER.DEFINE_CHAIN_RULE (
 chain_name IN VARCHAR2,
 condition IN VARCHAR2,
 action IN VARCHAR2,
 rule_name IN VARCHAR2 DEFAULT NULL,
 comments IN VARCHAR2 DEFAULT NULL);

Parameters

Table 128-36 DEFINE_CHAIN_RULE Procedure Parameters

	Parameter	Description
	
chain_name

	
The name of the chain to alter

	
condition

	
A boolean expression which must evaluate to TRUE for the action to be performed. Every chain must have a rule that evaluates to TRUE to start the chain. For this purpose, you can use a rule that has 'TRUE' as its condition if you are using Scheduler chain condition syntax, or '1=1' as its condition if you are using SQL syntax.

	
Scheduler Chain Condition Syntax

See "Scheduler Chain Condition Syntax" for details

	
SQL WHERE Clause Syntax

Conditions expressed with SQL must use the syntax of a SELECT statement WHERE clause.

You can refer to chain step attributes by using the chain step name as a bind variable.

The bind variable syntax is :step_name.attribute. (step_name refers to a typed object.) Possible attributes are: completed, state, start_date, end_date, error_code, and duration.

Possible values for the state attribute include: 'NOT_STARTED', 'SCHEDULED', 'RUNNING', 'PAUSED', 'STALLED', 'SUCCEEDED', 'FAILED', and 'STOPPED'. If a step is in the state 'SUCCEEDED', 'FAILED', or 'STOPPED', its completed attribute is set to 'TRUE', otherwise completed is 'FALSE'.

	
action

	
The action to be performed when the rule evaluates to TRUE. The action must consist of at least one keyword with an optional value and an optional delay clause.

Possible actions include:

	
[AFTER delay_interval] START step_1[,step_2 ...]

	
STOP step_1[,step_2 ...]

	
END [{end_value|step_name.error_code}]

At the beginning of the START action, a delay clause can specify a delay interval before performing the action. delay_interval is a formatted datetime interval of the form HH:MM:SS.

The END action ends the chain with an error code equal to either the supplied end_value or the error code that step_name completes with. The default error code is 0, indicating a successful chain run.

	
rule_name

	
The name of the rule being created. If no rule_name is given, one is generated in the form SCHED_RULE$_{N}.

	
comments

	
An optional comment describing the rule. This is stored in the rule object created.

Scheduler Chain Condition Syntax

The Scheduler chain condition syntax provides an easy way to construct a condition using the states and error codes of steps in the current chain. The following are the available constructs, which are all boolean expressions:

TRUE
FALSE
stepname [NOT] SUCCEEDED
stepname [NOT] FAILED
stepname [NOT] STOPPED
stepname [NOT] COMPLETED
stepname ERROR_CODE IN (integer, integer, integer ...)
stepname ERROR_CODE NOT IN (integer, integer, integer ...)
stepname ERROR_CODE = integer
stepname ERROR_CODE != integer
stepname ERROR_CODE <> integer
stepname ERROR_CODE > integer
stepname ERROR_CODE >= integer
stepname ERROR_CODE < integer
stepname ERROR_CODE <= integer

These boolean operators are available to create more complex conditions:

expression AND expression
expression OR expression
NOT (expression)

integer can be positive or negative. Parentheses may be used for clarity or to enforce ordering. You must use parentheses with the NOT operator.

PL/SQL code that runs as part of a step can set the value of ERROR_CODE for that step with the RAISE_APPLICATION_ERROR statement.

Usage Notes

Defining a chain rule requires ALTER privileges on the chain (either as the owner, or as a user with ALTER privileges on the chain or the CREATE ANY JOB system privilege).

You must define at least one rule that starts the chain and at least one that ends it. See the section "Adding Rules to a Chain" in Oracle Database Administrator's Guide for more information.

Examples

The following are examples of using rule conditions and rule actions.

Rule Conditions Using Scheduler Chain Condition Syntax

'step1 completed'
-- satisfied when step step1 has completed. (step1 completed is also TRUE when any
-- of the following are TRUE: step1 succeeded, step1 failed, step1 stopped.)

'step1 succeeded and step2 succeeded'
-- satisfied when steps step1 and step2 have both succeeded

'step1 error_code > 100'
-- satisfied when step step1 has failed with an error_code greater than 100

'step1 error_code IN (1, 3, 5, 7)'
-- satisfied when step step1 has failed with an error_code of 1, 3, 5, or 7

Rule Conditions Using SQL Syntax

':step1.completed = ''TRUE'' AND :step1.end_date >SYSDATE-1/24'
--satisfied when step step1 completed less than an hour ago

':step1.duration > interval ''5'' minute'
-- satisfied when step step1 has completed and took longer than 5 minutes to complete

Rule Actions

'AFTER 01:00:00 START step1, step2'
--After an hour start steps step1 and step2

'STOP step1'
--Stop step step1

END step4.error_code'
--End the chain with the error code that step step4 finished with. If step4 has not completed, the chain will be ended unsuccessfully with error code 27435.

'END' or 'END 0'
--End the chain successfully (with error_code 0)

'END 100'
--End the chain unsuccessfully with error code 100.

DEFINE_CHAIN_STEP Procedure

This procedure adds or replaces a chain step and associates it with a program or a nested chain. When the chain step is started, the specified program or chain is run. If a step already exists with the name supplied in the chain_name argument, the new step replaces the old one.

The chain owner must have EXECUTE privileges on the program or chain associated with the step. Only one program or chain can run during a step.

You cannot set all possible step attributes with this procedure. Use the ALTER_CHAIN procedure to set additional chain step attributes, such as credential_name and destination_name.

Syntax

DBMS_SCHEDULER.DEFINE_CHAIN_STEP (
 chain_name IN VARCHAR2,
 step_name IN VARCHAR2,
 program_name IN VARCHAR2);

Parameters

Table 128-37 DEFINE_CHAIN_STEP Procedure Parameters

	Parameter	Description
	
chain_name

	
The name of the chain to alter.

	
step_name

	
The name of the step being defined. If a step already exists with this name, the new step replaces the old one.

	
program_name

	
The name of a program or chain to run during this step. The chain owner must have EXECUTE privileges on this program or chain.

Usage Notes

Defining a chain step requires ALTER privileges on the chain (either as the owner, or a user with ALTER privileges on the chain or the CREATE ANY JOB system privilege).

	
See Also:

	
"ALTER_CHAIN Procedure"

	
"DEFINE_CHAIN_EVENT_STEP Procedure"

DEFINE_METADATA_ARGUMENT Procedure

This procedure defines a special metadata argument for the program. The Scheduler can pass Scheduler metadata through this argument to your stored procedure or other executable. You cannot set values for jobs using this argument.

Syntax

DBMS_SCHEDULER.DEFINE_METADATA_ARGUMENT (
 program_name IN VARCHAR2,
 metadata_attribute IN VARCHAR2,
 argument_position IN PLS_INTEGER,
 argument_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 128-38 DEFINE_METADATA_ARGUMENT Procedure Parameters

	Parameter	Description
	
program_name

	
The name of the program to be altered

	
metadata_attribute

	
The metadata to be passed. Valid metadata attributes are: 'job_name', 'job_subname', 'job_owner', 'job_start', 'window_start', 'window_end', and 'event_message'.

Table 128-39 describes these attributes in detail.

	
argument_position

	
The position of the argument as it is passed to the executable. The position cannot be greater than the number_of_arguments specified for the program. It must be unique, so it replaces any argument already defined at this position.

	
argument_name

	
The name to assign to the argument. It is optional, but must be unique for the program if it is specified. If you assign a name, the name can then be used by other package procedures.

Table 128-39 Metadata Attributes

	Metadata Attribute	Data Type	Description
	
job_name

	
VARCHAR2

	
Name of the currently running job

	
job_subname

	
VARCHAR2

	
Subname of the currently running job. The name + subname form a unique identifier for a job that is running a chain step. NULL if the job is not part of a chain.

	
job_owner

	
VARCHAR2

	
Owner of the currently running job

	
job_scheduled_start

	
TIMESTAMP WITH TIME ZONE

	
When the currently running job was scheduled to start

	
job_start

	
TIMESTAMP WITH TIME ZONE

	
When the currently running job started

	
window_start

	
TIMESTAMP WITH TIME ZONE

	
If the job was started by a window, the time that the window opened

	
window_end

	
TIMESTAMP WITH TIME ZONE

	
If the job was started by a window, the time that the window is scheduled to close

	
event_message

	
(See Description)

	
For an event-based job, the message content of the event that started the job. The data type of this attribute depends on the queue used for the event. It has the same type as the USER_DATA column of the queue table. In the case of a file arrival event, event_message is of type SYS.SCHEDULER_FILEWATCHER_RESULT. See "SCHEDULER_FILEWATCHER_RESULT Object Type".

Usage Notes

Defining a program argument requires that you be the owner of the program or have ALTER privileges on that program. You can also define a program argument if you have the CREATE ANY JOB privilege.

All metadata attributes except event_message can be used in PL/SQL blocks that you enter into the job_action or program_action attributes of jobs or programs, respectively. You use the attribute name as you use any other PL/SQL identifier, and the Scheduler assigns it a value.

DEFINE_PROGRAM_ARGUMENT Procedure

This procedure defines a name or default value for a program argument. If no default value is defined for a program argument, the job that references the program must supply an argument value. (The job can also override a default value.)

This procedure is overloaded.

Syntax

Defines a program argument without a default value:

PROCEDURE define_program_argument(
 program_name IN VARCHAR2,
 argument_position IN PLS_INTEGER,
 argument_name IN VARCHAR2 DEFAULT NULL,
 argument_type IN VARCHAR2,
 out_argument IN BOOLEAN DEFAULT FALSE);

Defines a program argument with a default value:

PROCEDURE define_program_argument(
 program_name IN VARCHAR2,
 argument_position IN PLS_INTEGER,
 argument_name IN VARCHAR2 DEFAULT NULL,
 argument_type IN VARCHAR2,
 default_value IN VARCHAR2,
 out_argument IN BOOLEAN DEFAULT FALSE);

Parameters

Table 128-40 DEFINE_PROGRAM_ARGUMENT Procedure Parameters

	Parameter	Description
	
program_name

	
The name of the program to be altered. A program with this name must exist.

	
argument_position

	
The position of the argument as it is passed to the executable. Argument numbers go from one to the number_of_arguments specified for the program. This must be unique so it replaces any argument already defined at this position.

	
argument_name

	
The name to assign to the argument. It is optional, but must be unique for the program if specified. If you assign a name, the name can then be used by other package procedures, including the SET_JOB_ARGUMENT_VALUE Procedure.

	
argument_type

	
The data type of the argument being defined. This is not verified or used by the Scheduler. The program user uses argument_type when deciding what value to assign to the argument. Any valid SQL data type is allowed.

	
default_value

	
The default value to be assigned to the argument if none is specified by the job.

	
out_argument

	
This parameter is reserved for future use. It must be set to FALSE.

Usage Notes

All program arguments from 1 to the number_of_arguments value must be defined before a program can be enabled. If a default value for an argument is not defined with this procedure, a value must be defined in the job.

Defining a program argument requires that you be the owner of the program or have ALTER privileges on that program. You can also define a program argument if you have the CREATE ANY JOB privilege.

DEFINE_PROGRAM_ARGUMENT only supports arguments of SQL type. Therefore, argument values that are not of SQL type, such as booleans, are not supported as program or job arguments.

	
See Also:

	
"DEFINE_ANYDATA_ARGUMENT Procedure"

	
"SET_JOB_ARGUMENT_VALUE Procedure"

DISABLE Procedure

This procedure disables a program, job, chain, window, database destination, external destination, file watcher, or group. When an object is disabled, its enabled attribute is set to FALSE.

Syntax

DBMS_SCHEDULER.DISABLE (
 name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE,
 commit_semantics IN VARCHAR2 DEFAULT 'STOP_ON_FIRST_ERROR');

Parameters

Table 128-41 DISABLE Procedure Parameters

	Parameter	Description
	
name

	
The name of the object being disabled. Can be a comma-delimited list.

If a job class name is specified, then all the jobs in the job class are disabled. The job class is not disabled.

If a group name is specified, then the group is disabled, but the enabled state of the group members is unaffected.

	
force

	
If TRUE, objects are disabled even if other objects depend on them. See the usage notes for more information.

	
commit_semantics

	
The commit semantics. The following types are supported:

	
STOP_ON_FIRST_ERROR: The procedure returns on the first error and the previous disable operations that were successful are committed to disk.

This is the default.

	
TRANSACTIONAL: The procedure returns on the first error and everything that happened before that error is rolled back.

This type is only supported when disabling a job or a list of jobs. In addition, this type is not supported when force is set to TRUE.

	
ABSORB_ERRORS: The procedure tries to absorb any errors and disable the rest of the jobs and commits all the disable operations that were successful. If errors occur, you can query the view SCHEDULER_BATCH_ERRORS for details.

This type is only supported when disabling a job or a list of jobs.

Usage Notes

Windows must be preceded by SYS.

Disabling an object that is already disabled does not generate an error.

The purpose of the force option is to point out dependencies. No dependent objects are altered.

To run DISABLE for a window or a group of type WINDOW, you must have the MANAGE SCHEDULER privilege.

You can use DISABLE with any schema except the SYS schema.

Jobs

Disabling a job means that, although the metadata of the job is there, it should not run and the job coordinator will not pick up these jobs for processing. When a job is disabled, its state in the job queue is changed to disabled.

If force is set to FALSE and the job is currently running, an error is returned.

If force is set to TRUE, the job is disabled, but the currently running instance is allowed to finish.

For jobs with multiple destinations, you cannot disable a child job at a specific destination. Instead, you can disable the destination.

Programs

When a program is disabled, the status is changed to disabled. A disabled program implies that, although the metadata is still there, jobs that point to this program cannot run.

If force is set to FALSE, the program must not be referenced by any job, otherwise an error will occur.

If force is set to TRUE, those jobs that point to the program will not be disabled, however, they will fail at runtime because their program will not be valid.

Running jobs that point to the program are not affected by the DISABLE call and are allowed to continue

No arguments that pertain to the program are affected when the program is disabled.

File Watchers

If force is set to FALSE, the file watcher must not be referenced by any job, otherwise an error will occur. If you force disabling a file watcher, jobs that depend on it become disabled.

Windows

This means that the window will not open, however, the metadata of the window is still there, so it can be reenabled.

If force is set to FALSE, the window must not be open or referenced by any job otherwise an error occurs.

If force is set to TRUE, disabling a window that is open will succeed but the window will not be closed. It will prevent the window from opening in the future until it is reenabled.

When the window is disabled, those jobs that have the window as their schedule will not be disabled.

Window Groups

When a group of type WINDOW is disabled, jobs (other than a running job) that have the window group as their schedule will not run when the member windows open. However, a job that has one of the window group members as its schedule still runs.

The metadata of the window group is still there, so it can be reenabled. Note that the members of the window group will still open.

If force is set to FALSE, the window group must not have any members that are open or referenced by any job, otherwise an error will occur.

If force is set to TRUE:

	
The window group is disabled and the open window will be not closed or disabled. It will be allowed to continue to its end.

	
The window group is disabled but those jobs that have the window group as their schedule will not be disabled.

Job Chains

When a chain is disabled, the metadata for the chain is still there, but jobs that point to it will not be able to be run. This allows changes to the chain to be made safely without the risk of having an incompletely specified chain run.If force is set to FALSE, the chain must not be referenced by any job, otherwise an error will occur.If force is set to TRUE, those jobs that point to the chain will not be disabled, however, they will fail at runtime.Running jobs that point to this chain are not affected by the DISABLE call and are allowed to complete.

Database Destinations

When you disable a database destination:

	
The destination is skipped when a multiple destination job runs.

	
If all destinations are disabled for a job, the Scheduler generates an error when it attempts to run the job.

	
The REFS_ENABLED column in *_SCHEDULER_JOB_DESTS is set to FALSE for all jobs that reference the database destination.

External Destinations

When you disable an external destination:

	
Dependent database destinations remain enabled, but the Scheduler generates an error when it attempts to run a job with a database destination that depends on the external destination.

	
The REFS_ENABLED column in *_SCHEDULER_JOB_DESTS is set to FALSE for all external jobs that reference the external destination and for all database jobs with a database destination that depends on the external destination.

Groups

If you disable an external destination group or database destination group, the Scheduler generates an error when it attempts to run a job that names the group as its destination.

DROP_AGENT_DESTINATION Procedure

This procedure drops one or more external destinations, also known as agent destinations. It should be used only when the preferred method of dropping an external destination—using the schagent utility to unregister a Scheduler agent with a database—is unavailable due to failures.

This procedure can be called only by the SYS user or a user with the MANAGE SCHEDULER privilege.

	
Note:

External destinations are created on a source database only implicitly by registering an agent with the database. There is no user-callable CREATE_AGENT_DESTINATION procedure.

Syntax

DBMS_SCHEDULER.DROP_AGENT_DESTINATION (
 destination_name IN VARCHAR2);

Parameters

Table 128-42 DROP_AGENT_DESTINATION Procedure Parameters

	Parameter	Description
	
destination_name

	
A comma-separated list of external destinations to drop. Because user SYS owns all external destinations, do not prefix them with a schema name.

The procedure stops processing if it encounters an external destination that does not exist. All external destinations processed before the error are dropped.

Cannot be NULL.

Usage Notes

When an external destination is dropped:

	
All database destinations that refer to the external destination are disabled and their agent attribute is set to NULL.

	
Members of external destination groups that refer to the destination are removed from the group.

	
All job instances in the *_SCHEDULER_JOB_DESTS views that refer to the external destination are also dropped.

	
Jobs running against the destination are stopped.

DROP_CHAIN Procedure

This procedure drops an existing chain.

Syntax

DBMS_SCHEDULER.DROP_CHAIN (
 chain_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Table 128-43 DROP_CHAIN Procedure Parameters

	Parameter	Description
	
chain_name

	
The name of the chain to drop. Can also be a comma-delimited list of chains.

	
force

	
If force is set to FALSE, the chain must not be referenced by any job, otherwise an error will occur.

If force is set to TRUE, all jobs pointing to the chain are disabled before the chain is dropped.Running jobs that point to this chain are stopped before the chain is dropped.

Usage Notes

Dropping a chain requires alter privileges on the chain (either as the owner, or a user with ALTER privileges on the chain or the CREATE ANY JOB system privilege).

All steps associated with the chain are dropped. If no rule set was specified when the chain was created, then the automatically created rule set and evaluation context associated with the chain are also dropped, so the user must have the privileges required to do this. See the DBMS_RULE_ADM.DROP_RULE_SET and DBMS_RULE_ADM.DROP_EVALUATION_CONTEXT procedures for more information.

If force is FALSE, no jobs may be using this chain. If force is TRUE, any jobs that use this chain are disabled before the chain is dropped (and any of these jobs that are running will be stopped).

DROP_CHAIN_RULE Procedure

This procedure removes a rule from an existing chain. The rule object corresponding to this rule will also be dropped. The chain will not be disabled. If dropping this rule makes the chain invalid, the user should first disable the chain to ensure that it does not run.

Syntax

DBMS_SCHEDULER.DROP_CHAIN_RULE (
 chain_name IN VARCHAR2,
 rule_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Table 128-44 DROP_CHAIN_RULE Procedure Parameters

	Parameter	Description
	
chain_name

	
The name of the chain to alter

	
rule_name

	
The name of the rule to drop

	
force

	
If force is set to TRUE, the drop operation proceeds even if the chain is currently running. The running chain is not stopped or interrupted. If force is set to FALSE and the chain is running, an error is generated.

Usage Notes

Dropping a chain rule requires alter privileges on the chain (either as the owner or as a user with ALTER privileges on the chain or the CREATE ANY JOB system privilege).

Dropping a chain rule also drops the underlying rule database object so you must have the privileges to drop this rule object. See the DBMS_RULE_ADM.DROP_RULE procedure for more information.

DROP_CHAIN_STEP Procedure

This procedure drops a chain step. If this chain step is still used in the chain rules, the chain will be disabled.

Syntax

DBMS_SCHEDULER.DROP_CHAIN_STEP (
 chain_name IN VARCHAR2,
 step_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Table 128-45 DROP_CHAIN_STEP Procedure Parameters

	Parameter	Description
	
chain_name

	
The name of the chain to alter

	
step_name

	
The name of the step being dropped. Can be a comma-separated list.

	
force

	
If force is set to TRUE, this succeeds even if this chain is currently running. The running chain will not be stopped or interrupted.If force is set to FALSE and this chain is currently running, an error is thrown.

Usage Notes

Dropping a chain step requires ALTER privileges on the chain (either as the owner or as a user with ALTER privileges on the chain or the CREATE ANY JOB system privilege).

DROP_CREDENTIAL Procedure

This procedure drops a credential.

Syntax

DBMS_SCHEDULER.DROP_CREDENTIAL (
 credential_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Table 128-46 DROP_CREDENTIAL Procedure Parameters

	Parameter	Description
	
credential_name

	
The name of the credential being dropped. This can optionally be prefixed with a schema name. This cannot be set to NULL.

	
force

	
If set to FALSE, the credential must not be referenced by any job, or an error will occur. If set to TRUE, the credential is dropped whether or not there are jobs referencing it. Jobs that reference the credential will continue to point to a nonexistent credential and throw an error at runtime.

Usage Notes

Only the owner of a credential or a user with the CREATE ANY JOB system privilege may drop the credential.

Running jobs that point to the credential are not affected by this procedure and are allowed to continue.

	
See Also:

"CREATE_CREDENTIAL Procedure"

DROP_DATABASE_DESTINATION Procedure

This procedure drops one or more database destinations.

Syntax

DBMS_SCHEDULER.DROP_DATABASE_DESTINATION (
 destination_name IN VARCHAR2);

Parameters

Table 128-47 DROP_DATABASE_DESTINATION Procedure Parameters

	Parameter	Description
	
destination_name

	
The name of the destination to drop. Can be a comma-separated list of database destinations to drop. Each database destination can optionally be prefixed with a schema name.

The procedure stops processing if it encounters a database destination that does not exist. All database destinations processed before the error are dropped.

Cannot be NULL.

Usage Notes

Only the owner or a user with the CREATE ANY JOB system privilege may drop the database destination.

When a database destination is dropped:

	
All job instances that refer to the destination in the *_SCHEDULER_JOB_DESTS views are also dropped.

	
Jobs running against the destination are stopped.

	
Members of database destination groups that refer to the destination are removed from the group.

	
See Also:

CREATE_DATABASE_DESTINATION Procedure

DROP_FILE_WATCHER Procedure

This procedure drops one or more file watchers.

Syntax

DBMS_SCHEDULER.DROP_FILE_WATCHER (
 file_watcher_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Table 128-48 DROP_FILE_WATCHER Procedure Parameters

	Parameter	Description
	
file_watcher_name

	
The file watcher to drop. Can be a comma-separated list of file watchers. Each file watcher name can optionally be prefixed with a schema name.

Cannot be NULL.

	
force

	
If set to FALSE, the file watcher must not be referenced by any job, or an error occurs. If set to TRUE, the file watcher is dropped whether or not there are jobs referencing it. In this case, jobs that reference the dropped file watcher are disabled.

Usage Notes

Only the owner of a file watcher or a user with the CREATE ANY JOB system privilege may drop the file watcher.

Running jobs that point to the file watcher are not affected by this procedure and are allowed to continue.

	
See Also:

"CREATE_FILE_WATCHER Procedure"

DROP_GROUP Procedure

This procedure drops one or more groups.

Syntax

DBMS_SCHEDULER.DROP_GROUP (
 group_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Table 128-49 DROP_GROUP Procedure Parameters

	Parameter	Description
	
group_name

	
A group to drop. Can be a comma-separated list of group names. Each group name can optionally be prefixed with a schema name.

The procedure stops processing if it encounters a group that does not exist. All groups processed before the error are dropped.

Cannot be NULL.

	
force

	
If FALSE, the group must not be referenced by any job, otherwise an error occurs. If TRUE, the group is dropped whether or not there are jobs referencing it. In this case, all jobs referencing the group are disabled and all job instances that reference the group are removed from the *_SCHEDULER_JOB_DESTS views.

Usage Notes

Only the owner or a user with the CREATE ANY JOB system privilege may drop a group. You must have the MANAGE SCHEDULER privilege to drop a group of type WINDOW.

	
See Also:

"CREATE_FILE_WATCHER Procedure"

DROP_JOB Procedure

This procedure drops one or more jobs or all jobs in one or more job classes. Dropping a job also drops all argument values set for that job.

Syntax

DBMS_SCHEDULER.DROP_JOB (
 job_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE,
 defer IN BOOLEAN DEFAULT FALSE,
 commit_semantics IN VARCHAR2 DEFAULT 'STOP_ON_FIRST_ERROR');

Parameters

Table 128-50 DROP_JOB Procedure Parameters

	Parameter	Description
	
job_name

	
The name of a job or job class. Can be a comma-delimited list. For a job class, the SYS schema should be specified.

If the name of a job class is specified, the jobs that belong to that job class are dropped, but the job class itself is not dropped.

	
force

	
If force is set to TRUE, the Scheduler first attempts to stop the running job instances (by issuing the STOP_JOB call with the force flag set to false), and then drops the jobs.

	
defer

	
If defer is set to TRUE, the Scheduler allows the running jobs to complete and then drops the jobs.

	
commit_semantics

	
The commit semantics. The following types are supported:

	
STOP_ON_FIRST_ERROR returns on the first error and previous successful drop operations are committed to disk. This is the default.

	
TRANSACTIONAL returns on the first error. Everything that happened before that error is rolled back. This type is not supported when force is set to TRUE.

	
ABSORB_ERRORS tries to absorb any errors and drop the rest of the jobs, and commits all the successful drops. If errors occur, you can query the view SCHEDULER_BATCH_ERRORS for details.

Only STOP_ON_FIRST_ERROR is permitted when job classes are included in the job_name list.

Usage Notes

If both force and defer are set to FALSE and a job is running at the time of the call, the attempt to drop that job fails. The entire call to DROP_JOB may then fail, depending on the setting of commit_semantics.

Setting both force and defer to TRUE results in an error.

Dropping a job requires ALTER privileges on the job either as the owner of the job or as a user with the ALTER object privilege on the job or the CREATE ANY JOB system privilege.

DROP_JOB_CLASS Procedure

This procedure drops a job class. Dropping a job class means that all the metadata about the job class is removed from the database.

Syntax

DBMS_SCHEDULER.DROP_JOB_CLASS (
 job_class_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Table 128-51 DROP_JOB_CLASS Procedure Parameters

	Parameter	Description
	
job_class_name

	
The name of the job class. Can be a comma-delimited list.

	
force

	
If force is set to FALSE, a class being dropped must not be referenced by any jobs, otherwise an error occurs.

If force is set to TRUE, jobs belonging to the class are disabled and their class is set to the default class. Only if this is successful is the class dropped.

Running jobs that belong to the job class are not affected.

Usage Notes

Dropping a job class requires the MANAGE SCHEDULER system privilege.

DROP_PROGRAM Procedure

This procedure drops a program. Any arguments that pertain to the program are also dropped when the program is dropped.

Syntax

DBMS_SCHEDULER.DROP_PROGRAM (
 program_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Table 128-52 DROP_PROGRAM Procedure Parameters

	Parameter	Description
	
program_name

	
The name of the program to be dropped. Can be a comma-delimited list.

	
force

	
If force is set to FALSE, the program must not be referenced by any job, otherwise an error occurs.

If force is set to TRUE, all jobs referencing the program are disabled before the program is dropped.

Running jobs that point to the program are not affected by the DROP_PROGRAM call and are allowed to continue.

Usage Notes

Dropping a program requires that you be the owner of the program or have ALTER privileges on that program. You can also drop a program if you have the CREATE ANY JOB privilege.

DROP_PROGRAM_ARGUMENT Procedure

This procedure drops a program argument. An argument can be specified by either name (if one has been given) or position.

The procedure is overloaded.

Syntax

Drops a program argument by position:

DBMS_SCHEDULER.DROP_PROGRAM_ARGUMENT (
 program_name IN VARCHAR2,
 argument_position IN PLS_INTEGER);

Drops a program argument by name:

DBMS_SCHEDULER.DROP_PROGRAM_ARGUMENT (
 program_name IN VARCHAR2,
 argument_name IN VARCHAR2);

Parameters

Table 128-53 DROP_PROGRAM_ARGUMENT Procedure Parameters

	Parameter	Description
	
program_name

	
The name of the program to be altered. A program with this name must exist.

	
argument_name

	
The name of the argument being dropped

	
argument_position

	
The position of the argument to be dropped

Usage Notes

Dropping a program argument requires that you be the owner of the program or have ALTER privileges on that program. You can also drop a program argument if you have the CREATE ANY JOB privilege.

DROP_SCHEDULE Procedure

This procedure drops a schedule.

Syntax

DBMS_SCHEDULER.DROP_SCHEDULE (
 schedule_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Table 128-54 DROP_SCHEDULE Procedure Parameters

	Parameter	Description
	
schedule_name

	
The name of the schedule. Can be a comma-delimited list.

	
force

	
If force is set to FALSE, the schedule must not be referenced by any job or window, otherwise an error will occur.

If force is set to TRUE, any jobs or windows that use this schedule are disabled before the schedule is dropped

Running jobs and open windows that point to the schedule are not affected.

Usage Notes

You must be the owner of the schedule being dropped or have ALTER privileges for the schedule or the CREATE ANY JOB privilege.

DROP_WINDOW Procedure

This procedure drops a window. All metadata about the window is removed from the database. The window is removed from any groups that reference it.

Syntax

DBMS_SCHEDULER.DROP_WINDOW (
 window_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Table 128-55 DROP_WINDOW Procedure Parameters

	Parameter	Description
	
window_name

	
The name of the window. Can be a comma-delimited list.

	
force

	
If force is set to FALSE, the window must be not be open or referenced by any job, otherwise an error occurs.

If force is set to TRUE, the window is dropped and those jobs that have the window as their schedule are disabled. However, jobs that have a window group, of which the dropped window is a member, as their schedule, are not disabled. If the window is open then, the Scheduler attempts to first close the window and then drop it. When the window is closed, normal close window rules apply.

Running jobs that have the window as their schedule is allowed to continue, unless the stop_on_window_close flag is set to TRUE for the job. If this is the case, the job is stopped when the window is dropped.

Usage Notes

Dropping a window requires the MANAGE SCHEDULER privilege.

DROP_WINDOW_GROUP Procedure

*** Deprecated in Oracle Database 11g Release 2. Use DROP_GROUP instead.

This procedure drops a window group but not the windows that are members of this window group.

Syntax

DBMS_SCHEDULER.DROP_WINDOW_GROUP (
 group_name IN VARCHAR2
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Table 128-56 DROP_WINDOW_GROUP Procedure Parameters

	Parameter	Description
	
group_name

	
The name of the window group

	
force

	
If force is set to FALSE, the window group must not be referenced by any job otherwise an error will occur.

If force is set to TRUE, the window group is dropped and those jobs that have the window group as their schedule are disabled. Running jobs that have the window group as their schedule are allowed to continue, even if the stop_on_window_close flag was set to TRUE when for the job.

If a member of the window group that is being dropped is open, the window group can still be dropped.

Usage Notes

If you want to drop all the windows that are members of this group but not the window group itself, you can use the DROP_WINDOW procedure and provide the name of the window group to the call.

To drop a window group, you must have the MANAGE SCHEDULER privilege.

ENABLE Procedure

This procedure enables a program, job, chain, window, database destination, external destination, file watcher, or group. When an object is enabled, its enabled attribute is set to TRUE. By default, jobs, chains, and programs are created disabled and database destinations, external destinations, file watchers, windows, and groups are created enabled.

If a job was disabled and you enable it, the Scheduler begins to automatically run the job according to its schedule. Enabling a disabled job also resets the job RUN_COUNT, FAILURE_COUNT and RETRY_COUNT columns in the *_SCHEDULER_JOBS data dictionary views.

Validity checks are performed before enabling an object. If the check fails, the object is not enabled, and an appropriate error is returned. This procedure does not return an error if the object was already enabled.

Syntax

DBMS_SCHEDULER.ENABLE (
 name IN VARCHAR2,
 commit_semantics IN VARCHAR2 DEFAULT 'STOP_ON_FIRST_ERROR');

Parameters

Table 128-57 ENABLE Procedure Parameters

	Parameter	Description
	
name

	
The name of the Scheduler object being enabled. Can be a comma-delimited list of names.

If a job class name is specified, then all the jobs in the job class are enabled.

If a group name is specified, then the group is enabled, but the enabled state of the group members is unaffected.

	
commit_semantics

	
The commit semantics. The following types are supported:

	
STOP_ON_FIRST_ERROR - The procedure returns on the first error and previous successful enable operations are committed to disk. This is the default.

	
TRANSACTIONAL - The procedure returns on the first error and everything that happened before that error is rolled back.

This type is only supported when enabling a job or a list of jobs.

	
ABSORB_ERRORS - The procedure tries to absorb any errors and enable the rest of the jobs. It commits all the enable operations that were successful. If errors occur, you can query the view SCHEDULER_BATCH_ERRORS for details.

This type is only supported when enabling a job or a list of jobs.

Usage Notes

Window names must be preceded by SYS.

To run ENABLE for a window or group of type WINDOW, you must have the MANAGE SCHEDULER privilege. For a job of type EXECUTABLE (or for a job that points to a program of type EXECUTABLE), the job owner must have the CREATE EXTERNAL JOB system privilege before the job can be enabled or run.

To enable a file watcher, the file watcher owner must have the EXECUTE privilege on the designated credential.

You can use ENABLE with any schema except the SYS schema.

END_DETACHED_JOB_RUN Procedure

This procedure ends a detached job run. A detached job points to a detached program, which is a program with the detached attribute set to TRUE. A detached job run does not end until this procedure or the STOP_JOB Procedure is called.

Syntax

DBMS_SCHEDULER.END_DETACHED_JOB_RUN (
 job_name IN VARCHAR2,
 error_number IN PLS_INTEGER DEFAULT 0,
 additional_info IN VARCHAR2 DEFAULT NULL);

Parameters

Table 128-58 END_DETACHED_JOB_RUN Procedure Parameters

	Parameter	Description
	
job_name

	
The name of the job to end. Must be a detached job that is running.

	
error_number

	
If zero, then the job run is logged as succeeded. If -1013, then the job run is logged as stopped. If non-zero, then the job run is logged as failed with this error number.

	
additional_info

	
This text is stored in the additional_info column of the *_scheduler_job_run_details views for this job run.

Usage Notes

This procedure requires that you either own the job or have ALTER privileges on it. You can also end any detached job run if you have the CREATE ANY JOB privilege.

	
See Also:

Oracle Database Administrator's Guide for information about detached jobs.

EVALUATE_CALENDAR_STRING Procedure

You can define repeat intervals of jobs, windows or schedules using the Scheduler calendaring syntax. This procedure evaluates the calendar expression and tells you the next execution date and time of a job or window. This is very useful for testing the correct definition of the calendar string without actually scheduling the job or window.

This procedure can also get multiple steps of the repeat interval by passing the next_run_date returned by one invocation as the return_date_after argument of the next invocation.

See the calendaring syntax described in "Operational Notes".

Syntax

DBMS_SCHEDULER.EVALUATE_CALENDAR_STRING (
 calendar_string IN VARCHAR2,
 start_date IN TIMESTAMP WITH TIME ZONE,
 return_date_after IN TIMESTAMP WITH TIME ZONE,
 next_run_date OUT TIMESTAMP WITH TIME ZONE);

Parameters

Table 128-59 EVALUATE_CALENDAR_STRING Procedure Parameters

	Parameter	Description
	
calendar_string

	
The calendar expression to be evaluated. The string must be in the calendaring syntax described in "Operational Notes".

	
start_date

	
The date and time after which the repeat interval becomes valid. It can also be used to fill in specific items that are missing from the calendar string. Can optionally be NULL.

	
return_date_after

	
The return_date_after argument helps the Scheduler determine which one of all possible matches (all valid execution dates) to return from those determined by the start_date and the calendar string.

When a NULL value is passed for this argument, the Scheduler automatically fills in systimestamp as its value.

	
next_run_date

	
The first timestamp that matches the calendar string and start date that occur after the value passed in for the return_date_after argument.

Examples

The following code fragment can be used to determine the next five dates a job will run given a specific calendar string.

SET SERVEROUTPUT ON;
ALTER SESSION set NLS_DATE_FORMAT = 'DD-MON-YYYY HH24:MI:SS';
Session altered.

DECLARE
start_date TIMESTAMP;
return_date_after TIMESTAMP;
next_run_date TIMESTAMP;
BEGIN
start_date :=
 to_timestamp_tz('01-JAN-2003 10:00:00','DD-MON-YYYY HH24:MI:SS');
return_date_after := start_date;
FOR i IN 1..5 LOOP
 DBMS_SCHEDULER.EVALUATE_CALENDAR_STRING(
 'FREQ=DAILY;BYHOUR=9;BYMINUTE=30;BYDAY=MON,TUE,WED,THU,FRI',
 start_date, return_date_after, next_run_date);
DBMS_OUTPUT.PUT_LINE('next_run_date: ' || next_run_date);
return_date_after := next_run_date;
END LOOP;
END;
/

next_run_date: 02-JAN-03 09.30.00.000000 AM
next_run_date: 03-JAN-03 09.30.00.000000 AM
next_run_date: 06-JAN-03 09.30.00.000000 AM
next_run_date: 07-JAN-03 09.30.00.000000 AM
next_run_date: 08-JAN-03 09.30.00.000000 AM

PL/SQL procedure successfully completed.

Usage Notes

No specific Scheduler privileges are required.

EVALUATE_RUNNING_CHAIN Procedure

This procedure forces reevaluation of the rules of a running chain to trigger any rules for which the conditions have been satisfied. The job passed as an argument must point to a chain and must be running. If the job is not running, an error is thrown. (RUN_JOB can be used to start the job.)

If any of the steps of the chain are themselves running chains, another EVALUATE_RUNNING_CHAIN is performed on each of the nested running chains.

Syntax

DBMS_SCHEDULER.EVALUATE_RUNNING_CHAIN (
 job_name IN VARCHAR2);

Parameters

Table 128-60 EVALUATE_RUNNING_CHAIN Procedure Parameter

	Parameter	Description
	
job_name

	
The name of the running job (pointing to a chain) to reevaluate the rules for

Usage Notes

Running EVALUATE_RUNNING_CHAIN on a job requires alter privileges on the job (either as the owner, or as a user with ALTER privileges on the job or the CREATE ANY JOB system privilege).

	
Note:

The Scheduler automatically evaluates a chain:
	
At the start of the chain job

	
When a chain step completes

	
When an event occurs that is associated with an event step in the chain

For most chains, this is sufficient. EVALUATE_RUNNING_CHAIN should be used only under the following circumstances:

	
After manual intervention of a running chain with the ALTER_RUNNING_CHAIN procedure

	
When chain rules use SQL syntax and the rule conditions contain elements that are not under the control of the Scheduler.

In these cases, EVALUATE_RUNNING_CHAIN may not be needed if you set the evaluation_interval attribute when you created the chain.

GENERATE_JOB_NAME Function

This function returns a unique name for a job. The name will be of the form {prefix}N where N is a number from a sequence. If no prefix is specified, the generated name will, by default, be JOB$_1, JOB$_2, JOB$_3, and so on. If 'SCOTT' is specified as the prefix, the name will be SCOTT1, SCOTT2, and so on.

Syntax

DBMS_SCHEDULER.GENERATE_JOB_NAME (
 prefix IN VARCHAR2 DEFAULT 'JOB$_') RETURN VARCHAR2;

Parameters

Table 128-61 GENERATE_JOB_NAME Function Parameter

	Parameter	Description
	
prefix

	
The prefix to use when generating the job name

Usage Notes

If the prefix is explicitly set to NULL, the name is just the sequence number. In order to successfully use such numeric names, they must be surrounded by double quotes throughout the DBMS_SCHEDULER calls. A prefix cannot be longer than 18 characters and cannot end with a digit.

Note that, even though the GENERATE_JOB_NAME function never returns the same job name twice, there is a small chance that the returned name matches an already existing database object.

No specific Scheduler privileges are required to use this function.

GET_AGENT_INFO Function

This function can return job information specific to an agent, such as how many are running and so on, depending on the attribute selected.

Syntax

DBMS_SCHEDULER.GET_AGENT_INFO (
 agent_name IN VARCHAR2,
 attribute IN VARCHAR2) RETURN VARCHAR2;

Parameters

Table 128-62 GET_AGENT_INFO Function Parameter

	Parameter	Description
	
agent_name

	
The name of an external destination where the agent is running

	
attribute

	
Possible Attributes values

	
VERSION:. Returns the agent version number. Requires the CREATE JOB system privilege.

	
UPTIME: Returns the time the agent has been up and running. Requires the CREATE JOB system privilege.

	
NUMBER_OF_RUNNING_JOBS: Returns the number of jobs that the agent is currently running. Requires the CREATE JOB system privilege.

	
TOTAL_JOBS_RUN: Returns the number of jobs run by the agent since it was started. Requires the CREATE JOB system privilege.

	
RUNNING_JOBS: Returns a comma-separated list of the names of the jobs running currently. Requires the MANAGE SCHEDULER system privilege.

	
ALL: Returns all the information the previous options return. It requires the MANAGE SCHEDULER system privilege.

Usage Notes

This function returns the same information as the schagent utility status option.

GET_AGENT_VERSION Function

This function returns the version string of a Scheduler agent that is registered with the database and is currently running. GET_AGENT_VERSION throws an error if the agent is not registered with the database or if the agent is not currently running.

Syntax

DBMS_SCHEDULER.GET_AGENT_VERSION (
 agent_host IN VARCHAR2) RETURN VARCHAR2;

Parameters

Table 128-63 GET_AGENT_VERSION Function Parameter

	Parameter	Description
	
agent_host

	
Either the hostname and port on which the agent is running in the form hostname:port or the name of the agent as shown in the destination_name column of the ALL_SCHEDULER_EXTERNAL_DESTS view which lists all Scheduler agents registered with the database.

Usage Notes

This function requires the CREATE EXTERNAL JOB system privilege.

GET_ATTRIBUTE Procedure

This procedure retrieves the value of an attribute of a Scheduler object. It is overloaded to retrieve values of various types.

Syntax

DBMS_SCHEDULER.GET_ATTRIBUTE (
 name IN VARCHAR2,
 attribute IN VARCHAR2,
 value OUT {VARCHAR2|PLS_INTEGER|BOOLEAN|DATE|TIMESTAMP|
 TIMESTAMP WITH TIME ZONE|TIMESTAMP WITH LOCAL TIME ZONE|
 INTERVAL DAY TO SECOND});

DBMS_SCHEDULER.GET_ATTRIBUTE (
 name IN VARCHAR2,
 attribute IN VARCHAR2,
 value OUT VARCHAR2,
 value2 OUT VARCHAR2);

Parameters

Table 128-64 GET_ATTRIBUTE Procedure Parameters

	Parameter	Description
	
name

	
The name of the object

	
attribute

	
The attribute being retrieved. See the SET_ATTRIBUTE Procedure for tables of attribute values.

	
value

	
The existing value of the attribute

	
value2

	
The value2 argument is for an optional second value.

Most attributes have only one value associated with them, but some can have two.

Usage Notes

To run GET_ATTRIBUTE for a job class, you must have the MANAGE SCHEDULER privilege or have EXECUTE privileges on the class. For a schedule, window, or group, no privileges are necessary. Otherwise, you must be the owner of the object or have ALTER or EXECUTE privileges on that object or have the CREATE ANY JOB privilege.

See the SET_ATTRIBUTE Procedure for tables of attribute values that you can retrieve for the various Scheduler object types.

GET_FILE Procedure

This procedure retrieves a file from the operating system file system of a specified host. The file is copied to a destination, or its contents are returned in a procedure output parameter.

You can also use this procedure to retrieve the standard output or error text for a run of an external job that has an associated credential.

This procedures differs from the equivalent UTL_FILE procedure in that it uses a credential and can retrieve files from remote hosts that have only a Scheduler agent (and not an Oracle database) installed.

Syntax

DBMS_SCHEDULER.GET_FILE (
 source_file IN VARCHAR2,
 source_host IN VARCHAR2,
 credential_name IN VARCHAR2,
 file_contents IN OUT NOCOPY {BLOB|CLOB});

DBMS_SCHEDULER.GET_FILE (
 source_file IN VARCHAR2,
 source_host IN VARCHAR2,
 credential_name IN VARCHAR2,
 destination_file_name IN VARCHAR2,
 destination_directory_object IN VARCHAR2,
 destination_permissions IN VARCHAR2 DEFAULT NULL);

Parameters

Table 128-65 GET_FILE Procedure Parameters

	Parameter	Description
	
source_file

	
Fully qualified path name of the file to retrieve from the operating system. The file name is case-sensitive and is not converted to uppercase. If the file name starts with a question mark ('?'), the question mark is replaced by the path to the Oracle home if getting a file from the local host, or to the Scheduler agent home if getting a file from a remote host.

If the format of this parameter is external_log_id_stdout, then the stdout from the designated external job run is returned.

If the format of this parameter is external_log_id_stderr, the error text from the designated external job run is returned.

You obtain the value of external_log_id from the ADDITIONAL_INFO column of the *_SCHEDULER_JOB_RUN_DETAILS views. This column contains a set of name/value pairs in an indeterminate order, so you must parse this column for the external_log_id name/value pair, and then append either "_stdout" or "_stderr" to its value.

The external job must have an associated credential. The credential_name parameter of GET_FILE must name the same credential that is used by the job, and the source_host parameter must be the same as the destination attribute of the job.

	
source_host

	
If the file is to be retrieved from a remote host, then this parameter must be a valid an external destination name. (An external destination is created when you register a remote Scheduler agent with the database. You can view external destination names in the views *_SCHEDULER_EXTERNAL_DESTS.)

If source_host is NULL or set to 'localhost', then the file is retrieved from the file system of the local host. To determine the port number of a Scheduler agent, view the schagent.conf file, which is located in the Scheduler agent home directory on the remote host.

	
credential_name

	
The name of the credential to use for accessing the file system.

	
file_contents

	
The variable from which the file contents is read.

	
destination_file_name

	
The file to which the file contents is written.

	
destination_directory_object

	
The directory object that specifies the path to the destination file, when destination_file_name is used. The caller must have the necessary privileges on the directory object.

	
destination_permissions

	
Reserved for future use

Usage Notes

The caller must have the CREATE EXTERNAL JOB system privilege and have EXECUTE privileges on the credential.

GET_SCHEDULER_ATTRIBUTE Procedure

This procedure retrieves the value of a Scheduler attribute.

Syntax

DBMS_SCHEDULER.GET_SCHEDULER_ATTRIBUTE (
 attribute IN VARCHAR2,
 value OUT VARCHAR2);

Parameters

Table 128-66 GET_SCHEDULER_ATTRIBUTE Procedure Parameters

	Parameter	Description
	
attribute

	
The name of the attribute

	
value

	
The existing value of the attribute

Usage Notes

To run GET_SCHEDULER_ATTRIBUTE, you must have the MANAGE SCHEDULER privilege.

Table 128-67 lists the Scheduler attributes that you can retrieve. For more detail on these attributes, see Table 128-97 and the section "Configuring the Scheduler" in Oracle Database Administrator's Guide.

Table 128-67 Scheduler Attributes Retrievable with GET_SCHEDULER_ATTRIBUTE

	Scheduler Attribute	Description
	
current_open_window

	
Name of the currently open window

	
default_timezone

	
Default time zone used by the Scheduler for repeat intervals and windows

	
email_sender

	
The default e-mail address of the sender for job state e-mail notifications

	
email_server

	
The SMTP server address that the Scheduler uses to send e-mail notifications for job state events. E-mail notifications cannot be sent if this attribute is NULL.

	
event_expiry_time

	
Time in seconds before an event generated by the Scheduler and enqueued onto the Scheduler event queue expires. May be NULL.

	
log_history

	
Retention period in days for job and window logs. The range of valid values is 0 through 1000000.

	
max_job_slave_processes

	
This Scheduler attribute is not used.

OPEN_WINDOW Procedure

This procedure opens a window independent of its schedule. This window opens and the resource plan associated with it takes effect immediately for the duration specified or for the normal duration of the window if no duration is given. Only an enabled window can be manually opened.

Syntax

DBMS_SCHEDULER.OPEN_WINDOW (
 window_name IN VARCHAR2,
 duration IN INTERVAL DAY TO SECOND,
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Table 128-68 OPEN_WINDOW Procedure Parameters

	Parameter	Description
	
window_name

	
The name of the window

	
duration

	
The duration of the window. It is of type interval day to second. If it is NULL, then the window opens for the regular duration as specified in the window metadata.

	
force

	
If force is set to FALSE, then opening an already open window generates an error.

If force is set to TRUE:

You can open a window that is already open. The window stays open for the duration specified in the call, from the time the OPEN_WINDOW command was issued.

For example: window1 was created with a duration of four hours. It has how been open for two hours. If, at this point, you reopen window1 using the OPEN_WINDOW call and do not specify a duration, then window1 stays open for four hours because it was created with that duration. If you specified a duration of 30 minutes, the window will close in 30 minutes.

The Scheduler automatically closes any window that is open at that time, even if it has a higher priority. For the duration of this manually opened window, the Scheduler does not open any other scheduled windows even if they have a higher priority.

Usage Notes

Opening a window manually has no impact on regular scheduled runs of the window. The next open time of the window is not updated and is determined by the regular scheduled opening.

When a window that was manually opened closes, the rules about overlapping windows are applied to determine which other window should be opened at that time if any at all.

If there are jobs running when the window opens, the resources allocated to them might change if there is a switch in resource plan.

If a window fails to switch resource plans because the designated resource plan no longer exists or because resource plan switching by windows is disabled (for example, by using the ALTER SYSTEM statement with the force option), the failure to switch resource plans is recorded in the window log.

Opening a window requires the MANAGE SCHEDULER privilege.

PURGE_LOG Procedure

By default, the Scheduler automatically purges all rows in the job log and window log that are older than 30 days. The PURGE_LOG procedure is used to purge additional rows from the job and window log.

Rows in the job log table pertaining to the steps of a chain are purged only when the entry for the main chain job is purged (either manually or automatically).

Syntax

DBMS_SCHEDULER.PURGE_LOG (
 log_history IN PLS_INTEGER DEFAULT 0,
 which_log IN VARCHAR2 DEFAULT 'JOB_AND_WINDOW_LOG',
 job_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 128-69 PURGE_LOG Procedure Parameters

	Parameter	Description
	
log_history

	
This specifies how much history (in days) to keep. The valid range is 0 - 1000000. If set to 0, no history is kept.

	
which_log

	
This specifies the log type. Valid values are: job_log, window_log, and job_and_window_log.

	
job_name

	
This specifies which job-specific entries must be purged from the jog log. This can be a comma-delimited list of job names and job classes. Whenever job_name has a value other than NULL, the which_log argument implicitly includes the job log.

Usage Notes

This procedure requires the MANAGE SCHEDULER privilege.

Examples

The following completely purges all rows from both the job log and the window log:

DBMS_SCHEDULER.PURGE_LOG();

The following purges all rows from the window log that are older than 5 days:

DBMS_SCHEDULER.PURGE_LOG(5, 'window_log');

The following purges all rows from the window log that are older than 1 day and all rows from the job log that are related to jobs in jobclass1 and older than 1 day:

DBMS_SCHEDULER.PURGE_LOG(1, 'job_and_window_log', 'sys.jobclass1');

PUT_FILE Procedure

This procedure saves a file to the operating system file system of a specified remote host or of the local computer. It differs from the equivalent UTL_FILE procedure in that it uses a credential and can save files to a remote host that has only a Scheduler agent (and not an Oracle Database) installed.

Syntax

DBMS_SCHEDULER.PUT_FILE (
 destination_file IN VARCHAR2,
 destination_host IN VARCHAR2,
 credential_name IN VARCHAR2,
 file_contents IN {BLOB|CLOB},
 destination_permissions IN VARCHAR2 DEFAULT NULL);

DBMS_SCHEDULER.PUT_FILE (
 destination_file IN VARCHAR2,
 destination_host IN VARCHAR2,
 credential_name IN VARCHAR2,
 source_file_name IN VARCHAR2,
 source_directory_object IN VARCHAR2,
 destination_permissions IN VARCHAR2 DEFAULT NULL);

Parameters

Table 128-70 PUT_FILE Procedure Parameters

	Parameter	Description
	
destination_file

	
Fully qualified path name of the file to save to the operating system file system. The file name is case-sensitive. If the file name starts with a question mark ('?'), the question mark is replaced by the path to the Oracle home if saving to the local host, or to the Scheduler agent home if saving to a remote host.

	
destination_host

	
If NULL or set to 'localhost', the file is saved to the file system of the local computer.

To save to a remote host, this parameter must be a valid external destination name. (An external destination is created when you register a remote Scheduler agent with the database. You can view external destination names in the views *_SCHEDULER_EXTERNAL_DESTS.)

	
credential_name

	
The name of the credential to use for accessing the destination file system.

	
file_contents

	
The variable from which the file contents is read.

	
source_file_name

	
The file from which the file contents is written

	
source_directory_object

	
The directory object that specifies the path to the source file, when source_file_name is used. The caller must have the necessary privileges on the directory object.

	
destination_permissions

	
Reserved for future use

Usage Notes

The caller must have the CREATE EXTERNAL JOB system privilege and have EXECUTE privileges on the credential.

REMOVE_EVENT_QUEUE_SUBSCRIBER Procedure

This procedure unsubscribes a user from the Scheduler event queue SYS.SCHEDULER$_EVENT_QUEUE.

Syntax

DBMS_SCHEDULER.REMOVE_EVENT_QUEUE_SUBSCRIBER (
 subscriber_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 128-71 REMOVE_EVENT_QUEUE_SUBSCRIBER Procedure Parameters

	Parameter	Description
	
subscriber_name

	
Name of the Oracle Streams Advanced Queuing (AQ) agent to remove the subscription from. If NULL, the user name of the calling user is used.

Usage Notes

After the agent is unsubscribed, it is deleted. If the agent does not exist or is not currently subscribed to the Scheduler event queue, an error is raised.

REMOVE_GROUP_MEMBER Procedure

This procedure removes one or more members from an existing group.

Syntax

DBMS_SCHEDULER.REMOVE_GROUP_MEMBER (
 group_name IN VARCHAR2,
 member IN VARCHAR2);

Parameters

Table 128-72 REMOVE_GROUP_MEMBER Procedure Parameters

	Parameter	Description
	
group_name

	
The name of the group.

	
member_name

	
The name of the member to remove from group. Comma-separated list of members to remove. An error is returned if any of the members is not part of the group.

A group of the same type can be named as a member. The Scheduler immediately expands the included group name into its list of members.

If the member is a destination, any job instances that run on this destination are removed from the *_SCHEDULER_JOB_DESTS views.

Usage Notes

The following users may remove members from a group:

	
The group owner

	
A user that has been granted the ALTER object privilege on the group

	
A user with the CREATE ANY JOB system privilege

You must have the MANAGE SCHEDULER privilege to remove a member from a group of type WINDOW.

	
See Also:

"CREATE_GROUP Procedure"

REMOVE_JOB_EMAIL_NOTIFICATION Procedure

This procedure removes e-mail notifications for a job. You can remove all e-mail notifications or remove notifications only for specified recipients or specified events.

Syntax

DBMS_SCHEDULER.REMOVE_JOB_EMAIL_NOTIFICATION (
 job_name IN VARCHAR2,
 recipients IN VARCHAR2 DEFAULT NULL,
 events IN VARCHAR2 DEFAULT NULL);

Parameters

Table 128-73 ADD_JOB_EMAIL_NOTIFICATION Procedure Parameters

	Parameter	Description
	
job_name

	
Name of the job to remove e-mail notifications for. Cannot be NULL.

	
recipients

	
E-mail address to remove e-mail notification for. Comma-separated list of e-mail addresses.

	
events

	
Job state event to remove e-mail notification for. Comma-separate list of job state events.

Usage Notes

When you specify multiple recipients and multiple events, the notification for each specified event is removed for each specified recipient. The procedure ignores any recipients or events that are specified but that were not previously added.

If recipients is NULL, e-mail notifications for the specified events are removed for all existing recipients. If events is NULL, notifications for all events are removed for the specified recipients. If both recipients and events are NULL, all e-mail notifications are removed for the job.

For example, if recipients is 'jsmith@example.com,rjones@example.com' and events is 'JOB_FAILED,JOB_BROKEN', then notifications for both the JOB_FAILED and JOB_BROKEN events are removed for both jsmith and rjones. If recipients is NULL, then notifications for both the JOB_FAILED and JOB_BROKEN events are removed for jsmith, rjones, and any other previously defined recipients for these events.

To call this procedure, you must be the job owner or a user with the CREATE ANY JOB system privilege or ALTER object privilege on the job.

	
See Also:

"ADD_JOB_EMAIL_NOTIFICATION Procedure"

REMOVE_WINDOW_GROUP_MEMBER Procedure

*** Deprecated in Oracle Database 11g Release 2. Use REMOVE_GROUP_MEMBER instead.

This procedure removes one or more windows from an existing window group.

Syntax

DBMS_SCHEDULER.REMOVE_WINDOW_GROUP_MEMBER (
 group_name IN VARCHAR2,
 window_list IN VARCHAR2);

Parameters

Table 128-74 REMOVE_WINDOW_GROUP_MEMBER Procedure Parameters

	Parameter	Description
	
group_name

	
The name of the window group.

	
window_list

	
The name of the window or windows.

Usage Notes

If any of the windows specified is invalid, does not exist, or is not a member of the given group, the call fails. Removing a window from a group requires the MANAGE SCHEDULER privilege.

Dropping an open window from a window group has no impact on any running jobs that has the window as its schedule because the jobs only stop when a window closes.

RESET_JOB_ARGUMENT_VALUE Procedure

This procedure resets (clears) the value previously set to an argument for a job.

RESET_JOB_ARGUMENT_VALUE is overloaded.

Syntax

Clears a previously set job argument value by argument position:

DBMS_SCHEDULER.RESET_JOB_ARGUMENT_VALUE (
 job_name IN VARCHAR2,
 argument_position IN PLS_INTEGER);

Clears a previously set job argument value by argument name:

DBMS_SCHEDULER.RESET_JOB_ARGUMENT_VALUE (
 job_name IN VARCHAR2,
 argument_name IN VARCHAR2);

Parameters

Table 128-75 RESET_JOB_ARGUMENT_VALUE Procedure Parameters

	Parameter	Description
	
job_name

	
The name of the job being altered

	
argument_position

	
The position of the program argument being reset

	
argument_name

	
The name of the program argument being reset

Usage Notes

If the corresponding program argument has no default value, the job is disabled. Resetting a program argument of a job belonging to another user requires ALTER privileges on that job. Arguments can be specified by position or by name.

RESET_JOB_ARGUMENT_VALUE requires that you be the owner of the job or have ALTER privileges on that job. You can also reset a job argument value if you have the CREATE ANY JOB privilege.

RESET_JOB_ARGUMENT_VALUE only supports arguments of SQL type. Therefore, argument values that are not of SQL type, such as booleans, are not supported as program or job arguments.

RUN_CHAIN Procedure

This procedure immediately runs a chain or part of a chain by creating a run-once job with the job name given. If no job_name is given, one is generated of the form RUN_CHAIN$_chainnameN, where chainname is the first 8 characters of the chain name and N is an integer.If a list of start steps is given, only those steps are started when the chain begins running. Steps not in the list that would normally have started are skipped and paused (so that they or the steps after them do not run). If start_steps is NULL, then the chain starts normally—that is, it performs an initial evaluation to see which steps to start running).

If a list of initial step states is given, the newly created chain job sets every listed step to the state specified for that step before evaluating the chain rules to see which steps to start. (Steps in the list are not started.)

Syntax

Runs a chain, with a list of start steps.

DBMS_SCHEDULER.RUN_CHAIN (
 chain_name IN VARCHAR2,
 start_steps IN VARCHAR2,
 job_name IN VARCHAR2 DEFAULT NULL);

Runs a chain, with a list of initial step states.

DBMS_SCHEDULER.RUN_CHAIN (
 chain_name IN VARCHAR2,
 step_state_list IN SYS.SCHEDULER$_STEP_TYPE_LIST,
 job_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 128-76 RUN_CHAIN Procedure Parameters

	Parameter	Description
	
chain_name

	
The name of the chain to run

	
job_name

	
The name of the job to create to run the chain

	
start_steps

	
Comma-separated list of the steps to start when the chain starts running

	
step_state_list

	
List of chain steps with an initial state (SUCCEEDED or FAILED) to set for each.

Set the attributes of sys.scheduler$_step_type as follows:

step_name The name of the step step_type 'SUCCEEDED' or 'FAILED error_number'

where error_number is a positive or negative integer.

Usage Notes

Running a chain requires CREATE JOB if the job is being created in the user's schema, or CREATE ANY JOB otherwise. In addition, the owner of the job being created needs execute privileges on the chain (as the owner of the chain, or as a user with the EXECUTE privilege on the chain or the EXECUTE ANY PROGRAM system privilege).

Examples

The following example illustrates how to start a chain in the middle by providing the initial state of some chain steps.

declare
 initial_step_states sys.scheduler$_step_type_list;
begin
 initial_step_states := sys.scheduler$_step_type_list(
 sys.scheduler$_step_type('step1', 'SUCCEEDED'),
 sys.scheduler$_step_type('step2', 'FAILED 27486'),
 sys.scheduler$_step_type('step3', 'SUCCEEDED'),
 sys.scheduler$_step_type('step5', 'SUCCEEDED'));
 dbms_scheduler.run_chain('my_chain', initial_step_states);
end;
/

RUN_JOB Procedure

This procedure runs a job immediately.

If a job is enabled, the Scheduler runs it automatically. It is not necessary to call RUN_JOB to run a job according to its schedule. Use RUN_JOB to run a job outside of its normal schedule.

Syntax

DBMS_SCHEDULER.RUN_JOB (
 job_name IN VARCHAR2,
 use_current_session IN BOOLEAN DEFAULT TRUE);

Parameters

Table 128-77 RUN_JOB Procedure Parameters

	Parameter	Description
	
job_name

	
A job name or a comma-separate list of entries, where each is the name of an existing job, optionally preceded by a schema name and dot separator.

If you specify a multiple-destination job, the job runs on all destinations. In this case, the use_current_session argument must be FALSE.

	
use_current_session

	
This specifies whether or not the job run should occur in the same session that the procedure was invoked from.

When use_current_session is set to TRUE:

	
The job runs as the user who called RUN_JOB, or in the case of a local external job with a credential, the user named in the credential.

	
You can test a job and see any possible errors on the command line.

	
run_count, last_start_date, last_run_duration, and failure_count are not updated.

	
RUN_JOB can be run in parallel with a regularly scheduled job run.

When use_current_session is set to FALSE:

	
The job runs as the user who is the job owner.

	
You need to check the job log to find error information.

	
run_count, last_start_date, last_run_duration, and failure_count are updated.

	
RUN_JOB fails if a regularly scheduled job is running.

For jobs that have a specified destination or destination group, or point to chains or programs with the detached attribute set to TRUE, use_current_session must be FALSE

Usage Notes

The job does not have to be enabled. If the job is disabled, the following validity checks are performed before running it:

	
The job points to a valid job class.The job owner has EXECUTE privileges on the job class.If a program or chain is referenced, the program/chain exists.If a program or chain is referenced, the job owner has privileges to execute the program/chain.All argument values have been set (or have defaults).The job owner has the CREATE EXTERNAL JOB privilege if this is an external job.

A TRUE value for use_current_session is not permitted for the following types of jobs:

	
Jobs that specify a destination or destination group in the destination_name attribute

	
Jobs that point to chains (chain jobs)

	
Jobs that make use of detached programs (detached jobs).

When use_current_session is TRUE, the call to RUN_JOB blocks until the job completes. Any errors that occur during the execution of the job are returned as errors to the RUN_JOB procedure. When use_current_session is FALSE, RUN_JOB returns immediately and the job is picked up by the job coordinator and passed on to a job slave for execution. The Scheduler views and logs must be queried for the outcome of the job.

Multiple user sessions can use RUN_JOB in their sessions simultaneously when use_current_session is set to TRUE.

RUN_JOB requires that you own the job or have ALTER privileges on that job. You can also run a job if you have the CREATE ANY JOB privilege.

Example

The following is an example of using RUN_JOB.

BEGIN
 DBMS_SCHEDULER.RUN_JOB(
 JOB_NAME => 'EODJOB, DSS.ETLJOB',
 USE_CURRENT_SESSION => FALSE);
END;

SET_AGENT_REGISTRATION_PASS Procedure

This procedure sets the agent registration password for a database. A Scheduler agent must register with the database before the database can submit jobs to the agent. The agent must provide this password when registering.

Syntax

DBMS_SCHEDULER.SET_AGENT_REGISTRATION_PASS (
 registration_password IN VARCHAR2,
 expiration_date IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
 max_uses IN NUMBER DEFAULT NULL);

Parameters

Table 128-78 SET_AGENT_REGISTRATION_PASS Procedure Parameters

	Parameter	Description
	
registration_password

	
This is the password that remote agents must specify in order to successfully register with the database. If this is NULL, then no agents will be able to register with the database.

	
expiration_date

	
If this is set to a non-NULL value, then the registration_password is not valid after this date. After this date, no agents can register with the database. This cannot be set to a date in the past.

	
max_uses

	
This is the maximum number of successful registrations that can be performed with this password. After the number of successful registrations has been performed with this password, then no agents can register with the database. This cannot be set to 0 or a negative value. If this is set to NULL, then there will be no limit on the number of successful registrations.

Usage Notes

To prevent abuse, this password can be set to expire after a given date or a maximum number of successful registrations. This procedure will overwrite any password already set. This requires the MANAGE SCHEDULER system privilege.

By default, max_uses is set to NULL, which means that there is no limit to the number of successful registrations.

Oracle recommends that an agent registration password be reset after every agent registration or every known set of agent registrations. Furthermore, Oracle recommends that this password be set to NULL if no new agents are being registered.

SET_ATTRIBUTE Procedure

This procedure modifies an attribute of a Scheduler object. It is overloaded to accept values of various types. To set an attribute to NULL, use the SET_ATTRIBUTE_NULL procedure. The attributes that can be set depend on the object being altered. All object attributes can be changed, except the object name.

Syntax

DBMS_SCHEDULER.SET_ATTRIBUTE (
 name IN VARCHAR2,
 attribute IN VARCHAR2,
 value IN {BOOLEAN|DATE|TIMESTAMP|
 TIMESTAMP WITH TIME ZONE|TIMESTAMP WITH LOCAL TIME ZONE|
 INTERVAL DAY TO SECOND});

DBMS_SCHEDULER.SET_ATTRIBUTE (
 name IN VARCHAR2,
 attribute IN VARCHAR2,
 value IN VARCHAR2,
 value2 IN VARCHAR2 DEFAULT NULL);

Parameters

Table 128-79 SET_ATTRIBUTE Procedure Parameters

	Parameter	Description
	
name

	
The name of the object

	
attribute

	
See Table 128-81 through Table 128-91.

	
value

	
The new value being set for the attribute. This cannot be NULL. To set an attribute value to NULL, use the SET_ATTRIBUTE_NULL procedure.

	
value2

	
The value2 argument is for an optional second value. Most attributes have only one value associated with them, but some can have two.

Table 128-80 is a directory of Scheduler object types and tables of attributes for the object types.

These object types can be viewed with Scheduler Data Dictionary Views, listed in Oracle Database Administrator's Guide .

Table 128-80 Attribute Tables for Scheduler Object Types

	Scheduler Object Type	Table of Attributes
	
Job

	
Table 128-81

	
Program

	
Table 128-83

	
Schedule

	
Table 128-84

	
File Watcher

	
Table 128-85

	
Job Class

	
Table 128-86

	
Window

	
Table 128-87

	
Chain

	
Table 128-88

	
Database Destination

	
Table 128-89

	
External Destination

	
Table 128-90

	
Group

	
Table 128-91

	
Credential

	
Table 128-92

Usage Notes

If an object is altered and it was in the enabled state, the Scheduler first disables it, then makes the change and reenables it. If any errors are encountered during the enable process, the object is not reenabled and an error is generated.

If an object is altered and it was in the disabled state, it remains disabled after it is altered.

To run SET_ATTRIBUTE for a window, a group of type WINDOW, or job class, you must have the MANAGE SCHEDULER privilege. Otherwise, you must be the owner of the object being altered or have ALTER privileges on that object or have the CREATE ANY JOB privilege.

Job

If there is a running instance of the job when the SET_ATTRIBUTE call is made, it is not affected by the call. The change is only affects future runs of the job.

If any of the schedule attributes of a job are altered while the job is running, the time of the next job run is scheduled using the new schedule attributes. Schedule attributes of a job include schedule_name, start_date, end_date, and repeat_interval.

If any of the program attributes of a job are altered while the job is running, the new program attributes take effect the next time the job runs. Program attributes of a job include program_name, job_action, job_type, and number_of_arguments.

If any job argument values are altered while the job is running, the new values take effect the next time the job runs.

Granting the ALTER privilege on a job lets a user alter all attributes of that job except its program attributes (program_name, job_type, job_action, program_action, and number_of_arguments) and does not allow a user to use a PL/SQL expression to specify the schedule for a job.

Oracle recommends that you not alter a job that was automatically created for you by the database. Jobs that were created by the database have the column SYSTEM set to TRUE in job views.

Program

If any currently running jobs use the program that was altered, they continue to run with the program definition prior to the alter. The job runs with the new program definition the next time the job executes.

Schedule

If a schedule is altered, the change does not affect running jobs and open windows that use this schedule. The change only goes into effect the next time the jobs runs or the window opens.

File Watcher

If a file watcher is altered, any currently running event-based jobs started by the file arrival event are not affected. On the local system, the new file watcher attributes take effect the next time that the file watcher checks for the arrival of the file (every ten minutes by default). On remote systems, there may be an additional delay before the new file watcher attributes take effect.

Job Class

With the exception of the default job class, all job classes can be altered. To alter a job class, you must have the MANAGE SCHEDULER privilege.

When a job class is altered, running jobs that belong to the class are not affected. The change only takes effect for jobs that have not started running yet.

Window

When a window is altered, it does not affect an active window. The changes only take effect the next time the window opens.

If there is no current resource plan, when a window with a designated resource plan opens, the Resource Manager activates with that plan.

Job Attribute Values

Table 128-81 lists attribute values for jobs.

	
Note:

See the CREATE_JOB procedure and the CREATE_JOBS procedure for more complete descriptions of the attributes in this table.

Table 128-81 Job Attribute Values

	Name	Description
	
allow_runs_in_restricted_mode

	
If TRUE, the job is permitted to run when the database is in restricted mode, provided that the job owner is permitted to log in during this mode. FALSE by default.

	
auto_drop

	
This attribute, if TRUE, causes a job to be automatically dropped after it completes or is automatically disabled. A job is considered completed if:

	
Its end date (or the end date of the schedule) has passed.

	
It has run max_runs number of times. max_runs must be set with SET_ATTRIBUTE.

	
It is not a repeating job and has run once.

A job is automatically disabled when it has failed max_failures times. max_failures is also set with SET_ATTRIBUTE.

If this attribute is set to FALSE, the jobs are not dropped and their metadata is kept until the job is explicitly dropped with the DROP_JOB procedure.

By default, jobs are created with auto_drop set to TRUE.

	
comments

	
An optional comment.

	
credential_name

	
This attribute specifies the name of the Scheduler credential object (credential) to use for a remote database job, a remote external job, a local external job, or an event-based job that processes a file arrival event. For local external jobs only, if this attribute is NULL (the default), then a preferred (default) credential is selected. See Oracle Database Administrator's Guide for information about preferred credentials for local external jobs.

See also: "CREATE_CREDENTIAL Procedure"

	
database_role

	
This attribute applies when the database participates in an Oracle Data Guard environment. If this attribute is set to 'PRIMARY', the job runs only when the database is in the role of the primary database. If set to 'LOGICAL STANDBY', the job runs only when the database is in the role of a logical standby. The default is 'PRIMARY' when the database is the primary database, and 'LOGICAL STANDBY' when the database is a logical standby.

Note: If you want a job to run for all database roles on a particular host, you must create two copies of the job on that host: one with a database_role of 'PRIMARY', and the other with a database_role of 'LOGICAL STANDBY'.

	
destination

	
*** Deprecated in Oracle Database 11g Release 2. Use destination_name instead.

This attribute specifies a host on which to run a remote external job. It must be set to the host name or IP address of the destination host. It can optionally be followed by a port number, in the following format:

hostname:port

This attribute is set to NULL by default.

	
destination_name

	
The database destination or external destination for the job. Use for remote database jobs and remote external jobs only. For jobs running on the local database or for local external jobs (executables), must be NULL.

See Table 128-27 for details about this attribute.

	
end_date

	
Specifies the date and time after which the job expires and is no longer run. After the end_date, if auto_drop is TRUE, the job is dropped. If auto_drop is FALSE, the job is disabled and the STATE of the job is set to COMPLETED.

If no value for end_date is specified, the job repeats forever unless max_runs or max_failures is set, in which case the job stops when either value is reached.

The value for end_date must be after the value for start_date. If it is not, an error is generated when the job is enabled.

	
event_spec

	
This attribute takes two values: the value argument specifies the event condition and the value2 argument specifies the queue specification. For more details, see the descriptions for the event_condition and queue_spec arguments in the "CREATE_JOB Procedure".

	
follow_default_timezone

	
If TRUE and if the job start_date is null, then when the default_timezone scheduler attribute is changed, the Scheduler recomputes the next run date and time for this job so that it is in accordance with the new time zone.

For example, if the job was set to run at 02:00 in the previous time zone, it will run at 02:00 in the new time zone.

If the job start_date is not null, then the time zone for the run date and time for the job is always specified by the time zone of the start_date.

If FALSE, the next start date and time for the job is not recomputed when the default_timezone scheduler attribute is changed. In this case, if the old time zone is three hours earlier than the new time zone, then a job scheduled to run at 02:00 in the old time zone runs at 05:00 in the new time zone.

Summer and winter transitions do not change the default time zone name.

	
instance_id

	
Valid only in an Oracle Real Application Clusters environment. Indicates the instance on which the job is to be run.

	
instance_stickiness

	
This attribute should only be used for a database running in an Oracle Real Application Clusters (Oracle RAC) environment. By default, it is set to TRUE. If you set instance_stickiness to TRUE, jobs start running on the instance with the lightest load and the Scheduler thereafter attempts to run on the instance that it last ran on. If that instance is either down or so overloaded that it does not start new jobs for a significant period of time, another instance runs the job. If the interval between runs is large, instance_stickiness is ignored and the job is handled as if it were a non-sticky job.

If instance_stickiness is set to FALSE, each instance of the job runs on the first instance available.

For environments other than Oracle RAC, this attribute is not useful because there is only one instance.

	
job_action

	
The action that the job performs, depending on the job_type attribute. For example, if job_type is 'STORED_PROCEDURE', job_action contains the name of the stored procedure.

	
job_class

	
The class this job is associated with.

	
job_priority

	
This attribute specifies the priority of this job relative to other jobs in the same class as this job. If multiple jobs within a class are scheduled to be executed at the same time, the job priority determines the order in which jobs from that class are picked up for execution by the job coordinator. It can be a value from 1 through 5, with 1 being the first to be picked up for job execution.

If no job priority is specified when creating a job, the default priority of 3 is assigned to it.

	
job_type

	
The type of this job.Valid values are: 'PLSQL_BLOCK', 'STORED_PROCEDURE', 'EXECUTABLE', and 'CHAIN'.

If this is set, program_name must be NULL.

	
job_weight

	
*** Deprecated in Oracle Database 11gR2. Do not change the value of this attribute from the default, which is 1.

Weight of the job for parallel execution.

	
logging_level

	
This attribute specifies how much information is logged. The possible options are:

DBMS_SCHEDULER.LOGGING_OFF

(The default) No logging is performed for this job. However, the logging level of the job class takes precedence and job logging may occur.

DBMS_SCHEDULER.LOGGING_FAILED_RUNS

The Scheduler logs only jobs that failed, with the reason for failure. If the job class has a higher logging level, then the higher logging level takes precedence.

DBMS_SCHEDULER.LOGGING_RUNS

The Scheduler writes detailed information to the job log for all runs of each job in this class. If the job class has a higher logging level, then the higher logging level takes precedence.

DBMS_SCHEDULER.LOGGING_FULL

In addition to recording every run of a job, the Scheduler records all operations performed on the job, including create, enable, disable, alter (with SET_ATTRIBUTE), stop, and so on.

	
max_failures

	
This attribute specifies the number of times a job can fail on consecutive scheduled runs before it is automatically disabled. Once a job is disabled, it is no longer executed and its STATE is set to BROKEN in the *_SCHEDULER_JOB views.

max_failures can be an integer between 1 to 1,000,000. By default, it is set to NULL, which indicates that new instances of the job are started regardless of how many previous instances have failed.

	
max_run_duration

	
This attribute specifies the maximum amount of time that the job should be allowed to run. Its data type is INTERVAL DAY TO SECOND. If this attribute is set to a non-zero and non-NULL value, and job duration exceeds this value, the Scheduler raises an event of type JOB_OVER_MAX_DUR. It is then up to your event handler to decide whether or not to allow the job to continue.

	
max_runs

	
This attribute specifies the maximum number of consecutive scheduled runs of the job. Once max_runs is reached, the job is disabled and its state is changed to COMPLETED.

max_runs can be an integer between 1 and 1,000,000. By default, it is set to NULL, which means that it repeats forever or until end_date or max_failures is reached.

	
number_of_arguments

	
The number of arguments if the program is inlined. If this is set, program_name should be NULL.

	
parallel_instances

	
This is a boolean attribute that can be set only for event-based jobs.

If FALSE (the default), then if an event is raised and the event-based job that processes that event is already running, the new event is ignored.

If TRUE, then an instance of the job is started for every instance of the event, and each job instance is a lightweight job so multiple instances of the same event-based job can run in parallel. Each lightweight job takes its attributes (such as action, maximum run duration, and so on) from the definition of the event-based job (its parent job). After the lightweight job completes, it is dropped. There is no explicit limit to the number of lightweight jobs that can run simultaneously to process multiple instances of the event. However, limitations may be imposed by available system resources.

The lightweight jobs are not visible in any of the *_SCHEDULER_JOBS views. However, they are visible in the *_SCHEDULER_RUNNING_JOBS views. The name of each lightweight job is the same as that of the parent job, and a subname is automatically generated to distinguish each lightweight job from its parent and from its siblings.

	
program_name

	
The name of a program object to use with this job. If this is set, job_action, job_type and number_of_arguments should be NULL.

	
raise_events

	
This attribute tells the Scheduler at what stages of the job execution to raise events. It is a bit vector in which zero or more of the following bits can be set. Each bit has a package constant corresponding to it.

	
job_started CONSTANT PLS_INTEGER := 1

	
job_succeeded CONSTANT PLS_INTEGER := 2

	
job_failed CONSTANT PLS_INTEGER :=4

	
job_broken CONSTANT PLS_INTEGER :=8

	
job_completed CONSTANT PLS_INTEGER :=16

	
job_stopped CONSTANT PLS_INTEGER :=32

	
job_sch_lim_reached CONSTANT PLS_INTEGER :=64

	
job_disabled CONSTANT PLS_INTEGER :=128

	
job_chain_stalled CONSTANT PLS_INTEGER :=256

	
job_all_events CONSTANT PLS_INTEGER := 511

	
job_run_completed CONSTANT PLS_INTEGER := job_succeeded + job_failed + job_stopped

Table 128-82 describes these event types in detail.

	
repeat_interval

	
Either a PL/SQL function returning the next date and time on which to run, or calendaring syntax expression. If this is set, schedule_name should be NULL. See "Calendaring Syntax" for more information.

	
restartable

	
This attribute specifies whether or not a job can be restarted in case of failure. By default, jobs are not restartable and this attribute is set to FALSE. Setting this to TRUE means that if a job fails while running, it is restarted from the beginning point of the job.

In the case of a chain job, if this attribute is TRUE, the chain is restarted from the beginning after an application failure. If this attribute is FALSE, or if there has been a database failure, the chain is restarted at the last running step. The restart_on_recovery attribute of that step then determines if the step is restarted or marked as stopped. (If marked as stopped, the chain evaluates rules and continues.)

Note that setting this attribute to TRUE might lead to data inconsistencies in some situations, for example, if data is committed within a job.

Retries on errors are not counted as regular runs. The run count or failure count is not incremented until the job succeeds or has failed all its six retries.

The restartable attribute is used by the Scheduler to determine whether to retry the job not only on regular application errors, but after a database malfunction as well. The Scheduler retries the job a maximum of six times. The first time, it waits for one second and multiplies this wait time with a factor of 10 each time thereafter.

Both the run count and failure count are incremented by 1 if the job has failed all its six retries. If the job immediately succeeds, or it succeeds on one of its retries, run count is incremented by 1.

The Scheduler stops retrying a job when:

	
One of the retries succeeds.

	
All of its six retries have failed.

	
The next retry would occur after the next regularly scheduled run of the job.

The Scheduler no longer retries the job if the next scheduled retry is past the next regularly scheduled run for repeating jobs.

	
schedule_limit

	
In heavily loaded systems, jobs are not always started at their scheduled time. This attribute enables you to have the Scheduler not start a job at all if the delay in starting the job is larger than the interval specified. It can be a value of 1 minute to 99 days. For example, if a job was supposed to start at noon and the schedule limit is set to 60 minutes, the job will not be run if it has not started to run by 1:00 p.m.

If schedule_limit is not specified, the job is executed at some later date as soon as there are resources available to run it. By default, this attribute is set to null, which indicates that the job can be run at any time after its scheduled time. A scheduled job run that is skipped because of this attribute does not count against the number of runs and failures of the job. An entry in the job log reflects the skipped run.

	
schedule_name

	
The name of a schedule, window, or group of type WINDOW to use as the schedule for this job. If this is set, end_date, start_date and repeat_interval should all be NULL.

	
start_date

	
The original date and time on which this job started or is scheduled to start. If this is set, schedule_name should be NULL.

	
stop_on_window_close

	
This attribute only applies if the schedule of a job is a window or a window group. Setting this attribute to TRUE implies that the job should stop once the associated window is closed. The job is stopped using the stop_job procedure with force set to FALSE.

By default, stop_on_window_close is set to FALSE. Therefore, if you do not set this attribute, the job continues after the window closes.

Note that, although the job is allowed to continue, its resource allocation will probably change because closing a window generally also implies a change in resource plans.

The following event types are valid values for the raise_events attribute in Table 128-81, "Job Attribute Values".

Table 128-82 Event Types Raised by the Scheduler

	Event Type	Description
	
job_all_events

	
Not an event, but a constant that provides an easy way for you to enable all events

	
job_broken

	
The job has been disabled and has changed to the BROKEN state because it exceeded the number of failures defined by the max_failures job attribute

	
job_chain_stalled

	
A job running a chain is in the CHAIN_STALLED state. A running chain becomes stalled if there are no steps running or scheduled to run and the chain evaluation_interval is set to NULL. No progress is made in the chain unless there is manual intervention.

	
job_completed

	
The job completed because it reached its max_runs or end_date

	
job_disabled

	
The job was disabled by the Scheduler or by a call to SET_ATTRIBUTE

	
job_failed

	
The job failed, either due to an error or an abnormal termination.

	
job_over_max_dur

	
The job exceeded the maximum run duration specified by its max_run_duration attribute. (Note: you do not need to enable this event with the raise_events job attribute; it is always enabled.)

	
job_run_completed

	
A job run either failed, succeeded, or was stopped

	
job_sch_lim_reached

	
The schedule limit of the job was reached. The job was not started because the delay in starting the job exceeded the value of the schedule_limit job attribute.

	
job_started

	
The job started

	
job_stopped

	
The job was stopped by a call to STOP_JOB

	
job_succeeded

	
The job completed successfully

Program Attribute Values

Table 128-83 lists program attribute values.

	
Note:

See the CREATE_PROGRAM procedure for more complete descriptions of the attributes in this table.

Table 128-83 Program Attribute Values

	Name	Description
	
comments

	
An optional comment. This can describe what the program does or give usage details.

	
detached

	
If TRUE, the program is a detached program. See Oracle Database Administrator's Guide for information about detached jobs and detached programs.

	
number_of_arguments

	
The number of arguments required by the stored procedure or other executable that the program invokes

	
program_action

	
The action that the program performs, indicated by the program_type attribute. For example, if program_type is 'STORED_PROCEDURE', program_action contains the name of the stored procedure.

	
program_type

	
The type of program. This must be one of these supported program types: 'PLSQL_BLOCK', 'STORED_PROCEDURE', and 'EXECUTABLE'.

Schedule Attribute Values

Table 128-84 lists schedule attribute values.

	
Note:

See the CREATE_SCHEDULE and CREATE_CALENDAR_SCHEDULE procedures for more complete descriptions of the attributes in this table.

Table 128-84 Schedule Attribute Values

	Name	Description
	
comments

	
An optional comment.

	
end_date

	
The cutoff date and time after which the schedule does not specify any dates.

	
event_spec

	
This attribute takes two values: the value argument should contain the event condition and the value2 argument should contain the queue specification. For more details, see the descriptions for the event_condition and queue_spec arguments to the "CREATE_JOB Procedure".

	
repeat_interval

	
An attribute specifying how often the schedule should repeat, using the calendaring syntax. See "Calendaring Syntax" for more information.

	
start_date

	
The start or reference date and time used by the calendaring syntax.

File Watcher Attribute Values

Table 128-85 lists file watcher attribute values.

Table 128-85 File Watcher Attribute Values

	Parameter	Description
	
destination

	
Remote host name or IP address where the file is expected to arrive. If NULL, destination is the local host.

	
directory_path

	
Directory in which the file is expected to arrive. The single wildcard '?' at the beginning of the path denotes the Oracle home path. For example, '?/rdbms/log' denotes the rdbms/log subdirectory of the Oracle home directory.

	
file_name

	
Name of the file being looked for. Two wildcards are permitted anywhere in the file name: '?' denotes any single character, and '*' denotes zero or more characters. This attribute cannot be NULL.

	
credential_name

	
Name of a valid Scheduler credential object. The file watcher uses the credential to authenticate itself with the host operating system to access the watched-for file. The file watcher owner must have the EXECUTE privilege on the credential. Cannot be NULL.

	
min_file_size

	
Minimum file size in bytes before the file watcher considers the file found. Default is 0.

	
steady_state_duration

	
Minimum time interval that the file must remain unchanged before the file watcher considers the file found. If NULL, an internal value is used.

	
comments

	
Optional comment.

Job Class Attribute Values

Table 128-86 lists job class attribute values.

	
Note:

See the CREATE_JOB_CLASS procedure for more complete descriptions of the attributes in this table.

Table 128-86 Job Class Attribute Values

	Name	Description
	
comments

	
An optional comment about the class.

	
log_history

	
This attribute controls the number of days that job log entries for jobs in this class are retained. It helps prevent the job log from growing indiscriminately.

The range of valid values is 0 through 1000000. If set to 0, no history is kept. If NULL, retention days are set by the log_history Scheduler attribute (set with SET_SCHEDULER_ATTRIBUTE).

	
logging_level

	
This attribute specifies how much information is logged. The valid values are:

	
DBMS_SCHEDULER.LOGGING_OFF

No logging is performed for any jobs in this class.

	
DBMS_SCHEDULER.LOGGING_FAILED_RUNS

The Scheduler logs only jobs in the class that failed, with the reason for failure.

	
DBMS_SCHEDULER.LOGGING_RUNS

The Scheduler writes detailed information to the job log for all runs of each job in this class. This is the default.

	
DBMS_SCHEDULER.LOGGING_FULL

The Scheduler records all operations performed on all jobs in this class, in addition to recording every run of a job. Every time a job is created, enabled, disabled, altered (with SET_ATTRIBUTE), stopped, and so on, an entry is recorded in the log.

	
resource_consumer_group

	
The resource consumer group that a class is associated with. All jobs in the class run under this resource consumer group. See Oracle Database Administrator's Guide for a description of resource consumer groups and the Database Resource Manager.

	
service

	
The database service that the jobs in the job class have affinity to. If both the resource_consumer_group and service attributes are set for a job class, and if the service is mapped to a resource consumer group, the resource_consumer_group attribute takes precedence.

Window Attribute Values

Table 128-87 lists window attribute values.

	
Note:

See the CREATE_WINDOW procedure for more complete descriptions of the attributes in this table.

Table 128-87 Window Attribute Values

	Name	Description
	
comments

	
An optional comment about the window.

	
duration

	
The duration of the window.

	
end_date

	
The date after which the window no longer opens. If this is set, schedule_name must be NULL.

	
repeat_interval

	
An attribute specifying how often the schedule should repeat, using the calendaring syntax. PL/SQL date functions are not allowed. If this is set, schedule_name must be NULL. See "Calendaring Syntax" for more information.

	
resource_plan

	
The resource plan to be associated with a window. When the window opens, the system switches to this resource plan. When the window closes, the original resource plan is restored. If a resource plan has been made active with the force option, no resource plan switch occurs.

Only one resource plan can be associated with a window. It may be NULL or the empty string (""). When it is NULL, the resource plan that is in effect when the window opens stays in effect for the duration of the window. When it is the empty string, the resource manager is disabled for the duration of the window.

	
schedule_name

	
The name of a schedule to use with this window. If this is set, start_date, end_date, and repeat_interval must all be NULL.

	
start_date

	
The next date and time on which this window is scheduled to open. If this is set, schedule_name must be NULL.

	
window_priority

	
The priority of the window. Must be either 'LOW' (default) or 'HIGH'.

Chain Attribute Values

Table 128-88 lists chain attribute values.

	
Note:

See the CREATE_CHAIN procedure for more complete descriptions of the attributes in this table.

Table 128-88 Chain Attribute Values

	Name	Description
	
comments

	
An optional comment describing the purpose of the chain.

	
evaluation_interval

	
If not NULL, provides an additional evaluation of the chain at this interval, as well as at normal evaluation times (when the job starts, when a step completes, or when an event that is associated with an event step arrives)

This attribute should only to be used when chain rules use SQL syntax and the rule conditions contain elements that are not under the control of the Scheduler, because the extra interval is CPU intensive. For most chains, the normal evaluation times are sufficient.

	
rule_set_name

	
In the normal case, no rule set should be passed in. The Scheduler automatically creates a rule set and associated empty evaluation context. You then use DEFINE_CHAIN_RULE to add rules and DROP_CHAIN_RULE to remove them.

Advanced users can create a rule set that describes their chain dependencies and pass it in here. This allows greater flexibility in defining rules. For example, conditions can refer to external variables, and tables can be exposed through the evaluation context. If you pass in a rule set, you must ensure that it is in the format of a chain rule set. (For example, all steps must be listed as variables in the evaluation context). If no rule set is passed in, the rule set created is of the form SCHED_RULESET${N} and the evaluation context created is of the form SCHED_EVCTX${N}

See Oracle Streams Concepts and Administration for information on rules and rule sets.

Database Destination Attribute Values

Table 128-89 lists database destination attribute values.

	
Note:

See the CREATE_DATABASE_DESTINATION procedure for more complete descriptions of the attributes in this table.

Table 128-89 Database Destination Attribute Values

	Name	Description
	
agent

	
The name of the external destination (also known as agent destination) that is used to connect to the remote database.

You can obtain valid external destination names from the view ALL_SCHEDULER_EXTERNAL_DESTS.

	
connect_info

	
The TNS connect descriptor that identifies the remote database to connect to, or the net service name (alias) in tnsnames.ora that resolves to the connect descriptor.

Note: This corresponds to the tns_name argument of CREATE_DATABASE_DESTINATION.

	
enabled

	
If TRUE, the database destination is enabled.

	
comments

	
An optional comment about the database destination.

External Destination Attribute Values

Table 128-90 lists external destination attribute values.

	
Note:

External destinations are created only implicitly by registering a remote Scheduler agent with the local database.

Table 128-90 External Destination Attribute Values

	Name	Description
	
hostname

	
(GET_ATTRIBUTE only) The fully qualified host name (including domain) or IP address of the computer on which the Scheduler agent resides.

	
port

	
(GET_ATTRIBUTE only) The TCP port number on which the agent listens.

	
ip_address

	
(GET_ATTRIBUTE only) The IP address of the host on which the agent resides.

	
enabled

	
If TRUE, the external destination is enabled.

	
comments

	
An optional comment about the external destination.

Group Attribute Values

Table 128-91 lists group attribute values.

	
Note:

See the CREATE_GROUP procedure for more complete descriptions of the attributes in this table.

Table 128-91 Group Attribute Values

	Name	Description
	
group_type

	
(GET_ATTRIBUTE only) The group type (either WINDOW, DB_DEST, or EXTERNAL_DEST).

	
member_name

	
Comma-separated list of members. Replaces the existing list of members. To add one or more members to the existing list, use ADD_GROUP_MEMBER.

Note: this attribute corresponds to the member argument of CREATE_GROUP.

	
enabled

	
If TRUE, the group is enabled.

	
comments

	
An optional comment about the group.

	
number_of_members

	
(GET_ATTRIBUTE only) The number of members in the group.

Credential Attribute Values

Table 128-92 lists credential attribute values.

	
Note:

See the CREATE_CREDENTIAL procedure for more complete descriptions of the attributes in this table.

Table 128-92 Credential Attribute Values

	Name	Description
	
username

	
The user name for logging into to the host operating system or remote Oracle database. Maximum length is 64.

	
password

	
The password for the user name. Maximum length is 128.

	
comments

	
A description of the credential. Maximum length is 240.

	
windows_domain

	
For a Windows remote executable target, this is the domain that the specified user belongs to. Maximum length is 64.

	
database_role

	
The value of the database_role attribute is used as the system privilege for logging into a remote database to run a remote database job.

Valid values are: SYSDBA and SYSOPER.

SET_ATTRIBUTE_NULL Procedure

This procedure sets an attribute of an object to NULL. The attributes that can be set depend on the object being altered. If the object is enabled, it is disabled before being altered and reenabled afterward. If the object cannot be reenabled, an error is generated and the object is left in a disabled state.

Syntax

DBMS_SCHEDULER.SET_ATTRIBUTE_NULL (
 name IN VARCHAR2,
 attribute IN VARCHAR2);

Parameters

Table 128-93 SET_ATTRIBUTE_NULL Procedure Parameters

	Parameter	Description
	
name

	
The name of the object

	
attribute

	
The attribute being changed

Usage Notes

To run SET_ATTRIBUTE_NULL for a window, group of type WINDOW, or job class, you must have the MANAGE SCHEDULER privilege. Otherwise, you must be the owner of the object being altered or have ALTER privileges on that object or have the CREATE ANY JOB privilege.

SET_JOB_ANYDATA_VALUE Procedure

This procedure sets the value for an argument of the associated program for a job, encapsulated in an AnyData object. It overrides any default value set for the program argument. NULL is a valid assignment for a program argument. The argument can be specified by position or by name. You can specify by name only when:

	
The job points to a saved program object

	
The argument was assigned a name with the DEFINE_ANYDATA_ARGUMENT Procedure

Scheduler does no type checking of the argument at any time.

SET_JOB_ANYDATA_VALUE is overloaded.

Syntax

Sets a program argument by its position.

DBMS_SCHEDULER.SET_JOB_ANYDATA_VALUE (
 job_name IN VARCHAR2,
 argument_position IN PLS_INTEGER,
 argument_value IN SYS.ANYDATA);

Sets a program argument by its name.

DBMS_SCHEDULER.SET_JOB_ANYDATA_VALUE (
 job_name IN VARCHAR2,
 argument_name IN VARCHAR2,
 argument_value IN SYS.ANYDATA);

Parameters

Table 128-94 SET_JOB_ANYDATA_VALUE Procedure Parameters

	Parameter	Description
	
job_name

	
The name of the job to be altered

	
argument_name

	
The name of the program argument being set

	
argument_position

	
The position of the program argument being set

	
argument_value

	
The new value to be assigned to the program argument, encapsulated in an AnyData object

Usage Notes

SET_JOB_ANYDATA_VALUE requires that you own the job or have ALTER privileges on that job. You can also set a job argument value if you have the CREATE ANY JOB privilege.

SET_JOB_ANYDATA_VALUE does not apply to lightweight jobs because lightweight jobs cannot take AnyData arguments.

	
See Also:

	
"SET_JOB_ARGUMENT_VALUE Procedure"

	
"DEFINE_ANYDATA_ARGUMENT Procedure"

SET_JOB_ARGUMENT_VALUE Procedure

This procedure sets the value of an argument in a program associated with a job. It overrides any default value set for the program argument. NULL is a valid assignment for a program argument. The argument can be specified by position or by name. You can specify by name only when:

	
The job points to a saved program object

	
The argument was assigned a name with the DEFINE_PROGRAM_ARGUMENT Procedure or the DEFINE_METADATA_ARGUMENT Procedure

Scheduler does no type checking of the argument at any time.

SET_JOB_ARGUMENT_VALUE is overloaded.

Syntax

Sets an argument value by position:

DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE (
 job_name IN VARCHAR2,
 argument_position IN PLS_INTEGER,
 argument_value IN VARCHAR2);

Sets an argument value by name:

DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE (
 job_name IN VARCHAR2,
 argument_name IN VARCHAR2,
 argument_value IN VARCHAR2);

Parameters

Table 128-95 SET_JOB_ARGUMENT_VALUE Procedure Parameters

	Parameter	Description
	
job_name

	
The name of the job to be altered

	
argument_name

	
The name of the program argument being set

	
argument_position

	
The position of the program argument being set

	
argument_value

	
The new value to be set for the program argument. To set a non-VARCHAR value, use the SET_JOB_ANYDATA_VALUE procedure.

Usage Notes

SET_JOB_ARGUMENT_VALUE requires that you be the owner of the job or have ALTER privileges on that job. You can also set a job argument value if you have the CREATE ANY JOB privilege.

SET_JOB_ARGUMENT_VALUE only supports arguments of SQL type. Therefore, argument values that are not of SQL type, such as booleans, are not supported as program or job arguments.

SET_JOB_ARGUMENT_VALUE can be used to set arguments of lightweight jobs but only if the argument is of type VARCHAR2.

	
See Also:

	
"SET_JOB_ANYDATA_VALUE Procedure"

	
"DEFINE_PROGRAM_ARGUMENT Procedure"

SET_JOB_ATTRIBUTES Procedure

This procedure changes an attribute of a job.

Syntax

DBMS_SCHEDULER.SET_JOB_ATTRIBUTES (
 jobattr_array IN JOBATTR_ARRAY,
 commit_semantics IN VARCHAR2 DEFAULT 'STOP_ON_FIRST_ERROR');

Parameters

Table 128-96 SET_JOB_ATTRIBUTES Procedure Parameters

	Parameter	Description
	
jobattr_array

	
The array of job attribute changes.

	
commit_semantics

	
The commit semantics. The following types are supported:

	
STOP_ON_FIRST_ERROR returns on the first error and commits previous successful attribute changes to disk. This is the default.

	
TRANSACTIONAL returns on the first error and rolls back everything that happened before that error.

	
ABSORB_ERRORS tries to absorb any errors and complete the rest of the job attribute changes on the list. It commits all the successful changes. If errors occur, you can query the view SCHEDULER_BATCH_ERRORS for details.

Usage Notes

Calling SET_ATTRIBUTE on an enabled job disables the job, changes the attribute value, and reenables the job. SET_JOB_ATTRIBUTES changes the attribute values in the context of a single transaction.

SET_SCHEDULER_ATTRIBUTE Procedure

This procedure sets the value of a Scheduler attribute. This takes effect immediately but the resulting changes may not be seen immediately.

Table 128-97 provides short attribute descriptions for the SET_SCHEDULER_ATTRIBUTE procedure. For complete descriptions, see section "Setting Scheduler Preferences" in Oracle Database Administrator's Guide.

Syntax

DBMS_SCHEDULER.SET_SCHEDULER_ATTRIBUTE (
 attribute IN VARCHAR2,
 value IN VARCHAR2);

Parameters

Table 128-97 SET_SCHEDULER_ATTRIBUTE Procedure Parameters

	Parameter	Description
	
attribute

	
The name of the Scheduler attribute. Possible values are:

	
'default_timezone': Repeating jobs and windows that use the calendaring syntax retrieve the time zone from this attribute when start_date is not specified. See "Calendaring Syntax" for more information.

	
'email_server': The SMTP server address that the Scheduler uses to send e-mail notifications for job state events. E-mail notifications cannot be sent if this attribute is NULL.

	
'email_sender': The default e-mail address of the sender of job state e-mail notifications.

	
'email_server_credential': The schema and name of an existing credential object that SYS has execute object privileges on. Default is NULL. The username and password stored in this credential are used to authenticate with the e-mail server when sending e-mail notifications.

This functionality is available with Oracle Database 11g Release 2 (11.2.0.2).

	
'email_server_encryption': This attribute indicates whether or not encryption is enabled for this email server connection, and if so, at what point encryption starts, and with which protocol. Values are:

	
NONE: the default, indicating no encryption used

	
SSL_TLS: indicating that either SSL or TLS are used, from the beginning of the connection

	
STARTTLS:indicating that the connection starts unencrypted, but the command STARTTLS is sent to the e-mail server and starts encryption

This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2).

	
'event_expiry_time': The time, in seconds, before a job state event generated by the Scheduler expires from the Scheduler event queue. If NULL, job state events expire after 24 hours.

	
'log_history': The number of days that log entries for both the job log and the window log are retained. Default is 30 and the range of valid values is 0 through 1000000.

	
'max_job_slave_processes': This Scheduler attribute is not used.

	
value

	
The new value of the attribute

Usage Notes

To run SET_SCHEDULER_ATTRIBUTE, you must have the MANAGE SCHEDULER privilege.

	
See Also:

Oracle Database Administrator's Guide for more detailed descriptions of Scheduler attributes

STOP_JOB Procedure

This procedure stops currently running jobs or all jobs in a job class. After stopping the job, the state of a one-time job is set to STOPPED, whereas the state of a repeating job is set to SCHEDULED or COMPLETED, depending on whether the next run of the job is scheduled.

If a job pointing to a chain is stopped, all running steps of the running chain are stopped.

If a job has multiple destinations, the database attempts to stop the job at all destinations.

For external jobs, STOP_JOB stops only the external process that was directly started by the job action. It does not stop child processes of external jobs.

Syntax

DBMS_SCHEDULER.STOP_JOB (
 job_name IN VARCHAR2
 force IN BOOLEAN DEFAULT FALSE
 commit_semantics IN VARCHAR2 DEFAULT 'STOP_ON_FIRST_ERROR');

Parameters

Table 128-98 STOP_JOB Procedure Parameters

	Parameter	Description
	
job_name

	
Name of a job to stop. Can be a comma-separate list of jobs, where each entry can be one of the following:

	
Job name: the name of an existing job, optionally preceded by a schema name and dot separator.

	
Job destination ID: a number, obtained from the JOB_DEST_ID column of the *_SCHEDULER_JOB_DESTS views, that represents the unique combination of a job, a credential, and a destination.

	
Job class: the name of a job class. Must be preceded by the SYS schema name and a dot separator.

If you specify a job class, all jobs that belong to that job class are stopped. If you specify a job that was created with a destination group as its destination_name attribute, all job instances on all destinations are stopped.

	
force

	
If force is set to FALSE, the Scheduler tries to gracefully stop the job using an interrupt mechanism. This method gives control back to the slave process, which can update the status of the job in the job queue to stopped. If this fails, an error is returned.

If force is set to TRUE, the Scheduler immediately terminates the job slave. Oracle recommends that STOP_JOB with force set to TRUE be used only after a STOP_JOB with force set to FALSE has failed.

Use of the force option requires the MANAGE SCHEDULER system privilege.

	
commit_semantics

	
The commit semantics. The following two types are supported:

	
STOP_ON_FIRST_ERROR: The procedure returns on the first error and commits previous successful stop operations to disk. This is the default.

	
ABSORB_ERRORS: The procedure tries to absorb any errors, stops the rest of the jobs, and commits all the successful stop operations. This type is available only if no job classes are specified in the job_name list. If errors occur, you can query the view SCHEDULER_BATCH_ERRORS for details.

Usage Notes

STOP_JOB without the force option requires that you be the owner of the job or have ALTER privileges on that job. You can also stop a job if you have the CREATE ANY JOB or MANAGE SCHEDULER privilege.

STOP_JOB with the force option requires that you have the MANAGE SCHEDULER privilege.

Example

The following is an example of using STOP_JOB.

BEGIN
 DBMS_SCHEDULER.STOP_JOB('DSS.ETLJOB, 984, 1223, SYS.ETL_JOBCLASS');
END;

DBMS_SERVER_ALERT

129 DBMS_SERVER_ALERT

The DBMS_SERVER_ALERT package enables you to configure the Oracle Database server to issue an alert when a threshold for a specified server metric has been violated. You can configure both warning and critical thresholds for a large number of predefined metrics.

If a warning threshold is reached, the server generates a severity level 5 alert. If a critical threshold is reached, the server generates a severity level 1 alert.

The chapter contains the following topics:

	
Using DBMS_SERVER_ALERT

	
Security Model

	
Object Types

	
Relational Operators

	
Supported Metrics

	
Summary of DBMS_SERVER_ALERT Subprograms

Using DBMS_SERVER_ALERT

This section contains topics which relate to using the DBMS_SERVER_ALERT package. The following topics define constants used in package procedures.

	
Security Model

	
Object Types

	
Relational Operators

	
Supported Metrics

Security Model

The user needs DBA or IMP_FULL_DATABASE roles to use the DBMS_SERVER_ALERT package.

Object Types

You qualify the metric by an individual object for the following object types.

Table 129-1 Object Types Defined as Constants

	Constant	Description
	
OBJECT_TYPE_SYSTEM

	
Metrics collected on the system level for each instance.

	
OBJECT_TYPE_FILE

	
Metrics collected on the file level. These are used for AVG_FILE_READ_TIME and AVG_FILE_WRITE_TIME metrics.

	
OBJECT_TYPE_SERVICE

	
Metrics collected on the service level. Currently ELAPSED_TIME_PER_CALL and CPU_TIME_PER_CALL are collected.

	
OBJECT_TYPE_TABLESPACE

	
Metrics collected on the tablespace level.

Note: Dictionary managed tablespaces are not supported.

	
OBJECT_TYPE_EVENT_CLASS

	
Metrics collected on wait event class level. Currently supported metrics are AVG_USERS_WAITING and DB_TIME_WAITING.

	
OBJECT_TYPE_SESSION

	
Metrics collected on the session level. Currently only BLOCKED_USERS is collected. The threshold can only be set at the instance level, which means that no object name should be specified when setting the threshold for this type of metric.

Relational Operators

You can specify a relational comparison operator to determine whether or not a given metric's value violates the threshold setting. The server supports the following operators.

Table 129-2 Relational Operators Defined as Constants

	Constant	Description
	
OPERATOR_CONTAINS

	
A metric value matching an entry in a list of threshold values is considered a violation.

	
OPERATOR_DO_NOT_CHECK

	
The metric value is not compared to the threshold value, and no alerts are generated. Use this operator to disable alerts for a metric.

	
OPERATOR_EQ

	
A metric value equal to the threshold value is considered a violation.

	
OPERATOR_GE

	
A metric value greater than or equal to the threshold value is considered a violation.

	
OPERATOR_GT

	
A metric value greater than the threshold value is considered a violation.

	
OPERATOR_LE

	
A metric value less than or equal to the threshold value is considered a violation.

	
OPERATOR_LT

	
A metric value less than the threshold value is considered a violation.

	
OPERATOR_NE

	
A metric value not equal to the threshold value is considered a violation.

Supported Metrics

The following metrics are supported. All internal metric names are supplied as package constants.

Table 129-3 List of Supported Metrics

	Metric Name (Internal)	Metric Name (External)	Units
	
AVG_FILE_READ_TIME

	
Average File Read Time

	
Microseconds

	
AVG_FILE_WRITE_TIME

	
Average File Write Time

	
Microseconds

	
AVG_USERS_WAITING

	
Average Number of Users Waiting on a Class of Wait Events

	
Count of sessions

	
BLOCKED_USERS

	
Number of Users blocked by some Session

	
Number of Users

	
BRANCH_NODE_SPLITS_SEC

	
Branch Node Splits (for each second)

	
Splits for each Second

	
BRANCH_NODE_SPLITS_TXN

	
Branch Node Splits (for each transaction)

	
Splits for each Transaction

	
BUFFER_CACHE_HIT

	
Buffer Cache Hit (%)

	
% of cache accesses

	
CLUSTER_MSG_WAIT_SCT

	
Cluster Messaging Wait (by session count)

	
Count of sessions

	
CLUSTER_MSG_WAIT_TIME

	
Cluster Messaging Wait (by time)

	
Microseconds

	
CONSISTENT_CHANGES_SEC

	
Consistent Changes (for each second)

	
Changes for each Second

	
CONSISTENT_CHANGES_TXN

	
Consistent Changes (for each transaction)

	
Changes for each Transaction

	
CONSISTENT_GETS_SEC

	
Consistent Gets (for each second)

	
Gets for each Second

	
CONSISTENT_GETS_TXN

	
Consistent Gets (for each transaction)

	
Gets for each Transaction

	
CONTENTION_WAIT_SCT

	
Internal Contention Wait (by session count)

	
Count of sessions

	
CONTENTION_WAIT_TIME

	
Internal Contention Wait (by time)

	
Microseconds

	
CPU_TIME_PER_CALL

	
CPU time for each user call for each service

	
Microseconds for each call

	
CR_BLOCKS_CREATED_SEC

	
CR Blocks Created (for each second)

	
Blocks for each Second

	
CR_BLOCKS_CREATED_TXN

	
CR Blocks Created (for each transaction)

	
Blocks for each Transaction

	
CR_RECORDS_APPLIED_SEC

	
CR Undo Records Applied (for each second)

	
Records for each Second

	
CR_RECORDS_APPLIED_TXN

	
CR Undo Records Applied (for each transaction)

	
Records for each Transaction

	
CURSOR_CACHE_HIT

	
Cursor Cache Hit (%)

	
% of soft parses

	
DATABASE_WAIT_TIME

	
Database Wait Time (%)

	
% of all database time

	
DATABASE_CPU_TIME

	
Database CPU Time (%)

	
% of all database time

	
DATA_DICT_HIT

	
Data Dictionary Hit (%)

	
% of dictionary accesses

	
DATA_DICT_MISS

	
Data Dictionary Miss (%)

	
% of dictionary accesses

	
DB_BLKGETS_SEC

	
DB Block Gets (for each second)

	
Gets for each Second

	
DB_BLKGETS_TXN

	
DB Block Gets (for each transaction)

	
Gets for each Transaction

	
DB_TIME_WAITING

	
Percent of Database Time Spent Waiting on a Class of Wait Events

	
% of Database Time

	
DBR_IO_LIMIT_WAIT_SCT

	
Resource Mgr I/O Limit Wait (by session count)

	
Count of sessions

	
DBR_IO_LIMIT_WAIT_TIME

	
Resource Mgr I/O Limit Wait (by time)

	
Microseconds

	
DBR_CPU_LIMIT_WAIT_SCT

	
Resource Mgr CPU Limit Wait (by session count)

	
Count of sessions

	
DBR_CPU_LIMIT_WAIT_TIME

	
Resource Mgr CPU Limit Wait (by time)

	
Microseconds

	
DBR_USR_LIMIT_WAIT_SCT

	
Resource Mgr User Limit Wait (by session count)

	
Count of sessions

	
DBR_USR_LIMIT_WAIT_TIME

	
Resource Mgr User Limit Wait (by time)

	
Microseconds

	
DBWR_CKPT_SEC

	
DBWR Checkpoints (for each second)

	
Checkpoints for each Second

	
DISK_IO

	
Disk I/O

	
Milliseconds

	
DISK_IO_WAIT_SCT

	
Disk I/O Wait (by session count)

	
Count of sessions

	
DISK_SORT_SEC

	
Sorts to Disk (for each second)

	
Sorts for each Second

	
DISK_SORT_TXN

	
Sorts to Disk (for each transaction)

	
Sorts for each Transaction

	
ELAPSED_TIME_PER_CALL

	
Elapsed time for each user call for each service

	
Microseconds for each call

	
ENQUEUE_DEADLOCKS_SEC

	
Enqueue Deadlocks (for each second)

	
Deadlocks for each Second

	
ENQUEUE_DEADLOCKS_TXN

	
Enqueue Deadlocks (for each transaction)

	
Deadlocks for each Transaction

	
ENQUEUE_REQUESTS_SEC

	
Enqueue Requests (for each second)

	
Requests for each Second

	
ENQUEUE_REQUESTS_TXN

	
Enqueue Requests (for each transaction)

	
Requests for each Transaction

	
ENQUEUE_TIMEOUTS_SEC

	
Enqueue Timeouts (for each second)

	
Timeouts for each Second

	
ENQUEUE_TIMEOUTS_TXN

	
Enqueue Timeouts (for each transaction)

	
Timeouts for each Transaction

	
ENQUEUE_WAITS_SEC

	
Enqueue Waits (for each second)

	
Waits for each Second

	
ENQUEUE_WAITS_TXN

	
Enqueue Waits (for each transaction)

	
Waits for each Transaction

	
EXECUTE_WITHOUT_PARSE

	
Executes Performed Without Parsing

	
% of all executes

	
FULL_INDEX_SCANS_SEC

	
Fast Full Index Scans (for each second)

	
Scans for each Second

	
FULL_INDEX_SCANS_TXN

	
Fast Full Index Scans (for each transaction)

	
Scans for each Transaction

	
GC_AVG_CR_GET_TIME

	
Global Cache CR Request

	
Milliseconds

	
GC_AVG_CUR_GET_TIME

	
Global Cache Current Request

	
Milliseconds

	
GC_BLOCKS_CORRUPT

	
Global Cache Blocks Corrupt

	
Blocks

	
GC_BLOCKS_LOST

	
Global Cache Blocks Lost

	
Blocks

	
HARD_PARSES_SEC

	
Hard Parses (for each second)

	
Parses for each Second

	
HARD_PARSES_TXN

	
Hard Parses (for each transaction)

	
Parses for each Transaction

	
LEAF_NODE_SPLITS_SEC

	
Leaf Node Splits (for each second)

	
Splits for each Second

	
LEAF_NODE_SPLITS_TXN

	
Leaf Node Splits (for each transaction)

	
Splits for each Transaction

	
LIBRARY_CACHE_HIT

	
Library Cache Hit (%)

	
% of cache accesses

	
LIBRARY_CACHE_MISS

	
Library Cache Miss (%)

	
% of cache accesses

	
LOG_SWITCH_SEC

	
Background Checkpoints (for each second)

	
Checkpoints for each Second

	
LOGONS_CURRENT

	
Current Number of Logons

	
Number of Logons

	
LOGONS_SEC

	
Cumulative Logons (for each second)

	
Logons for each Second

	
LOGONS_TXN

	
Cumulative Logons (for each transaction)

	
Logons for each Transaction

	
LONG_TABLE_SCANS_SEC

	
Scans on Long Tables (for each second)

	
Scans for each Second

	
LONG_TABLE_SCANS_TXN

	
Scans on Long Tables (for each transaction)

	
Scans for each Transaction

	
OPEN_CURSORS_SEC

	
Cumulative Open Cursors (for each second)

	
Cursors for each Second

	
MEMORY_SORTS_PCT

	
Sorts in Memory (%)

	
% of sorts

	
NETWORK_BYTES_SEC

	
Network Bytes, for each second

	
Bytes for each Second

	
NETWORK_MSG_WAIT_SCT

	
Network Message Wait (by session count)

	
Count of sessions

	
NETWORK_MSG_WAIT_TIME

	
Network Message Wait (by time)

	
Microseconds

	
OPEN_CURSORS_CURRENT

	
Current Number of Cursors

	
Number of Cursors

	
OPEN_CURSORS_TXN

	
Cumulative Open Cursors (for each transaction)

	
Cursors for each Transaction

	
OS_SCHED_CPU_WAIT_SCT

	
Operating System Scheduler CPU Wait (by session count)

	
Count of sessions

	
OS_SCHED_CPU__WAIT_TIME

	
Operating System Scheduler CPU Wait (by time)

	
Microseconds

	
OS_SERVICE_WAIT_SCT

	
Operating System Service Wait (by session count)

	
Count of sessions

	
OS_SERVICE_WAIT_TIME

	
Operating System Service Wait (by time)

	
Microseconds

	
OTHER_WAIT_SCT

	
Other Waits (by session count)

	
Count of sessions

	
OTHER_WAIT_TIME

	
Other Waits (by time)

	
Microseconds

	
PARSE_FAILURES_SEC

	
Parse Failures (for each second)

	
Parses for each Second

	
PARSE_FAILURES_TXN

	
Parse Failures (for each transaction)

	
Parses for each Transaction

	
PGA_CACHE_HIT

	
PGA Cache Hit (%)

	
% bytes processed in PGA

	
PHYS_DESGN_WAIT_SCT

	
Physical Design Wait (by session count)

	
Count of sessions

	
PHYS_DESGN_WAIT_TIME

	
Physical Design Wait (by time)

	
Microseconds

	
PHYSICAL_READS_SEC

	
Physical Reads (for each second)

	
Reads for each Second

	
PHYSICAL_READS_TXN

	
Physical Reads (for each transaction)

	
Reads for each Transaction

	
PHYSICAL_WRITES_SEC

	
Physical Writes (for each second)

	
Writes for each Second

	
PHYSICAL_WRITES_TXN

	
Physical Writes (for each transaction)

	
Writes for each Transaction

	
PHYSICAL_READS_DIR_SEC

	
Direct Physical Reads (for each second)

	
Reads for each Second

	
PHYSICAL_READS_DIR_TXN

	
Direct Physical Reads (for each transaction)

	
Reads for each Transaction

	
PHYSICAL_WRITES_DIR_SEC

	
Direct Physical Writes (for each second)

	
Writes for each Second

	
PHYSICAL_WRITES_DIR_TXN

	
Direct Physical Writes (for each transaction)

	
Writes for each Transaction

	
PHYSICAL_READS_LOB_SEC

	
Direct LOB Physical Reads (for each second)

	
Reads for each Second

	
PHYSICAL_READS_LOB_TXN

	
Direct LOB Physical Reads (for each transaction)

	
Reads for each Transaction

	
PHYSICAL_WRITES_LOB_SEC

	
Direct LOB Physical Writes (for each second)

	
Writes for each Second

	
PHYSICAL_WRITES_LOB_TXN

	
Direct LOB Physical Writes (for each transaction)

	
Writes for each Transaction

	
PROCESS_LIMIT_PCT

	
Process Limit Usage (%)

	
% of maximum value

	
PSERVICE_WAIT_SCT

	
Process Service Wait (by session count)

	
Count of sessions

	
PSERVICE_WAIT_TIME

	
Process Service Wait (by time)

	
Microseconds

	
PX_DOWNGRADED_SEC

	
Downgraded Parallel Operations (for each second)

	
Operations for each Second

	
PX_DOWNGRADED_25_SEC

	
Downgraded to 25% and more (for each second)

	
Operations for each Second

	
PX_DOWNGRADED_50_SEC

	
Downgraded to 50% and more (for each second)

	
Operations for each Second

	
PX_DOWNGRADED_75_SEC

	
Downgraded to 75% and more (for each second)

	
Operations for each Second

	
PX_DOWNGRADED_SER_SEC

	
Downgraded to serial (for each second)

	
Operations for each Second

	
RB_RECORDS_APPLIED_SEC

	
Rollback Undo Records Applied (for each second)

	
Records for each Second

	
RB_RECORDS_APPLIED_TXN

	
Rollback Undo Records Applied (for each transaction)

	
Records for each Transaction

	
REDO_ALLOCATION_HIT

	
Redo Log Allocation Hit

	
% of redo allocations

	
REDO_GENERATED_SEC

	
Redo Generated (for each second)

	
Redo Bytes for each Second

	
REDO_GENERATED_TXN

	
Redo Generated (for each transaction)

	
Redo Bytes for each Transaction

	
REDO_WRITES_SEC

	
Redo Writes (for each second)

	
Writes for each Second

	
REDO_WRITES_TXN

	
Redo Writes (for each transaction)

	
Writes for each Transaction

	
RECURSIVE_CALLS_SEC

	
Recursive Calls (for each second)

	
Calls for each Second

	
RECURSIVE_CALLS_TXN

	
Recursive Calls (for each transaction)

	
Calls for each Transaction

	
RESPONSE_TXN

	
Response (for each transaction)

	
Seconds for each Transaction

	
ROWS_PER_SORT

	
Rows Processed for each Sort

	
Rows for each Sort

	
SESS_LOGICAL_READS_SEC

	
Session Logical Reads (for each second)

	
Reads for each Second

	
SESS_LOGICAL_READS_TXN

	
Session Logical Reads (for each transaction)

	
Reads for each Transaction

	
SESSION_CPU_SEC

	
Database CPU (for each second)

	
Microseconds for each Second

	
SESSION_CPU_TXN

	
Database CPU (for each transaction)

	
Microseconds for each Transaction

	
SESSION_LIMIT_PCT

	
Session Limit Usage (%)

	
% of maximum value

	
SHARED_POOL_FREE_PCT

	
Shared Pool Free(%)

	
% of shared pool

	
SOFT_PARSE_PCT

	
Soft Parse (%)

	
% of all parses

	
SQL_SRV_RESPONSE_TIME

	
Service Response (for each execution)

	
Seconds

	
TABLESPACE_PCT_FULL

	
Tablespace space usage

	
% full

	
TABLESPACE_BYT_FREE

	
Tablespace bytes space usage

	
Kilobytes free

	
TOTAL_TABLE_SCANS_SEC

	
Total Table Scans (for each second)

	
Scans for each Second

	
TOTAL_TABLE_SCANS_TXN

	
Total Table Scans (for each transaction)

	
Scans for each Transaction

	
TOTAL_INDEX_SCANS_SEC

	
Total Index Scans (for each second)

	
Scans for each Second

	
TOTAL_INDEX_SCANS_TXN

	
Total Index Scans (for each transaction)

	
Scans for each Transaction

	
TOTAL_PARSES_SEC

	
Total Parses (for each second)

	
Parses for each Second

	
TOTAL_PARSES_TXN

	
Total Parses (for each transaction)

	
Parses for each Transaction

	
TRANSACTION_RATE

	
Number of Transactions (for each second)

	
Transactions for each Second

	
TXN_COMMITTED_PCT

	
Transactions Committed (%)

	
% of all transactions

	
USER_COMMITS_SEC

	
User Commits (for each second)

	
Commits for each Second

	
USER_COMMITS_TXN

	
User Commits (for each transaction)

	
Commits for each Transaction

	
USER_ROLLBACKS_SEC

	
User Rollbacks (for each second)

	
Rollbacks for each Second

	
USER_ROLLBACKS_TXN

	
User Rollbacks (for each transaction)

	
Rollbacks for each Transaction

	
USER_CALLS_SEC

	
User Calls (for each second)

	
Calls for each Second

	
USER_CALLS_TXN

	
User Calls (for each transaction)

	
Calls for each Transaction

	
USER_CALLS_PCT

	
User Calls (%)

	
% of all calls

	
USER_LIMIT_PCT

	
User Limit Usage (%)

	
% of maximum value

	
WCR_AVG_IO_LAT

	
Average IO response time (for a WRC client)

	
Milliseconds

	
WCR_PCPU

	
Percentage of replay threads on CPU (for a WRC client)

	
% of total replay threads

	
WCR_PIO

	
Percentage of replay threads doing IOs (for a WRC client)

	
% of total replay threads

Summary of DBMS_SERVER_ALERT Subprograms

Table 129-4 DBMS_SERVER_ALERT Package Subprograms

	Subprogram	Description
	
EXPAND_MESSAGE Function

	
Expands alert messages

	
GET_THRESHOLD Procedure

	
Gets the current threshold settings for a specified metric

	
SET_THRESHOLD Procedure

	
Sets the warning and critical thresholds for a specified metric

EXPAND_MESSAGE Function

This function expands alert messages.

Syntax

DBMS_SERVER_ALERT.EXPAND_MESSAGE(
 user_language IN VARCHAR2,
 message_id IN NUMBER,
 argument_1 IN VARCHAR2,
 argument_2 IN VARCHAR2,
 argument_3 IN VARCHAR2,
 argument_4 IN VARCHAR2,
 argument_5 IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Table 129-5 EXPAND_MESSAGE Function Parameters

	Parameter	Description
	
user_language

	
The language of the current session.

	
message_id

	
Id of the alert message

	
argument_1

	
The first argument in the alert message.

	
argument_2

	
The second argument in the alert message.

	
argument_3

	
The third argument in the alert message.

	
argument_4

	
The fourth argument in the alert message.

	
argument_5

	
The fifth argument in the alert message.

GET_THRESHOLD Procedure

This procedure gets the current threshold settings for the specified metric.

Syntax

DBMS_SERVER_ALERT.GET_THRESHOLD(
 metrics_id IN BINARY_INTEGER,
 warning_operator OUT BINARY_INTEGER,
 warning_value OUT VARCHAR2,
 critical_operator OUT BINARY_INTEGER,
 critical_value OUT VARCHAR2,
 observation_period OUT BINARY_INTEGER,
 consecutive_occurrences OUT BINARY_INTEGER,
 instance_name IN VARCHAR2,
 object_type IN BINARY_INTEGER,
 object_name IN VARCHAR2);

Parameters

Table 129-6 GET_THRESHOLD Procedure Parameters

	Parameter	Description
	
metrics_id

	
The internal name of the metric. See "Supported Metrics".

	
warning_operator

	
The operator for the compa3ring the actual value with the warning threshold.

	
warning_value

	
The warning threshold value.

	
critical_operator

	
The operator for the comparing the actual value with the critical threshold.

	
critical_value

	
The critical threshold value.

	
observation_period

	
The period at which the metric values are computed and verified against the threshold setting.

	
consecutive_occurrences

	
The number of observation periods the metric value should violate the threshold value before the alert is issued.

	
instance_name

	
The name of the instance for which the threshold is set. This is NULL for database-wide alerts. In cases in which this parameter is not NULL, this should be set to one of the INSTANCE_NAME values found in the GV$INSTANCE View.

	
object_type

	
Either OBJECT_TYPE_SYSTEM or OBJECT_TYPE_SERVICE.

	
object_name

	
The name of the object.

Usage Notes

Note that this subprogram does not check if the value of the instance_name parameter is meaningful or valid.

SET_THRESHOLD Procedure

This procedure sets the warning and critical thresholds for a specified metric.

Syntax

DBMS_SERVER_ALERT.SET_THRESHOLD(
 metrics_id IN BINARY_INTEGER,
 warning_operator IN BINARY_INTEGER,
 warning_value IN VARCHAR2,
 critical_operator IN BINARY_INTEGER,
 critical_value IN VARCHAR2,
 observation_period IN BINARY_INTEGER,
 consecutive_occurrences IN BINARY_INTEGER,
 instance_name IN VARCHAR2,
 object_type IN BINARY_INTEGER,
 object_name IN VARCHAR2);

Parameters

Table 129-7 SET_THRESHOLD Procedure Parameters

	Parameter	Description
	
metrics_id

	
The internal name of the metric. See "Supported Metrics".

	
warning_operator

	
The operator for the comparing the actual value with the warning threshold (such as OPERATOR_GE). See "Relational Operators".

	
warning_value

	
The warning threshold value. This is NULL if no warning threshold is set. A list of values may be specified for OPERATOR_CONTAINS.

	
critical_operator

	
The operator for the comparing the actual value with the critical threshold. See "Relational Operators".

	
critical_value

	
The critical threshold value. This is NULL if not set. A list of values may be specified for OPERATOR_CONTAINS.

	
observation_period

	
The period at which the metric values are computed and verified against the threshold setting. The valid range is 1 to 60 minutes.

	
consecutive_occurrences

	
The number of observation periods the metric value should violate the threshold value before the alert is issued.

	
instance_name

	
The name of the instance for which the threshold is set. This is NULL for database-wide alerts.

	
object_type

	
See "Object Types".

	
object_name

	
The name of the object. This is NULL for SYSTEM.

Usage Notes

Note that this subprogram does not check if the value of the instance_name parameter is meaningful or valid. Passing a name that does not identify a valid instance will result in a threshold that is not used by any by any instance although the threshold setting will be visible in the DBA_THRESHOLDS view. The exception is the lower-case string 'database_wide' which is semantically equivalent to passing NULL for the instance name, the latter being the preferred usage.

DBMS_SERVICE

130 DBMS_SERVICE

The DBMS_SERVICE package lets you create, delete, activate, and deactivate services for a single instance.

The chapter contains the following topics:

	
Using DBMS_SERVICE

	
Overview

	
Security Model

	
Constants

	
Exceptions

	
Summary of DBMS_SERVICE Subprograms

	
See Also:

Oracle Real Application Clusters Administration and Deployment Guide for administering services in Oracle Real Application Clusters.

Using DBMS_SERVICE

This section contains topics which relate to using the DBMS_SERVICE package.

	
Overview

	
Security Model

	
Constants

	
Exceptions

Overview

DBMS_SERVICE supports the management of services in the RDBMS for the purposes of workload measurement, management, prioritization, and XA/and distributed transaction management.

Oracle Real Application Clusters (Oracle RAC) has a functionality to manage service names across instances. This package allows the creation, deletion, starting and stopping of services in both Oracle RAC and a single instance. Additionally, it provides the ability to disconnect all sessions which connect to the instance with a service name when Oracle RAC removes that service name from the instance.

	
See Also:

For more information about Oracle Real Application Clusters, Oracle Real Application Clusters Administration and Deployment Guide.

Security Model

Privileges

The client using this package must have the ALTER SYSTEM execution privilege and the V$SESSION table read privilege.

Schemas

This package must be installed under SYS schema.

Roles

The EXECUTE privilege of the package is granted to the DBA role only.

Deprecated Subprograms

For Oracle Real Applications Clusters (Oracle RAC) databases, the following DBMS_SERVICE procedures are deprecated in 11.2, and srvctl used instead:

	
CREATE_SERVICE Procedure

	
MODIFY_SERVICE Procedure

	
START_SERVICE Procedure

	
STOP_SERVICE Procedure

The same is true for single-instance databases managed by Oracle Restart or Oracle Clusterware.

This is because the service attributes are stored in CRS and those attributes overwrite those specified by DBMS_SERVICE. The DBMS_SERVICE procedures do not update the CRS attributes.

Constants

The DBMS_SERVICE package uses the constants shown in following tables

	
Constants used in calling arguments are described in Table 130-1, "Constants used in Calling Arguments"

	
Constants used in connection balancing goal arguments are described inTable 130-2, "Constants used in Connection Balancing Goal Arguments"

	
Constants used TAF failover attribute arguments are described inTable 130-3, "Constants used in TAF Failover Attribute Arguments"

Table 130-1 Constants used in Calling Arguments

	Name	Type	Value	Description
	
GOAL_NONE

	
NUMBER

	
0

	
Disables Load Balancing Advisory

	
GOAL_SERVICE_TIME

	
NUMBER

	
1

	
Load Balancing Advisory is based on elapsed time for work done in the service plus available bandwidth to the service

	
GOAL_THROUGHPUT

	
NUMBER

	
2

	
Load Balancing Advisory is based on the rate that work is completed in the service plus available bandwidth to the service

Table 130-2 Constants used in Connection Balancing Goal Arguments

	Name	Type	Value	Description
	
CLB_GOAL_SHORT

	
NUMBER

	
1

	
Connection load balancing uses Load Balancing Advisory, when Load Balancing Advisory is enabled (either goal_service_time or goal_throughput). When GOAL=NONE (no load balancing advisory), connection load balancing uses an abridged advice based on CPU utilization.

	
CLB_GOAL_LONG

	
NUMBER

	
2

	
Balances the number of connections per instance using session count per service. This setting is recommended for applications with long connections such as forms. This setting can be used with Load Balancing Advisory when the connection pool is sized to accommodate gravitation within the pool itself (without adding or removing connections). The latter is the most efficient design.

Table 130-3 Constants used in TAF Failover Attribute Arguments

	Name	Type	Value	Description
	
FAILOVER_METHOD_NONE

	
VARCHAR2

	
0

	
Server side TAF is not enabled for this service

	
FAILOVER_METHOD_BASIC

	
VARCHAR2

	
1

	
Server side TAF method is BASIC. BASIC is the only value currently supported. This means that a new connection is established at failure time. It is not possible to pre-establish a backup connection. (which is to say, PRECONNECT is not supported)

	
FAILOVER_TYPE_NONE

	
NUMBER

	
	
Server side TAF type is NONE

	
FAILOVER_TYPE_SESSION

	
NUMBER

	
	
Server side TAF failover type is SESSION. At failure time, if the failover type is SESSION, TAF will re-connect to a surviving node and re-establish a vanilla database session. Customizations (for example, ALTER SESSION) must be re-executed in a failover callback.

	
FAILOVER_TYPE_SELECT

	
NUMBER

	
	
Server side TAF failover type is SELECT

	
FAILOVER_RETRIES

	
NUMBER

	
	
Number of retries to use during a failover. Specifies the number of times for TAF to attempt the re-connect and re-authenticate pair. The value must be integral and greater than 0. The maximum value is UB4MAXVAL

	
FAILOVER_DELAY

	
NUMBER

	
	
Number of seconds delay before trying to fail over. Specifies the delay (in seconds) that TAF will incur if the re-connect / re-authentication fails. The value must be integral and greater than 0. The maximum value is UB4MAXVAL.

Usage Notes

	
If a TAF callback has been registered, then the failover retries and failover delay are ignored. If an error occurs, TAF will continue to re-attempt the connect and authentication as long as the callback returns a value of OCI_FO_RETRY. Any delay must be coded into the callback logic

	
Server side TAF settings override client-side counterparts that might be configured in TNS connect descriptors. If TAF is not configured on the client side, then at a minimum, the failover type must be set to enable TAF. If the failover type is set on the server side, then the failover method will default to BASIC. Delay and retries are optional and may be specified independently.

Exceptions

The following table lists the exceptions raised by DBMS_SERVICE package.

Table 130-4 DBMS_SERVICE Exceptions

	Exception	Error Code	Description
	
NULL_SERVICE_NAME

	
44301

	
The service name argument was found to be NULL

	
NULL_NETWORK_NAME

	
44302

	
The network name argument was found to be NULL

	
SERVICE_EXISTS

	
44303

	
This service name was already in existence

	
SERVICE_DOES_NOT_EXIST

	
44304

	
The specified service was not in existence

	
SERVICE_IN_USE

	
44305

	
The specified service was running

	
SERVICE_NAME_TOO_LONG

	
44306

	
The service name was too long

	
NETWORK_PREFIX_TOO_LONG

	
44307

	
The network name, excluding the domain, was too long

	
NOT_INITIALIZED

	
44308

	
The services layer was not yet initialized

	
GENERAL_FAILURE

	
44309

	
There was an unknown failure

	
MAX_SERVICES_EXCEEDED

	
44310

	
The maximum number of services has been reached

	
SERVICE_NOT_RUNNING

	
44311

	
The specified service was not running

	
DATABASE_CLOSED

	
44312

	
The database was closed

	
INVALID_INSTANCE

	
44313

	
The instance name argument was not valid

	
NETWORK_EXISTS

	
44314

	
The network name was already in existence

	
NULL_ATTRIBUTES

	
44315

	
All attributes specified were NULL

	
INVALID_ARGUMENT

	
44316

	
Invalid argument supplied

	
DATABASE_READONLY

	
44317

	
The database is open read-only

	
MAX_SN_LENGTH

	
44318

	
The total length of all running service network names exceeded the maximum allowable length

Summary of DBMS_SERVICE Subprograms

Table 130-5 DBMS_SERVICE Package Subprograms

	Subprogram	Description
	
CREATE_SERVICE Procedure

	
Creates service

	
DELETE_SERVICE Procedure

	
Deletes service

	
DISCONNECT_SESSION Procedure

	
Disconnects service

	
MODIFY_SERVICE Procedure

	
Modifies service

	
START_SERVICE Procedure

	
Activates service

	
STOP_SERVICE Procedure

	
Stops service

CREATE_SERVICE Procedure

This procedure creates a service name in the data dictionary. Services are also created in the data dictionary implicitly when you set the service in the service_name parameter or by means of the ALTER SYSTEM SET SERVICE_NAMES command.

	
Note:

This procedure is deprecated in databases managed by Oracle Clusterware and Oracle Restart with Release 11.2. While the procedure remains available in the package, Oracle recommends using srvctl to manage services. This is because the service attributes are stored in CRS by srvctl, and overwrite those specified by DBMS_SERVICE. The DBMS_SERVICE procedures do not update the CRS attributes.

	
Note:

The functionality associated with the edition argument is available starting with Oracle Database 11g Release 2 (11.2.0.2).

Syntax

DBMS_SERVICE.CREATE_SERVICE(
 service_name IN VARCHAR2,
 network_name IN VARCHAR2,
 goal IN NUMBER DEFAULT NULL,
 dtp IN BOOLEAN DEFAULT NULL,
 aq_ha_notifications IN BOOLEAN DEFAULT NULL,
 failover_method IN VARCHAR2 DEFAULT NULL,
 failover_type IN VARCHAR2 DEFAULT NULL,
 failover_retries IN NUMBER DEFAULT NULL,
 failover_delay IN NUMBER DEFAULT NULL,
 clb_goal IN NUMBER DEFAULT NULL,
 edition IN VARCHAR2 DEFAULT NULL);

Parameters

Table 130-6 CREATE_SERVICE Procedure Parameters

	Parameter	Description
	
service_name

	
Name of the service limited to 64 characters in the Data Dictionary

	
network_name

	
The network name of the service as used in SQLNet connect descriptors for client connections. This is limited to the NET service_names character set (see Oracle Database Net Services Reference).

	
goal

	
The workload management goal directive for the service. Valid values:

	
DBMS_SERVICE.GOAL_SERVICE_TIME

	
DBMS_SERVICE.GOAL_THROUGHPUT

	
DBMS_SERVICE.GOAL_NONE

	
dtp

	
Declares the service to be for DTP or distributed transactions including XA transactions

	
aq_ha_notifications

	
Determines whether HA events are sent through AQ for this service

	
failover_method

	
The TAF failover method for the service

	
failover_type

	
The TAF failover type for the service

	
failover_retries

	
The TAF failover retries for the service

	
failover_delay

	
The TAF failover delay for the service

	
clb_goal

	
Method used for Connection Load Balancing (see Table 130-2, "Constants used in Connection Balancing Goal Arguments")

	
edition

	
If this argument has a non-NULL value, this provides the initial session edition for subsequent database connections using this service that do not specify an edition. If no value is specified, this argument will have no effect.

During service creation or modification, no validation is performed on this parameter.

At connection time, if the connecting user does not have USE privilege on the edition, or the edition does not exist, this raises the error ORA-38802 (edition does not exist).

Examples

DBMS_SERVICE.CREATE_SERVICE('ernie.us.oracle.com','ernie.us.oracle.com');

DELETE_SERVICE Procedure

This procedure deletes a service from the data dictionary.

	
Note:

This procedure is deprecated in databases managed by Oracle Clusterware and Oracle Restart with Release 11.2. While the procedure remains available in the package, Oracle recommends using srvctl to manage services. This is because the service attributes are stored in CRS by srvctl, and overwrite those specified by DBMS_SERVICE. Unless the service is also deleted with srvctl, it will be re-created in the database when CRS next starts the service.

Syntax

DBMS_SERVICE.DELETE_SERVICE(
 service_name IN VARCHAR2);

Parameters

Table 130-7 DELETE_SERVICE Procedure Parameters

	Parameter	Description
	
service_name

	
Name of the service limited to 64 characters in the Data Dictionary

Examples

DBMS_SERVICE.DELETE_SERVICE('ernie.us.oracle.com');

DISCONNECT_SESSION Procedure

This procedure disconnects sessions with the named service at the current instance.

Syntax

DBMS_SERVICE.DISCONNECT_SESSION(
 service_name IN VARCHAR2,
 disconnect_option IN NUMBER DEFAULT POST_TRANSACTION);

Parameters

Table 130-8 DISCONNECT_SESSION Procedure Parameters

	Parameter	Description
	
service_name

	
Name of the service limited to 64 characters in the Data Dictionary

	
disconnect_option

	
There are two options, package constants expressed as NUMBER:

	
POST_TRANSACTION = 0 : the session will disconnect after the current transaction commits or rolls back

	
IMMEDIATE = 1 : sessions will be disconnected immediately

Note: IMMEDIATE or POST_TRANSACTION will be automatically translated as 1 and 0 respectively. However, passing-in a string literal (quoted using either the ' or " characters, such as "IMMEDIATE" or 'POST_TRANSACTION') will raise an error.

Usage Notes

	
This procedure can be used in the context of a single instance as well as with Oracle Real Application Clusters.

	
This subprogram does not return until all corresponding sessions are disconnected. Therefore, use the DBMS_JOB package or put the SQL session in background if the caller does not want to wait for all corresponding sessions to be disconnected.

Examples

This disconnects sessions with service_name 'ernie.us.oracle.com'.

DBMS_SERVICE.DISCONNECT_SESSION('ernie.us.oracle.com');

MODIFY_SERVICE Procedure

This procedure modifies an existing service.

	
Note:

This procedure is deprecated in databases managed by Oracle Clusterware and Oracle Restart with Release 11.2. While the procedure remains available in the package, Oracle recommends using srvctl to manage services. This is because the service attributes are stored in CRS by srvctl, and overwrite those specified by DBMS_SERVICE. The DBMS_SERVICE procedures do not update the CRS attributes and therefore are not persistent, though they do take effect immediately, until the service is next started with srvctl.

	
Note:

The functionality associated with the edition and modify_edition arguments is available starting with Oracle Database 11g Release 2 (11.2.0.2).

Syntax

DBMS_SERVICE.MODIFY_SERVICE(
 service_name IN VARCHAR2,
 goal IN NUMBER DEFAULT NULL,
 dtp IN BOOLEAN DEFAULT NULL,
 aq_ha_notifications IN BOOLEAN DEFAULT NULL,
 failover_method IN VARCHAR2 DEFAULT NULL,
 failover_type IN VARCHAR2 DEFAULT NULL,
 failover_retries IN NUMBER DEFAULT NULL,
 failover_delay IN NUMBER DEFAULT NULL,
 clb_goal IN NUMBER DEFAULT NULL,
 edition IN VARCHAR2 DEFAULT NULL,
 modify_edition IN BOOLEAN DEFAULT FALSE);

Parameters

Table 130-9 MODIFY_SERVICE Procedure Parameters

	Parameter	Description
	
service_name

	
Name of the service limited to 64 characters in the Data Dictionary

	
goal

	
The workload management goal directive for the service. Valid values:

	
DBMS_SERVICE.GOAL_SERVICE_TIME

	
DBMS_SERVICE.GOAL_THROUGHPUT

	
DBMS_SERVICE.GOAL_NONE

	
dtp

	
Declares the service to be for DTP or distributed transactions including XA transactions

	
aq_ha_notifications

	
Determines whether HA events are sent through AQ for this service

	
failover_method

	
The TAF failover method for the service

	
failover_type

	
The TAF failover type for the service

	
failover_retries

	
The TAF failover retries for the service

	
failover_delay

	
The TAF failover delay for the service

	
clb_goal

	
Method used for Connection Load Balancing (see Table 130-2, "Constants used in Connection Balancing Goal Arguments")

	
edition

	
If this argument has a non-NULL value, this provides the initial session edition for subsequent database connections using this service that do not specify an edition. If no value is specified, this argument will have no effect.

During service creation or modification, no validation is performed on this parameter.

At connection time, if the connecting user does not have USE privilege on the edition, or the edition does not exist, this raises the error ORA-38802 (edition does not exist).

	
modify_edition

	
If TRUE, the edition service attribute is updated to use the edition argument value. If FALSE or NULL, the edition attribute will not be updated.

Usage Notes

	
If you are using Clustered Managed Services with Oracle Clusterware, or using Oracle Restart with your single instance database, you must modify services using the srvctl command rather than DBMS_SERVICE. When the service is started by Oracle Clusterware or Oracle Restart, the service will be modified in the database to match the resource defined to either Oracle Clusterware or Oracle Restart. Any changes made with DBMS_SERVICE will be lost unless they are also made with the corresponding srvctl command. Service attribute modifications take effect immediately starting with 11.2.0.2 when the service is started or modified by srvctl.

	
Although the edition attribute can be modified while the service is up and running, it may not be safe to do so. Users must proceed with caution since this will cause new connections to be connected at the new edition, while existing connection will not be affected. This can in turn cause mid-tier operations to connect to the wrong edition.

START_SERVICE Procedure

This procedure starts a service. This procedure alters the service_name IOP to contain this service_name. In Oracle RAC, implementing this option will act on the instance specified.

	
Note:

This procedure is deprecated in databases managed by Oracle Clusterware and Oracle Restart with Release 11.2. While the procedure remains available in the package, Oracle recommends using srvctl to manage services.

Syntax

DBMS_SERVICE.START_SERVICE(
 service_name IN VARCHAR2,
 instance_name IN VARCHAR2);

Parameters

Table 130-10 START_SERVICE Procedure Parameters

	Parameter	Description
	
service_name

	
Name of the service limited to 64 characters in the Data Dictionary

	
instance_name

	
Name of the instance where the service must be activated (optional). The instance on which to start the service. NULL results in starting of the service on the local instance. In single instance this can only be the current instance or NULL. Specify DBMS_SERVICE.ALL_INSTANCES to start the service on all configured instances.

Examples

DBMS_SERVICE.START_SERVICE('ernie.us.oracle.com');

STOP_SERVICE Procedure

This procedure stops a service, altering the service_name IOP to remove this service_name.

	
Note:

This procedure is deprecated in databases managed by Oracle Clusterware and Oracle Restart with Release 11.2. While the procedure remains available in the package, Oracle recommends using srvctl to manage services.

Syntax

DBMS_SERVICE.STOP_SERVICE(
 service_name IN VARCHAR2,
 instance_name IN VARCHAR2);

Parameters

Table 130-11 STOP_SERVICE Procedure Parameters

	Parameter	Description
	
service_name

	
Name of the service limited to 64 characters in the Data Dictionary

	
instance_name

	
Name of the instance where the service must be stopped (optional). The instance on which to stop the service. NULL results in stopping of the service locally. In single instance this can only be the current instance or NULL. The default in Oracle RAC and exclusive case is NULL. Specify DBMS_SERVICE.ALL_INSTANCES to stop the service on all configured instances.

Examples

DBMS_SERVICE.STOP_SERVICE('ernie.us.oracle.com');

DBMS_SESSION

131 DBMS_SESSION

This package provides access to SQL ALTER SESSION and SET ROLE statements, and other session information, from PL/SQL. You can use DBMS_SESSION to set preferences and security levels.

This chapter contains the following topics:

	
Using DBMS_SESSION

	
Security Model

	
Operational Notes

	
Data Structures

	
Summary of DBMS_SESSION Subprograms

Using DBMS_SESSION

	
Security Model

	
Operational Notes

Security Model

This package runs with the privileges of the calling user, rather than the package owner SYS.

Operational Notes

You should not attempt to turn close_cached_open_cursors on or off.

Data Structures

The DBMS_SESSION package defines TABLE types.

Table Types

	
INTEGER_ARRAY Table Type

	
LNAME_ARRAY Table Type

INTEGER_ARRAY Table Type

A table type of BINARY_INTEGER.

Syntax

TYPE integer_array IS TABLE OF BINARY_INTEGER INDEX BY BINARY_INTEGER;

LNAME_ARRAY Table Type

A table type of VARCHAR2.

Syntax

TYPE lname_array IS TABLE OF VARCHAR2(4000) INDEX BY BINARY_INTEGER;

Summary of DBMS_SESSION Subprograms

Table 131-1 DBMS_SESSION Package Subprograms

	Subprogram	Description
	
CLEAR_ALL_CONTEXT Procedure

	
Clears all context information

	
CLEAR_CONTEXT Procedure

	
Clears the context

	
CLEAR_IDENTIFIER Procedure

	
Clears the identifier

	
CLOSE_DATABASE_LINK Procedure

	
Closes database link

	
FREE_UNUSED_USER_MEMORY Procedure

	
Lets you reclaim unused memory after performing operations requiring large amounts of memory

	
GET_PACKAGE_MEMORY_UTILIZATION Procedure

	
Describes static package memory usage

	
IS_ROLE_ENABLED Function

	
Determines if the named role is enabled for the session.

	
IS_SESSION_ALIVE Function

	
Determines if the specified session is active

	
LIST_CONTEXT Procedures

	
Returns a list of active namespace and context for the current session

	
MODIFY_PACKAGE_STATE Procedure

	
Used to perform various actions (as specified by the action_flags parameter) on the session state of all PL/SQL program units active in the session

	
SESSION _TRACE_DISABLE Procedure

	
Resets the session-level SQL trace for the session from which it was called.

	
SESSION _TRACE_ENABLE Procedure

	
Enables session-level SQL trace for the invoking session

	
RESET_PACKAGE Procedure

	
De-instantiates all packages in the session

	
SET_CONTEXT Procedure

	
Sets or resets the value of a context attribute

	
SET_EDITION_DEFERRED Procedure

	
Requests a switch to the specified edition

	
SET_IDENTIFIER Procedure

	
Sets the identifier

	
SET_NLS Procedure

	
Sets Globalization Support (NLS)

	
SET_ROLE Procedure

	
Sets role

	
SET_SQL_TRACE Procedure

	
Turns tracing on or off

	
SWITCH_CURRENT_CONSUMER_GROUP Procedure

	
Facilitates changing the current resource consumer group of a user's current session

	
UNIQUE_SESSION_ID Function

	
Returns an identifier that is unique for all sessions currently connected to this database

CLEAR_ALL_CONTEXT Procedure

Syntax

DBMS_SESSION.CLEAR_ALL_CONTEXT
 namespace VARCHAR2);

Parameters

Table 131-2 CLEAR_ALL_CONTEXT Procedure Parameters

	Parameter	Description
	
namespace

	
The namespace where the application context information is to be cleared. Required.

Usage Notes

	
This procedure must be invoked directly or indirectly by the trusted package.

	
Any changes in context value are reflected immediately and subsequent calls to access the value through SYS_CONTEXT return the most recent value.

CLEAR_CONTEXT Procedure

Syntax

DBMS_SESSION.CLEAR_CONTEXT
 namespace VARCHAR2,
 client_identifier VARCHAR2
 attribute VARCHAR2);

Parameters

Table 131-3 CLEAR_CONTEXT Procedure Parameters

	Parameter	Description
	
namespace

	
Namespace in which the application context is to be cleared. Required.

For a session-local context, namespace must be specified. If namespace is defined as Session Local Context, then client_identifier is optional since it is only associated with a globally accessed context.

For a globally accessed context, namespace must be specified. NULL is a valid value for client_identifier because a session with no identifier set can see a context that looks like the (namespace, attribute, value, username, null) set using SET_CONTEXT.

	
client_identifier

	
Applies to a global context and is optional for other types of contexts; 64-byte maximum

	
attribute

	
Specific attribute in the namespace to be cleared. Optional. the default is NULL. If you specify attribute as NULL, then (namespace, attribute, value) for that namespace are cleared from the session. If attribute is not specified, then all context information that has the namespace and client_identifier arguments is cleared.

Usage Notes

	
This procedure must be invoked directly or indirectly by the trusted package.

	
Any changes in context value are reflected immediately and subsequent calls to access the value through SYS_CONTEXT return the most recent value.

CLEAR_IDENTIFIER Procedure

This procedure removes the set_client_id in the session.

Syntax

DBMS_SESSION.CLEAR_IDENTIFIER;

Usage Notes

This procedure is executable by public.

CLOSE_DATABASE_LINK Procedure

This procedure closes an open database link. It is equivalent to the following SQL statement:

ALTER SESSION CLOSE DATABASE LINK <name>

Syntax

DBMS_SESSION.CLOSE_DATABASE_LINK (
 dblink VARCHAR2);

Parameters

Table 131-4 CLOSE_DATABASE_LINK Procedure Parameters

	Parameter	Description
	
dblink

	
Name of the database link to close

FREE_UNUSED_USER_MEMORY Procedure

This procedure reclaims unused memory after performing operations requiring large amounts of memory (more than 100K).

Examples of operations that use large amounts of memory include:

	
Large sorting where entire sort_area_size is used and sort_area_size is hundreds of KB.

	
Compiling large PL/SQL packages, procedures, or functions.

	
Storing hundreds of KB of data within PL/SQL indexed tables.

You can monitor user memory by tracking the statistics "session UGA memory" and "session PGA memory" in the v$sesstat or v$statname fixed views. Monitoring these statistics also shows how much memory this procedure has freed.

	
Note:

This procedure should only be used in cases where memory is at a premium. It should be used infrequently and judiciously.

Syntax

DBMS_SESSION.FREE_UNUSED_USER_MEMORY;

Return Values

The behavior of this procedure depends upon the configuration of the server operating on behalf of the client:

	
Dedicated server: This returns unused PGA memory and session memory to the operating system. Session memory is allocated from the PGA in this configuration.

	
Shared server: This returns unused session memory to the shared_pool. Session memory is allocated from the shared_pool in this configuration.

Usage Notes

In order to free memory using this procedure, the memory must not be in use.

After an operation allocates memory, only the same type of operation can reuse the allocated memory. For example, after memory is allocated for sort, even if the sort is complete and the memory is no longer in use, only another sort can reuse the sort-allocated memory. For both sort and compilation, after the operation is complete, the memory is no longer in use, and the user can call this procedure to free the unused memory.

An indexed table implicitly allocates memory to store values assigned to the indexed table's elements. Thus, the more elements in an indexed table, the more memory the RDBMS allocates to the indexed table. As long as there are elements within the indexed table, the memory associated with an indexed table is in use.

The scope of indexed tables determines how long their memory is in use. Indexed tables declared globally are indexed tables declared in packages or package bodies. They allocate memory from session memory. For an indexed table declared globally, the memory remains in use for the lifetime of a user's login (lifetime of a user's session), and is freed after the user disconnects from ORACLE.

Indexed tables declared locally are indexed tables declared within functions, procedures, or anonymous blocks. These indexed tables allocate memory from PGA memory. For an indexed table declared locally, the memory remains in use for as long as the user is still running the procedure, function, or anonymous block in which the indexed table is declared.After the procedure, function, or anonymous block is finished running, the memory is then available for other locally declared indexed tables to use (in other words, the memory is no longer in use).

Assigning an uninitialized, "empty" indexed table to an existing index table is a method to explicitly re-initialize the indexed table and the memory associated with the indexed table. After this operation, the memory associated with the indexed table is no longer in use, making it available to be freed by calling this procedure. This method is particularly useful on indexed tables declared globally which can grow during the lifetime of a user's session, as long as the user no longer needs the contents of the indexed table.

The memory rules associated with an indexed table's scope still apply; this method and this procedure, however, allow users to intervene and to explicitly free the memory associated with an indexed table.

Examples

The following PL/SQL illustrates the method and the use of procedure FREE_UNUSED_USER_MEMORY.

CREATE PACKAGE foobar
 type number_idx_tbl is table of number indexed by binary_integer;

 store1_table number_idx_tbl; -- PL/SQL indexed table
 store2_table number_idx_tbl; -- PL/SQL indexed table
 store3_table number_idx_tbl; -- PL/SQL indexed table
 ...
END; -- end of foobar

DECLARE
 ...
 empty_table number_idx_tbl; -- uninitialized ("empty") version
BEGIN
 FOR i in 1..1000000 loop
 store1_table(i) := i; -- load data
 END LOOP;
 ...
 store1_table := empty_table; -- "truncate" the indexed table
 ...
 -
 dbms_session.free_unused_user_memory; -- give memory back to system

 store1_table(1) := 100; -- index tables still declared;
 store2_table(2) := 200; -- but truncated.
 ...
END;

GET_PACKAGE_MEMORY_UTILIZATION Procedure

This procedure describes static package memory usage.

The output collections describe memory usage in each instantiated package. Each package is described by its owner name, package name, used memory amount, and unused allocated memory amount. The amount of unused memory is greater than zero because of memory fragmentation and also because once used free memory chunks initially go to a free list owned by the package memory heap. They are released back to the parent heap only when the FREE_UNUSED_USER_MEMORY Procedure is invoked.

Syntax

DBMS_SESSION.GET_PACKAGE_MEMORY_UTILIZATION (
 owner_names OUT NOCOPY LNAME_ARRAY,
 unit_names OUT NOCOPY LNAME_ARRAY,
 unit_types OUT NOCOPY INTEGER_ARRAY,
 used_amounts OUT NOCOPY INTEGER_ARRAY,
 free_amounts OUT NOCOPY INTEGER_ARRAY);

Parameters

Table 131-5 GET_PACKAGE_MEMORY_UTILIZATION Function Parameters

	Parameter	Description
	
owner_name

	
Owner of package

	
unit_name

	
Name of package

	
unit_types

	
Value of the type# columns of the dictionary table obj$

	
used_amounts

	
Amount of allocated memory specified in bytes

	
free_amounts

	
Amount of available memory specified in bytes

IS_ROLE_ENABLED Function

This function determines if the named role is enabled for this session.

Syntax

DBMS_SESSION.IS_ROLE_ENABLED (
 rolename VARCHAR2)
 RETURN BOOLEAN;

Parameters

Table 131-6 IS_ROLE_ENABLED Function Parameters

	Parameter	Description
	
rolename

	
Name of the role.\

Return Values

Table 131-7 IS_ROLE_ENABLED Function Return Values

	Return	Description
	
is_role_enabled

	
TRUE or FALSE, depending on whether the role is enabled

IS_SESSION_ALIVE Function

This function determines if the specified session is active.

Syntax

DBMS_SESSION.IS_SESSION_ALIVE (
 uniqueid VARCHAR2)
 RETURN BOOLEAN;

Parameters

Table 131-8 IS_SESSION_ALIVE Function Parameters

	Parameter	Description
	
uniqueid

	
Unique ID of the session: This is the same one as returned by UNIQUE_SESSION_ID.

Return Values

Table 131-9 IS_SESSION_ALIVE Function Return Values

	Return	Description
	
is_session_alive

	
TRUE or FALSE, depending on whether the session is active

LIST_CONTEXT Procedures

This procedure returns a list of active namespaces and contexts for the current session.

Syntax

TYPE AppCtxRecTyp IS RECORD (
 namespace VARCHAR2(30),
 attribute VARCHAR2(30),
 value VARCHAR2(256));

TYPE AppCtxTabTyp IS TABLE OF AppCtxRecTyp INDEX BY BINARY_INTEGER;

DBMS_SESSION.LIST_CONTEXT (
 list OUT AppCtxTabTyp,
 size OUT NUMBER);

Parameters

Table 131-10 LIST_CONTEXT Procedure Parameters

	Parameter	Description
	
list

	
Buffer to store a list of application context set in the current session

Return Values

Table 131-11 LIST_CONTEXT Procedure Return Values

	Return	Description
	
list

	
A list of (namespace, attribute, values) set in current session

	
size

	
Returns the number of entries in the buffer returned

Usage Notes

The context information in the list appears as a series of <namespace> <attribute> <value>. Because list is a table type variable, its size is dynamically adjusted to the size of returned list.

MODIFY_PACKAGE_STATE Procedure

This procedure is used to perform various actions (as specified by the action_flags parameter) on the session state of all PL/SQL program units active in the session. This takes effect after the PL/SQL call that made the current invocation finishes running. The procedure uses the DBMS_SESSION constants listed in Table 131-13.

Syntax

DBMS_SESSION.MODIFY_PACKAGE_STATE(
 action_flags IN PLS_INTEGER);

Parameters

Table 131-12 MODIFY_PACKAGE_STATE Procedure Parameters

	Parameter	Description
	
action_flags

	
Bit flags that determine the action taken on PL/SQL program units:

DBMS_SESSION.FREE_ALL_RESOURCES (or 1)—frees all memory associated with each of the previously run PL/SQL programs from the session. Clears the current values of any package globals and closes cached cursors. On subsequent use, the PL/SQL program units are reinstantiated and package globals are reinitialized. Invoking MODIFY_PACKAGE_STATE with the DBMS_SESSION.FREE_ALL_RESOURCES parameter provides functionality identical to the DBMS_SESSION.RESET_PACKAGE() interface.

DBMS_SESSION.REINITIALIZE (or 2)—reinitializes packages without actually being freed and recreated from scratch. Instead the package memory is reused. In terms of program semantics, the DBMS_SESSION.REINITIALIZE flag is similar to the DBMS_SESSION.FREE_ALL_RESOURCES flag in that both have the effect of reinitializing all packages.

However, DBMS_SESSION.REINITIALIZE should exhibit better performance than the DBMS_SESSION.FREE_ALL_RESOURCES option because:

	
Packages are reinitialized without actually being freed and recreated from scratch. Instead the package memory gets reused.

	
Any open cursors are closed, semantically speaking. However, the cursor resource is not actually freed. It is simply returned to the PL/SQL cursor cache. The cursor cache is not flushed. Hence, cursors corresponding to frequently accessed static SQL in PL/SQL remains cached in the PL/SQL cursor cache and the application does not incur the overhead of opening, parsing, and closing a new cursor for those statements on subsequent use.

	
The session memory for PL/SQL modules without global state (such as types, stored-procedures) are not freed and recreated.

Usage Notes

See the parameter descriptions in Table 131-14 for the differences between the flags and why DBMS_SESSION.REINITIALIZE exhibits better performance than DBMS_SESSION.FREE_ALL_RESOURCES.

Table 131-13 Action_flags Constants for MODIFY_PACKAGE_STATE

	Constant	Description
	
FREE_ALL_RESOURCES

	
PLS_INTEGER:= 1

	
REINITIALIZE

	
PLS_INTEGER:= 2

	
Reinitialization refers to the process of resetting all package variables to their initial values and running the initialization block (if any) in the package bodies. Consider the package:

 package P is
 n number;
 m number := P2.foo;
 d date := SYSDATE;
 cursor c is select * from emp;
 procedure bar;
 end P;
 /
 package body P is
 v varchar2(20) := 'hello';
 procedure bar is
 begin
 ...
 end;
 procedure init_pkg is
 begin

 end;
 begin
 -- initialization block
 init_pkg;
 ...
 ...
 end P;
 /

For the package P, reinitialization involves:

	
Setting P.n to NULL

	
Invoking function P2.foo and setting P.m to the value returned from P2.foo

	
Setting P.d to the return value of SYSDATE built-in

	
Closing cursor P.c if it was previously opened

	
Setting P.v to 'hello'

	
Running the initialization block in the package body

	
The reinitialization for a package is done only if the package is actually referenced subsequently. Furthermore, the packages are reinitialized in the order in which they are referenced subsequently.

	
When using FREE_ALL_RESOURCES or REINITIALIZE, make sure that resetting package variable values does not affect the application.

	
Because DBMS_SESSION.REINITIALIZE does not actually cause all the package state to be freed, in some situations, the application could use significantly more session memory than if the FREE_ALL_RESOURCES flag or the RESET_PACKAGE procedure had been used. For instance, after performing DBMS_SESSION.MODIFY_PACKAGE_STATE(DBMS_SESSION.REINITIALIZE), if the application does not refer to many of the packages that were previously referenced, then the session memory for those packages remains until the end of the session (or until DBMS_SESSION.RESET_PACKAGE is called).

	
Because the client-side PL/SQL code cannot reference remote package variables or constants, you must explicitly use the values of the constants. For example, DBMS_SESSION.MODIFY_PACKAGE_STATE(DBMS_SESSION.REINITIALIZE)does not compile on the client because it uses the constant DBMS_SESSION.REINITIALIZE.

Instead, use DBMS_SESSION.MODIFY_PACKAGE_STATE(2) on the client, because the argument is explicitly provided.

Examples

This example illustrates the use of DBMS_SESSION.MODIFY_PACKAGE_STATE. Consider a package P with some global state (a cursor c and a number cnt). When the package is first initialized, the package variable cnt is 0 and the cursor c is CLOSED. Then, in the session, change the value of cnt to 111 and also execute an OPEN operation on the cursor. If you call print_status to display the state of the package, you see that cnt is 111 and that the cursor is OPEN. Next, call DBMS_SESSION.MODIFY_PACKAGE_STATE. If you print the status of the package P again using print_status, you see that cnt is 0 again and the cursor is CLOSED. If the call to DBMS_SESSION.MODIFY_PACKAGE_STATE had not been made, then the second print_status would have printed 111 and OPEN.

create or replace package P is
 cnt number := 0;
 cursor c is select * from emp;
 procedure print_status;
end P;
/
show errors;

create or replace package body P is
 procedure print_status is
 begin
 dbms_output.put_line('P.cnt = ' || cnt);
 if c%ISOPEN then
 dbms_output.put_line('P.c is OPEN');
 else
 dbms_output.put_line('P.c is CLOSED');
 end if;
 end;
end P;
/
show errors;

SQL> set serveroutput on;
SQL> begin
 2 P.cnt := 111;
 3 open p.c;
 4 P.print_status;
 5 end;
 6 /
P.cnt = 111
P.c is OPEN

PL/SQL procedure successfully completed.

SQL> begin
 2 dbms_session.modify_package_state(dbms_session.reinitialize);
 3 end;
 4 /

PL/SQL procedure successfully completed.

SQL> set serveroutput on;
SQL>
SQL> begin
 2 P.print_status;
 3 end;
 4 /
P.cnt = 0
P.c is CLOSED

PL/SQL procedure successfully completed.

SESSION _TRACE_DISABLE Procedure

This procedure resets the session-level SQL trace for the session from which it was called. Client ID and service/module/action traces are not affected.

Syntax

DBMS_SESSION.SESSION_TRACE_DISABLE;

SESSION _TRACE_ENABLE Procedure

This procedure enables session-level SQL trace for the invoking session. Invoking this procedure results in SQL tracing of every SQL statement issued by the session.

Syntax

DBMS_SESSION.SESSION_TRACE_ENABLE(
 waits IN BOOLEAN DEFAULT TRUE,��
 binds IN BOOLEAN DEFAULT FALSE,
 �plan_stat IN VARCHAR2 DEFAULT NULL);

Parameters

Table 131-14 SESSION_TRACE_ENABLE Procedure Parameters

	Parameter	Description
	
waits

	
Specifies if wait information is to be traced

	
binds

	
Specifies if bind information is to be traced

	
plan_stat

	
Frequency at which we dump row source statistics. Value should be 'NEVER', 'FIRST_EXECUTION' (equivalent to NULL) or 'ALL_EXECUTIONS'.

RESET_PACKAGE Procedure

This procedure de-instantiates all packages in this session. It frees the package state.

	
Note:

See "SESSION _TRACE_ENABLE Procedure" . The MODIFY_PACKAGE_STATE interface, introduced in Oracle9i, provides an equivalent of the RESET_PACKAGE capability. It is an efficient, lighter-weight variant for reinitializing the state of all PL/SQL packages in the session.

Memory used for caching the execution state is associated with all PL/SQL functions, procedures, and packages that were run in a session.

For packages, this collection of memory holds the current values of package variables and controls the cache of cursors opened by the respective PL/SQL programs. A call to RESET_PACKAGE frees the memory associated with each of the previously run PL/SQL programs from the session, and, consequently, clears the current values of any package globals and closes any cached cursors.

RESET_PACKAGE can also be used to reliably restart a failed program in a session. If a program containing package variables fails, then it is hard to determine which variables need to be reinitialized. RESET_PACKAGE guarantees that all package variables are reset to their initial values.

Syntax

DBMS_SESSION.RESET_PACKAGE;

Usage Notes

Because the amount of memory consumed by all executed PL/SQL can become large, you might use RESET_PACKAGE to trim down the session memory footprint at certain points in your database application. However, make sure that resetting package variable values does not affect the application. Also, remember that later execution of programs that have lost their cached memory and cursors will perform slower, because they need to re-create the freed memory and cursors.

RESET_PACKAGE does not free the memory, cursors, and package variables immediately when called.

	
Note:

RESET_PACKAGE only frees the memory, cursors, and package variables after the PL/SQL call that made the invocation finishes running.

For example, PL/SQL procedure P1 calls PL/SQL procedure P2, and P2 calls RESET_PACKAGE. The RESET_PACKAGE effects do not occur until procedure P1 finishes execution (the PL/SQL call ends).

Examples

This SQL*Plus script runs a large program with many PL/SQL program units that may or may not use global variables, but it doesn't need them beyond this execution:

EXCECUTE large_plsql_program1;

To free up PL/SQL cached session memory:

EXECUTE DBMS_SESSION.RESET_PACKAGE;

To run another large program:

EXECUTE large_plsql_program2;

SET_CONTEXT Procedure

This procedure sets the context, of which there are four types: session local, globally initialized, externally initialized, and globally accessed.

Of its five parameters, only the first three are required; the final two parameters are optional, used only in globally accessed contexts. Further parameter information appears in the parameter table and the usage notes.

Syntax

DBMS_SESSION.SET_CONTEXT (
 namespace VARCHAR2,
 attribute VARCHAR2,
 value VARCHAR2,
 username VARCHAR2,
 client_id VARCHAR2);

Parameters

Table 131-15 SET_CONTEXT Procedure Parameters

	Parameter	Description
	
namespace

	
Namespace of the application context to be set, limited to 30 bytes

	
attribute

	
Attribute of the application context to be set, limited to 30 bytes

	
value

	
Value of the application context to be set, limited to 4 kilobytes.

	
username

	
Database username attribute of the application context.

Default: NULL

	
client_id

	
Application-specific client_id attribute of the application context (64-byte maximum).

Default: NULL

Usage Notes

	
The first three parameters are required for all types of context.

	
The username parameter must be a valid SQL identifier.

	
The client_id parameter must be a string of at most 64 bytes. It is case-sensitive and must match the argument provided for set_identifier.

	
If the namespace parameter is a global context namespace, then the username parameter is matched against the current database user name in the session, and the client_id parameter is matched against the current client_id in the session. If these parameters are not set, NULL is assumed, enabling any user to see the context values.

	
This procedure must be invoked directly or indirectly by the trusted package.

	
The caller of SET_CONTEXT must be in the calling stack of a procedure that has been associated to the context namespace through a CREATE CONTEXT statement. The checking of the calling stack does not cross a DBMS boundary.

	
No limit applies to the number of attributes that can be set in a namespace. An attribute retains its value during the user's session unless it is reset by the user.

	
If the value of the parameter in the namespace has been set, SET_CONTEXT overwrites this value.

	
Any changes in context value are reflected immediately and subsequent calls to access the value through SYS_CONTEXT return the most recent value.

	
See Also:

Oracle Database Security Guide for more information about
	
"Setting the username and client ID"

	
"Example: Creating a Global Application Context that Uses a Client Session ID"

SET_EDITION_DEFERRED Procedure

This procedure requests a switch to the specified edition. The switch takes effect at the end of the current client call.

Syntax

DBMS_SESSION.SET_EDITION_DEFERRED (
 edition IN VARCHAR2);

Parameters

Table 131-16 SET_EDITION_DEFERRED Procedure Parameters

	Parameter	Description
	
edition

	
Name of the edition to which to switch. The contents of the string are processed as a SQL identifier; double-quotes must surround the remainder of the string if special characters or lower case characters are present in the edition's actual name and, if double-quotes are not used, the contents are set in uppercase. The caller must have USE privilege on the named edition.

SET_IDENTIFIER Procedure

This procedure sets the client ID in the session.

Syntax

DBMS_SESSION.SET_IDENTIFIER (
 client_id VARCHAR2);

Parameters

Table 131-17 SET_IDENTIFIER Procedure Parameters

	Parameter	Description
	
client_id

	
The application-specific identifier of the current database session

Usage Notes

Note the following:

	
SET_IDENTIFIER initializes the current session with a client identifier to identify the associated global application context

	
client_id is case sensitive; it must match the client_id parameter in the set_context

	
This procedure is executable by public

SET_NLS Procedure

This procedure sets up your Globalization Support (NLS). It is equivalent to the following SQL statement:

ALTER SESSION SET <nls_parameter> = <value>

Syntax

DBMS_SESSION.SET_NLS (
 param VARCHAR2,
 value VARCHAR2);

Parameters

Table 131-18 SET_NLS Procedure Parameters

	Parameter	Description
	
param

	
Globalization Support parameter. The parameter name must begin with 'NLS'.

	
value

	
Parameter value.

If the parameter is a text literal, then it needs embedded single-quotes. For example, "set_nls ('nls_date_format','''DD-MON-YY''')".

SET_ROLE Procedure

This procedure enables and disables roles. It is equivalent to the SET ROLE SQL statement.

Syntax

DBMS_SESSION.SET_ROLE (
 role_cmd VARCHAR2);

Parameters

Table 131-19 SET_ROLE Procedure Parameters

	Parameter	Description
	
role_cmd

	
Text is appended to "set role" and then run as SQL

Usage Notes

Note that the procedure creates a new transaction if it is not invoked from within an existing transaction.

SET_SQL_TRACE Procedure

This procedure turns tracing on or off. It is equivalent to the following SQL statement:

ALTER SESSION SET SQL_TRACE ...

Syntax

DBMS_SESSION.SET_SQL_TRACE (
 sql_trace boolean);

Parameters

Table 131-20 SET_SQL_TRACE Procedure Parameters

	Parameter	Description
	
sql_trace

	
TRUE turns tracing on, FALSE turns tracing off

SWITCH_CURRENT_CONSUMER_GROUP Procedure

This procedure changes the current resource consumer group of a user's current session.

This lets you switch to a consumer group if you have the switch privilege for that particular group. If the caller is another procedure, then this enables the user to switch to a consumer group for which the owner of that procedure has switch privilege.

Syntax

DBMS_SESSION.switch_current_consumer_group (
 new_consumer_group IN VARCHAR2,
 old_consumer_group OUT VARCHAR2,
 initial_group_on_error IN BOOLEAN);

Parameters

Table 131-21 SWITCH_CURRENT_CONSUMER_GROUP Procedure Parameters

	Parameter	Description
	
new_consumer_group

	
Name of consumer group to which you want to switch

	
old_consumer_group

	
Name of the consumer group from which you just switched out

	
initial_group_on_error

	
If TRUE, then sets the current consumer group of the caller to his/her initial consumer group in the event of an error

Return Values

This procedure outputs the old consumer group of the user in the parameter old_consumer_group.

	
Note:

You can switch back to the old consumer group later using the value returned in old_consumer_group.

Exceptions

Table 131-22 SWITCH_CURRENT_CONSUMER_GROUP Procedure Exceptions

	Exception	Description
	
29368

	
Non-existent consumer group

	
1031

	
Insufficient privileges

	
29396

	
Cannot switch to OTHER_GROUPS consumer group

Usage Notes

The owner of a procedure must have privileges on the group from which a user was switched (old_consumer_group) in order to switch them back. There is one exception: The procedure can always switch the user back to his/her initial consumer group (skipping the privilege check).

By setting initial_group_on_error to TRUE, SWITCH_CURRENT_CONSUMER_GROUP puts the current session into the default group, if it can't put it into the group designated by new_consumer_group. The error associated with the attempt to move a session into new_consumer_group is raised, even though the current consumer group has been changed to the initial consumer group.

Examples

CREATE OR REPLACE PROCEDURE high_priority_task is
 old_group varchar2(30);
 prev_group varchar2(30);
 curr_user varchar2(30);
BEGIN
 -- switch invoker to privileged consumer group. If we fail to do so, an
 -- error is thrown, but the consumer group does not change
 -- because 'initial_group_on_error' is set to FALSE

 dbms_session.switch_current_consumer_group('tkrogrp1', old_group, FALSE);
 -- set up exception handler (in the event of an error, we do not want to
 -- return to caller while leaving the session still in the privileged
 -- group)

 BEGIN
 -- perform some operations while under privileged group

 EXCEPTION
 WHEN OTHERS THEN
 -- It is possible that the procedure owner does not have privileges
 -- on old_group. 'initial_group_on_error' is set to TRUE to make sure
 -- that the user is moved out of the privileged group in such a
 -- situation

 dbms_session.switch_current_consumer_group(old_group,prev_group,TRUE);
 RAISE;
 END;

 -- we've succeeded. Now switch to old_group, or if cannot do so, switch
 -- to caller's initial consumer group

 dbms_session.switch_current_consumer_group(old_group,prev_group,TRUE);
END high_priority_task;
/

UNIQUE_SESSION_ID Function

This function returns an identifier that is unique for all sessions currently connected to this database. Multiple calls to this function during the same session always return the same result.

Syntax

DBMS_SESSION.UNIQUE_SESSION_ID
 RETURN VARCHAR2;

Pragmas

pragma restrict_references(unique_session_id,WNDS,RNDS,WNPS);

Return Values

Table 131-23 UNIQUE_SESSION_ID Function Return Values

	Return	Description
	
unique_session_id

	
Returns up to 24 bytes

DBMS_SHARED_POOL

132 DBMS_SHARED_POOL

The DBMS_SHARED_POOL package provides access to the shared pool, which is the shared memory area where cursors and PL/SQL objects are stored. DBMS_SHARED_POOL enables you to display the sizes of objects in the shared pool, and mark them for keeping or not-keeping in order to reduce memory fragmentation.

This chapter contains the following topics:

	
Using DBMS_SHARED_POOL

	
Overview

	
Operational Notes

	
Summary of DBMS_SHARED_POOL Subprograms

Using DBMS_SHARED_POOL

	
Overview

	
Operational Notes

Overview

The procedures provided here may be useful when loading large PL/SQL objects. When large PL/SQL objects are loaded, users response time is affected because of the large number of smaller objects that need to be aged out from the shared pool to make room (due to memory fragmentation). In some cases, there may be insufficient memory to load the large objects.

DBMS_SHARED_POOL is also useful for frequently executed triggers. You may want to keep compiled triggers on frequently used tables in the shared pool.

Additionally, DBMS_SHARED_POOL supports sequences. Sequence numbers are lost when a sequence is aged out of the shared pool. DBMS_SHARED_POOL is useful for keeping sequences in the shared pool and thus preventing the loss of sequence numbers.

Operational Notes

To create DBMS_SHARED_POOL, run the DBMSPOOL.SQL script. The PRVTPOOL.PLB script is automatically executed after DBMSPOOL.SQL runs. These scripts are not run by as part of standard database creation.

Summary of DBMS_SHARED_POOL Subprograms

Table 132-1 DBMS_SHARED_POOL Package Subprograms

	Subprogram	Description
	
ABORTED_REQUEST_THRESHOLD Procedure

	
Sets the aborted request threshold for the shared pool

	
KEEP Procedure

	
Keeps an object in the shared pool

	
MARKHOT Procedure

	
Marks a library cache object as a hot object

	
PURGE Procedure

	
Purges the named object or specified heap(s) of the object

	
SIZES Procedure

	
Shows objects in the shared pool that are larger than the specified size

	
UNKEEP Procedure

	
Unkeeps the named object

	
UNMARKHOT Procedure

	
Unmarks a library cache object as a hot object

ABORTED_REQUEST_THRESHOLD Procedure

This procedure sets the aborted request threshold for the shared pool.

Syntax

DBMS_SHARED_POOL.ABORTED_REQUEST_THRESHOLD (
 threshold_size NUMBER);

Parameters

Table 132-2 ABORTED_REQUEST_THRESHOLD Procedure Parameters

	Parameter	Description
	
threshold_size

	
Size, in bytes, of a request which does not try to free unpinned (not "unkeep-ed") memory within the shared pool. The range of threshold_size is 5000 to ~2 GB inclusive.

Exceptions

An exception is raised if the threshold is not in the valid range.

Usage Notes

Usually, if a request cannot be satisfied on the free list, then the RDBMS tries to reclaim memory by freeing objects from the LRU list and checking periodically to see if the request can be fulfilled. After finishing this step, the RDBMS has performed a near equivalent of an 'ALTER SYSTEM FLUSH SHARED_POOL'.

Because this impacts all users on the system, this procedure "localizes" the impact to the process failing to find a piece of shared pool memory of size greater than thresh_hold size. This user gets the 'out of memory' error without attempting to search the LRU list.

KEEP Procedure

This procedure keeps an object in the shared pool. Once an object has been kept in the shared pool, it is not subject to aging out of the pool. This may be useful for frequently used large objects. When large objects are brought into the shared pool, several objects may need to be aged out to create a contiguous area large enough.

Syntax

DBMS_SHARED_POOL.KEEP (
 name VARCHAR2,
 flag CHAR DEFAULT 'P');

Parameters

Table 132-3 KEEP Procedure Parameters

	Parameter	Description
	
name

	
Name of the object to keep.

The value for this identifier is the concatenation of the address and hash_value columns from the v$sqlarea view. This is displayed by the SIZES procedure.

Currently, TABLE and VIEW objects may not be kept.

	
flag

	
(Optional) If this is not specified, then the package assumes that the first parameter is the name of a package/procedure/function and resolves the name.

Set to 'P' or 'p' to fully specify that the input is the name of a package/procedure/function.

Set to 'T' or 't' to specify that the input is the name of a type.

Set to 'R' or 'r' to specify that the input is the name of a trigger.

Set to 'Q' or 'q' to specify that the input is the name of a sequence.

In case the first argument is a cursor address and hash-value, the parameter should be set to any character except 'P' or 'p' or 'Q' or 'q' or 'R' or 'r' or 'T' or 't'.

Exceptions

An exception is raised if the named object cannot be found.

Usage Notes

There are two kinds of objects:

	
PL/SQL objects, triggers, sequences, and types which are specified by name

	
SQL cursor objects which are specified by a two-part number (indicating a location in the shared pool).

For example:

DBMS_SHARED_POOL.KEEP('scott.hispackage')

This keeps package HISPACKAGE, owned by SCOTT. The names for PL/SQL objects follow SQL rules for naming objects (for example, delimited identifiers and multibyte names are allowed). A cursor can be kept by DBMS_SHARED_POOL.KEEP('0034CDFF, 20348871','C'), 0034CDFF being the ADDRESS and 20348871 the HASH_VALUE. Note that the complete hexadecimal address must be in the first 8 characters.

MARKHOT Procedure

This procedure marks a library cache object as a hot object.

Syntax

DBMS_SHARED_POOL.MARKHOT (
 schema VARCHAR2,
 objname VARCHAR2,
 namespace NUMBER DEFAULT 1, global BOOLEAN DEFAULT TRUE);

DBMS_SHARED_POOL.MARKHOT (
 hash VARCHAR2,
 namespace NUMBER DEFAULT 1,
 global BOOLEAN DEFAULT TRUE);

Parameters

Table 132-4 MARKHOT Procedure Parameters

	Parameter	Description
	
schema

	
User name or the schema to which the object belongs

	
objname

	
Name of the object

	
namespace

	
Number indicating the library cache namespace in which the object is to be searched

	
global

	
If TRUE (default), mark the object hot on all OracleRAC instances

	
hash

	
16-byte hash value for the object

Exceptions

ORA-06502: An exception is raised if the named object cannot be found due to incorrect input

ORA-04043: An exception is raised if the named object cannot be found (bad namespace, or hash input)

PURGE Procedure

This procedure purges the named object or specified heap(s) of the object.

Syntax

DBMS_SHARED_POOL.PURGE (
 name VARCHAR2,
 flag CHAR DEFAULT 'P',
 heaps NUMBER DEFAULT 1);

DBMS_SHARED_POOL.PURGE (
 schema VARCHAR2,
 objname VARCHAR2,
 namespace NUMBER,
 heaps NUMBER);

DBMS_SHARED_POOL.PURGE (
 hash VARCHAR2,
 namespace NUMBER,
 heaps NUMBER);

Parameters

Table 132-5 PURGE Procedure Parameters

	Parameter	Description
	
name

	
Name of the object to purge.

The value for this identifier is the concatenation of the address and hash_value columns from the v$sqlarea view. This is displayed by the SIZES procedure.

Currently, TABLE and VIEW objects may not be purged.

	
flag

	
(Optional) If this is not specified, then the package assumes that the first parameter is the name of a package/procedure/function and resolves the name.

Set to 'P' or 'p' to fully specify that the input is the name of a package/procedure/function.

Set to 'T' or 't' to specify that the input is the name of a type.

Set to 'R' or 'r' to specify that the input is the name of a trigger.

Set to 'Q' or 'q' to specify that the input is the name of a sequence.

In case the first argument is a cursor address and hash-value, the parameter should be set to any character except 'P' or 'p' or 'Q' or 'q' or 'R' or 'r' or 'T' or 't'.

	
heaps

	
Heaps to be purged. For example, if heap 0 and heap 6 are to be purged:

1<<0 | 1<<6 => hex 0x41 => decimal 65, so specify heaps =>65.Default is 1, that is, heap 0 which means the whole object would be purged

	
schema

	
User name or the schema to which the object belongs

	
objname

	
Name of the object to purge

	
namespace

	
Parameter is a number indicating the library cache namespace in which the object is to be searched

	
hash

	
16-byte hash value for the object

Exceptions

ORA-6570: An exception is raised if the named object cannot be found

ORA-6570: An object cannot be purged it marked as permanently kept

Usage Notes

All objects supported by the KEEP Procedure are supported for PURGE.

SIZES Procedure

This procedure shows objects in the shared_pool that are larger than the specified size. The name of the object is also given, which can be used as an argument to either the KEEP or UNKEEP calls.

Syntax

DBMS_SHARED_POOL.SIZES (
 minsize NUMBER);

Parameters

Table 132-6 SIZES Procedure Parameters

	Parameter	Description
	
minsize

	
Size, in kilobytes, over which an object must be occupying in the shared pool, in order for it to be displayed.

Usage Notes

Issue the SQLDBA or SQLPLUS 'SET SERVEROUTPUT ON SIZE XXXXX' command prior to using this procedure so that the results are displayed.

UNKEEP Procedure

This procedure unkeeps the named object.

Syntax

DBMS_SHARED_POOL.UNKEEP (
 name VARCHAR2,
 flag CHAR DEFAULT 'P');

	
Caution:

This procedure may not be supported in the future if automatic mechanisms are implemented to make this unnecessary.

Parameters

Table 132-7 UNKEEP Procedure Parameters

	Parameter	Description
	
name

	
Name of the object to unkeep. See description of the name object for the KEEP procedure.

	
flag

	
See description of the flag parameter for the KEEP procedure.

Exceptions

An exception is raised if the named object cannot be found.

UNMARKHOT Procedure

This procedure unmarks a library cache object as a hot object.

Syntax

DBMS_SHARED_POOL.UNMARKHOT (
 schema VARCHAR2,
 objname VARCHAR2,
 namespace NUMBER DEFAULT 1, global BOOLEAN DEFAULT TRUE);

DBMS_SHARED_POOL.UNMARKHOT (
 hash VARCHAR2,
 namespace NUMBER DEFAULT 1,
 global BOOLEAN DEFAULT TRUE);

Parameters

Table 132-8 UNMARKHOT Procedure Parameters

	Parameter	Description
	
schema

	
User name or the schema to which the object belongs

	
objname

	
Name of the object

	
namespace

	
Number indicating the library cache namespace in which the object is to be searched

	
global

	
If TRUE (default), unmark the object hot on all Oracle RAC instances

	
hash

	
16-byte hash value for the object

Exceptions

ORA-06502: An exception is raised if the named object cannot be found due to incorrect input

ORA-04043: An exception is raised if the named object cannot be found (bad namespace, or hash input, or non-existent object)

DBMS_SPACE

133 DBMS_SPACE

The DBMS_SPACE package enables you to analyze segment growth and space requirements.

This chapter contains the following topics:

	
Using DBMS_SPACE

	
Security Model

	
Data Structures

	
Summary of DBMS_SPACE Subprograms

Using DBMS_SPACE

	
Security Model

Security Model

This package runs with SYS privileges. The execution privilege is granted to PUBLIC. Subprograms in this package run under the caller security. The user must have ANALYZE privilege on the object.

Data Structures

The DBMS_SPACE package defines an OBJECT type, a RECORD type, and a TABLE type.

OBJECT Types

CREATE_TABLE_COST_COLINFO Object Type

RECORD Types

ASA_RECO_ROW Record Type

TABLE Types

ASA_RECO_ROW_TB Table Type

CREATE_TABLE_COST_COLINFO Object Type

This type describes the data type and size of a column in the table.

Syntax

TYPE create_table_cost_colinfo IS OBJECT(
 col_type VARCHAR(200),
 col_size NUMBER)

Attributes

Table 133-1 CQ_NOTIFICATION$_DESCRIPTOR Object Type

	Attribute	Description
	
col_type

	
Column type

	
col_size

	
Column size

ASA_RECO_ROW Record Type

This type contains the column type of individual columns returned by the ASA_RECOMMENDATIONS Function.

Syntax

TYPE asa_reco_row IS RECORD (
 tablespace_name VARCHAR2(30),
 segment_owner VARCHAR2(30),
 segment_name VARCHAR2(30), segment_type VARCHAR2(18),
 partition_name VARCHAR2(30),
 allocated_space NUMBER,
 used_space NUMBER,
 reclaimable_space NUMBER,
 chain_rowexcess NUMBER,
 recommendations VARCHAR2(1000),
 c1 VARCHAR2(1000),
 c2 VARCHAR2(1000),
 c3 VARCHAR2(1000),
 task_id NUMBER,
 mesg_id NUMBER);

Attributes

Table 133-2 ASA_RECO_ROW Attributes

	Field	Description
	
tablespace_name

	
Name of the tablespace containing the object

	
segment_owner

	
Name of the schema

	
segment_name

	
Name of the object

	
segment_type

	
Type of the segment 'TABLE','INDEX' and so on

	
partition_name

	
Name of the partition

	
allocated_space

	
Space allocated to the segment

	
used_space

	
Space actually used by the segment

	
reclaimable_space

	
Reclaimable free space in the segment

	
chain_rowexcess

	
Percentage of excess chain row pieces that can be eliminated

	
recommendations

	
Recommendation or finding for this segment

	
c1

	
Command associated with the recommendation

	
c2

	
Command associated with the recommendation

	
c3

	
Command associated with the recommendation

	
task_id

	
Advisor Task that processed this segment

	
mesg_id

	
Message ID corresponding to the recommendation

ASA_RECO_ROW_TB Table Type

Syntax

TYPE asa_reco_row_tb IS TABLE OF asa_reco_row;

Summary of DBMS_SPACE Subprograms

Table 133-3 DBMS_SPACE Package Subprograms

	Subprogram	Description
	
ASA_RECOMMENDATIONS Function

	
Returns recommendations/findings of segment advisor run automatically by the system or manually invoked by the user

	
CREATE_INDEX_COST Procedure

	
Determines the cost of creating an index on an existing table

	
CREATE_TABLE_COST Procedures

	
Determines the size of the table given various attributes

	
FREE_BLOCKS Procedure

	
Returns information about free blocks in an object (table, index, or cluster)

	
ISDATAFILEDROPPABLE_NAME Procedure

	
Checks whether a datafile is droppable

	
OBJECT_DEPENDENT_SEGMENTS Function

	
Returns the list of segments that are associated with the object

	
OBJECT_GROWTH_TREND Function

	
A table function where each row describes the space usage of the object at a specific point in time

	
SPACE_USAGE Procedures

	
Returns information about free blocks in an auto segment space managed segment

	
UNUSED_SPACE Procedure

	
Returns information about unused space in an object (table, index, or cluster)

ASA_RECOMMENDATIONS Function

This function returns recommendations using the stored results of the auto segment advisor. This function returns results from the latest run on any given object.

Syntax

DBMS_SPACE.ASA_RECOMMENDATIONS (
 all_runs IN VARCHAR2 DEFAULT := TRUE,
 show_manual IN VARCHAR2 DEFAULT := TRUE,
 show_findings IN VARCHAR2 DEFAULT := FALSE)
 RETURN ASA_RECO_ROW_TB PIPELINED;

Parameters

Table 133-4 ASA_RECOMMENDATIONS Procedure Parameters

	Parameter	Description
	
all_runs

	
If TRUE, returns recommendations/findings for all runs of auto segment advisor. If FALSE, returns the results of the LATEST run only. LATEST does not make sense for manual invocation of segment advisor. This is applicable only for auto advisor.

	
show_manual

	
If TRUE, we show the results of manual invocations only. The auto advisor results are excluded. If FALSE, results of manual invocation of segment advisor are not returned.

	
show_findings

	
Show only the findings instead of the recommendations

CREATE_INDEX_COST Procedure

This procedure determines the cost of creating an index on an existing table. The input is the DDL statement that will be used to create the index. The procedure will output the storage required to create the index.

Syntax

DBMS_SPACE.CREATE_INDEX_COST (
 ddl IN VARCHAR2,
 used_bytes OUT NUMBER,
 alloc_bytes OUT NUMBER,
 plan_table IN VARCHAR2 DEFAULT NULL);

Pragmas

pragma restrict_references(create_index_cost,WNDS);

Parameters

Table 133-5 CREATE_INDEX_COST Procedure Parameters

	Parameter	Description
	
ddl

	
The create index DDL statement

	
used_bytes

	
The number of bytes representing the actual index data

	
alloc_bytes

	
Size of the index when created in the tablespace

	
plan_table

	
Which plan table to use, default NULL

Usage Notes

	
The table on which the index is created must already exist.

	
The computation of the index size depends on statistics gathered on the segment.

	
It is imperative that the table must have been analyzed recently.

	
In the absence of correct statistics, the results may be inaccurate, although the procedure will not raise any errors.

CREATE_TABLE_COST Procedures

This procedure is used in capacity planning to determine the size of the table given various attributes. The size of the object can vary widely based on the tablespace storage attributes, tablespace block size, and so on. There are two overloads of this procedure.

	
The first version takes the column information of the table as argument and outputs the table size.

	
The second version takes the average row size of the table as argument and outputs the table size.

This procedure can be used on tablespace of dictionary managed and locally managed extent management as well as manual and auto segment space management.

Syntax

DBMS_SPACE.CREATE_TABLE_COST (
 tablespace_name IN VARCHAR2,
 avg_row_size IN NUMBER,
 row_count IN NUMBER,
 pct_free IN NUMBER,
 used_bytes OUT NUMBER,
 alloc_bytes OUT NUMBER);

DBMS_SPACE.CREATE_TABLE_COST (
 tablespace_name IN VARCHAR2,
 colinfos IN CREATE_TABLE_COST_COLUMNS,
 row_count IN NUMBER,
 pct_free IN NUMBER,
 used_bytes OUT NUMBER,
 alloc_bytes OUT NUMBER);

CREATE TYPE create_table_cost_colinfo IS OBJECT (
 COL_TYPE VARCHAR(200),
 COL_SIZE NUMBER);

Parameters

Table 133-6 CREATE_TABLE_COST Procedure Parameters

	Parameter	Description
	
tablespace_name

	
The tablespace in which the object will be created. The default is SYSTEM tablespace.

	
avg_row_size

	
The anticipated average row size in the table

	
colinfos

	
The description of the columns

	
row_count

	
The anticipated number of rows in the table

	
pct_free

	
The percentage of free space in each block for future expansion of existing rows due to updates

	
used_bytes

	
The space used by user data

	
alloc_bytes

	
The size of the object taking into account the tablespace extent characteristics

Usage Notes

	
The used_bytes represent the actual bytes used by the data. This includes the overhead due to the block metadata, pctfree etc.

	
The alloc_bytes represent the size of the table when it is created in the tablespace. This takes into account, the size of the extents in the tablespace and tablespace extent management properties.

Examples

-- review the parameters
SELECT argument_name, data_type, type_owner, type_name
FROM all_arguments
WHERE object_name = 'CREATE_TABLE_COST'
AND overload = 2

-- examine the input parameter type
SELECT text
FROM dba_source
WHERE name = 'CREATE_TABLE_COST_COLUMNS';

-- drill down further into the input parameter type
SELECT text
FROM dba_source
WHERE name = 'create_table_cost_colinfo';

set serveroutput on

DECLARE
 ub NUMBER;
 ab NUMBER;
 cl sys.create_table_cost_columns;
BEGIN
 cl := sys.create_table_cost_columns(sys.create_table_cost_colinfo('NUMBER',10),
 sys.create_table_cost_colinfo('VARCHAR2',30),
 sys.create_table_cost_colinfo('VARCHAR2',30),
 sys.create_table_cost_colinfo('DATE',NULL));

 DBMS_SPACE.CREATE_TABLE_COST('SYSTEM',cl,100000,0,ub,ab);

 DBMS_OUTPUT.PUT_LINE('Used Bytes: ' || TO_CHAR(ub));
 DBMS_OUTPUT.PUT_LINE('Alloc Bytes: ' || TO_CHAR(ab));
END;
/

FREE_BLOCKS Procedure

This procedure returns information about free blocks in an object (table, index, or cluster). See SPACE_USAGE Procedures for returning free block information in an auto segment space managed segment.

Syntax

DBMS_SPACE.FREE_BLOCKS (
 segment_owner IN VARCHAR2,
 segment_name IN VARCHAR2,
 segment_type IN VARCHAR2,
 freelist_group_id IN NUMBER,
 free_blks OUT NUMBER,
 scan_limit IN NUMBER DEFAULT NULL,
 partition_name IN VARCHAR2 DEFAULT NULL);

Pragmas

pragma restrict_references(free_blocks,WNDS);

Parameters

Table 133-7 FREE_BLOCKS Procedure Parameters

	Parameter	Description
	
segment_owner

	
Schema name of the segment to be analyzed

	
segment_name

	
Segment name of the segment to be analyzed

	
segment_type

	
Type of the segment to be analyzed (TABLE, INDEX, or CLUSTER):

	
TABLE

	
TABLE PARTITION

	
TABLE SUBPARTITION

	
INDEX

	
INDEX PARTITION

	
INDEX SUBPARTITION

	
CLUSTER

	
LOB

	
LOB PARTITION

	
LOB SUBPARTITION

	
freelist_group_id

	
Freelist group (instance) whose free list size is to be computed

	
free_blks

	
Returns count of free blocks for the specified group

	
scan_limit

	
Maximum number of free list blocks to read (optional).

Use a scan limit of X you are interested only in the question, "Do I have X blocks on the free list?"

	
partition_name

	
Partition name of the segment to be analyzed.

This is only used for partitioned tables. The name of subpartition should be used when partitioning is composite.

Examples

The following uses the CLUS cluster in SCOTT schema with 4 freelist groups. It returns the number of blocks in freelist group 3 in CLUS.

DBMS_SPACE.FREE_BLOCKS('SCOTT', 'CLUS', 'CLUSTER', 3, :free_blocks);

	
Note:

An error is raised if scan_limit is not a positive number.

ISDATAFILEDROPPABLE_NAME Procedure

This procedure checks whether a datafile is droppable. This procedure may be called before actually dropping the file.

Syntax

DBMS_SPACE.ISDATAFILEDROPPABLE_NAME (
 filename IN VARCHAR2,
 retval OUT NUMBER);

Pragmas

pragma restrict_references(free_blocks,WNDS);

Parameters

Table 133-8 ISDATAFILEDROPPABLE_NAME Procedure Parameters

	Parameter	Description
	
filename

	
Name of the file

	
retval

	
Values: 0 if the file is not droppable, 1 if the file is droppable.

Examples

DECLARE fname VARCHAR2(100); retval NUMBER;BEGIN SELECT file_name INTO fname FROM dba_data_files WHERE file_name like '%empty%';DBMS_SPACE.ISDATAFILEDROPPABLE_NAME(fname, retval);DBMS_OUTPUT.PUT_LINE(retval);END;/

OBJECT_DEPENDENT_SEGMENTS Function

This table function, given an object, returns the list of segments that are associated with the object.

Syntax

DBMS_SPACE.OBJECT_DEPENDENT_SEGMENTS(
 objowner IN VARCHAR2,
 objname IN VARCHAR2,
 partname IN VARCHAR2,
 objtype IN NUMBER)
 RETURN dependent_segments_table PIPELINED;

Parameters

Table 133-9 OBJECT_DEPENDENT_SEGMENTS Function Parameters

	Parameter	Description
	
objowner

	
The schema containing the object

	
objname

	
The name of the object

	
partname

	
The name of the partition

	
objtype

	
Type of the object:

	
OBJECT_TYPE_TABLE constant positive := 1;

	
OBJECT_TYPE_NESTED_TABLE constant positive := 2;

	
OBJECT_TYPE_INDEX constant positive := 3;

	
OBJECT_TYPE_CLUSTER constant positive := 4;

	
OBJECT_TYPE_TABLE_PARTITION constant positive := 7;

	
OBJECT_TYPE_INDEX_PARTITION constant positive := 8;

	
OBJECT_TYPE_TABLE_SUBPARTITION constant positive := 9;

	
OBJECT_TYPE_INDEX_SUBPARTITION constant positive := 10;

	
OBJECT_TYPE_MV constant positive := 13;

	
OBJECT_TYPE_MVLOG constant positive := 14;

Return Values

The content of one row of a dependent_segments_table:

TYPE object_dependent_segment IS RECORD (
 segment_owner VARCHAR2(100),
 segment_name VARCHAR2(100),
 segment_type VARCHAR2(100),
 tablespace_name VARCHAR2(100),
 partition_name VARCHAR2(100),
 lob_column_name VARCHAR2(100));

Table 133-10 OBJECT_DEPENDENT_SEGMENT Type Parameters

	Parameter	Description
	
segment_owner

	
The schema containing the segment

	
segment_name

	
The name of the segment

	
segmemnt_type

	
The type of the segment, such as table, index or LOB

	
tablespace_name

	
The name of the tablespace

	
partition_name

	
The name of the partition, if any

	
lob_column_name

	
The name of the LOB column, if any

OBJECT_GROWTH_TREND Function

This is a table function. The output will be in the form of one or more rows where each row describes the space usage of the object at a specific point in time. Either the space usage totals will be retrieved from Automatic Workload Repository Facilities (AWRF), or the current space usage will be computed and combined with space usage deltas retrieved from AWRF.

Syntax

DBMS_SPACE.OBJECT_GROWTH_TREND (
 object_owner IN VARCHAR2,
 object_name IN VARCHAR2,
 object_type IN VARCHAR2,
 partition_name IN VARCHAR2 DEFAULT NULL,
 start_time IN TIMESTAMP DEFAULT NULL,
 end_time IN TIMESTAMP DEFAULT NULL,
 interval IN DSINTERVAL_UNCONSTRAINED DEFAULT NULL,
 skip_interpolated IN VARCHAR2 DEFAULT 'FALSE',
 timeout_seconds IN NUMBER DEFAULT NULL,
 single_datapoint_flag IN VARCHAR2 DEFAULT 'TRUE')
 RETURN object_growth_trend_table PIPELINED;

Parameters

Table 133-11 OBJECT_GROWTH_TREND Function Parameters

	Parameter	Description
	
object_owner

	
The schema containing the object

	
object_name

	
The name of the object

	
object_type

	
The type of the object

	
partition_name

	
The name of the partition

	
start_time

	
Statistics generated after this time will be used in generating the growth trend

	
end_time

	
Statistics generated until this time will be used in generating the growth trend

	
interval

	
The interval at which to sample

	
skip_interpolated

	
Whether interpolation of missing values should be skipped

	
timeout_seconds

	
The time-out value for the function in seconds

	
single_data_point_flag

	
Whether in the absence of statistics the segment should be sampled

Return Values

The object_growth_trend_row and object_growth_trend_table are used by the OBJECT_GROWTH_TREND table function to describe its output.

TYPE object_growth_trend_row IS RECORD(
 timepoint TIMESTAMP,
 space_usage NUMBER,
 space_alloc NUMBER,
 quality VARCHAR(20));

Table 133-12 OBJECT_GROWTH_TREND_ROW Type Parameters

	Parameter	Description
	
timepoint

	
The time at which the statistic was recorded

	
space_usage

	
The space used by data

	
space_alloc

	
The size of the segment including overhead and unused space

	
quality

	
The quality of result: "GOOD", "INTERPOLATED", "PROJECTION"

TYPE object_growth_trend_table IS TABLE OF object_growth_trend_row;

SPACE_USAGE Procedures

The first form of the procedure shows the space usage of data blocks under the segment High Water Mark. You can calculate usage for LOBs, LOB PARTITIONS and LOB SUBPARTITIONS. This procedure can only be used on tablespaces that are created with auto segment space management. The bitmap blocks, segment header, and extent map blocks are not accounted for by this procedure. Note that this overload cannot be used on SECUREFILE LOBs.

The second form of the procedure returns information about SECUREFILE LOB space usage. It will return the amount of space in blocks being used by all the SECUREFILE LOBs in the LOB segment. The procedure displays the space actively used by the LOB column, freed space that has retention expired, and freed space that has retention unexpired. Note that this overload can be used only on SECUREFILE LOBs.

Syntax

DBMS_SPACE.SPACE_USAGE(
 segment_owner IN VARCHAR2,
 segment_name IN VARCHAR2,
 segment_type IN VARCHAR2,
 unformatted_blocks OUT NUMBER,
 unformatted_bytes OUT NUMBER,
 fs1_blocks OUT NUMBER,
 fs1_bytes OUT NUMBER,
 fs2_blocks OUT NUMBER,
 fs2_bytes OUT NUMBER,
 fs3_blocks OUT NUMBER,
 fs3_bytes OUT NUMBER,
 fs4_blocks OUT NUMBER,
 fs4_bytes OUT NUMBER,
 full_blocks OUT NUMBER,
 full_bytes OUT NUMBER,
 partition_name IN VARCHAR2 DEFAULT NULL);

DBMS_SPACE.SPACE_USAGE(
 segment_owner IN VARCHAR2,
 segment_name IN VARCHAR2,
 segment_type IN VARCHAR2,
 segment_size_blocks OUT NUMBER,
 segment_size_bytes OUT NUMBER,
 used_blocks OUT NUMBER,
 used_bytes OUT NUMBER,
 expired_blocks OUT NUMBER,
 expired_bytes OUT NUMBER,
 unexpired_blocks OUT NUMBER,
 unexpired_bytes OUT NUMBER,
 partition_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 133-13 SPACE_USAGE Procedure Parameters

	Parameter	Description
	
segment_owner

	
Schema name of the segment to be analyzed

	
segment_name

	
Name of the segment to be analyzed

	
partition_name

	
Partition name of the segment to be analyzed

	
segment_type

	
Type of the segment to be analyzed (TABLE, INDEX, or CLUSTER):

	
TABLE

	
TABLE PARTITION

	
TABLE SUBPARTITION

	
INDEX

	
INDEX PARTITION

	
INDEX SUBPARTITION

	
CLUSTER

	
LOB

	
LOB PARTITION

	
LOB SUBPARTITION

	
unformatted_blocks

	
Total number of blocks unformatted

	
unformatted bytes

	
Total number of bytes unformatted

	
fs1_blocks

	
Number of blocks having at least 0 to 25% free space

	
fs1_bytes

	
Number of bytes having at least 0 to 25% free space

	
fs2_blocks

	
Number of blocks having at least 25 to 50% free space

	
fs2_bytes

	
Number of bytes having at least 25 to 50% free space

	
fs3_blocks

	
Number of blocks having at least 50 to 75% free space

	
fs3_bytes

	
Number of bytes having at least 50 to 75% free space

	
fs4_blocks

	
Number of blocks having at least 75 to 100% free space

	
fs4_bytes

	
Number of bytes having at least 75 to 100% free space

	
ful1_blocks

	
Total number of blocks full in the segment

	
full_bytes

	
Total number of bytes full in the segment

	
segment_size_blocks

	
Number of blocks allocated to the segment

	
segment_size_bytes

	
Number of bytes allocated to the segment

	
used_blocks

	
Number blocks allocated to the LOB that contains active data

	
used_bytes

	
Number bytes allocated to the LOB that contains active data

	
expired_blocks

	
Number of expired blocks used by the LOB to keep version data

	
expired_bytes

	
Number of expired bytes used by the LOB to keep version data

	
unexpired_blocks

	
Number of unexpired blocks used by the LOB to keep version data

	
unexpired_bytes

	
Number of unexpired bytes used by the LOB to keep version data

	
partition_name

	
Name of the partition (NULL if not a partition)

Examples

variable unf number;
variable unfb number;
variable fs1 number;
variable fs1b number;
variable fs2 number;
variable fs2b number;
variable fs3 number;
variable fs3b number;
variable fs4 number;
variable fs4b number;
variable full number;
variable fullb number;

begin
dbms_space.space_usage('U1','T',
 'TABLE',
 :unf, :unfb,
 :fs1, :fs1b,
 :fs2, :fs2b,
 :fs3, :fs3b,
 :fs4, :fs4b,
 :full, :fullb);
end;
/
print unf ;
print unfb ;
print fs4 ;
print fs4b;
print fs3 ;
print fs3b;
print fs2 ;
print fs2b;
print fs1 ;
print fs1b;
print full;
print fullb;

UNUSED_SPACE Procedure

This procedure returns information about unused space in an object (table, index, or cluster).

Syntax

DBMS_SPACE.UNUSED_SPACE (
 segment_owner IN VARCHAR2,
 segment_name IN VARCHAR2,
 segment_type IN VARCHAR2,
 total_blocks OUT NUMBER,
 total_bytes OUT NUMBER,
 unused_blocks OUT NUMBER,
 unused_bytes OUT NUMBER,
 last_used_extent_file_id OUT NUMBER,
 last_used_extent_block_id OUT NUMBER,
 last_used_block OUT NUMBER,
 partition_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 133-14 UNUSED_SPACE Procedure Parameters

	Parameter	Description
	
segment_owner

	
Schema name of the segment to be analyzed

	
segment_name

	
Segment name of the segment to be analyzed

	
segment_type

	
Type of the segment to be analyzed (TABLE, INDEX, or CLUSTER):

	
TABLE

	
TABLE PARTITION

	
TABLE SUBPARTITION

	
INDEX

	
INDEX PARTITION

	
INDEX SUBPARTITION

	
CLUSTER

	
LOB

	
LOB PARTITION

	
LOB SUBPARTITION

	
total_blocks

	
Returns total number of blocks in the segment

	
total_bytes

	
Returns total number of blocks in the segment, in bytes

	
unused_blocks

	
Returns number of blocks which are not used

	
unused_bytes

	
Returns, in bytes, number of blocks which are not used

	
last_used_extent_file_id

	
Returns the file ID of the last extent which contains data

	
last_used_extent_block_id

	
Returns the starting block ID of the last extent which contains data

	
last_used_block

	
Returns the last block within this extent which contains data

	
partition_name

	
Partition name of the segment to be analyzed.

This is only used for partitioned tables; the name of subpartition should be used when partitioning is compose.

Examples

The following declares the necessary bind variables and executes.

DBMS_SPACE.UNUSED_SPACE('SCOTT', 'EMP', 'TABLE', :total_blocks,
 :total_bytes,:unused_blocks, :unused_bytes, :lastextf,
 :last_extb, :lastusedblock);

DBMS_SPACE_ADMIN

134 DBMS_SPACE_ADMIN

The DBMS_SPACE_ADMIN package provides functionality for locally managed tablespaces.

	
See Also:

Oracle Database Administrator's Guide for an example and description of using DBMS_SPACE_ADMIN.

This chapter contains the following topics:

	
Using DBMS_SPACE_ADMIN

	
Security Model

	
Constants

	
Operational Notes

	
Summary of DBMS_SPACE_ADMIN Subprograms

Using DBMS_SPACE_ADMIN

This section contains topics which relate to using the DBMS_SPACE_ADMIN package.

	
Security Model

	
Constants

	
Operational Notes

Security Model

This package runs with SYS privileges; therefore, any user who has privilege to execute the package can manipulate the bitmaps.

Constants

Table 134-1 DBMS_SPACE_ADMIN Constants

	Constant	Type	Value	Description
	
SEGMENT_VERIFY_EXTENTS

	
POSITIVE

	
1

	
Verifies that the space owned by segment is appropriately reflected in the bitmap as used

	
SEGMENT_VERIFY_EXTENTS_GLOBAL

	
POSITIVE

	
2

	
Verifies that the space owned by segment is appropriately reflected in the bitmap as used and that no other segment claims any of this space to be used by it

	
SEGMENT_MARK_CORRUPT

	
POSITIVE

	
3

	
Marks a temporary segment as corrupt whereby facilitating its elimination from the dictionary (without space reclamation)

	
SEGMENT_MARK_VALID

	
POSITIVE

	
4

	
Marks a corrupt temporary segment as valid. It is useful when the corruption in the segment extent map or elsewhere has been resolved and the segment can be dropped normally.

	
SEGMENT_DUMP_EXTENT_MAP

	
POSITIVE

	
5

	
Dumps the extent map for a given segment

	
TABLESPACE_VERIFY_BITMAP

	
POSITIVE

	
6

	
Verifies the bitmap of the tablespace with extent maps of the segments in that tablespace to make sure everything is consistent

	
TABLESPACE_EXTENT_MAKE_FREE

	
POSITIVE

	
7

	
Marks the block range (extent) as free in the bitmaps

	
TABLESPACE_EXTENT_MAKE_USED

	
POSITIVE

	
8

	
Marks the block range (extent) as used in the bitmaps

	
SEGMENT_VERIFY_BASIC

	
POSITIVE

	
9

	
Performs the basic metadata checks

	
SEGMENT_VERIFY_DEEP

	
POSITIVE

	
10

	
Performs deep verification

	
SEGMENT_VERIFY_SPECIFIC

	
POSITIVE

	
11

	
Performs a specific check for the segment

	
HWM_CHECK

	
POSITIVE

	
12

	
Checks high water mark (HWM)

	
BMB_CHECK

	
POSITIVE

	
13

	
Checks integrity among L1, L2 and L3 BMBs (Bit Map Blocks)

	
SEG_DICT_CHECK

	
POSITIVE

	
14

	
Checks consistency of segment header with corresponding SEG entry

	
EXTENT_TS_BITMAP_CHECK

	
POSITIVE

	
15

	
Checks whether the tablespace bitmaps corresponding to the extent map are marked used

	
DB_BACKPOINTER_CHECK

	
POSITIVE

	
16

	
Checks whether the L1 BMBs, L2 BMBs, L3 BMBs and data blocks point to the same parent segment

	
EXTENT_SEGMENT_BITMAP_CHECK

	
POSITIVE

	
17

	
Checks whether the bitmap blocks are consistent with the extent map

	
BITMAPS_CHECK

	
POSITIVE

	
18

	
Checks from the datablocks that the bitmap states representing the blocks are consistent

	
TS_VERIFY_BITMAPS

	
POSITIVE

	
19

	
Checks whether the tablespace bitmaps are consistent with the extents belonging to that tablespace

	
TS_VERIFY_DEEP

	
POSITIVE

	
20

	
Performs TS_VERIFY_BITMAPS and TS_VERIFY_SEGMENTS with DEEP option

	
TS_VERIFY_SEGMENTS

	
POSITIVE

	
21

	
Performs ASSM_SEGMENT_VERIFY on all segments in the tablespace, taking either the BASIC or the DEEP option

	
SEGMENTS_DUMP_BITMAP_SUMMARY

	
POSITIVE

	
27

	
Dumps only bitmap block summaries

Operational Notes

Before migrating the SYSTEM tablespace, the following conditions must be met. These conditions are enforced by the TABLESPACE_MIGRATE_TO_LOCAL procedure, except for the cold backup.

	
The database must have a default temporary tablespace that is not SYSTEM.

	
Dictionary-managed tablespaces cannot have any rollback segments.

	
A locally managed tablespace must have at least one online rollback segment. If you are using automatic undo management, then an undo tablespace must be online.

	
All tablespaces—except the tablespace containing the rollback segment or the undo tablespace—must be read-only.

	
You must have a cold backup of the database.

	
The system must be in restricted mode.

Summary of DBMS_SPACE_ADMIN Subprograms

Table 134-2 DBMS_SPACE_ADMIN Package Subprograms

	Subprogram	Description
	
ASSM_SEGMENT_VERIFY Procedure

	
Verifies segments created in ASSM (Automatic Segment-Space Management) tablespaces

	
ASSM_TABLESPACE_VERIFY Procedure

	
Verifies ASSM tablespaces

	
DROP_EMPTY_SEGMENTS Procedure

	
Drops segments from empty tables or table fragments and dependent objects

	
MATERIALIZE_DEFERRED_SEGMENTS Procedure

	
Materializes segments for tables and table fragments with deferred segment creation and their dependent objects

	
SEGMENT_CORRUPT Procedure

	
Marks the segment corrupt or valid so that appropriate error recovery can be done

	
SEGMENT_DROP_CORRUPT Procedure

	
Drops a segment currently marked corrupt (without reclaiming space)

	
SEGMENT_DUMP Procedure

	
Dumps the segment header and extent maps of a given segment

	
SEGMENT_VERIFY Procedure

	
Verifies the consistency of the extent map of the segment

	
TABLESPACE_FIX_BITMAPS Procedure

	
Marks the appropriate block range (extent) as free or used in bitmap

	
TABLESPACE_FIX_SEGMENT_STATES Procedure

	
Fixes the state of the segments in a tablespace in which migration was aborted

	
TABLESPACE_MIGRATE_FROM_LOCAL Procedure

	
Migrates a locally managed tablespace to dictionary-managed tablespace

	
TABLESPACE_MIGRATE_TO_LOCAL Procedure

	
Migrates a tablespace from dictionary-managed format to locally managed format

	
TABLESPACE_REBUILD_BITMAPS Procedure

	
Rebuilds the appropriate bitmaps

	
TABLESPACE_REBUILD_QUOTAS Procedure

	
Rebuilds quotas for given tablespace

	
TABLESPACE_RELOCATE_BITMAPS Procedure

	
Relocates the bitmaps to the destination specified

	
TABLESPACE_VERIFY Procedure

	
Verifies that the bitmaps and extent maps for the segments in the tablespace are synchronized

ASSM_SEGMENT_VERIFY Procedure

Given a segment definition, the procedure verifies the basic consistency of the space metadata blocks as well as consistency between space metadata and segment data blocks. This procedure verifies segments created in Automatic Segment Space Management (ASSM) tablespaces.

There is however a difference between basic verification and deep verification:

	
Basic verification involves consistency checks of space metadata, such as integrity among level 1, level 2, level 3 bitmap blocks, consistency of segment extent map and level 1 bitmap ranges.

	
Deep verification involves consistency checks between datablocks and space metadata blocks such as whether the datablocks point correctly to the parent level 1 bitmap blocks, and whether the freeness states in the datablocks are consistent with the freeness states of bits in level 1 bitmap blocks corresponding to the datablocks.

Syntax

DBMS_SPACE_ADMIN.ASSM_SEGMENT_VERIFY (
 segment_owner IN VARCHAR2,
 segment_name IN VARCHAR2,
 segment_type IN VARCHAR2,
 partition_name IN VARCHAR2,
 verify_option IN POSITIVE DEFAULT SEGMENT_VERIFY_BASIC,
 attrib IN POSITIVE DEFAULT NULL);

Parameters

Table 134-3 ASSM_SEGMENT_VERIFY Procedure Parameters

	Parameter	Description
	
segment_owner

	
Schema that owns the segment

	
segment_name

	
Name of the segment to be verified

	
segment_type

	
Segment namespace is one of TABLE, TABLE PARTITION, TABLE SUBPARTITION, INDEX, INDEX PARTITION, INDEX SUBPARTITION, LOB, LOB PARTITION, LOB SUBPARTITION, CLUSTER

	
partition_name

	
Name of the partition or subpartition

	
verify_option

	
One of the following options:

	
SEGMENT_VERIFY_BASIC := 9. Performs deep verification

	
SEGMENT_VERIFY_DEEP := 10. Performs the basic metadata checks (Default)

	
SEGMENT_VERIFY_SPECIFIC := 11. Performs a specific check for the segment

	
attrib

	
When option SEGMENT_VERIFY_SPECIFIC is specified as option, attrib can be one of the following:

	
HWM_CHECK := 12. Checks whether high water mark information is accurate

	
BMB_CHECK := 13. Checks whether space bitmap blocks have correct backpointers to the segment header

	
SEG_DICT_CHECK := 14. Checks whether dictionary information for segment is accurate

	
EXTENT_TS_BITMAP_CHECK := 15. Checks whether extent maps are consistent with file level bitmaps

	
DB_BACKPOINTER_CHECK := 16. Checks whether datablocks have correct backpointers to the space metadata blocks

	
EXTENT_SEGMENT_BITMAP_CHECK := 17. Checks whether extent map in the segment matches the bitmaps in the segment

	
BITMAPS_CHECK := 18. Checks whether space bitmap blocks are accurate

Usage Notes

	
Using this procedure requires SYSDBA privileges.

	
You can determine the relative file # and header block # (header_relative_file and header_block parameters) by querying DBA_SEGMENTS.

	
This procedure outputs a dump file named sid_ora_process_ID.trc to the location specified in the USER_DUMP_DEST initialization parameter.

ASSM_TABLESPACE_VERIFY Procedure

This procedures verifies all the segments created in an ASSM tablespace. The verification for each segment performs basic consistency checks of the space metadata blocks as well as consistency checks between space metadata and segment data blocks.

Syntax

DBMS_SPACE_ADMIN.ASSM_TABLESPACE_VERIFY (
 tablespace_name IN VARCHAR2,
 ts_option IN POSITIVE,
 segment_option IN POSITIVE DEFAULT NULL);

Parameters

Table 134-4 ASSM_TABLESPACE_VERIFY Procedure Parameters

	Parameter	Description
	
tablespace_name

	
Name of the tablespace to verify. The tablespace must be an ASSM tablespace.

	
ts_option

	
	
TS_VERIFY_BITMAPS := 19. The bitmaps are verified against the extents. This detects bits that are marked used or free wrongly and detects multiple allocation of extents. The file metadata is validated against file$ and control file.

	
TS_VERIFY_DEEP := 20. This option is used to verify the file bitmaps as well perform checks on all the segments .

	
TS_VERIFY_SEGMENTS := 21. This option is used to invoke SEGMENT_VERIFY on all the segments in the tablespace. Optionally you can write a script that queries all the segments in the tablespace and invoke SEGMENT_VERIFY.

	
segment_option

	
When TS_VERIFY_SEGMENTS is specified, segment_option can be one of the following:

	
SEGMENT_VERIFY_BASIC := 9

	
SEGMENT_VERIFY_DEEP := 10

The value of segment_option is NULL when TS_VERIFY_DEEP or TS_VERIFY_BITMAPS is specified.

Usage Notes

	
Using this procedure requires SYSDBA privileges.

	
This procedure outputs a dump file named sid_ora_process_ID.trc to the location specified in the USER_DUMP_DEST initialization parameter.

DROP_EMPTY_SEGMENTS Procedure

This procedures drops segments from empty tables or table fragments and dependent objects.

	
Note:

This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2).

Syntax

DBMS_SPACE_ADMIN.DROP_EMPTY_SEGMENTS (
 schema_name IN VARCHAR2 DEFAULT NULL,
 table_name IN VARCHAR2 DEFAULT NULL,
 partition_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 134-5 DROP_EMPTY_SEGMENTS Procedure Parameters

	Parameter	Description
	
schema_name

	
Name of schema

	
table_name

	
Name of table

	
partition_name

	
Name of partition

Usage Notes

Given a schema name, this procedure scans all tables in the schema. For each table, if the table or any of its fragments are found to be empty, and the table satisfies certain criteria (restrictions being the same as those described in "Restrictions on Deferred Segment Creation"), then the empty table fragment and associated index segments are dropped along with the corresponding LOB data and index segments. A subsequent insert creates segments with the same properties.

Optionally:

	
No schema_name is specified, in which case tables belonging to all schemas are scanned

	
Both schema_name and table_name are specified to perform the operation on a specified table

	
All three arguments are supplied, restricting the operation to the partition and its dependent objects

MATERIALIZE_DEFERRED_SEGMENTS Procedure

This procedure materializes segments for tables and table fragments with deferred segment creation and their dependent objects.

	
Note:

This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2).

Syntax

DBMS_SPACE_ADMIN.MATERIALIZE_DEFERRED_SEGMENTS (
 schema_name IN VARCHAR2 DEFAULT NULL,
 table_name IN VARCHAR2 DEFAULT NULL,
 partition_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 134-6 MATERIALIZE_DEFERRED_SEGMENTS Procedure Parameters

	Parameter	Description
	
schema_name

	
Name of schema

	
table_name

	
Name of table

	
partition_name

	
Name of partition

Usage Notes

Given a schema name, this procedure scans all tables in the schema. For each table, if the deferred or delayed segment property is set for the table or any of its fragments, then a new segment is created for those fragments and their dependent objects.

Optionally:

	
No schema_name is specified, in which case tables belonging to all schemas are scanned

	
Both schema_name and table_name are specified to perform the operation on a specified table

	
All three arguments are supplied, restricting the operation to the partition and its dependent objects

SEGMENT_CORRUPT Procedure

This procedure marks the segment corrupt or valid so that appropriate error recovery can be done. It cannot be used on the SYSTEM tablespace.

Syntax

DBMS_SPACE_ADMIN.SEGMENT_CORRUPT (
 tablespace_name IN VARCHAR2,
 header_relative_file IN POSITIVE,
 header_block IN POSITIVE,
 corrupt_option IN POSITIVE DEFAULT SEGMENT_MARK_CORRUPT);

Parameters

Table 134-7 SEGMENT_CORRUPT Procedure Parameters

	Parameter	Description
	
tablespace_name

	
Name of tablespace in which segment resides

	
header_relative_file

	
Relative file number of segment header

	
header_block

	
Block number of segment header

	
corrupt_option

	
SEGMENT_MARK_CORRUPT (default) or SEGMENT_MARK_VALID

Usage Noes

You can determine the relative file number and block number (header_relative_file and header_block parameter) of the segment header block by querying DBA_SEGMENTS.

Examples

The following example marks the segment as corrupt:

EXECUTE DBMS_SPACE_ADMIN.SEGMENT_CORRUPT('USERS', 4, 33, DBMS_SPACE_ADMIN.SEGMENT_MARK_CORRUPT);

Alternately, the next example marks a corrupt segment valid:

EXECUTE DBMS_SPACE_ADMIN.SEGMENT_CORRUPT('USERS', 4, 33, DBMS_SPACE_ADMIN.SEGMENT_MARK_VALID);

SEGMENT_DROP_CORRUPT Procedure

This procedure drops a segment currently marked corrupt (without reclaiming space). For this to work, the segment must be marked temporary. To mark a corrupt segment as temporary, issue a DROP command on the segment.

Syntax

DBMS_SPACE_ADMIN.SEGMENT_DROP_CORRUPT (
 tablespace_name IN VARCHAR2,
 header_relative_file IN POSITIVE,
 header_block IN POSITIVE);

Parameters

Table 134-8 SEGMENT_DROP_CORRUPT Procedure Parameters

	Parameter	Description
	
tablespace_name

	
Name of tablespace in which segment resides

	
header_relative_file

	
Relative file number of segment header

	
header_block

	
Block number of segment header

Usage Notes

	
The space for the segment is not released, and it must be fixed by using the TABLESPACE_FIX_BITMAPS Procedure or the TABLESPACE_REBUILD_BITMAPS Procedure.

	
The procedure cannot be used on the SYSTEM tablespace.

	
You can determine the relative file number and block number (header_relative_file and header_block parameter) of the segment header block by querying DBA_SEGMENTS.

Examples

EXECUTE DBMS_SPACE_ADMIN.SEGMENT_DROP_CORRUPT('USERS', 4, 33);

SEGMENT_DUMP Procedure

This procedure dumps the segment header and bitmap blocks of a specific segment to the location specified in the USER_DUMP_DEST initialization parameter.

Syntax

DBMS_SPACE_ADMIN.SEGMENT_DUMP (
 tablespace_name IN VARCHAR2,
 header_relative_file IN POSITIVE,
 header_block IN POSITIVE,
 dump_option IN POSITIVE DEFAULT SEGMENT_DUMP_EXTENT_MAP);

Parameters

Table 134-9 SEGMENT_DUMP Procedure Parameters

	Parameter	Description
	
tablespace_name

	
Name of tablespace in which segment resides

	
header_relative_file

	
Relative file number of segment header

	
header_block

	
Block number of segment header

	
dump_option

	
One of the following options:

	
SEGMENT_DUMP_EXTENT_MAP

	
SEGMENT_DUMP_BITMAP_SUMMARY

Usage Notes

	
You can produce a slightly abbreviated dump, which includes the segment header and bitmap block summaries, without percent-free states of each block if you pass SEGMENT_DUMP_BITMAP_SUMMARY as the dump_option parameter.

	
You can determine the relative file number and block number (header_relative_file and header_block parameter) of the segment header block by querying DBA_SEGMENTS.

Examples

EXECUTE DBMS_SPACE_ADMIN.SEGMENT_DUMP('USERS', 4, 33);

SEGMENT_VERIFY Procedure

This procedure checks the consistency of the segment extent map with the tablespace file bitmaps.

Syntax

DBMS_SPACE_ADMIN.SEGMENT_VERIFY (
 tablespace_name IN VARCHAR2,
 header_relative_file IN POSITIVE,
 header_block IN POSITIVE,
 verify_option IN POSITIVE DEFAULT SEGMENT_VERIFY_EXTENTS);

Parameters

Table 134-10 SEGMENT_VERIFY Procedure Parameters

	Parameters	Description
	
tablespace_name

	
Name of tablespace in which segment resides

	
header_relative_file

	
Relative file number of segment header

	
header_block

	
Block number of segment header

	
verify_option

	
What kind of check to do: SEGMENT_VERIFY_EXTENTS or SEGMENT_VERIFY_EXTENTS_GLOBAL

Usage Notes

	
Anomalies are output as block range, bitmap-block, bitmap-block-range, anomaly-information, in the trace file for all block ranges found to have incorrect space representation. The kinds of problems which would be reported are free space not considered free, used space considered free, and the same space considered used by multiple segments.

	
You can determine the relative file number and block number (header_relative_file and header_block parameter) of the segment header block by querying DBA_SEGMENTS.

Examples

The following example verifies that the segment with segment header at relative file number 4, block number 33, has its extent maps and bitmaps synchronized.

EXECUTE DBMS_SPACE_ADMIN.SEGMENT_VERIFY('USERS', 4, 33, DBMS_SPACE_ADMIN.SEGMENT_VERIFY_EXTENTS);

TABLESPACE_FIX_BITMAPS Procedure

This procedure marks the appropriate block range (extent) as free or used in bitmap. It cannot be used on the SYSTEM tablespace.

Syntax

DBMS_SPACE_ADMIN.TABLESPACE_FIX_BITMAPS (
 tablespace_name IN VARCHAR2,
 dbarange_relative_file IN POSITIVE,
 dbarange_begin_block IN POSITIVE,
 dbarange_end_block IN POSITIVE,
 fix_option IN POSITIVE);

Parameters

Table 134-11 TABLESPACE_FIX_BITMAPS Procedure Parameters

	Parameter	Description
	
tablespace_name

	
Name of tablespace

	
dbarange_relative_file

	
Relative file number of block range (extent)

	
dbarange_begin_block

	
Block number of beginning of extent

	
dbarange_end_block

	
Block number (inclusive) of end of extent

	
fix_option

	
One of the following options:

	
TABLESPACE_EXTENT_MAKE_FREE

	
TABLESPACE_EXTENT_MAKE_USED

Examples

The following example marks bits for 51 blocks for relative file number 4, beginning at block number 33 and ending at 83, as USED in bitmaps.

EXECUTE DBMS_SPACE_ADMIN.TABLESPACE_FIX_BITMAPS('USERS', 4, 33, 83, DBMS_SPACE_ADMIN.EXTENT_MAKE_USED);

Alternatively, specifying an option of TABLESPACE_EXTENT_MAKE_FREE marks the bits free in bitmaps. The BEGIN and END blocks must be in extent boundary and be extent multiple; otherwise, an error is raised.

TABLESPACE_FIX_SEGMENT_STATES Procedure

This procedure fixes the state of the segments in a tablespace in which migration was aborted. During tablespace migration to or from local, the segments are put in a transient state. If migration is aborted, then the segment states are corrected by SMON when event 10906 is set. A database with segments in such a transient state cannot be downgraded. The procedure can be used to fix the state of such segments.

Syntax

DBMS_SPACE_ADMIN.TABLESPACE_FIX_SEGMENT_STATES (
 tablespace_name IN VARCHAR);

Parameters

Table 134-12 TABLESPACE_FIX_SEGMENT_STATES Procedure Parameters

	Parameter Name	Description
	
tablespace_name

	
Name of the tablespace whose segments must be fixed

Usage Notes

The tablespace must be kept online and read/write when this procedure is called.

Examples

EXECUTE DBMS_SPACE_ADMIN.TABLESPACE_FIX_SEGMENT_STATES('TS1')

TABLESPACE_MIGRATE_FROM_LOCAL Procedure

This procedure migrates a locally managed tablespace to a dictionary-managed tablespace.

Syntax

DBMS_SPACE_ADMIN.TABLESPACE_MIGRATE_FROM_LOCAL (
 tablespace_name IN VARCHAR2);

Parameter

Table 134-13 TABLESPACE_MIGRATE_FROM_LOCAL Procedure Parameter

	Parameter	Description
	
tablespace_name

	
Name of tablespace

Usage Notes

The tablespace must be kept online and read/write during migration. Migration of temporary tablespaces and migration of SYSTEM tablespaces are not supported.

Examples

EXECUTE DBMS_SPACE_ADMIN.TABLESPACE_MIGRATE_FROM_LOCAL('USERS');

TABLESPACE_MIGRATE_TO_LOCAL Procedure

This procedure migrates the tablespace from a dictionary-managed format to a locally managed format. Tablespaces migrated to locally managed format are user managed.

Syntax

DBMS_SPACE_ADMIN.TABLESPACE_MIGRATE_TO_LOCAL (
 tablespace_name IN VARCHAR2,
 unit_size IN POSITIVE DEFAULT NULL,
 rfno IN POSITIVE DEFAULT NULL);

Parameters

Table 134-14 TABLESPACE_MIGRATE_TO_LOCAL Procedure Parameters

	Parameter Name	Description
	
tablespace_name

	
Name of the tablespace to be migrated

	
unit_size

	
Bitmap unit size (which is the size of the smallest possible chunk of space that can be allocated) in the tablespace specified in number of blocks

	
rfno

	
Relative File Number of the file where the bitmap blocks are placed

Usage Notes

	
Before you migrate the SYSTEM tablespace, migrate any dictionary-managed tablespaces that you want to use in read/write mode to locally managed. After the SYSTEM tablespace is migrated, you cannot change dictionary-managed tablespaces to read/write.

	
See Also:

Oracle Database Administrator's Guide

	
The tablespace must be kept online and read/write during migration. Note that temporary tablespaces cannot be migrated.

	
Allocation Unit may be specified optionally. The default is calculated by the system based on the highest common divisor of all extents (used or free) for the tablespace. This number is further trimmed based on the MINIMUM EXTENT for the tablespace (5 if MINIMUM EXTENT is not specified). Thus, the calculated value will not be larger than the MINIMUM EXTENT for the tablespace. The last free extent in every file is ignored for GCD calculation. If you specify the unit size, then it must be a factor of the unit_size calculated by the system; otherwise an error message is returned.

	
The Relative File Number parameter is used to place the bitmaps in a desired file. If space is not found in the file, then an error is issued. The data file specified must be part of the tablespace being migrated. If the dataflow is not specified, then the system chooses a dataflow in which to place the initial bitmap blocks. If space is not found for the initial bitmaps, then an error is raised.

Examples

To migrate a tablespace 'TS1' in 2KB blocksize with minimum extent size 1MB:

EXECUTE DBMS_SPACE_ADMIN.TABLESPACE_MIGRATE_TO_LOCAL('TS1', 512, 2);

The bitmaps are placed in file with relative file number 2.

TABLESPACE_REBUILD_BITMAPS Procedure

This procedure rebuilds the appropriate bitmaps. If no bitmap block is specified, then it rebuilds all bitmaps for the given tablespace.

The procedure cannot be used on the SYSTEM tablespace.

Syntax

DBMS_SPACE_ADMIN.TABLESPACE_REBUILD_BITMAPS (
 tablespace_name IN VARCHAR2,
 bitmap_relative_file IN POSITIVE DEFAULT NULL,
 bitmap_block IN POSITIVE DEFAULT NULL);

Parameters

Table 134-15 TABLESPACE_REBUILD_BITMAPS Procedure Parameters

	Parameter	Description
	
tablespace_name

	
Name of tablespace

	
bitmap_relative_file

	
Relative file number of bitmap block to rebuild

	
bitmap_block

	
Block number of bitmap block to rebuild

Usage Notes

Only full rebuild is supported.

Examples

The following example rebuilds bitmaps for all the files in the USERS tablespace.

EXECUTE DBMS_SPACE_ADMIN.TABLESPACE_REBUILD_BITMAPS('USERS');

TABLESPACE_REBUILD_QUOTAS Procedure

This procedure rebuilds quotas for the given tablespace.

Syntax

DBMS_SPACE_ADMIN.TABLESPACE_REBUILD_QUOTAS (
 tablespace_name IN VARCHAR2);

Parameters

Table 134-16 TABLESPACE_REBUILD_QUOTAS Procedure Parameters

	Parameter	Description
	
tablespace_name

	
Name of tablespace

Examples

EXECUTE DBMS_SPACE_ADMIN.TABLESPACE_REBUILD_QUOTAS('USERS');

TABLESPACE_RELOCATE_BITMAPS Procedure

This procedure relocates the bitmaps to the destination specified.

Syntax

DBMS_SPACE_ADMIN.TABLESPACE_RELOCATE_BITMAPS (
 tablespace_name IN VARCHAR2,
 filno IN POSITIVE,
 blkno IN POSITIVE);

Parameters

Table 134-17 TABLESPACE_RELOCATE_BITMAPS Procedure Parameters

	Parameter Name	Description
	
tablespace_name

	
Name of tablespace

	
filno

	
Relative File Number of the destination file

	
blkno

	
Block Number of the destination range

Usage Notes

	
Migration of a tablespace from dictionary-managed to locally managed format could result in the creation of SPACE HEADER segment that contains the bitmap blocks. The SPACE HEADER segment is treated as user data. If you explicitly resize a file at or below the space header segment, then an error is issued. Use the TABLESPACE_RELOCATE_BITMAPS command to move the control information to a different destination and then resize the file.

	
This procedure cannot be used on the SYSTEM tablespace.

	
The tablespace must be kept online and read/write during relocation of bitmaps. This can be done only on migrated locally managed tablespaces.

Examples

EXECUTE DBMS_SPACE_ADMIN.TABLESPACE_RELOCATE_BITMAPS('TS1', 3, 4);

Moves the bitmaps to file 3, block 4.

	
Note:

The source and the destination addresses must not overlap. The destination block number is rounded down to the unit boundary. If there is user data in that location, then an error is raised.

TABLESPACE_VERIFY Procedure

This procedure verifies that the bitmaps and extent maps for the segments in the tablespace are synchronized.

Syntax

DBMS_SPACE_ADMIN.TABLESPACE_VERIFY (
 tablespace_name IN VARCHAR2,
 verify_option IN POSITIVE DEFAULT TABLESPACE_VERIFY_BITMAP);

Parameters

Table 134-18 TABLESPACE_VERIFY Procedure Parameters

	Parameter	Description
	
tablespace_name

	
Name of tablespace

	
verify_option

	
One option is supported: TABLESPACE_VERIFY_BITMAP

Examples

EXECUTE DBMS_SPACE_ADMIN.TABLESPACE_VERIFY('USERS');

DBMS_SPM

135 DBMS_SPM

The DBMS_SPM package supports the SQL plan management feature by providing an interface for the DBA or other user to perform controlled manipulation of plan history and SQL plan baselines maintained for various SQL statements.

	
See Also:

For more information about "Using SQL Plan Management" in the Oracle Database Performance Tuning Guide

This chapter contains the following topics:

	
Using DBMS_SPM

	
Overview

	
Security Model

	
Constants

	
Examples

	
Data Structures

	
Summary of DBMS_SPM Subprograms

Using DBMS_SPM

	
Overview

	
Security Model

	
Constants

	
Examples

Overview

The DBMS_SPM package allows the user to manage SQL execution plans using SQL plan management. SQL plan management prevents performance regressions resulting from sudden changes to the execution plan of a SQL statement by recording and evaluating the execution plans of SQL statements over time, and builds SQL plan baselines composed of a set of existing plans known to be efficient. The SQL plan baselines are then used to preserve performance of corresponding SQL statements, regardless of changes occurring in the system. Common usage scenarios where SQL plan management can improve or preserve SQL performance include:

	
A database upgrade that installs a new optimizer version usually results in plan changes for a small percentage of SQL statements, with most of the plan changes resulting in either no performance change or improvement. However, certain plan changes may cause performance regressions. The use of SQL plan baselines significantly minimizes potential performance regressions resulting from a database upgrade.

	
Ongoing system and data changes can impact plans for some SQL statements, potentially causing performance regressions. The use of SQL plan baselines helps to minimize performance regressions and stabilize SQL performance.

	
Deployment of new application modules means introducing new SQL statements into the system. The application software may use appropriate SQL execution plans developed under a standard test configuration for the new SQL statements. If the system production configuration differs significantly from the test configuration, SQL plan baselines can be evolved over time to produce better performance.

Security Model

The package is owned by SYS. The EXECUTE package privilege is required to execute its procedures. Any user granted the ADMINISTER SQL MANAGEMENT OBJECT privilege is able to execute the DBMS_SPM package.

Constants

The DBMS_SPM package uses the constants shown in Table 135-1, "DBMS_SPM Constants". These constants are defined as standard input for the time_limit parameter of the EVOLVE_SQL_PLAN_BASELINE Function.

Table 135-1 DBMS_SPM Constants

	Constant	Type	Value	Description
	
AUTO_LIMIT

	
INTEGER

	
2147483647

	
Oracle determines the appropriate time spent by the EVOLVE_SQL_PLAN_BASELINE Function.

	
NO_LIMIT

	
INTEGER

	
2147483647 -1

	
There is no limit to the time spent by the EVOLVE_SQL_PLAN_BASELINE Function.

Examples

Detailed examples are located under the following topics:

	
Migrating Stored Outlines to SQL Plan Baselines

	
Migrating Outlines to Utilize SQL Plan Management Features

	
Migrating Outlines to Preserve Stored Outline Behavior

	
Performing Follow-Up Tasks After Stored Outline Migration

Data Structures

The DBMS_SPM package defines a TABLE type.

Table Types

	
NAMELIST Table Type

NAMELIST Table Type

This type allows for a list of names as an input parameter.

Syntax

TYPE name_list IS TABLE OF VARCHAR2(30);

Summary of DBMS_SPM Subprograms

This table list the package subprograms in alphabetical order.

Table 135-2 DBMS_SPM Package Subprograms

	Subprogram	Description
	
ALTER_SQL_PLAN_BASELINE Function

	
Changes an attribute of a single plan or all plans associated with a SQL statement using the attribute name/value format

	
CONFIGURE Procedure

	
Sets configuration options for SQL management base, in parameter/value format

	
CREATE_STGTAB_BASELINE Procedure

	
Creates a staging table that used for transporting SQL plan baselines from one system to another

	
DROP_SQL_PLAN_BASELINE Function

	
drops a single plan, or all plans associated with a SQL statement

	
EVOLVE_SQL_PLAN_BASELINE Function

	
Evolves SQL plan baselines associated with one or more SQL statements

	
LOAD_PLANS_FROM_CURSOR_CACHE Functions

	
Loads one or more plans present in the cursor cache for a SQL statement

	
LOAD_PLANS_FROM_SQLSET Function

	
Loads plans stored in a SQL tuning set (STS) into SQL plan baselines

	
MIGRATE_STORED_OUTLINE Functions

	
Migrates existing stored outlines to SQL plan baselines

	
PACK_STGTAB_BASELINE Function

	
Packs (exports) SQL plan baselines from SQL management base into a staging table

	
UNPACK_STGTAB_BASELINE Function

	
Unpacks (imports) SQL plan baselines from a staging table into SQL management base

ALTER_SQL_PLAN_BASELINE Function

This function changes an attribute of a single plan or all plans associated with a SQL statement using the attribute name/value format.

Syntax

DBMS_SPM.ALTER_SQL_PLAN_BASELINE (
 sql_handle IN VARCHAR2 := NULL,
 plan_name IN VARCHAR2 := NULL,
 attribute_name IN VARCHAR2,
 attribute_value IN VARCHAR2)
 RETURN PLS_INTEGER;

Parameters

Table 135-3 ALTER_SQL_PLAN_BASELINE Function Parameters

	Parameter	Description
	
sql_handle

	
SQL statement handle. It identifies plans associated with a SQL statement for an attribute change. If NULL then plan_name must be specified.

	
plan_name

	
Plan name. It identifies a specific plan. Default NULL means set the attribute for all plans associated with a SQL statement identified by sql_handle. If NULL then sql_handle must be specified.

	
attribute_name

	
Name of plan attribute to set (see table below).

	
attribute_value

	
Value of plan attribute to use (see table below)

Table 135-4 Names & Values for ALTER_SQL_PLAN_BASELINE Function Parameters

	Name	Description	Possible Values
	
enabled

	
'YES' means the plan is available for use by the optimizer. It may or may not be used depending on accepted status.

	
'YES' or 'NO'

	
fixed

	
'YES' means the SQL plan baseline is not evolved over time. A fixed plan takes precedence over a non-fixed plan.

	
'YES' or 'NO'

	
autopurge

	
'YES' means the plan is purged if it is not used for a time period. 'NO' means it is never purged.

	
'YES' or 'NO'

	
plan_name

	
Name of the plan

	
String of up to 30-characters

	
description

	
Plan description.

	
String of up to 500-characters

Return Values

The number of plans altered.

Usage Notes

When a single plan is specified, one of various statuses, or plan name, or description can be altered. When all plans for a SQL statement are specified, one of various statuses, or description can be altered. This function can be called numerous times, each time setting a different plan attribute of same plan(s) or different plan(s).

CONFIGURE Procedure

This procedure sets configuration options for SQL management base, in parameter/value format. This function can be called numerous times, each time setting a different configuration option.

Syntax

DBMS_SPM.CONFIGURE (
 parameter_name IN VARCHAR2,
 parameter_value IN NUMBER);

Parameters

Table 135-5 CONFIGURE Procedure Parameters

	Parameter	Description
	
parameter_name

	
Name of parameter to set (see table below)

	
parameter_value

	
Value of parameter to use (see table below)

Table 135-6 Names & Values for CONFIGURE Procedure Parameters

	Name	Description	Possible Values	Default Value
	
space_budget_percent

	
Maximum percent of SYSAUX space that can be used for SQL management base

	
1,2, …, 50

	
10

	
plan_retention_weeks

	
Number of weeks to retain unused plans before they are purged

	
5,6, …, 523

	
53

Usage Notes

	
The default space budget for SQL management base is no more than ten percent of the size of SYSAUX tablespace. The space budget can be set to a maximum of 50%. The default unused plan retention period is one year and one week, which means a plan will be automatically purged if it has not been used for more than a year. The retention period can be set to a maximum of 523 weeks (i.e. a little over 10 years).

	
When the space occupied by SQL management base exceeds the defined space budget limit, a weekly database alert is generated.

CREATE_STGTAB_BASELINE Procedure

This procedure creates a staging table used for transporting SQL plan baselines from one system to another.

Syntax

DBMS_SPM.CREATE_STGTAB_BASELINE (
 table_name IN VARCHAR2,
 table_owner IN VARCHAR2 := NULL,
 tablespace_name IN VARCHAR2 := NULL);

Parameters

Table 135-7 CREATE_STGTAB_BASELINE Procedure Parameters

	Parameter	Description
	
table_name

	
Name of staging table to create for the purpose of packing and unpacking SQL plan baselines

	
table_owner

	
Name of owner of the staging table. Default NULL means current schema is the table owner.

	
tablespace_name

	
Name of tablespace. Default NULL means create staging table in the default tablespace.

Usage Notes

The creation of staging table is the first step. To migrate SQL plan baselines from one system to another, the user/DBA has to perform a series of steps as follows:

	
Create a staging table in the source system

	
Select SQL plan baselines in the source system and pack them into the staging table

	
Export staging table into a flat file using Oracle EXP utility or Data Pump

	
Transfer flat file to the target system

	
Import staging table from the flat file using Oracle IMP utility or Data Pump

	
Select SQL plan baselines from the staging table and unpack them into the target system

DROP_SQL_PLAN_BASELINE Function

This function drops a single plan, or all plans associated with a SQL statement.

Syntax

DBMS_SPM.DROP_SQL_PLAN_BASELINE (
 sql_handle IN VARCHAR2 := NULL,
 plan_name IN VARCHAR2 := NULL)
RETURN PLS_INTEGER;

Parameters

Table 135-8 DROP_SQL_PLAN_BASELINE Function Parameters

	Parameter	Description
	
sql_handle

	
SQL statement handle. It identifies plans associated with a SQL statement that are to be dropped. If NULL then plan_name must be specified.

	
plan_name

	
Plan name. It identifies a specific plan. Default NULL means to drop all plans associated with the SQL statement identified by sql_handle.

Return Values

The number of plans dropped

EVOLVE_SQL_PLAN_BASELINE Function

This function evolves SQL plan baselines associated with one or more SQL statements. A SQL plan baseline is evolved when one or more of its non-accepted plans is changed to an accepted plan or plans. If interrogated by the user (parameter verify = 'YES'), the execution performance of each non-accepted plan is compared against the performance of a plan chosen from the associated SQL plan baseline. If the non-accepted plan performance is found to be better than SQL plan baseline performance, the non-accepted plan is changed to an accepted plan provided such action is permitted by the user (parameter commit = 'YES').

The second form of the function employs a plan list format.

Syntax

DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE (
 sql_handle IN VARCHAR2 := NULL,
 plan_name IN VARCHAR2 := NULL,
 time_limit IN INTEGER := DBMS_SPM.AUTO_LIMIT,
 verify IN VARCHAR2 := 'YES',
 commit IN VARCHAR2 := 'YES')
 RETURN CLOB;

DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE (
 plan_list IN DBMS_SPM.NAME_LIST,
 time_limit IN INTEGER := DBMS_SPM.AUTO_LIMIT,
 verify IN VARCHAR2 := 'YES',
 commit IN VARCHAR2 := 'YES')
 RETURN CLOB;

Parameters

Table 135-9 EVOLVE_SQL_PLAN_BASELINE Function Parameters

	Parameter	Description
	
sql_handle

	
SQL statement identifier. Unless plan_name is specified, NULL means to consider all statements with non-accepted plans in their SQL plan baselines.

	
plan_name

	
Plan identifier. Default NULL means to consider all non- accepted plans in the SQL plan baseline of either the identified SQL statement or all SQL statements if sql_handle is NULL.

	
plan_list

	
A list of plan names. Each plan in the list can belong to same or different SQL statement.

	
time_limit

	
Time limit in number of minutes. This applies only if verify = 'YES'. The time limit is global and it is used as follows: The time limit for first non-accepted plan verification is set equal to the input value; the time limit for second non-accepted plan verification is set equal to (input value - time spent in first plan verification); and so on.

	
DBMS_SPM.AUTO_LIMIT (Default) lets the system choose an appropriate time limit based on the number of plan verifications required to be done.

	
DBMS_SPM.NO_LIMIT means there is no time limit.

	
A positive integer value represents a user specified time limit.

	
verify

	
Specifies whether to execute the plans and compare the performance before changing non-accepted plans into accepted plans. A performance verification involves executing a non-accepted plan and a plan chosen from corresponding SQL plan baseline and comparing their performance statistics. If non-accepted plan shows performance improvement, it is changed to an accepted plan.

	
'YES' (Default) - verifies that a non-accepted plan gives better performance before changing it to an accepted plan

	
'NO' - directs not to execute plans but only to change non-accepted plans into accepted plans

	
commit

	
Specifies whether to update the ACCEPTED status of non-accepted plans from 'NO' to 'YES'.

	
'YES' (Default) - perform updates of qualifying non-accepted plans and generate a report that shows the updates and the result of performance verification when verify = 'YES'.

	
'NO' - generate a report without any updates. Note that commit = 'NO' together with verify = 'NO' represents a no-op.

Return Values

A CLOB containing a formatted text report showing non-accepted plans in sequence, each with a possible change of its ACCEPTED status, and if verify = 'YES' the result of their performance verification.

Usage Notes

Invoking this subprogram requires the ADMINISTER SQL MANAGEMENT OBJECT privilege.

LOAD_PLANS_FROM_CURSOR_CACHE Functions

This function loads one or more plans present in the cursor cache for a SQL statement, or a set of SQL statements. It has four overloads: using SQL statement text, using SQL handle, using SQL ID, or using attribute_name and attribute_value pair.

Syntax

DBMS_SPM.LOAD_PLANS_FROM_CURSOR_CACHE (
 sql_id IN VARCHAR2,
 plan_hash_value IN NUMBER := NULL,
 sql_text IN CLOB,
 fixed IN VARCHAR2 := 'NO',
 enabled IN VARCHAR2 := 'YES')
 RETURN PLS_INTEGER;

DBMS_SPM.LOAD_PLANS_FROM_CURSOR_CACHE (
 sql_id IN VARCHAR2,
 plan_hash_value IN NUMBER := NULL,
 sql_handle IN VARCHAR2,
 fixed IN VARCHAR2 := 'NO',
 enabled IN VARCHAR2 := 'YES')
 RETURN PLS_INTEGER;

DBMS_SPM.LOAD_PLANS_FROM_CURSOR_CACHE (
 sql_id IN VARCHAR2,
 plan_hash_value IN NUMBER := NULL,
 fixed IN VARCHAR2 := 'NO',
 enabled IN VARCHAR2 := 'YES')
 RETURN PLS_INTEGER;

DBMS_SPM.LOAD_PLANS_FROM_CURSOR_CACHE (
 attribute_name IN VARCHAR2,
 attribute_value IN VARCHAR2,
 fixed IN VARCHAR2 := 'NO',
 enabled IN VARCHAR2 := 'YES')
 RETURN PLS_INTEGER;

Parameters

Table 135-10 LOAD_PLANS_FROM_CURSOR_CACHE Function Parameters

	Parameter	Description
	
sql_id

	
SQL statement identifier. Identifies a SQL statement in the cursor cache. Note: In the third overload the text of identified SQL statement is extracted from cursor cache and is used to identify the SQL plan baseline into which the plan(s) are loaded. If the SQL plan baseline doesn't exist it is created.

	
plan_hash_value

	
Plan identifier. Default NULL means capture all plans present in the cursor cache for the SQL statement identified by SQL_ID.

	
sql_text

	
SQL text to use in identifying the SQL plan baseline into which the plans are loaded. If the SQL plan baseline does not exist, it is created. The use of text is crucial when the user tunes a SQL statement by adding hints to its text and then wants to load the resulting plan(s) into the SQL plan baseline of the original SQL statement.

	
sql_handle

	
SQL handle to use in identifying the SQL plan baseline into which the plans are loaded. The sql_handle must denote an existing SQL plan baseline. The use of handle is crucial when the user tunes a SQL statement by adding hints to its text and then wants to load the resulting plan(s) into the SQL plan baseline of the original SQL statement.

	
fixed

	
Default 'NO' means the loaded plans are used as non-fixed plans. Value 'YES' means the loaded plans are used as fixed plans and the SQL plan baseline will not be evolved over time.

	
attribute_name

	
One of possible attribute names:

	
SQL_TEXT''

	
'PARSING_SCHEMA_NAME'

	
'MODULE'

	
'ACTION'

	
attribute_value

	
Attribute value is used as a search pattern of LIKE predicate if attribute name is 'SQL_TEXT'. Otherwise, it is used as an equality search value. (for example, for specifying attribute_name => 'SQL_TEXT', and attribute_value => '% HR-123 %' means applying SQL_TEXT LIKE '% HR-123 %' as a selection filter. Similarly, specifying attribute_name => 'MODULE', and attribute_value => 'HR' means applying 'MODULE = 'HR' as a plan selection filter). The attribute value is upper-cased except when it is enclosed in double quotes or attribute name is 'SQL_TEXT'.

	
enabled

	
Default 'YES' means the loaded plans are enabled for use by the optimizer

Return Values

Number of plans loaded

Usage Notes

Invoking this subprogram requires the ADMINISTER SQL MANAGEMENT OBJECT privilege.

LOAD_PLANS_FROM_SQLSET Function

This function loads plans stored in a SQL tuning set (STS) into SQL plan baselines. The plans loaded from STS are not verified for performance but added as accepted plans to existing or new SQL plan baselines. This function can be used to seed SQL management base with new SQL plan baselines.

Syntax

DBMS_SPM.LOAD_PLANS_FROM_SQLSET (
 sqlset_name IN VARCHAR2,
 sqlset_owner IN VARCHAR2 := NULL,
 basic_filter IN VARCHAR2 := NULL,
 fixed IN VARCHAR2 := 'NO',
 enabled IN VARCHAR2 := 'YES'
 commit_rows IN NUMBER := 1000)
RETURN PLS_INTEGER;

Parameters

Table 135-11 LOAD_PLANS_FROM_SQLSET Function Parameters

	Parameter	Description
	
sqlset_name

	
Name of the STS from where the plans are loaded into SQL plan baselines

	
sqlset_owner

	
Owner of STS. NULL means current schema is the owner.

	
basic_filter

	
A filter applied to the STS to select only qualifying plans to be loaded. The filter can take the form of any WHERE clause predicate that can specified against the view DBA_SQLSET_STATEMENTS. For example basic_filter => 'sql_text like ''select /*LOAD_STS*/%''' or basic_filter => 'sql_id="b62q7nc33gzwx"'.

	
fixed

	
Default 'NO' means the loaded plans are used as non-fixed plans. Value 'YES' means the loaded plans are used as fixed plans and the SQL plan baseline will not be evolved over time.

	
enabled

	
Default 'YES' means the loaded plans are enabled for use by the optimizer

	
commit_rows

	
Number of SQL plans to load before doing a periodic commit. This helps to shorten the undo log.

Return Values

The number of plans loaded

Usage Notes

	
To load plans from a remote system, first load the plans into an STS on the remote system, export/import the STS from remote to local system, and then use this function.

	
To load plans from Automatic Workload Repository (AWR), first load the plans stored in AWR snapshots into an STS, and then use this procedure.

	
The user can also capture plans resident in the cursor cache for one or more SQL statements into an STS, and then use this procedure.

MIGRATE_STORED_OUTLINE Functions

This function migrates stored outlines for one or more SQL statements to plan baselines in the SQL management base (SMB). Users can specify which stored outline(s) to be migrated based on outline name, SQL text, or outline category, or migrate all stored outlines in the system to SQL plan baselines.

This second overload of the function migrates stored outlines for one or more SQL statements to plan baselines in the SQL management base (SMB) given one or more outline names.

Syntax

DBMS_SPM.MIGRATE_STORED_OUTLINE (
 attribute_name IN VARCHAR2,
 attribute_value IN CLOB,
 fixed IN VARCHAR2 := 'NO')
 RETURN CLOB;

DBMS_SPM.MIGRATE_STORED_OUTLINE (
 outln_list IN DBMS_SPM.NAME_LIST,
 fixed IN VARCHAR2 := 'NO')
 RETURN CLOB;

Parameters

Table 135-12 MIGRATE_STORED_OUTLINE Function Parameters

	Parameter	Description
	
attribute_name

	
Specifies the type of parameter used in attribute_value to identify the migrated stored outlines. It is case insensitive. Possible values:

	
outline_name

	
sql_text

	
category

	
all

	
attribute_value

	
Based on attribute_name, this can be:

	
Name of stored outline to be migrated

	
SQL text of stored outlines to be migrated

	
Category of stored outlines to be migrated

	
NULL if attribute_name is all

	
fixed

	
NO (default) or YES. Specifies the "fixed" status of the plans generated during migration. By default, plans are generated as "non-fixed" plans.

	
outln_list

	
List of outline names to be migrated

Return Values

A CLOB containing a formatted report to describe the statistics during the migration, including:

	
Number of stored outlines successfully migrated

	
Number of stored outlines (and also the corresponding outline names) failed to be migrated and the reasons for the failure

Usage Note

	
When the user specifies an outline name, the function migrates stored outlines to plan baseline based on given outline name, which uniquely identifies a single stored outline to be migrated.

	
When the user specifies SQL text, the function migrates all stored outlines created for a given SQL statement. A single SQL statement can have multiple stored outlines created for it under different category names. One plan baseline plan is created for each stored outline. The new plan baselines have category names set to DEFAULT. The module name of a plan baseline is set to be the same as the stored outline.

	
When the user specifies a category name, the function migrates all stored outlines with the given category name. Only one stored outline exists per category per SQL statement. One plan baseline is created for each stored outline.

	
When user specifies to migrate all, the function migrates all stored outlines in the system to plan baselines. One plan baseline is created for each stored outline.

PACK_STGTAB_BASELINE Function

This function packs (exports) SQL plan baselines from SQL management base into a staging table.

Syntax

DBMS_SPM.PACK_STGTAB_BASELINE (
 table_name IN VARCHAR2,
 table_owner IN VARCHAR2 := NULL,
 sql_handle IN VARCHAR2 := NULL,
 plan_name IN VARCHAR2 := NULL,
 sql_text IN CLOB := NULL,
 creator IN VARCHAR2 := NULL, origin IN VARCHAR2 := NULL,
 enabled IN VARCHAR2 := NULL,
 accepted IN VARCHAR2 := NULL,
 fixed IN VARCHAR2 := NULL,
 module IN VARCHAR2 := NULL,
 action IN VARCHAR2 := NULL)
RETURN NUMBER;

Parameters

Table 135-13 PACK_STGTAB_BASELINE Function Parameters

	Parameter	Description
	
table_name

	
Name of staging table into which SQL plan baselines are packed (case insensitive unless double quoted)

	
table_owner

	
Name of staging table owner.Default NULL means current schema is the table owner

	
sql_handle

	
SQL handle (case sensitive)

	
plan_name

	
Plan name (case sensitive, % wildcards accepted)

	
sql_text

	
SQL text string (case sensitive, % wildcards accepted)

	
creator

	
Creator of SQL plan baseline (case insensitive unless double quoted)

	
origin

	
Origin of SQL plan baseline, should be 'MANUAL-LOAD', 'AUTO-CAPTURE', 'MANUAL_SQLTUNE' or 'AUTO-SQLTUNE' (case insensitive)

	
enabled

	
Must be 'YES' or 'NO' (case insensitive)

	
accepted

	
Must be 'YES' or 'NO' (case insensitive)

	
fixed

	
Must be 'YES' or 'NO' (case insensitive)

	
module

	
Module (case sensitive)

	
action

	
Action (case sensitive)

Return Values

Number of SQL plan baselines packed

UNPACK_STGTAB_BASELINE Function

This function unpacks (imports) SQL plan baselines from a staging table into SQL management base.

Syntax

DBMS_SPM.UNPACK_STGTAB_BASELINE (
 table_name IN VARCHAR2,
 table_owner IN VARCHAR2 := NULL,
 sql_handle IN VARCHAR2 := NULL,
 plan_name IN VARCHAR2 := NULL,
 sql_text IN CLOB := NULL,
 creator IN VARCHAR2 := NULL, origin IN VARCHAR2 := NULL,
 enabled IN VARCHAR2 := NULL,
 accepted IN VARCHAR2 := NULL,
 fixed IN VARCHAR2 := NULL,
 module IN VARCHAR2 := NULL,
 action IN VARCHAR2 := NULL)
RETURN NUMBER;

Parameters

Table 135-14 UNPACK_STGTAB_BASELINE Function Parameters

	Parameter	Description
	
table_name

	
Name of staging table from which SQL plan baselines are unpacked (case insensitive unless double quoted)

	
table_owner

	
Name of staging table owner.Default NULL means current schema is the table owner

	
sql_handle

	
SQL handle (case sensitive)

	
plan_name

	
Plan name (case sensitive,% wildcards accepted)

	
sql_text

	
SQL text string (case sensitive, % wildcards accepted)

	
creator

	
Creator of SQL plan baseline (case insensitive unless double quoted)

	
origin

	
Origin of SQL plan baseline, should be 'MANUAL-LOAD', 'AUTO-CAPTURE','MANUAL_SQLTUNE' or 'AUTO-SQLTUNE' (case insensitive)

	
enabled

	
Must be 'YES' or 'NO' (case insensitive)

	
accepted

	
Must be 'YES' or 'NO' (case insensitive)

	
fixed

	
Must be 'YES' or 'NO' (case insensitive)

	
module

	
Module (case sensitive)

	
action

	
Action (case sensitive)

Return Values

Number of plans unpacked

DBMS_SQL

136 DBMS_SQL

The DBMS_SQL package provides an interface to use dynamic SQL to parse any data manipulation language (DML) or data definition language (DDL) statement using PL/SQL. For example, you can enter a DROP TABLE statement from within a stored procedure by using the PARSE procedure supplied with the DBMS_SQL package.

	
See Also:

For more information on native dynamic SQL, see Oracle Database PL/SQL Language Reference.

This chapter contains the following topics:

	
Using DBMS_SQL

	
Overview

	
Security Model

	
Constants

	
Exceptions

	
Operational Notes

	
Examples

	
Data Structures

	
RECORD TYPES

	
TABLE TYPES

	
Summary of DBMS_SQL Subprograms

Using DBMS_SQL

	
Overview

	
Security Model

	
Constants

	
Exceptions

	
Operational Notes

	
Examples

Overview

Oracle lets you write stored procedures and anonymous PL/SQL blocks that use dynamic SQL. Dynamic SQL statements are not embedded in your source program; rather, they are stored in character strings that are input to, or built by, the program at runtime. This enables you to create more general-purpose procedures. For example, dynamic SQL lets you create a procedure that operates on a table whose name is not known until runtime.

Native Dynamic SQL is an alternative to DBMS_SQL that lets you place dynamic SQL statements directly into PL/SQL blocks. In most situations, Native Dynamic SQL is easier to use and performs better than DBMS_SQL. However, Native Dynamic SQL itself has certain limitations:

	
There is no support for so-called Method 4 (for dynamic SQL statements with an unknown number of inputs or outputs)

Also, there are some tasks that can only be performed using DBMS_SQL.

The ability to use dynamic SQL from within stored procedures generally follows the model of the Oracle Call Interface (OCI).

	
See Also:

Oracle Call Interface Programmer's Guide

PL/SQL differs somewhat from other common programming languages, such as C. For example, addresses (also called pointers) are not user-visible in PL/SQL. As a result, there are some differences between the Oracle Call Interface and the DBMS_SQL package. These differences include the following:

	
The OCI uses bind by address, while the DBMS_SQL package uses bind by value.

	
With DBMS_SQL you must call VARIABLE_VALUE to retrieve the value of an OUT parameter for an anonymous block, and you must call COLUMN_VALUE after fetching rows to actually retrieve the values of the columns in the rows into your program.

	
The current release of the DBMS_SQL package does not provide CANCEL cursor procedures.

	
Indicator variables are not required, because NULLs are fully supported as values of a PL/SQL variable.

A sample usage of the DBMS_SQL package follows. For users of the Oracle Call Interface, this code should seem fairly straightforward.

Security Model

DBMS_SQL is a SYS-owned package compiled with AUTHID CURRENT_USER. Any DBMS_SQL subprogram called from an anonymous PL/SQL block is run using the privileges of the current user.

	
See Also:

Oracle Database PL/SQL Language Reference for more information about using Invoker Rights or Definer Rights

In Oracle Database 11g, Release 1 (11.1), Oracle introduces a number of enhancements to DBMS_SQL to improve the security of the package.

Preventing Malicious or Accidental Access of Open Cursor Numbers

An error, ORA-29471, is raised when any DBMS_SQL subprogram is called with a cursor number that does not denote an open cursor. When the error is raised, an alert is issued to the alert log and DBMS_SQL becomes inoperable for the life of the session.

If the actual value for the cursor number in a call to the IS_OPEN Function denotes a cursor currently open in the session, the return value is TRUE. If the actual value is NULL, then the return value is FALSE. Otherwise, this raises an ORA-29471 error.

Note that the OPEN_CURSOR Function is the only DBMS_SQL subprogram that has no formal parameter for the cursor number; rather, it returns a cursor number. Therefore it is not within the scope of these rules.

Preventing Inappropriate Use of a Cursor

Cursors are protected from security breaches that subvert known existing cursors.

Checks are made when binding and executing. Optionally, checks may be performed for every single DBMS_SQL subprogram call. The check is:

	
The current_user is the same on calling the subprogram as it was on calling the most recent parse.

	
The enabled roles on calling the subprogram must be a superset of the enabled roles on calling the most recent parse.

Consistent with the use of definer's rights subprograms, roles do not apply.

If either check fails, and ORA-29470 error is raised.

The mechanism for defining when checks are performed is a new overload for the OPEN_CURSOR subprogram which takes a formal parameter, security_level, with allowed values NULL, 1 and 2.

	
When security_level = 1 (or is NULL), the checks are made only when binding and executing.

	
When security_level = 2, the checks are always made.

Upgrade Considerations

This security regime is stricter than those in Oracle Database 10g, Release 2 (10.2) and previous releases. As a consequence, users of DBMS_SQL may encounter runtime errors on upgrade. While these security enhancements make for more secure applications, users may wish to relax the security checks temporarily as they migrate to Oracle Database 11g, Release 1 (11.1). If so, please consult with Oracle Support on steps to relax the above security restrictions.

Constants

The constants described in Table 136-1 are used with the language_flag parameter of the PARSE Procedures.

Table 136-1 DBMS_SQL Constants

	Name	Type	Value	Description
	
V6

	
INTEGER

	
0

	
Specifies Oracle database version 6 behavior

	
NATIVE

	
INTEGER

	
1

	
Specifies normal behavior for the database to which the program is connected

	
V7

	
INTEGER

	
2

	
Specifies Oracle database version 7 behavior

Exceptions

inconsistent_type EXCEPTION;
 pragma exception_init(inconsistent_type, -6562);

This exception is raised by the COLUMN_VALUE Procedure or the VARIABLE_VALUE Procedures when the type of the given OUT parameter (for where to put the requested value) is different from the type of the value.

Operational Notes

	
Execution Flow

	
Processing Queries

	
Processing Updates, Inserts, and Deletes

	
Locating Errors

Execution Flow

	
OPEN_CURSOR

	
PARSE

	
BIND_VARIABLE or BIND_ARRAY

	
DEFINE_COLUMN, DEFINE_COLUMN_LONG, or DEFINE_ARRAY

	
EXECUTE

	
FETCH_ROWS or EXECUTE_AND_FETCH

	
VARIABLE_VALUE, COLUMN_VALUE, or COLUMN_VALUE_LONG

	
CLOSE_CURSOR

OPEN_CURSOR

To process a SQL statement, you must have an open cursor. When you call the OPEN_CURSOR Function, you receive a cursor ID number for the data structure representing a valid cursor maintained by Oracle. These cursors are distinct from cursors defined at the precompiler, OCI, or PL/SQL level, and are used only by the DBMS_SQL package.

PARSE

Every SQL statement must be parsed by calling the PARSE Procedures. Parsing the statement checks the statement's syntax and associates it with the cursor in your program.

You can parse any DML or DDL statement. DDL statements are run on the parse, which performs the implied commit.

The execution flow of DBMS_SQL is shown in Figure 136-1.

Figure 136-1 DBMS_SQL Execution Flow

[image: Description of Figure 136-1 follows]

BIND_VARIABLE or BIND_ARRAY

Many DML statements require that data in your program be input to Oracle. When you define a SQL statement that contains input data to be supplied at runtime, you must use placeholders in the SQL statement to mark where data must be supplied.

For each placeholder in the SQL statement, you must call one of the bind procedures, the BIND_ARRAY Procedures or the BIND_VARIABLE Procedures, to supply the value of a variable in your program (or the values of an array) to the placeholder. When the SQL statement is subsequently run, Oracle uses the data that your program has placed in the output and input, or bind, variables.

DBMS_SQL can run a DML statement multiple times — each time with a different bind variable. The BIND_ARRAY procedure lets you bind a collection of scalars, each value of which is used as an input variable once for each EXECUTE. This is similar to the array interface supported by the OCI.

DEFINE_COLUMN, DEFINE_COLUMN_LONG, or DEFINE_ARRAY

The columns of the row being selected in a SELECT statement are identified by their relative positions as they appear in the select list, from left to right. For a query, you must call one of the define procedures (DEFINE_COLUMN, DEFINE_COLUMN_LONG, or DEFINE_ARRAY) to specify the variables that are to receive the SELECT values, much the way an INTO clause does for a static query.

Use the DEFINE_COLUMN_LONG procedure to define LONG columns, in the same way that DEFINE_COLUMN is used to define non-LONG columns. You must call DEFINE_COLUMN_LONG before using the COLUMN_VALUE_LONG procedure to fetch from the LONG column.

Use the DEFINE_ARRAY procedure to define a PL/SQL collection into which you want to fetch rows in a single SELECT statement. DEFINE_ARRAY provides an interface to fetch multiple rows at one fetch. You must call DEFINE_ARRAY before using the COLUMN_VALUE procedure to fetch the rows.

EXECUTE

Call the EXECUTE function to run your SQL statement.

FETCH_ROWS or EXECUTE_AND_FETCH

The FETCH_ROWS function retrieves the rows that satisfy the query. Each successive fetch retrieves another set of rows, until the fetch is unable to retrieve anymore rows. Instead of calling EXECUTE and then FETCH_ROWS, you may find it more efficient to call EXECUTE_AND_FETCH if you are calling EXECUTE for a single execution.

VARIABLE_VALUE, COLUMN_VALUE, or COLUMN_VALUE_LONG

For queries, call COLUMN_VALUE to determine the value of a column retrieved by the FETCH_ROWS call. For anonymous blocks containing calls to PL/SQL procedures or DML statements with returning clause, call VARIABLE_VALUE to retrieve the values assigned to the output variables when statements were run.

To fetch just part of a LONG database column (which can be up to two gigabytes in size), use the COLUMN_VALUE_LONG procedure. You can specify the offset (in bytes) into the column value, and the number of bytes to fetch.

CLOSE_CURSOR

When you no longer need a cursor for a session, close the cursor by calling CLOSE_CURSOR. If you are using an Oracle Open Gateway, then you may need to close cursors at other times as well. Consult your Oracle Open Gateway documentation for additional information.

If you neglect to close a cursor, then the memory used by that cursor remains allocated even though it is no longer needed.

Processing Queries

If you are using dynamic SQL to process a query, then you must perform the following steps:

	
Specify the variables that are to receive the values returned by the SELECT statement by calling the DEFINE_COLUMN Procedures, the DEFINE_COLUMN_LONG Procedure, or the DEFINE_ARRAY Procedure.

	
Run your SELECT statement by calling the EXECUTE Function.

	
Call the FETCH_ROWS Function (or EXECUTE_AND_FETCH) to retrieve the rows that satisfied your query.

	
Call COLUMN_VALUE Procedure or COLUMN_VALUE_LONG Procedure to determine the value of a column retrieved by the FETCH_ROWS Function for your query. If you used anonymous blocks containing calls to PL/SQL procedures, then you must call the VARIABLE_VALUE Procedures to retrieve the values assigned to the output variables of these procedures.

Processing Updates, Inserts, and Deletes

If you are using dynamic SQL to process an INSERT, UPDATE, or DELETE, then you must perform the following steps:

	
You must first run your INSERT, UPDATE, or DELETE statement by calling the EXECUTE Function.

	
If statements have the returning clause, then you must call the VARIABLE_VALUE Procedures to retrieve the values assigned to the output variables.

Locating Errors

There are additional functions in the DBMS_SQL package for obtaining information about the last referenced cursor in the session. The values returned by these functions are only meaningful immediately after a SQL statement is run. In addition, some error-locating functions are only meaningful after certain DBMS_SQL calls. For example, you call the LAST_ERROR_POSITION Function immediately after a PARSE.

Examples

This section provides example procedures that make use of the DBMS_SQL package.

Example 1

This example does not require the use of dynamic SQL because the text of the statement is known at compile time, but it illustrate the basic concept underlying the package.

The DEMO procedure deletes all of the employees from the EMP table whose salaries are greater than the salary that you specify when you run DEMO.

CREATE OR REPLACE PROCEDURE demo(salary IN NUMBER) AS
 cursor_name INTEGER;
 rows_processed INTEGER;
BEGIN
 cursor_name := dbms_sql.open_cursor;
 DBMS_SQL.PARSE(cursor_name, 'DELETE FROM emp WHERE sal > :x',
 DBMS_SQL.NATIVE);
 DBMS_SQL.BIND_VARIABLE(cursor_name, ':x', salary);
 rows_processed := DBMS_SQL.EXECUTE(cursor_name);
 DBMS_SQL.CLOSE_CURSOR(cursor_name);
EXCEPTION
WHEN OTHERS THEN
 DBMS_SQL.CLOSE_CURSOR(cursor_name);
END;

Example 2

The following sample procedure is passed a SQL statement, which it then parses and runs:

CREATE OR REPLACE PROCEDURE exec(STRING IN varchar2) AS
 cursor_name INTEGER;
 ret INTEGER;
BEGIN
 cursor_name := DBMS_SQL.OPEN_CURSOR;

DDL statements are run by the parse call, which performs the implied commit.

 DBMS_SQL.PARSE(cursor_name, string, DBMS_SQL.NATIVE);
 ret := DBMS_SQL.EXECUTE(cursor_name);
 DBMS_SQL.CLOSE_CURSOR(cursor_name);
END;

Creating such a procedure enables you to perform the following operations:

	
The SQL statement can be dynamically generated at runtime by the calling program.

	
The SQL statement can be a DDL statement or a DML without binds.

For example, after creating this procedure, you could make the following call:

exec('create table acct(c1 integer)');

You could even call this procedure remotely, as shown in the following example. This lets you perform remote DDL.

exec@hq.com('CREATE TABLE acct(c1 INTEGER)');

Example 3

The following sample procedure is passed the names of a source and a destination table, and copies the rows from the source table to the destination table. This sample procedure assumes that both the source and destination tables have the following columns:

id of type NUMBER
name of type VARCHAR2(30)
birthdate of type DATE

This procedure does not specifically require the use of dynamic SQL; however, it illustrates the concepts of this package.

CREATE OR REPLACE PROCEDURE copy (
 source IN VARCHAR2,
 destination IN VARCHAR2) IS
 id_var NUMBER;
 name_var VARCHAR2(30);
 birthdate_var DATE;
 source_cursor INTEGER;
 destination_cursor INTEGER;
 ignore INTEGER;
 BEGIN

 -- Prepare a cursor to select from the source table:
 source_cursor := dbms_sql.open_cursor;
 DBMS_SQL.PARSE(source_cursor,
 'SELECT id, name, birthdate FROM ' || source,
 DBMS_SQL.NATIVE);
 DBMS_SQL.DEFINE_COLUMN(source_cursor, 1, id_var);
 DBMS_SQL.DEFINE_COLUMN(source_cursor, 2, name_var, 30);
 DBMS_SQL.DEFINE_COLUMN(source_cursor, 3, birthdate_var);
 ignore := DBMS_SQL.EXECUTE(source_cursor);

 -- Prepare a cursor to insert into the destination table:
 destination_cursor := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(destination_cursor,
 'INSERT INTO ' || destination ||
 ' VALUES (:id_bind, :name_bind, :birthdate_bind)',
 DBMS_SQL.NATIVE);

 -- Fetch a row from the source table and insert it into the destination table:
 LOOP
 IF DBMS_SQL.FETCH_ROWS(source_cursor)>0 THEN
 -- get column values of the row
 DBMS_SQL.COLUMN_VALUE(source_cursor, 1, id_var);
 DBMS_SQL.COLUMN_VALUE(source_cursor, 2, name_var);
 DBMS_SQL.COLUMN_VALUE(source_cursor, 3, birthdate_var);

 -- Bind the row into the cursor that inserts into the destination table. You
 -- could alter this example to require the use of dynamic SQL by inserting an
 -- if condition before the bind.
 DBMS_SQL.BIND_VARIABLE(destination_cursor, ':id_bind', id_var);
 DBMS_SQL.BIND_VARIABLE(destination_cursor, ':name_bind', name_var);
 DBMS_SQL.BIND_VARIABLE(destination_cursor, ':birthdate_bind',
birthdate_var);
 ignore := DBMS_SQL.EXECUTE(destination_cursor);
 ELSE

 -- No more rows to copy:
 EXIT;
 END IF;
 END LOOP;

 -- Commit and close all cursors:
 COMMIT;
 DBMS_SQL.CLOSE_CURSOR(source_cursor);
 DBMS_SQL.CLOSE_CURSOR(destination_cursor);
 EXCEPTION
 WHEN OTHERS THEN
 IF DBMS_SQL.IS_OPEN(source_cursor) THEN
 DBMS_SQL.CLOSE_CURSOR(source_cursor);
 END IF;
 IF DBMS_SQL.IS_OPEN(destination_cursor) THEN
 DBMS_SQL.CLOSE_CURSOR(destination_cursor);
 END IF;
 RAISE;
 END;
/

Examples 3, 4, and 5: Bulk DML

This series of examples shows how to use bulk array binds (table items) in the SQL DML statements INSERT, UPDATE and DELETE.

Here is an example of a bulk INSERT statement that demonstrates adding seven new employees to the emp table:

DECLARE
 stmt VARCHAR2(200);
 empno_array DBMS_SQL.NUMBER_TABLE;
 empname_array DBMS_SQL.VARCHAR2_TABLE;
 jobs_array DBMS_SQL.VARCHAR2_TABLE;
 mgr_array DBMS_SQL.NUMBER_TABLE;
 hiredate_array DBMS_SQL.VARCHAR2_TABLE;
 sal_array DBMS_SQL.NUMBER_TABLE;
 comm_array DBMS_SQL.NUMBER_TABLE;
 deptno_array DBMS_SQL.NUMBER_TABLE;
 c NUMBER;
 dummy NUMBER;
BEGIN
 empno_array(1):= 9001;
 empno_array(2):= 9002;
 empno_array(3):= 9003;
 empno_array(4):= 9004;
 empno_array(5):= 9005;
 empno_array(6):= 9006;
 empno_array(7):= 9007;

 empname_array(1) := 'Dopey';
 empname_array(2) := 'Grumpy';
 empname_array(3) := 'Doc';
 empname_array(4) := 'Happy';
 empname_array(5) := 'Bashful';
 empname_array(6) := 'Sneezy';
 empname_array(7) := 'Sleepy';

 jobs_array(1) := 'Miner';
 jobs_array(2) := 'Miner';
 jobs_array(3) := 'Miner';
 jobs_array(4) := 'Miner';
 jobs_array(5) := 'Miner';
 jobs_array(6) := 'Miner';
 jobs_array(7) := 'Miner';

 mgr_array(1) := 9003;
 mgr_array(2) := 9003;
 mgr_array(3) := 9003;
 mgr_array(4) := 9003;
 mgr_array(5) := 9003;
 mgr_array(6) := 9003;
 mgr_array(7) := 9003;

 hiredate_array(1) := '06-DEC-2006';
 hiredate_array(2) := '06-DEC-2006';
 hiredate_array(3) := '06-DEC-2006';
 hiredate_array(4) := '06-DEC-2006';
 hiredate_array(5) := '06-DEC-2006';
 hiredate_array(6) := '06-DEC-2006';
 hiredate_array(7) := '06-DEC-2006';

 sal_array(1):= 1000;
 sal_array(2):= 1000;
 sal_array(3):= 1000;
 sal_array(4):= 1000;
 sal_array(5):= 1000;
 sal_array(6):= 1000;
 sal_array(7):= 1000;

 comm_array(1):= 0;
 comm_array(2):= 0;
 comm_array(3):= 0;
 comm_array(4):= 0;
 comm_array(5):= 0;
 comm_array(6):= 0;
 comm_array(7):= 0;

 deptno_array(1):= 11;
 deptno_array(2):= 11;
 deptno_array(3):= 11;
 deptno_array(4):= 11;
 deptno_array(5):= 11;
 deptno_array(6):= 11;
 deptno_array(7):= 11;

 stmt := 'INSERT INTO emp VALUES(
 :num_array, :name_array, :jobs_array, :mgr_array, :hiredate_array,
 :sal_array, :comm_array, :deptno_array)';
 c := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(c, stmt, DBMS_SQL.NATIVE);
 DBMS_SQL.BIND_ARRAY(c, ':num_array', empno_array);
 DBMS_SQL.BIND_ARRAY(c, ':name_array', empname_array);
 DBMS_SQL.BIND_ARRAY(c, ':jobs_array', jobs_array);
 DBMS_SQL.BIND_ARRAY(c, ':mgr_array', mgr_array);
 DBMS_SQL.BIND_ARRAY(c, ':hiredate_array', hiredate_array);
 DBMS_SQL.BIND_ARRAY(c, ':sal_array', sal_array);
 DBMS_SQL.BIND_ARRAY(c, ':comm_array', comm_array);
 DBMS_SQL.BIND_ARRAY(c, ':deptno_array', deptno_array);

 dummy := DBMS_SQL.EXECUTE(c);
 DBMS_SQL.CLOSE_CURSOR(c);
 EXCEPTION WHEN OTHERS THEN
 IF DBMS_SQL.IS_OPEN(c) THEN
 DBMS_SQL.CLOSE_CURSOR(c);
 END IF;
 RAISE;
END;
/
SHOW ERRORS;

Here is an example of a bulk UPDATE statement that demonstrates updating salaries for four existing employees in the emp table:

DECLARE
 stmt VARCHAR2(200);
 empno_array DBMS_SQL.NUMBER_TABLE;
 salary_array DBMS_SQL.NUMBER_TABLE;
 c NUMBER;
 dummy NUMBER;
BEGIN

 empno_array(1):= 7369;
 empno_array(2):= 7876;
 empno_array(3):= 7900;
 empno_array(4):= 7934;

 salary_array(1) := 10000;
 salary_array(2) := 10000;
 salary_array(3) := 10000;
 salary_array(4) := 10000;

 stmt := 'update emp set sal = :salary_array
 WHERE empno = :num_array';
 c := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(c, stmt, DBMS_SQL.NATIVE);
 DBMS_SQL.BIND_ARRAY(c, ':num_array', empno_array);
 DBMS_SQL.BIND_ARRAY(c, ':salary_array', salary_array);
 dummy := DBMS_SQL.EXECUTE(c);
 DBMS_SQL.CLOSE_CURSOR(c);

 EXCEPTION WHEN OTHERS THEN
 IF DBMS_SQL.IS_OPEN(c) THEN
 DBMS_SQL.CLOSE_CURSOR(c);
 END IF;
 RAISE;
END;
/

In a DELETE statement, for example, you could bind in an array in the WHERE clause and have the statement be run for each element in the array:

DECLARE
 stmt VARCHAR2(200);
 dept_no_array DBMS_SQL.NUMBER_TABLE;
 c NUMBER;
 dummy NUMBER;
begin
 dept_no_array(1) := 10; dept_no_array(2) := 20;
 dept_no_array(3) := 30; dept_no_array(4) := 40;
 dept_no_array(5) := 30; dept_no_array(6) := 40;
 stmt := 'delete from emp where deptno = :dept_array';
 c := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(c, stmt, DBMS_SQL.NATIVE);
 DBMS_SQL.BIND_ARRAY(c, ':dept_array', dept_no_array, 1, 4);
 dummy := DBMS_SQL.EXECUTE(c);
 DBMS_SQL.CLOSE_CURSOR(c);

 EXCEPTION WHEN OTHERS THEN
 IF DBMS_SQL.IS_OPEN(c) THEN
 DBMS_SQL.CLOSE_CURSOR(c);
 END IF;
 RAISE;
END;
/

In the preceding example, only elements 1 through 4 are used as specified by the BIND_ARRAY call. Each element of the array potentially deletes a large number of employees from the database.

Examples 6 and 7: Defining an Array

The following examples show how to use the DEFINE_ARRAY procedure:

declare
 c NUMBER;
 d NUMBER;
 n_tab DBMS_SQL.NUMBER_TABLE;
 indx NUMBER := -10;
BEGIN
 c := DBMS_SQL.OPEN_CURSOR;
 dBMS_SQL.PARSE(c, 'select n from t order by 1', DBMS_SQL.NATIVE);

 DBMS_SQL.DEFINE_ARRAY(c, 1, n_tab, 10, indx);

 d := DBMS_SQL.EXECUTE(c);
 loop
 d := DBMS_SQL.FETCH_ROWS(c);

 DBMS_SQL.COLUMN_VALUE(c, 1, n_tab);

 EXIT WHEN d != 10;
 END LOOP;

 DBMS_SQL.CLOSE_CURSOR(c);

 EXCEPTION WHEN OTHERS THEN
 IF DBMS_SQL.IS_OPEN(c) THEN
 DBMS_SQL.CLOSE_CURSOR(c);
 END IF;
 RAISE;
END;
/

Each time the preceding example does a FETCH_ROWS Function call, it fetches 10 rows that are kept in DBMS_SQL buffers. When the COLUMN_VALUE Procedure call is run, those rows move into the PL/SQL table specified (in this case n_tab), at positions -10 to -1, as specified in the DEFINE statements. When the second batch is fetched in the loop, the rows go to positions 0 to 9; and so on.

A current index into each array is maintained automatically. This index is initialized to "indx" at EXECUTE and keeps getting updated every time a COLUMN_VALUE call is made. If you re-execute at any point, then the current index for each DEFINE is re-initialized to "indx".

In this way the entire result of the query is fetched into the table. When FETCH_ROWS cannot fetch 10 rows, it returns the number of rows actually fetched (if no rows could be fetched, then it returns zero) and exits the loop.

Here is another example of using the DEFINE_ARRAY procedure:

Consider a table MULTI_TAB defined as:

CREATE TABLE multi_tab (num NUMBER,
 dat1 DATE,
 var VARCHAR2(24),
 dat2 DATE)

To select everything from this table and move it into four PL/SQL tables, you could use the following simple program:

declare
 c NUMBER;
 d NUMBER;
 n_tab DBMS_SQL.NUMBER_TABLE;
 d_tab1 DBMS_SQL.DATE_TABLE;
 v_tab DBMS_SQL.VARCHAR2_TABLE;
 d_tab2 DBMS_SQL.DATE_TABLE;
 indx NUMBER := 10;
BEGIN

 c := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(c, 'select * from multi_tab order by 1', DBMS_SQL.NATIVE);

 DBMS_SQL.DEFINE_ARRAY(c, 1, n_tab, 5, indx);
 DBMS_SQL.DEFINE_ARRAY(c, 2, d_tab1, 5, indx);
 DBMS_SQL.DEFINE_ARRAY(c, 3, v_tab, 5, indx);
 DBMS_SQL.DEFINE_ARRAY(c, 4, d_tab2, 5, indx);

 d := DBMS_SQL.EXECUTE(c);

 loop
 d := DBMS_SQL.FETCH_ROWS(c);

 DBMS_SQL.COLUMN_VALUE(c, 1, n_tab);
 DBMS_SQL.COLUMN_VALUE(c, 2, d_tab1);
 DBMS_SQL.COLUMN_VALUE(c, 3, v_tab);
 DBMS_SQL.COLUMN_VALUE(c, 4, d_tab2);

 EXIT WHEN d != 5;
 END LOOP;

 DBMS_SQL.CLOSE_CURSOR(c);

/*

The four tables can be used for anything. One usage might be to use BIND_ARRAY to move the rows to another table by using a statement such as 'INSERT into SOME_T values (:a, :b, :c, :d);

*/

EXCEPTION WHEN OTHERS THEN
 IF DBMS_SQL.IS_OPEN(c) THEN
 DBMS_SQL.CLOSE_CURSOR(c);
 END IF;
 RAISE;
END;
/

Example 8: Describe Columns

This can be used as a substitute to the SQL*Plus DESCRIBE call by using a SELECT * query on the table that you want to describe.

DECLARE
 c NUMBER;
 d NUMBER;
 col_cnt INTEGER;
 f BOOLEAN;
 rec_tab DBMS_SQL.DESC_TAB;
 col_num NUMBER;
 PROCEDURE print_rec(rec in DBMS_SQL.DESC_REC) IS
 BEGIN
 DBMS_OUTPUT.NEW_LINE;
 DBMS_OUTPUT.PUT_LINE('col_type = '
 || rec.col_type);
 DBMS_OUTPUT.PUT_LINE('col_maxlen = '
 || rec.col_max_len);
 DBMS_OUTPUT.PUT_LINE('col_name = '
 || rec.col_name);
 DBMS_OUTPUT.PUT_LINE('col_name_len = '
 || rec.col_name_len);
 DBMS_OUTPUT.PUT_LINE('col_schema_name = '
 || rec.col_schema_name);
 DBMS_OUTPUT.PUT_LINE('col_schema_name_len = '
 || rec.col_schema_name_len);
 DBMS_OUTPUT.PUT_LINE('col_precision = '
 || rec.col_precision);
 DBMS_OUTPUT.PUT_LINE('col_scale = '
 || rec.col_scale);
 DBMS_OUTPUT.PUT('col_null_ok = ');
 IF (rec.col_null_ok) THEN
 DBMS_OUTPUT.PUT_LINE('true');
 ELSE
 DBMS_OUTPUT.PUT_LINE('false');
 END IF;
 END;
BEGIN
 c := DBMS_SQL.OPEN_CURSOR;

 DBMS_SQL.PARSE(c, 'SELECT * FROM scott.bonus', DBMS_SQL.NATIVE);

 d := DBMS_SQL.EXECUTE(c);

 DBMS_SQL.DESCRIBE_COLUMNS(c, col_cnt, rec_tab);

/*
 * Following loop could simply be for j in 1..col_cnt loop.
 * Here we are simply illustrating some of the PL/SQL table
 * features.
 */
 col_num := rec_tab.first;
 IF (col_num IS NOT NULL) THEN
 LOOP
 print_rec(rec_tab(col_num));
 col_num := rec_tab.next(col_num);
 EXIT WHEN (col_num IS NULL);
 END LOOP;
 END IF;

 DBMS_SQL.CLOSE_CURSOR(c);
END;
/

Example 9: RETURNING clause

The RETURNING clause was added to DML statements in an earlier Oracle database release. With this clause, INSERT, UPDATE, and DELETE statements can return values of expressions. These values are returned in bind variables.

DBMS_SQL.BIND_VARIABLE is used to bind these outbinds if a single row is inserted, updated, or deleted. If multiple rows are inserted, updated, or deleted, then DBMS_SQL.BIND_ARRAY is used. DBMS_SQL.VARIABLE_VALUE must be called to get the values in these bind variables.

	
Note:

This is similar to DBMS_SQL.VARIABLE_VALUE, which must be called after running a PL/SQL block with an out-bind inside DBMS_SQL.

i) Single row insert

 CREATE OR REPLACE PROCEDURE single_Row_insert
 (c1 NUMBER, c2 NUMBER, r OUT NUMBER) is
 c NUMBER;
 n NUMBER;
 begin
 c := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(c, 'INSERT INTO tab VALUES (:bnd1, :bnd2) ' ||
 'RETURNING c1*c2 INTO :bnd3', DBMS_SQL.NATIVE);
 DBMS_SQL.BIND_VARIABLE(c, 'bnd1', c1);
 DBMS_SQL.BIND_VARIABLE(c, 'bnd2', c2);
 DBMS_SQL.BIND_VARIABLE(c, 'bnd3', r);
 n := DBMS_SQL.EXECUTE(c);
 DBMS_SQL.VARIABLE_VALUE(c, 'bnd3', r); -- get value of outbind variable
 DBMS_SQL.CLOSE_CURSOR(c);
 END;
 /

ii) Single row update

 CREATE OR REPLACE PROCEDURE single_Row_update
 (c1 NUMBER, c2 NUMBER, r out NUMBER) IS
 c NUMBER;
 n NUMBER;
 BEGIN
 c := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(c, 'UPDATE tab SET c1 = :bnd1, c2 = :bnd2 ' ||
 'WHERE rownum < 2 ' ||
 'RETURNING c1*c2 INTO :bnd3', DBMS_SQL.NATIVE);
 DBMS_SQL.BIND_VARIABLE(c, 'bnd1', c1);
 DBMS_SQL.BIND_VARIABLE(c, 'bnd2', c2);
 DBMS_SQL.BIND_VARIABLE(c, 'bnd3', r);
 n := DBMS_SQL.EXECUTE(c);
 DBMS_SQL.VARIABLE_VALUE(c, 'bnd3', r);-- get value of outbind variable
 DBMS_SQL.CLOSE_CURSOR(c);
 END;
 /

iii) Single row delete

 CREATE OR REPLACE PROCEDURE single_Row_Delete
 (c1 NUMBER, r OUT NUMBER) is
 c NUMBER;
 n number;
 BEGIN
 c := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(c, 'DELETE FROM tab WHERE ROWNUM = :bnd1 ' ||
 'RETURNING c1*c2 INTO :bnd2', DBMS_SQL.NATIVE);
 DBMS_SQL.BIND_VARIABLE(c, 'bnd1', c1);
 DBMS_SQL.BIND_VARIABLE(c, 'bnd2', r);
 n := DBMS_SQL.EXECUTE(c);
 DBMS_SQL.VARIABLE_VALUE(c, 'bnd2', r);-- get value of outbind variable
 DBMS_SQL.CLOSE_CURSOR(c);
 END;
 /

iv) Multiple row insert

 CREATE OR REPLACE PROCEDURE multi_Row_insert
 (c1 DBMS_SQL.NUMBER_TABLE, c2 DBMS_SQL.NUMBER_TABLE,
 r OUT DBMS_SQL.NUMBER_TABLE) is
 c NUMBER;
 n NUMBER;
 BEGIN
 c := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(c, 'insert into tab VALUES (:bnd1, :bnd2) ' ||
 'RETURNING c1*c2 INTO :bnd3', DBMS_SQL.NATIVE);
 DBMS_SQL.BIND_ARRAY(c, 'bnd1', c1);
 DBMS_SQL.BIND_ARRAY(c, 'bnd2', c2);
 DBMS_SQL.BIND_ARRAY(c, 'bnd3', r);
 n := DBMS_SQL.EXECUTE(c);
 DBMS_SQL.VARIABLE_VALUE(c, 'bnd3', r);-- get value of outbind variable
 DBMS_SQL.CLOSE_CURSOR(c);
 END;
 /

v) Multiple row Update.

 CREATE OR REPLACE PROCEDURE multi_Row_update
 (c1 NUMBER, c2 NUMBER, r OUT DBMS_SQL.NUMBER_TABLE) IS
 c NUMBER;
 n NUMBER;
 BEGIN
 c := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(c, 'UPDATE tab SET c1 = :bnd1 WHERE c2 = :bnd2 ' ||
 'RETURNING c1*c2 INTO :bnd3', DBMS_SQL.NATIVE);
 DBMS_SQL.BIND_VARIABLE(c, 'bnd1', c1);
 DBMS_SQL.BIND_VARIABLE(c, 'bnd2', c2);
 DBMS_SQL.BIND_ARRAY(c, 'bnd3', r);
 n := DBMS_SQL.EXECUTE(c);
 DBMS_SQL.VARIABLE_VALUE(c, 'bnd3', r);-- get value of outbind variable
 DBMS_SQL.CLOSE_CURSOR(c);
 END;
 /

	
Note:

bnd1 and bnd2 can be arrays as well. The value of the expression for all the rows updated will be in bnd3. There is no way of differentiating which rows were updated of each value of bnd1 and bnd2.

vi) Multiple row delete

 CREATE OR REPLACE PROCEDURE multi_row_delete
 (c1 DBMS_SQL.NUMBER_TABLE,
 r OUT DBMS_SQL.NUMBER_TABLE) is
 c NUMBER;
 n NUMBER;
 BEGIN
 c := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(c, 'DELETE FROM tab WHERE c1 = :bnd1' ||
 'RETURNING c1*c2 INTO :bnd2', DBMS_SQL.NATIVE);
 DBMS_SQL.BIND_ARRAY(c, 'bnd1', c1);
 DBMS_SQL.BIND_ARRAY(c, 'bnd2', r);
 n := DBMS_SQL.EXECUTE(c);
 DBMS_SQL.VARIABLE_VALUE(c, 'bnd2', r);-- get value of outbind variable
 DBMS_SQL.CLOSE_CURSOR(c);
 END;
 /

vii) Out-bind in bulk PL/SQL

 CREATE OR REPLACE PROCEDURE foo (n NUMBER, square OUT NUMBER) IS
 BEGIN square := n * n; END;/

 CREATE OR REPLACE PROCEDURE bulk_plsql
 (n DBMS_SQL.NUMBER_TABLE, square OUT DBMS_SQL.NUMBER_TABLE) IS
 c NUMBER;
 r NUMBER;
 BEGIN
 c := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(c, 'BEGIN foo(:bnd1, :bnd2); END;', DBMS_SQL.NATIVE);
 DBMS_SQL.BIND_ARRAY(c, 'bnd1', n);
 DBMS_SQL.BIND_ARRAY(c, 'bnd2', square);
 r := DBMS_SQL.EXECUTE(c);
 DBMS_SQL.VARIABLE_VALUE(c, 'bnd2', square);
 END;
 /

	
Note:

DBMS_SQL.BIND_ARRAY of number_Table internally binds a number. The number of times statement is run depends on the number of elements in an inbind array.

Example 10: Binds and Defines of User-defined Types in DBMS_SQL

CREATE TYPE dnames_var IS VARRAY(7) OF VARCHAR2(30)
/

CREATE TABLE depts (region VARCHAR2(25), dept_names dnames_var)
/

INSERT INTO depts VALUES('Europe', dnames_var('Shipping','Sales','Finance'))
/
INSERT INTO depts VALUES('Americas', dnames_var('Sales','Finance','Shipping'))
/
INSERT INTO depts
 VALUES('Asia', dnames_var('Finance','Payroll','Shipping','Sales'))
/

CREATE OR REPLACE PROCEDURE update_depts(new_dnames dnames_var, region VARCHAR2) IS
 some_dnames dnames_var;
 c NUMBER;
 r NUMBER;
 sql_stmt VARCHAR2(32767) :=
 'UPDATE depts SET dept_names = :b1 WHERE region = :b2 RETURNING dept_names INTO :b3';

BEGIN

 c := DBMS_SQL.OPEN_CURSOR;

 DBMS_SQL.PARSE(c, sql_stmt, dbms_sql.native);

 DBMS_SQL.BIND_VARIABLE(c, 'b1', new_dnames);
 DBMS_SQL.BIND_VARIABLE(c, 'b2', region);
 DBMS_SQL.BIND_VARIABLE(c, 'b3', some_dnames);

 r := DBMS_SQL.EXECUTE(c);

 -- Get value of outbind variable
 DBMS_SQL.VARIABLE_VALUE(c, 'b3', some_dnames);

 DBMS_SQL.CLOSE_CURSOR(c);

 -- select dept_names
 sql_stmt := 'SELECT dept_names FROM depts WHERE region = :b1';

 c := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(c, sql_stmt, dbms_sql.native);

 DBMS_SQL.DEFINE_COLUMN(c, 1, some_dnames);
 DBMS_SQL.BIND_VARIABLE(c, 'b1', region);

 r := DBMS_SQL.EXECUTE_AND_FETCH(c);

 DBMS_SQL.COLUMN_VALUE(c, 1, some_dnames);

 DBMS_SQL.CLOSE_CURSOR(c);

 -- loop through some_dnames collections
 FOR i IN some_dnames.FIRST .. some_dnames.LAST LOOP
 DBMS_OUTPUT.PUT_LINE('Dept. Name = ' || some_dnames(i) || ' Updated!');
 END LOOP;
END;
/

DECLARE
 new_dnames dnames_var;
BEGIN
 new_dnames := dnames_var('Benefits', 'Advertising', 'Contracting',
 'Executive', 'Marketing');
 update_depts(new_dnames, 'Asia');
END;
/

Data Structures

The DBMS_SQL package defines the following RECORD types and TABLE types.

RECORD Types

	
DESC_REC Record Type

	
DESC_REC2 Record Type

	
DESC_REC3 Record Type

TABLE Types

	
BFILE_TABLE Table Type

	
BINARY_DOUBLE_TABLE Table Type

	
BINARY_FLOAT_TABLE Table Type

	
BLOB_TABLE Table Type

	
CLOB_TABLE Table Type

	
DATE_TABLE Table Type

	
DESC_TAB Table Type

	
DESC_TAB2 Table Type

	
DESC_TAB3 Table Type

	
INTERVAL_DAY_TO_SECOND_TABLE Table Type

	
INTERVAL_YEAR_TO_MONTH_TABLE Table Type

	
NUMBER_TABLE Table Type

	
TIME_TABLE Table Type

	
TIME_WITH_TIME_ZONE_TABLE Table Type

	
TIMESTAMP_TABLE Table Type

	
TIMESTAMP_WITH_LTZ_TABLE Table Type

	
TIMESTAMP_WITH_TIME_ZONE_TABLE Table Type

	
UROWID_TABLE Table Type

	
VARCHAR2_TABLE Table Type

	
VARCHAR2A Table Type

	
VARCHAR2S Table Type

DESC_REC Record Type

	
Note:

This type has been deprecated in favor of the DESC_REC2 Record Type.

This record type holds the describe information for a single column in a dynamic query. It is the element type of the DESC_TAB table type and the DESCRIBE_COLUMNS Procedure.

Syntax

TYPE desc_rec IS RECORD (
 col_type BINARY_INTEGER := 0,
 col_max_len BINARY_INTEGER := 0,
 col_name VARCHAR2(32) := '',
 col_name_len BINARY_INTEGER := 0,
 col_schema_name VARCHAR2(32) := '',
 col_schema_name_len BINARY_INTEGER := 0,
 col_precision BINARY_INTEGER := 0,
 col_scale BINARY_INTEGER := 0,
 col_charsetid BINARY_INTEGER := 0,
 col_charsetform BINARY_INTEGER := 0,
 col_null_ok BOOLEAN := TRUE);
TYPE desc_tab IS TABLE OF desc_rec INDEX BY BINARY_INTEGER;

Fields

Table 136-2 DESC_REC Fields

	Field	Description
	
col_type

	
Type of column

	
col_max_len

	
Maximum column length

	
col_name

	
Name of column

	
col_name_len

	
Length of column name

	
col_schema_name

	
Column schema name

	
col_schema_name_len

	
Length of column schema name

	
col_precision

	
Precision of column

	
col_scale

	
Scale of column

	
col_charsetid

	
Column character set id

	
col_charsetform

	
Column character set form

	
col_null_ok

	
NULL column flag; TRUE, if NULL possible

DESC_REC2 Record Type

DESC_REC2 is the element type of the DESC_TAB2 table type and the DESCRIBE_COLUMNS2 Procedure.

This record type is identical to DESC_REC except for the col_name field, which has been expanded to the maximum possible size for VARCHAR2. It is therefore preferred to DESC_REC because column name values can be greater than 32 characters. DESC_REC is deprecated as a result.

Syntax

TYPE desc_rec2 IS RECORD (
 col_type binary_integer := 0,
 col_max_len binary_integer := 0,
 col_name varchar2(32767) := '',
 col_name_len binary_integer := 0,
 col_schema_name varchar2(32) := '',
 col_schema_name_len binary_integer := 0,
 col_precision binary_integer := 0,
 col_scale binary_integer := 0,
 col_charsetid binary_integer := 0,
 col_charsetform binary_integer := 0,
 col_null_ok boolean := TRUE);

Fields

Table 136-3 DESC_REC2 Fields

	Field	Description
	
col_type

	
Type of column

	
col_max_len

	
Maximum column length

	
col_name

	
Name of column

	
col_name_len

	
Length of column name

	
col_schema_name

	
Column schema name

	
col_schema_name_len

	
Length of column schema name

	
col_precision

	
Precision of column

	
col_scale

	
Scale of column

	
col_charsetid

	
Column character set id

	
col_charsetform

	
Column character set form

	
col_null_ok

	
NULL column flag; TRUE, if NULL possible

DESC_REC3 Record Type

DESC_REC3 is the element type of the DESC_TAB3 table type and the DESCRIBE_COLUMNS3 Procedure.

DESC_REC3 is identical to DESC_REC2 except for two additional fields to hold the type name (type_name) and type name len (type_name_len) of a column in a dynamic query. These two fields hold the type name and type name length when the column is a user-defined type (a collection or object type). The col_type_name and col_type_name_len fields are only populated when the col_type field's value is 109, the Oracle type number for user-defined types.

Syntax

TYPE desc_rec3 IS RECORD (
 col_type binary_integer := 0,
 col_max_len binary_integer := 0,
 col_name varchar2(32767) := '',
 col_name_len binary_integer := 0,
 col_schema_name varchar2(32) := '',
 col_schema_name_len binary_integer := 0,
 col_precision binary_integer := 0,
 col_scale binary_integer := 0,
 col_charsetid binary_integer := 0,
 col_charsetform binary_integer := 0,
 col_null_ok boolean := TRUE,
 col_type_name varchar2(32767) := '',
 col_type_name_len binary_integer := 0);

Fields

Table 136-4 DESC_REC3 Fields

	Field	Description
	
col_type

	
Type of column

	
col_max_len

	
Maximum column length

	
col_name

	
Name of column

	
col_name_len

	
Length of column name

	
col_schema_name

	
Column schema name

	
col_schema_name_len

	
Length of column schema name

	
col_precision

	
Precision of column

	
col_scale

	
Scale of column

	
col_charsetid

	
Column character set ID

	
col_charsetform

	
Column character set form

	
col_null_ok

	
NULL column flag; TRUE, if NULL possible

	
col_type_name

	
User-define type column type name, this field is valid when col_type is 109

	
col_type_name_len

	
Length of user-define type column type name, this field is valid when col_type is 109

BFILE_TABLE Table Type

This is a table of BFILE.

Syntax

TYPE bfile_table IS TABLE OF BFILE INDEX BY BINARY_INTEGER;

BINARY_DOUBLE_TABLE Table Type

This is a table of BINARY_DOUBLE.

Syntax

TYPE binary_double_table IS TABLE OF BINARY_DOUBLE INDEX BY BINARY_INTEGER;

BINARY_FLOAT_TABLE Table Type

This is a table of BINARY_FLOAT.

Syntax

TYPE binary_float_table IS TABLE OF BINARY_FLOAT INDEX BY BINARY_INTEGER;

BLOB_TABLE Table Type

This is a table of BLOB.

Syntax

TYPE blob_table IS TABLE OF BLOB INDEX BY BINARY_INTEGER;

CLOB_TABLE Table Type

This is a table of CLOB.

Syntax

TYPE clob_table IS TABLE OF CLOB INDEX BY BINARY_INTEGER;

DATE_TABLE Table Type

This is a table of DATE.

Syntax

type date_table IS TABLE OF DATE INDEX BY BINARY_INTEGER;

DESC_TAB Table Type

This is a table of DESC_REC Record Type.

Syntax

TYPE desc_tab IS TABLE OF desc_rec INDEX BY BINARY_INTEGER;

DESC_TAB2 Table Type

This is a table of DESC_REC2 Record Type.

Syntax

TYPE desc_tab2 IS TABLE OF desc_rec2 INDEX BY BINARY_INTEGER;

DESC_TAB3 Table Type

This is a table of DESC_REC3 Record Type.

Syntax

TYPE desc_tab3 IS TABLE OF desc_rec3 INDEX BY BINARY_INTEGER;

INTERVAL_DAY_TO_SECOND_TABLE Table Type

This is a table of DSINTERVAL_UNCONSTRAINED.

Syntax

 TYPE interval_day_to_second_Table IS TABLE OF
 DSINTERVAL_UNCONSTRAINED INDEX BY binary_integer;

INTERVAL_YEAR_TO_MONTH_TABLE Table Type

This is a table of YMINTERVAL_UNCONSTRAINED.

Syntax

TYPE interval_year_to_month_table IS TABLE OF YMINTERVAL_UNCONSTRAINED
 INDEX BY BINARY_INTEGER;

NUMBER_TABLE Table Type

This is a table of NUMBER.

Syntax

TYPE number_table IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;

TIME_TABLE Table Type

This is a table of TIME_UNCONSTRAINED.

Syntax

TYPE time_table IS TABLE OF TIME_UNCONSTRAINED INDEX BY BINARY_INTEGER;

TIME_WITH_TIME_ZONE_TABLE Table Type

This is a table of TIME_TZ_UNCONSTRAINED.

Syntax

TYPE time_with_time_zone_table IS TABLE OF TIME_TZ_UNCONSTRAINED
 INDEX BY BINARY_INTEGER;;

TIMESTAMP_TABLE Table Type

This is a table of TIMESTAMP_UNCONSTRAINED.

Syntax

TYPE timestamp_table IS TABLE OF TIMESTAMP_UNCONSTRAINED INDEX BY BINARY_INTEGER;

TIMESTAMP_WITH_LTZ_TABLE Table Type

This is a table of TIMESTAMP_LTZ_UNCONSTRAINED

Syntax

TYPE timestamp_with_ltz_table IS TABLE OF
 TIMESTAMP_LTZ_UNCONSTRAINED INDEX BY binary_integer;

TIMESTAMP_WITH_TIME_ZONE_TABLE Table Type

This is a table of TIMESTAMP_TZ_UNCONSTRAINED.

Syntax

TYPE timestamp_with_time_zone_Table IS TABLE OF
 TIMESTAMP_TZ_UNCONSTRAINED INDEX BY binary_integer;

UROWID_TABLE Table Type

This is a table of UROWID.

Syntax

TYPE urowid_table IS TABLE OF UROWID INDEX BY BINARY_INTEGER;

VARCHAR2_TABLE Table Type

This is table of VARCHAR2(2000).

Syntax

TYPE varchar2_table IS TABLE OF VARCHAR2(2000) INDEX BY BINARY_INTEGER;

VARCHAR2A Table Type

This is table of VARCHAR2(32767).

Syntax

TYPE varchar2a IS TABLE OF VARCHAR2(32767) INDEX BY BINARY_INTEGER;

VARCHAR2S Table Type

This is table of VARCHAR2(256).

	
Note:

This type has been superseded by the VARCHAR2A Table Type. Although it is currently retained for backward compatibility of legacy code, it is in the process of deprecation and will be de-supported in a future release.

Syntax

TYPE varchar2s IS TABLE OF VARCHAR2(256) INDEX BY BINARY_INTEGER;

Summary of DBMS_SQL Subprograms

Table 136-5 DBMS_SQL Package Subprograms

	Subprogram	Description
	
BIND_ARRAY Procedures

	
Binds a given value to a given collection

	
BIND_VARIABLE Procedures

	
Binds a given value to a given variable

	
CLOSE_CURSOR Procedure

	
Closes given cursor and frees memory

	
COLUMN_VALUE Procedure

	
Returns value of the cursor element for a given position in a cursor

	
COLUMN_VALUE_LONG Procedure

	
Returns a selected part of a LONG column, that has been defined using DEFINE_COLUMN_LONG

	
DEFINE_ARRAY Procedure

	
Defines a collection to be selected from the given cursor, used only with SELECT statements

	
DEFINE_COLUMN Procedures

	
Defines a column to be selected from the given cursor, used only with SELECT statements

	
DEFINE_COLUMN_CHAR Procedure

	
Defines a column of type CHAR to be selected from the given cursor, used only with SELECT statements

	
DEFINE_COLUMN_LONG Procedure

	
Defines a LONG column to be selected from the given cursor, used only with SELECT statements

	
DEFINE_COLUMN_RAW Procedure

	
Defines a column of type RAW to be selected from the given cursor, used only with SELECT statements

	
DEFINE_COLUMN_ROWID Procedure

	
Defines a column of type ROWID to be selected from the given cursor, used only with SELECT statements

	
DESCRIBE_COLUMNS Procedure

	
Describes the columns for a cursor opened and parsed through DBMS_SQL

	
DESCRIBE_COLUMNS2 Procedure

	
Describes describes the specified column, an alternative to DESCRIBE_COLUMNS Procedure

	
DESCRIBE_COLUMNS3 Procedure

	
Describes describes the specified column, an alternative to DESCRIBE_COLUMNS Procedure

	
EXECUTE Function

	
Executes a given cursor

	
EXECUTE_AND_FETCH Function

	
Executes a given cursor and fetch rows

	
FETCH_ROWS Function

	
Fetches a row from a given cursor

	
IS_OPEN Function

	
Returns TRUE if given cursor is open

	
LAST_ERROR_POSITION Function

	
Returns byte offset in the SQL statement text where the error occurred

	
LAST_ROW_COUNT Function

	
Returns cumulative count of the number of rows fetched

	
LAST_ROW_ID Function

	
Returns ROWID of last row processed

	
LAST_SQL_FUNCTION_CODE Function

	
Returns SQL function code for statement

	
OPEN_CURSOR Function

	
Returns cursor ID number of new cursor

	
PARSE Procedures

	
Parses given statement

	
TO_CURSOR_NUMBER Function

	
Takes an OPENed strongly or weakly-typed ref cursor and transforms it into a DBMS_SQL cursor number

	
TO_REFCURSOR Function

	
Takes an OPENed, PARSEd, and EXECUTEd cursor and transforms/migrates it into a PL/SQL manageable REF CURSOR (a weakly-typed cursor) that can be consumed by PL/SQL native dynamic SQL switched to use native dynamic SQL

	
VARIABLE_VALUE Procedures

	
Returns value of named variable for given cursor

BIND_ARRAY Procedures

This procedure binds a given value or set of values to a given variable in a cursor, based on the name of the variable in the statement.

Syntax

DBMS_SQL.BIND_ARRAY (
 c IN INTEGER,
 name IN VARCHAR2,
 <table_variable> IN <datatype>
 [,index1 IN INTEGER,
 index2 IN INTEGER)]);

Where the <table_variable> and its corresponding <datatype> can be any one of the following matching pairs:

<clob_tab> Clob_Table
<bflt_tab> Binary_Float_Table
<bdbl_tab> Binary_Double_Table
<blob_tab> Blob_Table
<bfile_tab> Bfile_Table
<date_tab> Date_Table
<num_tab> Number_Table
<urowid_tab> Urowid_Table
<vchr2_tab> Varchar2_Table
<tm_tab> Time_Table
<ttz_tab> Time_With_Time_Zone_Table
<tms_tab> Timestamp_Table
<tstz_tab> Timestamp_With_ltz_Table;
<tstz_tab> Timestamp_With_Time_Zone_Table
<ids_tab> Interval_Day_To_Second_Table
<iym_tab> Interval_Year_To_Month_Table

Notice that the BIND_ARRAY procedure is overloaded to accept different datatypes.

Parameters

Table 136-6 BIND_ARRAY Procedure Parameters

	Parameter	Description
	
c

	
ID number of the cursor to which you want to bind a value.

	
name

	
Name of the collection in the statement.

	
table_variable

	
Local variable that has been declared as <datatype>.

	
index1

	
Index for the table element that marks the lower bound of the range.

	
index2

	
Index for the table element that marks the upper bound of the range.

Usage Notes

The length of the bind variable name should be <=30 bytes.

For binding a range, the table must contain the elements that specify the range — tab(index1) and tab(index2) — but the range does not have to be dense. Index1 must be less than or equal to index2. All elements between tab(index1) and tab(index2) are used in the bind.

If you do not specify indexes in the bind call, and two different binds in a statement specify tables that contain a different number of elements, then the number of elements actually used is the minimum number between all tables. This is also the case if you specify indexes — the minimum range is selected between the two indexes for all tables.

Not all bind variables in a query have to be array binds. Some can be regular binds and the same value are used for each element of the collections in expression evaluations (and so forth).

	
See Also:

"Examples 3, 4, and 5: Bulk DML" for examples of how to bind collections.

Bulk Array Binds

Bulk selects, inserts, updates, and deletes can enhance the performance of applications by bundling many calls into one. The DBMS_SQL package lets you work on collections of data using the PL/SQL table type.

Table items are unbounded homogeneous collections. In persistent storage, they are like other relational tables and have no intrinsic ordering. But when a table item is brought into the workspace (either by querying or by navigational access of persistent data), or when it is created as the value of a PL/SQL variable or parameter, its elements are given subscripts that can be used with array-style syntax to get and set the values of elements.

The subscripts of these elements need not be dense, and can be any number including negative numbers. For example, a table item can contain elements at locations -10, 2, and 7 only.

When a table item is moved from transient workspace to persistent storage, the subscripts are not stored; the table item is unordered in persistent storage.

At bind time the table is copied out from the PL/SQL buffers into local DBMS_SQL buffers (the same as for all scalar types) and then the table is manipulated from the local DBMS_SQL buffers. Therefore, if you change the table after the bind call, then that change does not affect the way the execute acts.

Types for Scalar and LOB Collections

You can declare a local variable as one of the following table-item types, which are defined as public types in DBMS_SQL.

TYPE binary_double_table
 IS TABLE OF BINARY_DOUBLE INDEX BY BINARY_INTEGER;
TYPE binary_float_table
 IS TABLE OF BINARY_FLOAT INDEX BY BINARY_INTEGER;
TYPE bfile_table IS TABLE OF BFILE INDEX BY BINARY_INTEGER;
TYPE blob_table IS TABLE OF BLOB INDEX BY BINARY_INTEGER;
TYPE clob_table IS TABLE OF CLOB INDEX BY BINARY_INTEGER;
TYPE date_table IS TABLE OF DATE INDEX BY BINARY_INTEGER;
TYPE interval_day_to_second_Table
 IS TABLE OF dsinterval_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE interval_year_to_MONTH_Table
 IS TABLE OF yminterval_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE number_table IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
TYPE time_table IS TABLE OF time_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE time_with_time_zone_table
 IS TABLE OF time_tz_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE timestamp_table
 IS TABLE OF timestamp_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE timestamp_with_ltz_Table
 IS TABLE OF timestamp_ltz_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE timestamp_with_time_zone_Table
 IS TABLE OF timestamp_tz_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE urowid_table IS TABLE OF UROWID INDEX BY BINARY_INTEGER;
TYPE varchar2_table IS TABLE OF VARCHAR2(2000) INDEX BY BINARY_INTEGER;

BIND_VARIABLE Procedures

This procedures binds a given value or set of values to a given variable in a cursor, based on the name of the variable in the statement.

Syntax

DBMS_SQL.BIND_VARIABLE (
 c IN INTEGER,
 name IN VARCHAR2,
 value IN <datatype>);

Where <datatype> can be any one of the following types:

BINARY_DOUBLE
BINARY_FLOAT
BFILE
BLOB
CLOB CHARACTER SET ANY_CS
DATE
DSINTERVAL_UNCONSTRAINED
NUMBER
TIME_UNCONSTRAINED
TIME_TZ_UNCONSTRAINED
TIMESTAMP_LTZ_UNCONSTRAINED
TIMESTAMP_TZ_UNCONSTRAINED
TIMESTAMP_UNCONSTRAINED
UROWID
VARCHAR2 CHARACTER SET ANY_CS
YMINTERVAL_UNCONSTRAINED
user-defined object types
collections (VARRAYs and nested tables)
REFs
Opaque types

Notice that BIND_VARIABLE is overloaded to accept different datatypes.

The following syntax is also supported for BIND_VARIABLE. The square brackets [] indicate an optional parameter for the BIND_VARIABLE function.

DBMS_SQL.BIND_VARIABLE (
 c IN INTEGER,
 name IN VARCHAR2,
 value IN VARCHAR2 CHARACTER SET ANY_CS [,out_value_size IN INTEGER]);

To bind CHAR, RAW, and ROWID data, you can use the following variations on the syntax:

DBMS_SQL.BIND_VARIABLE_CHAR (
 c IN INTEGER,
 name IN VARCHAR2,
 value IN CHAR CHARACTER SET ANY_CS [,out_value_size IN INTEGER]);

DBMS_SQL.BIND_VARIABLE_RAW (
 c IN INTEGER,
 name IN VARCHAR2,
 value IN RAW [,out_value_size IN INTEGER]);

DBMS_SQL.BIND_VARIABLE_ROWID (
 c IN INTEGER,
 name IN VARCHAR2,
 value IN ROWID);

	
See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide

Pragmas

pragma restrict_references(bind_variable,WNDS);

Parameters

Table 136-7 BIND_VARIABLE Procedure Parameters

	Parameter	Description
	
c

	
ID number of the cursor to which you want to bind a value.

	
name

	
Name of the variable in the statement.

	
value

	
Value that you want to bind to the variable in the cursor.

For IN and IN/OUT variables, the value has the same type as the type of the value being passed in for this parameter.

	
out_value_size

	
Maximum expected OUT value size, in bytes, for the VARCHAR2, RAW, CHAR OUT or IN/OUT variable.

If no size is given, then the length of the current value is used. This parameter must be specified if the value parameter is not initialized.

Usage Notes

If the variable is an IN or IN/OUT variable or an IN collection, then the given bind value must be valid for the variable or array type. Bind values for OUT variables are ignored.

The bind variables or collections of a SQL statement are identified by their names. When binding a value to a bind variable or bind array, the string identifying it in the statement must contain a leading colon, as shown in the following example:

SELECT emp_name FROM emp WHERE SAL > :X;

For this example, the corresponding bind call would look similar to

BIND_VARIABLE(cursor_name, ':X', 3500);

or

BIND_VARIABLE (cursor_name, 'X', 3500);

The length of the bind variable name should be <=30 bytes.

	
See Also:

"Examples 3, 4, and 5: Bulk DML" for examples of how to bind collections.

CLOSE_CURSOR Procedure

This procedure closes a given cursor.

Syntax

DBMS_SQL.CLOSE_CURSOR (
 c IN OUT INTEGER);

Pragmas

pragma restrict_references(close_cursor,RNDS,WNDS);

Parameters

Table 136-8 CLOSE_CURSOR Procedure Parameters

	Parameter	Mode	Description
	
c

	
IN

	
ID number of the cursor that you want to close.

	
c

	
OUT

	
Cursor is set to null.

After you call CLOSE_CURSOR, the memory allocated to the cursor is released and you can no longer fetch from that cursor.

COLUMN_VALUE Procedure

This procedure returns the value of the cursor element for a given position in a given cursor. This procedure is used to access the data fetched by calling FETCH_ROWS.

Syntax

DBMS_SQL.COLUMN_VALUE (
 c IN INTEGER,
 position IN INTEGER,
 value OUT <datatype>
 [,column_error OUT NUMBER]
 [,actual_length OUT INTEGER]);

Where square brackets [] indicate optional parameters and <datatype> can be any one of the following types:

BINARY_DOUBLE
BINARY_FLOAT
BFILE
BLOB
CLOB CHARACTER SET ANY_CS
DATE
DSINTERVAL_UNCONSTRAINED
NUMBER
TIME_TZ_UNCONSTRAINED
TIME_UNCONSTRAINED
TIMESTAMP_LTZ_UNCONSTRAINED
TIMESTAMP_TZ_UNCONSTRAINED
TIMESTAMP_UNCONSTRAINED
UROWID
VARCHAR2 CHARACTER SET ANY_CS
YMINTERVAL_UNCONSTRAINED
user-defined object types
collections (VARRAYs and nested tables)
REFs
Opaque types

For variables containing CHAR, RAW, and ROWID data, you can use the following variations on the syntax:

DBMS_SQL.COLUMN_VALUE_CHAR (
 c IN INTEGER,
 position IN INTEGER,
 value OUT CHAR CHARACTER SET ANY_CS
 [,column_error OUT NUMBER]
 [,actual_length OUT INTEGER]);

DBMS_SQL.COLUMN_VALUE_RAW (
 c IN INTEGER,
 position IN INTEGER,
 value OUT RAW
 [,column_error OUT NUMBER]
 [,actual_length OUT INTEGER]);

DBMS_SQL.COLUMN_VALUE_ROWID (
 c IN INTEGER,
 position IN INTEGER,
 value OUT ROWID
 [,column_error OUT NUMBER]
 [,actual_length OUT INTEGER]);

The following syntax enables the COLUMN_VALUE procedure to accommodate bulk operations:

DBMS_SQL.COLUMN_VALUE(
 c IN INTEGER,
 position IN INTEGER,
 <param_name> IN OUT NOCOPY <table_type>);

Where the <param_name> and its corresponding <table_type> can be any one of these matching pairs:

bdbl_tab Binary_Double_Table
bflt_tab Binary_Float_Table
bf_tab Bfile_Table
bl_tab Blob_Table
cl_tab Clob_Table
d_tab Date_Table
ids_tab Interval_Day_To_Second_Table
iym_tab Interval_Year_To_Month_Table
n_tab Number_Table
tm_tab Time_Table
ttz_tab Time_With_Time_Zone_Table
tms_tab Timestamp_Table
tstz_tab Timestamp_With_ltz_Table;
tstz_tab Timestamp_With_Time_Zone_Table
ur_tab Urowid_Table
c_tab Varchar2_Table

Pragmas

pragma restrict_references(column_value,RNDS,WNDS);

Parameters

Table 136-9 COLUMN_VALUE Procedure Parameters (Single Row)

	Parameter	Description
	
c

	
ID number of the cursor from which you are fetching the values.

	
position

	
Relative position of the column in the cursor.

The first column in a statement has position 1.

	
value

	
Returns the value at the specified column.

Oracle raises exception ORA-06562, inconsistent_type, if the type of this output parameter differs from the actual type of the value, as defined by the call to DEFINE_COLUMN.

	
column_error

	
Returns any error code for the specified column value.

	
actual_length

	
The actual length, before any truncation, of the value in the specified column.

Table 136-10 COLUMN_VALUE Procedure Parameters (Bulk)

	Parameter	Description
	
c

	
ID number of the cursor from which you are fetching the values.

	
position

	
Relative position of the column in the cursor.

The first column in a statement has position 1.

	
<param_name>

	
Local variable that has been declared <table_type>. <param_name> is an IN OUT NOCOPY parameter for bulk operations.

For bulk operations, the subprogram appends the new elements at the appropriate (implicitly maintained) index. For instance if on utilizing the DEFINE_ARRAY Procedure a batch size (the cnt parameter) of 10 rows was specified and a start index (lower_bound) of 1 was specified, then the first call to this subprogram after calling the FETCH_ROWS Function will populate elements at index 1..10, and the next call will populate elements 11..20, and so on.

Exceptions

INCONSISTENT_TYPE (ORA-06562) is raised if the type of the given OUT parameter value is different from the actual type of the value. This type was the given type when the column was defined by calling procedure DEFINE_COLUMN.

	
See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide

COLUMN_VALUE_LONG Procedure

This procedure gets part of the value of a long column.

Syntax

DBMS_SQL.COLUMN_VALUE_LONG (
 c IN INTEGER,
 position IN INTEGER,
 length IN INTEGER,
 offset IN INTEGER,
 value OUT VARCHAR2,
 value_length OUT INTEGER);

Pragmas

pragma restrict_references(column_value_long,RNDS,WNDS);

Parameters

Table 136-11 COLUMN_VALUE_LONG Procedure Parameters

	Parameter	Description
	
c

	
Cursor ID number of the cursor from which to get the value.

	
position

	
Position of the column of which to get the value.

	
length

	
Number of bytes of the long value to fetch.

	
offset

	
Offset into the long field for start of fetch.

	
value

	
Value of the column as a VARCHAR2.

	
value_length

	
Number of bytes actually returned in value.

DEFINE_ARRAY Procedure

This procedure defines the collection for column into which you want to fetch rows (with a FETCH_ROWS call). This procedure lets you do batch fetching of rows from a single SELECT statement. A single fetch call brings over a number of rows into the PL/SQL aggregate object.

When you fetch the rows, they are copied into DBMS_SQL buffers until you run a COLUMN_VALUE call, at which time the rows are copied into the table that was passed as an argument to the COLUMN_VALUE call.

Scalar and LOB Types for Collections

You can declare a local variable as one of the following table-item types, and then fetch any number of rows into it using DBMS_SQL. (These are the same types as you can specify for the BIND_ARRAY procedure.)

TYPE binary_double_table
 IS TABLE OF BINARY_DOUBLE INDEX BY BINARY_INTEGER;
TYPE binary_float_table
 IS TABLE OF BINARY_FLOAT INDEX BY BINARY_INTEGER;
TYPE bfile_table IS TABLE OF BFILE INDEX BY BINARY_INTEGER;
TYPE blob_table IS TABLE OF BLOB INDEX BY BINARY_INTEGER;
TYPE clob_table IS TABLE OF CLOB INDEX BY BINARY_INTEGER;
TYPE date_table IS TABLE OF DATE INDEX BY BINARY_INTEGER;
TYPE interval_day_to_second_Table
 IS TABLE OF dsinterval_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE interval_year_to_MONTH_Table
 IS TABLE OF yminterval_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE number_table IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
TYPE time_table IS TABLE OF time_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE time_with_time_zone_table
 IS TABLE OF time_tz_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE timestamp_table
 IS TABLE OF timestamp_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE timestamp_with_ltz_Table
 IS TABLE OF timestamp_ltz_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE timestamp_with_time_zone_Table
 IS TABLE OF timestamp_tz_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE urowid_table IS TABLE OF UROWID INDEX BY BINARY_INTEGER;
TYPE varchar2_table IS TABLE OF VARCHAR2(2000) INDEX BY BINARY_INTEGER;

Syntax

DBMS_SQL.DEFINE_ARRAY (
 c IN INTEGER,
 position IN INTEGER,
 <table_variable> IN <datatype>
 cnt IN INTEGER,
 lower_bnd IN INTEGER);

Where <table_variable> and its corresponding <datatype> can be any one of the following matching pairs, DEFINE_ARRAY being overloaded to accept different datatypes:

<clob_tab> Clob_Table
<bflt_tab> Binary_Float_Table
<bdbl_tab> Binary_Double_Table
<blob_tab> Blob_Table
<bfile_tab> Bfile_Table
<date_tab> Date_Table
<num_tab> Number_Table
<urowid_tab> Urowid_Table
<vchr2_tab> Varchar2_Table
<tm_tab> Time_Table
<ttz_tab> Time_With_Time_Zone_Table
<tms_tab> Timestamp_Table
<tstz_tab> Timestamp_With_ltz_Table;
<tstz_tab> Timestamp_With_Time_Zone_Table
<ids_tab> Interval_Day_To_Second_Table
<iym_tab> Interval_Year_To_Month_Table

Pragmas

pragma restrict_references(define_array,RNDS,WNDS);

The subsequent FETCH_ROWS call fetch "count" rows. When the COLUMN_VALUE call is made, these rows are placed in positions lower_bnd, lower_bnd+1, lower_bnd+2, and so on. While there are still rows coming, the user keeps issuing FETCH_ROWS/COLUMN_VALUE calls. The rows keep accumulating in the table specified as an argument in the COLUMN_VALUE call.

Parameters

Table 136-12 DEFINE_ARRAY Procedure Parameters

	Parameter	Description
	
c

	
ID number of the cursor to which you want to bind an array.

	
position

	
Relative position of the column in the array being defined.

The first column in a statement has position 1.

	
table_variable

	
Local variable that has been declared as <datatype>.

	
cnt

	
Number of rows that must be fetched.

	
lower_bnd

	
Results are copied into the collection, starting at this lower bound index.

Usage Notes

The count (cnt) must be an integer greater than zero; otherwise an exception is raised. The lower_bnd can be positive, negative, or zero. A query on which a DEFINE_ARRAY call was issued cannot contain array binds.

Examples

PROCEDURE BULK_PLSQL(deptid NUMBER)
 TYPE namelist IS TABLE OF employees.last_name%TYPE;
 TYPE sallist IS TABLE OF employees.salary%TYPE;
 names namelist;
 sals sallist;
 c NUMBER;
 r NUMBER;
 sql_stmt VARCHAR2(32767) :=
 'SELECT last_name, salary FROM employees WHERE department_id = :b1';

BEGIN
 c := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(c, sql_stmt, dbms_sql.native);

 DBMS_SQL.BIND_VARIABLE(c, 'b1', deptid);

 DBMS_SQL.DEFINE_ARRAY(c, 1, names, 5);
 DBMS_SQL.DEFINE_ARRAY(c, 2, sals, 5);

 r := DBMS_SQL.EXECUTE(c);

 LOOP
 r := DBMS_SQL.FETCH_ROWS(c);
 DBMS_SQL.COLUMN_VALUE(c, 1, names);
 DBMS_SQL.COLUMN_VALUE(c, 2, sals);
 EXIT WHEN r != 5;
 END LOOP;

 DBMS_SQL.CLOSE_CURSOR(c);

 -- loop through the names and sals collections
 FOR i IN names.FIRST .. names.LAST LOOP
 DBMS_OUTPUT.PUT_LINE('Name = ' || names(i) || ', salary = ' || sals(i));
 END LOOP;
END;
/

	
See Also:

"Examples 6 and 7: Defining an Array" for examples of how to define collections.

DEFINE_COLUMN Procedures

This procedure defines a column to be selected from the given cursor. This procedure is only used with SELECT cursors.

The column being defined is identified by its relative position in the SELECT list of the statement in the given cursor. The type of the COLUMN value determines the type of the column being defined.

See also the DEFINE_COLUMN_CHAR Procedure, DEFINE_COLUMN_LONG Procedure, DEFINE_COLUMN_RAW Procedure and DEFINE_COLUMN_ROWID Procedure.

Syntax

DBMS_SQL.DEFINE_COLUMN (
 c IN INTEGER,
 position IN INTEGER,
 column IN <datatype>);

Where <datatype> can be any one of the following types:

BINARY_DOUBLE
BINARY_FLOAT
BFILE
BLOB
CLOB CHARACTER SET ANY_CS
DATE
DSINTERVAL_UNCONSTRAINED
NUMBER
TIME_UNCONSTRAINED
TIME_TZ_UNCONSTRAINED
TIMESTAMP_LTZ_UNCONSTRAINED
TIMESTAMP_TZ_UNCONSTRAINED
TIMESTAMP_UNCONSTRAINED
UROWID
YMINTERVAL_UNCONSTRAINED
user-defined object types
collections (VARRAYs and nested tables)
REFs
Opaque types

Note that DEFINE_COLUMN is overloaded to accept different datatypes.

The following syntax is also supported for the DEFINE_COLUMN procedure:

DBMS_SQL.DEFINE_COLUMN (
 c IN INTEGER,
 position IN INTEGER,
 column IN VARCHAR2 CHARACTER SET ANY_CS,
 column_size IN INTEGER);

	
See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide

Pragmas

pragma restrict_references(define_column,RNDS,WNDS);

Parameters

Table 136-13 DEFINE_COLUMN Procedure Parameters

	Parameter	Description
	
c

	
ID number of the cursor for the row being defined to be selected

	
position

	
Relative position of the column in the row being defined.The first column in a statement has position 1.

	
column

	
Value of the column being defined. The type of this value determines the type for the column being defined.

	
column_size

	
Maximum expected size of the column value in bytes for columns of type VARCHAR2, and RAW.

Usage Notes

When using character length semantics the maximum number of bytes that can be returned for a column value of type VARCHAR2 is calculated as: column_size * maximum character byte size for the current characterset. For example, specifying the column_size as 10 means that a maximum of 30 (10*3) bytes can be returned when using character length semantics with a UTF8 character set regardless of the number of characters this represents.

DEFINE_COLUMN_CHAR Procedure

This procedure defines a column with CHAR data to be selected from the given cursor. This procedure is only used with SELECT cursors.

The column being defined is identified by its relative position in the SELECT list of the statement in the given cursor. The type of the COLUMN value determines the type of the column being defined.

See also the DEFINE_COLUMN Procedures, DEFINE_COLUMN_LONG Procedure, DEFINE_COLUMN_RAW Procedure and DEFINE_COLUMN_ROWID Procedure.

Syntax

DBMS_SQL.DEFINE_COLUMN_CHAR (
 c IN INTEGER,
 position IN INTEGER,
 column IN CHAR CHARACTER SET ANY_CS,
 column_size IN INTEGER);

	
See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide

Pragmas

pragma restrict_references(define_column,RNDS,WNDS);

Parameters

Table 136-14 DEFINE_COLUMN_CHAR Procedure Parameters

	Parameter	Description
	
c

	
ID number of the cursor for the row being defined to be selected

	
position

	
Relative position of the column in the row being defined.The first column in a statement has position 1.

	
column

	
Value of the column being defined. The type of this value determines the type for the column being defined.

	
column_size

	
Maximum expected size of the column value in characters for columns of type CHAR.

DEFINE_COLUMN_LONG Procedure

This procedure defines a LONG column for a SELECT cursor. The column being defined is identified by its relative position in the SELECT list of the statement for the given cursor. The type of the COLUMN value determines the type of the column being defined.

See also the DEFINE_COLUMN Procedures, DEFINE_COLUMN_CHAR Procedure, DEFINE_COLUMN_RAW Procedure and DEFINE_COLUMN_ROWID Procedure.

Syntax

DBMS_SQL.DEFINE_COLUMN_LONG (
 c IN INTEGER,
 position IN INTEGER);

Parameters

Table 136-15 DEFINE_COLUMN_LONG Procedure Parameters

	Parameter	Description
	
c

	
ID number of the cursor for the row being defined to be selected.

	
position

	
Relative position of the column in the row being defined.

The first column in a statement has position 1.

DEFINE_COLUMN_RAW Procedure

This procedure defines a column of type RAW to be selected from the given cursor. This procedure is only used with SELECT cursors.

The column being defined is identified by its relative position in the SELECT list of the statement in the given cursor. The type of the COLUMN value determines the type of the column being defined.

See also the DEFINE_COLUMN Procedures, DEFINE_COLUMN_CHAR Procedure, DEFINE_COLUMN_LONG Procedure and DEFINE_COLUMN_ROWID Procedure.

Syntax

DBMS_SQL.DEFINE_COLUMN_RAW (
 c IN INTEGER,
 position IN INTEGER,
 column IN RAW,
 column_size IN INTEGER);

	
See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide

Pragmas

pragma restrict_references(define_column,RNDS,WNDS);

Parameters

Table 136-16 DEFINE_COLUMN Procedure Parameters

	Parameter	Description
	
c

	
ID number of the cursor for the row being defined to be selected

	
position

	
Relative position of the column in the row being defined.The first column in a statement has position 1.

	
column

	
Value of the column being defined. The type of this value determines the type for the column being defined.

	
column_size

	
Maximum expected size of the column value in bytes for columns of and RAW

DEFINE_COLUMN_ROWID Procedure

This procedure defines a column of type ROWID to be selected from the given cursor. This procedure is only used with SELECT cursors.

The column being defined is identified by its relative position in the SELECT list of the statement in the given cursor. The type of the COLUMN value determines the type of the column being defined.

See also the DEFINE_COLUMN Procedures, DEFINE_COLUMN_CHAR Procedure, DEFINE_COLUMN_LONG Procedure and DEFINE_COLUMN_RAW Procedure.

Syntax

DBMS_SQL.DEFINE_COLUMN_ROWID (
 c IN INTEGER,
 position IN INTEGER,
 column IN ROWID);

	
See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide

Pragmas

pragma restrict_references(define_column,RNDS,WNDS);

Parameters

Table 136-17 DEFINE_COLUMN Procedure Parameters

	Parameter	Description
	
c

	
ID number of the cursor for the row being defined to be selected

	
position

	
Relative position of the column in the row being defined.The first column in a statement has position 1.

	
column

	
Value of the column being defined. The type of this value determines the type for the column being defined.

DESCRIBE_COLUMNS Procedure

This procedure describes the columns for a cursor opened and parsed through DBMS_SQL.

Syntax

DBMS_SQL.DESCRIBE_COLUMNS (
 c IN INTEGER,
 col_cnt OUT INTEGER,
 desc_t OUT DESC_TAB);

Parameters

Table 136-18 DESCRIBE_COLUMNS Procedure Parameters

	Parameter	Description
	
c

	
ID number of the cursor for the columns being described

	
col_cnt

	
Number of columns in the select list of the query

	
desc_t

	
Describe table to fill in with the description of each of the columns of the query

	
See Also:

"Example 8: Describe Columns" illustrates how to use DESCRIBE_COLUMNS.

DESCRIBE_COLUMNS2 Procedure

This procedure describes the specified column. This is an alternative to DESCRIBE_COLUMNS Procedure.

Syntax

DBMS_SQL.DESCRIBE_COLUMNS2 (
 c IN INTEGER,
 col_cnt OUT INTEGER,
 desc_t OUT DESC_TAB2);

Pragmas

PRAGMA RESTRICT_REFERENCES(describe_columns2,WNDS);

Parameters

Table 136-19 DESCRIBE_COLUMNS2 Procedure Parameters

	Parameter	Description
	
c

	
ID number of the cursor for the columns being described.

	
col_cnt

	
Number of columns in the select list of the query.

	
desc_t

	
Describe table to fill in with the description of each of the columns of the query. This table is indexed from one to the number of elements in the select list of the query.

DESCRIBE_COLUMNS3 Procedure

This procedure describes the specified column. This is an alternative to DESCRIBE_COLUMNS Procedure.

Syntax

DBMS_SQL.DESCRIBE_COLUMNS3 (
 c IN INTEGER,
 col_cnt OUT INTEGER,
 desc_t OUT DESC_TAB3);

Pragmas

PRAGMA RESTRICT_REFERENCES(describe_columns3,WNDS);

Parameters

Table 136-20 DESCRIBE_COLUMNS3 Procedure Parameters

	Parameter	Description
	
c

	
ID number of the cursor for the columns being described.

	
col_cnt

	
Number of columns in the select list of the query.

	
desc_t

	
Describe table to fill in with the description of each of the columns of the query. This table is indexed from one to the number of elements in the select list of the query.

Usage Notes

The cursor passed in by the cursor ID has to be OPENed and PARSEd, otherwise an "invalid cursor id" error is raised.

Examples

CREATE TYPE PROJECT_T AS OBJECT
 (projname VARCHAR2(20),
 mgr VARCHAR2(20))
/

CREATE TABLE projecttab(deptno NUMBER, project HR.PROJECT_T)
/

DECLARE
 curid NUMBER;
 desctab DBMS_SQL.DESC_TAB3;
 colcnt NUMBER;
 sql_stmt VARCHAR2(200) := 'select * from projecttab';
BEGIN

 curid := DBMS_SQL.OPEN_CURSOR;

 DBMS_SQL.PARSE(curid, sql_stmt, DBMS_SQL.NATIVE);

 DBMS_SQL.DESCRIBE_COLUMNS3(curid, colcnt, desctab);

 FOR i IN 1 .. colcnt LOOP
 IF desctab(i).col_type = 109 THEN
 DBMS_OUTPUT.PUT(desctab(i).col_name || ' is user-defined type: ');
 DBMS_OUTPUT.PUT_LINE(desctab(i).col_schema_name || '.' ||
 desctab(i).col_type_name);
 END IF;
 END LOOP;

 DBMS_SQL.CLOSE_CURSOR(curid);
END;
/

Output:

PROJECT is user-defined type: HR.PROJECT_T

EXECUTE Function

This function executes a given cursor. This function accepts the ID number of the cursor and returns the number of rows processed. The return value is only valid for INSERT, UPDATE, and DELETE statements; for other types of statements, including DDL, the return value is undefined and should be ignored.

Syntax

DBMS_SQL.EXECUTE (
 c IN INTEGER)
 RETURN INTEGER;

Parameters

Table 136-21 EXECUTE Function Parameters

	Parameter	Description
	
c

	
Cursor ID number of the cursor to execute.

Return Values

Returns number of rows processed

Usage Notes

The DBMS_SQL cursor that is returned by the TO_CURSOR_NUMBER Function performs in the same way as a DBMS_SQL cursor that has already been executed. Consequently, calling EXECUTE for this cursor will cause an error.

EXECUTE_AND_FETCH Function

This function executes the given cursor and fetches rows. This function provides the same functionality as calling EXECUTE and then calling FETCH_ROWS. Calling EXECUTE_AND_FETCH instead, however, may reduce the number of network round-trips when used against a remote database.

The EXECUTE_AND_FETCH function returns the number of rows actually fetched.

Syntax

DBMS_SQL.EXECUTE_AND_FETCH (
 c IN INTEGER,
 exact IN BOOLEAN DEFAULT FALSE)
 RETURN INTEGER;

Pragmas

pragma restrict_references(execute_and_fetch,WNDS);

Parameters

Table 136-22 EXECUTE_AND_FETCH Function Parameters

	Parameter	Description
	
c

	
ID number of the cursor to execute and fetch.

	
exact

	
Set to TRUE to raise an exception if the number of rows actually matching the query differs from one.

Note: Oracle does not support the exact fetch TRUE option with LONG columns.

Even if an exception is raised, the rows are still fetched and available.

Return Values

Returns designated rows

FETCH_ROWS Function

This function fetches a row from a given cursor. You can call FETCH_ROWS repeatedly as long as there are rows remaining to be fetched. These rows are retrieved into a buffer, and must be read by calling COLUMN_VALUE, for each column, after each call to FETCH_ROWS.

The FETCH_ROWS function accepts the ID number of the cursor to fetch, and returns the number of rows actually fetched.

Syntax

DBMS_SQL.FETCH_ROWS (
 c IN INTEGER)
 RETURN INTEGER;

Pragmas

pragma restrict_references(fetch_rows,WNDS);

Parameters

Table 136-23 FETCH_ROWS Function Parameters

	Parameter	Description
	
c

	
ID number.

Return Values

Returns a row from a given cursor

IS_OPEN Function

This function checks to see if the given cursor is currently open.

Syntax

DBMS_SQL.IS_OPEN (
 c IN INTEGER)
 RETURN BOOLEAN;

Pragmas

pragma restrict_references(is_open,RNDS,WNDS);

Parameters

Table 136-24 IS_OPEN Function Parameters

	Parameter	Description
	
c

	
Cursor ID number of the cursor to check.

Return Values

Returns TRUE for any cursor number that has been opened but not closed, and FALSE for a NULL cursor number. Note that the CLOSE_CURSOR Procedure Procedure NULLs out the cursor variable passed to it.

Exceptions

ORA-29471 DBMS_SQL access denied: This is raised if an invalid cursor ID number is detected. Once a session has encountered and reported this error, every subsequent DBMS_SQL call in the same session will raise this error, meaning that DBMS_SQL is non-operational for this session.

LAST_ERROR_POSITION Function

This function returns the byte offset in the SQL statement text where the error occurred. The first character in the SQL statement is at position 0.

Syntax

DBMS_SQL.LAST_ERROR_POSITION
 RETURN INTEGER;

Pragmas

pragma restrict_references(last_error_position,RNDS,WNDS);

Return Values

Returns the byte offset in the SQL statement text where the error occurred

Usage Notes

Call this function after a PARSE call, before any other DBMS_SQL procedures or functions are called.

LAST_ROW_COUNT Function

This function returns the cumulative count of the number of rows fetched.

Syntax

DBMS_SQL.LAST_ROW_COUNT
 RETURN INTEGER;

Pragmas

pragma restrict_references(last_row_count,RNDS,WNDS);

Return Values

Returns the cumulative count of the number of rows fetched

Usage Notes

Call this function after a FETCH_ROWS or an EXECUTE_AND_FETCH call. If called after an EXECUTE call, then the value returned is zero.

LAST_ROW_ID Function

This function returns the ROWID of the last row processed.

Syntax

DBMS_SQL.LAST_ROW_ID
 RETURN ROWID;

Pragmas

pragma restrict_references(last_row_id,RNDS,WNDS);

Return Values

Returns the ROWID of the last row processed

Usage Notes

Call this function after a FETCH_ROWS or an EXECUTE_AND_FETCH call.

LAST_SQL_FUNCTION_CODE Function

This function returns the SQL function code for the statement. These codes are listed in the Oracle Call Interface Programmer's Guide.

Syntax

DBMS_SQL.LAST_SQL_FUNCTION_CODE
 RETURN INTEGER;

Pragmas

pragma restrict_references(last_sql_function_code,RNDS,WNDS);

Return Values

Returns the SQL function code for the statement

Usage Notes

You should call this function immediately after the SQL statement is run; otherwise, the return value is undefined.

OPEN_CURSOR Function

This procedure opens a new cursor. The second overload takes a security_level parameter to apply fine-grained control to the security of the opened cursor.

When you no longer need this cursor, you must close it explicitly by calling the CLOSE_CURSOR Procedure.

Syntax

DBMS_SQL.OPEN_CURSOR
 RETURN INTEGER;

DBMS_SQL.OPEN_CURSOR (
 security_level IN INTEGER)
 RETURN INTEGER;

Parameters

Table 136-25 OPEN_CURSOR Function Parameters

	Parameter	Description
	
security_level

	
Specifies the level of security protection to enforce on the opened cursor. Valid security level values are 0, 1, and 2. When a NULL argument value is provided to this overload, as well as for cursors opened using the overload of open_cursor without the security_level parameter, the default security level value 1 will be enforced on the opened cursor.

	
Level 0 - allows all DBMS_SQL operations on the cursor without any security checks. The cursor may be fetched from, and even re-bound and re-executed, by code running with a different effective userid or roles than those in effect at the time the cursor was parsed. This level of security is off by default.

	
Level 1 - requires that the effective userid and roles of the caller to DBMS_SQL for bind and execute operations on this cursor must be the same as those of the caller of the most recent parse operation on this cursor.

	
Level 2 - requires that the effective userid and roles of the caller to DBMS_SQL for all bind, execute, define, describe, and fetch operations on this cursor must be the same as those of the caller of the most recent parse operation on this cursor.

Pragmas

pragma restrict_references(open_cursor,RNDS,WNDS);

Return Values

Returns the cursor ID number of the new cursor

Usage Notes

You can use cursors to run the same SQL statement repeatedly or to run a new SQL statement. When a cursor is reused, the contents of the corresponding cursor data area are reset when the new SQL statement is parsed. It is never necessary to close and reopen a cursor before reusing it.

PARSE Procedures

This procedure parses the given statement in the given cursor. All statements are parsed immediately. In addition, DDL statements are run immediately when parsed.

There are three versions of the PARSE procedure:

	
Taking a VARCHAR2 statement as an argument

	
Taking VARCHAR2a, table of VARCHAR2(32767), as an argument. The VARCHAR2A overload version of the procedure concatenates elements of a PL/SQL table statement and parses the resulting string. You can use this procedure to parse a statement that is longer than the limit for a single VARCHAR2 variable by splitting up the statement.

	
Taking a CLOB statement as an argument. You can use the CLOB overload version of the parse procedure to parse a SQL statement larger than 32K bytes.

Syntax

DBMS_SQL.PARSE (
 c IN INTEGER,
 statement IN VARCHAR2,
 language_flag IN INTEGER,
 edition IN VARCHAR2 DEFAULT NULL,
 apply_crossedition_trigger IN VARCHAR2 DEFAULT NULL,
 fire_apply_trigger IN BOOLEAN DEFAULT TRUE);

DBMS_SQL.PARSE (
 c IN INTEGER,
 statement IN CLOB,
 language_flag IN INTEGER,
 edition IN VARCHAR2 DEFAULT NULL,
 apply_crossedition_trigger IN VARCHAR2 DEFAULT NULL,
 fire_apply_trigger IN BOOLEAN DEFAULT TRUE);

DBMS_SQL.PARSE (
 c IN INTEGER,
 statement IN VARCHAR2A,
 lb IN INTEGER,
 ub IN INTEGER,
 lfflg IN BOOLEAN,
 language_flag IN INTEGER,
 edition IN VARCHAR2 DEFAULT NULL,
 apply_crossedition_trigger IN VARCHAR2 DEFAULT NULL,
 fire_apply_trigger IN BOOLEAN DEFAULT TRUE);

Parameters

Table 136-26 PARSE Procedure Parameters

	Parameter	Description
	
c

	
ID number of the cursor in which to parse the statement.

	
statement

	
SQL statement to be parsed. SQL statements larger than 32K that may be stored in CLOBs.

Unlike PL/SQL statements, your SQL statement should not include a final semicolon. For example:

DBMS_SQL.PARSE(cursor1, 'BEGIN proc; END;', 2);

DBMS_SQL.PARSE(cursor1, 'INSERT INTO tab VALUES(1)', 2);

	
lb

	
Lower bound for elements in the statement

	
ub

	
Upper bound for elements in the statement

	
lfflg

	
If TRUE, then insert a linefeed after each element on concatenation.

	
language_flag

	
Determines how Oracle handles the SQL statement. The following options are recognized:

	
V6 (or 0) specifies version 6 behavior.

	
NATIVE (or 1) specifies normal behavior for the database to which the program is connected.

	
V7 (or 2) specifies Oracle database version 7 behavior.

	
edition

	
Specifies the edition to run the statement in. Passing NULL indicates the statement should to run in the caller's current edition. The contents of the string are processed as a SQL identifier; double-quotes must surround the remainder of the string if special characters or lower case characters are present in the edition's actual name, and if double-quotes are not used the contents will be uppercased. If the edition is specified with a non-NULL value, the user with which the statement is to be executed must have USE privilege on the named edition.

	
apply_crossedition_trigger

	
Specifies the unqualified name of a forward crossedition trigger that is to be applied to the specified SQL. The name is resolved using the edition and current_schema setting in which the statement is to be executed. The trigger must be owned by the user that will execute the statement.If a non-NULL value is specified, the specified crossedition trigger will be executed assuming fire_apply_trigger is TRUE, the trigger is enabled, the trigger is defined on the table which is the target of the statement, the type of the statement matches the trigger's dml_event_clause, any effective WHEN and UPDATE OF restrictions are satisfied, and so on. Other forward crossedition triggers may also be executed, selected using the "crossedition trigger DML rules" applied as if the specified trigger was doing a further DML to the table that is the target of the statement. Non-crossedition triggers and reverse crossedition triggers will not be executed.The contents of the string are processed as a SQL identifier; double-quotes must surround the remainder of the string if special characters or lower case characters are present in the trigger's actual name, and if double-quotes are not used, the contents will be uppercased.

	
fire_apply_trigger

	
Indicates whether the specified apply_crossedition_trigger is itself to be executed, or should only be a guide used in selecting other triggers. This is typically set FALSE when the statement is a replacement for the actions the apply_crossedition_trigger would itself perform. If FALSE, the specified trigger is not executed, but other triggers are still selected for firing as if the specified trigger was doing a DML to the table that is the target of the statement. The apply_crossedition_trigger and fire_apply_trigger parameters are ignored if the statement is not a DML.

Usage Notes

	
Using DBMS_SQL to dynamically run DDL statements can result in the program hanging. For example, a call to a procedure in a package results in the package being locked until the execution returns to the user side. Any operation that results in a conflicting lock, such as dynamically trying to drop the package before the first lock is released, results in a hang.

	
Because client-side code cannot reference remote package variables or constants, you must explicitly use the values of the constants.

For example, the following code does not compile on the client:

DBMS_SQL.PARSE(cur_hdl, stmt_str, DBMS_SQL.NATIVE); -- uses constant DBMS_SQL.NATIVE

The following code works on the client, because the argument is explicitly provided:

DBMS_SQL.PARSE(cur_hdl, stmt_str, 1); -- compiles on the client

	
The VARCHAR2S type is currently supported for backward compatibility of legacy code. However, you are advised to use VARCHAR2A both for its superior capability and because VARCHAR2S will be deprecated in a future release.

	
To parse SQL statements larger than 32 KB, the new CLOB overload version of the PARSE procedure can be used instead of the VARCHAR2A overload

Exceptions

If you create a type/procedure/function/package using DBMS_SQL that has compilation warnings, an ORA-24344 exception is raised, and the procedure is still created.

TO_CURSOR_NUMBER Function

This function takes an OPENed strongly or weakly-typed ref cursor and transforms it into a DBMS_SQL cursor number.

Syntax

DBMS_SQL.TO_CURSOR_NUMBER(
 rc IN OUT SYS_REFCURSOR)
 RETURN INTEGER;

Parameters

Table 136-27 TO_CURSOR_NUMBER Function Parameters

	Parameter	Description
	
rc

	
REF CURSOR to be transformed into a cursor number

Return Values

Returns a DBMS_SQL manageable cursor number transformed from a REF CURSOR

Usage Notes

	
The REF CURSOR passed in has to be OPENed, otherwise an error is raised.

	
Once the REF CURSOR is transformed into a DBMS_SQL cursor number, the REF CURSOR is no longer accessible by any native dynamic SQL operations.

	
The DBMS_SQL cursor that is returned by this subprogram performs in the same way as a DBMS_SQL cursor that has already been executed.

Examples

CREATE OR REPLACE PROCEDURE DO_QUERY(sql_stmt VARCHAR2) IS
 TYPE CurType IS REF CURSOR;
 src_cur CurType;
 curid NUMBER;
 desctab DBMS_SQL.DESC_TAB;
 colcnt NUMBER;
 namevar VARCHAR2(50);
 numvar NUMBER;
 datevar DATE;
 empno NUMBER := 100;
BEGIN

 -- sql_stmt := 'select from employees where employee_id = :b1';
 OPEN src_cur FOR sql_stmt USING empno;

 -- Switch from native dynamic SQL to DBMS_SQL
 curid := DBMS_SQL.TO_CURSOR_NUMBER (src_cur);

 DBMS_SQL.DESCRIBE_COLUMNS(curid, colcnt, desctab);

 -- Define columns
 FOR i IN 1 .. colcnt LOOP
 IF desctab(i).col_type = 2 THEN
 DBMS_SQL.DEFINE_COLUMN(curid, i, numvar);
 ELSIF desctab(i).col_type = 12 THEN
 DBMS_SQL.DEFINE_COLUMN(curid, i, datevar);
.......
 ELSE
 DBMS_SQL.DEFINE_COLUMN(curid, i, namevar, 25);
 END IF;
 END LOOP;

 -- Fetch Rows
 WHILE DBMS_SQL.FETCH_ROWS(curid) > 0 LOOP
 FOR i IN 1 .. colcnt LOOP
 IF (desctab(i).col_type = 1) THEN
 DBMS_SQL.COLUMN_VALUE(curid, i, namevar);
 ELSIF (desctab(i).col_type = 2) THEN
 DBMS_SQL.COLUMN_VALUE(curid, i, numvar);
 ELSIF (desctab(i).col_type = 12) THEN
 DBMS_SQL.COLUMN_VALUE(curid, i, datevar);
....
 END IF;
 END LOOP;
 END LOOP;

 DBMS_SQL.CLOSE_CURSOR(curid);
END;
/

TO_REFCURSOR Function

This function takes an OPENed, PARSEd, and EXECUTEd cursor and transforms/migrates it into a PL/SQL manageable REF CURSOR (a weakly-typed cursor) that can be consumed by PL/SQL native dynamic SQLswitched to use native dynamic SQL. This subprogram is only used with SELECT cursors.

Syntax

DBMS_SQL.TO_REFCURSOR(
 cursor_number IN OUT INTEGER)
 RETURN SYS_REFCURSOR;

Parameters

Table 136-28 TO_REFCURSOR Function Parameters

	Parameter	Description
	
cursor_number

	
Cursor number of the cursor to be transformed into REF CURSOR

Return Values

Returns a PL/SQL REF CURSOR transformed from a DBMS_SQL cursor number

Usage Notes

	
The cursor passed in by the cursor_number has to be OPENed, PARSEd, and EXECUTEd; otherwise an error is raised.

	
Once the cursor_number is transformed into a REF CURSOR, the cursor_number is no longer accessible by any DBMS_SQL operations.

	
After a cursor_number is transformed into a REF CURSOR, using DBMS_SQL.IS_OPEN to check to see if the cursor_number is still open results in an error.

Examples

CREATE OR REPLACE PROCEDURE DO_QUERY(mgr_id NUMBER) IS
 TYPE CurType IS REF CURSOR;
 src_cur CurType;
 curid NUMBER;
 sql_stmt VARCHAR2(200);
 ret INTEGER;
 empnos DBMS_SQL.Number_Table;
 depts DBMS_SQL.Number_Table;
BEGIN

 -- DBMS_SQL.OPEN_CURSOR
 curid := DBMS_SQL.OPEN_CURSOR;

 sql_stmt := 'SELECT EMPLOYEE_ID, DEPARTMENT_ID from employees where MANAGER_ID = :b1';

 DBMS_SQL.PARSE(curid, sql_stmt, DBMS_SQL.NATIVE);
 DBMS_SQL.BIND_VARIABLE(curid, 'b1', mgr_id);
 ret := DBMS_SQL.EXECUTE(curid);

 -- Switch from DBMS_SQL to native dynamic SQL
 src_cur := DBMS_SQL.TO_REFCURSOR(curid);

 -- Fetch with native dynamic SQL
 FETCH src_cur BULK COLLECT INTO empnos, depts;

 IF empnos.COUNT > 0 THEN
 DBMS_OUTPUT.PUT_LINE('EMPNO DEPTNO');
 DBMS_OUTPUT.PUT_LINE('----- ------');
 -- Loop through the empnos and depts collections
 FOR i IN 1 .. empnos.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE(empnos(i) || ' ' || depts(i));
 END LOOP;
 END IF;
 -- Close cursor
 CLOSE src_cur;
END;
/

VARIABLE_VALUE Procedures

This procedure returns the value of the named variable for a given cursor. It is used to return the values of bind variables inside PL/SQL blocks or DML statements with returning clause.

Syntax

DBMS_SQL.VARIABLE_VALUE (
 c IN INTEGER,
 name IN VARCHAR2,
 value OUT NOCOPY <datatype>);

Where <datatype> can be any one of the following types:

BINARY_DOUBLE
BINARY_FLOAT
BFILE
BLOB
CLOB CHARACTER SET ANY_CS
DATE
DSINTERVAL_UNCONSTRAINED
NUMBER
TIME_TZ_UNCONSTRAINED
TIME_UNCONSTRAINED
TIMESTAMP_LTZ_UNCONSTRAINED
TIMESTAMP_TZ_UNCONSTRAINED
TIMESTAMP_UNCONSTRAINED
UROWID
VARCHAR2 CHARACTER SET ANY_CS
YMINTERVAL_UNCONSTRAINED
user-defined object types
collections (VARRAYs and nested tables)
REFs
Opaque types

For variables containing CHAR, RAW, and ROWID data, you can use the following variations on the syntax:

DBMS_SQL.VARIABLE_VALUE_CHAR (
 c IN INTEGER,
 name IN VARCHAR2,
 value OUT CHAR CHARACTER SET ANY_CS);

DBMS_SQL.VARIABLE_VALUE_RAW (
 c IN INTEGER,
 name IN VARCHAR2,
 value OUT RAW);

DBMS_SQL.VARIABLE_VALUE_ROWID (
 c IN INTEGER,
 name IN VARCHAR2,
 value OUT ROWID);

The following syntax enables the VARIABLE_VALUE procedure to accommodate bulk operations:

DBMS_SQL.VARIABLE_VALUE (
 c IN INTEGER,
 name IN VARCHAR2,
 value OUT NOCOPY <table_type>);

For bulk operations, <table_type> can be:

Binary_Double_Table
Binary_Float_Table
Bfile_Table
Blob_Table
Clob_Table
Date_Table
Interval_Day_To_Second_Table
Interval_Year_To_Month_Table
Number_Table
Time_Table
Time_With_Time_Zone_Table
Timestamp_Table
Timestamp_With_ltz_Table;
Timestamp_With_Time_Zone_Table
Urowid_Table
Varchar2_Table

Pragmas

pragma restrict_references(variable_value,RNDS,WNDS);

Parameters

Table 136-29 VARIABLE_VALUE Procedure Parameters

	Parameter	Description
	
c

	
ID number of the cursor from which to get the values.

	
name

	
Name of the variable for which you are retrieving the value.

	
value

	
	
Single row option: Returns the value of the variable for the specified position. Oracle raises the exception ORA-06562, inconsistent_type, if the type of this output parameter differs from the actual type of the value, as defined by the call to BIND_VARIABLE.

	
Array option: Local variable that has been declared <table_type>. For bulk operations, value is an OUT NOCOPY parameter.

DBMS_SQLDIAG

137 DBMS_SQLDIAG

The DBMS_SQLDIAG package provides an interface to the SQL Diagnosability functionality.

	
See Also:

Oracle Database Administrator's Guide for more information about "Managing Diagnostic Data"

This chapter contains the following topics:

	
Using DBMS_SQLDIAG

	
Overview

	
Constants

	
Examples

	
Summary of DBMS_SQLDIAG Subprograms

Using DBMS_SQLDIAG

	
Overview

	
Constants

	
Examples

Overview

In the rare case that a SQL statement fails with a critical error, you can run the SQL Repair Advisor to try to repair the failed statement.This section covers the following topics:

	
About the SQL Repair Advisor

	
Running the SQL Repair Advisor

	
Removing a SQL Patch

About the SQL Repair Advisor

You run the SQL Repair Advisor after a SQL statement fails with a critical error. The advisor analyzes the statement and in many cases recommends a patch to repair the statement. If you implement the recommendation, the applied SQL patch circumvents the failure by causing the query optimizer to choose an alternate execution plan for future executions.

Running the SQL Repair Advisor

You run the SQL Repair Advisor by creating and executing a diagnostic task using the CREATE_DIAGNOSIS_TASK and EXECUTE_DIAGNOSIS_TASK respectively. The SQL Repair Advisor first reproduces the critical error and then tries to produce a workaround in the form of SQL patch.

	
Identify the problem SQL statement

Consider the SQL statement that gives a critical error:

DELETE FROM t t1 WHERE t1.a = 'a' AND ROWID <> (SELECT MAX(ROWID) FROM t t2 WHERE t1.a= t2.a AND t1.b = t2.b AND t1.d=t2.d)

You use the SQL Repair advisor to repair this critical error.

	
Create a diagnosis task

Invoke DBMS_SQLDIAG. CREATE_DIAGNOSIS_TASK. You can specify an optional task name, an optional time limit for the advisor task, and problem type. In the example below, we specify the SQL text, the task name as 'error_task' and a problem type as 'DBMS_SQLDIAG.PROBLEM_TYPE_COMPILATION_ERROR'.

DECLARE
 rep_out CLOB;
 t_id VARCHAR2(50);
 BEGIN
 t_id := DBMS_SQLDIAG.CREATE_DIAGNOSIS_TASK(
 sql_text => 'DELETE FROM t t1 WHERE t1.a = ''a'' AND ROWID <> (SELECT MAX(ROWID) FROM t t2 WHERE t1.a= t2.a AND t1.b = t2.b AND t1.d=t2.d)',
 task_name => 'error_task',
 problem_type =>DBMS_SQLDIAG.PROBLEM_TYPE_COMPILATION_ERROR);

	
Execute the diagnosis task

To execute the workaround generation and analysis phase of the SQL Repair Advisor, you call DBMS_SQLDIAG.EXECUTE_DIAGNOSIS_TASK with the task ID returned by the CREATE_DIAGNOSIS_TASK. After a short delay, the SQL Repair Advisor returns. As part of its execution, the SQL Repair Advisor keeps a record of its findings which can be accessed through the reporting facilities of SQL Repair Advisor.

DBMS_SQLDIAG.EXECUTE_DIAGNOSIS_TASK (t_id);

	
Report the diagnosis task

The analysis of the diagnosis task is accessed through dbms_sqldiag.report_diagnosis_task. If the SQL Repair Advisor was able to find a workaround, it recommends a SQL Patch. A SQL Patch is similar to a SQL profile but unlike the SQL Profile, it is used to workaround compilation or execution errors.

rep_out := DBMS_SQLDIAG.REPORT_DIAGNOSIS_TASK (t_id, DBMS_SQLDIAG.TYPE_TEXT);

 DBMS_OUTPUT.PUT_LINE ('Report : ' || rep_out);

 END;
 /

	
Applying the patch

If a patch recommendation is present in the report, you can run the ACCEPT_SQL_PATCH command to accept the patch by invoking DBMS_SQLDIAG.ACCEPT_SQL_PATCH. This procedure takes the task_name as an argument.

EXECUTE DBMS_SQLDIAG.ACCEPT_SQL_PATCH(task_name => 'error_task', task_owner => 'SYS', replace => TRUE);

	
Test the patch

Now that you have accepted the patch, you can rerun the SQL statement. This time, it will not give you the critical error. If you run 'explain plan' for this statement, you will see that a SQL patch was used to generate the plan.

DELETE FROM t t1 WHERE t1.a = 'a' AND ROWID <> (select max(rowid) FROM t t2 WHERE t1.a= t2.a AND t1.b = t2.b AND t1.d=t2.d);

Removing a SQL Patch

In a situation where you obtained an official patch from Oracle to fix an error, or upgraded to the next patchset or release of Oracle which included the fix for the error, you call DBMS_SQLDIAG.DROP_SQL_PATCH with the patch name to drop the SQL patch. The patch name can be obtained from the explain plan section or by querying the view DBA_SQL_PATCHES.

Constants

The DBMS_SQLDIAG package uses the constants shown in the following tables:

	
Table 137-1, "DBMS_SQLDIAG Constants - SQLDIAG Advisor Name" describes the name of SQL repair advisor as seen by the advisor framework

	
Table 137-2, "DBMS_SQLDIAG Constants - SQLDIAG Advisor Task Scope Parameter Values" describes SQLDIAG advisor task scope parameter values

	
Table 137-3, "DBMS_SQLDIAG Constants - SQLDIAG Advisor time_limit Constants" describes SQLDIAG advisor time_limit constants

	
Table 137-4, "DBMS_SQLDIAG Constants - Report Type (possible values) Constants" describes possible formats for a report

	
Table 137-5, "DBMS_SQLDIAG Constants - Report Level (possible values) Constants" describes possible levels of detail in the report

	
Table 137-6, "DBMS_SQLDIAG Constants - Report Section (possible values) Constants" describes possible report sections (comma delimited)

	
Table 137-7, "DBMS_SQLDIAG Constants - Problem Type Constants" describes possible values for the problem_type parameter of the CREATE_DIAGNOSIS_TASK Functions

	
Table 137-8, "DBMS_SQLDIAG Constants - Findings Filter Constants" describes possible values for the _sql_findings_mode parameter

Table 137-1 DBMS_SQLDIAG Constants - SQLDIAG Advisor Name

	Constant	Type	Value	Description
	
ADV_SQL_DIAG_NAME

	
VARCHAR2(18)

	
'SQL Repair Advisor'

	
Name of SQL repair advisor as seen by the advisor framework

Table 137-2 DBMS_SQLDIAG Constants - SQLDIAG Advisor Task Scope Parameter Values

	Constant	Type	Value	Description
	
SCOPE_COMPREHENSIVE

	
VARCHAR2(13)

	
'COMPREHENSIVE'

	
Detailed analysis of the problem which may take more time to execute

	
SCOPE_LIMITED

	
VARCHAR2(7)

	
'LIMITED'

	
Brief analysis of the problem

Table 137-3 DBMS_SQLDIAG Constants - SQLDIAG Advisor time_limit Constants

	Constant	Type	Value	Description
	
TIME_LIMIT_DEFAULT

	
NUMBER

	
1800

	
Default time limit for analysis of the problem

Table 137-4 DBMS_SQLDIAG Constants - Report Type (possible values) Constants

	Constant	Type	Value	Description
	
TYPE_HTML

	
VARCHAR2(4)

	
'HTML'

	
Report from the REPORT_DIAGNOSIS_TASK Function in HTML form

	
TYPE_TEXT

	
VARCHAR2(4)

	
'TEXT'

	
Report from the REPORT_DIAGNOSIS_TASK Function in text form

	
TYPE_XML

	
VARCHAR2(3)

	
'XML'

	
Report from the REPORT_DIAGNOSIS_TASK Function in XML form

Table 137-5 DBMS_SQLDIAG Constants - Report Level (possible values) Constants

	Constant	Type	Value	Description
	
LEVEL_ALL

	
VARCHAR2(3)

	
'ALL'

	
Complete report including annotations about statements skipped over

	
LEVEL_BASIC

	
VARCHAR2(5)

	
'BASIC'

	
Shows information about every statement analyzed, including recommendations not implemented

	
LEVEL_TYPICAL

	
VARCHAR2(7)

	
'TYPICAL'

	
Simple report shows only information about the actions taken by the advisor.

Table 137-6 DBMS_SQLDIAG Constants - Report Section (possible values) Constants

	Constant	Type	Value	Description
	
SECTION_ALL

	
VARCHAR2(3)

	
'ALL'

	
All statements

	
SECTION_ERRORS

	
VARCHAR2(6)

	
'ERRORS'

	
Statements with errors

	
SECTION_FINDINGS

	
VARCHAR2(8)

	
'FINDINGS'

	
Tuning findings

	
SECTION_INFORMATION

	
VARCHAR2(11)

	
'INFORMATION'

	
General information

	
SECTION_PLANS

	
VARCHAR2(5)

	
'PLANS'

	
Explain plans

	
SECTION_SUMMARY

	
VARCHAR2(7)

	
'SUMMARY'

	
Summary information

Table 137-7 DBMS_SQLDIAG Constants - Problem Type Constants

	Constant	Type	Value	Description
	
PROBLEM_TYPE_PERFORMANCE

	
NUMBER

	
1

	
User suspects this is a performance problem

	
PROBLEM_TYPE_WRONG_RESULTS

	
NUMBER

	
2

	
User suspects the query is giving inconsistent results

	
PROBLEM_TYPE_COMPILATION_ERROR

	
NUMBER

	
3

	
User sees a crash in compilation

	
PROBLEM_TYPE_EXECUTION_ERROR

	
NUMBER

	
4

	
User sees a crash in execution

	
PROBLEM_TYPE_ALT_PLAN_GEN

	
NUMBER

	
5

	
User to explore all alternative plans

Table 137-8 DBMS_SQLDIAG Constants - Findings Filter Constants

	Constant	Type	Value	Description
	
SQLDIAG_FINDINGS_ALL

	
NUMBER

	
1

	
Show all possible findings

	
SQLDIAG_FINDINGS_VALIDATION

	
NUMBER

	
2

	
Show status of validation rules over structures

	
SQLDIAG_FINDINGS_FEATURES

	
NUMBER

	
3

	
Show only features used by the query

	
SQLDIAG_FINDINGS_FILTER_PLANS

	
NUMBER

	
4

	
Show the alternative plans generated by the advisor

	
SQLDIAG_FINDINGS_CR_DIFF

	
NUMBER

	
5

	
Show difference between two plans

	
SQLDIAG_FINDINGS_MASK_VARIANT

	
NUMBER

	
6

	
Mask info for testing

	
SQLDIAG_FINDINGS_OBJ_FEATURES

	
NUMBER

	
7

	
Show features usage history

	
SQLDIAG_FINDINGS_BASIC_INFO

	
NUMBER

	
8

	
Show the alternative plans generated by the advisor

Examples

Patch Pack / Unpack

Patches can be exported out of one system and imported into another by means of a staging table, provided by subprograms in this package. Like with SQL diagnosis sets, the operation of inserting into the staging table is called a "pack", and the operation of creating patches from staging table data is termed the "unpack".

DBAs should perform a pack/unpack as follows:

	
Create a staging table owned by user 'SH' through a call to CREATE_STGTAB_SQLPATCH:

EXEC DBMS_SQLDIAG.CREATE_STGTAB_SQLPATCH(
 table_name => 'STAGING_TABLE',
 schema_name => 'SH');

	
Call PACK_STGTAB_SQLPATCH one or more times to write SQL patch data into the staging table. In this case, copy data for all SQL patches in the DEFAULT category into a staging table owned by the current schema owner:

EXEC DBMS_SQLDIAG.PACK_STGTAB_SQLPATCH(
 staging_table_name => 'STAGING_TABLE');

	
In this case, only a single SQL patch SP_FIND_EMPLOYEE is copied into a staging table owned by the current schema owner:

EXEC DBMS_SQLDIAG.PACK_STGTAB_SQLPATCH(
 patch_name => 'SP_FIND_EMPLOYEE',
 staging_table_name => 'STAGING_TABLE');

The staging table can then be moved to another system using either datapump, import/export commands or through a databaselink.

	
Call UNPACK_STGTAB_SQLPATCH to create SQL patches on the new system from the patch data in the staging table. In this case, change the name in the data for the SP_FIND_EMPLOYEE patch stored in the staging table to 'SP_FIND_EMP_PROD':

exec dbms_sqldiag.remap_stgtab_sqlpatch(
 old_patch_name => 'SP_FIND_EMPLOYEE',
 new_patch_name => 'SP_FIND_EMP_PROD',

Summary of DBMS_SQLDIAG Subprograms

Table 137-9 DBMS_SQLDIAG Package Subprograms

	Subprogram	Description
	
ACCEPT_SQL_PATCH Function & Procedure

	
Accepts a recommended SQL patch as recommended by the specified SQL diagnosis task

	
ALTER_SQL_PATCH Procedure

	
Alters specific attributes of an existing SQL patch object

	
CANCEL_DIAGNOSIS_TASK Procedure

	
Cancels a diagnostic task

	
CREATE_DIAGNOSIS_TASK Functions

	
Creates a diagnostic task in order to diagnose a single SQL statement

	
CREATE_STGTAB_SQLPATCH Procedure

	
Creates the staging table used for transporting SQL patches from one system to another

	
DROP_DIAGNOSIS_TASK Procedure

	
Drops a diagnostic task

	
DROP_SQL_PATCH Procedure

	
Drops the named SQL patch from the database

	
EXECUTE_DIAGNOSIS_TASK Procedure

	
Executes a diagnostic task

	
EXPLAIN_SQL_TESTCASE Function

	
Explains a SQL test case

	
EXPORT_SQL_TESTCASE Procedures

	
Exports a SQL test case to a directory

	
EXPORT_SQL_TESTCASE_DIR_BY_INC Function

	
Generates a SQL Test Case corresponding to the incident ID passed as an argument.

	
EXPORT_SQL_TESTCASE_DIR_BY_TXT Function

	
Generates a SQL Test Case corresponding to the SQL passed as an argument

	
GET_FIX_CONTROL Function

	
Returns the value of fix control for a given bug number

	
GET_SQL Function

	
Imports a SQL test case

	
IMPORT_SQL_TESTCASE Procedures

	
Imports a SQL test case into a schema

	
INCIDENTID_2_SQL Procedure

	
Initializes a sql_setrow from an incident ID

	
INTERRUPT_DIAGNOSIS_TASK Procedure

	
Interrupts a diagnostic task

	
LOAD_SQLSET_FROM_TCB Function

	
Loads a SQLSET from Test Case Builder (TCB) file

	
PACK_STGTAB_SQLPATCH Procedure

	
SQL patches into the staging table created by the CREATE_STGTAB_SQLPATCH Procedure

	
REPORT_DIAGNOSIS_TASK Function

	
Reports on a diagnostic task

	
RESET_DIAGNOSIS_TASK Procedure

	
Resets a diagnostic task

	
RESUME_DIAGNOSIS_TASK Procedure

	
Resumes a diagnostic task

	
SET_DIAGNOSIS_TASK_PARAMETER Procedure

	
Sets a diagnosis task parameter

	
UNPACK_STGTAB_SQLPATCH Procedure

	
Unpacks from the staging table populated by a call to the PACK_STGTAB_SQLPATCH Procedure, using the patch data stored in the staging table to create patches on this system

ACCEPT_SQL_PATCH Function & Procedure

This procedure accepts a recommended SQL patch as recommended by the specified SQL diagnosis task.

Syntax

DBMS_SQLDIAG.ACCEPT_SQL_PATCH (
 task_name IN VARCHAR2,
 object_id IN NUMBER := NULL,
 name IN VARCHAR2 := NULL,
 description IN VARCHAR2 := NULL,
 category IN VARCHAR2 := NULL,
 task_owner IN VARCHAR2 := NULL,
 replace IN BOOLEAN := FALSE,
 force_match IN BOOLEAN := FALSE)
 RETURN VARCHAR2;

DBMS_SQLDIAG.ACCEPT_SQL_PATCH (
 task_name IN VARCHAR2,
 object_id IN NUMBER := NULL,
 name IN VARCHAR2 := NULL,
 description IN VARCHAR2 := NULL,
 category IN VARCHAR2 := NULL,
 task_owner IN VARCHAR2 := NULL,
 replace IN BOOLEAN := FALSE,
 force_match IN BOOLEAN := FALSE);

Parameters

Table 137-10 ACCEPT_SQL_PATCH Function & Procedure Parameters

	Parameter	Description
	
taskname

	
Name of the SQL diagnosis task

	
object_id

	
Identifier of the advisor framework object representing the SQL statement associated to the diagnosis task

	
name

	
Name of the patch. It cannot contain double quotation marks. The name is case sensitive. If not specified, the system will generate a unique name for the SQL patch.

	
description

	
User specified string describing the purpose of this SQL patch. Maximum size of description is 500.

	
category

	
Category name which must match the value of the SQLDIAGNOSE_CATEGORY parameter in a session for the session to use this patch. It defaults to the value DEFAULT. This is also the default of the SQLDIAGNOSE_CATEGORY parameter. The category must be a valid Oracle identifier. The category name specified is always converted to upper case. The combination of the normalized SQL text and category name create a unique key for a patch. An accept will fail if this combination is duplicated.

	
task_owner

	
Owner of the diagnosis task. This is an optional parameter that has to be specified to accept a SQL Patch associated to a diagnosis task owned by another user. The current user is the default value.

	
replace

	
If the patch already exists, it will be replaced if this argument is TRUE. It is an error to pass a name that is already being used for another signature/category pair, even with replace set to TRUE.

	
force_match

	
If TRUE this causes SQL Patches to target all SQL statements which have the same text after normalizing all literal values into bind variables. (Note that if a combination of literal values and bind values is used in a SQL statement, no bind transformation occurs.) This is analogous to the matching algorithm used by the FORCE option of the CURSOR_SHARING parameter. If FALSE, literals are not transformed. This is analogous to the matching algorithm used by the EXACT option of the CURSOR_SHARING parameter.

Return Values

Name of the SQL patch

Usage Notes

Requires CREATE ANY SQL PROFILE privilege

ALTER_SQL_PATCH Procedure

This procedure alters specific attributes of an existing SQL patch object.

Syntax

DBMS_SQLDIAG.ALTER_SQL_PATCH (
 name IN VARCHAR2,
 attribute_name IN VARCHAR2,
 value IN VARCHAR2);

Parameters

Table 137-11 ALTER_SQL_PATCH Procedure Parameters

	Parameter	Description
	
name

	
Name of SQL patch to alter.

	
attribute_name

	
Name of SQL patch to alter. Possible values:

	
STATUS -> can be set to ENABLED or DISABLED

	
NAME -> can be reset to a valid name (must be a valid Oracle identifier and must be unique).

	
DESCRIPTION -> can be set to any string of size no more than 500

	
CATEGORY -> can be reset to a valid category name (must be valid Oracle identifier and must be unique when combined with normalized SQL text)

This parameter is mandatory and is case sensitive.

	
value

	
New value of the attribute. See attribute_name for valid attribute values. This parameter is mandatory.

Usage Notes

Requires ALTER ANY SQL PATCH privilege

CANCEL_DIAGNOSIS_TASK Procedure

This procedure cancels a diagnostic task.

Syntax

DBMS_SQLDIAG.CANCEL_DIAGNOSIS_TASK (
 taskname IN VARCHAR2);

Parameters

Table 137-12 CANCEL_DIAGNOSIS_TASK Procedure Parameters

	Parameter	Description
	
taskname

	
Name of task

CREATE_DIAGNOSIS_TASK Functions

This function creates a diagnostic task in order to diagnose a single SQL statement. It returns a SQL diagnosis task unique name

Syntax

Prepares the diagnosis of a single statement given its text:

DBMS_SQLDIAG.CREATE_DIAGNOSIS_TASK (
 sql_text IN CLOB,
 bind_list IN sql_binds := NULL,
 user_name IN VARCHAR2 := NULL,
 scope IN VARCHAR2 := SCOPE_COMPREHENSIVE,
 time_limit IN NUMBER := TIME_LIMIT_DEFAULT,
 task_name IN VARCHAR2 := NULL,
 description IN VARCHAR2 := NULL,
 problem_type IN NUMBER := PROBLEM_TYPE_PERFORMANCE)
 RETURN VARCHAR2;

Prepares the diagnosis of a single statement from the Cursor Cache given its identifier:

DBMS_SQLDIAG.CREATE_DIAGNOSIS_TASK (
 sql_id IN VARCHAR2,
 plan_hash_value IN NUMBER := NULL,
 scope IN VARCHAR2 := SCOPE_COMPREHENSIVE,
 time_limit IN NUMBER := TIME_LIMIT_DEFAULT,
 task_name IN VARCHAR2 := NULL,
 description IN VARCHAR2 := NULL,
 problem_type IN NUMBER := PROBLEM_TYPE_PERFORMANCE)
 RETURN VARCHAR2;

Prepares the diagnosis of a Sqlset:

DBMS_SQLDIAG.CREATE_DIAGNOSIS_TASK (
 sqlset_name IN VARCHAR2,
 basic_filter IN VARCHAR2 := NULL,
 object_filter IN VARCHAR2 := NULL,
 rank1 IN VARCHAR2 := NULL,
 rank2 IN VARCHAR2 := NULL,
 rank3 IN VARCHAR2 := NULL,
 result_percentage IN NUMBER := NULL,
 result_limit IN NUMBER := NULL,
 scope IN VARCHAR2 := SCOPE_COMPREHENSIVE,
 time_limit IN NUMBER := TIME_LIMIT_DEFAULT,
 task_name IN VARCHAR2 := NULL,
 description IN VARCHAR2 := NULL,
 plan_filter IN VARCHAR2 := 'MAX_ELAPSED_TIME',
 sqlset_owner IN VARCHAR2 := NULL,
 problem_type IN NUMBER := PROBLEM_TYPE_PERFORMANCE) RETURN VARCHAR2;

Parameters

Table 137-13 CREATE_DIAGNOSIS_TASK Function Parameters

	Parameter	Description
	
sql_text

	
Text of a SQL statement

	
bind_list

	
Set of bind values

	
user_name

	
Username for who the statement/sqlset will be diagnosed

	
scope

	
Diagnosis scope (limited/comprehensive)

	
time_limit

	
Maximum duration in seconds for the diagnosis session

	
task_name

	
Optional diagnosis task name

	
description

	
Maximum of 256 SQL diagnosis session description

	
problem_type

	
Determines the goal of the task. Possible values are:

	
PROBLEM_TYPE_WRONG_RESULTS

	
PROBLEM_TYPE_COMPILATION_ERROR

	
PROBLEM_TYPE_EXECUTION_ERROR

	
sql_id

	
Identifier of the statement

	
plan_hash_value

	
Hash value of the SQL execution plan

	
sqlset_name

	
Sqlset name

	
basic_filter

	
SQL predicate to filter the SQL from the SQL tuning set (STS)

	
object_filter

	
Object filter

	
rank(i)

	
Order-by clause on the selected SQL

	
result_percentage

	
Percentage on the sum of a ranking measure

	
result_limit

	
Top L(imit) SQL from (filtered/ranked) SQL

	
plan_filter

	
Plan filter. It is applicable in case there are multiple plans (plan_hash_value). This filter allows selecting one plan (plan_hash_value) only. Possible values are:

	
LAST_GENERATED: plan with most recent timestamp

	
FIRST_GENERATED: opposite to LAST_GENERATED

	
LAST_LOADED: plan with most recent first_load_time stat info

	
FIRST_LOADED: opposite to LAST_LOADED

	
MAX_ELAPSED_TIME: plan with maximum elapsed time

	
MAX_BUFFER_GETS: plan with maximum buffer gets

	
MAX_DISK_READS: plan with maximum disk reads

	
MAX_DIRECT_WRITES: plan with maximum direct writes

	
MAX_OPTIMIZER_COST: plan with maximum optimum cost

	
sqlset_owner

	
Owner of the sqlset, or null for current schema owner

CREATE_STGTAB_SQLPATCH Procedure

This procedure creates the staging table used for transporting SQL patches from one system to another.

Syntax

DBMS_SQLDIAG.CREATE_STGTAB_SQLPATCH (
 table_name IN VARCHAR2,
 schema_name IN VARCHAR2 := NULL,
 tablespace_name IN VARCHAR2 := NULL);

Parameters

Table 137-14 CREATE_STGTAB_SQLPATCH Procedure Parameters

	Parameter	Description
	
table_name

	
(Mandatory) Name of the table to create (case-sensitive)

	
schema_name

	
Schema to create the table in, or NULL for current schema (case-sensitive)

	
tablespace_name

	
Tablespace to store the staging table within, or NULL for current user's default tablespace (case-sensitive)

DROP_DIAGNOSIS_TASK Procedure

This procedure drops a diagnostic task.

Syntax

DBMS_SQLDIAG.DROP_DIAGNOSIS_TASK (
 taskname IN VARCHAR2);

Parameters

Table 137-15 DROP_DIAGNOSIS_TASK Procedure Parameters

	Parameter	Description
	
taskname

	
Name of task

DROP_SQL_PATCH Procedure

This procedure drops the named SQL patch from the database.

Syntax

DBMS_SQLDIAG.DROP_SQL_PATCH (
 name IN VARCHAR2, ignore IN BOOLEAN := FALSE);

Parameters

Table 137-16 DROP_SQL_PATCH Function & Procedure Parameters

	Parameter	Description
	
name

	
Name of patch to be dropped. The name is case sensitive.

	
ignore

	
Ignore errors due to object not existing.

Usage Notes

Requires DROP ANY SQL PATCH privilege

EXECUTE_DIAGNOSIS_TASK Procedure

This procedure executes a diagnostic task.

Syntax

DBMS_SQLDIAG.EXECUTE_DIAGNOSIS_TASK (
 taskname IN VARCHAR2);

Parameters

Table 137-17 EXECUTE_DIAGNOSIS_TASK Procedure Parameters

	Parameter	Description
	
taskname

	
Name of task

EXPLAIN_SQL_TESTCASE Function

This procedure explains a SQL test case.

Syntax

DBMS_SQLDIAG.EXPLAIN_SQL_TESTCASE (
 sqlTestCase IN CLOB)
 RETURN CLOB;

Parameters

Table 137-18 EXPLAIN_SQL_TESTCASE Function Parameters

	Parameter	Description
	
sqlTestCase

	
XML document describing the SQL test case

EXPORT_SQL_TESTCASE Procedures

This procedure exports a SQL test case to a directory.

Syntax

This variant has to be provided with the SQL information.

DBMS_SQLDIAG.EXPORT_SQL_TESTCASE (
 directory IN VARCHAR2,
 sql_text IN CLOB,
 user_name IN VARCHAR2 := NULL,
 bind_list IN sql_binds := NULL,
 exportEnvironment IN BOOLEAN := TRUE,
 exportMetadata IN BOOLEAN := TRUE,
 exportData IN BOOLEAN := FALSE,
 exportPkgbody IN BOOLEAN := FALSE,
 samplingPercent IN NUMBER := 100,
 ctrlOptions IN VARCHAR2 := NULL,
 timeLimit IN NUMBER := 0,
 testcase_name IN VARCHAR2 := NULL,
 testcase IN OUT NOCOPY CLOB,
 preserveSchemaMapping IN BOOLEAN := FALSE);

This variant extracts the SQL information from an incident file.

DBMS_SQLDIAG.EXPORT_SQL_TESTCASE (
 directory IN VARCHAR2,
 incident_id IN VARCHAR2,
 exportEnvironment IN BOOLEAN := TRUE,
 exportMetadata IN BOOLEAN := TRUE,
 exportData IN BOOLEAN := FALSE,
 exportPkgbody IN BOOLEAN := FALSE,
 samplingPercent IN NUMBER := 100,
 ctrlOptions IN VARCHAR2 := NULL,
 timeLimit IN NUMBER :=
 DBMS_SQLDIAG.TIME_LIMIT_DEFAULT,
 testcase_name IN VARCHAR2 := NULL,
 testcase IN OUT NOCOPY CLOB,
 preserveSchemaMapping IN BOOLEAN := FALSE);

This variant allow the SQL Test case to be generated from a cursor present in the cursor cache. Use V$SQL to get the SQL identifier and the SQL hash value.

DBMS_SQLDIAG.EXPORT_SQL_TESTCASE (
 directory IN VARCHAR2,
 sql_id IN VARCHAR2,
 plan_hash_value IN NUMBER := NULL,
 exportEnvironment IN BOOLEAN := TRUE,
 exportMetadata IN BOOLEAN := TRUE,
 exportData IN BOOLEAN := TRUE,
 exportPkgbody IN BOOLEAN := FALSE,
 samplingPercent IN NUMBER := 100,
 ctrlOptions IN VARCHAR2 := NULL,
 timeLimit IN NUMBER :=
 DBMS_SQLDIAG.TIME_LIMIT_DEFAULT,
 testcase_name IN VARCHAR2 := NULL,
 testcase IN OUT NOCOPY CLOB,
 preserveSchemaMapping IN BOOLEAN := FALSE);

Parameters

Table 137-19 EXPORT_SQL_TESTCASE Procedure Parameters

	Parameter	Description
	
directory

	
Directory to store the various generated files

	
sql_text

	
Text of the SQL statement to export

	
incident_id

	
Incident ID containing the offending SQL

	
sql_id

	
Identifier of the statement in the cursor cache

	
username

	
Name of the user schema to use to parse the SQL, defaults to SYS

	
bind_list

	
List of bind values associated to the statement

	
exportEnvironment

	
TRUE if the compilation environment should be exported

	
exportMetadata

	
TRUE if the definition of the objects referenced in the SQL should be exported

	
exportData

	
TRUE if the data of the objects referenced in the SQL should be exported

	
exportPkgbody

	
TRUE if the body of the packages referenced in the SQL are exported

	
samplingPercent

	
If is TRUE, specify the sampling percentage to use to create the dump file

	
ctrlOptions

	
Opaque control parameters

	
timeLimit

	
How much time should we spend exporting the SQL test case

	
testcaseName

	
An optional name for the SQL test case. This is used to prefix all the generated scripts

	
testcase

	
Resulting testcase

	
preservesSchemaMapping

	
TRUE if the schema (or schemas) are not re-mapped from the original environment to the test environment

Usage Notes

	
A SQL test case generates a set of files needed to help reproduce a SQL failure on a different machine. It contains:

	
a dump file containing schemas objects and statistics (.dmp)

	
the explain plan for the statements (in advanced mode)

	
diagnostic information gathered on the offending statement

	
an import script to execute to reload the objects

	
a SQL script to replay system statistics of the source

	
a table of contents file describing the SQL test case

	
metadata. (xxxxmain.xml)

	
You should not run Test Case Builder (TCB) under user SYS. Instead, use another user who can be granted the DBA role.

	
The default setting for TCB is that data is not exported. However, in some cases data is required, such as to diagnose an outcome with a result that is not optimal. To export data, call EXPORT_SQL_TESTCASE with exportData=>TRUE and the data will be imported by default, unless turned OFF by importData=>FALSE.

	
TCB includes PL/SQL package spec by default, but not the PL/SQL package body. However, you may need to have the package body as well, for example, to invoke the PL/SQL functions, or because you have a Virtual Private Database (VPD) function defined in a package. To export a PL/SQL package body, call EXPORT_SQL_TESTCASE with exportPkgbody=>TRUE. To import a PL/SQL package body, call IMPORT_SQL_TESTCASE Procedures with importPkgbody=>TRUE.

EXPORT_SQL_TESTCASE_DIR_BY_INC Function

This function generates a SQL Test Case corresponding to the incident ID passed as an argument. It creates a set of scripts and dump file in the directory passed as an argument.

Syntax

DBMS_SQLDIAG.EXPORT_SQL_TESTCASE_DIR_BY_INC (
 incident_id IN NUMBER,
 directory IN VARCHAR2,
 exportEnvironment IN VARCHAR2 := 'TRUE',
 exportMetadata IN VARCHAR2 := 'TRUE',
 exportData IN VARCHAR2 := 'FALSE',
 samplingPercent IN VARCHAR2 := '100',
 ctrlOptions IN VARCHAR2 := NULL)
 RETURN BOOLEAN;

Parameters

Table 137-20 EXPORT_SQL_TESTCASE_DIR_BY_INC Function Parameters

	Parameter	Description
	
incident_id

	
Incident ID containing the offending SQL. For more information about Incidents, see Oracle Database Performance Tuning Guide.

	
directory

	
Directory to store the various generated files

	
exportEnvironment

	
TRUE if the compilation environment should be exported

	
exportMetadata

	
TRUE if the definition of the objects referenced in the SQL should be exported

	
exportData

	
TRUE if the data of the objects referenced in the SQL should be exported

	
samplingPercent

	
If is TRUE, specify the sampling percentage to use to create the dump file

	
ctrlOptions

	
Opaque control parameters

EXPORT_SQL_TESTCASE_DIR_BY_TXT Function

This function generates a SQL Test Case corresponding to the SQL passed as an argument. It creates a set of scripts and dump files in the directory passed as an argument.

Syntax

DBMS_SQLDIAG.EXPORT_SQL_TESTCASE_DIR_BY_TXT (
 incident_id IN NUMBER,
 directory IN VARCHAR2,
 sql_text IN CLOB,
 user_name IN VARCHAR2 := 'SYS',
 exportEnvironment IN VARCHAR2 := 'TRUE',
 exportMetadata IN VARCHAR2 := 'TRUE',
 exportData IN VARCHAR2 := 'FALSE',
 samplingPercent IN VARCHAR2 := '100', ctrlOptions IN VARCHAR2 := NULL)
 RETURN BOOLEAN;

Parameters

Table 137-21 EXPORT_SQL_TESTCASE_DIR_BY_TXT Function Parameters

	Parameter	Description
	
incident_id

	
Incident ID containing the offending SQL

	
directory

	
Directory to store the various generated files

	
sql_text

	
Text of the SQL statement to explain

	
username

	
Name of the user schema to use to parse the SQL, defaults to SYS

	
exportEnvironment

	
TRUE if the compilation environment should be exported

	
exportMetadata

	
TRUE if the definition of the objects referenced in the SQL should be exported

	
exportData

	
TRUE if the data of the objects referenced in the SQL should be exported

	
samplingPercent

	
If is TRUE, specify the sampling percentage to use to create the dump file

	
ctrlOptions

	
Opaque control parameters

GET_FIX_CONTROL Function

This function returns the value of fix control for a given bug number.

Syntax

DBMS_SQLDIAG.GET_FIX_CONTROL (
 bug_number IN NUMBER)
 RETURN NUMBER;

Parameters

Table 137-22 GET_FIX_CONTROL Function Parameters

	Parameter	Description
	
bug_number

	
Bug number

GET_SQL Function

This function loads a sql_setrow from the trace file associated to an the given incident ID.

Syntax

DBMS_SQLDIAG.GET_SQL (
 incident_id IN VARCHAR2)
 RETURN SQLSET_ROW;

Parameters

Table 137-23 GET_SQL Function Parameters

	Parameter	Description
	
incident_id

	
Identifier of the incident

IMPORT_SQL_TESTCASE Procedures

This procedure imports a SQL test case into a schema.

Syntax

This variant requires a source directory and SQL Testcase metadata object (in XML format).

DBMS_SQLDIAG.IMPORT_SQL_TESTCASE (
 directory IN VARCHAR2,
 sqlTestCase IN CLOB,
 importEnvironment IN BOOLEAN := TRUE,
 importMetadata IN BOOLEAN := TRUE,
 importData IN BOOLEAN := TRUE,
 importPkgbody IN BOOLEAN := FALSE,
 importDiagnosis IN BOOLEAN := TRUE,
 ignoreStorage IN BOOLEAN := TRUE,
 ctrlOptions IN VARCHAR2 := NULL,
 preserveSchemaMapping IN BOOLEAN := FALSE);

This variant requires a source directory name of SQL Testcase metadata file.

DBMS_SQLDIAG.IMPORT_SQL_TESTCASE (
 directory IN VARCHAR2,
 filename IN VARCHAR2,
 importEnvironment IN BOOLEAN := TRUE,
 importMetadata IN BOOLEAN := TRUE,
 importData IN BOOLEAN := TRUE,
 importPkgbody IN BOOLEAN := FALSE,
 importDiagnosis IN BOOLEAN := TRUE,
 ignoreStorage IN BOOLEAN := TRUE,
 ctrlOptions IN VARCHAR2 := NULL,
 preserveSchemaMapping IN BOOLEAN := FALSE);

Parameters

Table 137-24 IMPORT_SQL_TESTCASE Procedure Parameters

	Parameter	Description
	
directory

	
Directory containing test case files

	
filename

	
Name of a file containing an XML document describing the SQL test case

	
importEnvironment

	
TRUE if the compilation environment should be imported

	
importMetadata

	
TRUE if the definition of the objects referenced in the SQL should be imported

	
importData

	
TRUE if the data of the objects referenced in the SQL should be imported

	
importPkgbody

	
TRUE if the body of the packages referenced in the SQL are imported

	
importDiagnosis

	
TRUE if the diagnostic information associated to the task should be imported

	
ignoreStorage

	
TRUE if the storage attributes should be ignored

	
ctrlOptions

	
Opaque control parameters

	
preservesSchemaMapping

	
TRUE if the schema (or schemas) are not re-mapped from the original environment to the test environment

Usage Notes

	
A SQL test case generates a set of files needed to help reproduce a SQL failure on a different machine. It contains:

	
a dump file containing schemas objects and statistics (.dmp)

	
the explain plan for the statements (in advanced mode)

	
diagnostic information gathered on the offending statement

	
an import script to execute to reload the objects

	
a SQL script to replay system statistics of the source

	
a table of contents file describing the SQL test case

	
metadata. (xxxxmain.xml)

	
You should not run Test Case Builder (TCB) under user SYS. Instead, use another user who can be granted the SYSDBA privilege

	
The default setting for TCB is that data is not exported. However, in some cases data is required, such as to diagnose an outcome with a result that is not optimal. To export data, call EXPORT_SQL_TESTCASE Procedures with exportData=>TRUE and the data will be imported by default, unless turned OFF by importData=>FALSE.

	
TCB includes PL/SQL package spec by default, but not the PL/SQL package body. However, you may need to have the package body as well, for example, to invoke the PL/SQL functions, or because you have a Virtual Private Database (VPD) function defined in a package. To export a PL/SQL package body, call EXPORT_SQL_TESTCASE Procedures with exportPkgbody=>TRUE. To import a PL/SQL package body, call IMPORT_SQL_TESTCASE Procedures with importPkgbody=>TRUE.

INCIDENTID_2_SQL Procedure

This procedure initializes a sql_setrow from an incident ID.

Syntax

DBMS_SQLDIAG.INCIDENTID_2_SQL (
 incident_id IN VARCHAR2,
 sql_stmt OUT SQLSET_ROW,
 problem_type OUT NUMBER,
 err_code OUT BINARY_INTEGER,
 err_mesg OUT VARCHAR2);

Parameters

Table 137-25 INCIDENTID_2_SQL Procedure Parameters

	Parameter	Description
	
incident_id

	
Identifier of the incident

	
sql_stmt

	
Resulting SQL

	
problem_type

	
Tentative type of SQL problem (currently among PROBLEM_TYPE_COMPILATION_ERROR and PROBLEM_TYPE_EXECUTION_ERROR)

	
err_code

	
Error code if any otherwise it is set to NULL

	
err_msg

	
Error message if any otherwise it is set to NULL

INTERRUPT_DIAGNOSIS_TASK Procedure

This procedure interrupts a diagnostic task.

Syntax

DBMS_SQLDIAG.INTERRUPT_DIAGNOSIS_TASK (
 taskname IN VARCHAR2);

Parameters

Table 137-26 INTERRUPT_DIAGNOSIS_TASK Procedure Parameters

	Parameter	Description
	
taskname

	
Name of task

LOAD_SQLSET_FROM_TCB Function

This function loads a SQLSET from a Test Case Builder file.

Syntax

DBMS_SQLDIAG.LOAD_SQLSET_FROM_TCB (
 directory IN VARCHAR2,
 filename IN VARCHAR2,
 sqlset_name IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 137-27 LOAD_SQLSET_FROM_TCB Function Parameters

	Parameter	Description
	
directory

	
Name of directory

	
filename

	
Name of file

	
sqlset_name

	
Name of SQLSET

PACK_STGTAB_SQLPATCH Procedure

This procedure packs SQL patches into the staging table created by a call to the CREATE_STGTAB_SQLPATCH Procedure.

Syntax

DBMS_SQLDIAG.UPPACK_STGTAB_SQLPATCH (
 patch_name IN VARCHAR2 := '%',
 patch_category IN VARCHAR2 := 'DEFAULT',
 staging_table_name IN VARCHAR2,
 staging_schema_owner IN VARCHAR2 := NULL);

Parameters

Table 137-28 UPPACK_STGTAB_SQLPATCH Procedure Parameters

	Parameter	Description
	
patch_name

	
Name of patch to pack (% wildcards acceptable, case-sensitive)

	
patch_category

	
Category to which to pack patches (% wildcards acceptable, case-insensitive)

	
staging_table_name

	
(Mandatory) Name of the table to use (case-sensitive)

	
staging_schema_owner

	
Schema where the table resides, or NULL for current schema (case-sensitive)

Usage Notes

	
Requires: ADMINISTER SQL PLAN MANAGEMENT OBJECT privilege and INSERT privilege on the staging table

	
By default, we move all SQL patches in category DEFAULT. See the Examples for details. Note that the subprogram issues a COMMIT after packing each SQL patch, so if an error is raised in mid-execution, some patches may be in the staging table.

REPORT_DIAGNOSIS_TASK Function

This function reports on a diagnostic task. It returns a CLOB containing the desired report.

Syntax

DBMS_SQLDIAG.REPORT_DIAGNOSIS_TASK (
 taskname IN VARCHAR2,
 type IN VARCHAR2 := TYPE_TEXT,
 level IN VARCHAR2 := LEVEL_TYPICAL,
 section IN VARCHAR2 := SECTION_ALL,
 object_id IN NUMBER := NULL,
 result_limit IN NUMBER := NULL,
 owner_name IN VARCHAR2 := NULL)
 RETURN CLOB;

Parameters

Table 137-29 REPORT_DIAGNOSIS_TASK Function Parameters

	Parameter	Description
	
taskname

	
Name of task to report

	
type

	
Type of the report. Possible values are: TEXT, HTML, XML (see Table 137-4, "DBMS_SQLDIAG Constants - Report Type (possible values) Constants").

	
level

	
Format of the recommendations. Possible values are TYPICAL, BASIC, ALL (Table 137-5, "DBMS_SQLDIAG Constants - Report Level (possible values) Constants").

	
section

	
Particular section in the report. Possible values are: SUMMARY, FINDINGS, PLAN, INFORMATION, ERROR, ALL (Table 137-6, "DBMS_SQLDIAG Constants - Report Section (possible values) Constants").

	
object_id

	
Identifier of the advisor framework object that represents a given statement in a SQL Tuning Set (STS).

	
result_limit

	
Number of statements in a STS for which the report is generated

	
owner_name

	
Name of the task execution to use. If NULL, the report will be generated for the last task execution.

RESET_DIAGNOSIS_TASK Procedure

This procedure resets a diagnostic task.

Syntax

DBMS_SQLDIAG.RESET_DIAGNOSIS_TASK (
 taskname IN VARCHAR2);

Parameters

Table 137-30 RESET_DIAGNOSIS_TASK Procedure Parameters

	Parameter	Description
	
taskname

	
Name of task

RESUME_DIAGNOSIS_TASK Procedure

This procedure resumes a diagnostic path.

Syntax

DBMS_SQLDIAG.RESUME_DIAGNOSIS_TASK (
 taskname IN VARCHAR2);

Parameters

Table 137-31 RESUME_DIAGNOSIS_TASK Procedure Parameters

	Parameter	Description
	
taskname

	
Name of task

SET_DIAGNOSIS_TASK_PARAMETER Procedure

This procedure is called to update the value of a SQL diagnosis parameter of type VARCHAR2. The task must be set to its initial state before calling this procedure. The diagnosis parameters that can be set by this procedure are:

	
MODE: diag scope (comprehensive, limited)

	
_SQLDIAG_FINDING_MODE: findings in the report (see "DBMS_SQLDIAG Constants - Findings Filter Constants" for possible values)

Syntax

DBMS_SQLDIAG.SET_DIAGNOSIS_TASK_PARAMETER (
 taskname IN VARCHAR2,
 parameter IN VARCHAR2, value IN NUMBER);

Parameters

Table 137-32 SET_DIAGNOSIS_TASK_PARAMETER Procedure Parameters

	Parameter	Description
	
taskname

	
Identifier of the task to execute

	
parameter

	
Name of the parameter to set

	
value

	
New value of the specified parameter

UNPACK_STGTAB_SQLPATCH Procedure

This procedure unpacks from the staging table populated by a call to the PACK_STGTAB_SQLPATCH Procedure. It uses the patch data stored in the staging table to create patches on this system. Users can opt to replace existing patches with patch data when they exist already. In this case, note that it is only possible to replace patches referring to the same statement if the names are the same (see the ACCEPT_SQL_PATCH Function & Procedure).

Syntax

DBMS_SQLDIAG.UPPACK_STGTAB_SQLPATCH (
 patch_name IN VARCHAR2 := '%',
 patch_category IN VARCHAR2 := '%',
 replace IN BOOLEAN,
 staging_table_name IN VARCHAR2,
 staging_schema_owner IN VARCHAR2 := NULL);

Parameters

Table 137-33 UPPACK_STGTAB_SQLPATCH Procedure Parameters

	Parameter	Description
	
patch_name

	
Name of patch to unpack (% wildcards acceptable, case-sensitive)

	
patch_category

	
Category from which to unpack patches (% wildcards acceptable, case-insensitive)

	
replace

	
Replace patches if they already exist. Note that patches cannot be replaced if there is one in the staging table with the same name as an active patch on different SQL. The subprogram raises an error if there an attempt to create a patch that already exists.

	
staging_table_name

	
(Mandatory) Name of the table to use (case-sensitive)

	
staging_schema_owner

	
Schema where the table resides, or NULL for current schema (case-sensitive)

Usage Notes

	
Requires: ADMINISTER SQL MANAGEMENT OBJECT privilege and SELECT privilege on the staging table

	
By default, all SQL patches in the staging table are moved. The function commits after successfully loading each patch. If it fails in creating an individual patch, it raises an error and does not proceed to those remaining in the staging table.

DBMS_SQLPA

138 DBMS_SQLPA

The DBMS_SQLPA package provides the interface to implement the SQL Performance Analyzer.

The chapter contains the following topics:

	
Using DBMS_SQLPA

	
Overview

	
Security Model

	
Summary of DBMS_SQLPA Subprograms

Using DBMS_SQLPA

	
Overview

	
Security Model

Overview

The DBMS_SQLPA package provides a capacity to help users predict the impact of system environment changes on the performance of a SQL workload. The interface lets users build and then compare two different versions of the workload performance, analyze the differences between the two versions, and unmask the SQL statements that might be impacted by the changes.

The package provides a task-oriented interface to implement the SQL Performance Analyzer. For example

	
You use the CREATE_ANALYSIS_TASK Functions to create an analysis task for a single statement or a group of SQL statements.s

	
The EXECUTE_ANALYSIS_TASK Function & Procedure executes a previously created analysis task.

	
The REPORT_ANALYSIS_TASK Function displays the results of an analysis task.

Security Model

This package is available to PUBLIC and performs its own security checking. All analysis task interfaces (XXX_ANALYSIS_TASK) require privilege ADVISOR.

Summary of DBMS_SQLPA Subprograms

Table 138-1 DBMS_SQLPA Package Subprograms

	Subprogram	Description
	
CANCEL_ANALYSIS_TASK Procedure

	
Cancels the currently executing task analysis of one or more SQL statements

	
CREATE_ANALYSIS_TASK Functions

	
Creates an advisor task to process and analyze one or more SQL statements

	
DROP_ANALYSIS_TASK Procedure

	
Drops a SQL analysis task

	
EXECUTE_ANALYSIS_TASK Function & Procedure

	
Executes a previously created analysis task

	
INTERRUPT_ANALYSIS_TASK Procedure

	
Interrupts the currently executing analysis task

	
REPORT_ANALYSIS_TASK Function

	
Displays the results of an analysis task

	
RESET_ANALYSIS_TASK Procedure

	
Resets the currently executing analysis task to its initial state

	
RESUME_ANALYSIS_TASK Procedure

	
Resumes a previously interrupted analysis task that was created to process a SQL tuning set.

	
SET_ANALYSIS_TASK_PARAMETER Procedures

	
Sets the SQL analysis task parameter value

	
SET_ANALYSIS_DEFAULT_PARAMETER Procedures

	
Sets the SQL analysis task parameter default value

CANCEL_ANALYSIS_TASK Procedure

This procedure cancels the currently executing analysis task. All intermediate result data is removed from the task.

Syntax

DBMS_SQLPA.CANCEL_ANALYSIS_TASK(
 task_name IN VARCHAR2);

Parameters

Table 138-2 CANCEL_ANALYSIS_TASK Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task to cancel

Examples

Canceling a task when there is a need to stop it executing and it is not required to view any already-completed results:

EXEC DBMS_SQLPA.CANCEL_ANALYSIS_TASK(:my_task);

CREATE_ANALYSIS_TASK Functions

These functions create an advisor task to process and analyze one or more SQL statements. You can use different forms of this function to:

	
Create an analysis task for a single statement given its text.

	
Create an analysis task for a single statement from the cursor cache given its identifier.

	
Create an analysis task for a single statement from the workload repository given a range of snapshot identifiers.

	
Create an analysis task for a SQL tuning set.

In all cases, the function creates an advisor task and sets its parameters.

Syntax

SQL text format. This form of the function is called to prepare the analysis of a single statement given its text.

DBMS_SQLPA.CREATE_ANALYSIS_TASK(
 sql_text IN CLOB,
 bind_list IN sql_binds := NULL,
 parsing_schema IN VARCHAR2 := NULL,
 task_name IN VARCHAR2 := NULL,
 description IN VARCHAR2 := NULL)
RETURN VARCHAR2;

SQL ID format. This form of the function is called to prepare the analysis of a single statement from the cursor cache given its identifier.

DBMS_SQLPA.CREATE_ANALYSIS_TASK(
 sql_id IN VARCHAR2,
 plan_hash_value IN NUMBER := NULL,
 task_name IN VARCHAR2 := NULL,
 description IN VARCHAR2 := NULL)
RETURN VARCHAR2;

Workload Repository format. This form of the function is called to prepare the analysis of a single statement from the workload repository given a range of snapshot identifiers.

DBMS_SQLPA.CREATE_ANALYSIS_TASK(
 begin_snap IN NUMBER,
 end_snap IN NUMBER,
 sql_id IN VARCHAR2,
 plan_hash_value IN NUMBER := NULL,
 task_name IN VARCHAR2 := NULL,
 description IN VARCHAR2 := NULL)
RETURN VARCHAR2;

SQLSET format. This form of the function is called to prepare the analysis of a SQL tuning set.

DBMS_SQLPA.CREATE_ANALYSIS_TASK(
 sqlset_name IN VARCHAR2,
 basic_filter IN VARCHAR2 := NULL,
 order_by IN VARCHAR2 := NULL,
 top_sql IN VARCHAR2 := NULL,
 task_name IN VARCHAR2 := NULL,
 description IN VARCHAR2 := NULL
 sqlset_owner IN VARCHAR2 := NULL)
RETURN VARCHAR2;

Parameters

Table 138-3 CREATE_ANALYSIS_TASK Function Parameters

	Parameter	Description
	
sql_text

	
Text of a SQL statement

	
bind_list

	
A set of bind values

	
parsing_schema

	
Name of the schema where the statement can be compiled

	
task_name

	
Optional analysis task name

	
description

	
Description of the SQL analysis task to a maximum of 256 characters

	
sql_id

	
Identifier of a SQL statement

	
plan_hash_value

	
Hash value of the SQL execution plan

	
begin_snap

	
Begin snapshot identifier

	
end_snap

	
End snapshot identifier

	
sqlset_name

	
SQL tuning set name

	
basic_filter

	
SQL predicate to filter the SQL from the SQL tuning set

	
order_by

	
Order-by clause on the selected SQL

	
top_sql

	
Top N SQL after filtering and ranking

	
sqlset_owner

	
The owner of the SQL tuning set, or NULL for the current schema owner

Return Values

A SQL analysis task name that is unique by user (two different users can give the same name to their advisor tasks).

Examples

variable stmt_task VARCHAR2(64);
variable sts_task VARCHAR2(64);

-- Sql text format
EXEC :stmt_task := DBMS_SQLPA.CREATE_ANALYSIS_TASK(
 sql_text => 'select quantity_sold from sales s, times t where s.time_id = t.time_id and s.time_id = TO_DATE(''24-NOV-00'')');

-- Sql id format (cursor cache)
EXEC :stmt_task := DBMS_SQLPA.CREATE_ANALYSIS_TASK(
 sql_id => 'ay1m3ssvtrh24');

-- Workload repository format
exec :stmt_task := DBMS_SQLPA.CREATE_ANALYSIS_TASK(
 begin_snap => 1,
 end_snap => 2,
 sql_id => 'ay1m3ssvtrh24');

-- Sql tuning set format (first we need to load an STS, then analyze it)
EXEC :sts_task := DBMS_SQLPA.CREATE_ANALYSIS_TASK(-
 sqlset_name => 'my_workload', -
 order_by => 'BUFFER_GETS', -
 description => 'process workload ordered by buffer gets');

DROP_ANALYSIS_TASK Procedure

This procedure drops a SQL analysis task.The task and all its result data are deleted.

Syntax

DBMS_SQLPA.DROP_ANALYSIS_TASK(
 task_name IN VARCHAR2);

Parameters

Table 138-4 DROP_ANALYSIS_TASK Procedure Parameters

	Parameter	Description
	
task_name

	
The name of the analysis task to drop

EXECUTE_ANALYSIS_TASK Function & Procedure

This function and procedure executes a previously created analysis task, the function version returning the new execution name.

Syntax

DBMS_SQLPA.EXECUTE_ANALYSIS_TASK(
 task_name IN VARCHAR2,
 execution_type IN VARCHAR2 := 'test execute',
 execution_name IN VARCHAR2 := NULL,
 execution_params IN dbms_advisor.argList := NULL,
 execution_desc IN VARCHAR2 := NULL)
 RETURN VARCHAR2;

DBMS_SQLPA.EXECUTE_ANALYSIS_TASK(
 task_name IN VARCHAR2,
 execution_type IN VARCHAR2 := 'test execute',
 execution_name IN VARCHAR2 := NULL,
 execution_params IN dbms_advisor.argList := NULL,
 execution_desc IN VARCHAR2 := NULL);

Parameters

Table 138-5 EXECUTE_ANALYSIS_TASK Function & Procedure Parameters

	Parameter	Description
	
task_name

	
Identifier of the task to execute

	
execution_type

	
Type of the action to perform by the function. If NULL it will default to the value of the DEFAULT_EXECUTION_TYPE parameter. Possible values are:

	
[TEST] EXECUTE - test-execute every SQL statement and collect its execution plans and execution statistics. The resulting plans and statistics will be stored in the advisor framework. This is default.

	
EXPLAIN PLAN - generate explain plan for every statement in the SQL workload. This is similar to the EXPLAIN PLAN command. The resulting plans will be stored in the advisor framework in association with the task.

	
COMPARE [PERFORMANCE] - analyze and compare two versions of SQL performance data. The performance data is generated by test-executing or generating explain plan of the SQL statements. Use this option when two executions of type EXPLAIN_PLAN or TEST_EXECUTE already exist in the task

	
CONVERT SQLSET - used to read the statistics captured in a SQL Tuning Set and model them as a task execution. This can be used when you wish to avoid executing the SQL statements because valid data for the experiment already exists in the SQL Tuning Set.

	
execution_name

	
A name to qualify and identify an execution. If not specified, it will be generated by the advisor and returned by function.

	
execution_params

	
List of parameters (name, value) for the specified execution. The execution parameters have effect only on the execution for which they are specified. They will override the values for the parameters stored in the task (set through the SET_ANALYSIS_DEFAULT_PARAMETER Procedures).

	
execution_desc

	
A 256-length string describing the execution

Usage Notes

SQL performance analyzer task can be executed multiples times without having to reset it. For example, when a task is created to perform a change impact analysis on a SQL workload, the created task has to be executed before making any change in the system environment to build a version of the workload that will be used as a reference for performance analysis. Once the change has been made, a second execution is required to build the post-change version of the workload. Finally, the task has to be executed a third time to let the advisor analyze and compare the performance of the workload in both versions.

Examples

1. Create a task with a purpose of change impact analysis

EXEC :tname := DBMS_SQLPA.CREATE_ANALYSIS_TASK(
 sqlset_name => 'my_sts');

2. Make baseline or the before change execution

EXEC DBMS_SQLPA.EXECUTE_ANALYSIS_TASK(
 task_name => :tname,
 execution_type => 'compare performance', execution_name => 'before_change');

3. Make change

...

4. Make the after change version of the workload performance

EXEC DBMS_SQLPA.EXECUTE_ANALYSIS_TASK(
 task_name => :tname, -
 execution_type => 'test execute ',
 execution_name => 'after_change')

5. Compare the two versions of the workload

By default we always compare the results of the two last executions. The SQL Performance Analyzer uses the elapsed_time as a default metric for comparison. Here we are changing it to buffer_gets instead.

EXEC DBMS_SQLPA.SET_ANALYSIS_TASK_PARAMETER(
 :tname,'comparison_metric', 'buffer_gets');
EXEC DBMS_SQLPA.EXECUTE_ANALYSIS_TASK(
 task_name => :tname, -
 execution_type => 'compare performance', -
 execution_name => 'after_change');

Use the following call if you would like to explicitly specify the two executions to compare as well as the comparison metric to use.

EXEC DBMS_SQLPA.EXECUTE_ANALYSIS_TASK(
 task_name => :tname, -
 execution_type => 'compare performance',
 execution_params => dbms_advisor.arglist(
 'execution_name1',
 'before_change',
 'execution_name2',
 'after_change',
 'comparion_metric',
 'buffer_gets'));

INTERRUPT_ANALYSIS_TASK Procedure

This procedure interrupts the currently executing analysis task. All intermediate result data will not be removed from the task.

Syntax

DBMS_SQLPA.INTERRUPT_ANALYSIS_TASK(
 task_name IN VARCHAR2);

Parameters

Table 138-6 INTERRUPT_ANALYSIS_TASK Procedure Parameters

	Parameter	Description
	
task_name

	
Identifier of the analysis task to interrupt

Examples

EXEC DBMS_SQLPA.INTERRUPT_ANALYSIS_TASK(:my_task);

REPORT_ANALYSIS_TASK Function

This procedure displays the results of an analysis task.

Syntax

DBMS_SQLPA.REPORT_ANALYSIS_TASK(
 task_name IN VARCHAR2,
 type IN VARCHAR2 := 'TEXT',
 level IN VARCHAR2 := 'TYPICAL',
 section IN VARCHAR2 := 'SUMMARY',
 object_id IN NUMBER := NULL,
 top_sql IN NUMBER := 100,
 execution_name IN VARCHAR2 := NULL,
 task_owner IN VARCHAR2 := NULL,
 order_by IN VARCHAR2 := NULL)
RETURN CLOB;

Parameters

Table 138-7 REPORT_ANALYSIS_TASK Function Parameters

	Parameter	Description
	
task_name

	
Name of the task to report

	
type

	
Type of the report to produce. Possible values are TEXT (default), HTML, XML and ACTIVE (see Usage Notes).

	
level

	
Level of detail in the report:

	
ALL - details of all SQL

	
BASIC - currently the same as typical

	
CHANGED - only SQL with changed performance

	
CHANGED_PLANS - only SQL with plan changes

	
ERRORS - SQL with errors only

	
IMPROVED - only improved SQL

	
REGRESSED - only regressed SQL

	
TIMEOUT - only SQL which timed-out during execution

	
TYPICAL (default) - show information about every statement analyzed, including changing and errors

	
UNCHANGED - only SQL with unchanged performance

	
UNCHANGED_PLANS - only SQL with unchanged plans

	
UNSUPPORTED - only SQL not supported by SPAs

	
section

	
Optionally limit the report to a single section (ALL for all sections):

	
SUMMARY (default) - workload summary only

	
ALL - summary and details on SQL

	
object_id

	
Identifier of the advisor framework object that represents a given SQL in a tuning set (STS)

	
top_sql

	
Number of SQL statements in a STS for which the report is generated

	
execution_name

	
Name of the task execution to use. If NULL, the report will be generated for the last task execution.

	
task_owner

	
Owner of the relevant analysis task. Defaults to the current schema owner.

	
order_by

	
How to sort SQL statements in the report (summary and body). Possible values:

	
CHANGE_DIFF - sort SQL statements by change difference in SQL performance in terms of the comparison Metric

	
NULL (default) - order SQL statement by impact on workload

	
SQL_IMPACT - order SQL statement by change impact on SQL

	
WORKLOAD_IMPACT - same as NULL

	
METRIC_DELTA - same as CHANGE_DIFF

Return Values

A CLOB containing the desired report.

Usage Notes

ACTIVE reports have a rich, interactive user interface similar to Enterprise Manager while not requiring any EM installation. The report file built is in HTML format so it can be interpreted by most modern browsers. The code powering the active report is downloaded transparently by the web browser when the report is first viewed, hence viewing it requires outside connectivity.

Examples

-- Get the whole report for the single statement case.
SELECT DBMS_SQLPA.REPORT_ANALYSIS_TASK(:stmt_task) from dual;

-- Show me the summary for the sts case.
SELECT DBMS_SQLPA.REPORT_ANALYSIS_TASK(:sts_task, 'TEXT', 'TYPICAL', 'SUMMARY')
FROM DUAL;

-- Show me the findings for the statement I'm interested in.
SELECT DBMS_SQLPA.REPORT_ANALYSIS_TASK(:sts_task, 'TEXT', 'TYPICAL', 'ALL', 5) from dual;

RESET_ANALYSIS_TASK Procedure

This procedure is called on an analysis task that is not currently executing to prepare it for re-execution. All intermediate result data will be deleted.

Syntax

DBMS_SQLPA.RESET_ANALYSIS_TASK(
 task_name IN VARCHAR2);

Parameters

Table 138-8 RESET_ANALYSIS_TASK Procedure Parameters

	Parameter	Description
	
task_name

	
Identifier of the analysis task to reset

Examples

-- reset and re-execute a task
EXEC DBMS_SQLPA.RESET_ANALYSIS_TASK(:sts_task);

-- re-execute the task
EXEC DBMS_SQLPA.EXECUTE_ANALYSIS_TASK(:sts_task);

RESUME_ANALYSIS_TASK Procedure

This procedure resumes a previously interrupted or FAILED (with a fatalerror) task execution.

Syntax

DBMS_SQLPA.RESUME_ANALYSIS_TASK(
 task_name IN VARCHAR2,
 basic_filter IN VARCHAR2 := NULL);

Parameters

Table 138-9 RESUME_ANALYSIS_TASK Procedure Parameters

	Parameter	Description
	
task_name

	
Identifier of the analysis task to resume

	
basic_filter

	
A SQL predicate to filter the SQL from the SQL tuning set. Note that this filter will be applied in conjunction with the basic filter (parameter basic_filter) that was specified when calling the CREATE_ANALYSIS_TASK Functions.

Usage Notes

Resuming a single SQL analysis task (a task that was created to analyze a single SQL statement as compared to a SQL Tuning Set) is not supported.

Examples

-- Interrupt the task
EXEC DBMS_SQLPA.INTERRUPT_ANALYSIS_TASK(:conc_task);

-- Once a task is interrupted, we can elect to reset it, resume it, or check
-- out its results and then decide. For this example we will just resume.

EXEC DBMS_SQLPA.RESUME_ANALYSIS_TASK(:conc_task);

SET_ANALYSIS_TASK_PARAMETER Procedures

This procedure sets the SQL analysis task parameter value.

Syntax

This form of the procedure updates the value of a SQL analysis parameter of type VARCHAR2.

DBMS_SQLPA.SET_ANALYSIS_TASK_PARAMETER(
 task_name IN VARCHAR2,
 parameter IN VARCHAR2,
 value IN VARCHAR2);

This form of the procedure updates the value of a SQL analysis parameter of type NUMBER.

DBMS_SQLPA.SET_ANALYSIS_TASK_PARAMETER(
 task_name IN VARCHAR2,
 parameter IN VARCHAR2,
 value IN NUMBER);

Parameters

Table 138-10 SET_ANALYSIS_TASK_PARAMETER Procedure Parameters

	Parameter	Description
	
task_name

	
Identifier of the task to execute

	
parameter

	
Name of the parameter to set. The possible analysis parameters that can be set by this procedure are:

	
APPLY_CAPTURED_COMPILENV: indicates whether the advisor could use the compilation environment captured with the SQL statements. The default is 0 (that is, NO).

	
BASIC_FILTER: basic filter for SQL tuning set

	
CELL_SIMULATION_ENABLED: Set it to 'TRUE' to simulate Exadata Cell effect on SQL tuning set. For more details, see the helper script tcellsim.sql in the ADMIN directory.

	
COMPARISON_METRIC: specify an expression of execution statistics to use in performance comparison (Example: buffer_gets, cpu_time + buffer_gets * 10)

	
DATABASE_LINK: can be set to the global name of a PUBLIC database link. When it is set, SQL Performance Analyzer will use the database link for all TEST EXECUTE and EXPLAIN PLAN operations by sending the SQL statements to the remote database to be processed remotely. The analysis results will still be stored on the local database.

	
DAYS_TO_EXPIRE: number of days until the task is deleted

	
DEFAULT_EXECUTION_TYPE: the task will default to this type of execution when none is specified by the EXECUTE_ANALYSIS_TASK Function & Procedure.

	
parameter (contd.)

	
	
DISABLE_MULTI_EXEC: SQL statements are executed multiple times and runtime statistics are then averaged. Set this parameter to 'TRUE' to disable this capability. In this case, each SQL in the SQL tuning set is executed only once.

	
EXECUTION_DAYS_TO_EXPIRE: number of days until the tasks's executions will be deleted (without deleting the task)

	
EXECUTE_FULLDML: TRUE to execute DML statement fully, including acquiring row locks and modifying rows; FALSE (default) to execute only the query part of the DML without modifying data. When TRUE, SQL Performance Analyzer will issue a rollback following DML execution to prevent persistent changes from being made by the DML.

	
EXECUTION_NAME1: name of the first task execution to analyze

	
EXECUTION_NAME2: name of the second task execution to analyze

	
LOCAL_TIME_LIMIT: per-statement time out (seconds)

	
METRIC_DELTA_THRESHOLD: threshold of the difference between the SQL performance metric before and after the change. The default value is zero.

	
PLAN_FILTER: plan filter for SQL tuning set (see SELECT_SQLSET for possible values)

	
RANK_MEASURE1: first ranking measure for SQL tuning set

	
RANK_MEASURE2: second possible ranking measure for SQL tuning set

	
RANK_MEASURE3: third possible ranking measure for SQL tuning set

	
RESUME_FILTER: a extra filter for SQL tuning sets besides BASIC_FILTER

	
SQL_IMPACT_THRESHOLD: threshold of a change impact on a SQL statement. Same as the previous parameter, but at the level of the SQL statement.

	
SQL_LIMIT: maximum number of SQL statements to process

	
SQL_PERCENTAGE: percentage filter of SQL tuning set statements

	
SQLSET_NAME: name of the SQL tuning set to associate to the specified task or task execution. This parameter is mainly using in comparing two SQL tuning sets using SPA.

	
SQLSET_OWNER: owner of the SQL tuning set specified using task parameter SQLSET_NAME.

	
TIME_LIMIT: global time out (seconds)

	
WORKLOAD_IMPACT_THRESHOLD: threshold of a SQL statement impact on a workload. Statements which workload change impact is below the absolute value of this threshold will be ignored and not considered for improvement or regression.

	
value

	
New value of the specified parameter

SET_ANALYSIS_DEFAULT_PARAMETER Procedures

This procedure sets the SQL analysis task parameter default value.

Syntax

This form of the procedure updates the default value of an analyzer parameter of type VARCHAR2.

DBMS_SQLPA.SET_ANALYSIS_DEFAULT_PARAMETER(
 parameter IN VARCHAR2,
 value IN VARCHAR2);

This form of the procedure updates the default value of an analyzer parameter of type NUMBER.

DBMS_SQLPA.SET_ANALYSIS_DEFAULT_PARAMETER(
 parameter IN VARCHAR2,
 value IN NUMBER);

Parameters

Table 138-11 SET_ANALYSIS_DEFAULT_PARAMETER Procedure Parameters

	Parameter	Description
	
parameter

	
Name of the parameter to set. The possible analysis parameters that can be set by this procedure are:

	
APPLY_CAPTURED_COMPILENV: indicates whether the advisor could use the compilation environment captured with the SQL statements. The default is 0 (that is, NO).

	
BASIC_FILTER: basic filter for SQL tuning set

	
COMPARISON_METRIC: specify an expression of execution statistics to use in performance comparison (Example: buffer_gets, cpu_time + buffer_gets * 10)

	
DATABASE_LINK: can be set to the global name of a PUBLIC database link. When it is set, SQL Performance Analyzer will use the database link for all TEST EXECUTE and EXPLAIN PLAN operations by sending the SQL statements to the remote database to be processed remotely. The analysis results will still be stored on the local database.

	
DAYS_TO_EXPIRE: number of days until the task is deleted

	
DEFAULT_EXECUTION_TYPE: the task will default to this type of execution when none is specified by the EXECUTE_ANALYSIS_TASK Function & Procedure.

	
EXECUTE_FULLDML: TRUE to execute DML statement fully, including acquiring row locks and modifying rows; FALSE (default) to execute only the query part of the DML without modifying data. When TRUE, SQL Performance Analyzer will issue a rollback following DML execution to prevent persistent changes from being made by the DML.

	
EXECUTION_DAYS_TO_EXPIRE: number of days until the tasks's executions will be deleted (without deleting the task)

	
EXECUTION_NAME1: name of the first task execution to analyze

	
EXECUTION_NAME2: name of the second task execution to analyze

	
LOCAL_TIME_LIMIT: per-statement time out (seconds)

	
parameter (contd.)

	
	
PLAN_FILTER: plan filter for SQL tuning set (see SELECT_SQLSET for possible values)

	
RANK_MEASURE1: first ranking measure for SQL tuning set

	
RANK_MEASURE2: second possible ranking measure for SQL tuning set

	
RANK_MEASURE3: third possible ranking measure for SQL tuning set

	
RESUME_FILTER: a extra filter for SQL tuning sets besides BASIC_FILTER

	
SQL_IMPACT_THRESHOLD: threshold of a change impact on a SQL statement. Same as the previous parameter, but at the level of the SQL statement.

	
SQL_LIMIT: maximum number of SQL statements to process

	
SQL_PERCENTAGE: percentage filter of SQL tuning set statements

	
TIME_LIMIT: global time out (seconds)

	
WORKLOAD_IMPACT_THRESHOLD: threshold of a SQL statement impact on a workload. Statements which workload change impact is below the absolute value of this threshold will be ignored and not considered for improvement or regression.

	
value

	
New value of the specified parameter

DBMS_SQLTUNE

139 DBMS_SQLTUNE

The DBMS_SQLTUNE package is the interface for tuning SQL on demand. The related package DBMS_AUTO_SQLTUNE package provides the interface for SQL Tuning Advisor run as an automated task.

The chapter contains the following topics:

	
Using DBMS_SQLTUNE

	
Overview

	
Security Model

	
Data Structures

	
Subprogram Groups

	
SQL Tuning Advisor Subprograms

	
SQL Profile Subprograms

	
SQL Tuning Set Subprograms

	
Real-time SQL Monitoring Subprograms

	
SQL Performance Reporting Subprograms

	
Summary of DBMS_SQLTUNE Subprograms

Using DBMS_SQLTUNE

	
Overview

	
Security Model

Overview

The DBMS_SQLTUNE package provides a number interrelated areas of functionality:

	
SQL Tuning Advisor Subprograms

	
SQL Profile Subprograms

	
SQL Tuning Set Subprograms

	
Real-time SQL Monitoring Subprograms

SQL Tuning Advisor

The SQL Tuning Advisor is one of a suite of Advisors, a set of expert systems that identifies and helps resolve database performance problems. Specifically, the SQL Tuning Advisor automates the tuning process of problematic SQL statements. That is, it takes one or more SQL statements as input and gives precise advice on how to tune the statements. The advice is provided is in the form of precise SQL actions for tuning the SQL along with their expected performance benefit.

The group of SQL Tuning Advisor Subprograms provide a task-oriented interface that lets you access the Advisor. You can call the following subprograms in the order given to use some of the SQL Tuning Advisor's features:

	
You use the CREATE_TUNING_TASK Functions to create a tuning task for tuning a single statement or a group of SQL statements.

	
The EXECUTE_TUNING_TASK Function & Procedure executes a previously created tuning task.

	
The REPORT_TUNING_TASK Function displays the results of a tuning task.

	
You use the SCRIPT_TUNING_TASK Function to create a SQL*PLUS script which can then be executed to implement a set of Advisor recommendations

SQL Profile Subprograms

The SQL Tuning Advisor may recommend the creation of a SQL profile to improve the performance of a statement. SQL profiles consist of auxiliary statistics specific to the statement. The query optimizer makes estimates about cardinality, selectivity, and cost that can sometimes be off by a significant amount, resulting in poor execution plans. The SQL profile addresses this problem by collecting additional information using sampling and partial execution techniques to adjust these estimates.

The group of SQL Profile Subprograms provides a mechanism for delivering statistics to the optimizer that targets one particular SQL statement, and helps the optimizer make good decisions for that statement by giving it the most accurate statistical information possible. For example:

	
You can use the ACCEPT_SQL_PROFILE Procedure and Function to accept a SQL profile recommended by the SQL Tuning Advisor.

	
You can alter the STATUS, NAME, DESCRIPTION, and CATEGORY attributes of an existing SQL profile with the ALTER_SQL_PROFILE Procedure.

	
You can drop a SQL profile with the DROP_SQL_PROFILE Procedure.

SQL Tuning Sets

The SQL Tuning Advisor input can be a single SQL statement or a set of statements. When tuning multiple statements in one advisor task, you give the input in the form of a SQL tuning set (STS). A SQL tuning set is a database object that stores SQL statements along with their execution context in a system-provided schema. SQL tuning sets provide an infrastructure for dealing with SQL workloads and simplify tuning of a large number of SQL statements.

SQL tuning sets store SQL statements along with

	
The execution context, such as the parsing schema name and bind values

	
Execution statistics such as average elapsed time and execution count

	
Execution plans - which are the sequence of operations Oracle performs to run SQL statements

	
Row source statistics such as the number of rows processed for each operation executed within the plan

SQL tuning sets can be created by filtering or ranking SQL statements from several sources:

	
The cursor cache using the SELECT_CURSOR_CACHE Function

	
Top SQL statements from the Automatic Workload Repository using the SELECT_WORKLOAD_REPOSITORY Functions

	
Other SQL tuning sets using the SELECT_SQLSET Function

	
SQL Performance Analyzer task comparison results using the SELECT_SQLPA_TASK Function

	
SQL Trace files using the SELECT_SQL_TRACE Function

	
A user-defined workload

The complete group of SQL Tuning Set Subprograms facilitates this functionality. As examples:

	
You use the CREATE_SQLSET Procedure and Function to creates a SQL tuning set object in the database

	
The LOAD_SQLSET Procedure populates the SQL tuning set with a set of selected SQL

	
The CAPTURE_CURSOR_CACHE_SQLSET Procedure collects SQL statements from the cursor cache over a specified time interval, attempting to build a realistic picture of system workload.

Import/Export SQL Tuning Sets and SQL Profiles

You use DBMS_SQLTUNE subprograms to move SQL profiles and SQL tuning sets from one system to another using a common programmatic model. In both cases, you create a staging table on the source system and populate that staging table with the relevant data. You then move that staging table to the destination system following the method of your choice (such as datapump, import/export, or database link), where it is used to reconstitute the objects in their original form. These steps are implemented by means of subprograms included in this package:

	
Call the CREATE_STGTAB_SQLPROF Procedure or the CREATE_STGTAB_SQLSET Procedure to create the staging table on the source system.

	
Call the PACK_STGTAB_SQLPROF Procedure or PACK_STGTAB_SQLSET Procedure to populate the staging table with information from the source system.

	
Once you have moved the staging table to the destination system, you call the UNPACK_STGTAB_SQLPROF Procedure or the UNPACK_STGTAB_SQLSET Procedure to recreate the object on the new system.

	
See Also:

Oracle Database Performance Tuning Guide for more information about programmatic flow

Automatic Tuning Task Functions

The automated system task SYS_AUTO_SQL_TUNING_TASK is created by the database as part of the catalog scripts. This task automatically chooses a set of high-load SQL from AWR and runs the SQL Tuning Advisor on this SQL. The automated task performs the same comprehensive analysis as any other SQL Tuning task.

You can obtain a report on the activity of the Automatic SQL Tuning task through the DBMS_AUTO_SQLTUNE.REPORT_AUTO_TUNING_TASK API. See the DBMS_AUTO_SQLTUNE package for the list of subprograms that you can use to manage the automated SQL tuning task.

	
See Also:

Using DBMS_AUTO_SQLTUNE

Real-time SQL Monitoring

Real-time SQL Monitoring allows DBAs or performance analysts to monitor the execution of long-running SQL statements while they are executing. Both cursor statistics (such as CPU times and IO times) and execution plan statistics (such as number of output rows, memory and temp space used) are updated close to real-time during statement execution. These statistics are exposed by the V$SQL_MONITOR and V$SQL_PLAN_MONITOR views. In addition, DBMS_SQLTUNE provides a subprogram REPORT_SQL_MONITOR to report on monitoring information.

Security Model

This package is available to PUBLIC and performs its own security checking:

	
As the SQL Tuning advisor relies on the advisor framework, all tuning task interfaces (XXX_TUNING_TASK) require privilege ADVISOR.

	
SQL tuning set subprograms (XXX_SQLSET) require either the ADMINISTER SQL TUNING SET or the ADMINISTER ANY SQL TUNING SET privilege. Users having the ADMINISTER SQL TUNING SET privilege can only create and modify a SQL tuning set they own, while the ADMINISTER ANY SQL TUNING SET privilege allows them to operate upon all SQL tuning sets, even those owned by other users. For example, using the CREATE_SQLSET Procedure and Function you can create a SQL tuning set to be owned by another user. In this case, the user need not necessarily have the ADMINISTER SQL TUNING SET privilege to operate upon her tuning set.

	
Previously, three different privileges were needed to invoke subprograms concerned with SQL profiles:

	
CREATE ANY SQL PROFILE

	
ALTER ANY SQL PROFILE

	
DROP ANY SQL PROFILE

These have now been deprecated in favor of ADMINISTER SQL MANAGEMENT OBJECT

Data Structures

The DBMS_SQLTUNE package defines the following OBJECT type

Object Types

	
SQLSET_ROW Object Type

SQLSET_ROW Object Type

The SQLSET_ROW object models the content of a SQL tuning set for the user. Logically, a SQL tuning set is a collection of SQLSET_ROWs where each SQLSET_ROW contains a single SQL statement along with its execution context, statistics, binds, and plan. The SELECT_XXX subprograms each model a data source as a collection of SQLSET_ROWs, unique by (sql_id, plan_hash_value). Similarly, the LOAD_SQLSET procedure takes as input a cursor whose row type is SQLSET_ROW, treating each SQLSET_ROW in isolation according to the policies requested by the user.

Several subprograms in the DBMS_SQLTUNE package accept basic filters on the content of a SQL tuning set or data source. These filters are expressed in terms of the attributes within the SQLSET_ROW as defined.

Syntax

CREATE TYPE sqlset_row AS object (
 sql_id VARCHAR(13),
 force_matching_signature NUMBER,
 sql_text CLOB,
 object_list sql_objects,
 bind_data RAW(2000),
 parsing_schema_name VARCHAR2(30),
 module VARCHAR2(48),
 action VARCHAR2(32),
 elapsed_time NUMBER,
 cpu_time NUMBER,
 buffer_gets NUMBER,
 disk_reads NUMBER,
 direct_writes NUMBER,
 rows_processed NUMBER,
 fetches NUMBER,
 executions NUMBER,
 end_of_fetch_count NUMBER,
 optimizer_cost NUMBER,
 optimizer_env RAW(2000),
 priority NUMBER,
 command_type NUMBER,
 first_load_time VARCHAR2(19),
 stat_period NUMBER,
 active_stat_period NUMBER,
 other CLOB,
 plan_hash_value NUMBER,
 sql_plan sql_plan_table_type,
 bind_list sql_binds)

Attributes

Table 139-1 SQLSET_ROW Attributes

	Attribute	Description
	
sql_id

	
Unique SQL ID

	
forcing_matching_signature

	
Signature with literals, case, and whitespace removed

	
sql_text

	
Full text for the statement

	
object_list

	
Currently not implemented

	
bind_data

	
Bind data as captured for this SQL. Note that you cannot stipulate an argument for this parameter and also for bind_list - they are mutually exclusive.

	
parsing_schema_name

	
Schema where the SQL is parsed

	
module

	
Last application module for the SQL

	
action

	
Last application action for the SQL

	
elapsed_time

	
Sum total elapsed time for this SQL statement

	
cpu_time

	
Sum total CPU time for this SQL statement

	
buffer_gets

	
Sum total number of buffer gets

	
disk_reads

	
Sum total number of disk reads

	
direct_writes

	
Sum total number of direct writes

	
rows_processed

	
Sum total number of rows processed by this SQL

	
fetches

	
Sum total number of fetches

	
executions

	
Total executions of this SQL

	
end_of_fetch_count

	
Number of times the statement was fully executed with all of its rows fetched

	
optimizer_cost

	
Optimizer cost for this SQL

	
optimizer_env

	
Optimizer environment for this SQL statement

	
priority

	
User-defined priority (1,2,3)

	
command_type

	
Statement type, such as INSERT or SELECT.

	
first_load_time

	
Load time of parent cursor

	
stat_period

	
Period of time (seconds) when the statistics of this SQL statement were collected

	
active_stat_period

	
Effective period of time (in seconds) during which the SQL statement was active

	
other

	
Other column for user defined attributes

	
plan_hash_value

	
Plan hash value of the plan

	
sql_plan

	
Explain plan

	
bind_list

	
List of user specified binds for SQL This is used for user-specified workloads. Note that you cannot stipulate an argument for this parameter and also for bind_data - they are mutually exclusive.

Subprogram Groups

DBMS_SQLTUNE subprograms are grouped by function:

	
SQL Tuning Advisor Subprograms

	
SQL Profile Subprograms

	
SQL Tuning Set Subprograms

	
Real-time SQL Monitoring Subprograms

	
SQL Performance Reporting Subprograms

SQL Tuning Advisor Subprograms

This subprogram group provides an interface to manage SQL tuning tasks.

Table 139-2 SQL Tuning Task Subprograms

	Subprogram	Description
	
CANCEL_TUNING_TASK Procedure

	
Cancels the currently executing tuning task

	
CREATE_SQL_PLAN_BASELINE Procedure

	
Creates a SQL plan baseline for an existing plan

	
CREATE_TUNING_TASK Functions

	
Creates a tuning of a single statement or SQL tuning set for either the SQL Tuning Advisor

	
DROP_TUNING_TASK Procedure

	
Drops a SQL tuning task

	
EXECUTE_TUNING_TASK Function & Procedure

	
Executes a previously created tuning task

	
IMPLEMENT_TUNING_TASK Function

	
Implements a set of SQL profile recommendations made by the SQL Tuning Advisor

	
INTERRUPT_TUNING_TASK Procedure

	
Interrupts the currently executing tuning task

	
REPORT_AUTO_TUNING_TASK Function

	
Displays a report from the automatic tuning task, reporting on a range of executions

	
REPORT_TUNING_TASK Function

	
Displays the results of a tuning task

	
RESET_TUNING_TASK Procedure

	
Resets the currently executing tuning task to its initial state

	
RESUME_TUNING_TASK Procedure

	
Resumes a previously interrupted task that was created to process a SQL tuning set

	
SCRIPT_TUNING_TASK Function

	
Creates a SQL*PLUS script which can then be executed to implement a set of SQL Tuning Advisor recommendations

	
SET_TUNING_TASK_PARAMETER Procedures

	
Updates the value of a SQL tuning parameter of type VARCHAR2 or NUMBER

The Summary of DBMS_SQLTUNE Subprograms contains a complete listing of all subprograms in the package.

SQL Profile Subprograms

This subprogram group provides an interface to manage SQL profiles.

Table 139-3 SQL Profile Subprograms

	Subprogram	Description
	
ACCEPT_SQL_PROFILE Procedure and Function

	
Creates a SQL profile for the specified tuning task

	
ALTER_SQL_PROFILE Procedure

	
Alters specific attributes of an existing SQL profile object

	
CREATE_STGTAB_SQLPROF Procedure

	
Creates the staging table used for copying SQL profiles from one system to another

	
DROP_SQL_PROFILE Procedure

	
Drops the named SQL profile from the database

	
PACK_STGTAB_SQLPROF Procedure

	
Moves profile data out of the SYS schema into the staging table

	
REMAP_STGTAB_SQLPROF Procedure

	
Changes the profile data values kept in the staging table prior to performing an unpack operation

	
SQLTEXT_TO_SIGNATURE Function

	
Returns a SQL text's signature

	
UNPACK_STGTAB_SQLPROF Procedure

	
Uses the profile data stored in the staging table to create profiles on this system

The Summary of DBMS_SQLTUNE Subprograms contains a complete listing of all subprograms in the package.

SQL Tuning Set Subprograms

This subprogram group provides an interface to manage SQL tuning sets.

Table 139-4 SQL Tuning Set Subprograms

	Subprogram	Description
	
ADD_SQLSET_REFERENCE Function

	
Adds a new reference to an existing SQL tuning set to indicate its use by a client

	
CAPTURE_CURSOR_CACHE_SQLSET Procedure

	
Over a specified time interval incrementally captures a workload from the cursor cache into a SQL tuning set

	
CREATE_SQLSET Procedure and Function

	
Creates a SQL tuning set object in the database

	
CREATE_STGTAB_SQLSET Procedure

	
Creates a staging table through which SQL Tuning Sets are imported and exported

	
DELETE_SQLSET Procedure

	
Deletes a set of SQL statements from a SQL tuning set

	
DROP_SQLSET Procedure

	
Drops a SQL tuning set if it is not active

	
LOAD_SQLSET Procedure

	
Populates the SQL tuning set with a set of selected SQL

	
PACK_STGTAB_SQLSET Procedure

	
Copies tuning sets out of the SYS schema into the staging table

	
REMOVE_SQLSET_REFERENCE Procedure

	
Deactivates a SQL tuning set to indicate it is no longer used by the client

	
SELECT_CURSOR_CACHE Function

	
Collects SQL statements from the cursor cache

	
SELECT_SQL_TRACE Function

	
Reads the content of one or more trace files and returns the SQL statements it finds in the format of sqlset_row

	
SELECT_SQLPA_TASK Function

	
Collects SQL statements from a SQL performance analyzer comparison task

	
SELECT_SQLSET Function

	
Collects SQL statements from an existing SQL tuning set

	
SELECT_WORKLOAD_REPOSITORY Functions

	
Collects SQL statements from the workload repository

	
UNPACK_STGTAB_SQLSET Procedure

	
Copies one or more SQL tuning sets from the staging table

	
UPDATE_SQLSET Procedures

	
Updates whether selected string fields for a SQL statement in a SQL tuning set or the set numerical attributes of a SQL in a SQL tuning set

The Summary of DBMS_SQLTUNE Subprograms contains a complete listing of all subprograms in the package.

Real-time SQL Monitoring Subprograms

This subprogram group provides function to report on monitoring data collected in V$SQL_MONITOR and V$SQL_PLAN_MONITOR.

Table 139-5 SQL Tuning Set Subprograms

	Subprogram	Description
	
REPORT_SQL_MONITOR Function

	
Reports on real-time SQL Monitoring

	
REPORT_SQL_MONITOR_LIST Function

	
Builds a report for all or a sub-set of statements monitored by Oracle

SQL Performance Reporting Subprograms

This subprogram group provides detailed reports on SQL performance using statistics from the cursor cache and automatic workload repository (AWR).

Table 139-6 SQL Performance Reporting Subprograms

	Subprogram	Description
	
REPORT_SQL_DETAIL Function

	
Reports on a specific SQLID

Summary of DBMS_SQLTUNE Subprograms

Table 139-7 DBMS_SQLTUNE Package Subprograms

	Subprogram	Description	Group
	
ACCEPT_SQL_PROFILE Procedure and Function

	
Create a SQL profile for the specified tuning task

	
SQL Profile Subprograms

	
ADD_SQLSET_REFERENCE Function

	
Adds a new reference to an existing SQL tuning set to indicate its use by a client

	
SQL Tuning Set Subprograms

	
ALTER_SQL_PROFILE Procedure

	
Alters specific attributes of an existing SQL profile object

	
SQL Profile Subprograms

	
CANCEL_TUNING_TASK Procedure

	
Cancels the currently executing tuning task

	
SQL Tuning Advisor Subprograms

	
CAPTURE_CURSOR_CACHE_SQLSET Procedure

	
Over a specified time interval incrementally captures a workload from the cursor cache into a SQL tuning set

	
SQL Tuning Set Subprograms

	
CREATE_SQL_PLAN_BASELINE Procedure

	
Creates a SQL plan baseline for an existing plan

	
SQL Tuning Advisor Subprograms

	
CREATE_SQLSET Procedure and Function

	
Creates a SQL tuning set object in the database

	
SQL Tuning Set Subprograms

	
CREATE_STGTAB_SQLPROF Procedure

	
Creates the staging table used for copying SQL profiles from one system to another

	
SQL Profile Subprograms

	
CREATE_STGTAB_SQLSET Procedure

	
Creates a staging table through which SQL tuning sets are imported and exported

	
SQL Tuning Set Subprograms

	
CREATE_TUNING_TASK Functions

	
Creates a tuning of a single statement or SQL tuning set for either the SQL Tuning Advisor

	
SQL Tuning Advisor Subprograms

	
DELETE_SQLSET Procedure

	
Deletes a set of SQL statements from a SQL tuning set

	
SQL Tuning Set Subprograms

	
DROP_SQL_PROFILE Procedure

	
Drops the named SQL profile from the database

	
SQL Profile Subprograms

	
DROP_SQLSET Procedure

	
Drops a SQL tuning set if it is not active

	
SQL Tuning Set Subprograms

	
DROP_TUNING_TASK Procedure

	
Drops a SQL tuning task

	
SQL Tuning Advisor Subprograms

	
EXECUTE_TUNING_TASK Function & Procedure

	
Executes a previously created tuning task

	
SQL Tuning Advisor Subprograms

	
IMPLEMENT_TUNING_TASK Function

	
implements a set of SQL profile recommendations made by the SQL Tuning Advisor

	
SQL Tuning Advisor Subprograms

	
INTERRUPT_TUNING_TASK Procedure

	
Interrupts the currently executing tuning task

	
SQL Tuning Advisor Subprograms

	
LOAD_SQLSET Procedure

	
Populates the SQL tuning set with a set of selected SQL

	
SQL Tuning Set Subprograms

	
PACK_STGTAB_SQLPROF Procedure

	
Moves profile data out of the SYS schema into the staging table

	
SQL Profile Subprograms

	
PACK_STGTAB_SQLSET Procedure

	
Moves tuning sets out of the SYS schema into the staging table

	
SQL Tuning Set Subprograms

	
REMAP_STGTAB_SQLPROF Procedure

	
Changes the profile data values kept in the staging table prior to performing an unpack operation

	
SQL Profile Subprograms

	
REMAP_STGTAB_SQLSET Procedure

	
Changes the tuning set names and owners in the staging table so that they can be unpacked with different values than they had on the host system

	
SQL Tuning Set Subprograms

	
REMOVE_SQLSET_REFERENCE Procedure

	
Deactivates a SQL tuning set to indicate it is no longer used by the client

	
SQL Tuning Set Subprograms

	
REPORT_AUTO_TUNING_TASK Function

	
Displays a report from the automatic tuning task, reporting on a range of subtasks

	
SQL Tuning Set Subprograms

	
REPORT_SQL_DETAIL Function

	
Reports on a specific SQLID

	
SQL Performance Reporting Subprograms

	
REPORT_SQL_MONITOR Function

	
Displays a report on real-time SQL monitoring

	
Real-time SQL Monitoring Subprograms

	
REPORT_SQL_MONITOR_LIST Function

	
Builds a report for all or a sub-set of statements monitored by Oracle

	
Real-time SQL Monitoring Subprograms

	
REPORT_TUNING_TASK Function

	
Displays the results of a tuning task

	
SQL Tuning Set Subprograms

	
RESET_TUNING_TASK Procedure

	
Resets the currently executing tuning task to its initial state

	
SQL Tuning Advisor Subprograms

	
RESUME_TUNING_TASK Procedure

	
Resumes a previously interrupted task that was created to process a SQL tuning set

	
SQL Tuning Advisor Subprograms

	
SCRIPT_TUNING_TASK Function

	
Creates a SQL*PLUS script which can then be executed to implement a set of SQL Tuning Advisor recommendations

	
SQL Tuning Advisor Subprograms

	
SELECT_CURSOR_CACHE Function

	
Collects SQL statements from the cursor cache

	
SQL Tuning Set Subprograms

	
SELECT_SQL_TRACE Function

	
Reads the content of one or more trace files and returns the SQL statements it finds in the format of sqlset_row

	
SQL Tuning Set Subprograms

	
SELECT_SQLSET Function

	
Collects SQL statements from an existing SQL tuning set

	
SQL Tuning Set Subprograms

	
SELECT_WORKLOAD_REPOSITORY Functions

	
Collects SQL statements from the workload repository

	
SQL Tuning Set Subprograms

	
SET_TUNING_TASK_PARAMETER Procedures

	
Updates the value of a SQL tuning parameter of type VARCHAR2 or NUMBER

	
SQL Tuning Advisor Subprograms

	
SQLTEXT_TO_SIGNATURE Function

	
Returns a SQL text's signature

	
SQL Profile Subprograms

	
UNPACK_STGTAB_SQLPROF Procedure

	
Uses the profile data stored in the staging table to create profiles on this system

	
SQL Profile Subprograms

	
UNPACK_STGTAB_SQLSET Procedure

	
Moves one or more SQL tuning sets from the staging table

	
SQL Tuning Set Subprograms

	
UPDATE_SQLSET Procedures

	
Updates selected fields for a SQL statement in a SQL tuning set

	
SQL Tuning Set Subprograms

ACCEPT_SQL_PROFILE Procedure and Function

This procedure creates a SQL profile recommended by the SQL Tuning Advisor. The SQL text is normalized for matching purposes though it is stored in the data dictionary in de-normalized form for readability. SQL text is provided through a reference to the SQL Tuning task. If the referenced SQL statement doesn't exist, an error is reported.

	
See Also:

SQL Profile Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.ACCEPT_SQL_PROFILE (
 task_name IN VARCHAR2,
 object_id IN NUMBER := NULL,
 name IN VARCHAR2 := NULL,
 description IN VARCHAR2 := NULL,
 category IN VARCHAR2 := NULL);
 task_owner IN VARCHAR2 := NULL,
 replace IN BOOLEAN := FALSE,
 force_match IN BOOLEAN := FALSE,
 profile_type IN VARCHAR2 := REGULAR_PROFILE);

DBMS_SQLTUNE.ACCEPT_SQL_PROFILE (
 task_name IN VARCHAR2,
 object_id IN NUMBER := NULL,
 name IN VARCHAR2 := NULL,
 description IN VARCHAR2 := NULL,
 category IN VARCHAR2 := NULL;
 task_owner IN VARCHAR2 := NULL,
 replace IN BOOLEAN := FALSE,
 force_match IN BOOLEAN := FALSE,
 profile_type IN VARCHAR2 := REGULAR_PROFILE)
 RETURN VARCHAR2;

Parameters

Table 139-8 ACCEPT_SQL_PROFILE Procedure and Function Parameters

	Parameter	Description
	
task_name

	
The (mandatory) name of the SQL tuning task

	
object_id

	
The identifier of the advisor framework object representing the SQL statement associated with the tuning task

	
name

	
The name of the SQL profile. It cannot contain double quotation marks. The name is case sensitive. If not specified, the system generates a unique name for the SQL profile.

	
description

	
A user specified string describing the purpose of the SQL profile. The description is truncated if longer than 256 characters. The maximum size is 500 characters.

	
category

	
This is the category name which must match the value of the SQLTUNE_CATEGORY parameter in a session for the session to use this SQL profile. It defaults to the value "DEFAULT". This is also the default of the SQLTUNE_CATEGORY parameter. The category must be a valid Oracle identifier. The category name specified is always converted to upper case. The combination of the normalized SQL text and category name creates a unique key for a SQL profile. An ACCEPT_SQL_PROFILE fails if this combination is duplicated.

	
task_owner

	
Owner of the tuning task. This is an optional parameter that has to be specified to accept a SQL profile associated to a tuning task owned by another user. The current user is the default value.

	
replace

	
If the profile already exists, it is replaced if this argument is TRUE. It is an error to pass a name that is already being used for another signature/category pair, even with replace set to TRUE.

	
force_match

	
If TRUE this causes SQL profiles to target all SQL statements which have the same text after normalizing all literal values into bind variables. (Note that if a combination of literal values and bind values is used in a SQL statement, no bind transformation occurs.) This is analogous to the matching algorithm used by the FORCE option of the cursor_sharing parameter.

If FALSE, literals are not transformed. This is analogous to the matching algorithm used by the EXACT option of the cursor_sharing parameter.

	
profile_type

	
Options:

	
REGULAR_PROFILE - profile without a change to parallel execution (Default, equivalent to NULL). Note that if the SQL statement currently has a parallel execution plan, the regular profile will cause the optimizer to choose a different, but still parallel, execution plan.

	
PX_PROFILE - regular profile with a change to parallel execution

Return Values

The name of the SQL profile.

Usage Notes

The CREATE ANY SQL PROFILE privilege is required.

Examples

You use both the procedure and the function versions of the subprogram in the same way except you must specify a return value to invoke the function. Here we give examples of the procedure only.

In this example, you tune a single SQL statement form the workload repository and you create the SQL profile recommended by SQL Tuning Advisor.

variable stmt_task VARCHAR2(64);
variable sts_task VARCHAR2(64);

-- create a tuning task tune the statement
EXEC :stmt_task := DBMS_SQLTUNE.CREATE_TUNING_TASK(
 begin_snap => 1, -
 end_snap => 2, -
 sql_id => 'ay1m3ssvtrh24');

-- execute the resulting task
EXEC DBMS_SQLTUNE.EXECUTE_TUNING_TASK(:stmt_task);

EXEC DBMS_SQLTUNE.ACCEPT_SQL_PROFILE(:stmt_task);

Note that you do not have to specify the ID (that is, object_id) for the advisor framework object created by SQL Tuning Advisor to represent the tuned SQL statement.

You might also want to accept the recommended SQL profile in a different category, (for example, TEST), so that it is not used by default.

EXEC DBMS_SQLTUNE.ACCEPT_SQL_PROFILE (
 task_name => :stmt_task, -
 category => 'TEST');

You can use command ALTER SESSION SET SQLTUNE_CATEGORY = 'TEST' to see how this profile behaves.

The following call creates a SQL profile that targets any SQL statement with the same force_matching_signature as the tuned statement.

EXEC DBMS_SQLTUNE.ACCEPT_SQL_PROFILE (task_name => :stmt_task, -
 force_match => TRUE);

In the following example, you tune a SQL tuning set, and you create a SQL profile for only one of the SQL statements in the SQL tuning set. The SQL statement is represented by an advisor framework object with ID equal to '5'. Please notice that you must pass an object id to the ACCEPT_SQL_PROFILE procedure because there are potentially many SQL profiles for the tuning task. This object id is given along with the report.

EXEC :sts_task := DBMS_SQLTUNE.CREATE_TUNING_TASK (-
 sqlset_name => 'my_workload', -
 rank1 => 'ELAPSED_TIME', -
 time_limit => 3600, -
 description => 'my workload ordered by elapsed time');

-- execute the resulting task
EXEC DBMS_SQLTUNE.EXECUTE_TUNING_TASK(:sts_task);

 -- create the profile for the sql statement corresponding to object_id = 5.
EXEC DBMS_SQLTUNE.ACCEPT_SQL_PROFILE (
 task_name => :sts_task, -
 object_id => 5);

ADD_SQLSET_REFERENCE Function

This procedure adds a new reference to an existing SQL tuning set to indicate its use by a client.

	
See Also:

SQL Tuning Set Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.ADD_SQLSET_REFERENCE (
 sqlset_name IN VARCHAR2,
 description IN VARCHAR2 := NULL)
 RETURN NUMBER;

Parameters

Table 139-9 ADD_SQLSET_REFERENCE Function Parameters

	Parameter	Description
	
sqlset_name

	
The SQL tuning set name

	
description

	
The description of the usage of SQL tuning set. The description is truncated if longer than 256 characters.

Return Values

The identifier of the added reference.

Examples

You can add reference to a SQL tuning set. This prevents the tuning set from being modified while it is being used. References are automatically added when you invoke SQL Tuning Advisor on the SQL tuning set, so you should use this function for custom purposes only.The function returns a reference ID that is used to remove it later. You use the REMOVE_SQLSET_REFERENCE Procedure to delete references to a SQL tuning set.

variable rid number;
EXEC :rid := DBMS_SQLTUNE.ADD_SQLSET_REFERENCE(-
 sqlset_name => 'my_workload', -
 description => 'my sts reference');

You can use the views USER/DBA_SQLSET_REFERENCES to find all references on a given SQL tuning set.

ALTER_SQL_PROFILE Procedure

This procedure alters specific attributes of an existing SQL profile object. The following attributes can be altered (using these attribute names):

	
"STATUS" can be set to "ENABLED" or "DISABLED"

	
"NAME" can be reset to a valid name which must be a valid Oracle identifier and must be unique.

	
"DESCRIPTION" can be set to any string of size no more than 500 characters

	
"CATEGORY" can be reset to a valid category name which must be a valid Oracle identifier and must be unique when combined with normalized SQL text)

	
See Also:

SQL Profile Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.ALTER_SQL_PROFILE (
 name IN VARCHAR2,
 attribute_name IN VARCHAR2,
 value IN VARCHAR2);

Parameters

Table 139-10 ALTER_SQL_PROFILE Procedure Parameters

	Parameter	Description
	
name

	
The (mandatory) name of the existing SQL profile to alter

	
attribute_name

	
The (mandatory) attribute name to alter (case insensitive) using valid attribute names

	
value

	
The (mandatory) new value of the attribute using valid attribute values

Usage Notes

Requires the ALTER ANY SQL PROFILE privilege.

Examples

-- Disable a profile, so it is not be used by any sessions.
EXEC DBMS_SQLTUNE.ALTER_SQL_PROFILE (name => :pname, -
 attribute_name => 'STATUS', -
 value => 'DISABLED');

-- Enable it back:
EXEC DBMS_SQLTUNE.ALTER_SQL_PROFILE (name => :pname, -
 attribute_name => 'STATUS', -
 value => 'ENABLED');

-- Change the category of the profile so it is used only by sessions
-- with category set to TEST.
-- Use ALTER SESSION SET SQLTUNE_CATEGORY = 'TEST' to see how this profile
-- behaves.
EXEC DBMS_SQLTUNE.ALTER_SQL_PROFILE (name => :pname, -
 attribute_name => 'CATEGORY', -
 value => 'TEST');

-- Change it back:
EXEC DBMS_SQLTUNE.ALTER_SQL_PROFILE (name => :pname, -
 attribute_name => 'CATEGORY', -
 value => 'DEFAULT');

CANCEL_TUNING_TASK Procedure

This procedure cancels the currently executing tuning task. All intermediate result data is deleted.

	
See Also:

SQL Tuning Advisor Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.CANCEL_TUNING_TASK(
 task_name IN VARCHAR2);

Parameters

Table 139-11 CANCEL_TUNING_TASK Procedure Parameters

	Parameter	Description
	
task_name

	
The name of the task to cancel

Examples

You cancel a task when you need to stop it executing and do not require to view any already-completed results.

EXEC DBMS_SQLTUNE.CANCEL_TUNING_TASK(:my_task);

CAPTURE_CURSOR_CACHE_SQLSET Procedure

Over a specified time interval this procedure incrementally captures a workload from the cursor cache into a SQL tuning set. The procedure captures a workload from the cursor cache into a SQL tuning set, polling the cache multiple times over a time period and updating the workload data stored there. It can execute over as long a period as required to capture an entire system workload.

	
See Also:

SQL Tuning Set Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.CAPTURE_CURSOR_CACHE_SQLSET (
 sqlset_name IN VARCHAR2,
 time_limit IN POSITIVE := 1800,
 repeat_interval IN POSITIVE := 300,
 capture_option IN VARCHAR2 := 'MERGE',
 capture_mode IN NUMBER := MODE_REPLACE_OLD_STATS,
 basic_filter IN VARCHAR2 := NULL,
 sqlset_owner IN VARCHAR2 := NULL,
 recursive_sql IN VARCHAR2 := HAS_RECURSIVE_SQL);

Parameters

Table 139-12 CAPTURE_CURSOR_CACHE_SQLSET Procedure Parameters

	Parameter	Description
	
sqlset_name

	
The SQL tuning set name

	
time_limit

	
The total amount of time, in seconds, to execute

	
repeat_interval

	
The amount of time, in seconds, to pause between sampling

	
capture_option

	
During capture, either insert new statements, update existing statements, or both. 'INSERT', 'UPDATE', or 'MERGE' just like load_option in load_sqlset

	
capture_mode

	
Capture mode (UPDATE and MERGE capture options). Possible values:

	
MODE_REPLACE_OLD_STATS - Replace statistics when the number of executions seen is greater than that stored in the SQL tuning set

	
MODE_ACCUMULATE_STATS - Add new values to current values for SQL we already store. Note that this mode detects if a statement has been aged out, so the final value for a statistics is the sum of the statistics of all cursors that statement existed under.

	
basic_filter

	
Filter to apply to cursor cache on each sampling (see SELECT_XXX subprograms). If basic_filter is not set by the caller, the subprogram captures only statements of the type CREATE TABLE, INSERT, SELECT, UPDATE, DELETE, and MERGE.

	
sqlset_owner

	
The owner of the SQL tuning set or NULL for current schema owner

	
recursive_sql

	
Filter that includes recursive SQL in the SQL tuning set (HAS_RECURSIVE_SQL) or excludes it (NO_RECURSIVE_SQL).

Examples

In this example capture takes place over a 30-second period, polling the cache once every five seconds. This captures all statements run during that period but not before or after. If the same statement appears a second time, the process replaces the stored statement with the new occurrence.

Note that in production systems the time limit and repeat interval would be set much higher. You should tune the time_limit and repeat_interval parameters based on the workload time and cursor cache turnover properties of your system.

EXEC DBMS_SQLTUNE.CAPTURE_CURSOR_CACHE_SQLSET(-
 sqlset_name => 'my_workload', -
 time_limit => 30, -
 repeat_interval => 5);

In the following call you accumulate execution statistics as you go. This option produces an accurate picture of the cumulative activity of each cursor, even across age-outs, but it is more expensive than the previous example.

EXEC DBMS_SQLTUNE.CAPTURE_CURSOR_CACHE_SQLSET(-
 sqlset_name => 'my_workload', -
 time_limit => 30, -
 repeat_interval => 5, -
 capture_mode => dbms_sqltune.MODE_ACCUMULATE_STATS);

This call performs a very inexpensive capture where you only insert new statements and do not update their statistics once they have been inserted into the SQL tuning set

EXEC DBMS_SQLTUNE.CAPTURE_CURSOR_CACHE_SQLSET(-
 sqlset_name => 'my_workload', -
 time_limit => 30, -
 repeat_interval => 5, -
 capture_option => 'INSERT');

CREATE_SQL_PLAN_BASELINE Procedure

This procedure creates a SQL plan baseline for an execution plan. It can be used in the context of an Alternative Plan Finding made by the SQL Tuning Advisor.

	
See Also:

SQL Tuning Advisor Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.CREATE_SQL_PLAN_BASELINE (
 task_name IN VARCHAR2,
 object_id IN NUMBER := NULL,
 plan_hash_value IN NUMBER,
 owner_name IN VARCHAR2 := NULL);

Parameters

Table 139-13 CREATE_SQL_PLAN_BASELINE Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task for which to get a script

	
object_id

	
Object ID to which the SQL corresponds

	
plan_hash_value

	
Plan to create plan baseline

	
owner_name

	
Owner of the relevant tuning task. Defaults to the current schema owner.

CREATE_SQLSET Procedure and Function

The procedure creates a SQL tuning set object in the database.

The function causes the system to generate a name for the SQL tuning set.

	
See Also:

SQL Tuning Set Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.CREATE_SQLSET (
 sqlset_name IN VARCHAR2,
 description IN VARCHAR2 := NULL
 sqlset_owner IN VARCHAR2 := NULL);

DBMS_SQLTUNE.CREATE_SQLSET (
 sqlset_name IN VARCHAR2 := NULL,
 description IN VARCHAR2 := NULL,
 sqlset_owner IN VARCHAR2 := NULL)
 RETURN VARCHAR2;

Parameters

Table 139-14 CREATE_SQLSET Procedure Parameters

	Parameter	Description
	
sqlset_name

	
The SQL tuning set name

	
description

	
The description of the SQL tuning set

	
sqlset_owner

	
The owner of the SQL tuning set, or NULL for the current schema owner

Examples

EXEC DBMS_SQLTUNE.CREATE_SQLSET(-
 sqlset_name => 'my_workload', -
 description => 'complete application workload');

CREATE_STGTAB_SQLPROF Procedure

This procedure creates the staging table used for copying SQL profiles from one system to another.

	
See Also:

SQL Profile Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.CREATE_STGTAB_SQLPROF (
 table_name IN VARCHAR2,
 schema_name IN VARCHAR2 := NULL,
 tablespace_name IN VARCHAR2 := NULL);

Parameters

Table 139-15 CREATE_STGTAB_SQLPROF Procedure Parameters

	Parameter	Description
	
table_name

	
The name of the table to create (case-insensitive unless double quoted). Required.

	
schema_name

	
The schema to create the table in, or NULL for current schema (case-insensitive unless double quoted)

	
tablespace_name

	
The tablespace to store the staging table within, or NULL for current user's default tablespace (case-insensitive unless double quoted)

Usage Notes

	
Call this procedure once before issuing a call to the PACK_STGTAB_SQLPROF Procedure.

	
This procedure can be called multiple times if you would like to have different SQL profiles in different staging tables.

	
Note that this is a DDL operation, so it does not occur within a transaction.

Examples

Create a staging table to store profile data that can be moved to another system.

EXEC DBMS_SQLTUNE.CREATE_STGTAB_SQLPROF (table_name => 'PROFILE_STGTAB');

CREATE_STGTAB_SQLSET Procedure

This procedure creates a staging table through which SQL tuning sets are imported and exported

	
See Also:

SQL Tuning Set Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.CREATE_STGTAB_SQLSET (
 table_name IN VARCHAR2,
 schema_name IN VARCHAR2 := NULL,
 tablespace_name IN VARCHAR2 := NULL,
 db_version IN NUMBER := NULL);

Parameters

Table 139-16 CREATE_STGTAB_SQLSET Procedure Parameters

	Parameter	Description
	
table_name

	
Name of the table to create (case-sensitive)

	
schema_name

	
Schema in which to create the table in, or NULL for current schema (case-sensitive)

	
tablespace_name

	
Tablespace in which to store the staging table, or NULL for current user's default tablespace (case-sensitive)

	
db_version

	
Database (DB) version determining the format of the staging table. User can also create an older DB version staging table to export STS to an older DB version. One of the following values:

	
NULL (default) — current DB version

	
STS_STGTAB_10_2_VERSION — 10.2 DB version

	
STS_STGTAB_11_1_VERSION — 11.1 DB version

	
STS_STGTAB_11_2_VERSION — 11.2 DB version

Usage Notes

	
Call this procedure once before issuing a call to the PACK_STGTAB_SQLSET Procedure.

	
This procedure can be called multiple times if you would like to have different tuning sets in different staging tables.

	
Note that this is a DDL operation, so it does not occur within a transaction.

	
Users issuing the call must have permission to CREATE TABLE in the schema provided and the relevant tablespace.

	
Please note that the staging table contains nested table columns and indexes, so it should not be renamed.

Examples

Create a staging table for packing and eventually exporting a SQL tuning sets

EXEC DBMS_SQLTUNE.CREATE_STGTAB_SQLSET(table_name => 'STGTAB_SQLSET');

Create a staging table to pack a SQL tuning set in 10.2 DB release format

EXEC DBMS_SQLTUNE.CREATE_STGTAB_SQLSET(
 table_name => 'STGTAB_SQLSET',
 db_version => DBMS_SQLTUNE.STS_STGTAB_10_2_VERSION)

Create a staging table to pack a SQL tuning set in 11.1 DB release format

EXEC DBMS_SQLTUNE.CREATE_STGTAB_SQLSET(
 table_name => 'STGTAB_SQLSET',
 db_version => DBMS_SQLTUNE.STS_STGTAB_11_1_VERSION)

CREATE_TUNING_TASK Functions

You can use different forms of this function to:

	
Create a tuning task for a single statement given its text.

	
Create a tuning task for a single statement from the Cursor Cache given its identifier.

	
Create a tuning task for a single statement from the workload repository given a range of snapshot identifiers.

	
Create a tuning task for a SQL tuning set.

	
Create tuning task for a SQL Performance Analyzer

In all cases, the function mainly creates an advisor task and sets its parameters.

	
See Also:

SQL Tuning Advisor Subprograms for other subprograms in this group

Syntax

SQL text format:

DBMS_SQLTUNE.CREATE_TUNING_TASK(
 sql_text IN CLOB,
 bind_list IN sql_binds := NULL,
 user_name IN VARCHAR2 := NULL,
 scope IN VARCHAR2 := SCOPE_COMPREHENSIVE,
 time_limit IN NUMBER := TIME_LIMIT_DEFAULT,
 task_name IN VARCHAR2 := NULL,
 description IN VARCHAR2 := NULL)
RETURN VARCHAR2;

SQL ID format:

DBMS_SQLTUNE.CREATE_TUNING_TASK(
 sql_id IN VARCHAR2,
 plan_hash_value IN NUMBER := NULL,
 scope IN VARCHAR2 := SCOPE_COMPREHENSIVE,
 time_limit IN NUMBER := TIME_LIMIT_DEFAULT,
 task_name IN VARCHAR2 := NULL,
 description IN VARCHAR2 := NULL)
RETURN VARCHAR2;

Workload Repository format:

DBMS_SQLTUNE.CREATE_TUNING_TASK(
 begin_snap IN NUMBER,
 end_snap IN NUMBER,
 sql_id IN VARCHAR2,
 plan_hash_value IN NUMBER := NULL,
 scope IN VARCHAR2 := SCOPE_COMPREHENSIVE,
 time_limit IN NUMBER := TIME_LIMIT_DEFAULT,
 task_name IN VARCHAR2 := NULL,
 description IN VARCHAR2 := NULL)
RETURN VARCHAR2;

SQLSET format:

DBMS_SQLTUNE.CREATE_TUNING_TASK(
 sqlset_name IN VARCHAR2,
 basic_filter IN VARCHAR2 := NULL,
 object_filter IN VARCHAR2 := NULL,
 rank1 IN VARCHAR2 := NULL,
 rank2 IN VARCHAR2 := NULL,
 rank3 IN VARCHAR2 := NULL,
 result_percentage IN NUMBER := NULL,
 result_limit IN NUMBER := NULL,
 scope IN VARCHAR2 := SCOPE_COMPREHENSIVE,
 time_limit IN NUMBER := TIME_LIMIT_DEFAULT,
 task_name IN VARCHAR2 := NULL,
 description IN VARCHAR2 := NULL
 plan_filter IN VARCHAR2 := 'MAX_ELAPSED_TIME',
 sqlset_owner IN VARCHAR2 := NULL)
RETURN VARCHAR2;

SQL Performance Analyzer format:

DBMS_SQLTUNE.CREATE_TUNING_TASK(
 spa_task_name IN VARCHAR2,
 spa_task_owner IN VARCHAR2 := NULL,
 spa_compare_exec IN VARCHAR2 := NULL,
 basic_filter IN VARCHAR2 := NULL,
 time_limit IN NUMBER := TIME_LIMIT_DEFAULT,
 task_name IN VARCHAR2 := NULL,
 description IN VARCHAR2 := NULL)
 RETURN VARCHAR2;

Parameters

Table 139-17 CREATE_TUNING_TASK Function Parameters

	Parameter	Description
	
sql_text

	
Text of a SQL statement

	
begin_snap

	
Begin snapshot identifier

	
end_snap

	
End snapshot identifier

	
sql_id

	
Identifier of a SQL statement

	
bind_list

	
An ordered list of bind values in ANYDATA type

	
plan_hash_value

	
Hash value of the SQL execution plan

	
sqlset_name

	
SQL tuning set name

	
basic_filter

	
SQL predicate to filter the SQL from the SQL tuning set

	
object_filter

	
Object filter

	
rank(i)

	
Order-by clause on the selected SQL

	
result_percentage

	
Percentage on the sum of a ranking measure

	
result_limit

	
Top L(imit) SQL from the (filtered/ranked) SQL

	
user_name

	
Username for whom the statement is to be tuned

	
scope

	
Tuning scope (limited/comprehensive)

	
time_limit

	
The maximum duration in seconds for the tuning session

	
task_name

	
Optional tuning task name

	
description

	
Description of the SQL tuning session to a maximum of 256 characters

	
plan_filter

	
Plan filter. It is applicable in case there are multiple plans (plan_hash_value) associated with the same statement. This filter allows for selecting one plan (plan_hash_value) only. Possible values are:

	
LAST_GENERATED: plan with the most recent timestamp

	
FIRST_GENERATED: plan with the earliest timestamp, the opposite to LAST_GENERATED

	
LAST_LOADED: plan with the most recent first_load_time statistics information

	
FIRST_LOADED: plan with the earliest first_load_time statistics information, the opposite to LAST_LOADED

	
MAX_ELAPSED_TIME: plan with the maximum elapsed time

	
MAX_BUFFER_GETS: plan with the maximum buffer gets

	
MAX_DISK_READS: plan with the maximum disk reads

	
MAX_DIRECT_WRITES: plan with the maximum direct writes

	
MAX_OPTIMIZER_COST: plan with the maximum optimizer cost

	
sqlset_owner

	
Owner of the SQL tuning set, or NULL for the current schema owner

	
spa_task_name

	
Name of the SQL Performance Analyzer task whose regressions are to be tuned

	
spa_task_owner

	
Owner of specified SQL Performance Analyzer task or NULL for current user

	
spa_compare_exec

	
Execution name of Compare Performance trial of SQL Performance Analyzer task. If NULL, we use the most recent execution of the given SQL Performance Analyzer task, of type COMPARE PERFORMANCE

Return Values

A SQL tuning task name that is unique by user (two different users can give the same name to their advisor tasks).

Usage Notes

With regard to the form of this subprogram that takes a SQL tuning set, filters provided to this function are evaluated as part of a SQL run by the current user. As such, they are executed with that user's security privileges and can contain any constructs and subqueries that user can access, but no more.

Examples

variable stmt_task VARCHAR2(64);
variable sts_task VARCHAR2(64);
variable spa_tune_task VARCHAR2(64);

Create Tuning Task with SQL Text format

EXEC :stmt_task := DBMS_SQLTUNE.CREATE_TUNING_TASK(-
 sql_text => 'select quantity_sold from sales s, times t where s.time_id = t.time_id and s.time_id = TO_DATE(''24-NOV-00'')');

Create Tuning Task with SQL ID format

EXEC :stmt_task := DBMS_SQLTUNE.CREATE_TUNING_TASK(sql_id => 'ay1m3ssvtrh24');

-- tune in limited scope
EXEC :stmt_task := DBMS_SQLTUNE.CREATE_TUNING_TASK(sql_id => 'ay1m3ssvtrh24', -
 scope => 'LIMITED');

-- only give 10 minutes for tuning statement
EXEC :stmt_task := DBMS_SQLTUNE.CREATE_TUNING_TASK(sql_id => 'ay1m3ssvtrh24', -
 time_limit => 600);

Create Tuning Task with AWR Snapshot format

EXEC :stmt_task := DBMS_SQLTUNE.CREATE_TUNING_TASK(begin_snap => 1, -
 end_snap => 2, sql_id => 'ay1m3ssvtrh24');

Create Tuning Task with SQL Tuning Set format

-- First we need to load an STS, then tune it
-- Tune our statements in order by buffer gets, time limit of one hour
-- the default ranking measure is elapsed time.
EXEC :sts_task := DBMS_SQLTUNE.CREATE_TUNING_TASK(-
 sqlset_name => 'my_workload', -
 rank1 => 'BUFFER_GETS', -
 time_limit => 3600, -
 description => 'tune my workload ordered by buffer gets');

Create Tuning Task with SPA Task format

-- Tune the SQLs that were reported as having regressed from the compare
-- performance execution of the SPA task named task_123
EXEC :spa_tune_task := DBMS_SQLTUNE.CREATE_TUNING_TASK(
 spa_task_name => 'task_123',
 spa_task_owner => 'SCOTT',
 spa_compare_exec => 'exec1');

DELETE_SQLSET Procedure

This procedure deletes a set of SQL statements from a SQL tuning set.

	
See Also:

SQL Tuning Set Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.DELETE_SQLSET (
 sqlset_name IN VARCHAR2,
 basic_filter IN VARCHAR2 := NULL,
 sqlset_owner IN VARCHAR2 := NULL);

Parameters

Table 139-18 DELETE_SQLSET Procedure Parameters

	Parameter	Description
	
sqlset_name

	
The SQL tuning set name

	
basic_filter

	
SQL predicate to filter the SQL from the SQL tuning set. This basic filter is used as a where clause on the SQL tuning set content to select a desired subset of SQL from the Tuning Set.

	
sqlset_owner

	
The owner of the SQL tuning set, or NULL for current schema owner

Examples

-- Delete all statements in a sql tuning set.
EXEC DBMS_SQLTUNE.DELETE_SQLSET(sqlset_name => 'my_workload');

-- Delete all statements in a sql tuning set which ran for less than a second
EXEC DBMS_SQLTUNE.DELETE_SQLSET(sqlset_name => 'my_workload', -
 basic_filter => 'elapsed_time < 1000000');

DROP_SQL_PROFILE Procedure

This procedure drops the named SQL profile from the database.

	
See Also:

SQL Profile Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.DROP_SQL_PROFILE (
 name IN VARCHAR2,
 ignore IN BOOLEAN := FALSE);

Parameters

Table 139-19 DROP_SQL_PROFILE Procedure Parameters

	Parameter	Description
	
name

	
The (mandatory) name of SQL profile to be dropped. The name is case sensitive.

	
ignore

	
Ignores errors due to object not existing

Usage Notes

Requires the "DROP ANY SQL PROFILE" privilege.

Examples

-- Drop the profile:
EXEC DBMS_SQLTUNE.DROP_SQL_PROFILE(:pname);

DROP_SQLSET Procedure

This procedure drops a SQL tuning set if it is not active.

	
See Also:

SQL Tuning Set Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.DROP_SQLSET (
 sqlset_name IN VARCHAR2,
 sqlset_owner IN VARCHAR2 := NULL);

Parameters

Table 139-20 DROP_SQLSET Procedure Parameters

	Parameter	Description
	
sqlset_name

	
The SQL tuning set name

	
sqlset_owner

	
The owner of the SQL tuning set, or NULL for current schema owner

Usage Notes

You cannot drop a SQL tuning set when it is referenced by one or more clients.

Examples

-- Drop the sqlset.
EXEC DBMS_SQLTUNE.DROP_SQLSET ('my_workload');

DROP_TUNING_TASK Procedure

This procedure drops a SQL tuning task. The task and all its result data are deleted.

	
See Also:

SQL Tuning Advisor Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.DROP_TUNING_TASK(
 task_name IN VARCHAR2);

Parameters

Table 139-21 DROP_TUNING_TASK Procedure Parameters

	Parameter	Description
	
task_name

	
The name of the tuning task to drop

EXECUTE_TUNING_TASK Function & Procedure

This function and procedure executes a previously created tuning task. Both the function and the procedure run in the context of a new task execution. The difference is that the function version returns that new execution name.

	
See Also:

SQL Tuning Advisor Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.EXECUTE_TUNING_TASK(
 task_name IN VARCHAR2,
 execution_name IN VARCHAR2 := NULL,
 execution_params IN dbms_advisor.argList := NULL,
 execution_desc IN VARCHAR2 := NULL)
 RETURN VARCHAR2;

DBMS_SQLTUNE.EXECUTE_TUNING_TASK(
 task_name IN VARCHAR2,
 execution_name IN VARCHAR2 := NULL,
 execution_params IN dbms_advisor.argList := NULL,
 execution_desc IN VARCHAR2 := NULL);

Parameters

Table 139-22 EXECUTE_TUNING_TASK Function & Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the tuning task to execute

	
execution_name

	
A name to qualify and identify an execution. If not specified, it is generated by the advisor and returned by function.

	
execution_params

	
List of parameters (name, value) for the specified execution. The execution parameters have effect only on the execution for which they are specified. They override the values for the parameters stored in the task (set through the SET_TUNING_TASK_PARAMETER Procedures).

	
execution_desc

	
A 256-length string describing the execution

Usage Notes

A tuning task can be executed multiples times without having to reset it.

Examples

EXEC DBMS_SQLTUNE.EXECUTE_TUNING_TASK(:stmt_task);

IMPLEMENT_TUNING_TASK Function

This function implements a set of SQL profile recommendations made by the SQL Tuning Advisor. Call this subprogram is equivalent to calling the SCRIPT_TUNING_TASK Function and then running the script.

	
See Also:

SQL Tuning Advisor Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.IMPLEMENT_TUNING_TASK(
 task_name IN VARCHAR2,
 rec_type IN VARCHAR2 := REC_TYPE_SQL_PROFILES,
 owner_name IN VARCHAR2 := NULL,
 execution_name IN VARCHAR2 := NULL);

Parameters

Table 139-23 IMPLEMENT_TUNING_TASK Function Parameters

	Parameter	Description
	
task_name

	
Name of the tuning task for which to implement recommendations

	
rec_type

	
Filter the types of recommendations to implement. Only 'PROFILES' is supported.

	
owner_name

	
Owner of the relevant tuning task or NULL for the current user.

	
execution_name

	
name of the task execution to use. If NULL, recommendations from the last task execution are implemented.

INTERRUPT_TUNING_TASK Procedure

This procedure interrupts the currently executing tuning task. The task ends its operations as it would at normal exit so that the user can access the intermediate results.

	
See Also:

SQL Tuning Advisor Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.INTERRUPT_TUNING_TASK(
 task_name IN VARCHAR2);

Parameters

Table 139-24 INTERRUPT_TUNING_TASK Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the tuning task to interrupt

Examples

EXEC DBMS_SQLTUNE.INTERRUPT_TUNING_TASK(:my_task);

LOAD_SQLSET Procedure

This procedure populates the SQL tuning set with a set of selected SQL. You can call the procedure multiple times to add new SQL statements or replace attributes of existing statements.

	
See Also:

SQL Tuning Set Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.LOAD_SQLSET (
 sqlset_name IN VARCHAR2,
 populate_cursor IN sqlset_cursor,
 load_option IN VARCHAR2 := 'INSERT',
 update_option IN VARCHAR2 := 'REPLACE',
 update_condition IN VARCHAR2 := NULL,
 update_attributes IN VARCHAR2 := NULL,
 ignore_null IN BOOLEAN := TRUE,
 commit_rows IN POSITIVE := NULL,
 sqlset_owner IN VARCHAR2 := NULL);

Parameters

Table 139-25 LOAD_SQLSET Procedure Parameters

	Parameter	Description
	
sqlset_name

	
The SQL tuning set name to populate

	
populate_cursor

	
The cursor reference from which to populate

	
load_option

	
Specifies how the statements are loaded into the SQL tuning set. The possible values are:

	
INSERT (default) - add only new statements

	
UPDATE - update existing the SQL statements and ignores any new statements

	
MERGE - this is a combination of the two other options. This option inserts new statements and updates the information of the existing ones.

	
update_option

	
Specifies how the existing statements are updated. This parameter is considered only if load_option is specified with 'UPDATE'/'MERGE' as an option. The possible values are:

	
REPLACE (default) - update the statement using the new statistics, bind list, object list, and so on.

	
ACCUMULATE - when possible combine attributes (for example, statistics like elapsed_time, and so on) otherwise just replace the old values (for example, module, action, and so on) by the new provided ones. The SQL statement attributes that can be accumulated are: elapsed_time, buffer_gets, direct_writes, disk_reads, row_processed, fetches, executions, end_of_fetch_count, stat_period and active_stat_period.

	
update_condition

	
Specifies a where clause to execute the update operation. The update is performed only if the specified condition is true. The condition can refer to either the data source or destination. The condition must use the following prefixes to refer to attributes from the source or the destination:

	
OLD - to refer to statement attributes from the SQL tuning set (destination)

	
NEW - to refer to statements attributes from the input statements (source)

	
update_attributes

	
Specifies the list of a SQL statement attributes to update during a merge or update operation.The possible values are:

	
NULL (default) - the content of the input cursor except the execution context. On other terms, it is equivalent to ALL without execution context like module, action, and so on.

	
BASIC - statistics and binds only

	
TYPICAL - BASIC + SQL plans (without row source statistics) and without object reference list

	
ALL - all attributes including the execution context attributes like module, action, and so on.

	
List of comma separated attribute names to update - EXECUTION_CONTEXT, EXECUTION_STATISTICS, BIND_LIST, OBJECT_LIST, SQL_PLAN, SQL_PLAN_STATISTICS (similar to SQL_PLAN + row source statistics)

	
ignore_null

	
If TRUE do not update an attribute if the new value is NULL. That is, do not override with NULL values unless intentional.

	
commit_rows

	
If a value is provided, the load commits after each set of that many statements is inserted. If NULL is provided, the load commits only once, at the end of the operation. Providing a value for this argument allows you to monitor the progress of a SQL tuning set load operation in the DBA_/USER_SQLSET views. The STATEMENT_COUNT value increases as new SQL statements are loaded.

	
sqlset_owner

	
The owner of the SQL tuning set, or the current schema owner or NULL for current owner

Exceptions

	
This procedure returns an error when sqlset_name is invalid, or a corresponding SQL tuning set does not exist, or the populate_cursor is incorrect and cannot be executed.

	
Exceptions are also raised when invalid filters are provided. Filters can be invalid either because they don't parse (for example, they refer to attributes not in sqlset_row), or because they violate the user's privileges.

Usage Notes

Rows in the input populate_cursor must be of type SQLSET_ROW.

Examples

In this example, you create and populate a SQL tuning set with all cursor cache statements with an elapsed time of 5 seconds or more excluding statements that belong to SYS schema (to simulate an application user workload). You select all attributes of the SQL statements and load them in the tuning set using the default mode, which loads only new statements, since the SQL tuning set is empty.

-- create the tuning set
EXEC DBMS_SQLTUNE.CREATE_SQLSET('my_workload');
-- populate the tuning set from the cursor cache
DECLARE
 cur DBMS_SQLTUNE.SQLSET_CURSOR;
BEGIN
 OPEN cur FOR
 SELECT VALUE(P)
 FROM table(
 DBMS_SQLTUNE.SELECT_CURSOR_CACHE(
 'parsing_schema_name <> ''SYS'' AND elapsed_time > 5000000',
 NULL, NULL, NULL, NULL, 1, NULL,
 'ALL')) P;

DBMS_SQLTUNE.LOAD_SQLSET(sqlset_name => 'my_workload',
 populate_cursor => cur);

END;
/

Suppose now you wish to augment this information with what is stored in the workload repository (AWR). You populate the tuning set with 'ACCUMULATE' as your update_option because it is assumed the cursors currently in the cache had aged out since the snapshot was taken.

You omit the elapsed_time filter because it is assumed that any statement captured in AWR is important, but still you throw away the SYS-parsed cursors to avoid recursive SQL.

DECLARE
 cur DBMS_SQLTUNE.SQLSET_CURSOR;
BEGIN
 OPEN cur FOR
 SELECT VALUE(P)
 FROM table(
 DBMS_SQLTUNE.SELECT_WORKLOAD_REPOSITORY(1,2,
 'parsing_schema_name <> ''SYS''',
 NULL, NULL,NULL,NULL,
 1,
 NULL,
 'ALL')) P;

 DBMS_SQLTUNE.LOAD_SQLSET(sqlset_name => 'my_workload',
 populate_cursor => cur,
 Using DBMS_SQLTUNE
 load_option => 'MERGE',
 update_option => 'ACCUMULATE');
END;

The following example is a simple load that only inserts new statements from the workload repository, skipping existing ones (in the SQL tuning set). Note that 'INSERT' is the default value for the load_option argument of the LOAD_SQLSET procedure.

DECLARE
 cur sys_refcursor;
BEGIN
 OPEN cur FOR
 SELECT VALUE(P)
 FROM table(DBMS_SQLTUNE.SELECT_WORKLOAD_REPOSITORY(1,2)) P;

 DBMS_SQLTUNE.LOAD_SQLSET(sqlset_name => 'my_workload',
populate_cursor => cur);
END;
/

The next example demonstrates a load with UPDATE option. This updates statements that already exist in the SQL tuning set but does not add new ones. By default, old statistics are replaced by their new values.

DECLARE
 cur sys_refcursor;
BEGIN
 OPEN cur FOR
 SELECT VALUE(P)
 FROM table(DBMS_SQLTUNE.SELECT_CURSOR_CACHE) P;

 DBMS_SQLTUNE.LOAD_SQLSET(sqlset_name => 'my_workload',
 populate_cursor => cur,
 load_option => 'UPDATE');
END;
/

PACK_STGTAB_SQLPROF Procedure

This procedure copies profile data from the SYS. schema into the staging table.

	
See Also:

SQL Profile Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.PACK_STGTAB_SQLPROF (
 profile_name IN VARCHAR2 := '%',
 profile_category IN VARCHAR2 := 'DEFAULT',
 staging_table_name IN VARCHAR2,
 staging_schema_owner IN VARCHAR2 := NULL);

Parameters

Table 139-26 PACK_STGTAB_SQLPROF Procedure Parameters

	Parameter	Description
	
profile_name

	
The name of the profile to pack (% wildcards acceptable, case-sensitive)

	
profile_category

	
The category to pack profiles from (% wildcards acceptable, case-sensitive)

	
staging_table_name

	
The name of the table to use (case-insensitive unless double quoted). Required.

	
staging_schema_owner

	
The schema where the table resides, or NULL for current schema (case-insensitive unless double quoted)

Usage Notes

	
This procedures requires ADMINISTER SQL MANAGEMENT OBJECT privilege and INSERT privilege on the staging table.

	
Note that this function issues a COMMIT after packing each SQL profile, so if an error is raised mid-execution, clear the staging table by deleting its rows.

Examples

Put only those profiles in the DEFAULT category into the staging table. This corresponds to all profiles used by default on this system.

EXEC DBMS_SQLTUNE.PACK_STGTAB_SQLPROF (staging_table_name => 'PROFILE_STGTAB');

This is another example where you put all profiles into the staging table. Note this moves profiles that are not currently being used by default but are in other categories, such as for testing purposes.

EXEC DBMS_SQLTUNE.PACK_STGTAB_SQLPROF (profile_category => '%', -
 staging_table_name => 'PROFILE_STGTAB');

PACK_STGTAB_SQLSET Procedure

This procedure copies one or more SQL tuning sets from their location in the SYS schema to a staging table created by the CREATE_STGTAB_SQLSET Procedure.

	
See Also:

SQL Tuning Set Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.PACK_STGTAB_SQLSET (
 sqlset_name IN VARCHAR2,
 sqlset_owner IN VARCHAR2 := NULL,
 staging_table_name IN VARCHAR2,
 staging_schema_owner IN VARCHAR2 := NULL,
 db_version IN NUMBER := NULL);

Parameters

Table 139-27 PACK_STGTAB_SQLSET Procedure Parameters

	Parameter	Description
	
sqlset_name

	
The name of the SQL tuning set to pack (% wildcards acceptable, case-sensitive)

	
sqlset_owner

	
The category from which to pack SQL tuning sets (% wildcards acceptable, case-sensitive)

	
staging_table_name

	
The name of the table to use (case-sensitive)

	
staging_schema_owner

	
The schema where the table resides, or NULL for current schema (case-sensitive)

	
db_version

	
Database (DB) version determining the format of the staging table. User can also create an older DB version staging table to export STS to an older DB version. One of the following values:

	
NULL (default) — current DB version

	
STS_STGTAB_10_2_VERSION — 10.2 DB version

	
STS_STGTAB_11_1_VERSION — 11.1 DB version

	
STS_STGTAB_11_2_VERSION — 11.2 DB version

Usage Notes

	
This procedure can be called several times to move more than one SQL tuning set. Users can then move the populated staging table to another system using any method, such as database link or datapump. Users can then call the UNPACK_STGTAB_SQLSET Procedure create the SQL tuning set on the other system.

	
Note that this function issues a COMMIT after packing each SQL tuning set, so if an error is raised mid-execution, clear the staging table by deleting its rows.

Examples

Put all SQL tuning sets on the system in the staging table

-- to create a staging table, see the CREATE_STGTAB_SQLSET Procedure

EXEC DBMS_SQLTUNE.PACK_STGTAB_SQLSET(sqlset_name => '%', -
 sqlset_owner => '%', -
 staging_table_name => 'STGTAB_SQLSET');

Put only those SQL tuning sets owned by the current user in the staging table

EXEC DBMS_SQLTUNE.PACK_STGTAB_SQLSET(
 sqlset_name => '%',
 staging_table_name => 'STGTAB_SQLSET');

Pack a specific SQL tuning set

EXEC DBMS_SQLTUNE.PACK_STGTAB_SQLSET(
 sqlset_name => 'my_workload', -
 staging_table_name => 'STGTAB_SQLSET');

Pack a second SQL tuning set

EXEC DBMS_SQLTUNE.PACK_STGTAB_SQLSET(
 sqlset_name => 'workload_subset', -
 staging_table_name => 'STGTAB_SQLSET');

Pack the STS my_workload to a staging table STGTAB_SQLSET created for 10.2 DB release

EXEC DBMS_SQLTUNE.PACK_STGTAB_SQLSET(
 sqlset_name => 'workload_subset',
 staging_table_name => 'STGTAB_SQLSET',
 db_version => DBMS_SQLTUNE.STS_STGTAB_10_2_VERSION);

Pack the STS my_workload to a staging table STGTAB_SQLSET created for 11.1 DB release

EXEC DBMS_SQLTUNE.PACK_STGTAB_SQLSET(
 sqlset_name => 'workload_subset',
 staging_table_name => 'STGTAB_SQLSET',
 db_version => DBMS_SQLTUNE.STS_STGTAB_11_1_VERSION);

REMAP_STGTAB_SQLPROF Procedure

This procedure allows DBAs to change the profile data values kept in the staging table prior to performing an unpack operation. The procedure can be used to change the category of a profile.It can be used to change the name of a profile if one already exists on the system with the same name.

	
See Also:

SQL Profile Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.REMAP_STGTAB_SQLPROF (
 old_profile_name IN VARCHAR2,
 new_profile_name IN VARCHAR2 := NULL,
 new_profile_category IN VARCHAR2 := NULL,
 staging_table_name IN VARCHAR2,
 staging_schema_owner IN VARCHAR2 := NULL);

Parameters

Table 139-28 REMAP_STGTAB_SQLPROF Procedure Parameters

	Parameter	Description
	
old_profile_name

	
The name of the profile to target for a remap operation (case-sensitive)

	
new_profile_name

	
The new name of the profile, or NULL to remain the same (case-sensitive)

	
new_profile_category

	
The new category for the profile, or NULL to remain the same (case-sensitive)

	
staging_table_name

	
The name of the table on which to perform the remap operation (case-sensitive). Required.

	
staging_schema_owner

	
The schema where the table resides, or NULL for current schema (case-sensitive)

Usage Notes

Using this procedure requires the UPDATE privilege on the staging table.

Examples

Change the name of a profile before we unpack, to avoid conflicts

EXEC DBMS_SQLTUNE.REMAP_STGTAB_SQLPROF(old_profile_name => :pname, -
 new_profile_name => 'IMP' || :pname, -
 staging_table_name => 'PROFILE_STGTAB');

Change the SQL profile in the staging table to be 'TEST' category before we import it. This way users can test the profile on the new system before it is active.

EXEC DBMS_SQLTUNE.REMAP_STGTAB_SQLPROF(old_profile_name => :pname, -
 new_profile_category => 'TEST', -
 staging_table_name => 'PROFILE_STGTAB');

REMAP_STGTAB_SQLSET Procedure

This procedure changes the tuning set names and owners in the staging table so that they can be unpacked with different values than they had on the host system.

	
See Also:

SQL Profile Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.REMAP_STGTAB_SQLSET (
 old_sqlset_name IN VARCHAR2,
 old_sqlset_owner IN VARCHAR2 := NULL,
 new_sqlset_name IN VARCHAR2 := NULL,
 new_sqlset_owner IN VARCHAR2 := NULL,
 staging_table_name IN VARCHAR2,
 taging_schema_owner IN VARCHAR2 := NULL);

Parameters

Table 139-29 REMAP_STGTAB_SQLSET Procedure Parameters

	Parameter	Description
	
old_sqlset_name

	
The name of the tuning set to target for a remap operation. Wildcards are not supported.

	
old_sqlset_owner

	
The new name of the tuning set owner to target for a remap operation. NULL for current schema owner

	
new_sqlset_name

	
The new name for the tuning set, or NULL to keep the same tuning set name.

	
new_sqlset_owner

	
The new owner for the tuning set, or NULL to remain the same owner name.

	
staging_table_name

	
The name of the table on which to perform the remap operation (case-sensitive)

	
staging_schema_owner

	
The name of staging table owner, or NULL for current schema owner (case-sensitive)

Usage Notes

You can call this procedure multiple times to remap more than one tuning set name or owner. Note that this procedure only handles one tuning set per call.

Examples

-- Change the name of an STS in the staging table before we unpack it.
EXEC DBMS_SQLTUNE.REMAP_STGTAB_SQLSET(old_sqlset_name => 'my_workload', -
 old_sqlset_owner => 'SH', -
 new_sqlset_name => 'imp_workload', -
 staging_table_name => 'STGTAB_SQLSET');

-- Change the owner of an STS in the staging table before we unpack it.
EXEC DBMS_SQLTUNE.REMAP_STGTAB_SQLSET(old_sqlset_name => 'imp_workload', -
 old_sqlset_owner => 'SH', -
 new_sqlset_owner => 'SYS', -
 staging_table_name => 'STGTAB_SQLSET');

REMOVE_SQLSET_REFERENCE Procedure

This procedure deactivates a SQL tuning set to indicate it is no longer used by the client.

	
See Also:

SQL Tuning Set Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.REMOVE_SQLSET_REFERENCE (
 sqlset_name IN VARCHAR2,
 reference_id IN NUMBER);

Parameters

Table 139-30 REMOVE_SQLSET_REFERENCE Procedure Parameters

	Parameter	Description
	
sqlset_name

	
The SQL tuning set name

	
reference_id

	
The identifier of the reference to remove

Examples

You can remove references on a given SQL tuning set when you finish using it and want to make it writable again.

EXEC DBMS_SQLTUNE.REMOVE_SQLSET_REFERENCE(-
 sqlset_name => 'my_workload', -
 reference_id => :rid);

Use views USER/DBA_SQLSET_REFERENCES to find all references on a given SQL tuning set.

REPORT_AUTO_TUNING_TASK Function

This function displays a report from the automatic tuning task. This function reports on a range of task executions, whereas the REPORT_TUNING_TASK Function reports on a single execution. Note that this function is deprecated in Oracle Database 11gR2 (11.2.0.2) in favor of DBMS_AUTO_SQLTUNE.REPORT_AUTO_TUNING_TASK.

	
See Also:

	
SQL Tuning Set Subprograms for other subprograms in this group

	
REPORT_AUTO_TUNING_TASK Function

Syntax

DBMS_SQLTUNE.REPORT_AUTO_TUNING_TASK(
 begin_exec IN VARCHAR2 := NULL,
 end_exec IN VARCHAR2 := NULL,
 type IN VARCHAR2 := TYPE_TEXT,
 level IN VARCHAR2 := LEVEL_TYPICAL,
 section IN VARCHAR2 := SECTION_ALL,
 object_id IN NUMBER := NULL,
 result_limit IN NUMBER := NULL)
 RETURN CLOB;

Parameters

Table 139-31 REPORT_AUTO_TUNING_TASK Function Parameters

	Parameter	Description
	
begin_exec

	
Name of execution from which to begin the report. NULL retrieves a report on the most recent run

	
end_exec

	
Name of execution at which to end the report. NULL retrieves a report on the most recent run.

	
type

	
Type of the report to produce. Possible values are TYPE_TEXT which produces a text report

	
level

	
Level of detail in the report:

	
LEVEL_BASIC: simple version of the report. Just show info about the actions taken by the advisor.

	
LEVEL_TYPICAL: show information about every statement analyzed, including requests not implemented.

	
LEVEL_ALL: highly detailed report level, also provides annotations about statements skipped over.

	
section

	
Optionally limit the report to a single section (ALL for all sections):

	
SECTION_SUMMARY - summary information

	
SECTION_FINDINGS - tuning findings

	
SECTION_PLAN - explain plans

	
SECTION_INFORMATION - general information

	
SECTION_ERROR - statements with errors

	
SECTION_ALL - all statements

	
object_id

	
Advisor framework object id that represents a single statement to restrict reporting to. NULL for all statements. Only valid for reports that target a single execution.

	
result_limit

	
Maximum number of SQL statements to show in the report

Return Values

A CLOB containing the desired report.

REPORT_SQL_DETAIL Function

This function builds a report for a specific SQLID. For each SQLID it gives various statistics and details as obtained from the V$ views and AWR.

	
See Also:

SQL Performance Reporting Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.REPORT_SQL_DETAIL(
 sql_id IN VARCHAR2 DEFAULT NULL,
 sql_plan_hash_value IN NUMBER DEFAULT NULL,
 start_time IN DATE DEFAULT NULL,
 duration IN NUMBER DEFAULT NULL,
 inst_id IN NUMBER DEFAULT NULL,
 dbid IN NUMBER DEFAULT NULL,
 event_detail IN VARCHAR2 DEFAULT 'YES',
 bucket_max_count IN NUMBER DEFAULT 128,
 bucket_interval IN NUMBER DEFAULT NULL,
 top_n IN NUMBER DEFAULT 10,
 report_level IN VARCHAR2 DEFAULT 'TYPICAL',
 type IN VARCHAR2 DEFAULT 'ACTIVE')
 RETURN CLOB;

Parameters

Table 139-32 REPORT_SQL_DETAIL Function Parameters

	Parameter	Description
	
sql_id

	
SQLID for which monitoring information should be displayed. If NULL (the default), display statistics for the SQLID of the last SQL statement executed in the current session.

	
sql_plan_hash_value

	
Displays SQL statistics and details for a specific plan_hash_value. If NULL (default), displays statistics and details for all plans of the SQL_ID.

	
start_time

	
If specified, shows SQL activity (from gv$ACTIVE_SESSION_HISTORY) starting at this time. On Oracle RAC, the minimum start_time is the earliest sample_time of the in-memory ASH buffers across all instances. If NULL (default), one hour before the current time.

	
duration

	
Duration of activity in seconds for the report. If NULL (default) uses a value of 1 hour.

	
inst_id

	
Target instance to get SQL details from. If NULL, uses data from all instances. If 0 or -1, uses current instance.

	
dbid

	
DBID from which to get SQL details. If NULL, uses current DBID.

	
event_detail

	
When set to 'NO', the activity is aggregated by wait_class only. Use 'YES' (the default) to aggregate by (wait_class, event_name).

	
bucket_max_count

	
If specified, this should be the maximum number of histogram buckets created in the report. If not specified, a value of 128 is used.

	
bucket_interval

	
If specified, this represents the exact time interval in seconds, of all histogram buckets. If specified, bucket_max_count is ignored.

	
top_n

	
Controls the number of entries to display per dimension in the top dimensions section. If not specified, a default value of 10 is used.

	
report_level

	
Level of detail for the report, either 'BASIC', 'TYPICAL' or 'ALL'. Default assumes 'TYPICAL'. Their meanings are explained below.

In addition, individual report sections can also be enabled or disabled by using a +/- section_name. Several sections are defined:

	
'TOP'- Show top values for the ASH dimensions for a SQL statement; ON by default

	
'SPM'- Show existing plan baselines for a SQL statement; OFF by default

	
'MISMATCH'- Show reasons for creating new child cursors (sharing criteria violations); OFF by default.

	
'STATS'- Show SQL execution statistics per plan from GV$SQLAREA_PLAN_HASH; ON by default

	
'ACTIVITY' - Show top activity from ASH for each plan of a SQL statement; ON by default

	
'ACTIVITY_ALL' - Show top activity from ASH for each line of the plan for a SQL statement; OFF by default

	
'HISTOGRAM' - Show activity histogram for each plan of a SQL statement (plan timeline histogram); ON by default

	
'SESSIONS' - Show activity for top sessions for each plan of a SQL statement; OFF by default

	
'MONITOR' - Show show one monitored SQL execution per execution plan; ON by default

	
'XPLAN' - Show execution plans; ON by default

	
'BINDS' - show captured bind data; ON by default

In addition, SQL text can be specified at different levels:

	
-SQL_TEXT - No SQL text in report

	
+SQL_TEXT - OK with partial SQL text up to the first 2000 chars as stored in GV$SQL_MONITOR

	
-SQL_FULLTEXT - No full SQL text (+SQL_TEXT)

	
+SQL_FULLTEXT - Show full SQL text (default value)

The meanings of the three top-level report levels are:

	
NONE - minimum possible

	
BASIC - SQL_TEXT+STATS+ACTIVITY+HISTOGRAM

	
TYPICAL - SQL_FULLTEXT+TOP+STATS+ACTIVITY+HISTOGRAM+XPLAN+MONITOR

	
ALL - everything

Only one of these 4 levels can be specified and, if it is, it has to be at the start of the REPORT_LEVEL string

	
type

	
Report format: 'ACTIVE' by default. Can also be 'XML' (see Usage Notes).

Return Values

A CLOB containing the desired report.

Usage Notes

	
ACTIVE reports have a rich, interactive user interface similar to Enterprise Manager while not requiring any EM installation. The report file built is in HTML format, so it can be interpreted by most modern browsers. The code powering the active report is downloaded transparently by the web browser when the report is first viewed, hence viewing it requires outside connectivity.

	
The invoker needs the SELECT privilege on the following views:

	
V$SESSION

	
DBA_ADVISOR_FINDINGS

	
V$DATABASE

	
GV$ASH_INFO

	
GV$ACTIVE_SESSION_HISTORY

	
GV$SQLAREA_PLAN_HASH

	
GV$SQL

	
DBA_HIST_SNAPSHOT

	
DBA_HIST_WR_CONTROL

	
DBA_HIST_ACTIVE_SESS_HISTORY

	
DBA_HIST_SQLSTAT

	
DBA_HIST_SQL_BIND_METADATA

	
DBA_HIST_SQLTEXT

	
DBA_SQL_PLAN_BASELINES

	
DBA_SQL_PROFILES

	
DBA_ADVISOR_TASKS

	
DBA_SERVICES

	
DBA_USERS

	
DBA_OBJECTS

	
DBA_PROCEDURES

	
The invoker needs the EXECUTE privilege on the DBMS_XPLAN package.

	
Finally, the invoker requires all privileges required by DBMS_SQLTUNE.REPORT_SQL_MONITOR an DBMS_SQLTUNE.REPORT_SQL_MONITOR_LIST as it calls these functions.

REPORT_SQL_MONITOR Function

This function builds a report (text, simple HTML, active HTML, XML) for the monitoring information collected on behalf of the targeted statement execution.

	
See Also:

Real-time SQL Monitoring Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.REPORT_SQL_MONITOR(
 sql_id IN VARCHAR2 DEFAULT NULL,
 session_id IN NUMBER DEFAULT NULL,
 session_serial IN NUMBER DEFAULT NULL,
 sql_exec_start IN DATE DEFAULT NULL,
 sql_exec_id IN NUMBER DEFAULT NULL,
 inst_id IN NUMBER DEFAULT NULL,
 start_time_filter IN DATE DEFAULT NULL,
 end_time_filter IN DATE DEFAULT NULL,
 instance_id_filter IN NUMBER DEFAULT NULL,
 parallel_filter IN VARCHAR2 DEFAULT NULL,
 plan_line_filter IN NUMBER DEFAULT NULL,
 event_detail IN VARCHAR2 DEFAULT 'YES',
 bucket_max_count IN NUMBER DEFAULT 128,
 bucket_interval IN NUMBER DEFAULT NULL,
 base_path IN VARCHAR2 DEFAULT NULL,
 last_refresh_time IN DATE DEFAULT NULL,
 report_level IN VARCHAR2 DEFAULT 'TYPICAL',
 type IN VARCHAR2 DEFAULT 'TEXT',
 sql_plan_hash_value IN NUMBER DEFAULT NULL)
 RETURN CLOB;

Parameters

Table 139-33 REPORT_SQL_MONITOR Function Parameters

	Parameter	Description
	
sql_id

	
SQL_ID for which monitoring information should be displayed. Use NULL (the default) to report on the last statement monitored by Oracle.

	
session_id

	
If not NULL, this parameters targets only the sub-set of statements executed by the specified session. Default is NULL. Use USERENV('SID') for current session.

	
session_serial

	
In addition to the session_id parameter, one can also specify its session serial to ensure that the desired session incarnation is targeted. This parameter is ignored when session_id is NULL.

	
sql_exec_start

	
This parameter, along with sql_exec_id, is only applicable when sql_id is also specified. Jointly, they can be used to display monitoring information associated to any execution of the statement identified by sql_id, assuming that this statement was monitored. When NULL (the default), the last monitored execution of SQL sql_id is shown.

	
sql_exec_id

	
This parameter, along with sql_exec_start, is only applicable when sql_id is also specified. Jointly, they can be used to display monitoring information associated to any execution of the statement identified by sql_id, assuming that this statement was monitored. When NULL (the default), the last monitored execution of SQL sql_id is shown.

	
inst_id

	
Only considers statements started on the specified instance. Use -1 to target the login instance. NULL (default) targets all instances.

	
start_time_filter

	
If not NULL, the report considers only the activity (from GV$ACTIVE_SESSION_HISTORY) recorded after the specified date. If NULL, the reported activity starts when the execution of the targeted SQL statement has started.

	
end_time_filter

	
If not NULL, the report shows only the activity (from GV$ACTIVE_SESSION_HISTORY) collected before the date end_time_filter. If NULL, the reported activity ends when the targeted SQL statement execution has ended or is the current time if the statement is still executing.

	
instance_id_filter

	
Only applies when the execution runs parallel across multiple Oracle Real Application Cluster (Oracle RAC) instances. This parameter allows to only report the activity of the specified instance. Use a NULL value (the default) to include the activity on all instances where the parallel query was executed.

	
parallel_filter

	
Applies only to parallel execution and allows reporting the activity of only a subset of the processes involved in the parallel execution (Query Coordinator and/or Parallel eXecution servers). The value of this parameter can be:

	
NULL to target all processes

	
[qc][servers(<svr_grp>[,] <svr_set>[,] <srv_num>)]: 'qc' stands for query coordinator and servers() stipulate which PX servers to consider.

The following examples show how to target a subset of the parallel processes:

	
qc: targets only the query coordinator

	
servers(1): targets all parallel execution servers in group number 1. Note that statement running parallel have one main server group (group number 1) plus one additional group for each nested sub-query running parallel.

	
servers(,2): targets all parallel execution servers from any group but only running in set 1 of each group (each group has at most two set of parallel execution servers)

	
servers(1,1): consider only group 1, set 1

	
servers(1,2,4): consider only group 1, set 2, server number 4. This reports for a single parallel server process

	
qc servers(1,2,4): same as above by also including the query coordinator

	
event_detail

	
When value is 'YES' (the default), reported activity from GV$ACTIVE_SESSION_HISTORY is aggregated by (wait_class, event_name). Use 'NO' to only aggregate by wait_class.

	
bucket_max_count

	
If specified, this should be the maximum number of histogram buckets created in the report

	
bucket_interval

	
If specified, this represents the exact time interval in seconds, of all histogram buckets. If specified, bucket_max_count is ignored.

	
base_path

	
URL path for flex HTML resources since flex HTML format is required to access external files (java scripts and the flash SWF file itself)

	
last_refresh_time

	
If not NULL (default is NULL), the time when the report was last retrieved (see SYSDATE attribute of the report tag). Use this option to display the report of a running query, and when the report is refreshed on a regular basis. This optimizes the size of the report since only the new or changed information is returned. In particular, the following are optimized:

	
SQL text is not returned when this option is specified

	
activity histogram starts at the bucket that intersect at that time. The entire content of the bucket is returned, even if last_refresh_time is after the start of that bucket

	
report_level

	
Level of detail for the report, either 'NONE', 'BASIC', 'TYPICAL' or 'ALL'. Default assumes 'TYPICAL'. Their meanings are explained below.

In addition, individual report sections can also be enabled or disabled by using a +/- section_name. Several sections are defined:

	
'XPLAN'- Show explain plan; ON by default

	
'PLAN'- Show plan monitoring statistics; ON by default

	
'SESSIONS'- Show session details. Applies only to parallel queries; ON by default

	
'INSTANCE'- Show instance details. Applies only to parallel and cross instance; ON by default

	
'PARALLEL'- An umbrella parameter for specifying sessions+instance details

	
'ACTIVITY' - Show activity summary at global level, plan line level and session or instance level (if applicable); ON by default

	
'BINDS' - Show bind information when available; ON by default

	
'METRICS' - Show metric data (CPU, IOs, ...) over time; ON by default

	
'ACTIVITY_HISTOGRAM' - Show an histogram of the overall query activity; ON by default

	
'PLAN_HISTOGRAM' - Show activity histogram at plan line level; OFF by default

	
'OTHER' - Other info; ON by default

In addition, SQL text can be specified at different levels:

	
SQL_TEXT - No SQL text in report

	
+SQL_TEXT - OK with partial SQL text up to the first 2000 chars as stored in GV$SQL_MONITOR

	
-SQL_FULLTEXT - No full SQL text (+SQL_TEXT)

	
+SQL_FULLTEXT - Show full SQL text (default value)

	
report_level (contd.)

	
The meanings of the three top-level report levels are:

	
NONE - minimum possible

	
+BASIC - SQL_TEXT-PLAN-XPLAN-SESSIONS-INSTANCE-ACTIVITY_HISTOGRAM-PLAN_HISTOGRAM-METRICS

	
TYPICAL - everything but PLAN_HISTOGRAM

	
ALL - everything

Only one of these 4 levels can be specified and, if it is, it has to be at the start of the REPORT_LEVEL string

	
type

	
Report format, 'TEXT' by default. Can be 'TEXT', 'HTML', 'XML' or 'ACTIVE' (see Usage Notes).

	
sql_plan_hash_value

	
Target only those SQL executions with the specified plan_hash_value. Default is NULL.

Return Values

A CLOB containing the desired report.

Usage Notes

	
The target SQL statement for this report can be:

	
The last SQL monitored by Oracle (this is the default behavior, so there is no need to specify any parameter)The last SQL executed by a specific session and monitored by Oracle. The session is identified by its session id and optionally it serial number. For example, use session_id => USERENV ('SID') for the current session or session_id=>20, session_serial=>103 for session ID 20, serial number 103.The last execution of a specific statement identified by its sql_id.A specific execution of a SQL statement identified by its execution key (sql_id, sql_exec_start and sql_exec_id).

	
This report produces performance data exposed by several fixed views, listed below. For this reason, the invoker of the report function must have privilege to select data from these fixed views (such as the SELECT_CATALOG role).

	
GV$SQL_MONITOR

	
GV$SQL_PLAN_MONITOR

	
GV$SQL_PLAN

	
GV$ACTIVE_SESSION_HISTORY

	
GV$SESSION_LONGOPS

	
GV$SQL

	
The bucket_max_count and bucket_interval parameters control the activity histogram. By default, the maximum number of buckets is set to 128 and the RDBMS derives the bucket_interval based on this. The bucket_interval (value is in seconds) is computed such that it is the smallest possible power of 2 value (starting at 1s) without exceeding the maximum number of buckets. For example, if the query has executed for 600s, the RDBMS selects a bucket_interval of 8s (a power of two) given that 600/8 = 74 which is less than 128 buckets maximum. Smaller than 8s would be 4s which would lead to more buckets than the 128 maximum. If bucket_interval is specified, the RDBMS uses that value instead of deriving it from bucket_max_count.

	
ACTIVE reports have a rich, interactive user interface similar to Enterprise Manager while not requiring any EM installation. The report file built is in HTML format, so it can be interpreted by most modern browsers. The code powering the active report is downloaded transparently by the web browser when the report is first viewed, hence viewing it requires outside connectivity.

	
See Also:

Oracle Database Performance Tuning Guide for more information about SQL real-time monitoring.

REPORT_SQL_MONITOR_LIST Function

This function builds a report for all or a sub-set of statements monitored by Oracle. For each statement, the subprogram gives key information and associated global statistics.

Use the REPORT_SQL_MONITOR Functionto get detail monitoring information for a single SQL statement

	
See Also:

SQL Performance Reporting Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.REPORT_SQL_MONITOR_LIST(
 sql_id IN VARCHAR2 DEFAULT NULL,
 session_id IN NUMBER DEFAULT NULL,
 session_serial IN NUMBER DEFAULT NULL,
 inst_id IN NUMBER DEFAULT NULL,
 active_since_date IN DATE DEFAULT NULL,
 active_since_sec IN NUMBER DEFAULT NULL,
 last_refresh_time IN DATE DEFAULT NULL,
 report_level IN VARCHAR2 DEFAULT 'TYPICAL',
 auto_refresh IN NUMBER DEFAULT NULL,
 base_path IN VARCHAR2 DEFAULT NULL,
 type IN VARCHAR2 DEFAULT 'TEXT')
 RETURN CLOB;

Parameters

Table 139-34 REPORT_SQL_MONITOR_LIST Function Parameters

	Parameter	Description
	
sql_id

	
SQL_ID for which monitoring information should be displayed. Use NULL (the default) to report on the last statement monitored by Oracle.

	
session_id

	
If not NULL, this parameters targets only the sub-set of statements executed by the specified session. Default is NULL. Use -1 or USERENV('SID') for current session.

	
session_serial

	
In addition to the session_id parameter, you can also specify its session serial to ensure that the desired session incarnation is targeted. This parameter is ignored when session_id is NULL.

	
inst_id

	
Only considers statements started on the specified instance. Use -1 to target the login instance. NULL (default) targets all instances.

	
active_since_date

	
If not NULL (default), returns only monitored statements active since the specified time. This includes all statements that are still executing along with all statements that have completed their execution after the specified date and time.

	
active_since_sec

	
Same as active_since_date but with the date specified relative to the current sysdate minus a specified number of seconds. For example, use 3600 to apply a limit of 1 hour.

	
last_refresh_time

	
If not NULL (default), the date and time when the list report was last retrieved. This optimizes the case where an application shows the list and refreshes the report on a regular basis (such as once every 5 seconds). In this case, the report shows detail about the execution of monitored queries that active since the specified last_refresh_time. For other queries, the report returns the execution key (sql_id, sql_exec_start, sql_exec_id). For queries with a first refresh time after the specified date, only the SQL execution key and statistics are returned.

	
report_level

	
Level of detail for the report. The level can be either:

	
BASIC - SQL text up to 200 characters

	
TYPICAL - include full SQL text assuming that cursor has not aged out, in which case the SQL text is included up to 2000 characters

	
ALL - currently the same as TYPICAL

	
auto_refresh

	
Currently non-operational, reserved for future use

	
base_path

	
URL path for flex HTML resources since flex HTML format is required to access external files (java scripts and the flash SWF file itself)

	
type

	
Report format, 'TEXT' by default. Can be 'TEXT', 'HTML' or 'XML'.

Return Values

A report (XML, text, HTML) for the list of SQL statements that have been monitored.

Usage Notes

The user tuning this function needs to have privilege to access the following fixed views: GV$SQL_MONITOR and GV$SQL

	
See Also:

Oracle Database Performance Tuning Guide for more information about SQL real-time monitoring.

REPORT_TUNING_TASK Function

This procedure displays the results of a tuning task.

	
See Also:

SQL Performance Reporting Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.REPORT_TUNING_TASK(
 task_name IN VARCHAR2,
 type IN VARCHAR2 := 'TEXT',
 level IN VARCHAR2 := 'TYPICAL',
 section IN VARCHAR2 := ALL,
 object_id IN NUMBER := NULL,
 result_limit IN NUMBER := NULL,
 owner_name IN VARCHAR2 := NULL,
 execution_name IN VARCHAR2 := NULL)
RETURN CLOB;

Parameters

Table 139-35 REPORT_TUNING_TASK Function Parameters

	Parameter	Description
	
task_name

	
Name of the tuning task to report

	
type

	
Type of the report to produce. Possible values are TEXT which produces a text report.

	
level

	
Level of detail in the report:

	
BASIC: simple version of the report. Just show info about the actions taken by the advisor.

	
TYPICAL: show information about every statement analyzed, including requests not implemented.

	
ALL: highly detailed report level, also provides annotations about statements skipped over.

	
section

	
Optionally limit the report to a single section (ALL for all sections):

	
SUMMARY - summary information

	
FINDINGS - tuning findings

	
PLAN - explain plans

	
INFORMATION - general information

	
ERROR - statements with errors

	
ALL - all statements

	
object_id

	
Advisor framework object id that represents a single statement to restrict reporting to. NULL for all statements. Only valid for reports that target a single execution.

	
result_limit

	
Maximum number of SQL statements to show in the report

	
owner_name

	
Owner of the relevant tuning task. Defaults to the current schema owner.

	
execution_name

	
Name of the task execution to use. If NULL, the report is generated for the last task execution.

Return Values

A CLOB containing the desired report.

Examples

-- Get the whole report for the single statement case.
SELECT DBMS_SQLTUNE.REPORT_TUNING_TASK(:stmt_task) from dual;

-- Show me the summary for the sts case.
SELECT DBMS_SQLTUNE.REPORT_TUNING_TASK(:sts_task, 'TEXT', 'TYPICAL', 'SUMMARY')
FROM DUAL;

-- Show me the findings for the statement I'm interested in.
SELECT DBMS_SQLTUNE.REPORT_TUNING_TASK(:sts_task, 'TEXT', 'TYPICAL', 'FINDINGS', 5) from dual;

RESET_TUNING_TASK Procedure

This procedure is called on a tuning task that is not currently executing to prepare it for re-execution.

	
See Also:

SQL Tuning Advisor Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.RESET_TUNING_TASK(
 task_name IN VARCHAR2);

Parameters

Table 139-36 RESET_TUNING_TASK Procedure Parameters

	Parameter	Description
	
task_name

	
The name of the tuning task to reset

Examples

-- reset and re-execute a task
EXEC DBMS_SQLTUNE.RESET_TUNING_TASK(:sts_task);

-- re-execute the task
EXEC DBMS_SQLTUNE.EXECUTE_TUNING_TASK(:sts_task);

RESUME_TUNING_TASK Procedure

This procedure resumes a previously interrupted task that was created to process a SQL tuning set.

	
See Also:

SQL Tuning Advisor Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.RESUME_TUNING_TASK(
 task_name IN VARCHAR2,
 basic_filter IN VARCHAR2 := NULL);

Parameters

Table 139-37 RESUME_TUNING_TASK Procedure Parameters

	Parameter	Description
	
task_name

	
The name of the tuning task to resume

	
basic_filter

	
A SQL predicate to filter the SQL from the SQL tuning set. Note that this filter is applied in conjunction with the basic filter (i.e., parameter basic_filter) when calling CREATE_TUNING_TASK Functions.

Usage Notes

Resuming a single SQL tuning task (a task that was created to tune a single SQL statement as compared to a SQL tuning set) is not supported.

Examples

-- Interrupt the task
EXEC DBMS_SQLTUNE.INTERRUPT_TUNING_TASK(:conc_task);

-- Once a task is interrupted, we can elect to reset it, resume it, or check
-- out its results and then decide. For this example we will just resume.

EXEC DBMS_SQLTUNE.RESUME_TUNING_TASK(:conc_task);

SCRIPT_TUNING_TASK Function

This function creates a SQL*PLUS script which can then be executed to implement a set of Advisor recommendations.

	
See Also:

SQL Tuning Advisor Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.SCRIPT_TUNING_TASK(
 task_name IN VARCHAR2,
 rec_type IN VARCHAR2 := REC_TYPE_ALL,
 object_id IN NUMBER := NULL,
 result_limit IN NUMNBER := NULL,
 owner_name IN VARCHAR2 := NULL,
 execution_name IN VARCHAR2 := NULL)
 RETURN CLOB;

Parameters

Table 139-38 SCRIPT_TUNING_TASK Function Parameters

	Parameter	Description
	
task_name

	
Name of the tuning task for which to apply a script

	
rec_type

	
Filter the script by types of recommendations to include. Any subset of the following separated by commas: or 'ALL: ''PROFILES' ''STATISTICS' ''INDEXES'. For example, a script with profiles and statistics: 'PROFILES,STATISTICS'

	
object_id

	
Optionally filters by a single object ID

	
result_limit

	
Optionally shows commands for only top N SQL (ordered by object_id and ignored if an object_id is also specified)

	
owner_name

	
Owner of the relevant tuning task. Defaults to the current schema owner

	
excution_name

	
Name of the task execution to use. If NULL, the script is generated for the last task execution.

Return Values

Returns a script in the form of a CLOB.

Usage Notes

	
Once the script is returned, it should then by checked by the DBA and executed.

	
Wrap with a call to DBMS_ADVISOR.CREATE_FILE to put it into a file.

Examples

SET LINESIZE 140

-- Get a script for all actions recommended by the task.
SELECT DBMS_SQLTUNE.SCRIPT_TUNING_TASK(:stmt_task) FROM DUAL;

-- Get a script of just the sql profiles we should create.
SELECT DBMS_SQLTUNE.SCRIPT_TUNING_TASK(:stmt_task, 'PROFILES') FROM DUAL;

-- get a script of just stale / missing stats
SELECT DBMS_SQLTUNE.SCRIPT_TUNING_TASK(:stmt_task, 'STATISTICS') FROM DUAL;

-- Get a script with recommendations about just one SQL statement when we have
-- tuned an entire STS.
SELECT DBMS_SQLTUNE.SCRIPT_TUNING_TASK(:sts_task, 'ALL', 5) FROM DUAL;

SELECT_CURSOR_CACHE Function

This function collects SQL statements from the SQL Cursor Cache.

	
See Also:

SQL Tuning Set Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.SELECT_CURSOR_CACHE (
 basic_filter IN VARCHAR2 := NULL,
 object_filter IN VARCHAR2 := NULL,
 ranking_measure1 IN VARCHAR2 := NULL,
 ranking_measure2 IN VARCHAR2 := NULL,
 ranking_measure3 IN VARCHAR2 := NULL,
 result_percentage IN NUMBER := 1,
 result_limit IN NUMBER := NULL,
 attribute_list IN VARCHAR2 := NULL,
 recursive_sql IN VARCHAR2 := HAS_RECURSIVE_SQL)
 RETURN sys.sqlset PIPELINED;

Parameters

Table 139-39 SELECT_CURSOR_CACHE Function Parameters

	Parameter	Description
	
basic_filter

	
The SQL predicate to filter the SQL from the cursor cache defined on attributes of the SQLSET_ROW. If basic_filter is not set by the caller, the subprogram captures only statements of the type CREATE TABLE, INSERT, SELECT, UPDATE, DELETE, and MERGE.

	
object_filter

	
Currently not supported.

	
ranking_measure(n)

	
An order-by clause on the selected SQL.

	
result_percentage

	
A filter which picks the top N% according to the ranking measure given. Note that this applies only if one ranking measure is given.

	
result_limit

	
The top L(imit) SQL from the (filtered) source ranked by the ranking measure

	
attribute_list

	
List of SQL statement attributes to return in the result. The possible values are:

	
TYPICAL - BASIC + SQL plan (without row source statistics) and without object reference list (default)

	
BASIC - all attributes (such as execution statistics and binds) are returned except the plans. The execution context is always part of the result.

	
ALL - return all attributes

	
Comma separated list of attribute names this allows to return only a subset of SQL attributes: EXECUTION_STATISTICS, BIND_LIST, OBJECT_LIST, SQL_PLAN,SQL_PLAN_STATISTICS: similar to SQL_PLAN + row source statistics

	
recursive_sql

	
Filter that includes recursive SQL in the SQL tuning set (HAS_RECURSIVE_SQL) or excludes it (NO_RECURSIVE_SQL).

Return Values

This function returns a one SQLSET_ROW per SQL_ID or PLAN_HASH_VALUE pair found in each data source.

Usage Notes

	
Filters provided to this function are evaluated as part of a SQL run by the current user. As such, they are executed with that user's security privileges and can contain any constructs and subqueries that user can access, but no more.

	
Users need privileges on the cursor cache views.

Examples

-- Get sql ids and sql text for statements with 500 buffer gets.
SELECT sql_id, sql_text
FROM table(DBMS_SQLTUNE.SELECT_CURSOR_CACHE('buffer_gets > 500'))
ORDER BY sql_id;

-- Get all the information we have about a particular statement.
SELECT *
FROM table(DBMS_SQLTUNE.SELECT_CURSOR_CACHE('sql_id = ''4rm4183czbs7j'''));

-- Notice that some statements can have multiple plans. The output of the
-- SELECT_XXX table functions is unique by (sql_id, plan_hash_value). This is
-- because a data source can store multiple plans per sql statement.
SELECT sql_id, plan_hash_value
FROM table(dbms_sqltune.select_cursor_cache('sql_id = ''ay1m3ssvtrh24'''))
ORDER BY sql_id, plan_hash_value;

-- PL/SQL examples: load_sqlset is called after opening a cursor, along the
-- lines given below

-- Select all statements in the cursor cache.
DECLARE
 cur sys_refcursor;
BEGIN
 OPEN cur FOR
 SELECT value(P)
 FROM table(DBMS_SQLTUNE.SELECT_CURSOR_CACHE) P;

 -- Process each statement (or pass cursor to load_sqlset).

 CLOSE cur;
END;/

-- Look for statements not parsed by SYS.
DECLARE
 cur sys_refcursor;
BEGIN
 OPEN cur for
 SELECT VALUE(P)
 FROM table(
 DBMS_SQLTUNE.SELECT_CURSOR_CACHE('parsing_schema_name <> ''SYS''')) P;

 -- Process each statement (or pass cursor to load_sqlset).

 CLOSE cur;
end;/

-- All statements from a particular module/action.
DECLARE
 cur sys_refcursor;
BEGIN
 OPEN cur FOR
 SELECT VALUE(P)
 FROM table(
 DBMS_SQLTUNE.SELECT_CURSOR_CACHE(
 'module = ''MY_APPLICATION'' and action = ''MY_ACTION''')) P;

 -- Process each statement (or pass cursor to load_sqlset)

 CLOSE cur;
END;/

-- all statements that ran for at least five seconds
DECLARE
 cur sys_refcursor;
BEGIN
 OPEN cur FOR
 SELECT VALUE(P)
 FROM table(DBMS_SQLTUNE.SELECT_CURSOR_CACHE('elapsed_time > 5000000')) P;

 -- Process each statement (or pass cursor to load_sqlset)

 CLOSE cur;
end;/

-- select all statements that pass a simple buffer_gets threshold and
-- are coming from an APPS user
DECLARE
 cur sys_refcursor;
BEGIN
 OPEN cur FOR
 SELECT VALUE(P)
 FROM table(
 DBMS_SQLTUNE.SELECT_CURSOR_CACHE(
 'buffer_gets > 100 and parsing_schema_name = ''APPS'''))P;

 -- Process each statement (or pass cursor to load_sqlset)

 CLOSE cur;
end;/

-- select all statements exceeding 5 seconds in elapsed time, but also
-- select the plans (by default we only select execution stats and binds
-- for performance reasons - in this case the SQL_PLAN attribute of sqlset_row
-- is NULL)
DECLARE
 cur sys_refcursor;
BEGIN
 OPEN cur FOR
 SELECT VALUE(P)
 FROM table(dbms_sqltune.select_cursor_cache(
 'elapsed_time > 5000000', NULL, NULL, NULL, NULL, 1, NULL,
 'EXECUTION_STATISTICS, SQL_BINDS, SQL_PLAN')) P;

 -- Process each statement (or pass cursor to load_sqlset)

 CLOSE cur;
END;/

-- Select the top 100 statements in the cursor cache ordering by elapsed_time.
DECLARE
 cur sys_refcursor;
BEGIN
 OPEN cur FOR
 SELECT VALUE(P)
 FROM table(DBMS_SQLTUNE.SELECT_CURSOR_CACHE(NULL,
 NULL,
 'ELAPSED_TIME', NULL, NULL,
 1,
 100)) P;

 -- Process each statement (or pass cursor to load_sqlset)

 CLOSE cur;
end;/

-- Select the set of statements which cumulatively account for 90% of the
-- buffer gets in the cursor cache. This means that the buffer gets of all
-- of these statements added up is approximately 90% of the sum of all
-- statements currently in the cache.
DECLARE
 cur sys_refcursor;
BEGIN
 OPEN cur FOR
 SELECT VALUE(P)
 FROM table(DBMS_SQLTUNE.SELECT_CURSOR_CACHE(NULL,
 NULL,
 'BUFFER_GETS', NULL, NULL,
 .9)) P;

 -- Process each statement (or pass cursor to load_sqlset).

 CLOSE cur;
END;
/

SELECT_SQL_TRACE Function

This table function reads the content of one or more trace files and returns the SQL statements it finds in the format of sqlset_row.

	
See Also:

SQL Tuning Set Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.SELECT_SQL_TRACE (
 directory IN VARCHAR2,
 file_name IN VARCHAR2 := NULL,
 mapping_table_name IN VARCHAR2 := NULL,
 mapping_table_owner IN VARCHAR2 := NULL,,
 select_mode IN POSITIVE := SINGLE_EXECUTION,
 options IN BINARY_INTEGER := LIMITED_COMMAND_TYPE,
 pattern_start IN VARCHAR2 := NULL,
 pattern_end IN VARCHAR2 := NULL,
 result_limit IN POSITIVE := NULL)
 RETURN sys.sqlset PIPELINED;

Parameters

Table 139-40 SELECT_SQL_TRACE Function Parameters

	Parameter	Description
	
directory

	
The directory object containing the trace file(s). This field is mandatory.

	
file_name

	
All or part of name of the trace file(s) to process. If NULL then the current or most recent file in the specified location or path is used. '%' wildcards are supported for matching trace file names.

	
mapping_table_name

	
The mapping table name. Note that the mapping table name is case insensitive. If the mapping table name is NULL, the mappings in the current database is used.

	
mapping_table_owner

	
the mapping table owner. If it is NULL, the current user is used.

	
select_mode

	
the mode for selecting SQL from the trace. By default, it is SINGLE_EXECUTION.

	
SINGLE_EXECUTION - return one execution of a SQL.(default).

	
ALL_EXECUTIONS - return all executions.

	
options

	
The options. By default, it is LIMITED_COMMAND_TYPE which can be specified to include SQL statements from all Oracle command types.

	
LIMITED_COMMAND_TYPE - returns the SQL statements with the command types CREATE, INSERT, SELECT, UPDATE, DELETE, UPSERT. It is the default.

	
ALL_COMMAND_TYPE - returns the SQL statements with all command types.

	
pattern_start

	
Opening delimiting pattern of the trace file section(s) to consider. CURRENTLY INOPERABLE.

	
pattern_end

	
closing delimiting pattern of the trace file section(s) to process. CURRENTLY INOPERABLE.

	
result_limit

	
Top SQL from the (filtered) source. Default to MAXSB4 if NULL.

Return Values

This function returns a SQLSET_ROW object.

Examples

The following code shows how to enable SQL trace for a few SQL statements and load the results into a SQL tuning set:

-- turn on the SQL trace in the capture database
ALTER SESSION SET EVENTS '10046 TRACE NAME CONTEXT FOREVER, LEVEL 4'

-- run sql statements
SELECT 1 FROM DUAL;
SELECT COUNT(*) FROM dba_tables WHERE table_name = :mytab;

ALTER SESSION SET EVENTS '10046 TRACE NAME CONTEXT OFF';

-- create mapping table from the capture database
CREATE TABLE mapping AS
SELECT object_id id, owner, substr(object_name, 1, 30) name
 FROM dba_objects
 WHERE object_type NOT IN ('CONSUMER GROUP', 'EVALUATION CONTEXT',
 'FUNCTION', 'INDEXTYPE', 'JAVA CLASS',
 'JAVA DATA', 'JAVA RESOURCE', 'LIBRARY',
 'LOB', 'OPERATOR', 'PACKAGE',
 'PACKAGE BODY', 'PROCEDURE', 'QUEUE',
 'RESOURCE PLAN', 'TRIGGER', 'TYPE',
 'TYPE BODY')
UNION ALL
SELECT user_id id, username owner, NULL name
 FROM dba_users;

-- create the directory object where the SQL traces are stored
CREATE DIRECTORY SQL_TRACE_DIR as '/home/foo/trace';

-- create the STS
EXEC DBMS_SQLTUNE.CREATE_SQLSET('my_sts', 'test purpose');

-- load the SQL statements into STS from SQL TRACE
DECLARE
 cur sys_refcursor;
BEGIN
 OPEN cur FOR
 SELECT value(p)
 FROM TABLE(
 DBMS_SQLTUNE.SELECT_SQL_TRACE(
 directory=>'SQL_TRACE_DIR',
 file_name=>'%trc',
 mapping_table_name=>'mapping')) p;
 DBMS_SQLTUNE.LOAD_SQLSET('my_sts', cur);
 CLOSE cur;
END;
/

SELECT_SQLPA_TASK Function

This function collects SQL statements from a SQL Performance Analyzer comparison task.

	
See Also:

	
SQL Tuning Set Subprograms for other subprograms in this group

	
Oracle Database Real Application Testing User's Guide

Syntax

DBMS_SQLTUNE.SELECT_SQLPA_TASK(
 task_name IN VARCHAR2,
 task_owner IN VARCHAR2 := NULL,
 execution_name IN VARCHAR2 := NULL,
 level_filter IN VARCHAR2 := 'REGRESSED',
 basic_filter IN VARCHAR2 := NULL,
 object_filter IN VARCHAR2 := NULL,
 attribute_list IN VARCHAR2 := 'TYPICAL')
 RETURN sys.sqlset PIPELINED;

Parameters

Table 139-41 SELECT_SQLPA_TASK Function Parameters

	Parameter	Description
	
task_name

	
Name of the SQL Performance Analyzer task

	
task_owner

	
Owner of the SQL Performance Analyzer task. If NULL, then assume the current user.

	
execution_name

	
Name of the SQL Performance Analyzer task execution (type COMPARE PERFORMANCE) from which the provided filters will be applied. If NULL, then assume the most recent COMPARE PERFORMANCE execution.

	
level_filter

	
Filter to specify which subset of SQLs to include. Same format as DBMS_SQLPA. REPORT_ANALYSIS_TASK.LEVEL, with some possible strings removed.

	
IMPROVED includes only improved SQL.

	
REGRESSED includes only regressed SQL (default).

	
CHANGED includes only SQL with changed performance.

	
UNCHANGED includes only SQL with unchanged performance.

	
CHANGED_PLANS includes only SQL with plan changes.

	
UNCHANGED_PLANS includes only SQL with unchanged plans.

	
ERRORS includes only SQL with errors only.

	
MISSING_SQL includes only missing SQL statements (across STS).

	
NEW_SQL includes only new SQL statements (across STS).

	
basic filter

	
SQL predicate to filter the SQL in addition to the level filters.

	
object_filter

	
Currently not supported.

	
attribute_list

	
List of SQL statement attributes to return in the result. The possible values are:

	
TYPICAL - BASIC + SQL plan (without row source statistics) and without object reference list (default)

	
BASIC - all attributes (such as execution statistics and binds) are returned except the plans. The execution context is always part of the result.

	
ALL - return all attributes

	
Comma-separated list of attribute names this allows to return only a subset of SQL attributes: EXECUTION_STATISTICS, SQL_BINDS, SQL_PLAN_STATISTICS (similar to SQL_PLAN + row source statistics).

Return Values

This function returns a SQL tuning set object.

Usage Notes

For example, you can use this function to create a SQL tuning set containing the subset of SQL statements that regressed during a SQL Performance Analyzer (SPA) experiment. You can also specify other arbitrary filters.

SELECT_SQLSET Function

This function reads SQLSET contents.

	
See Also:

SQL Tuning Set Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.SELECT_SQLSET (
 sqlset_name IN VARCHAR2,
 basic_filter IN VARCHAR2 := NULL,
 object_filter IN VARCHAR2 := NULL,
 ranking_measure1 IN VARCHAR2 := NULL,
 ranking_measure2 IN VARCHAR2 := NULL,
 ranking_measure3 IN VARCHAR2 := NULL,
 result_percentage IN NUMBER := 1,
 result_limit IN NUMBER := NULL)
 attribute_list IN VARCHAR2 := NULL,
 plan_filter IN VARCHAR2 := NULL,
 sqlset_owner IN VARCHAR2 := NULL,
 recursive_sql IN VARCHAR2 := HAS_RECURSIVE_SQL)
 RETURN sys.sqlset PIPELINED;

Parameters

Table 139-42 SELECT_SQLSET Function Parameters

	Parameter	Description
	
sqlset_name

	
The SQL tuning set name

	
basic_filter

	
The SQL predicate to filter the SQL from the SQL tuning set defined on attributes of the SQLSET_ROW

	
object_filter

	
Currently not supported.

	
ranking_measure(n)

	
An order-by clause on the selected SQL

	
result_percentage

	
A filter which picks the top N% according to the ranking measure given. Note that this applies only if one ranking measure is given.

	
result_limit

	
The top L(imit) SQL from the (filtered) source ranked by the ranking measure

	
attribute_list

	
List of SQL statement attributes to return in the result. The possible values are:

	
TYPICAL - BASIC + SQL plan (without row source statistics) and without object reference list (default)

	
BASIC - all attributes (such as execution statistics and binds) are returned except the plans. The execution context is always part of the result.

	
ALL - return all attributes

	
Comma-separated list of attribute names this allows to return only a subset of SQL attributes: EXECUTION_STATISTICS, SQL_BINDS, SQL_PLAN_STATISTICS (similar to SQL_PLAN + row source statistics).

	
plan_filter

	
The plan filter

	
sqlset_owner

	
The owner of the SQL tuning set, or NULL for the current schema owner

	
recursive_sql

	
Filter that includes recursive SQL in the SQL tuning set (HAS_RECURSIVE_SQL) or excludes it (NO_RECURSIVE_SQL).

Return Values

This function returns a one SQLSET_ROW per SQL_ID or PLAN_HASH_VALUE pair found in each data source.

Usage Notes

Filters provided to this function are evaluated as part of a SQL run by the current user. As such, they are executed with that user's security privileges and can contain any constructs and subqueries that user can access, but no more.

Examples

-- select from a sql tuning set
DECLARE
 cur sys_refcursor;
BEGIN
 OPEN cur FOR
 SELECT VALUE (P)
 FROM table(dbms_sqltune.select_sqlset('my_workload')) P;

 -- Process each statement (or pass cursor to load_sqlset)

 CLOSE cur;
END;
/

SELECT_WORKLOAD_REPOSITORY Functions

This function collects SQL statements from the workload repository. The overloaded forms let you:

	
Collect SQL statements from all snapshots between begin_snap and end_snap.

	
Collect SQL statements from a workload repository baseline.

	
See Also:

SQL Tuning Set Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.SELECT_WORKLOAD_REPOSITORY (
 begin_snap IN NUMBER,
 end_snap IN NUMBER,
 basic_filter IN VARCHAR2 := NULL,
 object_filter IN VARCHAR2 := NULL,
 ranking_measure1 IN VARCHAR2 := NULL,
 ranking_measure2 IN VARCHAR2 := NULL,
 ranking_measure3 IN VARCHAR2 := NULL,
 result_percentage IN NUMBER := 1,
 result_limit IN NUMBER := NULL,
 attribute_list IN VARCHAR2 := NULL,
 recursive_sql IN VARCHAR2 := HAS_RECURSIVE_SQL)
 RETURN sys.sqlset PIPELINED;

DBMS_SQLTUNE.SELECT_WORKLAOD REPOSITORY (
 baseline_name IN VARCHAR2,
 basic_filter IN VARCHAR2 := NULL,
 object_filter IN VARCHAR2 := NULL,
 ranking_measure1 IN VARCHAR2 := NULL,
 ranking_measure2 IN VARCHAR2 := NULL,
 ranking_measure3 IN VARCHAR2 := NULL,
 result_percentage IN NUMBER := 1,
 result_limit IN NUMBER := NULL,
 attribute_list IN VARCHAR2 := NULL,
 recursive_sql IN VARCHAR2 := HAS_RECURSIVE_SQL)
 RETURN sys.sqlset PIPELINED;

Parameters

Table 139-43 SELECT_WORKLOAD_REPOSITORY Function Parameters

	Parameter	Description
	
begin_snap

	
Begin snapshot (non-inclusive).

	
end_snap

	
End snapshot (inclusive).

	
baseline_name

	
The name of the baseline period.

	
basic_filter

	
The SQL predicate to filter the SQL from the workload repository defined on attributes of the SQLSET_ROW. If basic_filter is not set by the caller, the subprogram captures only statements of the type CREATE TABLE, INSERT, SELECT, UPDATE, DELETE, and MERGE.

	
object_filter

	
Currently not supported.

	
ranking_measure(n)

	
An order-by clause on the selected SQL.

	
result_percentage

	
A filter which picks the top N% according to the ranking measure given. Note that this applies only if one ranking measure is given.

	
result_limit

	
The top L(imit) SQL from the (filtered) source ranked by the ranking measure.

	
attribute_list

	
List of SQL statement attributes to return in the result. The possible values are:

	
TYPICAL - BASIC + SQL plan (without row source statistics) and without object reference list (default)

	
BASIC - all attributes (such as execution statistics and binds) are returned except the plans. The execution context is always part of the result.

	
ALL - return all attributes

	
Comma-separated list of attribute names this allows to return only a subset of SQL attributes: EXECUTION_STATISTICS, SQL_BINDS, SQL_PLAN_STATISTICS (similar to SQL_PLAN + row source statistics).

	
recursive_sql

	
Filter that includes recursive SQL in the SQL tuning set (HAS_RECURSIVE_SQL) or excludes it (NO_RECURSIVE_SQL).

Return Values

This function returns a one SQLSET_ROW per SQL_ID or PLAN_HASH_VALUE pair found in each data source.

Usage Notes

Filters provided to this function are evaluated as part of a SQL run by the current user. As such, they are executed with that user's security privileges and can contain any constructs and subqueries that user can access, but no more.

Examples

-- select statements from snapshots 1-2
DECLARE
 cur sys_refcursor;
BEGIN
 OPEN cur FOR
 SELECT VALUE (P)
 FROM table(dbms_sqltune.select_workload_repository(1,2)) P;

 -- Process each statement (or pass cursor to load_sqlset)

 CLOSE cur;
END;
/

SET_TUNING_TASK_PARAMETER Procedures

This procedure updates the value of a SQL tuning parameter of type VARCHAR2 or NUMBER.

	
See Also:

SQL Tuning Set Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.SET_TUNING_TASK_PARAMETER(
 task_name IN VARCHAR2,
 parameter IN VARCHAR2,
 value IN VARCHAR2);

DBMS_SQLTUNE.SET_TUNING_TASK_PARAMETER(
 task_name IN VARCHAR2,
 parameter IN VARCHAR2,
 value IN NUMBER);

Parameters

Table 139-44 SET_TUNING_TASK_PARAMETER Procedure Parameters

	Parameter	Description
	
task_name

	
Identifier of the task to execute

	
parameter

	
Name of the parameter to set. The possible tuning parameters that can be set by this procedure using the parameter in the form VARCHAR2:

	
APPLY_CAPTURED_COMPILENV: indicates whether the advisor could use the compilation environment captured with the SQL statements. The default is 0 (that is, NO).

	
BASIC_FILTER: basic filter for SQL tuning set

	
DAYS_TO_EXPIRE: number of days until the task is deleted

	
DEFAULT_EXECUTION_TYPE: the task defaults to this type of execution when none is specified by the EXECUTE_TUNING_TASK Function & Procedure

	
EXECUTION_DAYS_TO_EXPIRE: number of days until the tasks's executions is deleted (without deleting the task)

	
LOCAL_TIME_LIMIT: per-statement time out (seconds)

	
MODE: tuning scope (comprehensive, limited)

	
OBJECT_FILTER: object filter for SQL tuning set

	
PLAN_FILTER: plan filter for SQL tuning set (see SELECT_SQLSET for possible values)

	
RANK_MEASURE1: first ranking measure for SQL tuning set

	
RANK_MEASURE2: second possible ranking measure for SQL tuning set

	
RANK_MEASURE3: third possible ranking measure for SQL tuning set

	
RESUME_FILTER: a extra filter for SQL tuning sets besides BASIC_FILTER

	
SQL_LIMIT: maximum number of SQL statements to tune

	
SQL_PERCENTAGE: percentage filter of SQL tuning set statements

	
TEST_EXECUTE: FULL/AUTO/OFF.

* FULL - test-execute for as much time as necessary, up to the local time limit for the SQL (or the global task time limit if no SQL time limit is set)

* AUTO - test-execute for an automatically-chosen time proportional to the tuning time

* OFF - do not test-execute

	
TIME_LIMIT: global time out (seconds)

	
USERNAME: username under which the statement is parsed

	
value

	
New value of the specified parameter

Usage Notes

When setting automatic tuning task parameters, use the SET_AUTO_TUNING_TASK_PARAMETER Procedures in the DBMS_AUTO_SQLTUNE package.

SQLTEXT_TO_SIGNATURE Function

This function returns a SQL text's signature. The signature can be used to identify SQL text in dba_sql_profiles.

	
See Also:

SQL Profile Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.SQLTEXT_TO_SIGNATURE (
 sql_text IN CLOB, force_match IN BOOLEAN := FALSE)
 RETURN NUMBER;

Parameters

Table 139-45 SQLTEXT_TO_SIGNATURE Function Parameters

	Parameter	Description
	
sql_text

	
SQL text whose signature is required. Required.

	
force_match

	
If TRUE, this returns a signature that supports SQL matching with literal values transformed into bind variables. If FALSE, returns the signature based on the text with literals not transformed

Return Values

This function returns the signature of the specified SQL text.

UNPACK_STGTAB_SQLPROF Procedure

This procedure copies profile data stored in the staging table to create profiles on the system.

	
See Also:

SQL Profile Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.UNPACK_STGTAB_SQLPROF (
 profile_name IN VARCHAR2 := '%',
 profile_category IN VARCHAR2 := 'DEFAULT',
 replace IN BOOLEAN,
 staging_table_name IN VARCHAR2,
 staging_schema_owner IN VARCHAR2 := NULL);

Parameters

Table 139-46 UNPACK_STGTAB_SQLPROF Procedure Parameters

	Parameter	Description
	
profile_name

	
The name of the profile to unpack (% wildcards acceptable, case-sensitive)

	
profile_category

	
The category from which to unpack profiles (% wildcards acceptable, case-sensitive)

	
replace

	
The option to replace profiles if they already exist. Note that profiles cannot be replaced if one in the staging table has the same name as an active profile in a different SQL statement.If FALSE, this function raises errors if you try to create a profile that already exists

	
staging_table_name

	
The name of the table on which to perform the remap operation (case-insensitive unless double quoted). Required.

	
staging_schema_owner

	
The schema where the table resides, or NULL for current schema (case-insensitive unless double quoted)

Usage Notes

Using this procedure requires the CREATE ANY SQL PROFILE privilege and the SELECT privilege on staging table.

Examples

-- Unpack all profiles stored in a staging table
EXEC DBMS_SQLTUNE.UNPACK_STGTAB_SQLPROF(replace => FALSE, -
 staging_table_name => 'PROFILE_STGTAB');

-- If there is a failure during the unpack operation, users can find the profile
-- we failed on and perform a remap_stgtab_sqlprof operation targeting it. Then
-- they can resume the unpack operation by setting replace to TRUE so that
-- the profiles that were already created are replaced
EXEC DBMS_SQLTUNE.UNPACK_STGTAB_SQLPROF(replace => TRUE, -
 staging_table_name => 'PROFILE_STGTAB');

UNPACK_STGTAB_SQLSET Procedure

This procedure copies one or more SQL tuning sets from their location in the staging table into the SQL tuning sets schema, making them proper SQL tuning sets.

	
See Also:

SQL Tuning Set Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.UNPACK_STGTAB_SQLSET (
 sqlset_name IN VARCHAR2 := '%',
 sqlset_owner IN VARCHAR2 := NULL,
 replace IN BOOLEAN,
 staging_table_name IN VARCHAR2,
 staging_schema_owner IN VARCHAR2 := NULL);

Parameters

Table 139-47 UNPACK_STGTAB_SQLSET Procedure Parameters

	Parameter	Description
	
sqlset_name

	
The name of the tuning set to unpack (not NULL). Wildcard characters ('%') are supported to unpack multiple tuning sets in a single call. For example, just specify '%' to unpack all tuning sets from the staging table.

	
sqlset_owner

	
The name of tuning set owner, or NULL for current schema owner. Wildcards supported.

	
replace

	
Replaces tuning set if they already exist.If FALSE, raises errors if you try to create a tuning set that already exists

	
staging_table_name

	
The name of the staging table, moved after a call to the PACK_STGTAB_SQLSET Procedure (case-sensitive)

	
staging_schema_owner

	
The name of staging table owner, or NULL for current schema owner (case-sensitive)

Usage Notes

	
Users can drop the staging table after this procedure completes successfully.

	
The unpack procedure commits after successfully loading each SQL tuning set. If it fails with one tuning set, no part of that tuning set will have been unpacked, but those which the subprogram had already apprehended continue to exist.

	
When failures occur due to SQL tuning set name or owner conflicts, users should use the REMAP_STGTAB_SQLSET Procedure to patch the staging table, and then call this procedure again to unpack those tuning sets that remain.

Examples

 -- unpack all STS in the staging table
EXEC DBMS_SQLTUNE.UNPACK_STGTAB_SQLSET(sqlset_name => '%', -
 sqlset_owner => '%', -
 replace => FALSE, -
 staging_table_name => 'STGTAB_SQLSET');

-- errors can arise during STS unpack when a STS in the staging table has the
-- same name/owner as STS on the system. In this case, users should call
-- remap_stgtab_sqlset to patch the staging table and with which to call unpack
-- Replace set to TRUE.
EXEC DBMS_SQLTUNE.UNPACK_STGTAB_SQLSET(sqlset_name => '%', -
 sqlset_owner => '%', -
 replace => TRUE, -
 staging_table_name => 'STGTAB_SQLSET');

UPDATE_SQLSET Procedures

This procedure updates selected fields for SQL statement in a SQL tuning set.

	
See Also:

SQL Tuning Set Subprograms for other subprograms in this group

Syntax

DBMS_SQLTUNE.UPDATE_SQLSET (
 sqlset_name IN VARCHAR2,
 sql_id IN VARCHAR2,
 attribute_name IN VARCHAR2,
 attribute_value IN VARCHAR2 := NULL);

DBMS_SQLTUNE.UPDATE_SQLSET (
 sqlset_name IN VARCHAR2,
 sql_id IN VARCHAR2,
 attribute_name IN VARCHAR2,
 attribute_value IN NUMBER := NULL);

Parameters

Table 139-48 UPDATE_SQLSET Procedure Parameters

	Parameter	Description
	
sqlset_name

	
The SQL tuning set name

	
sql_id

	
The identifier of the statement to update

	
attribute_name

	
The name of the attribute to modify

	
attribute_value

	
The new value of the attribute

DBMS_STAT_FUNCS

140 DBMS_STAT_FUNCS

The DBMS_STAT_FUNCS package provides statistical functions.

This chapter contains the following topic:

	
Summary of DBMS_STAT_FUNCS Subprograms

Summary of DBMS_STAT_FUNCS Subprograms

Table 140-1 DBMS_STAT_FUNCS Package Subprograms

	Subprogram	Description
	
EXPONENTIAL_DIST_FIT Procedure

	
Tests how well a sample of values fits an exponential distribution

	
NORMAL_DIST_FIT Procedure

	
Tests how well a sample of values fits a normal distribution

	
POISSON_DIST_FIT Procedure

	
Tests how well a sample of values fits a Poisson distribution

	
SUMMARY Procedure

	
Summarizes a numerical column of a table

	
UNIFORM_DIST_FIT Procedure

	
Tests how well a sample of values fits a uniform distribution

	
WEIBULL_DIST_FIT Procedure

	
Tests how well a sample of values fits a Weibull distribution

EXPONENTIAL_DIST_FIT Procedure

This procedure tests how well a sample of values fits an exponential distribution.

Syntax

DBMS_STAT_FUNCS.EXPONENTIAL_DIST_FIT (
 ownername IN VARCHAR2,
 tablename IN VARCHAR2,
 columnname IN VARCHAR2,
 test_type IN VARCHAR2 DEFAULT 'KOLMOGOROV_SMIRNOV',
 lambda IN NUMBER,
 mu IN NUMBER,
 sig OUT NUMBER);

Parameters

Table 140-2 EXPONENTIAL_DIST_FIT Procedure Parameters

	Parameter	Description
	
ownername

	
The schema where the table resides.

	
tablename

	
The table where the column resides.

	
columnname

	
The column of the table against which to run the test.

	
test_type

	
The type of test to use: 'CHI_SQUARED', 'KOLMOGOROV_SMIRNOV' or 'ANDERSON_DARLING'.

	
lambda

	
The scale parameter.

	
mu

	
The location parameter.

	
sig

	
The goodness of fit value, based on test type. A small value indicates a significant difference between the sample and the exponential distribution. A number close to 1 indicates a close match.

NORMAL_DIST_FIT Procedure

This procedure tests how well a sample of values fits a normal distribution.

Syntax

DBMS_STAT_FUNCS.NORMAL_DIST_FIT (
 ownername IN VARCHAR2,
 tablename IN VARCHAR2,
 columnname IN VARCHAR2,
 test_type IN VARCHAR2 DEFAULT 'SHAPIRO_WILKS',
 mean IN NUMBER,
 stdev IN NUMBER,
 sig OUT NUMBER);

Parameters

Table 140-3 NORMAL_DIST_FIT Procedure Parameters

	Parameter	Description
	
ownername

	
The schema where the table resides.

	
tablename

	
The table where the column resides.

	
columnname

	
The column of the table against which to run the test.

	
test_type

	
The type of test to use: 'CHI_SQUARED', 'KOLMOGOROV_SMIRNOV', 'ANDERSON_DARLING' or 'SHAPIRO_WILKS'.

	
mean

	
The mean of the distribution against which to compare.

	
stdev

	
The standard deviation of the distribution against which to compare.

	
sig

	
The goodness of fit value, based on test type. A small value indicates a significant difference between the sample and the normal distribution. A number close to 1 indicates a close match.

POISSON_DIST_FIT Procedure

This procedure tests how well a sample of values fits a Poisson distribution.

Syntax

DBMS_STAT_FUNCS.POISSON_DIST_FIT (
 ownername IN VARCHAR2,
 tablename IN VARCHAR2,
 columnname IN VARCHAR2,
 test_type IN VARCHAR2 DEFAULT 'KOLMOGOROV_SMIRNOV',
 lambda IN NUMBER,
 sig OUT NUMBER);

Parameters

Table 140-4 POISSON_DIST_FIT Procedure Parameters

	Parameter	Description
	
ownername

	
The schema where the table resides.

	
tablename

	
The table where the column resides.

	
columnname

	
The column of the table against which to run the test.

	
test_type

	
The type of test to use: 'KOLMOGOROV_SMIRNOV' or 'ANDERSON_DARLING'.

	
lambda

	
The lambda parameter is the shape parameter.

	
sig

	
The goodness of fit value, based on test type. A small value indicates a significant difference between the sample and the Poisson distribution. A number close to 1 indicates a close match.

SUMMARY Procedure

This procedure summarizes the numerical column specified in the columnname of tablename. The summary is returned as a Summary Type. Note that most of the output of SUMMARY can be obtained with currently available SQL.

Syntax

DBMS_STAT_FUNCS.SUMMARY (
 ownername IN VARCHAR2,
 tablename IN VARCHAR2,
 columnname IN VARCHAR2,
 sigma_value IN NUMBER DEFAULT 3,
 s OUT SummaryType);

Parameters

Table 140-5 SUMMARY Procedure Parameters

	Parameter	Description
	
ownername

	
The schema where the table resides.

	
tablename

	
The table where the column resides.

	
columnname

	
The column of the table to be summarized.

	
sigma_value

	
The number of sigmas for the set of extreme values, defaults to 3.

	
s

	
The Record containing summary information about given column.

Definition of SummaryType

TYPE n_arr IS VARRAY(5) of NUMBER;
TYPE num_table IS TABLE of NUMBER;
TYPE summaryType IS RECORD (
 count NUMBER,
 min NUMBER,
 max NUMBER,
 range NUMBER,
 mean NUMBER,
 cmode num_table,
 variance NUMBER,
 stddev NUMBER,
 quantile_5 NUMBER,
 quantile_25 NUMBER,
 median NUMBER,
 quantile_75 NUMBER,
 quantile_95 NUMBER,
 plus_x_sigma NUMBER,
 minus_x_sigma NUMBER,
 extreme_values num_table,
 top_5_values n_arr,
 bottom_5_values n_arr);

UNIFORM_DIST_FIT Procedure

This procedure tests well a sample of values fits a uniform distribution.

Syntax

DBMS_STAT_FUNCS.UNIFORM_DIST_FIT (
 ownername IN VARCHAR2,
 tablename IN VARCHAR2,
 columnname IN VARCHAR2,
 var_type IN VARCHAR2 DEFAULT 'CONTINUOUS',
 test_type IN VARCHAR2 DEFAULT 'KOLMOGOROV_SMIRNOV',
 paramA IN NUMBER,
 paramB IN NUMBER,
 sig OUT NUMBER);

Parameters

Table 140-6 UNIFORM_DIST_FIT Procedure Parameters

	Parameter	Description
	
ownername

	
The schema where the table resides.

	
tablename

	
The table where the column resides.

	
columnname

	
The column of the table against which to run the test.

	
var_type

	
The type of distribution: 'CONTINUOUS' (the default) or 'DISCRETE'

	
test_type

	
The type of test to use: 'CHI_SQUARED', 'KOLMOGOROV_SMIRNOV' or 'ANDERSON_DARLING'.

	
paramA

	
Parameter A estimated from the sample (the location parameter).

	
paramB

	
Parameter B estimated from the sample (the scale parameter).

	
sig

	
The goodness of fit value, based on test type. A small value indicates a significant difference between the sample and the uniform distribution. A number close to 1 indicates a close match.

WEIBULL_DIST_FIT Procedure

This procedure tests how well a sample of values fits a Weibull distribution.

Syntax

DBMS_STAT_FUNCS.WEIBULL_DIST_FIT (
 ownername IN VARCHAR2,
 tablename IN VARCHAR2,
 columnname IN VARCHAR2,
 test_type IN VARCHAR2 DEFAULT 'KOLMOGOROV_SMIRNOV',
 alpha IN NUMBER,
 mu IN NUMBER,
 beta IN NUMBER,
 sig OUT NUMBER);

Parameters

Table 140-7 WEIBULL_DIST_FIT Procedure Parameters

	Parameter	Description
	
ownername

	
The schema where the table resides.

	
tablename

	
The table where the column resides.

	
columnname

	
The column of the table against which to run the test.

	
test_type

	
The type of test to use: 'CHI_SQUARED', 'KOLMOGOROV_SMIRNOV' or 'ANDERSON_DARLING'.

	
alpha

	
The scale parameter.

	
mu

	
The location parameter.

	
beta

	
The slope/shape parameter.

	
sig

	
The goodness of fit value, based on test type. A small value indicates a significant difference between the sample and the Weibull distribution. A number close to 1 indicates a close match.

DBMS_STATS

141 DBMS_STATS

With the DBMS_STATS package you can view and modify optimizer statistics gathered for database objects.

	
See Also:

Oracle Database Performance Tuning Guide

This chapter contains the following topics:

	
Using DBMS_STATS

	
Overview

	
Types

	
Constants

	
Operational Notes

	
Deprecated Subprograms

	
Examples

	
Summary of DBMS_STATS Subprograms

Using DBMS_STATS

This section contains topics which relate to using the DBMS_STATS package.

	
Overview

	
Types

	
Constants

	
Operational Notes

	
Deprecated Subprograms

	
Examples

Overview

The Oracle RDBMS allows you to collect statistics of many different kinds as an aid to improving performance. This package is concerned with optimizer statistics only. Given that Oracle sets automatic statistics collection of this kind on by default, this package is intended for only specialized cases.

The statistics of interest to be viewed or modified can reside in the dictionary or in a table created in the user's schema for this purpose. You can also collect and manage user-defined statistics for tables and domain indexes using this package.

For example, if the DELETE_COLUMN_STATS procedure is invoked on a column for which an association is defined, user-defined statistics for that column are deleted in addition to deletion of the standard statistics.

Only statistics stored in the dictionary have an impact on the cost-based optimizer. You can also use DBMS_STATS to gather statistics in parallel

	
See Also:

Oracle Database Performance Tuning Guide for more information about "Managing Optimizer Statistics".

Types

Types for the minimum and maximum values and histogram endpoints include:

TYPE numarray IS VARRAY(256) OF NUMBER;
TYPE datearray IS VARRAY(256) OF DATE;
TYPE chararray IS VARRAY(256) OF VARCHAR2(4000);
TYPE rawarray IS VARRAY(256) OF RAW(2000);
TYPE fltarray IS VARRAY(256) OF BINARY_FLOAT;
TYPE dblarray IS VARRAY(256) OF BINARY_DOUBLE;

TYPE StatRec IS RECORD (
 epc NUMBER,
 minval RAW(2000),
 maxval RAW(2000),
 bkvals NUMARRAY,
 novals NUMARRAY,
 chvals CHARARRAY,
 eavs NUMBER);

Types for listing stale tables include:

TYPE ObjectElem IS RECORD (
 ownname VARCHAR2(30), -- owner
 objtype VARCHAR2(6), -- 'TABLE' or 'INDEX'
 objname VARCHAR2(30), -- table/index
 partname VARCHAR2(30), -- partition
 subpartname VARCHAR2(30)); -- subpartition
type ObjectTab is TABLE of ObjectElem;

Type for displaying statistics difference report:

TYPE DiffRepElem IS RECORD (
 report CLOB, -- stats difference report
 maxdiffpct number); -- max stats difference (percentage)
type DiffRepTab is table of DiffRepElem;

Constants

The DBMS_STATS package uses the constants shown in Table 141-1:

Table 141-1 DBMS_STATS Constants

	Name	Type	Value	Description
	
AUTO_CASCADE

	
BOOLEAN

	
NULL

	
Lets Oracle decide whether to collect statistics for indexes or not

	
AUTO_DEGREE

	
NUMBER

	
32768

	
Lets Oracle select the degree of parallelism based on size of the object, number of CPUs and initialization parameters. For definition of default parallel degree, see "Degree of Parallelism" in Oracle Database VLDB and Partitioning Guide.

	
AUTO_INVALIDATE

	
BOOLEAN

	
NULL

	
Lets Oracle decide when to invalidate dependent cursors

	
AUTO_SAMPLE_SIZE

	
NUMBER

	
0

	
Indicates that auto-sample size algorithms should be used

Operational Notes

The DBMS_STATS subprograms perform the following general operations:

	
Gathering Optimizer Statistics

	
Setting or Getting Statistics

	
Deleting Statistics

	
Transferring Statistics

	
Locking or Unlocking Statistics

	
Restoring and Purging Statistics History

	
User-Defined Statistics

	
Pending Statistics

	
Comparing Statistics

	
Extended Statistics

Most of the DBMS_STATS procedures include the three parameters statown, stattab, and statid. These parameters allow you to store statistics in your own tables (outside of the dictionary), which does not affect the optimizer. Therefore, you can maintain and experiment with sets of statistics.

The stattab parameter specifies the name of a table in which to hold statistics, and it is assumed that it resides in the same schema as the object for which statistics are collected (unless the statown parameter is specified). You can create multiple tables with different stattab identifiers to hold separate sets of statistics.

Additionally, you can maintain different sets of statistics within a single stattab by using the statid parameter, which avoids cluttering the user's schema.

For the SET and GET procedures, if stattab is not provided (that is, NULL), then the operation works directly on the dictionary statistics; therefore, you do not need to create these statistics tables if they only plan to modify the dictionary directly. However, if stattab is not NULL, then the SET or GET operation works on the specified user statistics table, and not the dictionary.

You can change the default values of some of the parameters of DBMS_STATS procedures using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

Most of the procedures in this package commit the current transaction, perform the operation, and then commit again.

Most of the procedures have a parameter, force which allows you to override any lock on statistics.Whenever statistics in dictionary are modified, old versions of statistics are saved automatically for future restoring.

Gathering Optimizer Statistics

Use the following subprograms to gather certain classes of optimizer statistics, with possible performance improvements over the ANALYZE command:

GATHER_DATABASE_STATS Procedures

GATHER_DICTIONARY_STATS Procedure

GATHER_FIXED_OBJECTS_STATS Procedure

GATHER_INDEX_STATS Procedure

GATHER_SCHEMA_STATS Procedures

GATHER_SYSTEM_STATS Procedure

GATHER_TABLE_STATS Procedure

The GATHER_* procedures also collect user-defined statistics for columns and domain indexes.

The statown, stattab, and statid parameters instruct the package to back up current statistics in the specified table before gathering new statistics.

Oracle also provides the following procedure for generating statistics for derived objects when you have sufficient statistics on related objects:

GENERATE_STATS Procedure

Setting or Getting Statistics

Use the following subprograms to store and retrieve individual column-related, index-related, and table-related statistics:

PREPARE_COLUMN_VALUES Procedures

PREPARE_COLUMN_VALUES_NVARCHAR2 Procedure

PREPARE_COLUMN_VALUES_ROWID Procedure

SEED_COL_USAGE Procedure

SET_INDEX_STATS Procedures

SET_SYSTEM_STATS Procedure

SET_TABLE_STATS Procedure

GET_COLUMN_STATS Procedures

GET_INDEX_STATS Procedures

GET_SYSTEM_STATS Procedure

GET_TABLE_STATS Procedure

In the special versions of the SET_*_STATS procedures for setting user-defined statistics, the following, if provided, are stored in the dictionary or external statistics table:

	
User-defined statistics (extstats)

	
The statistics type schema name (statsschema)

	
The statistics type name (statsname)

The user-defined statistics and the corresponding statistics type are inserted into the USTATS$ dictionary table. You can specify user-defined statistics without specifying the statistics type name.

The special versions of the GET_*_STATS procedures return user-defined statistics and the statistics type owner and name as OUT arguments corresponding to the schema object specified. If user-defined statistics are not collected, NULL values are returned.

Deleting Statistics

The DELETE_* procedures delete both user-defined statistics and the standard statistics for the given schema object.

DELETE_COLUMN_STATS Procedure

DELETE_DATABASE_STATS Procedure

DELETE_DICTIONARY_STATS Procedure

DELETE_FIXED_OBJECTS_STATS Procedure

DELETE_INDEX_STATS Procedure

DELETE_SCHEMA_STATS Procedure

DELETE_SYSTEM_STATS Procedure

DELETE_TABLE_STATS Procedure
Transferring Statistics

Use the following procedures for creating and dropping the user statistics table.

CREATE_STAT_TABLE Procedure

DROP_STAT_TABLE Procedure

Use the following procedures to transfer statistics

	
from the dictionary to a user statistics table (EXPORT_*)

	
from a user statistics table to the dictionary (IMPORT_*)

EXPORT_COLUMN_STATS Procedure

EXPORT_DATABASE_STATS Procedure

EXPORT_DICTIONARY_STATS Procedure

EXPORT_FIXED_OBJECTS_STATS Procedure

EXPORT_INDEX_STATS Procedure

EXPORT_SCHEMA_STATS Procedure

EXPORT_SYSTEM_STATS Procedure

EXPORT_TABLE_STATS Procedure

IMPORT_COLUMN_STATS Procedure

IMPORT_DATABASE_STATS Procedure

IMPORT_DICTIONARY_STATS Procedure

IMPORT_FIXED_OBJECTS_STATS Procedure

IMPORT_INDEX_STATS Procedure

IMPORT_SCHEMA_STATS Procedure

IMPORT_SYSTEM_STATS Procedure

IMPORT_TABLE_STATS Procedure

	
Note:

Oracle does not support export or import of statistics across databases of different character sets.

Locking or Unlocking Statistics

Use the following procedures to lock and unlock statistics on objects.

LOCK_SCHEMA_STATS Procedure

LOCK_TABLE_STATS Procedure

UNLOCK_SCHEMA_STATS Procedure

UNLOCK_TABLE_STATS Procedure

The LOCK_* procedures either freeze the current set of the statistics or to keep the statistics empty (uncollected).When statistics on a table are locked, all the statistics depending on the table, including table statistics, column statistics, histograms and statistics on all dependent indexes, are considered to be locked.

Restoring and Purging Statistics History

Use the following procedures to restore statistics as of a specified timestamp. This is useful in case newly collected statistics leads to some sub-optimal execution plans and the administrator wants to revert to the previous set of statistics.

RESET_GLOBAL_PREF_DEFAULTS Procedure

RESTORE_DICTIONARY_STATS Procedure

RESTORE_FIXED_OBJECTS_STATS Procedure

RESTORE_SCHEMA_STATS Procedure

RESTORE_SYSTEM_STATS Procedure

RESTORE_TABLE_STATS Procedure

Whenever statistics in dictionary are modified, old versions of statistics are saved automatically for future restoring. The old statistics are purged automatically at regular intervals based on the statistics history retention setting and the time of recent statistics gathering performed in the system. Retention is configurable using the ALTER_STATS_HISTORY_RETENTION Procedure.

The other DBMS_STATS procedures related to restoring statistics are:

	
PURGE_STATS Procedure: This procedure lets you manually purge old versions beyond a time stamp.

	
GET_STATS_HISTORY_RETENTION Function: This function gets the current statistics history retention value.

	
GET_STATS_HISTORY_AVAILABILITY Function: This function gets the oldest time stamp where statistics history is available. Users cannot restore statistics to a time stamp older than the oldest time stamp.

RESTORE_* operations are not supported for user defined statistics.

User-Defined Statistics

The DBMS_STATS package supports operations on user-defined statistics. When a domain index or column is associated with a statistics type (using the associate statement), operations on the index or column manipulate user-defined statistics. For example, gathering statistics for a domain index (for which an association with a statistics type exists) using the GET_INDEX_STATS Procedures invokes the user-defined statistics collection method of the associated statistics type. Similarly, delete, transfer, import, and export operations manipulate user-defined statistics.

SET_* and GET_* operations for user-defined statistics are also supported using a special version of the SET and GET interfaces for columns and indexes.

EXPORT_*, IMPORT_* and RESTORE_* operations are not supported for user defined statistics.

Pending Statistics

The package gather statistics and stores it in the dictionary by default. User's can store these statistics in the system's private area instead of the dictionary by turning the PUBLISH option to FALSE using the SET*PREFS procedures. The default value for PUBLISH is TRUE.The statistics stored in private area are not used by Cost Based Optimizer unless parameter optimizer_use_pending_statistics is set to TRUE. The default value of this parameter is FALSE and this boolean parameter can be set at the session/system level. Users can verify the impact of the new statistics on query plans by using the pending statistics on a session.

Pending statistics provide a mechanism to verify the impact of the new statistics on query plans before making them available for general use. There are two scenarios to verify the query plans:

	
Export the pending statistics (use the EXPORT_PENDING_STATS Procedure) to a test system, then run the query workload and check the performance or plans.

	
Set optimizer_use_pending_statistics to TRUE in a session on the system where pending statistics have been gathered, run the workload, and check the performance or plans.

Once the performance or query plans have been verified, the pending statistics can be published (run the PUBLISH_PENDING_STATS Procedure) if the performance is acceptable or delete (run the DELETE_PENDING_STATS Procedure) if not.

Pending statistics can be published, exported, or deleted. The following procedures are provided to manage pending statistics:

	
DELETE_PENDING_STATS Procedure

	
EXPORT_PENDING_STATS Procedure

	
PUBLISH_PENDING_STATS Procedure

Comparing Statistics

The DIFF_TABLE_STATS_* statistics can be used to compare statistics for a table from two different sources. The statistics can be from:

	
two different user statistics tables

	
a single user statistics table containing two sets of statistics that can be identified using statids

	
a user statistics table and dictionary history

	
pending statistics

The functions also compare the statistics of the dependent objects (indexes, columns, partitions). They displays statistics of the object(s) from both sources if the difference between those statistics exceeds a certain threshold (%). The threshold can be specified as an argument to the function, with a default of 10%. The statistics corresponding to the first source (stattab1 or time1) will be used as basis for computing the differential percentage.

Extended Statistics

This package allows you to collect statistics for column groups and expressions (known as "statistics extensions"). The statistics collected for column groups and expressions are called "extended statistics".

Statistics on Column groups are used by optimizer for accounting correlation between columns. For example, if a query has predicates c1=1 and c2=1 and if there are statistics on (c1, c2), the optimizer will use this statistics for estimating the combined selectivity of the predicates.The expression statistics are used by optimizer for estimating selectivity of predicates on those expressions. The extended statistics are similar to column statistics and the procedures that take columns names will accept extension names in place of column names.

Related subprograms:

	
CREATE_EXTENDED_STATS Function

	
DROP_EXTENDED_STATS Procedure

	
SHOW_EXTENDED_STATS_NAME Function

Deprecated Subprograms

The following subprograms are obsolete with Release 11g:

	
GET_PARAM Function

Instead, use GET_PREFS Function

	
SET_PARAM Procedure

Instead, use SET_GLOBAL_PREFS Procedure

	
RESET_PARAM_DEFAULTS Procedure

Instead use RESET_GLOBAL_PREF_DEFAULTS Procedure

Examples

	
Using Pending Statistics

	
Gathering Daytime System Statistics

Using Pending Statistics

Assume many modifications have been made to the employees table since the last time statistics were gathered. To ensure that the cost-based optimizer is still picking the best plan, statistics should be gathered once again; however, the user is concerned that new statistics will cause the optimizer to choose bad plans when the current ones are acceptable. The user can do the following:

EXEC DBMS_STATS.SET_TABLE_PREFS('hr', 'employees', 'PUBLISH', 'false');

By setting the employees tables publish preference to FALSE, any statistics gather from now on will not be automatically published. The newly gathered statistics will be marked as pending.

EXEC DBMS_STATS.GATHER_TABLE_STATS ('hr', 'employees');

To test the newly gathered statistics, set optimizer_pending_statistics to TRUE in a session and run sample queries.

ALTER SESSION SET optimizer_use_pending_statistics = TRUE;

If the pending statistics generate sound execution plans, they can be published:

EXEC DBMS_STATS.PUBLISH_PENDING_STATS('hr', 'employees');
EXEC DBMS_STATS.SET_TABLE_PREF('hr', 'employees', 'PUBLISH', 'true');

Gathering Daytime System Statistics

Assume that you want to perform database application processing OLTP transactions during the day and run reports at night.

To collect daytime system statistics, gather statistics for 720 minutes. Store the statistics in the MYSTATS table.

BEGIN
 DBMS_STATS.GATHER_SYSTEM_STATS (
 interval => 720,
 stattab => 'mystats',
 statid => 'OLTP');
END;

To collect nighttime system statistics, gather statistics for 720 minutes. Store the statistics in the MYSTATS table.

BEGIN
 DBMS_STATS.GATHER_SYSTEM_STATS (
 interval => 720,
 stattab => 'mystats',
 statid => 'OLAP');
END;

Update the dictionary with the gathered statistics.

VARIABLE jobno number;
BEGIN
 DBMS_JOB.SUBMIT (:jobno, 'DBMS_STATS.IMPORT_SYSTEM_STATS
 (''mystats'',''OLTP'');'
 sysdate, 'sysdate + 1');
 COMMIT;
END;

BEGIN
 DBMS_JOB.SUBMIT (:jobno, 'DBMS_STATS.IMPORT_SYSTEM_STATS
 (''mystats'',''OLAP'');'
 sysdate + 0.5, 'sysdate + 1');
 COMMIT;
END;

Summary of DBMS_STATS Subprograms

Table 141-2 DBMS_STATS Package Subprograms

	Subprogram	Description
	
ALTER_STATS_HISTORY_RETENTION Procedure

	
Changes the statistics history retention value

	
CONVERT_RAW_VALUE Procedures

	
Convert the internal representation of a minimum or maximum value into a datatype-specific value

	
CONVERT_RAW_VALUE_NVARCHAR Procedure

	
Convert the internal representation of a minimum or maximum value into a datatype-specific value

	
CONVERT_RAW_VALUE_ROWID Procedure

	
Convert the internal representation of a minimum or maximum value into a datatype-specific value

	
COPY_TABLE_STATS Procedure

	
Copies the statistics of the source [sub] partition to the destination [sub] partition after scaling

	
CREATE_EXTENDED_STATS Function

	
Creates a virtual column for a user specified column group or an expression in a table

	
CREATE_STAT_TABLE Procedure

	
Creates a table with name stattab in ownname's schema which is capable of holding statistics

	
DELETE_COLUMN_STATS Procedure

	
Deletes column-related statistics

	
DELETE_DATABASE_PREFS Procedure

	
Deletes the statistics preferences of all the tables, excluding the tables owned by Oracle

	
DELETE_DATABASE_STATS Procedure

	
Deletes statistics for the entire database

	
DELETE_DICTIONARY_STATS Procedure

	
Deletes statistics for all dictionary schemas ('SYS', 'SYSTEM' and RDBMS component schemas)

	
DELETE_FIXED_OBJECTS_STATS Procedure

	
Deletes statistics of all fixed tables

	
DELETE_INDEX_STATS Procedure

	
Deletes index-related statistics

	
DELETE_PENDING_STATS Procedure

	
Deletes the private statistics that have been collected but have not been published

	
DELETE_SCHEMA_PREFS Procedure

	
Deletes the statistics preferences of all the tables owned by the specified owner name

	
DELETE_SCHEMA_STATS Procedure

	
Deletes schema-related statistics

	
DELETE_SYSTEM_STATS Procedure

	
Deletes system statistics

	
DELETE_TABLE_PREFS Procedure

	
Deletes statistics preferences of the specified table in the specified schema

	
DELETE_TABLE_STATS Procedure

	
Deletes table-related statistics

	
DIFF_TABLE_STATS_IN_HISTORY Function

	
Compares statistics for a table from two timestamps in past and compare the statistics as of that timestamps

	
DIFF_TABLE_STATS_IN_PENDING Function

	
Compares pending statistics and statistics as of a timestamp or statistics from dictionary

	
DIFF_TABLE_STATS_IN_STATTAB Function

	
Compares statistics for a table from two different sources

	
DROP_EXTENDED_STATS Procedure

	
Drops the statistics entry that is created for the user specified extension

	
DROP_STAT_TABLE Procedure

	
Drops a user statistics table created by CREATE_STAT_TABLE

	
EXPORT_COLUMN_STATS Procedure

	
Retrieves statistics for a particular column and stores them in the user statistics table identified by stattab

	
EXPORT_DATABASE_PREFS Procedure

	
Exports the statistics preferences of all the tables, excluding the tables owned by Oracle

	
EXPORT_DATABASE_STATS Procedure

	
Retrieves statistics for all objects in the database and stores them in the user statistics table identified by statown.stattab

	
EXPORT_DICTIONARY_STATS Procedure

	
Retrieves statistics for all dictionary schemas ('SYS', 'SYSTEM' and RDBMS component schemas) and stores them in the user statistics table identified by stattab

	
EXPORT_FIXED_OBJECTS_STATS Procedure

	
Retrieves statistics for fixed tables and stores them in the user statistics table identified by stattab

	
EXPORT_INDEX_STATS Procedure

	
Retrieves statistics for a particular index and stores them in the user statistics table identified by stattab

	
EXPORT_PENDING_STATS Procedure

	
Exports the statistics gathered and stored as pending

	
EXPORT_SCHEMA_PREFS Procedure

	
Exports the statistics preferences of all the tables owned by the specified owner name

	
EXPORT_SCHEMA_STATS Procedure

	
Retrieves statistics for all objects in the schema identified by ownname and stores them in the user statistics table identified by stattab

	
EXPORT_SYSTEM_STATS Procedure

	
Retrieves system statistics and stores them in the user statistics table

	
EXPORT_TABLE_PREFS Procedure

	
Exports statistics preferences of the specified table in the specified schema into the specified statistics table

	
EXPORT_TABLE_STATS Procedure

	
Retrieves statistics for a particular table and stores them in the user statistics table

	
FLUSH_DATABASE_MONITORING_INFO Procedure

	
Flushes in-memory monitoring information for all the tables to the dictionary

	
GATHER_DATABASE_STATS Procedures

	
Gathers statistics for all objects in the database

	
GATHER_DICTIONARY_STATS Procedure

	
Gathers statistics for dictionary schemas 'SYS', 'SYSTEM' and schemas of RDBMS components

	
GATHER_FIXED_OBJECTS_STATS Procedure

	
Gathers statistics of fixed objects

	
GATHER_INDEX_STATS Procedure

	
Gathers index statistics

	
GATHER_SCHEMA_STATS Procedures

	
Gathers statistics for all objects in a schema

	
GATHER_SYSTEM_STATS Procedure

	
Gathers system statistics

	
GATHER_TABLE_STATS Procedure

	
Gathers table and column (and index) statistics

	
GENERATE_STATS Procedure

	
Generates object statistics from previously collected statistics of related objects

	
GET_COLUMN_STATS Procedures

	
Gets all column-related information

	
GET_INDEX_STATS Procedures

	
Gets all index-related information

	
GET_PARAM Function

	
Gets the default value of parameters of DBMS_STATS procedures [see Deprecated Subprograms]

	
GET_PREFS Function

	
Gets the default value of the specified preference

	
GET_STATS_HISTORY_AVAILABILITY Function

	
Gets the oldest timestamp where statistics history is available

	
GET_STATS_HISTORY_RETENTION Function

	
Returns the current retention value

	
GET_SYSTEM_STATS Procedure

	
Gets system statistics from stattab, or from the dictionary if stattab is NULL

	
GET_TABLE_STATS Procedure

	
Gets all table-related information

	
IMPORT_COLUMN_STATS Procedure

	
Retrieves statistics for a particular column from the user statistics table identified by stattab and stores them in the dictionary

	
IMPORT_DATABASE_PREFS Procedure

	
Imports the statistics preferences of all the tables, excluding the tables owned by Oracle

	
IMPORT_DATABASE_STATS Procedure

	
Retrieves statistics for all objects in the database from the user statistics table and stores them in the dictionary

	
IMPORT_DICTIONARY_STATS Procedure

	
Retrieves statistics for all dictionary schemas ('SYS', 'SYSTEM' and RDBMS component schemas) from the user statistics table and stores them in the dictionary

	
IMPORT_FIXED_OBJECTS_STATS Procedure

	
Retrieves statistics for fixed tables from the user statistics table identified by stattab and stores them in the dictionary

	
IMPORT_INDEX_STATS Procedure

	
Retrieves statistics for a particular index from the user statistics table identified by stattab and stores them in the dictionary

	
IMPORT_SCHEMA_PREFS Procedure

	
Imports the statistics preferences of all the tables owned by the specified owner name

	
IMPORT_SCHEMA_STATS Procedure

	
Retrieves statistics for all objects in the schema identified by ownname from the user statistics table and stores them in the dictionary

	
IMPORT_SYSTEM_STATS Procedure

	
Retrieves system statistics from the user statistics table and stores them in the dictionary

	
IMPORT_TABLE_PREFS Procedure

	
Sets the statistics preferences of the specified table in the specified schema

	
IMPORT_TABLE_STATS Procedure

	
Retrieves statistics for a particular table from the user statistics table identified by stattab and stores them in the dictionary

	
LOCK_PARTITION_STATS Procedure

	
Locks statistics for a partition

	
LOCK_SCHEMA_STATS Procedure

	
Locks the statistics of all tables of a schema

	
LOCK_TABLE_STATS Procedure

	
Locks the statistics on the table

	
MERGE_COL_USAGE Procedure

	
Merges column usage information from a source database, by means of a dblink, into the local database

	
PREPARE_COLUMN_VALUES Procedures

	
Converts user-specified minimum, maximum, and histogram endpoint datatype-specific values into Oracle's internal representation for future storage using the SEED_COL_USAGE Procedure

	
PREPARE_COLUMN_VALUES_NVARCHAR2 Procedure

	
Converts user-specified minimum, maximum, and histogram endpoint datatype-specific values into Oracle's internal representation for future storage using the SEED_COL_USAGE Procedure

	
PREPARE_COLUMN_VALUES_ROWID Procedure

	
Converts user-specified minimum, maximum, and histogram endpoint datatype-specific values into Oracle's internal representation for future storage using the SEED_COL_USAGE Procedure

	
PUBLISH_PENDING_STATS Procedure

	
Publishes the statistics gathered and stored as pending

	
PURGE_STATS Procedure

	
Purges old versions of statistics saved in the dictionary

	
RESET_GLOBAL_PREF_DEFAULTS Procedure

	
Resets the default values of all parameters to Oracle recommended values

	
RESET_PARAM_DEFAULTS Procedure

	
Resets global preferences to default values [see Deprecated Subprograms]

	
RESTORE_DICTIONARY_STATS Procedure

	
Restores statistics of all dictionary tables (tables of 'SYS', 'SYSTEM' and RDBMS component schemas) as of a specified timestamp

	
RESTORE_FIXED_OBJECTS_STATS Procedure

	
Restores statistics of all fixed tables as of a specified timestamp

	
RESTORE_SCHEMA_STATS Procedure

	
Restores statistics of all tables of a schema as of a specified timestamp

	
RESTORE_SYSTEM_STATS Procedure

	
Restores statistics of all tables of a schema as of a specified timestamp

	
RESTORE_TABLE_STATS Procedure

	
Restores statistics of a table as of a specified timestamp (as_of_timestamp), as well as statistics of associated indexes and columns

	
SEED_COL_USAGE Procedure

	
Iterates over the SQL statements in the specified SQL tuning set, compiles them and seeds column usage information for the columns that appear in these statements

	
SET_COLUMN_STATS Procedures

	
Sets column-related information

	
SET_DATABASE_PREFS Procedure

	
Sets the statistics preferences of all the tables, excluding the tables owned by Oracle

	
SET_GLOBAL_PREFS Procedure

	
Sets the global statistics preferences

	
SET_INDEX_STATS Procedures

	
Sets index-related information

	
SET_PARAM Procedure

	
Sets default values for parameters of DBMS_STATS procedures [see Deprecated Subprograms]

	
SET_SCHEMA_PREFS Procedure

	
Sets the statistics preferences of all the tables owned by the specified owner name

	
SET_SYSTEM_STATS Procedure

	
Sets system statistics

	
SET_TABLE_PREFS Procedure

	
Sets the statistics preferences of the specified table in the specified schema

	
SET_TABLE_STATS Procedure

	
Sets table-related information

	
SHOW_EXTENDED_STATS_NAME Function

	
Returns the name of the virtual column that is created for the user-specified extension

	
UNLOCK_PARTITION_STATS Procedure

	
Unlocks the statistics for a partition

	
UNLOCK_SCHEMA_STATS Procedure

	
Unlocks the statistics on all the table in a schema

	
UNLOCK_TABLE_STATS Procedure

	
Unlocks the statistics on the table

	
UPGRADE_STAT_TABLE Procedure

	
Upgrades user statistics on an older table

ALTER_STATS_HISTORY_RETENTION Procedure

This procedure changes the statistics history retention value. Statistics history retention is used by both the automatic purge and PURGE_STATS Procedure.

Syntax

DBMS_STATS.ALTER_STATS_HISTORY_RETENTION (
 retention IN NUMBER);

Parameters

Table 141-3 ALTER_STATS_HISTORY_RETENTION Procedure Parameters

	Parameter	Description
	
retention

	
The retention time in days. The statistics history will be retained for at least these many number of days.The valid range is [1,365000]. Also you can use the following values for special purposes:

	
-1 :Statistics history is never purged by automatic purge

	
0 : Old statistics are never saved. The automatic purge will delete all statistics history

	
NULL : Change statistics history retention to default value

Usage Notes

To run this procedure, you must have the SYSDBA or both ANALYZE ANY DICTIONARY and ANALYZE ANY system privilege.

Exceptions

ORA-20000: Insufficient privileges

CONVERT_RAW_VALUE Procedures

This procedure converts the internal representation of a minimum or maximum value into a datatype-specific value. The minval and maxval fields of the StatRec structure as filled in by GET_COLUMN_STATS or PREPARE_COLUMN_VALUES are appropriate values for input.

Syntax

DBMS_STATS.CONVERT_RAW_VALUE (
 rawval RAW,
 resval OUT BINARY_FLOAT);

DBMS_STATS.CONVERT_RAW_VALUE (
 rawval RAW,
 resval OUT BINARY_DOUBLE);

DBMS_STATS.CONVERT_RAW_VALUE (
 rawval RAW,
 resval OUT DATE);

DBMS_STATS.CONVERT_RAW_VALUE (
 rawval RAW,
 resval OUT NUMBER);

DBMS_STATS.CONVERT_RAW_VALUE (
 rawval RAW,
 resval OUT VARCHAR2);

Pragmas

pragma restrict_references(convert_raw_value, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 141-4 CONVERT_RAW_VALUE Procedure Parameters

	Parameter	Description
	
rawval

	
The raw representation of a column minimum or maximum datatype-specific output parameters

	
resval

	
The converted, type-specific value

CONVERT_RAW_VALUE_NVARCHAR Procedure

This procedure converts the internal representation of a minimum or maximum value into a datatype-specific value. The minval and maxval fields of the StatRec structure as filled in by GET_COLUMN_STATS or PREPARE_COLUMN_VALUES are appropriate values for input.

Syntax

DBMS_STATS.CONVERT_RAW_VALUE_NVARCHAR (
 rawval RAW,
 resval OUT NVARCHAR2);

Pragmas

pragma restrict_references(convert_raw_value_nvarchar, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 141-5 CONVERT_RAW_VALUE_NVARCHAR Procedure Parameters

	Parameter	Description
	
rawval

	
The raw representation of a column minimum or maximum datatype-specific output parameters

	
resval

	
The converted, type-specific value

CONVERT_RAW_VALUE_ROWID Procedure

This procedure converts the internal representation of a minimum or maximum value into a datatype-specific value. The minval and maxval fields of the StatRec structure as filled in by GET_COLUMN_STATS or PREPARE_COLUMN_VALUES are appropriate values for input.

Syntax

DBMS_STATS.CONVERT_RAW_VALUE_ROWID (
 rawval RAW,
 resval OUT ROWID);

Pragmas

pragma restrict_references(convert_raw_value_rowid, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 141-6 CONVERT_RAW_VALUE_ROWID Procedure Parameters

	Parameter	Description
	
rawval

	
The raw representation of a column minimum or maximum datatype-specific output parameters

	
resval

	
The converted, type-specific value

COPY_TABLE_STATS Procedure

This procedure copies the statistics of the source [sub] partition to the destination [sub] partition.It also copies statistics of all dependent object such as columns and local indexes. If the statistics forsource are not available then nothing is copied. It can optionally scale the statistics (such as the number of blks, or number of rows) based on the given scale_factor.

Syntax

DBMS_STATS.COPY_TABLE_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2,
 srcpartname VARCHAR2,
 dstpartname VARCHAR2,
 scale_factor VARCHAR2 DEFAULT 1,
 flags NUMBER DEFAULT,
 force BOOLEAN DEFAULT FALSE);

Parameters

Table 141-7 COPY_TABLE_STATS Procedure Parameters

	Parameter	Description
	
ownname

	
Schema of the table of source and destination [sub] partitions

	
tabname

	
Table name of source and destination [sub] partitions

	
srcpartname

	
Source [sub] partition

	
dtspartname

	
Destination [sub] partition

	
scale_factor

	
Scale factor to scale nblks, nrows etc. in dstpartname

	
flags

	
For internal Oracle use (should be left as NULL)

	
force

	
When value of this argument is TRUE, copy statistics even if locked

Exceptions

ORA-20000: Invalid partition name

ORA-20001: Bad input value

Usage Notes

This procedure updates the minimum and maximum values of destination partition for the first partitioning column as follows:

	
If the partitioning type is HASH the minimum and maximum values of the destination partition are same as that of the source partition.

	
If the partitioning type is LIST then

	
if the destination partition is a NOT DEFAULT paritition then

	
the minimum value of the destination partition is set to the minimum value of the value list that describes the destination partition

	
the maximum value of the destination partition is set to the maximum value of the value list that describes the destination partition

	
alternatively, if the destination partition is a DEFAULT paritition, then

	
the minimum value of the destination partition is set to the minimum value of the source partition

	
the maximum value of the destination partition is set to the maximum value of the source partition

	
If the partitioning type is RANGE then

	
the minimum value of the destination partition is set to the high bound of previous partition

	
the maximum value of the destination partition is set to the high bound of the destination partition unless the high bound of the destination partition is MAXVALUE, in which case the maximum value of the destination partition is set to the high bound of the previous partition

Note that if the destination partition is the first partition then minimum values are equal to maximum values.

The procedure is is extended to handle the second and subsequent key columns with two additional rules (which do not apply to the first key column) :

	
If the source partition column's minimum value is equal to its maximum value, and both are equal to the source partition's lower bound, and it has a single distinct value, then the destination partition column's minimum and maximum values are both set to the destination partition's lower bound.

	
IIf the above condition does not apply, the destination partition column's maximum value is set to the greater of the destination partition upper bound and the source partition column's maximum value, with the following exception: if the destination partition is D and its preceding partition is D-1 and the key column to be adjusted is Cn, the maximum value for Cn is set to the upper bound of D (ignoring the maximum value of the source partition column) provided that the upper bounds of the previous key column Cn-1 are the same in partitions D and D-1.

CREATE_EXTENDED_STATS Function

This function creates a column statistics entry in the system for a user specified column group or an expression in a table. Statistics for this extension will be gathered when user or auto statistics gathering job gathers statistics for the table. We call statistics for such an extension, "extended statistics". This function returns the name of this newly created entry for the extension.

Syntax

DBMS_STATS.CREATE_EXTENDED_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2,
 extension VARCHAR2)
 RETURN VARCHAR2;

Parameters

Table 141-8 CREATE_EXTENDED_STATS Function Parameters

	Parameter	Description
	
ownname

	
Owner name of a table

	
tabname

	
Name of the table

	
extension

	
Can be either a column group or an expression. Suppose the specified table has two column c1, c2. An example column group can be "(c1, c2)" and an example expression can be "(c1 + c2)".

Return Values

This function returns the name of this newly created entry for the extension.

Exceptions

ORA-20000: Insufficient privileges / creating extension is not supported

ORA-20001: Error when processing extension

ORA-20007: Extension already exists

ORA-20008: Reached the upper limit on number of extensions

Usage Notes

There are nine restrictions on the extension:

	
The extension cannot contain a virtual column.

	
Extensions cannot be created on tables owned by SYS.

	
Extensions cannot be created on cluster tables, index organized tables, temporary tables or external tables.

	
The total number of extensions in a table cannot be greater than a maximum of (20, 10% of number of non-virtual columns in the table).

	
The number of columns in a column group must be in the range [2, 32].

	
A column can not appear more than once in a column group.

	
A column group can not contain expressions.

	
An expression must contain at least one column.

	
An expression can not contain a subquery.

	
The COMPATIBLE parameter needs to be 11.0.0.0.0 or greater

CREATE_STAT_TABLE Procedure

This procedure creates a table with name stattab in ownname's schema which is capable of holding statistics. The columns and types that compose this table are not relevant as it should be accessed solely through the procedures in this package.

Syntax

DBMS_STATS.CREATE_STAT_TABLE (
 ownname VARCHAR2,
 stattab VARCHAR2,
 tblspace VARCHAR2 DEFAULT NULL);

Parameters

Table 141-9 CREATE_STAT_TABLE Procedure Parameters

	Parameter	Description
	
ownname

	
Name of the schema

	
stattab

	
Name of the table to create. This value should be passed as the stattab parameter to other procedures when the user does not want to modify the dictionary statistics directly.

	
tblspace

	
Tablespace in which to create the statistics tables. If none is specified, then they are created in the user's default tablespace.

Exceptions

ORA-20000: Table already exists or insufficient privileges

ORA-20001: Tablespace does not exist

DELETE_COLUMN_STATS Procedure

This procedure deletes column-related statistics.

Syntax

DBMS_STATS.DELETE_COLUMN_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2,
 colname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 cascade_parts BOOLEAN DEFAULT TRUE,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type (
 get_param('NO_INVALIDATE')),
 force BOOLEAN DEFAULT FALSE,
 col_stat_type VARCHAR2 DEFAULT 'ALL');

Parameters

Table 141-10 DELETE_COLUMN_STATS Procedure Parameters

	Parameter	Description
	
ownname

	
Name of the schema

	
tabname

	
Name of the table to which this column belongs

	
colname

	
Name of the column or extension

	
partname

	
Name of the table partition for which to delete the statistics. If the table is partitioned and if partname is NULL, then global column statistics are deleted.

	
stattab

	
User statistics table identifier describing from where to delete the statistics. If stattab is NULL, then the statistics are deleted directly from the dictionary.

	
statid

	
Identifier (optional) to associate with these statistics within stattab (Only pertinent if stattab is not NULL).

	
cascade_parts

	
If the table is partitioned and if partname is NULL, then setting this to true causes the deletion of statistics for this column for all underlying partitions as well.

	
statown

	
Schema containing stattab (if different than ownname)

	
no_invalidate

	
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE. to have Oracle decide when to invalidate dependent cursors. This is the default. The default can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

	
force

	
When value of this argument is TRUE, deletes column statistics even if locked

	
col_stat_type

	
Type of column statistics to be deleted.This argument takes the following values:

	
HISTOGRAM - delete column histogram only

	
ALL - delete base column statistics and histogram

Exceptions

ORA-20000: Object does not exist or insufficient privileges

ORA-20005: Object statistics are locked

DELETE_DATABASE_PREFS Procedure

This procedure is used to delete the statistics preferences of all the tables, excluding the tables owned by Oracle. These tables can by included by passing TRUE for the add_sys parameter.

Syntax

DBMS_STATS.DELETE_DATABASE_PREFS (
 pname IN VARCHAR2,
 add_sys IN BOOLEAN DEFAULT FALSE);

Parameters

Table 141-11 DELETE_DATABASE_PREFS Procedure Parameters

	Parameter	Description
	
pname

	
Preference name. The default value for following parameters can be deleted:

	
CASCADE

	
DEGREE

	
ESTIMATE_PERCENT

	
METHOD_OPT

	
NO_INVALIDATE

	
GRANULARITY

	
PUBLISH

	
INCREMENTAL

	
STALE_PERCENT

	
.

	
CASCADE - The value determines whether or not index statistics are collected as part of gathering table statistics

	
.

	
DEGREE - The value determines degree of parallelism used for gathering statistics

	
.

	
ESTIMATE_PERCENT - The value determines the percentage of rows to estimate. The valid range is [0.000001,100]. Use the constant DBMS_STATS.AUTO_SAMPLE_SIZE to have Oracle determine the appropriate sample size for good statistics. This is the default.

	
.

	
METHOD_OPT - The value controls column statistics collection and histogram creation. It accepts either of the following options, or both in combination:

	
FOR ALL [INDEXED | HIDDEN] COLUMNS [size_clause]

	
FOR COLUMNS [size clause] column [size_clause] [,column [size_clause]...]

size_clause is defined as size_clause := SIZE {integer | REPEAT | AUTO | SKEWONLY}

column is defined as column := column_name | extension name | extension

- integer : Number of histogram buckets. Must be in the range [1,254].

- REPEAT : Collects histograms only on the columns that already have histograms

- AUTO : Oracle determines the columns to collect histograms based on data distribution and the workload of the columns

- SKEWONLY : Oracle determines the columns to collect histograms based on the data distribution of the columns

- column_name : name of a column

- extension : can be either a column group in the format of (column_name, colume_name [, ...]) or an expression
The default is FOR ALL COLUMNS SIZE AUTO.

	
.

	
NO_INVALIDATE - The value controls the invalidation of dependent cursors of the tables for which statistics are being gathered. Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE to have Oracle decide when to invalidate dependent cursors. This is the default.

	
.

	
GRANULARITY - The value determines granularity of statistics to collect (only pertinent if the table is partitioned)

'ALL' - gathers all (subpartition, partition, and global) statistics

'AUTO'- determines the granularity based on the partitioning type. This is the default value.

'DEFAULT' - gathers global and partition-level statistics. This option is obsolete, and while currently supported, it is included in the documentation for legacy reasons only. You should use the 'GLOBAL AND PARTITION' for this functionality. Note that the default value is now 'AUTO'.

'GLOBAL' - gathers global statistics

'GLOBAL AND PARTITION' - gathers the global and partition level statistics. No subpartition level statistics are gathered even if it is a composite partitioned object.

'PARTITION '- gathers partition-level statistics

'SUBPARTITION' - gathers subpartition-level statistics

	
.

	
PUBLISH - This value determines whether or not newly gathered statistics will be published once the gather job has completed. Prior to Oracle Database 11g, Release 1 (11.1), once a statistic gathering job completed the new statistics were automatically published into the dictionary tables. The user now has the ability to gather statistics but not publish them immediately. This allows the DBA to test the new statistics before publishing them.

	
.

	
INCREMENTAL - This value determines whether or not the global statistics of a partitioned table will be maintained without doing a full table scan. With partitioned tables it is very common to load new data into a new partition. As new partitions are added and data loaded, the global table statistics need to be kept up to date. Oracle will update the global table statistics by scanning only the partitions that have been changed instead of the entire table if the following conditions hold:

	
the INCREMENTAL value for the partitioned table is set to TRUE;

	
the PUBLISH value for the partitioned table is set to TRUE;

	
the user specifies AUTO_SAMPLE_SIZE for ESTIMATE_PERCENT and AUTO for GRANULARITY when gathering statistics on the table.

If the INCREMENTAL value for the partitioned table was set to FALSE (default value), a full table scan is used to maintain the global statistics which is a much more resource intensive and time-consuming operation for large tables.

	
.

	
STALE_PERCENT - Determines the percentage of rows in a table that have to change before the statistics on that table are deemed stale and should be regathered. The valid domain for stale_percent is non-negative numbers.The default value is 10%. Note that if you set stale_precent to zero the AUTO STATS gathering job will gather statistics for this table every time a row in the table is modified.

	
add_sys

	
Value TRUE will include the Oracle-owned tables

Exceptions

ORA-20000: Insufficient privileges

ORA-20001: Invalid or Illegal input values

Usage Notes

	
To run this procedure, you need to have the SYSDBA role or both ANALYZE ANY DICTIONARY and ANALYZE ANY system privileges.

	
All pname arguments are of type VARCHAR2 and values are enclosed in quotes, even when they represent numbers.

Examples

DBMS_STATS.DELETE_DATABASE_PREFS('CASCADE', FALSE);
DBMS_STATS.DELETE_DATABASE_PREFS('ESTIMATE_PERCENT',TRUE);

DELETE_DATABASE_STATS Procedure

This procedure deletes statistics for all the tables in a database.

Syntax

DBMS_STATS.DELETE_DATABASE_STATS (
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type (
 get_param('NO_INVALIDATE')),
 force BOOLEAN DEFAULT FALSE);

Parameters

Table 141-12 DELETE_DATABASE_STATS Procedure Parameters

	Parameter	Description
	
stattab

	
User statistics table identifier describing from where to delete the statistics. If stattab is NULL, then the statistics are deleted directly in the dictionary.

	
statid

	
Identifier (optional) to associate with these statistics within stattab (Only pertinent if stattab is not NULL)

	
statown

	
Schema containing stattab (if different from current schema)

	
no_invalidate

	
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE. to have Oracle decide when to invalidate dependent cursors. This is the default. The default can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

	
force

	
When the value of this argument is TRUE, deletes statistics of tables in a database even if they are locked

Exceptions

ORA-20000: Object does not exist or insufficient privileges

DELETE_DICTIONARY_STATS Procedure

This procedure deletes statistics for all dictionary schemas ('SYS', 'SYSTEM' and RDBMS component schemas).

Syntax

DBMS_STATS.DELETE_DICTIONARY_STATS (
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type (
 get_param('NO_INVALIDATE')),
 force BOOLEAN DEFAULT FALSE);

Parameters

Table 141-13 DELETE_DICTIONARY_STATS Procedure Parameters

	Parameter	Description
	
stattab

	
User statistics table identifier describing from where to delete the statistics. If stattab is NULL, then the statistics are deleted directly in the dictionary.

	
statid

	
Identifier (optional) to associate with these statistics within stattab (Only pertinent if stattab is not NULL)

	
statown

	
Schema containing stattab (if different from current schema)

	
no_invalidate

	
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE. to have Oracle decide when to invalidate dependent cursors. This is the default. The default can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure

	
force

	
When the value of this argument is TRUE, deletes statistics of tables in a database even if they are locked

Usage Notes

You must have the SYSDBA or both ANALYZE ANY DICTIONARY and ANALYZE ANY system privilege to execute this procedure.

Exceptions

ORA-20000: Object does not exist or insufficient privileges

ORA-20002: Bad user statistics table, may need to upgrade it

DELETE_FIXED_OBJECTS_STATS Procedure

This procedure deletes statistics of all fixed tables.

Syntax

DBMS_STATS.DELETE_FIXED_OBJECTS_STATS (
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type (
 get_param('NO_INVALIDATE')),
 force BOOLEAN DEFAULT FALSE);

Parameters

Table 141-14 DELETE_FIXED_OBJECTS_STATS Procedure Parameters

	Parameter	Description
	
stattab

	
The user statistics table identifier describing from where to delete the current statistics. If stattab is NULL, the statistics will be deleted directly in the dictionary.

	
statid

	
The (optional) identifier to associate with these statistics within stattab. This only applies if stattab is not NULL.

	
statown

	
Schema containing stattab (if different from current schema)

	
no_invalidate

	
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE. to have Oracle decide when to invalidate dependent cursors. This is the default. The default can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure

	
force

	
Ignores the statistics lock on objects and deletes the statistics if set to TRUE

Usage Notes

You must have the SYSDBA or ANALYZE ANY DICTIONARY system privilege to execute this procedure.

Exceptions

ORA-20000: Insufficient privileges

ORA-20002: Bad user statistics table, may need to upgrade it

DELETE_INDEX_STATS Procedure

This procedure deletes index-related statistics.

Syntax

DBMS_STATS.DELETE_INDEX_STATS (
 ownname VARCHAR2,
 indname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 cascade_parts BOOLEAN DEFAULT TRUE,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type (
 get_param('NO_INVALIDATE')),
 force BOOLEAN DEFAULT FALSE);

Parameters

Table 141-15 DELETE_INDEX_STATS Procedure Parameters

	Parameter	Description
	
ownname

	
Name of the schema

	
indname

	
Name of the index

	
partname

	
Name of the index partition for which to delete the statistics. If the index is partitioned and if partname is NULL, then index statistics are deleted at the global level.

	
stattab

	
User statistics table identifier describing from where to delete the statistics. If stattab is NULL, then the statistics are deleted directly from the dictionary.

	
statid

	
Identifier (optional) to associate with these statistics within stattab (Only pertinent if stattab is not NULL)

	
cascade_parts

	
If the index is partitioned and if partname is NULL, then setting this to TRUE causes the deletion of statistics for this index for all underlying partitions as well

	
statown

	
Schema containing stattab (if different than ownname)

	
no_invalidate

	
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE. to have Oracle decide when to invalidate dependent cursors. This is the default. The default can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

	
force

	
When value of this argument is TRUE, deletes index statistics even if locked

Exceptions

ORA-20000: Object does not exist or insufficient privileges

ORA-20005: Object statistics are locked

DELETE_PENDING_STATS Procedure

This procedure is used to delete the pending statistics that have been collected but have not been published.

Syntax

DBMS_STATS.DELETE_PENDING_STATS (
 ownname IN VARCHAR2 DEFAULT USER,
 tabname IN VARCHAR2);

Parameters

Table 141-16 DELETE_PENDING_STATS Procedure Parameters

	Parameter	Description
	
ownname

	
Owner name

	
tabname

	
Table name

Exceptions

ORA-20000: Insufficient privileges

Usage Notes

	
If the parameter tabname is NULL delete applies to all tables of the specified schema.

	
The default owner/schema is the user who runs the procedure.

	
To run this procedure, you need to have the same privilege for gathering statistics on the tables that will be touched by this procedure.

Examples

DBMS_STATS.DELETE_PENDING_STATS('SH', 'SALES');

DELETE_SCHEMA_PREFS Procedure

This procedure is used to delete the statistics preferences of all the tables owned by the specified owner name.

Syntax

DBMS_STATS.DELETE_SCHEMA_PREFS (
 ownname IN VARCHAR2,
 pname IN VARCHAR2);

Parameters

Table 141-17 DELETE_SCHEMA_PREFS Procedure Parameters

	Parameter	Description
	
ownname

	
Owner name

	
pname

	
Preference name. The default value for following parameters can be deleted:

	
CASCADE

	
DEGREE

	
ESTIMATE_PERCENT

	
METHOD_OPT

	
NO_INVALIDATE

	
GRANULARITY

	
PUBLISH

	
INCREMENTAL

	
STALE_PERCENT

	
.

	
CASCADE - Determines whether or not index statistics are collected as part of gathering table statistics

	
.

	
DEGREE - Determines degree of parallelism used for gathering statistics

	
.

	
ESTIMATE_PERCENT - Determines the percentage of rows to estimate. The valid range is [0.000001,100]. Use the constant DBMS_STATS.AUTO_SAMPLE_SIZE to have Oracle determine the appropriate sample size for good statistics. This is the default.

	
.

	
METHOD_OPT - Controls column statistics collection and histogram creation. It accepts either of the following options, or both in combination:

	
FOR ALL [INDEXED | HIDDEN] COLUMNS [size_clause]

	
FOR COLUMNS [size clause] column [size_clause] [,column [size_clause]...]

size_clause is defined as size_clause := SIZE {integer | REPEAT | AUTO | SKEWONLY}

column is defined as column := column_name | extension name | extension

- integer : Number of histogram buckets. Must be in the range [1,254].

- REPEAT : Collects histograms only on the columns that already have histograms

- AUTO : Oracle determines the columns to collect histograms based on data distribution and the workload of the columns.

- SKEWONLY : Oracle determines the columns to collect histograms based on the data distribution of the columns

- column_name : name of a column

- extension: can be either a column group in the format of (column_name, colume_name [, ...])or an expression
The default is FOR ALL COLUMNS SIZE AUTO.

	
.

	
NO_INVALIDATE - Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE. to have Oracle decide when to invalidate dependent cursors. This is the default. The default can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

	
.

	
GRANULARITY - The value determines granularity of statistics to collect (only pertinent if the table is partitioned).

'ALL' - gathers all (subpartition, partition, and global) statistics

'AUTO'- determines the granularity based on the partitioning type. This is the default value.

'DEFAULT' - gathers global and partition-level statistics. This option is obsolete, and while currently supported, it is included in the documentation for legacy reasons only. You should use the 'GLOBAL AND PARTITION' for this functionality. Note that the default value is now 'AUTO'.

'GLOBAL' - gathers global statistics

'GLOBAL AND PARTITION' - gathers the global and partition level statistics. No subpartition level statistics are gathered even if it is a composite partitioned object.

'PARTITION '- gathers partition-level statistics

'SUBPARTITION' - gathers subpartition-level statistics.

	
.

	
PUBLISH - This value determines whether or not newly gathered statistics will be published once the gather job has completed. Prior to Oracle Database 11g, Release 1 (11.1), once a statistic gathering job completed the new statistics were automatically published into the dictionary tables. The user now has the ability to gather statistics but not publish them immediately. This allows the DBA to test the new statistics before publishing them.

	
.

	
INCREMENTAL - This value determines whether or not the global statistics of a partitioned table will be maintained without doing a full table scan. With partitioned tables it is very common to load new data into a new partition. As new partitions are added and data loaded, the global table statistics need to be kept up to date. Oracle will update the global table statistics by scanning only the partitions that have been changed instead of the entire table if the following conditions hold:

	
the INCREMENTAL value for the partitioned table is set to TRUE

	
the PUBLISH value for the partitioned table is set to TRUE

	
the user specifies AUTO_SAMPLE_SIZE for ESTIMATE_PERCENT and AUTO for GRANULARITY when gathering statistics on the table

If the INCREMENTAL value for the partitioned table was set to FALSE (default value), a full table scan is used to maintain the global statistics which is a much more resource intensive and time-consuming operation for large tables.

	
.

	
STALE_PERCENT - Determines the percentage of rows in a table that have to change before the statistics on that table are deemed stale and should be regathered. The valid domain for stale_percent is non-negative numbers.The default value is 10%. Note that if you set stale_precent to zero the AUTO STATS gathering job will gather statistics for this table every time a row in the table is modified.

Exceptions

ORA-20000: Insufficient privileges / Schema "<schema>" does not exist

ORA-20001: Invalid or Illegal input values

Usage Notes

	
To run this procedure, you need to connect as owner, or have the SYSDBA privilege, or have the ANALYZE ANY system privilege.

	
All arguments are of type VARCHAR2 and values are enclosed in quotes, even when they represent numbers.

Examples

DBMS_STATS.DELETE_SCHEMA_PREFS('SH', 'CASCADE');
DBMS_STATS.DELETE_SCHEMA_PREFS('SH', 'ESTIMATE_PERCENT');
DBMS_STATS.DELETE_SCHEMA_PREFS('SH', 'DEGREE');

DELETE_SCHEMA_STATS Procedure

This procedure deletes statistics for an entire schema.

Syntax

DBMS_STATS.DELETE_SCHEMA_STATS (
 ownname VARCHAR2,
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type (
 get_param('NO_INVALIDATE')),
 force BOOLEAN DEFAULT FALSE);

Parameters

Table 141-18 DELETE_SCHEMA_STATS Procedure Parameters

	Parameter	Description
	
ownname

	
Name of the schema

	
stattab

	
User statistics table identifier describing from where to delete the statistics. If stattab is NULL, then the statistics are deleted directly in the dictionary.

	
statid

	
Identifier (optional) to associate with these statistics within stattab (Only pertinent if stattab is not NULL)

	
statown

	
Schema containing stattab (if different than ownname)

	
no_invalidate

	
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE. to have Oracle decide when to invalidate dependent cursors. This is the default. The default can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

	
force

	
When value of this argument is TRUE, deletes statistics of tables in a schema even if locked

Exceptions

ORA-20000: Object does not exist or insufficient privileges

DELETE_SYSTEM_STATS Procedure

This procedure deletes workload statistics (collected using the 'INTERVAL' or 'START' and 'STOP' options) and resets the default to noworkload statistics (collected using 'NOWORKLOAD' option) if stattab is not specified. If stattab is specified, the subprogram deletes all system statistics with the associated statid from the stattab.

Syntax

DBMS_STATS.DELETE_SYSTEM_STATS (
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL);

Parameters

Table 141-19 DELETE_SYSTEM_STATS Procedure Parameters

	Parameter	Description
	
stattab

	
Identifier of the user statistics table where the statistics will be saved

	
statid

	
Optional identifier associated with the statistics saved in the stattab

	
statown

	
Schema containing stattab (if different from current schema)

Exceptions

ORA-20000: Object does not exist or insufficient privileges

ORA-20002: Bad user statistics table; may need to be upgraded

DELETE_TABLE_PREFS Procedure

This procedure is used to delete the statistics preferences of the specified table in the specified schema.

Syntax

DBMS_STATS.DELETE_TABLE_PREFS (
 ownname IN VARCHAR2,
 tabname IN VARCHAR2,
 pname IN VARCHAR2);

Parameters

Table 141-20 DELETE_TABLE_PREFS Procedure Parameters

	Parameter	Description
	
ownname

	
Owner name

	
tabname

	
Table name

	
pname

	
Preference name. The default value for following preferences can be deleted:

	
CASCADE

	
DEGREE

	
ESTIMATE_PERCENT

	
METHOD_OPT

	
NO_INVALIDATE

	
GRANULARITY

	
PUBLISH

	
INCREMENTAL

	
STALE_PERCENT

	
.

	
CASCADE - Determines whether or not index statistics are collected as part of gathering table statistics

	
.

	
DEGREE - Determines degree of parallelism used for gathering statistics

	
.

	
ESTIMATE_PERCENT - Determines the percentage of rows to estimate. The valid range is [0.000001,100]. Use the constant DBMS_STATS.AUTO_SAMPLE_SIZE to have Oracle determine the appropriate sample size for good statistics. This is the default.

	
.

	
METHOD_OPT - The value controls column statistics collection and histogram creation. It accepts either of the following options, or both in combination:

	
FOR ALL [INDEXED | HIDDEN] COLUMNS [size_clause]

	
FOR COLUMNS [size clause] column [size_clause] [,column [size_clause]...]

size_clause is defined as size_clause := SIZE {integer | REPEAT | AUTO | SKEWONLY}

column is defined as column := column_name | extension name | extension

- integer : Number of histogram buckets. Must be in the range [1,254].

- REPEAT : Collects histograms only on the columns that already have histograms.

- AUTO : Oracle determines the columns to collect histograms based on data distribution and the workload of the columns.

- SKEWONLY : Oracle determines the columns to collect histograms based on the data distribution of the columns.

- column_name : name of a column

- extension : can be either a column group in the format of (column_name, colume_name [, ...]) or an expression
The default is FOR ALL COLUMNS SIZE AUTO.

	
.

	
NO_INVALIDATE - Controls the invalidation of dependent cursors of the tables for which statistics are being gathered. Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE to have Oracle decide when to invalidate dependent cursors. This is the default.

	
.

	
GRANULARITY - Determines granularity of statistics to collect (only pertinent if the table is partitioned).

'ALL' - Gathers all (subpartition, partition, and global) statistics

'AUTO'- Determines the granularity based on the partitioning type. This is the default value.

'DEFAULT' - Gathers global and partition-level statistics. This option is obsolete, and while currently supported, it is included in the documentation for legacy reasons only. You should use the 'GLOBAL AND PARTITION' for this functionality. Note that the default value is now 'AUTO'.

'GLOBAL' - Gathers global statistics

'GLOBAL AND PARTITION' - Gathers the global and partition level statistics. No subpartition level statistics are gathered even if it is a composite partitioned object.

'PARTITION '- Gathers partition-level statistics

'SUBPARTITION' - Gathers subpartition-level statistics.

	
.

	
PUBLISH - Determines whether or not newly gathered statistics will be published once the gather job has completed. Prior to Oracle Database 11g, Release 1 (11.1), once a statistic gathering job completed the new statistics were automatically published into the dictionary tables. The user now has the ability to gather statistics but not publish them immediately. This allows the DBA to test the new statistics before publishing them.

	
.

	
INCREMENTAL - Determines whether or not the global statistics of a partitioned table will be maintained without doing a full table scan. With partitioned tables it is very common to load new data into a new partition. As new partitions are added and data loaded, the global table statistics need to be kept up to date. Oracle will update the global table statistics by scanning only the partitions that have been changed instead of the entire table if the following conditions hold:

	
INCREMENTAL value for the partitioned table is set to TRUE

	
PUBLISH value for the partitioned table is set to TRUE;

	
User specifies AUTO_SAMPLE_SIZE for ESTIMATE_PERCENT and AUTO for GRANULARITY when gathering statistics on the table.

If the INCREMENTAL value for the partitioned table was set to FALSE (default value), a full table scan is used to maintain the global statistics which is a much more resource intensive and time-consuming operation for large tables.

	
.

	
STALE_PERCENT - Determines the percentage of rows in a table that have to change before the statistics on that table are deemed stale and should be regathered. The valid domain for stale_percent is non-negative numbers. The default value is 10%.

	
pvalue

	
Preference value. If NULL is specified, it will set the Oracle default value.

Exceptions

ORA-20000: Insufficient privileges

ORA-20001: Invalid or Illegal input values

Usage Notes

	
To run this procedure, you need to connect as owner of the table, be granted ANALYZE privilege on the table, or ANALYZE ANY system privilege.

	
All arguments are of type VARCHAR2 and values are enclosed in quotes, even when they represent numbers.

Examples

DBMS_STATS.DELETE_TABLE_PREFS('SH', 'SALES', 'CASCADE');
DBMS_STATS.DELETE_TABLE_PREFS('SH', 'SALES', 'DEGREE');

DELETE_TABLE_STATS Procedure

This procedure deletes table-related statistics.

Syntax

DBMS_STATS.DELETE_TABLE_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 cascade_parts BOOLEAN DEFAULT TRUE,
 cascade_columns BOOLEAN DEFAULT TRUE,
 cascade_indexes BOOLEAN DEFAULT TRUE,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type (
 get_param('NO_INVALIDATE')),
 force BOOLEAN DEFAULT FALSE);

Parameters

Table 141-21 DELETE_TABLE_STATS Procedure Parameters

	Parameter	Description
	
ownname

	
Name of the schema

	
tabname

	
Name of the table to which this column belongs

	
partname

	
Name of the table partition from which to get the statistics. If the table is partitioned and if partname is NULL, then the statistics are retrieved from the global table level.

	
stattab

	
User statistics table identifier describing from where to retrieve the statistics. If stattab is NULL, then the statistics are retrieved directly from the dictionary.

	
statid

	
Identifier (optional) to associate with these statistics within stattab (Only pertinent if stattab is not NULL)

	
cascade_parts

	
If the table is partitioned and if partname is NULL, then setting this to TRUE causes the deletion of statistics for this table for all underlying partitions as well

	
cascade_columns

	
Indicates that DELETE_COLUMN_STATS should be called for all underlying columns (passing the cascade_parts parameter)

	
cascade_indexes

	
Indicates that DELETE_INDEX_STATS should be called for all underlying indexes (passing the cascade_parts parameter)

	
statown

	
Schema containing stattab (if different than ownname)

	
no_invalidate

	
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE. to have Oracle decide when to invalidate dependent cursors. This is the default. The default can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

	
force

	
When value of this argument is TRUE, deletes table statistics even if locked

Exceptions

ORA-20000: Object does not exist or insufficient privileges

ORA-20002: Bad user statistics table, may need to upgrade it

ORA-20005: Object statistics are locked

DIFF_TABLE_STATS_IN_HISTORY Function

This function can be used to compare statistics for a table from two timestamps in past and compare the statistics as of that timestamps.

Syntax

DBMS_STATS.DIFF_TABLE_STATS_IN_HISTORY(
 ownname IN VARCHAR2,
 tabname IN VARCHAR2,
 time1 IN TIMESTAMP WITH TIME ZONE,
 time2 IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
 pctthreshold IN NUMBER DEFAULT 10)
 RETURN DiffRepTab pipelined;

Parameters

Table 141-22 DIFF_TABLE_STATS_IN_HISTORY Function Parameters

	Parameter	Description
	
ownname

	
Owner of the table. Specify NULL for current schema.

	
tabname

	
Table for which statistics are to be compared

	
time1

	
First timestamp 1

	
time2

	
Second timestamp 2

	
pctthreshold

	
The function reports difference in statistics only if it exceeds this limit. The default value is 10.

Usage Notes

If the second timestamp is NULL, the function compares the current statistics in dictionary with the statistics as of the other timestamp.

DIFF_TABLE_STATS_IN_PENDING Function

This function compares pending statistics and statistics as of a timestamp or statistics from dictionary.

Syntax

DBMS_STATS.DIFF_TABLE_STATS_IN_PENDING(
 ownname IN VARCHAR2,
 tabname IN VARCHAR2,
 timestamp IN TIMESTAMP WITH TIME ZONE,
 pctthreshold IN NUMBER DEFAULT 10)
 RETURN DiffRepTab pipelined;

Parameters

Table 141-23 DIFF_TABLE_STATS_IN_PENDING Function Parameters

	Parameter	Description
	
ownname

	
Owner of the table. Specify NULL for current schema.

	
tabname

	
Table for which statistics are to be compared

	
timestamp

	
Time stamp to get statistics from the history

	
pctthreshold

	
The function reports difference in statistics only if it exceeds this limit. The default value is 10.

Usage Notes

If the second timestamp is NULL, the function compares the current statistics in dictionary with the statistics as of the other timestamp.

DIFF_TABLE_STATS_IN_STATTAB Function

This function can be used to compare statistics for a table from two different sources. The statistics can be drawn from

	
two different user statistics tables

	
a single user statistics table containing 2 sets of statistics that can be identified using statids

	
a user statistics table and dictionary

The function also compares the statistics of the dependent objects (indexes, columns, partitions) as well. It displays statistics of the object(s) from both sources if the difference between those statistics exceeds a certain threshold (%). The threshold can be specified as an argument to the function. The statistics corresponding to the first source (stattab1 or time1) will be used as basis for computing the difference percentage.

Syntax

DBMS_STATS.DIFF_TABLE_STATS_IN_STATTAB(
 ownname IN VARCHAR2,
 tabname IN VARCHAR2,
 stattab1 IN VARCHAR2,
 stattab2 IN VARCHAR2 DEFAULT NULL, pctthreshold IN NUMBER DEFAULT 10, statid1 IN VARCHAR2 DEFAULT NULL, statid2 IN VARCHAR2 DEFAULT NULL, stattab1own IN VARCHAR2 DEFAULT NULL, stattab2own IN VARCHAR2 DEFAULT NULL) RETURN DiffRepTab pipelined;

Parameters

Table 141-24 DIFF_TABLE_STATS_IN_STATTAB Function Parameters

	Parameter	Description
	
ownname

	
Owner of the table. Specify NULL for current schema.

	
tabname

	
Table for which statistics are to be compared

	
stattab1

	
User statistics table 1

	
stattab2

	
User statistics table 2. If NULL, statistics in stattab1 is compared with current statistics in dictionary. This is the default. Specify same table as stattab1 to compare two sets within the statistics table (see statid below).

	
pctthreshold

	
The function reports difference in statistics only if it exceeds this limit. The default value is 10.

	
stadid1

	
(optional) Identifies statistics set within stattab1.

	
stadid2

	
(optional) Identifies statistics set within stattab2

	
stattab1own

	
Schema containing stattab1 (if other than ownname)

	
stattab2own

	
Schema containing stattab2 (if other than ownname)

DROP_EXTENDED_STATS Procedure

This function drops the statistics entry that is created for the user specified extension. This cancels the effects of the CREATE_EXTENDED_STATS Function.

Syntax

DBMS_STATS.DROP_EXTENDED_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2,
 extension VARCHAR2);

Parameters

Table 141-25 DROP_EXTENDED_STATS Procedure Parameters

	Parameter	Description
	
ownname

	
Owner name of a table

	
tabname

	
Name of the table

	
extension

	
Can be either a column group or an expression. Suppose the specified table has two column c1, c2. An example column group can be "(c1, c2)" and an example expression can be "(c1 + c2)".

Usage Notes

If no extended statistics set is created for the extension, this function throws an error.

Exceptions

	
ORA-20000: Insufficient privileges or extension does not exist

	
ORA-20001: Error when processing extension

DROP_STAT_TABLE Procedure

This procedure drops a user statistics table.

Syntax

DBMS_STATS.DROP_STAT_TABLE (
 ownname VARCHAR2,
 stattab VARCHAR2);

Parameters

Table 141-26 DROP_STAT_TABLE Procedure Parameters

	Parameter	Description
	
ownname

	
Name of the schema

	
stattab

	
User statistics table identifier

Exceptions

ORA-20000: Table does not exists or insufficient privileges.

EXPORT_COLUMN_STATS Procedure

This procedure retrieves statistics for a particular column and stores them in the user statistics table identified by stattab.

Syntax

DBMS_STATS.EXPORT_COLUMN_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2,
 colname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL);

Parameters

Table 141-27 EXPORT_COLUMN_STATS Procedure Parameters

	Parameter	Description
	
ownname

	
Name of the schema

	
tabname

	
Name of the table to which this column belongs

	
colname

	
Name of the column or extension

	
partname

	
Name of the table partition. If the table is partitioned and if partname is NULL, then global and partition column statistics are exported.

	
stattab

	
User statistics table identifier describing where to store the statistics

	
statid

	
Identifier (optional) to associate with these statistics within stattab

	
statown

	
Schema containing stattab (if different than ownname)

Exceptions

ORA-20000: Object does not exist or insufficient privileges

Usage Notes

Oracle does not support export or import of statistics across databases of different character sets.

EXPORT_DATABASE_PREFS Procedure

This procedure is used to export the statistics preferences of all the tables, excluding the tables owned by Oracle. These tables can by included by passing TRUE for the add_sys parameter.

Syntax

DBMS_STATS.EXPORT_DATABASE_PREFS (
 stattab IN VARCHAR2,
 statid IN VARCHAR2 DEFAULT NULL,
 statown IN VARCHAR2 DEFAULT NULL
 add_sys IN BOOLEAN DEFAULT FALSE);

Parameters

Table 141-28 EXPORT_DATABASE_PREFS Procedure Parameters

	Parameter	Description
	
stattab

	
Statistics table name to where statistics should be exported

	
statid

	
(Optional) Identifier to associate with these statistics within stattab

	
statown

	
Schema containing stattab (if other than ownname)

	
add_sys

	
Value TRUE will include the Oracle-owned tables

Exceptions

ORA-20000: Insufficient privileges

Usage Notes

	
To run this procedure, you need to have the SYSDBA role, or both ANALYZE ANY DICTIONARY and ANALYZE ANY system privileges.

	
All arguments are of type VARCHAR2 and values are enclosed in quotes.

	
Oracle does not support export or import of statistics across databases of different character sets.

Examples

DBMS_STATS.EXPORT_DATABASE_PREFS('STATTAB', statown=>'SH');

EXPORT_DATABASE_STATS Procedure

This procedure retrieves statistics for all objects in the database and stores them in the user statistics tables identified by statown.stattab.

Syntax

DBMS_STATS.EXPORT_DATABASE_STATS (
 stattab VARCHAR2,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 stat_category VARCHAR2 DEFAULT DEFAULT_STAT_CATEGORY);

Parameters

Table 141-29 EXPORT_DATABASE_STATS Procedure Parameters

	Parameter	Description
	
stattab

	
User statistics table identifier describing where to store the statistics

	
statid

	
Identifier (optional) to associate with these statistics within stattab

	
statown

	
Schema containing stattab (if different from current schema)

	
stat_category

	
Specifies what statistics to import, accepting multiple values separated by a comma. Values supported:

	
'OBJECT_STATS' - table statistics, column statistics and index statistics (Default)

	
'SYNOPSES' - auxiliary statistics information gathered on a partitioned table when incremental is TRUE

Exceptions

ORA-20000: Object does not exist or insufficient privileges

Usage Notes

Oracle does not support export or import of statistics across databases of different character sets.

EXPORT_DICTIONARY_STATS Procedure

This procedure retrieves statistics for all dictionary schemas ('SYS', 'SYSTEM' and RDBMS component schemas) and stores them in the user statistics table identified by stattab.

Syntax

DBMS_STATS.EXPORT_DICTIONARY_STATS (
 stattab VARCHAR2,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 stat_category VARCHAR2 DEFAULT DEFAULT_STAT_CATEGORY);

Parameters

Table 141-30 EXPORT_DICTIONARY_STATS Procedure Parameters

	Parameter	Description
	
stattab

	
User statistics table identifier describing where to store the statistics

	
statid

	
Identifier (optional) to associate with these statistics within stattab

	
statown

	
Schema containing stattab (if different from current schema)

	
stat_category

	
Specifies what statistics to import, accepting multiple values separated by a comma. Values supported:

	
'OBJECT_STATS' - table statistics, column statistics and index statistics (Default)

	
'SYNOPSES' - auxiliary statistics information gathered on a partitioned table when incremental is TRUE

Usage Notes

	
You must have the SYSDBA or ANALYZE ANY DICTIONARY and ANALYZE ANY system privilege to execute this procedure.

	
Oracle does not support export or import of statistics across databases of different character sets.

Exceptions

ORA-20000: Object does not exist or insufficient privileges

ORA-20002: Bad user statistics table, may need to upgrade it

EXPORT_FIXED_OBJECTS_STATS Procedure

This procedure retrieves statistics for fixed tables and stores them in the user statistics table identified by stattab.

Syntax

DBMS_STATS.EXPORT_FIXED_OBJECTS_STATS (
 stattab VARCHAR2,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL);

Parameters

Table 141-31 EXPORT_FIXED_OBJECTS_STATS Procedure Parameters

	Parameter	Description
	
stattab

	
User statistics table identifier describing where to store the statistics

	
statid

	
Identifier (optional) to associate with these statistics within stattab

	
statown

	
Schema containing stattab (if different from current schema)

Exceptions

ORA-20000: Object does not exist or insufficient privileges

ORA-20002: Bad user statistics table, may need to upgrade it

Usage Notes

Oracle does not support export or import of statistics across databases of different character sets.

EXPORT_INDEX_STATS Procedure

This procedure retrieves statistics for a particular index and stores them in the user statistics table identified by stattab.

Syntax

DBMS_STATS.EXPORT_INDEX_STATS (
 ownname VARCHAR2,
 indname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL);

Parameters

Table 141-32 EXPORT_INDEX_STATS Procedure Parameters

	Parameter	Description
	
ownname

	
Name of the schema

	
indname

	
Name of the index

	
partname

	
Name of the index partition. If the index is partitioned and if partname is NULL, then global and partition index statistics are exported.

	
stattab

	
User statistics table identifier describing where to store the statistics

	
statid

	
Identifier (optional) to associate with these statistics within stattab

	
statown

	
Schema containing stattab (if different than ownname)

Exceptions

ORA-20000: Object does not exist or insufficient privileges

Usage Notes

Oracle does not support export or import of statistics across databases of different character sets.

EXPORT_PENDING_STATS Procedure

This procedure is used to export the statistics gathered and stored as pending.

Syntax

DBMS_STATS.EXPORT_PENDING_STATS (
 ownname IN VARCHAR2 DEFAULT USER,
 tabname IN VARCHAR2,
 stattab IN VARCHAR2,
 statid IN VARCHAR2 DEFAULT NULL,
 statown IN VARCHAR2 DEFAULT USER);

Parameters

Table 141-33 EXPORT_PENDING_STATS Procedure Parameters

	Parameter	Description
	
ownname

	
Owner name

	
tabname

	
Table name

	
stattab

	
Statistics table name to where to export the statistics

	
statid

	
(Optional) Identifier to associate with these statistics within stattab

	
statown

	
Schema containing stattab (if other than ownname)

Exceptions

ORA-20000: Object does not exist or insufficient privileges

Usage Notes

	
If the parameter tabname is NULL then export applies to all tables of the specified schema.

	
The default owner/schema is the user who runs the procedure.

	
To run this procedure, you need to have the same privilege for gathering statistics on the tables that will be touched by this procedure.

	
All arguments are of type VARCHAR2 and values are enclosed in quotes.

	
Oracle does not support export or import of statistics across databases of different character sets.

Examples

DBMS_STATS.EXPORT_PENDING_STATS(NULL, NULL, 'MY_STAT_TABLE');

EXPORT_SCHEMA_PREFS Procedure

This procedure is used to export the statistics preferences of all the tables owned by the specified owner name.

Syntax

DBMS_STATS.EXPORT_SCHEMA_PREFS (
 ownname IN VARCHAR2,
 stattab IN VARCHAR2,
 statid IN VARCHAR2 DEFAULT NULL,
 statown IN VARCHAR2 DEFAULT NULL);

Parameters

Table 141-34 EXPORT_SCHEMA_PREFS Procedure Parameters

	Parameter	Description
	
ownname

	
Owner name

	
stattab

	
Statistics table name to where to export the statistics

	
statid

	
(Optional) Identifier to associate with these statistics within stattab

	
statown

	
Schema containing stattab (if different than ownname)

Exceptions

ORA-20000: Object does not exist or insufficient privileges

Usage Notes

	
To run this procedure, you need to connect as owner, or have the SYSDBA privilege, or have the ANALYZE ANY system privilege.

	
All arguments are of type VARCHAR2 and values are enclosed in quotes.

	
Oracle does not support export or import of statistics across databases of different character sets.

Examples

DBMS_STATS.EXPORT_SCHEMA_PREFS('SH', 'STAT');

EXPORT_SCHEMA_STATS Procedure

This procedure retrieves statistics for all objects in the schema identified by ownname and stores them in the user statistics tables identified by stattab.

Syntax

DBMS_STATS.EXPORT_SCHEMA_STATS (
 ownname VARCHAR2,
 stattab VARCHAR2,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 stat_category VARCHAR2 DEFAULT DEFAULT_STAT_CATEGORY);

Parameters

Table 141-35 EXPORT_SCHEMA_STATS Procedure Parameters

	Parameter	Description
	
ownname

	
Name of the schema

	
stattab

	
User statistics table identifier describing where to store the statistics

	
statid

	
Identifier (optional) to associate with these statistics within stattab

	
statown

	
Schema containing stattab (if different than ownname)

	
stat_category

	
Specifies what statistics to import, accepting multiple values separated by a comma. Values supported:

	
'OBJECT_STATS' - table statistics, column statistics and index statistics (Default)

	
'SYNOPSES' - auxiliary statistics information gathered on a partitioned table when incremental is TRUE

Exceptions

ORA-20000: Object does not exist or insufficient privileges

Usage Notes

Oracle does not support export or import of statistics across databases of different character sets.

EXPORT_SYSTEM_STATS Procedure

This procedure retrieves system statistics and stores them in the user statistics table, identified by stattab.

Syntax

DBMS_STATS.EXPORT_SYSTEM_STATS (
 stattab VARCHAR2,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL);

Parameters

Table 141-36 EXPORT_SYSTEM_STATS Procedure Parameters

	Parameter	Description
	
stattab

	
Identifier of the user statistics table that describes where the statistics will be stored

	
statid

	
Optional identifier associated with the statistics stored from the stattab

	
statown

	
Schema containing stattab (if different from current schema)

Exceptions

ORA-20000: Object does not exist or insufficient privileges

ORA-20002: Bad user statistics table; may need to be upgraded

ORA-20003: Unable to export system statistics

Usage Notes

Oracle does not support export or import of statistics across databases of different character sets.

EXPORT_TABLE_PREFS Procedure

This procedure is used to export the statistics preferences of the specified table in the specified schema into the specified statistics table.

Syntax

DBMS_STATS.EXPORT_TABLE_PREFS (
 ownname IN VARCHAR2,
 tabname IN VARCHAR2,
 stattab IN VARCHAR2,
 statid IN VARCHAR2 DEFAULT NULL,
 statown IN VARCHAR2 DEFAULT NULL);

Parameters

Table 141-37 EXPORT_TABLE_PREFS Procedure Parameters

	Parameter	Description
	
ownname

	
Owner name

	
tabname

	
Table name

	
stattab

	
Statistics table name where to export the statistics

	
statid

	
Optional identifier to associate with these statistics within stattab

	
statown

	
Schema containing stattab (if other than ownname)

Exceptions

ORA-20000: Object does not exist or insufficient privileges

Usage Notes

	
To run this procedure, you need to connect as owner of the table, or have the ANALYZE ANY system privilege.

	
All arguments are of type VARCHAR2 and values are enclosed in quotes.

	
Oracle does not support export or import of statistics across databases of different character sets.

Examples

DBMS_STATS.EXPORT_TABLE_PREFS('SH', 'SALES', 'STAT');

EXPORT_TABLE_STATS Procedure

This procedure retrieves statistics for a particular table and stores them in the user statistics table. Cascade results in all index statistics associated with the specified table being exported as well.

Syntax

DBMS_STATS.EXPORT_TABLE_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2,
 statid VARCHAR2 DEFAULT NULL,
 cascade BOOLEAN DEFAULT TRUE,
 statown VARCHAR2 DEFAULT NULL,
 stat_category VARCHAR2 DEFAULT DEFAULT_STAT_CATEGORY);

Parameters

Table 141-38 EXPORT_TABLE_STATS Procedure Parameters

	Parameter	Description
	
ownname

	
Name of the schema

	
tabname

	
Name of the table

	
partname

	
Name of the table partition. If the table is partitioned and if partname is NULL, then global and partition table statistics are exported.

	
stattab

	
User statistics table identifier describing where to store the statistics

	
statid

	
Identifier (optional) to associate with these statistics within stattab

	
cascade

	
If true, then column and index statistics for this table are also exported

	
statown

	
Schema containing stattab (if different than ownname)

	
stat_category

	
Specifies what statistics to import, accepting multiple values separated by a comma. Values supported:

	
'OBJECT_STATS' - table statistics, column statistics and index statistics (Default)

	
'SYNOPSES' - auxiliary statistics information gathered on a partitioned table when incremental is TRUE

Exceptions

ORA-20000: Object does not exist or insufficient privileges

Usage Notes

Oracle does not support export or import of statistics across databases of different character sets.

FLUSH_DATABASE_MONITORING_INFO Procedure

This procedure flushes in-memory monitoring information for all tables in the dictionary. Corresponding entries in the *_TAB_MODIFICATIONS, *_TAB_STATISTICS and *_IND_STATISTICS views are updated immediately, without waiting for the Oracle database to flush them periodically. This procedure is useful when you need up-to-date information in those views. Because the GATHER_*_STATS procedures internally flush monitoring information, it is not necessary to run this procedure before gathering the statistics.

Syntax

DBMS_STATS.FLUSH_DATABASE_MONITORING_INFO;

Exceptions

ORA-20000: Insufficient privileges

Usage Notes

The ANALYZE_ANY system privilege is required to run this procedure.

GATHER_DATABASE_STATS Procedures

This procedure gathers statistics for all objects in the database.

Syntax

DBMS_STATS.GATHER_DATABASE_STATS (
 estimate_percent NUMBER DEFAULT to_estimate_percent_type
 (get_param('ESTIMATE_PERCENT')),
 block_sample BOOLEAN DEFAULT FALSE,
 method_opt VARCHAR2 DEFAULT get_param('METHOD_OPT'),
 degree NUMBER DEFAULT to_degree_type(get_param('DEGREE')),
 granularity VARCHAR2 DEFAULT GET_PARAM('GRANULARITY'),
 cascade BOOLEAN DEFAULT to_cascade_type(get_param('CASCADE')),
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 options VARCHAR2 DEFAULT 'GATHER',
 objlist OUT ObjectTab,
 statown VARCHAR2 DEFAULT NULL,
 gather_sys BOOLEAN DEFAULT TRUE,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type (
 get_param('NO_INVALIDATE')),
 obj_filter_list ObjectTab DEFAULT NULL);

DBMS_STATS.GATHER_DATABASE_STATS (
 estimate_percent NUMBER DEFAULT to_estimate_percent_type
 (get_param('ESTIMATE_PERCENT')),
 block_sample BOOLEAN DEFAULT FALSE,
 method_opt VARCHAR2 DEFAULT get_param('METHOD_OPT'),
 degree NUMBER DEFAULT to_degree_type(get_param('DEGREE')),
 granularity VARCHAR2 DEFAULT GET_PARAM('GRANULARITY'),
 cascade BOOLEAN DEFAULT to_cascade_type(get_param('CASCADE')),
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 options VARCHAR2 DEFAULT 'GATHER',
 statown VARCHAR2 DEFAULT NULL,
 gather_sys BOOLEAN DEFAULT TRUE,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type (
 get_param('NO_INVALIDATE')),
 obj_filter_list ObjectTab DEFAULT NULL);

Parameters

Table 141-39 GATHER_DATABASE_STATS Procedure Parameters

	Parameter	Description
	
estimate_percent

	
Percentage of rows to estimate (NULL means compute): The valid range is [0.000001,100]. Use the constant DBMS_STATS.AUTO_SAMPLE_SIZE to have Oracle determine the appropriate sample size for good statistics. This is the default.The default value can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

	
block_sample

	
Whether or not to use random block sampling instead of random row sampling. Random block sampling is more efficient, but if the data is not randomly distributed on disk, then the sample values may be somewhat correlated. Only pertinent when doing an estimate statistics.

	
method_opt

	
Accepts:

	
FOR ALL [INDEXED | HIDDEN] COLUMNS [size_clause]

	
FOR COLUMNS [size clause] column [size_clause] [,column [size_clause]...]

size_clause is defined as size_clause := SIZE {integer | REPEAT | AUTO | SKEWONLY}

column is defined as column := column_name | extension name | extension

- integer : Number of histogram buckets. Must be in the range [1,254].

- REPEAT : Collects histograms only on the columns that already have histograms.

- AUTO : Oracle determines the columns to collect histograms based on data distribution and the workload of the columns.

- SKEWONLY : Oracle determines the columns to collect histograms based on the data distribution of the columns.
The default is FOR ALL COLUMNS SIZE AUTO.The default value can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

	
degree

	
Degree of parallelism. The default for degree is NULL. The default value can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure. NULL means use the table default value specified by the DEGREE clause in the CREATE TABLE or ALTER TABLE statement. Use the constant DBMS_STATS.DEFAULT_DEGREE to specify the default value based on the initialization parameters. The AUTO_DEGREE value determines the degree of parallelism automatically. This is between 1 (serial execution) and DEFAULT_DEGREE (the system default value based on number of CPUs and initialization parameters) according to the size of the object. When using DEGREE=>NULL, DEGREE=>n, or DEGREE=>DBMS_STATS.DEFAULT_DEGREE, the current implementation of DBMS_STATS may use serial execution if the size of the object does not warrant parallel execution.

	
granularity

	
Granularity of statistics to collect (only pertinent if the table is partitioned).

'ALL' - Gathers all (subpartition, partition, and global) statistics

'AUTO'- Determines the granularity based on the partitioning type. This is the default value.

'DEFAULT' - Gathers global and partition-level statistics. This option is obsolete, and while currently supported, it is included in the documentation for legacy reasons only. You should use the 'GLOBAL AND PARTITION' for this functionality. Note that the default value is now 'AUTO'.

'GLOBAL' - Gathers global statistics

'GLOBAL AND PARTITION' - Gathers the global and partition level statistics. No subpartition level statistics are gathered even if it is a composite partitioned object.

'PARTITION '- Gathers partition-level statistics

'SUBPARTITION' - Gathers subpartition-level statistics

	
cascade

	
Gather statistics on the indexes as well. Using this option is equivalent to running the GATHER_INDEX_STATS Procedure on each of the indexes in the database in addition to gathering table and column statistics. Use the constant DBMS_STATS.AUTO_CASCADE to have Oracle determine whether index statistics to be collected or not. This is the default. The default value can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

	
stattab

	
User statistics table identifier describing where to save the current statistics.

The statistics table is assumed to reside in the same schema as the object being analyzed, so there must be one such table in each schema to use this option.

	
statid

	
Identifier (optional) to associate with these statistics within stattab.

	
options

	
Further specification of which objects to gather statistics for:

GATHER: Gathers statistics on all objects in the schema.

GATHER AUTO: Gathers all necessary statistics automatically. Oracle implicitly determines which objects need new statistics, and determines how to gather those statistics. When GATHER AUTO is specified, the only additional valid parameters are stattab, statid, objlist and statown; all other parameter settings are ignored. Returns a list of processed objects.

GATHER STALE: Gathers statistics on stale objects as determined by looking at the *_tab_modifications views. Also, return a list of objects found to be stale.

GATHER EMPTY: Gathers statistics on objects which currently have no statistics. Return a list of objects found to have no statistics.

LIST AUTO: Returns a list of objects to be processed with GATHER AUTO

LIST STALE: Returns a list of stale objects as determined by looking at the *_tab_modifications views

LIST EMPTY: Returns a list of objects which currently have no statistics

	
objlist

	
List of objects found to be stale or empty

	
statown

	
Schema containing stattab (if different from current schema)

	
gather_sys

	
Gathers statistics on the objects owned by the 'SYS' user

	
no_invalidate

	
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE. to have Oracle decide when to invalidate dependent cursors. This is the default. The default can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

	
obj_filter_list

	
A list of object filters. When provided, GATHER_DATABASE_STATS will gather statistics only on objects which satisfy at least one object filter in the list as needed. In a single object filter, we can specify the constraints on the object attributes. The attribute values specified in the object filter are case- insensitive unless double-quoted. Wildcard is allowed in the attribute values. Suppose non-NULL values s1, s2, ... are specified for attributes a1, a2, ... in one object filter. An object o is said to satisfy this object filter if (o.a1 like s1) and (o.a2 like s2) and ... is true. See Applying an Object Filter List.

Exceptions

ORA-20000: Insufficient privileges

ORA-20001: Bad input value

GATHER_DICTIONARY_STATS Procedure

This procedure gathers statistics for dictionary schemas 'SYS', 'SYSTEM' and schemas of RDBMS components.

Syntax

DBMS_STATS.GATHER_DICTIONARY_STATS (
 comp_id VARCHAR2 DEFAULT NULL,
 estimate_percent NUMBER DEFAULT to_estimate_percent_type
 (get_param('ESTIMATE_PERCENT')),
 block_sample BOOLEAN DEFAULT FALSE,
 method_opt VARCHAR2 DEFAULT get_param('METHOD_OPT'),
 degree NUMBER DEFAULT to_degree_type(get_param('DEGREE')),
 granularity VARCHAR2 DEFAULT GET_PARAM('GRANULARITY'),
 cascade BOOLEAN DEFAULT to_cascade_type(get_param('CASCADE')),
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 options VARCHAR2 DEFAULT 'GATHER AUTO',
 objlist OUT ObjectTab,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type (
 get_param('NO_INVALIDATE')),
 obj_filter_list ObjectTab DEFAULT NULL);

DBMS_STATS.GATHER_DICTIONARY_STATS (
 comp_id VARCHAR2 DEFAULT NULL,
 estimate_percent NUMBER DEFAULT
 to_estimate_percent_type(GET_PARAM('ESTIMATE_PERCENT')),
 block_sample BOOLEAN DEFAULT FALSE,
 method_opt VARCHAR2 DEFAULT GET_PARAM('METHOD_OPT'),
 degree NUMBER DEFAULT to_degree_type(GET_PARAM('DEGREE')),
 granularity VARCHAR2 DEFAULT GET_PARAM('GRANULARITY'),
 cascade BOOLEAN DEFAULT to_cascade_type(GET_PARAM('CASCADE')),
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 options VARCHAR2 DEFAULT 'GATHER AUTO',
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT
 to_no_invalidate_type(get_param('NO_INVALIDATE')),
 obj_filter_list ObjectTab DEFAULT NULL);

Parameters

Table 141-40 GATHER_DICTIONARY_STATS Procedure Parameters

	Parameter	Description
	
comp_id

	
Component id of the schema to analyze (NULL will result in analyzing schemas of all RDBMS components).Please refer to comp_id column of DBA_REGISTRY view. The procedure always gather statistics on 'SYS' and 'SYSTEM' schemas regardless of this argument.

	
estimate_percent

	
Percentage of rows to estimate (NULL means compute). The valid range is [0.000001,100]. Use the constant DBMS_STATS.AUTO_SAMPLE_SIZE to have Oracle determine the appropriate sample size for good statistics. This is the default.The default value can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

	
block_sample

	
Determines whether or not to use random block sampling instead of random row sampling. Random block sampling is more efficient, but if the data is not randomly distributed on disk then the sample values may be somewhat correlated. Only pertinent when performing estimate statistics.

	
method_opt

	
Accepts:

	
FOR ALL [INDEXED | HIDDEN] COLUMNS [size_clause]

	
FOR COLUMNS [size clause] column [size_clause] [,column [size_clause]...]

size_clause is defined as size_clause := SIZE {integer | REPEAT | AUTO | SKEWONLY}

column is defined as column := column_name | extension name | extension

- integer : Number of histogram buckets. Must be in the range [1,254].

- REPEAT : Collects histograms only on the columns that already have histograms.

- AUTO : Oracle determines the columns to collect histograms based on data distribution and the workload of the columns.

- SKEWONLY : Oracle determines the columns to collect histograms based on the data distribution of the columns.
The default is FOR ALL COLUMNS SIZE AUTO.The default value can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

	
degree

	
Degree of parallelism. The default for degree is NULL. The default value can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure. NULL means use the table default value specified by the DEGREE clause in the CREATE TABLE or ALTER TABLE statement. Use the constant DBMS_STATS.DEFAULT_DEGREE to specify the default value based on the initialization parameters. The AUTO_DEGREE value determines the degree of parallelism automatically. This is between 1 (serial execution) and DEFAULT_DEGREE (the system default value based on number of CPUs and initialization parameters) according to the size of the object. When using DEGREE=>NULL, DEGREE=>n, or DEGREE=>DBMS_STATS.DEFAULT_DEGREE, the current implementation of DBMS_STATS may use serial execution if the size of the object does not warrant parallel execution.

	
granularity

	
Granularity of statistics to collect (only pertinent if the table is partitioned).

'ALL' - Gathers all (subpartition, partition, and global) statistics

'AUTO'- Determines the granularity based on the partitioning type. This is the default value.

'DEFAULT' - Gathers global and partition-level statistics. This option is obsolete, and while currently supported, it is included in the documentation for legacy reasons only. You should use the 'GLOBAL AND PARTITION' for this functionality. Note that the default value is now 'AUTO'.

'GLOBAL' - Gathers global statistics

'GLOBAL AND PARTITION' - Gathers the global and partition level statistics. No subpartition level statistics are gathered even if it is a composite partitioned object.

'PARTITION '- Gathers partition-level statistics

'SUBPARTITION' - gathers subpartition-level statistics

	
cascade

	
Gathers statistics on indexes also.Index statistics gathering will not be parallelized. Using this option is equivalent to running the GATHER_INDEX_STATS Procedure on each of the indexes in the schema in addition to gathering table and column statistics. Use the constant DBMS_STATS.AUTO_CASCADE to have Oracle determine whether index statistics to be collected or not. This is the default.The default value can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

	
stattab

	
User statistics table identifier describing where to save the current statistics

	
statid

	
The (optional) identifier to associate with these statistics within stattab

	
options

	
Further specification of objects for which to gather statistics:

	
'GATHER' - Gathers statistics on all objects in the schema

	
'GATHER AUTO' - Gathers all necessary statistics automatically. Oracle implicitly determines which objects need new statistics and determines how to gather those statistics. When 'GATHER AUTO' is specified, the only additional valid parameters are comp_id, stattab, statid and statown; all other parameter settings will be ignored. Also, returns a list of objects processed.

	
'GATHER STALE' - Gathers statistics on stale objects as determined by looking at the *_tab_modifications views. Also, returns a list of objects found to be stale.

	
'GATHER EMPTY' - Gathers statistics on objects which currently have no statistics. Also, returns a list of objects found to have no statistics.

	
'LIST AUTO' - Returns list of objects to be processed with 'GATHER AUTO'

	
'LIST STALE' - Returns list of stale objects as determined by looking at the *_tab_modifications views

	
'LIST EMPTY' - Returns list of objects which currently have no statistics

	
objlist

	
The list of objects found to be stale or empty

	
statown

	
Schema containing stattab (if different from current schema)

	
no_invalidate

	
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE. to have Oracle decide when to invalidate dependent cursors. This is the default. The default can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

	
obj_filter_list

	
A list of object filters. When provided, this will gather statistics only on objects which satisfy at least one object filter in the list as needed. In a single object filter, we can specify the constraints on the object attributes. The attribute values specified in the object filter are case- insensitive unless double-quoted. Wildcard is allowed in the attribute values. Suppose non-NULL values s1, s2, ... are specified for attributes a1, a2, ... in one object filter. An object o is said to satisfy this object filter if (o.a1 like s1) and (o.a2 like s2) and ... is true. See Applying an Object Filter List.

Usage Notes

You must have the SYSDBA or both ANALYZE ANY DICTIONARY and ANALYZE ANY system privilege to execute this procedure.

Exceptions

ORA-20000: Index does not exist or insufficient privileges

ORA-20001: Bad input value

ORA-20002: Bad user statistics table, may need to upgrade it

GATHER_FIXED_OBJECTS_STATS Procedure

This procedure gathers statistics for all fixed objects (dynamic performance tables).

Syntax

DBMS_STATS.GATHER_FIXED_OBJECTS_STATS (
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type (
 get_param('NO_INVALIDATE')));

Parameters

Table 141-41 GATHER_FIXED_OBJECTS_STATS Procedure Parameters

	Parameter	Description
	
stattab

	
User statistics table identifier describing where to save the current statistics

	
statid

	
Identifier to associate with these statistics within stattab (optional)

	
statown

	
Schema containing stattab (if different from current schema)

	
no_invalidate

	
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE. to have Oracle decide when to invalidate dependent cursors. This is the default. The default can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

Usage Notes

You must have the SYSDBA or ANALYZE ANY DICTIONARY system privilege to execute this procedure.

Exceptions

ORA-20000: Insufficient privileges

ORA-20001: Bad input value

ORA-20002: Bad user statistics table, may need to upgrade it

GATHER_INDEX_STATS Procedure

This procedure gathers index statistics. It attempts to parallelize as much of the work as possible. Restrictions are described in the individual parameters. This operation will not parallelize with certain types of indexes, including cluster indexes, domain indexes, and bitmap join indexes. The granularity and no_invalidate arguments are not relevant to these types of indexes.

Syntax

DBMS_STATS.GATHER_INDEX_STATS (
 ownname VARCHAR2,
 indname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 estimate_percent NUMBER DEFAULT to_estimate_percent_type
 (GET_PARAM('ESTIMATE_PERCENT')),
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 degree NUMBER DEFAULT to_degree_type(get_param('DEGREE')),
 granularity VARCHAR2 DEFAULT GET_PARAM('GRANULARITY'),
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type
 (GET_PARAM('NO_INVALIDATE')),
 force BOOLEAN DEFAULT FALSE);

Parameters

Table 141-42 GATHER_INDEX_STATS Procedure Parameters

	Parameter	Description
	
ownname

	
Schema of index to analyze

	
indname

	
Name of index

	
partname

	
Name of partition

	
estimate_percent

	
Percentage of rows to estimate (NULL means compute). The valid range is [0.000001,100]. Use the constant DBMS_STATS.AUTO_SAMPLE_SIZE to have Oracle determine the appropriate sample size for good statistics. This is the default.The default value can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

	
stattab

	
User statistics table identifier describing where to save the current statistics

	
statid

	
Identifier (optional) to associate with these statistics within stattab

	
statown

	
Schema containing stattab (if different than ownname)

	
degree

	
Degree of parallelism. The default for degree is NULL. The default value can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure. NULL means use the table default value specified by the DEGREE clause in the CREATE TABLE or ALTER TABLE statement. Use the constant DBMS_STATS.DEFAULT_DEGREE to specify the default value based on the initialization parameters. The AUTO_DEGREE value determines the degree of parallelism automatically. This is between 1 (serial execution) and DEFAULT_DEGREE (the system default value based on number of CPUs and initialization parameters) according to the size of the object. When using DEGREE=>NULL, DEGREE=>n, or DEGREE=>DBMS_STATS.DEFAULT_DEGREE, the current implementation of DBMS_STATS may use serial execution if the size of the object does not warrant parallel execution.

	
granularity

	
Granularity of statistics to collect (only pertinent if the table is partitioned).

'ALL' - Gathers all (subpartition, partition, and global) statistics

'AUTO'- Determines the granularity based on the partitioning type. This is the default value.

'DEFAULT' - Gathers global and partition-level statistics. This option is obsolete, and while currently supported, it is included in the documentation for legacy reasons only. You should use the 'GLOBAL AND PARTITION' for this functionality. Note that the default value is now 'AUTO'.

'GLOBAL' - Gathers global statistics

'GLOBAL AND PARTITION' - Gathers the global and partition level statistics. No subpartition level statistics are gathered even if it is a composite partitioned object.

'PARTITION '- Gathers partition-level statistics

'SUBPARTITION' - Gathers subpartition-level statistics.

	
no_invalidate

	
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE. to have Oracle decide when to invalidate dependent cursors. This is the default. The default can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

	
force

	
Gather statistics on object even if it is locked

Exceptions

ORA-20000: Index does not exist or insufficient privileges

ORA-20001: Bad input value

GATHER_SCHEMA_STATS Procedures

This procedure gathers statistics for all objects in a schema.

Syntax

DBMS_STATS.GATHER_SCHEMA_STATS (
 ownname VARCHAR2,
 estimate_percent NUMBER DEFAULT to_estimate_percent_type
 (get_param('ESTIMATE_PERCENT')),
 block_sample BOOLEAN DEFAULT FALSE,
 method_opt VARCHAR2 DEFAULT get_param('METHOD_OPT'),
 degree NUMBER DEFAULT to_degree_type(get_param('DEGREE')),
 granularity VARCHAR2 DEFAULT GET_PARAM('GRANULARITY'),
 cascade BOOLEAN DEFAULT to_cascade_type(get_param('CASCADE')),
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 options VARCHAR2 DEFAULT 'GATHER',
 objlist OUT ObjectTab,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type (
 get_param('NO_INVALIDATE')),
 force BOOLEAN DEFAULT FALSE,
 obj_filter_list ObjectTab DEFAULT NULL);

DBMS_STATS.GATHER_SCHEMA_STATS (
 ownname VARCHAR2,
 estimate_percent NUMBER DEFAULT to_estimate_percent_type
 (get_param('ESTIMATE_PERCENT')),
 block_sample BOOLEAN DEFAULT FALSE,
 method_opt VARCHAR2 DEFAULT get_param('METHOD_OPT'),
 degree NUMBER DEFAULT to_degree_type(get_param('DEGREE')),
 granularity VARCHAR2 DEFAULT GET_PARAM('GRANULARITY'),
 cascade BOOLEAN DEFAULT to_cascade_type(get_param('CASCADE')),
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 options VARCHAR2 DEFAULT 'GATHER',
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type (
 get_param('NO_INVALIDATE'),
 force BOOLEAN DEFAULT FALSE,
 obj_filter_list ObjectTab DEFAULT NULL);

Parameters

Table 141-43 GATHER_SCHEMA_STATS Procedure Parameters

	Parameter	Description
	
ownname

	
Schema to analyze (NULL means current schema)

	
estimate_percent

	
Percentage of rows to estimate (NULL means compute): The valid range is [0.000001,100]. Use the constant DBMS_STATS.AUTO_SAMPLE_SIZE to have Oracle determine the appropriate sample size for good statistics. This is the default.The default value can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

	
block_sample

	
Whether or not to use random block sampling instead of random row sampling. Random block sampling is more efficient, but if the data is not randomly distributed on disk, then the sample values may be somewhat correlated. Only pertinent when doing an estimate statistics.

	
method_opt

	
Accepts:

	
FOR ALL [INDEXED | HIDDEN] COLUMNS [size_clause]

	
FOR COLUMNS [size clause] column [size_clause] [,column [size_clause]...]

size_clause is defined as size_clause := SIZE {integer | REPEAT | AUTO | SKEWONLY}

column is defined as column := column_name | extension name | extension

- integer : Number of histogram buckets. Must be in the range [1,254].

- REPEAT : Collects histograms only on the columns that already have histograms

- AUTO : Oracle determines the columns to collect histograms based on data distribution and the workload of the columns.

- SKEWONLY : Oracle determines the columns to collect histograms based on the data distribution of the columns.
The default is FOR ALL COLUMNS SIZE AUTO.The default value can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

	
degree

	
Degree of parallelism. The default for degree is NULL. The default value can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure. NULL means use the table default value specified by the DEGREE clause in the CREATE TABLE or ALTER TABLE statement. Use the constant DBMS_STATS.DEFAULT_DEGREE to specify the default value based on the initialization parameters. The AUTO_DEGREE value determines the degree of parallelism automatically. This is between 1 (serial execution) and DEFAULT_DEGREE (the system default value based on number of CPUs and initialization parameters) according to the size of the object. When using DEGREE=>NULL, DEGREE=>n, or DEGREE=>DBMS_STATS.DEFAULT_DEGREE, the current implementation of DBMS_STATS may use serial execution if the size of the object does not warrant parallel execution.

	
granularity

	
Granularity of statistics to collect (only pertinent if the table is partitioned).

'ALL' - Gathers all (subpartition, partition, and global) statistics

'AUTO'- Determines the granularity based on the partitioning type. This is the default value.

'DEFAULT' - Gathers global and partition-level statistics. This option is obsolete, and while currently supported, it is included in the documentation for legacy reasons only. You should use the 'GLOBAL AND PARTITION' for this functionality. Note that the default value is now 'AUTO'.

'GLOBAL' - Gathers global statistics

'GLOBAL AND PARTITION' - Gathers the global and partition level statistics. No subpartition level statistics are gathered even if it is a composite partitioned object.

'PARTITION '- Gathers partition-level statistics

'SUBPARTITION' - Gathers subpartition-level statistics.

	
cascade

	
Gather statistics on the indexes as well. Using this option is equivalent to running the GATHER_INDEX_STATS Procedure on each of the indexes in the schema in addition to gathering table and column statistics. Use the constant DBMS_STATS.AUTO_CASCADE to have Oracle determine whether index statistics to be collected or not. This is the default. The default value can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

	
stattab

	
User statistics table identifier describing where to save the current statistics

	
statid

	
Identifier (optional) to associate with these statistics within stattab

	
options

	
Further specification of which objects to gather statistics for:

GATHER: Gathers statistics on all objects in the schema.

GATHER AUTO: Gathers all necessary statistics automatically. Oracle implicitly determines which objects need new statistics, and determines how to gather those statistics. When GATHER AUTO is specified, the only additional valid parameters are ownname, stattab, statid, objlist and statown; all other parameter settings are ignored. Returns a list of processed objects.

GATHER STALE: Gathers statistics on stale objects as determined by looking at the *_tab_modifications views. Also, return a list of objects found to be stale.

GATHER EMPTY: Gathers statistics on objects which currently have no statistics. also, return a list of objects found to have no statistics.

LIST AUTO: Returns a list of objects to be processed with GATHER AUTO.

LIST STALE: Returns list of stale objects as determined by looking at the *_tab_modifications views.

LIST EMPTY: Returns list of objects which currently have no statistics.

	
objlist

	
List of objects found to be stale or empty

	
statown

	
Schema containing stattab (if different than ownname)

	
no_invalidate

	
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE. to have Oracle decide when to invalidate dependent cursors. This is the default. The default can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

	
force

	
Gather statistics on objects even if they are locked

	
obj_filter_list

	
A list of object filters. When provided, GATHER_SCHEMA_STATS will gather statistics only on objects which satisfy at least one object filter in the list as needed. In a single object filter, we can specify the constraints on the object attributes. The attribute values specified in the object filter are case- insensitive unless double-quoted. Wildcard is allowed in the attribute values. Suppose non-NULL values s1, s2, ... are specified for attributes a1, a2, ... in one object filter. An object o is said to satisfy this object filter if (o.a1 like s1) and (o.a2 like s2) and ... is true. See Applying an Object Filter List.

Usage Notes

When you use a specific value for the sampling percentage, DBMS_STATS honors it except for when:

	
The result is less than 2500 rows (too small a sample) and

	
The specified percentage is more than the certain percentage.

Exceptions

ORA-20000: Schema does not exist or insufficient privileges

ORA-20001: Bad input value

Examples

Applying an Object Filter List

The following example specifies that any table with a "T" prefix in the SAMPLE schema and any table in the SYS schema, if stale, will have statistics gathered upon it.

 DECLARE
 filter_lst DBMS_STATS.OBJECTTAB := DBMS_STATS.OBJECTTAB();
 BEGIN
 filter_lst.extend(2);
 filter_lst(1).ownname := 'SAMPLE';
 filter_lst(1).objname := 'T%';
 filter_lst(2).ownname := 'SYS';
 DBMS_STATS.GATHER_SCHEMA_STATS(NULL, obj_filter_list => filter_lst,
 options => 'GATHER STALE');
 END;

GATHER_SYSTEM_STATS Procedure

This procedure gathers system statistics.

Syntax

DBMS_STATS.GATHER_SYSTEM_STATS (
 gathering_mode VARCHAR2 DEFAULT 'NOWORKLOAD',
 interval INTEGER DEFAULT NULL,
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL);

Parameters

Table 141-44 GATHER_SYSTEM_STATS Procedure Parameters

	Parameter	Description
	
gathering_mode

	
Mode values are:

NOWORKLOAD: Will capture characteristics of the I/O system. Gathering may take a few minutes and depends on the size of the database. During this period Oracle will estimate the average read seek time and transfer speed for the I/O system. This mode is suitable for the all workloads. Oracle recommends to run GATHER_SYSTEM_STATS ('noworkload') after creation of the database and tablespaces. To fine tune system statistics for the workload use 'START' and 'STOP' or 'INTERVAL' options. If you gather both 'NOWORKLOAD' and workload specific (statistics collected using 'INTERVAL' or 'START' and 'STOP'), the workload statistics will be used by optimizer. Collected components: cpuspeednw, ioseektim, iotfrspeed.

INTERVAL: Captures system activity during a specified interval. This works in combination with the interval parameter. You should provide an interval value in minutes, after which system statistics are created or updated in the dictionary or stattab. You can use GATHER_SYSTEM_STATS (gathering_mode=>'STOP') to stop gathering earlier than scheduled. Collected components: maxthr, slavethr, cpuspeed, sreadtim, mreadtim, mbrc.

START | STOP: Captures system activity during specified start and stop times and refreshes the dictionary or stattab with statistics for the elapsed period. Interval value is ignored. Collected components: maxthr, slavethr, cpuspeed, sreadtim, mreadtim, mbrc.

	
interval

	
Time, in minutes, to gather statistics. This parameter applies only when gathering_mode='INTERVAL'

	
stattab

	
Identifier of the user statistics table where the statistics will be saved

	
statid

	
Optional identifier associated with the statistics saved in the stattab

	
statown

	
Schema containing stattab (if different from current schema)

Exceptions

ORA-20000: Object does not exist or insufficient privileges

ORA-20001: Invalid input value

ORA-20002: Bad user statistics table; may need to be upgraded

ORA-20003: Unable to gather system statistics

ORA-20004: Error in the INTERVAL mode: system parameter job_queue_processes must be >0

GATHER_TABLE_STATS Procedure

This procedure gathers table and column (and index) statistics. It attempts to parallelize as much of the work as possible, but there are some restrictions as described in the individual parameters.

Syntax

DBMS_STATS.GATHER_TABLE_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 estimate_percent NUMBER DEFAULT to_estimate_percent_type
 (get_param('ESTIMATE_PERCENT')),
 block_sample BOOLEAN DEFAULT FALSE,
 method_opt VARCHAR2 DEFAULT get_param('METHOD_OPT'),
 degree NUMBER DEFAULT to_degree_type(get_param('DEGREE')),
 granularity VARCHAR2 DEFAULT GET_PARAM('GRANULARITY'),
 cascade BOOLEAN DEFAULT to_cascade_type(get_param('CASCADE')),
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type (
 get_param('NO_INVALIDATE')),
 stattype VARCHAR2 DEFAULT 'DATA',
 force BOOLEAN DEFAULT FALSE);

Parameters

Table 141-45 GATHER_TABLE_STATS Procedure Parameters

	Parameter	Description
	
ownname

	
Schema of table to analyze

	
tabname

	
Name of table

	
partname

	
Name of partition

	
estimate_percent

	
Percentage of rows to estimate (NULL means compute) The valid range is [0.000001,100]. Use the constant DBMS_STATS.AUTO_SAMPLE_SIZE to have Oracle determine the appropriate sample size for good statistics. This is the default.The default value can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

	
block_sample

	
Whether or not to use random block sampling instead of random row sampling. Random block sampling is more efficient, but if the data is not randomly distributed on disk, then the sample values may be somewhat correlated. Only pertinent when doing an estimate statistics.

	
method_opt

	
Accepts either of the following options, or both in combination:

	
FOR ALL [INDEXED | HIDDEN] COLUMNS [size_clause]

	
FOR COLUMNS [size clause] column [size_clause] [,column [size_clause]...]

size_clause is defined as size_clause := SIZE {integer | REPEAT | AUTO | SKEWONLY}

column is defined as column := column_name | extension name | extension

- integer : Number of histogram buckets. Must be in the range [1,254].

- REPEAT : Collects histograms only on the columns that already have histograms

- AUTO : Oracle determines the columns to collect histograms based on data distribution and the workload of the columns.

- SKEWONLY : Oracle determines the columns to collect histograms based on the data distribution of the columns.

- column_name : Name of a column

- extension : can be either a column group in the format of (column_name, Colume_name [, ...]) or an expression
The default is FOR ALL COLUMNS SIZE AUTO. The default value can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

	
degree

	
Degree of parallelism. The default for degree is NULL. The default value can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure. NULL means use the table default value specified by the DEGREE clause in the CREATE TABLE or ALTER TABLE statement. Use the constant DBMS_STATS.DEFAULT_DEGREE to specify the default value based on the initialization parameters. The AUTO_DEGREE value determines the degree of parallelism automatically. This is between 1 (serial execution) and DEFAULT_DEGREE (the system default value based on number of CPUs and initialization parameters) according to the size of the object. When using DEGREE=>NULL, DEGREE=>n, or DEGREE=>DBMS_STATS.DEFAULT_DEGREE, the current implementation of DBMS_STATS may use serial execution if the size of the object does not warrant parallel execution.

	
granularity

	
Granularity of statistics to collect (only pertinent if the table is partitioned).

'ALL' - Gathers all (subpartition, partition, and global) statistics

'APPROX_GLOBAL AND PARTITION' - similar to 'GLOBAL AND PARTITION' but in this case the global statistics are aggregated from partition level statistics. This option will aggregate all statistics except the number of distinct values for columns and number of distinct keys of indexes. The existing histograms of the columns at the table level are also aggregated.The aggregation will use only partitions with statistics, so to get accurate global statistics, users should make sure to have statistics for all partitions. Global statistics are gathered if partname is NULL or if the aggregation cannot be performed (for example, if statistics for one of the partitions is missing).

'AUTO'- Determines the granularity based on the partitioning type. This is the default value.

'DEFAULT' - Gathers global and partition-level statistics. This option is obsolete, and while currently supported, it is included in the documentation for legacy reasons only. You should use the 'GLOBAL AND PARTITION' for this functionality. Note that the default value is now 'AUTO'.

'GLOBAL' - Gathers global statistics

'GLOBAL AND PARTITION' - Gathers the global and partition level statistics. No subpartition level statistics are gathered even if it is a composite partitioned object.

'PARTITION '- Gathers partition-level statistics

'SUBPARTITION' - Gathers subpartition-level statistics.

	
cascade

	
Gathers statistics on the indexes for this table. Using this option is equivalent to running the GATHER_INDEX_STATS Procedure on each of the table's indexes. Use the constant DBMS_STATS.AUTO_CASCADE to have Oracle determine whether index statistics are to be collected or not. This is the default. The default value can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

	
stattab

	
User statistics table identifier describing where to save the current statistics

	
statid

	
Identifier (optional) to associate with these statistics within stattab

	
statown

	
Schema containing stattab (if different than ownname)

	
no_invalidate

	
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE. to have Oracle decide when to invalidate dependent cursors. This is the default. The default can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

	
stattype

	
Statistics type. The only value allowed is DATA.

	
force

	
Gather statistics of table even if it is locked

Usage Notes

Index statistics collection can be parellelized except for cluster, domain and join indexes.

Exceptions

ORA-20000: Table does not exist or insufficient privileges

ORA-20001: Bad input value

Examples

An extension can be either a column group (see Example 1) or an expression (see Example 2).

Example 1

DBMS_STATS.GATHER_TABLE_STATS(
 'SH', 'SALES', method_opt => 'FOR COLUMNS (empno, deptno)');

Example 2

DBMS_STATS.GATHER_TABLE_STATS(
 'SH', 'SALES', method_opt => 'FOR COLUMNS (sal+comm)');

GENERATE_STATS Procedure

This procedure generates object statistics from previously collected statistics of related objects. The currently supported objects are b-tree and bitmap indexes.

Syntax

DBMS_STATS.GENERATE_STATS (
 ownname VARCHAR2,
 objname VARCHAR2,
 organized NUMBER DEFAULT 7,
 force BOOLEAN default FALSE);

Parameters

Table 141-46 GENERATE_STATS Procedure Parameters

	Parameter	Description
	
ownname

	
Schema of object

	
objname

	
Name of object

	
organized

	
Amount of ordering associated between the index and its underlying table. A heavily organized index would have consecutive index keys referring to consecutive rows on disk for the table (the same block). A heavily disorganized index would have consecutive keys referencing different table blocks on disk.

This parameter is only used for b-tree indexes. The number can be in the range of 0-10, with 0 representing a completely organized index and 10 a completely disorganized one.

	
force

	
If TRUE, generates statistics for the target object even if it is locked

Usage Notes

For fully populated schemas, the gather procedures should be used instead when more accurate statistics are desired.

Exceptions

ORA-20000: Unsupported object type of object does not exist

ORA-20001: Invalid option or invalid statistics

GET_COLUMN_STATS Procedures

These procedures gets all column-related information. In the form of this procedure that deals with user-defined statistics, the statistics type returned is the type stored, in addition to the user-defined statistics.

Syntax

DBMS_STATS.GET_COLUMN_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2,
 colname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 distcnt OUT NUMBER,
 density OUT NUMBER,
 nullcnt OUT NUMBER,
 srec OUT StatRec,
 avgclen OUT NUMBER,
 statown VARCHAR2 DEFAULT NULL);

Use the following for user-defined statistics:

DBMS_STATS.GET_COLUMN_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2,
 colname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 ext_stats OUT RAW,
 stattypown OUT VARCHAR2 DEFAULT NULL,
 stattypname OUT VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL);

Parameters

Table 141-47 GET_COLUMN_STATS Procedure Parameters

	Parameter	Description
	
ownname

	
Name of the schema

	
tabname

	
Name of the table to which this column belongs

	
colname

	
Name of the column or extension

	
partname

	
Name of the table partition from which to get the statistics. If the table is partitioned and if partname is NULL, statistics are retrieved from the global table level.

	
stattab

	
User statistics table identifier describing from where to retrieve the statistics. If stattab is NULL, statistics are retrieved directly from the dictionary.

	
statid

	
Identifier (optional) to associate with these statistics within stattab (Only pertinent if stattab is not NULL)

	
ext_stats

	
The user-defined statistics

	
stattypown

	
Schema of the statistics type

	
stattypname

	
Name of the statistics type

	
distcnt

	
Number of distinct values

	
density

	
Column density

	
nullcnt

	
Number of NULLs

	
srec

	
Structure holding internal representation of column minimum, maximum, and histogram values

	
avgclen

	
Average length of the column (in bytes)

	
statown

	
Schema containing stattab (if different than ownname)

Exceptions

ORA-20000: Object does not exist or insufficient privileges or no statistics have been stored for requested object

GET_INDEX_STATS Procedures

These procedures get all index-related information. In the form of this procedure that deals with user-defined statistics, the statistics type returned is the type stored, in addition to the user-defined statistics.

Syntax

DBMS_STATS.GET_INDEX_STATS (
 ownname VARCHAR2,
 indname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 numrows OUT NUMBER,
 numlblks OUT NUMBER,
 numdist OUT NUMBER,
 avglblk OUT NUMBER,
 avgdblk OUT NUMBER,
 clstfct OUT NUMBER,
 indlevel OUT NUMBER,
 statown VARCHAR2 DEFAULT NULL,
 cachedblk OUT NUMBER,
 cachehit OUT NUMBER);

DBMS_STATS.GET_INDEX_STATS (
 ownname VARCHAR2,
 indname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 numrows OUT NUMBER,
 numlblks OUT NUMBER,
 numdist OUT NUMBER,
 avglblk OUT NUMBER,
 avgdblk OUT NUMBER,
 clstfct OUT NUMBER,
 indlevel OUT NUMBER,
 statown VARCHAR2 DEFAULT NULL,
 guessq OUT NUMBER,
 cachedblk OUT NUMBER,
 cachehit OUT NUMBER);

Use the following for user-defined statistics:

DBMS_STATS.GET_INDEX_STATS (
 ownname VARCHAR2,
 indname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 ext_stats OUT RAW,
 stattypown OUT VARCHAR2 DEFAULT NULL,
 stattypname OUT VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 cachedblk OUT NUMBER,
 cachehit OUT NUMBER);

Parameters

Table 141-48 GET_INDEX_STATS Procedure Parameters

	Parameter	Description
	
ownname

	
Name of the schema

	
indname

	
Name of the index

	
partname

	
Name of the index partition for which to get the statistics. If the index is partitioned and if partname is NULL, then the statistics are retrieved for the global index level.

	
stattab

	
User statistics table identifier describing from where to retrieve the statistics. If stattab is NULL, then the statistics are retrieved directly from the dictionary.

	
statid

	
Identifier (optional) to associate with these statistics within stattab (Only pertinent if stattab is not NULL)

	
ext_stats

	
User-defined statistics

	
stattypown

	
Schema of the statistics type

	
stattypname

	
Name of the statistics type

	
numrows

	
Number of rows in the index (partition)

	
numlblks

	
Number of leaf blocks in the index (partition)

	
numdist

	
Number of distinct keys in the index (partition)

	
avglblk

	
Average integral number of leaf blocks in which each distinct key appears for this index (partition)

	
avgdblk

	
Average integral number of data blocks in the table pointed to by a distinct key for this index (partition)

	
clstfct

	
Clustering factor for the index (partition)

	
indlevel

	
Height of the index (partition)

	
statown

	
Schema containing stattab (if different than ownname)

	
guessq

	
Guess quality for the index (partition)

	
cachedblk

	
The average number of blocks in the buffer cache for the segment (index/table/index partition/table partition)

	
cachehit

	
The average cache hit ratio for the segment (index/table/index partition/table partition)

Usage Notes

	
The Optimizer uses the cached data to estimate number of cached blocks for index or statistics table access. The total cost of the operation will be combined from the I/O cost of reading not cached blocks from disk, the CPU cost of getting cached blocks from the buffer cache, and the CPU cost of processing the data.

	
Oracle maintains cachedblk and cachehit at all times but uses correspondent caching statistics for optimization as part of the table and index statistics only when the user calls DBMS_STATS.GATHER_[TABLE/INDEX/SCHEMA/DATABASE]_STATS procedure for auto mode or DBMS_STATS.GATHER_SYSTEM_STATS for manual mode. In order to prevent the user from utilizing inaccurate and unreliable data, the optimizer will compute a 'confidence factor' for each cachehit and a cachedblk for each object. If the 'confidence factor' for the value meets confidence criteria, this value will be used, otherwise the defaults will be used.

	
The automatic maintenance algorithm for object caching statistics assumes that there is only one major workload for the system and adjusts statistics to this workload, ignoring other "minor" workloads. If this is not the case, you must use manual mode for maintaining object caching statistics.

	
The object caching statistics maintenance algorithm for auto mode prevents you from using statistics in the following situations

	
When not enough data has been analyzed, such as when an object has been recently create

	
When the system does not have one major workload resulting in averages not corresponding to real values.

Exceptions

ORA-20000: Object does not exist or insufficient privileges or no statistics have been stored for requested object

GET_PARAM Function

	
Note:

This subprogram has been replaced by improved technology and is maintained only for purposes of backward compatibility. In this case, use the GET_PREFS Function.
See also Deprecated Subprograms.

This function returns the default value of parameters of DBMS_STATS procedures.

Syntax

DBMS_STATS.GET_PARAM (
 pname IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Table 141-49 GET_PARAM Function Parameters

	Parameter	Description
	
pname

	
Parameter name

Exceptions

ORA-20001: Invalid input values

GET_PREFS Function

This function returns the default value of the specified preference.

Syntax

DBMS_STATS.GET_PREFS (
 pname IN VARCHAR2,
 ownname IN VARCHAR2 DEFAULT NULL,
 tabname IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 141-50 GET_PREFS Function Parameters

	Parameter	Description
	
pname

	
Preference name. The default value for following preferences can be retrieved:

	
AUTOSTATS_TARGET

	
CASCADE

	
DEGREE

	
ESTIMATE_PERCENT

	
METHOD_OPT

	
NO_INVALIDATE

	
GRANULARITY

	
PUBLISH

	
INCREMENTAL

	
STALE_PERCENT

	
	
AUTOSTATS_TARGET - This preference is applicable only for auto statistics collection. The value of this parameter controls the objects considered for statistics collection. It takes the following values:

	
'ALL' - Statistics collected for all objects in system

	
'ORACLE' - Statistics collected for all Oracle owned objects

	
'AUTO' - Oracle decides on which objects to collect statistics

	
.

	
CASCADE - Determines whether or not index statistics are collected as part of gathering table statistics.

	
.

	
DEGREE - Determines degree of parallelism used for gathering statistics.

	
.

	
ESTIMATE_PERCENT - Determines the percentage of rows to estimate. The valid range is [0.000001,100]. Use the constant DBMS_STATS.AUTO_SAMPLE_SIZE to have Oracle determine the appropriate sample size for good statistics. This is the default.

	
.

	
METHOD_OPT - Controls column statistics collection and histogram creation. It accepts either of the following options, or both in combination:

	
FOR ALL [INDEXED | HIDDEN] COLUMNS [size_clause]

	
FOR COLUMNS [size clause] column [size_clause] [,column [size_clause]...]

size_clause is defined as size_clause := SIZE {integer | REPEAT | AUTO | SKEWONLY}

column is defined as column := column_name | extension name | extension

- integer : Number of histogram buckets. Must be in the range [1,254].

- REPEAT : Collects histograms only on the columns that already have histograms.

- AUTO : Oracle determines the columns to collect histograms based on data distribution and the workload of the columns.

- SKEWONLY : Oracle determines the columns to collect histograms based on the data distribution of the columns.

- column_name : name of a column

- extension : can be either a column group in the format of (column_name, colume_name [, ...]) or an expression
The default is FOR ALL COLUMNS SIZE AUTO.The default value can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

	
.

	
NO_INVALIDATE - The value controls the invalidation of dependent cursors of the tables for which statistics are being gathered. Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE to have Oracle decide when to invalidate dependent cursors. This is the default.

	
.

	
GRANULARITY - Determines granularity of statistics to collect (only pertinent if the table is partitioned).

'ALL' - Gathers all (subpartition, partition, and global) statistics

'AUTO'- Determines the granularity based on the partitioning type. This is the default value.

'DEFAULT' - Gathers global and partition-level statistics. This option is obsolete, and while currently supported, it is included in the documentation for legacy reasons only. You should use the 'GLOBAL AND PARTITION' for this functionality. Note that the default value is now 'AUTO'.

'GLOBAL' - Gathers global statistics

'GLOBAL AND PARTITION' - Gathers the global and partition level statistics. No subpartition level statistics are gathered even if it is a composite partitioned object.

'PARTITION '- Gathers partition-level statistics

'SUBPARTITION' - Gathers subpartition-level statistics.

	
.

	
PUBLISH - Determines whether or not newly gathered statistics will be published once the gather job has completed. Prior to Oracle Database 11g, Release 1 (11.1), once a statistic gathering job completed the new statistics were automatically published into the dictionary tables. The user now has the ability to gather statistics but not publish them immediately. This allows the DBA to test the new statistics before publishing them.

	
.

	
INCREMENTAL - Determines whether or not the global statistics of a partitioned table will be maintained without doing a full table scan. With partitioned tables it is very common to load new data into a new partition. As new partitions are added and data loaded, the global table statistics need to be kept up to date. Oracle will update the global table statistics by scanning only the partitions that have been changed instead of the entire table if the following conditions hold:

	
INCREMENTAL value for the partitioned table is set to TRUE

	
PUBLISH value for the partitioned table is set to TRUE;

	
User specifies AUTO_SAMPLE_SIZE for ESTIMATE_PERCENT and AUTO for GRANULARITY when gathering statistics on the table

If the INCREMENTAL value for the partitioned table was set to FALSE (default value), a full table scan is used to maintain the global statistics which is a much more resource intensive and time-consuming operation for large tables.

	
.

	
STALE_PERCENT - This value determines the percentage of rows in a table that have to change before the statistics on that table are deemed stale and should be regathered. The valid domain for stale_percent is non-negative numbers. The default value is 10%.

	
ownname

	
Owner name

	
tabname

	
Table name

Exceptions

ORA-20001: Invalid input values

Usage Notes

If the ownname and tabname are provided and a preference has been entered for the table, the function returns the preference as specified for the table. In all other cases it returns the global preference if it has been specified, otherwise the default value is returned.

GET_STATS_HISTORY_AVAILABILITY Function

This function returns oldest timestamp where statistics history is available.Users cannot restore statistics to a timestamp older than this one.

Syntax

DBMS_STATS.GET_STATS_HISTORY_AVAILABILITY
 RETURN TIMESTAMP WITH TIMEZONE;

GET_STATS_HISTORY_RETENTION Function

This function returns the current retention value.

Syntax

DBMS_STATS.GET_STATS_HISTORY_RETENTION
 RETURN NUMBER;

GET_SYSTEM_STATS Procedure

This procedure gets system statistics from stattab, or from the dictionary if stattab is NULL.

Syntax

DBMS_STATS.GET_SYSTEM_STATS (
 status OUT VARCHAR2,
 dstart OUT DATE,
 dstop OUT DATE,
 pname VARCHAR2,
 pvalue OUT NUMBER,
 stattab IN VARCHAR2 DEFAULT NULL,
 statid IN VARCHAR2 DEFAULT NULL,
 statown IN VARCHAR2 DEFAULT NULL);

Parameters

Table 141-51 GET_SYSTEM_STATS Procedure Parameters

	Parameter	Description
	
status

	
Output is one of the following:

	
COMPLETED:

	
AUTOGATHERING:

	
MANUALGATHERING:

	
BADSTATS:

	
dstart

	
Date when statistics gathering started.

If status = MANUALGATHERING, the start date is returned.

	
dstop

	
Date when statistics gathering stopped.

	
If status = COMPLETE, the finish date is returned.

	
If status = AUTOGATHERING, the future finish date is returned.

	
If status = BADSTATS, the must-finished-by date is returned.

	
pname

	
The parameter name to get, which can have one of the following values:

	
iotfrspeed - I/O transfer speed in bytes for each millisecond

	
ioseektim - seek time + latency time + operating system overhead time, in milliseconds

	
sreadtim - average time to read single block (random read), in milliseconds

	
mreadtim - average time to read an mbrc block at once (sequential read), in milliseconds

	
cpuspeed - average number of CPU cycles for each second, in millions, captured for the workload (statistics collected using 'INTERVAL' or 'START' and 'STOP' options)

	
cpuspeednw - average number of CPU cycles for each second, in millions, captured for the noworkload (statistics collected using 'NOWORKLOAD' option.

	
mbrc - average multiblock read count for sequential read, in blocks

	
maxthr - maximum I/O system throughput, in bytes/second

	
slavethr - average slave I/O throughput, in bytes/second

	
pvalue

	
Parameter value to get

	
stattab

	
Identifier of the user statistics table where the statistics will be obtained. If stattab is null, the statistics will be obtained from the dictionary.

	
statid

	
Optional identifier associated with the statistics saved in the stattab

	
statown

	
Schema containing stattab (if different from current schema)

Exceptions

ORA-20000: Object does not exist or insufficient privileges

ORA-20002: Bad user statistics table; may need to be upgraded

ORA-20003: Unable to gather system statistics

ORA-20004: Parameter does not exist

GET_TABLE_STATS Procedure

This procedure gets all table-related information.

Syntax

DBMS_STATS.GET_TABLE_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 numrows OUT NUMBER,
 numblks OUT NUMBER,
 avgrlen OUT NUMBER,
 statown VARCHAR2 DEFAULT NULL,
 cachedblk OUT NUMBER,
 cachehit OUT NUMBER);

Parameters

Table 141-52 GET_TABLE_STATS Procedure Parameters

	Parameter	Description
	
ownname

	
Name of the schema

	
tabname

	
Name of the table to which this column belongs

	
partname

	
Name of the table partition from which to get the statistics. If the table is partitioned and if partname is NULL, then the statistics are retrieved from the global table level.

	
stattab

	
User statistics table identifier describing from where to retrieve the statistics. If stattab is NULL, then the statistics are retrieved directly from the dictionary.

	
statid

	
Identifier (optional) to associate with these statistics within stattab (Only pertinent if stattab is not NULL)

	
numrows

	
Number of rows in the table (partition)

	
numblks

	
Number of blocks the table (partition) occupies

	
avgrlen

	
Average row length for the table (partition)

	
statown

	
Schema containing stattab (if different than ownname)

	
cachedblk

	
The average number of blocks in the buffer cache for the segment (index/table/index partition/table partition)

	
cachehit

	
The average cache hit ratio for the segment (index/table/index partition/table partition)

Usage Notes

	
The Optimizer uses the cached data to estimate number of cached blocks for index or statistics table access. The total cost of the operation will be combined from the I/O cost of reading not cached blocks from disk, the CPU cost of getting cached blocks from the buffer cache, and the CPU cost of processing the data.

	
Oracle maintains cachedblk and cachehit at all times but uses correspondent caching statistics for optimization as part of the table and index statistics only when the user calls DBMS_STATS.GATHER_[TABLE/INDEX/SCHEMA/DATABASE]_STATS procedure for auto mode or DBMS_STATS.GATHER_SYSTEM_STATS for manual mode. In order to prevent the user from utilizing inaccurate and unreliable data, the optimizer will compute a 'confidence factor' for each cachehit and a cachedblk for each object. If the 'confidence factor' for the value meets confidence criteria, this value will be used, otherwise the defaults will be used.

	
The automatic maintenance algorithm for object caching statistics assumes that there is only one major workload for the system and adjusts statistics to this workload, ignoring other "minor" workloads. If this is not the case, you must use manual mode for maintaining object caching statistics.

	
The object caching statistics maintenance algorithm for auto mode prevents you from using statistics in the following situations

	
When not enough data has been analyzed, such as when an object has been recently create

	
When the system does not have one major workload resulting in averages not corresponding to real values.

Exceptions

ORA-20000: Object does not exist or insufficient privileges or no statistics have been stored for requested object

Usage Notes

Oracle does not support export or import of statistics across databases of different character sets.

IMPORT_COLUMN_STATS Procedure

This procedure retrieves statistics for a particular column from the user statistics table identified by stattab and stores them in the dictionary.

Syntax

DBMS_STATS.IMPORT_COLUMN_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2,
 colname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type (
 get_param('NO_INVALIDATE')),
 force BOOLEAN DEFAULT FALSE);

Parameters

Table 141-53 IMPORT_COLUMN_STATS Procedure Parameters

	Parameter	Description
	
ownname

	
Name of the schema

	
tabname

	
Name of the table to which this column belongs

	
colname

	
Name of the column or extension

	
partname

	
Name of the table partition. If the table is partitioned and if partname is NULL, then global and partition column statistics are imported.

	
stattab

	
User statistics table identifier describing from where to retrieve the statistics

	
statid

	
Identifier to associate with these statistics within stattab (optional)

	
statown

	
Schema containing stattab (if different than ownname)

	
no_invalidate

	
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE. to have Oracle decide when to invalidate dependent cursors. This is the default. The default can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

	
force

	
If set to TRUE, imports statistics even if statistics are locked

Exceptions

ORA-20000: Object does not exist or insufficient privileges

ORA-20001: Invalid or inconsistent values in the user statistics table

ORA-20005: Object statistics are locked

Usage Notes

Oracle does not support export or import of statistics across databases of different character sets.

IMPORT_DATABASE_PREFS Procedure

This procedure is used to import the statistics preferences of all the tables, excluding the tables owned by Oracle. These tables can by included by passing TRUE for the add_sys parameter.

Syntax

DBMS_STATS.IMPORT_DATABASE_PREFS (
 stattab IN VARCHAR2,
 statid IN VARCHAR2 DEFAULT NULL,
 statown IN VARCHAR2 DEFAULT NULL
 add_sys IN BOOLEAN DEFAULT FALSE);

Parameters

Table 141-54 IMPORT_DATABASE_PREFS Procedure Parameters

	Parameter	Description
	
stattab

	
Statistics table name where to import the statistics

	
statid

	
Optional identifier to associate with these statistics within stattab

	
statown

	
Schema containing stattab (if different than ownname)

	
add_sys

	
Value TRUE will include the Oracle-owned tables

Exceptions

ORA-20000: Insufficient privileges.

Usage Notes

	
To run this procedure, you need to have the SYSDBA role, or both ANALYZE ANY DICTIONARY and ANALYZE ANY system privileges.

	
Oracle does not support export or import of statistics across databases of different character sets.

Examples

DBMS_STATS.IMPORT_DATABASE_PREFS('STATTAB', statown=>'SH');

IMPORT_DATABASE_STATS Procedure

This procedure retrieves statistics for all objects in the database from the user statistics table(s) and stores them in the dictionary.

Syntax

DBMS_STATS.IMPORT_DATABASE_STATS (
 stattab VARCHAR2,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type(
 get_param('NO_INVALIDATE')),
 force BOOLEAN DEFAULT FALSE,
 stat_category VARCHAR2 DEFAULT DEFAULT_STAT_CATEGORY);

Parameters

Table 141-55 IMPORT_DATABASE_STATS Procedure Parameters

	Parameter	Description
	
stattab

	
User statistics table identifier describing from where to retrieve the statistics

	
statid

	
Identifier (optional) to associate with these statistics within stattab

	
statown

	
Schema containing stattab (if different from current schema)

	
no_invalidate

	
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE. to have Oracle decide when to invalidate dependent cursors. This is the default. The default can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

	
force

	
Overrides statistics locked at the object (table) level:

	
TRUE - Ignores the statistics lock and imports the statistics

	
FALSE - The statistics will be imported only if they are not locked

	
stat_category

	
Specifies what statistics to import, accepting multiple values separated by a comma. Values supported:

	
'OBJECT_STATS' - table statistics, column statistics and index statistics (Default)

	
'SYNOPSES' - auxiliary statistics information gathered on a partitioned table when incremental is TRUE

Exceptions

ORA-20000: Object does not exist or insufficient privileges

ORA-20001: Invalid or inconsistent values in the user statistics table

Usage Notes

Oracle does not support export or import of statistics across databases of different character sets.

IMPORT_DICTIONARY_STATS Procedure

This procedure retrieves statistics for all dictionary schemas ('SYS', 'SYSTEM' and RDBMS component schemas) from the user statistics table and stores them in the dictionary.

Syntax

DBMS_STATS.IMPORT_DICTIONARY_STATS (
 stattab VARCHAR2,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type(
 get_param('NO_INVALIDATE')),
 force BOOLEAN DEFAULT FALSE,
 stat_category VARCHAR2 DEFAULT DEFAULT_STAT_CATEGORY);

Parameters

Table 141-56 IMPORT_DICTIONARY_STATS Procedure Parameters

	Parameter	Description
	
stattab

	
User statistics table identifier describing from where to retrieve the statistics

	
statid

	
The (optional) identifier to associate with these statistics within stattab

	
statown

	
Schema containing stattab (if different from current schema)

	
no_invalidate

	
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE. to have Oracle decide when to invalidate dependent cursors. This is the default. The default can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

	
force

	
Overrides statistics lock at the object (table) level:

	
TRUE - Ignores the statistics lock and imports the statistics.

	
FALSE - The statistics will be imported only if there is no lock.

	
stat_category

	
Specifies what statistics to import, accepting multiple values separated by a comma. Values supported:

	
'OBJECT_STATS' - table statistics, column statistics and index statistics (Default)

	
'SYNOPSES' - auxiliary statistics information gathered on a partitioned table when incremental is TRUE

Usage Notes

	
You must have the SYSDBA or both ANALYZE ANY DICTIONARY and ANALYZE ANY system privilege to execute this procedure.

	
Oracle does not support export or import of statistics across databases of different character sets.

Exceptions

ORA-20000: Object does not exist or insufficient privileges

ORA-20001: Invalid or inconsistent values in the user statistics table

ORA-20002: Bad user statistics table, may need to upgrade it

IMPORT_FIXED_OBJECTS_STATS Procedure

This procedure retrieves statistics for fixed tables from the user statistics table(s) and stores them in the dictionary.

Syntax

DBMS_STATS.IMPORT_FIXED_OBJECTS_STATS (
 stattab VARCHAR2,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type(
 get_param('NO_INVALIDATE')),
 force BOOLEAN DEFAULT FALSE);

Parameters

Table 141-57 IMPORT_FIXED_OBJECTS_STATS Procedure Parameters

	Parameter	Description
	
stattab

	
User statistics table identifier describing from where to retrieve the statistics

	
statid

	
Identifier (optional) to associate with these statistics within stattab

	
statown

	
Schema containing stattab (if different from current schema)

	
no_invalidate

	
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE. to have Oracle decide when to invalidate dependent cursors. This is the default. The default can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

	
force

	
Overrides statistics lock:

	
TRUE - Ignores the statistics lock and imports the statistics

	
FALSE - The statistics will be imported only if there is no lock

Usage Notes

	
You must have the SYSDBA or ANALYZE ANY DICTIONARY system privilege to execute this procedure.

	
Oracle does not support export or import of statistics across databases of different character sets.

Exceptions

ORA-20000: Object does not exist or insufficient privileges

ORA-20001: Invalid or inconsistent values in the user statistics table

ORA-20002: Bad user statistics table, may need to upgrade it

IMPORT_INDEX_STATS Procedure

This procedure retrieves statistics for a particular index from the user statistics table identified by stattab and stores them in the dictionary.

Syntax

DBMS_STATS.IMPORT_INDEX_STATS (
 ownname VARCHAR2,
 indname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type(
 get_param('NO_INVALIDATE')),
 force BOOLEAN DEFAULT FALSE);

Parameters

Table 141-58 IMPORT_INDEX_STATS Procedure Parameters

	Parameter	Description
	
ownname

	
Name of the schema

	
indname

	
Name of the index

	
partname

	
Name of the index partition. If the index is partitioned and if partname is NULL, then global and partition index statistics are imported.

	
stattab

	
User statistics table identifier describing from where to retrieve the statistics

	
statid

	
Identifier (optional) to associate with these statistics within stattab

	
statown

	
Schema containing stattab (if different than ownname)

	
no_invalidate

	
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE. to have Oracle decide when to invalidate dependent cursors. This is the default. The default can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

	
force

	
Imports statistics even if index statistics are locked

Exceptions

ORA-20000: Object does not exist or insufficient privileges

ORA-20001: Invalid or inconsistent values in the user statistics table

ORA-20005: Object statistics are locked

Usage Notes

Oracle does not support export or import of statistics across databases of different character sets.

IMPORT_SCHEMA_PREFS Procedure

This procedure is used to import the statistics preferences of all the tables owned by the specified owner name.

Syntax

DBMS_STATS.IMPORT_SCHEMA_PREFS (
 ownname IN VARCHAR2,
 stattab IN VARCHAR2,
 statid IN VARCHAR2 DEFAULT NULL,
 statown IN VARCHAR2 DEFAULT NULL);

Parameters

Table 141-59 IMPORT_SCHEMA_PREFS Procedure Parameters

	Parameter	Description
	
ownname

	
Owner name

	
stattab

	
Statistics table name from where to import the statistics

	
statid

	
(Optional) Identifier to associate with these statistics within stattab

	
statown

	
Schema containing stattab (if other than ownname)

Exceptions

ORA-20000: Object does not exist or insufficient privileges

Usage Notes

	
To run this procedure, you need to connect as owner, or have the SYSDBA privilege, or have the ANALYZE ANY system privilege.

	
All arguments are of type VARCHAR2 and values are enclosed in quotes.

	
Oracle does not support export or import of statistics across databases of different character sets.

Examples

DBMS_STATS.IMPORT_SCHEMA_PREFS('SH', 'STAT');

IMPORT_SCHEMA_STATS Procedure

This procedure retrieves statistics for all objects in the schema identified by ownname from the user statistics table and stores them in the dictionary.

Syntax

DBMS_STATS.IMPORT_SCHEMA_STATS (
 ownname VARCHAR2,
 stattab VARCHAR2,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULTto_no_invalidate_type(
 get_param('NO_INVALIDATE')),
 force BOOLEAN DEFAULT FALSE,
 stat_category VARCHAR2 DEFAULT DEFAULT_STAT_CATEGORY);

Parameters

Table 141-60 IMPORT_SCHEMA_STATS Procedure Parameters

	Parameter	Description
	
ownname

	
Name of the schema

	
stattab

	
User statistics table identifier describing from where to retrieve the statistics

	
statid

	
Identifier (optional) to associate with these statistics within stattab

	
statown

	
Schema containing stattab (if different than ownname)

	
no_invalidate

	
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE. to have Oracle decide when to invalidate dependent cursors. This is the default. The default can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

	
force

	
Overrides statistics locked at the object (table) level:

	
TRUE - Ignores the statistics lock and imports the statistics.

	
FALSE - Statistics will be imported only if there is no lock.

	
stat_category

	
Specifies what statistics to import, accepting multiple values separated by a comma. Values supported:

	
'OBJECT_STATS' - table statistics, column statistics and index statistics (Default)

	
'SYNOPSES' - auxiliary statistics information gathered on a partitioned table when incremental is TRUE

Exceptions

ORA-20000: Object does not exist or insufficient privileges

ORA-20001: Invalid or inconsistent values in the user statistics table

Usage Notes

Oracle does not support export or import of statistics across databases of different character sets.

IMPORT_SYSTEM_STATS Procedure

This procedure retrieves system statistics from the user statistics table, identified by stattab, and stores the statistics in the dictionary.

Syntax

DBMS_STATS.IMPORT_SYSTEM_STATS (
 stattab VARCHAR2,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL);

Parameters

Table 141-61 IMPORT_SYSTEM_STATS Procedure Parameters

	Parameter	Description
	
stattab

	
Identifier of the user statistics table where the statistics will be retrieved

	
statid

	
Optional identifier associated with the statistics retrieved from the stattab

	
statown

	
Schema containing stattab (if different from current schema)

Exceptions

ORA-20000: Object does not exist or insufficient privileges

ORA-20001: Invalid or inconsistent values in the user statistics table

ORA-20002: Bad user statistics table; may need to be upgraded

ORA-20003: Unable to import system statistics

Usage Notes

Oracle does not support export or import of statistics across databases of different character sets.

IMPORT_TABLE_PREFS Procedure

This procedure is used to set the statistics preferences of the specified table in the specified schema.

Syntax

DBMS_STATS.IMPORT_TABLE_PREFS (
 ownname IN VARCHAR2,
 tabname IN VARCHAR2,
 stattab IN VARCHAR2,
 statid IN VARCHAR2 DEFAULT NULL,
 statown IN VARCHAR2 DEFAULT NULL);

Parameters

Table 141-62 IMPORT_TABLE_PREFS Procedure Parameters

	Parameter	Description
	
ownname

	
Owner name

	
tabname

	
Table name

	
stattab

	
Statistics table name from where to import the statistics

	
statid

	
(Optional) Identifier to associate with these statistics within stattab

	
statown

	
Schema containing stattab (if other than ownname)

Exceptions

ORA-20000: Object does not exist or insufficient privileges

Usage Notes

	
To run this procedure, you need to connect as owner of the table, or have the ANALYZE ANY system privilege.

	
All arguments are of type VARCHAR2 and values are enclosed in quotes.

	
Oracle does not support export or import of statistics across databases of different character sets.

Examples

DBMS_STATS.IMPORT_TABLE_PREFS('SH', 'SALES', 'STAT');

IMPORT_TABLE_STATS Procedure

This procedure retrieves statistics for a particular table from the user statistics table identified by stattab and stores them in the dictionary. Cascade results in all index statistics associated with the specified table being imported as well.

Syntax

DBMS_STATS.IMPORT_TABLE_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2,
 statid VARCHAR2 DEFAULT NULL,
 cascade BOOLEAN DEFAULT TRUE,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type(
 get_param('NO_INVALIDATE')),
 force BOOLEAN DEFAULT FALSE,
 stat_category VARCHAR2 DEFAULT DEFAULT_STAT_CATEGORY);

Parameters

Table 141-63 IMPORT_TABLE_STATS Procedure Parameters

	Parameter	Description
	
ownname

	
Name of the schema

	
tabname

	
Name of the table

	
partname

	
Name of the table partition. If the table is partitioned and if partname is NULL, then global and partition table statistics are imported.

	
stattab

	
User statistics table identifier describing from where to retrieve the statistics

	
statid

	
Identifier (optional) to associate with these statistics within stattab

	
cascade

	
If true, column and index statistics for this table are also imported

	
statown

	
Schema containing stattab (if different than ownname)

	
no_invalidate

	
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE. to have Oracle decide when to invalidate dependent cursors. This is the default. The default can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure

	
force

	
Imports statistics even if table statistics are locked

	
stat_category

	
Specifies what statistics to import, accepting multiple values separated by a comma. Values supported:

	
'OBJECT_STATS' - table statistics, column statistics and index statistics (Default)

	
'SYNOPSES' - auxiliary statistics information gathered on a partitioned table when incremental is TRUE

Exceptions

ORA-20000: Object does not exist or insufficient privileges

ORA-20001: Invalid or inconsistent values in the user statistics table

Usage Notes

Oracle does not support export or import of statistics across databases of different character sets.

LOCK_PARTITION_STATS Procedure

This procedure enables the user to lock statistics for a partition.

Syntax

DBMS_STATS.LOCK_PARTITION_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2,
 partname VARCHAR2);

Parameters

Table 141-64 LOCK_PARTITION_STATS Procedure Parameters

	Parameter	Description
	
ownname

	
Name of the schema to lock

	
tabname

	
Name of the table

	
partname

	
Partition name

LOCK_SCHEMA_STATS Procedure

This procedure locks the statistics of all tables of a schema.

Syntax

DBMS_STATS.LOCK_SCHEMA_STATS (
 ownname VARCHAR2);

Parameters

Table 141-65 LOCK_SCHEMA_STATS Procedure Parameters

	Parameter	Description
	
ownname

	
Name of the schema to lock

Usage Notes

See "Usage Notes" for LOCK_TABLE_STATS Procedure.

LOCK_TABLE_STATS Procedure

This procedure locks the statistics on the table.

Syntax

DBMS_STATS.LOCK_TABLE_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2);

Parameters

Table 141-66 LOCK_TABLE_STATS Procedure Parameters

	Parameter	Description
	
ownname

	
The name of the schema

	
tabname

	
The name of the table

Usage Notes

	
When statistics on a table are locked, all the statistics depending on the table, including table statistics, column statistics, histograms and statistics on all dependent indexes, are considered to be locked.

	
The SET_*, DELETE_*, IMPORT_*, GATHER_* procedures that modify statistics in the dictionary of an individual table, index or column will raise an error if statistics of the object is locked.

	
Procedures that operates on multiple objects (such as GATHER_SCHEMA_STATS) will skip modifying the statistics of an object if it is locked. Many procedures have force argument to override the lock.

	
This procedure either freezes the current set of the statistics or keeps the statistics empty (uncollected) to use Dynamic Sampling.

	
The locked or unlocked state is not exported along with the table statistics when using EXPORT_*_STATS procedures.

MERGE_COL_USAGE Procedure

This procedure merges column usage information from a source database by means of a dblink into the local database. If column usage information already exists for a given table or column MERGE_COL_USAGE will combine both the local and the remote information.

Syntax

DBMS_STATS.MERGE_COL_USAGE (
 dblink IN VARCHAR2);

Parameters

Table 141-67 MERGE_COL_USAGE Procedure Parameters

	Parameter	Description
	
dblink

	
Name of dblink

Usage Notes

User must be SYS to execute this procedure.

Exceptions

ORA-20000: Insufficient privileges

ORA-20001: Parameter dblink cannot be NULL

ORA-20002: Unable to create a TEMP table

PREPARE_COLUMN_VALUES Procedures

These procedures convert user-specified minimum, maximum, and histogram endpoint datatype-specific values into Oracle's internal representation for future storage using SET_COLUMN_STATS.

Syntax

DBMS_STATS.PREPARE_COLUMN_VALUES (
 srec IN OUT StatRec,
 charvals CHARARRAY);

DBMS_STATS.PREPARE_COLUMN_VALUES (
 srec IN OUT StatRec,
 datevals DATEARRAY);

DBMS_STATS.PREPARE_COLUMN_VALUES (
 srec IN OUT StatRec,
 dblvals DBLARRAY);

DBMS_STATS.PREPARE_COLUMN_VALUES (
 srec IN OUT StatRec,
 fltvals FLTARRAY);

DBMS_STATS.PREPARE_COLUMN_VALUES (
 srec IN OUT StatRec,
 numvals NUMARRAY);

DBMS_STATS.PREPARE_COLUMN_VALUES (
 srec IN OUT StatRec,
 rawvals RAWARRAY);

Pragmas

pragma restrict_references(prepare_column_values, WNDS, RNDS, WNPS, RNPS);
pragma restrict_references(prepare_column_values_nvarchar, WNDS, RNDS, WNPS, RNPS);
pragma restrict_references(prepare_column_values_rowid, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 141-68 PREPARE_COLUMN_VALUES Procedure Parameters

	Parameter	Description
	
srec.epc

	
Number of values specified in charvals, datevals, dblvals, fltvals, numvals, or rawvals. This value must be between 2 and 256, inclusive, and it should be set to 2 for procedures which do not allow histogram information (nvarchar and rowid).

The first corresponding array entry should hold the minimum value for the column, and the last entry should hold the maximum. If there are more than two entries, then all the others hold the remaining height-balanced or frequency histogram endpoint values (with in-between values ordered from next-smallest to next-largest). This value may be adjusted to account for compression, so the returned value should be left as is for a call to SET_COLUMN_STATS.

	
srec.bkvals

	
If you want a frequency distribution, this array contains the number of occurrences of each distinct value specified in charvals, datevals, dblvals, fltvals, numvals, or rawvals. Otherwise, it is merely an output parameter, and it must be set to NULL when this procedure is called.

Datatype-specific input parameters (use one) are shown in Table 141-69.

Table 141-69 Datatype-Specific Input Parameters

	Type	Description
	
charvals

	
The array of values when the column type is character-based. Up to the first 32 bytes of each string should be provided. Arrays must have between 2 and 256 entries, inclusive. If the datatype is fixed CHAR, the strings must be space-padded to 15 characters for correct normalization.

	
datevals

	
Array of values when the column type is date-based

	
dblvals

	
Array of values when the column type is double-based

	
fltvals

	
Array of values when the column type is float-based

	
numvals

	
Array of values when the column type is numeric-based

	
rawvals

	
Array of values when the column type is RAW. Up to the first 32 bytes of each strings should be provided.

	
nvmin, nvmax

	
Minimum and maximum values when the column type is national character set based. No histogram information can be provided for a column of this type. If the datatype is fixed CHAR, the strings must be space-padded to 15 characters for correct normalization.

	
rwmin, rwmax

	
Minimum and maximum values when the column type is rowid. No histogram information is provided for a column of this type.

Output Parameters

Table 141-70 PREPARE_COLUMN_VALUES Procedure Output Parameters

	Parameter	Description
	
srec.minval

	
Internal representation of the minimum suitable for use in a call to SET_COLUMN_STATS

	
srec.maxval

	
Internal representation of the maximum suitable for use in a call to SET_COLUMN_STATS

	
srec.bkvals

	
Array suitable for use in a call to SET_COLUMN_STATS

	
srec.novals

	
Array suitable for use in a call to SET_COLUMN_STATS

Exceptions

ORA-20001: Invalid or inconsistent input values

PREPARE_COLUMN_VALUES_NVARCHAR2 Procedure

This procedure converts user-specified minimum, maximum, and histogram endpoint datatype-specific values into Oracle's internal representation for future storage using SET_COLUMN_STATS.

Syntax

DBMS_STATS.PREPARE_COLUMN_VALUES_NVARCHAR2 (
 srec IN OUT StatRec,
 nvmin NVARCHAR2,
 nvmax NVARCHAR2);

Pragmas

pragma restrict_references(prepare_column_values_nvarchar, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 141-71 PREPARE_COLUMN_VALUES_NVARCHAR2 Procedure Parameters

	Parameter	Description
	
srec.epc

	
Number of values specified in charvals, datevals, dblvals, fltvals, numvals, or rawvals. This value must be between 2 and 256, inclusive, and it should be set to 2 for procedures which do not allow histogram information (nvarchar and rowid).

The first corresponding array entry should hold the minimum value for the column, and the last entry should hold the maximum. If there are more than two entries, then all the others hold the remaining height-balanced or frequency histogram endpoint values (with in-between values ordered from next-smallest to next-largest). This value may be adjusted to account for compression, so the returned value should be left as is for a call to SET_COLUMN_STATS.

	
srec.bkvals

	
If you want a frequency distribution, then this array contains the number of occurrences of each distinct value specified in charvals, datevals, dblvals, fltvals, numvals, or rawvals. Otherwise, it is merely an output parameter, and it must be set to NULL when this procedure is called.

Datatype-specific input parameters (use one) are shown in Table 141-69.

Table 141-72 Datatype-Specific Input Parameters

	Type	Description
	
nvmin, nvmax

	
The minimum and maximum values when the column type is national character set based. No histogram information can be provided for a column of this type. If the datatype is fixed CHAR, the strings must be space-padded to 15 characters for correct normalization.

Output Parameters

Table 141-73 PREPARE_COLUMN_VALUES Procedure Output Parameters

	Parameter	Description
	
srec.minval

	
Internal representation of the minimum suitable for use in a call to SET_COLUMN_STATS

	
srec.maxval

	
Internal representation of the maximum suitable for use in a call to SET_COLUMN_STATS

	
srec.bkvals

	
Array suitable for use in a call to SET_COLUMN_STATS.

	
srec.novals

	
Array suitable for use in a call to SET_COLUMN_STATS

Exceptions

ORA-20001: Invalid or inconsistent input values

PREPARE_COLUMN_VALUES_ROWID Procedure

This procedure converts user-specified minimum, maximum, and histogram endpoint datatype-specific values into Oracle's internal representation for future storage using SET_COLUMN_STATS.

Syntax

DBMS_STATS.PREPARE_COLUMN_VALUES_ROWID (
 srec IN OUT StatRec,
 rwmin ROWID,
 rwmax ROWID);

Pragmas

pragma restrict_references(prepare_column_values_rowid, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 141-74 PREPARE_COLUMN_VALUES_ROWID Procedure Parameters

	Parameter	Description
	
srec.epc

	
Number of values specified in charvals, datevals, dblvals, fltvals, numvals, or rawvals. This value must be between 2 and 256, inclusive, and it should be set to 2 for procedures which do not allow histogram information (nvarchar and rowid).

The first corresponding array entry should hold the minimum value for the column, and the last entry should hold the maximum. If there are more than two entries, then all the others hold the remaining height-balanced or frequency histogram endpoint values (with in-between values ordered from next-smallest to next-largest). This value may be adjusted to account for compression, so the returned value should be left as is for a call to SET_COLUMN_STATS.

	
srec.bkvals

	
If you want a frequency distribution, this array contains the number of occurrences of each distinct value specified in charvals, datevals, dblvals, fltvals, numvals, or rawvals. Otherwise, it is merely an output parameter, and it must be set to NULL when this procedure is called.

Datatype-specific input parameters (use one) are shown in Table 141-69.

Table 141-75 Datatype-Specific Input Parameters

	Type	Description
	
rwmin, rwmax

	
Minimum and maximum values when the column type is rowid. No histogram information is provided for a column of this type.

Output Parameters

Table 141-76 PREPARE_COLUMN_VALUES Procedure Output Parameters

	Parameter	Description
	
srec.minval

	
Internal representation of the minimum suitable for use in a call to SET_COLUMN_STATS.

	
srec.maxval

	
Internal representation of the maximum suitable for use in a call to SET_COLUMN_STATS.

	
srec.bkvals

	
Array suitable for use in a call to SET_COLUMN_STATS.

	
srec.novals

	
Array suitable for use in a call to SET_COLUMN_STATS.

Exceptions

ORA-20001: Invalid or inconsistent input values

PUBLISH_PENDING_STATS Procedure

This procedure is used to publish the statistics gathered and stored as pending.

Syntax

DBMS_STATS.PUBLISH_PENDING_STATS (
 ownname IN VARCHAR2 DEFAULT USER,
 tabname IN VARCHAR2,
 no_invalidate BOOLEAN DEFAULT
 to_no_invalidate_type(get_param('NO_INVALIDATE')),
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Table 141-77 PUBLISH_PENDING_STATS Procedure Parameters

	Parameter	Description
	
ownname

	
Owner name

	
tabname

	
Table name

	
no_invalidate

	
Do not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE to have Oracle decide when to invalidate dependent cursors. This is the default. The default can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

	
force

	
If TRUE, will override the lock

Exceptions

ORA-20000: Insufficient privileges

Usage Notes

	
If the parameter tabname is NULL then publish applies to all tables of the specified schema.

	
The default owner/schema is the user who runs the procedure.

	
To run this procedure, you need to have the same privilege for gathering statistics on the tables that will be touched by this procedure.

Examples

DBMS_STATS.PUBLISH_PENDING_STATS ('SH', null);

PURGE_STATS Procedure

This procedure purges old versions of statistics saved in the dictionary. To run this procedure, you must have the SYSDBA or both ANALYZE ANY DICTIONARY and ANALYZE ANY system privilege.

Syntax

DBMS_STATS.PURGE_STATS(
 before_timestamp TIMESTAMP WITH TIME ZONE);

Parameters

Table 141-78 PURGE_STATS Procedure Parameters

	Parameter	Description
	
before_timestamp

	
Versions of statistics saved before this timestamp are purged. If NULL, it uses the purging policy used by automatic purge. The automatic purge deletes all history older than the older of (current time - statistics history retention) and (time of recent analyze in the system - 1). The statistics history retention value can be changed using ALTER_STATS_HISTORY_RETENTION Procedure.The default is 31 days.

Exceptions

ORA-20000: Object does not exist or insufficient privileges

ORA-20001: Invalid or inconsistent values

RESET_GLOBAL_PREF_DEFAULTS Procedure

This procedures sets global preference, such as CASCADE, ESTIMATE_PERCENT and GRANULARITY, to default values. This reverses the global preferences set by the SET_GLOBAL_PREFS Procedure.

Syntax

DBMS_STATS.RESET_GLOBAL_PREF_DEFAULTS;

RESET_PARAM_DEFAULTS Procedure

	
Note:

This subprogram has been replaced by improved technology and is maintained only for purposes of backward compatibility. In this case, use the RESET_GLOBAL_PREF_DEFAULTS Procedure.
See also Deprecated Subprograms.

This procedure resets the default values of all parameters to Oracle recommended values.

Syntax

DBMS_STATS.RESET_PARAM_DEFAULTS;

RESTORE_DATABASE_STATS Procedure

This procedure restores statistics of all tables of the database as of a specified timestamp (as_of_timestamp).

Syntax

DBMS_STATS.RESTORE_DATABSE_STATS(
 as_of_timestamp TIMESTAMP WITH TIME ZONE,
 force BOOLEAN DEFAULT FALSE,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type
 (GET_PARAM('NO_INVALIDATE')));

Parameters

Table 141-79 RESTORE_DATABASE_STATS Procedure Parameters

	Parameter	Description
	
as_of_timestamp

	
The timestamp to which to restore statistics

	
force

	
Restores statistics even if their statistics are locked

	
no_invalidate

	
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE. to have Oracle decide when to invalidate dependent cursors. This is the default. The default can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

Exceptions

ORA-20000: Object does not exist or insufficient privileges

ORA-20001: Invalid or inconsistent values

ORA-20006: Unable to restore statistics, statistics history not available

RESTORE_DICTIONARY_STATS Procedure

This procedure restores statistics of all dictionary tables (tables of 'SYS', 'SYSTEM' and RDBMS component schemas) as of a specified timestamp (as_of_timestamp).

Syntax

DBMS_STATS.RESTORE_DICTIONARY_STATS(
 as_of_timestamp TIMESTAMP WITH TIME ZONE,
 force BOOLEAN DEFAULT FALSE,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type
 (GET_PARAM('NO_INVALIDATE')));

Parameters

Table 141-80 RESTORE_DICTIONARY_STATS Procedure Parameters

	Parameter	Description
	
as_of_timestamp

	
Tmestamp to which to restore statistics

	
force

	
Restores statistics even if their statistics are locked

	
no_invalidate

	
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE. to have Oracle decide when to invalidate dependent cursors. This is the default. The default can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

Usage Notes

To run this procedure, you must have the SYSDBA or both ANALYZE ANY DICTIONARY and ANALYZE ANY system privilege.

Exceptions

ORA-20000: Object does not exist or insufficient privileges

ORA-20001: Invalid or inconsistent values

ORA-20006: Unable to restore statistics, statistics history not available

RESTORE_FIXED_OBJECTS_STATS Procedure

This procedure restores statistics of all fixed tables as of a specified timestamp (as_of_timestamp).

Syntax

DBMS_STATS.RESTORE_FIXED_OBJECTS_STATS(
 as_of_timestamp TIMESTAMP WITH TIME ZONE,
 force BOOLEAN DEFAULT FALSE,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type
 (GET_PARAM('NO_INVALIDATE')));

Parameters

Table 141-81 RESTORE_FIXED_OBJECTS_STATS Procedure Parameters

	Parameter	Description
	
as_of_timestamp

	
The timestamp to which to restore statistics

	
force

	
Restores statistics even if their statistics are locked

	
no_invalidate

	
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE. to have Oracle decide when to invalidate dependent cursors. This is the default. The default can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

Usage Notes

To run this procedure, you must have the SYSDBA or ANALYZE ANY DICTIONARY system privilege.

Exceptions

ORA-20000: Object does not exist or insufficient privileges

ORA-20001: Invalid or inconsistent values

ORA-20006: Unable to restore statistics, statistics history not available

RESTORE_SCHEMA_STATS Procedure

This procedure restores statistics of all tables of a schema as of a specified timestamp (as_of_timestamp).

Syntax

DBMS_STATS.RESTORE_SCHEMA_STATS(
 ownname VARCHAR2,
 as_of_timestamp TIMESTAMP WITH TIME ZONE,
 force BOOLEAN DEFAULT FALSE,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type
 (GET_PARAM('NO_INVALIDATE')));

Parameters

Table 141-82 RESTORE_SCHEMA_STATS Procedure Parameters

	Parameter	Description
	
ownname

	
Schema of the tables for which the statistics are to be restored

	
as_of_timestamp

	
The timestamp to which to restore statistics

	
force

	
Restores statistics even if their statistics are locked

	
no_invalidate

	
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE. to have Oracle decide when to invalidate dependent cursors. This is the default. The default can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

Exceptions

ORA-20000: Object does not exist or insufficient privileges

ORA-20001: Invalid or inconsistent values

ORA-20006: Unable to restore statistics, statistics history not available

RESTORE_SYSTEM_STATS Procedure

This procedure restores system statistics as of a specified timestamp (as_of_timestamp).

Syntax

DBMS_STATS.RESTORE_SCHEMA_STATS(
 as_of_timestamp TIMESTAMP WITH TIME ZONE);

Parameters

Table 141-83 RESTORE_SYSTEM_STATS Procedure Parameters

	Parameter	Description
	
as_of_timestamp

	
The timestamp to which to restore statistics

Exceptions

ORA-20000: Object does not exist or insufficient privileges

ORA-20001: Invalid or inconsistent values

ORA-20006: Unable to restore statistics, statistics history not available

RESTORE_TABLE_STATS Procedure

This procedure restores statistics of a table as of a specified timestamp (as_of_timestamp). The procedure will restore statistics of associated indexes and columns as well. If the table statistics were locked at the specified timestamp the procedure will lock the statistics. The procedure will not restore user defined statistics.

Syntax

DBMS_STATS.RESTORE_TABLE_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2,
 as_of_timestamp TIMESTAMP WITH TIME ZONE,
 restore_cluster_index BOOLEAN DEFAULT FALSE,
 force BOOLEAN DEFAULT FALSE,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type
 (GET_PARAM('NO_INVALIDATE')));

Parameters

Table 141-84 RESTORE_TABLE_STATS Procedure Parameters

	Parameter	Description
	
ownname

	
The schema of the table for which the statistics are to be restored

	
tabname

	
The table name

	
as_of_timestamp

	
The timestamp to which to restore statistics

	
restore_cluster_index

	
If the table is part of a cluster, restore statistics of the cluster index if set to TRUE

	
force

	
Restores statistics even if the table statistics are locked. If the table statistics were not locked at the specified timestamp, it unlocks the statistics.

	
no_invalidate

	
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE. to have Oracle decide when to invalidate dependent cursors. This is the default. The default can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

Exceptions

ORA-20000: Object does not exist or insufficient privileges

ORA-20001: Invalid or inconsistent values

ORA-20006: Unable to restore statistics, statistics history not available

SEED_COL_USAGE Procedure

This procedure iterates over the SQL statements in the specified SQL tuning set, compiles them and seeds column usage information for the columns that appear in these statements.

Syntax

DBMS_STATS.SEED_COL_USAGE (
 sqlset_name IN VARCHAR2,
 owner_name IN VARCHAR2,
 time_limit IN POSITIVE DEFAULT NULL);

Parameters

Table 141-85 SEED_COL_USAGE Procedure Parameters

	Parameter	Description
	
sqlset_name

	
Name of the SQL tuning set

	
owner_name

	
Owner of the SQL tuning set

	
time_limit

	
Time limit (in seconds)

Exceptions

ORA-20000: Insufficient privileges

SET_COLUMN_STATS Procedures

This procedure sets column-related information. In the version of this procedure that deals with user-defined statistics, the statistics type specified is the type to store in the dictionary, in addition to the actual user-defined statistics. If this statistics type is NULL, the statistics type associated with the index or column is stored.

Syntax

DBMS_STATS.SET_COLUMN_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2,
 colname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 distcnt NUMBER DEFAULT NULL,
 density NUMBER DEFAULT NULL,
 nullcnt NUMBER DEFAULT NULL,
 srec StatRec DEFAULT NULL,
 avgclen NUMBER DEFAULT NULL,
 flags NUMBER DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type(
 get_param('NO_INVALIDATE')),
 force BOOLEAN DEFAULT FALSE);

Use the following for user-defined statistics:

DBMS_STATS.SET_COLUMN_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2,
 colname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 ext_stats RAW,
 stattypown VARCHAR2 DEFAULT NULL,
 stattypname VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type(
 get_param('NO_INVALIDATE')),
 force BOOLEAN DEFAULT FALSE);

Parameters

Table 141-86 SET_COLUMN_STATS Procedure Parameters

	Parameter	Description
	
ownname

	
Name of the schema.

	
tabname

	
Name of the table to which this column belongs.

	
colname

	
Name of the column or extension

	
partname

	
Name of the table partition in which to store the statistics. If the table is partitioned and partname is NULL, then the statistics are stored at the global table level.

	
stattab

	
User statistics table identifier describing where to store the statistics. If stattab is NULL, then the statistics are stored directly in the dictionary.

	
statid

	
Identifier (optional) to associate with these statistics within stattab (Only pertinent if stattab is not NULL)

	
ext_stats

	
User-defined statistics

	
stattypown

	
Schema of the statistics type

	
stattypname

	
Name of the statistics type

	
distcnt

	
Number of distinct values

	
density

	
Column density. If this value is NULL and if distcnt is not NULL, then density is derived from distcnt.

	
nullcnt

	
Number of NULLs

	
srec

	
StatRec structure filled in by a call to PREPARE_COLUMN_VALUES or GET_COLUMN_STATS

	
avgclen

	
Average length for the column (in bytes)

	
flags

	
For internal Oracle use (should be left as NULL)

	
statown

	
Schema containing stattab (if different than ownname)

	
no_invalidate

	
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE. to have Oracle decide when to invalidate dependent cursors. This is the default. The default can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

	
force

	
Sets the values even if statistics of the column are locked

Exceptions

ORA-20000: Object does not exist or insufficient privileges

ORA-20001: Invalid or inconsistent input values

ORA-20005: Object statistics are locked

SET_DATABASE_PREFS Procedure

This procedure is used to set the statistics preferences of all the tables, excluding the tables owned by Oracle. These tables can by included by passing TRUE for the add_sys parameter.

Syntax

DBMS_STATS.SET_DATABASE_PREFS (
 pname IN VARCHAR2,
 pvalue IN VARCHAR2,
 add_sys IN BOOLEAN DEFAULT FALSE);

Parameters

Table 141-87 SET_DATABASE_PREFS Procedure Parameters

	Parameter	Description
	
pname

	
Preference name. The default value for following parameters can be set:

	
CASCADE

	
DEGREE

	
ESTIMATE_PERCENT

	
METHOD_OPT

	
NO_INVALIDATE

	
GRANULARITY

	
PUBLISH

	
INCREMENTAL

	
STALE_PERCENT

	
.

	
CASCADE - Determines whether or not index statistics are collected as part of gathering table statistics.

	
.

	
DEGREE - Determines degree of parallelism used for gathering statistics.

	
.

	
ESTIMATE_PERCENT - Determines the percentage of rows to estimate. The valid range is [0.000001,100]. Use the constant DBMS_STATS.AUTO_SAMPLE_SIZE to have Oracle determine the appropriate sample size for good statistics. This is the default.

	
.

	
METHOD_OPT - Controls column statistics collection and histogram creation. It accepts either of the following options, or both in combination:

	
FOR ALL [INDEXED | HIDDEN] COLUMNS [size_clause]

	
FOR COLUMNS [size clause] column [size_clause] [,column [size_clause]...]

size_clause is defined as size_clause := SIZE {integer | REPEAT | AUTO | SKEWONLY}

column is defined as column := column_name | extension name | extension

- integer : Number of histogram buckets. Must be in the range [1,254].

- REPEAT : Collects histograms only on the columns that already have histograms

- AUTO : Oracle determines the columns to collect histograms based on data distribution and the workload of the columns.

- SKEWONLY : Oracle determines the columns to collect histograms based on the data distribution of the columns.

- column_name : Name of a column

- extension : Can be either a column group in the format of (column_name, colume_name [, ...]) or an expression
The default is FOR ALL COLUMNS SIZE AUTO.

	
.

	
NO_INVALIDATE - Controls the invalidation of dependent cursors of the tables for which statistics are being gathered. Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE to have Oracle decide when to invalidate dependent cursors. This is the default.

	
.

	
GRANULARITY - Determines granularity of statistics to collect (only pertinent if the table is partitioned).

'ALL' - Gathers all (subpartition, partition, and global) statistics

'AUTO'- Determines the granularity based on the partitioning type. This is the default value.

'DEFAULT' - Gathers global and partition-level statistics. This option is obsolete, and while currently supported, it is included in the documentation for legacy reasons only. You should use the 'GLOBAL AND PARTITION' for this functionality. Note that the default value is now 'AUTO'.

'GLOBAL' - Gathers global statistics

'GLOBAL AND PARTITION' - Gathers the global and partition level statistics. No subpartition level statistics are gathered even if it is a composite partitioned object.

'PARTITION '- Gathers partition-level statistics

'SUBPARTITION' - Gathers subpartition-level statistics.

	
.

	
PUBLISH - Determines whether or not newly gathered statistics will be published once the gather job has completed. Prior to Oracle Database 11g, Release 1 (11.1), once a statistic gathering job completed the new statistics were automatically published into the dictionary tables. The user now has the ability to gather statistics but not publish them immediately. This allows the DBA to test the new statistics before publishing them.

	
.

	
INCREMENTAL - Determines whether or not the global statistics of a partitioned table will be maintained without doing a full table scan. With partitioned tables it is very common to load new data into a new partition. As new partitions are added and data loaded, the global table statistics need to be kept up to date. Oracle will update the global table statistics by scanning only the partitions that have been changed instead of the entire table if the following conditions hold:

	
the INCREMENTAL value for the partitioned table is set to TRUE;

	
the PUBLISH value for the partitioned table is set to TRUE;

	
the user specifies AUTO_SAMPLE_SIZE for ESTIMATE_PERCENT and AUTO for GRANULARITY when gathering statistics on the table.

If the INCREMENTAL value for the partitioned table was set to FALSE (default value), a full table scan is used to maintain the global statistics which is a much more resource intensive and time-consuming operation for large tables.

	
.

	
STALE_PERCENT - Determines the percentage of rows in a table that have to change before the statistics on that table are deemed stale and should be regathered. The valid domain for stale_percent is non-negative numbers. The default value is 10%.

	
pvalue

	
Preference value. If NULL is specified, it will set the Oracle default value.s

	
add_sys

	
Value TRUE will include the Oracle-owned tables

Exceptions

ORA-20000: Insufficient privileges

ORA-20001: Invalid or illegal input values

Usage Notes

	
To run this procedure, you need to have the SYSDBA role or both ANALYZE ANY DICTIONARY and ANALYZE ANY system privileges.

	
Both arguments are of type VARCHAR2 and values are enclosed in quotes, even when they represent numbers.

Examples

DBMS_STATS.SET_DATABASE_PREFS('CASCADE', 'DBMS_STATS.AUTO_CASCADE');
DBMS_STATS.SET_DATABASE_PREFS('ESTIMATE_PERCENT','9');
DBMS_STATS.SET_DATABASE_PREFS('DEGREE','99');

SET_GLOBAL_PREFS Procedure

This procedure is used to set the global statistics preferences.

Syntax

DBMS_STATS.SET_GLOBAL_PREFS (
 pname IN VARCHAR2,
 pvalue IN VARCHAR2);

Parameters

Table 141-88 SET_GLOBAL_PREFS Procedure Parameters

	Parameter	Description
	
pname

	
Preference name. The default value for the following preferences can be set:

	
AUTOSTATS_TARGET

	
CASCADE

	
DEGREE

	
ESTIMATE_PERCENT

	
METHOD_OPT

	
NO_INVALIDATE

	
GRANULARITY

	
PUBLISH

	
INCREMENTAL

	
STALE_PERCENT

	
	
AUTOSTATS_TARGET - This preference is applicable only for auto statistics collection. The value of this parameter controls the objects considered for stats collection. It takes the following values:

	
'ALL' - Statistics collected for all objects in system

	
'ORACLE' - Statistics collected for all Oracle owned objects

	
'AUTO' - Oracle decides on which objects to collect statistics

	
.

	
CASCADE - Determines whether or not index statistics are collected as part of gathering table statistics

	
.

	
DEGREE - Determines degree of parallelism used for gathering statistics

	
.

	
ESTIMATE_PERCENT - Determines the percentage of rows to estimate. The valid range is [0.000001,100]. Use the constant DBMS_STATS.AUTO_SAMPLE_SIZE to have Oracle determine the appropriate sample size for good statistics. This is the default.

	
.

	
METHOD_OPT - The value controls column statistics collection and histogram creation. It accepts either of the following options, or both in combination:

	
FOR ALL [INDEXED | HIDDEN] COLUMNS [size_clause]

	
FOR COLUMNS [size clause] column [size_clause] [,column [size_clause]...]

size_clause is defined as size_clause := SIZE {integer | REPEAT | AUTO | SKEWONLY}

column is defined as column := column_name | extension name | extension

- integer : Number of histogram buckets. Must be in the range [1,254].

- REPEAT : Collects histograms only on the columns that already have histograms.

- AUTO : Oracle determines the columns to collect histograms based on data distribution and the workload of the columns.

- SKEWONLY : Oracle determines the columns to collect histograms based on the data distribution of the columns.

- column_name : Name of a column

- extension : Can be either a column group in the format of (column_name, colume_name [, ...]) or an expression
The default is FOR ALL COLUMNS SIZE AUTO.

	
.

	
NO_INVALIDATE - Controls the invalidation of dependent cursors of the tables for which statistics are being gathered. Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE to have Oracle decide when to invalidate dependent cursors. This is the default.

	
.

	
GRANULARITY - Determines granularity of statistics to collect (only pertinent if the table is partitioned).

'ALL' - Gathers all (subpartition, partition, and global) statistics

'AUTO'- Determines the granularity based on the partitioning type. This is the default value.

'DEFAULT' - gathers global and partition-level statistics. This option is obsolete, and while currently supported, it is included in the documentation for legacy reasons only. You should use the 'GLOBAL AND PARTITION' for this functionality. Note that the default value is now 'AUTO'.

'GLOBAL' - Gathers global statistics

'GLOBAL AND PARTITION' - gathers the global and partition level statistics. No subpartition level statistics are gathered even if it is a composite partitioned object.

'PARTITION '- gathers partition-level statistics

'SUBPARTITION' - gathers subpartition-level statistics.

	
.

	
PUBLISH - This value determines whether or not newly gathered statistics will be published once the gather job has completed. Prior to Oracle Database 11g, Release 1 (11.1), once a statistic gathering job completed the new statistics were automatically published into the dictionary tables. The user now has the ability to gather statistics but not publish them immediately. This allows the DBA to test the new statistics before publishing them.

	
.

	
INCREMENTAL - This value determines whether or not the global statistics of a partitioned table will be maintained without doing a full table scan. With partitioned tables it is very common to load new data into a new partition. As new partitions are added and data loaded, the global table statistics need to be kept up to date. Oracle will update the global table statistics by scanning only the partitions that have been changed instead of the entire table if the following conditions hold:

	
INCREMENTAL value for the partitioned table is set to TRUE

	
PUBLISH value for the partitioned table is set to TRUE;

	
User specifies AUTO_SAMPLE_SIZE for ESTIMATE_PERCENT and AUTO for GRANULARITY when gathering statistics on the table

If the INCREMENTAL value for the partitioned table was set to FALSE (default value), a full table scan is used to maintain the global statistics which is a much more resource intensive and time-consuming operation for large tables.

	
.

	
STALE_PERCENT - Determines the percentage of rows in a table that have to change before the statistics on that table are deemed stale and should be regathered. The valid domain for stale_percent is non-negative numbers. The default value is 10%.

	
pvalue

	
Preference value. If NULL is specified, it will set the Oracle default value.s

Exceptions

ORA-20000: Insufficient privileges

ORA-20001: Invalid or illegal input values

Usage Notes

	
This setting is honored only of there is no preference specified for the table to be analyzed.

	
To run this procedure, you need to have the SYSDBA or both ANALYZE ANY DICTIONARY and ANALYZE ANY system privilege.

	
Both arguments are of type VARCHAR2 and values are enclosed in quotes, even when they represent numbers.

Examples

DBMS_STATS.SET_GLOBAL_PREFS('ESTIMATE_PERCENT','9');
DBMS_STATS.SET_GLOBAL_PREFS('DEGREE','99');

SET_INDEX_STATS Procedures

These procedures set index-related information. In the version of this procedure that deals with user-defined statistics, the statistics type specified is the type to store in the dictionary, in addition to the actual user-defined statistics. If this statistics type is NULL, the statistics type associated with the index or column is stored.

Syntax

DBMS_STATS.SET_INDEX_STATS (
 ownname VARCHAR2,
 indname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 numrows NUMBER DEFAULT NULL,
 numlblks NUMBER DEFAULT NULL,
 numdist NUMBER DEFAULT NULL,
 avglblk NUMBER DEFAULT NULL,
 avgdblk NUMBER DEFAULT NULL,
 clstfct NUMBER DEFAULT NULL,
 indlevel NUMBER DEFAULT NULL,
 flags NUMBER DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type(
 get_param('NO_INVALIDATE')),
 guessq NUMBER DEFAULT NULL,
 cachedblk NUMBER DEFAULT NULL,
 cachehit NUMBER DEFUALT NULL,
 force BOOLEAN DEFAULT FALSE);

Use the following for user-defined statistics:

DBMS_STATS.SET_INDEX_STATS (
 ownname VARCHAR2,
 indname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 ext_stats RAW,
 stattypown VARCHAR2 DEFAULT NULL,
 stattypname VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type(
 get_param('NO_INVALIDATE')),
 cachedblk NUMBER DEFAULT NULL,
 cachehit NUMBER DEFUALT NULL,
 force BOOLEAN DEFAULT FALSE);

Parameters

Table 141-89 SET_INDEX_STATS Procedure Parameters

	Parameter	Description
	
ownname

	
Name of the schema

	
indname

	
Name of the index

	
partname

	
Name of the index partition in which to store the statistics. If the index is partitioned and if partname is NULL, then the statistics are stored at the global index level.

	
stattab

	
User statistics table identifier describing where to store the statistics. If stattab is NULL, then the statistics are stored directly in the dictionary.

	
statid

	
Identifier (optional) to associate with these statistics within stattab (Only pertinent if stattab is not NULL)

	
ext_stats

	
User-defined statistics

	
stattypown

	
Schema of the statistics type

	
stattypname

	
Name of the statistics type

	
numrows

	
Number of rows in the index (partition)

	
numlblks

	
Number of leaf blocks in the index (partition)

	
numdist

	
Number of distinct keys in the index (partition)

	
avglblk

	
Average integral number of leaf blocks in which each distinct key appears for this index (partition). If not provided, then this value is derived from numlblks and numdist.

	
avgdblk

	
Average integral number of data blocks in the table pointed to by a distinct key for this index (partition). If not provided, then this value is derived from clstfct and numdist.

	
clstfct

	
See clustering_factor column of the all_indexes view for a description

	
indlevel

	
Height of the index (partition)

	
flags

	
For internal Oracle use (should be left as NULL)

	
statown

	
Schema containing stattab (if different than ownname)

	
no_invalidate

	
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE. to have Oracle decide when to invalidate dependent cursors. This is the default. The default can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

	
guessq

	
Guess quality. See the pct_direct_access column of the all_indexes view for a description.

	
cachedblk

	
The average number of blocks in the buffer cache for the segment (index/table/index partition/table partition)

	
cachehit

	
The average cache hit ratio for the segment (index/table/index partition/table partition)

	
force

	
Sets the values even if statistics of the index are locked

Usage Notes

	
The Optimizer uses the cached data to estimate number of cached blocks for index or statistics table access. The total cost of the operation will be combined from the I/O cost of reading not cached blocks from disk, the CPU cost of getting cached blocks from the buffer cache, and the CPU cost of processing the data.

	
Oracle maintains cachedblk and cachehit at all times but uses correspondent caching statistics for optimization as part of the table and index statistics only when the user calls DBMS_STATS.GATHER_[TABLE/INDEX/SCHEMA/DATABASE]_STATS procedure for auto mode or DBMS_STATS.GATHER_SYSTEM_STATS for manual mode. In order to prevent the user from utilizing inaccurate and unreliable data, the optimizer will compute a 'confidence factor' for each cachehit and a cachedblk for each object. If the 'confidence factor' for the value meets confidence criteria, this value will be used, otherwise the defaults will be used.

	
The automatic maintenance algorithm for object caching statistics assumes that there is only one major workload for the system and adjusts statistics to this workload, ignoring other "minor" workloads. If this is not the case, you must use manual mode for maintaining object caching statistics.

	
The object caching statistics maintenance algorithm for auto mode prevents you from using statistics in the following situations

	
When not enough data has been analyzed, such as when an object has been recently create

	
When the system does not have one major workload resulting in averages not corresponding to real values.

Exceptions

ORA-20000: Object does not exist or insufficient privileges

ORA-20001: Invalid input value

ORA-20005: Object statistics are locked

SET_PARAM Procedure

	
Note:

This subprogram has been replaced by improved technology and is maintained only for purposes of backward compatibility. In this case, use the SET_GLOBAL_PREFS Procedure.
See also Deprecated Subprograms.

This procedure sets default values for parameters of DBMS_STATS procedures. You can use the GET_PARAM Function to get the current default value of a parameter.

Syntax

DBMS_STATS.SET_PARAM (
 pname IN VARCHAR2,
 pval IN VARCHAR2);

Parameters

Table 141-90 SET_PARAM Procedure Parameters

	Parameter	Description
	
pname

	
The parameter name The default value for following parameters can be set.

	
CASCADE - The default value for CASCADE set by SET_PARAM is not used by export/import procedures.It is used only by gather procedures.

	
DEGREE

	
ESTIMATE_PERCENT

	
METHOD_OPT

	
NO_INVALIDATE

	
GRANULARITY

	
AUTOSTATS_TARGET - This parameter is applicable only for auto statistics collection. The value of this parameter controls the objects considered for statistics collection (see pval)

	
pval

	
The parameter value. If NULL is specified, it will set the default value determined by Oracle. When pname is AUTOSTATS_TARGET, the following are valid values:

	
'ALL' - Statistics are collected for all objects in the system

	
'ORACLE' - Statistics are collected for all Oracle owned objects

	
'AUTO' - Oracle decides for which objects to collect statistics

Usage Notes

	
To run this procedure, you must have the SYSDBA or both the ANALYZE ANY DICTIONARY and ANALYZE ANY system privileges.

	
Note that both arguments are of type VARCHAR2 and the values need to be enclosed in quotes even when they represent numbers.

	
Note also the difference between NULL and 'NULL':

	
When NULL is unquoted, this sets the parameter to the value Oracle recommends.

	
In the case of the quoted 'NULL', this sets the value of the parameter to NULL.

Exceptions

ORA-20000: Object does not exist or insufficient privileges

ORA-20001: Invalid or illegal input value

Examples

DBMS_STATS.SET_PARAM('CASCADE','DBMS_STATS.AUTO_CASCADE');
DBMS_STATS.SET_PARAM('ESTIMATE_PERCENT','5');
DBMS_STATS.SET_PARAM('DEGREE','NULL');

SET_SCHEMA_PREFS Procedure

This procedure is used to set the statistics preferences of all the tables owned by the specified owner name.

Syntax

DBMS_STATS.SET_SCHEMA_PREFS (
 ownname IN VARCHAR2,
 pname IN VARCHAR2,
 pvalue IN VARCHAR2);

Parameters

Table 141-91 SET_SCHEMA_PREFS Procedure Parameters

	Parameter	Description
	
ownname

	
Owner name

	
pname

	
Preference name. The default value for following parameters can be set:

	
CASCADE

	
DEGREE

	
ESTIMATE_PERCENT

	
METHOD_OPT

	
NO_INVALIDATE

	
GRANULARITY

	
PUBLISH

	
INCREMENTAL

	
STALE_PERCENT

	
pvalue

	
Preference value. If NULL is specified, it will set the Oracle default value.s

Exceptions

ORA-20000: Object does not exist or insufficient privileges

ORA-20001: Invalid or illegal input value

Usage Notes

	
To run this procedure, you need to connect as owner, or have the SYSDBA privilege, or have the ANALYZE ANY system privilege.

	
Both arguments are of type VARCHAR2 and values are enclosed in quotes, even when they represent numbers.

Examples

DBMS_STATS.SET_SCHEMA_PREFS('SH','CASCADE', 'DBMS_STATS.AUTO_CASCADE');
DBMS_STATS.SET_SCHEMA_PREFS('SH' 'ESTIMATE_PERCENT','9');
DBMS_STATS.SET_SCHEMA_PREFS('SH', 'DEGREE','99');

SET_SYSTEM_STATS Procedure

This procedure sets systems statistics.

Syntax

DBMS_STATS.SET_SYSTEM_STATS (
 pname VARCHAR2,
 pvalue NUMBER,
 stattab IN VARCHAR2 DEFAULT NULL,
 statid IN VARCHAR2 DEFAULT NULL,
 statown IN VARCHAR2 DEFAULT NULL);

Parameters

Table 141-92 SET_SYSTEM_STATS Procedure Parameters

	Parameter	Description
	
pname

	
The parameter name to get, which can have one of the following values:

	
iotfrspeed—I/O transfer speed in bytes for each millisecond

	
ioseektim - Seek time + latency time + operating system overhead time, in milliseconds

	
sreadtim - Average time to read single block (random read), in milliseconds

	
mreadtim - Average time to read an mbrc block at once (sequential read), in milliseconds

	
cpuspeed - Average number of CPU cycles for each second, in millions, captured for the workload (statistics collected using 'INTERVAL' or 'START' and 'STOP' options)

	
cpuspeednw - Average number of CPU cycles for each second, in millions, captured for the noworkload (statistics collected using 'NOWORKLOAD' option.

	
mbrc - Average multiblock read count for sequential read, in blocks

	
maxthr - Maximum I/O system throughput, in bytes/second

	
slavethr - Average slave I/O throughput, in bytes/second

	
pvalue

	
Parameter value to get

	
stattab

	
Identifier of the user statistics table where the statistics will be obtained. If stattab is null, the statistics will be obtained from the dictionary.

	
statid

	
Optional identifier associated with the statistics saved in the stattab

	
statown

	
Schema containing stattab (if different from current schema)

Exceptions

ORA-20000: Object does not exist or insufficient privileges

ORA-20001: Invalid input value

ORA-20002: Bad user statistics table; may need to be upgraded

ORA-20003: Unable to set system statistics

ORA-20004: Parameter does not exist

SET_TABLE_PREFS Procedure

This procedure is used to set the statistics preferences of the specified table in the specified schema.

Syntax

DBMS_STATS.SET_TABLE_PREFS (
 ownname IN VARCHAR2,
 tabname IN VARCHAR2,
 pname IN VARCHAR2,
 pvalue IN VARCHAR2);

Parameters

Table 141-93 SET_TABLE_PREFS Procedure Parameters

	Parameter	Description
	
ownname

	
Owner name

	
tabname

	
Table name

	
pname

	
Preference name. The default value for following preferences can be set:

	
CASCADE

	
DEGREE

	
ESTIMATE_PERCENT

	
METHOD_OPT

	
NO_INVALIDATE

	
GRANULARITY

	
PUBLISH

	
INCREMENTAL

	
STALE_PERCENT

	
.

	
CASCADE - Determines whether or not index statistics are collected as part of gathering table statistics.

	
.

	
DEGREE - Determines degree of parallelism used for gathering statistics.

	
.

	
ESTIMATE_PERCENT - Determines the percentage of rows to estimate. The valid range is [0.000001,100]. Use the constant DBMS_STATS.AUTO_SAMPLE_SIZE to have Oracle determine the appropriate sample size for good statistics. This is the default.

	
.

	
METHOD_OPT - Controls column statistics collection and histogram creation. It accepts either of the following options, or both in combination:

	
FOR ALL [INDEXED | HIDDEN] COLUMNS [size_clause]

	
FOR COLUMNS [size clause] column [size_clause] [,column [size_clause]...]

size_clause is defined as size_clause := SIZE {integer | REPEAT | AUTO | SKEWONLY}

column is defined as column := column_name | extension name | extension

- integer : Number of histogram buckets. Must be in the range [1,254].

- REPEAT : Collects histograms only on the columns that already have histograms

- AUTO : Oracle determines the columns to collect histograms based on data distribution and the workload of the columns.

- SKEWONLY : Oracle determines the columns to collect histograms based on the data distribution of the columns.

- column_name : Name of a column

- extension : Can be either a column group in the format of (column_name, colume_name [, ...]) or an expression
The default is FOR ALL COLUMNS SIZE AUTO.

	
.

	
NO_INVALIDATE - The value controls the invalidation of dependent cursors of the tables for which statistics are being gathered. Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE to have Oracle decide when to invalidate dependent cursors. This is the default.

	
.

	
GRANULARITY - Determines granularity of statistics to collect (only pertinent if the table is partitioned).

'ALL' - Gathers all (subpartition, partition, and global) statistics

'AUTO'- Determines the granularity based on the partitioning type. This is the default value.

'DEFAULT' - Gathers global and partition-level statistics. This option is obsolete, and while currently supported, it is included in the documentation for legacy reasons only. You should use the 'GLOBAL AND PARTITION' for this functionality. Note that the default value is now 'AUTO'.

'GLOBAL' - Gathers global statistics

'GLOBAL AND PARTITION' - Gathers the global and partition level statistics. No subpartition level statistics are gathered even if it is a composite partitioned object.

'PARTITION '- Gathers partition-level statistics

'SUBPARTITION' - Gathers subpartition-level statistics.

	
.

	
PUBLISH - Determines whether or not newly gathered statistics will be published once the gather job has completed. Prior to Oracle Database 11g, Release 1 (11.1), once a statistic gathering job completed the new statistics were automatically published into the dictionary tables. The user now has the ability to gather statistics but not publish them immediately. This allows the DBA to test the new statistics before publishing them.

	
.

	
INCREMENTAL - Determines whether or not the global statistics of a partitioned table will be maintained without doing a full table scan. With partitioned tables it is very common to load new data into a new partition. As new partitions are added and data loaded, the global table statistics need to be kept up to date. Oracle will update the global table statistics by scanning only the partitions that have been changed instead of the entire table if the following conditions hold:

	
INCREMENTAL value for the partitioned table is set to TRUE;

	
PUBLISH value for the partitioned table is set to TRUE;

	
User specifies AUTO_SAMPLE_SIZE for ESTIMATE_PERCENT and AUTO for GRANULARITY when gathering statistics on the table.

If the INCREMENTAL value for the partitioned table was set to FALSE (default value), a full table scan is used to maintain the global statistics which is a much more resource intensive and time-consuming operation for large tables.

	
.

	
STALE_PERCENT - Determines the percentage of rows in a table that have to change before the statistics on that table are deemed stale and should be regathered. The valid domain for stale_percent is non-negative numbers. The default value is 10%.

	
pvalue

	
Preference value. If NULL is specified, it will set the Oracle default value.

Exceptions

ORA-20000: Object does not exist or insufficient privileges

ORA-20001: Invalid or illegal input values

Usage Notes

	
To run this procedure, you need to connect as owner of the table or should have the ANALYZE ANY system privilege.

	
All arguments are of type VARCHAR2 and values are enclosed in quotes, even when they represent numbers.

Examples

DBMS_STATS.SET_TABLE_PREFS('SH', 'SALES', 'CASCADE', 'DBMS_STATS.AUTO_CASCADE');
DBMS_STATS.SET_TABLE_PREFS('SH', 'SALES','ESTIMATE_PERCENT','9');
DBMS_STATS.SET_TABLE_PREFS('SH', 'SALES', 'DEGREE','99');

SET_TABLE_STATS Procedure

This procedure sets table-related information.

Syntax

DBMS_STATS.SET_TABLE_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 numrows NUMBER DEFAULT NULL,
 numblks NUMBER DEFAULT NULL,
 avgrlen NUMBER DEFAULT NULL,
 flags NUMBER DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type (
 get_param('NO_INVALIDATE')),
 cachedblk NUMBER DEFAULT NULL,
 cachehit NUMBER DEFUALT NULL,
 force BOOLEAN DEFAULT FALSE);

Parameters

Table 141-94 SET_TABLE_STATS Procedure Parameters

	Parameter	Description
	
ownname

	
Name of the schema

	
tabname

	
Name of the table

	
partname

	
Name of the table partition in which to store the statistics. If the table is partitioned and partname is NULL, then the statistics are stored at the global table level.

	
stattab

	
User statistics table identifier describing where to store the statistics. If stattab is NULL, then the statistics are stored directly in the dictionary.

	
statid

	
Identifier (optional) to associate with these statistics within stattab (Only pertinent if stattab is not NULL)

	
numrows

	
Number of rows in the table (partition)

	
numblks

	
Number of blocks the table (partition) occupies

	
avgrlen

	
Average row length for the table (partition)

	
flags

	
For internal Oracle use (should be left as NULL)

	
statown

	
Schema containing stattab (if different than ownname)

	
no_invalidate

	
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE. to have Oracle decide when to invalidate dependent cursors. This is the default. The default can be changed using the SET_DATABASE_PREFS Procedure, SET_GLOBAL_PREFS Procedure, SET_SCHEMA_PREFS Procedure and SET_TABLE_PREFS Procedure.

	
cachedblk

	
The average number of blocks in the buffer cache for the segment (index/table/index partition/table partition)

	
cachehit

	
The average cache hit ratio for the segment (index/table/index partition/table partition)

	
force

	
Sets the values even if statistics of the table are locked

Usage Notes

	
The Optimizer uses the cached data to estimate number of cached blocks for index or statistics table access. The total cost of the operation will be combined from the I/O cost of reading not cached blocks from disk, the CPU cost of getting cached blocks from the buffer cache, and the CPU cost of processing the data.

	
Oracle maintains cachedblk and cachehit at all times but uses correspondent caching statistics for optimization as part of the table and index statistics only when the user calls DBMS_STATS.GATHER_[TABLE/INDEX/SCHEMA/DATABASE]_STATS procedure for auto mode or DBMS_STATS.GATHER_SYSTEM_STATS for manual mode. In order to prevent the user from utilizing inaccurate and unreliable data, the optimizer will compute a 'confidence factor' for each cachehit and a cachedblk for each object. If the 'confidence factor' for the value meets confidence criteria, this value will be used, otherwise the defaults will be used.

	
The automatic maintenance algorithm for object caching statistics assumes that there is only one major workload for the system and adjusts statistics to this workload, ignoring other "minor" workloads. If this is not the case, you must use manual mode for maintaining object caching statistics.

	
The object caching statistics maintenance algorithm for auto mode prevents you from using statistics in the following situations

	
When not enough data has been analyzed, such as when an object has been recently create

	
When the system does not have one major workload resulting in averages not corresponding to real values.

Exceptions

ORA-20000: Object does not exist or insufficient privileges

ORA-20001: Invalid input value

ORA-20005: Object statistics are locked

SHOW_EXTENDED_STATS_NAME Function

This function returns the name of the statistics entry that is created for the user-specified extension. It raises an error if no extension has been created.

Syntax

DBMS_STATS.SHOW_EXTENDED_STATS_NAME (
 ownname VARCHAR2,
 tabname VARCHAR2,
 extension VARCHAR2)
 RETURN VARCHAR2;

Parameters

Table 141-95 SHOW_EXTENDED_STATS_NAME Function Parameters

	Parameter	Description
	
ownname

	
Owner name of a table

	
tabname

	
Name of the table

	
extension

	
Can be either a column group or an expression. Suppose the specified table has two column c1, c2. An example column group can be "(c1, c2)" and an example expression can be "(c1 + c2)".

Exceptions

ORA-20000: Object does not exist or insufficient privileges

ORA-20001: Error when processing extension

UNLOCK_PARTITION_STATS Procedure

This procedure enables the user to unlock statistics for a partition.

Syntax

DBMS_STATS.UNLOCK_PARTITION_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2,
 partname VARCHAR2);

Parameters

Table 141-96 UNLOCK_PARTITION_STATS Procedure Parameters

	Parameter	Description
	
ownname

	
Name of the schema to unlock

	
tabname

	
Name of the table

	
partname

	
Partition name

UNLOCK_SCHEMA_STATS Procedure

This procedure unlocks the statistics on all the tables in schema.

Syntax

DBMS_STATS.UNLOCK_SCHEMA_STATS (
 ownname VARCHAR2);

Parameters

Table 141-97 UNLOCK_SCHEMA_STATS Procedure Parameters

	Parameter	Description
	
ownname

	
The name of the schema

Usage Notes

	
When statistics on a table is locked, all the statistics depending on the table, including table statistics, column statistics, histograms and statistics on all dependent indexes, are considered to be locked.

	
The SET_*, DELETE_*, IMPORT_*, GATHER_* procedures that modify statistics in the dictionary of an individual table, index or column will raise an error if statistics of the object is locked.

	
Procedures that operates on multiple objects (such as GATHER_SCHEMA_STATS) will skip modifying the statistics of an object if it is locked. Many procedures have force argument to override the lock.

UNLOCK_TABLE_STATS Procedure

This procedure unlocks the statistics on the table.

Syntax

DBMS_STATS.UNLOCK_TABLE_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2);

Parameters

Table 141-98 UNLOCK_TABLE_STATS Procedure Parameters

	Parameter	Description
	
ownname

	
The name of the schema

	
tabname

	
The name of the table

Usage Notes

	
When statistics on a table is locked, all the statistics depending on the table, including table statistics, column statistics, histograms and statistics on all dependent indexes, are considered to be locked.

	
The SET_*, DELETE_*, IMPORT_*, GATHER_* procedures that modify statistics in the dictionary of an individual table, index or column will raise an error if statistics of the object is locked.

	
Procedures that operates on multiple objects (such as GATHER_SCHEMA_STATS) will skip modifying the statistics of an object if it is locked. Many procedures have force argument to override the lock.

UPGRADE_STAT_TABLE Procedure

This procedure upgrades a user statistics table from an older version.

Syntax

DBMS_STATS.UPGRADE_STAT_TABLE (
 ownname VARCHAR2,
 stattab VARCHAR2);

Parameters

Table 141-99 UPGRADE_STAT_TABLE Procedure Parameters

	Parameter	Description
	
ownname

	
Name of the schema

	
stattab

	
Name of the table

Exceptions

ORA-20000: Unable to upgrade table

DBMS_STORAGE_MAP

142 DBMS_STORAGE_MAP

With the DBMS_STORAGE_MAP package, you can communicate with the Oracle background process FMON to invoke mapping operations that populate mapping views. FMON communicates with operating and storage system vendor-supplied mapping libraries.

This chapter contains the following topics:

	
Using DBMS_STORAGE_MAP

	
Overview

	
Operational Notes

	
Summary of DBMS_STORAGE_MAP Subprograms

Using DBMS_STORAGE_MAP

	
Overview

	
Operational Notes

Overview

The following terminology and descriptions will help you understand the DBMS_STORAGE_MAP API:

	
Mapping libraries

Mapping libraries help you map the components of I/O processing stack elements. Examples of I/O processing components include files, logical volumes, and storage array I/O targets. The mapping libraries are identified in filemap.ora.

	
Mapping files

A mapping file is a mapping structure that describes a file. It provides a set of attributes, including file size, number of extents that the file is composed of, and file type.

	
Mapping elements and sub-elements

A mapping element is the abstract mapping structure that describes a storage component within the I/O stack. Examples of elements include mirrors, stripes, partitions, raid5, concatenated elements, and disks—structures that are the mapping building blocks. A mapping sub-element describes the link between an element and the next elements in the I/O mapping stack

	
Mapping file extents

A mapping file extent describes a contiguous chunk of blocks residing on one element. This includes the device offset, the extent size, the file offset, the type (data or parity), and the name of the element where the extent resides. In the case of a raw device or volume, the file is composed of only one file extent component. A mapping file extent is different from Oracle extents.

	
See Also:

	
Oracle Database Administrator's Guide for more information

	
Oracle Database Reference for V$MAP views, including V$MAP_FILE, V$MAP_ELEMENT, V$MAP_SUBELEMENT, V$MAP_FILE_EXTENT

Operational Notes

For MAP_ELEMENT, MAP_FILE, and MAP_ALL: Invoking these functions when mapping information already exists will refresh the mapping if configuration IDs are supported. If configuration IDs are not supported, then invoking these functions again will rebuild the mapping.

	
See Also:

Oracle Database Administrator's Guide for a discussion of the configuration ID, an attribute of the element or file that is changed.

Summary of DBMS_STORAGE_MAP Subprograms

Table 142-1 DBMS_STORAGE_MAP Package Subprograms

	Subprogram	Description
	
DROP_ALL Function

	
Drops all mapping information in the shared memory of the instance

	
DROP_ELEMENT Function

	
Drops the mapping information for the element defined by elemname

	
DROP_FILE Function

	
Drops the file mapping information defined by filename

	
LOCK_MAP Procedure

	
Locks the mapping information in the shared memory of the instance

	
MAP_ALL Function

	
Builds the entire mapping information for all types of Oracle files (except archive logs), including all directed acyclic graph (DAG) elements

	
MAP_ELEMENT Function

	
Builds mapping information for the element identified by elemname

	
MAP_FILE Function

	
Builds mapping information for the file identified by filename

	
MAP_OBJECT Function

	
Builds the mapping information for the Oracle object identified by the object name, owner, and type

	
RESTORE Function

	
Loads the entire mapping information from the data dictionary into the shared memory of the instance

	
SAVE Function

	
Saves information needed to regenerate the entire mapping into the data dictionary

	
UNLOCK_MAP Procedure

	
Unlocks the mapping information in the shared memory of the instance.

DROP_ALL Function

This function drops all mapping information in the shared memory of the instance.

Syntax

DBMS_STORAGE_MAP.DROP_ALL(
 dictionary_update IN BOOLEAN DEFAULT TRUE);

Parameters

Table 142-2 DROP_ALL Function Parameters

	Parameter	Description
	
dictionary_update

	
If TRUE, mapping information in the data dictionary is updated to reflect the changes. The default value is TRUE; dictionary_update is an overloaded argument.

DROP_ELEMENT Function

This function drops the mapping information for the element defined by elemname.

Syntax

DBMS_STORAGE_MAP.DROP_ELEMENT(
 elemname IN VARCHAR2,
 cascade IN BOOLEAN,
 dictionary_update IN BOOLEAN DEFAULT TRUE);

Parameters

Table 142-3 DROP_ELEMENT Function Parameters

	Parameter	Description
	
elemname

	
The element for which mapping information is dropped.

	
cascade

	
If TRUE, then DROP_ELEMENT is invoked recursively on all elements of the DAG defined by elemname, if possible.

	
dictionary_update

	
If TRUE, mapping information in the data dictionary is updated to reflect the changes. The default value is TRUE; dictionary_update is an overloaded argument.

DROP_FILE Function

This function drops the file mapping information defined by filename.

Syntax

DBMS_STORAGE_MAP.DROP_FILE(
 filename IN VARCHAR2,
 cascade IN BOOLEAN,
 dictionary_update IN BOOLEAN DEFAULT TRUE);

Parameters

Table 142-4 DROP_FILE Function Parameters

	Parameter	Description
	
filename

	
The file for which file mapping information is dropped.

	
cascade

	
If TRUE, then the mapping DAGs for the elements where the file resides are also dropped, if possible.

	
dictionary_update

	
If TRUE, mapping information in the data dictionary is updated to reflect the changes. The default value is TRUE; dictionary_update is an overloaded argument.

LOCK_MAP Procedure

This procedure locks the mapping information in the shared memory of the instance. This is useful when you need a consistent snapshot of the V$MAP tables. Without locking the mapping information, V$MAP_ELEMENT and V$MAP_SUBELEMENT, for example, may be inconsistent.

Syntax

DBMS_STORAGE_MAP.LOCK_MAP;

MAP_ALL Function

This function builds the entire mapping information for all types of Oracle files (except archive logs), including all directed acyclic graph (DAG) elements. It obtains the latest mapping information because it explicitly synchronizes all mapping libraries.

Syntax

DBMS_STORAGE_MAP.MAP_ALL(
 max_num_fileext IN NUMBER DEFAULT 100,
 dictionary_update IN BOOLEAN DEFAULT TRUE);

Parameters

Table 142-5 MAP_ALL Function Parameters

	Parameter	Description
	
max_num_fileext

	
Defines the maximum number of file extents to be mapped. This limits the amount of memory used when mapping file extents. The default value is 100; max_num_fileextent is an overloaded argument.

	
dictionary_update

	
If TRUE, mapping information in the data dictionary is updated to reflect the changes. The default value is TRUE; dictionary_update is an overloaded argument.

Usage Notes

You must explicitly call MAP_ALL in a cold startup scenario.

MAP_ELEMENT Function

This function builds mapping information for the element identified by elemname. It may not obtain the latest mapping information if the element being mapped, or any one of the elements within its I/O stack (if cascade is TRUE), is owned by a library that must be explicitly synchronized.

Syntax

DBMS_STORAGE_MAP.MAP_ELEMENT(
 elemname IN VARCHAR2,
 cascade IN BOOLEAN,
 dictionary_update IN BOOLEAN DEFAULT TRUE);

Parameters

Table 142-6 MAP_ELEMENT Function Parameters

	Parameter	Description
	
elemname

	
The element for which mapping information is built.

	
cascade

	
If TRUE, all elements within the elemname I/O stack DAG are mapped.

	
dictionary_update

	
If TRUE, mapping information in the data dictionary is updated to reflect the changes. The default value is TRUE; dictionary_update is an overloaded argument.

MAP_FILE Function

This function builds mapping information for the file identified by filename. Use this function if the mapping of one particular file has changed. The Oracle database server does not have to rebuild the entire mapping.

Syntax

DBMS_STORAGE_MAP.MAP_FILE(
 filename IN VARCHAR2,
 filetype IN VARCHAR2,
 cascade IN BOOLEAN,
 max_num_fileextent IN NUMBER DEFAULT 100,
 dictionary_update IN BOOLEAN DEFAULT TRUE);

Parameters

Table 142-7 MAP_FILE Function Parameters

	Parameter	Description
	
filename

	
The file for which mapping information is built.

	
filetype

	
Defines the type of the file to be mapped. It can be "DATAFILE", "SPFILE", "TEMPFILE", "CONTROLFILE", "LOGFILE", or "ARCHIVEFILE".

	
cascade

	
Should be TRUE only if a storage reconfiguration occurred. For all other instances, such as file resizing (either through an ALTER SYSTEM command or DML operations on extended files), cascade can be set to FALSE because the mapping changes are limited to the file extents only.

If TRUE, mapping DAGs are also built for the elements where the file resides.

	
max_num_fileextent

	
Defines the maximum number of file extents to be mapped. This limits the amount of memory used when mapping file extents. The default value is 100; max_num_fileextent is an overloaded argument.

	
dictionary_update

	
If TRUE, mapping information in the data dictionary is updated to reflect the changes. The default value is TRUE; dictionary_update is an overloaded argument.

Usage Notes

This function may not obtain the latest mapping information if the file being mapped, or any one of the elements within its I/O stack (if cascade is TRUE), is owned by a library that must be explicitly synchronized.

MAP_OBJECT Function

This function builds the mapping information for the Oracle object identified by the object name, owner, and type.

Syntax

DBMS_STORAGE_MAP.MAP_OBJECT(
 objname IN VARCHAR2,
 owner IN VARCHAR2,
 objtype IN VARCHAR2);

Parameters

Table 142-8 MAP_OBJECT Function Parameters

	Parameter	Description
	
objname

	
The name of the object.

	
owner

	
The owner of the object.

	
objtype

	
The type of the object.

RESTORE Function

This function loads the entire mapping information from the data dictionary into the shared memory of the instance. You can invoke RESTORE only after a SAVE operation. You must explicitly call RESTORE in a warm startup scenario.

Syntax

DBMS_STORAGE_MAP.RESTORE;

SAVE Function

This function saves information needed to regenerate the entire mapping into the data dictionary.

Syntax

DBMS_STORAGE_MAP.SAVE;

UNLOCK_MAP Procedure

This procedure unlocks the mapping information in the shared memory of the instance.

Syntax

DBMS_STORAGE_MAP.UNLOCK_MAP;

DBMS_STREAMS

143 DBMS_STREAMS

The DBMS_STREAMS package, one of a set of Oracle Streams packages, provides subprograms to convert ANYDATA objects into logical change record (LCR) objects, to return information about Oracle Streams attributes and Oracle Streams clients, and to annotate redo entries generated by a session with a binary tag. This tag affects the behavior of a capture process, a propagation, or an apply process whose rules include specifications for these binary tags in redo entries or LCRs.

This chapter contains the following topics:

	
Using DBMS_STREAMS

	
Overview

	
Security Model

	
Summary of DBMS_STREAMS Subprograms

Using DBMS_STREAMS

This section contains topics which relate to using the DBMS_STREAMS package.

	
Overview

	
Security Model

Overview

This package provides subprograms to convert ANYDATA objects into logical change record (LCR) objects, to return information about Oracle Streams attributes and Oracle Streams clients, and to annotate redo entries generated by a session with a binary tag. This tag affects the behavior of a capture process, a propagation, or an apply process whose rules include specifications for these binary tags in redo entries or LCRs.

	
See Also:

Oracle Streams Concepts and Administration and Oracle Streams Replication Administrator's Guide for more information about this package and Oracle Streams

Security Model

PUBLIC is granted EXECUTE privilege on this package.

	
See Also:

Oracle Database Security Guide for more information about user group PUBLIC

Summary of DBMS_STREAMS Subprograms

Table 143-1 DBMS_STREAMS Package Subprograms

	Subprogram	Description
	
COMPATIBLE_11_2 Function

	
Returns the DBMS_STREAMS.COMPATIBLE_11_2 constant

	
COMPATIBLE_11_1 Function

	
Returns the DBMS_STREAMS.COMPATIBLE_11_1 constant

	
COMPATIBLE_10_2 Function

	
Returns the DBMS_STREAMS.COMPATIBLE_10_2 constant

	
COMPATIBLE_10_1 Function

	
Returns the DBMS_STREAMS.COMPATIBLE_10_1 constant

	
COMPATIBLE_9_2 Function

	
Returns the DBMS_STREAMS.COMPATIBLE_9_2 constant

	
CONVERT_ANYDATA_TO_LCR_DDL Function

	
Converts a ANYDATA object to a SYS.LCR$_DDL_RECORD object

	
CONVERT_ANYDATA_TO_LCR_ROW Function

	
Converts a ANYDATA object to a SYS.LCR$_ROW_RECORD object

	
CONVERT_LCR_TO_XML Function

	
Converts a logical change record (LCR) encapsulated in a ANYDATA object into an XML object that conforms to the XML schema for LCRs

	
CONVERT_XML_TO_LCR Function

	
Converts an XML object that conforms to the XML schema for LCRs into a logical change record (LCR) encapsulated in a ANYDATA object

	
GET_INFORMATION Function

	
Returns information about various Oracle Streams attributes

	
GET_STREAMS_NAME Function

	
Returns the name of the invoker

	
GET_STREAMS_TYPE Function

	
Returns the type of the invoker

	
GET_TAG Function

	
Gets the binary tag for all redo entries generated by the current session

	
MAX_COMPATIBLE Function

	
Returns an integer that is greater than the highest possible compatibility constant for the current release of Oracle Database

	
SET_TAG Procedure

	
Sets the binary tag for all redo entries subsequently generated by the current session

	
Note:

The subprograms in this package do not commit.

COMPATIBLE_11_2 Function

This function returns the DBMS_STREAMS.COMPATIBLE_11_2 constant.

Syntax

DBMS_STREAMS.COMPATIBLE_11_2
RETURN INTEGER;

Usage Notes

You can use this function with the GET_COMPATIBLE member function for logical change records (LCRs) to specify behavior based on compatibility.

The constant value returned by this function corresponds to 11.2.0 compatibility in a database. You control the compatibility of an Oracle database using the COMPATIBLE initialization parameter.

	
See Also:

	
GET_COMPATIBLE Member Function

	
Oracle Streams Concepts and Administration for information about creating rules that discard changes that are not supported by Oracle Streams

	
Oracle Database Reference and Oracle Database Upgrade Guide for more information about the COMPATIBLE initialization parameter

COMPATIBLE_11_1 Function

This function returns the DBMS_STREAMS.COMPATIBLE_11_1 constant.

Syntax

DBMS_STREAMS.COMPATIBLE_11_1
RETURN INTEGER;

Usage Notes

You can use this function with the GET_COMPATIBLE member function for logical change records (LCRs) to specify behavior based on compatibility.

The constant value returned by this function corresponds to 11.1.0 compatibility in a database. You control the compatibility of an Oracle database using the COMPATIBLE initialization parameter.

	
See Also:

	
GET_COMPATIBLE Member Function

	
Oracle Streams Concepts and Administration for information about creating rules that discard changes that are not supported by Oracle Streams

	
Oracle Database Reference and Oracle Database Upgrade Guide for more information about the COMPATIBLE initialization parameter

COMPATIBLE_10_2 Function

This function returns the DBMS_STREAMS.COMPATIBLE_10_2 constant.

Syntax

DBMS_STREAMS.COMPATIBLE_10_2
RETURN INTEGER;

Usage Notes

You can use this function with the GET_COMPATIBLE member function for logical change records (LCRs) to specify behavior based on compatibility.

The constant value returned by this function corresponds to 10.2.0 compatibility in a database. You control the compatibility of an Oracle database using the COMPATIBLE initialization parameter.

	
See Also:

	
GET_COMPATIBLE Member Function

	
Oracle Streams Concepts and Administration for information about creating rules that discard changes that are not supported by Oracle Streams

	
Oracle Database Reference and Oracle Database Upgrade Guide for more information about the COMPATIBLE initialization parameter

COMPATIBLE_10_1 Function

This function returns the DBMS_STREAMS.COMPATIBLE_10_1 constant.

Syntax

DBMS_STREAMS.COMPATIBLE_10_1
RETURN INTEGER;

Usage Notes

You can use this function with the GET_COMPATIBLE member function for logical change records (LCRs) to specify behavior based on compatibility.

The constant value returned by this function corresponds to 10.1.0 compatibility in a database. You control the compatibility of an Oracle database using the COMPATIBLE initialization parameter.

	
See Also:

	
GET_COMPATIBLE Member Function

	
Oracle Streams Concepts and Administration for information about creating rules that discard changes that are not supported by Oracle Streams

	
Oracle Database Reference and Oracle Database Upgrade Guide for more information about the COMPATIBLE initialization parameter

COMPATIBLE_9_2 Function

This function returns the DBMS_STREAMS.COMPATIBLE_9_2 constant.

Syntax

DBMS_STREAMS.COMPATIBLE_9_2
RETURN INTEGER;

Usage Notes

You can use this function with the GET_COMPATIBLE member function for logical change records (LCRs) to specify behavior based on compatibility.

The constant value returned by this function corresponds to 9.2.0 compatibility in a database. You control the compatibility of an Oracle database using the COMPATIBLE initialization parameter.

	
See Also:

	
GET_COMPATIBLE Member Function

	
Oracle Streams Concepts and Administration for information about creating rules that discard changes that are not supported by Oracle Streams

	
Oracle Database Reference and Oracle Database Upgrade Guide for more information about the COMPATIBLE initialization parameter

CONVERT_ANYDATA_TO_LCR_DDL Function

This function converts a ANYDATA object into a SYS.LCR$_DDL_RECORD object.

Syntax

DBMS_STREAMS.CONVERT_ANYDATA_TO_LCR_DDL(
 source IN ANYDATA)
RETURN SYS.LCR$_DDL_RECORD;

Parameters

Table 143-2 CONVERT_ANYDATA_TO_LCR_DDL Function Parameters

	Parameter	Description
	
source

	
The ANYDATA object to be converted. If this object is not a DDL logical change record (DDL LCR), then the function raises an exception.

Usage Notes

You can use this function in a transformation created by the CREATE_TRANSFORMATION procedure in the DBMS_TRANSFORM package. Use the transformation you create when you add a subscriber for propagation of DDL LCRs from a ANYDATA queue to a SYS.LCR$_DDL_RECORD typed queue.

	
See Also:

Oracle Streams Advanced Queuing User's Guide

CONVERT_ANYDATA_TO_LCR_ROW Function

This function converts a ANYDATA object into a SYS.LCR$_ROW_RECORD object.

Syntax

DBMS_STREAMS.CONVERT_ANYDATA_TO_LCR_ROW(
 source IN ANYDATA)
RETURN SYS.LCR$_ROW_RECORD;

Parameters

Table 143-3 CONVERT_ANYDATA_TO_LCR_ROW Function Parameters

	Parameter	Description
	
source

	
The ANYDATA object to be converted. If this object is not a row logical change record (row LCR), then the function raises an exception.

Usage Notes

You can use this function in a transformation created by the CREATE_TRANSFORMATION procedure in the DBMS_TRANSFORM package. Use the transformation you create when you add a subscriber for propagation of row LCRs from a ANYDATA queue to a SYS.LCR$_ROW_RECORD typed queue.

	
See Also:

Oracle Streams Advanced Queuing User's Guide

CONVERT_LCR_TO_XML Function

This function converts a logical change record (LCR) encapsulated in a ANYDATA object into an XML object that conforms to the XML schema for LCRs. The LCR can be a row LCR or a DDL LCR.

	
See Also:

Oracle Streams Concepts and Administration for more information about the XML schema for LCRs

Syntax

DBMS_STREAMS.CONVERT_LCR_TO_XML(
 anylcr IN ANYDATA)
RETURN SYS.XMLTYPE;

Parameters

Table 143-4 CONVERT_LCR_TO_XML Function Parameters

	Parameter	Description
	
anylcr

	
The ANYDATA encapsulated LCR to be converted. If this object is not a ANYDATA encapsulated LCR, then the function raises an exception.

CONVERT_XML_TO_LCR Function

This function converts an XML object that conforms to the XML schema for logical change records (LCRs) into an LCR encapsulated in a ANYDATA object. The LCR can be a row or DDL LCR.

	
See Also:

Oracle Streams Concepts and Administration for more information about the XML schema for LCRs

Syntax

DBMS_STREAMS.CONVERT_XML_TO_LCR(
 xmldat IN SYS.XMLTYPE)
RETURN ANYDATA;

Parameters

Table 143-5 CONVERT_XML_TO_LCR Function Parameters

	Parameter	Description
	
xmldat

	
The XML LCR object to be converted. If this object does not conform to XML schema for LCRs, then the function raises an exception.

GET_INFORMATION Function

This function returns information about various Oracle Streams attributes.

Syntax

DBMS_STREAMS.GET_INFORMATION(
 name IN VARCHAR2)
RETURN ANYDATA;

Parameters

Table 143-6 GET_INFORMATION Function Parameters

	Parameter	Description
	
name

	
The type of information you want to retrieve. Currently, the following names are available:

	
SENDER: Returns the name of the sender for the current logical change record (LCR) from its AQ message properties. This function is called inside a procedure DML handler, a DDL handler, an error handler, or a message handler. Returns NULL if called outside of an apply handler. The return value is to be interpreted as a VARCHAR2.

	
CONSTRAINT_NAME: Returns the name of the constraint that was violated for an LCR that raised an error. This function is called inside a procedure DML handler or error handler for an apply process. Returns NULL if called outside of a procedure DML handler or error handler. The return value is to be interpreted as a VARCHAR2.

GET_STREAMS_NAME Function

This function gets the Oracle Streams name of the invoker if the invoker is one of the following Oracle Streams types:

	
CAPTURE

	
APPLY

	
ERROR_EXECUTION

If the invoker is not one of these types, then this function returns a NULL.

Syntax

DBMS_STREAMS.GET_STREAMS_NAME
RETURN VARCHAR2;

Usage Notes

You can use this function in rule conditions, rule-based transformations, apply handlers, and error handlers. For example, if you use one error handler for multiple apply processes, then you can use the GET_STREAMS_NAME function to determine the name of the apply process that raised the error.

GET_STREAMS_TYPE Function

This function gets the Oracle Streams type of the invoker and returns one of the following types:

	
CAPTURE

	
APPLY

	
ERROR_EXECUTION

If the invoker is not one of these types, then this function returns a NULL.

Syntax

DBMS_STREAMS.GET_STREAMS_TYPE
RETURN VARCHAR2;

Usage Notes

This function can be used in rule conditions, rule-based transformations, apply handlers, and error handlers. For example, you can use the GET_STREAMS_TYPE function to instruct a procedure DML handler to operate differently if it is processing messages from the error queue (ERROR_EXECUTION type) instead of the apply process's queue (APPLY type).

GET_TAG Function

This function gets the binary tag for all redo entries generated by the current session.

	
Note:

	
To execute this function, a user must be granted either EXECUTE_CATALOG_ROLE or EXECUTE privilege on the DBMS_STREAMS_ADM package.

	
Instead of using the DBMS_STREAMS.GET_TAG function, Oracle recommends that you use the DBMS_STREAMS_ADM.GET_TAG function. See GET_TAG Function.

	
See Also:

Oracle Streams Replication Administrator's Guide for more information about tags

Syntax

DBMS_STREAMS.GET_TAG
RETURN RAW;

Examples

The following example illustrates how to display the current logical change record (LCR) tag as output:

SET SERVEROUTPUT ON
DECLARE
 raw_tag RAW(2000);
BEGIN
 raw_tag := DBMS_STREAMS.GET_TAG();
 DBMS_OUTPUT.PUT_LINE('Tag Value = ' || RAWTOHEX(raw_tag));
END;
/

You can also display the value by querying the DUAL view:

SELECT DBMS_STREAMS.GET_TAG FROM DUAL;

MAX_COMPATIBLE Function

This function returns an integer that is greater than the highest possible compatibility constant for the current release of Oracle Database.

Syntax

DBMS_STREAMS.MAX_COMPATIBLE
RETURN INTEGER;

Usage Notes

You can use this function with the GET_COMPATIBLE member function for logical change records (LCRs) to specify behavior based on compatibility.

The MAX_COMPATIBLE function always returns the maximum compatibility for the release of Oracle Database on which it is run. Therefore, when you use this function in rule conditions, the rule conditions do not need to be changed when you upgrade to a later release of Oracle Database.

	
See Also:

	
GET_COMPATIBLE Member Function

	
Oracle Streams Concepts and Administration for information about creating rules that discard changes that are not supported by Oracle Streams

	
Oracle Database Reference and Oracle Database Upgrade Guide for more information about the COMPATIBLE initialization parameter

SET_TAG Procedure

This procedure sets the binary tag for all redo entries subsequently generated by the current session. Each redo entry generated by DML or DDL statements in the current session has this tag. This procedure affects only the current session.

	
Note:

	
To execute this procedure, a user must be granted either EXECUTE_CATALOG_ROLE or EXECUTE privilege on the DBMS_STREAMS_ADM package.

	
Instead of using the DBMS_STREAMS.SET_TAG procedure, Oracle recommends that you use the DBMS_STREAMS_ADM.SET_TAG procedure. See SET_TAG Procedure.

	
See Also:

Oracle Streams Replication Administrator's Guide for more information about tags

Syntax

DBMS_STREAMS.SET_TAG(
 tag IN RAW DEFAULT NULL);

Parameters

Table 143-7 SET_TAG Procedure Parameters

	Parameter	Description
	
tag

	
The binary tag for all subsequent redo entries generated by the current session. A raw value is a sequence of bytes, and a byte is a sequence of bits.

By default, the tag for a session is NULL.

The size limit for a tag value is 2000 bytes.

Usage Notes

To set the tag to the hexadecimal value of '17' in the current session, run the following procedure:

EXEC DBMS_STREAMS.SET_TAG(tag => HEXTORAW('17'));

The following are considerations for the SET_TAG procedure:

	
This procedure is not transactional. That is, the effects of SET_TAG cannot be rolled back.

	
If the SET_TAG procedure is run to set a non-NULL session tag before a data dictionary build has been performed on the database, then the redo entries for a transaction that started before the dictionary build might not include the specified tag value for the session. Therefore, perform a data dictionary build before using the SET_TAG procedure in a session. A data dictionary build happens when the DBMS_CAPTURE_ADM.BUILD procedure is run. The BUILD procedure can be run automatically when a capture process is created.

	
See Also:

BUILD Procedure

DBMS_STREAMS_ADM

144 DBMS_STREAMS_ADM

The DBMS_STREAMS_ADM package, one of a set of Oracle Streams packages, provides subprograms for configuring Oracle Streams environments. This package also includes subprograms for adding and removing simple rules for capture, propagation, apply, and dequeue at the table, schema, and database level. This package also includes subprograms for configuring and managing XStream outbound servers and inbound servers.

This chapter contains the following topics:

	
Using DBMS_STREAMS_ADM

	
Overview

	
Deprecated Subprograms

	
Security Model

	
Operational Notes

	
Summary of DBMS_STREAMS_ADM Subprograms

Using DBMS_STREAMS_ADM

This section contains topics that relate to using the DBMS_STREAMS_ADM package.

	
Overview

	
Deprecated Subprograms

	
Security Model

	
Operational Notes

Overview

The DBMS_STREAMS_ADM package, one of a set of Oracle Streams packages, provides subprograms for configuring an Oracle Streams environment. This package also includes subprograms for adding and removing simple rules for capture, propagation, apply, and dequeue at the table, schema, and database level. These rules support logical change records (LCRs), which include row LCRs and data definition language (DDL) LCRs. This package also contains subprograms for creating message rules for specific message types. This package also contains subprograms for creating queues, and for managing Oracle Streams metadata, such as data dictionary information.

If you require more sophisticated rules, then refer to Chapter 126, "DBMS_RULE" package.

	
See Also:

	
Oracle Streams Concepts and Administration, Oracle Streams Replication Administrator's Guide, and Oracle Database 2 Day + Data Replication and Integration Guide for more information about this package and Oracle Streams

	
Chapter 126, "DBMS_RULE"

Deprecated Subprograms

	
Note:

Oracle recommends that you do not use deprecated subprograms. Support for deprecated features is for backward compatibility only.

The following subprograms are deprecated with Oracle Database 10g Release 2 and later:

	
MAINTAIN_SIMPLE_TABLESPACE

This procedure is replaced by the MAINTAIN_SIMPLE_TTS procedure.

	
See Also:

MAINTAIN_SIMPLE_TTS Procedure

	
MAINTAIN_TABLESPACES

This procedure is replaced by the MAINTAIN_TTS procedure.

	
See Also:

MAINTAIN_TTS Procedure

Security Model

Security on this package can be controlled in either of the following ways:

	
Granting EXECUTE on this package to selected users or roles.

	
Granting EXECUTE_CATALOG_ROLE to selected users or roles.

If subprograms in the package are run from within a stored procedure, then the user who runs the subprograms must be granted EXECUTE privilege on the package directly. It cannot be granted through a role.

A user is associated with each Oracle Streams client. The following sections describe these users:

	
Oracle Streams Administrator

	
Capture User

	
Propagation User

	
Apply User for an Oracle Streams Apply Process

	
Apply User for an XStream Inbound Server

	
Messaging Client User

	
Note:

The user must be granted additional privileges to perform some administrative tasks using the subprograms in this package, such as creating a synchronous capture. If additional privileges are required for a subprogram, then the privileges are documented in the section that describes the subprogram.

Oracle Streams Administrator

To ensure that the user who runs the subprograms in this package has the necessary privileges, configure an Oracle Streams administrator and connect as the Oracle Streams administrator when using this package.

	
See Also:

Oracle Streams Replication Administrator's Guide for information about configuring an Oracle Streams administrator

Capture User

The following procedures can create a capture process:

	
ADD_GLOBAL_RULES Procedure

	
ADD_SCHEMA_RULES Procedure

	
ADD_SUBSET_RULES Procedure

	
ADD_TABLE_RULES Procedure

The following procedures can create a synchronous capture:

	
ADD_SUBSET_RULES Procedure

	
ADD_TABLE_RULES Procedure

If one of these procedures creates a capture process or a synchronous capture, then it configures the current user as the capture user. The capture user is the user in whose security domain a capture process or synchronous capture captures changes that satisfy its rule set(s) and runs custom rule-based transformations configured for these rules. This user must have the necessary privileges to capture changes. The procedure grants the capture user ENQUEUE privilege on the queue used by the capture process or synchronous capture and configures the user as a secure queue user of the queue.

	
See Also:

CREATE_CAPTURE Procedure and CREATE_SYNC_CAPTURE Procedure for information about the privileges required to capture changes (refer to the capture_user parameter)

Propagation User

The following procedures can create a propagation:

	
ADD_GLOBAL_PROPAGATION_RULES Procedure

	
ADD_MESSAGE_PROPAGATION_RULE Procedure

	
ADD_SCHEMA_PROPAGATION_RULES Procedure

	
ADD_SUBSET_PROPAGATION_RULES Procedure

	
ADD_TABLE_PROPAGATION_RULES Procedure

When a propagation is created, a propagation job also might be created. If a propagation job is created when one of these procedures is run, then the user who runs the procedure owns the propagation job. Each propagation job is an Oracle Scheduler job. You can adjust the schedule of a propagation job using Oracle Scheduler.

	
Note:

	
The source queue owner performs the propagation, but the propagation job is owned by the user who creates it. These two users might or might not be the same.

	
For a propagation to work properly, the owner of the source queue must have the necessary privileges to propagate messages.

	
See Also:

	
CREATE_PROPAGATION Procedure for more information about the required privileges

	
"Propagation Rules for LCRs" for information about when a propagation job is created

Apply User for an Oracle Streams Apply Process

The following procedures can create an apply process:

	
ADD_GLOBAL_RULES Procedure

	
ADD_MESSAGE_RULE Procedure

	
ADD_SCHEMA_RULES Procedure

	
ADD_SUBSET_RULES Procedure

	
ADD_TABLE_RULES Procedure

If one of these procedures creates an apply process, then it configures the current user as the apply user. For an apply process, the apply user is the user in whose security domain an apply process dequeues messages that satisfy its rule sets.

An apply user applies messages directly to database objects, runs custom rule-based transformations configured for apply process rules, and runs apply handlers configured for the apply process. This user must have the necessary privileges to apply changes. The procedure grants the apply user DEQUEUE privilege on the queue used by the apply process and configures the user as a secure queue user of the queue.

	
See Also:

CREATE_APPLY Procedure for information about the privileges required to apply changes (refer to the apply_user parameter)

Apply User for an XStream Inbound Server

The following procedures in can create an XStream inbound server:

	
ADD_GLOBAL_RULES Procedure

	
ADD_SCHEMA_RULES Procedure

	
ADD_SUBSET_RULES Procedure

	
ADD_TABLE_RULES Procedure

	
Note:

These procedures cannot create an outbound server.

If the streams_name parameter is set to NULL and no relevant apply process, inbound server, or outbound server exists, then the procedure creates an apply process automatically with a system-generated name.

The apply process remains an apply process if it receives captured logical change records (LCRs) from a capture process. The apply process can become an inbound server if an XStream client application attaches to it before it receives captured LCRs from a capture process. After the initial contact, an apply process cannot be changed into an inbound server, and an inbound server cannot be changed into an apply process.

If one of these procedures creates an inbound server, then it configures the current user as the apply user. The apply user is the user in whose security domain an XStream client application attaches to an Oracle database.

An apply user applies changes directly to database objects, runs custom rule-based transformations configured for inbound server rules, and runs apply handlers configured for the inbound server. This user must have the necessary privileges to apply changes. The procedure grants the apply user DEQUEUE privilege on the queue used by the inbound server and configures the user as a secure queue user.

Each inbound server must have a unique name. The name cannot be used by an apply process, outbound server, or messaging client in the same database, and the name cannot be used by another inbound server in the same database.

If a relevant apply process, inbound server, or outbound server exists, then the procedure does not create an inbound server. Instead, the procedure uses the relevant apply process, inbound server, or outbound server. If the streams_name parameter specifies an existing apply process, inbound server, or outbound server, then the specified client is used.

When streams_name parameter is NULL and the streams_type parameter is set to apply, the relevant apply process, inbound server, or outbound server is identified in one of the following ways:

	
If one existing apply process or outbound server has the source database specified in the source_database parameter and uses the queue specified in the queue_name parameter, then the procedure uses this apply process or outbound server.

	
If the source_database parameter is set to NULL and one existing apply process, inbound server, or outbound server is using the queue specified in the queue_name parameter, then the procedure uses this apply process, inbound server, or outbound server.

If the streams_name parameter is set to NULL and multiple relevant apply processes, inbound servers, or outbound servers exist, then the procedure raises an error.

	
Note:

Using XStream requires purchasing a license for the Oracle GoldenGate product. See Oracle Database XStream Guide.

Messaging Client User

The following procedures can create a messaging client:

	
ADD_GLOBAL_RULES Procedure

	
ADD_MESSAGE_RULE Procedure

	
ADD_SCHEMA_RULES Procedure

	
ADD_SUBSET_RULES Procedure

	
ADD_TABLE_RULES Procedure

If one of these procedures creates a messaging client, then the user who runs this procedure is granted the privileges to dequeue from the queue using the messaging client. The procedure configures this user as a secure queue user of the queue, and only this user can use the messaging client.

Operational Notes

Several procedures in this package create rules for Oracle Streams clients and XStream clients, and several procedures configure an Oracle Streams environment. The following sections provide information about using these procedures:

	
Procedures That Create Rules for Oracle Streams Clients and XStream Clients

	
Procedures That Configure an Oracle Streams Environment

Procedures That Create Rules for Oracle Streams Clients and XStream Clients

Oracle Streams clients include capture processes, synchronous captures, propagations, apply processes, and messaging clients. XStream clients include XStream outbound servers and inbound servers. Some of the procedures in the DBMS_STREAMS_ADM package add rules to the rule sets of Oracle Streams clients and XStream clients. The rules can pertain to changes in the redo log, to data manipulation language (DML) changes made to a table, to logical change records (LCRs), or to user messages.

An LCR represents either a row change that results from a DML operation or a data definition language (DDL) change. An LCR that represents a row change is a row LCR, and an LCR that represents a DDL change is a DDL LCR. LCRs can either represent changes that were captured by a capture process or a synchronous capture, or they can represent changes created by a user or application. A user message is a custom message that is based on a user-defined type and created by users or applications.

A capture process, propagation, apply process, messaging client, outbound server, or inbound server can have both positive and negative rule sets. A synchronous capture can have only a positive rule set.

For all of the procedures except the ones that create subset rules, and for all clients except for synchronous captures, you use the inclusion_rule parameter to specify the type of rule set (either positive or negative) for the created rules. If the client does not have a rule set of the specified type, then a rule set is created automatically, and the rules are added to the rule set. Other rules in an existing rule set for the client are not affected. Additional rules can be added to a rule set using either the DBMS_STREAMS_ADM package or the DBMS_RULE_ADM package. If an client has both a positive and a negative rule set, then the negative rule set is always evaluated first.

The following sections describe each type of rule in detail:

	
Capture Process Rules for Changes in the Redo Log

	
Synchronous Capture Rules for DML Changes to Tables

	
Propagation Rules for LCRs

	
Propagation Rules for User Messages

	
Apply Process Rules for LCRs

	
Apply Process Rules for User Messages

	
Messaging Client Rules for LCRs

	
Messaging Client Rules for User Messages

	
XStream Outbound Server Rules for LCRs

	
XStream Inbound Server Rules for LCRs

	
Note:

Using XStream requires purchasing a license for the Oracle GoldenGate product. See Oracle Database XStream Guide.

	
See Also:

Oracle Streams Concepts and Administration for more information about how rules are used in Oracle Streams

Capture Process Rules for Changes in the Redo Log

The following procedures add rules to a rule set of a capture process when you specify capture for the streams_type parameter:

	
The ADD_GLOBAL_RULES procedure adds rules whose rule condition evaluates to TRUE for all changes made to a source database. See ADD_GLOBAL_RULES Procedure.

	
The ADD_SCHEMA_RULES procedure adds rules whose rule condition evaluates to TRUE for changes made to a specified schema. See ADD_SCHEMA_RULES Procedure.

	
The ADD_SUBSET_RULES procedure adds rules whose rule condition evaluates to TRUE for DML changes made to a subset of rows in a specified table. See ADD_SUBSET_RULES Procedure.

	
The ADD_TABLE_RULES procedure adds rules whose rule condition evaluates to TRUE for changes made to a specified table. See ADD_TABLE_RULES Procedure.

If one of these procedures adds rules to the positive rule set for a capture process, then the capture process captures row changes resulting from DML changes, or DDL changes, or both from a source database and enqueues these changes into the specified queue. If one of these procedures adds rules to the negative rule set for a capture process, then the capture process discards row changes, or DDL changes, or both from a source database.

A capture process can capture changes locally at a source database or remotely at a downstream database. Therefore, for capture process rules, you should execute the procedure either at the source database or at a downstream database.

If the capture process is a local capture process, or if the capture process is a downstream capture process that uses a database link to the source database, then these procedures automatically prepare the appropriate database objects for instantiation:

	
ADD_GLOBAL_RULES invokes the PREPARE_GLOBAL_INSTANTIATION procedure in the DBMS_CAPTURE_ADM package at the source database.

	
ADD_SCHEMA_RULES invokes the PREPARE_SCHEMA_INSTANTIATION procedure in the DBMS_CAPTURE_ADM package at the source database.

	
ADD_SUBSET_RULES and ADD_TABLE_RULES invoke the PREPARE_TABLE_INSTANTIATION procedure in the DBMS_CAPTURE_ADM package at the source database.

These procedures also enable supplemental logging for the primary key, unique key, foreign key, and bitmap index columns in the tables prepared for instantiation. The primary key columns are unconditionally logged. The unique key, foreign key, and bitmap index columns are conditionally logged.

If the capture process is a downstream capture process that does not use a database link to the source database, then you must prepare the appropriate objects for instantiation and specify the necessary supplemental logging manually at the source database.

If one of these procedures is executed at a downstream database, then you specify the source database using the source_database parameter, and the specified capture process must exist. The procedure cannot create a capture process if it is run at a downstream database. You can create a capture process at a downstream database using the CREATE_CAPTURE procedure in the DBMS_CAPTURE_ADM package.

	
See Also:

Chapter 32, "Summary of DBMS_CAPTURE_ADM Subprograms" for more information about the CREATE_CAPTURE procedure and the procedures that prepare database objects for instantiation

Synchronous Capture Rules for DML Changes to Tables

The following procedures add rules to the rule set of a synchronous capture when you specify sync_capture for the streams_type parameter:

	
The ADD_SUBSET_RULES procedure adds rules whose rule condition evaluates to TRUE for DML changes made to a subset of rows in a specified table. See ADD_SUBSET_RULES Procedure.

	
The ADD_TABLE_RULES procedure adds a rule whose rule condition evaluates to TRUE for DML changes made to a specified table. See ADD_TABLE_RULES Procedure.

If one of these procedures adds rules to the positive rule set for a synchronous capture, then the synchronous capture captures row changes resulting from DML changes to the table at the source database and enqueues these changes into the specified queue. A synchronous capture cannot have a negative rule set.

A synchronous capture captures changes locally at the database where it is configured. This database is the source database for changes captured by the synchronous capture. Therefore, for synchronous capture rules, you should execute the procedure at the source database.

These procedures automatically prepare the appropriate tables for instantiation by invoking the PREPARE_SYNC_INSTANTIATION function in the DBMS_CAPTURE_ADM package at the source database.

	
Note:

	
A synchronous capture ignores rules in its rule set that were created by a procedure other than ADD_SUBSET_RULES or ADD_TABLE_RULES.

	
When the ADD_TABLE_RULES or the ADD_SUBSET_RULES procedure adds rules to a synchronous capture rule set, the procedure must obtain an exclusive lock on the specified table. If there are outstanding transactions on the specified table, then the procedure waits until it can obtain a lock.

Propagation Rules for LCRs

The following procedures add propagation rules for LCRs to a rule set of a propagation:

	
The ADD_GLOBAL_PROPAGATION_RULES procedure adds rules whose rule condition evaluates to TRUE for all LCRs in a source queue. See ADD_GLOBAL_PROPAGATION_RULES Procedure.

	
The ADD_SCHEMA_PROPAGATION_RULES procedure adds rules whose rule condition evaluates to TRUE for LCRs in a source queue containing changes made to a specified schema. See ADD_SCHEMA_PROPAGATION_RULES Procedure.

	
The ADD_SUBSET_PROPAGATION_RULES procedure adds rules whose rule condition evaluates to TRUE for row LCRs in a source queue containing the results of DML changes made to a subset of rows in a specified table. See "ADD_SUBSET_PROPAGATION_RULES Procedure".

	
The ADD_TABLE_PROPAGATION_RULES procedure adds rules whose rule condition evaluates to TRUE for LCRs in a source queue containing changes made to a specified table. See "ADD_TABLE_PROPAGATION_RULES Procedure".

If one of these procedures adds rules to the positive rule set for the propagation, then the rules specify that the propagation propagates LCRs in a source queue to a destination queue. If one of these procedures adds rules to the negative rule set for the propagation, then the rules specify that the propagation discards LCRs in a source queue. When you create rules with one of these procedures, and you specify a value for the source_databse parameter, then the rules include conditions for the specified source database.

Propagation Rules for User Messages

The ADD_MESSAGE_PROPAGATION_RULE procedure adds a message rule to a rule set of a propagation. If this procedure adds a rule to the positive rule set for the propagation, then the rule specifies that the propagation propagates the user messages of a specific message type that evaluate to TRUE for the rule condition from a source queue to a destination queue. If this procedure adds a rule to the negative rule set for the propagation, then the rule specifies that the propagation discards the user messages in a source queue of a specific message type that evaluate to TRUE for the rule condition. This procedure generates a rule name for the rule.

	
See Also:

"ADD_MESSAGE_PROPAGATION_RULE Procedure"

Apply Process Rules for LCRs

The following procedures add rules to a rule set of an apply process when you specify apply for the streams_type parameter and an apply process for the streams_name parameter:

	
The ADD_GLOBAL_RULES procedure adds rules whose rule condition evaluates to TRUE for all LCRs in the apply process's queue. See "ADD_GLOBAL_RULES Procedure".

	
The ADD_SCHEMA_RULES procedure adds rules whose rule condition evaluates to TRUE for LCRs in the apply process's queue containing changes made to a specified schema. See "ADD_SCHEMA_RULES Procedure".

	
The ADD_SUBSET_RULES procedure adds rules whose rule condition evaluates to TRUE for row LCRs in the apply process's queue containing the results of DML changes made to a subset of rows in a specified table. See "ADD_SUBSET_RULES Procedure".

	
The ADD_TABLE_RULES procedure adds rules whose rule condition evaluates to TRUE for LCRs in the apply process's queue containing changes made to a specified table. See "ADD_TABLE_RULES Procedure".

If one of these procedures adds rules to the positive rule set for the apply process, then the rules specify that the apply process applies LCRs in its queue. If one of these procedures adds rules to the negative rule set for the apply process, then the rules specify that the apply process discards LCRs in its queue. For apply process rules, you should execute these procedures at the destination database.

Changes applied by an apply process created by one of these procedures generate tags in the redo log at the destination database with a value of '00' (double zero). You can use the ALTER_APPLY procedure in the DBMS_APPLY_ADM package to alter the tag value after the apply process is created, if necessary.

An apply process can apply captured LCRs from only one source database. If one of these procedures creates an apply process, then specify the source database for the apply process using the source_database parameter. If the source_database parameter is NULL, and one of these procedures creates an apply process, then the source database name of the first LCR received by the apply process is used for the source database.

The rules in the apply process rule sets determine which messages are dequeued by the apply process. When you create rules with one of these procedures, and you specify a value for the source_database parameter, then the rules include conditions for the specified source database. If the apply process dequeues an LCR with a source database that is different from the source database for the apply process, then an error is raised. In addition, when adding rules to an existing apply process, the database specified in the source_database parameter cannot be different from the source database for the apply process. You can determine the source database for an apply process by querying the DBA_APPLY_PROGRESS data dictionary view.

An apply process created by one of these procedures can apply messages only at the local database and can apply only captured messages. To create an apply process that applies messages at a remote database or an apply process that applies user messages, use the CREATE_APPLY procedure in the DBMS_APPLY_ADM package.

You can also use the DBMS_APPLY_ADM.CREATE_APPLY procedure to specify nondefault values for the apply_captured, apply_user, apply_database_link, and apply_tag parameters when you run that procedure. You can use one of the procedures in the DBMS_STREAMS_ADM package to add rules to a rule set used by the apply process after you create it.

	
See Also:

	
"ALTER_APPLY Procedure"

	
"CREATE_APPLY Procedure"

Apply Process Rules for User Messages

The ADD_MESSAGE_RULE procedure adds a message rule to a rule set of an apply process when you specify apply for the streams_type parameter. For an apply process rule, you should execute this procedure at the destination database.

If this procedure adds a rule to the positive rule set for an apply process, then the apply process dequeues user messages of a specific message type that satisfy the apply process rule and sends these messages to its message handler. If no message handler is specified for the apply process, then use the ALTER_APPLY procedure in the DBMS_APPLY_ADM package to set the message handler. If this procedure adds a rule to the negative rule set for an apply process, then the apply process discards user messages of a specific message type that satisfy the apply process rule.

	
See Also:

	
ADD_MESSAGE_RULE Procedure

	
ALTER_APPLY Procedure

Messaging Client Rules for LCRs

The following procedures add rules to a rule set of a messaging client when you specify dequeue for the streams_type parameter:

	
The ADD_GLOBAL_RULES procedure adds rules whose rule condition evaluates to TRUE for all LCRs in the messaging client's queue. See "ADD_GLOBAL_RULES Procedure".

	
The ADD_SCHEMA_RULES procedure adds rules whose rule condition evaluates to TRUE for LCRs in the messaging client's queue containing changes made to a specified schema. See "ADD_SCHEMA_RULES Procedure".

	
The ADD_SUBSET_RULES procedure adds rules whose rule condition evaluates to TRUE for row LCRs in the messaging client's queue containing the results of DML changes made to a subset of rows in a specified table. See "ADD_SUBSET_RULES Procedure".

	
The ADD_TABLE_RULES procedure adds rules whose rule condition evaluates to TRUE for LCRs in the messaging client's queue containing changes made to a specified table. See "ADD_TABLE_RULES Procedure".

If one of these procedures adds rules to the positive rule set for a messaging client, then the messaging client can dequeue persistent row LCRs, or DDL LCRs, or both that originated at the source database that matches the source_database parameter. If one of these procedures adds rules to the negative rule set for a messaging client, then the messaging client discards persistent row LCRs, or DDL LCRs, or both that originated at the source database that matches the source_database parameter. You should execute these procedures at the database where you want to dequeue the messages with the messaging client.

Messaging Client Rules for User Messages

The ADD_MESSAGE_RULE procedure adds a message rule to a rule set of a messaging client when you specify dequeue for the streams_type parameter. You should execute this procedure at the database that will dequeue messages.

If this procedure adds a rule to the positive rule set for a messaging client, then the messaging client dequeues user messages of a specific message type that satisfy the message rule. If this procedure adds a rule to the negative rule set for a messaging client, then the messaging client discards user messages of a specific message type that satisfy the message rule.

	
See Also:

"ADD_MESSAGE_RULE Procedure"

XStream Outbound Server Rules for LCRs

When you specify apply for the streams_type parameter and an XStream outbound server for the streams_name parameter, the following procedures add rules to a rule set of the specified outbound server:

	
The ADD_GLOBAL_RULES procedure adds rules whose rule conditions evaluate to TRUE for all LCRs.

	
The ADD_SCHEMA_RULES procedure adds rules whose rule conditions evaluate to TRUE for LCRs that contain changes made to a specified schema.

	
The ADD_SUBSET_RULES procedure adds rules whose rule conditions evaluate to TRUE for row LCRs that contain the results of DML changes made to a subset of rows in a specified table.

	
The ADD_TABLE_RULES procedure adds rules whose rule conditions evaluate to TRUE for LCRs that contain changes made to a specified table.

These rules are evaluated against LCRs in the outbound server's queue.

If one of the preceding procedures adds rules to the positive rule set for the outbound server, then the rules specify that the outbound server sends LCRs in its queue to the XStream client application. If one of these procedures adds rules to the negative rule set for the outbound server, then the rules specify that the outbound server discards LCRs in its queue. For outbound server rules, execute these procedures at the database to which the XStream client application attaches.

An outbound server can process captured LCRs from only one source database. The source database is the database where the changes originated. If one of these procedures adds rules to the rule set of an outbound server, then specify the source database for the outbound server using the source_database parameter.

The rules in the outbound server's rule sets determine which LCRs are dequeued by the outbound server. When you create rules with one of these procedures, and you specify a value for the source_database parameter, then the rules include conditions for the specified source database. If the outbound server dequeues an LCR with a source database that is different from the source database for the outbound server, then an error is raised. In addition, when adding rules to an existing outbound server, the database specified in the source_database parameter cannot be different from the source database for the outbound server. You can determine the source database for an outbound server by querying the DBA_XSTREAM_OUTBOUND data dictionary view.

	
Note:

These procedures cannot create an XStream outbound server. You can use one of the procedures in the DBMS_STREAMS_ADM package to add rules to a rule set used by the outbound server after you create it.

	
See Also:

Oracle Database XStream Guide for information about creating an outbound server

XStream Inbound Server Rules for LCRs

When you specify apply for the streams_type parameter and an XStream inbound server for the streams_name parameter, the following procedures add rules to a rule set of the specified inbound server:

	
The ADD_GLOBAL_RULES procedure adds rules whose rule conditions evaluate to TRUE for all LCRs sent to the inbound server.

	
The ADD_SCHEMA_RULES procedure adds rules whose rule conditions evaluate to TRUE for LCRs sent to the inbound server that contain changes made to a specified schema.

	
The ADD_SUBSET_RULES procedure adds rules whose rule condition evaluates to TRUE for row LCRs sent to the inbound server that contain the results of data definition language (DML) changes made to a subset of rows in a specified table.

	
The ADD_TABLE_RULES procedure adds rules whose rule condition evaluates to TRUE for LCRs sent to the inbound server that contain changes made to a specified table.

If one of the preceding procedures adds rules to the positive rule set for the inbound server, then the rules specify that the inbound server applies LCRs sent to it by the XStream client application. If one of these procedures adds rules to the negative rule set for the inbound server, then the rules specify that the inbound server discards LCRs sent to it by the XStream client application. For inbound server rules, execute these procedures at the database to which the XStream client application attaches. If an inbound server has no rule sets, then it applies all of the LCRs sent to it by the XStream client application.

Changes applied by an inbound server created by one of these procedures generate tags in the redo log at the destination database with a value of '00' (double zero). You can use the ALTER_APPLY procedure in the DBMS_APPLY_ADM package to alter the tag value after the inbound server is created, if necessary.

The rules in the XStream inbound server rule sets determine which LCRs are either applied or discarded after the LCRs are received from the XStream client application. An inbound server can only process LCRs sent from an XStream client application.

When one of these procedures creates rules for an inbound server, the procedure ignores the source_database parameter.

	
Note:

If the name specified in the streams_name parameter does not exist, then these procedures always create an apply process. The apply process remains an apply process if it receives captured LCRs from a capture process. The apply process can become an inbound server if an XStream client application attaches to it before it receives LCRs from a capture process. After the initial contact, an apply process cannot be changed into an inbound server, and an inbound server cannot be changed into an apply process.

	
See Also:

Oracle Database XStream Guide for information about creating an inbound server

Procedures That Configure an Oracle Streams Environment

The following procedures in this package configure an environment that is maintained by Oracle Streams:

	
MAINTAIN_CHANGE_TABLE Procedure configures an Oracle Streams environment that records in a change table the data manipulation language (DML) changes made to a source table. Optionally, this procedure can also configure one-way replication of the table from the source database to the destination database.

	
MAINTAIN_GLOBAL Procedure configures an Oracle Streams environment that replicates changes at the database level between two databases.

	
MAINTAIN_SCHEMAS Procedure configures an Oracle Streams environment that replicates changes to specified schemas between two databases.

	
MAINTAIN_SIMPLE_TTS Procedure clones a simple tablespace from a source database at a destination database and configures an Oracle Streams environment that replicates changes to specified tablespace between these two databases.

	
MAINTAIN_TABLES Procedure configures an Oracle Streams environment that replicates changes to specified tables between two databases.

	
MAINTAIN_TTS Procedure clones a set of tablespaces from a source database at a destination database and configures an Oracle Streams environment that replicates changes to specified tablespaces between these two databases.

	
PRE_INSTANTIATION_SETUP Procedure and POST_INSTANTIATION_SETUP Procedure

The PRE_INSTANTIATION_SETUP and POST_INSTANTIATION_SETUP procedures must be used together to complete the Oracle Streams replication configuration. Typically, the PRE_INSTANTIATION_SETUP and POST_INSTANTIATION_SETUP procedures are used to perform database maintenance operations with little or no down time. See Oracle Streams Concepts and Administration for more information.

The following sections contain information about using these procedures:

	
Automatic Platform Conversion

	
Actions Performed by These Procedures

	
Configuration Progress and Recoverability

	
Requirements for Running These Procedures

	
Common Parameters for the Configuration Procedures

	
See Also:

Oracle Streams Replication Administrator's Guide for more information about using these procedures

Automatic Platform Conversion

If the source and destination databases run on different platforms, then these procedures, or the scripts generated by these procedures, convert transferred datafiles to the appropriate platform automatically.

Actions Performed by These Procedures

To view all of the actions performed by one of these procedures in detail, use the procedure to generate a script, and view the script in a text editor.

Configuration Progress and Recoverability

When one of these procedures is run with the perform_actions parameter set to TRUE, metadata about its configuration actions is recorded in the following data dictionary views: DBA_RECOVERABLE_SCRIPT, DBA_RECOVERABLE_SCRIPT_PARAMS, DBA_RECOVERABLE_SCRIPT_BLOCKS, and DBA_RECOVERABLE_SCRIPT_ERRORS. If the procedure stops because it encounters an error, then you can use the RECOVER_OPERATION procedure to complete the configuration after you correct the conditions that caused the error.

	
Note:

When one of these procedures is run with the perform_actions parameter set to FALSE, these views are not populated. Also, the views are not populated when a script generated by one of these procedures is run.

	
See Also:

"RECOVER_OPERATION Procedure"

Requirements for Running These Procedures

Meet the following requirements when you use one of these procedures:

	
Run the procedure at the capture database. The capture database is the database that will contain the capture process that captures changes made to the source database. If the capture database is the same as the source database, then a local capture process is configured. If the capture database is different from the source database, then a downstream capture process is configured. See Oracle Streams Replication Administrator's Guide for more information about the capture database.

	
The user who runs the procedure must be able to use a database link from the source database to the destination database. This database link should have the same name as the global name of the destination database.

	
If the procedure configures downstream capture, then the corresponding user at the capture database must be able to use a database link to access the source database. This database link should have the same name as the global name of the source database.

	
If the procedure configures downstream capture, and the capture database is different from the destination database, then the corresponding user at the capture database must be able to use a database link to access the destination database. This database link should have the same name as the global name of the destination database.

	
Both databases must be open during configuration. If the procedure is generating a script only, then the database specified in the destination_database parameter does not need to be open when you run the procedure, but both databases must be open when you run the generated script.

	
Grant the user who runs the procedure the DBA role. This user must have the necessary privileges to complete the following actions:

	
Create ANYDATA queues, capture processes, propagations, and apply processes.

	
Specify supplemental logging

	
Run subprograms in the DBMS_STREAMS_ADM and DBMS_AQADM packages.

	
Access the database specified in the destination_database parameter through a database link. This database link should have the same name as the global name of the destination database.

Typically, the DBA role can be revoked from the user, if necessary, after the configuration is complete.

	
The procedure, or the scripts generated by these procedure, must be run at an Oracle Database 10g Release 2 or later database.

	
If the perform_actions parameter is set to TRUE in the procedure to configure the Oracle Streams environment directly, then all of the databases configured by the procedure must be Oracle Database 10g Release 2 or later databases.

	
If the perform_actions parameter is set to FALSE in the procedure, and the environment is configured with a generated script, then the databases configured by the script must be Oracle Database 10g Release 1 or later databases. If the script configures an Oracle Database 10g Release 1 database, then the script must be modified so that it does not configure features that are available only in Oracle Database 10g Release 2 or later, such as queue-to-queue propagation.

	
Each specified directory object must be created using the SQL statement CREATE DIRECTORY, and the user who invokes the procedure must have READ and WRITE privilege on each one.

	
For procedures that include the bi_directional parameter, if the bi_directional parameter is set to TRUE, or if the source database is not the capture database, then the source_database parameter must specify a database that contains the database objects to be shared. The database specified in the destination_database parameter might or might not contain these database objects. If the destination database does not contain the shared database objects, then the procedure instantiates the database objects at the destination database (excluding the PRE_INSTANTIATION_SETUP and POST_INSTANTIATION_SETUP procedures).

	
For procedures that include the bi_directional parameter, if the bi_directional parameter is set to TRUE or if a network instantiation will be performed, then the corresponding user at the destination database must be able to use a database link to access the source database. This database link should have the same name as the global name of the source database.

To ensure that the user who runs these procedures has the necessary privileges, you should configure an Oracle Streams administrator at each database, and each database link should be should be created in the Oracle Streams administrator's schema.

	
See Also:

Oracle Streams Replication Administrator's Guide for information about configuring an Oracle Streams administrator

Common Parameters for the Configuration Procedures

Table 144-1 describes the common parameters for the procedures in this package that configure an Oracle Streams environment. Some of the procedures do not include all of the parameters in Table 144-1.

Table 144-1 Common Parameters for Configuration Procedures

	Parameter	Description
	
perform_actions

	
If TRUE, then the procedure performs the necessary actions to configure the environment directly.

If FALSE, then the procedure does not perform the necessary actions to configure the environment directly.

Specify FALSE when this procedure is generating a script that you can edit and then run. The procedure raises an error if you specify FALSE and either of the following parameters is NULL:

	
script_name

	
script_directory_object

	
script_name

	
If non-NULL and the perform_actions parameter is FALSE, then specify the name of the script generated by this procedure. The script contains all of the statements used to configure the environment. If a file with the specified script name exists in the specified directory for the script_directory_object parameter, then the procedure appends the statements to the existing file.

If non-NULL and the perform_actions parameter is TRUE, then the procedure generates the specified script and performs the actions to configure the environment directly.

If NULL and the perform_actions parameter is TRUE, then the procedure performs the actions to configure the environment directly and does not generate a script.

If NULL and the perform_actions parameter is FALSE, then the procedure raises an error.

	
script_directory_object

	
The directory object for the directory on the local computer system into which the generated script is placed.

If the script_name parameter is NULL, then the procedure ignores this parameter and does not generate a script.

If NULL and the script_name parameter is non-NULL, then the procedure raises an error.

Note: The specified directory object cannot point to an Oracle Automatic Storage Management (ASM) disk group.

	
capture_name

	
The name of each capture process configured to capture changes. Do not specify an owner. If the bi_directional parameter is set to TRUE, then each capture process created by this procedure has the specified name.

If the specified name matches the name of an existing capture process, then the procedure uses the existing capture process and adds the rules for capturing changes to the database to the positive capture process rule set.

If NULL, then the system generates a name for each capture process it creates.

Note: The capture process name cannot be altered after the capture process is created.

	
capture_queue_table

	
The name of the queue table for each queue used by a capture process, specified as [schema_name.]queue_table_name. For example, strmadmin.streams_queue_table. If the schema is not specified, then the current user is the default.

If NULL, then the system generates a name for the queue table of each queue used by a capture process, and the current user is the owner of each queue table.

	
capture_queue_name

	
The name of each queue used by a capture process, specified as [schema_name.]queue_name. For example, strmadmin.streams_queue.

If the schema is not specified, then the queue table owner is the default. The queue owner automatically has privileges to perform all queue operations on the queue.

If NULL, then the system generates a name for each queue used by a capture process.

	
capture_queue_user

	
The name of the user who requires ENQUEUE and DEQUEUE privileges for the queue at the source database. This user also is configured as a secure queue user of the queue. The queue user cannot grant these privileges to other users because they are not granted with the GRANT option.

If NULL, then the procedure does not grant any privileges. You can also grant queue privileges to the appropriate users using the DBMS_AQADM package.

	
propagation_name

	
The name of each propagation configured to propagate changes. Do not specify an owner.

If the specified name matches the name of an existing propagation, then the procedure uses the existing propagation and adds the rules for propagating changes to the positive propagation rule set.

If NULL, then the system generates a name for each propagation it creates.

Note: The propagation name cannot be altered after the propagation is created.

	
apply_name

	
The name of each apply process configured to apply changes. Do not specify an owner.

If the specified name matches the name of an existing apply process, then the procedure uses the existing apply process and adds the rules for applying changes to the positive apply process rule set.

The specified name must not match the name of an existing messaging client at the destination database.

If NULL, then the system generates a name for each apply process it creates. When set to NULL, no apply process that applies changes from the source database can exist on the destination database. If an apply process that applies changes from the source database exists at the destination database, then specify a non-NULL value for this parameter.

Note: The apply process name cannot be altered after the apply process is created.

	
apply_queue_table

	
The name of the queue table for each queue used by an apply process, specified as [schema_name.]queue_table_name. For example, strmadmin.streams_queue_table. If the schema is not specified, then the current user is the default.

If NULL, then the system generates a name for the queue table of each queue used by an apply process, and the current user is the owner of each queue table.

	
apply_queue_name

	
The name of each queue used by an apply process, specified as [schema_name.]queue_name. For example, strmadmin.streams_queue.

If the schema is not specified, then the queue table owner is the default. The queue owner automatically has privileges to perform all queue operations on the queue.

If NULL, then the system generates a name for each queue used by an apply process.

	
apply_queue_user

	
The name of the user who requires ENQUEUE and DEQUEUE privileges for the queue at the destination database. This user also is configured as a secure queue user of the queue. The queue user cannot grant these privileges to other users because they are not granted with the GRANT option.

If NULL, then the procedure does not grant any privileges. You can also grant queue privileges to the appropriate users using the DBMS_AQADM package.

	
bi_directional

	
Specify TRUE to configure bi-directional replication between the database specified in source_database and the database specified in destination_database. Both databases are configured as source and destination databases, a capture and apply process is configured to capture changes to both databases, and propagations are configured to propagate these changes. If TRUE, then a database link from the destination database to the source database with the same global name as the source database must exist.

Specify FALSE to configure one way replication from the database specified in source_database and the database specified in destination_database. A capture process is configured at the current database and an apply process is configured at the destination database. A propagation is configured if necessary.

See Also: Oracle Streams Replication Administrator's Guide for information about when propagations are configured

	
include_ddl

	
Specify TRUE to configure an Oracle Streams replication environment that maintains both DML and DDL changes.

Specify FALSE to configure an Oracle Streams replication environment that maintains DML changes only. When this parameter is set to FALSE, DDL changes, such as ALTER TABLE, are not replicated.

Summary of DBMS_STREAMS_ADM Subprograms

Table 144-2 DBMS_STREAMS_ADM Package Subprograms

	Subprogram	Description
	
ADD_COLUMN Procedure

	
Either adds or removes a declarative rule-based transformation which adds a column to a row logical change record (row LCR) that satisfies the specified rule

	
ADD_GLOBAL_PROPAGATION_RULES Procedure

	
Either adds global rules to the positive rule set for a propagation, or adds global rules to the negative rule set for a propagation, and creates the specified propagation if it does not exist

	
ADD_GLOBAL_RULES Procedure

	
Adds global rules to either the positive or negative rule set of a capture process, apply process, or messaging client, and creates the specified capture process, apply process, or messaging client if it does not exist

	
ADD_MESSAGE_PROPAGATION_RULE Procedure

	
Either adds a message rule to the positive rule set for a propagation, or adds a message rule to the negative rule set for a propagation, and creates the specified propagation if it does not exist

	
ADD_MESSAGE_RULE Procedure

	
Adds a message rule to either the positive or negative rule set of an apply process or messaging client, and creates the specified apply process or messaging client if it does not exist

	
ADD_SCHEMA_PROPAGATION_RULES Procedure

	
Either adds schema rules to the positive rule set for a propagation, or adds schema rules to the negative rule set for a propagation, and creates the specified propagation if it does not exist

	
ADD_SCHEMA_RULES Procedure

	
Adds schema rules to either the positive or negative rule set of a capture process, apply process, or messaging client, and creates the specified capture process, apply process, or messaging client if it does not exist

	
ADD_SUBSET_PROPAGATION_RULES Procedure

	
Adds subset rules to the positive rule set for a propagation, and creates the specified propagation if it does not exist

	
ADD_SUBSET_RULES Procedure

	
Adds subset rules to the positive rule set of a capture process, synchronous capture, apply process, or messaging client, and creates the specified capture process, synchronous capture, apply process, or messaging client if it does not exist

	
ADD_TABLE_PROPAGATION_RULES Procedure

	
Either adds table rules to the positive rule set for a propagation, or adds table rules to the negative rule set for a propagation, and creates the specified propagation if it does not exist

	
ADD_TABLE_RULES Procedure

	
Adds table rules to the rule set of a capture process, synchronous capture, apply process, or messaging client, and creates the specified capture process, synchronous capture, apply process, or messaging client if it does not exist

	
CLEANUP_INSTANTIATION_SETUP Procedure

	
Removes an Oracle Streams replication configuration that was set up by the PRE_INSTANTIATION_SETUP and POST_INSTANTIATION_SETUP procedures in this package

	
DELETE_COLUMN Procedure

	
Either adds or removes a declarative rule-based transformation which deletes a column from a row LCR that satisfies the specified rule

	
GET_MESSAGE_TRACKING Function

	
Returns the tracking label for the current session

	
GET_SCN_MAPPING Procedure

	
Gets information about the system change number (SCN) values to use for Oracle Streams capture and apply processes in an Oracle Streams replication environment

	
GET_TAG Function

	
Gets the binary tag for all redo entries generated by the current session

	
KEEP_COLUMNS Procedure

	
Either adds or removes a declarative rule-based transformation which keeps a list of columns in a row LCR that satisfies the specified rule

	
MAINTAIN_CHANGE_TABLE Procedure

	
Configures an Oracle Streams environment that records in a change table the data manipulation language (DML) changes made to a source table. Optionally, this procedure can also configure one-way replication of the table from the source database to the destination database

	
MAINTAIN_GLOBAL Procedure

	
Configures an Oracle Streams environment that replicates changes at the database level between two databases

	
MAINTAIN_SCHEMAS Procedure

	
Configures an Oracle Streams environment that replicates changes to specified schemas between two databases

	
MAINTAIN_SIMPLE_TABLESPACE Procedure

	
Clones a simple tablespace from a source database at a destination database and uses Oracle Streams to maintain this tablespace at both databases. This procedure is deprecated.

	
MAINTAIN_SIMPLE_TTS Procedure

	
Clones a simple tablespace from a source database at a destination database and uses Oracle Streams to maintain this tablespace at both databases

	
MAINTAIN_TABLES Procedure

	
Configures an Oracle Streams environment that replicates changes to specified tables between two databases

	
MAINTAIN_TABLESPACES Procedure

	
Clones a set of tablespaces from a source database at a destination database and uses Oracle Streams to maintain these tablespaces at both databases. This procedure is deprecated.

	
MAINTAIN_TTS Procedure

	
Clones a set of tablespaces from a source database at a destination database and uses Oracle Streams to maintain these tablespaces at both databases

	
MERGE_STREAMS Procedure

	
Merges a stream flowing from one capture process with a stream flowing from another capture process

	
MERGE_STREAMS_JOB Procedure

	
Determines whether the original capture process and the cloned capture are within the specified merge threshold and, if they are, runs the MERGE_STREAMS procedure to merge the two streams

	
POST_INSTANTIATION_SETUP Procedure

	
Performs the actions required after instantiation to configure an Oracle Streams replication environment

	
PRE_INSTANTIATION_SETUP Procedure

	
Performs the actions required before instantiation to configure an Oracle Streams replication environment

	
PURGE_SOURCE_CATALOG Procedure

	
Removes all Oracle Streams data dictionary information at the local database for the specified object

	
RECOVER_OPERATION Procedure

	
Provides options for an Oracle Streams replication configuration operation that stopped because it encountered an error. This procedure either rolls forward the operation, rolls back the operation, or purges all of the metadata about the operation.

	
REMOVE_QUEUE Procedure

	
Removes the specified ANYDATA queue

	
REMOVE_RULE Procedure

	
Removes the specified rule or all rules from the rule set associated with the specified capture process, synchronous capture, propagation, apply process, or messaging client.

	
REMOVE_STREAMS_CONFIGURATION Procedure

	
Removes the Oracle Streams configuration at the local database

	
RENAME_COLUMN Procedure

	
Either adds or removes a declarative rule-based transformation which renames a column in a row LCR that satisfies the specified rule

	
RENAME_SCHEMA Procedure

	
Either adds or removes a declarative rule-based transformation which renames a schema in a row LCR that satisfies the specified rule

	
RENAME_TABLE Procedure

	
Either adds or removes a declarative rule-based transformation which renames a table in a row LCR that satisfies the specified rule

	
SET_MESSAGE_NOTIFICATION Procedure

	
Sets a notification for messages that can be dequeued by a specified Oracle Streams messaging client from a specified queue

	
SET_MESSAGE_TRACKING Procedure

	
Sets the tracking label for logical change records (LCRs) produced by the current session

	
SET_RULE_TRANSFORM_FUNCTION Procedure

	
Sets or removes the transformation function name for a rule-based transformation

	
SET_TAG Procedure

	
Sets the binary tag for all redo entries subsequently generated by the current session

	
SET_UP_QUEUE Procedure

	
Creates a queue table and a queue for use with the capture, propagate, and apply functionality of Oracle Streams

	
SPLIT_STREAMS Procedure

	
Splits one stream flowing from a capture process off from all of the other streams flowing from the capture process

	
Note:

All subprograms commit unless specified otherwise.

ADD_COLUMN Procedure

This procedure either adds or removes a declarative rule-based transformation which adds a column to a row logical change record (row LCR) that satisfies the specified rule.

For the transformation to be performed when the specified rule evaluates to TRUE, the rule must be in the positive rule set of an Oracle Streams client. Oracle Streams clients include capture processes, synchronous captures, propagations, apply processes, and messaging clients.

This procedure is overloaded. The column_value and column_function parameters are mutually exclusive.

	
Note:

	
ADD_COLUMN transformations cannot add columns of the following data types: BLOB, CLOB, NCLOB, BFILE, LONG, LONG RAW, ROWID, user-defined types (including object types, REFs, varrays, nested tables), and Oracle-supplied types (including any types, XML types, spatial types, and media types).

	
Declarative transformations can transform row LCRs only. These row LCRs can be captured by a capture process, captured by a synchronous capture, or constructed and enqueued by an application. Therefore, a DML rule must be specified when you run this procedure. If a DDL is specified, then the procedure raises an error.

	
See Also:

Oracle Streams Concepts and Administration for more information about declarative rule-based transformations

Syntax

DBMS_STREAMS_ADM.ADD_COLUMN(
 rule_name IN VARCHAR2,
 table_name IN VARCHAR2,
 column_name IN VARCHAR2,
 column_value IN ANYDATA,
 value_type IN VARCHAR2 DEFAULT 'NEW',
 step_number IN NUMBER DEFAULT 0,
 operation IN VARCHAR2 DEFAULT 'ADD');

DBMS_STREAMS_ADM.ADD_COLUMN(
 rule_name IN VARCHAR2,
 table_name IN VARCHAR2,
 column_name IN VARCHAR2,
 column_function IN VARCHAR2,
 value_type IN VARCHAR2 DEFAULT 'NEW',
 step_number IN NUMBER DEFAULT 0,
 operation IN VARCHAR2 DEFAULT 'ADD');

Parameters

Table 144-3 ADD_COLUMN Procedure Parameters

	Parameter	Description
	
rule_name

	
The name of the rule, specified as [schema_name.]rule_name. If NULL, then the procedure raises an error.

For example, to specify a rule in the hr schema named employees12, enter hr.employees12. If the schema is not specified, then the current user is the default.

	
table_name

	
The name of the table to which the column is added in the row LCR, specified as [schema_name.]object_name. For example, hr.employees. If the schema is not specified, then the current user is the default.

	
column_name

	
The name of the column added to each row LCR that satisfies the rule.

	
column_value

	
The value of the added column. Specify the appropriate ANYDATA function for the column data type and the column value. For example, if the data type of the column being added is NUMBER and the value is NULL, then specify the ANYDATA.ConvertNumber(NULL) function.

This parameter cannot be specified if the column_function parameter is specified.

	
column_function

	
Either the 'SYSDATE' or the 'SYSTIMESTAMP' SQL function.

The 'SYSDATE' SQL function places the current date and time set for the operating system on which the database resides. The data type of the returned value is DATE, and the format returned depends on the value of the NLS_DATE_FORMAT initialization parameter.

The 'SYSTIMESTAMP' SQL function returns the system date, including fractional seconds and time zone, of the system on which the database resides. The return type is TIMESTAMP WITH TIME ZONE.

The function executes when the rule evaluates to TRUE.

This parameter cannot be specified if the column_value parameter is specified.

	
value_type

	
Specify 'NEW' to add the column to the new values in the row LCR.

Specify 'OLD' to add the column to the old values in the row LCR.

	
step_number

	
The order of execution of the transformation.

See Also: Oracle Streams Concepts and Administration for more information about transformation ordering

	
operation

	
Specify 'ADD' to add the transformation to the rule.

Specify 'REMOVE' to remove the transformation from the rule.

Usage Notes

When 'REMOVE' is specified for the operation parameter, all of the add column declarative rule-based transformations for the specified rule are removed that match the specified table_name, column_name, and step_number parameters. Nulls specified for these parameters act as wildcards. The following table lists the behavior of the ADD_COLUMN procedures when one or more of these parameters is NULL:

	table_name	column_name	step_number	Result
	NULL	NULL	NULL	Remove all add column transformations for the specified rule.
	NULL	NULL	non-NULL	Remove all add column transformations with the specified step_number for the specified rule.
	NULL	non-NULL	non-NULL	Remove all add column transformations with the specified column_name and step_number for the specified rule.
	non-NULL	NULL	non-NULL	Remove all add column transformations with the specified table_name and step_number for the specified rule.
	NULL	non-NULL	NULL	Remove all add column transformations with the specified column_name for the specified rule.
	non-NULL	non-NULL	NULL	Remove all add column transformations with the specified table_name and column_name for the specified rule.
	non-NULL	NULL	NULL	Remove all add column transformations with the specified table_name for the specified rule.
	non-NULL	non-NULL	non-NULL	Remove all add column transformations with the specified table_name, column_name, and step_number for the specified rule.

ADD_GLOBAL_PROPAGATION_RULES Procedure

This procedure either adds global rules to the positive rule set for a propagation, or adds global rules to the negative rule set for a propagation, and creates the specified propagation if it does not exist.

This procedure is overloaded. One version of this procedure contains two OUT parameters, and the other does not.

Syntax

DBMS_STREAMS_ADM.ADD_GLOBAL_PROPAGATION_RULES(
 streams_name IN VARCHAR2 DEFAULT NULL,
 source_queue_name IN VARCHAR2,
 destination_queue_name IN VARCHAR2,
 include_dml IN BOOLEAN DEFAULT TRUE,
 include_ddl IN BOOLEAN DEFAULT FALSE,
 include_tagged_lcr IN BOOLEAN DEFAULT FALSE,
 source_database IN VARCHAR2 DEFAULT NULL,
 dml_rule_name OUT VARCHAR2,
 ddl_rule_name OUT VARCHAR2,
 inclusion_rule IN BOOLEAN DEFAULT TRUE,
 and_condition IN VARCHAR2 DEFAULT NULL,
 queue_to_queue IN BOOLEAN DEFAULT NULL);

DBMS_STREAMS_ADM.ADD_GLOBAL_PROPAGATION_RULES(
 streams_name IN VARCHAR2 DEFAULT NULL,
 source_queue_name IN VARCHAR2,
 destination_queue_name IN VARCHAR2,
 include_dml IN BOOLEAN DEFAULT TRUE,
 include_ddl IN BOOLEAN DEFAULT FALSE,
 include_tagged_lcr IN BOOLEAN DEFAULT FALSE,
 source_database IN VARCHAR2 DEFAULT NULL,
 inclusion_rule IN BOOLEAN DEFAULT TRUE,
 and_condition IN VARCHAR2 DEFAULT NULL,
 queue_to_queue IN BOOLEAN DEFAULT NULL);

Parameters

Table 144-4 ADD_GLOBAL_PROPAGATION_RULES Procedure Parameters

	Parameter	Description
	
streams_name

	
The name of the propagation. Do not specify an owner.

If the specified propagation does not exist, then the procedure creates it automatically.

If NULL and a propagation exists for the same source queue and destination queue (including database link), then the procedure uses this propagation.

If NULL and no propagation exists for the same source queue and destination queue (including database link), then the procedure creates a propagation automatically with a system-generated name.

	
source_queue_name

	
The name of the source queue, specified as [schema_name.]queue_name. The current database must contain the source queue, and the queue must be ANYDATA type.

For example, to specify a source queue named streams_queue in the strmadmin schema, enter strmadmin.streams_queue for this parameter.

If the schema is not specified, then the current user is the default.

	
destination_queue_name

	
The name of the destination queue, including a database link, specified as [schema_name.]queue_name[@dblink_name], if the destination queue is in a remote database. The queue must be ANYDATA type.

For example, to specify a destination queue named streams_queue in the strmadmin schema and use a database link named dbs2.net, enter strmadmin.streams_queue@dbs2.net for this parameter.

If the schema is not specified, then the current user is the default.

If the database link is omitted, then the procedure uses the global name of the current database, and the source queue and destination queue must be in the same database.

Note: Connection qualifiers are not allowed.

	
include_dml

	
If TRUE, then the procedure creates a rule for DML changes. If FALSE, then the procedure does not create a DML rule. NULL is not permitted.

	
include_ddl

	
If TRUE, then the procedure creates a rule for DDL changes. If FALSE, then the procedure does not create a DDL rule. NULL is not permitted.

	
include_tagged_lcr

	
If TRUE, then the procedure does not add a condition regarding Oracle Streams tags to the generated rules. Therefore, these rules can evaluate to TRUE regardless of whether a logical change record (LCR) has a non-NULL tag. If the rules are added to the positive rule set for the propagation, then an LCR is always considered for propagation, regardless of whether it has a non-NULL tag. If the rules are added to a positive rule set, then setting this parameter to TRUE is appropriate for a full (for example, standby) copy of a database. If the rules are added to the negative rule set for the propagation, then whether an LCR is discarded does not depend on the tag for the LCR.

If FALSE, then the procedure adds a condition to each generated rule that causes the rule to evaluate to TRUE only if an LCR has a NULL Oracle Streams tag. If the rules are added to the positive rule set for the propagation, then an LCR is considered for propagation only when the LCR contains a NULL tag. If the rules are added to a positive rule set, then setting this parameter to FALSE might be appropriate in update-anywhere configurations to avoid sending a change back to its source database. If the rules are added to the negative rule set for the propagation, then an LCR can be discarded only if it has a NULL tag.

Usually, specify TRUE for this parameter if the inclusion_rule parameter is set to FALSE.

See Also: Oracle Streams Replication Administrator's Guide for more information about tags

	
source_database

	
The global name of the source database. The source database is where the changes originated. If NULL, then the procedure does not add a condition regarding the source database to the generated rules.

If you do not include the domain name, then the procedure appends it to the database name automatically. For example, if you specify DBS1 and the domain is .NET, then the procedure specifies DBS1.NET automatically.

Oracle recommends that you specify a source database for propagation rules.

	
dml_rule_name

	
If include_dml is TRUE, then this parameter contains the DML rule name.

If include_dml is FALSE, then this parameter contains a NULL.

	
ddl_rule_name

	
If include_ddl is TRUE, then this parameter contains the DDL rule name.

If include_ddl is FALSE, then this parameter contains a NULL.

	
inclusion_rule

	
If inclusion_rule is TRUE, then the procedure adds the rules to the positive rule set for the propagation.

If inclusion_rule is FALSE, then the procedure adds the rules to the negative rule set for the propagation.

In either case, the system creates the rule set if it does not exist.

	
and_condition

	
If non-NULL, appends the specified condition to the system-generated rule condition using an AND clause in the following way:

(system_condition) AND (and_condition)

The variable in the specified condition must be :lcr. For example, to specify that the global rules generated by the procedure evaluate to TRUE only if the Oracle Streams tag is the hexadecimal equivalent of '02', specify the following condition:

:lcr.get_tag() = HEXTORAW(''02'')

The :lcr in the specified condition is converted to :dml or :ddl, depending on the rule that is being generated. If you are specifying an LCR member subprogram that is dependent on the LCR type (row or DDL), then make sure the procedure only generates the appropriate rule.

Specifically, if you specify an LCR member subprogram that is valid only for row LCRs, then specify TRUE for the include_dml parameter and FALSE for the include_ddl parameter. If you specify an LCR member subprogram that is valid only for DDL LCRs, then specify FALSE for the include_dml parameter and TRUE for the include_ddl parameter.

See Also: Chapter 248, "Logical Change Record TYPEs"

	
queue_to_queue

	
If TRUE or NULL, then a new propagation created by this procedure is a queue to queue propagation. A queue-to-queue propagation always has its own propagation job and uses a service for automatic failover when the destination queue is a buffered queue in an Oracle Real Application Clusters (Oracle RAC) database.

If FALSE, then a new propagation created by this procedure is a queue-to-dblink propagation. A queue-to-dblink propagation can share a propagation job with other propagations that use the same database link and does not support automatic failover in an Oracle RAC environment.

The procedure cannot change the queue to queue property of an exiting propagation. If the specified propagation exists, then the procedure behaves in the following way for each setting:

	
If TRUE and the specified propagation is not a queue to queue propagation, then the procedure raises an error.

	
If FALSE and the specified propagation is a queue to queue propagation, then the procedure raises an error.

	
If NULL, then the procedure does not change the queue to queue property of the propagation.

See Also: Oracle Streams Concepts and Administration for more information about queue-to-queue propagations

Usage Notes

This procedure configures propagation using the current user. Only one propagation is allowed between a particular source queue and destination queue.

This procedure creates DML and DDL rules automatically based on include_dml and include_ddl parameter values, respectively. Each rule has a system-generated rule name that consists of the database name with a sequence number appended to it. The sequence number is used to avoid naming conflicts. If the database name plus the sequence number is too long, then the database name is truncated. A propagation uses the rules for filtering.

	
See Also:

	
"Operational Notes" and "Propagation Rules for LCRs" for more information about the rules created by this procedure

	
"Propagation User"

Examples

The following is an example of a global rule condition created for DML changes:

(:dml.is_null_tag() = 'Y' and :dml.get_source_database_name() = 'DBS1.NET')

ADD_GLOBAL_RULES Procedure

This procedure adds rules to a rule set of one of the following types of Oracle Streams clients:

	
When the streams_type parameter is set to capture, this procedure adds capture process rules for capturing changes to an entire database. See "Capture Process Rules for Changes in the Redo Log" for more information about these rules.

	
When the streams_type parameter is set to apply and the streams_name parameter specifies the name of an apply process, this procedure adds apply process rules for applying all logical change records (LCRs) in a queue. The rules can specify that the LCRs must be from a particular source database. See "Apply Process Rules for LCRs" for more information about these rules.

	
When the streams_type parameter is set to dequeue, this procedure adds messaging client rules for dequeuing all persistent LCRs from a queue. The rules can specify that the LCRs must be from a particular source database. See "Messaging Client Rules for LCRs" for more information about these rules.

This procedure creates the specified capture process, apply process, or messaging client if it does not exist.

This procedure is overloaded. One version of this procedure contains two OUT parameters, and the other does not.

	
Caution:

If you add global rules to the positive rule set for a capture process, then make sure you add rules to the negative capture process rule set to exclude database objects that are not support by Oracle Streams. Query the DBA_STREAMS_UNSUPPORTED data dictionary view to determine which database objects are not supported by Oracle Streams. If unsupported database objects are not excluded, then capture errors will result.

	
Note:

Currently, messaging clients cannot dequeue buffered messages.

Syntax

DBMS_STREAMS_ADM.ADD_GLOBAL_RULES(
 streams_type IN VARCHAR2,
 streams_name IN VARCHAR2 DEFAULT NULL,
 queue_name IN VARCHAR2 DEFAULT 'streams_queue',
 include_dml IN BOOLEAN DEFAULT TRUE,
 include_ddl IN BOOLEAN DEFAULT FALSE,
 include_tagged_lcr IN BOOLEAN DEFAULT FALSE,
 source_database IN VARCHAR2 DEFAULT NULL,
 dml_rule_name OUT VARCHAR2,
 ddl_rule_name OUT VARCHAR2,
 inclusion_rule IN BOOLEAN DEFAULT TRUE,
 and_condition IN VARCHAR2 DEFAULT NULL);

DBMS_STREAMS_ADM.ADD_GLOBAL_RULES(
 streams_type IN VARCHAR2,
 streams_name IN VARCHAR2 DEFAULT NULL,
 queue_name IN VARCHAR2 DEFAULT 'streams_queue',
 include_dml IN BOOLEAN DEFAULT TRUE,
 include_ddl IN BOOLEAN DEFAULT FALSE,
 include_tagged_lcr IN BOOLEAN DEFAULT FALSE,
 source_database IN VARCHAR2 DEFAULT NULL,
 inclusion_rule IN BOOLEAN DEFAULT TRUE,
 and_condition IN VARCHAR2 DEFAULT NULL);

Parameters

Table 144-5 ADD_GLOBAL_RULES Procedure Parameters

	Parameter	Description
	
streams_type

	
The type of Oracle Streams client:

	
Specify capture for a capture process.

	
Specify apply for an apply process.

	
Specify dequeue for a messaging client.

	
streams_name

	
The name of the capture process, apply process, or messaging client. Do not specify an owner.

If NULL, if streams_type is capture or dequeue, and if one relevant capture process or messaging client for the queue exists, then the relevant Oracle Streams client is used. If no relevant Oracle Streams client exists for the queue, then an Oracle Streams client is created automatically with a system-generated name. If NULL and multiple Oracle Streams clients of the specified streams_type for the queue exist, then the procedure raises an error.

If NULL, if streams_type is apply, and if one relevant apply process exists, then the procedure uses the relevant apply process. The relevant apply process is identified in one of the following ways:

	
If one existing apply process has the source database specified in source_database and uses the queue specified in queue_name, then the procedure uses this apply process.

	
If source_database is NULL and one existing apply process is using the queue specified in queue_name, then the procedure uses this apply process.

If NULL and no relevant apply process exists, then the procedure creates an apply process automatically with a system-generated name.

If NULL and multiple relevant apply processes exist, then the procedure raises an error.

Each apply process and messaging client must have a unique name.

	
queue_name

	
The name of the local queue, specified as [schema_name.]queue_name. The current database must contain the queue, and the queue must be ANYDATA type.

For example, to specify a queue named streams_queue in the strmadmin schema, enter strmadmin.streams_queue for this parameter. If the schema is not specified, then the current user is the default.

For capture process rules, this is the queue into which a capture process enqueues LCRs. For apply process rules, this is the queue from which an apply process dequeues messages. For messaging client rules, this is the queue from which a messaging client dequeues messages.

	
include_dml

	
If TRUE, then the procedure creates a rule for DML changes. If FALSE, then the procedure does not create a DML rule. NULL is not permitted.

	
include_ddl

	
If TRUE, then the procedure creates a rule for DDL changes. If FALSE, then the procedure does not create a DDL rule. NULL is not permitted.

	
include_tagged_lcr

	
If TRUE, then the procedure does not add a condition regarding Oracle Streams tags to the generated rules. Therefore, these rules can evaluate to TRUE regardless of whether a redo entry or LCR has a non-NULL tag. If the rules are added to the positive rule set for the process, then a redo entry is always considered for capture, and an LCR is always considered for apply, regardless of whether the redo entry or LCR has a non-NULL tag. If the rules are added to a positive rule set, then setting this parameter to TRUE is appropriate for a full (for example, standby) copy of a database. If the rules are added to the negative rule set for the process, then whether a redo entry or LCR is discarded does not depend on the tag.

If FALSE, then the procedure adds a condition to each generated rule that causes the rule to evaluate to TRUE only if a redo entry or LCR has a NULL Oracle Streams tag. If the rules are added to the positive rule set for the process, then a redo entry is considered for capture, and an LCR is considered for apply, only when the redo entry or LCR contains a NULL tag. If the rules are added to a positive rule set, then setting this parameter to FALSE might be appropriate in update-anywhere configurations to avoid sending a change back to its source database. If the rules are added to the negative rule set for the process, then a redo entry or LCR can be discarded only if it has a NULL tag.

Usually, specify TRUE for this parameter if the inclusion_rule parameter is set to FALSE.

See Also: Oracle Streams Replication Administrator's Guide for more information about tags

	
source_database

	
The global name of the source database. If NULL, then the procedure does not add a condition regarding the source database to the generated rules.

For capture process rules, specify NULL or the global name of the local database if you are creating a capture process locally at the source database. If you are adding rules to a downstream capture process rule set at a downstream database, then specify the source database of the changes that will be captured.

For apply process rules, specify the source database of the changes that will be applied by the apply process. The source database is the database where the changes originated. If an apply process applies captured messages, then the apply process can apply messages from only one capture process at one source database.

For messaging client rules, specify NULL if you do not want the rules created by this procedure to have a condition for the source database. Specify a source database if you want the rules created by this procedure to have a condition for the source database. The source database is part of the information in an LCR, and user-constructed LCRs might or might not have this information.

If you do not include the domain name, then the procedure appends it to the database name automatically. For example, if you specify DBS1 and the domain is .NET, then the procedure specifies DBS1.NET automatically.

	
dml_rule_name

	
If include_dml is TRUE, then this parameter contains the DML rule name.

If include_dml is FALSE, then this parameter contains a NULL.

	
ddl_rule_name

	
If include_ddl is TRUE, then this parameter contains the DDL rule name.

If include_ddl is FALSE, then this parameter contains a NULL.

	
inclusion_rule

	
If inclusion_rule is TRUE, then the procedure adds the rules to the positive rule set for the Oracle Streams client.

If inclusion_rule is FALSE, then the procedure adds the rules to the negative rule set for the Oracle Streams client.

In either case, the system creates the rule set if it does not exist.

	
and_condition

	
If non-NULL, appends the specified condition to the system-generated rule condition using an AND clause in the following way:

(system_condition) AND (and_condition)

The variable in the specified condition must be :lcr. For example, to specify that the global rules generated by the procedure evaluate to TRUE only if the Oracle Streams tag is the hexadecimal equivalent of '02', specify the following condition:

:lcr.get_tag() = HEXTORAW(''02'')

The :lcr in the specified condition is converted to :dml or :ddl, depending on the rule that is being generated. If you are specifying an LCR member subprogram that is dependent on the LCR type (row or DDL), then make sure this procedure only generates the appropriate rule.

Specifically, if you specify an LCR member subprogram that is valid only for row LCRs, then specify TRUE for the include_dml parameter and FALSE for the include_ddl parameter. If you specify an LCR member subprogram that is valid only for DDL LCRs, then specify FALSE for the include_dml parameter and TRUE for the include_ddl parameter.

See Also: Chapter 248, "Logical Change Record TYPEs"

Usage Notes

This procedure creates DML and DDL rules automatically based on include_dml and include_ddl parameter values, respectively. Each rule has a system-generated rule name that consists of the database name with a sequence number appended to it. The sequence number is used to avoid naming conflicts. If the database name plus the sequence number is too long, then the database name is truncated. A capture process, apply process, or messaging client uses the rules for filtering.

	
See Also:

	
"Operational Notes"

	
"Security Model"

Examples

The following is an example of a global rule condition created for DML changes:

(:dml.is_null_tag() = 'Y' and :dml.get_source_database_name() = 'DBS1.NET')

ADD_MESSAGE_PROPAGATION_RULE Procedure

This procedure adds a message rule to the positive rule set for a propagation, or adds a message rule to the negative rule set for a propagation, and creates the specified propagation if it does not exist.

This procedure is overloaded. One version of this procedure contains the OUT parameter rule_name, and the other does not.

Syntax

DBMS_STREAMS_ADM.ADD_MESSAGE_PROPAGATION_RULE(
 message_type IN VARCHAR2,
 rule_condition IN VARCHAR2,
 streams_name IN VARCHAR2 DEFAULT NULL,
 source_queue_name IN VARCHAR2,
 destination_queue_name IN VARCHAR2,
 inclusion_rule IN BOOLEAN DEFAULT TRUE,
 rule_name OUT VARCHAR2,
 queue_to_queue IN BOOLEAN DEFAULT NULL);

DBMS_STREAMS_ADM.ADD_MESSAGE_PROPAGATION_RULE(
 message_type IN VARCHAR2,
 rule_condition IN VARCHAR2,
 streams_name IN VARCHAR2 DEFAULT NULL,
 source_queue_name IN VARCHAR2,
 destination_queue_name IN VARCHAR2,
 inclusion_rule IN BOOLEAN DEFAULT TRUE,
 queue_to_queue IN BOOLEAN DEFAULT NULL);

Parameters

Table 144-6 ADD_MESSAGE_PROPAGATION_RULE Procedure Parameters

	Parameter	Description
	
message_type

	
The type of the message. The type can be an Oracle built-in type, such as VARCHAR2 or NUMBER, or it can be a user-defined type.

If the type is not an Oracle built-in type, then it is specified as [schema_name.]type_name. If the schema is not specified, then the current user is the default.

For example, to specify VARCHAR2, enter VARCHAR2(n), where n is the size specification. To specify a type named usr_msg in the strmadmin schema, enter strmadmin.usr_msg for this parameter.

The following data types require a size specification: VARCHAR2, NVARCHAR2, and RAW.

See Also: Oracle Database SQL Language Reference for more information about data types

	
rule_condition

	
The rule condition for this message type. The rule variable name specified in the rule condition must be the following:

:msg

See Also: "Examples"

	
streams_name

	
The name of the propagation. Do not specify an owner.

If the specified propagation does not exist, then the procedure creates it automatically.

If NULL and a propagation exists for the same source queue and destination queue (including database link), then the procedure uses this propagation.

If NULL and no propagation exists for the same source queue and destination queue (including database link), then the procedure creates a propagation automatically with a system-generated name.

	
source_queue_name

	
The name of the source queue, specified as [schema_name.]queue_name. The current database must contain the source queue, and the queue must be ANYDATA type.

For example, to specify a source queue named streams_queue in the strmadmin schema, enter strmadmin.streams_queue for this parameter.

If the schema is not specified, then the current user is the default.

	
destination_queue_name

	
The name of the destination queue, including a database link, specified as [schema_name.]queue_name[@dblink_name], if the destination queue is in a remote database. The queue must be ANYDATA type.

For example, to specify a destination queue named streams_queue in the strmadmin schema and use a database link named dbs2.net, enter strmadmin.streams_queue@dbs2.net for this parameter.

If the schema is not specified, then the current user is the default.

If the database link is omitted, then the procedure uses the global name of the current database, and the source queue and destination queue must be in the same database.

Note: Connection qualifiers are not allowed.

	
inclusion_rule

	
If inclusion_rule is TRUE, then the procedure adds the rule to the positive rule set for the propagation.

If inclusion_rule is FALSE, then the procedure adds the rule to the negative rule set for the propagation.

In either case, the system creates the rule set if it does not exist.

	
rule_name

	
Contains the rule name

	
queue_to_queue

	
If TRUE or NULL, then a new propagation created by this procedure is a queue to queue propagation. A queue-to-queue propagation always has its own propagation job and uses a service for automatic failover when the destination queue is a buffered queue in an Oracle Real Application Clusters (Oracle RAC) database.

If FALSE, then a new propagation created by this procedure is a queue-to-dblink propagation. A queue-to-dblink propagation can share a propagation job with other propagations that use the same database link and does not support automatic failover in an Oracle RAC environment.

This procedure cannot change the queue to queue property of an exiting propagation. If the specified propagation exists, then the procedure behaves in the following way for each setting:

	
If TRUE and the specified propagation is not a queue to queue propagation, then the procedure raises an error.

	
If FALSE and the specified propagation is a queue to queue propagation, then the procedure raises an error.

	
If NULL, then the procedure does not change the queue to queue property of the propagation.

See Also: Oracle Streams Concepts and Administration for more information about queue-to-queue propagations

Usage Notes

This procedure configures propagation using the current user. Only one propagation is allowed between a particular source queue and destination queue.

When you use this procedure to create a rule set for a message rule, the new rule set does not have an evaluation context. If no evaluation context exists for the specified message type, then this procedure creates a new evaluation context and associates it with the new rule. The evaluation context also has a system-generated name. If you create new rules that use an existing message type, then the new rules use the existing evaluation context for the message type.

	
See Also:

	
"Operational Notes" and "Propagation Rules for User Messages" for more information about the rules created by this procedure

	
"Propagation User"

Examples

Suppose the message type is VARCHAR2(128). Given this type, the following rule condition can be specified:

':msg = ''HQ'''

This rule condition evaluates to TRUE if a user message of type VARCHAR2(128) has HQ for its value.

Suppose the message type is usr_msg, and that this type has the following attributes: source_dbname, owner, name, and message. Given this type, the following rule condition can be specified:

':msg.source_dbname = ''DBS1.NET'' AND ' || ':msg.owner = ''HR'' AND ' ||
':msg.name = ''EMPLOYEES'''

This rule condition evaluates to TRUE if a user message of type usr_msg has DBS1.NET for its source_dbname attribute, HR for its owner attribute, and EMPLOYEES for its name attribute.

	
Note:

The quotation marks in the preceding examples are all single quotation marks.

ADD_MESSAGE_RULE Procedure

This procedure adds a message rule to a rule set of one of the following types of Oracle Streams clients:

	
When the streams_type parameter is set to apply, this procedure adds an apply process rule for dequeuing user messages of a specific message type from a queue. See "Apply Process Rules for User Messages" for more information about such rules.

	
When the streams_type parameter is set to dequeue, this procedure adds a messaging client rule for dequeuing user messages of a specific message type from a queue. See "Messaging Client Rules for User Messages" for more information about such rules.

This procedure also creates the specified Oracle Streams client if it does not exist.

This procedure is overloaded. One version of this procedure contains the OUT parameter rule_name, and the other does not.

	
Note:

Currently, messaging clients cannot dequeue buffered messages.

Syntax

DBMS_STREAMS_ADM.ADD_MESSAGE_RULE(
 message_type IN VARCHAR2,
 rule_condition IN VARCHAR2,
 streams_type IN VARCHAR2,
 streams_name IN VARCHAR2 DEFAULT NULL,
 queue_name IN VARCHAR2 DEFAULT 'streams_queue',
 inclusion_rule IN BOOLEAN DEFAULT TRUE,
 rule_name OUT VARCHAR2);

DBMS_STREAMS_ADM.ADD_MESSAGE_RULE(
 message_type IN VARCHAR2,
 rule_condition IN VARCHAR2,
 streams_type IN VARCHAR2,
 streams_name IN VARCHAR2 DEFAULT NULL,
 queue_name IN VARCHAR2 DEFAULT 'streams_queue',
 inclusion_rule IN BOOLEAN DEFAULT TRUE);

Parameters

Table 144-7 ADD_MESSAGE_RULE Procedure Parameters

	Parameter	Description
	
message_type

	
The type of the message. The type can be an Oracle built-in type, such as VARCHAR2 or NUMBER, or it can be a user-defined type.

If the type is not an Oracle built-in type, then it is specified as [schema_name.]type_name. If the schema is not specified, then the current user is the default.

For example, to specify VARCHAR2, enter VARCHAR2(n), where n is the size specification. To specify a type named usr_msg in the strmadmin schema, enter strmadmin.usr_msg for this parameter.

The following data types require a size specification: VARCHAR2, NVARCHAR2, and RAW.

See Also: Oracle Database SQL Language Reference for more information about data types

	
rule_condition

	
The rule condition for this message type. The rule variable name specified in the rule condition must be the following:

:msg

See Also: "Examples"

	
streams_type

	
The type of message consumer, either apply for apply process or dequeue for messaging client

	
streams_name

	
The name of the Oracle Streams apply process or messaging client.

If the specified streams_type is apply, then specify the name of the apply process. Do not specify an owner. If the specified apply process does not exist, then the procedure creates it automatically with a system-generated name.

If the specified streams_type is dequeue, then specify the messaging client. For example, if the user strmadmin is the messaging client, then specify strmadmin.

If NULL and a relevant apply process or messaging client for the queue exists, then the procedure uses the relevant apply process or messaging client. If NULL and multiple relevant apply processes or messaging clients for the queue exist, then the procedure raises an error.

If NULL and no Oracle Streams client of the specified streams_type exists for the queue, then the procedure creates an apply process or messaging client automatically with a system-generated name.

An apply process and a messaging client cannot have the same name.

	
queue_name

	
The name of the local queue from which messages will be dequeued, specified as [schema_name.]queue_name. The current database must contain the queue, and the queue must be ANYDATA type.

For example, to specify a queue named streams_queue in the strmadmin schema, enter strmadmin.streams_queue for this parameter. If the schema is not specified, then the current user is the default.

	
inclusion_rule

	
If inclusion_rule is TRUE, then the procedure adds the rule to the positive rule set for the apply process or messaging client.

If inclusion_rule is FALSE, then the procedure adds the rule to the negative rule set for the apply process or messaging client.

In either case, the system creates the rule set if it does not exist.

	
rule_name

	
Contains the rule name

Usage Notes

If an apply process rule is added, then this procedure creates the apply process if it does not exist. An apply process created by this procedure can apply only user messages, and dequeued messages are sent to the message handler for the apply process. If a messaging client rule is added, then this procedure creates a messaging client if it does not exist.

When you use this procedure to create a rule set for a message rule, the new rule set does not have an evaluation context. If no evaluation context exists for the specified message type, then this procedure creates a new evaluation context and associates it with the new rule. The evaluation context also has a system-generated name. If you create new rules that use an existing message type, then the new rules use the existing evaluation context for the message type.

	
See Also:

	
"Operational Notes"

	
"Security Model"

	
ALTER_APPLY Procedure for more information about setting a message handler for an apply process

Examples

Suppose the message type is VARCHAR2(128). Given this type, the following rule condition can be specified:

':msg = ''HQ'''

This rule condition evaluates to TRUE if a user message of type VARCHAR2(128) has HQ for its value.

Suppose the message type is usr_msg, and that this type has the following attributes: source_dbname, owner, name, and message. Given this type, the following rule condition can be specified:

':msg.source_dbname = ''DBS1.NET'' AND ' || ':msg.owner = ''HR'' AND ' ||
':msg.name = ''EMPLOYEES'''

This rule condition evaluates to TRUE if a user message of type usr_msg has DBS1.NET for its source_dbname attribute, HR for its owner attribute, and EMPLOYEES for its name attribute.

	
Note:

The quotation marks in the preceding examples are all single quotation marks.

ADD_SCHEMA_PROPAGATION_RULES Procedure

This procedure either adds schema rules to the positive rule set for a propagation, or adds schema rules to the negative rule set for a propagation, and creates the specified propagation if it does not exist.

This procedure is overloaded. One version of this procedure contains two OUT parameters, and the other does not.

Syntax

DBMS_STREAMS_ADM.ADD_SCHEMA_PROPAGATION_RULES(
 schema_name IN VARCHAR2,
 streams_name IN VARCHAR2 DEFAULT NULL,
 source_queue_name IN VARCHAR2,
 destination_queue_name IN VARCHAR2,
 include_dml IN BOOLEAN DEFAULT TRUE,
 include_ddl IN BOOLEAN DEFAULT FALSE,
 include_tagged_lcr IN BOOLEAN DEFAULT FALSE,
 source_database IN VARCHAR2 DEFAULT NULL,
 dml_rule_name OUT VARCHAR2,
 ddl_rule_name OUT VARCHAR2,
 inclusion_rule IN BOOLEAN DEFAULT TRUE,
 and_condition IN VARCHAR2 DEFAULT NULL,
 queue_to_queue IN BOOLEAN DEFAULT NULL);

DBMS_STREAMS_ADM.ADD_SCHEMA_PROPAGATION_RULES(
 schema_name IN VARCHAR2,
 streams_name IN VARCHAR2 DEFAULT NULL,
 source_queue_name IN VARCHAR2,
 destination_queue_name IN VARCHAR2,
 include_dml IN BOOLEAN DEFAULT TRUE,
 include_ddl IN BOOLEAN DEFAULT FALSE,
 include_tagged_lcr IN BOOLEAN DEFAULT FALSE,
 source_database IN VARCHAR2 DEFAULT NULL,
 inclusion_rule IN BOOLEAN DEFAULT TRUE,
 and_condition IN VARCHAR2 DEFAULT NULL,
 queue_to_queue IN BOOLEAN DEFAULT NULL);

Parameters

Table 144-8 ADD_SCHEMA_PROPAGATION_RULES Procedure Parameters

	Parameter	Description
	
schema_name

	
The name of the schema. For example, hr.

	
streams_name

	
The name of the propagation. Do not specify an owner.

If the specified propagation does not exist, then the procedure creates it automatically.

If NULL and a propagation exists for the same source queue and destination queue (including database link), then the procedure uses this propagation.

If NULL and no propagation exists for the same source queue and destination queue (including database link), then the procedure creates a propagation automatically with a system-generated name.

	
source_queue_name

	
The name of the source queue, specified as [schema_name.]queue_name. The current database must contain the source queue, and the queue must be ANYDATA type.

For example, to specify a source queue named streams_queue in the strmadmin schema, enter strmadmin.streams_queue for this parameter.

If the schema is not specified, then the current user is the default.

	
destination_queue_name

	
The name of the destination queue, including a database link, specified as [schema_name.]queue_name[@dblink_name], if the destination queue is in a remote database. The queue must be ANYDATA type.

For example, to specify a destination queue named streams_queue in the strmadmin schema and use a database link named dbs2.net, enter strmadmin.streams_queue@dbs2.net for this parameter.

If the schema is not specified, then the current user is the default.

If the database link is omitted, then the procedure uses the global name of the current database, and the source queue and destination queue must be in the same database.

Note: Connection qualifiers are not allowed.

	
include_dml

	
If TRUE, then the procedure creates a rule for DML changes. If FALSE, then the procedure does not create a DML rule. NULL is not permitted.

	
include_ddl

	
If TRUE, then the procedure creates a rule for DDL changes. If FALSE, then the procedure does not create a DDL rule. NULL is not permitted.

	
include_tagged_lcr

	
If TRUE, then the procedure does not add a condition regarding Oracle Streams tags to the generated rules. Therefore, these rules can evaluate to TRUE regardless of whether a logical change record (LCR) has a non-NULL tag. If the rules are added to the positive rule set for the propagation, then an LCR is always considered for propagation, regardless of whether it has a non-NULL tag. If the rules are added to a positive rule set, then setting this parameter to TRUE is appropriate for a full (for example, standby) copy of a database. If the rules are added to the negative rule set for the propagation, then whether an LCR is discarded does not depend on the tag for the LCR.

If FALSE, then the procedure adds a condition to each generated rule that causes the rule to evaluate to TRUE only if an LCR has a NULL Oracle Streams tag. If the rules are added to the positive rule set for the propagation, then an LCR is considered for propagation only when the LCR contains a NULL tag. If the rules are added to a positive rule set, then setting this parameter to FALSE might be appropriate in update-anywhere configurations to avoid sending a change back to its source database. If the rules are added to the negative rule set for the propagation, then an LCR can be discarded only if it has a NULL tag.

Usually, specify TRUE for this parameter if the inclusion_rule parameter is set to FALSE.

See Also: Oracle Streams Replication Administrator's Guide for more information about tags

	
source_database

	
The global name of the source database. The source database is where the change originated. If NULL, then the procedure does not add a condition regarding the source database to the generated rules.

If you do not include the domain name, then the procedure appends it to the database name automatically. For example, if you specify DBS1 and the domain is .NET, then the procedure specifies DBS1.NET automatically.

Oracle recommends that you specify a source database for propagation rules.

	
dml_rule_name

	
If include_dml is TRUE, then this parameter contains the DML rule name.

If include_dml is FALSE, then this parameter contains a NULL.

	
ddl_rule_name

	
If include_ddl is TRUE, then this parameter contains the DDL rule name.

If include_ddl is FALSE, then this parameter contains a NULL.

	
inclusion_rule

	
If inclusion_rule is TRUE, then the procedure adds the rules to the positive rule set for the propagation.

If inclusion_rule is FALSE, then the procedure adds the rules to the negative rule set for the propagation.

In either case, the system creates the rule set if it does not exist.

	
and_condition

	
If non-NULL, appends the specified condition to the system-generated rule condition using an AND clause in the following way:

(system_condition) AND (and_condition)

The variable in the specified condition must be :lcr. For example, to specify that the schema rules generated by the procedure evaluate to TRUE only if the Oracle Streams tag is the hexadecimal equivalent of '02', specify the following condition:

:lcr.get_tag() = HEXTORAW(''02'')

The :lcr in the specified condition is converted to :dml or :ddl, depending on the rule that is being generated. If you are specifying an LCR member subprogram that is dependent on the LCR type (row or DDL), then make sure this procedure only generates the appropriate rule.

Specifically, if you specify an LCR member subprogram that is valid only for row LCRs, then specify TRUE for the include_dml parameter and FALSE for the include_ddl parameter. If you specify an LCR member subprogram that is valid only for DDL LCRs, then specify FALSE for the include_dml parameter and TRUE for the include_ddl parameter.

See Also: Chapter 248, "Logical Change Record TYPEs"

	
queue_to_queue

	
If TRUE or NULL, then a new propagation created by this procedure is a queue to queue propagation. A queue-to-queue propagation always has its own propagation job and uses a service for automatic failover when the destination queue is a buffered queue in an Oracle Real Application Clusters (Oracle RAC) database.

If FALSE, then a new propagation created by this procedure is a queue-to-dblink propagation. A queue-to-dblink propagation can share a propagation job with other propagations that use the same database link and does not support automatic failover in an Oracle RAC environment.

This procedure cannot change the queue to queue property of an exiting propagation. If the specified propagation exists, then the procedure behaves in the following way for each setting:

	
If TRUE and the specified propagation is not a queue to queue propagation, then the procedure raises an error.

	
If FALSE and the specified propagation is a queue to queue propagation, then the procedure raises an error.

	
If NULL, then the procedure does not change the queue to queue property of the propagation.

See Also: Oracle Streams Concepts and Administration for more information about queue-to-queue propagations

Usage Notes

This procedure configures propagation using the current user. Only one propagation is allowed between a particular source queue and destination queue.

This procedure creates DML and DDL rules automatically based on include_dml and include_ddl parameter values, respectively. Each rule has a system-generated rule name that consists of the schema name with a sequence number appended to it. The sequence number is used to avoid naming conflicts. If the schema name plus the sequence number is too long, then the schema name is truncated. A propagation uses the rules for filtering.

	
See Also:

	
"Operational Notes" and "Propagation Rules for LCRs" for more information about the rules created by this procedure

	
"Propagation User"

Examples

The following is an example of a schema rule condition created for DML changes:

((:dml.get_object_owner() = 'HR') and :dml.is_null_tag() = 'Y'
and :dml.get_source_database_name() = 'DBS1.NET')

ADD_SCHEMA_RULES Procedure

This procedures adds rules to a rule set of one of the following types of Oracle Streams clients:

	
When the streams_type parameter is set to capture, this procedure adds capture process rules for capturing changes to a specified schema. See "Capture Process Rules for Changes in the Redo Log" for more information about these rules.

	
When the streams_type parameter is set to apply and the streams_name parameter specifies the name of an apply process, this procedure adds apply process rules for applying logical change records (LCRs) in a queue that contain changes to a specified schema. The rules can specify that the LCRs must be from a particular source database. See "Apply Process Rules for LCRs" for more information about these rules.

	
When the streams_type parameter is set to dequeue, this procedure adds messaging client rules for dequeuing persistent LCRs from a queue that contain changes to a specified schema. The rules can specify that the LCRs must be from a particular source database. See "Messaging Client Rules for LCRs" for more information about these rules.

This procedure creates the specified capture process, apply process, or messaging client if it does not exist.

This procedure is overloaded. One version of this procedure contains two OUT parameters, and the other does not.

	
Caution:

If you add schema rules to the positive rule set for a capture process, then make sure you add rules to the negative capture process rule set to exclude database objects in the schema that are not support by Oracle Streams. Query the DBA_STREAMS_UNSUPPORTED data dictionary view to determine which database objects are not supported by Oracle Streams. If unsupported database objects are not excluded, then capture errors will result.

	
Note:

Currently, messaging clients cannot dequeue buffered messages.

Syntax

DBMS_STREAMS_ADM.ADD_SCHEMA_RULES(
 schema_name IN VARCHAR2,
 streams_type IN VARCHAR2,
 streams_name IN VARCHAR2 DEFAULT NULL,
 queue_name IN VARCHAR2 DEFAULT 'streams_queue',
 include_dml IN BOOLEAN DEFAULT TRUE,
 include_ddl IN BOOLEAN DEFAULT FALSE,
 include_tagged_lcr IN BOOLEAN DEFAULT FALSE,
 source_database IN VARCHAR2 DEFAULT NULL,
 dml_rule_name OUT VARCHAR2,
 ddl_rule_name OUT VARCHAR2,
 inclusion_rule IN BOOLEAN DEFAULT TRUE,
 and_condition IN VARCHAR2 DEFAULT NULL);

DBMS_STREAMS_ADM.ADD_SCHEMA_RULES(
 schema_name IN VARCHAR2,
 streams_type IN VARCHAR2,
 streams_name IN VARCHAR2 DEFAULT NULL,
 queue_name IN VARCHAR2 DEFAULT 'streams_queue',
 include_dml IN BOOLEAN DEFAULT TRUE,
 include_ddl IN BOOLEAN DEFAULT FALSE,
 include_tagged_lcr IN BOOLEAN DEFAULT FALSE,
 source_database IN VARCHAR2 DEFAULT NULL,
 inclusion_rule IN BOOLEAN DEFAULT TRUE,
 and_condition IN VARCHAR2 DEFAULT NULL);

Parameters

Table 144-9 ADD_SCHEMA_RULES Procedure Parameters

	Parameter	Description
	
schema_name

	
The name of the schema. For example, hr.

You can specify a schema that does not yet exist, because Oracle Streams does not validate the existence of the schema.

	
streams_type

	
The type of Oracle Streams client:

	
Specify capture for a capture process.

	
Specify apply for an apply process.

	
Specify dequeue for a messaging client.

	
streams_name

	
The name of the capture process, apply process, or messaging client. Do not specify an owner.

If NULL, if streams_type is capture or dequeue, and if one relevant capture process or messaging client for the queue exists, then the relevant Oracle Streams client is used. If no relevant Oracle Streams client exists for the queue, then an Oracle Streams client is created automatically with a system-generated name. If NULL and multiple Oracle Streams clients of the specified streams_type for the queue exist, then the procedure raises an error.

If NULL, if streams_type is apply, and if one relevant apply process exists, then the procedure uses the relevant apply process. The relevant apply process is identified in one of the following ways:

	
If one existing apply process has the source database specified in source_database and uses the queue specified in queue_name, then the procedure uses this apply process.

	
If source_database is NULL and one existing apply process is using the queue specified in queue_name, then the procedure uses this apply process.

If NULL and no relevant apply process exists, then the procedure creates an apply process automatically with a system-generated name.

If NULL and multiple relevant apply processes exist, then the procedure raises an error.

Each apply process and messaging client must have a unique name.

	
queue_name

	
The name of the local queue, specified as [schema_name.]queue_name. The current database must contain the queue, and the queue must be ANYDATA type.

For example, to specify a queue named streams_queue in the strmadmin schema, enter strmadmin.streams_queue for this parameter. If the schema is not specified, then the current user is the default.

For capture process rules, this is the queue into which a capture process enqueues LCRs. For apply process rules, this is the queue from which an apply process dequeues messages. For messaging client rules, this is the queue from which a messaging client dequeues messages.

	
include_dml

	
If TRUE, then the procedure creates a rule for DML changes. If FALSE, then the procedure does not create a DML rule. NULL is not permitted.

	
include_ddl

	
If TRUE, then the procedure creates a rule for DDL changes. If FALSE, then the procedure does not create a DDL rule. NULL is not permitted.

	
include_tagged_lcr

	
If TRUE, then the procedure does not add a condition regarding Oracle Streams tags to the generated rules. Therefore, these rules can evaluate to TRUE regardless of whether a redo entry or LCR has a non-NULL tag. If the rules are added to the positive rule set for the process, then a redo entry is always considered for capture, and an LCR is always considered for apply, regardless of whether the redo entry or LCR has a non-NULL tag. If the rules are added to a positive rule set, then setting this parameter to TRUE is appropriate for a full (for example, standby) copy of a database. If the rules are added to the negative rule set for the process, then whether a redo entry or LCR is discarded does not depend on the tag.

If FALSE, then the procedure adds a condition to each generated rule that causes the rule to evaluate to TRUE only if a redo entry or LCR has a NULL Oracle Streams tag. If the rules are added to the positive rule set for the process, then a redo entry is considered for capture, and an LCR is considered for apply, only when the redo entry or LCR contains a NULL tag. If the rules are added to a positive rule set, then setting this parameter to FALSE might be appropriate in update-anywhere configurations to avoid sending a change back to its source database. If the rules are added to the negative rule set for the process, then a redo entry or LCR can be discarded only if it has a NULL tag.

Usually, specify TRUE for this parameter if the inclusion_rule parameter is set to FALSE.

See Also: Oracle Streams Replication Administrator's Guide for more information about tags

	
source_database

	
The global name of the source database. If NULL, then the procedure does not add a condition regarding the source database to the generated rules.

For capture process rules, specify NULL or the global name of the local database if you are creating a capture process locally at the source database. If you are adding rules to a downstream capture process rule set at a downstream database, then specify the source database of the changes that will be captured.

For apply process rules, specify the source database of the changes that will be applied by the apply process. The source database is the database where the changes originated. If an apply process applies captured messages, then the apply process can apply messages from only one capture process at one source database.

For messaging client rules, specify NULL if you do not want the rules created by this procedure to have a condition for the source database. Specify a source database if you want the rules created by this procedure to have a condition for the source database. The source database is part of the information in an LCR, and user-constructed LCRs might or might not have this information.

If you do not include the domain name, then the procedure appends it to the database name automatically. For example, if you specify DBS1 and the domain is .NET, then the procedure specifies DBS1.NET automatically.

	
dml_rule_name

	
If include_dml is TRUE, then this parameter contains the DML rule name.

If include_dml is FALSE, then this parameter contains a NULL.

	
ddl_rule_name

	
If include_ddl is TRUE, then this parameter contains the DDL rule name.

If include_ddl is FALSE, then this parameter contains a NULL.

	
inclusion_rule

	
If inclusion_rule is TRUE, then the procedure adds the rules to the positive rule set for the Oracle Streams client.

If inclusion_rule is FALSE, then the procedure adds the rules to the negative rule set for the Oracle Streams client.

In either case, the system creates the rule set if it does not exist.

	
and_condition

	
If non-NULL, appends the specified condition to the system-generated rule condition using an AND clause in the following way:

(system_condition) AND (and_condition)

The variable in the specified condition must be :lcr. For example, to specify that the schema rules generated by the procedure evaluate to TRUE only if the Oracle Streams tag is the hexadecimal equivalent of '02', specify the following condition:

:lcr.get_tag() = HEXTORAW(''02'')

The :lcr in the specified condition is converted to :dml or :ddl, depending on the rule that is being generated. If you are specifying an LCR member subprogram that is dependent on the LCR type (row or DDL), then make sure this procedure only generates the appropriate rule.

Specifically, if you specify an LCR member subprogram that is valid only for row LCRs, then specify TRUE for the include_dml parameter and FALSE for the include_ddl parameter. If you specify an LCR member subprogram that is valid only for DDL LCRs, then specify FALSE for the include_dml parameter and TRUE for the include_ddl parameter.

See Also: Chapter 248, "Logical Change Record TYPEs"

Usage Notes

This procedure creates DML and DDL rules automatically based on include_dml and include_ddl parameter values, respectively. Each rule has a system-generated rule name that consists of the schema name with a sequence number appended to it. The sequence number is used to avoid naming conflicts. If the schema name plus the sequence number is too long, then the schema name is truncated. A capture process, apply process, or messaging client uses the rules for filtering.

	
See Also:

	
"Operational Notes"

	
"Security Model"

Examples

The following is an example of a schema rule condition created for DML changes:

((:dml.get_object_owner() = 'HR') and :dml.is_null_tag() = 'Y'
and :dml.get_source_database_name() = 'DBS1.NET')

ADD_SUBSET_PROPAGATION_RULES Procedure

This procedures adds propagation rules that propagate the logical change records (LCRs) related to a subset of the rows in the specified table in a source queue to a destination queue, and creates the specified propagation if it does not exist.

This procedure is overloaded. One version of this procedure contains three OUT parameters, and the other does not.

Syntax

DBMS_STREAMS_ADM.ADD_SUBSET_PROPAGATION_RULES(
 table_name IN VARCHAR2,
 dml_condition IN VARCHAR2,
 streams_name IN VARCHAR2 DEFAULT NULL,
 source_queue_name IN VARCHAR2,
 destination_queue_name IN VARCHAR2,
 include_tagged_lcr IN BOOLEAN DEFAULT FALSE,
 source_database IN VARCHAR2 DEFAULT NULL,
 insert_rule_name OUT VARCHAR2,
 update_rule_name OUT VARCHAR2,
 delete_rule_name OUT VARCHAR2,
 queue_to_queue IN BOOLEAN DEFAULT NULL);

DBMS_STREAMS_ADM.ADD_SUBSET_PROPAGATION_RULES(
 table_name IN VARCHAR2,
 dml_condition IN VARCHAR2,
 streams_name IN VARCHAR2 DEFAULT NULL,
 source_queue_name IN VARCHAR2,
 destination_queue_name IN VARCHAR2,
 include_tagged_lcr IN BOOLEAN DEFAULT FALSE,
 source_database IN VARCHAR2 DEFAULT NULL,
 queue_to_queue IN BOOLEAN DEFAULT NULL);

Parameters

Table 144-10 ADD_SUBSET_PROPAGATION_RULES Procedure Parameters

	Parameter	Description
	
table_name

	
The name of the table specified as [schema_name.]object_name. For example, hr.employees. If the schema is not specified, then the current user is the default.

The specified table must exist in the same database as the propagation. Also, the specified table cannot have any LOB, LONG, LONG RAW, or XMLType columns currently or in the future.

	
dml_condition

	
The subset condition. Specify this condition similar to the way you specify conditions in a WHERE clause in SQL.

For example, to specify rows in the hr.employees table where the salary is greater than 4000 and the job_id is SA_MAN, enter the following as the condition:

' salary > 4000 and job_id = ''SA_MAN'' '

Note: The quotation marks in the preceding example are all single quotation marks.

	
streams_name

	
The name of the propagation. Do not specify an owner.

If the specified propagation does not exist, then the procedure creates it automatically.

If NULL and a propagation exists for the same source queue and destination queue (including database link), then the procedure uses this propagation.

If NULL and no propagation exists for the same source queue and destination queue (including database link), then the procedure creates a propagation automatically with a system-generated name.

	
source_queue_name

	
The name of the source queue, specified as [schema_name.]queue_name. The current database must contain the source queue, and the queue must be ANYDATA type.

For example, to specify a source queue named streams_queue in the strmadmin schema, enter strmadmin.streams_queue for this parameter.

If the schema is not specified, then the current user is the default.

	
destination_queue_name

	
The name of the destination queue, including a database link, specified as [schema_name.]queue_name[@dblink_name], if the destination queue is in a remote database. The queue must be ANYDATA type.

For example, to specify a destination queue named streams_queue in the strmadmin schema and use a database link named dbs2.net, enter strmadmin.streams_queue@dbs2.net for this parameter.

If the schema is not specified, then the current user is the default.

If the database link is omitted, then the procedure uses the global name of the current database, and the source queue and destination queue must be in the same database.

Note: Connection qualifiers are not allowed.

	
include_tagged_lcr

	
If TRUE, then an LCR is always considered for propagation, regardless of whether it has a non-NULL tag. This setting is appropriate for a full (for example, standby) copy of a database.

If FALSE, then an LCR is considered for propagation only when the LCR contains a NULL tag. A setting of FALSE is often specified in update-anywhere configurations to avoid sending a change back to its source database.

See Also: Oracle Streams Replication Administrator's Guide for more information about tags

	
source_database

	
The global name of the source database. The source database is where the change originated. If NULL, then the procedure does not add a condition regarding the source database to the generated rules.

If you do not include the domain name, then the procedure appends it to the database name automatically. For example, if you specify DBS1 and the domain is .NET, then the procedure specifies DBS1.NET automatically.

Oracle recommends that you specify a source database for propagation rules.

	
insert_rule_name

	
Contains the system-generated INSERT rule name. This rule handles inserts and updates that must be converted into inserts.

	
update_rule_name

	
Contains the system-generated UPDATE rule name. This rule handles updates that remain updates.

	
delete_rule_name

	
Contains the system-generated DELETE rule name. This rule handles deletes and updates that must be converted into deletes

	
queue_to_queue

	
If TRUE or NULL, then a new propagation created by this procedure is a queue to queue propagation. A queue-to-queue propagation always has its own propagation job and uses a service for automatic failover when the destination queue is a buffered queue in an Oracle Real Application Clusters (Oracle RAC) database.

If FALSE, then a new propagation created by this procedure is a queue-to-dblink propagation. A queue-to-dblink propagation can share a propagation job with other propagations that use the same database link and does not support automatic failover in an Oracle RAC environment.

This procedure cannot change the queue to queue property of an exiting propagation. If the specified propagation exists, then the procedure behaves in the following way for each setting:

	
If TRUE and the specified propagation is not a queue to queue propagation, then the procedure raises an error.

	
If FALSE and the specified propagation is a queue to queue propagation, then the procedure raises an error.

	
If NULL, then the procedure does not change the queue to queue property of the propagation.

See Also: Oracle Streams Concepts and Administration for more information about queue-to-queue propagations

Usage Notes

This procedure configures propagation using the current user. Only one propagation is allowed between a particular source queue and destination queue.

Running this procedure generates three rules for the specified propagation: one for INSERT statements, one for UPDATE statements, and one for DELETE statements. For INSERT and DELETE statements, only row LCRs that satisfy the condition specified for the dml_condition parameter are propagated. For UPDATE statements, the following variations are possible:

	
If both the new and old values in a row LCR satisfy the specified dml_condition, then the row LCR is propagated without any changes.

	
If neither the new or old values in a row LCR satisfy the specified dml_condition, then the row LCR is not propagated.

	
If the old values for a row LCR satisfy the specified dml_condition, but the new values do not, then the update row LCR is converted into a delete row LCR.

	
If the new values for a row LCR satisfy the specified dml_condition, but the old values do not, then the update row LCR is converted to an insert row LCR.

When an update is converted into an insert or a delete, it is called row migration.

A propagation uses the rules for filtering. If the propagation does not have a positive rule set, then the procedure creates a positive rule set automatically, and the rules for propagating changes to the table are added to the positive rule set. A subset rule can be added to positive rule set only, not to a negative rule set. Other rules in an existing positive rule set for the propagation are not affected. Additional rules can be added using either the DBMS_STREAMS_ADM package or the DBMS_RULE_ADM package.

Rules for INSERT, UPDATE, and DELETE statements are created automatically when you run this procedure, and these rules are given a system-generated rule name. Each rule has a system-generated rule name that consists of the table name with a sequence number appended to it. The sequence number is used to avoid naming conflicts. If the table name plus the sequence number is too long, then the table name is truncated. The ADD_SUBSET_RULES procedure is overloaded, and the system-generated rule names for INSERT, UPDATE, and DELETE statements are returned.

When you create propagation subset rules for a table, you should create an unconditional supplemental log group at the source database with all the columns in the table. Supplemental logging is required if an update must be converted to an insert. The propagation rule must have all the column values to be able to perform this conversion correctly.

	
Attention:

Subset rules should only reside in positive rule sets. You should not add subset rules to negative rule sets. Doing so might have unpredictable results because row migration would not be performed on LCRs that are not discarded by the negative rule set.

	
See Also:

	
"Operational Notes" and "Propagation Rules for LCRs" for more information about the rules created by this procedure

	
"Propagation User"

Examples

The following is an example of a rule condition created for filtering a row LCR containing an update operation when the dml_condition is region_id = 2, the table_name is hr.regions, and the source_database is dbs1.net:

:dml.get_object_owner()='HR' AND :dml.get_object_name()='REGIONS'
AND :dml.is_null_tag()='Y' AND :dml.get_source_database_name()='DBS1.NET'
AND :dml.get_command_type()='UPDATE'
AND (:dml.get_value('NEW','"REGION_ID"') IS NOT NULL)
AND (:dml.get_value('OLD','"REGION_ID"') IS NOT NULL)
AND (:dml.get_value('OLD','"REGION_ID"').AccessNumber()=2)
AND (:dml.get_value('NEW','"REGION_ID"').AccessNumber()=2)

ADD_SUBSET_RULES Procedure

This procedure adds rules to a rule set of one of the following types of Oracle Streams clients:

	
When the streams_type parameter is set to capture, this procedure adds capture process rules for capturing changes to a subset of rows in a specified table. See "Capture Process Rules for Changes in the Redo Log" for more information about these rules.

	
When the streams_type parameter is set to sync_capture, this procedure adds rules for capturing changes to a subset of rows in a specified table. See "Synchronous Capture Rules for DML Changes to Tables" for more information about these rules.

	
When the streams_type parameter is set to apply and the streams_name parameter specifies the name of an apply process, this procedure adds apply process rules for applying logical change records (LCRs) in a queue that contain changes to a subset of rows in a specified table. The rules can specify that the LCRs must be from a particular source database. See "Apply Process Rules for LCRs" for more information about these rules.

	
When the streams_type parameter is set to dequeue, this procedure adds messaging client rules for dequeuing persistent LCRs from a queue that contain changes to a subset of rows in a specified table. The rules can specify that the LCRs must be from a particular source database. See "Messaging Client Rules for LCRs" for more information about these rules.

This procedure creates the specified capture process, synchronous capture, apply process, or messaging client if it does not exist.

This procedure is overloaded. One version of this procedure contains three OUT parameters, and the other does not.

	
Note:

	
Currently, messaging clients cannot dequeue buffered messages.

	
The invoking user must be granted the DBA role to create a synchronous capture.

Syntax

DBMS_STREAMS_ADM.ADD_SUBSET_RULES(
 table_name IN VARCHAR2,
 dml_condition IN VARCHAR2,
 streams_type IN VARCHAR2 DEFAULT 'apply',
 streams_name IN VARCHAR2 DEFAULT NULL,
 queue_name IN VARCHAR2 DEFAULT 'streams_queue',
 include_tagged_lcr IN BOOLEAN DEFAULT FALSE,
 source_database IN VARCHAR2 DEFAULT NULL,
 insert_rule_name OUT VARCHAR2,
 update_rule_name OUT VARCHAR2,
 delete_rule_name OUT VARCHAR2);

DBMS_STREAMS_ADM.ADD_SUBSET_RULES(
 table_name IN VARCHAR2,
 dml_condition IN VARCHAR2,
 streams_type IN VARCHAR2 DEFAULT 'apply',
 streams_name IN VARCHAR2 DEFAULT NULL,
 queue_name IN VARCHAR2 DEFAULT 'streams_queue',
 include_tagged_lcr IN BOOLEAN DEFAULT FALSE,
 source_database IN VARCHAR2 DEFAULT NULL);

Parameters

Table 144-11 ADD_SUBSET_RULES Procedure Parameters

	Parameter	Description
	
table_name

	
The name of the table specified as [schema_name.]object_name. For example, hr.employees. If the schema is not specified, then the current user is the default.

The specified table must exist in the same database as the capture process, synchronous capture, apply process, or messaging client. Also, the specified table cannot have any LOB, LONG, LONG RAW, or XMLType columns currently or in the future.

	
dml_condition

	
The subset condition. Specify this condition similar to the way you specify conditions in a WHERE clause in SQL.

For example, to specify rows in the hr.employees table where the salary is greater than 4000 and the job_id is SA_MAN, enter the following as the condition:

' salary > 4000 and job_id = ''SA_MAN'' '

Note: The quotation marks in the preceding example are all single quotation marks.

	
streams_type

	
The type of Oracle Streams client:

	
Specify capture for a capture process.

	
Specify sync_capture for a synchronous capture.

	
Specify apply for an apply process.

	
Specify dequeue for a messaging client.

	
streams_name

	
The name of the capture process, synchronous capture, apply process, or messaging client. Do not specify an owner.

If NULL, if streams_type is capture, sync_capture, or dequeue, and if one relevant capture process, synchronous capture, or messaging client for the queue exists, then the procedure uses the relevant Oracle Streams client. If no relevant Oracle Streams client exists for the queue, then the procedure creates an Oracle Streams client automatically with a system-generated name. If NULL and multiple Oracle Streams clients of the specified streams_type for the queue exist, then the procedure raises an error.

If NULL, if streams_type is apply, and if one relevant apply process exists, then the procedure uses the relevant apply process. The relevant apply process is identified in one of the following ways:

	
If one existing apply process has the source database specified in source_database and uses the queue specified in queue_name, then the procedure uses this apply process.

	
If source_database is NULL and one existing apply process is using the queue specified in queue_name, then the procedure uses this apply process.

If NULL and no relevant apply process exists, then the procedure creates an apply process automatically with a system-generated name.

If NULL and multiple relevant apply processes exist, then the procedure raises an error.

Each apply process and messaging client must have a unique name.

	
queue_name

	
The name of the local queue, specified as [schema_name.]queue_name. The current database must contain the queue, and the queue must be ANYDATA type.

For example, to specify a queue named streams_queue in the strmadmin schema, enter strmadmin.streams_queue for this parameter. If the schema is not specified, then the current user is the default.

For capture process or synchronous capture rules, this is the queue into which a capture process or synchronous capture enqueues LCRs. For apply process rules, this is the queue from which an apply process dequeues messages. For messaging client rules, this is the queue from which a messaging client dequeues messages.

	
include_tagged_lcr

	
If TRUE, then the Oracle Streams client performs its action regardless of the tag:

	
A redo entry is always considered for capture by a capture process, regardless of whether the redo entry has a non-NULL tag.

	
A change is always considered for capture by a synchronous capture, regardless of whether the session that makes the change has a non-NULL tag.

	
An LCR is always considered for apply by an apply process or dequeue by a messaging client, regardless of whether redo entry or LCR has a non-NULL tag.

If FALSE, then an Oracle Streams client performs its action only when the tag is NULL:

	
A redo entry is considered for capture by a capture process only when the redo entry contains a NULL tag.

	
A change is considered for capture by a synchronous capture only when the session that makes the change has a NULL tag.

	
An LCR is considered for apply by an apply process or dequeue by a messaging client only if the LCR contains a NULL tag.

A setting of FALSE is often specified in update-anywhere configurations to avoid sending a change back to its source database.

See Also: Oracle Streams Replication Administrator's Guide for more information about tags

	
source_database

	
The global name of the source database. If NULL, then the procedure does not add a condition regarding the source database to the generated rules.

For capture process rules, specify NULL or the global name of the local database if you are creating a capture process locally at the source database. If you are adding rules to a downstream capture process rule set at a downstream database, then specify the source database of the changes that will be captured.

For synchronous capture rules, specify the name of the local database.

For apply process rules, specify the source database of the changes that will be applied by the apply process. The source database is the database where the changes originated. If an apply process applies captured messages, then the apply process can apply messages from only one capture process at one source database.

For messaging client rules, specify NULL if you do not want the rules created by this procedure to have a condition for the source database. Specify a source database if you want the rules created by this procedure to have a condition for the source database. The source database is part of the information in an LCR, and user-constructed LCRs might or might not have this information.

If you do not include the domain name, then the procedure appends it to the database name automatically. For example, if you specify DBS1 and the domain is .NET, then the procedure specifies DBS1.NET automatically.

	
insert_rule_name

	
Contains the system-generated INSERT rule name. This rule handles inserts and updates that must be converted into inserts.

	
update_rule_name

	
Contains the system-generated UPDATE rule name. This rule handles updates that remain updates.

	
delete_rule_name

	
Contains the system-generated DELETE rule name. This rule handles deletes and updates that must be converted into deletes

Usage Notes

Running this procedure generates three rules for the specified capture process, synchronous capture, apply process, or messaging client: one for INSERT statements, one for UPDATE statements, and one for DELETE statements. For INSERT and DELETE statements, only DML changes that satisfy the condition specified for the dml_condition parameter are captured, applied, or dequeued. For UPDATE statements, the following variations are possible:

	
If both the new and old values in a DML change satisfy the specified dml_condition, then the DML change is captured, applied, or dequeued without any changes.

	
If neither the new or old values in a DML change satisfy the specified dml_condition, then the DML change is not captured, applied, or dequeued.

	
If the old values for a DML change satisfy the specified dml_condition, but the new values do not, then the DML change is converted into a delete.

	
If the new values for a DML change satisfy the specified dml_condition, but the old values do not, then the DML change is converted to an insert.

When an update is converted into an insert or a delete, it is called row migration.

A capture process, synchronous capture, apply process, or messaging client uses the rules for filtering. If the Oracle Streams client does not have a positive rule set, then this procedure creates a positive rule set automatically, and adds the rules for the table to the positive rule set. A subset rule can be added to positive rule set only, not to a negative rule set. Other rules in an existing rule set for the process are not affected. Additional rules can be added using either the DBMS_STREAMS_ADM package or the DBMS_RULE_ADM package.

Rules for INSERT, UPDATE, and DELETE statements are created automatically when you run this procedure, and these rules are given a system-generated rule name. Each rule has a system-generated rule name that consists of the table name with a sequence number appended to it. The sequence number is used to avoid naming conflicts. If the table name plus the sequence number is too long, then the table name is truncated. The ADD_SUBSET_RULES procedure is overloaded, and the system-generated rule names for INSERT, UPDATE, and DELETE statements are returned.

	
Attention:

Subset rules should only reside in positive rule sets. You should not add subset rules to negative rule sets. Doing so might have unpredictable results because row migration would not be performed on LCRs that are not discarded by the negative rule set.

	
See Also:

	
"Operational Notes"

	
"Security Model"

Examples

The following is an example of a rule condition created for filtering DML changes containing an update operation when the dml_condition is region_id = 2, the table_name is hr.regions, and the source_database is dbs1.net:

:dml.get_object_owner()='HR' AND :dml.get_object_name()='REGIONS'
AND :dml.is_null_tag()='Y' AND :dml.get_source_database_name()='DBS1.NET'
AND :dml.get_command_type()='UPDATE'
AND (:dml.get_value('NEW','"REGION_ID"') IS NOT NULL)
AND (:dml.get_value('OLD','"REGION_ID"') IS NOT NULL)
AND (:dml.get_value('OLD','"REGION_ID"').AccessNumber()=2)
AND (:dml.get_value('NEW','"REGION_ID"').AccessNumber()=2)

ADD_TABLE_PROPAGATION_RULES Procedure

This procedures adds table rules to the positive rule set for a propagation, or adds table rules to the negative rule set for a propagation, and creates the specified propagation if it does not exist.

This procedure is overloaded. One version of this procedure contains two OUT parameters, and the other does not.

Syntax

DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES(
 table_name IN VARCHAR2,
 streams_name IN VARCHAR2 DEFAULT NULL,
 source_queue_name IN VARCHAR2,
 destination_queue_name IN VARCHAR2,
 include_dml IN BOOLEAN DEFAULT TRUE,
 include_ddl IN BOOLEAN DEFAULT FALSE,
 include_tagged_lcr IN BOOLEAN DEFAULT FALSE,
 source_database IN VARCHAR2 DEFAULT NULL,
 dml_rule_name OUT VARCHAR2,
 ddl_rule_name OUT VARCHAR2,
 inclusion_rule IN BOOLEAN DEFAULT TRUE,
 and_condition IN VARCHAR2 DEFAULT NULL,
 queue_to_queue IN BOOLEAN DEFAULT NULL);

DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES(
 table_name IN VARCHAR2,
 streams_name IN VARCHAR2 DEFAULT NULL,
 source_queue_name IN VARCHAR2,
 destination_queue_name IN VARCHAR2,
 include_dml IN BOOLEAN DEFAULT TRUE,
 include_ddl IN BOOLEAN DEFAULT FALSE,
 include_tagged_lcr IN BOOLEAN DEFAULT FALSE,
 source_database IN VARCHAR2 DEFAULT NULL,
 inclusion_rule IN BOOLEAN DEFAULT TRUE,
 and_condition IN VARCHAR2 DEFAULT NULL,
 queue_to_queue IN BOOLEAN DEFAULT NULL);

Parameters

Table 144-12 ADD_TABLE_PROPAGATION_RULES Procedure Parameters

	Parameter	Description
	
table_name

	
The name of the table specified as [schema_name.]table_name. For example, hr.employees. If the schema is not specified, then the current user is the default.

	
streams_name

	
The name of the propagation. Do not specify an owner.

If the specified propagation does not exist, then the procedure creates it automatically.

If NULL and a propagation exists for the same source queue and destination queue (including database link), then the procedure uses this propagation.

If NULL and no propagation exists for the same source queue and destination queue (including database link), then the procedure creates a propagation automatically with a system-generated name.

	
source_queue_name

	
The name of the source queue, specified as [schema_name.]queue_name. The current database must contain the source queue, and the queue must be ANYDATA type.

For example, to specify a source queue named streams_queue in the strmadmin schema, enter strmadmin.streams_queue for this parameter.

If the schema is not specified, then the current user is the default.

	
destination_queue_name

	
The name of the destination queue, including a database link, specified as [schema_name.]queue_name[@dblink_name], if the destination queue is in a remote database. The queue must be ANYDATA type.

For example, to specify a destination queue named streams_queue in the strmadmin schema and use a database link named dbs2.net, enter strmadmin.streams_queue@dbs2.net for this parameter.

If the schema is not specified, then the current user is the default.

If the database link is omitted, then the procedure uses the global name of the current database, and the source queue and destination queue must be in the same database.

Note: Connection qualifiers are not allowed.

	
include_dml

	
If TRUE, then the procedure creates a rule for DML changes. If FALSE, then the procedure does not create a DML rule. NULL is not permitted.

	
include_ddl

	
If TRUE, then the procedure creates a rule for DDL changes. If FALSE, then the procedure does not create a DDL rule. NULL is not permitted.

The generated rule evaluates to TRUE for any DDL change that operates on the table or on an object that is part of the table, such as an index or trigger on the table. The rule evaluates to FALSE for any DDL change that either does not refer to the table or refers to the table in a subordinate way. For example, the rule evaluates to FALSE for changes that create synonyms or views based on the table. The rule also evaluates to FALSE for a change to a PL/SQL subprogram that refers to the table.

	
include_tagged_lcr

	
If TRUE, then the procedure does not add a condition regarding Oracle Streams tags to the generated rules. Therefore, these rules can evaluate to TRUE regardless of whether a logical change record (LCR) has a non-NULL tag. If the rules are added to the positive rule set for the propagation, then an LCR is always considered for propagation, regardless of whether it has a non-NULL tag. If the rules are added to a positive rule set, then setting this parameter to TRUE is appropriate for a full (for example, standby) copy of a database. If the rules are added to the negative rule set for the propagation, then whether an LCR is discarded does not depend on the tag for the LCR.

If FALSE, then the procedure adds a condition to each generated rule that causes the rule to evaluate to TRUE only if an LCR has a NULL Oracle Streams tag. If the rules are added to the positive rule set for the propagation, then an LCR is considered for propagation only when the LCR contains a NULL tag. If the rules are added to a positive rule set, then setting this parameter to FALSE might be appropriate in update-anywhere configurations to avoid sending a change back to its source database. If the rules are added to the negative rule set for the propagation, then an LCR can be discarded only if it has a NULL tag.

Usually, specify TRUE for this parameter if the inclusion_rule parameter is set to FALSE.

See Also: Oracle Streams Replication Administrator's Guide for more information about tags

	
source_database

	
The global name of the source database. The source database is where the change originated. If NULL, then the procedure does not add a condition regarding the source database to the generated rules.

If you do not include the domain name, then the procedure appends it to the database name automatically. For example, if you specify DBS1 and the domain is .NET, then the procedure specifies DBS1.NET automatically.

Oracle recommends that you specify a source database for propagation rules.

	
dml_rule_name

	
If include_dml is TRUE, then this parameter contains the DML rule name.

If include_dml is FALSE, then this parameter contains a NULL.

	
ddl_rule_name

	
If include_ddl is TRUE, then this parameter contains the DDL rule name.

If include_ddl is FALSE, then this parameter contains a NULL.

	
inclusion_rule

	
If inclusion_rule is TRUE, then the procedure adds the rules to the positive rule set for the propagation.

If inclusion_rule is FALSE, then the procedure adds the rules to the negative rule set for the propagation.

In either case, the system creates the rule set if it does not exist.

	
and_condition

	
If non-NULL, appends the specified condition to the system-generated rule condition using an AND clause in the following way:

(system_condition) AND (and_condition)

The variable in the specified condition must be :lcr. For example, to specify that the table rules generated by the procedure evaluate to TRUE only if the Oracle Streams tag is the hexadecimal equivalent of '02', specify the following condition:

:lcr.get_tag() = HEXTORAW(''02'')

The :lcr in the specified condition is converted to :dml or :ddl, depending on the rule that is being generated. If you are specifying an LCR member subprogram that is dependent on the LCR type (row or DDL), then make sure this procedure only generates the appropriate rule.

Specifically, if you specify an LCR member subprogram that is valid only for row LCRs, then specify TRUE for the include_dml parameter and FALSE for the include_ddl parameter. If you specify an LCR member subprogram that is valid only for DDL LCRs, then specify FALSE for the include_dml parameter and TRUE for the include_ddl parameter.

See Also: Chapter 248, "Logical Change Record TYPEs"

	
queue_to_queue

	
If TRUE or NULL, then a new propagation created by this procedure is a queue to queue propagation. A queue-to-queue propagation always has its own propagation job and uses a service for automatic failover when the destination queue is a buffered queue in an Oracle Real Application Clusters (Oracle RAC) database.

If FALSE, then a new propagation created by this procedure is a queue-to-dblink propagation. A queue-to-dblink propagation can share a propagation job with other propagations that use the same database link and does not support automatic failover in an Oracle RAC environment.

This procedure cannot change the queue to queue property of an exiting propagation. If the specified propagation exists, then the procedure behaves in the following way for each setting:

	
If TRUE and the specified propagation is not a queue to queue propagation, then the procedure raises an error.

	
If FALSE and the specified propagation is a queue to queue propagation, then the procedure raises an error.

	
If NULL, then the procedure does not change the queue to queue property of the propagation.

See Also: Oracle Streams Concepts and Administration for more information about queue-to-queue propagations

Usage Notes

This procedure configures propagation using the current user. Only one propagation is allowed between a particular source queue and destination queue.

This procedure creates DML and DDL rules automatically based on include_dml and include_ddl parameter values, respectively. Each rule has a system-generated rule name that consists of the table name with a sequence number appended to it. The sequence number is used to avoid naming conflicts. If the table name plus the sequence number is too long, then the table name is truncated. A propagation uses the rules for filtering.

	
See Also:

	
"Operational Notes" and "Propagation Rules for LCRs" for more information about the rules created by this procedure

	
"Security Model"

Examples

The following is an example of a table rule condition created for filtering DML statements:

(((:dml.get_object_owner() = 'HR' and :dml.get_object_name() = 'LOCATIONS'))
and :dml.is_null_tag() = 'Y' and :dml.get_source_database_name() = 'DBS1.NET')

ADD_TABLE_RULES Procedure

This procedure adds rules to a rule set of one of the following types of Oracle Streams clients:

	
When the streams_type parameter is set to capture, this procedure adds capture process rules for capturing changes to a specified table. See "Capture Process Rules for Changes in the Redo Log" for more information about these rules.

	
When the streams_type parameter is set to sync_capture, this procedure adds rules for capturing changes to a specified table. See "Synchronous Capture Rules for DML Changes to Tables" for more information about these rules.

	
When the streams_type parameter is set to apply and the streams_name parameter specifies the name of an apply process, this procedure adds apply process rules for applying logical change records (LCRs) in a queue that contain changes to a specified table. The rules can specify that the LCRs must be from a particular source database. See "Apply Process Rules for LCRs" for more information about these rules.

	
When the streams_type parameter is set to dequeue, this procedure adds messaging client rules for dequeuing persistent LCRs from a queue that contain changes to a specified table. The rules can specify that the LCRs must be from a particular source database. See "Messaging Client Rules for LCRs" for more information about these rules.

This procedure creates the specified capture process, synchronous capture, apply process, or messaging client if it does not exist.

This procedure is overloaded. One version of this procedure contains two OUT parameters, and the other does not.

	
Note:

	
Currently, messaging clients cannot dequeue buffered messages.

	
The invoking user must be granted the DBA role to create a synchronous capture.

Syntax

DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name IN VARCHAR2,
 streams_type IN VARCHAR2,
 streams_name IN VARCHAR2 DEFAULT NULL,
 queue_name IN VARCHAR2 DEFAULT 'streams_queue',
 include_dml IN BOOLEAN DEFAULT TRUE,
 include_ddl IN BOOLEAN DEFAULT FALSE,
 include_tagged_lcr IN BOOLEAN DEFAULT FALSE,
 source_database IN VARCHAR2 DEFAULT NULL,
 dml_rule_name OUT VARCHAR2,
 ddl_rule_name OUT VARCHAR2,
 inclusion_rule IN BOOLEAN DEFAULT TRUE,
 and_condition IN VARCHAR2 DEFAULT NULL);

DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name IN VARCHAR2,
 streams_type IN VARCHAR2,
 streams_name IN VARCHAR2 DEFAULT NULL,
 queue_name IN VARCHAR2 DEFAULT 'streams_queue',
 include_dml IN BOOLEAN DEFAULT TRUE,
 include_ddl IN BOOLEAN DEFAULT FALSE,
 include_tagged_lcr IN BOOLEAN DEFAULT FALSE,
 source_database IN VARCHAR2 DEFAULT NULL,
 inclusion_rule IN BOOLEAN DEFAULT TRUE,
 and_condition IN VARCHAR2 DEFAULT NULL);

Parameters

Table 144-13 ADD_TABLE_RULES Procedure Parameters

	Parameter	Description
	
table_name

	
The name of the table specified as [schema_name.]object_name. For example, hr.employees. If the schema is not specified, then the current user is the default.

You can specify a table that does not yet exist, because Oracle Streams does not validate the existence of the table.

	
streams_type

	
The type of Oracle Streams client:

	
Specify capture for a capture process.

	
Specify sync_capture for a synchronous capture.

	
Specify apply for an apply process.

	
Specify dequeue for a messaging client.

	
streams_name

	
The name of the capture process, synchronous capture, apply process, or messaging client. Do not specify an owner.

If NULL, if streams_type is capture, sync_capture, or dequeue, and if one relevant capture process, synchronous capture, or messaging client for the queue exists, then the procedure uses the relevant Oracle Streams client. If no relevant Oracle Streams client exists for the queue, then the procedure creates an Oracle Streams client automatically with a system-generated name. If NULL and multiple Oracle Streams clients of the specified streams_type for the queue exist, then the procedure raises an error.

If NULL, if streams_type is apply, and if one relevant apply process exists, then the procedure uses the relevant apply process. The relevant apply process is identified in one of the following ways:

	
If one existing apply process has the source database specified in source_database and uses the queue specified in queue_name, then the procedure uses this apply process.

	
If source_database is NULL and one existing apply process is using the queue specified in queue_name, then the procedure uses this apply process.

If NULL and no relevant apply process exists, then the procedure creates an apply process automatically with a system-generated name.

If NULL and multiple relevant apply processes exist, then the procedure raises an error.

Each apply process and messaging client must have a unique name.

	
queue_name

	
The name of the local queue, specified as [schema_name.]queue_name. The current database must contain the queue, and the queue must be ANYDATA type.

For example, to specify a queue named streams_queue in the strmadmin schema, enter strmadmin.streams_queue for this parameter. If the schema is not specified, then the current user is the default.

For capture process or synchronous capture rules, this is the queue into which a capture process or synchronous capture enqueues LCRs. For apply process rules, this is the queue from which an apply process dequeues messages. For messaging client rules, this is the queue from which a messaging client dequeues messages.

	
include_dml

	
If TRUE, then the procedure creates a DML rule for DML changes. If FALSE, then the procedure does not create a DML rule. NULL is not permitted.

	
include_ddl

	
If TRUE, then the procedure creates a DDL rule for DDL changes. If FALSE, then the procedure does not create a DDL rule. NULL is not permitted.

The generated rule evaluates to TRUE for any DDL change that operates on the table or on an object that is part of the table, such as an index or trigger on the table. The rule evaluates to FALSE for any DDL change that either does not refer to the table or refers to the table in a subordinate way. For example, the rule evaluates to FALSE for changes that create synonyms or views based on the table. The rule also evaluates to FALSE for a change to a PL/SQL subprogram that refers to the table.

	
include_tagged_lcr

	
If TRUE, then the procedure does not add a condition regarding Oracle Streams tags to the generated rules. Therefore, these rules can evaluate to TRUE regardless of whether a redo entry, session, or LCR has a non-NULL tag. If the rules are added to the positive rule set for the Oracle Streams client, then the Oracle Streams client performs its action regardless of the tag:

	
A redo entry is always considered for capture by a capture process, regardless of whether the redo entry has a non-NULL tag.

	
A change is always considered for capture by a synchronous capture, regardless of whether the session that makes the change has a non-NULL tag.

	
An LCR is always considered for apply by an apply process or dequeue by a messaging client, regardless of whether redo entry or LCR has a non-NULL tag.

If the rules are added to a positive rule set, then setting this parameter to TRUE is appropriate for a full (for example, standby) copy of a database. If the rules are added to the negative rule set for the Oracle Streams client, then whether a database change is discarded does not depend on the tag.

If FALSE, then the procedure adds a condition to each generated rule that causes the rule to evaluate to TRUE only if a redo entry, session, or LCR has a NULL Oracle Streams tag. If the rules are added to the positive rule set for an Oracle Streams client, then the Oracle Streams client performs its action only when the tag is NULL:

	
A redo entry is considered for capture by a capture process only when the redo entry contains a NULL tag.

	
A change is considered for capture by a synchronous capture only when the session that makes the change has a NULL tag.

	
An LCR is considered for apply by an apply process or dequeue by a messaging client only if the LCR contains a NULL tag.

If the rules are added to a positive rule set, then setting this parameter to FALSE might be appropriate in update-anywhere configurations to avoid sending a change back to its source database. If the rules are added to the negative rule set for the Oracle Streams client, then a database change can be discarded only if it has a NULL tag.

A setting of FALSE is often specified in update-anywhere configurations to avoid sending a change back to its source database.

Usually, specify TRUE for this parameter if the inclusion_rule parameter is set to FALSE.

See Also: Oracle Streams Replication Administrator's Guide for more information about tags

	
source_database

	
The global name of the source database. If NULL, then the procedure does not add a condition regarding the source database to the generated rules.

For capture process rules, specify NULL or the global name of the local database if you are creating a capture process locally at the source database. If you are adding rules to a downstream capture process rule set at a downstream database, then specify the source database of the changes that will be captured.

For synchronous capture rules, specify the name of the local database.

For apply process rules, specify the source database of the changes that will be applied by the apply process. The source database is the database where the changes originated. If an apply process applies captured messages, then the apply process can apply messages from only one capture process at one source database.

For messaging client rules, specify NULL if you do not want the rules created by this procedure to have a condition for the source database. Specify a source database if you want the rules created by this procedure to have a condition for the source database. The source database is part of the information in an LCR, and user-constructed LCRs might or might not have this information.

If you do not include the domain name, then the procedure appends it to the database name automatically. For example, if you specify DBS1 and the domain is .NET, then the procedure specifies DBS1.NET automatically.

	
dml_rule_name

	
If include_dml is TRUE, then this parameter contains the DML rule name.

If include_dml is FALSE, then this parameter contains a NULL.

	
ddl_rule_name

	
If include_ddl is TRUE, then this parameter contains the DDL rule name.

If include_ddl is FALSE, then this parameter contains a NULL.

	
inclusion_rule

	
If inclusion_rule is TRUE, then the procedure adds the rules to the positive rule set for the Oracle Streams client.

If inclusion_rule is FALSE, then the procedure adds the rules to the negative rule set for the Oracle Streams client. A synchronous capture cannot have a negative rule set. Specifying FALSE for a synchronous capture raises an error.

In either case, the system creates the rule set if it does not exist.

	
and_condition

	
If non-NULL, appends the specified condition to the system-generated rule condition using an AND clause in the following way:

(system_condition) AND (and_condition)

The variable in the specified condition must be :lcr. For example, to specify that the table rules generated by the procedure evaluate to TRUE only if the Oracle Streams tag is the hexadecimal equivalent of '02', specify the following condition:

:lcr.get_tag() = HEXTORAW(''02'')

The :lcr in the specified condition is converted to :dml or :ddl, depending on the rule that is being generated. If you are specifying an LCR member subprogram that is dependent on the LCR type (row or DDL), then make sure this procedure only generates the appropriate rule.

Specifically, if you specify an LCR member subprogram that is valid only for row LCRs, then specify TRUE for the include_dml parameter and FALSE for the include_ddl parameter. If you specify an LCR member subprogram that is valid only for DDL LCRs, then specify FALSE for the include_dml parameter and TRUE for the include_ddl parameter.

See Also: Chapter 248, "Logical Change Record TYPEs"

Usage Notes

This procedure creates DML and DDL rules automatically based on include_dml and include_ddl parameter values, respectively. Each rule has a system-generated rule name that consists of the table name with a sequence number appended to it. The sequence number is used to avoid naming conflicts. If the table name plus the sequence number is too long, then the table name is truncated. A capture process, synchronous capture, apply process, or messaging client uses the rules for filtering.

	
See Also:

	
"Operational Notes"

	
"Security Model"

Examples

The following is an example of a table rule condition created for DML changes:

(((:dml.get_object_owner() = 'HR' and :dml.get_object_name() = 'LOCATIONS'))
and :dml.is_null_tag() = 'Y' and :dml.get_source_database_name() = 'DBS1.NET')

CLEANUP_INSTANTIATION_SETUP Procedure

This procedure removes an Oracle Streams replication configuration that was set up by the PRE_INSTANTIATION_SETUP and POST_INSTANTIATION_SETUP procedures in this package. This procedure either remove the configuration directly, or it can generate a script that removes the configuration.

Run this procedure at the capture database. The capture database is the database that captures changes made to the source database.

	
Attention:

When the CLEANUP_INSTANTIATION_SETUP procedure is run, the parameter values must match the parameter values specified when the corresponding PRE_INSTANTIATION_SETUP and POST_INSTANTIATION_SETUP procedures were run, except for the values of the following parameters: perform_actions, script_name, and script_directory_object.

	
See Also:

	
"PRE_INSTANTIATION_SETUP Procedure"

	
"POST_INSTANTIATION_SETUP Procedure"

	
"Procedures That Configure an Oracle Streams Environment" for more information about this procedure

Syntax

DBMS_STREAMS_ADM.CLEANUP_INSTANTIATION_SETUP(
 maintain_mode IN VARCHAR2,
 tablespace_names IN DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET,
 source_database IN VARCHAR2,
 destination_database IN VARCHAR2,
 perform_actions IN BOOLEAN DEFAULT TRUE,
 script_name IN VARCHAR2 DEFAULT NULL,
 script_directory_object IN VARCHAR2 DEFAULT NULL,
 capture_name IN VARCHAR2 DEFAULT NULL,
 capture_queue_table IN VARCHAR2 DEFAULT NULL,
 capture_queue_name IN VARCHAR2 DEFAULT NULL,
 capture_queue_user IN VARCHAR2 DEFAULT NULL,
 propagation_name IN VARCHAR2 DEFAULT NULL,
 apply_name IN VARCHAR2 DEFAULT NULL,
 apply_queue_table IN VARCHAR2 DEFAULT NULL,
 apply_queue_name IN VARCHAR2 DEFAULT NULL,
 apply_queue_user IN VARCHAR2 DEFAULT NULL,
 bi_directional IN BOOLEAN DEFAULT FALSE,
 change_global_name IN BOOLEAN DEFAULT FALSE);

Parameters

Table 144-14 CLEANUP_INSTANTIATION_SETUP Procedure Parameters

	Parameter	Description
	
maintain_mode

	
Specify one of the following:

	
GLOBAL to clean up the Oracle Streams configuration that maintained the entire database in both the source and destination databases

	
TRANSPORTABLE TABLESPACES to cleanup the Oracle Streams configuration that maintained a set of tablespaces at both the source and destination database

	
tablespace_names

	
If maintain_mode is set to TRANSPORTABLE TABLESPACES, then specify the local tablespace set to be cloned at the destination database and maintained by Oracle Streams.

The tablespaces in the tablespace set must exist at the source database, but these tablespaces must not exist at the destination database.

A directory object must exist for each directory that contains the datafiles for the tablespace set. The user who invokes this procedure must have READ privilege on these directory objects.

If maintain_mode is set to GLOBAL, then specify an empty tablespace set.

Regardless of the maintain_mode setting, an error is raised if the tablespace_names parameter is not set or is set to NULL.

See Also: TABLESPACE_SET Table Type

	
source_database

	
The global name of the source database.

If NULL, then the procedure uses the global name of the local database.

	
destination_database

	
The global name of the destination database. A database link from the local database to the destination database with the same name as the global name of the destination database must exist and must be accessible to the user who runs the procedure.

If NULL, then the procedure raises an error.

	
perform_actions

	
If TRUE, then this procedure performs the necessary actions to clean up the Oracle Streams configuration directly.

If FALSE, then the procedure does not perform the necessary actions to clean up the Oracle Streams configuration directly.

Specify FALSE when this procedure is generating a script that you can edit and then run. The procedure raises an error if you specify FALSE and either of the following parameters is NULL:

	
script_name

	
script_directory_object

	
script_name

	
If non-NULL and the perform_actions parameter is FALSE, then specify the name of the script generated by this procedure. The script contains all of the statements used to clean up the Oracle Streams configuration. If a file with the specified script name exists in the specified directory for the script_directory_object parameter, then the statements are appended to the existing file.

If non-NULL and the perform_actions parameter is TRUE, then this procedure generates the specified script and performs the actions to clean up the Oracle Streams configuration directly.

If NULL and the perform_actions parameter is TRUE, then this procedure directly performs the actions to clean up the Oracle Streams configuration without generating a script.

If NULL and the perform_actions parameter is FALSE, then the procedure raises an error.

	
script_directory_object

	
The directory object for the directory on the local computer system into which the generated script is placed.

If the script_name parameter is NULL, then this parameter is ignored, and this procedure does not generate a script.

If NULL and the script_name parameter is non-NULL, then the procedure raises an error.

Note: The specified directory object cannot point to an Oracle Automatic Storage Management (ASM) disk group.

	
capture_name

	
The name of the capture processes configured to capture changes in the Oracle Streams configuration. Do not specify an owner.

If NULL, then the procedure automatically identifies the capture processes with system-generated names created by the PRE_INSTANTIATION_SETUP and POST_INSTANTIATION_SETUP procedures.

	
capture_queue_table

	
The name of the queue table for each queue used by a capture process, specified as [schema_name.]queue_table_name. For example, strmadmin.streams_queue_table. If the schema is not specified, then the current user is the default.

If NULL, then the procedure automatically identifies the capture queue tables with system-generated names created by the PRE_INSTANTIATION_SETUP and POST_INSTANTIATION_SETUP procedures.

	
capture_queue_name

	
The name of each queue used by a capture process, specified as [schema_name.]queue_name. For example, strmadmin.streams_queue.

If the schema is not specified, then the queue table owner is the default. The queue owner automatically has privileges to perform all queue operations on the queue.

If NULL, then the procedure automatically identifies the capture queues with system-generated names created by the PRE_INSTANTIATION_SETUP and POST_INSTANTIATION_SETUP procedures.

	
capture_queue_user

	
The name of the user who has ENQUEUE and DEQUEUE privileges for the queue at the source database. This user is a secure queue user of the queue.

	
propagation_name

	
The name of the propagations configured to propagate changes in the Oracle Streams configuration. Do not specify an owner.

If NULL, then the procedure automatically identifies the propagations with system-generated names created by the PRE_INSTANTIATION_SETUP and POST_INSTANTIATION_SETUP procedures.

	
apply_name

	
The name of the apply processes configured to apply changes in the Oracle Streams configuration. Do not specify an owner.

If NULL, then the procedure automatically identifies the apply processes with system-generated names created by the PRE_INSTANTIATION_SETUP and POST_INSTANTIATION_SETUP procedures.

	
apply_queue_table

	
The name of the queue table for each queue used by an apply process, specified as [schema_name.]queue_table_name. For example, strmadmin.streams_queue_table. If the schema is not specified, then the current user is the default.

If NULL, then the procedure automatically identifies the apply queue tables with system-generated names created by the PRE_INSTANTIATION_SETUP and POST_INSTANTIATION_SETUP procedures.

	
apply_queue_name

	
The name of each queue used by an apply process, specified as [schema_name.]queue_name. For example, strmadmin.streams_queue.

If the schema is not specified, then the queue table owner is the default. The queue owner automatically has privileges to perform all queue operations on the queue.

If NULL, then the procedure automatically identifies the apply queues with system-generated names created by the PRE_INSTANTIATION_SETUP and POST_INSTANTIATION_SETUP procedures.

	
apply_queue_user

	
The name of the user who has ENQUEUE and DEQUEUE privileges for the queue at the destination database. This user is a secure queue user of the queue.

	
bi_directional

	
Specify TRUE if the Oracle Streams replication configuration is bi-directional between the database specified in source_database and the database specified in destination_database.

Specify FALSE if the Oracle Streams replication configuration is one way replication from the current database to the database specified in destination_database.

	
change_global_name

	
If TRUE, then the procedure changes the global name of the database specified in destination_database to match the global name of the current database.

If FALSE, then the procedure does not change the global name of the database specified in destination_database.

DELETE_COLUMN Procedure

This procedure either adds or removes a declarative rule-based transformation which deletes a column from a row logical change record (LCR) that satisfies the specified rule.

For the transformation to be performed when the specified rule evaluates to TRUE, the rule must be in the positive rule set of an Oracle Streams client. Oracle Streams clients include capture processes, synchronous captures, propagations, apply processes, and messaging clients.

	
Note:

	
The DELETE_COLUMN procedure supports the same data types supported by Oracle Streams capture processes.

	
The DELETE_COLUMN procedure is useful when you want to delete a relatively small number of columns in a row LCR. To delete most of the columns in a row LCR and keep a relatively small number of columns, consider using the KEEP_COLUMNS procedure in this package.

	
Declarative transformations can transform row LCRs only. These row LCRs can be captured by a capture process, captured by a synchronous capture, or constructed and enqueued by an application. Therefore, a DML rule must be specified when you run this procedure. If a DDL is specified, then the procedure raises an error.

	
See Also:

	
Oracle Streams Concepts and Administration for more information about declarative rule-based transformations and about the data types supported by Oracle Streams capture processes

	
"KEEP_COLUMNS Procedure"

Syntax

DBMS_STREAMS_ADM.DELETE_COLUMN(
 rule_name IN VARCHAR2,
 table_name IN VARCHAR2,
 column_name IN VARCHAR2,
 value_type IN VARCHAR2 DEFAULT '*',
 step_number IN NUMBER DEFAULT 0,
 operation IN VARCHAR2 DEFAULT 'ADD');

Parameters

Table 144-15 DELETE_COLUMN Procedure Parameters

	Parameter	Description
	
rule_name

	
The name of the rule, specified as [schema_name.]rule_name. If NULL, then the procedure raises an error.

For example, to specify a rule in the hr schema named employees12, enter hr.employees12. If the schema is not specified, then the current user is the default.

	
table_name

	
The name of the table from which the column is deleted in the row LCR, specified as [schema_name.]object_name. For example, hr.employees. If the schema is not specified, then the current user is the default.

	
column_name

	
The name of the column deleted from each row LCR that satisfies the rule.

	
value_type

	
Specify 'NEW' to delete the column from the new values in the row LCR.

Specify 'OLD' to delete the column from the old values in the row LCR.

Specify '*' to delete the column from both the old and new values in the row LCR.

	
step_number

	
The order of execution of the transformation.

See Also: Oracle Streams Concepts and Administration for more information about transformation ordering

	
operation

	
Specify 'ADD' to add the transformation to the rule.

Specify 'REMOVE' to remove the transformation from the rule.

See "Usage Notes" for more information about this parameter.

Usage Notes

When 'REMOVE' is specified for the operation parameter, all of the delete column declarative rule-based transformations for the specified rule are removed that match the specified table_name, column_name, and step_number parameters. Nulls specified for these parameters act as wildcards. The following table lists the behavior of the DELETE_COLUMN procedure when one or more of these parameters is NULL:

	table_name	column_name	step_number	Result
	NULL	NULL	NULL	Remove all delete column transformations for the specified rule.
	NULL	NULL	non-NULL	Remove all delete column transformations with the specified step_number for the specified rule.
	NULL	non-NULL	non-NULL	Remove all delete column transformations with the specified column_name and step_number for the specified rule.
	non-NULL	NULL	non-NULL	Remove all delete column transformations with the specified table_name and step_number for the specified rule.
	NULL	non-NULL	NULL	Remove all delete column transformations with the specified column_name for the specified rule.
	non-NULL	non-NULL	NULL	Remove all delete column transformations with the specified table_name and column_name for the specified rule.
	non-NULL	NULL	NULL	Remove all delete column transformations with the specified table_name for the specified rule.
	non-NULL	non-NULL	non-NULL	Remove all delete column transformations with the specified table_name, column_name, and step_number for the specified rule.

GET_MESSAGE_TRACKING Function

Returns the tracking label for the current session.

	
See Also:

SET_MESSAGE_TRACKING Procedure

Syntax

DBMS_STREAMS_ADM.GET_MESSAGE_TRACKING
RETURN VARCHAR2;

GET_SCN_MAPPING Procedure

This procedure gets information about the system change number (SCN) values to use for Oracle Streams capture and apply processes in an Oracle Streams replication environment. This information can be used for the following purposes:

	
To recover transactions after point-in-time recovery is performed on a source database in a multiple source Oracle Streams environment

	
To run flashback queries for the corresponding SCN at a source database and destination database in an Oracle Streams single source replication environment

	
See Also:

Oracle Streams Replication Administrator's Guide for information about point-in-time recovery and flashback queries in an Oracle Streams replication environment

Syntax

DBMS_STREAMS_ADM.GET_SCN_MAPPING(
 apply_name IN VARCHAR2,
 src_pit_scn IN NUMBER,
 dest_instantiation_scn OUT NUMBER,
 dest_start_scn OUT NUMBER,
 dest_skip_txn_ids OUT DBMS_UTILITY.NAME_ARRAY);

Parameters

Table 144-16 GET_SCN_MAPPING Procedure Parameters

	Parameter	Description
	
apply_name

	
Name of the apply process which applies logical change records (LCRs) from the source database. The procedure raises an error if the specified apply process does not exist.

	
src_pit_scn

	
The SCN at the source database.

For point-in-time recovery, specify the point-in-time recovery SCN at the source database.

If the specified SCN is greater than the source commit SCN of the last applied transaction, then NULL is returned for both dest_start_scn and dest_instantiation_scn. In this case, no values can be returned for these parameters because the corresponding transaction has not been applied at the destination database yet.

	
dest_instantiation_scn

	
The SCN at the destination database that corresponds to the specified src_pit_scn at the source database.

For point-in-time recovery, use this value for the instantiation SCNs at the source database during recovery.

	
dest_start_scn

	
For point in time recovery, the SCN to use for the start_scn parameter for the recovery capture process.

	
dest_skip_txn_ids

	
Transaction IDs of transactions that were skipped at the dest_instantiation_scn because the apply process was applying nondependent transactions out of order.

For point in time recovery, these transaction IDs should be ignored by the recovery apply process.

This parameter is relevant only if the commit_serialization for the apply process that applied these transactions was set to DEPENDENT_TRANSACTIONS, and the transactions were applied out of order.

GET_TAG Function

This function gets the binary tag for all redo entries generated by the current session.

	
See Also:

	
"SET_TAG Procedure"

	
Oracle Streams Replication Administrator's Guide for more information about tags

Syntax

DBMS_STREAMS_ADM.GET_TAG
RETURN RAW;

Examples

The following example illustrates how to display the current logical change record (LCR) tag as output:

SET SERVEROUTPUT ON
DECLARE
 raw_tag RAW(2000);
BEGIN
 raw_tag := DBMS_STREAMS_ADM.GET_TAG();
 DBMS_OUTPUT.PUT_LINE('Tag Value = ' || RAWTOHEX(raw_tag));
END;
/

You can also display the value by querying the DUAL view:

SELECT DBMS_STREAMS_ADM.GET_TAG FROM DUAL;

KEEP_COLUMNS Procedure

This procedure either adds or removes a declarative rule-based transformation which keeps a list of columns in a row logical change record (LCR) that satisfies the specified rule. The transformation deletes columns that are not in the list from the row LCR.

For the transformation to be performed when the specified rule evaluates to TRUE, the rule must be in the positive rule set of an Oracle Streams client. Oracle Streams clients include capture processes, synchronous captures, propagations, apply processes, and messaging clients.

This procedure is overloaded. The column_list parameter is type VARCHAR2 and the column_table parameter is type DBMS_UTILITY.LNAME_ARRAY. These parameters enable you to enter the list of columns in different ways and are mutually exclusive.

	
Note:

	
The KEEP_COLUMNS procedure supports the same data types supported by Oracle Streams capture processes.

	
The KEEP_COLUMNS procedure is useful when you want to keep a relatively small number of columns in a row LCR. To keep most of the columns in a row LCR and delete a relatively small number of columns, consider using the DELETE_COLUMN procedure in this package.

	
Declarative transformations can transform row LCRs only. These row LCRs can be captured by a capture process, captured by a synchronous capture, or constructed and enqueued by an application. Therefore, a DML rule must be specified when you run this procedure. If a DDL is specified, then the procedure raises an error.

	
See Also:

	
Oracle Streams Concepts and Administration for more information about declarative rule-based transformations and about the data types supported by Oracle Streams capture processes

	
"DELETE_COLUMN Procedure"

Syntax

DBMS_STREAMS_ADM.KEEP_COLUMNS(
 rule_name IN VARCHAR2,
 table_name IN VARCHAR2,
 column_list IN VARCHAR2,
 value_type IN VARCHAR2 DEFAULT '*',
 step_number IN NUMBER DEFAULT 0,
 operation IN VARCHAR2 DEFAULT 'ADD');

DBMS_STREAMS_ADM.KEEP_COLUMNS(
 rule_name IN VARCHAR2,
 table_name IN VARCHAR2,
 column_table IN DBMS_UTILITY.LNAME_ARRAY,
 value_type IN VARCHAR2 DEFAULT '*',
 step_number IN NUMBER DEFAULT 0,
 operation IN VARCHAR2 DEFAULT 'ADD');

Parameters

Table 144-17 KEEP_COLUMNS Procedure Parameters

	Parameter	Description
	
rule_name

	
The name of the rule, specified as [schema_name.]rule_name. If NULL, then the procedure raises an error.

For example, to specify a rule in the hr schema named employees12, enter hr.employees12. If the schema is not specified, then the current user is the default.

	
table_name

	
The name of the table for which the columns are kept in the row LCR, specified as [schema_name.]object_name. For example, hr.employees. If the schema is not specified, then the current user is the default.

	
column_list

	
The names of the columns kept for each row LCR that satisfies the rule. Specify a comma-delimited list of type VARCHAR2. The transformation removes columns that are not in the list from the row LCR.

If this parameter is set to NULL, and the column_table parameter is also set to NULL, then the procedure raises an error.

	
column_table

	
The names of the columns kept for each row LCR that satisfies the rule. Specify a PL/SQL associative array of type DBMS_UTILITY.LNAME_ARRAY, where each element is the name of a column. The first schema should be in position 1. The last position must be NULL.

The transformation removes columns that are not in the table from the row LCR.

If this parameter is set to NULL, and the column_list parameter is also set to NULL, then the procedure raises an error.

	
value_type

	
Specify 'NEW' to keep the columns in the new values in the row LCR.

Specify 'OLD' to keep the columns in the old values in the row LCR.

Specify '*' to keep the columns in both the old and new values in the row LCR.

	
step_number

	
The order of execution of the transformation.

See Also: Oracle Streams Concepts and Administration for more information about transformation ordering

	
operation

	
Specify 'ADD' to add the transformation to the rule.

Specify 'REMOVE' to remove the transformation from the rule.

See "Usage Notes" for more information about this parameter.

Usage Notes

When 'REMOVE' is specified for the operation parameter, all of the keep columns declarative rule-based transformations for the specified rule are removed that match the specified table_name, column_list, column_table, and step_number parameters. Nulls specified for these parameters act as wildcards. The following table lists the behavior of the KEEP_COLUMNS procedure when one or more of these parameters is NULL:

	table_name	column_list/column_table	step_number	Result
	NULL	NULL	NULL	Remove all keep columns transformations for the specified rule.
	NULL	NULL	non-NULL	Remove all keep columns transformations with the specified step_number for the specified rule.
	NULL	non-NULL	non-NULL	Remove all keep columns transformations with the specified column_list/column_table and step_number for the specified rule.
	non-NULL	NULL	non-NULL	Remove all keep columns transformations with the specified table_name and step_number for the specified rule.
	NULL	non-NULL	NULL	Remove all keep columns transformations with the specified column_list/column_table for the specified rule.
	non-NULL	non-NULL	NULL	Remove all keep columns transformations with the specified table_name and column_list/column_table for the specified rule.
	non-NULL	NULL	NULL	Remove all keep columns transformations with the specified table_name for the specified rule.
	non-NULL	non-NULL	non-NULL	Remove all keep columns transformations with the specified table_name, column_list/column_table, and step_number for the specified rule.

MAINTAIN_CHANGE_TABLE Procedure

This procedure configures an Oracle Streams environment that uses change handlers to record in a change table the data manipulation language (DML) changes made to a source table. Optionally, this procedure can also configure one-way replication of the table from the source database to the destination database. This procedure can either configure the environment directly, or it can generate a script that configures the environment.

A change handler is a special type of statement DML handler that tracks table changes and was created by either this MAINTAIN_CHANGE_TABLE procedure or the DBMS_APPLY_ADM.SET_CHANGE_HANDLER procedure. Information about change handlers is stored in the ALL_APPLY_CHANGE_HANDLERS and DBA_APPLY_CHANGE_HANDLERS views.

The change table can reside in the same database as the source table or in a different database.

Run this procedure at the capture database. The capture database is the database that captures changes made to the source database.

	
Note:

The environment configured by this procedure does not record or replicate data definition language (DDL) changes made to the source table.

	
See Also:

"Procedures That Configure an Oracle Streams Environment" for more information about this procedure

Syntax

DBMS_STREAMS_ADM.MAINTAIN_CHANGE_TABLE(
 change_table_name IN VARCHAR2,
 source_table_name IN VARCHAR2,
 column_type_list IN VARCHAR2,
 extra_column_list IN VARCHAR2 DEFAULT 'command_type, value_type',
 capture_values IN VARCHAR2,
 options_string IN VARCHAR2 DEFAULT NULL,
 script_name IN VARCHAR2 DEFAULT NULL,
 script_directory_object IN VARCHAR2 DEFAULT NULL,
 perform_actions IN BOOLEAN DEFAULT TRUE,
 capture_name IN VARCHAR2 DEFAULT NULL,
 propagation_name IN VARCHAR2 DEFAULT NULL,
 apply_name IN VARCHAR2 DEFAULT NULL,
 source_database IN VARCHAR2 DEFAULT NULL,
 destination_database IN VARCHAR2 DEFAULT NULL,
 keep_change_columns_only IN BOOLEAN DEFAULT TRUE,
 execute_lcr IN BOOLEAN DEFAULT FALSE);

Parameters

Table 144-18 MAINTAIN_CHANGE_TABLE Procedure Parameters

	Parameter	Description
	
change_table_name

	
The table that records changes to the source table. This table is maintained by Oracle Streams after configuration.

Specify the table as [schema_name.]table_name. For example, hr.jobs_change_table. If the schema is not specified, then the current user is the default.

If NULL, then the procedure raises an error.

If the specified table exists at the database specified in the destination_database parameter, then the procedure raises an error.

	
source_table_name

	
The table at the source database for which changes are recorded.

Specify the table as [schema_name.]table_name. For example, hr.jobs. If the schema is not specified, then the current user is the default.

If NULL, then the procedure raises an error.

	
column_type_list

	
A list of the columns in the source table for which changes are recorded. Specify a comma-delimited list of each column and its data type.

For example, specify the following for the hr.jobs table:

job_id VARCHAR2(10), job_title VARCHAR2(35), min_salary NUMBER(6), max_salary NUMBER(6)

The procedure automatically places columns with names that match the source database columns into an unconditional supplemental log group.

If NULL, then the procedure raises an error.

	
extra_column_list

	
A comma-delimited list of metadata attributes to include in the change table. The column name for a metadata attribute is in the format of attribute name followed by a $ symbol. For example, the source_database_name attribute is stored in the source_database_name$ column in the change table.

The following metadata attributes can be included:

	
value_type

	
source_database_name

	
command_type

	
object_owner

	
object_name

	
tag

	
transaction_id

	
scn

	
commit_scn

	
compatible

	
instance_number

	
message_number

	
row_text

	
row_id

	
serial#

	
session#

	
source_time

	
thread#

	
tx_name

	
username

All of these metadata attributes, except for value_type and message_number, are row LCR attributes that can be stored in row LCRs. For information about LCR attributes, see Oracle Streams Concepts and Administration.

The value_type$ column in the change table contains either OLD or NEW, depending on whether the column value is the original column value or the new column value, respectively.

The message_number$ column in the change table contains the identification number of each row LCR within a transaction. The message number increases incrementally for each row LCR within a transaction and shows the order of the row LCRs within a transaction.

The procedure automatically configures the source database to place information about extra attributes, such as serial#, into the redo log so that the information can be captured and recorded.

	
capture_values

	
Specify which values to capture when update operations are performed on the source table:

	
old - To capture the original values for an updated column in the source table

	
new - To capture the new values for an updated column in the source table

	
* - To capture both the original and the new values for an updated column in the source table

If NULL, then the procedure raises an error.

Note: For insert operations, only new column values can be captured. For delete operations, only old column values can be captured.

	
options_string

	
String of options passed to the CREATE TABLE statement that creates the change table. The string is appended to the generated CREATE TABLE statement after the closing parenthesis that defines the columns of the table. The string must be syntactically correct.

	
script_name

	
If non-NULL and the perform_actions parameter is FALSE, then specify the name of the script generated by this procedure. The script contains all of the statements used to configure the environment. If a file with the specified script name exists in the specified directory for the script_directory_object parameter, then the procedure appends the statements to the existing file.

If non-NULL and the perform_actions parameter is TRUE, then the procedure generates the specified script and performs the actions to configure the replication environment directly.

If NULL and the perform_actions parameter is TRUE, then the procedure performs the actions to configure the replication environment directly and does not generate a script.

If NULL and the perform_actions parameter is FALSE, then the procedure raises an error.

	
script_directory_object

	
The directory object for the directory on the local computer system into which the generated script is placed.

If the script_name parameter is NULL, then the procedure ignores this parameter and does not generate a script.

If NULL and the script_name parameter is non-NULL, then the procedure raises an error.

Note: The specified directory object cannot point to an Oracle Automatic Storage Management (ASM) disk group.

	
perform_actions

	
If TRUE, then the procedure performs the necessary actions to configure the environment directly.

If FALSE, then the procedure does not perform the necessary actions to configure the environment directly.

Specify FALSE when this procedure is generating a script that you can edit and then run. The procedure raises an error if you specify FALSE and either of the following parameters is NULL:

	
script_name

	
script_directory_object

	
capture_name

	
The name of each capture process configured to capture changes. Do not specify an owner.

If the specified name matches the name of an existing capture process, then the procedure uses the existing capture process and adds the rules for capturing changes to the database to the positive capture process rule set.

If NULL, then the system generates a name for each capture process it creates.

Note: The capture process name cannot be altered after the capture process is created.

	
propagation_name

	
The name of the propagation configured to propagate changes from the source database to the destination database. Do not specify an owner.

If the specified name matches the name of an existing propagation, then the procedure uses the existing propagation and adds the rules for propagating changes to the positive propagation rule set.

If NULL, then the system generates a name for the propagation.

If non-NULL and the source_database and destination_database are set to the same value, then this procedure raises an error. When the capture process and apply process are in the same database, they can use the same queue, and a propagation is not needed.

Note: The propagation name cannot be altered after the propagation is created.

	
apply_name

	
The name of each apply process configured to apply changes. Do not specify an owner.

If the specified name matches the name of an existing apply process, then the procedure uses the existing apply process and adds the rules for applying changes to the positive apply process rule set.

The specified name must not match the name of an existing messaging client at the destination database.

If NULL, then the system generates a name for the apply process. When set to NULL, no apply process that applies changes from the source database can exist on the destination database. If an apply process that applies changes from the source database exists at the destination database, then specify a non-NULL value for this parameter.

Note: The apply process name cannot be altered after the apply process is created.

	
source_database

	
The global name of the source database.

If the specified global name is the same as the global name of the local database, then the procedure configures a local capture process for the source database.

If the specified global name is different from the global name of the local database, then the procedure configures a downstream capture process at the local database. In this case, a database link from the local database to the source database with the same name as the global name of the source database must exist and must be accessible to the user who runs the procedure.

If NULL, then the procedure uses the global name of the local database.

	
destination_database

	
The global name of the destination database.

If the local database is not the destination database, then a database link from the local database to the destination database with the same name as the global name of the destination database must exist and must be accessible to the user who runs the procedure.

If NULL, then the procedure uses the global name of the local database.

	
keep_change_columns_only

	
If TRUE, then this procedure adds a declarative rule-based transformation which keeps the list of columns specified in the column_type_list parameter. The columns that are not specified in the column_type_list parameter are removed from each row LCR captured by the capture process.

If FALSE, then this procedure does not create a declarative rule-based transformation, and all of the columns in the row LCRs are kept.

Specify FALSE when information about columns that are not included in the column_type_list parameter is needed at the destination database. For example, if the execute_lcr parameter is set to TRUE and the configuration will replicate all of the columns in a source table, but the column_type_list parameter includes a subset of these columns, then the keep_change_columns_only parameter should be set to FALSE.

Note: When this parameter is set to TRUE, a declarative rule-based transformation is always created, even if the column_type_list includes all of the columns in the source table.

	
execute_lcr

	
If TRUE, then this procedure creates a change handler that executes each row LCR at the destination database.

If FALSE, then the row LCRs are not executed at the destination database.

Usage Notes

The following are usage notes for this procedure:

Types of Oracle Streams Environments Configured by the Procedure

This procedure can configure the following types of Oracle Streams environments:

	
Local capture and apply on one database: Specify the same global name for the source_database and the destination_database parameter.

	
Local capture and remote apply: Specify the global name of the local database for the source_database parameter and a remote database for the destination_database parameter.

	
Downstream capture and local apply: Specify a remote database for the source_database parameter and the local database for the destination_database parameter.

	
Downstream capture and remote apply: Specify a remote database for the source_database parameter and a remote database for the destination_database parameter.

Optional One-Way Replication With This Procedure

To configure one-way replication of the table, in addition to recording changes to the table, set the execute_lcr parameter to TRUE. The apply process executes each row LCR and applies the change in the row LCR to the replica table at the destination database. In this case, ensure that the source table is instantiated at the destination database before running the procedure. Specifically, the source table must be prepared for instantiation, the instantiation SCN must be set for the replica table at the destination database, and, usually, the source table replica table should be consistent.

	
See Also:

Oracle Streams Replication Administrator's Guide

Statement DML Handlers, the Change Table, and Row LCR Execution

This procedure configures one or more statement DML handlers that perform the following actions:

	
Record changes in the change table using the information in row LCRs.

	
Execute row LCRs if the execute_lcr parameter is set to TRUE.

The procedure ensures that the row LCRs contain the required attributes to record the changes specified in the capture_type_list, extra_column_list, and capture_values parameters. The procedure adds the statement DML handlers to the apply process specified in the apply_name parameter.

	
See Also:

Chapter 147, "DBMS_STREAMS_HANDLER_ADM"

MAINTAIN_GLOBAL Procedure

This procedure configures an Oracle Streams environment that replicates changes at the database level between two databases. This procedure can either configure the environment directly, or it can generate a script that configures the environment.

Run this procedure at the capture database. The capture database is the database that captures changes made to the source database.

	
Note:

	
This procedure automatically excludes database objects that are not supported by Oracle Streams from the replication environment by adding rules to the negative rule set of each capture and apply process. Query the DBA_STREAMS_UNSUPPORTED data dictionary view to determine which database objects are not supported by Oracle Streams. If unsupported database objects are not excluded, then capture errors will result.

	
If the bi_directional parameter is set to TRUE, then do not allow data manipulation language (DML) or data definition language (DDL) changes to the destination database while the MAINTAIN_GLOBAL procedure, or the script generated by the procedure, is running. This restriction does not apply to the source database.

	
A capture process never captures changes in the SYS, SYSTEM, or CTXSYS schemas. This procedure does not configure replication for these schemas.

	
See Also:

"Procedures That Configure an Oracle Streams Environment" for more information about this procedure

Syntax

DBMS_STREAMS_ADM.MAINTAIN_GLOBAL(
 source_directory_object IN VARCHAR2,
 destination_directory_object IN VARCHAR2,
 source_database IN VARCHAR2,
 destination_database IN VARCHAR2,
 perform_actions IN BOOLEAN DEFAULT TRUE,
 script_name IN VARCHAR2 DEFAULT NULL,
 script_directory_object IN VARCHAR2 DEFAULT NULL,
 dump_file_name IN VARCHAR2 DEFAULT NULL,
 capture_name IN VARCHAR2 DEFAULT NULL,
 capture_queue_table IN VARCHAR2 DEFAULT NULL,
 capture_queue_name IN VARCHAR2 DEFAULT NULL,
 capture_queue_user IN VARCHAR2 DEFAULT NULL,
 propagation_name IN VARCHAR2 DEFAULT NULL,
 apply_name IN VARCHAR2 DEFAULT NULL,
 apply_queue_table IN VARCHAR2 DEFAULT NULL,
 apply_queue_name IN VARCHAR2 DEFAULT NULL,
 apply_queue_user IN VARCHAR2 DEFAULT NULL,
 log_file IN VARCHAR2 DEFAULT NULL,
 bi_directional IN BOOLEAN DEFAULT FALSE,
 include_ddl IN BOOLEAN DEFAULT FALSE,
 instantiation IN INTEGER DEFAULT
 DBMS_STREAMS_ADM.INSTANTIATION_FULL);

Parameters

	
See Also:

"Common Parameters for the Configuration Procedures" for descriptions of the procedure parameters

Table 144-19 MAINTAIN_GLOBAL Procedure Parameters

	Parameter	Description
	
source_directory_object

	
The directory object for the directory on the computer system running the source database into which the generated Data Pump export dump file is placed. This file remains in this directory after the procedure completes.

This parameter is ignored if instantiation is set to DBMS_STREAMS_ADM.INSTANTIATION_FULL_NETWORK or DBMS_STREAMS_ADM.INSTANTIATION_NONE. In this case, specify NULL for the source_directory_object parameter.

If NULL and instantiation is set to DBMS_STREAMS_ADM.INSTANTIATION_FULL, then the procedure raises an error.

Note: The specified directory object cannot point to an Oracle Automatic Storage Management (ASM) disk group.

	
destination_directory_object

	
The directory object for the directory on the computer system running the destination database into which the generated Data Pump export dump file is transferred.

If the source database and destination database run on the same computer system, then the source and destination directories must be different.

This parameter is ignored if instantiation is set to DBMS_STREAMS_ADM.INSTANTIATION_FULL_NETWORK or DBMS_STREAMS_ADM.INSTANTIATION_NONE. In these cases, specify NULL for the destination_directory_object parameter.

If NULL and instantiation is set to DBMS_STREAMS_ADM.INSTANTIATION_FULL, then the procedure raises an error.

Note: The specified directory object cannot point to an Oracle ASM disk group.

	
source_database

	
The global name of the source database.

If the specified global name is the same as the global name of the local database, then the procedure configures a local capture process for the source database.

If the specified global name is different from the global name of the local database, then the procedure configures a downstream capture process at the local database. In this case, a database link from the local database to the source database with the same name as the global name of the source database must exist and must be accessible to the user who runs the procedure.

If NULL, then the procedure uses the global name of the local database.

	
destination_database

	
The global name of the destination database.

If the local database is not the destination database, then a database link from the local database to the destination database with the same name as the global name of the destination database must exist and must be accessible to the user who runs the procedure.

If NULL, then the procedure raises an error.

	
dump_file_name

	
The name of the Data Pump export dump file. If a file with the specified file name exists in the specified directory for the source_directory_object or destination_directory_object parameter, then the procedure raises an error.

This parameter is ignored if instantiation is set to DBMS_STREAMS_ADM.INSTANTIATION_FULL_NETWORK or DBMS_STREAMS_ADM.INSTANTIATION_NONE.

If NULL and instantiation is set to DBMS_STREAMS_ADM.INSTANTIATION_FULL, then the export dump file name is generated by the system. In this case, the export dump file name is expatnn.dmp, where nn is a sequence number. The sequence number is increased to produce an export dump file with a unique name in the source directory.

	
log_file

	
The name of the Data Pump export log file. This log file is placed in the same directory as the Data Pump export dump file.

This parameter is ignored if instantiation is set to DBMS_STREAMS_ADM.INSTANTIATION_FULL_NETWORK or DBMS_STREAMS_ADM.INSTANTIATION_NONE.

If NULL and instantiation is set to DBMS_STREAMS_ADM.INSTANTIATION_FULL, then the log file name is the same name as the export dump file name with an extension of .clg.

	
instantiation

	
Specify whether to perform instantiation and, if instantiation is performed, the type of instantiation:

DBMS_STREAMS_ADM.INSTANTIATION_FULL performs a full Data Pump export at the source database and a Data Pump import of the export dump file at the destination database. The instantiation SCN is set for the shared database objects during import. If the instantiation parameter is set to this value, then the user who runs this procedure must have EXECUTE privilege on the DBMS_FILE_TRANSFER package.

DBMS_STREAMS_ADM.INSTANTIATION_FULL_NETWORK performs a full network Data Pump import. A network import means that Data Pump performs the import without using an export dump file. The instantiation SCN is set for the shared database objects during import. If the instantiation parameter is set to this value, then a database link from the destination database to the source database with the same name as the global name of the source database must exist and must be accessible to the user who runs the procedure.

DBMS_STREAMS_ADM.INSTANTIATION_NONE does not perform an instantiation. This setting is valid only if the perform_actions parameter is set to FALSE, and the procedure generates a configuration script. In this case, the configuration script does not perform an instantiation and does not set the instantiation SCN for each shared database object. Instead, you must perform the instantiation and ensure that instantiation SCN values are set properly. If you use the RMAN DUPLICATE or CONVERT DATABASE command for database instantiation, then the destination database cannot be the capture database.

If this parameter is set to DBMS_STREAMS_ADM.INSTANTIATION_FULL or DBMS_STREAMS_ADM.INSTANTIATION_FULL_NETWORK, then the database objects being instantiated must exist at the source database.

If an instantiated database object does not exist at the destination database, then it is imported at the destination database, including its supplemental logging specifications from the source database and its supporting database objects, such as indexes and triggers. However, if the database object exists at the destination database before instantiation, then it is not imported at the destination database. Therefore, the supplemental logging specifications from the source database are not specified for the database object at the destination database, and the supporting database objects are not imported.

MAINTAIN_SCHEMAS Procedure

This procedure configures an Oracle Streams environment that replicates changes to specified schemas between two databases. This procedure can either configure the environment directly, or it can generate a script that configures the environment.

Run this procedure at the capture database. The capture database is the database that captures changes made to the source database.

This procedure is overloaded. One schema_names parameter is type VARCHAR2 and the other schema_names parameter is type DBMS_UTILITY.UNCL_ARRAY. These parameters enable you to enter the list of schemas in different ways and are mutually exclusive.

	
Note:

	
This procedure automatically excludes database objects that are not supported by Oracle Streams in the schemas from the replication environment by adding rules to the negative rule set of each capture and apply process. Query the DBA_STREAMS_UNSUPPORTED data dictionary view to determine which database objects are not supported by Oracle Streams. If unsupported database objects are not excluded, then capture errors will result.

	
If the bi_directional parameter is set to TRUE, then do not allow data manipulation language (DML) or data definition language (DDL) changes to the shared database objects at the destination database while the MAINTAIN_SCHEMAS procedure, or the script generated by the procedure, is running. This restriction does not apply to the source database.

	
See Also:

"Procedures That Configure an Oracle Streams Environment" for more information about this procedure

Syntax

DBMS_STREAMS_ADM.MAINTAIN_SCHEMAS(
 schema_names IN VARCHAR2,
 source_directory_object IN VARCHAR2,
 destination_directory_object IN VARCHAR2,
 source_database IN VARCHAR2,
 destination_database IN VARCHAR2,
 perform_actions IN BOOLEAN DEFAULT TRUE,
 script_name IN VARCHAR2 DEFAULT NULL,
 script_directory_object IN VARCHAR2 DEFAULT NULL,
 dump_file_name IN VARCHAR2 DEFAULT NULL,
 capture_name IN VARCHAR2 DEFAULT NULL,
 capture_queue_table IN VARCHAR2 DEFAULT NULL,
 capture_queue_name IN VARCHAR2 DEFAULT NULL,
 capture_queue_user IN VARCHAR2 DEFAULT NULL,
 propagation_name IN VARCHAR2 DEFAULT NULL,
 apply_name IN VARCHAR2 DEFAULT NULL,
 apply_queue_table IN VARCHAR2 DEFAULT NULL,
 apply_queue_name IN VARCHAR2 DEFAULT NULL,
 apply_queue_user IN VARCHAR2 DEFAULT NULL,
 log_file IN VARCHAR2 DEFAULT NULL,
 bi_directional IN BOOLEAN DEFAULT FALSE,
 include_ddl IN BOOLEAN DEFAULT FALSE,
 instantiation IN INTEGER DEFAULT
 DBMS_STREAMS_ADM.INSTANTIATION_SCHEMA);

DBMS_STREAMS_ADM.MAINTAIN_SCHEMAS(
 schema_names IN DBMS_UTILITY.UNCL_ARRAY,
 source_directory_object IN VARCHAR2,
 destination_directory_object IN VARCHAR2,
 source_database IN VARCHAR2,
 destination_database IN VARCHAR2,
 perform_actions IN BOOLEAN DEFAULT TRUE,
 script_name IN VARCHAR2 DEFAULT NULL,
 script_directory_object IN VARCHAR2 DEFAULT NULL,
 dump_file_name IN VARCHAR2 DEFAULT NULL,
 capture_name IN VARCHAR2 DEFAULT NULL,
 capture_queue_table IN VARCHAR2 DEFAULT NULL,
 capture_queue_name IN VARCHAR2 DEFAULT NULL,
 capture_queue_user IN VARCHAR2 DEFAULT NULL,
 propagation_name IN VARCHAR2 DEFAULT NULL,
 apply_name IN VARCHAR2 DEFAULT NULL,
 apply_queue_table IN VARCHAR2 DEFAULT NULL,
 apply_queue_name IN VARCHAR2 DEFAULT NULL,
 apply_queue_user IN VARCHAR2 DEFAULT NULL,
 log_file IN VARCHAR2 DEFAULT NULL,
 bi_directional IN BOOLEAN DEFAULT FALSE,
 include_ddl IN BOOLEAN DEFAULT FALSE,
 instantiation IN INTEGER DEFAULT
 DBMS_STREAMS_ADM.INSTANTIATION_SCHEMA);

Parameters

	
See Also:

"Common Parameters for the Configuration Procedures" for descriptions of the procedure parameters that are not in Table 144-20

Table 144-20 MAINTAIN_SCHEMAS Procedure Parameters

	Parameter	Description
	
schema_names

	
The schemas to be configured for replication and maintained by Oracle Streams after configuration. The schemas can be specified in the following ways:

	
Comma-delimited list of type VARCHAR2

	
A PL/SQL associative array of type DBMS_UTILITY.UNCL_ARRAY, where each element is the name of a schema. The first schema should be in position 1. The last position must be NULL.

This procedure raises an error in any of the following cases:

	
When a specified schema does not exist at the source database

	
When the schema_names parameter is set to NULL

	
source_directory_object

	
The directory object for the directory on the computer system running the source database into which the generated Data Pump export dump file is placed. This file remains in this directory after the procedure completes.

This parameter is ignored if instantiation is set to DBMS_STREAMS_ADM.INSTANTIATION_SCHEMA_NETWORK or DBMS_STREAMS_ADM.INSTANTIATION_NONE. In this case, specify NULL for the source_directory_object parameter.

If NULL and instantiation is set to DBMS_STREAMS_ADM.INSTANTIATION_SCHEMA, then the procedure raises an error.

Note: The specified directory object cannot point to an Oracle Automatic Storage Management (ASM) disk group.

	
destination_directory_object

	
The directory object for the directory on the computer system running the destination database into which the generated Data Pump export dump file is transferred.

If the source database and destination database run on the same computer system, then the source and destination directories must be different.

This parameter is ignored if instantiation is set to DBMS_STREAMS_ADM.INSTANTIATION_SCHEMA_NETWORK or DBMS_STREAMS_ADM.INSTANTIATION_NONE. In this case, specify NULL for the destination_directory_object parameter.

If NULL and instantiation is set to DBMS_STREAMS_ADM.INSTANTIATION_SCHEMA, then the procedure raises an error.

Note: The specified directory object cannot point to an Oracle ASM disk group.

	
source_database

	
The global name of the source database.

If the specified global name is the same as the global name of the local database, then the procedure configures a local capture process for the source database.

If the specified global name is different from the global name of the local database, then the procedure configures a downstream capture process at the local database. In this case, a database link from the local database to the source database with the same name as the global name of the source database must exist and must be accessible to the user who runs the procedure.

If NULL, then the procedure uses the global name of the local database.

	
destination_database

	
The global name of the destination database.

If the local database is not the destination database, then a database link from the local database to the destination database with the same name as the global name of the destination database must exist and must be accessible to the user who runs the procedure.

If NULL, then the procedure raises an error.

	
dump_file_name

	
The name of the Data Pump export dump file. If a file with the specified file name exists in the specified directory for the source_directory_object or destination_directory_object parameter, then the procedure raises an error.

This parameter is ignored if instantiation is set to DBMS_STREAMS_ADM.INSTANTIATION_SCHEMA_NETWORK or DBMS_STREAMS_ADM.INSTANTIATION_NONE.

If NULL and instantiation is set to DBMS_STREAMS_ADM.INSTANTIATION_SCHEMA, then the export dump file name is generated by the system. In this case, the export dump file name is expatnn.dmp, where nn is a sequence number. The sequence number is increased to produce an export dump file with a unique name in the source directory.

	
capture_queue_user

	
The name of the user who requires ENQUEUE and DEQUEUE privileges for the queue at the source database. This user also is configured as a secure queue user of the queue. The queue user cannot grant these privileges to other users because they are not granted with the GRANT option.

If NULL, then the procedure does not grant any privileges. You can also grant queue privileges to the appropriate users using the DBMS_AQADM package.

	
log_file

	
The name of the Data Pump export log file. This log file is placed in the same directory as the Data Pump export dump file.

This parameter is ignored if instantiation is set to DBMS_STREAMS_ADM.INSTANTIATION_SCHEMA_NETWORK or DBMS_STREAMS_ADM.INSTANTIATION_NONE.

If NULL and instantiation is set to DBMS_STREAMS_ADM.INSTANTIATION_SCHEMA, then the log file name is the same name as the export dump file name with an extension of .clg.

	
instantiation

	
Specify whether to perform instantiation and, if instantiation is performed, the type of instantiation:

DBMS_STREAMS_ADM.INSTANTIATION_SCHEMA performs a full Data Pump export at the source database and a Data Pump import of the export dump file at the destination database. The instantiation SCN is set for the shared database objects during import. If the instantiation parameter is set to this value, then the user who runs this procedure must have EXECUTE privilege on the DBMS_FILE_TRANSFER package.

DBMS_STREAMS_ADM.INSTANTIATION_SCHEMA_NETWORK performs a full network Data Pump import. A network import means that Data Pump performs the import without using an export dump file. The instantiation SCN is set for the shared database objects during import. If the instantiation parameter is set to this value, then a database link from the destination database to the source database with the same name as the global name of the source database must exist and must be accessible to the user who runs the procedure.

DBMS_STREAMS_ADM.INSTANTIATION_NONE does not perform an instantiation. This setting is valid only if the perform_actions parameter is set to FALSE, and the procedure generates a configuration script. In this case, the configuration script does not perform an instantiation and does not set the instantiation SCN for each shared database object. Instead, you must perform the instantiation and ensure that instantiation SCN values are set properly.

If this parameter is set to DBMS_STREAMS_ADM.INSTANTIATION_SCHEMA or DBMS_STREAMS_ADM.INSTANTIATION_SCHEMA_NETWORK, then the database objects being instantiated must exist at the source database, and the tablespaces that contain the schemas must exist at the destination database.

If an instantiated database object does not exist at the destination database, then it is imported at the destination database, including its supplemental logging specifications from the source database and its supporting database objects, such as indexes and triggers. However, if the database object exists at the destination database before instantiation, then it is not imported at the destination database. Therefore, the supplemental logging specifications from the source database are not specified for the database object at the destination database, and the supporting database objects are not imported.

MAINTAIN_SIMPLE_TABLESPACE Procedure

This procedure clones a simple tablespace from a source database at a destination database and uses Oracle Streams to maintain this tablespace at both databases. This procedure can either perform these actions directly, or it can generate a script that performs these actions. Run this procedure at the source database.

	
Note:

This procedure is deprecated. It is replaced by the MAINTAIN_SIMPLE_TTS procedure.

	
See Also:

	
"Deprecated Subprograms"

	
MAINTAIN_SIMPLE_TTS Procedure

Syntax

DBMS_STREAMS_ADM.MAINTAIN_SIMPLE_TABLESPACE(
 tablespace_name IN VARCHAR2,
 source_directory_object IN VARCHAR2,
 destination_directory_object IN VARCHAR2,
 destination_database IN VARCHAR2,
 setup_streams IN BOOLEAN DEFAULT TRUE,
 script_name IN VARCHAR2 DEFAULT NULL,
 script_directory_object IN VARCHAR2 DEFAULT NULL,
 bi_directional IN BOOLEAN DEFAULT FALSE);

Parameters

Table 144-21 MAINTAIN_SIMPLE_TABLESPACE Procedure Parameters

	Parameter	Description
	
tablespace_name

	
The local simple tablespace to be cloned at the destination database and maintained by Oracle Streams.

The tablespace must exist at the source database, but it must not exist at the destination database.

A directory object must exist for the directory that contains the datafile for the tablespace. The user who invokes this procedure must have READ privilege on this directory object. The directory object cannot point to an Oracle Automatic Storage Management (ASM) disk group.

If NULL, then the procedure raises an error.

	
source_directory_object

	
The directory object for the directory on the computer system running the source database into which the generated Data Pump export dump file and the datafile for the cloned tablespace are placed. These files remain in this directory after the procedure completes.

If NULL, then the procedure raises an error.

Note: The specified directory object cannot point to an Oracle ASM disk group.

	
destination_directory_object

	
The directory object for the directory on the computer system running the destination database into which the generated Data Pump export dump file and the datafile for the cloned tablespace are transferred.

If the source database and destination database run on the same computer system, then the source and destination directories must be different.

If NULL, then the procedure raises an error.

Note: The specified directory object cannot point to an Oracle ASM disk group.

	
destination_database

	
The global name of the destination database. A database link from the source database to the destination database with the same name as the global name of the destination database must exist.

If NULL, then the procedure raises an error.

	
setup_streams

	
If TRUE, then the procedure performs the necessary actions to maintain the tablespace directly.

If FALSE, then the procedure does not perform the necessary actions to maintain the tablespace directly.

Specify FALSE when this procedure is generating a script that you can edit and then run. The procedure raises an error if you specify FALSE and either of the following parameters is NULL:

	
script_name

	
script_directory_object

	
script_name

	
If non-NULL and the setup_streams parameter is FALSE, then specify the name of the script generated by this procedure. The script contains all of the statements used to maintain the specified tablespace. If a file with the specified script name exists in the specified directory for the script_directory_object parameter, then the procedure appends the statements to the existing file.

If non-NULL and the setup_streams parameter is TRUE, then this procedure generates the specified script and performs the actions to maintain the specified tablespace directly.

If NULL and the setup_streams parameter is TRUE, then this procedure does not generate a script and performs the actions to maintain the specified tablespace directly.

If NULL and the setup_streams parameter is FALSE, then the procedure raises an error.

	
script_directory_object

	
The directory object for the directory on the local computer system into which the generated script is placed.

If the script_name parameter is NULL, then the procedure ignores this parameter and does not generate a script.

If NULL and the script_name parameter is non-NULL, then the procedure raises an error.

Note: The specified directory object cannot point to an Oracle ASM disk group.

	
bi_directional

	
Specify TRUE to configure bi-directional replication between the current database and the database specified in destination_database. Both databases are configured as source and destination databases, a capture and apply process is configured at both databases, and propagations are configured between the databases to propagate messages.

Specify FALSE to configure one way replication from the current database to the database specified in destination_database. A capture process is configured at the current database, a propagation is configured to propagate messages from the current database to the destination database, and an apply process is configured at the destination database.

Usage Notes

The specified tablespace must be a simple tablespace. A simple tablespace is a single, self-contained tablespace that uses only one datafile. A self-contained tablespace has no references from the tablespace pointing outside of the tablespace. For example, if an index in the tablespace is for a table in a different tablespace, then the tablespace is not self-contained. This procedure cannot be used for a non simple tablespace or a set of tablespaces.

DDL Changes Not Maintained

This procedure does not configure the Oracle Streams environment to maintain DDL changes to the tablespace nor to the database objects in the tablespace. For example, the Oracle Streams environment is not configured to replicate ALTER TABLESPACE statements on the tablespace, nor is it configured to replicate ALTER TABLE statements on tables in the tablespace. You can configure the Oracle Streams environment to maintain DDL changes manually or modify generated scripts to achieve this.

Additional Documentation for this Procedure

The following documentation applies to the MAINTAIN_SIMPLE_TABLESPACE procedure:

	
Automatic Platform Conversion

	
Oracle Streams Replication Administrator's Guide

Requirements for Running this Procedure

Meet the following requirements when run the MAINTAIN_SIMPLE_TABLESPACE procedure:

	
Run the procedure at the source database.

	
Both databases must be open during configuration. If the procedure is generating a script only, then the database specified in the destination_database parameter does not need to be open when you run the procedure, but both databases must be open when you run the generated script.

	
Grant the user who runs this procedure the DBA role. This user must have the necessary privileges to complete the following actions:

	
Create ANYDATA queues, capture processes, propagations, and apply processes.

	
Specify supplemental logging

	
Run subprograms in the DBMS_STREAMS_ADM and DBMS_AQADM packages.

	
Access the database specified in the destination_database parameter through a database link. This database link should have the same name as the global name of the destination database.

	
Run subprograms in the DBMS_STREAMS_TABLESPACES_ADM package

	
The necessary privileges to run the CLONE_SIMPLE_TABLESPACE procedure in the DBMS_STREAMS_TABLESPACES_ADM package at the source database. See CLONE_SIMPLE_TABLESPACE Procedure for the list of required privileges.

	
The necessary privileges to run the ATTACH_SIMPLE_TABLESPACE procedure in the DBMS_STREAMS_TABLESPACES_ADM package at the destination database. See ATTACH_SIMPLE_TABLESPACE Procedure for the list of required privileges.

To ensure that the user who runs this procedure has the necessary privileges, you should configure an Oracle Streams administrator at each database, and each database link should be should be created in the Oracle Streams administrator's schema.

Typically, the DBA role can be revoked from the user, if necessary, after the configuration is complete.

	
If the bi_directional parameter is set to TRUE, then the corresponding user at the destination database must be able to use a database link to access the source database. This database link should have the same name as the global name of the source database.

	
Each specified directory object must be created using the SQL statement CREATE DIRECTORY, and the user who invokes this procedure must have READ and WRITE privilege on each one.

	
The databases configured by this procedure must be Oracle Database 10g Release 2 or later databases when this procedure is run under the following conditions:

	
The procedure is run at an Oracle Database 10g Release 2 or later database.

	
The setup_streams parameter is set to TRUE to configure the Oracle Streams replication environment directly.

	
The databases configured by this procedure must be Oracle Database 10g Release 1 or later databases when this procedure is run under the following conditions:

	
The procedure is run at an Oracle Database 10g Release 2 or later database.

	
The setup_streams parameter is set to FALSE in this procedure, and the replication environment is configured with a generated script.

If the script configures an Oracle Database 10g Release 1 database, then the script must be modified so that it does not configure features that are available only in Oracle Database 10g Release 2 or later, such as queue-to-queue propagation.

	
If the procedure is run at an Oracle Database 10g Release 1 database, then the databases configured by the procedure must be Oracle Database 10g Release 1 or later databases.

	
See Also:

Oracle Streams Replication Administrator's Guide for information about configuring an Oracle Streams administrator

Default Values for Parameters Excluded From the MAINTAIN_SIMPLE_TABLESPACE Procedure

This procedure uses the default values for the parameters in the MAINTAIN_TABLESPACES procedure that do not exist in the MAINTAIN_SIMPLE_TABLESPACE procedure. For example, this procedure creates a capture process at the source database named capture, because that is the default value for the capture_name parameter in the MAINTAIN_TABLESPACES procedure.

	
See Also:

MAINTAIN_TABLESPACES Procedure

Configuration Progress and Recoverability

When this procedure is run with the setup_streams parameter set to TRUE, metadata about its configuration actions is recorded in the following data dictionary views: DBA_RECOVERABLE_SCRIPT, DBA_RECOVERABLE_SCRIPT_PARAMS, DBA_RECOVERABLE_SCRIPT_BLOCKS, and DBA_RECOVERABLE_SCRIPT_ERRORS. If the procedure stops because it encounters an error, then you can use the RECOVER_OPERATION procedure to complete the configuration after you correct the conditions that caused the error.

	
Note:

When this procedure is run with the setup_streams parameter set to FALSE, these views are not populated. Also, the views are not populated when a script generated by this procedure is run.

	
See Also:

"RECOVER_OPERATION Procedure"

MAINTAIN_SIMPLE_TTS Procedure

This procedure clones a simple tablespace from a source database at a destination database and uses Oracle Streams to maintain this tablespace at both databases. This procedure can either perform these actions directly, or it can generate a script that performs these actions.

Run this procedure at the capture database. The capture database is the database that captures changes made to the source database.

	
Note:

	
This procedure automatically excludes database objects that are not supported by Oracle Streams in the tablespace from the replication environment by adding rules to the negative rule set of each capture and apply process. Query the DBA_STREAMS_UNSUPPORTED data dictionary view to determine which database objects are not supported by Oracle Streams. If unsupported database objects are not excluded, then capture errors will result.

	
This procedure replaces the deprecated MAINTAIN_SIMPLE_TABLESPACE procedure.

	
See Also:

"Procedures That Configure an Oracle Streams Environment" for more information about this procedure

Syntax

DBMS_STREAMS_ADM.MAINTAIN_SIMPLE_TTS(
 tablespace_name IN VARCHAR2,
 source_directory_object IN VARCHAR2,
 destination_directory_object IN VARCHAR2,
 source_database IN VARCHAR2,
 destination_database IN VARCHAR2,
 perform_actions IN BOOLEAN DEFAULT TRUE,
 script_name IN VARCHAR2 DEFAULT NULL,
 script_directory_object IN VARCHAR2 DEFAULT NULL,
 bi_directional IN BOOLEAN DEFAULT FALSE);

Parameters

	
See Also:

"Common Parameters for the Configuration Procedures" for descriptions of the procedure parameters that are not in Table 144-22

Table 144-22 MAINTAIN_SIMPLE_TTS Procedure Parameters

	Parameter	Description
	
tablespace_name

	
The local simple tablespace to be cloned at the destination database and maintained by Oracle Streams.

The tablespace must exist at the source database, but it must not exist at the destination database.

A directory object must exist for the directory that contains the datafile for the tablespace. The user who invokes this procedure must have READ privilege on this directory object. The directory object cannot point to an Oracle Automatic Storage Management (ASM) disk group.

If NULL, then the procedure raises an error.

	
source_directory_object

	
The directory object for the directory on the computer system running the source database into which the generated Data Pump export dump file and the datafile for the cloned tablespace are placed. These files remain in this directory after the procedure completes.

If NULL, then the procedure raises an error.

Note: The specified directory object cannot point to an Oracle ASM disk group.

	
destination_directory_object

	
The directory object for the directory on the computer system running the destination database into which the generated Data Pump export dump file and the datafile for the cloned tablespace are transferred.

If the source database and destination database run on the same computer system, then the source and destination directories must be different.

If NULL, then the procedure raises an error.

Note: The specified directory object cannot point to an Oracle ASM disk group.

	
source_database

	
The global name of the source database.

If the specified global name is the same as the global name of the local database, then the procedure configures a local capture process for the source database.

If the specified global name is different from the global name of the local database, then the procedure configures a downstream capture process at the local database. In this case, a database link from the local database to the source database with the same name as the global name of the source database must exist and must be accessible to the user who runs the procedure.

If NULL, then the procedure uses the global name of the local database.

	
destination_database

	
The global name of the destination database.

If the local database is not the destination database, then a database link from the local database to the destination database with the same name as the global name of the destination database must exist and must be accessible to the user who runs the procedure.

If NULL, then the procedure raises an error.

Usage Notes

The specified tablespace must be a simple tablespace. A simple tablespace is a single, self-contained tablespace that uses only one datafile. A self-contained tablespace has no references from the tablespace pointing outside of the tablespace. For example, if an index in the tablespace is for a table in a different tablespace, then the tablespace is not self-contained. This procedure cannot be used for a non simple tablespace or a set of tablespaces.

DDL Changes Not Maintained

This procedure does not configure the Oracle Streams environment to maintain DDL changes to the tablespace nor to the database objects in the tablespace. For example, the Oracle Streams environment is not configured to replicate ALTER TABLESPACE statements on the tablespace, nor is it configured to replicate ALTER TABLE statements on tables in the tablespace. You can configure the Oracle Streams environment to maintain DDL changes manually or modify generated scripts to achieve this.

Additional Privileges Required by the MAINTAIN_SIMPLE_TTS Procedure

In addition to the required privileges described in "Requirements for Running These Procedures", the user who runs the MAINTAIN_SIMPLE_TTS procedure must have the necessary privileges to complete the following actions:

	
Run subprograms in the DBMS_STREAMS_TABLESPACES_ADM package

	
The necessary privileges to run the CLONE_SIMPLE_TABLESPACE procedure in the DBMS_STREAMS_TABLESPACES_ADM package at the source database. See CLONE_SIMPLE_TABLESPACE Procedure for the list of required privileges.

	
The necessary privileges to run the ATTACH_SIMPLE_TABLESPACE procedure in the DBMS_STREAMS_TABLESPACES_ADM package at the destination database. See ATTACH_SIMPLE_TABLESPACE Procedure for the list of required privileges.

Default Values for Parameters Excluded From the MAINTAIN_SIMPLE_TTS Procedure

This procedure uses the default values for the parameters in the MAINTAIN_TTS procedure that do not exist in the MAINTAIN_SIMPLE_TTS procedure. For example, this procedure automatically generates the capture process name, because NULL is the default value for the capture_name parameter in the MAINTAIN_TTS procedure, and the procedure generates the capture process name when NULL is specified for capture_name.

	
See Also:

MAINTAIN_TTS Procedure

MAINTAIN_TABLES Procedure

This procedure configures an Oracle Streams environment that replicates changes to specified tables between two databases. This procedure can either configure the environment directly, or it can generate a script that configures the environment.

Run this procedure at the capture database. The capture database is the database that captures changes made to the source database.

This procedure is overloaded. One table_names parameter is type VARCHAR2 and the other table_names parameter is type DBMS_UTILITY.UNCL_ARRAY. These parameters enable you to enter the list of tables in different ways and are mutually exclusive.

	
Note:

If the bi_directional parameter is set to TRUE, then do not allow data manipulation language (DML) or data definition language (DDL) changes to the shared database objects at the destination database while the MAINTAIN_TABLES procedure, or the script generated by the procedure, is running. This restriction does not apply to the source database.

	
See Also:

"Procedures That Configure an Oracle Streams Environment" for more information about this procedure

Syntax

DBMS_STREAMS_ADM.MAINTAIN_TABLES(
 table_names IN VARCHAR2,
 source_directory_object IN VARCHAR2,
 destination_directory_object IN VARCHAR2,
 source_database IN VARCHAR2,
 destination_database IN VARCHAR2,
 perform_actions IN BOOLEAN DEFAULT TRUE,
 script_name IN VARCHAR2 DEFAULT NULL,
 script_directory_object IN VARCHAR2 DEFAULT NULL,
 dump_file_name IN VARCHAR2 DEFAULT NULL,
 capture_name IN VARCHAR2 DEFAULT NULL,
 capture_queue_table IN VARCHAR2 DEFAULT NULL,
 capture_queue_name IN VARCHAR2 DEFAULT NULL,
 capture_queue_user IN VARCHAR2 DEFAULT NULL,
 propagation_name IN VARCHAR2 DEFAULT NULL,
 apply_name IN VARCHAR2 DEFAULT NULL,
 apply_queue_table IN VARCHAR2 DEFAULT NULL,
 apply_queue_name IN VARCHAR2 DEFAULT NULL,
 apply_queue_user IN VARCHAR2 DEFAULT NULL,
 log_file IN VARCHAR2 DEFAULT NULL,
 bi_directional IN BOOLEAN DEFAULT FALSE,
 include_ddl IN BOOLEAN DEFAULT FALSE,
 instantiation IN INTEGER DEFAULT
 DBMS_STREAMS_ADM.INSTANTIATION_TABLE);

DBMS_STREAMS_ADM.MAINTAIN_TABLES(
 table_names IN DBMS_UTILITY.UNCL_ARRAY,
 source_directory_object IN VARCHAR2,
 destination_directory_object IN VARCHAR2,
 source_database IN VARCHAR2,
 destination_database IN VARCHAR2,
 perform_actions IN BOOLEAN DEFAULT TRUE,
 script_name IN VARCHAR2 DEFAULT NULL,
 script_directory_object IN VARCHAR2 DEFAULT NULL,
 dump_file_name IN VARCHAR2 DEFAULT NULL,
 capture_name IN VARCHAR2 DEFAULT NULL,
 capture_queue_table IN VARCHAR2 DEFAULT NULL,
 capture_queue_name IN VARCHAR2 DEFAULT NULL,
 capture_queue_user IN VARCHAR2 DEFAULT NULL,
 propagation_name IN VARCHAR2 DEFAULT NULL,
 apply_name IN VARCHAR2 DEFAULT NULL,
 apply_queue_table IN VARCHAR2 DEFAULT NULL,
 apply_queue_name IN VARCHAR2 DEFAULT NULL,
 apply_queue_user IN VARCHAR2 DEFAULT NULL,
 log_file IN VARCHAR2 DEFAULT NULL,
 bi_directional IN BOOLEAN DEFAULT FALSE,
 include_ddl IN BOOLEAN DEFAULT FALSE,
 instantiation IN INTEGER DEFAULT
 DBMS_STREAMS_ADM.INSTANTIATION_TABLE);

Parameters

	
See Also:

"Common Parameters for the Configuration Procedures" for descriptions of the procedure parameters that are not in Table 144-23

Table 144-23 MAINTAIN_TABLES Procedure Parameters

	Parameter	Description
	
table_names

	
The tables to be configured for replication and maintained by Oracle Streams after configuration. The tables can be specified in the following ways:

	
Comma-delimited list of type VARCHAR2

	
A PL/SQL associative array of type DBMS_UTILITY.UNCL_ARRAY, where each element is the name of a table. The first table should be in position 1. The last position must be NULL.

Each table should be specified as [schema_name.]table_name. For example, hr.employees. If the schema is not specified, then the current user is the default.

This procedure raises an error in any of the following cases:

	
When a specified table does not exist at the source database

	
When the table_names parameter is set to NULL

	
source_directory_object

	
The directory object for the directory on the computer system running the source database into which the generated Data Pump export dump file is placed. This file remain in this directory after the procedure completes.

This parameter is ignored if instantiation is set to DBMS_STREAMS_ADM.INSTANTIATION_TABLE_NETWORK or DBMS_STREAMS_ADM.INSTANTIATION_NONE. In this case, specify NULL for the source_directory_object parameter.

If NULL and instantiation is set to DBMS_STREAMS_ADM.INSTANTIATION_TABLE, then the procedure raises an error.

Note: The specified directory object cannot point to an Oracle Automatic Storage Management (ASM) disk group.

	
destination_directory_object

	
The directory object for the directory on the computer system running the destination database into which the generated Data Pump export dump file is transferred.

If the source database and destination database run on the same computer system, then the source and destination directories must be different.

This parameter is ignored if instantiation is set to DBMS_STREAMS_ADM.INSTANTIATION_TABLE_NETWORK or DBMS_STREAMS_ADM.INSTANTIATION_NONE. In this case, specify NULL for the destination_directory_object parameter.

If NULL and instantiation is set to DBMS_STREAMS_ADM.INSTANTIATION_TABLE, then the procedure raises an error.

Note: The specified directory object cannot point to an Oracle ASM disk group.

	
source_database

	
The global name of the source database.

If the specified global name is the same as the global name of the local database, then the procedure configures a local capture process for the source database.

If the specified global name is different from the global name of the local database, then the procedure configures a downstream capture process at the local database. In this case, a database link from the local database to the source database with the same name as the global name of the source database must exist and must be accessible to the user who runs the procedure.

If NULL, then the procedure uses the global name of the local database.

	
destination_database

	
The global name of the destination database.

If the local database is not the destination database, then a database link from the local database to the destination database with the same name as the global name of the destination database must exist and must be accessible to the user who runs the procedure.

If NULL, then the procedure raises an error.

	
dump_file_name

	
The name of the Data Pump export dump file. If a file with the specified file name exists in the specified directory for the source_directory_object or destination_directory_object parameter, then the procedure raises an error.

This parameter is ignored if instantiation is set to DBMS_STREAMS_ADM.INSTANTIATION_TABLE_NETWORK or DBMS_STREAMS_ADM.INSTANTIATION_NONE.

If NULL and instantiation is set to DBMS_STREAMS_ADM.INSTANTIATION_TABLE, then the export dump file name is generated by the system. In this case, the export dump file name is expatnn.dmp, where nn is a sequence number. The sequence number is increased to produce an export dump file with a unique name in the source directory.

	
capture_queue_user

	
The name of the user who requires ENQUEUE and DEQUEUE privileges for the queue at the source database. This user also is configured as a secure queue user of the queue. The queue user cannot grant these privileges to other users because they are not granted with the GRANT option.

If NULL, then the procedure does not grant any privileges. You can also grant queue privileges to the appropriate users using the DBMS_AQADM package.

	
log_file

	
The name of the Data Pump export log file. This log file is placed in the same directory as the Data Pump export dump file.

This parameter is ignored if instantiation is set to DBMS_STREAMS_ADM.INSTANTIATION_TABLE_NETWORK or DBMS_STREAMS_ADM.INSTANTIATION_NONE.

If NULL and instantiation is set to DBMS_STREAMS_ADM.INSTANTIATION_TABLE, then the log file name is the same name as the export dump file name with an extension of .clg.

	
instantiation

	
Specify whether to perform instantiation and, if instantiation is performed, the type of instantiation:

DBMS_STREAMS_ADM.INSTANTIATION_TABLE performs a full Data Pump export at the source database and a Data Pump import of the export dump file at the destination database. If the instantiation parameter is set to this value, then the user who runs this procedure must have EXECUTE privilege on the DBMS_FILE_TRANSFER package.

DBMS_STREAMS_ADM.INSTANTIATION_TABLE_NETWORK performs a full network Data Pump import. A network import means that Data Pump performs the import without using an export dump file. If the instantiation parameter is set to this value, then a database link from the destination database to the source database with the same name as the global name of the source database must exist and must be accessible to the user who runs the procedure.

DBMS_STREAMS_ADM.INSTANTIATION_NONE does not perform an instantiation. This setting is valid only if the perform_actions parameter is set to FALSE, and the procedure generates a configuration script. In this case, the configuration script does not perform an instantiation and does not set the instantiation SCN for each shared database object. Instead, you must perform the instantiation and ensure that instantiation SCN values are set properly.

If this parameter is set to DBMS_STREAMS_ADM.INSTANTIATION_TABLE or DBMS_STREAMS_ADM.INSTANTIATION_TABLE_NETWORK, then the tables being instantiated must exist at the source database, and the tablespaces that contain the tables must exist at the destination database.

If an instantiated database object does not exist at the destination database, then it is imported at the destination database, including its supplemental logging specifications from the source database and its supporting database objects, such as indexes and triggers. However, if the database object exists at the destination database before instantiation, then it is not imported at the destination database. Therefore, the supplemental logging specifications from the source database are not specified for the database object at the destination database, and the supporting database objects are not imported.

Also, if an instantiated table does not exist at the destination database, then this procedure sets the instantiation SCN for the table. However, if an instantiated table exist at the destination database before instantiation, then this procedure does not set the instantiation SCN for the table. In this case, you must set the instantiation SCN for the table manually after the procedure completes.

MAINTAIN_TABLESPACES Procedure

This procedure clones a set of tablespaces from a source database at a destination database and uses Oracle Streams to maintain these tablespaces at both databases. This procedure can either perform these actions directly, or it can generate a script that performs these actions. Run this procedure at the source database.

	
Note:

This procedure is deprecated. It is replaced by the MAINTAIN_TTS procedure.

	
See Also:

	
"Deprecated Subprograms"

	
MAINTAIN_TTS Procedure

Syntax

DBMS_STREAMS_ADM.MAINTAIN_TABLESPACES(
 tablespace_names IN DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET,
 source_directory_object IN VARCHAR2,
 destination_directory_object IN VARCHAR2,
 destination_database IN VARCHAR2,
 setup_streams IN BOOLEAN DEFAULT TRUE,
 script_name IN VARCHAR2 DEFAULT NULL,
 script_directory_object IN VARCHAR2 DEFAULT NULL,
 dump_file_name IN VARCHAR2 DEFAULT NULL,
 source_queue_table IN VARCHAR2 DEFAULT 'streams_queue_table',
 source_queue_name IN VARCHAR2 DEFAULT 'streams_queue',
 source_queue_user IN VARCHAR2 DEFAULT NULL,
 destination_queue_table IN VARCHAR2 DEFAULT 'streams_queue_table',
 destination_queue_name IN VARCHAR2 DEFAULT 'streams_queue',
 destination_queue_user IN VARCHAR2 DEFAULT NULL,
 capture_name IN VARCHAR2 DEFAULT 'capture',
 propagation_name IN VARCHAR2 DEFAULT NULL,
 apply_name IN VARCHAR2 DEFAULT NULL,
 log_file IN VARCHAR2 DEFAULT NULL,
 bi_directional IN BOOLEAN DEFAULT FALSE,
 include_ddl IN BOOLEAN DEFAULT FALSE);

Parameters

Table 144-24 MAINTAIN_TABLESPACES Procedure Parameters

	Parameter	Description
	
tablespace_names

	
The local tablespace set to be cloned at the destination database and maintained by Oracle Streams.

The tablespaces in the tablespace set must exist at the source database, but these tablespaces must not exist at the destination database.

A directory object must exist for each directory that contains the datafiles for the tablespace set. The user who invokes this procedure must have READ privilege on these directory objects. The directory object cannot point to an Oracle Automatic Storage Management (ASM) disk group.

If NULL, then the procedure raises an error.

See Also: TABLESPACE_SET Table Type

	
source_directory_object

	
The directory object for the directory on the computer system running the source database into which the generated Data Pump export dump file and the datafiles that comprise the cloned tablespace set are placed. These files remain in this directory after the procedure completes.

If NULL, then the procedure raises an error.

Note: The specified directory object cannot point to an Oracle ASM disk group.

	
destination_directory_object

	
The directory object for the directory on the computer system running the destination database into which the generated Data Pump export dump file and the datafiles that comprise the cloned tablespace set are transferred.

If the source database and destination database run on the same computer system, then the source and destination directories must be different.

If NULL, then the procedure raises an error.

Note: The specified directory object cannot point to an Oracle ASM disk group.

	
destination_database

	
The global name of the destination database. A database link from the source database to the destination database with the same name as the global name of the destination database must exist and must be accessible to the user who runs the procedure.

If NULL, then the procedure raises an error.

	
setup_streams

	
If TRUE, then the procedure performs the necessary actions to maintain the tablespaces directly.

If FALSE, then the procedure does not perform the necessary actions to maintain the tablespaces directly.

Specify FALSE when this procedure is generating a script that you can edit and then run. The procedure raises an error if you specify FALSE and either of the following parameters is NULL:

	
script_name

	
script_directory_object

	
script_name

	
If non-NULL and the setup_streams parameter is FALSE, then specify the name of the script generated by this procedure. The script contains all of the statements used to maintain the specified tablespace set. If a file with the specified script name exists in the specified directory for the script_directory_object parameter, then the procedure appends the statements to the existing file.

If non-NULL and the setup_streams parameter is TRUE, then this procedure generates the specified script and performs the actions to maintain the specified tablespace directly.

If NULL and the setup_streams parameter is TRUE, then this procedure does not generate a script and performs the actions to maintain the specified tablespace set directly.

If NULL and the setup_streams parameter is FALSE, then the procedure raises an error.

	
script_directory_object

	
The directory object for the directory on the local computer system into which the generated script is placed.

If the script_name parameter is NULL, then the procedure ignores this parameter and does not generate a script.

If NULL and the script_name parameter is non-NULL, then the procedure raises an error.

Note: The specified directory object cannot point to an Oracle ASM disk group.

	
dump_file_name

	
The name of the Data Pump export dump file that contains the specified tablespace set. If a file with the specified file name exists in the specified directory for the source_directory_object or destination_directory_object parameter, then the procedure raises an error.

If NULL, then the export dump file name is generated by the system. In this case, the export dump file name is expatnn.dmp, where nn is a sequence number. The sequence number is increased to produce an export dump file with a unique name in the source directory.

	
source_queue_table

	
The name of the queue table for the queue at the source database, specified as [schema_name.]queue_table_name. For example, strmadmin.streams_queue_table. If the schema is not specified, then the current user is the default.

	
source_queue_name

	
The name of the queue at the source database that will function as the ANYDATA queue, specified as [schema_name.]queue_name. For example, strmadmin.streams_queue.

If the schema is not specified, then the queue table owner is the default. The queue owner automatically has privileges to perform all queue operations on the queue.

	
source_queue_user

	
The name of the user who requires ENQUEUE and DEQUEUE privileges for the queue at the source database. This user also is configured as a secure queue user of the queue. The queue user cannot grant these privileges to other users because they are not granted with the GRANT option.

If NULL, then the procedure does not grant any privileges. You can also grant queue privileges to the appropriate users using the DBMS_AQADM package.

	
destination_queue_table

	
The name of the queue table for the queue at the destination database, specified as [schema_name.]queue_table_name. For example, strmadmin.streams_queue_table. If the schema is not specified, then the current user is the default.

	
destination_queue_name

	
The name of the queue at the destination database that will function as the ANYDATA queue, specified as [schema_name.]queue_name. For example, strmadmin.streams_queue.

If the schema is not specified, then the queue table owner is the default. The queue owner automatically has privileges to perform all queue operations on the queue.

	
destination_queue_user

	
The name of the user who requires ENQUEUE and DEQUEUE privileges for the queue at the destination database. This user also is configured as a secure queue user of the queue. The queue user cannot grant these privileges to other users because they are not granted with the GRANT option.

If NULL, then the procedure does not grant any privileges. You can also grant queue privileges to the appropriate users using the DBMS_AQADM package.

	
capture_name

	
The name of each capture process configured to capture changes to the database objects in the tablespace set. Do not specify an owner.

If the specified name matches the name of an existing capture process, then the procedure uses the existing capture process and adds the rules for capturing changes to the database objects in the tablespace set to the positive capture process rule set.

Note: The capture process name cannot be altered after the capture process is created.

	
propagation_name

	
The name of each propagation configured to propagate changes to the database objects in the tablespace set. Do not specify an owner.

If the specified name matches the name of an existing propagation, then the procedure uses the existing propagation and adds the rules for propagating changes to the database objects in the tablespace set to the positive propagation rule set.

If NULL, then the system generates a name for each propagation it creates.

Note: The propagation name cannot be altered after the propagation is created.

	
apply_name

	
The name of each apply process configured to apply changes to the database objects in the tablespace set. Do not specify an owner.

If the specified name matches the name of an existing apply process, then the procedure uses the existing apply process and adds the rules for applying changes to the database objects in the tablespace set to the positive apply process rule set.

The specified name must not match the name of an existing messaging client at the destination database.

If NULL, then the system generates a name for each apply process it creates.

Note: The apply process name cannot be altered after the apply process is created.

	
log_file

	
The name of the Data Pump export log file. This log file is placed in the same directory as the Data Pump export dump file.

If NULL, then the log file name is the same name as the export dump file name with an extension of .clg.

	
bi_directional

	
Specify TRUE to configure bi-directional replication between the current database and the database specified in destination_database. Both databases are configured as source and destination databases, a capture and apply process is configured at both databases, and propagations are configured between the databases to propagate messages.

Specify FALSE to configure one way replication from the current database to the database specified in destination_database. A capture process is configured at the current database, a propagation is configured to propagate messages from the current database to the destination database, and an apply process is configured at the destination database.

	
include_ddl

	
Specify TRUE to configure an Oracle Streams replication environment that maintains both DML and DDL changes.

Specify FALSE to configure an Oracle Streams replication environment that maintains DML changes only. When this parameter is set to FALSE, DDL changes, such as ALTER TABLE, will not be replicated.

Usage Notes

The specified set of tablespaces must be self-contained. In this context "self-contained" means that there are no references from inside the set of tablespaces pointing outside of the set of tablespaces. For example, if a partitioned table is partially contained in the set of tablespaces, then the set of tablespaces is not self-contained.

	
See Also:

Oracle Database Administrator's Guide for more information about self-contained tablespace sets

Additional Documentation for this Procedure

The following documentation applies to the MAINTAIN_TABLESPACES procedure:

	
Automatic Platform Conversion

	
Oracle Streams Replication Administrator's Guide

Requirements for Running this Procedure

Meet the following requirements when run the MAINTAIN_TABLESPACES procedure:

	
Run the procedure at the source database.

	
Both databases must be open during configuration. If the procedure is generating a script only, then the database specified in the destination_database parameter does not need to be open when you run the procedure, but both databases must be open when you run the generated script.

	
The user who runs this procedure should be granted the DBA role. This user must have the necessary privileges to complete the following actions:

	
Create ANYDATA queues, capture processes, propagations, and apply processes.

	
Specify supplemental logging

	
Run subprograms in the DBMS_STREAMS_ADM and DBMS_AQADM packages.

	
Access the database specified in the destination_database parameter through a database link. This database link should have the same name as the global name of the destination database.

	
Run subprograms in the DBMS_STREAMS_TABLESPACES_ADM package

	
The necessary privileges to run the CLONE_TABLESPACES procedure in the DBMS_STREAMS_TABLESPACES_ADM package at the source database. See CLONE_TABLESPACES Procedure for the list of required privileges.

	
The necessary privileges to run the ATTACH_TABLESPACES procedure in the DBMS_STREAMS_TABLESPACES_ADM package at the destination database. See ATTACH_TABLESPACES Procedure for the list of required privileges.

To ensure that the user who runs this procedure has the necessary privileges, you should configure an Oracle Streams administrator at each database, and each database link should be should be created in the Oracle Streams administrator's schema.

	
If the bi_directional parameter is set to TRUE, then the corresponding user at the destination database must be able to use a database link to access the source database. This database link should have the same name as the global name of the source database.

	
Each specified directory object must be created using the SQL statement CREATE DIRECTORY, and the user who invokes this procedure must have READ and WRITE privilege on each one.

	
The databases configured by this procedure must be Oracle Database 10g Release 2 or later databases when this procedure is run under the following conditions:

	
The procedure is run at an Oracle Database 10g Release 2 or later database.

	
The setup_streams parameter is set to TRUE to configure the Oracle Streams replication environment directly.

	
The databases configured by this procedure must be Oracle Database 10g Release 1 or later databases when this procedure is run under the following conditions:

	
The procedure is run at an Oracle Database 10g Release 2 or later database.

	
The setup_streams parameter is set to FALSE in this procedure, and the replication environment is configured with a generated script.

If the script configures an Oracle Database 10g Release 1 database, then the script must be modified so that it does not configure features that are available only in Oracle Database 10g Release 2 or later, such as queue-to-queue propagation.

	
If the procedure is run at an Oracle Database 10g Release 1 database, then the databases configured by the procedure must be Oracle Database 10g Release 1 or later databases.

	
See Also:

Oracle Streams Replication Administrator's Guide for information about configuring an Oracle Streams administrator

Configuration Progress and Recoverability

When this procedure is run with the setup_streams parameter set to TRUE, metadata about its configuration actions is recorded in the following data dictionary views: DBA_RECOVERABLE_SCRIPT, DBA_RECOVERABLE_SCRIPT_PARAMS, DBA_RECOVERABLE_SCRIPT_BLOCKS, and DBA_RECOVERABLE_SCRIPT_ERRORS. If the procedure stops because it encounters an error, then you can use the RECOVER_OPERATION procedure to complete the configuration after you correct the conditions that caused the error.

	
Note:

When this procedure is run with the setup_streams parameter set to FALSE, these views are not populated. Also, the views are not populated when a script generated by this procedure is run.

	
See Also:

"RECOVER_OPERATION Procedure"

MAINTAIN_TTS Procedure

This procedure clones a set of tablespaces from a source database at a destination database and uses Oracle Streams to maintain these tablespaces at both databases. This procedure can either perform these actions directly, or it can generate a script that performs these actions.

Run this procedure at the capture database. The capture database is the database that captures changes made to the source database.

	
Note:

	
This procedure automatically excludes database objects that are not supported by Oracle Streams in the tablespaces from the replication environment by adding rules to the negative rule set of each capture and apply process. Query the DBA_STREAMS_UNSUPPORTED data dictionary view to determine which database objects are not supported by Oracle Streams. If unsupported database objects are not excluded, then capture errors will result.

	
This procedure replaces the deprecated MAINTAIN_TABLESPACES procedure.

	
See Also:

"Procedures That Configure an Oracle Streams Environment" for more information about this procedure

Syntax

DBMS_STREAMS_ADM.MAINTAIN_TTS(
 tablespace_names IN DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET,
 source_directory_object IN VARCHAR2,
 destination_directory_object IN VARCHAR2,
 source_database IN VARCHAR2,
 destination_database IN VARCHAR2,
 perform_actions IN BOOLEAN DEFAULT TRUE,
 script_name IN VARCHAR2 DEFAULT NULL,
 script_directory_object IN VARCHAR2 DEFAULT NULL,
 dump_file_name IN VARCHAR2 DEFAULT NULL,
 capture_name IN VARCHAR2 DEFAULT NULL,
 capture_queue_table IN VARCHAR2 DEFAULT NULL,
 capture_queue_name IN VARCHAR2 DEFAULT NULL,
 capture_queue_user IN VARCHAR2 DEFAULT NULL,
 propagation_name IN VARCHAR2 DEFAULT NULL,
 apply_name IN VARCHAR2 DEFAULT NULL,
 apply_queue_table IN VARCHAR2 DEFAULT NULL,
 apply_queue_name IN VARCHAR2 DEFAULT NULL,
 apply_queue_user IN VARCHAR2 DEFAULT NULL,
 log_file IN VARCHAR2 DEFAULT NULL,
 bi_directional IN BOOLEAN DEFAULT FALSE,
 include_ddl IN BOOLEAN DEFAULT FALSE);

Parameters

	
See Also:

"Common Parameters for the Configuration Procedures" for descriptions of the procedure parameters that are not in Table 144-25

Table 144-25 MAINTAIN_TTS Procedure Parameters

	Parameter	Description
	
tablespace_names

	
The local tablespace set to be cloned at the destination database and maintained by Oracle Streams.

The tablespaces in the tablespace set must exist at the source database, but these tablespaces must not exist at the destination database.

A directory object must exist for each directory that contains the datafiles for the tablespace set. The user who invokes this procedure must have READ privilege on these directory objects. The directory object cannot point to an Oracle Automatic Storage Management (ASM) disk group.

If NULL, then the procedure raises an error.

See Also: TABLESPACE_SET Table Type

	
source_directory_object

	
The directory object for the directory on the computer system running the source database into which the generated Data Pump export dump file and the datafiles that comprise the cloned tablespace set are placed. These files remain in this directory after the procedure completes.

If NULL, then the procedure raises an error.

Note: The specified directory object cannot point to an Oracle ASM disk group.

	
destination_directory_object

	
The directory object for the directory on the computer system running the destination database into which the generated Data Pump export dump file and the datafiles that comprise the cloned tablespace set are transferred.

If the source database and destination database run on the same computer system, then the source and destination directories must be different.

If NULL, then the procedure raises an error.

Note: The specified directory object cannot point to an Oracle ASM disk group.

	
source_database

	
The global name of the source database.

If the specified global name is the same as the global name of the local database, then the procedure configures a local capture process for the source database.

If the specified global name is different from the global name of the local database, then the procedure configures a downstream capture process at the local database. In this case, a database link from the local database to the source database with the same name as the global name of the source database must exist and must be accessible to the user who runs the procedure.

If NULL, then the procedure uses the global name of the local database.

	
destination_database

	
The global name of the destination database.

If the local database is not the destination database, then a database link from the local database to the destination database with the same name as the global name of the destination database must exist and must be accessible to the user who runs the procedure.

If NULL, then the procedure raises an error.

	
dump_file_name

	
The name of the Data Pump export dump file that contains the specified tablespace set. If a file with the specified file name exists in the specified directory for the source_directory_object or destination_directory_object parameter, then the procedure raises an error.

If NULL, then the export dump file name is generated by the system. In this case, the export dump file name is expatnn.dmp, where nn is a sequence number. The sequence number is increased to produce an export dump file with a unique name in the source directory.

	
log_file

	
The name of the Data Pump export log file. This log file is placed in the same directory as the Data Pump export dump file.

If NULL, then the log file name is the same name as the export dump file name with an extension of .clg.

Usage Notes

The specified set of tablespaces must be self-contained. In this context "self-contained" means that there are no references from inside the set of tablespaces pointing outside of the set of tablespaces. For example, if a partitioned table is partially contained in the set of tablespaces, then the set of tablespaces is not self-contained.

	
See Also:

Oracle Database Administrator's Guide for more information about self-contained tablespace sets

Additional Privileges Required by the MAINTAIN_TTS Procedure

In addition to the required privileges described in "Requirements for Running These Procedures", the user who runs the MAINTAIN_TTS procedure must have the necessary privileges to complete the following actions:

	
Run subprograms in the DBMS_STREAMS_TABLESPACES_ADM package

	
The necessary privileges to run the CLONE_TABLESPACES procedure in the DBMS_STREAMS_TABLESPACES_ADM package at the source database. See CLONE_TABLESPACES Procedure for the list of required privileges.

	
The necessary privileges to run the ATTACH_TABLESPACES procedure in the DBMS_STREAMS_TABLESPACES_ADM package at the destination database. See ATTACH_TABLESPACES Procedure for the list of required privileges.

MERGE_STREAMS Procedure

This procedure merges a stream that is flowing from one capture process with a stream that is flowing from another capture process.

Typically, this procedure is used to merge two streams that were split using the SPLIT_STREAMS procedure in this package. The SPLIT_STREAMS procedure clones components of the original stream when it splits the streams. Therefore, the information in this section uses the following terminology:

	
The stream before it was split off has the original queue, original capture process, and original propagation.

	
The stream that was split off by the SPLIT_STREAMS procedure has a cloned queue, cloned capture process, and cloned propagation.

This procedure is called by the MERGE_STREAMS_JOB procedure. The MERGE_STREAMS_JOB procedure determines whether the streams are within a user-specified merge threshold so that the streams can be merged safely. If the streams are not within the merge threshold, then the MERGE_STREAMS_JOB procedure does nothing. Typically, it is best to run the MERGE_STREAMS_JOB procedure instead of running the MERGE_STREAMS procedure directly.

However, you can choose to run the MERGE_STREAMS procedure directly when the following conditions are met:

	
The problem at the destination of the split stream has been corrected, and the destination queue can accept changes.

	
The cloned capture process used by the split stream is started and is capturing changes.

	
The apply process at the destination database is applying the changes captured by the cloned capture process.

	
The CAPTURE_MESSAGE_CREATE_TIME in the GV$STREAMS_CAPTURE view of the cloned capture process has caught up to, or nearly caught up to, the CAPTURE_MESSAGE_CREATE_TIME of the original capture process. The cloned capture process might never completely catch up to the original capture process. Therefore, you can merge the split stream when the cloned capture process has nearly caught up to the original capture process.

The MERGE_STREAMS procedure performs the following actions:

	
Stops the cloned capture process.

	
Stops the original capture process.

	
Copies the cloned propagation back to the original propagation. The propagation has the same name as the original propagation after it is copied back.

	
Starts the original capture process from the lower SCN value of these two SCN values:

	
The acknowledged SCN of the cloned propagation.

	
The lowest acknowledged SCN of the other propagations that propagate changes captured by the original capture process.

When the original capture process is started, it might recapture changes that it already captured, or it might capture changes that were already captured by the cloned capture process. In either case, the relevant apply processes will discard any duplicate changes they receive.

	
Drops the cloned propagation.

	
Drops the cloned capture process.

	
Drops the cloned queue.

	
See Also:

	
MERGE_STREAMS_JOB Procedure

	
SPLIT_STREAMS Procedure

Syntax

DBMS_STREAMS_ADM.MERGE_STREAMS(
 cloned_propagation_name IN VARCHAR2,
 propagation_name IN VARCHAR2 DEFAULT NULL,
 queue_name IN VARCHAR2 DEFAULT NULL,
 perform_actions IN BOOLEAN DEFAULT TRUE,
 script_name IN VARCHAR2 DEFAULT NULL,
 script_directory_object IN VARCHAR2 DEFAULT NULL);

Parameters

Table 144-26 MERGE_STREAMS Procedure Parameters

	Parameter	Description
	
cloned_propagation_name

	
The name of the cloned propagation used by the stream that was split off from the original stream using the SPLIT_STREAMS procedure. The name of the cloned propagation also identifies the cloned queue and capture process used by the cloned propagation.

You must specify an existing propagation name. Do not specify an owner.

	
propagation_name

	
The name of the propagation that is merged back to the original stream.

If NULL, then the name of the original propagation in the original stream is used. Specify NULL only if the streams were split using the SPLIT_STREAMS procedure.

Specify a non-NULL value to use a name that is different from the original propagation name or if you are merging two streams that were not split by the SPLIT_STREAMS procedure. See "Usage Notes" for more information.

If a non-NULL value is specified, then an error is raised under either of the following conditions:

	
The queue specified in the queue_name parameter does not exist.

	
The queue specified in the queue_name parameter exists but is not used by a capture process.

	
queue_name

	
The name of the queue that is the source queue for the propagation that is merged back.

If NULL, then the existing, original queue is the source queue for the propagation that is merged back. Specify NULL only if the streams were split using the SPLIT_STREAMS procedure.

Specify a non-NULL value if you are merging two streams that were not split by the SPLIT_STREAMS procedure. Specify the name of the existing queue used by the capture process that will capture changes in the merged stream. See "Usage Notes" for more information.

	
perform_actions

	
If TRUE, then the procedure performs the necessary actions to merge the streams directly.

If FALSE, then the procedure does not perform the necessary actions to merge the streams directly.

Specify FALSE when this procedure is generating a script that you can edit and then run. The procedure raises an error if you specify FALSE and either of the following parameters is NULL:

	
script_name

	
script_directory_object

	
script_name

	
If non-NULL and the perform_actions parameter is FALSE, then specify the name of the script generated by this procedure. The script contains all of the statements used to merge the streams. If a file with the specified script name exists in the specified directory for the script_directory_object parameter, then the procedure appends the statements to the existing file.

If non-NULL and the perform_actions parameter is TRUE, then the procedure generates the specified script and performs the actions to split the stream directly.

If NULL and the perform_actions parameter is TRUE, then the procedure performs the actions to merge the streams directly and does not generate a script.

If NULL and the perform_actions parameter is FALSE, then the procedure raises an error.

	
script_directory_object

	
The directory object for the directory on the local computer system into which the generated script is placed.

If the script_name parameter is NULL, then the procedure ignores this parameter and does not generate a script.

If NULL and the script_name parameter is non-NULL, then the procedure raises an error.

Note: The specified directory object cannot point to an Oracle Automatic Storage Management (ASM) disk group.

Usage Notes

You can use the MERGE_STREAMS procedure to merge two streams that were not split using the SPLIT_STREAMS procedure. Merging streams in this way can save resources and improve performance when a single database is running two or more capture processes.

The DBA_STREAMS_SPLIT_MERGE view contains information about split and merge operations.

MERGE_STREAMS_JOB Procedure

This procedure determines whether the original capture process and the cloned capture process are within the specified merge threshold. If they are within the merge threshold, then this procedure runs the MERGE_STREAMS procedure to merge the two streams.

Typically, this procedure is used to merge two streams that were split using the SPLIT_STREAMS procedure in this package. The SPLIT_STREAMS procedure clones components of the original stream when it splits the streams. Therefore, the information in this section uses the following terminology:

	
The stream before it was split off has the original queue, original capture process, and original propagation.

	
The stream that was split off by the SPLIT_STREAMS procedure has a cloned queue, cloned capture process, and cloned propagation.

If the auto_merge_threshold parameter was set to a positive number in the SPLIT_STREAMS procedure that split the streams, then a merge job runs the MERGE_STREAMS_JOB procedure automatically according to its schedule. The schedule name is specified for the schedule_name parameter, and the merge job name is specified for the merge_job_name parameter when the MERGE_STREAMS_JOB procedure is run automatically. The merge job and its schedule were created by the SPLIT_STREAMS procedure.

If the auto_merge_threshold parameter was set to NULL or 0 (zero) in the SPLIT_STREAMS procedure that split the streams, then you can run the MERGE_STREAMS_JOB procedure manually. In this case, it is not run automatically.

	
See Also:

	
MERGE_STREAMS Procedure

	
SPLIT_STREAMS Procedure

	
Oracle Streams Replication Administrator's Guide for instructions on using the MERGE_STREAMS_JOB procedure

Syntax

DBMS_STREAMS_ADM.MERGE_STREAMS_JOB(
 cloned_propagation_name IN VARCHAR2,
 propagation_name IN VARCHAR2 DEFAULT NULL,
 queue_name IN VARCHAR2 DEFAULT NULL,
 merge_threshold IN NUMBER,
 schedule_name IN VARCHAR2 DEFAULT NULL,
 merge_job_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 144-27 MERGE_STREAMS_JOB Procedure Parameters

	Parameter	Description
	
cloned_propagation_name

	
The name of the cloned propagation used by the stream that was split off from the original stream using the SPLIT_STREAMS procedure. The name of the cloned propagation also identifies the cloned queue and capture process used by the cloned propagation.

You must specify an existing propagation name. Do not specify an owner.

	
propagation_name

	
The name of the propagation that is merged back to the original stream.

If NULL, then the name of the original propagation in the original stream is used. Specify NULL only if the streams were split using the SPLIT_STREAMS procedure.

Specify a non-NULL value to use a name that is different from the original propagation name or if you are merging two streams that were not split by the SPLIT_STREAMS procedure. See "Usage Notes" for more information.

If a non-NULL value is specified, then an error is raised under either of the following conditions:

	
The queue specified in the queue_name parameter does not exist.

	
The queue specified in the queue_name parameter exists but is not used by a capture process.

	
queue_name

	
The name of the queue that is the source queue for the propagation that is merged back.

If NULL, then the existing, original queue is the source queue for the propagation that is merged back. Specify NULL only if the streams were split using the SPLIT_STREAMS procedure.

Specify a non-NULL value if you are merging two streams that were not split by the SPLIT_STREAMS procedure. Specify the name of the existing queue used by the capture process that will capture changes in the merged stream. See "Usage Notes" for more information.

	
merge_threshold

	
The merge threshold in seconds.

The value of the CAPTURE_MESSAGE_CREATE_TIME column for each capture process in the GV$STREAMS_CAPTURE dynamic performance view determines whether the streams are merged.

Specifically, if the difference, in seconds, between the CAPTURE_MESSAGE_CREATE_TIME of the cloned capture process and the original capture process is less than or equal to the value specified for this parameter, then this procedure runs the MERGE_STREAMS procedure to merge the streams. If the difference is greater than the value specified by this parameter, then this procedure does nothing.

	
schedule_name

	
The name of the schedule for the merge job.

If NULL, then no schedule name is specified. Typically, you set this parameter to NULL when the auto_merge_threshold parameter was set to NULL or 0 (zero) in the SPLIT_STREAMS procedure that split the streams.

Specify NULL if you run this procedure manually.

	
merge_job_name

	
The name of the job that merges the streams.

If NULL, then no merge job name is specified. Typically, you set this parameter to NULL when the auto_merge_threshold parameter was set to NULL or 0 (zero) in the SPLIT_STREAMS procedure that split the streams.

Specify NULL if you run this procedure manually.

Usage Notes

You can use the MERGE_STREAMS_JOB procedure to merge two streams that were not split using the SPLIT_STREAMS procedure. Merging streams in this way can save resources and improve performance when a single database is running two or more capture processes.

After the MERGE_STREAMS_JOB procedure completes, you can query the DBA_CAPTURE and DBA_PROPAGATION views to determine whether the streams were merged. If the streams were merged, then the cloned capture process and cloned propagation do not appear in these views.

If the streams were merged and the schedule_name and merge_job_name parameters were non-NULL, then the specified schedule and merge job are deleted automatically.

The DBA_STREAMS_SPLIT_MERGE view contains information about split and merge operations.

POST_INSTANTIATION_SETUP Procedure

This procedure performs the actions required after instantiation to configure an Oracle Streams replication environment.

Run this procedure at the capture database. The capture database is the database that captures changes made to the source database.

To complete the Oracle Streams replication configuration, follow these steps:

	
Run the PRE_INSTANTIATION_SETUP procedure at the source database.

	
Perform any necessary instantiation actions.

	
Run the POST_INSTANTIATION_SETUP procedure at the source database.

Typically, the Oracle Streams replication environment configured using these steps serves one of the following purposes:

	
Replicates changes to shared database objects to keep the database objects synchronized at different databases.

	
Replicates changes to database objects during a database maintenance operation, such migrating a database to a different platform. In this case, use the CLEANUP_INSTANTIATION_SETUP procedure to remove the replication environment after the maintenance operation is complete.

	
Attention:

When the POST_INSTANTIATION_SETUP procedure is run, the parameter values must match the parameter values specified when the corresponding PRE_INSTANTIATION_SETUP procedure was run, except for the values of the following parameters: perform_actions, script_name, script_directory_object, and start_processes.

	
Note:

A capture process never captures changes in the SYS, SYSTEM, or CTXSYS schemas. This procedure does not configure replication for these schemas.

	
See Also:

	
"PRE_INSTANTIATION_SETUP Procedure"

	
"CLEANUP_INSTANTIATION_SETUP Procedure"

	
"Procedures That Configure an Oracle Streams Environment" for more information about this procedure

	
Oracle Streams Replication Administrator's Guide for information about setting up an Oracle Streams replication environment

	
Oracle Streams Concepts and Administration for information about completing database maintenance operations

Syntax

DBMS_STREAMS_ADM.POST_INSTANTIATION_SETUP(
 maintain_mode IN VARCHAR2,
 tablespace_names IN DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET,
 source_database IN VARCHAR2,
 destination_database IN VARCHAR2,
 perform_actions IN BOOLEAN DEFAULT TRUE,
 script_name IN VARCHAR2 DEFAULT NULL,
 script_directory_object IN VARCHAR2 DEFAULT NULL,
 capture_name IN VARCHAR2 DEFAULT NULL,
 capture_queue_table IN VARCHAR2 DEFAULT NULL,
 capture_queue_name IN VARCHAR2 DEFAULT NULL,
 capture_queue_user IN VARCHAR2 DEFAULT NULL,
 propagation_name IN VARCHAR2 DEFAULT NULL,
 apply_name IN VARCHAR2 DEFAULT NULL,
 apply_queue_table IN VARCHAR2 DEFAULT NULL,
 apply_queue_name IN VARCHAR2 DEFAULT NULL,
 apply_queue_user IN VARCHAR2 DEFAULT NULL,
 bi_directional IN BOOLEAN DEFAULT FALSE,
 include_ddl IN BOOLEAN DEFAULT FALSE,
 start_processes IN BOOLEAN DEFAULT FALSE,
 instantiation_scn IN NUMBER DEFAULT NULL,
 exclude_schemas IN VARCHAR2 DEFAULT NULL,
 exclude_flags IN BINARY_INTEGER DEFAULT NULL);

Parameters

	
See Also:

"Common Parameters for the Configuration Procedures" for descriptions of the procedure parameters that are not in Table 144-28

Table 144-28 POST_INSTANTIATION_SETUP Procedure Parameters

	Parameter	Description
	
maintain_mode

	
Specify one of the following:

	
GLOBAL to maintain the entire database by configuring replication between the local database and the database specified in the destination_database parameter

	
TRANSPORTABLE TABLESPACES to maintain a set of tablespaces by configuring replication between the local database and the database specified in the destination_database parameter

	
tablespace_names

	
If maintain_mode is set to TRANSPORTABLE TABLESPACES, then specify the local tablespace set to be cloned at the destination database and maintained by Oracle Streams.

The tablespaces in the tablespace set must exist at the source database, but these tablespaces must not exist at the destination database.

Also, a directory object must exist for each directory that contains the datafiles for the tablespace set. The user who invokes this procedure must have READ privilege on these directory objects.

If maintain_mode is set to GLOBAL, then specify an empty tablespace set.

Regardless of the maintain_mode setting, an error is raised if the tablespace_names parameter is not set or is set to NULL.

See Also: TABLESPACE_SET Table Type

	
source_database

	
The global name of the source database.

If the specified global name is the same as the global name of the local database, then the procedure configures a local capture process for the source database.

If the specified global name is different from the global name of the local database, then the procedure configures a downstream capture process at the local database. In this case, a database link from the local database to the source database with the same name as the global name of the source database must exist and must be accessible to the user who runs the procedure.

If NULL, then the procedure uses the global name of the local database.

	
destination_database

	
The global name of the destination database.

If the local database is not the destination database, then a database link from the local database to the destination database with the same name as the global name of the destination database must exist and must be accessible to the user who runs the procedure.

If NULL, then the procedure raises an error.

	
start_processes

	
If TRUE, then the procedure starts each capture process and apply process. Any disabled capture or apply process created by the PRE_INSTANTITAION_SETUP procedure also is started.

If FALSE, then the procedure does not start any capture processes or apply processes.

	
instantiation_scn

	
Specify the instantiation SCN for the database objects at the destination database if the instantiation SCN was not set during instantiation. The instantiation SCN is not set automatically during RMAN instantiations, but the correct instantiation SCN value should be determined during an RMAN instantiation. See the Oracle Streams Replication Administrator's Guide for more information.

Specify NULL if the instantiation SCN was set for the database objects at the destination database during instantiation. The instantiation SCN can be set during export/import instantiations.

	
exclude_schemas

	
A comma-delimited list of schemas to exclude from the Oracle Streams configuration. Schema rules are added to the negative rule sets of each capture process to exclude these schemas.

Specify an asterisk (*) to exclude all of the schemas in the database.

If NULL, then the procedure does not exclude any schemas in the database.

This parameter is valid only if the MAINTAIN_MODE parameter is set to GLOBAL. If the MAINTAIN_MODE parameter is set to TRANSPORTABLE TABLESPACES, then the procedure ignores this parameter.

	
exclude_flags

	
Specify what is excluded from the replication configuration in the schemas specified by the exclude_schemas parameter. This parameter works the same way in the PRE_INSTANTIATION_SETUP and POST_INSTANTIATION_SETUP procedures. See "Usage Notes" for the PRE_INSTANTIATION_SETUP procedure for more information.

Usage Notes

The following sections contain usage notes for this procedure.

Self-Contained Tablespace Sets

If the maintain_mode parameter is set to TRANSPORTABLE TABLESPACES, then the specified set of tablespaces must be self-contained. In this context "self-contained" means that there are no references from inside the set of tablespaces pointing outside of the set of tablespaces. For example, if a partitioned table is partially contained in the set of tablespaces, then the set of tablespaces is not self-contained.

	
See Also:

Oracle Database Administrator's Guide for more information about self-contained tablespace sets

Destination Database Renamed During RMAN Database Instantiation

If the maintain_mode parameter is set to GLOBAL, then database instantiation is required before running the POST_INSTANTIATION_SETUP procedure. If the RMAN DUPLICATE or RMAN CONVERT DATABASE command is used for database instantiation, then the global name of the destination database can be renamed to the global name of the source database during instantiation. In this case, before you run the POST_INSTANTIATION_SETUP procedure, complete the following steps:

	
Rename the global name of the destination database back to the name specified in the destination_database parameter.

	
At the destination database, drop and re-create any loopback database links that existed on the source and were cloned on the destination database. For example, suppose the source database dbs1.net has a database link that refers to itself. Suppose the destination database is dbs2.net. At the destination database, drop and re-create this database link as a loopback database link that refers to itself (dbs2.net).

	
At the destination database, drop any database links that were cloned from the source database and are from the source database to the destination database. For example, if the source database is dbs1.net and the destination database is dbs2.net, then drop any database links on the destination database that are from dbs1.net to dbs2.net.

	
Create a database link from the destination database to the source database with the same name as the global name of the source database. The database link must be accessible to the Oracle Streams administrator at the destination database.

This database link is required because the POST_INSTANTIATION_SETUP procedure runs the SET_GLOBAL_INSTANTIATION_SCN procedure in the DBMS_APPLY_ADM package at the destination database, and the SET_GLOBAL_INSTANTIATION_SCN procedure requires the database link. The instantiation SCN is set to the value specified in the instantiation_scn parameter of the POST_INSTANTIATION_SETUP procedure.

	
Note:

When the RMAN DUPLICATE or CONVERT DATABASE command is used for database instantiation, the destination database cannot be the capture database.

Oracle Streams Components Removed From the Destination Database

If the maintain_mode parameter is set to GLOBAL, then database instantiation is required before running the POST_INSTANTIATION_SETUP procedure. During database instantiation, Oracle Streams components created by the PRE_INSTANTIATION_SETUP procedure, such as Oracle Streams clients and queues, can be copied from the source database to the destination database. The POST_INSTANTIATION_SETUP procedure removes the Stream components created by the PRE_INSTANTIATION_SETUP procedure from the destination database.

In some cases, rule sets and rules created by the PRE_INSTANTIATION_SETUP procedure might not be removed from the destination database. The POST_INSTANTIATION_SETUP procedure does not associate these rule sets and rules with any Stream clients in the destination database. Optionally, you can remove these rule sets and rules from the destination database after the POST_INSTANTIATION_SETUP procedure, or the script generated by the procedure, completes.

	
Note:

The POST_INSTANTIATION_SETUP procedure only removes Oracle Streams components that were created by the PRE_INSTANTIATION_SETUP procedure. It does not remove Oracle Streams components that were created in a different way.

PRE_INSTANTIATION_SETUP Procedure

This procedure performs the actions required before instantiation to configure an Oracle Streams replication environment.

Run this procedure at the capture database. The capture database is the database that captures changes made to the source database.

To complete the Oracle Streams replication configuration, follow these steps:

	
Run the PRE_INSTANTIATION_SETUP procedure at the database that will be the source database in the Stream replication environment.

	
Perform any necessary instantiation actions.

	
Run the POST_INSTANTIATION_SETUP procedure at the source database.

Typically, the Oracle Streams replication environment configured using these steps serves one of the following purposes:

	
Replicates changes to shared database objects to keep the database objects synchronized at different databases.

	
Replicates changes to database objects during a database maintenance operation, such migrating a database to a different platform. In this case, use the CLEANUP_INSTANTIATION_SETUP procedure to remove the replication environment after the maintenance operation is complete.

	
Note:

	
A capture process never captures changes in the SYS, SYSTEM, or CTXSYS schemas. This procedure does not configure replication for these schemas.

	
When the RMAN DUPLICATE or CONVERT DATABASE command is used for database instantiation, the destination database cannot be the capture database.

	
See Also:

	
"POST_INSTANTIATION_SETUP Procedure"

	
"CLEANUP_INSTANTIATION_SETUP Procedure"

	
"Procedures That Configure an Oracle Streams Environment" for more information about this procedure

	
Oracle Streams Replication Administrator's Guide for information about setting up an Oracle Streams replication environment

	
Oracle Streams Concepts and Administration for information about completing database maintenance operations

Syntax

DBMS_STREAMS_ADM.PRE_INSTANTIATION_SETUP(
 maintain_mode IN VARCHAR2,
 tablespace_names IN DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET,
 source_database IN VARCHAR2,
 destination_database IN VARCHAR2,
 perform_actions IN BOOLEAN DEFAULT TRUE,
 script_name IN VARCHAR2 DEFAULT NULL,
 script_directory_object IN VARCHAR2 DEFAULT NULL,
 capture_name IN VARCHAR2 DEFAULT NULL,
 capture_queue_table IN VARCHAR2 DEFAULT NULL,
 capture_queue_name IN VARCHAR2 DEFAULT NULL,
 capture_queue_user IN VARCHAR2 DEFAULT NULL,
 propagation_name IN VARCHAR2 DEFAULT NULL,
 apply_name IN VARCHAR2 DEFAULT NULL,
 apply_queue_table IN VARCHAR2 DEFAULT NULL,
 apply_queue_name IN VARCHAR2 DEFAULT NULL,
 apply_queue_user IN VARCHAR2 DEFAULT NULL,
 bi_directional IN BOOLEAN DEFAULT FALSE,
 include_ddl IN BOOLEAN DEFAULT FALSE,
 start_processes IN BOOLEAN DEFAULT FALSE,
 exclude_schemas IN VARCHAR2 DEFAULT NULL,
 exclude_flags IN BINARY_INTEGER DEFAULT NULL);

Parameters

	
See Also:

"Common Parameters for the Configuration Procedures" for descriptions of the procedure parameters that are not in Table 144-29

Table 144-29 PRE_INSTANTIATION_SETUP Procedure Parameters

	Parameter	Description
	
maintain_mode

	
Specify one of the following:

	
GLOBAL to maintain the entire database by configuring replication between the local database and the database specified in the destination_database parameter

	
TRANSPORTABLE TABLESPACES to maintain a set of tablespaces by configuring replication between the local database and the database specified in the destination_database parameter

	
tablespace_names

	
If maintain_mode is set to TRANSPORTABLE TABLESPACES, then specify the local tablespace set to be cloned at the destination database and maintained by Oracle Streams.

The tablespaces in the tablespace set must exist at the source database, but these tablespaces must not exist at the destination database.

Also, a directory object must exist for each directory that contains the datafiles for the tablespace set. The user who invokes this procedure must have READ privilege on these directory objects.

If maintain_mode is set to GLOBAL, then specify an empty tablespace set.

Regardless of the maintain_mode setting, an error is raised if the tablespace_names parameter is not set or is set to NULL.

See Also: TABLESPACE_SET Table Type

	
source_database

	
The global name of the source database.

If the specified global name is the same as the global name of the local database, then the procedure configures a local capture process for the source database.

If the specified global name is different from the global name of the local database, then the procedure configures a downstream capture process at the local database. In this case, a database link from the local database to the source database with the same name as the global name of the source database must exist and must be accessible to the user who runs the procedure.

If NULL, then the procedure uses the global name of the local database.

	
destination_database

	
The global name of the destination database.

If the local database is not the destination database, then a database link from the local database to the destination database with the same name as the global name of the destination database must exist and must be accessible to the user who runs the procedure.

If NULL, then the procedure raises an error.

	
capture_queue_table

	
The name of the queue table for each queue used by a capture process, specified as [schema_name.]queue_table_name. For example, strmadmin.streams_queue_table. If the schema is not specified, then the current user is the default.

If NULL, then the system generates a name for the queue table of each queue used by a capture process, and the current user is the owner of each queue table.

	
start_processes

	
If TRUE, then the procedure starts each capture process and apply process.

If FALSE, then the procedure does not start any capture processes or apply processes.

	
exclude_schemas

	
A comma-delimited list of schemas to exclude from the Oracle Streams configuration. Schema rules are added to the negative rule sets of each capture process to exclude these schemas.

Specify an asterisk (*) to exclude all of the schemas in the database.

If NULL, then the procedure does not exclude any schemas in the database.

This parameter is valid only if the MAINTAIN_MODE parameter is set to GLOBAL. If the MAINTAIN_MODE parameter is set to TRANSPORTABLE TABLESPACES, then the procedure ignores this parameter.

	
exclude_flags

	
Specify what to exclude from the replication configuration in the schemas specified by the exclude_schemas parameter. See "Usage Notes" for more information.

Usage Notes

The following sections contain usage notes for this procedure.

Self-Contained Tablespace Sets

If the maintain_mode parameter is set to TRANSPORTABLE TABLESPACES, then the specified set of tablespaces must be self-contained. In this context "self-contained" means that there are no references from inside the set of tablespaces pointing outside of the set of tablespaces. For example, if a partitioned table is partially contained in the set of tablespaces, then the set of tablespaces is not self-contained.

	
See Also:

Oracle Database Administrator's Guide for more information about self-contained tablespace sets

The exclude_flags Parameter

Specify one of the following values:

	
DBMS_STREAMS_ADM.EXCLUDE_FLAGS_FULL to exclude changes to the schemas and all of the database objects in the schemas

	
DBMS_STREAMS_ADM.EXCLUDE_FLAGS_UNSUPPORTED to exclude changes to the database objects that are not supported by Oracle Streams in the schemas

If both of these values are specified, then the procedure raises an error.

In addition to DBMS_STREAMS_ADM.EXCLUDE_FLAGS_FULL or DBMS_STREAMS_ADM.EXCLUDE_FLAGS_UNSUPPORTED, specify one or both of the following values:

	
DBMS_STREAMS_ADM.EXCLUDE_FLAGS_DML to exclude data manipulation language (DML) changes made to the excluded database objects

	
DBMS_STREAMS_ADM.EXCLUDE_FLAGS_FULL to exclude data definition language (DDL) changes made to the excluded database objects

Use the plus sign (+) to specify more than one of these values. For example, to maintain DML changes to the tables in a schemas specified by the exclude_schemas parameter but exclude DDL changes to these schemas and the database objects in these schemas, specify the following for this parameter:

DBMS_STREAMS_ADM.EXCLUDE_FLAGS_FULL +
DBMS_STREAMS_ADM.EXCLUDE_FLAGS_DDL

To exclude DML and DDL changes made to unsupported database objects in the schemas specified by the exclude_schemas parameter, specify the following for this parameter:

DBMS_STREAMS_ADM.EXCLUDE_FLAGS_UNSUPPORTED +
DBMS_STREAMS_ADM.EXCLUDE_FLAGS_DML +
DBMS_STREAMS_ADM.EXCLUDE_FLAGS_DDL

Rules for the excluded database objects are added to the negative rule set of each capture process. Therefore, changes to the excluded database objects will not be captured and replicated.

This parameter is valid only if the maintain_mode parameter is set to GLOBAL and the exclude_schemas parameter is set to a non-NULL value. If the maintain_mode parameter is set to GLOBAL and the exclude_schemas parameter is set to a NULL, then the procedure ignores this parameter. If the maintain_mode parameter is set to TRANSPORTABLE TABLESPACES, then this the procedure ignores this parameter and excludes any database objects in the specified tablespace set that are not supported by Oracle Streams from the Oracle Streams configuration automatically.

Also, if schemas are specified in the exclude_schemas parameter, but the exclude_flags parameter is set to NULL, then the procedure does not add any rules to the negative rule set of any capture process, and the procedure includes the schemas specified in the exclude_schemas parameter in the replication environment.

PURGE_SOURCE_CATALOG Procedure

This procedure removes all Oracle Streams data dictionary information at the local database for the specified object. You can use this procedure to remove Oracle Streams metadata that is not needed currently and will not be needed in the future.

Syntax

DBMS_STREAMS_ADM.PURGE_SOURCE_CATALOG(
 source_database IN VARCHAR2,
 source_object_name IN VARCHAR2,
 source_object_type IN VARCHAR2);

Parameters

Table 144-30 PURGE_SOURCE_CATALOG Procedure Parameters

	Parameter	Description
	
source_database

	
The global name of the source database containing the object.

If you do not include the domain name, then the procedure appends it to the database name automatically. For example, if you specify DBS1 and the domain is .NET, then the procedure specifies DBS1.NET automatically.

	
source_object_name

	
The name of the object specified as [schema_name.]object_name. For example, hr.employees. If the schema is not specified, then the current user is the default.

	
source_object_type

	
Type of the object. Currently, TABLE is the only possible object type.

Usage Notes

The global name of the source database containing the object must be specified for the source_database parameter. If the current database is not the source database for the object, then the procedure removes data dictionary information about the object from the current database, not the source database.

For example, suppose changes to the hr.employees table at the dbs1.net source database are being applied to the hr.employees table at the dbs2.net destination database. Also, suppose hr.employees at dbs2.net is not a source at all. In this case, specifying dbs2.net as the source_database for this table results in an error. However, specifying dbs1.net as the source_database for this table while running the PURGE_SOURCE_CATALOG procedure at the dbs2.net database removes data dictionary information about the table at dbs2.net.

Do not run this procedure at a database if either of the following conditions are true:

	
Logical change records (LCRs) captured by the capture process for the object are or might be applied locally without reinstantiating the object.

	
LCRs captured by the capture process for the object are or might be forwarded by the database without reinstantiating the object.

	
Note:

These conditions do not apply to LCRs that were not created by the capture process. That is, these conditions do not apply to user-created LCRs.

RECOVER_OPERATION Procedure

This procedure provides options for operations that stopped because they encountered an errors. These operations include split and merge operations, Oracle Streams replication configuration operations, and Oracle Streams change table configuration operations. This procedure either rolls forward the operation, rolls back the operation, or purges all of the metadata about the operation.

This procedure only can perform these actions for the following operations:

	
Split and merge operations using:

	
The split_threshold and merge_threshold capture process parameters set to non-NULL values to enable automatic split and merge

	
SPLIT_STREAMS Procedure

	
MERGE_STREAMS_JOB Procedure

	
Change table configuration operations performed by the MAINTAIN_CHANGE_TABLE Procedure

	
Replication configuration operations performed by the following procedures:

	
MAINTAIN_GLOBAL Procedure

	
MAINTAIN_SCHEMAS Procedure

	
MAINTAIN_SIMPLE_TABLESPACE Procedure

	
MAINTAIN_SIMPLE_TTS Procedure

	
MAINTAIN_TABLES Procedure

	
MAINTAIN_TABLESPACES Procedure

	
MAINTAIN_TTS Procedure

	
PRE_INSTANTIATION_SETUP Procedure

	
POST_INSTANTIATION_SETUP Procedure

Information about the operation is stored in the following data dictionary views when the operation is in process:

	
DBA_RECOVERABLE_SCRIPT

	
DBA_RECOVERABLE_SCRIPT_PARAMS

	
DBA_RECOVERABLE_SCRIPT_BLOCKS

	
DBA_RECOVERABLE_SCRIPT_ERRORS

For split and merge operations, the data dictionary views are populated at the database that contains the capture process. For the configuration operations, the data dictionary views are populated at the database where the replication configuration procedure was run.

When the operation completes successfully, metadata about the operation is moved from the DBA_RECOVERABLE_SCRIPT view to the DBA_RECOVERABLE_SCRIPT_HIST view. The other views, DBA_RECOVERABLE_SCRIPT_PARAMS, DBA_RECOVERABLE_SCRIPT_BLOCKS, and DBA_RECOVERABLE_SCRIPT_ERRORS, retain information about the operation until it is purged automatically after 30 days.

When one of these operations encounters an error and stops, metadata about the operation remains in these views. In this case, you can either roll forward, roll back, or purge the metadata about the operation using the RECOVER_OPERATION procedure. If you choose to roll forward the operation, then correct conditions that caused the errors reported in DBA_RECOVERABLE_SCRIPT_ERRORS before proceeding.

For split and merge operations, run the RECOVER_OPERATION procedure at the database that contains the capture process. For the configuration operations, run the RECOVER_OPERATION procedure at the database where the replication configuration procedure was run.

	
Note:

	
Regarding the configuration operations, the procedure must configure the environment directly (perform_actions => TRUE), not by generating a script, for information about the operation to be stored in the recoverable views and for the operation to be managed by the RECOVER_OPERATION procedure.

	
To run the RECOVER_OPERATION procedure, both databases must be Oracle Database 10g Release 2 or later databases.

	
See Also:

Oracle Streams Replication Administrator's Guide

Syntax

DBMS_STREAMS_ADM.RECOVER_OPERATION(
 script_id IN RAW,
 operation_mode IN VARCHAR2 DEFAULT 'FORWARD');

Parameters

Table 144-31 RECOVER_OPERATION Procedure Parameters

	Parameter	Description
	
script_id

	
The operation id of the operation that is being rolled forward, rolled back, or purged. Query the SCRIPT_ID column of the DBA_RECOVERABLE_SCRIPT data dictionary view to determine the operation id.

	
operation_mode

	
If FORWARD, then the procedure rolls forward the operation. Specify FORWARD to try to complete the operation.

If ROLLBACK, then the procedure rolls back all of the actions performed in the operation. If the rollback is successful, then this option also moves the metadata about the operation from the DBA_RECOVERABLE_SCRIPT view to the DBA_RECOVERABLE_SCRIPT_HIST view. The other views retain information about the operation for 30 days.

If PURGE, then the procedure moves the metadata about the operation from the DBA_RECOVERABLE_SCRIPT view to the DBA_RECOVERABLE_SCRIPT_HIST view without rolling the operation back. The other views retain information about the operation for 30 days.

REMOVE_QUEUE Procedure

This procedure removes the specified ANYDATA queue.

Specifically, this procedure performs the following actions:

	
Waits until all current enqueue and dequeue transactions commit.

	
Stops the queue, which means that no further enqueues into the queue or dequeues from the queue are allowed.

	
Drops the queue.

	
If the drop_unused_queue_table parameter is set to TRUE, then drops the queue table if it is empty and no other queues are using it.

	
If the cascade parameter is set to TRUE, then drops all of the Oracle Streams clients that are using the queue.

	
Note:

The specified queue must be a ANYDATA queue.

Syntax

DBMS_STREAMS_ADM.REMOVE_QUEUE(
 queue_name IN VARCHAR2,
 cascade IN BOOLEAN DEFAULT FALSE,
 drop_unused_queue_table IN BOOLEAN DEFAULT TRUE);

Parameters

Table 144-32 REMOVE_QUEUE Procedure Parameters

	Parameter	Description
	
queue_name

	
The name of the queue to remove, specified as [schema_name.]queue_name. For example, strmadmin.streams_queue. If the schema is not specified, then the current user is the default.

	
cascade

	
If TRUE, then the procedure drops any Oracle Streams clients that use the queue.

If FALSE, then the procedure raises an error if there are any Oracle Streams clients that use the queue. Before you run this procedure with the cascade parameter set to FALSE, make sure no Oracle Streams clients are using the queue currently.

	
drop_unused_queue_table

	
If TRUE and the queue table for the queue is empty, then the procedure drops the queue table. The queue table is not dropped if it contains any messages or if it is used by another queue.

If FALSE, then the procedure does not drop the queue table.

REMOVE_RULE Procedure

This procedure removes the specified rule or all rules from the rule set associated with the specified capture process, synchronous capture, apply process, propagation, or messaging client.

If this procedure results in an empty positive rule set for a messaging client, then the procedure drops the messaging client automatically.

	
Note:

If a rule was automatically created by the system, and you want to drop the rule, then you should use this procedure to remove the rule instead of the DBMS_RULE_ADM.DROP_RULE procedure. If you use the DBMS_RULE_ADM.DROP_RULE procedure, then some metadata about the rule might remain.

Syntax

DBMS_STREAMS_ADM.REMOVE_RULE(
 rule_name IN VARCHAR2,
 streams_type IN VARCHAR2,
 streams_name IN VARCHAR2,
 drop_unused_rule IN BOOLEAN DEFAULT TRUE,
 inclusion_rule IN BOOLEAN DEFAULT TRUE);

Parameters

Table 144-33 REMOVE_RULE Procedure Parameters

	Parameter	Description
	
rule_name

	
The name of the rule to remove, specified as [schema_name.]rule_name. If NULL, then the procedure removes all rules from the specified capture process, synchronous capture, apply process, propagation, or messaging client rule set.

For example, to specify a rule in the hr schema named prop_rule1, enter hr.prop_rule1. If the schema is not specified, then the current user is the default.

	
streams_type

	
The type of Oracle Streams client:

	
Specify capture for a capture process.

	
Specify sync_capture for a synchronous capture.

	
Specify propagation for a propagation.

	
Specify apply for an apply process.

	
Specify dequeue for a messaging client.

	
streams_name

	
The name of the Oracle Streams client, which can be a capture process, synchronous capture, propagation, apply process, or messaging client. Do not specify an owner.

If the specified Oracle Streams client does not exist, but there is metadata in the data dictionary that associates the rule with this client, then the procedure removes the metadata.

If the specified Oracle Streams client does not exist, and there is no metadata in the data dictionary that associates the rule with this client, then the procedure raises an error.

	
drop_unused_rule

	
If TRUE and the rule is not in any rule set, then the procedure drops the rule from the database.

If TRUE and the rule exists in any rule set, then the procedure does not drop the rule from the database.

If FALSE, then the procedure does not drop the rule from the database.

	
inclusion_rule

	
If inclusion_rule is TRUE, then the procedure removes the rule from the positive rule set for the Oracle Streams client.

If inclusion_rule is FALSE, then the procedure removes the rule from the negative rule set for the Oracle Streams client.

REMOVE_STREAMS_CONFIGURATION Procedure

This procedure removes the Oracle Streams configuration at the local database.

Syntax

DBMS_STREAMS_ADM.REMOVE_STREAMS_CONFIGURATION;

Usage Notes

Specifically, this procedure performs the following actions at the local database:

	
Drops all capture processes

	
If any tables have been prepared for instantiation, then aborts preparation for instantiation for the table using the ABORT_TABLE_INSTANTIATION procedure in the DBMS_CAPTURE_ADM package

	
If any schemas have been prepared for instantiation, then aborts preparation for instantiation for the schema using the ABORT_SCHEMA_INSTANTIATION procedure in the DBMS_CAPTURE_ADM package

	
If the database has been prepared for instantiation, then aborts preparation for instantiation for the database using the ABORT_GLOBAL_INSTANTIATION procedure in the DBMS_CAPTURE_ADM package

	
Drops propagations that were created using either the DBMS_STREAMS_ADM package or the DBMS_PROPAGATION_ADM package. Before a propagation is dropped, its propagation job is disabled. Does not drop propagations that were created using the DBMS_AQADM package.

	
Disables all propagation jobs used by propagations

	
Drops all apply processes. If there are apply errors in the error queue for an apply process, then this procedure deletes these apply errors before it drops the apply process.

	
Removes specifications for DDL handlers used by apply processes, but does not delete the PL/SQL procedures used by these handlers

	
Removes specifications for message handlers used by apply processes, but does not delete the PL/SQL procedures used by these handlers

	
Removes specifications for precommit handlers used by apply processes, but does not delete the PL/SQL procedures used by these handlers

	
Removes the instantiation SCN and ignore SCN for each apply object and schema and for the entire database

	
Removes messaging clients

	
Unsets message notification specifications that were set using the SET_MESSAGE_NOTIFICATION procedure in the DBMS_STREAMS_ADM package

	
Removes specifications for procedure DML handlers and error handlers, but does not delete the PL/SQL procedures used by these handlers

	
Removes update conflict handlers

	
Removes specifications for substitute key columns for apply tables

	
Drops rule sets and rules that were created using the DBMS_STREAMS_ADM package.

	
Drops unused rule sets that were used by capture processes, propagations, apply processes, and messaging clients, and removes the rules in these rule sets. These rules and rule sets are removed regardless of whether they were created using the DBMS_STREAMS_ADM package or the DBMS_RULE_ADM package.

This procedure stops capture processes and apply processes before it drops them.

This procedure does not drop rule sets or rules if they meet both of the following conditions:

	
The rule sets or rules were created using the DBMS_RULE_ADM package.

	
The rule sets or rules were not used by a capture process, propagation, apply process, or messaging client.

	
Attention:

Running this procedure is dangerous. You should run this procedure only if you are sure you want to remove the entire Oracle Streams configuration at a database.

	
Note:

	
Running this procedure repeatedly does not cause errors. If the procedure fails to complete, then you can run it again.

	
This procedure commits multiple times.

	
See Also:

	
STOP_CAPTURE Procedure in the DBMS_CAPTURE_ADM package

	
STOP_APPLY Procedure in the DBMS_APPLY_ADM package

	
REMOVE_RULE Procedure in the DBMS_STREAMS_ADM package

RENAME_COLUMN Procedure

This procedure either adds or removes a declarative rule-based transformation which renames a column in a row logical change record (LCR) that satisfies the specified rule.

For the transformation to be performed when the specified rule evaluates to TRUE, the rule must be in the positive rule set of an Oracle Streams client. Oracle Streams clients include capture processes, synchronous captures, propagations, apply processes, and messaging clients.

	
Note:

	
The RENAME_COLUMN procedure supports the same data types supported by Oracle Streams capture processes.

	
Declarative transformations can transform row LCRs only. These row LCRs can be captured by a capture process, captured by a synchronous capture, or constructed and enqueued by an application. Therefore, a DML rule must be specified when you run this procedure. If a DDL is specified, then the procedure raises an error.

	
See Also:

Oracle Streams Concepts and Administration for more information about declarative rule-based transformations and about the data types supported by Oracle Streams capture processes

Syntax

DBMS_STREAMS_ADM.RENAME_COLUMN(
 rule_name IN VARCHAR2,
 table_name IN VARCHAR2,
 from_column_name IN VARCHAR2,
 to_column_name IN VARCHAR2,
 value_type IN VARCHAR2 DEFAULT '*',
 step_number IN NUMBER DEFAULT 0,
 operation IN VARCHAR2 DEFAULT 'ADD');

Parameters

Table 144-34 RENAME_COLUMN Procedure Parameters

	Parameter	Description
	
rule_name

	
The name of the rule, specified as [schema_name.]rule_name. If NULL, then the procedure raises an error.

For example, to specify a rule in the hr schema named employees12, enter hr.employees12. If the schema is not specified, then the current user is the default.

	
table_name

	
The name of the table in which the column is renamed in the row LCR, specified as [schema_name.]object_name. For example, hr.employees. If the schema is not specified, then the current user is the default.

	
from_column_name

	
The name of the column to be renamed in each row LCR that satisfies the rule.

	
to_column_name

	
The new name of the column in each row LCR that satisfies the rule.

	
value_type

	
Specify 'NEW' to rename the column in the new values in the row LCR.

Specify 'OLD' to rename the column in the old values in the row LCR.

Specify '*' to rename the column in both the old and new values in the row LCR.

	
step_number

	
The order of execution of the transformation.

See Also: Oracle Streams Concepts and Administration for more information about transformation ordering

	
operation

	
Specify 'ADD' to add the transformation to the rule.

Specify 'REMOVE' to remove the transformation from the rule.

Usage Notes

When 'REMOVE' is specified for the operation parameter, all of the rename column declarative rule-based transformations for the specified rule are removed that match the specified table_name, column_name, and step_number parameters. Nulls specified for these parameters act as wildcards. The following table lists the behavior of the RENAME_COLUMN procedure when one or more of these parameters is NULL:

	table_name	from_column_name	to_column_name	step_number	Result
	NULL	NULL	NULL	NULL	Remove all rename column transformations for the specified rule.
	NULL	NULL	NULL	non-NULL	Remove all rename column transformations with the specified step_number for the specified rule.
	NULL	NULL	non-NULL	non-NULL	Remove all rename column transformations with the specified to_column_name and step_number for the specified rule.
	NULL	non-NULL	non-NULL	non-NULL	Remove all rename column transformations with the specified table_name and step_number for the specified rule.
	NULL	NULL	non-NULL	NULL	Remove all rename column transformations with the specified column_name for the specified rule.
	non-NULL	NULL	non-NULL	NULL	Remove all rename column transformations with the specified table_name and column_name for the specified rule.
	NULL	non-NULL	NULL	NULL	Remove all rename column transformations with the specified table_name for the specified rule.
	NULL	non-NULL	non-NULL	NULL	Remove all rename column transformations with the specified table_name, column_name, and step_number for the specified rule.
	non-NULL	NULL	non-NULL	NULL	Remove all rename column transformations with the specified table_name, column_name, and step_number for the specified rule.
	non-NULL	non-NULL	non-NULL	NULL	Remove all rename column transformations with the specified table_name, column_name, and step_number for the specified rule.
	non-NULL	non-NULL	non-NULL	non-NULL	Remove all rename column transformations with the specified table_name, column_name, and step_number for the specified rule.

RENAME_SCHEMA Procedure

This procedure either adds or removes a declarative rule-based transformation which renames a schema in a row logical change record (LCR) that satisfies the specified rule.

For the transformation to be performed when the specified rule evaluates to TRUE, the rule must be in the positive rule set of an Oracle Streams client. Oracle Streams clients include capture processes, synchronous captures, propagations, apply processes, and messaging clients.

	
Note:

Declarative transformations can transform row LCRs only. These row LCRs can be captured by a capture process, captured by a synchronous capture, or constructed and enqueued by an application. Therefore, a DML rule must be specified when you run this procedure. If a DDL is specified, then the procedure raises an error.

	
See Also:

Oracle Streams Concepts and Administration for more information about declarative rule-based transformations

Syntax

DBMS_STREAMS_ADM.RENAME_SCHEMA(
 rule_name IN VARCHAR2,
 from_schema_name IN VARCHAR2,
 to_schema_name IN VARCHAR2,
 step_number IN NUMBER DEFAULT 0,
 operation IN VARCHAR2 DEFAULT 'ADD');

Parameters

Table 144-35 RENAME_SCHEMA Procedure Parameters

	Parameter	Description
	
rule_name

	
The name of the rule, specified as [schema_name.]rule_name. If NULL, then the procedure raises an error.

For example, to specify a rule in the hr schema named employees12, enter hr.employees12. If the schema is not specified, then the current user is the default.

	
from_schema_name

	
The name of the schema to be renamed in each row LCR that satisfies the rule.

	
to_schema_name

	
The new name of the schema in each row LCR that satisfies the rule.

	
step_number

	
The order of execution of the transformation.

See Also: Oracle Streams Concepts and Administration for more information about transformation ordering

	
operation

	
Specify 'ADD' to add the transformation to the rule.

Specify 'REMOVE' to remove the transformation from the rule.

Usage Notes

When 'REMOVE' is specified for the operation parameter, all of the rename schema declarative rule-based transformations for the specified rule are removed that match the specified from_schema_name, to_schema_name, and step_number parameters. Nulls specified for these parameters act as wildcards. The following table lists the behavior of the RENAME_SCHEMA procedure when one or more of these parameters is NULL:

	from_schema_name	to_schema_name	step_number	Result
	NULL	NULL	NULL	Remove all rename schema transformations for the specified rule.
	NULL	NULL	non-NULL	Remove all rename schema transformations with the specified step_number for the specified rule.
	NULL	non-NULL	non-NULL	Remove all rename schema transformations with the specified to_schema_name and step_number for the specified rule.
	non-NULL	NULL	non-NULL	Remove all rename schema transformations with the specified from_schema_name and step_number for the specified rule.
	NULL	non-NULL	NULL	Remove all rename schema transformations with the specified to_schema_name for the specified rule.
	non-NULL	non-NULL	NULL	Remove all rename schema transformations with the specified from_schema_name and to_schema_name for the specified rule.
	non-NULL	NULL	NULL	Remove all rename schema transformations with the specified from_schema_name for the specified rule.
	non-NULL	non-NULL	non-NULL	Remove all rename schema transformations with the specified from_schema_name, to_schema_name, and step_number for the specified rule.

RENAME_TABLE Procedure

This procedure either adds or removes a declarative rule-based transformation which renames a table in a row logical change record (row LCR) that satisfies the specified rule.

For the transformation to be performed when the specified rule evaluates to TRUE, the rule must be in the positive rule set of an Oracle Streams client. Oracle Streams clients include capture processes, synchronous captures, propagations, apply processes, and messaging clients.

	
Note:

Declarative transformations can transform row LCRs only. These row LCRs can be captured by a capture process, captured by a synchronous capture, or constructed and enqueued by an application. Therefore, a DML rule must be specified when you run this procedure. If a DDL is specified, then the procedure raises an error.

	
See Also:

Oracle Streams Concepts and Administration for more information about declarative rule-based transformations

Syntax

DBMS_STREAMS_ADM.RENAME_TABLE(
 rule_name IN VARCHAR2,
 from_table_name IN VARCHAR2,
 to_table_name IN VARCHAR2,
 step_number IN NUMBER DEFAULT 0,
 operation IN VARCHAR2 DEFAULT 'ADD');

Parameters

Table 144-36 RENAME_TABLE Procedure Parameters

	Parameter	Description
	
rule_name

	
The name of the rule, specified as [schema_name.]rule_name. If NULL, then the procedure raises an error.

For example, to specify a rule in the hr schema named employees12, enter hr.employees12. If the schema is not specified, then the current user is the default.

	
from_table_name

	
The name of the table to be renamed in each row LCR that satisfies the rule, specified as [schema_name.]object_name. For example, hr.employees. If the schema is not specified, then the current user is the default.

	
to_table_name

	
The new name of the table in each row LCR that satisfies the rule, specified as [schema_name.]object_name. For example, humres.staff.

The transformation can rename the table only, the schema only, or the table and the schema. If the schema is not specified, then the current user is the default.

	
step_number

	
The order of execution of the transformation.

See Also: Oracle Streams Concepts and Administration for more information about transformation ordering

	
operation

	
Specify 'ADD' to add the transformation to the rule.

Specify 'REMOVE' to remove the transformation from the rule.

Usage Notes

When 'REMOVE' is specified for the operation parameter, all of the rename table declarative rule-based transformations for the specified rule are removed that match the specified from_table_name, to_table_name, and step_number parameters. Nulls specified for these parameters act as wildcards. The following table lists the behavior of the RENAME_TABLE procedure when one or more of these parameters is NULL:

	from_table_name	to_table_name	step_number	Result
	NULL	NULL	NULL	Remove all rename table transformations for the specified rule.
	NULL	NULL	non-NULL	Remove all rename table transformations with the specified step_number for the specified rule.
	NULL	non-NULL	non-NULL	Remove all rename table transformations with the specified to_table_name and step_number for the specified rule.
	non-NULL	NULL	non-NULL	Remove all rename table transformations with the specified from_table_name and step_number for the specified rule.
	NULL	non-NULL	NULL	Remove all rename table transformations with the specified to_table_name for the specified rule.
	non-NULL	non-NULL	NULL	Remove all rename table transformations with the specified from_table_name and to_table_name for the specified rule.
	non-NULL	NULL	NULL	Remove all rename table transformations with the specified from_table_name for the specified rule.
	non-NULL	non-NULL	non-NULL	Remove all rename table transformations with the specified from_table_name, to_table_name, and step_number for the specified rule.

SET_MESSAGE_NOTIFICATION Procedure

This procedure sets a notification for messages that can be dequeued by a specified Oracle Streams messaging client from a specified queue. A notification is sent when a message is enqueued into the specified queue and the specified messaging client can dequeue the message because the message satisfies its rule sets.

	
Note:

	
Currently, messaging clients cannot dequeue buffered messages.

	
The DBMS_AQ package can also configure notifications. The DBMS_AQ package provides some notification features that are not available in DBMS_STREAMS_ADM package, such as buffered message notifications and notification grouping by time.

Syntax

DBMS_STREAMS_ADM.SET_MESSAGE_NOTIFICATION(
 streams_name IN VARCHAR2,
 notification_action IN VARCHAR2,
 notification_type IN VARCHAR2 DEFAULT 'PROCEDURE',
 notification_context IN ANYDATA DEFAULT NULL,
 include_notification IN BOOLEAN DEFAULT TRUE,
 queue_name IN VARCHAR2 DEFAULT 'streams_queue');

Parameters

Table 144-37 SET_MESSAGE_NOTIFICATION Procedure Parameters

	Parameter	Description
	
streams_name

	
The name of the Oracle Streams messaging client. Do not specify an owner.

For example, if the user strmadmin is the messaging client, then specify strmadmin.

	
notification_action

	
The action to be performed on message notification. Specify one of the following:

	
For URL notifications, specify a URL without the prefix http://.

For example, to specify the URL http://www.company.com:8080, enter the following:

www.company.com:8080

	
For email notifications, specify an email address.

For example, to specify an the email address xyz@company.com, enter the following:

xyz@company.com

	
For PL/SQL procedure notifications, specify an existing user-defined PL/SQL procedure in the form [schema_name.]procedure_name. If the schema_name is not specified, then the user who invokes the SET_MESSAGE_NOTIFICATION procedure is the default. The procedure must be a PLSQLCALLBACK data structure.

For example, to specify a procedure named notify_orders in the oe schema, enter the following:

oe.notify_orders

See Also: Examples for more information about message notification procedures

	
notification_type

	
The type of notification. Specify one of the following:

	
HTTP if you specified a URL for notification_action

	
MAIL if you specified an email address for notification_action

	
PROCEDURE if you specified a user-defined procedure for notification_action

The type must match the specification for the notification_action parameter.

	
notification_context

	
The context of the notification. The context must be specified using RAW data type information. For example, to specify the hexidecimal equivalent of 'FF', enter the following:

ANYDATA.ConvertRaw(HEXTORAW('FF'))

The notification context is passed the PL/SQL procedure in procedure notifications and is not relevant for mail or HTTP notifications.

	
include_notification

	
If TRUE, then the procedure adds this notification for the specified streams_name and queue_name. That is, specifying TRUE turns on the notification for the streams_name and queue_name.

If FALSE, then the procedure removes this notification for the specified streams_name and queue_name. That is, specifying FALSE turns off the notification for the streams_name and queue_name. If you specify FALSE, then this procedure ignores any specified values for the notification_action or notification_context parameters.

	
queue_name

	
The name of a local ANYDATA queue, specified as [schema_name.]queue_name. The current database must contain the queue. The specified queue must be a ANYDATA queue.

For example, to specify a queue named streams_queue in the strmadmin schema, enter strmadmin.streams_queue for this parameter. If the schema is not specified, then the current user is the default.

Usage Notes

You can specify one of the following types of notifications:

	
An email address to which message notifications are sent. When a relevant message is enqueued into the queue, an email with the message properties is mailed to the specified email address.

	
A PL/SQL procedure to be invoked on a notification. When a relevant message is enqueued into the queue, the specified PL/SQL procedure is invoked with the message properties. This PL/SQL procedure can dequeue the message.

	
An HTTP URL to which the notification is posted. When a relevant message is enqueued into the queue, a notification with the message properties is posted to the specified URL specified.

A client does not need to be connected to the database to receive a notification.

If you register for email notifications, then you should use the DBMS_AQELM package to set the host name and port name for the SMTP server that will be used by the database to send email notifications. If required, then you should set the send-from email address, which is set by the database as the sent from field. You need a Java-enabled database to use this feature.

If you register for HTTP notifications, you might want to use the DBMS_AQELM package to set the host name and port number for the proxy server and a list of no-proxy domains that will be used by the database to post HTTP notifications.

Each notification is an AQXmlNotification, which includes of the following:

	
notification_options, which includes the following:

	
destination - The destination queue from which the message was dequeued

	
consumer_name - The name of the messaging client that dequeued the message

	
message_set - The set of message properties

	
See Also:

	
The documentation for the DBMS_AQELM package for more information on email notifications and HTTP notifications

	
Oracle Database 2 Day + Data Replication and Integration Guide for an example that configures message notification to automatically dequeue of messages of interest

	
Oracle Streams Advanced Queuing User's Guide and Oracle XML DB Developer's Guide for more information about message notifications and XML

	
Oracle Streams Concepts and Administration for more information about how rules are used in Oracle Streams

Examples

If you use a message notification procedure, then this PL/SQL procedure must have the following signature:

PROCEDURE procedure_name(
 context IN ANYDATA,
 reginfo IN SYS.AQ$_REG_INFO,
 descr IN SYS.AQ$_DESCRIPTOR);

Here, procedure_name stands for the name of the procedure. The procedure is a PLSQLCALLBACK data structure that specifies the user-defined PL/SQL procedure to be invoked on message notification.

The following is a simple example of a notification procedure that dequeues a message of type oe.user_msg using the message identifier and consumer name sent by the notification. To complete the example, first create the type:

CREATE TYPE oe.user_msg AS OBJECT(
 object_name VARCHAR2(30),
 object_owner VARCHAR2(30),
 message VARCHAR2(50));
/

Next, create the procedure:

CREATE OR REPLACE PROCEDURE oe.notification_dequeue(
 context ANYDATA,
 reginfo SYS.AQ$_REG_INFO,
 descr SYS.AQ$_DESCRIPTOR)
AS
 dequeue_options DBMS_AQ.DEQUEUE_OPTIONS_T;
 message_properties DBMS_AQ.MESSAGE_PROPERTIES_T;
 message_handle RAW(16);
 message ANYDATA;
 oe_message oe.user_msg;
 rc PLS_INTEGER;
BEGIN
 -- Get the message identifier and consumer name from the descriptor
 dequeue_options.msgid := descr.msg_id;
 dequeue_options.consumer_name := descr.consumer_name;
 -- Dequeue the message
 DBMS_AQ.DEQUEUE(
 queue_name => descr.queue_name,
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 rc := message.getobject(oe_message);
 COMMIT;
END;
/

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about PLSQLCALLBACK data structures

SET_MESSAGE_TRACKING Procedure

Sets the tracking label for logical change records (LCRs) produced by the current session. This procedure affects only the current session. Any LCRs produced by the current session are tracked, including captured LCRs and persistent LCRs.

	
Note:

The tracking label set by this procedure does not track non-LCR messages.

	
See Also:

GET_MESSAGE_TRACKING Function

Syntax

DBMS_STREAMS_ADM.SET_MESSAGE_TRACKING(
 tracking_label IN VARCHAR2 DEFAULT 'Streams_tracking',
 actions IN NUMBER DEFAULT DBMS_STREAMS_ADM.ACTION_MEMORY);

Parameters

Table 144-38 SET_MESSAGE_TRACKING Procedure Parameters

	Parameter	Description
	
tracking_label

	
The label used to track the LCRs produced by the session.

Set this parameter to NULL to stop message tracking in the current session.

The size limit for a label is 4,000 bytes.

	
actions

	
When DBMS_STREAMS_ADM.ACTION_MEMORY is specified, the LCRs are tracked in memory, and the V$STREAMS_MESSAGE_TRACKING dynamic performance view is populated with information about the LCRs.

Currently, DBMS_STREAMS_ADM.ACTION_MEMORY is the only valid setting for this parameter.

The value specified for this parameter is an enumerated constant. Enumerated constants must be prefixed with the package name.

SET_RULE_TRANSFORM_FUNCTION Procedure

This procedure sets or removes the transformation function name for a custom rule-based transformation.

Syntax

DBMS_STREAMS_ADM.SET_RULE_TRANSFORM_FUNCTION(
 rule_name IN VARCHAR2,
 transform_function IN VARCHAR2);

Parameters

Table 144-39 SET_RULE_TRANSFORM_FUNCTION Procedure Parameters

	Parameter	Description
	
rule_name

	
The name of the rule whose rule-based transformation function you are setting or removing, specified as [schema_name.]rule_name.

For example, to specify a rule in the hr schema named prop_rule1, enter hr.prop_rule1. If the schema is not specified, then the current user is the default.

	
transform_function

	
Either the name of the transformation function to be used in the rule-based transformation for the rule or NULL.

If you specify a transformation function name, then specify an existing function in one of the following forms:

	
[schema_name.]function_name

	
[schema_name.]package_name.function_name

If the function is in a package, then you must specify the package_name. For example, to specify a function in the transform_pkg package in the hr schema named executive_to_management, enter hr.transform_pkg.executive_to_management. An error is returned if the specified procedure does not exist.

If the schema_name is not specified, then the user who invokes the rule-based transformation function is the default.

If you specify NULL, then the SET_RULE_TRANSFORM_FUNCTION procedure removes the current custom rule-based transformation from the rule.

Usage Notes

The following sections contain usage notes for this procedure:

	
Transformation Function Signature

	
Rule Action Context

	
User Who Calls the Transformation Function

	
Function Verification

Transformation Function Signature

A custom rule-based transformation function always operates on one message, but it can return one message or many messages. A custom rule-based transformation function that returns one message is a one-to-one transformation function. A one-to-one transformation function must have the following signature:

FUNCTION user_function (
 parameter_name IN ANYDATA)
RETURN ANYDATA;

Here, user_function stands for the name of the function and parameter_name stands for the name of the parameter passed to the function. The parameter passed to the function is an ANYDATA encapsulation of a message, and the function must return an ANYDATA encapsulation of a message.

A custom rule-based transformation function that can return multiple messages is a one-to-many transformation function. A one-to-many transformation function must have the following signature:

FUNCTION user_function (
 parameter_name IN ANYDATA)
RETURN STREAMS$_ANYDATA_ARRAY;

Here, user_function stands for the name of the function and parameter_name stands for the name of the parameter passed to the function. The parameter passed to the function is an ANYDATA encapsulation of a message, and the function must return an array that contains zero or more ANYDATA encapsulations of a message. If the array contains zero ANYDATA encapsulations of a message, then the original message is discarded.

The STREAMS$_ANYDATA_ARRAY type is an Oracle-supplied type that has the following definition:

CREATE OR REPLACE TYPE SYS.STREAMS$_ANYDATA_ARRAY
 AS VARRAY(2147483647) of ANYDATA
/

The following restrictions apply to custom rule-based transformations that use one-to-many functions:

	
Rules that are associated with one-to-many functions are supported for Oracle Streams capture processes only. These rules must not be added to rule sets used by other Oracle Streams clients, including propagations, apply processes, and messaging clients.

	
One-to-many functions only can operate on row logical change records (row LCRs). They cannot operate on DDL LCRs.

	
Row LCRs returned by a one-to-many function cannot contain piecewise LOB, LONG, or LONG RAW operations.

	
The one-to-many function must return row LCRs in the correct order. The order of row LCRs in the array (starting from index 1) is the order that the row LCRs will be executed in the transaction.

When an apply process dequeues row LCRs that are the result of a transformation by a one-to-many function, the apply process uses the instantiation SCN of the LCR passed to the one-to-many function for all of row LCRs.

	
Note:

	
An error is raised if a one-to-one or one-to-many transformation function returns NULL.

	
Only one custom rule-based transformation can be specified for a particular rule. You cannot specify both a one-to-one and a one-to-many transformation function for the same rule.

	
For any LCR constructed and returned by a custom rule-based transformation, the source_database_name, transaction_id, and scn parameter values must match the values in the original LCR. Oracle automatically specifies the values in the original LCR for these parameters, even if an attempt is made to construct LCRs with different values.

Rule Action Context

This procedure modifies the specified rule's action context to specify the transformation. A rule's action context is optional information associated with a rule that is interpreted by the client of the rules engine after the rule evaluates to TRUE for a message. The client of the rules engine can be a user-created application or an internal feature of Oracle, such as Oracle Streams. The Oracle Streams clients include capture processes, synchronous captures, propagations, apply processes, and messaging clients. The information in an action context is an object of type SYS.RE$NV_LIST, which consists of a list of name-value pairs.

A custom rule-based transformation in Oracle Streams always consists of the following name-value pair in an action context:

	
If the function is a one-to-one transformation function, then the name is STREAMS$_TRANSFORM_FUNCTION. If the function is a one-to-many transformation function, then the name is STREAMS$_ARRAY_TRANS_FUNCTION.

	
The value is a ANYDATA instance containing a PL/SQL function name specified as a VARCHAR2. This function performs the transformation.

User Who Calls the Transformation Function

The user that calls the transformation function must have EXECUTE privilege on the function. The following list describes which user calls the transformation function:

	
If a transformation is specified for a rule used by a capture process, then the user who calls the transformation function is the capture user for the capture process.

	
If a transformation is specified for a rule used by a synchronous capture, then the user who calls the transformation function is the capture user for the synchronous capture.

	
If a transformation is specified for a rule used by a propagation, then the user who calls the transformation function is the owner of the source queue for the propagation.

	
If a transformation is specified on a rule used by an apply process, then the user who calls the transformation function is the apply user for the apply process.

	
If a transformation is specified on a rule used by a messaging client, then the user who calls the transformation function is the user who invokes the messaging client.

Function Verification

This procedure does not verify that the specified transformation function exists. If the function does not exist, then an error is raised when an Oracle Streams client tries to invoke the transformation function.

SET_TAG Procedure

This procedure sets the binary tag for all redo entries subsequently generated by the current session. Each redo entry generated by DML or DDL statements in the current session will have this tag. This procedure affects only the current session.

	
See Also:

	
"GET_TAG Function"

	
Oracle Streams Replication Administrator's Guide for more information about tags

Syntax

DBMS_STREAMS_ADM.SET_TAG(
 tag IN RAW DEFAULT NULL);

Parameters

Table 144-40 SET_TAG Procedure Parameters

	Parameter	Description
	
tag

	
The binary tag for all subsequent redo entries generated by the current session. A raw value is a sequence of bytes, and a byte is a sequence of bits.

By default, the tag for a session is NULL.

The size limit for a tag value is 2000 bytes.

Usage Notes

To set the tag to the hexadecimal value of '17' in the current session, run the following procedure:

EXEC DBMS_STREAMS_ADM.SET_TAG(tag => HEXTORAW('17'));

The following are considerations for the SET_TAG procedure:

	
This procedure is not transactional. That is, the effects of SET_TAG cannot be rolled back.

	
If the SET_TAG procedure is run to set a non-NULL session tag before a data dictionary build has been performed on the database, then the redo entries for a transaction that started before the dictionary build might not include the specified tag value for the session. Therefore, perform a data dictionary build before using the SET_TAG procedure in a session. A data dictionary build happens when the DBMS_CAPTURE_ADM.BUILD procedure is run. The BUILD procedure can be run automatically when a capture process is created.

	
See Also:

BUILD Procedure

SET_UP_QUEUE Procedure

This procedure creates a queue table and a ANYDATA queue.

Syntax

DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table IN VARCHAR2 DEFAULT 'streams_queue_table',
 storage_clause IN VARCHAR2 DEFAULT NULL,
 queue_name IN VARCHAR2 DEFAULT 'streams_queue',
 queue_user IN VARCHAR2 DEFAULT NULL,
 comment IN VARCHAR2 DEFAULT NULL);

Parameters

Table 144-41 SET_UP_QUEUE Procedure Parameters

	Parameter	Description
	
queue_table

	
The name of the queue table specified as [schema_name.]queue_table_name. For example, strmadmin.streams_queue_table. If the schema is not specified, then the current user is the default.

If the queue table owner is not specified, then the procedure specifies the user who runs this procedure automatically as the queue table owner.

Queue table names can be a maximum of 24 bytes.

	
storage_clause

	
The storage clause for queue table

The storage parameter is included in the CREATE TABLE statement when the queue table is created. You can specify any valid table storage clause.

If a tablespace is not specified here, then the procedure creates the queue table and all its related objects in the default user tablespace of the user who runs this procedure. If a tablespace is specified here, then the procedure creates the queue table and all its related objects in the tablespace specified in the storage clause.

If NULL, then the procedure uses the storage characteristics of the tablespace in which the queue table is created.

See Also: Oracle Database SQL Language Reference for more information about storage clauses

	
queue_name

	
The name of the queue that will function as the ANYDATA queue, specified as [schema_name.]queue_name. For example, strmadmin.streams_queue.

If the schema is not specified, then the procedure uses the queue table owner. The owner of the queue table must also be the owner of the queue. The queue owner automatically has privileges to perform all queue operations on the queue.

If the schema is not specified for this parameter, and the queue table owner is not specified in queue_table, then the current user is the default.

Queue names can be a maximum of 24 bytes.

	
queue_user

	
The name of the user who requires ENQUEUE and DEQUEUE privileges for the queue. This user also is configured as a secure queue user of the queue. The queue user cannot grant these privileges to other users because they are not granted with the GRANT option.

If NULL, then the procedure does not grant any privileges. You can also grant queue privileges to the appropriate users using the DBMS_AQADM package.

	
comment

	
The comment for the queue

Usage Notes

Set up includes the following actions:

	
If the specified queue table does not exist, then this procedure runs the CREATE_QUEUE_TABLE procedure in the DBMS_AQADM package to create the queue table with the specified storage clause. If this procedure creates the queue table, then it creates a multiple consumer ANYDATA queue that is both a secure queue and a transactional queue.

Also, if the database is Oracle Database 10g release 2 or later, the sort_list setting in CREATE_QUEUE_TABLE is set to commit_time. If the database is a release before Oracle Database 10g release 2, the sort_list setting in CREATE_QUEUE_TABLE is set to enq_time.

	
If the specified queue table exists, then the queue uses the properties of the existing queue table.

	
If the specified queue name does not exist, then this procedure runs the CREATE_QUEUE procedure in the DBMS_AQADM package to create the queue.

	
This procedure starts the queue.

	
If a queue user is specified, then this procedure configures this user as a secure queue user of the queue and grants ENQUEUE and DEQUEUE privileges on the queue to the specified queue user.

To configure the queue user as a secure queue user, this procedure creates an Advanced Queuing agent with the same name as the user name, if one does not exist. If an agent with this name exists and is associated with the queue user only, then it is used. SET_UP_QUEUE then runs the ENABLE_DB_ACCESS procedure in the DBMS_AQADM package, specifying the agent and the user.

	
Note:

	
To enqueue messages into and dequeue messages from a queue, a queue user must have EXECUTE privilege on the DBMS_STREAMS_MESSAGING package or the DBMS_AQ package. The SET_UP_QUEUE procedure does not grant this privilege.

	
If the agent that SET_UP_QUEUE tries to create exists and is associated with a user other than the user specified by queue_user, then the procedure raises an error. In this case, rename or remove the existing agent, and retry SET_UP_QUEUE.

	
See Also:

Oracle Streams Concepts and Administration for more information about secure queue users

SPLIT_STREAMS Procedure

This procedure splits one stream flowing from a capture process off from all of the other streams flowing from the capture process.

This procedure is intended for an Oracle Streams replication environment in which a capture process captures changes that are propagated to two or more destination databases. When one destination of a propagation stops accepting the captured changes, the changes remain in the capture process's queue. The queue can grow and begin to spill messages to the hard disk, degrading the performance of the Oracle Streams environment. A destination might stop accepting changes for several reasons. For example, the destination database might be down.

Specifically, this procedure performs the following actions:

	
Creates a new queue at the database running the capture process. The new queue is called the cloned queue because it is a clone of the queue used by the original stream. The new queue will be used by the new, cloned capture process, and it will be the source queue for the new, cloned propagation.

	
Creates a new propagation that propagates messages from the source queue created in Step 1 to the existing destination queue. The new propagation is called the cloned propagation because it is a clone of the propagation used by the original stream. The cloned propagation uses the same rule set as the original propagation.

	
Stops the capture process.

	
Queries the acknowledge SCN for the original propagation. The acknowledged SCN is the last SCN acknowledged by the apply process that applies the changes sent by the propagation.

	
Creates a new capture process. The new capture process is called the cloned capture process because it is a clone of the capture process used by the original stream. The procedure sets the start SCN for the cloned capture process to the value of the acknowledged SCN queried in Step 4. The cloned capture process uses the same rule set as the original capture process.

	
Drops the original propagation.

	
Starts the original capture process with the start SCN set to the acknowledged SCN queried in Step 4.

	
If the auto_merge_threshold parameter is set to a positive number, then creates an Oracle Scheduler job to run the MERGE_STREAMS_JOB procedure at set intervals according to its schedule. When the two streams are within the specified merge threshold, the MERGE_STREAMS_JOB procedure runs the MERGE_STREAMS procedure to merge the streams automatically.

After the SPLIT_STREAMS procedure has finished running, the cloned capture process is disabled. When the problem at the destination database is solved, and the destination queue can accept changes, you should start the cloned capture process using the START_CAPTURE procedure in the DBMS_CAPTURE_ADM package.

The DBA_STREAMS_SPLIT_MERGE view contains the name of each cloned component and information about the split and merge operation.

	
Note:

If the original capture process is a downstream capture process, then you must configure the cloned capture process to read the redo log from the source database before you start the cloned capture process.

	
See Also:

	
"MERGE_STREAMS Procedure"

	
"MERGE_STREAMS_JOB Procedure"

	
Oracle Streams Replication Administrator's Guide for instructions on using the SPLIT_STREAMS procedure

Syntax

DBMS_STREAMS_ADM.SPLIT_STREAMS(
 propagation_name IN VARCHAR2,
 cloned_propagation_name IN VARCHAR2 DEFAULT NULL,
 cloned_queue_name IN VARCHAR2 DEFAULT NULL,
 cloned_capture_name IN VARCHAR2 DEFAULT NULL,
 perform_actions IN BOOLEAN DEFAULT TRUE,
 script_name IN VARCHAR2 DEFAULT NULL,
 script_directory_object IN VARCHAR2 DEFAULT NULL,
 auto_merge_threshold IN NUMBER DEFAULT NULL,
 schedule_name IN OUT VARCHAR2,
 merge_job_name IN OUT VARCHAR2);

Parameters

Table 144-42 SPLIT_STREAMS Procedure Parameters

	Parameter	Description
	
propagation_name

	
The name of the propagation that cannot send messages to its destination queue. The specified propagation is the propagation for the stream that is being split off from the other streams. You must specify an existing propagation name. Do not specify an owner.

	
cloned_propagation_name

	
The name of the new propagation created by this procedure for the stream that is split off. If NULL, then the system generates a propagation name.

	
cloned_queue_name

	
The name of the new queue created by this procedure for the stream that is split off. If NULL, then the system generates a queue name.

	
cloned_capture_name

	
The name of the new capture process created by this procedure for the stream that is split off. If NULL, then the system generates a capture process name.

	
perform_actions

	
If TRUE, then the procedure performs the necessary actions to split the stream directly.

If FALSE, then the procedure does not perform the necessary actions to split the stream directly.

Specify FALSE when this procedure is generating a script that you can edit and then run. The procedure raises an error if you specify FALSE and either of the following parameters is NULL:

	
script_name

	
script_directory_object

	
script_name

	
If non-NULL and the perform_actions parameter is FALSE, then specify the name of the script generated by this procedure. The script contains all of the statements used to split the stream. If a file with the specified script name exists in the specified directory for the script_directory_object parameter, then the procedure appends the statements to the existing file.

If non-NULL and the perform_actions parameter is TRUE, then the procedure generates the specified script and performs the actions to split the stream directly.

If NULL and the perform_actions parameter is TRUE, then the procedure performs the actions to split the stream directly and does not generate a script.

If NULL and the perform_actions parameter is FALSE, then the procedure raises an error.

	
script_directory_object

	
The directory object for the directory on the local computer system into which the generated script is placed.

If the script_name parameter is NULL, then the procedure ignores this parameter and does not generate a script.

If NULL and the script_name parameter is non-NULL, then the procedure raises an error.

Note: The specified directory object cannot point to an Oracle Automatic Storage Management (ASM) disk group.

	
auto_merge_threshold

	
If a positive number is specified, then the stream that was split off is automatically merged back into all of the other streams flowing from the capture process by an Oracle Scheduler job. The job runs the MERGE_STREAMS_JOB procedure at set intervals according to its schedule. The value of the CAPTURE_MESSAGE_CREATE_TIME column for each capture process in the GV$STREAMS_CAPTURE dynamic performance view determines when the streams are merged. Specifically, if the difference, in seconds, between CAPTURE_MESSAGE_CREATE_TIME of the cloned capture process and the original capture process is less than or equal to the value specified for the auto_merge_threshold parameter, then the two streams are merged automatically. The cloned capture process must be started before the split stream can be merged back with the original stream.

If NULL or 0 (zero) is specified, then the split stream is not merged back with the original stream automatically. To merge the split stream with the original stream, run the MERGE_STREAM procedure manually when the CAPTURE_MESSAGE_CREATE_TIME of the cloned capture process catches up to, or nearly catches up to, the CAPTURE_MESSAGE_CREATE_TIME of the original capture process.

The CAPTURE_MESSAGE_CREATE_TIME records the time when a captured change was recorded in the redo log.

	
schedule_name

	
The Oracle Scheduler schedule name, specified as [schema_name.]schedule_name. For example, strmadmin.merge_schedule. If the schema is not specified, then the current user is the default.

If auto_merge_threshold is a non-NULL positive number, then the schedule is used by the job that will automatically merge the streams at the appropriate time. You can specify a schedule name to adhere to naming conventions or to track the schedule more easily.

If NULL and auto_merge_threshold is a non-NULL positive number, then the system generates a schedule name.

If auto_merge_threshold is NULL or 0 (zero), then this parameter must be NULL.

If this procedure creates a schedule, the schedule starts when the procedure completes. You can modify the schedule to control how often the merge job is run.

If an existing schedule name is specified, an error is raised.

	
merge_job_name

	
The Oracle Scheduler job name, specified as [schema_name.]merge_job_name. For example, strmadmin.merge_job. If the schema is not specified, then the current user is the default.

If auto_merge_threshold is a non-NULL positive number, then the job will automatically merge the streams at the appropriate time. Specify a merge job name to adhere to naming conventions or to track the job more easily.

If NULL and auto_merge_threshold is a non-NULL positive number, then the system generates a job name.

If auto_merge_threshold is NULL or 0 (zero), then this parameter must be NULL.

If an existing job name is specified, an error is raised.

	
See Also:

Oracle Database Administrator's Guide for information about Oracle Scheduler

DBMS_STREAMS_ADVISOR_ADM

145 DBMS_STREAMS_ADVISOR_ADM

The DBMS_STREAMS_ADVISOR_ADM package, one of a set of Oracle Streams packages, provides an interface to gather information about an Oracle Streams environment and advise database administrators based on the information gathered. This package is part of the Oracle Streams Performance Advisor.

This chapter contains the following topics:

	
Using DBMS_STREAMS_ADVISOR_ADM

	
Overview

	
Security Model

	
Constants

	
Views

	
Summary of DBMS_STREAMS_ADVISOR_ADM Subprograms

	
See Also:

Oracle Streams Concepts and Administration for instructions about using this package

Using DBMS_STREAMS_ADVISOR_ADM

This section contains topics which relate to using the DBMS_STREAMS_ADVISOR_ADM package.

	
Overview

	
Security Model

	
Constants

	
Views

Overview

The DBMS_STREAMS_ADVISOR_ADM package enables you to gather and analyze information about an Oracle Streams environment. You can use this information in the following ways:

	
To populate data dictionary views with an Oracle Streams topology that contains information about the Oracle Streams components at one or more databases

	
To examine the Oracle Streams components at one or more databases in your environment and the ways in which information flows through streams that include these components

	
To analyze the performance of the Oracle Streams components in your environment

	
To detect performance problems with Oracle Streams components and correct these problems

	
See Also:

Oracle Streams Concepts and Administration for instructions about using this package

Security Model

Security on this package can be controlled in either of the following ways:

	
Granting EXECUTE on this package to selected users or roles.

	
Granting EXECUTE_CATALOG_ROLE to selected users or roles.

If subprograms in the package are run from within a stored procedure, then the user who runs the subprograms must be granted EXECUTE privilege on the package directly. It cannot be granted through a role.

To ensure that the user who runs the subprograms in this package has the necessary privileges, configure an Oracle Streams administrator and connect as the Oracle Streams administrator when using this package.

	
See Also:

Oracle Streams Replication Administrator's Guide for information about configuring an Oracle Streams administrator

Constants

The DBMS_STREAMS_ADVISOR_ADM package defines several enumerated constants for specifying parameter values. Enumerated constants must be prefixed with the package name. For example, DBMS_DBMS_ADVISOR_ADM.CAPTURE_TYPE.

Table 145-1 DBMS_STREAMS_ADVISOR_ADM Parameters With Enumerated Constants

	Parameter	Option	Type	Description
	
component_type

	
	
CAPTURE_TYPE

	
PROPAGATION_SENDER_TYPE

	
PROPAGATION_RECEIVER_TYPE

	
APPLY_TYPE

	
QUEUE_TYPE

	
NUMBER

	
CAPTURE_TYPE indicates that the Oracle Streams component is a capture process. The constant number for this option is 1.

PROPAGATION_SENDER_TYPE indicates that the Oracle Streams component is a propagation sender. The constant number for this option is 2.

PROPAGATION_RECEIVER_TYPE indicates that the Oracle Streams component is a propagation receiver. The constant number for this option is 3.

APPLY_TYPE indicates that the Oracle Streams component is an apply process. The constant number for this option is 4.

QUEUE_TYPE indicates that the Oracle Streams component is a queue. The constant number for this option is 5.

Views

The DBMS_STREAMS_ADVISOR_ADM package uses the following views:

	
DBA_STREAMS_TP_COMPONENT contains information about each Oracle Streams component at each database.

	
DBA_STREAMS_TP_COMPONENT_LINK contains information about how messages flow between Oracle Streams components.

	
DBA_STREAMS_TP_COMPONENT_STAT contains temporary performance statistics about each Oracle Streams component.

	
DBA_STREAMS_TP_DATABASE contains information about each database that contains Oracle Streams components.

	
DBA_STREAMS_TP_PATH_BOTTLENECK contains temporary information about Oracle Streams components that might be slowing down the flow of a stream.

	
DBA_STREAMS_TP_PATH_STAT contains temporary performance statistics about each stream path that exists in the Oracle Streams topology.

The topology information is stored permanently in the following data dictionary views: DBA_STREAMS_TP_DATABASE, DBA_STREAMS_TP_COMPONENT, and DBA_STREAMS_TP_COMPONENT_LINK.

However, the following views contain temporary information: DBA_STREAMS_TP_COMPONENT_STAT, DBA_STREAMS_TP_PATH_BOTTLENECK, and DBA_STREAMS_TP_PATH_STAT. Some of the data in these views is retained only for the user session that runs the ANALYZE_CURRENT_PERFORMANCE procedure. When this user session ends, this temporary information is purged.

	
See Also:

	
Oracle Database Reference

	
Oracle Streams Concepts and Administration for sample queries that use these views

Operational Notes

This section contains the following operational notes for the DBMS_STREAMS_ADVISOR_ADM package:

	
Oracle Streams Components Analyzed by the DBMS_STREAMS_ADVISOR_ADM Package

	
General Steps for Running the Oracle Streams Performance Advisor and Analyzing the Information

Oracle Streams Components Analyzed by the DBMS_STREAMS_ADVISOR_ADM Package

The DBMS_STREAMS_ADVISOR_ADM analyzes the following Oracle Streams components at the specified databases:

	
Capture processes

	
Propagations

	
Apply processes

	
Queues

The DBMS_STREAMS_ADVISOR_ADM package does not analyze the following Oracle Streams components:

	
Synchronous captures

	
Messaging clients

General Steps for Running the Oracle Streams Performance Advisor and Analyzing the Information

To use the DBMS_STREAMS_ADVISOR_ADM package, complete the following general steps:

	
Identify the database that you will use to gather the information.

An administrative user at this database must meet the following requirements:

	
The user must have access to a database link to each database that contains Oracle Streams components.

	
The user must have been granted privileges using the DBMS_STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE procedure, and each database link must connect to a user at the remote database that has been granted privileges using the DBMS_STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE procedure.

In an Oracle Streams environment, the Oracle Streams administrator uses this package.

If no database in your environment meets these requirements, then choose a database, configure the necessary database links, and grant the necessary privileges to the users before proceeding.

	
Connect as the administrative user to the database you identified in Step 1, and remain connected to the session while you complete the remaining steps.

	
Run the ANALYZE_CURRENT_PERFORMACE procedure.

	
Optionally, allow messages to flow in the environment for some time.

	
Optionally, rerun the ANALYZE_CURRENT_PERFORMACE procedure one or more times.

	
Query the data dictionary views listed in "Views" to analyze the Oracle Streams environment.

	
If you want to update the information in the data dictionary views or if you add new Oracle Streams components to any database in the environment, repeat Steps 2-6.

	
Note:

When you exit the user session, the rate, bandwidth, event, and flow control statistics are purged from the data dictionary views.

Summary of DBMS_STREAMS_ADVISOR_ADM Subprograms

Table 145-2 DBMS_STREAMS_ADVISOR_ADM Package Subprograms

	Subprogram	Description
	
ANALYZE_CURRENT_PERFORMANCE Procedure

	
Gathers information about the Oracle Streams components at one or more databases in your environment and analyzes Oracle Streams performance based on the information gathered

ANALYZE_CURRENT_PERFORMANCE Procedure

This procedure gathers information about the Oracle Streams components at one or more databases in your environment and analyzes Oracle Streams performance based on the information gathered.

The performance analyses includes:

	
Calculating bottleneck components for each separate stream

	
Calculating the throughput of each Oracle Streams component

	
Calculating the latency of each Oracle Streams component

	
Calculating the top wait event of each Oracle Streams component

	
Calculating the message rate of each stream

	
Calculating the transaction rate of each stream

The procedure places the gathered information in data dictionary views.

	
Note:

The parameters in this procedure must all be either non-NULL or NULL.

	
See Also:

	
Oracle Streams Concepts and Administration for instructions on using this procedure

	
"Views"

Syntax

DBMS_STREAMS_ADVISOR_ADM.ANALYZE_CURRENT_PERFORMANCE(
 component_name IN VARCHAR2 DEFAULT NULL,
 component_db IN VARCHAR2 DEFAULT NULL,
 component_type IN NUMBER DEFAULT NULL);

Parameters

Table 145-3 ANALYZE_CURRENT_PERFORMANCE Procedure Parameters

	Parameter	Description
	
component_name

	
The name of the Oracle Streams component to analyze. For example, to analyze a capture process named capture01, then specify capture01.

If NULL, then all of the Oracle Streams components are analyzed, and the other two parameters must also be NULL.

	
component_db

	
The global name of the database that contains the component specified in the component_name parameter. For example, if the db.net database contains the component, then specify db.net.

If NULL, then all of the Oracle Streams components are analyzed, and the other two parameters must also be NULL.

	
component_type

	
The type of the component specified in the component_name parameter. If the component_name parameter is non-NULL, then specify one of the following:

	
DBMS_STREAMS_ADVISOR_ADM.CAPTURE_TYPE

	
DBMS_STREAMS_ADVISOR_ADM.PROPAGATION_SENDER_TYPE

	
DBMS_STREAMS_ADVISOR_ADM.PROPAGATION_RECEIVER_TYPE

	
DBMS_STREAMS_ADVISOR_ADM.APPLY_TYPE

	
DBMS_STREAMS_ADVISOR_ADM.QUEUE_TYPE

See "Constants" for information about these constants.

If NULL, then all of the Oracle Streams components are analyzed, and the other two parameters must also be NULL.

DBMS_STREAMS_AUTH

146 DBMS_STREAMS_AUTH

The DBMS_STREAMS_AUTH package, one of a set of Oracle Streams packages, provides subprograms for granting privileges to Oracle Streams administrators and revoking privileges from Oracle Streams administrators.

This chapter contains the following topics:

	
Using DBMS_STREAMS_AUTH

	
Overview

	
Security Model

	
Summary of DBMS_STREAMS_AUTH Subprograms

Using DBMS_STREAMS_AUTH

This section contains topics which relate to using the DBMS_STREAMS_AUTH package.

	
Overview

	
Security Model

Overview

This package provides subprograms for granting privileges to Oracle Streams administrators and revoking privileges from Oracle Streams administrators.

	
See Also:

Oracle Streams Concepts and Administration and Oracle Streams Replication Administrator's Guide for more information about this package and Oracle Streams administrators

Security Model

Security on this package can be controlled in either of the following ways:

	
Granting EXECUTE on this package to selected users or roles.

	
Granting EXECUTE_CATALOG_ROLE to selected users or roles.

If subprograms in the package are run from within a stored procedure, then the user who runs the subprograms must be granted EXECUTE privilege on the package directly. It cannot be granted through a role.

To ensure that the user who runs the subprograms in this package has the necessary privileges, connect as an administrative user who can create users, grant privileges, and create tablespaces when using this package.

Summary of DBMS_STREAMS_AUTH Subprograms

Table 146-1 DBMS_STREAMS_AUTH Package Subprograms

	Subprogram	Description
	
GRANT_ADMIN_PRIVILEGE Procedure

	
Either grants the privileges needed by a user to be an Oracle Streams administrator directly, or generates a script that you can use to grant these privileges

	
GRANT_REMOTE_ADMIN_ACCESS Procedure

	
Enables a remote Oracle Streams administrator to perform administrative actions at the local database by connecting to the grantee using a database link

	
REVOKE_ADMIN_PRIVILEGE Procedure

	
Either revokes Oracle Streams administrator privileges from a user directly, or generates a script that you can use to revoke these privileges

	
REVOKE_REMOTE_ADMIN_ACCESS Procedure

	
Disables a remote Oracle Streams administrator from performing administrative actions by connecting to the grantee using a database link

	
Note:

All subprograms commit unless specified otherwise.

GRANT_ADMIN_PRIVILEGE Procedure

This procedure either grants the privileges needed by a user to be an Oracle Streams administrator directly, or generates a script that you can use to grant these privileges.

Syntax

DBMS_STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE(
 grantee IN VARCHAR2,
 grant_privileges IN BOOLEAN DEFAULT TRUE,
 file_name IN VARCHAR2 DEFAULT NULL,
 directory_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 146-2 GRANT_ADMIN_PRIVILEGE Procedure Parameters

	Parameter	Description
	
grantee

	
The user to whom privileges are granted

	
grant_privileges

	
If TRUE, then the procedure grants the privileges to the specified grantee directly, and adds the grantee to the DBA_STREAMS_ADMINISTRATOR data dictionary view with YES for both the LOCAL_PRIVILEGES column and the ACCESS_FROM_REMOTE column. If the user has an entry in this data dictionary view, then the procedure does not make another entry, and no error is raised. If TRUE and any of the grant statements fail, then the procedure raises an error.

If FALSE, then the procedure does not grant the privileges to the specified grantee directly, and does not add the grantee to the DBA_STREAMS_ADMINISTRATOR data dictionary view.

You specify FALSE when the procedure is generating a file that you will edit and then run. If you specify FALSE and either the file_name or directory_name parameter is NULL, then the procedure raises an error.

	
file_name

	
The name of the file generated by the procedure. The file contains all of the statements that grant the privileges. If a file with the specified file name exists in the specified directory name, then the grant statements are appended to the existing file.

If NULL, then the procedure does not generate a file.

	
directory_name

	
The directory into which the generated file is placed. The specified directory must be a directory object created using the SQL statement CREATE DIRECTORY. If you specify a directory, then the user who invokes the procedure must have WRITE privilege on the directory object.

If the file_name parameter is NULL, then this parameter is ignored, and the procedure does not generate a file.

If NULL and the file_name parameter is non-NULL, then the procedure raises an error.

Usage Notes

The user who runs the procedure must be an administrative user who can grant privileges to other users.

Specifically, the procedure grants the following privileges to the specified user:

	
The RESTRICTED SESSION system privilege

	
EXECUTE on the following packages:

	
DBMS_APPLY_ADM

	
DBMS_AQ

	
DBMS_AQADM

	
DBMS_AQIN

	
DBMS_AQELM

	
DBMS_CAPTURE_ADM

	
DBMS_FLASHBACK

	
DBMS_LOCK

	
DBMS_PROPAGATION_ADM

	
DBMS_RULE_ADM

	
DBMS_STREAMS_ADM

	
DBMS_STREAMS_ADVISOR_ADM

	
DBMS_STREAMS_HANDLER_ADM

	
DBMS_STREAMS_MESSAGING

	
DBMS_TRANSFORM

	
Privileges to enqueue messages into and dequeue messages from any queue

	
Privileges to manage any queue

	
Privileges to create, alter, and execute any of the following types of objects in the user's own schema and in other schemas:

	
Evaluation contexts

	
Rule sets

	
Rules

In addition, the grantee can grant these privileges to other users.

	
SELECT_CATALOG_ROLE

	
SELECT privilege on data dictionary views related to Oracle Streams

	
The ability to allow a remote Oracle Streams administrator to perform administrative actions through a database link by connecting to the grantee. This ability is enabled by running the GRANT_REMOTE_ADMIN_ACCESS procedure in this package.

	
Note:

	
To view all of the statements run by the procedure in detail, you can use the procedure to generate a script and then view the script in a text editor.

	
This procedure does not grant any roles to the grantee.

	
This procedure grants only the privileges necessary to configure and administer an Oracle Streams environment. You can grant more privileges to the grantee if necessary.

	
See Also:

	
GRANT_REMOTE_ADMIN_ACCESS Procedure

	
Oracle Streams Replication Administrator's Guide for more information about configuring an Oracle Streams administrator

GRANT_REMOTE_ADMIN_ACCESS Procedure

This procedure enables a remote Oracle Streams administrator to perform administrative actions at the local database by connecting to the grantee using a database link.

Syntax

DBMS_STREAMS_AUTH.GRANT_REMOTE_ADMIN_ACCESS(
 grantee IN VARCHAR2);

Parameters

Table 146-3 GRANT_REMOTE_ADMIN_ACCESS Procedure Parameter

	Parameter	Description
	
grantee

	
The user who allows remote access. The procedure adds the grantee to the DBA_STREAMS_ADMINISTRATOR data dictionary view with YES for the ACCESS_FROM_REMOTE column. If the user has an entry in this data dictionary view, then the procedure does not make another entry. Instead, it updates the ACCESS_FROM_REMOTE column to YES.

Usage Notes

Typically, you run the procedure and specify a grantee at a local source database if a downstream capture process captures changes originating at the local source database. The Oracle Streams administrator at a downstream capture database administers the source database using this connection. You can also run the procedure at a database running an apply process so that a remote Oracle Streams administrator can set instantiation SCNs at the local database.

	
Note:

The GRANT_ADMIN_PRIVILEGE procedure runs this procedure.

	
See Also:

GRANT_ADMIN_PRIVILEGE Procedure

REVOKE_ADMIN_PRIVILEGE Procedure

This procedure either revokes Oracle Streams administrator privileges from a user directly, or generates a script that you can use to revoke these privileges.

Syntax

DBMS_STREAMS_AUTH.REVOKE_ADMIN_PRIVILEGE(
 grantee IN VARCHAR2,
 revoke_privileges IN BOOLEAN DEFAULT TRUE,
 file_name IN VARCHAR2 DEFAULT NULL,
 directory_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 146-4 REVOKE_ADMIN_PRIVILEGE Procedure Parameters

	Parameter	Description
	
grantee

	
The user from whom privileges are revoked

	
revoke_privileges

	
If TRUE, then the procedure revokes the privileges from the specified user directly, and removes the user from the DBA_STREAMS_ADMINISTRATOR data dictionary view. If the user does not have a record in this data dictionary view, then the procedure does not remove a record from the view, and no error is raised. If TRUE and any of the revoke statements fail, then the procedure raises an error. A revoke statement will fail if the user is not granted the privilege that is being revoked.

If FALSE, then the procedure does not revoke the privileges to the specified user directly, and does not remove the user from the DBA_STREAMS_ADMINISTRATOR data dictionary view.

You specify FALSE when the procedure is generating a file that you will edit and then run. If you specify FALSE and either the file_name or directory_name parameter is NULL, then the procedure does not raise an error.

	
file_name

	
The name of the file generated by this procedure. The file contains all of the statements that revoke the privileges. If a file with the specified file name exists in the specified directory name, then the revoke statements are appended to the existing file.

If NULL, then the procedure does not generate a file.

	
directory_name

	
The directory into which the generated file is placed. The specified directory must be a directory object created using the SQL statement CREATE DIRECTORY. If you specify a directory, then the user who invokes the procedure must have WRITE privilege on the directory object.

If the file_name parameter is NULL, then this parameter is ignored, and the procedure does not generate a file.

If NULL and the file_name parameter is non-NULL, then the procedure raises an error.

Usage Notes

The user who runs this procedure must be an administrative user who can revoke privileges from other users. Specifically, this procedure revokes the privileges granted by running the GRANT_ADMIN_PRIVILEGE procedure in this package.

	
Note:

To view all of the statements run by this procedure in detail, you can use the procedure to generate a script and then view the script in a text editor.

	
See Also:

GRANT_ADMIN_PRIVILEGE Procedure

REVOKE_REMOTE_ADMIN_ACCESS Procedure

This procedure disables a remote Oracle Streams administrator from performing administrative actions by connecting to the grantee using a database link.

	
Note:

The REVOKE_ADMIN_PRIVILEGE procedure runs this procedure.

	
See Also:

REVOKE_ADMIN_PRIVILEGE Procedure

Syntax

DBMS_STREAMS_AUTH.REVOKE_REMOTE_ADMIN_ACCESS(
 grantee IN VARCHAR2);

Parameters

Table 146-5 REVOKE_REMOTE_ADMIN_ACCESS Procedure Parameter

	Parameter	Description
	
grantee

	
The user for whom access from a remote Oracle Streams administrator is disabled.

If a row for the grantee exists in the DBA_STREAMS_ADMINISTRATOR data dictionary view, then the procedure updates the ACCESS_FROM_REMOTE column for the grantee to NO. If, after this update, both the LOCAL_PRIVILEGES column and the ACCESS_FROM_REMOTE column are NO for the grantee, then the procedure removes the grantee from the view.

If no row for the grantee exists in the DBA_STREAMS_ADMINISTRATOR data dictionary view, then the procedure does not update the view and does not raise an error.

DBMS_STREAMS_HANDLER_ADM

147 DBMS_STREAMS_HANDLER_ADM

The DBMS_STREAMS_HANDLER_ADM package, one of a set of Oracle Streams packages, provides interfaces to manage statement DML handlers.

This chapter contains the following topics:

	
Using DBMS_STREAMS_HANDLER_ADM

	
Overview

	
Security Model

	
Views

	
Operational Notes

	
Summary of DBMS_STREAMS_HANDLER_ADM Subprograms

Using DBMS_STREAMS_HANDLER_ADM

This section contains topics that relate to using the DBMS_STREAMS_HANDLER_ADM package.

	
Overview

	
Security Model

	
Views

	
Operational Notes

Overview

A statement DML handler runs one or more data manipulation language (DML) statements on row logical change records (row LCRs) that are dequeued by an apply process. A single statement DML handler can include multiple statements, and you control the execution order of the statements.

Statement DML handlers are similar to procedure DML handlers for apply processes. Both statement DML handlers and procedure DML handlers provide custom processing of row changes that are encapsulated in row LCRs. Statement DML handlers and procedure DML handlers both run when an apply process dequeues a row LCR. However, statement DML handlers have the following advantages over procedure DML handlers:

	
Statement DML handlers typically perform better than procedure DML handlers because statement DML handlers do not require PL/SQL processing.

	
The syntax for statement DML handlers is same as DML syntax. Statement DML handlers do not require PL/SQL programming. Procedure DML handlers require PL/SQL programming.

	
Statement DML handlers do not require the manipulation of ANYDATA values to access the information in row LCRs. Typically, procedure DML handlers must manipulate ANYDATA values.

	
A statement DML handler can coexist with an error handler for same operation on the same database object. In contrast, you cannot specify both a procedure DML handler and an error handler for the same operation on the same database object.

	
Note:

You can specify multiple statement DML handlers for the same operation on the database object. In this case, the statement DML handlers can execute in any order, and each statement DML handler receives a copy of the original row LCR that was dequeued by the apply process.

	
See Also:

Oracle Streams Concepts and Administration

Security Model

Security on this package can be controlled in either of the following ways:

	
Granting EXECUTE on this package to selected users or roles.

	
Granting EXECUTE_CATALOG_ROLE to selected users or roles.

If subprograms in the package are run from within a stored procedure, then the user who runs the subprograms must be granted EXECUTE privilege on the package directly. It cannot be granted through a role.

To ensure that the user who runs the subprograms in this package has the necessary privileges, configure an Oracle Streams administrator and connect as the Oracle Streams administrator when using this package.

	
See Also:

Oracle Streams Replication Administrator's Guide for information about configuring an Oracle Streams administrator

Views

The DBMS_STREAMS_HANDLER_ADM package uses the views listed in the Oracle Database Reference.

	
DBA_APPLY_DML_HANDLERS

	
DBA_STREAMS_STMTS

	
DBA_STREAMS_STMT_HANDLERS

Operational Notes

The following sections contain operational notes about the DBMS_STREAMS_HANDLER_ADM package:

	
Statement Execution Order

	
Supported SQL Statements

	
Supported Row LCR Column Attributes

	
Supported Row LCR Attributes

	
Supported Row LCR Extra Attributes

	
Supported Row LCR Method

Statement Execution Order

Each statement in a statement DML handler has a unique execution sequence number. When a statement DML handler is invoked, it executes its statements in order from the statement with the lowest execution sequence number to the statement with the highest execution sequence number.

Supported SQL Statements

You can use statement DML handlers for any valid DML operation on a row logical change record (row LCR). For example, a statement DML handler can audit the DML changes made to a table.

The following SQL statements are supported in statement DML handlers:

	
INSERT

	
UPDATE

	
DELETE

	
MERGE

In addition, define variables are not supported in the SQL statements in a statement DML handler.

However, the SQL statements in a statement DML handler can include calls to member subprograms for the row LCR type (LCR$_ROW_RECORD), such as ADD_COLUMN, DELETE_COLUMN, KEEP_COLUMNS, and RENAME_COLUMN.

	
Note:

A statement DML handler cannot modify the value of a column in a row LCR.

	
See Also:

"LCR$_ROW_RECORD Type"

Supported Row LCR Column Attributes

Statements in statement DML handlers can contain the row LCR column attributes described in Table 147-1.

Table 147-1 Row LCR Column Attributes

	Attribute	Description
	
new

	
Returns the new column value in a row LCR. If the new value does not exist, then this attribute returns the old value.

	
new_exists

	
Returns TRUE if a new column value exists in a row LCR.

Returns FALSE is a new column value does not exist in a row LCR.

	
new_only

	
Returns the new column value in a row LCR. If the new value does not exist, then this attribute returns NULL and does not return the old column value.

	
old

	
Returns the old column value in a row LCR.

	
old_exists

	
Returns TRUE if an old column value exists in a row LCR.

Returns FALSE is an old column value does not exist in a row LCR.

Specify these attributes in the following way in a statement:

:attribute.column_name

For example, to specify the new_only attribute for the salary column, enter the following in a statement:

:new_only.salary

Supported Row LCR Attributes

Statements in statement DML handlers can contain the row LCR attributes described in Table 147-2.

Table 147-2 Row LCR Attributes

	Attribute	Description
	
command_type

	
Returns the type of DML statement that produced the change, either INSERT, UPDATE, or DELETE. DBMS_LOB piecewise LOB operations are not supported by statement DML handlers.

	
commit_scn

	
Returns the commit system change number (SCN) of the transaction to which the LCR belongs.

	
compatible

	
Returns the minimal database compatibility required to support the LCR.

	
instance_number

	
Returns the instance number of the database instance that made the change that is encapsulated in the LCR. Typically, the instance number is relevant in an Oracle Real Application Clusters (Oracle RAC) configuration.

	
object_owner

	
Returns the schema name that contains the table with the changed row.

	
object_name

	
Returns the name of the table that contains the changed row.

	
scn

	
Returns the SCN at the time when the change was made.

	
source_database_name

	
Returns the name of the source database where the row change occurred.

	
source_time

	
Returns the time when the change in an LCR captured by a capture process was generated in the redo log of the source database, or the time when a persistent LCR was created.

	
tag

	
Returns a raw tag that can be used to track the LCR.

	
transaction_id

	
Returns the identifier of the transaction in which the DML statement was run.

Specify these attributes in the following way in a statement:

:attribute_name

For example, to specify the source_database_name attribute for a row LCR, enter the following in a statement:

:source_database_name

Supported Row LCR Extra Attributes

Statements in statement DML handlers can contain the row LCR extra attributes described in Table 147-3.

Table 147-3 Row LCR Extra Attributes

	Attribute	Description
	
row_id

	
Returns the rowid of the row changed in a row LCR.

	
serial#

	
Returns the serial number of the session that performed the change captured in the LCR.

	
session#

	
Returns the identifier of the session that performed the change captured in the LCR.

	
thread#

	
Returns the thread number of the instance in which the change captured in the LCR was performed. Typically, the thread number is relevant only in an Oracle RAC configuration.

	
tx_name

	
Returns the name of the transaction that includes the LCR.

	
username

	
Returns the name of the current user who performed the change captured in the LCR.

Specify these attributes in the following way in a statement:

:extra_attribute.attribute_name

For example, to specify the row_id extra attribute for a row LCR, enter the following in a statement:

:extra_attribute.row_id

Supported Row LCR Method

A statement in a statement DML handler can include a call to the EXECUTE member procedure for row LCRs. The EXECUTE member procedure executes the row LCR under the security domain of the current user.

A statement that runs the EXECUTE member procedure can be placed anywhere in the execution sequence order of the statement DML handler. It is not necessary to execute a row LCR unless the goal is to apply the changes in the row LCR to a table in addition to performing any other SQL statements in the statement DML handler.

When you call the EXECUTE member procedure in a statement, the conflict_resolution parameter controls whether any conflict resolution defined for the table using the SET_UPDATE_CONFLICT_HANDLER procedure in the DBMS_APPLY_ADM package is used to resolve conflicts resulting from the execution of the LCR:

:lcr.execute TRUE|FALSE

A TRUE argument indicates that conflict resolution is used. A FALSE argument indicates that conflict resolution is not used.

For example, to use conflict resolution, enter the following in a statement:

:lcr.execute TRUE

An error is raised if this parameter is not specified or is set to NULL.

	
See Also:

	
Oracle Database PL/SQL Packages and Types Reference

	
Oracle Streams Replication Administrator's Guide

Summary of DBMS_STREAMS_HANDLER_ADM Subprograms

Table 147-4 DBMS_STREAMS_HANDLER_ADM Package Subprograms

	Subprogram	Description
	
ADD_STMT_TO_HANDLER Procedure

	
Adds a statement to a statement DML handler

	
CREATE_STMT_HANDLER Procedure

	
Creates a statement DML handler

	
DROP_STMT_HANDLER Procedure

	
Drops a statement DML handler

	
REMOVE_STMT_FROM_HANDLER Procedure

	
Removes a statement from a statement DML handler

	
Note:

The subprograms in this package do not commit.

ADD_STMT_TO_HANDLER Procedure

This procedure adds a statement to a statement DML handler.

Syntax

DBMS_STREAMS_HANDLER_ADM.ADD_STMT_TO_HANDLER(
 handler_name IN VARCHAR2,
 statement IN CLOB,
 execution_sequence IN NUMBER DEFAULT NULL);

Parameters

Table 147-5 ADD_STMT_TO_HANDLER Procedure Parameters

	Parameter	Description
	
handler_name

	
The name of the statement DML handler.

	
statement

	
The text of the SQL statement to add to the statement DML handler.

If NULL, then the procedure raises an error.

	
execution_sequence

	
The position of the statement in the statement DML handler at which a SQL statement is to be set to execute. Statements are executed in order from the lowest execution sequence number to the highest execution sequence number.

You can specify a positive or negative integer or decimal, or you can specify 0 (zero).

If you specify an execution sequence number that is used by an existing statement in the statement DML handler, then the statement in the statement parameter replaces the existing statement.

If NULL, then the statement is added to the statement DML handler with an execution sequence number that is larger than the execution sequence number for any statement in the statement DML handler.

CREATE_STMT_HANDLER Procedure

This procedure creates a statement DML handler.

Syntax

DBMS_STREAMS_HANDLER_ADM.CREATE_STMT_HANDLER(
 handler_name IN VARCHAR2,
 comment IN VARCHAR2 DEFAULT NULL);

Parameters

Table 147-6 CREATE_STMT_HANDLER Procedure Parameters

	Parameter	Description
	
handler_name

	
The name of the statement DML handler.

	
comment

	
A comment for the statement DML handler.

If NULL, then no comment is recorded for the statement DML handler.

DROP_STMT_HANDLER Procedure

This procedure drops a statement DML handler.

Syntax

DBMS_STREAMS_HANDLER_ADM.DROP_STMT_HANDLER(
 handler_name IN VARCHAR2);

Parameters

Table 147-7 DROP_STMT_HANDLER Procedure Parameters

	Parameter	Description
	
handler_name

	
The name of the statement DML handler.

REMOVE_STMT_FROM_HANDLER Procedure

This procedure removes a statement from a statement DML handler.

Syntax

DBMS_STREAMS_HANDLER_ADM.REMOVE_STMT_FROM_HANDLER(
 handler_name IN VARCHAR2,
 execution_sequence IN NUMBER DEFAULT NULL);

Parameters

Table 147-8 REMOVE_STMT_FROM_HANDLER Procedure Parameters

	Parameter	Description
	
handler_name

	
The name of the statement DML handler.

	
execution_sequence

	
The position of the statement to remove.

You can specify a positive or negative integer or decimal, or you can specify 0 (zero).

If NULL, the procedure removes the last statement in the statement DML handler.

If the specified execution sequence number does not exist for the statement DML handler, then the procedure raises an error.

DBMS_STREAMS_MESSAGING

148 DBMS_STREAMS_MESSAGING

The DBMS_STREAMS_MESSAGING package, one of a set of Oracle Streams packages, provides interfaces to enqueue messages into and dequeue messages from a ANYDATA queue.

This chapter contains the following topics:

	
Using DBMS_STREAMS_MESSAGING

	
Overview

	
Security Model

	
Summary of DBMS_STREAMS_MESSAGING Subprograms

Using DBMS_STREAMS_MESSAGING

This section contains topics which relate to using the DBMS_CAPTURE_ADM package.

	
Overview

	
Security Model

Overview

This package provides interfaces to enqueue messages into and dequeue messages from a ANYDATA queue.

	
Note:

Currently, messaging clients cannot dequeue buffered messages. In addition, the DBMS_STREAMS_MESSAGING package cannot be used to enqueue messages into or dequeue messages from a buffered queue. However, you can use the DBMS_AQ package to enqueue and dequeue buffered messages.

	
See Also:

	
Oracle Database 2 Day + Data Replication and Integration Guide for more information about Oracle Streams and for an example that uses the procedures in this package

	
Oracle Streams Advanced Queuing User's Guide for more information about queues, messaging, and the DBMS_AQ package

Security Model

Security on this package can be controlled in either of the following ways:

	
Granting EXECUTE on this package to selected users or roles.

	
Granting EXECUTE_CATALOG_ROLE to selected users or roles.

If subprograms in the package are run from within a stored procedure, then the user who runs the subprograms must be granted EXECUTE privilege on the package directly. It cannot be granted through a role.

To ensure that the user who runs the subprograms in this package has the necessary privileges, configure an Oracle Streams administrator and connect as the Oracle Streams administrator when using this package.

	
See Also:

Oracle Streams Replication Administrator's Guide for information about configuring an Oracle Streams administrator

Summary of DBMS_STREAMS_MESSAGING Subprograms

Table 148-1 DBMS_STREAMS_MESSAGING Package Subprograms

	Subprogram	Description
	
DEQUEUE Procedure

	
Uses the specified Oracle Streams messaging client to dequeue a message from the specified queue

	
ENQUEUE Procedure

	
The current user enqueues a message into the specified queue

	
Note:

The subprograms in this package do not commit.

DEQUEUE Procedure

This procedure uses the specified Oracle Streams messaging client to dequeue a message from the specified queue.

This procedure is overloaded. One version of this procedure contains the msgid OUT parameter, and the other does not.

Syntax

DBMS_STREAMS_MESSAGING.DEQUEUE(
 queue_name IN VARCHAR2,
 streams_name IN VARCHAR2,
 payload OUT ANYDATA,
 dequeue_mode IN VARCHAR2 DEFAULT 'REMOVE',
 navigation IN VARCHAR2 DEFAULT 'NEXT MESSAGE',
 wait IN BINARY_INTEGER DEFAULT FOREVER,
 msgid OUT RAW);

DBMS_STREAMS_MESSAGING.DEQUEUE(
 queue_name IN VARCHAR2,
 streams_name IN VARCHAR2,
 payload OUT ANYDATA,
 dequeue_mode IN VARCHAR2 DEFAULT 'REMOVE',
 navigation IN VARCHAR2 DEFAULT 'NEXT MESSAGE',
 wait IN BINARY_INTEGER DEFAULT FOREVER);

Parameters

Table 148-2 DEQUEUE Procedure Parameters

	Parameter	Description
	
queue_name

	
The name of the local queue from which messages will be dequeued, specified as [schema_name.]queue_name. The current database must contain the queue, and the queue must be a secure queue of ANYDATA type.

For example, to specify a queue named streams_queue in the strmadmin schema, enter strmadmin.streams_queue for this parameter. If the schema is not specified, then the current user is the default.

	
streams_name

	
The name of the Oracle Streams messaging client. For example, if the user strmadmin is the messaging client, then specify strmadmin.

If NULL and a relevant messaging client for the queue exists, then the procedure uses the relevant messaging client. If NULL and multiple relevant messaging clients for the queue exist, then the procedure raises an error.

	
payload

	
The payload that is dequeued

	
dequeue_mode

	
Specify one of the following settings:

REMOVE: Read the message and delete it. This setting is the default. The message can be retained in the queue table based on the retention properties.

LOCKED: Read and obtain a write lock on the message. The lock lasts for the duration of the transaction. This setting is equivalent to a select for update statement.

BROWSE: Read the message without acquiring any lock on the message. This specification is equivalent to a select statement.

	
navigation

	
The position of the message that will be retrieved. First, the position is determined. Second, the search criterion is applied. Finally, the message is retrieved.

Specify one of the following settings:

NEXT MESSAGE: Retrieve the next message that is available and matches the search criteria. If the previous message belongs to a message group, then retrieve the next available message that matches the search criteria and belongs to the message group. This setting is the default.

NEXT TRANSACTION: Skip the remainder of the current message group (if any) and retrieve the first message of the next message group. This setting can only be used if message grouping is enabled for the current queue.

FIRST MESSAGE: Retrieves the first message which is available and matches the search criteria. This setting resets the position to the beginning of the queue.

Note: Each message group contains the messages in a single transaction.

See Also: Oracle Streams Advanced Queuing User's Guide for more information about dequeue options

	
wait

	
Either FOREVER or NO_WAIT

If FOREVER, then the dequeue call is blocked without a time out until a message is available in the queue.

If NO_WAIT, then a wait time of zero seconds is used. In this case, the dequeue will return immediately even if there are no messages in the queue.

	
msgid

	
The message identifier of the message that is dequeued

Exceptions

Table 148-3 DEQUEUE Procedure Exceptions

	Exception	Description
	
ENDOFCURTRANS

	
Dequeue has reached the end of the messages in the current transaction. Specify this exception in the following way:

SYS.DBMS_STREAMS_MESSAGING.ENDOFCURTRANS

Every dequeue procedure should include an exception handler that handles this exception.

	
NOMOREMSGS

	
There are no more messages in the queue for the dequeue operation. Specify this exception in the following way:

SYS.DBMS_STREAMS_MESSAGING.NOMOREMSGS

A dequeue procedure that specifies NO_WAIT for the wait parameter should include an exception handler that handles this exception.

ENQUEUE Procedure

This procedure enables the current user to enqueue a message into the specified queue.

This procedure is overloaded. One version of this procedure contains the msgid OUT parameter, and the other does not.

Syntax

DBMS_STREAMS_MESSAGING.ENQUEUE(
 queue_name IN VARCHAR2,
 payload IN ANYDATA,
 msgid OUT RAW);

DBMS_STREAMS_MESSAGING.ENQUEUE(
 queue_name IN VARCHAR2,
 payload IN ANYDATA);

Parameters

Table 148-4 ENQUEUE Procedure Parameters

	Parameter	Description
	
queue_name

	
The name of the local queue into which messages will be enqueued, specified as [schema_name.]queue_name. The current database must contain the queue, and the queue must be a secure queue of ANYDATA type.

For example, to specify a queue named streams_queue in the strmadmin schema, enter strmadmin.streams_queue for this parameter. If the schema is not specified, then the current user is the default.

	
payload

	
The payload that is enqueued

	
msgid

	
The message identifier of the message that is enqueued

Usage Notes

To successfully enqueue messages into a queue, the current user must be mapped to a unique Advanced Queuing agent with the same name as the current user. You can run the DBMS_STREAMS_ADM.SET_UP_QUEUE procedure and specify a user as the queue user to grant the necessary privileges to the user to perform enqueues. The Advanced Queuing agent is created automatically when you run SET_UP_QUEUE and specify a queue user.

	
See Also:

SET_UP_QUEUE Procedure

DBMS_STREAMS_TABLESPACE_ADM

149 DBMS_STREAMS_TABLESPACE_ADM

The DBMS_STREAMS_TABLESPACE_ADM package, one of a set of Oracle Streams packages, provides administrative interfaces for copying tablespaces between databases and moving tablespaces from one database to another. This package uses transportable tablespaces, Data Pump, the DBMS_FILE_TRANSFER package, and the DBMS_FILE_GROUP package.

This chapter contains the following topics:

	
Using DBMS_STREAMS_TABLESPACE_ADM

	
Overview

	
Security Model

	
Data Structures

	
Summary of DBMS_STREAMS_TABLESPACE_ADM Subprograms

	
See Also:

Oracle Streams Concepts and Administration and Oracle Streams Replication Administrator's Guide for more information about this package and Oracle Streams

Using DBMS_STREAMS_TABLESPACE_ADM

This section contains topics which relate to using the DBMS_STREAMS_TABLESPACE_ADM package.

	
Overview

	
Security Model

Overview

Either a simple tablespace or a self-contained tablespace set must be specified in each procedure in this package.

A self-contained tablespace has no references from the tablespace pointing outside of the tablespace. For example, if an index in the tablespace is for a table in a different tablespace, then the tablespace is not self-contained. A simple tablespace is a self-contained tablespace that uses only one datafile.

A simple tablespace must be specified in the following procedures:

	
ATTACH_SIMPLE_TABLESPACE Procedure

	
CLONE_SIMPLE_TABLESPACE Procedure

	
DETACH_SIMPLE_TABLESPACE Procedure

	
PULL_SIMPLE_TABLESPACE Procedure

A self-contained tablespace set has no references from inside the set of tablespaces pointing outside of the set of tablespaces. For example, if a partitioned table is partially contained in the set of tablespaces, then the set of tablespaces is not self-contained.

A self-contained tablespace set must be specified in the following procedures:

	
ATTACH_TABLESPACES Procedure

	
CLONE_TABLESPACES Procedure

	
DETACH_TABLESPACES Procedure

	
PULL_TABLESPACES Procedure

To determine whether a set of tablespaces is self-contained, use the TRANSPORT_SET_CHECK procedure in the Oracle supplied package DBMS_TTS.

	
See Also:

Oracle Database Administrator's Guide for more information about self-contained tablespaces and tablespace sets

Security Model

Security on this package can be controlled in either of the following ways:

	
Granting EXECUTE on this package to selected users or roles.

	
Granting EXECUTE_CATALOG_ROLE to selected users or roles.

If subprograms in the package are run from within a stored procedure, then the user who runs the subprograms must be granted EXECUTE privilege on the package directly. It cannot be granted through a role.

Data Structures

The DBMS_STREAMS_TABLESPACE_ADM package defines RECORD types and TABLE types.

RECORD Types

	
FILE Record Type

TABLE Types

	
DIRECTORY_OBJECT_SET Table Type

	
FILE_SET Table Type

	
TABLESPACE_SET Table Type

DIRECTORY_OBJECT_SET Table Type

Contains the names of one or more directory objects. Each name must be a directory object created using the SQL statement CREATE DIRECTORY.

Syntax

TYPE DIRECTORY_OBJECT_SET IS TABLE OF VARCHAR2(32)
 INDEX BY BINARY_INTEGER;

FILE Record Type

Contains the directory object associated with a directory and the name of the file in the directory.

Syntax

TYPE FILE IS RECORD(
 directory_object VARCHAR2(32),
 file_name VARCHAR2(4000));

Fields

Table 149-1 FILE Fields

	Field	Description
	
directory_object

	
The name of a directory object. You must specify the name of a directory object created using the SQL statement CREATE DIRECTORY.

	
file_name

	
The name of the file in the corresponding directory associated with the directory object

FILE_SET Table Type

Contains one or more files.

Syntax

TYPE FILE_SET IS TABLE OF FILE
 INDEX BY BINARY_INTEGER;

TABLESPACE_SET Table Type

Contains the names of one or more tablespaces.

Syntax

TYPE TABLESPACE_SET IS TABLE OF VARCHAR2(32)
 INDEX BY BINARY_INTEGER;

Summary of DBMS_STREAMS_TABLESPACE_ADM Subprograms

Table 149-2 DBMS_STREAMS_TABLESPACE_ADM Package Subprograms

	Subprogram	Description
	
ATTACH_SIMPLE_TABLESPACE Procedure

	
Uses Data Pump to import a simple tablespace previously exported using the DBMS_STREAMS_TABLESPACE_ADM package or Data Pump export

	
ATTACH_TABLESPACES Procedure

	
Uses Data Pump to import a self-contained tablespace set previously exported using the DBMS_STREAMS_TABLESPACE_ADM package, Data Pump export, or the Recovery Manager (RMAN) TRANSPORT TABLESPACE command

	
CLONE_SIMPLE_TABLESPACE Procedure

	
Clones a simple tablespace. The tablespace can later be attached to a database.

	
CLONE_TABLESPACES Procedure

	
Clones a set of self-contained tablespaces. The tablespaces can later be attached to a database.

	
DETACH_SIMPLE_TABLESPACE Procedure

	
Detaches a simple tablespace. The tablespace can later be attached to a database.

	
DETACH_TABLESPACES Procedure

	
Detaches a set of self-contained tablespaces. The tablespaces can later be attached to a database.

	
PULL_SIMPLE_TABLESPACE Procedure

	
Copies a simple tablespace from a remote database and attaches it to the current database

	
PULL_TABLESPACES Procedure

	
Copies a set of self-contained tablespaces from a remote database and attaches the tablespaces to the current database

	
Note:

All subprograms commit unless specified otherwise.

ATTACH_SIMPLE_TABLESPACE Procedure

This procedure uses Data Pump to import a simple tablespace previously exported using the DBMS_STREAMS_TABLESPACE_ADM package, Data Pump export, or the Recovery Manager (RMAN) TRANSPORT TABLESPACE command.

Syntax

DBMS_STREAMS_TABLESPACE_ADM.ATTACH_SIMPLE_TABLESPACE(
 directory_object IN VARCHAR2,
 tablespace_file_name IN VARCHAR2,
 converted_file_name IN VARCHAR2 DEFAULT NULL,
 datafile_platform IN VARCHAR2 DEFAULT NULL,
 tablespace_name OUT VARCHAR2);

Parameters

Table 149-3 ATTACH_SIMPLE_TABLESPACE Procedure Parameters

	Parameter	Description
	
directory_object

	
The directory that contains the Data Pump dump file and the datafile for the tablespace. You must specify the name of a directory object created using the SQL statement CREATE DIRECTORY.

The name of the Data Pump export dump file must be the same as the data file name for the tablespace, except with a .dmp extension. If the converted_file_name is non-NULL, specify the dump file produced by the export database, not the file name after conversion.

The Data Pump import log file is written to this directory. The name of the log file is the same as the data file name for the tablespace, except with an .alg extension. If a file exists with the same name as the log file in the directory, then the procedure overwrites the file.

If NULL, then the procedure raises an error.

	
tablespace_file_name

	
The name of the datafile for the tablespace being imported.

If NULL, then the procedure raises an error.

	
converted_file_name

	
If the datafile_platform parameter is non-NULL and is different from the platform of the local import database, then specify a file name for the converted datafile. The datafile is converted to the platform of the local import database and copied to the new file name. The existing datafile is not modified nor deleted.

If non-NULL and the datafile_platform parameter is NULL, then the procedure ignores this parameter.

If non-NULL and the datafile_platform parameter specifies the same platform as the local import database, then the procedure ignores this parameter.

If NULL and the datafile_platform parameter is non-NULL, then the procedure raises an error.

	
datafile_platform

	
Specify NULL if the platform is the same for the export database and the current import database.

Specify the platform for the export database if the platform is different for the export database and the import database.

You can determine the platform of a database by querying the PLATFORM_NAME column in the V$DATABASE dynamic performance view. The V$TRANSPORTABLE_PLATFORM dynamic performance view lists all platforms that support cross-platform transportable tablespaces.

	
tablespace_name

	
Contains the name of the attached tablespace. The attached tablespace is read-only. Use an ALTER TABLESPACE statement to make the tablespace read/write if necessary.

Usage Notes

To run this procedure, a user must meet the following requirements:

	
Have IMP_FULL_DATABASE role

	
Have READ and WRITE privilege on the directory object that contains the Data Pump export dump file and the datafiles for the tablespaces in the set, specified by the directory_object parameter

Automatic Storage Management (ASM) directories cannot be used with this procedure.

	
See Also:

Overview

ATTACH_TABLESPACES Procedure

This procedure uses Data Pump to import a self-contained tablespace set previously exported using the DBMS_STREAMS_TABLESPACE_ADM package, Data Pump export, or the Recovery Manager (RMAN) TRANSPORT TABLESPACE command.

This procedure is overloaded and consists of the following versions:

	
One version of the procedure uses a Data Pump job name in the datapump_job_name parameter. This job performs the Data Pump import to complete the attach operation. In addition, if the platform at the export database is different than the local database platform, then this procedure optionally can create datafiles for the tablespace set that can be used with the local platform.

	
The other version of the procedure uses a file group that can consist of multiple versions of the tablespace set in a tablespace repository. A tablespace repository is a collection of tablespace sets in a file group repository. When this version of the procedure is run, a Data Pump import is performed. This version of the procedure uses the files in a file group version and can copy the export dump file, export log file, and the datafiles that comprise the tablespace set into the specified directories. The file group and version are specified using the file_group_name and version_name parameters, respectively. This version of the procedure does not require a datafiles platform specification if the platform at the export database is different than the local database platform. Instead, the tablespace set is migrated automatically to the correct platform when it is attached.

Syntax

DBMS_STREAMS_TABLESPACE_ADM.ATTACH_TABLESPACES(
 datapump_job_name IN OUT VARCHAR2,
 dump_file IN FILE,
 tablespace_files IN FILE_SET,
 converted_files IN FILE_SET,
 datafiles_platform IN VARCHAR2 DEFAULT NULL,
 log_file IN FILE DEFAULT NULL,
 tablespace_names OUT TABLESPACE_SET);

DBMS_STREAMS_TABLESPACE_ADM.ATTACH_TABLESPACES(
 file_group_name IN VARCHAR2,
 version_name IN VARCHAR2 DEFAULT NULL,
 datafiles_directory_object IN VARCHAR2 DEFAULT NULL,
 logfile_directory_object IN VARCHAR2 DEFAULT NULL,
 repository_db_link IN VARCHAR2 DEFAULT NULL,
 tablespace_names OUT TABLESPACE_SET);

Parameters

Table 149-4 ATTACH_TABLESPACES Procedure Parameters

	Parameter	Description
	
data_pump_job_name

	
The Data Pump job name. Specify a Data Pump job name to adhere to naming conventions or to track the job more easily.

If NULL, then the system generates a Data Pump job name.

	
dump_file

	
The file name of the Data Pump dump file to import.

If NULL or if a file attribute is NULL, then the procedure raises an error.

	
tablespace_files

	
The file set that contains the datafiles for the tablespace set being imported.

If NULL, then the procedure raises an error.

	
converted_files

	
If the datafiles_platform parameter is non-NULL and is different from the platform for the local import database, then specify a file set with the names of the converted datafiles. The datafiles are converted to the platform of the local import database and copied to the new file names. In this case, the number of files in the specified file set must match the number of files in the file set specified for the tablespace_files parameter. The existing datafiles are not modified nor deleted.

If non-NULL and the datafiles_platform parameter is NULL, then the procedure ignores this parameter.

If non-NULL and the datafiles_platform parameter specifies the same platform as the local import database, then the procedure ignores this parameter.

If NULL and the datafiles_platform parameter is non-NULL, then the procedure raises an error.

	
datafiles_platform

	
Specify NULL if the platform is the same for the export database and the current import database.

Specify the platform for the export database if the platform is different for the export database and the import database.

You can determine the platform of a database by querying the PLATFORM_NAME column in the V$DATABASE dynamic performance view. The V$TRANSPORTABLE_PLATFORM dynamic performance view lists all platforms that support cross-platform transportable tablespaces.

	
log_file

	
Specify the log file name for the Data Pump import.

If NULL or if at least one file parameter is NULL, then the system generates a log file name with the extension .alg and places it in the Data Pump export dump file directory.

If a file exists with the same name as the log file in the directory, then the procedure overwrites the file.

	
file_group_name

	
The name of the file group, specified as [schema_name.]file_group_name. For example, if the schema is hq_dba and the file group name is sales, then specify hq_dba.sales. If the schema is not specified, then the current user is the default.

	
version_name

	
The name of the file group version to attach.

If NULL, then the procedure uses the version with the latest creation time for the file group.

	
datafiles_directory_object

	
The directory object into which the datafiles and Data Pump export dump file are copied. The files are copied from the tablespace repository directories to this directory.

If non-NULL, the attached tablespaces use the files in specified directory. However, the file group version specified in the version_name parameter consists of the files in the original directory, not in the directory specified by this datafiles_directory_object parameter.

If NULL, then the procedure does not copy the datafiles and dump file.

	
logfile_directory_object

	
The directory object into which the Data Pump import log file is placed. The system generates a log file name with the extension .alg.

If NULL, then the procedure places the import log file in the same directory as the dump file.

	
repository_db_link

	
If the file group is in a different database, then specify the name of the database link to the database that contains the file group. The database link must be accessible to the user who runs the procedure.

If this parameter is non-NULL, then meet the following requirements:

	
Each directory object that contains files in the version being attached must exist on both databases.

	
The corresponding directory objects must have the same names on both databases.

If NULL, then the procedure does not use a database link, and the procedure uses the file group in the local database.

	
tablespace_names

	
Contains the names of the attached tablespaces. The attached tablespaces are read-only. Use ALTER TABLESPACE statements to make the tablespaces read/write if necessary.

Usage Notes

The following sections contain usage notes for this procedure:

	
User Requirements

	
Procedures Used to Clone or Detach a Tablespace Set

	
When the Attach Database Is Different Than the Clone or Detach Database

	
Automatic Storage Management Directories

	
See Also:

	
Overview

	
Oracle Streams Concepts and Administration

User Requirements

To run either version of this procedure, a user must meet the following requirements:

	
Have IMP_FULL_DATABASE role

	
Have READ and WRITE privilege on the directory objects that contain the Data Pump export dump file and the datafiles for the tablespaces in the set, specified by the dump_file and tablespace_files parameters, or by the datafiles_directory_object parameter

	
Have WRITE privilege on the directory object that will hold the Data Pump import log file, specified by the log_file parameter or logfile_directory_object parameter if it is non-NULL

If the Data Pump job version of the procedure is run, then the user must have WRITE privilege on the directory objects that will hold the converted datafiles for the tablespaces in the set if platform conversion is necessary. These directory objects are specified by the converted_files parameter if it is non-NULL.

If the file group version of the procedure is run, then the user must have the necessary privileges to manage the file group.

Procedures Used to Clone or Detach a Tablespace Set

After a tablespace set is cloned or detached using the CLONE_TABLESPACES or DETACH_TABLEPSACES procedure, respectively, the tablespace set can be attached to a database using the ATTACH_TABLESPACES procedure. If the Data Pump job version of the CLONE_TABLESPACES or DETACH_TABLEPSACES procedure was used, then use the Data Pump job version of the ATTACH_TABLESPACES procedure. If the file group version of the CLONE_TABLESPACES or DETACH_TABLEPSACES procedure was used, then use the file group version of the ATTACH_TABLESPACES procedure.

	
See Also:

	
CLONE_TABLESPACES Procedure

	
DETACH_TABLESPACES Procedure

When the Attach Database Is Different Than the Clone or Detach Database

You can attach a tablespace set to a different database than the database from which the tablespace set was cloned or detached. The two databases might or might not share a file system. If the two databases do not share a file system, then you must transfer the dump file and datafiles to the remote system using the DBMS_FILE_TRANSFER package, FTP, or some other method. You can attach the tablespace set in one of the following ways depending on the version of the ATTACH_TABLESPACES procedure you use:

	
If you use the Data Pump job version of the procedure, then specify the relevant files on the file system. The directory object names can be different in the databases.

	
If you use the file group version of the procedure, then you can use the repository_db_link parameter to specify the database where tablespace repository resides. The directory objects for the files must exist and must match in the databases.

	
See Also:

	
CLONE_TABLESPACES Procedure

	
DETACH_TABLESPACES Procedure

	
Chapter 67, "DBMS_FILE_GROUP" for more information about file groups

Automatic Storage Management Directories

Automatic Storage Management (ASM) directories can be specified for the directory objects that store datafiles and export dump files, but ASM directories cannot be specified for directory objects that store log files.

	
See Also:

Oracle Database Utilities for information about specifying ASM directories for directory objects

CLONE_SIMPLE_TABLESPACE Procedure

This procedure clones a simple tablespace. The specified tablespace must be online.

Specifically, this procedure performs the following actions:

	
Makes the specified tablespace read-only if it is not read-only

	
Uses Data Pump to export the metadata for the tablespace and places the dump file in the specified directory

	
Places the datafile for the specified tablespace in the specified directory

	
If this procedure made the tablespace read-only, then makes the tablespace read/write

In addition, this procedure optionally can create a datafile for the tablespace that can be used with a platform that is different than the local database platform.

Syntax

DBMS_STREAMS_TABLESPACE_ADM.CLONE_SIMPLE_TABLESPACE(
 tablespace_name IN VARCHAR2,
 directory_object IN VARCHAR2,
 destination_platform IN VARCHAR2 DEFAULT NULL,
 tablespace_file_name OUT VARCHAR2);

Parameters

Table 149-5 CLONE_SIMPLE_TABLESPACE Procedure Parameters

	Parameter	Description
	
tablespace_name

	
The tablespace to be cloned.

If NULL, then the procedure raises an error.

	
directory_object

	
The directory where the Data Pump export dump file, the Data Pump export log file, and the datafile for the tablespace are placed. You must specify the name of a directory object created using the SQL statement CREATE DIRECTORY.

The name of the Data Pump export dump file is the same as the data file name for the tablespace, except with a .dmp extension. If a file exists with the same name as the dump file in the directory, then the procedure raises an error.

The name of the log file is the same as the data file name for the tablespace, except with a .clg extension. If a file exists with the same name as the log file in the directory, then the procedure overwrites the file.

If NULL, then the procedure raises an error.

	
destination_platform

	
Specify NULL if the platform is the same for the current export database and the intended import database.

Specify the platform for the intended import database if the platform is different for the export database and the import database.

You can determine the platform of a database by querying the PLATFORM_NAME column in the V$DATABASE dynamic performance view. The V$TRANSPORTABLE_PLATFORM dynamic performance view lists all platforms that support cross-platform transportable tablespaces.

	
tablespace_file_name

	
Contains the name of the cloned tablespace datafile. This datafile is placed in the directory specified by the parameter directory_object.

Usage Notes

To run this procedure, a user must meet the following requirements:

	
Have EXP_FULL_DATABASE role

	
Have access to at least one data dictionary view that contains information about the tablespaces. These views include DBA_TABLESPACES and USER_TABLESPACES.

	
Have MANAGE TABLESPACE or ALTER TABLESPACE on a tablespace if the tablespace must be made read-only

	
Have READ privilege on the directory object for the directory that contains the datafile for the tablespace. The name of this tablespace is specified by the tablespace_name parameter. If a directory object does not exist for this directory, then create the directory object and grant the necessary privileges before you run this procedure.

	
Have READ and WRITE privilege on the directory object that will contain the Data Pump export dump file, specified by the directory_object parameter

	
If the file group version of the procedure is run, then the user must have the necessary privileges to manage file group.

After cloning a tablespace using this procedure, you can add the tablespace to a different database using the ATTACH_SIMPLE_TABLESPACE procedure. If the database is a remote database and you want to use the ATTACH_SIMPLE_TABLESPACE procedure, then you can transfer the dump file and datafile to the remote system using the DBMS_FILE_TRANSFER package, FTP, or some other method.

Automatic Storage Management (ASM) directories cannot be used with this procedure.

	
See Also:

	
Overview

	
ATTACH_SIMPLE_TABLESPACE Procedure and PULL_SIMPLE_TABLESPACE Procedure

CLONE_TABLESPACES Procedure

This procedure clones a set of self-contained tablespaces. All of the tablespaces in the specified tablespace set must be online.

Specifically, this procedure performs the following actions:

	
Makes any read/write tablespace in the specified tablespace set read-only

	
Uses Data Pump to export the metadata for the tablespaces in the tablespace set and places the dump file in the specified directory

	
Places the datafiles that comprise the specified tablespace set in the specified directory

	
If this procedure made a tablespace read-only, then makes the tablespace read/write

This procedure is overloaded and consists of the following versions:

	
One version of the procedure uses a Data Pump job name in the datapump_job_name parameter. This job performs the Data Pump export. This version of the procedure completes the clone operation by placing the export dump file, export log file, and the datafiles that comprise the tablespace set in the specified directories, but the files are not added to a file group version. In addition, this version of the procedure optionally can create datafiles for the tablespace set that can be used with a platform that is different than the local database platform.

	
The other version of the procedure uses a file group that can consist of multiple versions of the tablespace set in a tablespace repository. A tablespace repository is a collection of tablespace sets in a file group repository. When this version of the procedure is run, a Data Pump export is performed, and this version of the procedure completes the clone operation by placing the export dump file, export log file, and the datafiles that comprise the tablespace set in the appropriate file group version. The file group and version are specified using the file_group_name and version_name parameters, respectively. This version of the procedure does not require a destination platform specification if the destination platform is different. Instead, the tablespace set is migrated automatically to the correct platform when it is attached at the destination database using the file group version of the ATTACH_TABLESPACES procedure.

Syntax

DBMS_STREAMS_TABLESPACE_ADM.CLONE_TABLESPACES(
 datapump_job_name IN OUT VARCHAR2,
 tablespace_names IN TABLESPACE_SET,
 dump_file IN FILE,
 tablespace_directory_objects IN DIRECTORY_OBJECT_SET,
 destination_platform IN VARCHAR2 DEFAULT NULL,
 log_file IN FILE DEFAULT NULL,
 tablespace_files OUT FILE_SET);

DBMS_STREAMS_TABLESPACE_ADM.CLONE_TABLESPACES(
 tablespace_names IN TABLESPACE_SET,
 tablespace_directory_object IN VARCHAR2 DEFAULT NULL,
 log_file_directory_object IN VARCHAR2 DEFAULT NULL,
 file_group_name IN VARCHAR2,
 version_name IN VARCHAR2 DEFAULT NULL,
 repository_db_link IN VARCHAR2 DEFAULT NULL);

Parameters

Table 149-6 CLONE_TABLESPACES Procedure Parameters

	Parameter	Description
	
data_pump_job_name

	
The Data Pump job name. Specify a Data Pump job name to adhere to naming conventions or to track the job more easily.

If NULL, then the system generates a Data Pump job name.

	
tablespace_names

	
The tablespace set to be cloned.

If NULL, then the procedure raises an error.

	
dump_file

	
The file name of the Data Pump dump file that is exported.

If NULL or if a file attribute is NULL, then the procedure raises an error.

If the specified file exists, then the procedure raises an error.

	
tablespace_directory_objects

	
The set of directory objects into which the datafiles for the tablespaces are copied. If multiple directory objects are in the set, then the procedure copies a datafile to each directory object in the set in sequence. In this case, if the end of the directory object set is reached, then datafile copying starts again with the first directory object in the set.

If NULL, then the procedure copies datafiles for the tablespace set to the dump file directory.

	
destination_platform

	
Specify NULL if the platform is the same for the current export database and the intended import database.

Specify the platform for the intended import database if the platform is different for the export database and the import database.

You can determine the platform of a database by querying the PLATFORM_NAME column in the V$DATABASE dynamic performance view. The V$TRANSPORTABLE_PLATFORM dynamic performance view lists all platforms that support cross-platform transportable tablespaces.

	
log_file

	
Specify the log file name for the Data Pump export.

If NULL or if at least one file parameter is NULL, then the system generates a log file name with the extension .clg and places it in the dump file directory.

If a file exists with the same name as the log file in the directory, then the procedure overwrites the file.

	
tablespace_directory_object

	
The directory object into which the data files are copied and Data Pump export dump file is placed. The system generates a dump file name with the extension .dmp.

If NULL, then the procedure copies the datafiles to and places the dump file in the default directory object for the version. If the version does not have a default directory object, then the procedure uses the default directory object for the file group.

If NULL and no default directory object exists for the version or file group, then the procedure raises an error.

	
log_file_directory_object

	
The directory object into which the Data Pump export log file is placed. The system generates a log file name with the extension .clg.

If NULL, then the procedure uses the directory object specified in tablespace_directory_object.

	
file_group_name

	
The name of the file group, specified as [schema_name.]file_group_name. For example, if the schema is hq_dba and the file group name is sales, then specify hq_dba.sales. If the schema is not specified, then the current user is the default.

If the specified file group does not exist, then the procedure creates it.

	
version_name

	
The name of the version into which the cloned tablespace set is placed. The specified version name cannot be a positive integer.

If the specified version does not exist, then the procedure creates it.

If the specified version exists, then the procedure adds the tablespace set to the version. Only one Data Pump export dump file can exist in a version.

If NULL, then the procedure creates a new version, and the version number can be used to manage the version.

	
repository_db_link

	
If the file group is in a remote database, then specify the name of the database link to the database that contains the file group. The database link must be accessible to the user who runs the procedure.

If this parameter is non-NULL, then the directory object specified in tablespace_directory_object must exist on the local database and on the remote database. If tablespace_directory_object is NULL, then the default directory object must exist on both databases. The directory object must have the same name on each database and must correspond to the same directory on a shared file system.

If NULL, then the procedure does not use a database link, and the procedure uses the file group in the local database.

	
tablespace_files

	
Contains the datafiles for the cloned tablespace set. These datafiles are placed in the directories specified by the directory objects in the parameter tablespace_directory_objects.

Usage Notes

To run either version of this procedure, a user must meet the following requirements:

	
Have EXP_FULL_DATABASE role

	
Have access to at least one data dictionary view that contains information about the tablespaces. These views include DBA_TABLESPACES and USER_TABLESPACES.

	
Have MANAGE TABLESPACE or ALTER TABLESPACE on a tablespace if the tablespace must be made read-only

	
Have READ privilege on the directory objects for the directories that contain the datafiles for the tablespace set. The names of these tablespaces are specified by the tablespace_names parameter. If a directory object does not exist for one or more of these directories, then create the directory objects and grant the necessary privileges before you run this procedure.

	
Have READ and WRITE privilege on the directory object that will contain the Data Pump export dump file, specified by the dump_file parameter or the tablespace_directory_object parameter

	
Have WRITE privilege on the directory objects that will contain the copied datafiles for the tablespaces in the set, specified by the tablespace_directory_objects parameter if non-NULL or the tablespace_directory_object parameter

	
Have WRITE privilege on the directory object that will contain the Data Pump export log file, specified by the log_file parameter if non-NULL or the log_file_directory_object parameter if non-NULL

If the file group version of the procedure is run, then the user must have the necessary privileges to manage the file group.

Automatic Storage Management (ASM) directories can be specified for the directory objects that store datafiles and export dump files, but ASM directories cannot be specified for directory objects that store log files.

After cloning a tablespace set using this procedure, you can attach the tablespaces to a different database using the ATTACH_TABLESPACES procedure.

	
See Also:

	
Overview

	
ATTACH_TABLESPACES Procedure

	
Chapter 67, "DBMS_FILE_GROUP" for more information about file groups

	
Oracle Streams Concepts and Administration

DETACH_SIMPLE_TABLESPACE Procedure

This procedure detaches a simple tablespace. The specified tablespace must be online.

Specifically, this procedure performs the following actions:

	
Makes the specified tablespace read-only if it is not read-only

	
Uses Data Pump to export the metadata for the tablespace and places the dump file in the directory that contains the tablespace datafile

	
Drops the tablespace and its contents from the database

Syntax

DBMS_STREAMS_TABLESPACE_ADM.DETACH_SIMPLE_TABLESPACE(
 tablespace_name IN VARCHAR2,
 directory_object OUT VARCHAR2,
 tablespace_file_name OUT VARCHAR2);

Parameters

Table 149-7 DETACH_SIMPLE_TABLESPACE Procedure Parameters

	Parameter	Description
	
data_pump_job_name

	
The Data Pump job name. Specify a Data Pump job name to adhere to naming conventions or to track the job more easily.

If NULL, then the system generates a Data Pump job name.

	
directory_object

	
Contains the directory where the Data Pump export dump file and the Data Pump export log file are placed. The procedure uses the directory of the datafile for the tablespace. Therefore, make sure a directory object created using the SQL statement CREATE DIRECTORY exists for this directory.

The name of the Data Pump export dump file is the same as the data file name for the tablespace, except with a .dmp extension. If a file exists with the same name as the dump file in the directory, then the procedure raises an error.

The name of the log file is the same as the data file name for the tablespace, except with a .dlg extension. If a file exists with the same name as the log file in the directory, then the procedure overwrites the file.

	
tablespace_file_name

	
Contains the name of the detached tablespace datafile.

Usage Notes

To run this procedure, a user must meet the following requirements:

	
Have EXP_FULL_DATABASE role

	
Have access to at least one data dictionary view that contains information about the tablespaces. These views include DBA_TABLESPACES and USER_TABLESPACES.

	
Have DROP TABLESPACE privilege

	
Have MANAGE TABLESPACE or ALTER TABLESPACE on a tablespace if the tablespace must be made read-only

	
Have READ and WRITE privilege on the directory object for the directory that contains the tablespace datafile. The name of this tablespace is specified by the tablespace_name parameter. If a directory object does not exist for this directory, then create the directory object and grant the necessary privileges before you run this procedure. This directory also will contain the Data Pump export dump file generated by this procedure.

After detaching a tablespace using this procedure, you can add the tablespace to a different database using the ATTACH_SIMPLE_TABLESPACE procedure. If the database is a remote database and you want to use the ATTACH_SIMPLE_TABLESPACE procedure, then you can transfer the dump file and datafile to the remote system using the DBMS_FILE_TRANSFER package, FTP, or some other method. You can use the two OUT parameters in this procedure to accomplish the attach or pull operation.

Automatic Storage Management (ASM) directories cannot be used with this procedure.

	
Note:

Do not use the DETACH_SIMPLE_TABLESPACE procedure on a tablespace if the tablespace is using the Oracle-managed files feature. If you do, then the datafile for the tablespace is dropped automatically when the tablespace is dropped.

	
See Also:

	
Overview

	
ATTACH_SIMPLE_TABLESPACE Procedure and PULL_SIMPLE_TABLESPACE Procedure

	
Oracle Database Administrator's Guide for more information about the Oracle-managed files feature

DETACH_TABLESPACES Procedure

This procedure detaches a set of self-contained tablespaces. All of the tablespaces in the specified tablespace set must be online and any table partitions must not span tablespaces in the tablespace set.

Specifically, this procedure performs the following actions:

	
Makes any read/write tablespace in the specified tablespace set read-only

	
Uses Data Pump to export the metadata for the tablespace set and places the dump file in the specified directory

	
Drops the tablespaces in the specified tablespace set and their contents from the database

This procedure does not move or copy the datafiles that comprise the specified tablespace set.

This procedure is overloaded and consists of the following versions:

	
One version of the procedure uses a Data Pump job name in the datapump_job_name parameter. This job performs the Data Pump export. This version of the procedure completes the detach operation by placing the export dump file and export log file in the specified directories, but the files are not added to a file group version.

	
The other version of the procedure uses a file group that can consist of multiple versions of the tablespace set in a tablespace repository. A tablespace repository is a collection of tablespace sets in a file group repository. When this version of the procedure is run, a Data Pump export is performed, and this version of the procedure completes the detach operation by placing the export dump file and export log file in the appropriate file group version. The datafiles that comprise the tablespace set are not moved or copied, but they are referenced in the version that is detached. The file group and version are specified using the file_group_name and version_name parameters, respectively. Also, if the destination platform is different, then the tablespace set is migrated automatically to the correct platform when it is attached at the destination database using the file group version of the ATTACH_TABLESPACES procedure.

	
Note:

Do not use the DETACH_TABLESPACES procedure if any of the tablespaces in the tablespace set are using the Oracle-managed files feature. If you do, then the datafiles for these tablespaces are dropped automatically when the tablespaces are dropped.

Syntax

DBMS_STREAMS_TABLESPACE_ADM.DETACH_TABLESPACES(
 datapump_job_name IN OUT VARCHAR2,
 tablespace_names IN TABLESPACE_SET,
 dump_file IN FILE,
 log_file IN FILE DEFAULT NULL,
 tablespace_files OUT FILE_SET);

DBMS_STREAMS_TABLESPACE_ADM.DETACH_TABLESPACES(
 tablespace_names IN TABLESPACE_SET,
 export_directory_object IN VARCHAR2 DEFAULT NULL,
 log_file_directory_object IN VARCHAR2 DEFAULT NULL,
 file_group_name IN VARCHAR2,
 version_name IN VARCHAR2 DEFAULT NULL,
 repository_db_link IN VARCHAR2 DEFAULT NULL);

Parameters

Table 149-8 DETACH_TABLESPACES Procedure Parameters

	Parameter	Description
	
data_pump_job_name

	
The Data Pump job name. Specify a Data Pump job name to adhere to naming conventions or to track the job more easily.

If NULL, then the system generates a Data Pump job name.

	
tablespace_names

	
The tablespace set to be detached.

If NULL, then the procedure raises an error.

	
dump_file

	
The file name of the Data Pump dump file that is exported.

If NULL or if a file attribute is NULL, then the procedure raises an error.

If the specified file exists, then the procedure raises an error.

	
log_file

	
Specify the log file name for the Data Pump export.

If NULL or if at least one file parameter is NULL, then the system generates a log file name with the extension .dlg and places it in the dump file directory.

If a file exists with the same name as the log file in the directory, then the procedure overwrites the file.

	
tablespace_files

	
Contains the names of the datafiles for the detached tablespace set.

	
export_directory_object

	
The directory object into which the Data Pump export dump file is placed. The system generates a dump file name with the extension .dmp.

If NULL, then procedure places the dump file in the default directory object for the version. If the version does not have a default directory object, then the procedure uses the default directory object for the file group.

If NULL and no default directory object exists for the version or file group, then the procedure raises an error.

	
log_file_directory_object

	
The directory object into which the Data Pump export log file is placed. The system generates a log file name with the extension .dlg.

If NULL, then the procedure places the export log file in the same directory as the export dump file.

	
file_group_name

	
The name of the file group, specified as [schema_name.]file_group_name. For example, if the schema is hq_dba and the file group name is sales, then specify hq_dba.sales. If the schema is not specified, then the current user is the default.

If the specified file group does not exist, then the procedure creates it.

	
version_name

	
The name of the version into which the detached tablespace set is placed. The specified version name cannot be a positive integer.

If the specified version does not exist, then the procedure creates it.

If the specified version exists, then procedure adds the tablespace set to the version. Only one Data Pump export dump file can exist in a version.

If NULL, then the procedure creates a new version, and the version number can be used to manage the version.

	
repository_db_link

	
If the file group is in a remote database, then specify the name of the database link to the database that contains the file group. The database link must be accessible to the user who runs the procedure.

If this parameter is non-NULL, then the directory object specified in export_directory_object must exist on the local database and on the remote database. If export_directory_object is NULL, then the default directory object must exist on both databases. The directory object must have the same name on each database and must correspond to the same directory on a shared file system.

If NULL, then the procedure does not use a database link, and the procedure uses the file group in the local database.

Usage Notes

To run this either version of this procedure, a user must meet the following requirements:

	
Have EXP_FULL_DATABASE role

	
Have access to at least one data dictionary view that contains information about the tablespaces. These views include DBA_TABLESPACES and USER_TABLESPACES.

	
Have DROP TABLESPACE privilege

	
Have MANAGE TABLESPACE or ALTER TABLESPACE on a tablespace if the tablespace must be made read-only

	
Have READ privilege on the directory objects for the directories that contain the datafiles for the tablespace set. The names of these tablespaces are specified by the tablespace_names parameter. If a directory object does not exist for one or more of these directories, then create the directory objects and grant the necessary privileges before you run this procedure.

	
Have READ and WRITE privilege on the directory object that will contain the Data Pump export dump file, specified by the dump_file parameter or the export_directory_object parameter

	
Have WRITE privilege on the directory object that will contain the Data Pump export the log file, specified by the log_file parameter if non-NULL or by the log_file_directory_object parameter if non-NULL

If the file group version of the procedure is run, then the user must have the necessary privileges to manage the file group.

Automatic Storage Management (ASM) directories can be specified for the directory objects that store datafiles and export dump files, but ASM directories cannot be specified for directory objects that store log files.

After detaching a tablespace set using this procedure, you can attach the tablespaces to a different database using the ATTACH_TABLESPACES procedure.

	
See Also:

	
Overview

	
ATTACH_TABLESPACES Procedure

	
Chapter 67, "DBMS_FILE_GROUP" for more information about file groups

	
Oracle Streams Concepts and Administration

	
Oracle Database Administrator's Guide for more information about the Oracle-managed files feature

PULL_SIMPLE_TABLESPACE Procedure

This procedure copies a simple tablespace from a remote database and attaches it to the current database. The specified tablespace at the remote database must be online.

Specifically, this procedure performs the following actions:

	
Makes the specified tablespace read-only at the remote database if it is not read-only

	
Uses Data Pump to export the metadata for the tablespace

	
Uses a database link and the DBMS_FILE_TRANSFER package to transfer the datafile for the tablespace and the log file for the Data Pump export to the current database

	
Places the datafile for the specified tablespace and the log file for the Data Pump export in the specified directory at the local database

	
If this procedure made the tablespace read-only, then makes the tablespace read/write

	
Uses Data Pump to import the metadata for the tablespace in the local database

In addition, this procedure optionally can create a datafile for the tablespace that can be used with the local platform, if the platform at the remote database is different than the local database platform.

Syntax

DBMS_STREAMS_TABLESPACE_ADM.PULL_SIMPLE_TABLESPACE(
 tablespace_name IN VARCHAR2,
 database_link IN VARCHAR2,
 directory_object IN VARCHAR2 DEFAULT NULL,
 conversion_extension IN VARCHAR2 DEFAULT NULL,
 convert_directory_object IN VARCHAR2 DEFAULT NULL);

Parameters

Table 149-9 PULL_SIMPLE_TABLESPACE Procedure Parameters

	Parameter	Description
	
tablespace_name

	
The tablespace to be pulled.

If NULL, then the procedure raises an error.

	
database_link

	
The name of the database link to the database that contains the tablespace to pull. The database link must be accessible to the user who runs the procedure.

If NULL, then the procedure raises an error.

	
directory_object

	
The directory object to which the datafile for the tablespace is copied on the local database. You must specify the name of a directory object created using the SQL statement CREATE DIRECTORY.

The Data Pump import log file is written to this directory. The name of the log file is the same as the data file name for the tablespace, except with a .plg extension. If a file exists with the same name as the log file in the directory, then the procedure overwrites the file.

If NULL, then the procedure raises an error.

	
conversion_extension

	
Specify NULL if the platform is the same for the remote export database and the current import database.

If the platform is different for the export database and the import database, then specify an extension for the tablespace datafile that is different than the extension for the tablespace datafile at the remote database. In this case, the procedure transfers the datafile to the import database and converts it to be compatible with the current import database platform automatically. After conversion is complete, the original datafile is deleted at the import database.

	
convert_directory_object

	
Specify NULL if the platform is the same for the remote export database and the current import database.

If the platform is different for the export database and the import database, then specify a directory object in the local export database. The procedure uses the directory object for platform conversion before it transfers the files to the remote database. You must specify the name of a directory object created using the SQL statement CREATE DIRECTORY.

Usage Notes

To run this procedure, a user must meet the following requirements on the remote database:

	
Have the EXP_FULL_DATABASE role

	
Have EXECUTE privilege on the DBMS_STREAMS_TABLESPACE_ADM package

	
Have access to at least one data dictionary view that contains information about the tablespaces. These views include DBA_TABLESPACES and USER_TABLESPACES.

	
Have MANAGE TABLESPACE or ALTER TABLESPACE privilege on a tablespace if the tablespace must be made read-only

	
Have READ privilege on the directory object for the directory that contains the datafile for the tablespace. The name of this tablespace is specified by the tablespace_name parameter. If a directory object does not exist for this directory, then create the directory object and grant the necessary privileges before you run this procedure.

To run this procedure, a user must meet the following requirements on the local database:

	
Have the roles IMP_FULL_DATABASE and EXECUTE_CATALOG_ROLE

	
Have WRITE privilege on the directory object that will contain the Data Pump export the log file, specified by the log_file parameter if non-NULL

	
Have WRITE privilege on the directory object that will hold the datafile for the tablespace, specified by the directory_object parameter

Automatic Storage Management (ASM) directories cannot be used with this procedure.

	
See Also:

Overview

PULL_TABLESPACES Procedure

This procedure copies a set of self-contained tablespaces from a remote database and attaches the tablespaces to the current database. All of the tablespaces in the specified tablespace set at the remote database must be online.

Specifically, this procedure performs the following actions:

	
Makes any read/write tablespace in the specified tablespace set at the remote database read-only

	
Uses Data Pump to export the metadata for the tablespaces in the tablespace set

	
Uses a database link and the DBMS_FILE_TRANSFER package to transfer the datafiles for the tablespace set and the log file for the Data Pump export to the current database

	
Places the datafiles that comprise the specified tablespace set in the specified directories at the local database

	
Places the log file for the Data Pump export in the specified directory at the local database

	
If this procedure made a tablespace read-only, then makes the tablespace read/write

	
Uses Data Pump to import the metadata for the tablespaces in the tablespace set at the local database

In addition, this procedure optionally can create datafiles for the tablespace set that can be used with the local platform, if the platform at the remote database is different than the local database platform.

Syntax

DBMS_STREAMS_TABLESPACE_ADM.PULL_TABLESPACES(
 datapump_job_name IN OUT VARCHAR2,
 database_link IN VARCHAR2,
 tablespace_names IN TABLESPACE_SET,
 tablespace_directory_objects IN DIRECTORY_OBJECT_SET,
 log_file IN FILE,
 conversion_extension IN VARCHAR2 DEFAULT NULL,
 convert_directory_object IN VARCHAR2 DEFAULT NULL);

Parameters

Table 149-10 PULL_TABLESPACES Procedure Parameters

	Parameter	Description
	
data_pump_job_name

	
The Data Pump job name. Specify a Data Pump job name to adhere to naming conventions or to track the job more easily.

If NULL, then the system generates a Data Pump job name.

	
database_link

	
The name of the database link to the database that contains the tablespace set to pull. The database link must be accessible to the user who runs the procedure.

If NULL, then the procedure raises an error.

	
tablespace_names

	
The tablespace set to be pulled.

If NULL, then the procedure raises an error.

	
tablespace_directory_objects

	
The set of directory objects to which the datafiles for the tablespaces are copied. If multiple directory objects are in the set, then the procedure copies a datafile to each directory object in the set in sequence. In this case, if the end of the directory object set is reached, then datafile copying starts again with the first directory object in the set.

If NULL, then the procedure raises an error.

	
log_file

	
Specify the log file name for the Data Pump export.

If NULL or if at least one file parameter is NULL, then the system generates a log file name with the extension .plg and places it in one of the data file directories.

If a file exists with the same name as the log file in the directory, then the procedure overwrites the file.

	
conversion_extension

	
Specify NULL if the platform is the same for the remote export database and the current import database.

If the platform is different for the export database and the import database, then specify an extension for the tablespace datafiles that is different than the extension for the tablespace datafiles at the remote database. In this case, the procedure transfers the datafiles to the import database and converts them to be compatible with the current import database platform automatically. After conversion is complete, the original datafiles are deleted at the import database.

	
convert_directory_object

	
Specify NULL if the platform is the same for the remote export database and the current import database.

If the platform is different for the export database and the import database, then specify a directory object in the local export database. The procedure uses the directory object for platform conversion before it transfers the files to the remote database. You must specify the name of a directory object created using the SQL statement CREATE DIRECTORY.

Usage Notes

To run this procedure, a user must meet the following requirements on the remote database:

	
Have the EXP_FULL_DATABASE role

	
Have EXECUTE privilege on the DBMS_STREAMS_TABLESPACE_ADM package

	
Have access to at least one data dictionary view that contains information about the tablespaces. These views include DBA_TABLESPACES and USER_TABLESPACES.

	
Have MANAGE TABLESPACE or ALTER TABLESPACE privilege on a tablespace if the tablespace must be made read-only

	
Have READ privilege on the directory objects for the directories that contain the datafiles for the tablespace set. The names of these tablespaces are specified by the tablespace_names parameter. If a directory object does not exist for one or more of these directories, then create the directory objects and grant the necessary privileges before you run this procedure.

To run this procedure, a user must meet the following requirements on the local database:

	
Have the roles IMP_FULL_DATABASE and EXECUTE_CATALOG_ROLE

	
Have WRITE privilege on the directory object that will contain the Data Pump export the log file, specified by the log_file parameter if non-NULL

	
Have WRITE privilege on the directory objects that will hold the datafiles for the tablespaces in the set, specified by the tablespace_directory_objects parameter

Automatic Storage Management (ASM) directories can be specified for the directory objects that store datafiles and export dump files, but ASM directories cannot be specified for directory objects that store log files.

	
See Also:

Overview

DBMS_TDB

150 DBMS_TDB

The DBMS_TDB package reports whether a database can be transported between platforms using the RMAN CONVERT DATABASE command. The package verifies that databases on the current host platform are of the same endian format as the destination platform, and that the state of the current database does not prevent transport of the database.

	
See Also:

Oracle Database Backup and Recovery User's Guide regarding database transport using CONVERT DATABASE

This chapter contains the following topics:

	
Using DBMS_TDB

	
Overview

	
Security Model

	
Constants

	
Views

	
Operational Notes

	
Summary of DBMS_TDB Subprograms

Using DBMS_TDB

This section contains topics which relate to using DBMS_TDB.

	
Overview

	
Constants

	
Views

	
Operational Notes

Overview

In many cases, Oracle supports transporting databases between platforms which have the same endian format. However, even when the endian formats are the same, a database must undergo a conversion process to move from one platform to another. There are also preconditions required for the process of transporting a database, such as having the database to be transported open read-only.

The DBMS_TDB package serves two purposes:

	
Confirming that Oracle supports transporting a database from a given source platform to a given target platform

	
Determining whether a database to be transported has been properly prepared for transport, and if not, identifying the condition that prevents database transport

The actual conversion is performed using the Recovery Manager CONVERT DATABASE command. For a complete discussion of the requirements for transporting a database, the process of converting a database for transport across platforms, and examples of the use of the DBMS_TDB subprograms in the conversion process, see Oracle Database Backup and Recovery User's Guide.

Security Model

Use of this package requires the DBA privilege.

Constants

The DBMS_TDB package defines several enumerated constants that should be used for specifying parameter values. Enumerated constants must be prefixed with the package name, for example, DBMS_TDB.SKIP_NONE.

The DBMS_TDB package uses the constants shown in Table 150-1.

Table 150-1 DBMS_TDB Constants

	Name	Type	Value	Description
	
SKIP_NONE

	
NUMBER

	
0

	
Check all files when checking whether a database is ready for transport.

	
SKIP_OFFLINE

	
NUMBER

	
2

	
Skip files in offline tablespaces when checking whether a database is ready for transport.

	
SKIP_READONLY

	
NUMBER

	
3

	
Skip files in readonly tablespaces when checking whether a database is ready for transport.

Views

The DBMS_TDB package uses the following view listed in Oracle Database Reference:

	
V$DB_TRANSPORTABLE_PLATFORM, which specifies which combinations of source and target platforms support database transport

Operational Notes

	
The subprograms in this package are useful both in determining whether the desired cross-platform database conversion is possible, and in checking whether the database is ready for conversion. See Oracle Database Backup and Recovery User's Guide for details on the different uses of these subprograms are used in the conversion process.

	
The subprograms in this package return simple TRUE or FALSE results to indicate whether database transport is possible. Use the subprograms with SERVEROUTPUT ON for informative messages about why transport is not possible.

Summary of DBMS_TDB Subprograms

Table 150-2 DBMS_TDB Package Subprograms

	Subprogram	Description
	
CHECK_DB Function

	
Checks whether a database can be transported to a target platform

	
CHECK_EXTERNAL Function

	
Checks whether a database has external tables, directory or BFILEs

CHECK_DB Function

This function checks whether a database can be transported to a target platform. It tests whether transport is supported at all for a given source and destination platform, and whether the database is currently in the correct state for transport.

You can specify whether to skip checking parts of the database that are read-only or offline, if you do not plan to transport them.

The function is overloaded. The different functionality of each form of syntax is presented along with the definition.

Syntax

DBMS_TDB.CHECK_DB (
 target_platform_name IN VARCHAR2,
 skip_option IN NUMBER)
 RETURN BOOLEAN;

DBMS_TDB.CHECK_DB (
 target_platform_name IN VARCHAR2)
 RETURN BOOLEAN;

DBMS_TDB.CHECK_DB
 RETURN BOOLEAN;

Parameters

Table 150-3 CHECK_DB Function Parameters

	Parameter	Description
	
target_platform_name

	
The name of the destination platform, as it appears in V$DB_TRANSPORTABLE_PLATFORM.

	
skip_option

	
Specifies which, if any, parts of the database to skip when checking whether the database can be transported. Supported values are listed in Table 150-1, "DBMS_TDB Constants".

Return Values

If the database cannot be transported to the target platform or is not ready to be transported, returns FALSE. If the database is ready for transport, returns TRUE.

Usage Notes

	
If SERVEROUTPUT is ON, then the output will contain the reasons why the database cannot be transported and how to fix the problems. For details on possible reasons and fixes, see Table 150-4, "Reasons for CHECK_DB Function to Return FALSE".

Table 150-4 Reasons for CHECK_DB Function to Return FALSE

	Cause	Action
	
Unrecognized target platform name.

	
Check V$DB_TRANSPORTABLE_PLATFORM for recognized platform names.

	
Target platform has a different endian format.

	
Conversion is not supported.

	
Database is not open read-only.

	
Open database read-only and retry.

	
There are active or in-doubt transactions in the database.

	
Open the database read-write. After the active transactions are rolled back, open the database read-only and retry the operation.

This situation can occur if users flash back the database and open it read only. The active transactions will be rolled back when the database is opened read-write.

	
Deferred transaction rollback needs to be done.

	
Open the database read-write and bring online the necessary tablespaces. Once the deferred transaction rollback is complete, open the database read-only and retry the operation.

	
Database compatibility version is below 10.0.0.

	
Change the COMPATIBLE initialization parameter to 10.0.0 or higher, open the database read-only, and retry the operation.

	
Some tablespaces have not been open read-write with compatibility version is 10.0.0 or higher.

	
Change the COMPATIBLE initialization parameter to 10.0.0 or higher, then open the affected tablespaces read-write. Shut down the database, open it read-only, and retry the operation.

Examples

This example illustrates the use of CHECK_DB with a database that is open read-write:

SQL> SET SERVEROUTPUT ON
SQL> DECLARE
 db_ready BOOLEAN;
 BEGIN
 db_ready := DBMS_TDB.CHECK_DB('Microsoft Windows IA (32-bit)');
 END;
 /

Database is not open READ ONLY. Please open database READ ONLY and retry.

PL/SQL procedure successfully completed.

CHECK_EXTERNAL Function

This function determines whether a database has external tables, directories, or BFILEs.

Syntax

DBMS_TDB.CHECK_EXTERNAL
 RETURN BOOLEAN;

Return Values

If the database has external tables, directories, or BFILEs, return TRUE. Otherwise, return FALSE.

Usage Notes

	
If SERVEROUTPUT is ON, then the function will output the names of the external tables, directories, and BFILEs in the database.

	
The database must be open read-write.

Examples

This example illustrates the use of CHECK_EXTERNAL with a database that has several external tables, directories, and BFILEs:

SQL> SET SERVEROUTPUT ON
SQL> DECLARE
 external BOOLEAN;
 BEGIN
 external := DBMS_TDB.CHECK_EXTERNAL;
 END;
 /
The following external tables exist in the database:
SH.SALES_TRANSACTIONS_EXT
The following directories exist in the database:
SYS.MEDIA_DIR, SYS.DATA_FILE_DIR, SYS.LOG_FILE_DIR, SYS.DATA_PUMP_DIR
The following BFILEs exist in the database:
PM.PRINT_MEDIA

PL/SQL procedure successfully completed.

DBMS_TRACE

151 DBMS_TRACE

The DBMS_TRACE package contains the interface to trace PL/SQL functions, procedures, and exceptions.

This chapter contains the following topics:

	
Using DBMS_TRACE

	
Overview

	
Security Model

	
Constants

	
Restrictions

	
Operational Notes

	
Summary of DBMS_TRACE Subprograms

Using DBMS_TRACE

	
Overview

	
Security Model

	
Constants

	
Restrictions

	
Operational Notes

Overview

DBMS_TRACE provides subprograms to start and stop PL/SQL tracing in a session. Oracle collects the trace data as the program executes and writes it to database tables.

A typical session involves:

	
Starting PL/SQL tracing in session (DBMS_TRACE.SET_PLSQL_TRACE).

	
Running an application to be traced.

	
Stopping PL/SQL tracing in session (DBMS_TRACE.CLEAR_PLSQL_TRACE).

Security Model

This package must be created under SYS.

Constants

The DBMS_TRACE package uses the constants shown in Table 151-1, "DBMS_TRACE Constants":

Table 151-1 DBMS_TRACE Constants

	Name	Type	Value	Description
	
TRACE_MINOR_VERSION

	
INTEGER

	
0

	

	
TRACE_MAJOR_VERSION

	
INTEGER

	
1

	

	
TRACE_ALL_CALLS

	
INTEGER

	
1

	
Traces calls or returns

	
TRACE_ENABLED_CALLS

	
INTEGER

	
2

	

	
TRACE_ALL_EXCEPTIONS

	
INTEGER

	
4

	
Traces exceptions

	
TRACE_ENABLED_EXCEPTIONS

	
INTEGER

	
8

	
Traces exceptions and handlers

	
TRACE_LIMIT

	
INTEGER

	
16

	
Save only the last few records. This allows tracing up to a problem area, without filling the database up with masses of irrelevant information. If event 10940 is set, the limit is 1023*(the value of event 10940). This can be overridden by the use of "TRACE_LIMIT" flag.

	
TRACE_ALL_SQL

	
INTEGER

	
32

	
Traces SQL statements

	
TRACE_ENABLED_SQL

	
INTEGER

	
64

	
Traces SQL statements at PL/SQL level. This does not invoke SQL Trace

	
TRACE_ALL_LINES

	
INTEGER

	
128

	
Traces each line

	
TRACE_ENABLED_LINES

	
INTEGER

	
256

	

	
TRACE_PAUSE

	
INTEGER

	
4096

	
Pauses trancing

	
TRACE_RESUME

	
INTEGER

	
8192

	
Resume tracing

	
TRACE_STOP

	
INTEGER

	
16384

	
Stops tracing

	
NO_TRACE_ADMINISTRATIVE

	
INTEGER

	
32768

	
Prevents tracing of 'administrative events such as

	
PL/SQL Trace Tool started

	
Trace flags changed

	
PL/SQL Virtual Machine started

	
PL/SQL Virtual Machine stopped

	
NO_TRACE_HANDLED_EXCEPTIONS

	
INTEGER

	
65536

	
Prevents tracing of handled exceptions

Oracle recommends using the symbolic form for all these constants.

Restrictions

You cannot use PL/SQL tracing in a shared server environment.

Operational Notes

	
Controlling Data Volume

	
Creating Database Tables to Collect DBMS_TRACE Output

	
Collecting Trace Data

	
Collected Data

	
Trace Control

Controlling Data Volume

Profiling large applications may produce a large volume of data. You can control the volume of data collected by enabling specific program units for trace data collection.

You can enable a program unit by compiling it debug. This can be done in one of two ways:

alter session set plsql_debug=true;
create or replace ... /* create the library units - debug information will be generated */

or:

/* recompile specific library unit with debug option */
alter [PROCEDURE | FUNCTION | PACKAGE BODY] <libunit-name> compile debug;

	
Note:

You cannot use the second method for anonymous blocks.

You can limit the amount of storage used in the database by retaining only the most recent 8,192 records (approximately) by including TRACE_LIMIT in the TRACE_LEVEL parameter of the SET_PLSQL_TRACE procedure.

Creating Database Tables to Collect DBMS_TRACE Output

You must create database tables into which the DBMS_TRACE package writes output. Otherwise, the data is not collected. To create these tables, run the script TRACETAB.SQL. The tables this script creates are owned by SYS.

Collecting Trace Data

The PL/SQL features you can trace are described in the script DBMSPBT.SQL. Some of the key tracing features are:

	
Tracing Calls

	
Tracing Exceptions

	
Tracing SQL

	
Tracing Lines

Additional features of DBMS_TRACE also allow pausing and resuming trace, and limiting the output.

Tracing Calls

Two levels of call tracing are available:

	
Level 1: Trace all calls. This corresponds to the constant TRACE_ALL_CALLS.

	
Level 2: Trace calls to enabled program units only. This corresponds to the constant TRACE_ENABLED_CALLS.

Enabling cannot be detected for remote procedure calls (RPCs); hence, RPCs are only traced with level 1.

Tracing Exceptions

Two levels of exception tracing are available:

	
Level 1: Trace all exceptions. This corresponds to TRACE_ALL_EXCEPTIONS.

	
Level 2: Trace exceptions raised in enabled program units only. This corresponds to TRACE_ENABLED_EXCEPTIONS.

Tracing SQL

Two levels of SQL tracing are available:

	
Level 1: Trace all SQL. This corresponds to the constant TRACE_ALL_SQL.

	
Level 2: Trace SQL in enabled program units only. This corresponds to the constant TRACE_ENABLED_SQL.

Tracing Lines

Two levels of line tracing are available:

	
Level 1: Trace all lines. This corresponds to the constant TRACE_ALL_LINES.

	
Level 2: Trace lines in enabled program units only. This corresponds to the constant TRACE_ENABLED_LINES.

When tracing lines, Oracle adds a record to the database each time the line number changes. This includes line number changes due to procedure calls and returns.

	
Note:

For all types of tracing, level 1 overrides level 2. For example, if both level 1 and level 2 are enabled, then level 1 takes precedence.

Collected Data

If tracing is requested only for enabled program units, and if the current program unit is not enabled, then no trace data is written.

When tracing calls, both the call and return are traced. The check for whether tracing is "enabled" passes if either the called routine or the calling routine is "enabled".

Call tracing will always output the program unit type, program unit name, and line number for both the caller and the callee. It will output the caller's stack depth. If the caller's unit is enabled, the calling procedure name will also be output. If the callee's unit is enabled, the called procedure name will be output

Exception tracing writes out the line number. Raising the exception shows information on whether the exception is user-defined or pre-defined. It also shows the exception number in the case of pre-defined exceptions. Both the place where the exceptions are raised and their handler is traced. The check for tracing being "enabled" is done independently for the place where the exception is raised and the place where the exception is handled.

All calls to DBMS_TRACE.SET_PLSQL_TRACE and DBMS_TRACE.CLEAR_PLSQL_TRACE place a special trace record in the database. Therefore, it is always possible to determine when trace settings were changed.

Trace Control

As well as determining which items are collected, you can pause and resume the trace process. No information is gathered between the time that tracing is paused and the time that it is resumed. The constants TRACE_PAUSE and TRACE_RESUME are used to accomplish this. Trace records are generated to indicate that the trace was paused/resumed.

It is also possible to retain only the last 8,192 trace events of a run by using the constant TRACE_LIMIT. This allows tracing to be turned on without filling up the database. When tracing stops, the last 8,192 records are saved. The limit is approximate, since it is not checked on every trace record. At least the requested number of trace records will be generated; up to 1,000 additional records may be generated. At least the requested number of trace records will be generated; up to 1,000 additional records may be generated. The 8,192 record limit can be changed. Setting event 10940 to level n changes the record limit to 1024 * n.

Summary of DBMS_TRACE Subprograms

Table 151-2 DBMS_TRACE Package Subprograms

	Subprogram	Description
	
CLEAR_PLSQL_TRACE Procedure

	
Stops trace data dumping in session

	
GET_PLSQL_TRACE_LEVEL Function

	
Gets the trace level

	
PLSQL_TRACE_VERSION Procedure

	
Gets the version number of the trace package

	
SET_PLSQL_TRACE Procedure

	
Starts tracing in the current session

CLEAR_PLSQL_TRACE Procedure

This procedure disables trace data collection.

Syntax

DBMS_TRACE.CLEAR_PLSQL_TRACE;

GET_PLSQL_TRACE_LEVEL Function

This procedure returns the current trace level as a list of the enabled constants.

Syntax

DBMS_TRACE.GET_PLSQL_TRACE_LEVEL
 RETURN BINARY_INTEGER;

PLSQL_TRACE_VERSION Procedure

This procedure gets the version number of the trace package. It returns the major and minor version number of the DBMS_TRACE package.

Syntax

DBMS_TRACE.PLSQL_TRACE_VERSION (
 major OUT BINARY_INTEGER,
 minor OUT BINARY_INTEGER);

Parameters

Table 151-3 PLSQL_TRACE_VERSION Procedure Parameters

	Parameter	Description
	
major

	
Major version number of DBMS_TRACE.

	
minor

	
Minor version number of DBMS_TRACE.

SET_PLSQL_TRACE Procedure

This procedure enables PL/SQL trace data collection.

Syntax

DBMS_TRACE.SET_PLSQL_TRACE (
 trace_level INTEGER);

Parameters

Table 151-4 SET_PLSQL_TRACE Procedure Parameters

	Parameter	Description
	
trace_level

	
You must supply one or more of the constants as listed in Table 151-1, "DBMS_TRACE Constants". By summing the constants, you can enable tracing of multiple PL/SQL language features simultaneously. The control constants "TRACE_PAUSE", "TRACE_RESUME" and "TRACE_STOP" should not be used in combination with other constants

Also see "Collecting Trace Data" for more information.

DBMS_TRANSACTION

152 DBMS_TRANSACTION

The DBMS_TRANSACTION package provides access to SQL transaction statements from stored procedures.

	
See Also:

Oracle Database SQL Language Reference

This chapter contains the following topics:

	
Using DBMS_TRANSACTION

	
Security Model

	
Summary of DBMS_TRANSACTION Subprograms

Using DBMS_TRANSACTION

	
Security Model

Security Model

This package runs with the privileges of calling user, rather than the package owner SYS.

Summary of DBMS_TRANSACTION Subprograms

Table 152-1 DBMS_TRANSACTION Package Subprograms

	Subprogram	Description
	
ADVISE_COMMIT Procedure

	
Equivalent to the SQL statement:

ALTER SESSION ADVISE COMMIT

	
ADVISE_NOTHING Procedure

	
Equivalent to the SQL statement:

ALTER SESSION ADVISE NOTHING

	
ADVISE_ROLLBACK Procedure

	
Equivalent to the SQL statement:

ALTER SESSION ADVISE ROLLBACK

	
COMMIT Procedure

	
Equivalent to the SQL statement:

COMMIT

	
COMMIT_COMMENT Procedure

	
Equivalent to the SQL statement:

COMMIT COMMENT <text>

	
COMMIT_FORCE Procedure

	
Equivalent to the SQL statement:

COMMIT FORCE <text>, <number>"

	
LOCAL_TRANSACTION_ID Function

	
Returns the local (to instance) unique identifier for the current transaction

	
PURGE_LOST_DB_ENTRY Procedure

	
Enables removal of incomplete transactions from the local site when the remote database is destroyed or re-created before recovery completes

	
PURGE_MIXED Procedure

	
Deletes information about a given mixed outcome transaction

	
READ_ONLY Procedure

	
Equivalent to the SQL statement:

SET TRANSACTION READ ONLY

	
READ_WRITE Procedure

	
equivalent to the SQL statement:

SET TRANSACTION READ WRITE

	
ROLLBACK Procedure

	
Equivalent to the SQL statement:

ROLLBACK

	
ROLLBACK_FORCE Procedure

	
Equivalent to the SQL statement:

ROLLBACK FORCE <text>

	
ROLLBACK_SAVEPOINT Procedure

	
Equivalent to the SQL statement:

ROLLBACK TO SAVEPOINT <savepoint_name>

	
SAVEPOINT Procedure

	
Equivalent to the SQL statement:

SAVEPOINT <savepoint_name>

	
STEP_ID Function

	
Returns local (to local transaction) unique positive integer that orders the DML operations of a transaction

	
USE_ROLLBACK_SEGMENT Procedure

	
Equivalent to the SQL statement:

SET TRANSACTION USE ROLLBACK SEGMENT <rb_seg_name>

ADVISE_COMMIT Procedure

This procedure is equivalent to the SQL statement:

ALTER SESSION ADVISE COMMIT

Syntax

DBMS_TRANSACTION.ADVISE_COMMIT;

ADVISE_NOTHING Procedure

This procedure is equivalent to the SQL statement:

ALTER SESSION ADVISE NOTHING

Syntax

DBMS_TRANSACTION.ADVISE_NOTHING;

ADVISE_ROLLBACK Procedure

This procedure is equivalent to the SQL statement:

ALTER SESSION ADVISE ROLLBACK

Syntax

DBMS_TRANSACTION.ADVISE_ROLLBACK;

COMMIT Procedure

This procedure is equivalent to the SQL statement:

COMMIT

This procedure is included for completeness, the functionality being already implemented as part of PL/SQL.

Syntax

DBMS_TRANSACTION.COMMIT;

COMMIT_COMMENT Procedure

This procedure is equivalent to the SQL statement:

COMMIT COMMENT <text>

Syntax

DBMS_TRANSACTION.COMMIT_COMMENT (
 cmnt VARCHAR2);

Parameters

Table 152-2 COMMIT_COMMENT Procedure Parameters

	Parameter	Description
	
cmnt

	
Comment to associate with this commit.

COMMIT_FORCE Procedure

This procedure is equivalent to the SQL statement:

COMMIT FORCE <text>, <number>"

Syntax

DBMS_TRANSACTION.COMMIT_FORCE (
 xid VARCHAR2,
 scn VARCHAR2 DEFAULT NULL);

Parameters

Table 152-3 COMMIT_FORCE Procedure Parameters

	Parameter	Description
	
xid

	
Local or global transaction ID.

	
scn

	
System change number.

LOCAL_TRANSACTION_ID Function

This function returns the local (to instance) unique identifier for the current transaction. It returns null if there is no current transaction.

Syntax

DBMS_TRANSACTION.LOCAL_TRANSACTION_ID (
 create_transaction BOOLEAN := FALSE)
 RETURN VARCHAR2;

Parameters

Table 152-4 LOCAL_TRANSACTION_ID Function Parameters

	Parameter	Description
	
create_transaction

	
If true, then start a transaction if one is not currently active.

PURGE_LOST_DB_ENTRY Procedure

When a failure occurs during commit processing, automatic recovery consistently resolves the results at all sites involved in the transaction. However, if the remote database is destroyed or re-created before recovery completes, then the entries used to control recovery in DBA_2PC_PENDING and associated tables are never removed, and recovery will periodically retry. Procedure PURGE_LOST_DB_ENTRY enables removal of such transactions from the local site.

Syntax

DBMS_TRANSACTION.PURGE_LOST_DB_ENTRY (
 xid VARCHAR2);

Parameters

Table 152-5 PURGE_LOST_DB_ENTRY Procedure Parameters

	Parameter	Description
	
xid

	
Must be set to the value of the LOCAL_TRAN_ID column in the DBA_2PC_PENDING table.

Usage Notes

	
WARNING:

PURGE_LOST_DB_ENTRY should only be used when the other database is lost or has been re-created. Any other use may leave the other database in an unrecoverable or inconsistent state.

Before automatic recovery runs, the transaction may show up in DBA_2PC_PENDING as state "collecting", "committed", or "prepared". If the DBA has forced an in-doubt transaction to have a particular result by using "commit force" or "rollback force", then states "forced commit" or "forced rollback" may also appear. Automatic recovery normally deletes entries in any of these states. The only exception is when recovery finds a forced transaction which is in a state inconsistent with other sites in the transaction; in this case, the entry is left in the table and the MIXED column has the value 'yes'.

However, under certain conditions, it may not be possible for automatic recovery to run. For example, a remote database may have been permanently lost. Even if it is re-created, it gets a new database ID, so that recovery cannot identify it (a possible symptom is ORA-02062). In this case, the DBA may use the procedure PURGE_LOST_DB_ENTRY to clean up the entries in any state other than "prepared". The DBA does not need to be in any particular hurry to resolve these entries, because they are not holding any database resources.

The following table indicates what the various states indicate about the transaction and what the DBA actions should be:

Table 152-6 PURGE_LOST_DB_ENTRY Procedure States

	State of Column	State of Global Transaction	State of Local Transaction	Normal DBA Action	Alternative DBA Action
	
Collecting

	
Rolled back

	
Rolled back

	
None

	
PURGE_LOST_DB_ENTRY (See Note 1)

	
Committed

	
Committed

	
Committed

	
None

	
PURGE_LOST_DB_ENTRY (See Note 1)

	
Prepared

	
Unknown

	
Prepared

	
None

	
FORCE COMMIT or ROLLBACK

	
Forced commit

	
Unknown

	
Committed

	
None

	
PURGE_LOST_DB_ENTRY (See Note 1)

	
Forced rollback

	
Unknown

	
Rolled back

	
None

	
PURGE_LOST_DB_ENTRY (See Note 1)

	
Forced commit (mixed)

	
Mixed

	
Committed

	
(See Note 2)

	

	
Forced rollback (mixed)

	
Mixed

	
Rolled back

	
(See Note 2)

	

	
NOTE 1:

Use only if significant reconfiguration has occurred so that automatic recovery cannot resolve the transaction. Examples are total loss of the remote database, reconfiguration in software resulting in loss of two-phase commit capability, or loss of information from an external transaction coordinator such as a TP monitor.

	
NOTE 2:

Examine and take any manual action to remove inconsistencies; then use the procedure PURGE_MIXED.

PURGE_MIXED Procedure

When in-doubt transactions are forced to commit or rollback (instead of letting automatic recovery resolve their outcomes), there is a possibility that a transaction can have a mixed outcome: Some sites commit, and others rollback. Such inconsistency cannot be resolved automatically by Oracle; however, Oracle flags entries in DBA_2PC_PENDING by setting the MIXED column to a value of 'yes'.

Oracle never automatically deletes information about a mixed outcome transaction. When the application or DBA is certain that all inconsistencies that might have arisen as a result of the mixed transaction have been resolved, this procedure can be used to delete the information about a given mixed outcome transaction.

Syntax

DBMS_TRANSACTION.PURGE_MIXED (
 xid VARCHAR2);

Parameters

Table 152-7 PURGE_MIXED Procedure Parameters

	Parameter	Description
	
xid

	
Must be set to the value of the LOCAL_TRAN_ID column in the DBA_2PC_PENDING table.

READ_ONLY Procedure

This procedure is equivalent to the SQL statement:

SET TRANSACTION READ ONLY

Syntax

DBMS_TRANSACTION.READ_ONLY;

READ_WRITE Procedure

This procedure is equivalent to the SQL statement:

SET TRANSACTION READ WRITE

Syntax

DBMS_TRANSACTION.READ_WRITE;

ROLLBACK Procedure

This procedure is equivalent to the SQL statement:

ROLLBACK

This procedure is included for completeness, the functionality being already implemented as part of PL/SQL.

Syntax

DBMS_TRANSACTION.ROLLBACK;

ROLLBACK_FORCE Procedure

This procedure is equivalent to the SQL statement:

ROLLBACK FORCE <text>

Syntax

DBMS_TRANSACTION.ROLLBACK_FORCE (
 xid VARCHAR2);

Parameters

Table 152-8 ROLLBACK_FORCE Procedure Parameters

	Parameter	Description
	
xid

	
Local or global transaction ID.

ROLLBACK_SAVEPOINT Procedure

This procedure is equivalent to the SQL statement:

ROLLBACK TO SAVEPOINT <savepoint_name>

This procedure is included for completeness, the functionality being already implemented as part of PL/SQL.

Syntax

DBMS_TRANSACTION.ROLLBACK_SAVEPOINT (
 savept VARCHAR2);

Parameters

Table 152-9 ROLLBACK_SAVEPOINT Procedure Parameters

	Parameter	Description
	
savept

	
Savepoint identifier.

SAVEPOINT Procedure

This procedure is equivalent to the SQL statement:

SAVEPOINT <savepoint_name>

This procedure is included for completeness, the feature being already implemented as part of PL/SQL.

Syntax

DBMS_TRANSACTION.SAVEPOINT (
 savept VARCHAR2);

Parameters

Table 152-10 SAVEPOINT Procedure Parameters

	Parameter	Description
	
savept

	
Savepoint identifier.

STEP_ID Function

This function returns local (to local transaction) unique positive integer that orders the DML operations of a transaction.

Syntax

DBMS_TRANSACTION.STEP_ID
 RETURN NUMBER;

USE_ROLLBACK_SEGMENT Procedure

This procedure is equivalent to the SQL statement:

SET TRANSACTION USE ROLLBACK SEGMENT <rb_seg_name>

Syntax

DBMS_TRANSACTION.USE_ROLLBACK_SEGMENT (
 rb_name VARCHAR2);

Parameters

Table 152-11 USE_ROLLBACK_SEGMENT Procedure Parameters

	Parameter	Description
	
rb_name

	
Name of rollback segment to use.

DBMS_TRANSFORM

153 DBMS_TRANSFORM

The DBMS_TRANSFORM package provides an interface to the message format transformation features of Oracle Advanced Queuing.

	
See Also:

Oracle Streams Advanced Queuing User's Guide for more on message format transformations.

This chapter contains the following topic:

	
Summary of DBMS_TRANSFORM Subprograms

Summary of DBMS_TRANSFORM Subprograms

Table 153-1 DBMS_TRANSFORM Package Subprograms

	Subprograms	Description
	
CREATE_TRANSFORMATION Procedure

	
Creates a transformation that maps an object of the source type to an object of the destination type

	
DROP_TRANSFORMATION Procedure

	
Drops the given transformation

	
MODIFY_TRANSFORMATION Procedure

	
Modifies an existing transformation

CREATE_TRANSFORMATION Procedure

This procedure creates a transformation that maps an object of the source type to an object of the target type. The transformation expression can be a SQL expression or a PL/SQL function. It must return an object of the target type.

Syntax

DBMS_TRANSFORM.CREATE_TRANSFORMATION (
 schema VARCHAR2(30),
 name VARCHAR2(30),
 from_schema VARCHAR2(30),
 from_type VARCHAR2(30),
 to_schema VARCHAR2(30),
 to_type VARCHAR2(30),
 transformation VARCHAR2(4000));

Parameters

Table 153-2 CREATE_TRANSFORMATION Procedure Parameters

	Parameter	Description
	
schema

	
Specifies the schema of the transformation.

	
name

	
Specifies the name of the transformation.

	
from_schema

	
Specifies the schema of the source type.

	
from_type

	
Specifies the source type.

	
to_schema

	
Specifies the target type schema.

	
to_type

	
Specifies the target type.

	
transformation

	
Specifies the transformation expression, returning an object of the target type. The expression must be a function returning an object of the target type or a constructor expression for the target type. You can choose not to specify a transformation expression and instead specify transformations for attributes of the target type using MODIFY_TRANSFORMATION.

Usage Notes

	
The transformation expression must be a SQL expression or a PL/SQL function returning the type of the specified attribute of the target type.

	
To create, modify or drop transformations, a user must be granted execute privileges on DBMS_TRANSFORM. The user must also have execute privileges on the user defined types that are the source and destination types of the transformation. In addition, the user must also have execute privileges on any PLSQL function being used in the transformation function.

	
The transformation cannot write database state (perform DML) or commit or rollback the current transaction.

	
The transformation must be a SQL function with source type as input type, returning an object of the target type. It could also be a SQL expression of target type, referring to a source type. All references to the source type must be of the form source.user_data.

	
Both source and target types must be non-scalar database types. A null transformation expression maps to a null target object.

For using the transformation at enqueue and dequeue time, the login user invoking the operation must have execute privileges on the PLSQL functions used by the transformation. For propagation, the owning schema of the queue must have these privileges.

DROP_TRANSFORMATION Procedure

This procedure drops the given transformation.

Syntax

DBMS_TRANSFORM.DROP_TRANSFORMATION (

schema VARCHAR2(30),

 name VARCHAR2(30));

Parameters

Table 153-3 DROP_TRANSFORMATION Procedure Parameters

	Parameter	Description
	
schema

	
Specifies the schema of the transformation.

	
name

	
Specifies the name of the transformation.

MODIFY_TRANSFORMATION Procedure

This procedure modifies the transformation expression for the given transformation.

Syntax

DBMS_TRANSFORM.MODIFY_TRANSFORMATION (
 schema VARCHAR2(30),
 name VARCHAR2(30),
 attribute_number INTEGER,
 transformation VARCHAR2(4000));

Parameters

Table 153-4 MODIFY_TRANSFORMATION Procedure Parameters

	Parameter	Description
	
schema

	
Specifies the schema of the transformation.

	
name

	
Specifies the name of the transformation.

	
attribute_number

	
The attribute of the target type for which the new transformation expression is being specified. When specifying the new transformation as a single expression of the target type, specify a value of 0.

	
transformation

	
The transformation expression must be a SQL expression or a PL/SQL function returning the type of the specified attribute of the target type. If the attribute_number is 0, then the expression must be a PL/SQL function returning an object of the target type or a constructor expression for the target type.

Usage Notes

	
If the new transformation is a single expression of the target type, it may be specified with an attribute_number of 0. The new transformation may also be specified for each attribute of the target type.

	
You can use this procedure to define the transformation as a separate expression for each attribute of the target type. For large transformations, this representation may be more readable and allow the application of fine grain control over the transformation. If the transformation expression was left unspecified for some of the attributes of the target type, they are evaluated to null when the transformation is applied.

DBMS_TTS

154 DBMS_TTS

The DBMS_TTS package checks if the transportable set is self-contained. All violations are inserted into a temporary table that can be selected from the view TRANSPORT_SET_VIOLATIONS.

	
See Also:

	
Oracle Database Administrator's Guide

	
Oracle Database Upgrade Guide

This chapter contains the following topics:

	
Using DBMS_TTS

	
Security Model

	
Exceptions

	
Operational Notes

	
Summary of DBMS_TTS Subprograms

Using DBMS_TTS

	
Security Model

	
Exceptions

	
Operational Notes

Security Model

Only users having the execute_catalog_role can execute this procedure. This role is initially only assigned to user SYS.

Exceptions

ts_not_found EXCEPTION;
PRAGMA exception_init(ts_not_found, -29304);
ts_not_found_num NUMBER := -29304;

invalid_ts_list EXCEPTION;
PRAGMA exception_init(invalid_ts_list, -29346);
invalid_ts_list_num NUMBER := -29346;

sys_or_tmp_ts EXCEPTION;
PRAGMA exception_init(sys_or_tmp_ts, -29351);
sys_or_tmp_ts_num NUMBER := -29351;

Operational Notes

With respect to transportable tablespaces, disabled and enabled referential integrity constraints are handled differently:

	
A disabled referential integrity constraint does not violate the transportability rules and is dropped during the import phase.

	
An enabled referential integrity constraint violates the transportability rules if it references a table in a tablespace outside the transportable set.

Summary of DBMS_TTS Subprograms

These two procedures are designed to be called by database administrators.

Table 154-1 DBMS_TTS Package Subprograms

	Subprogram	Description
	
DOWNGRADE Procedure

	
Downgrades transportable tablespace related data

	
TRANSPORT_SET_CHECK Procedure

	
Checks if a set of tablespaces (to be transported) is self-contained

DOWNGRADE Procedure

This procedure downgrades transportable tablespace related data.

Syntax

DBMS_TTS.DOWNGRADE;

TRANSPORT_SET_CHECK Procedure

This procedure checks if a set of tablespaces (to be transported) is self-contained. After calling this procedure, the user may select from a view to see a list of violations, if there are any.

Syntax

DBMS_TTS.TRANSPORT_SET_CHECK (
 ts_list IN CLOB,
 incl_constraints IN BOOLEAN DEFAULT FALSE,
 full_check IN BOOLEAN DEFAULT FALSE);

Parameters

Table 154-2 TRANSPORT_SET_CHECK Procedure Parameters

	Parameter	Description
	
ts_list

	
List of tablespace, separated by comma.

	
incl_constraints

	
TRUE if you want to count in referential integrity constraints when examining if the set of tablespaces is self-contained. (The incl_constraints parameter is a default so that TRANSPORT_SET_CHECK will work if it is called with only the ts_list argument.)

	
full_check

	
Indicates whether a full or partial dependency check is required. If TRUE, treats all IN and OUT pointers (dependencies) and captures them as violations if they are not self-contained in the transportable set. The parameter should be set to TRUE for TSPITR or if a strict version of transportable is desired. By default the parameter is set to false. It will only consider OUT pointers as violations.

Examples

If the view does not return any rows, then the set of tablespaces is self-contained. For example,

SQLPLUS> EXECUTE DBMS_TTS.TRANSPORT_SET_CHECK('foo,bar', TRUE);
SQLPLUS> SELECT * FROM TRANSPORT_SET_VIOLATIONS;

DBMS_TYPES

155 DBMS_TYPES

The DBMS_TYPES package consists of constants, which represent the built-in and user-defined types.

This chapter contains the following topics:

	
Using DBMS_TYPES

	
Constants

	
Exceptions

Using DBMS_TYPES

	
Constants

	
Exceptions

Constants

The following table lists the constants in the DBMS_TYPES package.

Table 155-1 DBMS_TYPES Constants

	Constant	Description
	
NO_DATA

	
Is only relevant if PieceWise is called, for a collection or anydataset. Denotes the end of collection/anydataset when all the elements have been accessed

	
SUCCESS

	
The operation succeeded

	
TYPECODE_BDOUBLE

	
A NUMBER type

	
TYPECODE_BFILE

	
A BFILE type

	
TYPECODE_BFLOAT

	
A NUMBER type

	
TYPECODE_BLOB

	
A BLOB type

	
TYPECODE_CFILE

	
A CFILE type

	
TYPECODE_CHAR

	
A CHAR type

	
TYPECODE_CLOB

	
A CLOB type

	
TYPECODE_DATE

	
A DATE type

	
TYPECODE_INTERVAL_DS

	
An INTERVAL_DS type

	
TYPECODE_INTERVAL_YM

	
A INTERVAL_YM type

	
TYPECODE_MLSLABEL

	
An MLSLABEL type

	
TYPECODE_NAMEDCOLLECTION

	
A named collection (VARRAY/nested table) type

	
TYPECODE_NCHAR

	
A NCHAR type

	
TYPECODE_NCLOB

	
A NCLOB type

	
TYPECODE_NUMBER

	
A NUMBER type

	
TYPECODE_NVARCHAR2

	
A NVARCHAR2 type

	
TYPECODE_OBJECT

	
An OBJECT type

	
TYPECODE_OPAQUE

	
An OPAQUE type

	
TYPECODE_RAW

	
A RAW type

	
TYPECODE_REF

	
A REF type

	
TYPECODE_TABLE

	
A nested table collection type

	
TYPECODE_TIMESTAMP

	
A TIMESTAMP type

	
TYPECODE_TIMESTAMP_LTZ

	
A TIMESTAMP_LTZ type

	
TYPECODE_TIMESTAMP_TZ

	
A TIMESTAMP_TZ type

	
TYPECODE_UROWID

	
A UROWID type

	
TYPECODE_VARCHAR2

	
A VARCHAR2 type

	
TYPECODE_VARCHAR

	
A VARCHAR type

	
TYPECODE_VARRAY

	
A VARRAY collection type

Exceptions

	
INVALID_PARAMETERS

	
INCORRECT_USAGE

	
TYPE_MISMATCH

DBMS_UTILITY

156 DBMS_UTILITY

The DBMS_UTILITY package provides various utility subprograms.

This chapter contains the following topics:

	
Using DBMS_UTILITY

	
Security Model

	
Constants

	
Exceptions

	
Data Structures

	
Record Types

	
Table Types

	
Summary of DBMS_UTILITY Subprograms

Using DBMS_UTILITY

	
Security Model

	
Constants

	
Exceptions

Security Model

DBMS_UTILITY runs with the privileges of the calling user for the NAME_RESOLVE Procedure and the COMPILE_SCHEMA Procedure. This is necessary so that the SQL works correctly.

The package does not run as SYS. The privileges are checked using DBMS_DDL.

Constants

The DBMS_UTILITY package uses the constants shown in Table 156-1, "DBMS_UTILITY Constants".

Table 156-1 DBMS_UTILITY Constants

	Name	Type	Value	Description
	
INV_ERROR_ON_RESTRICTIONS

	
PLS_INTEGER

	
1

	
This constant is the only legal value for the p_option_flags parameter of the INVALIDATE subprogram

Exceptions

The following table lists the exceptions raised by DBMS_UTILITY.

Table 156-2 Exceptions Raised by DBMS_UTILITY

	Exception	Error Code	Description
	
INV_NOT_EXIST_OR_NO_PRIV

	
-24237

	
Raised by the INVALIDATE subprogram when the object_id argument is NULL or invalid, or when the caller does not have CREATE privileges on the object being invalidated

	
INV_MALFORMED_SETTINGS

	
-24238

	
Raised by the INVALIDATE subprogram if a compiler setting is specified more than once in the p_plsql_object_settings parameter

	
INV_RESTRICTED_OBJECT

	
-24239

	
Raised by the INVALIDATE subprogram when different combinations of conditions pertaining to the p_object_id parameter are contravened

Data Structures

The DBMS_UTILITY package defines a single RECORD type and TABLE types.

Record Types

	
INSTANCE_RECORD Record Type

Table Types

	
DBLINK_ARRAY TABLE Type

	
INDEX_TABLE_TYPE Table Type

	
INSTANCE_TABLE Table Type

	
LNAME_ARRAY Table Type

	
NAME_ARRAY Table Type

	
NUMBER_ARRAY Table Type

	
UNCL_ARRAY Table Type

INSTANCE_RECORD Record Type

This type describes a list of active instance number-name pairs.

Syntax

 TYPE INSTANCE_RECORD IS RECORD (
 inst_number NUMBER,
 inst_name VARCHAR2(60));

Fields

Table 156-3 INSTANCE_RECORD Record Type Fields

	Field	Description
	
inst_number

	
Active instance number

	
inst_name

	
Instance name

DBLINK_ARRAY TABLE Type

This type stores a list of database links.

Syntax

TYPE DBLINK_ARRAY IS TABLE OF VARCHAR2(128) INDEX BY BINARY_INTEGER;

INDEX_TABLE_TYPE Table Type

This type describes the order in which generated objects are returnedto a user.

Syntax

TYPE INDEX_TABLE_TYPE IS TABLE OF BINARY_INTEGER INDEX BY BINARY_INTEGER;

INSTANCE_TABLE Table Type

This type describes a table of INSTANCE_RECORD Record Type.

Syntax

TYPE INSTANCE_TABLE IS TABLE OF INSTANCE_RECORD INDEX BY BINARY_INTEGER;

Usage Notes

The starting index of INSTANCE_TABLE Is 1; INSTANCE_TABLE Is Dense.

LNAME_ARRAY Table Type

This type stores lists of LONG NAME including fully qualified attribute names.

Syntax

TYPE LNAME_ARRAY IS TABLE OF VARCHAR2(4000) INDEX BY BINARY_INTEGER;

NAME_ARRAY Table Type

This type stores lists of NAME.

Syntax

TYPE NAME_ARRAY IS TABLE OF VARCHAR2(30) INDEX BY BINARY_INTEGER;

NUMBER_ARRAY Table Type

This type describes the order in which generated objects are returned to users.

Syntax

TYPE NUMBER_ARRAY IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;

UNCL_ARRAY Table Type

This type stores lists of "user"."name"."column"@link

Syntax

TYPE UNCL_ARRAY IS TABLE OF VARCHAR2(227) INDEX BY BINARY_INTEGER;

Summary of DBMS_UTILITY Subprograms

Table 156-4 DBMS_UTILITY Package Subprograms

	Subprogram	Description
	
ACTIVE_INSTANCES Procedure

	
Returns the active instance

	
ANALYZE_DATABASE Procedure

	
Analyzes all the tables, clusters and indexes in a database

	
ANALYZE_PART_OBJECT Procedure

	
Analyzes the given tables and indexes

	
ANALYZE_SCHEMA Procedure

	
Analyzes all the tables, clusters and indexes in a schema

	
CANONICALIZE Procedure

	
Canonicalizes a given string

	
COMMA_TO_TABLE Procedures

	
Converts a comma-delimited list of names into a PL/SQL table of names

	
COMPILE_SCHEMA Procedure

	
Compiles all procedures, functions, packages, views and triggers in the specified schema

	
CREATE_ALTER_TYPE_ERROR_TABLE Procedure

	
Creates an error table to be used in the EXCEPTION clause of the ALTER TYPE statement

	
CURRENT_INSTANCE Function

	
Returns the current connected instance number

	
DATA_BLOCK_ADDRESS_BLOCK Function

	
Gets the block number part of a data block address

	
DATA_BLOCK_ADDRESS_FILE Function

	
Gets the file number part of a data block address

	
DB_VERSION Procedure

	
Returns version information for the database

	
EXEC_DDL_STATEMENT Procedure

	
Executes the DDL statement in parse_string

	
FORMAT_CALL_STACK Function

	
Formats the current call stack

	
FORMAT_ERROR_BACKTRACE Function

	
Formats the backtrace from the point of the current error to the exception handler where the error has been caught

	
FORMAT_ERROR_STACK Function

	
Formats the current error stack

	
GET_CPU_TIME Function

	
Returns the current CPU time in 100th's of a second

	
GET_DEPENDENCY Procedure

	
Shows the dependencies on the object passed in.

	
GET_ENDIANNESS Function

	
Gets the endianness of the database platform

	
GET_HASH_VALUE Function

	
Computes a hash value for the given string

	
GET_PARAMETER_VALUE Function

	
Gets the value of specified init.ora parameter

	
GET_SQL_HASH Function

	
Computes a hash value for the given string using MD5 algorithm

	
GET_TIME Function

	
Returns the current time in 100th's of a second

	
GET_TZ_TRANSITIONS Procedure

	
Returns timezeone transitions by regionid from the timezone.dat file

	
INVALIDATE Procedure

	
Invalidates a database object and (optionally) modifies its PL/SQL compiler parameter settings

	
IS_BIT_SET Function

	
Checks the bit setting for the given bit in the given RAW value

	
IS_CLUSTER_DATABASE Function

	
Checks if the database is running in cluster database mode

	
MAKE_DATA_BLOCK_ADDRESS Function

	
Creates a data block address given a file number and a block number

	
NAME_RESOLVE Procedure

	
Resolves the given name

	
NAME_TOKENIZE Procedure

	
Calls the parser to parse the given name

	
OLD_CURRENT_SCHEMA Function

	
Returns the session value from SYS_CONTEXT ('USERENV', 'CURRENT_SCHEMA')

	
OLD_CURRENT_USER Function

	
Returns the session value from SYS_CONTEXT ('USERENV', 'CURRENT_USER')

	
PORT_STRING Function

	
Returns a string that uniquely identifies the version of Oracle and the operating system

	
SQLID_TO_SQLHASH Function

	
Converts a SQL ID into a hash value

	
TABLE_TO_COMMA Procedures

	
Converts a PL/SQL table of names into a comma-delimited list of names

	
VALIDATE Procedure

	
Makes invalid database objects valid

	
WAIT_ON_PENDING_DML Function

	
Waits until all transactions (other than the caller's own) that have locks on the listed tables and began prior to the specified SCN have either committed or been rolled back

ACTIVE_INSTANCES Procedure

This procedure returns the active instance.

Syntax

DBMS_UTILITY.ACTIVE_INSTANCES (
 instance_table OUT INSTANCE_TABLE,
 instance_count OUT NUMBER);

Parameters

Table 156-5 ACTIVE_INSTANCES Procedure Parameters

	Procedure	Description
	
instance_table

	
Contains a list of the active instance numbers and names. When no instance is up, the list is empty.

	
instance_count

	
Number of active instances

ANALYZE_DATABASE Procedure

This procedure analyzes all the tables, clusters and indexes in a database.

Syntax

DBMS_UTILITY.ANALYZE_DATABASE (
 method IN VARCHAR2,
 estimate_rows IN NUMBER DEFAULT NULL,
 estimate_percent IN NUMBER DEFAULT NULL,
 method_opt IN VARCHAR2 DEFAULT NULL);

Parameters

Table 156-6 ANALYZE_DATABASE Procedure Parameters

	Parameter	Description
	
method

	
One of ESTIMATE, COMPUTE or DELETE. If ESTIMATE then either estimate_rows or estimate_percent must be nonzero.

	
estimate_rows

	
Number of rows to estimate

	
estimate_percent

	
Percentage of rows to estimate. If estimate_rows is specified ignore this parameter.

	
method_opt

	
Method options of the following format:

[FOR TABLE]

[FOR ALL [INDEXED] COLUMNS] [SIZE n]

[FOR ALL INDEXES]

Exceptions

Ora-20000: Insufficient privileges for some object in this database

ANALYZE_PART_OBJECT Procedure

This procedure is equivalent to SQL:

"ANALYZE TABLE|INDEX [<schema>.]<object_name> PARTITION <pname> [<command_type>] [<command_opt>] [<sample_clause>]

Syntax

DBMS_UTILITY.ANALYZE_PART_OBJECT (
 schema IN VARCHAR2 DEFAULT NULL,
 object_name IN VARCHAR2 DEFAULT NULL,
 object_type IN CHAR DEFAULT 'T',
 command_type IN CHAR DEFAULT 'E',
 command_opt IN VARCHAR2 DEFAULT NULL,
 sample_clause IN VARCHAR2 DEFAULT 'sample 5 percent ');

Parameters

Table 156-7 ANALYZE_PART_OBJECT Procedure Parameters

	Parameter	Description
	
schema

	
Schema of the object_name

	
object_name

	
Name of object to be analyzed, must be partitioned

	
object_type

	
Type of object, must be T (table) or I (index)

	
command_type

	
Must be V (validate structure)

	
command_opt

	
Other options for the command type.

For C, E it can be FOR table, FOR all LOCAL indexes, FOR all columns or combination of some of the 'for' options of analyze statistics (table). For V, it can be CASCADE when object_type is T.

	
sample_clause

	
Sample clause to use when command_type is 'E'

Usage Notes

For each partition of the object, run in parallel using job queues.

ANALYZE_SCHEMA Procedure

This procedure analyzes all the tables, clusters and indexes in a schema.

Syntax

DBMS_UTILITY.ANALYZE_SCHEMA (
 schema IN VARCHAR2,
 method IN VARCHAR2,
 estimate_rows IN NUMBER DEFAULT NULL,
 estimate_percent IN NUMBER DEFAULT NULL,
 method_opt IN VARCHAR2 DEFAULT NULL);

Parameters

Table 156-8 ANALYZE_SCHEMA Procedure Parameters

	Parameter	Description
	
schema

	
Name of the schema

	
method

	
One of ESTIMATE, COMPUTE or DELETE. If ESTIMATE then either estimate_rows or estimate_percent must be nonzero.

	
estimate_rows

	
Number of rows to estimate

	
estimate_percent

	
Percentage of rows to estimate. If estimate_rows is specified ignore this parameter.

	
method_opt

	
Method options of the following format:

[FOR TABLE]

[FOR ALL [INDEXED] COLUMNS] [SIZE n]

[FOR ALL INDEXES]

Exceptions

Ora-20000: Insufficient privileges for some object in this schema

CANONICALIZE Procedure

This procedure canonicalizes the given string. The procedure handles a single reserved or key word (such as 'table'), and strips off white spaces for a single identifier so that ' table ' becomes TABLE.

Syntax

DBMS_UTILITY.CANONICALIZE(
 name IN VARCHAR2,
 canon_name OUT VARCHAR2,
 canon_len IN BINARY_INTEGER);

Parameters

Table 156-9 CANONICALIZE Procedure Parameters

	Parameter	Description
	
name

	
String to be canonicalized

	
canon_name

	
Canonicalized string

	
canon_len

	
Length of the string (in bytes) to canonicalize

Return Values

Returns the first canon_len bytes in canon_name.

Usage Notes

	
If name is NULL, canon_name becomes NULL.

	
If name is not a dotted name, and if name begins and ends with a double quote, remove both quotes. Alternatively, convert to upper case with NLS_UPPER. Note that this case does not include a name with special characters, such as a space, but is not doubly quoted.

	
If name is a dotted name (such as a."b".c), for each component in the dotted name in the case in which the component begins and ends with a double quote, no transformation will be performed on this component. Alternatively, convert to upper case with NLS_UPPER and apply begin and end double quotes to the capitalized form of this component. In such a case, each canonicalized component will be concatenated together in the input position, separated by ".".

	
Any other character after a[.b]* will be ignored.

	
The procedure does not handle cases like 'A B.'

Examples

	
a becomes A

	
"a" becomes a

	
"a".b becomes "a"."B"

	
"a".b,c.f becomes "a"."B" with",c.f" ignored.

COMMA_TO_TABLE Procedures

These procedures converts a comma-delimited list of names into a PL/SQL table of names. The second version supports fully-qualified attribute names.

Syntax

DBMS_UTILITY.COMMA_TO_TABLE (
 list IN VARCHAR2,
 tablen OUT BINARY_INTEGER,
 tab OUT uncl_array);

DBMS_UTILITY.COMMA_TO_TABLE (
 list IN VARCHAR2,
 tablen OUT BINARY_INTEGER,
 tab OUT lname_array);

Parameters

Table 156-10 COMMA_TO_TABLE Procedure Parameters

	Parameter	Description
	
list

	
Comma separated list of list of 'names', where a name should have the following format for the first overloading: a [. b [. c]][@ d]

and the following format for the second overloading: a [. b]*

where a, b, c, d are simple identifiers (quoted or unquoted).

	
tablen

	
Number of tables in the PL/SQL table

	
tab

	
PL/SQL table which contains list of names

Return Values

A PL/SQL table is returned, with values 1..n and n+1 is null.

Usage Notes

	
The list must be a non-empty comma-delimited list: Anything other than a comma-delimited list is rejected. Commas inside double quotes do not count.

	
Entries in the comma-delimited list cannot include multibyte characters.

	
The values in tab are copied from the original list, with no transformations.

	
The procedure fails if the string between separators is longer than 30 bytes.

COMPILE_SCHEMA Procedure

This procedure compiles all procedures, functions, packages, views and triggers in the specified schema.

Syntax

DBMS_UTILITY.COMPILE_SCHEMA (
 schema IN VARCHAR2,
 compile_all IN BOOLEAN DEFAULT TRUE,
 reuse_settings IN BOOLEAN DEFAULT FALSE);

Parameters

Table 156-11 COMPILE_SCHEMA Procedure Parameters

	Parameter	Description
	
schema

	
Name of the schema

	
compile_all

	
If TRUE, will compile everything within the schema regardless of whether it is VALID

If FALSE, will compile only INVALID objects

	
reuse_settings

	
Indicates whether the session settings in the objects should be reused, or whether the current session settings should be adopted instead

Exceptions

Table 156-12 COMPILE_SCHEMA Procedure Exceptions

	Exception	Description
	
ORA-20000

	
Insufficient privileges for some object in this schema

	
ORA-20001

	
Cannot recompile SYS objects

	
ORA-20002

	
Maximum iterations exceeded. Some objects may not have been recompiled.

Usage Notes

	
Note that this subprogram is a wrapper for theRECOMP_SERIAL Procedure included with the UTL_RECOMP package.

	
After calling this procedure, you should select from view ALL_OBJECTS for items with status of INVALID to see if all objects were successfully compiled.

	
To see the errors associated with INVALID objects, you may use the Enterprise Manager command:

SHOW ERRORS <type> <schema>.<name>

CREATE_ALTER_TYPE_ERROR_TABLE Procedure

This procedure creates an error table to be used in the EXCEPTION clause of the ALTER TYPE statement.

Syntax

DBMS_UTILITY.CREATE_ALTER_TYPE_ERROR_TABLE(
 schema_name IN VARCHAR2,
 table_name IN VARCHAR2);

Parameters

Table 156-13 CREATE_ALTER_TYPE_ERROR_TABLE Procedure Parameters

	Parameter	Description
	
schema_name

	
Name of the schema

	
table_name

	
Name of the table created

Exceptions

An error is returned if the table already exists.

CURRENT_INSTANCE Function

This function returns the current connected instance number. It returns NULL when connected instance is down.

Syntax

DBMS_UTILITY.CURRENT_INSTANCE
 RETURN NUMBER;

DATA_BLOCK_ADDRESS_BLOCK Function

This function gets the block number part of a data block address.

Syntax

DBMS_UTILITY.DATA_BLOCK_ADDRESS_BLOCK (
 dba NUMBER)
 RETURN NUMBER;

Parameters

Table 156-14 DATA_BLOCK_ADDRESS_BLOCK Function Parameters

	Parameter	Description
	
dba

	
Data block address

Pragmas

pragma restrict_references(data_block_address_block, WNDS, RNDS, WNPS, RNPS);

Return Values

Block offset of the block.

Usage Notes

This function should not be used with datablocks which belong to bigfile tablespaces.

DATA_BLOCK_ADDRESS_FILE Function

This function gets the file number part of a data block address.

Syntax

DBMS_UTILITY.DATA_BLOCK_ADDRESS_FILE (
 dba NUMBER)
 RETURN NUMBER;

Parameters

Table 156-15 DATA_BLOCK_ADDRESS_FILE Function Parameters

	Parameter	Description
	
dba

	
Data block address

Pragmas

pragma restrict_references (data_block_address_file, WNDS, RNDS, WNPS, RNPS);

Return Values

File that contains the block.

Usage Notes

This function should not be used with datablocks which belong to bigfile tablespaces.

DB_VERSION Procedure

This procedure returns version information for the database.

Syntax

DBMS_UTILITY.DB_VERSION (
 version OUT VARCHAR2,
 compatibility OUT VARCHAR2);

Parameters

Table 156-16 DB_VERSION Procedure Parameters

	Parameter	Description
	
version

	
A string which represents the internal software version of the database (for example, 7.1.0.0.0).

The length of this string is variable and is determined by the database version.

	
compatibility

	
The compatibility setting of the database determined by the "compatible" init.ora parameter.

If the parameter is not specified in the init.ora file, then NULL is returned.

EXEC_DDL_STATEMENT Procedure

This procedure executes the DDL statement in parse_string.

Syntax

DBMS_UTILITY.EXEC_DDL_STATEMENT (
 parse_string IN VARCHAR2);

Parameters

Table 156-17 EXEC_DDL_STATEMENT Procedure Parameters

	Parameter	Description
	
parse_string

	
DDL statement to be executed

FORMAT_CALL_STACK Function

This function formats the current call stack. This can be used on any stored procedure or trigger to access the call stack. This can be useful for debugging.

Syntax

DBMS_UTILITY.FORMAT_CALL_STACK
 RETURN VARCHAR2;

Pragmas

pragma restrict_references(format_call_stack,WNDS);

Return Values

This returns the call stack, up to 2000 bytes.

FORMAT_ERROR_BACKTRACE Function

This procedure displays the call stack at the point where an exception was raised, even if the procedure is called from an exception handler in an outer scope. The output is similar to the output of the SQLERRM function, but not subject to the same size limitation.

Syntax

DBMS_UTILITY.FORMAT_ERROR_BACKTRACE
 RETURN VARCHAR2;

Return Values

The backtrace string. A NULL string is returned if no error is currently being handled.

Examples

CREATE OR REPLACE PROCEDURE Log_Errors (i_buff in varchar2) IS
 g_start_pos integer := 1;
 g_end_pos integer;

 FUNCTION Output_One_Line RETURN BOOLEAN IS
 BEGIN
 g_end_pos := Instr (i_buff, Chr(10), g_start_pos);

 CASE g_end_pos > 0
 WHEN true THEN
 DBMS_OUTPUT.PUT_LINE (Substr (i_buff, g_start_pos,
g_end_pos-g_start_pos));
 g_start_pos := g_end_pos+1;
 RETURN TRUE;

 WHEN FALSE THEN
 DBMS_OUTPUT.PUT_LINE (Substr (i_buff, g_start_pos,
(Length(i_buff)-g_start_pos)+1));
 RETURN FALSE;
 END CASE;
 END Output_One_Line;

BEGIN
 WHILE Output_One_Line() LOOP NULL;
 END LOOP;
END Log_Errors;
/

Set Doc Off
Set Feedback off
Set Echo Off

CREATE OR REPLACE PROCEDURE P0 IS
 e_01476 EXCEPTION; pragma exception_init (e_01476, -1476);
BEGIN
 RAISE e_01476;
END P0;
/
Show Errors

CREATE OR REPLACE PROCEDURE P1 IS
BEGIN
 P0();
END P1;
/
SHOW ERRORS

CREATE OR REPLACE PROCEDURE P2 IS
BEGIN
 P1();
END P2;
/
SHOW ERRORS

CREATE OR REPLACE PROCEDURE P3 IS
BEGIN
 P2();
END P3;
/
SHOW ERRORS

CREATE OR REPLACE PROCEDURE P4 IS
 BEGIN P3(); END P4;
/
CREATE OR REPLACE PROCEDURE P5 IS
 BEGIN P4(); END P5;
/
SHOW ERRORS

CREATE OR REPLACE PROCEDURE Top_Naive IS
BEGIN
 P5();
END Top_Naive;
/
SHOW ERRORS

CREATE OR REPLACE PROCEDURE Top_With_Logging IS
 -- NOTE: SqlErrm in principle gives the same info as Format_Error_Stack.
 -- But SqlErrm is subject to some length limits,
 -- while Format_Error_Stack is not.
BEGIN
 P5();
EXCEPTION
 WHEN OTHERS THEN
 Log_Errors ('Error_Stack...' || Chr(10) ||
 DBMS_UTILITY.FORMAT_ERROR_STACK());
 Log_Errors ('Error_Backtrace...' || Chr(10) ||
 DBMS_UTILITY.FORMAT_ERROR_BACKTRACE());
 DBMS_OUTPUT.PUT_LINE ('----------');
END Top_With_Logging;
/
SHOW ERRORS

--

Set ServerOutput On
call Top_Naive()
 /*
 ERROR at line 1:
 ORA-01476: divisor is equal to zero
 ORA-06512: at "U.P0", line 4
 ORA-06512: at "U.P1", line 3
 ORA-06512: at "U.P2", line 3
 ORA-06512: at "U.P3", line 3
 ORA-06512: at "U.P4", line 2
 ORA-06512: at "U.P5", line 2
 ORA-06512: at "U.TOP_NAIVE", line 3
 */
 ;

Set ServerOutput On
call Top_With_Logging()
 /*
 Error_Stack...
 ORA-01476: divisor is equal to zero
 Error_Backtrace...
 ORA-06512: at "U.P0", line 4
 ORA-06512: at "U.P1", line 3
 ORA-06512: at "U.P2", line 3
 ORA-06512: at "U.P3", line 3
 ORA-06512: at "U.P4", line 2
 ORA-06512: at "U.P5", line 2
 ORA-06512: at "U.TOP_WITH_LOGGING", line 6

 */
 ;

/*
 ORA-06512:
 Cause:
 Backtrace message as the stack is
 unwound by unhandled exceptions.
 Action:
 Fix the problem causing the exception
 or write an exception handler for this condition.
 Or you may need to contact your application administrator
 or database administrator.
*/

FORMAT_ERROR_STACK Function

This function formats the current error stack. This can be used in exception handlers to look at the full error stack.

Syntax

DBMS_UTILITY.FORMAT_ERROR_STACK
 RETURN VARCHAR2;

Return Values

This returns the error stack, up to 2000 bytes.

GET_CPU_TIME Function

This function returns a measure of current CPU processing time in hundredths of a second. The difference between the times returned from two calls measures the CPU processing time (not the total elapsed time) between those two points.

Syntax

 DBMS_UTILITY.GET_CPU_TIME
 RETURN NUMBER;

Return Values

Time is the number of 100th's of a second from some arbitrary epoch.

Usage Notes

The amount of work performed is calculated by measuring the difference between a start point and end point for a particular operation.

GET_DEPENDENCY Procedure

This procedure shows the dependencies on the object passed in.

Syntax

 DBMS_UTILITY.GET_DEPENDENCY
 type IN VARCHAR2,
 schema IN VARCHAR2,
 name IN VARCHAR2);

Parameters

Table 156-18 GET_DEPENDENCY Procedure Parameters

	Parameter	Description
	
type

	
Type of the object, for example if the object is a table give the type as 'TABLE'

	
schema

	
Schema name of the object

	
name

	
Name of the object

Usage Notes

This procedure uses the DBMS_OUTPUTpackage to display results, and so you must declare SET SERVEROUTPUT ON if you wish to view dependencies. Alternatively, any application that checks the DBMS_OUTPUT output buffers can invoke this subprogram and then retrieve the output by means of DBMS_OUTPUT subprograms such as GET_LINES.

GET_ENDIANNESS Function

This Function Gets The Endianness Of The Database Platform.

Syntax

 DBMS_UTILITY.GET_ENDIANNESS
 Return Number;

Return Values

The endianness of the database platform.

GET_HASH_VALUE Function

This function computes a hash value for the given string.

Syntax

DBMS_UTILITY.GET_HASH_VALUE (
 name VARCHAR2,
 base NUMBER,
 hash_size NUMBER)
 RETURN NUMBER;

Parameters

Table 156-19 GET_HASH_VALUE Function Parameters

	Parameter	Description
	
name

	
String to be hashed.

	
base

	
Base value for the returned hash value at which to start

	
hash_size

	
Desired size of the hash table

Pragmas

pragma restrict_references(get_hash_value, WNDS, RNDS, WNPS, RNPS);

Return Values

A hash value based on the input string. For example, to get a hash value on a string where the hash value should be between 1000 and 3047, use 1000 as the base value and 2048 as the hash_size value. Using a power of 2 for the hash_size parameter works best.

GET_PARAMETER_VALUE Function

This function gets the value of specified init.ora parameter.

Syntax

DBMS_UTILITY.GET_PARAMETER_VALUE (
 parnam IN VARCHAR2,
 intval IN OUT BINARY_INTEGER,
 strval IN OUT VARCHAR2,
 listno IN BINARY_INTEGER DEFAULT 1)
 RETURN BINARY_INTEGER;

Parameters

Table 156-20 GET_PARAMETER_VALUE Function Parameters

	Parameter	Description
	
parnam

	
Parameter name

	
intval

	
Value of an integer parameter or the value length of a string parameter

	
strval

	
Value of a string parameter

	
listno

	
List item number. If retrieving parameter values for a parameter that can be specified multiple times to accumulate values, use this parameter to get each individual parameter.

Return Values

Parameter type:

	
0 if parameter is an INTEGER/BOOLEAN parameter

	
1 if parameter is a string/file parameter

Usage Notes

When using DBMS_UTILITY.GET_PARAMETER_VALUE, only the first parameter setting of /dir1 is returned when init.ora is set as follows:

utl_file_dir = /dir1
utl_file_dir = /dir2

However, the full comma-delimited string is returned if you are using:

utl_file_dir = /dir1, /dir2

Examples

DECLARE
 parnam VARCHAR2(256);
 intval BINARY_INTEGER;
 strval VARCHAR2(256);
 partyp BINARY_INTEGER;
BEGIN
 partyp := dbms_utility.get_parameter_value('max_dump_file_size',
 intval, strval);
 dbms_output.put('parameter value is: ');
 IF partyp = 1 THEN
 dbms_output.put_line(strval);
 ELSE
 dbms_output.put_line(intval);
 END IF;
 IF partyp = 1 THEN
 dbms_output.put('parameter value length is: ');
 dbms_output.put_line(intval);
 END IF;
 dbms_output.put('parameter type is: ');
 IF partyp = 1 THEN
 dbms_output.put_line('string');
 ELSE
 dbms_output.put_line('integer');
 END IF;
END;

GET_SQL_HASH Function

This function computes a hash value for the given string using MD5 algorithm.

Syntax

Dbms_utility.get_sql_hash (
 name IN VARCHAR2,
 hash OUT RAW,
 pre10ihash OUT NUMBER)
 RETURN NUMBER;

Pragmas

Pragma Restrict_references(Get_sql_hash, Wnds, Rnds, Wnps, Rnps);

Parameters

Table 156-21 GET_SQL_HASH Procedure Parameters

	Parameter	Description
	
name

	
String to be hashed

	
hash

	
Optional field to store all 16 bytes of returned hash value

	
pre10ihash

	
Optional field to store the pre 10i database version hash value

Return Values

A hash value (last 4 bytes) based on the input string. the MD5 hash algorithm computes a 16 byte hash value, but we only return the last 4 bytes so that we can return an actual number. one could use an optional raw parameter to get all 16 bytes and to store the pre 10i hash value of 4 bytes in the pre10i hash optional parameter.

GET_TIME Function

This function returns the current time in 100th's of a second. This subprogram is primarily used for determining elapsed time. The subprogram is called twice – at the beginning and end of some process – and then the first (earlier) number is subtracted from the second (later) number to determine the time elapsed.

Syntax

DBMS_UTILITY.GET_TIME
 RETURN NUMBER;

Return Values

Time is the number of 100th's of a second from the point in time at which the subprogram is invoked.

Usage Notes

Numbers are returned in the range -2147483648 to 2147483647 depending on platform and machine, and your application must take the sign of the number into account in determining the interval. For instance, in the case of two negative numbers, application logic must allow that the first (earlier) number will be larger than the second (later) number which is closer to zero. By the same token, your application should also allow that the first (earlier) number be negative and the second (later) number be positive.

GET_TZ_TRANSITIONS Procedure

This proceedure returns timezeone transitions by regionid from the timezone.dat file.

Syntax

DBMS_UTILITY.GET_TZ_TRANSITIONS
 regionid IN NUMBER,
 transitions OUT MAXRAW);

Parameters

Table 156-22 GET_TZ_TRANSITIONS Procedure Parameters

	Parameter	Description
	
regionid

	
Number corresponding to the region

	
transitions

	
Raw bytes from the timezone.dat file

Exceptions

Table 156-23 GET_TZ_TRANSITIONS Procedure Exceptions

	Exception	Description
	
ORA-6502: PL/SQL: NUMERIC OR VALUE ERROR

	
For an invalid regionid

INVALIDATE Procedure

This procedure invalidates a database object and (optionally) modifies its PL/SQL compiler parameter settings. It also invalidates any objects that (directly or indirectly) depend on the object being invalidated.

Syntax

DBMS_UTILITY.INVALIDATE (
 p_object_id NUMBER,
 p_plsql_object_settings VARCHAR2 DEFAULT NULL,
 p_option_flags PLS_INTEGER DEFAULT 0);

Parameters

Table 156-24 INVALIDATE Procedure Parameters

	Parameter	Description
	
p_object_id

	
ID number of object to be invalidated. This is the same as the value of the OBJECT_ID column from ALL_OBJECTS. If the object_id argument is NULL or invalid then the exception inv_not_exist_or_no_priv is raised. The caller of this procedure must have create privileges on the object being invalidated else the inv_not_exist_or_no_priv exception is raised.

	
p_plsql_object_settings

	
Optional parameter that ignored if the object specified by p_object_id is not a PL/SQL object. If no value is specified for this parameter then the PL/SQL compiler settings are left unchanged, that is, equivalent to REUSE SETTINGS. If a value is provided, it must specify the values of the PL/SQL compiler settings separated by one or more spaces. Each setting can be specified only once else inv_malformed_settings exception will be raised. The setting values are changed only for the object specified by p_object_id and do not affect dependent objects that may be invalidated. The setting names and values are case insensitive. If a setting is omitted and REUSE SETTINGS is specified, then if a value was specified for the compiler setting in an earlier compilation of this library unit, Oracle Database uses that earlier value. If a setting is omitted and REUSE SETTINGS was not specified or no value has been specified for the parameter in an earlier compilation, then the database will obtain the value for that setting from the session environment.

	
p_option_flags

	
Optional parameter defaults to zero (no flags). Option flags supported by invalidate.

	
inv_error_on_restrictions (see Constants): The subprogram imposes various restrictions on the objects that can be invalidated. For example, the object specified by p_object_id cannot be a table. By default, invalidate quietly returns on these conditions (and does not raise an exception). If the caller sets this flag, the exception inv_restricted_object is raised.

Exceptions

Table 156-25 INVALIDATE Procedure Exceptions

	Exception	Description
	
INV_NOT_EXIST_OR_NO_PRIV

	
Raised when the object_id argument is NULL or invalid, or when the caller does not have CREATE privileges on the object being invalidated

	
INV_MALFORMED_SETTINGS

	
Raised if a compiler setting is specified more than once in the p_plsql_object_settings parameter

	
INV_RESTRICTED_OBJECT

	
Raised when different combinations of conditions pertaining to the p_object_id parameter are contravened

Usage Notes

The object type (object_type column from ALL_OBJECTS) of the object specified by p_object_id must be a PROCEDURE, FUNCTION, PACKAGE, PACKAGE BODY, TRIGGER, TYPE, TYPE BODY, LIBRARY, VIEW, OPERATOR, SYNONYM, or JAVA CLASS. If the object is not one of these types and the flag inv_error_on_restrictions is specified in p_option_flags then the exception inv_restricted_object is raised, else no action is taken.

If the object specified by p_object_id is the package specification of STANDARD, DBMS_STANDARD, or specification or body of DBMS_UTILITY and the flag inv_error_on_restrictions is specified in p_option_flags then the exception inv_restricted_object is raised, else no action is taken.

If the object specified by p_object_id is an object type specification and there exist tables which depend on the type and the flag inv_error_on_restrictions is specified in p_option_flags then the exception inv_restricted_object is raised, else no action is taken.

Examples

Example 1

DBMS_UTILITY.INVALIDATE (1232, 'PLSQL_OPTIMIZE_LEVEL = 2 REUSE SETTINGS');

Assume that the object_id 1232 refers to the procedure remove_emp in the HR schema. Then the above call will mark the remove_emp procedure invalid and change it's PLSQL_OPTIMIZE_LEVEL compiler setting to 2. The values of other compiler settings will remain unchanged since REUSE SETTINGS is specified.

Objects that depend on hr.remove_emp will also get marked invalid. Their compiler parameters will not be changed.

Example 2

DBMS_UTILITY.INVALIDATE (40775, 'plsql_code_type = native');

Assume that the object_id 40775 refers to the type body leaf_category_typ in the OE schema. Then the above call will mark the type body invalid and change its PLSQL_CODE_TYPE compiler setting to NATIVE. The values of other compiler settings will be picked up from the current session environment since REUSE SETTINGS has not been specified.

Since no objects can depend on bodies, there are no cascaded invalidations.

Example 3

DBMS_UTILITY.INVALIDATE (40796);

Assume that the object_id 40796 refers to the view oc_orders in the OE schema. Then the above call will mark the oc_orders view invalid.

Objects that depend on oe.oc_orders will also get marked invalid.

IS_BIT_SET Function

This function checks the bit setting for the given bit in the given RAW value.

Syntax

DBMS_UTILITY.IS_BIT_SET (
 r IN RAW, n IN NUMBER)
 RETURN NUMBER;

Parameters

Table 156-26 IS_BET_SET Function Parameters

	Parameter	Description
	
r

	
RAW source

	
n

	
Bit in r to check

Return Values

This function returns 1 if bit n in raw r is set, zero otherwise. Bits are numbered high to low with the lowest bit being bit number 1.

IS_CLUSTER_DATABASE Function

This function finds out if this database is running in cluster database mode.

Syntax

DBMS_UTILITY.IS_CLUSTER_DATABASE
 RETURN BOOLEAN;

Return Values

This function returns TRUE if this instance was started in cluster database mode; FALSE otherwise.

MAKE_DATA_BLOCK_ADDRESS Function

This function creates a data block address given a file number and a block number. A data block address is the internal structure used to identify a block in the database. This function is useful when accessing certain fixed tables that contain data block addresses.

Syntax

DBMS_UTILITY.MAKE_DATA_BLOCK_ADDRESS (
 file NUMBER,
 block NUMBER)
 RETURN NUMBER;

Parameters

Table 156-27 MAKE_DATA_BLOCK_ADDRESS Function Parameters

	Parameter	Description
	
file

	
File that contains the block

	
block

	
Offset of the block within the file in terms of block increments

Pragmas

pragma restrict_references (make_data_block_address, WNDS, RNDS, WNPS, RNPS);

Return Values

Data block address.

NAME_RESOLVE Procedure

This procedure resolves the given name, including synonym translation and authorization checking as necessary.

Syntax

DBMS_UTILITY.NAME_RESOLVE (
 name IN VARCHAR2,
 context IN NUMBER,
 schema OUT VARCHAR2,
 part1 OUT VARCHAR2,
 part2 OUT VARCHAR2,
 dblink OUT VARCHAR2,
 part1_type OUT NUMBER,
 object_number OUT NUMBER);

Parameters

Table 156-28 NAME_RESOLVE Procedure Parameters

	Parameter	Description
	
name

	
Name of the object.

This can be of the form [[a.]b.]c[@d], where a, b, c are SQL identifier and d is a dblink. No syntax checking is performed on the dblink. If a dblink is specified, or if the name resolves to something with a dblink, then object is not resolved, but the schema, part1, part2 and dblink OUT parameters are filled in.

a, b and c may be delimited identifiers, and may contain Globalization Support (NLS) characters (single and multibyte).

	
context

	
Must be an integer between 0 and 9.

	
0 - table

	
1 - PL/SQL (for 2 part names)

	
2 - sequences

	
3 - trigger

	
4 - Java Source

	
5 - Java resource

	
6 - Java class

	
7 - type

	
8 - Java shared data

	
9 - index

	
schema

	
Schema of the object: c. If no schema is specified in name, then the schema is determined by resolving the name.

	
part1

	
First part of the name. The type of this name is specified part1_type (synonym or package).

	
part2

	
If this is non-NULL, then this is a subprogram name. If part1 is non-NULL, then the subprogram is within the package indicated by part1. If part1 is NULL, then the subprogram is a top-level subprogram.

	
dblink

	
If this is non-NULL, then a database link was either specified as part of name or name was a synonym which resolved to something with a database link. In this case, if further name translation is desired, then you must call the DBMS_UTILITY.NAME_RESOLVE procedure on this remote node.

	
part1_type

	
Type of part1 is:

	
5 - synonym

	
7 - procedure (top level)

	
8 - function (top level)

	
9 - package

	
object_number

	
Object identifier

Exceptions

All errors are handled by raising exceptions. A wide variety of exceptions are possible, based on the various syntax error that are possible when specifying object names.

NAME_TOKENIZE Procedure

This procedure calls the parser to parse the given name as "a [. b [. c]][@ dblink]". It strips double quotes, or converts to uppercase if there are no quotes. It ignores comments of all sorts, and does no semantic analysis. Missing values are left as NULL.

Syntax

DBMS_UTILITY.NAME_TOKENIZE (
 name IN VARCHAR2,
 a OUT VARCHAR2,
 b OUT VARCHAR2,
 c OUT VARCHAR2,
 dblink OUT VARCHAR2,
 nextpos OUT BINARY_INTEGER);

Parameters

Table 156-29 NAME_RESOLVE Procedure Parameters

	Parameter	Description
	
name

	
Input name, consisting of SQL identifiers (for example, scott.foo@dblink)

	
a

	
Output for the first token of the name

	
b

	
Output for the second token of the name (if applicable)

	
c

	
Output for the third token of the name (if applicable)

	
dblink

	
Output for the dblink of the name

	
nextpos

	
Next position after parsing the input name

OLD_CURRENT_SCHEMA Function

This function returns the session value from sys_context ('userenv', 'current_schema').

Syntax

DBMS_UTILITY.OLD_CURRENT_SCHEMA
 RETURN VARCHAR2;

OLD_CURRENT_USER Function

This function returns the session value from sys_context ('userenv', 'current_user').

Syntax

DBMS_UTILITY.OLD_CURRENT_USER
 RETURN VARCHAR2;

PORT_STRING Function

This function returns a string that identifies the operating system and the TWO TASK PROTOCOL version of the database. For example, "VAX/VMX-7.1.0.0"

The maximum length is port-specific.

Syntax

DBMS_UTILITY.PORT_STRING
 RETURN VARCHAR2;

Pragmas

pragma restrict_references(port_string, WNDS, RNDS, WNPS, RNPS);

SQLID_TO_SQLHASH Function

This function converts a SQL ID into a hash value.

Syntax

DBMS_UTILITY.SQLID_TO_SQLHASH (
 sql_id IN VARCHAR2)
 RETURN NUMBER;

Parameters

Table 156-30 SQLID_TO_SQLHASH Function Parameters

	Parameter	Description
	
sql_id

	
SQL ID of a SQL statement. Must be VARCHAR2(13).

TABLE_TO_COMMA Procedures

These procedures converts a PL/SQL table of names into a comma-delimited list of names. This takes a PL/SQL table, 1..n, terminated with n+1 null. The second version supports fully-qualified attribute names.

Syntax

DBMS_UTILITY.TABLE_TO_COMMA (
 tab IN UNCL_ARRAY,
 tablen OUT BINARY_INTEGER,
 list OUT VARCHAR2);

DBMS_UTILITY.TABLE_TO_COMMA (
 tab IN lname_array,
 tablen OUT BINARY_INTEGER,
 list OUT VARCHAR2);

Parameters

Table 156-31 TABLE_TO_COMMA Procedure Parameters

	Parameter	Description
	
tab

	
PL/SQL table which contains list of table names

	
tablen

	
Number of tables in the PL/SQL table

	
list

	
Comma separated list of tables

Return Values

A comma-delimited list and the number of elements found in the table.

VALIDATE Procedure

This procedure makes invalid database objects valid.

Syntax

DBMS_UTILITY.VALIDATE(
 object_id NUMBER);

DBMS_UTILITY.VALIDATE(
 owner VARCHAR2,
 objname VARCHAR2,
 namespace NUMBER, edition_name := SYS_CONTEXT ('USERENV', 'CURRENT_EDITION'));

Parameters

Table 156-32 VALIDATE Procedure Parameters

	Parameter	Description
	
owner

	
Name of the user who owns the object. Same as the OWNER field in ALL_OBJECTS.

	
objname

	
Name of the object to be validated. Same as the OBJECT_NAME field in ALL_OBJECTS.

	
namespace

	
Namespace of the object. Same as the namespace field in obj$. Equivalent numeric values are as follows:

	
1 = TABLE/PROCEDURE/TYPE

	
2 = BODY

	
3 = TRIGGER

	
4 = INDEX

	
5 = CLUSTER

	
8 = LOB

	
9 = DIRECTORY

	
10 = QUEUE

	
11 = REPLICATION OBJECT GROUP

	
12 = REPLICATION PROPAGATOR

	
13 = JAVA SOURCE

	
14 = JAVA RESOURCE

	
58 = (Data Mining) MODEL

	
edition_name

	
[Note: Currently not operable. Reserved for future use]

Usage Notes

	
No errors are raised if the object does not exist or is already valid or is an object that cannot be validated.

	
If the object being validated is not actual in the specified edition, the subprogram automatically switches into the edition in which the object is actual prior to validation. That is, a call to VALIDATE will not actualize the object in the specified edition.

	
The INVALIDATE Procedure invalidates a database object and optionally changes its PL/SQL compiler parameter settings. The object to be invalidated is specified by its object_id. The subprogram automatically switches to the edition in which the object is actual prior to invalidation. That is, a call to INVALIDATE will not actualize the object in the current edition.

WAIT_ON_PENDING_DML Function

This procedure waits until all transactions (other than the caller's own) that have locks on the listed tables and began prior to the specified scn have either committed or been rolled back.

Syntax

DBMS_UTILITY.WAIT_ON_PENDING_DML (
 tables IN VARCHAR2,
 timeout IN BINARY_INTEGER,
 scn IN OUT NUMBER)
 RETURN BOOLEAN;

Parameters

Table 156-33 WAIT_ON_PENDING_DML Function Parameters

	Parameter	Description
	
tables

	
Comma-separated list of one or more table names. The list must be valid for COMMA_TO_TABLE Procedures, and each item valid to the NAME_RESOLVE Procedure. Neither column specifiers nor DBLINK (database link) specifiers are allowed in the names, and each name must resolve to an existing table in the local database.

	
timeout

	
Maximum number of seconds to wait, totalled across all tables/transactions. A NULL or negative value will cause a very long wait.

	
scn

	
SCN prior to which transactions must have begun to be considered relevant to this request. If the value is NULL or not recognized as a meaningful scn on input, the most current SCN across all instances will be used and will be set into the passed argument as an output. If a meaningful value is passed in, its value will be preserved in the output.

Return Values

TRUE if all relevant transactions have committed or been rolled back, FALSE if the timeout occurred prior to all relevant transactions committing or being rolled back

DBMS_WARNING

157 DBMS_WARNING

The DBMS_WARNING package provides a way to manipulate the behavior of PL/SQL warning messages, in particular by reading and changing the setting of the PLSQL_WARNINGS initialization parameter to control what kinds of warnings are suppressed, displayed, or treated as errors. This package provides the interface to query, modify and delete current system or session settings.

This chapter contains the following topics:

	
Using DBMS_WARNING

	
Security Model

	
Summary of DBMS_WARNING Subprograms

Using DBMS_WARNING

	
Security Model

Security Model

Note that for all the following interfaces, if value of the scope parameter is SYSTEM, then the user must have ALTER SYSTEM privilege.

Summary of DBMS_WARNING Subprograms

Table 157-1 DBMS_WARNING Package Subprograms

	Subprogram	Description
	
ADD_WARNING_SETTING_CAT Procedure

	
Modifies the current session or system warning settings of the warning_category previously supplied

	
ADD_WARNING_SETTING_NUM Procedure

	
Modifies the current session or system warning settings of the or warning_number previously supplied

	
GET_CATEGORY Function

	
Returns the category name, given the message number

	
GET_WARNING_SETTING_CAT Function

	
Returns the specific warning category in the session

	
GET_WARNING_SETTING_NUM Function

	
Returns the specific warning number in the session

	
GET_WARNING_SETTING_STRING Function

	
Returns the entire warning string for the current session

	
SET_WARNING_SETTING_STRING Procedure

	
Replaces previous settings with the new value

ADD_WARNING_SETTING_CAT Procedure

You can modify the current session's or system's warning settings with the value supplied. The value will be added to the existing parameter setting if the value for the warning_category or warning_value has not been set, or override the existing value. The effect of calling this function is same as adding the qualifier (ENABLE/DISABLE/ERROR) on the category specified to the end of the current session or system setting.

Syntax

DBMS_WARNING.ADD_WARNING_SETTING_CAT (
 warning_category IN VARCHAR2,
 warning_value IN VARCHAR2,
 scope IN VARCHAR2);

Parameters

Table 157-2 ADD_WARNING_SETTING_CAT Procedure Parameters

	Parameter	Description
	
warning_category

	
Name of the category. Allowed values are ALL, INFORMATIONAL, SEVERE and PERFORMANCE.

	
warning_value

	
Value for the category. Allowed values are ENABLE, DISABLE, and ERROR.

	
scope

	
Specifies if the changes are being performed in the session context or the system context. Allowed values are SESSION or SYSTEM.

ADD_WARNING_SETTING_NUM Procedure

You can modify the current session or system warning settings with the value supplied. If the value was already set, you will override the existing value. The effect of calling this function is same as adding the qualifier (ENABLE / DISABLE/ ERROR) on the category specified to the end of the current session or system setting.

Syntax

DBMS_WARNING.ADD_WARNING_SETTING_NUM (
 warning_number IN NUMBER,
 warning_value IN VARCHAR2,
 scope IN VARCHAR2);

Parameters

Table 157-3 ADD_WARNING_SETTING_NUM Procedure Parameters

	Parameter	Description
	
warning_number

	
The warning number. Allowed values are all valid warning numbers.

	
warning_value

	
Value for the category. Allowed values are ENABLE, DISABLE, and ERROR.

	
scope

	
Specifies if the changes are being performed in the session context or the system context. Allowed values are SESSION or SYSTEM.

GET_CATEGORY Function

This function returns the category name, given the message number.

Syntax

DBMS_WARNING.GET_CATEGORY (
 warning_number IN pls_integer)
RETURN VARCHAR2;

Parameters

Table 157-4 GET_CATEGORY Function Parameters

	Parameter	Description
	
warning_number

	
The warning message number.

GET_WARNING_SETTING_CAT Function

This function returns the specific warning category setting for the current session.

Syntax

DBMS_WARNING.GET_WARNING_SETTING_CAT (
 warning_category IN VARCHAR2)
RETURN warning_value;

Parameters

Table 157-5 GET_WARNING_SETTING_CAT Function Parameters

	Parameter	Description
	
warning_category

	
Name of the category. Allowed values are all valid category names (ALL, INFORMATIONAL, SEVERE and PERFORMANCE).

GET_WARNING_SETTING_NUM Function

This function returns the specific warning number setting for the current session.

Syntax

DBMS_WARNING.GET_WARNING_SETTING_NUM (
 warning_number IN NUMBER)
RETURN warning_value;

Parameters

Table 157-6 GET_WARNING_SETTING_NUM Function Parameters

	Parameter	Description
	
warning_number

	
Warning number. Allowed values are all valid warning numbers.

GET_WARNING_SETTING_STRING Function

This function returns the entire warning string for the current session.

Syntax

DBMS_WARNING.GET_WARNING_SETTING_STRING
 RETURN pls_integer;

Usage Notes

Use this function when you do not have SELECT privilege on v$parameter or v$paramater2 fixed tables, or if you want to parse the warning string yourself and then modify and set the new value using SET_WARNING_SETTING_STRING.

SET_WARNING_SETTING_STRING Procedure

This procedureS replaces previous settings with the new value. The warning string may contain mix of category and warning numbers using the same syntax as used on the right hand side of '=' when issuing an ALTER SESSION or SYSTEM SET PLSQL_WARNINGS command. This will have same effect as ALTER SESSION OR ALTER SYSTEM command.

Syntax

DBMS_WARNING.SET_WARNING_SETTING_STRING (
 warning_value IN VARCHAR2,
 scope IN VARCHAR2);

Parameters

Table 157-7 SET_WARNING_SETTING_STRING Procedure Parameters

	Parameter	Description
	
warning_value

	
The new string that will constitute the new value.

	
scope

	
This will specify if the changes are being done in the session context, or system context. Allowed values are SESSION or SYSTEM.

DBMS_WM

158 DBMS_WM

The DBMS_WM package provides an interface to Oracle Database Workspace Manager (often referred to as Workspace Manager).

	
Documentation of DBMS_WM

Documentation of DBMS_WM

For a complete description of this package, see DBMS_WM in Oracle Database Workspace Manager Developer's Guide.

DBMS_WORKLOAD_CAPTURE

159 DBMS_WORKLOAD_CAPTURE

The DBMS_WORKLOAD_CAPTURE package configures the Workload Capture system and produce the workload capture data. Replay of this capture is implemented by way of the DBMS_WORKLOAD_REPLAY package.

	
See Also:

Oracle Database Real Application Testing User's Guide for more information about Database Replay

This chapter contains the following topics:

	
Using DBMS_WORKLOAD_CAPTURE

	
Overview

	
Security Model

	
Summary of DBMS_WORKLOAD_CAPTURE Subprograms

Using DBMS_WORKLOAD_CAPTURE

	
Overview

	
Security Model

Overview

Since the capture infrastructure is instance wide (and also within an Oracle Real Application Clusters (Oracle RAC)), only one workload capture is being produced at any point in time. Thus capture interfaces do not need a state object passed in as a parameter since there is one single state at any point in time. This means that all subprograms cannot be methods of an object but are package wide PL/SQL subprograms.

Security Model

The following code describes the minimal set of privileges required to:

	
Create directory objects

	
Operate the interface provided by the DBMS_WORKLOAD_CAPTURE and DBMS_WORKLOAD_REPLAY packages

	
Act as a replay client user (wrc someuser/somepassword or wrc USER=someuser PASSWORD=somepassword)

DROP USER rom1 CASCADE;
CREATE USER rom1 IDENTIFIED BY rom1;

GRANT EXECUTE ON DBMS_WORKLOAD_CAPTURE TO rom1;
GRANT EXECUTE ON DBMS_WORKLOAD_REPLAY TO rom1;

GRANT CREATE SESSION TO rom1;
GRANT CREATE ANY DIRECTORY TO rom1;
GRANT SELECT_CATALOG_ROLE TO rom1;
GRANT BECOME USER TO rom1;

Appropriate OS permissions are required to access and manipulate files and directories on both the capture and replay system. This means that the Oracle process(es) and the OS user performing the capture or replay must be able to access and manipulate at least one common directory accessible from the host where the instance is running. Additionally, the OS user performing the replay should be able to execute wrc on hosts that are used for the replay clients and be able to access the file system appropriately to copy the capture to the replay clients' hosts if required.

Summary of DBMS_WORKLOAD_CAPTURE Subprograms

This table list the package subprograms in alphabetical order.

Table 159-1 DBMS_WORKLOAD_CAPTURE Package Subprograms

	Subprogram	Description
	
ADD_FILTER Procedures

	
Adds a specified filter

	
DELETE_CAPTURE_INFO Procedure

	
Deletes the rows in the DBA_WORKLOAD_CAPTURES and DBA_WORKLOAD_FILTERS views that corresponds to the given workload capture ID

	
DELETE_FILTER Procedure

	
Deletes a specified filter

	
EXPORT_AWR Procedure

	
Exports the AWR snapshots associated with a given capture ID

	
FINISH_CAPTURE Procedure

	
Finalizes the workload capture by signaling all connected sessions to stop capture, and stops future requests to the database from being captured

	
GET_CAPTURE_INFO Function

	
Retrieves all the information regarding a workload capture present in the stipulated directory, imports the information into the DBA_WORKLOAD_CAPTURES and DBA_WORKLOAD_FILTERS views, and returns the appropriate DBA_WORKLOAD_CAPTURES.ID

	
IMPORT_AWR Function

	
Imports the AWR snapshots associated with a given capture ID

	
REPORT Function

	
Returns a report on the workload capture under consideration using one or more different sources

	
START_CAPTURE Procedure

	
Initiates workload capture on all instances

ADD_FILTER Procedures

This procedure adds a filter to capture a subset of the workload.

Syntax

DBMS_WORKLOAD_CAPTURE.ADD_FILTER (
 fname IN VARCHAR2 NOT NULL,
 fattribute IN VARCHAR2 NOT NULL,
 fvalue IN VARCHAR2 NOT NULL);

DBMS_WORKLOAD_CAPTURE.ADD_FILTER (
 fname IN VARCHAR2 NOT NULL,
 fattribute IN VARCHAR2 NOT NULL,
 fvalue IN NUMBER NOT NULL);

Parameters

Table 159-2 ADD_FILTER Procedure Parameters

	Parameter	Description
	
fname

	
Name for the filter to be added. Can be used to delete the filter later if it is not required. (Mandatory)

	
fattribute

	
Specifies the attribute on which the filter needs to be applied (Mandatory). The possible values are:

	
INSTANCE_NUMBER - type NUMBER

	
USER - type STRING

	
MODULE - type STRING

	
ACTION - type STRING

	
PROGRAM - type STRING

	
SERVICE - type STRING

	
fvalue

	
Specifies the value to which the given attribute should be equal to for the filter to be considered active. Wildcards like '%' are acceptable for all attributes that are of type STRING. This means that the filter for a NUMBER attribute is parsed as "attribute = value", with the filter for a STRING attribute parsed as "attribute like value" (Mandatory).

Usage Notes

	
The workload capture filters work in either the DEFAULT INCLUSION or the DEFAULT EXCLUSION mode as determined by the default_action input to the START_CAPTURE Procedure.

	
ADD_FILTER adds a new filter that affects the next workload capture, and whether the filters are considered as INCLUSION filters or EXCLUSION filters depends on the value of the default_action input to START_CAPTURE Procedure.

	
Filters once specified are valid only for the next workload capture. If the same set of filters need to be used for subsequent capture, they need to be specified each time before the START_CAPTURE Procedure is executed.

	
All the filters are listed in the DBA_WORKLOAD_FILTERS view.

DELETE_CAPTURE_INFO Procedure

This procedure deletes the rows in the DBA_WORKLOAD_CAPTURES and DBA_WORKLOAD_FILTERS views that corresponds to the given workload capture ID.

Syntax

DBMS_WORKLOAD_CAPTURE.DELETE_CAPTURE_INFO
 capture_id IN NUMBER);

Parameters

Table 159-3 DELETE_CAPTURE_INFO Procedure Parameters

	Parameter	Description
	
capture_id

	
ID of the workload capture that needs to be deleted. Corresponds to DBA_WORKLOAD_CAPTURES.ID. (Mandatory)

Usage Notes

Passing the ID of a capture that is in progress will first automatically stop that capture.

DELETE_FILTER Procedure

This procedure deletes a specified filter.

Syntax

DBMS_WORKLOAD_CAPTURE.DELETE_FILTER (
 filter_name IN VARCHAR2(40) NOT NULL);

Parameters

Table 159-4 DELETE_FILTER Procedure Parameters

	Parameter	Description
	
filter_name

	
Filter to be deleted

Usage Notes

The DELETE_FILTER Procedure only affects filters that have not been used by any previous capture. Consequently, filters can be deleted only if they have been added using the ADD_FILTER Procedures after any capture has been completed. Filters that have been added using ADD_FILTER before a START_CAPTURE and FINISH_CAPTURE cannot be deleted anymore using this subprogram.

EXPORT_AWR Procedure

This procedure exports the AWR snapshots associated with a given capture ID.

Syntax

DBMS_WORKLOAD_CAPTURE.EXPORT_AWR (
 capture_id IN NUMBER);

Parameters

Table 159-5 EXPORT_AWR Procedure Parameters

	Parameter	Description
	
capture_id

	
ID of the capture whose AWR snapshots are to be exported. (Mandatory)

Usage Notes

This procedure works only if the corresponding workload capture was performed in the current database (meaning that the corresponding row in DBA_WORKLOAD_CAPTURES was not created by calling the GET_CAPTURE_INFO Function) and the AWR snapshots that correspond to the original capture time period are still available.

FINISH_CAPTURE Procedure

This procedure signals all connected sessions to stop the workload capture and stops future requests to the database from being captured.

Syntax

DBMS_WORKLOAD_CAPTURE.FINISH_CAPTURE
 timneout IN NUMBER DEFAULT 30
 reason IN VARCHAR2 DEFAULT NULL);

Parameters

Table 159-6 FINISH_CAPTURE Procedure Parameters

	Parameter	Description
	
timeout

	
Specifies in seconds for how long the procedure should wait before it times out. Pass 0 if you want to cancel the current workload capture and not wait for any sessions to flush it's capture buffers. Default value: 30 seconds

	
reason

	
Specifies a reason for calling the procedure. The reason appears in the column ERROR_MESSAGE of the view DBA_WORKLOAD_CAPTURES.

Usage Notes

	
By default, FINISH_CAPTURE waits for 30 seconds to receive a successful acknowledgement from all sessions in the database cluster before timing out.

	
All sessions that either were in the middle of executing a user request or received a new user request, while FINISH_CAPTURE was waiting for acknowledgements, flush their buffers and send back their acknowledgement to FINISH_CAPTURE.

	
If a database session remains idle (waiting for the next user request) throughout the duration of FINISH_CAPTURE, the session might have unflushed capture buffers and does not send it's acknowledgement to FINISH_CAPTURE.

To avoid this, do not have sessions that remain idle (waiting for the next user request) while invoking FINISH_CAPTURE. Either close the database session(s) before running FINISH_CAPTURE or send new database requests to those sessions during FINISH_CAPTURE.

GET_CAPTURE_INFO Function

This procedure retrieves all information regarding a workload capture present in the stipulated directory, imports the information into the DBA_WORKLOAD_CAPTURES and DBA_WORKLOAD_FILTERS views, and returns the appropriate DBA_WORKLOAD_CAPTURES.ID

Syntax

DBMS_WORKLOAD_CAPTURE.GET_CAPTURE_INFO
 dir IN VARCHAR2)
 RETURN NUMBER;

Parameters

Table 159-7 GET_CAPTURE_INFO Function Parameters

	Parameter	Description
	
dir

	
Name of the DIRECTORY object (case sensitive) where all the workload capture files are located (Mandatory)

Usage Notes

If an appropriate row describing the capture in the stipulated directory already exists in DBA_WORKLOAD_CAPTURES, the GET_CAPTURE_INFO Function simply returns that row's DBA_WORKLOAD_CAPTURES.ID. If no existing row matches the capture present in the stipulated directory a new row is inserted to DBA_WORKLOAD_CAPTURES and that row's ID is returned.

IMPORT_AWR Function

This procedure imports the AWR snapshots associated with a given capture ID provided those AWR snapshots were exported earlier from the original capture system using the EXPORT_AWR Procedure.

Syntax

DBMS_WORKLOAD_CAPTURE.IMPORT_AWR (
 capture_id IN NUMBER,
 staging_schema IN VARCHAR2,
 force_cleanup IN BOOLEAN DEFAULT FALSE)
 RETURN NUMBER;

Parameters

Table 159-8 IMPORT_AWR Function Parameters

	Parameter	Description
	
capture_id

	
ID of the capture whose AWR snapshots should be imported. (Mandatory)

	
staging_schema

	
Name of a valid schema in the current database which can be used as a staging area while importing the AWR snapshots from the capture directory to the SYS AWR schema.The SYS schema is not a valid input. (Mandatory, Case sensitive).

	
force_cleanup

	
Values:

	
TRUE - any AWR data present in the given staging_schema are removed before the actual import operation. All tables with names that match any of the tables in AWR are dropped before the actual import. This typically is equivalent to dropping all tables returned by the following SQL:

SELECT table_name FROM dba_tables
WHERE owner = staging_schema
AND table_name like 'WR_$%';

Use this option only if you are sure that there are no important data in any such tables in the staging_schema.

	
FALSE - (default) no tables dropped from the staging_schema prior to the import operation

Return Values

Returns the new randomly generated database ID that was used to import the AWR snapshots. The same value can be found in the AWR_DBID column in the DBA_WORKLOAD_CAPTURES view.

Usage Notes

IMPORT_AWR fails if the staging_schema provided as input contains any tables with the same name as any of the AWR tables, such as WRM$_SNAPSHOT or WRH$_PARAMETER. Please drop any such tables in the staging_schema before invoking IMPORT_AWR.

REPORT Function

This function generates a report on the stipulated workload capture.

Syntax

DBMS_WORKLOAD_CAPTURE.REPORT (
 capture_id IN NUMBER,
 format IN VARCHAR2)
 RETURN CLOB;

Parameters

Table 159-9 REPORT Function Parameters

	Parameter	Description
	
capture_id

	
ID of the workload capture whose capture report is required. (Mandatory)

This relates to the directory that contains the workload capture on which the Report needs to be generated. Should be a valid DIRECTORY object that points to a valid directory in the host system that contains a workload capture.

	
format

	
Specifies the report format. Valid values are DBMS_WORKLOAD_CAPTURE.TYPE_TEXT and DBMS_WORKLOAD_CAPTURE.TYPE_HTML.(Mandatory)

Return Values

The report body in the desired format returned as a CLOB.

Table 159-10 Constants Used by Report Function

	Constant	Type	Value	Description
	
TYPE_HTML

	
VARCHAR2(4)

	
'HTML'

	
Generates the HTML version of the report

	
TYPE_TEXT

	
VARCHAR2(4)

	
'TEXT'

	
Used as as input to the format argument to generate the text version of the report

START_CAPTURE Procedure

This procedure initiates workload capture on all instances.

	
Note:

The functionality associated with the capture_sts and sts_cap_interval parameters is available starting with Oracle Database 11g Release 2 (11.2.0.2).

Syntax

DBMS_WORKLOAD_CAPTURE.START_CAPTURE (
 name IN VARCHAR2,
 dir IN VARCHAR2,
 duration IN NUMBER DEFAULT NULL,
 default_action IN VARCHAR2 DEFAULT 'INCLUDE',
 auto_unrestrict IN BOOLEAN DEFAULT TRUE,
 capture_sts IN BOOLEAN DEFAULT FALSE,
 sts_cap_interval IN NUMBER DEFAULT 300);

Parameters

Table 159-11 START_CAPTURE Procedure Parameters

	Parameter	Description
	
name

	
Name of the workload capture. Allows the workload capture to be given a label, such as "Thanksgiving weekend" or "Christmas peak workload" for future reference. The workload capture's name is preserved along with the captured workload actions. (Mandatory)

	
dir

	
Name of the DIRECTORY object (case sensitive) where all the workload capture files are stored. Should contain enough space to hold all the workload capture files. (Mandatory)

	
duration

	
Optional input to specify the duration (in seconds) for which the workload needs to be captured. DEFAULT is NULL which means that workload capture continues until the user executes DBMS_WORKLOAD_CAPTURE.FINISH_CAPTURE.

	
default_action

	
Can be either INCLUDE or EXCLUDE. Determines whether, by default, every user request should be captured or not. Also determines whether the workload filters specified should be considered as INCLUSION filters or EXCLUSION filters.

	
If INCLUDE, by default all user requests to the database are captured, except for the part of the workload defined by the filters. In this case, all the filters specified using the ADD_FILTER Procedures are treated as EXCLUSION filters, determining the workload that is not captured. (DEFAULT, and so all the filters specified are assumed to be EXCLUSION filters.)

	
If EXCLUDE, by default no user request to the database is captured, except for the part of the workload defined by the filters. In this case, all the filters specified using the ADD_FILTER Procedures are treated as INCLUSION filters, determining the workload that is captured.

	
auto_unrestrict

	
Can be either TRUE or FALSE.

	
If TRUE, all instances started up in RESTRICTED mode using STARTUP RESTRICT are automatically unrestricted upon a successful START_CAPTURE. (DEFAULT)

	
If FALSE, no database instance is automatically unrestricted.

	
capture_sts

	
If this parameter is TRUE, a SQL tuning set capture is also started in parallel with workload capture. The resulting SQL tuning set can be exported using the EXPORT_AWR Procedure along with the AWR data. Currently, parallel STS capture is not supported in an Oracle RAC environment, so this parameter has no effect if used in that context. Capture filters defined using the DBMS_WORKLOAD_REPLAY interface do not apply to the SQL tuning set capture. The calling user must have the appropriate privileges ('ADMINISTER SQL TUNING SET').

If starting SQL set capture fails, workload capture is stopped. The reason is stored in DBA_WORKLOAD_CAPTURES.ERROR_MESSAGE. The default value is FALSE.

	
sts_cap_interval

	
Specifies the capture interval of the SQL set capture from the cursor cache in seconds. The default value is 300.

Usage Notes

	
All user requests sent to database after a successful invocation of START_CAPTURE are recorded in the given dir directory for the given duration provided that one was specified. If no duration was specified, the capture lasts indefinitely until the FINISH_CAPTURE Procedure is executed.

	
A workload capture once started continues to record user requests across database instance shutdowns and startups for the specified duration, or until FINISH_CAPTURE is executed, whichever occurs first.

	
One can use workload filters (as described with regard to the ADD_FILTER Procedures) to capture only a subset of the user requests sent to the database. By default, when no workload filters are defined, all user requests are captured.

	
Workload that is initiated from Oracle Database background processes (such as SMON, PMON, MMON) and Oracle Database Scheduler Jobs (as detailed in the DBMS_SCHEDULER package) is not captured, no matter how the workload filters are defined. These activities should happen automatically on an appropriately configured replay system.

	
By default, all database instances that were started up in RESTRICTED mode using STARTUP RESTRICT are UNRESTRICTED upon a successful invocation of START_CAPTURE Use FALSE for the auto_unrestrict input parameter, if you do not want this behavior.

	
It is important to have a well-defined starting point for the workload so that the replay system can be restored to that point before initiating a replay of the captured workload. To have a well-defined starting point for the workload capture, it is preferable not to have any active user sessions when START_CAPTURE is executed. If ongoing sessions have ongoing transactions, those transactions are not replayed properly in subsequent database replays, since only that part of the transaction whose calls were executed after START_CAPTURE are replayed.

DBMS_WORKLOAD_REPLAY

160 DBMS_WORKLOAD_REPLAY

The DBMS_WORKLOAD_REPLAY package provides an interface to replay a workload capture that was originally created by way of the DBMS_WORKLOAD_CAPTURE package. Typically, the DBMS_WORKLOAD_CAPTURE package will be used in the production system to capture a production workload, and the DBMS_WORKLOAD_REPLAY package will be subsequently used in a test system to replay the captured production workload for testing purposes.

	
See Also:

Oracle Database Real Application Testing User's Guide for more information about "Database Replay"

This chapter contains the following topics:

	
Using DBMS_WORKLOAD_REPLAY

	
Security Model

	
Summary of DBMS_WORKLOAD_REPLAY Subprograms

Using DBMS_WORKLOAD_REPLAY

	
Security Model

Security Model

The following code describes the minimum set of privileges required to

	
Create directory objects

	
Operate the interface provided by the DBMS_WORKLOAD_CAPTURE and DBMS_WORKLOAD_REPLAY packages

	
Act as a replay client user (wrc someuser/somepassword or wrc USER=someuser PASSWORD=somepassword)

DROP USER rom1 CASCADE;
CREATE USER rom1 IDENTIFIED BY rom1;

GRANT EXECUTE ON DBMS_WORKLOAD_CAPTURE TO rom1;
GRANT EXECUTE ON DBMS_WORKLOAD_REPLAY TO rom1;

GRANT CREATE SESSION TO rom1;
GRANT CREATE ANY DIRECTORY TO rom1;
GRANT SELECT_CATALOG_ROLE TO rom1;
GRANT BECOME USER TO rom1;

Appropriate OS permissions are required to access and manipulate files and directories on both the capture and replay system. This means that the Oracle process(es) and the OS user performing the capture or replay must be able to access and manipulate at least one common directory accessible from the host where the instance is running. Additionally, the OS user performing the replay must be able to execute wrc on hosts that will be used for the replay clients and be able to access the file system appropriately to be able to copy the capture to the replay clients' hosts if required.

Summary of DBMS_WORKLOAD_REPLAY Subprograms

This table list the package subprograms in alphabetical order.

Table 160-1 DBMS_WORKLOAD_REPLAY Package Subprograms

	Subprogram	Description
	
ADD_FILTER Procedure

	
Adds a filter to replay only a subset of the captured workload

	
CALIBRATE Function

	
Operates on a processed workload capture directory to estimate the number of hosts and workload replay clients needed to faithfully replay the given workload

	
CANCEL_REPLAY Procedure

	
Cancels the workload replay in progress

	
COMPARE_PERIOD_REPORT Procedure

	
Generates a report comparing a replay to its capture or to another replay of the same capture

	
COMPARE_SQLSET_REPORT Function

	
Generates a report comparing a sqlset captured during replay to one captured during workload capture or to one captured during another replay of the same capture

	
CREATE_FILTER_SET Procedure

	
Uses the replay filters added to create a set of filters to use against the replay in replay_dir

	
DELETE_FILTER Procedure

	
Deletes the named filter

	
DELETE_REPLAY_INFO Procedure

	
Deletes the rows in DBA_WORKLOAD_REPLAYS that corresponds to the given workload replay ID

	
EXPORT_AWR Procedure

	
Exports the AWR snapshots associated with a given replay ID

	
GET_DIVERGING_STATEMENT Function

	
Exports the AWR snapshots associated with a given replay ID

	
GET_REPLAY_INFO Function

	
Retrieves information about the workload capture and the history of all the workload replay attempts from the related directory

	
GET_REPLAY_TIMEOUT Procedure

	
Retrieves the replay timeout setting

	
IMPORT_AWR Function

	
Imports the AWR snapshots associated with a given replay ID

	
INITIALIZE_REPLAY Procedure

	
Initializes replay, and loads specific data produced during processing into the database

	
IS_REPLAY_PAUSED Function

	
Reports whether the replay is currently paused

	
PAUSE_REPLAY Procedure

	
Pauses the in-progress workload replay

	
POPULATE_DIVERGENCE Procedure

	
Precomputes the divergence information for the given call, stream, or the whole replay so that the GET_DIVERGING_STATEMENT Function returns as quickly as possible for the precomputed calls

	
PREPARE_REPLAY Procedure

	
Puts the RDBMS in a special "Prepare" mode

	
PROCESS_CAPTURE Procedure

	
Processes the workload capture found in capture_dir in place

	
REMAP_CONNECTION Procedure

	
Remaps the captured connection to a new one so that the user sessions can connect to the database in a desired way during workload replay

	
REPORT Function

	
Generates a report on the given workload replay

	
RESUME_REPLAY Procedure

	
Resumes a paused workload replay

	
REUSE_REPLAY_FILTER_SET Procedure

	
Reuses filters in the specified filter set as if each were added using the ADD_FILTER Procedure

	
REUSE_REPLAY_FILTER_SET Procedure

	
Sets an advanced parameter for replay besides the ones used with the PREPARE_REPLAY Procedure

	
SET_REPLAY_TIMEOUT Procedure

	
Sets the replay timeout setting

	
START_REPLAY Procedure

	
Starts the workload replay

	
USE_FILTER_SET Procedure

	
Uses the given filter set that has been created by calling the CREATE_FILTER_SET Procedure to filter the current replay

ADD_FILTER Procedure

This procedure adds a filter to replay only a subset of the captured workload.

The procedure adds a new filter that is used in the next replay filter set created using the CREATE_FILTER_SET Procedure. This filter will be considered an "INCLUSION" or "EXCLUSION" filter depending on the argument passed to CREATE_FILTER_SET when creating the filter set.

Syntax

DBMS_WORKLOAD_REPLAY.ADD_FILTER (
 fname IN VARCHAR2,
 fattribute IN VARCHAR2,
 fvalue IN VARCHAR2);

DBMS_WORKLOAD_REPLAY.ADD_FILTER (
 fname IN VARCHAR2,
 fattribute IN VARCHAR2,
 fvalue IN NUMBER);

Parameters

Table 160-2 ADD_FILTER Procedure Parameters

	Parameter	Description
	
fname

	
Name of the filter. Can be used to delete the filter later if it is not required. (Mandatory)

	
fattribute

	
(Mandatory) Specifies the attribute on which the filter is defined as one of the following values:

	
USER - type STRING

	
MODULE - type STRING

	
ACTION - type STRING

	
PROGRAM - type STRING

	
SERVICE - type STRING

	
CONNECTION_STRING - type STRING

	
fvalue

	
Specifies the value to which the given 'attribute' must be equal to for the filter to be considered active. Wildcards such as '%' are acceptable for all attributes that are of type STRING. (Mandatory)

CALIBRATE Function

This function operates on a processed workload capture directory to estimate the number of hosts and workload replay clients needed to faithfully replay the given workload. This function returns the results as an XML CLOB.

Syntax

DBMS_WORKLOAD_REPLAY.CALIBRATE (
 capture_dir IN VARCHAR2,
 process_per_cpu IN BINARY_INTEGER DEFAULT 4,
 threads_per_process IN BINARY_INTEGER DEFAULT 50)
 RETURN CLOB;

Parameters

Table 160-3 CALIBRATE Function Parameters

	Parameter	Description
	
capture_dir

	
Name of the directory object that points to the (case sensitive) OS directory that contains processed capture data

	
process_per_cpu

	
Maximum number of process allowed per CPU (default is 4)

	
threads_per_process

	
Maximum number of threads allowed per process (default is 50)

Return Values

Returns a CLOB formatted as XML, that contains:

	
Information about the capture

	
Current database version

	
Input parameters to this function

	
Number of CPUs and replay clients needed to replay the given workload

	
Information about the sessions captured (total number and maximum concurrency)

Usage Notes

	
Prerequisite: The input workload capture was already processed using the PROCESS_CAPTURE Procedure in the same database version.

	
This procedure will return the same results as the workload replay client in calibrate mode, which can be run as follows.

$ wrc mode=calibrate replaydir=

CANCEL_REPLAY Procedure

This procedure cancels workload replay in progress. All the external replay clients (WRC) will automatically be notified to stop issuing the captured workload and exit.

Syntax

DBMS_WORKLOAD_REPLAY.CANCEL_REPLAY (
 error_msg IN VARCHAR2 DEFAULT NULL);

Parameters

Table 160-4 CANCEL_REPLAY Procedure Parameters

	Parameter	Description
	
error_msg

	
An optional reason for cancelling the replay can be passed which will be recorded into DBA_WORKLOAD_REPLAYS.ERROR_MESSAGE. DEFAULT is NULL

Usage Notes

Prerequisite: A call to the INITIALIZE_REPLAY Procedure, or PREPARE_REPLAY Procedure, or START_REPLAY Procedure was already issued.

COMPARE_PERIOD_REPORT Procedure

This procedure generates a report comparing a replay to its capture or to another replay of the same capture.

Syntax

DBMS_WORKLOAD_REPLAY.COMPARE_PERIOD_REPORT (
 replay_id1 IN NUMBER,
 replay_id2 IN NUMBER,
 format IN VARCHAR2,
 result OUT CLOB);

Parameters

Table 160-5 COMPARE_PERIOD_REPORT Procedure Parameters

	Parameter	Description
	
replay_id1

	
First ID of the workload replay whose report is requested

	
replay_id2

	
Second ID of the workload replay whose report is requested. If this is NULL, then the comparison is done with the capture.

	
format

	
Specifies the report format. Valid values are DBMS_WORKLOAD_CAPTURE.TYPE_HTML and DBMS_WORKLOAD_CAPTURE.TYPE_XML.

	
result

	
Output of the report (CLOB)

COMPARE_SQLSET_REPORT Function

This procedure generates a report comparing a sqlset captured during replay to one captured during workload capture or to one captured during another replay of the same capture.

	
Note:

This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2).

Syntax

DBMS_WORKLOAD_REPLAY.COMPARE_SQLSET_REPORT (
 replay_id1 IN NUMBER,
 replay_id2 IN NUMBER,
 format IN VARCHAR2,
 r_level IN VARCHAR2 := 'ALL',
 r_sections IN VARCHAR2 := 'ALL',
 result OUT CLOB)
 RETURN VARCHAR2;

Parameters

Table 160-6 COMPARE_SQLSET_REPORT Function Parameters

	Parameter	Description
	
replay_id1

	
First ID of the workload replay after a change

	
replay_id2

	
Second ID of the workload replay before a change. If this is NULL, then the comparison is done with the capture.

	
format

	
Specifies the report format. Valid values are DBMS_WORKLOAD_CAPTURE.TYPE_HTML, DBMS_WORKLOAD_CAPTURE.TYPE_XML and DBMS_WORKLOAD_CAPTURE.TYPE_TEXT.

	
r_level

	
See level parameter in the REPORT_ANALYSIS_TASK Function in the DBMS_SQLPA package

	
r_sections

	
See section parameter in the REPORT_ANALYSIS_TASK Function in the DBMS_SQLPA package

	
result

	
Output of the report (CLOB)

CREATE_FILTER_SET Procedure

This procedure uses the replay filters added since the previous successful call to create a set of filters to use against the replay in replay_dir. After the procedure has completed and replay initiated, the newly-creaed filter set can be used to filter the replay in replay_dir by calling the USE_FILTER_SET Procedure .

Syntax

DBMS_WORKLOAD_REPLAY.CREATE_FILTER_SET(
 replay_dir IN VARCHAR2,
 filter_set IN VARCHAR2,
 default_action IN VARCHAR2 DEFAULT 'INCLUDE');

Parameters

Table 160-7 CREATE_FILTER_SET Procedure Parameters

	Parameter	Description
	
replay_dir

	
Object directory of the replay to be filtered

	
filter_set

	
Name of the filter set to create (to use in USE_FILTER_SET Procedure)

	
default_action

	
Can be either INCLUDE or EXCLUDE. Determines whether, by default, every captured call must be replayed or not. Also determines, whether the workload filters specified must be considered as INCLUSION filters or EXCLUSION filters.)

If it is INCLUDE , then by default all captured calls will be replayed, except for the part of the workload defined by the filters. In this case, all the filters that were specified using the ADD_FILTER Procedure will be treated as EXCLUSION filters, and will determine the workload that will not be replayed.

If it is EXCLUDE , then by default no captured call to the database will be replayed, except for the part of the workload defined by the filters. In this case, all the filters that were specified using he ADD_FILTER Procedure will be treated as INCLUSION filters, and will determine the workload that will be replayed.

Default: INCLUDE and all the filters specified will be assumed to be EXCLUSION filters

Usage Notes

This operation needs to be done when no replay is initialized, prepared, or in progress.

DELETE_FILTER Procedure

This procedure deletes the named filter.

Syntax

DBMS_WORKLOAD_REPLAY.DELETE_FILTER(
 fname IN VARCHAR2);

Parameters

Table 160-8 DELETE_FILTER Procedure Parameters

	Parameter	Description
	
fname

	
Name of the filter that must be deleted (Mandatory)

DELETE_REPLAY_INFO Procedure

This procedure deletes the rows in DBA_WORKLOAD_REPLAYS that correspond to the given workload replay ID.

Syntax

DBMS_WORKLOAD_REPLAY.DELETE_REPLAY_INFO (
 replay_id IN NUMBER);

Parameters

Table 160-9 DELETE_REPLAY_INFO Procedure Parameters

	Parameter	Description
	
replay_id

	
ID of the workload replay that needs to be deleted. Corresponds to DBA_WORKLOAD_REPLAYS.ID (Mandatory)

EXPORT_AWR Procedure

This procedure exports the AWR snapshots associated with a stipulated replay ID.

Syntax

DBMS_WORKLOAD_REPLAY.EXPORT_AWR (
 replay_id IN NUMBER);

Parameters

Table 160-10 EXPORT_AWR Function Parameters

	Parameter	Description
	
replay_id

	
ID of the replay whose AWR snapshots are to be exported (Mandatory)

Usage Notes

	
At the end of each replay, the corresponding AWR snapshots are automatically exported. Consequently, there is no need to do this manually after a workload replay is complete, unless the automatic EXPORT_AWR invocation failed.

	
This procedure will work only if the corresponding workload replay was performed in the current database (meaning that the corresponding row in DBA_WORKLOAD_REPLAYS was not created by calling the GET_REPLAY_INFO Function) and the AWR snapshots that correspond to that replay time period are still available.

GET_DIVERGING_STATEMENT Function

This function retrieves information about a diverging call, including the statement text, the SQL ID, and the binds.

Syntax

DBMS_WORKLOAD_REPLAY.GET_DIVERGING_STATEMENT (
 replay_id IN NUMBER,
 stream_id IN NUMBER,
 call_counter IN NUMBER)
 RETURN CLOB;

Parameters

Table 160-11 GET_DIVERGING_STATEMENT Function Parameters

	Parameter	Description
	
replay_id

	
ID of the replay in which that call diverged

	
stream_id

	
Stream ID of the diverging call

	
call_counter

	
Call counter of the diverging call

Usage Notes

	
Returns a CLOB formatted as XML that contains:

	
SQL ID

	
SQL Text

	
Bind information: position, name and value

	
This function will silently invoke the POPULATE_DIVERGENCE Procedure to read the information from the capture files. Therefore, if divergence has not been populated, the first call to this function for a particular diverging call might take longer, especially in very large captures.

GET_REPLAY_INFO Function

This function retrieves information about the workload capture and the history of all the workload replay attempts from the stipulated directory.

Syntax

DBMS_WORKLOAD_REPLAY.GET_REPLAY_INFO (
 dir IN VARCHAR2)
 RETURN NUMBER;

Parameters

Table 160-12 GET_REPLAY_INFO Function Parameters

	Parameter	Description
	
dir

	
Name of the workload replay directory object (case sensitive). (Mandatory)

Return Values

The procedure returns the CAPTURE_ID , which can be associated with both DBA_WORKLOAD_CAPTURE_ID and DBA_WORKLOAD_REPLAYS.CAPTURE.ID to access the imported information.

Usage Notes

	
The procedure first imports a row into DBA_WORKLOAD_CAPTURES which will contain information about the capture. It then imports a row for every replay attempt retrieved from the given replay directory into DBA_WORKLOAD_REPLAYS.

	
The procedure will not insert new rows to DBA_WORKLOAD_CAPTURES and DBA_WORKLOAD_REPLAYS if these views already contain rows describing the capture and replay history present in the given directory.

GET_REPLAY_TIMEOUT Procedure

This procedure gets the replay timeout setting.

	
Note:

This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2).

Syntax

DBMS_WORKLOAD_REPLAY.GET_REPLAY_TIMEOUT (
 enabled OUT BOOLEAN,
 min_delay OUT NUMBER,
 max_delay OUT NUMBER,
 delay_factor OUT NUMBER);

Parameters

Table 160-13 GET_REPLAY_TIMEOUT Function Parameters

	Parameter	Description
	
enabled

	
TRUE if the timeout action is enabled, FALSE otherwise.

	
min_delay

	
Lower bound of call delay in minutes. The replay action is activated only when the delay is equal to or more than min_delay.

	
max_delay

	
Upper bound of call delay in minutes. The timeout action throws ORA-15569 when the delay is more than max_delay.

	
delay_factor

	
Factor for the call delay that is between min_delay and max_delay. The timeout action throws ORA-15569 when the current replay elapsed time is more than the product of capture elapsed time and delay_factor.

Usage Notes

This procedure can be called anytime during replay.

IMPORT_AWR Function

This procedure imports the AWR snapshots from a given replay.

Syntax

DBMS_WORKLOAD_REPLAY.IMPORT_AWR (
 replay_id IN NUMBER,
 staging_schema IN VARCHAR2)
 RETURN NUMBER;

Parameters

Table 160-14 IMPORT_AWR Function Parameters

	Parameter	Description
	
replay_id

	
ID of the replay whose AWR snapshots must be exported. (Mandatory)

	
staging_schema

	
Name of a valid schema in the current database which can be used as a staging area while importing the AWR snapshots from the replay directory to the SYS AWR schema. The SYS schema is not a valid input. (Mandatory)

Return Values

Returns the new randomly generated database ID that was used to import the AWR snapshots. The same value can be found in the AWR_DBID column in the DBA_WORKLOAD_REPLAYS view.

Usage Notes

	
This procedure will work provided those AWR snapshots were exported earlier from the original replay system using the EXPORT_AWR Procedure.

	
IMPORT_AWR will fail if the staging_schema provided as input contains any tables with the same name as any of the AWR tables, such as WRM$_SNAPSHOT or WRH$_PARAMETER. Please drop any such tables in the staging_schema before invoking IMPORT_AWR.

INITIALIZE_REPLAY Procedure

This procedure puts the database state in INIT for REPLAY mode, and loads data into the replay system that is required before preparing for the replay (by executing the PAUSE_REPLAY Procedure).

Syntax

DBMS_WORKLOAD_REPLAY.INITIALIZE_REPLAY (
 replay_name IN VARCHAR2,
 replay_dir IN VARCHAR2);

Parameters

Table 160-15 INITIALIZE_REPLAY Procedure Parameters

	Parameter	Description
	
replay_name

	
Name of the workload replay. Every replay of a processed workload capture can be given a name. (Mandatory)

	
replay_dir

	
Name of the directory object that points to the OS directory (case sensitive) that contains processed capture data

Usage Notes

	
Prerequisites:

	
Workload capture was already processed using the PROCESS_CAPTURE Procedure in the same database version.

	
Database state has been logically restored to what it was at the beginning of the original workload capture.

	
The subprogram loads data into the replay system that is required before preparing for the replay by calling the PAUSE_REPLAY Procedure.

For instance, during capture the user may record the connection string each session used to connect to the server. The INITIALIZE_REPLAY Procedure loads this data and allows the user to re-map the recorded connection string to new connection strings or service points.

Elaborating on the example described in the PROCESS_CAPTURE Procedure, the user could invoke the following:

DBMS_WORKLOAD_REPLAY.INITIALIZE_REPLAY('replay foo #1', 'rec_dir');

This command will load up the connection map and by default will set all replay time connection strings to be equal to NULL. A NULL replay time connection string means that the workload replay clients (WRCs) will connect to the default host as determined by the replay client's runtime environment settings. The user can change a particular connection string to a new one (or a new service point) for replay by using the REMAP_CONNECTION Procedure.

IS_REPLAY_PAUSED Function

This function reports whether the replay is currently paused.

Syntax

DBMS_WORKLOAD_REPLAY.IS_REPLAY_PAUSED
 RETURN BOOLEAN;

Return Values

Returns TRUE if the PAUSE_REPLAY Procedure has been called successfully and the RESUME_REPLAY Procedure has not been called yet.

Usage Notes

A call to the START_REPLAY Procedure must have already been issued as a pre-requisite.

PAUSE_REPLAY Procedure

This procedure pauses the in-progress workload replay. All subsequent user calls from the replay clients will be stalled until either a call to the RESUME_REPLAY Procedure is issued or the replay is cancelled.

Syntax

DBMS_WORKLOAD_REPLAY.PAUSE_REPLAY;

Usage Notes

	
Prerequisite: A call to the START_REPLAY Procedure must have already been issued.

	
User calls that were already in-progress when PAUSE_REPLAY was issued will be allowed to run to completion. Only subsequent user calls, when issued, will be paused.

POPULATE_DIVERGENCE Procedure

This procedure precomputes the divergence information for the given call, stream, or the whole replay so that the GET_DIVERGING_STATEMENT Function returns as quickly as possible for the precomputed calls.

Syntax

DBMS_WORKLOAD_REPLAY.POPULATE_DIVERGENCE (
 replay_id IN NUMBER,
 stream_id IN NUMBER DEFAULT NULL,
 call_counter IN NUMBER DEFAULT NULL);

Parameters

Table 160-16 POPULATE_DIVERGENCE Procedure Parameters

	Parameter	Description
	
replay_id

	
ID of the replay

	
stream_id

	
Stream ID of the diverging call. If NULL is provided, then divergence information will be precomputed for all diverging calls in the given replay.

	
call_counter

	
Call counter of the diverging call. If NULL is provided, then divergence information will be precomputed for all diverging calls in the given stream.

PREPARE_REPLAY Procedure

This procedure puts the database state in PREPARE FOR REPLAY mode.

	
Note:

The functionality associated with the capture_sts and sts_cap_interval parameters is available starting with Oracle Database 11g Release 2 (11.2.0.2).

Syntax

DBMS_WORKLOAD_REPLAY.PREPARE_REPLAY (
 synchronization IN BOOLEAN DEFAULT TRUE,
 connect_time_scale IN NUMBER DEFAULT 100,
 think_time_scale IN NUMBER DEFAULT 100,
 think_time_auto_correct IN BOOLEAN DEFAULT TRUE,
 scale_up_multiplier IN NUMBER DEFAULT 1,
 capture_sts IN BOOLEAN DEFAULT FALSE,
 sts_cap_interval IN NUMBER DEFAULT 300);

DBMS_WORKLOAD_REPLAY.PREPARE_REPLAY (
 synchronization IN VARCHAR2 DEFAULT 'SCN',,
 connect_time_scale IN NUMBER DEFAULT 100,
 think_time_scale IN NUMBER DEFAULT 100,
 think_time_auto_correct IN BOOLEAN DEFAULT TRUE,
 scale_up_multiplier IN NUMBER DEFAULT 1,
 capture_sts IN BOOLEAN DEFAULT FALSE,
 sts_cap_interval IN NUMBER DEFAULT 300);

Parameters

Table 160-17 PREPARE_REPLAY Procedure Parameters

	Parameter	Description
	
synchronization

	
Turns synchronization ON or OFF during workload replay. When synchronization is ON, the COMMIT order observed during the original workload capture will be preserved during replay. Every action that is replayed will be executed ONLY AFTER all of its dependent COMMITs (all COMMITs that were issued before the given action in the original workload capture) have finished execution. DEFAULT is TRUE which preserves commit order.

When synchronization is OBJECT_ID, a more advanced synchronization scheme is used. Every action that is replayed will be executed only after the relevant COMMITs have finished executing. The relevant COMMITs are the ones that were issued before the given action in the original workload capture and that had modified at least one of the database objects the given action is referencing (either implicitly or explicitly). This object_id scheme has the same logical property of making sure that any action will see the same data it saw during capture, but will allow more concurrency during replays for the actions that do not touch the same objects/tables. DEFAULT VALUE: SCN, preserve commit order. For legacy reasons, there is a boolean version of this procedure:

	
TRUE means 'SCN'

	
FALSE means 'OFF'

	
connect_time_scale

	
Scales the time elapsed between the instant the workload capture was started and session connects with the given value. The input is interpreted as a % value. Can potentially be used to increase or decrease the number of concurrent users during the workload replay. DEFAULT VALUE is 100. See Application of the connect_time_scale Parameter.

	
think_time_scale

	
Scales the time elapsed between two successive user calls from the same session. The input is interpreted as a % value. Can potentially be used to increase or decrease the number of concurrent users during the workload replay. DEFAULT VALUE is 100. See Application of the think_time_scale Parameter.

	
think_time_auto_correct

	
Auto corrects the think time between calls appropriately when user calls takes longer time to complete during replay than how long the same user call took to complete during the original capture. DEFAULT is TRUE which is to reduce think time if replay goes slower than capture. See Application of the think_time_auto_correct Parameter

	
scale_up_multiplier

	
Defines the number of times the query workload is scaled up during replay. Each captured session is replayed concurrently as many times as the value of the scale_up_multiplier. However, only one of the sessions in each set of identical replay sessions executes both queries and updates. The remaining sessions only execute queries.

	
capture_sts

	
If this parameter is TRUE, then a SQL tuning set capture is also started in parallel with workload replay. The resulting SQL tuning set can be exported using the EXPORT_AWR Procedure along with the AWR data. Currently, parallel STS capture is not supported in an Oracle RAC environment. So, this parameter has no effect in that context. The calling user must have the appropriate privileges ('ADMINISTER SQL TUNING SET'). The default value is FALSE.

	
sts_cap_interval

	
Specifies the capture interval of the SQL set capture from the cursor cache in seconds. The default value is 300.

Usage Notes

	
Prerequisites:

	
The database has been initialized for replay using the INITIALIZE_REPLAY Procedure.

	
Any capture time connection strings that require remapping have been already done using the REMAP_CONNECTION Procedure.

	
One or more external replay clients (WRC) can be started once the PREPARE_REPLAY procedure has been executed.

	
With regard to scale_up_multiplier:

	
One replay session (base session) of each set of identical sessions will replay every call from the capture as usual

	
The remaining sessions (scale-up sessions) will only replay calls that are read-only. Thus, DDL, DML, and PL/SQL calls that modified the database will be skipped. SELECT FOR UPDATE statements are also skipped.

	
Readonly calls from the scale-up are synchronized appropriately and obey the timings defined by think_time_scale, connect_time_scale, and think_time_auto_correct. Also, the queries are made to wait for the appropriate commits.

	
No replay data or error divergence records will be generated for the scale-up sessions.

	
All base or scale-up sessions that replay the same capture file will connect from the same workload replay client.

Examples

Application of the connect_time_scale Parameter

If the following was observed during the original workload capture:

12:00 : Capture was started
12:10 : First session connect (10m after)
12:30 : Second session connect (30m after)
12:42 : Third session connect (42m after)

If the connect_time_scale is 50, then the session connects will happen as follows:

12:00 : Replay was started with 50% connect time scale
12:05 : First session connect (5m after)
12:15 : Second session connect (15m after)
12:21 : Third session connect (21m after)

If the connect_time_scale is 200, then the session connects will happen as follows:

12:00 : Replay was started with 200% connect time scale
12:20 : First session connect (20m after)
13:00 : Second session connect (60m after)
13:24 : Third session connect (84m after)

Application of the think_time_scale Parameter

If the following was observed during the original workload capture:

12:00 : User SCOTT connects
12:10 : First user call issued (10m after completion of prevcall)
12:14 : First user call completes in 4mins
12:30 : Second user call issued (16m after completion of prevcall)
12:40 : Second user call completes in 10m
12:42 : Third user call issued (2m after completion of prevcall)
12:50 : Third user call completes in 8m

If the think_time_scale is 50 during the workload replay, then the user calls will look something like below:

12:00 : User SCOTT connects
12:05 : First user call issued 5 mins (50% of 10m) after the completion of
 previous call
12:10 : First user call completes in 5m (takes a minute longer)
12:18 : Second user call issued 8 mins (50% of 16m) after the completion of prev
 call
12:25 : Second user call completes in 7m (takes 3 minutes less)
12:26 : Third user call issued 1 min (50% of 2m) after the completion of prev
 call
12:35 : Third user call completes in 9m (takes a minute longer)

Application of the think_time_auto_correct Parameter

If the following was observed during the original workload capture:

12:00 : User SCOTT connects
12:10 : First user call issued (10m after completion of prevcall)
12:14 : First user call completes in 4m
12:30 : Second user call issued (16m after completion of prevcall)
12:40 : Second user call completes in 10m
12:42 : Third user call issued (2m after completion of prevcall)
12:50 : Third user call completes in 8m

If the think_time_scale is 100 and the think_time_auto_correct is TRUE during the workload replay, then the user calls will look something like below:

12:00 : User SCOTT connects
12:10 : First user call issued 10 mins after the completion of prev call
12:15 : First user call completes in 5m (takes 1 minute longer)
12:30 : Second user call issued 15 mins (16m minus the extra time of 1m the prev
 call took) after the completion of prev call
12:44 : Second user call completes in 14m (takes 4 minutes longer)
12:44 : Third user call issued immediately (2m minus the extra time of 4m the prev
 call took) after the completion of prev call
12:52 : Third user call completes in 8m

PROCESS_CAPTURE Procedure

This procedure processes the workload capture found in capture_dir in place.

Syntax

DBMS_WORKLOAD_REPLAY.PROCESS_CAPTURE (
 capture_dir IN VARCHAR2);

Parameters

Table 160-18 PROCESS_CAPTURE Procedure Parameters

	Parameter	Description
	
catpure_dir

	
Name of the workload capture directory object (case sensitive). The directory object must point to a valid OS directory that has the appropriate permissions. New files will be added to this directory. (Mandatory)

Usage Notes

	
This subprogram analyzes the workload capture found in the capture_dir and creates new workload replay specific metadata files that are required to replay the given workload capture. It only creates new files and does not modify any files that were originally created during the workload capture. Therefore, this procedure can be run multiple times on the same capture directory, such as when the procedure encounters unexpected errors or is cancelled by the user.

	
Once this procedure runs successfully, the capture_dir can be used as input to the INITIALIZE_REPLAY Procedure in order to replay the captured workload present in capture_dir.

	
Before a workload capture can be replayed in a particular database version, the capture needs to be "processed" using this PROCESS_CAPTURE procedure in the same database version. Once created, a processed workload capture can be used to replay the captured workload multiple times in the same database version.

For example, suppose workload "foo" was captured in rec_dir in Oracle database version 10.2.0.5. In order to replay the workload "foo" in version 11.1.0.1 the workload needs to be processed in version 11.1.0.1. The following procedure needs to be executed in a 11.1.0.1 database in order to process the capture directory rec_dir:

DBMS_WORKLOAD_REPLAY.PROCESS_CAPTURE('rec_dir');

Now, rec_dir contains a valid 11.1.0.1 processed workload capture that can be used to replay the workload "foo" in 11.1.0.1 databases as many times as required.

REMAP_CONNECTION Procedure

This procedure remaps the captured connection to a new one so that the user sessions can connect to the database in a desired way during workload replay.

Syntax

DBMS_WORKLOAD_REPLAY.REMAP_CONNECTION (
 connection_id IN NUMBER,
 replay_connection IN VARCHAR2);

Parameters

Table 160-19 REMAP_CONNECTION Procedure Parameters

	Parameter	Description
	
connection_id

	
ID of the connection to be remapped. Corresponds to DBA_WORKLOAD_CONNECTION_MAP.CONN_ID

	
replay_connection

	
New connection string to be used during replay

Usage Notes

	
By default, all instances of replay_connection will be equal to NULL. When replay_connection is NULL (default), replay sessions will connect to the default host as determined by the replay client's runtime environment. Consequently, if no capture time connect strings are remapped, then all the replay sessions will simply connect to the default host to replay the workload.

	
A valid replay_connection must specify a connect identifier or a service point. See the Oracle Database Net Services Reference for ways to specify connect identifiers (such as net service names, database service names, and net service aliases) and naming methods that can be used to resolve a connect identifier to a connect descriptor.

	
An error is returned if no row matches the given connection_id.

	
Use the DBA_WORKLOAD_CONNECTION_MAP view to review all the connection strings that will be used by the subsequent workload replay, and also to examine connection string remappings used for previous workload replays.

REPORT Function

This function generates a report on the stipulated workload replay.

Syntax

DBMS_WORKLOAD_REPLAY.REPORT (
 replay_id IN NUMBER,
 format IN VARCHAR2)
 RETURN CLOB;

Parameters

Table 160-20 REPORT Function Parameters

	Parameter	Description
	
replay_id

	
Specifies the ID of the workload replay whose report is requested. (Mandatory)

	
format

	
Specifies the report format. Valid values are XML, HTML, or TEXT. (Mandatory)

Return Values

The report body in the desired format returned as a CLOB

Table 160-21 Constants Used by Report Function

	Constant	Type	Value	Description
	
TYPE_HTML

	
VARCHAR2(4)

	
'HTML'

	
Generates the HTML version of the report

	
TYPE_TEXT

	
VARCHAR2(4)

	
'TEXT'

	
Use this as input to the format argument to generate the text version of the report.

	
TYPE_XML

	
VARCHAR2(3)

	
'XML'

	
Generates the XML version of the report

RESUME_REPLAY Procedure

This procedure resumes a paused workload replay.

Syntax

DBMS_WORKLOAD_REPLAY.RESUME_REPLAY;

Usage Notes

Prerequisite: A call to the PAUSE_REPLAY Procedure must have already been issued.

REUSE_REPLAY_FILTER_SET Procedure

This procedure reuses filters in the specified filter set as if each were added using the ADD_FILTER Procedure. Each call adds one filter set, which is a collection of individual filters on various attributes. Also, a new filter rule can be added, and existing filter can be deleted before invoking the CREATE_FILTER_SET Procedure to create a new filter set.

	
Note:

This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2).

Syntax

DBMS_WORKLOAD_REPLAY.REUSE_REPLAY_FILTER_SET(
 replay_dir IN VARCHAR2,
 filter_set IN VARCHAR2);

Parameters

Table 160-22 REUSE_REPLAY_FILTER_SET Procedure Parameters

	Parameter	Description
	
replay_dir

	
Capture ID of the existing filter set with which it is associated

	
filter_set

	
Name of the filter set to be reused

SET_ADVANCED_PARAMETER Procedure

This procedure sets an advanced parameter for replay besides the ones used with the PREPARE_REPLAY Procedure. The advanced parameters control aspects of the replay that are more specialized. The advanced parameters are reset to their default values after the replay has finished.

Syntax

DBMS_WORKLOAD_REPLAY.SET_ADVANCED_PARAMETER(
 pname IN VARCHAR2,
 pvalue IN VARCHAR2);

DBMS_WORKLOAD_REPLAY.SET_ADVANCED_PARAMETER(
 pname IN VARCHAR2,
 pvalue IN NUMBER);

DBMS_WORKLOAD_REPLAY.SET_ADVANCED_PARAMETER(
 pname IN VARCHAR2,
 pvalue IN BOOLEAN);

Parameters

Table 160-23 SET_ADVANCED_PARAMETER Procedure Parameters

	Parameter	Description
	
pname

	
Name of the parameter (case insensitive)

	
pvalue

	
Value of the parameter

Usage Notes

The current parameters and values that can be used are:

'DO_NO_WAIT_COMMITS': (default: FALSE)

This parameter controls whether the COMMITs issued by replay sessions will be NOWAIT. The default value for this parameter is FALSE. In this case all the COMMITs are issued with the mode they were captured (wait, no-wait, batch, no-batch). If the parameter is set to TRUE, then all COMMITs are issued in no-wait mode. This is useful in cases where the replay is becoming noticeably slow because of a high volume of concurrent COMMITs. Setting the parameter to TRUE will significantly decrease the waits on the 'log file sync' event during the replay with respect to capture.

SET_REPLAY_TIMEOUT Procedure

This procedure sets the replay timeout setting. The purpose is to abort user calls that might make the replay much slower or even cause a replay hang.

	
Note:

This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2).

Syntax

DBMS_WORKLOAD_REPLAY.SET_REPLAY_TIMEOUT (
 enabled OUT BOOLEAN DEFAULT TRUE,
 min_delay OUT NUMBER DEFAULT 10,
 max_delay OUT NUMBER DEFAULT 120,
 delay_factor OUT NUMBER DEFAULT 8);

Parameters

Table 160-24 SET_REPLAY_TIMEOUT Function Parameters

	Parameter	Description
	
enabled

	
TRUE to enable the timeout action, and FALSE to disable. Default = TRUE.

	
min_delay

	
Lower bound of call delay in minutes. The replay action is activated only when the delay is equal to or more than min_delay. Default = 10.

	
max_delay

	
Upper bound of call delay in minutes. The timeout action throws ORA-15569 when the delay is more than max_delay. Default = 120.

	
delay_factor

	
Factor for the call delay that is between min_delay and max_delay. The timeout action throws ORA-15569 when the current replay elapsed time is more than the product of capture elapsed time and delay_factor. Default = 8.

Usage Notes

	
This procedure can be called anytime during replay.

	
Call delay is defined as the difference of call elapsed time between replay and capture if replay elapsed time is longer.

	
Once a replay timeout action is enabled, a user call will exit with ORA-15569 if it has been delayed more than the condition specified by the replay action. The call and its error will be reported as error divergence.

	
Replay timeout operates as follows:

	
The timeout action has no effect if it is not enabled.

	
If the call delay in minutes is less than a lower bound specified by parameter min_delay, then the timeout action is non-operational.

	
If the delay in minutes is more than a upper bound specified by parameter max_delay, the timeout action will abort the user call and throw ORA-15569.

	
For delay that is between the lower bound and upper bound, the user call will abort with ORA-15569 only when the current replay elapsed time is more than the product of capture elapsed time and parameter delay_factor.

START_REPLAY Procedure

This procedure starts the workload replay. All the external replay clients (WRC) that are currently connected to the replay database will automatically be notified and those replay clients (WRC) will begin issuing the captured workload.

Syntax

DBMS_WORKLOAD_REPLAY.START_REPLAY;

Usage Notes

	
Prerequisites:

	
The call to the PREPARE_REPLAY Procedure was already issued.

	
Enough number of external replay clients (WRC) that can faithfully replay the captured workload have already been started. The status of such external replay clients can be monitored using V$WORKLOAD_REPLAY_CLIENTS.

	
Use the WRC's CALIBRATE mode to determine the number of replay clients that might be required to faithfully replay the captured workload. For example:

$ wrc mode=calibrate replaydir=.

USE_FILTER_SET Procedure

This procedure uses the given filter set that has been created by calling the CREATE_FILTER_SET Procedure to filter the current replay.

Syntax

DBMS_WORKLOAD_REPLAY.USE_FILTER_SET(
 filter_set IN VARCHAR2);

Parameters

Table 160-25 USE_FILTER_SET Procedure Parameters

	Parameter	Description
	
filter_set

	
Name of the filter set use in this replay

Usage Notes

This procedure must be called after the replay has been initialized and before it is prepared.

DBMS_WORKLOAD_REPOSITORY

161 DBMS_WORKLOAD_REPOSITORY

The DBMS_WORKLOAD_REPOSITORY package lets you manage the Workload Repository, performing operations such as managing snapshots and baselines.

	
See Also:

Oracle Database Performance Tuning Guide for more information about the "Automatic Workload Repository"

The chapter contains the following topics:

	
Using DBMS_WORKLOAD_REPOSITORY

	
Examples

	
Data Structures

	
Object Types

	
Table Types

	
Summary of DBMS_WORKLOAD_REPOSITORY Subprograms

Using DBMS_WORKLOAD_REPOSITORY

This section contains topics which relate to using the DBMS_WORKLOAD_REPOSITORY package.

	
Examples

Examples

This example shows how to generate an AWR text report with the DBMS_WORKLOAD_REPOSITORY package for database identifier 1557521192, instance id 1, snapshot ids 5390 and 5391 and with default options.

-- make sure to set line size appropriately
-- set linesize 152
SELECT output FROM TABLE(
 DBMS_WORKLOAD_REPOSITORY.AWR_REPORT_TEXT(
 1557521192, 1, 5390, 5392)) ;

You can call the DBMS_WORKLOAD_REPOSITORY packaged functions directly as in the example, but Oracle recommends you use the corresponding supplied SQL script (awrrpt.sql in this case) for the packaged function, which prompts the user for required information.

Data Structures

The DBMS_WORKLOAD_REPOSITORY package defines an object and associated table types.

OBJECT Types

	
AWR_BASELINE_METRIC_TYPE Object Type

TABLE Types

	
AWR_BASELINE_METRIC_TYPE_TABLE Table Type

	
AWRRPT_INSTANCE_LIST_TYPE Table Type

AWR_BASELINE_METRIC_TYPE Object Type

This type shows the values of the metrics corresponding to a baseline.

Syntax

TYPE breakpoint_info AS OBJECT (
 baseline_name VARCHAR2(64),
 dbid NUMBER NOT NULL,
 instance_number NUMBER NOT NULL,
 beg_time DATE NOT NULL,
 end_time DATE NOT NULL,
 metric_id NUMBER NOT NULL,
 metric_name VARCHAR2(64) NOT NULL,
 metric_unit VARCHAR2(64) NOT NULL,
 num_interval NUMBER NOT NULL,
 interval_size NUMBER NOT NULL,
 average NUMBER NOT NULL,
 minimum NUMBER NOT NULL,
 maximum NUMBER NOT NULL);

Fields

Table 161-1 RUNTIME_INFO Fields

	Field	Description
	
baseline_name

	
Name of the Baseline

	
dbid

	
Database ID for the snapshot

	
instance_number

	
Instance number for the snapshot

	
beg_time

	
Begin time of the interval

	
end_time

	
End time of the interval

	
metric_id

	
Metric ID

	
metric_name

	
Metric name

	
metric_unit

	
Unit of measurement

	
num_interval

	
Number of intervals observed

	
interval_size

	
Interval size (in hundredths of a second)

	
average

	
Average over the period

	
minimum

	
Minimum value observed

	
maximum

	
Maximum value observed

AWR_BASELINE_METRIC_TYPE_TABLE Table Type

This type is used by the SELECT_BASELINE_METRICS Function.

Syntax

CREATE TYPE awr_baseline_metric_type_table AS TABLE OF awr_baseline_metric_type;

AWRRPT_INSTANCE_LIST_TYPE Table Type

This type provides an alternative to a comma-separated list.

Syntax

CREATE TYPE awrrpt_instance_list_type AS TABLE OF NUMBER;

Summary of DBMS_WORKLOAD_REPOSITORY Subprograms

Table 161-2 DBMS_WORKLOAD_REPOSITORY Package Subprograms

	Subprogram	Description
	
ADD_COLORED_SQL Procedure

	
Adds a colored SQL ID

	
ASH_GLOBAL_REPORT_HTML Function

	
Displays a global or Oracle Real Application Clusters (Oracle RAC) ASH Spot report in HTML format.

	
ASH_GLOBAL_REPORT_TEXT Function

	
Displays a global or Oracle Real Application Clusters (Oracle RAC) ASH Spot report in Text format.

	
ASH_REPORT_HTML Function

	
Displays the ASH report in HTML

	
ASH_REPORT_TEXT Function

	
Displays the ASH report in text

	
AWR_DIFF_REPORT_HTML Function

	
Displays the AWR Diff-Diff report in HTML

	
AWR_DIFF_REPORT_TEXT Function

	
Displays the AWR Diff-Diff report in text

	
AWR_GLOBAL_DIFF_REPORT_HTML Functions

	
Displays the Global AWR Compare Periods Report in HTML

	
AWR_GLOBAL_DIFF_REPORT_TEXT Functions

	
Displays the Global AWR Compare Periods Report in text

	
AWR_GLOBAL_REPORT_HTML Functions

	
Displays the Global AWR report in HTML

	
AWR_GLOBAL_REPORT_TEXT Functions

	
Displays the Global AWR report in text

	
AWR_REPORT_HTML Function

	
Displays the AWR report in HTML

	
AWR_REPORT_TEXT Function

	
Displays the AWR report in text

	
AWR_SQL_REPORT_HTML Function

	
Displays the AWR SQL Report in HTML format

	
AWR_SQL_REPORT_TEXT Function

	
Displays the AWR SQL Report in text format

	
CREATE_BASELINE Functions & Procedures

	
Creates a single baseline

	
CREATE_BASELINE_TEMPLATE Procedures

	
Creates a baseline template

	
CREATE_SNAPSHOT Function and Procedure

	
Creates a manual snapshot immediately

	
DROP_BASELINE Procedure

	
Drops a range of snapshots

	
DROP_BASELINE_TEMPLATE Procedure

	
Removes a baseline template that is no longer needed

	
DROP_SNAPSHOT_RANGE Procedure

	
Activates service

	
MODIFY_SNAPSHOT_SETTINGS Procedures

	
Modifies the snapshot settings

	
MODIFY_BASELINE_WINDOW_SIZE Procedure

	
Modifies the window size for the Default Moving Window Baseline

	
RENAME_BASELINE Procedure

	
Renames a baseline

	
SELECT_BASELINE_METRICS Function

	
Shows the values of the metrics corresponding to a baseline

ADD_COLORED_SQL Procedure

This procedure adds a colored SQL ID. If an SQL ID is colored, it will be captured in every snapshot, independent of its level of activities (so that it does not have to be a TOP SQL). Capture occurs if the SQL is found in the cursor cache at snapshot time.To uncolor the SQL, invoke the REMOVE_COLORED_SQL Procedure.

Syntax

DBMS_WORKLOAD_REPOSITORY.ASH_REPORT_HTML(
 sql_id IN VARCHAR2,
 dbid IN NUMBER DEFAULT NULL);

Parameters

Table 161-3 ADD_COLORED_SQL Procedure Parameters

	Parameter	Description
	
sql_id

	
13-character external SQL ID

	
dbid

	
Optional dbid, defaults to Local DBID

ASH_GLOBAL_REPORT_HTML Function

This table function displays a global or Oracle Real Application Clusters (Oracle RAC) ASH Spot report in HTML format.

Syntax

DBMS_WORKLOAD_REPOSITORY.ASH_GLOBAL_REPORT_HTML(
 l_dbid IN NUMBER,
 l_inst_num IN VARCHAR2((1023),
 l_btime IN DATE,
 l_etime IN DATE,
 l_options IN NUMBER DEFAULT 0,
 l_slot_width IN NUMBER DEFAULT 0,
 l_sid IN NUMBER DEFAULT NULL,
 l_sql_id IN VARCHAR2 DEFAULT NULL,
 l_wait_class IN VARCHAR2 DEFAULT NULL,
 l_service_hash IN NUMBER DEFAULT NULL,
 l_module IN VARCHAR2 DEFAULT NULL,
 l_action IN VARCHAR2 DEFAULT NULL,
 l_client_id IN VARCHAR2 DEFAULT NULL,
 l_plsql_entry IN VARCHAR2 DEFAULT NULL,
 l_data_src IN NUMBER DEFAULT 0)
 RETURN awrrpt_html_type_table PIPELINED;

Parameters

Table 161-4 ASH_GLOBAL_REPORT_HTML Parameters

	Parameter	Description
	
l_dbid

	
Database identifier

	
l_inst_num

	
List of instances (such as '1,2,3'), or NULL to report on all instances in the database

	
l_btime

	
The 'begin time'

	
l_etime

	
The 'end time'

	
l_options

	
Report level (currently not used)

	
l_slot_width

	
Specifies (in seconds) how wide the slots used in the "Top Activity" section of the report should be. This argument is optional, and if it is not specified the time interval between l_btime and l_etime is appropriately split into not more than 10 slots.

	
l_sid

	
Session ID (see Usage Notes)

	
l_sql_id

	
SQL ID (see Usage Notes)

	
l_wait_class

	
Wait class name (see Usage Notes)

	
l_service_hash

	
Service name hash (see Usage Notes)

	
l_module

	
Module name (see Usage Notes)

	
l_action

	
Action name (see Usage Notes)

	
l_client_id

	
Client ID for end-to-end backtracing (see Usage Notes)

	
l_plsql_entry

	
PL/SQL entry point (see Usage Notes)

	
l_data_src

	
Ignored since the report works off of data on disk only

Return Values

The output will be one column of VARCHAR2(1500).

Usage Notes

	
You can call the function directly but Oracle recommends you use the ashrpti.sql script which prompts users for the required information.

	
The unspecified optional arguments are used to generate an ASH Reports that specify 'report targets' such as a SQL statement, or a session, or a particular Service/Module combination. These arguments are specified to restrict the ASH rows that would be used to generate the report. For example, to generate an ASH report on a particular SQL statement, such as SQL_ID 'abcdefghij123 ' pass that sql_id value to the l_sql_id argument:

l_sql_id => 'abcdefghij123'

Any combination of those optional arguments can be passed in, and only rows in ASH that satisfy all of those 'report targets' will be used. If multiple 'report targets' are specified, AND conditional logic is used to connect them. For example, to generate an ASH report on MODULE "PAYROLL" and ACTION "PROCESS", use the following predicate:

l_module => 'PAYROLL', l_action => 'PROCESS'

Valid SQL wildcards can be used in all the arguments that are of type VARCHAR2.

Table 161-5 ASH_GLOBAL_REPORT_HTML: Wildcards Allowed (or Not) in Arguments

	Argument Name	Comment	Wildcard Allowed
	
l_sid

	
Session ID (for example, V$SESSION.SID)

	
No

	
l_sql_id

	
SQL ID (for example, V$SQL.SQL_ID)

	
Yes

	
l_wait_class

	
Wait class name (for example, V$EVENT_NAME.WAIT_CLASS)

	
Yes

	
l_service_hash

	
Service name hash (for example, V$ACTIVE_SERVICES.NAME_HASH)

	
No

	
l_module

	
Module name (for example, V$SESSION.MODULE)

	
Yes

	
l_action

	
Action name (for example, V$SESSION.ACTION)

	
Yes

	
l_client_id

	
Client ID for end-to-end backtracing (for example, V$SESSION.CLIENT_IDENTIFIER)

	
Yes

	
l_data_src

	
Wildcards are not allowed for l_data_src as it is of numeric datatype

	
No

ASH_GLOBAL_REPORT_TEXT Function

This table function Displays a global or Oracle Real Application Clusters (Oracle RAC) ASH Spot report in Text format.

Syntax

DBMS_WORKLOAD_REPOSITORY.ASH_GLOBAL_REPORT_TEXT(
 l_dbid IN VARCHAR2(1023),
 l_inst_num IN NUMBER,
 l_btime IN DATE,
 l_etime IN DATE,
 l_options IN NUMBER DEFAULT 0,
 l_slot_width IN NUMBER DEFAULT 0,
 l_sid IN NUMBER DEFAULT NULL,
 l_sql_id IN VARCHAR2 DEFAULT NULL,
 l_wait_class IN VARCHAR2 DEFAULT NULL,
 l_service_hash IN NUMBER DEFAULT NULL,
 l_module IN VARCHAR2 DEFAULT NULL,
 l_action IN VARCHAR2 DEFAULT NULL,
 l_client_id IN VARCHAR2 DEFAULT NULL,
 l_plsql_entry IN VARCHAR2 DEFAULT NULL,
 l_data_src IN NUMBER DEFAULT 0)
 RETURN awrrpt_text_type_table PIPELINED;

Parameters

Table 161-6 ASH_GLOBAL_REPORT_TEXT Parameters

	Parameter	Description
	
l_dbid

	
Database identifier

	
l_inst_num

	
List of instances (such as '1,2,3'), or NULL to report on all instances in the database

	
l_btime

	
The 'begin time'

	
l_etime

	
The 'end time'

	
l_options

	
Report level (currently not used)

	
l_slot_width

	
Specifies (in seconds) how wide the slots used in the "Top Activity" section of the report should be. This argument is optional, and if it is not specified the time interval between l_btime and l_etime is appropriately split into not more than 10 slots.

	
l_sid

	
Session ID (see Usage Notes)

	
l_sql_id

	
SQL ID (see Usage Notes)

	
l_wait_class

	
Wait class name (see Usage Notes)

	
l_service_hash

	
Service name hash (see Usage Notes)

	
l_module

	
Module name (see Usage Notes)

	
l_action

	
Action name (see Usage Notes)

	
l_client_id

	
Client ID for end-to-end backtracing (see Usage Notes)

	
l_plsql_entry

	
PL/SQL entry point (see Usage Notes)

	
l_data_src

	
Ignored since the report works off of data on disk only

Return Values

The output will be one column of VARCHAR2(320).

Usage Notes

	
You can call the function directly but Oracle recommends you use the ashrpti.sql script which prompts users for the required information.

	
The unspecified optional arguments are used to generate an ASH Reports that specify 'report targets' such as a SQL statement, or a session, or a particular Service/Module combination. These arguments are specified to restrict the ASH rows that would be used to generate the report. For example, to generate an ASH report on a particular SQL statement, such as SQL_ID 'abcdefghij123 ' pass that sql_id value to the l_sql_id argument:

l_sql_id => 'abcdefghij123'

Table 161-7 ASH_GLOBAL_REPORT_TEXT: Wildcards Allowed (or Not) in Arguments

	Argument Name	Comment	Wildcard Allowed
	
l_sid

	
Session ID (for example, V$SESSION.SID)

	
No

	
l_sql_id

	
SQL ID (for example, V$SQL.SQL_ID)

	
Yes

	
l_wait_class

	
Wait class name (for example, V$EVENT_NAME.WAIT_CLASS)

	
Yes

	
l_service_hash

	
Service name hash (for example, V$ACTIVE_SERVICES.NAME_HASH)

	
No

	
l_module

	
Module name (for example, V$SESSION.MODULE)

	
Yes

	
l_action

	
Action name (for example, V$SESSION.ACTION)

	
Yes

	
l_client_id

	
Client ID for end-to-end backtracing (for example, V$SESSION.CLIENT_IDENTIFIER)

	
Yes

	
l_plsql_entry

	
PL/SQL entry point (for example, "SYS.DBMS_LOB.*")

	
Yes

	
l_data_src

	
Wildcards are not allowed for l_data_src as it is of numeric datatype

	
No

	
Any combination of those optional arguments can be passed in, and only rows in ASH that satisfy all of those 'report targets' will be used. If multiple 'report targets' are specified, AND conditional logic is used to connect them. For example, to generate an ASH report on MODULE "PAYROLL" and ACTION "PROCESS", use the following predicate:

l_module => 'PAYROLL', l_action => 'PROCESS'

Valid SQL wildcards can be used in all the arguments that are of type VARCHAR2.

ASH_REPORT_HTML Function

This table function displays the ASH Spot report in HTML.

Syntax

DBMS_WORKLOAD_REPOSITORY.ASH_REPORT_HTML(
 l_dbid IN NUMBER,
 l_inst_num IN NUMBER,
 l_btime IN DATE,
 l_etime IN DATE,
 l_options IN NUMBER DEFAULT 0,
 l_slot_width IN NUMBER DEFAULT 0,
 l_sid IN NUMBER DEFAULT NULL,
 l_sql_id IN VARCHAR2 DEFAULT NULL,
 l_wait_class IN VARCHAR2 DEFAULT NULL,
 l_service_hash IN NUMBER DEFAULT NULL,
 l_module IN VARCHAR2 DEFAULT NULL,
 l_action IN VARCHAR2 DEFAULT NULL,
 l_client_id IN VARCHAR2 DEFAULT NULL,
 l_plsql_entry IN VARCHAR2 DEFAULT NULL,
 l_data_src IN NUMBER DEFAULT 0)
 RETURN awrrpt_html_type_table PIPELINED;

Parameters

Table 161-8 ASH_REPORT_HTML Parameters

	Parameter	Description
	
l_dbid

	
Database identifier

	
l_inst_num

	
Instance number

	
l_btime

	
The 'begin time'

	
l_etime

	
The 'end time'

	
l_options

	
Report level (currently not used)

	
l_slot_width

	
Specifies (in seconds) how wide the slots used in the "Top Activity" section of the report should be. This argument is optional, and if it is not specified the time interval between l_btime and l_etime is appropriately split into not more than 10 slots.

	
l_sid

	
Session ID (see Usage Notes)

	
l_sql_id

	
SQL ID (see Usage Notes)

	
l_wait_class

	
Wait class name (see Usage Notes)

	
l_service_hash

	
Service name hash (see Usage Notes)

	
l_module

	
Module name (see Usage Notes)

	
l_action

	
Action name (see Usage Notes)

	
l_client_id

	
Client ID for end-to-end backtracing (see Usage Notes)

	
l_plsql_entry

	
PL/SQL entry point (see Usage Notes)

	
l_data_src

	
Can be used to specify a data source (see Usage Notes)

	
1 => memory (V$ACTIVE_SESION_HISTORY)

	
2 => disk (DBA_HIST_ACTIVE_SESS_HISTORY)

	
0 => both. This is the default value. Here, the begin and end time parameters are used to get the samples from the appropriate data source, which can be memory, disk, or both.

Return Values

The output will be one column of VARCHAR2(500).

Usage Notes

	
You can call the function directly but Oracle recommends you use the ashrpti.sql script which prompts users for the required information.

	
The unspecified optional arguments are used to generate an ASH Reports that specify 'report targets' such as a SQL statement, or a session, or a particular Service/Module combination. These arguments are specified to restrict the ASH rows that would be used to generate the report. For example, to generate an ASH report on a particular SQL statement, such as SQL_ID 'abcdefghij123 ' pass that sql_id value to the l_sql_id argument:

l_sql_id => 'abcdefghij123'

Any combination of those optional arguments can be passed in, and only rows in ASH that satisfy all of those 'report targets' will be used. If multiple 'report targets' are specified, AND conditional logic is used to connect them. For example, to generate an ASH report on MODULE "PAYROLL" and ACTION "PROCESS", use the following predicate:

l_module => 'PAYROLL', l_action => 'PROCESS'

Valid SQL wildcards can be used in all the arguments that are of type VARCHAR2.

Table 161-9 ASH_REPORT_HTML: Wildcards Allowed (or Not) in Arguments

	Argument Name	Comment	Wildcard Allowed
	
l_sid

	
Session ID (for example, V$SESSION.SID)

	
No

	
l_sql_id

	
SQL ID (for example, V$SQL.SQL_ID)

	
Yes

	
l_wait_class

	
Wait class name (for example, V$EVENT_NAME.WAIT_CLASS)

	
Yes

	
l_service_hash

	
Service name hash (for example, V$ACTIVE_SERVICES.NAME_HASH)

	
No

	
l_module

	
Module name (for example, V$SESSION.MODULE)

	
Yes

	
l_action

	
Action name (for example, V$SESSION.ACTION)

	
Yes

	
l_client_id

	
Client ID for end-to-end backtracing (for example, V$SESSION.CLIENT_IDENTIFIER)

	
Yes

	
l_data_src

	
Wildcards are not allowed for l_data_src as it is of numeric datatype

	
No

ASH_REPORT_TEXT Function

This table function displays the ASH Spot report in text.

Syntax

DBMS_WORKLOAD_REPOSITORY.ASH_REPORT_TEXT(
 l_dbid IN NUMBER,
 l_inst_num IN NUMBER,
 l_btime IN DATE,
 l_etime IN DATE,
 l_options IN NUMBER DEFAULT 0,
 l_slot_width IN NUMBER DEFAULT 0,
 l_sid IN NUMBER DEFAULT NULL,
 l_sql_id IN VARCHAR2 DEFAULT NULL,
 l_wait_class IN VARCHAR2 DEFAULT NULL,
 l_service_hash IN NUMBER DEFAULT NULL,
 l_module IN VARCHAR2 DEFAULT NULL,
 l_action IN VARCHAR2 DEFAULT NULL,
 l_client_id IN VARCHAR2 DEFAULT NULL,
 l_plsql_entry IN VARCHAR2 DEFAULT NULL,
 l_data_src IN NUMBER DEFAULT 0)
 RETURN awrrpt_text_type_table PIPELINED;

Parameters

Table 161-10 ASH_REPORT_TEXT Parameters

	Parameter	Description
	
l_dbid

	
Database identifier

	
l_inst_num

	
Instance number

	
l_btime

	
The 'begin time'

	
l_etime

	
The 'end time'

	
l_options

	
Report level (currently not used)

	
l_slot_width

	
Specifies (in seconds) how wide the slots used in the "Top Activity" section of the report should be. This argument is optional, and if it is not specified the time interval between l_btime and l_etime is appropriately split into not more than 10 slots.

	
l_sid

	
Session ID (see Usage Notes)

	
l_sql_id

	
SQL ID (see Usage Notes)

	
l_wait_class

	
Wait class name (see Usage Notes)

	
l_service_hash

	
Service name hash (see Usage Notes)

	
l_module

	
Module name (see Usage Notes)

	
l_action

	
Action name (see Usage Notes)

	
l_client_id

	
Client ID for end-to-end backtracing (see Usage Notes)

	
l_plsql_entry

	
PL/SQL entry point (see Usage Notes)

	
l_data_src

	
Can be used to specify a data source (see Usage Notes)

	
1 => memory (V$ACTIVE_SESION_HISTORY)

	
2 => disk (DBA_HIST_ACTIVE_SESS_HISTORY)

	
0 => both. This is the default value. Here, the begin and end time parameters are used to get the samples from the appropriate data source, which can be memory, disk, or both.

Return Values

The output will be one column of VARCHAR2(80).

Usage Notes

	
You can call the function directly but Oracle recommends you use the ashrpti.sql script which prompts users for the required information.

	
By default, the report uses the begin and end time parameters (l_btime and l_etime, respectively) to find all rows in that time range either from memory, or disk, or both. However, using l_data_src, one can explicitly specify one of those data sources. For example, to generate an ASH report on all rows between l_btime and l_time found in memory, use

l_data_src => 1

Similarly, to generate a report on samples found only on disk, use

l_data_src => 2

	
The unspecified optional arguments are used to generate an ASH Reports that specify 'report targets' such as a SQL statement, or a session, or a particular Service/Module combination. These arguments are specified to restrict the ASH rows that would be used to generate the report. For example, to generate an ASH report on a particular SQL statement, such as SQL_ID 'abcdefghij123 ' pass that sql_id value to the l_sql_id argument:

l_sql_id => 'abcdefghij123'

Table 161-11 ASH_REPORT_TEXT: Wildcards Allowed (or Not) in Arguments

	Argument Name	Comment	Wildcard Allowed
	
l_sid

	
Session ID (for example, V$SESSION.SID)

	
No

	
l_sql_id

	
SQL ID (for example, V$SQL.SQL_ID)

	
Yes

	
l_wait_class

	
Wait class name (for example, V$EVENT_NAME.WAIT_CLASS)

	
Yes

	
l_service_hash

	
Service name hash (for example, V$ACTIVE_SERVICES.NAME_HASH)

	
No

	
l_module

	
Module name (for example, V$SESSION.MODULE)

	
Yes

	
l_action

	
Action name (for example, V$SESSION.ACTION)

	
Yes

	
l_client_id

	
Client ID for end-to-end backtracing (for example, V$SESSION.CLIENT_IDENTIFIER)

	
Yes

	
l_plsql_entry

	
PL/SQL entry point (for example, "SYS.DBMS_LOB.*")

	
Yes

	
l_data_src

	
Wildcards are not allowed for l_data_src as it is of numeric datatype

	
No

	
Any combination of those optional arguments can be passed in, and only rows in ASH that satisfy all of those 'report targets' will be used. If multiple 'report targets' are specified, AND conditional logic is used to connect them. For example, to generate an ASH report on MODULE "PAYROLL" and ACTION "PROCESS", use the following predicate:

l_module => 'PAYROLL', l_action => 'PROCESS'

Valid SQL wildcards can be used in all the arguments that are of type VARCHAR2.

AWR_DIFF_REPORT_HTML Function

This table function displays the AWR Compare Periods report in HTML.

Syntax

DBMS_WORKLOAD_REPOSITORY.AWR_DIFF_REPORT_HTML(
 dbid1 IN NUMBER,
 inst_num1 IN NUMBER,
 bid1 IN NUMBER,
 eid1 IN NUMBER,
 dbid2 IN NUMBER,
 inst_num2 IN NUMBER,
 bid2 IN NUMBER,
 eid2 IN NUMBER)
 RETURN awrdrpt_text_type_table PIPELINED;

Parameters

Table 161-12 AWR_DIFF_REPORT_HTML Parameters

	Parameter	Description
	
dbid1

	
1st database identifier

	
inst_num1

	
1st instance number

	
bid1

	
1st 'Begin Snapshot' ID

	
eid1

	
1st 'End Snapshot' ID

	
dbid2

	
2nd database identifier

	
inst_num2

	
2nd instance number

	
bid2

	
2nd 'Begin Snapshot' ID

	
eid2

	
2nd 'End Snapshot' ID

Return Values

The output will be one column of VARCHAR2(500).

Usage Notes

You can call the function directly but Oracle recommends you use the awrddrpt.sql script which prompts users for the required information.

AWR_DIFF_REPORT_TEXT Function

This table function displays the AWR Compare Periods report in text.

Syntax

DBMS_WORKLOAD_REPOSITORY.AWR_DIFF_REPORT_TEXT(
 dbid1 IN NUMBER,
 inst_num1 IN NUMBER,
 bid1 IN NUMBER,
 eid1 IN NUMBER,
 dbid2 IN NUMBER,
 inst_num2 IN NUMBER,
 bid2 IN NUMBER,
 eid2 IN NUMBER)
 RETURN awrdrpt_text_type_table PIPELINED;

Parameters

Table 161-13 AWR_DIFF_REPORT_TEXT Parameters

	Parameter	Description
	
dbid1

	
1st database identifier

	
inst_num1

	
1st instance number

	
bid1

	
1st 'Begin Snapshot' ID

	
eid1

	
1st 'End Snapshot' ID

	
dbid2

	
2nd database identifier

	
inst_num2

	
2nd instance number

	
bid2

	
2nd 'Begin Snapshot' ID

	
eid2

	
2nd 'End Snapshot' ID

Return Values

The output will be one column of VARCHAR2(500).

Usage Notes

You can call the function directly but Oracle recommends you use the awrddrpt.sql script which prompts users for the required information.

AWR_GLOBAL_DIFF_REPORT_HTML Functions

This table function displays Global AWR Compare Periods Report in HTML format.

The first overload accepts comma-separated lists of instance numbers for inst_num1 and inst_num2. No leading zeroes are allowed and there is a limit of 1023 characters.

Syntax

DBMS_WORKLOAD_REPOSITORY.AWR_GLOBAL_DIFF_REPORT_HTML (
 dbid1 IN NUMBER,
 inst_num1 IN AWRRPT_INSTANCE_LIST_TYPE,
 bid1 IN NUMBER,
 eid1 IN NUMBER,
 dbid2 IN NUMBER,
 inst_num2 IN AWRRPT_INSTANCE_LIST_TYPE,
 bid2 IN NUMBER,
 eid2 IN NUMBER)
 RETURN awrrpt_html_type_table PIPELINED;

DBMS_WORKLOAD_REPOSITORY.AWR_GLOBAL_DIFF_REPORT_HTML (
 dbid1 IN NUMBER,
 inst_num1 IN VARCHAR2,
 bid1 IN NUMBER,
 eid1 IN NUMBER,
 dbid2 IN NUMBER,
 inst_num2 IN VARCHAR2,
 bid2 IN NUMBER,
 eid2 IN NUMBER)
 RETURN awrrpt_html_type_table PIPELINED;

Parameters

Table 161-14 AWR_GLOBAL_DIFF_REPORT_HTML Function Parameters

	Parameter	Description
	
dbid1

	
1st database identifier

	
inst_num1

	
1st list of instance numbers. If set to NULL, all instances for which begin and end snapshots are available, and which have not been restarted between snapshots, will be included in the report.

	
bid1

	
1st Begin Snap ID

	
eid1

	
1st End Snapshot ID

	
dbid2

	
2nd database identifier

	
inst_num2

	
2nd list of instance numbers to be included in report. If set to NULL, all instances for which begin and end snapshots are available, and which have not been restarted between snapshots, will be included in the report.

	
bid2

	
2nd Begin Snap ID

	
eid2

	
2nd End Snapshot ID

Return Values

The output will be one column of VARCHAR2(1500).

AWR_GLOBAL_DIFF_REPORT_TEXT Functions

This table function displays Global AWR Compare Periods Report in text format.

The first overload accepts comma-separated lists of instance numbers for inst_num1 and inst_num2. No leading zeroes are allowed and there is a limit of 1023 characters.

Syntax

DBMS_WORKLOAD_REPOSITORY.AWR_GLOBAL_DIFF_REPORT_TEXT (
 dbid1 IN NUMBER,
 inst_num1 IN AWRRPT_INSTANCE_LIST_TYPE,
 bid1 IN NUMBER,
 eid1 IN NUMBER,
 dbid2 IN NUMBER,
 inst_num2 IN AWRRPT_INSTANCE_LIST_TYPE,
 bid2 IN NUMBER,
 eid2 IN NUMBER)
 RETURN awrdrpt_text_type_table PIPELINED;

DBMS_WORKLOAD_REPOSITORY.AWR_GLOBAL_DIFF_REPORT_TEXT (
 dbid1 IN NUMBER,
 inst_num1 IN VARCHAR2,
 bid1 IN NUMBER,
 eid1 IN NUMBER,
 dbid2 IN NUMBER,
 inst_num2 IN VARCHAR2,
 bid2 IN NUMBER,
 eid2 IN NUMBER)
 RETURN awrdrpt_text_type_table PIPELINED;

Parameters

Table 161-15 AWR_GLOBAL_DIFF_REPORT_TEXT Functions Parameters

	Parameter	Description
	
dbid1

	
1st database identifier

	
inst_num1

	
1st list of instance numbers. If set to NULL, all instances for which begin and end snapshots are available, and which have not been restarted between snapshots, will be included in the report.

	
bid1

	
1st Begin Snap ID

	
eid1

	
1st End Snapshot ID

	
dbid2

	
2nd database identifier

	
inst_num2

	
2nd list of instance numbers to be included in report. If set to NULL, all instances for which begin and end snapshots are available, and which have not been restarted between snapshots, will be included in the report.

	
bid2

	
2nd Begin Snap ID

	
eid2

	
2nd End Snapshot ID

Return Values

The output will be one column of VARCHAR2(320).

AWR_GLOBAL_REPORT_HTML Functions

This table function displays the Global AWR report in HTML.

The first overload accepts a comma-separated list of instance numbers. No leading zeroes are allowed and there is a limit of 1023 characters.

Syntax

DBMS_WORKLOAD_REPOSITORY.AWR_GLOBAL_REPORT_HTML (
 l_dbid IN NUMBER,
 l_inst_num IN AWRRPT_INSTANCE_LIST_TYPE, l_bid IN NUMBER,
 l_eid IN NUMBER,
 l_options IN NUMBER DEFAULT 0)
 RETURN awrrpt_html_type_table PIPELINED;

DBMS_WORKLOAD_REPOSITORY.AWR_GLOBAL_REPORT_HTML (
 l_dbid IN NUMBER,
 l_inst_num IN VARCHAR2, l_bid IN NUMBER,
 l_eid IN NUMBER,
 l_options IN NUMBER DEFAULT 0)
 RETURN awrrpt_html_type_table PIPELINED;

Parameters

Table 161-16 AWR_GLOBAL_REPORT_HTML Function Parameters

	Parameter	Description
	
l_dbid

	
Database identifier

	
l_inst_num

	
List of instance numbers to be included in report. If set to NULL, all instances for which begin and end snapshots are available, and which have not been restarted between snapshots, will be included in the report.

	
l_bid

	
Begin Snap ID

	
l_eid

	
End Snapshot ID

	
l_options

	

Return Values

The output will be one column of VARCHAR2(1500).

AWR_GLOBAL_REPORT_TEXT Functions

This table function displays the Global AWR report in text.

The first overload accepts a comma-separated list of instance numbers. No leading zeroes are allowed and there is a limit of 1023 characters

Syntax

DBMS_WORKLOAD_REPOSITORY.AWR_GLOBAL_REPORT_TEXT(
 l_dbid IN NUMBER,
 l_inst_num IN AWRRPT_INSTANCE_LIST_TYPE,
 l_bid IN NUMBER,
 l_eid IN NUMBER,
 l_options IN NUMBER DEFAULT 0)
 RETURN awrdrpt_text_type_table PIPELINED;

DBMS_WORKLOAD_REPOSITORY.AWR_GLOBAL_REPORT_TEXT(
 l_dbid IN NUMBER,
 l_inst_num IN VARCHAR2,
 l_bid IN NUMBER,
 l_eid IN NUMBER,
 l_options IN NUMBER DEFAULT 0)
 RETURN awrdrpt_text_type_table PIPELINED;

Parameters

Table 161-17 AWR_GLOBAL_REPORT_TEXT Function Parameters

	Parameter	Description
	
l_dbid

	
Database identifier

	
l_inst_num

	
List of instance numbers to be included in report. If set to NULL, all instances for which begin and end snapshots are available, and which have not been restarted between snapshots, will be included in the report.

	
l_bid

	
Begin Snap ID

	
l_eid

	
End Snapshot ID

	
l_options

	
A flag to specify to control the output of the report. Currently, not used.

Return Values

The output will be one column of VARCHAR2(320).

AWR_REPORT_HTML Function

This table function displays the AWR report in HTML.

Syntax

DBMS_WORKLOAD_REPOSITORY.AWR_REPORT_HTML(
 l_dbid IN NUMBER,
 l_inst_num IN NUMBER,
 l_bid IN NUMBER,
 l_eid IN NUMBER,
 l_options IN NUMBER DEFAULT 0)
 RETURN awrrpt_text_type_table PIPELINED;

Parameters

Table 161-18 AWR_REPORT_HTML Parameters

	Parameter	Description
	
l_dbid

	
Database identifier

	
l_inst_num

	
Instance number

	
l_bid

	
The 'Begin Snapshot' ID

	
l_eid

	
The 'End Snapshot' ID

	
l_options

	
A flag to specify to control the output of the report. Currently, Oracle supports one value:

	
l_options - 8. Displays the ADDM specific portions of the report. These sections include the Buffer Pool Advice, Shared Pool Advice, and PGA Target Advice.

Return Values

The output will be one column of VARCHAR2(1500).

Usage Notes

You can call the function directly but Oracle recommends you use the awrrpt.sql script which prompts users for the required information.

AWR_REPORT_TEXT Function

This table function displays the AWR report in text.

Syntax

DBMS_WORKLOAD_REPOSITORY.AWR_REPORT_TEXT(
 l_dbid IN NUMBER,
 l_inst_num IN NUMBER,
 l_bid IN NUMBER,
 l_eid IN NUMBER,
 l_options IN NUMBER DEFAULT 0)
 RETURN awrrpt_text_type_table PIPELINED;

Parameters

Table 161-19 AWR_REPORT_TEXT Parameters

	Parameter	Description
	
l_dbid

	
Database identifier

	
l_insT_num

	
Instance number

	
l_bid

	
The 'Begin Snapshot' ID

	
l_eid

	
The 'End Snapshot' ID

	
l_options

	
A flag to specify to control the output of the report. Currently, Oracle supports one value:

	
l_options - 8. Displays the ADDM specific portions of the report. These sections include the Buffer Pool Advice, Shared Pool Advice, and PGA Target Advice.

Return Values

The output will be one column of VARCHAR2(80).

Usage Notes

You can call the function directly but Oracle recommends you use the awrrpt.sql script which prompts users for the required information.

AWR_SQL_REPORT_HTML Function

This table function displays the AWR SQL Report in HTML format.

Syntax

DBMS_WORKLOAD_REPOSITORY.AWR_SQL_REPORT_HTML(
 l_dbid IN NUMBER,
 l_inst_num IN NUMBER,
 l_bid IN NUMBER,
 l_eid IN NUMBER,
 l_sqlid IN VARCHAR2,
 l_options IN NUMBER DEFAULT 0)
 RETURN awrrpt_html_type_table PIPELINED;

Parameters

Table 161-20 AWR_SQL_REPORT_HTML Parameters

	Parameter	Description
	
l_dbid

	
Database identifier

	
l_inst_num

	
Instance number

	
l_bid

	
The 'Begin Snapshot' ID

	
l_eid

	
The 'End Snapshot' ID

	
l_sqlid

	
SQL ID of statement to be analyzed

	
l_options

	
A flag to specify to control the output of the report. Currently, not used.

Return Values

The output will be one column of VARCHAR2(500).

Usage Notes

You can call the function directly but Oracle recommends you use the awrsqrpt.sql script which prompts users for the required information.

AWR_SQL_REPORT_TEXT Function

This table function displays the AWR SQL Report in text format.

Syntax

DBMS_WORKLOAD_REPOSITORY.AWR_SQL_REPORT_TEXT(
 l_dbid IN NUMBER,
 l_inst_num IN NUMBER,
 l_bid IN NUMBER,
 l_eid IN NUMBER,
 l_sqlid IN VARCHAR2,
 l_options IN NUMBER DEFAULT 0)
 RETURN awrrpt_text_type_table PIPELINED;

Parameters

Table 161-21 AWR_SQL_REPORT_TEXT Parameters

	Parameter	Description
	
l_dbid

	
Database identifier

	
l_inst_num

	
Instance number

	
l_bid

	
The 'Begin Snapshot' ID

	
l_eid

	
The 'End Snapshot' ID

	
l_sqlid

	
SQL ID of statement to be analyzed

	
l_options

	
Flag to specify to control the output of the report. Currently, not used.

Return Values

The output will be one column of VARCHAR2(120).

Usage Notes

You can call the function directly but Oracle recommends you use the awrsqrpt.sql script which prompts users for the required information.

CREATE_BASELINE Functions & Procedures

This function and procedure creates a baseline.

Syntax

DBMS_WORKLOAD_REPOSITORY.CREATE_BASELINE(
 start_snap_id IN NUMBER,
 end_snap_id IN NUMBER,
 baseline_name IN VARCHAR2,
 dbid IN NUMBER DEFAULT NULL,
 expiration IN NUMBER DEFAULT NULL);

DBMS_WORKLOAD_REPOSITORY.CREATE_BASELINE(
 start_snap_id IN NUMBER,
 end_snap_id IN NUMBER,
 baseline_name IN VARCHAR2,
 dbid IN NUMBER DEFAULT NULL,
 expiration IN NUMBER DEFAULT NULL)
 RETURN NUMBER;

DBMS_WORKLOAD_REPOSITORY.CREATE_BASELINE(
 start_time IN DATE,
 end_time IN DATE,
 baseline_name IN VARCHAR2,
 dbid IN NUMBER DEFAULT NULL,
 expiration IN NUMBER DEFAULT NULL);

DBMS_WORKLOAD_REPOSITORY.CREATE_BASELINE(
 start_time IN DATE,
 end_time IN DATE,
 baseline_name IN VARCHAR2,
 dbid IN NUMBER DEFAULT NULL,
 expiration IN NUMBER DEFAULT NULL);
 RETURN NUMBER;

Parameters

Table 161-22 CREATE_BASELINE Function & Procedure Parameters

	Parameter	Description
	
start_snap_id

	
Start snapshot sequence number for the baseline'

	
end_snap_id

	
End snapshot sequence number for the baseline

	
start_time

	
Start time for the baseline'

	
end_time

	
End time for the baseline

	
baseline_name

	
Name of baseline.

	
dbid

	
Database Identifier for baseline. If NULL, this takes the database identifier for the local database. Defaults to NULL.

	
expiration

	
Expiration in number of days for the baseline. If NULL, then expiration is infinite, meaning do not drop baseline ever. Defaults to NULL.

Exceptions

	
An error will be returned if this baseline name already exists in the system.

	
The snapshot range that is specified for this interface must be an existing pair of snapshots in the database. An error will be returned if the inputted snapshots do not exist in the system.

Examples

This example creates a baseline (named 'oltp_peakload_bl') between snapshots 105 and 107 for the local database:

EXECUTE DBMS_WORKLOAD_REPOSITORY.CREATE_BASELINE (start_snap_id => 105,
end_snap_id => 107,
baseline_name => 'oltp_peakload_bl');

If you query the DBA_HIST_BASELINE view after the CREATE BASELINE action, you will see the newly created baseline in the Workload Repository.

CREATE_BASELINE_TEMPLATE Procedures

This procedure specifies a template for how they would like baselines to be created for future time periods.

Syntax

Specifies a template for generating a baseline for a single time period in the future.

DBMS_WORKLOAD_REPOSITORY.CREATE_BASELINE_TEMPLATE(
 start_time IN DATE,
 end_time IN DATE,
 baseline_name IN VARCHAR2,
 template_name IN VARCHAR2,
 expiration IN NUMBER,
 dbid IN NUMBER DEFAULT NULL);

Specifies a template for creating and dropping baseline based on repeating time periods:

DBMS_WORKLOAD_REPOSITORY.CREATE_BASELINE_TEMPLATE(
 day_of_week IN VARCHAR2,
 hour_in_day IN NUMBER,
 duration IN NUMBER,
 start_time IN DATE,
 end_time IN DATE,
 baseline_name_prefix IN VARCHAR2,
 template_name IN VARCHAR2,
 expiration IN NUMBER,
 dbid IN NUMBER DEFAULT NULL);

Parameters

Table 161-23 CREATE_BASELINE_TEMPLATE Procedure Parameters

	Parameter	Description
	
start_time

	
Start Time for the baseline to be created'

	
end_time

	
End Time for the baseline to be created

	
baseline_name

	
Name of baseline to be created

	
template_name

	
Name for the template

	
expiration

	
Expiration in number of days for the baseline. If NULL, then expiration is infinite, meaning do not drop baseline ever. Defaults to NULL

	
dbid

	
Database Identifier for baseline. If NULL, this takes the database identifier for the local database. Defaults to NULL.

	
day_of_week

	
Day of week that the baseline should repeat on. Specify one of the following values: SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY.

	
hour_in_day

	
Value of 0-23 to specify the Hour in the Day the baseline should start

	
duration

	
Duration (in number of hours) after hour in the day that the baseline should last

	
baseline_name_prefix

	
Name for baseline prefix. When creating the baseline, the name of the baseline will be the prefix appended with the date information.

CREATE_SNAPSHOT Function and Procedure

This function and procedure create snapshots. In the case of the function, the snapshot ID is returned.

Syntax

DBMS_WORKLOAD_REPOSITORY.CREATE_SNAPSHOT(
 flush_level IN VARCHAR2 DEFAULT 'TYPICAL');

DBMS_WORKLOAD_REPOSITORY.CREATE_SNAPSHOT(
 flush_level IN VARCHAR2 DEFAULT 'TYPICAL')
 RETURN NUMBER;

Parameters

Table 161-24 CREATE_SNAPSHOT Parameters

	Parameter	Description
	
flush_level

	
Flush level for the snapshot is either 'TYPICAL' or 'ALL'

Examples

This example creates a manual snapshot at the TYPICAL level:

EXECUTE DBMS_WORKLOAD_REPOSITORY.CREATE_SNAPSHOT();

If you query the DBA_HIST_SNAPSHOT view after the CREATE_SNAPSHOT action, you will see one more snapshot ID added to the Workload Repository.

DROP_BASELINE Procedure

This procedure drops a baseline.

Syntax

DBMS_WORKLOAD_REPOSITORY.DROP_BASELINE(
 baseline_name IN VARCHAR2,
 cascade IN BOOLEAN DEFAULT FALSE,
 dbid IN NUMBER DEFAULT NULL);

Parameters

Table 161-25 DROP_BASELINE Parameters

	Parameter	Description
	
baseline_name

	
Name of baseline to drop from the system

	
cascade

	
If TRUE, the pair of snapshots associated with the baseline will also be dropped. Otherwise, only the baseline is removed.

	
dbid

	
Database Identifier for baseline. If NULL, this takes the database identifier for the local database. Defaults to NULL.

Examples

This example drops the baseline 'oltp_peakload_bl' without dropping the underlying snapshots:

EXECUTE DBMS_WORKLOAD_REPOSITORY.DROP_BASELINE (
 baseline_name => 'oltp_peakload_bl');

If you query the DBA_HIST_BASELINE view after the DROP_BASELINE action, you will see the specified baseline definition is removed. You can query the DBA_HIST_SNAPSHOT view to find that the underlying snapshots are left intact.

DROP_BASELINE_TEMPLATE Procedure

This procedure removes a template that is no longer needed.

Syntax

DBMS_WORKLOAD_REPOSITORY.DROP_BASELINE_TEMPLATE(
 template_name IN VARCHAR2, dbid IN NUMBER DEFAULT NULL);

Parameters

Table 161-26 DROP_BASELINE_TEMPLATE Procedure Parameters

	Parameter	Description
	
template_name

	
Name of the template to remove

	
dbid

	
Database Identifier for baseline. If NULL, this takes the database identifier for the local database. Defaults to NULL.

DROP_SNAPSHOT_RANGE Procedure

This procedure drops a range of snapshots.

Syntax

DBMS_WORKLOAD_REPOSITORY.DROP_SNAPSHOT_RANGE(
 low_snap_id IN NUMBER,
 high_snap_id IN NUMBER
 dbid IN NUMBER DEFAULT NULL);

Parameters

Table 161-27 DROP_SNAPSHOT_RANGE Procedure Parameters

	Parameter	Description
	
low_snap_id

	
Low snapshot id of snapshots to drop.

	
high_snap_id

	
High snapshot id of snapshots to drop.

	
dbid

	
Database id (default to local DBID.

Examples

This example drops the range of snapshots between snapshot id 102 to 105 for the local database:

EXECUTE DBMS_WORKLOAD_REPOSITORY.DROP_SNAPSHOT_RANGE(102, 105);

If you query the dba_hist_snapshot view after the Drop Snapshot action, you will see that snapshots 102 to 105 are removed from the Workload Repository.

MODIFY_SNAPSHOT_SETTINGS Procedures

This procedure controls three aspects of snapshot generation.

	
The INTERVAL setting affects how often snapshots are automatically captured.

	
The RETENTION setting affects how long snapshots are retained in the Workload Repository.

	
The number of SQL captured for each Top criteria. If the user manually specifies a value for Top N SQL, the AWR SQL collection will use the user-specified number for both automatic and manual snapshots.

There are two overloads. The first takes a NUMBER and the second takes a VARCHAR2 for the topnsql argument. The differences are described under the Parameters description.

Syntax

DBMS_WORKLOAD_REPOSITORY.MODIFY_SNAPSHOT_SETTINGS(
 retention IN NUMBER DEFAULT NULL,
 interval IN NUMBER DEFAULT NULL,
 topnsql IN NUMBER DEFAULT NULL,
 dbid IN NUMBER DEFAULT NULL);

DBMS_WORKLOAD_REPOSITORY.MODIFY_SNAPSHOT_SETTINGS(
 retention IN NUMBER DEFAULT NULL,
 interval IN NUMBER DEFAULT NULL,
 topnsql IN VARCHAR2,
 dbid IN NUMBER DEFAULT NULL);

Parameters

Table 161-28 MODIFY_SNAPSHOT_SETTINGS Procedure Parameters

	Parameter	Description
	
retention

	
New retention time (in minutes). The specified value must be in the range of MIN_RETENTION (1 day) to MAX_RETENTION (100 years).

If ZERO is specified, snapshots will be retained forever. A large system-defined value will be used as the retention setting.

If NULL is specified, the old value for retention is preserved.

NOTE: The retention setting must be greater than or equal to the window size of the 'SYSTEM_MOVING_WINDOW' baseline. If the retention needs to be less than the window size, the MODIFY_BASELINE_WINDOW_SIZE Procedure can be used to adjust the window size.

	
interval

	
New interval setting between each snapshot, in units of minutes. The specified value must be in the range MIN_INTERVAL (10 minutes) to MAX_INTERVAL (1 year).

If ZERO is specified, automatic and manual snapshots will be disabled. A large system-defined value will be used as the retention setting.

If NULL is specified, the current value is preserved.

	
topnsql

	
	
If NUMBER: Top N SQL size. The number of Top SQL to flush for each SQL criteria (Elapsed Time, CPU Time, Parse Calls, Shareable Memory, Version Count). The value for this setting will not be affected by the statistics/flush level and will override the system default behavior for the AWR SQL collection. The setting will have a minimum value of 30 and a maximum value of 50,000. Specifying NULL will keep the current setting.

	
If VARCHAR2: Users are allowed to specify the following values: (DEFAULT, MAXIMUM, N), where N is the number of Top SQL to flush for each SQL criteria. Specifying DEFAULT will revert the system back to the default behavior of Top 30 for statistics level TYPICAL and Top 100 for statistics level ALL. Specifying MAXIMUM will cause the system to capture the complete set of SQL in the cursor cache. Specifying the number N is equivalent to setting the Top N SQL with the NUMBER type. Specifying NULL for this argument will keep the current setting.

	
dbid

	
Database identifier in AWR for which to modify the snapshot settings. If NULL is specified, the local dbid will be used. Defaults to NULL.

Examples

This example changes the interval setting to one hour and the retention setting to two weeks for the local database:

EXECUTE DBMS_WORKLOAD_REPOSITORY.MODIFY_SNAPSHOT_SETTINGS(
 interval => 60,
 retention => 20160);

If you query the DBA_HIST_WR_CONTROL table after this procedure is executed, you will see the changes to these settings.

MODIFY_BASELINE_WINDOW_SIZE Procedure

This procedure modifies the window size for the Default Moving Window Baseline.

Syntax

DBMS_WORKLOAD_REPOSITORY.MODIFY_BASELINE_WINDOW_SIZE(
 window_size IN NUMBER,
 dbid IN NUMBER DEFAULT NULL);

Parameters

Table 161-29 MODIFY_BASELINE_WINDOW_SIZE Procedure Parameters

	Parameter	Description
	
window_size

	
New Window size for the default Moving Window Baseline, in number of days.

	
dbid

	
Database ID (default to local DBID)

Usage Notes

The window size must be less than or equal to the AWR retention setting. If the window size needs to be greater than the retention setting, the MODIFY_SNAPSHOT_SETTINGS Procedures can be used to adjust the retention setting. A moving window can be set to a maximum of 13 weeks.

REMOVE_COLORED_SQL Procedure

This procedure removes a colored SQL ID. After a SQL is uncolored, it will no longer be captured in a snapshot automatically, unless it makes the TOP list.

Syntax

DBMS_WORKLOAD_REPOSITORY.ASH_REPORT_HTML(
 sql_id IN VARCHAR2,
 dbid IN NUMBER DEFAULT NULL);

Parameters

Table 161-30 REMOVE_COLORED_SQL Procedure Parameters

	Parameter	Description
	
sql_id

	
13-character external SQL ID

	
dbid

	
Optional dbid, defaults to Local DBID

RENAME_BASELINE Procedure

This procedure renames a baseline.

Syntax

DBMS_WORKLOAD_REPOSITORY.RENAME_BASELINE(
 old_baseline_name IN VARCHAR2,
 new_baseline_name IN VARCHAR2,
 dbid IN NUMBER DEFAULT NULL);

Parameters

Table 161-31 RENAME_BASELINE Procedure Parameters

	Parameter	Description
	
old_baseline_name

	
Old baseline name

	
new_baseline_name

	
New baseline name

	
dbid

	
Database ID (default to local DBID)

SELECT_BASELINE_METRICS Function

This table function shows the values of the metrics corresponding to a baseline. The table function will return an object of the AWR_BASELINE_METRIC_TYPE Object Type.

Syntax

DBMS_WORKLOAD_REPOSITORY.SELECT_BASELINE_METRICS(
 baseline_name IN VARCHAR2,
 dbid IN NUMBER DEFAULT NULL,
 instance_num IN NUMBER DEFAULT NULL)
 RETURN awr_baseline_metric_type_table PIPELINED;

Parameters

Table 161-32 SELECT_BASELINE_METRICS Function Parameters

	Parameter	Description
	
baseline_name

	
Name of the baseline for which we would like to view metrics

	
dbid

	
Database Identifier for baseline. If NULL, then use the database identifier for the local database. Defaults to NULL.

	
instance_num

	
Instance for which number the user wants to see statistics. If NULL, show statistics for the local instance. Defaults to NULL.

DBMS_XA

162 DBMS_XA

The DBMS_XA package contains the XA/Open interface for applications to call XA interface in PL/SQL. Using this package, application developers can switch or share transactions across SQL*Plus sessions or processes using PL/SQL.

	
See Also:

Oracle Database Advanced Application Developer's Guide for more information about "Developing Applications with Oracle XA"

The chapter contains the following topics:

	
Using DBMS_XA

	
Overview

	
Security Model

	
Constants

	
Operational Notes

	
Data Structures

	
OBJECT Types

	
TABLE Types

	
Summary of DBMS_XA Subprograms

Using DBMS_XA

	
Overview

	
Security Model

	
Constants

	
Operational Notes

Overview

These subprograms allow a PL/SQL application to define a global transaction branch ID (XID) and associate or disassociate the current session with the transaction branch.

Subsequently, these transaction branches may be prepared and committed by following the two-phase commit protocol. A single-phase commit protocol is also supported if only one resource manager is involved.

Interfaces are also provided for a PL/SQL application to set the timeout values for any new global transaction branches that may start with the current session.

Security Model

This package is created under SYS. Operations provided by this package are performed under the current calling user, not under the package owner SYS.Any DBMS_XA subprogram called from an anonymous PL/SQL block is executed using the privileges of the current user. Any DBMS_XA subprogram called from a stored procedure is executed using the privileges of the owner of the stored procedure.

SELECT privilege on SYS.DBA_PENDING_TRANSACTIONS is required for users who need to execute XA_RECOVER subprogram.

FORCE ANY TRANSACTION privilege is required for users who need to manipulate XA transactions created by other users.

Constants

The DBMS_XA package uses the constants shown in Table 162-1 for use in the flag field of the XA_START Function and the XA_END Function.

Table 162-1 DBMS_XA Constants for Flag Field of XA_START & XA_END Functions

	Name	Type	Value	Description
	
TMNOFLAGS

	
PLS_INTEGER

	
00000000

	
Indicates no flag value is selected.

	
TMSUCCESS

	
PLS_INTEGER

	
UTL_RAW.CAST_TO_BINARY_INTEGER ('04000000')

	
Dissociates caller from transaction branch

	
TMJOIN

	
PLS_INTEGER

	
UTL_RAW.CAST_TO_BINARY_INTEGER ('00200000')

	
Caller is joining existing transaction branch.

	
TMSUSPEND

	
PLS_INTEGER

	
UTL_RAW.CAST_TO_BINARY_INTEGER ('02000000')

	
Caller is suspending, not ending, association

	
TMRESUME

	
PLS_INTEGER

	
UTL_RAW.CAST_TO_BINARY_INTEGER ('08000000')

	
Caller is resuming association with suspended transaction branch.

The DBMS_XA package uses the constants shown in Table 162-2 for Possible Return Values

Table 162-2 DBMS_XA Constants for Possible Return Values

	Name	Type	Value	Description
	
XA_RBBASE

	
PLS_INTEGER

	
100

	
Inclusive lower bound of the rollback codes

	
XA_RBROLLBACK

	
PLS_INTEGER

	
XA_RBBASE

	
Rollback was caused by an unspecified reason

	
XA_RBCOMMFAIL

	
PLS_INTEGER

	
XA_RBBASE+1

	
Rollback was caused by a communication failure

	
XA_RBDEADLOCK

	
PLS_INTEGER

	
XA_RBBASE+2

	
Deadlock was detected

	
XA_RBINTEGRITY

	
PLS_INTEGER

	
XA_RBBASE+3

	
Condition that violates the integrity of the resources was detected

	
XA_RBOTHER

	
PLS_INTEGER

	
XA_RBBASE+4

	
Resource manager rolled back the transaction for an unlisted reason

	
XA_RBPROTO

	
PLS_INTEGER

	
XA_RBBASE+5

	
Protocol error occurred in the resource manager

	
XA_RBTIMEOUT

	
PLS_INTEGER

	
XA_RBBASE+6

	
transaction branch took long

	
XA_RBTRANSIENT

	
PLS_INTEGER

	
XA_RBBASE+7

	
May retry the transaction branch

	
XA_RBEND

	
PLS_INTEGER

	
XA_RBTRANSIENT

	
Inclusive upper bound of the rollback codes

	
XA_NOMIGRATE

	
PLS_INTEGER

	
9

	
Transaction branch may have been heuristically completed

	
XA_HEURHAZ

	
PLS_INTEGER

	
8

	
Transaction branch may have been heuristically completed

	
XA_HEURCOM

	
PLS_INTEGER

	
7

	
Transaction branch has been heuristically committed

	
XA_HEURRB

	
PLS_INTEGER

	
6

	
Transaction branch has been heuristically rolled back

	
XA_HEURMIX

	
PLS_INTEGER

	
5

	
Some of the transaction branches have been heuristically committed, others rolled back

	
XA_RETRY

	
PLS_INTEGER

	
4

	
Routine returned with no effect and may be re-issued

	
XA_RDONLY

	
PLS_INTEGER

	
3

	
Transaction was read-only and has been committed

	
XA_OK

	
PLS_INTEGER

	
0

	
Normal execution

	
XAER_ASYNC

	
PLS_INTEGER

	
-2

	
Asynchronous operation already outstanding

	
XAER_RMERR

	
PLS_INTEGER

	
-3

	
Resource manager error occurred in the transaction branch

	
XAER_NOTA

	
PLS_INTEGER

	
-4

	
XID is not valid

	
XAER_INVAL

	
PLS_INTEGER

	
-5

	
Invalid arguments were given

	
XAER_PROTO

	
PLS_INTEGER

	
-6

	
Routine invoked in an improper context

	
XAER_RMFAIL

	
PLS_INTEGER

	
-7

	
Resource manager unavailable

	
XAER_DUPID

	
PLS_INTEGER

	
-8

	
XID already exists

	
XAER_OUTSIDE

	
PLS_INTEGER

	
-9

	
Resource manager doing work outside global transaction

Operational Notes

In compliance with the XA specification of the X/Open CAE Standard for Distributed Transaction Processing, XA_PREPARE/COMMIT/ ROLLBACK/FORGET may not be called when the transaction is still associated with the current session. Only after XA_END has been called so that there is not any transaction associated with the current session, the application may call XA_PREPARE/COMMIT/ ROLLBACK/FORGET.

XAER_PROTO error is returned from XA_PREPARE/COMMIT/ROLLBACK/FORGET if a transaction is being associated with the current session.

Prior to calling any of the package subprograms, a connection/session must have already been established to the Oracle database server backend, or a resource manager. Resource manager identifiers are not supported. If multiple resource managers are involved, multiple connections/sessions must be pre-established to each resource manager before calling any the package subprograms. If multiple connections/sessions are established during the course of global transaction processing, the caller must ensure that all of those connections/sessions associated with a specific global transaction branch identifier (XID) are established to the same resource manager.

Data Structures

The DBMS_XA package uses the following OBJECT type and associated TABLE type.

OBJECT Types

	
DBMS_XA_XID Object Type

TABLE Types

	
DBMS_XA_XID_ARRAY Table Type

DBMS_XA_XID Object Type

The PL/SQL XA interface allows the PL/SQL application to define a global transaction branch id (XID) and associate/disassociate the current session with the transaction branch. XID is defined as a PL/SQL object type.

	
See Also:

For more information, see "Distributed Transaction Processing: The XA Specification" in the public XA Standard.

Syntax

TYPE DBMS_XA_XID IS OBJECT(
 formatid NUMBER,
 gtrid RAW(64),
 bqual RAW(64),
 constructor function DBMS_XA_XID(
 gtrid IN NUMBER)
 RETURN SELF AS RESULT,
 constructor function DBMS_XA_XID (
 gtrid IN RAW,
 bqual IN RAW)
 RETURN SELF AS RESULT,
 constructor function DBMS_XA_XID(
 formatid IN NUMBER,
 gtrid IN RAW,
 bqual IN RAW DEFAULT HEXTORAW('00000000000000000000000000000001'))
 RETURN SELF AS RESULT)

Attributes

Table 162-3 DBMS_XA_XID Object Type

	Attribute	Description
	
formatid

	
Format identifier, a number identifying different transaction managers (TM)

	
gtrid

	
Global transaction identifier uniquely identifying a global transaction, of which the maximum size is 64 bytes

	
bqual

	
Branch qualifier, of which the maximum size is 64 bytes

DBMS_XA_XID_ARRAY Table Type

This type is used to define an array of xid that represent a list of global transaction branches.

Syntax

TYPE DBMS_XA_XID_ARRAY as TABLE of DBMS_XA_XID

Summary of DBMS_XA Subprograms

Table 162-4 DBMS_Xa Package Subprograms

	Subprogram	Description
	
DIST_TXN_SYNC Procedure

	
Used in recovery of synchronization when utilizing Oracle Real Application Clusters (Oracle RAC)

	
XA_COMMIT Function

	
Commits the global transaction specified by xid

	
XA_END Function

	
Disassociates the current session from the transaction branch specified by xid

	
XA_FORGET Function

	
Informs the resource manager to forget about a heuristically committed or rolled back transaction branch.

	
XA_GETLASTOER Function

	
Obtains the last Oracle error code, in case of failure of previous XA calls.

	
XA_PREPARE Function

	
Prepares the transaction branch specified in xid for committing the transaction subsequently if possible

	
XA_RECOVER Function

	
Obtains a list of prepared or heuristically completed transaction branches from a resource manager

	
XA_ROLLBACK Function

	
Informs the resource manager to roll back work done on behalf of a transaction branch

	
XA_SETTIMEOUT Function

	
Sets the transaction timeout in seconds for the current session

	
XA_START Function

	
Associates the current session with the transaction branch specified by xid

DIST_TXN_SYNC Procedure

This procedure can be used to synchronize in-doubt transactions when one of the Oracle Real Application Clusters (Oracle RAC) instances fails.

Syntax

DBMS_XA.DIST_TXN_SYNC;

XA_COMMIT Function

This function commits the global transaction specified by xid.

Syntax

DBMS_XA.XA_COMMIT (
 xid IN DBMS_XA_XID,
 onePhase IN BOOLEAN)
RETURN PLS_INTEGER;

Parameters

Table 162-5 XA_COMMIT Function Parameters

	Parameter	Description
	
xid

	
See DBMS_XA_XID Object Type

	
onePhase

	
If TRUE, apply single phase commit

Return Values

See Table 162-2, "DBMS_XA Constants for Possible Return Values". Possible return values indicating error are: XAER_RMERR, XAER_RMFAIL, XAER_NOTA, XAER_INVAL, or XAER_PROTO. Other possible return values include: XA_OK, XA_RB*, XA_HEURHAZ, XA_HEURCOM, XA_HEURRB, and XA_HEURMIX.

Usage Notes

	
An application must not call COMMIT, but instead must call XA_COMMIT to commit the global transaction specified by xid. If a user needs to commit a transaction branch that is created by other users, FORCE ANY TRANSACTION must be granted to the user.

	
If onePhase is TRUE, the resource manager should use a one-phase commit protocol to commit the work done on behalf of xid. Otherwise, only if all branches of the global transaction have been prepared successfully and the preceding XA_PREPARE call has returned XA_OK, should XA_COMMIT be called.

	
The application must make a separate XA_COMMIT call for each of the transaction branches of the global transaction for which XA_PREPARE has returned XA_OK.

	
If the resource manager did not commit the transaction and the parameter onePhase is set to TRUE, the resource manager may return one of the XA_RB* code. Upon return, the resource manager has rolled back the branch's work and has released all held resources.

XA_END Function

This function disassociates the current session from the transaction branch specified by xid

A transaction manager calls XA_END when a thread of control finishes, or needs to suspend work on, a transaction branch. This occurs when the application completes a portion of its work, either partially or in its entirety (for example, before blocking on some event in order to let other threads of control work on the branch). When XA_END successfully returns, the calling thread of control is no longer actively associated with the branch but the branch still exists

Syntax

DBMS_XA.XA_END (
 xid IN DBMS_XA_XID,
 flag IN PLS_INTEGER)
RETURN PLS_INTEGER;

Parameters

Table 162-6 XA_END Function Parameters

	Parameter	Description
	
xid

	
See DBMS_XA_XID Object Type

	
flag

	
See Table 162-1, "DBMS_XA Constants for Flag Field of XA_START & XA_END Functions".

Return Values

See Table 162-2, "DBMS_XA Constants for Possible Return Values". Possible return values in error are XAER_RMERR, XAER_RMFAILED, XAER_NOTA, XAER_INVAL, XAER_PROTO, or XA_RB*.

Usage Notes

	
TMSUCCESS or TMSUSPEND may be specified in flag, and the transaction branch is disassociated with the current session in detached state if the return value is XA_OK. TMFAIL is not supported. XA_END may be called with either TMSUCCESS or TMSUSPEND to disassociate the transaction branch identified by xid from the current session.

	
XA_OK is returned if XA_END succeeds. An application must check the return value and handle error cases. Only when XA_OK is returned, the application should proceed for other normal operations.

	
Executing a ROLLBACK statement without calling XA_END first will rollback the changes made by the current transaction. However, the transaction context is still associated with the current session until XA_END is called.

	
Executing a COMMIT statement without calling XA_END first will result in ORA-02089: COMMIT is not allowed in a subordinate session.

	
Executing a COMMIT or a ROLLBACK statement after XA_END has no effect on the transaction identified by xid, since this transaction is no longer associated with the current session. To commit the transaction ID or the XA_ROLLBACK Function to commit/rollback the transaction specified by the xid.

XA_FORGET Function

This function informs the resource manager to forget about a heuristically committed or rolled back transaction branch.

Syntax

DBMS_XA.XA_FORGET (
 xid IN DBMS_XA_XID)
RETURN PLS_INTEGER;

Parameters

Table 162-7 XA_FORGET Function Parameters

	Parameter	Description
	
xid

	
See DBMS_XA_XID Object Type

Return Values

See Table 162-2, "DBMS_XA Constants for Possible Return Values". Possible return values are XA_OK, XAER_RMERR, XAER_RMFAIL, XAER_NOTA, XAER_INVAL, or XAER_PROTO.

XA_GETLASTOER Function

This function obtains the last Oracle error code, in case of failure of previous XA calls.

Syntax

DBMS_XA.XA_GETLASTOER
 RETURN PLS_INTEGER;

Return Values

The return value carries the last Oracle error code.

XA_PREPARE Function

This function prepares the transaction branch specified in xid for committing the transaction subsequently if possible.

Syntax

DBMS_XA.XA_PREPARE (
 xid IN DBMS_XA_XID)
RETURN PLS_INTEGER;

Parameters

Table 162-8 XA_PREPARE Function Parameters

	Parameter	Description
	
xid

	
See DBMS_XA_XID Object Type

Return Values

See Table 162-2, "DBMS_XA Constants for Possible Return Values". Possible return codes include: XA_OK, XA_RDONLY, XA_RB*, XAER_RMERR, XAER_RMFAIL, XAER_NOTA, XAER_INVAL, or XAER_PROTO.

Usage Notes

	
If a user needs to prepare a transaction branch that is created by other users, FORCE ANY TRANSACTION must be granted to the user.

	
An application must keep track of all the branches of one global transaction, and prepare each transaction branch. Only if all branches of the global transaction have been prepared successfully and XA_PREPARE has returned XA_OK, the application may proceed to call XA_COMMIT.

XA_RECOVER Function

This function obtains a list of prepared or heuristically completed transaction branches from a resource manager.

Syntax

DBMS_XA.XA_RECOVER
 RETURN DBMS_XA_XID_ARRAY;

Return Values

See DBMS_XA_XID_ARRAY Table Type

Usage Notes

	
The flags TMSTARTSCAN, TMENDSCAN, TMNOFLAGS are not supported.

	
The privilege SELECT ON DBA_PENDING_TRANSACTIONS must be granted to the user who needs to call XA_RECOVER.

XA_ROLLBACK Function

This function informs the resource manager to roll back work done on behalf of a transaction branch.

Syntax

DBMS_XA.XA_ROLLBACK (
 xid IN DBMS_XA_XID)
 RETURN PLS_INTEGER;

Parameters

Table 162-9 XA_ROLLBACK Function Parameters

	Parameter	Description
	
xid

	
See DBMS_XA_XID Object Type

Return Values

See Table 162-2, "DBMS_XA Constants for Possible Return Values". Possible return values are: XA_OK, XA_RB*, XA_HEURHAZ, XA_HEURCOM, XA_HEURRB, or XA_HEURMIX.

Usage Notes

If a user needs to rollback a transaction branch that created by other users, the privilege FORCE ANY TRANSACTION must be granted to the user.

XA_SETTIMEOUT Function

This function sets the transaction timeout in seconds for the current session.

Syntax

DBMS_XA.XA_SETTIMEOUT (
 seconds IN PLS_INTEGER)
RETURN PLS_INTEGER;

Parameters

Table 162-10 XA_SETTIMEOUT Function Parameters

	Parameter	Description
	
seconds

	
The timeout value indicates the maximum time in seconds that a transaction branch may be disassociated from the session before the system automatically aborts the transaction. The default value is 60 seconds.

Return Values

See Table 162-2, "DBMS_XA Constants for Possible Return Values". Possible return values are XA_OK, XAER_RMERR, XAER_RMFAIL, or XAER_INVAL.

Usage Notes

Only if return value is XA_OK, is the timeout value successfully set.

XA_START Function

This function associates the current session with a transaction branch specified by the xid.

Syntax

DBMS_XA.XA_START (
 xid IN DBMS_XA_XID, flag IN PLS_INTEGER) RETURN PLS_INTEGER;

Parameters

Table 162-11 XA_START Function Parameters

	Parameter	Description
	
xid

	
See DBMS_XA_XID Object Type

	
flag

	
See Table 162-1, "DBMS_XA Constants for Flag Field of XA_START & XA_END Functions".

Return Values

See Table 162-2, "DBMS_XA Constants for Possible Return Values"

Usage Notes

	
If TMJOIN or TMRESUME is specified in flag, the start is for joining an existing transaction branch identified by the xid. TMJOIN flag should be used when the transaction is detached with TMSUCCESS flag. TMRESUME should be used when the transaction branch is detached with TMSUSPEND flag. XA_START may be called with either flag to join an existing transaction branch.

	
If TMNOFLAGS is specified in flag, and neither TMJOIN nor TMRESUME is specified, a new transaction branch is to be started. If the transaction branch specified in xid already exists, XA_START returns an XAER_DUPID error code.

	
Possible return values in error include: XAER_RMERR, XAER_RMFAIL, XAER_DUPID, XAER_OUTSIDE, XAER_NOTA, XAER_INVAL, and XAER_PROTO.

	
XA_OK is returned if XA_START succeeds. An application must check the return value and handle error cases. Only when XA_OK is returned, the PL/SQL application should proceed for other normal operations.Transaction stacking is not supported. If there is an active transaction associated with the current session, may not be called to start or join another transaction. XAER_PROTO will be returned if XA_START is called with an active global transaction branch associated with the session. XAER_OUTSIDE will be returned if XA_START is called with a local transaction associated with the current session.

DBMS_XDB

163 DBMS_XDB

The DBMS_XDB package supports the following features:

	
Resource Management subprograms which complement Resource Views

	
The Access Control List (ACL)-based Security Mechanism

	
Configuration Session Management

	
Creation of the XDB username

	
See Also:

	
Oracle XML DB Developer's Guide

	
Oracle Database New Features Guide

This chapter contains the following topics:

	
Using DBMS_XDB

	
Overview

	
Deprecated Subprograms

	
Security Model

	
Constants

	
Summary of DBMS_XDB Subprograms

Using DBMS_XDB

This section contains topics which relate to using the DBMS_XDB package.

	
Overview

	
Deprecated Subprograms

	
Security Model

	
Constants

Overview

The DBMS_XDB package supports the following features:

	
The Resource Management functionality providesLINK Procedures, EXISTSRESOURCE Function, LOCKRESOURCE Function, GETLOCKTOKEN Procedure, UNLOCKRESOURCE Function, CREATERESOURCE Functions, RENAMERESOURCE Procedure, DELETERESOURCE Procedure, GETRESOID Function, CREATEOIDPATH Function, REBUILDHIERARCHICALINDEX Procedure and CREATEFOLDER Function subprograms which complement Resource Views.

	
The Access Control List (ACL)-based Security Mechanism can be used with in-hierarchy ACLs stored by the database or in-memory ACLs that may be stored outside the database. Some of these methods can be used for both Oracle resources and arbitrary database objects. Use CHECKPRIVILEGES Function, GETACLDOCUMENT Function, CHANGEPRIVILEGES Function and GETCHILDRESPATHS Function for Oracle Resources. ACLCHECKPRIVILEGES Function provides access to Oracle's ACL-based Security mechanism without storing objects in the Hierarchy.

	
Configuration Session Management is supported by CFG_REFRESH Procedure, CFG_GET Function and CFG_UPDATE Procedure. methods.

	
The XDB username is created during XDB installation. This user owns a set of default tables and packages. GETXDB_TABLESPACE Function and MOVEXDB_TABLESPACE Procedure enable movement of schemas to a specified tablespace, and support the default SYSAUX tablespace introduction

Deprecated Subprograms

	
Note:

Oracle recommends that you do not use deprecated procedures in new applications. Support for deprecated features is for backward compatibility only and may be terminated in future releases.

The following subprograms are deprecated with Oracle Database 11g:

	
MOVEXDB_TABLESPACE Procedure

	
REBUILDHIERARCHICALINDEX Procedure

This functionality is replaced by the subprograms of the same name in the DBMS_XDB_ADMINpackage:

	
MOVEXDB_TABLESPACE Procedure

	
REBUILDHIERARCHICALINDEX Procedure

Security Model

Owned by XDB, the DBMS_XDB package must be created by SYS or XDB. The EXECUTE privilege is granted to PUBLIC . Subprograms in this package are executed using the privileges of the current user. Subprograms that operate on the XDB Configuration will succeed only if the current user is SYS or XDB, or the current user has the XDBADMIN or DBA role.

Constants

Table 163-1 Defined Constants for DBMS_XDB

	Constant	Type	Value	Description
	
DELETE_RESOURCE

	
NUMBER

	
1

	
Deletes a resource; fails if the resource has children.

	
DELETE_RECURSIVE

	
NUMBER

	
2

	
Deletes a resource and its children, if any.

	
DELETE_FORCE

	
NUMBER

	
3

	
Deletes the resource, even if the object it contains is invalid.

	
DELETE_RECURSIVE_FORCE

	
NUMBER

	
4

	
Deletes a resource and its children, if any, even if the object it contains is invalid.

Summary of DBMS_XDB Subprograms

Table 163-2 DBMS_XDB Package Subprograms

	Subprogram	Description
	
ACLCHECKPRIVILEGES Function

	
Checks access privileges granted to the current user by specified ACL document on a resource whose owner is specified by the 'owner' parameter.

	
ADDHTTPEXPIREMAPPING Procedure

	
Adds to xdb$config a mapping of the URL pattern to an expiration date. This will control the Expire headers for URLs matching the pattern.

	
ADDMIMEMAPPING Procedure

	
Adds a mime mapping to the XDB configuration

	
ADDSCHEMALOCMAPPING Procedure

	
Adds a schema location mapping to the XDB configuration

	
ADDSERVLET Procedure

	
Adds a servlet to XDB configuration

	
ADDSERVLETMAPPING Procedure

	
Adds a servlet mapping to XDB configuration

	
ADDSERVLETSECROLE Procedure

	
Adds a security role REF to a specified servlet in the XDB configuration

	
ADDXMLEXTENSION Procedure

	
Adds adds an XML extension to the XDB configuration

	
APPENDPATH Procedure

	
Appends a childpath to a parentpath

	
APPENDPATH Procedure

	
Takes in user-defined metadata either as a REF to XMLTYPE or an XMLTYPE and adds it to the desired resource

	
CFG_GET Function

	
Retrieves the session's configuration information

	
CFG_REFRESH Procedure

	
Refreshes the session's configuration information to the latest configuration

	
CFG_UPDATE Procedure

	
Updates the configuration information

	
CHANGEOWNER Procedure

	
Changes the owner of the resource/s to the specified owner.

	
CHANGEPRIVILEGES Function

	
Adds a specified ACE to a specified resource's ACL

	
CHECKPRIVILEGES Function

	
Checks access privileges granted to the current user on the specified resource

	
CREATEFOLDER Function

	
Creates a new folder resource in the hierarchy

	
CREATEOIDPATH Function

	
Creates a virtual path to the resource based on object ID

	
CREATERESOURCE Functions

	
Creates a new resource

	
DELETEHTTPEXPIREMAPPING Procedure

	
Deletes from xdb$config all mappings of the URL pattern to an expiration date

	
DELETEMIMEMAPPING Procedure

	
Deletes the mime mapping from the XDB configuration

	
DELETERESOURCE Procedure

	
Deletes a resource from the hierarchy

	
DELETERESOURCEMETADATA Procedures

	
Deletes metadata from a resource (can be used for schema-based or nonschema-based metadata)

	
DELETESCHEMALOCMAPPING Procedure

	
Deletes the schema location mapping for the specified schema URL from the XDB configuration.

	
DELETESERVLET Procedure

	
Deletes a servlet from XDB configuration

	
DELETESERVLETMAPPING Procedure

	
Deletes the servlet mapping for the specified servlet name from the XDB configuration

	
DELETESERVLETSECROLE Procedure

	
Deletes the specified role from a servlet in the XDB configuration

	
DELETEXMLEXTENSION Procedure

	
Deletes the specified XML extension from the XDB configuration

	
EXISTSRESOURCE Function

	
Determines if a resource is the hierarchy, based on its absolute path

	
GETACLDOCUMENT Function

	
Retrieves ACL document that protects resource given its path name

	
GETCHILDRESPATHS Function

	
Returns a cursor over the absolute paths of all the child resources

	
GETCONTENTBLOB Function

	
Retrieves the contents of a resource returned as a BLOB

	
GETCONTENTCLOB Function

	
Retrieves the contents of a resource returned as a CLOB

	
GETCONTENTVARCHAR2 Function

	
Retrieves the contents of a resource returned as a string

	
GETCONTENTXMLREF Function

	
Retrieves the contents of a resource returned as a a REF to an XMLTYPE

	
GETCONTENTXMLTYPE Function

	
Retrieves the contents of a resource returned as an XMLTYPE

	
GETFTPPORT Function

	
Gets the value of the current FTP port

	
GETHTTPPORT Function

	
Gets the value of the current HTTP port

	
GETLOCKTOKEN Procedure

	
Returns that resource's lock token for the current user given a path to a resource

	
GETLISTENERENDPOINT Procedure

	
Retrieves the parameters of a listener end point corresponding to the XML DB HTTP server

	
GETRESOID Function

	
Returns the object ID of the resource from its absolute path

	
GETXDB_TABLESPACE Function

	
Returns the current tablespace of the XDB (user)

	
HASBLOBCONTENT Function

	
Returns TRUE if the resource has BLOB content

	
HASCHARCONTENT Function

	
Returns TRUE if the resource has character content

	
HASXMLCONTENT Function

	
Returns TRUE if the resource has XML content

	
HASXMLREFERENCE Function

	
Returns TRUE if the resource has REF to XML content

	
ISFOLDER Function

	
Returns TRUE if the resource is a folder or container

	
LINK Procedures

	
Creates a link to an existing resource

	
LOCKRESOURCE Function

	
Gets a WebDAV-style lock on that resource given a path to that resource

	
MOVEXDB_TABLESPACE Procedure

	
[Deprecated] Moves the XDB (user) to the specified tablespace

	
PROCESSLINKS Procedure

	
Processes document links in the specified resource

	
PURGERESOURCEMETADATA Procedure

	
Deletes all user metadata from a resource

	
REBUILDHIERARCHICALINDEX Procedure

	
[Deprecated] Rebuilds the hierarchical index after import or export operations

	
RENAMERESOURCE Procedure

	
Renames the XDB resource

	
SETACL Procedure

	
Sets the ACL on a specified resource

	
SETCONTENT Procedures

	
Replaces the contents of a specified resource with specified datatype

	
SETFTPPORT Procedure

	
Sets the FTP port to a new value

	
SETHTTPPORT Procedure

	
Sets the HTTP port to a new value

	
SETLISTENERENDPOINT Procedure

	
Sets the parameters of a listener end point corresponding to the XML DB HTTP server

	
SETLISTENERLOCALACCESS Procedure

	
Restricts all listener end points of the XML DB HTTP server to listen either only on the localhost interface or on both localhost and non-localhost interfaces

	
SPLITPATH Procedure

	
Splits the path into a parentpath and childpath

	
TOUCHRESOURCE Procedure

	
Changes the modification time of the resource to the current time

	
UPDATERESOURCEMETADATA Procedures

	
Updates metadata for a resource

	
UNLOCKRESOURCE Function

	
Unlocks the resource given a lock token and resource path

ACLCHECKPRIVILEGES Function

This function checks access privileges granted to the current user by specified ACL document by the OWNER of the resource. Returns positive integer if all privileges are granted.

Syntax

DBMS_XDB.ACLCHECKPRIVILEGES(
 acl_path IN VARCHAR2,
 owner IN VARCHAR2,
 privs IN xmltype)
 RETURN PLS_INTEGER;

Parameters

Table 163-3 ACLCHECKPRIVILEGES Function Parameters

	Parameter	Description
	
acl_path

	
Absolute path in the Hierarchy for ACL document

	
owner

	
Resource owner name; the pseudo user "DAV:owner" is replaced by this user during ACL privilege resolution

	
privs

	
An XMLType instance of the privilege element specifying the requested set of access privileges. See description for CHECKPRIVILEGES Function.

ADDHTTPEXPIREMAPPING Procedure

This procedure adds to xdb$config a mapping of the URL pattern to an expiration date. This will control the Expire headers for URLs matching the pattern.

Syntax

DBMS_XDB.ADDHTTPEXPIREMAPPING (
 pattern IN VARCHAR2,
 expire IN VARCHAR2);

Parameters

Table 163-4 ADDHTTPEXPIREMAPPING Procedure Parameters

	Parameter	Description
	
pattern

	
URL pattern (only * accepted as wildcards)

	
expire

	
Expiration directive, follows the ExpireDefault in Apache's mod_expires:

base [plus] (num type)*
-- base: now | modification
-- type: year|years|month|months|week|weeks|day|days|
minute|minutess|second|seconds

Examples

DBMS_XDB.ADDHTTPEXPIREMAPPING ('/public/test1/*', 'now plus 4 weeks');
DBMS_XDB.ADDHTTPEXPIREMAPPING (
 '/public/test2/*', 'modification plus 1 day 30 seconds');

ADDMIMEMAPPING Procedure

This procedure adds the following mime mapping to XDB configuration:

<mime-mapping>
<extension>extension</extension>
<mime-type>mimetype</mime-type>
</mime-mapping>

Syntax

DBMS_XDB.ADDMIMEMAPPING(
 extension IN VARCHAR2,
 mimetype IN VARCHAR2);

Parameters

Table 163-5 ADDMIMEMAPPING Procedure Parameters

	Parameter	Description
	
extension

	
Extension for which a mime type is being added

	
mimetype

	
Mime type

ADDSCHEMALOCMAPPING Procedure

This procedure adds the following schema location mapping to the XDB configuration:

<schemaLocation-mapping>
 <namespace>namespace</namespace>
 <element>element</element>
 <schemaURL>schemaURL</schemaURL>
</schemaLocation-mapping>

Syntax

DBMS_XDB.ADDSCHEMALOCMAPPING(
 namespace IN VARCHAR2,
 element IN VARCHAR2,
 schemaURL IN VARCHAR2);

Parameters

Table 163-6 ADDSCHEMALOCMAPPING Procedure Parameters

	Parameter	Description
	
namespace

	
Namespace

	
element

	
Element

	
schemaURL

	
Schema URL

ADDSERVLET Procedure

This procedure adds the following servlet to XDB configuration:

<servlet>
 <servlet-name>name</servlet-name> <servlet-language>language</servlet-language>
 <display-name>dispname</display-name>
 <description>descript</description>
 <servlet-class>class</servlet-class>
 <servlet-schema>schema</servlet-schema>
</servlet>

Syntax

DBMS_XDB.ADDSERVLET(
 name IN VARCHAR2,
 language IN VARCHAR2,
 dispname IN VARCHAR2,
 icon IN VARCHAR2 := NULL,
 descript IN VARCHAR2 := NULL,
 class IN VARCHAR2 := NULL,
 jspfile IN VARCHAR2 := NULL,
 plsql IN VARCHAR2 := NULL);

Parameters

Table 163-7 ADDSERVLET Procedure Parameters

	Parameter	Description
	
name

	
Servlet name

	
language

	
Must be one of "C", "Java", "PL/SQL"

	
dispname

	
Display name

	
icon

	
Icon

	
descript

	
Description

	
class

	
The class / jspfile / plsql function corresponding to this servlet. The first non-NULL argument amongst these three is chosen, and the others are treated as NULL.

	
jspfile

	
The class / jspfile / plsql function corresponding to this servlet. The first non-NULL argument amongst these three is chosen, and the others are treated as NULL.

	
plsql

	
The class / jspfile / plsql function corresponding to this servlet. The first non-NULL argument amongst these three is chosen, and the others are treated as NULL.

	
schema

	
Schema

ADDSERVLETMAPPING Procedure

This procedure adds the following servlet mapping to XDB configuration:

<servlet-mapping> <servlet-pattern>pattern</servlet-pattern> <servlet-name>name</servlet-name></servlet-mapping>

Syntax

DBMS_XDB.ADDSERVLETMAPPING(
 pattern IN VARCHAR2, name IN VARCHAR2);

Parameters

Table 163-8 ADDSERVLETMAPPING Procedure Parameters

	Parameter	Description
	
pattern

	
Sservlet pattern

	
name

	
Servlet name

ADDSERVLETSECROLE Procedure

This procedure adds the following security role REF to a specified servlet in XDB configuration:

<security-role-ref>
 <role-name>rolename</role-name>
 <role-link>rolelink</role-link>
 <description>descript</description>
</security-role-ref>

Syntax

DBMS_XDB.ADDSERVLETSECROLE(
 servname IN VARCHAR2, rolename IN VARCHAR2, rolelink IN VARCHAR2, descript IN VARCHAR2 := NULL);

Parameters

Table 163-9 ADDSERVLETSECROLE Procedure Parameters

	Parameter	Description
	
servname

	
Sservlet name

	
rolename

	
Role name

	
rolelink

	
Role link

	
descript

	
Description

ADDXMLEXTENSION Procedure

This procedure adds the following XML extension to the XDB configuration under <xml-extensions>:

<extension>extension</extension>

Syntax

DBMS_XDB.ADDXMLEXTENSION(
 extension IN VARCHAR2);

Parameters

Table 163-10 ADDXMLEXTENSION Procedure Parameters

	Parameter	Description
	
extension

	
XML extension to be added

APPENDPATH Procedure

This procedure appends a childpath to a parentpath.

Syntax

DBMS_XDB.APPENDPATH (
 abspath OUT VARCHAR2, parentpath IN VARCHAR2, childpath IN VARCHAR2);

Parameters

Table 163-11 APPENDPATH Procedure

	Parameter	Description
	
abspath

	
Absolute path of the resource

	
parentpath

	
Parentpath

	
childpath

	
Childpath

APPENDRESOURCEMETADATA Procedure

This procedure takes in user-defined metadata either as a REF to XMLTYPE or an XMLTYPE and adds it to the desired resource.

Syntax

DBMS_XDB.APPENDRESOURCEMETADATA (
 abspath IN VARCHAR2,
 metadata IN XMLTYPE);

DBMS_XDB.APPENDRESOURCEMETADATA (
 abspath IN VARCHAR2,
 metadata IN REF SYS.XMLTYPE);

Parameters

Table 163-12 APPENDRESOURCEMETADATA Procedure

	Parameter	Description
	
abspath

	
Absolute path of the resource

	
metadata

	
Metadata can be schema based or nonschema-based. Schema-based metadata is stored in its own table.

Usage Notes

	
In the case in which a REF is passed in, the procedure stores the REF in the resource, and the metadata is stored in a separate table. In this case you are responsible for populating the RESID column for the metadata table. Note that theREF passed in must be unique. In other words, there must not be aREF with the same value in the resource metadata, as this would violate uniqueness of properties. An error is thrown if users attempt to add a REF that already exists.

	
In the case where the XMLTYPE is passed in, the data is parsed to determine if it is schema-based or not and stored accordingly.

CFG_GET Function

This function retrieves the session's configuration information as an XMLType instance.

Syntax

DBMS_XDB.CFG_GET
 RETURN SYS.XMLType;

CFG_REFRESH Procedure

This procedure refreshes the session's configuration information to the latest configuration.

Syntax

DBMS_XDB.CFG_REFRESH;

CFG_UPDATE Procedure

This procedure updates the configuration information and commits the change.

Syntax

DBMS_XDB.CFG_UPDATE(
 xdbconfig IN SYS.XMLTYPE);

Parameters

Table 163-13 CFG_UPDATE Procedure Parameters

	Parameter	Description
	
xdbconfig

	
The new configuration data

CHANGEOWNER Procedure

This procedure changes the owner of the resource/s to the specified owner.

Syntax

DBMS_XDB.CHANGEOWNER(
 abspath IN VARCHAR2,
 owner IN VARCHAR2,
 recurse IN BOOLEAN := FALSE);

Parameters

Table 163-14 CHANGEOWNER Procedure Parameters

	Parameter	Description
	
abspath

	
Absolute path of the resource

	
owner

	
New owner for the resource

	
recurse

	
If TRUE, recursively change owner of all resources in the folder tree

CHANGEPRIVILEGES Function

This function adds a specified ACE to a specified resource's ACL.

Syntax

DBMS_XDB.CHANGEPRIVILEGES(
 res_path IN VARCHAR2,
 ace IN xmltype)
 RETURN PLS_INTEGER;

Parameters

Table 163-15 CHANGEPRIVILEGES Function Parameters

	Parameter	Description
	
res_path

	
Path name of the resource for which privileges need to be changed

	
ace

	
An XMLType instance of the <ace> element which specifies the <principal>, the operation <grant> and the list of privileges

Return Values

A positive integer if the ACL was successfully modified.

Usage Notes

If no ACE with the same principal and the same operation (grant/deny) already exists in the ACL, the new ACE is added at the end of the ACL.

CHECKPRIVILEGES Function

This function checks access privileges granted to the current user on the specified resource.

Syntax

DBMS_XDB.CHECKPRIVILEGES(
 res_path IN VARCHAR2,
 privs IN xmltype)
 RETURN PLS_INTEGER;

Parameters

Table 163-16 CHECKPRIVILEGES Function Parameters

	Parameter	Description
	
res_path

	
Absolute path in the Hierarchy for resource

	
privs

	
An XMLType instance of the privilege element specifying the requested set of access privileges

Return Values

A positive integer if all requested privileges granted.

CREATEFOLDER Function

This function creates a new folder resource in the hierarchy.

Syntax

DBMS_XDB.CREATEFOLDER(
 path IN VARCHAR2)
 RETURN BOOLEAN;

Parameters

Table 163-17 CREATEFOLDER Function Parameters

	Parameter	Description
	
path

	
Path name for the new folder

Return Values

TRUE if operation successful; FALSE, otherwise.

Usage Notes

The given path name's parent folder must already exist in the hierarchy: if '/folder1/folder2' is passed as the path parameter, then '/folder1' must already exist.

CREATEOIDPATH Function

This function creates a virtual path to the resource based on object ID.

Syntax

DBMS_XDB.CREATEOIDPATH(
 oid IN RAW)
 RETURN VARCHAR2;

Parameters

Table 163-18 CREATEOIDPATH Function Parameters

	Parameter	Description
	
oid

	
Object ID of the resource

CREATERESOURCE Functions

The functions create a new resource. The description of the overload options precede each version of the syntax

Syntax

Creates a new resource with a specified string as its contents:

DBMS_XDB.CREATERESOURCE(
 abspath IN VARCHAR2,
 data IN VARCHAR2,
 createfolders IN BOOLEAN := FALSE)
 RETURN BOOLEAN;

Creates a new resource with a specified XMLType data as its contents:

DBMS_XDB.CREATERESOURCE(
 abspath IN VARCHAR2,
 data IN SYS.XMLTYPE,
 createfolders IN BOOLEAN := FALSE)
 RETURN BOOLEAN;

Given a REF to an existing XMLType row, creates a resource whose contents point to that row. That row should not already exist inside another resource:

DBMS_XDB.CREATERESOURCE(
 abspath IN VARCHAR2,
 datarow IN REF SYS.XMLTYPE,
 createfolders IN BOOLEAN := FALSE)
 RETURN BOOLEAN;

Creates a resource with a specified BLOB as its contents, and specifies character set of the source BLOB:

DBMS_XDB.CREATERESOURCE(
 abspath IN VARCHAR2,
 data IN BLOB,
 csid IN NUMBER :=0,
 createfolders IN BOOLEAN := FALSE)
 RETURN BOOLEAN;

Creates a resource with a specified BFILE as its contents, and specifies character set of the source BFILE:

DBMS_XDB.CREATERESOURCE (
 abspath IN VARCHAR2,
 data IN BFILE,
 csid IN NUMBER :=0,
 createfolders IN BOOLEAN := FALSE)
 RETURN BOOLEAN;

Creates a resource with a specified CLOB as its contents:

DBMS_XDB.CREATERESOURCE (
 abspath IN VARCHAR2,
 data IN CLOB,
 createfolders IN BOOLEAN := FALSE)
 RETURN BOOLEAN;

Given a string, inserts a new resource into the hierarchy with the string as the contents:

DBMS_XDB.CREATERESOURCE (
 abspath IN VARCHAR2,
 data IN VARCHAR2,
 schemaurl IN VARCHAR2 := NULL,
 elem IN VARCHAR2 := NULL)
 RETURN BOOLEAN;

Given an XMLTYPE and a schema URL, inserts a new resource into the hierarchy with the XMLTYPE as the contents:

DBMS_XDB.CREATERESOURCE (
 abspath IN VARCHAR2,
 data IN SYS.XMLTYPE,
 schemaurl IN VARCHAR2 := NULL,
 elem IN VARCHAR2 := NULL)
 RETURN BOOLEAN;

Parameters

Table 163-19 CREATERESOURCE Function Parameters

	Parameter	Description
	
abspath

	
Absolute path of the resource to create. The path name's parent folder must already exist in the hierarchy. In other words, if /foo/bar.txt is passed in, then folder /foo must already exist.

	
data

	
String buffer containing new resource's contents. The data is parsed to check if it contains a schema-based XML document, and the contents are stored as schema-based in the schema's default table. Otherwise, it is saved as binary data.

	
datarow

	
REF to an XMLType row to be used as the contents

	
csid

	
Character set id of the document. Must be a valid Oracle ID; otherwise returns an error.

If CSID is not specified, or if a zero CSID is specified, then the character set id of the document is determined as follows:

	
From the abspath extension, determine the resource's MIME type.

	
If the MIME type is */xml, then the encoding is detected based on Appendix F of the W3C XML 1.0 Reference at http://www.w3.org/TR/2000/REC-xml-20001006;

	
Otherwise, it is defaulted to the database character set.

	
createfolders

	
If TRUE, create the parent folders if they do not exist

	
schemaurl

	
For XML data, schema URL data conforms to (default NULL)

	
elem

	
Element name (default NULL)

Return Values

TRUE if operation successful; FALSE, otherwise.

DELETEHTTPEXPIREMAPPING Procedure

This procedure deletes from xdb$config all mappings of the URL pattern to an expiration date.

Syntax

DBMS_XDB.DELETEHTTPEXPIREMAPPING(
 pattern IN VARCHAR2);

Parameters

Table 163-20 DELETEHTTPEXPIREMAPPING Procedure Parameters

	Parameter	Description
	
pattern

	
URL pattern (only * accepted as wildcards)

DELETEMIMEMAPPING Procedure

This procedure deletes the mime mapping for a specified extension from the XDB configuration.

Syntax

DBMS_XDB.DELETEMIMEMAPPING(
 extension IN VARCHAR2);

Parameters

Table 163-21 DELETEMIMEMAPPING Procedure Parameters

	Parameter	Description
	
extension

	
Extension for which a mime type is to be deleted

DELETERESOURCE Procedure

This procedure deletes a resource from the hierarchy.

Syntax

DBMS_XDB.DELETERESOURCE(
 path IN VARCHAR2,
 delete_option IN PLS_INTEGER);

Parameters

Table 163-22 DELETERESOURCE Procedure Parameters

	Parameter	Description
	
path

	
Path name of the resource to delete

	
delete_option

	
The option that controls how a a resource is deleted; defined in Table 163-1:

	
DELETE_RESOURCE

	
DELETE_RECURSIVE

	
DELETE_FORCE

	
DELETE_RECURSIVE_FORCE

DELETERESOURCEMETADATA Procedures

This procedure takes in a resource by absolute path and removes either the schema-based metadata identified by the REF, or the metadata identified by the namespace and name combination, which can be either schema-based or non-schema based. It also takes an additional (optional) parameter that specifies how to delete it. This parameter is only relevant for schema-based resource metadata that needs to be deleted. For non-schema based metadata, this parameter is ignored.

Syntax

Can be used only for schema-based metadata:

DBMS_XDB.DELETERESOURCEMETADATA (
 abspath IN VARCHAR2,
 metadata IN REF SYS.XMLTYPE,
 delete_option IN pls_integer := dbms_xdb.DELETE_RESOURCE_METADATA_CASCADE);

Can be used for schema-based or nonschema-based metadata:

DBMS_XDB.DELETERESOURCEMETADATA (
 abspath IN VARCHAR2,
 metadatans IN VARCHAR2,
 metadataname IN VARCHAR2,
 delete_option IN pls_integer := dbms_xdb.DELETE_RESOURCE_METADATA_CASCADE);

Parameters

Table 163-23 DELETERESOURCEMETADATA Procedure Parameters

	Parameter	Description
	
abspath

	
Absolute path of the resource

	
metadata

	
REF to the piece of metadata (schema based) to be deleted

	
mettadatans

	
Namespace of the metadata fragment to be removed

	
mettadataname

	
Local name of the metadata fragment to be removed

	
delete_option

	
Only applicable for schema-based metadata, this can be one of the following:

	
DELETE_RES_METADATA_CASCADE - deletes the corresponding row in the metadata table

	
DELETE_RES_METADATA_NOCASCADE - does not delete the row in the metadata table

DELETESCHEMALOCMAPPING Procedure

This procedure deletes the schema location mapping for a specified schema URL from the XDB configuration.

Syntax

DBMS_XDB.DELETESCHEMALOCMAPPING(
 schemaURL IN VARCHAR2);

Parameters

Table 163-24 DELETESCHEMALOCMAPPING Procedure Parameters

	Parameter	Description
	
schemaURL

	
Schema URL

DELETESERVLET Procedure

This procedure deletes a servlet from the XDB configuration.

Syntax

DBMS_XDB.DELETESERVLET(
 name IN VARCHAR2);

Parameters

Table 163-25 DELETESERVLET Procedure Parameters

	Parameter	Description
	
name

	
Servlet name

DELETESERVLETMAPPING Procedure

This procedure deletes the servlet mapping for a specified servlet name from the XDB configuration.

Syntax

DBMS_XDB.DELETESERVLETMAPPING(
 name IN VARCHAR2);

Parameters

Table 163-26 DELETESERVLETMAPPING Procedure Parameters

	Parameter	Description
	
name

	
Servlet name

DELETESERVLETSECROLE Procedure

This procedure deletes the specified role from a servlet in the XDB configuration.

Syntax

DBMS_XDB.DELETESERVLETSECROLE(
 servname IN VARCHAR2, rolename IN VARCHAR2);

Parameters

Table 163-27 DELETESERVLETSECROLE Procedure Parameters

	Parameter	Description
	
servname

	
Servlet name

	
rolename

	
Name of the role to be deleted

DELETEXMLEXTENSION Procedure

This procedure deletes the specified XML extension from the XDB configuration.

Syntax

DBMS_XDB.DELETEXMLEXTENSION(
 extension IN VARCHAR2);

Parameters

Table 163-28 DELETEXMLEXTENSION Procedure Parameters

	Parameter	Description
	
extension

	
XML extension to be deleted

EXISTSRESOURCE Function

This function indicates if a resource is in the hierarchy. Matches resource by a string that represents its absolute path.

Syntax

DBMS_XDB.EXISTSRESOURCE(
 abspath IN VARCHAR2)
 RETURN BOOLEAN;

Parameters

Table 163-29 EXISTSRESOURCE Function Parameters

	Parameter	Description
	
abspath

	
Path name of the resource whose ACL document is required

Return Values

TRUE if the resource is found.

GETACLDOCUMENT Function

This function retrieves ACL document that protects resource given its path name.

Syntax

DBMS_XDB.GETACLDOCUMENT(
 abspath IN VARCHAR2)
 RETURN sys.xmltype;

Parameters

Table 163-30 GETACLDOCUMENT Function Parameters

	Parameter	Description
	
abspath

	
Path name of the resource whose ACL document is required

Return Values

The XMLType for ACL document.

GETCHILDRESPATHS Function

This function returns a cursor over the absolute paths of all the child resources.

Syntax

DBMS_XDB.GETCHILDRESPATHS(
 abspath IN VARCHAR2);
 RETURN SYS_REFCURSOR;

Parameters

Table 163-31 GETCHILDRESPATHS Function Parameters

	Parameter	Description
	
abspath

	
Absolute path of the resource

Return Values

A cursor over the absolute paths of all the child resources.

GETCONTENTBLOB Function

This function retrieves the contents of a resource returned as a BLOB.

Syntax

DBMS_XDB.GETCONTENTBLOB(
 abspath IN VARCHAR2,
 csid OUT PLS_INTEGER,
 locksrc IN BOOLEAN := FALSE)
 RETURN BLOB;

Parameters

Table 163-32 GETCONTENTBLOB Function Parameters

	Parameter	Description
	
abspath

	
Absolute path of the resource

	
csid

	
If TRUE, lock and return the source LOB. If FALSE, return a temp LOB copy.

	
locksrc

	
Contents of the resource as a BLOB

Return Values

The contents of the resource as a BLOB.

GETCONTENTCLOB Function

This function gets the contents of a resource returned as a CLOB.

Syntax

DBMS_XDB.GETCONTENTCLOB(
 abspath IN VARCHAR2,
 RETURN CLOB;

Parameters

Table 163-33 GETCONTENTCLOB Function Parameters

	Parameter	Description
	
abspath

	
Absolute path of the resource

Return Values

The contents of the resource as a CLOB.

GETCONTENTVARCHAR2 Function

This function gets the contents of a resource returned as a string.

Syntax

DBMS_XDB.GETCONTENTVARCHAR2(
 abspath IN VARCHAR2,
 RETURN BLOB;

Parameters

Table 163-34 GETCONTENTVARCHAR2 Function Parameters

	Parameter	Description
	
abspath

	
Absolute path of the resource

Return Values

The contents of the resource as a string.

GETCONTENTXMLREF Function

This function retrieves the contents of a resource returned as a a REF to an XMLTYPE.

Syntax

DBMS_XDB.GETCONTENTXMLREF(
 abspath IN VARCHAR2,
 RETURN SYS.XMLTYPE;

Parameters

Table 163-35 GETCONTENTXMLREF Function Parameters

	Parameter	Description
	
abspath

	
Absolute path of the resource

Return Values

The contents of the resource as a REF to an XMLTYPE.

GETCONTENTXMLTYPE Function

This function retrieves the contents of a resource returned as an XMLTYPE.

Syntax

DBMS_XDB.GETCONTENTXMLTYPE(
 abspath IN VARCHAR2,
 RETURN SYS.XMLTYPE;

Parameters

Table 163-36 GETCONTENTXMLTYPE Function Parameters

	Parameter	Description
	
abspath

	
Absolute path of the resource

Return Values

The contents of the resource as an XMLTYPE.

GETFTPPORT Function

This procedure gets the value of the current FTP port.

Syntax

DBMS_XDB.GETFTPPORT
 RETURN NUMBER;

GETHTTPPORT Function

This procedure gets the value of the current HTTP port.

Syntax

DBMS_XDB.GETHTTPPORT
 RETURN NUMBER;

GETLISTENERENDPOINT Procedure

This procedure retrieves the parameters of a listener end point corresponding to the XML DB HTTP server. The parameters of both HTTP and HTTP2 end points can be retrieved by invoking this procedure.

Syntax

DBMS_XDB.GETLISTENERENDPOINT (
 endpoint IN NUMBER,
 host OUT VARCHAR2, port OUT NUMBER,
 protocol OUT NUMBER);

Parameters

Table 163-37 GETLISTENERENDPOINT Procedure Parameters

	Parameter	Description
	
endpoint

	
End point to be retrieved. Its value can be XDB_ENDPOINT_HTTP or XDB_ENDPOINT_HTTP2.

	
host

	
Interface on which the listener end point listens

	
port

	
Port on which the listener end point listens

	
protocol

	
Transport protocol accepted by the listener end point

GETLOCKTOKEN Procedure

Given a path to a resource, this procedure returns that resource's lock token for the current user.

Syntax

DBMS_XDB.GETLOCKTOKEN(
 path IN VARCHAR2,
 locktoken OUT VARCHAR2);

Parameters

Table 163-38 GETLOCKTOKEN Procedure Parameters

	Parameter	Description
	
path

	
Path name to the resource

	
locktoken

	
Logged-in user's lock token for the resource

Usage Notes

The user must have READPROPERTIES privilege on the resource.

GETPRIVILEGES Function

This function gets all privileges granted to the current user on a specified resource.

Syntax

DBMS_XDB.GETPRIVILEGES(
 res_path IN VARCHAR2)
 RETURN sys.xmltype;

Parameters

Table 163-39 GETPRIVILEGES Function Parameters

	Parameter	Description
	
res_path

	
Absolute path in the hierarchy of the resource

Return Values

An XMLType instance of <privilege> element, which contains the list of all leaf privileges granted on this resource to the current user.

GETRESOID Function

Returns the object ID of the resource from its absolute path.

Syntax

DBMS_XDB.GETRESOID(
 abspath IN VARCHAR2)
RETURN RAW;

Parameters

Table 163-40 GETRESOID Function Parameters

	Parameter	Description
	
abspath_path

	
Absolute path of the resource

Return Values

NULL if the resource is not present.

GETXDB_TABLESPACE Function

This function returns the current tablespace of the XDB (user).

Syntax

DBMS_XDB.GETXDB_TABLESPACE
 RETURN VARCHAR2;

HASBLOBCONTENT Function

This function returns TRUE if the resource has BLOB content.

Syntax

DBMS_XDB.DBMS_XDB.HASBLOBCONTENT
 abspath IN VARCHAR2)
 RETURN BOOLEAN;

Parameters

Table 163-41 HASBLOBCONTENT Function Parameters

	Parameter	Description
	
abspath_path

	
Absolute path of the resource

Return Values

TRUE if the resource has BOB content.

HASCHARCONTENT Function

This function returns TRUE if the resource has character content.

Syntax

DBMS_XDB.DBMS_XDB.HASCHARCONTENT
 abspath IN VARCHAR2)
 RETURN BOOLEAN;

Parameters

Table 163-42 HASCHARCONTENT Function Parameters

	Parameter	Description
	
abspath_path

	
Absolute path of the resource

Return Values

TRUE if the resource has character content.

HASXMLCONTENT Function

This function returns TRUE if the resource has XML content.

Syntax

DBMS_XDB.DBMS_XDB.HASXMLCONTENT
 abspath IN VARCHAR2)
 RETURN BOOLEAN;

Parameters

Table 163-43 HASXMLCONTENT Function Parameters

	Parameter	Description
	
abspath_path

	
Absolute path of the resource

Return Values

TRUE if the resource has XML content.

HASXMLREFERENCE Function

This function returns TRUE if the resource has a REF to XML content.

Syntax

DBMS_XDB.DBMS_XDB.HASXMLREFERENCE
 abspath IN VARCHAR2)
 RETURN BOOLEAN;

Parameters

Table 163-44 HASXMLREFERENCE Function Parameters

	Parameter	Description
	
abspath_path

	
Absolute path of the resource

Return Values

TRUE resource has a REF to XML content.

ISFOLDER Function

This function returns TRUE if the resource is a folder or container.

Syntax

DBMS_XDB.DBMS_XDB.ISFOLDER
 abspath IN VARCHAR2)
 RETURN BOOLEAN;

Parameters

Table 163-45 DBMS_XDB.ISFOLDER Function Parameters

	Parameter	Description
	
abspath_path

	
Absolute path of the resource

Return Values

TRUE if the resource is a folder or container.

LINK Procedures

This procedure creates from a specified folder to a specified resource.

Syntax

DBMS_XDB.LINK(
 srcpath IN VARCHAR2,
 linkfolder IN VARCHAR2,
 linkname IN VARCHAR2);

DBMS_XDB.LINK(
 srcpath IN VARCHAR2,
 linkfolder IN VARCHAR2,
 linkname IN VARCHAR2,
 linktype IN PLS_INTEGER := DBMS_XDB.LINK_TYPE_HARD);

Parameters

Table 163-46 LINK Procedure Parameters

	Parameter	Description
	
srcpath

	
Path name of the resource to which a link is created

	
linkfolder

	
Folder in which the new link is placed

	
linkname

	
Name of the new link

	
linktype

	
Type of link to be created:

	
DBMS_XDB.LINK_TYPE_HARD (default)

	
DBMS_XDB.LINK_TYPE_WEAK

	
DBMS_XDB.LINK_TYPE_SYMBOLIC

LOCKRESOURCE Function

Given a path to a resource, this function gets a WebDAV-style lock on that resource.

Syntax

DBMS_XDB.LOCKRESOURCE(
 path IN VARCHAR2,
 depthzero IN BOOLEAN,
 shared IN boolean)
RETURN BOOLEAN;

Parameters

Table 163-47 LOCKRESOURCE Function Parameters

	Parameter	Description
	
path

	
Path name of the resource to lock.

	
depthzero

	
Currently not supported

	
shared

	
Passing TRUE obtains a shared write lock

Return Values

TRUE if successful.

Usage Notes

The user must have UPDATE privileges on the resource.

MOVEXDB_TABLESPACE Procedure

	
Note:

This procedure is deprecated in Release 11g. This functionality is replaced by a subprogram of the same name in the DBMS_XDB_ADMINpackage - the MOVEXDB_TABLESPACE Procedure.

This procedure moves the XDB (user) to the specified tablespace.

Syntax

DBMS_XDB.MOVEXDB_TABLESPACE(
 new_tablespace IN VARCHAR2);

Parameters

Table 163-48 MOVEXDB_TABLESPACE Procedure Parameters

	Parameter	Description
	
new_tablespace

	
Name of the tablespace to where the XDB is moved

Usage Notes

	
This operation waits for all concurrent XDB sessions to exit.

	
If MOVEXDB_TABLESPACE fails, the user should restart the database before issuing any further command. Failure to do so willproduce indeterminable results.

PROCESSLINKS Procedure

This procedure processes document links in the specified resource.

Syntax

DBMS_XDB.PURGERESOURCEMETADATA(
 abspath IN VARCHAR2,
 recurse IN BOOLEAN := FALSE);

Parameters

Table 163-49 PROCESSLINKS Procedure Parameters

	Parameter	Description
	
abspath

	
Absolute path of the resource. If the path is a folder, use the recurse flag.

	
recurse

	
Used only if abspath specifies a folder. If TRUE, process links of all resources in the folder hierarchy rooted at the specified resource. If FALSE, process links of all documents in this folder only.

PURGERESOURCEMETADATA Procedure

This procedure deletes all user metadata from a resource. Schema-based metadata is removed in cascade mode, rows being deleted from the corresponding metadata tables.

Syntax

DBMS_XDB.PURGERESOURCEMETADATA(
 abspath IN VARCHAR2);

Parameters

Table 163-50 PURGERESOURCEMETADATA Procedure Parameters

	Parameter	Description
	
abspath

	
Absolute path of the resource

REBUILDHIERARCHICALINDEX Procedure

	
Note:

This procedure is deprecated in Release 11g. This functionality is replaced by a subprogram of the same name in the DBMS_XDB_ADMIN package - the REBUILDHIERARCHICALINDEX Procedure.

This procedure rebuilds the hierarchical index after import or export operations. This is necessary because data cannot be exported from index tables.

Syntax

DBMS_XDB.REBUILDHIERARCHICALINDEX;

RENAMERESOURCE Procedure

This procedure renames the XDB resource.

Syntax

DBMS_XDB.RENAMERESOURCE(
 srcpath IN VARCHAR2,
 destfolder IN CARCHAR2,
 newname IN VARCHAR2);

Parameters

Table 163-51 RENAMERESOURCE Procedure Parameters

	Parameter	Description
	
srcpath

	
Absolute path in the Hierarchy for the source resource destination folder

	
destfolder

	
Absolute path in the Hierarchy for the destination folder

	
newname

	
Name of the child in the destination folder

SETACL Procedure

This procedure sets the ACL on a specified resource to be the ACL specified by path.

Syntax

DBMS_XDB.SETACL(
 res_path IN VARCHAR2,
 acl_path IN VARCHAR2);

Parameters

Table 163-52 SETACL Procedure Parameters

	Parameter	Description
	
res_path

	
Absolute path in the Hierarchy for resource

	
acl_path

	
Absolute path in the Hierarchy for ACL

Usage Notes

The user must have <write-acl> privileges on the resource.

SETCONTENT Procedures

This procedure replaces the contents of a resource with a specified datatype.

Syntax

Replaces the contents of the a resource with a specified CLOB:

DBMS_XDB.SETCONTENT(
 abspath IN VARCHAR2,
 data IN CLOB);

Replaces the contents of a resource with a specified BLOB:

DBMS_XDB.SETCONTENT(
 abspath IN VARCHAR2,
 data IN BLOB,
 csid IN PLS_INTEGER);

Replaces the contents of a resource with a specified XMLTYPE:

DBMS_XDB.SETCONTENT(
 abspath IN VARCHAR2,
 data IN SYS.XMLTYPE);

Replaces the contents of a resource with a specified string:

DBMS_XDB.SETCONTENT(
 abspath IN VARCHAR2,
 data IN VARCHAR2);

Replaces the contents of a resource with a specified REF to an XMLTYPE

DBMS_XDB.SETCONTENT(
 abspath IN VARCHAR2,
 data IN CLOB,
 sticky IN BOOLEAN := TRUE);

Replaces the contents of a resource with a specified BFILE:

DBMS_XDB.SETCONTENT(
 abspath IN VARCHAR2,
 data IN CLOB,
 csid IN PLS_INTEGER);

Parameters

Table 163-53 SETCONTENT Procedure Parameters

	Parameter	Description
	
abspath

	
Absolute path in the Hierarchy for resource

	
data

	
Input varying with overload:

	
CLOB data

	
BLOB data

	
XMLTYPE data

	
string data

	
REF to XMLTYPE data

	
a BFILE

	
csid

	
Character set id of the BLOB or BFILE

	
sticky

	
Whether or not the REF is sticky

SETFTPPORT Procedure

This procedure sets the FTP port to a new value.

Syntax

DBMS_XDB.SETFTPPORT(
 new_port IN NUMBER);

Parameters

Table 163-54 SETFTPPORT Procedure Parameters

	Parameter	Description
	
new_port

	
Value to which the FTP port is set

SETHTTPPORT Procedure

This procedure sets the HTTP port to a new value.

Syntax

DBMS_XDB.SETHTTPPORT(
 new_port IN NUMBER);

Parameters

Table 163-55 SETHTTPPORT Procedure Parameters

	Parameter	Description
	
new_port

	
Value to which the HTTP port is set

SETLISTENERENDPOINT Procedure

This procedure sets the parameters of a listener end point corresponding to the XML DB HTTP server. Both HTTP and HTTP2 end points can be set by invoking this procedure.

Syntax

DBMS_XDB.SETLISTENERENDPOINT (
 endpoint IN NUMBER,
 host IN VARCHAR2, port IN NUMBER,
 protocol IN NUMBER);

Parameters

Table 163-56 SETLISTENERENDPOINT Procedure Parameters

	Parameter	Description
	
endpoint

	
End point to be set. Its value can be XDB_ENDPOINT_HTTP or XDB_ENDPOINT_HTTP2.

	
host

	
Interface on which the listener end point is to listen. Its value can be 'LOCALHOST,' NULL, or a hostname. If its value is 'LOCALHOST' the listener end point is permitted to only listen on the localhost interface. If its value is NULL or hostname, the listener end point is permitted to listen on both localhost and non-localhost interfaces.

	
port

	
Port on which the listener end point is to listen

	
protocol

	
Transport protocol that the listener end point is to accept. Its value can be XDB_PROTOCOL_TCP or XDB_PROTOCOL_TCPS

SETLISTENERLOCALACCESS Procedure

This procedure restricts all listener end points of the XML DB HTTP server to listen either only on the localhost interface (when l_access is set to TRUE) or to listen on both localhost and non-localhost interfaces (when l_access is set to FALSE).

Syntax

DBMS_XDB.SETLISTENERLOCALACCESS (
 l_access BOOLEAN);

Parameters

Table 163-57 SETLISTENERLOCALACCESS Procedure Parameters

	Parameter	Description
	
l_access.

	
TRUE or FALSE.

SPLITPATH Procedure

This procedure splits the path into a parentpath and childpath.

Syntax

DBMS_XDB.SPLITPATH(
 abspath IN VARCHAR2,
 parentpath OUT VARCHAR2,
 childpath OUT VARCHAR2);

Parameters

Table 163-58 SPLITPATH Procedure Parameters

	Parameter	Description
	
abspath

	
Absolute path to be split

	
parentpath

	
Parentpath

	
childpath

	
Childpath

TOUCHRESOURCE Procedure

This procedure changes the modification time of the resource to the current time.

Syntax

DBMS_XDB.DBMS_XDB.TOUCHRESOURCE
 abspath IN VARCHAR2);

Parameters

Table 163-59 DBMS_XDB.TOUCHRESOURCE Procedure Parameters

	Parameter	Description
	
abspath_path

	
Absolute path of the resource

UPDATERESOURCEMETADATA Procedures

This procedure updates metadata for a resource. The procedure takes in a resource identified by absolute path and the metadata in it to replace identified by its REF. It replaces that piece of metadata with user-defined metadata which is either in the form of a REF to XMLTYPE or an XMLTYPE.

Syntax

Can be used to update schema-based metadata only. The new metadata must be schema-based:

DBMS_XDB.UPDATERESOURCEMETADATA(
 abspath IN VARCHAR2,
 oldmetadata IN REF SYS.XMLTYPE,
 newmetadata IN REF SYS.XMLTYPE)

Can be used to update schema-based metadata only. The new metadata must be schema-based or nonschema-based:

DBMS_XDB.UPDATERESOURCEMETADATA(
 abspath IN VARCHAR2,
 oldmetadata IN REF SYS.XMLTYPE,
 newmetadata IN XMLTYPE);

Can be used for both schema-based and nonschema-based metadata:

DBMS_XDB.UPDATERESOURCEMETADATA(
 abspath IN VARCHAR2,
 oldns IN VARCHAR2,
 oldname IN VARCHAR,
 newmetadata IN XMLTYPE);

Can be used for both schema-based or nonschema-based metadata. New metadata must be schema-based:

DBMS_XDB.UPDATERESOURCEMETADATA(
 abspath IN VARCHAR2,
 oldns IN VARCHAR2,
 oldname IN VARCHAR,
 newmetadata IN REF SYS.XMLTYPE);

Parameters

Table 163-60 UPDATERESOURCEMETADATA Procedure Parameters

	Parameter	Description
	
abspath

	
Absolute path of the resource

	
oldmetadata

	
REF to the old of metadata

	
newmetadata

	
REF to the new, replacement metadata (can be either schema-based or nonschema-based depending on the overload)

	
oldns

	
Namespace identifying old metadata

	
oldname

	
Local name identifying old metadata

Usage Notes

In the case of REF, it stores the REF in the resource and the metadata is stored in a separate table. Uniqueness of REFs is enforced. In the case where the XMLTYPE is passed in, data is parsed to determine if it is schema-based or not and is stored accordingly.

UNLOCKRESOURCE Function

This function unlocks the resource given a lock token and a path to the resource.

Syntax

DBMS_XDB.UNLOCKRESOURCE(
 path IN VARCHAR2,
 deltoken IN VARCHAR2)
 RETURN BOOLEAN;

Parameters

Table 163-61 UNLOCKRESOURCE Function Parameters

	Parameter	Description
	
path

	
Path name to the resource

	
deltoken

	
Lock token to be removed

Return Values

TRUE if operation successful.

Usage Notes

The user must have UPDATE privileges on the resource.

DBMS_XDB_ADMIN

164 DBMS_XDB_ADMIN

The DBMS_XDB_ADMIN package provides an interface to manage the Oracle XML DB repository.

	
See Also:

Oracle XML DB Developer's Guide for information about the Oracle XML DB Repository

This chapter contains the following topics:

	
Using DBMS_XDB_ADMIN

	
Deprecated Subprograms

	
Security Model

	
Summary of DBMS_XDB_ADMIN Subprograms

Using DBMS_XDB_ADMIN

	
Deprecated Subprograms

	
Security Model

Deprecated Subprograms

	
Note:

Oracle recommends that you do not use deprecated procedures in new applications. Support for deprecated features is for backward compatibility only and may be terminated in future releases.

The following subprograms are deprecated with Oracle Database 11g:

	
CREATEREPOSITORYXMLINDEX Procedure

	
DROPREPOSITORYXMLINDEX Procedure

	
XMLINDEXADDPATH Procedure

	
XMLINDEXREMOVEPATH Procedure

Security Model

Owned by XDB, the DBMS_XDB_ADMIN package must be created by SYS or XDB. The EXECUTE privilege is granted to SYS or XDB or DBA. Subprograms in this package are executed using the privileges of the current user.

Summary of DBMS_XDB_ADMIN Subprograms

This table lists the package subprograms in alphabetical order.

Table 164-1 DBMS_XDB_ADM Package Subprograms

	Subprogram	Description
	
CREATEREPOSITORYXMLINDEX Procedure

	
[Deprecated] Creates an XMLIndex on the XML DB repository

	
DROPREPOSITORYXMLINDEX Procedure

	
[Deprecated] Drops the XMLIndex on the XML DB repository

	
MOVEXDB_TABLESPACE Procedure

	
Moves the XDB (user) to the specified tablespace

	
REBUILDHIERARCHICALINDEX Procedure

	
Rebuilds the hierarchical index after import or export operations

	
XMLINDEXADDPATH Procedure

	
[Deprecated] Takes a path in XML DB repository as an input and index all the resources under this given path

	
XMLINDEXREMOVEPATH Procedure

	
[Deprecated] Removes the index for the given path

CREATEREPOSITORYXMLINDEX Procedure

	
Note:

This procedure is deprecated in Release 11g.

This procedure creates an XMLIndex on the XML DB repository.

Syntax

DBMS_XDB_ADMIN.CREATEREPOSITORYXMLINDEX;

DROPREPOSITORYXMLINDEX Procedure

	
Note:

This procedure is deprecated in Release 11g.

This procedure drops the XMLIndex on the XML DB repository.

Syntax

DBMS_XDB_ADMIN.DROPREPOSITORYXMLINDEX;

MOVEXDB_TABLESPACE Procedure

This procedure moves the XDB (user) to the specified tablespace.

Syntax

DBMS_XDB.MOVEXDB_TABLESPACE(
 new_tablespace IN VARCHAR2);

Parameters

Table 164-2 MOVEXDB_TABLESPACE Procedure Parameters

	Parameter	Description
	
new_tablespace

	
Name of the tablespace to where the XDB is moved

Usage Notes

	
This operation waits for all concurrent XDB sessions to exit.

	
If MOVEXDB_TABLESPACE fails, the user should restart the database before issuing any further command.Failure to do so will result into unexpected behavior from the database.

REBUILDHIERARCHICALINDEX Procedure

This procedure rebuilds the hierarchical index after import or export operations. This is necessary because data cannot be exported from index tables.

Syntax

DBMS_XDB.REBUILDHIERARCHICALINDEX;

XMLINDEXADDPATH Procedure

	
Note:

This procedure is deprecated in Release 11g.

This procedure adds to the repository xmlindex the resource identified by path (when recurse is FALSE) or adds to the repository xmlindex the sub-tree of resources rooted at path (when recurse is TRUE). The default value for recurse is TRUE.

Syntax

DBMS_XDB_ADMIN.XMLINDEXADDPATH(
 path IN VARCHAR2,
 recurse IN BOOLEAN);

Parameters

Table 164-3 XMLINDEXADDPATH Procedure Parameters

	Parameter	Description
	
path

	
Path to a resource

	
recurse

	
TRUE or FALSE

XMLINDEXREMOVEPATH Procedure

	
Note:

This procedure is deprecated in Release 11g.

This procedure removes from the repository xmlindex the resource identified by path (when recurse is FALSE) or removes from the repository xmlindex the sub-tree of resources rooted at path (when recurse is TRUE). The default value for recurse is TRUE.

Syntax

DBMS_XDB_ADMIN.XMLINDEXREMOVEPATH(
 path IN VARCHAR2,
 isrecursive IN BOOLEAN);

Parameters

Table 164-4 XMLINDEXREMOVEPATH Procedure Parameters

	Parameter	Description
	
path

	
Path to a resource

	
recurse

	
TRUE or FALSE

DBMS_XDB_VERSION

165 DBMS_XDB_VERSION

Oracle XML DB versioning interfaces are found in the DBMS_XBD_VERSION package. Functions and procedures of DBMS_XDB_VERSION help to create a VCR and manage the versions in the version history.

This chapter contains the following topic:

	
Using DBMS_XDB_VERSION

	
Security Model

	
Summary of DBMS_XDB_VERSION Subprograms

	
See Also:

Oracle XML DB Developer's Guide

Using DBMS_XDB_VERSION

	
Security Model

Security Model

Owned by XDB, the DBMS_XDB_VERSION package must be created by SYS or XDB. The EXECUTE privilege is granted to PUBLIC. Subprograms in this package are executed using the privileges of the current user.

Summary of DBMS_XDB_VERSION Subprograms

Table 165-1 DBMS_XDB_VERSION Package Subprograms

	Method	Description
	
CHECKIN Function

	
Checks in a checked-out VCR and returns the resource id of the newly-created version

	
CHECKOUT Procedure

	
Checks out a VCR before updating or deleting it

	
GETCONTENTSBLOBBYRESID Function

	
Obtain contents as a BLOB

	
GETCONTENTSCLOBBYRESID Function

	
Obtain contents as a CLOB

	
GETCONTENTSXMLBYRESID Function

	
Obtain contents as an XMLType

	
GETPREDECESSORS Function

	
Retrieves the list of predecessors by path name

	
GETPREDSBYRESID Function

	
Retrieves the list of predecessors by resource id

	
GETRESOURCEBYRESID Function

	
Obtains the resource as an XMLType, given the resource object ID

	
GETSUCCESSORS Function

	
Retrieves the list of successors by path name

	
GETSUCCSBYRESID Function

	
Retrieves the list of successors by resource id

	
MAKEVERSIONED Function

	
Turns a regular resource whose path name is given into a version-controlled resource

	
UNCHECKOUT Function

	
Checks in a checked-out resource, returns the resource id of the version before the resource is checked out

CHECKIN Function

This function checks in a checked-out VCR and returns the resource id of the newly-created version.

Syntax

DBMS_XDB_VERSION.CHECKIN(
 pathname VARCHAR2)
 RETURN DBMS_XDB.resid_type;

Parameters

Table 165-2 CHECKIN Function Parameters

	Parameter	Description
	
pathname

	
The path name of the checked-out resource.

Usage Notes

This is not an auto-commit SQL operation. CHECKIN Function doesn't have to take the same path name that was passed to CHECKOUT Procedure operation. However, the CHECKIN Function path name and the CHECKOUT Procedure path name must be of the same resource for the operations to function correctly. If the resource has been renamed, the new name must be used to CHECKIN Function because the old name is either invalid or is currently bound with a different resource. Exception is raised if the path name does not exist. If the path name has been changed, the new path name must be used to CHECKIN Function the resource.

CHECKOUT Procedure

This procedure checks out a VCR before updating or deleting it.

Syntax

DBMS_XDB_VERSION.Checkout(
 pathname VARCHAR2);

Parameters

Table 165-3 CHECKOUT Procedure Parameters

	Parameter	Description
	
pathname

	
The path name of the VCR to be checked out.

Usage Notes

This is not an auto-commit SQL operation. Two users of the same workspace cannot CHECKOUT Procedure the same VCR at the same time. If this happens, one user must rollback. As a result, it is good practice to commit the CHECKOUT Procedure operation before updating a resource and avoid loss of the update if the transaction is rolled back. An exception is raised if the given resource is not a VCR, if the VCR is already checked out, if the resource doesn't exist.

GETCONTENTSBLOBBYRESID Function

This function obtain contents as a BLOB.

Syntax

DBMS_XDB_VERSION.GETCONTENTSBLOBYRESID(
 resid DBMS_XDB.resid_type)
 RETURN BLOB;

Parameters

Table 165-4 GETCONTENTSBLOBYRESID Function Parameters

	Parameter	Description
	
resid

	
The resource id.

GETCONTENTSCLOBBYRESID Function

This function obtains contents as a CLOB.

Syntax

DBMS_XDB_VERSION.GETCONTENTSCLOBYRESID(
 resid DBMS_XDB.resid_type)
 RETURN CLOB;

Parameters

Table 165-5 GETCONTENTSCLOBYRESID Function Parameters

	Parameter	Description
	
resid

	
The resource id.

GETCONTENTSXMLBYRESID Function

This function obtains contents as an XMLType.

Syntax

DBMS_XDB_VERSION.GETCONTENTSXMLBYRESID(
 resid DBMS_XDB.resid_type)
 RETURN XMLType;

Parameters

Table 165-6 GETCONTENTSXMLBYRESID Function Parameters

	Parameter	Description
	
resid

	
The resource id.

Return Values

If the contents are not valid XML, returns NULL.

GETPREDECESSORS Function

This function retrieves the list of predecessors by the path name.

Syntax

DBMS_XDB_VERSION.GETPREDECESSORS(
 pathname VARCHAR2)
 RETURN resid_list_type;

Parameters

Table 165-7 GETPREDECESSORS Function Parameters

	Parameter	Description
	
pathname

	
The path name of the resource.

Return Values

An exception is raised if pathname is illegal.

GETPREDSBYRESID Function

This function retrieves the list of predecessors by resource id.

Syntax

DBMS_XDB_VERSION.GETPREDSBYRESID(
 resid resid_type)
 RETURN resid_list_type;

Parameters

Table 165-8 GETPREDSBYRESID Function Parameters

	Parameter	Description
	
resid

	
The resource id.

Usage Notes

Getting predecessors by RESID is more efficient than by pathname.

Exceptions

An exception is raised if the RESID is illegal.

GETRESOURCEBYRESID Function

This function obtains the resource as an XMLType, given the resource object ID. Because the system does not create a path name for versions, this function is useful for retrieving the resource using its resource id.

Syntax

DBMS_XDB_VERSION.GETRESOURCEBYRESID(
 resid resid_type)
 RETURN XMLType;

Parameters

Table 165-9 GETRESOURCEBYRESID Function Parameters

	Parameter	Description
	
resid

	
The resource id.

GETSUCCESSORS Function

Given a version resource or a VCR, this function retrieves the list of the successors of the resource by the path name.

Syntax

DBMS_XDB_VERSION.GETSUCCESSORS(
 pathname VARCHAR2)
 RETURN resid_list_type;

Parameters

Table 165-10 GETSUCCESSORS Function Parameters

	Parameter	Description
	
pathname

	
The path name of the resource.

Usage Notes

Getting successors by RESID is more efficient than by pathname.

Exceptions

An exception is raised if the pathname is illegal.

GETSUCCSBYRESID Function

This function retrieves the list of the successors of the resource by resource id using version resource or VCR.

Syntax

DBMS_XDB_VERSION.GETSUCCSBYRESID(
 resid resid_type)
 RETURN resid_list_type;

Parameters

Table 165-11 GETSUCCSBYRESID Function Parameters

	Parameter	Description
	
resid

	
The resource id.

Usage Notes

Getting successors by RESID is more efficient than by pathname.

Exceptions

An exception is raised if the pathname is illegal.

MAKEVERSIONED Function

This function turns a regular resource whose path name is given into a version-controlled resource. This new resource is then put under version control. All other path names continue to refer to the original resource.

Syntax

DBMS_XDB_VERSION.MAKEVERSIONED(
 pathname VARCHAR2)
 RETURN DBMS_XDB.resid_type;

Parameters

Table 165-12 MAKEVERSIONED Function Parameters

	Parameter	Description
	
pathname

	
The path name of the resource to be put under version control.

Return Values

This function returns the resource ID of the first version, or root, of the VCR.

Usage Notes

If two or more path names are bound with the same resource, a copy of the resource is created, and the given path name is bound with the newly-created copy.

This is not an auto-commit SQL operation. An exception is raised if the resource doesn't exist.

	
This call is legal for VCR, and neither exception nor warning is raised.

	
This call is illegal for folder, version history, version resource, and ACL.

	
No support for Schema-based resources is provided.

UNCHECKOUT Function

This function checks-in a checked-out resource and returns the resource id of the version before the resource is checked out.

Syntax

DBMS_XDB_VERSION.UNCHECKOUT(
 pathname VARCHAR2)
 RETURN DBMS_XDB.resid_type;

Parameters

Table 165-13 UNCHECKOUT Function Parameters

	Parameter	Description
	
pathname

	
The path name of the checked-out resource.

Usage Notes

This is not an auto-commit SQL operation. The UNCHECKOUT Function does not have to take the same path name that was passed to the operation by the CHECKOUT Procedure. However, the UNCHECKOUT Function path name and the CHECKOUT Procedure path name must be of the same resource for the operations to function correctly. If the resource has been renamed, the new name must be used to UNCHECKOUT Function, because the old name is either invalid or is currently bound with a different resource. If the path name has been changed, the new path name must be used to UNCHECKOUT Function the resource.

Exceptions

An exception is raised if the path name doesn't exist.

DBMS_XDBRESOURCE

166 DBMS_XDBRESOURCE

The DBMS_XDBRESOURCE package provides the interface to operate on the resource's metadata and contents.

	
See Also:

Oracle XML DB Developer's Guide for examples of "Using DBMS_XDBRESOURCE"

This chapter contains the following topics:

	
Using DBMS_XDBRESOURCE

	
Overview

	
Security Model

	
Summary of DBMS_XDBRESOURCE Subprograms

Using DBMS_XDBRESOURCE

	
Overview

	
Security Model

Overview

The DBMS_XDBRESOURCE package provides routines to get and set the resource's metadata and contents. To take advantage of the DOM traversal facility, provided in DBMS_XMLDOM package, an XDBResource instance could be converted to a DOMDocument type by using DBMS_XDBRESOURCE.MAKEDOCUMENT routine.

Security Model

Owned by XDB, the DBMS_XDBRESOURCE package must be created by SYS or XDB. The EXECUTE privilege is granted to PUBLIC. Subprograms in this package are executed using the privileges of the current user.

Summary of DBMS_XDBRESOURCE Subprograms

Table 166-1 DBMS_XDBRESOURCE Package Subprograms

	Subprogram	Description
	
FREERESOURCE Procedure

	
Frees any memory associated with an XDBResource

	
GETACL Function

	
Given an XDBResource, returns its ACL as string

	
GETACLDOCFROMRES Function

	
Returns the ACL Document for the given resource as XMLType

	
GETAUTHOR Function

	
Given an XDBResource, returns its author

	
GETCHARACTERSET Function

	
Given an XDBResource, returns its character set

	
GETCOMMENT Function

	
Given an XDBResource, returns its comment

	
GETCONTENTBLOB Function

	
Returns the contents of the resource as a BLOB

	
GETCONTENTCLOB Function

	
Returns the contents of the resource as a CLOB

	
GETCONTENTREF Function

	
Returns the contents of the resource as an XMLTypeRef

	
GETCONTENTTYPE Function

	
Given an XDBResource, returns its content-type

	
GETCONTENTXML Function

	
Returns the contents of the resource as XML

	
GETCONTENTVARCHAR2 Function

	
Returns the contents of the resource as a string

	
GETCREATIONDATE Function

	
Given an XDBResource, returns its creation date

	
GETCREATOR Function

	
Given an XDBResource, returns its creator

	
GETCUSTOMMETADATA Function

	
Returns the requested custom metadata given the xpath and namespace to the metadata

	
GETDISPLAYNAME Function

	
Given an XDBResource, returns its display name

	
GETLANGUAGE Function

	
Given an XDBResource, returns its language

	
GETLASTMODIFIER Function

	
Given an XDBResource, returns its last modifier

	
GETMODIFICATIONDATE Function

	
Given an XDBResource, returns its modification date

	
GETOWNER Function

	
Given an XDBResource, returns its owner.

	
GETREFCOUNT Function

	
Given an XDBResource, returns its reference count

	
GETVERSIONID Function

	
Given an XDBResource, returns its version ID.

	
HASACLCHANGED Function

	
Returns TRUE if the ACL of the given resource has changed, FALSE otherwise

	
HASAUTHORCHANGED Function

	
Returns TRUE if the ACL of the given resource has changed FALSE otherwise

	
HASCHANGED Function

	
Returns TRUE if the element or attribute represented by the given XPath has changed, FALSE otherwise

	
HASCHARACTERSETCHANGED Function

	
Returns TRUE if the character set of the given resource has changed, FALSE otherwise

	
HASCOMMENTCHANGED Function

	
Returns TRUE if the comment of the given resource has changed, FALSE otherwise

	
HASCONTENTCHANGED Function

	
Returns TRUE if the contents of the given resource has changed, FALSE otherwise

	
HASCONTENTTYPECHANGED Function

	
Returns TRUE if the content-type of the given resource has changed, FALSE otherwise

	
HASCREATIONDATECHANGED Function

	
Returns TRUE if the creation date of the given resource has changed, FALSE otherwise

	
HASCREATORCHANGED Function

	
Returns TRUE if the creator of the given resource has changed, FALSE otherwise

	
HASCUSTOMMETADATACHANGED Function

	
Returns TRUE if custom-metadata for this XPath has changed, FALSE otherwise

	
HASDISPLAYNAMECHANGED Function

	
Returns TRUE if the display name of the given resource has changed, FALSE otherwise

	
HASLANGUAGECHANGED Function

	
Returns TRUE if the language of the given resource has changed, FALSE otherwise

	
HASLASTMODIFIERCHANGED Function

	
Returns TRUE if the last modifier of the given resource has changed, FALSE otherwise

	
HASMODIFICATIONDATECHANGED Function

	
Returns TRUE if the modification date of the given resource has changed, FALSE otherwise

	
HASOWNERCHANGED Function

	
Returns TRUE if the owner of the given resource has changed, FALSE otherwise

	
HASREFCOUNTCHANGED Function

	
Returns TRUE if the reference count of the given resource has changed, FALSE otherwise

	
HASVERSIONIDCHANGED Function

	
Returns TRUE if the version ID of the given resource has changed, FALSE otherwise

	
ISFOLDER Function

	
Returns TRUE if the given resource is a folder, FALSE otherwise

	
ISNULL Function

	
Returns TRUE if input resource is NULL, FALSE otherwise

	
MAKEDOCUMENT Function

	
Converts the XDBResource to a DOMDocument which can be operated on using the XMLDOM interface

	
SAVE Procedure

	
Updates the resource with any modifications

	
SETACL Procedure

	
Sets the ACL of the given XDBResource to the path specified

	
SETAUTHOR Procedure

	
Sets the author of the given XDBResource to the specified string

	
SETCHARACTERSET Procedure

	
Sets the character set of the given XDBResource to a specified character set

	
SETCOMMENT Procedure

	
Sets a comment associated with the given XDBResource

	
SETCONTENT Procedures

	
Replaces the contents of the given resource with the given CLOB

	
SETCONTENTTYPE Procedure

	
Sets the content-type of the given XDBResource

	
SETCUSTOMMETADATA Procedure

	
Sets the custom metadata specified by the XPath and namespace to new data

	
SETDISPLAYNAME Procedure

	
Sets the display name of the given XDBResource

	
SETLANGUAGE Procedure

	
Sets the language of the given XDBResource

	
SETOWNER Procedure

	
Sets the owner of the given XDBResource

FREERESOURCE Procedure

This procedure frees any memory associated with an XDBResource.

Syntax

DBMS_XDBRESEROUCE.FREERESOURCE (
 res IN XDBResource)
 RETURN VARCHAR2;

Parameters

Table 166-2 FREERESOURCE Procedure Parameters

	Parameter	Description
	
res

	
XDBResource to free

GETACL Function

Given an XDBResource, this function returns its ACL as string.

Syntax

DBMS_XDBRESEROUCE.GETACL (
 res IN XDBResource)
 RETURN VARCHAR2;

Parameters

Table 166-3 GETACL Function Parameters

	Parameter	Description
	
res

	
XDBResource

GETACLDOCFROMRES Function

This function returns the ACL Document for the given resource as XMLType.

Syntax

DBMS_XDBRESEROUCE.GETACLDOCFROMRES (
 res IN XDBResource)
 RETURN SYS.XMLTYPE;

Parameters

Table 166-4 GETACL Function Parameters

	Parameter	Description
	
res

	
XDBResource

GETAUTHOR Function

Given an XDBResource, this function returns its author.

Syntax

DBMS_XDBRESEROUCE.GETAUTHOR (
 res IN XDBResource)
 RETURN VARCHAR2;

Parameters

Table 166-5 GETAUTHOR Function Parameters

	Parameter	Description
	
res

	
XDBResource

GETCHARACTERSET Function

Given an XDBResource, this function returns its characterset.

Syntax

DBMS_XDBRESEROUCE.GETCHARACTERSET (
 res IN XDBResource)
 RETURN VARCHAR2;

Parameters

Table 166-6 GETCHARACTERSET Function Parameters

	Parameter	Description
	
res

	
XDBResource

GETCOMMENT Function

Given an XDBResource, this function returns its comment.

Syntax

DBMS_XDBRESEROUCE.GETCOMMENT (
 res IN XDBResource)
 RETURN VARCHAR2;

Parameters

Table 166-7 GETCOMMENT Function Parameters

	Parameter	Description
	
res

	
XDBResource

GETCONTENTBLOB Function

This function returns the contents of the resource as a BLOB.

Syntax

DBMS_XDBRESEROUCE.GETCONTENTBLOB (
 res IN XDBResource,
 csid OUT PLS_INTEGER)
 RETURN BLOB;

Parameters

Table 166-8 GETCONTENTBLOB Function Parameters

	Parameter	Description
	
res

	
XDBResource

	
csid

	
Character set ID of the BLOB returned

GETCONTENTCLOB Function

This function returns the contents of the resource as a CLOB.

Syntax

DBMS_XDBRESEROUCE.GETCONTENTCLOB (
 res IN XDBResource)
 RETURN CLOB;

Parameters

Table 166-9 GETCONTENTCLOB Function Parameters

	Parameter	Description
	
res

	
XDBResource

GETCONTENTREF Function

This function returns the contents of the resource as an XMLTypeRef.

Syntax

DBMS_XDBRESEROUCE.GETCONTENTREF (
 res IN XDBResource)
 RETURN VARCHAR2;

Parameters

Table 166-10 GETCONTENTREF Function Parameters

	Parameter	Description
	
res

	
XDBResource

GETCONTENTTYPE Function

Given an XDBResource, this function returns its content-type.

Syntax

DBMS_XDBRESEROUCE.GETCONTENTTYPE (
 res IN XDBResource)
 RETURN VARCHAR2;

Parameters

Table 166-11 GETCONTENTTYPE Function Parameters

	Parameter	Description
	
res

	
XDBResource

GETCONTENTXML Function

This function returns the contents of the resource as an XMLTypeRef.

Syntax

DBMS_XDBRESEROUCE.GETCONTENTXML (
 res IN XDBResource)
 RETURN XMLType;

Parameters

Table 166-12 GETCONTENTXML Function Parameters

	Parameter	Description
	
res

	
XDBResource

GETCONTENTVARCHAR2 Function

This function returns the contents of the resource as a string.

Syntax

DBMS_XDBRESEROUCE.GETCONTENTVARCHAR2 (
 res IN XDBResource)
 RETURN VARCHAR2;

Parameters

Table 166-13 GETCONTENTVARCHAR2 Function Parameters

	Parameter	Description
	
res

	
XDBResource

GETCREATIONDATE Function

Given an XDBResource, this function returns its creation date.

Syntax

DBMS_XDBRESEROUCE.GETCREATIONDATE (
 res IN XDBResource)
 RETURN TIMESTAMP;

Parameters

Table 166-14 GETCREATIONDATE Function Parameters

	Parameter	Description
	
res

	
XDBResource

GETCREATOR Function

Given an XDBResource, this function returns its creator.

Syntax

DBMS_XDBRESEROUCE.GETCREATOR (
 res IN XDBResource)
 RETURN VARCHAR2;

Parameters

Table 166-15 GETCREATOR Function Parameters

	Parameter	Description
	
res

	
XDBResource

GETCUSTOMMETADATA Function

This function returns the requested custom metadata given the xpath and namespace to the metadata.

Syntax

DBMS_XDBRESEROUCE.GETCUSTOMMETADATA (
 res IN XDBResource,
 xpath IN VARCHAR2, namespace IN VARCHAR2)
 RETURN XMLType;

Parameters

Table 166-16 GETCUSTOMMETADATA Function Parameters

	Parameter	Description
	
res

	
XDBResource

	
xpath

	
XPath for custom metadata

	
namespace

	
Namespace

Usage Notes

The first component of the XPath expression must be "Resource".

GETDISPLAYNAME Function

Given an XDBResource, this function returns its display name.

Syntax

DBMS_XDBRESEROUCE.GETDISPLAYNAME (
 res IN XDBResource)
 RETURN VARCHAR2;

Parameters

Table 166-17 GETDISPLAYNAME Function Parameters

	Parameter	Description
	
res

	
XDBResource

GETLANGUAGE Function

Given an XDBResource, this function returns its language.

Syntax

DBMS_XDBRESEROUCE.GETLANGUAGE (
 res IN XDBResource)
 RETURN VARCHAR2;

Parameters

Table 166-18 GETLANGUAGE Function Parameters

	Parameter	Description
	
res

	
XDBResource

GETLASTMODIFIER Function

Given an XDBResource, this function returns its last modifier.

Syntax

DBMS_XDBRESEROUCE.GETLASTMODIFIER (
 res IN XDBResource)
 RETURN VARCHAR2;

Parameters

Table 166-19 GETLASTMODIFIER Function Parameters

	Parameter	Description
	
res

	
XDBResource

GETMODIFICATIONDATE Function

Given an XDBResource, this function returns its modification date.

Syntax

DBMS_XDBRESEROUCE.GETMODIFICATIONDATE (
 res IN XDBResource)
 RETURN TIMESTAMP;

Parameters

Table 166-20 GETMODIFICATIONDATE Function Parameters

	Parameter	Description
	
res

	
XDBResource

GETOWNER Function

Given an XDBResource, this function returns its owner.

Syntax

DBMS_XDBRESEROUCE.GETOWNER (
 res IN XDBResource)
 RETURN VARCHAR2;

Parameters

Table 166-21 GETOWNER Function Parameters

	Parameter	Description
	
res

	
XDBResource

GETREFCOUNT Function

Given an XDBResource, this function returns its reference count.

Syntax

DBMS_XDBRESEROUCE.GETREFCOUNT (
 res IN XDBResource)
 RETURN PLS_INTEGER;

Parameters

Table 166-22 GETREFCOUNT Function Parameters

	Parameter	Description
	
res

	
XDBResource

GETVERSIONID Function

Given an XDBResource, this function returns its version ID.

Syntax

DBMS_XDBRESEROUCE.GETVERSIONID (
 res IN XDBResource)
 RETURN PLS_INTEGER;

Parameters

Table 166-23 GETVERSIONID Function Parameters

	Parameter	Description
	
res

	
XDBResource

HASACLCHANGED Function

This function returns TRUE if the ACL of the given resource has changed, FALSE otherwise.

Syntax

DBMS_XDBRESEROUCE.HASACLCHANGED (
 res IN XDBResource)
 RETURN BOOLEAN;

Parameters

Table 166-24 GETACL Function Parameters

	Parameter	Description
	
res

	
XDBResource

HASAUTHORCHANGED Function

This function returns TRUE if the author of the given resource has changed, FALSE otherwise.

Syntax

DBMS_XDBRESEROUCE.HASAUTHORCHANGED (
 res IN XDBResource)
 RETURN BOOLEAN;

Parameters

Table 166-25 HASAUTHORCHANGED Function Parameters

	Parameter	Description
	
res

	
XDBResource

HASCHANGED Function

Given an XPath, this function determines whether the element or attribute represented by the XPath has changed.

Syntax

DBMS_XDBRESEROUCE.HASCHANGED (
 res IN XDBResource,
 xpath IN VARCHAR2,
 namespace IN VARCHAR2)
 RETURN BOOLEAN;

Parameters

Table 166-26 HASCHANGED Function Parameters

	Parameter	Description
	
res

	
XDBResource

	
xpath

	
XPath to check

	
bnamespace

	
Namespace to use

HASCHARACTERSETCHANGED Function

This function returns TRUE if the character set of the given resource has changed, FALSE otherwise.

Syntax

DBMS_XDBRESEROUCE.HASCHARACTERSETCHANGED (
 res IN XDBResource)
 RETURN BOOLEAN;

Parameters

Table 166-27 HASCHARACTERSETCHANGED Function Parameters

	Parameter	Description
	
res

	
XDBResource

HASCOMMENTCHANGED Function

This function returns TRUE if the comment of the given resource has changed, FALSE otherwise.

Syntax

DBMS_XDBRESEROUCE.HASCOMMENTCHANGED (
 res IN XDBResource)
 RETURN BOOLEAN;

Parameters

Table 166-28 HASCOMMENTCHANGED Function Parameters

	Parameter	Description
	
res

	
XDBResource

HASCONTENTCHANGED Function

This function returns TRUE if the contents of the given resource has changed, FALSE otherwise.

Syntax

DBMS_XDBRESEROUCE.HASCONTENTCHANGED (
 res IN XDBResource)
 RETURN BOOLEAN;

Parameters

Table 166-29 HASCONTENTCHANGED Function Parameters

	Parameter	Description
	
res

	
XDBResource

HASCONTENTTYPECHANGED Function

This function returns TRUE if the content-type of the given resource has changed, FALSE otherwise

Syntax

DBMS_XDBRESEROUCE.HASCONTENTTYPECHANGED (
 res IN XDBResource)
 RETURN BOOLEAN;

Parameters

Table 166-30 HASCONTENTTYPECHANGED Function Parameters

	Parameter	Description
	
res

	
XDBResource

HASCREATIONDATECHANGED Function

This function returns TRUE if the creation date of the given resource has changed, FALSE otherwise

Syntax

DBMS_XDBRESEROUCE.HASCREATIONDATECHANGED (
 res IN XDBResource)
 RETURN BOOLEAN;

Parameters

Table 166-31 HASCREATIONDATECHANGED Function Parameters

	Parameter	Description
	
res

	
XDBResource

HASCREATORCHANGED Function

This function returns TRUE if the creator of the given resource has changed, FALSE otherwise

Syntax

DBMS_XDBRESEROUCE.HASCREATORCHANGED (
 res IN XDBResource)
 RETURN BOOLEAN;

Parameters

Table 166-32 HASCREATORCHANGED Function Parameters

	Parameter	Description
	
res

	
XDBResource

HASCUSTOMMETADATACHANGED Function

This function checks whether the custom-metadata for a given resource has changed.

Syntax

DBMS_XDBRESEROUCE.HASCUSTOMMETADATACHANGED (
 res IN XDBResource)
 RETURN BOOLEAN;

Parameters

Table 166-33 HASCUSTOMMETADATACHANGED Function Parameters

	Parameter	Description
	
res

	
XDBResource

HASDISPLAYNAMECHANGED Function

This function returns TRUE if the display name of the given resource has changed, FALSE otherwise

Syntax

DBMS_XDBRESEROUCE.HASDISPLAYNAMECHANGED (
 res IN XDBResource)
 RETURN BOOLEAN;

Parameters

Table 166-34 HASDISPLAYNAMECHANGED Function Parameters

	Parameter	Description
	
res

	
XDBResource

HASLANGUAGECHANGED Function

This function returns TRUE if the language of the given resource has changed, FALSE otherwise

Syntax

DBMS_XDBRESEROUCE.HASLANGUAGECHANGED (
 res IN XDBResource)
 RETURN BOOLEAN;

Parameters

Table 166-35 HASLANGUAGECHANGED Function Parameters

	Parameter	Description
	
res

	
XDBResource

HASLASTMODIFIERCHANGED Function

This function returns TRUE if the last modifier of the given resource has changed, FALSE otherwise

Syntax

DBMS_XDBRESEROUCE.HASLASTMODIFIERCHANGED (
 res IN XDBResource)
 RETURN BOOLEAN;

Parameters

Table 166-36 HASLASTMODIFIERCHANGED Function Parameters

	Parameter	Description
	
res

	
XDBResource

HASMODIFICATIONDATECHANGED Function

This function returns TRUE if the modification date of the given resource has changed, FALSE otherwise

Syntax

DBMS_XDBRESEROUCE.HASMODIFICATIONDATECHANGED (
 res IN XDBResource)
 RETURN BOOLEAN;

Parameters

Table 166-37 HASMODIFICATIONDATECHANGED Function Parameters

	Parameter	Description
	
res

	
XDBResource

HASOWNERCHANGED Function

This function returns TRUE if the owner of the given resource has changed, FALSE otherwise.

Syntax

DBMS_XDBRESEROUCE.HASOWNERCHANGED (
 res IN XDBResource)
 RETURN BOOLEAN;

Parameters

Table 166-38 HASOWNERCHANGED Function Parameters

	Parameter	Description
	
res

	
XDBResource

HASREFCOUNTCHANGED Function

This function returns TRUE if the reference count of the given resource has changed, FALSE otherwise.

Syntax

DBMS_XDBRESEROUCE.HASREFCOUNTCHANGED (
 res IN XDBResource)
 RETURN BOOLEAN;

Parameters

Table 166-39 HASREFCOUNTCHANGED Function Parameters

	Parameter	Description
	
res

	
XDBResource

HASVERSIONIDCHANGED Function

This function returns TRUE if the version ID of the given resource has changed, FALSE otherwise.

Syntax

DBMS_XDBRESEROUCE.HASVERSIONIDCHANGED (
 res IN XDBResource)
 RETURN BOOLEAN;

Parameters

Table 166-40 HASVERSIONIDCHANGED Function Parameters

	Parameter	Description
	
res

	
XDBResource

ISFOLDER Function

This function returns TRUE if the given resource is a folder, FALSE otherwise.

Syntax

DBMS_XDBRESEROUCE.ISFOLDER (
 res IN XDBResource)
 RETURN BOOLEAN;

Parameters

Table 166-41 ISFOLDER Function Parameters

	Parameter	Description
	
res

	
XDBResource

ISNULL Function

This function returns TRUE if input resource is NULL.

Syntax

DBMS_XDBRESEROUCE.ISNULL (
 res IN XDBResource)
 RETURN BOOLEAN;

Parameters

Table 166-42 ISNULL Function Parameters

	Parameter	Description
	
res

	
Input resource

MAKEDOCUMENT Function

This function converts the XDBResource to a DOMDocument which can be operated on using the XMLDOM interface.

	
See Also:

The DBMS_XMLDOM package

Syntax

DBMS_XDBRESEROUCE.MAKEDOCUMENT (
 res IN XDBResource)
 RETURN DBMS_XMLDOM.DOMDocument;

Parameters

Table 166-43 MAKEDOCUMENT Function Parameters

	Parameter	Description
	
res

	
XDBResource

SAVE Procedure

This procedures updates the resource with any modifications.

Syntax

DBMS_XDBRESEROUCE.SAVE (
 res IN XDBResource);

Parameters

Table 166-44 SAVE Procedure Parameters

	Parameter	Description
	
res

	
XDBResource

SETACL Procedure

This procedure sets the ACL of the given XDBResource to the path specified.

Syntax

DBMS_XDBRESEROUCE.SETACL (
 res IN OUT XDBResource,
 ACLPath IN VARCHAR2);

Parameters

Table 166-45 SETACL Procedure Parameters

	Parameter	Description
	
res

	
XDBResource

	
ACLPath

	
Absolute path of the new ACL

SETAUTHOR Procedure

This procedure sets the author of the given XDBResource to the specified string.

Syntax

DBMS_XDBRESEROUCE.SETAUTHOR (
 res IN OUT XDBResource,
 author IN VARCHAR2);

Parameters

Table 166-46 SETAUTHOR Procedure Parameters

	Parameter	Description
	
res

	
XDBResource

	
author

	
Author

SETCHARACTERSET Procedure

This procedure sets the character set of the given XDBResource to a specified character set.

Syntax

DBMS_XDBRESEROUCE.SETCHARACTERSET (
 res IN OUT XDBResource,
 charSet IN VARCHAR2);

Parameters

Table 166-47 SETCHARACTERSET Procedure Parameters

	Parameter	Description
	
res

	
XDBResource

	
charset

	
New character set

SETCOMMENT Procedure

This procedure sets a comment associated with the given XDBResource.

Syntax

DBMS_XDBRESEROUCE.SETCOMMENT (
 res IN OUT XDBResource,
 comment IN VARCHAR2);

Parameters

Table 166-48 SETCOMMENT Procedure Parameters

	Parameter	Description
	
res

	
XDBResource

	
comment

	
New comment

SETCONTENT Procedures

This procedurereplaces the contents of the given resource with the given datatype.

Syntax

DBMS_XDBRESEROUCE.SETCONTENT (
 res IN OUT XDBResource,
 data IN BFILE,
 csid IN NUMBER);

DBMS_XDBRESEROUCE.SETCONTENT (
 res IN OUT XDBResource,
 data IN BLOB,
 csid IN PLS_INTEGER);

DBMS_XDBRESEROUCE.SETCONTENT (
 res IN OUT XDBResource,
 data IN CLOB);

DBMS_XDBRESEROUCE.SETCONTENT (
 res IN OUT XDBResource,
 data IN REF SYS.XMLType,
 sticky IN BOOLEAN := TRUE);

DBMS_XDBRESEROUCE.SETCONTENT (
 res IN OUT XDBResource,
 data IN VARCHAR2);

DBMS_XDBRESEROUCE.SETCONTENT (
 res IN OUT XDBResource,
 data IN SYS.XMLType);

Parameters

Table 166-49 SETCONTENT Procedure Parameters

	Parameter	Description
	
res

	
XDBResource

	
data

	
Data input as BFILE, BLOB, CLOB, string, XMLType

	
csid

	
Character set ID of the BFILE, BLOB

	
sticky

	
If TRUE creates a sticky REF, otherwise non-sticky

SETCONTENTTYPE Procedure

This procedure sets the content-type of the given XDBResource.

Syntax

DBMS_XDBRESEROUCE.SETCONTENTTYPE (
 res IN OUT XDBResource,
 conttype IN VARCHAR2);

Parameters

Table 166-50 SETCONTENTTYPE Procedure Parameters

	Parameter	Description
	
res

	
XDBResource

	
conttype

	
New content-type

SETCUSTOMMETADATA Procedure

This procedure sets the custom metadata specified by the xpath and namespace to new data.

Syntax

DBMS_XDBRESEROUCE.SETCUSTOMMETADATA (
 res IN OUT XDBResource,
 xpath IN VARCHAR2,
 namespace IN VARCHAR2,
 newMetadata IN XMLType);

Parameters

Table 166-51 SETCUSTOMMETADATA Procedure Parameters

	Parameter	Description
	
res

	
XDBResource

	
xpath

	
XPath to change

	
namespace

	
Namespace to use

	
newMetadata

	
New data that should replace the metadata at the given XPath

Usage Notes

The first component of the XPath expression must be "Resource".

SETDISPLAYNAME Procedure

This procedure sets the display name of the given XDBResource.

Syntax

DBMS_XDBRESEROUCE.SETDISPLAYNAME (
 res IN OUT XDBResource,
 name IN VARCHAR2);

Parameters

Table 166-52 SETDISPLAYNAME Procedure Parameters

	Parameter	Description
	
res

	
XDBResource

	
name

	
New display name

SETLANGUAGE Procedure

This procedure sets the language of the given XDBResource.

Syntax

DBMS_XDBRESEROUCE.SETLANGUAGE (
 res IN OUT XDBResource,
 ACLPath IN VARCHAR2);

Parameters

Table 166-53 SETLANGUAGE Procedure Parameters

	Parameter	Description
	
res

	
XDBResource

	
ACLPath

	
New path

SETOWNER Procedure

This procedure sets the owner of the given XDBResource.

Syntax

DBMS_XDBRESEROUCE.SETOWNER (
 res IN OUT XDBResource,
 owner IN VARCHAR2);

Parameters

Table 166-54 SETOWNER Procedure Parameters

	Parameter	Description
	
res

	
XDBResource

	
owner

	
New owner

Usage Notes

The user must have the XDBADMIN privilege to call this subprogram.

DBMS_XDBT

167 DBMS_XDBT

The DBMS_XDBT package provides a convenient mechanism for administrators to set up a CONTEXT index on the Oracle XML DB hierarchy. The package contains procedures to create default preferences, create the index and set up automatic synchronization of the CONTEXT index

The DBMS_XDBT package also contains a set of package variables that describe the configuration settings for the index. These are intended to cover the basic customizations that installations may require, but is by no means a complete set.

	
See Also:

Oracle XML DB Developer's Guide

This chapter contains the following topics:

	
Using DBMS_XDBT

	
Overview

	
Security Model

	
Operational Notes

	
Summary of DBMS_XDBT Subprograms

Using DBMS_XDBT

	
Overview

	
Security Model

	
Operational Notes

Overview

The DBMS_XDBT package can be used in the following fashion:

	
Customize the package to set up the appropriate configuration.

	
Use the DROPPREFERENCES Procedure to drop any existing index preferences

	
Create new index preferences using the CREATEPREFERENCES Procedure procedure

	
Create the CONTEXT index using the CREATEINDEX Procedure procedure

	
Set up automatic synchronization of the index using the CONFIGUREAUTOSYNC Procedure

Security Model

Owned by XDB, the DBMS_XDBT package must be created by SYS or XDB. The EXECUTE privilege is granted to SYS or XDB. Subprograms in this package are executed using the privileges of the current user.

Operational Notes

The DBMS_XDBT package can be customized by using a PL/SQL procedure or an anonymous block to set the relevant package variables, configuration settings, and then execute the procedures. A more general approach would be to introduce the appropriate customizations by modifying this package in place, or as a copy. The system must be configured to use job queues, and the jobs can be viewed through the USER_JOBS catalog views. This section describes the configuration settings, or package variables, available to customize the DBMS_XDBT package.

Table 167-1 General Indexing Settings for Customizing DBMS_XDBT

	Parameter	Default Value	Description
	
IndexName

	
XDB$CI

	
Name of the CONTEXT index.

	
IndexTablespace

	
XDB$RESINFO

	
Tablespace used by tables and indexes comprising the CONTEXT index.

	
IndexMemory

	
128M

	
Memory used by index creation and SYNC; less than or equal to the MAX_INDEX_MEMORY system parameter (see the CTX_ADMIN package).

	
LogFile

	
'XdbCtxLog'

	
The log file used for ROWID during indexing. The LOG_DIRECTORY system parameter must be set already. NULL turn s off ROWID logging.

Table 167-2 Filtering Settings for Customizing DBMS_XDBT

	Parameter	Default Value	Description
	
SkipFilter_Types

	
image/%, audio/%, video/%, model/%

	
List of mime types that should not be indexed.

	
NullFilter_Types

	
text/plain, text/html, text/xml

	
List of mime types that do not need to use the INSO filter. Use this for text-based documents.

	
FilterPref

	
XDB$CI_FILTER

	
Name of the filter preference.

Table 167-3 Stoplist Settings for Customizing DBMS_XDBT

	Parameter	Default Value	Description
	
StoplistPref

	
XDB$CI_STOPLIST

	
Name of the stoplist.

	
StopWords

	
0..9; 'a'..'z'; 'A'..'Z'

	
List of stopwords, in excess of CTXSYS.DEFAULT_STOPLIST.

Table 167-4 Sectioning and Section Group Settings for Customizing DBMS_XDBT

	Parameter	Default Value	Description
	
SectionGroup

	
HTML_SECTION_GROUP

	
Default sectioner. Use PATH_SECTION_GROUP or AUTO_SECTION_GROUP if repository contains mainly XML documents.

	
SectiongroupPref

	
XDB$CI_SECTIONGROUP

	
Name of the section group.

Table 167-5 Other Index Preference Settings for Customizing DBMS_XDBT

	Parameter	Default Value	Description
	
DatastorePref

	
XDB$CI_DATASTORE

	
Name of the datastore preference

	
StoragePref

	
XDB$CI_STORAGE

	
Name of the storage preference.

	
WordlistPref

	
XDB$CI_WORDLIST

	
Name of the wordlist preference.

	
DefaultLexerPref

	
XDB$CI_DEFAULT_LEXER

	
Name of the default lexer preference.

Table 167-6 SYNC (CONTEXT Synchronization) Settings for Customizing DBMS_XDBT

	Parameter	Default Value	Description
	
AutoSyncPolicy

	
SYNC_BY_PENDING_COUNT

	
Indicates when the index should be SYNCed. One of SYNC_BY_PENDING_COUNT, SYNC_BY_TIME, or SYNC_BY_PENDING_COUNT_AND_TIME.

	
MaxPendingCount

	
2

	
Maximum number of documents in the CTX_USER_PENDING queue before an index SYNC is triggered. Only if the AutoSyncPolicy is SYNC_BY_PENDING_COUNT or SYNC_BY_PENDING_COUNT_AND_TIME.

	
CheckPendingCountInterval

	
10 minutes

	
How often, in minutes, the pending queue should be checked. Only if the AutoSyncPolicy is SYNC_BY_PENDING_COUNT or SYNC_BY_PENDING_COUNT_AND_TIME.

	
SyncInterval

	
60 minutes

	
Indicates how often, in minutes, the index should be SYNCed. Only if the AutoSyncPolicy is SYNC_BY_TIME or SYNC_BY_PENDING_COUNT_AND_TIME

Summary of DBMS_XDBT Subprograms

Table 167-7 DBMS_XDBT Package Subprograms

	Subprogram	Description
	
CONFIGUREAUTOSYNC Procedure

	
Configures the CONTEXT index for automatic maintenance, SYNC

	
CREATEDATASTOREPREF Procedure

	
Creates a USER datastore preference for the CONTEXT index

	
CREATEFILTERPREF Procedure

	
Creates a filter preference for the CONTEXT index

	
CREATEINDEX Procedure

	
Creates the CONTEXT index on the XML DB hierarchy

	
CREATELEXERPREF Procedure

	
Creates a lexer preference for the CONTEXT index

	
CREATEPREFERENCES Procedure

	
Creates preferences required for the CONTEXT index on the XML DB hierarchy

	
CREATESECTIONGROUPPREF Procedure

	
Creates a storage preference for the CONTEXT index

	
CREATESTOPLISTPREF Procedure

	
Creates a section group for the CONTEXT index

	
CREATESTORAGEPREF Procedure

	
Creates a wordlist preference for the CONTEXT index

	
CREATEWORLDLISTPREF Procedure

	
Creates a stoplist for the CONTEXT index

	
DROPPREFERENCES Procedure

	
Drops any existing preferences

CONFIGUREAUTOSYNC Procedure

This procedure sets up jobs for automatic SYNCs of the CONTEXT index.

Syntax

DBMS_XDBT.CONFIGUREAUTOSYNC;

Usage Notes

	
The system must be configured for job queues for automatic synchronization. The jobs can be viewed using the USER_JOBS catalog views

	
The configuration parameter AutoSyncPolicy can be set to choose an appropriate synchronization policy.

The synchronization can be based on one of the following:

	Sync Basis	Description
	SYNC_BY_PENDING_COUNT	The SYNC is triggered when the number of documents in the pending queue is greater than a threshold (See the MaxPendingCount configuration setting). The pending queue is polled at regular intervals (See the CheckPendingCountInterval configuration parameter) to determine if the number of documents exceeds the threshold.
	SYNC_BY_TIME	The SYNC is triggered at regular intervals. (See the SyncInterval configuration parameter).
	SYNC_BY_PENDING_COUNT_AND_TIME	A combination of both of the preceding options.

CREATEDATASTOREPREF Procedure

This procedure creates a user datastore preference for the CONTEXT index on the XML DB hierarchy.

Syntax

DBMS_XDBT.CREATEDATASTOREPREF;

Usage Notes

	
The name of the datastore preference can be modified; see the DatastorePref configuration setting.

	
The default USER datastore procedure also filters the incoming document. The DBMS_XDBT package provides a set of configuration settings that control the filtering process.

	
The SkipFilter_Types array contains a list of regular expressions. Documents with a mime type that matches one of these expressions are not indexed. Some of the properties of the document metadata, such as author, remain unindexed.

	
The NullFilter_Types array contains a list of regular expressions. Documents with a mime type that matches one of these expressions are not filtered; however, they are still indexed. This is intended to be used for documents that are text-based, such as HTML, XML and plain-text.

	
All other documents use the INSO filter through the IFILTER API.

CREATEFILTERPREF Procedure

This procedure creates a NULL filter preference for the CONTEXT index on the XML DB hierarchy.

Syntax

DBMS_XDBT.CREATEFILTERPREF;

Usage Notes

	
The name of the filter preference can be modified; see FilterPref configuration setting.

	
The USER datastore procedure filters the incoming document; see CREATEDATASTOREPREF Procedurefor more details.

CREATEINDEX Procedure

This procedure creates the CONTEXT index on the XML DB hierarchy.

Syntax

DBMS_XDBT.CREATEINDEX;

Usage Notes

	
The name of the index can be changed; see the IndexName configuration setting.

	
Set the LogFile configuration parameter to enable ROWID logging during index creation.

	
Set the IndexMemory configuration parameter to determine the amount of memory that index creation, and later SYNCs, will use.

CREATELEXERPREF Procedure

This procedure creates a BASIC lexer preference for the CONTEXT index on the XML DB hierarchy.

Syntax

DBMS_XDBT.CREATELEXERPREF;

Usage Notes

	
The name of the lexer preference can be modified; see LexerPref configuration setting. No other configuration settings are provided.

	
MultiLexer preferences are not supported.

	
Base letter translation is turned on by default.

CREATEPREFERENCES Procedure

This procedure creates a set of default preferences based on the configuration settings.

Syntax

DBMS_XDBT.CREATEPREFERENCES;

CREATESECTIONGROUPPREF Procedure

This procedure creates a section group for the CONTEXT index on the XML DB hierarchy.

Syntax

DBMS_XDBT.CREATESECTIONGROUPPREF;

Usage Notes

	
The name of the section group can be changed; see the SectiongroupPref configuration setting.

	
The HTML sectioner is used by default. No zone sections are created by default. If the vast majority of documents are XML, consider using the AUTO_SECTION_GROUP or the PATH_SECTION_GROUP; see the SectionGroup configuration setting.

CREATESTOPLISTPREF Procedure

This procedure creates a stoplist for the CONTEXT index on the XML DB hierarchy.

Syntax

DBMS_XDBT.CREATESTOPLISTPREF;

Usage Notes

	
The name of the stoplist can be modified; see the StoplistPref configuration setting.

	
Numbers are not indexed.

	
The StopWords array is a configurable list of stopwords. These are meant to be stopwords in addition to the set of stopwords in CTXSYS.DEFAULT_STOPLIST.

CREATESTORAGEPREF Procedure

This procedure creates a BASIC_STORAGE preference for the CONTEXT index on the XML DB hierarchy.

Syntax

DBMS_XDBT.CREATESTORAGEPREF;

Usage Notes

	
The name of the storage preference can be modified; see the StoragePref configuration setting.

	
A tablespace can be specified for the tables and indexes comprising the CONTEXT index; see the IndexTablespace configuration setting.

	
Prefix and Substring indexing are not turned on by default.

	
The I_INDEX_CLAUSE uses key compression.

CREATEWORLDLISTPREF Procedure

This procedure creates a word list preference for the CONTEXT index on the XML DB hierarchy.

Syntax

DBMS_XDBT.CREATEWORDLISTPREF;

Usage Notes

	
The name of the word list preference can be modified; see the WordlistPref configuration setting. No other configuration settings are provided.

	
FUZZY_MATCH and STEMMER attributes are set to AUTO (auto-language detection)

DROPPREFERENCES Procedure

This procedure drops any previously created preferences for the CONTEXT index on the XML DB hierarchy.

Syntax

DBMS_XDBT.DROPPREFERENCES;

DBMS_XDBZ

168 DBMS_XDBZ

The DBMS_XDBZ package controls the Oracle XML DB repository security, which is based on Access Control Lists (ACLs).

This chapter contains the following topics:

	
Using DBMS_XDBZ

	
Security Model

	
Constants

	
Summary of DBMS_XDBZ Subprograms

	
See Also:

Oracle XML DB Developer's Guide

Using DBMS_XDBZ

This section contains topics which relate to using the DBMS_XDBZ package.

	
Security Model

	
Constants

Security Model

Owned by XDB, the DBMS_XDBZ package must be created by SYS or XDB. The EXECUTE privilege is granted to PUBLIC. Subprograms in this package are executed using the privileges of the current user.

Constants

The DBMS_XDBZ package uses the constants shown in following tables.

	
DBMS_XDBZ Constants - Name Format

	
DBMS_XDBZ Constants - Enable Option

	
DBMS_XDBZ Constants - Enable Option Exercised

Table 168-1 DBMS_XDBZ Constants - Name Format

	Constant	Type	Value	Description
	
NAME_FORMAT_SHORT

	
PLS_INTEGER

	
1

	
DB user name or LDAP nickname

	
NAME_FORMAT_DISTINGUISHED

	
PLS_INTEGER

	
2

	
LDAP distinguished name

Table 168-2 DBMS_XDBZ Constants - Enable Option

	Constant	Type	Value	Description
	
ENABLE_CONTENTS

	
PLS_INTEGER

	
1

	
Enables hierarchy for contents and is used by users when calling the ENABLE_HIERARCHY Procedure

	
ENABLE_RESMETADATA

	
PLS_INTEGER

	
2

	
Enables hierarchy for resource metadata, that is, this table will store schema based custom metadata for resources

Table 168-3 DBMS_XDBZ Constants - Enable Option Exercised

	Constant	Type	Value	Description
	
IS_ENABLED_CONTENTS

	
PLS_INTEGER

	
1

	
If hierarchy was enabled for contents, that is, the ENABLE_HIERARCHY Procedurewas called with hierarchy_type as ENABLE_CONTENTS

	
IS_ENABLED_RESMETADATA

	
PLS_INTEGER

	
2

	
If hierarchy was enabled for resource metadata, that is, the ENABLE_HIERARCHY Procedure was called with hierarchy_type as ENABLE_RESMETADATA

Summary of DBMS_XDBZ Subprograms

Table 168-4 DBMS_XDBZ Package Subprograms

	Method	Description
	
DISABLE_HIERARCHY Procedure

	
Disables repository support for the specified XMLTYPE table or view

	
ENABLE_HIERARCHY Procedure

	
Enables repository support for the specified XMLType table or view

	
GET_ACLOID Function

	
Retrieves the ACL Object ID for the specified resource

	
GET_USERID Function

	
Retrieves the user ID for the specified user

	
IS_HIERARCHY_ENABLED Function

	
Determines if repository support for the specified XMLType table or view is enabled

	
PURGELDAPCACHE Function

	
Purges the LDAP nickname cache

DISABLE_HIERARCHY Procedure

This procedure disables repository support for a particular XMLType table or view.

Syntax

DBMS_XDBZ.DISABLE_HIERARCHY(
 object_schema IN VARCHAR2,
 object_name IN VARCHAR2);

Parameters

Table 168-5 DISABLE_HIERARCHY Procedure Parameters

	Parameter	Description
	
object_schema

	
The schema name of the XMLType table or view

	
object_name

	
The name of the XMLType table or view

ENABLE_HIERARCHY Procedure

This procedure enables repository support for a particular XMLType table or view. This allows the use of a uniform ACL-based security model across all documents in the repository.

	
See Also:

Oracle XML DB Developer's Guide for more information about

Syntax

DBMS_XDBZ.ENABLE_HIERARCHY(
 object_schema IN VARCHAR2,
 object_name IN VARCHAR2,
 hierarchy_type IN PLS_INTEGER := DBMS_XDBZ.ENABLE_CONTENTS);

Parameters

Table 168-6 ENABLE_HIERARCHY Procedure Parameters

	Parameter	Description
	
object_schema

	
The schema name of the XMLType table or view

	
object_name

	
The name of the XMLType table or view

	
hierarchy_type

	
How to enable the hierarchy.

	
ENABLE_CONTENTS - enable hierarchy for contents, that is, this table will store contents of resources in the repository

	
ENABLE_RESMETADATA - enable hierarchy for resource metadata, that is, this table will store schema based custom metadata for resources

If this subprogram is called on a table, another call will have no effect. Note that you cannot enable hierarchy for both contents and resource metadata.

GET_ACLOID Function

This function retrieves the ACL Object ID for the specified resource, if the repository path is known.

Syntax

DBMS_XDBZ.GET_ACLOID(
 aclpath IN VARCHAR2,
 acloid OUT RAW)
 RETURN BOOLEAN;

Parameters

Table 168-7 GET_ACLOID Function Parameters

	Parameter	Description
	
aclpath

	
ACL resource path for the repository

	
acloid

	
The returned Object ID

Return Values

Returns TRUE if successful.

GET_USERID Function

This function retrieves the user ID for the specified user name. The local database is searched first, and if found, the USERID is returned in 4-byte database format. Otherwise, the LDAP directory is searched, if available, and if found, the USERID is returned in 4-byte database format.

Syntax

DBMS_XDBZ.GET_USERID(
 username IN VARCHAR2,
 userid OUT RAW,
 format IN BINARY_INTEGER := NAME_FORMAT_SHORT)
 RETURN BOOLEAN;

Parameters

Table 168-8 GET_USERID Function Parameters

	Parameter	Description
	
username

	
Name of the database or LDAP user.

	
userid

	
Return parameter for the matching user id.

	
format

	
Format of the specified user name; valid options are:

	
DBMS_XDBZ.NAME_FORMAT_SHORT (default) -- DB user name or LDAP nickname

	
DBMS_XDBZ.NAME_FORMAT_DISTINGUISHIED -- LDAP distinguished name.

Return Values

Returns TRUE if successful.

IS_HIERARCHY_ENABLED Function

This function determines if repository support for the specified XMLType table or view is enabled.

Syntax

DBMS_XDBZ.IS_HIERARCHY_ENABLED(
 object_schema IN VARCHAR2,
 object_name IN VARCHAR2,
 hierarchy_type IN PLS_INTEGER := IS_ENABLED_CONTENTS)
 RETURN BOOLEAN;

Parameters

Table 168-9 IS_HIERARCHY_ENABLED Function Parameters

	Parameter	Description
	
object_schema

	
The schema name of the XMLType table or view

	
object_name

	
The name of the XMLType table or view

	
hierarchy_type

	
The type of hierarchy to check for.

	
IS_ENABLED_CONTENTS - if hierarchy was enabled for contents, that is, the ENABLE_HIERARCHY Procedurewas called with hierarchy_type as ENABLE_CONTENTS

	
IS_ENABLED_RESMETADATA - if hierarchy was enabled for resource metadata, that is, the ENABLE_HIERARCHY Procedure was called with hierarchy_type as ENABLE_RESMETADATA

Return Values

Returns TRUE if the given XMLTYPE table or view has the XDB Hierarchy enabled with the specified type.

PURGELDAPCACHE Function

This function purges the LDAP nickname cache. Returns TRUE if successful.

Syntax

DBMS_XDBZ.PURGELDAPCACHE
 RETURN BOOLEAN;

DBMS_XEVENT

169 DBMS_XEVENT

The DBMS_XEVENTpackage provides event-related types and supporting subprograms.

	
See Also:

Oracle XML DB Developer's Guide for more information about "Oracle XML DB Repository Events"

This chapter contains the following topics:

	
Using DBMS_XEVENT

	
Security Model

	
Constants

	
Subprogram Groups

	
XDBEvent Type Subprograms

	
XDBRepositoryEvent Type Subprograms

	
XDBHandlerList Type Subprograms

	
XDBHandler Type Subprograms

	
XDBPath Type Subprograms

	
XDBLink Type Subprograms

	
Summary of DBMS_XEVENT Subprograms

Using DBMS_XEVENT

	
Security Model

	
Constants

Security Model

Owned by XDB, the DBMS_XEVENT package must be created by SYS or XDB. The EXECUTE privilege is granted to PUBLIC. Subprograms in this package are executed using the privileges of the current user.

Constants

The DBMS_XEVENT package uses the constants shown in Table 169-1:

Table 169-1 DBMS_XEVENT Constants

	Name	Type	Value	Description
	
RENDER_EVENT

	
PLS_INTEGER

	
1

	

	
PRE_CREATE_EVENT

	
PLS_INTEGER

	
2

	

	
POST_CREATE_EVENT

	
PLS_INTEGER

	
3

	

	
PRE_DELETE_EVENT

	
PLS_INTEGER

	
4

	

	
POST_DELETE_EVENT

	
PLS_INTEGER

	
5

	

	
PRE_UPDATE_EVENT

	
PLS_INTEGER

	
6

	

	
POST_UPDATE_EVENT

	
PLS_INTEGER

	
7

	

	
PRE_LOCK_EVENT

	
PLS_INTEGER

	
8

	

	
POST_LOCK_EVENT

	
PLS_INTEGER

	
9

	

	
PRE_UNLOCK_EVENT

	
PLS_INTEGER

	
10

	

	
POST_UNLOCK_EVENT

	
PLS_INTEGER

	
11

	

	
PRE_LINKIN_EVENT

	
PLS_INTEGER

	
12

	

	
POST_LINKIN_EVENT

	
PLS_INTEGER

	
13

	

	
PRE_LINKTO_EVENT

	
PLS_INTEGER

	
14

	

	
POST_LINKTO_EVENT

	
PLS_INTEGER

	
15

	

	
PRE_UNLINKIN_EVENT

	
PLS_INTEGER

	
16

	

	
POST_UNLINKIN_EVENT

	
PLS_INTEGER

	
17

	

	
PRE_UNLINKFROM_EVENT

	
PLS_INTEGER

	
18

	

	
POST_UNLINKFROM_EVENT

	
PLS_INTEGER

	
19

	

	
PRE_CHECKIN_EVENT

	
PLS_INTEGER

	
20

	

	
POST_CHECKIN_EVENT

	
PLS_INTEGER

	
21

	

	
PRE_CHECKOUT_EVENT

	
PLS_INTEGER

	
22

	

	
POST_CHECKOUT_EVENT

	
PLS_INTEGER

	
23

	

	
PRE_UNCHECKOUT_EVENT

	
PLS_INTEGER

	
24

	

	
POST_UNCHECKOUT_EVENT

	
PLS_INTEGER

	
25

	

	
PRE_VERSIONCONTROL_EVENT

	
PLS_INTEGER

	
26

	

	
POST_VERSIONCONTROL_EVENT

	
PLS_INTEGER

	
27

	

	
PRE_OPEN_EVENT

	
PLS_INTEGER

	
28

	

	
POST_OPEN_EVENT

	
PLS_INTEGER

	
29

	

	
PRE_INCONSISTENT_UPDATE_EVENT

	
PLS_INTEGER

	
30

	

	
POST_INCONSISTENT_UPDATE_EVENT

	
PLS_INTEGER

	
21

	

	
POST_CHECKIN_EVENT

	
PLS_INTEGER

	
21

	

Subprogram Groups

	
XDBEvent Type Subprograms

	
XDBRepositoryEvent Type Subprograms

	
XDBHandlerList Type Subprograms

	
XDBHandler Type Subprograms

	
XDBPath Type Subprograms

	
XDBLink Type Subprograms

XDBEvent Type Subprograms

This subprogram group provides an interface for use in conjunction with the XDBEvent type.

Table 169-2 XDBEvent Subprograms

	Subprogram	Description
	
GETCURRENTUSER Function

	
Returns the name of the user executing the operation that triggers the event

	
GETEVENT Function

	
Returns a value identifying the triggering event

	
ISNULL Functions

	
Returns TRUE if input argument is NULL

The Summary of DBMS_XEVENT Subprograms contains a complete listing of all subprograms in the package.

XDBRepositoryEvent Type Subprograms

This subprogram group provides an interface for use in conjunction with the XDBRepositoryEvent type.

Table 169-3 XDBRepositoryEvent Subprograms

	Subprogram	Description
	
GETAPPLICATIONDATA Function

	
Returns the <applicationData> element extracted from the resource configuration that defines the invoking handler

	
GETHANDLERLIST Function

	
Returns an XDBHandlerList object containing the list of handlers that will be executed after the currently executing handler

	
GETINTERFACE Function

	
Returns the top-level interface used to initiate the operation that triggered the event

	
GETLINK Function

	
Returns an XDBLink object for the target resource

	
GETLOCK Function

	
Returns the lock object corresponding to the current operation

	
GETOLDRESOURCE Function

	
Returns the original XDBResource object before the operation was executed

	
GETOPENACCESSMODE Function

	
Returns the access mode for the open operation

	
GETOPENDENYMODE Function

	
Returns the deny mode for the open operation

	
GETOUTPUTSTREAM Function

	
Returns the output BLOB in which the handler can write the rendered data

	
GETPARAMETER Function

	
Returns the value of a request or session-specific parameter

	
GETPARENT Function

	
Returns the resource object corresponding to a parent folder of the target resource

	
GETPATH Function

	
Returns the XDBPath object representing the path of the resource for which the event was fired

	
GETRESOURCE Function

	
Returns an XDBResource object that provides methods to access and modify the contents and metadata of the target resource

	
GETUPDATEBYTECOUNT Function

	
If the current operation is a byte-range write, returns the byte count

	
GETUPDATEBYTEOFFSET Function

	
If the current operation is a byte-range write, function returns the byte offset at which the range begins

	
GETXDBEVENT Function

	
Converts an XDBRepositoryEvent object to an XDBEvent type

	
ISNULL Functions

	
Returns TRUE if input argument is NULL

	
SETRENDERPATH Procedure

	
Specifies the path of the resource that contains the rendered contents

	
SETRENDERSTREAM Procedure

	
sets the BLOB from which the rendered contents can be read

The Summary of DBMS_XEVENT Subprograms contains a complete listing of all subprograms in the package.

XDBHandlerList Type Subprograms

This subprogram group provides an interface for use in conjunction with the XDBHandlerList type.

Table 169-4 XDBHandlerList Subprograms

	Subprogram	Description
	
CLEAR Procedure

	
Clears the handler list

	
GETFIRST Function

	
Returns the first handler in the list

	
GETNAME Function

	
Returns the next handler in the list

	
ISNULL Functions

	
Returns TRUE if input argument is NULL

	
REMOVE Procedure

	
Removes the specified handler from the handler list

The Summary of DBMS_XEVENT Subprograms contains a complete listing of all subprograms in the package.

XDBHandler Type Subprograms

This subprogram group provides an interface for use in conjunction with the XDBHandler type.

Table 169-5 XDBHandler Type Subprograms

	Subprogram	Description
	
GETLANGUAGE Function

	
Returns the implementation language of the handler

	
GETSCHEMA Function

	
Returns the schema of the handler's source

	
GETSOURCE Function

	
Returns the name of the Java class, PL/SQL package or object type implementing the handler

	
ISNULL Functions

	
Returns TRUE if input argument is NULL

The Summary of DBMS_XEVENT Subprograms contains a complete listing of all subprograms in the package.

XDBPath Type Subprograms

This subprogram group provides an interface for use in conjunction with the XDBPath type.

Table 169-6 XDBPath Type Subprograms

	Subprogram	Description
	
GETNAME Function

	
Returns the string representation of the path

	
GETPARENTPATH Function

	
Returns the parent's path

	
ISNULL Functions

	
Returns TRUE if input argument is NULL

The Summary of DBMS_XEVENT Subprograms contains a complete listing of all subprograms in the package.

XDBLink Type Subprograms

This subprogram group provides an interface for use in conjunction with the XDBLink type.

Table 169-7 XDBLink Type Subprograms

	Subprogram	Description
	
GETCHILDOID Function

	
Returns the OID of the resource to which the link is pointing

	
GETPARENTNAME Function

	
Returns the link's parent folder's name

	
GETPARENTOID Function

	
Returns the link's parent folder's OID

	
ISNULL Functions

	
Returns TRUE if input argument is NULL

The Summary of DBMS_XEVENT Subprograms contains a complete listing of all subprograms in the package.

Summary of DBMS_XEVENT Subprograms

Table 169-8 DBMS_XEVENT Package Subprograms

	Subprogram	Description	Group
	
CLEAR Procedure

	
Clears the handler list

	
XDBHandlerList Type Subprograms

	
GETAPPLICATIONDATA Function

	
Returns the <applicationData> element extracted from the resource configuration that defines the invoking handler

	
XDBRepositoryEvent Type Subprograms

	
GETCHILDOID Function

	
Returns the OID of the resource to which the link is pointing

	
XDBLink Type Subprograms

	
GETCURRENTUSER Function

	
Returns the name of the user executing the operation that triggers the event

	
XDBEvent Type Subprograms

	
GETEVENT Function

	
Returns a value identifying the triggering event

	
XDBEvent Type Subprograms

	
GETFIRST Function

	
Returns the first handler in the list

	
XDBHandlerList Type Subprograms

	
GETHANDLERLIST Function

	
Returns an XDBHandlerList object containing the list of handlers that will be executed after the currently executing handler

	
XDBRepositoryEvent Type Subprograms

	
GETINTERFACE Function

	
Returns the top-level interface used to initiate the operation that triggered the event

	
XDBRepositoryEvent Type Subprograms

	
GETLANGUAGE Function

	
Returns the implementation language of the handler

	
XDBHandler Type Subprograms

	
GETLINK Function

	
Returns an XDBLink object for the target resource

	
XDBRepositoryEvent Type Subprograms

	
GETLOCK Function

	
Returns the lock object corresponding to the current operation

	
XDBRepositoryEvent Type Subprograms

	
GETNAME Function

	
Returns the string representation of the path

	
XDBPath Type Subprograms

	
GETNAME Function

	
Returns the next handler in the list

	
XDBHandlerList Type Subprograms

	
GETOLDRESOURCE Function

	
Returns the original XDBResource object before the operation was executed

	
XDBRepositoryEvent Type Subprograms

	
GETOPENACCESSMODE Function

	
Returns the access mode for the open operation

	
XDBRepositoryEvent Type Subprograms

	
GETOPENDENYMODE Function

	
Returns the deny mode for the open operation

	
XDBRepositoryEvent Type Subprograms

	
GETOUTPUTSTREAM Function

	
Returns the output BLOB in which the handler can write the rendered data

	
XDBRepositoryEvent Type Subprograms

	
GETPARAMETER Function

	
Returns the value of a request or session-specific parameter

	
XDBRepositoryEvent Type Subprograms

	
GETPARENT Function

	
Returns the resource object corresponding to a parent folder of the target resource

	
XDBRepositoryEvent Type Subprograms

	
GETPARENTNAME Function

	
Returns the link's parent folder's name

	
XDBLink Type Subprograms

	
GETPARENTOID Function

	
Returns the link's parent folder's OID

	
XDBLink Type Subprograms

	
GETPARENTNAME Function

	
Returns the parent's path

	
XDBPath Type Subprograms

	
GETPATH Function

	
Returns the XDBPath object representing the path of the resource for which the event was fired

	
XDBRepositoryEvent Type Subprograms

	
GETRESOURCE Function

	
Returns an XDBResource object that provides methods to access and modify the contents and metadata of the target resource

	
XDBRepositoryEvent Type Subprograms

	
GETSCHEMA Function

	
Returns the schema of the handler's source

	
XDBHandler Type Subprograms

	
GETSOURCE Function

	
Returns the name of the Java class, PL/SQL package or object type implementing the handler

	
XDBHandler Type Subprograms

	
GETUPDATEBYTECOUNT Function

	
If the current operation is a byte-range write, returns the byte count

	
XDBRepositoryEvent Type Subprograms

	
GETUPDATEBYTEOFFSET Function

	
If the current operation is a byte-range write, function returns the byte offset at which the range begins

	
XDBRepositoryEvent Type Subprograms

	
GETXDBEVENT Function

	
Converts an XDBRepositoryEvent object to an XDBEvent type

	
XDBRepositoryEvent Type Subprograms

	
ISNULL Functions

	
Returns TRUE if input argument is NULL

	
XDBEvent Type Subprograms

XDBRepositoryEvent Type Subprograms

XDBHandlerList Type Subprograms

XDBHandler Type Subprograms

XDBPath Type Subprograms

	
REMOVE Procedure

	
Removes the specified handler from the handler list

	
XDBHandlerList Type Subprograms

	
SETRENDERPATH Procedure

	
Specifies the path of the resource that contains the rendered contents

	
XDBRepositoryEvent Type Subprograms

	
SETRENDERSTREAM Procedure

	
sets the BLOB from which the rendered contents can be read

	
XDBRepositoryEvent Type Subprograms

CLEAR Procedure

this procedure clears the handler list.

	
See Also:

XDBHandlerList Type Subprograms for other subprograms in this group

Syntax

DBMS_XEVENT.CLEAR (
 hl IN OUT XDBHandlerList);

Parameters

Table 169-9 CLEAR Procedure Parameters

	Parameter	Description
	
hl

	
Handler list

GETAPPLICATIONDATA Function

This function returns the <applicationData> element extracted from the resource configuration that defines the invoking handler.

	
See Also:

XDBRepositoryEvent Type Subprograms for other subprograms in this group

Syntax

DBMS_XEVENT.GETAPPLICATIONDATA (
 ev IN XDBRepositoryEvent)
 RETURN XMLType;

Parameters

Table 169-10 GETAPPLICATIONDATA Function Parameters

	Parameter	Description
	
ev

	
Event of XDBRepositoryEvent type

GETCHILDOID Function

This function returns the OID of the resource to which the link is pointing.

	
See Also:

XDBLink Type Subprograms for other subprograms in this group

Syntax

DBMS_XEVENT.GETCHILDOID (
 link IN XDBLink)
 RETURN RAW;

Parameters

Table 169-11 GETCHILDOID Function Parameters

	Parameter	Description
	
link

	
Link

GETCURRENTUSER Function

This function returns the name of the user executing the operation that triggers the event.

	
See Also:

XDBEvent Type Subprograms for other subprograms in this group

Syntax

DBMS_XEVENT.GETCURRENTUSER (
 ev IN XDBEvent)
 RETURN VARCHAR2;

Parameters

Table 169-12 GETCURRENTUSER Function Parameters

	Parameter	Description
	
ev

	
Event of XDBEvent type

GETEVENT Function

This function returns the name of the user executing the operation that triggers the event.

	
See Also:

XDBEvent Type Subprograms for other subprograms in this group

Syntax

DBMS_XEVENT.GETEVENT (
 ev IN XDBEvent)
 RETURN XDBEventID;

Parameters

Table 169-13 GETEVENT Function Parameters

	Parameter	Description
	
ev

	
Event of XDBEvent type

GETFIRST Function

This function returns the first handler in the list.

	
See Also:

XDBHandlerList Type Subprograms for other subprograms in this group

Syntax

DBMS_XEVENT.GETFIRST (
 hl IN XDBHandlerList)
 RETURN XDBHandler;

Parameters

Table 169-14 GETFIRST Function Parameters

	Parameter	Description
	
hl

	
Handler list

GETHANDLERLIST Function

This function returns an XDBHandlerList object containing the list of handlers that will be executed after the currently executing handler. The current handler can then filter out some of the subsequent handlers if necessary, subject to security checks. An insufficient privilege exception is raised if the executing user does not have the required access privilege to any of the resource configuration associating with a handler in the list.

	
See Also:

XDBRepositoryEvent Type Subprograms for other subprograms in this group

Syntax

DBMS_XEVENT.GETHANDLERLIST (
 ev IN XDBRepositoryEvent)
 RETURN XDBHandlerList;

Parameters

Table 169-15 GETHANDLERLIST Function Parameters

	Parameter	Description
	
ev

	
Event of XDBRepositoryEvent type

GETINTERFACE Function

This function returns the top-level interface used to initiate the operation that triggered the event. This could be HTTP, FTP or SQL.

	
See Also:

XDBRepositoryEvent Type Subprograms for other subprograms in this group

Syntax

DBMS_XEVENT.GETINTERFACE (
 ev IN XDBRepositoryEvent)
 RETURN VARCHAR2;

Parameters

Table 169-16 GETINTERFACE Function Parameters

	Parameter	Description
	
ev

	
Event of XDBRepositoryEvent type

GETLANGUAGE Function

This function returns the implementation language of the handler.

	
See Also:

XDBHandler Type Subprograms for other subprograms in this group

Syntax

DBMS_XEVENT.GETLANGUAGE (
 handler IN XDBHandler)
 RETURN VARCHAR2;

Parameters

Table 169-17 GETLANGUAGE Function Parameters

	Parameter	Description
	
handler

	
Handler

GETLINK Function

This function returns an XDBLink object for the target resource. For a link* or unlink* event, this will be the link involved in the operation. For other events, an error is returned. Using this object the handler can access link properties, such as, ParentName, ParentOID, ChildOID and LinkName.

	
See Also:

XDBRepositoryEvent Type Subprograms for other subprograms in this group

Syntax

DBMS_XEVENT.GETLINK (
 ev IN XDBRepositoryEvent)
 RETURN XDBLink;

Parameters

Table 169-18 GETLINK Function Parameters

	Parameter	Description
	
ev

	
Event of XDBRepositoryEvent type

GETLINKNAME Function

This function returns the name of the link.

	
See Also:

XDBLink Type Subprograms for other subprograms in this group

Syntax

DBMS_XEVENT.GETLINKNAME (
 link IN XDBLink)
 RETURN VARCHAR2;

Parameters

Table 169-19 GETLINKNAME Function Parameters

	Parameter	Description
	
link

	
Link

GETLOCK Function

This function returns the lock object corresponding to the current operation.I t is only valid for lock and unlock events.

	
See Also:

XDBRepositoryEvent Type Subprograms for other subprograms in this group

Syntax

DBMS_XEVENT.GETLOCK (
 ev IN XDBRepositoryEvent)
 RETURN XDBLock;

Parameters

Table 169-20 GETLOCK Function Parameters

	Parameter	Description
	
ev

	
Event of XDBRepositoryEvent type

GETLANGUAGE Function

This function returns the implementation language of the handler.

	
See Also:

XDBHandler Type Subprograms for other subprograms in this group

Syntax

DBMS_XEVENT.GETLANGUAGE (
 handler IN XDBHandler)
 RETURN VARCHAR2;

Parameters

Table 169-21 GETLANGUAGE Function Parameters

	Parameter	Description
	
handler

	
Handler

GETNAME Function

This function returns the string representation of the path.

	
See Also:

XDBPath Type Subprograms for other subprograms in this group

Syntax

DBMS_XEVENT.GETNAME (
 path IN XDBPath)
 RETURN VARCHAR2;

Parameters

Table 169-22 GETNAME Function Parameters

	Parameter	Description
	
path

	
Path

GETNEXT Function

This function returns the next handler in the list.

	
See Also:

XDBHandlerList Type Subprograms for other subprograms in this group

Syntax

DBMS_XEVENT.GETNEXT (
 hl IN XDBHandlerList)
 RETURN XDBHandler;

Parameters

Table 169-23 GETNEXT Function Parameters

	Parameter	Description
	
hl

	
Handler list

GETOLDRESOURCE Function

This function returns the original XDBResource object before the operation was executed. This method applies only to update event. For other events, an error is returned. This is a read-only object, and consequently none of the modifier methods will work on this object.

	
See Also:

XDBRepositoryEvent Type Subprograms for other subprograms in this group

Syntax

DBMS_XEVENT.GETOLDRESOURCE (
 ev IN XDBRepositoryEvent)
 RETURN XDBResource;

Parameters

Table 169-24 GETOLDRESOURCE Function Parameters

	Parameter	Description
	
ev

	
Event of XDBRepositoryEvent type

GETOPENACCESSMODE Function

This function returns the access mode for the open operation.

	
See Also:

XDBRepositoryEvent Type Subprograms for other subprograms in this group

Syntax

DBMS_XEVENT.GETOPENACCESSMODE (
 ev IN XDBRepositoryEvent)
 RETURN PLS_INTEGER;

Parameters

Table 169-25 GETOPENACCESSMODE Function Parameters

	Parameter	Description
	
ev

	
Event of XDBRepositoryEvent type

Return Values

	
XDBRepositoryEvent.OPEN_ACCESS_READ (value 1)

	
XDBRepositoryEvent.OPEN_ACCESS_WRITE (value 2)

	
XDBRepositoryEvent.OPEN_ACCESS_READ_WRITE (value 3)

GETOPENDENYMODE Function

This function returns the deny mode for the open operation. It is only valid for the open event.

	
See Also:

XDBRepositoryEvent Type Subprograms for other subprograms in this group

Syntax

DBMS_XEVENT.GETOPENDENYMODE (
 ev IN XDBRepositoryEvent)
 RETURN PLS_INTEGER;

Parameters

Table 169-26 GETOPENDENYMODE Function Parameters

	Parameter	Description
	
ev

	
Event of XDBRepositoryEvent type

Return Values

	
XDBRepositoryEvent.OPEN_DENY_NONE (value 0)

	
XDBRepositoryEvent.OPEN_DENY_READ (value 1)

	
XDBRepositoryEvent.OPEN_DENY_READ_WRITE (value 2)

GETOUTPUTSTREAM Function

This function returns the output BLOB in which the handler can write the rendered data. It is only valid for the render event.

	
See Also:

XDBRepositoryEvent Type Subprograms for other subprograms in this group

Syntax

DBMS_XEVENT.GETOUTPUTSTREAM (
 ev IN XDBRepositoryEvent)
 RETURN BLOB;

Parameters

Table 169-27 GETOUTPUTSTREAM Function Parameters

	Parameter	Description
	
ev

	
Event of XDBRepositoryEvent type

GETPARAMETER Function

This function returns the value of a request or session-specific parameter. The definition of the key parameter can be found in RFC 2616 (HTTP/1.1). They will be mapped to equivalent SQL session parameters (if any).

	
See Also:

XDBRepositoryEvent Type Subprograms for other subprograms in this group

Syntax

DBMS_XEVENT.GETPARAMETER (
 ev IN XDBRepositoryEvent,
 key IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Table 169-28 GETPARAMETER Function Parameters

	Parameter	Description
	
ev

	
Event of XDBRepositoryEvent type

	
key

	
Supported parameters:

	
ACCEPT

	
ACCEPT-LANGUAGE

	
ACCEPT-CHARSET

	
ACCEPT_ENCODING

GETPARENT Function

This function returns the resource object corresponding to a parent folder of the target resource. Note that this could be any folder that contains a link to the target resource. This is a read-only object, and consequently none of the modifier methods will work on this object. For a link* or unlink* event, this method returns the link's parent folder.

	
See Also:

XDBRepositoryEvent Type Subprograms for other subprograms in this group

Syntax

DBMS_XEVENT.GETPARENT (
 ev IN XDBRepositoryEvent)
 RETURN XDBResource;

Parameters

Table 169-29 GETPARENT Function Parameters

	Parameter	Description
	
ev

	
Event of XDBRepositoryEvent type

GETPARENTNAME Function

This function returns the link's parent folder's name.

	
See Also:

XDBLink Type Subprograms for other subprograms in this group

Syntax

DBMS_XEVENT.GETPARENTNAME (
 link IN XDBLink)
 RETURN VARCHAR2;

Parameters

Table 169-30 GETPARENTNAME Function Parameters

	Parameter	Description
	
link

	
Link

GETPARENTOID Function

This function returns the link's parent folder's OID.

	
See Also:

XDBLink Type Subprograms for other subprograms in this group

Syntax

DBMS_XEVENT.GETPARENTOID (
 link IN XDBLink)
 RETURN RAW;

Parameters

Table 169-31 GETPARENTOID Function Parameters

	Parameter	Description
	
link

	
Link

GETPARENTPATH Function

This function returns the parent's path. The level indicates the number of levels up the hierarchy. This value must be greater than zero. Level 1 means the immediate parent. If level exceeds the height of the tree then a NULL is returned.

	
See Also:

XDBPath Type Subprograms for other subprograms in this group

Syntax

DBMS_XEVENT.GETPARENTPATH (
 path IN XDBPath,
 level IN INTEGER)
 RETURN XDBPath;

Parameters

Table 169-32 GETPARENTPATH Function Parameters

	Parameter	Description
	
path

	
Path

	
level

	
Number of levels up the hierarchy

GETPATH Function

This function returns the XDBPath object representing the path of the resource for which the event was fired. From this object, functions are provided to get the different path segments.

	
See Also:

XDBRepositoryEvent Type Subprograms for other subprograms in this group

Syntax

DBMS_XEVENT.GETPATH (
 ev IN XDBRepositoryEvent)
 RETURN XDBPath;

Parameters

Table 169-33 GETPATH Function Parameters

	Parameter	Description
	
ev

	
Event of XDBRepositoryEvent type

GETRESOURCE Function

This function returns an XDBResource object that provides methods to access and modify the contents and metadata of the target resource. This object reflects any changes made by previous handlers to the resource.

The modifier methods will work only in the pre-create and pre-update event handlers. For a link* or unlink* event, this method returns the resource that the link is pointing to. For a create event, this method returns the resource that is being created.

	
See Also:

XDBRepositoryEvent Type Subprograms for other subprograms in this group

Syntax

DBMS_XEVENT.GETRESOURCE (
 ev IN XDBRepositoryEvent)
 RETURN XDBResource;

Parameters

Table 169-34 GETRESOURCE Function Parameters

	Parameter	Description
	
ev

	
Event of XDBRepositoryEvent type

GETSCHEMA Function

This function returns the schema of the handler's source.

	
See Also:

XDBHandler Type Subprograms for other subprograms in this group

Syntax

DBMS_XEVENT.GETSCHEMA (
 handler IN XDBHandler)
 RETURN VARCHAR2;

Parameters

Table 169-35 GETSCHEMA Function Parameters

	Parameter	Description
	
handler

	
Handler

GETSOURCE Function

This function returns the name of the Java class, PL/SQL package or object type implementing the handler.

	
See Also:

XDBHandler Type Subprograms for other subprograms in this group

Syntax

DBMS_XEVENT.GETSOURCE (
 handler IN XDBHandler)
 RETURN VARCHAR2;

Parameters

Table 169-36 GETSOURCE Function Parameters

	Parameter	Description
	
handler

	
Handler

GETUPDATEBYTECOUNT Function

If the current operation is a byte-range write, the function returns the byte count. It is only valid for the inconsistent-update event.

	
See Also:

XDBRepositoryEvent Type Subprograms for other subprograms in this group

Syntax

DBMS_XEVENT.GETUPDATEBYTECOUNT (
 ev IN XDBRepositoryEvent)
 RETURN NUMBER;

Parameters

Table 169-37 GETUPDATEBYTECOUNT Function Parameters

	Parameter	Description
	
ev

	
Event of XDBRepositoryEvent type

GETUPDATEBYTEOFFSET Function

If the current operation is a byte-range write, function returns the byte offset at which the range begins. It is only valid for the inconsistent-update event.

	
See Also:

XDBRepositoryEvent Type Subprograms for other subprograms in this group

Syntax

DBMS_XEVENT.GETUPDATEBYTEOFFSET (
 ev IN XDBRepositoryEvent)
 RETURN NUMBER;

Parameters

Table 169-38 GETUPDATEBYTEOFFSET Function Parameters

	Parameter	Description
	
ev

	
Event of XDBRepositoryEvent type

GETXDBEVENT Function

This function converts an XDBRepositoryEvent object to an XDBEvent type.

	
See Also:

XDBRepositoryEvent Type Subprograms for other subprograms in this group

Syntax

DBMS_XEVENT.GETXDBETEVENT (
 ev IN XDBRepositoryEvent)
 RETURN XDBEvent;

Parameters

Table 169-39 GETXDBEVENT Function Parameters

	Parameter	Description
	
ev

	
Event of XDBRepositoryEvent type

ISNULL Functions

This function returns TRUE if input argument is NULL.

	
See Also:

	
XDBEvent Type Subprograms for other subprograms in this group

	
XDBRepositoryEvent Type Subprograms for other subprograms in this group

	
XDBHandlerList Type Subprograms for other subprograms in this group

	
XDBHandler Type Subprograms for other subprograms in this group

	
XDBPath Type Subprograms for other subprograms in this group

	
XDBLink Type Subprograms for other subprograms in this group

Syntax

DBMS_XEVENT.ISNULL (
 ev IN XDBEvent)
 RETURN BOOLEAN;

DBMS_XEVENT.ISNULL (
 ev IN XDBRepositoryEvent)
 RETURN BOOLEAN;

DBMS_XEVENT.ISNULL (
 hl IN XDBHandlerList)
 RETURN BOOLEAN;

DBMS_XEVENT.ISNULL (
 handler IN XDBHandler)
 RETURN BOOLEAN;
 RETURN BOOLEAN;

DBMS_XEVENT.ISNULL (
 path IN XDBPath)
 RETURN BOOLEAN;

DBMS_XEVENT.ISNULL (
 link IN XDBLink)
 RETURN BOOLEAN;

Parameters

Table 169-40 ISNULL Function Parameters

	Parameter	Description
	
ev

	
Event of specified type

	
hl

	
Handler list

	
handler

	
Handler

	
path

	
Path

REMOVE Procedure

This procedure removes the specified handler from the handler list.

	
See Also:

XDBHandlerList Type Subprograms for other subprograms in this group

Syntax

DBMS_XEVENT.REMOVE (
 hl IN OUT XDBHandlerList,
 handler IN XDBHandler);

Parameters

Table 169-41 REMOVE Procedure Parameters

	Parameter	Description
	
hl

	
Handler list

	
handler

	
Handler

SETRENDERPATH Procedure

This procedure specifies the path of the resource that contains the rendered contents. This should not be called after the stream returned by GETOUTPUTSTREAM Function is written to or after the SETRENDERSTREAM Procedure is called; doing so will result in an error. This is only valid for the render event.

Syntax

DBMS_XEVENT.SETRENDERPATH (
 ev IN XDBRepositoryEvent,
 path IN VARCHAR2);

Parameters

Table 169-42 SETRENDERPATH Procedure Parameters

	Parameter	Description
	
ev

	
XDB Repository Event object

	
path

	
Path of the resource containing the rendered contents

SETRENDERSTREAM Procedure

This procedure sets the BLOB from which the rendered contents can be read. This should not be called after the stream returned by GETOUTPUTSTREAM is written to or after SETRENDERPATH is called; doing so will result in an error. This is only valid for the render event.

Syntax

DBMS_XEVENT.SETRENDERSTREAM (
 ev IN XDBRepositoryEvent,
 istr IN BLOB);

Parameters

Table 169-43 SETRENDERSTREAM Procedure Parameters

	Parameter	Description
	
ev

	
XDBRepositoryEvent object

	
istr

	
Input stream from which to get the rendered contents

DBMS_XMLDOM

170 DBMS_XMLDOM

The DBMS_XMLDOM package is used to access XMLType objects, and implements the Document Object Model (DOM), an application programming interface for HTML and XML documents.

	
See Also:

Oracle XML Developer's Kit Programmer's Guide

This chapter contains the following topics:

	
Using DBMS_XMLDOM

	
Overview

	
Security Model

	
Constants

	
Types

	
Exceptions

	
Subprogram Groups

	
DOMNode Subprograms

	
DOMAttr Subprograms

	
DOMCDataSection Subprograms

	
DOMCharacterData Subprograms

	
DOMComment Subprograms

	
DOMDocument Subprograms

	
DOMDocumentFragment Subprograms

	
DOMDocumentType Subprograms

	
DOMElement Subprograms

	
DOMEntity Subprograms

	
DOMEntityReference Subprograms

	
DOMImplementation Subprograms

	
DOMNamedNodeMap Subprograms

	
DOMNodeList Subprograms

	
DOMNotation Subprograms

	
DOMProcessingInstruction Subprograms

	
DOMText Subprograms

	
Summary of DBMS_XMLDOM Subprograms

Using DBMS_XMLDOM

	
Overview

	
Security Model

	
Constants

	
Types

	
Exceptions

	
Subprogram Groups

Overview

The Document Object Model (DOM) is an application programming interface (API) for HTML and XML documents. It defines the logical structure of documents, and the manner in which they are accessed and manipulated. In the DOM specification, the term "document" is used in the broad sense. XML is being increasingly used to represent many different kinds of information that may be stored in diverse systems. This information has been traditionally be seen as "data"; nevertheless, XML presents this data as documents, and the DBMS_XMLDOM package allows you access to both schema-based and non schema-based documents.

	
Note:

	
Before database startup, the read-from and write-to directories in the init.ORA file must be specified; for example: UTL_FILE_DIR=/mypath/insidemypath.

	
Read-from and write-to files must be on the server file system.

With DOM, anything found in an HTML or XML document can be accessed, changed, deleted, or added using the Document Object Model, with a few exceptions. In particular, the DOM interfaces for the XML internal and external subsets have not yet been specified.

One important objective of the W3C DOM specification is to provide a standard programming interface that can be used in a wide variety of environments, programming languages, and applications. Because the DOM standard is object-oriented while PL/SQL is essentially a procedural language, some changes had to be made:

	
Various DOM interfaces such as Node, Element, and others have equivalent PL/SQL types DOMNode, DOMElement, respectively.

	
Various DOMException codes such as WRONG_DOCUMENT_ERR, HIERARCHY_REQUEST_ERR, and others, have similarly named PL/SQL exceptions.

	
Various DOM Node type codes such as ELEMENT_NODE, ATTRIBUTE_NODE, and others, have similarly named PL/SQL constants.

	
Subprograms defined on a DOM type become functions or procedures that accept it as a parameter. For example, to perform APPENDCHILD Function on a DOMNode n, the APPENDCHILD FunctionPL/SQL function is provided.

	
To perform setAttribute on a DOMElement elemSETATTRIBUTE Procedures, use PL/SQL procedure .

DOM defines an inheritance hierarchy. For example, Document, Element, and Attr are defined to be subtypes of Node (see Figure 170-1). Thus, a method defined in the Node interface should be available in these as well. Since such inheritance is not supported in PL/SQL, it is implemented through direct invocation of the MAKENODE function. Calling MAKENODE on various DOM types converts these types into a DOMNode. The appropriate functions or procedures that accept DOMNodes can then be called to operate on these types. If, subsequently, type specific functionality is desired, the DOMNode can be converted back into the original type by the makeXXX functions, where DOMXXX is the desired DOM type.

Figure 170-1 Inheritance Diagram for DOM Types

[image: Description of Figure 170-1 follows]

The implementation of this interface follows the REC-DOM-Level-1-19981001.

Security Model

Owned by XDB, the DBMS_XMLDOM package must be created by SYS or XDB. The EXECUTE privilege is granted to PUBLIC. Subprograms in this package are executed using the privileges of the current user.

Constants

Defined constants of DBMS_XMLDOM are listed in Table 170-1.

Table 170-1 Defined Constants for DBMS_XMLDOM

	Constant	Type	Value	Description
	
ELEMENT_NODE

	
PLS_INTEGER

	
1

	
The Node is an Element.

	
ATTRIBUTE_NODE

	
PLS_INTEGER

	
2

	
The Node is an Attribute.

	
TEXT_NODE

	
PLS_INTEGER

	
3

	
The Node is a Text node.

	
CDATA_SECTION_NODE

	
PLS_INTEGER

	
4

	
The Node is a CDataSection.

	
ENTITY_REFERENCE_NODE

	
PLS_INTEGER

	
5

	
The Node is an Entity Reference.

	
ENTITY_NODE

	
PLS_INTEGER

	
6

	
The Node is an Entity.

	
PROCESSING_INSTRUCTION_NODE

	
PLS_INTEGER

	
7

	
The Node is a Processing Instruction.

	
COMMENT_NODE

	
PLS_INTEGER

	
8

	
The Node is a Comment.

	
DOCUMENT_NODE

	
PLS_INTEGER

	
9

	
The Node is a Document.

	
DOCUMENT_TYPE_NODE

	
PLS_INTEGER

	
10

	
The Node is a Document Type Definition.

	
DOCUMENT_FRAGMENT_NODE

	
PLS_INTEGER

	
11

	
The Node is a Document fragment.

	
NOTATION_NODE

	
PLS_INTEGER

	
12

	
The Node is a Notation.

Types

The following types for DBMS_XMLDOM.DOMTYPE are defined in Table 170-2:

Table 170-2 XDB_XMLDOM Types

	Type	Description
	
DOMATTR

	
Implements the DOM Attribute interface.

	
DOMCDATASECTION

	
Implements the DOM CDataSection interface.

	
DOMCHARACTERDATA

	
Implements the DOM Character Data interface.

	
DOMCOMMENT

	
Implements the DOM Comment interface.

	
DOMDOCUMENT

	
Implements the DOM Document interface.

	
DOMDOCUMENTFRAGMENT

	
Implements the DOM DocumentFragment interface.

	
DOMDOCUMENTTYPE

	
Implements the DOM Document Type interface.

	
DOMELEMENT

	
Implements the DOM Element interface.

	
DOMENTITY

	
Implements the DOM Entity interface.

	
DOMENTITYREFERENCE

	
Implements the DOM EntityReference interface.

	
DOMIMPLEMENTATION

	
Implements the DOM Implementation interface.

	
DOMNAMEDNODEMAP

	
Implements the DOM Named Node Map interface.

	
DOMNODE

	
Implements the DOM Node interface.

	
DOMNODELIST

	
Implements the DOM NodeList interface.

	
DOMNOTATION

	
Implements the DOM Notation interface.

	
DOMPROCESSINGINSTRUCTION

	
Implements the DOM Processing instruction interface.

	
DOMTEXT

	
Implements the DOM Text interface.

Exceptions

The exceptions listed in Table 170-3 are defined for DBMS_XMLDOM:

Table 170-3 Exceptions for DBMS_XMLDOM

	Exception	Description
	
DOMSTRING_SIZE_ERR

	
If the specified range of text does not fit into a DOMString.

	
HIERARCHY_REQUEST_ERR

	
If any node is inserted somewhere it doesn't belong.

	
INDEX_SIZE_ERR

	
If index or size is negative, or greater than the allowed value.

	
INUSE_ATTRIBUTE_ERR

	
If an attempt is made to add an attribute that is already in use elsewhere.

	
INVALID_CHARACTER_ERR

	
If an invalid or illegal character is specified, such as in a name. See production 2 in the XML specification for the definition of a legal character, and production 5 for the definition of a legal name character.

	
NO_DATA_ALLOWED_ERROR

	
If data is specified for a node that does not support data.

	
NOT_FOUND_ERR

	
If an attempt is made to reference a node in a context where it does not exist.

	
NO_MODIFICATION_ALLOWED_ERR

	
If an attempt is made to modify an object where modifications are not allowed.

	
NOT_SUPPORTED_ERR

	
If the implementation does not support the requested type of object or operation.

	
WRONG_DOCUMENT_ERR

	
If a node is used in a different document than the one that created it (that doesn't support it).

Subprogram Groups

DBMS_XMLDOM subprograms are divided into groups according to W3C Interfaces.

	
DOMNode Subprograms

	
DOMAttr Subprograms

	
DOMCDataSection Subprograms

	
DOMCharacterData Subprograms

	
DOMComment Subprograms

	
DOMDocument Subprograms

	
DOMDocumentFragment Subprograms

	
DOMDocumentType Subprograms

	
DOMElement Subprograms

	
DOMEntity Subprograms

	
DOMEntityReference Subprograms

	
DOMImplementation Subprograms

	
DOMNamedNodeMap Subprograms

	
DOMNodeList Subprograms

	
DOMNotation Subprograms

	
DOMProcessingInstruction Subprograms

	
DOMText Subprograms

DOMNode Subprograms

Table 170-4 Summary of DOMNode Subprograms; DBMS_XMLDOM

	Subprogram	Description
	
ADOPTNODE Function

	
Adopts a node from another document

	
APPENDCHILD Function

	
Appends a new child to the node

	
CLONENODE Function

	
Clones the node

	
FREENODE Procedure

	
Frees all resources associated with the node

	
GETATTRIBUTES Function

	
Retrieves the attributes of the node

	
GETCHILDNODES Function

	
Retrieves the children of the node

	
GETEXPANDEDNAME Procedure and Functions

	
Retrieves the expanded name of the node

	
GETFIRSTCHILD Function

	
Retrieves the first child of the node

	
GETLASTCHILD Function

	
Retrieves the last child of the node

	
GETLOCALNAME Procedure and Functions

	
Retrieves the local part of the qualified name

	
GETNAMESPACE Procedure and Functions

	
Retrieves the node's namespace URI

	
GETNEXTSIBLING Function

	
Retrieves the next sibling of the node

	
GETNODENAME Function

	
Retrieves the Name of the Node

	
GETNODETYPE Function

	
Retrieves the Type of the node

	
GETNODEVALUE Function

	
Retrieves the Value of the Node

	
GETNODEVALUEASBINARYSTREAM Function & Procedure

	
Retrieves Node Value as binary stream

	
GETNODEVALUEASCHARACTERSTREAM Function & Procedure

	
Retrieves Node Value as character stream

	
GETOWNERDOCUMENT Function

	
Retrieves the owner document of the node

	
GETPARENTNODE Function

	
Retrieves the parent of this node

	
GETPREFIX Function

	
Retrieves the namespace prefix

	
GETPREVIOUSSIBLING Function

	
Retrieves the previous sibling of the node

	
GETSCHEMANODE Function

	
Retrieves the associated schema URI

	
HASATTRIBUTES Function

	
Tests if the node has attributes

	
HASCHILDNODES Function

	
Tests if the node has child nodes

	
IMPORTNODE Function

	
Imports a node from another document

	
INSERTBEFORE Function

	
Inserts a child before the reference child

	
ISNULL Functions

	
Tests if the node is NULL

	
MAKEATTR Function

	
Casts the node to an Attribute

	
MAKECDATASECTION Function

	
Casts the node to a CData Section

	
MAKECHARACTERDATA Function

	
Casts the node to Character Data

	
MAKECOMMENT Function

	
Casts the node to a Comment

	
MAKEDOCUMENT Function

	
Casts the node to a DOM Document

	
MAKEDOCUMENTFRAGMENT Function

	
Casts the node to a DOM Document Fragment

	
MAKEDOCUMENTTYPE Function

	
Casts the node to a DOM Document Type

	
MAKEELEMENT Function

	
Casts the node to a DOM Element

	
MAKEENTITY Function

	
Casts the node to a DOM Entity

	
MAKEENTITYREFERENCE Function

	
Casts the node to a DOM Entity Reference

	
MAKENOTATION Function

	
Casts the node to a DOM Notation

	
MAKEPROCESSINGINSTRUCTION Function

	
Casts the node to a DOM Processing Instruction

	
MAKETEXT Function

	
Casts the node to a DOM Text

	
REMOVECHILD Function

	
Removes a specified child from a node

	
REPLACECHILD Function

	
Replaces the old child with a new child

	
SETNODEVALUE Procedure

	
Sets the Value of the node

	
SETNODEVALUEASBINARYSTREAM Function & Procedure

	
Sets the Node Value as binary stream

	
SETNODEVALUEASCHARACTERSTREAM Function & Procedure

	
Sets the Node Value as a character stream

	
SETPREFIX Procedure

	
Sets the namespace prefix

	
USEBINARYSTREAM Function

	
Establishes that the stream is valid

	
WRITETOBUFFER Procedures

	
Writes the contents of the node to a buffer

	
WRITETOCLOB Procedures

	
Writes the contents of the node to a CLOB

	
WRITETOFILE Procedures

	
Writes the contents of the node to a file

DOMAttr Subprograms

Table 170-5 Summary of DOMAttr Subprograms; DBMS_XMLDOM

	Method	Description
	
GETEXPANDEDNAME Procedure and Functions

	
Retrieves the expanded name of the attribute

	
GETLOCALNAME Procedure and Functions

	
Retrieves the local name of the attribute

	
GETNAME Functions

	
Retrieves the name of the attribute

	
GETNAMESPACE Procedure and Functions

	
Retrieves the NS URI of the attribute

	
GETOWNERELEMENT Function

	
Retrieves the Element node, parent of the attribute

	
GETQUALIFIEDNAME Functions

	
Retrieves the Qualified Name of the attribute

	
GETSPECIFIED Function

	
Tests if attribute was specified in the element

	
GETVALUE Function

	
Retrieves the value of the attribute

	
ISNULL Functions

	
Tests if the Attribute node is NULL

	
MAKENODE Functions

	
Casts the Attribute to a node

	
SETVALUE Procedure

	
Sets the value of the attribute

DOMCDataSection Subprograms

Table 170-6 Summary of DOMCdata Subprograms; DBMS_XMLDOM

	Method	Description
	
ISNULL Functions

	
Tests if the CDataSection is NULL

	
MAKENODE Functions

	
Casts the CDatasection to a node

DOMCharacterData Subprograms

Table 170-7 Summary of DOMCharacterData Subprograms; DBMS_XMLDOM

	Method	Description
	
APPENDDATA Procedure

	
Appends the specified data to the node data

	
DELETEDATA Procedure

	
Deletes the data from the specified offSets

	
GETDATA Functions

	
Retrieves the data of the node

	
GETLENGTH Functions

	
Retrieves the length of the data

	
INSERTDATA Procedure

	
Inserts the data in the node at the specified offSets

	
ISNULL Functions

	
Tests if the CharacterData is NULL

	
MAKENODE Functions

	
Casts the CharacterData to a node

	
REPLACEDATA Procedure

	
Changes a range of characters in the node

	
SETDATA Procedures

	
Sets the data to the node

	
SUBSTRINGDATA Function

	
Retrieves the substring of the data

DOMComment Subprograms

Table 170-8 Summary of DOMComment Subprograms; DBMS_XMLDOM

	Method	Description
	
ISNULL Functions

	
Tests if the comment is NULL

	
MAKENODE Functions

	
Casts the Comment to a node

DOMDocument Subprograms

Table 170-9 Summary of DOMDocument Subprograms; DBMS_XMLDOM

	Method	Description
	
CREATEATTRIBUTE Functions

	
Creates an Attribute

	
CREATECDATASECTION Function

	
Creates a CDataSection node

	
CREATECOMMENT Function

	
Creates a Comment node

	
CREATEDOCUMENT Function

	
Creates a new Document

	
CREATEDOCUMENTFRAGMENT Function

	
Creates a new Document Fragment

	
CREATEELEMENT Functions

	
Creates a new Element

	
CREATEENTITYREFERENCE Function

	
Creates an Entity reference

	
CREATEPROCESSINGINSTRUCTION Function

	
Creates a Processing Instruction

	
CREATETEXTNODE Function

	
Creates a Text node

	
FREEDOCFRAG Procedure

	
Frees the document fragment

	
FREEDOCUMENT Procedure

	
Frees the document

	
GETCHARSET Function

	
Retrieves the characterset of the DOM document

	
GETDOCTYPE Function

	
Retrieves the DTD of the document

	
GETDOCUMENTELEMENT Function

	
Retrieves the root element of the document

	
GETELEMENTSBYTAGNAME Functions

	
Retrieves

	
the elements in the DOMNODELIST by tag name

	
elements in the subtree of a DOMNODELIST by tagname

	
GETIMPLEMENTATION Function

	
Retrieves the DOM implementation

	
GETSTANDALONE Function

	
Retrieves the standalone property of the document

	
GETVERSION Function

	
Retrieves the version of the document

	
GETXMLTYPE Function

	
Retrieves the XMLType associated with the DOM Document

	
ISNULL Functions

	
Tests if the document is NULL

	
MAKENODE Functions

	
Casts the document to a node

	
NEWDOMDOCUMENT Functions

	
Creates a new document

	
SETCHARSET Procedure

	
Sets the characterset of the DOM document

	
SETDOCTYPE Procedure

	
Sets the DTD of the document

	
SETSTANDALONE Procedure

	
Sets the standalone property of the document

	
SETVERSION Procedure

	
Sets the version of the document

	
WRITETOBUFFER Procedures

	
Writes the document to a buffer

	
WRITETOCLOB Procedures

	
Writes the document to a CLOB

	
WRITETOFILE Procedures

	
Writes the document to a file

DOMDocumentFragment Subprograms

Table 170-10 Summary of DOMDocumentFragment Subprograms; DBMS_XMLDOM

	Method	Description
	
FREEDOCFRAG Procedure

	
Frees the specified document fragment

	
ISNULL Functions

	
Tests if the DocumentFragment is NULL

	
MAKENODE Functions

	
Casts the Document Fragment to a node

	
WRITETOBUFFER Procedures

	
Writes the contents of a document fragment into a buffer

DOMDocumentType Subprograms

Table 170-11 Summary of DOMDocumentType Subprograms; DBMS_XMLDOM

	Method	Description
	
FINDENTITY Function

	
Finds the specified entity in the document type

	
FINDNOTATION Function

	
Finds the specified notation in the document type

	
GETENTITIES Function

	
Retrieves the nodemap of entities in the Document type

	
GETNAME Functions

	
Retrieves the name of the Document type

	
GETNOTATIONS Function

	
Retrieves the nodemap of the notations in the Document type

	
GETPUBLICID Functions

	
Retrieves the public ID of the document type

	
GETSYSTEMID Functions

	
Retrieves the system ID of the document type

	
ISNULL Functions

	
Tests if the Document Type is NULL

	
MAKENODE Functions

	
Casts the document type to a node

DOMElement Subprograms

Table 170-12 Summary of DOMElement Subprograms; DBMS_XMLDOM

	Method	Description
	
FREEELEMENT Procedure

	
Frees memory allocated to a DOMElement handle

	
GETATTRIBUTE Functions

	
Retrieves the attribute node by name

	
GETATTRIBUTENODE Functions

	
Retrieves the attribute node by name

	
GETCHILDRENBYTAGNAME Functions

	
Retrieves children of the element by tag name

	
GETELEMENTSBYTAGNAME Functions

	
Retrieves

	
the elements in the DOMNODELIST by tag name

	
elements in the subtree of a DOMNODELIST by tagname

	
GETEXPANDEDNAME Procedure and Functions

	
Retrieves the expanded name of the element

	
GETLOCALNAME Procedure and Functions

	
Retrieves the local name of the element

	
GETNAMESPACE Procedure and Functions

	
Retrieves the NS URI of the element

	
GETQUALIFIEDNAME Functions

	
Retrieves the qualified name of the element

	
GETTAGNAME Function

	
Retrieves the Tag name of the element

	
HASATTRIBUTE Functions

	
Tests if an attribute exists

	
ISNULL Functions

	
Tests if the Element is NULL

	
MAKENODE Functions

	
Casts the Element to a node

	
NORMALIZE Procedure

	
Normalizes the text children of the element

	
REMOVEATTRIBUTE Procedures

	
Removes the attribute specified by the name

	
REMOVEATTRIBUTENODE Function

	
Removes the attribute node in the element

	
RESOLVENAMESPACEPREFIX Function

	
Resolve the prefix to a namespace URI

	
SETATTRIBUTE Procedures

	
Sets the attribute specified by the name

	
SETATTRIBUTENODE Functions

	
Sets the attribute node in the element

DOMEntity Subprograms

Table 170-13 Summary of DOMEntity Subprograms; DBMS_XMLDOM

	Method	Description
	
GETNOTATIONNAME Function

	
Retrieves the notation name of the entity

	
GETPUBLICID Functions

	
Retrieves the public Id of the entity

	
GETSYSTEMID Functions

	
Retrieves the system Id of the entity

	
ISNULL Functions

	
Tests if the Entity is NULL

	
MAKENODE Functions

	
Casts the Entity to a node

DOMEntityReference Subprograms

Table 170-14 Summary of DOMEntityReference Subprograms; DBMS_XMLDOM

	Method	Description
	
ISNULL Functions

	
Tests if the DOMEntityReference is NULL

	
MAKENODE Functions

	
Casts the DOMEntityReference to NULL

DOMImplementation Subprograms

Table 170-15 Summary of DOMImplementation Subprograms; DBMS_XMLDOM

	Method	Description
	
ISNULL Functions

	
Tests if the DOMImplementation node is NULL

	
HASFEATURE Function

	
Tests if the DOMImplementation implements a feature

DOMNamedNodeMap Subprograms

Table 170-16 Summary of DOMNamedNodeMap Subprograms; DBMS_XMLDOM

	Method	Description
	
GETLENGTH Functions

	
Retrieves the number of items in the map

	
GETNAMEDITEM Function

	
Retrieves the item specified by the name

	
ISNULL Functions

	
Tests if the NamedNodeMap is NULL

	
ITEM Functions

	
Retrieves the item given the index in the map

	
REMOVENAMEDITEM Function

	
Removes the item specified by name

	
SETNAMEDITEM Function

	
Sets the item in the map specified by the name

DOMNodeList Subprograms

Table 170-17 Summary of DOMNodeList Subprograms; DBMS_XMLDOM

	Method	Description
	
FREENODELIST Procedure

	
Frees all resources associated with a nodelist

	
GETLENGTH Functions

	
Retrieves the number of items in the list

	
ISNULL Functions

	
Tests if the NodeList is NULL

	
ITEM Functions

	
Retrieves the item given the index in the list

DOMNotation Subprograms

Table 170-18 Summary of DOMNotation Subprograms; DBMS_XMLDOM

	Method	Description
	
GETPUBLICID Functions

	
Retrieves the public Id of the notation

	
GETSYSTEMID Functions

	
Retrieves the system Id of the notation

	
ISNULL Functions

	
Tests if the Notation is NULL

	
MAKENODE Functions

	
Casts the notation to a node

DOMProcessingInstruction Subprograms

Table 170-19 Summary of DOMProcessingInstruction Subprograms; DBMS_XMLDOM

	Method	Description
	
GETDATA Functions

	
Retrieves the data of the processing instruction

	
GETTARGET Function

	
Retrieves the target of the processing instruction

	
ISNULL Functions

	
Tests if the Processing Instruction is NULL

	
MAKENODE Functions

	
Casts the Processing Instruction to a node

	
SETDATA Procedures

	
Sets the data of the processing instruction

DOMText Subprograms

Table 170-20 Summary of DOMText Subprograms; DBMS_XMLDOM

	Method	Description
	
ISNULL Functions

	
Tests if the text is NULL

	
MAKENODE Functions

	
Casts the text to a node

	
SPLITTEXT Function

	
Splits the contents of the text node into 2 text nodes

Summary of DBMS_XMLDOM Subprograms

Table 170-21 Summary of DBMS_XMLDOM Package Subprogram

	Subprogram	Description	Group
	
ADOPTNODE Function

	
Adopts a node from another document

	
DOMNode Subprograms

	
APPENDCHILD Function

	
Appends a new child to the node

	
DOMNode Subprograms

	
APPENDDATA Procedure

	
Appends the specified data to the node data

	
DOMCharacterData Subprograms

	
CLONENODE Function

	
Clones the node

	
DOMNode Subprograms

	
CREATEATTRIBUTE Functions

	
Creates an Attribute

	
DOMDocument Subprograms

	
CREATECDATASECTION Function

	
Creates a CDataSection node

	
DOMDocument Subprograms

	
CREATECOMMENT Function

	
Creates a Comment node

	
DOMDocument Subprograms

	
CREATEDOCUMENT Function

	
Creates a new Document

	
DOMDocument Subprograms

	
CREATEDOCUMENTFRAGMENT Function

	
Creates a new Document Fragment

	
DOMDocument Subprograms

	
CREATEELEMENT Functions

	
Creates a new Element

	
DOMDocument Subprograms

	
CREATEENTITYREFERENCE Function

	
Creates an Entity reference

	
DOMDocument Subprograms

	
CREATEPROCESSINGINSTRUCTION Function

	
Creates a Processing Instruction

	
DOMDocument Subprograms

	
CREATETEXTNODE Function

	
Creates a Text node

	
DOMDocument Subprograms

	
DELETEDATA Procedure

	
Deletes the data from the specified offSets

	
DOMCharacterData Subprograms

	
FINDENTITY Function

	
Finds the specified entity in the document type

	
DOMDocumentType Subprograms

	
FINDNOTATION Function

	
Finds the specified notation in the document type

	
DOMDocumentType Subprograms

	
FREEDOCFRAG Procedure

	
Frees the document fragment

	
DOMDocument Subprograms and DOMDocumentFragment Subprograms

	
FREEDOCUMENT Procedure

	
Frees the document

	
DOMDocument Subprograms

	
FREEELEMENT Procedure

	
Frees memory allocated to a DOMElement handle

	
DOMElement Subprograms

	
FREENODE Procedure

	
Frees all resources associated with the node

	
DOMNode Subprograms

	
FREENODELIST Procedure

	
Frees all resources associated with a nodelist

	
DOMNodeList Subprograms

	
GETATTRIBUTE Functions

	
Retrieves the attribute node by name

	
DOMElement Subprograms

	
GETATTRIBUTENODE Functions

	
Retrieves the attribute node by name

	
DOMElement Subprograms

	
GETATTRIBUTES Function

	
Retrieves the attributes of the node

	
DOMNode Subprograms

	
GETCHARSET Function

	
Retrieves the characterset of the DOM document

	
DOMDocument Subprograms

	
GETCHILDNODES Function

	
Retrieves the children of the node

	
DOMNode Subprograms

	
GETCHILDRENBYTAGNAME Functions

	
Retrieves children of the element by tag name

	
DOMCharacterData Subprograms

	
GETDATA Functions

	
Retrieves

	
the data of the node

	
the data of the processing instruction

	
	
DOMCharacterData Subprograms

	
DOMProcessingInstruction Subprograms

	
GETDOCTYPE Function

	
Retrieves the DTD of the document

	
DOMDocument Subprograms

	
GETDOCUMENTELEMENT Function

	
Retrieves the root element of the document

	
DOMDocument Subprograms

	
GETELEMENTSBYTAGNAME Functions

	
Retrieves

	
the elements in the DOMNODELIST by tag name

	
elements in the subtree of a DOMNODELIST by tagname

	
	
DOMDocument Subprograms

	
DOMElement Subprograms

	
GETENTITIES Function

	
Retrieves the nodemap of entities in the Document type

	
DOMDocumentType Subprograms

	
GETEXPANDEDNAME Procedure and Functions

	
Retrieves

	
the expanded name of the node

	
the expanded name of the attribute

	
the expanded name of the element

	
	
DOMNode Subprograms

	
DOMAttr Subprograms

	
DOMElement Subprograms

	
GETFIRSTCHILD Function

	
Retrieves the first child of the node

	
DOMNode Subprograms

	
GETIMPLEMENTATION Function

	
Retrieves the DOM implementation

	
DOMDocument Subprograms

	
GETLASTCHILD Function

	
Retrieves the last child of the node

	
DOMNode Subprograms

	
GETLENGTH Functions

	
Retrieves

	
the length of the data

	
the number of items in the map

	
the number of items in the list

	
	
DOMCharacterData Subprograms

	
DOMNamedNodeMap Subprograms

	
DOMNodeList Subprograms

	
GETLOCALNAME Procedure and Functions

	
Retrieves

	
the local part of the qualified name

	
the local name of the attribute

	
the local name of the element

	
	
DOMNode Subprograms

	
DOMAttr Subprograms

	
DOMElement Subprograms

	
GETNAME Functions

	
Retrieves

	
the name of the attribute

	
the name of the Document type

	
	
DOMAttr Subprograms

	
DOMDocumentType Subprograms

	
GETNAMEDITEM Function

	
Retrieves

	
an item specified by name

	
and namespace URI)

	
	
DOMNamedNodeMap Subprograms

	
DOMNamedNodeMap Subprograms

	
GETNAMESPACE Procedure and Functions

	
Retrieves

	
the node's namespace URI

	
the NS URI of the attribute

	
the NS URI of the element

	
	
DOMNode Subprograms

	
DOMAttr Subprograms

	
DOMElement Subprograms

	
GETNEXTSIBLING Function

	
Retrieves the next sibling of the node

	
DOMNode Subprograms

	
GETNODENAME Function

	
Retrieves the Name of the Node

	
DOMNode Subprograms

	
GETNODETYPE Function

	
Retrieves the Type of the node

	
DOMNode Subprograms

	
GETNODEVALUE Function

	
Retrieves the Value of the Node

	
DOMNode Subprograms

	
GETNODEVALUEASBINARYSTREAM Function & Procedure

	
Retrieves the Node Value as binary stream

	
DOMNode Subprograms

	
GETNODEVALUEASCHARACTERSTREAM Function & Procedure

	
Retrieves the Node Value as character stream

	
DOMNode Subprograms

	
GETNOTATIONNAME Function

	
Retrieves the notation name of the entity

	
DOMEntity Subprograms

	
GETNOTATIONS Function

	
Retrieves the nodemap of the notations in the Document type

	
DOMDocumentType Subprograms

	
GETTARGET Function

	
Retrieves the target of the processing instruction

	
DOMProcessingInstruction Subprograms

	
GETOWNERDOCUMENT Function

	
Retrieves the owner document of the node

	
DOMNode Subprograms

	
GETOWNERELEMENT Function

	
Retrieves the Element node, parent of the attribute

	
DOMAttr Subprograms

	
GETPARENTNODE Function

	
Retrieves the parent of this node

	
DOMNode Subprograms

	
GETPREFIX Function

	
Retrieves the namespace prefix

)

	
DOMNode Subprograms

	
GETPREVIOUSSIBLING Function

	
Retrieves the previous sibling of the node

	
DOMNode Subprograms

	
GETPUBLICID Functions

	
Retrieves

	
the public ID of the document type

	
the public Id of the entity

	
the public Id of the notation

	
	
DOMDocumentType Subprograms

	
DOMEntity Subprograms

	
DOMNotation Subprograms

	
GETQUALIFIEDNAME Functions

	
Retrieves

	
the Qualified Name of the attribute

	
the qualified name of the element

	
	
DOMAttr Subprograms

	
DOMElement Subprograms

	
GETSCHEMANODE Function

	
Retrieves the associated schema URI

	
DOMNode Subprograms

	
GETSPECIFIED Function

	
Tests if attribute was specified in the element.

	
DOMAttr Subprograms

	
GETSTANDALONE Function

	
Retrieves the standalone property of the document

	
DOMDocument Subprograms

	
GETSYSTEMID Functions

	
Retrieves

	
the system ID of the document type

	
the system Id of the entity

	
the system Id of the notation

	
	
DOMDocumentType Subprograms

	
DOMEntity Subprograms

	
DOMNotation Subprograms

	
GETTAGNAME Function

	
Retrieves the Tag name of the element

	
DOMElement Subprograms

	
GETVALUE Function

	
Retrieves the value of the attribute

	
DOMAttr Subprograms

	
GETVERSION Function

	
Retrieves the version of the document

	
DOMDocument Subprograms)

	
GETXMLTYPE Function

	
Retrieves the XMLType associated with the DOM Document

	
DOMDocument Subprograms

	
HASATTRIBUTES Function

	
Tests if the node has attributes

	
DOMNode Subprograms

	
HASATTRIBUTE Functions

	
Tests if an attribute exists

	
DOMElement Subprograms

	
HASCHILDNODES Function

	
Tests if the node has child nodes

	
DOMNode Subprograms

	
HASFEATURE Function

	
Tests if the DOMImplementation implements a feature

	
DOMImplementation Subprograms

	
IMPORTNODE Function

	
Imports a node from another document

	
DOMNode Subprograms

	
INSERTBEFORE Function

	
Inserts a child before the reference child

	
DOMNode Subprograms

	
INSERTDATA Procedure

	
Inserts the data in the node at the specified offSets

	
DOMCharacterData Subprograms

	
ISNULL Functions

	
Tests

	
if the node is NULL

	
if the Attribute node is NULL

	
if the CDataSection is NULL

	
if the CharacterData is NULL

	
if the comment is NULL

	
if the document is NULL

	
if the DocumentFragment is NULL

	
if the Document Type is NULL

	
if the Element is NULL

	
if the Entity is NULL

	
if the DOMEntityReference is NULL

	
if the DOMImplementation node is NULL

	
if the NamedNodeMap is NULL

	
if the NodeList is NULL

	
if the Notation is NULL

	
if the Processing Instruction is NULL

	
if the text is NULL

	
	
DOMNode Subprograms

	
DOMAttr Subprograms

	
DOMCDataSection Subprograms

	
DOMCharacterData Subprograms

	
DOMComment Subprograms

	
DOMDocument Subprograms

	
DOMDocumentFragment Subprograms

	
DOMDocumentType Subprograms

	
DOMElement Subprograms

	
DOMEntity Subprograms

	
DOMEntityReference Subprograms

	
DOMImplementation Subprograms

	
DOMNamedNodeMap Subprograms

	
DOMNodeList Subprograms

	
DOMNotation Subprograms

	
DOMProcessingInstruction Subprograms

	
DOMText Subprograms

	
ITEM Functions

	
Retrieves

	
the item given the index in the map

	
the item given the index in the NodeList

	
	
DOMNamedNodeMap Subprograms

	
DOMNodeList Subprograms

	
MAKEATTR Function

	
Casts the node to an Attribute

	
DOMNode Subprograms

	
MAKECDATASECTION Function

	
Casts the node to a CData Section

	
DOMNode Subprograms

	
MAKECHARACTERDATA Function

	
Casts the node to Character Data

	
DOMNode Subprograms

	
MAKECOMMENT Function

	
Casts the node to a Comment

	
DOMNode Subprograms

	
MAKEDOCUMENT Function

	
Casts the node to a DOM Document

	
DOMNode Subprograms

	
MAKEDOCUMENTFRAGMENT Function

	
Casts the node to a DOM Document Fragment

	
DOMNode Subprograms)

	
MAKEDOCUMENTTYPE Function

	
Casts the node to a DOM Document Type

	
DOMNode Subprograms

	
MAKEELEMENT Function

	
Casts the node to a DOM ElemenT

	
DOMNode Subprograms

	
MAKEENTITY Function

	
Casts the node to a DOM Entity

	
DOMNode Subprograms

	
MAKEENTITYREFERENCE Function

	
Casts the node to a DOM Entity Reference

	
DOMNode Subprograms

	
MAKENODE Functions

	
Casts

	
the Attribute to a node

	
the CDatasection to a node

	
the CharacterData to a node

	
the Comment to a node

	
the document to a node

	
the Document Fragment to a node

	
the document type to a node

	
the Element to a node

	
the Entity to a node

	
the DOMEntityReference to NULL

	
the notation to a node

	
the Processing Instruction to a node

	
the text to a node

	
	
DOMAttr Subprograms

	
DOMCDataSection Subprograms

	
DOMCharacterData Subprograms

	
DOMComment Subprograms

	
DOMDocument Subprograms

	
DOMDocumentFragment Subprograms

	
DOMDocumentType Subprograms

	
DOMElement Subprograms

	
DOMEntity Subprograms

	
DOMEntityReference Subprograms

	
DOMNotation Subprograms

	
DOMProcessingInstruction Subprograms

	
DOMText Subprograms

	
MAKENOTATION Function

	
Casts the node to a DOM Notation

	
DOMNode Subprograms

	
MAKEPROCESSINGINSTRUCTION Function

	
Casts the node to a DOM Processing Instruction

	
DOMNode Subprograms

	
MAKETEXT Function

	
Casts the node to a DOM Text

	
DOMNode Subprograms

	
NEWDOMDOCUMENT Functions

	
Creates a new document

	
DOMDocument Subprograms

	
NORMALIZE Procedure

	
Normalizes the text children of the element

	
DOMElement Subprograms

	
REMOVEATTRIBUTE Procedures

	
Removes the attribute specified by the name

	
DOMElement Subprograms

	
REMOVEATTRIBUTENODE Function

	
Removes the attribute node in the element

	
DOMElement Subprograms

	
REMOVECHILD Function

	
Removes a specified child from a node

	
DOMNode Subprograms

	
REMOVENAMEDITEM Function

	
Removes the item specified by name

	
DOMNamedNodeMap Subprograms

	
REPLACECHILD Function

	
Replaces the old child with a new child

	
DOMNode Subprograms

	
REPLACEDATA Procedure

	
Changes a range of characters in the node

	
DOMCharacterData Subprograms

	
RESOLVENAMESPACEPREFIX Function

	
Resolve the prefix to a namespace URI

	
DOMElement Subprograms

	
SETATTRIBUTE Procedures

	
Sets the attribute specified by the name

	
DOMElement Subprograms

	
SETATTRIBUTENODE Functions

	
Sets the attribute node in the element

	
DOMElement Subprograms

	
SETCHARSET Procedure

	
Sets the characterset of the DOM document

	
DOMDocument Subprograms

	
SETDATA Procedures

	
Sets

	
the data to the node

	
the data of the processing instruction

	
	
DOMCharacterData Subprograms

	
DOMProcessingInstruction Subprograms

	
SETDOCTYPE Procedure

	
Sets the DTD of the document.

	
DOMDocument Subprograms

	
SETNAMEDITEM Function

	
Sets the item in the map specified by the name

	
DOMNamedNodeMap Subprograms

	
SETNODEVALUE Procedure

	
Sets the Value of the node

	
DOMNode Subprograms

	
SETNODEVALUEASBINARYSTREAM Function & Procedure

	
Sets the Node Value as a binary stream

	
DOMNode Subprograms

	
SETNODEVALUEASCHARACTERSTREAM Function & Procedure

	
Sets the Node Value as a character stream

	
DOMNode Subprograms

	
SETPREFIX Procedure

	
Sets the namespace prefix

	
DOMNode Subprograms

	
SETSTANDALONE Procedure

	
Sets the standalone property of the document

	
DOMDocument Subprograms

	
SETVALUE Procedure

	
Sets the value of the attribute

	
DOMAttr Subprograms

	
SETVERSION Procedure

	
Sets the version of the document

	
DOMDocument Subprograms

	
SPLITTEXT Function

	
Splits the contents of the text node into 2 text nodes

	
DOMText Subprograms

	
SUBSTRINGDATA Function

	
Retrieves the substring of the data

	
DOMCharacterData Subprograms

	
USEBINARYSTREAM Function

	
Strabismus that the stream is valid for use

	
DOMNode Subprograms

	
WRITETOBUFFER Procedures

	
Writes

	
the contents of the node to a buffer

	
the document to a buffer

	
the contents of a document fragment into a buffer

	
	
DOMNode Subprograms

	
DOMDocument Subprograms

	
DOMDocumentFragment Subprograms

	
WRITETOCLOB Procedures

	
Writes

	
the contents of the node to a CLOB

	
the document to a CLOB

	
	
DOMNode Subprograms

	
DOMDocument Subprograms

	
WRITETOFILE Procedures

	
Writes

	
the contents of the node to a file

	
the document to a file

	
	
DOMNode Subprograms

	
DOMDocument Subprograms

ADOPTNODE Function

This function adopts a node from another document, and returns this new node.

	
See Also:

DOMNode Subprograms for other subprograms in this group

Syntax

DBMS_XMLDOM.ADOPTNODE(
 doc IN DOMDocument,
 importedNode IN DOMNode)
 RETURN DOMNODE;

Parameters

Table 170-22 ADOPTNODE Function Parameters

	Parameter	Description
	
doc

	
Document that is adopting the node

	
importedNode

	
Node to adopt

Usage Notes

Note that the ADOPTNODE Function removes the node from the source document while the IMPORTNODE Function clones the node in the source document.

APPENDCHILD Function

This function adds the node newchild to the end of the list of children of this node, and returns the newly added node. If the newchild is already in the tree, it is first removed.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.APPENDCHILD(
 n IN DOMNode,
 newchild IN DOMNode)
 RETURN DOMNODE;

Parameters

Table 170-23 APPENDCHILD Function Parameters

	Parameter	Description
	
n

	
DOMNode

	
newchild

	
The child to be appended to the list of children of node n

APPENDDATA Procedure

This procedure appends the string to the end of the character data of the node. Upon success, data provides access to the concatenation of data and the specified string argument.

	
See Also:

DOMCharacterData Subprograms

Syntax

DBMS_XMLDOM.APPENDDATA(
 cd IN DOMCHARACTERDATA,
 arg IN VARCHAR2);

Parameters

Table 170-24 APPENDDATA Procedure Parameters

	Parameter	Description
	
cd

	
DOMCHARACTERDATA

	
arg

	
The data to append to the existing data

CLONENODE Function

This function returns a duplicate of this node, and serves as a generic copy constructor for nodes. The duplicate node has no parent, its parent node is NULL.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.CLONENODE(
 n IN DOMNODE,
 deep IN BOOLEAN)
 RETURN DOMNODE;

Parameters

Table 170-25 CLONENODE Function Parameters

	Parameter	Description
	
n

	
DOMNODE

	
deep

	
Determines if children are to be cloned

Usage Notes

	
Cloning an Element copies all attributes and their values, including those generated by the XML processor to represent defaulted attributes, but this method does not copy any text it contains unless it is a deep clone, since the text is contained in a child Text node.

	
Cloning an Attribute directly, as opposed to be cloned as part of an Element cloning operation, returns a specified attribute (specified is TRUE).

	
Cloning any other type of node simply returns a copy of this node.

CREATEATTRIBUTE Functions

This function creates a DOMATTR node.

	
See Also:

DOMDocument Subprograms

Syntax

Creates a DOMATTR with the specified name:

DBMS_XMLDOM.CREATEATTRIBUTE(
 doc IN DOMDOCUMENT,
 name IN VARCHAR2)
 RETURN DOMATTR;

Creates a DOMATTR with the specified name and namespace URI:

DBMS_XMLDOM.CREATEATTRIBUTE(
 doc IN DOMDOCUMENT,
 qname IN VARCHAR2,
 ns IN VARCHAR2)
RETURN DOMATTR;

Parameters

Table 170-26 CREATEATTRIBUTE Function Parameters

	Parameter	Description
	
doc

	
DOMDOCUMENT

	
qname

	
New attribute qualified name

	
ns

	
Namespace

CREATECDATASECTION Function

This function creates a DOMCDATASECTION node.

	
See Also:

DOMDocument Subprograms

Syntax

DBMS_XMLDOM.CREATECDATASECTION(
 doc IN DOMDOCUMENT,
 data IN VARCHAR2)
 RETURN DOMCDATASECTION;

Parameters

Table 170-27 CREATECDATASECTION Function Parameters

	Parameter	Description
	
doc

	
DOMDOCUMENT

	
data

	
Content of the DOMCDATASECTION node

CREATECOMMENT Function

This function creates a DOMCOMMENT node.

	
See Also:

DOMDocument Subprograms

Syntax

DBMS_XMLDOM.CREATECOMMENT(
 doc IN DOMDOCUMENT,
 data IN VARCHAR2)
 RETURN DOMCOMMENT;

Parameters

Table 170-28 CREATECOMMENT Function Parameters

	Parameter	Description
	
doc

	
DOMDOCUMENT

	
data

	
Content of the DOMComment node

CREATEDOCUMENT Function

This function creates a DOMDOCUMENT with specified namespace URI, root element name, DTD.

	
See Also:

DOMDocument Subprograms

Syntax

DBMS_XMLDOM.CREATEDOCUMENT(
 namespaceURI IN VARCHAR2,
 qualifiedName IN VARCHAR2,
 doctype IN DOMTYPE := NULL)
 RETURN DOMDOCUMENT;

Parameters

Table 170-29 CREATEDOCUMENT Function Parameters

	Parameter	Description
	
namespaceURI

	
Namespace URI

	
qualifiedName

	
Root element name

	
doctype

	
Document type

CREATEDOCUMENTFRAGMENT Function

This function creates a DOMDOCUMENTFRAGMENT.

	
See Also:

DOMDocument Subprograms

Syntax

DBMS_XMLDOM.CREATEDOCUMENTFRAGMENT(
 doc IN DOMDOCUMENT)
 RETURN DOMDOCUMENTFRAGMENT;

Parameters

Table 170-30 CREATEDOCUMENTFRAGMENT Function Parameters

	Parameter	Description
	
doc

	
DOMDocument

CREATEELEMENT Functions

This function creates a DOMELEMENT.

	
See Also:

DOMDocument Subprograms

Syntax

Creates a DOMElement with specified name:

DBMS_XMLDOM.CREATEELEMENT(
 doc IN DOMDOCUMENT,
 tagName IN VARCHAR2)
 RETURN DOMELEMENT;

Creates a DOMElement with specified name and namespace URI:

DBMS_XMLDOM.CREATEELEMENT(
 doc IN DOMDOCUMENT,
 tagName IN VARCHAR2,
 ns IN VARCHAR2)
 RETURN DOMELEMENT;

Parameters

Table 170-31 CREATEELEMENT Function Parameters

	Parameter	Description
	
doc

	
DOMDOCUMENT

	
tagName

	
Tagname for new DOMELEMENT

	
ns

	
Namespace

CREATEENTITYREFERENCE Function

This function creates a DOMENTITYREFERENCE node.

	
See Also:

DOMDocument Subprograms

Syntax

DBMS_XMLDOM.CREATEENTITYREFERENCE(
 doc IN DOMDOCUMENT,
 name IN VARCHAR2)
 RETURN DOMENTITYREFERENCE;

Parameters

Table 170-32 CREATEENTITYREFERENCE Function Parameters

	Parameter	Description
	
doc

	
DOMDOCUMENT

	
name

	
New entity reference name

CREATEPROCESSINGINSTRUCTION Function

This function creates a DOMPROCESSINGINSTRUCTION node.

	
See Also:

DOMDocument Subprograms

Syntax

DBMS_XMLDOM.CREATEPROCESSINGINSTRUCTION(
 doc IN DOMDocument,
 target IN VARCHAR2,
 data IN VARCHAR2)
 RETURN DOMPROCESSINGINSTRUCTION;

Parameters

Table 170-33 CREATEPROCESSINGINSTRUCTION Function Parameters

	Parameter	Description
	
doc

	
DOMDOCUMENT

	
target

	
Target of the new processing instruction

	
data

	
Content data of the new processing instruction

CREATETEXTNODE Function

This function creates a DOMTEXT node.

	
See Also:

DOMDocument Subprograms

Syntax

DBMS_XMLDOM.CREATETEXTNODE(
 doc IN DOMDocument,
 data IN VARCHAR2)
 RETURN DOMTEXT;

Parameters

Table 170-34 CREATETEXTNODE Function Parameters

	Parameter	Description
	
doc

	
DOMDOCUMENT

	
data

	
Content of the DOMText node

DELETEDATA Procedure

This procedure removes a range of characters from the node. Upon success, data and length reflect the change.

	
See Also:

DOMCharacterData Subprograms

Syntax

DBMS_XMLDOM.DELETEDATA(
 cd IN DOMCHARACTERDATA,
 offset IN NUMBER,
 cnt IN NUMBER);

Parameters

Table 170-35 DELETEDATA PROCEDURE Parameters

	Parameter	Description
	
cd

	
DOMCHARACTERDATA

	
offset

	
The offset from which to delete the data

	
cnt

	
The number of characters (starting from offset) to delete

FINDENTITY Function

This function finds an entity in the specified DTD, and returns that entity if found.

	
See Also:

DOMDocumentType Subprograms

Syntax

DBMS_XMLDOM.FINDENTITY(
 dt IN DOMDOCUMENTTYPE,
 name IN VARCHAR2,
 par IN BOOLEAN)
 RETURN DOMENTITY;

Parameters

Table 170-36 FINDENTITY Function Parameters

	Parameter	Description
	
dt

	
The DTD

	
name

	
Entity to find

	
par

	
Flag to indicate type of entity; TRUE for parameter entity and FALSE for normal entity

FINDNOTATION Function

This function finds the notation in the specified DTD, and returns it, if found.

	
See Also:

DOMDocumentType Subprograms

Syntax

DBMS_XMLDOM.FINDNOTATION(
 dt IN DOMDocumentType,
 name IN VARCHAR2)
 RETURN DOMNOTATION;

Parameters

Table 170-37 FINDNOTATION Function Parameters

	Parameter	Description
	
dt

	
The DTD

	
name

	
The notation to find

FREEDOCFRAG Procedure

This procedure frees the specified document fragment.

	
See Also:

DOMDocument Subprograms and DOMDocumentFragment Subprograms

Syntax

DBMS_XMLDOM.FREEDOCFRAG(
 df IN DOMDOCUMENTFRAGMENT);

Parameters

Table 170-38 FREEDOCFRAG Procedure Parameters

	Parameter	Description
	
df

	
DOM document fragment

FREEDOCUMENT Procedure

This procedure frees DOMDOCUMENT object.

	
See Also:

DOMDocument Subprograms

Syntax

DBMS_XMLDOM.FREEDOCUMENT(
 doc IN DOMDOCUMENT);

Parameters

Table 170-39 FREEDOCUMENT Procedure Parameters

	Parameter	Description
	
doc

	
DOMDOCUMENT

FREEELEMENT Procedure

This procedure frees memory allocated to a DOMElement handle.

	
See Also:

DOMElement Subprograms

Syntax

DBMS_XMLDOM.FREENODE(
 elem IN DOMELEMENT);

Parameters

Table 170-40 FREENODE Procedure Parameters

	Parameter	Description
	
elem

	
Of type DOMELEMENT

FREENODE Procedure

This procedure frees all resources associated with a DOMNODE.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.FREENODE(
 n IN DOMNODE);

Parameters

Table 170-41 FREENODE Procedure Parameters

	Parameter	Description
	
n

	
DOMNODE

FREENODELIST Procedure

This procedure frees all resources associated with a nodelist.

	
See Also:

DOMNodeList Subprograms

Syntax

DBMS_XMLDOM.FREENODE(
 nl IN DOMNodeList);

Parameters

Table 170-42 FREENODE Procedure Parameters

	Parameter	Description
	
nl

	
Of type DOMNODELIST

GETATTRIBUTE Functions

This function returns the value of an attribute of an DOMELEMENT by name.

	
See Also:

DOMElement Subprograms

Syntax

Returns the value of a DOMELEMENT's attribute by name:

DBMS_XMLDOM.GETATTRIBUTE(
 elem IN DOMELEMENT,
 name IN VARCHAR2)
 RETURN VARCHAR2;

Returns the value of a DOMELEMENT's attribute by name and namespace URI:

DBMS_XMLDOM.GETATTRIBUTE(
 elem IN DOMELEMENT,
 name IN VARCHAR2,
 ns IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Table 170-43 GETATTRIBUTE Function Parameters

	Parameter	Description
	
elem

	
The DOMELEMENT

	
name

	
Attribute name

	
ns

	
Namespace

GETATTRIBUTENODE Functions

This function returns an attribute node from the DOMELEMENT by name. The function is overloaded. The specific forms of functionality are described along with the syntax declarations.

	
See Also:

DOMElement Subprograms

Syntax

Returns an attribute node from the DOMELEMENT by name:

DBMS_XMLDOM.GETATTRIBUTENODE(
 elem IN DOMElement,
 name IN VARCHAR2)
 RETURN DOMATTR;

Returns an attribute node from the DOMELEMENT by name and namespace URI:

DBMS_XMLDOM.GETATTRIBUTENODE(
 elem IN DOMElement,
 name IN VARCHAR2,
 ns IN VARCHAR2)
RETURN DOMATTR;

Parameters

Table 170-44 GETATTRIBUTENODE Function Parameters

	Parameter	Description
	
elem

	
The DOMELEMENT

	
name

	
Attribute name; * matches any attribute

	
ns

	
Namespace

GETATTRIBUTES Function

This function retrieves a NAMEDNODEMAP containing the attributes of this node (if it is an Element) or NULL otherwise.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.GETATTRIBUTES(
 n IN DOMNode)
 RETURN DOMNAMEDNODEMAP;

Parameters

Table 170-45 GETATTRIBUTES Function Parameters

	Parameter	Description
	
n

	
DOMNODE

GETCHARSET Function

This function retrieves the characterset of the DOM document.

	
See Also:

DOMDocument Subprograms

Syntax

DBMS_XMLDOM.GETCHARSET(
 doc IN DOMDocument)
 RETURN VARCHAR2;

Parameters

Table 170-46 GETCHARSET Function Parameters

	Parameter	Description
	
doc

	
DOM document

Usage Notes

For a newly parsed document, we return the database characterset. Once the SETCHARSET Procedure is called with a non-NULL value for charset, that charset is returned.

GETCHILDNODES Function

This function retrieves a DOMNODELIST that contains all children of this node. If there are no children, this is a DOMNODELIST containing no nodes.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.GETCHILDNODES(
 n IN DOMNode)
 RETURN DOMNodeList;

Parameters

Table 170-47 GETCHILDNODES Function Parameters

	Parameter	Description
	
n

	
DOMNODE

GETCHILDRENBYTAGNAME Functions

This function returns the children of the DOMELEMENT.

	
See Also:

DOMElement Subprograms

Syntax

Returns children of the DOMELEMENT given the tag name:

DBMS_XMLDOM.GETCHILDRENBYTAGNAME(
 elem IN DOMElement,
 name IN VARCHAR2)
 RETURN DOMNODELIST;

Returns children of the DOMELEMENT given the tag name and namespace:

DBMS_XMLDOM.GETCHILDRENBYTAGNAME(
 elem IN DOMElement,
 name IN VARCHAR2,
 ns IN VARCHAR2)
RETURN DOMNODELIST;

Parameters

Table 170-48 GETCHILDRENBYTAGNAME Function Parameters

	Parameter	Description
	
elem

	
DOMELEMENT

	
name

	
Tag name

	
ns

	
Namespace

GETDATA Functions

This function is overloaded. The specific forms of functionality are described along with the syntax declarations.

Syntax

Gets the character data of the node that implements this interface (See Also: DOMCharacterData Subprograms):

DBMS_XMLDOM.GETDATA(
 cd IN DOMCHARACTERDATA)
 RETURN VARCHAR2;

Returns the content data of the DOMProcessingInstruction (See Also: DOMProcessingInstruction Subprograms):

DBMS_XMLDOM.GETDATA(
 pi IN DOMPROCESSINGINSTRUCTION)
 RETURN VARCHAR2;

Parameters

Table 170-49 GETDATA Function Parameters

	Parameter	Description
	
cd

	
DOMCHARACTERDATA

	
pi

	
The DOMPROCESSINGINSTRUCTION

GETDOCTYPE Function

This function returns the DTD associated to the DOMDOCUMENT.

	
See Also:

DOMDocument Subprograms

Syntax

DBMS_XMLDOM.GETDOCTYPE(
 doc IN DOMDOCUMENT)
RETURN DOMDOCUMENTTYPE;

Parameters

Table 170-50 GETDOCTYPE Function Parameters

	Parameter	Description
	
doc

	
DOMDOCUMENT

GETDOCUMENTELEMENT Function

This function returns the root element of the DOMDOCUMENT.

	
See Also:

DOMDocument Subprograms

Syntax

DBMS_XMLDOM.GETDOCUMENTELEMENT(
 doc IN DOMDOCUMENT)
 RETURN DOMELEMENT;

Parameters

Table 170-51 GETDOCUMENTELEMENT Function Parameters

	Parameter	Description
	
doc

	
DOMDOCUMENT

GETELEMENTSBYTAGNAME Functions

This function is overloaded. The specific forms of functionality are described along with the syntax declarations.

Syntax

Returns a DOMNODELIST of all the elements with a specified tagname (See Also: DOMDocument Subprograms):

DBMS_XMLDOM.GETELEMENTSBYTAGNAME(
 doc IN DOMDOCUMENT,
 tagname IN VARCHAR2)
 RETURN DOMNODELIST;

Returns the element children of the DOMELEMENT given the tag name (See Also: DOMElement Subprograms):

DBMS_XMLDOM.GETELEMENTSBYTAGNAME(
 elem IN DOMELEMENT,
 name IN VARCHAR2)
 RETURN DOMNODELIST;

Returns the element children of the DOMELEMENT given the tag name and namespace (See Also: DOMElement Subprograms):

DBMS_XMLDOM.GETELEMENTSBYTAGNAME(
 elem IN DOMELEMENT,
 name IN VARCHAR2,
 ns IN VARCHAR2)
 RETURN DOMNODELIST;

Parameters

Table 170-52 GETELEMENTSBYTAGNAME Function Parameters

	Parameter	Description
	
doc

	
DOMDOCUMENT

	
tagname

	
Name of the tag to match on

	
elem

	
The DOMELEMENT

	
name

	
Tag name; using a wildcard(*) would match any tag

	
ns

	
Namespace

GETENTITIES Function

This function retrieves a DOMNAMEDNODEMAP containing the general entities, both external and internal, declared in the DTD.

	
See Also:

DOMDocumentType Subprograms

Syntax

DBMS_XMLDOM.GETENTITIES(
 dt IN DOMDocumentType)
 RETURN DOMNAMEDNODEMAP;

Parameters

Table 170-53 GETENTITIES Function Parameters

	Parameter	Description
	
dt

	
DOMDOCUMENTTYPE

GETEXPANDEDNAME Procedure and Functions

This subprogram is overloaded as a procedure and two functions. The specific forms of functionality are described along with the syntax declarations.

Syntax

Retrieves the expanded name of the Node if is in an Element or Attribute type; otherwise, returns NULL (See Also: DOMNode Subprograms)

DBMS_XMLDOM.GETEXPANDEDNAME(
 n IN DOMNODE
 data OUT VARCHAR);

Returns the expanded name of the DOMAttr (See Also: DOMAttr Subprograms):

DBMS_XMLDOM.GETEXPANDEDNAME(
 a IN DOMAttr)
 RETURN VARCHAR2;

Returns the expanded name of the DOMElement (See Also: DOMElement Subprograms):

DBMS_XMLDOM.GETEXPANDEDNAME(
 elem IN DOMELEMENT)
 RETURN VARCHAR2;

Parameters

Table 170-54 GETEXPANDEDNAME Procedure and Function Parameters

	Parameter	Description
	
n

	
DOMNODE

	
data

	
Returned expanded name of the Node

	
a

	
DOMATTR

	
elem

	
DOMELEMENT

GETFIRSTCHILD Function

This function retrieves the first child of this node. If there is no such node, this returns NULL.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.GETFIRSTCHILD(
 n IN DOMNODE)
 RETURN DOMNODE;

Parameters

Table 170-55 GETFIRSTCHILD Function Parameters

	Parameter	Description
	
n

	
DOMNODE

GETIMPLEMENTATION Function

This function returns the DOMIMPLEMENTATION object that handles this DOMDOCUMENT.

	
See Also:

DOMDocument Subprograms

Syntax

DBMS_XMLDOM.GETIMPLEMENTATION(
 doc IN DOMDOCUMENT)
 RETURN DOMIMPLEMENTATION;

Parameters

Table 170-56 GETIMPLEMENTATION Function Parameters

	Parameter	Description
	
doc

	
DOMDOCUMENT

GETLASTCHILD Function

This function retrieves the last child of this node. If there is no such node, this returns NULL.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.GETLASTCHILD(
 n IN DOMNODE)
 RETURN DOMNODE;

Parameters

Table 170-57 GETLASTCHILD Function Parameters

	Parameter	Description
	
n

	
DOMNODE

GETLENGTH Functions

This function is overloaded. The specific forms of functionality are described along with the syntax declarations.

Syntax

Gets the number of characters in the data. This may have the value zero, because CharacterData nodes may be empty (See Also: DOMCharacterData Subprograms):

DBMS_XMLDOM.GETLENGTH(
 cd IN DOMCHARACTERDATA)
 RETURN NUMBER;

Gets the number of nodes in this map. The range of valid child node indexes is 0 to length-1, inclusive (See Also: DOMNamedNodeMap Subprograms):

DBMS_XMLDOM.GETLENGTH(
 nnm IN DOMNAMEDNODEMAP)
 RETURN NUMBER;

Gets the number of nodes in the list. The range of valid child node indexes is 0 to length-1, inclusive (See Also: DOMNodeList Subprograms):

DBMS_XMLDOM.GETLENGTH(
 nl IN DOMNODELIST)
 RETURN NUMBER;

Parameters

Table 170-58 GETLENGTH Function Parameters

	Parameter	Description
	
cd

	
DOMCHARACTERDATA

	
nnm

	
DOMNAMEDNODEMAP

	
nl

	
DOMNODELIST

GETLOCALNAME Procedure and Functions

This function is overloaded as a procedure and two functions. The specific forms of functionality are described alongside the syntax declarations.

Syntax

Retrieves the local part of the node's qualified name (See Also: DOMNode Subprograms):

DBMS_XMLDOM.GETLOCALNAME(
 n IN DOMNODE,
 data OUT VARCHAR2);

Returns the local name of the DOMAttr (See Also: DOMAttr Subprograms):

DBMS_XMLDOM.GETLOCALNAME(
 a IN DOMATTR)
 RETURN VARCHAR2;

Returns the local name of the DOMElement (See Also: DOMElement Subprograms)

DBMS_XMLDOM.GETLOCALNAME(
 elem IN DOMELEMENT)
 RETURN VARCHAR2;

Parameters

Table 170-59 GETLOCALNAME Procedure and Function Parameters

	Parameter	Description
	
n

	
DOMNode

	
data

	
Returned local name.

	
a

	
DOMAttr.

	
elem

	
DOMElement.

GETNAME Functions

This function is overloaded. The specific forms of functionality are described alongside the syntax declarations.

Syntax

Returns the name of this attribute (See Also: DOMAttr Subprograms):

DBMS_XMLDOM.GETNAME(
 a IN DOMATTR)
 RETURN VARCHAR2;

Retrieves the name of DTD, or the name immediately following the DOCTYPE keyword (See Also: DOMDocumentType Subprograms):

DBMS_XMLDOM.GETNAME(
 dt IN DOMDOCUMENTTYPE)
 RETURN VARCHAR2;

Parameters

Table 170-60 GETNAME Function Parameters

	Parameter	Description
	
a

	
DOMATTR

	
dt

	
DOMDOCUMENTTYPE

GETNAMEDITEM Function

This function retrieves a node specified by name.

	
See Also:

DOMNamedNodeMap Subprograms

Syntax

Retrieves a node specified by name:

DBMS_XMLDOM.GETNAMEDITEM(
 nnm IN DOMNAMEDNODEMAP,
 name IN VARCHAR2)
 RETURN DOMNODE;

Retrieves a node specified by name and namespace URI:

DBMS_XMLDOM.GETNAMEDITEM(
 nnm IN DOMNAMEDNODEMAP,
 name IN VARCHAR2,
 ns IN VARCHAR2)
 RETURN DOMNODE;

Parameters

Table 170-61 GETNAMEDITEM Function Parameters

	Parameter	Description
	
nnm

	
DOMNAMEDNODEMAP

	
name

	
Name of the item to be retrieved

	
ns

	
Namespace

GETNAMESPACE Procedure and Functions

This subprogram is overloaded as a procedure and two functions. The specific forms of functionality are described alongside the syntax declarations.

Syntax

Retrieves the namespace URI associated with the node (See Also: DOMNode Subprograms):

DBMS_XMLDOM.GETNAMESPACE(
 n IN DOMNODE,
 data OUT VARCHAR2);

Retrieves the namespace of the DOMATTR (See Also: DOMAttr Subprograms):

DBMS_XMLDOM.GETNAMESPACE(
 a IN DOMATTR)
 RETURN VARCHAR2;

Retrieves the namespace of the DOMELEMENT (See Also: DOMElement Subprograms):

DBMS_XMLDOM.GETNAMESPACE(
 elem IN DOMELEMENT)
 RETURN VARCHAR2;

Parameters

Table 170-62 GETNAMESPACE Procedure and Function Parameters

	Parameter	Description
	
n

	
DOMNODE

	
data

	
Returned namespace URI

	
a

	
DOMATTR

	
elem

	
DOMELEMENT

GETNEXTSIBLING Function

This function retrieves the node immediately following this node. If there is no such node, this returns NULL.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.GETNEXTSIBLING(
 n IN DOMNODE)
 RETURN DOMNode;

Parameters

Table 170-63 GETNEXTSIBLING Function Parameters

	Parameter	Description
	
n

	
DOMNODE

GETNODETYPE Function

This function retrieves a code representing the type of the underlying object.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.GETNODETYPE(
 n IN DOMNODE)
 RETURN NUMBER;

Parameters

Table 170-64 GETNODETYPE Function Parameters

	Parameter	Description
	
n

	
DOMNODE

GETNODENAME Function

This function gets the name of the node depending on its type.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.GETNODENAME(
 n IN DOMNODE)
 RETURN VARCHAR2;

Parameters

Table 170-65 GETNODENAME Function Parameters

	Parameter	Description
	
n

	
DOMNODE

GETNODEVALUE Function

This function gets the value of this node, depending on its type.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.GETNODEVALUE(
 n IN DOMNODE)
 RETURN VARCHAR2;*

Parameters

Table 170-66 GETNODEVALUE Function Parameters

	Parameter	Description
	
n

	
DOMNODE

GETNODEVALUEASBINARYSTREAM Function & Procedure

The operation of these subprograms is described with each syntax implementation.

	
See Also:

DOMNode Subprograms

Syntax

This function returns an instance of the PL/SQL XMLBinaryInputStream. The node data type must be RAW or BLOB – if not an exception is raised.

DBMS_XMLDOM.GETNODEVALUEASBINARYSTREAM (
 n IN DOMNODE)
 RETURN SYS.UTL_BINARYINPUTSTREAM;

Using this procedure, the application passes an implementation of SYS.UTL_BINARYOUTPUTSTREAM into which XDB writes the contents of the node. The data type of the node must be RAW or CLOB – if not an exception is raised.

DBMS_XMLDOM.GETNODEVALUEASBINARYSTREAM (
 n in DOMNODE,
 value in SYS.UTL_BINARYOUTPUTSTREAM);

Parameters

Table 170-67 GETNODEVALUEASBINARYSTREAM Function & Procedure Parameters

	Parameter	Description
	
n

	
DOMNODE

	
value

	
BINARYOUTPUTSTREAM

GETNODEVALUEASCHARACTERSTREAM Function & Procedure

The operation of these subprograms is described with each syntax implementation.

	
See Also:

DOMNode Subprograms

Syntax

This function returns an instance of the PL/SQL XMLCharacterInputStream. If the node data is character it is converted to the current session character set. If the node data is not character data, it is first converted to character data.

DBMS_XMLDOM.GETNODEVALUEASCHARACTERSTREAM (
 n IN DOMNODE)
 RETURN SYS.UTL_CHARACTERINPUTSTREAM;

Using this procedure, the node data is converted, as necessary, to the session character set and then "pushed" into the SYS.UTL_CHARACTEROUTPUTSTREAM.

DBMS_XMLDOM.GETNODEVALUEASCHARACTERSTREAM (
 n IN DOMNODE,
 value IN SYS.UTL_CHARACTEROUTPUTSTREAM);

Parameters

Table 170-68 GETNODEVALUEASCHARACTERSTREAM Function & Procedure Parameters

	Parameter	Description
	
n

	
DOMNODE

	
value

	
CHARACTEROUTPUTSTREAM

GETNOTATIONNAME Function

This function returns the notation name of the DOMENTITY.

	
See Also:

DOMEntity Subprograms

Syntax

DBMS_XMLDOM.GETNOTATIONNAME(
 ent IN DOMENTITY)
 RETURN VARCHAR2;

Parameters

Table 170-69 GETNOTATIONNAME Function Parameters

	Parameter	Description
	
ent

	
DOMENTITY

GETNOTATIONS Function

This function retrieves a DOMNAMEDNODEMAP containing the notations declared in the DTD.

	
See Also:

DOMDocumentType Subprograms

Syntax

DBMS_XMLDOM.GETNOTATIONS(
 dt IN DOMDOCUMENTTYPE)
 RETURN DOMNAMEDNODEMAP;

Parameters

Table 170-70 GETNOTATIONS Function Parameters

	Parameter	Description
	
dt

	
DOMDOCUMENTTYPE

GETTARGET Function

This function returns the target of the DOMPROCESSINGINSTRUCTION.

	
See Also:

DOMProcessingInstruction Subprograms

Syntax

DBMS_XMLDOM.GETTARGET(
 pi IN DOMPROCESSINGINSTRUCTION)
 RETURN VARCHAR2;

Parameters

Table 170-71 GETTARGET Function Parameters

	Parameter	Description
	
pi

	
DOMPROCESSINGINSTRUCTION

GETOWNERDOCUMENT Function

This function retrieves the Document object associated with this node. This is also the Document object used to create new nodes. When this node is a Document or a Document Type that is not used with any Document yet, this is NULL.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.GETOWNERDOCUMENT(
 n IN DOMNODE)
 RETURN DOMDOCUMENT;

Parameters

Table 170-72 GETOWNERDOCUMENT Function Parameters

	Parameter	Description
	
n

	
DOMNODE

GETOWNERELEMENT Function

This function retrieves the Element node to which the specified Attribute is attached.

	
See Also:

DOMAttr Subprograms

Syntax

DBMS_XMLDOM.GETOWNERELEMENT(
 a IN DOMATTR)
 RETURN DOMElement;

Parameters

Table 170-73 GETOWNERELEMENT Function Parameters

	Parameter	Description
	
a

	
Attribute

GETPARENTNODE Function

This function retrieves the parent of this node. All nodes, except Attr, Document, DocumentFragment, Entity, and Notation may have a parent. However, if a node has just been created and not yet added to the tree, or if it has been removed from the tree, this is NULL.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.GETPARENTNODE(
 n IN DOMNODE)
 RETURN DOMNODE;

Parameters

Table 170-74 GETPARENTNODE Function Parameters

	Parameter	Description
	
n

	
DOMNODE

GETPREFIX Function

This function retrieves the namespace prefix of the node.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.GETPREFIX(
 n IN DOMNODE)
 RETURN VARCHAR2;

Parameters

Table 170-75 GETPREFIX Function Parameters

	Parameter	Description
	
n

	
DOMNODE

GETPREVIOUSSIBLING Function

This function retrieves the node immediately preceding this node. If there is no such node, this returns NULL.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.GETPREVIOUSSIBLING(
 n IN DOMNODE)
 RETURN DOMNODE;

Parameters

Table 170-76 GETPREVIOUSSIBLING Function Parameters

	Parameter	Description
	
n

	
DOMNODE

GETPUBLICID Functions

This function is overloaded. The specific forms of functionality are described along with the syntax declarations.

Syntax

Returns the public identifier of the specified DTD (See Also: DOMDocumentType Subprograms):

DBMS_XMLDOM.GETPUBLICID(
 dt IN DOMDOCUMENTTYPE)
 RETURN VARCHAR2;

Returns the public identifier of the DOMENTITY (See Also: DOMEntity Subprograms):

DBMS_XMLDOM.GETPUBLICID(
 ent IN DOMENTITY)
 RETURN VARCHAR2;

Returns the public identifier of the DOMNOTATION (See Also: DOMNotation Subprograms):

DBMS_XMLDOM.GETPUBLICID(
 n IN DOMNOTATION)
 RETURN VARCHAR2;

Parameters

Table 170-77 GETPUBLICID Function Parameters

	Parameter	Description
	
dt

	
The DTD

	
ent

	
DOMENTITY

	
n

	
DOMNOTATION

GETQUALIFIEDNAME Functions

This function is overloaded. The specific forms of functionality are described along with the syntax declarations.

Syntax

Returns the qualified name of the DOMATTR (See Also: DOMAttr Subprograms):

DBMS_XMLDOM.GETQUALIFIEDNAME(
 a IN DOMATTR)
 RETURN VARCHAR2;

Returns the qualified name of the DOMElement (See Also: DOMElement Subprograms):

DBMS_XMLDOM.GETQUALIFIEDNAME(
 elem IN DOMELEMENT)
 RETURN VARCHAR2;

Parameters

Table 170-78 GETQUALIFIEDNAME Functions Parameters

	Parameter	Description
	
a

	
DOMATTR

	
elem

	
DOMELEMENT

GETSCHEMANODE Function

This function retrieves the schema URI associated with the node.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.GETSCHEMANODE(
 n IN DOMNODE)
 RETURN DOMNODE;

Parameters

Table 170-79 GETSCHEMANODE Function Parameters

	Parameter	Description
	
n

	
DOMNODE

GETSPECIFIED Function

If this attribute was explicitly specified, a value in the original document, this is true; otherwise, it is false.

	
See Also:

DOMAttr Subprograms

Syntax

DBMS_XMLDOM.GETSPECIFIED(
 a IN DOMATTR)
 RETURN BOOLEAN;

Parameters

Table 170-80 GETSPECIFIED Function Parameters

	Parameter	Description
	
a

	
DOMATTR

GETSTANDALONE Function

This function returns the standalone property associated with the DOMDOCUMENT.

	
See Also:

DOMDocument Subprograms

Syntax

DBMS_XMLDOM.GETSTANDALONE(
 doc IN DOMDOCUMENT)
 RETURN VARCHAR2;

Parameters

Table 170-81 GETSTANDALONE Function Parameters

	Parameter	Description
	
doc

	
DOMDOCUMENT.

GETSYSTEMID Functions

This function is overloaded. The specific forms of functionality are described along with the syntax declarations.

Syntax

Returns the system id of the specified DTD (See Also: DOMDocumentType Subprograms):

DBMS_XMLDOM.GETSYSTEMID(
 dt IN DOMDOCUMENTTYPE)
 RETURN VARCHAR2;

Returns the system identifier of the DOMENTITY (See Also: DOMEntity Subprograms):

DBMS_XMLDOM.GETSYSTEMID(
 ent IN DOMENTITY)
 RETURN VARCHAR2;

Returns the system identifier of the DOMNOTATION (See Also: DOMNotation Subprograms):

DBMS_XMLDOM.GETSYSTEMID(
 n IN DOMNOTATION)
 RETURN VARCHAR2;

Parameters

Table 170-82 GETSYSTEMID Function Parameters

	Parameter	Description
	
dt

	
The DTD.

	
ent

	
DOMEntity.

	
n

	
DOMNotation.

GETTAGNAME Function

This function returns the name of the DOMELEMENT.

	
See Also:

DOMElement Subprograms

Syntax

DBMS_XMLDOM.GETTAGNAME(
 elem IN DOMELEMENT)
 RETURN VARCHAR2;

Parameters

Table 170-83 GETTAGNAME Function Parameters

	Parameter	Description
	
elem

	
The DOMELEMENT

GETVALUE Function

This function retrieves the value of the attribute.

	
See Also:

DOMAttr Subprograms

Syntax

DBMS_XMLDOM.GETVALUE(
 a IN DOMATTR)
 RETURN VARCHAR2;

Parameters

Table 170-84 GETVALUE Function Parameters

	Parameter	Description
	
a

	
DOMATTR

GETVERSION Function

This function returns the version of the DOMDOCUMENT.

	
See Also:

DOMDocument Subprograms

Syntax

DBMS_XMLDOM.GETVERSION(
 doc IN DOMDOCUMENT)
 RETURN VARCHAR2;

Parameters

Table 170-85 GETVERSION Function Parameters

	Parameter	Description
	
doc

	
DOMDOCUMENT

GETXMLTYPE Function

This function returns the XMLType associated with the DOMDOCUMENT.

	
See Also:

DOMDocument Subprograms

Syntax

DBMS_XMLDOM.GETXMLTYPE(
 doc IN DOMDOCUMENT)
 RETURN SYS.XMLTYPE;

Parameters

Table 170-86 GETXMLTYPE Function Parameters

	Parameter	Description
	
doc

	
DOMDOCUMENT

HASATTRIBUTE Functions

Verifies whether an attribute has been defined for DOMELEMENT, or has a default value.

	
See Also:

DOMElement Subprograms

Syntax

Verifies whether an attribute with the specified name has been defined for DOMElement:

DBMS_XMLDOM.HASATTRIBUTE(
 elem IN DOMELEMENT,
 name IN VARCHAR2)
 RETURN VARCHAR2;

Verifies whether an attribute with specified name and namespace URI has been defined for DOMELEMENT; namespace enabled:

DBMS_XMLDOM.HASATTRIBUTE(
 elem IN DOMELEMENT,
 name IN VARCHAR2,
 ns IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Table 170-87 HASATTRIBUTE Function Parameters

	Parameter	Description
	
elem

	
The DOMELEMENT

	
name

	
Attribute name; * matches any attribute

	
ns

	
Namespace

HASATTRIBUTES Function

This function returns whether this node has any attributes.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.HASATTRIBUTES(
 n IN DOMNODE)
 RETURN BOOLEAN;

Parameters

Table 170-88 HASATTRIBUTES Function Parameters

	Parameter	Description
	
n

	
DOMNODE

HASCHILDNODES Function

This function determines whether this node has any children.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.HASCHILDNODES(
 n IN DOMNODE)
 RETURN BOOLEAN;

Parameters

Table 170-89 HASCHILDNODES Function Parameters

	Parameter	Description
	
n

	
DOMNODE

HASFEATURE Function

This function tests if the DOMIMPLEMENTATION implements a specific feature.

	
See Also:

DOMImplementation Subprograms

Syntax

DBMS_XMLDOM.HASFEATURE(
 di IN DOMIMPLEMENTATION,
 feature IN VARCHAR2,
 version IN VARCHAR2)
 RETURN BOOLEAN;

Parameters

Table 170-90 HASFEATURE Function Parameters

	Parameter	Description
	
di

	
DOMIMPLEMENTATION

	
feature

	
The feature to check for

	
version

	
The version of the DOM to check in

IMPORTNODE Function

This function imports a node from an external document and returns this new node.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.IMPORTNODE(
 doc IN DOMDOCUMENT,
 importedNode IN DOMNODE,
 deep IN BOOLEAN)
 RETURN DOMNODE;

Parameters

Table 170-91 IMPORTNODE Function Parameters

	Parameter	Description
	
doc

	
Document from which the node is imported

	
importedNode

	
Node to import

	
deep

	
Setting for recursive import.

	
If this value is TRUE, the entire subtree of the node will be imported with the node.

	
If this value is FALSE, only the node itself will be imported.

Usage Notes

Note that the ADOPTNODE Function removes the node from the source document while the IMPORTNODE Function clones the node in the source document.

INSERTBEFORE Function

This function inserts the node newchild before the existing child node refchild. If refchild is NULL, insert newchild at the end of the list of children.

If newchild is a DOCUMENTFRAGMENT object, all of its children are inserted, in the same order, before refchild. If the newchild is already in the tree, it is first removed.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.INSERTBEFORE(
 n IN DOMNODE,
 newchild IN DOMNODE,
 refchild IN DOMNODE)
 RETURN DOMNode;

Parameters

Table 170-92 INSERTBEFORE Function Parameters

	Parameter	Description
	
n

	
DOMNODE

	
newChild

	
The child to be inserted in the DOMNODE

	
refChild

	
The reference node before which the newchild is to be inserted

INSERTDATA Procedure

This procedure inserts a string at the specified character offset.

	
See Also:

DOMCharacterData Subprograms

Syntax

DBMS_XMLDOM.INSERTDATA(
 cd IN DOMCHARACTERDATA,
 offset IN NUMBER,
 arg IN VARCHAR2);

Parameters

Table 170-93 INSERTDATA Procedure Parameters

	Parameter	Description
	
cd

	
DOMCHARACTERDATA

	
offset

	
The offset at which to insert the data

	
arg

	
The value to be inserted

ISNULL Functions

This function is overloaded. The specific forms of functionality are described along with the syntax declarations.

Syntax

Checks if the specified DOMNODE is NULL. Returns TRUE if it is NULL, FALSE otherwise (See Also: DOMNode Subprograms):

DBMS_XMLDOM.ISNULL(
 n IN DOMNODE)
 RETURN BOOLEAN;

Checks that the specified DOMATTR is NULL; returns TRUE if it is NULL, FALSE otherwise (See Also: DOMAttr Subprograms):

DBMS_XMLDOM.ISNULL(
 a IN DOMATTR)
 RETURN BOOLEAN;

Checks that the specified DOMCDATASECTION is NULL; returns TRUE if it is NULL, FALSE otherwise (See Also: DOMCDataSection Subprograms):

DBMS_XMLDOM.ISNULL(
 cds IN DOMCDATASECTION)
 RETURN BOOLEAN;

Checks that the specified DOMCHARACTERDATA is NULL; returns TRUE if it is NULL, FALSE otherwise (See Also: DOMCharacterData Subprograms):

DBMS_XMLDOM.ISNULL(
 cd IN DOMCHARACTERDATA)
 RETURN BOOLEAN;

Checks that the specified DOMCOMMENT is NULL; returns TRUE if it is NULL, FALSE otherwise (See Also: DOMComment Subprograms):

DBMS_XMLDOM.ISNULL(
 com IN DOMCOMMENT)
 RETURN BOOLEAN;

Checks that the specified DOMDOCUMENT is NULL; returns TRUE if it is NULL, FALSE otherwise (See Also: DOMDocument Subprograms):

DBMS_XMLDOM.ISNULL(
 doc IN DOMDOCUMENT)
 RETURN BOOLEAN;

Checks that the specified DOMDOCUMENTFRAGMENT is NULL; returns TRUE if it is NULL, FALSE otherwise (See Also: DOMDocumentFragment Subprograms):

DBMS_XMLDOM.ISNULL(
 df IN DOMDOCUMENTFRAGMENT)
 RETURN BOOLEAN;

Checks that the specified DOMDOCUMENTTYPE is NULL; returns TRUE if it is NULL, FALSE otherwise (See Also: DOMDocumentType Subprograms):

DBMS_XMLDOM.ISNULL(
 dt IN DOMDOCUMENTTYPE)
 RETURN BOOLEAN;

Checks that the specified DOMELEMENT is NULL; returns TRUE if it is NULL, FALSE otherwise (See Also: DOMElement Subprograms):

DBMS_XMLDOM.ISNULL(
 elem IN DOMELEMENT)
 RETURN BOOLEAN;

Checks that the specified DOMENTITY is NULL; returns TRUE if it is NULL, FALSE otherwise (See Also: DOMEntity Subprograms):

DBMS_XMLDOM.ISNULL(
 ent IN DOMENTITY)
 RETURN BOOLEAN;

Checks that the specified DOMENTITYREFERENCE is NULL; returns TRUE if it is NULL, FALSE otherwise (See Also: DOMEntityReference Subprograms):

DBMS_XMLDOM.ISNULL(
 EREF IN DOMENTITYREFERENCE)
 RETURN BOOLEAN;

Checks that the specified DOMIMPLEMENTATION is NULL; returns TRUE if it is NULL (See Also: DOMImplementation Subprograms):

DBMS_XMLDOM.ISNULL(
 di IN DOMIMPLEMENTATION)
 RETURN BOOLEAN;

Checks that the specified DOMNAMEDNODEMAP is NULL; returns TRUE if it is NULL, FALSE otherwise (See Also: DOMNamedNodeMap Subprograms):

DBMS_XMLDOM.ISNULL(
 nnm IN DOMNAMEDNODEMAP)
 RETURN BOOLEAN;

Checks that the specified DOMNODELIST is NULL; returns TRUE if it is NULL, FALSE otherwise (See Also: DOMNodeList Subprograms):

DBMS_XMLDOM.ISNULL(
 nl IN DOMNODELIST)
 RETURN BOOLEAN;

Checks that the specified DOMNOTATION is NULL; returns TRUE if it is NULL, FALSE otherwise (See Also: DOMNotation Subprograms):

DBMS_XMLDOM.ISNULL(
 n IN DOMNOTATION)
 RETURN BOOLEAN;

Checks that the specified DOMPROCESSINGINSTRUCTION is NULL; returns TRUE if it is NULL, FALSE otherwise (See Also: DOMProcessingInstruction Subprograms):

DBMS_XMLDOM.ISNULL(
 pi IN DOMPROCESSINGINSTRUCTION)
 RETURN BOOLEAN;

Checks that the specified DOMTEXT is NULL; returns TRUE if it is NULL, FALSE otherwise (See Also: DOMText Subprograms):

DBMS_XMLDOM.ISNULL(
 t IN DOMTEXT)
 RETURN BOOLEAN;

Parameters

Table 170-94 ISNULL Function Parameters

	Parameter	Description
	
n

	
DOMNODE to check

	
a

	
DOMATTR to check

	
cds

	
DOMCDATASECTION to check

	
cd

	
DOMCHARACTERDATA to check

	
com

	
DOMCOMMENT to check

	
doc

	
DOMDOCUMENT to check

	
dF

	
DOMDOCUMENTFRAGMENT to check

	
dt

	
DOMDOCUMENTTYPE to check

	
elem

	
DOMELEMENT to check

	
ent

	
DOMENTITY to check

	
eref

	
DOMENTITYREFERENCE to check

	
di

	
DOMIMPLEMENTATION to check

	
nnm

	
DOMNAMENODEMAP to check

	
nl

	
DOMNODELIST to check

	
n

	
DOMNOTATION to check

	
pi

	
DOMPROCESSINGINSTRUCTION to check

	
t

	
DOMTEXT to check

ITEM Functions

This function is overloaded. The specific forms of functionality are described along with the syntax declarations.

Syntax

Returns the item in the map which corresponds to the INDEX parameter. If INDEX is greater than or equal to the number of nodes in this map, this returns NULL (See Also: DOMNamedNodeMap Subprograms):

DBMS_XMLDOM.ITEM(
 nnm IN DOMNAMEDNODEMAP,
 index IN NUMBER)
 RETURN DOMNODE;

Returns the item in the collection which corresponds to the INDEX parameter. If index is greater than or equal to the number of nodes in the list, this returns NULL (See Also: DOMNodeList Subprograms):

DBMS_XMLDOM.ITEM(
 nl IN DOMNODELIST,
 index IN NUMBER)
 RETURN DOMNODE;

Parameters

Table 170-95 ITEM Function Parameters

	Parameter	Description
	
nnm

	
DOMNAMEDNODEMAP

	
index

	
The index in the node map at which the item is to be retrieved

	
nl

	
DOMNODELIST

	
index

	
The index in the NodeList used to retrieve the item

MAKEATTR Function

This function casts a specified DOMNODE to a DOMATTR, and returns the DOMATTR.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.MAKEATTR(
 n IN DOMNODE)
 RETURN DOMATTR;

Parameters

Table 170-96 MAKEATTR Function Parameters

	Parameter	Description
	
n

	
DOMNODE to cast

MAKECDATASECTION Function

This function casts a specified DOMNODE to a DOMCDATASECTION.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.MAKECDATASECTION(
 n IN DOMNODE)
 RETURN DOMCDATASECTION;

Parameters

Table 170-97 MAKECDATASECTION Function Parameters

	Parameter	Description
	
n

	
DOMNODE to cast

MAKECHARACTERDATA Function

This function casts a specified DOMNODE to a DOMCHARACTERDATA, and returns the DOMCHARACTERDATA.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.MAKECHARACTERDATA(
 n IN DOMNode)
 RETURN DOMCharacterData;

Parameters

Table 170-98 MAKECHARACTERDATA Function Parameters

	Parameter	Description
	
n

	
DOMNODE to cast

MAKECOMMENT Function

This function casts a specified DOMNODE to a DOMCOMMENT, and returns the DOMCOMMENT.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.MAKECOMMENT(
 n IN DOMNODE)
 RETURN DOMCOMMENT;

Parameters

Table 170-99 MAKECOMMENT Function Parameters

	Parameter	Description
	
n

	
DOMNODE to cast

MAKEDOCUMENT Function

This function casts a specified DOMNODE to a DOMDOCUMENT, and returns the DOMDOCUMENT.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.MAKEDOCUMENT(
 n IN DOMNODE)
 RETURN DOMDocument;

Parameters

Table 170-100 MAKEDOCUMENT Function Parameters

	Parameter	Description
	
n

	
DOMNODE to cast

MAKEDOCUMENTFRAGMENT Function

This function casts a specified DOMNODE to a DOMDOCUMENTFRAGMENT, and returns the DOMDOCUMENTFRAGMENT.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.MAKEDOCUMENTFRAGMENT(
 n IN DOMNODE)
 RETURN DOMDOCUMENTFRAGMENT;

Parameters

Table 170-101 MAKEDOCUMENTFRAGMENT Function Parameters

	Parameter	Description
	
n

	
DOMNODE to cast

MAKEDOCUMENTTYPE Function

This function casts a specified DOMNODE to a DOMDOCUMENTTYPE and returns the DOMDOCUMENTTYPE.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.MAKEDOCUMENTTYPE(
 n IN DOMNODE)
 RETURN DOMDOCUMENTTYPE;

Parameters

Table 170-102 MAKEDOCUMENTTYPE Function Parameters

	Parameter	Description
	
n

	
DOMNODE to cast.

MAKEELEMENT Function

This function casts a specified DOMNODE to a DOMELEMENT, and returns the DOMELEMENT.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.MAKEELEMENT(
 n IN DOMNODE)
 RETURN DOMELEMENT;

Parameters

Table 170-103 MAKEELEMENT Function Parameters

	Parameter	Description
	
n

	
DOMNODE to cast

MAKEENTITY Function

This function casts a specified DOMNODE to a DOMENTITY, and returns the DOMENTITY.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.MAKEENTITY(
 n IN DOMNODE)
 RETURN DOMENTITY;

Parameters

Table 170-104 MAKEENTITY Function Parameters

	Parameter	Description
	
n

	
DOMNODE to cast

MAKEENTITYREFERENCE Function

This function casts a specified DOMNODE to a DOMENTITYREFERENCE, and returns the DOMENTITYREFERENCE.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.MAKEENTITYREFERENCE(
 n IN DOMNODE)
 RETURN DOMENTITYREFERENCE;

Parameters

Table 170-105 MAKEENTITYREFERENCE Function Parameters

	Parameter	Description
	
n

	
DOMNODE to cast

MAKENODE Functions

This function is overloaded. The specific forms of functionality are described along with the syntax declarations.

Syntax

Casts specified DOMATTR to a DOMNODE, and returns the DOMNODE (See Also: DOMAttr Subprograms):

DBMS_XMLDOM.MAKENODE(
 a IN DOMATTR)
 RETURN DOMNODE;

Casts the DOMCDATASECTION to a DOMNODE, and returns that DOMNODE (See Also: DOMCDataSection Subprograms):

DBMS_XMLDOM.MAKENODE(
 cds IN DOMCDATASECTION)
 RETURN DOMNODE;

Casts the specified DOMCHARACTERDATA as a DOMNODE, and returns that DOMNODE (See Also: DOMCharacterData Subprograms):

DBMS_XMLDOM.MAKENODE(
 cd IN DOMCHARACTERDATA)
 RETURN DOMNODE;

Casts the specified DOMCOMMENT to a DOMNODE, and returns that DOMNODE (See Also: DOMComment Subprograms):

DBMS_XMLDOM.MAKENODE(
 com IN DOMCOMMENT)
 RETURN DOMNODE;

Casts the DOMDOCUMENT to a DOMNODE, and returns that DOMNODE (See Also: DOMDocument Subprograms):

DBMS_XMLDOM.MAKENODE(
 doc IN DOMDOCUMENT)
 RETURN DOMNODE;

Casts the specified DOMDOCUMENTFRAGMENT to a DOMNODE, and returns that DOMNODE (See Also: DOMDocumentFragment Subprograms):

DBMS_XMLDOM.MAKENODE(
 df IN DOMDOCUMENTFRAGMENT)
 RETURN DOMNode;

Casts the specified DOMDOCUMENTTYPE to a DOMNODE, and returns that DOMNODE (See Also: DOMDocumentType Subprograms):

DBMS_XMLDOM.MAKENODE(
 dt IN DOMDOCUMENTTYPE)
 RETURN DOMNODE;

Casts the specified DOMELEMENT to a DOMNODE, and returns that DOMNODE (See Also: DOMElement Subprograms):

DBMS_XMLDOM.MAKENODE(
 elem IN DOMELEMENT)
 RETURN DOMNODE;

Casts specified DOMENTITY to a DOMNODE, and returns that DOMNODE (See Also: DOMEntity Subprograms):

DBMS_XMLDOM.MAKENODE(
 ent IN DOMENTITY)
 RETURN DOMNODE;

Casts the DOMENTITYREFERENCE to a DOMNODE, and returns that DOMNODE (See Also: DOMEntityReference Subprograms):

DBMS_XMLDOM.MAKENODE(
 eref IN DOMENTITYREFERENCE)
 RETURN DOMNODE;

Casts the DOMNOTATION to a DOMNODE, and returns that DOMNODE (See Also: DOMNotation Subprograms):

DBMS_XMLDOM.MAKENODE(
 n IN DOMNOTATION)
 RETURN DOMNODE;

Casts the DOMPROCESSINGINSTRUCTION to a DOMNODE, and returns the DOMNODE (See Also: DOMProcessingInstruction Subprograms):

DBMS_XMLDOM.MAKENODE(
 pi IN DOMPROCESSINGINSTRUCTION)
 RETURN DOMNODE;

Casts the DOMTEXT to a DOMNODE, and returns that DOMNODE (See Also: DOMText Subprograms):

DBMS_XMLDOM.MAKENODE(
 t IN DOMTEXT)
 RETURN DOMNODE;

Parameters

Table 170-106 MAKENODE Function Parameters

	Parameter	Description
	
a

	
DOMATTR to cast

	
cds

	
DOMCDATASECTION to cast

	
cd

	
DOMCHARACTERDATA to cast

	
com

	
DOMCOMMENT to cast

	
doc

	
DOMDOCUMENT to cast

	
df

	
DOMDOCUMENTFRAGMENT to cast

	
dt

	
DOMDOCUMENTTYPE to cast

	
elem

	
DOMELEMENT to cast

	
ent

	
DOMENTITY to cast

	
eref

	
DOMENTITYREFERENCE to cast

	
n

	
DOMNOTATION to cast

	
pi

	
DOMPROCESSINGINSTRUCTION to cast

	
t

	
DOMTEXT to cast

MAKENOTATION Function

This function casts a specified DOMNODE to a DOMNOTATION, and returns the DOMNOTATION.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.MAKENOTATION(
 n IN DOMNODE)
 RETURN DOMNOTATION;

Parameters

Table 170-107 MAKENOTATION Function Parameters

	Parameter	Description
	
n

	
DOMNODE to cast

MAKEPROCESSINGINSTRUCTION Function

This function casts a specified DOMNODE to a DOMPROCESSINGINSTRUCTION, and returns the Domprocessinginstruction.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.MAKEPROCESSINGINSTRUCTION(
 n IN DOMNODE)
 RETURN DOMPROCESSINGINSTRUCTION;

Parameters

Table 170-108 MAKEPROCESSINGINSTRUCTION Function Parameters

	Parameter	Description
	
n

	
DOMNODE to cast

MAKETEXT Function

This function casts a specified DOMNODE to a DOMTEXT, and returns the DOMTEXT.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.MAKETEXT(
 n IN DOMNODE)
 RETURN DOMTEXT;

Parameters

Table 170-109 MAKETEXT Function Parameters

	Parameter	Description
	
n

	
DOMNODE to cast

NEWDOMDOCUMENT Functions

This function returns a new DOMDOCUMENT instance.

	
See Also:

DOMDocument Subprograms

Syntax

Returns a new DOMDOCUMENT instance:

DBMS_XMLDOM.NEWDOMDOCUMENT
 RETURN DOMDOCUMENT;

Returns a new DOMDOCUMENT instance created from the specified XMLType object:

DBMS_XMLDOM.NEWDOMDOCUMENT(
 xmldoc IN SYS.XMLTYPE)
 RETURN DOMDOCUMENT;

Returns a new DOMDOCUMENT instance created from the specified CLOB:

DBMS_XMLDOM.NEWDOMDOCUMENT(
 cl IN CLOB)
 RETURN DOMDOCUMENT;

Parameters

Table 170-110 NEWDOMDOCUMENT Function Parameters

	Parameter	Description
	
xmldoc

	
XMLType source for the DOMDOCUMENT

	
cl

	
CLOB source for the DOMDOCUMENT

NORMALIZE Procedure

This procedure normalizes the text children of the DOMELEMENT.

	
See Also:

DOMElement Subprograms

Syntax

DBMS_XMLDOM.NORMALIZE(
 elem IN DOMELEMENT);

Parameters

Table 170-111 NORMALIZE Procedure Parameters

	Parameter	Description
	
elem

	
The DOMELEMENT

REMOVEATTRIBUTE Procedures

This procedure removes an attribute from the DOMELEMENT by name.

	
See Also:

DOMElement Subprograms

Syntax

Removes the value of a DOMELEMENT's attribute by name:

DBMS_XMLDOM.REMOVEATTRIBUTE(
 elem IN DOMELEMENT,
 name IN VARCHAR2);

Removes the value of a DOMELEMENT's attribute by name and namespace URI.

DBMS_XMLDOM.REMOVEATTRIBUTE(
 elem IN DOMELEMENT,
 name IN VARCHAR2,
 ns IN VARCHAR2);

Parameters

Table 170-112 REMOVEATTRIBUTE Procedure Parameters

	Parameter	Description
	
elem

	
The DOMELEMENT

	
name

	
Attribute name

	
ns

	
Namespace

REMOVEATTRIBUTENODE Function

This function removes the specified attribute node from the DOMELEMENT. The method returns the removed node.

	
See Also:

DOMElement Subprograms

Syntax

DBMS_XMLDOM.REMOVEATTRIBUTENODE(
 elem IN DOMELEMENT,
 oldAttr IN DOMATTR)
 RETURN DOMAttr;

Parameters

Table 170-113 REMOVEATTRIBUTENODE Function Parameters

	Parameter	Description
	
elem

	
The DOMELEMENT.

	
oldAttr

	
The old DOMATTR.

REMOVECHILD Function

This function removes the child node indicated by oldchild from the list of children, and returns it.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.REMOVECHILD(
 n IN DOMNode,
 oldchild IN DOMNode)
 RETURN DOMNODE;

Parameters

Table 170-114 REMOVECHILD Function Parameters

	Parameter	Description
	
n

	
DOMNODE

	
oldCHild

	
The child of the node n to be removed

REMOVENAMEDITEM Function

This function removes from the map a node specified by name, and returns this node. When this map contains the attributes attached to an element, if the removed attribute is known to have a default value, an attribute immediately appears containing the default value as well as the corresponding namespace URI, local name, and prefix when applicable.

	
See Also:

DOMNamedNodeMap Subprograms

Syntax

Removes a node specified by name:

DBMS_XMLDOM.REMOVENAMEDITEM(
 nnm IN DOMNamedNodeMap,
 name IN VARCHAR2)
 RETURN DOMNode;

Removes a node specified by name and namespace URI:

DBMS_XMLDOM.REMOVENAMEDITEM(
 nnm IN DOMNamedNodeMap,
 name IN VARCHAR2,
 ns IN VARCHAR2)
 RETURN DOMNode;

Parameters

Table 170-115 REMOVENAMEDITEM Function Parameters

	Parameter	Description
	
nnm

	
DOMNamedNodeMap

	
name

	
The name of the item to be removed from the map

	
ns

	
Namespace

REPLACECHILD Function

This function replaces the child node oldchild with newchild in the list of children, and returns the oldchild node. If newchild is a DocumentFragment object, oldchild is replaced by all of the DocumentFragment children, which are inserted in the same order. If the newchild is already in the tree, it is first removed.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.REPLACECHILD(
 n IN DOMNode,
 newchild IN DOMNode,
 oldchild IN DOMNode)
 RETURN DOMNode;

Parameters

Table 170-116 REPLACECHILD Function Parameters

	Parameter	Description
	
n

	
DOMNode

	
newchild

	
The new child which is to replace the old child

	
oldchild

	
The child of the node n which is to be replaced

REPLACEDATA Procedure

This procedure changes a range of characters in the node. Upon success, data and length reflect the change.

	
See Also:

DOMCharacterData Subprograms

Syntax

DBMS_XMLDOM.REPLACEDATA(
 cd IN DOMCHARACTERDATA,
 offset IN NUMBER,
 cnt IN NUMBER,
 arg IN VARCHAR2);

Parameters

Table 170-117 REPLACEDATA Procedure Parameters

	Parameter	Description
	
cd

	
DOMCHARACTERDATA

	
offset

	
The offset at which to replace

	
cnt

	
The number of characters to replace

	
arg

	
The value to replace with

RESOLVENAMESPACEPREFIX Function

This function resolves the specified namespace prefix, and returns the resolved namespace.

	
See Also:

DOMElement Subprograms

Syntax

DBMS_XMLDOM.RESOLVENAMESPACEPREFIX(
 elem IN DOMELEMENT,
 prefix IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Table 170-118 RESOLVENAMESPACEPREFIX Function Parameters

	Parameter	Description
	
elem

	
The DOMELEMENT

	
prefix

	
Namespace prefix

SETATTRIBUTE Procedures

Sets the value of a DOMELEMENT's attribute by name.

	
See Also:

DOMElement Subprograms

Syntax

Sets the value of a DOMELEMENT's attribute by name:

DBMS_XMLDOM.SETATTRIBUTE(
 elem IN DOMELEMENT,
 name IN VARCHAR2,
 newvalue IN VARCHAR2);

Sets the value of a DOMElement's attribute by name and namespace URI:

DBMS_XMLDOM.SETATTRIBUTE(
 elem IN DOMELEMENT,
 name IN VARCHAR2,
 newvalue IN VARCHAR2,
 ns IN VARCHAR2);

Parameters

Table 170-119 SETATTRIBUTE Procedure Parameters

	Parameter	Description
	
elem

	
The DOMELEMENT

	
name

	
Attribute name

	
newvalue

	
Attribute value

	
ns

	
Namespace

SETATTRIBUTENODE Functions

Adds a new attribute node to the DOMELEMENT.

	
See Also:

DOMElement Subprograms

Syntax

Adds a new attribute node to the DOMELEMENT:

DBMS_XMLDOM.SETATTRIBUTENODE(
 elem IN DOMELEMENT,
 newAttr IN DOMATTR)
 RETURN DOMATTR;

Adds a new attribute node to the DOMElement; namespace enabled:

DBMS_XMLDOM.SETATTRIBUTENODE(
 elem IN DOMELEMENT,
 newAttr IN DOMATTR,
 ns IN VARCHAR2)
 RETURN DOMATTR;

Parameters

Table 170-120 SETATTRIBUTENODE Function Parameters

	Parameter	Description
	
elem

	
The DOMELEMENT

	
newAttr

	
The new DOMATTR

	
ns

	
The namespace

SETCHARSET Procedure

This function sets the characterset of the DOM document.

	
See Also:

DOMDocument Subprograms

Syntax

DBMS_XMLDOM.SETCHARSET(
 doc IN DOMDocument,
 charset IN VARCHAR2);

Parameters

Table 170-121 SETCHARSET Procedure Parameters

	Parameter	Description
	
doc

	
DOM document

	
charset

	
Characterset

Usage Notes

This is used for WRITETOFILE Procedures if not explicitly specified at that time.

SETDATA Procedures

This procedure is overloaded. The specific forms of functionality are described along with the syntax declarations.

Syntax

Sets the character data of the node that implements this interface (See Also: DOMCharacterData Subprograms):

DBMS_XMLDOM.SETDATA(
 cd IN DOMCHARACTERDATA,
 data IN VARCHAR2);

Sets the content data of the DOMPROCESSINGINSTRUCTION (See Also: DOMProcessingInstruction Subprograms):

DBMS_XMLDOM.SETDATA(
 pi IN DOMPROCESSINGINSTRUCTION,
 data IN VARCHAR2);

Parameters

Table 170-122 SETDATA Procedure Parameters

	Parameter	Description
	
cd

	
DOMCHARACTERDATA

	
data

	
The data to which the node is set

	
pi

	
DOMPROCESSINGINSTRUCTION

	
data

	
New processing instruction content data

SETDOCTYPE Procedure

Given a DOM document, this procedure creates a new DTD with the specified name, system id and public id and sets it in the document. This DTD can later be retrieved using the GETDOCTYPE Function.

Syntax

DBMS_XMLDOM.SETDOCTYPE(
 doc IN DOMDocument,
 name IN VARCHAR2,
 sysid IN VARCHAR2,
 pubid IN VARCHAR2);

Parameters

Table 170-123 SETDOCTYPE Procedure Parameters

	Parameter	Description
	
doc

	
The document whose DTD has to be set

	
name

	
The name that the doctype needs to be initialized with

	
sysid

	
The system ID that the doctype needs to be initialized with

	
pubid

	
The public ID that the doctype needs to be initialized with

SETNAMEDITEM Function

This function adds a node using its NodeName attribute. If a node with that name is already present in this map, it is replaced by the new one. The old node is returned on replacement; if no replacement is made, NULL is returned.

As the NodeName attribute is used to derive the name under which the node must be stored, multiple nodes of certain types, those that have a "special" string value, cannot be stored because the names would clash. This is seen as preferable to allowing nodes to be aliased.

	
See Also:

DOMNamedNodeMap Subprograms

Syntax

Adds a node using its NodeName attribute:

DBMS_XMLDOM.SETNAMEDITEM(
 nnm IN DOMNAMEDNODEMAP,
 arg IN DOMNODE)
 RETURN DOMNode;

Adds a node using its NodeName attribute and namespace URI:

DBMS_XMLDOM.SETNAMEDITEM(
 nnm IN DOMNAMEDNODEMAP,
 arg IN DOMNODE,
 ns IN VARCHAR2)
 RETURN DOMNode;

Parameters

Table 170-124 SETNAMEDITEM Function Parameters

	Parameter	Description
	
nnm

	
DOMNAMEDNODEMAP

	
arg

	
The Node to be added using its NodeName attribute

	
ns

	
Namespace

SETNODEVALUE Procedure

This procedure sets the value of this node, depending on its type. When it is defined to be NULL, setting it has no effect.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.SETNODEVALUE(
 n IN DOMNODE,
 nodeValue IN VARCHAR2);

Parameters

Table 170-125 SETNODEVALUE Procedure Parameters

	Parameter	Description
	
n

	
DOMNode

	
nodeValue

	
The value to which node is set

SETNODEVALUEASBINARYSTREAM Function & Procedure

The operation of these subprograms is described with each syntax implementation.

	
See Also:

DOMNode Subprograms

Syntax

This function returns an instance of the PL/SQL XMLBINARYOUTPUTSTREAM into which the caller can write the node value. The data type of the node must be RAW or BLOB – if not, an exception is raised.

DBMS_XMLDOM.SETNODEVALUEASBINARYSTREAM (
 n IN DOMNODE)
 RETURN SYS.UTL_BINARYOUTPUTSTREAM;

Using this procedure, the application passes in an implementation of sys.utl_BinaryInputStream from which XDB reads data to populate the node. The data type of the node must be RAW or BLOB – if not an exception is raised.

DBMS_XMLDOM.SETNODEVALUEASBINARYSTREAM (
 n in DOMNODE,
 value in SYS.UTL_BINARYINPUTSTREAM);

Parameters

Table 170-126 SETNODEVALUEASBINARYSTREAM Function & Procedure Parameters

	Parameter	Description
	
n

	
DOMNODE

	
value

	
BINARYINPUTSTREAM

SETNODEVALUEASCHARACTERSTREAM Function & Procedure

The operation of these subprograms is described with each syntax implementation.

	
See Also:

DOMNode Subprograms

Syntax

This function returns an instance of the PL/SQL XMLCHARACTEROUTPUTSTREAM type into which the caller can write the node value. The data type of the node can be any valid XDB data type. If the type is not character or CLOB, the character data written to the stream is converted to the node data type. If the data type of the node is character or CLOB, then the character data written to the stream is converted from PL/SQL session character set to the character set of the node.

DBMS_XMLDOM.SETNODEVALUEASCHARACTERSTREAM (
 n IN DOMNODE)
 RETURN SYS.UTL_CHARACTEROUTPUTSTREAM;

Using this procedure, the application passes in an implementation of SYS.UTL_CHARACTERINPUTSTREAM from which XDB reads to populate the node. The data type of the node may be any valid type supported by XDB. If a non-character data type, the character data read from the stream is converted to the data type of the node. If the data type of the node is either character or CLOB, then no conversion occurs and the character set of the node becomes the character set of the PL/SQL session.

DBMS_XMLDOM.SETNODEVALUEASCHARACTERSTREAM (
 n IN DOMNODE,
 value IN SYS.UTL_CHARACTERINPUTSTREAM);

Parameters

Table 170-127 SETNODEVALUEASCHARACTERSTREAM Function & Procedure Parameters

	Parameter	Description
	
n

	
DOMNODE

	
value

	
CHARACTERINPUTSTREAM

SETPREFIX Procedure

This procedure sets the namespace prefix for this node to the specified value.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.SETPREFIX(
 n IN DOMNODE,
 prefix IN VARCHAR2);

Parameters

Table 170-128 SETPREFIX Procedure Parameters

	Parameter	Description
	
n

	
DOMNODE

	
prefix

	
The value for the namespace prefix of the node

SETSTANDALONE Procedure

This procedure sets the standalone property of the DOMDOCUMENT.

	
See Also:

DOMDocument Subprograms

Syntax

DBMS_XMLDOM.SETSTANDALONE(
 doc IN DOMDOCUMENT,
 newvalue IN VARCHAR2);

Parameters

Table 170-129 SETSTANDALONE Procedure Parameters

	Parameter	Description
	
doc

	
DOMDOCUMENT

	
newvalue

	
Value of the standalone property of the document

SETVALUE Procedure

This procedure sets the value of the attribute.

	
See Also:

DOMAttr Subprograms

Syntax

DBMS_XMLDOM.SETVALUE(
 a IN DOMATTR,
 value IN VARCHAR2);

Parameters

Table 170-130 SETVALUE Procedure Parameters

	Parameter	Description
	
a

	
DOMATTR

	
value

	
The value to which to set the attribute

SETVERSION Procedure

This procedure sets the version of the DOMDOCUMENT.

	
See Also:

DOMDocument Subprograms

Syntax

DBMS_XMLDOM.SETVERSION(
 doc IN DOMDOCUMENT,
 version IN VARCHAR2);

Parameters

Table 170-131 SETVERSION Procedure Parameters

	Parameter	Description
	
doc

	
DOMDOCUMENT

	
version

	
The version of the document

SPLITTEXT Function

This function breaks this DOMTEXT node into two DOMTEXT nodes at the specified offset.

	
See Also:

DOMText Subprograms

Syntax

DBMS_XMLDOM.SPLITTEXT(
 t IN DOMTEXT,
 offset IN NUMBER)
 RETURN DOMText;

Parameters

Table 170-132 SPLITTEXT Function Parameters

	Parameter	Description
	
t

	
DOMTEXT

	
offset

	
Offset at which to split

SUBSTRINGDATA Function

This function extracts a range of data from the node.

	
See Also:

DOMCharacterData Subprograms

Syntax

DBMS_XMLDOM.SUBSTRINGDATA(
 cd IN DOMCHARACTERDATA,
 offset IN NUMBER,
 cnt IN NUMBER)
 RETURN VARCHAR2;

Parameters

Table 170-133 SUBSTRINGDATA Function Parameters

	Parameter	Description
	
cd

	
DOMCHARACTERDATA

	
offset

	
The starting offset of the data from which to get the data

	
cnt

	
The number of characters (from the offset) of the data to get

USEBINARYSTREAM Function

This function returns TRUE if the data type of the node is RAW or BLOB so that the node value may be read or written using an UTL_BINARYINPUTSTREAM or UTL_BINARYOUTPUTSTREAM. If a value of FALSE is returned, the node value may only be accessed through an UTL_CHARACTERINPUTSTREAM or UTL_CHARACTEROUTPUTSTREAM.

	
See Also:

DOMNode Subprograms

Syntax

DBMS_XMLDOM.USEBINARYSTREAM (
 n IN DOMNODE)
 RETURN BOOLEAN;

Parameters

Table 170-134 USEBINARYSTREAM Function Parameters

	Parameter	Description
	
n

	
DOMNODE

WRITETOBUFFER Procedures

This procedure is overloaded. The specific forms of functionality are described along with the syntax declarations.

Syntax

Writes XML node to specified buffer using the database character set (See Also: DOMNode Subprograms):

DBMS_XMLDOM.WRITETOBUFFER(
 n IN DOMNODE,
 buffer IN OUT VARCHAR2);

Writes XML document to a specified buffer using database character set (See Also: DOMDocument Subprograms):

DBMS_XMLDOM.WRITETOBUFFER(
 doc IN DOMDOCUMENT,
 buffer IN OUT VARCHAR2);

Writes the contents of the specified document fragment into a buffer using the database character set (See Also: DOMDocumentFragment Subprograms):

DBMS_XMLDOM.WRITETOBUFFER(
 df IN DOMDOCUMENTFRAGMENT,
 buffer IN OUT VARCHAR2);

Parameters

Table 170-135 WRITETOBUFFER Procedure Parameters

	Parameter	Description
	
n

	
DOMNODE

	
buffer

	
Buffer to which to write

	
doc

	
DOMDOCUMENT

	
df

	
DOM document fragment

WRITETOCLOB Procedures

This procedure is overloaded. The specific forms of functionality are described along with the syntax declarations.

Syntax

Writes XML node to specified CLOB using the database character set (See Also: DOMNode Subprograms):

DBMS_XMLDOM.WRITETOCLOB(
 n IN DOMNODE,
 cl IN OUT CLOB);

Writes XML document to a specified CLOB using database character set (See Also: DOMDocument Subprograms):

DBMS_XMLDOM.WRITETOCLOB(
 doc IN DOMDOCUMENT,
 cl IN OUT CLOB);

Parameters

Table 170-136 WRITETOCLOB Procedure Parameters

	Parameter	Description
	
n

	
DOMNODE

	
cl

	
CLOB to which to write

	
doc

	
DOMDOCUMENT

WRITETOFILE Procedures

This procedure is overloaded. The specific forms of functionality are described along with the syntax declarations.

Syntax

Writes XML node to specified file using the database character set (See Also: DOMNode Subprograms):

DBMS_XMLDOM.WRITETOFILE(
 n IN DOMNODE,
 fileName IN VARCHAR2);

Writes XML node to specified file using the specified character set, which is passed in as a separate parameter (See Also: DOMNode Subprograms):

DBMS_XMLDOM.WRITETOFILE(
 n IN DOMNODE,
 fileName IN VARCHAR2,
 charset IN VARCHAR2);

Writes an XML document to a specified file using database character set (See Also: DOMDocument Subprograms):

DBMS_XMLDOM.WRITETOFILE(
 doc IN DOMDOCUMENT,
 filename IN VARCHAR2);

Writes an XML document to a specified file using specified character set (See Also: DOMDocument Subprograms):

DBMS_XMLDOM.WRITETOFILE(
 doc IN DOMDOCUMENT,
 fileName IN VARCHAR2,
 charset IN VARCHAR2);

Parameters

Table 170-137 WRITETOFILE Procedure Parameters

	Parameter	Description
	
n

	
DOMNODE

	
fileName

	
File to which to write

	
charset

	
specified character set

	
doc

	
DOMDOCUMENT

	
charset

	
Character set

DBMS_XMLGEN

171 DBMS_XMLGEN

The DBMS_XMLGEN package converts the results of a SQL query to a canonical XML format. The package takes an arbitrary SQL query as input, converts it to XML format, and returns the result as a CLOB. This package is similar to the DBMS_XMLQUERY package, except that it is written in C and compiled into the kernel. This package can only be run on the database.

This chapter contains the following topic:

	
Using DBMS_XMLGEN

	
Summary of DBMS_XMLGEN Subprograms

	
See Also:

Oracle XML DB Developer's Guide, for more information on XML support and on examples of using DBMS_XMLGEN

Using DBMS_XMLGEN

	
Security Model

Security Model

Owned by XDB, the DBMS_XMLGEN package must be created by SYS or XDB. The EXECUTE privilege is granted to PUBLIC. Subprograms in this package are executed using the privileges of the current user.

Summary of DBMS_XMLGEN Subprograms

Table 171-1 Summary of DBMS_XMLGEN Package Subprograms

	Subprogram	Description
	
CLOSECONTEXT Procedure

	
Closes the context and releases all resources

	
CONVERT Functions

	
Converts the XML into the escaped or unescaped XML equivalent

	
GETNUMROWSPROCESSED Function

	
Gets the number of SQL rows that were processed in the last call to GETXML Functions

	
GETXML Functions

	
Gets the XML document

	
GETXMLTYPE Functions

	
Gets the XML document and returns it as XMLType

	
NEWCONTEXT Functions

	
Creates a new context handle

	
NEWCONTEXTFROMHIERARCHY Function

	
Obtains a handle to use in the GETXML Functions and other functions to get a hierarchical XML with recursive elements from the result

	
RESTARTQUERY Procedure

	
Restarts the query to start fetching from the beginning

	
SETCONVERTSPECIALCHARS Procedure

	
Sets whether special characters such as $, which are non-XML characters, should be converted or not to their escaped representation

	
SETMAXROWS Procedure

	
Sets the maximum number of rows to be fetched each time

	
SETNULLHANDLING Procedure

	
Sets NULL handling options

	
SETROWSETTAG Procedure

	
Sets the name of the element enclosing the entire result

	
SETROWTAG Procedure

	
Sets the name of the element enclosing each row of the result

	
SETSKIPROWS Procedure

	
Sets the number of rows to skip every time before generating the XML.

	
USEITEMTAGSFORCOLL Procedure

	
Forces the use of the collection column name appended with the tag _ITEM for collection elements

	
USENULLATTRIBUTEINDICATOR Procedure

	
Specified weather to use an XML attribute to indicate NULLness, or to do it by omitting the inclusion of the particular entity in the XML document.

CLOSECONTEXT Procedure

This procedure closes a given context and releases all resources associated with it, including the SQL cursor and bind and define buffers. After this call, the handle cannot be used for a subsequent function call.

Syntax

DBMS_XMLGEN.CLOSECONTEXT (
 ctx IN ctxHandle);

Parameters

Table 171-2 CLOSECONTEXT Procedure Parameters

	Parameter	Description
	
ctx

	
The context handle to close.

CONVERT Functions

This function converts the XML data into the escaped or unescapes XML equivalent, and returns XML CLOB data in encoded or decoded format. There are several version of the function.

Syntax

Uses XMLDATA in string form (VARCHAR2):

DBMS_XMLGEN.CONVERT (
 xmlData IN VARCHAR2,
 flag IN NUMBER := ENTITY_ENCODE)
RETURN VARCHAR2;

Uses XMLDATA in CLOB form:

DBMS_XMLGEN.CONVERT (
 xmlData IN CLOB,
 flag IN NUMBER := ENTITY_ENCODE)
 RETURN CLOB;

Parameters

Table 171-3 CONVERT Function Parameters

	Parameter	Description
	
xmlData

	
The XML CLOB data to be encoded or decoded.

	
flag

	
The flag setting; ENTITY_ENCODE (default) for encode, and ENTITY_DECODE for decode.

Usage Notes

This function escapes the XML data if the ENTITY_ENCODE is specified. For example, the escaped form of the character < is <. Unescaping is the reverse transformation.

GETNUMROWSPROCESSED Function

This function retrieves the number of SQL rows processed when generating the XML using the GETXML Functions call. This count does not include the number of rows skipped before generating the XML. Note that GETXML Functions always generates an XML document, even if there are no rows present.

Syntax

DBMS_XMLGEN.GETNUMROWSPROCESSED (
 ctx IN ctxHandle)
RETURN NUMBER;

Parameters

Table 171-4 GETNUMROWSPROCESSED Function Parameters

	Parameter	Description
	
ctx

	
The context handle obtained from the NEWCONTEXT Functions call.

Usage Notes

This function is used to determine the terminating condition if calling GETXML Functions in a loop.

GETXML Functions

This function gets the XML document. The function is overloaded.

Syntax

Gets the XML document by fetching the maximum number of rows specified. It appends the XML document to the CLOB passed in. Use this version of GETXML Functions to avoid any extra CLOB copies and to reuse the same CLOB for subsequent calls. Because of the CLOB reuse, this GETXML Functionscall is potentially more efficient:

DBMS_XMLGEN.GETXML (
 ctx IN ctxHandle,
 tmpclob IN OUT NCOPY CLOB,
 dtdOrSchema IN number := NONE)
 RETURN BOOLEAN;

Generates the XML document and returns it as a temporary CLOB. The temporary CLOB obtained from this function must be freed using the DBMS_LOB.FREETEMPORARY call:

DBMS_XMLGEN.GETXML (
 ctx IN ctxHandle,
 dtdOrSchema IN number := NONE)
 RETURN CLOB;

Converts the results from the SQL query string to XML format, and returns the XML as a temporary CLOB, which must be subsequently freed using the DBMS_LOB.FREETEMPORARY call:

DBMS_XMLGEN.GETXML (
 sqlQuery IN VARCHAR2,
 dtdOrSchema IN number := NONE)
 RETURN CLOB;

Parameters

Table 171-5 GETXML Function Parameters

	Parameter	Description
	

ctx

	
The context handle obtained from the newContext call.

	

tmpclob

	
The CLOB to which the XML document is appended.

	
sqlQuery

	
The SQL query string.

	
dtdOrSchema

	
Generate a DTD or a schema? Only NONE is supported.

Usage Notes

When the rows indicated by the SETSKIPROWS Procedure call are skipped, the maximum number of rows as specified by the SETMAXROWS Procedure call (or the entire result if not specified) is fetched and converted to XML. Use the GETNUMROWSPROCESSED Function to check if any rows were retrieved.

GETXMLTYPE Functions

This function gets the XML document and returns it as an XMLTYPE. XMLTYPE operations can be performed on the results.This function is overloaded.

Syntax

Generates the XML document and returns it as a sys.XMLType:

DBMS_XMLGEN.GETXMLTYPE (
 ctx IN ctxhandle,
 dtdOrSchema IN number := NONE)
 RETURN sys.XMLType;

Converts the results from the SQL query string to XML format, and returns the XML as a sys.XMLType:

DBMS_XMLGEN.GETXMLTYPE (
 sqlQuery IN VARCHAR2,
 dtdOrSchema IN number := NONE)
 RETURN sys.XMLType

Parameters

Table 171-6 GETXMLTYPE Function Parameters

	Parameter	Description
	
ctx

	
The context handle obtained from the newContext call.

	
sqlQuery

	
The SQL query string.

	
dtdOrSchema

	
Generate a DTD or a schema? Only NONE is supported.

NEWCONTEXT Functions

This function generates and returns a new context handle. This context handle is used in GETXML Functions and other functions to get XML back from the result. There are several version of the function.

Syntax

Generates a new context handle from a query:

DBMS_XMLGEN.NEWCONTEXT (
 query IN VARCHAR2)
 RETURN ctxHandle;

Generates a new context handle from a query string in the form of a PL/SQL ref cursor:

DBMS_XMLGEN.NEWCONTEXT (
 queryString IN SYS_REFCURSOR)
 RETURN ctxHandle;

Parameters

Table 171-7 NEWCONTEXT Function Parameters

	Parameter	Description
	
query

	
The query, in the form of a VARCHAR, the result of which must be converted to XML.

	
queryString

	
The query string in the form of a PL/SQL ref cursor, the result of which must be converted to XML.

NEWCONTEXTFROMHIERARCHY Function

This function obtains a handle to use in the GETXML Functions and other functions to get a hierarchical XML with recursive elements from the result.

Syntax

DBMS_XMLGEN.NEWCONTEXTFROMHIERARCHY (
 queryString IN VARCHAR2)
 RETURN ctxHandle;

Parameters

Table 171-8 NEWCONTEXTFROMHIERARCHY Function Parameters

	Parameter	Description
	
queryString

	
The query string, the result of which must be converted to XML. The query is a hierarchical query typically formed using a CONNECT BY clause, and the result must have the same property as the result set generated by a CONNECT BY query. The result set must have only two columns, the level number and an XML value. The level number is used to determine the hierarchical position of the XML value within the result XML document.

RESTARTQUERY Procedure

This procedure restarts the query and generates the XML from the first row. It can be used to start executing the query again, without having to create a new context.

Syntax

DBMS_XMLGEN.RESTARTQUERY (
ctx IN ctxHandle);

Parameters

Table 171-9 RESTARTQUERY Procedure Parameters

	Parameter	Description
	
ctx

	
The context handle corresponding to the current query.

SETCONVERTSPECIALCHARS Procedure

This procedure sets whether or not special characters in the XML data must be converted into their escaped XML equivalent. For example, the < sign is converted to <. The default is to perform conversions. This function improves performance of XML processing when the input data cannot contain any special characters such as <, >, ",', which must be escaped. It is expensive to scan the character data to replace the special characters, particularly if it involves a lot of data.

Syntax

DBMS_XMLGEN.SETCONVERTSPECIALCHARS (
ctx IN ctxHandle,
conv IN BOOLEAN);

Parameters

Table 171-10 SETCONVERTSPECIALCHARS Procedure Parameters

	Parameter	Description
	
ctx

	
The context handle obtained from one of the NEWCONTEXT Functions call.

	
conv

	
TRUE indicates that conversion is needed.

SETMAXROWS Procedure

This procedure sets the maximum number of rows to fetch from the SQL query result for every invokation of the GETXML Functions call. It is used when generating paginated results. For example, when generating a page of XML or HTML data, restrict the number of rows converted to XML or HTML by setting the maxrows parameter.

Syntax

DBMS_XMLGEN.SETMAXROWS (
ctx IN ctxHandle,
maxRows IN NUMBER);

Parameters

Table 171-11 SETMAXROWS Procedure Parameters

	Parameter	Description
	
ctx

	
The context handle corresponding to the query executed.

	
maxRows

	
The maximum number of rows to get for each call to GETXML Functions

SETNULLHANDLING Procedure

This procedure sets NULL handling options, handled through the flag parameter setting.

Syntax

DBMS_XMLGEN.SETNULLHANDLING(
ctx IN ctx,
flag IN NUMBER);

Parameters

Table 171-12 SETNULLHANDLING Procedure Parameters

	Parameter	Description
	
ctx

	
The context handle corresponding to the query executed.

	
flag

	
The NULL handling option set.

	
DROP_NULLS CONSTANT NUMBER:= 0; (Default) Leaves out the tag for NULL elements.

	
NULL_ATTR CONSTANT NUMBER:= 1; Sets xsi:nil="true".

	
EMPTY_TAG CONSTANT NUMBER:= 2; Sets, for example, <foo/>.

SETROWSETTAG Procedure

This procedure sets the name of the root element of the document. The default name is ROWSET.

Syntax

DBMS_XMLGEN.SETROWSETTAG (
ctx IN ctxHandle,
rowSetTagName IN VARCHAR2);

Parameters

Table 171-13 SETROWSETTAG Procedure Parameters

	Parameter	Description
	
ctx

	
The context handle obtained from the NEWCONTEXT Functions call.

	
rowSetTagName

	
The name of the document element. Passing NULL indicates that you do not want the ROWSET element present.

Usage Notes

The user can set the rowSetTag to NULL to suppress the printing of this element. However, an error is produced if both the row and the rowset are NULL and there is more than one column or row in the output . This is because the generated XML would not have a top-level enclosing tag, and so would be invalid.

SETROWTAG Procedure

This procedure sets the name of the element separating all the rows. The default name is ROW.

Syntax

DBMS_XMLGEN.SETROWTAG (
ctx IN ctxHandle,
rowTagName IN VARCHAR2);

Parameters

Table 171-14 SETROWTAG Procedure Parameters

	Parameter	Description
	
ctx

	
The context handle obtained from the NEWCONTEXT Functions call.

	
rowTagName

	
The name of the ROW element. Passing NULL indicates that you do not want the ROW element present.

Usage Notes

The user can set the name of the element to NULL to suppress the ROW element itself. However, an error is produced if both the row and the rowset are NULL and there is more than one column or row in the output. This is because the generated XML would not have a top-level enclosing tag, and so would be invalid.

SETSKIPROWS Procedure

This procedure skips a given number of rows before generating the XML output for every call to the GETXML Functions. It is used when generating paginated results for stateless Web pages using this utility. For example, when generating the first page of XML or HTML data, set skiprows to zero. For the next set, set the skiprows to the number of rows obtained in the first case. See GETNUMROWSPROCESSED Function.

Syntax

DBMS_XMLGEN.SETSKIPROWS (
ctx IN ctxHandle,
skipRows IN NUMBER);

Parameters

Table 171-15 SETSKIPROWS Procedure Parameters

	Parameter	Description
	
ctx

	
The context handle corresponding to the query executed.

	
skipRows

	
The number of rows to skip for each call to getXML.

USEITEMTAGSFORCOLL Procedure

This procedure overrides the default name of the collection elements. The default name for collection elements is the type name itself.

Syntax

DBMS_XMLGEN.USEITEMTAGSFORCOLL (
 ctx IN ctxHandle);

Parameters

Table 171-16 USEITEMTAGSFORCOLL Procedure Parameters

	Parameter	Description
	
ctx

	
The context handle.

Usage Notes

Using this procedure, you can override the default to use the name of the column with the _ITEM tag appended to it. If there is a collection of NUMBER, the default tag name for the collection elements is NUMBER.

USENULLATTRIBUTEINDICATOR Procedure

This procedure specifies whether to use an XML attribute to indicate NULLness, or to do it by omitting the inclusion of the particular entity in the XML document. It is used as a shortcut for the SETNULLHANDLING Procedure.

Syntax

DBMS_XMLGEN.USENULLATTRIBUTEINDICATOR(
ctx IN ctxType,
attrind IN BOOLEAN := TRUE);

Parameters

Table 171-17 USENULLATTRIBUTEINDICATOR Procedure Parameters

	Parameter	Description
	
ctx

	
Context handle.

	
attrind

	
Use attribute to indicate NULL?

DBMS_XMLINDEX

172 DBMS_XMLINDEX

The DBMS_XMLINDEX package provides an interface to implement asychronous indexing.

	
See Also:

Oracle XML DB Developer's Guide for more information about "XMLIndex"

This chapter contains the following topics:

	
Using DBMS_XMLINDEX

	
Overview

	
Security Model

	
Summary of DBMS_XMLINDEX Subprograms

Using DBMS_XMLINDEX

	
Overview

	
Security Model

Overview

Asynchronous Index Maintenance

The basic XMLIndex is maintained on every DML operation. However, given the computing costs, in many cases the availability of stale result is adequate. In such situations, it is desirable to defer index updates to a convenient time, for example to a time when the load on the database is low. Thus a mechanism for asynchronous index maintenance is provided.

Security Model

Owned by XDB, the DBMS_XMLINDEX package must be created by SYS or XDB. The EXECUTE privilege is granted to PUBLIC. Subprograms in this package are executed using the privileges of the current user.

Summary of DBMS_XMLINDEX Subprograms

This table list the package subprograms in alphabetical order.

Table 172-1 DBMS_XMLINDEX Package Subprograms

	Subprogram	Description
	
CREATEDATEINDEX Procedure

	
Creates a secondary index for date values in the VALUE column of a PATH TABLE which is the storage table of an XMLIndex

	
CREATENUMBERINDEX Procedure

	
Creates a secondary index for number values in the VALUE column of a PATH TABLE which is the storage table of an XMLIndex

	
DROPPARAMETER Procedure

	
Drops the XMLIndex parameter string that is associated with a given parameter identifier.

	
MODIFYPARAMETER Procedure

	
Modifies the XMLIndex parameter string that is associated with a given parameter name

	
REGISTERPARAMETER Procedure

	
Registers a parameter string and XMLIndex parameter string pair in XDB

	
SYNCINDEX Procedure

	
Synchronizes the index manually

CREATEDATEINDEX Procedure

This procedure creates a secondary index for date values in the VALUE column of a PATH TABLE which is the storage table of an XMLIndex. The second form of the procedure allows for the date_index_clause to be set to an empty string.

Syntax

DBMS_XMLINDEX.CREATEDATEINDEX (
 xml_index_schema IN VARCHAR2,
 xml_index_name IN VARCHAR2,
 date_index_name IN VARCHAR2,
 xmltypename IN VARCHAR2,
 date_index_clause IN VARCHAR2);

DBMS_XMLINDEX.CREATEDATEINDEX (
 xml_index_schema IN VARCHAR2
 xml_index_name IN VARCHAR2,
 date_index_name IN VARCHAR2,
 xmltypename IN VARCHAR2);

Parameters

Table 172-2 CREATEDATEINDEX Procedure Parameters

	Parameter	Description
	
xml_index_schema

	
Name of the owner of the XMLIndex

	
xml_index_name

	
Name of the XMLIndex

	
date_index_name

	
Name of the secondary index to be created for date values in the VALUE column of the PATH TABLE of XMLIndex named xml_index_name and owned by xml_index_schema

	
xmltypename

	
The type to which values in the VALUE column of the path table are to be cast. Acceptable values are the following strings: DATETIME, TIME, DATE, GDAY, GMONTH, GYEAR, GYEARMONTH, GMONTHDAY.

	
date_index_clause

	
Storage clause to be applied to the date index during its creation. This is a string argument appended to the CREATE INDEX statement for creating the date index

CREATENUMBERINDEX Procedure

This procedure creates a secondary index for number values in the VALUE column of a PATH TABLE which is the storage table of an XMLIndex.

Syntax

DBMS_XMLINDEX.CREATENUMBERINDEX (
 xml_index_schema IN VARCHAR2,
 xml_index_name IN VARCHAR2,
 num_index_name IN VARCHAR2,
 num_index_clause IN VARCHAR2,
 xmltypename IN VARCHAR2);

Parameters

Table 172-3 CREATENUMBERINDEX Procedure Parameters

	Parameter	Description
	
xml_index_schema

	
Name of the owner of the XMLIndex

	
xml_index_name

	
Name of the XMLIndex

	
num_index_name

	
Name of the secondary index to be created for number values in the VALUE column of the PATH TABLE of XMLIndex named xml_index_name and owned by xml_index_schema

	
num_index_clause

	
Storage clause to be applied to the number index during its creation. This is a string argument appended to the CREATE INDEX statement for creating the number index.

	
xmltypename

	
The type to which values in the VALUE column of the path table are to be cast. Acceptable values are the following strings: FLOAT, DOUBLE, DECIMAL, INTEGER, NONPOSITIVEINTEGER, NEGATIVEINTEGER, LONG, INT, SHORT, BYTE, NONNEGATIVEINTEGER, UNSIGNEDLONG, UNSIGNEDINT, UNSIGNEDSHORT, UNSIGNEDBYTE, POSITIVEINTEGER.

DROPPARAMETER Procedure

This procedure drops the XMLIndex parameter string that is associated with a given parameter identifier.

Syntax

DBMS_XMLINDEX.DROPPARAMETER (
 name IN VARCHAR2);

Parameters

Table 172-4 DROPPARAMETER Procedure Parameters

	Parameter	Description
	
name

	
Identifier for parameter string

Examples

DBMS_XMLINDEX.DROPPARAMETER (
 'myIndexParam');

MODIFYPARAMETER Procedure

This procedure modifies the XMLIndex parameter string that is associated with a given parameter identifier.

Syntax

DBMS_XMLINDEX.MODIFYPARAMETER (
 name IN VARCHAR2,
 parameter IN CLOB);

Parameters

Table 172-5 MODIFYPARAMETER Procedure Parameters

	Parameter	Description
	
name

	
Identifier for parameter string

	
parameter

	
XMLIndex parameter clause that can appear in a CREATE INDEX or an ALTER INDEX statement

Examples

DBMS_XMLINDEX.MODIFYPARAMETER (
 'myIndexParam',
 'PATH TABLE po_ptab
 PATH ID INDEX po_pidx
 ORDER KEY INDEX po_oidx
 VALUE INDEX po_vidx');

REGISTERPARAMETER Procedure

This procedure registers a parameter identifier and XMLIndex parameter string pair in XDB.

Syntax

DBMS_XMLINDEX.REGISTERPARAMETER (
 name IN VARCHAR2,
 parameter IN CLOB);

Parameters

Table 172-6 REGISTERPARAMETER Procedure Parameters

	Parameter	Description
	
name

	
Identifier for parameter string

	
parameter

	
XMLIndex parameter clause that can appear in a CREATE INDEX or an ALTER INDEX statement

Examples

DBMS_XMLINDEX.REGISTERPARAMETER (
 'myIndexParam',
 'PATH TABLE po_ptab
 PATH ID INDEX po_pidx
 ORDER KEY INDEX po_oidx
 VALUE INDEX po_vidx
 PATHS(NAMESPACE MAPPING(xmlns:p="http://www.example.com/IPO"))
 GROUP MASTERGROUP XMLTABLE PO_TAB
 (''/p:PurchaseOrder''
 COLUMNS
 REFERENCE VARCHAR2(30) PATH ''p:Reference'',
 REQUESTOR VARCHAR2(30) PATH ''p:Requestor'')
 GROUP ITEMGROUP XMLTABLE ITEMGROUP_TAB
 (''/p:PurchaseOrder/p:LineItems/p:LineItem''
 COLUMNS
 LINENUMBER NUMBER(38) PATH ''@p:ItemNumber'',
 QUANTITY NUMBER(38) PATH ''@p:Quantity'',
 DESCRIPTION VARCHAR2(256) PATH ''p:Description''));

SYNCINDEX Procedure

This function synchronizes an asynchronously maintained XMLIndex. It applies to the XMLIndex changes that are logged in the pending table, and brings the path table up-to-date with the base XMLTYPE column.

Syntax

DBMS_XMLINDEX.SYNCINDEX (
 xml_index_schema IN VARCHAR2,
 xml_index_name IN VARCHAR2,
 partition_name IN VARCHAR2 DEFAULT NULL,
 reindex IN BOOLEAN DEFAULT FALSE);

Parameters

Table 172-7 SYNCINDEX Procedure Parameters

	Parameter	Description
	
xml_index_schema

	
Name of the owner of the XMLIndex

	
xml_schema_name

	
Name of the XMLIndex

	
partition_name

	
[Currently not supported]

	
reindex

	
Default is FALSE. If set to TRUE, this drops the secondary indexes and recreates them later so that they can be bulkloaded.

Examples

EXEC DBMS_XMLINDEX.SYNCINDEX('USER1', 'SS_TAB_XMLI', REINDEX=>TRUE);

DBMS_XMLPARSER

173 DBMS_XMLPARSER

Using DBMS_XMLPARSER, you can access the contents and structure of XML documents. XML describes a class of data XML document objects. It partially describes the behavior of computer programs which process them. By construction, XML documents are conforming SGML documents.

XML documents are made up of storage units called entities, which contain either parsed or unparsed data. Parsed data is made up of characters, some of which form character data, and some of which form markup. Markup encodes a description of the document's storage layout and logical structure. XML provides a mechanism to impose constraints on the storage layout and logical structure.

A software module called an XML processor is used to read XML documents and provide access to their content and structure. It is assumed that an XML processor is doing its work on behalf of another module, called the application. This PL/SQL implementation of the XML processor (or parser) follows the W3C XML specification REC-xml-19980210 and includes the required behavior of an XML processor in terms of how it must read XML data and the information it must provide to the application.

The default behavior for this PL/SQL XML parser is to build a parse tree that can be accessed by DOM APIs, validate it if a DTD is found (otherwise, it is non-validating), and record errors if an error log is specified. If parsing fails, an application error is raised.

This chapter contains the following topics:

	
Using DBMS_XMLPARSER

	
Summary of DBMS_XMLPARSER Subprograms

	
See Also:

Oracle XML DB Developer's Guide

Using DBMS_XMLPARSER

	
Security Model

Security Model

Owned by XDB, the DBMS_XDB_XMLPARSER package must be created by SYS or XDB. The EXECUTE privilege is granted to PUBLIC. Subprograms in this package are executed using the privileges of the current user.

Summary of DBMS_XMLPARSER Subprograms

Table 173-1 DBMS_XMLPARSER Package Subprograms

	Method	Description
	
FREEPARSER

	
Frees a parser object.

	
GETDOCTYPE

	
Gets parsed DTD.

	
GETDOCUMENT

	
Gets DOM document.

	
GETRELEASEVERSION

	
Returns the release version of Oracle XML Parser for PL/SQL.

	
GETVALIDATIONMODE

	
Returns validation mode.

	
NEWPARSER

	
Returns a new parser instance

	
PARSE

	
Parses XML stored in the given url/file.

	
PARSEBUFFER

	
Parses XML stored in the given buffer

	
PARSECLOB

	
Parses XML stored in the given clob

	
PARSEDTD

	
Parses DTD stored in the given url/file

	
PARSEDTDBUFFER

	
Parses DTD stored in the given buffer

	
PARSEDTDCLOB

	
Parses DTD stored in the given clob

	
SETBASEDIR

	
Sets base directory used to resolve relative URLs.

	
SETDOCTYPE

	
Sets DTD.

	
SETERRORLOG

	
Sets errors to be sent to the specified file

	
SETPRESERVEWHITESPACE

	
Sets white space preserve mode

	
SETVALIDATIONMODE

	
Sets validation mode.

	
SHOWWARNINGS

	
Turns warnings on or off.

FREEPARSER

Frees a parser object.

Syntax

PROCEDURE freeParser(
 p Parser);

	Parameter	IN / OUT	Description
	p	(IN)	Parser instance.

GETDOCTYPE

Returns the parsed DTD; this function must be called only after a DTD is parsed.

Syntax

FUNCTION getDoctype(
p Parser)
RETURN DOMDocumentType;

	Parameter	IN / OUT	Description
	p	(IN)	Parser instance.

GETDOCUMENT

Returns the document node of a DOM tree document built by the parser; this function must be called only after a document is parsed.

Syntax

FUNCTION GETDOCUMENT(
p Parser)
RETURN DOMDocument;

	Parameter	IN / OUT	Description
	p	(IN)	Parser instance.

GETRELEASEVERSION

Returns the release version of the Oracle XML parser for PL/SQL.

Syntax

FUNCTION getReleaseVersion
RETURN VARCHAR2;

GETVALIDATIONMODE

Retrieves validation mode; TRUE for validating, FALSE otherwise.

Syntax

FUNCTION GETVALIDATIONMODE(
p Parser)
RETURN BOOLEAN;

	Parameter	IN / OUT	Description
	p	(IN)	Parser instance.

NEWPARSER

Returns a new parser instance. This function must be called before the default behavior of Parser can be changed and if other parse methods need to be used.

Syntax

FUNCTION newParser
RETURN Parser;

PARSE

Parses XML stored in the given URL or file. An application error is raised if parsing fails. There are several versions of this method.

	Syntax	Description
	FUNCTION parse(
 url VARCHAR2)

RETURN DOMDocument;

	Returns the built DOM Document. This is meant to be used when the default parser behavior is acceptable and just a url/file needs to be parsed.
	PROCEDURE parse(
 p Parser,

 url VARCHAR2);

	Any changes to the default parser behavior should be effected before calling this procedure.

	Parameter	IN / OUT	Description
	url	(IN)	Complete path of the url/file to be parsed.
	p	(IN)	Parser instance.

PARSEBUFFER

Parses XML stored in the given buffer. Any changes to the default parser behavior should be effected before calling this procedure. An application error is raised if parsing fails.

Syntax

PROCEDURE PARSEBUFFER(
p Parser,
doc VARCHAR2);

	Parameter	IN / OUT	Description
	p	(IN)	Parser instance.
	doc	(IN)	XML document buffer to parse.

PARSECLOB

Parses XML stored in the given clob. Any changes to the default parser behavior should be effected before calling this procedure. An application error is raised if parsing fails.

Syntax

PROCEDURE PARSECLOB(
p Parser,
doc CLOB);

	Parameter	IN / OUT	Description
	p	(IN)	Parser instance.
	doc	(IN)	XML document buffer to parse.

PARSEDTD

Parses the DTD stored in the given URL or file. Any changes to the default parser behavior should be effected before calling this procedure. An application error is raised if parsing fails.

Syntax

PROCEDURE PARSEDTD(
p Parser,
url VARCHAR2,
root VARCHAR2);

	Parameter	IN / OUT	Description
	p	(IN)	Parser instance.
	url	(IN)	Complete path of the URL or file to be parsed.
	root	(IN)	Name of the root element.

PARSEDTDBUFFER

Parses the DTD stored in the given buffer. Any changes to the default parser behavior should be effected before calling this procedure. An application error is raised if parsing fails.

Syntax

PROCEDURE PARSEDTDBUFFER(
p Parser,
dtd VARCHAR2,
root VARCHAR2);

	Parameter	IN / OUT	Description
	p	(IN)	Parser instance.
	dtd	(IN)	DTD buffer to parse.
	root	(IN)	Name of the root element.

PARSEDTDCLOB

Parses the DTD stored in the given clob. Any changes to the default parser behavior should be effected before calling this procedure. An application error is raised if parsing fails.

Syntax

PROCEDURE PARSEDTDCLOB(
p Parser,
dtd CLOB,
root VARCHAR2);

	Parameter	IN / OUT	Description
	p	(IN)	Parser instance.
	dtd	(IN)	DTD Clob to parse.
	root	(IN)	Name of the root element.

SETBASEDIR

Sets base directory used to resolve relative URLs. An application error is raised if parsing fails.

Syntax

PROCEDURE setBaseDir(
p Parser,
dir VARCHAR2);

	Parameter	IN / OUT	Description
	p	(IN)	Parser instance.
	dir	(IN)	Directory used as a base directory.

SETDOCTYPE

Sets a DTD to be used by the parser for validation. This call should be made before the document is parsed.

Syntax

PROCEDURE setDoctype(
p Parser,
dtd DOMDocumentType);

	Parameter	IN / OUT	Description
	p	(IN)	Parser instance.
	dtd	(IN)	DTD to set.

SETERRORLOG

Sets errors to be sent to the specified file.

Syntax

PROCEDURE setErrorLog(
p Parser,
fileName VARCHAR2);

	Parameter	IN / OUT	Description
	p	(IN)	Parser instance.
	fileName	(IN)	Complete path of the file to use as the error log.

SETPRESERVEWHITESPACE

Sets whitespace preserving mode.

Syntax

PROCEDURE setPreserveWhitespace(
p Parser,
yes BOOLEAN);

	Parameter	IN / OUT	Description
	p	(IN)	Parser instance.
	yes	(IN)	Mode to set: TRUE - preserve, FALSE - don't preserve.

SETVALIDATIONMODE

Sets validation mode.

Syntax

PROCEDURE setValidationMode(
p Parser,
yes BOOLEAN);

	Parameter	IN / OUT	Description
	p	(IN)	Parser instance.
	yes	(IN)	Mode to set: TRUE - validate, FALSE - don't validate.

SHOWWARNINGS

Turns warnings on or off.

Syntax

PROCEDURE showWarnings(
p Parser,
yes BOOLEAN);

	Parameter	IN / OUT	Description
	p	(IN)	Parser instance.
	yes	(IN)	Mode to set: TRUE - show warnings, FALSE - don't show warnings.

DBMS_XMLQUERY

174 DBMS_XMLQUERY

DBMS_XMLQUERY provides database-to-XMLType functionality. Whenever possible, use DBMS_XMLGEN, a built-in package in C, instead of DBMS_XMLQUERY.

	
See Also:

Oracle XML DB Developer's Guide

This chapter contains the following topics:

	
Using DBMS_XMLQUERY

	
Security Model

	
Constants

	
Types

	
Summary of DBMS_XMLQUERY Subprograms

Using DBMS_XMLQUERY

	
Security Model

	
Constants

	
Types

Security Model

Owned by XDB, the DBMS_XMLQUERY package must be created by SYS or XDB. The EXECUTE privilege is granted to PUBLIC. Subprograms in this package are executed using the privileges of the current user.

Constants

Table 174-1 Constants of DBMS_XMLQUERY

	Constant	Description
	
DB_ENCODING

	
Used to signal that the DB character encoding is to be used.

	
DEFAULT_ROWSETTAG

	
The tag name for the element enclosing the XML generated from the result set (that is, for most cases the root node tag name) -- ROWSET.

	
DEFAULT_ERRORTAG

	
The default tag to enclose raised errors -- ERROR.

	
DEFAULT_ROWIDATTR

	
The default name for the cardinality attribute of XML elements corresponding to db.records -- NUM

	
DEFAULT_ROWTAG

	
The default tag name for the element corresponding to db. records -- ROW

	
DEFAULT_DATE_FORMAT

	
Default date mask --'MM/dd/yyyy HH:mm:ss'

	
ALL_ROWS

	
Indicates that all rows are needed in the output.

	
NONE

	
Used to specifies that the output should not contain any XML metadata (for example, no DTD).

	
DTD

	
Used to specify that the generation of the DTD is desired.

	
SCHEMA

	
Used to specify that the generation of the XML Schema is desired.

	
LOWER_CASE

	
Use lower case tag names.

	
UPPER_CASE

	
Use upper case tag names.

Types

Table 174-2 Types of DBMS_XMLQUERY

	Type	Description
	
ctxType

	
The type of the query context handle. This is the return type of NEWCONTEXT

Summary of DBMS_XMLQUERY Subprograms

Table 174-3 DBMS_XMLQUERY Package Subprograms

	Method	Description
	
CLOSECONTEXT

	
Closes or deallocates a particular query context.

	
GETDTD

	
Generates the DTD.

	
GETEXCEPTIONCONTENT

	
Returns the thrown exception's error code and error message.

	
GETNUMROWSPROCESSED

	
Returns the number of rows processed for the query.

	
GETVERSION

	
Prints the version of the XSU in use.

	
GETXML

	
Generates the XML document.

	
NEWCONTEXT

	
Creates a query context and it returns the context handle.

	
PROPAGATEORIGINALEXCEPTION

	
Tells the XSU that if an exception is raised, and is being thrown, the XSU should throw the very exception raised; rather then, wrapping it with an OracleXMLSQLException.

	
REMOVEXSLTPARAM

	
Removes a particular top-level stylesheet parameter.

	
SETBINDVALUE

	
Sets a value for a particular bind name.

	
SETCOLLIDATTRNAME

	
Sets the name of the id attribute of the collection element's separator tag.

	
SETDATAHEADER

	
Sets the XML data header.

	
SETDATEFORMAT

	
Sets the format of the generated dates in the XML document.

	
SETENCODINGTAG

	
Sets the encoding processing instruction in the XML document.

	
SETERRORTAG

	
Sets the tag to be used to enclose the XML error documents.

	
SETMAXROWS

	
Sets the maximum number of rows to be converted to XML.

	
SETMETAHEADER

	
Sets the XML meta header.

	
SETRAISEEXCEPTION

	
Tells the XSU to throw the raised exceptions.

	
SETRAISENOROWSEXCEPTION

	
Tells the XSU to throw or not to throw an OracleXMLNoRowsException in the case when for one reason or another, the XML document generated is empty.

	
SETROWIDATTRNAME

	
Sets the name of the id attribute of the row enclosing tag.

	
SETROWIDATTRVALUE

	
Specifies the scalar column whose value is to be assigned to the id attribute of the row enclosing tag.

	
SETROWSETTAG

	
Sets the tag to be used to enclose the XML dataset.

	
SETROWTAG

	
Sets the tag to be used to enclose the XML element.

	
SETSKIPROWS

	
Sets the number of rows to skip.

	
SETSQLTOXMLNAMEESCAPING

	
This turns on or off escaping of XML tags in the case that the SQL object name, which is mapped to a XML identifier, is not a valid XML identifier.

	
SETSTYLESHEETHEADER

	
Sets the stylesheet header.

	
SETTAGCASE

	
Specified the case of the generated XML tags.

	
SETXSLT

	
Registers a stylesheet to be applied to generated XML.

	
SETXSLTPARAM

	
Sets the value of a top-level stylesheet parameter.

	
USENULLATTRIBUTEINDICATOR

	
Specifies weather to use an XML attribute to indicate NULLness.

	
USETYPEFORCOLLELEMTAG

	
Tells the XSU to use the collection element's type name as the collection element tag name.

CLOSECONTEXT

Closes or deallocates a particular query context

Syntax

PROCEDURE CLOSECONTEXT(
ctxHdl IN ctxType);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.

GETDTD

Generates and returns the DTD based on the SQL query used to initialize the context. The options are described in the following table.

	Syntax	Description
	FUNCTION GETDTD(
 ctxHdl IN ctxType,

 withVer IN BOOLEAN := false)

RETURN CLOB;

	Function that generates the DTD based on the SQL query used to initialize the context.
	PROCEDURE GETDTD(
 ctxHdl IN ctxType,

 xDoc IN CLOB,

 withVer IN BOOLEAN := false);

	Procedure that generates the DTD based on the SQL query used to initialize the context; specifies the output CLOB for XML document result.

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	withVer	(IN)	Generate the version information? TRUE for yes.
	xDoc	(IN)	CLOB into which to write the generated XML document.

GETEXCEPTIONCONTENT

Returns the thrown exception's SQL error code and error message through the procedure's OUT parameters. This procedure is a work around the JVM functionality that obscures the original exception by its own exception, rendering PL/SQL unable to access the original exception content.

Syntax

PROCEDURE GETEXCEPTIONCONTENT(
ctxHdl IN ctxType,
errNo OUT NUMBER,
errMsg OUT VARCHAR2);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	errNo	(OUT)	Error number.
	errMsg	(OUT)	Error message.

GETNUMROWSPROCESSED

Return the number of rows processed for the query.

Syntax

FUNCTION GETNUMROWSPROCESSED(
ctxHdl IN ctxType)
RETURN NUMBER;

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.

GETVERSION

Prints the version of the XSU in use.

Syntax

PROCEDURE GETVERSION();

GETXML

Creates the new context, executes the query, gets the XML back and closes the context. This is a convenience function. The context doesn't have to be explicitly opened or closed. The options are described in the following table.

	Syntax	Description
	FUNCTION GETXML(
 sqlQuery IN VARCHAR2,

 metaType IN NUMBER := NONE)

RETURN CLOB;

	This function uses a SQL query in string form.
	FUNCTION GETXML(
 sqlQuery IN CLOB,

 metaType IN NUMBER := NONE)

RETURN CLOB;

	This function uses a SQL query in CLOB form.
	FUNCTION GETXML(
 ctxHdl IN ctxType,

 metaType IN NUMBER := NONE)

RETURN CLOB;

	This function generates the XML document based on a SQL query used to initialize the context.
	PROCEDURE GETXML(
 ctxHdl IN ctxType,

 xDoc IN CLOB,

 metaType IN NUMBER := NONE);

	This procedure generates the XML document based on the SQL query used to initialize the context.

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	metaType	(IN)	XML metadata type (NONE, DTD, or SCHEMA).
	sqlQuery	(IN)	SQL query.
	xDoc	(IN)	CLOB into which to write the generated XML document.

NEWCONTEXT

Creates a query context and it returns the context handle. The options are described in the following table.

	Syntax	Description
	FUNCTION NEWCONTEXT(
 sqlQuery IN VARCHAR2)

RETURN ctxType;

	Creates a query context from a string.
	FUNCTION NEWCONTEXT(
 sqlQuery IN CLOB)

RETURN ctxType;

	Creates a query context from a CLOB.

	Parameter	IN / OUT	Description
	sqlQuery	(IN)	SQL query, the results of which to convert to XML.

PROPAGATEORIGINALEXCEPTION

Specifies whether to throw every original exception raised or to wrap it in an OracleXMLSQLException.

Syntax

PROCEDURE PROPAGATEORIGINALEXCEPTION(
ctxHdl IN ctxType,
flag IN BOOLEAN);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	flag	(IN)	TRUE if want to propagate original exception, FALSE to wrap in OracleXMLException.

REMOVEXSLTPARAM

Removes the value of a top-level stylesheet parameter. If no stylesheet is registered, this method is not operational.

Syntax

PROCEDURE REMOVEXSLTPARAM(
ctxHdl IN ctxType,
name IN VARCHAR2);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	name	(IN)	Name of the top level stylesheet parameter.

SETBINDVALUE

Sets a value for a particular bind name.

Syntax

PROCEDURE SETBINDVALUE(
ctxHdl IN ctxType,
bindName IN VARCHAR2,
bindValue IN VARCHAR2);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	bindName	(IN)	Bind name.
	bindValue	(IN)	Bind value.

SETCOLLIDATTRNAME

Sets the name of the id attribute of the collection element's separator tag. Passing NULL or an empty string for the tag causes the row id attribute to be omitted.

Syntax

PROCEDURE SETCOLLIDATTRNAME(
ctxHdl IN ctxType,
attrName IN VARCHAR2);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	attrName	(IN)	Attribute name.

SETDATAHEADER

Sets the XML data header. The data header is an XML entity that is appended at the beginning of the query-generated XML entity, the rowset. The two entities are enclosed by the docTag argument. The last data header specified is used. Passing in NULL for the header parameter unsets the data header.

Syntax

PROCEDURE SETDATAHEADER(
ctxHdl IN ctxType,
header IN CLOB := null,
tag IN VARCHAR2 := null);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	header	(IN)	Header.
	tag	(IN)	Tag used to enclose the data header and the rowset.

SETDATEFORMAT

Sets the format of the generated dates in the XML document. The syntax of the date format pattern, the date mask, should conform to the requirements of the java.text.SimpleDateFormat class. Setting the mask to NULL or an empty string sets the default mask -- DEFAULT_DATE_FORMAT.

Syntax

PROCEDURE SETDATEFORMAT(
ctxHdl IN ctxType,
mask IN VARCHAR2);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	mask	(IN)	The date mask.

SETENCODINGTAG

Sets the encoding processing instruction in the XML document.

Syntax

PROCEDURE SETENCODINGTAG(
ctxHdl IN ctxType,
enc IN VARCHAR2 := DB_ENCODING);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	enc	(IN)	The encoding to use.

SETERRORTAG

Sets the tag to be used to enclose the XML error documents.

Syntax

PROCEDURE SETERRORTAG(
ctxHdl IN ctxType,
tag IN VARCHAR2);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	tag	(IN)	Tag name.

SETMAXROWS

Sets the maximum number of rows to be converted to XML. By default, there is no set maximum.

Syntax

PROCEDURE SETMAXROWS (
ctxHdl IN ctxType,
rows IN NUMBER);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	rows	(IN)	Maximum number of rows to generate.

SETMETAHEADER

Sets the XML meta header. When set, the header is inserted at the beginning of the metadata part (DTD or XMLSchema) of each XML document generated by this object. The last meta header specified is used. Passing in NULL for the header parameter unsets the meta header.

Syntax

PROCEDURE SETMETAHEADER(
ctxHdl IN ctxType,
header IN CLOB := null);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	Header	(IN)	Header.

SETRAISEEXCEPTION

Specifies whether to throw raised exceptions. If this call isn't made or if FALSE is passed to the flag argument, the XSU catches the SQL exceptions and generates an XML document from the exception message.

Syntax

PROCEDURE SETRAISEEXCEPTION(
ctxHdl IN ctxType,
flag IN BOOLEAN:=true);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	flag	(IN)	Throw raised exceptions? TRUE for yes, otherwise FALSE.

SETRAISENOROWSEXCEPTION

Specifies whether to throw an OracleXMLNoRowsException when the generated XML document is empty. By default, the exception is not thrown.

Syntax

PROCEDURE SETRAISENOROWSEXCEPTION(
ctxHdl IN ctxType,
flag IN BOOLEAN:=false);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	flag	(IN)	Throws an OracleXMLNoRowsException if set to TRUE.

SETROWIDATTRNAME

Sets the name of the id attribute of the row enclosing tag. Passing NULL or an empty string for the tag causes the row id attribute to be omitted.

Syntax

PROCEDURE SETROWIDATTRNAME(
ctxHdl IN ctxType,
attrName IN VARCHAR2);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	attrName	(IN)	Attribute name.

SETROWIDATTRVALUE

Specifies the scalar column whose value is to be assigned to the id attribute of the row enclosing tag. Passing NULL or an empty string for the colName assigns the row count value (0, 1, 2 and so on) to the row id attribute.

Syntax

PROCEDURE SETROWIDATTRVALUE(
ctxHdl IN ctxType,
colName IN VARCHAR2);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	colName	(IN)	Column whose value is to be assigned to the row id attribute.

SETROWSETTAG

Sets the tag to be used to enclose the XML dataset.

Syntax

PROCEDURE SETROWSETTAG(
ctxHdl IN ctxType,
tag IN VARCHAR2);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	tag	(IN)	Tag name.

SETROWTAG

Sets the tag to be used to enclose the XML element corresponding to a db.record.

Syntax

PROCEDURE SETROWTAG(
ctxHdl IN ctxType,
tag IN VARCHAR2);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	tag	(IN)	Tag name.

SETSKIPROWS

Sets the number of rows to skip. By default, 0 rows are skipped.

Syntax

PROCEDURE SETSKIPROWS(
ctxHdl IN ctxType,
rows IN NUMBER);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	rows	(IN)	Maximum number of rows to skip.

SETSQLTOXMLNAMEESCAPING

This turns on or off escaping of XML tags in the case that the SQL object name, which is mapped to a XML identifier, is not a valid XML identifier.

Syntax

PROCEDURE SETSQLTOXMLNAMEESCAPING(
ctxHdl IN ctxType,
flag IN BOOLEAN := true);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	flag	(IN)	Turn on escaping? TRUE for yes, otherwise FALSE.

SETSTYLESHEETHEADER

Sets the stylesheet header (the stylesheet processing instructions) in the generated XML document. Passing NULL for the uri argument will unset the stylesheet header and the stylesheet type.

Syntax

PROCEDURE SETSTYLESHEETHEADER(
ctxHdl IN ctxType,
uri IN VARCHAR2,
type IN VARCHAR2 := 'text/xsl');

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	uri	(IN)	Stylesheet URI.
	type	(IN)	Stylesheet type; defaults to "text/xsl".

SETTAGCASE

Specifies the case of the generated XML tags.

Syntax

PROCEDURE SETTAGCASE(
ctxHdl IN ctxType,
tCase IN NUMBER);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	tCase	(IN)	The tag's case:
	
0 for as are

	
1 for lower case

	
2 for upper case

SETXSLT

Registers a stylesheet to be applied to generated XML. If a stylesheet was already registered, it is replaced by the new one. The options are described in the following table. Passing NULL for the uri argument or an empty string for the stylesheet argument will unset the stylesheet header and type.

	Syntax	Description
	PROCEDURE SETXSLT(
 ctxHdl IN ctxType,

 uri IN VARCHAR2,

 ref IN VARCHAR2 := null);

	To un-register the stylesheet pass in a null for the uri.
	PROCEDURE SETXSLT(
 ctxHdl IN ctxType,

 stylesheet CLOB,

 ref IN VARCHAR2 := null);

	To un-register the stylesheet pass in a null or an empty string for the stylesheet.

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	uri	(IN)	Stylesheet URI.
	stylesheet	(IN)	Stylesheet.
	ref	(IN)	URL to include, imported and external entities.

SETXSLTPARAM

Sets the value of a top-level stylesheet parameter. The parameter value is expected to be a valid XPath expression; the string literal values would therefore have to be quoted explicitly. If no stylesheet is registered, this method is not operational.

Syntax

PROCEDURE SETXSLTPARAM(
ctxHdl IN ctxType,
name IN VARCHAR2,
value IN VARCHAR2);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	name	(IN)	Name of the top level stylesheet parameter.
	value	(IN)	Value to be assigned to the stylesheet parameter.

USENULLATTRIBUTEINDICATOR

Specifies whether to use an XML attribute to indicate NULLness, or to do this by omitting the particular entity in the XML document.

Syntax

PROCEDURE SETNULLATTRIBUTEINDICATOR(
ctxHdl IN ctxType,
flag IN BOOLEAN);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	flag	(IN)	Sets attribute to NULL if TRUE, omits from XML document if FALSE.

USETYPEFORCOLLELEMTAG

Specifies whether to use the collection element's type name as its element tag name. By default, the tag name for elements of a collection is the collection's tag name followed by _item.

Syntax

PROCEDURE USETYPEFORCOLLELEMTAG(
ctxHdl IN ctxType,
flag IN BOOLEAN := true);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	flag	(IN)	Turn on use of the type name?

DBMS_XMLSAVE

175 DBMS_XMLSAVE

DBMS_XMLSAVE provides XML to database-type functionality.

	
See Also:

Oracle XML DB Developer's Guide

This chapter contains the following topics:

	
Using DBMS_XMLSAVE

	
Security Model

	
Constants

	
Types

	
Summary of DBMS_XMLSAVE Subprograms

Using DBMS_XMLSAVE

	
Security Model

	
Constants

	
Types

Security Model

Owned by XDB, the DBMS_XMLSAVE package must be created by SYS or XDB. The EXECUTE privilege is granted to PUBLIC. Subprograms in this package are executed using the privileges of the current user.

Constants

Table 175-1 Constants of DBMS_XMLSAVE

	Constant	Description
	
DEFAULT_ROWTAG

	
The default tag name for the element corresponding to database records -- ROW

	
DEFAULT_DATE_FORMAT

	
Default date mask:'MM/dd/yyyy HH:mm:ss'

	
MATCH_CASE

	
Used to specify that when mapping XML elements to database entities; the XSU should be case sensitive.

	
IGNORE_CASE

	
Used to specify that when mapping XML elements to database. entities the XSU should be case insensitive.

Types

Table 175-2 Types of DBMS_XMLSAVE

	Type	Description
	
ctxType

	
The type of the query context handle. The type of the query context handle. This the return type of NEWCONTEXT.

Summary of DBMS_XMLSAVE Subprograms

Table 175-3 DBMS_XMLSAVE Package Subprograms

	Method	Description
	
CLEARKEYCOLUMNLIST

	
Clears the key column list.

	
CLEARUPDATECOLUMNLIST

	
Clears the update column list.

	
CLOSECONTEXT

	
It closes/deallocates a particular save context.

	
DELETEXML

	
Deletes records specified by data from the XML document, from the table specified at the context creation time.

	
GETEXCEPTIONCONTENT

	
Returns the thrown exception's error code and error message.

	
INSERTXML

	
Inserts the XML document into the table specified at the context creation time.

	
NEWCONTEXT

	
Creates a save context, and returns the context handle.

	
PROPAGATEORIGINALEXCEPTION

	
Tells the XSU that if an exception is raised, and is being thrown, the XSU should throw the very exception raised; rather then, wrapping it with an OracleXMLSQLException.

	
REMOVEXSLTPARAM

	
Removes the value of a top-level stylesheet parameter

	
SETBATCHSIZE

	
Changes the batch size used during DML operations.

	
SETCOMMITBATCH

	
Sets the commit batch size.

	
SETDATEFORMAT

	
Sets the format of the generated dates in the XML document.

	
SETIGNORECASE

	
The XSU does mapping of XML elements to database.

	
SETKEYCOLUMN

	
This methods adds a column to the key column list.

	
SETPRESERVEWHITESPACE

	
Tells the XSU whether to preserve whitespace or not.

	
SETROWTAG

	
Names the tag used in the XML document to enclose the XML elements corresponding to database.

	
SETSQLTOXMLNAMEESCAPING

	
This turns on or off escaping of XML tags in the case that the SQL object name, which is mapped to a XML identifier, is not a valid XML identifier.

	
SETUPDATECOLUMN

	
Adds a column to the update column list.

	
SETXSLT

	
Registers a XSL transform to be applied to the XML to be saved.

	
SETXSLTPARAM

	
Sets the value of a top-level stylesheet parameter.

	
UPDATEXML

	
Updates the table given the XML document.

CLEARKEYCOLUMNLIST

Clears the key column list.

Syntax

PROCEDURE clearKeyColumnList(
 ctxHdl IN ctxType);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.

CLEARUPDATECOLUMNLIST

Clears the update column list.

Syntax

PROCEDURE clearUpdateColumnList(
 ctxHdl IN ctxType);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.

CLOSECONTEXT

Closes/deallocates a particular save context.

Syntax

PROCEDURE closeContext(
 ctxHdl IN ctxType);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.

DELETEXML

Deletes records specified by data from the XML document from the table specified at the context creation time, and returns the number of rows deleted. The options are described in the following table.

	Syntax	Description
	FUNCTION deleteXML(
 ctxHdl IN ctxPType,

 xDoc IN VARCHAR2)

RETURN NUMBER;

	Uses a VARCHAR2 type for the xDoc parameter.
	FUNCTION deleteXML(
 ctxHdl IN ctxType,

 xDoc IN CLOB)

RETURN NUMBER;

	Uses a CLOB type for the xDoc parameter.

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	xDoc	(IN)	String containing the XML document.

GETEXCEPTIONCONTENT

Through its arguments, this method returns the thrown exception's error code and error message, SQL error code. This is to get around the fact that the JVM throws an exception on top of whatever exception was raised; thus, rendering PL/SQL unable to access the original exception.

Syntax

PROCEDURE getExceptionContent(
 ctxHdl IN ctxType,
 errNo OUT NUMBER,
 errMsg OUT VARCHAR2);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	errNo	(IN)	Error number.
	errMsg	(IN)	Error message.

INSERTXML

Inserts the XML document into the table specified at the context creation time, and returns the number of rows inserted. The options are described in the following table.

	Syntax	Description
	FUNCTION insertXML(
 ctxHdl IN ctxType,

 xDoc IN VARCHAR2)

RETURN NUMBER;

	Passes in the xDoc parameter as a VARCHAR2.
	FUNCTION insertXML(
 ctxHdl IN ctxType,

 xDoc IN CLOB)

RETURN NUMBER;

	Passes in the xDoc parameter as a CLOB.

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	xDoc	(IN)	String containing the XML document.

NEWCONTEXT

Creates a save context, and returns the context handle.

Syntax

FUNCTION newContext(
 targetTable IN VARCHAR2)
RETURN ctxType;

	Parameter	IN / OUT	Description
	targetTable	(IN)	The target table into which to load the XML document.

PROPAGATEORIGINALEXCEPTION

Tells the XSU that if an exception is raised, and is being thrown, the XSU should throw the very exception raised; rather then, wrapping it with an OracleXMLSQLException.

Syntax

PROCEDURE propagateOriginalException(
 ctxHdl IN ctxType,
 flag IN BOOLEAN);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	flag	(IN)	Propagate the original exception? 0=FALSE, 1=TRUE.

REMOVEXSLTPARAM

Removes the value of a top-level stylesheet parameter.

Syntax

PROCEDURE removeXSLTParam(
 ctxHdl IN ctxType,
 name IN VARCHAR2);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	name	(IN)	Parameter name.

SETBATCHSIZE

Changes the batch size used during DML operations. When performing inserts, updates or deletes, it is better to batch the operations so that they get executed in one shot rather than as separate statements. The flip side is that more memory is needed to buffer all the bind values. Note that when batching is used, a commit occurs only after a batch is executed. So if one of the statement inside a batch fails, the whole batch is rolled back. This is a small price to pay considering the performance gain; nevertheless, if this behavior is unacceptable, then set the batch size to 1.

Syntax

PROCEDURE setBatchSize(
 ctxHdl IN ctxType,
 batchSize IN NUMBER);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	batchSize	(IN)	Batch size.

SETCOMMITBATCH

Sets the commit batch size. The commit batch size refers to the number or records inserted after which a commit should follow. If batchSize is less than 1 or the session is in "auto-commit" mode, using the XSU does not make any explicit commits. By default, commitBatch is 0.

Syntax

PROCEDURE setCommitBatch(
 ctxHdl IN ctxType,
 batchSize IN NUMBER);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	batchSize	(IN)	Commit batch size.

SETDATEFORMAT

Sets the format of the generated dates in the XML document. The syntax of the date format patern, the date mask, should conform to the requirements of the class java.text.SimpleDateFormat. Setting the mask to <code>null</code> or an empty string unsets the date mask.

Syntax

PROCEDURE setDateFormat(
 ctxHdl IN ctxType,
 mask IN VARCHAR2);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	mask	(IN)	Syntax of the date format pattern..

SETIGNORECASE

The XSU does mapping of XML elements to db columns/attributes based on the element names (XML tags). This function tells the XSU to do this match case insensitive.

Syntax

PROCEDURE setIgnoreCase(
 ctxHdl IN ctxType,
 flag IN NUMBER);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	flag	(IN)	Ignore tag case in the XML doc? 0=FALSE, 1=TRUE.

SETKEYCOLUMN

This method adds a column to the "key column list". The value for the column cannot be NULL. In case of update or delete, the columns in the key column list make up the WHERE clause of the statement. The key columns list must be specified before updates can complete; this is optional for delete operations.

Syntax

PROCEDURE setKeyColumn(
 ctxHdl IN ctxType,
 colName IN VARCHAR2);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	colName	(IN)	Column to be added to the key column list; cannot be NULL.

SETPRESERVEWHITESPACE

Tells the XSU whether or not to preserve whitespace.

Syntax

PROCEDURE setPreserveWhitespace(
 ctxHdl IN ctxType,
 flag IN BOOLEAN := true);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	flag	(IN)	Should XSU preserve whitespace?

SETROWTAG

Names the tag used in the XML document to enclose the XML elements corresponding to db. records.

Syntax

PROCEDURE setRowTag(
 ctxHdl IN ctxType,
 tag IN VARCHAR2);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	tag	(IN)	Tag name.

SETSQLTOXMLNAMEESCAPING

Turns on or off escaping of XML tags in the case that the SQL object name, which is mapped to a XML identifier, is not a valid XML identifier.

Syntax

PROCEDURE setSQLToXMLNameEscaping(
 ctxHdl IN ctxType,
 flag IN BOOLEAN := true);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	flag	(IN)	Turn on escaping?

SETUPDATECOLUMN

Adds a column to the update column list. In case of insert, the default is to insert values to all the columns in the table; on the other hand, in case of updates, the default is to only update the columns corresponding to the tags present in the ROW element of the XML document. When the update column list is specified, the columns making up this list alone will get updated or inserted into.

Syntax

PROCEDURE setUpdateColumn(
 ctxHdl IN ctxType,
 colName IN VARCHAR2);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	colName	(IN)	Column to be added to the update column list.

SETXSLT

Registers an XSL transform to be applied to the XML to be saved. If a stylesheet was already registered, it gets replaced by the new one. To un-register the stylesheet, pass in null for the URI. The options are described in the following table.

	Syntax	Description
	PROCEDURE setXSLT(
 ctxHdl IN ctxType,

 uri IN VARCHAR2,

 ref IN VARCHAR2 := null);

	Passes in the stylesheet through a URI.
	PROCEDURE setXSLT(
 ctxHdl IN ctxType,

 stylesheet IN CLOB,

 ref IN VARCHAR2 := null);

	Passes in the stylesheet through a CLOB.

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	uri	(IN)	URI to the stylesheet to register.
	ref	(IN)	URL for include, import, and external entities.
	stylesheet	(IN)	CLOB containing the stylesheet to register.

SETXSLTPARAM

Sets the value of a top-level stylesheet parameter. The parameter is expected to be a valid XPath expression; literal values would therefore have to be explicitly quoted.

Syntax

PROCEDURE setXSLTParam(
 ctxHdl IN ctxType,
 name IN VARCHAR2,
 value IN VARCHAR2);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	name	(IN)	Parameter name.
	value	(IN)	Parameter value as an XPath expression

UPDATEXML

Updates the table specified at the context creation time with data from the XML document, and returns the number of rows updated. The options are described in the following table.

	Syntax	Description
	FUNCTION updateXML(
 ctxHdl IN ctxType,

 xDoc IN VARCHAR2)

RETURN NUMBER;

	Passes in the xDoc parameter as a VARCHAR2.
	FUNCTION updateXML(
 ctxHdl IN ctxType,

 xDoc IN CLOB)

RETURN NUMBER;

	Passes in the xDoc parameter as a CLOB.

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	xDoc	(IN)	String containing the XML document.

DBMS_XMLSCHEMA

176 DBMS_XMLSCHEMA

DBMS_XMLSCHEMA package provides procedures to manage XML schemas. It is created by script dbmsxsch.sql during Oracle database installation.

	
See Also:

Oracle XML DB Developer's Guide

This chapter contains the following topics:

	
Using DBMS_XMLSCHEMA

	
Overview

	
Security Model

	
Constants

	
Views

	
Operational Notes

	
Summary of DBMS_XMLSCHEMA Subprograms

Using DBMS_XMLSCHEMA

This section contains topics which relate to using the DBMS_XMLSCHEMA package.

	
Overview

	
Security Model

	
Constants

	
Views

	
Operational Notes

Overview

This package provides subprograms to

	
Register an XML schema

	
Delete a previously registered XML schema

	
Re-compile a previously registered XML schema

	
Generate an XML schema

	
Evolves an XML schema

Security Model

Owned by XDB, the DBMS_XMLSCHEMA package must be created by SYS or XDB. The EXECUTE privilege is granted to PUBLIC. Subprograms in this package are executed using the privileges of the current user.

Constants

The DBMS_XMLSCHEMA package uses the constants shown in following tables.

	
DBMS_XMLSCHEMA Constants - Delete Option

	
DBMS_XMLSCHEMA Constants - Enable Hierarchy

	
DBMS_XMLSCHEMA Constants - Register CSID

Table 176-1 DBMS_XMLSCHEMA Constants - Delete Option

	Constant	Type	Value	Description
	
DELETE_RESTRICT

	
NUMBER

	
1

	
Deletion of an XML schema fails if there are any tables or XML schemas that depend on it

	
DELETE_INVALIDATE

	
NUMBER

	
2

	
Deletion of an XML schema does not fail if there are tables or XML schemas that depend on it. All dependent tables and schemas are invalidated.

	
DELETE_CASCADE

	
NUMBER

	
3

	
Deletion of an XML schema also drops all SQL types and default tables associated with it. SQL types are dropped only if gentypes argument was set to TRUE during registration of the XML schema. However, deletion of the XML schema fails if there are any instance documents conforming to the schema or any dependent XML schemas.

	
DELETE_CASCADE_FORCE

	
NUMBER

	
4

	
This option is similar to DELETE_CASCADE except that it does not check for any stored instance documents conforming to the schema or any dependent XML schemas. Also, it ignores any errors.

Table 176-2 DBMS_XMLSCHEMA Constants - Enable Hierarchy

	Constant	Type	Value	Description
	
ENABLE_HIERARCHY_NONE

	
PLS_INTEGER

	
1

	
The ENABLE_HIERARCHY procedure of the DBMS_XDBZ package will not be called on any tables created while registering that schema

	
ENABLE_HIERARCHY_CONTENTS

	
PLS_INTEGER

	
2

	
The ENABLE_HIERARCHY procedure of the DBMS_XDBZ package will be called for all tables created during schema registration with hierarchy_type as DBMS_XDBZ.ENABLE_CONTENTS

	
ENABLE_HIERARCHY_RESMETADATA

	
PLS_INTEGER

	
3

	
The ENABLE_HIERARCHY procedure of the DBMS_XDBZ package will be called on all tables created during schema registration with hierarchy_type as DBMS_XDBZ.ENABLE_RESMETADATA. Users should pass in DBMS_XMLSCHEMA.ENABLE_RESMETADATA for schemas they intend to use as resource metadata tables.

Table 176-3 DBMS_XMLSCHEMA Constants - Register CSID

	Constant	Type	Value	Description
	
REGISTER_NODOCID

	
NUMBER

	
1

	
If a schema is registered for metadata use (using the value ENABLE_HIER_RESMETADATA for parameter enablehierarchy during registration), a column named DOCID is added to all tables created during schema registration. This constant can be used in the options argument of REGISTERSCHEMA to prevent the creation of this column if the user wishes to optimize on storage

	
REGISTER_CSID_NULL

	
NUMBER

	
-1

	
If user wishes to not specify the character set of the input schema document when invoking REGISTERSCHEMA, this value can be used for the csid parameter

Views

The DBMS_XMLSCHEMA package uses the views shown in Table 176-4. The columns of these views are described in detail in the Oracle Database Reference.

Table 176-4 Summary of Views used by DBMS_XMLSCHEMA

	Schema	Description
	
USER_XML_SCHEMAS

	
All registered XML Schemas owned by the user

	
ALL_XML_SCHEMAS

	
All registered XML Schemas usable by the current user

	
DBA_XML_SCHEMAS

	
All registered XML Schemas in the database

	
DBA_XML_TABLES

	
All XMLType tables in the system

	
USER_XML_TABLES

	
All XMLType tables owned by the current user

	
ALL_XML_TABLES

	
All XMLType tables usable by the current user

	
DBA_XML_TAB_COLS

	
All XMLType table columns in the system

	
USER_XML_TAB_COLS

	
All XMLType table columns in tables owned by the current user

	
ALL_XML_TAB_COLS

	
All XMLType table columns in tables usable by the current user

	
DBA_XML_VIEWS

	
All XMLType views in the system

	
USER_XML_VIEWS

	
All XMlType views owned by the current user

	
ALL_XML_VIEWS

	
All XMLType views usable by the current user

	
DBA_XML_VIEW_COLS

	
All XMLType view columns in the system

	
USER_XML_VIEW_COLS

	
All XMLType view columns in views owned by the current user

	
ALL_XML_VIEW_COLS

	
All XMLType view columns in views usable by the current user

Operational Notes

Guidelines for Using In-Place XML Schema Evolution

Before you perform an in-place XML-schema evolution, you should follow these preparatory steps:

	
Back up all existing data (instance documents) for the XML schema that will be evolved.

	
Perform a dry run using trace only, that is, without actually evolving the XML schema or updating any instance documents, to produce a trace of the update operations that would be performed during evolution. To do this, set the flag parameter value to only INPLACE_TRACE. Do not also use INPLACE_EVOLVE. After performing the dry run, examine the trace file, verifying that the listed DDL operations are in fact those that you intend.

Summary of DBMS_XMLSCHEMA Subprograms

Table 176-5 DBMS_XMLSCHEMA Package Subprograms

	Method	Description
	
COMPILESCHEMA Procedure

	
Used to re-compile an already registered XML schema. This is useful for bringing a schema in an invalid state to a valid state.

	
COPYEVOLVE Procedure

	
Evolves registered schemas so that existing XML instances remain valid

	
DELETESCHEMA Procedure

	
Removes the schema from the database

	
GENERATESCHEMA Function

	
Generates an XML schema from an oracle type name

	
GENERATESCHEMAS Function

	
Generates several XML schemas from an oracle type name

	
INPLACEEVOLVE Procedure

	
Evolves registered schemas by propagating schema changes to object types and tables

	
PURGESCHEMA Procedure

	
Removes the XML schema

	
REGISTERSCHEMA Procedures

	
Registers the specified schema for use by Oracle. This schema can then be used to store documents conforming to this.

	
REGISTERURI Procedure

	
Registers an XML schema specified by a URI name

COMPILESCHEMA Procedure

This procedure can be used to re-compile an already registered XML schema. This is useful for bringing a schema in an invalid state to a valid state. Can result in a ORA-31001 exception: invalid resource handle or path name.

Syntax

DBMS_XMLSCHEMA.COMPILESCHEMA(
 schemaurl IN VARCHAR2);

Parameters

Table 176-6 COMPILESCHEMA Procedure Parameters

	Parameter	Description
	
schemaurl

	
URL identifying the schema

COPYEVOLVE Procedure

This procedure evolves registered schemas so that existing XML instances remain valid.

This procedure is accomplished in according to the following basic scenario (alternative actions are controlled by the procedure's parameters):

	
copies data in schema based XMLType tables to temporary table storage

	
drops old tables

	
deletes old schemas

	
registers new schemas

	
creates new XMLType tables

	
Populates new tables with data in temporary storage; auxiliary structures (constraints, triggers, indexes, and others) are not preserved

	
drops temporary tables

	
See Also:

	
"Schema Evolution" chapter of the Oracle XML DB Developer's Guide for examples on how to evolve existing schemas

	
Oracle Database Error Messages for information on exceptions specific to schema evolution, ORA-30142 through ORA-30946.

Syntax

DBMS_XMLSCHEMA.COPYEVOLVE(
 schemaurls IN XDB$STRUBG_LIST_T,
 newschemas IN XMLSequenceType,
 transforms IN XMLSequenceType :=NULL,
 preserveolddocs IN BOOLEAN :=FALSE,
 maptablename IN VARCHAR2 :=NULL,
 generatetables IN BOOLEAN :=TRUE,
 force IN BOOLEAN :=FALSE,
 schemaowners IN XDB$STRING_LIST_T :=NULL
 parallelDegree IN PLS_INTEGER := 0,
 options IN PLS_INTEGER := 0);

Parameters

Table 176-7 COPYEVOLVE Procedure Parameters

	Parameter	Description
	
schemaurls

	
VARRAY of URLs of all schemas to be evolved. Should include the dependent schemas. Unless the FORCE parameter is TRUE, URLs should be in the order of dependency.

	
newschemas

	
VARRAY of new schema documents. Should be specified in same order as the corresponding URLs.

	
transforms

	
VARRAY of transforming XSL documents to be applied to schema-based documents. Should be specified in same order as the corresponding URLs. Optional if no transformations are required.

	
preserveolddocs

	
Default is FALSE, and temporary tables with old data are dropped. If TRUE, these table are still available after schema evolution is complete.

	
maptabname

	
Specifies the name of the table mapping permanent to temporary tables during the evolution process. Valid columns are:

	
SCHEMA_URL - VARCHAR2(700) - URL of schema to which this table conforms

	
SCHEMA_OWNER -VARCHAR2(30) - Owner of the schema

	
ELEMENT_NAME - VARCHAR2(256)- Element to which this table conforms

	
TAB_NAME - VARCHAR2(65) - Qualified table name: <owner_name>.<table_name>

	
COL_NAME - VARCHAR2(4000) - Name of the column (NULL for XMLType tables)

	
TEMP_TABNAME - VARCHAR2(30) - Name of temporary tables which holds data for this table.

	
generatetables

	
Default is TRUE, and new tables will be generated.

If FALSE:

	
new tables will not be generated after registration of new schemas

	
preserveolddocs must be TRUE

	
maptablename must be non-NULL

	
force

	
Default is FALSE.

If TRUE, ignores errors generated during schema evolution. Used when there are circular dependencies among schemas to ensure that all schemas are stored despite possible errors in registration.

	
schemaowners

	
VARRAY of names of schema owners. Should be specified in same order as the corresponding URLs. Default is NULL, assuming that all schemas are owned by the current user.

	
paralleldegree

	
Specifies the degree of parallelism to be used in a PARALLEL hint during the data copy stage of the evolution. If this is 0 (default), the PARALLEL hint will not be given in the data copy statements.

	
options

	
Currently, the only supported option is COPYEVOLVE_BINARY_XML which lets you register the new schemas for binary XML and create the new tables/columns with binary XML as the storage type.

Usage Notes

You should back up all schemas and documents prior to invocation because COPYEVOLVE Procedure deletes all conforming documents prior to implementing the schema evolution.

DELETESCHEMA Procedure

This procedure deletes the XML Schema specified by the URL.

Syntax

DBMS_XMLSCHEMA.DELETESCHEMA(
 schemaurl IN VARCHAR2,
 delete_option IN PLS_INTEGER := DELETE_RESTRICT);

	
See Also:

"XMLSCHEMA Storage and Query: Basic" chapter of the Oracle XML DB Developer's Guide

Parameters

Table 176-8 DELETESCHEMA Procedure Parameters

	Parameter	Description
	
schemaurl

	
URL identifying the schema to be deleted

	
delete_option

	
Delete options:

	
DELETE_RESTRICT - Schema deletion fails if there are any tables or schemas that depend on this schema

	
DELETE_INVALIDATE - Schema deletion does not fail if there are any dependencies. Instead, it simply invalidates all dependent objects.

	
DELETE_CASCADE - Schema deletion will also drop all default SQL types and default tables. However the deletion fails if there are any stored instances conforming to this schema.

	
DELETE_CASCADE_FORCE - Similar to DELETE_CASCADE except that it does not check for any stored instances conforming to this schema. Also, it ignores any errors.

Exceptions

Table 176-9 DELETESCHEMA Procedure Exceptions

	Exception	Description
	
ORA-31001

	
Invalid resource handle or path name

GENERATESCHEMA Function

This function generates XML schema(s) from an Oracle type name. It inlines all in one schema (XMLType).

	
See Also:

"XMLSCHEMA Storage and Query: Advanced" chapter of the Oracle XML DB Developer's Guide

Syntax

DBMS_XMLSCHEMA.GENERATESCHEMA(
 schemaname IN VARCHAR2,
 typename IN VARCHAR2,
 elementname IN VARCHAR2 := NULL,
 recurse IN BOOLEAN := TRUE,
 annotate IN BOOLEAN := TRUE,
 embedcoll IN BOOLEAN := TRUE)
RETURN SYS.XMLTYPE;

Parameters

Table 176-10 GENERATESCHEMA Function Parameters

	Parameter	Description
	
schemaname

	
Name of the database schema containing the type

	
typename

	
Name of the Oracle type

	
elementname

	
The name of the top level element in the XML Schema. Defaults to typename.

	
recurse

	
Whether or not to also generate schema for all types referred to by the type specified

	
annotate

	
Whether or not to put the SQL annotations in the XML Schema

	
embedcoll

	
Determines whether the collections should be embedded in the type which refers to them, or create a complextype. Cannot be FALSE if annotations are turned on

Exceptions

Table 176-11 GENERATESCHEMA Function Exceptions

	Exception	Description
	
ORA-31001

	
Invalid resource handle or path name

GENERATESCHEMAS Function

This function generates XML schema(s) from an Oracle type name. It returns a collection of XMLTypes, one XML Schema document for each database schema.

	
See Also:

"XMLSCHEMA Storage and Query: Advanced" chapter of the Oracle XML DB Developer's Guide

Syntax

DBMS_XMLSCHEMA.GENERATESCHEMAS(
 schemaname IN VARCHAR2,
 typename IN VARCHAR2,
 elementname IN VARCHAR2 := NULL,
 schemaurl IN VARCHAR2 := NULL,
 annotate IN BOOLEAN := TRUE,
 embedcoll IN BOOLEAN := TRUE)
 RETURN SYS.XMLTYPE;

Parameters

Table 176-12 GENERATESCHEMAS Function Parameters

	Parameter	Description
	
schemaname

	
Name of the database schema containing the type

	
typename

	
Name of the Oracle type

	
elementname

	
The name of the top level element in the XML Schema defaults to typeName

	
schemaurl

	
Specifies base URL where schemas will be stored, needed by top level schema for import statement

	
annotate

	
Whether or not to put the SQL annotations in the XML Schema

	
embedcoll

	
Determines whether the collections be embedded in the type which refers to them, or create a complextype. Cannot be FALSE if annotations are turned on

Exceptions

Table 176-13 GENERATESCHEMAS Function Exceptions

	Exception	Description
	
ORA-31001

	
Invalid resource handle or path name

INPLACEEVOLVE Procedure

This procedure evolves registered schemas by propagating schema changes to object types and tables.

Syntax

DBMS_XMLSCHEMA.INPLACEEVOLVE(
 schemaURL IN VARCHAR2,
 diffXML IN XMLType,
 flags IN NUMBER);

Parameters

Table 176-14 INPLACEEVOLVE Procedure Parameters

	Parameter	Description
	
schemaurl

	
URL of the schema to evolve

	
diffXML

	
Changes to be applied to the schema. This is an XML document conforming to the XDIFF schema and specifies what changes need to be applied and the locations in the schema document where the changes are to be applied.

	
flags

	
The following bits may be set in this parameter to control the behavior of this procedure:

	
INPLACE_EVOLVE (value 1, meaning that bit 1 is on) – Perform in-place XML schema evolution: construct a new XML schema and validate it (against the XML schema for XML schemas); construct the DDL statements needed to evolve the instance-document disk structures, execute the DDL statements, and replace the old XML schema with the new.

	
INPLACE_TRACE (value 2, meaning that bit 2 is on) – Perform all steps necessary for in-place evolution, except executing the DDL statements and overwriting the old XML schema with the new, then write both the DDL statements and the new XML schema to a trace file.

That is, each of the bits constructs the new XML schema, validates it, and determines the steps needed to evolve the disk structures underlying the instance documents. In addition:

	
Bit INPLACE_EVOLVE carries out those evolution steps and replaces the old XML schema with the new.

	
Bit INPLACE_TRACE saves the evolution steps and the new XML schema in a trace file (it does not carry out the evolution steps)

Exceptions

The procedure raises exceptions in the following cases:

	
An error will be raised for invalid XPATH expressions and for XDIFF documents that do not conform to the xdiff schema.

	
Path expressions that are syntactically correct but result in an invalid node in the schema document will result in an error.

	
If the schema change makes the schema an ill-formed XML document or an invalid XML schema, this will raise an error.

	
Any errors resulting from CREATE TYPE, ALTER TYPE and like commands will generate error messages.

Usage Notes

	
Users are required to backup all their data before attempting in-place evolution, as there is no rollback with this operation.

	
A user must register their new XML schema with the database using the REGISTERSCHEMA Procedures and the REGISTERURI Procedure at a schema URL that is different from that of the one to be evolved. If the new schema registers successfully and is usable, only then should the user attempt to evolve the existing schema to the new schema by means of this subprogram. If the registration of the new schema is successful, then the user must delete this schema (and all its dependent objects) before attempting to evolve the schema at the old schema URL.

PURGESCHEMA Procedure

This procedure removes the XML schema.

	
See Also:

"XMLSCHEMA Storage and Query: Advanced" chapter of the Oracle XML DB Developer's Guide

Syntax

DBMS_XMLSCHEMA.PURGESCHEMA(
 schemaid IN RAW);

Parameters

Table 176-15 PURGESCHEMA Procedure Parameters

	Parameter	Description
	
schemaid

	
ID of the schema to be purged

Usage Notes

	
The schema should have been originally registered for binary encoding and should have been deleted in the HIDE mode.

	
Once a schema has been deleted in HIDE mode, it continues to exist in the XML DB dictionary and is used for decoding already encoded documents. The user invokes this interface when there are no stored instances encoded with this schema.

	
Once the schema is purged, any space used by that schema will be reclaimed and documents encoded using the schema will raise an error if an attempt is made to decode them.

	
The Schema ID can be obtained from the catalog views.

REGISTERSCHEMA Procedures

This procedure registers the specified schema for use by the database. The procedure is overloaded. The different functionality of each form of syntax is presented along with the definition.

	
Note:

As of release 11.2.0.2 the genbean parameter is deprecated. Oracle recommends that you do not use this parameter in new applications. Support for this feature is for backward compatibility only.

	
See Also:

"XMLSCHEMA Storage and Query: Basic" chapter of the Oracle XML DB Developer's Guide

Syntax

Registers a schema specified as a VARCHAR2:

DBMS_XMLSCHEMA.REGISTERSCHEMA(
 schemaurl IN VARCHAR2,
 schemadoc IN VARCHAR2,
 local IN BOOLEAN := TRUE,
 gentypes IN BOOLEAN := TRUE,
 genbean IN BOOLEAN := FALSE,
 gentables IN BOOLEAN := TRUE,
 force IN BOOLEAN := FALSE,
 owner IN VARCHAR2 := NULL,
 enablehierarchy IN PLS_INTEGER := DBMS_XMLSCHEMA.ENABLE_CONTENTS,
 options IN PLS_INTEGER := 0);

Registers the schema specified as a BFILE. The contents of the schema document must be in the database character set:

DBMS_XMLSCHEMA.REGISTERSCHEMA(
 schemaurl IN VARCHAR2,
 schemadoc IN BFILE,
 local IN BOOLEAN := TRUE,
 gentypes IN BOOLEAN := TRUE,
 genbean IN BOOLEAN := FALSE,
 force IN BOOLEAN := FALSE,
 owner IN VARCHAR2 := NULL,
 enablehierarchy IN PLS_INTEGER := DBMS_XMLSCHEMA.ENABLE_CONTENTS,
 options IN PLS_INTEGER := 0);

Registers the schema specified as a BFILE and identifies the character set id of the schema document:

DBMS_XMLSCHEMA.REGISTERSCHEMA(
 schemaurl IN VARCHAR2,
 schemadoc IN BFILE,
 local IN BOOLEAN := TRUE,
 gentypes IN BOOLEAN := TRUE,
 genbean IN BOOLEAN := TRUE,
 gentables IN BOOLEAN := TRUE,
 force IN BOOLEAN := TRUE,
 owner IN VARCHAR2 := '',
 csid IN NUMBER,
 enablehierarchy IN PLS_INTEGER := DBMS_XMLSCHEMA.ENABLE_CONTENTS,
 options IN PLS_INTEGER := 0);

Registers the schema specified as a BLOB. The contents of the schema document must be in the database character set:

DBMS_XMLSCHEMA.REGISTERSCHEMA(
 schemaurl IN VARCHAR2,
 schemadoc IN BLOB,
 local IN BOOLEAN := TRUE,
 genTypes IN BOOLEAN := TRUE,
 genBean IN BOOLEAN := FASLE,
 force IN BOOLEAN := FALSE,
 owner IN VARCHAR2 := NULL,
 enablehierarchy IN PLS_INTEGER := DBMS_XMLSCHEMA.ENABLE_CONTENTS,
 options IN PLS_INTEGER := 0);

Registers the schema specified as a BLOB and identifies the character set id of the schema document:

DBMS_XMLSCHEMA.REGISTERSCHEMA(
 schemaurl IN VARCHAR2,
 schemadoc IN BLOB,
 local IN BOOLEAN := TRUE,
 gentypes IN BOOLEAN := TRUE,
 genbean IN BOOLEAN := TRUE,
 gentables IN BOOLEAN := TRUE,
 force IN BOOLEAN := TRUE,
 owner IN VARCHAR2 := '',
 csid IN NUMBER,
 enablehierarchy IN PLS_INTEGER := DBMS_XMLSCHEMA.ENABLE_CONTENTS,
 options IN PLS_INTEGER := 0);

Registers the schema specified as a CLOB

DBMS_XMLSCHEMA.REGISTERSCHEMA(
 schemaurl IN VARCHAR2,
 schemadoc IN CLOB,
 local IN BOOLEAN := TRUE,
 gentypes IN BOOLEAN := TRUE,
 genbean IN BOOLEAN := FALSE,
 force IN BOOLEAN := FALSE,
 owner IN VARCHAR2 := NULL,
 options IN PLS_INTEGER := 0);

Registers the schema specified as an XMLTYPE.

DBMS_XMLSCHEMA.REGISTERSCHEMA(
 schemaurl IN VARCHAR2,
 schemadoc IN SYS.XMLTYPE,
 local IN BOOLEAN := TRUE,
 gentypes IN BOOLEAN := TRUE,
 genbean IN BOOLEAN := FALSE,
 force IN BOOLEAN := FALSE,
 owner IN VARCHAR2 := NULL,
 enablehierarchy IN PLS_INTEGER := DBMS_XMLSCHEMA.ENABLE_CONTENTS,
 options IN PLS_INTEGER := 0);

Registers the schema specified as a BLOB. The contents of the schema document must be in the database character set:

DBMS_XMLSCHEMA.REGISTERSCHEMA(
 schemaurl IN VARCHAR2,
 schemadoc IN SYS.URIType,
 local IN BOOLEAN := TRUE,
 gentypes IN BOOLEAN := TRUE,
 genbean IN BOOLEAN := FALSE,
 force IN BOOLEAN := FALSE,
 owner IN VARCHAR2 := NULL,
 enablehierarchy IN PLS_INTEGER := DBMS_XMLSCHEMA.ENABLE_CONTENTS,
 options IN PLS_INTEGER := 0);

Parameters

Table 176-16 REGSITERSCHEMA Procedure Parameters

	Parameter	Description
	
schemaurl

	
URL that uniquely identifies the schema document. This value is used to derive the path name of the schema document within the database hierarchy. Can be used inside schemalocation attribute of XML Schema import element.

	
schemadoc

	
A valid XML schema document

	
local

	
Is this a local or global schema?

	
By default, all schemas are registered as local schemas, under /sys/schemas/<username>/...

	
If a schema is registered as global, it is added under /sys/schemas/PUBLIC/...

You need write privileges on the directory to be able to register a schema as global.

	
gentypes

	
Determines whether the schema compiler generates object types. By default, TRUE. If you use binary XML, you must be set gentypes to FALSE.

	
genbean

	
Determines whether the schema compiler generates Java beans. By default, FALSE. Oracle recommends that this parameter always be set to FALSE.

	
gentables

	
Determines whether the schema compiler generates default tables. By default, TRUE

	
force

	
If this parameter is set to TRUE, the schema registration will not raise errors. Instead, it creates an invalid XML schema object in case of any errors. By default, the value of this parameter is FALSE.

	
owner

	
This parameter specifies the name of the database user owning the XML schema object. By default, the user registering the schema owns the XML schema object. This parameter can be used to register a XML schema to be owned by a different database user.

	
csid

	
Identifies the character set of the input schema document. If this value is 0, the schema document's encoding is determined by the current rule for "text/xml" MIME type.

	
enablehierarchy

	
	
ENABLE_HIERARCHY_NONE - enable hierarchy will not be called on any tables created while registering that schema

	
ENABLE_HIERARCHY_CONTENTS - enable hierarchy will be called for all tables created during schema registration with hierarchy_type as DBMS_XDBZ.ENABLE_CONTENTS. This is the default.

	
ENABLE_HIERARCHY_RESMETADATA - enable hierarchy will be called on all tables created during schema registration with hierarchy_type as DBMS_XDBZ.ENABLE_RESMETADATA. Users should pass in DBMS_XMLSCHEMA.ENABLE_RESMETADATA for schemas they intend to use as resource metadata tables.

	
options

	
Additional options to specify how the schema should be registered. The various options are represented as bits of an integer and the options parameter should be constructed by doing a BITOR of the desired bits. Possible bits:

	
REGISTER_NODOCID - this will suppress the creation of the DOCID column for out of line tables. This is a storage optimization which might be desirable when we do not need to join back to the document table (for example if we do not care about rewriting certain queries that could be rewritten by making use of the DOCID column)

	
REGISTER_BINARYXML - Register the schema for Binary XML

	
REGISTER_NT_AS_IOT - Store nested tables created during schema registration as index organized tables. The default is to store nested tables as heap tables

REGISTERURI Procedure

This procedure registers an XML Schema specified by a URI name.

	
Note:

As of release 11.2.0.2 the genbean parameter is deprecated. Oracle recommends that you do not use this parameter in new applications. Support for this feature is for backward compatibility only.

Syntax

DBMS_XMLSCHEMA.REGISTERURI(
 schemaurl IN VARCHAR2,
 schemadocuri IN VARCHAR2,
 local IN BOOLEAN := TRUE,
 gentypes IN BOOLEAN := TRUE,
 genbean IN BOOLEAN := FALSE,
 gentables IN BOOLEAN := TRUE,
 force IN BOOLEAN := FALSE,
 owner IN VARCHAR2 := NULL,
 options IN PLS_INTEGER := 0);

Parameters

Table 176-17 REGISTERURI Procedure Parameters

	Parameter	Description
	
schemaurl

	
Uniquely identifies the schema document. Can be used inside schemaLocation attribute of XML Schema import element.

	
schemadocuri

	
Pathname (URI) corresponding to the physical location of the schema document. The URI path could be based on HTTP, FTP, DB or Oracle XML DB protocols. This function constructs a URIType instance using the urifactory, and invokes the REGISTERSCHEMA Procedures.

	
local

	
Determines whether this is a local or global schema. By default, all schemas are registered as local schemas, under /sys/schemas/ <username>/... If a schema is registered as global, it is added under /sys/schemas/PUBLIC/... The user needs write privileges on the directory to register a global schema.

	
gentypes

	
Determines whether the compiler generate object types. By default, TRUE.

	
genbean

	
Determines whether the compiler generate Java beans. By default, FALSE.

	
gentables

	
Determines whether the compiler generate default tables. TRUE by default.

	
force

	
TRUE: schema registration will not raise errors. Instead, it creates an invalid XML schema object in case of any errors. By default, the value of this parameter is FALSE.

	
owner

	
This parameter specifies the name of the database user owning the XML schema object. By default, the user registering the schema owns the XML schema object. This parameter can be used to register a XML schema to be owned by a different database user.

	
options

	
Additional options to specify how the schema should be registered. The various options are represented as bits of an integer and the options parameter should be constructed by doing a BITOR of the desired bits. Possible bits:

	
REGISTER_NODOCID - this will suppress the creation of the DOCID column for out of line tables. This is a storage optimization which might be desirable when we do not need to join back to the document table (for example if we do not care about rewriting certain queries that could be rewritten by making use of the DOCID column)

DBMS_XMLSTORE

177 DBMS_XMLSTORE

DBMS_XMLSTORE provides the ability to store XML data in relational tables.

	
See Also:

Oracle XML DB Developer's Guide

This chapter contains the following sections:

	
Using DBMS_XMLSTORE

	
Security Model

	
Types

	
Summary of DBMS_XMLSTORE Subprograms

Using DBMS_XMLSTORE

	
Security Model

	
Types

Security Model

Owned by XDB, the DBMS_XMLSTORE package must be created by SYS or XDB. The EXECUTE privilege is granted to PUBLIC. Subprograms in this package are executed using the privileges of the current user.

Types

Table 177-1 Types of DBMS_XMLSTORE

	Type	Description
	
ctxType

	
The type of the query context handle. This is the return type of NEWCONTEXT.

Summary of DBMS_XMLSTORE Subprograms

Table 177-2 DBMS_XMLSTORE Package Subprograms

	Method	Description
	
CLEARKEYCOLUMNLIST

	
Clears the key column list.

	
CLEARUPDATECOLUMNLIST

	
Clears the update column list.

	
CLOSECONTEXT

	
It closes/deallocates a particular save context.

	
DELETEXML

	
Deletes records specified by data from the XML document, from the table specified at the context creation time.

	
INSERTXML

	
Inserts the XML document into the table specified at the context creation time.

	
NEWCONTEXT

	
Creates a save context, and returns the context handle.

	
SETKEYCOLUMN

	
This method adds a column to the key column list.

	
SETROWTAG

	
Names the tag used in the XML document., to enclose the XML elements corresponding to the database.

	
SETUPDATECOLUMN

	
Adds a column to the "update column list".

	
UPDATEXML

	
Updates the table given the XML document.

CLEARKEYCOLUMNLIST

Clears the key column list.

Syntax

PROCEDURE clearKeyColumnList(
 ctxHdl IN ctxType);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.

CLEARUPDATECOLUMNLIST

Clears the update column list.

Syntax

PROCEDURE clearUpdateColumnList(
 ctxHdl IN ctxType);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.

CLOSECONTEXT

Closes/deallocates a particular save context.

Syntax

PROCEDURE closeContext(
 ctxHdl IN ctxType);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.

DELETEXML

Deletes records specified by data from the XML document from the table specified at the context creation time, and returns the number of rows deleted.

	Syntax	Description
	FUNCTION deleteXML(
 ctxHdl IN ctxPType,

 xDoc IN VARCHAR2)

RETURN NUMBER;

	Uses a VARCHAR2 type for the xDoc parameter.
	FUNCTION deleteXML(
 ctxHdl IN ctxType,

 xDoc IN CLOB)

RETURN NUMBER;

	Uses a CLOB type for the xDoc parameter.
	FUNCTION deleteXML(
 ctxHdl IN ctxType,

 xDoc IN XMLType)

RETURN NUMBER;

	Uses an XMLType type for the xDoc parameter.

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	xDoc	(IN)	String containing the XML document.

INSERTXML

Inserts the XML document into the table specified at the context creation time, and returns the number of rows inserted.

Note that if a user passes an XML file for insertXML to DBMS_XMLSTORE which contains extra elements (ones that do not match up to any columns in the table), Oracle will try to insert into those columns unless SETUPDATECOLUMN is used. The use of setUpdateColumn is optional only if the elements in the XML file match up to the columns in the table.

	Syntax	Description
	FUNCTION insertXML(
 ctxHdl IN ctxType,

 xDoc IN VARCHAR2)

RETURN NUMBER;

	Passes in the xDoc parameter as a VARCHAR2.
	FUNCTION insertXML(
 ctxHdl IN ctxType,

 xDoc IN CLOB)

RETURN NUMBER;

	Passes in the xDoc parameter as a CLOB.
	FUNCTION insertXML(
 ctxHdl IN ctxType,

 xDoc IN XMLType)

RETURN NUMBER;

	Passes in the xDoc parameter as an XMLType.

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	xDoc	(IN)	String containing the XML document.

NEWCONTEXT

Creates a save context, and returns the context handle.

Syntax

FUNCTION newContext(
 targetTable IN VARCHAR2)
RETURN ctxType;

	Parameter	IN / OUT	Description
	targetTable	(IN)	The target table into which to load the XML document.

SETKEYCOLUMN

This method adds a column to the "key column list". The value for the column cannot be NULL. In case of update or delete, the columns in the key column list make up the WHERE clause of the statement. The key columns list must be specified before updates can complete; this is optional for delete operations

Syntax

PROCEDURE setKeyColumn(
 ctxHdl IN ctxType,
 colName IN VARCHAR2);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	colName	(IN)	Column to be added to the key column list; cannot be NULL.

SETROWTAG

Names the tag used in the XML document, to enclose the XML elements corresponding to databse records.

Syntax

PROCEDURE setRowTag(
 ctxHdl IN ctxType,
 tag IN VARCHAR2);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	tag	(IN)	Tag name.

SETUPDATECOLUMN

Adds a column to the update column list. In case of insert, the default is to insert values to all the columns in the table; on the other hand, in case of updates, the default is to only update the columns corresponding to the tags present in the ROW element of the XML document. When the update column list is specified, the columns making up this list alone will get updated or inserted into.

Note that if a user passes an XML file for INSERTXML to DBMS_XMLSTORE which contains extra elements (ones that do not match up to any columns in the table), Oracle will try to insert into those columns unless setUpdateColumn is used. The use of setUpdateColumn is optional only if the elements in the XML file match up to the columns in the table.

Syntax

PROCEDURE setUpdateColumn(
 ctxHdl IN ctxType,
 colName IN VARCHAR2);

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	colName	(IN)	Column to be added to the update column list.

UPDATEXML

Updates the table specified at the context creation time with data from the XML document, and returns the number of rows updated. The options are described in the following table.

	Syntax	Description
	FUNCTION updateXML(
 ctxHdl IN ctxType,

 xDoc IN VARCHAR2)

RETURN NUMBER;

	Passes in the xDoc parameter as a VARCHAR2.
	FUNCTION updateXML(
 ctxHdl IN ctxType,

 xDoc IN CLOB)

RETURN NUMBER;

	Passes in the xDoc parameter as a CLOB.
	FUNCTION updateXML(
 ctxHdl IN ctxType,

 xDoc IN XMLType)

RETURN NUMBER;

	Passes in the xDoc parameter as a XMLType.

	Parameter	IN / OUT	Description
	ctxHdl	(IN)	Context handle.
	xDoc	(IN)	String containing the XML document.

DBMS_XMLTRANSLATIONS

178 DBMS_XMLTRANSLATIONS

The DBMS_XMLTRANSLATIONS package provides an interface to perform translations so that strings can be searched or displayed in various languages.

	
See Also:

For more information, see the Oracle XML DB Developer's Guide

This chapter contains the following sections:

	
Using DBMS_XMLTRANSLATIONS

	
Security Model

	
Summary of DBMS_XMLTRANSLATIONS Subprograms

Using DBMS_XMLTRANSLATIONS

	
Security Model

Security Model

Owned by XDB, the DBMS_XMLTRANSLATIONS package must be created by SYS or XDB. The EXECUTE privilege is granted to PUBLIC. Subprograms in this package are executed using the privileges of the current user.

Summary of DBMS_XMLTRANSLATIONS Subprograms

Table 178-1 DBMS_XMLSTORE Package Subprograms

	Method	Description
	
DISABLETRANSLATION Procedure

	
Disables translations in the current session so that query or retrieval will take place on the base document ignoring session language values

	
ENABLETRANSLATION Procedure

	
Enables translations in the current session

	
EXTRACTXLIFF Function & Procedure

	
Extracts the translations in XLIFF format from either an XMLTYPE or a resource in the XDB Repository

	
GETBASEDOCUMENT Function

	
Returns the base document with all the translations

	
MERGEXLIFF Functions

	
Merges the translations in XLIFF format into either an XMLTYPE or a resource in the XDB Repository

	
SETSOURCELANG Function

	
Sets the source language to a particular language at the specified XPATH

	
TRANSLATEXML Function

	
Returns the document in the specified language

	
UPDATETRANSLATION Function

	
Updates the translation in a particular language at the specified XPATH

DISABLETRANSLATION Procedure

This procedure disables translations in the current session so that query or retrieval will take place on the base document ignoring session language values.

Syntax

DBMS_XMLTRANSLATIONS.DISABLETRANSLATION;

ENABLETRANSLATION Procedure

This procedure enables translations in the current session. This is the default behavior.

Syntax

DBMS_XMLTRANSLATIONS.ENABLETRANSLATION;

EXTRACTXLIFF Function & Procedure

This function and procedure extracts the translations in XLIFF format from either an XMLTYPE or a resource in the XDB Repository.

Syntax

DBMS_XMLTRANSLATIONS.EXTRACTXLIFF(
 doc IN XMLTYPE,
 xpath IN VARCHAR2,
 namespace IN VARCHAR2 := NULL)
 RETURN XMLTYPE;

DBMS_XMLTRANSLATIONS.EXTRACTXLIFF(
 abspath IN XMLTYPE,
 xpath IN VARCHAR2,
 namespace IN VARCHAR2 := NULL)
 RETURN XMLTYPE;

Parameters

Table 178-2 EXTRACTXLIFF Function Parameters

	Parameter	Description
	
doc

	
XMLTYPE from which the XLIFF is to be extracted

	
xpath

	
XPATH at which specifies the location of the element that needs to be translated. If no XPATH is specified, the entire document is processed.

	
namespace

	
Namespace

	
abspath

	
Absolute path of the resource from which the XLIFF is to be extracted

Return Values

The translations in the XLIFF format

Examples

Extracting the Translation from an XMLTYPE

Let doc =

<securityClass xmlns="http://xmlns.oracle.com/xdb/security.xsd"
 xmlns:is="xmlns.oracle.com/iStore"
 xmlns:oa="xmlns.oracle.com/OracleApps"
 targetNamespace="xmlns.oracle.com/example">
 <name>
 securityClassExample
 </name>
 <title xml:lang="en" xdb:srclang="true">
 Security Class Example
 </title>
 <title xml:lang="fr">
 Security Class Example - FR
 </title>
 <title xml:lang="es">
 Security Class Example - ES
 </title>
 <inherits-from>is:iStorePurchaseOrder</inherits-from>
</securityClass>

Let the xpath = '/securityClass/title'. The output of EXTRACTXLIFF will be as follows:

<xliff version='1.1'>
 <file original='' source-language='en' datatype='xml'>
 <body>
 <trans-unit id='/securityClass/title'>
 <source>Security Class Example</source>
 <alt-trans>
 <target xml:lang='fr'>Security Class Example - FR</target>
 <target xml:lang='es'>Security Class Example - ES</target>
 </alt-trans>
 </trans-unit>
 </body>
 </file>
</xliff>

Extracting the Translation from a Resource

Let the resource '/public/security.xml' =

<securityClass xmlns="http://xmlns.oracle.com/xdb/security.xsd"
 xmlns:is="xmlns.oracle.com/iStore"
 xmlns:oa="xmlns.oracle.com/OracleApps"
 targetNamespace="xmlns.oracle.com/example">
 <name>
 securityClassExample
 </name>
 <title xml:lang="en" xdb:srclang="true">
 Security Class Example
 </title>
 <title xml:lang="es">
 Security Class Example - ES
 </title>
 <title xml:lang="fr">
 Security Class Example - FR
 </title>
 <inherits-from>is:iStorePurchaseOrder</inherits-from>
 <privlist>
 <privilege name="privilege1"/>
 <aggregatePrivilege name="iStorePOApprover">
 <title>
 iStore Purchase Order Approver
 </title>
 <privilegeRef name="is:privilege1"/>
 <privilegeRef name="oa:submitPO"/>
 <privilegeRef name="oa:privilege3"/>
 </aggregatePrivilege>
 <privilege name="privilege2">
 <title xml:lang="en">
 secondary privilege
 </title>
 <title xml:lang="fr" xdb:srclang="true">
 secondary privilege - FR
 </title>
 <columnRef schema="APPS" table="PurchaseOrder" column="POId"/>
 <columnRef schema="APPS" table="PurchaseOrder" column="Amount"/>
 </privilege>
 </privlist>
</securityClass>

And let XPATH = '', then the extracted XLIFF is

<xliff version='1.1'>
 <file original='/public/security.xml' source-language='en' datatype='xml'>
 <body>
 <trans-unit id='/securityClass/title'>
 <source>Security Class Example</source>
 <alt-trans>
 <target xml:lang='fr'>Security Class Example - FR</target>
 <target xml:lang='es'>Security Class Example - ES</target>
 </alt-trans>
 </trans-unit>
 </body>
 </file>
 <file original='/public/security.xml' source-language='fr' datatype='xml'>
 <body>
 <trans-unit id='/securityClass/privilege[@name="privilege2"/title'>
 <source>secondary privilege - FR</source>
 <alt-trans>
 <target xml:lang='en'>secondary privilege</target>
 </alt-trans>
 </trans-unit>
 </body>
 </file>
</xliff>

GETBASEDOCUMENT Function

This function returns the base document with all the translations.

Syntax

DBMS_XMLTRANSLATIONS.GETBASEDOCUMENT(
 doc IN XMLTYPE)
 RETURN XMLTYPE;

Parameters

Table 178-3 GETBASEDOCUMENT Function Parameters

	Parameter	Description
	
doc

	
Input XMLTYPE

Return Values

The XMLTYPE which contains the base document with all the translations

Examples

For example, for doc =

<securityClass xmlns="http://xmlns.oracle.com/xdb/security.xsd"
 xmlns:is="xmlns.oracle.com/iStore"
 xmlns:oa="xmlns.oracle.com/OracleApps"
 targetNamespace="xmlns.oracle.com/example">
 <name>
 securityClassExample
 </name>
 <title xml:lang="en" xdb:srclang="true">
 Security Class Example
 </title>
 <title xml:lang="fr">
 Security Class Example - FR
 </title>
 <inherits-from>is:iStorePurchaseOrder</inherits-from>
</securityClass>

For the above document, this subprogram will return:

<securityClass xmlns="http://xmlns.oracle.com/xdb/security.xsd"
 xmlns:is="xmlns.oracle.com/iStore"
 xmlns:oa="xmlns.oracle.com/OracleApps"
 targetNamespace="xmlns.oracle.com/example">
 <name>
 securityClassExample
 </name>
 <title xml:lang="en" xdb:srclang="true">
 Security Class Example
 </title>
 <title xml:lang="fr">
 Security Class Example - FR
 </title>
 <inherits-from>is:iStorePurchaseOrder</inherits-from>
</securityClass>

MERGEXLIFF Functions

This function merges the translations in XLIFF format into either an XMLTYPE or a resource in the XDB Repository.

Syntax

DBMS_XMLTRANSLATIONS.MERGEXLIFF(
 doc IN XMLTYPE,
 xliff IN XMLTYPE)
 RETURN XMLTYPE;

DBMS_XMLTRANSLATIONS.MERGEXLIFF(
 xliff IN XMLTYPE);

Parameters

Table 178-4 MERGEXLIFF Function & Procedure Parameters

	Parameter	Description
	
doc

	
XMLTYPE from which the XLIFF is to be merged

	
xliff

	
Translations in the XLIFF format

Return Values

The result of merging 'xliff' into 'doc' at 'xpath'

Examples

Merge Translations into an XMLTYPE

Consider the following input XMLTYPE:

<securityClass xmlns="http://xmlns.oracle.com/xdb/security.xsd"
 xmlns:is="xmlns.oracle.com/iStore"
 xmlns:oa="xmlns.oracle.com/OracleApps"
 targetNamespace="xmlns.oracle.com/example">
 <name>
 securityClassExample
 </name>
 <title xml:lang="en" xdb:srclang="true">
 Security Class Example
 </title>
 <title xml:lang="es">
 Security Class Example - ES
 </title>
 <title xml:lang="fr">
 Security Class Example - FR
 </title>
 <inherits-from>is:iStorePurchaseOrder</inherits-from>
 <privlist>
 <privilege name="privilege1"/>
 <aggregatePrivilege name="iStorePOApprover">
 <title>
 iStore Purchase Order Approver
 </title>
 <privilegeRef name="is:privilege1"/>
 <privilegeRef name="oa:submitPO"/>
 <privilegeRef name="oa:privilege3"/>
 </aggregatePrivilege>
 <privilege name="privilege2">
 <title xml:lang="en">
 secondary privilege
 </title>
 <title xml:lang="fr" xdb:srclang="true">
 secondary privilege - FR
 </title>
 <columnRef schema="APPS" table="PurchaseOrder" column="POId"/>
 <columnRef schema="APPS" table="PurchaseOrder" column="Amount"/>
 </privilege>
 </privlist>
</securityClass>

Let the input XLIFF be as follows:

<xliff version='1.1'>
 <file original='/public/security.xml' source-language='en' datatype='xml'>
 <body>
 <trans-unit id='/securityClass/title'>
 <source>Security Class Example Modified</source>
 <alt-trans>
 <target xml:lang='fr'>Security Class Example Mod - FR</target>
 <target xml:lang='es'>Security Class Example Mod - ES</target>
 </alt-trans>
 </trans-unit>
 <trans-unit id='/securityClass/privilege[@name="privilege2"/title'>
 <source>secondary privilege modified</source>
 <alt-trans>
 <target xml:lang='fr'>secondary privilege mod - FR</target>
 </alt-trans>
 </trans-unit>
 </body>
</xliff>

The output of merge will be as follows:

<securityClass xmlns="http://xmlns.oracle.com/xdb/security.xsd"
 xmlns:is="xmlns.oracle.com/iStore"
 xmlns:oa="xmlns.oracle.com/OracleApps"
 targetNamespace="xmlns.oracle.com/example">
 <name>
 securityClassExample
 </name>
 <title xml:lang="en" xdb:srclang="true">
 Security Class Example Modified
 </title>
 <title xml:lang="es">
 Security Class Example Mod - ES
 </title>
 <title xml:lang="fr">
 Security Class Example Mod - FR
 </title>
 <inherits-from>is:iStorePurchaseOrder</inherits-from>
 <privlist>
 <privilege name="privilege1"/>
 <aggregatePrivilege name="iStorePOApprover">
 <title>
 iStore Purchase Order Approver
 </title>
 <privilegeRef name="is:privilege1"/>
 <privilegeRef name="oa:submitPO"/>
 <privilegeRef name="oa:privilege3"/>
 </aggregatePrivilege>
 <privilege name="privilege2">
 <title xml:lang="en" xdb:srclang="true">
 secondary privilege modified
 </title>
 <title xml:lang="fr">
 secondary privilege mod - FR
 </title>
 <columnRef schema="APPS" table="PurchaseOrder" column="POId"/>
 <columnRef schema="APPS" table="PurchaseOrder" column="Amount"/>
 </privilege>
 </privlist>
</securityClass>

Merge XLIFF Translations into a Resource

If the input document in the above example were to be stored in the repository at '/public/security.xml', then merging the above XLIFF will have the same effect.

SETSOURCELANG Function

This function sets the source language to a particular language at the specified XPATH.

Syntax

DBMS_XMLTRANSLATIONS.SETSOURCELANG (
 doc IN XMLTYPE,
 xpath IN VARCHAR2,
 lang IN VARCHAR2,
 namespace IN VARCHAR2 := NULL)
 RETURN XMLTYPE;

Parameters

Table 178-5 SETSOURCELANG Function Parameters

	Parameter	Description
	
doc

	
XMLTYPE for which the source language is to be set

	
xpath

	
XPATH at which the source language is to be set

	
lang

	
Source language

	
namespace

	
Namespace

Return Values

The updated document

Examples

For example, if doc =

<securityClass xmlns="http://xmlns.oracle.com/xdb/security.xsd"
 xmlns:is="xmlns.oracle.com/iStore"
 xmlns:oa="xmlns.oracle.com/OracleApps"
 targetNamespace="xmlns.oracle.com/example">
 <name>
 securityClassExample
 </name>
 <title xml:lang="en" xdb:srclang="true">
 Security Class Example
 </title>
 <title xml:lang="fr">
 Security Class Example - FR
 </title>
 <inherits-from>is:iStorePurchaseOrder</inherits-from>
</securityClass>

the statement

setSourceLang (doc, '/securityClass/title', 'fr')

produces

<securityClass xmlns="http://xmlns.oracle.com/xdb/security.xsd"
 xmlns:is="xmlns.oracle.com/iStore"
 xmlns:oa="xmlns.oracle.com/OracleApps"
 targetNamespace="xmlns.oracle.com/example">
 <name>
 securityClassExample
 </name>
 <title xml:lang="en">
 Security Class Example
 </title>
 <title xml:lang="fr" xdb:srclang="true">
 Security Class Example - FR
 </title>
 <inherits-from>is:iStorePurchaseOrder</inherits-from>
</securityClass>

TRANSLATEXML Function

This function returns the document in the specified language.

Syntax

DBMS_XMLTRANSLATIONS.TRANSLATEXML(
 doc IN XMLTYPE,
 lang IN VARCHAR2)
 RETURN XMLTYPE;

Parameters

Table 178-6 TRANSLATEXML Function Parameters

	Parameter	Description
	
doc

	
Input XMLTYPE

	
lang

	
Language

Return Values

The XMLTYPE which contains the document in the specified language

Examples

For example, for doc =

<securityClass xmlns="http://xmlns.oracle.com/xdb/security.xsd"
 xmlns:is="xmlns.oracle.com/iStore"
 xmlns:oa="xmlns.oracle.com/OracleApps"
 targetNamespace="xmlns.oracle.com/example">
 <name>
 securityClassExample
 </name>
 <title xml:lang="en" xdb:srclang="true">
 Security Class Example
 </title>
 <title xml:lang="fr">
 Security Class Example - FR
 </title>
 <inherits-from>is:iStorePurchaseOrder</inherits-from>
</securityClass>

TRANSLATEXML (doc, 'fr') will return:

<securityClass xmlns="http://xmlns.oracle.com/xdb/security.xsd"
 xmlns:is="xmlns.oracle.com/iStore"
 xmlns:oa="xmlns.oracle.com/OracleApps"
 targetNamespace="xmlns.oracle.com/example">
 <name>
 securityClassExample
 </name>
 <title xml:lang="fr">
 Security Class Example - FR
 </title>
 <inherits-from>is:iStorePurchaseOrder</inherits-from>
</securityClass>

UPDATETRANSLATION Function

This function updates the translation in a particular language at the specified XPATH.

Syntax

DBMS_XMLTRANSLATIONS.UPDATETRANSLATION(
 doc IN XMLTYPE,
 xpath IN VARCHAR2,
 lang IN VARCHAR2,
 value IN VARCHAR2,
 namespace IN VARCHAR2 := NULL)
 RETURN XMLTYPE;

Parameters

Table 178-7 UPDATETRANSLATION Function Parameters

	Parameter	Description
	
doc

	
XMLTYPE for which the translation is to be updated

	
xpath

	
XPATH at which the translation is to be updated

	
lang

	
Language for which the translation is to be updated

	
value

	
New translation

	
namespace

	
Namespace

Return Values

The updated document

Examples

For example,

updateTranslation (doc, '/securityClass/title/text()', 'fr', 'Oracle');

produces

<securityClass xmlns="http://xmlns.oracle.com/xdb/security.xsd"
 xmlns:is="xmlns.oracle.com/iStore"
 xmlns:oa="xmlns.oracle.com/OracleApps"
 targetNamespace="xmlns.oracle.com/example">
 <name>
 securityClassExample
 </name>
 <title xml:lang="en" xdb:srclang="true">
 Security Class Example
 </title>
 <title xml:lang="fr">
 Oracle
 </title>
 <inherits-from>is:iStorePurchaseOrder</inherits-from>
</securityClass>

DBMS_XPLAN

179 DBMS_XPLAN

The DBMS_XPLAN package provides an easy way to display the output of the EXPLAIN PLAN command in several, predefined formats. You can also use the DBMS_XPLAN package to display the plan of a statement stored in the Automatic Workload Repository (AWR) or stored in a SQL tuning set. It further provides a way to display the SQL execution plan and SQL execution runtime statistics for cached SQL cursors based on the information stored in the V$SQL_PLAN and V$SQL_PLAN_STATISTICS_ALL fixed views. Finally, it displays plans from a SQL plan baseline.

	
See Also:

	
For more information on the EXPLAIN PLAN command, the AWR, and SQL tuning set, see Oracle Database Performance Tuning Guide.

	
For more information on the V$SQL_PLAN and V$SQL_PLAN_STATISTICS fixed views, see Oracle Database Reference.

This chapter contains the following topics:

	
Using DBMS_XPLAN

	
Overview

	
Security Model

	
Examples

	
Summary of DBMS_XPLAN Subprograms

Using DBMS_XPLAN

	
Overview

	
Security Model

	
Examples

Overview

The DBMS_XPLAN package supplies five table functions:

	
DISPLAY - to format and display the contents of a plan table.

	
DISPLAY_AWR - to format and display the contents of the execution plan of a stored SQL statement in the AWR.

	
DISPLAY_CURSOR - to format and display the contents of the execution plan of any loaded cursor.

	
DISPLAY_SQL_PLAN_BASELINE - to display one or more execution plans for the SQL statement identified by SQL handle

	
DISPLAY_SQLSET - to format and display the contents of the execution plan of statements stored in a SQL tuning set.

Security Model

This package runs with the privileges of the calling user, not the package owner (SYS). The table function DISPLAY_CURSOR requires to have select privileges on the following fixed views: VSQL_PLAN, VSESSION and V$SQL_PLAN_STATISTICS_ALL.

Using the DISPLAY_AWR Function requires the user to have SELECT privileges on DBA_HIST_SQL_PLAN, DBA_HIST_SQLTEXT, and V$DATABASE.

Using the DISPLAY_SQLSET Functionrequires the user to have the SELECT privilege on ALL_SQLSET_STATEMENTS and ALL_SQLSET_PLANS.

Using DISPLAY_SQL_PLAN_BASELINE Function requires the user to have the SELECT privilege on DBA_SQL_PLAN_BASELINES as well as the privileges to execute the SQL statement for which the user is trying to get the plan.

All these privileges are automatically granted as part of the SELECT_CATALOG role.

Examples

Displaying a Plan Table Using DBMS_XPLAN.DISPLAY

Execute an explain plan command on a SELECT statement:

EXPLAIN PLAN FOR
SELECT * FROM emp e, dept d
 WHERE e.deptno = d.deptno
 AND e.ename='benoit';

Display the plan using the DBMS_XPLAN.DISPLAY table function

SET LINESIZE 130
SET PAGESIZE 0
SELECT * FROM table(DBMS_XPLAN.DISPLAY);

This query produces the following output:

Plan hash value: 3693697075

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT		1	57	6 (34)	00:00:01
* 1	HASH JOIN		1	57	6 (34)	00:00:01
* 2	TABLE ACCESS FULL	EMP	1	37	3 (34)	00:00:01
3	TABLE ACCESS FULL	DEPT	4	80	3 (34)	00:00:01

Predicate Information (identified by operation id):

 1 - access("E"."DEPTNO"="D"."DEPTNO")
 2 - filter("E"."ENAME"='benoit')

15 rows selected.

Displaying a Cursor Execution Plan Using DBMS_XPLAN.DISPLAY_CURSOR

By default, the table function DISPLAY_CURSOR formats the execution plan for the last SQL statement executed by the session. For example:

SELECT ename FROM emp e, dept d
 WHERE e.deptno = d.deptno
 AND e.empno=7369;

ENAME

SMITH

To display the execution plan of the last executed statement for that session:

SET PAGESIZE 0
SELECT * FROM table(DBMS_XPLAN.DISPLAY_CURSOR);

This query produces the following output:

Plan hash value: 3693697075, SQL hash value: 2096952573, child number: 0
--
SELECT ename FROM emp e, dept d WHERE e.deptno = d.deptno
AND e.empno=7369

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT					
* 1	HASH JOIN		1	16	6 (34)	00:00:01
* 2	TABLE ACCESS FULL	EMP	1	13	3 (34)	00:00:01
3	TABLE ACCESS FULL	DEPT	4	12	3 (34)	00:00:01

Predicate Information (identified by operation id):

 1 - access("E"."DEPTNO"="D"."DEPTNO")
 2 - filter("E"."EMPNO"=7369)

21 rows selected.

You can also use the table function DISPLAY_CURSOR to display the execution plan for any loaded cursor stored in the cursor cache. In that case, you must supply a reference to the child cursor to the table function. This includes the SQL ID of the statement and optionally the child number.

Run a query with a distinctive comment:

SELECT /* TOTO */ ename, dname
FROM dept d join emp e USING (deptno);

Get sql_id and child_number for the preceding statement:

SELECT sql_id, child_number
FROM v$sql
WHERE sql_text LIKE '%TOTO%';

SQL_ID CHILD_NUMBER
---------- -----------------------------
gwp663cqh5qbf 0

Display the execution plan for the cursor:

SELECT * FROM table(DBMS_XPLAN.DISPLAY_CURSOR('gwp663cqh5qbf',0));

Plan hash value: 3693697075, SQL ID: gwp663cqh5qbf, child number: 0
--
SELECT /* TOTO */ ename, dname
FROM dept d JOIN emp e USING (deptno);

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	SELECT STATEMENT				7 (100)	
1	SORT GROUP BY		4	64	7 (43)	00:00:01
* 2	HASH JOIN		14	224	6 (34)	00:00:01
3	TABLE ACCESS FULL	DEPT	4	44	3 (34)	00:00:01
4	TABLE ACCESS FULL	EMP	14	70	3 (34)	00:00:01
--

Predicate Information (identified by operation id):

 2 - access("E"."DEPTNO"="D"."DEPTNO")

Instead of issuing two queries, one to the get the sql_id and child_number pair and one to display the plan, you can combine these in a single query:

Display the execution plan of all cursors matching the string 'TOTO':

SELECT t.*
FROM v$sql s, table(DBMS_XPLAN.DISPLAY_CURSOR(s.sql_id, s.child_number)) t WHERE sql_text LIKE '%TOTO%';

Displaying a Plan Table with Parallel Information

By default, only relevant information is reported by the display and display_cursor table functions. In Displaying a Plan Table Using DBMS_XPLAN.DISPLAY, the query does not execute in parallel. Hence, information related to the parallelization of the plan is not reported. As shown in the following example, parallel information is reported only if the query executes in parallel.

ALTER TABLE emp PARALLEL;
EXPLAIN PLAN for
SELECT * FROM emp e, dept d
 WHERE e.deptno = d.deptno
 AND e.ename ='hermann'
 ORDER BY e.empno;

Display the plan using the DBMS_XPLAN.DISPLAY table function

SET LINESIZE 130
SET PAGESIZE 0
SELECT * FROM table(DBMS_XPLAN.DISPLAY);
Plan hash value: 3693697345

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | TQ |INOUT |PQ Distrib |

0	SELECT STATEMENT		1	117	6 (50)	00:00:01			
1	PX COORDINATOR								
2	PX SEND QC (ORDER)	:TQ10003	1	117	6 (50)	00:00:01	Q1,03	P->S	QC (ORDER)
3	SORT ORDER BY		1	117	6 (50)	00:00:01	Q1,03	PCWP	
4	PX RECEIVE		1	117	5 (40)	00:00:01	Q1,03	PCWP	
5	PX SEND RANGE	:TQ10002	1	117	5 (40)	00:00:01	Q1,02	P->P	RANGE
* 6	HASH JOIN		1	117	5 (40)	00:00:01	Q1,02	PCWP	
7	PX RECEIVE		1	87	2 (50)	00:00:01	Q1,02	PCWP	
8	PX SEND HASH	:TQ10001	1	87	2 (50)	00:00:01	Q1,01	P->P	HASH
9	PX BLOCK ITERATOR		1	87	2 (50)	00:00:01	Q1,01	PCWC	
* 10	TABLE ACCESS FULL	EMP	1	87	2 (50)	00:00:01	Q1,01	PCWP	
11	BUFFER SORT						Q1,02	PCWC	
12	PX RECEIVE		4	120	3 (34)	00:00:01	Q1,02	PCWP	
13	PX SEND HASH	:TQ10000	4	120	3 (34)	00:00:01		S->P	HASH
14	TABLE ACCESS FULL	DEPT	4	120	3 (34)	00:00:01			

Predicate Information (identified by operation id):

6 - access("E"."DEPTNO"="D"."DEPTNO")
10 - filter("E"."ENAME"='hermann')

When the query is parallel, information related to parallelism is reported: table queue number (TQ column), table queue type (INOUT) and table queue distribution method (PQ Distrib).

By default, if several plans in the plan table match the statement_id parameter passed to the display table function (default value is NULL), only the plan corresponding to the last EXPLAIN PLAN command is displayed. Hence, there is no need to purge the plan table after each EXPLAIN PLAN. However, you should purge the plan table regularly to ensure good performance in the execution of the DISPLAY table function. If no plan table is created, Oracle uses a global temporary table to store any plan information for individual users and preserves its content throughout the lifespan of a session. Note that you cannot truncate the content of a global temporary table.

For ease of use, you can define a view on top of the display table function and then use that view to display the output of the EXPLAIN PLAN command:

Using a View to Display Last Explain Plan

define plan view
CREATE VIEW PLAN AS SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY);

display the output of the last explain plan command
SELECT * FROM PLAN;

Summary of DBMS_XPLAN Subprograms

Table 179-1 DBMS_XPLAN Package Subprograms

	Subprogram	Description
	
DISPLAY Function

	
Displays the contents of the plan table

	
DISPLAY_AWR Function

	
Displays the contents of an execution plan stored in the AWR

	
DISPLAY_CURSOR Function

	
Displays the execution plan of any cursor in the cursor cache

	
DISPLAY_PLAN Function

	
Displays the contents of the plan table in a variety of formats with CLOB output type

	
DISPLAY_SQL_PLAN_BASELINE Function

	
Displays one or more execution plans for the specified SQL handle of a SQL plan baseline

	
DISPLAY_SQLSET Function

	
Displays the execution plan of a given statement stored in a SQL tuning set

DISPLAY Function

This table function displays the contents of the plan table.

In addition, you can use this table function to display any plan (with or without statistics) stored in a table as long as the columns of this table are named the same as columns of the plan table (or V$SQL_PLAN_STATISTICS_ALL if statistics are included). You can apply a predicate on the specified table to select rows of the plan to display.

Syntax

DBMS_XPLAN.DISPLAY(
 table_name IN VARCHAR2 DEFAULT 'PLAN_TABLE',
 statement_id IN VARCHAR2 DEFAULT NULL,
 format IN VARCHAR2 DEFAULT 'TYPICAL',
 filter_preds IN VARCHAR2 DEFAULT NULL);

Parameters

Table 179-2 DISPLAY Function Parameters

	Parameter	Description
	
table_name

	
Specifies the table name where the plan is stored. This parameter defaults to PLAN_TABLE, which is the default plan table for the EXPLAIN PLAN command. If NULL is specified it also defaults to PLAN_TABLE.

	
statement_id

	
Specifies the statement_id of the plan to be displayed. This parameter defaults to NULL, which is the default when the EXPLAIN PLAN command is executed without a set statement_id clause.If no statement_id is specified, the function shows you the plan of the most recent explained statement.

	
format

	
Controls the level of details for the plan. It accepts four values:

	
BASIC: Displays the minimum information in the plan—the operation ID, the operation name and its option.

	
TYPICAL: This is the default. Displays the most relevant information in the plan (operation id, name and option, #rows, #bytes and optimizer cost). Pruning, parallel and predicate information are only displayed when applicable. Excludes only PROJECTION, ALIAS and REMOTE SQL information (see below).

	
SERIAL: Like TYPICAL except that the parallel information is not displayed, even if the plan executes in parallel.

	
ALL: Maximum user level. Includes information displayed with the TYPICAL level with additional information (PROJECTION, ALIAS and information about REMOTE SQL if the operation is distributed).

For finer control on the display output, the following keywords can be added to the above three standard format options to customize their default behavior. Each keyword either represents a logical group of plan table columns (such as PARTITION) or logical additions to the base plan table output (such as PREDICATE). Format keywords must be separated by either a comma or a space:

	
ROWS - if relevant, shows the number of rows estimated by the optimizer

	
BYTES - if relevant, shows the number of bytes estimated by the optimizer

	
COST - if relevant, shows optimizer cost information

	
PARTITION - if relevant, shows partition pruning information

	
PARALLEL - if relevant, shows PX information (distribution method and table queue information)

	
PREDICATE - if relevant, shows the predicate section

	
PROJECTION -if relevant, shows the projection section

	
ALIAS - if relevant, shows the "Query Block Name / Object Alias" section

	
REMOTE - if relevant, shows the information for distributed query (for example, remote from serial distribution and remote SQL)

	
NOTE - if relevant, shows the note section of the explain plan

Format keywords can be prefixed by the sign '-' to exclude the specified information. For example, '-PROJECTION' excludes projection information.

If the target plan table (see table_name parameter) also stores plan statistics columns (for example, it is a table used to capture the content of the fixed view V$SQL_PLAN_STATISTICS_ALL), additional format keywords can be used to specify which class of statistics to display when using the DISPLAY Function. These additional format keywords are IOSTATS, MEMSTATS, ALLSTATS and LAST (see the DISPLAY_CURSOR Function or the DISPLAY_SQLSET Function for a full description of these four keywords).

	
filter_preds

	
SQL filter predicate(s) to restrict the set of rows selected from the table where the plan is stored. When value is NULL (the default), the plan displayed corresponds to the last executed explain plan. For example: filter_preds=>'plan_id = 10'

Can reference any column of the table where the plan is stored and can contain any SQL construct (for example, sub-query, function calls (see WARNING under Usage Notes)

Usage Notes

Here are some ways you might use variations on the format parameter:

	
Use 'ALL -PROJECTION -NOTE' to display everything except the projection and note sections.

	
Use 'TYPICAL PROJECTION' to display using the typical format with the additional projection section (which is normally excluded under the typical format). Since typical is default, using simply 'PROJECTION' is equivalent.

	
Use '-BYTES -COST -PREDICATE' to display using the typical format but excluding optimizer cost and byte estimates as well as the predicate section.

	
Use 'BASIC ROWS' to display basic information with the additional number of rows estimated by the optimizer.

	
WARNING:

Application developers should expose the filter_preds parameter to end-users only after careful consideration because this could expose the application to SQL injection. Indeed, filter_preds can potentially reference any table or execute any server function for which the database user invoking the table function has privileges.

Examples

To display the result of the last EXPLAIN PLAN command stored in the plan table:

SELECT * FROM table (DBMS_XPLAN.DISPLAY);

To display from other than the default plan table, "my_plan_table":

SELECT * FROM table (DBMS_XPLAN.DISPLAY('my_plan_table'));

To display the minimum plan information:

SELECT * FROM table (DBMS_XPLAN.DISPLAY('plan_table', null, 'basic'));

To display the plan for a statement identified by 'foo', such as statement_id='foo':

SELECT * FROM table (DBMS_XPLAN.DISPLAY('plan_table', 'foo'));

DISPLAY_AWR Function

This table function displays the contents of an execution plan stored in the AWR.

Syntax

DBMS_XPLAN.DISPLAY_AWR(
 sql_id IN VARCHAR2,
 plan_hash_value IN NUMBER DEFAULT NULL,
 db_id IN NUMBER DEFAULT NULL,
 format IN VARCHAR2 DEFAULT TYPICAL);

Parameters

Table 179-3 DISPLAY_AWR Table Function Parameters

	Parameter	Description
	
sql_id

	
Specifies the SQL_ID of the SQL statement. You can retrieve the appropriate value for the SQL statement of interest by querying the column SQL_ID in DBA_HIST_SQLTEXT.

	
plan_hash_value

	
Specifies the PLAN_HASH_VALUE of a SQL statement. This parameter is optional. If omitted, the table function returns all stored execution plans for a given SQL_ID.

	
db_id

	
Specifies the database_id for which the plan of the SQL statement, identified by SQL_ID should be displayed. If not supplied, the database_id of the local database is used, as shown in V$DATABASE.

	
format

	
Controls the level of details for the plan. It accepts four values:

	
BASIC: Displays the minimum information in the plan—the operation ID, the operation name and its option.

	
TYPICAL: This is the default. Displays the most relevant information in the plan (operation id, name and option, #rows, #bytes and optimizer cost). Pruning, parallel and predicate information are only displayed when applicable. Excludes only PROJECTION, ALIAS and REMOTE SQL information (see below).

	
SERIAL: Like TYPICAL except that the parallel information is not displayed, even if the plan executes in parallel.

	
ALL: Maximum user level. Includes information displayed with the TYPICAL level with additional information (PROJECTION, ALIAS and information about REMOTE SQL if the operation is distributed).

	
	
For finer control on the display output, the following keywords can be added to the above three standard format options to customize their default behavior. Each keyword either represents a logical group of plan table columns (such as PARTITION) or logical additions to the base plan table output (such as PREDICATE). Format keywords must be separated by either a comma or a space:

	
ROWS - if relevant, shows the number of rows estimated by the optimizer

	
BYTES - if relevant, shows the number of bytes estimated by the optimizer

	
COST - if relevant, shows optimizer cost information

	
PARTITION - if relevant, shows partition pruning information

	
PARALLEL - if relevant, shows PX information (distribution method and table queue information)

	
PREDICATE - if relevant, shows the predicate section

	
PROJECTION -if relevant, shows the projection section

	
ALIAS - if relevant, shows the "Query Block Name / Object Alias" section

	
REMOTE - if relevant, shows the information for distributed query (for example, remote from serial distribution and remote SQL)

	
NOTE - if relevant, shows the note section of the explain plan

Format keywords can be prefixed by the sign '-' to exclude the specified information. For example, '-PROJECTION' excludes projection information.

Usage Notes

	
To use the DISPLAY_AWR functionality, the calling user must have SELECT privilege on DBA_HIST_SQL_PLAN, DBA_HIST_SQLTEXT, and V$DATABASE, otherwise it shows an appropriate error message.

	
Here are some ways you might use variations on the format parameter:

	
Use 'ALL -PROJECTION -NOTE' to display everything except the projection and note sections.

	
Use 'TYPICAL PROJECTION' to display using the typical format with the additional projection section (which is normally excluded under the typical format). Since typical is default, using simply 'PROJECTION' is equivalent.

	
Use '-BYTES -COST -PREDICATE' to display using the typical format but excluding optimizer cost and byte estimates as well as the predicate section.

	
Use 'BASIC ROWS' to display basic information with the additional number of rows estimated by the optimizer.

Examples

To display the different execution plans associated with the SQL ID 'atfwcg8anrykp':

SELECT * FROM table(DBMS_XPLAN.DISPLAY_AWR('atfwcg8anrykp'));

To display all execution plans of all stored SQL statements containing the string 'TOTO':

SELECT tf.* FROM DBA_HIST_SQLTEXT ht, table
 (DBMS_XPLAN.DISPLAY_AWR(ht.sql_id,null, null, 'ALL')) tf
 WHERE ht.sql_text like '%TOTO%';

DISPLAY_CURSOR Function

This table function displays the explain plan of any cursor loaded in the cursor cache. In addition to the explain plan, various plan statistics (such as. I/O, memory and timing) can be reported (based on the V$SQL_PLAN_STATISTICS_ALL VIEWS).

Syntax

DBMS_XPLAN.DISPLAY_CURSOR(
 sql_id IN VARCHAR2 DEFAULT NULL,
 cursor_child_no IN NUMBER DEFAULT 0,
 format IN VARCHAR2 DEFAULT 'TYPICAL');

Parameters

Table 179-4 DISPLAY_CURSOR Function Parameters

	Parameter	Description
	
sql_id

	
Specifies the SQL_ID of the SQL statement in the cursor cache. You can retrieve the appropriate value by querying the column SQL_ID in V$SQL or V$SQLAREA. Alternatively, you could choose the column PREV_SQL_ID for a specific session out of V$SESSION. This parameter defaults to NULL in which case the plan of the last cursor executed by the session is displayed.

	
cursor_child_no

	
Child number of the cursor to display. If not supplied, the execution plan of all cursors matching the supplied sql_id parameter are displayed. The child_number can be specified only if sql_id is specified.

	
format

	
Controls the level of details for the plan. It accepts four values:

	
BASIC: Displays the minimum information in the plan—the operation ID, the operation name and its option.

	
TYPICAL: This is the default. Displays the most relevant information in the plan (operation id, name and option, #rows, #bytes and optimizer cost). Pruning, parallel and predicate information are only displayed when applicable. Excludes only PROJECTION, ALIAS and REMOTE SQL information (see below).

	
SERIAL: Like TYPICAL except that the parallel information is not displayed, even if the plan executes in parallel.

	
ALL: Maximum user level. Includes information displayed with the TYPICAL level with additional information (PROJECTION, ALIAS and information about REMOTE SQL if the operation is distributed).

For finer control on the display output, the following keywords can be added to the above three standard format options to customize their default behavior. Each keyword either represents a logical group of plan table columns (such as PARTITION) or logical additions to the base plan table output (such as PREDICATE).

	
	
Format keywords must be separated by either a comma or a space:

	
ROWS - if relevant, shows the number of rows estimated by the optimizer

	
BYTES - if relevant, shows the number of bytes estimated by the optimizer

	
COST - if relevant, shows optimizer cost information

	
PARTITION - if relevant, shows partition pruning information

	
PARALLEL - if relevant, shows PX information (distribution method and table queue information)

	
PREDICATE - if relevant, shows the predicate section

	
PROJECTION -if relevant, shows the projection section

	
ALIAS - if relevant, shows the "Query Block Name / Object Alias" section

	
REMOTE - if relevant, shows the information for distributed query (for example, remote from serial distribution and remote SQL)

	
NOTE - if relevant, shows the note section of the explain plan

	
IOSTATS - assuming that basic plan statistics are collected when SQL statements are executed (either by using the gather_plan_statistics hint or by setting the parameter statistics_level to ALL), this format shows IO statistics for ALL (or only for the LAST as shown below) executions of the cursor.

	
MEMSTATS - Assuming that PGA memory management is enabled (that is, pga_aggregate_target parameter is set to a non 0 value), this format allows to display memory management statistics (for example, execution mode of the operator, how much memory was used, number of bytes spilled to disk, and so on). These statistics only apply to memory intensive operations like hash-joins, sort or some bitmap operators.

	
ALLSTATS - A shortcut for 'IOSTATS MEMSTATS'

	
LAST - By default, plan statistics are shown for all executions of the cursor. The keyword LAST can be specified to see only the statistics for the last execution.

The following two formats are deprecated but supported for backward compatibility:

	
RUNSTATS_TOT - Same as IOSTATS, that is, displays IO statistics for all executions of the specified cursor.

	
RUNSTATS_LAST - Same as IOSTATS LAST, that is, displays the runtime statistics for the last execution of the cursor

Format keywords can be prefixed by the sign '-' to exclude the specified information. For example, '-PROJECTION' excludes projection information.

Usage Notes

	
To use the DISPLAY_CURSOR functionality, the calling user must have SELECT privilege on the fixed views V$SQL_PLAN_STATISTICS_ALL, V$SQL and V$SQL_PLAN, otherwise it shows an appropriate error message.

	
Here are some ways you might use variations on the format parameter:

	
Use 'ALL -PROJECTION -NOTE' to display everything except the projection and note sections.

	
Use 'TYPICAL PROJECTION' to display using the typical format with the additional projection section (which is normally excluded under the typical format). Since typical is default, using simply 'PROJECTION' is equivalent.

	
Use '-BYTES -COST -PREDICATE' to display using the typical format but excluding optimizer cost and byte estimates as well as the predicate section.

	
Use 'BASIC ROWS' to display basic information with the additional number of rows estimated by the optimizer.

Examples

To display the execution plan of the last SQL statement executed by the current session:

SELECT * FROM table (
 DBMS_XPLAN.DISPLAY_CURSOR);

To display the execution plan of all children associated with the SQL ID 'atfwcg8anrykp':

SELECT * FROM table (
 DBMS_XPLAN.DISPLAY_CURSOR('atfwcg8anrykp'));

To display runtime statistics for the cursor included in the preceding statement:

SELECT * FROM table (
 DBMS_XPLAN.DISPLAY_CURSOR('atfwcg8anrykp', NULL, 'ALLSTATS LAST');

DISPLAY_PLAN Function

This table function displays the contents of the plan table in a variety of formats with CLOB output type.

Syntax

DBMS_XPLAN.DISPLAY_PLAN (
 table_name IN VARCHAR2 DEFAULT 'PLAN_TABLE',
 statement_id IN VARCHAR2 DEFAULT NULL,
 format IN VARCHAR2 DEFAULT 'TYPICAL',
 filter_preds IN VARCHAR2 DEFAULT NULL,
 type IN VARCHAR2 DEFAULT 'TEXT')
 RETURN CLOB;

Parameters

Table 179-5 DISPLAY_PLAN Function Parameters

	Parameter	Description
	
table_name

	
Specifies the table name where the plan is stored. This parameter defaults to PLAN_TABLE, which is the default plan table for the EXPLAIN PLAN command. If NULL is specified it also defaults to PLAN_TABLE.

	
statement_id

	
Specifies the statement_id of the plan to be displayed. This parameter defaults to NULL, which is the default when the EXPLAIN PLAN command is executed without a set statement_id clause.If no statement_id is specified, the function shows you the plan of the most recent explained statement.

	
filter_preds

	
SQL filter predicate(s) to restrict the set of rows selected from the table where the plan is stored. When value is NULL (the default), the plan displayed corresponds to the last executed explain plan. For example: filter_preds=>'plan_id = 10'

Can reference any column of the table where the plan is stored and can contain any SQL construct (for example, sub-query, function calls (see WARNING under Usage Notes)

	
format

	
Controls the level of details for the plan. It accepts four values:

	
BASIC: Displays the minimum information in the plan—the operation ID, the operation name and its option.

	
TYPICAL: This is the default. Displays the most relevant information in the plan (operation id, name and option, #rows, #bytes and optimizer cost). Pruning, parallel and predicate information are only displayed when applicable. Excludes only PROJECTION, ALIAS and REMOTE SQL information (see below).

	
SERIAL: Like TYPICAL except that the parallel information is not displayed, even if the plan executes in parallel.

	
ALL: Maximum user level. Includes information displayed with the TYPICAL level with additional information (PROJECTION, ALIAS and information about REMOTE SQL if the operation is distributed).

For finer control on the display output, the following keywords can be added to the above three standard format options to customize their default behavior. Each keyword either represents a logical group of plan table columns (such as PARTITION) or logical additions to the base plan table output (such as PREDICATE). Format keywords must be separated by either a comma or a space:

	
ROWS - if relevant, shows the number of rows estimated by the optimizer

	
BYTES - if relevant, shows the number of bytes estimated by the optimizer

	
COST - if relevant, shows optimizer cost information

	
PARTITION - if relevant, shows partition pruning information

	
PARALLEL - if relevant, shows PX information (distribution method and table queue information)

	
PREDICATE - if relevant, shows the predicate section

	
PROJECTION -if relevant, shows the projection section

	
ALIAS - if relevant, shows the "Query Block Name / Object Alias" section

	
REMOTE - if relevant, shows the information for distributed query (for example, remote from serial distribution and remote SQL)

	
NOTE - if relevant, shows the note section of the explain plan

Format keywords can be prefixed by the sign '-' to exclude the specified information. For example, '-PROJECTION' excludes projection information.

If the target plan table (see table_name parameter) also stores plan statistics columns (for example, it is a table used to capture the content of the fixed view V$SQL_PLAN_STATISTICS_ALL), additional format keywords can be used to specify which class of statistics to display when using the DISPLAY Function. These additional format keywords are IOSTATS, MEMSTATS, ALLSTATS and LAST (see the DISPLAY_CURSOR Function or the DISPLAY_SQLSET Function for a full description of these four keywords).

	
type

	
Output type, one of: 'TEXT', 'ACTIVE', 'HTML', or 'XML' (see Usage Notes regarding type ACTIVE). '

Return Values

Returns the requested report as CLOB

Usage Notes

Active reports have a rich, interactive user interface akin to that found in Enterprise Manager while not requiring any EM installation. The report file built is in HTML format, so it can be interpreted by most modern browsers. The code powering the active report is downloaded transparently by the web browser when the report is first viewed, hence viewing it requires outside connectivity.

	
WARNING:

Application developers should expose the filter_preds parameter to end-users only after careful consideration because this could expose the application to SQL injection. Indeed, filter_preds can potentially reference any table or execute any server function for which the database user invoking the table function has privileges.

DISPLAY_SQL_PLAN_BASELINE Function

This table function displays one or more execution plans for the specified SQL handle of a SQL plan baseline.

Syntax

DBMS_XPLAN.DISPLAY_SQL_PLAN_BASELINE (
 sql_handle IN VARCHAR2 := NULL,
 plan_name IN VARCHAR2 := NULL,
 format IN VARCHAR2 := 'TYPICAL')
 RETURN dbms_xplan_type_table;

Parameters

Table 179-6 DISPLAY_SQL_PLAN_BASELINE Function Parameters

	Parameter	Description
	
sql_handle

	
SQL statement handle. It identifies a SQL statement whose plan(s) are to be displayed.

	
plan_name

	
Plan name. It identifies a specific plan. Default NULL means all plans associated with identified SQL statement are explained and displayed.

	
format

	
Format string determines what information stored in the plan displayed. One of three format values ('BASIC', 'TYPICAL', 'ALL') can be used, each representing a common use case.

Return Values

A PL/SQL type table

Usage Notes

This procedure uses plan information stored in the plan baseline to explain and display the plans.It is possible that the plan_id stored in the SQL management base may not match with the plan_id of the generated plan. A mismatch between stored plan_id and generated plan_id means that it is a non-reproducible plan. Such a plan is deemed invalid and is bypassed by the optimizer during SQL compilation.

Examples

Display all plans of a SQL statement identified by the SQL handle 'SYS_SQL_b1d49f6074ab95af' using TYPICAL format

SET LINESIZE 150
SET PAGESIZE 2000
SELECT t.*
 FROM TABLE(DBMS_XPLAN.DISPLAY_SQL_PLAN_BASELINE(
 'SYS_SQL_b1d49f6074ab95af')) t;

Display all plans of one or more SQL statements containing the string 'HR2' using BASIC format

SET LINESIZE 150
SET PAGESIZE 2000
SELECT t.*
 FROM (SELECT DISTINCT sql_handle FROM dba_sql_plan_baselines
 WHERE sql_text like '%HR2%') pb,
 TABLE(DBMS_XPLAN.DISPLAY_SQL_PLAN_BASELINE(pb.sql_handle, NULL,
 'BASIC')) t;

DISPLAY_SQLSET Function

This table function displays the execution plan of a given statement stored in a SQL tuning set.

Syntax

DBMS_XPLAN.DISPLAY_SQLSET(
 sqlset_name IN VARCHAR2,
 sql_id IN VARCHAR2,
 plan_hash_value IN NUMBER := NULL,
 format IN VARCHAR2 := 'TYPICAL',
 sqlset_owner IN VARCHAR2 := NULL)
 RETURN DBMS_XPLAN_TYPE_TABLE PIPELINED;

Parameters

Table 179-7 DISPLAY_SQLSET Function Parameters

	Parameter	Description
	
sqlset_name

	
Name of the SQL Tuning Set

	
sql_id

	
Specifies the sql_id value for a SQL statement having its plan stored in the SQL tuning set. You can find all stored SQL statements by querying table function DBMS_SQLTUNE.SELECT_SQLSET

	
plan_hash_value

	
Optional parameter. Identifies a specific stored execution plan for a SQL statement. If suppressed, all stored execution plans are shown.

	
format

	
Controls the level of details for the plan. It accepts four values:

	
BASIC: Displays the minimum information in the plan—the operation ID, the operation name and its option.

	
TYPICAL: This is the default. Displays the most relevant information in the plan (operation id, name and option, #rows, #bytes and optimizer cost). Pruning, parallel and predicate information are only displayed when applicable. Excludes only PROJECTION, ALIAS and REMOTE SQL information (see below).

	
SERIAL: Like TYPICAL except that the parallel information is not displayed, even if the plan executes in parallel.

	
ALL: Maximum user level. Includes information displayed with the TYPICAL level with additional information (PROJECTION, ALIAS and information about REMOTE SQL if the operation is distributed).

	
	
For finer control on the display output, the following keywords can be added to the above three standard format options to customize their default behavior. Each keyword either represents a logical group of plan table columns (such as PARTITION) or logical additions to the base plan table output (such as PREDICATE). Format keywords must be separated by either a comma or a space:

	
ROWS - if relevant, shows the number of rows estimated by the optimizer

	
BYTES - if relevant, shows the number of bytes estimated by the optimizer

	
COST - if relevant, shows optimizer cost information

	
PARTITION - if relevant, shows partition pruning information

	
PARALLEL - if relevant, shows PX information (distribution method and table queue information)

	
PREDICATE - if relevant, shows the predicate section

	
PROJECTION -if relevant, shows the projection section

	
ALIAS - if relevant, shows the "Query Block Name / Object Alias" section

	
REMOTE - if relevant, shows the information for distributed query (for example, remote from serial distribution and remote SQL)

	
NOTE - if relevant, shows the note section of the explain plan

	
IOSTATS - assuming that basic plan statistics are collected when SQL statements are executed (either by using the gather_plan_statistics hint or by setting the parameter statistics_level to ALL), this format shows IO statistics for ALL (or only for the LAST as shown below) executions of the cursor.

	
MEMSTATS - Assuming that PGA memory management is enabled (that is, pga_aggregate_target parameter is set to a non 0 value), this format allows to display memory management statistics (for example, execution mode of the operator, how much memory was used, number of bytes spilled to disk, and so on). These statistics only apply to memory intensive operations like hash-joins, sort or some bitmap operators.

	
ALLSTATS - A shortcut for 'IOSTATS MEMSTATS'

	
LAST - By default, plan statistics are shown for all executions of the cursor. The keyword LAST can be specified to see only the statistics for the last execution.

The following two formats are deprecated but supported for backward compatibility:

	
RUNSTATS_TOT - Same as IOSTATS, that is, displays IO statistics for all executions of the specified cursor.

	
RUNSTATS_LAST - Same as IOSTATS LAST, that is, displays the runtime statistics for the last execution of the cursor

Format keywords can be prefixed by the sign '-' to exclude the specified information. For example, '-PROJECTION' excludes projection information.

	
sqlset_owner

	
The owner of the SQL tuning set. The default is the current user.

Usage Notes

Here are some ways you might use variations on the format parameter:

	
Use 'ALL -PROJECTION -NOTE' to display everything except the projection and note sections.

	
Use 'TYPICAL PROJECTION' to display using the typical format with the additional projection section (which is normally excluded under the typical format). Since typical is default, using simply 'PROJECTION' is equivalent.

	
Use '-BYTES -COST -PREDICATE' to display using the typical format but excluding optimizer cost and byte estimates as well as the predicate section.

	
Use 'BASIC ROWS' to display basic information with the additional number of rows estimated by the optimizer.

Examples

To display the execution plan for the SQL statement associated with SQL ID 'gwp663cqh5qbf' and PLAN HASH 3693697075 in the SQL Tuning Set called 'OLTP_optimization_0405":

SELECT * FROM table (
 DBMS_XPLAN.DISPLAY_SQLSET(
 'OLTP_optimization_0405','gwp663cqh5qbf', 3693697075));

To display all execution plans of the SQL ID 'atfwcg8anrykp' stored in the SQL tuning set:

SELECT * FROM table (
 DBMS_XPLAN.DISPLAY_SQLSET(
 'OLTP_optimization_0405','gwp663cqh5qbf'));

To display runtime statistics for the SQL statement included in the preceding statement:

SELECT * FROM table (
 DBMS_XPLAN.DISPLAY_SQLSET(
 'OLTP_optimization_0405', 'gwp663cqh5qbf', NULL, 'ALLSTATS LAST');

DBMS_XSLPROCESSOR

180 DBMS_XSLPROCESSOR

The DBMS_XSLPROCESSOR package provides an interface to manage the contents and structure of XML documents.

This chapter contains the following topics:

	
Using DBMS_XSLPROCESSOR

	
Overview

	
Security Model

	
Summary of DBMS_XSLPROCESSOR Subprograms

	
See Also:

	
Oracle XML DB Developer's Guide

Using DBMS_XSLPROCESSOR

This section contains topics which relate to using the DBMS_XSLPROCESSOR package.

	
Overview

	
Security Model

Overview

The DBMS_XSLPROCESSOR package provides an interface to manage the contents and structure of XML documents.

Standards

This PL/SQL implementation of the XSL processor follows the W3C XSLT working draft rev WD-xslt-19990813 and includes the required behavior of an XSL processor in terms of how it must read XSLT stylesheets and the transformation it must effect.

Concepts

The Extensible Stylesheet Language Transformation (XSLT) describes rules for transforming a source tree into a result tree. A transformation expressed in XSLT is called a stylesheet. The transformation specified is achieved by associating patterns with templates defined in the stylesheet. A template is instantiated to create part of the result tree.

Implementation

The following is the default behavior for this PL/SQL XSL Processor:

	
A result tree which can be accessed by DOM programmatic interface

	
Errors are not recorded unless an error log is specified; however, an application error will be raised if parsing fails

Security Model

Owned by XDB, the DBMS_XSLPROCESSOR package must be created by SYS or XDB. The EXECUTE privilege is granted to PUBLIC. Subprograms in this package are executed using the privileges of the current user.

Summary of DBMS_XSLPROCESSOR Subprograms

Table 180-1 DBMS_XSLPROCESSOR Package Subprograms

	Method	Description
	
CLOB2FILE Procedure

	
Writes content of a CLOB into a file

	
FREEPROCESSOR Procedure

	
Frees a processor object

	
FREESTYLESHEET Procedure

	
Frees a stylesheet object

	
NEWPROCESSOR Function

	
Returns a new processor instance

	
NEWSTYLESHEET Functions

	
Creates a new stylesheet from input and reference URLs

	
PROCESSXSL Functions and Procedures

	
Transforms an input XML document

	
READ2CLOB Function

	
Reads content of the file into a CLOB

	
REMOVEPARAM Procedure

	
Removes a top-level stylesheet parameter

	
RESETPARAMS Procedure

	
Resets the top-level stylesheet parameters

	
SELECTNODES Function

	
Selects nodes from a DOM tree that match a pattern

	
SELECTSINGLENODE Function

	
Selects the first node from the tree that matches a pattern

	
SETERRORLOG Procedure

	
Sets errors to be sent to the specified file

	
SETPARAM Procedure

	
Sets a top-level parameter in the stylesheet

	
SHOWWARNINGS Procedure

	
Turns warnings on or off

	
TRANSFORMNODE Function

	
Transforms a node in a DOM tree using a stylesheet

	
VALUEOF Function and Procedure

	
Gets the value of the first node that matches a pattern

CLOB2FILE Procedure

This procedure writes content of a CLOB into a file.

Syntax

DBMS_XSLPROCESSOR.CLOB2FILE(
 cl IN CLOB;
 flocation IN VARCHAR2,
 fname IN VARCHAR2,
 csid IN NUMBER:=0);

Parameters

Table 180-2 CLOB2FILE Procedure Parameters

	Parameter	Description
	
CLOB

	
File directory

	
flocation

	
File directory

	
fname

	
File name

	
csid

	
Character set id of the file

	
Must be a valid Oracle id; otherwise returns an error

	
If 0, content of the output file will be in the database character set

FREEPROCESSOR Procedure

This procedure Frees a Processor object.

Syntax

DBMS_XSLPROCESSOR.FREEPROCESSOR(
 p IN Processor);

Parameters

Table 180-3 FREEPROCESSOR Procedure Parameters

	Parameter	Description
	
p

	
Processor

FREESTYLESHEET Procedure

This procedure frees a Stylesheet object.

Syntax

DBMS_XSLPROCESSOR.FREESTYLESHEET(
 ss IN Stylesheet);

Parameters

Table 180-4 FREESTYLESHEET Procedure Parameters

	Parameter	Description
	
ss

	
Stylesheet

NEWPROCESSOR Function

This function returns a new Processor instance. The function must be called before the default behavior of Processor can be changed and if other processor methods need to be used.

Syntax

DBMS_XSLPROCESSOR.NEWPROCESSOR
 RETURN Processor;

NEWSTYLESHEET Functions

This function creates and returns a new Stylesheet instance. The options are described in the following table.

Syntax

Creates and returns a new stylesheet instance using the given DOMDOCUMENT and reference URLs:

DBMS_XSLPROCESSOR.NEWSTYLESHEET(
 xmldoc IN DOMDOCUMENT,
 ref IN VARCHAR2)
 RETURN Stylesheet;

Creates and returns a new Stylesheet instance using the given input and reference URLs:

DBMS_XSLPROCESSOR.NEWSTYLESHEET(
 inp IN VARCHAR2,
 ref IN VARCHAR2)
 RETURN Stylesheet;

Parameters

Table 180-5 NEWSTYLESHEET Function Parameters

	Parameter	Description
	
xmldoc

	
DOMDocument to use for construction

	
inp

	
Input URL to use for construction

	
ref

	
Reference URL

PROCESSXSL Functions and Procedures

This function transforms input XMLDocument. Any changes to the default processor behavior should be effected before calling this procedure. An application error is raised if processing fails.

Syntax

Transforms input XMLDocument using given DOMDocument and stylesheet, and returns the resultant document fragment:

DBMS_XSLPROCESSOR.PROCESSXSL(
 p IN Processor,
 ss IN Stylesheet,
 xmldoc IN DOMDOCUMENT),
 RETURN DOMDOCUMENTFRAGMENT;

Transforms input XMLDocument using given document as URL and the Stylesheet, and returns the resultant document fragment:

DBMS_XSLPROCESSOR.PROCESSXSL(
 p IN Processor,
 ss IN Stylesheet,
 url IN VARCHAR2,
 RETURN DOMDOCUMENTFRAGMENT;

Transforms input XMLDocument using given document as CLOB and the Stylesheet, and returns the resultant document fragment:

DBMS_XSLPROCESSOR.PROCESSXSL(
 p IN Processor,
 ss IN Stylesheet,
 clb IN CLOB)
 RETURN DOMDOCUMENTFRAGMENT;

Transforms input XMLDocument using given DOMDOCUMENT and the stylesheet, and writes the output to the specified file:

DBMS_XSLPROCESSOR.DBMS_XSLPROCESSOR.(
 p IN Processor,
 ss IN Stylesheet,
 xmldoc IN DOMDOCUMENT,
 dir IN VARCHAR2,
 fileName IN VARCHAR2);

Transforms input XMLDocument using given URL and the stylesheet, and writes the output to the specified file in a specified directory:

DBMS_XSLPROCESSOR.PROCESSXSL(
 p IN Processor,
 ss IN Stylesheet,
 url IN VARCHAR2,
 dir IN VARCHAR2,
 fileName IN VARCHAR2);

Transforms input XMLDocument using given DOMDOCUMENT and the stylesheet, and writes the output to a CLOB:

DBMS_XSLPROCESSOR.PROCESSXSL(
 p IN Processor,
 ss IN Stylesheet,
 xmldoc IN DOMDOCUMENT,
 cl IN OUT CLOB);

Transforms input XMLDocument using given DOMDOCUMENTFRAGMENT and the stylesheet, and returns the resultant document fragment:

DBMS_XSLPROCESSOR.PROCESSXSL(
 p IN Processor,
 ss IN Stylesheet,
 xmldf IN DOMDOCUMENTFRAGMENT)
 RETURN DOMDOCUMENTFRAGMENT;

Transforms input XMLDocumentFragment using given DOMDocumentFragment and the stylesheet, and writes the output to the specified file in a specified directory:

DBMS_XSLPROCESSOR.PROCESSXSL(
 p IN Processor,
 ss IN Stylesheet,
 xmldf IN DOMDOCUMENTFRAGMENT,
 dir IN VARCHAR2,
 filename IN VARCHAR2);

Transforms input XMLDocumentFragment using given DOMDOCUMENTFRAGMENT and the stylesheet, and writes the output to a buffer:

DBMS_XSLPROCESSOR.PROCESSXSL(
 p IN Processor,
 ss IN Stylesheet,
 xmldf IN DOMDOCUMENTFRAGMENT,
 buf IN OUT VARCHAR2);

Transforms input XMLDocumentFragment using given DOMDOCUMENTFRAGMENT and the stylesheet, and writes the output to a CLOB:

DBMS_XSLPROCESSOR.PROCESSXSL(
 p IN Processor,
 ss IN Stylesheet,
 xmldf IN DOMDOCUMENTFRAGMENT,
 cl IN OUT CLOB);

Parameters

Table 180-6 PROCESSXSL Function and Procedure Parameters

	Parameter	Description
	
p

	
Processor instance

	
ss

	
Stylesheet instance

	
xmldoc

	
XML document being transformed

	
url

	
URL for the information being transformed

	
clb

	
CLOB containing information to be transformed

	
dir

	
Directory where processing output file is saved

	
filename

	
Processing output file

	
cl

	
CLOB to which the processing output is saved

	
xmldf

	
XMLDocumentFragment being transformed

READ2CLOB Function

This function reads content of a file into a CLOB.

Syntax

DBMS_XSLPROCESSOR.READ2CLOB(
 flocation IN VARCHAR2,
 fname IN VARCHAR2,
 csid IN NUMBER:=0)
 RETURN CLOB;

Parameters

Table 180-7 READ2CLOB Function Parameters

	Parameter	Description
	
flocation

	
File directory

	
fname

	
File name

	
csid

	
Character set id of the file

	
Must be a valid Oracle id; otherwise returns an error

	
If 0, input file is assumed to be in the database character set

REMOVEPARAM Procedure

This procedure removes a top level stylesheet parameter.

Syntax

DBMS_XSLPROCESSOR.REMOVEPARAM(
 ss IN Stylesheet,
 name IN VARCHAR2);

Parameters

Table 180-8 REMOVEPARAM Procedure Parameters

	Parameter	Description
	
ss

	
Stylesheet instance

	
name

	
Name of the parameter

RESETPARAMS Procedure

This procedure resets the top-level stylesheet parameters.

Syntax

DBMS_XSLPROCESSOR.RESETPARAMS(
 ss IN Stylesheet);

Parameters

Table 180-9 RESETPARAMS Procedure Parameters

	Parameter	Description
	
ss

	
Stylesheet instance

SELECTNODES Function

This function selects nodes which match the suplied path expression from a DOM tree, and returns the result of the selection.

Syntax

DBMS_XSLPROCESSOR.SELECTNODES(
 n IN DBMS_XMLDOM.DOMNODE,
 pattern IN VARCHAR2,
 namespace IN VARCHAR2 := NULL)
 RETURN DBMS_XMLDOM.DOMNODELIST;

Parameters

Table 180-10 SELECTNODES Function Parameters

	Parameter	Description
	
n

	
Root DOMNode of the tree

	
pattern

	
Pattern to use

	
namespace

	
Namespace declared

SELECTSINGLENODE Function

This function selects the first node from the tree that match the suplied path expression, and returns that node.

Syntax

DBMS_XSLPROCESSOR.SELECTSINGLENODE(
 n IN DBMS_XMLDOM.DOMNODE,
 pattern IN VARCHAR2,
 namespace IN VARCHAR2 := NULL)
 RETURN DBMS_XMLDOM.DOMNODE;

Parameters

Table 180-11 SELECTSINGLENODE Function Parameters

	Parameter	Description
	
n

	
Root DOMNode of the tree

	
pattern

	
Pattern to use

	
namespace

	
Namespace declared

SETERRORLOG Procedure

This procedure sets errors to be sent to the specified file.

	
Note:

This subprogram has been deprecated, and is included only for reasons of backward compatibility.

Syntax

DBMS_XSLPROCESSOR.SETERRORLOG(
 p IN Processor,
 fileName IN VARCHAR2);

Parameters

Table 180-12 SETERRORLOG Procedure Parameters

	Parameter	Description
	
p

	
Processor instance

	
fileName

	
Complete path of the file to use as the error log

SETPARAM Procedure

This procedure sets a top level parameter in the stylesheet. The parameter value must be a valid XPath expression. Literal string values must be quoted.

Syntax

DBMS_XSLPROCESSOR.SETPARAM(
 ss IN Stylesheet,
 name IN VARCHAR2,
 value IN VARCHAR2);

Parameters

Table 180-13 SETPARAM Procedure Parameters

	Parameter	Description
	
ss

	
Stylesheet instance

	
name

	
Name of the parameter

	
value

	
Value of the parameter

SHOWWARNINGS Procedure

This procedure turns warnings on (TRUE) or off (FALSE).

Syntax

DBMS_XSLPROCESSOR.SHOWWARNINGS(
 p IN Processor,
 yes IN BOOLEAN);

Parameters

Table 180-14 SHOWWARNINGS Procedure Parameters

	Parameter	Description
	
p

	
Processor instance

	
yes

	
Mode to set: TRUE to show warnings, FALSE otherwise

TRANSFORMNODE Function

This function transforms a node in a DOM tree using the given stylesheet, and returns the result of the transformation as a DOMDocumentFragment.

Syntax

DBMS_XSLPROCESSOR.TRANSFORMNODE(
 n IN DOMNODE,
 ss IN Stylesheet)
 RETURN DOMDocumentFragment;

Parameters

Table 180-15 TRANSFORMNODE Function Parameters

	Parameter	Description
	
n

	
DOMNode to transform

	
ss

	
Stylesheet to use

VALUEOF Function and Procedure

This subprogram retrieves the value of the first node from the tree that matches the given pattern. You can use either a function or a procedure.

Syntax

DBMS_XSLPROCESSOR.VALUEOF(
 n IN DBMS_XMLDOM.DOMNODE,
 pattern IN VARCHAR2,
 namespace IN VARCHAR2 := NULL)
 RETURN VARCHAR2;

DBMS_XSLPROCESSOR.VALUEOF(
 n IN DBMS_XMLDOM.DOMNODE,
 pattern IN VARCHAR2,
 val OUT VARCHAR2,
 namespace IN VARCHAR2 := NULL);

Parameters

Table 180-16 VALUEOF Function and Procedure Parameters

	Parameter	Description
	
n

	
Node whose value is being retrieved

	
pattern

	
Pattern to use

	
val

	
Retrieved value

	
namespace

	
Namespace to use

DEBUG_EXTPROC

181 DEBUG_EXTPROC

The DEBUG_EXTPROC package enables you to start up the extproc agent within a session. This utility package can help you debug external procedures.

This chapter contains the following topics:

	
Using DEBUG_EXTPROC

	
Security Model

	
Operational Notes

	
Rules and Limits

	
Summary of DEBUG_EXTPROC Subprograms

Using DEBUG_EXTPROC

	
Security Model

	
Operational Notes

	
Rules and Limits

Security Model

Your Oracle account must have EXECUTE privileges on the package and CREATE LIBRARY privileges.

Operational Notes

To install the package, run the script DBGEXTP.SQL.

	
Install/load this package in the Oracle USER where you want to debug the 'extproc' process.

	
Ensure that you have execute privileges on package DEBUG_EXTPROC

 SELECT SUBSTR(OBJECT_NAME, 1, 20)
 FROM USER_OBJECTS
 WHERE OBJECT_NAME = 'DEBUG_EXTPROC';

	
You can install this package as any other user, as long as you have EXECUTE privileges on the package.

	
Note:

These notes assumes that you built your shared library with debug symbols to aid in the debugging process. Please check the C compiler manual pages for the appropriate C compiler switches to build the shared library with debug symbols.

Having installed the package, proceed accordingly:

	
Start a new Oracle session through SQL*Plus or OCI program by connecting to ORACLE.

	
Execute procedure DEBUG_EXTPROC.STARTUP_EXTPROC_AGENT to startup the extproc agent in this session; for example, execute DEBUG_EXTPROC.STARTUP_EXTPROC_AGENT; Do not exit this session, because that terminates the extproc agent.

	
Determine the PID of the extproc agent that was started up for this session.

	
Using a debugger (for example, gdb, dbx, or the native system debugger), load the extproc executable and attach to the running process.

	
Set a breakpoint on function 'pextproc' and let the debugger continue with its execution.

	
Now execute your external procedure in the same session where you first executed DEBUG_EXTPROC.STARTUP_EXTPROC_AGENT

	
Your debugger should now break in function 'pextproc'. At this point in time, the shared library referenced by your PL/SQL external function would have been loaded and the function resolved. Now set a breakpoint in your C function and let the debugger continue its execution.

Because PL/SQL loads the shared library at runtime, the debugger you use may or may not automatically be able to track the new symbols from the shared library. You may have to issue some debugger command to load the symbols (for example, 'share' in gdb)

	
The debugger should now break in your C function. Its assumed that you had built the shared library with debugging symbols.

	
Now proceed with your debugging.

Rules and Limits

	
Note:

DEBUG_EXTPROC works only on platforms with debuggers that can attach to a running process.

Summary of DEBUG_EXTPROC Subprograms

Table 181-1 DEBUG_EXTPROC Package Subprograms

	Subprogram	Description
	
STARTUP_EXTPROC_AGENT Procedure

	
Starts up the extproc agent process in the session

STARTUP_EXTPROC_AGENT Procedure

This procedure starts up the extproc agent process in the session.This enables you to get the PID of the executing process. This PID is needed to be able to attach to the running process using a debugger.

Syntax

DEBUG_EXTPROC.STARTUP_EXTPROC_AGENT;

HTF

182 HTF

The HTF (hypertext functions) and HTP (hypertext procedures) packages generate HTML tags. For example, the HTF.ANCHOR function generates the HTML anchor tag, <A>.

	
See Also:

For more information about implementation of this package:
	
Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

	
Oracle Fusion Middleware User's Guide for mod_plsql

This chapter contains the following topics:

	
Using HTF

	
Deprecated Subprograms

	
Operational Notes

	
Rules and Limits

	
Examples

	
Summary of Tags

	
Summary of HTF Subprograms

Using HTF

	
Deprecated Subprograms

	
Operational Notes

	
Rules and Limits

	
Examples

Deprecated Subprograms

	
Note:

Oracle recommends that you do not use deprecated procedures in new applications. Support for deprecated features is for backward compatibility only.

The following subprogram is deprecated with Oracle Database 10g:

	
ESCAPE_URL Function

Operational Notes

For every HTF function that generates one or more HTML tags, there is a corresponding HTP procedure with identical parameters with the following exception:

	
The PRINTS Procedure and the PS Procedure do not have HTF function equivalents. Use the ESCAPE_SC Function or the ESCAPE_URL Function if you need a string conversion function. Note that while there is a ESCAPE_SC Procedure that performs the same operation as the PRINTS Procedure and the PS Procedure, there is no procedural equivalent for the ESCAPE_URL Function.

	
The FORMAT_CELL Function does not have an HTP equivalent. The function formats column values inside an HTML table using TABLEDATA Function which does have an HTP equivalent in the TABLEDATA Procedure. The advantage of this using the FORMAT_CELL Function is that it allows for better control over the HTML tables.

The function versions do not directly generate output in your Web page. Instead, they pass their output as return values to the statements that invoked them. Use these functions when you need to nest calls. To print the output of HTF functions, call the functions from within the HTF.PRINT function. It then prints its parameters to the generated Web page.

Rules and Limits

If you use values of the LONG data type in functions such as HTF.PRINT, HTF.PRN, HTF.PA or OWA_UTIL.CELLSPRINT, only the first 32 K of the LONG data is used. The LONG data is bound to a VARCHAR2 data type in the function.

Examples

The following commands generate a simple HTML document:

CREATE OR REPLACE PROCEDURE hello AS
BEGIN
 HTP.P (HTF.HTMLOPEN); -- generates <HTML>
 HTP.P (HTF.HEADOPEN); -- generates <HEAD>
 HTP.P (HTF.TITLE('Hello')); -- generates <TITLE>Hello</TITLE>
 HTP.P (HTF.HEADCLOSE); -- generates </HEAD>
 HTP.P (HTF.BODYOPEN); -- generates <BODY>
 HTP.P (HTF.HEADER(1, 'Hello')); -- generates <H1>Hello</H1>
 HTP.P (HTF.BODYCLOSE); -- generates </BODY>
 HTP.P (HTF.HTMLCLOSE); -- generates </HTML>
END;

Summary of Tags

HTML, HEAD, and BODY Tags

HTMLOPEN Function, HTMLCLOSE Function - generate <HTML> and </HTML>

HEADOPEN Function, HEADCLOSE Function - generate <HEAD> and </HEAD>

BODYOPEN Function, BODYCLOSE Function - generate <BODY> and </BODY>

Comment Tag

COMMENT Function - generates <!-- and -->

http://www.w3.org.BASE Function - generates <BASE>

LINKREL Function - generates <LINK> with the REL attribute

LINKREV Function - generates <LINK> with the REV attribute

TITLE Function - generates <TITLE>

META Function - generates <META>

SCRIPT Function - generates <SCRIPT>

STYLE Function - generates <STYLE>

ISINDEX Function - generates <ISINDEX>

Applet Tags

APPLETOPEN Function, APPLETCLOSE Function - generate <APPLET> and </APPLET>

PARAM Function - generates <PARAM>

List Tags

OLISTOPEN Function, OLISTCLOSE Function - generate and

ULISTOPEN Function, ULISTCLOSE Function - generate and

DLISTOPEN Function, DLISTCLOSE Function- generate <DL> and </DL>

DLISTTERM Function - generates <DT>

DLISTDEF Function - generates <DD>

DIRLISTOPEN Function, DIRLISTCLOSE Function - generate <DIR> and </DIR>

LISTHEADER Function - generates <LH>

LISTINGOPEN Function, LISTINGCLOSE Function - generate <LISTING> and </LISTING>

MENULISTOPEN Function - generate <MENU> and </MENU>

LISTITEM Function - generates

Form Tags

FORMOPEN Function, FORMCLOSE Function - generate <FORM> and </FORM>

FORMCHECKBOX Function - generates <INPUT TYPE="CHECKBOX">

FORMHIDDEN Function - generates <INPUT TYPE="HIDDEN">

FORMIMAGE Function - generates <INPUT TYPE="IMAGE">

FORMPASSWORD Function - generates <INPUT TYPE="PASSWORD">

FORMRADIO Function - generates <INPUT TYPE="RADIO">

FORMSELECTOPEN Function, FORMSELECTCLOSE Function - generate <SELECT> and </SELECT>

FORMSELECTOPTION Function - generates <OPTION>

FORMTEXT Function - generates <INPUT TYPE="TEXT">

FORMTEXTAREA Function - generate <TEXTAREA>

FORMTEXTAREAOPEN Function, FORMTEXTAREACLOSE Function - generate <TEXTAREA> and </TEXTAREA>

FORMRESET Function - generates <INPUT TYPE="RESET">

FORMSUBMIT Function - generates <INPUT TYPE="SUBMIT">

Table Tags

TABLEOPEN Function, TABLECLOSE Function - generate <TABLE> and </TABLE>

TABLECAPTION Function - generates <CAPTION>

TABLEROWOPEN Function, TABLEROWCLOSE Function - generate <TR> and </TR>

TABLEHEADER Function - generates <TH>

TABLEDATA Function - generates <TD>

IMG, HR, and A Tags

HR Function, LINE Function - generate <HR>

IMG Function, IMG2 Function - generate

ANCHOR Function, ANCHOR2 Function - generate <A>

MAPOPEN Function, MAPCLOSE Function - generate <MAP> and </MAP>

Paragraph Formatting Tags

HEADER Function - generates heading tags (<H1> to <H6>)

PARA Function, PARAGRAPH Function - generate <P>

PRN Functions, PRINT Functions - generate any text that is passed in

PRN Functions, S Function - generate any text that is passed in; special characters in HTML are escaped

PREOPEN Function, PRECLOSE Function - generate <PRE> and </PRE>

BLOCKQUOTEOPEN Function, BLOCKQUOTECLOSE Function - generate <BLOCKQUOTE> and </BLOCKQUOTE>

DIV Function - generates <DIV>

NL Function, BR Function - generate

NOBR Function - generates <NOBR>

WBR Function - generates <WBR>

PLAINTEXT Function - generates <PLAINTEXT>

ADDRESS Function - generates <ADDRESS>

MAILTO Function - generates <A> with the MAILTO attribute

AREA Function - generates <AREA>

BGSOUND Function - generates <BGSOUND>

Character Formatting Tags

BASEFONT Function - generates <BASEFONT>

BIG Function - generates <BIG>

BOLD Function - generates

CENTER Function - generates <CENTER> and </CENTER>

CENTEROPEN Function, CENTERCLOSE Function - generate <CENTER> and </CENTER>

CITE Function - generates <CITE>

CODE Function - generates <CODE>

DFN Function - generates <DFN>

EM Function, EMPHASIS Function - generate

FONTOPEN Function, FONTCLOSE Function - generate and

ITALIC Function - generates <I>

KBD Function, KEYBOARD Function - generate <KBD> and </KBD>

S Function - generates <S>

SAMPLE Function - generates <SAMP>

SMALL Function - generates <SMALL>

STRIKE Function - generates <STRIKE>

STRONG Function - generates

SUB Function - generates <SUB>

SUP Function - generates <SUP>

TELETYPE Function - generates <TT>

UNDERLINE Function - generates <U>

VARIABLE Function - generates <VAR>

Frame Tags

FRAME Function - generates <FRAME>

FRAMESETOPEN Function, FRAMESETCLOSE Function - generate <FRAMESET> and </FRAMESET>

NOFRAMESOPEN Function, NOFRAMESCLOSE Function - generate <NOFRAMES> and </NOFRAMES>

Summary of HTF Subprograms

Table 182-1 HTF Package Subprograms

	Subprogram	Description
	
ADDRESS Function

	
Generates the <ADDRESS> and </ADDRESS> tags which specify the address, author and signature of a document

	
ANCHOR Function

	
Generates the <A> and tags which specify the source or destination of a hypertext link

	
ANCHOR2 Function

	
Generates the <A> and tags which specify the source or destination of a hypertext link

	
APPLETCLOSE Function

	
Closes the applet invocation with the </APPLET> tag

	
APPLETOPEN Function

	
Generates the <APPLET> tag which begins the invocation of a Java applet

	
AREA Function

	
Generates the <AREA> tag, which defines a client-side image map

	
BASE Function

	
Generates the <BASE> tag which records the URL of the document

	
BASEFONT Function

	
Generates the <BASEFONT> tag which specifies the base font size for a Web page

	
BGSOUND Function

	
Generates the <BGSOUND> tag which includes audio for a Web page

	
BIG Function

	
Generates the <BIG> and </BIG> tags which direct the browser to render the text in a bigger font

	
BLOCKQUOTECLOSE Function

	
Generates the </BLOCKQUOTE> tag which mark the end of a section of quoted text

	
BLOCKQUOTEOPEN Function

	
Generates the <BLOCKQUOTE> tag, which marks the beginning of a section of quoted text

	
BODYCLOSE Function

	
Generates the </BODY> tag which marks the end of a body section of an HTML document

	
BODYOPEN Function

	
Generates the <BODY> tag which marks the beginning of the body section of an HTML document

	
BOLD Function

	
Generates the and tags which direct the browser to display the text in boldface

	
BR Function

	
Generates the
 tag which begins a new line of text

	
CENTER Function

	
Generates the <CENTER> and </CENTER> tags which center a section of text within a Web page

	
CENTERCLOSE Function

	
Generates the </CENTER> tag which marks the end of a section of text to center

	
CENTEROPEN Function

	
Generates the <CENTER> tag which mark the beginning of a section of text to center

	
CITE Function

	
Generates the <CITE> and </CITE> tags which direct the browser to render the text as a citation

	
CODE Function

	
Generates the <CODE> and </CODE> tags which direct the browser to render the text in monospace font or however "code" is defined stylistically

	
COMMENT Function

	
Generates the comment tags <!-- ctext -->

	
DFN Function

	
Generates the <DFN> and </DFN> tags which direct the browser to mark the text as italics or however "definition" is defined stylistically

	
DIRLISTCLOSE Function

	
Generates the </DIR> tag which ends a directory list section

	
DIRLISTOPEN Function

	
Generates the <DIR> which starts a directory list section

	
DIV Function

	
Generates the <DIV> tag which creates document divisions

	
DLISTCLOSE Function

	
Generates the </DL> tag which ends a definition list

	
DLISTDEF Function

	
Generates the <DD> tag, which inserts definitions of terms

	
DLISTOPEN Function

	
Generates the <DL> tag which starts a definition list

	
DLISTTERM Function

	
Generates the <DT> tag which defines a term in a definition list <DL>

	
EM Function

	
Generates the and tags, which define text to be emphasized

	
EMPHASIS Function

	
Generates the and tags, which define text to be emphasized

	
ESCAPE_SC Function

	
Replaces characters that have special meaning in HTML with their escape sequences

	
ESCAPE_URL Function

	
Replaces characters that have special meaning in HTML and HTTP with their escape sequences

	
FONTCLOSE Function

	
Generates the tag which marks the end of a section of text with the specified font characteristics

	
FONTOPEN Function

	
Generates the which marks the beginning of section of text with the specified font characteristics

	
FORMAT_CELL Function

	
formats column values inside an HTML table using the TABLEDATA Function

	
FORMCHECKBOX Function

	
Generates the <INPUT> tag with TYPE="checkbox" which inserts a checkbox element in a form

	
FORMCLOSE Function

	
Generates the </FORM> tag which marks the end of a form section in an HTML document

	
FORMFILE Function

	
Generates the <INPUT> tag with TYPE="file" which inserts a file form element, and is used for file uploading for a given page

	
FORMHIDDEN Function

	
Generates the <INPUT> tag with TYPE="hidden"which inserts a hidden form element

	
FORMIMAGE Function

	
Generates the <INPUT> tag with TYPE="image" which creates an image field that the user clicks to submit the form immediately

	
FORMOPEN Function

	
Generates the <FORM> tag which marks the beginning of a form section in an HTML document

	
FORMPASSWORD Function

	
Generates the <INPUT> tag with TYPE="password" which creates a single-line text entry field

	
FORMRADIO Function

	
Generates the <INPUT> tag with TYPE="radio", which creates a radio button on the HTML form

	
FORMRESET Function

	
Generates the <INPUT> tag with TYPE="reset" which creates a button that, when selected, resets the form fields to their initial values

	
FORMSELECTCLOSE Function

	
Generates the </SELECT> tag which marks the end of a Select form element

	
FORMSELECTOPEN Function

	
Generates the </SELECT> tag which marks the beginning of a Select form element

	
FORMSELECTOPTION Function

	
Generates the <OPTION> tag which represents one choice in a Select element

	
FORMSUBMIT Function

	
Generates the <INPUT> tag with TYPE="submit" which creates a button that, when clicked, submits the form

	
FORMTEXT Function

	
Generates the <INPUT> tag with TYPE="text", which creates a field for a single line of text

	
FORMTEXTAREA Function

	
Generates the <TEXTAREA> tag, which creates a text field that has no predefined text in the text area

	
FORMTEXTAREA2 Function

	
Generates the <TEXTAREA> tag, which creates a text field that has no predefined text in the text area with the ability to specify a wrap style

	
FORMTEXTAREACLOSE Function

	
Generates the </TEXTAREA> tag which ends a text area form element

	
FORMTEXTAREAOPEN Function

	
Generates the <TEXTAREA> which marks the beginning of a text area form element

	
FORMTEXTAREAOPEN2 Function

	
Generates the <TEXTAREA> which marks the beginning of a text area form element with the ability to specify a wrap style

	
FRAME Function

	
Generates the <FRAME> tag which defines the characteristics of a frame created by a <FRAMESET> tag

	
FRAMESETCLOSE Function

	
Generates the </FRAMESET> tag which ends a frameset section

	
FRAMESETOPEN Function

	
Generates the </FRAMESET> tag which begins a frameset section

	
HEADCLOSE Function

	
Generates the </HEAD> tag which marks the end of an HTML document head section

	
HEADER Function

	
Generates opening heading tags (<H1> to <H6>) and their corresponding closing tags (</H1> to </H6>)

	
HEADOPEN Function

	
Generates the <HEAD> tag which marks the beginning of the HTML document head section

	
HR Function

	
Generates the <HR> tag, which generates a line in the HTML document

	
HTMLCLOSE Function

	
Generates the </HTML> tag which marks the end of an HTML document

	
HTMLOPEN Function

	
Generates the <HTML> tag which marks the beginning of an HTML document

	
IMG Function

	
Generates the tag which directs the browser to load an image onto the HTML page

	
IMG2 Function

	
Generates the tag which directs the browser to load an image onto the HTML page with the option of specifying values for the USEMAP attribute

	
ISINDEX Function

	
Creates a single entry field with a prompting text, such as "enter value," then sends that value to the URL of the page or program

	
ITALIC Function

	
Generates the <I> and </I> tags which direct the browser to render the text in italics

	
KBD Function

	
Generates the <KBD> and </KBD> tags which direct the browser to render the text in monospace font

	
KEYBOARD Function

	
Generates the <KBD> and </KBD> tags, which direct the browser to render the text in monospace font

	
LINE Function

	
Generates the <HR> tag, which generates a line in the HTML document

	
LINKREL Function

	
Generates the <LINK> tag with the REL attribute which delineates the relationship described by the hypertext link from the anchor to the target

	
LINKREV Function

	
Generates the <LINK> tag with the REV attribute which delineates the relationship described by the hypertext link from the target to the anchor

	
LISTHEADER Function

	
Generates the <LH> and </LH> tags which print an HTML tag at the beginning of the list

	
LISTINGCLOSE Function

	
Generates the </LISTING> tags which marks the end of a section of fixed-width text in the body of an HTML page

	
LISTINGOPEN Function

	
Generates the <LISTING> tag which marks the beginning of a section of fixed-width text in the body of an HTML page

	
LISTITEM Function

	
Generates the tag, which indicates a list item

	
MAILTO Function

	
Generates the <A> tag with the HREF set to 'mailto' prepended to the mail address argument

	
MAPCLOSE Function

	
Generates the </MAP> tag which marks the end of a set of regions in a client-side image map

	
MAPOPEN Function

	
Generates the <MAP> tag which mark the beginning of a set of regions in a client-side image map

	
MENULISTCLOSE Function

	
Generates the </MENU> tag which ends a list that presents one line for each item

	
MENULISTOPEN Function

	
Generates the <MENU> tag which create a list that presents one line for each item

	
META Function

	
Generates the <META> tag, which embeds meta-information about the document and also specifies values for HTTP headers

	
NL Function

	
Generates the
 tag which begins a new line of text

	
NOBR Function

	
Generates the <NOBR> and </NOBR> tags which turn off line-breaking in a section of text

	
NOFRAMESCLOSE Function

	
Generates the </NOFRAMES> tag which marks the end of a no-frames section

	
NOFRAMESOPEN Function

	
Generates the <NOFRAMES> tag which mark the beginning of a no-frames section

	
OLISTCLOSE Function

	
Generates the tag which defines the end of an ordered list

	
OLISTOPEN Function

	
Generates the tag which marks the beginning of an ordered list

	
PARA Function

	
Generates the <P> tag which indicates that the text that comes after the tag is to be formatted as a paragraph

	
PARAGRAPH Function

	
Adds attributes to the <P> tag

	
PARAM Function

	
Generates the <PARAM> tag which specifies parameter values for Java applets

	
PLAINTEXT Function

	
Generates the <PLAINTEXT> and </PLAINTEXT> tags which direct the browser to render the text they surround in fixed-width type

	
PRECLOSE Function

	
Generates the </PRE> tag which marks the end of a section of preformatted text in the body of the HTML page

	
PREOPEN Function

	
Generates the <PRE> tag which marks the beginning of a section of preformatted text in the body of the HTML page

	
PRINT Functions

	
Generates the specified parameter as a string terminated with the \n newline character

	
PRN Functions

	
Generates the specified parameter as a string

	
S Function

	
Generates the <S> and </S> tags which direct the browser to render the text they surround in strikethrough type

	
SAMPLE Function

	
Generates the <SAMP> and </SAMP> tags which direct the browser to render the text they surround in monospace font or however "sample" is defined stylistically

	
SCRIPT Function

	
Generates the <SCRIPT> and </SCRIPT> tags which contain a script written in languages such as JavaScript and VBscript

	
SMALL Function

	
Generates the <SMALL> and </SMALL> tags, which direct the browser to render the text they surround using a small font

	
STRIKE Function

	
Generates the <STRIKE> and </STRIKE> tags which direct the browser to render the text they surround in strikethrough type

	
STRONG Function

	
Generates the and tags which direct the browser to render the text they surround in bold or however "strong" is defined stylistically

	
STYLE Function

	
Generates the <STYLE> and </STYLE> tags which include a style sheet in a Web page

	
SUB Function

	
Generates the _{and} tags which direct the browser to render the text they surround as subscript

	
SUP Function

	
Generates the ^{and} tags which direct the browser to render the text they surround as superscript

	
TABLECAPTION Function

	
Generates the <CAPTION> and </CAPTION> tags which place a caption in an HTML table

	
TABLECLOSE Function

	
Generates the </TABLE> tag which marks the end of an HTML table

	
TABLEDATA Function

	
Generates the <TD> and </TD> tags which insert data into a cell of an HTML table

	
TABLEHEADER Function

	
Generates the <TH> and </TH> tags which insert a header cell in an HTML table.

	
TABLEOPEN Function

	
Generates the <TABLE> tag which marks the beginning of an HTML table

	
TABLEROWCLOSE Function

	
Generates the </TR> tag which marks the end of a new row in an HTML table

	
TABLEROWOPEN Function

	
Generates the <TR> tag which marks the beginning of a new row in an HTML table

	
TELETYPE Function

	
Generates the <TT> and </TT> tags which direct the browser to render the text they surround in a fixed width typewriter font, for example, the courier font

	
TITLE Function

	
Generates the <TITLE> and </TITLE> tags which specify the text to display in the titlebar of the browser window

	
ULISTCLOSE Function

	
Generates the tag which marks the end of an unordered list

	
ULISTOPEN Function

	
Generates the tag which marks the beginning of an unordered list

	
UNDERLINE Function

	
Generates the <U> and </U> tags, which direct the browser to render the text they surround with an underline

	
VARIABLE Function

	
Generates the <VAR> and </VAR> tags which direct the browser to render the text they surround in italics or however "variable" is defined stylistically.

	
WBR Function

	
Generates the <WBR> tag, which inserts a soft line break within a section of NOBR text

ADDRESS Function

This function generates the <ADDRESS> and </ADDRESS> tags which specify the address, author and signature of a document.

Syntax

HTF.ADDRESS (
 cvalue IN VARCHAR2
 cnowrap IN VARCHAR2 DEFAULT NULL
 cclear IN VARCHAR2 DEFAULT NULL
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-2 ADDRESS Function Parameters

	Parameter	Description
	
cvalue

	
The string that goes between the <ADDRESS> and </ADDRESS> tags.

	
cnowrap

	
If the value for this parameter is not NULL, the NOWRAP attribute is included in the tag

	
cclear

	
The value for the CLEAR attribute.

	
cattributes

	
The other attributes to be included as-is in the tag

Examples

This function generates

<ADDRESS CLEAR="cclear" NOWRAP cattributes>cvalue</ADDRESS>

ANCHOR Function

This function and the ANCHOR2 Function functions generate the <A> and HTML tags which specify the source or destination of a hypertext link. The difference between these subprograms is that the ANCHOR2 Function provides a target and therefore can be used for a frame.

Syntax

HTF.ANCHOR (
 curl IN VARCHAR2,
 ctext IN VARCHAR2,
 cname IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-3 ANCHOR Function Parameters

	Parameter	Description
	
curl

	
The value for the HREF attribute.

	
ctext

	
The string that goes between the <A> and tags.

	
cname

	
The value for the NAME attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

ctext

Usage Notes

This tag accepts several attributes, but either HREF or NAME is required. HREF specifies to where to link. NAME allows this tag to be a target of a hypertext link.

ANCHOR2 Function

This function and the ANCHOR Function generate the <A> and HTML tags which specify the source or destination of a hypertext link. The difference between these subprograms is that this functions provides a target and therefore can be used for a frame.

Syntax

HTF.ANCHOR2 (
 curl IN VARCHAR2,
 ctext IN VARCHAR2,
 cname IN VARCHAR2 DEFAULT NULL,
 ctarget in varchar2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-4 ANCHOR2 Function Parameters

	Parameter	Description
	
curl

	
The value for the HREF attribute.

	
ctext

	
The string that goes between the <A> and tags.

	
cname

	
The value for the NAME attribute

	
ctarget

	
The value for the TARGET attribute.

	
cattributes

	
The other attributes to be included as-is in the tag

Examples

This function generates

ctext

APPLETCLOSE Function

This function closes the applet invocation with the </APPLET> tag. You must first invoke the a Java applet using APPLETOPEN Function

Syntax

HTF.APPLETCLOSE
 RETURN VARCHAR2;

APPLETOPEN Function

This function generates the <APPLET> tag which begins the invocation of a Java applet. You close the applet invocation with APPLETCLOSE Function which generates the </APPLET> tag.

Syntax

HTF.APPLETOPEN (
 ccode IN VARCHAR2,
 cheight IN NUMBER,
 cwidth IN NUMBER,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-5 APPLETOPEN Function Parameters

	Parameter	Description
	
ccode

	
The the value for the CODE attribute which specifies the name of the applet class.

	
cheight

	
The value for the HEIGHT attribute.

	
cwidth

	
The value for the WIDTH attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<APPLET CODE=ccode HEIGHT=cheight WIDTH=cwidth cattributes>

so that, for example,

HTF.appletopen('testclass.class', 100, 200, 'CODEBASE="/ows-applets"')

generates

<APPLET CODE="testclass.class" height=100 width=200 CODEBASE="/ows-applets">

Usage Notes

	
Specify parameters to the Java applet using the PARAM Function function.

	
Use the cattributes parameter to specify the CODEBASE attribute since the PL/SQL cartridge does not know where to find the class files. The CODEBASE attribute specifies the virtual path containing the class files.

AREA Function

This function generates the <AREA> tag, which defines a client-side image map. The <AREA> tag defines areas within the image and destinations for the areas.

Syntax

HTF.AREA (
 ccoords IN VARCHAR2
 cshape IN VARCHAR2 DEFAULT NULL,
 chref IN VARCHAR2 DEFAULT NULL,
 cnohref IN VARCHAR2 DEFAULT NULL,
 ctarget IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-6 AREA Function Parameters

	Parameter	Description
	
ccords

	
The the value for the COORDS attribute.

	
cshape

	
The value for the SHAPE attribute.

	
chref

	
The value for the HREF attribute.

	
cnohref

	
If the value for this parameter is not NULL, the NOHREF attribute is added to the tag.

	
ctarget

	
The value for the TARGET attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<AREA COORDS="ccoords" SHAPE="cshape" HREF="chref" NOHREF TARGET="ctarget" cattributes>

BASE Function

This function generates the <BASE> tag which records the URL of the document.

Syntax

HTF.BASE (
 ctarget IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-7 BASE Function Parameters

	Parameter	Description
	
ctarget

	
The value for the TARGET attribute which establishes a window name to which all links in this document are targeted.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<BASE HREF="<current URL>" TARGET="ctarget" cattributes>

BASEFONT Function

This function generates the <BASEFONT> tag which specifies the base font size for a Web page.

Syntax

HTF.BASEFONT (
 nsize IN INTEGER)
 RETURN VARCHAR2;

Parameters

Table 182-8 BASEFONT Function Parameters

	Parameter	Description
	
nsize

	
The value for the SIZE attribute.

Examples

This function generates

<BASEFONT SIZE="nsize">

BGSOUND Function

This function generates the <BGSOUND> tag which includes audio for a Web page.

Syntax

HTF.BGSOUND (
 csrc IN VARCHAR2,
 cloop IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-9 BGSOUND Function Parameters

	Parameter	Description
	
csrc

	
The value for the SRC attribute.

	
cloop

	
The value for the LOOP attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<BGSOUND SRC="csrc" LOOP="cloop" cattributes>

BIG Function

This function generates the <BIG> and </BIG> tags which direct the browser to render the text in a bigger font.

Syntax

HTF.BIG (
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-10 BIG Function Parameters

	Parameter	Description
	
ctext

	
The the text that goes between the tags.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<BIG cattributes>ctext</BIG>

BLOCKQUOTECLOSE Function

This function generates the </BLOCKQUOTE> tag which mark the end of a section of quoted text. You mark the beginning of a section of text by means of the BLOCKQUOTEOPEN Function.

Syntax

HTF.BLOCKQUOTECLOSE
 RETURN VARCHAR2;

Examples

This function generates

</BLOCKQUOTE>

BLOCKQUOTEOPEN Function

This function generates the <BLOCKQUOTE> tag, which marks the beginning of a section of quoted text. You mark the end of a section of text by means of the BLOCKQUOTECLOSE Function.

Syntax

HTF.BLOCKQUOTEOPEN (
 cnowrap IN VARCHAR2 DEFAULT NULL,
 cclear IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-11 BLOCKQUOTEOPEN Function Parameters

	Parameter	Description
	
cnowrap

	
If the value for this parameter is not NULL, the NOWRAP attribute is added to the tag.

	
cclear

	
The value for the CLEAR attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<BLOCKQUOTE CLEAR="cclear" NOWRAP cattributes>

BODYCLOSE Function

This function generates the </BODY> tag which marks the end of a body section of an HTML document.You mark the beginning of a body section by means of the BODYOPEN Function.

Syntax

HTF.BODYCLOSE
 RETURN VARCHAR2;

Examples

This function generates

</BODY>

BODYOPEN Function

This function generates the <BODY> tag which marks the beginning of the body section of an HTML document. You mark the end of a body section by means of the BODYCLOSE Function.

Syntax

HTF.BODYOPEN (
 cbackground IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-12 BODYOPEN Function Parameters

	Parameter	Description
	
cbackground

	
The value for the BACKGROUND attribute which specifies a graphic file to use for the background of the document.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<BODY background="cbackground" cattributes>

so that

HTF.BODYOPEN('/img/background.gif')
 RETURN VARCHAR2;

generates:

<BODY background="/img/background.gif">

BOLD Function

This function generates the and tags which direct the browser to display the text in boldface.

Syntax

HTF.BOLD (
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-13 BOLD Function Parameters

	Parameter	Description
	
ctext

	
The text that goes between the tags.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<B cattributes>ctext

BR Function

This function generates the
 tag which begins a new line of text. It performs the same operation as the NL Function.

Syntax

HTF.BR(
 cclear IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-14 BR Function Parameters

	Parameter	Description
	
cclear

	
The value for the CLEAR attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<BR CLEAR="cclear" cattributes>

CENTER Function

This function generates the <CENTER> and </CENTER> tags which center a section of text within a Web page.

Syntax

HTF.CENTER (
 ctext IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Table 182-15 CENTER Parameters

	Parameter	Description
	
ctext

	
The text that goes between the tags.

Examples

This function generates

<CENTER>ctext</CENTER>

CENTERCLOSE Function

This function generates the </CENTER> tag which marks the end of a section of text to center. You mark the beginning of a of a section of text to center by means of the CENTEROPEN Function.

Syntax

HTF.CENTERCLOSE
 RETURN VARCHAR2;

Examples

This function generates

</CENTER>

CENTEROPEN Function

This function generates the <CENTER> tag which mark the beginning of a section of text to center.You mark the beginning of a of a section of text to center by means of the CENTERCLOSE Function.

Syntax

HTF.CENTEROPEN
 RETURN VARCHAR2;

Examples

This function generates

<CENTER>

CITE Function

This function generates the <CITE> and </CITE> tags which direct the browser to render the text as a citation.

Syntax

HTF.CITE (
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-16 CITE Function Parameters

	Parameter	Description
	
ctext

	
The text to render as citation.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<CITE cattributes>ctext</CITE>

CODE Function

This function generates the <CODE> and </CODE> tags which direct the browser to render the text in monospace font or however "code" is defined stylistically.

Syntax

HTF.CODE (
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-17 CODE Function Parameters

	Parameter	Description
	
ctext

	
The text to render as code.

	
cattributes

	
The other attributes to be included as-is in the tag

Examples

This function generates

<CODE cattributes>ctext</CODE>

COMMENT Function

This function generates the comment tags.

Syntax

HTF.COMMENT (
 ctext IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Table 182-18 COMMENT Function Parameters

	Parameter	Description
	
ctext

	
The comment.

Examples

This function generates

<!-- ctext -->

DFN Function

This function generates the <DFN> and </DFN> tags which direct the browser to mark the text in italics or however "definition" is described stylistically.

Syntax

HTF.DFN (
 ctext IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Table 182-19 DFN Function Parameters

	Parameter	Description
	
ctext

	
The text to render in italics.

Examples

This function generates

<DFN>ctext</DFN>

DIRLISTCLOSE Function

This function generates the </DIR> tag which ends a directory list section. You start a directory list section with the DIRLISTOPEN Function.

Syntax

HTF.DIRLISTCLOSE
 RETURN VARCHAR2;

Usage Notes

A directory list presents a list of items that contains up to 20 characters. Items in this list are typically arranged in columns, 24 characters wide. Insert the tag directly or invoke the LISTITEM Function so that the tag appears directly after the </DIR> tag to define the items as a list.

Examples

This function generates

</DIR>

DIRLISTOPEN Function

This function generates the <DIR> which starts a directory list section. You end a directory list section with the DIRLISTCLOSE Function.

Syntax

HTF.DIRLISTOPEN
 RETURN VARCHAR2;

Usage Notes

A directory list presents a list of items that contains up to 20 characters. Items in this list are typically arranged in columns, 24 characters wide. Insert the tag directly or invoke the LISTITEM Function so that the tag appears directly after the </DIR> tag to define the items as a list.

Examples

This function generates

<DIR>

DIV Function

This function generates the <DIV> tag which creates document divisions.

Syntax

HTF.DIV (
 calign IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-20 DIV Function Parameters

	Parameter	Description
	
calign

	
The value for the ALIGN attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<DIV ALIGN="calign" cattributes>

DLISTCLOSE Function

This function generates the </DL> tag which ends a definition list. You start a definition list by means of the DLISTOPEN Function.

Syntax

HTF.DLISTCLOSE
 RETURN VARCHAR2;

Usage Notes

A definition list looks like a glossary: it contains terms and definitions. Terms are inserted using the DLISTTERM Function and definitions are inserted using the DLISTDEF Function.

Examples

This function generates

</DL>

DLISTDEF Function

This function generates the <DD> tag, which inserts definitions of terms. Use this tag for a definition list <DL>. Terms are tagged <DT> and definitions are tagged <DD>.

Syntax

HTF.DLISTDEF (
 ctext IN VARCHAR2 DEFAULT NULL,
 cclear IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-21 DLISTDEF Function Parameters

	Parameter	Description
	
ctext

	
The definition of the term.

	
cclear

	
The value for the CLEAR attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<DD CLEAR="cclear" cattributes>ctext

DLISTOPEN Function

This function generates the <DL> tag which starts a definition list. You end a definition list by means of the DLISTCLOSE Function.

Syntax

HTF.DLISTOPEN (
 cclear IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-22 DLISTOPEN Function Parameters

	Parameter	Description
	
cclear

	
The value for the CLEAR attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Usage Notes

A definition list looks like a glossary: it contains terms and definitions. Terms are inserted using the DLISTTERM Function and definitions are inserted using the DLISTDEF Function.

Examples

This function generates

<DL CLEAR="cclear" cattributes>

DLISTTERM Function

This function generates the <DT> tag which defines a term in a definition list <DL>.

Syntax

HTF.DLISTTERM (
 ctext IN VARCHAR2 DEFAULT NULL,
 cclear IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-23 DLISTTERM Function Parameters

	Parameter	Description
	
ctext

	
The term.

	
cclear

	
The value for the CLEAR attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<DT CLEAR="cclear" cattributes>ctext

EM Function

This function generates the and tags, which define text to be emphasized. It performs the same task as the EMPHASIS Function.

Syntax

HTF.EM(
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-24 EM Function Parameters

	Parameter	Description
	
ctext

	
The text to emphasize.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<EM cattributes>ctext

EMPHASIS Function

This function generates the and tags, which define text to be emphasized. It performs the same task as the EM Function.

Syntax

HTF.EMPHASIS(
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-25 EMPHASIS Function Parameters

	Parameter	Description
	
ctext

	
The text to emphasize.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<EM cattributes>ctext

ESCAPE_SC Function

This function replaces characters that have special meaning in HTML with their escape sequences. The following characters are converted:

	
& to &

	
" to ":

	
< to <

	
> to >

This function performs the same operation as HTP. PRINTS Procedure and HTP. PS Procedure.

Syntax

HTF.ESCAPE_SC(
 ctext IN VARCHAR2);

Parameters

Table 182-26 ESCAPE_SC Procedure Parameters

	Parameter	Description
	
ctext

	
The text string to convert.

ESCAPE_URL Function

	
Note:

This procedure, deprecated in Release 10g, and provided here only for reasons of backward compatibility, does not comply with the Internet Engineering Task Force (IETF) Request for Comments (RFC) standards of URL encoding. If you need to encode URLs, it is recommended you use the ESCAPE Function in theUTL_URL package.

This function replaces characters that have special meaning in HTML and HTTP with their escape sequences. The following characters are converted:

	
& to &

	
" to ":

	
< to <

	
> to >

	
% to &25

Syntax

HTF.ESCAPE_URL(
 p_url IN VARCHAR2);

Parameters

Table 182-27 ESCAPE_URL Procedure Parameters

	Parameter	Description
	
p_url

	
The string to convert.

FONTCLOSE Function

This function generates the tag which marks the end of a section of text with the specified font characteristics. You mark the beginning of the section text by means of the FONTOPEN Function.

Syntax

HTF.FONTCLOSE
 RETURN VARCHAR2;

Examples

This function generates

FONTOPEN Function

This function generates the which marks the beginning of section of text with the specified font characteristics. You mark the end of the section text by means of the FONTCLOSE Function.

Syntax

HTF.FONTOPEN(
 ccolor IN VARCHAR2 DEFAULT NULL,
 cface IN VARCHAR2 DEFAULT NULL,
 csize IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-28 FONTOPEN Function Parameters

	Parameter	Description
	
ccolor

	
The value for the COLOR attribute.

	
cface

	
The value for the FACE attribute

	
csize

	
The value for the SIZE attribute

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

FORMAT_CELL Function

This function formats column values inside an HTML table using the TABLEDATA Function. It allows for better control over the HTML tables.

Syntax

HTF.FORMAT_CELL(
 columnValue IN VARCHAR2
 format_numbers IN VARCHAR2 DEFAULT NULL
 RETURN VARCHAR2;

Parameters

Table 182-29 FORMAT_CELL Function Parameters

	Parameter	Description
	
columnValue

	
The value that needs to be formatted in an HTML table.

	
format_numbers

	
The format that numeric data is displayed in. If the value of this parameter is not NULL, the number fields are right-justified and rounded to two decimal places.

Examples

This function generates

<TD >columnValue</TD>

FORMCHECKBOX Function

This function generates the <INPUT> tag with TYPE="checkbox" which inserts a checkbox element in a form. A checkbox element is a button that the user toggles on or off.

Syntax

HTF.FORMCHECKBOX(
 cname IN VARCHAR2,
 cvalue IN VARCHAR2 DEFAULT 'ON',
 cchecked IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-30 FORMCHECKBOX Function Parameters

	Parameter	Description
	
cname

	
The value for the NAME attribute.

	
cvalue

	
The value for the VALUE attribute.

	
cchecked

	
If the value for this parameter is not NULL, the CHECKED attribute is added to the tag.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<INPUT TYPE="checkbox" NAME="cname" VALUE="cvalue" CHECKED cattributes>

FORMCLOSE Function

This function generates the </FORM> tag which marks the end of a form section in an HTML document.You mark the beginning of the form section by means of the FORMOPEN Function.

Syntax

HTF.FORMCLOSE
 RETURN VARCHAR2;

Examples

This function generates

</FORM>

FORMFILE Function

This function generates the <INPUT> tag with TYPE="file" which inserts a file form element. This is used for file uploading for a given page.

Syntax

HTF.FORMFILE(
 cname IN VARCHAR2,
 caccept IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-31 FORMFILE Function Parameters

	Parameter	Description
	
cname

	
The value for the NAME attribute.

	
caccept

	
A comma-delimited list of MIME types for upload.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<INPUT TYPE="file" NAME="cname" ACCEPT="caccept" cattributes>

FORMHIDDEN Function

This function generates the <INPUT> tag with TYPE="hidden", which inserts a hidden form element. This element is not seen by the user. It submits additional values to the script.

Syntax

HTF.FORMHIDDEN(
 cname IN VARCHAR2,
 cvalue IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-32 FORMHIDDEN Function Parameters

	Parameter	Description
	
cname

	
The value for the NAME attribute.

	
cvalue

	
The value for the VALUE attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<INPUT TYPE="hidden" NAME="cname" VALUE="cvalue" cattributes>

FORMIMAGE Function

This function generates the <INPUT> tag with TYPE="image" which creates an image field that the user clicks to submit the form immediately. The coordinates of the selected point are measured in pixels, and returned (along with other contents of the form) in two name/value pairs. The x coordinate is submitted under the name of the field with .x appended, and the y coordinate with .y appended. Any VALUE attribute is ignored.

Syntax

HTF.FORMIMAGE(
 cname IN VARCHAR2,
 csrc IN VARCHAR2,
 calign IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-33 FORMIMAGE Function Parameters

	Parameter	Description
	
cname

	
The value for the NAME attribute.

	
csrc

	
The value for the SRC attribute that specifies the image file.

	
calign

	
The value for the ALIGN attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<INPUT TYPE="image" NAME="cname" SRC="csrc" ALIGN="calign" cattributes>

FORMOPEN Function

This function generates the <FORM> tag which marks the beginning of a form section in an HTML document. You mark the end of the form section by means of the FORMCLOSE Function.

Syntax

HTF.FORMOPEN(
 curl IN VARCHAR2,
 cmethod IN VARCHAR2 DEFAULT 'POST',
 ctarget IN VARCHAR2 DEFAULT NULL,
 cenctype IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-34 FORMOPEN Function Parameters

	Parameter	Description
	
curl

	
The URL of the Web Request Broker or CGI script where the contents of the form is sent. This parameter is required.

	
cmethod

	
The value for the METHOD attribute. The value can be "GET" or "POST".

	
ctarget

	
The value for the TARGET attribute.

	
cenctype

	
The value for the ENCTYPE attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<FORM ACTION="curl" METHOD="cmethod" TARGET="ctarget" ENCTYPE="cenctype" cattributes>

FORMPASSWORD Function

This function generates the <INPUT> tag with TYPE="password" which creates a single-line text entry field. When the user enters text in the field, each character is represented by one asterisk. This is used for entering passwords.

Syntax

HTF.FORMPASSWORD(
 cname IN VARCHAR2,
 csize IN VARCHAR2,
 cmaxlength IN VARCHAR2 DEFAULT NULL,
 cvalue IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-35 FORMPASSWORD Function Parameters

	Parameter	Description
	
cname

	
The value for the NAME attribute.

	
csize

	
The value for the SIZE attribute.

	
cmaxlength

	
The value for the MAXLENGTH attribute.

	
cvalue

	
The value for the VALUE attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<INPUT TYPE="password" NAME="cname" SIZE="csize" MAXLENGTH="cmaxlength" VALUE="cvalue" cattributes>

FORMRADIO Function

This function generates the <INPUT> tag with TYPE="radio", which creates a radio button on the HTML form. Within a set of radio buttons, the user selects only one. Each radio button in the same set has the same name, but different values. The selected radio button generates a name/value pair.

Syntax

HTF.FORMRADIO(
 cname IN VARCHAR2,
 cvalue IN VARCHAR2,
 cchecked IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-36 FORMRADIO Function Parameters

	Parameter	Description
	
cname

	
The value for the NAME attribute.

	
cvalue

	
The value for the VALUE attribute.

	
cchecked

	
If the value for this parameter is not NULL, the CHECKED attribute is added to the tag.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<INPUT TYPE="radio" NAME="cname" VALUE="cvalue" CHECKED cattributes>

FORMRESET Function

This function generates the <INPUT> tag with TYPE="reset" which creates a button that, when selected, resets the form fields to their initial values.

Syntax

HTF.FORMRESET(
 cvalue IN VARCHAR2 DEFAULT 'Reset',
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-37 FORMRESET Function Parameters

	Parameter	Description
	
cvalue

	
The value for the VALUE attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<INPUT TYPE="reset" VALUE="cvalue" cattributes>

FORMSELECTCLOSE Function

This function generates the </SELECT> tag which marks the end of a Select form element. A Select form element is a listbox where the user selects one or more values. You mark the beginning of Select form element by means of the FORMSELECTOPEN Function.The values are inserted using FORMSELECTOPTION Function.

Syntax

HTF.FORMSELECTCLOSE
 RETURN VARCHAR2;

Examples

This function generates

</SELECT>

as shown under Examples of the FORMSELECTOPEN Function.

FORMSELECTOPEN Function

This function generates the <SELECT> tags which creates a Select form element. A Select form element is a listbox where the user selects one or more values. You mark the end of Select form element by means of the FORMSELECTCLOSE Function.The values are inserted using FORMSELECTOPTION Function.

Syntax

HTF.FORMSELECTOPEN(
 cname IN VARCHAR2,
 cprompt IN VARCHAR2 DEFAULT NULL,
 nsize IN INTEGER DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-38 FORMSELECTOPEN Function Parameters

	Parameter	Description
	
cname

	
The value for the NAME attribute.

	
cprompt

	
The string preceding the list box.

	
nsize

	
The value for the SIZE attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

cprompt <SELECT NAME="cname" SIZE="nsize" cattributes>
</SELECT>

so that

HTF.FORMSELECTOPEN('greatest_player';
 'Pick the greatest player:');
HTF.FORMSELECTOPTION('Messier');
HTF.FORMSELECTOPTION('Howe');
HTF.FORMSELECTOPTION('Gretzky');.
HTF.FORMSELECTCLOSE;

generates

Pick the greatest player:
<SELECT NAME="greatest_player">
<OPTION>Messier
<OPTION>Howe
<OPTION>Gretzky
</SELECT>

FORMSELECTOPTION Function

This function generates the <OPTION> tag which represents one choice in a Select element.

Syntax

HTF.FORMSELECTOPTION(
 cvalue IN VARCHAR2,
 cselected IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-39 FORMSELECTOPTION Function Parameters

	Parameter	Description
	
cvalue

	
The text for the option.

	
cvalue

	
If the value for this parameter is not NULL, the SELECTED attribute is added to the tag.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<OPTION SELECTED cattributes>cvalue

as shown under Examples of the FORMSELECTOPEN Function.

FORMSUBMIT Function

This function generates the <INPUT> tag with TYPE="submit" which creates a button that, when clicked, submits the form. If the button has a NAME attribute, the button contributes a name/value pair to the submitted data.

Syntax

HTF.FORMSUBMIT(
 cname IN VARCHAR2 DEFAULT NULL,
 cvalue IN VARCHAR2 DEFAULT 'Submit',
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-40 FORMSUBMIT Function Parameters

	Parameter	Description
	
cname

	
The value for the NAME attribute.

	
cvalue

	
The value for the VALUE attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<INPUT TYPE="submit" NAME="cname" VALUE="cvalue" cattributes>

FORMTEXT Function

This function generates the <INPUT> tag with TYPE="text", which creates a field for a single line of text.

Syntax

HTF.FORMTEXT(
 cname IN VARCHAR2,
 csize IN VARCHAR2 DEFAULT NULL,
 cmaxlength IN VARCHAR2 DEFAULT NULL,
 cvalue IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-41 FORMTEXT Function Parameters

	Parameter	Description
	
cname

	
The value for the NAME attribute.

	
csize

	
The value for the SIZE attribute.

	
cmaxlength

	
The value for the MAXLENGTH attribute.

	
cvalue

	
The value for the VALUE attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<INPUT TYPE="text" NAME="cname" SIZE="csize" MAXLENGTH="cmaxlength" VALUE="cvalue" cattributes>

FORMTEXTAREA Function

This function generates the <TEXTAREA> tag, which creates a text field that has no predefined text in the text area. This field enables entering several lines of text. The same operation is performed by the FORMTEXTAREA2 Function which in addition has the cwrap parameter that lets you specify a wrap style.

Syntax

HTF.FORMTEXTAREA(
 cname IN VARCHAR2,
 nrows IN INTEGER,
 ncolumns IN INTEGER,
 calign IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-42 FORMTEXTAREA Function Parameters

	Parameter	Description
	
cname

	
The value for the NAME attribute.

	
nrows

	
The value for the ROWS attribute.This is an integer.

	
ncolumns

	
The value for the COLS attribute.This is an integer.

	
calign

	
The value for the ALIGN attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<TEXTAREA NAME="cname" ROWS="nrows" COLS="ncolumns" ALIGN="calign" cattributes></TEXTAREA>

FORMTEXTAREA2 Function

This function generates the <TEXTAREA> tag, which creates a text field that has no predefined text in the text area. This field enables entering several lines of text.The same operation is performed by the FORMTEXTAREA Function except that in that case you cannot specify a wrap style.

Syntax

HTF.FORMTEXTAREA2(
 cname IN VARCHAR2,
 nrows IN INTEGER,
 ncolumns IN INTEGER,
 calign IN VARCHAR2 DEFAULT NULL,
 cwrap IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-43 FORMTEXTAREA2 Function Parameters

	Parameter	Description
	
cname

	
The value for the NAME attribute.

	
nrows

	
The value for the ROWS attribute.This is an integer.

	
ncolumns

	
The value for the COLS attribute.This is an integer.

	
calign

	
The value for the ALIGN attribute.

	
cwrap

	
The value for the WRAP attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<TEXTAREA NAME="cname" ROWS="nrows" COLS="ncolumns" ALIGN="calign" WRAP="cwrap" cattributes></TEXTAREA>

FORMTEXTAREACLOSE Function

This function generates the </TEXTAREA> tag which ends a text area form element. You open a text area element by means of eitherFORMTEXTAREAOPEN Function or FORMTEXTAREAOPEN2 Function.

Syntax

HTF.FORMTEXTAREACLOSE
 RETURN VARCHAR2;

Examples

This function generates

</TEXTAREA>

FORMTEXTAREAOPEN Function

This function generates the <TEXTAREA> which marks the beginning of a text area form element. The same operation is performed by the FORMTEXTAREAOPEN2 Function which in addition has the cwrap parameter that lets you specify a wrap style. You mark the end of a text area form element by means of the FORMTEXTAREACLOSE Function.

Syntax

HTF.FORMTEXTAREAOPEN(
 cname IN VARCHAR2,
 nrows IN INTEGER,
 ncolumns IN INTEGER,
 calign IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-44 FORMTEXTAREAOPEN Function Parameters

	Parameter	Description
	
cname

	
The value for the NAME attribute.

	
nrows

	
The value for the ROWS attribute.This is an integer.

	
ncolumns

	
The value for the COLS attribute.This is an integer.

	
calign

	
The value for the ALIGN attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<TEXTAREA NAME="cname" ROWS="nrows" COLS="ncolumns" ALIGN="calign" cattributes>

FORMTEXTAREAOPEN2 Function

This function generates the <TEXTAREA> which marks the beginning of a text area form element. The same operation is performed by the FORMTEXTAREAOPEN Function except that in that case you cannot specify a wrap style. You mark the end of a text area form element by means of the FORMTEXTAREACLOSE Function.

Syntax

HTF.FORMTEXTAREAOPEN2(
 cname IN VARCHAR2,
 nrows IN INTEGER,
 ncolumns IN INTEGER,
 calign IN VARCHAR2 DEFAULT NULL,
 cwrap IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-45 FORMTEXTAREAOPEN2 Function Parameters

	Parameter	Description
	
cname

	
The value for the NAME attribute.

	
nrows

	
The value for the ROWS attribute.This is an integer.

	
ncolumns

	
The value for the COLS attribute.This is an integer.

	
calign

	
The value for the ALIGN attribute.

	
cwrap

	
The value for the WRAP attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<TEXTAREA NAME="cname" ROWS="nrows" COLS="ncolumns" ALIGN="calign" WRAP = "cwrap" cattributes>

FRAME Function

This function generates the <FRAME> tag which defines the characteristics of a frame created by a <FRAMESET> tag.

Syntax

HTF.FRAME(
 csrc IN VARCHAR2,
 cname IN VARCHAR2 DEFAULT NULL,
 cmarginwidth IN VARCHAR2 DEFAULT NULL,
 cmarginheight IN VARCHAR2 DEFAULT NULL,
 cscrolling IN VARCHAR2 DEFAULT NULL,
 cnoresize IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-46 FRAME Function Parameters

	Parameter	Description
	
csrc

	
The URL to display in the frame.

	
cname

	
The value for the NAME attribute.

	
cmarginwidth

	
The value for the MARGINWIDTH attribute.

	
cscrolling

	
The value for the SCROLLING attribute.

	
cnoresize

	
If the value for this parameter is not NULL, the NORESIZE attribute is added to the tag.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<FRAME SRC="csrc" NAME="cname" MARGINWIDTH="cmarginwidth" MARGINHEIGHT="cmarginheight" SCROLLING="cscrolling" NORESIZE cattributes>

FRAMESETCLOSE Function

This function generates the </FRAMESET> tag which ends a frameset section. You mark the beginning of a frameset section by means of the FRAMESETOPEN Function.

Syntax

HTF.FRAMESETCLOSE
 RETURN VARCHAR2;

Examples

This function generates

</FRAMESET>

FRAMESETOPEN Function

This function generates the <FRAMESET> tag which define a frameset section. You mark the end of a frameset section by means of the FRAMESETCLOSE Function.

Syntax

HTF.FRAMESETOPEN(
 crows IN VARCHAR2 DEFAULT NULL,
 ccols IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-47 FRAMESETOPEN Function Parameters

	Parameter	Description
	
crows

	
The value for the ROWS attribute.

	
ccols

	
The value for the COLS attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<FRAMESET ROWS="crows" COLS="ccols" cattributes>

HEADCLOSE Function

This function generates the </HEAD> tag which marks the end of an HTML document head section. You mark the beginning of an HTML document head section by means of the HEADOPEN Function.

Syntax

HTF.HEADCLOSE
 RETURN VARCHAR2;

Examples

This function generates

</HEAD>

HEADER Function

This function generates opening heading tags (<H1> to <H6>) and their corresponding closing tags (</H1> to </H6>).

Syntax

HTF.HEADER(
 nsize IN INTEGER,
 cheader IN VARCHAR2,
 calign IN VARCHAR2 DEFAULT NULL,
 cnowrap IN VARCHAR2 DEFAULT NULL,
 cclear IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-48 HEADER Function Parameters

	Parameter	Description
	
nsize

	
The the heading level. This is an integer between 1 and 6.

	
cheader

	
The text to display in the heading.

	
calign

	
The value for the ALIGN attribute.

	
cnowrap

	
The value for the NOWRAP attribute.

	
cclear

	
The value for the CLEAR attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

HTF.header (1,'Overview')
 RETURN VARCHAR2;

produces:

<H1>Overview</H1>

HEADOPEN Function

This function generates the <HEAD> tag which marks the beginning of the HTML document head section. You mark the end of an HTML document head section by means of the HEADCLOSE Function.

Syntax

HTF.HEADOPEN
 RETURN VARCHAR2;

Examples

This function generates

<HEAD>

HR Function

This function generates the <HR> tag, which generates a line in the HTML document.This subprogram performs the same operation as the LINE Function.

Syntax

HTF.HR(
 cclear IN VARCHAR2 DEFAULT NULL,
 csrc IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-49 HR Function Parameters

	Parameter	Description
	
cclear

	
The value for the CLEAR attribute.

	
csrc

	
The value for the SRC attribute which specifies a custom image as the source of the line.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<HR CLEAR="cclear" SRC="csrc" cattributes>

HTMLCLOSE Function

This function generates the </HTML> tag which marks the end of an HTML document. You use the HTMLOPEN Function to mark the beginning of an HTML document.

Syntax

HTF.HTMLCLOSE
 RETURN VARCHAR2;

Examples

This function generates

</HTML>

HTMLOPEN Function

This function generates the <HTML> tag which marks the beginning of an HTML document. You use the HTMLCLOSE Function to mark the end of the an HTML document.

Syntax

HTF.HTMLOPEN
 RETURN VARCHAR2;

Examples

This function generates

<HTML>

IMG Function

This function generates the tag which directs the browser to load an image onto the HTML page. The IMG2 Function performs the same operation but additionally uses the cusemap parameter.

Syntax

HTF.IMG(
 curl IN VARCHAR2 DEFAULT NULL,
 calign IN VARCHAR2 DEFAULT NULL,
 calt IN VARCHAR2 DEFAULT NULL,
 cismap IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-50 IMG Function Parameters

	Parameter	Description
	
curl

	
The value for the SRC attribute.

	
calign

	
The value for the ALIGN attribute.

	
calt

	
The value for the ALT attribute which specifies alternative text to display if the browser does not support images.

	
cismap

	
If the value for this parameter is not NULL, the ISMAP attribute is added to the tag. The attribute indicates that the image is an imagemap.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

IMG2 Function

This function generates the tag, which directs the browser to load an image onto the HTML page. The IMG Function performs the same operation but does not use the cusemap parameter.

Syntax

HTF.IMG2(
 curl IN VARCHAR2 DEFAULT NULL,
 calign IN VARCHAR2 DEFAULT NULL,
 calt IN VARCHAR2 DEFAULT NULL,
 cismap IN VARCHAR2 DEFAULT NULL,
 cusemap IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-51 IMG2 Function Parameters

	Parameter	Description
	
curl

	
The value for the SRC attribute.

	
calign

	
The value for the ALIGN attribute.

	
calt

	
The value for the ALT attribute which specifies alternative text to display if the browser does not support images.

	
cismap

	
If the value for this parameter is not NULL, the ISMAP attribute is added to the tag. The attribute indicates that the image is an imagemap.

	
cusemap

	
The value for the USEMAP attribute which specifies a client-side image map.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

ISINDEX Function

This function creates a single entry field with a prompting text, such as "enter value," then sends that value to the URL of the page or program.

Syntax

HTF.ISINDEX(
 cprompt IN VARCHAR2 DEFAULT NULL,
 curl IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-52 ISINDEX Function Parameters

	Parameter	Description
	
cprompt

	
The value for the PROMPT attribute.

	
curl

	
The value for the HREF attribute.

Examples

This function generates

<ISINDEX PROMPT="cprompt" HREF="curl">

ITALIC Function

This function generatesthe <I> and </I> tags which direct the browser to render the text in italics.

Syntax

HTF.ITALIC(
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-53 ITALIC Function Parameters

	Parameter	Description
	
ctext

	
The text to be rendered in italics.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<I cattributes>ctext</I>

KBD Function

This function generates the <KBD> and </KBD> tags which direct the browser to render the text in monospace font. This subprogram performs the same operation as the KEYBOARD Function.

Syntax

HTF.KBD(
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-54 KBD Function Parameters

	Parameter	Description
	
ctext

	
The text to be rendered in monospace.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<KBD cattributes>ctext</KBD>

KEYBOARD Function

This function generates the <KBD> and </KBD> tags, which direct the browser to render the text in monospace font. This subprogram performs the same operation as the KBD Function.

Syntax

HTF.KEYBOARD(
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-55 KEYBOARD Function Parameters

	Parameter	Description
	
ctext

	
The text to be rendered in monospace.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<KBD cattributes>ctext</KBD>

LINE Function

This function generates the <HR> tag, which generates a line in the HTML document. This subprogram performs the same operation as the HR Function.

Syntax

HTF.LINE(
 cclear IN VARCHAR2 DEFAULT NULL,
 csrc IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-56 LINE Function Parameters

	Parameter	Description
	
cclear

	
The value for the CLEAR attribute.

	
csrc

	
The value for the SRC attribute which specifies a custom image as the source of the line.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<HR CLEAR="cclear" SRC="csrc" cattributes>

LINKREL Function

This function generates the <LINK> tag with the REL attribute which delineates the relationship described by the hypertext link from the anchor to the target. This is only used when the HREF attribute is present. This is the opposite of LINKREV Function. This tag indicates a relationship between documents but does not create a link. To create a link, use the ANCHOR Function.

Syntax

HTF.LINKREL(
 crel IN VARCHAR2,
 curl IN VARCHAR2,
 ctitle IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-57 LINKREL Function Parameters

	Parameter	Description
	
crel

	
The value for the REL attribute.

	
curl

	
The value for the URL attribute.

	
ctitle

	
The value for the TITLE attribute.

Examples

This function generates

<LINK REL="crel" HREF="curl" TITLE="ctitle">

LINKREV Function

This function generates the <LINK> tag with the REV attribute which delineates the relationship described by the hypertext link from the target to the anchor. This is the opposite of the LINKREL Function. This tag indicates a relationship between documents, but does not create a link. To create a link, use the ANCHOR Function.

Syntax

HTF.LINKREV(
 crev IN VARCHAR2,
 curl IN VARCHAR2,
 ctitle IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-58 LINKREV Function Parameters

	Parameter	Description
	
crev

	
The value for the REV attribute.

	
curl

	
The value for the URL attribute.

	
ctitle

	
The value for the TITLE attribute.

Examples

This function generates

<LINK REV="crev" HREF="curl" TITLE="ctitle">

LISTHEADER Function

This function generates the <LH> and </LH> tags which print an HTML tag at the beginning of the list.

Syntax

HTF.LISTHEADER(
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-59 LISTHEADER Function Parameters

	Parameter	Description
	
ctext

	
The text to place between <LH> and </LH>.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<LH cattributes>ctext</LH>

LISTINGCLOSE Function

This function generates the </LISTING> tags which marks the end of a section of fixed-width text in the body of an HTML page. To mark the beginning of a section of fixed-width text in the body of an HTML page, use the LISTINGOPEN Function.

Syntax

HTF.LISTINGCLOSE
 RETURN VARCHAR2;

Examples

This function generates

</LISTING>

LISTINGOPEN Function

This function generates the <LISTING> tag which marks the beginning of a section of fixed-width text in the body of an HTML page. To mark the end of a section of fixed-width text in the body of an HTML page, use the LISTINGCLOSE Function.

Syntax

HTF.LISTINGOPEN
 RETURN VARCHAR2;

Examples

This function generates

<LISTING>

LISTITEM Function

This function generates the tag, which indicates a list item.

Syntax

HTF.LISTITEM(
 ctext IN VARCHAR2 DEFAULT NULL,
 cclear IN VARCHAR2 DEFAULT NULL,
 cdingbat IN VARCHAR2 DEFAULT NULL,
 csrc IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-60 LISTITEM Function Parameters

	Parameter	Description
	
ctext

	
The text for the list item.

	
cclear

	
The value for the CLEAR attribute.

	
cdingbat

	
The value for the DINGBAT attribute.

	
csrc

	
The value for the SRC attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<LI CLEAR="cclear" DINGBAT="cdingbat" SRC="csrc" cattributes>ctext

MAILTO Function

This function generates the <A> tag with the HREF set to 'mailto' prepended to the mail address argument.

Syntax

HTF.MAILTO(
 caddress IN VARCHAR2,
 ctext IN VARCHAR2,
 cname IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-61 MAILTO Function Parameters

	Parameter	Description
	
caddress

	
The email address of the recipient.

	
ctext

	
The clickable portion of the link.

	
cname

	
The value for the NAME attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

ctext

so that

HTF.mailto('pres@white_house.gov','Send Email to the President');

generates:

Send Email to the President

MAPCLOSE Function

This function generates the </MAP> tag which marks the end of a set of regions in a client-side image map. To mark the beginning of a set of regions in a client-side image map, use the MAPOPEN Function.

Syntax

HTF.MAPCLOSE
 RETURN VARCHAR2;

Examples

This function generates

</MAP>

MAPOPEN Function

This function generates the <MAP> tag which mark the beginning of a set of regions in a client-side image map. To mark the end of a set of regions in a client-side image map, use the MAPCLOSE Function.

Syntax

HTF.MAPOPEN(
 cname IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-62 MAPOPEN Function Parameters

	Parameter	Description
	
cname

	
The value for the NAME attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<MAP NAME="cname" cattributes>

MENULISTCLOSE Function

This function generates the </MENU> tag which ends a list that presents one line for each item. To begin a list of this kind, use the MENULISTOPEN Function. The items in the list appear more compact than an unordered list. The LISTITEM Function defines the list items in a menu list.

Syntax

HTF.MENULISTCLOSE
 RETURN VARCHAR2;

Examples

This function generates

</MENU>

MENULISTOPEN Function

This function generates the <MENU> tag which create a list that presents one line for each item. To end a list of this kind, use the MENULISTCLOSE Function.The items in the list appear more compact than an unordered list. The LISTITEM Function defines the list items in a menu list.

Syntax

HTF.MENULISTOPEN
 RETURN VARCHAR2;

Examples

This function generates

<MENU>

META Function

This function generates the <META> tag, which embeds meta-information about the document and also specifies values for HTTP headers. For example, you can specify the expiration date, keywords, and author name.

Syntax

HTF.META(
 chttp_equiv IN VARCHAR2,
 cname IN VARCHAR2,
 ccontent IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Table 182-63 META Function Parameters

	Parameter	Description
	
chttp_equiv

	
The value for the CHTTP_EQUIV attribute.

	
cname

	
The value for the NAME attribute.

	
ccontent

	
The value for the CONTENT attribute.

Examples

This function generates

<META HTTP-EQUIV="chttp_equiv" NAME ="cname" CONTENT="ccontent">

so that

HTF.meta ('Refresh', NULL, 120);

generates

<META HTTP-EQUIV="Refresh" CONTENT=120>

On some Web browsers, this causes the current URL to be reloaded automatically every 120 seconds.

NL Function

This function generates the
 tag which begins a new line of text. It performs the same operation as the BR Function.

Syntax

HTF.NL(
 cclear IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-64 NL Function Parameters

	Parameter	Description
	
cclear

	
The value for the CLEAR attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<BR CLEAR="cclear" cattributes>

NOBR Function

This function generates the <NOBR> and </NOBR> tags which turn off line-breaking in a section of text.

Syntax

HTF.NOBR(
ctext IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Table 182-65 NOBR Function Parameters

	Parameter	Description
	
ctext

	
The text that is to be rendered on one line.

Examples

This function generates

<NOBR>ctext</NOBR>

NOFRAMESCLOSE Function

This function generates the </NOFRAMES> tag which marks the end of a no-frames section. To mark the beginning of a no-frames section, use the FRAMESETOPEN Function. See also FRAME Function, FRAMESETOPEN Function and FRAMESETCLOSE Function.

Syntax

HTF.NOFRAMESCLOSE
 RETURN VARCHAR2;

Examples

This function generates

</NOFRAMES>

NOFRAMESOPEN Function

This function generates the <NOFRAMES> tag which mark the beginning of a no-frames section. To mark the end of a no-frames section, use the FRAMESETCLOSE Function. See also FRAME Function, FRAMESETOPEN Function and FRAMESETCLOSE Function.

Syntax

HTF.NOFRAMESOPEN
 RETURN VARCHAR2;

Examples

This function generates

<NOFRAMES>

OLISTCLOSE Function

This function generates the tag which defines the end of an ordered list. An ordered list presents a list of numbered items. To mark the beginning of a list of this kind, use the OLISTOPEN Function. Numbered items are added using LISTITEM Function.

Syntax

HTF.OLISTCLOSE
 RETURN VARCHAR2;

Examples

This function generates

OLISTOPEN Function

This function generates the tag which marks the beginning of an ordered list. An ordered list presents a list of numbered items. To mark the end of a list of this kind, use the OLISTCLOSE Function. Numbered items are added using LISTITEM Function.

Syntax

HTF.OLISTOPEN(
 cclear IN VARCHAR2 DEFAULT NULL,
 cwrap IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-66 OLISTOPEN Function Parameters

	Parameter	Description
	
cclear

	
The value for the CLEAR attribute.

	
cwrap

	
The value for the WRAP attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<OL CLEAR="cclear" WRAP="cwrap" cattributes>

PARA Function

This function generates the <P> tag which indicates that the text that comes after the tag is to be formatted as a paragraph. You can add attributes to the tag by means of the PARAGRAPH Function.

Syntax

HTF.PARA
 RETURN VARCHAR2;

Examples

This function generates

<P>

PARAGRAPH Function

You can use this function to add attributes to the <P> tag created by the PARA Function.

Syntax

HTF.PARAGRAPH(
 calign IN VARCHAR2 DEFAULT NULL,
 cnowrap IN VARCHAR2 DEFAULT NULL,
 cclear IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-67 PARAGRAPH Function Parameters

	Parameter	Description
	
calign

	
The value for the ALIGN attribute.

	
cnowrap

	
If the value for this parameter is not NULL, the NOWRAP attribute is added to the tag.

	
cclear

	
The value for the CLEAR attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<P ALIGN="calign" NOWRAP CLEAR="cclear" cattributes>

PARAM Function

This function generates the <PARAM> tag which specifies parameter values for Java applets. The values can reference HTML variables. To invoke a Java applet from a Web page, use APPLETOPEN Function to begin the invocation. Use one PARAM Function for each desired name-value pair, and use APPLETCLOSE Function to end the applet invocation.

Syntax

HTF.PARAM(
 cname IN VARCHAR2
 cvalue IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Table 182-68 PARAM Function Parameters

	Parameter	Description
	
cname

	
The value for the NAME attribute.

	
cvalue

	
The value for the VALUE attribute.

Examples

This function generates

<PARAM NAME=cname VALUE="cvalue">

PLAINTEXT Function

This function generates the <PLAINTEXT> and </PLAINTEXT> tags which direct the browser to render the text they surround in fixed-width type.

Syntax

HTF.PLAINTEXT(
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-69 PLAINTEXT Function Parameters

	Parameter	Description
	
ctext

	
The text to be rendered in fixed-width font.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<PLAINTEXT cattributes>ctext</PLAINTEXT>

PRECLOSE Function

This function generates the </PRE> tag which marks the end of a section of preformatted text in the body of the HTML page. To mark the beginning of a section of preformatted text in the body of the HTML page, use the PREOPEN Function.

Syntax

HTF.PRECLOSE
 RETURN VARCHAR2;

Examples

This function generates

</PRE>

PREOPEN Function

This function generates the <PRE> tag which marks the beginning of a section of preformatted text in the body of the HTML page. To mark the end of a section of preformatted text in the body of the HTML page, use the PRECLOSE Function.

Syntax

HTF.PREOPEN(
 cclear IN VARCHAR2 DEFAULT NULL,
 cwidth IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-70 PREOPEN Function Parameters

	Parameter	Description
	
cclear

	
The value for the CLEAR attribute.

	
cwidth

	
The value for the WIDTH attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<PRE CLEAR="cclear" WIDTH="cwidth" cattributes>

PRINT Functions

These functions generate the specified parameter as a string terminated with the \n newline character. The PRN Functions performs the same operation but does not terminate with a newline character.

Syntax

HTF.PRINT (
 cbuf IN VARCHAR2)
 RETURN VARCHAR2;

HTF.PRINT (
 dbuf IN DATE)
 RETURN VARCHAR2;

HTF.PRINT (
 nbuf IN NUMBER)
 RETURN VARCHAR2;

Parameters

Table 182-71 PRINT Function Parameters

	Parameter	Description
	
cbuf

	
The string to generate terminated by a newline.

	
dbuf

	
The string to generate terminated by a newline.

	
nbuf

	
The string to generate terminated by a newline.

Usage Notes

	
The \n character is not the same as
. The \n character formats the HTML source but it does not affect how the browser renders the HTML source. Use
 to control how the browser renders the HTML source.

	
These functions do not have function equivalents.

PRN Functions

These functions generate the specified parameter as a string. Unlike the PRINT Functions the string is not terminated with the \n newline character.

Syntax

HTF.PRN (
 cbuf IN VARCHAR2)
 RETURN VARCHAR2;

HTF.PRN (
 dbuf IN DATE)
 RETURN VARCHAR2;

HTF.PRN (
 nbuf IN NUMBER)
 RETURN VARCHAR2;

Parameters

Table 182-72 PRN Function Parameters

	Parameter	Description
	
cbuf

	
The string to generate (not terminated by a newline).

	
dbuf

	
The string to generate (not terminated by a newline).

	
nbuf

	
The string to generate (not terminated by a newline).

Usage Notes

These functions do not have function equivalents.

S Function

This function generates the <S> and </S> tags which direct the browser to render the text they surround in strikethrough type. This performs the same operation as STRIKE Function.

Syntax

HTF.S (
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-73 S Function Parameters

	Parameter	Description
	
ctext

	
The text to be rendered in strikethrough type.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<S cattributes>ctext</S>

SAMPLE Function

This function generates the <SAMP> and </SAMP> tags which direct the browser to render the text they surround in monospace font or however "sample" is defined stylistically.

Syntax

HTF.SAMPLE (
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-74 SAMPLE Function Parameters

	Parameter	Description
	
ctext

	
The text to be rendered in monospace font.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<SAMP cattributes>ctext</SAMP>

SCRIPT Function

This function generates the <SCRIPT> and </SCRIPT> tags which contain a script written in languages such as JavaScript and VBscript.

Syntax

HTF.SCRIPT (
 cscript IN VARCHAR2,
 clanguage IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-75 SCRIPT Function Parameters

	Parameter	Description
	
cscript

	
The text of the script. This is the text that makes up the script itself, not the name of a file containing the script.

	
clanguage

	
The language in which the script is written. If this parameter is omitted, the user's browser determines the scripting language.

Examples

This function generates

<SCRIPT LANGUAGE=clanguage>cscript</SCRIPT>

so that

HTF.script ('Erupting_Volcano', 'Javascript');

generates

<SCRIPT LANGUAGE=Javascript>"script text here"</SCRIPT>

This causes the browser to run the script enclosed in the tags.

SMALL Function

This function generates the <SMALL> and </SMALL> tags, which direct the browser to render the text they surround using a small font.

Syntax

HTF.SMALL (
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-76 SMALL Function Parameters

	Parameter	Description
	
ctext

	
The text to be rendered in small font.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<SMALL cattributes>ctext</SMALL>

STRIKE Function

This function generates the <STRIKE> and </STRIKE> tags which direct the browser to render the text they surround in strikethrough type. This performs the same operation as S Function.

Syntax

STRIKE (
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-77 STRIKE Function Parameters

	Parameter	Description
	
ctext

	
The text to be rendered in strikethrough type.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<STRIKE cattributes>ctext</STRIKE>

STRONG Function

This function generates the and tags which direct the browser to render the text they surround in bold or however "strong" is defined.

Syntax

HTF.STRONG(
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-78 STRONG Function Parameters

	Parameter	Description
	
ctext

	
The text to be emphasized.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<STRONG cattributes>ctext

STYLE Function

This function generates the <STYLE> and </STYLE> tags which include a style sheet in a Web page. You can get more information about style sheets at http://www.w3.org. This feature is not compatible with browsers that support only HTML versions 2.0 or earlier. Such browsers will ignore this tag.

Syntax

HTF.STYLE(
 cstyle IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Table 182-79 STYLE Function Parameters

	Parameter	Description
	
cstyle

	
The the style information to include.

Examples

This function generates

<STYLE>cstyle</STYLE>

SUB Function

This function generates the _{and} tags which direct the browser to render the text they surround as subscript.

Syntax

HTF.SUB(
 ctext IN VARCHAR2,
 calign in VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-80 SUB Function Parameters

	Parameter	Description
	
ctext

	
The text to render in subscript.

	
calign

	
The value for the ALIGN attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

_{ctext}

SUP Function

This function generates the ^{and} tags which direct the browser to render the text they surround as superscript.

Syntax

HTF.SUP(
 ctext IN VARCHAR2,
 calign in VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-81 SUP Function Parameters

	Parameter	Description
	
ctext

	
The text to render in superscript.

	
calign

	
The value for the ALIGN attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

^{ctext}

TABLECAPTION Function

This function generates the <CAPTION> and </CAPTION> tags which place a caption in an HTML table.

Syntax

HTF.TABLECAPTION(
 ccaption IN VARCHAR2,
 calign in VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-82 TABLECAPTION Function Parameters

	Parameter	Description
	
ctext

	
The text for the caption.

	
calign

	
The value for the ALIGN attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<CAPTION ALIGN="calign" cattributes>ccaption</CAPTION>

TABLECLOSE Function

This function generates the </TABLE> tag which marks the end of an HTML table. To define the beginning of an HTML table, use the TABLEOPEN Function.

Syntax

HTF.TABLECLOSE
 RETURN VARCHAR2;

Examples

This function generates

</TABLE>

TABLEDATA Function

This function generates the <TD> and </TD> tags which insert data into a cell of an HTML table.

Syntax

HTF.TABLEDATA(
 cvalue IN VARCHAR2 DEFAULT NULL,
 calign IN VARCHAR2 DEFAULT NULL,
 cdp IN VARCHAR2 DEFAULT NULL,
 cnowrap IN VARCHAR2 DEFAULT NULL,
 crowspan IN VARCHAR2 DEFAULT NULL,
 ccolspan IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-83 TABLEDATA Function Parameters

	Parameter	Description
	
cvalue

	
The data for the cell in the table.

	
calign

	
The value for the ALIGN attribute.

	
cdp

	
The value for the DP attribute.

	
cnowrap

	
If the value of this parameter is not NULL, the NOWRAP attribute is added to the tag.

	
ccolspan

	
The value for the COLSPAN attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<TD ALIGN="calign" DP="cdp" ROWSPAN="crowspan" COLSPAN="ccolspan" NOWRAP cattributes>cvalue</TD>

TABLEHEADER Function

This function generates the <TH> and </TH> tags which insert a header cell in an HTML table. The <TH> tag is similar to the <TD> tag except that the text in this case the rows are usually rendered in bold type.

Syntax

HTF.TABLEHEADER(
 cvalue IN VARCHAR2 DEFAULT NULL,
 calign IN VARCHAR2 DEFAULT NULL,
 cdp IN VARCHAR2 DEFAULT NULL,
 cnowrap IN VARCHAR2 DEFAULT NULL,
 crowspan IN VARCHAR2 DEFAULT NULL,
 ccolspan IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-84 TABLEHEADER Function Parameters

	Parameter	Description
	
cvalue

	
The data for the cell in the table.

	
calign

	
The value for the ALIGN attribute.

	
cdp

	
The value for the DP attribute.

	
cnowrap

	
If the value of this parameter is not NULL, the NOWRAP attribute is added to the tag.

	
crispen

	
The value for the ROWSPAN attribute.

	
ccolspan

	
The value for the COLSPAN attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<TH ALIGN="calign" DP="cdp" ROWSPAN="crowspan" COLSPAN="ccolspan" NOWRAP cattributes>cvalue</TH>

TABLEOPEN Function

This function generates the <TABLE> tag which marks the beginning of an HTML table. To define the end of an HTML table, use the TABLECLOSE Function.

Syntax

HTF.TABLEOPEN(
 cborder IN VARCHAR2 DEFAULT NULL
 calign IN VARCHAR2 DEFAULT NULL,
 cnowrap IN VARCHAR2 DEFAULT NULL,
 cclear IN VARCHAR2 DEFAULT NULL
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-85 TABLEOPEN Function Parameters

	Parameter	Description
	
border

	
The value for the BORDER attribute.

	
calign

	
The value for the ALIGN attribute.

	
cnowrap

	
If the value of this parameter is not NULL, the NOWRAP attribute is added to the tag.

	
cclear

	
The value for the CLEAR attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<TABLE "cborder" NOWRAP ALIGN="calign" CLEAR="cclear" cattributes>

TABLEROWCLOSE Function

This function generates the </TR> tag which marks the end of a new row in an HTML table. To mark the beginning of a new row, use the TABLEROWOPEN Function.

Syntax

HTF.TABLEROWCLOSE
 RETURN VARCHAR2;

Examples

This function generates

</TABLE>

TABLEROWOPEN Function

This function generates the <TR> tag which marks the beginning of a new row in an HTML table. To mark the end of a new row, use the TABLEROWCLOSE Function.

Syntax

HTF.TABLEROWOPEN(
 calign IN VARCHAR2 DEFAULT NULL,
 cvalign IN VARCHAR2 DEFAULT NULL,
 cdp IN VARCHAR2 DEFAULT NULL,
 cnowrap IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-86 TABLEROWOPEN Function Parameters

	Parameter	Description
	
calign

	
The value for the ALIGN attribute.

	
cvalign

	
The value for the VALIGN attribute.

	
cdp

	
The value for the DP attribute.

	
cnowrap

	
If the value of this parameter is not NULL, the NOWRAP attribute is added to the tag.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<<TR ALIGN="calign" VALIGN="cvalign" DP="cdp" NOWRAP cattributes>

TELETYPE Function

This function generates the <TT> and </TT> tags which direct the browser to render the text they surround in a fixed width typewriter font, for example, the courier font.

Syntax

HTF.TELETYPE(
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-87 TELETYPE Function Parameters

	Parameter	Description
	
ctext

	
The text to render in a fixed width typewriter font.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<TT cattributes>ctext</TT>

TITLE Function

This function generates the <TITLE> and </TITLE> tags which specify the text to display in the titlebar of the browser window.

Syntax

HTF.TITLE(
 ctitle IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Table 182-88 TITLE Function Parameters

	Parameter	Description
	
ctitle

	
The text to display in the titlebar of the browser window.

Examples

This function generates

<TITLE>ctitle</TITLE>

ULISTCLOSE Function

This function generates the tag which marks the end of an unordered list. An unordered list presents items with bullets. To mark the beginning of an unordered list, use the ULISTOPEN Function. Add list items with LISTITEM Function.

Syntax

HTF.ULISTCLOSE
 RETURN VARCHAR2;

Examples

This function generates

ULISTOPEN Function

This function generates the tag which marks the beginning of an unordered list. An unordered list presents items with bullets. To mark the end of an unordered list, use the ULISTCLOSE Function. Add list items with LISTITEM Function.

Syntax

HTF.ULISTOPEN(
 cclear IN VARCHAR2 DEFAULT NULL,
 cwrap IN VARCHAR2 DEFAULT NULL,
 cdingbat IN VARCHAR2 DEFAULT NULL,
 csrc IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-89 ULISTOPEN Function Parameters

	Parameter	Description
	
cclear

	
The value for the CLEAR attribute.

	
cwrap

	
The value for the WRAP attribute.

	
cdingbat

	
The value for the DINGBAT attribute.

	
csrc

	
The value for the SRC attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<UL CLEAR="cclear" WRAP="cwrap" DINGBAT="cdingbat" SRC="csrc" cattributes>

UNDERLINE Function

This function generates the <U> and </U> tags, which direct the browser to render the text they surround with an underline.

Syntax

HTF.UNDERLINE(
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-90 UNDERLINE Function Parameters

	Parameter	Description
	
ctext

	
The text to render with an underline.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<U cattributes>ctext</U>

VARIABLE Function

This function generates the <VAR> and </VAR> tags which direct the browser to render the text they surround in italics or however "variable" is defined stylistically.

Syntax

HTF.VARIABLE(
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 182-91 VARIABLE Function Parameters

	Parameter	Description
	
ctext

	
The text to render in italics.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This function generates

<VAR cattributes>ctext</VAR>

WBR Function

This function generates the <WBR> tag, which inserts a soft line break within a section of NOBR text.

Syntax

HTF.WBR
 RETURN VARCHAR2;

Examples

This function generates

<WBR>

HTP

183 HTP

The HTP (hypertext procedures) and HTF (hypertext functions) packages generate HTML tags. For example, the HTP.ANCHOR procedure generates the HTML anchor tag, <A>.

	
See Also:

For more information about implementation of this package:
	
Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

	
Oracle Fusion Middleware User's Guide for mod_plsql

This chapter contains the following topics:

	
Using HTP

	
Operational Notes

	
Rules and Limits

	
Examples

	
Summary of Tags

	
Summary of HTP Subprograms

Using HTP

	
Operational Notes

	
Rules and Limits

	
Examples

Operational Notes

For every HTP procedure that generates one or more HTML tags, there is a corresponding HTF function with identical parameters with the following exception:

	
The PRINTS Procedure and the PS Procedure do not have HTF function equivalents. Use the ESCAPE_SC Function or the ESCAPE_URL Function if you need a string conversion function. Note that while there is a ESCAPE_SC Procedure that performs the same operation as the PRINTS Procedure and the PS Procedure, there is no procedural equivalent for the ESCAPE_URL Function.

	
The FORMAT_CELL Function does not have an HTP equivalent. The function formats column values inside an HTML table using TABLEDATA Function which does have an HTP equivalent in the TABLEDATA Procedure. The advantage of this using the FORMAT_CELL Function is that it allows for better control over the HTML tables.

The function versions do not directly generate output in your Web page. Instead, they pass their output as return values to the statements that invoked them. Use these functions when you need to nest calls. To print the output of HTF functions, call the functions from within the HTP.PRINT procedure. It then prints its parameters to the generated Web page.

Rules and Limits

If you use values of the LONG data type in procedures such as HTP.PRINT, HTP.PRN, HTP.PRINTS, HTP.PA or OWA_UTIL.CELLSPRINT, only the first 32 K of the LONG data is used. The LONG data is bound to a VARCHAR2 data type in the procedure.

Examples

The following commands generate a simple HTML document:

CREATE OR REPLACE PROCEDURE hello AS
BEGIN
 HTP.HTMLOPEN; -- generates <HTML>
 HTP.HEADOPEN; -- generates <HEAD>
 HTP.TITLE('Hello'); -- generates <TITLE>Hello</TITLE>
 HTP.HEADCLOSE; -- generates </HEAD>
 HTP.BODYOPEN; -- generates <BODY>
 HTP.HEADER(1, 'Hello'); -- generates <H1>Hello</H1>
 HTP.BODYCLOSE; -- generates </BODY>
 HTP.HTMLCLOSE; -- generates </HTML>
END;

Summary of Tags

HTML, HEAD, and BODY Tags

HTMLOPEN Procedure, HTMLCLOSE Procedure - generate <HTML> and </HTML>

HEADOPEN Procedure, HEADCLOSE Procedure - generate <HEAD> and </HEAD>

BODYOPEN Procedure, BODYCLOSE Procedure - generate <BODY> and </BODY>

Comment Tag

COMMENT Procedure - generates <!-- and -->

Tags in the <HEAD> Area

BASE Procedure - generates <BASE>

LINKREL Procedure - generates <LINK> with the REL attribute

LINKREV Procedure - generates <LINK> with the REV attribute

TITLE Procedure - generates <TITLE>

META Procedure - generates <META>

SCRIPT Procedure - generates <SCRIPT>

STYLE Procedure - generates <STYLE>

ISINDEX Procedure - generates <ISINDEX>

Applet Tags

APPLETOPEN Procedure, APPLETCLOSE Procedure - generate <APPLET> and </APPLET>

PARAM Procedure - generates <PARAM>

List Tags

OLISTOPEN Procedure, OLISTCLOSE Procedure - generate and

ULISTOPEN Procedure, ULISTCLOSE Procedure - generate and

DLISTOPEN Procedure, DLISTCLOSE Procedure- generate <DL> and </DL>

DLISTTERM Procedure - generates <DT>

DLISTDEF Procedure - generates <DD>

DIRLISTOPEN Procedure, DIRLISTCLOSE Procedure - generate <DIR> and </DIR>

LISTHEADER Procedure - generates <LH>

LISTINGOPEN Procedure, LISTINGCLOSE Procedure - generate <LISTING> and </LISTING>

MENULISTOPEN Procedure - generate <MENU> and </MENU>

LISTITEM Procedure - generates

Form Tags

FORMOPEN Procedure, FORMCLOSE Procedure - generate <FORM> and </FORM>

FORMCHECKBOX Procedure - generates <INPUT TYPE="CHECKBOX">

FORMHIDDEN Procedure - generates <INPUT TYPE="HIDDEN">

FORMIMAGE Procedure - generates <INPUT TYPE="IMAGE">

FORMPASSWORD Procedure - generates <INPUT TYPE="PASSWORD">

FORMRADIO Procedure - generates <INPUT TYPE="RADIO">

FORMSELECTOPEN Procedure, FORMSELECTCLOSE Procedure - generate <SELECT> and </SELECT>

FORMSELECTOPTION Procedure - generates <OPTION>

FORMTEXT Procedure - generates <INPUT TYPE="TEXT">

FORMTEXTAREA Procedure - generate <TEXTAREA>

FORMTEXTAREAOPEN Procedure, FORMTEXTAREACLOSE Procedure - generate <TEXTAREA> and </TEXTAREA>

FORMRESET Procedure - generates <INPUT TYPE="RESET">

FORMSUBMIT Procedure - generates <INPUT TYPE="SUBMIT">

Table Tags

TABLEOPEN Procedure, TABLECLOSE Procedure - generate <TABLE> and </TABLE>

TABLECAPTION Procedure - generates <CAPTION>

TABLEROWOPEN Procedure, TABLEROWCLOSE Procedure - generate <TR> and </TR>

TABLEHEADER Procedure - generates <TH>

TABLEDATA Procedure - generates <TD>

IMG, HR, and A Tags

HR Procedure, LINE Procedure - generate <HR>

IMG Procedure, IMG2 Procedure - generate

ANCHOR Procedure, ANCHOR2 Procedure - generate <A>

MAPOPEN Procedure, MAPCLOSE Procedure - generate <MAP> and </MAP>

Paragraph Formatting Tags

HEADER Procedure - generates heading tags (<H1> to <H6>)

PARA Procedure, PARAGRAPH Procedure - generate <P>

PRN Procedures, PRINT Procedures - generate any text that is passed in

PRINTS Procedure, PS Procedure - generate any text that is passed in; special characters in HTML are escaped

PREOPEN Procedure, PRECLOSE Procedure - generate <PRE> and </PRE>

BLOCKQUOTEOPEN Procedure, BLOCKQUOTECLOSE Procedure - generate <BLOCKQUOTE> and </BLOCKQUOTE>

DIV Procedure - generates <DIV>

NL Procedure, BR Procedure - generate

NOBR Procedure - generates <NOBR>

WBR Procedure - generates <WBR>

PLAINTEXT Procedure - generates <PLAINTEXT>

ADDRESS Procedure - generates <ADDRESS>

MAILTO Procedure - generates <A> with the MAILTO attribute

AREA Procedure - generates <AREA>

BGSOUND Procedure - generates <BGSOUND>

Character Formatting Tags

BASEFONT Procedure - generates <BASEFONT>

BIG Procedure - generates <BIG>

BOLD Procedure - generates

CENTER Procedure - generates <CENTER> and </CENTER>

CENTEROPEN Procedure, CENTERCLOSE Procedure - generate <CENTER> and </CENTER>

CITE Procedure - generates <CITE>

CODE Procedure - generates <CODE>

DFN Procedure - generates <DFN>

EM Procedure, EMPHASIS Procedure - generate

FONTOPEN Procedure, FONTCLOSE Procedure - generate and

ITALIC Procedure - generates <I>

KBD Procedure, KEYBOARD Procedure - generate <KBD> and </KBD>

S Procedure - generates <S>

SAMPLE Procedure - generates <SAMP>

SMALL Procedure - generates <SMALL>

STRIKE Procedure - generates <STRIKE>

STRONG Procedure - generates

SUB Procedure - generates <SUB>

SUP Procedure - generates <SUP>

TELETYPE Procedure - generates <TT>

UNDERLINE Procedure - generates <U>

VARIABLE Procedure - generates <VAR>

Frame Tags

FRAME Procedure - generates <FRAME>

FRAMESETOPEN Procedure, FRAMESETCLOSE Procedure - generate <FRAMESET> and </FRAMESET>

NOFRAMESOPEN Procedure, NOFRAMESCLOSE Procedure - generate <NOFRAMES> and </NOFRAMES>

Summary of HTP Subprograms

Table 183-1 HTP Package Subprograms

	Subprogram	Description
	
ADDRESS Procedure

	
Generates the <ADDRESS> and </ADDRESS> tags which specify the address, author and signature of a document

	
ANCHOR Procedure

	
Generates the <A> and tags which specify the source or destination of a hypertext link

	
ANCHOR2 Procedure

	
Generates the <A> and tags which specify the source or destination of a hypertext link

	
APPLETCLOSE Procedure

	
Closes the applet invocation with the </APPLET> tag

	
APPLETOPEN Procedure

	
Generates the <APPLET> tag which begins the invocation of a Java applet

	
AREA Procedure

	
Generates the <AREA> tag, which defines a client-side image map

	
BASE Procedure

	
Generates the <BASE> tag which records the URL of the document

	
BASEFONT Procedure

	
Generates the <BASEFONT> tag which specifies the base font size for a Web page

	
BGSOUND Procedure

	
Generates the <BGSOUND> tag which includes audio for a Web page

	
BIG Procedure

	
Generates the <BIG> and </BIG> tags which direct the browser to render the text in a bigger font

	
BLOCKQUOTECLOSE Procedure

	
Generates the </BLOCKQUOTE> tag which mark the end of a section of quoted text

	
BLOCKQUOTEOPEN Procedure

	
Generates the <BLOCKQUOTE> tag, which marks the beginning of a section of quoted text

	
BODYCLOSE Procedure

	
Generates the </BODY> tag which marks the end of a body section of an HTML document

	
BODYOPEN Procedure

	
Generates the <BODY> tag which marks the beginning of the body section of an HTML document

	
BOLD Procedure

	
Generates the and tags which direct the browser to display the text in boldface

	
BR Procedure

	
Generates the
 tag which begins a new line of text

	
CENTER Procedure

	
Generates the <CENTER> and </CENTER> tags which center a section of text within a Web page

	
CENTERCLOSE Procedure

	
Generates the </CENTER> tag which marks the end of a section of text to center

	
CENTEROPEN Procedure

	
Generates the <CENTER> tag which mark the beginning of a section of text to center

	
CITE Procedure

	
Generates the <CITE> and </CITE> tags which direct the browser to render the text as a citation

	
CODE Procedure

	
Generates the <CODE> and </CODE> tags which direct the browser to render the text in monospace font or however "code" is defined stylistically

	
COMMENT Procedure

	
Generates This procedure generates the comment tags <!-- ctext -->

	
DFN Procedure

	
Generates the <DFN> and </DFN> tags which direct the browser to mark the text as italics or however "definition" is defined stylistically

	
DIRLISTCLOSE Procedure

	
Generates the </DIR> tag which ends a directory list section

	
DIRLISTOPEN Procedure

	
Generates the <DIR> which starts a directory list section

	
DIV Procedure

	
Generates the <DIV> tag which creates document divisions

	
DLISTCLOSE Procedure

	
Generates the </DL> tag which ends a definition list

	
DLISTDEF Procedure

	
Generates the <DD> tag, which inserts definitions of terms

	
DLISTOPEN Procedure

	
Generates the <DL> tag which starts a definition list

	
DLISTTERM Procedure

	
Generates the <DT> tag which defines a term in a definition list <DL>

	
EM Procedure

	
Generates the and tags, which define text to be emphasized

	
EMPHASIS Procedure

	
Generates the and tags, which define text to be emphasized

	
ESCAPE_SC Procedure

	
Replaces characters that have special meaning in HTML with their escape sequences

	
FONTCLOSE Procedure

	
Generates the tag which marks the end of a section of text with the specified font characteristics

	
FONTOPEN Procedure

	
Generates the which marks the beginning of section of text with the specified font characteristics

	
FORMCHECKBOX Procedure

	
Generates the <INPUT> tag with TYPE="checkbox" which inserts a checkbox element in a form

	
FORMCLOSE Procedure

	
Generates the </FORM> tag which marks the end of a form section in an HTML document

	
FORMOPEN Procedure

	
Generates the <FORM> tag which marks the beginning of a form section in an HTML document

	
FORMFILE Procedure

	
Generates the <INPUT> tag with TYPE="file" which inserts a file form element, and is used for file uploading for a given page

	
FORMHIDDEN Procedure

	
Generates the <INPUT> tag with TYPE="hidden"which inserts a hidden form element

	
FORMIMAGE Procedure

	
Generates the <INPUT> tag with TYPE="image" which creates an image field that the user clicks to submit the form immediately

	
FORMPASSWORD Procedure

	
Generates the <INPUT> tag with TYPE="password" which creates a single-line text entry field

	
FORMRADIO Procedure

	
Generates the <INPUT> tag with TYPE="radio", which creates a radio button on the HTML form

	
FORMRESET Procedure

	
Generates the <INPUT> tag with TYPE="reset" which creates a button that, when selected, resets the form fields to their initial values

	
FORMSELECTCLOSE Procedure

	
Generates the </SELECT> tag which marks the end of a Select form element

	
FORMSELECTOPEN Procedure

	
Generates the </SELECT> tag which marks the beginning of a Select form element

	
FORMSELECTOPTION Procedure

	
Generates the <OPTION> tag which represents one choice in a Select element

	
FORMSUBMIT Procedure

	
Generates the <INPUT> tag with TYPE="submit" which creates a button that, when clicked, submits the form

	
FORMTEXT Procedure

	
Generates the <INPUT> tag with TYPE="text", which creates a field for a single line of text

	
FORMTEXTAREA Procedure

	
Generates the <TEXTAREA> tag, which creates a text field that has no predefined text in the text area

	
FORMTEXTAREA2 Procedure

	
Generates the <TEXTAREA> tag, which creates a text field that has no predefined text in the text area with the ability to specify a wrap style

	
FORMTEXTAREACLOSE Procedure

	
Generates the </TEXTAREA> tag which ends a text area form element

	
FORMTEXTAREAOPEN Procedure

	
Generates the <TEXTAREA> which marks the beginning of a text area form element

	
FORMTEXTAREAOPEN2 Procedure

	
Generates the <TEXTAREA> which marks the beginning of a text area form element with the ability to specify a wrap style

	
FRAME Procedure

	
Generates the <FRAME> tag which defines the characteristics of a frame created by a <FRAMESET> tag

	
FRAMESETCLOSE Procedure

	
Generates the </FRAMESET> tag which ends a frameset section

	
FRAMESETOPEN Procedure

	
Generates the </FRAMESET> tag which begins a frameset section

	
HEADCLOSE Procedure

	
Generates the </HEAD> tag which marks the end of an HTML document head section

	
HEADER Procedure

	
Generates opening heading tags (<H1> to <H6>) and their corresponding closing tags (</H1> to </H6>)

	
HEADOPEN Procedure

	
Generates the <HEAD> tag which marks the beginning of the HTML document head section

	
HR Procedure

	
Generates the <HR> tag, which generates a line in the HTML document

	
HTMLCLOSE Procedure

	
Generates the </HTML> tag which marks the end of an HTML document

	
HTMLOPEN Procedure

	
Generates the <HTML> tag which marks the beginning of an HTML document

	
IMG Procedure

	
Generates the tag which directs the browser to load an image onto the HTML page

	
IMG2 Procedure

	
Generates the tag which directs the browser to load an image onto the HTML page with the option of specifying values for the USEMAP attribute

	
ISINDEX Procedure

	
Creates a single entry field with a prompting text, such as "enter value," then sends that value to the URL of the page or program

	
ITALIC Procedure

	
Generates the <I> and </I> tags which direct the browser to render the text in italics

	
KBD Procedure

	
Generates the <KBD> and </KBD> tags which direct the browser to render the text in monospace font

	
KEYBOARD Procedure

	
Generates the <KBD> and </KBD> tags, which direct the browser to render the text in monospace font

	
LINE Procedure

	
Generates the <HR> tag, which generates a line in the HTML document

	
LINKREL Procedure

	
Generates the <LINK> tag with the REL attribute which delineates the relationship described by the hypertext link from the anchor to the target

	
LINKREV Procedure

	
Generates the <LINK> tag with the REV attribute which delineates the relationship described by the hypertext link from the target to the anchor

	
LISTHEADER Procedure

	
Generates the <LH> and </LH> tags which print an HTML tag at the beginning of the list

	
LISTINGCLOSE Procedure

	
Generates the </LISTING> tags which marks the end of a section of fixed-width text in the body of an HTML page

	
LISTINGOPEN Procedure

	
Generates the <LISTING> tag which marks the beginning of a section of fixed-width text in the body of an HTML page

	
LISTITEM Procedure

	
Generates the tag, which indicates a list item

	
MAILTO Procedure

	
Generates the <A> tag with the HREF set to 'mailto' prepended to the mail address argument

	
MAPCLOSE Procedure

	
Generates the </MAP> tag which marks the end of a set of regions in a client-side image map

	
MAPOPEN Procedure

	
Generates the <MAP> tag which mark the beginning of a set of regions in a client-side image map

	
MENULISTCLOSE Procedure

	
Generates the </MENU> tag which ends a list that presents one line for each item

	
MENULISTOPEN Procedure

	
Generates the <MENU> tag which create a list that presents one line for each item

	
META Procedure

	
Generates the <META> tag, which embeds meta-information about the document and also specifies values for HTTP headers

	
NL Procedure

	
Generates the
 tag which begins a new line of text

	
NOBR Procedure

	
Generates the <NOBR> and </NOBR> tags which turn off line-breaking in a section of text

	
NOFRAMESCLOSE Procedure

	
Generates the </NOFRAMES> tag which marks the end of a no-frames section

	
NOFRAMESOPEN Procedure

	
Generates the <NOFRAMES> tag which mark the beginning of a no-frames section

	
OLISTCLOSE Procedure

	
Generates the tag which defines the end of an ordered list

	
OLISTOPEN Procedure

	
Generates the tag which marks the beginning of an ordered list

	
PARA Procedure

	
Generates the <P> tag which indicates that the text that comes after the tag is to be formatted as a paragraph

	
PARAGRAPH Procedure

	
Adds attributes to the <P> tag

	
PARAM Procedure

	
Generates the <PARAM> tag which specifies parameter values for Java applets

	
PLAINTEXT Procedure

	
Generates the <PLAINTEXT> and </PLAINTEXT> tags which direct the browser to render the text they surround in fixed-width type

	
PRECLOSE Procedure

	
Generates the </PRE> tag which marks the end of a section of preformatted text in the body of the HTML page

	
PREOPEN Procedure

	
Generates the <PRE> tag which marks the beginning of a section of preformatted text in the body of the HTML page

	
PRINT Procedures

	
Generates the specified parameter as a string terminated with the \n newline character

	
PRINTS Procedure

	
Generates a string and replaces the following characters with the corresponding escape sequence

	
PRN Procedures

	
Generates the specified parameter as a string

	
PS Procedure

	
Generates a string and replaces the following characters with the corresponding escape sequence.

	
S Procedure

	
Generates the <S> and </S> tags which direct the browser to render the text they surround in strikethrough type

	
SAMPLE Procedure

	
Generates the <SAMP> and </SAMP> tags which direct the browser to render the text they surround in monospace font or however "sample" is defined stylistically

	
SCRIPT Procedure

	
Generates the <SCRIPT> and </SCRIPT> tags which contain a script written in languages such as JavaScript and VBscript

	
SMALL Procedure

	
Generates the <SMALL> and </SMALL> tags, which direct the browser to render the text they surround using a small font

	
STRIKE Procedure

	
Generates the <STRIKE> and </STRIKE> tags which direct the browser to render the text they surround in strikethrough type

	
STRONG Procedure

	
Generates the and tags which direct the browser to render the text they surround in bold or however "strong" is defined stylistically

	
STYLE Procedure

	
Generates the <STYLE> and </STYLE> tags which include a style sheet in a Web page

	
SUB Procedure

	
Generates the _{and} tags which direct the browser to render the text they surround as subscript

	
SUP Procedure

	
Generates the ^{and} tags which direct the browser to render the text they surround as superscript

	
TABLECAPTION Procedure

	
Generates the <CAPTION> and </CAPTION> tags which place a caption in an HTML table

	
TABLECLOSE Procedure

	
Generates the </TABLE> tag which marks the end of an HTML table

	
TABLEDATA Procedure

	
Generates the <TD> and </TD> tags which insert data into a cell of an HTML table

	
TABLEHEADER Procedure

	
Generates the <TH> and </TH> tags which insert a header cell in an HTML table.

	
TABLEOPEN Procedure

	
Generates the <TABLE> tag which marks the beginning of an HTML table

	
TABLEROWCLOSE Procedure

	
Generates the </TR> tag which marks the end of a new row in an HTML table

	
TABLEROWOPEN Procedure

	
Generates the <TR> tag which marks the beginning of a new row in an HTML table

	
TELETYPE Procedure

	
Generates the <TT> and </TT> tags which direct the browser to render the text they surround in a fixed width typewriter font, for example, the courier font

	
TITLE Procedure

	
Generates the <TITLE> and </TITLE> tags which specify the text to display in the titlebar of the browser window

	
ULISTCLOSE Procedure

	
Generates the tag which marks the end of an unordered list

	
ULISTOPEN Procedure

	
Generates the tag which marks the beginning of an unordered list

	
UNDERLINE Procedure

	
Generates the <U> and </U> tags, which direct the browser to render the text they surround with an underline

	
VARIABLE Procedure

	
Generates the <VAR> and </VAR> tags which direct the browser to render the text they surround in italics or however "variable" is defined stylistically.

	
WBR Procedure

	
Generates the <WBR> tag, which inserts a soft line break within a section of NOBR text

ADDRESS Procedure

This procedure generates the <ADDRESS> and </ADDRESS> tags which specify the address, author and signature of a document.

Syntax

HTP.ADDRESS (
 cvalue IN VARCHAR2
 cnowrap IN VARCHAR2 DEFAULT NULL
 cclear IN VARCHAR2 DEFAULT NULL
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-2 ADDRESS Procedure Parameters

	Parameter	Description
	
cvalue

	
The string that goes between the <ADDRESS> and </ADDRESS> tags.

	
cnowrap

	
If the value for this parameter is not NULL, the NOWRAP attribute is included in the tag

	
cclear

	
The value for the CLEAR attribute.

	
cattributes

	
The other attributes to be included as-is in the tag

Examples

This procedure generates

<ADDRESS CLEAR="cclear" NOWRAP cattributes>cvalue</ADDRESS>

ANCHOR Procedure

This procedure and the ANCHOR2 Procedure procedures generate the <A> and HTML tags which specify the source or destination of a hypertext link. The difference between these subprograms is that the ANCHOR2 Procedure provides a target and therefore can be used for a frame.

Syntax

HTP.ANCHOR (
 curl IN VARCHAR2,
 ctext IN VARCHAR2,
 cname IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-3 ANCHOR Procedure Parameters

	Parameter	Description
	
curl

	
The value for the HREF attribute.

	
ctext

	
The string that goes between the <A> and tags.

	
cname

	
The value for the NAME attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

ctext

Usage Notes

This tag accepts several attributes, but either HREF or NAME is required. HREF specifies to where to link. NAME allows this tag to be a target of a hypertext link.

ANCHOR2 Procedure

This procedure and the ANCHOR Procedure generate the <A> and HTML tags which specify the source or destination of a hypertext link. The difference between these subprograms is that this procedures provides a target and therefore can be used for a frame.

Syntax

HTP.ANCHOR2 (
 curl IN VARCHAR2,
 ctext IN VARCHAR2,
 cname IN VARCHAR2 DEFAULT NULL,
 ctarget in varchar2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-4 ANCHOR2 Procedure Parameters

	Parameter	Description
	
curl

	
The value for the HREF attribute.

	
ctext

	
The string that goes between the <A> and tags.

	
cname

	
The value for the NAME attribute

	
ctarget

	
The value for the TARGET attribute.

	
cattributes

	
The other attributes to be included as-is in the tag

Examples

This procedure generates

ctext

APPLETCLOSE Procedure

This procedure closes the applet invocation with the </APPLET> tag. You must first invoke the a Java applet using APPLETOPEN Procedure.

Syntax

HTP.APPLETCLOSE;

APPLETOPEN Procedure

This procedure generates the <APPLET> tag which begins the invocation of a Java applet. You close the applet invocation with APPLETCLOSE Procedure which generates the </APPLET> tag.

Syntax

HTP.APPLETOPEN (
 ccode IN VARCHAR2,
 cheight IN NUMBER,
 cwidth IN NUMBER,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-5 APPLETOPEN Procedure Parameters

	Parameter	Description
	
ccode

	
The the value for the CODE attribute which specifies the name of the applet class.

	
cheight

	
The value for the HEIGHT attribute.

	
cwidth

	
The value for the WIDTH attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<APPLET CODE=ccode HEIGHT=cheight WIDTH=cwidth cattributes>

so that, for example,

HTP.appletopen('testclass.class', 100, 200, 'CODEBASE="/ows-applets"')

generates

<APPLET CODE="testclass.class" height=100 width=200 CODEBASE="/ows-applets">

Usage Notes

	
Specify parameters to the Java applet using the PARAM Procedure procedure.

	
Use the cattributes parameter to specify the CODEBASE attribute since the PL/SQL cartridge does not know where to find the class files. The CODEBASE attribute specifies the virtual path containing the class files.

AREA Procedure

This procedure generates the <AREA> tag, which defines a client-side image map. The <AREA> tag defines areas within the image and destinations for the areas.

Syntax

HTP.AREA (
 ccoords IN VARCHAR2
 cshape IN VARCHAR2 DEFAULT NULL,
 chref IN VARCHAR2 DEFAULT NULL,
 cnohref IN VARCHAR2 DEFAULT NULL,
 ctarget IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-6 AREA Procedure Parameters

	Parameter	Description
	
ccords

	
The the value for the COORDS attribute.

	
cshape

	
The value for the SHAPE attribute.

	
chref

	
The value for the HREF attribute.

	
cnohref

	
If the value for this parameter is not NULL, the NOHREF attribute is added to the tag.

	
ctarget

	
The value for the TARGET attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<AREA COORDS="ccoords" SHAPE="cshape" HREF="chref" NOHREF TARGET="ctarget" cattributes>

BASE Procedure

This procedure generates the <BASE> tag which records the URL of the document.

Syntax

HTP.BASE (
 ctarget IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-7 BASE Procedure Parameters

	Parameter	Description
	
ctarget

	
The value for the TARGET attribute which establishes a window name to which all links in this document are targeted.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<BASE HREF="<current URL>" TARGET="ctarget" cattributes>

BASEFONT Procedure

This procedure generates the <BASEFONT> tag which specifies the base font size for a Web page.

Syntax

HTP.BASEFONT (
 nsize IN INTEGER);

Parameters

Table 183-8 BASEFONT Procedure Parameters

	Parameter	Description
	
nsize

	
The value for the SIZE attribute.

Examples

This procedure generates

<BASEFONT SIZE="nsize">

BGSOUND Procedure

This procedure generates the <BGSOUND> tag which includes audio for a Web page.

Syntax

HTP.BGSOUND (
 csrc IN VARCHAR2,
 cloop IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-9 BGSOUND Procedure Parameters

	Parameter	Description
	
csrc

	
The value for the SRC attribute.

	
cloop

	
The value for the LOOP attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<BGSOUND SRC="csrc" LOOP="cloop" cattributes>

BIG Procedure

This procedure generates the <BIG> and </BIG> tags which direct the browser to render the text in a bigger font.

Syntax

HTP.BIG (
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-10 BIG Procedure Parameters

	Parameter	Description
	
ctext

	
The the text that goes between the tags.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<BIG cattributes>ctext</BIG>

BLOCKQUOTECLOSE Procedure

This procedure generates the </BLOCKQUOTE> tag which mark the end of a section of quoted text. You mark the beginning of a section of text by means of the BLOCKQUOTEOPEN Procedure.

Syntax

HTP.BLOCKQUOTECLOSE;

Examples

This procedure generates

</BLOCKQUOTE>

BLOCKQUOTEOPEN Procedure

This procedure generates the <BLOCKQUOTE> tag, which marks the beginning of a section of quoted text. You mark the end of a section of text by means of the BLOCKQUOTECLOSE Procedure.

Syntax

HTP.BLOCKQUOTEOPEN (
 cnowrap IN VARCHAR2 DEFAULT NULL,
 cclear IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-11 BLOCKQUOTEOPEN Procedure Parameters

	Parameter	Description
	
cnowrap

	
If the value for this parameter is not NULL, the NOWRAP attribute is added to the tag.

	
cclear

	
The value for the CLEAR attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<BLOCKQUOTE CLEAR="cclear" NOWRAP cattributes>

BODYCLOSE Procedure

This procedure generates the </BODY> tag which marks the end of a body section of an HTML document.You mark the beginning of a body section by means of the BODYOPEN Procedure.

Syntax

HTP.BODYCLOSE;

Examples

This procedure generates

</BODY>

BODYOPEN Procedure

This procedure generates the <BODY> tag which marks the beginning of the body section of an HTML document. You mark the end of a body section by means of the BODYCLOSE Procedure.

Syntax

HTP.BODYOPEN (
 cbackground IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-12 BODYOPEN Procedure Parameters

	Parameter	Description
	
cbackground

	
The value for the BACKGROUND attribute which specifies a graphic file to use for the background of the document.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<BODY background="cbackground" cattributes>

so that

HTP.BODYOPEN('/img/background.gif');

generates:

<BODY background="/img/background.gif">

BOLD Procedure

This procedure generates the and tags which direct the browser to display the text in boldface.

Syntax

HTP.BOLD (
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-13 BOLD Procedure Parameters

	Parameter	Description
	
ctext

	
The text that goes between the tags.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<B cattributes>ctext

BR Procedure

This procedure generates the
 tag which begins a new line of text. It performs the same operation as the NL Procedure.

Syntax

HTP.BR(
 cclear IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-14 BR Procedure Parameters

	Parameter	Description
	
cclear

	
The value for the CLEAR attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<BR CLEAR="cclear" cattributes>

CENTER Procedure

This procedure generates the <CENTER> and </CENTER> tags which center a section of text within a Web page.

Syntax

HTP.CENTER (
 ctext IN VARCHAR2);

Parameters

Table 183-15 CENTER Parameters

	Parameter	Description
	
ctext

	
The text that goes between the tags.

Examples

This procedure generates

<CENTER>ctext</CENTER>

CENTERCLOSE Procedure

This procedure generates the </CENTER> tag which marks the end of a section of text to center. You mark the beginning of a of a section of text to center by means of the CENTEROPEN Procedure.

Syntax

HTP.CENTERCLOSE;

Examples

This procedure generates

</CENTER>

CENTEROPEN Procedure

This procedure generates the <CENTER> tag which mark the beginning of a section of text to center.You mark the beginning of a of a section of text to center by means of the CENTERCLOSE Procedure.

Syntax

HTP.CENTEROPEN;

Examples

This procedure generates

<CENTER>

CITE Procedure

This procedure generates the <CITE> and </CITE> tags which direct the browser to render the text as a citation.

Syntax

HTP.CITE (
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-16 CITE Procedure Parameters

	Parameter	Description
	
ctext

	
The text to render as citation.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<CITE cattributes>ctext</CITE>

CODE Procedure

This procedure generates the <CODE> and </CODE> tags which direct the browser to render the text in monospace font or however "code" is defined stylistically.

Syntax

HTP.CODE (
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-17 CODE Procedure Parameters

	Parameter	Description
	
ctext

	
The text to render as code.

	
cattributes

	
The other attributes to be included as-is in the tag

Examples

This procedure generates

<CODE cattributes>ctext</CODE>

COMMENT Procedure

This procedure generates the comment tags.

Syntax

HTP.COMMENT (
 ctext IN VARCHAR2);

Parameters

Table 183-18 COMMENT Procedure Parameters

	Parameter	Description
	
ctext

	
The comment.

Examples

This procedure generates

<!-- ctext -->

DFN Procedure

This procedure generates the <DFN> and </DFN> tags which direct the browser to mark the text in italics or however "definition" is described stylistically.

Syntax

HTP.DFN (
 ctext IN VARCHAR2);

Parameters

Table 183-19 DFN Procedure Parameters

	Parameter	Description
	
ctext

	
The text to render in italics.

Examples

This procedure generates

<DFN>ctext</DFN>

DIRLISTCLOSE Procedure

This procedure generates the </DIR> tag which ends a directory list section. You start a directory list section with the DIRLISTOPEN Procedure.

Syntax

HTP.DIRLISTCLOSE;

Usage Notes

A directory list presents a list of items that contains up to 20 characters. Items in this list are typically arranged in columns, 24 characters wide. Insert the tag directly or invoke the LISTITEM Procedure so that the tag appears directly after the </DIR> tag to define the items as a list.

Examples

This procedure generates

</DIR>

DIRLISTOPEN Procedure

This procedure generates the <DIR> which starts a directory list section. You end a directory list section with the DIRLISTCLOSE Procedure.

Syntax

HTP.DIRLISTOPEN;

Usage Notes

A directory list presents a list of items that contains up to 20 characters. Items in this list are typically arranged in columns, 24 characters wide. Insert the tag directly or invoke the LISTITEM Procedure so that the tag appears directly after the </DIR> tag to define the items as a list.

Examples

This procedure generates

<DIR>

DIV Procedure

This procedure generates the <DIV> tag which creates document divisions.

Syntax

HTP.DIV (
 calign IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-20 DIV Procedure Parameters

	Parameter	Description
	
calign

	
The value for the ALIGN attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<DIV ALIGN="calign" cattributes>

DLISTCLOSE Procedure

This procedure generates the </DL> tag which ends a definition list. You start a definition list by means of the DLISTOPEN Procedure.

Syntax

HTP.DLISTCLOSE;

Usage Notes

A definition list looks like a glossary: it contains terms and definitions. Terms are inserted using the DLISTTERM Procedure and definitions are inserted using the DLISTDEF Procedure.

Examples

This procedure generates

</DL>

DLISTDEF Procedure

This procedure generates the <DD> tag, which inserts definitions of terms. Use this tag for a definition list <DL>. Terms are tagged <DT> and definitions are tagged <DD>.

Syntax

HTP.DLISTDEF (
 ctext IN VARCHAR2 DEFAULT NULL,
 cclear IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-21 DLISTDEF Procedure Parameters

	Parameter	Description
	
ctext

	
The definition of the term.

	
cclear

	
The value for the CLEAR attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<DD CLEAR="cclear" cattributes>ctext

DLISTOPEN Procedure

This procedure generates the <DL> tag which starts a definition list. You end a definition list by means of the DLISTCLOSE Procedure.

Syntax

HTP.DLISTOPEN (
 cclear IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-22 DLISTOPEN Procedure Parameters

	Parameter	Description
	
cclear

	
The value for the CLEAR attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Usage Notes

A definition list looks like a glossary: it contains terms and definitions. Terms are inserted using the DLISTTERM Procedure and definitions are inserted using the DLISTDEF Procedure.

Examples

This procedure generates

<DL CLEAR="cclear" cattributes>

DLISTTERM Procedure

This procedure generates the <DT> tag which defines a term in a definition list <DL>.

Syntax

HTP.DLISTTERM (
 ctext IN VARCHAR2 DEFAULT NULL,
 cclear IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-23 DLISTERM Procedure Parameters

	Parameter	Description
	
ctext

	
The term.

	
cclear

	
The value for the CLEAR attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<DT CLEAR="cclear" cattributes>ctext

EM Procedure

This procedure generates the and tags, which define text to be emphasized. It performs the same task as the EMPHASIS Procedure.

Syntax

HTP.EM(
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-24 EM Procedure Parameters

	Parameter	Description
	
ctext

	
The text to emphasize.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<EM cattributes>ctext

EMPHASIS Procedure

This procedure generates the and tags, which define text to be emphasized. It performs the same task as the EM Procedure.

Syntax

HTP.EMPHASIS(
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-25 EMPHASIS Procedure Parameters

	Parameter	Description
	
ctext

	
The text to emphasize.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<EM cattributes>ctext

ESCAPE_SC Procedure

This procedure replaces characters that have special meaning in HTML with their escape sequences. The following characters are converted:

	
& to &

	
" to ":

	
< to <

	
> to >

This procedure performs the same operation as PRINTS Procedures and PS Procedure.

Syntax

HTP.ESCAPE_SC(
 ctext IN VARCHAR2);

Parameters

Table 183-26 ESCAPE_SC Procedure Parameters

	Parameter	Description
	
ctext

	
The text string to convert.

FONTCLOSE Procedure

This procedure generates the tag which marks the end of a section of text with the specified font characteristics. You mark the beginning of the section text by means of the FONTOPEN Procedure.

Syntax

HTP.FONTCLOSE;

Examples

This procedure generates

FONTOPEN Procedure

This procedure generates the which marks the beginning of section of text with the specified font characteristics. You mark the end of the section text by means of the FONTCLOSE Procedure.

Syntax

HTP.FONTOPEN(
 ccolor IN VARCHAR2 DEFAULT NULL,
 cface IN VARCHAR2 DEFAULT NULL,
 csize IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-27 FONTOPEN Procedure Parameters

	Parameter	Description
	
ccolor

	
The value for the COLOR attribute.

	
cface

	
The value for the FACE attribute

	
csize

	
The value for the SIZE attribute

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

FORMCHECKBOX Procedure

This procedure generates the <INPUT> tag with TYPE="checkbox" which inserts a checkbox element in a form. A checkbox element is a button that the user toggles on or off.

Syntax

HTP.FORMCHECKBOX(
 cname IN VARCHAR2,
 cvalue IN VARCHAR2 DEFAULT 'ON',
 cchecked IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-28 FORMCHECKBOX Procedure Parameters

	Parameter	Description
	
cname

	
The value for the NAME attribute.

	
cvalue

	
The value for the VALUE attribute.

	
cchecked

	
If the value for this parameter is not NULL, the CHECKED attribute is added to the tag.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<INPUT TYPE="checkbox" NAME="cname" VALUE="cvalue" CHECKED cattributes>

FORMCLOSE Procedure

This procedure generates the </FORM> tag which marks the end of a form section in an HTML document.You mark the beginning of the form section by means of the FORMOPEN Procedure.

Syntax

HTP.FORMCLOSE;

Examples

This procedure generates

</FORM>

FORMOPEN Procedure

This procedure generates the <FORM> tag which marks the beginning of a form section in an HTML document. You mark the end of the form section by means of the FORMCLOSE Procedure.

Syntax

HTP.FORMOPEN(
 curl IN VARCHAR2,
 cmethod IN VARCHAR2 DEFAULT 'POST',
 ctarget IN VARCHAR2 DEFAULT NULL,
 cenctype IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-29 FORMOPEN Procedure Parameters

	Parameter	Description
	
curl

	
The URL of the WRB or CGI script where the contents of the form is sent. This parameter is required.

	
cmethod

	
The value for the METHOD attribute. The value can be "GET" or "POST".

	
ctarget

	
The value for the TARGET attribute.

	
cenctype

	
The value for the ENCTYPE attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<FORM ACTION="curl" METHOD="cmethod" TARGET="ctarget" ENCTYPE="cenctype" cattributes>

FORMFILE Procedure

This procedure generates the <INPUT> tag with TYPE="file" which inserts a file form element. This is used for file uploading for a given page.

Syntax

HTP.FORMFILE(
 cname IN VARCHAR2,
 caccept IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-30 FORMFILE Procedure Parameters

	Parameter	Description
	
cname

	
The value for the NAME attribute.

	
caccept

	
A comma-delimited list of MIME types for upload.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<INPUT TYPE="file" NAME="cname" ACCEPT="caccept" cattributes>

FORMHIDDEN Procedure

This procedure generates the <INPUT> tag with TYPE="hidden", which inserts a hidden form element. This element is not seen by the user. It submits additional values to the script.

Syntax

HTP.FORMHIDDEN(
 cname IN VARCHAR2,
 cvalue IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-31 FORMHIDDEN Procedure Parameters

	Parameter	Description
	
cname

	
The value for the NAME attribute.

	
cvalue

	
The value for the VALUE attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<INPUT TYPE="hidden" NAME="cname" VALUE="cvalue" cattributes>

FORMIMAGE Procedure

This procedure generates the <INPUT> tag with TYPE="image" which creates an image field that the user clicks to submit the form immediately. The coordinates of the selected point are measured in pixels, and returned (along with other contents of the form) in two name/value pairs. The x coordinate is submitted under the name of the field with .x appended, and the y coordinate with .y appended. Any VALUE attribute is ignored.

Syntax

HTP.FORMIMAGE(
 cname IN VARCHAR2,
 csrc IN VARCHAR2,
 calign IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-32 FORMIMAGE Procedure Parameters

	Parameter	Description
	
cname

	
The value for the NAME attribute.

	
csrc

	
The value for the SRC attribute that specifies the image file.

	
calign

	
The value for the ALIGN attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<INPUT TYPE="image" NAME="cname" SRC="csrc" ALIGN="calign" cattributes>

FORMPASSWORD Procedure

This procedure generates the <INPUT> tag with TYPE="password" which creates a single-line text entry field. When the user enters text in the field, each character is represented by one asterisk. This is used for entering passwords.

Syntax

HTP.FORMPASSWORD(
 cname IN VARCHAR2,
 csize IN VARCHAR2,
 cmaxlength IN VARCHAR2 DEFAULT NULL,
 cvalue IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-33 FORMPASSWORD Procedure Parameters

	Parameter	Description
	
cname

	
The value for the NAME attribute.

	
csize

	
The value for the SIZE attribute.

	
cmaxlength

	
The value for the MAXLENGTH attribute.

	
cvalue

	
The value for the VALUE attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<INPUT TYPE="password" NAME="cname" SIZE="csize" MAXLENGTH="cmaxlength" VALUE="cvalue" cattributes>

FORMRADIO Procedure

This procedure generates the <INPUT> tag with TYPE="radio", which creates a radio button on the HTML form. Within a set of radio buttons, the user selects only one. Each radio button in the same set has the same name, but different values. The selected radio button generates a name/value pair.

Syntax

HTP.FORMRADIO(
 cname IN VARCHAR2,
 cvalue IN VARCHAR2,
 cchecked IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-34 FORMRADIO Procedure Parameters

	Parameter	Description
	
cname

	
The value for the NAME attribute.

	
cvalue

	
The value for the VALUE attribute.

	
cchecked

	
If the value for this parameter is not NULL, the CHECKED attribute is added to the tag.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<INPUT TYPE="radio" NAME="cname" VALUE="cvalue" CHECKED cattributes>

FORMRESET Procedure

This procedure generates the <INPUT> tag with TYPE="reset" which creates a button that, when selected, resets the form fields to their initial values.

Syntax

HTP.FORMRESET(
 cvalue IN VARCHAR2 DEFAULT 'Reset',
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-35 FORMRESET Procedure Parameters

	Parameter	Description
	
cvalue

	
The value for the VALUE attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<INPUT TYPE="reset" VALUE="cvalue" cattributes>

FORMSELECTCLOSE Procedure

This procedure generates the </SELECT> tag which marks the end of a Select form element. A Select form element is a listbox where the user selects one or more values. You mark the beginning of Select form element by means of the FORMSELECTOPEN Procedure.The values are inserted using FORMSELECTOPTION Procedure.

Syntax

HTP.FORMSELECTCLOSE;

Examples

This procedure generates

</SELECT>

as shown under Examples of the FORMSELECTOPEN Procedure.

FORMSELECTOPEN Procedure

This procedure generates the <SELECT> tags which creates a Select form element. A Select form element is a listbox where the user selects one or more values. You mark the end of Select form element by means of the FORMSELECTCLOSE Procedure.The values are inserted using FORMSELECTOPTION Procedure.

Syntax

FORMSELECTOPEN(
 cname IN VARCHAR2,
 cprompt IN VARCHAR2 DEFAULT NULL,
 nsize IN INTEGER DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-36 FORMSELECTOPEN Procedure Parameters

	Parameter	Description
	
cname

	
The value for the NAME attribute.

	
cprompt

	
The string preceding the list box.

	
nsize

	
The value for the SIZE attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

cprompt <SELECT NAME="cname" SIZE="nsize" cattributes>
</SELECT>

so that

HTP.FORMSELECTOPEN('greatest_player';
 'Pick the greatest player:');
HTP.FORMSELECTOPTION('Messier');
HTP.FORMSELECTOPTION('Howe');
HTP.FORMSELECTOPTION('Gretzky');.
HTP.FORMSELECTCLOSE;

generates

Pick the greatest player:
<SELECT NAME="greatest_player">
<OPTION>Messier
<OPTION>Howe
<OPTION>Gretzky
</SELECT>

FORMSELECTOPTION Procedure

This procedure generates the <OPTION> tag which represents one choice in a Select element.

Syntax

HTP.FORMSELECTOPTION(
 cvalue IN VARCHAR2,
 cselected IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-37 FORMSELECTOPTION Procedure Parameters

	Parameter	Description
	
cvalue

	
The text for the option.

	
cvalue

	
If the value for this parameter is not NULL, the SELECTED attribute is added to the tag.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<OPTION SELECTED cattributes>cvalue

as shown under Examples of the FORMSELECTOPEN Procedure.

FORMSUBMIT Procedure

This procedure generates the <INPUT> tag with TYPE="submit" which creates a button that, when clicked, submits the form. If the button has a NAME attribute, the button contributes a name/value pair to the submitted data.

Syntax

HTP.FORMSUBMIT(
 cname IN VARCHAR2 DEFAULT NULL,
 cvalue IN VARCHAR2 DEFAULT 'Submit',
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-38 FORMSUBMIT Procedure Parameters

	Parameter	Description
	
cname

	
The value for the NAME attribute.

	
cvalue

	
The value for the VALUE attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<INPUT TYPE="submit" NAME="cname" VALUE="cvalue" cattributes>

FORMTEXT Procedure

This procedure generates the <INPUT> tag with TYPE="text", which creates a field for a single line of text.

Syntax

HTP.FORMTEXT(
 cname IN VARCHAR2,
 csize IN VARCHAR2 DEFAULT NULL,
 cmaxlength IN VARCHAR2 DEFAULT NULL,
 cvalue IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-39 FORMTEXT Procedure Parameters

	Parameter	Description
	
cname

	
The value for the NAME attribute.

	
csize

	
The value for the SIZE attribute.

	
cmaxlength

	
The value for the MAXLENGTH attribute.

	
cvalue

	
The value for the VALUE attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<INPUT TYPE="text" NAME="cname" SIZE="csize" MAXLENGTH="cmaxlength" VALUE="cvalue" cattributes>

FORMTEXTAREA Procedure

This procedure generates the <TEXTAREA> tag, which creates a text field that has no predefined text in the text area. This field enables entering several lines of text. The same operation is performed by the FORMTEXTAREA2 Procedure which in addition has the cwrap parameter that lets you specify a wrap style.

Syntax

HTP.FORMTEXTAREA(
 cname IN VARCHAR2,
 nrows IN INTEGER,
 ncolumns IN INTEGER,
 calign , IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-40 FORMTEXTAREA Procedure Parameters

	Parameter	Description
	
cname

	
The value for the NAME attribute.

	
nrows

	
The value for the ROWS attribute.This is an integer.

	
ncolumns

	
The value for the COLS attribute.This is an integer.

	
calign

	
The value for the ALIGN attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<TEXTAREA NAME="cname" ROWS="nrows" COLS="ncolumns" ALIGN="calign" cattributes></TEXTAREA>

FORMTEXTAREA2 Procedure

This procedure generates the <TEXTAREA> tag, which creates a text field that has no predefined text in the text area. This field enables entering several lines of text.The same operation is performed by the FORMTEXTAREA Procedure except that in that case you cannot specify a wrap style.

Syntax

HTP.FORMTEXTAREA2(
 cname IN VARCHAR2,
 nrows IN INTEGER,
 ncolumns IN INTEGER,
 calign IN VARCHAR2 DEFAULT NULL,
 cwrap IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-41 FORMTEXTAREA2 Procedure Parameters

	Parameter	Description
	
cname

	
The value for the NAME attribute.

	
nrows

	
The value for the ROWS attribute.This is an integer.

	
ncolumns

	
The value for the COLS attribute.This is an integer.

	
calign

	
The value for the ALIGN attribute.

	
cwrap

	
The value for the WRAP attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<TEXTAREA NAME="cname" ROWS="nrows" COLS="ncolumns" ALIGN="calign" WRAP="cwrap" cattributes></TEXTAREA>

FORMTEXTAREACLOSE Procedure

This procedure generates the </TEXTAREA> tag which ends a text area form element. You open a text area element by means of eitherFORMTEXTAREAOPEN Procedure or FORMTEXTAREAOPEN2 Procedure.

Syntax

HTP.FORMTEXTAREACLOSE;

Examples

This procedure generates

</TEXTAREA>

FORMTEXTAREAOPEN Procedure

This procedure generates the <TEXTAREA> which marks the beginning of a text area form element. The same operation is performed by the FORMTEXTAREAOPEN2 Procedure which in addition has the cwrap parameter that lets you specify a wrap style. You mark the end of a text area form element by means of the FORMTEXTAREACLOSE Procedure.

Syntax

HTP.FORMTEXTAREAOPEN(
 cname IN VARCHAR2,
 nrows IN INTEGER,
 ncolumns IN INTEGER,
 calign IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-42 FORMTEXTAREAOPEN Procedure Parameters

	Parameter	Description
	
cname

	
The value for the NAME attribute.

	
nrows

	
The value for the ROWS attribute.This is an integer.

	
ncolumns

	
The value for the COLS attribute.This is an integer.

	
calign

	
The value for the ALIGN attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<TEXTAREA NAME="cname" ROWS="nrows" COLS="ncolumns" ALIGN="calign" cattributes>

FORMTEXTAREAOPEN2 Procedure

This procedure generates the <TEXTAREA> which marks the beginning of a text area form element. The same operation is performed by the FORMTEXTAREAOPEN Procedure except that in that case you cannot specify a wrap style. You mark the end of a text area form element by means of the FORMTEXTAREACLOSE Procedure.

Syntax

HTP.FORMTEXTAREAOPEN2(
 cname IN VARCHAR2,
 nrows IN INTEGER,
 ncolumns IN INTEGER,
 calign IN VARCHAR2 DEFAULT NULL,
 cwrap IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-43 FORMTEXTAREAOPEN2 Procedure Parameters

	Parameter	Description
	
cname

	
The value for the NAME attribute.

	
nrows

	
The value for the ROWS attribute.This is an integer.

	
ncolumns

	
The value for the COLS attribute.This is an integer.

	
calign

	
The value for the ALIGN attribute.

	
cwrap

	
The value for the WRAP attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<TEXTAREA NAME="cname" ROWS="nrows" COLS="ncolumns" ALIGN="calign" WRAP = "cwrap" cattributes>

FRAME Procedure

This procedure generates the <FRAME> tag which defines the characteristics of a frame created by a <FRAMESET> tag.

Syntax

HTP.FRAME(
 csrc IN VARCHAR2,
 cname IN VARCHAR2 DEFAULT NULL,
 cmarginwidth IN VARCHAR2 DEFAULT NULL,
 cmarginheight IN VARCHAR2 DEFAULT NULL,
 cscrolling IN VARCHAR2 DEFAULT NULL,
 cnoresize IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-44 FRAME Procedure Parameters

	Parameter	Description
	
csrc

	
The URL to display in the frame.

	
cname

	
The value for the NAME attribute.

	
cmarginwidth

	
The value for the MARGINWIDTH attribute.

	
cscrolling

	
The value for the SCROLLING attribute.

	
cnoresize

	
If the value for this parameter is not NULL, the NORESIZE attribute is added to the tag.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<FRAME SRC="csrc" NAME="cname" MARGINWIDTH="cmarginwidth" MARGINHEIGHT="cmarginheight" SCROLLING="cscrolling" NORESIZE cattributes>

FRAMESETCLOSE Procedure

This procedure generates the </FRAMESET> tag which ends a frameset section. You mark the beginning of a frameset section by means of the FRAMESETOPEN Procedure.

Syntax

HTP.FRAMESETCLOSE;

Examples

This procedure generates

</FRAMESET>

FRAMESETOPEN Procedure

This procedure generates the <FRAMESET> tag which define a frameset section. You mark the end of a frameset section by means of the FRAMESETCLOSE Procedure.

Syntax

HTP.FRAMESETOPEN(
 crows IN VARCHAR2 DEFAULT NULL,
 ccols IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-45 FRAMESETOPEN Procedure Parameters

	Parameter	Description
	
crows

	
The value for the ROWS attribute.

	
ccols

	
The value for the COLS attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<FRAMESET ROWS="crows" COLS="ccols" cattributes>

HEADCLOSE Procedure

This procedure generates the </HEAD> tag which marks the end of an HTML document head section. You mark the beginning of an HTML document head section by means of the HEADOPEN Procedure.

Syntax

HTP.HEADCLOSE;

Examples

This procedure generates

</HEAD>

HEADER Procedure

This procedure generates opening heading tags (<H1> to <H6>) and their corresponding closing tags (</H1> to </H6>).

Syntax

HTP.HEADER(
 nsize IN INTEGER,
 cheader IN VARCHAR2,
 calign IN VARCHAR2 DEFAULT NULL,
 cnowrap IN VARCHAR2 DEFAULT NULL,
 cclear IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-46 HEADER Procedure Parameters

	Parameter	Description
	
nsize

	
The the heading level. This is an integer between 1 and 6.

	
cheader

	
The text to display in the heading.

	
calign

	
The value for the ALIGN attribute.

	
cnowrap

	
The value for the NOWRAP attribute.

	
cclear

	
The value for the CLEAR attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

HTP.header (1,'Overview');

produces:

<H1>Overview</H1>

HEADOPEN Procedure

This procedure generates the <HEAD> tag which marks the beginning of the HTML document head section. You mark the end of an HTML document head section by means of the HEADCLOSE Procedure.

Syntax

HTP.HEADOPEN;

Examples

This procedure generates

<HEAD>

HR Procedure

This procedure generates the <HR> tag, which generates a line in the HTML document.This subprogram performs the same operation as the LINE Procedure.

Syntax

HTP.HR(
 cclear IN VARCHAR2 DEFAULT NULL,
 csrc IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-47 HR Procedure Parameters

	Parameter	Description
	
cclear

	
The value for the CLEAR attribute.

	
csrc

	
The value for the SRC attribute which specifies a custom image as the source of the line.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<HR CLEAR="cclear" SRC="csrc" cattributes>

HTMLCLOSE Procedure

This procedure generates the </HTML> tag which marks the end of an HTML document. You use the HTMLOPEN Procedure to mark the beginning of an HTML document.

Syntax

HTP.HTMLCLOSE;

Examples

This procedure generates

</HTML>

HTMLOPEN Procedure

This procedure generates the <HTML> tag which marks the beginning of an HTML document. You use the HTMLCLOSE Procedure to mark the end of the an HTML document.

Syntax

HTP.HTMLOPEN;

Examples

This procedure generates

<HTML>

IMG Procedure

This procedure generates the tag which directs the browser to load an image onto the HTML page. The IMG2 Procedure performs the same operation but additionally uses the cusemap parameter.

Syntax

HTP.IMG(
 curl IN VARCHAR2 DEFAULT NULL,
 calign IN VARCHAR2 DEFAULT NULL,
 calt IN VARCHAR2 DEFAULT NULL,
 cismap IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-48 IMG Procedure Parameters

	Parameter	Description
	
curl

	
The value for the SRC attribute.

	
calign

	
The value for the ALIGN attribute.

	
calt

	
The value for the ALT attribute which specifies alternative text to display if the browser does not support images.

	
cismap

	
If the value for this parameter is not NULL, the ISMAP attribute is added to the tag. The attribute indicates that the image is an imagemap.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

IMG2 Procedure

This procedure generates the tag, which directs the browser to load an image onto the HTML page. The IMG Procedure performs the same operation but does not use the cusemap parameter.

Syntax

HTP.IMG2(
 curl IN VARCHAR2 DEFAULT NULL,
 calign IN VARCHAR2 DEFAULT NULL,
 calt IN VARCHAR2 DEFAULT NULL,
 cismap IN VARCHAR2 DEFAULT NULL,
 cusemap IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-49 IMG2 Procedure Parameters

	Parameter	Description
	
curl

	
The value for the SRC attribute.

	
calign

	
The value for the ALIGN attribute.

	
calt

	
The value for the ALT attribute which specifies alternative text to display if the browser does not support images.

	
cismap

	
If the value for this parameter is not NULL, the ISMAP attribute is added to the tag. The attribute indicates that the image is an imagemap.

	
cusemap

	
The value for the USEMAP attribute which specifies a client-side image map.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

ISINDEX Procedure

This procedure creates a single entry field with a prompting text, such as "enter value," then sends that value to the URL of the page or program.

Syntax

HTP.ISINDEX(
 cprompt IN VARCHAR2 DEFAULT NULL,
 curl IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-50 ISINDEX Procedure Parameters

	Parameter	Description
	
cprompt

	
The value for the PROMPT attribute.

	
curl

	
The value for the HREF attribute.

Examples

This procedure generates

<ISINDEX PROMPT="cprompt" HREF="curl">

ITALIC Procedure

This procedure generates the <I> and </I> tags which direct the browser to render the text in italics.

Syntax

HTP.ITALIC(
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-51 ITALIC Procedure Parameters

	Parameter	Description
	
ctext

	
The text to be rendered in italics.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<I cattributes>ctext</I>

KBD Procedure

This procedure generates the <KBD> and </KBD> tags which direct the browser to render the text in monospace font. This subprogram performs the same operation as the KEYBOARD Procedure.

Syntax

HTP.KBD(
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-52 KBD Procedure Parameters

	Parameter	Description
	
ctext

	
The text to be rendered in monospace.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<KBD cattributes>ctext</KBD>

KEYBOARD Procedure

This procedure generates the <KBD> and </KBD> tags, which direct the browser to render the text in monospace font. This subprogram performs the same operation as the KBD Procedure.

Syntax

HTP.KEYBOARD(
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-53 KEYBOARD Procedure Parameters

	Parameter	Description
	
ctext

	
The text to be rendered in monospace.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<KBD cattributes>ctext</KBD>

LINE Procedure

This procedure generates the <HR> tag, which generates a line in the HTML document. This subprogram performs the same operation as the HR Procedure.

Syntax

HTP.LINE(
 cclear IN VARCHAR2 DEFAULT NULL,
 csrc IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-54 LINE Procedure Parameters

	Parameter	Description
	
cclear

	
The value for the CLEAR attribute.

	
csrc

	
The value for the SRC attribute which specifies a custom image as the source of the line.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<HR CLEAR="cclear" SRC="csrc" cattributes>

LINKREL Procedure

This procedure generates the <LINK> tag with the REL attribute which delineates the relationship described by the hypertext link from the anchor to the target. This is only used when the HREF attribute is present. This is the opposite of LINKREV Procedure. This tag indicates a relationship between documents but does not create a link. To create a link, use the ANCHOR Procedure.

Syntax

HTP.LINKREL(
 crel IN VARCHAR2,
 curl IN VARCHAR2,
 ctitle IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-55 LINKREL Procedure Parameters

	Parameter	Description
	
crel

	
The value for the REL attribute.

	
curl

	
The value for the URL attribute.

	
ctitle

	
The value for the TITLE attribute.

Examples

This procedure generates

<LINK REL="crel" HREF="curl" TITLE="ctitle">

LINKREV Procedure

This procedure generates the <LINK> tag with the REV attribute which delineates the relationship described by the hypertext link from the target to the anchor. This is the opposite of the LINKREL Procedure. This tag indicates a relationship between documents, but does not create a link. To create a link, use the ANCHOR Procedure.

Syntax

HTP.LINKREV(
 crev IN VARCHAR2,
 curl IN VARCHAR2,
 ctitle IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-56 LINKREV Procedure Parameters

	Parameter	Description
	
crel

	
The value for the REV attribute.

	
curl

	
The value for the URL attribute.

	
ctitle

	
The value for the TITLE attribute.

Examples

This procedure generates

<LINK REV="crev" HREF="curl" TITLE="ctitle">

LISTHEADER Procedure

This procedure generates the <LH> and </LH> tags which print an HTML tag at the beginning of the list.

Syntax

HTP.LISTHEADER(
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-57 LISTHEADER Procedure Parameters

	Parameter	Description
	
ctext

	
The text to place between <LH> and </LH>.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<LH cattributes>ctext</LH>

LISTINGCLOSE Procedure

This procedure generates the </LISTING> tags which marks the end of a section of fixed-width text in the body of an HTML page. To mark the beginning of a section of fixed-width text in the body of an HTML page, use the LISTINGOPEN Procedure.

Syntax

HTP.LISTINGCLOSE;

Examples

This procedure generates

</LISTING>

LISTINGOPEN Procedure

This procedure generates the <LISTING> tag which marks the beginning of a section of fixed-width text in the body of an HTML page. To mark the end of a section of fixed-width text in the body of an HTML page, use the LISTINGCLOSE Procedure.

Syntax

HTP.LISTINGOPEN;

Examples

This procedure generates

<LISTING>

LISTITEM Procedure

This procedure generates the tag, which indicates a list item.

Syntax

HTP.LISTITEM(
 ctext IN VARCHAR2 DEFAULT NULL,
 cclear IN VARCHAR2 DEFAULT NULL,
 cdingbat IN VARCHAR2 DEFAULT NULL,
 csrc IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-58 LISTITEM Procedure Parameters

	Parameter	Description
	
ctext

	
The text for the list item.

	
cclear

	
The value for the CLEAR attribute.

	
cdingbat

	
The value for the DINGBAT attribute.

	
csrc

	
The value for the SRC attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<LI CLEAR="cclear" DINGBAT="cdingbat" SRC="csrc" cattributes>ctext

MAILTO Procedure

This procedure generates the <A> tag with the HREF set to 'mailto' prepended to the mail address argument.

Syntax

HTP.MAILTO(
 caddress IN VARCHAR2,
 ctext IN VARCHAR2,
 cname IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-59 MAILTO Procedure Parameters

	Parameter	Description
	
caddress

	
The email address of the recipient.

	
ctext

	
The clickable portion of the link.

	
cname

	
The value for the NAME attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

ctext

so that

HTP.mailto('pres@white_house.gov','Send Email to the President');

generates:

Send Email to the President

MAPCLOSE Procedure

This procedure generates the </MAP> tag which marks the end of a set of regions in a client-side image map. To mark the beginning of a set of regions in a client-side image map, use the MAPOPEN Procedure.

Syntax

HTP.MAPCLOSE;

Examples

This procedure generates

</MAP>

MAPOPEN Procedure

This procedure generates the <MAP> tag which mark the beginning of a set of regions in a client-side image map. To mark the end of a set of regions in a client-side image map, use the MAPCLOSE Procedure.

Syntax

HTP.MAPOPEN(
 cname IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-60 MAPOPEN Procedure Parameters

	Parameter	Description
	
cname

	
The value for the NAME attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<MAP NAME="cname" cattributes>

MENULISTCLOSE Procedure

This procedure generates the </MENU> tag which ends a list that presents one line for each item. To begin a list of this kind, use the MENULISTOPEN Procedure. The items in the list appear more compact than an unordered list. The LISTITEM Procedure defines the list items in a menu list.

Syntax

HTP.MENULISTCLOSE;

Examples

This procedure generates

</MENU>

MENULISTOPEN Procedure

This procedure generates the <MENU> tag which create a list that presents one line for each item. To end a list of this kind, use the MENULISTCLOSE Procedure.The items in the list appear more compact than an unordered list. The LISTITEM Procedure defines the list items in a menu list.

Syntax

HTP.MENULISTOPEN;

Examples

This procedure generates

<MENU>

META Procedure

This procedure generates the <META> tag, which embeds meta-information about the document and also specifies values for HTTP headers. For example, you can specify the expiration date, keywords, and author name.

Syntax

HTP.META(
 chttp_equiv IN VARCHAR2,
 cname IN VARCHAR2,
 ccontent IN VARCHAR2);

Parameters

Table 183-61 META Procedure Parameters

	Parameter	Description
	
chttp_equiv

	
The value for the CHTTP_EQUIV attribute.

	
cname

	
The value for the NAME attribute.

	
ccontent

	
The value for the CONTENT attribute.

Examples

This procedure generates

<META HTTP-EQUIV="chttp_equiv" NAME ="cname" CONTENT="ccontent">

so that

HTP.meta ('Refresh', NULL, 120);

generates

<META HTTP-EQUIV="Refresh" CONTENT=120>

On some Web browsers, this causes the current URL to be reloaded automatically every 120 seconds.

NL Procedure

This procedure generates the
 tag which begins a new line of text. It performs the same operation as the BR Procedure.

Syntax

HTP.NL(
 cclear IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-62 NL Procedure Parameters

	Parameter	Description
	
cclear

	
The value for the CLEAR attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<BR CLEAR="cclear" cattributes>

NOBR Procedure

This procedure generates the <NOBR> and </NOBR> tags which turn off line-breaking in a section of text.

Syntax

HTP.NOBR(
ctext IN VARCHAR2);

Parameters

Table 183-63 NOBR Procedure Parameters

	Parameter	Description
	
ctext

	
The text that is to be rendered on one line.

Examples

This procedure generates

<NOBR>ctext</NOBR>

NOFRAMESCLOSE Procedure

This procedure generates the </NOFRAMES> tag which marks the end of a no-frames section. To mark the beginning of a no-frames section, use the FRAMESETOPEN Procedure. See also FRAME Procedure, FRAMESETOPEN Procedure and FRAMESETCLOSE Procedure.

Syntax

HTP.NOFRAMESCLOSE;

Examples

This procedure generates

</NOFRAMES>

NOFRAMESOPEN Procedure

This procedure generates the <NOFRAMES> tag which mark the beginning of a no-frames section. To mark the end of a no-frames section, use the FRAMESETCLOSE Procedure. See also FRAME Procedure, FRAMESETOPEN Procedure and FRAMESETCLOSE Procedure.

Syntax

HTP.NOFRAMESOPEN;

Examples

This procedure generates

<NOFRAMES>

OLISTCLOSE Procedure

This procedure generates the tag which defines the end of an ordered list. An ordered list presents a list of numbered items. To mark the beginning of a list of this kind, use the OLISTOPEN Procedure. Numbered items are added using LISTITEM Procedure.

Syntax

HTP.OLISTCLOSE;

Examples

This procedure generates

OLISTOPEN Procedure

This procedure generates the tag which marks the beginning of an ordered list. An ordered list presents a list of numbered items. To mark the end of a list of this kind, use the OLISTCLOSE Procedure. Numbered items are added using LISTITEM Procedure.

Syntax

HTP.OLISTOPEN(
 cclear IN VARCHAR2 DEFAULT NULL,
 cwrap IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-64 OLISTOPEN Procedure Parameters

	Parameter	Description
	
cclear

	
The value for the CLEAR attribute.

	
cwrap

	
The value for the WRAP attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<OL CLEAR="cclear" WRAP="cwrap" cattributes>

PARA Procedure

This procedure generates the <P> tag which indicates that the text that comes after the tag is to be formatted as a paragraph. You can add attributes to the tag by means of the PARAGRAPH Procedure.

Syntax

HTP.PARA;

Examples

This procedure generates

<P>

PARAGRAPH Procedure

You can use this procedure to add attributes to the <P> tag created by the PARA Procedure.

Syntax

HTP.PARAGRAPH(
 calign IN VARCHAR2 DEFAULT NULL,
 cnowrap IN VARCHAR2 DEFAULT NULL,
 cclear IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-65 PARAGRAPH Procedure Parameters

	Parameter	Description
	
calign

	
The value for the ALIGN attribute.

	
cnowrap

	
If the value for this parameter is not NULL, the NOWRAP attribute is added to the tag.

	
cclear

	
The value for the CLEAR attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<P ALIGN="calign" NOWRAP CLEAR="cclear" cattributes>

PARAM Procedure

This procedure generates the <PARAM> tag which specifies parameter values for Java applets. The values can reference HTML variables. To invoke a Java applet from a Web page, use APPLETOPEN Procedure to begin the invocation. Use one PARAM Procedure for each desired name-value pair, and use APPLETCLOSE Procedure to end the applet invocation.

Syntax

HTP.PARAM(
 cname IN VARCHAR2
 cvalue IN VARCHAR2);

Parameters

Table 183-66 PARAM Procedure Parameters

	Parameter	Description
	
cname

	
The value for the NAME attribute.

	
cvalue

	
The value for the VALUE attribute.

Examples

This procedure generates

<PARAM NAME=cname VALUE="cvalue">

PLAINTEXT Procedure

This procedure generates the <PLAINTEXT> and </PLAINTEXT> tags which direct the browser to render the text they surround in fixed-width type.

Syntax

HTP.PLAINTEXT(
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-67 PLAINTEXT Procedure Parameters

	Parameter	Description
	
ctext

	
The text to be rendered in fixed-width font.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<PLAINTEXT cattributes>ctext</PLAINTEXT>

PRECLOSE Procedure

This procedure generates the </PRE> tag which marks the end of a section of preformatted text in the body of the HTML page. To mark the beginning of a section of preformatted text in the body of the HTML page, use the PREOPEN Procedure.

Syntax

HTP.PRECLOSE;

Examples

This procedure generates

</PRE>

PREOPEN Procedure

This procedure generates the <PRE> tag which marks the beginning of a section of preformatted text in the body of the HTML page. To mark the end of a section of preformatted text in the body of the HTML page, use the PRECLOSE Procedure.

Syntax

HTP.PREOPEN(
 cclear IN VARCHAR2 DEFAULT NULL,
 cwidth IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-68 PREOPEN Procedure Parameters

	Parameter	Description
	
cclear

	
The value for the CLEAR attribute.

	
cwidth

	
The value for the WIDTH attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<PRE CLEAR="cclear" WIDTH="cwidth" cattributes>

PRINT Procedures

These procedures generate the specified parameter as a string terminated with the \n newline character. The PRN Procedures performs the same operation but does not terminate with a newline character.

Syntax

HTP.PRINT (
 cbuf IN VARCHAR2);

HTP.PRINT (
 dbuf IN DATE);

HTP.PRINT (
 nbuf IN NUMBER);

Parameters

Table 183-69 PRINT Procedure Parameters

	Parameter	Description
	
cbuf

	
The string to generate terminated by a newline.

	
dbuf

	
The string to generate terminated by a newline.

	
nbuf

	
The string to generate terminated by a newline.

Usage Notes

	
The \n character is not the same as
. The \n character formats the HTML source but it does not affect how the browser renders the HTML source. Use
 to control how the browser renders the HTML source.

	
These procedures do not have function equivalents.

PRINTS Procedure

This procedure generates a string and replaces the following characters with the corresponding escape sequence.

	
< to <

	
> to >

	
" to "

	
& to &

If not replaced, the special characters are interpreted as HTML control characters and produce garbled output. This procedure an the PS Procedure perform the same operation as the PRN Procedures but with character substitution.

Syntax

HTP.PRINTS (
 ctext IN VARCHAR2);

Parameters

Table 183-70 PRINTS Procedure Parameters

	Parameter	Description
	
ctext

	
The string where to perform character substitution.

Usage Notes

This procedure does not have an HTF function equivalent (see Operational Notes for the HTF implementation).

PRN Procedures

These procedures generate the specified parameter as a string. Unlike the PRINT Procedures the string is not terminated with the \n newline character.

Syntax

HTP.PRN (
 cbuf IN VARCHAR2);

HTP.PRN (
 dbuf IN DATE);

HTP.PRN (
 nbuf IN NUMBER);

Parameters

Table 183-71 PRN Procedure Parameters

	Parameter	Description
	
cbuf

	
The string to generate (not terminated by a newline).

	
dbuf

	
The string to generate (not terminated by a newline).

	
nbuf

	
The string to generate (not terminated by a newline).

Usage Notes

These procedures do not have function equivalents.

PS Procedure

This procedure generates a string and replaces the following characters with the corresponding escape sequence.

	
< to <

	
> to >

	
" to "

	
& to &

If not replaced, the special characters are interpreted as HTML control characters and produce garbled output. This procedure and the PRINTS Procedure perform the same operation as the PRN Procedures but with character substitution.

Syntax

HTP.PS (
 ctext IN VARCHAR2);

Parameters

Table 183-72 PS Procedure Parameters

	Parameter	Description
	
ctext

	
The string where to perform character substitution.

Usage Notes

This procedure does not have an HTF function equivalent (see Operational Notes for the HTF implementation).

S Procedure

This procedure generates the <S> and </S> tags which direct the browser to render the text they surround in strikethrough type. This performs the same operation as STRIKE Procedure.

Syntax

HTP.S (
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-73 S Procedure Parameters

	Parameter	Description
	
ctext

	
The text to be rendered in strikethrough type.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<S cattributes>ctext</S>

SAMPLE Procedure

This procedure generates the <SAMP> and </SAMP> tags which direct the browser to render the text they surround in monospace font or however "sample" is defined stylistically.

Syntax

HTP.SAMPLE (
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-74 SAMPLE Procedure Parameters

	Parameter	Description
	
ctext

	
The text to be rendered in monospace font.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<SAMP cattributes>ctext</SAMP>

SCRIPT Procedure

This procedure generates the <SCRIPT> and </SCRIPT> tags which contain a script written in languages such as JavaScript and VBscript.

Syntax

HTP.SCRIPT (
 cscript IN VARCHAR2,
 clanguage IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-75 SCRIPT Procedure Parameters

	Parameter	Description
	
cscript

	
The text of the script. This is the text that makes up the script itself, not the name of a file containing the script.

	
clanguage

	
The language in which the script is written. If this parameter is omitted, the user's browser determines the scripting language.

Examples

This procedure generates

<SCRIPT LANGUAGE=clanguage>cscript</SCRIPT>

so that

HTP.script ('Erupting_Volcano', 'Javascript');

generates

<SCRIPT LANGUAGE=Javascript>"script text here"</SCRIPT>

This causes the browser to run the script enclosed in the tags.

SMALL Procedure

This procedure generates the <SMALL> and </SMALL> tags, which direct the browser to render the text they surround using a small font.

Syntax

HTP.SMALL (
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-76 SMALL Procedure Parameters

	Parameter	Description
	
ctext

	
The text to be rendered in small font.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<SMALL cattributes>ctext</SMALL>

STRIKE Procedure

This procedure generates the <STRIKE> and </STRIKE> tags which direct the browser to render the text they surround in strikethrough type. This performs the same operation as S Procedure.

Syntax

HTP.STRIKE (
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-77 STRIKE Procedure Parameters

	Parameter	Description
	
ctext

	
The text to be rendered in strikethrough type.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<STRIKE cattributes>ctext</STRIKE>

STRONG Procedure

This procedure generates the and tags which direct the browser to render the text they surround in bold or however "strong" is defined.

Syntax

HTP.STRONG(
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-78 STRONG Procedure Parameters

	Parameter	Description
	
ctext

	
The text to be emphasized.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<STRONG cattributes>ctext

STYLE Procedure

This procedure generates the <STYLE> and </STYLE> tags which include a style sheet in a Web page. You can get more information about style sheets at http://www.w3.org. This feature is not compatible with browsers that support only HTML versions 2.0 or earlier. Such browsers will ignore this tag.

Syntax

HTP.STYLE(
 cstyle IN VARCHAR2);

Parameters

Table 183-79 STYLE Procedure Parameters

	Parameter	Description
	
cstyle

	
The the style information to include.

Examples

This procedure generates

<STYLE>cstyle</STYLE>

SUB Procedure

This procedure generates the _{and} tags which direct the browser to render the text they surround as subscript.

Syntax

HTP.SUB(
 ctext IN VARCHAR2,
 calign in VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-80 SUB Procedure Parameters

	Parameter	Description
	
ctext

	
The text to render in subscript.

	
calign

	
The value for the ALIGN attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

_{ctext}

SUP Procedure

This procedure generates the ^{and} tags which direct the browser to render the text they surround as superscript.

Syntax

HTP.SUP(
 ctext IN VARCHAR2,
 calign in VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-81 SUP Procedure Parameters

	Parameter	Description
	
ctext

	
The text to render in superscript.

	
calign

	
The value for the ALIGN attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

^{ctext}

TABLECAPTION Procedure

This procedure generates the <CAPTION> and </CAPTION> tags which place a caption in an HTML table.

Syntax

HTP.TABLECAPTION(
 ccaption IN VARCHAR2,
 calign in VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-82 TABLECAPTION Procedure Parameters

	Parameter	Description
	
ctext

	
The text for the caption.

	
calign

	
The value for the ALIGN attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<CAPTION ALIGN="calign" cattributes>ccaption</CAPTION>

TABLECLOSE Procedure

This procedure generates the </TABLE> tag which marks the end of an HTML table. To define the beginning of an HTML table, use the TABLEOPEN Procedure.

Syntax

HTP.TABLECLOSE;

Examples

This procedure generates

</TABLE>

TABLEDATA Procedure

This procedure generates the <TD> and </TD> tags which insert data into a cell of an HTML table.

Syntax

HTP.TABLEDATA(
 cvalue IN VARCHAR2 DEFAULT NULL,
 calign IN VARCHAR2 DEFAULT NULL,
 cdp IN VARCHAR2 DEFAULT NULL,
 cnowrap IN VARCHAR2 DEFAULT NULL,
 crowspan IN VARCHAR2 DEFAULT NULL,
 ccolspan IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-83 TABLEDATA Procedure Parameters

	Parameter	Description
	
cvalue

	
The data for the cell in the table.

	
calign

	
The value for the ALIGN attribute.

	
cdp

	
The value for the DP attribute.

	
cnowrap

	
If the value of this parameter is not NULL, the NOWRAP attribute is added to the tag.

	
ccolspan

	
The value for the COLSPAN attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<TD ALIGN="calign" DP="cdp" ROWSPAN="crowspan" COLSPAN="ccolspan" NOWRAP cattributes>cvalue</TD>

TABLEHEADER Procedure

This procedure generates the <TH> and </TH> tags which insert a header cell in an HTML table. The <TH> tag is similar to the <TD> tag except that the text in this case the rows are usually rendered in bold type.

Syntax

HTP.TABLEHEADER(
 cvalue IN VARCHAR2 DEFAULT NULL,
 calign IN VARCHAR2 DEFAULT NULL,
 cdp IN VARCHAR2 DEFAULT NULL,
 cnowrap IN VARCHAR2 DEFAULT NULL,
 crowspan IN VARCHAR2 DEFAULT NULL,
 ccolspan IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-84 TABLEHEADER Procedure Parameters

	Parameter	Description
	
cvalue

	
The data for the cell in the table.

	
calign

	
The value for the ALIGN attribute.

	
cdp

	
The value for the DP attribute.

	
cnowrap

	
If the value of this parameter is not NULL, the NOWRAP attribute is added to the tag.

	
crispen

	
The value for the ROWSPAN attribute.

	
ccolspan

	
The value for the COLSPAN attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<TH ALIGN="calign" DP="cdp" ROWSPAN="crowspan" COLSPAN="ccolspan" NOWRAP cattributes>cvalue</TH>

TABLEOPEN Procedure

This procedure generates the <TABLE> tag which marks the beginning of an HTML table. To define the end of an HTML table, use the TABLECLOSE Procedure.

Syntax

HTP.TABLEOPEN(
 cborder IN VARCHAR2 DEFAULT NULL
 calign IN VARCHAR2 DEFAULT NULL,
 cnowrap IN VARCHAR2 DEFAULT NULL,
 cclear IN VARCHAR2 DEFAULT NULL
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-85 TABLEOPEN Procedure Parameters

	Parameter	Description
	
border

	
The value for the BORDER attribute.

	
calign

	
The value for the ALIGN attribute.

	
cnowrap

	
If the value of this parameter is not NULL, the NOWRAP attribute is added to the tag.

	
cclear

	
The value for the CLEAR attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<TABLE "cborder" NOWRAP ALIGN="calign" CLEAR="cclear" cattributes>

TABLEROWCLOSE Procedure

This procedure generates the </TR> tag which marks the end of a new row in an HTML table. To mark the beginning of a new row, use the TABLEROWOPEN Procedure.

Syntax

HTP.TABLEROWCLOSE;

Examples

This procedure generates

</TABLE>

TABLEROWOPEN Procedure

This procedure generates the <TR> tag which marks the beginning of a new row in an HTML table. To mark the end of a new row, use the TABLEROWCLOSE Procedure.

Syntax

HTP.TABLEROWOPEN(
 calign IN VARCHAR2 DEFAULT NULL,
 cvalign IN VARCHAR2 DEFAULT NULL,
 cdp IN VARCHAR2 DEFAULT NULL,
 cnowrap IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-86 TABLEROWOPEN Procedure Parameters

	Parameter	Description
	
calign

	
The value for the ALIGN attribute.

	
cvalign

	
The value for the VALIGN attribute.

	
cdp

	
The value for the DP attribute.

	
cnowrap

	
If the value of this parameter is not NULL, the NOWRAP attribute is added to the tag.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<<TR ALIGN="calign" VALIGN="cvalign" DP="cdp" NOWRAP cattributes>

TELETYPE Procedure

This procedure generates the <TT> and </TT> tags which direct the browser to render the text they surround in a fixed width typewriter font, for example, the courier font.

Syntax

HTP.TELETYPE(
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-87 TELETYPE Procedure Parameters

	Parameter	Description
	
ctext

	
The text to render in a fixed width typewriter font.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<TT cattributes>ctext</TT>

TITLE Procedure

This procedure generates the <TITLE> and </TITLE> tags which specify the text to display in the titlebar of the browser window.

Syntax

HTP.TITLE(
 ctitle IN VARCHAR2);

Parameters

Table 183-88 TITLE Procedure Parameters

	Parameter	Description
	
ctitle

	
The text to display in the titlebar of the browser window.

Examples

This procedure generates

<TITLE>ctitle</TITLE>

ULISTCLOSE Procedure

This procedure generates the tag which marks the end of an unordered list. An unordered list presents items with bullets. To mark the beginning of an unordered list, use the ULISTOPEN Procedure. Add list items with LISTITEM Procedure.

Syntax

HTP.ULISTCLOSE;

Examples

This procedure generates

</TABLE>

ULISTOPEN Procedure

This procedure generates the tag which marks the beginning of an unordered list. An unordered list presents items with bullets. To mark the end of an unordered list, use the ULISTCLOSE Procedure. Add list items with LISTITEM Procedure.

Syntax

HTP.ULISTOPEN(
 cclear IN VARCHAR2 DEFAULT NULL,
 cwrap IN VARCHAR2 DEFAULT NULL,
 cdingbat IN VARCHAR2 DEFAULT NULL,
 csrc IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-89 ULISTOPEN Procedure Parameters

	Parameter	Description
	
cclear

	
The value for the CLEAR attribute.

	
cwrap

	
The value for the WRAP attribute.

	
cdingbat

	
The value for the DINGBAT attribute.

	
csrc

	
The value for the SRC attribute.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<UL CLEAR="cclear" WRAP="cwrap" DINGBAT="cdingbat" SRC="csrc" cattributes>

UNDERLINE Procedure

This procedure generates the <U> and </U> tags, which direct the browser to render the text they surround with an underline.

Syntax

HTP.UNDERLINE(
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-90 UNDERLINE Procedure Parameters

	Parameter	Description
	
ctext

	
The text to render with an underline.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<U cattributes>ctext</U>

VARIABLE Procedure

This procedure generates the <VAR> and </VAR> tags which direct the browser to render the text they surround in italics or however "variable" is defined stylistically.

Syntax

HTP.VARIABLE(
 ctext IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Table 183-91 VARIABLE Procedure Parameters

	Parameter	Description
	
ctext

	
The text to render in italics.

	
cattributes

	
The other attributes to be included as-is in the tag.

Examples

This procedure generates

<VAR cattributes>ctext</VAR>

WBR Procedure

This procedure generates the <WBR> tag, which inserts a soft line break within a section of NOBR text.

Syntax

HTP.WBR;

Examples

This procedure generates

<WBR>

ORD_DICOM

184 ORD_DICOM

This Oracle Multimedia package supports the management and manipulation of Digital Imaging and Communications in Medicine (DICOM) content stored in BLOBs or BFILEs rather than in an ORDDicom object type. See Oracle Multimedia DICOM Developer's Guide for a complete description of the ORDDicom object type.

The DICOM standard is the dominant standard for radiology imaging and communication, to which all major manufacturers of radiological devices must conform. Oracle Multimedia DICOM provides native support for DICOM format medical images and other content, such as single-frame and multiframe images, waveforms, slices of 3-D volumes, video segments, and structured reports.

The Oracle Multimedia ORD_DICOM package provides functions and procedures in the DICOM relational interface to extract standard and private DICOM metadata from DICOM content into customizable XML documents, to perform image processing operations such as format conversion and thumbnail image generation, and to create new DICOM content. This Oracle Multimedia package also provides functions and procedures to check DICOM content for conformance based on a set of user-specified conformance rules, and to make DICOM content anonymous based on user-defined rules that specify the set of attributes to be made anonymous and the actions to be taken to make those attributes anonymous.

The Oracle Multimedia ORD_DICOM package also provides functions and procedures in the DICOM data model utility interface to operate on the DICOM data model repository. See Oracle Multimedia DICOM Developer's Guide for a complete description of the DICOM data model utility interface.

	
Documentation of ORD_DICOM

Documentation of ORD_DICOM

For a complete description of this package within the context of Oracle Multimedia, see ORD_DICOM in the Oracle Multimedia DICOM Developer's Guide.

ORD_DICOM_ADMIN

185 ORD_DICOM_ADMIN

This Oracle Multimedia package is used by Oracle Multimedia Digital Imaging and Communications in Medicine (DICOM) administrators to maintain the Oracle Multimedia DICOM data model repository.

The DICOM data model repository is a collection of documents. An initial set of documents is loaded during installation. After installation, DICOM administrators can use the procedures and functions provided in the data model repository API of the Oracle Multimedia ORD_DICOM_ADMIN package to obtain document content as well as to insert, edit, and delete documents in the data model repository.

	
Documentation of ORD_DICOM_ADMIN

Documentation of ORD_DICOM_ADMIN

For a complete description of this package within the context of Oracle Multimedia, see ORD_DICOM_ADMIN in the Oracle Multimedia DICOM Developer's Guide.

OWA_CACHE

186 OWA_CACHE

The OWA_CACHE package provides an interface that enables the PL/SQL Gateway cache to improve the performance of PL/SQL Web applications.

	
See Also:

For more information about implementation of this package:
	
Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

	
Oracle Fusion Middleware User's Guide for mod_plsql

The chapter contains the following topics:

	
Using OWA_CACHE

	
Constants

	
Summary of OWA_CACHE Subprograms

Using OWA_CACHE

	
Constants

Constants

	
system_level CONSTANT VARCHAR(6) := 'SYSTEM';

	
user_level CONSTANT VARCHAR(4) := 'USER';

Summary of OWA_CACHE Subprograms

Table 186-1 OWA_CACHE Package Subprograms

	Subprogram	Description
	
DISABLE Procedure

	
Disables the cache for this particular request

	
GET_ETAG Function

	
Returns the tag associated with the cached content (used in the Validation technique model only)

	
GET_LEVEL Function

	
Returns the caching level (used in the Validation technique model only)

	
SET_CACHE Procedure

	
Sets up the cache headers for validation model cache type

	
SET_EXPIRES Procedure

	
Sets up the cache headers for expires model cache type

	
SET_NOT_MODIFIED Procedure

	
Sets up the headers for a not modified cache hit (used in the Validation technique model only)

	
SET_SURROGATE_CONTROL Procedure

	
Sets up the headers for a surrogate-control header for Web cache

DISABLE Procedure

This procedure disables the cache for this particular request.

Syntax

OWA_CACHE.DISABLE;

GET_ETAG Function

This function returns the tag associated with the cached content. It is used in the Validation technique only.

Syntax

OWA_CACHE.GET_ETAG
 RETURN VARCHAR2;

Return Values

The tag for cache hit, otherwise NULL.

GET_LEVEL Function

This returns the caching level. It is used in the Validation technique model only.

Syntax

OWA_CACHE.GET_LEVEL
 RETURN VARCHAR2;

Return Values

The caching level string ('USER' or 'SYSTEM') for cache hit, otherwise NULL.

SET_CACHE Procedure

This sets up the cache headers for validation model cache type.

Syntax

OWA_CACHE.SET_CACHE(
 p_etag IN VARCHAR2,
 p_level IN VARCHAR2);

Parameters

Table 186-2 SET_CACHE Procedure Parameters

	Parameter	Description
	
p_etag

	
The etag associated with this content

	
p_level

	
The caching level ('USER' or 'SYSTEM').

Exceptions

VALUE_ERROR is thrown if

	
p_etag is greater than 55

	
p_level is not 'USER' or 'SYSTEM'

SET_EXPIRES Procedure

This procedure sets up the cache headers for expires model cache type.

Syntax

OWA_CACHE.SET_EXPIRES(
 p_expires IN NUMBER,
 p_level IN VARCHAR2);

Parameters

Table 186-3 SET_EXPIRES Procedure Parameters

	Parameter	Description
	
p_expires

	
The number of minutes this content is valid.

	
p_level

	
The caching level ('USER' or 'SYSTEM').

Exceptions

VALUE_ERROR is thrown if

	
p_expires is negative or zero

	
p_level is not 'USER' or 'SYSTEM'

	
p_expires is > 525600 (1 year)

SET_NOT_MODIFIED Procedure

This procedure sets up the headers for a not-modified cache hit. It is used in the Validation technique only.

Syntax

OWA_CACHE.SET_NOT_MODIFIED;

Exceptions

VALUE_ERROR is thrown if If the etag was not passed in

SET_SURROGATE_CONTROL Procedure

This procedure sets the headers for a surrogate-control header for Web cache

Syntax

OWA_CACHE.SET_SURROGATE_CONTROL(
 p_value IN VARCHAR2);

Parameters

Table 186-4 SET_SURROGATE_CONTROL Procedure Parameters

	Parameter	Description
	
p_value

	
The value to be passed as the Surrogate-Control header.

Exceptions

VALUE_ERROR is thrown if If p_value is greater than 55 in length.

OWA_COOKIE

187 OWA_COOKIE

The OWA_COOKIE package provides an interface for sending and retrieving HTTP cookies from the client's browser.

	
See Also:

For more information about implementation of this package:
	
Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

	
Oracle Fusion Middleware User's Guide for mod_plsql

The chapter contains the following topics:

	
Using OWA_COOKIE

	
Overview

	
Types

	
Rules and Limits

	
Summary of OWA_COOKIE Subprograms

Using OWA_COOKIE

	
Overview

	
Types

	
Rules and Limits

Overview

Cookies are opaque strings sent to the browser to maintain state between HTTP calls. State can be maintained throughout the client's sessions, or longer if an expiration date is included. The system date is calculated with reference to the information specified in the OWA_CUSTOM package.

Types

This data type contains cookie name-value pairs. Since the HTTP standard allows cookie names to be overloaded (that is, multiple values can be associated with the same cookie name), there is a PL/SQL RECORD holding all values associated with a given cookie name.

TYPE vc_arr IS TABLE OF VARCHAR2(4000) INDEX BY BINARY_INTEGER.

TYPE COOKIE IS RECORD (
 name VARCHAR2(4000),
 vals vc_arr,
 num_vals INTEGER);

Rules and Limits

All HTTP headers must be in English and the ASCII character set. If the headers are generated from the database, verify they are created in the English language.

Summary of OWA_COOKIE Subprograms

Table 187-1 OWA_COOKIE Package Subprograms

	Subprogram	Description
	
GET Function

	
Gets the value of the specified cookie

	
GET_ALL Procedure

	
Gets all cookie name-value pairs

	
REMOVE Procedure

	
Removes the specified cookie

	
SEND procedure

	
Generates a "Set-Cookie" line in the HTTP header

GET Function

This function returns the values associated with the specified cookie. The values are returned in a OWA_COOKIE.COOKIE DATA TYPE.

Syntax

OWA_COOKIE.GET(
 name IN VARCHAR2)
 RETURN COOKIE;

Parameters

Table 187-2 GET Procedure Parameters

	Parameter	Description
	
name

	
The name of the cookie.

Return Values

OWA_COOKIE.COOKIE DATA TYPE.

GET_ALL Procedure

This procedure returns all cookie names and their values from the client's browser. The values appear in the order in which they were sent from the browser.

Syntax

OWA_COOKIE.GET_ALL(
 names OUT vc_arr,
 vals OUT vc_arr,
 num_vals OUT INTEGER);

Parameters

Table 187-3 GET_ALL Procedure Parameters

	Parameter	Description
	
names

	
The names of the cookies.

	
vals

	
The values of the cookies.

	
num_vals

	
The number of cookie-value pairs.

REMOVE Procedure

This procedure forces a cookie to expire immediately by setting the "expires" field of a Set-Cookie line in the HTTP header to "01-Jan-1990". This procedure must be called within the context of an HTTP header.

Syntax

OWA_COOKIE.REMOVE(
 name IN VARCHAR2,
 val IN VARCHAR2,
 path IN VARCHAR2 DEFAULT NULL);

Parameters

Table 187-4 REMOVE Procedure Parameters

	Parameter	Description
	
name

	
The name of the cookie to expire.

	
val

	
The value of the cookie.

	
path

	
[Currently unused]

SEND procedure

This procedure generates a Set-Cookie line, which transmits a cookie to the client. This procedure must occur in the context of an HTTP header.

Syntax

OWA_COOKIE.SEND(
 name in varchar2,
 value in varchar2,
 expires in date DEFAULT NULL,
 path in varchar2 DEFAULT NULL,
 domain in varchar2 DEFAULT NULL,
 secure in varchar2 DEFAULT NULL);

Parameters

Table 187-5 SEND Procedure Parameters

	Parameter	Description
	
name

	
The name of the cookie.

	
value

	
The value of the cookie.

	
expires

	
The date at which the cookie will expire

	
path

	
The value for the path field.

	
domain

	
The value for the domain field.

	
secure

	
If the value of this parameter is not NULL, the "secure" field is added to the line.

OWA_CUSTOM

188 OWA_CUSTOM

The OWA_CUSTOM package provides a Global PLSQL Agent Authorization callback function. It is used when PLSQL Agent's authorization scheme is set to GLOBAL or CUSTOM when there is no overriding OWA_CUSTOM package.

	
See Also:

For more information about implementation of this package:
	
Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

	
Oracle Fusion Middleware User's Guide for mod_plsql

The chapter contains the following topics:

	
Using OWA_CUSTOM

	
Constants

	
Summary of OWA_CUSTOM Subprograms

Using OWA_CUSTOM

	
Constants

Constants

	
dbms_server_timezone CONSTANT VARCHAR2(3) := 'PST';

	
dbms_server_gmtdiff CONSTANT NUMBER := NULL;

Summary of OWA_CUSTOM Subprograms

Table 188-1 OWA_CUSTOM Package Subprograms

	Subprogram	Description
	
AUTHORIZE Function

	
Provides a Global PLSQL Agent Authorization callback function

AUTHORIZE Function

This function is used when PLSQL Agent's authorization scheme is set to GLOBAL or CUSTOM when there is no overriding OWA_CUSTOM package.

Syntax

OWA_CUSTOM.AUTHORIZE
 RETURN BOOLEAN;

OWA_IMAGE

189 OWA_IMAGE

The OWA_IMAGE package provides an interface to access the coordinates where a user clicked on an image.

	
See Also:

For more information about implementation of this package:
	
Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

	
Oracle Fusion Middleware User's Guide for mod_plsql

The chapter contains the following topics:

	
Summary of OWA_IMAGE Subprograms

	
Overview

	
Types

	
Variables

	
Examples

	
Summary of OWA_IMAGE Subprograms

Using OWA_IMAGE

	
Overview

	
Types

	
Variables

	
Examples

Overview

Use this package when you have any image map whose destination links invoke the PL/SQL Gateway.

Types

This data type (point) contain the X and Y values of a coordinate, and so provides the coordinates of a user's click on an imagemap. It is defined as:

TYPE POINT IS TABLE OF VARCHAR2(32767) INDEX BY BINARY_INTEGER

Variables

This package variable (null_point) of TYPE POINT is used to default point parameters. Both the X and the Y fields of this variable are NULL.

Examples

CREATE OR REPLACE PROCEDURE process_image
 (my_img in OWA_IMAGE.POINT)
 AS
 x integer := OWA_IMAGE.GET_X(my_img);
 y integer := OWA_IMAGE.GET_Y(my_img);
BEGIN
 /* process the coordinate */
END

Summary of OWA_IMAGE Subprograms

Table 189-1 OWA_IMAGE Package Subprograms

	Subprogram	Description
	
GET_X Function

	
Gets the X value of a point type

	
GET_Y Function

	
Gets the Y value of a point type

GET_X Function

This function returns the X coordinate of the point where the user clicked on an image map.

Syntax

OWA_IMAGE.GET_X(
 p IN point)
 RETURN INTEGER;

Parameters

Table 189-2 GET_X Procedure Parameters

	Parameter	Description
	
p

	
The point where the user clicked.

Return Values

The X coordinate as an integer.

GET_Y Function

This function returns the Y coordinate of the point where the user clicked on an image map.

Syntax

OWA_IMAGE.GET_Y(
 p IN point)
 RETURN INTEGER;

Parameters

Table 189-3 GET_Y Procedure Parameters

	Parameter	Description
	
p

	
The point where the user clicked.

Return Values

The Y coordinate as an integer.

OWA_OPT_LOCK

190 OWA_OPT_LOCK

The OWA_OPT_LOCK package contains subprograms that impose optimistic locking strategies so as to prevent lost updates.

	
See Also:

For more information about implementation of this package:
	
Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

	
Oracle Fusion Middleware User's Guide for mod_plsql

This chapter contains the following topics:

	
Using OWA_OPT_LOCK

	
Overview

	
Types

	
Summary of OWA_OPT_LOCK Subprograms

Using OWA_OPT_LOCK

	
Overview

	
Types

Overview

The OWA_OPT_LOCK package contains subprograms that impose optimistic locking strategies, so as to prevent lost updates.

It checks if the row that the user is interested in updating has been changed by someone else in the meantime.

The PL/SQL Gateway cannot use conventional database locking schemes because HTTP is a stateless protocol. The OWA_OPT_LOCK package gives you two ways of dealing with the lost update problem:

	
The hidden fields method stores the previous values in hidden fields in the HTML page. When the user requests an update, the PL/SQL Gateway checks these values against the current state of the database. The update operation is performed only if the values match. To use this method, call the owa_opt_lock.store_values procedure.

	
The checksum method stores a checksum rather than the values themselves. To use this method, call the owa_opt_lock.checksum function.

These methods are optimistic. They do not prevent other users from performing updates, but they do reject the current update if an intervening update has occurred.

Types

This data type is a PL/SQL table intended to hold ROWIDs.

TYPE VCARRAY IS TABLE OF VARCHAR2(2000) INDEX BY BINARY_INTEGER

Note that this is different from the OWA_TEXT.VC_ARR DATA TYPE.

Summary of OWA_OPT_LOCK Subprograms

Table 190-1 OWA_CACHE Package Subprograms

	Subprogram	Description
	
CHECKSUM Functions

	
Returns the checksum value

	
GET_ROWID Function

	
Returns the ROWID value

	
STORE_VALUES Procedure

	
Stores unmodified values in hidden fields for later verification

	
VERIFY_VALUES Function

	
Verifies the stored values against modified values

CHECKSUM Functions

This function returns a checksum value for a specified string, or for a row in a table. For a row in a table, the function calculates the checksum value based on the values of the columns in the row. This function comes in two versions.

The first version returns a checksum based on the specified string. This is a "pure" 32-bit checksum executed by the database and based on the Internet 1 protocol.

The second version returns a checksum based on the values of a row in a table. This is a "impure" 32-bit checksum based on the Internet 1 protocol.

Syntax

OWA_OPT_LOCK.CHECKSUM(
 p_buff IN VARCHAR2)
 RETURN NUMBER;

OWA_OPT_LOCK.CHECKSUM(
 p_owner IN VARCHAR2,
 p_tname IN VARCHAR2,
 p_rowid IN ROWID)
 RETURN NUMBER;

Parameters

Table 190-2 CHECKSUM Procedure Parameters

	Parameter	Description
	
p_buff

	
The nstring where you want to calculate the checksum.

	
p_owner

	
The owner of the table.

	
p_tname

	
The table name.

	
p_rowid

	
The row in p_tname where you want to calculate the checksum value. Use the GET_ROWID Function to convert VCARRAY values to proper rowids.

GET_ROWID Function

This function returns the ROWID data type from the specified OWA_OPT_LOCK.VCARRAY DATA TYPE.

Syntax

OWA_OPT_LOCK.GET_ROWID(
 p_old_values IN vcarray)
 RETURN ROWID;

Parameters

Table 190-3 GET_ROWID Procedure Parameters

	Parameter	Description
	
p_old_values

	
This parameter is usually passed in from an HTML form.

STORE_VALUES Procedure

This procedure stores the column values of the row that you want to update later. The values are stored in hidden HTML form elements.

Syntax

OWA_OPT_LOCK.STORE_VALUES(
 p_owner IN VARCHAR2,
 p_tname IN VARCHAR2,
 p_rowid IN ROWID);

Parameters

Table 190-4 STORE_VALUES Procedure Parameters

	Parameter	Description
	
p_owner

	
The owner of the table.

	
p_tname

	
The name of the table.

	
p_rowid

	
The row where you want to store values.

Usage Notes

Before updating the row, compare these values with the current row values to ensure that the values in the row have not been changed. If the values have changed, you can warn the users and let them decide if the update should take place.

The procedure generates series of hidden form elements:

	
One hidden form element is created for the table owner. The name of the element is "old_p_tname", where p_tname is the name of the table. The value of the element is the owner name.

	
One hidden form element is created for the table name. The name of the element is "old_p_tname", where p_tname is the name of the table. The value of the element is the table name.

	
One element is created for each column in the row. The name of the element is "old_p_tname", where p_tname is the name of the table. The value of the element is the column value.

See also the VERIFY_VALUES Function.

VERIFY_VALUES Function

This function verifies whether values in the specified row have been updated since the last query. Use this function with the STORE_VALUES Procedure.

Syntax

OWA_OPT_LOCK.VERIFY_VALUES(
 p_old_values IN vcarray)
 RETURN BOOLEAN;

Parameters

Table 190-5 VERIFY_VALUES Procedure Parameters

	Parameter	Description
	
p_old_values

	
A PL/SQL table containing the following information:

	
p_old_values(1) specifies the owner of the table.

	
p_old_values(2) specifies the table.

	
p_old_values(3) specifies the rowid of the row to verify.

The remaining indexes contain values for the columns in the table.

Typically, this parameter is passed in from the HTML form, where you have previously called the STORE_VALUES Procedure to store the row values on hidden form elements.

Return Values

TRUE if no other update has been performed, otherwise FALSE.

OWA_PATTERN

191 OWA_PATTERN

The OWA_PATTERN package provides an interface to locate text patterns within strings and replace the matched string with another string.

	
See Also:

For more information about implementation of this package:
	
Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

	
Oracle Fusion Middleware User's Guide for mod_plsql

The chapter contains the following topics:

	
Using OWA_PATTERN

	
Types

	
Operational Notes

	
Summary of OWA_PATTERN Subprograms

Using OWA_PATTERN

	
Types

	
Operational Notes

Types

You can use a pattern as both an input and output parameter. Thus, you can pass the same regular expression to OWA_PATTERN function calls, and it only has to be parsed once.

	
OWA_PATTERN.PATTERN

Operational Notes

The OWA_PATTERN subprograms are overloaded. Specifically, there are six versions of MATCH, and four each of AMATCH and CHANGE. The subprograms use the following parameters:

	
line - This is the target to be examined for a match. It can be more than one line of text or a owa_text.multi_line data type.

	
pat - This is the pattern that the subprograms attempt to locate in line. The pattern can contain regular expressions. In the owa_pattern.change function and procedure, this parameter is called from_str.

	
flags - This specifies whether the search is case-sensitive or if substitutions are done globally.

Use regular expressions with the subprograms in this package. You Specify a regular expression by creating the string you want to match interspersed with various wildcard tokens and quantifiers.

	
Wildcards

	
Quantifiers

	
Flags

Wildcards

Wildcard tokens match something other than themselves:

Table 191-1 Wildcard tokens recognized by OWA_PATTERN package

	Token	Description
	
^

	
Matches newline or the beginning of the target

	
$

	
Matches newline or the end of the target

	
\n

	
Matches newline

	
.

	
Matches any character except newline

	
\t

	
Matches tab

	
\d

	
Matches digits [0-9]

	
\D

	
Matches non-digits [not 0-9]

	
\w

	
Matches word characters (0-9, a-z, A-Z, or _)

	
\W

	
Matches non-word characters (not 0-9, a-z, A-Z, or _)

	
\s

	
Matches whitespace characters (blank, tab, or newline).

	
\S

	
Matches non-whitespace characters (not blank, tab, or newline)

	
\b

	
Matches "word" boundaries (between \w and \W)

	
\x<HEX>

	
Matches the value in the current character set of the two hexadecimal digits

	
\<OCT>

	
Matches the value in the current character set of the two or three octal digits

	
\

	
Followed by any character not covered by another case matches that character

	
&

	
Applies only to CHANGE. This causes the string that matched the regular expression to be included in the string that replaces it. This differs from the other tokens in that it specifies how a target is changed rather than how it is matched. This is explained further under CHANGE Functions and Procedures.

Quantifiers

Any tokens except & can have their meaning extended by any of the following quantifiers. You can also apply these quantifiers to literals:

Table 191-2 Quantifiers

	Quantifier	Description
	
?

	
0 or 1 occurrence(s)

	
*

	
0 or more occurrences

	
+

	
1 or more occurrence(s)

	
{n}

	
Exactly n occurrences

	
(n,}

	
At least n occurrences

	
{n,m}

	
At least n, but not more than m, occurrences

Flags

In addition to targets and regular expressions, the OWA_PATTERN functions and procedures use flags to affect how they are interpreted.

Table 191-3 Flags

	Flag	Description
	
i

	
This indicates a case-insensitive search.

	
g

	
This applies only to CHANGE. It indicates a global replace. That is, all portions of the target that match the regular expression are replaced.

Summary of OWA_PATTERN Subprograms

Table 191-4 OWA_CACHE Package Subprograms

	Subprogram	Description
	
AMATCH Function

	
Determines if a string contains the specified pattern. It lets you specify where in the string the match has to occur

	
CHANGE Functions and Procedures

	
Replaces a pattern within a string. If you call it as a function it returns the number of times the regular expression was found and replaced

	
GETPAT Procedure

	
Generates a pattern data type from a VARCHAR2 type

	
MATCH Function

	
Determines if a string contains the specified pattern

AMATCH Function

This function specifies if a pattern occurs in a particular location in a string. There are four versions to this function:

	
The first and second versions of the function do not save the matched tokens (these are saved in the backrefs parameters in the third and fourth versions). The difference between the first and second versions is the pat parameter, which can be a VARCHAR2 or a pattern data type.

	
The third and fourth versions of the function save the matched tokens in the backrefs parameter. The difference between the third and fourth versions is the pat parameter, which can be a VARCHAR2 or a pattern data type.

	
Note:

If multiple overlapping strings match the regular expression, this function takes the longest match.

Syntax

OWA_PATTERN.AMATCH(
 line IN VARCHAR2,
 from_loc IN INTEGER,
 pat IN VARCHAR2,
 flags IN VARCHAR2 DEFAULT NULL)
 RETURN INTEGER;

OWA_PATTERN.AMATCH(
 line IN VARCHAR2,
 from_loc IN INTEGER,
 pat IN OUT PATTERN,
 flags IN VARCHAR2 DEFAULT NULL)
 RETURN INTEGER;

OWA_PATTERN.AMATCH(
 line IN VARCHAR2
 from_loc IN INTEGER
 pat in varchar2
 backrefs OUT owa_text.vc_arr
 flags IN VARCHAR2 DEFAULT NULL)
 RETURN INTEGER;

OWA_PATTERN.AMATCH(
 line IN VARCHAR2
 from_loc IN INTEGER
 pat IN OUT PATTERN
 backrefs OUT owa_text.vc_arr
 flags IN VARCHAR2 DEFAULT NULL)
 RETURN INTEGER;

Parameters

Table 191-5 AMATCH Procedure Parameters

	Parameter	Description
	
line

	
The text to search in.

	
from_loc

	
The location (in number of characters) in line where the search is to begin.

	
pat

	
The string to match. It can contain regular expressions. This can be either a VARCHAR2 or a pattern. If it is a pattern, the output value of this parameter is the pattern matched.

	
backrefs

	
The text that is matched. Each token that is matched is placed in a cell in the OWA_TEXT.VC_ARR DATA TYPE PL/SQL table.

	
flags

	
Whether or not the search is case-sensitive. If the value of this parameter is "i", the search is case-insensitive. Otherwise the search is case-sensitive.

Return Values

The index of the character after the end of the match, counting from the beginning of line. If there was no match, the function returns 0.

CHANGE Functions and Procedures

This function or procedure searches and replaces a string or multi_line data type. If multiple overlapping strings match the regular expression, this subprogram takes the longest match.

Syntax

OWA_PATTERN.CHANGE(
 line IN OUT VARCHAR2,
 from_str IN VARCHAR2,
 to_str IN VARCHAR2,
 flags IN VARCHAR2 DEFAULT NULL)
 RETURN INTEGER;

OWA_PATTERN.CHANGE(
 line IN OUT VARCHAR2,
 from_str IN VARCHAR2,
 to_str IN VARCHAR2,
 flags IN VARCHAR2 DEFAULT NULL);

owa_pattern.change(
 mline IN OUT owa_text.multi_line,
 from_str IN VARCHAR2,
 to_str IN VARCHAR2,
 flags IN VARCHAR2 DEFAULT NULL)
 RETURN INTEGER;

OWA_PATTERN.CHANGE(
 mline IN OUT owa_text.multi_line,
 from_str IN VARCHAR2,
 to_str IN VARCHAR2,
 flags IN VARCHAR2 DEFAULT NULL);

Parameters

Table 191-6 CHANGE Procedure Parameters

	Parameter	Description
	
line

	
The text to search in. The output value of this parameter is the altered string.

	
mline

	
The text to search in. This is a owa_text.multi_line data type. The output value of this parameter is the altered string.

	
from_str

	
The regular expression to replace.

	
to_str

	
The substitution pattern.

	
flags

	
Whether or not the search is case-sensitive, and whether or not changes are to be made globally. If "i" is specified, the search is case-insensitive. If "g" is specified, changes are made to all matches. Otherwise, the function stops after the first substitution is made.

Return Values

As a function, it returns the number of substitutions made. If the flag "g" is not used, this number can only be 0 or 1 and only the first match is replaced. The flag "g" specifies to replace all matches with the regular expression.

Examples

OWA_PATTERN.CHANGE('Cats in pajamas', 'C.+in', '& red ')

The regular expression matches the substring "Cats in". It then replaces this string with "& red". The ampersand character "&" indicates "Cats in" because that is what matched the regular expression. Thus, this procedure replaces the string "Cats in pajamas" with "Cats in red" If you call this as a function instead of a procedure, the value returned is 1, indicating that a single substitution has been made.

Example 2:

CREATE OR REPLACE PROCEDURE test_pattern as theline VARCHAR2(256);
num_found INTEGER;
 BEGIN
 theline := 'what is the goal?';
 num_found := OWA_PATTERN.CHANGE(theline, 'goal', 'idea', 'g');
 HTP.PRINT(num_found); -- num_found is 1
 HTP.PRINT(theline); -- theline is 'what is the idea?'
 END;
/
SHOW ERRORS

GETPAT Procedure

This procedure converts a VARCHAR2 string into an OWA_PATTERN.PATTERN DATA TYPE.

Syntax

OWA_PATTERN.GETPAT(
 arg IN VARCHAR2,
 pat IN OUT pattern);

Parameters

Table 191-7 GETPAT Procedure Parameters

	Parameter	Description
	
arg

	
The string to convert.

	
pat

	
the OWA_PATTERN.PATTERN DATA TYPE initialized with arg.

MATCH Function

This function determines if a string contains the specified pattern. The pattern can contain regular expressions. If multiple overlapping strings can match the regular expression, this function takes the longest match.

Syntax

owa_pattern.match(
 line IN VARCHAR2,
 pat IN VARCHAR2,
 flags IN VARCHAR2 DEFAULT NULL)
 RETURN BOOLEAN;

owa_pattern.match(
 line IN VARCHAR2,
 pat IN OUT PATTERN,
 flags IN VARCHAR2 DEFAULT NULL)
 RETURN BOOLEAN;

owa_pattern.match(
 line IN VARCHAR2,
 pat IN VARCHAR2,
 backrefs OUT owa_text.vc_arr,
 flags IN VARCHAR2 DEFAULT NULL)
 RETURN BOOLEAN;

OWA_PATTERN.MATCH(
 line IN VARCHAR2,
 pat IN OUT PATTERN,
 backrefs OUT owa_text.vc_arr,
 flags IN VARCHAR2 DEFAULT NULL)
 RETURN BOOLEAN;

owa_pattern.match(
 mline IN owa_text.multi_line,
 pat IN VARCHAR2,
 rlist OUT owa_text.row_list,
 flags IN VARCHAR2 DEFAULT NULL)
 RETURN BOOLEAN;

OWA_PATTERN.MATCH(
 mline IN owa_text.multi_line,
 pat IN OUT pattern,
 rlist OUT owa_text.row_list,
 flags IN VARCHAR2 DEFAULT NULL)
 RETURN BOOLEAN;

Parameters

Table 191-8 CHANGE Procedure Parameters

	Parameter	Description
	
line

	
The line to search in.

	
mline

	
The text to search in. This is a owa_text.multi_line data type..

	
pat

	
The pattern to match. This is either a VARCHAR2 or a OWA_PATTERN.PATTERN DATA TYPE. It it is a pattern, the output value of this parameter is the pattern matched.

	
backrefs

	
The text that is matched. Each token that is matched is placed in a cell in the OWA_TEXT.VC_ARR DATA TYPE PL/SQL table. This parameter is a row_list that holds each string in the target that was matched by a sequence of tokens in the regular expression.

	
rlist

	
An output parameter containing a list of matches.

	
flags

	
Whether or not the search is case-sensitive. If the value of this parameter is "i", the search is case-insensitive. Otherwise the search is case-sensitive.

Return Values

TRUE if a match was found, FALSE otherwise.

Examples

KAZOO is the target where it is searching for the zoo.* regular expression. The period indicates any character other than newline, and the asterisk matches 0 or more of the preceding characters. In this case, it matches any character other than the newline.

Therefore, this regular expression specifies that a matching target consists of zoo, followed by any set of characters neither ending in nor including a newline (which does not match the period). The i flag indicates to ignore case in the search. In this case, the function returns TRUE, which indicates that a match had been found.

boolean foundMatch;
foundMatch := owa_pattern.match('KAZOO', 'zoo.*', 'i');

The following example searches for the string "goal" followed by any number of characters in sometext. If found,

sometext VARCHAR2(256);
pat VARCHAR2(256);

sometext := 'what is the goal?'
pat := 'goal.*';
IF OWA_PATTERN.MATCH(sometext, pat)
 THEN
 HTP.PRINT('Match found');
 ELSE
 HTP.PRINT('Match not found');
END IF;

Operational Notes

	
The regular expression in this function can be either a VARCHAR2 or an OWA_PATTERN.PATTERN DATA TYPE. Create AN OWA_PATTERN.PATTERN DATA TYPE from a string using the OWA_PATTERN.GETPAT procedure.

	
Create a MULTI_LINE DATA TYPE from a long string using the OWA_TEXT.STREAM2MULTI procedure. If a multi_line is used, the rlist parameter specifies a list of chunks where matches were found.

	
If the line is a string and not a multi_line, you can add an optional output parameter called backrefs. This parameter is a row_list that holds each string in the target that was matched by a sequence of tokens in the regular expression.

OWA_SEC

192 OWA_SEC

The OWA_SEC package provides an interface for custom authentication.

	
See Also:

For more information about implementation of this package:
	
Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

	
Oracle Fusion Middleware User's Guide for mod_plsql

The chapter contains the following topics:

	
Using OWA_SEC

	
Operational Notes

	
Summary of OWA_SEC Subprograms

Using OWA_SEC

	
Operational Notes

Operational Notes

Parameters that have default values are optional.

Summary of OWA_SEC Subprograms

Table 192-1 OWA_SEC Package Subprograms

	Subprogram	Description
	
GET_CLIENT_HOSTNAME Function

	
Returns the client's hostname

	
GET_CLIENT_IP Function

	
Returns the client's IP address

	
GET_PASSWORD Function

	
Returns the password that the user entered

	
GET_USER_ID Function

	
Returns the username that the user entered

	
SET_AUTHORIZATION Procedure

	
Enables the PL/SQL application to use custom authentication

	
SET_PROTECTION_REALM Procedure

	
Defines the realm that the page is in

GET_CLIENT_HOSTNAME Function

This function returns the hostname of the client.

Syntax

OWA_SEC.GET_CLIENT_HOSTNAME
 RETURN VARCHAR2;

Return Values

The hostname.

GET_CLIENT_IP Function

This function returns the IP address of the client.

Syntax

OWA_SEC.GET_CLIENT_IP
 RETURN OWA_UTIL.IP_ADDRESS;

Return Values

The IP address. The owa_util.ip_address data type is a PL/SQL table where the first four elements contain the four numbers of the IP address. For example, if the IP address is 123.45.67.89 and the variable ipaddr is of the owa_util.ip_address data type, the variable would contain the following values:

ipaddr(1) = 123
ipaddr(2) = 45
ipaddr(3) = 67
ipaddr(4) = 89

GET_PASSWORD Function

This function returns the password that the user used to log in.

Syntax

OWA_SEC.GET_PASSWORD
 RETURN VARCHAR2;

Return Values

The password.

Usage Notes

For security reasons, this function returns a true value only when custom authentication is used. If you call this function when you are not using custom authentication, the function returns an undefined value. Thus, the database passwords are not exposed.

GET_USER_ID Function

This function returns the username that the user used to log in.

Syntax

OWA_SEC.GET_USER_ID
 RETURN VARCHAR2;

Return Values

The username.

SET_AUTHORIZATION Procedure

This procedure, called in the initialization portion of the OWA_CUSTOM package, sets the authorization scheme for the PL/SQL Gateway. This implements your authorize function, which authorizes the user before his requested procedure is run. The placement of the authorize function depends on the scheme you select.

Syntax

OWA_SEC.SET_AUTHORIZATION(
 scheme IN INTEGER);

Parameters

Table 192-2 SET_AUTHORIZATION Procedure Parameters

	Parameter	Description
	
scheme

	
The authorization scheme. It is one of the following schemes for SET_AUTHORIZATION:

	
OWA_SEC.NO_CHECK - Specifies that the PL/SQL application is not to do any custom authentication. This is the default.

	
OWA_SEC.GLOBAL - Defines an authorize function that is called for all users and all procedures. This is the OWA_CUSTOM.AUTHORIZE Function in the "sys" schema.

	
OWA_SEC.PER_PACKAGE - Define an authorize function that is called when procedures in a package or anonymous procedures are called. If the procedures are in a package, the package.AUTHORIZE function in the user's schema is called to authorize the user. If the procedures are not in a package, then the anonymous authorize function in the user's schema is called.

	
OWA_SEC.CUSTOM - Implements different authorize functions for each user. The function OWA_CUSTOM.AUTHORIZE Function in the user's schema is called to authorize the user. If the user's schema does not contain an OWA_CUSTOM.AUTHORIZE Function, the PL/SQL Gateway looks for it in the "sys" schema.

The custom authorize function has the following signature:

FUNCTION AUTHORIZE
 RETURN BOOLEAN;

If the function returns TRUE, authentication succeeded. If it returns FALSE, authentication failed. If the authorize function is not defined, the Gateway returns an error and fails.

SET_PROTECTION_REALM Procedure

This procedure sets the realm of the page that is returned to the user. The user enters a username and login that already exist in the realm.

Syntax

OWA_SEC.SET_PROTECTION_REALM(
 realm IN VARCHAR2);

Parameters

Table 192-3 SET_PROTECTION_REALM Procedure Parameters

	Parameter	Description
	
realm

	
The realm where the page belongs. This string is displayed to the user.

OWA_TEXT

193 OWA_TEXT

The OWA_TEXT package contains subprograms used by OWA_PATTERN for manipulating strings. They are externalized so you can use them directly.

	
See Also:

For more information about implementation of this package:
	
Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

	
Oracle Fusion Middleware User's Guide for mod_plsql

The chapter contains the following topics:

	
Using OWA_TEXT

	
Types

	
Summary of OWA_TEXT Subprograms

Using OWA_TEXT

	
Types

Types

	
MULTI_LINE DATA TYPE

	
ROW_LIST DATA TYPE

	
VC_ARR DATA TYPE

MULTI_LINE DATA TYPE

This data type is a PL/SQL record that holds large amounts of text. The rows field, of type OWA_TEXT.VC_ARR DATA TYPE, contains the text data in the record.

TYPE multi_line IS RECORD (
 rows vc_arr,
 num_rows INTEGER,
 partial_row BOOLEAN);

ROW_LIST DATA TYPE

This is the data type for holding data to be processed.

TYPE row_list IS RECORD (
 rows int_arr,
 num_rows INTEGER);

int_arr IS DEFINED AS:

TYPE int_arr IS TABLE OF INTEGER INDEX BY BINARY_INTEGER;

VC_ARR DATA TYPE

This is a component of the MULTI_LINE DATA TYPE and is used for holding large amounts of text.

TYPE vc_arr IS TABLE OF VARCHAR2(32767) INDEX BY BINARY_INTEGER;

Summary of OWA_TEXT Subprograms

Table 193-1 OWA_TEXT Package Subprograms

	Subprogram	Description
	
ADD2MULTI Procedure

	
Adds text to an existing multi_line type

	
NEW_ROW_LIST Function and Procedure

	
Creates a new row_list

	
PRINT_MULTI Procedure

	
Prints out the contents of a multi_list

	
PRINT_ROW_LIST Procedure

	
Prints out the contents of a row_list

	
STREAM2MULTI Procedure

	
Converts a varchar2 to a multi_line type

ADD2MULTI Procedure

This procedure adds content to an existing MULTI_LINE DATA TYPE.

Syntax

OWA_TEXT.ADD2MULTI(
 stream IN VARCHAR2,
 mline IN OUT multi_line,

 continue IN BOOLEAN DEFAULT TRUE);

Parameters

Table 193-2 ADD2MULTI Procedure Parameters

	Parameter	Description
	
stream

	
The text to add.

	
mline

	
The OWA_TEXT.MULTI_LINE DATA TYPE. The output of this parameter contains stream.

	
continue

	
If TRUE, the procedure appends stream within the previous final row (assuming it is less than 32K). If FALSE, the procedure places stream in a new row.

NEW_ROW_LIST Function and Procedure

This function or procedure creates a new OWA_TEXT.ROW_LIST DATA TYPE. The function version uses no parameters and returns a new empty row_list. The procedure version creates the row_list data type as an output parameter.

Syntax

OWA_TEXT.NEW_ROW_LIST
 RETURN ROW_LIST;

OWA_TEXT.NEW_ROW_LIST(
 rlist OUT row_list);

Parameters

Table 193-3 NEW_ROW_LIST Procedure Parameters

	Parameter	Description
	
rlist

	
This is an output parameter containing the new row_list data type

Return Values

The function version returns the new row_list data type.

PRINT_MULTI Procedure

This procedure uses the PRINT Procedures or the PRN Procedures to print the "rows" field of the OWA_TEXT.MULTI_LINE DATA TYPE.

Syntax

OWA_TEXT.PRINT_MULTI(
 mline IN multi_line);

Parameters

Table 193-4 PRINT_MULTI Procedure Parameters

	Parameter	Description
	
mline

	
The multi_line data type to print.

Return Values

The contents of the multi_line.

PRINT_ROW_LIST Procedure

This procedure uses the PRINT Procedures or the PRN Procedures to print the "rows" field of the OWA_TEXT.ROW_LIST DATA TYPE.

Syntax

OWA_TEXT.PRINT_ROW_LIST(
 rlist IN multi_line);

Parameters

Table 193-5 PRINT_ROW_LIST Procedure Parameters

	Parameter	Description
	
rlist

	
The row_list data type to print.

Return Values

The contents of the row_list.

STREAM2MULTI Procedure

This procedure converts a string to a multi_line data type.

Syntax

OWA_TEXT.STREAM2MULTI(
 stream IN VARCHAR2
 mline OUT multi_line);

Parameters

Table 193-6 STREAM2MULTI Procedure Parameters

	Parameter	Description
	
stream

	
The string to convert.

	
mline

	
The stream in OWA_TEXT.MULTI_LINE DATA TYPE format

OWA_UTIL

194 OWA_UTIL

The OWA_UTIL package contains utility subprograms for performing operations such as getting the value of CGI environment variables, printing the data that is returned to the client, and printing the results of a query in an HTML table.

	
See Also:

For more information about implementation of this package:
	
Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

	
Oracle Fusion Middleware User's Guide for mod_plsql

This chapter contains the following topics:

	
Using OWA_UTIL

	
Overview

	
Types

	
Summary of OWA_UTIL Subprograms

Using OWA_UTIL

	
Overview

	
Types

Overview

The OWA_UTIL package contains three types of utility subprograms.

	
Dynamic SQL Utilities enable you to produce pages with dynamically generated SQL code.

	
HTML utilities enable you to retrieve the values of CGI environment variables and perform URL redirects.

	
Date utilities enable correct date-handling. Date values are simple strings in HTML, but are treated as a data type by the Oracle database.

Types

	
DATETYPE Data Type

	
IDENT_ARR Data Type

	
IP_ADDRESS Data Type

DATETYPE Data Type

The TODATE Function converts an item of this type to the type DATE, which is understood and properly handled as data by the database. The procedure CHOOSE_DATE Procedure enables the user to select the desired date.

TYPE dateType IS TABLE OF VARCHAR2(10) INDEX BY BINARY_INTEGER;

IDENT_ARR Data Type

This data type is used for an array.

TYPE ident_arr IS TABLE OF VARCHAR2(30) INDEX BY BINARY_INTEGER;

IP_ADDRESS Data Type

This data type is used by the GET_CLIENT_IP Function in the "OWA_SEC" package on .

TYPE ip_address IS TABLE OF INTEGER INDEX BY BINARY_INTEGER;

Summary of OWA_UTIL Subprograms

Table 194-1 OWA_UTIL Package Subprograms

	Subprogram	Description
	
BIND_VARIABLES Function

	
Prepares a SQL query and binds variables to it

	
CALENDARPRINT Procedures

	
Prints a calendar

	
CELLSPRINT Procedures

	
Prints the contents of a query in an HTML table

	
CHOOSE_DATE Procedure

	
Generates HTML form elements that allow the user to select a date

	
GET_CGI_ENV Function

	
Returns the value of the specified CGI environment variable

	
GET_OWA_SERVICE_PATH Function

	
Returns the full virtual path for the PL/SQL Gateway

	
GET_PROCEDURE Function

	
Returns the name of the procedure that is invoked by the PL/SQL Gateway

	
HTTP_HEADER_CLOSE Procedure

	
Closes the HTTP header

	
LISTPRINT Procedure

	
Generates a HTML form element that contains data from a query

	
MIME_HEADER Procedure

	
Generates the Content-type line in the HTTP header

	
PRINT_CGI_ENV Procedure

	
Generates a list of all CGI environment variables and their values

	
REDIRECT_URL Procedure

	
Generates the Location line in the HTTP header

	
SHOWPAGE Procedure

	
Prints a page generated by the HTP and HTF packages in SQL*Plus

	
SHOWSOURCE Procedure

	
Prints the source for the specified subprogram

	
SIGNATURE procedure

	
Prints a line that says that the page is generated by the PL/SQL Agent

	
STATUS_LINE Procedure

	
Generates the Status line in the HTTP header

	
TABLEPRINT Function

	
Prints the data from a table in the database as an HTML table

	
TODATE Function

	
Converts dateType data to the standard PL/SQL date type

	
WHO_CALLED_ME Procedure

	
Returns information on the caller of the procedure.

BIND_VARIABLES Function

This function prepares a SQL query by binding variables to it, and stores the output in an opened cursor. Use this function as a parameter to a procedure sending a dynamically generated query. Specify up to 25 bind variables.

Syntax

OWA_UTIL.BIND_VARIABLES(
 theQuery IN VARCHAR2 DEFAULT NULL,
 bv1Name IN VARCHAR2 DEFAULT NULL,
 bv1Value IN VARCHAR2 DEFAULT NULL,
 bv2Name IN VARCHAR2 DEFAULT NULL,
 bv2Value IN VARCHAR2 DEFAULT NULL,
 bv3Name IN VARCHAR2 DEFAULT NULL,
 bv3Value IN VARCHAR2 DEFAULT NULL,
 ...
 bv25Name IN VARCHAR2 DEFAULT NULL,
 bv25Value IN VARCHAR2 DEFAULT NULL)
 RETURN INTEGER;

Parameters

Table 194-2 BIND_VARIABLES Function Parameters

	Parameter	Description
	
theQuery

	
The SQL query statement which must be a SELECT statement

	
bv1Name

	
The name of the variable

	
bv1Value

	
The value of the variable

Return Values

An integer identifying the opened cursor.

CALENDARPRINT Procedures

These procedures creates a calendar in HTML with a visible border. Each date in the calendar can contain any number of hypertext links.

This procedure has 2 versions.

	
Version 1 uses a hard-coded query stored in a varchar2 string.

	
Version 2 uses a dynamic query prepared with the BIND_VARIABLES Function.

Syntax

OWA_UTIL.CALENDARPRINT(
 p_query IN VARCHAR2,
 p_mf_only IN VARCHAR2 DEFAULT 'N');

OWA_UTIL.CALENDARPRINT(
 p_cursor IN INTEGER,
 p_mf_only IN VARCHAR2 DEFAULT 'N');

Parameters

Table 194-3 CALENDARPRINT Procedure Parameters

	Parameter	Description
	
p_query

	
A PL/SQL query.

	
p_cursor

	
A PL/SQL cursor containing the same format as p_query.

	
p_mf_only

	
If "N" (the default), the generated calendar includes Sunday through Saturday. Otherwise, it includes Monday through Friday only.

Usage Notes

Design your query as follows:

	
The first column is a DATE. This correlates the information produced by the query with the calendar output generated by the procedure.

	
The query output must be sorted on this column using ORDER BY.

	
The second column contains the text, if any, that you want printed for that date.

	
The third column contains the destination for generated links. Each item in the second column becomes a hypertext link to the destination given in this column. If this column is omitted, the items in the second column are simple text, not links.

CELLSPRINT Procedures

This procedure generates an HTML table from the output of a SQL query. SQL atomic data items are mapped to HTML cells and SQL rows to HTML rows. You must write the code to begin and end the HTML table. There are nine versions of this procedure:

	
The first version passes the results of a query into an index table. Perform the query and CELLSPRINT does the formatting. To have more control in generating an HTML table from the output of an SQL query, use the FORMAT_CELL Function in the "HTF" package.

	
The second and third versions display rows (up to the specified maximum) returned by the query or cursor.

	
The fourth and fifth versions exclude a specified number of rows from the HTML table. Use the fourth and fifth versions to scroll through result sets by saving the last row seen in a hidden form element.

	
The sixth through ninth versions are the same as the first four versions, except that they return a row count output parameter.

Syntax

OWA_UTIL.CELLSPRINT(
 p_colCnt IN INTEGER,
 p_resultTbl IN vc_arr,

 p_format_numbers IN VARCHAR2 DEFAULT NULL);

OWA_UTIL.CELLSPRINT(
 p_theQuery IN VARCHAR2,
 p_max_rows IN NUMBER DEFAULT 100,
 p_format_numbers IN VARCHAR2 DEFAULT NULL);

OWA_UTIL.CELLSPRINT(
 p_theCursor IN INTEGER,
 p_max_rows IN NUMBER DEFAULT 100,
 p_format_numbers iN VARCHAR2 DEFAULT NULL);

OWA_UTIL.CELLSPRINT(
 p_theQuery IN VARCHAR2,
 p_max_rows IN NUMBER DEFAULT 100,
 p_format_numbers IN VARCHAR2 DEFAULT NULL,
 p_skip_rec IN NUMBER DEFAULT 0,
 p_more_data OUT BOOLEAN);

OWA_UTIL.CELLSPRINT(
 p_theCursor IN INTEGER,
 p_max_rows IN NUMBER DEFAULT 100,
 p_format_numbers IN VARCHAR2 DEFAULT NULL,
 p_skip_rec IN NUMBER DEFAULT 0,
 p_more_data OUT BOOLEAN);

OWA_UTIL.CELLSPRINT(
 p_theQuery IN VARCHAR2,
 p_max_rows IN NUMBER DEFAULT 100,
 p_format_numbers IN VARCHAR2 DEFAULT NULL,
 p_reccnt OUT NUMBER);

OWA_UTIL.CELLSPRINT(
 p_theCursor IN INTEGER,
 p_max_rows IN NUMBER DEFAULT 100,
 p_format_numbers IN VARCHAR2 DEFAULT NULL,
 p_reccnt OUT NUMBER);

OWA_UTIL.CELLSPRINT(
 p_theQuery IN VARCHAR2,
 p_max_rows IN NUMBER DEFAULT 100,
 p_format_numbers IN VARCHAR2 DEFAULT NULL,
 p_skip_rec IN NUMBER DEFAULT 0,
 p_more_data OUT BOOLEAN
 p_reccnt OUT NUMBER);

OWA_UTIL.CELLSPRINT(
 p_theCursor IN INTEGER,
 p_max_rows IN NUMBER DEFAULT 100,
 p_format_numbers IN VARCHAR2 DEFAULT NULL,
 p_skip_rec IN NUMBER DEFAULT 0,
 p_more_data OUT BOOLEAN,
 p_reccnt OUT NUMBER);

Parameters

Table 194-4 CELLSPRINT Procedure Parameters

	Parameter	Description
	
p_query

	
A PL/SQL query.

	
p_colCnt

	
The number of columns in the table.

	
p_theQuery

	
A SQL SELECT statement.

	
p_theCursor

	
A cursor ID. This can be the return value from the BIND_VARIABLES Function.

	
p_max_rows

	
The maximum number of rows to print.

	
p_format_numbers

	
If the value of this parameter is not NULL, number fields are right justified and rounded to two decimal places.

	
p_skip_rec

	
The number of rows to exclude from the HTML table.

	
p_more_data

	
TRUE if there are more rows in the query or cursor, FALSE otherwise.

	
p_reccnt

	
The number of rows that have been returned by the query. This value does not include skipped rows (if any).

	
p_resultTbl

	
The index table which will contain the result of the query. Each entry in the query will correspond to one column value.

Examples

This function generates

<tr><td>QueryResultItem</td><td>QueryResultItem</td></tr>...

CHOOSE_DATE Procedure

This procedure generates three HTML form elements that allow the user to select the day, the month, and the year.

Syntax

OWA_UTIL.CHOOSE_DATE(
 p_name IN VARCHAR2,
 p_date IN DATE DEFAULT SYSDATE);

Parameters

Table 194-5 CHOOSE_DATE Procedure Parameters

	Parameter	Description
	
p_name

	
The name of the form elements.

	
p_date

	
The initial date that is selected when the HTML page is displayed.

Usage Notes

	
The parameter in the procedure that receives the data from these elements must be a GET_CGI_ENV Function.

	
Use the TODATE Function to convert the GET_CGI_ENV Function value to the standard Oracle DATE data type.

Examples

<SELECT NAME="p_name" SIZE="1">
<OPTION value="01">1
 ...
<OPTION value="31">31
</SELECT>
-
<SELECT NAME="p_name" SIZE="1">
<OPTION value="01">JAN
 ...
<OPTION value="12">DEC
</SELECT>
-
<SELECT NAME="p_name" SIZE="1">
<OPTION value="1992">1992
 ...
<OPTION value="2002">2002
</SELECT>

GET_CGI_ENV Function

This function returns the value of the specified CGI environment variable.

Syntax

OWA_UTIL.GET_CGI_ENV(
 param_name IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Table 194-6 GET_CGI_ENV Function Parameters

	Parameter	Description
	
param_name

	
The name of the CGI environment variable. It is case-insensitive.

Return Values

The value of the specified CGI environment variable. If the variable is not defined, the function returns NULL.

GET_OWA_SERVICE_PATH Function

This function returns the full virtual path of the PL/SQL Gateway that is handling the request.

Syntax

OWA_UTIL.GET_OWA_SERVICE_PATH
 RETURN VARCHAR2;

Return Values

A virtual path of the PL/SQL Gateway that is handling the request.

GET_PROCEDURE Function

This function returns the name of the procedure that is being invoked by the PL/SQL Gateway.

Syntax

OWA_UTIL.GET_PROCEDURE
 RETURN VARCHAR2;

Return Values

The name of a procedure, including the package name if the procedure is defined in a package.

HTTP_HEADER_CLOSE Procedure

This procedure generates a newline character to close the HTTP header.

Syntax

OWA_UTIL.HTTP_HEADER_CLOSE;

Return Values

A newline character, which closes the HTTP header.

Usage Notes

	
Use this procedure if you have not closed the header by using the bclose_header parameter in calls such as MIME_HEADER Procedure, REDIRECT_URL Procedure, or STATUS_LINE Procedure

	
The HTTP header must be closed before any HTP.PRINT or HTP.PRN calls.

LISTPRINT Procedure

This procedure generates an HTML selection list form element from the output of a SQL query. There are two versions of this procedure.

	
The first version contains a hard-coded SQL query.

	
The second version uses a dynamic query prepared with the BIND_VARIABLES Function.

Syntax

OWA_UTIL.LISTPRINT(
 p_theQuery IN VARCHAR2,
 p_cname IN VARCHAR2,
 p_nsize IN NUMBER,
 p_multiple IN BOOLEAN DEFAULT FALSE);

OWA_UTIL.LISTPRINT(
 p_theCursor IN INTEGER,
 p_cname IN VARCHAR2,
 p_nsize IN NUMBER,
 p_multiple IN BOOLEAN DEFAULT FALSE);

Parameters

Table 194-7 LISTPRINT Procedure Parameters

	Parameter	Description
	
p_theQuery

	
The SQL query.

	
p_theCursor

	
The cursor ID. This can be the return value from the BIND_VARIABLES Function.

	
p_cname

	
The name of the HTML form element.

	
p_nsize

	
The size of the form element (this controls how many items the user can see without scrolling).

	
p_multiple

	
Whether multiple selection is permitted.

Usage Notes

The columns in the output of the query are handled in the following manner:

	
The first column specifies the values that are sent back. These values are for the VALUE attribute of the OPTION tag.

	
The second column specifies the values that the user sees.

	
The third column specifies whether or not the row is marked as SELECTED in the OPTION tag. If the value is not NULL, the row is selected.

Examples

<SELECT NAME="p_cname" SIZE="p_nsize">
<OPTION SELECTED value='value_from_the_first_column'>value_from_the_second_column
<OPTION SELECTED value='value_from_the_first_column'>value_from_the_second_column
 ...
</SELECT>

MIME_HEADER Procedure

This procedure changes the default MIME header that the script returns. This procedure must come before any HTP.PRINT or HTP.PRN calls to direct the script not to use the default MIME header.

Syntax

OWA_UTIL.MIME_HEADER(
 ccontent_type IN VARCHAR2 DEFAULT 'text/html',
 bclose_header IN BOOLEAN DEFAULT TRUE,
 ccharset IN VARCHAR2 DEFAULT NULL);

Parameters

Table 194-8 MIME_HEADER Procedure Parameters

	Parameter	Description
	
ccontent_type

	
The MIME type to generate

	
bclose_header

	
Whether or not to close the HTTP header. If TRUE, two newlines are sent, which closes the HTTP header. Otherwise, one newline is sent, and the HTTP header remains open.

	
ccharset

	
The character set to use.The character set only makes sense if the MIME type is of type 'text'. Therefore, the character set is only tagged on to the Content-Type header only if the MIME type passed in is of type 'text'. Any other MIME type, such as 'image', will not have any character set tagged on.

Examples

Content-type: <ccontent_type>; charset=<ccharset>

so that

owa_util.mime_header('text/plain', false, 'ISO-8859-4')

generates

Content-type: text/plain; charset=ISO-8859-4\n

PRINT_CGI_ENV Procedure

This procedure generates all the CGI environment variables and their values made available by the PL/SQL Gateway to the stored procedure.

Syntax

OWA_UTIL.PRINT_CGI_ENV;

Examples

This procedure generates a list in the following format:

cgi_env_var_name = value\n

REDIRECT_URL Procedure

This procedure specifies that the application server is to visit the specified URL. The URL may specify either a Web page to return or a program to execute.

Syntax

OWA_UTIL.REDIRECT_URL(
 curl IN VARCHAR2
 bclose_header IN BOOLEAN DEFAULT TRUE);

Parameters

Table 194-9 REDIRECT_URL Function Parameters

	Parameter	Description
	
curl

	
The URL to visit.

	
bclose_header

	
Whether or not to close the HTTP header. If TRUE, two newlines are sent, which closes the HTTP header. Otherwise, one newline is sent, and the HTTP header remains open.

Usage Notes

This procedure must come before any HTP procedure or HTF function call.

Examples

This procedure generates

Location: <curl>\n\n

SHOWPAGE Procedure

This procedure prints out the HTML output of a procedure in SQL*Plus. The procedure must use the HTP or HTF packages to generate the HTML page, and this procedure must be issued after the HTP or HTF page-generating subprogram has been called and before any other HTP or HTF subprograms are directly or indirectly called.

Syntax

OWA_UTIL.SHOWPAGE;

Usage Notes

	
This method is useful for generating pages filled with static data.

	
This procedure uses the DBMS_OUTPUT package and is limited to 32767 characters for each line and an overall buffer size of 1,000,000 bytes.

Examples

The output of htp procedure is displayed in SQL*Plus, SQL*DBA, or Oracle Server Manager. For example:

SQL> set serveroutput on
SQL> spool gretzky.html
SQL> execute hockey.pass("Gretzky")
SQL> execute owa_util.showpage
SQL> exit

This would generate an HTML page that could be accessed from Web browsers.

SHOWSOURCE Procedure

This procedure prints the source of the specified procedure, function, or package. If a procedure or function which belongs to a package is specified, then the entire package is displayed.

Syntax

OWA_UTIL.SHOWSOURCE (
 cname IN VARCHAR2);

Parameters

Table 194-10 SHOWSOURCE Procedure Parameters

	Parameter	Description
	
cname

	
The function or procedure whose source you want to show.

SIGNATURE procedure

This procedure generates an HTML line followed by a signature line on the HTML document. If a parameter is specified, the procedure also generates a hypertext link to view the PL/SQL source for that procedure. The link calls the SHOWSOURCE Procedure.

Syntax

OWA_UTIL.SIGNATURE;

OWA_UTIL.SIGNATURE (
 cname IN VARCHAR2);

Parameters

Table 194-11 SIGNATURE Procedure Parameters

	Parameter	Description
	
cname

	
The function or procedure whose source you want to show.

Examples

Without a parameter, the procedure generates a line that looks like the following:

This page was produced by the PL/SQL Agent on August 9, 2001 09:30.

With a parameter, the procedure generates a signature line in the HTML document that looks like the following:

This page was produced by the PL/SQL Agent on 8/09/01 09:30
View PL/SQL Source

STATUS_LINE Procedure

This procedure sends a standard HTTP status code to the client. This procedure must come before any htp.print or htp.prn calls so that the status code is returned as part of the header, rather than as "content data".

Syntax

OWA_UTIL.STATUS_LINE(
 nstatus IN INTEGER,
 creason IN VARCHAR2 DEFAULT NULL,
 bclose_header IN BOOLEAN DEFAULT TRUE);

Parameters

Table 194-12 STATUS_LINE Procedure Parameters

	Parameter	Description
	
nstatus

	
The status code.

	
creason

	
The string for the status code.

	
bclose_header

	
Whether or not to close the HTTP header. If TRUE, two newlines are sent, which closes the HTTP header. Otherwise, one newline is sent, and the HTTP header remains open.

Examples

This procedure generates

Status: <nstatus> <creason>\n\n

TABLEPRINT Function

This function generates either preformatted tables or HTML tables (depending on the capabilities of the user's browser) from database tables.

Syntax

OWA_UTIL.TABLEPRINT(
 ctable IN VARCHAR2,
 cattributes IN VARCHAR2 DEFAULT NULL,
 ntable_type IN INTEGER DEFAULT HTML_TABLE,
 ccolumns IN VARCHAR2 DEFAULT '*',
 cclauses IN VARCHAR2 DEFAULT NULL,
 ccol_aliases IN VARCHAR2 DEFAULT NULL,
 nrow_min IN NUMBER DEFAULT 0,
 nrow_max IN NUMBER DEFAULT NULL)
 RETURN BOOLEAN;

Parameters

Table 194-13 TABLEPRINT Function Parameters

	Parameter	Description
	
ctable

	
The database table.

	
cattributes

	
Other attributes to be included as-is in the tag.

	
ntable_type

	
How to generate the table. Specify HTML_TABLE to generate the table using <TABLE> tags or PRE_TABLE to generate the table using the <PRE> tags. These are constants:

	
HTML_TABLE CONSTANT INTEGER := 1;

	
PRE_TABLE CONSTANT INTEGER := 2;

	
ccolumns

	
A comma-delimited list of columns from ctable to include in the generated table.

	
cclauses

	
WHERE or ORDER BY clauses, which specify which rows to retrieve from the database table, and how to order them.

	
ccol_aliases

	
A comma-delimited list of headings for the generated table.

	
nrow_min

	
The first row, of those retrieved, to display.

	
nrow_max

	
The last row, of those retrieved, to display.

Return Values

Returns TRUE if there are more rows beyond the nrow_max requested, FALSE otherwise.

Usage Notes

	
RAW columns are supported, but LONG RAW columns are not. References to LONG RAW columns will print the result 'Not Printable'.

	
Note that in this function, cattributes is the second rather than the last parameter.

Examples

For browsers that do not support HTML tables, create the following procedure:

CREATE OR REPLACE PROCEDURE showemps IS
 ignore_more BOOLEAN;
BEGIN
 ignore_more := OWA_UTIL.TABLEPRINT('emp', 'BORDER', OWA_UTIL.PRE_TABLE);
END;

Requesting a URL such as

http://myhost:7777/pls/hr/showemps

returns to the following to the client:

<PRE>

| EMPNO |ENAME |JOB |MGR |HIREDATE | SAL | COMM | DEPTNO |

| 7369| SMITH | CLERK | 7902 | 17-DEC-80 | 800 | | 20 |
| 7499| ALLEN | SALESMAN| 7698 | 20-FEB-81 | 1600 | 300 | 30 |
| 7521| WARD | SALESMAN| 7698 | 22-FEB-81 | 1250 | 500 | 30 |
| 7566| JONES | MANAGER | 7839 | 02-APR-81 | 2975 | | 20 |
| 7654| MARTIN | SALESMAN| 7698 | 28-SEP-81 | 1250 | 1400| 30 |
| 7698| BLAKE | MANAGER | 7839 | 01-MAY-81 | 2850 | | 30 |
| 7782| CLARK | MANAGER | 7839 | 09-JUN-81 | 2450 | | 10 |
| 7788| SCOTT | ANALYST | 7566 | 09-DEC-82 | 3000 | | 20 |
| 7839| KING | PRESIDENT | | 17-NOV-81 | 5000 | | 10 |
| 7844| TURNER | SALESMAN| 7698 | 08-SEP-81 | 1500 | 0 | 30 |
| 7876| ADAMS | CLERK | 7788 | 12-JAN-83 | 1100 | | 20 |
| 7900| JAMES | CLERK | 7698 | 03-DEC-81 | 950 | | 30 |
| 7902| FORD | ANALYST | 7566 | 03-DEC-81 | 3000 | | 20 |
| 7934| MILLER | CLERK | 7782 | 23-JAN-82 | 1300 | | 10 |

</PRE>

To view the employees in department 10, and only their employee ids, names, and salaries, create the following procedure:

CREATE OR REPLACE PROCEDURE showemps_10 IS
 ignore_more BOOLEAN;
begin
 ignore_more := OWA_UTIL.TABLEPRINT
 ('EMP', 'BORDER', OWA_UTIL.PRE_TABLE,
 'empno, ename, sal', 'WHERE deptno=10 ORDER BY empno',
 'Employee Number, Name, Salary');
END;

A request for a URL like

http://myhost:7777/pls/hr/showemps_10

would return the following to the client:

<PRE>

| Employee Number |Name | Salary |

| 7782 | CLARK | 2450 |
| 7839 | KING | 5000 |
| 7934 | MILLER | 1300 |

</PRE>

For browsers that support HTML tables, to view the department table in an HTML table, create the following procedure:

CREATE OR REPLACE PROCEDURE showdept IS
 ignore_more BOOLEAN;
BEGIN
 ignore_more := oWA_UTIL.TABLEPRINT('dept', 'BORDER');
END;

A request for a URL like

http://myhost:7777/pls/hr/showdept

would return the following to the client:

<TABLE BORDER>
<TR>
<TH>DEPTNO</TH>
<TH>DNAME</TH>
<TH>LOC</TH>
</TR>
<TR>
<TD ALIGN="LEFT">10</TD>
<TD ALIGN="LEFT">ACCOUNTING</TD>
<TD ALIGN="LEFT">NEW YORK</TD>
</TR>
<TR>
<TD ALIGN="LEFT">20</TD>
<TD ALIGN="LEFT">RESEARCH</TD>
<TD ALIGN="LEFT">DALLAS</TD>
</TR>
<TR>
<TD ALIGN="LEFT">30</TD>
<TD ALIGN="LEFT">SALES</TD>
<TD ALIGN="LEFT">CHICAGO</TD>
</TR>
<TR>
<TD ALIGN="LEFT">40</TD>
<TD ALIGN="LEFT">OPERATIONS</TD>
<TD ALIGN="LEFT">BOSTON</TD>
</TR>
</TABLE>

A Web browser would format this to look like the following table:

	DEPTNO	DNAME	LOC
	10	ACCOUNTING	NEW YORK
	20	RESEARCH	DALLAS
	30	SALES	CHICAGO

TODATE Function

This function converts the DATETYPE Data Type to the standard Oracle DATE type.

Syntax

OWA_UTIL.TODATE(
 p_dateArray IN dateType)
 RETURN DATE;

Parameters

Table 194-14 TODATE Function Parameters

	Parameter	Description
	
p_dateArray

	
The value to convert.

WHO_CALLED_ME Procedure

This procedure returns information (in the form of output parameters) about the PL/SQL code unit that invoked it.

Syntax

OWA_UTIL.WHO_CALLED_ME(
 owner OUT VARCHAR2,
 name OUT VARCHAR2,
 lineno OUT NUMBER,
 caller_t OUT VARCHAR2);

Parameters

Table 194-15 WHO_CALLED_ME Procedure Parameters

	Parameter	Description
	
owner

	
The owner of the program unit.

	
name

	
The name of the program unit. This is the name of the package, if the calling program unit is wrapped in a package, or the name of the procedure or function if the calling program unit is a standalone procedure or function. If the calling program unit is part of an anonymous block, this is NULL.

	
lineno

	
The line number within the program unit where the call was made.

	
caller_t

	
The type of program unit that made the call. The possibilities are: package body, anonymous block, procedure, and function. Procedure and function are only for standalone procedures and functions.

SDO_CS

195 SDO_CS

The SDO_CS package contains functions and procedures for working with coordinate systems. You can perform explicit coordinate transformations on a single geometry or an entire layer of geometries (that is, all geometries in a specified column in a table).

	
Documentation of SDO_CS

Documentation of SDO_CS

For a complete description of this package within the context of Oracle Spatial, see SDO_CS in the Oracle Spatial Developer's Guide.

SDO_CSW_PROCESS

196 SDO_CSW_PROCESS

The SDO_CSW_PROCESS package contains subprograms for various processing operations related to support for Catalog Services for the Web (CSW).

	
Documentation of SDO_CSW_PROCESS

Documentation of SDO_CSW_PROCESS

For a complete description of this package within the context of Oracle Spatial, see SDO_CSW_PROCESS in the Oracle Spatial Developer's Guide.

SDO_GCDR

197 SDO_GCDR

The SDO_GCDR package contains the Oracle Spatial geocoding subprograms, which let you geocode unformatted postal addresses.

	
Documentation of SDO_GCDR

Documentation of SDO_GCDR

For a complete description of this package within the context of Oracle Spatial, see SDO_GCDR in Oracle Spatial Developer's Guide.

SDO_GEOM

198 SDO_GEOM

The SDO_GEOM package contains the geometry functions, which can be grouped into the following categories (with examples of each):

	
Relationship (True/False) between two objects: RELATE, WITHIN_DISTANCE

	
Validation: VALIDATE_GEOMETRY_WITH_CONTEXT, VALIDATE_LAYER_WITH_CONTEXT

	
Single-object operations: SDO_ARC_DENSIFY, SDO_AREA, SDO_BUFFER, SDO_CENTROID, SDO_CONVEXHULL, SDO_LENGTH, SDO_MBR, SDO_POINTONSURFACE

	
Two-object operations: SDO_DISTANCE, SDO_DIFFERENCE, SDO_INTERSECTION, SDO_UNION, SDO_XOR

This chapter contains the following topic:

	
Documentation of SDO_GEOM

Documentation of SDO_GEOM

For a complete description of this package within the context of Oracle Spatial, see SDO_GEOM in the Oracle Spatial Developer's Guide.

SDO_GEOR

199 SDO_GEOR

The SDO_GEOR package contains functions and procedures for the Oracle Spatial GeoRaster feature, which lets you store, index, query, analyze, and deliver raster image data and its associated spatial vector geometry data and metadata.

	
Documentation of SDO_GEOR

Documentation of SDO_GEOR

For complete description of this package within the context of Oracle Spatial, see SDO_GEOR in the Oracle Spatial GeoRaster Developer's Guide.

SDO_GEOR_ADMIN

200 SDO_GEOR_ADMIN

The SDO_GEOR_ADMIN package contains subprograms for administrative operations related to GeoRaster.

	
Documentation of SDO_GEOR_ADMIN

Documentation of SDO_GEOR_ADMIN

For a complete description of this package within the context of Oracle Spatial, see SDO_GEOR_ADMIN in the Oracle Spatial GeoRaster Developer's Guide.

SDO_GEOR_UTL

201 SDO_GEOR_UTL

The SDO_GEOR_UTL package contains utility functions and procedures for the Oracle Spatial GeoRaster feature, including those related to using triggers with GeoRaster data.

	
Documentation of SDO_GEOR_UTL

Documentation of SDO_GEOR_UTL

For complete description of this package within the context of Oracle Spatial, see SDO_GEOR_UTL in the Oracle Spatial GeoRaster Developer's Guide.

SDO_LRS

202 SDO_LRS

The SDO_LRS package contains functions that create, modify, query, and convert linear referencing elements.

	
Documentation of SDO_LRS

Documentation of SDO_LRS

For a complete description of this package within the context of Oracle Spatial, see SDO_LRS in the Oracle Spatial Developer's Guide.

SDO_MIGRATE

203 SDO_MIGRATE

The SDO_MIGRATE package lets you upgrade geometry tables from previous releases of Oracle Spatial.

	
Documentation of SDO_MIGRATE

Documentation of SDO_MIGRATE

For a complete description of this package within the context of Oracle Spatial, see SDO_MIGRATE in the Oracle Spatial Developer's Guide.

SDO_NET

204 SDO_NET

The SDO_NET package contains functions and procedures for working with data modeled as nodes and links in a network.

	
Documentation of SDO_NET

Documentation of SDO_NET

For a complete description of this package within the context of Oracle Spatial, see SDO_NET in the Oracle Spatial Topology and Network Data Models Developer's Guide.

SDO_NET_MEM

205 SDO_NET_MEM

The SDO_NET_MEM package contains functions and procedures for performing editing and analysis operations on network data using a network memory object.

	
Documentation of SDO_NET_MEM

Documentation of SDO_NET_MEM

For a complete description of this package within the context of Oracle Spatial, see SDO_NET_MEM in the Oracle Spatial Topology and Network Data Models Developer's Guide.

SDO_OLS

206 SDO_OLS

The SDO_OLS package contains subprograms for Spatial OpenLS support.

	
Documentation of SDO_OLS

Documentation of SDO_OLS

For a complete description of this package within the context of Oracle Spatial, see SDO_OLS in the Oracle Spatial Developer's Guide.

SDO_PC_PKG

207 SDO_PC_PKG

The SDO_PC_PKG package contains subprograms to support the use of point clouds in Spatial.

	
Documentation of SDO_PC_PKG

Documentation of SDO_PC_PKG

For a complete description of this package within the context of Oracle Spatial, see SDO_PC_PKG in the Oracle Spatial Developer's Guide.

SDO_SAM

208 SDO_SAM

The SDO_SAM package contains functions and procedures for spatial analysis and data mining.

	
Documentation of SDO_SAM

Documentation of SDO_SAM

For a complete description of this package within the context of Oracle Spatial, see SDO_SAM in the Oracle Spatial Developer's Guide.

SDO_TIN_PKG

209 SDO_TIN_PKG

The SDO_TIN_PKG package contains subprograms to support the use of triangulated irregular networks (TINs) in Spatial.

	
Documentation of SDO_TIN_PKG

Documentation of SDO_TIN_PKG

For a complete description of this package within the context of Oracle Spatial, see SDO_TIN_PKG in the Oracle Spatial Developer's Guide.

SDO_TOPO

210 SDO_TOPO

The SDO_TOPO package contains subprograms for creating and managing Oracle Spatial topologies.

	
Documentation of SDO_TOPO

Documentation of SDO_TOPO

For a complete description of this package within the context of Oracle Spatial, see SDO_TOPO in the Oracle Spatial Topology and Network Data Models Developer's Guide.

SDO_TOPO_MAP

211 SDO_TOPO_MAP

The SDO_TOPO_MAP package contains subprograms for editing Oracle Spatial topologies using a cache (TopoMap object).

	
Documentation of SDO_TOPO_MAP

Documentation of SDO_TOPO_MAP

For a complete description of this package within the context of Oracle Spatial, see SDO_TOPO_MAP in the Oracle Spatial Topology and Network Data Models Developer's Guide.

SDO_TUNE

212 SDO_TUNE

The SDO_TUNE package contains Spatial tuning functions and procedures.

	
Documentation of SDO_TUNE

Documentation of SDO_TUNE

For complete description of this package within the context of Oracle Spatial, see SDO_TUNE in the Oracle Spatial Developer's Guide.

SDO_UTIL

213 SDO_UTIL

The SDO_UTIL package contains the utility functions and procedures for Oracle Spatial.

	
Documentation of SDO_UTIL

Documentation of SDO_UTIL

For complete description of this package within the context of Oracle Spatial, see SDO_UTIL in the Oracle Spatial Developer's Guide.

SDO_WFS_LOCK

214 SDO_WFS_LOCK

The SDO_WFS_LOCK package contains subprograms for WFS support for registering and unregistering feature tables. Registering a feature table enables the table for WFS transaction locking; unregistering a feature table disables the table for WFS transaction locking.

	
Documentation of SDO_WFS_LOCK

Documentation of SDO_WFS_LOCK

For a complete description of this package within the context of Oracle Spatial, see SDO_WFS_LOCK in the Oracle Spatial Developer's Guide.

SDO_WFS_PROCESS

215 SDO_WFS_PROCESS

The SDO_WFS_PROCESS package contains subprograms for various processing operations related to support for Web Feature Services.

	
Documentation of SDO_WFS_PROCESS

Documentation of SDO_WFS_PROCESS

For a complete description of this package within the context of Oracle Spatial, see SDO_WFS_PROCESS in the Oracle Spatial Developer's Guide.

SEM_APIS

216 SEM_APIS

The SEM_APIS package contains subprograms for working with the Resource Description Framework (RDF) and Web Ontology Language (OWL) in an Oracle database.

	
Documentation of SEM_APIS

Documentation of SEM_APIS

For a complete description of this package within the context of Oracle Database semantic technology support, see SEM_APIS in the Oracle Database Semantic Technologies Developer's Guide.

SEM_PERF

217 SEM_PERF

The SEM_PERF package contains subprograms for examining and enhancing the performance of the Resource Description Framework (RDF) and Web Ontology Language (OWL) support in an Oracle database.

	
Documentation of SEM_PERF

Documentation of SEM_PERF

For a complete description of this package within the context of Oracle Database semantic technology support, see SEM_PERF in the Oracle Database Semantic Technologies Developer's Guide.

SEM_RDFCTX

218 SEM_RDFCTX

The SEM_RDFCTX package contains subprograms for managing extractor policies and semantic indexes created for documents.

	
Documentation of SEM_RDFCTX

Documentation of SEM_RDFCTX

For a complete description of this package within the context of Oracle Database semantic technology support, see SEM_RDFCTX in the Oracle Database Semantic Technologies Developer's Guide.

SEM_RDFSA

219 SEM_RDFSA

The SEM_RDFSA package contains subprograms for providing fine-grained access control to RDF data, using either a virtual private database (VPD) or Oracle Label Security (OLS).

	
Documentation of SEM_RDFSA

Documentation of SEM_RDFSA

For a complete description of this package within the context of Oracle Database semantic technology support, see SEM_RDFSA in the Oracle Database Semantic Technologies Developer's Guide.

UTL_COLL

220 UTL_COLL

The UTL_COLL package lets PL/SQL programs use collection locators to query and update.

This chapter contains the following topics:

	
Summary of UTL_COLL Subprograms

Summary of UTL_COLL Subprograms

Table 220-1 UTL_COLL Package Subprograms

	Subprogram	Description
	
IS_LOCATOR Function

	
Determines whether a collection item is actually a locator or not

IS_LOCATOR Function

This function determines whether a collection item is actually a locator or not.

Syntax

UTL_COLL.IS_LOCATOR (
 coln IN STANDARD)
 RETURNS BOOLEAN;

Pragmas

Asserts WNDS, WNPS and RNPS pragmas

Parameters

Table 220-2 IS_LOCATOR Function Parameters

	Parameter	Description
	
coln

	
Nested table or varray item.

Return Values

Table 220-3 IS_LOCATOR Function Return Values

	Return Value	Description
	
1

	
Collection item is indeed a locator.

	
0

	
Collection item is not a locator.

Examples

CREATE OR REPLACE TYPE list_t as TABLE OF VARCHAR2(20);
/

CREATE OR REPLACE TYPE phone_book_t AS OBJECT (
 pno number,
 ph list_t);
/

CREATE TABLE phone_book OF phone_book_t
 NESTED TABLE ph STORE AS nt_ph;
CREATE TABLE phone_book1 OF phone_book_t
 NESTED TABLE ph STORE AS nt_ph_1 RETURN LOCATOR;

INSERT INTO phone_book VALUES(1, list_t('650-633-5707','650-323-0953'));
INSERT INTO phone_book1 VALUES(1, list_t('415-555-1212'));

CREATE OR REPLACE PROCEDURE chk_coll IS
 plist list_t;
 plist1 list_t;
BEGIN
 SELECT ph INTO plist FROM phone_book WHERE pno=1;

 SELECT ph INTO plist1 FROM phone_book1 WHERE pno=1;

 IF (UTL_COLL.IS_LOCATOR(plist)) THEN
 DBMS_OUTPUT.PUT_LINE('plist is a locator');
 ELSE
 DBMS_OUTPUT.PUT_LINE('plist is not a locator');
 END IF;

 IF (UTL_COLL.IS_LOCATOR(plist1)) THEN
 DBMS_OUTPUT.PUT_LINE('plist1 is a locator');
 ELSE
 DBMS_OUTPUT.PUT_LINE('plist1 is not a locator');
 END IF;

END chk_coll;

SET SERVEROUTPUT ON
EXECUTE chk_coll;

UTL_COMPRESS

221 UTL_COMPRESS

The UTL_COMPRESS package provides a set of data compression utilities.

This chapter contains the following topics:

	
Using UTL_COMPRESS

	
Constants

	
Exceptions

	
Operational Notes

	
Summary of UTL_COMPRESS Subprograms

Using UTL_COMPRESS

	
Constants

	
Exceptions

	
Operational Notes

Constants

Define max number of handles for piecewise operations:

UTLCOMP_MAX_HANDLE CONSTANT PLS_INTEGER := 5;

Exceptions

Table 221-1 UTL_COMPRESS Exceptions

	Exception	Description
	
BUFFER_TOO_SMALL

	
The compressed representation is too big.

	
DATA_ERROR

	
The input or output data stream was found to be an invalid format.

	
INVALID_ARGUMENT

	
One of the arguments was an invalid type or value.

	
INVALID_HANDLE

	
Invalid handle for piecewise compress or uncompress.

	
STREAM_ERROR

	
An error occurred during compression or uncompression of the data stream

Operational Notes

	
It is the caller's responsibility to free the temporary LOB returned by the LZ* functions with DBMS_LOB.FREETEMPORARY call.

	
A BFILE passed into LZ_COMPRESS* or lZ_UNCOMPRESS* has to be opened by DBMS_LOB.FILEOPEN.

	
Under special circumstances (especially if the input has already been compressed) the output produced by one of the UTL_COMPRESS subprograms may be the same size, or even slightly larger than, the input.

	
The output of the UTL_COMPRESS compressed data is compatible with gzip(with -n option)/gunzip on a single file.

Summary of UTL_COMPRESS Subprograms

Table 221-2 UTL_COMPRESS Package Subprograms

	Subprogram	Description
	
ISOPEN Function

	
Checks to see if the handle to a piecewise (un)compress context is open or closed

	
LZ_COMPRESS Functions and Procedures

	
Compresses data using Lempel-Ziv compression algorithm

	
LZ_COMPRESS_ADD Procedure

	
Adds a piece of compressed data

	
LZ_COMPRESS_CLOSE

	
Closes and finishes piecewise compress operation

	
LZ_COMPRESS_OPEN

	
Initializes a piecewise context that maintains the compress state and data

	
LZ_UNCOMPRESS Functions and Procedures

	
Accepts compressed input, verifies it to be a valid and uncompresses it

	
LZ_UNCOMPRESS_EXTRACT Procedure

	
Extracts a piece of uncompressed data

	
LZ_UNCOMPRESS_OPEN Function

	
Initializes a piecewise context that maintains the uncompress state and data

	
LZ_UNCOMPRESS_CLOSE Procedure

	
Closes and finishes the piecewise uncompress

ISOPEN Function

This function checks to see if the handle to a piecewise (un)compress context is open or closed.

Syntax

UTL_COMPRESS.ISOPEN(
 handle in binary_integer)
 RETURN BOOLEAN;

Parameters

Table 221-3 ISOPEN Function Parameters

	Parameter	Description
	
handle

	
The handle to a piecewise uncompress context.

Return Values

TRUE if the given piecewise handle is opened, otherwise FALSE.

Examples

IF (UTL_COMPRESS.ISOPEN(myhandle) = TRUE) then
 UTL_COMPRESS.LZ_COMPRESS_CLOSE(myhandle, lob_1);
END IF;

Alternatively:

IF (UTL_COMPRESS.ISOPEN(myhandle) = TRUE) THEN
 UTL_COMPRESS.LZ_UNCOMPRESS_CLOSE(myhandle);
END IF;

LZ_COMPRESS Functions and Procedures

These functions and procedures compress data using Lempel-Ziv compression algorithm.

Syntax

This function accept a RAW as input, compress it and return the compressed RAW result and metadata:

UTL_COMPRESS.LZ_COMPRESS (
 src IN RAW,
 quality IN BINARY_INTEGER DEFAULT 6)
 RETURN RAW;

This function accept a BLOB as input, compress it and returns a temporary BLOB for the compressed data:

UTL_COMPRESS.LZ_COMPRESS (
 src IN BLOB,
 quality IN BINARY_INTEGER DEFAULT 6)
 RETURN BLOB;

This procedure returns the compressed data into the existing BLOB(dst) which is trimmed to the compressed data size:

UTL_COMPRESS.LZ_COMPRESS (
 src IN BLOB,
 dst IN OUT NOCOPY BLOB,
 quality IN BINARY_INTEGER DEFAULT 6);

This function returns a temporary BLOB for the compressed data:

UTL_COMPRESS.LZ_COMPRESS (
 src IN BFILE,
 quality IN BINARY_INTEGER DEFAULT 6)
 RETURN BLOB;

This procedure will return the compressed data into the existing BLOB(dst) which is trimmed to the compressed data size:

UTL_COMPRESS.LZ_COMPRESS (
 src IN BFILE,
 dst IN OUT NOCOPY BLOB,
 quality IN BINARY_INTEGER DEFAULT 6);

Parameters

Table 221-4 LZ_COMPRESS Function and Procedures Parameters

	Parameter	Description
	
src

	
Data (RAW, BLOB or BFILE) to be compressed.

	
dst

	
Destination for compressed data

	
quality

	
An integer in the range 1 to 9, 1=fast compression, 9=best compression, default=6

Usage Notes

	
quality is an optional compression tuning value. It allows the UTL_COMPRESS user to choose between speed and compression quality, meaning the percentage of reduction in size. A faster compression speed will result in less compression of the data. A slower compression speed will result in more compression of the data. Valid values are [1..9], with 1=fastest and 9=slowest. The default 'quality' value is 6.

LZ_COMPRESS_ADD Procedure

This procedure adds a piece of compressed data.

Syntax

UTL_COMPRESS.LZ_COMPRESS_ADD (
 handle IN BINARY_INTEGER,
 dst IN OUT NOCOPY BLOB,
 src IN RAW);

Parameters

Table 221-5 LZ_COMPRESS_ADD Procedure Parameters

	Parameter	Description
	
handle

	
The handle to a piecewise compress context.

	
dst

	
The opened LOB from LZ_COMPRESS_OPEN to store compressed data.

	
src

	
The input data to be compressed.

Exceptions

	
invalid_handle - out of range invalid or unopened handle.

	
invalid_argument - NULL handle, src, dst, or invalid dst.

LZ_COMPRESS_CLOSE

This procedure closes and finishes piecewise compress operation.

Syntax

UTL_COMPRESS.LZ_COMPRESS_CLOSE (
 handle IN BINARY_INTEGER,
 dst IN OUT NOCOPY BLOB);

Parameters

Table 221-6 LZ_COMPRESS_CLOSE Procedure Parameters

	Parameter	Description
	
handle

	
The handle to a piecewise compress context.

	
dst

	
The opened LOB from LZ_COMPRESS_OPEN to store compressed data.

Exceptions

	
invalid_handle - out of range invalid or uninitialized handle.

	
invalid_argument - NULL handle, dst, or invalid dst.

LZ_COMPRESS_OPEN

This function initializes a piecewise context that maintains the compress state and data.

Syntax

UTL_COMPRESS.LZ_COMPRESS_OPEN (
 dst IN OUT NOCOPY BLOB,
 quality IN BINARY_INTEGER DEFAULT 6)
 RETURN BINARY_INTEGER;

Parameters

Table 221-7 LZ_COMPRESS_OPEN Function Parameters

	Parameter	Description
	
dst

	
User supplied LOB to store compressed data.

	
quality

	
Speed versus efficiency of resulting compressed output.

	
Valid values are the range 1..9, with a default value of 6.

	
1=fastest compression, 9=slowest compression and best compressed file size.

Return Values

A handle to an initialized piecewise compress context.

Exceptions

	
invalid_handle - invalid handle, too many open handles.

	
invalid_argument - NULL dst or invalid quality specified.

Usage Notes

Close the opened handle with LZ_COMPRESS_CLOSE

	
once the piecewise compress is completed

	
in the event of an exception in the middle of process

because lack of doing so will cause these handles to leak.

LZ_UNCOMPRESS Functions and Procedures

This procedure accepts as input a RAW, BLOB or BFILE compressed string, verifies it to be a valid compressed value, uncompresses it using Lempel-Ziv compression algorithm, and returns the uncompressed RAW or BLOB result.

Syntax

This function returns uncompressed data as RAW:

UTL_COMPRESS.LZ_UNCOMPRESS(
 src IN RAW)
 RETURN RAW;

This function returns uncompressed data as a temporary BLOB:

UTL_COMPRESS.LZ_UNCOMPRESS(
 src IN BLOB)
 RETURN BLOB;

This procedure returns the uncompressed data into the existing BLOB(dst), which will be trimmed to the uncompressed data size:

UTL_COMPRESS.LZ_UNCOMPRESS(
 src IN BLOB,
 dst IN OUT NOCOPY BLOB);

This function returns a temporary BLOB for the uncompressed data:

UTL_COMPRESS.LZ_UNCOMPRESS(
 src IN BFILE)
 RETURN BLOB;

This procedure returns the uncompressed data into the existing BLOB(dst). The original dst data will be overwritten.

UTL_COMPRESS.LZ_UNCOMPRESS(
 src IN BFILE,
 dst IN OUT NOCOPY BLOB);

Parameters

Table 221-8 LZ_UNCOMPRESS Function and Procedures Parameters

	Parameter	Description
	
src

	
Compressed data.

	
dst

	
Destination for uncompressed data.

LZ_UNCOMPRESS_EXTRACT Procedure

This procedure extracts a piece of uncompressed data.

Syntax

UTL_COMPRESS.LZ_UNCOMPRESS_EXTRACT(
 handle IN BINARY_INTEGER,
 dst OUT NOCOPY RAW);

Parameters

Table 221-9 LZ_UNCOMPRESS_EXTRACT Function Parameters

	Parameter	Description
	
handle

	
The handle to a piecewise uncompress context.

	
dst

	
The uncompressed data.

Exceptions

	
no_data_found - finished uncompress.

	
invalid_handle - out of range invalid or uninitialized handle.

	
invalid_argument - NULL handle.

LZ_UNCOMPRESS_OPEN Function

This function initializes a piecewise context that maintains the uncompress state and data.

Syntax

UTL_COMPRESS.LZ_UNCOMPRESS_OPEN(
 src IN BLOB)
 RETURN BINARY_INTEGER;

Parameters

Table 221-10 LZ_UNCOMPRESS_OPEN Function Parameters

	Parameter	Description
	
src

	
The input data to be uncompressed.

Return Values

A handle to an initialized piecewise compress context.

Exceptions

	
invalid_handle - invalid handle, too many open handles.

	
invalid_argument - NULL src.

Usage Notes

Close the opened handle with LZ_UNCOMPRESS_CLOSE

	
once the piecewise uncompress is completed

	
in the event of an exception in the middle of process

because lack of doing so will cause these handles to leak.

LZ_UNCOMPRESS_CLOSE Procedure

This procedure closes and finishes the piecewise uncompress.

Syntax

UTL_COMPRESS.LZ_UNCOMPRESS_CLOSE(
 handle IN BINARY_INTEGER);

Parameters

Table 221-11 LZ_UNCOMPRESS_CLOSE Procedure Parameters

	Parameter	Description
	
handle

	
The handle to a piecewise uncompress context.

Exceptions

	
invalid_handle - out of range invalid or uninitialized handle.

	
invalid_argument - NULL handle.

UTL_ENCODE

222 UTL_ENCODE

The UTL_ENCODE package provides functions that encode RAW data into a standard encoded format so that the data can be transported between hosts. You can use UTL_ENCODE functions to encode the body of email text. The package also contains the decode counterpart functions of the encode functions. The functions follow published standards for encoding to accommodate non-Oracle utilities on the sending or receiving ends.

This chapter contains the following topic:

	
Summary of UTL_ENCODE Subprograms

Summary of UTL_ENCODE Subprograms

Table 222-1 UTL_ENCODE Package Subprograms

	Subprogram	Description
	
BASE64_DECODE Function

	
Reads the base 64-encoded RAW input string and decodes it to its original RAW value

	
BASE64_ENCODE Function

	
Encodes the binary representation of the RAW value into base 64 elements and returns it in the form of a RAW string

	
MIMEHEADER_DECODE Function

	
Decodes a string from mime header format

	
MIMEHEADER_ENCODE Function

	
Encodes a string into mime header format

	
QUOTED_PRINTABLE_DECODE Function

	
Reads the varchar2 quoted printable format input string and decodes it to the corresponding RAW string

	
QUOTED_PRINTABLE_ENCODE Function

	
Reads the RAW input string and encodes it to the corresponding quoted printable format string

	
TEXT_DECODE Function

	
Decodes a character set sensitive text string

	
TEXT_ENCODE Function

	
Encodes a character set sensitive text string

	
UUDECODE Function

	
Reads the RAW uuencode format input string and decodes it to the corresponding RAW string

	
UUENCODE Function

	
Reads the RAW input string and encodes it to the corresponding uuencode format string

BASE64_DECODE Function

This function reads the base 64-encoded RAW input string and decodes it to its original RAW value.

Syntax

UTL_ENCODE.BASE64_DECODE (
 r IN RAW)
RETURN RAW;

Pragmas

pragma RESTRICT_REFERENCES(base64_decode, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 222-2 BASE64_DECODE Function Parameters

	Parameter	Description
	
r

	
The RAW string containing base 64-encoded data. There are no defaults or optional parameters.

Return Values

Table 222-3 BASE64_DECODE Function Return Values

	Return	Description
	
RAW

	
Contains the decoded string

BASE64_ENCODE Function

This function encodes the binary representation of the RAW value into base 64 elements and returns it in the form of a RAW string.

Syntax

UTL_ENCODE.BASE64_ENCODE (
 r IN RAW)
RETURN RAW;

Pragmas

pragma RESTRICT_REFERENCES(base64_encode, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 222-4 BASE64_ENCODE Function Parameters

	Parameter	Description
	
r

	
The RAW value to be encoded. There are no defaults or optional parameters.

Return Values

Table 222-5 BASE64_ENCODE Function Return Values

	Return	Description
	
RAW

	
Contains the encoded base 64 elements

MIMEHEADER_DECODE Function

This function accepts as input an "encoded word" of the form:

=?<charset>?<encoding>?<encoded text>?=
=?ISO-8859-1?Q?Here is some encoded text?=

The <encoded text> is encapsulated in mime header tags which give the MIMEHEADER_DECODE function information about how to decode the string. The mime header metadata tags are stripped from the input string and the <encoded text> is converted to the base database character set as follows:

	
If this is a UTF16 platform, convert the encoded text from UTF16 to ASCII

	
If this is an EBCDIC platform, convert the encoded text from EBCDIC to ASCII

	
If this is an ASCII or UTF8 platform, no conversion needed

The string is decoded using either quoted-printable or base64 decoding, as specified by the <encoding> metadata tag in the encoded word. The resulting converted and decoded text is returned to the caller as a VARCHAR2 string.

Syntax

UTL_ENCODE.MIMEHEADER_DECODE (
 buf IN VARCHAR2 CHARACTER SET ANY_CS)
 RETURN data VARCHAR2 CHARACTER SET buf%CHARSET;

Parameters

Table 222-6 MIMEHEADER_DECODE Function Parameters

	Parameter	Description
	
buf

	
The encoded text data with mime header format tags.

Return Values

Table 222-7 MIMEHEADER_DECODE Function Return Values

	Return	Description
	
data

	
The encoded text data with mime header format tags

Examples

v2:=utl_encode.mimeheader_decode('=?ISO-8859-1?Q?Here is some encoded text?=');

MIMEHEADER_ENCODE Function

This function returns as an output an "encoded word" of the form:

=?<charset>?<encoding>?<encoded text>?=
=?ISO-8859-1?Q?Here is some text?=

The buf input parameter is the text to be encoded and becomes the <encoded text>.

The <encoding> value is either "Q" or "B" for quoted-printable encode or base64 encoding respectively. The ENCODING input parameter accepts as valid values UTL_ENCODE.QUOTED_PRINTABLE or UTL_ENCODE.BASE64 or NULL. If NULL, quoted-printable encoding is selected as a default value.

The <charset> value is specified as the input parameter encode_charset. If NULL, the database character set is selected as a default value.

The mimeheader encoding process includes conversion of the buf input string to the character set specified by the encode_charset parameter. The converted string is encoded to either quoted-printable or base64 encoded format. The mime header tags are appended and prepended.

Finally, the string is converted to the base character set of the database:

	
If this is a UTF16 platform, convert the encoded text to UTF16

	
If this is an EBCDIC platform, convert the encoded text to EBCDIC

	
If this is an ASCII or UTF8 platform, no conversion needed.

Syntax

UTL_ENCODE.MIMEHEADER_ENCODE (
 buf IN VARCHAR2 CHARACTER SET ANY_CS,
 encode_charset IN VARCHAR2 DEFAULT NULL,
 encoding IN PLS_INTEGER DEFAULT NULL)
 RETURN string VARCHAR2 CHARACTER SET buf%CHARSET;

Parameters

Table 222-8 MIMEHEADER_ENCODE Function Parameters

	Parameter	Description
	
buf

	
The text data.

	
encode_charset

	
The target character set.

	
encoding

	
The encoding format. Valid values are UTL_ENCODE.BASE64, UTL_ENCODE.QUOTED_PRINTABLE and NULL

Return Values

Table 222-9 MIMEHEADER_ENCODE Function Return Values

	Return	Description
	
string

	
A VARCHAR2 encoded string with mime header format tags.

QUOTED_PRINTABLE_DECODE Function

This function reads the varchar2 quoted printable format input string and decodes it to the corresponding RAW string.

Syntax

UTL_ENCODE.QUOTED_PRINTABLE_DECODE (
 r IN RAW)
RETURN RAW;

Pragmas

pragma RESTRICT_REFERENCES(quoted_printable_decode, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 222-10 QUOTED_PRINTABLE_DECODE Function Parameters

	Parameters	Description
	
r

	
The RAW string containing a quoted printable data string. There are no defaults or optional parameters.

Return Values

Table 222-11 QUOTED_PRINTABLE_DECODE Function Return Values

	Return	Description
	
RAW

	
The decoded string

QUOTED_PRINTABLE_ENCODE Function

This function reads the RAW input string and encodes it to the corresponding quoted printable format string.

Syntax

UTL_ENCODE.QUOTED_PRINTABLE_ENCODE (
 r IN RAW)
RETURN RAW;

Pragmas

pragma RESTRICT_REFERENCES(quoted_printable_encode, WNDS, RNDS,WNPS, RNPS);

Parameters

Table 222-12 QUOTED_PRINTABLE_ENCODE Function Parameters

	Parameter	Description
	
r

	
The RAW string. There are no defaults or optional parameters.

Return Values

Table 222-13 QUOTED_PRINTABLE_ENCODE Function Return Values

	Return	Description
	
RAW

	
Contains the quoted printable string

TEXT_DECODE Function

This function converts the input text to the target character set as specified by the encode_charset parameter, if not NULL. The encoded text is converted to the base character set of database, as follows:

	
If this is a UTF16 platform, convert the encoded text from UTF16 to ASCII

	
If this is an EBCDIC platform, convert the encoded text from EBCDIC to ASCII

	
If this is an ASCII or UTF8 platform, no conversion needed

You can decode from either quoted-printable or base64 format, with regard to each encoding parameter. If NULL, quoted-printable is selected as a default decoding format. If encode_charset is not NULL, you convert the string from the specified character set to the database character set. The resulting decoded and converted text string is returned to the caller.

Syntax

UTL_ENCODE.TEXT_DECODE(
 buf IN VARCHAR2 CHARACTER SET ANY_CS,
 encode_charset IN VARCHAR2 DEFAULT NULL,
 encoding IN PLS_INTEGER DEFAULT NULL)
 RETURN string VARCHAR2 CHARACTER SET buf%CHARSET;

Parameters

Table 222-14 TEXT_DECODE Function Parameters

	Parameter	Description
	
buf

	
The encoded text data.

	
encode_charset

	
The source character set.

	
encoding

	
The encoding format. Valid values are UTL_ENCODE.BASE64, UTL_ENCODE.QUOTED_PRINTABLE and NULL.

Return Values

Table 222-15 QUOTED_PRINTABLE_ENCODE Function Return Values

	Return	Description
	
string

	
A VARCHAR2 decoded text string.

Examples

 v2:=UTL_ENCODE.TEXT_DECODE(
 'Here is some text',
 WE8ISO8859P1,
 UTL_ENCODE.BASE64);

TEXT_ENCODE Function

This function converts the input text to the target character set as specified by the encode_charset parameter, if not NULL. The text is encoded to either base64 or quoted-printable format, as specified by the encoding parameter. Quoted-printable is selected as a default if ENCODING is NULL.

The encoded text is converted to the base character set of the database:

	
If this is a UTF16 platform, convert the encoded text to UTF16

	
If this is an EBCDIC platform, convert the encoded text to EBCDIC

	
If this is an ASCII or UTF8 platform, no conversion needed

The resulting encoded and converted text string is returned to the caller.

Syntax

UTL_ENCODE.TEXT_ENCODE (
 buf IN VARCHAR2 CHARACTER SET ANY_CS,
 encode_charset IN VARCHAR2 DEFAULT NULL,
 encoding IN PLS_INTEGER DEFAULT NULL)
 RETURN string VARCHAR2 CHARACTER SET buf%CHARSET;

Parameters

Table 222-16 TEXT_ENCODE Function Parameters

	Parameter	Description
	
buf

	
The text data.

	
encode_charset

	
The target character set.

	
encoding

	
The encoding format. Valid values are UTL_ENCODE.BASE64, UTL_ENCODE.QUOTED_PRINTABLE and NULL

Return Values

Table 222-17 TEXT_ENCODE Function Return Values

	Return	Description
	
string

	
A VARCHAR2 encoded string with mime header format tags.

Examples

v2:=utl_encode.text_encode(
 'Here is some text',
 'WE8ISO8859P1',
 UTL_ENCODE.BASE64);

UUDECODE Function

This function reads the RAW uuencode format input string and decodes it to the corresponding RAW string. See "UUENCODE Function" for discussion of the cumulative nature of UUENCODE and UUDECODE for data streams.

Syntax

UTL_ENCODE.UUDECODE (
 r IN RAW)
RETURN RAW;

Pragmas

pragma RESTRICT_REFERENCES(uudecode, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 222-18 UUDECODE Function Parameters

	Parameter	Description
	
r

	
The RAW string containing the uuencoded data string. There are no defaults or optional parameters.

Return Values

Table 222-19 UUDECODE Function Return Values

	Return	Description
	
RAW

	
The decoded RAW string

UUENCODE Function

This function reads the RAW input string and encodes it to the corresponding uuencode format string. The output of this function is cumulative, in that it can be used to encode large data streams, by splitting the data stream into acceptably sized RAW values, encoded, and concatenated into a single encoded string.

Syntax

UTL_ENCODE.UUENCODE (
 r IN RAW,
 type IN PLS_INTEGER DEFAULT 1,
 filename IN VARCHAR2 DEFAULT NULL,
 permission IN VARCHAR2 DEFAULT NULL) RETURN RAW;

Pragmas

pragma RESTRICT_REFERENCES(uuencode, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 222-20 UUENCODE Function Parameters

	Parameter	Description
	
r

	
RAW string

	
type

	
Optional number parameter containing the type of uuencoded output. Options:

complete—a defined PL/SQL constant with a value of 1. (default) header_piece ...middle_piece ...end_piece

	
filename

	
Optional varchar2 parameter containing the uuencode filename; the default is uuencode.txt

	
permission

	
Optional varchar2 parameter containing the permission mode; the default is 0 (a text string zero).

Return Values

Table 222-21 UUENCODE Function Return Values

	Return	Description
	
RAW

	
Contains the uuencode format string

UTL_FILE

223 UTL_FILE

With the UTL_FILE package, PL/SQL programs can read and write operating system text files. UTL_FILE provides a restricted version of operating system stream file I/O.

This chapter contains the following topics:

	
Using UTL_FILE

	
Security Model

	
Operational Notes

	
Rules and Limits

	
Exceptions

	
Examples

	
Data Structures

	
Summary of UTL_FILE Subprograms

Using UTL_FILE

	
Security Model

	
Operational Notes

	
Rules and Limits

	
Exceptions

	
Examples

Security Model

The set of files and directories that are accessible to the user through UTL_FILE is controlled by a number of factors and database parameters. Foremost of these is the set of directory objects that have been granted to the user. The nature of directory objects is discussed in the Oracle Database SQL Language Reference.

Assuming the user has both READ and WRITE access to the directory object USER_DIR, the user can open a file located in the operating system directory described by USER_DIR, but not in subdirectories or parent directories of this directory.

Lastly, the client (text I/O) and server implementations are subject to operating system file permission checking.

UTL_FILE provides file access both on the client side and on the server side. When run on the server, UTL_FILE provides access to all operating system files that are accessible from the server. On the client side, as in the case for Forms applications, UTL_FILE provides access to operating system files that are accessible from the client.

In the past, accessible directories for the UTL_FILE functions were specified in the initialization file using the UTL_FILE_DIR parameter. However, UTL_FILE_DIR access is no longer recommended. Oracle recommends that you instead use the directory object feature, which replaces UTL_FILE_DIR. Directory objects offer more flexibility and granular control to the UTL_FILE application administrator, can be maintained dynamically (that is, without shutting down the database), and are consistent with other Oracle tools. CREATE ANY DIRECTORY privilege is granted only to SYS and SYSTEM by default.

	
Note:

Use the CREATE DIRECTORY feature instead of UTL_FILE_DIR for directory access verification.

Note that neither hard nor symbolic links are supported.

On UNIX systems, the owner of a file created by the FOPEN function is the owner of the shadow process running the instance. Normally, this owner is ORACLE. Files created using FOPEN are always writable and readable using the UTL_FILE subprograms. However, non-privileged operating system users who need to read these files outside of PL/SQL may need access from a system administrator.

	
Caution:

The privileges needed to access files in a directory object are operating system specific. UTL_FILE directory object privileges give you read and write access to all files within the specified directory.

Operational Notes

The file location and file name parameters are supplied to the FOPEN function as separate strings, so that the file location can be checked against the list of accessible directories as specified by the ALL_DIRECTORIES view of accessible directory objects. Together, the file location and name must represent a legal filename on the system, and the directory must be accessible. A subdirectory of an accessible directory is not necessarily also accessible; it too must be specified using a complete path name matching an ALL_DIRECTORIES object.

UTL_FILE implicitly interprets line terminators on read requests, thereby affecting the number of bytes returned on a GET_LINE call. For example, the len parameter of UTL_FILE.GET_LINE specifies the requested number of bytes of character data. The number of bytes actually returned to the user will be the lesser of:

	
The GET_LINE len parameter, or

	
The number of bytes until the next line terminator character, or

	
The max_linesize parameter specified by UTL_FILE.FOPEN

The FOPEN max_linesize parameter must be a number in the range 1 and 32767. If unspecified, Oracle supplies a default value of 1024. The GET_LINE len parameter must be a number in the range 1 and 32767. If unspecified, Oracle supplies the default value of max_linesize. If max_linesize and len are defined to be different values, then the lesser value takes precedence.

UTL_FILE.GET_RAW ignores line terminators.

UTL_FILE expects that files opened by UTL_FILE.FOPEN in text mode are encoded in the database character set. It expects that files opened by UTL_FILE.FOPEN_NCHAR in text mode are encoded in the UTF8 character set. If an opened file is not encoded in the expected character set, the result of an attempt to read the file is indeterminate. When data encoded in one character set is read and Globalization Support is told (such as by means of NLS_LANG) that it is encoded in another character set, the result is indeterminate. If NLS_LANG is set, it should therefore be the same as the database character set.

Rules and Limits

Operating system-specific parameters, such as C-shell environment variables under UNIX, cannot be used in the file location or file name parameters.

UTL_FILE I/O capabilities are similar to standard operating system stream file I/O (OPEN, GET, PUT, CLOSE) capabilities, but with some limitations. For example, you call the FOPEN function to return a file handle, which you use in subsequent calls to GET_LINE or PUT to perform stream I/O to a file. When file I/O is done, you call FCLOSE to complete any output and free resources associated with the file.

	
Note:

The UTL_FILE package is similar to the client-side TEXT_IO package currently provided by Oracle Procedure Builder. Restrictions for a server implementation require some API differences between UTL_FILE and TEXT_IO. In PL/SQL file I/O, errors are returned using PL/SQL exceptions.

Exceptions

Table 223-1 UTL_FILE Package Exceptions

	Exception Name	Description
	
INVALID_PATH

	
File location is invalid.

	
INVALID_MODE

	
The open_mode parameter in FOPEN is invalid.

	
INVALID_FILEHANDLE

	
File handle is invalid.

	
INVALID_OPERATION

	
File could not be opened or operated on as requested.

	
READ_ERROR

	
Destination buffer too small, or operating system error occurred during the read operation

	
WRITE_ERROR

	
Operating system error occurred during the write operation.

	
INTERNAL_ERROR

	
Unspecified PL/SQL error

	
CHARSETMISMATCH

	
A file is opened using FOPEN_NCHAR, but later I/O operations use nonchar functions such as PUTF or GET_LINE.

	
FILE_OPEN

	
The requested operation failed because the file is open.

	
INVALID_MAXLINESIZE

	
The MAX_LINESIZE value for FOPEN() is invalid; it should be within the range 1 to 32767.

	
INVALID_FILENAME

	
The filename parameter is invalid.

	
ACCESS_DENIED

	
Permission to access to the file location is denied.

	
INVALID_OFFSET

	
Causes of the INVALID_OFFSET exception:

	
ABSOLUTE_OFFSET = NULL and RELATIVE_OFFSET = NULL, or

	
ABSOLUTE_OFFSET < 0, or

	
Either offset caused a seek past the end of the file

	
DELETE_FAILED

	
The requested file delete operation failed.

	
RENAME_FAILED

	
The requested file rename operation failed.

Procedures in UTL_FILE can also raise predefined PL/SQL exceptions such as NO_DATA_FOUND or VALUE_ERROR.

Examples

Example 1

	
Note:

The examples are UNIX-specific.

Given the following:

SQL> CREATE DIRECTORY log_dir AS '/appl/gl/log';
SQL> GRANT READ ON DIRECTORY log_dir TO DBA;
SQL> GRANT WRITE ON DIRECTORY log_dir TO DBA;

SQL> CREATE DIRECTORY USER_DIR AS '/appl/gl/user'';
SQL> GRANT READ ON DIRECTORY USER_DIR TO PUBLIC;
SQL> GRANT WRITE ON DIRECTORY USER_DIR TO PUBLIC;

The following file locations and filenames are valid and accessible as follows:

	File Location	Filename	READ and WRITE
	/appl/gl/log	L12345.log	Users with DBA privilege
	/appl/gl/user	u12345.tmp	All users

The following file locations and filenames are invalid:

	File Location	Filename	Invalid Because
	/appl/gl/log/backup	L12345.log	# subdirectories are not accessible
	/APPL/gl/log	L12345.log	# directory strings must follow case sensitivity rules as required by the O/S
	/appl/gl/log	backup/L1234.log	# filenames may not include portions of directory paths
	/user/tmp	L12345.log	# no corresponding CREATE DIRECTORY command has been issued

Example 2

DECLARE
 V1 VARCHAR2(32767);
 F1 UTL_FILE.FILE_TYPE;
BEGIN
 -- In this example MAX_LINESIZE is less than GET_LINE's length request
 -- so the number of bytes returned will be 256 or less if a line terminator is seen.
 F1 := UTL_FILE.FOPEN('USER_DIR','u12345.tmp','R',256);
 UTL_FILE.GET_LINE(F1,V1,32767);
 UTL_FILE.FCLOSE(F1);

 -- In this example, FOPEN's MAX_LINESIZE is NULL and defaults to 1024,
 -- so the number of bytes returned will be 1024 or less if a line terminator is seen.
 F1 := UTL_FILE.FOPEN('USER_DIR','u12345.tmp','R');
 UTL_FILE.GET_LINE(F1,V1,32767);
 UTL_FILE.FCLOSE(F1);

 -- In this example, GET_LINE doesn't specify a number of bytes, so it defaults to
 -- the same value as FOPEN's MAX_LINESIZE which is NULL in this case and defaults to 1024.
 -- So the number of bytes returned will be 1024 or less if a line terminator is seen.
 F1 := UTL_FILE.FOPEN('USER_DIR','u12345.tmp','R');
 UTL_FILE.GET_LINE(F1,V1);
 UTL_FILE.FCLOSE(F1);
END;

Data Structures

The UTL_FILE package defines a RECORD type.

Record Types

	
FILETYPE Record Type

FILETYPE Record Type

The contents of FILE_TYPE are private to the UTL_FILE package. You should not reference or change components of this record.

TYPE file_type IS RECORD (
 id BINARY_INTEGER,
 datatype BINARY_INTEGER,
 byte_mode BOOLEAN);

Fields

Table 223-2 FILE_TYPE Fields

	Field	Description
	
id

	
A numeric value indicating the internal file handle number

	
datatype

	
Indicates whether the file is a CHAR file, Nchar file or other (binary)

	
byte_mode

	
Indicates whether the file was open as a binary file, or as a text file

	
Caution:

Oracle does not guarrantee the persistence of FILE_TYPE values between database sessions or within a single session. Attempts to clone file handles or use dummy file handles may have inderterminate outcomes.

Summary of UTL_FILE Subprograms

Table 223-3 UTL_FILE Subprograms

	Subprogram	Description
	
FCLOSE Procedure

	
Closes a file

	
FCLOSE_ALL Procedure

	
Closes all open file handles

	
FCOPY Procedure

	
Copies a contiguous portion of a file to a newly created file

	
FFLUSH Procedure

	
Physically writes all pending output to a file

	
FGETATTR Procedure

	
Reads and returns the attributes of a disk file

	
FGETPOS Function

	
Returns the current relative offset position within a file, in bytes

	
FOPEN Function

	
Opens a file for input or output

	
FOPEN_NCHAR Function

	
Opens a file in Unicode for input or output

	
FREMOVE Procedure

	
Deletes a disk file, assuming that you have sufficient privileges

	
FRENAME Procedure

	
Renames an existing file to a new name, similar to the UNIX mv function

	
FSEEK Procedure

	
Adjusts the file pointer forward or backward within the file by the number of bytes specified

	
GET_LINE Procedure

	
Reads text from an open file

	
GET_LINE_NCHAR Procedure

	
Reads text in Unicode from an open file

	
GET_RAW Procedure

	
Reads a RAW string value from a file and adjusts the file pointer ahead by the number of bytes read

	
IS_OPEN Function

	
Determines if a file handle refers to an open file

	
NEW_LINE Procedure

	
Writes one or more operating system-specific line terminators to a file

	
PUT Procedure

	
Writes a string to a file

	
PUT_LINE Procedure

	
Writes a line to a file, and so appends an operating system-specific line terminator

	
PUT_LINE_NCHAR Procedure

	
Writes a Unicode line to a file

	
PUT_NCHAR Procedure

	
Writes a Unicode string to a file

	
PUTF Procedure

	
A PUT procedure with formatting

	
PUTF_NCHAR Procedure

	
A PUT_NCHAR procedure with formatting, and writes a Unicode string to a file, with formatting

	
PUT_RAW Procedure

	
Accepts as input a RAW data value and writes the value to the output buffer

FCLOSE Procedure

This procedure closes an open file identified by a file handle.

Syntax

UTL_FILE.FCLOSE (
 file IN OUT FILE_TYPE);

Parameters

Table 223-4 FCLOSE Procedure Parameters

	Parameter	Description
	
file

	
Active file handle returned by an FOPEN or FOPEN_NCHAR call

Usage Notes

If there is buffered data yet to be written when FCLOSE runs, then you may receive a WRITE_ERROR exception when closing a file.

Exceptions

WRITE_ERROR
INVALID_FILEHANDLE

FCLOSE_ALL Procedure

This procedure closes all open file handles for the session. This should be used as an emergency cleanup procedure, for example, when a PL/SQL program exits on an exception.

Syntax

UTL_FILE.FCLOSE_ALL;

Usage Notes

	
Note:

FCLOSE_ALL does not alter the state of the open file handles held by the user. This means that an IS_OPEN test on a file handle after an FCLOSE_ALL call still returns TRUE, even though the file has been closed. No further read or write operations can be performed on a file that was open before an FCLOSE_ALL.

Exceptions

WRITE_ERROR

FCOPY Procedure

This procedure copies a contiguous portion of a file to a newly created file. By default, the whole file is copied if the start_line and end_line parameters are omitted. The source file is opened in read mode. The destination file is opened in write mode. A starting and ending line number can optionally be specified to select a portion from the center of the source file for copying.

Syntax

UTL_FILE.FCOPY (
 src_location IN VARCHAR2,
 src_filename IN VARCHAR2,
 dest_location IN VARCHAR2,
 dest_filename IN VARCHAR2,
 start_line IN BINARY_INTEGER DEFAULT 1,
 end_line IN BINARY_INTEGER DEFAULT NULL);

Parameters

Table 223-5 FCOPY Procedure Parameters

	Parameters	Description
	
src_location

	
Directory location of the source file, a DIRECTORY_NAME from the ALL_DIRECTORIES view (case sensitive)

	
src_filename

	
Source file to be copied

	
dest_location

	
Destination directory where the destination file is created

	
dest_filename

	
Destination file created from the source file

	
start_line

	
Line number at which to begin copying. The default is 1 for the first line

	
end_line

	
Line number at which to stop copying. The default is NULL, signifying end of file

Exceptions

INVALID_FILENAME

INVALID_PATH

INVALID_OPERATION

INVALID_OFFSET

READ_ERROR

WRITE_ERROR

FFLUSH Procedure

FFLUSH physically writes pending data to the file identified by the file handle. Normally, data being written to a file is buffered. The FFLUSH procedure forces the buffered data to be written to the file. The data must be terminated with a newline character.

Flushing is useful when the file must be read while still open. For example, debugging messages can be flushed to the file so that they can be read immediately.

Syntax

UTL_FILE.FFLUSH (
 file IN FILE_TYPE);

Parameters

Table 223-6 FFLUSH Procedure Parameters

	Parameters	Description
	
file

	
Active file handle returned by an FOPEN or FOPEN_NCHAR call

Exceptions

INVALID_FILENAME

INVALID_MAXLINESIZE

INVALID_OPERATION

WRITE_ERROR

FGETATTR Procedure

This procedure reads and returns the attributes of a disk file.

Syntax

UTL_FILE.FGETATTR(
 location IN VARCHAR2,
 filename IN VARCHAR2,
 fexists OUT BOOLEAN,
 file_length OUT NUMBER,
 block_size OUT BINARY_INTEGER);

Parameters

Table 223-7 FGETATTR Procedure Parameters

	Parameters	Description
	
location

	
Directory location of the source file, a DIRECTORY_NAME from the ALL_DIRECTORIES view (case sensitive)

	
filename

	
Name of the file to be examined

	
fexists

	
A BOOLEAN for whether or not the file exists

	
file_length

	
Length of the file in bytes. NULL if file does not exist.

	
block_size

	
File system block size in bytes. NULL if the file does not exist.

Exceptions

INVALID_PATH

INVALID_FILENAME

INVALID_OPERATION

READ_ERROR

ACCESS_DENIED

FGETPOS Function

This function returns the current relative offset position within a file, in bytes.

Syntax

UTL_FILE.FGETPOS (
 file IN FILE_TYPE)
 RETURN PLS_INTEGER;

Parameters

Table 223-8 FGETPOS Parameters

	Parameters	Description
	
file

	
Directory location of the source file

Return Values

FGETPOS returns the relative offset position for an open file, in bytes. It raises an exception if the file is not open. It returns 0 for the beginning of the file.

Exceptions

INVALID_FILEHANDLE

INVALID_OPERATION

READ_ERROR

Usage Notes

If file is opened for byte mode operations, then the INVALID OPERATION exception is raised.

FOPEN Function

This function opens a file. You can specify the maximum line size and have a maximum of 50 files open simultaneously. See also FOPEN_NCHAR Function.

Syntax

UTL_FILE.FOPEN (
 location IN VARCHAR2,
 filename IN VARCHAR2,
 open_mode IN VARCHAR2,
 max_linesize IN BINARY_INTEGER DEFAULT 1024)
 RETURN FILE_TYPE;

Parameters

Table 223-9 FOPEN Function Parameters

	Parameter	Description
	
location

	
Directory location of file. This string is a directory object name and must be specified in upper case. Read privileges must be granted on this directory object for the UTL_FILE user to run FOPEN.

	
filename

	
File name, including extension (file type), without directory path. If a directory path is given as a part of the filename, it is ignored by FOPEN. On Unix, the filename cannot end with /.

	
open_mode

	
Specifies how the file is opened. Modes include:

	
r -- read text

	
w -- write text

	
a -- append text

	
rb -- read byte mode

	
wb -- write byte mode

	
ab -- append byte mode

If you try to open a file specifying 'a' or 'ab' for open_mode but the file does not exist, the file is created in write mode.

	
max_linesize

	
Maximum number of characters for each line, including the newline character, for this file (minimum value 1, maximum value 32767). If unspecified, Oracle supplies a default value of 1024.

Return Values

FOPEN returns a file handle, which must be passed to all subsequent procedures that operate on that file. The specific contents of the file handle are private to the UTL_FILE package, and individual components should not be referenced or changed by the UTL_FILE user.

Table 223-10 FOPEN Function Return Values

	Return	Description
	
FILE_TYPE

	
Handle to open file

Exceptions

INVALID_MAXILINESIZE

INVALID_MODE

INVALID_OPERATION

INVALID_PATH

Usage Notes

The file location and file name parameters must be supplied to the FOPEN function as quoted strings so that the file location can be checked against the list of accessible directories as specified by the ALL_DIRECTORIES view of accessible directory objects.

FOPEN_NCHAR Function

This function opens a file in national character set mode for input or output, with the maximum line size specified. You can have a maximum of 50 files open simultaneously. With this function, you can read or write a text file in Unicode instead of in the database character set.

Even though the contents of an NVARCHAR2 buffer may be AL16UTF16 or UTF8 (depending on the national character set of the database), the contents of the file are always read and written in UTF8. UTL_FILE converts between UTF8 and AL16UTF16 as necessary.

See also FOPEN Function.

Syntax

UTL_FILE.FOPEN_NCHAR (
 location IN VARCHAR2,
 filename IN VARCHAR2,
 open_mode IN VARCHAR2,
 max_linesize IN BINARY_INTEGER DEFAULT 1024)
RETURN FILE_TYPE;

Parameters

Table 223-11 FOPEN_NCHAR Function Parameters

	Parameter	Description
	
location

	
Directory location of file

	
filename

	
File name (including extension)

	
open_mode

	
Open mode (r,w,a,rb,wb,ab)

	
max_linesize

	
Maximum number of characters for each line, including the newline character, for this file (minimum value 1, maximum value 32767)

Return Values

FOPEN_NCHAR returns a file handle, which must be passed to all subsequent procedures that operate on that file. The specific contents of the file handle are private to the UTL_FILE package, and individual components should not be referenced or changed by the UTL_FILE user.

Table 223-12 FOPEN_NCHAR Function Return Values

	Return	Description
	
FILE_TYPE

	
Handle to open file

Exceptions

INVALID_MAXILINESIZE

INVALID_MODE

INVALID_OPERATION

INVALID_PATH

FREMOVE Procedure

This procedure deletes a disk file, assuming that you have sufficient privileges.

Syntax

UTL_FILE.FREMOVE (
 location IN VARCHAR2,
 filename IN VARCHAR2);

Parameters

Table 223-13 FREMOVE Procedure Parameters

	Parameters	Description
	
location

	
Directory location of the file, a DIRECTORY_NAME from ALL_DIRECTORIES (case sensitive)

	
filename

	
Name of the file to be deleted

Exceptions

ACCESS_DENIED

DELETE_FAILED

INVALID_FILENAME

INVALID_OPERATION

INVALID_PATH

Usage Notes

The FREMOVE procedure does not verify privileges before deleting a file. The O/S verifies file and directory permissions. An exception is returned on failure.

FRENAME Procedure

This procedure renames an existing file to a new name, similar to the UNIX mv function.

Syntax

UTL_FILE.FRENAME (
 src_location IN VARCHAR2,
 src_filename IN VARCHAR2,
 dest_location IN VARCHAR2,
 dest_filename IN VARCHAR2,
 overwrite IN BOOLEAN DEFAULT FALSE);

Parameters

Table 223-14 FRENAME Procedure Parameters

	Parameters	Description
	
src_location

	
Directory location of the source file, a DIRECTORY_NAME from the ALL_DIRECTORIES view (case sensitive)

	
src_filename

	
Source file to be renamed

	
dest_location

	
Destination directory of the destination file, a DIRECTORY_NAME from the ALL_DIRECTORIES view (case sensitive)

	
dest_filename

	
New name of the file

	
overwrite

	
Default is FALSE. Permission on both the source and destination directories must be granted. You can use the overwrite parameter to specify whether or not to overwrite a file if one exists in the destination directory. The default is FALSE for no overwrite.

Exceptions

ACCESS_DENIED

INVALID_FILENAME

INVALID_PATH

RENAME_FAILED

FSEEK Procedure

This procedure adjusts the file pointer forward or backward within the file by the number of bytes specified.

Syntax

UTL_FILE.FSEEK (
 file IN OUT UTL_FILE.FILE_TYPE,
 absolute_offset IN PL_INTEGER DEFAULT NULL,
 relative_offset IN PLS_INTEGER DEFAULT NULL);

Parameters

Table 223-15 FSEEK Procedure Parameters

	Parameters	Description
	
file

	
File handle

	
absolute_offset

	
Absolute location to which to seek; default = NULL

	
relative_offset

	
Number of bytes to seek forward or backward; positive = forward, negative integer = backward, zero = current position, default = NULL

Exceptions

INVALID_FILEHANDLE

INVALID_OFFSET

INVALID_OPERATION

READ_ERROR

Usage Notes

	
Using FSEEK, you can read previous lines in the file without first closing and reopening the file. You must know the number of bytes by which you want to navigate.

	
If relative_offset, the procedure seeks forward. If relative_offset > 0, or backward, if relative_offset < 0, the procedure seeks through the file by the number of relative_offset bytes specified.

	
If the beginning of the file is reached before the number of bytes specified, then the file pointer is placed at the beginning of the file. If the end of the file is reached before the number of bytes specified, then an INVALID_OFFSET error is raised.

	
If absolute_offset, the procedure seeks to an absolute location specified in bytes.

	
If file is opened for byte mode operations, then the INVALID OPERATION exception is raised.

GET_LINE Procedure

This procedure reads text from the open file identified by the file handle and places the text in the output buffer parameter. Text is read up to, but not including, the line terminator, or up to the end of the file, or up to the end of the len parameter. It cannot exceed the max_linesize specified in FOPEN.

Syntax

UTL_FILE.GET_LINE (
 file IN FILE_TYPE,
 buffer OUT VARCHAR2,
 len IN PLS_INTEGER DEFAULT NULL);

Parameters

Table 223-16 GET_LINE Procedure Parameters

	Parameters	Description
	
file

	
Active file handle returned by an FOPEN call.

The file must be open for reading (mode r); otherwise an INVALID_OPERATION exception is raised.

	
buffer

	
Data buffer to receive the line read from the file

	
len

	
The number of bytes read from the file. Default is NULL. If NULL, Oracle supplies the value of max_linesize.

Exceptions

INVALID_FILEHANDLE

INVALID_OPERATION

NO_DATA_FOUND

READ_ERROR

Usage Notes

If the line does not fit in the buffer, a READ_ERROR exception is raised. If no text was read due to end of file, the NO_DATA_FOUND exception is raised. If the file is opened for byte mode operations, the INVALID_OPERATION exception is raised.

Because the line terminator character is not read into the buffer, reading blank lines returns empty strings.

The maximum size of the buffer parameter is 32767 bytes unless you specify a smaller size in FOPEN.If unspecified, Oracle supplies a default value of 1024. See also "GET_LINE_NCHAR Procedure".

GET_LINE_NCHAR Procedure

This procedure reads text from the open file identified by the file handle and places the text in the output buffer parameter. With this function, you can read a text file in Unicode instead of in the database character set.

The file must be opened in national character set mode, and must be encoded in the UTF8 character set. The expected buffer datatype is NVARCHAR2. If a variable of another datatype, such as NCHAR, NCLOB, or VARCHAR2 is specified, PL/SQL will perform standard implicit conversion from NVARCHAR2 after the text is read.

See also GET_LINE Procedure

Syntax

UTL_FILE.GET_LINE_NCHAR (
 file IN FILE_TYPE,
 buffer OUT NVARCHAR2,
 len IN PLS_INTEGER DEFAULT NULL);

Parameters

Table 223-17 GET_LINE_NCHAR Procedure Parameters

	Parameters	Description
	
file

	
Active file handle returned by an FOPEN_NCHAR call. The file must be open for reading (mode r). If the file is opened by FOPEN instead of FOPEN_NCHAR, a CHARSETMISMATCH exception is raised.

	
buffer

	
Data buffer to receive the line read from the file

	
len

	
The number of bytes read from the file. Default is NULL. If NULL, Oracle supplies the value of max_linesize.

Exceptions

INVALID_FILEHANDLE

INVALID_OPERATION

NO_DATA_FOUND

READ_ERROR

GET_RAW Procedure

This procedure reads a RAW string value from a file and adjusts the file pointer ahead by the number of bytes read. UTL_FILE.GET_RAW ignores line terminators.

Syntax

UTL_FILE.GET_RAW (
 file IN UTL_FILE.FILE_TYPE,
 buffer OUT NOCOPY RAW,
 len IN PLS_INTEGER DEFAULT NULL);

Parameters

Table 223-18 GET_RAW Procedure Parameters

	Parameters	Description
	
file

	
File handle

	
buffer

	
RAW data

	
len

	
The number of bytes read from the file. Default is NULL. If NULL, len is assumed to be the maximum length of RAW.

Exceptions

INVALID_FILEHANDLE

INVALID_OPERATION

LENGTH_MISMATCH

NO_DATA_FOUND

READ_ERROR

Usage Notes

The subprogram will raise No_Data_Found when it attempts to read past the end of the file. Your application should allow for this by catching the exception in its processing loop.

PROCEDURE Sys.p (n IN VARCHAR2) IS
 h UTL_FILE.FILE_TYPE := UTL_FILE.FOPEN('D', n, 'r', 32767);
 Buf RAW(32767);
 Amnt CONSTANT PLS_INTEGER := 32767;
 BEGIN
 LOOP
 BEGIN
 Utl_File.Get_Raw(h, Buf, Amnt);
 -- Do something with this chunk
 EXCEPTION WHEN No_Data_Found THEN EXIT; END;
 END LOOP;
 UTL_FILE.FCLOSE (h);
 END;

IS_OPEN Function

This function tests a file handle to see if it identifies an open file. IS_OPEN reports only whether a file handle represents a file that has been opened, but not yet closed. It does not guarantee that there will be no operating system errors when you attempt to use the file handle.

Syntax

UTL_FILE.IS_OPEN (
 file IN FILE_TYPE)
 RETURN BOOLEAN;

Parameters

Table 223-19 IS_OPEN Function Parameters

	Parameter	Description
	
file

	
Active file handle returned by an FOPEN or FOPEN_NCHAR call

Return Values

TRUE or FALSE

Exceptions

INVALID_FILEHANDLE

NEW_LINE Procedure

This procedure writes one or more line terminators to the file identified by the input file handle. This procedure is separate from PUT because the line terminator is a platform-specific character or sequence of characters.

Syntax

UTL_FILE.NEW_LINE (
 file IN FILE_TYPE,
 lines IN BINARY_INTEGER := 1);

Parameters

Table 223-20 NEW_LINE Procedure Parameters

	Parameters	Description
	
file

	
Active file handle returned by an FOPEN or FOPEN_NCHAR call

	
lines

	
Number of line terminators to be written to the file

Exceptions

INVALID_FILEHANDLE

INVALID_OPERATION

WRITE_ERROR

PUT Procedure

PUT writes the text string stored in the buffer parameter to the open file identified by the file handle. The file must be open for write operations. No line terminator is appended by PUT; use NEW_LINE to terminate the line or use PUT_LINE to write a complete line with a line terminator. See also "PUT_NCHAR Procedure".

Syntax

UTL_FILE.PUT (
 file IN FILE_TYPE,
 buffer IN VARCHAR2);

Parameters

Table 223-21 PUT Procedure Parameters

	Parameters	Description
	
file

	
Active file handle returned by an FOPEN_NCHAR call. The file must be open for writing.

	
buffer

	
Buffer that contains the text to be written to the file.

User must have opened the file using mode w or mode a; otherwise, an INVALID_OPERATION exception is raised.

Usage Notes

The maximum size of the buffer parameter is 32767 bytes unless you specify a smaller size in FOPEN. If unspecified, Oracle supplies a default value of 1024. The sum of all sequential PUT calls cannot exceed 32767 without intermediate buffer flushes.

Exceptions

INVALID_FILEHANDLE

INVALID_OPERATION

WRITE_ERROR

PUT_LINE Procedure

This procedure writes the text string stored in the buffer parameter to the open file identified by the file handle. The file must be open for write operations. PUT_LINE terminates the line with the platform-specific line terminator character or characters.

See also "PUT_LINE_NCHAR Procedure".

Syntax

UTL_FILE.PUT_LINE (
 file IN FILE_TYPE,
 buffer IN VARCHAR2,
 autoflush IN BOOLEAN DEFAULT FALSE);

Parameters

Table 223-22 PUT_LINE Procedure Parameters

	Parameters	Description
	
file

	
Active file handle returned by an FOPEN call

	
buffer

	
Text buffer that contains the lines to be written to the file

	
autoflush

	
Flushes the buffer to disk after the WRITE

Exceptions

INVALID_FILEHANDLE

INVALID_OPERATION

WRITE_ERROR

Usage Notes

	
The maximum size of the buffer parameter is 32767 bytes unless you specify a smaller size in FOPEN. If unspecified, Oracle supplies a default value of 1024. The sum of all sequential PUT calls cannot exceed 32767 without intermediate buffer flushes.

	
If file is opened for byte mode operations, then the INVALID OPERATION exception is raised.

PUT_LINE_NCHAR Procedure

This procedure writes the text string stored in the buffer parameter to the open file identified by the file handle. With this function, you can write a text file in Unicode instead of in the database character set. This procedure is equivalent to the PUT_NCHAR Procedure, except that the line separator is appended to the written text. See also PUT_LINE Procedure.

Syntax

UTL_FILE.PUT_LINE_NCHAR (
 file IN FILE_TYPE,
 buffer IN NVARCHAR2);

Parameters

Table 223-23 PUT_LINE_NCHAR Procedure Parameters

	Parameters	Description
	
file

	
Active file handle returned by an FOPEN_NCHAR call. The file must be open for writing.

	
buffer

	
Text buffer that contains the lines to be written to the file

Exceptions

INVALID_FILEHANDLE

INVALID_OPERATION

WRITE_ERROR

Usage Notes

	
The maximum size of the buffer parameter is 32767 bytes unless you specify a smaller size in FOPEN. If unspecified, Oracle supplies a default value of 1024. The sum of all sequential PUT calls cannot exceed 32767 without intermediate buffer flushes.

	
If file is opened for byte mode operations, then the INVALID OPERATION exception is raised.

PUT_NCHAR Procedure

This procedure writes the text string stored in the buffer parameter to the open file identified by the file handle.

With this function, you can write a text file in Unicode instead of in the database character set. The file must be opened in the national character set mode. The text string will be written in the UTF8 character set. The expected buffer datatype is NVARCHAR2. If a variable of another datatype is specified, PL/SQL will perform implicit conversion to NVARCHAR2 before writing the text.

See also PUT Procedure

Syntax

UTL_FILE.PUT_NCHAR (
 file IN FILE_TYPE,
 buffer IN NVARCHAR2);

Parameters

Table 223-24 PUT_NCHAR Procedure Parameters

	Parameters	Description
	
file

	
Active file handle returned by an FOPEN_NCHAR call. If the file is opened by FOPEN instead of FOPEN_NCHAR, a CHARSETMISMATCH exception is raised.

	
buffer

	
Buffer that contains the text to be written to the file.

User must have opened the file using mode w or mode a; otherwise, an INVALID_OPERATION exception is raised.

Exceptions

INVALID_FILEHANDLE

INVALID_OPERATION

WRITE_ERROR

Usage Notes

The maximum size of the buffer parameter is 32767 bytes unless you specify a smaller size in FOPEN. If unspecified, Oracle supplies a default value of 1024. The sum of all sequential PUT calls cannot exceed 32767 without intermediate buffer flushes.

PUTF Procedure

This procedure is a formatted PUT procedure. It works like a limited printf(). See also PUTF_NCHAR Procedure.

Syntax

UTL_FILE.PUTF (
 file IN FILE_TYPE,
 format IN VARCHAR2,
 [arg1 IN VARCHAR2 DEFAULT NULL,
 . . .
 arg5 IN VARCHAR2 DEFAULT NULL]);

Parameters

Table 223-25 PUTF Procedure Parameters

	Parameters	Description
	
file

	
Active file handle returned by an FOPEN call

	
format

	
Format string that can contain text as well as the formatting characters \n and %s

	
arg1..arg5

	
From one to five operational argument strings.

Argument strings are substituted, in order, for the %s formatters in the format string.

If there are more formatters in the format parameter string than there are arguments, then an empty string is substituted for each %s for which there is no argument.

Usage Notes

	
If file is opened for byte mode operations, then the INVALID OPERATION exception is raised.

	
The format string can contain any text, but the character sequences %s and \n have special meaning.

	Character Sequence	Meaning
	%s	Substitute this sequence with the string value of the next argument in the argument list.
	\n	Substitute with the appropriate platform-specific line terminator.

Exceptions

INVALID_FILEHANDLE

INVALID_OPERATION

WRITE_ERROR

Examples

The following example writes the lines:

Hello, world!
I come from Zork with greetings for all earthlings.

my_world varchar2(4) := 'Zork';
...
PUTF(my_handle, 'Hello, world!\nI come from %s with %s.\n',
 my_world,
 'greetings for all earthlings');

If there are more %s formatters in the format parameter than there are arguments, then an empty string is substituted for each %s for which there is no matching argument.

PUTF_NCHAR Procedure

This procedure is a formatted version of a PUT_NCHAR Procedure. Using PUTF_NCHAR, you can write a text file in Unicode instead of in the database character set. It accepts a format string with formatting elements \n and %s, and up to five arguments to be substituted for consecutive instances of %s in the format string. The expected datatype of the format string and the arguments is NVARCHAR2.

If variables of another datatype are specified, PL/SQL will perform implicit conversion to NVARCHAR2 before formatting the text. Formatted text is written in the UTF8 character set to the file identified by the file handle. The file must be opened in the national character set mode.

Syntax

UTL_FILE.PUTF_NCHAR (
 file IN FILE_TYPE,
 format IN NVARCHAR2,
 [arg1 IN NVARCHAR2 DEFAULT NULL,
 . . .
 arg5 IN NVARCHAR2 DEFAULT NULL]);

Parameters

Table 223-26 PUTF_NCHAR Procedure Parameters

	Parameters	Description
	
file

	
Active file handle returned by an FOPEN_NCHAR call. The file must be open for reading (mode r). If the file is opened by FOPEN instead of FOPEN_NCHAR, a CHARSETMISMATCH exception is raised.

	
format

	
Format string that can contain text as well as the formatting characters \n and %s

	
arg1..arg5

	
From one to five operational argument strings.

Argument strings are substituted, in order, for the %s formatters in the format string.

If there are more formatters in the format parameter string than there are arguments, then an empty string is substituted for each %s for which there is no argument.

Exceptions

INVALID_FILEHANDLE

INVALID_OPERATION

WRITE_ERROR

Usage Notes

	
The maximum size of the buffer parameter is 32767 bytes unless you specify a smaller size in FOPEN. If unspecified, Oracle supplies a default value of 1024. The sum of all sequential PUT calls cannot exceed 32767 without intermediate buffer flushes.

	
If file is opened for byte mode operations, then the INVALID OPERATION exception is raised.

PUT_RAW Procedure

This procedure accepts as input a RAW data value and writes the value to the output buffer.

Syntax

UTL_FILE.PUT_RAW (
 file IN UTL_FILE.FILE_TYPE,
 buffer IN RAW,
 autoflush IN BOOLEAN DEFAULT FALSE);

Parameters

Table 223-27 PUT_RAW Procedure Parameters

	Parameters	Description
	
file

	
File handle

	
buffer

	
The RAW data written to the buffer

	
autoflush

	
If TRUE, then performs a flush after writing the value to the output buffer; default is FALSE.

Exceptions

INVALID_FILEHANDLE

INVALID_OPERATION

WRITE_ERROR

Usage Notes

You can request an automatic flush of the buffer by setting the third argument to TRUE.

The maximum size of the buffer parameter is 32767 bytes unless you specify a smaller size in FOPEN. If unspecified, Oracle supplies a default value of 1024. The sum of all sequential PUT calls cannot exceed 32767 without intermediate buffer flushes.

UTL_HTTP

224 UTL_HTTP

The UTL_HTTP package makes Hypertext Transfer Protocol (HTTP) callouts from SQL and PL/SQL. You can use it to access data on the Internet over HTTP.

When the package fetches data from a Web site using HTTPS, it requires Oracle Wallet Manager which can be created by either Oracle Wallet Manager or the orapki utility. Non-HTTPS fetches do not require an Oracle wallet.

	
See Also:

	
Chapter 238, "UTL_URL"

	
Chapter 235, "UTL_SMTP"

	
Oracle Database Advanced Security Administrator's Guide for more information on Wallet Manager

This chapter contains the following topics:

	
Using UTL_HTTP

	
Overview

	
Security Model

	
Constants

	
Datatypes

	
Operational Notes

	
Exceptions

	
Examples

	
Subprogram Groups

	
Session Settings Subprograms

	
HTTP Requests Subprograms

	
HTTP Request Contexts Subprograms

	
HTTP Responses Subprograms

	
HTTP Cookies Subprograms

	
HTTP Persistent Connections Subprograms

	
Error Conditions Subprograms

	
Summary of UTL_HTTP Subprograms

Using UTL_HTTP

This section contains topics which relate to using the UTL_HTTP package.

	
Overview

	
Security Model

	
Constants

	
Datatypes

	
Operational Notes

	
Exceptions

	
Examples

Overview

With the UTL_HTTP package, you can write PL/SQL programs that communicate with Web (HTTP) servers. And UTL_HTTP contains a function that can be used in SQL queries.

The package supports HTTP over the Secured Socket Layer protocol (SSL), also known as HTTPS. It also supports SSL client authentication by sending the client-certificate in a wallet to authenticate with the remote Web server.

Other Internet-related data-access protocols (such as the File Transfer Protocol (FTP) or the Gopher protocol) are also supported using an HTTP proxy server that supports those protocols.

Security Model

This package is an invoker's rights package and the invoking user will need the connect privilege granted in the access control list assigned to the remote network host to which he wants to connect, as well as the use-client-certificates or the use-passwords privilege to authenticate himself with the remote Web server using the credentials stored in an Oracle wallet.

	
Note:

For more information, see Managing Fine-grained Access to External Network Services in Oracle Database Security Guide

Constants

The UTL_HTTP package uses the constants shown in following tables.

	
UTL_HTTP Constants - HTTP Versions

	
UTL_HTTP Constants - Default Ports

	
UTL_HTTP Constants - HTTP 1.1 Status Codes

Table 224-1 UTL_HTTP Constants - HTTP Versions

	Name	Type	Value	Description
	
HTTP_VERSION_1_0

	
VARCHAR2(10)

	
'HTTP/1.0'

	
Denotes HTTP version 1.0 that can be used in the function BEGIN_REQUEST.

	
HTTP_VERSION_1_1

	
VARCHAR2(10)

	
'HTTP/1.1'

	
Denotes HTTP version 1.1 that can be used in the function BEGIN_REQUEST.

Table 224-2 UTL_HTTP Constants - Default Ports

	Name	Type	Value	Description
	
DEFAULT_HTTP_PORT

	
PLS_INTEGER

	
80

	
The default TCP/IP port (80) at which a Web server or proxy server listens

	
DEFAULT_HTTPS_PORT

	
PLS_INTEGER

	
443

	
The default TCP/IP port (443) at which an HTTPS Web server listens

Table 224-3 UTL_HTTP Constants - HTTP 1.1 Status Codes

	Name	Type	Value	Description
	
HTTP_CONTINUE

	
PLS_INTEGER

	
100

	
The client should continue with its request. This interim response is used to inform the client that the initial part of the request has been received and has not yet been rejected by the server.

	
HTTP_SWITCHING_PROTOCOLS

	
PLS_INTEGER

	
101

	
The server understands and is willing to comply with the client's request, through the Upgrade message header field, for a change in the application protocol being used on this connection. The server will switch protocols to those defined by the response's Upgrade header field immediately after the empty line which terminates the 101 response.

	
HTTP_OK

	
PLS_INTEGER

	
200

	
The request has succeeded. The information returned with the response is dependent on the method used in the request

	
HTTP_CREATED CONSTANT

	
PLS_INTEGER

	
201

	
The request has been fulfilled and resulted in a new resource being created.

	
HTTP_ACCEPTED

	
PLS_INTEGER

	
202

	
The request has been accepted for processing, but the processing has not been completed. The request might or might not eventually be acted upon, as it might be disallowed when processing actually takes place.

	
HTTP_NON_AUTHORITATIVE_INFO

	
PLS_INTEGER

	
203

	
The returned metainformation in the entity-header is not the definitive set as available from the origin server, but is gathered from a local or a third-party copy.

	
HTTP_NO_CONTENT

	
PLS_INTEGER

	
204

	
The server has fulfilled the request but does not need to return an entity-body, and might want to return updated metainformation.

	
HTTP_RESET_CONTENT

	
PLS_INTEGER

	
205

	
The server has fulfilled the request and the user agent should reset the document view which caused the request to be sent. The response must not include an entity.

	
HTTP_PARTIAL_CONTENT

	
PLS_INTEGER

	
206

	
The server has fulfilled the partial GET request for the resource.

	
HTTP_MULTIPLE_CHOICES

	
PLS_INTEGER

	
300

	
The requested resource corresponds to any one of a set of representations, each with its own specific location, and agent- driven negotiation information is being provided so that the user (or user agent) can select a preferred representation and redirect its request to that location.

	
HTTP_MOVED_PERMANENTLY

	
PLS_INTEGER

	
301

	
The requested resource has been assigned a new permanent URI and any future references to this resource should use one of the returned URIs.

	
HTTP_FOUND CONSTANT

	
PLS_INTEGER

	
302

	
The requested resource resides temporarily under a different URI.

	
HTTP_SEE_OTHER

	
PLS_INTEGER

	
303

	
The response to the request can be found under a different URI and should be retrieved using a GET method on that resource.

	
HTTP_NOT_MODIFIED

	
PLS_INTEGER

	
304

	
If the client has performed a conditional GET request and access is allowed, but the document has not been modified, the server responds with this status code.

	
HTTP_USE_PROXY

	
PLS_INTEGER

	
305

	
The requested resource must be accessed through the proxy given by the Location field. The Location field gives the URI of the proxy.

	
HTTP_TEMPORARY_REDIRECT

	
PLS_INTEGER

	
307

	
The requested resource resides temporarily under a different URI.

	
HTTP_BAD_REQUEST

	
PLS_INTEGER

	
400

	
The request could not be understood by the server due to malformed syntax.

	
HTTP_UNAUTHORIZED

	
PLS_INTEGER

	
401

	
The request requires user authentication. The client may repeat the request with a suitable Authorization header field. If the request already included Authorization credentials, then the 401 response indicates that authorization has been refused for those credentials.

	
HTTP_PAYMENT_REQUIRED

	
PLS_INTEGER

	
402

	
This code is reserved for future use.

	
HTTP_FORBIDDEN

	
PLS_INTEGER

	
403

	
The server understood the request, but is refusing to fulfill it.

	
HTTP_NOT_FOUND

	
PLS_INTEGER

	
404

	
The server has not found anything matching the Request-URI.

	
HTTP_NOT_ACCEPTABLE

	
PLS_INTEGER

	
406

	
The resource identified by the request is only capable of generating response entities which have content characteristics not acceptable according to the accept headers sent in the request.

	
HTTP_PROXY_AUTH_REQUIRED

	
PLS_INTEGER

	
407

	
This code is similar to 401 (Unauthorized), but indicates that the client must first authenticate itself with the proxy.

	
HTTP_REQUEST_TIME_OUT

	
PLS_INTEGER

	
408

	
The client did not produce a request within the time that the server was prepared to wait.

	
HTTP_CONFLICT

	
PLS_INTEGER

	
409

	
The request could not be completed due to a conflict with the current state of the resource.

	
HTTP_GONE

	
PLS_INTEGER

	
410

	
The requested resource is no longer available at the server and no forwarding address is known.

	
HTTP_LENGTH_REQUIRED

	
PLS_INTEGER

	
411

	
The server refuses to accept the request without a defined Content-Length.

	
HTTP_PRECONDITION_FAILED

	
PLS_INTEGER

	
412

	
The precondition given in one or more of the request-header fields evaluated to false when it was tested on the server.

	
HTTP_REQUEST_ENTITY_TOO_LARGE CONSTANT

	
PLS_INTEGER

	
413

	
The server is refusing to process a request because the request entity is larger than the server is willing or able to process.

	
HTTP_REQUEST_URI_TOO_LARGE

	
PLS_INTEGER

	
414

	
The server is refusing to service the request because the Request-URI is longer than the server is willing to interpret.

	
HTTP_UNSUPPORTED_MEDIA_TYPE

	
PLS_INTEGER

	
415

	
The server is refusing to service the request because the entity of the request is in a format not supported by the requested resource for the requested method.

	
HTTP_REQ_RANGE_NOT_SATISFIABLE

	
PLS_INTEGER

	
416

	
A server returns a response with this status code if a request included a Range request-header field, and none of the range-specifier values in this field overlap the current extent of the selected resource, and the request did not include an If-Range request-header field.

	
HTTP_EXPECTATION_FAILED

	
PLS_INTEGER

	
417

	
The expectation given in an Expect request-header field could not be met by this server, or, if the server is a proxy, the server has unambiguous evidence that the request could not be met by the next-hop server.

	
HTTP_NOT_IMPLEMENTED

	
PLS_INTEGER

	
501

	
The server does not support the functionality required to fulfill the request.

	
HTTP_BAD_GATEWAY

	
PLS_INTEGER

	
502

	
The server, while acting as a gateway or proxy, received an invalid response from the upstream server it accessed in attempting to fulfill the request

	
HTTP_SERVICE_UNAVAILABLE

	
PLS_INTEGER

	
503

	
The server is currently unable to handle the request due to a temporary overloading or maintenance of the server.

	
HTTP_GATEWAY_TIME_OUT

	
PLS_INTEGER

	
504

	
The server, while acting as a gateway or proxy, did not receive a timely response from the upstream server specified by the URI (for example, HTTP, FTP, LDAP) or some other auxiliary server (for example, DNS) it needed to access in attempting to complete the request.

	
HTTP_VERSION_NOT_SUPPORTED

	
PLS_INTEGER

	
505

	
The server does not support, or refuses to support, the HTTP protocol version that was used in the request message.

Datatypes

	
REQ Type

	
RESP Type

	
COOKIE and COOKIE_TABLE Types

	
CONNECTION Type

	
REQUEST_CONTEXT_KEY Type

REQ Type

Use this PL/SQL record type to represent an HTTP request.

Syntax

TYPE req IS RECORD (
 url VARCHAR2(32767),
 method VARCHAR2(64),
 http_version VARCHAR2(64));

Parameters

Table 224-4 REQ Type Parameters

	Parameter	Description
	
url

	
The URL of the HTTP request. It is set after the request is created by BEGIN_REQUEST.

	
method

	
The method to be performed on the resource identified by the URL. It is set after the request is created by BEGIN_REQUEST.

	
http_version

	
The HTTP protocol version used to send the request. It is set after the request is created by BEGIN_REQUEST.

Usage Notes

The information returned in REQ from the interface begin_request is for read-only. Changing the field values in the record has no effect on the request.

There are other fields in REQ record type whose names begin with the prefix private_. The fields are private and are intended for use by implementation of the UTL_HTTP package. You should not modify the fields.

REQUEST_CONTEXT_KEY Type

This type is used to represent the key to a request context. A request context is a context that holds a private wallet and cookie table to make a HTTP request. This private wallet and cookie table, unlike the session-wide ones maintained in the package, will not be shared with other HTTP requests within the database session.

Syntax

SUBTYPE request_context_key IS PLS_INTEGER;

Usage Notes

To provide enhanced security, UTL_HTTP allows PL/SQL programs to create request contexts. A request context is a private context that holds a wallet and a cookie table that will not be shared with other programs in the same database session when making HTTP requests and receiving HTTP responses. PL/SQL programs should use request contexts when they need to use wallets or cookies that contain sensitive information such as authentication credentials.

RESP Type

This PL/SQL record type is used to represent an HTTP response.

Syntax

TYPE resp IS RECORD (
 status_code PLS_INTEGER,
 reason_phrase VARCHAR2(256),
 http_version VARCHAR2(64));

Parameters

Table 224-5 RESP Type Parameters

	Parameter	Description
	
status_code

	
The status code returned by the Web server. It is a 3-digit integer that indicates the results of the HTTP request as handled by the Web server. It is set after the response is processed by GET_RESPONSE.

	
reason_phrase

	
The short textual message returned by the Web server that describe the status code. It gives a brief description of the results of the HTTP request as handled by the Web server. It is set after the response is processed by GET_RESPONSE.

	
http_version

	
The HTTP protocol version used in the HTTP response. It is set after the response is processed by GET_RESPONSE.

Usage Notes

The information returned in RESP from the interface GET_RESPONSE is read-only. There are other fields in the RESP record type whose names begin with the prefix private_. The fields are private and are intended for use by implementation of the UTL_HTTP package. You should not modify the fields.

COOKIE and COOKIE_TABLE Types

The COOKIE type is the PL/SQL record type that represents an HTTP cookie. The COOKIE_TABLE type is a PL/SQL index-by-table type that represents a collection of HTTP cookies.

Syntax

TYPE cookie IS RECORD (
 name VARCHAR2(256),
 value VARCHAR2(1024),
 domain VARCHAR2(256),
 expire TIMESTAMP WITH TIME ZONE,
 path VARCHAR2(1024),
 secure BOOLEAN,
 version PLS_INTEGER,
 comment VARCHAR2(1024));

TYPE cookie_table IS TABLE OF cookie INDEX BY binary_integer;

Fields of COOKIE Record Type

Table 224-6 shows the fields for the COOKIE and COOKIE_TABLE record types.

Table 224-6 Fields of COOKIE and COOKIE_TABLE Type

	Field	Description
	
name

	
The name of the HTTP cookie

	
value

	
The value of the cookie

	
domain

	
The domain for which the cookie is valid

	
expire

	
The time by which the cookie will expire

	
path

	
The subset of URLs to which the cookie applies

	
secure

	
Should the cookie be returned to the Web server using secured means only.

	
version

	
The version of the HTTP cookie specification the cookie conforms. This field is NULL for Netscape cookies.

	
comment

	
The comment that describes the intended use of the cookie. This field is NULL for Netscape cookies.

Usage Notes

PL/SQL programs do not usually examine or change the cookie information stored in the UTL_HTTP package. The cookies are maintained by the package transparently. They are maintained inside the UTL_HTTP package, and they last for the duration of the database session only. PL/SQL applications that require cookies to be maintained beyond the lifetime of a database session can read the cookies using GET_COOKIES, store them persistently in a database table, and re-store the cookies back in the package using ADD_COOKIES in the next database session. All the fields in the cookie record, except for the comment field, must be stored. Do not alter the cookie information, which can result in an application error in the Web server or compromise the security of the PL/SQL and the Web server applications. See "Retrieving and Restoring Cookies".

CONNECTION Type

Use the PL/SQL record type to represent the remote hosts and TCP/IP ports of a network connection that is kept persistent after an HTTP request is completed, according to the HTTP 1.1 protocol specification. The persistent network connection may be reused by a subsequent HTTP request to the same host and port. The subsequent HTTP request may be completed faster because the network connection latency is avoided. connection_table is a PL/SQL table of connection.

For a direct HTTP persistent connection to a Web server, the host and port fields contain the host name and TCP/IP port number of the Web server. The proxy_host and proxy_port fields are not set. For an HTTP persistent connection that was previously used to connect to a Web server using a proxy, the proxy_host and proxy_port fields contain the host name and TCP/IP port number of the proxy server. The host and port fields are not set, which indicates that the persistent connection, while connected to a proxy server, is not bound to any particular target Web server. An HTTP persistent connection to a proxy server can be used to access any target Web server that is using a proxy.

The SSL field indicates if Secured Socket Layer (SSL) is being used in an HTTP persistent connection. An HTTPS request is an HTTP request made over SSL. For an HTTPS (SSL) persistent connection connected using a proxy, the host and port fields contain the host name and TCP/IP port number of the target HTTPS Web server and the fields will always be set. An HTTPS persistent connection to an HTTPS Web server using a proxy server can only be reused to make another request to the same target Web server.

Syntax

TYPE connection IS RECORD (
 host VARCHAR2(256),
 port PLS_INTEGER,
 proxy_host VARCHAR2(256),
 proxy_port PLS_INTEGER,
 ssl BOOLEAN);

TYPE connection_table IS TABLE OF connection INDEX BY BINARY_INTEGER;

Operational Notes

	
Operational Flow

	
Simple HTTP Fetches

	
HTTP Requests

	
HTTP Responses

	
HTTP Persistent Connections

	
Error Conditions

	
Session Settings

	
Request Context

	
External Password Store

Operational Flow

The UTL_HTTP package provides access to the HTTP protocol. The interfaces must be called in the order shown in Figure 224-1, or an exception will be raised.

Figure 224-1 Flow of the Core UTL_HTTP Package

[image: Description of Figure 224-1 follows]

The following can be called at any time:

	
Non-protocol interfaces that manipulate cookies

	
GET_COOKIE_COUNT

	
GET_COOKIES

	
ADD_COOKIES

	
CLEAR_COOKIES

	
Persistent connections

	
GET_PERSISTENT_CONN_COUNT

	
GET_PERSISTENT_CONNS

	
CLOSE_PERSISTENT_CONN

	
CLOSE_PERSISTENT_CONNS

	
Interfaces that manipulate attributes and configurations of the UTL_HTTP package in the current session

	
SET_PROXY

	
GET_PROXY

	
SET_COOKIE_SUPPORT

	
GET_COOKIE_SUPPORT

	
SET_FOLLOW_REDIRECT

	
GET_FOLLOW_REDIRECT

	
SET_BODY_CHARSET

	
GET_BODY_CHARSET

	
SET_PERSISTENT_CONN_SUPPORT

	
GET_PERSISTENT_CONN_SUPPORT

	
SET_DETAILED_EXCP_SUPPORT

	
GET_DETAILED_EXCP_SUPPORT

	
SET_WALLET

	
SET_TRANSFER_TIMEOUT

	
GET_TRANSFER_TIMEOUT

	
Interfaces that retrieve the last detailed exception code and message UTL_HTTP package in the current session

	
GET_DETAILED_SQLCODE

	
GET_DETAILED_SQLERRM

	
NOTE:

Some of the request and response interfaces bear the same name as the interface that manipulates the attributes and configurations of the package in the current session. They are overloaded versions of the interface that manipulate a request or a response.

Simple HTTP Fetches

REQUEST and REQUEST_PIECES take a string uniform resource locator (URL), contact that site, and return the data (typically HTML) obtained from that site.

You should not expect REQUEST or REQUEST_PIECES to succeed in contacting a URL unless you can contact that URL by using a browser on the same machine (and with the same privileges, environment variables, and so on.)

If REQUEST or REQUEST_PIECES fails (for example, if it raises an exception, or if it returns an HTML-formatted error message, but you believe that the URL argument is correct), then try contacting that same URL with a browser to verify network availability from your machine. You may have a proxy server set in your browser that needs to be set with each REQUEST or REQUEST_PIECES call using the optional proxy parameter.

	
Note:

UTL_HTTP can also use environment variables to specify its proxy behavior. For example, on UNIX, setting the environment variable http_proxy to a URL uses that service as the proxy server for HTTP requests. Setting the environment variable no_proxy to a domain name does not use the HTTP proxy server for URLs in that domain. When the UTL_HTTP package is executed in the Oracle database server, the environment variables are the ones that are set when the database instance is started.

	
See Also:

Simple HTTP Fetches in a Single Call Subprograms

HTTP Requests

The HTTP Requests group of subprograms begin an HTTP request, manipulate attributes, and send the request information to the Web server. When a request is created, it inherits the default settings of the HTTP cookie support, follow-redirect, body character set, persistent-connection support, and transfer timeout of the current session. The settings can be changed by calling the request interface.

	
See Also:

HTTP Requests Subprograms

HTTP Responses

The HTTP Responses group of subprograms manipulate an HTTP response obtained from GET_RESPONSE and receive response information from the Web server. When a response is created for a request, it inherits settings of the HTTP cookie support, follow-redirect, body character set, persistent-connection support, and transfer timeout from the request. Only the body character set can be changed by calling the response interface.

	
See Also:

HTTP Responses Subprograms

HTTP Cookies

The UTL_HTTP package provides subprograms to manipulate HTTP cookies.

	
See Also:

HTTP Cookies Subprograms

HTTP Persistent Connections

The UTL_HTTP package provides subprograms to manipulate persistent connections.

	
See Also:

HTTP Persistent Connections Subprograms

Error Conditions

The UTL_HTTP package provides subprograms to retrieve error information.

	
See Also:

Error Conditions Subprograms

Session Settings

Session settings manipulate the configuration and default behavior of UTL_HTTP when HTTP requests are executed within a database user session. When a request is created, it inherits the default settings of the HTTP cookie support, follow-redirect, body character set, persistent-connection support, and transfer timeout of the current session. Those settings can be changed later by calling the request interface. When a response is created for a request, it inherits those settings from the request. Only the body character set can be changed later by calling the response interface.

	
See Also:

Session Settings Subprograms

Request Context

The UTL_HTTP package maintains a common wallet and cookie table within the database session that all HTTP requests and responses share. This makes it easy for users to share the wallet or to maintain application state in the cookies within the session. However, if an application stores private information in the wallet or in the cookies that it does not want to share with other applications in the same database session, it may define a request context to hold its own wallet and cookie table and use this request context to make HTTP requests.

	
See Also:

HTTP Requests Subprograms

External Password Store

The UTL_HTTP package allows HTTP password credentials to be stored in an Oracle wallet's external password store. The external password store provides an easy but secure storage for passwords and frees the application developers from the need to maintain their own storage.

	
See Also:

SET_AUTHENTICATION_FROM_WALLET Procedure

Exceptions

Table 224-7 lists the exceptions that the UTL_HTTP package interface can raise. By default, UTL_HTTP raises the exception request_failed when a request fails to execute. If the package is set to raise a detailed exception by set_detailed_excp_support, the rest of the exceptions will be raised directly (except for the exception end_of_body, which will be raised by READ_TEXT, READ_LINE, and READ_RAW regardless of the setting).

Table 224-7 UTL_HTTP Exceptions

	Exception	Error Code	Reason	Where Raised
	
BAD_ARGUMENT

	
29261

	
The argument passed to the interface is bad

	
Any HTTP request or response interface when detailed_exception is enabled

	
BAD_URL

	
29262

	
The requested URL is badly formed

	
BEGIN_REQUEST, when detailed_exception is enabled

	
END_OF_BODY

	
29266

	
The end of HTTP response body is reached

	
READ_RAW, READ_TEXT, and READ_LINE, when detailed_exception is enabled

	
HEADER_NOT_FOUND

	
29265

	
The header is not found

	
GET_HEADER, GET_HEADER_BY_NAME, when detailed_exception is enabled

	
HTTP_CLIENT_ERROR

	
29268

	
From GET_RESPONSE, the response status code indicates that a client error has occurred (status code in 4xx range). Or from begin_request, the HTTP proxy returns a status code in the 4xx range when making an HTTPS request through the proxy.

	
GET_RESPONSE, BEGIN_REQUEST when detailed_exception is enabled

	
HTTP_SERVER_ERROR

	
29269

	
From GET_RESPONSE, the response status code indicates that a client error has occurred (status code in 5xx range). Or from begin_request, the HTTP proxy returns a status code in the 5xx range when making an HTTPS request through the proxy.

	
GET_RESPONSE, BEGIN_REQUEST when detailed_exception is enabled

	
NETWORK_ACCESS_DENIED

	
24247

	
Access to the remote network host or credentials in an Oracle wallet is denied

	
BEGIN_REQUEST and SET_AUTHENTICATION_FROM_WALLET when detailed_exception is enabled

	
ILLEGAL_CALL

	
29267

	
The call to UTL_HTTP is illegal at the current state of the HTTP request

	
SET_HEADER, SET_AUTHENTICATION, and SET_PERSISTENT_CONN_SUPPORT, when detailed_exception is enabled

	
PARTIAL_MULTIBYTE_EXCEPTION

	
29275

	
No complete character is read and a partial multibyte character is found at the end of the response body

	
READ_TEXT and READ_LINE, when detailed_exception is enabled

	
PROTOCOL_ERROR

	
29263

	
An HTTP protocol error occurs when communicating with the Web server

	
SET_HEADER, GET_RESPONSE, READ_RAW, READ_TEXT, and READ_LINE, when detailed_exception is enabled

	
REQUEST_FAILED

	
29273

	
The request fails to executes

	
Any HTTP request or response interface when detailed_exception is disabled

	
TOO_MANY_REQUESTS

	
29270

	
Too many requests or responses are open

	
BEGIN_REQUEST, when detailed_exception is enabled

	
TRANSFER_TIMEOUT

	
29276

	
No data is read and a read timeout occurred

	
READ_TEXT and READ_LINE, when detailed_exception is enabled

	
UNKNOWN_SCHEME

	
29264

	
The scheme of the requested URL is unknown

	
BEGIN_REQUEST and GET_RESPONSE, when detailed_exception is enabled

	
NOTE:

The partial_multibyte_char and transfer_timeout exceptions are duplicates of the same exceptions defined in UTL_TCP. They are defined in this package so that the use of this package does not require the knowledge of the UTL_TCP. As those exceptions are duplicates, an exception handle that catches the partial_multibyte_char and transfer_timeout exceptions in this package also catch the exceptions in the UTL_TCP.

For REQUEST and REQUEST_PIECES, the request_failed exception is raised when any exception occurs and detailed_exception is disabled.

Examples

The following examples demonstrate how to use UTL_HTTP.

	
General Usage

	
Retrieving HTTP Response Headers

	
Handling HTTP Authentication

	
Retrieving and Restoring Cookies

	
Making HTTP Request with Private Wallet and Cookie Table

General Usage

SET SERVEROUTPUT ON SIZE 40000

DECLARE
 req UTL_HTTP.REQ;
 resp UTL_HTTP.RESP;
 value VARCHAR2(1024);
BEGIN
 UTL_HTTP.SET_PROXY('proxy.my-company.com', 'corp.my-company.com');
 req := UTL_HTTP.BEGIN_REQUEST('http://www-hr.corp.my-company.com');
 UTL_HTTP.SET_HEADER(req, 'User-Agent', 'Mozilla/4.0');
 resp := UTL_HTTP.GET_RESPONSE(req);
 LOOP
 UTL_HTTP.READ_LINE(resp, value, TRUE);
 DBMS_OUTPUT.PUT_LINE(value);
 END LOOP;
 UTL_HTTP.END_RESPONSE(resp);
EXCEPTION
 WHEN UTL_HTTP.END_OF_BODY THEN
 UTL_HTTP.END_RESPONSE(resp);
END;

Retrieving HTTP Response Headers

SET SERVEROUTPUT ON SIZE 40000

DECLARE
 req UTL_HTTP.REQ;
 resp UTL_HTTP.RESP;
 name VARCHAR2(256);
 value VARCHAR2(1024);
BEGIN
 UTL_HTTP.SET_PROXY('proxy.my-company.com', 'corp.my-company.com');
 req := UTL_HTTP.BEGIN_REQUEST('http://www-hr.corp.my-company.com');
 UTL_HTTP.SET_HEADER(req, 'User-Agent', 'Mozilla/4.0');
 resp := UTL_HTTP.GET_RESPONSE(req);
 DBMS_OUTPUT.PUT_LINE('HTTP response status code: ' || resp.status_code);
 DBMS_OUTPUT.PUT_LINE('HTTP response reason phrase: ' || resp.reason_phrase);
 FOR i IN 1..UTL_HTTP.GET_HEADER_COUNT(resp) LOOP
 UTL_HTTP.GET_HEADER(resp, i, name, value);
 DBMS_OUTPUT.PUT_LINE(name || ': ' || value);
 END LOOP;
 UTL_HTTP.END_RESPONSE(resp);
END;

Handling HTTP Authentication

SET serveroutput ON SIZE 40000

CREATE OR REPLACE PROCEDURE get_page (url IN VARCHAR2,
 username IN VARCHAR2 DEFAULT NULL,
 password IN VARCHAR2 DEFAULT NULL,
 realm IN VARCHAR2 DEFAULT NULL) AS
 req UTL_HTTP.REQ;
 resp UTL_HTTP.RESP;
 my_scheme VARCHAR2(256);
 my_realm VARCHAR2(256);
 my_proxy BOOLEAN;
BEGIN
 -- Turn off checking of status code. We will check it by ourselves.
 UTL_HTTP.HTTP_RESPONSE_ERROR_CHECK(FALSE);
 req := UTL_HTTP.BEGIN_REQUEST(url);
 IF (username IS NOT NULL) THEN
 UTL_HTTP.SET_AUTHENTICATION(req, username, password); -- Use HTTP Basic Authen. Scheme
 END IF;
 resp := UTL_HTTP.GET_RESPONSE(req);
 IF (resp.status_code = UTL_HTTP.HTTP_UNAUTHORIZED) THEN
 UTL_HTTP.GET_AUTHENTICATION(resp, my_scheme, my_realm, my_proxy);
 IF (my_proxy) THEN
 DBMS_OUTPUT.PUT_LINE('Web proxy server is protected.');
 DBMS_OUTPUT.PUT('Please supplied the required ' || my_scheme || ' authentication username/password for realm ' || my_realm || ' for the proxy server.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Web page ' || url || ' is protected.');
 DBMS_OUTPUT.PUT('Please supplied the required ' || my_scheme || ' authentication username/password for realm ' || my_realm || ' for the Web page.');
 END IF;
 UTL_HTTP.END_RESPONSE(resp);
 RETURN;
 END IF;
 FOR i IN 1..UTL_HTTP.GET_HEADER_COUNT(resp) LOOP
 UTL_HTTP.GET_HEADER(resp, i, name, value);
 DBMS_OUTPUT.PUT_LINE(name || ': ' || value);
 END LOOP;
 UTL_HTTP.END_RESPONSE(resp);
END;

Retrieving and Restoring Cookies

CREATE TABLE my_cookies (
 session_id INTEGER,
 name VARCHAR2(256),
 value VARCHAR2(1024),
 domain VARCHAR2(256),
 expire DATE,
 path VARCHAR2(1024),
 secure VARCHAR2(1),
 version INTEGER);

CREATE SEQUENCE session_id;
SET SERVEROUTPUT ON SIZE 40000

REM Retrieve cookies from UTL_HTTP
CREATE OR REPLACE FUNCTION save_cookies RETURN PLS_INTEGER AS
 cookies UTL_HTTP.COOKIE_TABLE;
 my_session_id PLS_INTEGER;
 secure VARCHAR2(1);
BEGIN
 /* assume that some cookies have been set in previous HTTP requests. */
 UTL_HTTP.GET_COOKIES(cookies);
 SELECT session_id.nextval INTO my_session_id FROM DUAL;
 FOR i in 1..cookies.count LOOP
 IF (cookies(i).secure) THEN
 secure := 'Y';
 ELSE
 secure := 'N';
 END IF;
 INSERT INTO my_cookies
 VALUES (my_session_id, cookies(i).name, cookies(i).value,
 cookies(i).domain,
 cookies(i).expire, cookies(i).path, secure, cookies(i).version);
 END LOOP;
 RETURN my_session_id;
END;
/

REM Retrieve cookies from UTL_HTTP
CREATE OR REPLACE PROCEDURE restore_cookies (this_session_id IN PLS_INTEGER)
AS
 cookies UTL_HTTP.COOKIE_TABLE;
 cookie UTL_HTTP.COOKIE;
 i PLS_INTEGER := 0;
 CURSOR c (c_session_id PLS_INTEGER) IS
 SELECT * FROM my_cookies WHERE session_id = c_session_id;
BEGIN
 FOR r IN c(this_session_id) LOOP
 i := i + 1;
 cookie.name := r.name;
 cookie.value := r.value;
 cookie.domain := r.domain;
 cookie.expire := r.expire;
 cookie.path := r.path;
 IF (r.secure = 'Y') THEN
 cookie.secure := TRUE;
 ELSE
 cookie.secure := FALSE;
 END IF;
 cookie.version := r.version;
 cookies(i) := cookie;
 END LOOP;
 UTL_HTTP.CLEAR_COOKIES;
 UTL_HTTP.ADD_COOKIES(cookies);
END;
/

Making HTTP Request with Private Wallet and Cookie Table

SET SERVEROUTPUT ON SIZE 40000

CREATE OR REPLACE PROCEDURE DISPLAY_PAGE(url IN VARCHAR2) AS
 request_context UTL_HTPT.REQUEST_CONTEXT_KEY;
 req UTL_HTTP.REQ;
 resp UTL_HTTP.RESP;
 data VARCHAR2(1024);

BEGIN

 -- Create a request context with its wallet and cookie table
 request_context := UTL_HTTP.CREATE_REQUEST_CONTEXT(
 wallet_path => 'file:/oracle/wallets/test/wallet',
 wallet_password => '******',
 enable_cookies => TRUE,
 max_cookies => 300,
 max_cookies_per_site => 20);

 -- Make a HTTP request using the private wallet and cookie
 -- table in the request context
 req := UTL_HTTP.BEGIN_REQUEST(
 url => url,
 request_context => request_context);
 resp := UTL_HTTP.GET_RESPONSE(req);

 BEGIN
 LOOP
 UTL_HTTP.READ_TEXT(resp, data);
 DBMS_OUTPUT.PUT(data);
 END LOOP;
 EXCEPTION
 WHEN UTL_HTTP.END_OF_BODY THEN
 UTL_HTTP.END_RESPONSE(resp);
 END;

 -- Destroy the request context
 UTL_HTTP.DESTROY_REQUEST_CONTEXT(request_context);

END;

BEGIN
 DISPLAY_PAGE('https://www.example.com/');
END;
/

Subprogram Groups

UTL_HTTP subprograms are grouped by function:

	
Simple HTTP Fetches in a Single Call Subprograms

	
Session Settings Subprograms

	
HTTP Requests Subprograms

	
HTTP Request Contexts Subprograms

	
HTTP Responses Subprograms

	
HTTP Cookies Subprograms

	
HTTP Persistent Connections Subprograms

	
Error Conditions Subprograms

Simple HTTP Fetches in a Single Call Subprograms

REQUEST and REQUEST_PIECES take a string uniform resource locator (URL), contact that site, and return the data (typically HTML) obtained from that site.

Table 224-8 UTL_HTTP Subprograms—Simple HTTP Fetches in a Single Call

	Subprogram	Description
	
REQUEST Function

	
Returns up to the first 2000 bytes of the data retrieved from the given URL. This function can be used directly in SQL queries.

	
REQUEST_PIECES Function

	
Returns a PL/SQL table of 2000-byte pieces of the data retrieved from the given URL

Session Settings Subprograms

Table 224-9 UTL_HTTP Subprograms—Session Settings

	Subprogram	Description
	
GET_BODY_CHARSET Procedure

	
Retrieves the default character set of the body of all future HTTP requests

	
GET_COOKIE_SUPPORT Procedure

	
Retrieves the current cookie support settings

	
GET_DETAILED_EXCP_SUPPORT Procedure

	
Checks if the UTL_HTTP package will raise a detailed exception or not

	
GET_FOLLOW_REDIRECT Procedure

	
Retrieves the follow-redirect setting in the current session

	
GET_PERSISTENT_CONN_SUPPORT Procedure

	
Checks if the persistent connection support is enabled and gets the maximum number of persistent connections in the current session

	
GET_PROXY Procedure

	
Retrieves the current proxy settings

	
GET_RESPONSE_ERROR_CHECK Procedure

	
Checks if the response error check is set or not

	
GET_TRANSFER_TIMEOUT Procedure

	
Retrieves the current network transfer timeout value

	
SET_TRANSFER_TIMEOUT Procedure

	
Sets the default character set of the body of all future HTTP requests when the media type is text and the character set is not specified in the Content-Type header

	
SET_COOKIE_SUPPORT Procedures

	
Sets whether or not future HTTP requests will support HTTP cookies; sets the maximum number of cookies maintained in the current database user session

	
SET_DETAILED_EXCP_SUPPORT Procedure

	
Sets the UTL_HTTP package to raise a detailed exception

	
SET_FOLLOW_REDIRECT Procedures

	
Sets the maximum number of times UTL_HTTP follows the HTTP redirect instruction in the HTTP responses to future requests in the GET_RESPONSE function

	
SET_PERSISTENT_CONN_SUPPORT Procedure

	
Sets whether or not future HTTP requests will support the HTTP 1.1 persistent connection; sets the maximum number of persistent connections maintained in the current database user session

	
SET_PROXY Procedure

	
Sets the proxy to be used for requests of HTTP or other protocols

	
SET_RESPONSE_ERROR_CHECK Procedure

	
Sets whether or not GET_RESPONSE raises an exception when the Web server returns a status code that indicates an error—a status code in the 4xx or 5xx ranges

	
SET_TRANSFER_TIMEOUT Procedure

	
Sets the timeout value for UTL_HTTP to read the HTTP response from the Web server or proxy server

	
SET_WALLET Procedure

	
Sets the Oracle Wallet used for all HTTP requests over Secured Socket Layer (SSL), that is, HTTPS

HTTP Requests Subprograms

Table 224-10 UTL_HTTP Subprograms—HTTP Requests

	Subprogram	Description
	
BEGIN_REQUEST Function

	
Begins a new HTTP request.UTL_HTTP establishes the network connection to the target Web server or the proxy server and sends the HTTP request line.

	
SET_HEADER Procedure

	
Sets an HTTP request header. The request header is sent to the Web server as soon as it is set.

	
SET_AUTHENTICATION Procedure

	
Sets HTTP authentication information in the HTTP request header. The Web server needs this information to authorize the request.

	
SET_AUTHENTICATION_FROM_WALLET Procedure

	
Sets the HTTP authentication information in the HTTP request header needed for the request to be authorized by the Web server using the username and password credential stored in the Oracle wallet.

	
SET_BODY_CHARSET Procedures

	
Sets the character set of the request body when the media type is text but the character set is not specified in the Content-Type header

	
SET_COOKIE_SUPPORT Procedures

	
Enables or disables support for the HTTP cookies in the request

	
SET_FOLLOW_REDIRECT Procedures

	
Sets the maximum number of times UTL_HTTP follows the HTTP redirect instruction in the HTTP response to this request in the GET_RESPONSE Function

	
SET_PERSISTENT_CONN_SUPPORT Procedure

	
Enables or disables support for the HTTP 1.1 persistent-connection in the request

	
SET_PROXY Procedure

	
Writes a text line in the HTTP request body and ends the line with new-line characters (CRLF as defined in UTL_TCP)

	
WRITE_RAW Procedure

	
Writes some binary data in the HTTP request body

	
WRITE_TEXT Procedure

	
Writes some text data in the HTTP request body

HTTP Request Contexts Subprograms

Table 224-11 UTL_HTTP Subprograms—HTTP Request Contexts

	Subprogram	Description
	
CREATE_REQUEST_CONTEXT Function

	
Creates a request context in UTL_HTTP for a wallet and a cookie table

	
DESTROY_REQUEST_CONTEXT Procedure

	
Destroys a request context in UTL_HTTP

HTTP Responses Subprograms

Table 224-12 UTL_HTTP Subprograms—HTTP Responses

	Subprogram	Description
	
END_RESPONSE Procedure

	
Ends the HTTP response. It completes the HTTP request and response.

	
GET_AUTHENTICATION Procedure

	
Retrieves the HTTP authentication information needed for the request to be accepted by the Web server as indicated in the HTTP response header

	
GET_HEADER Procedure

	
Returns the nth HTTP response header name and value returned in the response

	
GET_HEADER_BY_NAME Procedure

	
Returns the HTTP response header value returned in the response given the name of the header

	
GET_HEADER_COUNT Function

	
Returns the number of HTTP response headers returned in the response

	
GET_RESPONSE Function

	
Reads the HTTP response. When the function returns, the status line and the HTTP response headers have been read and processed.

	
READ_LINE Procedure

	
Reads the HTTP response body in text form until the end of line is reached and returns the output in the caller-supplied buffer

	
READ_RAW Procedure

	
Reads the HTTP response body in binary form and returns the output in the caller-supplied buffer

	
READ_TEXT Procedure

	
Reads the HTTP response body in text form and returns the output in the caller-supplied buffer

	
SET_BODY_CHARSET Procedures

	
Sets the character set of the response body when the media type is "text" but the character set is not specified in the Content-Type header

HTTP Cookies Subprograms

Table 224-13 UTL_HTTP Subprograms—HTTP Cookies

	Subprogram	Description
	
ADD_COOKIES Procedure

	
Add the cookies either to a request context or to the UTL_HTTP package's session state

	
CLEAR_COOKIES Procedure

	
Clears all the cookies maintained either in a request context or in the UTL_HTTP package's session state

	
GET_COOKIE_COUNT Function

	
Returns the number of cookies maintained either in a request context or in the UTL_HTTP package's session states

	
GET_COOKIES Function

	
Returns all the cookies maintained either in a request context or in the UTL_HTTP package's session state.

HTTP Persistent Connections Subprograms

Table 224-14 UTL_HTTP Subprograms—HTTP Persistent Connections

	Subprogram	Description
	
CLOSE_PERSISTENT_CONN Procedure

	
Closes an HTTP persistent connection maintained by the UTL_HTTP package in the current database session

	
CLOSE_PERSISTENT_CONNS Procedure

	
Closes a group of HTTP persistent connections maintained by the UTL_HTTP package in the current database session

	
GET_PERSISTENT_CONN_COUNT Function

	
Returns the number of network connections currently kept persistent by the UTL_HTTP package to the Web servers

	
GET_PERSISTENT_CONNS Procedure

	
Returns all the network connections currently kept persistent by the UTL_HTTP package to the Web servers

Error Conditions Subprograms

Table 224-15 UTL_HTTP Subprograms—Error Conditions

	Subprogram	Description
	
GET_DETAILED_SQLCODE Function

	
Retrieves the detailed SQLCODE of the last exception raised

	
GET_DETAILED_SQLERRM Function

	
Retrieves the detailed SQLERRM of the last exception raised

Summary of UTL_HTTP Subprograms

Table 224-16 UTL_HTTP Package Subprograms

	Subprogram	Description	Group
	
ADD_COOKIES Procedure

	
Add the cookies either to a request context or to the UTL_HTTP package's session state

	
HTTP Cookies Subprograms

	
BEGIN_REQUEST Function

	
Begins a new HTTP request. UTL_HTTP establishes the network connection to the target Web server or the proxy server and sends the HTTP request line

	
HTTP Requests Subprograms

	
CLEAR_COOKIES Procedure

	
Clears all the cookies maintained either in a request context or in the UTL_HTTP package's session state

	
HTTP Cookies Subprograms

	
CLOSE_PERSISTENT_CONN Procedure

	
Closes an HTTP persistent connection maintained by the UTL_HTTP package in the current database session

	
HTTP Persistent Connections Subprograms

	
CLOSE_PERSISTENT_CONNS Procedure

	
Closes a group of HTTP persistent connections maintained by the UTL_HTTP package in the current database session

	
HTTP Persistent Connections Subprograms

	
CREATE_REQUEST_CONTEXT Function

	
Creates a request context in UTL_HTTP for a wallet and a cookie table

	
HTTP Requests Subprograms

	
DESTROY_REQUEST_CONTEXT Procedure

	
Destroys a request context in UTL_HTTP for a wallet and a cookie table

	
HTTP Requests Subprograms

	
END_REQUEST Procedure

	
Ends the HTTP request

	
HTTP Requests Subprograms

	
END_RESPONSE Procedure

	
Ends the HTTP response. It completes the HTTP request and response

	
HTTP Responses Subprograms

	
GET_AUTHENTICATION Procedure

	
Retrieves the HTTP authentication information needed for the request to be accepted by the Web server as indicated in the HTTP response header

	
HTTP Responses Subprograms

	
GET_BODY_CHARSET Procedure

	
Retrieves the default character set of the body of all future HTTP requests

	
Session Settings Subprograms

	
GET_COOKIE_COUNT Function

	
Returns the number of cookies currently maintained by the UTL_HTTP package set by all Web servers

	
HTTP Cookies Subprograms

	
GET_COOKIE_SUPPORT Procedure

	
Retrieves the current cookie support settings

	
Session Settings Subprograms

	
GET_COOKIES Function

	
Returns all the cookies currently maintained by the UTL_HTTP package set by all Web servers

	
HTTP Cookies Subprograms

	
GET_DETAILED_EXCP_SUPPORT Procedure

	
Checks if the UTL_HTTP package will raise a detailed exception or not

	
Session Settings Subprograms

	
GET_DETAILED_SQLCODE Function

	
Retrieves the detailed SQLCODE of the last exception raised

	
Error Conditions Subprograms

	
GET_DETAILED_SQLERRM Function

	
Retrieves the detailed SQLERRM of the last exception raised

	
Error Conditions Subprograms

	
GET_FOLLOW_REDIRECT Procedure

	
Retrieves the follow-redirect setting in the current session

	
Session Settings Subprograms

	
GET_HEADER Procedure

	
Returns the nth HTTP response header name and value returned in the response

	
HTTP Responses Subprograms

	
GET_HEADER_BY_NAME Procedure

	
Returns the HTTP response header value returned in the response given the name of the header

	
HTTP Responses Subprograms

	
GET_HEADER_COUNT Function

	
Returns the number of HTTP response headers returned in the response

	
HTTP Responses and HTTP Responses Subprograms

	
GET_PERSISTENT_CONN_COUNT Function

	
Returns the number of network connections currently kept persistent by the UTL_HTTP package to the Web servers

	
HTTP Persistent Connections Subprograms

	
GET_HEADER_COUNT Function

	
Sees whether or not future HTTP requests will support the HTTP 1.1 persistent connection; sets the maximum number of persistent connections maintained in the current database user session

	
Session Settings Subprograms

	
GET_PERSISTENT_CONN_SUPPORT Procedure

	
Checks if the persistent connection support is enabled and gets the maximum number of persistent connections in the current session (see Session Settings Subprograms)

	
HTTP Persistent Connections Subprograms

	
GET_PERSISTENT_CONNS Procedure

	
Returns all the network connections currently kept persistent by the UTL_HTTP package to the Web servers

	
HTTP Persistent Connections Subprograms

	
GET_PROXY Procedure

	
Retrieves the current proxy settings

	
Session Settings Subprograms

	
GET_RESPONSE Function

	
Reads the HTTP response. When the function returns, the status line and the HTTP response headers have been read and processed

	
HTTP Responses Subprograms

	
GET_RESPONSE_ERROR_CHECK Procedure

	
Checks if the response error check is set or no

	
Session Settings Subprograms

	
GET_TRANSFER_TIMEOUT Procedure

	
Retrieves the current network transfer timeout value

	
Session Settings Subprograms

	
READ_LINE Procedure

	
Reads the HTTP response body in text form until the end of line is reached and returns the output in the caller-supplied buffer

	
HTTP Responses Subprograms

	
READ_RAW Procedure

	
Reads the HTTP response body in binary form and returns the output in the caller-supplied buffer

	
HTTP Responses Subprograms

	
READ_TEXT Procedure

	
Reads the HTTP response body in text form and returns the output in the caller-supplied buffer

	
HTTP Responses Subprograms

	
REQUEST Function

	
Returns up to the first 2000 bytes of the data retrieved from the given URL. This function can be used directly in SQL queries.

	
Simple HTTP Fetches in a Single Call Subprograms

	
REQUEST_PIECES Function

	
Returns a PL/SQL table of 2000-byte pieces of the data retrieved from the given URL

	
Simple HTTP Fetches in a Single Call Subprograms

	
SET_AUTHENTICATION Procedure

	
Sets HTTP authentication information in the HTTP request header. The Web server needs this information to authorize the request.

	
HTTP Requests Subprograms

	
SET_AUTHENTICATION_FROM_WALLET Procedure

	
Sets the HTTP authentication information in the HTTP request header needed for the request to be authorized by the Web server using the username and password credential stored in the Oracle wallet.

	
HTTP Requests Subprograms

	
SET_BODY_CHARSET Procedures

	
Sets the default character set of the body of all future HTTP requests when the media type is text and the character set is not specified in the Content-Type header

	
Session Settings Subprograms

	
SET_BODY_CHARSET Procedures

	
Sets the character set of the request body when the media type is text but the character set is not specified in the Content-Type header

	
HTTP Requests Subprograms

	
SET_BODY_CHARSET Procedures

	
Sets the character set of the response body when the media type is "text" but the character set is not specified in the Content-Type header

	
HTTP Responses Subprograms and Session Settings Subprograms

	
SET_COOKIE_SUPPORT Procedures

	
Enables or disables support for the HTTP cookies in the request

	
HTTP Requests Subprograms

	
SET_DETAILED_EXCP_SUPPORT Procedure

	
Sets whether or not future HTTP requests will support HTTP cookies; sets the maximum number of cookies maintained in the current database user session

	
Session Settings Subprograms

	
SET_DETAILED_EXCP_SUPPORT Procedure

	
Sets the UTL_HTTP package to raise a detailed exception

	
Session Settings Subprograms

	
SET_FOLLOW_REDIRECT Procedures

	
Sets the maximum number of times UTL_HTTP follows the HTTP redirect instruction in the HTTP response to this request in the GET_RESPONSE function

	
HTTP Requests Subprograms

	
SET_HEADER Procedure

	
Sets the maximum number of times UTL_HTTP follows the HTTP redirect instruction in the HTTP responses to future requests in the GET_RESPONSE function

	
Session Settings Subprograms

	
SET_HEADER Procedure

	
Sets an HTTP request header. The request header is sent to the Web server as soon as it is set.

	
HTTP Requests Subprograms

	
SET_PERSISTENT_CONN_SUPPORT Procedure

	
Enables or disables support for the HTTP 1.1 persistent-connection in the request

	
HTTP Requests Subprograms

	
SET_PROXY Procedure

	
Sets the proxy to be used for requests of HTTP or other protocols

	
Session Settings and Session Settings Subprograms

	
SET_RESPONSE_ERROR_CHECK Procedure

	
Sets whether or not GET_RESPONSE raises an exception when the Web server returns a status code that indicates an error—a status code in the 4xx or 5xx ranges

	
Session Settings Subprograms

	
SET_TRANSFER_TIMEOUT Procedure

	
Sets the timeout value for UTL_HTTP to read the HTTP response from the Web server or proxy server

	
Session Settings and Session Settings Subprograms

	
SET_WALLET Procedure

	
Sets the Oracle Wallet used for all HTTP requests over Secured Socket Layer (SSL), that is, HTTPS

	
Session Settings Subprograms

	
WRITE_LINE Procedure

	
Writes a text line in the HTTP request body and ends the line with new-line characters (CRLF as defined in UTL_TCP

	
HTTP Requests Subprograms

	
WRITE_RAW Procedure

	
Writes some binary data in the HTTP request body

	
HTTP Requests Subprograms

	
WRITE_TEXT Procedure

	
Writes some text data in the HTTP request body

	
HTTP Requests Subprograms

ADD_COOKIES Procedure

This procedure adds the cookies either to a request context or to the UTL_HTTP package's session state.

	
See Also:

HTTP Cookies and HTTP Cookies Subprograms

Syntax

UTL_HTTP.ADD_COOKIES (
 cookies IN cookie_table,
 request_context IN request_context_key DEFAULT NULL);

Parameters

Table 224-17 ADD_COOKIES Procedure Parameters

	Parameter	Description
	
cookies

	
The cookies to be added

	
request_context

	
Request context to add the cookies. If NULL, the cookies will be added to the UTL_HTTP package's session state instead.

Usage Notes

The cookies that the package currently maintains are not cleared before new cookies are added.

BEGIN_REQUEST Function

This functions begins a new HTTP request. UTL_HTTP establishes the network connection to the target Web server or the proxy server and sends the HTTP request line. The PL/SQL program continues the request by calling some other interface to complete the request. The URL may contain the username and password needed to authenticate the request to the server. The format is

scheme://[user[:password]@]host[:port]/[...]

	
See Also:

HTTP Requests and HTTP Requests Subprograms

Syntax

UTL_HTTP.BEGIN_REQUEST (
 url IN VARCHAR2,
 method IN VARCHAR2 DEFAULT 'GET',
 http_version IN VARCHAR2 DEFAULT NULL,
 request_context IN request_context_key DEFAULT NULL)
RETURN req;

Parameters

Table 224-18 BEGIN_REQUEST Function Parameters

	Parameter	Description
	
url

	
The URL of the HTTP request

	
method

	
The method performed on the resource identified by the URL

	
http_version

	
The HTTP protocol version that sends the request. The format of the protocol version is HTTP/major-version.minor-version, where major-version and minor-version are positive numbers. If this parameter is set to NULL, UTL_HTTP uses the latest HTTP protocol version that it supports to send the request. The latest version that the package supports is 1.1 and it can be upgraded to a later version. The default is NULL.

	
request_context

	
Request context that holds the private wallet and the cookie table to use in this HTTP request. If this parameter is NULL, the wallet and cookie table shared in the current database session will be used instead.

Usage Notes

	
The URL passed as an argument to this function is not examined for illegal characters, such as spaces, according to URL specification RFC 2396. You should escape those characters with the UTL_URL package to return illegal and reserved characters. URLs should consist of US-ASCII characters only. See Chapter 238, "UTL_URL" for a list of legal characters in URLs. Note that URLs should consist of US-ASCII characters only. The use of non-US-ASCII characters in a URL is generally unsafe.

	
BEGIN_REQUEST can send a URL whose length is up to 32767 bytes. However, different Web servers impose different limits on the length of the URL they can accept. This limit is often about 4000 bytes. If this limit is exceeded, the outcome will depend on the Web server. For example, a Web server might simply drop the HTTP connection without returning a response of any kind. If this happens, a subsequent invocation of the GET_RESPONSE Function will raise the PROTOCOL_ERROR exception.

A URL will be long when its QUERY_STRING (that is, the information that follows the question mark (?)) is long. In general, it is better to send this parameterization in the body of the request using the POST method.

req := UTL_HTTP.BEGIN_REQUEST (url=>the_url, method=>'POST');
UTL_HTTP.SET_HEADER (r => req,
 name => 'Content-Type',
 value => 'application/x-www-form-urlencoded');
UTL_HTTP.SET_HEADER (r => req,
 name => 'Content-Length',
 value =>' <length of data posted in bytes>');
UTL_HTTP.WRITE_TEXT (r => req,
 data => 'p1 = value1&p2=value2...');
resp := UTL_HTTP.GET_RESPONSE
 (r => req);
...

The programmer must determine whether a particular Web server may, or may not, accept data provided in this way.

	
An Oracle wallet must be set before accessing Web servers over HTTPS. See the SET_WALLET Procedure procedure on how to set up an Oracle wallet. To use SSL client authentication, the client certificate should be stored in the wallet and the caller must have the use-client-certificates privilege on the wallet. See "Managing Fine-grained Access to External Network Services" in the Oracle Database Security Guide to grant the privilege.

	
To connect to the remote Web server directly, or indirectly through a HTTP proxy, the UTL_HTTP must have the connect ACL privilege to the remote Web server host or the proxy host respectively.

CLEAR_COOKIES Procedure

This procedure clears all the cookies maintained either in a request context or in the UTL_HTTP package's session state.

	
See Also:

HTTP Cookies and HTTP Cookies Subprograms

Syntax

UTL_HTTP.CLEAR_COOKIES (
 request_context IN request_context_key DEFAULT NULL);

Parameters

Table 224-19 CLEAR_COOKIES Procedure Parameters

	Parameter	Description
	
request_context

	
Request context to clear the cookies. If NULL, the cookies maintained in the UTL_HTTP package's session state will be cleared instead.

CLOSE_PERSISTENT_CONN Procedure

This procedure closes an HTTP persistent connection maintained by the UTL_HTTP package in the current database session.

	
See Also:

HTTP Persistent Connections and HTTP Persistent Connections Subprograms

Syntax

UTL_HTTP.CLOSE_PERSISTENT_CONN (
 conn IN connection);

Parameters

Table 224-20 CLOSE_PERSISTENT_CONN Procedure Parameters

	Parameter	Description
	
conn

	
The HTTP persistent connection to close

CLOSE_PERSISTENT_CONNS Procedure

This procedure closes a group of HTTP persistent connections maintained by the UTL_HTTP package in the current database session. This procedure uses a pattern-match approach to decide which persistent connections to close.

To close a group of HTTP persistent connection that share a common property (for example, all connections to a particular host, or all SSL connections), set the particular parameters and leave the rest of the parameters NULL. If a particular parameter is set to NULL when this procedure is called, that parameter will not be used to decide which connections to close.

For example, the following call to the procedure closes all persistent connections to foobar:

UTL_HTTP.CLOSE_PERSISTENT_CONNS(host => 'foobar');

And the following call to the procedure closes all persistent connections through the proxy www-proxy at TCP/IP port 80:

UTL_HTTP.CLOSE_PERSISTENT_CONNS(proxy_host => 'foobar',
 proxy_port => 80);

And the following call to the procedure closes all persistent connections:

UTL_HTTP.CLOSE_PERSISTENT_CONNS;

	
See Also:

HTTP Persistent Connections and HTTP Persistent Connections Subprograms

Syntax

UTL_HTTP.CLOSE_PERSISTENT_CONNS (
 host IN VARCHAR2 DEFAULT NULL,
 port IN PLS_INTEGER DEFAULT NULL,
 proxy_host IN VARCHAR2 DEFAULT NULL,
 proxy_port IN PLS_INTEGER DEFAULT NULL,
 ssl IN BOOLEAN DEFAULT NULL);

Parameters

Table 224-21 CLOSE_PERSISTENT_CONNS Procedure Parameters

	Parameter	Description
	
host

	
The host for which persistent connections are to be closed

	
port

	
The port number for which persistent connections are to be closed

	
proxy_host

	
The proxy host for which persistent connections are to be closed

	
proxy_port

	
The proxy port for which persistent connections are to be closed

	
ssl

	
Close persistent SSL connection

Usage Notes

Connections to the same Web server at different TCP/IP ports are counted individually. The host names of the Web servers are identified as specified in the URL of the original HTTP requests. Therefore, fully qualified host names with domain names will be counted differently from the host names without domain names.

Note that the use of a NULL value in a parameter when this procedure is called means that the caller does not care about its value when the package decides which persistent connection to close. If you want a NULL value in a parameter to match only a NULL value of the parameter of a persistent connection (which is when you want to close a specific persistent connection), you should use the CLOSE_PERSISTENT_CONN procedure that closes a specific persistent connection.

CREATE_REQUEST_CONTEXT Function

This function creates a request context. A request context is a context that holds a wallet and a cookie for private use in making a HTTP request. This allows the HTTP request to use a wallet and a cookie table that will not be shared with other applications making HTTP requests in the same database session.

	
See Also:

Request Context and HTTP Request Contexts Subprograms

Syntax

UTL_HTTP.CREATE_REQUEST_CONTEXT (
 wallet_path IN VARCHAR2 DEFAULT NULL,
 wallet_password IN VARCHAR2 DEFAULT NULL,
 enable_cookies IN BOOLEAN DEFAULT TRUE,
 max_cookies IN PLS_INTEGER DEFAULT 300,
 max_cookies_per_site IN PLS_INTEGER DEFAULT 20)
RETURN request_context_key;

Parameters

Table 224-22 CREATE_REQUEST_CONTEXT Function Parameters

	Parameter	Description
	
wallet_path

	
Directory path that contains the Oracle wallet. The format is file:directory-path

	
wallet_password

	
The password needed to open the wallet. If the wallet is auto-login enabled, the password may be omitted and should be set to NULL. See the Oracle Database Advanced Security Administrator's Guide for detailed information about wallets.

	
enable_cookies

	
Sets whether HTTP requests using this request context should support HTTP cookies or not: TRUE to enable the support, FALSE to disable it.

	
max_cookies

	
Sets the maximum total number of cookies that will be maintained in this request context

	
max_cookies_per_site

	
Sets the maximum number of cookies per each Web site that will be maintained in this request context

Return Values

The request context created.

Examples

DECLARE
 request_context UTL_HTTP.REQUEST_CONTEXT_KEY;
 req utl_http.req;
BEGIN
 request_context := UTL_HTTP.CREATE_REQUEST_CONTEXT(
 wallet_path => 'file:/oracle/wallets/test_wallets',
 wallet_password => NULL,
 enable_cookies => TRUE,
 max_cookies => 300,
 max_cookies_per_site => 20);
 req := UTL_HTTP.BEGIN_REQUEST(
 url => 'http://www.example.com/',
 request_context => request_context);
END;

DESTROY_REQUEST_CONTEXT Procedure

This procedure destroys a request context in UTL_HTTP. A request context cannot be destroyed when it is in use by a HTTP request or response.

	
See Also:

Request Context and HTTP Request Contexts Subprograms

Syntax

UTL_HTTP.DESTROY_REQUEST_CONTEXT (
 request_context request_context_key);

Parameters

Table 224-23 DESTROY_REQUEST_CONTEXT Procedure Parameters

	Parameter	Description
	
request_context

	
Request context to destroy

Examples

DECLARE
 request_context UTL_HTTP.REQUEST_CONTEXT_KEY;
BEGIN
 request_context := UTL_HTTP.CREATE_REQUEST_CONTEXT(…);
 …
 UTL_HTTP.DESTROY_REQUEST_CONTEXT(request_context);
END;

END_REQUEST Procedure

This procedure ends the HTTP request. To terminate the HTTP request without completing the request and waiting for the response, the program can call this procedure. Otherwise, the program should go through the normal sequence of beginning a request, getting the response, and closing the response. The network connection will always be closed and will not be reused.

	
See Also:

HTTP Requests and HTTP Requests Subprograms

Syntax

UTL_HTTP.END_REQUEST (
 r IN OUT NOCOPY req);

Parameters

Table 224-24 END_REQUEST Procedure Parameters

	Parameter	Description
	
r

	
The HTTP request

END_RESPONSE Procedure

This procedure ends the HTTP response. It completes the HTTP request and response. Unless HTTP 1.1 persistent connection is used in this request, the network connection is also closed.

	
See Also:

HTTP Responses and HTTP Responses Subprograms

Syntax

UTL_HTTP.END_RESPONSE (
 r IN OUT NOCOPY resp);

Parameters

Table 224-25 END_RESPONSE Procedure Parameters

	Parameter	Description
	
r

	
The HTTP response

GET_AUTHENTICATION Procedure

This procedure retrieves the HTTP authentication information needed for the request to be accepted by the Web server as indicated in the HTTP response header.

	
See Also:

HTTP Responses and HTTP Responses Subprograms

Syntax

UTL_HTTP.GET_AUTHENTICATION(
 r IN OUT NOCOPY resp,
 scheme OUT VARCHAR2,
 realm OUT VARCHAR2,
 for_proxy IN BOOLEAN DEFAULT FALSE);

Parameters

Table 224-26 GET_AUTHENTICATION Procedure Parameters

	Parameter	Description
	
r

	
The HTTP response

	
scheme

	
The scheme for the required HTTP authentication

	
realm

	
The realm for the required HTTP authentication

	
for_proxy

	
Returns the HTTP authentication information required for the access to the HTTP proxy server instead of the Web server? Default is FALSE

Usage Notes

When a Web client is unaware that a document is protected, at least two HTTP requests are required for the document to be retrieved. In the first HTTP request, the Web client makes the request without supplying required authentication information; so the request is denied. The Web client can determine the authentication information required for the request to be authorized by calling GET_AUTHENTICATION. The Web client makes the second request and supplies the required authentication information with SET_AUTHORIZATION. If the authentication information can be verified by the Web server, the request will succeed and the requested document is returned. Before making the request, if the Web client knows that authentication information is required, it can supply the required authentication information in the first request, thus saving an extra request.

GET_BODY_CHARSET Procedure

This procedure retrieves the default character set of the body of all future HTTP requests.

	
See Also:

Session Settings and Session Settings Subprograms

Syntax

UTL_HTTP.GET_BODY_CHARSET (
 charset OUT NOCOPY VARCHAR2);

Parameters

Table 224-27 GET_BODY_CHARSET Procedure Parameters

	Parameter	Description
	
charset

	
The default character set of the body of all future HTTP requests

GET_COOKIE_COUNT Function

This function returns the number of cookies maintained either in a request context or in the UTL_HTTP package's session state.

	
See Also:

HTTP Cookies and HTTP Cookies Subprograms

Syntax

UTL_HTTP.GET_COOKIE_COUNT (
 request_context IN request_context_key DEFAULT NULL)
 RETURN PLS_INTEGER;

Parameters

Table 224-28 GET_COOKIE_COUNT Function Parameters

	Parameter	Description
	
request_context

	
Request context to return the cookie count for. If NULL, the cookie count maintained in the UTL_HTTP package's session state will be returned instead.

GET_COOKIE_SUPPORT Procedure

This procedure retrieves the current cookie support settings.

	
See Also:

Session Settings and Session Settings Subprograms

Syntax

UTL_HTTP.GET_COOKIE_SUPPORT (
 enable OUT BOOLEAN,
 max_cookies OUT PLS_INTEGER,
 max_cookies_per_site OUT PLS_INTEGER);

Parameters

Table 224-29 GET_COOKIE_SUPPORT Procedure Parameters

	Parameter	Description
	
enable

	
Indicates whether future HTTP requests should support HTTP cookies (TRUE) or not (FALSE)

	
max_cookies

	
Indicates the maximum total number of cookies maintained in the current session

	
max_cookies_per_site

	
Indicates the maximum number of cookies maintained in the current session for each Web site

GET_COOKIES Function

This function returns all the cookies maintained either in a request context or in the UTL_HTTP package's session state.

	
See Also:

HTTP Cookies and HTTP Cookies Subprograms

Syntax

UTL_HTTP.GET_COOKIES (
 cookies IN OUT NOCOPY cookie_table,
 request_context IN request_context_key DEFAULT NULL);

Parameters

Table 224-30 GET_COOKIES Procedure Parameters

	Parameter	Description
	
cookies

	
The cookies returned

	
request_context

	
Request context to return the cookies for. If NULL, the cookies maintained in the UTL_HTTP package's session state will be returned instead.

GET_DETAILED_EXCP_SUPPORT Procedure

This procedure checks if the UTL_HTTP package will raise a detailed exception or not.

	
See Also:

Session Settings and Session Settings Subprograms

Syntax

UTL_HTTP.GET_DETAILED_EXCP_SUPPORT (
 enable OUT BOOLEAN);

Parameters

Table 224-31 GET_DETAILED_EXCP_SUPPORT Procedure Parameters

	Parameter	Description
	
enable

	
TRUE if UTL_HTTP raises a detailed exception; otherwise FALSE

GET_DETAILED_SQLCODE Function

This function retrieves the detailed SQLCODE of the last exception raised.

	
See Also:

Error Conditions andError Conditions Subprograms

Syntax

UTL_HTTP.GET_DETAILED_SQLCODE
RETURN PLS_INTEGER;

GET_DETAILED_SQLERRM Function

This function retrieves the detailed SQLERRM of the last exception raised.

	
See Also:

Error Conditions and Error Conditions Subprograms

Syntax

UTL_HTTP.GET_DETAILED_SQLERRM
RETURN VARCHAR2;

GET_FOLLOW_REDIRECT Procedure

This procedure retrieves the follow-redirect setting in the current session

	
See Also:

Session Settings and Session Settings Subprograms

Syntax

UTL_HTTP.GET_FOLLOW_REDIRECT (
 max_redirects OUT PLS_INTEGER);

Parameters

Table 224-32 GET_FOLLOW_REDIRECT Procedure Parameters

	Parameter	Description
	
max_redirects

	
The maximum number of redirections for all future HTTP requests

GET_HEADER Procedure

This procedure returns the nth HTTP response header name and value returned in the response.

	
See Also:

HTTP Responses and HTTP Responses Subprograms

Syntax

UTL_HTTP.GET_HEADER (
 r IN OUT NOCOPY resp,
 n IN PLS_INTEGER,
 name OUT NOCOPY VARCHAR2,
 value OUT NOCOPY VARCHAR2);

Parameters

Table 224-33 GET_HEADER Procedure Parameters

	Parameter	Description
	
r

	
The HTTP response

	
n

	
The nth header to return

	
name

	
The name of the HTTP response header

	
value

	
The value of the HTTP response header

Usage Notes

If the response body returned by the remote Web server is encoded in chunked transfer encoding format, the trailer headers that are returned at the end of the response body will be added to the response, and the response header count will be updated. You can retrieve the additional headers after the end of the response body is reached and before you end the response.

GET_HEADER_BY_NAME Procedure

This procedure returns the HTTP response header value returned in the response given the name of the header.

	
See Also:

HTTP Responses and HTTP Responses Subprograms

Syntax

UTL_HTTP.GET_HEADER_BY_NAME(
 r IN OUT NOCOPY resp,
 name IN VARCHAR2,
 value OUT NOCOPY VARCHAR2,
 n IN PLS_INTEGER DEFAULT 1);

Parameters

Table 224-34 GET_HEADER_BY_NAME Procedure Parameters

	Parameter	Description
	
r

	
The HTTP response

	
name

	
The name of the HTTP response header for which the value is to return

	
value

	
The value of the HTTP response header

	
n

	
The nth occurrence of an HTTP response header by the specified name to return. The default is 1.

Usage Notes

If the response body returned by the remote Web server is encoded in chunked transfer encoding format, the trailer headers that are returned at the end of the response body will be added to the response, and the response header count will be updated. You can retrieve the additional headers after the end of the response body is reached and before you end the response.

GET_HEADER_COUNT Function

This function returns the number of HTTP response headers returned in the response.

	
See Also:

HTTP Responses and HTTP Responses Subprograms

Syntax

UTL_HTTP.GET_HEADER_COUNT (
 r IN OUT NOCOPY resp)
RETURN PLS_INTEGER;

Parameters

Table 224-35 GET_HEADER_COUNT Function Parameters

	Parameter	Description
	
r

	
The HTTP response

Usage Notes

If the response body returned by the remote Web server is encoded in chunked transfer encoding format, the trailer headers that are returned at the end of the response body will be added to the response, and the response header count will be updated. You can retrieve the additional headers after the end of the response body is reached and before you end the response.

GET_PERSISTENT_CONN_COUNT Function

This function returns the number of network connections currently kept persistent by the UTL_HTTP package to the Web servers.

	
See Also:

HTTP Persistent Connections and HTTP Persistent Connections Subprograms

Syntax

UTL_HTTP.GET_PERSISTENT_CONN_COUNT
RETURN PLS_INTEGER;

Usage Notes

Connections to the same Web server at different TCP/IP ports are counted individually. The host names of the Web servers are identified as specified in the URL of the original HTTP requests. Therefore, fully qualified host names with domain names will be counted differently from the host names without domain names.

GET_PERSISTENT_CONN_SUPPORT Procedure

This procedure checks:

	
If the persistent connection support is enabled

	
Gets the maximum number of persistent connections in the current session

	
See Also:

Session Settings and Session Settings Subprograms

Syntax

UTL_HTTP.GET_PERSISTENT_CONN_SUPPORT (
 enable OUT BOOLEAN,
 max_conns OUT PLS_INTEGER);

Parameters

Table 224-36 GET_PERSISTENT_CONN_SUPPORT Procedure Parameters

	Parameter	Description
	
enable

	
TRUE if persistent connection support is enabled; otherwise FALSE

	
max_conns

	
the maximum number of persistent connections maintained in the current session

GET_PERSISTENT_CONNS Procedure

This procedure returns all the network connections currently kept persistent by the UTL_HTTP package to the Web servers.

	
See Also:

HTTP Persistent Connections and HTTP Persistent Connections Subprograms

Syntax

UTL_HTTP.get_persistent_conns (
 connections IN OUT NOCOPY connection_table);

Parameters

Table 224-37 GET_PERSISTENT_CONNS Procedure Parameters

	Parameter	Description
	
connections

	
The network connections kept persistent

Usage Notes

Connections to the same Web server at different TCP/IP ports are counted individually. The host names of the Web servers are identified as specified in the URL of the original HTTP requests. Therefore, fully qualified host names with domain names will be counted differently from the host names without domain names.

GET_PROXY Procedure

This procedure retrieves the current proxy settings.

	
See Also:

Session Settings and Session Settings Subprograms

Syntax

UTL_HTTP.GET_PROXY (
 proxy OUT NOCOPY VARCHAR2,
 no_proxy_domains OUT NOCOPY VARCHAR2);

Parameters

Table 224-38 GET_PROXY Procedure Parameters

	Parameter	Description
	
proxy

	
The proxy (host and an optional port number) currently used by the UTL_HTTP package

	
no_proxy_domains

	
The list of hosts and domains for which no proxy is used for all requests

GET_RESPONSE Function

This function reads the HTTP response. When the function returns, the status line and the HTTP response headers have been read and processed. The status code, reason phrase, and the HTTP protocol version are stored in the response record. This function completes the HTTP headers section.

	
See Also:

HTTP Responses and HTTP Responses Subprograms

Syntax

UTL_HTTP.GET_RESPONSE (
 r IN OUT NOCOPY req)
RETURN resp;

Parameters

Table 224-39 GET_RESPONSE Procedure Parameters

	Parameter	Description
	
r

	
The HTTP response

GET_RESPONSE_ERROR_CHECK Procedure

This procedure checks if the response error check is set or not.

	
See Also:

Session Settings and Session Settings Subprograms

Syntax

UTL_HTTP.GET_RESPONSE_ERROR_CHECK (
 enable OUT BOOLEAN);

Parameters

Table 224-40 GET_RESPONSE_ERROR_CHECK Procedure Parameters

	Parameter	Description
	
enable

	
TRUE if the response error check is set; otherwise FALSE

GET_TRANSFER_TIMEOUT Procedure

This procedure retrieves the default timeout value for all future HTTP requests.

	
See Also:

Session Settings and Session Settings Subprograms

Syntax

UTL_HTTP.GET_TRANSFER_TIMEOUT (
 timeout OUT PLS_INTEGER);

Parameters

Table 224-41 GET_TRANSFER_TIMEOUT Procedure Parameters

	Parameter	Description
	
timeout

	
The network transfer timeout value in seconds

READ_LINE Procedure

This procedure reads the HTTP response body in text form until the end of line is reached and returns the output in the caller-supplied buffer. The end of line is as defined in the function read_line of UTL_TCP. The end_of_body exception will be raised if the end of the HTTP response body is reached. Text data is automatically converted from the response body character set to the database character set.

	
See Also:

HTTP Responses and HTTP Responses Subprograms

Syntax

UTL_HTTP.READ_LINE(
 r IN OUT NOCOPY resp,
 data OUT NOCOPY VARCHAR2 CHARACTER SET ANY_CS,
 remove_crlf IN BOOLEAN DEFAULT FALSE);

Parameters

Table 224-42 READ_LINE Procedure Parameters

	Parameter	Description
	
r

	
The HTTP response

	
data

	
The HTTP response body in text form

	
remove_crlf

	
Removes the newline characters if set to TRUE

Usage Notes

The UTL_HTTP package supports HTTP 1.1 chunked transfer-encoding. When the response body is returned in chunked transfer-encoding format as indicated in the response header, the package automatically decodes the chunks and returns the response body in de-chunked format.

If transfer timeout is set in the request of this response, read_line waits for each data packet to be ready to read until timeout occurs. If it occurs, this procedure stops reading and returns all the data read successfully. If no data is read successfully, the transfer_timeout exception is raised. The exception can be handled and the read operation can be retried later.

If a partial multibyte character is found at the end of the response body, read_line stops reading and returns all the complete multibyte characters read successfully. If no complete character is read successfully, the partial_multibyte_char exception is raised. The exception can be handled and the bytes of that partial multibyte character can be read as binary by the read_raw procedure. If a partial multibyte character is seen in the middle of the response body because the remaining bytes of the character have not arrived and read timeout occurs, the transfer_timeout exception is raised instead. The exception can be handled and the read operation can be retried later.

When the Content-Type response header specifies the character set of the response body and the character set is unknown or unsupported by Oracle, the "ORA-01482: unsupported character set" exception is raised if you try to read the response body as text. You can either read the response body as binary using the READ_RAW procedure, or set the character set of the response body explicitly using the SET_BODY_CHARSET procedure and read the response body as text again.

READ_RAW Procedure

This procedure reads the HTTP response body in binary form and returns the output in the caller-supplied buffer. The end_of_body exception will be raised if the end of the HTTP response body is reached.

	
See Also:

HTTP Responses and HTTP Responses Subprograms

Syntax

UTL_HTTP.READ_RAW(
 r IN OUT NOCOPY resp,
 data OUT NOCOPY RAW,
 len IN PLS_INTEGER DEFAULT NULL);

Parameters

Table 224-43 READ_RAW Procedure Parameters

	Parameter	Description
	
r

	
The HTTP response

	
data

	
The HTTP response body in binary form

	
len

	
The number of bytes of data to read. If len is NULL, this procedure will read as much input as possible to fill the buffer allocated in data. The actual amount of data returned may be less than that specified if not much data is available before the end of the HTTP response body is reached or the transfer_timeout amount of time has elapsed. The default is NULL

Usage Notes

The UTL_HTTP package supports HTTP 1.1 chunked transfer-encoding. When the response body is returned in chunked transfer-encoding format as indicated in the response header, the package automatically decodes the chunks and returns the response body in de-chunked format.

If transfer timeout is set in the request of this response, read_raw waits for each data packet to be ready to read until timeout occurs. If it occurs, read_raw stops reading and returns all the data read successfully. If no data is read successfully, the transfer_timeout exception is raised. The exception can be handled and the read operation can be retried later.

READ_TEXT Procedure

This procedure reads the HTTP response body in text form and returns the output in the caller-supplied buffer. The end_of_body exception will be raised if the end of the HTTP response body is reached. Text data is automatically converted from the response body character set to the database character set.

	
See Also:

HTTP Responses and HTTP Responses Subprograms

Syntax

UTL_HTTP.READ_TEXT(
 r IN OUT NOCOPY resp,
 data OUT NOCOPY VARCHAR2 CHARACTER SET ANY_CS,
 len IN PLS_INTEGER DEFAULT NULL);

Parameters

Table 224-44 READ_TEXT Procedure Parameters

	Parameter	Description
	
r

	
The HTTP response

	
data

	
The HTTP response body in text form

	
len

	
The maximum number of characters of data to read. If len is NULL, this procedure will read as much input as possible to fill the buffer allocated in data. The actual amount of data returned may be less than that specified if little data is available before the end of the HTTP response body is reached or the transfer_timeout amount of time has elapsed. The default is NULL.

Usage Notes

The UTL_HTTP package supports HTTP 1.1 chunked transfer-encoding. When the response body is returned in chunked transfer-encoding format as indicated in the response header, the package automatically decodes the chunks and returns the response body in de-chunked format.

If transfer timeout is set in the request of this response, read_text waits for each data packet to be ready to read until timeout occurs. If it occurs, this procedure stops reading and returns all the data read successfully. If no data is read successfully, the transfer_timeout exception is raised. The exception can be handled and the read operation can be retried later.

If a partial multibyte character is found at the end of the response body, read_text stops reading and returns all the complete multibyte characters read successfully. If no complete character is read successfully, the partial_multibyte_char exception is raised. The exception can be handled and the bytes of that partial multibyte character can be read as binary by the read_raw procedure. If a partial multibyte character is seen in the middle of the response body because the remaining bytes of the character have not arrived and read timeout occurs, the transfer_timeout exception is raised instead. The exception can be handled and the read operation can be retried later.

When the Content-Type response header specifies the character set of the response body and the character set is unknown or unsupported by Oracle, the "ORA-01482: unsupported character set" exception is raised if you try to read the response body as text. You can either read the response body as binary using the READ_RAW procedure, or set the character set of the response body explicitly using the SET_BODY_CHARSET procedure and read the response body as text again.

REQUEST Function

This function returns up to the first 2000 bytes of data retrieved from the given URL. This function can be used directly in SQL queries. The URL may contain the username and password needed to authenticate the request to the server. The format is

scheme://[user[:password]@]host[:port]/[...]

You can define a username/password for the proxy to be specified in the proxy string. The format is

[http://][user[:password]@]host[:port][/]

	
See Also:

Simple HTTP Fetches and Simple HTTP Fetches in a Single Call Subprograms

Syntax

UTL_HTTP.REQUEST (
 url IN VARCHAR2,
 proxy IN VARCHAR2 DEFAULT NULL,
 wallet_path IN VARCHAR2 DEFAULT NULL,
 wallet_password IN VARCHAR2 DEFAULT NULL)
RETURN VARCHAR2;

Pragmas

pragma restrict_references (request, wnds, rnds, wnps, rnps);

Parameters

Table 224-45 REQUEST Function Parameters

	Parameter	Description
	
url

	
Uniform resource locator

	
proxy

	
(Optional) Specifies a proxy server to use when making the HTTP request. See SET_PROXY for the full format of the proxy setting.

	
wallet_path

	
(Optional) Specifies a client-side wallet. The client-side wallet contains the list of trusted certificate authorities required for HTTPS request. The format of wallet_path on a PC is, for example, file:c:\WINNT\Profiles\username\WALLETS, and in Unix is, for example, file:/home/username/wallets

When the UTL_HTTP package is executed in the Oracle database server, the wallet is accessed from the database server. Therefore, the wallet path must be accessible from the database server. See SET_WALLET for a description on how to set up an Oracle wallet. Non-HTTPS requests do not require an Oracle wallet.

	
wallet_password

	
(Optional) Specifies the password required to open the wallet

Return Values

The return type is a string of length 2000 or less, which contains up to the first 2000 bytes of the HTML result returned from the HTTP request to the argument URL.

Exceptions

INIT_FAILED
REQUEST_FAILED

Usage Notes

The URL passed as an argument to this function is not examined for illegal characters, for example, spaces, according to URL specification RFC 2396. The caller should escape those characters with the UTL_URL package. See the comments of the package for the list of legal characters in URLs. Note that URLs should consist of US-ASCII characters only. The use of non-US-ASCII characters in a URL is generally unsafe.

Please see the documentation of the function SET_WALLET on the use of an Oracle wallet, which is required for accessing HTTPS Web servers.

Unless response error check is turned on, this function does not raise an exception when a 4xx or 5xx response is received from the Web server. Instead, it returns the formatted error message from the Web server:

<HTML>
<HEAD>
<TITLE>Error Message</TITLE>
</HEAD>
<BODY>
<H1>Fatal Error 500</H1>
Can't Access Document: http://home.nothing.comm.
<P>
Reason: Can't locate remote host: home.nothing.comm.
<P>
<P><HR>
<ADDRESS>
CERN-HTTPD3.0A</ADDRESS>
</BODY>
</HTML>

Examples

SQL> SELECT UTL_HTTP.REQUEST('http://www.my-company.com/') FROM DUAL;
UTL_HTTP.REQUEST('HTTP://WWW.MY-COMPANY.COM/')
<html>
<head><title>My Company Home Page</title>
<!--changed Jan. 16, 19
1 row selected.

If you are behind a firewall, include the proxy parameter. For example, from within the Oracle firewall, where there might be a proxy server named www-proxy.my-company.com:

SQLPLUS> SELECT
UTL_HTTP.REQUEST('http://www.my-company.com', 'www-proxy.us.my-company.com') FROM DUAL;

REQUEST_PIECES Function

This function returns a PL/SQL table of 2000-byte pieces of the data retrieved from the given URL. You can define a username/password for the proxy to be specified in the proxy string. The format is

[http://][user[:password]@]host[:port][/]

	
See Also:

Simple HTTP Fetches and Simple HTTP Fetches in a Single Call Subprograms

Syntax

TYPE html_pieces IS TABLE OF VARCHAR2(2000) INDEX BY BINARY_INTEGER;

UTL_HTTP.REQUEST_PIECES (
 url IN VARCHAR2,
 max_pieces IN NATURAL DEFAULT 32767,
 proxy IN VARCHAR2 DEFAULT NULL,
 wallet_path IN VARCHAR2 DEFAULT NULL,
 wallet_password IN VARCHAR2 DEFAULT NULL)
RETURN html_pieces;

Pragmas

PRAGMA RESTRICT_REFERENCES (request_pieces, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 224-46 REQUEST_PIECES Function Parameters

	Parameter	Description
	
url

	
Uniform resource locator

	
max_pieces

	
(Optional) The maximum number of pieces (each 2000 characters in length, except for the last, which may be shorter), that REQUEST_PIECES should return. If provided, then that argument should be a positive integer.

	
proxy

	
(Optional) Specifies a proxy server to use when making the HTTP request. See SET_PROXY for the full format of the proxy setting.

	
wallet_path

	
(Optional) Specifies a client-side wallet. The client-side wallet contains the list of trusted certificate authorities required for HTTPS request.

The format of wallet_path on a PC is, for example, file:c:\WINNT\Profiles\username\WALLETS, and in Unix is, for example, file:/home/username/wallets. When the UTL_HTTP package is executed in the Oracle database server, the wallet is accessed from the database server. Therefore, the wallet path must be accessible from the database server.

See SET_WALLET for the description on how to set up an Oracle wallet. Non-HTTPS requests do not require an Oracle wallet.

	
wallet_password

	
(Optional) Specifies the password required to open the wallet

Return Values

REQUEST_PIECES returns a PL/SQL table of type UTL_HTTP.HTML_PIECES. Each element of that PL/SQL table is a string of maximum length 2000. The elements of the PL/SQL table returned by REQUEST_PIECES are successive pieces of the data obtained from the HTTP request to that URL.

Exceptions

INIT_FAILED
REQUEST_FAILED

Usage Notes

The URL passed as an argument to this function will not be examined for illegal characters, for example, spaces, according to URL specification RFC 2396. The caller should escape those characters with the UTL_URL package. See the comments of the package for the list of legal characters in URLs. Note that URLs should consist of US-ASCII characters only. The use of non-US-ASCII characters in a URL is generally unsafe.

Each entry of the PL/SQL table (the "pieces") returned by this function may not be filled to their fullest capacity. The function may start filling the data in the next piece before the previous "piece" is totally full.

Please see the documentation of the function SET_WALLET on the use of an Oracle wallet, which is required for accessing HTTPS Web servers.

Unless response error check is turned on, this function does not raise an exception when a 4xx or 5xx response is received from the Web server. Instead, it returns the formatted error message from the Web server:

<HTML>
<HEAD>
<TITLE>Error Message</TITLE>
</HEAD>
<BODY>
<H1>Fatal Error 500</H1>
Can't Access Document: http://home.nothing.comm.
<P>
Reason: Can't locate remote host: home.nothing.comm.
<P>
<P><HR>
<ADDRESS>
CERN-HTTPD3.0A</ADDRESS>
</BODY>
</HTML>

Examples

SET SERVEROUTPUT ON

DECLARE
 x UTL_HTTP.HTML_PIECES;
 len PLS_INTEGER;
BEGIN
 x := UTL_HTTP.REQUEST_PIECES('http://www.oracle.com/', 100);
 DBMS_OUTPUT.PUT_LINE(x.count || ' pieces were retrieved.');
 DBMS_OUTPUT.PUT_LINE('with total length ');
 IF x.count < 1 THEN
 DBMS_OUTPUT.PUT_LINE('0');
 ELSE
 len := 0;
 FOR i in 1..x.count LOOP
 len := len + length(x(i));
 END LOOP;
 DBMS_OUTPUT.PUT_LINE(i);
 END IF;
END;
/
-- Output
Statement processed.
4 pieces were retrieved.
with total length
7687

SET_AUTHENTICATION Procedure

This procedure sets HTTP authentication information in the HTTP request header. The Web server needs this information to authorize the request.

	
See Also:

HTTP Requests and HTTP Requests Subprograms

Syntax

UTL_HTTP.SET_AUTHENTICATION(
 r IN OUT NOCOPY req,
 username IN VARCHAR2,
 password IN VARCHAR2,
 scheme IN VARCHAR2 DEFAULT 'Basic',
 for_proxy IN BOOLEAN DEFAULT FALSE);

Parameters

Table 224-47 SET_AUTHENTICATION Procedure Parameters

	Parameter	Description
	
r

	
HTTP request

	
username

	
Username for the HTTP authentication

	
password

	
Password for the HTTP authentication

	
scheme

	
HTTP authentication scheme. Either Basic for the HTTP basic or AWS for Amazon S3 authentication scheme. Default is basic.

	
for_proxy

	
Identifies if the HTTP authentication information is for access to the HTTP proxy server instead of the Web server. Default is FALSE.

Usage Notes

The supported authentication schemes are HTTP basic and Amazon S3 authentication.

SET_AUTHENTICATION_FROM_WALLET Procedure

This procedure sets the HTTP authentication information in the HTTP request header needed for the request to be authorized by the Web server using the username and password credential stored in the Oracle wallet.

	
See Also:

External Password Store on , and HTTP Requests Subprograms

Syntax

UTL_HTTP.SET_AUTHENTICATION_FROM_WALLET(
 r IN OUT NOCOPY req,
 alias IN VARCHAR2,
 scheme IN VARCHAR2 DEFAULT 'Basic',
 for_proxy IN BOOLEAN DEFAULT FALSE);

Parameters

Table 224-48 SET_AUTHENTICATION_FROM_WALLET Procedure Parameters

	Parameter	Description
	
r

	
The HTTP request

	
alias

	
Alias to identify and retrieve the username and password credential stored in the Oracle wallet

	
scheme

	
HTTP authentication scheme. Either Basic for the HTTP basic or AWS for Amazon S3 authentication scheme. Default is basic.

	
for_proxy

	
Identifies if the HTTP authentication information is for access to the HTTP proxy server instead of the Web server. Default is FALSE.

Usage Notes

	
To use the password credentials in a wallet, the UTL_HTTP user must have the use-passwords privilege on the wallet.

	
The supported authentication schemes are HTTP basic and Amazon S3 authentication schemes.

Examples

Creating a wallet and entering username and password in the wallet

> mkstore -wrl /oracle/wallets/test_wallet -create
Enter password: ******
Enter password again: ******
> mkstore –wrl /oracle/wallets/test_wallet –createCredential hr-access jsmith
Your secret/Password is missing in the command line
Enter your secret/Password: ****
Re-enter your secret/Password: ****
Enter wallet password: ******

Granting the use-passwords privilege on the wallet to a user by the database administrator

BEGIN
 DBMS_NETWORK_ACL_ADMIN.CREATE_ACL(
 acl => 'wallet-acl.xml',
 description => 'Wallet ACL',
 principal => 'SCOTT',
 is_grant => TRUE,
 privilege => 'use-passwords');
 DBMS_NETWORK_ACL_ADMIN.ASSIGN_WALLET_acl(
 acl => 'wallet-acl.xml',
 wallet_path => 'file: /oracle/wallets/test_wallet');
END;

Using username and password from the wallet

DECLARE
 req UTL_HTTP.req;
BEGIN
 UTL_HTTP.SET_WALLET(path => 'file:/oracle/wallets/test_wallet');
 req := UTL_HTTP.BEGIN_REQUEST(…);
 UTL_HTTP.SET_AUTHENTICATION_FROM_WALLET(req, 'hr-access');
 …
END;

SET_BODY_CHARSET Procedures

This procedure is overloaded. The description of different functionality is located alongside the syntax declarations.

	
See Also:

	
HTTP Responses and HTTP Responses Subprograms

	
Session Settings and Session Settings Subprograms

Syntax

Sets the default character set of the body of all future HTTP requests when the media type is text and the character set is not specified in the Content-Type header. Following the HTTP protocol standard specification, if the media type of a request or a response is text, but the character set information is missing in the Content-Type header, the character set of the request or response body should default to ISO-8859-1. A response created for a request inherits the default body character set of the request instead of the body character set of the current session. The default body character set is ISO-8859-1 in a database user session. The default body character set setting affects only future requests and has no effect on existing requests. After a request is created, the body character set can be changed by using the other SET_BODY_CHARSET procedure that operates on a request:

UTL_HTTP.SET_BODY_CHARSET (
 charset IN VARCHAR2 DEFAULT NULL);

Sets the character set of the request body when the media type is text but the character set is not specified in the Content-Type header. According to the HTTP protocol standard specification, if the media type of a request or a response is "text" but the character set information is missing in the Content-Type header, the character set of the request or response body should default to "ISO-8859-1". Use this procedure to change the default body character set a request inherits from the session default setting:

UTL_HTTP.SET_BODY_CHARSET(
 r IN OUT NOCOPY req,
 charset IN VARCHAR2 DEFAULT NULL);

Sets the character set of the response body when the media type is "text" but the character set is not specified in the Content-Type header. For each the HTTP protocol standard specification, if the media type of a request or a response is "text" but the character set information is missing in the Content-Type header, the character set of the request or response body should default to "ISO-8859-1". Use this procedure to change the default body character set a response inherits from the request:

UTL_HTTP.SET_BODY_CHARSET(
 r IN OUT NOCOPY resp,
 charset IN VARCHAR2 DEFAULT NULL);

Parameters

Table 224-49 SET_BODY_CHARSET Procedure Parameters

	Parameter	Description
	
r

	
The HTTP response.

	
charset

	
The default character set of the response body. The character set can be in Oracle or Internet Assigned Numbers Authority (IANA) naming convention. If charset is NULL, the database character set is assumed.

SET_COOKIE_SUPPORT Procedures

This procedure is overloaded. The description of different functionality is located alongside the syntax declarations.

This procedure

	
See Also:

	
HTTP Requests andHTTP Requests Subprograms

	
Session Settings and Session Settings Subprograms

Syntax

Enables or disables support for the HTTP cookies in the request. Use this procedure to change the cookie support setting a request inherits from the session default setting:

UTL_HTTP.SET_COOKIE_SUPPORT(
 r IN OUT NOCOPY REQ,
 enable IN BOOLEAN DEFAULT TRUE);

Sets whether or not future HTTP requests will support HTTP cookies, and the maximum number of cookies maintained in the current database user session:

UTL_HTTP.SET_COOKIE_SUPPORT (
 enable IN BOOLEAN,
 max_cookies IN PLS_INTEGER DEFAULT 300,
 max_cookies_per_site IN PLS_INTEGER DEFAULT 20);

Parameters

Table 224-50 SET_COOKIE_SUPPORT Procedure Parameters

	Parameter	Description
	
r

	
The HTTP request

	
enable

	
Set enable to TRUE to enable HTTP cookie support; FALSE to disable

	
max_cookies

	
Sets the maximum total number of cookies maintained in the current session

	
max_cookies_per_site

	
Sets the maximum number of cookies maintained in the current session for each Web site

Usage Notes

If cookie support is enabled for an HTTP request, all cookies saved in the current session and applicable to the request are returned to the Web server in the request in accordance with HTTP cookie specification standards. Cookies set in the response to the request are saved in the current session for return to the Web server in the subsequent requests if cookie support is enabled for those requests. If the cookie support is disabled for an HTTP request, no cookies are returned to the Web server in the request and the cookies set in the response to the request are not saved in the current session, although the Set-Cookie HTTP headers can still be retrieved from the response.

Cookie support is enabled by default for all HTTP requests in a database user session. The default setting of the cookie support (enabled versus disabled) affects only the future requests and has no effect on the existing ones. After your request is created, the cookie support setting may be changed by using the other SET_COOKIE_SUPPORT procedure that operates on a request.

The default maximum number of cookies saved in the current session is 20 for each site and 300 total.

If you lower the maximum total number of cookies or the maximum number of cookies for each Web site, the oldest cookies will be purged first to reduce the number of cookies to the lowered maximum. HTTP cookies saved in the current session last for the duration of the database session only; there is no persistent storage for the cookies. Cookies saved in the current session are not cleared if you disable cookie support.

See "Examples" for how to use GET_COOKIES and ADD_COOKIES to retrieve, save, and restore cookies.

SET_DETAILED_EXCP_SUPPORT Procedure

This procedure sets the UTL_HTTP package to raise a detailed exception. By default, UTL_HTTP raises the request_failed exception when an HTTP request fails. Use GET_DETAILED_SQLCODE and GET_DETAILED_SQLEERM for more detailed information about the error.

	
See Also:

Session Settings and Session Settings Subprograms

Syntax

UTL_HTTP.SET_DETAILED_EXCP_SUPPORT (
 enable IN BOOLEAN DEFAULT FALSE);

Parameters

Table 224-51 SET_DETAILED_EXCP_SUPPORT Procedure Parameters

	Parameter	Description
	
enable

	
Asks UTL_HTTP to raise a detailed exception directly if set to TRUE; otherwise FALSE

SET_FOLLOW_REDIRECT Procedures

This procedure sets the maximum number of times UTL_HTTP follows the HTTP redirect instruction in the HTTP response to this request, or future requests, in the GET_RESPONSE function.

	
See Also:

	
HTTP Requests and HTTP Requests Subprograms

	
Session Settings and Session Settings Subprograms

Syntax

Use this procedure to set the maximum number of redirections:

UTL_HTTP.SET_FOLLOW_REDIRECT (
 max_redirects IN PLS_INTEGER DEFAULT 3);

Use this procedure to change the maximum number of redirections a request inherits from the session default setting:

UTL_HTTP.SET_FOLLOW_REDIRECT(
 r IN OUT NOCOPY req,
 max_redirects IN PLS_INTEGER DEFAULT 3);

Parameters

Table 224-52 SET_FOLLOW_REDIRECT Procedure Parameters

	Parameter	Description
	
r

	
The HTTP request

	
max_redirects

	
The maximum number of redirects. Set to zero to disable redirects.

Usage Notes

If max_redirects is set to a positive number, the GET_RESPONSE Function will automatically follow the redirected URL for the HTTP response status code 301, 302, and 307 for the HTTP HEAD and GET methods, and 303 for all HTTP methods, and retry the HTTP request (the request method will be changed to HTTP GET for the status code 303) at the new location. It follows the redirection until the final, non-redirect location is reached, or an error occurs, or the maximum number of redirections has been reached (to prevent an infinite loop). The URL and method fields in the REQ record will be updated to the last redirected URL and the method used to access the URL. Set the maximum number of redirects to zero to disable automatic redirection.

While it is set not to follow redirect automatically in the current session, it is possible to specify individual HTTP requests to follow redirect instructions the function FOLLOW_REDIRECT and vice versa.

The default maximum number of redirections in a database user session is 3. The default value affects only future requests and has no effect on existing requests.

The SET_FOLLOW_REDIRECT procedure must be called before GET_RESPONSE for any redirection to take effect.

SET_HEADER Procedure

This procedure sets an HTTP request header. The request header is sent to the Web server as soon as it is set.

	
See Also:

HTTP Requests and HTTP Requests Subprograms

Syntax

UTL_HTTP.SET_HEADER (
 r IN OUT NOCOPY req,
 name IN VARCHAR2,
 value IN VARCHAR2);

Parameters

Table 224-53 SET_HEADER Procedure Parameters

	Parameter	Description
	
r

	
The HTTP request

	
name

	
The name of the HTTP request header

	
value

	
The value of the HTTP request header

Usage Notes

Multiple HTTP headers with the same name are allowed in the HTTP protocol standard. Therefore, setting a header does not replace a prior header with the same name.

If the request is made using HTTP 1.1, UTL_HTTP sets the Host header automatically for you.

When you set the Content-Type header with this procedure, UTL_HTTP looks for the character set information in the header value. If the character set information is present, it is set as the character set of the request body. It can be overridden later by using the SET_BODY_CHARSET procedure.

When you set the Transfer-Encoding header with the value chunked, UTL_HTTP automatically encodes the request body written by the WRITE_TEXT, WRITE_LINE and WRITE_RAW procedures. Note that some HTTP-1.1-based Web servers or CGI programs do not support or accept the request body encoding in the HTTP 1.1 chunked transfer-encoding format.

SET_PERSISTENT_CONN_SUPPORT Procedure

This procedure enables or disables support for the HTTP 1.1 persistent-connection in the request.

	
See Also:

HTTP Requests and HTTP Requests Subprograms

Syntax

UTL_HTTP.SET_PERSISTENT_CONN_SUPPORT(
 r IN OUT NOCOPY req,
 enable IN BOOLEAN DEFAULT FALSE);

Parameters

Table 224-54 SET_PERSISTENT_CONN_SUPPORT Procedure Parameters

	Parameter	Description
	
r

	
The HTTP request

	
enable

	
TRUE to keep the network connection persistent. FALSE otherwise.

Usage Notes

If the persistent-connection support is enabled for an HTTP request, the package will keep the network connections to a Web server or the proxy server open in the package after the request is completed properly for a subsequent request to the same server to reuse for each HTTP 1.1 protocol specification. With the persistent connection support, subsequent HTTP requests may be completed faster because the network connection latency is avoided. If the persistent-connection support is disabled for a request, the package will always send the HTTP header "Connection: close" automatically in the HTTP request and close the network connection when the request is completed. This setting has no effect on HTTP requests that follows HTTP 1.0 protocol, for which the network connections will always be closed after the requests are completed.

When a request is being made, the package attempts to reuse an existing persistent connection to the target Web server (or proxy server) if one is available. If none is available, a new network connection will be initiated. The persistent-connection support setting for a request affects only whether the network connection should be closed after a request completes.

Use this procedure to change the persistent-connection support setting a request inherits from the session default setting.

Users should note that while the use of persistent connections in UTL_HTTP may reduce the time it takes to fetch multiple Web pages from the same server, it consumes precious system resources (network connections) in the database server. Also, excessive use of persistent connections may reduce the scalability of the database server when too many network connections are kept open in the database server. Network connections should be kept open only if they will be used immediately by subsequent requests and should be closed immediately when they are no longer needed. Set the default persistent connection support as disabled in the session, and enable persistent connection in individual HTTP requests as shown in "Examples".

The default value of the maximum number of persistent connections in a database session is zero. To truly enable persistent connections, you must also set the maximum number of persistent connections to a positive value or no connections will be kept persistent.

Examples

Using SET_PERSISTENT_CONN_SUPPORT in HTTP Requests

DECLARE
 TYPE vc2_table IS TABLE OF VARCHAR2(256) INDEX BY BINARY_INTEGER;
 paths VC2_TABLE;

UTL_HTTP.fetch_pages(paths IN vc2_table) AS
 url_prefix VARCHAR2(256) := 'http://www.my-company.com/';
 req UTL_HTTP.REQ;
 resp UTL_HTTP.RESP;
 data VARCHAR2(1024);
 BEGIN
 FOR i IN 1..paths.count LOOP
 req := UTL_HTTP.BEGIN_REQUEST(url_prefix || paths(i));
 -- Use persistent connection except for the last request
 IF (i < paths.count) THEN
 UTL_HTTP.SET_PERSISTENT_CONN_SUPPORT(req, TRUE);
 END IF;
 resp := UTL_HTTP.GET_RESPONSE(req);
 BEGIN
 LOOP
 UTL_HTTP.READ_TEXT(resp, data);
 -- do something with the data
 END LOOP;
 EXCEPTION
 WHEN UTL_HTTP.END_OF_BODY THEN
 NULL;
 END;
 UTL_HTTP.END_RESPONSE(resp);
 END LOOP;
 END;

BEGIN
 UTL_HTTP.SET_PERSISTENT_CONN_SUPPORT(FALSE, 1);
 paths(1) := '...';
 paths(2) := '...';
 ...
 fetch_pages(paths);
END;

SET_PROXY Procedure

This procedure sets the proxy to be used for requests of the HTTP or other protocols, excluding those for hosts that belong to the domain specified in no_proxy_domains.no_proxy_domains is a comma-, semi-colon-, or space-separated list of domains or hosts for which HTTP requests should be sent directly to the destination HTTP server instead of going through a proxy server.

	
See Also:

Session Settings and Session Settings Subprograms

Syntax

UTL_HTTP.SET_PROXY (
 proxy IN VARCHAR2,
 no_proxy_domains IN VARCHAR2);

Parameters

Table 224-55 SET_PROXY Procedure Parameters

	Parameter	Description
	
proxy

	
The proxy (host and an optional port number) to be used by the UTL_HTTP package

	
no_proxy_domains

	
The list of hosts and domains for which no proxy should be used for all requests

Usage Notes

The proxy may include an optional TCP/IP port number at which the proxy server listens. The syntax is [http://]host[:port][/], for example, www-proxy.my-company.com:80. If the port is not specified for the proxy, port 80 is assumed.

Optionally, a port number can be specified for each domain or host. If the port number is specified, the no-proxy restriction is only applied to the request at the port of the particular domain or host, for example, corp.my-company.com, eng.my-company.com:80. When no_proxy_domains is NULL and the proxy is set, all requests go through the proxy. When the proxy is not set, UTL_HTTP sends requests to the target Web servers directly.

You can define a username/password for the proxy to be specified in the proxy string. The format is

[http://][user[:password]@]host[:port][/]

If proxy settings are set when the database server instance is started, the proxy settings in the environment variables http_proxy and no_proxy are assumed. Proxy settings set by this procedure override the initial settings.

SET_RESPONSE_ERROR_CHECK Procedure

This procedure sets whether or not GET_RESPONSE raises an exception when the Web server returns a status code that indicates an error—a status code in the 4xx or 5xx ranges. For example, when the requested URL is not found in the destination Web server, a 404 (document not found) response status code is returned.

	
See Also:

Session Settings and Session Settings Subprograms

Syntax

UTL_HTTP.SET_RESPONSE_ERROR_CHECK (
 enable IN BOOLEAN DEFAULT FALSE);

Parameters

Table 224-56 SET_RESPONSE_ERROR_CHECK Procedure Parameters

	Parameter	Description
	
enable

	
TRUE to check for response errors; otherwise FALSE

Usage Notes

If the status code indicates an error—a 4xx or 5xx code—and this procedure is enabled, GET_RESPONSE will raise the HTTP_CLIENT_ERROR or HTTP_SERVER_ERROR exception. If SET_RESPONSE_ERROR_CHECK is set to FALSE, GET_RESPONSE will not raise an exception when the status code indicates an error.

Response error check is turned off by default.

The GET_RESPONSE function can raise other exceptions when SET_RESPONSE_ERROR_CHECK is set to FALSE.

SET_TRANSFER_TIMEOUT Procedure

This procedure sets the default time out value for all future HTTP requests that the UTL_HTTP package should attempt while reading the HTTP response from the Web server or proxy server. This time out value may be used to avoid the PL/SQL programs from being blocked by busy Web servers or heavy network traffic while retrieving Web pages from the Web servers.

	
See Also:

Session Settings and Session Settings Subprograms

Syntax

UTL_HTTP.SET_TRANSFER_TIMEOUT (
 timeout IN PLS_INTEGER DEFAULT 60);

Parameters

Table 224-57 SET_TRANSFER_TIMEOUT Procedure Parameters

	Parameter	Description
	
timeout

	
The network transfer timeout value in seconds.

Usage Notes

The default value of the time out is 60 seconds.

SET_WALLET Procedure

This procedure sets the Oracle wallet used for all HTTP requests over Secured Socket Layer (SSL), namely HTTPS. When the UTL_HTTP package communicates with an HTTP server over SSL, the HTTP server presents its digital certificate, which is signed by a certificate authority, to the UTL_HTTP package for identification purpose. The Oracle wallet contains the list of certificate authorities that are trusted by the user of the UTL_HTTP package. An Oracle wallet is required to make an HTTPS request.

	
See Also:

	
Session Settings and Session Settings Subprograms

	
"Managing Fine-Grained Access in PL/SQL Network Utility Packages" in the Oracle Database Security Guide

Syntax

UTL_HTTP.SET_WALLET (
 path IN VARCHAR2,
 password IN VARCHAR2 DEFAULT NULL);

Parameters

Table 224-58 SET_WALLET Procedure Parameters

	Parameter	Description
	
path

	
The directory path that contains the Oracle wallet. The format is file:directory-path.

The format of wallet_path on a PC is, for example, file:c:\WINNT\Profiles\username\WALLETS, and in Unix is, for example, file:/home/username/wallets. When the UTL_HTTP package is executed in the Oracle database server, the wallet is accessed from the database server. Therefore, the wallet path must be accessible from the database server.

	
password

	
The password needed to open the wallet. If the wallet is auto-login enabled, the password may be omitted and should be set to NULL. See "Using Wallets with Automatic Login Enabled" in the Oracle Database Advanced Security Administrator's Guide for information about using Oracle Wallet Manager and the ORAPKI utility to create an auto-login wallet

Usage Notes

To set up an Oracle wallet, use the Oracle Wallet Manager to create a wallet. In order for the HTTPS request to succeed, the certificate authority that signs the certificate of the remote HTTPS Web server must be a trust point set in the wallet.

When a wallet is created, it is populated with a set of well-known certificate authorities as trust points. If the certificate authority that signs the certificate of the remote HTTPS Web server is not among the trust points, or the certificate authority has new root certificates, you should obtain the root certificate of that certificate authority and install it as a trust point in the wallet using Oracle Wallet Manager

	
See Also:

Oracle Database Advanced Security Administrator's Guide for more information on Wallet Manager

WRITE_LINE Procedure

This procedure writes a text line in the HTTP request body and ends the line with new-line characters (CRLF as defined in UTL_TCP). As soon as some data is sent as the HTTP request body, the HTTP request headers section is completed. Text data is automatically converted from the database character set to the request body character set.

	
See Also:

HTTP Requests and HTTP Requests Subprograms

Syntax

UTL_HTTP.WRITE_LINE(
 r IN OUT NOCOPY req,
 data IN VARCHAR2 CHARACTER SET ANY_CS);

Parameters

Table 224-59 WRITE_LINE Procedure Parameters

	Parameter	Description
	
r

	
The HTTP request

	
data

	
The text line to send in the HTTP request body

Usage Notes

An HTTP client must always let the remote Web server know the length of the request body it is sending. If the amount of data is known beforehand, you can set the Content-Length header in the request, where the length of the content is measured in bytes instead of characters. If the length of the request body is not known beforehand, you can send the request body using the HTTP 1.1 chunked transfer-encoding format. The request body is sent in chunks, where the length of each chunk is sent before the chunk is sent. The UTL_HTTP package performs chunked transfer-encoding on the request body transparently when the Transfer-Encoding: chunked header is set. Note that some HTTP-1.1-based Web servers or CGI programs do not support or accept the request body encoding in the HTTP 1.1 chunked transfer-encoding format. See the SET_HEADER procedure for details.

If you send the Content-Length header, you should note that the length specified in the header should be the byte-length of the textual request body after it is converted from the database character set to the request body character set. When either one of the two character sets is a multibyte character set, the precise byte-length of the request body in the request body character set cannot be known beforehand. In this case, you can perform the character set conversion explicitly, determine the byte-length of the results, send the Content-Length header, and the results using the WRITE_RAW procedure to avoid the automatic character set conversion. Or, if the remove Web server or CGI programs allow, you can send the request body using the HTTP 1.1 chunked transfer-encoding format, where UTL_HTTP handles the length of the chunks transparently.

WRITE_RAW Procedure

This procedure writes some binary data in the HTTP request body. As soon as some data is sent as the HTTP request body, the HTTP request headers section is completed.

	
See Also:

HTTP Requests and HTTP Requests Subprograms

Syntax

UTL_HTTP.WRITE_RAW(
 r IN OUT NOCOPY REQ,
 data IN RAW);

Parameters

Table 224-60 WRITE_RAW Procedure Parameters

	Parameter	Description
	
r

	
The HTTP request

	
data

	
The binary data to send in the HTTP request body

Usage Notes

An HTTP client must always let the remote Web server know the length of the request body it is sending. If the amount of data is known beforehand, you can set the Content-Length header in the request, where the length of the content is measured in bytes instead of characters. If the length of the request body is not known beforehand, you can send the request body using the HTTP 1.1 chunked transfer-encoding format. The request body is sent in chunks, where the length of each chunk is sent before the chunk is sent. UTL_HTTP performs chunked transfer-encoding on the request body transparently when the Transfer-Encoding:chunked header is set. Note that some HTTP-1.1-based Web servers or CGI programs do not support or accept the request body encoding in the HTTP 1.1 chunked transfer-encoding format. See the SET_HEADER procedure for details.

WRITE_TEXT Procedure

This procedure writes some text data in the HTTP request body. As soon as some data is sent as the HTTP request body, the HTTP request headers section is completed. Text data is automatically converted from the database character set to the request body character set.

	
See Also:

HTTP Requests and HTTP Requests Subprograms

Syntax

UTL_HTTP.WRITE_TEXT(
 r IN OUT NOCOPY REQ,
 data IN VARCHAR2 CHARACTER SET ANY_CS);

Parameters

Table 224-61 WRITE_TEXT Procedure Parameters

	Parameter	Description
	
r

	
The HTTP request

	
data

	
The text data to send in the HTTP request body

Usage Notes

An HTTP client must always let the remote Web server know the length of the request body it is sending. If the amount of data is known beforehand, you can set the Content-Length header in the request, where the length of the content is measured in bytes instead of characters. If the length of the request body is not known beforehand, you can send the request body using the HTTP 1.1 chunked transfer-encoding format. The request body is sent in chunks, where the length of each chunk is sent before the chunk is sent. UTL_HTTP performs chunked transfer-encoding on the request body transparently when the Transfer-Encoding: chunked header is set. Note that some HTTP-1.1-based Web servers or CGI programs do not support or accept the request body encoding in the HTTP 1.1 chunked transfer-encoding format. See the SET_HEADER procedure for details.

If you send the Content-Length header, you should note that the length specified in the header should be the byte-length of the textual request body after it is converted from the database character set to the request body character set. When either one of the two character sets is a multibyte character set, the precise byte-length of the request body in the request body character set cannot be known beforehand. In this case, you can perform the character set conversion explicitly, determine the byte-length of the results, send the Content-Length header, and the results using the WRITE_RAW procedure to avoid the automatic character set conversion. Or, if the remove Web server or CGI programs allow, you can send the request body using the HTTP 1.1 chunked transfer-encoding format, where UTL_HTTP handles the length of the chunks transparently.

UTL_I18N

225 UTL_I18N

UTL_I18N is a set of services that provides additional globalization functionality for applications written in PL/SQL.

	
See Also:

Oracle Database Globalization Support Guide

The chapter contains the following topics:

	
Using UTL_I18N

	
Overview

	
Security Model

	
Constants

	
Summary of UTL_I18N Subprograms

Using UTL_I18N

This section contains topics which relate to using the UTL_I18N package.

	
Overview

	
Security Model

	
Constants

Overview

The UTL_I18N PL/SQL package consists of the following categories of services:

	
String conversion functions for various datatypes.

	
Functions that convert a text string to character references and vice versa.

	
Functions that map between Oracle, Java, and ISO languages and territories.

	
Functions that map between Oracle, Internet Assigned Numbers Authority (IANA), and e-mail safe character sets.

	
A function that returns the Oracle character set name from an Oracle language name.

	
A function that performs script transliteration.

	
Functions that return the ISO currency code, local time zones, and local languages supported for a given territory.

	
Functions that return the most appropriate linguistic sort, a listing of all the applicable linguistic sorts, and the local territories supported for a given language.

	
Functions that map between the Oracle full and short language names.

	
A function that returns the language translation of a given language and territory name.

	
A function that returns a listing of the most commonly used time zones.

Security Model

The functions of the UTL_I18N package neither read database contents nor modify them. The functions operate on their arguments only and/or they retrieve static internationalization information from NLS Data files. The execution privilege for the package is granted to PUBLIC by default

Constants

The UTL_I18N package uses the constants shown in Table 225-1.

Table 225-1 UTL_I18N Constants

	Constant	Type	Value	Description
	
GENERIC_CONTEXT

	
PLS_INTEGER

	
0

	
Returns the default character set for general cases.

	
MAIL_GENERIC

	
PLS_INTEGER

	
0

	
Map from an Oracle character set name to an email safe character set name on a non-Windows platform.

	
ORACLE_TO_IANA

	
PLS_INTEGER

	
0

	
Map from an Oracle character set name to an IANA character set name.

	
SHIFT_IN

	
PLS_INTEGER

	
0

	
Used with shift_status. Must be set the first time it is called in piecewise conversion.

	
IANA_TO_ORACLE

	
PLS_INTEGER

	
1

	
Map from an IANA character set name to an Oracle character set name.

	
MAIL_CONTEXT

	
PLS_INTEGER

	
1

	
The mapping is between an Oracle character set name and an email safe character set name.

	
MAIL_WINDOWS

	
PLS_INTEGER

	
1

	
Map from an Oracle character set name to an email safe character set name on a Windows platform.

	
SHIFT_OUT

	
PLS_INTEGER

	
1

	

	
FWKATAKANA_HIRAGANA

	
VARCHAR2(30)

	
'fwkatakana_hiragana'

	
Converts only fullwidth Katakana characters to fullwidth Hiragana characters.

	
FWKATAKANA_HWKATAKANA

	
VARCHAR2(30)

	
'fwkatakana_hwkatakana'

	
Converts only fullwidth Katakana characters to halfwidth Katakana characters.

	
HIRAGANA_FWKATAKANA

	
VARCHAR2(30)

	
'hiragana_fwkatakana'

	
Converts only fullwidth Hiragana characters to fullwidth Katakana characters.

	
HIRAGANA_HWKATAKANA

	
VARCHAR2(30)

	
'hiragana_hwkatakana'

	
Converts only fullwidth Hiragana characters to halfwidth Katakana characters.

	
HWKATAKANA_FWKATAKANA

	
VARCHAR2(30)

	
'hwkatakana_fwkatakana'

	
Converts only halfwidth Katakana characters to fullwidth Katakana characters.

	
HWKATAKANA_HIRAGANA

	
VARCHAR2(30)

	
'hwkatakana_hiragana'

	
Converts only halfwidth Katakana characters to fullwidth Hiragana characters.

	
KANA_FWKATAKANA

	
VARCHAR2(30)

	
'kana_fwkatakana'

	
Converts any type of Kana character to a fullwidth Katakana character.

	
KANA_HIRAGANA

	
VARCHAR2(30)

	
'kana_hiragana'

	
Converts any type of Kana character to a fullwidth Hiragana character.

	
KANA_HWKATAKANA

	
VARCHAR2(30)

	
'kana_hwkatakana'

	
Converts any type of Kana character to a halfwidth Katakana character.

Summary of UTL_I18N Subprograms

Table 225-2 UTL_I18N Package Subprograms

	Procedure	Description
	
ESCAPE_REFERENCE Function

	
Converts a given text string to its character reference counterparts, for characters that fall outside the document character set.

	
GET_COMMON_TIME_ZONES Function

	
Returns the list of common time zone IDs that are independent of the locales.

	
GET_DEFAULT_CHARSET Function

	
Returns the default Oracle character set name or the default e-mail safe character set name from an Oracle language name.

	
GET_DEFAULT_ISO_CURRENCY Function

	
Returns the default ISO 4217 currency code for the specified territory.

	
GET_DEFAULT_LINGUISTIC_SORT Function

	
Returns the default linguistic sort name for the specified language.

	
GET_LOCAL_LANGUAGES Function

	
Returns the local language names for the specified territory.

	
GET_LOCAL_LINGUISTIC_SORTS Function

	
Returns the local linguistic sort names for the specified language.

	
GET_LOCAL_TERRITORIES Function

	
Returns the local territory names for the specified language.

	
GET_LOCAL_TIME_ZONES Function

	
Returns the local time zone IDs for the specified territory.

	
GET_TRANSLATION Function

	
Returns the translation of the language and territory name in the specified translation language.

	
MAP_CHARSET Function

	
	
Maps an Oracle character set name to an IANA character set name.

	
Maps an IANA character set name to an Oracle character set name.

	
Maps an Oracle character set name to an e-mail safe character set name.

	
MAP_FROM_SHORT_LANGUAGE Function

	
Maps an Oracle short language name to an Oracle language name.

	
MAP_LANGUAGE_FROM_ISO Function

	
Returns an Oracle language name from an ISO locale name.

	
MAP_LOCALE_TO_ISO Function

	
Returns an ISO locale name from the Oracle language and territory name.

	
MAP_TERRITORY_FROM_ISO Function

	
Returns an Oracle territory name from an ISO locale name.

	
MAP_TO_SHORT_LANGUAGE Function

	
Maps an Oracle language name to an Oracle short language name.

	
RAW_TO_CHAR Functions

	
Converts RAW data that is not encoded in the database character set into a VARCHAR2 string

	
RAW_TO_NCHAR Functions

	
Converts RAW data that is not encoded in the national character set into an NVARCHAR2 string

	
STRING_TO_RAW Function

	
Converts a VARCHAR2 or NVARCHAR2 string to another character set. The result is returned as a RAW datatype.

	
TRANSLITERATE Function

	
Transliterates between Japanese hiragana and katakana.

	
UNESCAPE_REFERENCE Function

	
Converts an input string that contains character references to a text string.

ESCAPE_REFERENCE Function

This function converts a text string to its character reference counterparts for characters that fall outside the character set used by the current document. Character references are mainly used in HTML and XML documents to represent characters independently of the encoding of the document.Character references may appear in two forms, numeric character references and character entity references. Numeric character references specify the Unicode code point value of a character, while character entity references use symbolic names to refer to the same character. For example, å is the numeric character reference for the small letter "a" with a ring above, whereas å is the character entity reference for the same character. Character entity references are also used to escape special characters, as an example, < represents the < (less than) sign. This is to avoid possible confusion with the beginning of a tag in Markup languages.

Syntax

UTL_I18N.ESCAPE_REFERENCE(
 str IN VARCHAR2 CHARACTER SET ANY_CS,
 page_cs_name IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2 CHARACTER SET str%CHARSET;

Parameters

Table 225-3 ESCAPE_REFERENCE Function Parameters

	Parameter	Description
	
str

	
Specifies the input string

	
page_cs_name

	
Specifies the character set of the document. If page_cs_name is NULL, then the database character set is used for CHAR data and the national character set is used for NCHAR data.

Usage Notes

If the user specifies an invalid character set or a NULL string, then the function returns a NULL string.

Examples

UTL_I18N.ESCAPE_REFERENCE('hello < '||chr(229),'us7ascii')

This returns 'hello < å'.

GET_COMMON_TIME_ZONES Function

This function returns a listing of the most commonly used time zones. This list contains a subset of the time zones that are supported in the database.

Syntax

UTL_I18N.GET_COMMON_TIME_ZONES
 RETURN STRING_ARRAY;

Examples

Returns the list of the most commonly used time zones.

DECLARE
 retval UTL_I18N.STRING_ARRAY;
BEGIN
 retval := UTL_I18N.GET_COMMON_TIME_ZONES;
END;
/

GET_DEFAULT_CHARSET Function

This function returns the default Oracle character set name or the default e-mail safe character set name from an Oracle language name.

	
See Also:

"MAP_CHARSET Function" for an explanation of an e-mail safe character set

Syntax

UTL_I18N.GET_DEFAULT_CHARSET(
 language IN VARCHAR2,
 context IN PLS_INTEGER DEFAULT GENERIC_CONTEXT,
 iswindows IN BOOLEAN DEFAULT FALSE)
 RETURN VARCHAR2;

Parameters

Table 225-4 GET_DEFAULT_CHARSET Function Parameters

	Parameter	Description
	
language

	
Specifies a valid Oracle language

	
context

	
GENERIC_CONTEXT | MAIL_CONTEXT

GENERIC_CONTEXT: Returns the default character set for general cases

MAIL_CONTEXT: Returns the default e-mail safe character set name

	
iswindows

	
If context is set as MAIL_CONTEXT, then iswindows should be set to TRUE if the platform is Windows and FALSE if the platform is not Windows. The default is FALSE.

iswindows has no effect if context is set as GENERIC_CONTEXT.

Usage Notes

If the user specifies an invalid language name or an invalid flag, then the function returns a NULL string.

Examples

GENERIC_CONTEXT, iswindows=FALSE

UTL_I18N.GET_DEFAULT_CHARSET('French', UTL_I18N.GENERIC_CONTEXT, FALSE)

This returns 'WE8ISO8859P1'.

MAIL_CONTEXT, iswindows=TRUE

UTL_I18N.GET_DEFAULT_CHARSET('French', UTL_I18N.MAIL_CONTEXT, TRUE)

This returns 'WE8MSWIN1252'.

MAIL_CONTEXT, iswindows=FALSE

UTL_I18N.GET_DEFAULT_CHARSET('French', UTL_I18N.MAIL_CONTEXT, FALSE)

This returns 'WE8ISO8859P1'.

GET_DEFAULT_ISO_CURRENCY Function

This function returns the default ISO 4217 currency code for the specified territory.

Syntax

UTL_I18N.GET_DEFAULT_ISO_CURRENCY (
 territory IN VARCHAR2 CHARACTER SET ANY_CS)
RETURN VARCHAR2;

Parameters

Table 225-5 GET_DEFAULT_ISO_CURRENCY Function Parameters

	Parameter	Description
	
territory

	
Specifies a valid Oracle territory. It is case-insensitive.

Usage Notes

If the user specifies an invalid territory name, then the function returns a NULL string.

Examples

Displays the default ISO currency code for China.

DECLARE
 retval VARCHAR2(50);
BEGIN
 retval := UTL_I18N.GET_DEFAULT_ISO_CURRENCY('CHINA');
 DBMS_OUTPUT.PUT_LINE(retval);
END;
/

GET_DEFAULT_LINGUISTIC_SORT Function

This function returns the most commonly used Oracle linguistic sort for the specified language.

Syntax

UTL_I18N.GET_DEFAULT_LINGUISTIC_SORT (
 language IN VARCHAR2 CHARACTER SET ANY_CS)
RETURN VARCHAR2;

Parameters

Table 225-6 GET_DEFAULT_LINGUISTIC_SORT Function Parameters

	Parameter	Description
	
language

	
Specifies a valid Oracle language. It is case-insensitive.

Usage Notes

If the user specifies an invalid language name, then the function returns a NULL string.

Examples

Displays the name of the most appropriate linguistic sort name for the language used in the current SQL session.

DECLARE
 retval VARCHAR2(50);
BEGIN
 SELECT value INTO retval FROM nls_session_parameters
 WHERE parameter = 'NLS_LANGUAGE';
 retval := UTL_I18N.GET_DEFAULT_LINGUISTIC_SORT(retval);
 DBMS_OUTPUT.PUT_LINE(retval);
END;
/

GET_LOCAL_LANGUAGES Function

This function returns the local language names for the specified territory.

Syntax

UTL_I18N.GET_LOCAL_LANGUAGES (
 territory IN VARCHAR2 CHARACTER SET ANY_CS)
RETURN STRING_ARRAY;

Parameters

Table 225-7 GET_LOCAL_LANGUAGES Function Parameters

	Parameter	Description
	
territory

	
Specifies a valid Oracle territory. It is case-insensitive.

Usage Notes

If the user specifies an invalid territory name, then the function returns a NULL string.

Examples

Returns the list of local languages used in Belgium.

DECLARE
 retval UTL_I18N.STRING_ARRAY;
 cnt INTEGER;
BEGIN
 retval := UTL_I18N.GET_LOCAL_LANGUAGES('BELGIUM');
 DBMS_OUTPUT.PUT('Count = ');
 DBMS_OUTPUT.PUT_LINE(retval.LAST);
 cnt := retval.FIRST;
 WHILE cnt IS NOT NULL LOOP
 DBMS_OUTPUT.PUT_LINE(retval(cnt));
 cnt := retval.NEXT(cnt);
 END LOOP;
END;
/
...
Count = 2
DUTCH
FRENCH

GET_LOCAL_LINGUISTIC_SORTS Function

This function returns a list of the Oracle linguistic sort names that are appropriate for the specified language. A BINARY sort is included for all languages.

Syntax

UTL_I18N.GET_LOCAL_LINGUISTIC_SORTS (
 language IN VARCHAR2 CHARACTER SET ANY_CS)
RETURN STRING_ARRAY;

Parameters

Table 225-8 GET_LOCAL_LINGUISTIC_SORTS Function Parameters

	Parameter	Description
	
language

	
Specifies a valid Oracle language. It is case-insensitive.

Usage Notes

If the user specifies an invalid language name, then the function returns a NULL string.

Examples

Displays the local linguistic sort names for JAPANESE.

DECLARE
 retval UTL_I18N.STRING_ARRAY;
 cnt INTEGER;
BEGIN
 retval := UTL_I18N.GET_LOCAL_LINGUISTIC_SORTS('Japanese');
 DBMS_OUTPUT.PUT('Count = ');
 DBMS_OUTPUT.PUT_LINE(retval.COUNT);
 cnt := retval.FIRST;
 WHILE cnt IS NOT NULL LOOP
 DBMS_OUTPUT.PUT_LINE(retval(cnt));
 cnt := retval.NEXT(cnt);
 END LOOP;
END;
/

...
Count = 2
JAPANESE_M
BINARY

GET_LOCAL_TERRITORIES Function

This function returns the local territory names for the specified language.

Syntax

UTL_I18N.GET_LOCAL_TERRITORIES (
 language IN VARCHAR2 CHARACTER SET ANY_CS)
 RETURN STRING_ARRAY;

Parameters

Table 225-9 GET_LOCAL_TERRITORIES Function Parameters

	Parameter	Description
	
language

	
Specifies a valid Oracle language. It is case-insensitive.

Usage Notes

If the user specifies an invalid language name, then the function returns a NULL string.

Examples

Returns the list of Oracle territories that use German as one of their local languages.

DECLARE
 retval UTL_I18N.STRING_ARRAY;
 cnt INTEGER;
BEGIN
 retval := UTL_I18N.GET_LCOAL_TERRITORIIES('GERMAN');
 DBMS_OUTPUT.PUT('Count = ');
 DBMS_OUTPUT.PUT_LINE(retval.LAST);
 cnt := retval.FIRST;
 WHILE cnt IS NOT NULL LOOP
 DBMS_OUTPUT.PUT_LINE(retval(cnt));
 cnt := retval.NEXT(cnt));
 END LOOP;
END;
/
...
Count = 4
GERMANY
AUSTRIA
LUXEMBOURG
SWITZERLAND

GET_LOCAL_TIME_ZONES Function

This function returns the local time zone IDs for the specified territory.

Syntax

UTL_I18N.GET_LOCAL_TIME_ZONES (
 territory IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT NULL)
RETURN STRING_ARRAY;

Parameters

Table 225-10 GET_LOCAL_TIME_ZONES Function Parameters

	Parameter	Description
	
territory

	
Specifies a valid Oracle territory. It is case-insensitive.

Usage Notes

If the user specifies an invalid territory name, then the function returns a NULL string.

Examples

Creates a function that returns the list of time zones locally used in the territory AZERBAIJAN followed by the general common time zones. This is useful for when the user's territory is known and the application still allows the user to choose other time zones as a user's preference.

CREATE OR REPLACE FUNCTION get_time_zones
(territory IN VARCHAR2 CHARACTER SET ANY_CS)
RETURN utl_i18n.string_array
IS
 retval utl_i18n.string_array;
 retval2 utl_i18n.string_array;
 stpos INTEGER;
BEGIN
 retval := utl_i18n.get_local_time_zones(
 territory);
 retval2 := utl_i18n.get_common_time_zones;
 stpos := retval.LAST + 1;
 retval(stpos) := '-----'; -- a separator
 FOR i IN retval2.FIRST..retval2.LAST LOOP
 stpos := stpos + 1;
 retval(stpos) := retval2(i);
 END LOOP;
 RETURN retval;
END;
/

Returns the list of local time zones for AZERBAIJAN followed by the common time zones with a separator string of five dashes (-----).

DECLARE
 retval UTL_I18N.STRING_ARRAY;
 cnt INTEGER;
BEGIN
 DBMS_OUTPUT.ENABLE(100000);
 retval UTL_I18N.GET_TIME_ZONES('AZERBAIJAN');
 cnt := retval.FIRST;
 WHILE cnt IS NOT NULL LOOP
 DBMS_OUTPUT.PUT_LINE(retval(cnt));
 cnt := retval.NEXT(cnt);
 END LOOP;
END;
/

Asia/Baku

Pacific/Pago_Pago
Pacific/Honolulu
America/Anchorage
America/Vancouver
America/Los_Angeles
America/Tijuana
America/Edmonton
America/Denver
America/Phoenix
America/Mazatlan
America/Winnipeg
America/Regina
America/Chicago
America/Mexico_City
America/Guatemala
America/El_Salvador
America/Managua
America/Costa_Rica
America/Montreal
...

GET_TRANSLATION Function

This function returns the translation of the language and territory name in the specified translation language.

Syntax

UTL_I18N.GET_TRANSLATION (
 parameter IN VARCHAR2 CHARACTER SET ANY_CS,
 trans_language IN VARCHAR2 'AMERICAN',
 flag IN PLS_INTEGER DEFAULT LANGUAGE_TRANS)
RETURN VARCHAR2 CHARACTER SET parameter%CHARSET;

Parameters

Table 225-11 GET_TRANSLATION Function Parameters

	Parameter	Description
	
parameter

	
Specifies a valid language name, territory name, or a combined string in the form of language_territory. It is case-insensitive.

	
trans_language

	
Specifies a translation language name. For example, ITALIAN is for the Italian language. The default is AMERICAN, which indicates American English.

	
flag

	
Specifies the translation type:

	
LANGUAGE_TRANS: The function returns the language translation.

	
TERRITORY_TRANS: The function returns the territory translation.

	
LANGUAGE_TERRITORY_TRANS: The function returns the language and territory translation.

The default translation type is LANGUAGE_TRANS.

Usage Notes

If VARCHAR2 is used as a parameter type, the returned translation text can be corrupted due to the conversion to the database character set. Using NVARCHAR2 as the parameter type will preserve the translation text because Unicode can encode all translated languages.

If the specified translation language is not available or an invalid name is provided, the default "American English" translations are returned. For example, Oracle does not provide GUJARATI translations, so the returned translation would be in American English.

Examples

The following returns the names of all the Oracle-supported languages in Italian.

DECLARE
 CURSOR c1 IS
 SELECT value FROM V$NLS_VALID_VALUES
 WHERE parameter = 'LANGUAGE'
 ORDER BY value;
 retval NVARCHAR2(100);
BEGIN
 FOR item IN c1 LOOP
 retval := UTL_I18N.GET_TRANSLATION (TO_NCHAR(item.value), 'italian');
 END LOOP;
END;

MAP_CHARSET Function

This function maps the following:

	
An Oracle character set name to an IANA character set name.

	
An IANA character set name to an Oracle character set name.

	
An Oracle character set to an e-mail safe character set name.

Syntax

UTL_I18N.MAP_CHARSET(
 charset IN VARCHAR2,
 context IN PLS_INTEGER DEFAULT GENERIC_CONTEXT,
 flag IN PLS_INTEGER DEFAULT ORACLE_TO_IANA)
RETURN VARCHAR2;

Parameters

Table 225-12 MAP_CHARSET Function Parameters

	Parameter	Description
	
charset

	
Specifies the character set name to be mapped. The mapping is case-insensitive.

	
context

	
GENERIC_CONTEXT | MAIL_CONTEXT

GENERIC_CONTEXT: The mapping is between an Oracle character set name and an IANA character set name. This is the default value.

MAIL_CONTEXT: The mapping is between an Oracle character set name and an email safe character set name.

	
flag

	
	
ORACLE_TO_IANA | IANA_TO_ORACLE if GENERIC_CONTEXT is set

ORACLE_TO_IANA: Map from an Oracle character set name to an IANA character set name. This is the default.

IANA_TO_ORACLE: Map from an IANA character set name to an Oracle character set name.

	
MAIL_GENERIC | MAIL_WINDOWS if MAIL_CONTEXT is set

MAIL_GENERIC: Map from an Oracle character set name to an email safe character set name on a non-Windows platform.

MAIL_WINDOWS: Map from an Oracle character set name to an email safe character set name on a Windows platform.

Usage Notes

An e-mail safe character set is an Oracle character set that is commonly used by applications when they submit e-mail messages. The character set is usually used to convert contents in the database character set to e-mail safe contents. To specify the character set name in the mail header, you should use the corresponding IANA character set name obtained by calling the MAP_CHARSET function with the ORACLE_TO_IANA option, providing the e-mail safe character set name as input.

For example, no e-mail client recognizes message contents in the WE8DEC character set, whose corresponding IANA name is DEC-MCS. If WE8DEC is passed to the MAP_CHARSET function with the MAIL_CONTEXT option, then the function returns WE8ISO8859P1. Its corresponding IANA name, ISO-8859-1, is recognized by most e-mail clients.

The steps in this example are as follows:

	
Call the MAP_CHARSET function with the MAIL_CONTEXT | MAIL_GENERIC option with the database character set name, WE8DEC. The result is WE8ISO8859P1.

	
Convert the contents stored in the database to WE8ISO8859P1.

	
Call the MAP_CHARSET function with the ORACLE_TO_IANA | GENERIC_CONTEXT option with the e-mail safe character set, WE8ISO8859P1. The result is ISO-8859-1.

	
Specify ISO-8859-1 in the mail header when the e-mail message is submitted.

The function returns a character set name if a match is found. If no match is found or if the flag is invalid, then it returns NULL.

	
Note:

Many Oracle character sets can map to one e-mail safe character set. There is no function that maps an e-mail safe character set to an Oracle character set name.

Examples

Generic Context

UTL_I18N.MAP_CHARSET('iso-8859-1',UTL_I18N.GENERIC_CONTEXT,UTL_I18N.IANA_TO_ORACLE)

This returns 'WE8ISO8859P1'.

Context

UTL_I18N.MAP_CHARSET('WE8DEC', utl_i18n.mail_context, utl_i18n.mail_generic)

This returns 'WE8ISO8859P1'.

	
See Also:

Oracle Database Globalization Support Guide for a list of valid Oracle character sets

MAP_FROM_SHORT_LANGUAGE Function

This function maps an Oracle short language name to an Oracle language name.

Syntax

UTL_I18N.MAP_FROM_SHORT_LANGUAGE (
 language IN VARCHAR2 CHARACTER SET ANY_CS)
RETURN VARCHAR2;

Parameters

Table 225-13 MAP_FROM_SHORT_LANGUAGE Function Parameters

	Parameter	Description
	
language

	
Specifies a valid short language name. It is case-insensitive.

Usage Notes

If the user specifies an invalid language name, then the function returns a NULL string.

Examples

Returns the default linguistic sort name for the customer with the ID of 9000. Note that the table customers is from the oe user in the Common Schema. Because the customer's language preference is stored using a short language name, you need to convert to a full language name by calling the GET_DEFAULT_LINGUISTIC_SORT procedure.

DECLARE
 short_n VARCHAR2(10);
 ling_n VARCHAR2(50);
BEGIN
 SELECT nls_language INTO short
 FROM customers WHERE customer_id = 9000;
 ling_n := UTL_I18N.GET_DEFAULT_LINGUISTIC_SORT (
 UTL_I18N.MAP_FROM_SHORT_LANGUAGE(short_n));
 DBMS_OUTPUT.PUT_LINE(ling_n);
END;
/

MAP_LANGUAGE_FROM_ISO Function

This function returns an Oracle language name from an ISO locale name.

Syntax

UTL_I18N.MAP_LANGUAGE_FROM_ISO(
 isolocale IN VARCHAR2)
RETURN VARCHAR2;

Parameters

Table 225-14 MAP_LANGUAGE_FROM_ISO Function Parameters

	Parameter	Description
	
isolocale

	
Specifies the ISO locale. The mapping is case-insensitive.

Usage Notes

If the user specifies an invalid locale string, then the function returns a NULL string.

If the user specifies a locale string that includes only the language (for example, en_ instead of en_US), then the function returns the default language name for the specified language (for example, American).

Examples

UTL_I18N.MAP_LANGUAGE_FROM_ISO('en_US')

This returns 'American'.

	
See Also:

Oracle Database Globalization Support Guide for a list of valid Oracle languages

MAP_LOCALE_TO_ISO Function

This function returns an ISO locale name from an Oracle language name and an Oracle territory name. A valid string must include at least one of the following: a valid Oracle language name or a valid Oracle territory name.

Syntax

UTL_I18N.MAP_LOCALE_TO_ISO (
 ora_language IN VARCHAR2,
 ora_territory IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Table 225-15 MAP_LOCALE_TO_ISO Function Parameters

	Parameter	Description
	
ora_language

	
Specifies an Oracle language name. It is case-insensitive.

	
ora_territory

	
Specifies an Oracle territory name. It is case-insensitive.

Usage Notes

If the user specifies an invalid string, then the function returns a NULL string.

Examples

UTL_I18N.MAP_LOCALE_TO_ISO('American','America')

This returns 'en_US'.

	
See Also:

Oracle Database Globalization Support Guide for a list of valid Oracle languages and territories

MAP_TERRITORY_FROM_ISO Function

This function returns an Oracle territory name from an ISO locale.

Syntax

UTL_I18N.MAP_TERRITORY_FROM_ISO (
 isolocale IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Table 225-16 MAP_TERRITORY_FROM_ISO Function Parameters

	Parameter	Description
	
isolocale

	
Specifies the ISO locale. The mapping is case-insensitive.

Usage Notes

If the user specifies an invalid locale string, then the function returns a NULL string.

If the user specifies a locale string that includes only the territory (for example, _fr instead of fr_fr), then the function returns the default territory name for the specified territory (for example, France).

Examples

UTL_I18N.MAP_TERRITORY_FROM_ISO('en_US')

This returns 'America'.

	
See Also:

Oracle Database Globalization Support Guide for a list of valid Oracle territories

MAP_TO_SHORT_LANGUAGE Function

This function maps an Oracle language name to an Oracle short language name.

Syntax

UTL_I18N.MAP_TO_SHORT_LANGUAGE (
 language IN VARCHAR2 CHARACTER SET ANY_CS)
RETURN VARCHAR2;

Parameters

Table 225-17 MAP_TO_SHORT_LANGUAGE Function Parameters

	Parameter	Description
	
language

	
Specifies a valid full language name. It is case-insensitive.

Usage Notes

If the user specifies an invalid language name, then the function returns a NULL string.

Examples

Returns the short language name for the language.

DECLARE retval VARCHAR2(100);BEGIN retval := UTL_I18N.MAP_TO_SHORT_LANGUAGE('american'); DBMS_OUTPUT.PUT_LINE(retval);END;/US

RAW_TO_CHAR Functions

This function converts RAW data from a valid Oracle character set to a VARCHAR2 string in the database character set.

The function is overloaded. The different forms of functionality are described along with the syntax declarations.

Syntax

Buffer Conversion:

UTL_I18N.RAW_TO_CHAR(
 data IN RAW,
 src_charset IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Piecewise conversion converts raw data into character data piece by piece:

UTL_I18N.RAW_TO_CHAR (
 data IN RAW,
 src_charset IN VARCHAR2 DEFAULT NULL,
 scanned_length OUT PLS_INTEGER,
 shift_status IN OUT PLS_INTEGER)
RETURN VARCHAR2;

Parameters

Table 225-18 RAW_TO_CHAR Function Parameters

	Parameter	Description
	
data

	
Specifies the RAW data to be converted to a VARCHAR2 string

	
src_charset

	
Specifies the character set that the RAW data was derived from. If src_charset is NULL, then the database character set is used.

	
scanned_length

	
Specifies the number of bytes of source data scanned

	
shift_status

	
Specifies the shift status at the end of the scan. The user must set it to SHIFT_IN the first time it is called in piecewise conversion.

Note: ISO 2022 character sets use escape sequences instead of shift characters to indicate the encoding method. shift_status cannot hold the encoding method information that is provided by the escape sequences for the next function call. As a result, this function cannot be used to reconstruct ISO 2022 character from raw data in a piecewise way unless each unit of input can be guaranteed to be a closed string. A closed string begins and ends in a 7-bit escape state.

Usage Notes

If the user specifies an invalid character set, NULL data, or data whose length is 0, then the function returns a NULL string.

Examples

Buffer Conversion

UTL_I18N.RAW_TO_CHAR(hextoraw('616263646566C2AA'), 'utf8')

This returns the following string in the database character set:

'abcde'||chr(170)

Piecewise Conversion

UTL_I18N.RAW_TO_CHAR(hextoraw('616263646566C2AA'),'utf8',shf,slen)

This expression returns the following string in the database character set:

'abcde'||chr(170)

It also sets shf to SHIFT_IN and slen to 8.

The following example converts data from the Internet piece by piece to the database character set.

rvalue RAW(1050);
 nvalue VARCHAR2(1024);
 conversion_state PLS_INTEGER = 0;
 converted_len PLS_INTEGER;
 rtemp RAW(10) = '';
 conn utl_tcp.connection;
 tlen PLS_INTEGER;

 ...
 conn := utl_tcp.open_connection (remote_host => 'localhost',
 remote_port => 2000);
 LOOP
 tlen := utl_tcp.read_raw(conn, rvalue, 1024);
 rvalue := utl_raw.concat(rtemp, rvalue);
 nvalue := utl_i18n.raw_to_char(rvalue, 'JA16SJIS', converted_len, conversion_stat);
 if (converted_len < utl_raw.length(rvalue))
 then
 rtemp := utl_raw.substr(rvalue, converted_len+1);
 else
 rtemp := '';
 end if;
 /* do anything you want with nvalue */
 /* e.g htp.prn(nvalue); */
 END LOOP;
 utl_tcp.close_connection(conn);
 EXCEPTION
 WHEN utl_tcp.end_of_input THEN
 utl_tcp.close_connection(conn);
END;

RAW_TO_NCHAR Functions

This function converts RAW data from a valid Oracle character set to an NVARCHAR2 string in the national character set.

The function is overloaded. The different forms of functionality are described along with the syntax declarations.

Syntax

Buffer Conversion:

UTL_I18N.RAW_TO_NCHAR (
 data IN RAW,
 src_charset IN VARCHAR2 DEFAULT NULL)
 RETURN NVARCHAR2;

Piecewise conversion converts raw data into character data piece by piece:

UTL_I18N.RAW_TO_NCHAR (
 data IN RAW,
 src_charset IN VARCHAR2 DEFAULT NULL,
 scanned_length OUT PLS_INTEGER,
 shift_status IN OUT PLS_INTEGER)
 RETURN NVARCHAR2;

Parameters

Table 225-19 RAW_TO_NCHAR Function Parameters

	Parameter	Description
	
data

	
Specifies the RAW data to be converted to an NVARCHAR2 string

	
src_charset

	
Specifies the character set that the RAW data was derived from. If src_charset is NULL, then the database character set is used.

	
scanned_length

	
Specifies the number of bytes of source data scanned

	
shift_status

	
Specifies the shift status at the end of the scan. The user must set it to SHIFT_IN the first time it is called in piecewise conversion.

Note: ISO 2022 character sets use escape sequences instead of shift characters to indicate the encoding method. shift_status cannot hold the encoding method information that is provided by the escape sequences for the next function call. As a result, this function cannot be used to reconstruct ISO 2022 character from raw data in a piecewise way unless each unit of input can be guaranteed to be a closed string. A closed string begins and ends in a 7-bit escape state.

Usage Notes

If the user specifies an invalid character set, NULL data, or data whose length is 0, then the function returns a NULL string.

Examples

Buffer Conversion

UTL_I18N.RAW_TO_NCHAR(hextoraw('616263646566C2AA'),'utf8')

This returns the following string in the national character set:

'abcde'||chr(170)

Piecewise Conversion

UTL_I18N.RAW_TO_NCHAR(hextoraw('616263646566C2AA'),'utf8', shf, slen)

This expression returns the following string in the national character set:

'abcde'||chr(170)

It also sets shf to SHIFT_IN and slen to 8.

The following example converts data from the Internet piece by piece to the national character set.

rvalue RAW(1050);
 nvalue NVARCHAR2(1024);
 converstion_state PLS_INTEGER = 0;
 converted_len PLS_INTEGER;
 rtemp RAW(10) = '';
 conn utl_tcp.connection;
 tlen PLS_INTEGER;

 ...
 conn := utl_tcp.open_connection (remote_host => 'localhost',
 remote_port => 2000);
 LOOP
 tlen := utl_tcp.read_raw(conn, rvalue, 1024);
 rvalue := utl_raw.concat(rtemp, rvalue);
 nvalue := utl_i18n.raw_to_nchar(rvalue, 'JA16SJIS', converted_len, conversion_stat);
 if (converted_len < utl_raw.length(rvalue))
 then
 rtemp := utl_raw.substr(rvalue, converted_len+1);
 else
 rtemp := '';
 end if;
 /* do anything you want with nvalue */
 /* e.g htp.prn(nvalue); */
 END LOOP;
 utl_tcp.close_connection(conn);
 EXCEPTION
 WHEN utl_tcp.end_of_input THEN
 utl_tcp.close_connection(conn);
 END;

STRING_TO_RAW Function

This function converts a VARCHAR2 or NVARCHAR2 string to another valid Oracle character set and returns the result as RAW data.

Syntax

UTL_I18N.STRING_TO_RAW(
 data IN VARCHAR2 CHARACTER SET ANY_CS,
 dst_charset IN VARCHAR2 DEFAULT NULL)
RETURN RAW;

Parameters

Table 225-20 STRING_TO_RAW Function Parameters

	Parameter	Description
	
data

	
Specifies the VARCHAR2 or NVARCHAR2 string to convert.

	
dst_charset

	
Specifies the destination character set. If dst_charset is NULL, then the database character set is used for CHAR data and the national character set is used for NCHAR data.

Usage Notes

If the user specifies an invalid character set, a NULL string, or a string whose length is 0, then the function returns a NULL string.

Examples

DECLARE
 r raw(50);
 s varchar2(20);
 BEGIN
 s:='abcdef'||chr(170);
 r:=utl_i18n.string_to_raw(s,'utf8');
 dbms_output.put_line(rawtohex(r));
 end;
/

This returns a hex value of '616263646566C2AA'.

TRANSLITERATE Function

This function performs script transliteration. In this release, the TRANSLITERATE function only supports Japanese Kana conversion.

Syntax

UTL_I18N.TRANSLITERATE (
 data IN VARCHAR2 CHARACTER SET ANY_CS,
 name IN VARCHAR2)
RETURN VARCHAR2 CHARACTER SET data%CHARSET;

Parameters

Table 225-21 TRANSLITERATE Function Parameters

	Parameter	Description
	
data

	
Specifies the data to be converted. Either CHAR or NCHAR data type can be specified.

	
name

	
Specifies the transliteration name string. For a list of valid names, see Table 225-22.

Constants

These options specify Japanese Kana conversions.

Table 225-22 TRANSLITERATE Function Constants

	Constant Name	Value	Description
	
KANA_FWKATAKANA

	
'kana_fwkatakana'

	
Converts any type of Kana character to a fullwidth Katakana character.

	
KANA_HWKATAKANA

	
'kana_hwkatakana'

	
Converts any type of Kana character to a halfwidth Katakana character.

	
KANA_HIRAGANA

	
'kana_hiragana'

	
Converts any type of Kana character to a fullwidth Hiragana character.

	
FWKATAKANA_HWKATAKANA

	
'fwkatakana_hwkatakana'

	
Converts only fullwidth Katakana characters to halfwidth Katakana characters.

	
FWKATAKANA_HIRAGANA

	
'fwkatakana_hiragana'

	
Converts only fullwidth Katakana characters to fullwidth Hiragana characters.

	
HWKATAKANA_FWKATAKANA

	
'hwkatakana_fwkatakana'

	
Converts only halfwidth Katakana characters to fullwidth Katakana characters.

	
HWKATAKANA_HIRAGANA

	
'hwkatakana_hiragana'

	
Converts only halfwidth Katakana characters to fullwidth Hiragana characters.

	
HIRAGANA_FWKATAKANA

	
'hiragana_fwkatakana'

	
Converts only fullwidth Hiragana characters to fullwidth Katakana characters.

	
HIRAGANA_HWKATAKANA

	
'hiragana_hwkatakana'

	
Converts only fullwidth Hiragana characters to halfwidth Katakana characters.

Usage Notes

The function returns the converted string.

Examples

Given a table japanese_emp, containing an NVARCHAR2 column ename, the following statement can be used to normalize all the kana names in ename to hiragana:

UPDATE japanese_emp
 SET ename = UTL_I18N.TRANSLITERATE (ename, 'kana_hiragana');

Figure shows how this output might look.

Figure 225-1 Loading Locale-Specific Data to the Database

[image: Description of Figure 225-1 follows]

The following statement normalizes one kana name to hiragana:

DECLARE
 Name japanese_emp.ename%TYPE;
 Eno CONSTANT NUMBER(4) := 1;
BEGIN
 SELECT ename INTO name FROM japanese_emp WHERE enumber = eno;
 name := UTL_I18N.TRANSLITERATE(name, UTL_I18N.KANA_HIRAGANA);
 UPDATE japanese_emp SET ename = name WHERE enumber = eno;
EXCEPTION
 WHEN UTL_I18N.UNSUPPORTED_TRANSLITERATION THEN
 DBMS_OUTPUT.PUT_LINE('transliteration not supported');
END;
/

UNESCAPE_REFERENCE Function

This function returns a string from an input string that contains character references. It decodes each character reference to the corresponding character value.

	
See Also:

"ESCAPE_REFERENCE Function" for more information about escape sequences

Syntax

UTL_I18N.UNESCAPE_REFERENCE (
 str IN VARCHAR2 CHARACTER SET ANY_CS)
 RETURN VARCHAR2 CHARACTER SET str%CHARSET;

Parameters

Table 225-23 UNESCAPE_REFERENCE Function Parameters

	Parameter	Description
	
str

	
Specifies the input string

Usage Notes

If the user specifies a NULL string or a string whose length is 0, then the function returns a NULL string. If the function fails, then it returns the original string.

Examples

UTL_I18N.UNESCAPE_REFERENCE('hello < å')

This returns 'hello <'||chr(229).

UTL_INADDR

226 UTL_INADDR

The UTL_INADDR package provides a PL/SQL procedures to support internet addressing. It provides an API to retrieve host names and IP addresses of local and remote hosts.

This chapter contains the following topics:

	
Using UTL_INADDR

	
Security Model

	
Exceptions

	
Examples

	
Summary of UTL_INADDR Subprograms

Using UTL_INADDR

	
Security Model

	
Exceptions

	
Examples

Security Model

This package is an invoker's rights package, which means that the invoking user must be granted the connect privilege in the access control list assigned to the remote network host to which he or she wishes to connect.

	
Note:

For more information about managing fine-grained access, see Oracle Database Security Guide.

Exceptions

Table 226-1 Exception - Internet Address Package

	Number	Exception	Description
	
ORA-24247

	
NETWORK_ACCESS_DENIED

	
Access to network is denied.

	
ORA-29257

	
UNKNOWN_HOST

	
The host is unknown.

Examples

Retrieve the local host name and IP address.

SET serveroutput on
BEGIN
 DBMS_OUTPUT.PUT_LINE(UTL_INADDR.GET_HOST_NAME); -- get local host name
 DBMS_OUTPUT.PUT_LINE(UTL_INADDR.GET_HOST_ADDRESS); -- get local IP addr
END;
/

Summary of UTL_INADDR Subprograms

Table 226-2 UTL_INADDR Package Subprograms

	Subprogram	Description
	
GET_HOST_ADDRESS Function

	
Retrieves the IP address of the local or remote host given its name

	
GET_HOST_NAME Function

	
Retrieves the name of the local or remote host given its IP address

GET_HOST_ADDRESS Function

This function retrieves the IP address of the specified host.

Syntax

UTL_INADDR.GET_HOST_ADDRESS (
 host IN VARCHAR2 DEFAULT NULL)
RETURN host_address VARCHAR2;

Parameters

Table 226-3 GET_HOST_ADDRESS Function Parameters

	Parameter	Description
	
host

	
The name of the host to retrieve the IP address.

Return Values

Table 226-4 GET_HOST_ADDRESS Function Return Values

	Parameter	Description
	
host_address

	
The IP address of the specified host, or that of the local host if host is NULL.

Exceptions

UNKNOWN_HOST: The specified IP address is unknown

Usage Notes

The permission to obtain the host name or IP address of the current host is controlled by the resolve privilege on LOCALHOST.

GET_HOST_NAME Function

This function retrieves the name of the local or remote host given its IP address.

Syntax

UTL_INADDR.GET_HOST_NAME (
 ip IN VARCHAR2 DEFAULT NULL)
RETURN host_name VARCHAR2;

Parameters

Table 226-5 GET_HOST_NAME Function Parameters

	Parameter	Description
	
ip

	
The IP address of the host used to determine its host name. If ip is not NULL, the official name of the host with its domain name is returned. If this is NULL, the name of the local host is returned and the name does not contain the domain to which the local host belongs.

Return Values

Table 226-6 GET_HOST_NAME Function Return Values

	Parameter	Description
	
host_name

	
The name of the local or remote host of the specified IP address.

Exceptions

UNKNOWN_HOST: The specified IP address is unknown

Usage Notes

The permission to obtain the host name or IP address of the current host is controlled by the resolve privilege granted through DBMS_NETWORK_ACL_ADMIN on LOCALHOST.

UTL_IDENT

227 UTL_IDENT

The UTL_IDENT package specifies which Database or client PL/SQL is running.

This chapter contains the following topics:

	
Using UTL_IDENT

	
Overview

	
Security Model

	
Constants

Using UTL_IDENT

This section contains topics which relate to using the UTL_IDENT package.

	
Overview

	
Security Model

	
Constants

Overview

The UTL_IDENT package is intended for use for conditional compilation of PL/SQL packages that are supported by Oracle, TimesTen Database, and clients such as Oracle Forms.

Security Model

The UTL_IDENT package runs as the package owner SYS. The public synonym UTL_IDENT, and EXECUTE permission on this package is granted to PUBLIC.

Constants

The UTL_IDENT package uses the constants shown in Table 227-1, "UTL_IDENT Constants".

Table 227-1 UTL_IDENT Constants

	Constant	Type	Value	Description
	
IS_ORACLE_SERVER

	
BOOLEAN

	
TRUE/FALSE

	
Stipulates if Oracle Server or not

	
IS_ORACLE_CLIENT

	
BOOLEAN

	
TRUE/FALSE

	
Stipulates if Oracle Client or not

	
IS_TIMESTEN

	
BOOLEAN

	
TRUE/FALSE

	
Stipulates if TimesTen or not

	
IS_ORACLE_FORMS

	
BOOLEAN

	
TRUE/FALSE

	
Stipulates if Oracle Forms or not

UTL_LMS

228 UTL_LMS

UTL_LMS retrieves and formats error messages in different languages.

	
See Also:

Oracle Database Globalization Support Guide

This chapter contains the following topics:

	
Using UTL_LMS

	
Security Model

	
Summary of UTL_LMS Subprograms

Using UTL_LMS

This section contains topics which relate to using the UTL_LMS package.

	
Security Model

Security Model

This package must be created as the user SYS.

Summary of UTL_LMS Subprograms

Table 228-1 UTL_LMS Package Subprograms

	Function	Description
	
FORMAT_MESSAGE Function

	
Formats a retrieved error message

	
GET_MESSAGE Function

	
Retrieves an error message based on error number, product, facility, language, and message specified

FORMAT_MESSAGE Function

This function formats a message retrieved by the GET_MESSAGE function and returns the formatted message. If the function fails, then it returns a NULL result.

The following table shows special characters that can be used in the format string.

	Special Character	Description
	'%s'	Substitute the next string argument
	'%d'	Substitute the next integer argument
	'%%'	Represents the special character %

Syntax

UTL_LMS.FORMAT_MESSAGE (
 format IN VARCHAR2 CHARACTER SET ANY_CS,
 args IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT NULL)
 RETURN VARCHAR2 CHARACTER SET format%CHARSET;

Parameters

Table 228-2 FORMAT_MESSAGE Procedure Parameters

	Parameter	Description
	
format

	
Specifies the string to format

	
args

	
Specifies the list of arguments

Examples

DECLARE
 s varchar2(200);
 i pls_integer;
BEGIN
 i:= utl_lms.get_messsage(26052, 'rdbms', 'ora', 'french', s);
 dbms_output.put_line('before format, message is: '||s);
 dbms_output.put_line('formatted message is: '||utl_lms.format_message(s, 9, 'my_column_name');
END;
/

The following is an unformatted message:

Type %d non pris en charge pour l'expression SQL sur la colonne %s.

The following is the formatted message:

Type 9 non pris en charge pour l'expression SQL sur la colonne my_column_name.

GET_MESSAGE Function

This function retrieves an Oracle error message. The user can define user-specific error messages with the lmsgen utility.

It returns 0 when it is successful. It returns -1 when it fails.

	
See Also:

Oracle Database Globalization Support Guide for more information about the lmsgen utility

Syntax

UTL_LMS.GET_MESSAGE (
 errnum IN PLS_INTEGER,
 product IN VARCHAR2,
 facility IN VARCHAR2,
 language IN VARCHAR2,
 message OUT NOCOPY VARCHAR2CHARCTER SET ANY_CS)
RETURN PLS_INTEGER;

Parameters

Table 228-3 GET_MESSAGE Function Parameters

	Parameter	Description
	
errnum

	
Specifies the error number.

Example: '972' (for ORA-00972)

	
product

	
Specifies the product to which the error message applies

Example: 'rdbms'

	
facility

	
Specifies the error message prefix

Example: 'ora'

	
language

	
Specifies the language of the message. The parameter is case-insensitive. The default is NULL, which causes GET_MESSAGE to use the value of the NLS_LANGUAGE session parameter.

	
message

	
Specifies the output buffer for the retrieved message

Usage Notes

If the language parameter is set to NULL, then the value of the NLS_LANGUAGE session parameter is used as the default.

Examples

DECLARE
 s varchar2(200);
 i pls_integer;
BEGIN
 i:=utl_lms.get_message(601, 'rdbms', 'oci', 'french', s);
 dbms_output.put_line('OCI--00601 is: '||s);
END
/

The following output results:

OCI--00601 is: Echec du processus de nettoyage.

UTL_MAIL

229 UTL_MAIL

The UTL_MAIL package is a utility for managing email which includes commonly used email features, such as attachments, CC, and BCC.

This chapter contains the following topics:

	
Using UTL_MAIL

	
Security Model

	
Operational Notes

	
Rules and Limits

	
Summary of UTL_MAIL Subprograms

Using UTL_MAIL

	
Security Model

	
Operational Notes

	
Rules and Limits

Security Model

UTL_MAIL is not installed by default because of the SMTP_OUT_SERVER configuration requirement and the security exposure this involves. In installing UTL_MAIL, you should take steps to prevent the port defined by SMTP_OUT_SERVER being swamped by data transmissions.

This package is now an invoker's rights package and the invoking user will need the connect privilege granted in the access control list assigned to the remote network host to which he wants to connect.

	
Note:

For more information, see Managing Fine-grained Access to External Network Services in Oracle Database Security Guide

Operational Notes

You must both install UTL_MAIL and define the SMTP_OUT_SERVER.

	
To install UTL_MAIL:

sqlplus sys/<pwd>
SQL> @$ORACLE_HOME/rdbms/admin/utlmail.sql
SQL> @$ORACLE_HOME/rdbms/admin/prvtmail.plb

	
You define the SMTP_OUT_SERVER parameter in the init.ora rdbms initialization file. However, if SMTP_OUT_SERVER is not defined, this invokes a default of DB_DOMAIN which is guaranteed to be defined to perform appropriately.

Rules and Limits

Use UTL_MAIL only within the context of the ASCII (American Standard Code for Information Interchange) and EBCDIC (Extended Binary-Coded Decimal Interchange Code) codes.

Summary of UTL_MAIL Subprograms

Table 229-1 UTL_MAIL Package Subprograms

	Subprogram	Description
	
SEND Procedure

	
Packages an email message into the appropriate format, locates SMTP information, and delivers the message to the SMTP server for forwarding to the recipients

	
SEND_ATTACH_RAW Procedure

	
Represents the SEND Procedure overloaded for RAW attachments

	
SEND_ATTACH_VARCHAR2 Procedure

	
Represents the SEND Procedure overloaded for VARCHAR2 attachments

SEND Procedure

This procedure packages an email message into the appropriate format, locates SMTP information, and delivers the message to the SMTP server for forwarding to the recipients. It hides the SMTP API and exposes a one-line email facility for ease of use.

Syntax

UTL_MAIL.SEND (
 sender IN VARCHAR2 CHARACTER SET ANY_CS,
 recipients IN VARCHAR2 CHARACTER SET ANY_CS,
 cc IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT NULL,
 bcc IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT NULL,
 subject IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT NULL,
 message IN VARCHAR2 CHARACTER SET ANY_CS,
 mime_type IN VARCHAR2 DEFAULT 'text/plain; charset=us-ascii',
 priority IN PLS_INTEGER DEFAULT 3,
 replyto IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT NULL);

Parameters

Table 229-2 SEND Procedure Parameters

	Parameter	Description
	
sender

	
Email address of the sender

	
recipients

	
Email addresses of the recipient(s), separated by commas

	
cc

	
Email addresses of the CC recipient(s), separated by commas, default is NULL

	
bcc

	
Email addresses of the BCC recipient(s), separated by commas, default is NULL

	
subject

	
String to be included as email subject string, default is NULL

	
message

	
Text message body

	
mime_type

	
Mime type of the message, default is 'text/plain; charset=us-ascii'

	
priority

	
Message priority, which maps to the X-priority field. 1 is the highest priority and 5 the lowest. The default is 3.

	
replyto

	
Defines to whom the reply email is to be sent

SEND_ATTACH_RAW Procedure

This procedure is the SEND Procedure overloaded for RAW attachments.

Syntax

UTL_MAIL.SEND_ATTACH_RAW (
 sender IN VARCHAR2 CHARACTER SET ANY_CS,
 recipients IN VARCHAR2 CHARACTER SET ANY_CS,
 cc IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT NULL,
 bcc IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT NULL,
 subject IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT NULL,
 message IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT NULL,
 mime_type IN VARCHAR2 DEFAULT CHARACTER SET ANY_CS
 DEFAULT 'text/plain; charset=us-ascii',
 priority IN PLS_INTEGER DEFAULT 3,
 attachment IN RAW,
 att_inline IN BOOLEAN DEFAULT TRUE,
 att_mime_type IN VARCHAR2 CHARACTER SET ANY_CS
 DEFAULT 'text/plain; charset=us-ascii',
 att_filename IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT NULL,
 replyto IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT NULL);

Parameters

Table 229-3 SEND_ATTACH_RAW Procedure Parameters

	Parameter	Description
	
sender

	
Email address of the sender

	
recipients

	
Email addresses of the recipient(s), separated by commas

	
cc

	
Email addresses of the CC recipient(s), separated by commas, default is NULL

	
bcc

	
Email addresses of the BCC recipient(s), separated by commas, default is NULL

	
subject

	
String to be included as email subject string, default is NULL

	
message

	
Text message body

	
mime_type

	
Mime type of the message, default is 'text/plain; charset=us-ascii'

	
priority

	
Message priority, which maps to the X-priority field. 1 is the highest priority and 5 the lowest. The default is 3.

	
attachment

	
RAW attachment

	
att_inline

	
Specifies whether the attachment is viewable inline with the message body, default is TRUE

	
att_mime_type

	
Mime type of the attachment, default is 'application/octet'

	
att_filename

	
String specifying a filename containing the attachment, default is NULL

	
replyto

	
Defines to whom the reply email is to be sent

SEND_ATTACH_VARCHAR2 Procedure

This procedure is the SEND Procedure overloaded for VARCHAR2 attachments.

Syntax

UTL_MAIL.SEND_ATTACH_VARCHAR2 (
 sender IN VARCHAR2 CHARACTER SET ANY_CS,
 recipients IN VARCHAR2 CHARACTER SET ANY_CS,
 cc IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT NULL,
 bcc IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT NULL,
 subject IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT NULL,
 message IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT NULL,
 mime_type IN VARCHAR2 CHARACTER SET ANY_CS
 DEFAULT 'text/plain; charset=us-ascii',
 priority IN PLS_INTEGER DEFAULT 3,
 attachment IN VARCHAR2 CHARACTER SET ANY_CS, ,
 att_inline IN BOOLEAN DEFAULT TRUE,
 att_mime_type IN VARCHAR2 CHARACTER SET ANY_CS
 DEFAULT 'text/plain; charset=us-ascii,
 att_filename IN VARCHAR2CHARACTER SET ANY_CS DEFAULT NULL,
 replyto IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT NULL);

Parameters

Table 229-4 SEND_ATTACH_VARCHAR2 Procedure Parameters

	Parameter	Description
	
sender

	
Email address of the sender

	
recipients

	
Email addresses of the recipient(s), separated by commas

	
cc

	
Email addresses of the CC recipient(s), separated by commas, default is NULL

	
bcc

	
Email addresses of the BCC recipient(s), separated by commas, default is NULL

	
subject

	
String to be included as email subject string, default is NULL

	
message

	
Text message body

	
mime_type

	
Mime type of the message, default is 'text/plain; charset=us-ascii

	
priority

	
Message priority, which maps to the X-priority field. 1 is the highest priority and 5 the lowest. The default is 3.

	
attachment

	
Text attachment

	
att_inline

	
Specifies whether the attachment is inline, default TRUE

	
att_mime_type

	
Mime type of the attachment, default is 'text/plain; charset=us-ascii'

	
att_filename

	
String specifying a filename containing the attachment, default is NULL

	
replyto

	
Defines to whom the reply email is to be sent

UTL_MATCH

230 UTL_MATCH

The UTL_MATCH package facilitates matching two records. This is typically used to match names, such as two First Names or two Last Names.

This chapter contains the following topics:

	
Using UTL_MATCH

	
Overview

	
Security Model

	
Summary of UTL_MATCH Subprograms

Using UTL_MATCH

	
Overview

	
Security Model

Overview

"Edit Distance" also known as "Levenshtein Distance "(named after the Russian scientist Vladimir Levenshtein, who devised the algorithm in 1965), is a measure of Similarity between two strings, s1 and s2. The distance is the number of insertions, deletions or substitutions required to transform s1 to s2.�

The Edit Distance between strings "shackleford" and "shackelford" = 2

The "Jaro-Winkler algorithm" is another way of calculating Edit distance between two strings. This method, developed at the U.S. Census, is a String Comparator measure that gives values of partial agreement between two strings. The string comparator accounts for length of strings and partially accounts for typical human errors made in alphanumeric strings.

Table 230-1 shows similarity values returned by Jaro-Winkler and Edit Distance

Table 230-1 Comparison between normalized values returned by Jaro-Winkler and Edit Distance algorithms

	String 1	String 2	Jaro Winkler	Edit Distance
	
Dunningham

	
Cunnigham

	
89

	
80

	
Abroms

	
Abrams

	
92

	
83

	
Lampley

	
Campley

	
90

	
86

	
Marhta

	
Martha

	
96

	
67

	
Jonathon

	
Jonathan

	
95

	
88

	
Jeraldine

	
Geraldine

	
92

	
89

Security Model

The UTL_MATCH package runs with definer's rights. UTL_MATCH must be created under SYS. Operations provided by this package are performed with SYS privileges.

Summary of UTL_MATCH Subprograms

Table 230-2 DBMS_ALERT Package Subprograms

	Subprogram	Description
	
EDIT_DISTANCE Function

	
Calculates the number of changes required to transform string-1 into string-2

	
EDIT_DISTANCE_SIMILARITY Function

	
Calculates the number of changes required to transform string-1 into string-2, returning a value between 0 (no match) and 100 (perfect match)

	
JARO_WINKLER Function

	
Calculates the measure of agreement between string-1 and string-2

	
JARO_WINKLER_SIMILARITY Function

	
Calculates the measure of agreement between string-1 and string-2, returning a value between 0 (no match) and 100 (perfect match)

EDIT_DISTANCE Function

This function calculates the number of insertions, deletions or substitutions required to transform string-1 into string-2.

Syntax

UTL_MATCH.EDIT_DISTANCE (
 s1 IN VARCHAR2,
 s2 IN VARCHAR2)
 RETURN PLS_INTEGER;�

Parameters

Table 230-3 EDIT_DISTANCE Function Parameters

	Parameter	Description
	
s1

	
The string to be transformed

	
s2

	
The string into which s1 is to be transformed

Examples

SELECT UTL_MATCH.EDIT_DISTANCE('shackleford', 'shackelford') FROM DUAL;

returns 2

EDIT_DISTANCE_SIMILARITY Function

This function calculates the number of insertions, deletions or substations required to transform string-1 into string-2, and returns the Normalized value of the Edit Distance between two Strings. The value is typically between 0 (no match) and 100 (perfect match).�

Syntax

UTL_MATCH.EDIT_DISTANCE_SIMILARITY (
 s1 IN VARCHAR2,
 s2 IN VARCHAR2)
 RETURN PLS_INTEGER;�

Parameters

Table 230-4 EDIT_DISTANCE_SIMILARITY Function Parameters

	Parameter	Description
	
s1

	
The string to be transformed

	
s2

	
The string into which s1 is to be transformed

Examples

SELECT UTL_MATCH.EDIT_DISTANCE_SIMILARITY('shackleford', 'shackelford') FROM DUAL;

returns 82

JARO_WINKLER Function

This function calculates the measure of agreement between two strings.�

Syntax

UTL_MATCH.JARO_WINKLER (
 s1 IN VARCHAR2,
 s2 IN VARCHAR2)
 RETURN BINARY_DOUBLE;�

Parameters

Table 230-5 JARO_WINKLER Function Parameters

	Parameter	Description
	
s1

	
Input

	
s2

	
input

Examples

SELECT UTL_MATCH.JARO_WINKLER('shackleford', 'shackelford') FROM DUAL;

returns 9.818E-001

JARO_WINKLER_SIMILARITY Function

This function calculates the measure of agreement between two strings, and returns a score between 0 (no match) and 100 (perfect match).�

Syntax

UTL_MATCH.JARO_WINKLER (
 s1 IN VARCHAR2,
 s2 IN VARCHAR2)
 RETURN PLS_INTEGER;�

Parameters

Table 230-6 JARO_WINKLER Function Parameters

	Parameter	Description
	
s1

	
Input

	
s2

	
input

Examples

SELECT UTL_MATCH.JARO_WINKLER_SIMILARITY('shackleford', 'shackelford') FROM DUAL;

returns 98

UTL_NLA

231 UTL_NLA

The UTL_NLA package exposes a subset of the BLAS and LAPACK (Version 3.0) operations on vectors and matrices represented as VARRAYs.

This chapter contains the following topics:

	
Using UTL_NLA

	
Overview

	
Rules and Limits

	
Security Model

	
Subprogram Groups

	
BLAS Level 1 (Vector-Vector Operations) Subprograms

	
BLAS Level 2 (Matrix-Vector Operations) Subprograms

	
BLAS Level 3 (Matrix-Matrix Operations) Subprograms

	
LAPACK Driver Routines (Linear Equations) Subprograms

	
LAPACK Driver Routines (LLS and Eigenvalue Problems) Subprograms

	
Summary of UTL_NLA Subprograms

Using UTL_NLA

This section contains topics which relate to using the UTL_NLA package.

	
Overview

	
Rules and Limits

	
Security Model

Overview

The UTL_NLA package exposes a subset of the BLAS (Basic Linear Algebra Subprograms) and LAPACK (Linear Algebra PACKage)(Version 3.0) operations on vectors and matrices represented as VARRAYs.

Standards

For more information on the BLAS and LAPACK standards see

http://www.netlib.org/blas/

http://www.netlib.org/lapack/
Required Expertise

Users of this package are expected to have a sound grasp of linear algebra in general and of the BLAS and LAPACK libraries in particular.

Implementation

The mapping between BLAS and LAPACK procedures and their corresponding PL/SQL calls is one-to-one.

	
All BLAS functions have the BLAS_ prefix (for example, the BLAS_ASUM Functions). The subroutines and functions in BLAS are mapped to PL/SQL procedures and functions, respectively.

	
All LAPACK functions have the LAPACK_ prefix (for example, the LAPACK_GBSV Procedures). The subroutines in LAPACK are mapped to PL/SQL procedures. Procedures that perform the same operation but differ only on the datatype of the arguments have the same overloaded names.

The mapping between BLAS and LAPACK procedure parameters and those of their corresponding PL/SQL subprograms is almost one-to-one.

	
Also in the PL/SQL interface for LAPACK, all /work/ arguments have been removed. The UTL_NLA package manages the allocation and de-allocation of all work areas required by the libraries.

	
A new optional parameter, pack, has been added to the end of each LAPACK procedure that specifies if the matrix has been linearized in the row-major or column-major (default) format.

Rules and Limits

Vectors and matrices are stored in VARRAYs with a maximum size of one million entries. Given this restriction, UTL_NLA vectors can be up to one million entries but matrices need to be of size RxC <= 1,000,000.

Security Model

The UTL_NLA package is owned by user SYS and is installed as part of database installation. Execution privilege on the package is granted to public. The routines in the package are run with invokers' rights (run with the privileges of the current user).

Subprogram Groups

	
BLAS Level 1 (Vector-Vector Operations) Subprograms

	
BLAS Level 2 (Matrix-Vector Operations) Subprograms

	
BLAS Level 3 (Matrix-Matrix Operations) Subprograms

	
LAPACK Driver Routines (Linear Equations) Subprograms

	
LAPACK Driver Routines (LLS and Eigenvalue Problems) Subprograms

BLAS Level 1 (Vector-Vector Operations) Subprograms

Table 231-1 BLAS Level 1 (Vector-Vector Operations) Subprograms

	Subprogram	Description
	
BLAS_ASUM Functions

	
Computes the sum of the absolute values of the vector components

	
BLAS_AXPY Procedures

	
Copies alpha*X + Y into vector Y

	
BLAS_COPY Procedures

	
Copies the contents of vector X to vector Y

	
BLAS_DOT Functions

	
Returns the dot (scalar) product of two vectors X and Y

	
BLAS_IAMAX Functions

	
Computes the index of the first element of a vector that has the largest absolute value

	
BLAS_NRM2 Functions

	
Computes the vector 2-norm (Euclidean norm)

	
BLAS_ROT Procedures

	
Returns the plane rotation of points

	
BLAS_ROTG Procedures

	
Returns the Givens rotation of points

	
BLAS_SCAL Procedures

	
Scales a vector by a constant

	
BLAS_SWAP Procedures

	
Swaps the contents of two vectors each of size n

BLAS Level 2 (Matrix-Vector Operations) Subprograms

Table 231-2 BLAS Level 2 (Matrix-Vector Operations) Subprograms

	Subprogram	Description
	
BLAS_GBMV Procedures

	
Performs the matrix-vector operation y := alpha*A*x + beta*y or y := alpha*A'*x + beta*y where alpha and beta are scalars, x and y are vectors and A is an m by n band matrix, with kl sub-diagonals and ku super-diagonals

	
BLAS_GEMV Procedures

	
Performs the matrix-vector operations y := alpha*A*x + beta*y or y := alpha*A'*x + beta*y where alpha and beta are scalars, x and y are vectors and A is an m by n matrix

	
BLAS_GER Procedures

	
Performs a rank 1 operation A := alpha*x*y' + A where alpha is a scalar, x is an m element vector, y is an n element vector and A is an m by n matrix

	
BLAS_SBMV Procedures

	
Performs a matrix-vector operation y := alpha*A*x + beta*y where alpha and beta are scalars, x and y are n element vectors and A is an n by n symmetric band matrix, with k super-diagonals

	
BLAS_SPMV Procedures

	
Performs a matrix-vector operation y := alpha*A*x + beta*y where alpha and beta are scalars, x and y are n element vectors and A is an n by n symmetric matrix, supplied in packed form

	
BLAS_SPR Procedures

	
Performs a symmetric rank 1 operation A := alpha*x*x' + A where alpha is a real scalar, x is an n element vector, and A is an n by n symmetric matrix, supplied in packed form

	
BLAS_SPR2 Procedures

	
Performs a symmetric rank 2 operation A := alpha*x*y' + alpha*y*x' +A where alpha is a scalar, x and y are n element vectors, and A is an n by n symmetric matrix, supplied in packed form

	
BLAS_SBMV Procedures

	
Performs a matrix-vector operation y := alpha*A*x + beta*y where alpha and beta are scalars, x and y are n element vectors and A is an n by n symmetric band matrix, with k super-diagonals

	
BLAS_SYMV Procedures

	
Performs a matrix-vector operation y := alpha*A*x + beta*y where alpha and beta are scalars, x and y are n element vectors and A is an n by n symmetric matrix

	
BLAS_SYR Procedures

	
Performs a symmetric rank 1 operation A := alpha*x*x' + A where alpha is a real scalar, x is an n element vector, and A is an n by n symmetric matrix

	
BLAS_SYR2 Procedures

	
Performs a symmetric rank 2 operation A := alpha*x*y' + alpha*y*x' + A where alpha is a scalar, x and y are n element vectors, and A is an n by n symmetric matrix

	
BLAS_TBMV Procedures

	
Performs a matrix-vector operation x := A*x or A'*x = b where x is an n element vector and A is an n by n unit, or non-unit, upper or lower triangular band matrix, with (k + 1) diagonals

	
BLAS_TBSV Procedures

	
Solves one of the systems of equation A*x = b or A'*x = b where b and x are n element vectors and A is an n by n unit, or non-unit, upper or lower triangular band matrix, with (k + 1) diagonals

	
BLAS_TPMV Procedures

	
Performs a matrix-vector operation x := A*x or x := A'*x where x is an n element vector and A is an n by n unit, or non-unit, upper or lower triangular matrix, supplied in packed form

	
BLAS_TPSV Procedures

	
Solves one of the systems of equation A*x = b or A'*x = b where b and x are n element vectors and A is an n by n unit, or non-unit, upper or lower triangular matrix, supplied in packed form

	
BLAS_TRMV Procedures

	
Performs a matrix-vector operation x := A*x or x := A'*x where x is an n element vector and A is an n by n unit, or non-unit, upper or lower triangular matrix

	
BLAS_TRSV Procedures

	
Solves one of the systems of equation A*x = b or A'*x = b where b and x are n element vectors and A is an n by n unit, or non-unit, upper or lower triangular matrix

BLAS Level 3 (Matrix-Matrix Operations) Subprograms

Table 231-3 BLAS Level 3 (Matrix-Matrix Operations) Subprograms

	Subprogram	Description
	
BLAS_GEMM Procedures

	
Performs one of the matrix-vector operations C := alpha*op(A)*op(B) + beta*C where op(X) is one of op(X) = X or op(X) = X' where alpha and beta are scalars, and A, B and C are matrices, with op(A) an m by k matrix, op(B) a k by n matrix and C an m by n matrix

	
BLAS_SYMM Procedures

	
Performs one of the matrix-vector operations C := alpha*A*B + beta*C or C := alpha*B*A + beta*C where alpha and beta are scalars, A is a symmetric matrix, and B and C are m by n matrices

	
BLAS_SYR2K Procedures

	
Performs one of the symmetric rank2 k operations C := alpha*A*B' + alpha*B*A' + beta*C or C := alpha*A'*B + alpha*B'*A + beta*C where alpha and beta are scalars, C is an n by n symmetric matrix and A and B are n by k matrices in the first case and k by n matrices in the second case

	
BLAS_SYRK Procedures

	
Performs one of the symmetric rank k operations C := alpha*A*A' + beta*C or C := alpha*A'*A + beta*C where alpha and beta are scalars, C is an n by n symmetric matrix and A is an n by k matrix in the first case and a k by n matrix in the second case

	
BLAS_TRMM Procedures

	
Performs one of the matrix-vector operations B := alpha*op(A)*B or B := alpha*B*op(A) where alpha is a scalar, B is an m by n matrix, A is a unit, or non-unit, upper or lower triangular matrix and op(A) is one of two alternatives

	
BLAS_TRSM Procedures

	
Performs one of the matrix-vector operations op(A)*X = alpha*B or X*op(A) = alpha*B where alpha is a scalar, X and B are m by n matrices, A is a unit, or non-unit, upper or lower triangular matrix, op(A) is one of two alternatives. The matrix X is overwritten on B

LAPACK Driver Routines (Linear Equations) Subprograms

Table 231-4 LAPACK Driver Routines (Linear Equations) Subprograms

	Subprogram	Description
	
LAPACK_GBSV Procedures

	
This procedure computes the solution to a real system of linear equations a * x = b where a is an n by n matrix and x and b are n by nrhs matrices. The LU decomposition with partial pivoting and row interchanges is used to factor A.

	
LAPACK_GESV Procedures

	
This procedure computes the solution to a real system of linear equations a * x = b where a is an n by n matrix and x and b are n by nrhs matrices. The LU decomposition with partial pivoting and row interchanges is used to factor A.

	
LAPACK_GTSV Procedures

	
This procedure solves the equation a * x = b where a is an n by n tridiagonal matrix, by Gaussian elimination with partial pivoting.

	
LAPACK_PBSV Procedures

	
This procedure computes the solution to a real system of linear equations a * x = b where a is an n by n symmetric positive definite band matrix and x and b are n by nrhs matrices. The Cholesky decomposition is used to factor A.

	
LAPACK_POSV Procedures

	
This procedure computes the solution to a real system of linear equations a * x = b where a is an n by n symmetric positive definite matrix and x and b are n by nrhs matrices. The Cholesky decomposition is used to factor A.

	
LAPACK_PPSV Procedures

	
This procedure computes the solution to a real system of linear equations a * x = b where a is an n by n symmetric positive definite matrix stored in packed format and x and b are n by nrhs matrices. The Cholesky decomposition is used to factor A.

	
LAPACK_PTSV Procedures

	
This procedure computes the solution to a real system of linear equations a * x = b where a is an n by n symmetric positive definite tridiagonal matrix, and x and b are n by nrhs matrices.

	
LAPACK_SPSV Procedures

	
This procedure computes the solution to a real system of linear equations a * x = b where a is an n by n symmetric matrix stored in packed format, and x and b are n by nrhs matrices. The diagonal pivoting method is used to factor A.

	
LAPACK_SYSV Procedures

	
This procedure computes the solution to a real system of linear equations a * x = b where a is an n by n symmetric matrix, and x and b are n by nrhs matrices. The diagonal pivoting method is used to factor A.

LAPACK Driver Routines (LLS and Eigenvalue Problems) Subprograms

Table 231-5 LAPACK Driver Routines (LLS and Eigenvalue Problems)

	Subprogram	Description
	
LAPACK_GEES Procedures

	
Computes for an n by n real nonsymmetric matrix A, the eigenvalues, the real Schur form T, and, optionally, the matrix of Schur vectors Z. This gives the Schur factorization A = Z*T*(Z**T).

	
LAPACK_GEEV Procedures

	
Computes for an n by n real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors.

	
LAPACK_GELS Procedures

	
Solves overdetermined or underdetermined real linear systems involving an m by n matrix A, or its transpose, using a QR or LQ factorization of A. It is assumed that A has full rank.

	
LAPACK_GESDD Procedures

	
Computes the singular value decomposition (SVD) of a real m by n matrix A, optionally computing the left and right singular vectors. If singular vectors are desired, it uses a divide-and-conquer algorithm that makes mild assumptions about floating point arithmetic.

	
LAPACK_GESVD Procedures

	
Computes the singular value decomposition (SVD) of a real m by n matrix A, optionally computing the left and/or right singular vectors. The SVD is written A = U * SIGMA * transpose(V).

	
LAPACK_SBEV Procedures

	
Computes all the eigenvalues and, optionally, eigenvectors of a real symmetric band matrix A

	
LAPACK_SBEVD Procedures

	
Ccomputes all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix A. If eigenvectors are desired, it uses a divide and conquer algorithm that makes mild assumptions about floating point arithmetic.

	
LAPACK_SPEV Procedures

	
Computes all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix A in packed storage

	
LAPACK_SPEVD Procedures

	
Computes all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix A in packed storage. If eigenvectors are desired, it uses a divide and conquer algorithm that makes mild assumptions about floating point arithmetic.

	
LAPACK_STEV Procedures

	
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix A

	
LAPACK_STEVD Procedures

	
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix A. If eigenvectors are desired, it uses a divide and conquer algorithm that makes mild assumptions about floating point arithmetic.

	
LAPACK_SYEV Procedures

	
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A

	
LAPACK_SYEVD Procedures

	
Computes all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix A. If eigenvectors are desired, it uses a divide and conquer algorithm that makes mild assumptions about floating point arithmetic.

Summary of UTL_NLA Subprograms

Table 231-6 UTL_NLA Package Subprograms

	Subprogram	Description	Group
	
BLAS_ASUM Functions

	
Computes the sum of the absolute values of the vector components

	
BLAS Level 1 (Vector-Vector Operations) Subprograms

	
BLAS_AXPY Procedures

	
Copies alpha*X + Y into vector Y

	
BLAS Level 1 (Vector-Vector Operations) Subprograms

	
BLAS_COPY Procedures

	
Copies the contents of vector X to vector Y

	
BLAS Level 1 (Vector-Vector Operations) Subprograms

	
BLAS_DOT Functions

	
Returns the dot (scalar) product of two vectors X and Y

	
BLAS Level 1 (Vector-Vector Operations) Subprograms

	
BLAS_GBMV Procedures

	
Performs the matrix-vector operation y := alpha*A*x + beta*y or y := alpha*A'*x + beta*y where alpha and beta are scalars, x and y are vectors and A is an m by n band matrix, with kl sub-diagonals and ku super-diagonals

	
BLAS Level 2 (Matrix-Vector Operations) Subprograms

	
BLAS_GEMM Procedures

	
Performs one of the matrix-vector operations where alpha and beta are scalars, and A, B and C are matrices, with op(A) an m by k matrix, op(B) a k by n matrix and C an m by n matrix

	
BLAS Level 3 (Matrix-Matrix Operations) Subprograms

	
BLAS_GEMV Procedures

	
Performs the matrix-vector operations y := alpha*A*x + beta*y or y := alpha*A'*x + beta*y where alpha and beta are scalars, x and y are vectors and A is an m by n matrix

	
BLAS Level 2 (Matrix-Vector Operations) Subprograms

	
BLAS_GER Procedures

	
Performs a rank 1 operation A := alpha*x*y' + A where alpha is a scalar, x is an m element vector, y is an n element vector and A is an m by n matrix

	
BLAS Level 2 (Matrix-Vector Operations) Subprograms

	
BLAS_IAMAX Functions

	
Computes the index of the first element of a vector that has the largest absolute value

	
BLAS Level 1 (Vector-Vector Operations) Subprograms

	
BLAS_NRM2 Functions

	
Computes the vector 2-norm (Euclidean norm)

	
BLAS Level 1 (Vector-Vector Operations) Subprograms

	
BLAS_ROT Procedures

	
Returns the plane rotation of points

	
BLAS Level 1 (Vector-Vector Operations) Subprograms

	
BLAS_ROTG Procedures

	
Returns the Givens rotation of points

	
BLAS Level 1 (Vector-Vector Operations) Subprograms

	
BLAS_SBMV Procedures

	
Performs a matrix-vector operation y := alpha*A*x + beta*y where alpha and beta are scalars, x and y are n element vectors and A is an n by n symmetric band matrix, with k super-diagonals

	
BLAS Level 2 (Matrix-Vector Operations) Subprograms

	
BLAS_SCAL Procedures

	
Scales a vector by a constant

	
BLAS Level 1 (Vector-Vector Operations) Subprograms

	
BLAS_SPMV Procedures

	
Performs a matrix-vector operation y := alpha*A*x + beta*y where alpha and beta are scalars, x and y are n element vectors and A is an n by n symmetric matrix, supplied in packed form

	
BLAS Level 2 (Matrix-Vector Operations) Subprograms

	
BLAS_SPR Procedures

	
Performs a symmetric rank 1 operation A := alpha*x*x' + A where alpha is a real scalar, x is an n element vector, and A is an n by n symmetric matrix, supplied in packed form

	
BLAS Level 2 (Matrix-Vector Operations) Subprograms

	
BLAS_SPR2 Procedures

	
Performs a symmetric rank 2 operation where alpha is a scalar, x and y are n element vectors, and A is an n by n symmetric matrix, supplied in packed form

	
BLAS Level 2 (Matrix-Vector Operations) Subprograms

	
BLAS_SWAP Procedures

	
Swaps the contents of two vectors each of size n

	
BLAS Level 1 (Vector-Vector Operations) Subprograms

	
BLAS_SYMM Procedures

	
Performs one of the matrix-vector operations where alpha and beta are scalars, A is a symmetric matrix, and B and C are m by n matrices

	
BLAS Level 3 (Matrix-Matrix Operations) Subprograms

	
BLAS_SYMV Procedures

	
Performs a matrix-vector operation where alpha and beta are scalars, x and y are n element vectors and A is an n by n symmetric matrix

	
BLAS Level 2 (Matrix-Vector Operations) Subprograms

	
BLAS_SYR Procedures

	
Performs a symmetric rank 1 operation where alpha is a real scalar, x is an n element vector, and A is an n by n symmetric matrix

	
BLAS Level 2 (Matrix-Vector Operations) Subprograms

	
BLAS_SYR2 Procedures

	
Performs a symmetric rank 2 operation where alpha is a scalar, x and y are n element vectors, and A is an n by n symmetric matrix

	
BLAS Level 2 (Matrix-Vector Operations) Subprograms

	
BLAS_SYR2K Procedures

	
Performs one of the symmetric rank2 k operations where alpha and beta are scalars, C is an n by n symmetric matrix and A and B are n by k matrices in the first case and k by n matrices in the second case

	
BLAS Level 3 (Matrix-Matrix Operations) Subprograms

	
BLAS_SYRK Procedures

	
Performs one of the symmetric rank k operations where alpha and beta are scalars, C is an n by n symmetric matrix and A is an n by k matrix in the first case and a k by n matrix in the second case

	
BLAS Level 3 (Matrix-Matrix Operations) Subprograms

	
BLAS_TBMV Procedures

	
Performs a matrix-vector operation where x is an n element vector and A is an n by n unit, or non-unit, upper or lower triangular band matrix, with (k + 1) diagonals

	
BLAS Level 2 (Matrix-Vector Operations) Subprograms

	
BLAS_TBSV Procedures

	
Solves one of the systems of equation where b and x are n element vectors and A is an n by n unit, or non-unit, upper or lower triangular band matrix, with (k + 1) diagonals

	
BLAS Level 2 (Matrix-Vector Operations) Subprograms

	
BLAS_TPMV Procedures

	
Performs a matrix-vector operation where x is an n element vector and A is an n by n unit, or non-unit, upper or lower triangular matrix, supplied in packed form

	
BLAS Level 2 (Matrix-Vector Operations) Subprograms

	
BLAS_TPSV Procedures

	
Solves one of the systems of equation where b and x are n element vectors and A is an n by n unit, or non-unit, upper or lower triangular matrix, supplied in packed form

	
BLAS Level 2 (Matrix-Vector Operations) Subprograms

	
BLAS_TRMM Procedures

	
Performs one of the matrix-vector operations wherealpha is a scalar, B is an m by n matrix, A is a unit, or non-unit, upper or lower triangular matrix and op(A) is one of two alternatives

	
BLAS Level 2 (Matrix-Vector Operations) Subprograms

	
BLAS_TRMV Procedures

	
Performs a matrix-vector operation where x is an n element vector and A is an n by n unit, or non-unit, upper or lower triangular matrix

	
BLAS Level 2 (Matrix-Vector Operations) Subprograms

	
BLAS_TRSM Procedures

	
Performs one of the matrix-vector operations op(A)*X = alpha*B or X*op(A) = alpha*B where alpha is a scalar, X and B are m by n matrices, A is a unit, or non-unit, upper or lower triangular matrix, op(A) is one of two alternatives. The matrix X is overwritten on B

	
BLAS Level 3 (Matrix-Matrix Operations) Subprograms

	
BLAS_TRSV Procedures

	
Solves one of the systems of equation where b and x are n element vectors and A is an n by n unit, or non-unit, upper or lower triangular matrix

	
BLAS Level 2 (Matrix-Vector Operations) Subprograms

	
LAPACK_GBSV Procedures

	
This procedure computes the solution to a real system of linear equations a * x = b where a is an n by n matrix and x and b are n by nrhs matrices. The LU decomposition with partial pivoting and row interchanges is used to factor A.

	
LAPACK Driver Routines (Linear Equations) Subprograms

	
LAPACK_GEES Procedures

	
Computes for an n by n real nonsymmetric matrix A, the eigenvalues, the real Schur form T, and, optionally, the matrix of Schur vectors Z. This gives the Schur factorization A = Z*T*(Z**T).

	
LAPACK Driver Routines (LLS and Eigenvalue Problems) Subprograms

	
LAPACK_GEEV Procedures

	
Computes for an n by n real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors.

	
LAPACK Driver Routines (LLS and Eigenvalue Problems) Subprograms

	
LAPACK_GELS Procedures

	
Solves overdetermined or underdetermined real linear systems involving an m by n matrix A, or its transpose, using a QR or LQ factorization of A. It is assumed that A has full rank.

	
LAPACK Driver Routines (LLS and Eigenvalue Problems) Subprograms

	
LAPACK_GESDD Procedures

	
Computes the singular value decomposition (SVD) of a real m by n matrix A, optionally computing the left and right singular vectors. If singular vectors are desired, it uses a divide-and-conquer algorithm that makes mild assumptions about floating point arithmetic.

	
LAPACK Driver Routines (LLS and Eigenvalue Problems) Subprograms

	
LAPACK_GESV Procedures

	
This procedure computes the solution to a real system of linear equations a * x = b where a is an n by n matrix and x and b are n by nrhs matrices. The LU decomposition with partial pivoting and row interchanges is used to factor A.

	
LAPACK Driver Routines (Linear Equations) Subprograms

	
LAPACK_GESVD Procedures

	
Computes the singular value decomposition (SVD) of a real m by n matrix A, optionally computing the left and/or right singular vectors. The SVD is written A = U * SIGMA * transpose(V).

	
LAPACK Driver Routines (LLS and Eigenvalue Problems) Subprograms

	
LAPACK_GTSV Procedures

	
This procedure solves the equation a * x = b where a is an n by n tridiagonal matrix, by Gaussian elimination with partial pivoting.

	
LAPACK Driver Routines (Linear Equations) Subprograms

	
LAPACK_PBSV Procedures

	
This procedure computes the solution to a real system of linear equations a * x = b where a is an n by n symmetric positive definite band matrix and x and b are n by nrhs matrices. The Cholesky decomposition is used to factor A.

	
LAPACK Driver Routines (Linear Equations) Subprograms

	
LAPACK_POSV Procedures

	
This procedure computes the solution to a real system of linear equations a * x = b where a is an n by n symmetric positive definite matrix and x and b are n by nrhs matrices. The Cholesky decomposition is used to factor A.

	
LAPACK Driver Routines (Linear Equations) Subprograms

	
LAPACK_PPSV Procedures

	
This procedure computes the solution to a real system of linear equations a * x = b where a is an n by n symmetric positive definite matrix stored in packed format and x and b are n by nrhs matrices. The Cholesky decomposition is used to factor A.

	
LAPACK Driver Routines (Linear Equations) Subprograms

	
LAPACK_PTSV Procedures

	
This procedure computes the solution to a real system of linear equations a * x = b where a is an n by n symmetric positive definite tridiagonal matrix, and x and b are n by nrhs matrices.

	
LAPACK Driver Routines (Linear Equations) Subprograms

	
LAPACK_SBEV Procedures

	
Computes all the eigenvalues and, optionally, eigenvectors of a real symmetric band matrix A

	
LAPACK Driver Routines (LLS and Eigenvalue Problems) Subprograms

	
LAPACK_SBEVD Procedures

	
Ccomputes all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix A. If eigenvectors are desired, it uses a divide and conquer algorithm that makes mild assumptions about floating point arithmetic.

	
LAPACK Driver Routines (LLS and Eigenvalue Problems) Subprograms

	
LAPACK_SPEV Procedures

	
Computes all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix A in packed storage

	
LAPACK Driver Routines (LLS and Eigenvalue Problems) Subprograms

	
LAPACK_SPEVD Procedures

	
Computes all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix A in packed storage. If eigenvectors are desired, it uses a divide and conquer algorithm that makes mild assumptions about floating point arithmetic.

	
LAPACK Driver Routines (LLS and Eigenvalue Problems) Subprograms

	
LAPACK_SPSV Procedures

	
This procedure computes the solution to a real system of linear equations a * x = b where a is an n by n symmetric matrix stored in packed format, and x and b are n by nrhs matrices. The diagonal pivoting method is used to factor A.

	
LAPACK Driver Routines (Linear Equations) Subprograms

	
LAPACK_STEV Procedures

	
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix A

	
LAPACK Driver Routines (LLS and Eigenvalue Problems) Subprograms

	
LAPACK_STEVD Procedures

	
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix A. If eigenvectors are desired, it uses a divide and conquer algorithm that makes mild assumptions about floating point arithmetic.

	
LAPACK Driver Routines (LLS and Eigenvalue Problems) Subprograms

	
LAPACK_SYEVD Procedures

	
Computes all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix A. If eigenvectors are desired, it uses a divide and conquer algorithm that makes mild assumptions about floating point arithmetic.

	
LAPACK Driver Routines (LLS and Eigenvalue Problems) Subprograms

	
LAPACK_SYSV Procedures

	
This procedure computes the solution to a real system of linear equations a * x = b where a is an n by n symmetric matrix, and x and b are n by nrhs matrices. The diagonal pivoting method is used to factor A.

	
LAPACK Driver Routines (Linear Equations) Subprograms

BLAS_ASUM Functions

This procedure computes the sum of the absolute values of the vector components.

	
See Also:

BLAS Level 1 (Vector-Vector Operations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.BLAS_ASUM (
 n IN POSITIVEN,
 x IN UTL_NLA_ARRAY_DBL,
 incx IN POSITIVEN)
 RETURN BINARY_DOUBLE;

UTL_NLA.BLAS_ASUM (
 n IN POSITIVEN,
 alpha IN SCALAR_DOUBLE,
 x IN UTL_NLA_ARRAY_FLT)
 RETURN BINARY_FLOAT

Parameters

Table 231-7 BLAS_ASUM Function Parameters

	Parameter	Description
	
n

	
Specifies the number of elements of the vectors x and y. n must be at least zero.

	
x

	
UTL_NLA_ARRAY_FLT/DBL of dimension at least

(1 + (n - 1)*abs(incx))

	
incx

	
Specifies the increment for the elements of x. incx must not be zero.

BLAS_AXPY Procedures

This procedure copies alpha*X + Y into vector Y.

	
See Also:

BLAS Level 1 (Vector-Vector Operations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.BLAS_AXPY (
 n IN POSITIVEN,
 alpha IN SCALAR_DOUBLE,
 x IN UTL_NLA_ARRAY_DBL,
 incx IN POSITIVEN,
 y IN OUT UTL_NLA_ARRAY_DBL,
 incy IN POSITIVEN);

UTL_NLA.BLAS_AXPY (
 n IN POSITIVEN,
 alpha IN SCALAR_DOUBLE,
 x IN UTL_NLA_ARRAY_FLT,
 incx IN POSITIVEN,
 y IN OUT UTL_NLA_ARRAY_FLT,
 incy IN POSITIVEN);

Parameters

Table 231-8 BLAS_AXPY Procedure Parameters

	Parameter	Description
	
n

	
Specifies the number of elements of the vectors x and y. n must be at least zero.

	
alpha

	
Specifies the scalar alpha.

	
x

	
UTL_NLA_ARRAY_FLT/DBL of dimension at least

(1 + (n - 1)*abs(incx))

	
incx

	
Specifies the increment for the elements of x. incx must not be zero.

	
y

	
UTL_NLA_ARRAY_FLT/DBL of DIMENSION at least

(1 + (n - 1)*abs(incy))

	
incy

	
Specifies the increment for the elements of y. incy must not be zero.

BLAS_COPY Procedures

This procedure copies the contents of vector X to vector Y.

	
See Also:

BLAS Level 1 (Vector-Vector Operations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.BLAS_COPY (
 n IN POSITIVEN,
 x IN UTL_NLA_ARRAY_DBL,
 incx IN POSITIVEN,
 y IN OUT UTL_NLA_ARRAY_DBL,
 incy IN POSITIVEN);

UTL_NLA.BLAS_COPY (
 n IN POSITIVEN,
 x IN UTL_NLA_ARRAY_FLT,
 incx IN POSITIVEN,
 y IN OUT UTL_NLA_ARRAY_FLT,
 incy IN POSITIVEN);

Parameters

Table 231-9 BLAS_COPY Procedure Parameters

	Parameter	Description
	
n

	
Specifies the number of elements of the vectors x and y. n must be at least zero.

	
x

	
UTL_NLA_ARRAY_FLT/DBL of dimension at least

(1 + (n - 1)*abs(incx))

	
incx

	
Specifies the increment for the elements of x. incx must not be zero.

	
y

	
UTL_NLA_ARRAY_FLT/DBL of dimension at least

(1 + (n - 1)*abs(incy))

	
incy

	
Specifies the increment for the elements of y. incy must not be zero.

BLAS_DOT Functions

This function returns the dot (scalar) product of two vectors X and Y.

	
See Also:

BLAS Level 1 (Vector-Vector Operations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.BLAS_DOT (
 n IN POSITIVEN,
 x IN UTL_NLA_ARRAY_DBL,
 incx IN POSITIVEN,
 y IN UTL_NLA_ARRAY_DBL,
 incy IN POSITIVEN)
 RETURN BINARY_DOUBLE;

UTL_NLA.BLAS_DOT (
 n IN POSITIVEN,
 x IN UTL_NLA_ARRAY_FLT,
 incx IN POSITIVEN,
 y IN UTL_NLA_ARRAY_FLT,
 incy IN POSITIVEN)
 RETURN BINARY_FLOAT;

Parameters

Table 231-10 BLAS_DOT Function Parameters

	Parameter	Description
	
n

	
Specifies the number of elements of the vectors x and y. n must be at least zero.

	
x

	
UTL_NLA_ARRAY_FLT/DBL of dimension at least

 (1 + (n - 1)*abs(incx))

	
incx

	
Specifies the increment for the elements of x. incx must not be zero.

	
y

	
UTL_NLA_ARRAY_FLT/DBL of dimension at least

(1 + (n - 1)*abs(incy))

	
incy

	
Specifies the increment for the elements of y. incy must not be zero.

BLAS_GBMV Procedures

This procedure performs one of the matrix-vector operations

y := alpha*A*x + beta*y

or

y := alpha*A'*x + beta*y

where alpha and beta are scalars, x and y are vectors and A is an m by n band matrix, with kl sub-diagonals and ku super-diagonals.

	
See Also:

BLAS Level 2 (Matrix-Vector Operations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.BLAS_GEMV (
 trans IN flag,
 m IN POSITIVEN, n IN POSITIVEN,
 kl IN NATURALN,
 ku IN NATURALN,
 alpha IN SCALAR_DOUBLE,
 a IN UTL_NLA_ARRAY_DBL,
 lda IN POSITIVEN,
 x IN UTL_NLA_ARRAY_DBL,
 incx IN POSITIVEN,
 beta IN SCALAR_DOUBLE,
 y IN OUT UTL_NLA_ARRAY_DBL,
 incy IN POSITIVEN,
 pack IN flag DEFAULT 'C');

UTL_NLA.BLAS_GEMV (
 trans IN flag,
 m IN POSITIVEN,
 n IN POSITIVEN,
 kl IN NATURALN,
 ku IN NATURALN,
 alpha IN SCALAR_FLOAT,
 a IN UTL_NLA_ARRAY_FLT,
 lda IN POSITIVEN,
 x IN UTL_NLA_ARRAY_FLT,
 incx IN POSITIVEN,
 beta IN SCALAR_FLOAT,
 y IN OUT UTL_NLA_ARRAY_FLT,
 incy IN POSITIVEN,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-11 BLAS_GBMV Procedure Parameters

	Parameter	Description
	
trans

	
Specifies the operation to be performed:

	
trans = 'N' or 'n'y := alpha*A*x + beta*y

	
trans = 'T' or 't'y := alpha*A'*x + beta*y

	
trans = 'C' or 'c'y := alpha*A'*x + beta*y

	
m

	
Specifies the number of rows of the matrix A. m must be at least zero.

	
n

	
Specifies the number of columns of the matrix A. n must be at least zero.

	
kl

	
Specifies the number of sub-diagonals of the matrix A. kl must satisfy 0. le. kl.

	
ku

	
Specifies the number of super-diagonals of the matrix A. ku must satisfy 0 .le. ku.

	
alpha

	
SCALAR_FLOAT/DOUBLE. Specifies the scalar alpha.

	
a

	
UTL_NLA_ARRAY_FLT/DBL of DIMENSION (lda,n).

Before entry, the leading (kl + ku + 1) by n part of the array A must contain the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row (ku+1) of the array, the first super-diagonal starting at position 2 in row ku, the first sub-diagonal starting at position 1 in row(ku+2), and so on.

Elements in the array A that do not correspond to elements in the band matrix (such as the top left ku by ku triangle) are not referenced.

	
lda

	
Specifies the first dimension of a as declared in the calling (sub) program. lda must be at least (kl+ku+1).

	
x

	
UTL_NLA_ARRAY_FLT/DBL of dimension at least

(1 + (n - 1)*abs(incx))

when trans = ''N' or 'n' and at least

(1 + (m - 1)*abs(incx))

otherwise. Before entry, the incremented array X must contain the vector x.

	
incx

	
Specifies the increment for the elements of x. Must not be zero.

	
beta

	
SCALAR_FLOAT/DOUBLE. Specifies the scalar beta. When beta is supplied as zero then y need not be set on input.

	
y

	
UTL_NLA_ARRAY_FLT/DBL of dimension at least

(1 + (m - 1)*abs(incy))

when trans = 'N' or 'n' and at least

(1+(n-1)*abs(incy))

otherwise. Before entry with beta nonzero, the incremented array Y must contain the vector y. On exit, Y is overwritten by the updated vector y.

	
incy

	
Specifies the increment for the elements of y. Must not be zero.

	
pack

	
(Optional) Flags the packing of the matrices:

	
'C': column-major (default)

	
'R': row-major

BLAS_GEMM Procedures

This procedure performs one of the matrix-matrix operations

C := alpha*op(A)*op(B) + beta*C

where op(X) is one of

op(X) = X

or

op(X) = X'

where alpha and beta are scalars, and A, B and C are matrices, with op(A) an m by k matrix, op(B) a k by n matrix and C an m by n matrix.

	
See Also:

BLAS Level 3 (Matrix-Matrix Operations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.BLAS_GEMM (
 transa IN flag,
 transb IN flag,
 m IN POSITIVEN,
 n IN POSITIVEN,
 k IN POSITIVEN,
 alpha IN SCALAR_DOUBLE,
 a IN UTL_NLA_ARRAY_DBL,
 lda IN POSITIVEN,
 b IN UTL_NLA_ARRAY_DBL,
 ldb IN POSITIVEN,
 beta IN SCALAR_DOUBLE,
 c IN OUT UTL_NLA_ARRAY_DBL,
 ldc IN POSITIVEN,
 pack IN flag DEFAULT 'C');

UTL_NLA.BLAS_GEMM (
 transa IN flag,
 transb IN flag,
 m IN POSITIVEN,
 n IN POSITIVEN,
 k IN POSITIVEN,
 alpha IN SCALAR_FLOAT,
 a IN UTL_NLA_ARRAY_FLT,
 lda IN POSITIVEN,
 b IN UTL_NLA_ARRAY_FLT,
 ldb IN POSITIVEN,
 beta IN SCALAR_FLOAT,
 c IN OUT UTL_NLA_ARRAY_FLT,
 ldc IN POSITIVEN,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-12 BLAS_GEMM Procedure Parameters

	Parameter	Description
	
transa

	
Specifies the form of op(A) to be used in the matrix multiplication as follows:

	
transa = 'N' or 'n' : op(A) = 'A'

	
transa = 'T' or 't' : op(A) = 'A'

	
transa = 'C' or 'c' : op(A) = 'A'

	
transb

	
Specifies the form of op(B) to be used in the matrix multiplication as follows:

	
transb = 'N' or 'n' : op(B) = B

	
transb ='T' or 't' : op(B) = B'

	
transb = 'C' or 'c': op(B) = B'

	
m

	
Specifies the number of rows of the matrix op(A) and of the matrix C. m must be at least zero.

	
n

	
Specifies the number of columns of the matrix op(B) and of the matrix C. n must be at least zero.

	
k

	
Specifies the rows of the matrix op(A) and the number of columns of the matrix op(B). k must be at least zero.

	
alpha

	
SCALAR_FLOAT/DOUBLE. Specifies the scalar alpha.

	
a

	
UTL_NLA_ARRAY_FLT/DBL of DIMENSION (lda, ka) where ka is k when transa = 'N' or 'n', and is m otherwise. Before entry with transa = 'N' or 'n', the leading m by k part of the array A must contain the matrix A, otherwise the leading k by m part of the array A must contain the matrix A.

	
lda

	
Specifies the first dimension of a as declared in the calling (sub) program. When transa = 'N' or 'n', lda must be at least max (1,k).

	
b

	
UTL_NLA_ARRAY_FLT/DBL of DIMENSION (lda, kb) where kb is n when transb = ''N' or 'n', and is k otherwise. Before entry with transb = 'N' or 'n', the leading k by n part of the array b must contain the matrix B, otherwise the leading n by k part of the arrayb must contain the matrix B.

	
ldb

	
Specifies the first dimension of b as declared in the calling (sub) program. When transb = 'N' or 'n', ldb must be at least max (1, n).

	
beta

	
SCALAR_FLOAT/DOUBLE. Specifies the scalar beta. When beta is supplied as zero then c need not be set on input.

	
c

	
UTL_NLA_ARRAY_FLT/DBL of DIMENSION (ldc, n). Before entry, the leading m by n part of the array C must contain the matrix C, except when beta is zero, in which case C need not be set on entry. On exit, the arrayC is overwritten by the m by n matrix (alpha*op(A)*op(B) + beta*C).

	
ldc

	
Specifies the first dimension of C as declared in the calling (sub) program. ldc must be at least max(1, m).

	
pack

	
(Optional) Flags the packing of the matrices:

	
'C': column-major (default)

	
'R': row-major

BLAS_GEMV Procedures

This procedure performs one of the matrix-vector operations

y := alpha*A*x + beta*y

or

y := alpha*A'*x + beta*y

where alpha and beta are scalars, x and y are vectors and A is an m by n matrix.

	
See Also:

BLAS Level 2 (Matrix-Vector Operations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.BLAS_GEMV (
 trans IN flag,
 m IN POSITIVEN,
 n IN POSITIVEN,
 alpha IN SCALAR_DOUBLE,
 a IN UTL_NLA_ARRAY_DBL,
 lda IN POSITIVEN,
 x IN UTL_NLA_ARRAY_DBL,
 incx IN POSITIVEN,
 beta IN SCALAR_DOUBLE,
 y IN OUT UTL_NLA_ARRAY_DBL,
 incy IN POSITIVEN,
 pack IN flag DEFAULT 'C');

UTL_NLA.BLAS_GEMV (
 trans IN flag,
 m IN POSITIVEN,
 n IN POSITIVEN,
 alpha IN SCALAR_FLOAT,
 a IN UTL_NLA_ARRAY_FLT,
 lda IN POSITIVEN,
 x IN UTL_NLA_ARRAY_FLT,
 incx IN POSITIVEN,
 beta IN SCALAR_FLOAT,
 y IN OUT UTL_NLA_ARRAY_FLT,
 incy IN POSITIVEN,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-13 BLAS_GEMV Procedure Parameters

	Parameter	Description
	
trans

	
Specifies the operation to be performed:

	
trans = 'N' or 'n',y := alpha*A*x + beta*y

	
trans = 'T' or 't'y := alpha*A'*x + beta*y

	
trans = 'C' or 'c'y := alpha*A'*x + beta*y

	
m

	
Specifies the number of rows of the matrix A. m must be at least zero.

	
n

	
Specifies the number of columns of the matrix A. n must be at least zero.

	
alpha

	
SCALAR_FLOAT/DOUBLE. Specifies the scalar alpha.

	
a

	
UTL_NLA_ARRAY_FLT/DBL of DIMENSION (lda, n). Before entry, the leading m by n part of the array a must contain the matrix of coefficients.

	
lda

	
Specifies the first dimension of a as declared in the calling (sub) program. lda must be at least max(1, m).

	
x

	
UTL_NLA_ARRAY_FLT/DBL of dimension at least

(1 + (n - 1)*abs(incx))

when trans = ''N' or 'n' and at least

(1+(m-1)*abs(incx))

otherwise. Before entry, the incremented array X must contain the vector x.

	
incx

	
Specifies the increment for the elements of x. Must not be zero.

	
beta

	
SCALAR_FLOAT/DOUBLE. Specifies the scalar beta. When beta is supplied as zero then y need not be set on input.

	
y

	
UTL_NLA_ARRAY_FLT/DBL of dimension at least

(1 + (m - 1)*abs(incy))

when trans = 'N' or 'n' and at least

(1 + (n - 1)*abs(incy))

otherwise. Before entry with beta nonzero, the incremented array Y must contain the vector y. On exit, Y is overwritten by the updated vector y.

	
incy

	
Specifies the increment for the elements of y. Must not be zero.

	
pack

	
(Optional) Flags the packing of the matrices:

	
'C': column-major (default)

	
'R': row-major

BLAS_GER Procedures

This procedure performs the rank 1 operation

A := alpha*x*y' + A

where alpha is a scalar, x is an m element vector, y is an n element vector and A is an m by n matrix.

	
See Also:

BLAS Level 2 (Matrix-Vector Operations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.BLAS_GER (
 m IN POSITIVEN,
 n IN POSITIVEN,
 alpha IN SCALAR_DBL,
 x IN OUT UTL_NLA_ARRAY_DBL,
 incx IN POSITIVEN,
 y IN UTL_NLA_ARRAY_DBL,
 incy IN POSITIVEN,
 a IN OUT UTL_NLA_ARRAY_DBL,
 lda IN POSITIVEN,
 pack IN flag DEFAULT 'C');

UTL_NLA.BLAS_GER (
 m IN POSITIVEN,
 n IN POSITIVEN,
 alpha IN SCALAR_FLT,
 x IN OUT UTL_NLA_ARRAY_FLT,
 incx IN POSITIVEN,
 y IN UTL_NLA_ARRAY_FLT,
 incy IN POSITIVEN,
 a IN OUT UTL_NLA_ARRAY_FLT,
 lda IN POSITIVEN,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-14 BLAS_GER Procedure Parameters

	Parameter	Description
	
m

	
Specifies the number of rows of the matrix A. m must be at least zero.

	
n

	
Specifies the number of columns of the matrix A. n must be at least zero.

	
alpha

	
Specifies the scalar alpha.

	
x

	
UTL_NLA_ARRAY_FLT/DBL of dimension at least

(1 + (m - 1)*abs(incx))

Before entry, the incremented array X must contain the m element vector x.

	
incx

	
Specifies the increment for the elements of x. incx must not be zero.

	
y

	
UTL_NLA_ARRAY_FLT/DBL of dimension at least

(1 + (n - 1)*abs(incy))

Before entry, the incremented array Y must contain the m element vector y.

	
incy

	
Specifies the increment for the elements of y. incx must not be zero.

	
a

	
UTL_NLA_ARRAY_FLT/DBL of DIMENSION (lda, n).

Before entry, the leading m by n part of the array a must contain the matrix of coefficients. On exit, a is overwritten by the updated matrix.

	
lda

	
Specifies the first dimension of a as declared in the calling (sub) program. lda must be at least

max(1, m)

	
pack

	
(Optional) Flags the packing of the matrices:

	
'C': column-major (default)

	
'R': row-major

BLAS_IAMAX Functions

This function computes the index of first element of a vector that has the largest absolute value.

	
See Also:

BLAS Level 1 (Vector-Vector Operations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.BLAS_IAMAX (
 n IN POSITIVEN,
 x IN UTL_NLA_ARRAY_DBL,
 incx IN POSITIVEN,
 RETURN POSITIVEN;

UTL_NLA.BLAS_IAMAX (
 n IN POSITIVEN,
 x IN UTL_NLA_ARRAY_FLT,
 incx IN POSITIVEN,
 RETURN POSITIVEN;

Parameters

Table 231-15 BLAS_IAMAX Function Parameters

	Parameter	Description
	
n

	
Specifies the number of elements of the vectors x and y. n must be at least zero.

	
x

	
UTL_NLA_ARRAY_FLT/DBL of DIMENSION at least

(1 + (n - 1)*abs(incx))

	
incx

	
Specifies the increment for the elements of x. incx must not be zero.

BLAS_NRM2 Functions

This function computes the vector 2-norm (Euclidean norm).

	
See Also:

BLAS Level 1 (Vector-Vector Operations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.BLAS_NRM2 (
 n IN POSITIVEN,
 x IN UTL_NLA_ARRAY_DBL,
 incx IN POSITIVEN)
 RETURN BINARY_DOUBLE;

UTL_NLA.BLAS_NRM2 (
 n IN POSITIVEN,
 x IN UTL_NLA_ARRAY_FLT,
 incx IN POSITIVEN)
 RETURN BINARY_FLOAT;

Parameters

Table 231-16 BLAS_NRM2 Function Parameters

	Parameter	Description
	
n

	
Specifies the number of elements of the vectors x and y. n must be at least zero.

	
x

	
UTL_NLA_ARRAY_FLT/DBL of dimension at least

(1 + (n - 1)*abs(incx))

	
incx

	
Specifies the increment for the elements of x. incx must not be zero.

BLAS_ROT Procedures

This procedure returns the plane rotation of points.

	
See Also:

BLAS Level 1 (Vector-Vector Operations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.BLAS_ROT (
 n IN POSITIVEN,
 x IN OUT UTL_NLA_ARRAY_DBL,
 incx IN POSITIVEN,
 y IN OUT UTL_NLA_ARRAY_DBL,
 incy IN POSITIVEN,
 c IN SCALAR_DOUBLE,
 s IN SCALAR_DOUBLE);

UTL_NLA.BLAS_ROT (
 n IN POSITIVEN,
 x IN OUT UTL_NLA_ARRAY_FLT,
 incx IN POSITIVEN,
 y IN OUT UTL_NLA_ARRAY_FLT,
 incy IN POSITIVEN,
 c IN SCALAR_DOUBLE,
 s IN SCALAR_DOUBLE);

Parameters

Table 231-17 BLAS_ROT Procedure Parameters

	Parameter	Description
	
n

	
Specifies the number of elements of the vectors x and y. n must be at least zero.

	
x

	
UTL_NLA_ARRAY_FLT/DBL of dimension at least

(1+(n-1)* abs(incx))

	
incx

	
Specifies the increment for the elements of x. incx must not be zero.

	
y

	
UTL_NLA_ARRAY_FLT/DBL of DIMENSION at least

(1+(n-1)*abs(incy))

	
incy

	
Specifies the increment for the elements of y. incy must not be zero.

	
c

	
SCALAR_FLOAT/DOUBLE.Specifies the scalar C.

	
s

	
SCALAR_FLOAT/DOUBLE.Specifies the scalar S.

BLAS_ROTG Procedures

This procedure returns the Givens rotation of points.

	
See Also:

BLAS Level 1 (Vector-Vector Operations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.BLAS_ROTG (
 a IN OUT SCALAR_DOUBLE,
 b IN OUT SCALAR_DOUBLE,
 c IN OUT SCALAR_DOUBLE,
 s IN OUT SCALAR_DOUBLE);

UTL_NLA.BLAS_ROTG (
 a IN OUT SCALAR_FLOAT,
 b IN OUT SCALAR_FLOAT,
 c IN OUT SCALAR_FLOAT,
 s IN OUT SCALAR_FLOAT);

Parameters

Table 231-18 BLAS_ROT G Procedure Parameters

	Parameter	Description
	
a

	
SCALAR_FLOAT/DOUBLE. Specifies the scalar A.

	
b

	
SCALAR_FLOAT/DOUBLE. Specifies the scalar B.

	
c

	
SCALAR_FLOAT/DOUBLE. Specifies the scalar C.

	
s

	
SCALAR_FLOAT/DOUBLE. Specifies the scalar S.

BLAS_SCAL Procedures

This procedure scales a vector by a constant.

	
See Also:

BLAS Level 1 (Vector-Vector Operations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.BLAS_SCAL (
 n IN POSITIVEN,
 alpha IN SCALAR_DOUBLE,
 x IN OUT UTL_NLA_ARRAY_DBL,
 incx IN POSITIVEN);

UTL_NLA.BLAS_SCAL (
 n IN POSITIVEN,
 alpha IN SCALAR_FLOAT,
 x IN OUT UTL_NLA_ARRAY_FLT,
 incx IN POSITIVEN);

Parameters

Table 231-19 BLAS_SCAL Procedure Parameters

	Parameter	Description
	
n

	
Specifies the number of elements of the vectors x and y. n must be at least zero.

	
alpha

	
Specifies the scalar alpha.

	
x

	
UTL_NLA_ARRAY_FLT/DBL of dimension at least

(1+(n-1)*abs(incx))

	
incx

	
Specifies the increment for the elements of x. incx must not be zero.

BLAS_SPMV Procedures

This procedure performs the matrix-vector operation

y := alpha*A*x + beta*y

where alpha and beta are scalars, x and y are n element vectors and A is an n by n symmetric matrix, supplied in packed form.

	
See Also:

BLAS Level 2 (Matrix-Vector Operations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.BLAS_SPMV (
 uplo IN flag,
 n IN POSITIVEN,
 alpha IN SCALAR_DOUBLE,
 ap IN UTL_NLA_ARRAY_DBL,
 x IN UTL_NLA_ARRAY_DBL,
 incx IN POSITIVEN,
 beta IN SCALAR_DOUBLE,
 y IN OUT UTL_NLA_ARRAY_DBL,
 incy IN POSITIVEN,
 pack IN flag DEFAULT 'C');

UTL_NLA.BLAS_SPMV (
 uplo IN flag,
 n IN POSITIVEN,
 alpha IN SCALAR_FLOAT,
 ap IN UTL_NLA_ARRAY_FLT,
 x IN UTL_NLA_ARRAY_FLT,
 incx IN POSITIVEN,
 beta IN SCALAR_FLOAT,
 y IN OUT UTL_NLA_ARRAY_FLT,
 incy IN POSITIVEN,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-20 BLAS_SPMV Procedure Parameters

	Parameter	Description
	
uplo

	
Specifies the upper or lower triangular part of the matrix A is supplied in the packed array AP:

	
uplo = 'U' or 'u'. The upper triangular part of A is supplied in AP.

	
uplo = 'L' or 'l'. The lower triangular part of A is supplied in AP.

	
n

	
Specifies the order of the matrix A. n must be at least zero.

	
alpha

	
SCALAR_FLOAT/DOUBLE. Specifies the scalar alpha.

	
ap

	
UTL_NLA_ARRAY_FLT/DBL of dimension at least

((n*(n+1))/2)

Before entry with uplo = 'U' or 'u', the array ap must contain the upper triangular part of the symmetric matrix packed sequentially, column by column, so that ap(1) contains a(1,1), ap(2) and ap(3) contain a(1,2) and a(2,2) respectively, and so on.

Before entry with uplo = 'L' or 'l', the array ap must contain the lower triangular part of the symmetric matrix packed sequentially, column by column, so that ap(1) contains, ap(2) and ap(3) contain a(2,1) and a(3,1) respectively, and so on.

	
x

	
UTL_NLA_ARRAY_FLT/DBL of dimension at least

(1+(n-1)*abs(incx))

Before entry, the incremented array X must contain the n element vector x.

	
incx

	
Specifies the increment for the elements of x. Must not be zero.

	
beta

	
SCALAR_FLOAT/DOUBLE. Specifies the scalar beta. When beta is supplied as zero then Y need not be set on input.

	
y

	
UTL_NLA_ARRAY_FLT/DBL of dimension at leasT

(1+(n-1)*abs(incy))

Before entry, the incremented array Y must contain the n element vector y. On exit, Y is overwritten by the updated vector y.

	
incy

	
Specifies the increment for the elements of y. Must not be zero.

	
pack

	
(Optional) Flags the packing of the matrices:

	
'C': column-major (default)

	
'R': row-major

BLAS_SPR Procedures

This procedure performs the rank 1 operation

A := alpha*x*x' + A

where alpha is a real scalar, x is an n element vector, and A is an n by n symmetric matrix, supplied in packed form.

	
See Also:

BLAS Level 2 (Matrix-Vector Operations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.BLAS_SPR (
 uplo IN flag,
 n IN POSITIVEN,
 alpha IN SCALAR_DBL,
 x IN OUT UTL_NLA_ARRAY_DBL,
 incx IN POSITIVEN,
 ap IN OUT UTL_NLA_ARRAY_DBL,
 pack IN flag DEFAULT 'C');

UTL_NLA.BLAS_SPR (
 uplo IN flag,
 n IN POSITIVEN,
 alpha IN SCALAR_FLT,
 x IN OUT UTL_NLA_ARRAY_FLT,
 incx IN POSITIVEN,
 ap IN OUT UTL_NLA_ARRAY_FLT,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-21 BLAS_SPR Procedure Parameters

	Parameter	Description
	
uplo

	
Specifies whether the upper or lower triangular part of the matrix A is supplied in the packed array ap:

	
uplo = 'U' or 'u': The upper triangular part of A is supplied in ap.

	
uplo = 'L' or 'l' : The lower triangular part of A is supplied in ap.

	
n

	
Specifies the order of the matrix A. n must be at least zero.

	
alpha

	
Specifies the scalar alpha.

	
x

	
UTL_NLA_ARRAY_FLT/DBL of dimension at least

(1+(n-1)*abs(incx))

Before entry, the incremented array X must contain the m element vector x.

	
incx

	
Specifies the increment for the elements of x. incx must not be zero.

	
ap

	
UTL_NLA_ARRAY_FLT/DBL of dimension at least

((n*(n +1))/2)

Before entry with uplo = 'U' or 'u', the array ap must contain the upper triangular part of the symmetric matrix packed sequentially, column by column, so that ap(1) contains a(1,1), ap(2) and ap(3) contain a(1,2) and a(2,2) respectively, and so on. On exit, the array ap is overwritten by the upper triangular part of the updated matrix.

Before entry with uplo = 'L' or 'l', the array ap must contain the lower triangular part of the symmetric matrix packed sequentially, column by column, so that ap(1) contains a(1,1), ap(2) and ap(3) contain a(2,1) and a(3,1) respectively, and so on. On exit, the array ap is overwritten by the lower triangular part of the updated matrix

	
pack

	
(Optional) Flags the packing of the matrices:

	
'C': column-major (default)

	
'R': row-major

BLAS_SPR2 Procedures

This procedure performs the rank 2 operation

A := alpha*x*y' + alpha*y*x' +A

where alpha is a scalar, x and y are n element vectors, and A is an n by n symmetric matrix, supplied in packed form.

	
See Also:

BLAS Level 2 (Matrix-Vector Operations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.BLAS_SPR2 (
 uplo IN flag,
 n IN POSITIVEN,
 alpha IN SCALAR_DBL,
 x IN UTL_NLA_ARRAY_DBL,
 incx IN POSITIVEN,
 y IN UTL_NLA_ARRAY_DBL,
 incy IN POSITIVEN,
 a IN OUT UTL_NLA_ARRAY_DBL,
 lda IN POSITIVEN,
 pack IN flag DEFAULT 'C');

UTL_NLA.BLAS_SPR2 (
 uplo IN flag,
 n IN POSITIVEN,
 alpha IN SCALAR_FLT,
 x IN UTL_NLA_ARRAY_FLT,
 incx IN POSITIVEN,
 y IN UTL_NLA_ARRAY_FLT,
 incy IN POSITIVEN,
 a IN OUT UTL_NLA_ARRAY_FLT,
 lda IN POSITIVEN,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-22 BLAS_SPR2 Procedure Parameters

	Parameter	Description
	
uplo

	
Specifies whether the upper or lower triangular part of the matrix A is supplied in the packed array ap :

	
uplo = 'U' or 'u' : The upper triangular part of A is supplied in ap.

	
uplo = 'L' or 'l' : The lower triangular part of A is supplied in ap.

	
n

	
Specifies the order of the matrix A. n must be at least zero.

	
alpha

	
Specifies the scalar alpha.

	
x

	
UTL_NLA_ARRAY_FLT/DBL of dimension at least

(1+(n-1)*abs(incx))

Before entry, the incremented array X must contain the m element vector x.

	
incx

	
Specifies the increment for the elements of x. incx must not be zero.

	
y

	
UTL_NLA_ARRAY_FLT/DBL of dimension at least

(1+(n-1)*abs(incy))

Before entry, the incremented array X must contain the m element vector y.

	
incy

	
Specifies the increment for the elements of y. incy must not be zero.

	
ap

	
UTL_NLA_ARRAY_FLT/DBL of dimension at least

((n*(n+1))/2)

Before entry with uplo = 'U' or 'u', the array ap must contain the upper triangular part of the symmetric matrix packed sequentially, column by column, so that ap(1) contains ap(1) contains a(1,1), ap(2) and ap(3) contain a(1,2) and a(2,2) respectively, and so on. On exit, the array ap is overwritten by the upper triangular part of the updated matrix.

Before entry with uplo = 'L' or 'l', the array ap must contain the lower triangular part of the symmetric matrix packed sequentially, column by column, so that ap(1) contains a(1,1), ap(2) and ap(3) contain a(2,1) and a(3,1) respectively, and so on. On exit, the array ap is overwritten by the lower triangular part of the updated matrix

	
lda

	
Specifies the first dimension of a as declared in the calling (sub) program. lda must be at least (k + 1).

	
pack

	
(Optional) Flags the packing of the matrices:

	
'C': column-major (default)

	
'R': row-major

BLAS_SBMV Procedures

This procedure performs the matrix-vector operation

y := alpha*A*x + beta*y

where alpha and beta are scalars, x and y are n element vectors and A is an n by n symmetric band matrix, with k super-diagonals.

	
See Also:

BLAS Level 2 (Matrix-Vector Operations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.BLAS_SBMV (
 uplo IN flag,
 n IN POSITIVEN,
 k IN NATURALN,
 alpha IN SCALAR_DOUBLE,
 a IN UTL_NLA_ARRAY_DBL,
 lda IN POSITIVEN,
 x IN UTL_NLA_ARRAY_DBL,
 incx IN POSITIVEN,
 beta IN SCALAR_DOUBLE,
 y IN OUT UTL_NLA_ARRAY_DBL,
 incy IN POSITIVEN,
 pack IN flag DEFAULT 'C');

UTL_NLA.BLAS_SBMV (
 uplo IN flag,
 n IN POSITIVEN,
 k IN NATURALN,
 alpha IN SCALAR_FLOAT,
 a IN UTL_NLA_ARRAY_FLT,
 lda IN POSITIVEN,
 x IN UTL_NLA_ARRAY_FLT,
 incx IN POSITIVEN,
 beta IN SCALAR_FLOAT,
 y IN OUT UTL_NLA_ARRAY_FLT,
 incy IN POSITIVEN,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-23 BLAS_SBMV Procedure Parameters

	Parameter	Description
	
uplo

	
Specifies whether the upper or lower triangular part of the band matrix A is being supplied:

	
uplo = 'U' or 'u'. The upper triangular part of A is supplied.

	
uplo = 'L' or 'l'. The lower triangular part of A is supplied.

	
n

	
Specifies the order of the matrix A. n must be at least zero.

	
k

	
Specifies the number of super-diagonals of the matrix A. k must satisfy 0 .le. k.

	
alpha

	
SCALAR_FLOAT/DOUBLE. Specifies the scalar alpha.

	
a

	
UTL_NLA_ARRAY_FLT/DBL of DIMENSION (lda,n).

Before entry with uplo = 'U' or 'u', the leading (k+1) by n part of the array A must contain the upper triangular band part of the symmetric matrix, supplied column by column, with the leading diagonal of the matrix in row (k+1) of the array, the first super-diagonal starting at position 2 in rowk, and so on. The top left k by k triangle of the array A is not referenced.

Before entry with uplo = 'L' or 'l', the leading (k+1) by n part of the array A must contain the lower triangular band part of the symmetric matrix, supplied column by column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2, and so on. The bottom right k by k triangle of the array A is not referenced.

Unchanged on exit

	
lda

	
Specifies the first dimension of a as declared in the calling (sub) program. lda must be at least (k + 1).

	
x

	
UTL_NLA_ARRAY_FLT/DBL of dimension at least

(1+(n-1)*abs(incx))

Before entry, the incremented array X must contain the n element vector x.

	
incx

	
Specifies the increment for the elements of x. Must not be zero.

	
beta

	
SCALAR_FLOAT/DOUBLE. Specifies the scalar beta.

	
y

	
UTL_NLA_ARRAY_FLT/DBL of dimension at least

(1+(n-1)*abs(incy))

Before entry, the incremented array Y must contain the n element vector y. On exit, Y is overwritten by the updated vector y.

	
incy

	
Specifies the increment for the elements of y. Must not be zero.

	
pack

	
(Optional) Flags the packing of the matrices:

	
'C': column-major (default)

	
'R': row-major

BLAS_SWAP Procedures

This procedure swaps the contents of two vectors each of size n.

Syntax

UTL_NLA.BLAS_SWAP (
 n IN POSITIVEN,
 x IN OUT UTL_NLA_ARRAY_DBL,
 incx IN POSITIVEN,
 y IN OUT UTL_NLA_ARRAY_DBL,
 incy IN POSITIVEN);

UTL_NLA.BLAS_SWAP (
 n IN POSITIVEN,
 x IN OUT UTL_NLA_ARRAY_FLT,
 incx IN POSITIVEN,
 y IN OUT UTL_NLA_ARRAY_FLT,
 incy IN POSITIVEN);

Parameters

Table 231-24 BLAS_SWAP Procedure Parameters

	Parameter	Description
	
n

	
Specifies the number of elements of the vectors x and y. n must be at least zero.

	
x

	
UTL_NLA_ARRAY_FLT/DBL of dimension at least

(1+(n-1)*abs(incx))

	
incx

	
Specifies the increment for the elements of x. incx must not be zero.

	
y

	
UTL_NLA_ARRAY_FLT/DBL of DIMENSION at least

(1+(n-1)*abs(incy))

	
incy

	
Specifies the increment for the elements of y. incy must not be zero.

BLAS_SYMM Procedures

This procedure performs one of the matrix-matrix operations

C := alpha*A*B + beta*C

or

C := alpha*B*A + beta*C

where alpha and beta are scalars, A is a symmetric matrix, and B and C are m by n matrices.

	
See Also:

BLAS Level 3 (Matrix-Matrix Operations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.BLAS_SYMM (
 side IN flag,
 uplo IN flag,
 m IN POSITIVEN,
 n IN POSITIVEN,
 alpha IN SCALAR_DOUBLE,
 a IN UTL_NLA_ARRAY_DBL,
 lda IN POSITIVEN,
 b IN UTL_NLA_ARRAY_DBL,
 ldb IN POSITIVEN,
 beta IN SCALAR_DOUBLE,
 c IN OUT UTL_NLA_ARRAY_DBL,
 ldc IN POSITIVEN,
 pack IN flag DEFAULT 'C');

UTL_NLA.BLAS_SYMM (
 side IN flag,
 uplo IN flag,
 m IN POSITIVEN,
 n IN POSITIVEN,
 alpha IN SCALAR_FLOAT,
 a IN UTL_NLA_ARRAY_FLT,
 lda IN POSITIVEN,
 b IN UTL_NLA_ARRAY_FLT,
 ldb IN POSITIVEN,
 beta IN SCALAR_FLOAT,
 c IN OUT UTL_NLA_ARRAY_FLT,
 ldc IN POSITIVEN,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-25 BLAS_SYMM Procedure Parameters

	Parameter	Description
	
side

	
Specifies whether the symmetric matrix A appears on the left or right in the operation:

	
side = 'L' or 'l' : C := alpha*A*B + beta*C

	
side = 'R' or 'r' : C := alpha*B*A + beta*C

	
uplo

	
Specifies whether the upper or lower triangular part of the array A is to be referenced:

	
uplo = 'U' or 'u' : Only the upper triangular part of the symmetric matrix is to be referenced.

	
uplo = 'L' or 'l' : Only the lower triangular part of the symmetric matrix is to be referenced.

	
m

	
Specifies the number of rows of the matrix C. m must be at least zero.

	
n

	
Specifies the number of columns of the matrix C. n must be at least zero.

	
alpha

	
SCALAR_FLOAT/DOUBLE. Specifies the scalar alpha.

	
a

	
UTL_NLA_ARRAY_FLT/DBL of DIMENSION (lda,ka) where ka is m when side = 'L' or 'l', and is n otherwise.

Before entry with side = 'L' or 'l', the leading m by m part of the array A must contain the symmetric matrix, such that when uplo = 'U' or 'u', the leading m by m upper triangular part of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of A is not referenced, and when uplo = 'L' or 'l', the leading m by m lower triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of A is not referenced.

Before entry with side = 'R' or 'r', the n by n part of the array A must contain the symmetric matrix, such that when uplo = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of A is not referenced, and when uplo = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of A is not referenced.

	
lda

	
Specifies the first dimension of a as declared in the calling (sub) program. When side = 'L' or 'l', lda must be at least max(1,m), otherwise lda must be at least max(1,n).

	
b

	
UTL_NLA_ARRAY_FLT/DBL of DIMENSION (ldb,n).

Before entry, the leading m by n part of the array B must contain the matrix B.

	
ldb

	
Specifies the first dimension of b as declared in the calling (sub) program. ldb must be at least max(1,m).

	
beta

	
SCALAR_FLOAT/DOUBLE. Specifies the scalar beta. When beta is supplied as zero then c need not be set on input.

	
c

	
UTL_NLA_ARRAY_FLT/DBL of DIMENSION (ldc,n). Before entry, the leading m by n part of the array C must contain the matrix C, except when beta is zero, in which case C need not be set on entry. On exit, the array C is overwritten by the m by n updated matrix.

	
ldc

	
Specifies the first dimension of C as declared in the calling (sub) program. ldc must be at least max (1,m).

	
pack

	
(Optional) Flags the packing of the matrices:

	
'C': column-major (default)

	
'R': row-major

BLAS_SYMV Procedures

This procedure performs the matrix-vector operation

y := alpha*A*x + beta*y

where alpha and beta are scalars, x and y are n element vectors and A is an n by n symmetric matrix.

	
See Also:

BLAS Level 2 (Matrix-Vector Operations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.BLAS_SYMV (
 uplo IN flag,
 n IN POSITIVEN,
 alpha IN SCALAR_DOUBLE,
 a IN UTL_NLA_ARRAY_DBL,
 lda IN POSITIVEN,
 x IN UTL_NLA_ARRAY_DBL,
 incx IN POSITIVEN,
 beta IN SCALAR_DOUBLE,
 y IN OUT UTL_NLA_ARRAY_DBL,
 incy IN POSITIVEN,
 pack IN flag DEFAULT 'C');

UTL_NLA.BLAS_SYMV (
 uplo IN flag,
 n IN POSITIVEN,
 alpha IN SCALAR_FLOAT,
 a IN UTL_NLA_ARRAY_FLT,
 lda IN POSITIVEN,
 x IN UTL_NLA_ARRAY_FLT,
 incx IN POSITIVEN,
 beta IN SCALAR_FLOAT,
 y IN OUT UTL_NLA_ARRAY_FLT,
 incy IN POSITIVEN,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-26 BLAS_SYMV Procedure Parameters

	Parameter	Description
	
uplo

	
Specifies whether the upper or lower triangular part of the array A is to be referenced:

	
uplo = 'U'or 'u'. Only the upper triangular part ofA is to be referenced.

	
uplo = 'L' or 'l'. Only the lower triangular part of A is to be referenced.

	
n

	
Specifies the order of the matrix A. n must be at least zero.

	
alpha

	
SCALAR_FLOAT/DOUBLE. Specifies the scalar alpha.

	
a

	
UTL_NLA_ARRAY_FLT/DBL of DIMENSION (lda,n). Before entry with uplo = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of A is not referenced.

Before entry with uplo = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of A is not referenced.

	
lda

	
Specifies the first dimension of a as declared in the calling (sub) program. lda must be at least max(1,n).

	
x

	
UTL_NLA_ARRAY_FLT/DBL of dimension at least

(1+(n-1)*abs(incx))

Before entry, the incremented array X must contain the n element vector x.

	
incx

	
Specifies the increment for the elements of x. Must not be zero.

	
beta

	
SCALAR_FLOAT/DOUBLE. Specifies the scalar beta. When beta is supplied as zero then y need not be set on input.

	
y

	
UTL_NLA_ARRAY_FLT/DBL of dimension at least

(1+(n-1)*abs(incy))

Before entry, the incremented array Y must contain the n element vector y. On exit, Y is overwritten by the updated vector y.

	
incy

	
Specifies the increment for the elements of y. Must not be zero.

	
pack

	
(Optional) Flags the packing of the matrices:

	
'C': column-major (default)

	
'R': row-major

BLAS_SYR Procedures

This procedure performs the rank 1 operation

A := alpha*x*x' + A

where alpha is a real scalar, x is an n element vector, and A is an n by n symmetric matrix.

	
See Also:

BLAS Level 2 (Matrix-Vector Operations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.BLAS_SYR (
 uplo IN flag,
 n IN POSITIVEN,
 alpha IN SCALAR_DBL,
 x IN OUT UTL_NLA_ARRAY_DBL,
 incx IN POSITIVEN,
 a IN OUT UTL_NLA_ARRAY_DBL,
 lda IN POSITIVEN,
 pack IN flag DEFAULT 'C');

UTL_NLA.BLAS_SYR (
 uplo IN flag,
 n IN POSITIVEN,
 alpha IN SCALAR_FLT,
 x IN OUT UTL_NLA_ARRAY_FLT,
 incx IN POSITIVEN,
 a IN OUT UTL_NLA_ARRAY_FLT,
 lda IN POSITIVEN,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-27 BLAS_SYR Procedure Parameters

	Parameter	Description
	
uplo

	
Specifies whether the upper or lower triangular part of the array A is to be referenced:

	
uplo = 'U'or 'u' : Only the upper triangular part of A is to be referenced.

	
uplo = 'L'or 'l' : Only the lower triangular part of A is to be referenced.

	
n

	
Specifies the order of the matrix A. n must be at least zero.

	
alpha

	
Specifies the scalar alpha.

	
x

	
UTL_NLA_ARRAY_FLT/DBL of dimension at least

(1+(n-1)*abs(incx))

Before entry, the incremented array X must contain the m element vector x.

	
incx

	
Specifies the increment for the elements of x. incx must not be zero.

	
a

	
UTL_NLA_ARRAY_FLT/DBL of DIMENSION (lda, n)

Before entry with uplo = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of A is not referenced. On exit, the upper triangular part of the array A is overwritten by the upper triangular part of the updated matrix.

Before entry with uplo = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of A is not referenced. On exit, the lower triangular part of the array A is overwritten by the lower triangular part of the updated matrix.

	
lda

	
Specifies the first dimension of a as declared in the calling (sub) program. lda must be at least

max(1, n)

	
pack

	
(Optional) Flags the packing of the matrices:

	
'C': column-major (default)

	
'R': row-major

BLAS_SYR2 Procedures

This procedure performs the rank 2 operation

A := alpha*x*y' + alpha*y*x' + A

where alpha is a scalar, x and y are n element vectors, and A is an n by n symmetric matrix.

	
See Also:

BLAS Level 2 (Matrix-Vector Operations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.BLAS_SYR2 (
 uplo IN flag,
 n IN POSITIVEN,
 alpha IN SCALAR_DBL,
 x IN UTL_NLA_ARRAY_DBL,
 incx IN POSITIVEN,
 y IN UTL_NLA_ARRAY_DBL,
 incy IN POSITIVEN,
 a IN OUT UTL_NLA_ARRAY_DBL,
 lda IN POSITIVEN,
 pack IN flag DEFAULT 'C');

UTL_NLA.BLAS_SYR2 (
 uplo IN flag,
 n IN POSITIVEN,
 alpha IN SCALAR_FLT,
 x IN UTL_NLA_ARRAY_FLT,
 incx IN POSITIVEN,
 y IN UTL_NLA_ARRAY_FLT,
 incy IN POSITIVEN,
 a IN OUT UTL_NLA_ARRAY_FLT,
 lda IN POSITIVEN,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-28 BLAS_SYR2 Procedure Parameters

	Parameter	Description
	
uplo

	
Specifies whether the upper or lower triangular part of the array A is to be referenced:

	
uplo = 'U' or 'u' : Only the upper triangular part of A is to be referenced.

	
uplo = 'L' or 'l' : Only the lower triangular part of A is to be referenced.

	
n

	
Specifies the order of the matrix A. n must be at least zero.

	
alpha

	
Specifies the scalar alpha.

	
x

	
UTL_NLA_ARRAY_FLT/DBL of dimension at least

(1 + (n - 1)*abs(incx))

Before entry, the incremented array X must contain the m element vector x.

	
incx

	
Specifies the increment for the elements of x. incx must not be zero.

	
y

	
UTL_NLA_ARRAY_FLT/DBL of dimension at least

(1 + (n - 1)*abs(incy))

Before entry, the incremented array Y must contain the m element vector y.

	
incy

	
Specifies the increment for the elements of y. incy must not be zero.

	
a

	
UTL_NLA_ARRAY_FLT/DBL of DIMENSION (lda, n)

With uplo = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of A is not referenced. On exit, the upper triangular part of the array A is overwritten by the upper triangular part of the updated matrix.

With uplo = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of A is not referenced. On exit, the lower triangular part of the array A is overwritten by the lower triangular part of the updated matrix.

	
lda

	
Specifies the first dimension of a as declared in the calling (sub) program. lda must be at least

max(1, n)

	
pack

	
(Optional) Flags the packing of the matrices:

	
'C': column-major (default)

	
'R': row-major

BLAS_SYR2K Procedures

This procedure performs one of the symmetric rank2 k operations

C := alpha*A*B' + alpha*B*A' + beta*C

or

C := alpha*A'*B + alpha*B'*A + beta*C

where alpha and beta are scalars, C is an n by n symmetric matrix and A and B are n by k matrices in the first case and k by n matrices in the second case.

	
See Also:

BLAS Level 3 (Matrix-Matrix Operations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.BLAS_SYR2K (
 uplo IN flag,
 trans IN flag,
 n IN POSITIVEN,
 k IN POSITIVEN,
 alpha IN SCALAR_DOUBLE,
 a IN UTL_NLA_ARRAY_DBL,
 lda IN POSITIVEN,
 b IN UTL_NLA_ARRAY_DBL,
 ldb IN POSITIVEN,
 beta IN SCALAR_DOUBLE,
 c IN OUT UTL_NLA_ARRAY_DBL,
 ldc IN POSITIVEN,
 pack IN flag DEFAULT 'C');

UTL_NLA.BLAS_SYR2K (
 uplo IN flag,
 trans IN flag,
 n IN POSITIVEN,
 k IN POSITIVEN,
 alpha IN SCALAR_FLOAT,
 a IN UTL_NLA_ARRAY_FLT,
 lda IN POSITIVEN,
 b IN OUT UTL_NLA_ARRAY_FLT,
 ldb IN POSITIVEN,
 beta IN SCALAR_FLOAT,
 c IN OUT UTL_NLA_ARRAY_FLT,
 ldc IN POSITIVEN,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-29 BLAS_SYR2K Procedure Parameters

	Parameter	Description
	
uplo

	
Specifies whether the upper or lower triangular part of the array C is to be referenced:

	
uplo = 'U' or 'u' : Only the upper triangular part of C is to be referenced.

	
uplo = 'L' or 'l' : Only the lower triangular part of C is to be referenced.

	
trans

	
Specifies the operations to be performed:

	
trans = 'N' or 'n'C : C := alpha*A*B' + alpha*B*A' + beta*C

	
trans = 'T' or 't'C : C := alpha*A'*B + alpha*B'*A + beta*C

	
trans = 'C' or 'c'C : C := alpha*A'*B + alpha*B'*A + beta*C

	
n

	
Specifies the order of matrix C. n must be at least zero.

	
k

	
On entry with trans = 'N' or 'n', k specifies the number of columns of the matrices A and B. On entry with trans = 'T' or 't' or trans = 'C' or 'c', k specifies the number of rows of the matrices A and B. k must be at least zero.

	
alpha

	
SCALAR_FLOAT/DOUBLE. Specifies the scalar alpha.

	
a

	
UTL_NLA_ARRAY_FLT/DBL of DIMENSION (lda,ka) where kb is k when trans = 'N' or 'n', and is n otherwise.

Before entry with trans = 'N' or 'n', the leading n byk part of the array A must contain the matrix A, otherwise the leading k by n part of the array A must contain the matrix A.

	
lda

	
Specifies the first dimension of a as declared in the calling (sub) program. When trans = 'N' or 'n', lda must be at leastmax(1,n), otherwise lda must be at least max(1,k).

	
b

	
UTL_NLA_ARRAY_FLT/DBL of DIMENSION (lda,kb) where kb is k when trans = 'N' or 'n', and is n otherwise.

Before entry with trans = 'N' or 'n', the leading n byk part of the array B must contain the matrix B, otherwise the leading k by n part of the array B must contain the matrix B.

	
ldb

	
Specifies the first dimension of b as declared in the calling (sub) program. When trans = 'N' or 'n', ldb must be at least max (1,n), otherwise ldb must be at least max (1,k).

	
beta

	
SCALAR_FLOAT/DOUBLE. Specifies the scalar beta.

	
c

	
UTL_NLA_ARRAY_FLT/DBL of DIMENSION (ldc,n).

Before entry with uplo = 'U' or 'u', the leading n by n upper triangular part of the array C must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of C is not referenced. On exit, the upper triangular part of the array C is overwritten by the upper triangular part of the updated matrix.

Before entry with uplo = 'L' or 'l', the leading n by n lower triangular part of the array C must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of C is not referenced. On exit, the lower triangular part of the array C is overwritten by the lower triangular part of the updated matrix.

	
ldc

	
Specifies the first dimension of C as declared in the calling (sub) program. ldc must be at least max(1,n).

	
pack

	
(Optional) Flags the packing of the matrices:

	
'C': column-major (default)

	
'R': row-major

BLAS_SYRK Procedures

This procedure performs one of the symmetric rank k operations

C := alpha*A*A' + beta*C

or

C := alpha*A'*A + beta*C

where alpha and beta are scalars, C is an n by n symmetric matrix andA is an n by k matrix in the first case and a k byn matrix in the second case.

	
See Also:

BLAS Level 3 (Matrix-Matrix Operations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.BLAS_SYRK (
 uplo IN flag,
 trans IN flag,
 n IN POSITIVEN,
 k IN POSITIVEN,
 alpha IN SCALAR_DOUBLE,
 a IN UTL_NLA_ARRAY_DBL,
 lda IN POSITIVEN,
 beta IN SCALAR_DOUBLE,
 c IN OUT UTL_NLA_ARRAY_DBL,
 ldc IN POSITIVEN,
 pack IN flag DEFAULT 'C');

UTL_NLA.BLAS_SYRK (
 uplo IN flag,
 trans IN flag,
 n IN POSITIVEN,
 k IN POSITIVEN,
 alpha IN SCALAR_FLOAT,
 a IN UTL_NLA_ARRAY_FLT,
 lda IN POSITIVEN,
 beta IN SCALAR_FLOAT,
 c IN OUT UTL_NLA_ARRAY_DBL,
 ldc IN POSITIVEN,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-30 BLAS_SYRK Procedure Parameters

	Parameter	Description
	
uplo

	
Specifies whether the upper or lower triangular part of the array C is to be referenced:

	
uplo = 'U' or 'u' : Only the upper triangular part of C is to be referenced.

	
uplo = 'L' or 'l' : Only the lower triangular part of C is to be referenced.

	
trans

	
Specifies the operations to be performed:

	
trans = 'N' or 'n' : C := alpha*A*A' + beta*C

	
trans = 'T' or 't' : C := alpha*A'*A + beta*C

	
trans ='C' or 'c' : C := alpha*A'*A + beta*C

	
n

	
Specifies the order of matrix C. n must be at least zero.

	
k

	
On entry with trans = 'N' or 'n', k specifies the number of columns of the matrix A. On entry with trans = 'T' or 't' or trans = 'C' or 'c', k specifies the number of rows of the matrix A. k must be at least zero.

	
alpha

	
SCALAR_FLOAT/DOUBLE. Specifies the scalar alpha.

	
a

	
UTL_NLA_ARRAY_FLT/DBL of DIMENSION (lda,ka) where ka is k when trans = 'N' or 'n', and is n otherwise.

Before entry with trans = 'N' or 'n', the leading n byk part of the array A must contain the matrix A, otherwise the leading k by n part of the array A must contain the matrix A.

	
lda

	
Specifies the first dimension of a as declared in the calling (sub) program. When trans = 'N' or 'n', lda must be at least max(1,n), otherwiselda must be at least max(1,k).

	
beta

	
SCALAR_FLOAT/DOUBLE. Specifies the scalar beta.

	
c

	
UTL_NLA_ARRAY_FLT/DBL of DIMENSION (ldc,n).

Before entry with uplo = 'U' or 'u', the leading n by n upper triangular part of the array C must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of C is not referenced. On exit, the upper triangular part of the array C is overwritten by the upper triangular part of the updated matrix.

Before entry with uplo = 'L' or 'l', the leading n by n lower triangular part of the array C must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of C is not referenced. On exit, the lower triangular part of the array C is overwritten by the lower triangular part of the updated matrix.

	
ldc

	
Specifies the first dimension of C as declared in the calling (sub) program. ldc must be at least max(1,n).

	
pack

	
(Optional) Flags the packing of the matrices:

	
'C': column-major (default)

	
'R': row-major

BLAS_TBMV Procedures

This procedure performs the matrix-vector operations

x := A*x

or

x := A'*x

where x is an n element vector and A is an n by n unit, or non-unit, upper or lower triangular band matrix, with (k+1) diagonals.

	
See Also:

BLAS Level 2 (Matrix-Vector Operations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.BLAS_TBMV (
 uplo IN flag,
 trans IN flag,
 diag IN flag,
 n IN POSITIVEN,
 k IN NATURALN,
 a IN UTL_NLA_ARRAY_DBL,
 lda IN POSITIVEN,
 x IN OUT UTL_NLA_ARRAY_DBL,
 incx IN POSITIVEN,
 pack IN flag DEFAULT 'C');

UTL_NLA.BLAS_TBMV (
 uplo IN flag,
 trans IN flag,
 diag IN flag,
 n IN POSITIVEN,
 k IN NATURALN,
 a IN UTL_NLA_ARRAY_FLT,
 lda IN POSITIVEN,
 x IN OUT UTL_NLA_ARRAY_FLT,
 incx IN POSITIVEN,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-31 BLAS_TBMV Procedure Parameters

	Parameter	Description
	
uplo

	
Specifies whether the matrix is an upper or lower triangular matrix:

	
uplo = 'U' or 'u'. A is an upper triangular matrix.

	
uplo = 'L' or 'l'. A is a lower triangular matrix.

	
trans

	
Specifies the operation to be performed:

	
trans = 'N' or 'n'x := A*x

	
trans = 'T' or 't'x := A'*x

	
trans = 'C' or 'c'x := A'*x

	
diag

	
Specifies whether or not A is unit triangular:

	
diag = 'U' or 'u'. A is assumed to be unit triangular.

	
diag = 'N' or 'n'. A is not assumed to be unit triangular.

	
n

	
Specifies the order of the matrix A. n must be at least zero.

	
k

	
Specifies whether or not A is unit triangular:

	
with uplo = 'U' or 'u', K specifies the number of super-diagonals of the matrix A.

	
with uplo = 'L' or 'l', K specifies the number of sub-diagonals of the matrix A.

K must satisfy 0 .le. k.

	
a

	
UTL_NLA_ARRAY_FLT/DBL of DIMENSION (lda, n).

Before entry with uplo = 'U' or 'u', the leading (k+1) by n part of the array A must contain the upper triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row(k+1) of the array, the first super-diagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array A is not referenced.

Before entry with uplo = 'L' or 'l', the leading (k+1) by n part of the array A must contain the lower triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2, and so on. The bottom right k by k triangle of the array A is not referenced.

Note that when diag = ''U' or 'u', the elements of the array A corresponding to the diagonal elements of the matrix are not referenced, but are assumed to be unity.

	
lda

	
Specifies the first dimension of a as declared in the calling (sub) program. lda must be at least (k+1).

	
x

	
UTL_NLA_ARRAY_FLT/DBL of dimension at least (1+(n-1)*abs(incx)). Before entry, the incremented array X must contain the n element vector x. On exit, X is overwritten with the transformed vector x.

	
incx

	
Specifies the increment for the elements of x. Must not be zero.

	
pack

	
(Optional) Flags the packing of the matrices:

	
'C': column-major (default)

	
'R': row-major

BLAS_TBSV Procedures

This procedure solves one of the systems of equations

A*x = b

or

A'*x = b

where b and x are n element vectors and A is an n by n unit, or non-unit, upper or lower triangular band matrix, with (k+1) diagonals.

	
See Also:

BLAS Level 2 (Matrix-Vector Operations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.BLAS_TBSV (
 uplo IN flag,
 trans IN flag,
 diag IN flag,
 n IN POSITIVEN,
 k IN NATURALN,
 a IN UTL_NLA_ARRAY_DBL,
 lda IN POSITIVEN,
 x IN OUT UTL_NLA_ARRAY_DBL,
 incx IN POSITIVEN,
 pack IN flag DEFAULT 'C');

UTL_NLA.BLAS_STBSV (
 uplo IN flag,
 trans IN flag,
 diag IN flag,
 n IN POSITIVEN,
 k IN NATURALN,
 a IN UTL_NLA_ARRAY_FLT,
 lda IN POSITIVEN,
 x IN OUT UTL_NLA_ARRAY_FLT,
 incx IN POSITIVEN,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-32 BLAS_TBSV Procedure Parameters

	Parameter	Description
	
uplo

	
Specifies whether the matrix is an upper or lower triangular matrix:

	
uplo = ''U' or 'u'. A is an upper triangular matrix.

	
uplo = 'L' or 'l'. A is a lower triangular matrix.

	
trans

	
Specifies the equations to be solved:

	
trans = 'N' or 'n : 'A*x = b

	
trans = 'T' or 't': A'*x = b

	
trans = 'C' or 'c': A'*x = b

	
diag

	
Specifies whether or not A is unit triangular:

	
diag = 'U' or 'u' : A is assumed to be unit triangular.

	
diag = 'N' or 'n' : A is not assumed to be unit triangular.

	
n

	
Specifies the order of the matrix A. n must be at least zero.

	
k

	
Specifies whether or not A is unit triangular:

	
with uplo = 'U' or 'u', K specifies the number of super-diagonals of the matrix A.

	
with uplo = 'L' or 'l', K specifies the number of sub-diagonals of the matrix A.

K must satisfy 0 .le. k.

	
a

	
UTL_NLA_ARRAY_FLT/DBL of DIMENSION (lda,n).

Before entry with uplo = 'U' or 'u', the leading (k+1) by n part of the array A must contain the upper triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row (k+1) of the array, the first super-diagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array A is not referenced.

Before entry with uplo = 'L' or 'l', the leading (k+1) by n part of the array A must contain the lower triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2, and so on. The bottom right k by k triangle of the array A is not referenced.

Note that when diag = 'U' or 'u', the elements of the array A corresponding to the diagonal elements of the matrix are not referenced, but are assumed to be unity.

	
lda

	
On entry, lda specifies the first dimension of A as declared in the calling (sub) program. lda must be at least (k+1).

	
x

	
UTL_NLA_ARRAY_FLT/DBL of dimension at least

(1 + (n - 1) *abs(incx))

Before entry, the incremented array X must contain the n element right-hand side vector b.

On exit, X is overwritten with the solution vector x.

	
incx

	
Specifies the increment for the elements of x. incx must not be zero.

	
pack

	
(Optional) Flags the packing of the matrices:

	
'C': column-major (default)

	
'R': row-major

Usage Notes

No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine.

BLAS_TPMV Procedures

This procedure performs the matrix-vector operations

x := A*x

or

x := A'*x

where x is an n element vector and A is an n by n unit, or non-unit, upper or lower triangular matrix, supplied in packed form.

	
See Also:

BLAS Level 2 (Matrix-Vector Operations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.BLAS_TPMV (
 uplo IN flag,
 trans IN flag,
 diag IN flag,
 n IN POSITIVEN,
 ap IN UTL_NLA_ARRAY_DBL,
 x IN OUT UTL_NLA_ARRAY_DBL,
 incx IN POSITIVEN,
 pack IN flag DEFAULT 'C');

UTL_NLA.BLAS_TBMV (
 uplo IN flag,
 trans IN flag,
 diag IN flag,
 n IN POSITIVEN,
 ap IN UTL_NLA_ARRAY_FLT,
 x IN OUT UTL_NLA_ARRAY_FLT,
 incx IN POSITIVEN,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-33 BLAS_TPMV Procedure Parameters

	Parameter	Description
	
uplo

	
Specifies whether the matrix is an upper or lower triangular matrix:

	
uplo = 'U' or 'u'. A is an upper triangular matrix.

	
uplo = 'L' or 'l'. A is a lower triangular matrix.

	
trans

	
Specifies the operation to e performed:

	
trans = 'N' or 'n'x := A*x

	
trans = 'T' or 't'x := A'*x

	
trans = 'C' or 'c'x := A'*x

	
diag

	
Specifies whether or not A is unit triangular:

	
diag = 'U' or 'u'. A is assumed to be unit triangular.

	
diag = 'N' or 'n'. A is not assumed to be unit triangular.

	
n

	
Specifies the order of the matrix A. n must be at least zero.

	
ap

	
UTL_NLA_ARRAY_FLT/DBL of DIMENSION (lda,n).

Before entry with uplo = 'U' or 'u', the leading (k+1) by n part of the array A must contain the upper triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row (k+1) of the array, the first super-diagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array A is not referenced.

Before entry with uplo = 'L' or 'l', the leading (k+1) by n part of the array A must contain the lower triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2, and so on. The bottom right k by k triangle of the array A is not referenced.

Note that when diag = 'U' or 'u', the elements of the array A corresponding to the diagonal elements of the matrix are not referenced, but are assumed to be unity.

	
x

	
UTL_NLA_ARRAY_FLT/DBL of dimension at least (1+(n-1)*abs(incx)). Before entry, the incremented array X must contain the n element vector x. On exit, X is overwritten with the transformed vector x.

	
incx

	
Specifies the increment for the elements of x. Must not be zero.

	
pack

	
(Optional) Flags the packing of the matrices:

	
'C': column-major (default)

	
'R': row-major

BLAS_TPSV Procedures

This procedure solves one of the systems of equations

A*x = b

or

A'*x = b

where b and x are n element vectors and A is an n by n unit, or non-unit, upper or lower triangular matrix, supplied in packed form.

	
See Also:

BLAS Level 2 (Matrix-Vector Operations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.BLAS_TPSV (
 uplo IN flag,
 trans IN flag,
 diag IN flag,
 n IN POSITIVEN,
 ap IN UTL_NLA_ARRAY_DBL,
 x IN OUT UTL_NLA_ARRAY_DBL,
 incx IN POSITIVEN,
 pack IN flag DEFAULT 'C');

UTL_NLA.BLAS_TPSV (
 uplo IN flag,
 trans IN flag,
 diag IN flag,
 n IN POSITIVEN,
 ap IN UTL_NLA_ARRAY_FLT,
 x IN OUT UTL_NLA_ARRAY_FLT,
 incx IN POSITIVEN,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-34 BLAS_TPSV Procedure Parameters

	Parameter	Description
	
uplo

	
Specifies whether the matrix is an upper or lower triangular matrix:

	
uplo = 'U' or 'u' : A is an upper triangular matrix.

	
uplo = 'L' or 'l' : A is a lower triangular matrix.

	
trans

	
Specifies the operation to be performed:

	
trans = 'N' or 'n' : A*x = b

	
trans = 'T' or 't' : A'*x = b

	
trans = 'C' or 'c' : A'*x = b

	
diag

	
Specifies whether or not A is unit triangular:

	
diag = 'U' or 'u' : A is assumed to be unit triangular.

	
diag = 'N' or 'n' : 'A is not assumed to be unit triangular.

	
n

	
Specifies the order of the matrix A. n must be at least zero.

	
ap

	
UTL_NLA_ARRAY_FLT/DBL of dimension at least

((n*(n+1))/2)

Before entry with uplo = 'U' or 'u', the array ap must contain the upper triangular matrix packed sequentially, column by column, so that ap(1) contains a(1,1), ap(2) and ap(3) contain a(1,2) and a(2,2) respectively, and so on.

Before entry with uplo = 'L' or 'l', the array ap must contain the lower triangular matrix packed sequentially, column by column, so that ap(1) contains a(1,1), ap(2) and ap(3) contain a(2,1) and a(3,1) respectively, and so on.

Note that when diag = 'U' or 'u', the diagonal elements of A are not referenced, but are assumed to be unity.

	
x

	
UTL_NLA_ARRAY_FLT/DBL of dimension at least

(1 + (n - 1) *abs(incx))

Before entry, the incremented array X must contain the n element right-hand side vector b. On exit, X is overwritten with the solution vector x.

	
incx

	
Specifies the increment for the elements of x. incx must not be zero.

	
pack

	
(Optional) Flags the packing of the matrices:

	
'C': column-major (default)

	
'R': row-major

Usage Notes

No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine.

BLAS_TRMM Procedures

This procedure performs one of the matrix-matrix operations

B := alpha*op(A)*B

or

B := alpha*B*op(A)

where alpha is a scalar, B is an m by n matrix, A is a unit, or non-unit, upper or lower triangular matrix and op(A) is one of

op(A) = A

or

op(A) = A'

	
See Also:

BLAS Level 3 (Matrix-Matrix Operations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.BLAS_TRMM (
 side IN flag,
 uplo IN flag,
 transa IN flag,
 diag IN flag,
 m IN POSITIVEN,
 n IN POSITIVEN,
 alpha IN SCALAR_DOUBLE,
 a IN UTL_NLA_ARRAY_DBL,
 lda IN POSITIVEN,
 b IN OUT UTL_NLA_ARRAY_DBL,
 ldb IN POSITIVEN,
 pack IN flag DEFAULT 'C');

UTL_NLA.BLAS_TRMM (
 side IN flag,
 uplo IN flag,
 transa IN flag,
 diag IN flag,
 m IN POSITIVEN,
 n IN POSITIVEN,
 alpha IN SCALAR_FLOAT,
 a IN UTL_NLA_ARRAY_FLT,
 lda IN POSITIVEN,
 b IN OUT UTL_NLA_ARRAY_FLT,
 ldb IN POSITIVEN,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-35 BLAS_TRMM Procedure Parameters

	Parameter	Description
	
side

	
Specifies whether the symmetric matrix A appears on the left or right in the operation:

	
side = 'L' or 'l' : B := alpha*op(A)*B

	
side = 'R' or 'r' : B := alpha*B*op(A)

	
uplo

	
Specifies whether the upper or lower triangular part of the array A is to be referenced:

	
uplo = 'U' or 'u' : A is an upper triangular matrix.

	
uplo = 'L' or 'l'' : A is a lower triangular matrix.

	
transa

	
Specifies the form of op(A) to be used in the matrix multiplication as follows:

	
transa = 'N' or 'n' : op(A) = A

	
transa = 'T' or 't' : op(A) = A'

	
transa ='C' or 'c' : op(A) = A'

	
diag

	
Specifies whether or not A is unit triangular:

	
diag = 'U' or 'u'. A is assumed to be unit triangular.

	
diag = 'N' or 'n'. A is not assumed to be unit triangular.

	
m

	
Specifies the number of rows of the B. m must be at least zero.

	
n

	
Specifies the number of columns of B. n must be at least zero.

	
alpha

	
SCALAR_FLOAT/DOUBLE. Specifies the scalar alpha. When alpha is zero then A is not referenced and B need not be set before entry.

	
a

	
UTL_NLA_ARRAY_FLT/DBL of DIMENSION (lda,k) where k is m when side = 'L' or 'l', and is n when side = ''R' or 'r'.

Before entry with uplo = 'U' or 'u' , the leading k by k upper triangular part of the array A must contain the upper triangular matrix, and the strictly lower triangular part of A is not referenced.

Before entry with uplo = 'L' or 'l', the leading k byk lower triangular part of the array A must contain the lower triangular matrix and the strictly upper triangular part of A is not referenced.

Note that when diag = ''U' or 'u', the diagonal elements of A are not referenced either, but are assumed to be unity.

	
lda

	
Specifies the first dimension of a as declared in the calling (sub) program. When side = 'L' or 'l', lda must be at least max(1,m), otherwise lda must be at least max(1,n).

	
b

	
UTL_NLA_ARRAY_FLT/DBL of DIMENSION (ldb,n).

Before entry, the leading m by n part of the array B must contain the matrix B, and on exit is overwritten by the transformed matrix.

	
ldb

	
Specifies the first dimension of b as declared in the calling (sub) program. ldb must be at least max(1,m).

	
pack

	
(Optional) Flags the packing of the matrices:

	
'C': column-major (default)

	
'R': row-major

BLAS_TRMV Procedures

This procedure performs the matrix-vector operations

x := A*x

or

x := A'*x

where x is an n element vector and A is an n by n unit, or non-unit, upper or lower triangular matrix.

	
See Also:

BLAS Level 2 (Matrix-Vector Operations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.BLAS_TRMV (
 uplo IN flag,
 trans IN flag,
 diag IN flag,
 n IN POSITIVEN,
 a IN UTL_NLA_ARRAY_DBL,
 lda IN POSITIVEN,
 x IN OUT UTL_NLA_ARRAY_DBL,
 incx IN POSITIVEN,
 pack IN flag DEFAULT 'C');

UTL_NLA.BLAS_TRMV (
 uplo IN flag,
 trans IN flag,
 diag IN flag,
 n IN POSITIVEN,
 a IN UTL_NLA_ARRAY_FLT,
 lda IN POSITIVEN,
 x IN OUT UTL_NLA_ARRAY_FLT,
 incx IN POSITIVEN,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-36 BLAS_TRMV Procedure Parameters

	Parameter	Description
	
uplo

	
Specifies whether the matrix is an upper or lower triangular matrix:

	
uplo = 'U' or 'u'. A is an upper triangular matrix.

	
uplo = 'L' or 'l'. A is a lower triangular matrix.

	
trans

	
Specifies the operation to be performed:

	
trans = 'N' or 'n'x := A*x

	
trans= 'T' or 't'x := A'*x

	
trans = 'C' or 'c'x := A'*x

	
diag

	
Specifies whether or not A is unit triangular:

	
diag = 'U' or 'u'. A is assumed to be unit triangular.

	
diag = 'N' or 'n'. A is not assumed to be unit triangular.

	
n

	
Specifies the order of the matrix A. n must be at least zero.

	
a

	
UTL_NLA_ARRAY_FLT/DBL of DIMENSION (lda, n).

Before entry with uplo = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular matrix and the strictly lower triangular part of A is not referenced.

Before entry with uplo = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular matrix and the strictly upper triangular part of A is not referenced.

Note that when diag = 'U' or 'u', the diagonal elements of A are not referenced either, but are assumed to be unity

	
lda

	
Specifies the first dimension of a as declared in the calling (sub) program. lda must be at least max(1,n).

	
x

	
UTL_NLA_ARRAY_FLT/DBL of dimension at least(1+(n-1)*as(incx)). Before entry, the incremented array X must contain the n element vector x.

	
incx

	
Specifies the increment for the elements of x. Must not be zero.

	
pack

	
(Optional) Flags the packing of the matrices:

	
'C': column-major (default)

	
'R': row-major

BLAS_TRSM Procedures

This procedure performs one of the matrix-matrix operations

op(A)*X = alpha*B

or

X*op(A) = alpha*B

where alpha is a scalar, X and B are m by n matrices, A is a unit, or non-unit, upper or lower triangular matrix and op(A) is one of

op(A) = A

or

op(A) = A'

The matrix X is overwritten on B.

	
See Also:

BLAS Level 3 (Matrix-Matrix Operations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.BLAS_TRSM (
 side IN flag,
 uplo IN flag,
 transa IN flag,
 diag IN flag,
 m IN POSITIVEN,
 n IN POSITIVEN,
 alpha IN SCALAR_DOUBLE,
 a IN UTL_NLA_ARRAY_DBL,
 lda IN POSITIVEN,
 b IN OUT UTL_NLA_ARRAY_DBL,
 ldb IN POSITIVEN,
 pack IN flag DEFAULT 'C');

UTL_NLA.BLAS_TRSM (
 side IN flag,
 uplo IN flag,
 transa IN flag,
 diag IN flag,
 m IN POSITIVEN,
 n IN POSITIVEN,
 alpha IN SCALAR_FLOAT,
 a IN UTL_NLA_ARRAY_FLT,
 lda IN POSITIVEN,
 b IN OUT UTL_NLA_ARRAY_FLT,
 ldb IN POSITIVEN,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-37 BLAS_TRSM Procedure Parameters

	Parameter	Description
	
side

	
Specifies whether the symmetric matrix A appears on the left or right in the operation:

	
side = 'L' or 'l' : op(A)*X = alpha*B

	
side = 'R' or 'r' : X*op(A) = alpha*B

	
uplo

	
Specifies whether the upper or lower triangular part of the array A is to be referenced:

	
uplo = 'U' or 'u' : A is an upper triangular matrix.

	
uplo = 'L' or 'l' : A is a lower triangular matrix.

	
transa

	
Specifies the form of op(A) to be used in the matrix multiplication as follows:

	
transa = 'N' or 'n' : op(A) = A

	
transa ='T' or 't' : op(A) = A'

	
transa = 'C' or 'c' : op(A) = A'

	
diag

	
Specifies whether or not A is unit triangular:

	
diag = 'U' or 'u'. A is assumed to be unit triangular.

	
diag = 'N' or 'n'. A is not assumed to be unit triangular.

	
m

	
Specifies the number of rows of the B. m must be at least zero.

	
n

	
Specifies the number of columns of B. n must be at least zero.

	
alpha

	
SCALAR_FLOAT/DOUBLE. Specifies the scalar alpha. When alpha is zero then A is not referenced and B need not be set before entry.

	
a

	
UTL_NLA_ARRAY_FLT/DBL of DIMENSION (lda, k) where k is m when side = 'L' or 'l', and is n when side = 'R' or 'r'.

Before entry with uplo = 'U' or 'u', the leading k by k upper triangular part of the array A must contain the upper triangular matrix, and the strictly lower triangular part of A is not referenced.

Before entry with uplo = 'L' or 'l', the leading k by k lower triangular part of the array A must contain the lower triangular matrix and the strictly upper triangular part of A is not referenced.

Note that when diag = 'U' or 'u', the diagonal elements of A are not referenced either, but are assumed to be unity.

	
lda

	
Specifies the first dimension of a as declared in the calling (sub) program. When side = 'L' or 'l', lda must be at least max(1, m), otherwise lda must be at least max (1, n).

	
b

	
UTL_NLA_ARRAY_FLT/DBL of DIMENSION (ldb, n).

Before entry, the leading m by n part of the array B must contain the matrix B, and on exit is overwritten by the solution matrix X.

	
ldb

	
Specifies the first dimension of b as declared in the calling (sub) program. ldb must be at least max(1, m).

	
pack

	
(Optional) Flags the packing of the matrices:

	
'C': column-major (default)

	
'R': row-major

BLAS_TRSV Procedures

This procedure solves one of the systems of equations

A*x = b

or

A'*x = b

where b and x are n element vectors and A is an n by n unit, or non-unit, upper or lower triangular matrix.

	
See Also:

BLAS Level 2 (Matrix-Vector Operations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.BLAS_TRSV (
 uplo IN flag,
 trans IN flag,
 diag IN flag,
 n IN POSITIVEN,
 a IN UTL_NLA_ARRAY_DBL,
 lda IN POSITIVEN,
 x IN OUT UTL_NLA_ARRAY_DBL,
 incx IN POSITIVEN,
 pack IN flag DEFAULT 'C');

UTL_NLA.BLAS_TRSV (
 uplo IN flag,
 trans IN flag,
 diag IN flag,
 n IN POSITIVEN,
 a IN UTL_NLA_ARRAY_FLT,
 lda IN POSITIVEN,
 x IN OUT UTL_NLA_ARRAY_FLT,
 incx IN POSITIVEN,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-38 BLAS_TRSV Procedure Parameters

	Parameter	Description
	
uplo

	
Specifies whether the matrix is an upper or lower triangular matrix:

	
uplo = 'U' or 'u'. A is an upper triangular matrix.

	
uplo = 'L' or 'l'. A is a lower triangular matrix.

	
trans

	
Specifies the operation to be performed:

	
trans = 'N' or 'n'A*x = b

	
trans = 'T' or 't'A'*x = b

	
trans = 'C' or 'c'A'*x = b

	
diag

	
Specifies whether or not A is unit triangular:

	
diag = 'U' or 'u'. A is assumed to be unit triangular.

	
diag = 'N' or 'n'. A is not assumed to be unit triangular.

	
n

	
Specifies the order of the matrix A. n must be at least zero.

	
a

	
UTL_NLA_ARRAY_FLT/DBL of DIMENSION (lda, n).

Before entry with uplo = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular matrix and the strictly lower triangular part of A is not referenced.

Before entry with uplo = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular matrix and the strictly upper triangular part of A is not referenced.

Note that when diag = 'U' or 'u', the diagonal elements of A are not referenced either, but are assumed to be unity.

	
lda

	
Specifies the first dimension of A as declared in the calling (sub) program. lda must be at least max(1, n).

	
x

	
UTL_NLA_ARRAY_FLT/DBL of dimension at least

(1 + (n - 1) * abs (incx))

Before entry, the incremented array X must contain the n element right-hand side vector b. On exit, X is overwritten with the solution vector x.

	
incx

	
Specifies the increment for the elements of x. Must not be zero.

	
pack

	
(Optional) Flags the packing of the matrices:

	
'C': column-major (default)

	
'R': row-major

Usage Notes

No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine.

LAPACK_GBSV Procedures

This procedure computes the solution to a real system of linear equations

a * x = b

where a is a band matrix of order n with kl sub diagonals and ku superdiagonals, and x and b are n by nrhs matrices.

The LU decomposition with partial pivoting and row interchanges is used to factor A as

a = L * U

where L is a product of permutation and unit lower triangular matrices with kl sub diagonals, and U is upper triangular with kl+ku superdiagonals. The factored form of a is then used to solve the system of equations

a * x = b

	
See Also:

LAPACK Driver Routines (Linear Equations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.LAPACK_GBSV (
 n IN POSITIVEN,
 kl IN NATURALN,
 ku IN NATURALN,
 nrhs IN POSITIVEN,
 ab IN OUT UTL_NLA_ARRAY_DBL,
 ldab IN POSITIVEN,
 ipiv IN OUT UTL_NLA_ARRAY_INT,
 b IN OUT UTL_NLA_ARRAY_DBL,
 ldb IN POSITIVEN,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

UTL_NLA.LAPACK_GBSV (
 n IN POSITIVEN,
 kl IN NATURALN,
 ku IN NATURALN,
 nrhs IN POSITIVEN,
 ab IN OUT UTL_NLA_ARRAY_FLT,
 ldab IN POSITIVEN,
 ipiv IN OUT UTL_NLA_ARRAY_INT,
 b IN OUT UTL_NLA_ARRAY_FLT,
 ldb IN POSITIVEN,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-39 LAPACK_GBSV Procedure Parameters

	Parameter	Description
	
n

	
The number of linear equations, equivalent to the order of the matrixa .n >= 0

	
kl

	
The number of sub diagonals within the band of a. kl >= 0.

	
ku

	
The number of superdiagonals within the band of a . ku >= 0.

	
nrhs

	
The number of right-hand sides, which is the number of columns of the matrix b. nrhs >= 0.

	
ab

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (ldab, n).

On entry, the matrix a in band storage, in rows kl+1 to 2*kl+ku+1; rows 1 to kl of the array need not be set. The j-th column of A is stored in the j-th column of the array ab:

ab(kl+ku+1+i-j,j) = a(i,j) for max(1,j-ku)<=i<=min(n,j+kl)

On exit, details of the factorization: U is stored as an upper triangular band matrix with kl+ku superdiagonals in rows 1 to KL+KU+1, and the multipliers used during the factorization are stored in rows:

kl+ku+2 to 2*kl+ku+1

	
ldab

	
The leading dimension of the array ab.

ldab >= 2*kl+ku+1

	
ipiv

	
INTEGER array, DIMENSION (n).

The pivot indices that define the permutation matrix P; row iof the matrix was interchanged with row ipiv(i).

	
b

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (ldb, nrhs).

On entry, the n by nrhs matrix of right hand side matrix b.

On exit, if info = 0 , the n by nrhs solution matrix X.

	
ldb

	
The leading dimension of the array b.

ldb >= max(1,n)

	
info

	
	
= 0 : successful exit

	
< 0 : if info = -i , the i-th argument had an illegal value

	
> 0 : if info = i, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and the solution has not been computed

	
pack

	
(Optional) Flags the packing of the matrices:

	
'C': column-major (default)

	
'R': row-major

LAPACK_GEES Procedures

This procedure computes for an n by n real nonsymmetric matrix A, the eigenvalues, the real Schur form T, and, optionally, the matrix of Schur vectors Z. This gives the Schur factorization A = Z*T*(Z**T).

A matrix is in real Schur form if it is upper quasi-triangular with 1 by 1 and 2 by 2 blocks. 2 by 2 blocks will be standardized in the form

[a b]

[c a]

where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc).

	
See Also:

LAPACK Driver Routines (LLS and Eigenvalue Problems) Subprograms for other subprograms in this group

Syntax

UTL_NLA.LAPACK_GEES (
 jobvs IN flag,
 n IN POSITIVEN,
 a IN OUT UTL_NLA_ARRAY_DBL,
 lda IN POSITIVEN,
 wr IN OUT UTL_NLA_ARRAY_DBL,
 wi IN OUT UTL_NLA_ARRAY_DBL,
 vs IN OUT UTL_NLA_ARRAY_DBL,
 ldvs IN POSITIVEN,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

UTL_NLA.LAPACK_GEES (
 jobvs IN flag,
 n IN POSITIVEN,
 a IN OUT UTL_NLA_ARRAY_FLT,
 lda IN POSITIVEN,
 wr IN OUT UTL_NLA_ARRAY_FLT,
 wi IN OUT UTL_NLA_ARRAY_FLT,
 vs IN OUT UTL_NLA_ARRAY_FLT,
 ldvs IN POSITIVEN,
 info OUT integer,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-40 LAPACK_GEES Procedure Parameters

	Parameter	Description
	
jobz

	
	
'N': Schur vectors are not computed.

	
'V': Schur vectors are computed.

	
n

	
The order of the matrix a. N >= 0.

	
a

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (lda, n).

	
On entry, the n by n matrix A.

	
On exit, A has been overwritten by its real Schur form T.

	
lda

	
The leading dimension of the array a. lda >= max(1,n).

	
wr

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (n).

wr and wi contain the real and imaginary parts respectively of the computed eigenvalues in the same order that they appear on the diagonal of the output Schur form T. Complex conjugate pairs of eigenvalues will appear consecutively with the eigenvalue having the positive imaginary part first.

	
wi

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (ldz, n).

wr and wi contain the real and imaginary parts respectively of the computed eigenvalues in the same order that they appear on the diagonal of the output Schur form T. Complex conjugate pairs of eigenvalues will appear consecutively with the eigenvalue having the positive imaginary part first.

	
vs

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (n).

	
If jobvs = 'V', vs contains the orthogonal matrix Z of Schur vectors.

	
If jobvs = 'N', vs is not referenced.

	
ldvs

	
The leading dimension of the array vs. VS. ldvs >= 1. If jobvs = 'V', ldvs >= N

	
info

	
	
= 0 : successful exit

	
< 0 : if info = -i, the i-th argument had an illegal value

	
> 0 : if info = i, and i is <= N: the QR algorithm failed to compute all the eigenvalues. Elements 1:ILO-1 and i+1:N of wr and wi contain those eigenvalues which have converged. If jobvs = 'V', vs contains the matrix which reduces A to its partially converged Schur form.

	
pack

	
(Optional) Flags the packing of the matricies:

	
'C': column-major (default)

	
'R': row-major

LAPACK_GELS Procedures

This procedure solves overdetermined or underdetermined real linear systems involving an m by n matrix A, or its transpose, using a QR or LQ factorization of A. It is assumed that A has full rank.

The following options are provided:

	
If TRANS = 'N' and m >= n: find the least squares solution of an overdetermined system, that is, solve the least squares problem.

minimize || B - A*X ||

	
If TRANS = 'N' and m < n: find the minimum norm solution of an underdetermined system A * X = B.

	
If TRANS = 'T' and m >= n: find the minimum norm solution of an undetermined system A**T * X = B.

	
If TRANS = 'T' and m < n: find the least squares solution of an overdetermined system, that is, solve the least squares problem minimize || B - A**T * X ||.

	
See Also:

LAPACK Driver Routines (LLS and Eigenvalue Problems) Subprograms for other subprograms in this group

Syntax

UTL_NLA.LAPACK_GELS (
 trans IN flag,
 m IN POSITIVEN,
 n IN POSITIVEN,
 nrhs IN POSITIVEN,
 a IN OUT UTL_NLA_ARRAY_DBL,
 lda IN POSITIVEN,
 b IN OUT UTL_NLA_ARRAY_DBL,
 ldb IN POSITIVEN,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

UTL_NLA.LAPACK_GELS (
 trans IN flag,
 m IN POSITIVEN,
 n IN POSITIVEN,
 nrhs IN POSITIVEN,
 a IN OUT UTL_NLA_ARRAY_FLT,
 lda IN POSITIVEN,
 b IN OUT UTL_NLA_ARRAY_FLT,
 ldb IN POSITIVEN,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-41 LAPACK_GELS Procedure Parameters

	Parameter	Description
	
trans

	
	
CHARACTER = 'N': The linear system involves A.

	
CHARACTER = 'T': The linear system involves A**T .

	
m

	
The number of rows of the matrix a. M >= 0.

	
n

	
The number of columns of the matrix a. N >= 0.

	
nrhs

	
The number of right-hand sides, which is the number of columns of the matrix band x.nrhs >= 0.

	
a

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (lda, n).

On entry, the matrix b of right hand side vectors, stored columnwise; b is m by nrhs if TRANS = 'N', or n by nrhsif trans = 'T'.

On exit, if m >= n, a is overwritten by details of its QR factorization as returned by SGEQRF. If m < n, A is overwritten by details of its LQ factorization as returned by SGELQF.

	
lda

	
The leading dimension of the array A. lda >= max(1,m).

	
b

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (ldb, nrhs).

On entry, the matrix b of right hand side vectors, stored columnwise. b is m bynrhs if trans = 'n', or n by nrhs if trans = 'T'.

On exit, b is overwritten by the solution vectors, stored columnwise:

	
If trans = 'n' and m >= n, rows 1 to n of b contain the least squares solution vectors; the residual sum of squares for the solution in each column is given by the sum of squares of elements n+1 to m in that column.

	
If trans = 'n' and m < n, rows 1 to n of b contain the minimum norm solution vectors.

	
If trans = 'T' and m >= n, rows 1 to m of b contain the minimum norm solution vectors.

	
If trans = 'T' and m < n, rows 1 to m of b contain the least squares solution vectors; the residual sum of squares for the solution in each column is given by the sum of squares of elements m+1 to n in that column.

	
ldb

	
The leading dimension of the array b.

ldb >= max(1,m,n)

	
info

	
	
= 0 : successful exit

	
< 0 : if info = -i, the i-th argument had an illegal value

	
pack

	
(Optional) Flags the packing of the matricies:

	
'C': column-major (default)

	
'R': row-major

LAPACK_GESDD Procedures

This procedures computes the singular value decomposition (SVD) of a real m by n matrix A, optionally computing the left and right singular vectors. If singular vectors are desired, it uses a divide-and-conquer algorithm that makes mild assumptions about floating point arithmetic.

The SVD is written

A = U * SIGMA * transpose(V)

where SIGMA is an m by n matrix which is zero except for its min(m,n) diagonal elements, U is anm by m orthogonal matrix, and V is ann by n orthogonal matrix. The diagonal elements of SIGMA are the singular values of A, they are real and non-negative, and are returned in descending order. The first min(m,n) columns of U and V are the left and right singular vectors of A.

Note that the routine returns V**T, not V.

	
See Also:

LAPACK Driver Routines (LLS and Eigenvalue Problems) Subprograms for other subprograms in this group

Syntax

UTL_NLA.LAPACK_GESDD (
 jobz IN flag,
 m IN POSITIVEN,
 n IN POSITIVEN,
 a IN OUT UTL_NLA_ARRAY_DBL,
 lda IN POSITIVEN,
 s IN OUT UTL_NLA_ARRAY_DBL,
 u IN OUT UTL_NLA_ARRAY_DBL,
 ldu IN POSITIVEN,
 vt IN OUT UTL_NLA_ARRAY_DBL,
 ldvt IN POSITIVEN,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

UTL_NLA.LAPACK_GESDD (
 jobz IN flag,
 m IN POSITIVEN,
 n IN POSITIVEN,
 a IN OUT UTL_NLA_ARRAY_FLT,
 lda IN POSITIVEN,
 s IN OUT UTL_NLA_ARRAY_FLT,
 u IN OUT UTL_NLA_ARRAY_FLT,
 ldu IN POSITIVEN,
 vt IN OUT UTL_NLA_ARRAY_FLT,
 ldvt IN POSITIVEN,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-42 LAPACK_GESDD Procedure Parameters

	Parameter	Description
	
jobz

	
Specifies options for computing all or part of the matrix U:

	
'A': All m columns of u and all n rows of V**T are returned in arrays u and vt.

	
'S': The first min(m,n) columns of u and the first min(m,n) rows of V**T are returned in the arrays u and vt.

	
'O': The first min(m,n) columns of u (the left singular vectors) are overwritten on the array a. jobu and jobvt cannot both be 'O

	
'N': No columns of u (no left singular vectors) are computed.

	
m

	
The order of the matrix a. m >= 0.

	
n

	
The order of the matrix a. n >= 0.

	
a

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (lda, n).

On entry, the n by n matrix A.

On exit:

	
If jobz = 'O', a is overwritten with the first min(m,n) columns of u (the left singular vectors, stored columnwise).

	
If m >= n, a is overwritten with the first m rows of V**T (the right singular vectors, stored rowwise).

	
If jobz .ne. 'O', the contents of a are destroyed.

	
lda

	
The leading dimension of the array a. lda >= max(1,m).

	
s

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (min(m,n).

The singular values of a, sorted so that S(i) >= S(i+1).

	
u

	
UTL_NLA_ARRAY_FLT/DBL. ucol = m if jobz = 'A' or jobz = 'O' and m < n; ucol = min(m,n) if jobz = 'S'.

	
If jobz = 'A' or jobz = 'O' and m < n, u contains the m by m orthogonal matrix u.

	
If jobz = 'S', u contains the first min(m,n) columns of u (the left singular vectors, stored columnwise).

	
If jobz = 'O' and m >= n, or jobz = 'n', u is not referenced.

	
ldu

	
The leading dimension of the array U. ldu >= 1. If jobz = 'S' or 'A',or jobz = 'O' and m < n, ldu >= m.

	
vt

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (ldvt, n).

	
If jobz = 'A' or jobz = 'O' and m >= n, vt contains the n by n orthogonal matrix V**T.

	
If jobz = 'S', vt contains the first min(m,n) rows of V**T (the right singular vectors, stored rowwise).

	
If jobz = 'O' and m < n, or jobz = 'N', vt is not referenced.

	
ldvt

	
The leading dimension of the array vt. ldvt >= 1.

	
If jobz = 'A', or jobz = 'O' and m >= n, ldvt >= n.

	
If jobz = 'S', ldvt >= min(m,n).

	
info

	
	
= 0 : successful exit

	
< 0 : If info = -i, the i-th argument had an illegal value

	
> 0 : SBDSDC did not converge, updating process failed.

	
pack

	
(Optional) Flags the packing of the matricies:

	
'C': column-major (default)

	
'R': row-major

LAPACK_GESV Procedures

This procedure computes the solution to a real system of linear equations

a * x = b

where a is an n by n matrix and x and b are n by nrhs matrices.

The LU decomposition with partial pivoting and row interchanges is used to factor A as

a = P * L * U

where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. The factored form of a is then used to solve the system of equations

a * x = b

	
See Also:

LAPACK Driver Routines (Linear Equations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.LAPACK_GESV (
 n IN POSITIVEN,
 nrhs IN POSITIVEN,
 a IN OUT UTL_NLA_ARRAY_DBL,
 lda IN POSITIVEN,
 ipiv IN OUT UTL_NLA_ARRAY_INT,
 b IN OUT UTL_NLA_ARRAY_DBL,
 ldb IN POSITIVEN,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

UTL_NLA.LAPACK_GESV (
 n IN POSITIVEN,
 nrhs IN POSITIVEN,
 a IN OUT UTL_NLA_ARRAY_FLT,
 lda IN POSITIVEN,
 ipiv IN OUT UTL_NLA_ARRAY_INT,
 b IN OUT UTL_NLA_ARRAY_FLT,
 ldb IN POSITIVEN,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-43 LAPACK_GESV Procedure Parameters

	Parameter	Description
	
n

	
The number of linear equations, equivalent to the order of the matrix a. n >= 0

	
nrhs

	
The number of right-hand sides, which is the number of columns of the matrix b. nrhs >= 0.

	
a

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (lda, n).

On entry, the n by n coefficient matrix a.

On exit, the factors L and U from the factorization a = P*L*U; the unit diagonal elements of L are not stored.

	
lda

	
The leading dimension of the array a.

lda >= max(1,n)

	
ipiv

	
INTEGER array, DIMENSION (n).

The pivot indices that define the permutation matrix P; row iof the matrix was interchanged with row ipiv(i).

	
b

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (ldb, nrhs).

On entry, the n by nrhs matrix of right hand side matrix b.

On exit, if info = 0 , the n by nrhs solution matrix X.

	
ldb

	
The leading dimension of the array b.

ldb >= max(1,n)

	
info

	
	
= 0 : successful exit

	
< 0 : if info = -i , the i-th argument had an illegal value

	
> 0 : if info = i, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution could not be computed.

	
pack

	
(Optional) Flags the packing of the matrices:

	
'C': column-major (default)

	
'R': row-major

LAPACK_GESVD Procedures

This procedures computes the singular value decomposition (SVD) of a real m by n matrix A, optionally computing the left and/or right singular vectors. The SVD is written

A = U * SIGMA * transpose(V)

where SIGMA is an m by n matrix which is zero except for its min(m,n) diagonal elements, U is anm by m orthogonal matrix, and V is ann by n orthogonal matrix. The diagonal elements of SIGMA are the singular values of A, they are real and non-negative, and are returned in descending order. The first min(m,n) columns of U and V are the left and right singular vectors of A.

Note that the routine returns V**T, not V.

	
See Also:

LAPACK Driver Routines (LLS and Eigenvalue Problems) Subprograms for other subprograms in this group

Syntax

UTL_NLA.LAPACK_GESVD (
 jobu IN flag,
 jobvt IN flag,
 m IN POSITIVEN,
 n IN POSITIVEN,
 a IN OUT UTL_NLA_ARRAY_DBL,
 lda IN POSITIVEN,
 s IN OUT UTL_NLA_ARRAY_DBL,
 u IN OUT UTL_NLA_ARRAY_DBL,
 ldu IN POSITIVEN,
 vt IN OUT UTL_NLA_ARRAY_DBL,
 ldvt IN POSITIVEN,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

UTL_NLA.LAPACK_GESVD (
 jobu IN flag,
 jobvt IN flag,
 m IN POSITIVEN,
 n IN POSITIVEN,
 a IN OUT UTL_NLA_ARRAY_FLT,
 lda IN POSITIVEN,
 s IN OUT UTL_NLA_ARRAY_FLT,
 u IN OUT UTL_NLA_ARRAY_FLT,
 ldu IN POSITIVEN,
 vt IN OUT UTL_NLA_ARRAY_FLT,
 ldvt IN POSITIVEN,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-44 LAPACK_GESVD Procedure Parameters

	Parameter	Description
	
jobu

	
Specifies options for computing all or part of the matrix U:

	
'A': All m columns of U are returned in array U.

	
'S': The first min(m,n) columns of U (the left singular vectors) are returned in the array U.

	
'O': The first min(m,n) columns of U (the left singular vectors) are overwritten on the array a. jobu and jobvt cannot both be 'O

	
'N': No columns of U (no left singular vectors) are computed.

	
jobvt

	
Specifies options for computing all or part of the matrix V**T:

	
'A': All n rows of V**T are returned in the array vt.

	
'S': The first min(m,n) rows of V**T (the right singular vectors) are returned in the array vt.

	
'O': The first min(m,n) rows of V**T (the right singular vectors) are overwritten on the array a. jobvt and jobu cannot both be 'O'.

	
'N': No rows of V**T (no right singular vectors) are computed.

	
m

	
The order of the matrix a. M >= 0.

	
n

	
The order of the matrix a. N >= 0.

	
a

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (lda, n).

On entry, the n by n matrix A.

On exit:

	
If jobu = 'O', A is overwritten with the first min(m,n) columns of U (the left singular vectors, stored columnwise);

	
If jobvt = 'O', A is overwritten with the first min(m,n) rows of V**T (the right singular vectors, stored rowwise);

	
If jobu.ne.'O' and jobvt.ne.'O', the contents of A are destroyed.

	
lda

	
The leading dimension of the array a. lda >= max(1,n).

	
s

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (min(m,n).

The singular values of A, sorted so that S(i) >= S(i+1).

	
u

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (ldu,ucol).(ldu,m)if jobu = 'A' or (ldu,min(m,n)) if jobu = 'S'.

	
If jobu = 'A', U contains the m by m orthogonal matrix U.

	
If jobu = 'S', U contains the first min(m,n) columns of U (the left singular vectors, stored columnwise).

	
If jobu = 'N' or 'O', U is not referenced.

	
ldu

	
The leading dimension of the array U. ldu >= 1. If jobu = 'S' or 'a', ldu >= m.

	
vt

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (ldvt, n).

	
If jobvt = 'A', vt contains the n by n orthogonal matrix V**T.

	
If jobvt = 'S', vt contains the first min(m,n) rows of V**T (the right singular vectors, stored rowwise).

	
If jobvt = 'N' or 'O', vt is not referenced.

	
ldvt

	
The leading dimension of the array vt. ldvt >= 1.

	
If jobvt = 'A', ldvt >= n.

	
If jobvt = 'S', ldvt >= min(m,n).

	
info

	
	
= 0 : successful exit

	
< 0 : If info = -i, the i-th argument had an illegal value

	
> 0 : If SBDSQR did not converge, info specifies how many superdiagonals of an intermediate bidiagonal form B did not converge to zero.

	
pack

	
(Optional) Flags the packing of the matricies:

	
'C': column-major (default)

	
'R': row-major

LAPACK_GEEV Procedures

This procedures computes for an n by n real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors.

	
The right eigenvector v(j) of A satisfies A * v(j) = lambda(j) * v(j) where lambda(j) is its eigenvalue.

	
The left eigenvector u(j) of A satisfies u(j)**H * A = lambda(j) * u(j)**H where u(j)**H denotes the conjugate transpose of u(j).

The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real.

	
See Also:

LAPACK Driver Routines (LLS and Eigenvalue Problems) Subprograms for other subprograms in this group

Syntax

UTL_NLA.LAPACK_GEEV (
 jobvl IN flag,
 jobvr IN flag,
 n IN POSITIVEN,
 a IN OUT UTL_NLA_ARRAY_DBL,
 lda IN POSITIVEN,
 wr IN OUT UTL_NLA_ARRAY_DBL,
 wi IN OUT UTL_NLA_ARRAY_DBL,
 vl IN OUT UTL_NLA_ARRAY_DBL,
 ldvl IN POSITIVEN,
 vr IN OUT UTL_NLA_ARRAY_DBL,
 ldvr IN POSITIVEN,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

UTL_NLA.LAPACK_GEEV (
 jobvl IN flag,
 jobvr IN flag,
 n IN POSITIVEN,
 a IN OUT UTL_NLA_ARRAY_FLT,
 lda IN POSITIVEN,
 wr IN OUT UTL_NLA_ARRAY_FLT,
 wi IN OUT UTL_NLA_ARRAY_FLT,
 vl IN OUT UTL_NLA_ARRAY_FLT,
 ldvl IN POSITIVEN,
 vr IN OUT UTL_NLA_ARRAY_FLT,
 ldvr IN POSITIVEN,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-45 LAPACK_GEEV Procedure Parameters

	Parameter	Description
	
jobvl

	
	
'N': Left eigenvectors of A are not computed.

	
'V': Left eigenvectors of A are computed.

	
jobvr

	
	
'N': Right eigenvectors of A are not computed.

	
'V': Right eigenvectors of A are computed.

	
n

	
The order of the matrix a. N >= 0.

	
a

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (lda, n).

	
On entry, the n by n matrix A.

	
On exit, A has been overwritten.

	
lda

	
The leading dimension of the array a. lda >= max(1,n).

	
wr

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (n).

wr and wi contain the real and imaginary parts respectively of the computed eigenvalues. Complex conjugate pairs of eigenvalues will appear consecutively with the eigenvalue having the positive imaginary part first.

	
wi

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (ldz, n).

wr and wi contain the real and imaginary parts respectively of the computed eigenvalues. Complex conjugate pairs of eigenvalues will appear consecutively with the eigenvalue having the positive imaginary part first.

	
vl

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (n).

	
If jobvl = 'V', the left eigenvectors u(j) are stored one after another in the columns of vl, in the same order as their eigenvalues.

	
If jobvs = 'N', vl is not referenced.

	
If the j-th eigenvalue is real, then u(j) = VL(:,j), the j-th column of vl.

	
If the j-th and (j+1)-st eigenvalues form a complex conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and u(j+1) = VL(:,j) - i*VL(:,j+1).

	
ldv1

	
The leading dimension of the array vl. ldvl >= 1. If jobvl = 'v', ldvl >= n.

	
vr

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (ldvr, n).

	
If jobvr = 'V', the right eigenvectors v(j) are stored one after another in the columns of vr, in the same order as their eigenvalues..

	
If jobvr = 'N', vr is not referenced.

	
If the j-th eigenvalue is real, then v(j) = VR(:,j), the j-th column of vr.

	
If the j-th and (j+1)-st eigenvalues form a complex conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and v(j+1) = VR(:,j) - i*VR(:,j+1).

	
ldvr

	
The leading dimension of the array vr. vr.ldvr >= 1. If jobvr = 'V', ldvr >= N

	
info

	
	
= 0 : successful exit

	
< 0 : if info = -i, the i-th argument had an illegal value

	
> 0 : if info = i, and i is <= N: the QR algorithm failed to compute all the eigenvalues, and no eigenvectors have been computed. Elements i+1:N of wr and wi contain eigenvalues which have converged..

	
pack

	
(Optional) Flags the packing of the matricies:

	
'C': column-major (default)

	
'R': row-major

LAPACK_GTSV Procedures

This procedure solves the equation

a * x = b

where a is an n by n tridiagonal matrix, by Gaussian elimination with partial pivoting.

Note that the equation a'*x = b may be solved by interchanging the order of the arguments du and dl.

	
See Also:

LAPACK Driver Routines (Linear Equations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.LAPACK_GTSV (
 n IN POSITIVEN,
 nrhs IN POSITIVEN,
 dl IN OUT UTL_NLA_ARRAY_DBL,
 d IN OUT UTL_NLA_ARRAY_DBL,
 du IN OUT UTL_NLA_ARRAY_DBL,
 b IN OUT UTL_NLA_ARRAY_DBL,
 ldb IN POSITIVEN,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

UTL_NLA.LAPACK_GTSV (
 n IN POSITIVEN,
 nrhs IN POSITIVEN,
 dl IN OUT UTL_NLA_ARRAY_FLT,
 d IN OUT UTL_NLA_ARRAY_FLT,
 du IN OUT UTL_NLA_ARRAY_FLT,
 b IN OUT UTL_NLA_ARRAY_FLT,
 ldb IN POSITIVEN,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-46 LAPACK_GTSV Procedure Parameters

	Parameter	Description
	
n

	
The order of the matrix a .n >= 0

	
nrhs

	
The number of right-hand sides, which is the number of columns of the matrix b. nrhs >= 0.

	
dl

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (n-1).

On entry, dl must contain the (n-1) sub-diagonal elements of a.

On exit, dl is overwritten by the (n-2) elements of the second super-diagonal of the upper triangular matrix U from the LU factorization of a, in dl(1), ..., dl(n-2).

	
d

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (n).

On entry, d must contain the diagonal elements of a.

On exit, d is overwritten by the n diagonal elements of U.

	
du

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (n-1).

On entry, du must contain the (n-1)super-diagonal elements of a.

On exit, du is overwritten by the (n-1) elements of the first super-diagonal of U.

	
b

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (LDB, nrhs).

On entry, the n by nrhs matrix of right hand side matrix b.

On exit, if info = 0, the n by nrhs solution matrix X.

	
ldb

	
The leading dimension of the array b.

ldb >= max (1, n)

	
info

	
	
= 0 : successful exit

	
< 0 : if info = -i , the i-th argument had an illegal value

	
> 0 : if info = i, U(i,i) is exactly zero, and the solution has not been computed. The factorization has not been completed unless i = n.

	
pack

	
(Optional) Flags the packing of the matrices:

	
'C': column-major (default)

	
'R': row-major

LAPACK_PBSV Procedures

This procedure computes the solution to a real system of linear equations

a * x = b

where a is an n by n symmetric positive definite band matrix and x and b are n by nrhs matrices.

The Cholesky decomposition is used to factor A as

A = U**T*U if UPLO ='U'

or

A = L * L**T if UPLO = 'L'

where U is an upper triangular matrix and L is a lower triangular matrix. The factored form of A is then used to solve the system of equations A * X = B.

	
See Also:

LAPACK Driver Routines (Linear Equations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.LAPACK_PBSV (
uplo IN flag,
n IN POSITIVEN,
kd IN NATURALN,
nrhs IN POSITIVEN,
ab IN OUT UTL_NLA_ARRAY_DBL,
ldab IN POSITIVEN,
b IN OUT UTL_NLA_ARRAY_DBL,
ldb IN POSITIVEN,
info OUT INTEGER,
pack IN flag DEFAULT 'C');

UTL_NLA.LAPACK_PBSV (
uplo IN flag,
n IN POSITIVEN,
kd IN NATURALN,
nrhs IN POSITIVEN,
ab IN OUT UTL_NLA_ARRAY_FLT,
ldab IN POSITIVEN,
b IN OUT UTL_NLA_ARRAY_FLT,
ldb IN POSITIVEN,
info OUT INTEGER,
pack IN flag DEFAULT 'C');

Parameters

Table 231-47 LAPACK_PBSV Procedure Parameters

	Parameter	Description
	
uplo

	
	
uplo = 'U'. Upper triangular of A is stored.

	
uplo = 'L'. Lower triangular of A is stored.

	
n

	
The number of linear equations, that is, the order of the matrix a .n >= 0

	
kd

	
The number of superdiagonals of the matrix A if uplo = 'U', or the number of subdiagonals if UPLO = 'L'. KD >= 0.

	
nrhs

	
The number of right-hand sides, which is the number of columns of the matrix b. nrhs >= 0.

	
ab

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (ldab, n).

On entry, the upper or lower triangle of the symmetric band matrix a, stored in the first kd+1 rows of the array. The j-th column of a is stored in the j-th column of the array ab is as follows:

	
if uplo = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;

	
if uplo = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(N,j+KD)

.See below for further details.On exit, if info = 0, the triangular factor U or L from theCholesky factorization A = U**T*U or A = L*L**T of the bandmatrix A, in the same storage format as a.

	
ldab

	
The leading dimension of the array ab.

ldb >= kd+1

	
b

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (ldb, nrhs).

On entry, the n by nrhs matrix of right hand side matrix b.

On exit, if info = 0 , the n by nrhs solution matrix X.

	
ldb

	
The leading dimension of the array b.

ldb >= max(1,n)

	
info

	
	
= 0 : successful exit

	
< 0 : if info = -i , the i-th argument had an illegal value

	
> 0 : if info = i, the leading minor of order a of a is not positive definite, so the factorization could not be completed, and the solution has not been computed.

	
pack

	
(Optional) Flags the packing of the matrices:

	
'C': column-major (default)

	
'R': row-major

LAPACK_POSV Procedures

This procedure computes the solution to a real system of linear equations

a * x = b

where a is an n by n symmetric positive definite matrix and x and b are n by nrhs matrices.

The Cholesky decomposition is used to factor A as

A = U**T* U if uplo = 'U'

or

A = L * L**T if UPLO = 'L'

where U is an upper triangular matrix and L is a lower triangular matrix. The factored form of A is then used to solve the system of equations A * X = B.

	
See Also:

LAPACK Driver Routines (Linear Equations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.LAPACK_POSV (
 uplo IN flag,
 n IN POSITIVEN,
 nrhs IN POSITIVEN,
 a IN OUT UTL_NLA_ARRAY_DBL,
 lda IN POSITIVEN,
 b IN OUT UTL_NLA_ARRAY_DBL,
 ldb IN POSITIVEN,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

UTL_NLA.LAPACK_POSV (
 uplo IN flag,
 n IN POSITIVEN,
 nrhs IN POSITIVEN,
 a IN OUT UTL_NLA_ARRAY_FLT,
 lda IN POSITIVEN,
 b IN OUT UTL_NLA_ARRAY_FLT,
 ldb IN POSITIVEN,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-48 LAPACK_POSV Procedure Parameters

	Parameter	Description
	
uplo

	
	
uplo = 'U'. Upper triangular of A is stored.

	
uplo = 'L'. Lower triangular of A is stored.

	
n

	
The number of linear equations, that is, the order of the matrix a .n >= 0

	
nrhs

	
The number of right-hand sides, which is the number of columns of the matrix b. nrhs >= 0.

	
a

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (lda, n).

If uplo = 'U', the leading NRHS n by n upper triangular part of a contains the upper NRHS triangular part of the matrix A, and the strictly lower NRHS triangular part of A is not referenced.

If uplo = ''L', then rhs leading n by n lower triangular part of a contains the lower nrhs triangular part of the matrix a, and the strictly upper nrhs triangular part of a is not referenced.

On exit, if info = 0, the factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T.

	
lda

	
The leading dimension of the array a.

lda >= max (1, n)

	
b

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (ldb, nrhs).

On entry, the n by nrhs matrix of right hand side matrix b.

On exit, if info = 0 , the n by nrhs solution matrix X.

	
ldb

	
The leading dimension of the array b.

ldb >= max(1,n)

	
info

	
	
= 0 : successful exit

	
< 0 : if info = -i , the i-th argument had an illegal value

	
> 0 : if info = i, the leading minor of order i of a is not positive definite, so the factorization could not be completed, and the solution has not been computed.

	
pack

	
(Optional) Flags the packing of the matrices:

	
'C': column-major (default)

	
'R': row-major

LAPACK_PPSV Procedures

This procedure computes the solution to a real system of linear equations

a * x = b

where a is an n by n symmetric positive definite matrix stored in packed format and x and b are n by nrhs matrices.

The Cholesky decomposition is used to factor A as

A = U**T* U if UPLO = 'U'

or

A = L * L**T if UPLO = 'L'

where U is an upper triangular matrix and L is a lower triangular matrix. The factored form of A is then used to solve the system of equations A * X = B.

	
See Also:

LAPACK Driver Routines (Linear Equations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.LAPACK_PPSV (
 uplo IN flag,
 n IN POSITIVEN,
 nrhs IN POSITIVEN,
 ap IN OUT UTL_NLA_ARRAY_DBL,
 b IN OUT UTL_NLA_ARRAY_DBL,
 ldb IN POSITIVEN,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

UTL_NLA.LAPACK_PPSV (
 uplo IN flag,
 n IN POSITIVEN,
 nrhs IN POSITIVEN,
 ap IN OUT UTL_NLA_ARRAY_FLT,
 b IN OUT UTL_NLA_ARRAY_FLT,
 ldb IN POSITIVEN,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-49 LAPACK_PPSV Procedure Parameters

	Parameter	Description
	
uplo

	
	
uplo = 'U' . Upper triangular of A is stored.

	
uplo = 'L'. Lower triangular of A is stored.

	
n

	
The number of linear equations, that is, the order of the matrix a .n >= 0

	
nrhs

	
The number of right-hand sides, which is the number of columns of the matrix b. nrhs >= 0.

	
ap

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (n*(n+1)/2).

On entry, the upper or lower triangle of the symmetric matrix a, packed columnwise in a linear array. The j-th column of a is stored in the array ap as follows:

If uplo = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;

If uplo = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n;

On exit, if info = 0, the factor U or 'L' from the Cholesky factorization A = U**T*U or A = L*L**T in the same storage format as A.

	
b

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (ldb, nrhs).

On entry, the n by nrhs matrix of right hand side matrix b.

On exit, if info = 0 , the n by nrhs solution matrix X.

	
ldb

	
The leading dimension of the array b.

ldb >= max(1,n)

	
info

	
	
= 0 : successful exit

	
< 0 : if info = -i , the i-th argument had an illegal value

	
> 0 : if info = i, the leading minor of order i of a is not positive definite, so the factorization could not be completed, and the solution has not been computed.

	
pack

	
(Optional) Flags the packing of the matrices:

	
'C': column-major (default)

	
'R': row-major

LAPACK_PTSV Procedures

This procedure computes the solution to a real system of linear equations

a * x = b

where a is an n by n symmetric positive definite tridiagonal matrix, and x and b are n by nrhs matrices.

a is factored as A = L*D*L**T, and the factored form of a is then used to solve the system of equations.

	
See Also:

LAPACK Driver Routines (Linear Equations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.LAPACK_PTSV (
 n IN POSITIVEN,
 nrhs IN POSITIVEN,
 d IN OUT UTL_NLA_ARRAY_DBL,
 e IN OUT UTL_NLA_ARRAY_DBL,
 b IN OUT UTL_NLA_ARRAY_DBL,
 ldb IN POSITIVEN,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

UTL_NLA.LAPACK_PTSV (
 n IN POSITIVEN,
 nrhs IN POSITIVEN,
 d IN OUT UTL_NLA_ARRAY_FLT,
 e IN OUT UTL_NLA_ARRAY_FLT,
 b IN OUT UTL_NLA_ARRAY_FLT,
 ldb IN POSITIVEN,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-50 LAPACK_PTSV Procedure Parameters

	Parameter	Description
	
n

	
The order of the matrix a. N >= 0.

	
nrhs

	
The number of right-hand sides, which is the number of columns of the matrix b. nrhs >= 0.

	
d

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (n).

On entry, the n diagonal elements of the tridiagonal matrix a.

On exit, the n diagonal elements of the diagonal matrix d from the factorization A = L*D*L**T.

	
e

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (n-1).

On entry, the (n-1) subdiagonal elements of the tridiagonal matrix a.

On exit, the (n-1) diagonal elements of the unit bidiagonal factor L from the factorization A = L*D*L**T of a.(e can also be regarded as the superdiagonal of the unit bidiagonal factor U from the U**T*D*U factorization of a)

	
b

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (ldb, nrhs).

On entry, the n by nrhs matrix of right hand side matrix b.

On exit, if info = 0 , the n by nrhs solution matrix X.

	
ldb

	
The leading dimension of the array b.

ldb >= max(1,n)

	
info

	
	
= 0 : successful exit

	
< 0 : if info = -i , the i-th argument had an illegal value

	
> 0 : if info = i, the leading minor of order i of a is not positive definite, so the factorization could not be completed, and the solution has not been computed.

	
pack

	
(Optional) Flags the packing of the matrices:

	
'C': column-major (default)

	
'R': row-major

LAPACK_SBEV Procedures

This procedure computes all the eigenvalues and, optionally, eigenvectors of a real symmetric band matrix A.

	
See Also:

LAPACK Driver Routines (LLS and Eigenvalue Problems) Subprograms for other subprograms in this group

Syntax

UTL_NLA.LAPACK_SBEV (
 jobz IN flag,
 uplo IN flag,
 n IN POSITIVEN,
 kd IN NATURALN,
 ab IN OUT UTL_NLA_ARRAY_DBL,
 ldab IN POSITIVEN,
 w IN OUT UTL_NLA_ARRAY_DBL,
 z IN OUT UTL_NLA_ARRAY_DBL,
 ldz IN POSITIVEN,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

UTL_NLA.LAPACK_SBEV (
 jobz IN flag,
 uplo IN flag,
 n IN POSITIVEN,
 kd IN NATURALN,
 ab IN OUT UTL_NLA_ARRAY_FLT,
 ldab IN POSITIVEN,
 w IN OUT UTL_NLA_ARRAY_FLT,
 z IN OUT UTL_NLA_ARRAY_FLT,
 ldz IN POSITIVEN,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-51 LAPACK_SBEV Procedure Parameters

	Parameter	Description
	
jobz

	
	
'N': Compute eigenvalues only.

	
'V': Compute eigenvalues and eigenvectors.

	
uplo

	
	
'U': Upper triangle of A is stored.

	
'L': Lower triangle of A is stored.

	
n

	
The order of the matrix a. N >= 0.

	
kd

	
The number of superdiagonals of the matrix A if uplo = 'U', or the number of subdiagonals if uplo = 'L'. kd >= 0.

	
ab

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (ldab, n).

On entry, the upper or lower triangle of the symmetric band matrix A stored in the first kd+1 rows of the array. The j-th column of A is stored in the j-th column of the array ab:

	
If uplo = 'U', ab(kd+1+i-j,j) = a(i,j) for max(1,j-kd)<=i<=j.

	
If uplo = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).

On exit, ab is overwritten by values generated during the reduction to tridiagonal form:

	
If uplo = 'U', the diagonal and first superdiagonal of the tridiagonal matrix T are returned in rows kd and kd+1 of ab.

	
If uplo = 'L', the diagonal and first subdiagonal of T are returned in the first two rows of ab.

	
ldab

	
The leading dimension of the array ab. ldab >= kd + 1.

	
w

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (n).

If info = 0, the eigenvalues in ascending order.

	
z

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (n).

	
If jobz = 'V', then if info = 0, z contains the orthonormal eigenvectors of the matrix A, with the i-th column of z holding the eigenvector associated with w(i).

	
If jobz = 'N', then z is not referenced.

	
ldz

	
The leading dimension of the array z. ldz >= 1, and if jobz = 'v', ldz >= max(1,n).

	
info

	
	
= 0 : successful exit

	
< 0 : if info = -i, the i-th argument had an illegal value

	
> 0 : if info = i, the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero

	
pack

	
(Optional) Flags the packing of the matricies:

	
'C': column-major (default)

	
'R': row-major

LAPACK_SBEVD Procedures

This procedure computes all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix A. If eigenvectors are desired, it uses a divide and conquer algorithm that makes mild assumptions about floating point arithmetic.

	
See Also:

LAPACK Driver Routines (LLS and Eigenvalue Problems) Subprograms for other subprograms in this group

Syntax

UTL_NLA.LAPACK_SBEVD (
 jobz IN flag,
 uplo IN flag,
 n IN POSITIVEN,
 kd IN NATURALN,
 ab IN OUT UTL_NLA_ARRAY_DBL,
 ldab IN POSITIVEN,
 w IN OUT UTL_NLA_ARRAY_DBL,
 z IN OUT UTL_NLA_ARRAY_DBL,
 ldz IN POSITIVEN,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

UTL_NLA.LAPACK_SBEVD (
 jobz IN flag,
 uplo IN flag,
 n IN POSITIVEN,
 kd IN NATURALN,
 ab IN OUT UTL_NLA_ARRAY_FLT,
 ldab IN POSITIVEN,
 w IN OUT UTL_NLA_ARRAY_FLT,
 z IN OUT UTL_NLA_ARRAY_FLT,
 ldz IN POSITIVEN,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-52 LAPACK_SBEVD Procedure Parameters

	Parameter	Description
	
jobz

	
	
'N': Compute eigenvalues only.

	
'V': Compute eigenvalues and eigenvectors.

	
uplo

	
	
'U': Upper triangle of A is stored.

	
'L': Lower triangle of A is stored.

	
n

	
The order of the matrix a. N >= 0.

	
kd

	
The number of superdiagonals of the matrix A if uplo = 'U', or the number of subdiagonals if uplo = 'L'. kd >= 0.

	
ab

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (ldab, n).

On entry, the upper or lower triangle of the symmetric band matrix A stored in the first kd+1 rows of the array. The j-th column of A is stored in the j-th column of the array ab:

	
If uplo = 'U', ab(kd+1+i-j,j) = a(i,j) for max(1,j-kd)<=i<=j.

	
If uplo = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).

On exit, ab is overwritten by values generated during the reduction to tridiagonal form:

	
If uplo = 'U', the diagonal and first superdiagonal of the tridiagonal matrix T are returned in rows kd and kd+1 of ab.

	
If uplo = 'L', the diagonal and first subdiagonal of T are returned in the first two rows of ab.

	
ldab

	
The leading dimension of the array ab. ldab >= kd + 1.

	
w

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (ldz,n).

If info = 0, the eigenvalues in ascending order.

	
z

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (n).

	
If jobz = 'V', then if info = 0, z contains the orthonormal eigenvectors of the matrix A, with the i-th column of z holding the eigenvector associated with w(i).

	
If jobz = 'N', then z is not referenced.

	
ldz

	
The leading dimension of the array z. ldz >= 1, and if jobz = 'v', ldz >= max(1,n).

	
info

	
	
= 0 : successful exit

	
< 0 : if info = -i, the i-th argument had an illegal value

	
> 0 : if info = i, the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero

	
pack

	
(Optional) Flags the packing of the matricies:

	
'C': column-major (default)

	
'R': row-major

LAPACK_SPEV Procedures

This procedure computes all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix A in packed storage.

	
See Also:

LAPACK Driver Routines (LLS and Eigenvalue Problems) Subprograms for other subprograms in this group

Syntax

UTL_NLA.LAPACK_SPEV (
 jobz IN flag,
 uplo IN flag,
 n IN POSITIVEN,
 ap IN OUT UTL_NLA_ARRAY_DBL,
 w IN OUT UTL_NLA_ARRAY_DBL,
 z IN OUT UTL_NLA_ARRAY_DBL,
 ldz IN POSITIVEN,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

UTL_NLA.LAPACK_SPEV (
 jobz IN flag,
 uplo IN flag,
 n IN POSITIVEN,
 ap IN OUT UTL_NLA_ARRAY_FLT,
 w IN OUT UTL_NLA_ARRAY_FLT,
 z IN OUT UTL_NLA_ARRAY_FLT,
 ldz IN POSITIVEN,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-53 LAPACK_SPEV Procedure Parameters

	Parameter	Description
	
jobz

	
	
'N': Compute eigenvalues only.

	
'V': Compute eigenvalues and eigenvectors.

	
uplo

	
	
'U': Upper triangle of A is stored.

	
'L': Lower triangle of A is stored.

	
n

	
The order of the matrix a. N >= 0.

	
ap

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (n*(n+1)/2).

On entry, the upper or lower triangle of the symmetric matrix a packed columnwise in a linear array. The j-th column of a is stored in the array ap:

	
If uplo = 'U', ap(i + (j-1)*j/2) = a(i,j) for 1<=i<=j.

	
If uplo = 'L', ap(i + (j-1)*(2*n-j)/2) = a(i,j) for j<=i<=n.

On exit, ap is overwritten by values generated during the reduction to tridiagonal form:

	
If uplo = 'U', the diagonal and first superdiagonal of the tridiagonal matrix T overwrite the corresponding elements of A.

	
If uplo = 'L', the diagonal and first subdiagonal of T overwrite the corresponding elements of A.

	
w

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (n).

If info = 0, the eigenvalues in ascending order.

	
z

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (ldz,n).

	
If jobz = 'V', then if info = 0, z contains the orthonormal eigenvectors of the matrix A, with the i-th column of z holding the eigenvector associated with w(i).

	
If jobz = 'N', then z is not referenced.

	
ldz

	
The leading dimension of the array z. ldz >= 1, and if jobz = 'v', ldz >= max(1,n).

	
info

	
	
= 0 : successful exit

	
< 0 : if info = -i, the i-th argument had an illegal value

	
> 0 : if info = i, the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero

	
pack

	
(Optional) Flags the packing of the matricies:

	
'C': column-major (default)

	
'R': row-major

LAPACK_SPEVD Procedures

This procedure computes all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix A in packed storage. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic.

	
See Also:

LAPACK Driver Routines (LLS and Eigenvalue Problems) Subprograms for other subprograms in this group

Syntax

UTL_NLA.LAPACK_SPEVD (
 jobz IN flag,
 uplo IN flag,
 n IN POSITIVEN,
 ap IN OUT UTL_NLA_ARRAY_DBL,
 w IN OUT UTL_NLA_ARRAY_DBL,
 z IN OUT UTL_NLA_ARRAY_DBL,
 ldz IN POSITIVEN,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

UTL_NLA.LAPACK_SPEVD (
 jobz IN flag,
 uplo IN flag,
 n IN POSITIVEN,
 ap IN OUT UTL_NLA_ARRAY_FLT,
 w IN OUT UTL_NLA_ARRAY_FLT,
 z IN OUT UTL_NLA_ARRAY_FLT,
 ldz IN POSITIVEN,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-54 LAPACK_SPEVD Procedure Parameters

	Parameter	Description
	
jobz

	
	
'N': Compute eigenvalues only.

	
'V': Compute eigenvalues and eigenvectors.

	
uplo

	
	
'U': Upper triangle of A is stored.

	
'L': Lower triangle of A is stored.

	
n

	
The order of the matrix a. N >= 0.

	
ap

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (n*(n+1)/2).

On entry, the upper or lower triangle of the symmetric matrix a packed columnwise in a linear array. The j-th column of a is stored in the array ap:

	
If uplo = 'U', ap(i + (j-1)*j/2) = a(i,j) for 1<=i<=j.

	
If uplo = 'L', ap(i + (j-1)*(2*n-j)/2) = a(i,j) for j<=i<=n.

On exit, ap is overwritten by values generated during the reduction to tridiagonal form:

	
If uplo = 'U', the diagonal and first superdiagonal of the tridiagonal matrix T overwrite the corresponding elements of A.

	
If uplo = 'L', the diagonal and first subdiagonal of T overwrite the corresponding elements of A.

	
w

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (n).

If info = 0, the eigenvalues in ascending order.

	
z

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (ldz,n).

	
If jobz = 'V', then if info = 0, z contains the orthonormal eigenvectors of the matrix A, with the i-th column of z holding the eigenvector associated with w(i).

	
If jobz = 'N', then z is not referenced.

	
ldz

	
The leading dimension of the array z. ldz >= 1, and if jobz = 'v', ldz >= max(1,n).

	
info

	
	
= 0 : successful exit

	
< 0 : if info = -i, the i-th argument had an illegal value

	
> 0 : if info = i, the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero

	
pack

	
(Optional) Flags the packing of the matricies:

	
'C': column-major (default)

	
'R': row-major

LAPACK_SPSV Procedures

This procedure computes the solution to a real system of linear equations

a * x = b

where a is an n by n symmetric matrix stored in packed format, and x and b are n by nrhs matrices.

The diagonal pivoting method is used to factor A as

A = U * D * U**T, if UPLO = 'U'

or

A = L * D * L**T, if UPLO = 'L'

where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is symmetric and block diagonal with 1 by 1 and 2 by 2 diagonal blocks. The factored form of A is then used to solve the system of equations A * X = B.

	
See Also:

LAPACK Driver Routines (Linear Equations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.LAPACK_SPSV (
 uplo IN flag,
 n IN POSITIVEN,
 nrhs IN POSITIVEN,
 ap IN OUT UTL_NLA_ARRAY_DBL,
 ipiv IN OUT UTL_NLA_ARRAY_INT,
 b IN OUT UTL_NLA_ARRAY_DBL,
 ldb IN POSITIVEN,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

UTL_NLA.LAPACK_SPSV (
 uplo IN flag,
 n IN POSITIVEN,
 nrhs IN POSITIVEN,
 ap IN OUT UTL_NLA_ARRAY_FLT,
 ipiv IN OUT UTL_NLA_ARRAY_INT,
 b IN OUT UTL_NLA_ARRAY_FLT,
 ldb IN POSITIVEN,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-55 LAPACK_SPSV Procedure Parameters

	Parameter	Description
	
uplo

	
	
uplo = 'U'. Upper triangular of A is stored.

	
uplo = 'L' . Lower triangular of A is stored.

	
n

	
The number of linear equations, which is the order of the matrix a. N >= 0.

	
nrhs

	
The number of right-hand sides, which is the number of columns of the matrix b. nrhs >= 0.

	
ap

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (n*(n+1)/2).

On entry, the upper or lower triangle of the symmetric matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array ap as follows:

	
uplo = 'U': AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j

	
uplo = 'L' : AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n

See below for further details.

On exit, the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization A = U*D*U**T or A = L*D*L**T as computed by SSPTRF, stored as a packed triangular matrix in the same storage format as A.

	
ipiv

	
INTEGER array, DIMENSION (n).

Details of the interchanges and the block structure of d, as determined by SSPTRF.

	
If ipiv(k) > 0, then rows and columns k and ipiv(k) were interchanged, and d(k,k) is a 1 by1 diagonal block.

	
If uplo = 'U' and ipiv(k) = ipiv(k-1) < 0, then rows and columns k-1 and -ipiv(k) were interchanged and d(k-1:k,k-1:k) is a 2 by 2 diagonal block.

	
If uplo = 'L' and ipiv(k) = ipiv(k+1) < 0, then rows and columns k+1 and -ipiv(k) were interchanged and d(k:k+1,k:k+1) is a 2 by 2 diagonal block.

	
b

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (ldb, nrhs).

On entry, the n by nrhs right hand side matrix b.

On exit, if info = 0 , the n by nrhs solution matrix X.

	
ldb

	
The leading dimension of the array b.

ldb >= max(1,n)

	
info

	
	
= 0 : successful exit

	
< 0 : if info = -i, the i-th argument had an illegal value

	
> 0 : if info = i, d(i,i) is exactly zero. The factorization has been completed, but the block diagonal matrix d is exactly singular, so the solution could not be computed.

	
pack

	
(Optional) Flags the packing of the matrices:

	
'C': column-major (default)

	
'R': row-major

LAPACK_STEV Procedures

This procedure computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix A.

	
See Also:

LAPACK Driver Routines (LLS and Eigenvalue Problems) Subprograms for other subprograms in this group

Syntax

UTL_NLA.LAPACK_STEV (
 jobz IN flag,
 n IN POSITIVEN,
 d IN OUT UTL_NLA_ARRAY_DBL,
 e IN OUT UTL_NLA_ARRAY_DBL,
 z IN OUT UTL_NLA_ARRAY_DBL,
 ldz IN POSITIVEN,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

UTL_NLA.LAPACK_STEV (
 jobz IN flag,
 n IN POSITIVEN,
 d IN OUT UTL_NLA_ARRAY_FLT,
 e IN OUT UTL_NLA_ARRAY_FLT,
 z IN OUT UTL_NLA_ARRAY_FLT,
 ldz IN POSITIVEN,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-56 LAPACK_STEV Procedure Parameters

	Parameter	Description
	
jobz

	
	
'N': Compute eigenvalues only.

	
'V': Compute eigenvalues and eigenvectors.

	
n

	
The order of the matrix a. N >= 0.

	
d

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (n).

	
On entry, the n diagonal elements of the tridiagonal matrix A.

	
On exit, if info = 0, the eigenvalues in ascending order.

	
e

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (n).

	
On entry, the (n-1) subdiagonal elements of the tridiagonal matrix A, stored in elements 1 to n-1 of e. e(n) need not be set, but is used by the subprogram.

	
On exit, the contents of e are destroyed.

	
z

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (ldz, n).

	
If jobz = 'V', then if info = 0, z contains the orthonormal eigenvectors of the matrix A, with the i-th column of z holding the eigenvector associated with d(i).

	
If jobz = 'N', then z is not referenced.

	
ldz

	
The leading dimension of the array z. ldz >= 1, and if jobz = 'v', ldz >= max(1,n).

	
info

	
	
= 0 : successful exit

	
< 0 : if info = -i, the i-th argument had an illegal value

	
> 0 : if info = i, the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero

	
pack

	
(Optional) Flags the packing of the matricies:

	
'C': column-major (default)

	
'R': row-major

LAPACK_STEVD Procedures

This procedure computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix. If eigenvectors are desired, it uses a divide and conquer algorithm that makes mild assumptions about floating point arithmetic.

	
See Also:

LAPACK Driver Routines (LLS and Eigenvalue Problems) Subprograms for other subprograms in this group

Syntax

UTL_NLA.LAPACK_STEVD (
 jobz IN flag,
 n IN POSITIVEN,
 d IN OUT UTL_NLA_ARRAY_DBL,
 e IN OUT UTL_NLA_ARRAY_DBL,
 z IN OUT UTL_NLA_ARRAY_DBL,
 ldz IN POSITIVEN,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

UTL_NLA.LAPACK_STEVD(
 jobz IN flag,
 n IN POSITIVEN,
 d IN OUT UTL_NLA_ARRAY_FLT,
 e IN OUT UTL_NLA_ARRAY_FLT,
 z IN OUT UTL_NLA_ARRAY_FLT,
 ldz IN POSITIVEN,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-57 LAPACK_STEVD Procedure Parameters

	Parameter	Description
	
jobz

	
	
'N': Compute eigenvalues only.

	
'V': Compute eigenvalues and eigenvectors.

	
n

	
The order of the matrix a. N >= 0.

	
d

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (n).

	
On entry, the n diagonal elements of the tridiagonal matrix A.

	
On exit, if info = 0, the eigenvalues in ascending order.

	
e

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (n).

	
On entry, the (n-1) subdiagonal elements of the tridiagonal matrix A, stored in elements 1 to n-1 of e. e(n) need not be set, but is used by the subprogram.

	
On exit, the contents of e are destroyed.

	
z

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (ldz, n).

	
If jobz = 'V', then if info = 0, z contains the orthonormal eigenvectors of the matrix A, with the i-th column of z holding the eigenvector associated with d(i).

	
If jobz = 'N', then z is not referenced.

	
ldz

	
The leading dimension of the array z. ldz >= 1, and if jobz = 'v', ldz >= max(1,n).

	
info

	
	
= 0 : successful exit

	
< 0 : if info = -i, the i-th argument had an illegal value

	
> 0 : if info = i, the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero

	
pack

	
(Optional) Flags the packing of the matricies:

	
'C': column-major (default)

	
'R': row-major

LAPACK_SYEV Procedures

This procedure computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A.

	
See Also:

LAPACK Driver Routines (LLS and Eigenvalue Problems) Subprograms for other subprograms in this group

Syntax

UTL_NLA.LAPACK_SYEV (
 jobz IN flag,
 uplo IN flag,
 n IN POSITIVEN,
 a IN OUT UTL_NLA_ARRAY_DBL,
 lda IN POSITIVEN,
 w IN OUT UTL_NLA_ARRAY_DBL,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

UTL_NLA.LAPACK_SYEV (
 jobz IN flag,
 uplo IN flag,
 n IN POSITIVEN,
 a IN OUT UTL_NLA_ARRAY_FLT,
 lda IN POSITIVEN,
 w IN OUT UTL_NLA_ARRAY_FLT,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-58 LAPACK_SYEV Procedure Parameters

	Paramete	Description
	
jobz

	
	
'N': Compute eigenvalues only.

	
'V': Compute eigenvalues and eigenvectors.

	
uplo

	
	
'U': Upper triangle of A is stored.

	
'L': Upper triangle of A is stored.

	
n

	
The order of the matrix a. N >= 0.

	
a

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (lda, n).

On entry, the symmetric matrix a:

	
If uplo = 'U', the leading n by n upper triangular part of a contains the upper triangular part of the matrix a.

	
If uplo = 'L', the leading n byn lower triangular part of a contains the lower triangular part of the matrix a.

On exit:

	
If jobz = 'V', then if info = 0, a contains the orthonormal eigenvectors of the matrix a.

	
If jobz = 'N', then on exit the lower triangle (if uplo = 'L') or the upper triangle (if uplo='U') of a, including the diagonal, is destroyed.

	
lda

	
The leading dimension of the array a. lda >= max(1,n).

	
w

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (n).

If info = 0, the eigenvalues in ascending order.

	
info

	
	
= 0 : successful exit

	
< 0 : if info = -i, the i-th argument had an illegal value

	
> 0 : if info = i, the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero

	
pack

	
(Optional) Flags the packing of the matricies:

	
'C': column-major (default)

	
'R': row-major

LAPACK_SYEVD Procedures

This procedure computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A. If eigenvectors are desired, it uses a divide and conquer algorithm that makes mild assumptions about floating point arithmetic.

	
See Also:

LAPACK Driver Routines (LLS and Eigenvalue Problems) Subprograms for other subprograms in this group

Syntax

UTL_NLA.LAPACK_SYEVD (

 jobz IN flag,
 uplo IN flag,
 n IN POSITIVEN,
 a IN OUT UTL_NLA_ARRAY_DBL,
 lda IN POSITIVEN,
 w IN OUT UTL_NLA_ARRAY_DBL,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

UTL_NLA.LAPACK_SYEVD (
 jobz IN flag,
 uplo IN flag,
 n IN POSITIVEN,
 a IN OUT UTL_NLA_ARRAY_FLT,
 lda IN POSITIVEN,
 w IN OUT UTL_NLA_ARRAY_FLT,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-59 LAPACK_SYEVD Procedure Parameters

	Parameter	Description
	
jobz

	
	
'N': Compute eigenvalues only.

	
'V': Compute eigenvalues and eigenvectors.

	
uplo

	
	
'U' : Upper triangle of A is stored.

	
'L': Upper triangle of A is stored.

	
n

	
The order of the matrix a. N >= 0.

	
a

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (lda, n).

On entry, the symmetric matrix a:

	
If uplo = 'U', the leading n by n upper triangular part of a contains the upper triangular part of the matrix a.

	
If uplo = 'L', the leading n byn lower triangular part of a contains the lower triangular part of the matrix a.

On exit:

	
If jobz = 'V', then if info = 0, a contains the orthonormal eigenvectors of the matrix a.

	
If jobz = 'N', then on exit the lower triangle (if uplo = 'L') or the upper triangle (if uplo = 'U') of a, including the diagonal, is destroyed.

	
lda

	
The leading dimension of the array a. lda >= max(1,n).

	
w

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (n).

If info = 0, the eigenvalues in ascending order.

	
info

	
	
= 0 : successful exit

	
< 0 : if info = -i, the i-th argument had an illegal value

	
> 0 : if info = i, the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero

	
pack

	
(Optional) Flags the packing of the matricies:

	
'C': column-major (default)

	
'R': row-major

LAPACK_SYSV Procedures

This procedure computes the solution to a real system of linear equations

a * x = b

where a is an n by n symmetric matrix, and x and b are n by nrhs matrices.

The diagonal pivoting method is used to factor A as

A = U * D * U**T, if UPLO = 'U'

or

A = L * D * L**T, if UPLO = 'L'

where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is symmetric and block diagonal with 1 by 1 and 2 by 2 diagonal blocks. The factored form of A is then used to solve the system of equations A * X = B.

	
See Also:

LAPACK Driver Routines (Linear Equations) Subprograms for other subprograms in this group

Syntax

UTL_NLA.LAPACK_SYSV (
 uplo IN flag,
 n IN POSITIVEN,
 nrhs IN POSITIVEN,
 a IN OUT UTL_NLA_ARRAY_DBL,
 lda IN POSITIVEN,
 ipiv IN OUT UTL_NLA_ARRAY_INT,
 b IN OUT UTL_NLA_ARRAY_DBL,
 ldb IN POSITIVEN,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

UTL_NLA.LAPACK_SYSV (
 uplo IN flag,
 n IN POSITIVEN,
 nrhs IN POSITIVEN,
 a IN OUT UTL_NLA_ARRAY_FLT,
 lda IN POSITIVEN,
 ipiv IN OUT UTL_NLA_ARRAY_INT,
 b IN OUT UTL_NLA_ARRAY_FLT,
 ldb IN POSITIVEN,
 info OUT INTEGER,
 pack IN flag DEFAULT 'C');

Parameters

Table 231-60 LAPACK_SYSV Procedure Parameters

	Parameter	Description
	
uplo

	
	
uplo = 'U'. Upper triangular of A is stored.

	
uplo = 'L' . Lower triangular of A is stored.

	
n

	
The number of linear equations, which is the order of the matrix a. N >= 0.

	
nrhs

	
The number of right-hand sides, which is the number of columns of the matrix b. nrhs >= 0.

	
a

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (n-1).

On entry, the symmetric matrix a. If UPLO = 'U', the leading n by n upper triangular part of a contains the upper triangular part of the matrix a, and the strictly lower triangular part of a is not referenced. If uplo = 'L', the leading n by n lower triangular part of a contains the lower triangular part of the matrix a, and the strictly upper triangular part of a is not referenced.

On exit, if info = 0, the block diagonal matrix d and the multipliers used to obtain the factor U or L from the factorization A = U*D*U**T or A = L*D*L**T as computed by SSYTRF.

	
lda

	
The leading dimension of the array a.

lda >= max(1,n)

	
ipiv

	
INTEGER array, DIMENSION (ldb, nrhs).

Details of the interchanges and the block structure of d, as determined by SSYTRF.

	
If ipiv(k) > 0, then rows and columns k and ipiv(k) were interchanged, and d(k,k) is a 1 by1 diagonal block.

	
If uplo = 'U' and ipiv(k) = ipiv(k-1) < 0, then rows and columns k-1 and -ipiv(k) were interchanged and d(k-1:k,k-1:k) is a 2 by 2 diagonal block.

	
If uplo = 'L' and ipiv(k) = ipiv(k+1) < 0, then rows and columns k+1 and -ipiv(k) were interchanged and d(k:k+1,k:k+1) is a 2 by 2 diagonal block.

	
b

	
UTL_NLA_ARRAY_FLT/DBL, DIMENSION (ldb, nrhs).

On entry, the n by nrhs matrix of right hand side matrix b.

On exit, if info = 0 , the n by nrhs solution matrix X.

	
ldb

	
The leading dimension of the array b.

ldb >= max(1,n)

	
info

	
	
= 0 : successful exit

	
< 0 : if info = -i , the i-th argument had an illegal value

	
> 0 : if info = i, d(i,i) is exactly zero. The factorization has been completed, but the block diagonal matrix d is exactly singular, so the solution could not be computed.

	
pack

	
(Optional) Flags the packing of the matrices:

	
'C': column-major (default)

	
'R': row-major

UTL_RAW

232 UTL_RAW

The UTL_RAW package provides SQL functions for manipulating RAW datatypes.

This chapter contains the following topics:

	
Using UTL_RAW

	
Overview

	
Operational Notes

	
Summary of UTL_RAW Subprograms

Using UTL_RAW

	
Overview

	
Operational Notes

Overview

This package is necessary because normal SQL functions do not operate on RAWs, and PL/SQL does not allow overloading between a RAW and a CHAR datatype. UTL_RAW also includes subprograms that convert various COBOL number formats to, and from, RAWs.

UTL_RAW is not specific to the database environment, and it may actually be used in other environments. For this reason, the prefix UTL has been given to the package, instead of DBMS.

Operational Notes

UTL_RAW allows a RAW "record" to be composed of many elements. By using the RAW datatype, character set conversion will not be performed, keeping the RAW in its original format when being transferred through remote procedure calls.

With the RAW functions, you can manipulate binary data that was previously limited to the hextoraw and rawtohex functions.

	
Note:

Notes on data types:
	
The PLS_INTEGER and BINARY_INTEGER data types are identical. This document uses BINARY_INTEGER to indicate data types in reference information (such as for table types, record types, subprogram parameters, or subprogram return values), but may use either in discussion and examples.

	
The INTEGER and NUMBER(38) data types are also identical. This document uses INTEGER throughout.

Summary of UTL_RAW Subprograms

Table 232-1 UTL_RAW Package Subprograms

	Subprogram	Description
	
BIT_AND Function

	
Performs bitwise logical "and" of the values in RAW r1 with RAW r2 and returns the "anded" result RAW

	
BIT_COMPLEMENT Function

	
Performs bitwise logical "complement" of the values in RAW r and returns the "complement'ed" result RAW

	
BIT_OR Function

	
Performs bitwise logical "or" of the values in RAW r1 with RAW r2 and returns the "or'd" result RAW

	
BIT_XOR Function

	
Performs bitwise logical "exclusive or" of the values in RAW r1 with RAW r2 and returns the "xor'd" result RAW

	
CAST_FROM_BINARY_DOUBLE Function

	
Returns the RAW binary representation of a BINARY_DOUBLE value

	
CAST_FROM_BINARY_FLOAT Function

	
Returns the RAW binary representation of a BINARY_FLOAT value

	
CAST_FROM_BINARY_INTEGER Function

	
Returns the RAW binary representation of a BINARY_INTEGER value

	
CAST_FROM_NUMBER Function

	
Returns the RAW binary representation of a NUMBER value

	
CAST_TO_BINARY_DOUBLE Function

	
Casts the RAW binary representation of a BINARY_DOUBLE into a BINARY_DOUBLE

	
CAST_TO_BINARY_FLOAT Function

	
Casts the RAW binary representation of a BINARY_FLOAT into a BINARY_FLOAT

	
CAST_TO_BINARY_INTEGER Function

	
Casts the RAW binary representation of a BINARY_INTEGER into a BINARY_INTEGER

	
CAST_TO_NUMBER Function

	
Casts the RAW binary representation of a NUMBER into a NUMBER

	
CAST_TO_NVARCHAR2 Function

	
Converts a RAW value into a VARCHAR2 value

	
CAST_TO_RAW Function

	
Converts a RAW value into an NVARCHAR2 value

	
CAST_TO_VARCHAR2 Function

	
Converts a VARCHAR2 value into a RAW value

	
COMPARE Function

	
Compares RAW r1 against RAW r2

	
CONCAT Function

	
Concatenates up to 12 RAWs into a single RAW

	
CONVERT Function

	
Converts RAW r from character set from_charset to character set to_charset and returns the resulting RAW

	
COPIES Function

	
Returns n copies of r concatenated together

	
LENGTH Function

	
Returns the length in bytes of a RAW r

	
OVERLAY Function

	
Overlays the specified portion of target RAW with overlay RAW, starting from byte position pos of target and proceeding for len bytes

	
REVERSE Function

	
Reverses a byte sequence in RAW r from end to end

	
SUBSTR Function

	
Returns len bytes, starting at pos from RAW r

	
TRANSLATE Function

	
Translates the bytes in the input RAW r according to the bytes in the translation RAWs from_set and to_set

	
TRANSLITERATE Function

	
Converts the bytes in the input RAW r according to the bytes in the transliteration RAWs from_set and to_set

	
XRANGE Function

	
Returns a RAW containing all valid 1-byte encodings in succession, beginning with the value start_byte and ending with the value end_byte

BIT_AND Function

This function performs bitwise logical "and" of the values in RAW r1 with RAW r2 and returns the "anded" result RAW.

Syntax

UTL_RAW.BIT_AND (
 r1 IN RAW,
 r2 IN RAW)
RETURN RAW;

Pragmas

pragma restrict_references(bit_and, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 232-2 BIT_AND Function Parameters

	Parameter	Description
	
r1

	
RAW to "and" with r2

	
r2

	
RAW to "and" with r1

Return Values

Table 232-3 BIT_AND Function Return Values

	Return	Description
	
RAW

	
Containing the "and" of r1 and r2

	
NULL

	
Either r1 or r2 input parameter was NULL

Usage Notes

If r1 and r2 differ in length, the and operation is terminated after the last byte of the shorter of the two RAWs, and the unprocessed portion of the longer RAW is appended to the partial result. The result length equals the longer of the two input RAWs.

BIT_COMPLEMENT Function

This function performs bitwise logical "complement" of the values in RAW r and returns the complement'ed result RAW. The result length equals the input RAW r length.

Syntax

UTL_RAW.BIT_COMPLEMENT (
 r IN RAW)
 RETURN RAW;

Pragmas

pragma restrict_references(bit_complement, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 232-4 BIT_COMPLEMENT Function Parameters

	Parameter	Description
	
r

	
RAW to perform "complement" operation

Return Values

Table 232-5 BIT_COMPLEMENT Function Return Values

	Return	Description
	
RAW

	
The "complement" of r1

	
NULL

	
If r input parameter was NULL

BIT_OR Function

This function performs bitwise logical "or" of the values in RAW r1 with RAW r2 and returns the or'd result RAW.

Syntax

UTL_RAW.BIT_OR (
 r1 IN RAW,
 r2 IN RAW)
 RETURN RAW;

Pragmas

pragma restrict_references(bit_or, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 232-6 BIT_OR Function Parameters

	Parameters	Description
	
r1

	
RAW to "or" with r2

	
r2

	
RAW to "or" with r1

Return Values

Table 232-7 BIT_OR Function Return Values

	Return	Description
	
RAW

	
Containing the "or" of r1 and r2

	
NULL

	
Either r1 or r2 input parameter was NULL

Usage Notes

If r1 and r2 differ in length, then the "or" operation is terminated after the last byte of the shorter of the two RAWs, and the unprocessed portion of the longer RAW is appended to the partial result. The result length equals the longer of the two input RAWs.

BIT_XOR Function

This function performs bitwise logical "exclusive or" of the values in RAW r1 with RAW r2 and returns the xor'd result RAW.

Syntax

UTL_RAW.BIT_XOR (
 r1 IN RAW,
 r2 IN RAW)
 RETURN RAW;

Pragmas

pragma restrict_references(bit_xor, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 232-8 BIT_XOR Function Parameters

	Parameter	Description
	
r1

	
RAW to "xor" with r2

	
r2

	
RAW to "xor" with r1

Return Values

Table 232-9 BIT_XOR Function Return Values

	Return	Description
	
RAW

	
Containing the "xor" of r1 and r2

	
NULL

	
If either r1 or r2 input parameter was NULL

Usage Notes

If r1 and r2 differ in length, then the "xor" operation is terminated after the last byte of the shorter of the two RAWs, and the unprocessed portion of the longer RAW is appended to the partial result. The result length equals the longer of the two input RAWs.

CAST_FROM_BINARY_DOUBLE Function

This function returns the RAW binary representation of a BINARY_DOUBLE value.

Syntax

UTL_RAW.CAST_FROM_BINARY_DOUBLE(
 n IN BINARY_DOUBLE,
 endianess IN PLS_INTEGER DEFAULT 1)
RETURN RAW;

Pragmas

pragma restrict_references(cast_from_binary_double, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 232-10 CAST_FROM_BINARY_DOUBLE Function Parameters

	Parameter	Description
	
n

	
BINARY_DOUBLE value

	
endianess

	
A BINARY_INTEGER value indicating the endianess. The function recognizes the defined constants big_endian (1), little_endian (2), and machine_endian (3). The default is big_endian. A setting of machine_endian has the same effect as big_endian on a big endian machine, or the same effect as little_endian on a little endian machine.

Return Values

The binary representation of the BINARY_DOUBLE value, or NULL if the input is NULL.

Usage Notes

	
An 8-byte binary_double value maps to the IEEE 754 double-precision format as follows:

byte 0: bit 63 ~ bit 56
byte 1: bit 55 ~ bit 48
byte 2: bit 47 ~ bit 40
byte 3: bit 39 ~ bit 32
byte 4: bit 31 ~ bit 24
byte 5: bit 23 ~ bit 16
byte 6: bit 15 ~ bit 8
byte 7: bit 7 ~ bit 0

	
The parameter endianess describes how the bytes of BINARY_DOUBLE are mapped to the bytes of RAW. In the following matrix, rb0 ~ rb7 refer to the bytes in raw and db0 ~ db7 refer to the bytes in BINARY_DOUBLE.

	
	rb0	rb1	rb2	rb3	rb4	rb5	rb6	rb7
	big_endian	db0	db1	db2	db3	db4	db5	db6	db7
	little_endian	db7	db6	db5	db4	db3	db2	db1	db0

	
In case of machine-endian, the 8 bytes of the BINARY_DOUBLE argument are copied straight across into the RAW return value. The effect is the same if the user has passed big_endian on a big-endian machine, or little_endian on a little-endian machine.

CAST_FROM_BINARY_FLOAT Function

This function returns the RAW binary representation of a BINARY_FLOAT value.

Syntax

UTL_RAW.CAST_FROM_BINARY_FLOAT(
 n IN BINARY_FLOAT,
 endianess IN PLS_INTEGER DEFAULT 1)
RETURN RAW;

Pragmas

pragma restrict_references(cast_from_binary_float, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 232-11 CAST_FROM_BINARY_FLOAT Function Parameters

	Parameter	Description
	
n

	
BINARY_FLOAT value

	
endianess

	
A BINARY_INTEGER value indicating the endianess. The function recognizes the defined constants big_endian (1), little_endian (2), and machine_endian (3). The default is big_endian. A setting of machine_endian has the same effect as big_endian on a big endian machine, or the same effect as little_endian on a little endian machine.

Return Values

The binary representation (RAW) of the BINARY_FLOAT value, or NULL if the input is NULL.

Usage Notes

	
A 4-byte binary_float value maps to the IEEE 754 single-precision format as follows:

byte 0: bit 31 ~ bit 24
byte 1: bit 23 ~ bit 16
byte 2: bit 15 ~ bit 8
byte 3: bit 7 ~ bit 0

	
The parameter endianess describes how the bytes of BINARY_FLOAT are mapped to the bytes of RAW. In the following matrix, rb0 ~ rb3 refer to the bytes in RAW and fb0 ~ fb3 refer to the bytes in BINARY_FLOAT.

	
	rb0	rb1	rb2	rb3
	big_endian	fb0	fb1	fb2	fb3
	little_endian	fb3	fb2	fb1	fb0

	
In case of machine-endian, the 4 bytes of the BINARY_FLOAT argument are copied straight across into the RAW return value. The effect is the same if the user has passed big_endian on a big-endian machine, or little_endian on a little-endian machine.

CAST_FROM_BINARY_INTEGER Function

This function returns the RAW binary representation of a BINARY_INTEGER value.

Syntax

UTL_RAW.CAST_FROM_BINARY_INTEGER (
 n IN BINARY_INTEGER
 endianess IN PLS_INTEGER DEFAULT BIG_ENDIAN)
RETURN RAW;

Pragmas

pragma restrict_references(cast_from_binary_integer, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 232-12 CAST_FROM_BINARY_INTEGER Function Parameters

	Parameter	Description
	
n

	
BINARY_INTEGER value.

	
endianess

	
A BINARY_INTEGER value indicating the endianess. The function recognizes the defined constants big_endian (1), little_endian (2), and machine_endian (3). The default is big_endian. A setting of machine_endian has the same effect as big_endian on a big endian machine, or the same effect as little_endian on a little endian machine.

Return Values

The binary representation of the BINARY_INTEGER value.

CAST_FROM_NUMBER Function

This function returns the RAW binary representation of a NUMBER value.

Syntax

UTL_RAW.CAST_FROM_NUMBER (
 n IN NUMBER)
 RETURN RAW;

Pragmas

pragma restrict_references(cast_from_number, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 232-13 CAST_FROM_NUMBER Function Parameters

	Parameter	Description
	
n

	
NUMBER value

Return Values

The binary representation of the NUMBER value.

CAST_TO_BINARY_DOUBLE Function

This function casts the RAW binary representation of a BINARY_DOUBLE into a BINARY_DOUBLE.

Syntax

UTL_RAW.CAST_TO_BINARY_DOUBLE (
 r IN RAW
 endianess IN PLS_INTEGER DEFAULT 1)
RETURN BINARY_DOUBLE;

Pragmas

pragma restrict_references(cast_to_binary_double, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 232-14 CAST_TO_BINARY_DOUBLE Function Parameters

	Parameter	Description
	
r

	
Binary representation of a BINARY_DOUBLE

	
endianess

	
A PLS_INTEGER representing big-endian or little-endian architecture. The default is big-endian.

Return Values

The BINARY_DOUBLE value.

Usage Notes

	
If the RAW argument is more than 8 bytes, only the first 8 bytes are used and the rest of the bytes are ignored. If the result is -0, +0 is returned. If the result is NaN, the value BINARY_DOUBLE_NAN is returned.

	
If the RAW argument is less than 8 bytes, a VALUE_ERROR exception is raised.

	
An 8-byte binary_double value maps to the IEEE 754 double-precision format as follows:

byte 0: bit 63 ~ bit 56
byte 1: bit 55 ~ bit 48
byte 2: bit 47 ~ bit 40
byte 3: bit 39 ~ bit 32
byte 4: bit 31 ~ bit 24
byte 5: bit 23 ~ bit 16
byte 6: bit 15 ~ bit 8
byte 7: bit 7 ~ bit 0

	
The parameter endianess describes how the bytes of BINARY_DOUBLE are mapped to the bytes of RAW. In the following matrix, rb0 ~ rb7 refer to the bytes in raw and db0 ~ db7 refer to the bytes in BINARY_DOUBLE.

	
	rb0	rb1	rb2	rb3	rb4	rb5	rb6	rb7
	big_endian	db0	db1	db2	db3	db4	db5	db6	db7
	little_endian	db7	db6	db5	db4	db3	db2	db1	db0

	
In case of machine-endian, the 8 bytes of the RAW argument are copied straight across into the BINARY_DOUBLE return value. The effect is the same if the user has passed big_endian on a big-endian machine, or little_endian on a little-endian machine.

CAST_TO_BINARY_FLOAT Function

This function casts the RAW binary representation of a BINARY_FLOAT into a BINARY_FLOAT.

Syntax

UTL_RAW.CAST_TO_BINARY_FLOAT (
 r IN RAW
 endianess IN PLS_INTEGER DEFAULT 1)
RETURN BINARY_FLOAT;

Pragmas

pragma restrict_references(cast_to_binary_float, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 232-15 CAST_TO_BINARY_FLOAT Function Parameters

	Parameter	Description
	
r

	
Binary representation of a BINARY_FLOAT

	
endianess

	
A PLS_INTEGER representing big-endian or little-endian architecture. The default is big-endian.

Return Values

The BINARY_FLOAT value.

Usage Notes

	
If the RAW argument is more than 4 bytes, only the first 4 bytes are used and the rest of the bytes are ignored. If the result is -0, +0 is returned. If the result is NaN, the value BINARY_FLOAT_NAN is returned.

	
If the RAW argument is less than 4 bytes, a VALUE_ERROR exception is raised.

	
A 4-byte binary_float value maps to the IEEE 754 single-precision format as follows:

byte 0: bit 31 ~ bit 24
byte 1: bit 23 ~ bit 16
byte 2: bit 15 ~ bit 8
byte 3: bit 7 ~ bit 0

	
The parameter endianess describes how the bytes of BINARY_FLOAT are mapped to the bytes of RAW. In the following matrix, rb0 ~ rb3 refer to the bytes in RAW and fb0 ~ fb3 refer to the bytes in BINARY_FLOAT.

	
	rb0	rb1	rb2	rb3
	big_endian	fbo	fb1	fb2	fb3
	little_endian	fb3	fb2	fb1	fb0

	
In case of machine-endian, the 4 bytes of the RAW argument are copied straight across into the BINARY_FLOAT return value. The effect is the same if the user has passed big_endian on a big-endian machine, or little_endian on a little-endian machine.

CAST_TO_BINARY_INTEGER Function

This function casts the RAW binary representation of a BINARY_INTEGER into a BINARY_INTEGER.

Syntax

UTL_RAW.CAST_TO_BINARY_INTEGER (
 r IN RAW
 endianess IN PLS_INTEGER DEFAULT BIG_ENDIAN)
RETURN BINARY_INTEGER;

Pragmas

pragma restrict_references(cast_to_binary_integer, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 232-16 CAST_TO_BINARY_INTEGER Function Parameters

	Parameter	Description
	
r

	
Binary representation of a BINARY_INTEGER

	
endianess

	
A PLS_INTEGER representing big-endian or little-endian architecture. The default is big-endian.

Return Values

The BINARY_INTEGER value

CAST_TO_NUMBER Function

This function casts the RAW binary representation of a NUMBER into a NUMBER.

Syntax

UTL_RAW.CAST_TO_NUMBER (
 r IN RAW)
 RETURN NUMBER;

Pragmas

pragma restrict_references(cast_to_number, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 232-17 CAST_TO_NUMBER function Parameters

	Parameter	Description
	
r

	
Binary representation of a NUMBER

Return Values

The NUMBER value.

CAST_TO_NVARCHAR2 Function

This function converts a RAW value represented using some number of data bytes into an NVARCHAR2 value with that number of data bytes.

	
Note:

When casting to a NVARCHAR2, the current Globalization Support character set is used for the characters within that NVARCHAR2 value.

Syntax

UTL_RAW.CAST_TO_NVARCHAR2 (
 r IN RAW)
RETURN NVARCHAR2;

Pragmas

pragma restrict_references(cast_to_NVARCHAR2, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 232-18 CAST_TO_NVARCHAR2 Function Parameters

	Parameter	Description
	
r

	
RAW (without leading length field) to be changed to a NVARCHAR2)

Return Values

Table 232-19 CAST_TO_NVARCHAR2 Function Return Values

	Return	Description
	
NVARCHAR2

	
Containing having the same data as the input RAW

	
NULL

	
If r input parameter was NULL

CAST_TO_RAW Function

This function converts a VARCHAR2 value represented using some number of data bytes into a RAW value with that number of data bytes. The data itself is not modified in any way, but its data type is recast to a RAW data type.

Syntax

UTL_RAW.CAST_TO_RAW (
 c IN VARCHAR2)
RETURN RAW;

Pragmas

pragma restrict_references(cast_to_raw, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 232-20 CAST_TO_RAW Function Parameters

	Parameter	Description
	
c

	
VARCHAR2 to be changed to a RAW

Return Values

Table 232-21 CAST_TO_RAW Function Return Values

	Return	Description
	
RAW

	
Containing the same data as the input VARCHAR2 and equal byte length as the input VARCHAR2 and without a leading length field

	
NULL

	
If c input parameter was NULL

CAST_TO_VARCHAR2 Function

This function converts a RAW value represented using some number of data bytes into a VARCHAR2 value with that number of data bytes.

	
Note:

When casting to a VARCHAR2, the current Globalization Support character set is used for the characters within that VARCHAR2.

Syntax

UTL_RAW.CAST_TO_VARCHAR2 (
 r IN RAW)
RETURN VARCHAR2;

Pragmas

pragma restrict_references(cast_to_VARCHAR2, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 232-22 CAST_TO_VARCHAR2 Function Parameters

	Parameter	Description
	
r

	
RAW (without leading length field) to be changed to a VARCHAR2

Return Values

Table 232-23 CAST_TO_VARCHAR2 Function Return Values

	Return	Description
	
VARCHAR2

	
Containing having the same data as the input RAW

	
NULL

	
If r input parameter was NULL

COMPARE Function

This function compares two RAW values. If they differ in length, then the shorter is extended on the right according to the optional pad parameter.

Syntax

UTL_RAW.COMPARE (
 r1 IN RAW,
 r2 IN RAW,
 pad IN RAW DEFAULT NULL)
 RETURN NUMBER;

Pragmas

pragma restrict_references(compare, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 232-24 COMPARE Function Parameters

	Parameter	Description
	
r1

	
1st RAW to be compared, may be NULL or 0 length

	
r2

	
2nd RAW to be compared, may be NULL or 0 length

	
pad

	
This is an optional parameter. Byte to extend whichever of r1 or r2 is shorter. The default: x'00'

Return Values

Table 232-25 COMPARE Function Return Values

	Return	Description
	
NUMBER

	
Equals 0 if RAW byte strings are both NULL or identical; or,

Equals position (numbered from 1) of the first mismatched byte

CONCAT Function

This function concatenates up to 12 RAWs into a single RAW. If the concatenated size exceeds 32K, then an error is returned

Syntax

UTL_RAW.CONCAT (
 r1 IN RAW DEFAULT NULL,
 r2 IN RAW DEFAULT NULL,
 r3 IN RAW DEFAULT NULL,
 r4 IN RAW DEFAULT NULL,
 r5 IN RAW DEFAULT NULL,
 r6 IN RAW DEFAULT NULL,
 r7 IN RAW DEFAULT NULL,
 r8 IN RAW DEFAULT NULL,
 r9 IN RAW DEFAULT NULL,
 r10 IN RAW DEFAULT NULL,
 r11 IN RAW DEFAULT NULL,
 r12 IN RAW DEFAULT NULL)
 RETURN RAW;

Pragmas

pragma restrict_references(concat, WNDS, RNDS, WNPS, RNPS);

Parameters

r1....r12 are the RAW items to concatenate.

Return Values

Table 232-26 CONCAT Function Return Values

	Return	Description
	
RAW

	
Containing the items concatenated

Exceptions

There is an error if the sum of the lengths of the inputs exceeds the maximum allowable length for a RAW, which is 32767 bytes.

CONVERT Function

This function converts RAW r from character set from_charset to character set to_charset and returns the resulting RAW.

Both from_charset and to_charset must be supported character sets defined to the Oracle server.

Syntax

UTL_RAW.CONVERT (
 r IN RAW,
 to_charset IN VARCHAR2,
 from_charset IN VARCHAR2)
 RETURN RAW;

Pragmas

pragma restrict_references(convert, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 232-27 CONVERT Function Parameters

	Parameter	Description
	
r

	
RAW byte-string to be converted

	
to_charset

	
Name of Globalization Support character set to which r is converted

	
from_charset

	
Name of Globalization Support character set in which r is supplied

Return Values

Table 232-28 CONVERT Function Return Values

	Return	Description
	
RAW

	
Byte string r converted according to the specified character sets.

Exceptions

Table 232-29 CONVERT Function Optional Parameter

	Error	Description
	
VALUE_ERROR

	
Either:

- r missing, NULL, or 0 length

- from_charset or to_charset missing, NULL, or 0 length

- from_charset or to_charset names invalid or unsupported

COPIES Function

This function returns n copies of r concatenated together.

Syntax

UTL_RAW.COPIES (
 r IN RAW,
 n IN NUMBER)
 RETURN RAW;

Pragmas

pragma restrict_references(copies, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 232-30 COPIES Function Parameters

	Parameters	Description
	
r

	
RAW to be copied

	
n

	
Number of times to copy the RAW (must be positive)

Return Values

This returns the RAW copied n times.

Exceptions

Table 232-31 COPIES Function Exceptions

	Error	Description
	
VALUE_ERROR

	
Either:

- r is missing, NULL or 0 length

- n < 1

- Length of result exceeds maximum length of a RAW

LENGTH Function

This function returns the length in bytes of a RAW r.

Syntax

UTL_RAW.LENGTH (
 r IN RAW)
RETURN NUMBER;

Pragmas

pragma restrict_references(length, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 232-32 LENGTH Function Parameters

	Parameter	Description
	
r

	
RAW byte stream to be measured

Return Values

Table 232-33 LENGTH Function Return Values

	Return	Description
	
NUMBER

	
Current length of the RAW

OVERLAY Function

This function overlays the specified portion of target RAW with overlay_str RAW, starting from byte position pos of target and proceeding for len bytes.

Syntax

UTL_RAW.OVERLAY (
 overlay_str IN RAW,
 target IN RAW,
 pos IN BINARY_INTEGER DEFAULT 1,
 len IN BINARY_INTEGER DEFAULT NULL,
 pad IN RAW DEFAULT NULL)
 RETURN RAW;

Pragmas

pragma restrict_references(overlay, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 232-34 OVERLAY Function Parameters

	Parameters	Description
	
overlay_str

	
Byte-string used to overlay target

	
target

	
Byte-string which is to be overlaid

	
pos

	
Position in target (numbered from 1) to start overlay

	
len

	
The number of target bytes to overlay

	
pad

	
Pad byte used when overlay len exceeds overlay_str length or pos exceeds target length

Defaults and Optional Parameters

Table 232-35 OVERLAY Function Optional Parameters

	Optional Parameter	Description
	
pos

	
1

	
len

	
To the length of overlay_str

	
pad

	
x'00'

Return Values

Table 232-36 OVERLAY Function Return Values

	Return	Description
	
RAW

	
The target byte_string overlaid as specified.

Usage Notes

If overlay_str has less than len bytes, then it is extended to len bytes using the pad byte. If overlay_str exceeds len bytes, then the extra bytes in overlay_str are ignored. If len bytes beginning at position pos of target exceeds the length of target, then target is extended to contain the entire length of overlay_str.

If len is specified, it must be greater than or equal to 0. If pos is specified, it must be greater than or equal to 1. If pos exceeds the length of target, then target is padded with pad bytes to position pos, and target is further extended with overlay_str bytes.

Exceptions

Table 232-37 OVERLAY Function Exceptions

	Error	Description
	
VALUE_ERROR

	
Either:

- Overlay_str is NULL or has 0 length

- Target is missing or undefined

- Length of target exceeds maximum length of a RAW

- len < 0

- pos < 1

REVERSE Function

This function reverses a byte sequence in RAW r from end to end. For example, x'0102F3' would be reversed to x'F30201', and 'xyz' would be reversed to 'zyx'.The result length is the same as the input RAW length.

Syntax

UTL_RAW.REVERSE (
 r IN RAW)
 RETURN RAW;

Pragmas

pragma restrict_references(reverse, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 232-38 REVERSE Function Parameters

	Parameter	Description
	
r

	
RAW to reverse

Return Values

Table 232-39 REVERSE Function Return Values

	Return	Description
	
RAW

	
Containing the "reverse" of r

Exceptions

Table 232-40 REVERSE Function Exceptions

	Error	Description
	
VALUE_ERROR

	
R is NULL or has 0 length

SUBSTR Function

This function returns len bytes, starting at pos from RAW r.

Syntax

UTL_RAW.SUBSTR (
 r IN RAW,
 pos IN BINARY_INTEGER,
 len IN BINARY_INTEGER DEFAULT NULL)
 RETURN RAW;

Pragmas

pragma restrict_references(substr, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 232-41 SUBSTR Function Parameters

	Parameter	Description
	
r

	
The RAW byte-string from which a portion is extracted

	
pos

	
The byte position in r at which to begin extraction

	
len

	
The number of bytes from pos to extract from r (optional)

Defaults and Optional Parameters

Table 232-42 SUBSTR Function Exceptions

	Optional Parameter	Description
	
len

	
Position pos through to the end of r

Return Values

Table 232-43 SUBSTR Function Return Values

	Return	Description
	
portion of r

	
Beginning at pos for len bytes long

	
NULL

	
r input parameter was NULL

Usage Notes

If pos is positive, then SUBSTR counts from the beginning of r to find the first byte. If pos is negative, then SUBSTR counts backward from the end of the r. The value pos cannot be 0.

If len is omitted, then SUBSTR returns all bytes to the end of r. The value len cannot be less than 1.

Exceptions

Table 232-44 SUBSTR Function Exceptions

	Error	Description
	
VALUE_ERROR

	
VALUE_ERROR is returned if:

	
pos = 0 or > length of r

	
len < 1 or > length of r - (pos-1)

TRANSLATE Function

This function translates the bytes in the input RAW r according to the bytes in the translation RAWs from_set and to_set. If a byte in r has a matching byte in from_set, then it is replaced by the byte in the corresponding position in to_set, or deleted.

Bytes in r, but undefined in from_set, are copied to the result. Only the first (leftmost) occurrence of a byte in from_set is used. Subsequent duplicates are not scanned and are ignored.

Syntax

UTL_RAW.TRANSLATE (
 r IN RAW,
 from_set IN RAW,
 to_set IN RAW)
 RETURN RAW;

	
Note:

Be aware that to_set and from_set are reversed in the calling sequence compared to TRANSLITERATE.

Pragmas

pragma restrict_references(translate, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 232-45 TRANSLATE Function Parameters

	Parameter	Description
	
r

	
RAW source byte-string to be translated

	
from_set

	
RAW byte-codes to be translated, if present in r

	
to_set

	
RAW byte-codes to which corresponding from_str bytes are translated

Return Values

Table 232-46 TRANSLATE Function Return Values

	Return	Description
	
RAW

	
Translated byte-string

Usage Notes

	
If to_set is shorter than from_set, the extra from_set bytes have no corresponding translation bytes. Bytes from the input RAW that match any such from_set bytes are not translated or included in the result. They are effectively translated to NULL.

	
If to_set is longer than from_set, the extra to_set bytes are ignored.

	
If a byte value is repeated in from_set, the repeated occurrence is ignored.

	
Note:

Differences from the TRANSLITERATE Function:
	
The from_set parameter comes before the to_set parameter in the calling sequence.

	
Bytes from r that appear in from_set but have no corresponding values in to_set are not translated or included in the result.

	
The resulting RAW value may be shorter than the input RAW value.

Note that TRANSLATE and TRANSLITERATE only differ in functionality when to_set has fewer bytes than from_set.

Exceptions

Table 232-47 TRANSLATE Function Exceptions

	Error	Description
	
VALUE_ERROR

	
Either:

- r is NULL or has 0 length

- from_set is NULL or has 0 length

- to_set is NULL or has 0 length

TRANSLITERATE Function

This function converts the bytes in the input RAW r according to the bytes in the transliteration RAWs from_set and to_set. Successive bytes in r are looked up in the from_set, and, if not found, copied unaltered to the result RAW. If found, then they are replaced in the result RAW by either corresponding bytes in the to_set, or the pad byte when no correspondence exists.

Bytes in r, but undefined in from_set, are copied to the result. Only the first (leftmost) occurrence of a byte in from_set is used. Subsequent duplicates are not scanned and are ignored. The result RAW is always the same length as r.

Syntax

UTL_RAW.TRANSLITERATE (
 r IN RAW,
 to_set IN RAW DEFAULT NULL,
 from_set IN RAW DEFAULT NULL,
 pad IN RAW DEFAULT NULL)
 RETURN RAW;

	
Note:

Be aware that to_set and from_set are reversed in the calling sequence compared to TRANSLATE.

Pragmas

pragma restrict_references(transliterate, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 232-48 TRANSLITERATE Function Parameters

	Parameter	Description
	
r

	
RAW input byte-string to be converted

	
to_set

	
RAW byte-codes to which corresponding from_set bytes are converted (any length)

	
from_set

	
RAW byte-codes to be converted, if presenting r (any length)

	
pad

	
1 byte used when to-set is shorter than the from_set

Defaults and Optional Parameters

Table 232-49 TRANSLITERATE Function Optional Parameters

	Optional Parameter	Description
	
to_set

	
To the NULL string and effectively extended with pad to the length of from_set as necessary

	
from_set

	
x ' 00' through x ' fff'

	
pad

	
x'00'

Return Values

Table 232-50 TRANSLITERATE Function Return Values

	Return	Description
	
RAW

	
Converted byte-string.

Usage Notes

	
If to_set is shorter than from_set, the extra from_set bytes have no corresponding conversion bytes. Bytes from the input RAW that match any such from_set bytes are converted in the result to the pad byte instead.

	
If to_set is longer than from_set, the extra to_set bytes are ignored.

	
If a byte value is repeated in from_set, the repeated occurrence is ignored.

	
Note:

Differences from the TRANSLATE Function:
	
The to_set parameter comes before the from_set parameter in the calling sequence.

	
Bytes from r that appear in from_set but have no corresponding values in to_set are replaced by pad in the result.

	
The resulting RAW value always has the same length as the input RAW value.

Note that TRANSLATE and TRANSLITERATE only differ in functionality when to_set has fewer bytes than from_set.

Exceptions

Table 232-51 TRANSLITERATE Function Exceptions

	Error	Description
	
VALUE_ERROR

	
R is NULL or has 0 length

XRANGE Function

This function returns a RAW value containing the succession of one-byte encodings beginning and ending with the specified byte-codes. The specified byte-codes must be single-byte RAW values. If the start_byte value is greater than the end_byte value, then the succession of resulting bytes begins with start_byte, wraps through x'FF' back to x'00', then ends at end_byte.

Syntax

UTL_RAW.XRANGE (
 start_byte IN RAW DEFAULT NULL,
 end_byte IN RAW DEFAULT NULL)
 RETURN RAW;

Pragmas

pragma restrict_references(xrange, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 232-52 XRANGE Function Parameters

	Parameters	Description
	
start_byte

	
Beginning byte-code value of resulting sequence. The default is x'00'.

	
end_byte

	
Ending byte-code value of resulting sequence. The default is x'FF'.

Return Values

Table 232-53 XRANGE Function Return Values

	Return	Description
	
RAW

	
Containing succession of 1-byte hexadecimal encodings

UTL_RECOMP

233 UTL_RECOMP

The UTL_RECOMP package recompiles invalid PL/SQL modules, invalid views, Java classes, indextypes and operators in a database, either sequentially or in parallel.

This chapter contains the following topics:

	
Using UTL_RECOMP

	
Overview

	
Operational Notes

	
Examples

	
Summary of UTL_RECOMP Subprograms

Using UTL_RECOMP

	
Overview

	
Operational Notes

	
Examples

Overview

This script is particularly useful after a major-version upgrade that typically invalidates all PL/SQL and Java objects. Although invalid objects are recompiled automatically on use, it is useful to run this script prior to operation because this will either eliminate or minimize subsequent latencies due to on-demand automatic recompilation at runtime.

Parallel recompilation can exploit multiple CPUs to reduce the time taken to recompile invalid objects. The degree of parallelism is specified by the first argument to RECOMP_PARALLEL Procedure.

In general, a parallelism setting of one thread for each available CPU provides a good initial setting. However, please note that the process of recompiling an invalid object writes a significant amount of data to system tables and is fairly I/O intensive. A slow disk system may be a significant bottleneck and limit speedups available from a higher degree of parallelism.

Operational Notes

	
This package uses the job queue for parallel recompilation.

	
This package must be run using SQL*PLUS.

	
You must be connected AS SYSDBA to run this script.

	
This package expects the following packages to have been created with VALID status:

	
STANDARD (standard.sql)

	
DBMS_STANDARD (dbmsstdx.sql)

	
DBMS_JOB (dbmsjob.sql)

	
DBMS_RANDOM (dbmsrand.sql)

	
There should be no other DDL on the database while running entries in this package. Not following this recommendation may lead to deadlocks.

Examples

Recompile all objects sequentially:

EXECUTE UTL_RECOMP.RECOMP_SERIAL();

Recompile objects in schema SCOTT sequentially:

EXECUTE UTL_RECOMP.RECOMP_SERIAL('SCOTT');

Recompile all objects using 4 parallel threads:

EXECUTE UTL_RECOMP.RECOMP_PARALLEL(4);

Recompile objects in schema JOE using the number of threads specified in the parameter JOB_QUEUE_PROCESSES:

EXECUTE UTL_RECOMP.RECOMP_PARALLEL(NULL, 'JOE');

Summary of UTL_RECOMP Subprograms

Table 233-1 UTL_RECOMP Package Subprograms

	Subprogram	Description
	
RECOMP_PARALLEL Procedure

	
Recompiles invalid objects in a given schema, or all invalid objects in the database, in parallel

	
RECOMP_SERIAL Procedure

	
Recompiles invalid objects in a given schema or all invalid objects in the database

RECOMP_PARALLEL Procedure

This procedure uses the information exposed in the DBA_Dependencies view to recompile invalid objects in the database, or in a given schema, in parallel.

Syntax

UTL_RECOMP.RECOMP_PARALLEL(
 threads IN PLS_INTEGER DEFAULT NULL,
 schema IN VARCHAR2 DEFAULT NULL,
 flags IN PLS_INTEGER DEFAULT 0);

Parameters

Table 233-2 RECOMP_PARALLEL Procedure Parameters

	Parameter	Description
	
threads

	
The number of recompile threads to run in parallel. If NULL, use the value of 'job_queue_processes'.

	
schema

	
The schema in which to recompile invalid objects. If NULL, all invalid objects in the database are recompiled.

	
flags

	
Flag values are intended for internal testing and diagnosability only.

Usage Notes

The parallel recompile exploits multiple CPUs to reduce the time taken to recompile invalid objects. However, please note that recompilation writes significant amounts of data to system tables, so the disk system may be a bottleneck and prevent significant speedups.

RECOMP_SERIAL Procedure

This procedure recompiles invalid objects in a given schema or all invalid objects in the database.

Syntax

UTL_RECOMP.RECOMP_SERIAL(
 schema IN VARCHAR2 DEFAULT NULL,
 flags IN PLS_INTEGER DEFAULT 0);

Parameters

Table 233-3 RECOMP_SERIAL Procedure Parameters

	Parameter	Description
	
schema

	
The schema in which to recompile invalid objects. If NULL, all invalid objects in the database are recompiled.

	
flags

	
Flag values are intended for internal testing and diagnosability only.

UTL_REF

234 UTL_REF

The UTL_REF package provides PL/SQL procedures to support reference-based operations. Unlike SQL, UTL_REF procedures enable you to write generic type methods without knowing the object table name.

This chapter contains the following topics:

	
Using UTL_REF

	
Overview

	
Security Model

	
Types

	
Exceptions

	
Summary of UTL_REF Subprograms

Using UTL_REF

	
Overview

	
Security Model

	
Types

	
Exceptions

Overview

Oracle supports user-defined composite type or object type. Any instance of an object type is called an object. An object type can be used as the type of a column or as the type of a table.

In an object table, each row of the table stores an object. You can uniquely identify an object in an object table with an object identifier.

A reference is a persistent pointer to an object, and each reference can contain an object identifier. The reference can be an attribute of an object type, or it can be stored in a column of a table. Given a reference, an object can be retrieved.

Security Model

The procedural option is needed to use this package. This package must be created under SYS (connect/as sysdba). Operations provided by this package are performed under the current calling user, not under the package owner SYS.

You can use the UTL_REF package from stored PL/SQL procedures/packages on the server, as well as from client/side PL/SQL code.

When invoked from PL/SQL procedures/packages on the server, UTL_REF verifies that the invoker has the appropriate privileges to access the object pointed to by the REF.

	
Note:

This is in contrast to PL/SQL packages/procedures on the server which operate with definer's privileges, where the package owner must have the appropriate privileges to perform the desired operations.

Thus, if UTL_REF is defined under user SYS, and user A invokes UTL_REF.SELECT to select an object from a reference, then user A (the invoker) requires the privileges to check.

When invoked from client-side PL/SQL code, UTL_REF operates with the privileges of the client session under which the PL/SQL execution is being done.

Types

An object type is a composite datatype defined by the user or supplied as a library type. You can create the object type employee_type using the following syntax:

CREATE TYPE employee_type AS OBJECT (
 name VARCHAR2(20),
 id NUMBER,

member function GET_ID
 (name VARCHAR2)
 RETURN MEMBER);

The object type employee_type is a user-defined type that contains two attributes, name and id, and a member function, GET_ID().

You can create an object table using the following SQL syntax:

CREATE TABLE employee_table OF employee_type;

Exceptions

Exceptions can be returned during execution of UTL_REF functions for various reasons. For example, the following scenarios would result in exceptions:

	
The object selected does not exist. This could be because either:

	
The object has been deleted, or the given reference is dangling (invalid).

	
The object table was dropped or does not exist.

	
The object cannot be modified or locked in a serializable transaction. The object was modified by another transaction after the serializable transaction started.

	
You do not have the privilege to select or modify the object. The caller of the UTL_REF subprogram must have the proper privilege on the object that is being selected or modified.

Table 234-1 UTL_REF Exceptions

	Exceptions	Description
	
errnum == 942

	
Insufficient privileges.

	
errnum == 1031

	
Insufficient privileges.

	
errnum == 8177

	
Unable to serialize, if in a serializable transaction.

	
errnum == 60

	
Deadlock detected.

	
errnum == 1403

	
No data found (if the REF is NULL, and so on.).

The UTL_REF package does not define any named exceptions. You may define exception handling blocks to catch specific exceptions and to handle them appropriately.

Summary of UTL_REF Subprograms

Table 234-2 UTL_REF Package Subprograms

	Subprogram	Description
	
DELETE_OBJECT Procedure

	
Deletes an object given a reference

	
LOCK_OBJECT Procedure

	
Locks an object given a reference

	
SELECT_OBJECT Procedure

	
Selects an object given a reference

	
UPDATE_OBJECT Procedure

	
Updates an object given a reference

DELETE_OBJECT Procedure

This procedure deletes an object given a reference. The semantic of this subprogram is similar to the following SQL statement:

DELETE FROM object_table
WHERE REF(t) = reference;

Unlike the preceding SQL statement, this subprogram does not require you to specify the object table name where the object resides.

Syntax

UTL_REF.DELETE_OBJECT (
 reference IN REF "<typename>");

Parameters

Table 234-3 DELETE_OBJECT Procedure Parameters

	Parameter	Description
	
reference

	
Reference of the object to delete.

Exceptions

May be raised.

Examples

The following example illustrates usage of the UTL_REF package to implement this scenario: if an employee of a company changes their address, their manager should be notified.

... declarations of Address_t and others...

CREATE OR REPLACE TYPE Person_t (
 name VARCHAR2(64),
 gender CHAR(1),
 address Address_t,
 MEMBER PROCEDURE setAddress(addr IN Address_t)
);

CREATE OR REPLACE TYPE BODY Person_t (
 MEMBER PROCEDURE setAddress(addr IN Address_t) IS
 BEGIN
 address := addr;
 END;
);

CREATE OR REPLACE TYPE Employee_t (

Under Person_t: Simulate implementation of inheritance using a REF to Person_t and delegation of setAddress to it.

 thePerson REF Person_t,
 empno NUMBER(5),
 deptREF Department_t,
 mgrREF Employee_t,
 reminders StringArray_t,
 MEMBER PROCEDURE setAddress(addr IN Address_t),
 MEMBER procedure addReminder(reminder VARCHAR2);
);

CREATE TYPE BODY Employee_t (
 MEMBER PROCEDURE setAddress(addr IN Address_t) IS
 myMgr Employee_t;
 meAsPerson Person_t;
 BEGIN

Update the address by delegating the responsibility to thePerson. Lock the Person object from the reference, and also select it:

 UTL_REF.LOCK_OBJECT(thePerson, meAsPerson);
 meAsPerson.setAddress(addr);

Delegate to thePerson:

 UTL_REF.UPDATE_OBJECT(thePerson, meAsPerson);
 if mgr is NOT NULL THEN

Give the manager a reminder:

 UTL_REF.LOCK_OBJECT(mgr);
 UTL_REF.SELECT_OBJECT(mgr, myMgr);
 myMgr.addReminder
 ('Update address in the employee directory for' ||
 thePerson.name || ', new address: ' || addr.asString);
 UTL_REF.UPDATE_OBJECT(mgr, myMgr);
 END IF;
 EXCEPTION
 WHEN OTHERS THEN
 errnum := SQLCODE;
 errmsg := SUBSTR(SQLERRM, 1, 200);

LOCK_OBJECT Procedure

This procedure locks an object given a reference. In addition, this procedure lets the program select the locked object. The semantic of this subprogram is similar to the following SQL statement:

SELECT VALUE(t)
 INTO object
 FROM object_table t
 WHERE REF(t) = reference
 FOR UPDATE;

Unlike the preceding SQL statement, this subprogram does not require you to specify the object table name where the object resides. It is not necessary to lock an object before updating/deleting it.

Syntax

UTL_REF.LOCK_OBJECT (
 reference IN REF "<typename>");

UTL_REF.LOCK_OBJECT (
 reference IN REF "<typename>",
 object IN OUT "<typename>");

Parameters

Table 234-4 LOCK_OBJECT Procedure Parameters

	Parameter	Description
	
reference

	
Reference of the object to lock.

	
object

	
The PL/SQL variable that stores the locked object. This variable should be of the same object type as the locked object.

Exceptions

May be raised.

SELECT_OBJECT Procedure

This procedure selects an object given its reference. The selected object is retrieved from the database and its value is put into the PL/SQL variable 'object'. The semantic of this subprogram is similar to the following SQL statement:

SELECT VALUE(t)
INTO object
FROM object_table t
WHERE REF(t) = reference;

Unlike the preceding SQL statement, this subprogram does not require you to specify the object table name where the object resides.

Syntax

UTL_REF.SELECT_OBJECT (
 reference IN REF "<typename>",
 object IN OUT "<typename>");

Parameters

Table 234-5 SELECT_OBJECT Procedure Parameters

	Parameter	Description
	
reference

	
Reference to the object to select or retrieve.

	
object

	
The PL/SQL variable that stores the selected object; this variable should be of the same object type as the referenced object.

Exceptions

May be raised.

UPDATE_OBJECT Procedure

This procedure updates an object given a reference. The referenced object is updated with the value contained in the PL/SQL variable 'object'. The semantic of this subprogram is similar to the following SQL statement:

UPDATE object_table t
SET VALUE(t) = object
WHERE REF(t) = reference;

Unlike the preceding SQL statement, this subprogram does not require you to specify the object table name where the object resides.

Syntax

UTL_REF.UPDATE_OBJECT (
 reference IN REF "<typename>",
 object IN "<typename>");

Parameters

Table 234-6 UPDATE_OBJECT Procedure Parameters

	Parameter	Description
	
reference

	
Reference of the object to update.

	
object

	
The PL/SQL variable that contains the new value of the object. This variable should be of the same object type as the object to update.

Exceptions

May be raised.

UTL_SMTP

235 UTL_SMTP

The UTL_SMTP package is designed for sending electronic mails (e-mails) over Simple Mail Transfer Protocol (SMTP) as specified by RFC821.

	
See Also:

Oracle Database Advanced Application Developer's Guide

This chapter contains the following topics:

	
Using UTL_SMTP

	
Overview

	
Security Model

	
Constants

	
Types

	
Reply Codes

	
Exceptions

	
Rules and Limits

	
Examples

	
Summary of UTL_SMTP Subprograms

Using UTL_SMTP

	
Overview

	
Security Model

	
Constants

	
Types

	
Reply Codes

	
Exceptions

	
Rules and Limits

	
Examples

Overview

The UTL_SMTP protocol consists of a set of commands for an e-mail client to dispatch e-mails to an SMTP server. The UTL_SMTP package provides interfaces to the SMTP commands. For many of the commands, the package provides both a procedural and a functional interface. The functional form returns the reply from the server for processing by the client. The procedural form checks the reply and raises an exception if the reply indicates a transient (400-range reply code) or permanent error (500-range reply code). Otherwise, it discards the reply.

Note that the original SMTP protocol communicates using 7-bit ASCII. Using UTL_SMTP, all text data (in other words, those in VARCHAR2) are converted to US7ASCII before it is sent to the server. Some implementations of SMTP servers that support SMTP extension 8BITMIME [RFC1652] support full 8-bit communication between client and server. The body of the DATA command can be transferred in full 8 bits, but the rest of the SMTP command and response must be in 7 bits. When the target SMTP server supports 8BITMIME extension, users of multibyte databases may convert their non-US7ASCII, multibyte VARCHAR2 data to RAW and use the WRITE_RAW_DATA subprogram to send multibyte data using 8-bit MIME encoding.

UTL_SMTP provides for SMTP communication as specified in RFC821, but does not provide an API to format the content of the message according to RFC 822 (for example, setting the subject of an electronic mail). You must format the message appropriately. In addition, UTL_SMTP does not have the functionality to implement an SMTP server for an e-mail clients to send e-mails using SMTP.

Security Model

This package is an invoker's rights package. The invoking user must have the connect privilege granted in the access control list assigned to the remote network host to which the user must connect.

	
Note:

For more information, see Managing Fine-Grained Access in PL/SQL Packages and Types in Oracle Database Security Guide

Constants

	
Note:

This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2).

The UTL_SMTP package uses the constants shown in Table 235-1, "UTL_SMTP Constants".

Table 235-1 UTL_SMTP Constants

	Name	Type	Value	Description
	
ALL_SCHEMES

	
VARCHAR2(256)

	
'CRAM-MD5 PLAIN LOGIN'

	
List of all authentication schemes UTL_SMTP supports, in order of their relative security strength. The subset of the schemes in ALL_SCHEMES (namely, PLAIN and LOGIN) in which cleartext passwords are sent over SMTP must be used only in SMTP connections that are secured by Secure Socket Layer / Transport Layer Security (SSL/TLS).

	
NON_CLEARTEXT_PASSWORD_SCHEMES

	
VARCHAR2(256)

	
'CRAM-MD5'

	
List of authentication schemes that UTL_SMTP supports and in which no cleartext passwords are sent over SMTP. They can be used in SMTP connections that are not secured by SSL/TLS. Note that these schemes may still be weak when used in an insecure SMTP connection.

Types

	
CONNECTION Record Type

	
REPLY, REPLIES Record Types

CONNECTION Record Type

This is a PL/SQL record type used to represent an SMTP connection.

Syntax

TYPE connection IS RECORD (
 host VARCHAR2(255),
 port PLS_INTEGER,
 tx_timeout PLS_INTEGER,
 private_tcp_con utl_tcp.connection,
 private_state PLS_INTEGER);

Fields

Table 235-2 CONNECTION Record Type Fields

	Field	Description
	
host

	
Name of the remote host when connection is established. NULL when no connection is established.

	
port

	
Port number of the remote SMTP server connected. NULL when no connection is established.

	
tx_timeout

	
Time in seconds that the UTL_SMTP package waits before timing out in a read or write operation in this connection. In read operations, this package times out if no data is available for reading immediately. In write operations, this package times out if the output buffer is full and no data is to be sent into the network without being blocked. 0 indicates not to wait at all. NULL indicates to wait forever.

	
private_tcp_con

	
Private, for implementation use only. You should not modify this field.

	
private_state

	
Private, for implementation use only. You should not modify this field.

Usage Notes

The read-only fields in a connection record are used to return information about the SMTP connection after the connection is successfully made with the OPEN_CONNECTION Functions. Changing the values of these fields has no effect on the connection. The fields private_tcp_con and private_state for implementation use only. You should not modify these fields.

REPLY, REPLIES Record Types

These are PL/SQL record types used to represent an SMTP reply line. Each SMTP reply line consists of a reply code followed by a text message. While a single reply line is expected for most SMTP commands, some SMTP commands expect multiple reply lines. For those situations, a PL/SQL table of reply records is used to represent multiple reply lines.

Syntax

TYPE reply IS RECORD (
 code PLS_INTEGER,
 text VARCHAR2(508));

TYPE replies IS TABLE OF reply INDEX BY BINARY_INTEGER;

Fields

Table 235-3 REPLY, REPLIES Record Type Fields

	Field	Description
	
code

	
3-digit reply code

	
text

	
Text message of the reply

Reply Codes

The following is a list of the SMTP reply codes.

Table 235-4 SMTP Reply Codes

	Reply Code	Meaning
	
211

	
System status, or system help reply

	
214

	
Help message [Information on how to use the receiver or the meaning of a particular non-standard command; this reply is useful only to the human user]

	
220

	
<domain> Service ready

	
221

	
<domain> Service closing transmission channel

	
250

	
Requested mail action okay, completed

	
251

	
User not local; forwards to <forward-path>

	
252

	
OK, pending messages for node <node> started. Cannot VRFY user (for example, info is not local), but takes message for this user and attempts delivery.

	
253

	
OK, <messages> pending messages for node <node> started

	
354

	
Start mail input; end with <CRLF.CRLF>

	
355

	
Octet-offset is the transaction offset

	
421

	
<domain> Service not available, closing transmission channel (This can be a reply to any command if the service knows it must shut down.)

	
450

	
Requested mail action not taken: mailbox unavailable [for example, mailbox busy]

	
451

	
Requested action terminated: local error in processing

	
452

	
Requested action not taken: insufficient system storage

	
453

	
You have no mail.

	
454

	
TLS not available due to temporary reason. Encryption required for requested authentication mechanism.

	
458

	
Unable to queue messages for node <node>

	
459

	
Node <node> not allowed: reason

	
500

	
Syntax error, command unrecognized (This may include errors such as command line too long.)

	
501

	
Syntax error in parameters or arguments

	
502

	
Command not implemented

	
503

	
Bad sequence of commands

	
504

	
Command parameter not implemented

	
521

	
<Machine> does not accept mail.

	
530

	
Must issue a STARTTLS command first. Encryption required for requested authentication mechanism.

	
534

	
Authentication mechanism is too weak.

	
538

	
Encryption required for requested authentication mechanism.

	
550

	
Requested action not taken: mailbox unavailable [for, mailbox not found, no access]

	
551

	
User not local; please try <forward-path>

	
552

	
Requested mail action terminated: exceeded storage allocation

	
553

	
Requested action not taken: mailbox name not allowed [for example, mailbox syntax incorrect]

	
554

	
Transaction failed

Exceptions

The table lists the exceptions that can be raised by the interface of the UTL_SMTP package. The network error is transferred to a reply code of 421- service not available.

Table 235-5 UTL_SMTP Exceptions

	
	

	
INVALID_OPERATION

	
Raised when an invalid operation is made. In other words, calling API other than the WRITE_DATA Procedure, the WRITE_RAW_DATA Procedure or the CLOSE_DATA Function and Procedure after the OPEN_DATA Function and Procedure is called, or calling WRITE_DATA, WRITE_RAW_DATA or CLOSE_DATA without first calling OPEN_DATA.

	
TRANSIENT_ERROR

	
Raised when receiving a reply code in 400 range

	
PERMANENT_ERROR

	
Raised when receiving a reply code in 500 range

Rules and Limits

No limitation or range-checking is imposed by the API. However, you must be aware of the following size limitations on various elements of SMTP. Sending data that exceed these limits may result in errors returned by the server.

Table 235-6 SMTP Size Limitation

	Element	Size Limitation
	
user

	
Maximum total length of a user name is 64 characters

	
domain

	
Maximum total length of a domain name or number is 64 characters

	
path

	
Maximum total length of a reverse-path or forward-path is 256 characters (including the punctuation and element separators)

	
command line

	
Maximum total length of a command line including the command word and the <CRLF> is 512 characters

	
reply line

	
Maximum total length of a reply line including the reply code and the <CRLF> is 512 characters

	
text line

	
Maximum total length of a text line including the <CRLF> is 1000 characters (but not counting the leading dot duplicated for transparency)

	
recipients buffer

	
Maximum total number of recipients that must be buffered is 100 recipients

Examples

The following example illustrates how UTL_SMTP is used by an application to send e-mail. The application connects to an SMTP server at port 25 and sends a simple text message.

DECLARE
 c UTL_SMTP.CONNECTION;

 PROCEDURE send_header(name IN VARCHAR2, header IN VARCHAR2) AS
 BEGIN
 UTL_SMTP.WRITE_DATA(c, name || ': ' || header || UTL_TCP.CRLF);
 END;

BEGIN
 c := UTL_SMTP.OPEN_CONNECTION('smtp-server.acme.com');
 UTL_SMTP.HELO(c, 'foo.com');
 UTL_SMTP.MAIL(c, 'sender@foo.com');
 UTL_SMTP.RCPT(c, 'recipient@foo.com');
 UTL_SMTP.OPEN_DATA(c);
 send_header('From', '"Sender" <sender@foo.com>');
 send_header('To', '"Recipient" <recipient@foo.com>');
 send_header('Subject', 'Hello');
 UTL_SMTP.WRITE_DATA(c, UTL_TCP.CRLF || 'Hello, world!');
 UTL_SMTP.CLOSE_DATA(c);
 UTL_SMTP.QUIT(c);
EXCEPTION
 WHEN utl_smtp.transient_error OR utl_smtp.permanent_error THEN
 BEGIN
 UTL_SMTP.QUIT(c);
 EXCEPTION
 WHEN UTL_SMTP.TRANSIENT_ERROR OR UTL_SMTP.PERMANENT_ERROR THEN
 NULL; -- When the SMTP server is down or unavailable, we don't have
 -- a connection to the server. The QUIT call raises an
 -- exception that we can ignore.
 END;
 raise_application_error(-20000,
 'Failed to send mail due to the following error: ' || sqlerrm);
END;

Summary of UTL_SMTP Subprograms

Table 235-7 UTL_SMTP Package Subprograms

	Subprogram	Description
	
AUTH Function and Procedure

	
Sends the AUTH command to authenticate to the SMTP server

	
CLOSE_CONNECTION Procedure

	
Closes the SMTP connection, causing the current SMTP operation to terminate

	
CLOSE_DATA Function and Procedure

	
Closes the data session

	
COMMAND Function and Procedure

	
Performs a generic SMTP command

	
COMMAND_REPLIES Function

	
Performs a generic SMTP command and retrieves multiple reply lines

	
DATA Function and Procedure

	
Sends the e-mail body

	
EHLO Function and Procedure

	
Performs the initial handshake with SMTP server using the EHLO command

	
HELO Function and Procedure

	
Performs the initial handshake with SMTP server using the HELO command

	
HELP Function

	
Sends HELP command

	
MAIL Function and Procedure

	
Initiates an e-mail transaction with the server, the destination is a mailbox

	
NOOP Function and Procedure

	
NULL command

	
OPEN_CONNECTION Functions

	
Opens a connection to an SMTP server

	
OPEN_DATA Function and Procedure

	
Sends the DATA command

	
QUIT Function and Procedure

	
Terminates an SMTP session and disconnects from the server

	
RCPT Function

	
Specifies the recipient of an e-mail message

	
RSET Function and Procedure

	
Terminates the current e-mail transaction

	
STARTTLS Function and Procedure

	
Sends STARTTLS command to secure the SMTP connection using SSL/TLS

	
VRFY Function

	
Verifies the validity of a destination e-mail address

	
WRITE_DATA Procedure

	
Writes a portion of the e-mail message

	
WRITE_RAW_DATA Procedure

	
Writes a portion of the e-mail message with RAW data

AUTH Function and Procedure

This subprogram sends the AUTH command to authenticate to the SMTP server. The UTL_SMTP package goes through the user's choices of authentication schemes, skips any that is not supported by the SMTP server and uses the first supported. To determine the schemes the SMTP server supports from its EHLO reply, the user must call the EHLO Function and Procedure. Otherwise, UTL_SMTP uses the first scheme in the list.

	
Note:

This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2).

Syntax

UTL_SMTP.AUTH (
 c IN OUT NOCOPY connection,
 username IN VARCHAR2,
 password IN VARCHAR2,
 schemes IN VARCHAR2 DEFAULT NON_CLEARTEXT_PASSWORD_SCHEMES)
 RETURN reply;

UTL_SMTP.AUTH (
 c IN OUT NOCOPY connection,
 username IN VARCHAR2,
 password IN VARCHAR2,
 schemes IN VARCHAR2 DEFAULT NON_CLEARTEXT_PASSWORD_SCHEMES);

Parameters

Table 235-8 AUTH Function and Procedure Parameters

	Parameter	Description
	
c

	
SMTP connection

	
username

	
Username

	
password

	
Password

	
schemes

	
Space-separated list of authentication schemes UTL_SMTP is allowed to use in the preferred order. See the ALL_SCHEMES and NON_CLEARTEXT_PASSWORD_SCHEMES constants for suggestions.

Return Values

Table 235-9 AUTH Function and Procedure Function Return Values

	Return Value	Description
	
reply

	
Reply of the command (see REPLY, REPLIES Record Types). In cases where there are multiple replies, the last reply is returned.

Usage Notes

	
Currently only PLAIN, LOGIN and CRAM-MD5 authentication schemes are supported by UTL_SMTP.

	
Since the SMTP server may change the authentication schemes it supports after the SMTP connection is secured by SSL/TLS after the STARTTLS command (for example, adding PLAIN and LOGIN), the caller must call the EHLO Function and Procedure again for UTL_SMTP to update the list after the STARTTLS Function and Procedure is called.

Examples

DECLARE
 c utl_smtp.connection;
BEGIN
 c := utl_smtp.open_connection(
 host => 'smtp.example.com',
 port => 25,
 wallet_path => 'file:/oracle/wallets/smtp_wallet',
 wallet_password => 'password',
 secure_connection_before_smtp => FALSE);
 UTL_SMTP.STARTTLS(c);
 UTL_SMTP.AUTH(
 c => c,
 username => 'scott',
 password => 'password'
 schemes => utl_smtp.all_schemes);
END;

CLOSE_CONNECTION Procedure

This procedure closes the SMTP connection, causing the current SMTP operation to terminate. Use this procedure only to cancel an e-mail in the middle of the data session. To end the SMTP connection properly, use the QUIT Function and Procedure.

Syntax

UTL_SMTP.CLOSE_CONNECTION (
 c IN OUT NOCOPY connection);

Parameters

Table 235-10 CLOSE_CONNECTION Procedure Parameters

	Parameter	Description
	
c

	
SMTP connection

CLOSE_DATA Function and Procedure

This subprogram ends the e-mail message by sending the sequence <CR><LF>.<CR><LF> (a single period at the beginning of a line).

Syntax

UTL_SMTP.CLOSE_DATA (
 c IN OUT NOCOPY connection)
RETURN reply;

UTL_SMTP.CLOSE_DATA (
 c IN OUT NOCOPY connection);

Parameters

Table 235-11 CLOSE_DATA Function and Procedure Parameters

	Parameter	Description
	
c

	
SMTP connection

Return Values

Table 235-12 CLOSE_DATA Function and Procedure Return Values

	Return Value	Description
	
reply

	
Reply of the command (see REPLY, REPLIES Record Types). In cases where there are multiple replies, the last reply is returned.

Usage Notes

The calls to OPEN_DATA, WRITE_DATA, WRITE_RAW_DATA and CLOSE_DATA must be made in the right order. A program calls OPEN_DATA to send the DATA command to the SMTP server. After that, it can call WRITE_DATA or WRITE_RAW_DATA repeatedly to send the actual data. The data is terminated by calling CLOSE_DATA. After OPEN_DATA is called, the only subprograms that can be called are WRITE_DATA, WRITE_RAW_DATA, or CLOSE_DATA. A call to other subprograms results in an INVALID_OPERATION exception being raised.

CLOSE_DATA must be called only after OPEN_CONNECTION, HELO or EHLO, MAIL, and RCPT have been called. The connection to the SMTP server must be open and a mail transaction must be active when this routine is called.

Note that there is no function form of WRITE_DATA because the SMTP server does not respond until the data-terminator is sent during the call to CLOSE_DATA.

COMMAND Function and Procedure

This subprogram performs a generic SMTP command.

Syntax

UTL_SMTP.COMMAND (
 c IN OUT NOCOPY connection,
 cmd IN VARCHAR2,
 arg IN VARCHAR2 DEFAULT NULL)
RETURN reply;

UTL_SMTP.COMMAND (
 c IN OUT NOCOPY connection,
 cmd IN VARCHAR2,
 arg IN VARCHAR2 DEFAULT NULL);

Parameters

Table 235-13 COMMAND Function and Procedure Parameters

	Parameter	Description
	
c

	
SMTP connection

	
cmd

	
SMTP command to send to the server

	
arg

	
Optional argument to the SMTP argument. A space is inserted between cmd and arg.

Return Values

Table 235-14 COMMAND Function and Procedure Return Values

	Return Value	Description
	
reply

	
Reply of the command (see REPLY, REPLIES Record Types). In cases where there are multiple replies, the last reply is returned.

Usage Notes

This function is used to invoke generic SMTP commands. Use COMMAND if only a single reply line is expected. Use COMMAND_REPLIES if multiple reply lines are expected.

For COMMAND, if multiple reply lines are returned from the SMTP server, it returns the last reply line only.

COMMAND_REPLIES Function

This function performs a generic SMTP command and retrieves multiple reply lines.

Syntax

UTL_SMTP.COMMAND_REPLIES (
 c IN OUT NOCOPY connection,
 cmd IN VARCHAR2,
 arg IN VARCHAR2 DEFAULT NULL)
RETURN replies;

Parameters

Table 235-15 COMMAND_REPLIES Function Parameters

	Parameter	Description
	
c

	
SMTP connection

	
cmd

	
SMTP command to send to the server

	
arg

	
Optional argument to the SMTP argument. A space is inserted between cmd and arg.

Return Values

Table 235-16 COMMAND_REPLIES Function Return Values

	Return Value	Description
	
replies

	
Reply of the command (see REPLY, REPLIES Record Types)

Usage Notes

This function is used to invoke generic SMTP commands. Use COMMAND if only a single reply line is expected. Use COMMAND_REPLIES if multiple reply lines are expected.

For COMMAND, if multiple reply lines are returned from the SMTP server, it returns the last reply line only.

DATA Function and Procedure

This subprogram specifies the body of an e-mail message.

Syntax

UTL_SMTP.DATA (
 c IN OUT NOCOPY connection
 body IN VARCHAR2 CHARACTER SET ANY_CS)
RETURN reply;

UTL_SMTP.DATA (
 c IN OUT NOCOPY connection
 body IN VARCHAR2 CHARACTER SET ANY_CS);

Parameters

Table 235-17 DATA Function and Procedure Parameters

	Parameter	Description
	
c

	
SMTP Connection

	
body

	
Text of the message to be sent, including headers, in [RFC822] format

Return Values

Table 235-18 DATA Function and Procedure Return Values

	Return Value	Description
	
reply

	
Reply of the command (see REPLY, REPLIES Record Types). In cases where there are multiple replies, the last reply is returned.

Usage Notes

The application must ensure that the contents of the body parameter conform to the MIME(RFC822) specification. The DATA routine terminates the message with a <CR><LF>.<CR><LF> sequence (a single period at the beginning of a line), as required by RFC821. It also translates any sequence of <CR><LF>.<CR><LF> (single period) in body to <CR><LF>..<CR><LF> (double period). This conversion provides the transparency as described in Section 4.5.2 of RFC821.

The DATA subprogram must be called only after OPEN_CONNECTION, HELO or EHLO, MAIL and RCPT have been called. The connection to the SMTP server must be open, and a mail transaction must be active when this routine is called.

The expected response from the server is a message beginning with status code 250. The 354 response received from the initial DATA command is not returned to the caller.

EHLO Function and Procedure

This subprogram performs the initial handshake with SMTP server using the EHLO command.

Syntax

UTL_SMTP.EHLO (
 c IN OUT NOCOPY connection,
 domain IN)
RETURN replies;

UTL_SMTP.EHLO (
 c IN OUT NOCOPY connection,
 domain IN);

Parameters

Table 235-19 EHLO Function and Procedure Parameters

	Parameter	Description
	
c

	
SMTP connection

	
domain

	
Domain name of the local (sending) host. Used for identification purposes.

Return Values

Table 235-20 EHLO Function and Procedure Return Values

	Return Value	Description
	
replies

	
Reply of the command (see REPLY, REPLIES Record Types).

Usage Notes

The EHLO interface is identical to HELO except that it allows the server to return more descriptive information about its configuration. [RFC1869] specifies the format of the information returned, which the PL/SQL application can retrieve using the functional form of this call. For compatibility with HELO, each line of text returned by the server begins with status code 250.

Related Functions

HELO Function and Procedure

HELO Function and Procedure

This subprogram performs the initial handshake with SMTP server using the HELO command.

Syntax

UTL_SMTP.HELO (
 c IN OUT NOCOPY connection,
 domain IN VARCHAR2)
RETURN reply;

UTL_SMTP.HELO (
 c IN OUT NOCOPY connection,
 domain IN VARCHAR2);

Parameters

Table 235-21 HELO Function and Procedure Parameters

	Parameter	Description
	
c

	
SMTP connection

	
domain

	
Domain name of the local (sending) host. Used for identification purposes.

Return Values

Table 235-22 HELO Function and Procedure Return Values

	Return Value	Description
	
reply

	
Reply of the command (see REPLY, REPLIES Record Types). In cases where there are multiple replies, the last reply is returned.

Usage Notes

RFC 821 specifies that the client must identify itself to the server after connecting. This routine performs that identification. The connection must have been opened through a call to OPEN_CONNECTION Functions before calling this routine.

The expected response from the server is a message beginning with status code 250.

Related Functions

EHLO Function and Procedure

HELP Function

This function sends the HELP command.

Syntax

UTL_SMTP.HELP (
 c IN OUT NOCOPY connection,
 command IN VARCHAR2 DEFAULT NULL)
RETURN replies;

Parameters

Table 235-23 HELP Function Parameters

	Parameter	Description
	
c

	
SMTP connection

	
command

	
Command to get the help message

Return Values

Table 235-24 HELP Function Return Values

	Return Value	Description
	
replies

	
Reply of the command (see REPLY, REPLIES Record Types)

MAIL Function and Procedure

This subprogram initiate a mail transaction with the server. The destination is a mailbox.

Syntax

UTL_SMTP.MAIL (
 c IN OUT NOCOPY connection,
 sender IN VARCHAR2,
 parameters IN VARCHAR2 DEFAULT NULL)
RETURN reply;

UTL_SMTP.MAIL (
 c IN OUT NOCOPY connection,
 sender IN VARCHAR2,
 parameters IN VARCHAR2 DEFAULT NULL);

Parameters

Table 235-25 MAIL Function and Procedure Parameters

	Parameter	Description
	
c

	
SMTP connection

	
sender

	
E-mail address of the user sending the message.

	
parameters

	
Additional parameters to mail command as defined in Section 6 of [RFC1869]. It must follow the format of "XXX=XXX (XXX=XXX)".

Return Values

Table 235-26 MAIL Function and Procedure Return Values

	Return Value	Description
	
reply

	
Reply of the command (see REPLY, REPLIES Record Types). In cases where there are multiple replies, the last reply is returned.

Usage Notes

This command does not send the message; it simply begins its preparation. It must be followed by calls to RCPT and DATA to complete the transaction. The connection to the SMTP server must be open and a HELO or EHLO command must have already been sent.

The expected response from the server is a message beginning with status code 250.

NOOP Function and Procedure

This subprogram issues the NULL command.

Syntax

UTL_SMTP.NOOP (
 c IN OUT NOCOPY connection)
RETURN reply;

UTL_SMTP.NOOP (
 c IN OUT NOCOPY connection);

Parameter

Table 235-27 NOOP Function and Procedure Parameters

	Parameter	Description
	
c

	
SMTP connection

Return Values

Table 235-28 NOOP Function and Procedure Return Values

	Return Value	Description
	
reply

	
Reply of the command (see REPLY, REPLIES Record Types). In cases where there are multiple replies, the last reply is returned.

Usage Notes

	
This command has no effect except to elicit a successful reply from the server. It can be issued at any time after the connection to the server has been established with OPEN_CONNECTION. The NOOP command can be used to verify that the server is still connected and is listening properly.

	
This command replies with a single line beginning with status code 250.

OPEN_CONNECTION Functions

These functions open a connection to an SMTP server.

	
Note:

This functionality associated with wallet_path, wallet_password and secure_connection_before_smtp is available starting with Oracle Database 11g Release 2 (11.2.0.2).

Syntax

UTL_SMTP.OPEN_CONNECTION (
 host IN VARCHAR2,
 port IN PLS_INTEGER DEFAULT 25,
 c OUT connection,
 tx_timeout IN PLS_INTEGER DEFAULT NULL,
 wallet_path IN VARCHAR2 DEFAULT NULL,
 wallet_password IN VARCHAR2 DEFAULT NULL,
 secure_connection_before_smtp IN BOOLEAN DEFAULT FALSE)
 RETURN reply;

UTL_SMTP.OPEN_CONNECTION (
 host IN VARCHAR2,
 port IN PLS_INTEGER DEFAULT 25,
 tx_timeout IN PLS_INTEGER DEFAULT NULL,
 wallet_path IN VARCHAR2 DEFAULT NULL,
 wallet_password IN VARCHAR2 DEFAULT NULL,
 secure_connection_before_smtp IN BOOLEAN DEFAULT FALSE)
RETURN reply;

Parameters

Table 235-29 OPEN_CONNECTION Functions Parameters

	Parameter	Description
	
host

	
Name of the SMTP server host

	
port

	
Port number on which SMTP server is listening (usually 25)

	
c

	
SMTP connection

	
tx_timeout

	
Time in seconds that the UTL_SMTP package waits before timing out in a read or write operation for this connection. In read operations, this package times out if no data is available for reading immediately. In write operations, this package times out if the output buffer is full and no data is to be sent into the network without being blocked. 0 indicates not to wait at all. NULL indicates to wait forever.

	
wallet_path

	
Directory path that contains the Oracle wallet for SSL/TLS. The format is file: <directory-path>

	
wallet_password

	
Password to open the wallet. When the wallet is auto-login enabled, the password can be set to NULL.

	
secure_connection_before_smtp

	
If TRUE, a secure connection with SSL/TLS is made before SMTP communication. If FALSE, no connection is made.

Return Values

Table 235-30 OPEN_CONNECTION Functions Return Values

	Return Value	Description
	
reply

	
Reply of the command (see REPLY, REPLIES Record Types). In cases where there are multiple replies, the last reply is returned.

Usage Notes

	
The expected response from the server is a message beginning with status code 220.

	
The version of OPEN_CONNECTION that returns UTL_SMTP.CONNECTION record checks the reply code returned by an SMTP server when the connection is first established. It raises an exception when the reply indicates an error. Otherwise, it discards the reply. If you want to examine the reply, invoke the version of OPEN_CONNECTION that returns REPLY.

	
tx_timeout is intended to govern both the read operations and the write operations. However, an implementation restriction prevents tx_timeout from governing write operations in the current release.

Examples

DECLARE
 c utl_smtp.connection;
BEGIN
 c := UTL_SMTP.OPEN_CONNECTION(
 host => 'smtp.example.com',
 port => 465,
 wallet_path => 'file:/oracle/wallets/smtp_wallet',
 wallet_password => 'password',
 secure_connection_before_smtp => TRUE);
END;

OPEN_DATA Function and Procedure

This subprogram sends the DATA command after which you can use WRITE_DATA and WRITE_RAW_DATA to write a portion of the e-mail message.

Syntax

UTL_SMTP.OPEN_DATA (
 c IN OUT NOCOPY connection)
RETURN reply;

UTL_SMTP.OPEN_DATA (
 c IN OUT NOCOPY connection);

Parameters

Table 235-31 OPEN_DATA Function and Procedure Parameters

	Parameter	Description
	
c

	
SMTP connection

	
data

	
Portion of the text of the message to be sent, including headers, in RFC822 format.

Return Values

Table 235-32 OPEN_DATA Function and Procedure Function Return Values

	Return Value	Description
	
reply

	
Reply of the command (see REPLY, REPLIES Record Types). In cases where there are multiple replies, the last reply is returned.

Usage Notes

	
The calls to OPEN_DATA, WRITE_DATA, WRITE_RAW_DATA and CLOSE_DATA must be made in the right order. A program calls OPEN_DATA to send the DATA command to the SMTP server. After that, it can call WRITE_DATA or WRITE_RAW_DATA repeatedly to send the actual data. The data is terminated by calling CLOSE_DATA. After OPEN_DATA is called, the only subprograms that can be called are WRITE_DATA, WRITE_RAW_DATA, or CLOSE_DATA. A call to other subprograms results in an INVALID_OPERATION exception being raised.

	
OPEN_DATA must be called only after OPEN_CONNECTION, HELO or EHLO, MAIL, and RCPT have been called. The connection to the SMTP server must be open and a mail transaction must be active when this routine is called.

QUIT Function and Procedure

This subprogram terminates an SMTP session and disconnects from the server.

Syntax

UTL_SMTP.QUIT (
 c IN OUT NOCOPY connection)
RETURN reply;

UTL_SMTP.QUIT (
 c IN OUT NOCOPY connection);

Parameter

Table 235-33 QUIT Function and Procedure Parameters

	Parameter	Description
	
c

	
SMTP connection

Return Values

Table 235-34 QUIT Function and Procedure Function Return Values

	Return Value	Description
	
reply

	
Reply of the command (see REPLY, REPLIES Record Types). In cases where there are multiple replies, the last reply is returned.

Usage Notes

The QUIT command informs the SMTP server of the client's intent to terminate the session. It then closes the connection established by OPEN_CONNECTION which must have been called before executing this command. If a mail transaction is in progress when QUIT is issued, it is canceled in the same manner as RSET.

The function form of this command returns a single line beginning with the status code 221 on successful termination. In all cases, the connection to the SMTP server is closed. The fields REMOTE_HOST and REMOTE_PORT of c are reset.

Related Functions

RSET Function and Procedure

RCPT Function

This subprogram specifies the recipient of an e-mail message.

Syntax

UTL_SMTP.RCPT (
 c IN OUT NOCOPY connection,
 recipient IN VARCHAR2,
 parameters IN VARCHAR2 DEFAULT NULL)
RETURN reply;

UTL_SMTP.RCPT (
 c IN OUT NOCOPY connection,
 recipient IN VARCHAR2,
 parameters IN VARCHAR2 DEFAULT NULL);

Table 235-35 RCPT Function and Procedure Parameters

	Parameter	Description
	
c

	
SMTP connection

	
recipient

	
E-mail address of the user to which the message is being sent

	
parameters

	
Additional parameters to RCPT command as defined in Section 6 of [RFC1869]. It must follow the format of "XXX=XXX (XXX=XXX)".

Return Values

Table 235-36 RCPT Function and Procedure Function Return Values

	Return Value	Description
	
reply

	
Reply of the command (see REPLY, REPLIES Record Types). In cases where there are multiple replies, the last reply is returned.

Usage Notes

To send a message to multiple recipients, call this routine multiple times. Each invocation schedules delivery to a single e-mail address. The message transaction must have been begun by a prior call to MAIL, and the connection to the mail server must have been opened and initialized by prior calls to OPEN_CONNECTION and HELO or EHLO respectively.

The expected response from the server is a message beginning with status code 250 or 251.

RSET Function and Procedure

This subprogram terminates the current mail transaction.

Syntax

UTL_SMTP.RSET (
 c IN OUT NOCOPY connection)
RETURN reply;

UTL_SMTP.RSET (
 c IN OUT NOCOPY connection);

Parameters

Table 235-37 RSET Function and Procedure Parameters

	Parameter	Description
	
c

	
SMTP connection

Return Values

Table 235-38 RSET Function and Procedure Return Values

	Return Value	Description
	
reply

	
Reply of the command (see REPLY, REPLIES Record Types). In cases where there are multiple replies, the last reply is returned.

Usage Notes

	
This command allows the client to cancel an e-mail message it was in the process of composing. No mail is sent. The client can call RSET at any time after the connection to the SMTP server has been opened by means of OPEN_CONNECTION until DATA or OPEN_DATA is called. Once the e-mail data has been sent, it is too late to prevent the e-mail from being sent.

	
The server responds to RSET with a message beginning with status code 250.

Related Functions

QUIT Function and Procedure

STARTTLS Function and Procedure

This subprogram sends the STARTTLS command to secure the SMTP connection using SSL/TLS. SSL/TLS requires an Oracle wallet which must be specified when the connection was opened by the OPEN_CONNECTION Functions.

Syntax

UTL_SMTP.STARTTLS (
 c IN OUT NOCOPY connection)
RETURN reply;

UTL_SMTP.STARTTLS (
 c IN OUT NOCOPY connection);

Parameters

Table 235-39 STARTTLS Function and Procedure Parameters

	Parameter	Description
	
c

	
SMTP connection

Return Values

Table 235-40 STARTTLS Function and Procedure Return Values

	Return Value	Description
	
reply

	
SMTP reply

Usage Notes

The STARTTLS command must only be issued on an unencrypted connection and when the SMTP server indicates the support of the command in the reply of the EHLO command. The wallet to be used for encryption must have been specified when the initial SMTP connection was opened by the OPEN_CONNECTION function.

Examples

DECLARE
 c utl_smtp.connection;
BEGIN
 c := utl_smtp.open_connection(
 host => 'smtp.example.com',
 port => 25,
 wallet_path => 'file:/oracle/wallets/smtp_wallet',
 wallet_password => 'password',
 secure_connection_before_smtp => FALSE);
 utl_smtp.starttls(c);
END

VRFY Function

This function verifies the validity of a destination e-mail address.

Syntax

UTL_SMTP.VRFY (
 c IN OUT NOCOPY connection
 recipient IN VARCHAR2)
RETURN reply;

Parameters

Table 235-41 VRFY Function Parameters

	Parameter	Description
	
c

	
SMTP connection

	
recipient

	
E-mail address to be verified

Return Values

Table 235-42 VRFY Function Return Values

	Return Value	Description
	
reply

	
Reply of the command (see REPLY, REPLIES Record Types). In cases where there are multiple replies, the last reply is returned.

Usage Notes

The server attempts to resolve the destination address recipient. If successful, it returns the recipient's full name and fully qualified mailbox path. The connection to the server must have already been established by means of OPEN_CONNECTION and HELO or EHLO before making this request.

Successful verification returns one or more lines beginning with status code 250 or 251.

WRITE_DATA Procedure

This procedure writes a portion of the e-mail message. A repeat call to WRITE_DATA appends data to the e-mail message.

Syntax

UTL_SMTP.WRITE_DATA (
 c IN OUT NOCOPY connection,
 data IN VARCHAR2 CHARACTER SET ANY_CS);

Parameters

Table 235-43 WRITE_DATA Procedure Parameters

	Parameter	Description
	
c

	
SMTP connection

	
data

	
Portion of the text of the message to be sent, including headers, in [RFC822] format

Usage Notes

	
The calls to the OPEN_DATA Function and Procedure, WRITE_DATA Procedure, WRITE_RAW_DATA Procedure and CLOSE_DATA Function and Procedure must be made in the correct order. A program calls OPEN_DATA to send the DATA command to the SMTP server. After that, it can call WRITE_DATA or WRITE_RAW_DATA repeatedly to send the actual data. The data is terminated by calling CLOSE_DATA. After OPEN_DATA is called, the only subprograms that can be called are WRITE_DATA, WRITE_RAW_DATA, or CLOSE_DATA. A call to other subprograms results in an INVALID_OPERATION exception being raised.

	
The application must ensure that the contents of the body parameter conform to the MIME(RFC822) specification. The DATA routine terminates the message with a <CR><LF>.<CR><LF> sequence (a single period at the beginning of a line), as required by RFC821. It also translates any sequence of <CR><LF>.<CR><LF> (single period) in the body to <CR><LF>..<CR><LF> (double period). This conversion provides the transparency as described in Section 4.5.2 of RFC821.

	
The OPEN_DATA Function and Procedure, WRITE_DATA Procedure, WRITE_RAW_DATA Procedure and CLOSE_DATA Function and Procedure must be called only after OPEN_CONNECTION Functions, HELO Function and Procedure, or EHLO Function and Procedure, MAIL Function and Procedure, and RCPT Function have been called. The connection to the SMTP server must be open and a mail transaction must be active when this routine is called.

	
Note that there is no function form of the WRITE_DATA Procedure because the SMTP server does not respond until the data-terminator is sent during the call to CLOSE_DATA Function and Procedure.

	
Text (VARCHAR2) data sent using WRITE_DATA is converted to US7ASCII before it is sent. If the text contains multibyte characters, each multibyte character in the text that cannot be converted to US7ASCII is replaced by a '?' character. If 8BITMIME extension is negotiated with the SMTP server using the EHLO subprogram, multibyte VARCHAR2 data can be sent by first converting the text to RAW using the UTL_RAW package, and then sending the RAW data using WRITE_RAW_DATA.

WRITE_RAW_DATA Procedure

This procedure writes a portion of the e-mail message. A repeat call to WRITE_RAW_DATA appends data to the e-mail message.

Syntax

UTL_SMTP.WRITE_RAW_DATA (
 c IN OUT NOCOPY connection
 data IN RAW);

Parameters

Table 235-44 WRITE_RAW_DATA Procedure Parameters

	Parameter	Description
	
c

	
SMTP connection

	
data

	
Portion of the text of the message to be sent, including headers, in [RFC822] format

Usage Notes

	
The calls to the OPEN_DATA Function and Procedure, WRITE_DATA Procedure, WRITE_RAW_DATA Procedure and CLOSE_DATA Function and Procedure must be made in the correct order. A program calls OPEN_DATA to send the DATA command to the SMTP server. After that, it can call WRITE_DATA or WRITE_RAW_DATA repeatedly to send the actual data. The data is terminated by calling CLOSE_DATA. After OPEN_DATA is called, the only subprograms that can be called are WRITE_DATA, WRITE_RAW_DATA, or CLOSE_DATA. A call to other subprograms results in an INVALID_OPERATION exception being raised.

	
The application must ensure that the contents of the body parameter conform to the MIME(RFC822) specification. The DATA routine terminates the message with a <CR><LF>.<CR><LF> sequence (a single period at the beginning of a line), as required by RFC821. It also translates any sequence of <CR><LF>.<CR><LF> (single period) in the body to <CR><LF>..<CR><LF> (double period). This conversion provides the transparency as described in Section 4.5.2 of RFC821.

	
The OPEN_DATA Function and Procedure, WRITE_DATA Procedure, WRITE_RAW_DATA Procedure and CLOSE_DATA Function and Procedure must be called only after OPEN_CONNECTION Functions, HELO Function and Procedure, or EHLO Function and Procedure, MAIL Function and Procedure, and RCPT Function have been called. The connection to the SMTP server must be open and a mail transaction must be active when this routine is called.

	
Note that there is no function form of the WRITE_DATA Procedure because the SMTP server does not respond until the data-terminator is sent during the call to CLOSE_DATA Function and Procedure.

UTL_SPADV

236 UTL_SPADV

The UTL_SPADV package, one of a set of Oracle Streams packages, provides subprograms to collect and analyze statistics for the Oracle Streams components in a distributed database environment. This package uses the Oracle Streams Performance Advisor to gather statistics.

This chapter contains the following topic:

	
Using UTL_SPADV

	
Overview

	
Security Model

	
Operational Notes

	
Summary of UTL_SPADV Subprograms

	
See Also:

Oracle Streams Concepts and Administration for more information about this package and the Oracle Streams Performance Advisor

Using UTL_SPADV

	
Overview

	
Security Model

	
Operational Notes

Overview

This package enables you to collect and analyze statistics about the performance or Oracle Streams components. You can either collect statistics on demand or you can create a monitoring job that continually monitors Oracle Streams performance.

When this package is used on an Oracle Database 11g Release 2 (11.2) database, it can monitor Oracle Database 10g Release 2 (10.2) and later databases. It cannot monitor databases before release 10.2.

	
See Also:

Oracle Streams Concepts and Administration

Security Model

Security on this package can be controlled in either of the following ways:

	
Granting EXECUTE on this package to selected users or roles.

	
Granting EXECUTE_CATALOG_ROLE to selected users or roles.

If subprograms in the package are run from within a stored procedure, then the user who runs the subprograms must be granted EXECUTE privilege on the package directly. It cannot be granted through a role.

To ensure that the user who runs the subprograms in this package has the necessary privileges, configure an Oracle Streams administrator and connect as the Oracle Streams administrator when using this package.

	
See Also:

Oracle Streams Replication Administrator's Guide for information about configuring an Oracle Streams administrator

Operational Notes

To use this package, you must connect to an Oracle database as an Oracle Streams administrator and run the utlspadv.sql script in the rdbms/admin directory in ORACLE_HOME.

The utlspadv.sql script creates the following tables:

	
STREAMS$_PA_COMPONENT Table

	
STREAMS$_PA_COMPONENT_LINK Table

	
STREAMS$_PA_COMPONENT_PROP Table

	
STREAMS$_PA_COMPONENT_STAT Table

	
STREAMS$_PA_CONTROL Table

	
STREAMS$_PA_DATABASE Table

	
STREAMS$_PA_DATABASE_PROP Table

	
STREAMS$_PA_MONITORING Table

	
STREAMS$_PA_PATH_BOTTLENECK Table

	
STREAMS$_PA_PATH_STAT Table

	
STREAMS$_PA_SHOW_COMP_STAT Table

	
STREAMS$_PA_SHOW_PATH_STAT Table

The Oracle Streams Performance Advisor populates these tables when it is run.

	
See Also:

Oracle Streams Concepts and Administration

STREAMS$_PA_COMPONENT Table

The STREAMS$_PA_COMPONENT table displays information about the Oracle Streams components at each database.

Table 236-1 STREAMS$_PA_COMPONENT Table

	Column	Datatype	NULL	Description
	
COMPONENT_ID

	
NUMBER

	
NOT NULL

	
Identification number assigned to the component by the Oracle Streams Performance Advisor

	
COMPONENT_NAME

	
VARCHAR2(194)

	
	
Name of the component

	
COMPONENT_DB

	
VARCHAR2(128)

	
	
Name of the database that contains the component

	
COMPONENT_TYPE

	
VARCHAR2(20)

	
	
Type of the component

The following types are possible:

	
CAPTURE for a capture process

	
PROPAGATION SENDER for a propagation sender

	
PROPAGATION RECEIVER for a propagation receiver

	
APPLY for an apply process

	
QUEUE for a queue

	
COMPONENT_CHANGED_TIME

	
DATE

	
	
Time when the component was last changed

STREAMS$_PA_COMPONENT_LINK Table

The STREAMS$_PA_COMPONENT_LINK table displays information about how information flows between Oracle Streams components.

Table 236-2 STREAMS$_PA_COMPONENT_LINK Table

	Column	Datatype	NULL	Description
	
PATH_ID

	
NUMBER

	
NOT NULL

	
Identification number assigned to the path by the Oracle Streams Performance Advisor

	
PATH_KEY

	
VARCHAR2(4000)

	
	
Unique key assigned to the path by the Oracle Streams Performance Advisor

	
SOURCE_COMPONENT_ID

	
NUMBER

	
NOT NULL

	
Source component ID for the path

The path starts with this component.

	
DESTINATION_COMPONENT_ID

	
NUMBER

	
NOT NULL

	
Destination component ID for the path

The path ends with this component.

	
POSITION

	
NUMBER

	
	
Position of the component in the path

STREAMS$_PA_COMPONENT_PROP Table

The STREAMS$_PA_COMPONENT_PROP table displays information about capture processes and apply processes necessary for analysis by the Streams Performance Advisor.

Table 236-3 STREAMS$_PA_COMPONENT_PROP Table

	Column	Datatype	NULL	Description
	
COMPONENT_ID

	
NUMBER

	
NOT NULL

	
Identification number assigned to the component by the Oracle Streams Performance Advisor

	
PROP_NAME

	
VARCHAR2(30)

	
	
Property name

For a capture process, the component properties include the following:

	
SOURCE_DATABASE - The source database for the changes captured by the capture process

	
PARALLELISM - The setting for the parallelism capture process parameter

	
OPTIMIZATION_MODE - Indicates whether the capture process uses combined capture and apply (greater than zero) or does not use combined capture and apply (0)

For an apply process, the component properties include the following:

	
SOURCE_DATABASE - The source database for the messages applied by the apply process

	
PARALLELISM - The setting for the parallelism apply process parameter

	
APPLY_CAPTURED - Indicates whether the apply process applies captured messages (YES) persistent messages (NO)

	
MESSAGE_DELIVERY_MODE - Either buffered or persistent

	
PROP_VALUE

	
VARCHAR2(30)

	
	
Property value

STREAMS$_PA_COMPONENT_STAT Table

The STREAMS$_PA_COMPONENT_STAT table displays performance statistics and session statistics about each Oracle Streams component.

Table 236-4 STREAMS$_PA_COMPONENT_STAT Table

	Column	Datatype	NULL	Description
	
ADVISOR_RUN_ID

	
NUMBER

	
	
Identification number of the Oracle Streams Performance Advisor run

	
ADVISOR_RUN_TIME

	
DATE

	
	
Time when the Oracle Streams Performance Advisor was run for the advisor run ID

	
COMPONENT_ID

	
NUMBER

	
	
Identification number assigned to the component by the Oracle Streams Performance Advisor

	
STATISTIC_TIME

	
DATE

	
	
Time when the statistic was recorded

	
STATISTIC_NAME

	
VARCHAR2(64)

	
	
Name of the statistic

	
STATISTIC_VALUE

	
NUMBER

	
	
Value recorded for the statistic

	
STATISTIC_UNIT

	
VARCHAR2(64)

	
	
Unit of measurement for the statistic

	
SUB_COMPONENT_TYPE

	
VARCHAR2(64)

	
	
Type of the subcomponent

Only capture processes and apply processes have subcomponents.

The following capture process subcomponent types are possible:

	
LOGMINER READER for a builder server of a capture process

	
LOGMINER PREPARER for a preparer server of a capture process

	
LOGMINER BUILDER for a reader server of a capture process

	
CAPTURE SESSION for a capture process session

The following apply process subcomponent types are possible:

	
PROPAGATION SENDER+RECEIVER for sending LCRs from a capture process directly to an apply process in a combined capture and apply configuration in which both the capture process and apply process run on a single database

	
APPLY READER for a reader server of an apply process

	
APPLY COORDINATOR for a coordinator process of an apply process

	
APPLY SERVER for a reader server of an apply process

	
SESSION_ID

	
NUMBER

	
	
Identification number of the session for the component. Query the V$SESSION view for information about the session.

	
SESSION_SERIAL#

	
NUMBER

	
	
Session serial number of the session for the component. Query the V$SESSION view for information about the session.

STREAMS$_PA_CONTROL Table

The STREAMS$_PA_CONTROL table displays the parameters set for the COLLECT_STATS procedure in this package. The parameters control the monitoring behavior.

Table 236-5 STREAMS$_PA_CONTROL Table

	Column	Datatype	NULL	Description
	
ADVISOR_RUN_ID

	
NUMBER

	
	
Identification number of the Oracle Streams Performance Advisor run

	
ADVISOR_RUN_TIME

	
DATE

	
	
Time when the Oracle Streams Performance Advisor was last run

	
PARAM_NAME

	
VARCHAR2(30)

	
	
The name of the parameter

	
PARAM_VALUE

	
VARCHAR2(4000)

	
	
The value set for the parameter

	
PARAM_UNIT

	
VARCHAR2(30)

	
	
The unit of the parameter

STREAMS$_PA_DATABASE Table

The STREAMS$_PA_DATABASE table displays information about each database that contains Oracle Streams components.

Table 236-6 STREAMS$_PA_DATABASE Table

	Column	Datatype	NULL	Description
	
GLOBAL_NAME

	
VARCHAR2(128)

	
NOT NULL

	
Global name of the database analyzed by the Oracle Streams Performance Advisor

	
LAST_QUERIED

	
DATE

	
	
The time when the Performance Advisor successfully collected information from a database in its last run

	
ERROR_NUMBER

	
NUMBER

	
	
The error number of the error encountered when the database was last queried

	
ERROR_MESSAGE

	
VARCHAR2(4000)

	
	
The error message of the error encountered when the database was last queried

STREAMS$_PA_DATABASE_PROP Table

The STREAMS$_PA_DATABASE_PROP table displays Oracle Streams database property information necessary for analysis by the Streams Performance Advisor.

Table 236-7 STREAMS$_PA_DATABASE_PROP Table

	Column	Datatype	NULL	Description
	
GLOBAL_NAME

	
VARCHAR2(128)

	
NOT NULL

	
Global name of the database analyzed by the Oracle Streams Performance Advisor

	
PROP_NAME

	
VARCHAR2(30)

	
	
Property name

The database properties include the following:

	
VERSION

	
COMPATIBILITY

	
MANAGEMENT_PACK_ACCESS

	
DB_UNIQUE_NAME

	
PROP_VALUE

	
VARCHAR2(30)

	
	
Property value

STREAMS$_PA_MONITORING Table

The STREAMS$_PA_MONITORING table displays information about each monitoring job running in a database.

Table 236-8 STREAMS$_PA_MONITORING Table

	Column	Datatype	NULL	Description
	
JOB_NAME

	
VARCHAR2(30)

	
NOT NULL

	
Name of the monitoring job

	
CLIENT_NAME

	
VARCHAR2(30)

	
	
Name of the client that submitted the job

See Also: "Full Monitoring Job Names"

	
QUERY_USER_NAME

	
VARCHAR2(30)

	
	
User granted privileges to view the monitoring results

	
SHOW_STATS_TABLE

	
VARCHAR2(30)

	
	
Name of the table used by the SHOW_STATS procedure to display statistics

	
STARTED_TIME

	
TIMESTAMP

	
	
Time the monitoring job started

	
STOPPED_TIME

	
TIMESTAMP

	
	
Time the monitoring job last stopped

	
ALTERED_TIME

	
TIMESTAMP

	
	
Time the monitoring job was last altered

	
STATE

	
VARCHAR2(30)

	
	
State of the monitoring job, either ENABLED or STOPPED

STREAMS$_PA_PATH_BOTTLENECK Table

The STREAMS$_PA_PATH_BOTTLENECK table displays information about Oracle Streams components that might be slowing down the flow of messages.

Table 236-9 STREAMS$_PA_PATH_BOTTLENECK Table

	Column	Datatype	NULL	Description
	
ADVISOR_RUN_ID

	
NUMBER

	
	
Identification number of the Oracle Streams Performance Advisor run

	
ADVISOR_RUN_TIME

	
DATE

	
	
Time when the Oracle Streams Performance Advisor was last run

	
ADVISOR_RUN_REASON

	
VARCHAR2(4000)

	
	
Reason for the bottleneck

	
PATH_ID

	
NUMBER

	
	
Identification number assigned to the path by the Oracle Streams Performance Advisor

	
PATH_KEY

	
VARCHAR2(4000)

	
	
Unique key assigned to the path by the Oracle Streams Performance Advisor

	
COMPONENT_ID

	
NUMBER

	
	
Identification number assigned to the component by the Oracle Streams Performance Advisor

	
TOP_SESSION_ID

	
NUMBER

	
	
Session ID of the top component. Query the V$SESSION view for information about the session.

	
TOP_SESSION_SERIAL#

	
NUMBER

	
	
Session serial number of the top component. Query the V$SESSION view for information about the session.

	
ACTION_NAME

	
VARCHAR2(32)

	
	
Action name for the top session

	
BOTTLENECK_IDENTIFIED

	
VARCHAR2(30)

	
	
Whether a bottleneck was identified

STREAMS$_PA_PATH_STAT Table

The STREAMS$_PA_PATH_STAT table displays performance statistics about each stream path.

Table 236-10 STREAMS$_PA_PATH_STAT Table

	Column	Datatype	NULL	Description
	
ADVISOR_RUN_ID

	
NUMBER

	
	
Identification number of the Oracle Streams Performance Advisor run

	
ADVISOR_RUN_TIME

	
DATE

	
	
Time when the Oracle Streams Performance Advisor was run for the advisor run ID

	
PATH_ID

	
NUMBER

	
	
Identification number assigned to the path by the Oracle Streams Performance Advisor

	
PATH_KEY

	
VARCHAR2(4000)

	
	
Unique key assigned to the path by the Oracle Streams Performance Advisor

	
STATISTIC_TIME

	
DATE

	
	
Time when the statistic was recorded

	
STATISTIC_NAME

	
VARCHAR2(64)

	
	
Name of the statistic

	
STATISTIC_VALUE

	
NUMBER

	
	
Value recorded for the statistic

	
STATISTIC_UNIT

	
VARCHAR2(64)

	
	
Unit of measurement for the statistic

STREAMS$_PA_SHOW_COMP_STAT Table

The STREAMS$_PA_SHOW_COMP_STAT table displays statistics for Oracle Streams components.

Table 236-11 STREAMS$_PA_SHOW_COMP_STAT Table

	Column	Datatype	NULL	Description
	
ADVISOR_RUN_ID

	
NUMBER

	
	
Identification number of the Oracle Streams Performance Advisor run

	
ADVISOR_RUN_TIME

	
DATE

	
	
Time when the Oracle Streams Performance Advisor was last run

	
PATH_ID

	
NUMBER

	
	
Identification number assigned to the path by the Oracle Streams Performance Advisor

	
POSITION

	
NUMBER

	
	
Position of the component in the path

	
COMPONENT_ID

	
NUMBER

	
	
Identification number assigned to the component by the Oracle Streams Performance Advisor

	
COMPONENT_NAME

	
VARCHAR2(194)

	
	
Name of the component

	
COMPONENT_TYPE

	
VARCHAR2(30)

	
	
Type of the component

The following types are possible:

	
CAPTURE for a capture process

	
PROPAGATION SENDER for a propagation sender

	
PROPAGATION RECEIVER for a propagation receiver

	
APPLY for an apply process

	
QUEUE for a queue

	
SUB_COMPONENT_TYPE

	
VARCHAR2(30)

	
	
Type of the subcomponent

Only capture processes and apply processes have subcomponents.

The following capture process subcomponent types are possible:

	
LOGMINER READER for a builder server of a capture process

	
LOGMINER PREPARER for a preparer server of a capture process

	
LOGMINER BUILDER for a reader server of a capture process

	
CAPTURE SESSION for a capture process session

The following apply process subcomponent types are possible:

	
PROPAGATION SENDER+RECEIVER for sending LCRs from a capture process directly to an apply process in a combined capture and apply configuration in which both the capture process and apply process run on a single database

	
APPLY READER for a reader server of an apply process

	
APPLY COORDINATOR for a coordinator process of an apply process

	
APPLY SERVER for a reader server of an apply process

	
SESSION_ID

	
NUMBER

	
	
Identification number of the session for the component. Query the V$SESSION view for information about the session.

	
SESSION_SERIAL#

	
NUMBER

	
	
Session serial number of the session for the component. Query the V$SESSION view for information about the session.

	
STATISTIC_ALIAS

	
VARCHAR2(30)

	
	
Name of the statistic

	
STATISTIC_NAME

	
VARCHAR2(128)

	
	
Name of the statistic

	
STATISTIC_VALUE

	
NUMBER

	
	
Value recorded for the statistic

	
STATISTIC_UNIT

	
VARCHAR2(128)

	
	
Unit of measurement for the statistic

STREAMS$_PA_SHOW_PATH_STAT Table

The STREAMS$_PA_SHOW_PATH_STAT table displays statistics for the stream paths in an Oracle Streams configuration. A monitoring job uses this table as the default table for the statistics collected for stream paths.

Table 236-12 STREAMS$_PA_SHOW_PATH_STAT Table

	Column	Datatype	NULL	Description
	
PATH_ID

	
NUMBER

	
	
Identification number assigned to the path by the Oracle Streams Performance Advisor

	
ADVISOR_RUN_ID

	
NUMBER

	
	
Identification number of the Oracle Streams Performance Advisor run

	
ADVISOR_RUN_TIME

	
DATE

	
	
Time when the Oracle Streams Performance Advisor was last run

	
SETTING

	
VARCHAR2(2000)

	
	
Setting for the Oracle Streams Performance Advisor Run

	
STATISTICS

	
VARCHAR2(4000)

	
	
Component-level statistics

	
SESSION_STATISTICS

	
VARCHAR2(4000)

	
	
Session-level statistics

	
OPTIMIZATION

	
NUMBER

	
	
Whether the path uses the combined capture and apply optimization

0 (zero) means that the path does not use the combined capture and apply optimization.

1 means that the path uses the combined capture and apply optimization.

Summary of UTL_SPADV Subprograms

Table 236-13 DBMS_STREAMS Package Subprograms

	Subprogram	Description
	
ALTER_MONITORING Procedure

	
Alters the monitoring job submitted by the current user.

	
COLLECT_STATS Procedure

	
Uses the Oracle Streams Performance Advisor to gather statistics about the Oracle Streams components and subcomponents in a distributed database environment.

	
IS_MONITORING Function

	
Checks whether a monitoring job is currently running.

	
SHOW_STATS Procedure

	
Generates output that includes the statistics gathered by the COLLECT_STATS procedure.

	
START_MONITORING Procedure

	
Starts a monitoring job.

	
STOP_MONITORING Procedure

	
Stops a monitoring job.

ALTER_MONITORING Procedure

This procedure alters the monitoring job submitted by the current user.

Syntax

UTL_SPADV.ALTER_MONITORING(
 interval IN NUMBER DEFAULT NULL,
 top_event_threshold IN NUMBER DEFAULT NULL,
 bottleneck_idle_threshold IN NUMBER DEFAULT NULL,
 bottleneck_flowctrl_threshold IN NUMBER DEFAULT NULL,
 retention_time IN NUMBER DEFAULT NULL);

Parameters

Table 236-14 ALTER_MONITORING Procedure Parameters

	Parameter	Description
	
interval

	
The amount of time, in seconds, between each Performance Advisor run. The maximum is 3600 seconds.

If NULL, then the current value is not changed.

	
top_event_threshold

	
A percentage that determines whether a top wait event statistic is collected.

The percentage for a wait event must be greater than the value specified in this parameter for the procedure to collect the wait event statistic. For example, if 15 is specified, then only wait events with a value larger than 15% are collected.

If NULL, then the current value is not changed.

	
bottleneck_idle_threshold

	
A percentage that determines whether an Oracle Streams component session is eligible for bottleneck analysis based on its IDLE percentage.

The IDLE percentage must be less than or equal to the value specified in this parameter for the Oracle Streams component session to be eligible for bottleneck analysis. For example, if 50 is specified, then only components that are idle 50% of the time or less are eligible for bottleneck analysis.

If NULL, then the current value is not changed.

	
bottleneck_flowctrl_threshold

	
A percentage that determines whether an Oracle Streams component session is eligible for bottleneck analysis based on its FLOW CONTROL percentage.

The FLOW CONTROL percentage must be less than or equal to the value specified in this parameter for the Oracle Streams component session to be eligible for bottleneck analysis. For example, if 50 is specified, then only components that are paused for flow control 50% of the time or less are eligible for bottleneck analysis.

If NULL, then the current value is not changed.

	
retention_time

	
The number of hours to retain monitoring results.

If NULL, then the current value is not changed.

Exceptions

Table 236-15 ALTER_MONITORING Procedure Exceptions

	Exception	Description
	
ORA-20113

	
no active monitoring job found

COLLECT_STATS Procedure

This procedure uses the Oracle Streams Performance Advisor to gather statistics about the Oracle Streams components and subcomponents in a distributed database environment.

	
Note:

This procedure commits.

	
See Also:

Oracle Streams Concepts and Administration for more information about the Oracle Streams Performance Advisor

Syntax

UTL_SPADV.COLLECT_STATS(
 interval IN NUMBER DEFAULT 60,
 num_runs IN NUMBER DEFAULT 10,
 comp_stat_table IN VARCHAR2 DEFAULT 'STREAMS$_ADVISOR_COMP_STAT',
 path_stat_table IN VARCHAR2 DEFAULT 'STREAMS$_ADVISOR_PATH_STAT',
 top_event_threshold IN NUMBER DEFAULT 15,
 bottleneck_idle_threshold IN NUMBER DEFAULT 50,
 bottleneck_flowctrl_threshold IN NUMBER DEFAULT 50);

Parameters

Table 236-16 COLLECT_STATS Procedure Parameters

	Parameter	Description
	
interval

	
The amount of time, in seconds, between each Performance Advisor run. The maximum is 3600 seconds.

	
num_runs

	
The number of times that the Oracle Streams Performance Advisor is run by the procedure.

	
comp_stat_table

	
The name of the table that stores the statistics collected for Oracle Streams components and subcomponents. Specify the table name as [schema_name.]object_name. If the schema is not specified, then the current user is the default.

The procedure creates the specified table if it does not exist.

Oracle recommends that you use the default table STREAMS$_ADVISOR_COMP_STAT.

See "Usage Notes" for more information about this parameter.

	
path_stat_table

	
The name of the table that stores the statistics collected for stream paths. Specify the table name as [schema_name.]object_name. If the schema is not specified, then the current user is the default.

The procedure creates the specified table if it does not exist.

Oracle recommends that you use the default table STREAMS$_ADVISOR_PATH_STAT.

See "Usage Notes" for more information about this parameter.

	
top_event_threshold

	
A percentage that determines whether a top wait event statistic is collected.

The percentage for a wait event must be greater than the value specified in this parameter for the procedure to collect the wait event statistic. For example, if 15 is specified, then only wait events with a value larger than 15% are collected.

	
bottleneck_idle_threshold

	
A percentage that determines whether an Oracle Streams component session is eligible for bottleneck analysis based on its IDLE percentage.

The IDLE percentage must be less than or equal to the value specified in this parameter for the Oracle Streams component session to be eligible for bottleneck analysis. For example, if 50 is specified, then only components that are idle 50% of the time or less are eligible for bottleneck analysis.

	
bottleneck_flowctrl_threshold

	
A percentage that determines whether an Oracle Streams component session is eligible for bottleneck analysis based on its FLOW CONTROL percentage.

The FLOW CONTROL percentage must be less than or equal to the value specified in this parameter for the Oracle Streams component session to be eligible for bottleneck analysis. For example, if 50 is specified, then only components that are paused for flow control 50% of the time or less are eligible for bottleneck analysis.

Usage Notes

The table specified in the path_stat_table parameter stores stream path statistics. This table also concatenates the component and subcomponent statistics stored in the table specified in the comp_stat_table parameter. The SHOW_STATS procedure in this package shows only the statistics stored in the table specified in the path_stat_table parameter.

IS_MONITORING Function

This function checks whether a monitoring job is currently running. This function either returns TRUE if a monitoring job is currently running or FALSE if a monitoring job is not currently running.

A monitoring job is submitted using the START_MONITORING procedure.

	
See Also:

"START_MONITORING Procedure"

Syntax

UTL_SPADV.IS_MONITORING(
 job_name IN VARCHAR2 DEFAULT 'STREAMS$_MONITORING_JOB',
 client_name IN VARCHAR2 DEFAULT NULL)
RETURN BOOLEAN;

Parameters

Table 236-17 IS_MONITORING Function Parameters

	Parameter	Description
	
job_name

	
The name of the job for which to check.

	
client_name

	
The name of the client that submitted the job.

SHOW_STATS Procedure

This procedure generates output that includes the statistics gathered by the COLLECT_STATS and START_MONITORING procedures.

The output is formatted so that it can be imported into a spreadsheet for analysis.

	
Note:

This procedure does not commit.

	
See Also:

	
"COLLECT_STATS Procedure"

	
"START_MONITORING Procedure"

	
Oracle Streams Concepts and Administration for more information about the Oracle Streams Performance Advisor

Syntax

UTL_SPADV.SHOW_STATS(
 path_stat_table IN VARCHAR2 DEFAULT 'STREAMS$_ADVISOR_PATH_STAT',
 path_id IN NUMBER DEFAULT NULL,
 bgn_run_id IN NUMBER DEFAULT -1,
 end_run_id IN NUMBER DEFAULT -10,
 show_path_id IN BOOLEAN DEFAULT TRUE,
 show_run_id IN BOOLEAN DEFAULT TRUE,
 show_run_time IN BOOLEAN DEFAULT TRUE,
 show_optimization IN BOOLEAN DEFAULT TRUE,
 show_setting IN BOOLEAN DEFAULT FALSE,
 show_stat IN BOOLEAN DEFAULT TRUE,
 show_sess IN BOOLEAN DEFAULT FALSE,
 show_legend IN BOOLEAN DEFAULT TRUE);

Parameters

Table 236-18 SHOW_STATS Procedure Parameters

	Parameter	Description
	
path_stat_table

	
The name of the table that contains the stream path statistics. Specify the table name as [schema_name.]object_name. If the schema is not specified, then the current user is the default.

When you gather statistics using the COLLECT_STATS procedure, this table is specified in the path_stat_table parameter in the COLLECT_STATS procedure. The default table is STREAMS$_ADVISOR_PATH_STAT.

When you gather statistics using the START_MONITORING procedure, you can determine the name for this table by querying the SHOW_STATS_TABLE column in the STREAMS$_PA_MONITORING view. The default table for a monitoring job is STREAMS$_PA_SHOW_PATH_STAT.

	
path_id

	
A stream path ID.

If non-NULL, then the procedure shows output for the specified stream path only.

If NULL, then the procedure shows output for all active stream paths.

	
bgn_run_id

	
The first Oracle Streams Performance Advisor run ID to show in the range of runs.

See "Usage Notes" for more information about this parameter.

	
end_run_id

	
The last Oracle Streams Performance Advisor run ID to show in the range of runs.

See "Usage Notes" for more information about this parameter.

	
show_path_id

	
If TRUE, then the path ID for each stream path is included in the output.

If FALSE, then the path ID for each stream path is not included in the output.

	
show_run_id

	
If TRUE, then the Oracle Streams Performance Advisor run ID is included in the output.

If FALSE, then the Oracle Streams Performance Advisor run ID is not included in the output.

	
show_run_time

	
If TRUE, then the Oracle Streams Performance Advisor run time is included in the output.

If FALSE, then the Oracle Streams Performance Advisor run time is not included in the output.

	
show_optimization

	
If TRUE, then path output includes information pertaining to the combined capture and apply optimization.

If FALSE, then path output does not include information pertaining to the combined capture and apply optimization.

	
show_setting

	
If TRUE, then the settings for the threshold parameters are included in the output. The threshold parameters are the top_event_threshold, bottleneck_idle_threshold, and bottleneck_flowctrl_threshold parameters in the COLLECT_STATS procedure.

If FALSE, then the settings for the threshold parameters are not included in the output.

	
show_stat

	
If TRUE, then the component-level and subcomponent-level statistics are included in the output. These components include capture processes, queues, propagation senders, propagation receivers, and apply processes. The subcomponents are the subcomponents for capture processes and apply processes.

If FALSE, then the component-level and subcomponent-level statistics are not included in the output.

	
show_sess

	
If TRUE, then the session-level statistics are included in the output. Session-level statistics include IDLE, FLOW CONTROL, and EVENT statistics.

If FALSE, then the session-level statistics are not included in the output.

	
show_legend

	
If TRUE, then the legend is included in the output. The legend describes the abbreviations used in the output.

If FALSE, then the legend is not included in the output.

Usage Notes

Use the bgn_run_id and end_run_id together to specify the range of Oracle Streams Performance Advisor runs to display. Positive numbers show statistics from an earlier run forward. Negative numbers show statistics from a later run backward.

For example, if bgn_run_id is set to 1 and end_run_id is set to 10, then the procedure shows statistics for the first ten Oracle Streams Performance Advisor runs.

However, if bgn_run_id is set to -1 and end_run_id is set to -10, then the procedure shows statistics for the last ten Oracle Streams Performance Advisor runs.

	
See Also:

Oracle Streams Concepts and Administration for information about the combined capture and apply optimization

START_MONITORING Procedure

This procedure starts a monitoring job.

This procedure runs the COLLECT_STATS procedure to gather statistics about the Oracle Streams components and subcomponents in a distributed database environment.

	
Note:

This procedure commits.

	
See Also:

	
"COLLECT_STATS Procedure"

	
Oracle Streams Concepts and Administration for more information about the Oracle Streams Performance Advisor

Syntax

UTL_SPADV.START_MONITORING(
 job_name IN VARCHAR2 DEFAULT 'STREAMS$_MONITORING_JOB',
 client_name IN VARCHAR2 DEFAULT NULL,
 query_user_name IN VARCHAR2 DEFAULT NULL,
 interval IN NUMBER DEFAULT 60,
 top_event_threshold IN NUMBER DEFAULT 15,
 bottleneck_idle_threshold IN NUMBER DEFAULT 50,
 bottleneck_flowctrl_threshold IN NUMBER DEFAULT 50,
 retention_time IN NUMBER DEFAULT 24);

Parameters

Table 236-19 START_MONITORING Procedure Parameters

	Parameter	Description
	
job_name

	
The name of the monitoring job to create.

	
client_name

	
The name of the client.

	
query_user_name

	
The user who will query the result tables.

This procedure grants privileges to the specified user to enable the user to query the result tables.

	
interval

	
The amount of time, in seconds, between each Performance Advisor run. The maximum is 3600 seconds.

The specified interval is used for the interval parameter in the COLLECT_STATS procedure.

	
top_event_threshold

	
A percentage that determines whether a top wait event statistic is collected.

The percentage for a wait event must be greater than the value specified in this parameter for the procedure to collect the wait event statistic. For example, if 15 is specified, then only wait events with a value larger than 15% are collected.

	
bottleneck_idle_threshold

	
A percentage that determines whether an Oracle Streams component session is eligible for bottleneck analysis based on its IDLE percentage.

The IDLE percentage must be less than or equal to the value specified in this parameter for the Oracle Streams component session to be eligible for bottleneck analysis. For example, if 50 is specified, then only components that are idle 50% of the time or less are eligible for bottleneck analysis.

	
bottleneck_flowctrl_threshold

	
A percentage that determines whether an Oracle Streams component session is eligible for bottleneck analysis based on its FLOW CONTROL percentage.

The FLOW CONTROL percentage must be less than or equal to the value specified in this parameter for the Oracle Streams component session to be eligible for bottleneck analysis. For example, if 50 is specified, then only components that are paused for flow control 50% of the time or less are eligible for bottleneck analysis.

	
retention_time

	
The number of hours to retain monitoring results.

Exceptions

Table 236-20 START_MONITORING Procedure Exceptions

	Exception	Description
	
ORA-20111

	
cannot start monitoring due to active EM monitoring job

Stop the Oracle Enterprise Manager (EM) monitoring job, and run the START_MONITORING procedure again.

	
ORA-20112

	
cannot start monitoring due to active Streams monitoring job

Stop the Streams monitoring job, and run the START_MONITORING procedure again.

Usage Notes

The following are usage notes for the START_MONITORING procedure:

	
Requirements for the User Running the Procedure

	
Full Monitoring Job Names

	
Restrictions on Monitoring Jobs

Requirements for the User Running the Procedure

The user who runs the START_MONITORING procedure must meet the following requirements:

	
The user must have access to a database link to each database that contains Oracle Streams components.

	
The user must have been granted privileges using the DBMS_STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE procedure, and each database link must connect to a user at the remote database that has been granted privileges using the DBMS_STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE procedure.

Full Monitoring Job Names

When you submit a monitoring job, the client name and job name are concatenated to form the full monitoring job name. You specify the client name using the client_name parameter and the job name using the job_name parameter when you run the START_MONITORING procedure. The client name for a monitoring job submitted by Oracle Enterprise Manager is always EM.

The following table show examples of full monitoring job names:

	Setting for client_name Parameter	Setting for job_name parameter	Full Monitoring Job Name
	NULL	STREAMS$_MONITORING_JOB	STREAMS$_MONITORING_JOB
	EM	STREAMS$_MONITORING_JOB	EMSTREAMS$_MONITORING_JOB
	strm	STREAMS$_MONITORING_JOB	strmSTREAMS$_MONITORING_JOB
	strm	mjob1	strmmjob1

Restrictions on Monitoring Jobs

The following restrictions apply to monitoring jobs:

	
The limit for the length of the full monitoring job name is 30 bytes.

	
Two monitoring jobs cannot have the same full monitoring job name, even if the monitoring jobs were submitted by different schemas. The name check is not case-sensitive. For example, strmSTREAMS$_MONITORING_JOB and STRMSTREAMS$_MONITORING_JOB are considered to be the same name.

	
Oracle Enterprise Manager can have at most one monitoring job for each database.

	
Each schema can have at most one monitoring job.

STOP_MONITORING Procedure

This procedure stops a monitoring job that was submitted by the current user.

Syntax

UTL_SPADV.STOP_MONITORING(
 purge IN BOOLEAN DEFAULT FALSE);

Parameters

Table 236-21 STOP_MONITORING Procedure Parameters

	Parameter	Description
	
purge

	
If TRUE, then the procedure purges information about the monitoring job from the result tables.

If FALSE, then the procedure retains information about the monitoring job in the result tables.

UTL_TCP

237 UTL_TCP

With the UTL_TCP package and its procedures and functions, PL/SQL applications can communicate with external TCP/IP-based servers using TCP/IP. Because many Internet application protocols are based on TCP/IP, this package is useful to PL/SQL applications that use Internet protocols and e-mail.

This chapter contains the following topics:

	
Using UTL_TCP

	
Overview

	
Security Model

	
Types

	
Exceptions

	
Rules and Limits

	
Examples

	
Summary of UTL_TCP Subprograms

Using UTL_TCP

	
Overview

	
Security Model

	
Types

	
Exceptions

	
Rules and Limits

	
Examples

Overview

The UTL_TCP package provides TCP/IP client-side access functionality in PL/SQL.

Security Model

This package is an invoker's rights package and the invoking user needs the connect privilege granted in the access control list assigned to the remote network host to which he wants to connect.

	
Note:

For more information about managing fine-grained access, see Oracle Database Security Guide

Types

	
CONNECTION Type

	
CRLF

CONNECTION Type

This is a PL/SQL record type used to represent a TCP/IP connection.

Syntax

TYPE connection IS RECORD (
 remote_host VARCHAR2(255),
 remote_port PLS_INTEGER,
 local_host VARCHAR2(255),
 local_port PLS_INTEGER,
 charset VARCHAR2(30),
 newline VARCHAR2(2),
 tx_timeout PLS_INTEGER,
 private_sd PLS_INTEGER);

Fields

Table 237-1 Connection Record Type Fields

	Field	Description
	
remote_host

	
Name of the remote host when connection is established. NULL when no connection is established.

	
remote_port

	
Port number of the remote host connected. NULL when no connection is established.

	
local_host

	
Name of the local host used to establish the connection. NULL when no connection is established.

	
local_port

	
Port number of the local host used to establish the connection. NULL when no connection is established.

	
charset

	
The on-the-wire character set. Since text messages in the database may be encoded in a character set that is different from the one expected on the wire (that is, the character set specified by the communication protocol, or the one stipulated by the other end of the communication), text messages in the database are converted to and from the on-the-wire character set as they are sent and received on the network.

	
newline

	
Newline character sequence. This newline character sequence is appended to the text line sent by WRITE_LINE API.

	
tx_timeout

	
Time in seconds that the UTL_TCP package waits before giving up in a read or write operation in this connection. In read operations, this package gives up if no data is available for reading immediately. In write operations, this package gives up if the output buffer is full and no data is to be sent in the network without being blocked. Zero (0) indicates not to wait at all. NULL indicates to wait forever.

Usage Notes

The fields in a connection record are used to return information about the connection, which is often made using OPEN_CONNECTION. Changing the values of those fields has no effect on the connection. The fields private_XXXX are for implementation use only. You should not modify the values.

In the current release of the UTL_TCP package, the parameters local_host and local_port are ignored when open_connection makes a TCP/IP connection. It does not attempt to use the specified local host and port number when the connection is made. The local_host and local_port fields are not set in the connection record returned by the function.

Time out on write operations is not supported in the current release of the UTL_TCP package.

CRLF

The character sequence carriage-return line-feed. It is the newline sequence commonly used by many communication standards.

Syntax

CRLF CONSTANT VARCHAR2(2 CHAR);

Usage Notes

This package variable defines the newline character sequence commonly used in many Internet protocols. This is the default value of the newline character sequence for WRITE_LINE, specified when a connection is opened. While such protocols use <CR><LF> to denote a new line, some implementations may choose to use just line-feed to denote a new line. In such cases, users can specify a different newline character sequence when a connection is opened.

Exceptions

The exceptions raised by the TCP/IP package are listed in Table 237-2.

Table 237-2 TCP/IP Exceptions

	Exception	Description
	
BUFFER_TOO_SMALL

	
Buffer is too small for input that requires look-ahead

	
END_OF_INPUT

	
Raised when no more data is available to read from the connection

	
NETWORK_ERROR

	
Generic network error

	
BAD_ARGUMENT

	
Bad argument passed in an API call (for example, a negative buffer size)

	
TRANSFER_TIMEOUT

	
No data is read and a read time out occurred

	
PARTIAL_MULTIBYTE_CHAR

	
No complete character is read and a partial multibyte character is found at the end of the input

Rules and Limits

The interface provided in the package only allows connections to be initiated by the PL/SQL program. It does not allow the PL/SQL program to accept connections initiated outside the program.

Examples

The following code example illustrates how the TCP/IP package can be used to retrieve a Web page over HTTP. It connects to a Web server listening at port 80 (standard port for HTTP) and requests the root document.

DECLARE
 c utl_tcp.connection; -- TCP/IP connection to the Web server
 ret_val pls_integer;
BEGIN
 c := utl_tcp.open_connection(remote_host => 'www.acme.com',
 remote_port => 80,
 charset => 'US7ASCII'); -- open connection
 ret_val := utl_tcp.write_line(c, 'GET / HTTP/1.0'); -- send HTTP request
 ret_val := utl_tcp.write_line(c);
 BEGIN
 LOOP
 dbms_output.put_line(utl_tcp.get_line(c, TRUE)); -- read result
 END LOOP;
 EXCEPTION
 WHEN utl_tcp.end_of_input THEN
 NULL; -- end of input
 END;
 utl_tcp.close_connection(c);
END;

The following code example illustrates how the TCP/IP package can be used by an application to send e-mail (also known as email from PL/SQL). The application connects to an SMTP server at port 25 and sends a simple text message.

PROCEDURE send_mail (sender IN VARCHAR2,
 recipient IN VARCHAR2,
 message IN VARCHAR2) IS
 mailhost VARCHAR2(30) := 'mailhost.mydomain.com';
 smtp_error EXCEPTION;
 mail_conn utl_tcp.connection;
 PROCEDURE smtp_command(command IN VARCHAR2,
 ok IN VARCHAR2 DEFAULT '250')
 IS
 response varchar2(3);
 len pls_integer;
 BEGIN
 len := utl_tcp.write_line(mail_conn, command);
 response := substr(utl_tcp.get_line(mail_conn), 1, 3);
 IF (response <> ok) THEN
 RAISE smtp_error;
 END IF;
 END;

BEGIN
 mail_conn := utl_tcp.open_connection(remote_host => mailhost,
 remote_port => 25,
 charset => 'US7ASCII');
 smtp_command('HELO ' || mailhost);
 smtp_command('MAIL FROM: ' || sender);
 smtp_command('RCPT TO: ' || recipient);
 smtp_command('DATA', '354');
 smtp_command(message);
 smtp_command('QUIT', '221');
 utl_tcp.close_connection(mail_conn);
EXCEPTION
 WHEN OTHERS THEN
 -- Handle the error
END;

Summary of UTL_TCP Subprograms

Table 237-3 UTL_TCP Package Subprograms

	Subprogram	Description
	
AVAILABLE Function

	
Determines the number of bytes available for reading from a TCP/IP connection

	
CLOSE_ALL_CONNECTIONS Procedure

	
Closes all open TCP/IP connections

	
CLOSE_CONNECTION Procedure

	
Closes an open TCP/IP connection

	
FLUSH Procedure

	
Transmits immediately to the server all data in the output buffer, if a buffer is used

	
GET_LINE Function

	
Returns the line of data read

	
GET_LINE_NCHAR Function

	
Returns the line of data read in NCHAR form

	
GET_RAW Function

	
Return the data read instead of the amount of data read

	
GET_TEXT Function

	
Returns the text data read

	
GET_TEXT_NCHAR Function

	
Returns the text data read in NCHAR form

	
OPEN_CONNECTION Function

	
Opens a TCP/IP connection to a specified service

	
READ_LINE Function

	
Receives a text line from a service on an open connection

	
READ_RAW Function

	
Receives binary data from a service on an open connection

	
READ_TEXT Function

	
Receives text data from a service on an open connection

	
SECURE_CONNECTION Procedure

	
Secures a TCP/IP connection using SSL/TLS

	
WRITE_LINE Function

	
Transmits a text line to a service on an open connection

	
WRITE_RAW Function

	
Transmits a binary message to a service on an open connection

	
WRITE_TEXT Function

	
Transmits a text message to a service on an open connection

AVAILABLE Function

This function determines the number of bytes available for reading from a TCP/IP connection. It is the number of bytes that can be read immediately without blocking. Determines if data is ready to be read from the connection.

Syntax

UTL_TCP.AVAILABLE (
 c IN OUT NOCOPY connection,
 timeout IN PLS_INTEGER DEFAULT 0)
RETURN PLS_INTEGER;

Parameters

Table 237-4 AVAILABLE Function Parameters

	Parameter	Description
	
c

	
TCP connection to determine the amount of data that is available to be read

	
timeout

	
Time in seconds to wait before giving up and reporting that no data is available. Zero (0) indicates not to wait at all. NULL indicates to wait forever.

Return Values

The number of bytes available for reading without blocking

Usage Notes

The connection must have already been opened through a call to OPEN_CONNECTION. Users may use this API to determine if data is available to be read before calling the read API so that the program are not blocked because data is not ready to be read from the input.

The number of bytes available for reading returned by this function may be less than what is actually available. On some platforms, this function may only return 1, to indicate that some data is available. If you are concerned about the portability of your application, then assume that this function returns a positive value when data is available for reading, and 0 when no data is available. This function returns a positive value when all the data at a particular connection has been read and the next read result in the END_OF_INPUT exception.

The following example illustrates using this function in a portable manner:

DECLARE
 c utl_tcp.connection
 data VARCHAR2(256);
 len PLS_INTEGER;
BEGIN
 c := utl_tcp.open_connection(...);
 LOOP
 IF (utl_tcp.available(c) > 0) THEN
 len := utl_tcp.read_text(c, data, 256);
 ELSE
 ---do some other things

 END IF
 END LOOP;
END;

CLOSE_ALL_CONNECTIONS Procedure

This procedure closes all open TCP/IP connections.

Syntax

UTL_TCP.CLOSE_ALL_CONNECTIONS;

Usage Notes

This call is provided to close all connections before a PL/SQL program ends to avoid dangling connections.

CLOSE_CONNECTION Procedure

This procedure closes an open TCP/IP connection.

Syntax

UTL_TCP.CLOSE_CONNECTION (
 c IN OUT NOCOPY connection);

Parameters

Table 237-5 CLOSE_CONNECTION Procedure Parameters

	Parameter	Description
	
c

	
TCP connection to close

Usage Notes

Connection must have been opened by a previous call to OPEN_CONNECTION. The fields remote_host, remote_port, local_host, local_port and charset of c are reset after the connection is closed.

An open connection must be closed explicitly. An open connection remains open when the PL/SQL record variable that stores the connection goes out-of-scope in the PL/SQL program. Failing to close unwanted connections may result in unnecessary tying up of local and remote system resources.

FLUSH Procedure

This procedure transfers immediately to the server all data in the output buffer, if a buffer is used.

Syntax

UTL_TCP.FLUSH (
 c IN OUT NOCOPY connection);

Parameters

Table 237-6 FLUSH Procedure Parameters

	Parameter	Description
	
c

	
TCP connection to which to send data

Usage Notes

The connection must have already been opened through a call to OPEN_CONNECTION.

GET_LINE Function

This function returns the line of data read.

Syntax

UTL_TCP.GET_LINE (
 c IN OUT NOCOPY connection,
 remove_crlf IN BOOLEAN DEFAULT FALSE,
 peek IN BOOLEAN DEFAULT FALSE)
 RETURN VARCHAR2;

Parameters

Table 237-7 GET_LINE Function Parameters

	Parameter	Description
	
c

	
TCP connection from which to receive data

	
remove_crlf

	
If TRUE, then one ore more trailing CRLF characters are removed from the received message.

	
peek

	
Normally, you want to read the data and remove it from the input queue, that is, consume it. In some situations, you may just want to look ahead at the data, that is, peek at it, without removing it from the input queue, so that it is still available for reading (or even peeking) in the next call. To keep the data in the input queue, set this flag to TRUE and set up an input buffer before the connection is opened. The amount of data you can peek at (that is, read but keep in the input queue) must be less than the size of input buffer.

Return Values

The text line read

Usage Notes

	
The connection must have already been opened through a call to OPEN_CONNECTION.

	
See READ_LINE for the read time out, character set conversion, buffer size, and multibyte character issues.

GET_LINE_NCHAR Function

This function returns the line of data read in NCHAR form.

Syntax

UTL_TCP.GET_LINE_NCHAR (
 c IN OUT NOCOPY connection,
 remove_crlf IN BOOLEAN DEFAULT FALSE,
 peek IN BOOLEAN DEFAULT FALSE)
 RETURN NVARCHAR2;

Parameters

Table 237-8 GET_LINE_NCHAR Function Parameters

	Parameter	Description
	
c

	
TCP connection from which to receive data

	
remove_crlf

	
If TRUE, then one ore more trailing CRLF characters are removed from the received message.

	
peek

	
Normally, you want to read the data and remove it from the input queue, that is, consume it. In some situations, you may just want to look ahead at the data, that is, peek at it, without removing it from the input queue, so that it is still available for reading (or even peeking) in the next call. To keep the data in the input queue, set this flag to TRUE and set up an input buffer before the connection is opened. The amount of data you can peek at (that is, read but keep in the input queue) must be less than the size of input buffer.

Return Values

The text line read

Usage Notes

	
The connection must have already been opened through a call to OPEN_CONNECTION.

	
See READ_LINE for the read time out, character set conversion, buffer size, and multibyte character issues.

GET_RAW Function

This function returns the data read instead of the amount of data read.

Syntax

UTL_TCP.GET_RAW (
 c IN OUT NOCOPY connection,
 len IN PLS_INTEGER DEFAULT 1,
 peek IN BOOLEAN DEFAULT FALSE)
 RETURN RAW;

Parameters

Table 237-9 GET_RAW Function Parameters

	Parameter	Description
	
c

	
TCP connection from which to receive data

	
len

	
The number of bytes (or characters for VARCHAR2) of data to receive. Default is 1.

	
peek

	
Normally, you want to read the data and remove it from the input queue, that is, consume it. In some situations, you may just want to look ahead at the data, that is, peek at it, without removing it from the input queue, so that it is still available for reading (or even peeking) in the next call. To keep the data in the input queue, set this flag to TRUE and set up an input buffer before the connection is opened. The amount of data you can peek at (that is, read but keep in the input queue) must be less than the size of input buffer.

	
remove_crlf

	
If TRUE, then one ore more trailing CRLF characters are removed from the received message.

Return Values

The binary data read

Usage Notes

The connection must have already been opened through a call to OPEN_CONNECTION.

For all the get_* APIs described in this section, see the corresponding READ_* API for the read time out issue. For GET_TEXT and GET_LINE, see the corresponding READ_* API for character set conversion, buffer size, and multibyte character issues.

GET_TEXT Function

This function returns the text data read.

Syntax

UTL_TCP.GET_TEXT (
 c IN OUT NOCOPY connection,
 len IN PLS_INTEGER DEFAULT 1,
 peek IN BOOLEAN DEFAULT FALSE)
 RETURN VARCHAR2;

Parameters

Table 237-10 GET_TEXT Function Parameters

	Parameter	Description
	
c

	
TCP connection from which to receive data

	
len

	
Number of bytes (or characters for VARCHAR2) of data to receive. Default is 1.

	
peek

	
Normally, you want to read the data and remove it from the input queue, that is, consume it. In some situations, you may just want to look ahead at the data, that is, peek at it, without removing it from the input queue, so that it is still available for reading (or even peeking) in the next call. To keep the data in the input queue, set this flag to TRUE and set up an input buffer before the connection is opened. The amount of data you can peek at (that is, read but keep in the input queue) must be less than the size of input buffer.

	
remove_crlf

	
If TRUE, then one ore more trailing CRLF characters are removed from the received message.

Return Values

The text data read

Usage Notes

The connection must have already been opened through a call to OPEN_CONNECTION.

For all the get_* APIs described in this section, see the corresponding read_* API for the read time out issue. For GET_TEXT and GET_LINE, see the corresponding READ_* API for character set conversion, buffer size, and multibyte character issues.

GET_TEXT_NCHAR Function

This function returns the text data read in NCHAR form.

Syntax

UTL_TCP.GET_TEXT_NCHAR (
 c IN OUT NOCOPY connection,
 len IN PLS_INTEGER DEFAULT 1,
 peek IN BOOLEAN DEFAULT FALSE)
 RETURN NVARCHAR2;

Parameters

Table 237-11 GET_TEXT_NCHAR Function Parameters

	Parameter	Description
	
c

	
TCP connection from which to receive data

	
len

	
The number of bytes (or characters for VARCHAR2) of data to receive. Default is 1.

	
peek

	
Normally, you want to read the data and remove it from the input queue, that is, consume it. In some situations, you may just want to look ahead at the data, that is, peek at it, without removing it from the input queue, so that it is still available for reading (or even peeking) in the next call. To keep the data in the input queue, set this flag to TRUE and set up an input buffer before the connection is opened. The amount of data you can peek at (that is, read but keep in the input queue) must be less than the size of input buffer.

	
remove_crlf

	
If TRUE, then one ore more trailing CRLF characters are removed from the received message.

Return Values

The text data read

Usage Notes

The connection must have already been opened through a call to OPEN_CONNECTION.

For all the get_* APIs described in this section, see the corresponding read_* API for the read time out issue. For GET_TEXT and GET_LINE, see the corresponding READ_* API for character set conversion, buffer size, and multibyte character issues.

OPEN_CONNECTION Function

This function opens a TCP/IP connection to a specified service.

	
Note:

The functionality associated with wallet_path and wallet_password is available starting with Oracle Database 11g Release 2 (11.2.0.2).

Syntax

UTL_TCP.OPEN_CONNECTION (
 remote_host IN VARCHAR2,
 remote_port IN PLS_INTEGER,
 local_host IN VARCHAR2 DEFAULT NULL,
 local_port IN PLS_INTEGER DEFAULT NULL,
 in_buffer_size IN PLS_INTEGER DEFAULT NULL,
 out_buffer_size IN PLS_INTEGER DEFAULT NULL,
 charset IN VARCHAR2 DEFAULT NULL,
 newline IN VARCHAR2 DEFAULT CRLF,
 tx_timeout IN PLS_INTEGER DEFAULT NULL,
 wallet_path IN VARCHAR2 DEFAULT NULL,
 wallet_password IN VARCHAR2 DEFAULT NULL,
 RETURN connection;

Parameters

Table 237-12 OPEN_CONNECTION Function Parameters

	Parameter	Description
	
remote_host

	
Name of the host providing the service. When remote_host is NULL, it connects to the local host.

	
remote_port

	
Port number on which the service is listening for connections

	
local_host

	
Name of the host providing the service. NULL means does not care.

	
local_port

	
Port number on which the service is listening for connections. NULL means don't care.

	
in_buffer_size

	
The size of input buffer. The use of an input buffer can speed up execution performance in receiving data from the server. The appropriate size of the buffer depends on the flow of data between the client and the server, and the traffic/latency on the network. A zero value means no buffer should be used. A NULL value means the caller does not care if a buffer is used or not. The maximum size of the input buffer is 32767 bytes.

	
out_buffer_size

	
The size of output buffer. The use of an output buffer can speed up execution performance in sending data to the server. The appropriate size of buffer depends on the flow of data between the client and the server, and the network condition. A zero value means no buffer should be used. A NULL value means the caller does not care if a buffer is used or not. The maximum size of the output buffer is 32767 bytes.

	
charset

	
The on-the-wire character set. Since text messages in the database may be encoded in a character set that is different from the one expected on the wire (that is, the character set specified by the communication protocol, or the one stipulated by the other end of the communication), text messages in the database are converted to and from the on-the-wire character set as they are sent and received on the network using READ_TEXT, READ_LINE, WRITE_TEXT and WRITE_LINE. Set this parameter to NULL when no conversion is needed.

	
newline

	
Newline character sequence. This newline character sequence is appended to the text line sent by WRITE_LINE API.

	
tx_timeout

	
Time in seconds that the UTL_TCP package should wait before giving up in a read or write operations in this connection. In read operations, this package gives up if no data is available for reading immediately. In write operations, this package gives up if the output buffer is full and no data is to be sent in the network without being blocked. Zero (0) indicates not to wait at all. NULL indicates to wait forever.

	
wallet_path

	
Directory path that contains the Oracle wallet for SSL/TLS. The format is file:directory-path

	
wallet_password

	
Password to open the wallet. When the wallet is auto-login enabled, the password may be set to NULL.

Return Values

A connection to the targeted TCP/IP service

Usage Notes

	
Note that connections opened by this UTL_TCP package can remain open and be passed from one database call to another in a shared server configuration. However, the connection must be closed explicitly. The connection remains open when the PL/SQL record variable that stores the connection goes out-of-scope in the PL/SQL program. Failing to close unwanted connections may result in unnecessary tying up of local and remote system resources.

	
In the current release of the UTL_TCP package, the parameters local_host and local_port are ignored when open_connection makes a TCP/IP connection. It does not attempt to use the specified local host and port number when the connection is made. The local_host and local_port fields is not set in the connection record returned by the function.

	
tx_timeout is intended to govern both the read operations and the write operations. However, an implementation restriction prevents tx_timeout from governing write operations in the current release.

Examples

DECLARE
 c UTL_TCP.CONNECTION;
BEGIN
 c := UTL_TCP.OPEN_CONNECTION(
 host => 'www.example.com',
 port => 443,
 wallet_path => 'file:/oracle/wallets/smtp_wallet',
 wallet_password => '****');
 UTL_TCP.SECURE_CONNECTION (c => c);
END;

READ_LINE Function

This function receives a text line from a service on an open connection. A line is terminated by a line-feed, a carriage-return or a carriage-return followed by a line-feed.

Syntax

UTL_TCP.READ_LINE (
 c IN OUT NOCOPY connection,
 data IN OUT NOCOPY VARCHAR2 CHARACTER SET ANY_CS,
 peek IN BOOLEAN DEFAULT FALSE)
 RETURN PLS_INTEGER;

Parameters

Table 237-13 READ_LINE Function Parameters

	Parameter	Description
	
c

	
TCP connection from which to receive data

	
data

	
Data received.

	
remove_crlf

	
If TRUE, then one ore more trailing CRLF characters are removed from the received message.

	
peek

	
Normally, you want to read the data and remove it from the input queue, that is, consume it. In some situations, you may just want to look ahead at the data, that is, peek at it, without removing it from the input queue, so that it is still available for reading (or even peeking) in the next call. To keep the data in the input queue, set this flag to TRUE and set up an input buffer before the connection is opened. The amount of data you can peek at (that is, read but keep in the input queue) must be less than the size of input buffer.

Return Values

The number of characters of data received

Usage Notes

The connection must have already been opened through a call to OPEN_CONNECTION. This function does not return until the end-of-line have been reached, or the end of input has been reached. Text messages is converted from the on-the-wire character set, specified when the connection was opened, to the database character set before they are returned to the caller.

If transfer time out is set when the connection is opened, then this function waits for each data packet to be ready to read until time out occurs. If it occurs, then this function stops reading and returns all the data read successfully. If no data is read successfully, then the transfer_timeout exception is raised. The exception can be handled and the read operation can be retried later.

If a partial multibyte character is found at the end of input, then this function stops reading and returns all the complete multibyte characters read successfully. If no complete character is read successfully, then the partial_multibyte_char exception is raised. The exception can be handled and the bytes of that partial multibyte character can be read as binary by the READ_RAW function. If a partial multibyte character is seen in the middle of the input because the remaining bytes of the character have not arrived and read time out occurs, then the transfer_timeout exception is raised instead. The exception can be handled and the read operation can be retried later.

READ_RAW Function

This function receives binary data from a service on an open connection.

Syntax

UTL_TCP.READ_RAW (
 c IN OUT NOCOPY connection,
 data IN OUT NOCOPY RAW,
 len IN PLS_INTEGER DEFAULT 1,
 peek IN BOOLEAN DEFAULT FALSE)
 RETURN PLS_INTEGER;

Parameters

Table 237-14 READ_RAW Function Parameters

	Parameter	Description
	
c

	
TCP connection from which to receive data

	
data (IN OUT COPY)

	
Data received

	
len

	
Number of bytes of data to receive

	
peek

	
Normally, you want to read the data and remove it from the input queue, that is, consume it. In some situations, you may just want to look ahead at the data, that is, peek at it, without removing it from the input queue, so that it is still available for reading (or even peeking) in the next call. To keep the data in the input queue, set this flag to TRUE and set up an input buffer before the connection is opened. The amount of data you can peek at (that is, read but keep in the input queue) must be less than the size of input buffer.

Return Values

The number of bytes of data received

Usage Notes

The connection must have already been opened through a call to OPEN_CONNECTION. This function does not return until the specified number of bytes have been read, or the end of input has been reached.

If transfer time out is set when the connection is opened, then this function waits for each data packet to be ready to read until time out occurs. If it occurs, then this function stops reading and returns all the data read successfully. If no data is read successfully, then the transfer_timeout exception is raised. The exception can be handled and the read operation can be retried later.

READ_TEXT Function

This function receives text data from a service on an open connection.

Syntax

UTL_TCP.READ_TEXT (
 c IN OUT NOCOPY connection,
 data IN OUT NOCOPY VARCHAR2 CHARACTER SET ANY_CS,
 len IN PLS_INTEGER DEFAULT 1,
 peek IN BOOLEAN DEFAULT FALSE)
RETURN PLS_INTEGER;

Parameters

Table 237-15 READ_TEXT Function Parameters

	Parameter	Description
	
c

	
TCP connection from which to receive data

	
data

	
Data received

	
len

	
Number of characters of data to receive

	
peek

	
Normally, users want to read the data and remove it from the input queue, that is, consume it. In some situations, users may just want to look ahead at the data without removing it from the input queue so that it is still available for reading (or even peeking) in the next call. To keep the data in the input queue, set this flag to TRUE and an input buffer must be set up when the connection is opened. The amount of data that you can peek at (that is, read but keep in the input queue) must be less than the size of input buffer.

Return Values

The number of characters of data received

Usage Notes

The connection must have already been opened through a call to OPEN_CONNECTION. This function does not return until the specified number of characters has been read, or the end of input has been reached. Text messages is converted from the on-the-wire character set, specified when the connection was opened, to the database character set before they are returned to the caller.

Unless explicitly overridden, the size of a VARCHAR2 buffer is specified in terms of bytes, while the parameter len refers to the maximum number of characters to be read. When the database character set is multibyte, where a single character may consist of more than 1 byte, you should ensure that the buffer can hold the maximum of characters. In general, the size of the VARCHAR2 buffer should equal the number of characters to be read, multiplied by the maximum number of bytes of a character of the database character set.

If transfer time out is set when the connection is opened, then this function waits for each data packet to be ready to read until time out occurs. If it occurs, then this function stops reading and returns all the data read successfully. If no data is read successfully, then the transfer_timeout exception is raised. The exception can be handled and the read operation can be retried later.

If a partial multibyte character is found at the end of input, then this function stops reading and returns all the complete multibyte characters read successfully. If no complete character is read successfully, then the partial_multibyte_char exception is raised. The exception can be handled and the bytes of that partial multibyte character can be read as binary by the READ_RAW function. If a partial multibyte character is seen in the middle of the input because the remaining bytes of the character have not arrived and read time out occurs, then the transfer_timeout exception is raised instead. The exception can be handled and the read operation can be retried later.

SECURE_CONNECTION Procedure

This procedure secures a TCP/IP connection using SSL/TLS. SSL/TLS requires an Oracle wallet which must be specified when the connection was opened by the OPEN_CONNECTION Function.

Syntax

UTL_TCP.SECURE_CONNECTION (
 c IN OUT NOCOPY connection);

Parameters

Table 237-16 SECURE_CONNECTION Procedure Parameters

	Parameter	Description
	
c

	
TCP connection from which to receive data

WRITE_LINE Function

This function transmits a text line to a service on an open connection. The newline character sequence is appended to the message before it is transmitted.

Syntax

UTL_TCP.WRITE_LINE (
 c IN OUT NOCOPY connection,
 data IN VARCHAR2 DEFAULT NULL CHARACTER SET ANY_CS)
 RETURN PLS_INTEGER;

Parameters

Table 237-17 WRITE_LINE Function Parameters

	Parameter	Description
	
c

	
TCP connection to which to send data

	
data

	
Buffer containing the data to be sent

Return Values

The actual number of characters of data transmitted

Usage Notes

The connection must have already been opened through a call to OPEN_CONNECTION. Text messages are converted to the on-the-wire character set, specified when the connection was opened, before they are transmitted on the wire.

WRITE_RAW Function

This function transmits a binary message to a service on an open connection. The function does not return until the specified number of bytes have been written.

Syntax

UTL_TCP.WRITE_RAW (
 c IN OUT NOCOPY connection,
 data IN RAW,
 len IN PLS_INTEGER DEFAULT NULL)
 RETURN PLS_INTEGER;

Parameters

Table 237-18 WRITE_RAW Function Parameters

	Parameter	Description
	
c

	
TCP connection to which to send data

	
data

	
Buffer containing the data to be sent

	
len

	
The number of bytes of data to transmit. When len is NULL, the whole length of data is written.

Return Values

The number of bytes of data transmitted

Usage Notes

The connection must have already been opened through a call to OPEN_CONNECTION.

WRITE_TEXT Function

This function transmits a text message to a service on an open connection.

Syntax

UTL_TCP.WRITE_TEXT (
 c IN OUT NOCOPY connection,
 data IN VARCHAR2 CHARACTER SET ANY_CS,
 len IN PLS_INTEGER DEFAULT NULL)
 RETURN num_chars PLS_INTEGER;

Parameters

Table 237-19 WRITE_TEXT Function Parameters

	Parameter	Description
	
c

	
TCP connection to which to send data

	
data

	
Buffer containing the data to be sent

	
len

	
The number of characters of data to transmit. When len is NULL, the whole length of data is written. The actual amount of data written may be less because of network condition.

Return Values

The actual number of characters of data transmitted

Usage Notes

The connection must have already been opened through a call to OPEN_CONNECTION. Text messages are converted to the on-the-wire character set, specified when the connection was opened, before they are transmitted on the wire.

UTL_URL

238 UTL_URL

The UTL_URL package has two functions: ESCAPE and UNESCAPE.

	
See Also:

Chapter 224, "UTL_HTTP"

This chapter contains the following topics:

	
Using UTL_URL

	
Overview

	
Exceptions

	
Examples

	
Summary of UTL_URL Subprograms

Using UTL_URL

	
Overview

	
Exceptions

	
Examples

Overview

A Uniform Resource Locator (URL) is a string that identifies a Web resource, such as a page or a picture. Use a URL to access such resources by way of the HyperText Transfer Protocol (HTTP). For example, the URL for Oracle's Web site is:

http://www.oracle.com

Normally, a URL contains English alphabetic characters, digits, and punctuation symbols. These characters are known as the unreserved characters. Any other characters in URLs, including multibyte characters or binary octet codes, must be escaped to be accurately processed by Web browsers or Web servers. Some punctuation characters, such as dollar sign ($), question mark (?), colon (:), and equals sign (=), are reserved as delimiters in a URL. They are known as the reserved characters. To literally process these characters, instead of treating them as delimiters, they must be escaped.

The unreserved characters are:

	
A through Z, a through z, and 0 through 9

	
Hyphen (-), underscore (_), period (.), exclamation point (!), tilde (~), asterisk (*), accent ('), left parenthesis ((), right parenthesis ())

The reserved characters are:

	
Semi-colon (;) slash (/), question mark (?), colon (:), at sign (@), ampersand (&), equals sign (=), plus sign (+), dollar sign ($), percentage sign (%), and comma (,)

The UTL_URL package has two functions that provide escape and unescape mechanisms for URL characters. Use the escape function to escape a URL before the URL is used fetch a Web page by way of the UTL_HTTP package. Use the unescape function to unescape an escaped URL before information is extracted from the URL.

For more information, refer to the Request For Comments (RFC) document RFC2396. Note that this URL escape and unescape mechanism is different from the x-www-form-urlencoded encoding mechanism described in the HTML specification:

http://www.w3.org/TR/html

Exceptions

Table 238-1 lists the exceptions that can be raised when the UTL_URL package API is invoked.

Table 238-1 UTL_URL Exceptions

	Exception	Error Code	Reason
	
BAD_URL

	
29262

	
The URL contains badly formed escape code sequences

	
BAD_FIXED_WIDTH_CHARSET

	
29274

	
Fixed-width multibyte character set is not allowed as a URL character set.

Examples

You can implement the x-www-form-urlencoded encoding using the UTL_URL.ESCAPE function as follows:

CREATE OR REPLACE FUNCTION form_url_encode (
 data IN VARCHAR2,
 charset IN VARCHAR2) RETURN VARCHAR2 AS
BEGIN
 RETURN utl_url.escape(data, TRUE, charset); -- note use of TRUE
END;

For decoding data encoded with the form-URL-encode scheme, the following function implements the decording scheme:

CREATE OR REPLACE FUNCTION form_url_decode(
 data IN VARCHAR2,
 charset IN VARCHAR2) RETURN VARCHAR2 AS
BEGIN
 RETURN utl_url.unescape(
 replace(data, '+', ' '),
 charset);
END;

Summary of UTL_URL Subprograms

Table 238-2 UTL_URL Package Subprograms

	Subprogram	Description
	
ESCAPE Function

	
Returns a URL with illegal characters (and optionally reserved characters) escaped using the %2-digit-hex-code format

	
UNESCAPE Function

	
Unescapes the escape character sequences to their original forms in a URL. Convert the %XX escape character sequences to the original characters

ESCAPE Function

This function returns a URL with illegal characters (and optionally reserved characters) escaped using the %2-digit-hex-code format.

Syntax

UTL_URL.ESCAPE (
 url IN VARCHAR2 CHARACTER SET ANY_CS,
 escape_reserved_chars IN BOOLEAN DEFAULT FALSE,
 url_charset IN VARCHAR2 DEFAULT utl_http.body_charset)
 RETURN VARCHAR2;

Parameters

Table 238-3 ESCAPE Function Parameters

	Parameter	Description
	
url

	
The original URL

	
escape_reserved_chars

	
Indicates whether the URL reserved characters should be escaped. If set to TRUE, both the reserved and illegal URL characters are escaped. Otherwise, only the illegal URL characters are escaped. The default value is FALSE.

	
url_charset

	
When escaping a character (single-byte or multibyte), determine the target character set that character should be converted to before the character is escaped in %hex-code format. If url_charset is NULL, the database charset is assumed and no character set conversion will occur. The default value is the current default body character set of the UTL_HTTP package, whose default value is ISO-8859-1. The character set can be named in Internet Assigned Numbers Authority (IANA) or in the Oracle naming convention.

Usage Notes

Use this function to escape URLs that contain illegal characters as defined in the URL specification RFC 2396. The legal characters in URLs are:

	
A through Z, a through z, and 0 through 9

	
Hyphen (-), underscore (_), period (.), exclamation point (!), tilde (~), asterisk (*), accent ('), left parenthesis ((), right parenthesis ())

The reserved characters consist of:

	
Semi-colon (;) slash (/), question mark (?), colon (:), at sign (@), ampersand (&), equals sign (=), plus sign (+), dollar sign ($), and comma (,)

Many of the reserved characters are used as delimiters in the URL. You should escape characters beyond those listed here by using escape_url. Also, to use the reserved characters in the name-value pairs of the query string of a URL, those characters must be escaped separately. An escape_url cannot recognize the need to escape those characters because once inside a URL, those characters become indistinguishable from the actual delimiters. For example, to pass a name-value pair $logon=scott/tiger into the query string of a URL, escape the $ and / separately as %24logon=scott%2Ftiger and use it in the URL.

Normally, you will escape the entire URL, which contains the reserved characters (delimiters) that should not be escaped. For example:

utl_url.escape('http://www.acme.com/a url with space.html')

Returns:

http://foo.com/a%20url%20with%20space.html

In other situations, you may want to send a query string with a value that contains reserved characters. In that case, escape only the value fully (with escape_reserved_chars set to TRUE) and then concatenate it with the rest of the URL. For example:

url := 'http://www.acme.com/search?check=' || utl_url.escape
('Is the use of the "$" sign okay?', TRUE);

This expression escapes the question mark (?), dollar sign ($), and space characters in 'Is the use of the "$" sign okay?' but not the ? after search in the URL that denotes the use of a query string.

The Web server that you intend to fetch Web pages from may use a character set that is different from that of your database. In that case, specify the url_charset as the Web server character set so that the characters that need to be escaped are escaped in the target character set. For example, a user of an EBCDIC database who wants to access an ASCII Web server should escape the URL using US7ASCII so that a space is escaped as %20 (hex code of a space in ASCII) instead of %40 (hex code of a space in EBCDIC).

This function does not validate a URL for the proper URL format.

UNESCAPE Function

This function unescapes the escape character sequences to its original form in a URL, to convert the %XX escape character sequences to the original characters.

Syntax

UTL_URL.UNESCAPE (
 url IN VARCHAR2 CHARACTER SET ANY_CS,
 url_charset IN VARCHAR2 DEFAULT utl_http.body_charset)
 RETURN VARCHAR2;

Parameters

Table 238-4 UNESCAPE Function Parameters

	Parameter	Description
	
url

	
The URL to unescape

	
url_charset

	
After a character is unescaped, the character is assumed to be in the source_charset character set and it will be converted from the source_charset to the database character set before the URL is returned. If source_charset is NULL, the database charset is assumed and no character set conversion occurred. The default value is the current default body character set of the UTL_HTTP package, whose default value is "ISO-8859-1". The character set can be named in Internet Assigned Numbers Authority (IANA) or Oracle naming convention.

Usage Notes

The Web server that you receive the URL from may use a character set that is different from that of your database. In that case, specify the url_charset as the Web server character set so that the characters that need to be unescaped are unescaped in the source character set. For example, a user of an EBCDIC database who receives a URL from an ASCII Web server should unescape the URL using US7ASCII so that %20 is unescaped as a space (0x20 is the hex code of a space in ASCII) instead of a ? (because 0x20 is not a valid character in EBCDIC).

This function does not validate a URL for the proper URL format.

WPG_DOCLOAD

239 WPG_DOCLOAD

The WPG_DOCLOAD package provides an interface to download files, BLOBs and BFILEs.

	
See Also:

For more information about implementation of this package:
	
Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

	
Oracle Fusion Middleware User's Guide for mod_plsql

The chapter contains the following topics:

	
Using WPG_DOCLOAD

	
Constants

	
Summary of WPG_DOCLOAD Subprograms

Using WPG_DOCLOAD

	
Constants

Constants

	
NAME_COL_LEN

	
MIMET_COL_LEN

	
MAX_DOCTABLE_NAME_LEN

NAME_COL_LEN

The NAME column in your document table must be the same as the value of name_col_len.

name_col_len CONSTANT pls_integer := 64;

MIMET_COL_LEN

The MIME_TYPE column in your document table must be the same as the value of mimet_col_len.

mimet_col_len CONSTANT pls_integer := 48;

MAX_DOCTABLE_NAME_LEN

The name length of your document table must be less than max_doctable_name_len.

max_doctable_name_len CONSTANT pls_integer := 256;

Summary of WPG_DOCLOAD Subprograms

Table 239-1 WPG_DOCLOAD Package Subprograms

	Subprogram	Description
	
DOWNLOAD_FILE Procedures

	
Downloads files, BLOBS and BFILES

DOWNLOAD_FILE Procedures

There are three versions of this procedure:

	
The first version downloads files and is invoked from within a document download procedure to signal the PL/SQL Gateway that p_filename is to be downloaded from the document table to the client's browser.

	
The second version can be called from within any procedure to signal the PL/SQL Gateway that p_blob is to be downloaded to the client's browser.

	
The third version can be called from within any procedure to signal the PL/SQL Gateway that p_bfile is to be downloaded to the client's browser.

Syntax

WPG_DOCLOAD.DOWNLOAD_FILE(
 p_filename IN VARCHAR2,
 p_bcaching IN BOOLEAN DEFAULT TRUE);

WPG_DOCLOAD.DOWNLOAD_FILE(
 p_blob IN OUT NOCOPY BLOB);

WPG_DOCLOAD.DOWNLOAD_FILE(
 p_bfile IN OUT BFILE);

Parameters

Table 239-2 DOWNLOAD_FILE Procedure Parameters

	Parameter	Description
	
p_filename

	
The file to download from the document table.

	
p_blob

	
The BLOB to download.

	
p_bfile

	
The BFILE to download (see Usage Notes).

	
p_bcaching

	
Whether browser caching is enabled (see Usage Notes).

Usage Notes

	
Normally, a document will be downloaded to the browser unless the browser sends an 'If-Modified-Since' header to the gateway indicating that it has the requested document in its cache. In that case, the gateway will determine if the browser's cached copy is up to date, and if it is, it will send an HTTP 304 status message to the browser indicating that the browser should display the cached copy. However, because a document URL and a document do not necessarily have a one-to-one relationship in the PL/SQL Web Gateway, in some cases it may be undesirable to have the cached copy of a document displayed. In those cases, the p_bcaching parameter should be set to FALSE to indicate to the gateway to ignore the 'If-Modified-Since' header, and download the document.

	
p_bfile and p_blob are declared as IN OUT because the locator is initially opened to check for file accessibility and existence. The open operation can only be performed if the locator is writable and readable.

ANYDATA TYPE

240 ANYDATA TYPE

An ANYDATA TYPE contains an instance of a given type, plus a description of the type. In this sense, an ANYDATA is self-describing. An ANYDATA can be persistently stored in the database.

This chapter contains the following topics:

	
Using ANYDATA TYPE

	
Restrictions

	
Operational Notes

	
Summary of ANYDATA Subprograms

Using ANYDATA TYPE

	
Restrictions

	
Operational Notes

Restrictions

Persistent storage of ANYDATA instances whose type contains embedded LOBs other than BFILEs is not currently supported.

Operational Notes

	
Construction

	
Access

Construction

There are 2 ways to construct an ANYDATA. The CONVERT* calls enable construction of the ANYDATA in its entirety with a single call. They serve as explicit CAST functions from any type in the Oracle ORDBMS to ANYDATA.

STATIC FUNCTION ConvertBDouble(dbl IN BINARY_DOUBLE) return ANYDATA,
STATIC FUNCTION ConvertBfile(b IN BFILE) RETURN ANYDATA,
STATIC FUNCTION ConvertBFloat(fl IN BINARY_FLOAT) return ANYDATA,
STATIC FUNCTION ConvertBlob(b IN BLOB) RETURN ANYDATA,
STATIC FUNCTION ConvertChar(c IN CHAR) RETURN ANYDATA,
STATIC FUNCTION ConvertClob(c IN CLOB) RETURN ANYDATA,
STATIC FUNCTION ConvertCollection(col IN "collection_type") RETURN ANYDATA,
STATIC FUNCTION ConvertDate(dat IN DATE) RETURN ANYDATA,
STATIC FUNCTION ConvertIntervalDS(inv IN INTERVAL DAY TO SECOND) return ANYDATA,
STATIC FUNCTION ConvertIntervalYM(invIN INTERVAL YEAR TO MONTH) return ANYDATA,
STATIC FUNCTION ConvertNchar(nc IN NCHAR) return ANYDATA,
STATIC FUNCTION ConvertNClob(nc IN NCLOB) return ANYDATA,
STATIC FUNCTION ConvertNumber(num IN NUMBER) RETURN ANYDATA,
STATIC FUNCTION ConvertNVarchar2(nc IN NVARCHAR2) return ANYDATA,
STATIC FUNCTION ConvertObject(obj IN "<object_type>") RETURN ANYDATA,
STATIC FUNCTION ConvertRaw(r IN RAW) RETURN ANYDATA,
STATIC FUNCTION ConvertRef(rf IN REF "<object_type>") RETURN ANYDATA,
STATIC FUNCTION ConvertTimestamp(ts IN TIMESTAMP) return ANYDATA,
STATIC FUNCTION ConvertTimestampTZ(ts IN TIMESTAMP WITH TIMEZONE) return ANYDATA,
STATIC FUNCTION ConvertTimestampLTZ(ts IN TIMESTAMP WITH LOCAL TIMEZONE) return ANYDATA,
STATIC FUNCTION ConvertURowid(rid IN UROWID) return ANYDATA,
STATIC FUNCTION ConvertVarchar(c IN VARCHAR) RETURN ANYDATA,
STATIC FUNCTION ConvertVarchar2(c IN VARCHAR2) RETURN ANYDATA,

The second way to construct an ANYDATA is a piece by piece approach. The BEGINCREATE Static Procedure call begins the construction process and ENDCREATE Member Procedure call finishes the construction process. In between these two calls, the individual attributes of an object type or the elements of a collection can be set using SET* calls. For piece by piece access of the attributes of objects and elements of collections, the PIECEWISE Member Procedure should be invoked prior to GET* calls.

Note: The ANYDATA has to be constructed or accessed sequentially starting from its first attribute (or collection element). The BEGINCREATE call automatically begins the construction in a piece-wise mode. There is no need to call PIECEWISE immediately after BEGINCREATE. ENDCREATE should be called to finish the construction process (before which any access calls can be made).

Access

Access functions are available based on SQL. These functions do not throw exceptions on type-mismatch. Instead, they return NULL if the type of the ANYDATA does not correspond to the type of access. If you wish to use only ANYDATA functions of the appropriate types returned in a query, you should use a WHERE clause which uses GETTYPENAME and choose the type you are interested in (say "SYS.NUMBER"). Each of these functions returns the value of a specified datatype inside a SYS.ANYDATA wrapper.

MEMBER FUNCTION AccessBDouble(self IN ANYDATA) return BINARY_DOUBLE
 DETERMINISTIC,
MEMBER FUNCTION AccessBfile(self IN ANYDATA) return BFILE,
MEMBER FUNCTION AccessBFloat(self IN ANYDATA) return BINARY_FLOAT
 DETERMINISTIC,
MEMBER FUNCTION AccessBlob(self IN ANYDATA) return BLOB,
MEMBER FUNCTION AccessChar(self IN ANYDATA) return CHAR,
MEMBER FUNCTION AccessClob(self IN ANYDATA) return CLOB,
MEMBER FUNCTION AccessDate(self IN ANYDATA) return DATE,
MEMBER FUNCTION AccessIntervalYM(self IN ANYDATA) return INTERVAL YEAR TO MONTH,
MEMBER FUNCTION AccessIntervalDS(self IN ANYDATA) return INTERVAL DAY TO SECOND,
MEMBER FUNCTION AccessNchar(self IN ANYDATA) return NCHAR,
MEMBER FUNCTION AccessNClob(self IN ANYDATA) return NCLOB
MEMBER FUNCTION AccessNumber(self IN ANYDATA) return NUMBER,
MEMBER FUNCTION AccessNVarchar2(self IN ANYDATA) return NVARCHAR2,
MEMBER FUNCTION AccessRaw(self IN ANYDATA) return RAW,
MEMBER FUNCTION AccessTimestamp(self IN ANYDATA) return TIMESTAMP,
MEMBER FUNCTION AccessTimestampLTZ(self IN ANYDATA) return TIMESTAMP WITH LOCAL
 TIMEZONE,
MEMBER FUNCTION AccessTimestampTZ(self IN ANYDATA) return TIMESTAMP WITH
 TIMEZONE,
MEMBER FUNCTION AccessURowid(self IN ANYDATA) return UROWID DETERMINISTIC
MEMBER FUNCTION AccessVarchar(self IN ANYDATA) return VARCHAR,
MEMBER FUNCTION AccessVarchar2(self IN ANYDATA) return VARCHAR2,

Summary of ANYDATA Subprograms

Table 240-1 ANYDATA Type Subprograms

	Subprogram	Description
	
BEGINCREATE Static Procedure

	
Begins creation process on a new ANYDATA

	
ENDCREATE Member Procedure

	
Ends creation of an ANYDATA

	
GET* Member Functions

	
Gets the current data value (which should be of appropriate type)

	
GETTYPE Member Function

	
Gets the Type of the ANYDATA

	
GETTYPENAME Member Function

	
Get the fully qualified type name for the ANYDATA

	
PIECEWISE Member Procedure

	
Sets the MODE of access of the current data value to be an attribute at a time (if the data value is of TYPECODE_OBJECT)

	
SET* Member Procedures

	
Sets the current data value.

BEGINCREATE Static Procedure

This procedure begins the creation process on a new ANYDATA.

Syntax

STATIC PROCEDURE BeginCreate(
 dtype IN OUT NOCOPY AnyType,
 adata OUT NOCOPY ANYDATA);

Parameters

Table 240-2 BEGINCREATE Procedure Parameters

	Parameter	Description
	
dtype

	
The type of the ANYDATA. (Should correspond to OCI_TYPECODE_OBJECT or a Collection typecode.)

	
adata

	
ANYDATA being constructed.

Exception

DBMS_TYPES.INVALID_PARAMETERS: dtype is invalid (not fully constructed, and similar deficits.)

Usage Notes

There is no need to call PIECEWISE immediately after this call. The construction process begins in a piece-wise manner automatically.

ENDCREATE Member Procedure

This procedure ends creation of an ANYDATA. Other creation functions cannot be called after this call.

Syntax

MEMBER PROCEDURE EndCreate(
 self IN OUT NOCOPY ANYDATA);

Parameters

Table 240-3 ENDCREATE Procedure Parameter

	Parameter	Description
	
self

	
An ANYDATA.

GET* Member Functions

These functions get the current data value (which should be of appropriate type).

The type of the current data value depends on the MODE with which we are accessing (depending on whether we have invoked the PIECEWISE call).

If PIECEWISE has NOT been called, we are accessing the ANYDATA in its entirety and the type of the data value should match the type of the ANYDATA.

If PIECEWISE has been called, we are accessing the ANYDATA piece-wise. The type of the data value should match the type of the attribute (or collection element) at the current position.

Syntax

MEMBER FUNCTION GetBDouble(
 self IN ANYDATA,
 dbl OUT NOCOPY BINARY_DOUBLE)
RETURN PLS_INTEGER;

MEMBER FUNCTION GetBfile(
 self IN ANYDATA,
 b OUT NOCOPY BFILE)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GetBFloat(
 self IN ANYDATA,
 fl OUT NOCOPY BINARY_FLOAT)
RETURN PLS_INTEGER;

MEMBER FUNCTION GetBlob(
 self IN ANYDATA,
 b OUT NOCOPY BLOB)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GetChar(
 self IN ANYDATA,
 c OUT NOCOPY CHAR)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GetClob(
 self IN ANYDATA,
 c OUT NOCOPY CLOB)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GetCollection(
 self IN ANYDATA,
 col OUT NOCOPY "<collection_type>")
 RETURN PLS_INTEGER;

MEMBER FUNCTION GetDate(
 self IN ANYDATA,
 dat OUT NOCOPY DATE)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GetIntervalDS(
 self IN ANYDATA,
 inv OUT NOCOPY INTERVAL DAY TO SECOND)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GetIntervalYM(
 self IN ANYDATA,
 inv OUT NOCOPY INTERVAL YEAR TO MONTH)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GetNchar(
 self IN ANYDATA,
 nc OUT NOCOPY NCHAR)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GetNClob(
 self IN ANYDATA,
 nc OUT NOCOPY NCLOB)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GetNumber(
 self IN ANYDATA,
 num OUT NOCOPY NUMBER)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GetNVarchar2(
 self IN ANYDATA,
 nc OUT NOCOPY NVARCHAR2)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GetObject(
 self IN ANYDATA,
 obj OUT NOCOPY "<object_type>")
 RETURN PLS_INTEGER;

MEMBER FUNCTION GetRaw(
 self IN ANYDATA,
 r OUT NOCOPY RAW)
 RETURN PLS_INTEGER;

MMEMBER FUNCTION GetRef(
 self IN ANYDATA,
 rf OUT NOCOPY REF "<object_type>")
 RETURN PLS_INTEGER;

MEMBER FUNCTION GetTimestamp(
 self IN ANYDATA,
 ts OUT NOCOPY TIMESTAMP)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GetTimestampTZ(
 self IN ANYDATA,
 ts OUT NOCOPY TIMESTAMP WITH TIME ZONE)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GetTimestampLTZ(
 self IN ANYDATA,
 ts OUT NOCOPY TIMESTAMP WITH LOCAL TIME ZONE)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GetVarchar(
 self IN ANYDATA,
 c OUT NOCOPY VARCHAR)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GetVarchar2(
 self IN ANYDATA,
 c OUT NOCOPY VARCHAR2)
 RETURN PLS_INTEGER;

Parameters

Table 240-4 GET* Function Parameter

	Parameter	Description
	
self

	
An ANYDATA.

	
num

	
The number to be obtained.

Return Values

DBMS_TYPES.SUCCESS or DBMS_TYPES.NO_DATA

The return value is relevant only if PIECEWISE has been already called (for a collection). In such a case, DBMS_TYPES.NO_DATA signifies the end of the collection when all elements have been accessed.

Exceptions

DBMS_TYPES.TYPE_MISMATCH: When the expected type is different from the passed in type.

DBMS_TYPES.INVALID_PARAMETERS: Invalid Parameters (if it is not appropriate to add a number at this point in the creation process).

DBMS_TYPES.INCORRECT_USAGE: Incorrect usage.

GETTYPE Member Function

This function gets the typecode of the ANYDATA.

Syntax

MEMBER FUNCTION GETTYPE(
 self IN ANYDATA,
 typ OUT NOCOPY AnyType)
 RETURN PLS_INTEGER;

Parameters

Table 240-5 GETTYPE Function Parameter

	Parameter	Description
	
self

	
An ANYDATA.

	
typ

	
The AnyType corresponding to the ANYDATA. May be NULL if it does not represent a user-defined type.

Return Values

The typecode corresponding to the type of the ANYDATA.

GETTYPENAME Member Function

This function gets the fully qualified type name for the ANYDATA.

If the ANYDATA is based on a built-in type, this function will return NUMBER and other relevant information.

If it is based on a user defined type, this function will return schema_name.type_name, for example, SCOTT.FOO.

If it is based on a transient anonymous type, this function will return NULL.

Syntax

MEMBER FUNCTION GETTYPENAME(
 self IN ANYDATA)
 RETURN VARCHAR2;

Parameters

Table 240-6 GETTYPENAME Function Parameter

	Parameter	Description
	
self

	
An ANYDATA.

Return Values

Type name of the ANYDATA.

PIECEWISE Member Procedure

This procedure sets the MODE of access of the current data value to be an attribute at a time (if the data value is of TYPECODE_OBJECT).

It sets the MODE of access of the data value to be a collection element at a time (if the data value is of collection type). Once this call has been made, subsequent calls to SET* and GET* will sequentially obtain individual attributes or collection elements.

Syntax

MEMBER PROCEDURE PIECEWISE(
 self IN OUT NOCOPY ANYDATA);

Parameters

Table 240-7 PIECEWISE Procedure Parameters

	Parameter	Description
	
self

	
The current data value.

Exceptions

	
DBMS_TYPES.INVALID_PARAMETERS

	
DBMS_TYPES.INCORRECT_USAGE: On incorrect usage.

Usage Notes

The current data value must be of an OBJECT or COLLECTION type before this call can be made.

Piece-wise construction and access of nested attributes that are of object or collection types is not supported.

SET* Member Procedures

Sets the current data value.

This is a list of procedures that should be called depending on the type of the current data value. The type of the data value should be the type of the attribute at the current position during the piece-wise construction process.

Syntax

MEMBER PROCEDURE SETBDOUBLE(
 self IN OUT NOCOPY ANYDATA,
 dbl IN BINARY_DOUBLE,
 last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SETBFILE(
 self IN OUT NOCOPY ANYDATA,
 b IN BFILE,
 last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SETBFLOAT(
 self IN OUT NOCOPY ANYDATA,
 fl IN BINARY_FLOAT,
 last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SETBLOB(
 self IN OUT NOCOPY ANYDATA,
 b IN BLOB,
 last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SETCHAR(
 self IN OUT NOCOPY ANYDATA,
 c IN CHAR,
 last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SETCLOB(
 self IN OUT NOCOPY ANYDATA,
 c IN CLOB,
 last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SETCOLLECTION(
 self IN OUT NOCOPY ANYDATA,
 col IN "<collectyion_type>",
 last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SETDATE(
 self IN OUT NOCOPY ANYDATA,
 dat IN DATE,
 last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SETINTERVALDS(
 self IN OUT NOCOPY ANYDATA,
 inv IN INTERVAL DAY TO SECOND,
 last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SETINTERVALYM(
 self IN OUT NOCOPY ANYDATA,
 inv IN INTERVAL YEAR TO MONTH,
 last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SETNCHAR(
 self IN OUT NOCOPY ANYDATA,
 nc IN NCHAR,
 last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SETNCLOB(
 self IN OUT NOCOPY ANYDATA,
 nc IN NClob,
 last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SETNUMBER(
 self IN OUT NOCOPY ANYDATA,
 num IN NUMBER,
 last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SETNVARCHAR2(
 self IN OUT NOCOPY ANYDATA,
 nc IN NVarchar2,
 last_elem IN boolean DEFAULT FALSE),

MEMBER PROCEDURE SETOBJECT(
 self IN OUT NOCOPY ANYDATA,
 obj IN "<object_type>",
 last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SETRAW(
 self IN OUT NOCOPY ANYDATA,
 r IN RAW,
 last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SETREF(
 self IN OUT NOCOPY ANYDATA,
 rf IN REF "<object_type>",
 last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SETTIMESTAMP(
 self IN OUT NOCOPY ANYDATA,
 ts IN TIMESTAMP,
 last_elem IN BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETTIMESTAMPTZ(self IN OUT NOCOPY ANYDATA,
 ts IN TIMESTAMP WITH TIME ZONE,
 last_elem IN BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETTIMESTAMPLTZ(
 self IN OUT NOCOPY ANYDATA,
 ts IN TIMESTAMP WITH LOCAL TIME ZONE,
 last_elem IN boolean DEFAULT FALSE),

MEMBER PROCEDURE SETVARCHAR(
 self IN OUT NOCOPY ANYDATA,
 c IN VARCHAR,
 last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SETVARCHAR2(
 self IN OUT NOCOPY ANYDATA,
 c IN VARCHAR2,
 last_elem IN boolean DEFAULT FALSE);

Parameters

Table 240-8 SET* Procedure Parameters

	Parameter	Description
	
self

	
An ANYDATA.

	
num

	
The number, and associated information, that is to be set.

	
last_elem

	
Relevant only if ANYDATA represents a collection.

Set to TRUE if it is the last element of the collection, FALSE otherwise.

Exceptions

	
DBMS_TYPES.INVALID_PARAMETERS: Invalid Parameters (if it is not appropriate to add a number at this point in the creation process).

	
DBMS_TYPES.INCORRECT_USAGE: Incorrect usage.

	
DBMS_TYPES.TYPE_MISMATCH: When the expected type is different from the passed in type.

Usage Notes

When BEGINCREATE is called, construction has already begun in a piece-wise fashion. Subsequent calls to SET* will set the successive attribute values.

If the ANYDATA is a standalone collection, the SET* call will set the successive collection elements.

ANYDATASET TYPE

241 ANYDATASET TYPE

An ANYDATASET TYPE contains a description of a given type plus a set of data instances of that type. An ANYDATASET can be persistently stored in the database if desired, or it can be used as interface parameters to communicate self-descriptive sets of data, all of which belong to a certain type.

This chapter contains the following topics:

	
Construction

	
Summary of ANYDATASET TYPE Subprograms

Construction

The ANYDATASET needs to be constructed value by value, sequentially.

For each data instance (of the type of the ANYDATASET), the ADDINSTANCE function must be invoked. This adds a new data instance to the ANYDATASET. Subsequently, SET* can be called to set each value in its entirety.

The MODE of construction/access can be changed to attribute/collection element wise by making calls to PIECEWISE.

	
If the type of the ANYDATASET is TYPECODE_OBJECT, individual attributes will be set with subsequent SET* calls. Likewise on access.

	
If the type of the current data value is a collection type individual collection elements will be set with subsequent SET* calls. Likewise on access. This call is very similar to ANYDATA.PIECEWISE call defined for the type ANYDATA.

Note that there is no support for piece-wise construction and access of nested (not top level) attributes that are of object types or collection types.

ENDCREATE should be called to finish the construction process (before which no access calls can be made).

Summary of ANYDATASET TYPE Subprograms

Table 241-1 ANYDATASET Type Subprograms

	Subprogram	Description
	
ADDINSTANCE Member Procedure

	
Adds a new data instance to an ANYDATASET.

	
BEGINCREATE Static Procedure

	
Creates a new ANYDATASET which can be used to create a set of data values of the given ANYTYPE.

	
ENDCREATE Member Procedure

	
Ends Creation of a ANYDATASET. Other creation functions cannot be called after this call.

	
GET* Member Functions

	
Gets the current data value (which should be of appropriate type).

	
GETCOUNT Member Function

	
Gets the number of data instances in an ANYDATASET.

	
GETINSTANCE Member Function

	
Gets the next instance in an ANYDATASET.

	
GETTYPE Member Function

	
Gets the ANYTYPE describing the type of the data instances in an ANYDATASET.

current data value (which should be of appropriate type).

	
GETTYPENAME Member Function

	
Gets the AnyType describing the type of the data instances in an ANYDATASET.

	
PIECEWISE Member Procedure

	
Sets the MODE of construction, access of the data value to be an attribute at a time (if the data value is of TYPECODE_OBJECT).

	
SET* Member Procedures

	
Sets the current data value.

ADDINSTANCE Member Procedure

This procedure adds a new data instance to an ANYDATASET.

Syntax

MEMBER PROCEDURE AddInstance(
 self IN OUT NOCOPY ANYDATASET);

Parameters

Table 241-2 ADDINSTANCE Procedure Parameter

	Parameter	Description
	
self

	
The ANYDATASET being constructed.

Exceptions

DBMS_TYPES.invalid_parameters: Invalid parameters.
DBMS_TYPES.incorrect_usage: On incorrect usage.

Usage Notes

The data instances have to be added sequentially. The previous data instance must be fully constructed (or set to NULL) before a new one can be added.

This call DOES NOT automatically set the mode of construction to be piece-wise. The user has to explicitly call PIECEWISE if a piece-wise construction of the instance is intended.

BEGINCREATE Static Procedure

This procedure creates a new ANYDATASET which can be used to create a set of data values of the given ANYTYPE.

Syntax

STATIC PROCEDURE BeginCreate(
 typecode IN PLS_INTEGER,
 rtype IN OUT NOCOPY AnyType,
 aset OUT NOCOPY ANYDATASET);

Parameters

Table 241-3 BEGINCREATE Procedure Parameter

	Parameter	Description
	
typecode

	
The typecode for the type of the ANYDATASET.

	
dtype

	
The type of the data values. This parameter is a must for user-defined types like TYPECODE_OBJECT, Collection typecodes, and similar others.

	
aset

	
The ANYDATASET being constructed.

Exceptions

DBMS_TYPES.invalid_parameters: dtype is invalid (not fully constructed, and like errors.)

ENDCREATE Member Procedure

This procedure ends Creation of a ANYDATASET. Other creation functions cannot be called after this call.

Syntax

MEMBER PROCEDURE ENDCREATE(
 self IN OUT NOCOPY ANYDATASET);

Parameters

Table 241-4 ENDCREATE Procedure Parameter

	Parameter	Description
	
self

	
The ANYDATASET being constructed.

GET* Member Functions

These functions get the current data value (which should be of appropriate type).

The type of the current data value depends on the MODE with which you are accessing it (depending on how we have invoked the PIECEWISE call). If PIECEWISE has not been called, we are accessing the instance in its entirety and the type of the data value should match the type of the ANYDATASET.

If PIECEWISE has been called, we are accessing the instance piece-wise. The type of the data value should match the type of the attribute (or collection element) at the current position.

Syntax

MEMBER FUNCTION GETBDOUBLE(
 self IN ANYDATASET,
 dbl OUT NOCOPY BINARY_DOUBLE)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GETBFLOAT(
 self IN ANYDATASET,
 fl OUT NOCOPY BINARY_FLOAT)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GETBFILE(
 self IN ANYDATASET,
 b OUT NOCOPY BFILE)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GETBLOB(
 self IN ANYDATASET,
 b OUT NOCOPY BLOB)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GETCHAR(
 self IN ANYDATASET,
 c OUT NOCOPY CHAR)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GETCLOB(
 self IN ANYDATASET,
 c OUT NOCOPY CLOB)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GETCOLLECTION(
 self IN ANYDATASET,
 col OUT NOCOPY "<collection_type>")
 RETURN PLS_INTEGER;

MEMBER FUNCTION GETDATE(
 self IN ANYDATASET,
 dat OUT NOCOPY DATE)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GETINTERVALDS(
 self IN ANYDATASET,
 inv IN OUT NOCOPY INTERVAL DAY TO SECOND)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GETINTERVALYM(
 self IN ANYDATASET,
 inv IN OUT NOCOPY INTERVAL YEAR TO MONTH)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GETNCHAR(
 self IN ANYDATASET,
 nc OUT NOCOPY NCHAR)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GETNCLOB(
 self IN ANYDATASET,
 nc OUT NOCOPY NCLOB)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GETNUMBER(
 self IN ANYDATASET,
 num OUT NOCOPY NUMBER)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GETNVARCHAR2(
 self IN ANYDATASET,
 nc OUT NOCOPY NVARCHAR2)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GETOBJECT(
 self IN ANYDATASET,
 obj OUT NOCOPY "<object_type>")
 RETURN PLS_INTEGER;

MEMBER FUNCTION GETRAW(
 self IN ANYDATASET,
 r OUT NOCOPY RAW)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GETREF(
 self IN ANYDATASET,
 rf OUT NOCOPY REF "<object_type>")
 RETURN PLS_INTEGER;

MEMBER FUNCTION GETTIMESTAMP(
 self IN ANYDATASET,
 RETURN PLS_INTEGER;

MEMBER FUNCTION GETTIMESTAMPLTZ(
 self IN ANYDATASET,
 ts OUT NOCOPY TIMESTAMP WITH LOCAL TIME ZONE)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GETTIMESTAMPTZ(
 self IN ANYDATASET,
 ts OUT NOCOPY TIMESTAMP WITH TIME ZONE)
 RETURN PLS_INTEGER,

MEMBER FUNCTION GETUROWID(
 self IN ANYDATASET,
 rid OUT NOCOPY UROWID)
 RETURN PLS_INTEGER

MEMBER FUNCTION GETVARCHAR(
 self IN ANYDATASET,
 c OUT NOCOPY VARCHAR)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GETVARCHAR2(
 self IN ANYDATASET,
 c OUT NOCOPY VARCHAR2)
 RETURN PLS_INTEGER;

Parameters

Table 241-5 GET* Function Parameters

	Parameter	Description
	
self

	
The ANYDATASET being accessed.

	
num

	
The number, and associated information., that is to be obtained.

Return Values

DBMS_TYPES.SUCCESS or DBMS_TYPES.NO_DATA

The return value is relevant only if PIECEWISE has been already called (for a collection). In such a case, DBMS_TYPES.NO_DATA signifies the end of the collection when all elements have been accessed.

Exceptions

DBMS_TYPES.INVALID_PARAMETERs: Invalid Parameters (if it is not appropriate to add a number at this point in the creation process).

DBMS_TYPES.INCORRECT_USAGE: Incorrect usage

DBMS_TYPES.TYPE_MISMATCH: When the expected type is different from the passed in type.

GETCOUNT Member Function

This function gets the number of data instances in an ANYDATASET.

Syntax

MEMBER FUNCTION GetCount(
 self IN ANYDATASET)
 RETURN PLS_INTEGER;

Parameter

Table 241-6 GETCOUNT Function Parameter

	Parameter	Description
	
self

	
The ANYDATASET being accessed.

Return Values

The number of data instances.

GETINSTANCE Member Function

This function gets the next instance in an ANYDATASET. Only sequential access to the instances in an ANYDATASET is allowed. After this function has been called, the GET* functions can be invoked on the ANYDATASET to access the current instance. If PIECEWISE is called before doing the GET* calls, the individual attributes (or collection elements) can be accessed.

It is an error to invoke this function before the ANYDATASET is fully created.

Syntax

MEMBER FUNCTION GETINSTANCE(
 self IN OUT NOCOPY ANYDATASET)
 RETURN PLS_INTEGER;

Parameters

Table 241-7 GETINSTANCE Function Parameter

	Parameter	Description
	
self

	
The ANYDATASET being accessed.

Return Values

DBMS_TYPES.SUCCESS or DBMS_TYPES.NO_DATA

DBMS_TYPES.NO_DATA signifies the end of the ANYDATASET (all instances have been accessed).

Usage Notes

This function should be called even before accessing the first instance.

GETTYPE Member Function

Gets the AnyType describing the type of the data instances in an ANYDATASET.

Syntax

MEMBER FUNCTION GETTYPE(
 self IN ANYDATASET,
 typ OUT NOCOPY AnyType)
 RETURN PLS_INTEGER;

Parameters

Table 241-8 GETTYPE Function Parameter

	Parameter	Description
	
self

	
The ANYDATASET.

	
typ

	
The ANYTYPE corresponding to the AnyData. May be NULL if it does not represent a user-defined function.

Return Values

The typecode corresponding to the type of the ANYDATA.

GETTYPENAME Member Function

This procedure gets the fully qualified type name for the ANYDATASET.

If the ANYDATASET is based on a built-in, this function will return NUMBER and associated information.

If it is based on a user defined type, this function will return schema_name.type_name. for example, SCOTT.FOO.

If it is based on a transient anonymous type, this function will return NULL.

Syntax

MEMBER FUNCTION GETTYPENAME(
 self IN ANYDATASET)
 RETURN VARCHAR2;

Parameter

Table 241-9 GETTYPENAME Function Parameter

	Parameter	Description
	
self

	
The ANYDATASET being constructed.

Return Values

Type name of the ANYDATASET.

PIECEWISE Member Procedure

This procedure sets the MODE of construction, access of the data value to be an attribute at a time (if the data value is of TYPECODE_OBJECT).

It sets the MODE of construction, access of the data value to be a collection element at a time (if the data value is of a collection TYPE). Once this call has been made, subsequent SET* and GET* calls will sequentially obtain individual attributes or collection elements.

Syntax

MEMBER PROCEDURE PIECEWISE(
 self IN OUT NOCOPY ANYDATASET);

Parameters

Table 241-10 PIECEWISE Procedure Parameter

	Parameter	Description
	
self

	
The ANYDATASET being constructed.

Exceptions

DBMS_TYPES.INVALID_PARAMETERS: Invalid parameters.

DBMS_TYPES.INCORRECT_USAGE: On incorrect usage.

Usage Notes

The current data value must be of an object or collectyon type before this call can be made. There is no support for piece-wise construction or access of embedded object type attributes or nested collections.

SET* Member Procedures

This procedure sets the current data value.

The type of the current data value depends on the MODE with which we are constructing (depending on how we have invoked the PIECEWISE call). The type of the current data should be the type of the ANYDATASET if PIECEWISE has NOT been called. The type should be the type of the attribute at the current position if PIECEWISE has been called.

Syntax

MEMBER PROCEDURE SETBDOUBLE(
 self IN OUT NOCOPY ANYDATASET,
 dbl IN BINARY_DOUBLE,
 last_elem IN BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETBFLOAT(
 self IN OUT NOCOPY ANYDATASET,
 fl IN BINARY_FLOAT,
 last_elem IN BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETBFILE(
 self IN OUT NOCOPY ANYDATASET,
 b IN BFILE,
 last_elem BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETBLOB(
 self IN OUT NOCOPY ANYDATASET,
 b IN BLOB,
 last_elem BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETCHAR(
 self IN OUT NOCOPY ANYDATASET,
 c IN CHAR,
 last_elem BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETCLOB(
 self IN OUT NOCOPY ANYDATASET,
 c IN CLOB,
 last_elem BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETCOLLECTION(
 self IN OUT NOCOPY ANYDATASET,
 col IN "<collection_type>",
 last_elem BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETDATE(
 self IN OUT NOCOPY ANYDATASET,
 dat IN DATE,
 last_elem BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETINTERVALDS(
 self IN OUT NOCOPY ANYDATASET,
 inv IN INTERVAL DAY TO SECOND,
 last_elem IN BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETINTERVALYM(
 self IN OUT NOCOPY ANYDATASET,
 inv IN INTERVAL YEAR TO MONTH,
 last_elem IN BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETNCHAR(
 self IN OUT NOCOPY ANYDATASET,
 nc IN NCHAR,
 last_elem IN BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETNCLOB(
 self IN OUT NOCOPY ANYDATASET,
 nc IN NClob,
 last_elem IN BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETNUMBER(
 self IN OUT NOCOPY ANYDATASET,
 num IN NUMBER,
 last_elem BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETNVARCHAR2(
 self IN OUT NOCOPY ANYDATASET,
 nc IN NVarchar2,
 last_elem IN BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETOBJECT(
 self IN OUT NOCOPY ANYDATASET,
 obj IN "<object_type>",
 last_elem BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETRAW(
 self IN OUT NOCOPY ANYDATASET,
 r IN RAW,
 last_elem BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETREF(
 self IN OUT NOCOPY ANYDATASET,
 rf IN REF "<object_type>",
 last_elem BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETTIMESTAMP(
 self IN OUT NOCOPY ANYDATASET,
 ts IN TIMESTAMP,
 last_elem IN BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETTIMESTAMPLTZ(
 self IN OUT NOCOPY ANYDATASET,
 ts IN TIMESTAMP WITH LOCAL TIME ZONE,
 last_elem IN BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETTIMESTAMPTZ(
 self IN OUT NOCOPY ANYDATASET,
 ts IN TIMESTAMP WITH TIME ZONE,
 last_elem IN BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETUROWID(
 self IN OUT NOCOPY ANYDATASET,
 rid IN UROWID,
 last_elem IN BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETVARCHAR(
 self IN OUT NOCOPY ANYDATASET,
 c IN VARCHAR,
 last_elem BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETVARCHAR2(
 self IN OUT NOCOPY ANYDATASET,
 c IN VARCHAR2,
 last_elem BOOLEAN DEFAULT FALSE);

Parameters

Table 241-11 SET* Procedure Parameters

	Parameter	Description
	
self

	
The ANYDATASET being accessed.

	
num

	
The number, and associated information, that is to be set.

	
last_elem

	
Relevant only if PIECEWISE has been already called (for a collection). Set to TRUE if it is the last element of the collection, FALSE otherwise.

Exceptions

	
DBMS_TYPES.INVALID_PARAMETERS: Invalid parameters (if it is not appropriate to add a number at this point in the creation process).

	
DBMS_TYPES.INCORRECT_USAGE: Incorrect usage.

	
DBMS_TYPES.TYPE_MISMATCH: When the expected type is different from the passed in type.

ANYTYPE TYPE

242 ANYTYPE TYPE

An ANYTYPE TYPE can contain a type description of any persistent SQL type, named or unnamed, including object types and collection types. It can also be used to construct new transient type descriptions.

New persistent types can only be created using the CREATE TYPE statement. Only new transient types can be constructed using the ANYTYPE interfaces.

This chapter discusses the following:

	
Summary of ANYTYPE Subprograms

Summary of ANYTYPE Subprograms

Table 242-1 ANYTYPE Type Subprograms

	Subprogram	Description
	
BEGINCREATE Static Procedure

	
Creates a new instance of ANYTYPE which can be used to create a transient type description.

	
SETINFO Member Procedure

	
Sets any additional information required for constructing a COLLECTION or builtin type.

	
ADDATTR Member Procedure

	
Adds an attribute to an ANYTYPE (of typecode DBMS_TYPES.TYPECODE_OBJECT).

	
ENDCREATE Member Procedure

	
Ends creation of a transient ANYTYPE. Other creation functions cannot be called after this call.

	
GETPERSISTENT Static Function

	
Returns an ANYTYPE corresponding to a persistent type created earlier using the CREATE TYPE SQL statement.

	
GETINFO Member Function

	
Gets the type information for the ANYTYPE.

	
GETATTRELEMINFO Member Function

	
Gets the type information for an attribute of the type (if it is of TYPECODE_OBJECT). Gets the type information for a collection's element type if the self parameter is of a collection type.

BEGINCREATE Static Procedure

This procedure creates a new instance of ANYTYPE which can be used to create a transient type description.

Syntax

STATIC PROCEDURE BEGINCREATE(
 typecode IN PLS_INTEGER,
 atype OUT NOCOPY ANYTYPE);

Parameters

Table 242-2 BEGINCREATE Procedure Parameters

	Parameter	Description
	
typecode

	
Use a constant from DBMS_TYPES package.

Typecodes for user-defined type:

	
DBMS_TYPES.TYPECODE_OBJECT

	
DBMS_TYPES.TYPECODE_VARRAY or

	
DBMS_TYPES.TYPECODE_TABLE

Typecodes for builtin types:

	
DBMS_TYPES.TYPECODE_NUMBER, and similar types.

	
atype

	
ANYTYPE for a transient type

SETINFO Member Procedure

This procedure sets any additional information required for constructing a COLLECTION or builtin type.

Syntax

MEMBER PROCEDURE SETINFO(
 self IN OUT NOCOPY ANYTYPE,
 prec IN PLS_INTEGER,
 scale IN PLS_INTEGER,
 len IN PLS_INTEGER,
 csid IN PLS_INTEGER,
 csfrm IN PLS_INTEGER,
 atype IN ANYTYPE DEFAULT NULL,
 elem_tc IN PLS_INTEGER DEFAULT NULL,
 elem_count IN PLS_INTEGER DEFAULT 0);

Parameters

Table 242-3 SETINFO Procedure Parameters

	Parameter	Description
	
self

	
The transient ANYTYPE that is being constructed.

	
prec

	
Optional.Required if typecode represents a NUMBER.

Give precision and scale. Ignored otherwise.

	
scale

	
Optional.Required if typecode represents a NUMBER.

Give precision and scale. Ignored otherwise.

	
len

	
Optional. Required if typecode represents a RAW, CHAR, VARCHAR, or VARCHAR2 type. Gives length.

	
csid

	
Required if typecode represents types requiring character information such as CHAR, VARCHAR, or VARCHAR2.

	
csfrm

	
Required if typecode represents types requiring character information such as CHAR, VARCHAR, or VARCHAR2.

	
atype

	
Optional. Required if collection element typecode is a user-defined type such as TYPECODE_OBJECT, and similar others. It is also required for a built-in type that needs user-defined type information such as TYPECODE_REF. This parameter is not needed otherwise.

The Following Parameters Are Required For Collection Types

Table 242-4 SETINFO Procedure Parameters - Collection Types

	Parameter	Description
	
elem_tc

	
Must be of the collection element's typecode (from DBMS_TYPES package).

	
elem_count

	
Pass 0 for elem_count if the self represents a nested table (TYPECODE_TABLE). Otherwise pass the collection count if self represents a VARRAY.

Exceptions

	
DBMS_TYPES.INVALID_PARAMETER: Invalid Parameters (typecode, typeinfo)

	
DBMS_TYPES.INCORRECT_USAGE: Incorrect usage (cannot call after calling ENDCREATE, and similar actions.)

Usage Notes

It is an error to call this function on an ANYTYPE that represents a persistent user defined type.

ADDATTR Member Procedure

This procedure adds an attribute to an ANYTYPE (of typecode DBMS_TYPES.TYPECODE_OBJECT).

Syntax

MEMBER PROCEDURE ADDATTR(
 self IN OUT NOCOPY ANYTYPE,
 aname IN VARCHAR2,
 typecode IN PLS_INTEGER,
 prec IN PLS_INTEGER,
 scale IN PLS_INTEGER,
 len IN PLS_INTEGER,
 csid IN PLS_INTEGER,
 csfrm IN PLS_INTEGER,
 attr_type IN ANYTYPE DEFAULT NULL);

Parameters

Table 242-5 ADDATTR Procedure Parameters

	Parameter	Description
	
self

	
The transient ANYTYPE that is being constructed. Must be of type DBMS_TYPES.TYPECODE_OBJECT.

	
aname

	
Optional. Attribute's name. Could be NULL.

	
typecode

	
Attribute's typecode. Can be built-in or user-defined typecode (from DBMS_TYPES package).

	
prec

	
Optional. Required if typecode represents a NUMBER. Give precision and scale. Ignored otherwise.

	
scale

	
Optional. Required if typecode represents a NUMBER. Give precision and scale. Ignored otherwise.

	
len

	
Optional. Required if typecode represents a RAW, CHAR, VARCHAR, or VARCHAR2 type. Give length.

	
csid

	
Optional. Required if typecode represents a type requiring character information, such as CHAR, VARCHAR, or VARCHAR2.

	
csfrm

	
Optional. Required if typecode represents a type requiring character information, such as CHAR, VARCHAR, or VARCHAR2.

	
attr_type

	
Optional. ANYTYPE corresponding to a user-defined type. This parameter is required if the attribute is a user defined type.

Exceptions

	
DBMS_TYPES.INVALID_PARAMETERS: Invalid Parameters (typecode, typeinfo)

	
DBMS_TYPES.INCORRECT_USAGE: Incorrect usage (cannot call after calling EndCreate, and similar actions.)

ENDCREATE Member Procedure

This procedure ends creation of a transient ANYTYPE. Other creation functions cannot be called after this call.

Syntax

MEMBER PROCEDURE ENDCREATE(
 self IN OUT NOCOPY ANYTYPE);

Parameter

Table 242-6 ENDCREATE Procedure Parameter

	Parameter	Description
	
self

	
The transient ANYTYPE that is being constructed.

GETPERSISTENT Static Function

This procedure returns an ANYTYPE corresponding to a persistent type created earlier using the CREATE TYPE SQL statement.

Syntax

STATIC FUNCTION GETPERSISTENT(
 schema_name IN VARCHAR2,
 type_name IN VARCHAR2,
 version IN VARCHAR2 DEFAULT NULL)
 RETURN ANYTYPE;

Parameters

Table 242-7 GETPERSISTENT Function Parameters

	Parameter	Description
	
schema_name

	
Schema name of the type.

	
type_name

	
Type name.

	
version

	
Type version.

Return Values

An ANYTYPE corresponding to a persistent type created earlier using the CREATE TYPE SQL statement.

GETINFO Member Function

This function gets the type information for the ANYTYPE.

Syntax

MEMBER FUNCTION GETINFO (
 self IN ANYTYPE,
 prec OUT PLS_INTEGER,
 scale OUT PLS_INTEGER,
 len OUT PLS_INTEGER,
 csid OUT PLS_INTEGER,
 csfrm OUT PLS_INTEGER,
 schema_name OUT VARCHAR2,
 type_name OUT VARCHAR2,
 version OUT varchar2,
 count OUT PLS_INTEGER)
 RETURN PLS_INTEGER;

Parameters

Table 242-8 GETINFO Function Parameters

	Parameter	Description
	
self

	
The ANYTYPE.

	
prec

	
If typecode represents a number. Gives precision and scale. Ignored otherwise.

	
scale

	
If typecode represents a number. Gives precision and scale. Ignored otherwise.

	
len

	
If typecode represents a RAW, CHAR, VARCHAR, or VARCHAR2 type. Gives length.

	
csid

	
If typecode represents a type requiring character information such as: CHAR, VARCHAR, or VARCHAR2.

	
csid

	
If typecode represents a type requiring character information such as: CHAR, VARCHAR, or VARCHAR2.

	
schema_name

	
Type's schema (if persistent).

	
type_name

	
Type's typename.

	
version

	
Type's version.

	
count

	
If self is a VARRAY, this gives the VARRAY count. If self is of TYPECODE_OBJECT, this gives the number of attributes.

Return Values

The typecode of self.

Exceptions

	
DBMS_TYPES.INVALID_PARAMETERS: Invalid Parameters (position is beyond bounds or the ANYTYPE is not properly Constructed).

GETATTRELEMINFO Member Function

This function gets the type information for an attribute of the type (if it is of TYPECODE_OBJECT). Gets the type information for a collection's element type if the self parameter is of a collection type.

Syntax

MEMBER FUNCTION GETATTRELEMINFO (
 self IN ANYTYPE,
 pos IN PLS_INTEGER,
 prec OUT PLS_INTEGER,
 scale OUT PLS_INTEGER,
 len OUT PLS_INTEGER,
 csid OUT PLS_INTEGER,
 csfrm OUT PLS_INTEGER,
 attr_elt_type OUT ANYTYPE
 aname OUT VARRCHAR2)
 RETURN PLS_INTEGER;

Parameters

Table 242-9 GETATTRELEMINFO Function Parameters

	Parameter	Description
	
self

	
The ANYTYPE.

	
pos

	
If self is of TYPECODE_OBJECT, this gives the attribute position (starting at 1). It is ignored otherwise.

	
prec

	
If attribute/collection element typecode represents a NUMBER. Gives precision and scale. Ignored otherwise.

	
scale

	
If attribute/collection element typecode represents a NUMBER. Gives precision and scale. Ignored otherwise.

	
len

	
If typecode represents a RAW, CHAR, VARCHAR, or VARCHAR2 type. Gives length.

	
csid, csfrm

	
If typecode represents a type requiring character information such as: CHAR, VARCHAR, or VARCHAR2. Gives character set ID, character set form.

	
attr_elt_type

	
If attribute/collection element typecode represents a user-defined type, this returns the ANYTYPE corresponding to it. User can subsequently describe the attr_elt_type.

	
aname

	
Attribute name (if it is an attribute of an object type, NULL otherwise).

Return Values

The typecode of the attribute or collection element.

Exceptions

DBMS_TYPES.INVALID_PARAMETERS: Invalid Parameters (position is beyond bounds or the ANYTYPE is not properly constructed).

Oracle Streams AQ TYPEs

243 Oracle Streams AQ TYPEs

This chapter describes the types used with Oracle Streams Advanced Queuing (AQ) packages for PL/SQL, DBMS_AQ, and DBMS_AQADM.

	
See Also:

Oracle Streams Advanced Queuing User's Guide for information about using Oracle Streams AQ.

This chapter contains the following topics:

	
Summary of Types

Summary of Types

	
AQ$_AGENT Type

	
AQ$_AGENT_LIST_T Type

	
AQ$_DESCRIPTOR Type

	
AQ$_NTFN_DESCRIPTOR Type

	
AQ$_POST_INFO Type

	
AQ$_POST_INFO_LIST Type

	
AQ$_PURGE_OPTIONS_T Type

	
AQ$_RECIPIENT_LIST_T Type

	
AQ$_REG_INFO Type

	
AQ$_REG_INFO_LIST Type

	
AQ$_SUBSCRIBER_LIST_T Type

	
DEQUEUE_OPTIONS_T Type

	
ENQUEUE_OPTIONS_T Type

	
SYS.MSG_PROP_T Type

	
MESSAGE_PROPERTIES_T Type

	
MESSAGE_PROPERTIES_ARRAY_T Type

	
MSGID_ARRAY_T Type

AQ$_AGENT Type

This type identifies a producer or a consumer of a message.

Syntax

TYPE SYS.AQ$_AGENT IS OBJECT (
 name VARCHAR2(30),
 address VARCHAR2(1024),
 protocol NUMBER DEFAULT 0);

Attributes

Table 243-1 AQ$_AGENT Attributes

	Attribute	Description
	
name

	
Name of a producer or consumer of a message. The name must follow object name guidelines in the Oracle Database SQL Language Reference with regard to reserved characters.

	
address

	
Protocol-specific address of the recipient. If the protocol is 0, then the address is of the form [schema.]queue[@dblink].

For example, a queue named emp_messages in the HR queue at the site dbs1.net has the address: hr.emp_messages@dbs1.net

	
protocol

	
Protocol to interpret the address and propagate the message. Protocols 1-127 are reserved for internal use. If the protocol number is in the range 128 - 255, the address of the recipient is not interpreted by Oracle Streams AQ.

AQ$_AGENT_LIST_T Type

This type identifies the list of agents for which DBMS_AQ.LISTEN listens.

	
See Also:

"AQ$_AGENT Type"

Syntax

TYPE SYS.AQ$_AGENT_LIST_T IS TABLE OF SYS.AQ$_AGENT
 INDEX BY BINARY INTEGER;

AQ$_DESCRIPTOR Type

This type specifies the Oracle Streams AQ descriptor received by the AQ PL/SQL callbacks upon notification.

	
See Also:

"MESSAGE_PROPERTIES_T Type"

Syntax

TYPE SYS.AQ$_DESCRIPTOR IS OBJECT (
 queue_name VARCHAR2(61),
 consumer_name VARCHAR2(30),
 msg_id RAW(16),
 msg_prop MSG_PROP_T,
 gen_desc AQ$_NTFN_DESCRIPTOR,
 msgid_array SYS.AQ$_NTFN_MSGID_ARRAY,
 ntfnsRecdInGrp NUMBER);

Attributes

Table 243-2 AQ$_DESCRIPTOR Attributes

	Attribute	Description
	
queue_name

	
Name of the queue in which the message was enqueued which resulted in the notification

	
consumer_name

	
Name of the consumer for the multiconsumer queue

	
msg_id

	
Identification number of the message

	
msg_prop

	
Message properties specified by the MSG_PROP_T type

	
gen_desc

	
Indicates the timeout specifications

	
msgid_array

	
Group notification message ID list

	
ntfnsRecdInGrp

	
Notifications received in group

AQ$_NTFN_DESCRIPTOR Type

This type is for storing a generic notification descriptor regarding PL/SQL notification flags.

Syntax

TYPE SYS.AQ$_NTFN_DESCRIPTOR IS OBJECT(ntfn_flags NUMBER)

Attributes

Table 243-3 AQ$_NTFN_DESCRIPTOR Attributes

	Attribute	Description
	
ntfn_flags

	
Set to 1 if the notifications are already removed after a stipulated timeout. Set 2 to denote grouping. Default is 0.

AQ$_NTFN_MSGID_ARRAY Type

This type is for storing grouping notification data for AQ namespace, value 230 which is the max varray size.

Syntax

TYPE SYS.AQ$_NTFN_MSGID_ARRAY AS VARRAY(1073741824)OF RAW(16);

AQ$_POST_INFO Type

Specifies anonymous subscriptions to which you want to post messages.

Syntax

TYPE SYS.AQ$_POST_INFO IS OBJECT (
 name VARCHAR2(128),
 namespace NUMBER,
 payload RAW(2000) DEFAULT NULL);

Attributes

Table 243-4 AQ$_POST_INFO Attributes

	Attribute	Description
	
name

	
Name of the anonymous subscription to which you want to post

	
namespace

	
To receive notifications from other applications through DBMS_AQ.POST or OCISubscriptionPost(), the namespace must be DBMS_AQ.NAMESPACE_ANONYMOUS

	
payload

	
The payload to be posted to the anonymous subscription

AQ$_POST_INFO_LIST Type

Identifies the list of anonymous subscriptions to which you want to post messages.

	
See Also:

AQ$_POST_INFO Type

Syntax

TYPE SYS.AQ$_POST_INFO_LIST AS VARRAY(1024) OF SYS.AQ$_POST_INFO;

AQ$_PURGE_OPTIONS_T Type

This type specifies the options available for purging a queue table.

	
See Also:

PURGE_QUEUE_TABLE Procedure.

Syntax

TYPE AQ$_PURGE_OPTIONS_T is RECORD (
 block BOOLEAN DEFAULT FALSE
 delivery_mode PLS_INTEGER DEFAULT PERSISTENT);

Table 243-5 AQ$_PURGE_OPTIONS_T Type Attributes

	Attribute	Description
	
block

	
TRUE/FALSE.

	
If block is TRUE, then an exclusive lock on all the queues in the queue table is held while purging the queue table. This will cause concurrent enqueuers and dequeuers to block while the queue table is purged. The purge call always succeeds if block is TRUE.

	
The default for block is FALSE. This will not block enqueuers and dequeuers, but it can cause the purge to fail with an error during high concurrency times.

	
delivery_mode

	
Kind of messages to purge, either DBMS_AQ.BUFFERED or DBMS_AQ.PERSISTENT

AQ$_RECIPIENT_LIST_T Type

Identifies the list of agents that receive the message. This type can be used only when the queue is enabled for multiple dequeues.

	
See Also:

"AQ$_AGENT Type"

Syntax

TYPE SYS.AQ$_RECIPIENT_LIST_T IS TABLE OF SYS.AQ$_AGENT
 INDEX BY BINARY_INTEGER;

AQ$_REG_INFO Type

This type identifies a producer or a consumer of a message.

Syntax

TYPE SYS.AQ$_REG_INFO IS OBJECT (
 name VARCHAR2(128),
 namespace NUMBER,
 callback VARCHAR2(4000),
 context RAW(2000) DEFAULT NULL,
 qosflags NUMBER,
 timeout NUMBER
 ntfn_grouping_class NUMBER,
 ntfn_grouping_value NUMBER DEFAULT 600,
 ntfn_grouping_type NUMBER,
 ntfn_grouping_start_time TIMESTAMP WITH TIME ZONE,
 ntfn_grouping_repeat_count NUMBER);

Attributes

Table 243-6 AQ$_REG_INFO Type Attributes

	Attribute	Description
	
name

	
Specifies the name of the subscription. The subscription name is of the form schema.queue if the registration is for a single consumer queue or schema.queue:consumer_name if the registration is for a multiconsumer queues.

	
namespace

	
Specifies the namespace of the subscription. To receive notification from Oracle Streams AQ queues, the namespace must be DBMS_AQ.NAMESPACE_AQ. To receive notifications from other applications through DBMS_AQ.POST or OCISubscriptionPost(), the namespace must be DBMS_AQ.NAMESPACE_ANONYMOUS.

	
callback

	
Specifies the action to be performed on message notification. For HTTP notifications, use http://www.company.com:8080. For e-mail notifications, use mailto://xyz@company.com. For raw message payload for the PLSQLCALLBACK procedure, use plsql://schema.procedure?PR=0. For user-defined type message payload converted to XML for the PLSQLCALLBACK procedure, use plsql://schema.procedure?PR=1

	
context

	
Specifies the context that is to be passed to the callback function

	
qosflags

	
Can be set to one or more of the following values to specify the notification quality of service:

	
NTFN_QOS_RELIABLE- This value specifies that reliable notification is required. Reliable notifications persist across instance and database restarts.

	
NTFN_QOS_PAYLOAD - This value specifies that payload delivery is required. It is supported only for client notification and only for RAW queues.

	
NTFN_QOS_PURGE_ON_NTFN - This value specifies that the registration is to be purged automatically when the first notification is delivered to this registration location.

	
ntfn_grouping_class

	
Currently, only the following flag can be set to specify criterion for grouping. The default value will be 0. If ntfn_grouping_class is 0, all other notification grouping attributes must be 0.

	
NTFN_GROUPING_CLASS_TIME - Notifications grouped by time, that is, the user specifies a time value and a single notification gets published at the end of that time.

	
ntfn_grouping_value

	
Time-period of grouping notifications specified in seconds, meaning the time after which grouping notification would be sent periodically until ntfn_grouping_repeat_count is exhausted.

	
ntfn_grouping_type

	
	
NTFN_GROUPING_TYPE_SUMMARY - Summary of all notifications that occurred in the time interval. (Default)

	
NTFN_GROUPING_TYPE_LAST - Last notification that occurred in the interval.

	
ntfn_grouping_start_time

	
Notification grouping start time. Notification grouping can start from a user-specified time that should a valid timestamp with time zone. If ntfn_grouping_start_time is not specified when using grouping, the default is to current timestamp with time zone

	
ntfn_grouping_repeat_count

	
Grouping notifications will be sent as many times as specified by the notification grouping repeat count and after that revert to regular notifications. The ntfn_grouping_repeat_count, if not specified, will default to

	
NTFN_GROUPING_FOREVER - Keep sending grouping notifications forever.

Usage Notes

You can use the following notification mechanisms:

	
OCI callback

	
e-mail callback

	
PL/SQL callback

Table 243-7 shows the actions performed for nonpersistent queues for different notification mechanisms when RAW presentation is specified. Table 243-8 shows the actions performed when XML presentation is specified.

Table 243-7 Actions Performed for Nonpersistent Queues When RAW Presentation Specified

	Queue Payload Type	OCI Callback	E-mail	PL/SQL Callback
	
RAW

	
OCI callback receives the RAW data in the payload.

	
Not supported

	
PL/SQL callback receives the RAW data in the payload.

	
Oracle object type

	
Not supported

	
Not supported

	
Not supported

Table 243-8 Actions Performed for Nonpersistent Queues When XML Presentation Specified

	Queue Payload Type	OCI Callback	E-mail	PL/SQL Callback
	
RAW

	
OCI callback receives the XML data in the payload.

	
XML data is formatted as a SOAP message and e-mailed to the registered e-mail address.

	
PL/SQL callback receives the XML data in the payload.

	
Oracle object type

	
OCI callback receives the XML data in the payload.

	
XML data is formatted as a SOAP message and e-mailed to the registered e-mail address.

	
PL/SQL callback receives the XML data in the payload.

AQ$_REG_INFO_LIST Type

Identifies the list of registrations to a queue.

	
See Also:

"AQ$_REG_INFO Type"

Syntax

TYPE SYS.AQ$_REG_INFO_LIST AS VARRAY(1024) OF SYS.AQ$_REG_INFO;

AQ$_SUBSCRIBER_LIST_T Type

Identifies the list of subscribers that subscribe to a queue.

	
See Also:

"AQ$_AGENT Type"

Syntax

TYPE SYS.AQ$_SUBSCRIBER_LIST_T IS TABLE OF SYS.AQ$_AGENT
 INDEX BY BINARY_INTEGER;

DEQUEUE_OPTIONS_T Type

Specifies the options available for the dequeue operation.

Syntax

TYPE DEQUEUE_OPTIONS_T IS RECORD (
 consumer_name VARCHAR2(30) DEFAULT NULL,
 dequeue_mode BINARY_INTEGER DEFAULT REMOVE,
 navigation BINARY_INTEGER DEFAULT NEXT_MESSAGE,
 visibility BINARY_INTEGER DEFAULT ON_COMMIT,
 wait BINARY_INTEGER DEFAULT FOREVER,
 msgid RAW(16) DEFAULT NULL,
 correlation VARCHAR2(128) DEFAULT NULL,
 deq_condition VARCHAR2(4000) DEFAULT NULL,
 signature aq$_sig_prop DEFAULT NULL,
 transformation VARCHAR2(61) DEFAULT NULL,
 delivery_mode PLS_INTEGER DEFAULT PERSISTENT);

Attributes

Table 243-9 DEQUEUE_OPTIONS_T Attributes

	Attribute	Description
	
consumer_name

	
Name of the consumer. Only those messages matching the consumer name are accessed. If a queue is not set up for multiple consumers, then this field should be set to NULL.

For secure queues, consumer_name must be a valid AQ agent name, mapped to the database user performing the dequeue operation, through dbms_aqadm.enable_db_access procedure call.

	
dequeue_mode

	
Specifies the locking behavior associated with the dequeue. Possible settings are:

BROWSE: Read the message without acquiring any lock on the message. This specification is equivalent to a select statement.

LOCKED: Read and obtain a write lock on the message. The lock lasts for the duration of the transaction. This setting is equivalent to a select for update statement.

REMOVE: Read the message and delete it. This setting is the default. The message can be retained in the queue table based on the retention properties.

REMOVE_NODATA: Mark the message as updated or deleted. The message can be retained in the queue table based on the retention properties.

	
navigation

	
Specifies the position of the message that will be retrieved. First, the position is determined. Second, the search criterion is applied. Finally, the message is retrieved. Possible settings are:

NEXT_MESSAGE: Retrieve the next message that is available and matches the search criteria. If the previous message belongs to a message group, then AQ retrieves the next available message that matches the search criteria and belongs to the message group. This setting is the default.

NEXT_TRANSACTION: Skip the remainder of the current transaction group (if any) and retrieve the first message of the next transaction group. This setting can only be used if message grouping is enabled for the current queue.

FIRST_MESSAGE: Retrieves the first message which is available and matches the search criteria. This setting resets the position to the beginning of the queue.

FIRST_MESSAGE_MULTI_GROUP: indicates that a call to DBMS_AQ.DEQUEUE_ARRAY will reset the position to the beginning of the queue and dequeue messages (possibly across different transaction groups) that are available and match the search criteria, until reaching the ARRAY_SIZE limit. Refer to the TRANSACTION_GROUP attribute for the message to distinguish between transaction groups.

NEXT_MESSAGE_MULTI_GROUP: indicates that a call to DBMS_AQ.DEQUEUE_ARRAY will dequeue the next set of messages (possibly across different transaction groups) that are available and match the search criteria, until reaching the ARRAY_SIZE limit. Refer to the TRANSACTION_GROUP attribute for the message to distinguish between transaction groups.

	
visibility

	
Specifies whether the new message is dequeued as part of the current transaction.The visibility parameter is ignored when using the BROWSE dequeue mode. Possible settings are:

ON_COMMIT: The dequeue will be part of the current transaction. This setting is the default.

IMMEDIATE: The dequeue operation is not part of the current transaction, but an autonomous transaction which commits at the end of the operation.

	
wait

	
Specifies the wait time if there is currently no message available which matches the search criteria. Possible settings are:

FOREVER: Wait forever. This setting is the default.

NO_WAIT: Do not wait.

number: Wait time in seconds.

	
msgid

	
Specifies the message identifier of the message to be dequeued.

	
correlation

	
Specifies the correlation identifier of the message to be dequeued. Special pattern matching characters, such as the percent sign (%) and the underscore (_) can be used. If more than one message satisfies the pattern, then the order of dequeuing is undetermined.

	
deq_condition

	
A conditional expression based on the message properties, the message data properties, and PL/SQL functions.

A deq_condition is specified as a Boolean expression using syntax similar to the WHERE clause of a SQL query. This Boolean expression can include conditions on message properties, user data properties (object payloads only), and PL/SQL or SQL functions (as specified in the WHERE clause of a SQL query). Message properties include priority, corrid and other columns in the queue table

To specify dequeue conditions on a message payload (object payload), use attributes of the object type in clauses. You must prefix each attribute with tab.user_data as a qualifier to indicate the specific column of the queue table that stores the payload. The deq_condition parameter cannot exceed 4000 characters. If more than one message satisfies the dequeue condition, then the order of dequeuing is undetermined.

	
signature

	
Currently not implemented

	
transformation

	
Specifies a transformation that will be applied after dequeuing the message. The source type of the transformation must match the type of the queue.

	
delivery_mode

	
The dequeuer specifies the delivery mode of the messages it wishes to dequeue in the dequeue options. It can be BUFFERED or PERSISTENT or PERSISTENT_OR_BUFFERED. The message properties of the dequeued message indicate the delivery mode of the dequeued message. Array dequeue is only supported for buffered messages with an array size of '1'.

ENQUEUE_OPTIONS_T Type

Specifies the options available for the enqueue operation.

Syntax

TYPE SYS.ENQUEUE_OPTIONS_T IS RECORD (
 visibility BINARY_INTEGER DEFAULT ON_COMMIT,
 relative_msgid RAW(16) DEFAULT NULL,
 sequence_deviation BINARY_INTEGER DEFAULT NULL,
 transformation VARCHAR2(61) DEFAULT NULL,
 delivery_mode PLS_INTEGER NOT NULL DEFAULT PERSISTENT);

Attributes

Table 243-10 ENQUEUE_OPTIONS_T Attributes

	Attribute	Description
	
visibility

	
Specifies the transactional behavior of the enqueue request. Possible settings are:

ON_COMMIT: The enqueue is part of the current transaction. The operation is complete when the transaction commits. This setting is the default.

IMMEDIATE: The enqueue operation is not part of the current transaction, but an autonomous transaction which commits at the end of the operation. This is the only value allowed when enqueuing to a non-persistent queue.

	
relative_msgid

	
Specifies the message identifier of the message which is referenced in the sequence deviation operation. This field is valid only if BEFORE is specified in sequence_deviation. This parameter is ignored if sequence deviation is not specified.

	
sequence_deviation

	
Specifies whether the message being enqueued should be dequeued before other messages already in the queue. Possible settings are:

BEFORE: The message is enqueued ahead of the message specified by relative_msgid.

TOP: The message is enqueued ahead of any other messages.

	
transformation

	
Specifies a transformation that will be applied before enqueuing the message. The return type of the transformation function must match the type of the queue.

	
delivery_mode

	
The enqueuer specifies the delivery mode of the messages it wishes to enqueue in the enqueue options. It can be BUFFERED or PERSISTENT. The message properties of the enqueued message indicate the delivery mode of the enqueued message. Array enqueue is only supported for buffered messages with an array size of '1'.

SYS.MSG_PROP_T Type

This type is used in PL/SQL notification, as one field in aq$_descriptor, to pass message properties of an AQ message to the PL/SQL notification client callback.

Syntax

CREATE or replace TYPE sys.msg_prop_t AS OBJECT (
 priority NUMBER,
 delay NUMBER,
 expiration NUMBER,
 correlation VARCHAR2(128),
 attempts NUMBER,
 exception_queue VARCHAR2(51),
 enqueue_time DATE,
 state NUMBER,
 sender_id aq$_agent,
 original_msgid RAW(16),
 delivery_mode NUMBER);

Parameters

Table 243-11 SYS.MSG_PROP_T Type Attributes

	Parameter	Description
	
priority

	
Specifies the priority of the message. A smaller number indicates higher priority. The priority can be any number, including negative numbers.

	
delay

	
Specifies the delay of the enqueued message. The delay represents the number of seconds after which a message is available for dequeuing. Dequeuing by msgid overrides the delay specification. A message enqueued with delay set is in the WAITING state, and when the delay expires, the message goes to the READY state. DELAY processing requires the queue monitor to be started. However the queue monitor is started automatically by the system if needed. Delay is set by the producer who enqueues the message.

The possible settings follow:

NO_DELAY: The message is available for immediate dequeuing

number: The number of seconds to delay the message

	
expiration

	
Specifies the expiration of the message. It determines, in seconds, the duration the message is available for dequeuing. This parameter is an offset from the time the message is ready for dequeue. Expiration processing requires the queue monitor to be running. However the queue monitor is started automatically by the system if needed.

The possible settings follow:

NEVER: The message does not expire

number: The number of seconds message remains in READY state. If the message is not dequeued before it expires, then it is moved to the exception queue in the EXPIRED state.

	
correlation

	
Returns the identifier supplied by the producer of the message at enqueue time.

	
attempts

	
Returns the number of attempts that have been made to dequeue the message. This parameter cannot be set at enqueue time.

	
exception_queue

	
Specifies the name of the queue into which the message is moved if it cannot be processed successfully.

Messages are moved automatically into the exception queue. Messages are moved into the exception queue in the following cases:

	
RETRY_COUNT, the number of unsuccessful dequeue attempts, has exceeded the specification for the MAX_RETRIES parameter in the DBMS_AQADM.CREATE_QUEUE procedure during queue creation.

For multiconsumer queues, the message becomes eligible to be moved to the exception queue even if failed dequeue attempts exceeds the MAX_RETRIES parameter for only one of the consumers. But the message will not be moved until either all other consumers have successfully consumed the message or failed more than MAX_RETRIES. You can view MAX_RETRIES for a queue in the ALL_QUEUES data dictionary view.

If a dequeue transaction fails because the server process dies (including ALTER SYSTEM KILL SESSION) or SHUTDOWN ABORT on the instance, then RETRY_COUNT is not incremented.

	
A message was not dequeued before the expiration time elapsed.

	
Message propagation to the specified destination queue failed with one of the following errors:

* There were no recipients for the multiconsumer destination queue.

* Recipients were specified for a single-consumer destination queue.

* Destination queue was an exception queue

* There was an error when applying transformation.

The default is the exception queue associated with the queue table. If the exception queue specified does not exist at the time of the move, then the message is moved to the default exception queue associated with the queue table, and a warning is logged in the alert log. If the default exception queue is specified, then the parameter returns a NULL value at dequeue time.

	
enqueue_time

	
Specifies the time the message was enqueued. This value is determined by the system and cannot be set by the user at enqueue time.

	
state

	
Specifies the state of the message at the time of the dequeue. This parameter cannot be set at enqueue time. The possible states follow:

	
DBMS_AQ.READY: The message is ready to be processed.

	
DBMS_AQ.WAITING: The message delay has not yet been reached.

	
DBMS_AQ.PROCESSED: The message has been processed and is retained.

	
DBMSAQ.EXPIRED: The message has been moved to the exception queue.

	
sender_id

	
The application-sender identification specified at enqueue time by the message producer. Sender id is of type aq$_agent.

Sender name is required for secure queues at enqueue time. This must be a valid AQ agent name, mapped to the database user performing the enqueue operation, through dbms_aqadm.enable_db_access procedure call. Sender address and protocol should not be specified.

The Sender id in the message properties returned at dequeue time may have a sender address if the message was propagated from another queue. The value of the address is the source_queue, source database name if it was a remote database [format source_queue@source_database_name]

	
original_msgid

	
This parameter is used by Oracle Streams AQ for propagating messages.

	
delivery_mode

	
DBMS_AQ.BUFFERED or DBMS_AQ.PERSISTENT.

MESSAGE_PROPERTIES_T Type

This type is defined inside the DBMS_AQ package, and describes the information that AQ uses to convey the state of individual messages. These are set at enqueue time, and their values are returned at dequeue time.

	
See Also:

AQ$_RECIPIENT_LIST_T Type

Syntax

TYPE message_properties_t IS RECORD (
 priority BINARY_INTEGER NOT NULL DEFAULT 1,
 delay BINARY_INTEGER NOT NULL DEFAULT NO_DELAY,
 expiration BINARY_INTEGER NOT NULL DEFAULT NEVER,
 correlation VARCHAR2(128) DEFAULT NULL,
 attempts BINARY_INTEGER,
 recipient_list AQ$_RECIPIENT_LIST_T,
 exception_queue VARCHAR2(61) DEFAULT NULL,
 enqueue_time DATE,
 state BINARY_INTEGER,
 sender_id SYS.AQ$_AGENT DEFAULT NULL,
 original_msgid RAW(16) DEFAULT NULL,
 signature aq$_sig_prop DEFAULT NULL,
 transaction_group VARCHAR2(30) DEFAULT NULL,
 user_property SYS.ANYDATA DEFAULT NULL
 delivery_mode PLS_INTEGER NOT NULL DEFAULT DBMS_AQ.PERSISTENT);

Attributes

Table 243-12 MESSAGE_PROPERTIES_T Attributes

	Attribute	Description
	
priority

	
Specifies the priority of the message. A smaller number indicates higher priority. The priority can be any number, including negative numbers.

	
delay

	
Specifies the delay of the enqueued message. The delay represents the number of seconds after which a message is available for dequeuing. Dequeuing by msgid overrides the delay specification. A message enqueued with delay set is in the WAITING state, and when the delay expires, the message goes to the READY state. DELAY processing requires the queue monitor to be started. However the queue monitor is started automatically by the system if needed. Delay is set by the producer who enqueues the message.

The possible settings follow:

NO_DELAY: The message is available for immediate dequeuing

number: The number of seconds to delay the message

	
expiration

	
Specifies the expiration of the message. It determines, in seconds, the duration the message is available for dequeuing. This parameter is an offset from the time the message is ready for dequeue. Expiration processing requires the queue monitor to be running. However the queue monitor is started automatically by the system if needed.

The possible settings follow:

NEVER: The message does not expire

number: The number of seconds message remains in READY state. If the message is not dequeued before it expires, then it is moved to the exception queue in the EXPIRED state.

	
correlation

	
Returns the identifier supplied by the producer of the message at enqueue time.

	
attempts

	
Returns the number of attempts that have been made to dequeue the message. This parameter cannot be set at enqueue time.

	
recipient_list

	
This parameter is only valid for queues that allow multiple consumers. The default recipients are the queue subscribers. This parameter is not returned to a consumer at dequeue time.

For type definition, see the "AQ$_AGENT Type".

	
exception_queue

	
Specifies the name of the queue into which the message is moved if it cannot be processed successfully.

Messages are moved automatically into the exception queue. Messages are moved into the exception queue in the following cases:

	
RETRY_COUNT, the number of unsuccessful dequeue attempts, has exceeded the specification for the MAX_RETRIES parameter in the DBMS_AQADM.CREATE_QUEUE procedure during queue creation.

For multiconsumer queues, the message becomes eligible to be moved to the exception queue even if failed dequeue attempts exceeds the MAX_RETRIES parameter for only one of the consumers. But the message will not be moved until either all other consumers have successfully consumed the message or failed more than MAX_RETRIES. You can view MAX_RETRIES for a queue in the ALL_QUEUES data dictionary view.

If a dequeue transaction fails because the server process dies (including ALTER SYSTEM KILL SESSION) or SHUTDOWN ABORT on the instance, then RETRY_COUNT is not incremented.

	
A message was not dequeued before the expiration time elapsed.

	
Message propagation to the specified destination queue failed with one of the following errors:

* There were no recipients for the multiconsumer destination queue.

* Recipients were specified for a single-consumer destination queue.

* Destination queue was an exception queue

* There was an error when applying transformation.

The default is the exception queue associated with the queue table. If the exception queue specified does not exist at the time of the move, then the message is moved to the default exception queue associated with the queue table, and a warning is logged in the alert log. If the default exception queue is specified, then the parameter returns a NULL value at dequeue time.

	
enqueue_time

	
Specifies the time the message was enqueued. This value is determined by the system and cannot be set by the user at enqueue time.

	
state

	
Specifies the state of the message at the time of the dequeue. This parameter cannot be set at enqueue time. The possible states follow:

	
DBMS_AQ.READY: The message is ready to be processed.

	
DBMS_AQ.WAITING: The message delay has not yet been reached.

	
DBMS_AQ.PROCESSED: The message has been processed and is retained.

	
DBMSAQ.EXPIRED: The message has been moved to the exception queue.

	
sender_id

	
The application-sender identification specified at enqueue time by the message producer. Sender id is of type aq$_agent.

Sender name is required for secure queues at enqueue time. This must be a valid AQ agent name, mapped to the database user performing the enqueue operation, through dbms_aqadm.enable_db_access procedure call. Sender address and protocol should not be specified.

The Sender id in the message properties returned at dequeue time may have a sender address if the message was propagated from another queue. The value of the address is the source_queue, source database name if it was a remote database [format source_queue@source_database_name]

	
original_msgid

	
This parameter is used by Oracle Streams AQ for propagating messages.

	
signature

	
Currently not implemented

	
transaction_group

	
Specifies the transaction_group for the dequeued message. Messages belonging to the same transaction group will have the same value for this attribute. This attribute is only set by the DBMS_AQ.DEQUEUE_ARRAY. This attribute cannot be used to set the transaction group of a message through DBMS_AQ.ENQUEUE or DBMS_AQ.ENQUEUE_ARRAY calls.

	
user_property

	
This optional attribute is used to store additional information about the payload.

	
delivery_mode

	
The message publisher specifies the delivery mode in the message_properties. This can be DBMS_AQ.BUFFERED or DBMS_AQ.PERSISTENT. Array enqueue is only supported for buffered messages with an array size of '1'.

MESSAGE_PROPERTIES_ARRAY_T Type

This type is used by dbms_aq.enqueue_array and dbms_aq.dequeue_array calls to hold the set of message properties. Each element in the payload_array should have a corresponding element in the MESSAGE_PROPERTIES_ARRAY_T VARRAY.

	
See Also:

"MESSAGE_PROPERTIES_T Type"

Syntax

TYPE MESSAGE_PROPERTIES_ARRAY_T IS VARRAY (2147483647)
 OF MESSAGE_PROPERTIES_T;

MSGID_ARRAY_T Type

The msgid_array_t type is used in dbms_aq.enqueue_array and dbms_aq.dequeue_array calls to hold the set of message IDs that correspond to the enqueued or dequeued messages.

Syntax

TYPE MSGID_ARRAY_T IS TABLE OF RAW(16) INDEX BY BINARY_INTEGER

DBFS Content Interface Types

244 DBFS Content Interface Types

This chapter describes public types defined to support the DBMS_DBFS_CONTENT interface.

This chapter contains the following topics:

	
Using Content Types

	
Overview

	
Security Model

	
Data Structures

Using Content Types

	
Overview

	
Security Model

Overview

The type definitions described in this chapter support the DBMS_DBFS_CONTENT interface in implementing metadata tables, packages, views, dependent application-side entities, and service-provider entities.

Security Model

The user can access the content operational and administrative interfaces (packages, types, tables, and so on) by way of the DBFS_ROLE. This role can be granted to users as needed.

Data Structures

Types that support the DBMS_DBFS_CONTENT interface include both Object and Table types.

Object Types

	
DBMS_DBFS_CONTENT_CONTEXT_T Object Type

	
DBMS_DBFS_CONTENT_LIST_ITEM_T Object Type

	
DBMS_DBFS_CONTENT_PROPERTY_T Object Type

Table Types

	
DBMS_DBFS_CONTENT_LIST_ITEMS_T Table Type

	
DBMS_DBFS_CONTENT_PROPERTIES_T Table Type

	
DBMS_DBFS_CONTENT_RAW_T Table Type

DBMS_DBFS_CONTENT_CONTEXT_T Object Type

This type describes the execution context for the providers. It provides the user performing the operation with the Access Control List, the owner of the item(s), a timestamp for doing asof queries, and whether or not the item(s) are read_only. This type can be used both as input, in the case of path item creation functions, and output, in the case of path item query, or both.

Syntax

CREATE OR REPLACE TYPE dbms_dbfs_content_context_t
 AUTHID DEFINER
AS OBJECT (
 principal VARCHAR2(32),
 acl VARCHAR2(1024),
 owner VARCHAR2(32),
 asof TIMESTAMP,
 read_only INTEGER);

Fields

Table 244-1 DBMS_DBFS_CONTENT_CONTEXT_T Fields

	Field	Description
	
principal

	
File system user

	
acl

	
Access control list

	
owner

	
Path item owner

	
asof

	
Timestamp

	
read_only

	
Nonzero if the path item is read-only

DBMS_DBFS_CONTENT_LIST_ITEM_T Object Type

This type describes a type to assist in listing the contents of a directory.

Syntax

CREATE OR REPLACE TYPE dbms_dbfs_content_list_item_t
 AUTHID DEFINER
AS OBJECT (
 path VARCHAR2(1024),
 item_name VARCHAR2(256),
 item_type INTEGER);

Fields

Table 244-2 DBMS_DBFS_CONTENT_LIST_ITEM_T Fields

	Field	Description
	
path

	
Path to the path item

	
item_name

	
Name of the path item

	
item_type

	
Type of path item. (See DBMS_DBFS_CONTENT Constants - Path Name Types

DBMS_DBFS_CONTENT_PROPERTY_T Object Type

This type describes a single (name, value, typecode) property tuple. All properties (standard, optional, and user-defined) are described using such tuples.

The type is used by both the client-facing interfaces and by store providers for the DBMS_DBFS_CONTENT interface.

Syntax

CREATE OR REPLACE TYPE dbms_dbfs_content_property_t
 AUTHID DEFINER
AS OBJECT (
 propname VARCHAR2(32),
 propvalue VARCHAR2(1024),
 typecode INTEGER);

Fields

Table 244-3 DBMS_DBFS_CONTENT_PROPERTY_T Fields

	Field	Description
	
prop_name

	
Name of property

	
prop_value

	
Value of property

	
typecode

	
Property type (See Constants in DBMS_TYPES)

DBMS_DBFS_CONTENT_LIST_ITEMS_T Table Type

This type is a variable-sized array of DBMS_DBFS_CONTENT_LIST_ITEM_T Object Type. It is used by both the client-facing interfaces and by store providers for the DBMS_DBFS_CONTENT interface.

Syntax

CREATE OR REPLACE TYPE dbms_dbfs_content_list_items_t AS
 TABLE OF dbms_dbfs_content_list_item_t;

DBMS_DBFS_CONTENT_PROPERTIES_T Table Type

This type is a variable-sized array of property tuples of DBMS_DBFS_CONTENT_PROPERTY_T Object Type. It is used by both the client-facing interfaces and by store providers for the DBMS_DBFS_CONTENT interface.

Syntax

CREATE OR REPLACE TYPE dbms_dbfs_content_properties_t AS
 TABLE OF dbms_dbfs_content_property_t;

DBMS_DBFS_CONTENT_RAW_T Table Type

This type is an array of RAW. It is to enable RAW data transport for batch interfaces in the DBMS_DBFS_CONTENT interface.

Syntax

CREATE OR REPLACE TYPE dbms_dbfs_content_raw_t AS
 TABLE OF RAW(32767);

Database URI TYPEs

245 Database URI TYPEs

Oracle supports the UriType family of types that can be used to store and query Uri-refs inside the database. The UriType itself is an abstract object type and the HTTPURITYPE, XDBURITYPE and DBURITYPE are subtypes of it.

You can create a UriType column and store instances of the DBURITYPE, XDBURITYPE or the HTTPURITYPE inside of it. You can also define your own subtypes of the UriType to handle different URL protocols.

Oracle also provides a UriFactory package that can be used as a factory method to automatically generate various instances of these UriTypes by scanning the prefix, such as http:// or /oradb. You can also register your subtype and provide the prefix that you support. For instance, if you have written a subtype to handle the gopher protocol, you can register the prefix gopher:// to be handled by your subtype. The UriFactory will then generate your subtype instance for any URL starting with that prefix.

This chapter contains the following topics:

	
Summary of URITYPE Supertype Subprograms

	
Summary of HTTPURITYPE Subtype Subprograms

	
Summary of DBURITYPE Subtype Subprogams

	
Summary of XDBURITYPE Subtype Subprograms

	
Summary of URIFACTORY Package Subprograms

	
See Also:

	
Oracle XML DB Developer's Guide

Summary of URITYPE Supertype Subprograms

The UriType is the abstract super type. It provides a standard set of functions to get the value pointed to by the URI. The actual implementation of the protocol must be defined by the subtypes of this type.

Instances of this type cannot be created directly. However, you can create columns of this type and store subtype instances in it, and also select from columns without knowing the instance of the URL stored.

Table 245-1 URITYPE Type Subprograms

	Method	Description
	
GETBLOB

	
Returns the BLOB located at the address specified by the URL.

	
GETCLOB

	
Returns the CLOB located at the address specified by the URL.

	
GETCONTENTTYPE

	
Returns the URL, in escaped format, stored inside the UriType instance.

	
GETEXTERNALURL

	
Returns the URL, in escaped format, stored inside the UriType instance.

	
GETURL

	
Returns the URL, in non-escaped format, stored inside the UriType instance.

	
GETXML

	
Returns the XMLType located at the address specified by the URL.

GETBLOB

This function returns the BLOB located at the address specified by the URL. This function can be overridden in the subtype instances. The options are described in the following table.

	Syntax	Description
	MEMBER FUNCTION getBlob()
RETURN BLOB;

	This function returns the BLOB located at the address specified by the URL.
	MEMBER FUNCTION getBlob(
 content OUT VARCHAR2)

RETURN BLOB;

	This function returns the BLOB located at the address specified by the URL and the content type.
	FUNCTION getBlob(
 csid IN NUMBER)

RETURN BLOB;

	This function returns the BLOB located at the address specified by the URL in the specified character set.

	Parameter	IN / OUT	Description
	content	(OUT)	Content type of the document to which URI is pointing.
	csid	(IN)	Character set id of the document. Must be a valid Oracle id and greater than 0; otherwise returns an error

GETCLOB

This function returns the CLOB located at the address specified by the URL. This function can be overridden in the subtype instances. This function returns either a permanent CLOB or a temporary CLOB. If a temporary CLOB is returned, it must be freed. The options are described in the following table.

	Syntax	Description
	MEMBER FUNCTION getClob()
RETURN clob;

	This function returns the CLOB located at the address specified by the URL.
	MEMBER FUNCTION getClob(
 content OUT VARCHAR2)

RETURN clob;

	This function returns the CLOB located at the address specified by the URL and the content type.

	Parameter	IN / OUT	Description
	content	(OUT)	Content type of the document to which URI is pointing.

GETCONTENTTYPE

This function returns the content type of the document pointed to by the URI. This function can be overridden in the subtype instances. This function returns the content type as VARCHAR2.

Syntax

MEMBER FUNCTION getContentType()
RETURN VARCHAR2;

GETEXTERNALURL

This function returns the URL, in escaped format, stored inside the UriType instance. The subtype instances override this member function to provide additional semantics. For instance, the HTTPURITYPE function does not store the prefix http:// in the URL itself. When generating the external URL, it appends the prefix and generates it. For this reason, use the getExternalUrl function or the getUrl function to get to the URL value instead of using the attribute present in the UriType instance.

Syntax

MEMBER FUNCTION getExternalUrl()
RETURN varchar2;

GETURL

This function returns the URL, in non-escaped format, stored inside the UriType instance. The subtype instances override this member function to provide additional semantics. For instance, the HTTPURITYPE function does not store the prefix http:// in the URL itself. When generating the external URL, it appends the prefix and generates it. For this reason, use the getExternalUrl function or the getUrl function to get to the URL value instead of using the attribute present in the UriType instance.

Syntax

MEMBER FUNCTION getUrl()
RETURN varchar2;

GETXML

This function returns the XMLType located at the address specified by the URL. This function can be overridden in the subtype instances. The options are described in the following table.

	Syntax	Description
	MEMBER FUNCTION getXML()
RETURN XMLType;

	This function returns the XMLType located at the address specified by the URL.
	MEMBER FUNCTION getXML(
 content OUT VARCHAR2)

RETURN XMLType;

	This function returns the XMLType located at the address specified by the URL and the content type.

	Parameter	IN / OUT	Description
	content	(OUT)	Content type of the document to which URI is pointing.

Summary of HTTPURITYPE Subtype Subprograms

The HTTPURITYPE is a subtype of the UriType that provides support for the HTTP protocol. This uses the UTL_HTTP package underneath to access the HTTP URLs. Proxy and secure wallets are not supported in this release.

Table 245-2 HTTPURITYPE Type Subprorgams

	Method	Description
	
CREATEURI

	
Creates an instance of HTTPURITYPE from the given URI.

	
GETBLOB

	
Returns the BLOB located at the address specified by the URL.

	
GETCLOB

	
Returns the CLOB located at the address specified by the URL.

	
GETCONTENTTYPE

	
Returns the content type of the document pointed to by the URI.

	
GETEXTERNALURL

	
Returns the URL, in escaped format, stored inside the UriType instance.

	
GETURL

	
Returns the URL, in non-escaped format, stored inside the UriType instance.

	
GETXML

	
Returns the XMLType located at the address specified by the URL

	
HTTPURITYPE

	
Creates an instance of HTTPURITYPE from the given URI.

CREATEURI

This static function constructs a HTTPURITYPE instance. The HTTPURITYPE instance does not contain the prefix http:// in the stored URL.

Syntax

STATIC FUNCTION createUri(
 url IN varchar2)
RETURN HTTPURITYPE;

	Parameter	IN / OUT	Description
	url	(IN)	The URL string containing a valid HTTP URL; escaped format.

GETBLOB

This function returns the BLOB located at the address specified by the HTTP URL.

	Syntax	Description
	MEMBER FUNCTION getBlob()
RETURN blob;

	This function returns the BLOB located at the address specified by the HTTP URL.
	MEMBER FUNCTION getBlob(
 content OUT VARCHAR2)

RETURN blob;

	This function returns the BLOB located at the address specified by the HTTP URL and the content type.
	FUNCTION getBlob(
 csid IN NUMBER)

RETURN BLOB;

	This function returns the BLOB located at the address specified by the URL in the specified character set.

	Parameter	IN / OUT	Description
	content	(OUT)	Content type of the document to which URI is pointing.
	csid	(IN)	Character set id of the document. Must be a valid Oracle id and greater than 0; otherwise returns an error.

GETCLOB

This function returns the CLOB located by the HTTP URL address. If a temporary CLOB is returned, it must be freed.

	Syntax	Description
	MEMBER FUNCTION getClob()
RETURN clob;

	Returns the CLOB located at the address specified by the HTTP URL.
	MEMBER FUNCTION getClob(
 content OUT VARCHAR2)

RETURN clob;

	Returns the CLOB located at the address specified by the HTTP URL and the content type.

	Parameter	IN / OUT	Description
	content	(OUT)	Content type of the document to which URI is pointing.

GETCONTENTTYPE

Returns the content type of the document pointed to by the URI.

Syntax

MEMBER FUNCTION getContentType()
RETURN VARCHAR2;

GETEXTERNALURL

This function returns the URL, in escaped format, stored inside the HTTPURITYPE instance. The subtype instances override this member function. The HTTPURITYPE function does not store the prefix http://, but generates it for the external URL.

Syntax

MEMBER FUNCTION getExternalUrl()
RETURN varchar2;

GETURL

This function returns the URL, in non-escaped format, stored inside the HTTPURITYPE instance.

Syntax

MEMBER FUNCTION getUrl()
RETURN varchar2;

GETXML

This function returns the XMLType located at the address specified by the URL. An error is thrown if the address does not point to a valid XML document.

	Syntax	Description
	MEMBER FUNCTION getXML()
RETURN XMLType;

	This function returns the XMLType located at the address specified by the URL.
	MEMBER FUNCTION getXML(
 content OUT VARCHAR2)

RETURN XMLType;

	This function returns the XMLType located at the address specified by the URL and the content type.

	Parameter	IN / OUT	Description
	content	(OUT)	Content type of the document to which URI is pointing.

HTTPURITYPE

This constructs a HTTPURITYPE instance. The HTTPURITYPE instance does not contain the prefix http:// in the stored URL.

Syntax

CONSTRUCTOR FUNCTION HTTPURITYPE(
 url IN varchar2);

	Parameter	IN / OUT	Description
	url	(IN)	The URL string containing a valid HTTP URL. The URL string is expected in escaped format. For example, non-url characters are represented as the hexadecimal value for the UTF-8 encoding of those characters.

Summary of DBURITYPE Subtype Subprogams

The DBURITYPE is a subtype of the UriType that provides support for DBUri-refs. A DBUri-ref is an intra-database URL that can be used to reference any row or row-column data in the database. The URL is specified as an XPath expression over a XML visualization of the database. The schemas become elements which contain tables and views. These tables and view further contain the rows and columns inside them.

Table 245-3 DBURITYPE Type Subprograms

	Method	Description
	
CREATEURI

	
Constructs a DBURITYPE instance.

	
DBURITYPE

	
Creates an instance of DBURITYPE from the given URI.

	
GETBLOB

	
Returns the BLOB located at the address specified by the DBURITYPE instance.

	
GETCLOB

	
Returns the CLOB located at the address specified by the DBURITYPE instance.

	
GETCONTENTTYPE

	
Returns the content type of the document pointed to by the URI.

	
GETEXTERNALURL

	
Returns the URL, in escaped format, stored inside the DBURITYPE instance.

	
GETURL

	
Returns the URL, in non-escaped format, stored inside the DBURITYPE instance.

	
GETXML

	
Returns the XMLType located at the address specified by the URL

CREATEURI

This static function constructs a DBURITYPE instance. Parses the URL given and creates a DBURITYPE instance.

Syntax

STATIC FUNCTION createUri(
 url IN varchar2)
RETURN DBURITYPE;

	Parameter	IN / OUT	Description
	url	(IN)	The URL string, in escaped format, containing a valid DBURITYPE.

DBURITYPE

This constructs a DBURITYPE instance.

Syntax

CONSTRUCTOR FUNCTION DBURITYPE(
 url IN varchar2);

	Parameter	IN / OUT	Description
	url	(IN)	The URL string containing a valid DBURITYPE. The URL string is expected in escaped format. For example, non-URL characters are represented as the hexadecimal value for the UTF-8 encoding of those characters.

GETBLOB

This function returns the BLOB located at the address specified by the URL. The options are described in the following table.

	Syntax	Description
	MEMBER FUNCTION getBlob()
RETURN blob;

	This function returns the BLOB located at the address specified by the URL.
	MEMBER FUNCTION getBlob(
 content OUT VARCHAR2)

RETURN blob;

	This function returns the BLOB located at the address specified by the URL and the content type.
	FUNCTION getBlob(
 csid IN NUMBER)

RETURN BLOB;

	This function returns the BLOB located at the address specified by the URL in the specified character set.

	Parameter	IN / OUT	Description
	content	(OUT)	Content type of the document to which URI is pointing.
	csid	(IN)	Character set id of the document. Must be a valid Oracle id and greater than 0; otherwise returns an error.

GETCLOB

This function returns the CLOB located at the address specified by the DBURITYPE instance. If a temporary CLOB is returned, it must be freed. The document returned may be an XML document or a text document. When the DBUri-ref identifies an element in the XPath, the result is a well-formed XML document. On the other hand, if it identifies a text node, then what is returned is only the text content of the column or attribute. The options are described in the following table.

	Syntax	Description
	MEMBER FUNCTION getClob()
RETURN clob;

	Returns the CLOB located at the address specified by the DBURITYPE instance.
	MEMBER FUNCTION getClob(
 content OUT VARCHAR2)

RETURN clob;

	Returns the CLOB located at the address specified by the DBURITYPE instance and the content type.

	Parameter	IN / OUT	Description
	content	(OUT)	Content type of the document to which URI is pointing.

GETCONTENTTYPE

This function returns the content type of the document pointed to by the URI.

Syntax

MEMBER FUNCTION getContentType()
RETURN VARCHAR2;

GETEXTERNALURL

This function returns the URL, in escaped format, stored inside the DBURITYPE instance. The DBUri servlet URL that processes the DBURITYPE has to be appended before using the escaped URL in Web pages.

Syntax

MEMBER FUNCTION getExternalUrl()
RETURN varchar2;

GETURL

This function returns the URL, in non-escaped format, stored inside the DBURITYPE instance.

Syntax

MEMBER FUNCTION getUrl()
RETURN varchar2;

GETXML

This function returns the XMLType located at the address specified by the URL. The options are described in the following table.

	Syntax	Description
	MEMBER FUNCTION getXML()
RETURN XMLType;

	This function returns the XMLType located at the address specified by the URL.
	MEMBER FUNCTION getXML(
 content OUT VARCHAR2)

RETURN XMLType;

	This function returns the XMLType located at the address specified by the URL and the content type.

	Parameter	IN / OUT	Description
	content	(OUT)	Content type of the document to which URI is pointing.

Summary of XDBURITYPE Subtype Subprograms

XDBURITYPE is a new subtype of URIType. It provides a way to expose documents in the Oracle XML DB hierarchy as URIs that can be embedded in any URIType column in a table. The URL part of the URI is the hierarchical name of the XML document it refers to. The optional fragment part uses the XPath syntax, and is separated from the URL part by '#'. The more general XPointer syntax for specifying a fragment is not currently supported.

Table 245-4 XDBURITYPE Type Subprograms

	Method	Description
	
CREATEURI

	
Returns the UriType corresponding to the specified URL.

	
GETBLOB

	
Returns the BLOB corresponding to the contents of the document specified by the XDBURITYPE instance.

	
GETCLOB

	
Returns the CLOB corresponding to the contents of the document specified by the XDBURITYPE instance.

	
GETCONTENTTYPE

	
Returns the content type of the document pointed to by the URI.

	
GETEXTERNALURL

	
Returns the URL, in escaped format, stored inside the XDBURITYPE instance.

	
GETURL

	
Returns the URL, in non-escaped format, stored inside the XDBURITYPE instance.

	
GETXML

	
Returns the XMLType corresponding to the contents of the document specified by the URL.

	
XDBURITYPE

	
Creates an instance of XDBURITYPE from the given URI.

CREATEURI

This static function constructs a XDBURITYPE instance. Parses the URL given and creates a XDBURITYPE instance.

Syntax

STATIC FUNCTION createUri(
 url IN varchar2)
RETURN XDBURITYPE

	Parameter	IN / OUT	Description
	url	(IN)	The URL string, in escaped format, containing a valid XDBURITYPE.

GETBLOB

This function returns the BLOB located at the address specified by the XDBURITYPE instance. The options are described in the following table.

	Syntax	Description
	MEMBER FUNCTION getBlob()
RETURN blob;

	This function returns the BLOB located at the address specified by the URL.
	MEMBER FUNCTION getBlob(
 content OUT VARCHAR2)

RETURN blob;

	This function returns the BLOB located at the address specified by the URL and the content type.
	FUNCTION getBlob(
 csid IN NUMBER)

RETURN BLOB;

	This function returns the BLOB located at the address specified by the URL in the specified character set.

	Parameter	IN / OUT	Description
	content	(OUT)	Content type of the document to which URI is pointing.
	csid	(IN)	Character set id of the document. Must be a valid Oracle id and greater than 0; otherwise returns an error.

GETCLOB

This function returns the CLOB located at the address specified by the XDBURITYPE instance. If a temporary CLOB is returned, it must be freed. The options are described in the following table.

	Syntax	Description
	MEMBER FUNCTION getClob()
RETURN clob;

	Returns the CLOB located at the address specified by the XDBUirType instance.
	MEMBER FUNCTION getClob(
 content OUT VARCHAR2)

RETURN clob;

	Returns the CLOB located at the address specified by the XDBUirType instance and the content type.

	Parameter	IN / OUT	Description
	content	(OUT)	Content type of the document to which URI is pointing.

GETCONTENTTYPE

This function returns the content type of the document pointed to by the URI. This function returns the content type as VARCHAR2.

Syntax

MEMBER FUNCTION getContentType()
RETURN VARCHAR2;

GETEXTERNALURL

This function returns the URL, in escaped format, stored inside the XDBURITYPE instance.

Syntax

MEMBER FUNCTION getExternalUrl()
RETURN varchar2;

GETURL

This function returns the URL, in non-escaped format, stored inside the XDBURITYPE instance.

Syntax

MEMBER FUNCTION getUrl()
RETURN varchar2;

GETXML

This function returns the XMLType located at the address specified by the URL. The options are described in the following table.

	Syntax	Description
	MEMBER FUNCTION getXML()
RETURN XMLType;

	This function returns the XMLType located at the address specified by the URL.
	MEMBER FUNCTION getXML(
 content OUT VARCHAR2)

RETURN XMLType;

	This function returns the XMLType located at the address specified by the URL and the content type.

	Parameter	IN / OUT	Description
	content	(OUT)	Content type of the document to which URI is pointing.

XDBURITYPE

This constructs a XDBURITYPE instance.

Syntax

CONSTRUCTOR FUNCTION XDBURITYPE(
 url IN VARCHAR2,
 flags IN RAW := NULL)
 RETURN self AS RESULT;

	Parameter	IN / OUT	Description
	url	(IN)	The URL string containing a valid XDBUirType. The URL string is expected in escaped format. For example, non-URL characters are represented as the hexadecimal value for the UTF-8 encoding of those characters.
	flags	(IN)	Possible values are:
	
1 - Expand all XInclude elements before returning the result contents. If any XInclude element cannot be successfully resolved according to the XInclude fallback semantics, then an error is raised.

	
2 - Indicates that any errors during document retrieval should be suppressed

	
3 - Both flag bits (1, 2) are enabled

Summary of URIFACTORY Package Subprograms

The UriFactory package contains factory methods that can be used to generate the appropriate instance of the URI types without having to hard code the implementation in the program.

The UriFactory package also provides the ability to register new subtypes of the UriType to handle various other protocols. For example, you can invent a new protocol ecom:// and define a subtype of the UriType to handle that protocol and register it with UriFactory. After that any factory method would generate the new subtype instance if it sees the ecom:// prefix.

Table 245-5 URIFACTORY Type Subprograms

	Method	Description
	
GETURI

	
Returns the correct URL handler for the given URL string.

	
ESCAPEURI

	
Returns a URL in escaped format.

	
UNESCAPEURI

	
Returns a URL in unescaped format.

	
REGISTERURLHANDLER

	
Registers a particular type name for handling a particular URL.

	
UNREGISTERURLHANDLER

	
Unregisters a URL handler.

GETURI

This factory method returns the correct URI handler for the given URI string. It returns a subtype instance of the UriType that can handle the protocol. By default, it always creates an XDBURITYPE instance, if it cannot resolve the URL. A URL handler can be registered for a particular prefix using the REGISTERURLHANDLER function. If the prefix matches, GETURI would then use that subtype.

Syntax

FUNCTION getUri(
 url IN Varchar2)
RETURN UriType;

	Parameter	IN / OUT	Description
	uri	(IN)	The URL string, in escaped format, containing a valid HTTP URL.

ESCAPEURI

This function returns a URL in escaped format. The subtype instances override this member function to provide additional semantics. For instance, the HTTPURITYPE does not store the prefix http:// in the URL itself. When generating the external URL, it appends the prefix and generates it. For this reason, use the GETEXTERNALURL function or the GETURI function to get to the URL value instead of using the attribute present in the UriType.

Syntax

MEMBER FUNCTION escapeUri()
RETURN varchar2;

	Parameter	IN / OUT	Description
	url	(IN)	The URL string to be returned in escaped format.

UNESCAPEURI

This function returns a URL in unescaped format. This function is the reverse of the ESCAPEURI function. This function scans the string and converts any non-URL hexadecimal characters into the equivalent UTF-8 characters. Since the return type is a VARCHAR2, the characters would be converted into the equivalent characters as defined by the database character set.

Syntax

FUNCTION unescapeUri()
RETURN varchar2;

	Parameter	IN / OUT	Description
	url	(IN)	The URL string to be returned in unescaped format.

REGISTERURLHANDLER

Registers a particular type name for handling a particular URL. The type specified must be valid and must be a subtype of the UriType or one of its subtypes. It must also implement the createUri static member function. This function is called by the GETURI function to generate an instance of the type. The stripprefix parameter indicates that the prefix must be stripped off before calling this function.

Syntax

PROCEDURE registerUrlHandler(
 prefix IN varchar2,
 schemaName IN varchar2,
 typename IN varchar2,
 ignoreCase IN boolean := true,
 stripprefix IN boolean := true);

	Parameter	IN / OUT	Description
	prefix	(IN)	The prefix to handle; for example, http://.
	schemaName	(IN)	Name of the schema where the type resides; case sensitive.
	typename	(IN)	The name of the type to handle the URL; case sensitive.
	ignoreCase	(IN)	Ignore case when matching prefixes.
	stripprefix	(IN)	Strip prefix before generating the instance of the type.

UNREGISTERURLHANDLER

This procedure unregisters a URL handler. This only unregisters user registered handler prefixes and not predefined system prefixes such as http://.

Syntax

PROCEDURE unregisterUrlHandler(
 prefix IN varchar2);

	Parameter	IN / OUT	Description
	prefix	(IN)	The prefix to be unregistered.

JMS Types

246 JMS Types

PL/SQL users can use the DBMS_AQ package to enqueue and dequeue messages from JMS queues. The JMS types member and static functions and procedures in this chapter are needed to populate JMS messages for enqueuing or to interpret a dequeued JMS message.

This chapter contains these topics:

	
Using JMS Types

	
Overview

	
Java Versus PL/SQL Data Types

	
More on Bytes, Stream and Map Messages

	
Upcasting and Downcasting Between General and Specific Messages

	
JMS Types Error Reporting

	
Oracle JMS Type Constants

	
CONVERT_JMS_SELECTOR

	
Summary of JMS Types

Using JMS Types

	
Overview

	
Java Versus PL/SQL Data Types

	
More on Bytes, Stream and Map Messages

	
Upcasting and Downcasting Between General and Specific Messages

	
JMS Types Error Reporting

	
Oracle JMS Type Constants

	
JMS Types Error Reporting

	
Oracle JMS Type Constants

	
CONVERT_JMS_SELECTOR

Overview

Java Message Service (JMS) is a well known public standard interface for accessing messaging systems. Oracle JMS (OJMS) implements JMS based on Oracle Streams Advanced Queuing (AQ) and a relational database system (RDBMS). Messages are stored in queues as OJMS specific ADTs. Java clients use OJMS packages to enqueue, dequeue, and manipulate these messages.

PL/SQL users, on the other hand, use the DBMS_AQ package to enqueue and dequeue JMS messages and the member functions in this chapter to populate and interpret them. Oracle Streams AQ offers such member functions for the following JMS ADTs:

	
aq$_jms_header

	
aq$_jms_message

	
aq$_jms_text_message

	
aq$_jms_bytes_message

	
aq$_jms_map_message

	
aq$_jms_stream_message

In addition to these populating and interpreting member functions, Oracle Streams AQ offers:

	
Casting between aq$_jms_message and other message ADTs.

	
PL/SQL stored procedures for converting JMS selectors to equivalent Oracle Streams AQ rules

Java Versus PL/SQL Data Types

Data types do not map one-to-one between PL/SQL and Java.

Some Java types, such as BYTE and SHORT, are not present in PL/SQL. PL/SQL type INT was chosen to represent these types. If a PL/SQL INT value intended to hold a Java BYTE or SHORT value exceeds the corresponding range Java enforces, an out-of-range error is thrown.

Other Java types have more than one counterpart in PL/SQL with different capabilities. A Java String can be represented by both VARCHAR2 and CLOB, but VARCHAR2 has a maximum limit of 4000 bytes. When retrieving TEXT data from map, stream, and bytes message types, a CLOB is always returned. When updating the map, stream and bytes message types, users can submit either a VARCHAR2 or CLOB.

Similarly, a Java BYTE ARRAY can be represented by both RAW and BLOB, with RAW having a maximum size of 32767. When retrieving BYTE ARRAY data from map, stream, and bytes message types, a BLOB is always returned. When updating the map, stream and bytes message types, users can submit either a RAW or BLOB.

	
See Also:

JMS specification 3.11.3, Conversion Provided by StreamMessage and MapMessage

New JMS Support in Oracle Database 10g

In Oracle Database 10g, a new AQ$_JMS_VALUE ADT has been added in the SYS schema for OJMS PL/SQL users. It is specifically used to implement the read_object procedure of aq$_jms_stream_message and get_object procedure of aq$_jms_map_message, to mimic the Java general object class Object. AQ$_JMS_VALUE ADT can represent any data type that JMS StreamMessage and MapMessage can hold.

The collection ADT AQ$_JMS_NAMEARRAY was added for the getNames method of MapMessage. It holds an array of names.

In this release the ADT AQ$_JMS_EXCEPTION was added to represent a Java exception thrown in an OJMS JAVA stored procedure on the PL/SQL side. Now you can retrieve a Java exception thrown by an OJMS stored procedure and analyze it on the PL/SQL side.

More on Bytes, Stream and Map Messages

Oracle uses Java stored procedure to implement some of the procedures of AQ$_MAP_MESSAGE, AQ$_JMS_STREAM_MESSAGE, and AQ$_JMS_BYTES_MESSAGE types. These types have some common functionalities that are different from AQ$_JMS_TEXT_MESSAGE type. This section discusses these common functionalities.

This section contains these topics:

	
Using Java Stored Procedures to Encode and Decode Oracle Streams AQ Messages

	
Read-Only and Write-Only Modes Enforced for Stream and Bytes Messages

	
Differences Between Bytes and Stream Messages

	
Getting and Setting Bytes, Map, and Stream Messages as RAW Bytes

Using Java Stored Procedures to Encode and Decode Oracle Streams AQ Messages

The major difference between map, stream, bytes, and other messages is that the message payload is encoded as a byte stream by JAVA. Retrieving and updating these payloads in PL/SQL therefore requires Oracle JAVA stored procedures.

A message payload is stored in two places during processing. On the PL/SQL side it is stored as the data members of a JMS message ADT, and on the Jserv side it is stored as a static variable. (Jserv is the JVM inside Oracle Database.) When the payload is processed, the payload data is first transformed to a static variable on the Jserv side. Once the static variable is initialized, all later updates on the message payload are performed on this static variable. At the end of processing, payload data is flushed back to the PL/SQL side.

Oracle provides member procedures that maintain the status of the Jserv static variable and enforce rules when calling these member procedures. These procedures are in the following ADTs:

	
aq$_jms_bytes_message

	
aq$_jms_map_message

	
aq$_jms_stream_message

Initialize the Jserv Static Variable

Before you make any other calls to manipulate the payload data, the Jserv static variable must be properly initialized. This is done by calling the prepare or clear_body procedure. The prepare procedure uses the payload data in PL/SQL ADTs to initialize the static variable, while clear_body initializes the static variable to an empty payload (empty hashtable or stream).

	
Note:

It is important to call the prepare or clear_body procedure before any other calls to properly initialize the Jserv static variables. Usually these two methods are called once at the beginning. But they can be called multiple times for one message. Any call of these two methods without first calling the flush procedure wipes out all updates made to the messages.

Get the Payload Data Back to PL/SQL

Calling the flush procedure synchronizes changes made to the Jserv static variable back to the PL/SQL ADTs. The flush call is required when you want the changes made to be reflected in the ADT payload. It is important to synchronize the changes back to the ADT, because it is the ADT payload that matters.

Garbage Collect the Static Variable

The clean procedure forces garbage collection of the static variable. It is there to do cleanup and free JVM memory. You can avoid memory leaks by doing it immediately after finishing processing the message.

Use a Message Store: A Static Variable Collection

Instead of a single static variable, Oracle uses a collection of static variables to process the message payload on the Jserv side. This collection is called the message store. Each map, bytes, or stream message type has its own message store within one session.

Oracle uses the operation ID parameter to locate the correct static variable to work on within the message store. Initialization calls such as prepare and clear_body give users an operation ID, which is used in later message access.

After users complete message processing, they must call the clean procedure with the operation ID to clean up the message store. This avoids possible memory leaks. The clean_all static procedures of message ADTs aq$_jms_bytes_message, aq$_jms_map_message, and aq$_jms_stream_message clean up all static variables of their corresponding message stores.

Typical Calling Sequences

This section describes typical procedures for retrieving and populating messages.

Here is a typical procedure for retrieving messages

	
Call prepare for a message.

This call also gives you an operation ID if you do not specify one.

	
Call multiple retrieving procedures with the provided operation ID.

	
Call the clean procedure with the provided operation ID.

Here is a typical procedure for populating messages:

	
Call clear_body for a message.

For aq$_jms_map_message, you can also call prepare to update the message based on the existing payload. This call also gives you an operation ID if you do not specify one.

	
Call multiple updating procedures with the provided operation ID.

	
Call the flush method with the provided operation ID.

	
Call the clean procedure with the provided operation ID.

Read-Only and Write-Only Modes Enforced for Stream and Bytes Messages

According to the JMS specification, when a message is received, its body is read-only. Users can call the clear_body method to make the body writable. This method erases the current message body and sets the message body to be empty.

The OJMS JAVA API follows the rule set by JMS specification. In updating the JMS message ADTs in PL/SQL, however, Oracle enforces the rule selectively:

	
Map messages

The restriction is relaxed, because adding more entries on top of a existing map payload is a convenient way for users to update the payload. Therefore there are no read-only or write-only modes for map messages.

	
Stream and bytes messages

The restriction is not relaxed, because these payloads use a stream when reading and writing data. It is difficult to update the payload while in the middle of a stream. Oracle enforces read-only and write-only modes in processing stream and bytes message payloads. Calling the prepare procedure initializes the message payload in read-only mode. Calling the clear_body procedure initializes the message payload in write-only mode.

Calling the reset procedure resets the pointer to the beginning of the stream and switches the mode from write-only to read-only. The reset procedure keeps the updates made to the message payload in the Jserv static variable.

The prepare procedure, on the other hand, overwrites the message payload in the Jserv static variable with the payload in the PL/SQL ADT.

Oracle provides member function get_mode for users to query the mode.

Differences Between Bytes and Stream Messages

Member functions of bytes messages are not exactly the same as those of stream messages. Stream messages are encoded using Java ObjectOutputStream and bytes messages are encoded using Java DataOutputStream. In stream messages each primitive type is written and read as a Java Object, but in a bytes message they are written and read as raw bytes according to the encoding mechanism of DataOutputStream.

For stream messages, the read_bytes method works on a stream of bytes to the end of the byte array field written by the corresponding write_bytes method. The read_bytes method of bytes message works on a stream of bytes to the end of the whole byte stream. This is why the read_bytes member procedure of aq$_bytes_message also requires a length parameter to tell how long it is to read.

You will not see a type conversion error raised by bytes message, because bytes messages do not support type conversion.

Methods get_unsigned_byte and get_unsigned_short are available for bytes messages, but not for stream messages. This is because stream messages read Java objects, and there are no Java objects as unsigned bytes or unsigned shorts.

Methods read_string and write_string methods are not available for bytes messages. The bytes message ADT must enforce some character encoding. It has methods read_utf and write_utf which support utf-8 encoding.

	
Note:

All data written by bytes messages use DataOutputStream as the basis. See JDK API documentation JavaSoft.com for details on how the data is encoded into bytes.

Getting and Setting Bytes, Map, and Stream Messages as RAW Bytes

The payloads of bytes, map, and stream message types are stored as either RAW or BLOB in the database. In this release Oracle Streams AQ provides the following member functions to set and get these payloads as raw bytes without interpreting them:

set_bytes(payload IN BLOB)
set_bytes(payload IN RAW)
get_bytes(payload OUT BLOB)
get_bytes(payload OUT RAW)

These functions were provided for bytes messages in Oracle9i Release 2 (9.2).

Upcasting and Downcasting Between General and Specific Messages

OJMS ADT aq$_jms_message is used to represent a general message, so that different types of messages can reside on the same Oracle Streams AQ queue. Oracle Streams AQ supports retrieving and populating of aq$_jms_message by supporting upcasting and downcasting between this ADT and ADTs of specific message types.

To read an aq$_jms_message, you must first downcast it to a specific message type according to its message_type field

To populate an aq$_jms_message, you must first populate a specific message and upcast it to aq$_jms_message. This avoids copying all member functions of other specific message ADTs to this ADT. It also guarantees that the manipulation of this ADT is consistent with other specific message ADTs.

JMS Types Error Reporting

Table 246-1 lists Oracle JMS types related errors.

Table 246-1 Oracle JMS Types Errors

	ORA error number	dbms_jms_plsql package constants	Explanation
	
ORA-24190

	
ERROR_DATA_OVERFLOW

	
The payload data exceeds the size that an out parameter can hold. For example, the get_text procedure with a VARCHAR2 parameter of aq$_jms_text_message or get_bytes procedure with a RAW parameter of aq$_jms_bytes_message.

	
ORA-24191

	
ERROR_PROP_NAME_EXIST

	
Setting a property that is previous set

	
ORA-24192

	
ERROR_PROP_NAME_NULL

	
Occurs when setting a property with null property name.

	
ORA-24193

	
ERROR_EXCEED_RANGE

	
PL/SQL number type exceeds the valid range of the respective Java type. For example set_byte_property, set_short_property of aq$_jms_head ADT; set_byte and set_short of aq$_jms_map_message ADT; write_byte and write_short of aq$_jms_stream_message and aq$_jms_bytes_message ADT.

	
ORA-24194

	
ERROR_TYPE_MISMATCH

	
The type conversion between the Java type of the retrieving method and the Java type of a field of the payload is not valid.

	
ORA-24195

	
ERROR_MAP_TOO_LARGE

	
The size of the map exceeds the aq$_jms_namearray ADT capacity. The current size limit is 1024. You can use the get_names function with offset and length parameters to retrieve the name array in multiple small chunks.

	
ORA-24196

	
ERROR_WRONG_MODE

	
The message payload is being accessed with a wrong access mode. For example, trying to read a message payload with write-only mode or trying to write a message payload with the read-only mode.

	
ORA-24197

	
ERROR_JAVA_EXCEPTION

	
ORA-24197 error is raised when a Java exception is raised that does not fit in any of the other error categories. You can use the get_exception static procedure of aq$_jms_map_message, aq$_jms_bytes_message, and aq$_jms_stream_message to retrieve the exception information last thrown by the Java stored procedure.

A single static variable is used to store the last exception and is overwritten if another exception is thrown before you retrieve it. A new ADT aq$_jms_exception is created to represent the exception information on the PL/SQL side.

	
ORA-24198

	
ERROR_INVALID_ID

	
An invalid operation ID is being provided to access a message.

	
ORA-24199

	
ERROR_STORE_OVERFLOW

	
The number of messages (with the same type) that users are trying to manipulate exceeds the size of the message store on the Java stored procedure side. The current size of the store is 20. It unusual to need to manipulate more than 20 messages at the same time. A common mistake is to forget to call the clean procedure after using one message. The clean procedure frees the message slot for use by other messages attempting access.

Oracle JMS Type Constants

This section lists some useful constants when dealing with message type functions.

DBMS_AQ Package Constants

DBMS_AQ package constants specify different types of JMS messages. They are useful when dealing with general message types during upcasting and downcasting or constructing a general message with a specific message type:

JMS_TEXT_MESSAGE CONSTANT BINARY_INTEGER;
JMS_BYTES_MESSAGE CONSTANT BINARY_INTEGER;
JMS_STREAM_MESSAGE CONSTANT BINARY_INTEGER;
JMS_MAP_MESSAGE CONSTANT BINARY_INTEGER;
JMS_OBJECT_MESSAGE CONSTANT BINARY_INTEGER;

SYS.DBMS_JMS_PLSQL Package Constants

SYS.DBMS_JMS_PLSQL package constants are new in Oracle Database 10g.

These constants specify the mode of message payload. They are useful when interpreting the mode of the message payload returned from the get_mode function:

MESSAGE_ACCESS_READONLY CONSTANT PLS_INTEGER;
MESSAGE_ACCESS_WRITEONLY CONSTANT PLS_INTEGER;

These constants specify the ADT type of an Oracle Streams AQ queue. They are useful during the conversion of JMS selectors to Oracle Streams AQ rules:

DESTPLOAD_JMSTYPE CONSTANT PLS_INTEGER;
DESTPLOAD_USERADT CONSTANT PLS_INTEGER;
DESTPLOAD_ANYDATA CONSTANT PLS_INTEGER;

These constants specify the type of data that can be held by a aq$_jms_value type. They are useful when interpreting the aq$_jms_value returned by the get_object method of AQ$_JMS_MAP_MESSAGE or read_object method of AQ$_JMS_STREAM_MESSAGE:

DATA_TYPE_BYTE CONSTANT PLS_INTEGER;
DATA_TYPE_SHORT CONSTANT PLS_INTEGER;
DATA_TYPE_INTEGER CONSTANT PLS_INTEGER;
DATA_TYPE_LONG CONSTANT PLS_INTEGER;
DATA_TYPE_FLOAT CONSTANT PLS_INTEGER;
DATA_TYPE_DOUBLE CONSTANT PLS_INTEGER;
DATA_TYPE_BOOLEAN CONSTANT PLS_INTEGER;
DATA_TYPE_CHARACTER CONSTANT PLS_INTEGER;
DATA_TYPE_STRING CONSTANT PLS_INTEGER;
DATA_TYPE_BYTES CONSTANT PLS_INTEGER;
DATA_TYPE_UNSIGNED_BYTE CONSTANT PLS_INTEGER;
DATA_TYPE_UNSIGNED_SHORT CONSTANT PLS_INTEGER;

These constants specify the error number of the ORA errors that can be raised by the functions of message type ADTs. They are useful in user error handlers:

ERROR_DATA_OVERFLOW CONSTANT PLS_INTEGER := -24190;
ERROR_PROP_NAME_EXIST CONSTANT PLS_INTEGER := -24191;
ERROR_PROP_NAME_NULL CONSTANT PLS_INTEGER := -24192;
ERROR_EXCEED_RANGE CONSTANT PLS_INTEGER := -24193;
ERROR_TYPE_MISMATCH CONSTANT PLS_INTEGER := -24194;
ERROR_MAP_TOO_LARGE CONSTANT PLS_INTEGER := -24195;
ERROR_WRONG_MODE CONSTANT PLS_INTEGER := -24196;
ERROR_JAVA_EXCEPTION CONSTANT PLS_INTEGER := -24197;
ERROR_INVALID_ID CONSTANT PLS_INTEGER := -24198;
ERROR_STORE_OVERFLOW CONSTANT PLS_INTEGER := -24199;

CONVERT_JMS_SELECTOR

Oracle Database includes three stored procedures to help users convert JMS selectors into Oracle Streams AQ rules. These rules can be used in ADD_SUBSCRIBER operations as subscriber rules or in DEQUEUE operations as dequeue conditions. These procedures are in the SYS.dbms_jms_plsql package.

Convert with Minimal Specification

The first procedure assumes the destination payload type is one of the JMS ADTs whose corresponding constant is dbms_jms_plsql.DESTPLOAD_JMSTYPE and also assumes that the J2EE compliant mode is true.

Syntax

Function convert_jms_selector(selector IN VARCHAR2) RETURN VARCHAR2

Returns

The converted Oracle Streams AQ rule or null if there is any conversion error.

Exceptions

ORA-24197 if the Java stored procedure throws an exception during execution.

Convert with Destination Payload Type Specified

The second procedure takes one more parameter: dest_pload_type. The conversion of a JMS selector to an Oracle Streams AQ rule happens only if this parameter is SYS.dbms_jms_plsql.DESTPLOAD_JMSTYPE or SYS.dbms_jms_plsql.DESTPLOAD_ANYDATA. The function returns exactly the same VARCHAR2 value as the selector parameter if the dest_pload_type parameter is SYS.dbms_jms_plsql.DESTPLOAD_USERADT. The function returns null if dest_pload_type parameter is none of these three constants.

This function assumes that the J2EE compliant mode is true.

Syntax

Function convert_jms_selector(
 selector IN VARCHAR2,
 dest_pload_type IN PLS_INTEGER)
RETURN VARCHAR2

Returns

The converted Oracle Streams AQ rule or null if there is any conversion error.

Exceptions

ORA-24197 if the Java stored procedure throws an exception during execution.

Convert with Destination Payload Type and Compliant Mode Specified

The third procedure takes a dest_pload_type parameter and a compliant parameter. The conversion of a JMS selector to an Oracle Streams AQ rule happens only if the dest_pload_type parameter is SYS.dbms_jms_plsql.DESTPLOAD_JMSTYPE or SYS.dbms_jms_plsql.DESTPLOAD_ANYDATA. The function returns exactly the same VARCHAR2 value as the selector parameter if the dest_pload_type parameter is SYS.dbms_jms_plsql.DESTPLOAD_USERADT. The function returns null if the dest_pload_type parameter is none of these three constants.

The compliant parameter controls if the conversion is in J2EE compliant mode or not. The noncompliant conversion of a JMS selector is for backward compatibility.

Syntax

Function convert_jms_selector(
 selector IN VARCHAR2,
 dest_pload_type IN PLS_INTEGER,
 compliant IN BOOLEAN)

Returns

The converted Oracle Streams AQ rule or null if there is any conversion error.

Exceptions

ORA-24197 if the Java stored procedure throws an exception during execution.

Summary of JMS Types

	
SYS.AQ$_JMS_MESSAGE Type

	
SYS.AQ$_JMS_TEXT_MESSAGE Type

	
SYS.AQ$_JMS_BYTES_MESSAGE Type

	
SYS.AQ$_JMS_MAP_MESSAGE Type

	
SYS.AQ$_JMS_STREAM_MESSAGE Type

	
SYS.AQ$_JMS_OBJECT_MESSAGE Type

	
SYS.AQ$_JMS_NAMESARRAY Type

	
SYS.AQ$_JMS_VALUE Type

	
SYS.AQ$_JMS_EXCEPTION Type

SYS.AQ$_JMS_MESSAGE Type

This ADT type can represent any of five different JMS message types: text message, bytes message, stream message, map message, or object message. Queues created using this ADT can therefore store all five types of JMS messages.

This section contains these topics:

	
CONSTRUCT Static Functions

	
Cast Methods

	
JMS Header Methods

	
System Properties Methods

	
User Properties Methods

	
Payload Methods

Syntax

TYPE AQ$_JMS_MESSAGE AS OBJECT(
 header aq$_jms_header,
 senderid varchar2(100),
 message_type INT,
 text_len INT,
 bytes_len INT,
 text_vc varchar2(4000),
 bytes_raw raw(2000),
 text_lob clob,
 bytes_lob blob,
 STATIC FUNCTION construct (mtype IN INT)
 RETURN aq$_jms_message,
 STATIC FUNCTION construct (text_msg IN aq$_jms_text_message)
 RETURN aq$_jms_message,
 STATIC FUNCTION construct (bytes_msg IN aq$_jms_bytes_message)
 RETURN aq$_jms_message,
 STATIC FUNCTION construct (stream_msg IN aq$_jms_stream_message)
 RETURN aq$_jms_message,
 STATIC FUNCTION construct (map_msg IN aq$_jms_map_message)
 RETURN aq$_jms_message,
 STATIC FUNCTION construct (object_msg IN aq$_jms_object_message)
 RETURN aq$_jms_message,
 MEMBER FUNCTION cast_to_bytes_msg RETURN aq$_jms_bytes_message,
 MEMBER FUNCTION cast_to_map_msg RETURN aq$_jms_map_message,
 MEMBER FUNCTION cast_to_object_msg RETURN aq$_jms_object_message,
 MEMBER FUNCTION cast_to_stream_msg RETURN aq$_jms_stream_message,
 MEMBER FUNCTION cast_to_text_msg RETURN aq$_jms_text_message,
 MEMBER PROCEDURE set_replyto (replyto IN sys.aq$_agent),
 MEMBER PROCEDURE set_type (type IN VARCHAR),
 MEMBER PROCEDURE set_userid (userid IN VARCHAR),
 MEMBER PROCEDURE set_appid (appid IN VARCHAR),
 MEMBER PROCEDURE set_groupid (groupid IN VARCHAR),
 MEMBER PROCEDURE set_groupseq (groupseq IN INT),
 MEMBER FUNCTION get_replyto RETURN sys.aq$_agent,
 MEMBER FUNCTION get_type RETURN VARCHAR,
 MEMBER FUNCTION get_userid RETURN VARCHAR,
 MEMBER FUNCTION get_appid RETURN VARCHAR,
 MEMBER FUNCTION get_groupid RETURN VARCHAR,
 MEMBER FUNCTION get_groupseq RETURN INT,
 MEMBER PROCEDURE clear_properties,
 MEMBER PROCEDURE set_boolean_property (property_name IN VARCHAR,
 property_value IN BOOLEAN),
 MEMBER PROCEDURE set_byte_property (property_name IN VARCHAR,
 property_value IN INT),
 MEMBER PROCEDURE set_double_property (property_name IN VARCHAR,
 property_value IN DOUBLE PRECISION),
 MEMBER PROCEDURE set_float_property (property_name IN VARCHAR,
 property_value IN FLOAT),
 MEMBER PROCEDURE set_int_property (property_name IN VARCHAR,
 property_value IN INT),
 MEMBER PROCEDURE set_long_property (property_name IN VARCHAR,
 property_value IN NUMBER),
 MEMBER PROCEDURE set_short_property (property_name IN VARCHAR,
 property_value IN INT),
 MEMBER PROCEDURE set_string_property (property_name IN VARCHAR,
 property_value IN VARCHAR),
 MEMBER FUNCTION get_boolean_property (property_name IN VARCHAR) RETURN BOOLEAN,
 MEMBER FUNCTION get_byte_property (property_name IN VARCHAR) RETURN INT,
 MEMBER FUNCTION get_double_property (property_name IN VARCHAR)
 RETURN DOUBLE PRECISION,
 MEMBER FUNCTION get_float_property (property_name IN VARCHAR) RETURN FLOAT,
 MEMBER FUNCTION get_int_property (property_name IN VARCHAR) RETURN INT,
 MEMBER FUNCTION get_long_property (property_name IN VARCHAR) RETURN NUMBER,
 MEMBER FUNCTION get_short_property (property_name IN VARCHAR) RETURN INT,
 MEMBER FUNCTION get_string_property (property_name IN VARCHAR) RETURN VARCHAR,
 MEMBER PROCEDURE set_text (payload IN VARCHAR2),
 MEMBER PROCEDURE set_text (payload IN CLOB),
 MEMBER PROCEDURE set_bytes (payload IN RAW),
 MEMBER PROCEDURE set_bytes (payload IN BLOB),
 MEMBER PROCEDURE get_text (payload OUT VARCHAR2),
 MEMBER PROCEDURE get_text (payload OUT CLOB),
 MEMBER PROCEDURE get_bytes (payload OUT RAW),
 MEMBER PROCEDURE get_bytes (payload OUT BLOB));

CONSTRUCT Static Functions

There are six CONSTRUCT static functions in this type.

	STATIC FUNCTION construct (mtype IN INT) RETURN aq$_jms_message
	
Creates an instance of aq$_jms_message, which can hold a specific type of JMS message (TextMessage, BytesMessage, MapMessage, StreamMessage or ObjectMessage). The message type of the created aq$_jms_message instance depends on the mtype parameter passed to the construct method. Once a message has been constructed, it can be used to store JMS messages of the type it has been constructed to hold.

The mtype parameter must be one of the following constants described in "Oracle JMS Type Constants":

DBMS_AQ.JMS_TEXT_MESSAGE
DBMS_AQ.JMS_BYTES_MESSAGE
DBMS_AQ.JMS_STREAM_MESSAGE
DBMS_AQ.JMS_MAP_MESSAGE
DBMS_AQ.JMS_OBJECT_MESSAGE

	STATIC FUNCTION construct (text_msg IN aq$_jms_text_message) RETURN aq$_jms_message
	
Creates an aq$_jms_message from an aq$_jms_text_message.

	STATIC FUNCTION construct (bytes_msg IN aq$_jms_bytes_message) RETURN aq$_jms_message;
	
Creates an aq$_jms_message from an aq$_jms_bytes_message.

	STATIC FUNCTION construct (stream_msg IN aq$_jms_stream_message) RETURN aq$_jms_message;
	
Creates an aq$_jms_message from an aq$_jms_stream_message.

	STATIC FUNCTION construct (map_msg IN aq$_jms_map_message) RETURN aq$_jms_message;
	
Creates an aq$_jms_message from an aq$_jms_map_message.

	STATIC FUNCTION construct (object_msg IN aq$_jms_object_message) RETURN aq$_jms_message;
	
Creates an aq$_jms_message from an aq$_jms_object_message.

Cast Methods

	cast_to_bytes_msg RETURN aq$_jms_bytes_message
	
Casts an aq$_jms_message to an aq$_jms_bytes_message. Returns an aq$_jms_bytes_message or null if the message_type attribute of the aq$_jms_message is not DBMS_AQ.JMS_BYTES_MESSAGE. This function raises ORA-24198 if the message_type field of the aq$_jms_message is not DBMS_AQJMS.JMS_BYTES_MESSAGE.

	cast_to_map_msg RETURN aq$_jms_map_message
	
Casts an aq$_jms_message to an aq$_jms_map_message. Returns an aq$_jms_map_message or null if the message_type attribute of the aq$_jms_message is not DBMS_AQ.JMS_MAP_MESSAGE. This function raises ORA-24198 if the message_type field of the aq$_jms_message is not DBMS_AQJMS.JMS_MAP_MESSAGE.

	cast_to_object_msg RETURN aq$_jms_object_message
	
Casts an aq$_jms_message to an aq$_jms_object_message. Returns an aq$_jms_object_message or null if the message_type attribute of the aq$_jms_message is not DBMS_AQ.JMS_OBJECT_MESSAGE. This function raises ORA-24198 if the message_type field of the aq$_jms_message is not DBMS_AQJMS.JMS_OBJECT_MESSAGE.

	cast_to_stream_msg RETURN aq$_jms_stream_message
	
Casts an aq$_jms_message to an aq$_jms_stream_message. Returns an aq$_jms_stream_message or null if the message_type attribute of the aq$_jms_message is not DBMS_AQ.JMS_STREAM_MESSAGE. This function raises ORA-24198 if the message_type field of the aq$_jms_message is not DBMS_AQJMS.JMS_STREAM_MESSAGE.

	cast_to_text_msg RETURN aq$_jms_text_message
	
Casts an aq$_jms_message to an aq$_jms_text_message. Returns an aq$_jms_text_message or null if the message_type attribute of the aq$_jms_message is not DBMS_AQ.JMS_TEXT_MESSAGE. This function raises ORA-24198 if the message_type field of the aq$_jms_message is not DBMS_AQJMS.JMS_TEXT_MESSAGE.

JMS Header Methods

	set_replyto (replyto IN sys.aq$_agent)
	
Sets the replyto parameter, which corresponds to JMSReplyTo.

	get_replyto RETURN sys.aq$_agent
	
Returns replyto, which corresponds to JMSReplyTo.

	set_type (type IN VARCHAR)
	
Sets the JMS type, which can be any text and corresponds to JMSType.

	get_type RETURN VARCHAR
	
Returns type, which corresponds to JMSType.

System Properties Methods

	set_userid (userid IN VARCHAR)
	
Sets userid, which corresponds to JMSXUserID.

	set_appid (appid IN VARCHAR)
	
Sets appid, which corresponds to JMSXAppID.

	set_groupid (groupid IN VARCHAR)
	
Sets groupid, which corresponds to JMSXGroupID.

	set_groupseq (groupseq IN INT)
	
Sets groupseq, which corresponds to JMSXGroupSeq.

	get_userid RETURN VARCHAR
	
Returns userid, which corresponds to JMSXUserID.

	get_appid RETURN VARCHAR
	
Returns appid, which corresponds to JMSXAppID.

	get_groupid RETURN VARCHAR
	
Returns groupid, which corresponds to JMSXGroupID.

	get_groupseq RETURN VARCHAR
	
Returns groupseq, which corresponds to JMSXGroupSeq.

User Properties Methods

	clear_properties
	
Clears all user properties. This procedure does not affect system properties.

	set_boolean_property (property_name IN VARCHAR, property_value IN BOOLEAN)
	
Checks whether property_name is null or exists. If it is not null, the procedure stores property_value in an internal representation (a NUMBER type). Raises exception ORA-24191 if the property name exists or ORA-24192 if the property name is null.

	set_byte_property (property_name IN VARCHAR, property_value IN INT)
	
Checks whether property_name is null or exists. If it is not null, the procedure checks whether property_value is within -128 to 127 (8-bits). This check is necessary because neither PL/SQL nor RDBMS defines the byte datatype. Raises exception ORA-24191 if the property name exists, ORA-24192 if the property name is null, or ORA-24193 if the property value exceeds the valid range.

	set_double_property (property_name IN VARCHAR, property_value IN DOUBLE PRECISION)
	
Checks whether property_name is null or exists. If it is not null, the procedure stores property_value. Raises exception ORA-24191 if the property name exists or ORA-24192 if the property name is null.

	set_float_property (property_name IN VARCHAR, property_value IN FLOAT)
	
Checks whether property_name is null or exists. If it is not null, the procedure stores property_value. Raises exception ORA-24191 if the property name exists or ORA-24192 if the property name is null.

	set_int_property (property_name IN VARCHAR, property_value IN INT)
	
Checks whether property_name is null or exists. If it is not null, the procedure checks whether property_value is within -2147483648 to 2147483647 (32-bits). This check is necessary because the INT datatype is 38 bits in PL/SQL and Oracle Database. Raises exception ORA-24191 if the property name exists, ORA-24192 if the property name is null, or ORA-24193 if the property value exceeds the valid range.

	set_long_property (property_name IN VARCHAR, property_value IN NUMBER)
	
Checks whether property_name is null or exists. If it is not null, the procedure stores property_value. In PL/SQL and Oracle Database, the NUMBER datatype is 38 bits. In Java, the long datatype is 64 bits. Therefore, no range check is needed. Raises exception ORA-24191 if the property name exists or ORA-24192 if the property name is null.

	set_short_property (property_name IN VARCHAR, property_value IN INT)
	
Checks whether property_name is null or exists. If it is not null, the procedure checks whether property_value is within -32768 to 32767 (16-bits). This check is necessary because neither PL/SQL nor RDBMS defines the short datatype. Raises exception ORA-24191 if the property name exists, ORA-24192 if the property name is null, or ORA-24193 if the property value exceeds the valid range.

	set_string_property (property_name IN VARCHAR, property_value IN VARCHAR)
	
Checks whether property_name is null or exists. If it is not null, the procedure stores property_value. Raises exception ORA-24191 if the property name exists or ORA-24192 if the property name is null.

	get_boolean_property (property_name IN VARCHAR) RETURN BOOLEAN
	
If the property with the corresponding property name passed in exists, and if it is a BOOLEAN property, then this function returns the value of the property. Otherwise it returns a null.

	get_byte_property (property_name IN VARCHAR) RETURN INT
	
If the property with the corresponding property name passed in exists, and if it is a BYTE property, then this function returns the value of the property. Otherwise it returns a null.

	get_double_property (property_name IN VARCHAR) RETURN DOUBLE PRECISION
	
If the property with the corresponding property name passed in exists, and if it is a DOUBLE property, then this function returns the value of the property. Otherwise it returns a null.

	get_float_property (property_name IN VARCHAR) RETURN FLOAT
	
If the property with the corresponding property name passed in exists, and if it is a FLOAT property, then this function returns the value of the property. Otherwise it returns a null.

	get_int_property (property_name IN VARCHAR) RETURN INT
	
If the property with the corresponding property name passed in exists, and if it is a Integer property, then this function returns the value of the property. Otherwise it returns a null.

	get_long_property (property_name IN VARCHAR) RETURN NUMBER
	
If the property with the corresponding property name passed in exists, and if it is a long property, then this function returns the value of the property. Otherwise it returns a null.

	get_short_property (property_name IN VARCHAR) RETURN INT
	
If the property with the corresponding property name passed in exists, and if it is a short property, then this function returns the value of the property. Otherwise it returns a null.

	get_string_property (property_name IN VARCHAR) RETURN VARCHAR
	
If the property with the corresponding property name passed in exists, and if it is a STRING property, then this function returns the value of the property. Otherwise it returns a null.

Payload Methods

	set_text (payload IN VARCHAR2)
	
Sets the payload, a VARCHAR2 value, to an internal representation.

	set_text (payload IN CLOB),
	
Sets the payload, a CLOB value, to an internal representation.

	set_bytes (payload IN RAW)
	
Sets the payload, a RAW value, to an internal representation.

	set_bytes (payload IN BLOB)
	
Sets the payload, a BLOB value, to an internal representation.

	get_text (payload OUT VARCHAR2)
	
Puts the internal representation of the payload into a VARCHAR2 variable payload.

	get_text (payload OUT CLOB)
	
Puts the internal representation of the payload into a CLOB variable payload.

	get_bytes (payload OUT RAW)
	
Puts the internal representation of the payload into a RAW variable payload.

	get_bytes (payload OUT BLOB)
	
Puts the internal representation of the payload into a BLOB variable payload.

SYS.AQ$_JMS_TEXT_MESSAGE Type

This type is the ADT used to store a TextMessage in an Oracle Streams AQ queue.

This section contains these topics:

	
CONSTRUCT Function

	
JMS Header Methods

	
System Properties Methods

	
User Properties Methods

	
Payload Methods

Syntax

TYPE AQ$_JMS_TEXT_MESSAGE AS OBJECT(
 header aq$_jms_header,
 text_len INT,
 text_vc varchar2(4000),
 text_lob clob,
 STATIC FUNCTION construct RETURN aq$_jms_text_message,
 MEMBER PROCEDURE set_replyto (replyto IN sys.aq$_agent),
 MEMBER PROCEDURE set_type (type IN VARCHAR),
 MEMBER FUNCTION get_replyto RETURN sys.aq$_agent,
 MEMBER FUNCTION get_type RETURN VARCHAR,
 MEMBER PROCEDURE set_userid (userid IN VARCHAR),
 MEMBER PROCEDURE set_appid (appid IN VARCHAR),
 MEMBER PROCEDURE set_groupid (groupid IN VARCHAR),
 MEMBER PROCEDURE set_groupseq (groupseq IN INT),
 MEMBER FUNCTION get_userid RETURN VARCHAR,
 MEMBER FUNCTION get_appid RETURN VARCHAR,
 MEMBER FUNCTION get_groupid RETURN VARCHAR,
 MEMBER FUNCTION get_groupseq RETURN INT,
 MEMBER PROCEDURE clear_properties,
 MEMBER PROCEDURE set_boolean_property(property_name IN VARCHAR,
 property_value IN BOOLEAN),
 MEMBER PROCEDURE set_byte_property (property_name IN VARCHAR,
 property_value IN INT),
 MEMBER PROCEDURE set_double_property (property_name IN VARCHAR,
 property_value IN DOUBLE PRECISION),
 MEMBER PROCEDURE set_float_property (property_name IN VARCHAR,
 property_value IN FLOAT),
 MEMBER PROCEDURE set_int_property (property_name IN VARCHAR,
 property_value IN INT),
 MEMBER PROCEDURE set_long_property (property_name IN VARCHAR,
 property_value IN NUMBER),
 MEMBER PROCEDURE set_short_property (property_name IN VARCHAR,
 property_value IN INT),
 MEMBER PROCEDURE set_string_property (property_name IN VARCHAR,
 property_value IN VARCHAR),
 MEMBER FUNCTION get_boolean_property (property_name IN VARCHAR)
 RETURN BOOLEAN,
 MEMBER FUNCTION get_byte_property (property_name IN VARCHAR) RETURN INT,
 MEMBER FUNCTION get_double_property (property_name IN VARCHAR)
 RETURN DOUBLE PRECISION,
 MEMBER FUNCTION get_float_property (property_name IN VARCHAR) RETURN FLOAT,
 MEMBER FUNCTION get_int_property (property_name IN VARCHAR) RETURN INT,
 MEMBER FUNCTION get_long_property (property_name IN VARCHAR) RETURN NUMBER,
 MEMBER FUNCTION get_short_property (property_name IN VARCHAR) RETURN INT,
 MEMBER FUNCTION get_string_property (property_name IN VARCHAR)
 RETURN VARCHAR,
 MEMBER PROCEDURE set_text (payload IN VARCHAR2),
 MEMBER PROCEDURE set_text (payload IN CLOB),
 MEMBER PROCEDURE get_text (payload OUT VARCHAR2),
 MEMBER PROCEDURE get_text (payload OUT CLOB));

CONSTRUCT Function

	STATIC FUNCTION construct RETURN aq$_jms_text_message
	
Creates an empty aq$_jms_text_message.

JMS Header Methods

	set_replyto (replyto IN sys.aq$_agent)
	
Sets the replyto parameter, which corresponds to JMSReplyTo in JMS.

	set_type (type IN VARCHAR)
	
Sets the JMS type, which can be any text, and which corresponds to JMSType in JMS.

	get_replyto RETURN sys.aq$_agent
	
Returns replyto, which corresponds to JMSReplyTo.

	get_type RETURN VARCHAR
	
Returns type, which corresponds to JMSType.

System Properties Methods

	set_userid (userid IN VARCHAR)
	
Sets userid, which corresponds to JMSXUserID in JMS.

	set_appid (appid IN VARCHAR)
	
Sets appid, which corresponds to JMSXAppID in JMS.

	set_groupid (groupid IN VARCHAR)
	
Sets groupid, which corresponds to JMSXGroupID in JMS.

	set_groupseq (groupseq IN INT)
	
Sets groupseq, which corresponds to JMSXGroupSeq in JMS.

	get_userid RETURN VARCHAR
	
Returns userid, which corresponds to JMSXUserID.

	get_appid RETURN VARCHAR
	
Returns appid, which corresponds to JMSXAppID.

	get_groupid RETURN VARCHAR
	
Returns groupid, which corresponds to JMSXGroupID.

	get_groupseq RETURN INT
	
Returns groupseq, which corresponds to JMSXGroupSeq.

User Properties Methods

	clear_properties
	
Clears all user properties. This procedure does not affect system properties.

	set_boolean_property (property_name IN VARCHAR, property_value IN BOOLEAN)
	
Checks whether property_name is null or exists. If not, the procedure stores property_value in an internal representation. Raises exception ORA-24191 if the property name exists or ORA-24192 if the property name is null.

	set_byte_property (property_name IN VARCHAR, property_value IN INT)
	
Checks whether property_name is null or exists. If not, the procedure checks whether property_value is within -128 to 127 (8-bits). This check is necessary because neither PL/SQL nor RDBMS defines the BYTE datatype. Raises exception ORA-24191 if the property name exists, ORA-24192 if the property name is null, or ORA-24193 if the property value exceeds the valid range.

	set_double_property (property_name IN VARCHAR, property_value IN DOUBLE PRECISION)
	
Checks whether property_name is null or exists. If not, the procedure stores property_value. Raises exception ORA-24191 if the property name exists or ORA-24192 if the property name is null.

	set_float_property (property_name IN VARCHAR, property_value IN FLOAT)
	
Checks whether property_name is null or exists. If not, the procedure stores property_value. Raises exception ORA-24191 if the property name exists or ORA-24192 if the property name is null.

	set_int_property (property_name IN VARCHAR, property_value IN INT)
	
Checks whether property_name is null or exists. If not, the procedure checks whether property_value is within -2147483648 to 2147483647 (32-bits). This check is necessary because in PL/SQL and Oracle Database, the INT datatype is 38 bits. Raises exception ORA-24191 if the property name exists, ORA-24192 if the property name is null, or ORA-24193 if the property value exceeds the valid range.

	set_long_property (property_name IN VARCHAR, property_value IN NUMBER)
	
Checks whether property_name is null or exists. If not, the procedure stores property_value. In PL/SQL and Oracle Database, the NUMBER datatype is 38 bits. In Java, the long datatype is 64 bits. Therefore, no range check is needed.Raises exception ORA-24191 if the property name exists or ORA-24192 if the property name is null.

	set_short_property property_name IN VARCHAR, property_value IN INT)
	
Checks whether property_name is null or exists. If not, the procedure checks whether property_value is within -32768 to 32767 (16-bits). This check is necessary because neither PL/SQL nor RDBMS defines the short datatype. Raises exception ORA-24191 if the property name exists, ORA-24192 if the property name is null, or ORA-24193 if the property value exceeds the valid range.

	set_string_property (property_name IN VARCHAR, property_value IN VARCHAR)
	
Checks whether property_name is null or exists. If not, the procedure stores property_value. Raises exception ORA-24191 if the property name exists or ORA-24192 if the property name is null.

	get_boolean_property (property_name IN VARCHAR) RETURN BOOLEAN
	
If the property with the corresponding property name passed in exists, and if it is a BOOLEAN property, then this function returns the value of the property. Otherwise it returns a null.

	get_byte_property (property_name IN VARCHAR) RETURN INT
	
If the property with the corresponding property name passed in exists, and if it is a BYTE property, then this function returns the value of the property. Otherwise it returns a null.

	get_double_property (property_name IN VARCHAR) RETURN DOUBLE PRECISION
	
If the property with the corresponding property name passed in exists, and if it is a DOUBLE property, then this function returns the value of the property. Otherwise it returns a null.

	get_float_property (property_name IN VARCHAR) RETURN FLOAT
	
If the property with the corresponding property name passed in exists, and if it is a FLOAT property, then this function returns the value of the property. Otherwise it returns a null.

	get_int_property (property_name IN VARCHAR) RETURN INT
	
If the property with the corresponding property name passed in exists, and if it is a Integer property, then this function returns the value of the property. Otherwise it returns a null.

	get_long_property (property_name IN VARCHAR) RETURN NUMBER
	
If the property with the corresponding property name passed in exists, and if it is a long property, then this function returns the value of the property. Otherwise it returns a null.

	get_short_property (property_name IN VARCHAR) RETURN INT
	
If the property with the corresponding property name passed in exists, and if it is a short property, then this function returns the value of the property. Otherwise it returns a null.

	get_string_property (property_name IN VARCHAR) RETURN VARCHAR)
	
If the property with the corresponding property name passed in exists, and if it is a STRING property, then this function returns the value of the property. Otherwise it returns a null.

Payload Methods

	set_text (payload IN VARCHAR2)
	
Sets the payload, a VARCHAR2 value, to an internal representation.

	set_text (payload IN CLOB)
	
Sets the payload, a CLOB value, to an internal representation.

	get_text (payload OUT VARCHAR2)
	
Puts the internal representation of the payload into a VARCHAR2 variable payload.

	get_text (payload OUT CLOB)
	
Puts the internal representation of the payload into a CLOB variable payload.

SYS.AQ$_JMS_BYTES_MESSAGE Type

This type is the ADT used to store a BytesMessage in an Oracle Streams AQ queue.

This section contains these topics:

	
CONSTRUCT Function

	
JMS Header Methods

	
System Properties Methods

	
User Properties Methods

	
Payload Methods

Syntax

TYPE AQ$_JMS_BYTES_MESSAGE AS OBJECT(
 header aq$_jms_header,
 bytes_len INT,
 bytes_raw raw(2000),
 bytes_lob blob,
 STATIC FUNCTION construct RETURN aq$_jms_bytes_message,
 MEMBER PROCEDURE set_replyto (replyto IN sys.aq$_agent),
 MEMBER PROCEDURE set_type (type IN VARCHAR),
 MEMBER FUNCTION get_replyto RETURN sys.aq$_agent,
 MEMBER FUNCTION get_type RETURN VARCHAR,
 MEMBER PROCEDURE set_userid (userid IN VARCHAR),
 MEMBER PROCEDURE set_appid (appid IN VARCHAR),
 MEMBER PROCEDURE set_groupid (groupid IN VARCHAR),
 MEMBER PROCEDURE set_groupseq (groupseq IN INT),
 MEMBER FUNCTION get_userid RETURN VARCHAR,
 MEMBER FUNCTION get_appid RETURN VARCHAR,
 MEMBER FUNCTION get_groupid RETURN VARCHAR,
 MEMBER FUNCTION get_groupseq RETURN INT,
 MEMBER PROCEDURE clear_properties,
 MEMBER PROCEDURE set_boolean_property(property_name IN VARCHAR,
 property_value IN BOOLEAN),
 MEMBER PROCEDURE set_byte_property (property_name IN VARCHAR,
 property_value IN INT),
 MEMBER PROCEDURE set_double_property (property_name IN VARCHAR,
 property_value IN DOUBLE PRECISION),
 MEMBER PROCEDURE set_float_property (property_name IN VARCHAR,
 property_value IN FLOAT),
 MEMBER PROCEDURE set_int_property (property_name IN VARCHAR,
 property_value IN INT),
 MEMBER PROCEDURE set_long_property (property_name IN VARCHAR,
 property_value IN NUMBER),
 MEMBER PROCEDURE set_short_property (property_name IN VARCHAR,
 property_valuE IN INT),
 MEMBER PROCEDURE set_string_property (property_name IN VARCHAR,
 property_value IN VARCHAR),
 MEMBER FUNCTION get_boolean_property (property_name IN VARCHAR) RETURN BOOLEAN,
 MEMBER FUNCTION get_byte_property (property_name IN VARCHAR) RETURN INT,
 MEMBER FUNCTION get_double_property (property_name IN VARCHAR)
 RETURN DOUBLE PRECISION,
 MEMBER FUNCTION get_float_property (property_name IN VARCHAR) RETURN FLOAT,
 MEMBER FUNCTION get_int_property (property_name IN VARCHAR) RETURN INT,
 MEMBER FUNCTION get_long_property (property_name IN VARCHAR) RETURN NUMBER,
 MEMBER FUNCTION get_short_property (property_name IN VARCHAR) RETURN INT,
 MEMBER FUNCTION get_string_property (property_name IN VARCHAR) RETURN VARCHAR,
 MEMBER PROCEDURE set_bytes (payload IN RAW),
 MEMBER PROCEDURE set_bytes (payload IN BLOB),
 MEMBER PROCEDURE get_bytes (payload OUT RAW),
 MEMBER PROCEDURE get_bytes (payload OUT BLOB),
 MEMBER FUNCTION prepare (id IN PLS_INTEGER) RETURN PLS_INTEGER,
 MEMBER PROCEDURE reset (id IN PLS_INTEGER),
 MEMBER PROCEDURE flush (id IN PLS_INTEGER),
 MEMBER PROCEDURE clear_body (id IN PLS_INTEGER),
 MEMBER PROCEDURE clean (id IN PLS_INTEGER),
 STATIC PROCEDURE clean_all,
 MEMBER FUNCTION get_mode (id IN PLS_INTEGER) RETURN PLS_INTEGER,
 MEMBER FUNCTION read_boolean (id IN PLS_INTEGER) RETURN BOOLEAN,
 MEMBER FUNCTION read_byte (id IN PLS_INTEGER) RETURN PLS_INTEGER,
 MEMBER FUNCTION read_bytes (id IN PLS_INTEGER,
 value OUT NOCOPY BLOB, length IN PLS_INTEGER) RETURN PLS_INTEGER,
 MEMBER FUNCTION read_char (id IN PLS_INTEGER) RETURN CHAR,
 MEMBER FUNCTION read_double (id IN PLS_INTEGER) RETURN DOUBLE PRECISION,
 MEMBER FUNCTION read_float (id IN PLS_INTEGER) RETURN FLOAT,
 MEMBER FUNCTION read_int (id IN PLS_INTEGER) RETURN INT,
 MEMBER FUNCTION read_long (id IN PLS_INTEGER) RETURN NUMBER,
 MEMBER FUNCTION read_short (id IN PLS_INTEGER) RETURN PLS_INTEGER,
 MEMBER FUNCTION read_unsigned_byte (id IN PLS_INTEGER) RETURN PLS_INTEGER,
 MEMBER FUNCTION read_unsigned_short (id IN PLS_INTEGER) RETURN PLS_INTEGER,
 MEMBER PROCEDURE read_utf (id IN PLS_INTEGER, value OUT NOCOPY CLOB),
 MEMBER PROCEDURE write_boolean (id IN PLS_INTEGER, value IN BOOLEAN),
 MEMBER PROCEDURE write_byte (id IN PLS_INTEGER, value IN PLS_INTEGER),
 MEMBER PROCEDURE write_bytes (id IN PLS_INTEGER, value IN RAW),
 MEMBER PROCEDURE write_bytes (id IN PLS_INTEGER, value IN BLOB),
 MEMBER PROCEDURE write_bytes (id IN PLS_INTEGER, value IN RAW,
 offset IN PLS_INTEGER, length IN PLS_INTEGER),
 MEMBER PROCEDURE write_bytes (id IN PLS_INTEGER, value IN BLOB,
 offset IN INT, length IN INT),
 MEMBER PROCEDURE write_char (id IN PLS_INTEGER, value IN CHAR),
 MEMBER PROCEDURE write_double (id IN PLS_INTEGER,
 value IN DOUBLE PRECISION),
 MEMBER PROCEDURE write_float (id IN PLS_INTEGER, value IN FLOAT),
 MEMBER PROCEDURE write_int (id IN PLS_INTEGER, value IN PLS_INTEGER),
 MEMBER PROCEDURE write_long (id IN PLS_INTEGER, value IN NUMBER),
 MEMBER PROCEDURE write_short (id IN PLS_INTEGER, value IN PLS_INTEGER),
 MEMBER PROCEDURE write_utf (id IN PLS_INTEGER, value IN VARCHAR2),
 MEMBER PROCEDURE write_utf (id IN PLS_INTEGER, value IN CLOB));

CONSTRUCT Function

	STATIC FUNCTION construct RETURN aq$_jms_bytes_message
	
Creates an empty aq$_jms_bytes_message.

JMS Header Methods

	set_replyto (replyto IN sys.aq$_agent)
	
Sets the replyto parameter, which corresponds to JMSReplyTo in JMS.

	set_type (type IN VARCHAR)
	
Sets the JMS type, which can be any text, and which corresponds to JMSType in JMS.

	get_replyto RETURN sys.aq$_agent
	
Returns replyto, which corresponds to JMSReplyTo.

	get_type RETURN VARCHAR
	
Returns type, which corresponds to JMSType.

System Properties Methods

	set_userid (userid IN VARCHAR)
	
Sets userid, which corresponds to JMSXUserID in JMS.

	set_appid (appid IN VARCHAR)
	
Sets appid, which corresponds to JMSXAppID in JMS.

	set_groupid (groupid IN VARCHAR)
	
Sets groupid, which corresponds to JMSXGroupID in JMS.

	set_groupseq (groupseq IN INT)
	
Sets groupseq, which corresponds to JMSXGroupSeq in JMS.

	get_userid RETURN VARCHAR
	
Returns userid, which corresponds to JMSXUserID.

	get_appid RETURN VARCHAR
	
Returns appid, which corresponds to JMSXAppID.

	get_groupid RETURN VARCHAR
	
Returns groupid, which corresponds to JMSXGroupID.

	get_groupseq RETURN NUMBER
	
Returns groupseq, which corresponds to JMSXGroupSeq.

User Properties Methods

	clear_properties
	
Clears all user properties. This procedure does not affect system properties.

	set_boolean_property (property_name IN VARCHAR, property_value IN BOOLEAN)
	
Checks whether property_name is null or exists. If not, the procedure stores property_value in an internal representation. Raises exception ORA-24191 if the property name exists or ORA-24192 if the property name is null.

	set_byte_property (property_name IN VARCHAR, property_value IN INT)
	
Checks whether property_name is null or exists. If not, the procedure checks whether property_value is within -128 to 127 (8-bits). This check is necessary because neither PL/SQL nor RDBMS defines the BYTE datatype. Raises exception ORA-24191 if the property name exists, ORA-24192 if the property name is null, or ORA-24193 if the property value exceeds the valid range.

	set_double_property (property_name IN VARCHAR, property_value IN DOUBLE PRECISION)
	
Checks whether property_name is null or exists. If not, the procedure stores property_value. Raises exception ORA-24191 if the property name exists or ORA-24192 if the property name is null.

	set_float_property (property_name IN VARCHAR, property_value IN FLOAT)
	
Checks whether property_name is null or exists. If not, the procedure stores property_value. Raises exception ORA-24191 if the property name exists or ORA-24192 if the property name is null.

	set_int_property (property_name IN VARCHAR, property_value IN INT)
	
Checks whether property_name is null or exists. If not, the procedure checks whether property_value is within -2147483648 to 2147483647 (32-bits). This check is necessary because in PL/SQL and Oracle Database, the INT datatype is 38 bits. Raises exception ORA-24191 if the property name exists, ORA-24192 if the property name is null, or ORA-24193 if the property value exceeds the valid range.

	set_long_property (property_name IN VARCHAR, property_value IN NUMBER)
	
Checks whether property_name is null or exists. If not, the procedure stores property_value. In PL/SQL and Oracle Database, the NUMBER datatype is 38 bits. In Java, the long datatype is 64 bits. Therefore, no range check is needed.Raises exception ORA-24191 if the property name exists or ORA-24192 if the property name is null.

	set_short_property (property_name IN VARCHAR, property_value IN INT)
	
Checks whether property_name is null or exists. If not, the procedure checks whether property_value is within -32768 to 32767 (16-bits). This check is necessary because neither PL/SQL nor RDBMS defines the short datatype. Raises exception ORA-24191 if the property name exists, ORA-24192 if the property name is null, or ORA-24193 if the property value exceeds the valid range.

	set_string_property (property_name IN VARCHAR, property_value IN VARCHAR)
	
Checks whether property_name is null or exists. If not, the procedure stores property_value. Raises exception ORA-24191 if the property name exists or ORA-24192 if the property name is null.

	get_boolean_property (property_name IN VARCHAR) RETURN BOOLEAN
	
If the property with the corresponding property name passed in exists, and if it is a BOOLEAN property, then this function returns the value of the property. Otherwise it returns a null.

	get_byte_property (property_name IN VARCHAR) RETURN INT
	
If the property with the corresponding property name passed in exists, and if it is a BYTE property, then this function returns the value of the property. Otherwise it returns a null.

	get_double_property (property_name IN VARCHAR) RETURN DOUBLE PRECISION
	
If the property with the corresponding property name passed in exists, and if it is a DOUBLE property, then this function returns the value of the property. Otherwise it returns a null.

	get_float_property (property_name IN VARCHAR) RETURN FLOAT
	
If the property with the corresponding property name passed in exists, and if it is a FLOAT property, then this function returns the value of the property. Otherwise it returns a null.

	get_int_property (property_name IN VARCHAR) RETURN INT
	
If the property with the corresponding property name passed in exists, and if it is a Integer property, then this function returns the value of the property. Otherwise it returns a null.

	get_long_property (property_name IN VARCHAR) RETURN NUMBER
	
If the property with the corresponding property name passed in exists, and if it is a long property, then this function returns the value of the property. Otherwise it returns a null.

	get_short_property (property_name IN VARCHAR) RETURN INT
	
If the property with the corresponding property name passed in exists, and if it is a short property, then this function returns the value of the property. Otherwise it returns a null.

	get_string_property (property_name IN VARCHAR) RETURN VARCHAR
	
If the property with the corresponding property name passed in exists, and if it is a STRING property, then this function returns the value of the property. Otherwise it returns a null.

Payload Methods

	set_bytes (payload in RAW)
	
Sets the payload, a RAW value, to an internal representation.

	set_bytes (payload in BLOB)
	
Sets the payload, a BLOB value, to an internal representation.

	get_bytes (payload out RAW)
	
Puts the internal representation of the payload into a RAW variable payload. Raises exception ORA-24190 if the length of the internal payload is more than 32767 (the maximum length of RAW in PL/SQL).

	get_bytes (payload out BLOB)
	
Puts the internal representation of the payload into a BLOB variable payload.

	prepare (id IN PLS_INTEGER) RETURN PLS_INTEGER
	
Takes the byte array stored in aq$_jms_bytes_message and decodes it as a Java object in the Java stored procedure. The result of the decoding is stored as a static variable in Jserv session memory. Parameter id is used to identify the slot where the Java object is stored in the Oracle Database JVM session memory. If id is null, then a new slot is created for this PL/SQL object. Subsequent JMS operations on the payload need to provide this operation ID.

This function also sets the message access mode to MESSAGE_ACCESS_READONLY. Subsequent calls of write_XXX procedure raise an ORA-24196 error. Users can call the clear_body procedure to set the message access mode to MESSAGE_ACCESS_READONLY.

This function raises ORA-24197 if the Java stored procedure throws an exception during execution, ORA-24198 if the operation ID is invalid, or ORA-24199 if the Java stored procedure message store overflows.

	reset (id IN PLS_INTEGER)
	
Resets the starting position of the stream to the beginning and puts the bytes message in read-only mode. Raises exception ORA-24197 if the Java stored procedure throws an exception during execution or ORA-24198 if the operation ID is invalid.

	flush (id IN PLS_INTEGER)
	
Takes the static variable in Jserv and synchronizes the content back to the aq$_jms_bytes_message. This procedure will not affect the underlying access mode. This procedure raises ORA-24197 if the Java stored procedure throws an exception during execution or ORA-24198 if the operation ID is invalid.

	clear_body (id IN PLS_INTEGER)
	
Sets the Java stored procedure static variable to empty payload. Parameter id is used to identify the slot where the Java object is stored in the Oracle Database JVM session memory. If id is null, a new slot is created for this PL/SQL object. Subsequent JMS operations on the payload need to provide this operation ID.

It also sets the message access mode to MESSAGE_ACCESS_WRITEONLY. Later calls of read_XXX procedure raise ORA-24196 error. Users can call the reset or prepare procedures to set the message access mode to MESSAGE_ACCESS_READONLY. Write-only and read-only modes affect only the payload functions of AQ$_JMS_BYTES_MESSAGE. They do not affect the header functions.

This function raises ORA-24197 if the Java stored procedure throws an exception during execution, ORA-24198 if the operation ID is invalid, or ORA-24199 if the Java stored procedure message store overflows.

	clean (id IN PLS_INTEGER)
	
Closes and cleans up the DataInputStream or DataOutputStream at the Java stored procedure side corresponding to the operation ID. It is very important to call this procedure to avoid memory leaks. This procedure raises ORA-24197 if the Java stored procedure throws an exception during execution or ORA-24198 if the operation ID is invalid.

	clean_all
	
Closes and cleans up all the messages in the corresponding type of message store at the Java stored procedure side. This procedure raises ORA-24197 if the Java stored procedure throws an exception during execution.

	get_mode (id IN PLS_INTEGER) RETURN PLS_INTEGER
	
Returns the current mode of this message. The return value is either SYS.dbms_jms.plsql.MESSAGE_ACCESS_READONLY or SYS.dbms_jms.plsql.MESSAGE_ACCESS_WRITEONLY. Raises exception ORA-24197 if the Java stored procedure throws an exception during execution or ORA-24198 if the operation ID is invalid.

	read_boolean (id IN PLS_INTEGER) RETURN BOOLEAN
	
Reads a Boolean value from the bytes message and returns the Boolean value read. Null is returned if the end of the message stream has been reached. Parameter id is the operation ID. Raises exception ORA-24196 if the bytes message is in write-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	read_byte (id IN PLS_INTEGER) RETURN PLS_INTEGER
	
Reads a BYTE value from the bytes message and returns the BYTE value read. Null is returned if the end of the stream has been reached. Because there is no BYTE type in PL/SQL, Oracle Database uses PLS_INTEGER to represent a BYTE. Although PL/SQL users get a PLS_INTEGER, they are guaranteed that the value is in the Java BYTE value range. If this value is issued with a write_byte function, then there will not be an out of range error. Parameter id is the operation ID. Raises exception ORA-24196 if the bytes message is in write-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	read_bytes (id IN PLS_INTEGER, value OUT NO COPY BLOB, length IN PLS_INTEGER) RETURN PLS_INTEGER
	
Reads length of the bytes from bytes message stream into value and returns the total number of bytes read. If there is no more data (because the end of the stream has been reached), then it returns -1. Raises exceptions ORA-24196 if the bytes message is in write-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	read_char (id IN PLS_INTEGER) RETURN CHAR
	
Reads a character value from the bytes message and returns the character value read. Null is returned if the end of the stream has been reached. Raises exception ORA-24196 if the bytes message is in write-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	read_double (id IN PLS_INTEGER) RETURN DOUBLE PRECISION
	
Reads a double from the bytes message and returns the character value read. Null is returned if the end of the stream has been reached. Raises exception ORA-24196 if the bytes message is in write-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	read_float (id IN PLS_INTEGER) RETURN FLOAT
	
Reads a float from the bytes message and returns the float read. Null is returned if the end of the stream has been reached. Raises exception ORA-24196 if the bytes message is in write-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	read_int (id IN PLS_INTEGER) RETURN INT
	
Reads an INT from the bytes message and returns the INT read. Null is returned if the end of the stream has been reached. Raises exception ORA-24196 if the bytes message is in write-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	read_long (id IN PLS_INTEGER) RETURN NUMBER
	
Reads a long from the bytes message and returns the long read. Null is returned if the end of the stream has been reached. Raises exception ORA-24196 if the bytes message is in write-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	read_short (id IN PLS_INTEGER) RETURN PLS_INTEGER
	
Reads a short value from the bytes message and returns the short value read. Null is returned if the end of the stream has been reached. Because there is no short type in PL/SQL, PLS_INTEGER is used to represent a BYTE. Although PL/SQL users get an PLS_INTEGER, they are guaranteed that the value is in the Java short value range. If this value is issued with a write_short function, then there will not be an out of range error. Raises exception ORA-24196 if the bytes message is in write-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	read_unsigned_byte (id IN PLS_INTEGER) RETURN PLS_INTEGER
	
Reads an unsigned 8-bit number from the bytes message stream and returns the next byte from the bytes message stream, interpreted as an unsigned 8-bit number. Null is returned if the end of the stream has been reached. Raises exception ORA-24196 if the bytes message is in write-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	read_unsigned_short (id IN PLS_INTEGER) RETURN PLS_INTEGER
	
Reads an unsigned 16-bit number from the bytes message stream and returns the next two bytes from the bytes message stream, interpreted as an unsigned 16-bit integer. Null is returned if the end of the stream has been reached. Raises exception ORA-24196 if the bytes message is in write-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	read_utf (id IN PLS_INTEGER, value OUT NOCOPY CLOB)
	
Reads a string that has been encoded using a UTF-8 format from the bytes message. Null is returned if the end of the stream has been reached. Raises exception ORA-24196 if the bytes message is in write-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	write_boolean (id IN PLS_INTEGER, value IN BOOLEAN)
	
Writes a Boolean to the bytes message stream as a 1-byte value. The value true is written as the value (byte)1. The value false is written as the value (byte)0. Raises exception ORA-24196 if the bytes message is in write-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	write_byte (id IN PLS_INTEGER, value IN PLS_INTEGER)
	
Writes a byte to the bytes message. Because there is no BYTE type in PL/SQL, PLS_INTEGER is used to represent a BYTE. Raises exception ORA-24196 if the bytes message is in write-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	write_bytes (id IN PLS_INTEGER, value IN RAW)
	
Writes an array of bytes to the bytes message. Raises exception ORA-24196 if the bytes message is in write-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	write_bytes (id IN PLS_INTEGER, value IN BLOB)
	
Writes an array of bytes to the bytes message. Raises exception ORA-24196 if the bytes message is in write-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	write_bytes (id IN PLS_INTEGER, value IN RAW, offset IN PLS_INTEGER, length IN PLS_INTEGER)
	
Writes a portion of a byte array to the bytes message stream. Parameter offset is the initial offset within the byte array. If the range [offset, offset+length] exceeds the boundary of the byte array value, then a Java IndexOutOfBounds exception is thrown in the Java stored procedure and this procedure raises error ORA-24197. The index starts from 0. Raises exception ORA-24196 if the bytes message is in write-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	write_bytes (id IN PLS_INTEGER, value IN BLOB, offset IN INT, length IN INT)
	
Writes a portion of a byte array to the bytes message stream. Parameter offset is the initial offset within the byte array. If the range [offset, offset+length] exceeds the boundary of the byte array value, then a Java IndexOutOfBounds exception is thrown in the Java stored procedure and this procedure raises error ORA-24197. The index starts from 0. Raises exception ORA-24196 if the bytes message is in write-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	write_char (id IN PLS_INTEGER, value IN CHAR)
	
Writes a character value to the bytes message. If this value has multiple characters, it is the first character that is written. Raises exception ORA-24196 if the bytes message is in write-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	write_double (id IN PLS_INTEGER, value IN DOUBLE PRECISION)
	
Writes a double to the bytes message. Raises exception ORA-24196 if the bytes message is in write-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	write_float (id IN PLS_INTEGER, value IN FLOAT)
	
Writes a float to the bytes message. Raises exception ORA-24196 if the bytes message is in write-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	write_int (id IN PLS_INTEGER, value IN PLS_INTEGER)
	
Writes an INT to the bytes message. Raises exception ORA-24196 if the bytes message is in write-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	write_long (id IN PLS_INTEGER, value IN NUMBER)
	
Writes a long to the bytes message. Raises exception ORA-24196 if the bytes message is in write-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	write_short (id IN PLS_INTEGER, value IN PLS_INTEGER)
	
Writes a short to the bytes message as two bytes, high byte first. Because there is no short type in PL/SQL, INT is used to represent a short. Raises exception ORA-24193 if the parameter value exceeds the valid range, ORA-24196 if the bytes message is in write-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	write_utf (id IN PLS_INTEGER, value IN VARCHAR2)
	
Writes a string to the bytes message stream using UTF-8 encoding in a machine-independent manner. Raises exception ORA-24196 if the bytes message is in write-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	write_utf (id IN PLS_INTEGER, value IN CLOB)
	
Writes a string to the bytes message stream using UTF-8 encoding in a machine-independent manner. Raises exception ORA-24196 if the bytes message is in write-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

SYS.AQ$_JMS_MAP_MESSAGE Type

This type is the ADT used to store a MapMessage in an Oracle Streams AQ queue.

This section contains these topics:

	
CONSTRUCT Function

	
JMS Header Methods

	
System Properties Methods

	
User Properties Methods

	
Payload Methods

Syntax

TYPE aq$_jms_map_message AS object(
 header aq$_jms_header,
 bytes_len int,
 bytes_raw raw(2000),
 bytes_lob blob,
 STATIC FUNCTION construct RETURN aq$_jms_map_message,
 MEMBER PROCEDURE set_replyto (replyto IN sys.aq$_agent),
 MEMBER PROCEDURE set_type (type IN VARCHAR),
 MEMBER FUNCTION get_replyto RETURN sys.aq$_agent,
 MEMBER FUNCTION get_type RETURN VARCHAR,
 MEMBER PROCEDURE set_userid (userid IN VARCHAR),
 MEMBER PROCEDURE set_appid (appid IN VARCHAR),
 MEMBER PROCEDURE set_groupid (groupid IN VARCHAR),
 MEMBER PROCEDURE set_groupseq (groupseq IN INT),
 MEMBER FUNCTION get_userid RETURN VARCHAR,
 MEMBER FUNCTION get_appid RETURN VARCHAR,
 MEMBER FUNCTION get_groupid RETURN VARCHAR,
 MEMBER FUNCTION get_groupseq RETURN INT,
 MEMBER PROCEDURE clear_properties,
 MEMBER PROCEDURE set_boolean_property(property_name IN VARCHAR,
 property_value IN BOOLEAN),
 MEMBER PROCEDURE set_byte_property (property_name IN VARCHAR,
 property_value IN INT),
 MEMBER PROCEDURE set_double_property (property_name IN VARCHAR,
 property_value IN DOUBLE PRECISION),
 MEMBER PROCEDURE set_float_property (property_name IN VARCHAR,
 property_value IN FLOAT),
 MEMBER PROCEDURE set_int_property (property_name IN VARCHAR,
 property_value IN INT),
 MEMBER PROCEDURE set_long_property (property_name IN VARCHAR,
 property_value IN NUMBER),
 MEMBER PROCEDURE set_short_property (property_name IN VARCHAR,
 property_valuE IN INT),
 MEMBER PROCEDURE set_string_property (property_name IN VARCHAR,
 property_value IN VARCHAR),
 MEMBER FUNCTION get_boolean_property (property_name IN VARCHAR) RETURN BOOLEAN,
 MEMBER FUNCTION get_byte_property (property_name IN VARCHAR) RETURN INT,
 MEMBER FUNCTION get_double_property (property_name IN VARCHAR)
 RETURN DOUBLE PRECISION,
 MEMBER FUNCTION get_float_property (property_name IN VARCHAR) RETURN FLOAT,
 MEMBER FUNCTION get_int_property (property_name IN VARCHAR) RETURN INT,
 MEMBER FUNCTION get_long_property (property_name IN VARCHAR) RETURN NUMBER,
 MEMBER FUNCTION get_short_property (property_name IN VARCHAR) RETURN INT,
 MEMBER FUNCTION get_string_property (property_name IN VARCHAR) RETURN VARCHAR,
 MEMBER PROCEDURE set_bytes (payload IN RAW),
 MEMBER PROCEDURE set_bytes (payload IN BLOB),
 MEMBER PROCEDURE get_bytes (payload OUT RAW),
 MEMBER PROCEDURE get_bytes (payload OUT BLOB),
 MEMBER FUNCTION prepare (id IN PLS_INTEGER) RETURN PLS_INTEGER,
 MEMBER PROCEDURE flush (id IN PLS_INTEGER),
 MEMBER PROCEDURE clear_body (id IN PLS_INTEGER),
 MEMBER PROCEDURE clean (id IN PLS_INTEGER),
 STATIC PROCEDURE clean_all,
 MEMBER PROCEDURE set_boolean (id IN PLS_INTEGER, name IN VARCHAR2,
 value IN BOOLEAN),
 MEMBER PROCEDURE set_byte (id IN PLS_INTEGER, name IN VARCHAR2,
 value IN PLS_INTEGER),
 MEMBER PROCEDURE set_bytes (id IN PLS_INTEGER, name IN VARCHAR2,
 value IN RAW),
 MEMBER PROCEDURE set_bytes (id IN PLS_INTEGER, name IN VARCHAR2,
 value IN RAW, offset IN INT, length IN INT),
 MEMBER PROCEDURE set_bytes (id IN PLS_INTEGER, name IN VARCHAR2,
 value IN BLOB),
 MEMBER PROCEDURE set_bytes (id IN PLS_INTEGER, name IN VARCHAR2,
 value IN BLOB, offset IN INT, length IN INT),
 MEMBER PROCEDURE set_char (id IN PLS_INTEGER, name IN VARCHAR2,
 value IN CHAR),
 MEMBER PROCEDURE set_double (id IN PLS_INTEGER, name IN VARCHAR2,
 value IN DOUBLE PRECISION),
 MEMBER PROCEDURE set_float (id IN PLS_INTEGER, name IN VARCHAR2,
 value IN FLOAT),
 MEMBER PROCEDURE set_int (id IN PLS_INTEGER, name IN VARCHAR2,
 value IN PLS_INTEGER),
 MEMBER PROCEDURE set_long (id IN PLS_INTEGER, name IN VARCHAR2,
 value IN NUMBER),
 MEMBER PROCEDURE set_short (id IN PLS_INTEGER, name IN VARCHAR2,
 value IN PLS_INTEGER),
 MEMBER PROCEDURE set_string (id IN PLS_INTEGER, name IN VARCHAR2,
 value IN VARCHAR2),
 MEMBER PROCEDURE set_string (id IN PLS_INTEGER, name IN VARCHAR2,
 value IN CLOB),
 MEMBER FUNCTION get_boolean (id IN PLS_INTEGER, name IN VARCHAR2)
 RETURN BOOLEAN,
 MEMBER FUNCTION get_byte (id IN PLS_INTEGER, name IN VARCHAR2)
 RETURN PLS_INTEGER,
 MEMBER PROCEDURE get_bytes (id IN PLS_INTEGER, name IN VARCHAR2,
 value OUT NOCOPY BLOB),
 MEMBER FUNCTION get_char (id IN PLS_INTEGER, name IN VARCHAR2) RETURN CHAR,
 MEMBER FUNCTION get_double (id IN PLS_INTEGER, name IN VARCHAR2)
 RETURN DOUBLE PRECISION,
 MEMBER FUNCTION get_float (id IN PLS_INTEGER, name IN VARCHAR2) RETURN FLOAT,
 MEMBER FUNCTION get_int (id IN PLS_INTEGER, name IN VARCHAR2)
 RETURN PLS_INTEGER,
 MEMBER FUNCTION get_long (id IN PLS_INTEGER, name IN VARCHAR2)
 RETURN NUMBER,
 MEMBER FUNCTION get_short (id IN PLS_INTEGER, name IN VARCHAR2)
 RETURN PLS_INTEGER,
 MEMBER PROCEDURE get_string (id IN PLS_INTEGER, name IN VARCHAR2,
 value OUT NOCOPY CLOB),
 MEMBER FUNCTION get_names (id IN PLS_INTEGER) RETURN aq$_jms_namearray,
 MEMBER FUNCTION get_names (id IN PLS_INTEGER, names OUT aq$_jms_namearray,
 offset IN PLS_INTEGER, length IN PLS_INTEGER) RETURN PLS_INTEGER,
 MEMBER PROCEDURE get_object (id IN PLS_INTEGER, name IN VARCHAR2,
 value OUT NOCOPY AQ$_JMS_VALUE),
 MEMBER FUNCTION get_size (id IN PLS_INTEGER) RETURN PLS_INTEGER,
 MEMBER FUNCTION item_exists (id IN PLS_INTEGER, name IN VARCHAR2)
 RETURN BOOLEAN);

CONSTRUCT Function

	STATIC FUNCTION construct RETURN aq$_jms_map_message
	
Creates an empty aq$_jms_map_message object.

JMS Header Methods

	set_replyto (replyto IN sys.aq$_agent)
	
Sets the replyto parameter, which corresponds to JMSReplyTo in JMS.

	set_type (type IN VARCHAR)
	
Sets the JMS type, which can be any text, and which corresponds to JMSType in JMS.

	get_replyto RETURN sys.aq$_agent
	
Returns replyto, which corresponds to JMSReplyTo.

	get_type RETURN VARCHAR
	
Returns type, which corresponds to JMSType.

System Properties Methods

	set_userid (userid IN VARCHAR)
	
Sets userid, which corresponds to JMSXUserID in JMS.

	set_appid (appid IN VARCHAR)
	
Sets appid, which corresponds to JMSXAppID in JMS.

	set_groupid (groupid IN VARCHAR)
	
Sets groupid, which corresponds to JMSXGroupID in JMS.

	set_groupseq (groupseq IN INT)
	
Sets groupseq, which corresponds to JMSXGroupSeq in JMS.

	get_userid RETURN VARCHAR
	
Returns userid, which corresponds to JMSXUserID.

	get_appid RETURN VARCHAR
	
Returns appid, which corresponds to JMSXAppID.

	get_groupid RETURN VARCHAR
	
Returns groupid, which corresponds to JMSXGroupID.

	get_groupseq RETURN NUMBER
	
Returns groupseq, which corresponds to JMSXGroupSeq.

User Properties Methods

	clear_properties
	
Clears all user properties. This procedure does not affect system properties.

	set_boolean_property (property_name IN VARCHAR, property_value IN BOOLEAN)
	
Checks whether property_name is null or exists. If not, the procedure stores property_value in an internal representation. Raises exception ORA-24191 if the property name exists or ORA-24192 if the property name is null.

	set_byte_property (property_name IN VARCHAR, property_value IN INT)
	
Checks whether property_name is null or exists. If not, the procedure checks whether property_value is within -128 to 127 (8-bits). This check is necessary because neither PL/SQL nor RDBMS defines the BYTE datatype. Raises exception ORA-24191 if the property name exists, ORA-24192 if the property name is null, or ORA-24193 if the property value exceeds the valid range.

	set_double_property (property_name IN VARCHAR, property_value IN DOUBLE PRECISION)
	
Checks whether property_name is null or exists. If not, the procedure stores property_value. Raises exception ORA-24191 if the property name exists or ORA-24192 if the property name is null.

	set_float_property (property_name IN VARCHAR, property_value IN FLOAT)
	
Checks whether property_name is null or exists. If not, the procedure stores property_value. Raises exception ORA-24191 if the property name exists or ORA-24192 if the property name is null.

	set_int_property (property_name IN VARCHAR, property_value IN INT)
	
Checks whether property_name is null or exists. If not, the procedure checks whether property_value is within -2147483648 to 2147483647 (32-bits). This check is necessary because in PL/SQL and Oracle Database, the INT datatype is 38 bits. Raises exception ORA-24191 if the property name exists, ORA-24192 if the property name is null, or ORA-24193 if the property value exceeds the valid range.

	set_long_property (property_name IN VARCHAR, property_value IN NUMBER)
	
Checks whether property_name is null or exists. If not, the procedure stores property_value. In PL/SQL and Oracle Database, the NUMBER datatype is 38 bits. In Java, the long datatype is 64 bits. Therefore, no range check is needed.Raises exception ORA-24191 if the property name exists or ORA-24192 if the property name is null.

	set_short_property (property_name IN VARCHAR, property_value IN INT)
	
Checks whether property_name is null or exists. If not, the procedure checks whether property_value is within -32768 to 32767 (16-bits). This check is necessary because neither PL/SQL nor RDBMS defines the short datatype. Raises exception ORA-24191 if the property name exists, ORA-24192 if the property name is null, or ORA-24193 if the property value exceeds the valid range.

	set_string_property (property_name IN VARCHAR, property_value IN VARCHAR)
	
Checks whether property_name is null or exists. If not, the procedure stores property_value. Raises exception ORA-24191 if the property name exists or ORA-24192 if the property name is null.

	get_boolean_property (property_name IN VARCHAR) RETURN BOOLEAN
	
If the property with the corresponding property name passed in exists, and if it is a BOOLEAN property, then this function returns the value of the property. Otherwise it returns a null.

	get_byte_property (property_name IN VARCHAR) RETURN INT
	
If the property with the corresponding property name passed in exists, and if it is a BYTE property, then this function returns the value of the property. Otherwise it returns a null.

	get_double_property (property_name IN VARCHAR) RETURN DOUBLE PRECISION
	
If the property with the corresponding property name passed in exists, and if it is a DOUBLE property, then this function returns the value of the property. Otherwise it returns a null.

	get_float_property (property_name IN VARCHAR) RETURN FLOAT
	
If the property with the corresponding property name passed in exists, and if it is a FLOAT property, then this function returns the value of the property. Otherwise it returns a null.

	get_int_property (property_name IN VARCHAR) RETURN INT
	
If the property with the corresponding property name passed in exists, and if it is a Integer property, then this function returns the value of the property. Otherwise it returns a null.

	get_long_property (property_name IN VARCHAR) RETURN NUMBER
	
If the property with the corresponding property name passed in exists, and if it is a long property, then this function returns the value of the property. Otherwise it returns a null.

	get_short_property (property_name IN VARCHAR) RETURN INT
	
If the property with the corresponding property name passed in exists, and if it is a short property, then this function returns the value of the property. Otherwise it returns a null.

	get_string_property (property_name IN VARCHAR) RETURN VARCHAR
	
If the property with the corresponding property name passed in exists, and if it is a STRING property, then this function returns the value of the property. Otherwise it returns a null.

Payload Methods

	set_bytes (payload IN RAW)
	
Sets the internal payload as a RAW variable without any interpretation. The payload of aq$_jms_map_message is stored as either RAW or BLOB in the database. This member function sets a payload as a RAW variable without interpreting it.

	set_bytes (payload IN BLOB)
	
Sets the internal payload as a BLOB variable without any interpretation. The payload of aq$_jms_map_message is stored as either RAW or BLOB in the database. This member function sets a payload as a BLOB variable without interpreting it.

	get_bytes (payload OUT RAW)
	
Puts the internal payload into a RAW variable without any interpretation. The payload of aq$_jms_map_message is stored as either RAW or BLOB in the database. This member function gets a payload as raw bytes without interpreting it. Raises exceptions ORA-24190 if the length of internal payload is more than 32767.

	get_bytes (payload OUT BLOB)
	
Puts the internal payload into a BLOB variable without any interpretation. The payload of aq$_jms_map_message is stored as either RAW or BLOB in the database. This member function gets a payload as a BLOB without interpreting it.

	prepare (id IN PLS_INTEGER) RETURN PLS_INTEGER
	
Takes the byte array stored in aq$_jms_map_message and decodes it as a Java object in the Java stored procedure. The result of the decoding is stored as a static variable in Jserv session memory. Parameter id is used to identify the slot where the Java object is stored in the Oracle Database JVM session memory. If id is null, then a new slot is created for this PL/SQL object. Subsequent JMS operations on the payload need to provide this operation ID.

This function raises ORA-24197 if the Java stored procedure throws an exception during execution, ORA-24198 if the operation ID is invalid, or ORA-24199 if the Java stored procedure message store overflows.

	flush (id IN PLS_INTEGER)
	
Takes the static variable in Jserv and synchronizes the content back to aq$_jms_map_message. This procedure raises ORA-24197 if the Java stored procedure throws an exception during execution or ORA-24198 if the operation ID is invalid.

	clear_body (id IN PLS_INTEGER)
	
Sets the Java stored procedure static variable to empty payload. Parameter id is used to identify the slot where the Java object is stored in the Oracle Database JVM session memory. If id is null, a new slot is created for this PL/SQL object. Subsequent JMS operations on the payload need to provide this operation ID.

This function raises ORA-24197 if the Java stored procedure throws an exception during execution, ORA-24198 if the operation ID is invalid, or ORA-24199 if the Java stored procedure message store overflows.

	clean (id IN PLS_INTEGER)
	
Closes and cleans up the DataInputStream or DataOutputStream at the Java stored procedure side corresponding to the operation ID. It is very important to call this procedure to avoid memory leaks. This procedure raises ORA-24197 if the Java stored procedure throws an exception during execution or ORA-24198 if the operation ID is invalid.

	clean_all
	
Closes and cleans up all the messages in the corresponding type of message store at the Java stored procedure side. This procedure raises ORA-24197 if the Java stored procedure throws an exception during execution.

	set_boolean (id IN PLS_INTEGER, name IN VARCHAR2, value IN BOOLEAN)
	
Sets the Boolean value with the specified name in the map. Raises exception ORA-24197 if the Java stored procedure throws an exception during execution or ORA-24198 if the operation ID is invalid.

	set_byte (id IN PLS_INTEGER, name IN VARCHAR2, value IN PLS_INTEGER)
	
Sets the BYTE value with the specified name in the map. Because there is no BYTE type in PL/SQL, PLS_INTEGER is used to represent a byte. Raises exception ORA-24197 if the Java stored procedure throws an exception during execution or ORA-24198 if the operation ID is invalid.

	set_bytes (id IN PLS_INTEGER, name IN VARCHAR2, value IN RAW))
	
Sets the byte array value with the specified name in the map. Raises exception ORA-24197 if the Java stored procedure throws an exception during execution or ORA-24198 if the operation ID is invalid.

	set_bytes (id IN PLS_INTEGER, name IN VARCHAR2, value IN RAW, offset IN INT, length IN INT)
	
Sets a portion of the byte array value with the specified name in the map. Parameter offset is the initial offset within the byte array, and parameter length is the number of bytes to use. If the range [offset … offset+length] exceeds the boundary of the byte array value, then a Java IndexOutOfBounds exception is thrown in the Java stored procedure and this procedure raises an ORA-24197 error. The index starts from 0. Raises exception ORA-24197 if the Java stored procedure throws an exception during execution or ORA-24198 if the operation ID is invalid.

	set_bytes (id IN PLS_INTEGER, name IN VARCHAR2, value IN BLOB)
	
Sets the byte array value with the specified name in the map. Raises exception ORA-24197 if the Java stored procedure throws an exception during execution or ORA-24198 if the operation ID is invalid.

	set_bytes (id IN PLS_INTEGER, name IN VARCHAR2, value IN BLOB, offset IN INT, length IN INT)
	
Sets a portion of the byte array value with the specified name in the map. Parameter offset is the initial offset within the byte array, and parameter length is the number of bytes to use. If the range [offset … offset+length] exceeds the boundary of the byte array value, then a Java IndexOutOfBounds exception is thrown in the Java stored procedure, and this procedure raises an ORA-24197 error. The index starts from 0. Raises exception ORA-24197 if the Java stored procedure throws an exception during execution or ORA-24198 if the operation ID is invalid.

	set_char (id IN PLS_INTEGER, name IN VARCHAR2, value IN CHAR)
	
Sets the character value with the specified name in the map. If this value has multiple characters, then it is the first character that is used. Raises exception ORA-24197 if the Java stored procedure throws an exception during execution or ORA-24198 if the operation ID is invalid.

	set_double (id IN PLS_INTEGER, name IN VARCHAR2, value IN DOUBLE PRECISION)
	
Sets the double value with the specified name in the map. Raises exception ORA-24197 if the Java stored procedure throws an exception during execution or ORA-24198 if the operation ID is invalid.

	set_float (id IN PLS_INTEGER, name IN VARCHAR2, value IN FLOAT)
	
This procedure is to set the float value with the specified name in the map. Raises exception ORA-24197 if the Java stored procedure throws an exception during execution or ORA-24198 if the operation ID is invalid.

	set_int (id IN PLS_INTEGER, name IN VARCHAR2, value IN PLS_INTEGER)
	
Sets the int value with the specified name in the map. Raises exception ORA-24197 if the Java stored procedure throws an exception during execution or ORA-24198 if the operation ID is invalid.

	set_long (id IN PLS_INTEGER, name IN VARCHAR2, value IN NUMBER)
	
Sets the long value with the specified name in the map. Raises exception ORA-24197 if the Java stored procedure throws an exception during execution or ORA-24198 if the operation ID is invalid.

	set_short (id IN PLS_INTEGER, name IN VARCHAR2, value IN PLS_INTEGER)
	
Sets the short value with the specified name in the map. Because there is no short type in PL/SQL, PLS_INTEGER is used to represent a short. Raises exception ORA-24197 if the Java stored procedure throws an exception during execution or ORA-24198 if the operation ID is invalid.

	set_string (id IN PLS_INTEGER, name IN VARCHAR2, value IN VARCHAR2)
	
Sets the string value with the specified name in the map. Raises exception ORA-24197 if the Java stored procedure throws an exception during execution or ORA-24198 if the operation ID is invalid.

	set_string (id IN PLS_INTEGER, name IN VARCHAR2, value IN CLOB))
	
Sets the string value with the specified name in the map. Raises exception ORA-24197 if the Java stored procedure throws an exception during execution or ORA-24198 if the operation ID is invalid.

	get_boolean (id IN PLS_INTEGER, name IN VARCHAR2) RETURN BOOLEAN
	
Retrieves the Boolean value with the specified name. If there is no item by this name, then null is returned. Raises exception ORA-24194 if the type conversion between the type of real value and the expected type is invalid, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	get_byte (id IN PLS_INTEGER, name IN VARCHAR2) RETURN PLS_INTEGER
	
Retrieves the BYTE value with the specified name. If there is no item by this name, then null is returned. Because there is no BYTE type in PL/SQL, PLS_INTEGER is used to represent a byte. Although the PL/SQL users get an PLS_INTEGER, they are guaranteed that the value is in the Java BYTE value range. If this value is issued with a set_byte function, then there will not be an out of range error. Raises exception ORA-24194 if the type conversion between the type of real value and the expected type is invalid, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	get_bytes (id IN PLS_INTEGER, name IN VARCHAR2, value OUT NOCOPY BLOB)
	
Retrieves the byte array value with the specified name. If there is no item by this name, then null is returned. Because the size of the array might be larger than the limit of PL/SQL RAW type, a BLOB is always returned here. The BLOB returned is a copy, which means it can be modified without affecting the message payload. Raises exception ORA-24194 if the type conversion between the type of real value and the expected type is invalid, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	get_char (id IN PLS_INTEGER, name IN VARCHAR2) RETURN CHAR
	
Retrieves and returns the character value with the specified name. If there is no item by this name, then null is returned. Raises exception ORA-24194 if the type conversion between the type of real value and the expected type is invalid.

	get_double (id IN PLS_INTEGER, name IN VARCHAR2) RETURN DOUBLE PRECISION
	
Retrieves and returns the double value with the specified name. If there is no item by this name, then null is returned. Raises exception ORA-24194 if the type conversion between the type of real value and the expected type is invalid.

	get_float (id IN PLS_INTEGER, name IN VARCHAR2) RETURN FLOAT
	
Retrieves the float value with the specified name. If there is no item by this name, then null is returned. Raises exception ORA-24194 if the type conversion between the type of real value and the expected type is invalid, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	get_int (id IN PLS_INTEGER, name IN VARCHAR2) RETURN PLS_INTEGER
	
Retrieves the INT value with the specified name. If there is no item by this name, then null is returned. Raises exception ORA-24194 if the type conversion between the type of real value and the expected type is invalid, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	get_long (id IN PLS_INTEGER, name IN VARCHAR2) RETURN NUMBER
	
Retrieves the long value with the specified name. If there is no item by this name, then null is returned. Raises exception ORA-24194 if the type conversion between the type of real value and the expected type is invalid, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	get_short (id IN PLS_INTEGER, name IN VARCHAR2) RETURN PLS_INTEGER
	
Retrieves the short value with the specified name. If there is no item by this name, then null is returned. Because there is no short type in PL/SQL, INT is used to represent a short. Although the PL/SQL users get an PLS_INTEGER, they are guaranteed that the value is in the Java short value range. If this value is issued with a set_short function, then there will not be an out of range error. Raises exception ORA-24194 if the type conversion between the type of real value and the expected type is invalid, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	get_string (id IN PLS_INTEGER, name IN VARCHAR2, value OUT NOCOPY CLOB)
	
Retrieves the string value with the specified name. If there is no item by this name, then null is returned. Raises exception ORA-24194 if the type conversion between the type of real value and the expected type is invalid, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	get_names (id IN PLS_INTEGER) RETURN aq$_jms_namearray
	
Retrieves all the names within the map message and returns them in a varray. Because aq$_jms_namearray has a size as 1024 and each element is a VARCHAR(200), this function will return an error if the size of the name array of the payload exceeds the limit. Raises exception ORA-24195 if the size of the name array or the size of a name exceeds the limit.

	get_names (id IN PLS_INTEGER, names OUT aq$_jms_namearray, offset IN PLS_INTEGER, length IN PLS_INTEGER) RETURN PLS_INTEGER
	
Retrieves a portion of the names within the map message. Because aq$_jms_namearray has a size as 1024 and each element is a VARCHAR(200), this function will return an error if either limits are exceeded during the retrieval. (This means there is no sense to put a length parameter greater than 1024.) The index of the names of a map messages begins from 0. Parameter offset is the offset from which to start retrieving.

The function returns the number of names that have been retrieved. The names retrieved is the intersection of the interval [offset, offset+length-1] and interval [0, size-1] where size is the size of this map message. If the intersection is an empty set, then names will be returned as null and the function returns 0 as the number of names retrieved. If users iterate the names by retrieving in small steps, then this can be used to test that there are no more names to read from map message.

Raises exception ORA-24195 if the size of the name array or the size of a name exceed the limit, ORA-24197 if the Java stored procedure throws an exception during execution or ORA-24198 if the operation ID is invalid.

	get_object (id IN PLS_INTEGER, name IN VARCHAR2, value OUT NOCOPY AQ$_JMS_VALUE)
	
Returns a general value ADT AQ$_JMS_VALUE. If there is no item by this name, then null is returned.Users can use the type attribute of this ADT to interpret the data. See the map in the AQ$_JMS_VALUE ADT for the correspondence among dbms_jms_plsql package constants, Java data type and AQ$_JMS_VALUE attribute. Note this member procedure might bring additional overhead compared to other get member procedures or functions. It is used only if the user does not know the data type of the fields within a message before hand. Otherwise it is a good idea to use a specific get member procedure or function. Raises exception ORA-24197 if the Java stored procedure throws an exception during execution or ORA-24198 if the operation ID is invalid.

	get_size (id IN PLS_INTEGER) RETURN PLS_INTEGER
	
Retrieves the size of the map message. Raises exception ORA-24197 if the Java stored procedure throws an exception during execution or ORA-24198 if the operation ID is invalid.

	item_exists (id IN PLS_INTEGER, name IN VARCHAR2) RETURN BOOLEAN
	
Indicates that an item exists in this map message by returning TRUE. Raises exception ORA-24197 if the Java stored procedure throws an exception during execution or ORA-24198 if the operation ID is invalid.

SYS.AQ$_JMS_STREAM_MESSAGE Type

This type is the ADT used to store a StreamMessage in an Oracle Streams AQ queue.

This section contains these topics:

	
CONSTRUCT Function

	
JMS Header Methods

	
System Properties Methods

	
User Properties Methods

	
Payload Methods

Syntax

TYPE aq$_jms_stream_message AS object(
 header aq$_jms_header,
 bytes_len int,
 bytes_raw raw(2000),
 bytes_lob blob,
 STATIC FUNCTION construct RETURN aq$_jms_stream_message,
 MEMBER PROCEDURE set_replyto (replyto IN sys.aq$_agent),
 MEMBER PROCEDURE set_type (type IN VARCHAR),
 MEMBER FUNCTION get_replyto RETURN sys.aq$_agent,
 MEMBER FUNCTION get_type RETURN VARCHAR,
 MEMBER PROCEDURE set_userid (userid IN VARCHAR),
 MEMBER PROCEDURE set_appid (appid IN VARCHAR),
 MEMBER PROCEDURE set_groupid (groupid IN VARCHAR),
 MEMBER PROCEDURE set_groupseq (groupseq IN INT),
 MEMBER FUNCTION get_userid RETURN VARCHAR,
 MEMBER FUNCTION get_appid RETURN VARCHAR,
 MEMBER FUNCTION get_groupid RETURN VARCHAR,
 MEMBER FUNCTION get_groupseq RETURN INT,
 MEMBER PROCEDURE clear_properties,
 MEMBER PROCEDURE set_boolean_property(property_name IN VARCHAR,
 property_value IN BOOLEAN),
 MEMBER PROCEDURE set_byte_property (property_name IN VARCHAR,
 property_value IN INT),
 MEMBER PROCEDURE set_double_property (property_name IN VARCHAR,
 property_value IN DOUBLE PRECISION),
 MEMBER PROCEDURE set_float_property (property_name IN VARCHAR,
 property_value IN FLOAT),
 MEMBER PROCEDURE set_int_property (property_name IN VARCHAR,
 property_value IN INT),
 MEMBER PROCEDURE set_long_property (property_name IN VARCHAR,
 property_value IN NUMBER),
 MEMBER PROCEDURE set_short_property (property_name IN VARCHAR,
 property_valuE IN INT),
 MEMBER PROCEDURE set_string_property (property_name IN VARCHAR,
 property_value IN VARCHAR),
 MEMBER FUNCTION get_boolean_property (property_name IN VARCHAR) RETURN BOOLEAN,
 MEMBER FUNCTION get_byte_property (property_name IN VARCHAR) RETURN INT,
 MEMBER FUNCTION get_double_property (property_name IN VARCHAR)
 RETURN DOUBLE PRECISION,
 MEMBER FUNCTION get_float_property (property_name IN VARCHAR) RETURN FLOAT,
 MEMBER FUNCTION get_int_property (property_name IN VARCHAR) RETURN INT,
 MEMBER FUNCTION get_long_property (property_name IN VARCHAR) RETURN NUMBER,
 MEMBER FUNCTION get_short_property (property_name IN VARCHAR) RETURN INT,
 MEMBER FUNCTION get_string_property (property_name IN VARCHAR) RETURN VARCHAR,
 MEMBER PROCEDURE set_bytes (payload IN RAW),
 MEMBER PROCEDURE set_bytes (payload IN BLOB),
 MEMBER PROCEDURE get_bytes (payload OUT RAW),
 MEMBER PROCEDURE get_bytes (payload OUT BLOB),
 MEMBER FUNCTION prepare (id IN PLS_INTEGER) RETURN PLS_INTEGER,
 MEMBER PROCEDURE reset (id IN PLS_INTEGER),
 MEMBER PROCEDURE flush (id IN PLS_INTEGER),
 MEMBER PROCEDURE clear_body (id IN PLS_INTEGER),
 MEMBER PROCEDURE clean (id IN PLS_INTEGER),
 STATIC PROCEDURE clean_all,
 MEMBER FUNCTION get_mode (id IN PLS_INTEGER) RETURN PLS_INTEGER,
 MEMBER FUNCTION read_boolean (id IN PLS_INTEGER) RETURN BOOLEAN,
 MEMBER FUNCTION read_byte (id IN PLS_INTEGER) RETURN PLS_INTEGER,
 MEMBER FUNCTION read_bytes (id IN PLS_INTEGER) RETURN BLOB,
 MEMBER PROCEDURE read_bytes (id IN PLS_INTEGER, value OUT NOCOPY BLOB),
 MEMBER FUNCTION read_char (id IN PLS_INTEGER) RETURN CHAR,
 MEMBER FUNCTION read_double (id IN PLS_INTEGER) RETURN DOUBLE PRECISION,
 MEMBER FUNCTION read_float (id IN PLS_INTEGER) RETURN FLOAT,
 MEMBER FUNCTION read_int (id IN PLS_INTEGER) RETURN PLS_INTEGER,
 MEMBER FUNCTION read_long (id IN PLS_INTEGER) RETURN NUMBER,
 MEMBER FUNCTION read_short (id IN PLS_INTEGER) RETURN PLS_INTEGER,
 MEMBER FUNCTION read_string RETURN CLOB,
 MEMBER PROCEDURE read_string (id IN PLS_INTEGER, value OUT NOCOPY CLOB),
 MEMBER PROCEDURE read_object (id IN PLS_INTEGER,
 value OUT NOCOPY AQ$_JMS_VALUE),
 MEMBER PROCEDURE write_boolean (id IN PLS_INTEGER, value IN BOOLEAN),
 MEMBER PROCEDURE write_byte (id IN PLS_INTEGER, value IN INT),
 MEMBER PROCEDURE write_bytes (id IN PLS_INTEGER, value IN RAW),
 MEMBER PROCEDURE write_bytes (id IN PLS_INTEGER, value IN RAW,
 offset IN INT, length IN INT),
 MEMBER PROCEDURE write_bytes (id IN PLS_INTEGER, value IN BLOB),
 MEMBER PROCEDURE write_bytes (id IN PLS_INTEGER, value IN BLOB,
 offset IN INT, length IN INT),
 MEMBER PROCEDURE write_char (id IN PLS_INTEGER, value IN CHAR),
 MEMBER PROCEDURE write_double (id IN PLS_INTEGER, value IN DOUBLE PRECISION),
 MEMBER PROCEDURE write_float (id IN PLS_INTEGER, value IN FLOAT),
 MEMBER PROCEDURE write_int (id IN PLS_INTEGER, value IN PLS_INTEGER),
 MEMBER PROCEDURE write_long (id IN PLS_INTEGER, value IN NUMBER),
 MEMBER PROCEDURE write_short (id IN PLS_INTEGER, value IN PLS_INTEGER),
 MEMBER PROCEDURE write_string (id IN PLS_INTEGER, value IN VARCHAR2),
 MEMBER PROCEDURE write_string (id IN PLS_INTEGER, value IN CLOB));

CONSTRUCT Function

	STATIC FUNCTION construct RETURN aq$_jms_stream_message
	
Creates an empty aq$_jms_stream_message object.

JMS Header Methods

	set_replyto (replyto IN sys.aq$_agent)
	
Sets the replyto parameter, which corresponds to JMSReplyTo in JMS.

	set_type (type IN VARCHAR)
	
Sets the JMS type, which can be any text, and which corresponds to JMSType in JMS.

	get_replyto RETURN sys.aq$_agent
	
Returns replyto, which corresponds to JMSReplyTo.

	get_type RETURN VARCHAR
	
Returns type, which corresponds to JMSType.

System Properties Methods

	set_userid (userid IN VARCHAR)
	
Sets userid, which corresponds to JMSXUserID in JMS.

	set_appid (appid IN VARCHAR)
	
Sets appid, which corresponds to JMSXAppID in JMS.

	set_groupid (groupid IN VARCHAR)
	
Sets groupid, which corresponds to JMSXGroupID in JMS.

	set_groupseq (groupseq IN INT)
	
Sets groupseq, which corresponds to JMSXGroupSeq in JMS.

	get_userid RETURN VARCHAR
	
Returns userid, which corresponds to JMSXUserID.

	get_appid RETURN VARCHAR
	
Returns appid, which corresponds to JMSXAppID.

	get_groupid RETURN VARCHAR
	
Returns groupid, which corresponds to JMSXGroupID.

	get_groupseq RETURN NUMBER
	
Returns groupseq, which corresponds to JMSXGroupSeq.

User Properties Methods

	clear_properties
	
Clears all user properties. This procedure does not affect system properties.

	set_boolean_property (property_name IN VARCHAR, property_value IN BOOLEAN)
	
Checks whether property_name is null or exists. If not, the procedure stores property_value in an internal representation. Raises exception ORA-24191 if the property name exists or ORA-24192 if the property name is null.

	set_byte_property (property_name IN VARCHAR, property_value IN INT)
	
Checks whether property_name is null or exists. If not, the procedure checks whether property_value is within -128 to 127 (8-bits). This check is necessary because neither PL/SQL nor RDBMS defines the BYTE datatype. Raises exception ORA-24191 if the property name exists, ORA-24192 if the property name is null, or ORA-24193 if the property value exceeds the valid range.

	set_double_property (property_name IN VARCHAR, property_value IN DOUBLE PRECISION)
	
Checks whether property_name is null or exists. If not, the procedure stores property_value. Raises exception ORA-24191 if the property name exists or ORA-24192 if the property name is null.

	set_float_property (property_name IN VARCHAR, property_value IN FLOAT)
	
Checks whether property_name is null or exists. If not, the procedure stores property_value. Raises exception ORA-24191 if the property name exists or ORA-24192 if the property name is null.

	set_int_property (property_name IN VARCHAR, property_value IN INT)
	
Checks whether property_name is null or exists. If not, the procedure checks whether property_value is within -2147483648 to 2147483647 (32-bits). This check is necessary because in PL/SQL and Oracle Database, the INT datatype is 38 bits. Raises exception ORA-24191 if the property name exists, ORA-24192 if the property name is null, or ORA-24193 if the property value exceeds the valid range.

	set_long_property (property_name IN VARCHAR, property_value IN NUMBER)
	
Checks whether property_name is null or exists. If not, the procedure stores property_value. In PL/SQL and Oracle Database, the NUMBER datatype is 38 bits. In Java, the long datatype is 64 bits. Therefore, no range check is needed.Raises exception ORA-24191 if the property name exists or ORA-24192 if the property name is null.

	set_short_property (property_name IN VARCHAR, property_value IN INT)
	
Checks whether property_name is null or exists. If not, the procedure checks whether property_value is within -32768 to 32767 (16-bits). This check is necessary because neither PL/SQL nor RDBMS defines the short datatype. Raises exception ORA-24191 if the property name exists, ORA-24192 if the property name is null, or ORA-24193 if the property value exceeds the valid range.

	set_string_property (property_name IN VARCHAR, property_value IN VARCHAR)
	
Checks whether property_name is null or exists. If not, the procedure stores property_value. Raises exception ORA-24191 if the property name exists or ORA-24192 if the property name is null.

	get_boolean_property (property_name IN VARCHAR) RETURN BOOLEAN
	
If the property with the corresponding property name passed in exists, and if it is a BOOLEAN property, then this function returns the value of the property. Otherwise it returns a null.

	get_byte_property (property_name IN VARCHAR) RETURN INT
	
If the property with the corresponding property name passed in exists, and if it is a BYTE property, then this function returns the value of the property. Otherwise it returns a null.

	get_double_property (property_name IN VARCHAR) RETURN DOUBLE PRECISION
	
If the property with the corresponding property name passed in exists, and if it is a DOUBLE property, then this function returns the value of the property. Otherwise it returns a null.

	get_float_property (property_name IN VARCHAR) RETURN FLOAT
	
If the property with the corresponding property name passed in exists, and if it is a FLOAT property, then this function returns the value of the property. Otherwise it returns a null.

	get_int_property (property_name IN VARCHAR) RETURN INT
	
If the property with the corresponding property name passed in exists, and if it is a Integer property, then this function returns the value of the property. Otherwise it returns a null.

	get_long_property (property_name IN VARCHAR) RETURN NUMBER
	
If the property with the corresponding property name passed in exists, and if it is a long property, then this function returns the value of the property. Otherwise it returns a null.

	get_short_property (property_name IN VARCHAR) RETURN INT
	
If the property with the corresponding property name passed in exists, and if it is a short property, then this function returns the value of the property. Otherwise it returns a null.

	get_string_property (property_name IN VARCHAR) RETURN VARCHAR
	
If the property with the corresponding property name passed in exists, and if it is a STRING property, then this function returns the value of the property. Otherwise it returns a null.

Payload Methods

	get_bytes (payload OUT RAW)
	
Puts the internal payload into a RAW variable without any interpretation. The payload of type aq$_jms_stream_message is stored as either RAW or BLOB in the database. This member function gets a payload as raw bytes without interpreting it. Raises exception ORA-24190 if the length of internal payload is more than 32767.

	get_bytes (payload OUT BLOB)
	
Puts the internal payload into a BLOB variable without any interpretation. The payload of type aq$_jms_stream_message is stored as either RAW or BLOB in the database. This member function gets a payload as a BLOB variable without interpreting it.

	set_bytes (payload IN RAW)
	
Sets the internal payload as the RAW variable without any interpretation. The payload of type aq$_jms_stream_message is stored as either RAW or BLOB in the database. This member function sets a payload as raw bytes without interpreting it.

	set_bytes (payload IN BLOB)
	
Sets the internal payload as the BLOB variable without any interpretation. The payload of type aq$_jms_stream_message is stored as either RAW or BLOB in the database. This member function sets a payload as a BLOB variable without interpreting it.

	prepare (id IN PLS_INTEGER) RETURN PLS_INTEGER
	
Takes the byte array stored in aq$_jms_stream_message and decodes it as a Java object in the Java stored procedure. The result of the decoding is stored as a static variable in Jserv session memory. Parameter id is used to identify the slot where the Java object is stored in the Oracle Database JVM session memory. If id is null, then a new slot is created for this PL/SQL object. Subsequent JMS operations on the payload need to provide this operation ID.

This function also sets the message access mode to MESSAGE_ACCESS_READONLY. Subsequent calls of write_XXX procedure raise an ORA-24196 error. Users can call the clear_body procedure to set the message access mode to MESSAGE_ACCESS_READONLY.

This function raises ORA-24197 if the Java stored procedure throws an exception during execution, ORA-24198 if the operation ID is invalid, or ORA-24199 if the Java stored procedure message store overflows.

	reset (id IN PLS_INTEGER)
	
Resets the starting position of the stream to the beginning and puts the stream message in MESSAGE_ACCESS_READONLY mode.

	flush (id IN PLS_INTEGER)
	
Takes the static variable in Jserv and synchronizes the content back to aq$_jms_stream_message. This procedure will not affect the underlying access mode. This procedure raises ORA-24197 if the Java stored procedure throws an exception during execution or ORA-24198 if the operation ID is invalid.

	clear_body (id IN PLS_INTEGER)
	
Sets the Java stored procedure static variable to empty payload. Parameter id is used to identify the slot where the Java object is stored in the Oracle Database JVM session memory. If id is null, a new slot is created for this PL/SQL object. Subsequent JMS operations on the payload need to provide this operation ID.

It also sets the message access mode to MESSAGE_ACCESS_WRITEONLY. Later calls of read_XXX procedure raise ORA-24196 error. Users can call the reset or prepare procedures to set the message access mode to MESSAGE_ACCESS_READONLY. Write-only and read-only modes affect only the payload functions of AQ$_JMS_BYTES_MESSAGE. They do not affect the header functions.

This function raises ORA-24197 if the Java stored procedure throws an exception during execution, ORA-24198 if the operation ID is invalid, or ORA-24199 if the Java stored procedure message store overflows.

	clean (id IN PLS_INTEGER)
	
Closes and cleans up the DataInputStream or DataOutputStream at the Java stored procedure side corresponding to the operation ID. It is very important to call this procedure to avoid memory leaks. This procedure raises ORA-24197 if the Java stored procedure throws an exception during execution or ORA-24198 if the operation ID is invalid.

	clean_all
	
Closes and cleans up all the messages in the corresponding type of message store at the Java stored procedure side. This procedure raises ORA-24197 if the Java stored procedure throws an exception during execution.

	get_mode (id IN PLS_INTEGER) RETURN PLS_INTEGER
	
Returns the current mode of this message. The return value is either SYS.dbms_aqjms.READ_ONLY or SYS.dbms_aqjms.WRITE_ONLY. Raises exception ORA-24197 if the Java stored procedure throws an exception during execution or ORA-24198 if the operation ID is invalid.

	read_boolean (id IN PLS_INTEGER) RETURN BOOLEAN
	
Reads and returns a Boolean value from the stream message. If the end of the message stream has been reached, then null is returned. Raises exception ORA-24194 if the type conversion between the type of real value and the expected type is invalid, ORA-24196 if the stream message is in write-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	read_byte (id IN PLS_INTEGER) RETURN PLS_INTEGER
	
Reads and returns a byte value from the stream message. If the end of the message stream has been reached, then null is returned. Because there is no BYTE type in PL/SQL, INT is used to represent a byte. Although PL/SQL users get an INT, they are guaranteed that the value is in the Java BYTE value range. If this value is issued with a write_byte function, then there will not be an out of range error. Raises exception ORA-24194 if the type conversion between the type of real value and the expected type is invalid, ORA-24196 if the stream message is in write-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	read_bytes (id IN PLS_INTEGER) RETURN BLOB
	
Reads and returns a byte array from the stream message. If the end of the message stream has been reached, then null is returned. Raises exception ORA-24194 if the type conversion between the type of real value and the expected type is invalid or ORA-24196 if the stream message is in write-only mode.

	read_bytes (id IN PLS_INTEGER, value OUT NOCOPY BLOB)
	
Reads a byte array from the stream message. If the end of the message stream has been reached, then null is returned. Raises exception ORA-24194 if the type conversion between the type of real value and the expected type is invalid, ORA-24196 if the stream message is in write-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	read_char (id IN PLS_INTEGER) RETURN CHAR
	
Reads and returns a character value from the stream message. If the end of the message stream has been reached, then null is returned. Raises exception ORA-24194 if the type conversion between the type of real value and the expected type is invalid, ORA-24196 if the stream message is in write-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	read_double (id IN PLS_INTEGER) RETURN DOUBLE PRECISION
	
Reads and returns a double from the stream message. If the end of the message stream has been reached, then null is returned. Raises exception ORA-24194 if the type conversion between the type of real value and the expected type is invalid, ORA-24196 if the stream message is in write-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	read_float (id IN PLS_INTEGER) RETURN FLOAT
	
Reads and returns a float from the stream message. If the end of the message stream has been reached, then null is returned. Raises exception ORA-24194 if the type conversion between the type of real value and the expected type is invalid, ORA-24196 if the stream message is in write-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	read_int (id IN PLS_INTEGER) RETURN PLS_INTEGER
	
Reads and returns an INT from the stream message. If the end of the message stream has been reached, then null is returned. Raises exception ORA-24194 if the type conversion between the type of real value and the expected type is invalid, ORA-24196 if the stream message is in write-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	read_long (id IN PLS_INTEGER) RETURN NUMBER
	
Reads and returns a long from the stream message. If the end of the message stream has been reached, then null is returned. Raises exception ORA-24194 if the type conversion between the type of real value and the expected type is invalid, ORA-24196 if the stream message is in write-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	read_short (id IN PLS_INTEGER) RETURN PLS_INTEGER
	
Reads and returns a short value from the stream message. If the end of the message stream has been reached, then null is returned. Because there is no short type in PL/SQL, INT is used to represent a byte. Although PL/SQL users get an INT, they are guaranteed that the value is in the Java short value range. If this value is issued with a write_short function, then there will not be an out of range error. Raises exception ORA-24194 if the type conversion between the type of real value and the expected type is invalid, ORA-24196 if the stream message is in write-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	read_string RETURN CLOB
	
Reads and returns a string from the stream message. If the end of the message stream has been reached, then null is returned. Raises exception ORA-24194 if the type conversion between the type of real value and the expected type is invalid or ORA-24196 if the stream message is in write-only mode.

	read_string (id IN PLS_INTEGER, value OUT NOCOPY CLOB)
	
Reads a string from the stream message. If the end of the message stream has been reached, then null is returned. Raises exception ORA-24194 if the type conversion between the type of real value and the expected type is invalid, ORA-24196 if the stream message is in write-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	read_object (id IN PLS_INTEGER, value OUT NOCOPY AQ$_JMS_VALUE)
	
Returns a general value ADT AQ$_JMS_VALUE. Users can use the type attribute of this ADT to interpret the data. See Table 246-2 for the correspondence among dbms_jms_plsql package constants, Java data type and AQ$_JMS_VALUE attribute. This member procedure might bring additional overhead compared to other read member procedures or functions. It is used only if the user does not know the data type of the fields within a message beforehand. Otherwise it is a good idea to use a specific read member procedure or function.

Raises exception ORA-24194 if the type conversion between the type of real value and the expected type is invalid, ORA-24196 if the stream message is in write-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	write_boolean (id IN PLS_INTEGER, value IN BOOLEAN)
	
Writes a Boolean to the stream message. Raises exceptions ORA-24196 if the stream message is in read-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	write_byte (id IN PLS_INTEGER, value IN INT)
	
Writes a byte to the stream message. Because there is no BYTE type in PL/SQL, INT is used to represent a byte. Raises exceptions ORA-24196 if the stream message is in read-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	write_bytes (id IN PLS_INTEGER, value IN RAW)
	
Writes a byte array field to the stream message. Consecutively written byte array fields are treated as two distinct fields when the fields are read. Raises exceptions ORA-24196 if the stream message is in read-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	write_bytes (id IN PLS_INTEGER, value IN RAW, offset IN INT, length IN INT)
	
Writes a portion of a byte array as a byte array field to the stream message. Consecutively written byte array fields are treated as two distinct fields when the fields are read. Parameter offset is the initial offset within the byte array, and parameter length is the number of bytes to use. If the range [offset, offset+length] exceeds the boundary of the byte array value, then a Java IndexOutOfBounds exception is thrown in the Java stored procedure. The index starts from 0.

Raises exceptions ORA-24196 if the stream message is in read-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	write_bytes (id IN PLS_INTEGER, value IN BLOB)
	
Writes a byte array field to the stream message. Consecutively written byte array fields are treated as two distinct fields when the fields are read. Raises exceptions ORA-24196 if the stream message is in read-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	write_bytes (id IN PLS_INTEGER, value IN BLOB, offset IN INT, length IN INT)
	
Writes a portion of a byte array as a byte array field to the stream message. Consecutively written byte array fields are treated as two distinct fields when the fields are read. Parameter offset is the initial offset within the byte array, and parameter length is the number of bytes to use. If the range [offset, offset+length] exceeds the boundary of the byte array value, then a Java IndexOutOfBounds exception is thrown in the Java stored procedure. The index starts from 0.

Raises exceptions ORA-24196 if the stream message is in read-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	write_char (id IN PLS_INTEGER, value IN CHAR)
	
Writes a character value to the stream message. If this value has multiple characters, then it is the first character that is written. Raises exceptions ORA-24196 if the stream message is in read-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	write_double (id IN PLS_INTEGER, value IN DOUBLE PRECISION)
	
Writes a double to the stream message. Raises exceptions ORA-24196 if the stream message is in read-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	write_float (id IN PLS_INTEGER, value IN FLOAT)
	
Writes a float to the stream message. Raises exceptions ORA-24196 if the stream message is in read-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	write_int (id IN PLS_INTEGER, value IN PLS_INTEGER)
	
Writes an INT to the stream message. Raises exceptions ORA-24196 if the stream message is in read-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	write_long (id IN PLS_INTEGER, value IN NUMBER)
	
Writes a long to the stream message. Raises exceptions ORA-24196 if the stream message is in read-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	write_short (id IN PLS_INTEGER, value IN PLS_INTEGER)
	
Writes a short to the stream message. Because there is no short type in PL/SQL, INT is used to represent a short. Raises exceptions ORA-24196 if the stream message is in read-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	write_string (id IN PLS_INTEGER, value IN VARCHAR2)
	
Writes a string to the stream message. Raises exceptions ORA-24196 if the stream message is in read-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

	write_string (id IN PLS_INTEGER, value IN CLOB)
	
Writes a string to the stream message. Raises exceptions ORA-24196 if the stream message is in read-only mode, ORA-24197 if the Java stored procedure throws an exception during execution, or ORA-24198 if the operation ID is invalid.

SYS.AQ$_JMS_OBJECT_MESSAGE Type

This type is the ADT used to store an ObjectMessage in an Oracle Streams AQ queue.

Syntax

TYPE aq$_jms_object_message AS object(
 header aq$_jms_header,
 bytes_len int,
 bytes_raw raw(2000),
 bytes_lob blob);

SYS.AQ$_JMS_NAMESARRAY Type

This type represents the name array returned by the get_names procedure of aq$_jms_map_message. The maximum number of names this type can hold is 1024. The maximum length of each name is 200 characters.

Syntax

CREATE OR REPLACE TYPE AQ$_JMS_NAMESARRAY AS VARRAY(1024) OF VARCHAR(100);

Usage Notes

If the names array in the message payload is greater than 1024, then use the following function to retrieve the names in multiple portions:

MEMBER FUNCTION get_names(id IN PLS_INTEGER, names OUT aq$_jms_namearray,
 offset IN PLS_INTEGER, length IN PLS_INTEGER) RETURN PLS_INTEGER;

SYS.AQ$_JMS_VALUE Type

This type represents the general data returned by the get_object procedure of aq$_jms_map_message and the read_object procedure of aq$_jms_stream_message. The type field in this ADT is used to decide which type of data this object is really holding. Table 246-2 lists the mapping between the sys.dbms_jms_plsql type constants, the corresponding Java type, and the data field of ADT aq$_jms_value which effectively holds the data.

Syntax

CREATE OR REPLACE TYPE AQ$_JMS_VALUE AS object(
 type number(2),
 num_val number,
 char_val char(1),
 text_val clob,
 bytes_val blob);

Table 246-2 AQ$_JMS_VALUE Type Fields and Java Fields

	Type	Java Type	aq$_jms_value Data Field
	
DBMS_JMS_PLSQL.DATA_TYPE_BYTE

	
byte

	
num_val

	
DBMS_JMS_PLSQL.DATA_TYPE_SHORT

	
short

	
num_val

	
DBMS_JMS_PLSQL.DATA_TYPE_INTEGER

	
int

	
num_val

	
DBMS_JMS_PLSQL.DATA_TYPE_LONG

	
long

	
num_val

	
DBMS_JMS_PLSQL.DATA_TYPE_FLOAT

	
float

	
num_val

	
DBMS_JMS_PLSQL.DATA_TYPE_DOUBLE

	
double

	
num_val

	
DBMS_JMS_PLSQL.DATA_TYPE_BOOLEAN

	
boolean

	
num_val:

0 FALSE, 1 TRUE

	
DBMS_JMS_PLSQL.DATA_TYPE_CHARACTER

	
char

	
char_val

	
DBMS_JMS_PLSQL.DATA_TYPE_STRING

	
java.lang.String

	
text_val

	
DBMS_JMS_PLSQL.DATA_TYPE_BYTES

	
byte[]

	
bytes_val

SYS.AQ$_JMS_EXCEPTION Type

This type represents a Java exception thrown on the Java stored procedure side. The id field is reserved for future use. The exp_name stores the Java exception name, the err_msg field stores the Java exception error message, and the stack field stores the stack trace of the Java exception.

Syntax

CREATE OR REPLACE TYPE AQ$_JMS_EXCEPTION AS OBJECT (
 id number, -- Reserved and not used. Right now always return 0.
 exp_name varchar(200),
 err_msg varchar(500),
 stack varchar(4000));

Expression Filter Types

247 Expression Filter Types

	
Note:

This functionality is deprecated with Oracle Database Release 11.2 and obsoleted with Release 12.1. For details regarding obsolescence, seeMy Oracle Support Note ID 1244535.1

The Expression Filter feature provides a set of predefined types and public synonyms for these types. Most of these types are used for configuring index parameters with the Expression Filter procedural APIs. The EXF$TABLE_ALIAS type is used to support expressions defined on one or more database tables.

	
See Also:

Oracle Database Rules Manager and Expression Filter Developer's Guide for more information.

This chapter contains the following topics:

	
Using Expression Filter Types

	
Summary of Expression Filter Types

Using Expression Filter Types

This section contains topics that relate to using the Expression Filter Types.

	
Security Model

Security Model

The Oracle Database installation runs the catexf.sql script to load the DBMS_EXPFIL package and create the required Expression Filter schema objects in the EXFSYS schema.

Summary of Expression Filter Types

Table 247-1 describes the Expression Filter object types.

All the values and names passed to the types defined in this chapter are not case sensitive. To preserve the case, enclose the values with double quotation marks.

Table 247-1 Expression Filter Object Types

	Object Type Name	Description
	
EXF$ATTRIBUTE

	
Specifies the stored and indexed attributes for the Expression Filter indexes

	
EXF$ATTRIBUTE_LIST

	
Specifies a list of stored and indexed attributes when configuring index parameters

	
EXF$INDEXOPER

	
Specifies a list of common operators in predicates with a stored or an indexed attribute

	
EXF$TABLE_ALIAS

	
Indicates a special form of elementary attribute used to manage expressions defined on one or more database tables

	
EXF$TEXT

	
Associates preferences to a text attribute in an attribute set or an event structure

	
EXF$XPATH_TAG

	
Configures an XML element or an XML attribute for indexing a set of XPath predicates

	
EXF$XPATH_TAGS

	
Specifies a list of XML tags when configuring the Expression Filter index parameters

EXF$ATTRIBUTE

The EXF$ATTRIBUTE type is used to handle stored and indexed attributes for the Expression Filter indexes.

Syntax

CREATE or REPLACE TYPE EXF$ATTRIBUTE AS OBJECT attr_name VARCHAR2(350),
 attr_oper EXF$INDEXOPER,
 attr_indexed VARCHAR2(5);

Attributes

Table 247-2 EXF$ATTRIBUTE Attributes

	Attribute	Description
	
attr_name

	
The arithmetic expression that constitutes the stored or indexed attribute

	
attr_oper

	
The list of common operators in the predicates with the attribute. Default value: EXF$INDEXOPER('all')

	
attr_indexed

	
TRUE if the attribute is indexed, else FALSE. Default value: FALSE.

Usage Notes

	
The EXF$ATTRIBUTE type is used to specify the stored and indexed attributes for an Expression Filter index using the DBMS_EXPFIL.DEFAULT_INDEX_PARAMETERS procedure. When values for attr_oper and attr_indexed fields are omitted during EXF$ATTRIBUTE instantiation, it is considered a stored attribute with a default value for common operators (EXF$INDEXOPER('all')).

Examples

A stored attribute with no preference on the list of common operators is represented as follows:

exf$attribute (attr_name => 'HorsePower(Model, Year)')

An indexed attribute is represented as follows:

exf$attribute (attr_name => 'HorsePower(Model, Year)',
 attr_indexed => 'TRUE')

An indexed attribute with a list of common operators is represented as follows:

exf$attribute (attr_name => 'HorsePower(Model, Year)',
 attr_oper => exf$indexoper('=','<','>','>=','<='),
 attr_indexed => 'TRUE')

EXF$ATTRIBUTE_LIST

The EXF$ATTRIBUTE_LIST type specifies a list of stored and indexed attributes while configuring the index parameters.

Syntax

CREATE or REPLACE TYPE EXF$ATTRIBUTE_LIST as VARRAY(490) of exf$attribute;

Attributes

None.

Usage Notes

	
Also see the DEFAULT_INDEX_PARAMETERS Procedure for more information

Examples

A list of stored and indexed attributes can be represented as follows:

exf$attribute_list (
 exf$attribute (attr_name => 'Model',
 attr_oper => exf$indexoper('='),
 attr_indexed => 'TRUE'),
 exf$attribute (attr_name => 'Price',
 attr_oper => exf$indexoper('all'),
 attr_indexed => 'TRUE'),
 exf$attribute (attr_name => 'HorsePower(Model, Year)',
 attr_oper => exf$indexoper('=','<','>','>=','<='),
 attr_indexed => 'FALSE')
)

EXF$INDEXOPER

The EXF$INDEXOPER type specifies the list of common operators in predicates with a stored or an indexed attribute.

Syntax

CREATE or REPLACE TYPE EXFSYS.EXF$INDEXOPER as VARRAY(20) of VARCHAR2(15);

The values for the EXF$INDEXOPER array are expected to be from the list in the following table:

	Value	Predicate Description
	=
	Equality predicates
	>	Greater than predicates
	<
	Less than predicates
	>=	Greater than or equal to predicates
	<=
	Less than or equal to predicates
	!= or <> or ^=	Not equal to predicates
	IS NULL	IS NULL predicates
	IS NOT NULL	IS NOT NULL predicates
	ALL	All the operators listed in this table starting with the equality predicate through the IS NOT NULL predicate
	NVL	Predicates with NVL (equality) operator
	LIKE	Predicates with LIKE operator
	BETWEEN	BETWEEN predicates

Attributes

None.

Usage Notes

	
A value of ALL for one of the EXF$INDEXOPER items implies that all the simple operators (=,>,<,>=,<=,!=, IS NULL, IS NOT NULL) are common in the predicates with an attribute. This value can be used along with one or more complex operators (NVL, LIKE and BETWEEN).

	
A predicate with a BETWEEN operator is treated as two predicates with binary operators, one with '>=' operator and another with '<=' operator. By default, only one of these operators is indexed, and the other operator is evaluated by value substitution. However, if predicates with the BETWEEN operator are common for an attribute (stored or indexed), both the binary operators resulting from the BETWEEN operator can be indexed by specifying BETWEEN in the EXF$INDEXOPER VARRAY. However, because this uses additional space in the predicate table, this operator should be used only when majority of predicates with an attribute use the BETWEEN operator.

	
When the LIKE operator is chosen as one of the common operators for an attribute, LIKE predicates on that attributes are indexed. Indexing a LIKE operator is beneficial only if the VARCHAR2 constant on the right-hand side of the predicate does not lead with a wild-card character. For example, indexing a LIKE operator will filter the following predicates efficiently:

company LIKE 'General%'
company LIKE 'Proctor%'

But, the following predicates are evaluated as sparse predicates in the last stage:

company LIKE '%Electric'
company LIKE "%Gamble'

Examples

An attribute with a list of common operators is represented as follows:

exf$attribute (attr_name => 'HorsePower(Model, Year)',
 attr_oper => exf$indexoper('=','<','>','>=','<=', 'between'),
 attr_indexed => 'TRUE')

EXF$TABLE_ALIAS

A EXF$TABLE_ALIAS type is a special form of elementary attribute that can be included in the attribute set. These attributes manage expressions defined on one or more database tables.

Syntax

CREATE or REPLACE TYPE EXF$TABLE_ALIAS AS OBJECT table_name VARCHAR2(70);

Attributes

Table 247-3 EXF$TABLE_ALIAS Attribute

	Attribute	Description
	
table_name

	
Name of the table with a possible schema extension

Usage Notes

	
The concept of a table alias attribute is captured in the Expression Filter dictionary and the corresponding attribute in the attribute set's object type is created with a VARCHAR2 data type. (Also see Oracle Database Rules Manager and Expression Filter Developer's Guide and ADD_ELEMENTARY_ATTRIBUTE Procedures.)

Examples

For a set of expressions defined on database tables, the corresponding table alias attributes are configured as follows:

BEGIN
 DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE (
 attr_set => 'HRAttrSet',
 attr_name => 'EMP',
 tab_alias => exf$table_alias('SCOTT.EMP'));
 DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE (
 attr_set => 'HRAttrSet',
 attr_name => 'DEPT',
 tab_alias => exf$table_alias('DEPT'));
END;
/

The Expression column using the previous attribute set can store expressions of form EMP.JOB = 'Clerk' and EMP.NAME = 'Joe', where JOB and NAME are the names of the columns in the SCOTT.EMP table.

EXF$TEXT

A EXF$TEXT type associates preferences to a text attribute in an attribute set or an event structure.

Syntax

CREATE or REPLACE TYPE EXFSYS.EXF$TEXT AS OBJECT(preferences VARCHAR2(1000));

Attributes

Table 247-4 EXF$TEXT Attribute

	Attribute	Description
	
preferences

	
Text preference specification, such as LEXER, CLASSIFIER, and WORDLIST

Usage Notes

	
The EXF$TEXT attribute is used to specify the preferences for a text attribute at the time of creation. The preferences specified through the instance of EXF$TEXT type are used in creation of the CTXRULE index for the text predicates. The syntax for the text preference specification is similar to the PARAMETERS clause specified for a CTXRULE Indextype. [See CREATE INDEX syntax for CTXRULE Indextype in Oracle Text Reference, Release 10g Release 2.]

Examples

A text predicate with a LEXER and WORDLIST preferences can be created using the following instance of EXF$TEXT object as follows:

EXF$TEXT ('LEXER insrpt_lexer WORDLIST insrpt_wordlist');

EXF$XPATH_TAG

The EXF$XPATH_TAG type configures an XML element or an XML attribute for indexing a set of XPath predicates.

Syntax

CREATE or REPLACE TYPE EXF$XPATH_TAG AS OBJECT tag_name VARCHAR2(350),
 tag_indexed VARCHAR2(5),
 tag_type VARCHAR2(30);

Attributes

Table 247-5 EXF$XPATH_TAG Attributes

	Attribute	Description
	
tag_name

	
Name of the XML element or attribute. The name for an XML attribute is formatted as: <ElementName>@<AttributeName>. Optionally, the element name can be prefixed with its namespace URL as in <Namespace URL>:<ElementName>@<AttributeName>.

	
tag_indexed

	
TRUE if XML tag is indexed; otherwise FALSE.

Default:

TRUE if the tag is a positional filter.

FALSE if the tag is a value filter.

	
tag_type

	
Datatype for the value in the case of value filter. NULL for positional filters.

Usage Notes

	
EXF$XPATH_TAG type configures an XML element or an attribute as a positional or a value filter for an Expression Filter index (see the section on index tuning for XPath predicates in Oracle Database Rules Manager and Expression Filter Developer's Guide). An instance of the EXF$XPATH_TAG type with NULL value for tag_type configures the XML tag as a positional filter. In the current release, the only other possible values for the tag_type attribute are strings (CHAR or VARCHAR) and such tags are configured as value filters. By default, all positional filters are indexed and the value filters are not indexed. This behavior can be overridden by setting a TRUE or FALSE value for the tag_indexed attribute accordingly.

Examples

An XML element can be configured as a positional filter and be indexed using the following instance of the EXF$XPATH_TAG type.

exf$xpath_tag(tag_name => 'stereo', --- XML element
 tag_indexed => 'TRUE', --- indexed predicate group
 tag_type => null) --- positional filter

An XML attribute can be configured as a value filter and be indexed using the following type instance.

exf$xpath_tag(tag_name => 'stereo@make', --- XML attribute
 tag_indexed => 'TRUE', --- indexed predicate group
 tag_type => 'VARCHAR(15)') --- value filter

The following commands configure the two filters shown previously using the namespace URL for the corresponding elements.

exf$xpath_tag(tag_name => 'http://www.auto.com/car.xsd:stereo',
 tag_indexed => 'TRUE', --- indexed predicate group
 tag_type => null) --- positional filter

exf$xpath_tag(tag_name => 'http://www.auto.com/car.xsd:stereo@make'
 tag_indexed => 'TRUE', --- indexed predicate group
 tag_type => 'VARCHAR(15)') --- value filter

EXF$XPATH_TAGS

The EXF$XPATH_TAGS type specifies a list of XML tags while configuring the Expression Filter index parameters.

Syntax

CREATE or REPLACE TYPE EXF$XPATH_TAGS as VARRAY(490) of EXF$XPATH_TAG;

Attributes

None.

Usage Notes

	
EXF$XPATH_TAGS type specifies a list of XML tags while configuring the Expression Filter index parameters. (See DEFAULT_INDEX_PARAMETERS Procedure.)

Examples

A list of XML tags configured as positional and value filters can be represented as follows:

exf$xpath_tags(
 exf$xpath_tag(tag_name => 'stereo@make', --- XML attribute
 tag_indexed => 'TRUE',
 tag_type => 'VARCHAR(15)'), --- value filter
 exf$xpath_tag(tag_name => 'stereo', --- XML element
 tag_indexed => 'FALSE',
 tag_type => null), --- positional filter
 exf$xpath_tag(tag_name => 'memory', --- XML element
 tag_indexed => 'TRUE',
 tag_type => 'VARCHAR(10)') --- value filter
)

Logical Change Record TYPEs

248 Logical Change Record TYPEs

This chapter describes the logical change record (LCR) types.

This chapter contains these topics:

	
Using Logical Change Record Types

	
Overview

	
Security Model

	
Summary of Logical Change Record Types

	
Common Subprograms for LCR$_DDL_RECORD and LCR$_ROW_RECORD

Using Logical Change Record Types

This section contains topics that relate to using the logical change record (LCR) types.

	
Overview

	
Security Model

Overview

In Oracle Streams, logical change records (LCRs) are message payloads that contain information about changes to a database. These changes can include changes to the data, which are data manipulation language (DML) changes, and changes to database objects, which are data definition language (DDL) changes.

When you use Oracle Streams, the capture process captures changes in the form of LCRs and enqueues them into a queue. These LCRs can be propagated from a queue in one database to a queue in another database. Finally, the apply process can apply LCRs at a destination database. You also have the option of creating, enqueuing, and dequeuing LCRs manually.

	
See Also:

Oracle Streams Concepts and Administration for more information about LCRs

Security Model

PUBLIC is granted EXECUTE privilege on the types described in this chapter.

Summary of Logical Change Record Types

Table 248-1 Logical Change Record (LCR) Types

	Type	Description
	
LCR$_DDL_RECORD Type

	
Represents a data definition language (DDL) change to a database object

	
LCR$_ROW_RECORD Type

	
Represents a data manipulation language (DML) change to a database object

	
LCR$_ROW_LIST Type

	
Identifies a list of column values for a row in a table

	
LCR$_ROW_UNIT Type

	
Identifies the value for a column in a row

These logical change record (LCR) types can be used with the following Oracle-supplied PL/SQL packages:

	
DBMS_APPLY_ADM

	
DBMS_AQ

	
DBMS_AQADM

	
DBMS_CAPTURE_ADM

	
DBMS_PROPAGATION_ADM

	
DBMS_RULE

	
DBMS_RULE_ADM

	
DBMS_STREAMS

	
DBMS_STREAMS_ADM

	
DBMS_TRANSFORM

LCR$_DDL_RECORD Type

This type represents a data definition language (DDL) change to a database object.

If you create or modify a DDL logical change record (DDL LCR), then make sure the ddl_text is consistent with the base_table_name, base_table_owner, object_type, object_owner, object_name, and command_type attributes.

This section contains information about the constructor for DDL LCRs and information about the member subprograms for this type:

	
LCR$_DDL_RECORD Constructor

	
Summary of LCR$_DDL_RECORD Subprograms, which also include the subprograms described in "Common Subprograms for LCR$_DDL_RECORD and LCR$_ROW_RECORD"

	
Note:

	
When passing a name as a parameter to an LCR constructor, you can enclose the name in double quotes to handle names that use mixed case or lower case for database objects. For example, if a name contains any lower case characters, then you must enclose it in double quotes.

	
The application does not need to specify a transaction identifier or SCN when it creates an LCR because the apply process generates these values and stores them in memory. If a transaction identifier or SCN is specified in the LCR, then the apply process ignores it and assigns a new value.

LCR$_DDL_RECORD Constructor

Creates a SYS.LCR$_DDL_RECORD object with the specified information.

STATIC FUNCTION CONSTRUCT(
 source_database_name IN VARCHAR2,
 command_type IN VARCHAR2,
 object_owner IN VARCHAR2,
 object_name IN VARCHAR2,
 object_type IN VARCHAR2,
 ddl_text IN CLOB,
 logon_user IN VARCHAR2,
 current_schema IN VARCHAR2,
 base_table_owner IN VARCHAR2,
 base_table_name IN VARCHAR2,
 tag IN RAW DEFAULT NULL,
 transaction_id IN VARCHAR2 DEFAULT NULL,
 scn IN NUMBER DEFAULT NULL,
 position IN RAW DEFAULT NULL,
 edition_name IN VARCHAR2 DEFAULT NULL)
RETURN SYS.LCR$_DDL_RECORD;

LCR$_DDL_RECORD Constructor Function Parameters

Table 248-2 Constructor Function Parameters for LCR$_DDL_RECORD

	Parameter	Description
	
source_database_name

	
The database where the DDL statement occurred

If you do not include the domain name, then the function appends the local domain to the database name automatically. For example, if you specify DBS1 and the local domain is EXAMPLE.COM, then the function specifies DBS1.EXAMPLE.COM automatically. Set this parameter to a non-NULL value.

	
command_type

	
The type of command executed in the DDL statement

Set this parameter to a non-NULL value.

See Also: The "SQL Command Codes" table in the Oracle Call Interface Programmer's Guide for a complete list of command types

The following command types are not supported in DDL LCRs:

ALTER MATERIALIZED VIEW
ALTER MATERIALIZED VIEW LOG
ALTER SUMMARY
CREATE SCHEMA
CREATE MATERIALIZED VIEW
CREATE MATERIALIZED VIEW LOG
CREATE SUMMARY
DROP MATERIALIZED VIEW
DROP MATERIALIZED VIEW LOG
DROP SUMMARY
RENAME

The snapshot equivalents of the materialized view command types are also not supported.

	
object_owner

	
The user who owns the object on which the DDL statement was executed

	
object_name

	
The database object on which the DDL statement was executed

	
object_type

	
The type of object on which the DDL statement was executed

The following are valid object types:

CLUSTER
FUNCTION
INDEX
LINK
OUTLINE
PACKAGE
PACKAGE BODY
PROCEDURE
SEQUENCE
SYNONYM
TABLE
TRIGGER
TYPE
USER
VIEW

LINK represents a database link.

NULL is also a valid object type. Specify NULL for all object types not listed. The GET_OBJECT_TYPE member procedure returns NULL for object types not listed.

	
ddl_text

	
The text of the DDL statement

Set this parameter to a non-NULL value.

	
logon_user

	
The user whose session executed the DDL statement

	
current_schema

	
The schema that is used if no schema is specified explicitly for the modified database objects in ddl_text

If a schema is specified in ddl_text that differs from the one specified for current_schema, then the function uses the schema specified in ddl_text.

Set this parameter to a non-NULL value.

	
base_table_owner

	
If the DDL statement is a table-related DDL (such as CREATE TABLE and ALTER TABLE), or if the DDL statement involves a table (such as creating a trigger on a table), then base_table_owner specifies the owner of the table involved. Otherwise, base_table_owner is NULL.

	
base_table_name

	
If the DDL statement is a table-related DDL (such as CREATE TABLE and ALTER TABLE), or if the DDL statement involves a table (such as creating a trigger on a table), then base_table_name specifies the name of the table involved. Otherwise, base_table_name is NULL.

	
tag

	
A binary tag that enables tracking of the LCR

For example, this tag can be used to determine the original source database of the DDL statement if apply forwarding is used.

See Also: Oracle Streams Replication Administrator's Guide

	
transaction_id

	
The identifier of the transaction

	
scn

	
The SCN at the time when the change record for a captured LCR was written to the redo log

The SCN value is meaningless for a user-created LCR.

	
position

	
The position of the LCR

LCR position is commonly used in XStream configurations. Using XStream requires purchasing a license for the Oracle GoldenGate product.

See Also: Oracle Database XStream Guide

	
edition_name

	
The name of the edition in which the DDL statement was executed

Summary of LCR$_DDL_RECORD Subprograms

Table 248-3 LCR$_DDL_RECORD Type Subprograms

	Subprogram	Description
	
EXECUTE Member Procedure

	
Executes the LCR under the security domain of the current user

	
GET_BASE_TABLE_NAME Member Function

	
Gets the base (dependent) table name

	
GET_BASE_TABLE_OWNER Member Function

	
Gets the base (dependent) table owner

	
GET_CURRENT_SCHEMA Member Function

	
Gets the default schema (user) name

	
GET_DDL_TEXT Member Procedure

	
Gets the DDL text in a CLOB

	
GET_EDITION_NAME Member Function

	
Gets the name of the edition in which the DDL statement was executed

	
GET_LOGON_USER Member Function

	
Gets the logon user name

	
GET_OBJECT_TYPE Member Function

	
Gets the type of the object involved for the DDL

	
SET_BASE_TABLE_NAME Member Procedure

	
Sets the base (dependent) table name

	
SET_BASE_TABLE_OWNER Member Procedure

	
Sets the base (dependent) table owner

	
SET_CURRENT_SCHEMA Member Procedure

	
Sets the default schema (user) name

	
SET_DDL_TEXT Member Procedure

	
Sets the DDL text

	
SET_EDITION_NAME Member Procedure

	
Sets the name of the edition in which the DDL statement was executed

	
SET_LOGON_USER Member Procedure

	
Sets the logon user name

	
SET_OBJECT_TYPE Member Procedure

	
Sets the object type

	
Common Subprograms

	
See "Common Subprograms for LCR$_DDL_RECORD and LCR$_ROW_RECORD" for a list of subprograms common to the SYS.LCR$_ROW_RECORD and SYS.LCR$_DDL_RECORD types

EXECUTE Member Procedure

Executes the DDL LCR under the security domain of the current user. Apply handlers are not run when the LCR is applied using this procedure.

	
Note:

The EXECUTE member procedure can be invoked only in an apply handler for an Oracle Streams apply process.

Syntax

MEMBER PROCEDURE EXECUTE;

GET_BASE_TABLE_NAME Member Function

Gets the base (dependent) table name.

Syntax

MEMBER FUNCTION GET_BASE_TABLE_NAME()
RETURN VARCHAR2;

GET_BASE_TABLE_OWNER Member Function

Gets the base (dependent) table owner.

Syntax

MEMBER FUNCTION GET_BASE_TABLE_OWNER()
RETURN VARCHAR2;

GET_CURRENT_SCHEMA Member Function

Gets the current schema name.

Syntax

MEMBER FUNCTION GET_CURRENT_SCHEMA()
RETURN VARCHAR2;

GET_DDL_TEXT Member Procedure

Gets the DDL text in a CLOB.

For example, the following PL/SQL code uses this procedure to get the DDL text in a DDL LCR:

CREATE OR REPLACE PROCEDURE ddl_in_lcr (ddl_lcr in SYS.LCR$_DDL_RECORD)
IS
 ddl_text CLOB;
BEGIN
 DBMS_OUTPUT.PUT_LINE(' ---');
 DBMS_OUTPUT.PUT_LINE(' Displaying DDL text in a DDL LCR: ');
 DBMS_OUTPUT.PUT_LINE(' ---');
 DBMS_LOB.CREATETEMPORARY(ddl_text, true);
 ddl_lcr.GET_DDL_TEXT(ddl_text);
 DBMS_OUTPUT.PUT_LINE('DDL text:' || ddl_text);
 DBMS_LOB.FREETEMPORARY(ddl_text);
END;
/

	
Note:

GET_DDL_TEXT is a member procedure and not a member function to make it easier for you to manage the space used by the CLOB. Notice that the previous example creates temporary space for the CLOB and then frees the temporary space when it is no longer needed.

Syntax

MEMBER FUNCTION GET_DDL_TEXT(
 ddl_text IN/OUT CLOB);

Parameter

Table 248-4 GET_DDL_TEXT Procedure Parameter

	Parameter	Description
	
ddl_text

	
The DDL text in the DDL LCR

GET_EDITION_NAME Member Function

Gets the name of the edition in which the DDL statement was executed.

	
See Also:

Oracle Database Advanced Application Developer's Guide

Syntax

MEMBER FUNCTION GET_EDITION_NAME()
RETURN VARCHAR2;

GET_LOGON_USER Member Function

Gets the logon user name.

Syntax

MEMBER FUNCTION GET_LOGON_USER()
RETURN VARCHAR2;

GET_OBJECT_TYPE Member Function

Gets the type of the object involved for the DDL.

Syntax

MEMBER FUNCTION GET_OBJECT_TYPE()
RETURN VARCHAR2;

SET_BASE_TABLE_NAME Member Procedure

Sets the base (dependent) table name.

Syntax

MEMBER PROCEDURE SET_BASE_TABLE_NAME(
 base_table_name IN VARCHAR2);

Parameter

Table 248-5 SET_BASE_TABLE_NAME Procedure Parameter

	Parameter	Description
	
base_table_name

	
The name of the base table

SET_BASE_TABLE_OWNER Member Procedure

Sets the base (dependent) table owner.

Syntax

MEMBER PROCEDURE SET_BASE_TABLE_OWNER(
 base_table_owner IN VARCHAR2);

Parameter

Table 248-6 SET_BASE_TABLE_OWNER Procedure Parameter

	Parameter	Description
	
base_table_owner

	
The name of the base owner

SET_CURRENT_SCHEMA Member Procedure

Sets the default schema (user) name.

Syntax

MEMBER PROCEDURE SET_CURRENT_SCHEMA(
 current_schema IN VARCHAR2);

Parameter

Table 248-7 SET_CURRENT_SCHEMA Procedure Parameter

	Parameter	Description
	
current_schema

	
The name of the schema to set as the current schema

Set this parameter to a non-NULL value.

SET_DDL_TEXT Member Procedure

Sets the DDL text.

Syntax

MEMBER PROCEDURE SET_DDL_TEXT(
 ddl_text IN CLOB);

Parameter

Table 248-8 SET_DDL_TEXT Procedure Parameter

	Parameter	Description
	
ddl_text

	
The DDL text

Set this parameter to a non-NULL value.

SET_EDITION_NAME Member Procedure

Sets the name of the edition in which the DDL statement was executed.

	
See Also:

Oracle Database Advanced Application Developer's Guide

Syntax

MEMBER PROCEDURE SET_EDITION_NAME(
 edition_name IN VARCHAR2);

Parameter

Table 248-9 SET_EDITION_NAME Procedure Parameter

	Parameter	Description
	
edition_name

	
Name of the edition

SET_LOGON_USER Member Procedure

Sets the logon user name.

Syntax

MEMBER PROCEDURE SET_LOGON_USER(
 logon_user IN VARCHAR2);

Parameter

Table 248-10 SET_LOGON_USER Procedure Parameter

	Parameter	Description
	
logon_user

	
The name of the schema to set as the logon user

SET_OBJECT_TYPE Member Procedure

Sets the object type.

Syntax

MEMBER PROCEDURE SET_OBJECT_TYPE(
 object_type IN VARCHAR2);

Parameter

Table 248-11 SET_OBJECT_TYPE Procedure Parameter

	Parameter	Description
	
object_type

	
The object type

The following are valid object types:

CLUSTER
FUNCTION
INDEX
LINK
OUTLINE
PACKAGE
PACKAGE BODY
PROCEDURE
SEQUENCE
SYNONYM
TABLE
TRIGGER
TYPE
USER
VIEW

LINK represents a database link.

NULL is also a valid object type. Specify NULL for all object types not listed. The GET_OBJECT_TYPE member procedure returns NULL for object types not listed.

LCR$_ROW_RECORD Type

This type represents a data manipulation language (DML) change to a row in a table. This type uses the LCR$_ROW_LIST type.

If you create or modify a row logical change record (row LCR), then make sure the command_type attribute is consistent with the presence or absence of old column values and the presence or absence of new column values.

This section contains information about the constructor for DDL LCRs and information about the member subprograms for this type:

	
LCR$_ROW_RECORD Constructor

	
Summary of LCR$_ROW_RECORD Subprograms, which also include the subprograms described in Common Subprograms for LCR$_DDL_RECORD and LCR$_ROW_RECORD

	
Note:

	
When passing a name as a parameter to an LCR constructor, you can enclose the name in double quotes to handle names that use mixed case or lower case for database objects. For example, if a name contains any lower case characters, then you must enclose it in double quotes.

	
The application does not need to specify a transaction identifier or SCN when it creates an LCR because the apply process generates these values and stores them in memory. If a transaction identifier or SCN is specified in the LCR, then the apply process ignores it and assigns a new value.

	
See Also:

LCR$_ROW_LIST Type

LCR$_ROW_RECORD Constructor

Creates a SYS.LCR$_ROW_RECORD object with the specified information.

STATIC FUNCTION CONSTRUCT(
 source_database_name IN VARCHAR2,
 command_type IN VARCHAR2,
 object_owner IN VARCHAR2,
 object_name IN VARCHAR2,
 tag IN RAW DEFAULT NULL,
 transaction_id IN VARCHAR2 DEFAULT NULL,
 scn IN NUMBER DEFAULT NULL,
 old_values IN SYS.LCR$_ROW_LIST DEFAULT NULL,
 new_values IN SYS.LCR$_ROW_LIST DEFAULT NULL,
 position IN RAW DEFAULT NULL,
 statement IN VARCHAR2 DEFAULT NULL,
 bind_variables IN SYS.LCR$_ROW_LIST DEFAULT NULL,
 bind_by_position IN VARCHAR2 DEFAULT 'N')
RETURN SYS.LCR$_ROW_RECORD;

LCR$_ROW_RECORD Constructor Function Parameters

Table 248-12 Constructor Function Parameters for LCR$_ROW_RECORD

	Parameter	Description
	
source_database_name

	
The database where the row change occurred

If you do not include the domain name, then the function appends the local domain to the database name automatically. For example, if you specify DBS1 and the local domain is EXAMPLE.COM, then the function specifies DBS1.EXAMPLE.COM automatically. Set this parameter to a non-NULL value.

	
command_type

	
The type of command executed in the DML statement

Set this parameter to a non-NULL value.

Valid values are the following:

INSERT
UPDATE
DELETE
LOB ERASE
LOB WRITE
LOB TRIM

If INSERT, then ensure that the LCR has a new_values collection that is not empty and an empty or NULL old_values collection.

If UPDATE, then ensure that the LCR has a new_values collection that is not empty and an old_values collection that is not empty.

If DELETE, then ensure that the LCR has a NULL or empty new_values collection and an old_values collection that is not empty.

If LOB ERASE, LOB WRITE, or LOB TRIM, then ensure that the LCR has a new_values collection that is not empty and an empty or NULL old_values collection.

	
object_owner

	
The user who owns the table on which the row change occurred

Set this parameter to a non-NULL value.

	
object_name

	
The table on which the DML statement was executed

Set this parameter to a non-NULL value.

	
tag

	
A binary tag that enables tracking of the LCR

For example, this tag can be used to determine the original source database of the DML change when apply forwarding is used.

See Also: Oracle Streams Replication Administrator's Guide

	
transaction_id

	
The identifier of the transaction

	
scn

	
The SCN at the time when the change record was written to the redo log

The SCN value is meaningless for a user-created LCR.

	
old_values

	
The column values for the row before the DML change

If the DML statement is an UPDATE or a DELETE statement, then this parameter contains the values of columns in the row before the DML statement. If the DML statement is an INSERT statement, then there are no old values.

	
new_values

	
The column values for the row after the DML change

If the DML statement is an UPDATE or an INSERT statement, then this parameter contains the values of columns in the row after the DML statement. If the DML statement is a DELETE statement, then there are no new values.

If the LCR reflects a LOB operation, then this parameter contains the supplementally logged columns and any relevant LOB information.

	
position

	
The position of the LCR

LCR position is commonly used in XStream configurations. Using XStream requires purchasing a license for the Oracle GoldenGate product.

See Also: Oracle Database XStream Guide

	
statement

	
This parameter is reserved for internal use only.

	
bind_variables

	
This parameter is reserved for internal use only.

	
bind_by_position

	
This parameter is reserved for internal use only.

	
Note:

Starting with Oracle Database 11g Release 2 (11.2.0.2), this constructor function includes the following new parameters: statement, bind_variables, and bind_by_position.

Summary of LCR$_ROW_RECORD Subprograms

Table 248-13 LCR$_ROW_RECORD Type Subprograms

	Subprogram	Description
	
ADD_COLUMN Member Procedure

	
Adds the value as old or new, depending on the value type specified, for the column

	
CONVERT_LONG_TO_LOB_CHUNK Member Procedure

	
Converts LONG data in a row LCR into fixed width CLOB, or converts LONG RAW data in a row LCR into a BLOB

	
DELETE_COLUMN Member Procedure

	
Deletes the old value, the new value, or both, for the specified column, depending on the value type specified

	
EXECUTE Member Procedure

	
Executes the LCR under the security domain of the current user

	
GET_LOB_INFORMATION Member Function

	
Gets the LOB information for the column

	
GET_LOB_OFFSET Member Function

	
Gets the LOB offset for the specified column

	
GET_LOB_OPERATION_SIZE Member Function

	
Gets the operation size for the LOB column

	
GET_LONG_INFORMATION Member Function

	
Gets the LONG information for the column

	
GET_ROW_TEXT Member Procedure

	
Gets the SQL statement for the change that is encapsulated in the LCR

	
GET_VALUE Member Function

	
Gets the old or new value for the specified column, depending on the value type specified

	
GET_VALUES Member Function

	
Gets a list of old or new values, depending on the value type specified

	
GET_WHERE_CLAUSE Member Procedure

	
Gets a WHERE clause for the change that is encapsulated in the row LCR

	
GET_XML_INFORMATION Member Function

	
Gets the XML information for the specified column

	
IS_STATEMENT_LCR Member Function

	
Reserved for internal use only

	
KEEP_COLUMNS Member Procedure

	
Keeps a list of columns a row LCR

	
RENAME_COLUMN Member Procedure

	
Renames a column in an LCR

	
SET_LOB_INFORMATION Member Procedure

	
Sets LOB information for the column

	
SET_LOB_OFFSET Member Procedure

	
Sets the LOB offset for the specified column

	
SET_LOB_OPERATION_SIZE Member Procedure

	
Sets the operation size for the LOB column

	
SET_ROW_TEXT Member Procedure

	
Reserved for internal use only

	
SET_VALUE Member Procedure

	
Overwrites the value of the specified column

	
SET_VALUES Member Procedure

	
Replaces the existing old or new values for the LCR, depending on the value type specified

	
SET_XML_INFORMATION Member Procedure

	
Sets the XML information for the column

	
Common Subprograms

	
See Common Subprograms for LCR$_DDL_RECORD and LCR$_ROW_RECORD for a list of subprograms common to the SYS.LCR$_ROW_RECORD and SYS.LCR$_DDL_RECORD types

ADD_COLUMN Member Procedure

Adds the value as old or new, depending on the value type specified, for the column. An error is raised if a value of the same type already exists for the column.

	
Note:

To set a column value that already exists, run SET_VALUE.

	
See Also:

SET_VALUE Member Procedure

Considerations for LOB Columns

When processing a row LCR with LOB columns with a procedure DML handler or error handler and the handler is using LOB assembly (the assemble_lobs parameter is set to TRUE for the handler), you use this member procedure in the handler procedure to add a LOB column to a row LCR. If assemble_lobs is set to FALSE for the handler, then you cannot use this member procedure to add a LOB column to a row LCR.

To use a DML or error handler to add a LOB column, specify the LOB locator for the column_value parameter in the member procedure. The ADD_COLUMN member procedure verifies that an ANYDATA encapsulated LOB locator is processed with a DML or error handler that is using LOB assembly. An error is raised under the following conditions:

	
The handler attempts to enqueue a row LCR with an ANYDATA encapsulated LOB locator.

	
An attempt is made to add an LOB column that is set incorrectly.

If an error is raised because of one of these conditions, then the transaction that includes the row LCR is moved to the error queue, and the LOB is represented by the original (nonassembled) row LCRs.

	
Note:

	
Database compatibility must be 10.2.0 or higher to use LOB assembly.

	
When you are processing a row LCR with a rule-based transformation, you cannot use this member procedure to add a LOB column.

	
When you are processing a row LCR with a rule-based transformation, procedure DML handler, or error handler, you cannot use this member procedure to add a LONG or LONG RAW column.

Syntax

MEMBER PROCEDURE ADD_COLUMN(
 value_type IN VARCHAR2,
 column_name IN VARCHAR2,
 column_value IN ANYDATA);

Parameters

Table 248-14 ADD_COLUMN Procedure Parameters

	Parameter	Description
	
value_type

	
The type of value to add for the column

Specify old to add the old value of the column. Specify new to add the new value of the column.

	
column_name

	
The column name

This name is not validated. An error can be raised during application of the LCRs if an invalid name is specified.

	
column_value

	
The value of the column

If NULL, then this procedure raises an error.

If the member procedure is used in a procedure DML handler or error handler that uses LOB assembly, then a LOB locator can be specified.

A NULL column value can be specified by encapsulating the NULL value in an ANYDATA wrapper.

CONVERT_LONG_TO_LOB_CHUNK Member Procedure

Converts LONG data in a row LCR into a CLOB, or converts LONG RAW data in a row LCR into a BLOB.

This procedure can change the operation code from LONG WRITE to LOB WRITE for the row LCR.

This member procedure can be used in rule-based transformations.

The following restrictions apply to this member procedure:

	
This member procedure cannot be used in apply handlers.

	
LONG data can be sent as a part of a row LCR with one of the following operation codes: INSERT, UPDATE, or LONG_WRITE. Because LONG data can be sent in multiple pieces, make sure that this method is invoked on either none or all LONG pieces.

	
LOB to LONG conversion is not supported.

	
A row LCR on which this procedure is executed must have been created by a capture process. That is, this procedure does not support persistent row LCRs.

	
See Also:

Oracle Streams Replication Administrator's Guide

Syntax

MEMBER PROCEDURE CONVERT_LONG_TO_LOB_CHUNK;

DELETE_COLUMN Member Procedure

Deletes the old value, the new value, or both, for the specified column, depending on the value type specified.

Syntax

MEMBER PROCEDURE DELETE_COLUMN(
 column_name IN VARCHAR2,
 value_type IN VARCHAR2 DEFAULT '*');

Parameters

Table 248-15 DELETE_COLUMN Procedure Parameters

	Parameter	Description
	
column_name

	
The column name

An error is raised if the column does not exist in the LCR.

	
value_type

	
The type of value to delete for the column

Specify old to delete the old value of the column. Specify new to delete the new value of the column. If * is specified, then the procedure deletes both the old and new values.

EXECUTE Member Procedure

Executes the row LCR under the security domain of the current user. Any apply handlers that would be run for an LCR are not run when the LCR is applied using this procedure.

This member procedure can be run on a row LCR under any of the following conditions:

	
The LCR is being processed by an apply handler.

	
The LCR is in a queue and was last enqueued by a mechanism other than an Oracle Streams capture process, such as an Oracle Streams apply process or an application.

	
The LCR has been constructed using the LCR$_ROW_RECORD constructor function but has not been enqueued.

	
The LCR is in the error queue.

	
Note:

Do not run this member procedure in a custom rule-based transformation on a row LCR. Doing so could execute the row LCR outside of its transactional context.

Considerations for LOB Columns

When processing a row LCR with LOB columns with a procedure DML handler or error handler, and the handler is using LOB assembly (the assemble_lobs parameter is set to TRUE for the handler), this member procedure executes the assembled row LCR. An assembled row LCR represents a LOB value with a LOB locator or NULL.

If assemble_lobs is set to FALSE for the handler, then this member procedure executes the nonassembled row LCRs. Nonassembled row LCRs represent LOB values with VARCHAR2 and RAW data types. These nonassembled row LCRs might have been modified by the handler.

An error is raised under the following conditions:

	
A DML or error handler configured with assemble_lobs set to FALSE attempts to execute a row LCR that contains a LOB locator.

	
A DML or error handler configured with assemble_lobs set to TRUE attempts to execute a row LCR that contains one or more LOB values represented with VARCHAR2 or RAW data types.

If an error is raised because of one of these conditions, then the transaction that includes the row LCR is moved to the error queue, and the LOB is represented by the original (nonassembled) row LCRs.

Syntax

MEMBER PROCEDURE EXECUTE(
 conflict_resolution IN BOOLEAN);

Parameters

Table 248-16 EXECUTE Procedure Parameters

	Parameter	Description
	
conflict_resolution

	
If TRUE, then any conflict resolution defined for the table using the SET_UPDATE_CONFLICT_HANDLER procedure in the DBMS_APPLY_ADM package is used to resolve conflicts resulting from the execution of the LCR.

If FALSE, then conflict resolution is not used.

An error is raised if this parameter is not specified or is set to NULL.

GET_LOB_INFORMATION Member Function

Gets the LOB information for the column.

The return value can be one of the following:

DBMS_LCR.NOT_A_LOB CONSTANT NUMBER := 1;
DBMS_LCR.NULL_LOB CONSTANT NUMBER := 2;
DBMS_LCR.INLINE_LOB CONSTANT NUMBER := 3;
DBMS_LCR.EMPTY_LOB CONSTANT NUMBER := 4;
DBMS_LCR.LOB_CHUNK CONSTANT NUMBER := 5;
DBMS_LCR.LAST_LOB_CHUNK CONSTANT NUMBER := 6;

Returns NULL if the specified column does not exist.

If the command type of the row LCR is UPDATE, then specifying 'Y' for the use_old parameter is a convenient way to get the value of the columns.

Syntax

MEMBER FUNCTION GET_LOB_INFORMATION(
 value_type IN VARCHAR2,
 column_name IN VARCHAR2,
 use_old IN VARCHAR2 DEFAULT 'Y')
RETURN NUMBER;

Parameters

Table 248-17 GET_LOB_INFORMATION Function Parameters

	Parameter	Description
	
value_type

	
The type of value to return for the column, either old or new

	
column_name

	
The name of the column

	
use_old

	
If Y and value_type is new, and no new value exists, then the function returns the corresponding old value. If N and value_type is new, then the function does not return the old value if no new value exists.

If value_type is old or if the command_type of the row LCR is not UPDATE, then the function ignores the value of the use_old parameter.

NULL is not a valid specification for the use_old parameter.

GET_LOB_OFFSET Member Function

Gets the LOB offset for the specified column in the number of characters for CLOB columns and the number of bytes for BLOB columns. Returns a non-NULL value only if all of the following conditions are met:

	
The value exists for the column

	
The column value is an out-of-line LOB. That is, the information is DBMS_LCR.LAST_LOB_CHUNK or DBMS_LCR.LOB_CHUNK

	
The command type is LOB ERASE or LOB WRITE

Otherwise, returns NULL.

Syntax

GET_LOB_OFFSET(
 value_type IN VARCHAR2,
 column_name IN VARCHAR2)
RETURN NUMBER;

Parameters

Table 248-18 GET_LOB_OFFSET Procedure Parameters

	Parameter	Description
	
value_type

	
The type of value to return for the column

Currently, only new can be specified.

	
column_name

	
The name of the LOB column

GET_LOB_OPERATION_SIZE Member Function

Gets the operation size for the LOB column in the number of characters for CLOB columns and the number of bytes for BLOB columns. Returns a non-NULL value only if all of the following conditions are met:

	
The value exists for the column

	
The column value is an out-of-line LOB

	
The command type is LOB ERASE or LOB TRIM

	
The information is DBMS_LCR.LAST_LOB_CHUNK

Otherwise, returns NULL.

Syntax

MEMBER FUNCTION GET_LOB_OPERATION_SIZE(
 value_type IN VARCHAR2,
 column_name IN VARCHAR2)
RETURN NUMBER,

Parameters

Table 248-19 GET_LOB_OPERATION_SIZE Function Parameters

	Parameter	Description
	
value_type

	
The type of value to return for the column

Currently, only new can be specified.

	
column_name

	
The name of the LOB column

GET_LONG_INFORMATION Member Function

Gets the LONG information for the column.

The return value can be one of the following:

DBMS_LCR.NOT_A_LONG CONSTANT NUMBER := 1;
DBMS_LCR.NULL_LONG CONSTANT NUMBER := 2;
DBMS_LCR.INLINE_LONG CONSTANT NUMBER := 3;
DBMS_LCR.LONG_CHUNK CONSTANT NUMBER := 4;
DBMS_LCR.LAST_LONG_CHUNK CONSTANT NUMBER := 5;

Returns NULL if the specified column does not exist.

If the command type of the row LCR is UPDATE, then specifying 'Y' for the use_old parameter is a convenient way to get the value of the columns.

Syntax

MEMBER FUNCTION GET_LONG_INFORMATION(
 value_type IN VARCHAR2,
 column_name IN VARCHAR2,
 use_old IN VARCHAR2 DEFAULT 'Y')
RETURN NUMBER;

Parameters

Table 248-20 GET_LONG_INFORMATION Function Parameters

	Parameter	Description
	
value_type

	
The type of value to return for the column, either old or new

	
column_name

	
The name of the column

	
use_old

	
If Y and value_type is new, and no new value exists, then the function returns the corresponding old value. If N and value_type is new, then the function does not return the old value if no new value exists.

If value_type is old or if the command_type of the row LCR is not UPDATE, then the function ignores the value of the use_old parameter.

NULL is not a valid specification for the use_old parameter.

GET_ROW_TEXT Member Procedure

Gets the SQL statement for the change that is encapsulated in the row LCR. This method performs SQL generation in PL/SQL.

This method is overloaded. The different functionality of each form of syntax is presented along with the definitions.

Syntax

The following procedure returns the SQL statement in a CLOB data type.

MEMBER PROCEDURE GET_ROW_TEXT(
 row_text IN/OUT CLOB);

The following procedure returns the SQL statement with bind variables in a CLOB data type.

MEMBER PROCEDURE GET_ROW_TEXT(
 row_text IN/OUT CLOB,
 variable_list IN/OUT LCR$_ROW_LIST,
 bind_var_syntax IN VARCHAR2 DEFAULT ':');

	
See Also:

"LCR$_ROW_LIST Type"

Parameters

Table 248-21 GET_ROW_TEXT Procedure Parameters

	Parameter	Description
	
row_text

	
The SQL statement for the change that is encapsulated in the LCR

	
variable_list

	
The values for the bind variables in the order of the bind variables

	
bind_var_syntax

	
The syntax for the bind variables

One of the following values is valid:

	
Specify :, the default, for bind values to be in the form :1, :2, and so on.

	
Specify ? for bind values to be in the form ?.

GET_VALUE Member Function

Gets the old or new value for the specified column, depending on the value type specified.

If the command type of the row LCR is UPDATE, then specifying 'Y' for the use_old parameter is a convenient way to get the value of a column.

Syntax

MEMBER FUNCTION GET_VALUE(
 value_type IN VARCHAR2,
 column_name IN VARCHAR2,
 use_old IN VARCHAR2 DEFAULT 'Y')
RETURN ANYDATA;

Parameters

Table 248-22 GET_VALUE Function Parameters

	Parameter	Description
	
value_type

	
The type of value to return for the column

Specify old to get the old value for the column. Specify new to get the new value for the column.

	
column_name

	
The column name

If the column is present and has a NULL value, then the function returns an ANYDATA instance containing a NULL value. If the column value is absent, then the function returns a NULL.

	
use_old

	
If Y and value_type is new, and no new value exists, then the function returns the corresponding old value.

If N and value_type is new, then the function returns NULL if no new value exists.

If value_type is old or if the command_type of the row LCR is not UPDATE, then the function ignores the value of the use_old parameter.

NULL is not a valid specification for the use_old parameter.

GET_VALUES Member Function

Gets a list of old or new values, depending on the value type specified.

If the command type of the row LCR is UPDATE, then specifying 'Y' for the use_old parameter is a convenient way to get the values of all columns.

Syntax

MEMBER FUNCTION GET_VALUES(
 value_type IN VARCHAR2,
 use_old IN VARCHAR2 DEFAULT 'Y')
RETURN SYS.LCR$_ROW_LIST;

Parameters

Table 248-23 GET_VALUES Function Parameters

	Parameter	Description
	
value_type

	
The type of values to return

Specify old to return a list of old values. Specify new to return a list of new values.

	
use_old

	
If Y and value_type is new, then the function returns a list of all new values in the LCR. If a new value does not exist in the list, then the function returns the corresponding old value. Therefore, the returned list contains all existing new values and the old values where there are no new values.

If N and value_type is new, then the function returns a list of all new values in the LCR without returning any old values.

If value_type is old or if the command_type of the row LCR is not UPDATE, then the function ignores the value of the use_old parameter.

NULL is not a valid specification for the use_old parameter.

GET_WHERE_CLAUSE Member Procedure

Gets a WHERE clause for the change that is encapsulated in the row LCR.

Use the WHERE clause returned by GET_WHERE_CLAUSE instead of using the ROWID, because the ROWID is not ANSI compatible. The generated WHERE clause might not match the WHERE clause in the original DML operation.

The ROWID of an INSERT statement is the ROWID of the new row created by the INSERT. The WHERE clause generated for an INSERT operation identifies the new row. Therefore, the generated WHERE clause includes all of the new values inserted.

For example, consider the following insert into the hr.departments table:

INSERT INTO hr.departments (
 department_id, department_name, manager_id, location_id)
 VALUES (10, 'HR', 20, 40);

The generated WHERE clause represents the row with the values 10, 'HR', 20, and 40. Hence, the generated WHERE clause is the following:

WHERE "DEPARTMENT_ID" = 10 AND "DEPARTMENT_NAME" = 'HR' AND
 "MANAGER_ID" = 20 AND "LOCATION_ID" = 40

The ROWID of an UPDATE statement is the ROWID of the row that was updated. The WHERE clause generated for an UPDATE operation identifies the row after the UPDATE executes. The generated WHERE clause is based on the old and new values of the UPDATE.

For example, consider the following update to the hr.departments table:

UPDATE hr.departments SET department_name='Management'
 WHERE department_name='Administration' AND location_id = 20 AND
 manager_id = 30 AND department_id = 10;

The values of the row after the UPDATE are 10, 'Management', 30, and 20. Hence, the generated WHERE clause to identify the row is the following:

WHERE "DEPARTMENT_ID" = 10 AND "DEPARTMENT_NAME" = 'MANAGEMENT' AND
 "MANAGER_ID" = 30 AND "LOCATION_ID" = 20

Notice that the new value is used for "DEPARTMENT_NAME", because the new value is the value of the column after the UPDATE. For the rest of the columns, the old values are used.

The ROWID of a DELETE operation is the row that existed before it was deleted. The generated WHERE clause consists of all the old column values present in the DELETE operation.

LOB columns do not appear in generated WHERE clauses. The generated WHERE clause is not affected by the presence of LOB columns in the LCR.

This method is overloaded. The different functionality of each form of syntax is presented along with the definitions.

Syntax

The following procedure returns the WHERE clause of a SQL statement in a CLOB data type.

MEMBER PROCEDURE GET_WHERE_CLAUSE(
 where_clause IN/OUT CLOB);

The following procedure returns the WHERE clause of a SQL statement with bind variables in a CLOB data type.

MEMBER PROCEDURE GET_WHERE_CLAUSE(
 where_clause IN/OUT CLOB,
 variable_list IN/OUT LCR$_ROW_LIST,
 bind_var_syntax IN VARCHAR2 DEFAULT ':');

	
See Also:

	
LCR$_ROW_LIST Type

	
Oracle Streams Concepts and Administration

Parameters

Table 248-24 GET_WHERE_CLAUSE Procedure Parameters

	Parameter	Description
	
where_clause

	
The WHERE clause of the SQL statement for the change that is encapsulated in the LCR

	
variable_list

	
The values for the bind variables in the order of the bind variables

	
bind_var_syntax

	
The syntax for the bind variables

One of the following values is valid:

	
Specify :, the default, for bind values to be in the form :1, :2, and so on.

	
Specify ? for bind values to be in the form ?.

GET_XML_INFORMATION Member Function

Gets the XML information for the specified column.

The return value can be one of the following:

DBMS_LCR.NOT_XML CONSTANT NUMBER := 1;
DBMS_LCR.XML_DOC CONSTANT NUMBER := 2;
DBMS_LCR.XML_DIFF CONSTANT NUMBER := 3;

DBMS_LCR.NOT_XML indicates that the column is not an XMLType column. DBMS_LCR.XML_DOC indicates that the column contains an XML document. DBMS_LCR.XML_DIFF indicates that the column contains differences between old and new XML documents for an update operation.

Returns NULL if the specified column does not exist.

Syntax

MEMBER FUNCTION GET_XML_INFORMATION(
 column_name IN VARCHAR2)
RETURN NUMBER;

Parameter

Table 248-25 GET_XML_INFORMATION Function Parameter

	Parameter	Description
	
column_name

	
The column name

IS_STATEMENT_LCR Member Function

This function is reserved for internal use only.

	
Note:

This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2).

KEEP_COLUMNS Member Procedure

This procedure keeps a list of columns in a row LCR. The procedure deletes columns that are not in the list from the row LCR.

Syntax

MEMBER PROCEDURE KEEP_COLUMNS(
 column_list IN VARCHAR2,
 value_type IN VARCHAR2 DEFAULT '*');

Parameters

Table 248-26 KEEP_COLUMNS Procedure Parameters

	Parameter	Description
	
column_list

	
The names of the columns kept for the row LCR

Specify a comma-delimited list of type VARCHAR2. This procedure removes columns that are not in the list from the current row LCR.

	
value_type

	
The type of value for which to keep the columns

Specify old to keep the old values of the columns. An error is raised if the old values do not exist in the LCR.

Specify new to keep the new values of the columns. An error is raised if the new values do not exist in the LCR.

If * is specified, then the procedure keeps both the old and the new columns.

RENAME_COLUMN Member Procedure

Renames a column in a row LCR.

Syntax

MEMBER PROCEDURE RENAME_COLUMN(
 from_column_name IN VARCHAR2,
 to_column_name IN VARCHAR2,
 value_type IN VARCHAR2 DEFAULT '*');

Parameters

Table 248-27 RENAME_COLUMN Procedure Parameters

	Parameter	Description
	
from_column_name

	
The existing column name

	
to_column_name

	
The new column name

An error is raised if a column with the specified name already exists.

	
value_type

	
The type of value for which to rename the column

Specify old to rename the old value of the column. An error is raised if the old value does not exist in the LCR.

Specify new to rename the new value of the column. An error is raised if the new value does not exist in the LCR.

If * is specified, then the procedure renames the column names for both old and new value. The procedure raises an error if either column value does not exist in the LCR.

SET_LOB_INFORMATION Member Procedure

Sets LOB information for the column.

	
Note:

When you are processing a row LCR with a rule-based transformation, procedure DML handler, or error handler, you cannot use this member procedure.

Syntax

MEMBER PROCEDURE SET_LOB_INFORMATION(
 value_type IN VARCHAR2,
 column_name IN VARCHAR2,
 lob_information IN NUMBER);

Parameters

Table 248-28 SET_LOB_INFORMATION Procedure Parameters

	Parameter	Description
	
value_type

	
The type of value to set for the column, either old or new

Specify old only if lob_information is set to DBMS_LCR.NOT_A_LOB.

	
column_name

	
The name of the column.

An exception is raised if the column value does not exist. You might need to set this parameter for non-LOB columns.

	
lob_information

	
Specify one of the following values:

 DBMS_LCR.NOT_A_LOB CONSTANT NUMBER := 1;
 DBMS_LCR.NULL_LOB CONSTANT NUMBER := 2;
 DBMS_LCR.INLINE_LOB CONSTANT NUMBER := 3;
 DBMS_LCR.EMPTY_LOB CONSTANT NUMBER := 4;
 DBMS_LCR.LOB_CHUNK CONSTANT NUMBER := 5;
 DBMS_LCR.LAST_LOB_CHUNK CONSTANT NUMBER := 6;

SET_LOB_OFFSET Member Procedure

Sets the LOB offset for the specified column in the number of characters for CLOB columns and the number of bytes for BLOB columns.

	
Note:

When you are processing a row LCR with a rule-based transformation, procedure DML handler, or error handler, you cannot use this member procedure.

Syntax

MEMBER PROCEDURE SET_LOB_OFFSET(
 value_type IN VARCHAR2,
 column_name IN VARCHAR2,
 lob_offset IN NUMBER);

Parameters

Table 248-29 SET_LOB_OFFSET Procedure Parameters

	Parameter	Description
	
value_type

	
The type of value to set for the column

Currently, only new can be specified.

	
column_name

	
The column name

An error is raised if the column value does not exist in the LCR.

	
lob_offset

	
The LOB offset number

Valid values are NULL or a positive integer less than or equal to DBMS_LOB.LOBMAXSIZE.

SET_LOB_OPERATION_SIZE Member Procedure

Sets the operation size for the LOB column in the number of characters for CLOB columns and bytes for BLOB columns.

	
Note:

When you are processing a row LCR with a rule-based transformation, procedure DML handler, or error handler, you cannot use this member procedure.

Syntax

MEMBER PROCEDURE SET_LOB_OPERATION_SIZE(
 value_type IN VARCHAR2,
 column_name IN VARCHAR2,
 lob_operation_size IN NUMBER);

Parameters

Table 248-30 SET_LOB_OPERATION_SIZE Procedure Parameters

	Parameter	Description
	
value_type

	
The type of value to set for the column

Currently, only new can be specified.

	
column_name

	
The name of the LOB column

An exception is raised if the column value does not exist in the LCR.

	
lob_operation_size

	
If lob_information for the LOB is or will be DBMS_LCR.LAST_LOB_CHUNK, then this parameter can be set to either a valid LOB ERASE value or a valid LOB TRIM value. A LOB ERASE value must be a positive integer less than or equal to DBMS_LOB.LOBMAXSIZE. A LOB TRIM value must be a nonnegative integer less than or equal to DBMS_LOB.LOBMAXSIZE.

Otherwise, set to NULL.

SET_ROW_TEXT Member Procedure

This procedure is reserved for internal use only.

	
Note:

This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2).

SET_VALUE Member Procedure

Overwrites the old or new value of the specified column.

One reason to overwrite an old value for a column is to resolve an error that resulted from a conflict.

	
Note:

To add a column to a row LCR, run ADD_COLUMN.

	
See Also:

ADD_COLUMN Member Procedure

Considerations for LOB Columns

When processing a row LCR with LOB columns with a procedure DML handler or error handler, and the handler is using LOB assembly (the assemble_lobs parameter is set to TRUE for the handler), you can use this member procedure in the handler procedure on a LOB column in a row LCR. If assemble_lobs is set to FALSE for the handler, then you cannot use this member procedure on a LOB column.

To use a DML or error handler to set the value of a LOB column, specify the LOB locator for the column_value parameter in the member procedure. The SET_VALUE member procedure verifies that an ANYDATA encapsulated LOB locator is processed with a DML or error handler that is using LOB assembly. An error is raised under the following conditions:

	
The handler attempts to enqueue a row LCR with an ANYDATA encapsulated LOB locator.

	
An attempt is made to set a LOB column incorrectly.

If an error is raised because of one of these conditions, then the transaction that includes the row LCR is moved to the error queue, and the LOB is represented by the original (nonassembled) row LCRs.

	
Note:

	
Database compatibility must be 10.2.0 or higher to use LOB assembly.

	
When you are processing a row LCR with a rule-based transformation, you cannot use this member procedure on a LOB column.

	
When you are processing a row LCR with a rule-based transformation, procedure DML handler, or error handler, you cannot use this member procedure on a LONG or LONG RAW column.

Considerations for XMLType Columns

When processing a row LCR with XMLType columns with a procedure DML handler or error handler, any XMLType columns and LOB columns in the LCR are always assembled using LOB assembly. You can use this member procedure in the handler procedure on a row LCR that contains one or more XMLType columns.

To use a DML or error handler to set the value an XMLType column, specify the XMLType for the column_value parameter. The SET_VALUE member procedure verifies that an ANYDATA encapsulated XMLType is processed with a DML or error handler. An error is raised under the following conditions:

	
The handler attempts to enqueue a row LCR with an ANYDATA encapsulated XMLType.

	
An attempt is made to set a XMLType column incorrectly.

If an error is raised because of one of these conditions, then the transaction that includes the row LCR is moved to the error queue, and the XMLType column is represented by the original (nonassembled) row LCRs.

	
Note:

	
Database compatibility must be 11.1.0 or higher to process row LCRs with XMLType columns.

	
When you are processing a row LCR with a rule-based transformation, you cannot use this member procedure on XMLType columns.

Syntax

MEMBER PROCEDURE SET_VALUE(
 value_type IN VARCHAR2,
 column_name IN VARCHAR2,
 column_value IN ANYDATA);

Parameters

Table 248-31 SET_VALUE Procedure Parameters

	Parameter	Description
	
value_type

	
The type of value to set

Specify old to set the old value of the column. Specify new to set the new value of the column.

	
column_name

	
The column name

An error is raised if the specified column_value does not exist in the LCR for the specified column_type.

	
column_value

	
The new value of the column

If NULL is specified, then this procedure raises an error. To set the value to NULL, encapsulate the NULL in an ANYDATA instance.

If the member procedure is used in a procedure DML handler or error handler that uses LOB assembly, then specify a LOB locator for LOB columns.

SET_VALUES Member Procedure

Replaces all old values or all new values for the LCR, depending on the value type specified.

Considerations for LOB Columns

You can use this procedure when processing a row LCR with LOB columns with a procedure DML handler or error handler. If the handler is using LOB assembly (the assemble_lobs parameter is set to TRUE for the handler), then you can use this member procedure in the handler procedure. If assemble_lobs is set to FALSE for the handler, then you cannot use this member procedure on a row LCR.

To use a DML or error handler to set the value of one or more LOB columns in a row LCR, specify a LOB locator for each LOB column in the value_list parameter. The SET_VALUES member procedure verifies that an ANYDATA encapsulated LOB locator is processed with a DML or error handler that is using LOB assembly. An error is raised under the following conditions:

	
The handler attempts to enqueue a row LCR with an ANYDATA encapsulated LOB locator.

	
An attempt is made to set a LOB column incorrectly.

If an error is raised because of one of these conditions, then the transaction that includes the row LCR is moved to the error queue, and the LOB columns are represented by the original (nonassembled) row LCRs.

	
Note:

	
Database compatibility must be 10.2.0 or higher to use LOB assembly.

	
When you are processing a row LCR with a rule-based transformation, you cannot use this member procedure on LOB columns.

	
When you are processing a row LCR with a rule-based transformation, procedure DML handler, or error handler, you cannot use this member procedure on LONG or LONG RAW columns.

Considerations for XMLType Columns

When processing a row LCR with XMLType columns with a procedure DML handler or error handler, any XMLType and LOB columns in the LCR are always assembled using LOB assembly. You can use this member procedure in the handler procedure on a row LCR that contains one or more XMLType columns.

To use a DML or error handler to set the value of one or more XMLType columns in a row LCR, specify an XMLType for each XMLType column in the value_list parameter. The SET_VALUES member procedure verifies that an ANYDATA encapsulated XMLType is processed with a DML or error handler. An error is raised under the following conditions:

	
The handler attempts to enqueue a row LCR with an ANYDATA encapsulated XMLType.

	
An attempt is made to set a XMLType incorrectly.

If an error is raised because of one of these conditions, then the transaction that includes the row LCR is moved to the error queue, and the XMLType columns are represented by the original (nonassembled) row LCRs.

	
Note:

	
Database compatibility must be 11.1.0 or higher to process row LCRs with XMLType columns.

	
When you are processing a row LCR with a rule-based transformation, you cannot use this member procedure on XMLType columns.

Syntax

MEMBER PROCEDURE SET_VALUES(
 value_type IN VARCHAR2,
 value_list IN SYS.LCR$_ROW_LIST);

Parameters

Table 248-32 SET_VALUES Procedure Parameters

	Parameter	Description
	
value_type

	
The type of values to replace

Specify old to replace the old values. Specify new to replace the new values.

	
value_list

	
List of values to replace the existing list

Use a NULL or an empty list to remove all values.

If the member procedure is used in a procedure DML handler or error handler that uses LOB assembly, then specify one or more LOB locators for LOB columns.

SET_XML_INFORMATION Member Procedure

Sets the XML information for the column.

Syntax

MEMBER PROCEDURE SET_XML_INFORMATION(
 column_name IN VARCHAR2,
 xml_information IN NUMBER);

Parameters

Table 248-33 SET_XML_INFORMATION Procedure Parameters

	Parameter	Description
	
column_name

	
The name of the column

An exception is raised if the column value does not exist in the LCR.

	
xml_information

	
Specify one of the following values:

 DBMS_LCR.NOT_XML CONSTANT NUMBER := 1;
 DBMS_LCR.XML_DOC CONSTANT NUMBER := 2;
 DBMS_LCR.XML_DIFF CONSTANT NUMBER := 3;

DBMS_LCR.NOT_XML indicates that the column is not an XMLType column. DBMS_LCR.XML_DOC indicates that the column contains an XML document. DBMS_LCR.XML_DIFF indicates that the column contains differences between old and new XML documents for an update operation.

Common Subprograms for LCR$_DDL_RECORD and LCR$_ROW_RECORD

The following functions and procedures are common to both the LCR$_DDL_RECORD and LCR$_ROW_RECORD type.

	
See Also:

For descriptions of the subprograms for these types that are exclusive to each type:
	
"Summary of LCR$_DDL_RECORD Subprograms"

	
"Summary of LCR$_ROW_RECORD Subprograms"

Table 248-34 Summary of Common Subprograms for DDL and Row LCR Types

	Subprogram	Description
	
GET_COMMAND_TYPE Member Function

	
Gets the command type of the logical change record (LCR)

	
GET_COMMIT_SCN Member Function

	
Gets the commit system change number (SCN) of the transaction to which the current LCR belongs

	
GET_COMMIT_SCN_FROM_POSITION Static Function

	
Gets the commit SCN of a transaction from the input position, which is generated by an XStream outbound server

	
GET_COMMIT_TIME

	
Gets the commit time of the transaction to which the current LCR belongs

	
GET_COMPATIBLE Member Function

	
Gets the minimal database compatibility required to support the LCR

	
GET_EXTRA_ATTRIBUTE Member Function

	
Gets the value for the specified extra attribute in the LCR

	
GET_OBJECT_NAME Member Function

	
Gets the name of the object that is changed by the LCR

	
GET_OBJECT_OWNER Member Function

	
Gets the owner of the object that is changed by the LCR

	
GET_POSITION Member Function

	
Gets the position of the current LCR

	
GET_SCN Member Function

	
Gets the SCN of the LCR

	
GET_SCN_FROM_POSITION Static Function

	
Gets the SCN from the input position, which is generated by an XStream outbound server

	
GET_SOURCE_DATABASE_NAME Member Function

	
Gets the source database name.

	
GET_SOURCE_TIME Member Function

	
Gets the time when the change in an LCR captured by a capture process was generated in the redo log of the source database, or the time when a persistent LCR was created

	
GET_TAG Member Function

	
Gets the tag for the LCR

	
GET_THREAD_NUMBER Member Function

	
Gets the thread number of the database instance that made the change that is encapsulated in the LCR

	
GET_TRANSACTION_ID Member Function

	
Gets the transaction identifier of the LCR

	
IS_NULL_TAG Member Function

	
Returns Y if the tag for the LCR is NULL, or returns N if the tag for the LCR is not NULL

	
SET_COMMAND_TYPE Member Procedure

	
Sets the command type in the LCR

	
SET_EXTRA_ATTRIBUTE Member Procedure

	
Sets the value for the specified extra attribute in the LCR

	
SET_OBJECT_NAME Member Procedure

	
Sets the name of the object that is changed by the LCR

	
SET_OBJECT_OWNER Member Procedure

	
Sets the owner of the object that is changed by the LCR

	
SET_SOURCE_DATABASE_NAME Member Procedure

	
Sets the source database name of the object that is changed by the LCR

	
SET_TAG Member Procedure

	
Sets the tag for the LCR

GET_COMMAND_TYPE Member Function

Gets the command type of the LCR.

	
See Also:

The "SQL Command Codes" table in the Oracle Call Interface Programmer's Guide for a complete list of command types

Syntax

MEMBER FUNCTION GET_COMMAND_TYPE()
RETURN VARCHAR2;

GET_COMMIT_SCN Member Function

Gets the commit system change number (SCN) of the transaction to which the current LCR belongs.

The commit SCN for a transaction is available only during apply or during error transaction execution. This function can be used only in a procedure DML handler, DDL handler, or error handler.

The commit SCN might not be available for an LCR that is part of an incomplete transaction. For example, persistent LCRs might not have a commit SCN. If the commit SCN is not available for an LCR, then this function returns NULL.

Syntax

MEMBER FUNCTION GET_COMMIT_SCN()
RETURN NUMBER;

GET_COMMIT_SCN_FROM_POSITION Static Function

Gets the commit system change number (SCN) of a transaction from the input position, which is generated by an XStream outbound server.

Syntax

STATIC FUNCTION GET_COMMIT_SCN_FROM_POSITION(
 position IN RAW)
RETURN NUMBER;

Parameters

Table 248-35 GET_COMMIT_SCN_FROM_POSITION Function Parameter

	Parameter	Description
	
position

	
The position

You can obtain the position by using the GET_POSITION member function or by querying the DBA_XSTREAM_OUTBOUND_PROGRESS data dictionary view.

	
Note:

Using XStream requires purchasing a license for the Oracle GoldenGate product. See Oracle Database XStream Guide.

GET_COMMIT_TIME

Gets the commit time of the transaction to which the current LCR belongs.

The commit time for a transaction is available only during apply or during error transaction execution. This function can be used only in a procedure DML handler, DDL handler, or error handler.

The commit time might not be available for an LCR that is part of an incomplete transaction. For example, persistent LCRs might not have a commit time. If the commit time is not available for an LCR, then this function returns NULL.

Syntax

MEMBER FUNCTION GET_COMMIT_TIME()
RETURN DATE;

GET_COMPATIBLE Member Function

Gets the minimal database compatibility required to support the LCR. You control the compatibility of an Oracle database using the COMPATIBLE initialization parameter.

The return value for this function can be one of the following:

	Return Value	COMPATIBLE Initialization Parameter Equivalent
	DBMS_STREAMS.COMPATIBLE_9_2	9.2.0
	DBMS_STREAMS.COMPATIBLE_10_1	10.1.0
	DBMS_STREAMS.COMPATIBLE_10_2	10.2.0
	DBMS_STREAMS.COMPATIBLE_11_1	11.1.0
	DBMS_STREAMS.COMPATIBLE_11_2	11.2.0

DDL LCRs always return DBMS_STREAMS.COMPATIBLE_9_2.

You can use the following functions in the DBMS_STREAMS package for constant compatibility return values:

	
The COMPATIBLE_9_2 function returns the DBMS_STREAMS.COMPATIBLE_9_2 constant.

	
The COMPATIBLE_10_1 function returns DBMS_STREAMS.COMPATIBLE_10_1 constant.

	
The COMPATIBLE_10_2 function returns DBMS_STREAMS.COMPATIBLE_10_2 constant.

	
The COMPATIBLE_11_1 function returns DBMS_STREAMS.COMPATIBLE_11_1 constant.

	
The COMPATIBLE_11_2 function returns DBMS_STREAMS.COMPATIBLE_11_2 constant.

	
The MAX_COMPATIBLE function returns an integer that is greater than the highest possible compatibility constant for the current release of Oracle Database.

You can use these functions with the GET_COMPATIBLE member function for an LCR in rule conditions and apply handlers.

	
Note:

You can determine which database objects in a database are not supported by Oracle Streams by querying the DBA_STREAMS_UNSUPPORTED data dictionary view.

	
See Also:

	
Oracle Streams Concepts and Administration for examples of rules that discard changes that are not supported by Oracle Streams

	
Chapter 143, "DBMS_STREAMS" and Chapter 144, "DBMS_STREAMS_ADM"

	
Oracle Database Reference and Oracle Database Upgrade Guide for more information about the COMPATIBLE initialization parameter

Syntax

MEMBER FUNCTION GET_COMPATIBLE()
RETURN NUMBER;

GET_EXTRA_ATTRIBUTE Member Function

Gets the value for the specified extra attribute in the LCR. The returned extra attribute is contained within an ANYDATA instance. You can use the INCLUDE_EXTRA_ATTRIBUTE procedure in the DBMS_CAPTURE_ADM package to instruct a capture process to capture one or more extra attributes.

	
See Also:

INCLUDE_EXTRA_ATTRIBUTE Procedure

Syntax

MEMBER FUNCTION GET_EXTRA_ATTRIBUTE(
 attribute_name IN VARCHAR2)
RETURN ANYDATA;

Parameters

Table 248-36 GET_EXTRA_ATTRIBUTE Function Parameter

	Parameter	Description
	
attribute_name

	
The name of the extra attribute to return

Valid names are:

	
row_id

The rowid of the row changed in a row LCR. This attribute is not included in DDL LCRs, nor in row LCRs for index-organized tables. The type is UROWID.

	
serial#

The serial number of the session that performed the change captured in the LCR. The type is NUMBER.

	
session#

The identifier of the session that performed the change captured in the LCR. The type is NUMBER.

	
thread#

The thread number of the instance in which the change captured in the LCR was performed. Typically, the thread number is relevant only in an Oracle Real Application Clusters (Oracle RAC) environment. The type is NUMBER.

	
tx_name

The name of the transaction that includes the LCR. The type is VARCHAR2.

	
username

The name of the current user who performed the change captured in the LCR. The type is VARCHAR2.

An error is raised if the specified attribute_name is not valid.

If no value exists for the specified extra attribute, then the function returns a NULL.

See Also: Oracle Database PL/SQL Language Reference for more information about the current user

GET_OBJECT_NAME Member Function

Gets the name of the object that is changed by the LCR.

Syntax

MEMBER FUNCTION GET_OBJECT_NAME()
RETURN VARCHAR2;

GET_OBJECT_OWNER Member Function

Gets the owner of the object that is changed by the LCR.

Syntax

MEMBER FUNCTION GET_OBJECT_OWNER()
RETURN VARCHAR2;

GET_POSITION Member Function

Gets the position of the current LCR. The position uniquely identifies each LCR. The position strictly increases within each transaction and across transactions.

LCR position is commonly used in XStream configurations.

Syntax

MEMBER FUNCTION GET_POSITION()
RETURN RAW;

	
Note:

Using XStream requires purchasing a license for the Oracle GoldenGate product. See Oracle Database XStream Guide.

GET_SCN Member Function

Gets the system change number (SCN) of the LCR.

Syntax

MEMBER FUNCTION GET_SCN()
RETURN NUMBER;

GET_SCN_FROM_POSITION Static Function

Gets the system change number (SCN) from the input position, which is generated by an XStream outbound server.

Syntax

STATIC FUNCTION GET_SCN_FROM_POSITION(
 position IN RAW)
RETURN NUMBER;

Parameters

Table 248-37 GET_SCN_FROM_POSITION Function Parameter

	Parameter	Description
	
position

	
The position

You can obtain the position by using the GET_POSITION member function or by querying the DBA_XSTREAM_OUTBOUND_PROGRESS data dictionary view.

	
Note:

Using XStream requires purchasing a license for the Oracle GoldenGate product. See Oracle Database XStream Guide.

GET_SOURCE_DATABASE_NAME Member Function

Gets the global name of the source database. The source database is the database where the change occurred.

Syntax

MEMBER FUNCTION GET_SOURCE_DATABASE_NAME()
RETURN VARCHAR2;

GET_SOURCE_TIME Member Function

Gets the time when the change in an LCR captured by a capture process was generated in the redo log of the source database, or the time when a persistent LCR was created.

Syntax

MEMBER FUNCTION GET_SOURCE_TIME()
RETURN DATE;

GET_TAG Member Function

Gets the tag for the LCR. An LCR tag is a binary tag that enables tracking of the LCR. For example, this tag can be used to determine the original source database of the DML or DDL change when apply forwarding is used.

	
See Also:

Oracle Streams Replication Administrator's Guide for more information about tags

Syntax

MEMBER FUNCTION GET_TAG()
RETURN RAW;

GET_THREAD_NUMBER Member Function

Gets the thread number of the database instance that made the change that is encapsulated in the LCR. Typically, the thread number is relevant in an Oracle Real Application Clusters configuration.

	
See Also:

Oracle Real Application Clusters Administration and Deployment Guide

Syntax

MEMBER FUNCTION GET_THREAD_NUMBER()
RETURN NUMBER;

GET_TRANSACTION_ID Member Function

Gets the transaction identifier of the LCR.

Syntax

MEMBER FUNCTION GET_TRANSACTION_ID()
RETURN VARCHAR2;

IS_NULL_TAG Member Function

Returns Y if the tag for the LCR is NULL, or returns N if the tag for the LCR is not NULL.

	
See Also:

Oracle Streams Replication Administrator's Guide for more information about tags

Syntax

MEMBER FUNCTION IS_NULL_TAG()
RETURN VARCHAR2;

SET_COMMAND_TYPE Member Procedure

Sets the command type in the LCR. If the command type specified cannot be interpreted, then this procedure raises an error. For example, changing INSERT to GRANT would raise an error.

	
See Also:

	
The description of the command_type parameter in LCR$_DDL_RECORD Constructor Function Parameters

	
The description of the command_type parameter in LCR$_ROW_RECORD Type

	
The "SQL Command Codes" table in the Oracle Call Interface Programmer's Guide for a complete list of command types

Syntax

MEMBER PROCEDURE SET_COMMAND_TYPE(
 command_type IN VARCHAR2);

Parameter

Table 248-38 SET_COMMAND_TYPE Procedure Parameter

	Parameter	Description
	
command_type

	
The command type

Set this parameter to a non-NULL value.

SET_EXTRA_ATTRIBUTE Member Procedure

Sets the value for the specified extra attribute in the LCR. You can use the INCLUDE_EXTRA_ATTRIBUTE procedure in the DBMS_CAPTURE_ADM package to instruct a capture process to capture one or more extra attributes.

	
See Also:

INCLUDE_EXTRA_ATTRIBUTE Procedure

Syntax

MEMBER PROCEDURE SET_EXTRA_ATTRIBUTE(
 attribute_name IN VARCHAR2,
 attribute_value IN ANYDATA);

Parameters

Table 248-39 SET_EXTRA_ATTRIBUTE Procedure Parameter

	Parameter	Description
	
attribute_name

	
The name of the extra attribute to set

Valid names are:

	
row_id

The rowid of the row changed in a row LCR. This attribute is not included in DDL LCRs, nor in row LCRs for index-organized tables. The type is VARCHAR2.

	
serial#

The serial number of the session that performed the change captured in the LCR. The type is NUMBER.

	
session#

The identifier of the session that performed the change captured in the LCR. The type is NUMBER.

	
thread#

The thread number of the instance in which the change captured in the LCR was performed. Typically, the thread number is relevant only in an Oracle Real Application Clusters (Oracle RAC) environment. The type is NUMBER.

	
tx_name

The name of the transaction that includes the LCR. The type is VARCHAR2.

	
username

The name of the current user who performed the change captured in the LCR. The type is VARCHAR2.

An error is raised if the specified attribute_name is not valid.

See Also: Oracle Database PL/SQL Language Reference for more information about the current user

	
attribute_value

	
The value to which the specified extra attribute is set

If set to NULL, then this procedure removes the specified extra attribute from the LCR. To set to NULL, encapsulate the NULL in an ANYDATA instance.

SET_OBJECT_NAME Member Procedure

Sets the name of the object that is changed by the LCR.

Syntax

MEMBER PROCEDURE SET_OBJECT_NAME(
 object_name IN VARCHAR2);

Parameter

Table 248-40 SET_OBJECT_NAME Procedure Parameter

	Parameter	Description
	
object_name

	
The name of the object

SET_OBJECT_OWNER Member Procedure

Sets the owner of the object that is changed by the LCR.

Syntax

MEMBER PROCEDURE SET_OBJECT_OWNER(
 object_owner IN VARCHAR2);

Parameter

Table 248-41 SET_OBJECT_OWNER Procedure Parameter

	Parameter	Description
	
object_owner

	
The schema that contains the object

SET_SOURCE_DATABASE_NAME Member Procedure

Sets the source database name of the object that is changed by the LCR.

Syntax

MEMBER PROCEDURE SET_SOURCE_DATABASE_NAME(
 source_database_name IN VARCHAR2);

Parameter

Table 248-42 SET_SOURCE_DATABASE_NAME Procedure Parameter

	Parameter	Description
	
source_database_name

	
The source database of the change

If you do not include the domain name, then the procedure appends the local domain to the database name automatically. For example, if you specify DBS1 and the local domain is EXAMPLE.COM, then the procedure specifies DBS1.EXAMPLE.COM automatically. Set this parameter to a non-NULL value.

SET_TAG Member Procedure

Sets the tag for the LCR. An LCR tag is a binary tag that enables tracking of the LCR. For example, this tag can be used to determine the original source database of the change when apply forwarding is used.

	
See Also:

Oracle Streams Replication Administrator's Guide for more information about tags

Syntax

MEMBER PROCEDURE SET_TAG(
 tag IN RAW);

Parameter

Table 248-43 SET_TAG Procedure Parameter

	Parameter	Description
	
tag

	
The binary tag for the LCR

The size limit for a tag value is two kilobytes.

LCR$_ROW_LIST Type

Identifies a list of column values for a row in a table.

This type uses the LCR$_ROW_UNIT type and is used in the LCR$_ROW_RECORD type.

	
See Also:

	
LCR$_ROW_UNIT Type

	
LCR$_ROW_RECORD Type

Syntax

CREATE TYPE SYS.LCR$_ROW_LIST AS TABLE OF SYS.LCR$_ROW_UNIT
/

LCR$_ROW_UNIT Type

Identifies the value for a column in a row.

This type is used in the LCR$_ROW_LIST type.

	
See Also:

LCR$_ROW_LIST Type

Syntax

CREATE TYPE LCR$_ROW_UNIT AS OBJECT (
 column_name VARCHAR2(4000),
 data ANYDATA,
 lob_information NUMBER,
 lob_offset NUMBER,
 lob_operation_size NUMBER
 long_information NUMBER);
/

Attributes

Table 248-44 LCR$_ROW_UNIT Attributes

	Attribute	Description
	
column_name

	
The name of the column

	
data

	
The data contained in the column

	
lob_information

	
Contains the LOB information for the column and contains one of the following values:

 DBMS_LCR.NOT_A_LOB CONSTANT NUMBER := 1;
 DBMS_LCR.NULL_LOB CONSTANT NUMBER := 2;
 DBMS_LCR.INLINE_LOB CONSTANT NUMBER := 3;
 DBMS_LCR.EMPTY_LOB CONSTANT NUMBER := 4;
 DBMS_LCR.LOB_CHUNK CONSTANT NUMBER := 5;
 DBMS_LCR.LAST_LOB_CHUNK CONSTANT NUMBER := 6;

	
lob_offset

	
The LOB offset specified in the number of characters for CLOB columns and the number of bytes for BLOB columns

Valid values are NULL or a positive integer less than or equal to DBMS_LOB.LOBMAXSIZE.

	
lob_operation_size

	
If lob_information for the LOB is DBMS_LCR.LAST_LOB_CHUNK, then this parameter can be set to either a valid LOB ERASE value or a valid LOB TRIM value. A LOB ERASE value must be a positive integer less than or equal to DBMS_LOB.LOBMAXSIZE. A LOB TRIM value must be a nonnegative integer less than or equal to DBMS_LOB.LOBMAXSIZE.

If lob_information is not DBMS_LCR.LAST_LOB_CHUNK and for all other operations, is NULL.

	
long_information

	
Contains the LONG information for the column and contains one of the following values:

DBMS_LCR.not_a_long CONSTANT NUMBER := 1;

DBMS_LCR.null_long CONSTANT NUMBER := 2;

DBMS_LCR.inline_long CONSTANT NUMBER := 3;

DBMS_LCR.long_chunk CONSTANT NUMBER := 4;

DBMS_LCR.last_long_chunk CONSTANT NUMBER := 5;

Oracle Multimedia ORDAudio TYPE

249 Oracle Multimedia ORDAudio TYPE

The Oracle Multimedia ORDAudio object type supports the storage and management of audio data.

Audio data can have different formats, encoding types, compression types, numbers of channels, sampling rates, sample sizes, and playing times (duration) depending upon how the audio data is digitally recorded. Oracle Multimedia ORDAudio can store and retrieve audio data of any data format. Oracle Multimedia ORDAudio can extract metadata from audio data of a variety of popular audio formats. Oracle Multimedia ORDAudio can also extract application attributes and store them in the comments attribute of the object in XML form.

	
Documentation of ORDAudio

Documentation of ORDAudio

For a complete description of this type within the context of Oracle Multimedia, see ORDAudio in the Oracle Multimedia Reference.

Oracle Multimedia ORDDicom TYPE

250 Oracle Multimedia ORDDicom TYPE

The Oracle Multimedia ORDDicom object type supports the storage, management, and manipulation of Digital Imaging and Communications in Medicine (DICOM) data.

The DICOM standard is the dominant standard for radiology imaging and communication, to which all major manufacturers of radiological devices must conform. Oracle Multimedia DICOM provides native support for DICOM format medical images and other objects. These include objects such as single frame and multiframe images, waveforms, slices of 3-D volumes, video segments, and structured reports.

Oracle Multimedia ORDDicom provides methods to extract standard and private DICOM metadata from DICOM content into customizable XML documents, to perform image processing operations such as format conversion and thumbnail image generation, and to create new DICOM objects. Oracle Multimedia ORDDicom also provides methods to check DICOM objects for conformance based on a set of user-specified conformance rules, and to make DICOM objects anonymous based on user-defined rules that specify the set of attributes to be made anonymous and the actions to be taken to make those attributes anonymous.

	
Documentation of ORDDicom

Documentation of ORDDicom

For a complete description of this type within the context of Oracle Multimedia, see ORDDicom in the Oracle Multimedia DICOM Developer's Guide.

Oracle Multimedia ORDDoc TYPE

251 Oracle Multimedia ORDDoc TYPE

The Oracle Multimedia ORDDoc object type supports the storage and management of heterogeneous media data including image, audio, and video.

Heterogeneous media data can have different formats depending upon the application generating the media data. Oracle Multimedia can store and retrieve media data of any data format. Oracle Multimedia ORDDoc data type can be used in applications that require you to store different types of heterogeneous media data in the same column so you can build a common metadata index on all the different types of media data. Using this index, you can search across all the different types of heterogeneous media data. However, you cannot use this same search technique if the different types of heterogeneous media data are stored in different types of objects in different columns of relational tables.

	
Documentation of ORDDoc

Documentation of ORDDoc

For a complete description of this type within the context of Oracle Multimedia, see ORDDoc in the Oracle Multimedia Reference.

Oracle Multimedia ORDImage TYPE

252 Oracle Multimedia ORDImage TYPE

The Oracle Multimedia ORDImage object type supports the storage, management, and manipulation of image data.

Digitized images consist of the image data (digitized bits) and attributes that describe and characterize the image data.

The image data (pixels) can have varying depths (bits for each pixel) depending on how the image was captured, and can be organized in various ways. The organization of the image data is known as the data format. Oracle Multimedia ORDImage can store and retrieve image data of any data format. Oracle Multimedia ORDImage can process (cut, scale, and generate thumbnails) of images, convert the format of images, extract properties of images of a variety of popular data formats, and extract and embed application metadata in images.

	
Documentation of ORDImage

Documentation of ORDImage

For a complete description of this type within the context of Oracle Multimedia, see ORDImage in the Oracle Multimedia Reference.

Oracle Multimedia SQL/MM Still Image TYPES

253 Oracle Multimedia SQL/MM Still Image TYPES

Oracle Multimedia provides support for the SQL/MM Still Image Standard, which supports the storage, retrieval, and modification of images in the database and the ability to locate images using visual predicates.

The following object relational types for images and image characteristics are included in this support:

SI_StillImage

SI_AverageColor

SI_Color

SI_ColorHistogram

SI_FeatureList

SI_PositionalColor

SI_Texture

	
Documentation of SQL/MM Still Image

Documentation of SQL/MM Still Image

For a complete description of this type within the context of Oracle Multimedia, see SQL/MM Still Image in the Oracle Multimedia Reference.

Oracle Multimedia ORDVideo TYPE

254 Oracle Multimedia ORDVideo TYPE

The Oracle Multimedia ORDVideo object type supports the storage and management of video data.

Digitized video consists of the video data (digitized bits) and the attributes that describe and characterize the video data. Video applications sometimes associate application-specific information, such as the description of the video training tape, date recorded, instructor's name, producer's name, and so on, within the video data.

The video data can have different formats, compression types, frame rates, frame sizes, frame resolutions, playing times, compression types, number of colors, and bit rates depending upon how the video data was digitally recorded. Oracle Multimedia ORDVideo can store and retrieve video data of any data format. Oracle Multimedia ORDVideo can extract metadata from video data of a variety of popular video formats. Oracle Multimedia ORDVideo can also extract application attributes and store them in the comments attribute of the object in XML form.

	
Documentation of ORDVideo

Documentation of ORDVideo

For a complete description of this type within the context of Oracle Multimedia, see ORDVideo in the Oracle Multimedia Reference.

MGD_ID Package Types

255 MGD_ID Package Types

The MGD_ID package provides an extensible framework that supports current radio-frequency ID (RFID) tags with the standard family of EPC bit encodings for the supported encoding types. The MGD_ID Package also supports new and evolving tag encodings that are not included in the current EPC standard (EPC v1.1 specification). The MGD_ID package contains several predefined types.

	
See Also:

Oracle Database Advanced Application Developer's Guide for more information.

This chapter contains the following topics:

	
Using MGD_ID Package Object Types

	
Summary of Types

	
Summary of MGD_ID Subprograms

The method described in this reference chapter show examples based on the examples shown in the constructor functions.

The examples in this chapter assume that the you have run the following set of commands before running the contents of each script:

SQL> connect / as sysdba;
Connected.
SQL> create user mgduser identified by mgduser;
SQL> grant connect, resource to mgduser;
SQL> connect mgduser
Enter password: mgduserpassword
Connected.
SQL> set serveroutput on;

Using MGD_ID Package Object Types

This section contains topics that relate to using the MGD_ID package object types.

	
Security Model

Security Model

You must run the catmgd.sql script to load the DBMS_MGD_ID_UTL package and create the required Identity Code Package schema objects in the MGDSYS schema.

MGD_ID is a MGDSYS-owned object type. Any MGD_ID subprogram called from an anonymous PL/SQL block is run using the privileges of the current user.

A user must be granted connect and resource roles to use the MGD_ID object type and its subprograms.

EXECUTE privilege is granted to PUBLIC for this ADT: MGD_ID.

A public synonym, by the same name, is created for this ADT: MGD_ID.

Summary of Types

Table 255-1 describes the MGD_ID Package object types.

Table 255-1 MGD_ID Package Object Types

	Object Type Name	Description
	
MGD_ID_COMPONENT Object Type

	
Datatype that specifies the name and value pair attributes that define a component

	
MGD_ID_COMPONENT_VARRAY Object Type

	
Datatype that specifies a list of up to 128 components as name-value attribute pairs used in two constructor functions for creating an identity code type object

	
MGD_ID Object Type

	
Represents an MGD_ID object that specifies the category identifier for the code category for this identity code and its list of components

MGD_ID_COMPONENT Object Type

The MGD_ID_COMPONENT type is a datatype that specifies the name and value pair attributes that define a component.

Syntax

CREATE OR REPLACE TYPE MGD_ID_COMPONENT as object (name VARCHAR2(256),
 value VARCHAR2(1024));

Attributes

Table 255-2 MGD_ID_COMPONENT Attributes

	Attribute	Description
	
name

	
Name of component

	
value

	
Value of the component as a character

Usage Notes

None.

Examples

See the MGD_ID Constructor Function for an example.

MGD_ID_COMPONENT_VARRAY Object Type

The MGD_ID_COMPONENT_VARRAY type is a datatype that specifies a list of up to 128 components as name-value attribute pairs for use in two constructor functions for creating a product code type object with its list of components.

Syntax

CREATE OR REPLACE TYPE MGD_ID_COMPONENT_VARRAY is VARRAY (128) of MGD_ID_COMPONENT;

Attributes

None.

Usage Notes

None.

Examples

See the MGD_ID Constructor Function for an example.

MGD_ID Object Type

The MGD_ID type represents an identity code in an RFID application. This type represents RFID tags with standard EPC bit encoding as well as tag encodings that are not included in the EPC standard.

Syntax

CREATE OR REPLACE TYPE MGD_ID as object (category_id VARCHAR2(256),
 components MGD_ID_COMPONENT_VARRAY);

Attributes

Table 255-3 MGD_ID Object Type Attributes

	Attribute	Description
	
category_id

	
Category identifier for the code category of this code

	
components

	
List of components as name-value attributes

Methods

Table 255-5 describes the methods of the MGD_ID object type.

Table 255-4 MGD_ID Methods

	Method	Description
	
MGD_ID constructor function

	
Creates an MGD_ID object based on the parameters passed in and returns self as a result

	
FORMAT function

	
Returns the string representation of the MGD_ID in the specified format

	
GET_COMPONENT function

	
Returns the string value of the specified MGD_ID component

	
TO_STRING function

	
Returns the string value of semicolon (;) separated component name value pairs of the MGD_ID object

	
TRANSLATE function

	
Returns the result of the conversion of the identifier from one format to the specified format

Usage Notes

None.

Examples

See the Summary of MGD_ID Subprograms section and the section about using the Identity Code package in Oracle Database Advanced Application Developer's Guide for examples.

Summary of MGD_ID Subprograms

Table 255-5 describes the subprograms in the MGD_ID object type.

All the values and names passed to the procedures defined in the MGD_ID object type are case insensitive unless otherwise mentioned. To preserve the case, enclose the values with double quotation marks.

Table 255-5 MGD_ID Object Type Subprograms

	Subprogram	Description
	
MGD_ID Constructor Function

	
Creates an MGD_ID object based on the parameters passed in and returns self as a result

	
FORMAT Function

	
Returns the string representation of the MGD_ID object in the specified format

	
GET_COMPONENT Function

	
Returns the string value of the specified MGD_ID component

	
TO_STRING Function

	
Returns the string value of semicolon (;) separated component name value pairs of the MGD_ID object

	
TRANSLATE Function

	
Returns the result of the conversion of the identifier from one format to the specified format

MGD_ID Constructor Function

This constructor function constructs an identity code type object, MGD_ID. The constructor function is overloaded. The different functionality of each form of syntax is presented along with the definitions.

Syntax

Constructs an MGD_ID object type based on the category ID and a list of components.

constructor function MGD_ID (
 category_id IN VARCHAR2,
 components IN MGD_ID_COMPONENT_VARRAY)
 RETURN SELF AS RESULT DETERMINISTIC;

Constructs an MGD_ID object type based on the category ID, the identifier string, and the list of additional parameters required to create it.

constructor function MGD_ID (
 category_id VARCHAR2,
 identifier VARCHAR2,
 parameter_list VARCHAR2)
 RETURN SELF AS RESULT DETERMINISTIC;

Constructs an MGD_ID object type based on the category name, category version, and a list of components.

constructor function MGD_ID (
 category_name VARCHAR2,
 category_version VARCHAR2,
 components MGD_ID_COMPONENT_VARRAY)
 RETURN SELF AS RESULT DETERMINISTIC;

Constructs an MGD_ID object type based on the category name, category version, the identifier string, and the list of additional parameters required to create it.

constructor function MGD_ID (
 category_name VARCHAR2,
 category_version VARCHAR2,
 identifier VARCHAR2,
 parameter_list VARCHAR2)
 RETURN SELF AS RESULT DETERMINISTIC;

Parameters

Table 255-6 MGD_ID Constructor Function Parameters

	Parameter	Description
	
category_id

	
Category identifier

	
components

	
List of component name value pairs

	
category_name

	
Category name, such as EPC

	
category_version

	
Category version. If NULL, the latest version for the specified category name will be used.

	
identifier

	
Identifier string in any format of an encoding scheme in the specified category. For example, for SGTIN-96 encoding, the identifier can be in the format of BINARY, PURE_IDENTITY, TAG_ENCODING, or LEGACY.

Express this identifier as a string according to the appropriate grammar or pattern in the tag data translation (TDT) markup file. For example, a binary string consisting of characters 0 and 1, a URI (either tag-encoding or pure-identity formats), or a serialized legacy code expressed as a string format for input, such as gtin=00037000302414;serial=10419703 for a SGTIN coding scheme.

	
parameter_list

	
List of additional parameters required to create the object in the representation. The list is expressed as a parameter string containing key-value pairs, separated by the semicolon (;) as a delimiter between key-value pairs. For example, for a GTIN code, the parameter string would look as follows:

filter=3;companyprefixlength=7;taglength=96

Usage Notes

	
Use MGD_ID_UTL.EPC_ENCODING_CATEGORY_ID as category_id.

	
If the category is not already registered, an error is raised.

	
If the bit_length parameter is NULL, the bit_length is 8* the length of bit_encoding.

	
If the component list does not contain all required components, an exception MGD_ID_UTL.e_LackComponent will be thrown.

Examples

The following examples construct identity code type objects.

Construct an MGD_ID object (SGTIN-64) passing in the category ID and a list of components.

--Contents of constructor11.sql
call DBMS_MGD_ID_UTL.set_proxy('www-proxy.us.oracle.com', '80');
call DBMS_MGD_ID_UTL.refresh_category('1');
select MGD_ID('1',
 MGD_ID_COMPONENT_VARRAY(
 MGD_ID_COMPONENT('companyprefix','0037000'),
 MGD_ID_COMPONENT('itemref','030241'),
 MGD_ID_COMPONENT('serial','1041970'),
 MGD_ID_COMPONENT('schemes','SGTIN-64')
)
) from dual;
call DBMS_MGD_ID_UTL.remove_proxy();

SQL> @constructor11.sql
.
.
.
MGD_ID('1', MGD_ID_COMPONENT_VARRAY(MGD_ID_COMPONENT('companyprefix', '0037000'),
 MGD_ID_COMPONENT('itemref', '030241'),
 MGD_ID_COMPONENT('serial', '1041970'),
 MGD_ID_COMPONENT('schemes', 'SGTIN-64')))
.
.
.

Constructs an MGD_ID object (SGTIN-64) passing in the category ID, the tag identifier, and the list of additional parameters that may be required to create it.

--Contents of constructor22.sql
call DBMS_MGD_ID_UTL.set_proxy('www-proxy.us.oracle.com', '80');
call DBMS_MGD_ID_UTL.refresh_category('1');
select MGD_ID('1',
 'urn:epc:id:sgtin:0037000.030241.1041970',
 'filter=3;scheme=SGTIN-64') from dual;
call DBMS_MGD_ID_UTL.remove_proxy();

SQL> @constructor22.sql
.
.
.
MGD_ID('1', MGD_ID_COMPONENT_VARRAY(MGD_ID_COMPONENT('filter', '3'),
 MGD_ID_COMPONENT('schemes', 'SGTIN-64'),
 MGD_ID_COMPONENT('companyprefixlength', '7'),
 MGD_ID_COMPONENT('companyprefix', '0037000'),
 MGD_ID_COMPONENT('scheme', 'SGTIN-64'),
 MGD_ID_COMPONENT('serial', '1041970'),
 MGD_ID_COMPONENT('itemref', '030241')))
.
.
.

Construct an MGD_ID object (SGTIN-64) passing in the category name, category version (if NULL, then the latest version will be used), and a list of components.

--Contents of constructor33.sql
call DBMS_MGD_ID_UTL.set_proxy('www-proxy.us.oracle.com', '80');
call DBMS_MGD_ID_UTL.refresh_category(DBMS_MGD_ID_UTL.get_category_id('EPC', NULL));
select MGD_ID('EPC', NULL,
 MGD_ID_COMPONENT_VARRAY(
 MGD_ID_COMPONENT('companyprefix','0037000'),
 MGD_ID_COMPONENT('itemref','030241'),
 MGD_ID_COMPONENT('serial','1041970'),
 MGD_ID_COMPONENT('schemes','SGTIN-64')
)
) from dual;
call DBMS_MGD_ID_UTL.remove_proxy();

SQL> @constructor33.sql
.
.
.
MGD_ID('1', MGD_ID_COMPONENT_VARRAY(MGD_ID_COMPONENT('companyprefix', '0037000'),
 MGD_ID_COMPONENT('itemref', '030241'),
 MGD_ID_COMPONENT('serial', '1041970'),
 MGD_ID_COMPONENT('schemes', 'SGTIN-64')))
.
.
.

Constructs an MGD_ID object (SGTIN-64) passing in the category name and category version, the tag identifier, and the list of additional parameters that may be required to create it.

--Contents of constructor44.sql
call DBMS_MGD_ID_UTL.set_proxy('www-proxy.us.oracle.com', '80');
call DBMS_MGD_ID_UTL.refresh_category(DBMS_MGD_ID_UTL.get_category_id('EPC', NULL));
select MGD_ID('EPC', NULL,
 'urn:epc:id:sgtin:0037000.030241.1041970',
 'filter=3;scheme=SGTIN-64') from dual;
call DBMS_MGD_ID_UTL.remove_proxy();

SQL> @constructor4.sql
.
.
.
MGD_ID('1', MGD_ID_COMPONENT_VARRAY(MGD_ID_COMPONENT('filter', '3'),
 MGD_ID_COMPONENT('schemes', 'SGTIN-64'),
 MGD_ID_COMPONENT('companyprefixlength', '7'),
 MGD_ID_COMPONENT('companyprefix', '0037000'),
 MGD_ID_COMPONENT('scheme', 'SGTIN-64'),
 MGD_ID_COMPONENT('serial', '1041970'),
 MGD_ID_COMPONENT('itemref', '030241')))
.
.
.

FORMAT Function

This function returns the string representation of the MGD_ID object in the specified format.

Syntax

function FORMAT (parameter_list IN VARCHAR2,
 output_format IN VARCHAR2)
RETURN VARCHAR2 DETERMINISTIC;

Parameters

Table 255-7 FORMAT Function Parameters

	Parameter	Description
	
parameter_list

	
List of additional parameters required to create the object in the representation. The list is expressed as a parameter string containing key-value pairs, separated by the semicolon (;) as a delimiter between key-value pairs. For example, for a GTIN code, the parameter string would look as follows:

filter=3;companyprefixlength=7;taglength=96

	
output_format

	
One of the supported output formats into which an MGD_ID component is formatted:

	
BINARY

	
LEGACY

	
TAG_ENCODING

	
PURE_IDENTITY

	
ONS_HOSTNAME

Usage Notes

None.

Examples

See the example for the GET_COMPONENT Function.

GET_COMPONENT Function

This function returns the value of the specified MGD_ID component.

Syntax

function GET_COMPONENT (
 component_name IN VARCHAR2)
RETURN VARCHAR2 DETERMINISTIC;

Parameters

Table 255-8 GET_COMPONENT Function Parameter

	Parameter	Description
	
component_name

	
Name of component

Usage Notes

	
If the code is an invalid code, meaning its structure is not defined in the metadata table, an error is raised.

	
If the code is valid, but it does not contain the required component, NULL is returned.

Examples

The following example returns the general manager, object class, and serial number components for this GID-96 identity component:

--Contents of get_components.sql file
call DBMS_MGD_ID_UTL.set_proxy('www-proxy.us.oracle.com', '80');
DECLARE
id MGD_ID;
BEGIN
 DBMS_MGD_ID_UTL.set_java_logging_level(DBMS_MGD_ID_UTL.LOGGING_LEVEL_OFF);
 DBMS_MGD_ID_UTL.refresh_category(DBMS_MGD_ID_UTL.get_category_id('EPC', NULL));

 --PURE_IDENTIT

 dbms_output.put_line('..Testing constructor with pure identity');
 --
 -- PURE_IDENTITY representation can be translated to BINARY and
 -- TAG_ENCODING ONLY when BOTH scheme and filer are provided.
 --
 id := MGD_ID('EPC', NULL, 'urn:epc:id:sgtin:0037000.030241.1041970', 'scheme=SGTIN-64;filter=3');
 dbms_output.put_line(id.to_string);
 dbms_output.put_line('filter = ' || id.get_component('filter'));
 dbms_output.put_line('company prefix = ' || id.get_component('companyprefix'));
 dbms_output.put_line('itemref = ' || id.get_component('itemref'));
 dbms_output.put_line('serial = ' || id.get_component('serial'));
 dbms_output.put_line('BINARY format = ' || id.format(NULL, 'BINARY'));
 dbms_output.put_line('PURE_IDENTITY format = ' || id.format(NULL, 'PURE_IDENTITY'));
 dbms_output.put_line('TAG_ENCODING format = ' || id.format(NULL, 'TAG_ENCODING'));
END;
/
SHOW ERRORS;
call DBMS_MGD_ID_UTL.remove_proxy();
SQL> @get_component.sql
.
.
.
..Testing constructor with pure identity
category_id =1;filter = 3;schemes = SGTIN-64;companyprefixlength =
7;companyprefix = 0037000;scheme = SGTIN-64;serial = 1041970;itemref = 030241
filter = 3
company prefix = 0037000
itemref = 030241
serial = 1041970
BINARY format =1001100000000000001000001110110001000010000011111110011000110010
PURE_IDENTITY format = urn:epc:id:sgtin:0037000.030241.1041970
TAG_ENCODING format = urn:epc:tag:sgtin-64:3.0037000.030241.1041970
PL/SQL procedure successfully completed.
.
.
.

TO_STRING Function

This function returns the semicolon (;) separated component name value pairs of the MGD_ID object.

Syntax

function TO_STRING
 RETURN VARCHAR2;

Parameters

None.

Usage Notes

None.

Examples

The following example converts the MGD_ID object into a string value:

-- Contents of tostring3.sql file
call DBMS_MGD_ID_UTL.set_proxy('www-proxy.us.oracle.com', '80');
DECLARE
id MGD_ID;
BEGIN
 DBMS_MGD_ID_UTL.refresh_category(DBMS_MGD_ID_UTL.get_category_id('EPC', NULL));
 dbms_output.put_line('..Testing to_string');
 id := mgd_id('EPC', NULL, 'urn:epc:id:gid:0037000.30241.1041970', 'scheme=GID-96');
 DBMS_OUTPUT.PUT_LINE('mgd_id object as a string');
 DBMS_OUTPUT.PUT_LINE(id.to_string);
END;
/
SHOW ERRORS;
call DBMS_MGD_ID_UTL.remove_proxy();
connect / as sysdba;
drop user mgduser cascade;

SQL> @tostring3.sql
.
.
.
..Testing to_string
mgd_id object as a string
category_id =1;schemes = GID-96;objectclass = 30241;generalmanager =
0037000;scheme = GID-96;1 = 1;serial = 1041970
PL/SQL procedure successfully completed.
.
.

TRANSLATE Function

This static function translates between different representations directly without first constructing an MGD_ID object. This method is overloaded. The different functionality of each form of syntax is presented along with the definitions.

Syntax

Converts the identifier in one format to another given the category name, the tag identifier, the parameter list, and the output format.

function TRANSLATE (
 category_name IN VARCHAR2,
 identifier IN VARCHAR2,
 parameter_list IN VARCHAR2,
 output_format IN VARCHAR2)
RETURN VARCHAR2 DETERMINISTIC;

Converts the identifier in one format to another given the category name, category version, the tag identifier, the parameter list, and the output format.

function TRANSLATE (
 category_name IN VARCHAR2,
 category_version IN VARCHAR2,
 identifier IN VARCHAR2,
 parameter_list IN VARCHAR2,
 output_format IN VARCHAR2)
RETURN VARCHAR2 DETERMINISTIC;

Parameters

Table 255-9 TRANSLATE Function Parameters

	Parameter	Description
	
category_name

	
Name of category

	
category_version

	
Category version. If NULL, the latest version of the specified category name will be used.

	
identifier

	
EPC identifier, expressed as a string in accordance with one of the grammars or patterns in the TDT markup file. For example, a binary string consisting of characters 0 and 1, a URI (either tag-encoding or pure-identity formats), or a serialized legacy code expressed as a string format for input, such as gtin=00037000302414;serial=10419703 for a SGTIN coding scheme.

	
parameter_list

	
List of additional parameters required to create the object in the representation. The list is expressed as a parameter string containing key-value pairs, separated by the semicolon (;) as a delimiter between key-value pairs. For example, for a GTIN code, the parameter string would look as follows:

filter=3;companyprefixlength=7;taglength=96

	
output_format

	
One of the supported output formats into which an MGD_ID component shall be converted:

	
BINARY

	
LEGACY

	
TAG_ENCODING

	
PURE_IDENTITY

	
ONS_HOSTNAME

Usage Notes

When converting from a pure identity representation to a binary representation, the filter value must be supplied as a value using the parameter_list parameter.

Examples

The following examples translates one GID-96 representation into another:

-- Contents of translate1.sql file
call DBMS_MGD_ID_UTL.set_proxy('www-proxy.us.oracle.com', '80');
DECLARE
id MGD_ID;
BEGIN
 DBMS_MGD_ID_UTL.refresh_category(DBMS_MGD_ID_UTL.get_category_id('EPC', NULL));
 dbms_output.put_line('Category ID is EPC, Identifier is BINARY, Output format is BINARY');
 dbms_output.put_line(
 mgd_id.translate('EPC',
NULL,'001101010000000000001001000010001000000000000111011000100001000000000000000011111110011000110010'
, NULL, 'BINARY'));
 dbms_output.put_line('Category ID is EPC, Identifier is BINARY, Output format is PURE_IDENTITY');
 dbms_output.put_line(
 mgd_id.translate('EPC',
NULL,'001101010000000000001001000010001000000000000111011000100001000000000000000011111110011000110010'
, NULL, 'PURE_IDENTITY'));
dbms_output.put_line('Category ID is EPC, Identifier is BINARY, Output format is TAG_ENCODING');
 dbms_output.put_line(
 mgd_id.translate('EPC',
NULL,'001101010000000000001001000010001000000000000111011000100001000000000000000011111110011000110010'
, NULL, 'TAG_ENCODING'));
 dbms_output.put_line('Category ID is EPC, Identifier is TAG_ENCODING, Output format is BINARY');
 dbms_output.put_line(
 mgd_id.translate('EPC', NULL,
 'urn:epc:tag:gid-96:0037000.30241.1041970',
 NULL, 'BINARY'));
 dbms_output.put_line('Category ID is EPC, Identifier is TAG_ENCODING, Output format is
PURE_IDENTITY');
 dbms_output.put_line(
 mgd_id.translate('EPC', NULL,
 'urn:epc:tag:gid-96:0037000.30241.1041970',
 NULL, 'PURE_IDENTITY'));
dbms_output.put_line('Category ID is EPC, Identifier is TAG_ENCODING, Output format is TAG_ENCODING');
 dbms_output.put_line(
 mgd_id.translate('EPC', NULL,
 'urn:epc:tag:gid-96:0037000.30241.1041970',
 NULL, 'TAG_ENCODING'));
 dbms_output.put_line('Category ID is EPC, Identifier is PURE_IDENTITY, Output format is BINARY');
 dbms_output.put_line(
 mgd_id.translate('EPC', NULL,
 'urn:epc:id:gid:0037000.30241.1041970',
 NULL, 'BINARY'));
 dbms_output.put_line('Category ID is EPC, Identifier is PURE_IDENTITY, Output format is PURE_IDENTITY');
 dbms_output.put_line(
 mgd_id.translate('EPC', NULL,
 'urn:epc:id:gid:0037000.30241.1041970',
 NULL, 'PURE_IDENTITY'));
 dbms_output.put_line('Category ID is EPC, Identifier is PURE_IDENTITY, Output format is TAG_ENCODING');
 dbms_output.put_line(
 mgd_id.translate('EPC', NULL,
 'urn:epc:id:gid:0037000.30241.1041970',
 NULL, 'TAG_ENCODING'));
END;
/
SHOW ERRORS;
call DBMS_MGD_ID_UTL.remove_proxy();

SQL> @translate1.sql
.
.
.
Category ID is EPC, Identifier is BINARY, Output format is BINARY
001101010000000000001001000010001000000000000111011000100001000000000000000011111110011000110010
Category ID is EPC, Identifier is BINARY, Output format is PURE_IDENTITY
urn:epc:id:gid:37000.30241.1041970
Category ID is EPC, Identifier is BINARY, Output format is TAG_ENCODING
urn:epc:tag:gid-96:37000.30241.1041970
Category ID is EPC, Identifier is TAG_ENCODING, Output format is BINARY
001101010000000000001001000010001000000000000111011000100001000000000000000011111110011000110010
Category ID is EPC, Identifier is TAG_ENCODING, Output format is PURE_IDENTITY
urn:epc:id:gid:0037000.30241.1041970
Category ID is EPC, Identifier is TAG_ENCODING, Output format is TAG_ENCODING
urn:epc:tag:gid-96:0037000.30241.1041970
Category ID is EPC, Identifier is PURE_IDENTITY, Output format is BINARY
001101010000000000001001000010001000000000000111011000100001000000000000000011111110011000110010
Category ID is EPC, Identifier is PURE_IDENTITY, Output format is PURE_IDENTITY
urn:epc:id:gid:0037000.30241.1041970
Category ID is EPC, Identifier is PURE_IDENTITY, Output format is TAG_ENCODING
urn:epc:tag:gid-96:0037000.30241.1041970
PL/SQL procedure successfully completed.
.
.
.

Rule TYPEs

256 Rule TYPEs

This chapter describes the types used with rules, rule sets, and evaluation contexts.

This chapter contains the following topics:

	
Using Rule Types

	
Overview

	
Security Model

	
Summary of Rule Types

Using Rule Types

This section contains topics that relate to using the types used with rules, rule sets, and evaluation contexts.

	
Overview

	
Security Model

Overview

This types in this chapter are used in rules and enable clients to evaluate rules with the rules engine.

	
See Also:

	
Chapter 126, "DBMS_RULE"

	
Chapter 127, "DBMS_RULE_ADM"

	
Oracle Streams Extended Examples for examples that use rule types

Security Model

PUBLIC is granted EXECUTE privilege on the types described in this chapter.

	
See Also:

Oracle Database Security Guide for more information about user group PUBLIC

Summary of Rule Types

Table 256-1 Rule Types

	Type	Description
	
RE$ATTRIBUTE_VALUE Type

	
Specifies the value of a variable attribute

	
RE$ATTRIBUTE_VALUE_LIST Type

	
Identifies a list of attribute values

	
RE$COLUMN_VALUE Type

	
Specifies the value of a table column

	
RE$COLUMN_VALUE_LIST Type

	
Identifies a list of column values

	
RE$NAME_ARRAY Type

	
Identifies a list of names

	
RE$NAME_ARRAY Type

	
Identifies a list of name-value pairs

	
RE$NV_LIST Type

	
Identifies an object containing a list of name-value pairs and methods that operate on this list. This object type is used to represent the event context and the action context for a rule

	
RE$NV_NODE Type

	
Identifies a name-value pair

	
RE$RULE_HIT Type

	
Specifies a rule found because of evaluation

	
RE$RULE_HIT_LIST Type

	
Identifies a list of rules found because of evaluation

	
RE$TABLE_ALIAS Type

	
Provides the table corresponding to an alias used in a rule evaluation context

	
RE$TABLE_ALIAS_LIST Type

	
Identifies a list of table aliases used in a rule evaluation context

	
RE$TABLE_VALUE Type

	
Specifies the value of a table row using a ROWID

	
RE$TABLE_VALUE_LIST Type

	
Identifies a list of table values

	
RE$VARIABLE_TYPE Type

	
Provides the type of a variable used in a rule evaluation context

	
RE$VARIABLE_TYPE_LIST Type

	
Identifies a list of variables and their types used in a rule evaluation context

	
RE$VARIABLE_VALUE Type

	
Specifies the value of a variable

	
RE$VARIABLE_VALUE_LIST Type

	
Identifies a list of variable values

Rule types are used with the following Oracle-supplied PL/SQL packages:

	
DBMS_RULE

	
DBMS_RULE_ADM

You can use the DBMS_RULE_ADM package to create and administer rules, rule sets, and evaluation contexts, and you can use the DBMS_RULE package to evaluate rules.

When you use Oracle Streams, rules determine which changes are captured by a capture process, which messages are propagated by a propagation, which messages are applied by an apply process, and which messages are dequeued by a messaging client. The following Oracle Streams packages use rules:

	
DBMS_APPLY_ADM

	
DBMS_CAPTURE_ADM

	
DBMS_PROPAGATION_ADM

	
DBMS_STREAMS

	
DBMS_STREAMS_ADM

	
DBMS_STREAMS_AUTH

	
See Also:

Oracle Streams Concepts and Administration

RE$ATTRIBUTE_VALUE Type

Specifies the value of a variable attribute.

	
Note:

Enclose the variable name and attribute name in double quotation marks (") if the name contains special characters.

Syntax

TYPE SYS.RE$ATTRIBUTE_VALUE (
 variable_name VARCHAR2(32),
 attribute_name VARCHAR2(4000),
 attribute_value ANYDATA);

Attributes

Table 256-2 RE$ATTRIBUTE_VALUE Attributes

	Attribute	Description
	
variable_name

	
Specifies the variable used in a rule

	
attribute_name

	
Specifies the attribute name. The attribute name can be a multi-component name, such as a1.b2.c3.

	
attribute_value

	
Specifies the attribute value

RE$ATTRIBUTE_VALUE_LIST Type

Identifies a list of attribute values.

Syntax

TYPE SYS.RE$ATTRIBUTE_VALUE_LIST AS VARRAY(1024) OF SYS.RE$ATTRIBUTE_VALUE;

RE$COLUMN_VALUE Type

Specifies the value of a table column.

	
Note:

Enclose the column name in double quotation marks (") if the name contains special characters.

Syntax

TYPE SYS.RE$COLUMN_VALUE (
 table_alias VARCHAR2(32),
 column_name VARCHAR2(4000),
 column_value ANYDATA);

Attributes

Table 256-3 RE$COLUMN_VALUE Attributes

	Attribute	Description
	
table_alias

	
Specifies the alias used for the table in a rule

	
column_name

	
Specifies the column name

	
column_value

	
Specifies the column value

RE$COLUMN_VALUE_LIST Type

Identifies a list of column values.

Syntax

TYPE SYS.RE$COLUMN_VALUE_LIST AS VARRAY(1024) OF SYS.RE$COLUMN_VALUE;

RE$NAME_ARRAY Type

Identifies a list of names.

Syntax

TYPE SYS.RE$NAME_ARRAY AS VARRAY(1024) OF VARCHAR2(30);

RE$NV_ARRAY Type

Identifies a list of name-value pairs.

Syntax

TYPE SYS.RE$NV_ARRAY AS VARRAY(1024) OF SYS.RE$NV_NODE;

RE$NV_LIST Type

Identifies an object containing a list of name-value pairs and methods that operate on this list. This object type is used to represent the event context for rule set evaluation and the action context for a rule.

Syntax

TYPE SYS.RE$NV_LIST AS OBJECT(
 actx_list SYS.RE$NV_ARRAY);

Attributes

Table 256-4 RE$NV_LIST Attributes

	Attribute	Description
	
actx_list

	
The list of name-value pairs

RE$NV_LIST Subprograms

This section describes the following member procedures and member functions of the SYS.RE$NV_LIST type:

	
ADD_PAIR Member Procedure

	
GET_ALL_NAMES Member Function

	
GET_VALUE Member Function

	
REMOVE_PAIR Member Procedure

ADD_PAIR Member Procedure

Adds a name-value pair to the list of name-value pairs.

	
Note:

Enclose the name in double quotation marks (") if the name contains special characters.

Syntax

MEMBER PROCEDURE ADD_PAIR(
 name IN VARCHAR2,
 value IN ANYDATA);

Parameters

Table 256-5 ADD_PAIR Procedure Parameters

	Parameter	Description
	
name

	
The name in the name-value pair being added to the list. If the name exists in the list, then this procedure raises an error.

	
value

	
The value in the name-value pair being added to the list

GET_ALL_NAMES Member Function

Returns a list of all the names in the name-value pair list.

Syntax

MEMBER FUNCTION GET_ALL_NAMES()
RETURN SYS.RE$NAME_ARRAY;

GET_VALUE Member Function

Returns the value for the specified name in a name-value pair list.

	
Note:

Enclose the name in double quotation marks (") if the name contains special characters.

Syntax

MEMBER FUNCTION GET_VALUE(
 name IN VARCHAR2)
RETURN ANYDATA;

Parameters

Table 256-6 GET_VALUE Procedure Parameters

	Parameter	Description
	
name

	
The name whose value to return

REMOVE_PAIR Member Procedure

Removes the name-value pair with the specified name from the name-value pair list.

	
Note:

Enclose the name in double quotation marks (") if the name contains special characters.

Syntax

MEMBER PROCEDURE REMOVE_PAIR(
 name IN VARCHAR2);

Parameters

Table 256-7 REMOVE_PAIR Procedure Parameters

	Parameter	Description
	
name

	
The name of the pair to remove

RE$NV_NODE Type

Identifies a name-value pair.

	
Note:

Enclose the name in double quotation marks (") if the name contains special characters.

Syntax

TYPE SYS.RE$NV_NODE (
 nvn_name VARCHAR2(30),
 nvn_value ANYDATA);

Attributes

Table 256-8 RE$NV_NODE Attributes

	Attribute	Description
	
nvn_name

	
Specifies the name in the name-value pair

	
nvn_value

	
Specifies the value in the name-value pair

RE$RULE_HIT Type

Specifies a rule found because of an evaluation.

	
See Also:

	
CREATE_RULE Procedure

	
ALTER_RULE Procedure

Syntax

TYPE SYS.RE$RULE_HIT (
 rule_name VARCHAR2(65),
 rule_action_context RE$NV_LIST);

Attributes

Table 256-9 RE$RULE_HIT Attributes

	Attribute	Description
	
rule_name

	
The rule name in the form schema_name.rule_name. For example, a rule named employee_rule in the hr schema is returned in the form "hr"."employee_rule".

	
rule_action_context

	
The rule action context as specified in the CREATE_RULE or ALTER_RULE procedure of the DBMS_RULE_ADM package

RE$RULE_HIT_LIST Type

Identifies a list of rules found because of an evaluation.

Syntax

TYPE SYS.RE$RULE_HIT_LIST AS VARRAY(1024) OF SYS.RE$RULE_HIT;

RE$TABLE_ALIAS Type

Provides the table corresponding to an alias used in a rule evaluation context. A specified table name must satisfy the schema object naming rules.

	
Note:

Enclose the table name in double quotation marks (") if the name contains special characters.

	
See Also:

Oracle Database SQL Language Reference for information about schema object naming rules

Syntax

TYPE SYS.RE$TABLE_ALIAS IS OBJECT(
 table_alias VARCHAR2(32),
 table_name VARCHAR2(194));

Attributes

Table 256-10 RE$TABLE_ALIAS Attributes

	Attribute	Description
	
table_alias

	
The alias used for the table in a rule

	
table_name

	
The table name referred to by the alias. A synonym can be specified. The table name is resolved in the evaluation context schema.

The format is one of the following:

schema_name.table_name

table_name

For example, if the schema_name is hr and the table_name is employees, then enter the following:

hr.employees

RE$TABLE_ALIAS_LIST Type

Identifies a list of table aliases used in a rule evaluation context.

Syntax

TYPE SYS.RE$TABLE_ALIAS_LIST AS VARRAY(1024) OF SYS.RE$TABLE_ALIAS;

RE$TABLE_VALUE Type

Specifies the value of a table row using a ROWID.

Syntax

TYPE SYS.RE$TABLE_VALUE(
 table_alias VARCHAR2(32),
 table_rowid VARCHAR2(18));

Attributes

Table 256-11 RE$TABLE_VALUE Attributes

	Attribute	Description
	
table_alias

	
Specifies the alias used for the table in a rule

	
table_rowid

	
Specifies the rowid for the table row

RE$TABLE_VALUE_LIST Type

Identifies a list of table values.

	
Note:

Each table alias in the list in the list must be unique.

Syntax

TYPE SYS.RE$TABLE_VALUE_LIST AS VARRAY(1024) OF SYS.RE$TABLE_VALUE;

RE$VARIABLE_TYPE Type

Provides the type of a variable used in a rule evaluation context. A specified variable name must satisfy the schema object naming rules.

	
Note:

Enclose the variable name in double quotation marks (") if the name contains special characters.

	
See Also:

Oracle Database SQL Language Reference for information about schema object naming rules

Syntax

TYPE SYS.RE$VARIABLE_TYPE (
 variable_name VARCHAR2(32),
 variable_type VARCHAR2(4000),
 variable_value_function VARCHAR2(228),
 variable_method_function VARCHAR2(228));

Attributes

Table 256-12 RE$VARIABLE_TYPE Attributes

	Attribute	Description
	
variable_name

	
The variable name used in a rule

	
variable_type

	
The type that is resolved in the evaluation context schema. Any valid Oracle built-in data type, user-defined type, or Oracle-supplied type can be specified. See the Oracle Database SQL Language Reference for more information about these types.

	
variable_value_function

	
A value function that can be specified for implicit variables. A synonym can be specified. The function name is resolved in the evaluation context schema. It is executed on behalf of the owner of a rule set using the evaluation context or containing a rule that uses the evaluation context.

See the "Usage Notes" for more information.

	
variable_method_function

	
Specifies a value function, which can return the result of a method invocation. Specifying such a function can speed up evaluation, if there are many simple rules that invoke the method on the variable. The function can be a synonym or a remote function.

The function name is resolved in the evaluation context schema. It is executed on behalf of the owner of a rule set using the evaluation context or containing a rule that uses the evaluation context.

See the "Usage Notes" for more information.

Usage Notes

The functions for both the for the variable_value_function parameter and variable_method_function parameter have the following format:

schema_name.package_name.function_name@dblink

Any of the following parts of the format can be omitted: schema_name, package_name, and @dblink.

For example, if the schema_name is hr, the package_name is var_pac, the function_name is func_value, and the dblink is dbs1.net, then enter the following:

hr.var_pac.func_value@dbs1.net

The following sections describe the signature of the functions.

Signature for variable_value_function

The function must have the following signature:

FUNCTION variable_value_function_name(
 evaluation_context_schema IN VARCHAR2,
 evaluation_context_name IN VARCHAR2,
 variable_name IN VARCHAR2,
 event_context IN SYS.RE$NV_LIST)
RETURN SYS.RE$VARIABLE_VALUE;

Signature for variable_method_function

This function must have the following signature:

FUNCTION variable_method_function_name(
 evaluation_context_schema IN VARCHAR2,
 evaluation_context_name IN VARCHAR2,
 variable_value IN SYS.RE$VARIABLE_VALUE,
 method_name IN VARCHAR2,
 event_context IN SYS.RE$NV_LIST)
RETURN SYS.RE$ATTRIBUTE_VALUE;

RE$VARIABLE_TYPE_LIST Type

Identifies a list of variables and their types used in a rule evaluation context.

Syntax

TYPE SYS.RE$VARIABLE_TYPE_LIST AS VARRAY(1024) OF SYS.RE$VARIABLE_TYPE;

RE$VARIABLE_VALUE Type

Specifies the value of a variable.

	
Note:

Enclose the variable name in double quotation marks (") if the name contains special characters.

Syntax

TYPE SYS.RE$VARIABLE_VALUE (
 variable_name VARCHAR2(32),
 variable_data ANYDATA);

Attributes

Table 256-13 RE$VARIABLE_VALUE Attributes

	Attribute	Description
	
variable_name

	
Specifies the variable name used in a rule

	
variable_data

	
Specifies the data for the variable value

RE$VARIABLE_VALUE_LIST Type

Identifies a list of variable values.

Syntax

TYPE SYS.RE$VARIABLE_VALUE_LIST AS VARRAY(1024) OF SYS.RE$VARIABLE_VALUE;

Rules Manager Types

257 Rules Manager Types

	
Note:

This functionality is deprecated with Oracle Database Release 11.2 and obsoleted with Release 12.1. For details regarding obsolescence, seeMy Oracle Support Note ID 1244535.1

Rules Manager contains one predefined type and a public synonym for this type.

	
See Also:

Oracle Database Rules Manager and Expression Filter Developer's Guide for more information.

This chapter contains the following topics:

	
Using Rules Manager Types

	
Summary of Rule Manager Types

Using Rules Manager Types

This section contains topics that relate to using the Rules Manager Types.

	
Security Model

Security Model

The Oracle Database installation runs the catrul.sql script to load the DBMS_RLMGR package and create the required Rules Manager schema objects in the EXFSYS schema.

Summary of Rule Manager Types

Table 257-1 describes the Rules Manager object type.

Table 257-1 Rules Manager Object Types

	Object Type Name	Description
	
RLM$EVENTIDS Object Type

	
Specifies a list of event identifiers to the CONSUME_PRIM_EVENTS procedure

RLM$EVENTIDS Object Type

The RLM$EVENTIDS defines a table of VARCHAR2 values.

Syntax

CREATE OR REPLACE TYPE RLM$EVENTIDS is table of VARCHAR2(38);

Attributes

None.

Usage Notes

	
RLM$EVENTIDS type passes a list of event identifiers to the CONSUME_PRIM_EVENTS procedure. These event identifiers are ROWIDs for the corresponding events in the database and their values are available through the arguments of the action callback procedure and rule class results view columns, when the rule class is configured for RULE consumption policy

Examples

The following commands show the body of the action callback procedure for a rule class configured for RULE consumption policy. This demonstrates the use of RLM$EVENTDIDS type to consume the events before executing the action for the matched rules.

CREATE OR REPLACE PROCEDURE PromoAction (
 Flt AddFlight,
 Flt_EvtId ROWID, --- rowid for the fligt primitive event
 Car AddRentalCar,
 Car_EvtId ROWID,
 rlm$rule TravelPromotions%ROWTYPE) is
 evtcnsmd NUMBER;
BEGIN
 evtcnsmd := dbms_rlmgr.consume_prim_events(
 rule_class => 'TravelPromotions',
 event_idents => RLM$EVENTIDS(Flt_EvtId, Car_EvtId));

 IF (evtcnsmd = 1) THEN
 -- consume operation was successful; perform the action ---
 OfferPromotion (Flt.CustId, rlm$rule.PromoType, rlm$rule.OfferedBy);
 END IF;
END;
/

UTL Streams Types

258 UTL Streams Types

UTL Streams Types describes abstract types used with Oracle XML functionality. Four abstract PL/SQL streams are introduced and defined within the 'SYS' schema. The streams may be referenced by PUBLIC and are described in the following sections.

	
See Also:

For more information, see A.

This chapter contains the following topics:

	
Summary of UTL Binary Streams Types

Summary of UTL Binary Streams Types

Table 258-1 UTL Binary Streams Types

	Type	Description
	
UTL_BINARYINPUTSTREAM Type

	
Reads bytes and closes a stream.

	
UTL_BINARYOUTPUTSTREAM Type

	
Writes bytes and closes a stream.

	
UTL_CHARACTERINPUTSTREAM Type

	
Reads chars and closes a stream.

	
UTL_CHARACTEROUTPUTSTREAM Type

	
Writes chars and closes a stream.

UTL_BINARYINPUTSTREAM Type

This type is similar to java.io.InputStream in that it can only read and close a stream.

Syntax

CREATE OR REPLACE TYPE Utl_BinaryInputStream AS OBJECT (

 MEMBER FUNCTION available (
 self IN OUT NOCOPY Utl_BinaryInputStream)
 RETURN INTEGER,

 MEMBER FUNCTION read (-- #1
 self IN OUT NOCOPY Utl_BinaryInputStream,
 numBytes IN INTEGER DEFAULT 1)
 RETURN RAW,

 MEMBER PROCEDURE read (-- #2
 self IN OUT NOCOPY Utl_BinaryInputStream,
 bytes IN OUT NOCOPY RAW,
 numBytes IN OUT INTEGER),

 MEMBER PROCEDURE read (-- #3
 self IN OUT NOCOPY Utl_BinaryInputStream,
 bytes IN OUT NOCOPY RAW,
 offset IN INTEGER,
 numBytes IN OUT INTEGER),

 member function close (
 self In Out Nocopy Utl_BinaryInputStream)

) NOT FINAL;

Attributes

Table 258-2 UTL_BINARYINPUTSTREAM Type Member Subprograms

	Member Subprogram	Description
	
AVAILABLE

	
Returns the number of bytes available to be read

	
READ

	
	
#1 - Reads the number of bytes specified by numBytes (default is 1) and returns the bytes as a RAW. If there are no remaining bytes a value of NULL is returned.

	
#2 - Reads the number of bytes specified in numBytes into the parameter bytes. Additionally, the actual number of bytes read is returned in parameter numBytes. If this parameter is set to 0 then there are no more bytes to be read.

	
#3 - Reads the number of bytes specified in numBytes into the parameter bytes, beginning at the offset specified by parameter offset. The actual number of bytes read is returned in parameter numBytes. If this value is 0, then there are no additional bytes to be read.

	
CLOSE

	
Releases all resources held on the node to support the stream

UTL_BINARYOUTPUTSTREAM Type

This type is similar to java.io.OutputStream in that it can only write and close a stream.

Syntax

CREATE OR REPLACE TYPE Utl_BinaryOutputStream AS OBJECT (

 MEMBER FUNCTION write (-- #1
 self IN OUT NOCOPY sys.utl_BinaryOutputStream,
 bytes IN RAW,
 numBytes IN INTEGER DEFAULT 1)
 RETURN INTEGER,

 MEMBER PROCEDURE write (-- #2
 self IN OUT NOCOPY sys.utl_BinaryOutputStream,
 bytes IN NOCOPY RAW,
 numBytes IN OUT INTEGER),

 MEMBER PROCEDURE write (-- #3
 self IN OUT NOCOPY utl_BinaryOutputStream, bytes IN NOCOPY RAW,
 offset IN INTEGER,
 numBytes IN OUT INTEGER),

 MEMBER PROCEDURE flush (
 self IN OUT NOCOPY utl_BinaryOutputStream),

 MEMBER PROCEDURE close (
 self IN OUT NOCOPY utl_BinaryOutputStream)

) NOT FINAL;

Attributes

Table 258-3 UTL_BINARYOUTPUTSTREAM Type Member Subprograms

	Member Subprogram	Description
	
WRITE

	
	
#1 - Writes the number of bytes specified by numBytes (default is 1) from RAW into the stream. The actual number of bytes written is returned.

	
#2 - Writes the number of bytes specified in parameter numBytes from parameter bytes to the stream. The actual number of bytes written is returned in parameter numBytes.

	
#3 - Writes the number of bytes specified by numBytes to the stream, beginning at the offset specified by parameter offset. The actual number of bytes written is returned in parameter numBytes.

	
FLUSH

	
Insures that any buffered bytes are copied to the node destination

	
CLOSE

	
Frees all resources associated with the stream

UTL_CHARACTERINPUTSTREAM Type

This type is similar to java.io.Reader in that it can only read characters (chars) and close a stream.

Syntax

CREATE OR REPLACE TYPE Utl_CharacterInputStream AS OBJECT (

 MEMBER FUNCTION available (
 self IN OUT NOCOPY utl_CharacterInputStream) RETURN INTEGER, MEMBER FUNCTION read (-- #1
 self IN OUT NOCOPY utl_CharacterInputStream, numChars IN INTEGER DEFAULT 1, lineFeed IN BOOLEAN DEFAULT FALSE)
 RETURN VARCHAR2, MEMBER PROCEDURE read (-- #2
 self IN OUT NOCOPY utl_CharacterInputStream, chars IN OUT NOCOPY VARCHAR2, numChars IN OUT INTEGER, lineFeed IN BOOLEAN DEFAULT FALSE), MEMBER PROCEDURE read (-- #3
 self IN OUT NOCOPY utl_CharacterInputStream, chars IN OUT NOCOPY VARCHAR2, offset IN INTEGER, numChars IN OUT INTEGER, lineFeed IN BOOLEAN DEFAULT FALSE), MEMBER PROCEDURE close (
 self IN OUT NOCOPY utl_CharacterInputStream)) NOT FINAL;

Attributes

Table 258-4 UTL_CHARACTERINPUTSTREAM Type Member Subprograms

	Member Subprogram	Description
	
AVAILABLE

	
Returns the number of bytes available to be read

	
READ

	
	
#1 - Returns the number of characters remaining to be read

	
#2 - Reads the number of characters specified by numChars (default value is 1) and returns the characters as a VARCHAR2. If the value of lineFeed is true (default value is FALSE) then the reading stops if a linefeed character is found. If there are no remaining characters a value of NULL is returned.

	
#3 - Reads reads the number of characters specified by parameter numChars into the parameter chars. Additionally, the actual number of characters read is returned in parameter numChars. If this value is 0, then there are no more characters to be read. If the value of lineFeed is TRUE (default is FALSE), then reading stops if a linefeed character is encountered.

	
CLOSE

	
Releases all resources held by the stream

UTL_CHARACTEROUTPUTSTREAM Type

This type is similar to java.io.Reader in that it can only read characters (chars) and close a stream.

Syntax

CREATE OR REPLACE TYPE utl_CharacterOutputStream AS OBJECT (

 MEMBER FUNCTION write (-- #1
 self IN OUT NOCOPY utl_CharacterOutputStream,
 chars IN VARCHAR2,
 numChars IN INTEGER DEFAULT 1,
 lineFeed IN BOOLEAN DEFAULT FALSE)
 RETURN INTEGER,

 MEMBER PROCEDURE write (-- #2
 self IN OUT NOCOPY utl_CharacterOutputStream,
 chars IN OUT NOCOPY VARCHAR2,
 numChars IN OUT INTEGER,
 lineFeed IN BOOLEAN DEFAULT FALSE),

 member procedure write (-- #3
 self IN OUT NOCOPY utl_CharacterOutputStream,
 chars IN NOCOPY varchar2,
 offset IN integer,
 numChars IN OUT integer,
 lineFeed IN boolean default false),

 MEMBER PROCEDURE flush (
 self IN OUT NOCOPY utl_CharacterOutputStream),

MEMBER PROCEDURE close (
 self IN OUT NOCOPY utl_CharacterOutputStream)

) NOT FINAL;

Attributes

Table 258-5 UTL_CHARACTEROUTPUTSTREAM Type Member Subprograms

	Member Subprogram	Description
	
WRITE

	
	
#1 - Writes the number of characters specified by numChars (default is 1) from parameter chars into the stream and returns the actual number of characters written. If the value of lineFeed is TRUE (default is FALSE) a lineFeed character is inserted after the last character.

	
#2 - writes the number of characters specified by parameter numChars, from parameter chars into the stream. The actual number of characters written is returned in parameter numChars. If the value of lineFeed is true (default is FALSE) a lineFeed character is inserted after the last character.

	
#3 - Writes the number of characters specified by parameter numChars, from parameter chars, beginning at offset specified by parameter offset. The actual number of characters written is returned in parameter numChars. If the value of lineFeed is true (default is FALSE) a lineFeed character is inserted after the last character .

	
FLUSH

	
Copies all characters that may be contained within buffers to the node value

	
CLOSE

	
Releases all resources held by the stream

XMLTYPE

259 XMLTYPE

XMLType is a system-defined opaque type for handling XML data. It as predefined member functions on it to extract XML nodes and fragments.

You can create columns of XMLType and insert XML documents into it. You can also generate XML documents as XMLType instances dynamically using the SYS_XMLGEN and SYS_XMLAGG SQL functions.

This chapter contains the following topics:

	
Summary of XMLType Subprograms

	
See Also:

	
Oracle XML DB Developer's Guide

Summary of XMLType Subprograms

Table 259-1 summarizes functions and procedures of the XMLType.

Table 259-1 XMLTYPE Subprograms

	Method	Description
	
CREATENONSCHEMABASEDXML

	
Creates a non schema based XML from the input schema based instance.

	
CREATESCHEMABASEDXML

	
Creates a schema based XMLType instance from the non-schema based instance using the input schema URL.

	
CREATEXML

	
Static function for creating and returning an XMLType instance.

	
EXISTSNODE

	
Takes a XMLType instance and a XPath and returns 1 or 0 indicating if applying the XPath returns a non-empty set of nodes.

	
EXTRACT

	
Takes a XMLType instance and an XPath, applies the XPath expression and returns the results as an XMLType.

	
GETBLOBVAL

	
Returns the value of the XMLType instance as a BLOB

	
GETCLOBVAL

	
Returns the value of the XMLType instance as a CLOB.

	
GETNAMESPACE

	
Returns the namespace for the top level element in a schema based document.

	
GETNUMBERVAL

	
Returns the value of the XMLType instance as a NUMBER. This is only valid if the input XMLType instance contains a simple text node and is convertible to a number.

	
GETROOTELEMENT

	
Returns the root element of the input instance. Returns NULL if the instance is a fragment

	
GETSCHEMAURL

	
Returns the XML schema URL if the input is an XML Schema based.

	
GETSTRINGVAL

	
Returns the value of the XMLType instance as a string.

	
ISFRAGMENT

	
Checks if the input XMLType instance is a fragment or not. A fragment is a XML instance, which has more than one root element.

	
ISSCHEMABASED

	
Returns 1 or 0 indicating if the input XMLType instance is a schema based one or not.

	
ISSCHEMAVALID

	
Checks if the input instance is schema valid according to the given schema URL.

	
ISSCHEMAVALIDATED

	
Checks if the instance has been validated against the schema.

	
SCHEMAVALIDATE

	
Validates the input instance according to the XML Schema. Raises error if the input instance is non-schema based.

	
SETSCHEMAVALIDATED

	
Sets the schema valid flag to avoid costly schema validation.

	
TOOBJECT

	
Converts the XMLType instance to an object type.

	
TRANSFORM

	
Takes an XMLType instance and an associated stylesheet (which is also an XMLType instance), applies the stylesheet and returns the result as XML.

	
XMLTYPE

	
Constructs an instance of the XMLType datatype. The constructor can take in the XML as a CLOB, VARCHAR2 or take in a object type.

CREATENONSCHEMABASEDXML

Member function. Creates a non-schema based XML document from a schema based instance.

Syntax

MEMBER FUNCTION CREATENONSCHEMABASEDXML
return XMLType deterministic;

CREATESCHEMABASEDXML

Member function. Creates a schema based XMLType instance from a non-schema based XMLType value. It uses either the supplied SCHEMA URL, or the SCHEMALOCATION attribute of the instance.

Syntax

MEMBER FUNCTION createSchemaBasedXML(
schema IN varchar2 := NULL)
return XMLType deterministic;

	Parameter	Description
	schema	Optional XMLSchema URL used to convert the value to the specified schema..

CREATEXML

Static function for creating and returning an XMLType instance. The string and clob parameters used to pass in the date must contain well-formed and valid XML documents. The options are described in the following table.

	Syntax	Description
	STATIC FUNCTION createXML(
 xmlData IN varchar2)

RETURN XMLType deterministic;

	Creates the XMLType instance from a string.
	STATIC FUNCTION createXML(
 xmlData IN clob)

RETURN XMLType deterministic;

	Creates the XMLType instance from a CLOB.
	STATIC FUNCTION createXML (
 xmlData IN clob,

 schema IN varchar2,

 validated IN number := 0,

 wellformed IN number := 0)

RETURN XMLType deterministic;

	This static function creates a schema-based XMLType instance using the specified schema and xml data parameters.
	STATIC FUNCTION createXML (
 xmlData IN varchar2,

 schema IN varchar2,

 validated IN number := 0,

 wellformed IN number := 0)

RETURN XMLType deterministic;

	This static function creates a schema-based XMLType instance using the specified schema and xml data parameters.
	STATIC FUNCTION createXML (
 xmlData IN "<ADT_1>",

 schema IN varchar2 := NULL,

 element IN varchar2 := NULL,

 validated IN NUMBER := 0)

RETURN XMLType deterministic;

	Creates an XML instance from an instance of an user-defined type.
	STATIC FUNCTION createXML (
 xmlData IN SYS_REFCURSOR,

 schema in varchar2 := NULL,

 element in varchar2 := NULL,

 validated in number := 0)

RETURN XMLType deterministic;

	Creates an XML instance from a cursor reference. You can pass in any arbitrary SQL query as a CURSOR.
	STATIC FUNCTION createXML (
 xmlData IN AnyData,

 schema in varchar2 := NULL,

 element in varchar2 := NULL,

 validated in number := 0)

RETURN sys.XMLType deterministic

 parallel_enable

	Creates an XML instance from ANYDATA.If the ANYDATAinstance contains an ADT, the XMLTypereturned is the same as would be returned for a call directly on the ADT. If the ANYDATAcontains a scalar, the XMLType contains a leaf node with the scalar value. The element name for this node is taken from the optional element string if present, and is "ANYDATA" if it is not.
	STATIC FUNCTION createXML (
 xmlData IN blob,

 csid IN number,

 schema IN varchar2,

 validated IN number := 0,

 wellformed IN number := 0)

return sys.XMLType deterministic

	Creates an XML instance from a BLOB.
	STATIC FUNCTION createXML (
 xmlData IN bfile,

 csid IN number,

 Schema IN varchar2,

 validated IN number := 0,

 wellformed IN number := 0)

return sys.XMLType deterministic

	Creates an XML instance from a BFILE.

	Parameter	Description
	xmlData	The actual data in the form of a BFILE, BLOB, CLOB, REF cursor, VARCHAR2 or object type.
	schema	Optional Schema URL to be used to make the input conform to the given schema.
	validated	Flag to indicate that the instance is valid according to the given XML Schema. (Default is 0)
	wellformed	Flag to indicate that the input is well formed. If set, then the database would not do well formed check on the input instance. (Default is 0)
	element	Optional element name in the case of the ADT_1 or REF CURSOR constructors. (Default is NULL)
	CSID	The character set id of input XML data.

EXISTSNODE

Member function. Checks if the node exists. If the XPath string is NULL or the document is empty, then a value of 0 is returned, otherwise returns 1. The options are described in the following table.

	Syntax	Description
	MEMBER FUNCTION existsNode(
 xpath IN varchar2)

RETURN number deterministic;

	Given an XPath expression, checks if the XPath applied over the document can return any valid nodes.
	MEMBER FUNCTION existsNode(
 xpath in varchar2,

 nsmap in varchar2)

RETURN number deterministic;

	This member function uses the XPath expression with the namespace information and checks if applying the XPath returns any nodes or not.

	Parameter	Description
	xpath	The XPath expression to test.
	nsmap	Optional namespace mapping.

EXTRACT

Member function. Extracts an XMLType fragment and returns an XMLType instance containing the result node(s). If the XPath does not result in any nodes, then returns NULL. The options are described in the following table.

	Syntax	Description
	MEMBER FUNCTION extract(
 xpath IN varchar2)

RETURN XMLType deterministic;

	Given an XPath expression, applies the XPath to the document and returns the fragment as an XMLType.
	MEMBER FUNCTION extract(
 xpath IN varchar2,

 nsmap IN varchar2)

RETURN XMLType deterministic;

	This member function applies the XPath expression and namespace mapping, over the XML data to return a XMLType instance containing the resultant fragment.

	Parameter	Description
	xpath	The XPath expression to apply.
	nsmap	Optional prefix to namespace mapping information.

GETBLOBVAL

Member function. Returns a BLOB containing the serialized XML representation; if the BLOB returned is temporary, it must be freed after use.

Syntax

MEMBER FUNCTION getBlobVal()
RETURN Blob deterministic;

GETCLOBVAL

Member function. Returns a CLOB containing the serialized XML representation; if the CLOB returned is temporary, it must be freed after use.

Syntax

MEMBER FUNCTION getClobVal()
RETURN clob deterministic;

GETNAMESPACE

Member function. Returns the namespace of the top level element in the instance. Returns NULL if the input is a fragment or is a non-schema based instance.

Syntax

MEMBER FUNCTION getNamespace
return varchar2 deterministic;

GETNUMBERVAL

Member function. Returns a numeric value, formatted from the text value pointed to by the XMLType instance. The XMLType must point to a valid text node that contains a numerical value. The options are described in the following table.

Syntax

MEMBER FUNCTION getNumberVal()
RETURN number deterministic;

GETROOTELEMENT

Member function. Gets the root element of the XMLType instance. Returns NULL if the instance is a fragment.

Syntax

MEMBER FUNCTION getRootElement
return varchar2 deterministic;

GETSCHEMAURL

Member function. Returns the XML Schema URL corresponding to the XMLType instance, if the XMLType instance is a schema-based document. Otherwise returns NULL.

Syntax

MEMBER FUNCTION getSchemaURL
return varchar2 deterministic;

GETSTRINGVAL

Member function. Returns the document as a string. Returns s string containing the seralized XML representation, or in case of text nodes, the text itself. If the XML document is bigger than the maximum size of the VARCHAR2, which is 4000, then an error is raised at run time.

Syntax

MEMBER FUNCTION getStringVal()
RETURN varchar2 deterministic;

ISFRAGMENT

Determines if the XMLType instance corresponds to a well-formed document, or a fragment. Returns 1 or 0 indicating if the XMLType instance contains a fragment or a well-formed document.

Syntax

MEMBER FUNCTION isFragment()
RETURN number deterministic;

ISSCHEMABASED

Member function. Determines whether the XMLType instance is schema-based or not. Returns 1 or 0 depending on whether the XMLType instance is schema-based.

Syntax

MEMBER FUNCTION isSchemaBased
return number deterministic;

ISSCHEMAVALID

Member function. Checks if the input instance is conformant to a specified schema. Does not change the validation status of the XML instance. If a XML Schema URL is not specified and the xml document is schema based, the conformance is checked against the XMLType instance's own schema.

Syntax

member function isSchemaValid(
schurl IN VARCHAR2 := NULL,
elem IN VARCHAR2 := NULL)
return NUMBER deterministic;

	Parameter	IN / OUT	Description
	schurl	(IN)	The URL of the XML Schema against which to check conformance.
	elem	(IN)	Element of a specified schema, against which to validate. This is useful when we have a XML Schema which defines more than one top level element, and we want to check conformance against a specific one of these elements.

ISSCHEMAVALIDATED

Member function. Returns the validation status of the XMLType instance -- tells if a schema based instance has been actually validated against its schema. Returns 1 if the instance has been validated against the schema, 0 otherwise.

Syntax

MEMBER FUNCTION isSchemaValidated
return NUMBER deterministic;

SCHEMAVALIDATE

Member procedure. Validates the XML instance against its schema if it hasn't already been done. For non-schema based documents an error is raised. If validation fails an error is raised; else, the document's status is changed to validated.

Syntax

MEMBER PROCEDURE schemaValidate(
 self IF OUT NOCOPY XMLType);

	Parameter	IN / OUT	Description
	self	(OUT)	XML instance being validated against the schema.

SETSCHEMAVALIDATED

Member function. Sets the VALIDATION state of the input XML instance.

Syntax

MEMBER PROCEDURE setSchemaValidated(
self IF OUT NOCOPY XMLType,
 flag IN BINARY_INTEGER := 1);

	Parameter	IN / OUT	Description
	self	(OUT)	XML instance.
	flag	(IN)	0 - NOT VALIDATED; 1 - VALIDATED (Default)

TOOBJECT

Member procedure. Converts the XML value to an object type using the XMLSCHEMA mapping, if available. If a SCHEMA is not supplied or the input is a non-schema based XML, the procedure uses cannonical mapping between elements and object type attributes.

	
See Also:

	
An in-depth discussion of this topic inside Oracle XML DB Developer's Guide

Syntax

MEMBER PROCEDURE toObject(
SELF in XMLType,
object OUT "<ADT_1>",
schema in varchar2 := NULL,
element in varchar2 := NULL);

	Parameter	IN / OUT	Description
	SELF	(IN)	Instance to be converted. Implicit if used as a member procedure.
	object	(IN)	Converted object. An object instance of the required type may be passed in to this function
	schema	(IN)	Schema URL. The mapping of the XMLType instance to the converted object instance may be specified using a schema.
	element	(IN)	Top-level element name. An XML Schema document does not specify the top-level element for a conforming XML instance document without this parameter.

TRANSFORM

Member function. This member function transforms the XML data using the XSL stylesheet argument and the top-level parameters passed as a string of name=value pairs. If any of the arguments other than the parammap is NULL, then a NULL is returned.

Syntax

MEMBER FUNCTION transform(
xsl IN XMLType,
parammap in varchar2 := NULL)
RETURN XMLType deterministic;

	Parameter	IN / OUT	Description
	xsl	(IN)	The XSL stylesheet describing the transformation
	parammap	(IN)	Top level parameters to the XSL - string of name=value pairs

XMLTYPE

XMLType constructor. The options are described in the following table.

	Syntax	Description
	constructor function XMLType(
 xmlData IN clob,

 schema IN varchar2 := NULL,

 validated IN number := 0,

 wellformed IN Number := 0)

return self as result deterministic;

	This constructor function creates an optionally schema-based XMLType instance using the specified schema and xml data parameters.
	constructor function XMLType(
 xmlData IN varchar2,

 schema IN varchar2 := NULL,

 validated IN number := 0,

 wellformed IN number := 0)

return self as result deterministic;

	This constructor function creates an optionally schema-based XMLType instance using the specified schema and xml data parameters.
	constructor function XMLType (
 xmlData IN "w<ADT_1>",

 schema IN varchar2 := NULL,

 element IN varchar2 := NULL,

 validated IN number := 0)

return self as result deterministic;

	This constructor function creates an optionally schema-based XMLType instance from the specified object type parameter.
	constructor function XMLType(
 xmlData IN SYS_REFCURSOR,

 schema in varchar2 := NULL,

 element in varchar2 := NULL,

 validated in number := 0)

return self as result deterministic;

	This constructor function creates an optionally schema-based XMLType instance from the specified REF CURSOR parameter.
	constructor function XMLType(
 xmlData IN AnyData,

 schema IN varchar2 := NULL,

 element IN varchar2 := NULL,

 validated IN number := 0)

return self as result deterministic

 parallel_enable

	This constructor function creates an optionally schema-based XMLType instance from the specified ANYDATA parameter.If the ANYDATA instance contains an ADT, the XMLType returned is the same as would be returned for a call directly on the ADT. If the ANYDATA contains a scalar, the XMLType contains a leaf node with the scalar value. The element name for this node is taken from the optional element string if present, and is "ANYDATA" if it is not.
	constructor function XMLType(
 xmlData IN blob, csid IN number,

 schema IN varchar2 := NULL,

 validated IN number := 0,

 wellformed IN number := 0)

return self as result deterministic

	This constructor function creates an optionally schema-based XMLType instance from the specified BLOB parameter.
	constructor function XMLType(
 xmlData IN bfile,

 csid IN number,

 schema IN varchar2 := NULL,

 validated IN number := 0,

 wellformed IN number := 0)

return self as result deterministic

	This constructor function creates an optionally schema-based XMLType instance from the specified BFILE parameter.

	Parameter	Description
	xmlData	The data in the form of a BFILE, BLOB, CLOB, REFs, VARCHAR2 or object type.
	schema	Optional Schema URL to be used to make the input conform to the given schema.
	validated	Indicates that the instance is valid to the given XML Schema.
	wellformed	Indicates that the input is well formed. If set, then the database would not do well formed check on the input instance.
	element	Optional element name in the case of the ADT_1 or REF CURSOR constructors. (Default is NULL)
	CSID	The character set id of input XML data.

Index

Index

A B C D E F G H I J K L M N O P Q R S T U V W X

A

	ABORT procedure, 122
	ABORT_GLOBAL_INSTANTIATION procedure, 32
	ABORT_REDEF_TABLE procedure, 110
	ABORT_SCHEMA_INSTANTIATION procedure, 32
	ABORT_TABLE_INSTANTIATION procedure, 32
	ABORTED_REQUEST_THRESHOLD procedure, 132
	ACCEPT_SQL_PATCH Procedure, 137
	ACCEPT_SQL_PROFILE procedure, 139
	ACLCHECKPRIVILEGES function, 163
	ACTIVATE_SUBSCRIPTION Procedure, 34
	ACTIVE_INSTANCES procedure, 156
	ADD_COLORED_SQL Procedure, 161
	ADD_COLUMN member procedure, 248
	ADD_COLUMN procedure, 144
	ADD_COOKIES procedure, 224
	ADD_ELEMENTARY_ATTRIBUTE procedure, 65, 123
	ADD_EVENT procedure, 123
	ADD_FILE procedure, 67
	ADD_FILTER Procedure, 159, 160
	ADD_FUNCTIONS procedure, 65, 123
	ADD_GLOBAL_PROPAGATION_RULES procedure, 144
	ADD_GLOBAL_RULES procedure, 144
	ADD_MESSAGE_PROPAGATION_RULE procedure, 144
	ADD_MESSAGE_RULE procedure, 144
	ADD_PAIR member procedure, 256
	ADD_PRIVILEGE Procedure, 94
	ADD_RULE procedure, 123, 127
	ADD_SCHEMA_PROPAGATION_RULES procedure, 144
	ADD_SCHEMA_RULES procedure, 144
	ADD_SCHEME procedure, 89
	ADD_SQLSET_REFERENCE function, 139
	ADD_SQLWKLD_REF Procedure, 18
	ADD_SQLWKLD_STATEMENT Procedure, 18
	ADD_STMT_HANDLER procedure, 21
	ADD_STMT_TO_HANDLER procedure, 147
	ADD_SUBSCRIBER Procedure, 90
	ADD_SUBSET_PROPAGATION_RULES procedure, 144
	ADD_SUBSET_RULES procedure, 144
	ADD_TABLE_PROPAGATION_RULES procedure, 144
	ADD_TABLE_RULES procedure, 144
	ADD_WARNING_SETTING_CAT procedure, 157
	ADD_WARNING_SETTING_NUM procedure, 157
	ADD2MULTI procedure, 193
	ADDATTR member procedure
	
	of ANYTYPE TYPE, 242

	ADDHTTPEXPIREMAPPING Procedure, 163
	ADDINSTANCE member procedure
	
	of ANYDATASET TYPE, 241

	ADDMIMEMAPPING Procedure, 163
	ADDREPOSITORYRESCONFIG Procedure, 118
	ADDRESCONFIG Function, 118
	ADDRESS function
	
	of HTF package, 182

	ADDRESS procedure
	
	of HTP package, 183

	ADDSCHEMALOCMAPPING Procedure, 163
	ADDSERVLET Procedure, 163
	ADDSERVLETMAPPING Procedure, 163
	ADDSERVLETSECROLE Procedure, 163
	ADDXMLEXTENSION Procedure, 163
	ADM_DROP_CHUNKS Procedure, 101
	ADM_DROP_TASK Procedure, 101
	ADM_GET_TASK_STATUS Procedure, 101
	ADM_STOP_TASK Procedure, 101
	ADMIN_TABLES procedure, 112
	ADVISE_COMMIT procedure, 152
	ADVISE_NOTHING procedure, 152
	ADVISE_ROLLBACK procedure, 152
	ADVISOR privilege, 41, 41
	advisors
	
	Oracle Streams, 145

	aggregation management, 41
	aggregation operators (OLAP), 41
	ALLOCATE_UNIQUE procedure, 83
	ALTER_AGENT Procedure, 90
	ALTER_APPLY procedure, 21
	ALTER_CAPTURE procedure, 32
	ALTER_COMPILE procedure, 53
	ALTER_EVALUATION_CONTEXT procedure, 127
	ALTER_FILE procedure, 67
	ALTER_FILE_GROUP procedure, 67
	ALTER_JOB Procedure, 90
	ALTER_MSGSYSTEM_LINK Procedure for TIB/Rendezvous, 90
	ALTER_MSGSYSTEM_LINK Procedure for WebSphere MQ, 90
	ALTER_PARAM Procedure, 37
	ALTER_PROPAGATION procedure, 107
	ALTER_PROPAGATION_SCHEDULE Procedure, 90
	ALTER_REWRITE_EQUIVALENCE Procedure, 17
	ALTER_RULE procedure, 127
	ALTER_SQL_PATCH Procedure, 137
	ALTER_SQL_PLAN_BASELINE Function, 135
	ALTER_SQL_PROFILE procedure, 139
	ALTER_STATS_HISTORY_RETENTION procedure, 141
	ALTER_SUBSCRIBER Procedure, 90
	ALTER_SYNC_CAPTURE procedure, 32
	ALTER_TABLE_NOT_REFERENCEABLE procedure, 53
	ALTER_TABLE_REFERENCEABLE procedure, 53
	ALTER_VERSION procedure, 67
	AMATCH function, 191
	ANALYZE Function, 73
	ANALYZE Procedure, 31
	ANALYZE_CURRENT_PERFORMANCE procedure, 145
	ANALYZE_DATABASE Procedure, 156
	ANALYZE_DB Procedure, 16
	ANALYZE_INST Procedure, 16
	ANALYZE_PART_OBJECT procedure, 156
	ANALYZE_PARTIAL Procedure, 16
	ANALYZE_SCHEMA Procedure, 156
	ANCHOR function
	
	of HTF package, 182

	ANCHOR procedure
	
	of HTP package, 183

	ANCHOR2 function
	
	of HTF package, 182

	ANCHOR2 procedure
	
	of HTP package, 183

	anonymous PL/SQL blocks
	
	dynamic SQL and, 136

	AnyData datatype
	
	queues
	
	creating, 144
	removing, 144

	ANYDATA TYPE, 240
	ANYDATASET TYPE, 241
	ANYTYPE TYPE, 242
	APEX_APPLICATION package, 3
	APEX_APPLICATION package documentation, 3
	APEX_CUSTOM_AUTH package, 2
	APEX_CUSTOM_AUTH package documentation, 2
	APEX_ITEM package, 4
	APEX_ITEM package documentation, 4
	APEX_UTIL package, 5
	APPEND Procedures, 82
	APPENDCHILD function, 170
	APPENDDATA procedure, 170
	APPENDPATH Procedure, 163
	APPENDRESCONFIG Procedure, 118
	APPENDRESOURCEMETADATA Procedure, 163
	APPLETCLOSE function
	
	of HTF package, 182

	APPLETCLOSE procedure
	
	of HTP package, 183

	APPLETOPEN function
	
	of HTF package, 182

	APPLETOPEN procedure
	
	of HTP package, 183

	apply process
	
	altering, 21
	apply user, 144
	change handlers
	
	setting, 21

	conflict handlers
	
	setting, 21

	creating, 21, 144, 144, 144, 144, 144
	DBMS_APPLY_ADM package, 21
	DDL handler
	
	setting, 21, 21

	dropping, 21
	enqueuing events, 21
	error handlers
	
	setting, 21

	error queue
	
	deleting errors, 21, 21
	executing errors, 21, 21
	getting error messages, 21

	instantiation
	
	global SCN, 21
	schema SCN, 21
	table SCN, 21

	message handler
	
	setting, 21, 21

	parameters
	
	allow_duplicate_rows, 21, 21, 32, 32
	commit_serialization, 21
	compare_key_only, 21
	disable_on_error, 21
	disable_on_limit, 21
	grouptransops, 21
	ignore_transaction, 21
	max_sga_size, 21
	maximum_scn, 21
	parallelism, 21
	preserve_encryption, 21
	setting, 21
	startup_seconds, 21, 21
	time_limit, 21
	trace_level, 21
	transaction_limit, 21
	txn_age_spill_threshold, 21
	txn_lcr_spill_threshold, 21

	precommit handler
	
	setting, 21, 21

	procedure DML handlers
	
	setting, 21

	rules
	
	defining global, 144
	defining message, 144
	defining schema, 144
	defining subset, 144
	defining table, 144
	for LCRs, 144
	for user messages, 144
	removing, 144

	specifying execution, 21
	starting, 21
	statement DML handlers
	
	setting, 21, 21

	stopping, 21
	substitute key columns
	
	setting, 21

	transparent data encryption, 21

	apply user
	
	DBMS_STREAMS_ADM package, 144

	APPLY$_ENQUEUE, 21
	APPLY$_EXECUTE, 21
	AQ$_AGENT Type, 243
	AQ$_AGENT_LIST_T Type, 243
	AQ$_DESCRIPTOR Type, 243, 243
	AQ$_NTFN_MSGID_ARRAY Type, 243
	AQ$_POST_INFO Type, 243
	AQ$_POST_INFO_LIST Type, 243
	AQ$_PURGE_OPTIONS_T Type, 243
	AQ$_RECIPIENT_LIST_T Type, 243
	AQ$_REG_INFO Type, 243
	AQ$_REG_INFO_LIST Type, 243
	AQ$_SUBSCRIBER_LIST_T Type, 243
	AREA function
	
	of HTF package, 182

	AREA procedure
	
	of HTP package, 183

	arrays
	
	BIND_ARRAY procedure, 136
	bulk DML using DBMS_SQL, 136

	ASA_RECO_ROW Record Type, 133
	ASA_RECO_ROW_TB Table Type, 133
	ASA_RECOMMENDATIONS Function, 133
	ASH_GLOBAL_REPORT_HTML Function, 161
	ASH_GLOBAL_REPORT_TEXT Function, 161
	ASH_REPORT_HTML Function, 161
	ASH_REPORT_TEXT Function, 161
	ASSIGN_ACL Procedure, 94
	ASSIGN_ATTRIBUTE_SET procedure, 65
	ASSIGN_WALLET_ACL Procedure, 94
	ASSM_SEGMENT_VERIFY Procedure, 134
	ASSM_TABLESPACE_VERIFY Procedure, 134
	ATTACH_SESSION procedure, 52
	ATTACH_SIMPLE_TABLESPACE procedure, 149
	ATTACH_TABLESPACES procedure, 149
	attribute sets
	
	dropping, 65

	AUTH Function and Procedure, 235
	AUTHORIZE function, 188
	AUTHORIZE_DAD Procedure, 63
	AVAILABLE function, 237
	AWR_BASELINE_METRIC_TYPE Object Type, 161
	AWR_BASELINE_METRIC_TYPE_TABLE Table Type, 161
	AWR_DIFF_REPORT_HTML Function, 161
	AWR_DIFF_REPORT_TEXT Function, 161
	AWR_GLOBAL_DIFF_REPORT_HTML Functions, 161
	AWR_GLOBAL_DIFF_REPORT_TEXT Functions, 161, 161
	AWR_GLOBAL_REPORT_HTML Functions, 161
	AWR_GLOBAL_REPORT_TEXT Functions, 161
	AWR_REPORT_HTML function, 161
	AWR_REPORT_TEXT function, 161
	AWR_SQL_REPORT_HTML Function, 161
	AWR_SQL_REPORT_TEXT Function, 161

B

	BASE function
	
	of HTF package, 182

	BASE procedure
	
	of HTP package, 183

	BASE64_DECODE function, 222
	BASE64_ENCODE function, 222
	BASEFONT function
	
	of HTF package, 182

	BASEFONT procedure
	
	of HTP package, 183

	BEGIN_PREPARE Procedure, 60
	BEGIN_REQUEST function, 224
	BEGIN_SQL_BLOCK Procedure, 119
	BEGIN_UPGRADE Procedure, 60
	BEGINCREATE static procedure
	
	of ANYDATA TYPE, 240
	of ANYDATASET TYPE, 241
	of ANYTYPE TYPE, 242

	BFILE_TABLE Table Type, 136
	BGSOUND function
	
	of HTF package, 182

	BGSOUND procedure
	
	of HTP package, 183

	BIG function
	
	of HTF package, 182

	BIG procedure
	
	of HTP package, 183

	BINARY_DOUBLE_TABLE Table Type, 136
	BINARY_FLOAT_TABLE Table Type, 136
	BIND_ARRAY procedures, 136
	BIND_INOUT_VARIABLE Procedure, 75
	BIND_INOUT_VARIABLE_RAW Procedure, 75
	BIND_OUT_VARIABLE Procedure, 75
	BIND_OUT_VARIABLE_RAW Procedure, 75
	BIND_VARIABLE Procedure, 75
	BIND_VARIABLE procedures, 136
	BIND_VARIABLE_RAW Procedure, 75
	BIND_VARIABLES function, 194
	BIT_AND function, 232
	BIT_COMPLEMENT function, 232
	BIT_OR function, 232
	BIT_XOR function, 232
	BLAS Level 1 (Vector-Vector Operations) Subprograms, 231
	BLAS Level 2 (Matrix-Vector Operations) Subprograms, 231
	BLAS Level 3 (Matrix-Matrix Operations) Subprograms, 231
	BLAS_ASUM Functions, 231
	BLAS_AXPY Procedures, 231
	BLAS_COPY Procedures, 231
	BLAS_DOT Functions, 231
	BLAS_GBMV Procedures, 231
	BLAS_GEMM Procedures, 231
	BLAS_GEMV Procedures, 231
	BLAS_GER Procedures, 231
	BLAS_IAMAX Functions, 231
	BLAS_NRM2 Functions, 231
	BLAS_ROT Procedures, 231
	BLAS_ROTG Procedures, 231
	BLAS_SBMV Procedures, 231
	BLAS_SCAL Procedure, 231
	BLAS_SPMV Procedures, 231
	BLAS_SPR Procedures, 231
	BLAS_SPR2 Procedures, 231
	BLAS_SWAP Procedure, 231
	BLAS_SYMM Procedures, 231
	BLAS_SYMV Procedures, 231
	BLAS_SYR Procedures, 231
	BLAS_SYR2 Procedures, 231
	BLAS_SYRK Procedures, 231
	BLAS_TBMV Procedures, 231
	BLAS_TBSV Procedures, 231
	BLAS_TPMV Procedures, 231
	BLAS_TPSV Procedures, 231
	BLAS_TRMM Procedures, 231
	BLAS_TRMV Procedures, 231
	BLAS_TRSM Procedures, 231
	BLAS_TRSV Procedures, 231
	BLOB_TABLE Table Type, 136
	BLOCKQUOTECLOSE function
	
	of HTF package, 182

	BLOCKQUOTECLOSE procedure
	
	of HTP package, 183, 183

	BLOCKQUOTEOPEN function
	
	of HTF package, 182

	BLOCKQUOTEOPEN procedure
	
	of HTP package, 183

	BODYCLOSE function
	
	of HTF package, 182

	BODYCLOSE procedure
	
	of HTP package, 183

	BODYOPEN function
	
	of HTF package, 182

	BODYOPEN procedure
	
	of HTP package, 183

	BOLD function
	
	of HTF package, 182

	BOLD procedure
	
	of HTP package, 183

	BR function
	
	of HTF package, 182

	BR procedure
	
	of HTP package, 183

	BREAKPOINT_INFO Record Type, 52
	BROKEN procedure, 78
	BUILD procedure, 32, 41
	BUILD_CHAIN_ROWS_TABLE procedure, 76
	BUILD_EXCEPTIONS_TABLE procedure, 65, 76
	BUILD_PART_INDEX procedure, 102
	BUILD_SAFE_REWRITE_EQUIVALENCE Procedure, 17
	BYPASS Procedure, 121

C

	CALENDARPRINT procedures, 194
	CALIBRATE Function, 160
	CALIBRATE_IO Procedure, 119
	CAN_REDEF_TABLE procedure, 110
	CANCEL_ANALYSIS_TASK Procedure, 138
	CANCEL_DIAGNOSIS_TASK Procedure, 137
	CANCEL_REPLAY Procedure, 160
	CANCEL_TASK Procedure, 18
	CANCEL_TUNING_TASK procedure, 139
	CANONICALIZE procedure, 156
	capture process
	
	altering, 32
	building a Streams data dictionary, 32
	capture user, 144
	creating, 144, 144, 144, 144
	DBMS_CAPTURE_ADM package, 32
	instantiation
	
	aborting database preparation, 32
	aborting schema preparation, 32
	aborting table preparation, 32
	preparing a database for, 32
	preparing a schema for, 32
	preparing a table for, 32

	parameters
	
	disable_on_limit, 32
	downstream_real_time_mine, 32
	ignore_transaction, 32
	ignore_unsupported_table, 32
	max_sga_size, 32
	maximum_scn, 32
	message_limit, 32
	message_tracking_frequency, 32
	parallelism, 32
	setting, 32
	skip_autofiltered_table_ddl, 32
	startup_seconds, 32
	time_limit, 32
	trace_level, 32
	write_alert_log, 32
	xout_client_exists, 32

	rules, 144
	
	defining global, 144
	defining schema, 144
	defining subset, 144
	defining table, 144
	removing, 144

	starting, 32
	stopping, 32

	CAPTURE_CURSOR_CACHE_SQLSET Procedure, 139
	CAST_FROM_BINARY_DOUBLE function, 232
	CAST_FROM_BINARY_FLOAT function, 232
	CAST_FROM_BINARY_INTEGER function, 232
	CAST_FROM_NUMBER function, 232
	CAST_TO_BINARY_DOUBLE function, 232
	CAST_TO_BINARY_FLOAT function, 232
	CAST_TO_BINARY_INTEGER function, 232
	CAST_TO_NUMBER function, 232
	CAST_TO_NVARCHAR2 function, 232
	CAST_TO_RAW function, 232
	CAST_TO_VARCHAR2 function, 232
	CB$ table prefix, 41
	CELLSPRINT procedures, 194
	CENTER function
	
	of HTF package, 182

	CENTER procedure
	
	of HTP package, 183

	CENTERCLOSE function
	
	of HTF package, 182

	CENTERCLOSE procedure
	
	of HTP package, 183

	CENTEROPEN function
	
	of HTF package, 182

	CENTEROPEN procedure
	
	of HTP package, 183

	CFG_GET function, 163
	CFG_REFRESH procedure, 163
	CFG_UPDATE procedure, 163
	Chain Condition Syntax, 128
	Change Data Capture
	
	DBMS_CDC_PUBLISH package, 33

	change data capture
	
	Oracle Streams
	
	configuring, 144

	CHANGE functions and procedures, 191
	CHANGE procedure, 78
	change tables
	
	tablespaces created in, 33

	CHANGEOWNER Procedure, 163
	CHANGEPRIVILEGES Function, 163
	CHARARR Table Type, 100
	CHECK_OBJECT procedure, 112
	CHECK_PRIVILEGE Function, 94
	CHECK_PRIVILEGE_ACLID Function, 94
	CHECKACCESS Function, 47, 48
	CHECKIN function, 165
	CHECKOUT procedure, 165
	CHECKPRIVILEGES function, 163
	CHECKSPI Functions and Procedures, 47
	CHECKSUM functions, 190
	CHOOSE_DATE procedure, 194
	CITE function
	
	of HTF package, 182

	CITE procedure
	
	of HTP package, 183

	CLEAN_AUDIT_TRAIL procedure, 27
	CLEANUP_GATEWAY Procedure, 90
	CLEANUP_INSTANTIATION_SETUP procedure, 144
	CLEANUPUNUSEDBACKUPFILES Procedure, 49
	CLEAR Procedure, 169
	CLEAR_ALL_CONTEXT Procedure, 131
	CLEAR_AUDIT_TRAIL_PROPERTY procedure, 27
	CLEAR_CONTEXT Procedure, 131
	CLEAR_COOKIES procedure, 224
	CLEAR_EXPRSET_STATS procedure, 65
	CLEAR_IDENTIFIER Procedure, 131
	CLEAR_LAST_ARCHIVE_TIMESTAMP procedure, 27
	CLEAR_PENDING_AREA procedure, 119
	CLEAR_PLSQL_TRACE procedure, 151
	CLEAR_USED procedure, 99
	CLEARKEYCOLUMNLIST procedure, 175, 177
	CLEARUPDATECOLUMNLIST procedure, 175, 177
	CLIENT_ID_STAT_DISABLE procedure, 92
	CLIENT_ID_STAT_ENABLE procedure, 92
	CLIENT_ID_TRACE_DISABLE procedure, 92
	CLIENT_ID_TRACE_ENABLE procedure, 92
	CLOB_TABLE Table Type, 136
	CLOB2FILE procedure, 180
	CLONE_SIMPLE_TABLESPACE procedure, 149
	CLONE_TABLESPACES procedure, 149
	CLONENODE function, 170
	CLOSE Procedure, 82
	CLOSE_ALL_CONNECTIONS procedure, 237
	CLOSE_CONNECTION Procedure, 235
	CLOSE_CONNECTION procedure, 237
	CLOSE_CURSOR Procedure, 75
	CLOSE_CURSOR procedure, 136
	CLOSE_DATA Function and Procedure, 235
	CLOSE_DATABASE_LINK Procedure, 131
	CLOSE_ITERATOR procedure, 126
	CLOSE_PERSISTENT_CONN procedure, 224
	CLOSE_PERSISTENT_CONNS procedure, 224
	CLOSECONTEXT procedure, 171, 174, 175, 177
	COAD_ADVICE_REC type, 42
	COAD_ADVICE_T type, 42
	CODE function
	
	of HTF package, 182

	CODE procedure
	
	of HTP package, 183

	COLLECT_STATS procedure, 236
	collections
	
	table items, 136

	column masking for VPD, 124
	COLUMN_VALUE procedure, 136
	COLUMN_VALUE_LONG procedure, 136
	column-level VPD, 124
	COMMA_TO_TABLE procedures, 156
	COMMAND function and procedure, 235
	COMMAND_REPLIES function, 235
	COMMENT function
	
	of HTF package, 182

	COMMENT procedure
	
	of HTP package, 183

	COMMIT procedure, 152
	COMMIT_COMMENT procedure, 152
	COMMIT_FORCE procedure, 152
	COMPARE Function, 35
	COMPARE function, 232
	COMPARE Functions, 82
	COMPARE_OLD_VALUES procedure, 21
	COMPARE_PERIOD_REPORT Procedure, 160
	COMPARE_SQLSET_REPORT Function, 160
	COMPARISON_TYPE type, 35
	COMPATIBLE_10_1 function, 143, 248
	COMPATIBLE_10_2 function, 143, 248
	COMPATIBLE_11_1 function, 143
	COMPATIBLE_11_2 function, 143
	COMPATIBLE_9_2 function, 143, 248
	COMPILE_FROM_REMOTE procedure, 81
	COMPILE_SCHEMA procedure, 156
	COMPILESCHEMA procedure, 176
	CONCAT function, 232
	CONDITION_REF function, 123
	CONFIGURE Procedure, 135
	CONFIGURE_POOL Procedure, 37
	CONFIGUREAUTOSYNC procedure, 167
	conflicts
	
	detection
	
	stopping, 21

	CONNECTION record type, 235
	constants
	
	DBMS_MGWMSG package, 91

	CONSUME_EVENT Function, 123
	CONSUME_PRIM_EVENT Function, 123
	CONTAINS_HOST Function, 95
	CONTINUE function, 52
	CONVERGE Procedure, 35
	CONVERT function, 83, 171, 232
	CONVERT_ANYDATA_TO_LCR_DDL function, 143
	CONVERT_ANYDATA_TO_LCR_ROW function, 143
	CONVERT_LCR_TO_XML function, 143
	CONVERT_LONG_TO_LOB_CHUNK member procedure, 248
	CONVERT_RAW_VALUE procedures, 141
	CONVERT_RAW_VALUE_NVARCHAR procedure, 141
	CONVERT_RAW_VALUE_ROWID procedure, 141
	CONVERT_XML_TO_LCR function, 143
	CONVERTTOBLOB procedure, 82
	CONVERTTOCLOB Procedure, 82
	COPIES function, 232
	COPY Procedures, 82
	COPY_ATTRIBUTE_SET procedure, 65
	COPY_DBFS_LINK Procedures, 82
	COPY_FILE procedure, 68
	COPY_FROM_DBFS_LINK, 82
	COPY_TABLE_DEPENDENTS procedure, 110
	COPY_TABLE_STATS Procedure, 141
	COPYDEFAULTTOKENTABLESET Procedure, 40
	COPYEVOLVE procedure, 176
	CQ_NOTIFICATION$_DESCRIPTOR Object Type, 38
	CQ_NOTIFICATION$_QUERY Object Type, 38
	CQ_NOTIFICATION$_QUERY_ARRAY Object (Array) Type, 38
	CQ_NOTIFICATION$_REG_INFO Object Type, 38
	CQ_NOTIFICATION$_ROW Object Type, 38
	CQ_NOTIFICATION$_TABLE Object Type, 38
	CQ_NOTIFICATION$_TABLE_ARRAY Object (Array) Type, 38
	CQ_NOTIFICATION_QUERYID Function, 38
	CREATE ANY DIMENSION privilege, 41
	CREATE ANY MATERIALIZED VIEW privilege, 41
	CREATE DIMENSION privilege, 41
	CREATE MATERIALIZED VIEW privilege, 41
	CREATE PACKAGE BODY command, 1
	CREATE PACKAGE command, 1
	CREATE SESSION privilege, 41, 41
	CREATE_ACL Procedure, 94
	CREATE_AFFECTED_TABLE Procedure, 60
	CREATE_AGENT Procedure, 90
	CREATE_ALTER_TYPE_ERROR_TABLE procedure, 156
	CREATE_ANALYSIS_TASK Functions, 138
	CREATE_APPLY procedure, 21
	CREATE_ATTRIBUTE_SET procedure, 65
	CREATE_BASELINE Function & Procedure, 161
	CREATE_BASELINE_TEMPLATE Procedures, 161
	CREATE_BIN_CAT procedure, 45
	CREATE_BIN_NUM procedure, 45
	CREATE_CAPTURE procedure
	
	capture process
	
	creating, 32

	CREATE_CATEGORY function, 89
	CREATE_CATEGORY Procedure, 119
	CREATE_CHUNKS_BY_NUMBER_COL Procedure, 101
	CREATE_CHUNKS_BY_ROWID Procedure, 101
	CREATE_CHUNKS_BY_SQL Procedure, 101
	CREATE_CLIP procedure, 45
	CREATE_COL_REM procedure, 45
	CREATE_COMPARISON Procedure, 35
	CREATE_CONDITIONS_TABLE procedure, 123
	CREATE_CONSUMER_GROUP procedure, 119
	CREATE_DAD Procedure, 63
	CREATE_DIAGNOSIS_TASK Functions, 137
	CREATE_ERROR_LOG Procedure, 64
	CREATE_ERROR_TABLE Procedure, 60
	CREATE_EVALUATION_CONTEXT procedure, 127
	CREATE_EVENT_STRUCT procedure, 123
	CREATE_EXPFIL_INDEXES procedure, 123
	CREATE_EXTENDED_STATS Function, 141
	CREATE_FILE Procedure, 18
	CREATE_FILE_GROUP procedure, 67
	CREATE_FILTER_SET Procedure, 160
	CREATE_INDEX_COST procedure, 133
	CREATE_INTERFACE procedure, 123
	CREATE_JOB Procedure, 90
	CREATE_MISS_CAT procedure, 45
	CREATE_MISS_NUM procedure, 45
	CREATE_MSGSYSTEM_LINK Procedure for TIB/Rendezvous, 90
	CREATE_MSGSYSTEM_LINK Procedure for WebSphere MQ, 90
	CREATE_MVIEW function, 41, 41
	CREATE_NORM_LIN procedure, 45
	CREATE_OBJECT Procedure, 18
	CREATE_OBJECT_DEPENDENCY procedure, 21
	CREATE_OR_REPLACE_VIEW procedure
	
	of DBMS_HS_PARALLEL package, 74

	CREATE_OUTLINE procedure, 99
	CREATE_PENDING_AREA procedure, 119
	CREATE_PIPE function, 103
	CREATE_PLAN procedure, 119
	CREATE_PLAN_DIRECTIVE procedure, 119
	CREATE_PROPAGATION procedure, 107
	CREATE_PURGE_JOB procedure, 27
	CREATE_REQUEST_CONTEXT Function, 224
	CREATE_RULE procedure, 127
	CREATE_RULE_CLASS procedure, 123
	CREATE_RULE_SET procedure, 127
	CREATE_SERVICE procedure, 130
	CREATE_SIMPLE_PLAN procedure, 119
	CREATE_SNAPSHOT function and procedure, 161
	CREATE_SQL_PLAN_BASELINE Procedure, 139
	CREATE_SQLSET procedure, 139
	CREATE_SQLWKLD Procedure, 18
	CREATE_STAT_TABLE procedure, 141
	CREATE_STGTAB_BASELINE Procedure, 135
	CREATE_STGTAB_SQLPATCH Procedure, 137
	CREATE_STGTAB_SQLPROF Procedure, 139
	CREATE_STGTAB_SQLSET Procedure, 139
	CREATE_STMT_HANDLER procedure, 147
	CREATE_SYNC_CAPTURE procedure
	
	synchronous capture
	
	creating, 32

	CREATE_TABLE_COST procedures, 133
	CREATE_TABLE_COST_COLINFO Object Type, 133
	CREATE_TABLE_TEMPLAGE procedure
	
	of DBMS_HS_PARALLEL package, 74

	CREATE_TASK Procedure, 101
	CREATE_TASK Procedures, 18
	CREATE_TRANSFORMATION procedure, 153
	CREATE_TRIGGER_TABLE Procedure, 60
	CREATE_TUNING_TASK functions, 139
	CREATE_VERSION procedure, 67
	CREATE_WRAPPED Procedure, 53
	CREATEATTRIBUTE function, 170
	CREATEBUCKET Procedure, 49
	CREATECDATASECTION function, 170
	CREATECOMMENT function, 170
	CREATEDATASTOREPREF procedure, 167
	CREATEDATEINDEX Procedure, 172
	CREATEDIRECTORY Procedures, 47, 48
	CREATEDOCUMENT function, 170
	CREATEDOCUMENTFRAGMENT function, 170
	CREATEELEMENT function, 170
	CREATEENTITYREFERENCE function, 170
	CREATEFILE Procedures, 47, 48
	CREATEFILESYSTEM Procedure, 50
	CREATEFILTERPREF procedure, 167
	CREATEFOLDER function, 163
	CREATEINDEX procedure, 167
	CREATELEXERPREF procedure, 167
	CREATELINK Procedures, 47, 48
	CREATENONSCHEMABASEDXML function, 259
	CREATENUMBERINDEX Procedure, 172
	CREATEOIDPATH function, 163
	CREATEPREFERENCES procedure, 167
	CREATEPROCESSINGINSTRUCTION function, 170
	CREATEREFERENCE Procedures, 47, 48
	CREATEREPOSITORYXMLINDEX Procedure, 164
	CREATERESOURCE function, 163
	CREATESCHEMABASEDXML function, 259
	CREATESECTIONGROUPPREF procedure, 167
	CREATESTOPLISTPREF procedure, 167
	CREATESTORAGEPREF procedure, 167
	CREATESTORE Procedure, 49, 50
	CREATETEMPORARY Procedures, 82
	CREATETEXTNODE function, 170
	CREATEURI function, 245, 245, 245
	CREATEWORLDLISTPREF procedure, 167
	CREATEXML function, 259
	creating
	
	packages, 1

	CTX_ADM package, 6
	CTX_ADM package documentation, 6
	CTX_CLS package, 7
	CTX_CLS package documentation, 7
	CTX_DDL package, 8
	CTX_DDL package documentation, 8
	CTX_DOC package documentation, 9
	CTX_ENTITY package, 10
	CTX_ENTITY package documentation, 10
	CTX_OUTPUT package documentation, 11
	CTX_QUERY package documentation, 12
	CTX_REPORT package documentation, 13
	CTX_THES package documentation, 14
	CTX_ULEXER package documentation, 15
	cube aggregation, 41
	Cube Build log, 43
	Cube Dimension Compile log, 43
	cube log verbosity levels, 43
	cube logging targets, 43
	cube logging types, 43
	cube maintenance, 41
	cube materialized views, 41
	
	optimizing, 42

	Cube Operations log, 43
	cube refresh, 41
	Cube Rejected Records Log, 43
	CUBE_BUILD_LATEST view, 41
	CUBE_BUILD_REPORT view, 41
	CUBE_BUILD_REPORT_LATEST view, 41
	CUBE_UPGRADE_INFO table, 41
	cubes
	
	optimizer statistics, 31

	CURRENT_INSTANCE function, 156
	cursors
	
	DBMS_SQL package, 136

D

	data dictionary
	
	removing Streams information, 144

	DATA function and procedure, 235
	data mining
	
	algorithms, 44
	anomaly detection, 44
	association rules, 44
	attribute importance, 44
	attributes, 44
	automated, 104
	Automatic Data Preparation, 44
	classification, 44, 44
	clustering, 44, 44
	confusion matrix, 44
	cost matrix, 44
	creating a model, 44
	data transformation, 44, 44, 44, 44
	feature extraction, 44
	lift, 44
	mining functions, 44, 44
	PMML, 44
	regression, 44, 44
	ROC, 44
	schema objects, 44
	scoring, 44, 44, 44, 44
	supervised, 44
	transactional data, 44
	transformations, 45
	unsupervised, 44

	DATA_BLOCK_ADDRESS_BLOCK function, 156
	DATA_BLOCK_ADDRESS_FILE function, 156
	database
	
	locking
	
	OWA_OPT_LOCK package, 190

	database tables
	
	creating for DBMS_TRACE, 151

	database_role attribute (Scheduler job), 128
	DATABASE_TRACE_DISABLE Procedure, 92
	DATABASE_TRACE_ENABLE Procedure, 92
	datatypes
	
	DBMS_DESCRIBE, 57
	PL/SQL
	
	numeric codes for, 57

	DATE_TABLE Table Type, 136
	DB_CONNECT_INFO Procedure, 90
	DB_VERSION procedure, 156
	DBFS_LINK_GENERATE_PATH Functions, 82
	DBLINK_ARRAY Table Type, 156
	DBMS, 170
	DBMS_ NETWORK_ACL_ADMIN package, 94, 95
	DBMS_ALERT package, 19
	DBMS_APPLICATION_INFO package, 20
	DBMS_APPLY_ADM package, 21
	DBMS_AQADM Constants, 23
	DBMS_AQELM package, 24
	DBMS_AQIN package, 25
	DBMS_AUDIT_MGMT package, 27
	
	CLEAN_AUDIT_TRAIL procedure, 27
	CLEAR_AUDIT_TRAIL_PROPERTY procedure, 27
	CLEAR_LAST_ARCHIVE_TIMESTAMP procedure, 27
	CREATE_PURGE_JOB procedure, 27
	DEINIT_CLEANUP procedure, 27
	DROP_PURGE_JOB procedure, 27
	GET_AUDIT_COMMIT_DELAY function, 27
	INIT_CLEANUP procedure, 27
	IS_CLEANUP_INITIALIZED function, 27
	SET_AUDIT_TRAIL_LOCATION procedure, 27
	SET_AUDIT_TRAIL_PROPERTY procedure, 27
	SET_LAST_ARCHIVE_TIMESTAMP procedure, 27
	SET_PURGE_JOB_INTERVAL procedure, 27
	SET_PURGE_JOB_STATUS procedure, 27

	DBMS_AUTO_TASK_ADMIN package, 29
	DBMS_AW_STATS package, 31
	DBMS_CAPTURE package, 243
	DBMS_CAPTURE_ADM package, 32
	DBMS_CDC_PUBLISH package
	
	ALTER_AUTOLOG_CHANGE_SOURCE procedure, 33
	ALTER_CHANGE_SET procedure, 33
	ALTER_CHANGE_TABLE procedure, 33
	ALTER_HOTLOG_CHANGE_SOURCE procedure, 33
	CREATE_AUTOLOG_CHANGE_SOURCE procedure, 33
	CREATE_CHANGE_SET procedure, 33
	CREATE_CHANGE_TABLE procedure, 33
	CREATE_HOTLOG_CHANGE_SOURCE procedure, 33
	DROP_CHANGE_SET procedure, 33
	DROP_CHANGE_SOURCE procedure, 33
	DROP_CHANGE_TABLE procedure, 33, 33
	DROP_SUBSCRIPTION procedure, 33
	Oracle GoldenGate, 33
	PURGE procedure, 33
	PURGE_CHANGE_SET procedure, 33
	PURGE_CHANGE_TABLE procedure, 33

	DBMS_CDC_SUBSCRIBE package
	
	ACTIVATE_SUB SCRIPTION procedure, 34
	CREATE_SUBSCRIPTION procedure, 34, 34
	DROP_SUBSCRIBER_VIEW procedure, 34
	DROP_SUBSCRIPTION procedure, 34
	EXTEND_WINDOW procedure, 34
	GET_SUBSCRIPTION_HANDLE procedure, 34
	Oracle GoldenGate, 34
	PREPARE_SUBSCRIBER_VIEW procedure, 34
	PURGE_WINDOW procedure, 34
	SUBSCRIBE procedure, 34

	DBMS_CHANGE_NOTIFICATION package, 38
	DBMS_COMPARISON package, 35
	
	constants, 35
	data structures, 35
	index columns, 35
	
	lead index column, 35

	requirements, 35
	subprograms, 35
	using, 35
	views, 35

	DBMS_CONNECTION_POOL package, 37
	DBMS_CONTENT_CONTEXT_T Object Type, 244
	DBMS_CSX_ADMIN package, 40
	DBMS_CUBE package, 41
	DBMS_CUBE_ADVISE package, 42
	DBMS_CUBE_LOG package, 43
	DBMS_DATA_MINING package, 44
	
	ADD_COST_MATRIX procedure, 44
	algorithms, 44
	ALL_MINING_MODEL_ATTRIBUTES data dictionary view, 44
	ALL_MINING_MODEL_SETTINGS data dictionary view, 44
	ALL_MINING_MODELS data dictionary view, 44
	ALTER_REVERSE_EXPRESSION procedure, 44
	APPLY procedure, 44
	Automatic Data Preparation, 44
	COMPUTE_CONFUSION_MATRIX procedure, 44
	COMPUTE_LIFT procedure, 44
	COMPUTE_ROC procedure, 44
	CREATE_MODEL procedure, 44
	data transformation, 44, 44, 44
	data types, 44
	deprecated subprograms, 44
	DROP_MODEL procedure, 44
	EXPORT_MODEL procedure, 44
	GET_ASSOCIATION_RULES function, 44
	GET_FREQUENT_ITEMSETS function, 44
	GET_MODEL_COST_MATRIX function, 44
	GET_MODEL_DETAILS_AI function, 44
	GET_MODEL_DETAILS_GLM function, 44
	GET_MODEL_DETAILS_GLOBAL function, 44
	GET_MODEL_DETAILS_KM function, 44
	GET_MODEL_DETAILS_NB function, 44
	GET_MODEL_DETAILS_NMF function, 44
	GET_MODEL_DETAILS_OC function, 44
	GET_MODEL_DETAILS_SVM function, 44
	GET_MODEL_DETAILS_XML function, 44
	GET_MODEL_TRANSFORMATIONS function, 44
	GET_TRANSFORM_LIST procedure, 44
	IMPORT_MODEL procedure, 44
	mining functions, 44
	overview, 44
	PMML, 44
	RANK_APPLY procedure, 44
	REMOVE_COST_MATRIX procedure, 44
	RENAME_MODEL procedure, 44
	scoring, 44, 44, 44, 44, 44, 44, 44
	security model, 44
	settings
	
	algorithm names, 44
	decision tree, 44
	GLM, 44
	global, 44
	k-Means, 44
	mining functions, 44
	mining models, 44
	Naive Bayes, 44
	NMF, 44
	O-Cluster, 44
	SVM, 44

	subprograms, 44
	supermodels, 44
	transactional data, 44

	DBMS_DATA_MINING_TRANSFORM
	
	data types, 45
	introduction, 45
	package, 45
	subprograms, 45

	DBMS_DATAPUMP package, 46
	
	ADD_FILE procedure, 46
	ATTACH function, 46
	DATA_FILTER procedure, 46
	DETACH procedure, 46
	GET_DUMPFILE_INFO procedure, 46
	GET_STATUS procedure, 46
	LOG_ENTRY procedure, 46
	METADATA_FILTER procedure, 46
	METADATA_REMAP procedure, 46
	METADATA_TRANSFORM procedure, 46
	OPEN function, 46
	roles used by, 46
	SET_PARALLEL procedure, 46
	SET_PARAMETER procedure, 46
	START_JOB procedure, 46
	STOP_JOB procedure, 46
	types used by, 46
	WAIT_FOR_JOB procedure, 46

	DBMS_DB_VERSION package, 51
	DBMS_DBFS_CONTENT package, 47
	DBMS_DBFS_CONTENT_LIST_ITEM_T Object Type, 244
	DBMS_DBFS_CONTENT_LIST_ITEMS_T Table Type, 244
	DBMS_DBFS_CONTENT_PROPERTIES_T Table Type, 244
	DBMS_DBFS_CONTENT_PROPERTY_T Object Type, 244
	DBMS_DBFS_CONTENT_RAW_T Table Type, 244
	DBMS_DBFS_CONTENT_SPI package, 48
	DBMS_DBFS_HS package, 49
	DBMS_DBFS_SFS package, 50
	DBMS_DDL package, 53
	DBMS_DEBUG package, 52
	DBMS_DEFER package documentation, 54
	DBMS_DEFER_QUERY package documentation, 55
	DBMS_DEFER_SYS package documentation, 56
	DBMS_DESCRIBE package, 57
	DBMS_DG Package
	
	INITIATE_FS_FAILOVER procedure, 58

	DBMS_DG package, 58
	
	using, 58

	DBMS_DIMENSION package, 59
	DBMS_DISTRIBUTED_TRUST_ADMIN package, 61
	DBMS_EDITIONS_UTILITIES package, 62, 62
	DBMS_EPG package, 63, 63
	DBMS_EXPFIL package, 65
	
	ADD_ELEMENTARY_ATTRIBUTE, 65
	ADD_FUNCTIONS, 65
	ASSIGN_ATTRIBUTE_SET, 65
	BUILD_EXCEPTIONS_TABLE, 65
	CLEAR_EXPRSET_STATS, 65
	COPY_ATTRIBUTE_SET, 65
	CREATE_ATTRIBUTE_SET, 65
	DEFAULT_INDEX_PARAMETERS, 65
	DEFAULT_XPINDEX_PARAMETERS, 65
	DEFRAG_INDEX, 65
	DROP_ATTRIBUTE_SET, 65
	GET_EXPRSET_STATS, 65
	GRANT_PRIVILEGE, 65
	INDEX_PARAMETERS, 65
	MODIFY_OPERATOR_LIST, 65
	REVOKE_PRIVILEGE, 65
	SYNC_TEXT_INDEXES, 65
	UNASSIGN_ATTRIBUTE_SET, 65
	VALIDATE_EXPRESSIONS, 65
	XPINDEX_PARAMETERS, 65

	DBMS_FGA package, 66
	DBMS_FILE_GROUP package, 67
	
	constants, 67

	DBMS_FILE_TRANSFER package, 68
	DBMS_FLASHBACK package, 69
	DBMS_FREQUENT_ITEMSET package, 71
	DBMS_HPROF package, 73
	DBMS_HS_PARALLEL package, 74
	
	CREATE_OR_REPLACE_VIEW procedure, 74
	CREATE_TABLE_TEMPLATE procedure, 74
	DROP_VIEW procedure, 74
	LOAD_TABLE procedure, 74

	DBMS_HS_PASSTHROUGH package, 75
	DBMS_IOT package, 76
	DBMS_JAVA package documentation, 77
	DBMS_JOB package, 78
	DBMS_LDAP package documentation, 79
	DBMS_LDAP_UTL package documentation, 80
	DBMS_LIBCACHE package, 81
	DBMS_LOB package, 82
	DBMS_LOCK package, 83
	DBMS_LOGMNR package, 84
	
	ADD_LOGFILE procedure, 84
	COLUMN_PRESENT function, 84
	END_LOGMNR procedure, 84
	MINE_VALUE function, 84
	REMOVE_LOGFILE procedure, 84
	START_LOGMNR procedure, 84

	DBMS_LOGMNR_D package, 85
	
	BUILD procedure, 85
	SET_TABLESPACE procedure, 85

	DBMS_LOGSTDBY package, 86
	
	APPLY_SET procedure, 86
	APPLY_UNSET procedure, 86
	BUILD procedure, 86
	INSTANTIATE_TABLE procedure, 86
	MAP_PRIMARY_SCN function, 86
	overview of managing SQL Apply, 86
	PREPARE_FOR_NEW_PRIMARY procedure, 86
	PURGE_SESSION procedure, 86
	SET_TABLESPACE procedure, 86
	SKIP procedure, 86
	SKIP_ERROR procedure, 86
	SKIP_TRANSACTION procedure, 86
	UNSKIP procedure, 86
	UNSKIP_ERROR procedure, 86
	UNSKIP_TRANSACTION procedure, 86
	using, 86

	DBMS_METADATA package, 87
	
	ADD_TRANSFORM function, 87
	CLOSE procedure, 87
	CONVERT functions and procedures, 87
	GET_DDL function, 87
	GET_QUERY function, 87
	GET_XML function, 87
	OPEN function, 87
	OPENW function, 87
	PUT function, 87
	security, 87
	SET_COUNT procedure, 87
	SET_FILTER procedure, 87
	SET_PARSE_ITEM procedure, 87
	SET_REMAP_PARAM procedure, 87
	SET_TRANSFORM_PARAM procedure, 87

	DBMS_METADATA_DIFF package, 88, 88
	
	ADD_DOCUMENT procedure, 88
	FETCH_CLOB functions and procedures, 88
	OPENC function, 88

	DBMS_MGD_ID_UTL package, 89
	
	ADD_SCHEME procedure, 89
	CREATE_CATEGORY function, 89
	EPC_TO_ORACLE_SCHEME function, 89
	GET_CATEGORY_ID function, 89
	GET_COMPONENTS function, 89
	GET_ENCODINGS function, 89
	GET_JAVA_LOGGING_LEVEL function, 89
	GET_PLSQL_LOGGING_LEVEL function, 89
	GET_SCHEMENAMES function, 89
	GET_TDT_XML function, 89
	GET_VALIDATOR function, 89
	REFRESH_CATEGORY function, 89
	REMOVE_CATEGORY procedure, 89
	REMOVE_PROXY procedure, 89
	REMOVE_SCHEME procedure, 89
	SET_JAVA_LOGGING_LEVEL procedure, 89
	SET_PLSQL_LOGGING_LEVEL procedure, 89
	SET_PROXY procedure, 89
	VALIDATE_SCHEME function, 89

	DBMS_MGWADM package
	
	summary of subprograms, 90

	DBMS_MGWMSG package
	
	constants, 91
	summary of subprograms, 91

	DBMS_MONITOR package
	
	stastics tracing and gathering
	
	DBMS_MONITOR package, 92

	DBMS_MVIEW package
	
	BEGIN_TABLE_REORGANIZATION procedure, 93
	END_TABLE_REORGANIZATION procedure, 93
	EXPLAIN_MVIEW procedure, 93
	EXPLAIN_REWRITE procedure, 93
	I_AM_A_REFRESH function, 93
	PMARKER function, 93
	PURGE_DIRECT_LOAD_LOG procedure, 93
	PURGE_LOG procedure, 93
	PURGE_MVIEW_FROM_LOG procedure, 93
	REFRESH procedure, 93
	REFRESH_ALL_MVIEWS procedure, 93
	REFRESH_DEPENDENT procedure, 93
	REGISTER_MVIEW procedure, 93
	UNREGISTER_MVIEW procedure, 93

	DBMS_OBFUSCATION_TOOLKIT package, 96
	DBMS_ODCI package, 97
	
	ESTIMATE_CPU_UNITS function, 97
	methods, 97

	DBMS_OFFLINE_OG package documentation, 98
	DBMS_OUTLN package, 99
	DBMS_OUTPUT package, 100
	DBMS_PARALLEL_EXECUTE package, 101
	DBMS_PCLXUTIL package, 102
	DBMS_PIPE package, 103
	DBMS_PREDICTIVE_ANALYTICS package, 104
	
	EXPLAIN procedure, 104
	PREDICT procedure, 104
	PROFILE Procedure, 104

	DBMS_PREPROCESSOR package, 105
	DBMS_PROFILER package, 106
	DBMS_PROPAGATION_ADM package, 107
	DBMS_RANDOM package, 108
	DBMS_RECTIFIER_DIFF package documentation, 109
	DBMS_REDEFINITION package, 110
	DBMS_REFRESH package documentation, 111
	DBMS_REPAIR package, 112
	DBMS_REPCAT package documentation, 113
	DBMS_REPCAT_ADMIN package documentation, 114
	DBMS_REPCAT_INSTANTIATE package documentation, 115
	DBMS_REPCAT_RGT package documentation, 116
	DBMS_REPUTIL package documentation, 117
	DBMS_RESCONFIG package, 118
	DBMS_RESOURCE_MANAGER package, 119
	DBMS_RESOURCE_MANAGER_PRIVS package, 120
	DBMS_RESULT_CACHE package, 121
	DBMS_RESUMABLE package, 122
	DBMS_RLMGR package, 123
	
	ADD_ELEMENTARY_ATTRIBUTE, 123
	ADD_EVENT, 123
	ADD_FUNCTIONS, 123
	ADD_RULE, 123
	CONDITION_REF, 123
	CONSUME_EVENT, 123
	CONSUME_PRIM_EVENT, 123
	CREATE_CONDITIONS_TABLE, 123
	CREATE_EVENT_STRUCT, 123
	CREATE_EXPFIL_INDEXES, 123
	CREATE_INTERFACE, 123
	CREATE_RULE_CLASS, 123
	DELETE_RULE, 123
	DROP_CONDITIONS_TABLE, 123
	DROP_EVENT_STRUCT, 123
	DROP_EXPFIL_INDEXES, 123
	DROP_INTERFACE, 123
	DROP_RULE_CLASS, 123
	EXTEND_EVENT_STRUCT, 123
	GET_AGGREGATE_VALUE, 123
	GRANT_PRIVILEGE, 123
	PROCESS_RULES, 123
	PURGE_EVENTS, 123
	RESET_SESSION, 123
	REVOKE_PRIVILEGE, 123
	SYNC_TEXT_INDEXES, 123

	DBMS_RLS package, 124
	DBMS_RLS.ADD_GROUPED_POLICY parameters
	
	enable, 124
	function_schema, 124
	long_predicate, 124
	object_name, 124
	object_schema, 124
	policy_function, 124
	policy_group, 124
	policy_name, 124
	policy_type, 124
	sec_relevant_cols, 124
	statement_types, 124
	static_policy, 124
	update_check, 124

	DBMS_RLS.ADD_POLICY parameters
	
	enable, 124
	function_schema, 124
	long_predicate, 124
	object_name, 124
	object_schema, 124
	policy_function, 124
	policy_name, 124
	policy_type, 124
	sec_relevant_cols, 124
	sec_relevant_cols_opt, 124
	statement_types, 124
	static_policy, 124
	update_check, 124

	DBMS_RLS.ADD_POLICY policy types
	
	CONTEXT_SENSITIVE, 124
	DYNAMIC, 124
	SHARED_CONTEXT_SENSITIVE, 124
	SHARED_STATIC, 124
	STATIC, 124

	DBMS_RLS.ADD_POLICY_CONTEXT parameters
	
	attribute, 124
	namespace, 124
	object_name, 124
	object_schema, 124

	DBMS_RLS.CREATE_POLICY_GROUP parameters
	
	object_name, 124
	object_schema, 124
	policy_group, 124

	DBMS_RLS.DELETE_POLICY_GROUP parameters
	
	object_name, 124
	object_schema, 124
	policy_group, 124

	DBMS_RLS.DISABLE_GROUPED_POLICY parameters
	
	group_name, 124
	object_name, 124
	object_schema, 124
	policy_name, 124

	DBMS_RLS.DROP_GROUPED_POLICY parameters
	
	object_name, 124, 124
	object_schema, 124, 124
	policy_group, 124
	policy_name, 124, 124

	DBMS_RLS.DROP_POLICY_CONTEXT parameters
	
	attribute, 124
	namespace, 124
	object_name, 124
	object_schema, 124

	DBMS_RLS.ENABLE_GROUPED_POLICY parameters
	
	enable, 124
	group_name, 124
	object_name, 124
	object_schema, 124
	policy_name, 124

	DBMS_RLS.ENABLE_POLICY parameters
	
	enable, 124
	object_name, 124
	object_schema, 124
	policy_name, 124

	DBMS_RLS.REFRESH_GROUPED_POLICY parameters
	
	group_name, 124
	object_name, 124
	object_schema, 124
	policy_name, 124

	DBMS_RLS.REFRESH_POLICY parameters
	
	object_name, 124
	object_schema, 124
	policy_name, 124

	DBMS_ROWID package, 125
	DBMS_RULE package, 126
	DBMS_RULE_ADM package, 127
	DBMS_SCHEDULER package, 128
	DBMS_SERVER_ALERT package, 129
	DBMS_SERVICE package, 130
	DBMS_SESSION package, 131
	DBMS_SHARED_POOL package, 132
	DBMS_SPACE package, 133
	DBMS_SPACE_ADMIN package, 134
	DBMS_SPM package, 135
	DBMS_SQL package, 136
	DBMS_SQLDIAG package, 137
	DBMS_SQLTUNE package, 28, 28, 138, 139, 139
	DBMS_STAT_FUNCS package, 140
	DBMS_STATS package, 141
	DBMS_STORAGE_MAP package, 142
	DBMS_STREAMS package, 143
	DBMS_STREAMS_ADM package, 144
	
	apply user, 144
	deprecated subprograms, 144
	inbound server rules, 144
	inbound servers, 144
	outbound server rules, 144

	DBMS_STREAMS_ADVISOR_ADM package, 145
	
	constants, 145
	operational notes, 145
	subprograms, 145
	using, 145
	views, 145

	DBMS_STREAMS_AUTH package, 146
	DBMS_STREAMS_HANDLER_ADM package, 147
	DBMS_STREAMS_MESSAGING package, 148
	DBMS_STREAMS_TABLESPACE package, 149
	DBMS_TDB package, 150
	DBMS_TDB.CHECK_DB Function, 150
	DBMS_TDB.CHECK_DB procedure, 150
	DBMS_TRACE package, 151
	DBMS_TRANSACTION package, 152
	DBMS_TRANSFORM package, 153
	DBMS_TTS package, 154
	DBMS_TYPES package, 155
	DBMS_UTILITY package, 156
	DBMS_WARNING package, 157
	DBMS_WM package documentation, 158
	DBMS_WORKLOAD_RECORD package, 159
	DBMS_WORKLOAD_REPLAY package, 160
	DBMS_WORKLOAD_REPOSITORY package, 161
	DBMS_XA_XID Object Type, 162
	DBMS_XA_XID_ARRAY Table Type, 162
	DBMS_XBD_VERSION package, 165
	DBMS_XDB Constants, 163
	DBMS_XDB Overview, 163
	DBMS_XDB package, 163
	
	ACLCHECKPRIVILEGES function, 163
	CFG_GET function, 163
	CFG_REFRESH procedure, 163
	CFG_UPDATE procedure, 163
	CHECKPRIVILEGES function, 163
	CONFIGUREAUTOSYNC procedure, 167
	constants, 163
	ConText synchronization settings, 167
	CREATEDATASTOREPREF procedure, 167
	CREATEFILTERPREF procedure, 167
	CREATEFOLDER function, 163
	CREATEINDEX procedure, 167
	CREATELEXERPREF procedure, 167
	CREATEOIDPATH function, 163
	CREATEPREFERENCES procedure, 167
	CREATERESOURCE function, 163
	CREATESECTIONGROUPPREF procedure, 167
	CREATESTOPLISTPREF procedure, 167
	CREATESTORAGEPREF procedure, 167
	CREATEWORLDLISTPREF procedure, 167
	DELETERESOURCE procedure, 163
	DROPPREFERENCES procedure, 167
	EXISTSRESOURCE function, 163
	filtering settings, 167
	general indexing settings, 167
	GETACLDOCUMENT function, 163
	GETLOCKTOKEN procedure, 163
	GETRESOID function, 163
	GETXDB_TABLESPACE function, 163
	LOCKRESOURCE function, 163
	methods, 163, 167
	miscellaneous settings, 167
	other index preference settings, 167
	RENAMERESOURCE procedure, 163
	sectioning and section group settings, 167
	SETACL procedure, 163
	stoplist settings, 167
	SYNC settings, 167
	UNLOCKRESOURCE function, 163

	DBMS_XDB_ADMIN package, 164
	DBMS_XDB_VERSION package
	
	CHECKIN function, 165
	CHECKOUT procedure, 165
	GETCONTENTSBLOBBYRESID function, 165
	GETCONTENTSCLOBBYRESID function, 165
	GETCONTENTSXMLBYRESID function, 165
	GETPREDECESSORS function, 165
	GETPREDSBYRESID function, 165
	GETRESOURCEBYRESID function, 165
	GETSUCCESSORS function, 165
	GETSUCCSBYRESID function, 165
	MAKEVERSIONED function, 165
	UNCHECKOUT function, 165

	DBMS_XDBRESOURCE package, 166
	DBMS_XDBZ package
	
	DISABLE_HIERARCHY procedure, 168
	ENABLE_HIERARCHY procedure, 168
	GET_ACLOID function, 168
	GET_USERID function, 168
	IS_HIERARCHY_ENABLED function, 168
	PURGELDAPCACHE function, 168

	DBMS_XMLDOM Constants, 170
	DBMS_XMLDOM package, 170
	
	APPENDDATA procedure, 170
	CREATEATTRIBUTE function, 170
	CREATECDATASECTION function, 170
	CREATECOMMENT function, 170
	CREATEDOCUMENT function, 170
	CREATEDOCUMENTFRAGMENT, 170
	CREATEELEMENT function, 170
	CREATEENTITYREFERENCE function, 170
	CREATEPROCESSINGINSTRUCTION function, 170
	CREATETEXTNODE function, 170
	DELETEDATA procedure, 170
	description, 170
	exceptions, 170
	FINDENTITY function, 170
	FINDNOTATION function, 170
	FREEDOCFRAG procedure, 170
	FREEDOCUMENT procedure, 170
	GETATTRIBUTE function, 170
	GETATTRIBUTENODE function, 170
	GETBUBLICID function, 170
	GETCHARSET function, 170
	GETCHILDRENBYTAGNAME function, 170
	GETDATA function, 170
	GETDOCTYPE function, 170
	GETDOCUMENTELEMENT function, 170
	GETELEMENTSBYTAGNAME function, 170, 170
	GETENTITIES function, 170
	GETEXPANDEDNAME function, 170, 170
	GETIMPLEMENTATION function, 170
	GETLENGTH function, 170, 170, 170
	GETNAME function, 170, 170
	GETNAMEDITEM function, 170
	GETNAMESPACE function, 170, 170
	GETNAMESPACE procedure, 170
	GETNEXTSIBLING function, 170
	GETNODENAME function, 170
	GETNODETYPE function, 170
	GETNODEVALUE function, 170
	GETNOTATIONNAME function, 170
	GETNOTATIONS function, 170
	GETOWNERDOCUMENT function, 170
	GETOWNERELEMENT function, 170
	GETPARENTNODE function, 170
	GETPREFIX function, 170
	GETPREVIOUSSIBLING function, 170
	GETPUBLICID function, 170, 170
	GETQUALIFIEDNAME function, 170, 170
	GETSCHEMANODE function, 170
	GETSPECIFIED function, 170
	GETSTANDALONE function, 170
	GETSYSTEMID function, 170, 170, 170
	GETTAGNAME function, 170
	GETTARGET function, 170
	GETVALUE function, 170
	GETVERSION function, 170
	GETXMLTYPE function, 170
	HASATTRIBUTE function, 170
	HASATTRIBUTES function, 170
	HASCHILDNODES function, 170
	HASFEATURE function, 170
	IMPORTNODE function, 170
	INSERTBEFORE function, 170
	INSERTDATA procedure, 170
	ISNULL function, 170
	MAKEATTR function, 170
	MAKECDATASECTION function, 170
	MAKECHARACTERDATA function, 170
	MAKECOMMENT function, 170
	MAKEDOCUMENT function, 170
	MAKEDOCUMENTFRAGMENT function, 170
	MAKEDOCUMENTTYPE function, 170
	MAKEELEMENT function, 170
	MAKEENTITY function, 170
	MAKEENTITYREFERENCE function, 170
	MAKENODE function, 170, 170, 170, 170
	MAKENOTATION function, 170
	MAKEPROCESSINGINSTRUCTION function, 170
	MAKETEXT function, 170
	methods
	
	APPENDCHILD function, 170
	APPENDDATA procedure, 170
	CLONENODE function, 170
	CREATEATTRIBUTE function, 170
	CREATECDATASECTION function, 170
	CREATECOMMENT function, 170
	CREATEDOCUMENT function, 170
	CREATEDOCUMENTFRAGMENT function, 170
	CREATEELEMENT function, 170
	CREATEENTITYREFERENCE function, 170
	CREATEPROCESSINGINSTRUCTION function, 170
	CREATETEXTNODE function, 170
	DELETEDATA procedure, 170
	DOMAttr interface, 170
	DOMCDataSection interface, 170
	DOMCharacterData interface, 170
	DOMComment interface, 170
	DOMDocument interface, 170
	DOMDocumentFragment interface, 170, 170
	DOMDocumentType interface, 170, 170
	DOMElement interface, 170, 170
	DOMEntity interface, 170, 170
	DOMEntityReference interface, 170
	DOMImplementation interface, 170
	DOMNamedNodeMap interface, 170
	DOMNode, 170, 170, 170, 170, 170, 170, 170, 170
	DOMNodeList interface, 170
	DOMNotation interface, 170
	DOMProcessingInstruction interface, 170
	DOMText interface, 170, 170
	FINDENTITY function, 170
	FINDNOTATION function, 170
	FREEDOCFRAG procedure, 170
	FREEDOCUMENT procedure, 170
	FREEELEMENT procedure, 170
	FREENODE procedure, 170, 170, 170
	FREENODELIST Procedure, 170
	GETATTRIBUTE function, 170
	GETATTRIBUTENODE function, 170
	GETATTRIBUTES function, 170
	GETBUBLICID function, 170
	GETCHARSET function, 170
	GETCHILDNODES function, 170
	GETCHILDRENBYTAGNAME function, 170
	GETDATA function, 170
	GETDOCTYPE function, 170
	GETDOCUMENTELEMENT function, 170
	GETELEMENTSBYTAGNAME function, 170, 170
	GETENTITIES function, 170
	GETEXPANDEDNAME function, 170, 170
	GETEXPANDEDNAME procedure, 170
	GETFIRSTCHILD function, 170
	GETIMPLEMENTATION function, 170
	GETLASTCHILD function, 170
	GETLENGTH function, 170, 170, 170
	GETLOCALNAME procedure, 170
	GETNAME function, 170, 170
	GETNAMEDITEM function, 170
	GETNAMESPACE function, 170, 170
	GETNAMESPACE procedure, 170
	GETNEXTSIBLING function, 170
	GETNODENAME function, 170
	GETNODETYPE function, 170
	GETNODEVALUE function, 170
	GETNOTATIONNAME function, 170
	GETNOTATIONS function, 170
	GETOWNERDOCUMENT function, 170
	GETOWNERELEMENT function, 170
	GETPARENTNODE function, 170
	GETPREFIX function, 170
	GETPREVIOUSSIBLING function, 170
	GETPUBLICID function, 170, 170
	GETQUALIFIEDNAME function, 170, 170
	GETSCHEMANODE function, 170
	GETSPECIFIED function, 170
	GETSTANDALONE function, 170
	GETSYSTEMID function, 170, 170, 170
	GETTAGNAME function, 170
	GETTARGET function, 170
	GETVALUE function, 170
	GETVERSION function, 170
	GETXMLTYPE function, 170
	HASATTRIBUTE function, 170
	HASATTRIBUTES function, 170
	HASCHILDNODES function, 170
	HASFEATURE function, 170
	IMPORTNODE function, 170
	INSERTBEFORE function, 170
	INSERTDATA procedure, 170
	ISNULL function, 170
	MAKEATTR function, 170
	MAKECDATASECTION function, 170
	MAKECHARACTERDATA function, 170
	MAKECOMMENT function, 170
	MAKEDOCUMENT function, 170
	MAKEDOCUMENTFRAGMENT function, 170
	MAKEDOCUMENTTYPE function, 170
	MAKEELEMENT function, 170
	MAKEENTITY function, 170
	MAKEENTITYREFERENCE function, 170
	MAKENODE function, 170, 170, 170, 170
	MAKENOTATION function, 170
	MAKEPROCESSINGINSTRUCTION function, 170
	MAKETEXT function, 170
	NEWDOMDOCUMENT function, 170
	NORMALIZE procedure, 170
	REMOVEATTRIBUTE procedure, 170
	REMOVEATTRIBUTENODE function, 170
	REMOVENAMEDITEM function, 170
	REPLACECHILD function, 170
	REPLACEDATA procedure, 170
	RESOLVENAMESPACEPREFIX function, 170
	SETATTRIBUTE procedure, 170
	SETATTRIBUTENODE function, 170
	SETCHARSET procedure, 170
	SETDATA procedure, 170
	SETNAMEDITEM function, 170
	SETNODEVALUE procedure, 170
	SETPREFIX procedure, 170
	SETSTANDALONE procedure, 170
	SETVALUE procedure, 170
	SETVERSION procedure, 170
	SPLITTEXT function, 170
	SUBSTRINGDATA function, 170
	WRITETOBUFFER procedure, 170
	WRITETOCLOB procedure, 170
	WRITETOFILE procedure, 170

	NEWDOMDOCUMENT function, 170
	NORMALIZE procedure, 170
	REMOVEATTRIBUTE procedure, 170
	REMOVEATTRIBUTENODE function, 170
	REMOVENAMEDITEM function, 170
	REPLACECHILD function, 170
	REPLACEDATA procedure, 170
	RESOLVENAMESPACEPREFIX function, 170
	SETATTRIBUTE procedure, 170
	SETATTRIBUTENODE function, 170
	SETCHARSET procedure, 170
	SETDATA procedure, 170
	SETNAMEDITEM function, 170
	SETNODEVALUE procedure, 170
	SETPREFIX procedure, 170
	SETSTANDALONE procedure, 170
	SETVALUE procedure, 170
	SETVERSION procedure, 170
	SPLITTEXT function, 170
	SUBSTRINGDATA function, 170
	types, 69, 170
	WRITETOBUFFER procedure, 170
	WRITETOCLOB procedure, 170
	WRITETOFILE procedure, 170

	DBMS_XMLGEN package, 171
	
	CLOSECONTEXT procedure, 171
	CONVERT function, 171
	GETNUMROWSPROCESSED Function, 171
	GETXML function, 171
	GETXMLTYPE function, 171
	NEWCONTEXT function, 171
	RESTARTQUERY procedure, 171
	SETCONVERTSPECIALCHARS procedure, 171
	SETMAXROWS procedure, 171
	SETROWSETTAG procedure, 171
	SETROWTAG procedure, 171
	SETSKIPROWS procedure, 171
	USEITEMTAGSFORCOLL procedure, 171
	USENULLATTRIBUTEINDICATOR procedure, 171

	DBMS_XMLINDEX package, 172
	DBMS_XMLPARSER package, 173
	
	FREEPARSER procedure, 173
	GETDOCTYPE function, 173
	GETDOCUMENT function, 173
	GETRELEASEVERSION function, 173
	GETVALIDATIONMODE function, 173
	NEWPARSER function, 173
	PARSE function, 173, 173
	PARSE procedure, 173
	PARSEBUFFER procedure, 173
	PARSECLOB procedure, 173
	PARSEDTD procedure, 173
	PARSEDTDBUFFER procedure, 173
	PARSEDTDCLOB procedure, 173
	SETBASEDIR procedure, 173
	SETDOCTYPE procedure, 173
	SETERRORLOG procedure, 173
	SETPRESERVEWHITESPACE procedure, 173
	SETVALIDATIONMODE procedure, 173
	SHOWWARNINGS procedure, 173

	DBMS_XMLQUERY package, 174
	
	CLOSECONTEXT procedure, 174
	constants, 174
	GETDTD function, 174
	GETDTD procedure, 174
	GETEXCEPTIONCONTENT procedure, 174
	GETNUMROWSPROCESSED procedure, 174
	GETVERSION procedure, 174
	GETXML function, 174
	GETXML procedure, 174
	NEWCONTEXT function, 174
	PROPAGATEORIGINALEXCEPTION procedure, 174
	REMOVEXSLTPARAM procedure, 174
	SETBINDVALUE procedure, 174
	SETCOLLIDATTRNAME procedure, 174
	SETDATAHEADER procedure, 174
	SETDATEFORMAT procedure, 174
	SETENCODINGTAG procedure, 174
	SETERRORTAG procedure, 174
	SETMAXROWS procedure, 174
	SETMETAHEADER procedure, 174
	SETRAISEEXCEPTION procedure, 174
	SETRAISENOROWSEXCEPTION procedure, 174
	SETROWIDATTRNAME procedure, 174
	SETROWIDATTRVALUE procedure, 174
	SETROWSETTAG procedure, 174
	SETROWTAG procedure, 174
	SETSKIPROWS procedure, 174
	SETSQLTOXMLNAMEESCAPING procedure, 174
	SETSTYLESHEETHEADER procedure, 174
	SETTAGCASE procedure, 174
	SETXSLT procedure, 174
	SETXSLTPARAM procedure, 174
	types, 174
	USENULLATTRIBUTEINDICATOR procedure, 174
	USETYPEFORCOLLELEMTAG procedure, 174

	DBMS_XMLSAVE package, 175
	
	CLEARKEYCOLUMNLIST procedure, 175
	CLEARUPDATECOLUMNLIST procedure, 175
	CLOSECONTEXT procedure, 175
	constants, 175
	DELETEXML function, 175
	GETEXCEPTIONCONTENT procedure, 175
	INSERTXML function, 175
	NEWCONTEXT function, 175
	PROPAGATEORIGINALEXCEPTION procedure, 175
	REMOVEXSLTPARAM procedure, 175
	SETBATCHSIZE procedure, 175
	SETCOMMITBATCH procedure, 175
	SETDATEFORMAT procedure, 175
	SETIGNORECASE procedure, 175
	SETKEYCOLUMN procedure, 175
	SETPRESERVEWHITESPACE procedure, 175
	SETROWTAG procedure, 175
	SETSQLTOXMLNAMEESCAPING procedure, 175
	SETUPDATECOLUMN procedure, 175
	SETXSLT procedure, 175
	SETXSLTPARAM procedure, 175
	UPDATEXML function, 175

	DBMS_XMLSCHEMA Constants, 176
	DBMS_XMLSCHEMA Operational Notes, 176
	DBMS_XMLSCHEMA package, 176
	DBMS_XMLSCHEMA Views, 176
	DBMS_XMLSTORE package, 177
	
	CLEARKEYCOLUMNLIST procedure, 177
	CLEARUPDATECOLUMNLIST procedure, 177
	CLOSECONTEXT procedure, 177
	DELETEXML function, 177
	INSERTXML function, 177
	NEWCONTEXT function, 177
	SETKEYCOLUMN procedure, 177
	SETROWTAG procedure, 177
	SETUPDATECOLUMN procedure, 177
	types, 177
	UPDATEXML function, 177

	DBMS_XMLTRANSLATIONS package, 178
	DBMS_XPLAN package, 179
	DBMS_XSLPROCESSOR Package, 180, 180
	DBMS_XSLPROCESSOR package
	
	CLOB2FILE procedure, 180
	FREEPROCESSOR procedure, 180
	FREESTYLESHEET procedure, 180
	NEWPROCESSOR function, 180
	NEWSTYLESHEET function, 180
	PROCESSXSL function, 180
	READ2CLOB function, 180
	REMOVEPARAM procedure, 180
	RESETPARAMS procedure, 180
	SELECTNODES function, 180
	SELECTSINGLENODE function, 180
	SETERRORLOG procedure, 180
	SETPARAM procedure, 180
	SHOWWARNINGS procedure, 180
	TRANSFORMNODE function, 180
	VALUEOF procedure, 180

	DBMSOUTPUT_LINESARRAY Object Type, 100
	DBUriType, 245
	DBURITYPE function, 245
	DBUriType subtype, 245
	
	CREATEURI function, 245
	DBURITYPE function, 245
	GETBLOB function, 245
	GETCLOB function, 245
	GETCONTENTTYPE function, 245
	GETEXTERNALURL function, 245
	GETURL function, 245
	GETXML function, 245
	methods, 245

	DEAUTHORIZE_DAD Procedure, 63
	DEBUG_EXPTOC package, 181
	DEBUG_ON procedure, 52
	DECLARE_REWRITE_EQUIVALENCE Procedures, 17
	DECODEFEATURES Function, 47
	DEFAULT_INDEX_PARAMETERS procedure, 65
	DEFAULT_NAME function, 43
	DEFAULT_XPINDEX_PARAMETERS procedure, 65
	DEFINE_ARRAY procedure, 136
	DEFINE_COLUMN procedure, 136
	DEFINE_COLUMN_CHAR Procedure, 136
	DEFINE_COLUMN_LONG procedure, 136
	DEFINE_COLUMN_RAW Procedure, 136
	DEFINE_COLUMN_ROWID Procedure, 136
	DEFRAG_INDEX procedure, 65
	DEINIT_CLEANUP procedure, 27
	DELETE Procedure, 16
	DELETE_ALL_ERRORS procedure, 21
	DELETE_BREAKPOINT function, 52
	DELETE_CAPTURE_INFO Procedure, 159
	DELETE_CATEGORY Procedure, 119
	DELETE_COLUMN member procedure, 248
	DELETE_COLUMN procedure, 144
	DELETE_COLUMN_STATS pocedure, 141
	DELETE_CONSUMER_GROUP procedure, 119
	DELETE_DAD_ATTRIBUTE Procedure, 63, 63
	DELETE_DATABASE_PREFS Procedure, 141
	DELETE_DATABASE_STATS procedure, 141
	DELETE_DICTIONARY_STATS procedure, 141
	DELETE_ERROR procedure, 21
	DELETE_FILTER Procedure, 159, 160
	DELETE_FINDING_DIRECTIVE Procedure, 16
	DELETE_FIXED_OBJECTS_STATS procedure, 141
	DELETE_INDEX_STATS procedure, 141
	DELETE_OBJECT procedure, 234
	DELETE_OER_BREAKPOINT function, 52
	DELETE_PARAMETER_DIRECTIVE Procedure, 16
	DELETE_PENDING_STATS Procedure, 141
	DELETE_PLAN procedure, 119
	DELETE_PLAN_CASCADE procedure, 119
	DELETE_PLAN_DIRECTIVE procedure, 119
	DELETE_PRIVILEGE Procedure, 94
	DELETE_REPLAY_INFO Procedure, 160
	DELETE_RULE procedure, 123
	DELETE_SCHEMA_PREFS Procedure, 141
	DELETE_SCHEMA_STATS Procedure, 141
	DELETE_SEGMENT_DIRECTIVE Procedure, 16
	DELETE_SERVICE procedure, 130
	DELETE_SQL_DIRECTIVE Procedure, 16
	DELETE_SQLSET procedure, 139
	DELETE_SQLWKLD Procedure, 18
	DELETE_SQLWKLD_REF Procedure, 18
	DELETE_SQLWKLD_STATEMENT Procedure, 18
	DELETE_SYSTEM_STATS procedure, 141
	DELETE_TABLE_PREFS Procedure, 141
	DELETE_TABLE_STATS procedure, 141
	DELETE_TASK Procedure, 18
	DELETECONTENT Procedure, 47, 48
	DELETEDATA procedure, 170
	DELETEDIRECTORY Procedure, 47, 48
	DELETEFILE Procedure, 47, 48
	DELETEHTTPEXPIREMAPPING Procedure, 163
	DELETEMIMEMAPPING Procedure, 163
	DELETEREPOSITORYRESCONFIG Procedure, 118
	DELETERESCONFIG Procedure, 118
	DELETERESOURCE procedure, 163
	DELETERESOURCEMETADATA Procedures, 163
	DELETESCHEMA procedure, 176
	DELETESCHEMALOCMAPPING Procedure, 163
	DELETESERVLET Procedure, 163
	DELETESERVLETMAPPING Procedure, 163
	DELETESERVLETSECROLE Procedure, 163
	DELETEXML function, 175, 177
	DELETEXMLEXTENSION Procedure, 163
	DEQUEUE procedure, 148
	DEQUEUE_ARRAY Function, 22
	DEQUEUE_OPTIONS_T Type, 243
	DEREGISTER Procedure, 38
	DEREGSTORECOMMAND Function, 49
	DERIVE_FROM_MVIEW function, 41
	DESC_REC2 Record Type, 136
	DESC_REC3 Record Type, 136
	DESC_RESC Record Type, 136
	DESC_TAB Table Type, 136
	DESC_TAB2 Table Type, 136
	DESC_TAB3 Table Type, 136
	DESCRIBE_COLUMNS procedure, 136
	DESCRIBE_COLUMNS2 procedure, 136
	DESCRIBE_COLUMNS3 Procedure, 136
	DESCRIBE_DIMENSION procedure, 59
	DESCRIBE_PROCEDURE procedure, 57
	DESCRIBE_STACK procedure, 45
	DESDecrypt procedure, 96, 96
	DESEncrypt procedure, 96
	DESTROY_REQUEST_CONTEXT Procedure, 224, 224
	DETACH_SESSION procedure, 52
	DETACH_SIMPLE_TABLESPACE procedure, 149
	DETACH_TABLESPACES procedure, 149
	DFN function
	
	of HTF package, 182

	DFN procedure
	
	of HTP package, 183

	DIFF_TABLE_STATS_IN_HISTORY Function, 141
	DIFF_TABLE_STATS_IN_PENDING Function, 141
	DIFF_TABLE_STATS_IN_STATTAB Function, 141
	dimension maintenance (cube), 41
	dimensions
	
	optimizer statistics, 31

	DIRECTORY_OBJECT_SET type, 149
	DIRLISTCLOSE function
	
	of HTF package, 182

	DIRLISTCLOSE procedure
	
	of HTP package, 183

	DIRLISTOPEN function
	
	of HTF package, 182

	DIRLISTOPEN procedure
	
	of HTP package, 183

	DISABLE procedure, 43
	
	of DBMS_FLASHBACK package, 69
	of DBMS_OUTPUT package, 100
	of OWA_CACHE package, 186

	DISABLE Procedures, 29
	DISABLE_BREAKPOINT function, 52
	DISABLE_HIERARCHY procedure, 168
	DISABLE_JOB Procedure, 90
	DISABLE_PROPAGATION_SCHEDULE Procedure, 90
	DISABLETRANSLATION Procedure, 178
	DISCONNECT_SESSION procedure, 130
	DISPLAY function, 179
	DISPLAY_AWR function, 179
	DISPLAY_CURSOR function, 179
	DISPLAY_PLAN Function, 179
	DISPLAY_SQL_PLAN_BASELINE Function, 179
	DISPLAY_SQLSET Function, 179
	DIST_TXN_SYNC Procedure, 162
	DIV function
	
	of HTF package, 182

	DIV procedure
	
	of HTP package, 183

	DLISTCLOSE function
	
	of HTF package, 182

	DLISTCLOSE procedure
	
	of HTP package, 183

	DLISTDEF function
	
	of HTF package, 182

	DLISTDEF procedure
	
	of HTP package, 183

	DLISTOPEN function
	
	of HTF package, 182

	DLISTOPEN procedure
	
	of HTP package, 183

	DLISTTERM function
	
	of HTF package, 182

	DLISTTERM procedure
	
	of HTP package, 183

	DOMAIN_LEVEL Function, 95
	DOMAINS Function, 95
	DOMAttr methods, 170
	DOMCDataSection methods, 170
	DOMCharacterData methods, 170
	DOMComment methods, 170
	DOMDocument methods, 170
	DOMDocumentType methods, 170, 170
	DOMEntity methods, 170
	DOMNamedNodeMap methods, 170
	DOMText methods, 170
	DOWNGRADE procedure, 154
	DOWNLOAD_FILE procedures, 239
	DROFILESYSTEM Procedures, 50
	DROP_ACL Procedure, 94
	DROP_ALL function, 142
	DROP_ANALYSIS_TASK Procedure, 138
	DROP_APPLY procedure, 21
	DROP_ATTRIBUTE_SET procedure, 65
	DROP_BASELINE procedure, 161
	DROP_BY_CAT procedure, 99
	DROP_CAPTURE procedure
	
	capture process
	
	dropping, 32

	DROP_CHUNKS Procedure, 101
	DROP_COMPARISON Procedure, 35
	DROP_CONDITIONS_TABLE procedure, 123
	DROP_DAD Procedure, 63
	DROP_DIAGNOSIS_TASK Procedure, 137
	DROP_EMPTY_SEGMENTS Procedure, 134
	DROP_EVALUATION_CONTEXT procedure, 127
	DROP_EVENT_STRUCT procedure, 123
	DROP_EXPFIL_INDEXES procedure, 123
	DROP_EXTENDED_STATS Procedure, 141
	DROP_FILE function, 142
	DROP_FILE_GROUP procedure, 67
	DROP_INTERFACE procedure, 123
	DROP_MVIEW procedure, 41, 41
	DROP_OBJECT_DEPENDENCY procedure, 21
	DROP_PROPAGATION procedure, 107
	DROP_PURGE_JOB procedure, 27
	DROP_REWRITE_EQUIVALENCE Procedure, 17
	DROP_RULE procedure, 127
	DROP_RULE_CLASS procedure, 123
	DROP_RULE_SET procedure, 127
	DROP_SNAPSHOT_RANGE procedure, 161
	DROP_SQL_PATCH Function & Procedure, 137
	DROP_SQL_PLAN_BASELINE, 135
	DROP_SQL_PROFILE procedure, 139
	DROP_SQLSET procedure, 139
	DROP_STAT_TABLE procedure, 141
	DROP_STMT_HANDLER procedure, 147
	DROP_TASK Procedure, 101
	DROP_TRANSFORMATION procedure, 153
	DROP_TUNING_TASK procedure, 139
	DROP_UNUSED procedure, 99
	DROP_VERSION procedure, 67
	DROP_VIEW procedure
	
	of DBMS_HS_PARALLEL package, 74

	DROPPARAMETER Procedure, 172
	DROPPREFERENCES procedure, 167
	DROPREPOSITORYXMLINDEX Procedure, 164
	DROPSTORE Procedure, 49
	DUMP_ORPHAN_KEYS procedure, 112
	dynamic SQL
	
	anonymous blocks and, 136
	DBMS_SQL functions, using, 136
	execution flow in, 136

E

	EDIT_DISTANCE Function, 230
	EDIT_DISTANCE_SIMILARITY Function, 230
	EHLO function and procedure, 235
	EM function
	
	of HTF package, 182

	EM procedure
	
	of HTP package, 183

	e-mail from PL/SQL (email), 237
	EMPHASIS function
	
	of HTF package, 182

	EMPHASIS procedure
	
	of HTP package, 183

	ENABLE procedure, 43, 100
	ENABLE Procedures, 29
	ENABLE_AT_SYSTEM_CHANGE_NUMBER procedure, 69
	ENABLE_AT_TIME procedure, 69
	ENABLE_BREAKPOINT function, 52
	ENABLE_HIERARCHY procedure, 168
	ENABLE_JOB Procedure, 90
	ENABLE_PROPAGATION_SCHEDULE Procedure, 90
	ENABLETRANSLATION Procedure, 178
	END_PREPARE Procedure, 60
	END_REQUEST procedure, 224
	END_RESPONSE procedure, 224
	END_SQL_BLOCK Procedure, 119
	END_UPGRADE Procedure, 60
	ENDCREATE member procedure
	
	of ANYDATA TYPE, 240
	of ANYDATASET TYPE, 241
	of ANYTYPE TYPE, 242

	ENQUEUE procedure, 148
	ENQUEUE_ARRAY Function, 22
	ENQUEUE_OPTIONS_T Type, 243
	ENQUOTE_LITERAL Function, 26
	ENQUOTE_NAME Function, 26
	EPC_TO_ORACLE_SCHEME function, 89
	EQUALS_HOST Function, 95
	ERASE Procedures, 82
	error queue
	
	deleting errors, 21, 21
	executing errors, 21, 21
	getting error messages, 21

	ESCAPE function, 238
	ESCAPE_SC function
	
	of HTF package, 182

	ESCAPE_SC procedure
	
	of HTP package, 183

	ESCAPE_URL function
	
	of HTF package, 182

	ESCAPEURI function, 245
	ESTIMATE_CPU_UNITS function, 97
	ESTIMATE_MVIEW_SIZE Procedure, 93
	ETINSTANCE member function
	
	of ANYDATASET TYPE, 241

	EVALUATE procedure, 126
	EVOLVE_SQL_PLAN_BASELINE Function, 135
	EXACT_TEXT_SIGNATURES procedure, 99
	EXEC_DDL_STATEMENT procedure, 156
	EXECUTE function, 136
	EXECUTE member procedure, 248, 248
	EXECUTE procedure, 52
	EXECUTE_ALL_ERRORS procedure, 21
	EXECUTE_ANALYSIS_TASK, 138
	EXECUTE_AND_FETCH function, 136
	EXECUTE_DIAGNOSIS_TASK Procedure, 137
	EXECUTE_ERROR procedure, 21
	EXECUTE_IMMEDIATE Procedure, 75
	EXECUTE_NON_QUERY Function, 75
	EXECUTE_TASK Procedure, 18
	EXECUTE_TUNING_TASK Function & Procedure, 28, 139
	execution flow
	
	in dynamic SQL, 136

	EXF$ATTRIBUTE object type, 247
	EXF$ATTRIBUTE_LIST object type, 247
	EXF$INDEXOPER object type, 247
	EXF$TABLE_ALIAS object type, 247
	EXF$TEXT object type, 247
	EXF$XPATH_TAG object type, 247
	EXF$XPATH_TAGS object type, 247
	EXISTSNODE function, 259
	EXISTSRESOURCE function, 163
	EXPAND_MESSAGE function, 129
	EXPLAIN_SQL_TESTCASE Function, 137
	EXPONENTIAL_DIST_FIT procedure, 140
	EXPORT_AWR Procedure, 159, 160
	EXPORT_COLUMN_STATS procedure, 141
	EXPORT_DATABASE_PREFS Procedure, 141
	EXPORT_DATABASE_STATS procedure, 141
	EXPORT_DICTIONARY_STATS procedure, 141
	EXPORT_FIXED_OBJECTS_STATS procedure, 141
	EXPORT_INDEX_STATS procedure, 141
	EXPORT_PENDING_STATS Procedure, 141
	EXPORT_SCHEMA_PREFS Procedure, 141
	EXPORT_SCHEMA_STATS procedure, 141
	EXPORT_SQL_TESTCASE Procedures, 137
	EXPORT_SQL_TESTCASE_DIR_BY_INC Function, 137
	EXPORT_SQL_TESTCASE_DIR_BY_TXT Function, 137
	EXPORT_SYSTEM_STATS procedure, 141
	EXPORT_TABLE_PREFS Procedure, 141
	EXPORT_TABLE_STATS procedure, 141
	EXPORT_XML procedure, 41, 41
	EXPORT_XML_TO_FILE procedure, 41
	Expression Filter object types, 247
	extend window
	
	to create a new view, 34

	EXTEND_EVENT_STRUCT procedure, 123
	EXTRACT function, 259
	EXTRACTXLIFF Function & Procedure, 178

F

	FCLOSE procedure, 223
	FCLOSE_ALL procedure, 223
	FCOPY procedure, 223
	FEATURE_T Record Type, 47
	FEATURENAME Function, 47
	FEATURES_T Table Type, 47
	FETCH_ROW Function, 75
	FETCH_ROWS function, 136
	FFLUSH procedure, 223
	FGETATTR procedure, 223
	FGETPOS function, 223
	FI_HORIZONTAL function, 71
	FI_TRANSACTIONAL function, 71
	file groups, 67
	
	adding files, 67
	altering, 67
	altering files, 67
	altering versions, 67
	creating, 67
	creating versions, 67
	dropping, 67
	dropping versions, 67
	granting object privileges, 67
	granting system privileges, 67
	purging, 67
	removing files, 67
	revoking object privileges, 67
	revoking system privileges, 67

	FILE type, 149
	FILE_SET type, 149
	FILECLOSE Procedure, 82
	FILECLOSEALL Procedure, 82
	FILEEXISTS Function, 82
	FILEGETNAME Procedure, 82
	FILEISOPEN Function, 82
	FILEOPEN Procedure, 82
	FILETYPE Record Type, 223
	FIND_AFFECTED_TABLE Procedure, 60
	FINDENTITY function, 170
	FINDNOTATION function, 170
	fine-grained access control
	
	DBMS_RLS package, 124

	FINISH_CAPTURE Procedure, 159
	FINISH_REDEF_TABLE procedure, 110
	FIX_CORRUPT_BLOCKS procedure, 112
	FLUSH Function & Procedure, 121
	FLUSH procedure, 43, 237
	FLUSH_DATA function and procedure, 106
	FLUSH_DATABASE_MONITORING_INFO procedure, 141
	FLUSHCACHE Procedure, 49
	FONTCLOSE function
	
	of HTF package, 182

	FONTCLOSE procedure
	
	of HTP package, 183

	FONTOPEN function
	
	of HTF package, 182

	FONTOPEN procedure
	
	of HTP package, 183

	FOPEN function, 223
	FOPEN_NCHAR function, 223
	FORCE parameter
	
	and job-to-instance affinity, 78

	FORMAT function, 255
	FORMAT_CALL_STACK Function, 156
	FORMAT_CELL function
	
	of HTF package, 182

	FORMAT_ERROR_BACKTRACE function, 156
	FORMAT_ERROR_STACK function, 156
	FORMCHECKBOX function
	
	of HTF package, 182

	FORMCHECKBOX procedure
	
	of HTP package, 183

	FORMCLOSE function
	
	of HTF package, 182, 182

	FORMCLOSE procedure
	
	of HTP package, 183

	FORMFILE function
	
	of HTF package, 182

	FORMFILE procedure
	
	of HTP package, 183, 183

	FORMHIDDEN function
	
	of HTF package, 182

	FORMHIDDEN procedure
	
	of HTP package, 183

	FORMIMAGE function
	
	of HTF package, 182

	FORMIMAGE procedure
	
	of HTP package, 183

	FORMOPEN function
	
	of HTF package, 182

	FORMOPEN procedure
	
	of HTP package, 183

	FORMPASSWORD function
	
	of HTF package, 182

	FORMPASSWORD procedure
	
	of HTP package, 183

	FORMRADIO function
	
	of HTF package, 182

	FORMRADIO procedure
	
	of HTP package, 183

	FORMRESET function
	
	of HTF package, 182

	FORMRESET procedure
	
	of HTP package, 183

	FORMSELECTCLOSE function
	
	of HTF package, 182

	FORMSELECTCLOSE procedure
	
	of HTP package, 183

	FORMSELECTOPEN function
	
	of HTF package, 182

	FORMSELECTOPEN procedure
	
	of HTP package, 183

	FORMSELECTOPTION function
	
	of HTF package, 182

	FORMSELECTOPTION procedure
	
	of HTP package, 183

	FORMSUBMIT function
	
	of HTF package, 182

	FORMSUBMIT procedure
	
	of HTP package, 183

	FORMTEXT function
	
	of HTF package, 182

	FORMTEXT procedure
	
	of HTP package, 183

	FORMTEXTAREA function
	
	of HTF package, 182

	FORMTEXTAREA procedure
	
	of HTP package, 183

	FORMTEXTAREA2 function
	
	of HTF package, 182

	FORMTEXTAREA2 procedure
	
	of HTP package, 183

	FORMTEXTAREACLOSE function
	
	of HTF package, 182

	FORMTEXTAREACLOSE procedure
	
	of HTP package, 183

	FORMTEXTAREAOPEN function
	
	of HTF package, 182

	FORMTEXTAREAOPEN procedure
	
	of HTP package, 183

	FORMTEXTAREAOPEN2 function
	
	of HTF package, 182

	FORMTEXTAREAOPEN2 procedure
	
	of HTP package, 183

	FRAGMENT_DELETE Procedure, 82
	FRAGMENT_INSERT Function, 82
	FRAGMENT_MOVE Procedure, 82
	FRAGMENT_REPLACE Procedure, 82
	FRAME function
	
	of HTF package, 182

	FRAME procedure
	
	of HTP package, 183

	FRAMESETCLOSE function
	
	of HTF package, 182

	FRAMESETCLOSE procedure
	
	of HTP package, 183

	FRAMESETOPEN function
	
	of HTF package, 182

	FRAMESETOPEN procedure
	
	of HTP package, 183

	FREE_BLOCKS procedure, 133
	FREE_UNUSED_USER_MEMORY Procedure, 131
	FREEDOCFRAG procedure, 170
	FREEDOCUMENT procedure, 170
	FREENODE procedure, 170, 170
	FREEPARSER procedure, 173
	FREEPROCESSOR procedure, 180
	FREERESOURCE Procedure, 166
	FREESTYLESHEET procedure, 180
	FREETEMPORARY Procedures, 82
	FREMOVE procedure, 223, 223
	FRENAME procedure, 223
	FSEEK procedure, 223
	functions
	
	adding to attribute sets, 65, 123

G

	GATHER_DATABASE_STATS procedures, 141
	GATHER_DICTIONARY_STATS procedure, 141
	GATHER_FIXED_OBJECTS_STATS procedure, 141
	GATHER_INDEX_STATS Procedure, 141
	GATHER_OPTIMIZER_STATS Procedure, 30
	GATHER_SCHEMA_STATS procedures, 141
	GATHER_SYSTEM_STATS procedure, 141
	GATHER_TABLE_STATS procedure, 141
	GENERATE_STATS procedure, 141
	GENERATE_TASK_NAME Function, 101
	GENERATESCHEMAS function, 176
	GET function
	
	of OWA_COOKIE package, 187

	GET* member functions
	
	of ANYDATA TYPE, 240
	of ANYDATASET TYPE, 241

	GET_ACLOID function, 168
	GET_AGGREGATE_VALUE function, 123
	GET_ALL procedure, 187
	GET_ALL_DAD_ATTRIBUTES Procedure, 63
	GET_ALL_DAD_MAPPINGS Procedure, 63
	GET_ALL_GLOBAL_ATTRIBUTES Procedure, 63
	GET_ALL_NAMES member function, 256
	GET_ASH_QUERY Function, 16
	GET_AUDIT_COMMIT_DELAY function, 27
	GET_AUTHENTICATION procedure, 224
	GET_BASE_TABLE_NAME member function, 248
	GET_BASE_TABLE_OWNER member function, 248
	GET_BODY_CHARSET procedure, 224
	GET_CAPTURE_INFO Function, 159
	GET_CATEGORY function, 157
	GET_CATEGORY_ID function, 89
	GET_CGI_ENV function, 194
	GET_CLIENT_ATTRIBUTES Procedure, 29
	GET_CLIENT_HOSTNAME function, 192
	GET_CLIENT_IP function, 192
	GET_COLUMN_STATS procedures, 141
	GET_COMMAND_TYPE member function, 248
	GET_COMMIT_SCN member function, 248
	GET_COMMIT_SCN_FROM_POSITION static function, 248
	GET_COMMIT_TIME member function, 248
	GET_COMMON_TIME_ZONES Function, 225
	GET_COMPATIBLE member function, 248
	GET_COMPONENT function, 255
	GET_COMPONENTS function, 89
	GET_COMPRESSION_RATIO Procedure, 36
	GET_COMPRESSION_TYPE Function, 36
	GET_COOKIE_COUNT function, 224
	GET_COOKIE_SUPPORT procedure, 224
	GET_COOKIES function, 224
	GET_CPU_TIME function, 156
	GET_CURRENT_SCHEMA member function, 248
	GET_DAD_ATTRIBUTE Function, 63
	GET_DAD_LIST Procedure, 63
	GET_DBFS_LINK Functions, 82
	GET_DBFS_LINK_STATE Procedure, 82
	GET_DEFAULT_ISO_CURRENCY Function, 225
	GET_DEFAULT_LINGUISTIC_SORT Function, 225
	GET_DEPENDENCY procedure, 156
	GET_DETAILED_EXCP_SUPPORT procedure, 224
	GET_DETAILED_SQLCODE function, 224
	GET_DETAILED_SQLERRM function, 224
	GET_DIVERGING_STATEMENT Function, 160
	GET_EDITION_NAME member function, 248
	GET_ENCODINGS function, 89
	GET_ENDIANNESS Function, 156
	GET_ERROR_MESSAGE function, 21
	GET_ETAG function, 186
	GET_EXPRESSION function, 45
	GET_EXPRSET_STATS procedure, 65
	GET_EXTRA_ATTRIBUTE member function, 248
	GET_FILE procedure, 68
	GET_FIX_CONTROL Function, 137
	GET_FOLLOW_REDIRECT procedure, 224
	GET_GLOBAL_ATTRIBUTE Function, 63
	GET_HASH_VALUE function, 156
	GET_HEADER procedure, 224
	GET_HEADER_BY_NAME procedure, 224
	GET_HEADER_COUNT function, 224
	GET_HOST_ADDRESS function, 226
	GET_HOST_NAME function, 226
	GET_INDEX_STATS procedures, 141
	GET_INDEXES function, 52
	GET_INFORMATION function, 143
	GET_JAVA_LOGGING_LEVEL function, 89
	GET_LEVEL function, 186
	GET_LINE function, 237
	GET_LINE procedure, 100, 223
	GET_LINE_MAP function, 52
	GET_LINE_NCHAR Function, 237
	GET_LINE_NCHAR procedure, 223
	GET_LINES procedure, 100
	GET_LOB_INFORMATION member function, 248
	GET_LOB_OFFSET member function, 248
	GET_LOB_OPERATION_SIZE member procedure, 248
	GET_LOCAL_LINGUISTIC_SORTS Function, 225
	GET_LOG procedure, 43
	GET_LOG_SPEC function, 43
	GET_LOGON_USER member function, 248
	GET_LONG_INFORMATION member function, 248
	GET_MESSAGE_TRACKING function, 144
	GET_MORE_SOURCE procedure, 52
	GET_NEXT_HIT function, 126
	GET_NUMBER_COL_CHUNK Procedure, 101
	GET_OBJECT_NAME member function, 248
	GET_OBJECT_OWNER member function, 248
	GET_OBJECT_TYPE member function, 248
	GET_OWA_SERVICE_PATH function, 194
	GET_P1_RESOURCES Procedure, 29
	GET_PACKAGE_MEMORY_UTILIZATION Procedure, 131
	GET_PARAM function, 141
	GET_PARAMETER function, 43
	GET_PARAMETER_VALUE function, 156
	GET_PASSWORD function, 192
	GET_PERSISTENT_CONN_COUNT function, 224
	GET_PERSISTENT_CONN_SUPPORT procedure, 224
	GET_PERSISTENT_CONNS procedure, 224
	GET_PLSQL_LOGGING_LEVEL function, 89
	GET_PLSQL_TRACE_LEVEL function, 151
	GET_POSITION member function, 248
	GET_POST_PROCESSED_SOURCE Functions, 105
	GET_PREFS Function, 141
	GET_PROCEDURE function, 194
	GET_PROXY procedure, 224
	GET_RAW function, 223, 237
	GET_REC_ATTRIBUTES Procedure, 18
	GET_REPLAY_INFO Function, 160
	GET_REPLAY_TIMEOUT Procedure, 160
	GET_REPORT Function, 16
	GET_RESPONSE function, 224
	GET_RESPONSE_ERROR_CHECK procedure, 224
	GET_ROW_TEXT member procedure, 248
	GET_ROWID function, 190
	GET_ROWID_CHUNK Procedure, 101
	GET_RUN_REPORT Function, 72
	GET_RUNTIME_INFO function, 52
	GET_SCHEME_NAMES function, 89
	GET_SCN member function, 248
	GET_SCN_FROM_POSITION static function, 248
	GET_SCN_MAPPING procedure, 144
	GET_SESSION_TIMEOUT function, 122
	GET_SOURCE_DATABASE_NAME member function, 248
	GET_SOURCE_TIME member function, 248
	GET_SQL Function, 137
	GET_SQL_HASH Function, 156
	GET_STATS_HISTORY_AVAILABILITY function, 141
	GET_STATS_HISTORY_RETENTION function, 141
	GET_STREAMS_NAME function, 143
	GET_STREAMS_TYPE function, 143
	GET_SYSTEM_STATS procedure, 141
	GET_TABLE_STATS procedure, 141
	GET_TAG function, 143, 144
	GET_TAG member function, 248
	GET_TASK_REPORT Procedure, 18
	GET_TASK_SCRIPT Procedure, 18
	GET_TDT_XML function, 89
	GET_TEXT function, 237
	GET_TEXT_NCHAR Function, 237
	GET_THREAD_NUMBER member function, 248
	GET_THRESHOLD procedure, 129
	GET_TIME function, 156
	GET_TIMEOUT function, 122
	GET_TIMEOUT_BEHAVIOUR function, 52
	GET_TRANSACTION_ID member function, 248
	GET_TRANSFER_TIMEOUT procedure, 224
	GET_TZ_TRANSITIONS Procedure, 156
	GET_USER_ID function, 192
	GET_USERID function, 168
	GET_VALIDATOR function, 89
	GET_VALUE function, 52
	GET_VALUE member function, 248, 256
	GET_VALUE Procedure, 75
	GET_VALUE_RAW Procedure, 75
	GET_VALUES member function, 248
	GET_VERSION procedure, 106
	GET_WARNING_SETTING_CAT function, 157
	GET_WARNING_SETTING_NUM function, 157
	GET_WARNING_SETTING_STRING function, 157
	GET_WHERE_CLAUSE member procedure, 248
	GET_X function, 189
	GET_XML_INFORMATION member function, 248
	GET_Y function, 189
	GETACL Function, 166
	GETACLDOCFROMRES Function, 166
	GETACLDOCUMENT function, 163
	GETAPPLICATIONDATA Function, 169
	GETATTRELEMINFO member function
	
	of ANYTYPE TYPE, 242

	GETATTRIBUTE function, 170
	GETATTRIBUTENODE function, 170
	GETATTRIBUTES function, 170
	GETAUTHOR Function, 166
	GETBASEDOCUMENT Function, 178
	GETBLOB function, 245, 245, 245, 245
	GETBLOBVAL function, 259
	GETBUBLICID function, 170
	GETCHARACTERSET Function, 166
	GETCHARSET Function, 170
	GETCHILDNODES function, 170
	GETCHILDOID Function, 169
	GETCHILDRENBYTAGNAME function, 170
	GETCHILDRESPATHS Function, 163
	GETCHUNKSIZE Functions, 82
	GETCLOB function, 245, 245, 245, 245
	GETCLOBVAL function, 259
	GETCOMMENT Function, 166
	GETCONTENTBLOB Function, 163, 166
	GETCONTENTCLOB Function, 163, 166
	GETCONTENTREF Function, 166
	GETCONTENTSBLOBBYRESID function, 165
	GETCONTENTSCLOBBYRESID function, 165, 165
	GETCONTENTSXMLBYRESID function, 165
	GETCONTENTTYPE Function, 166
	GETCONTENTTYPE function, 245, 245, 245, 245
	GETCONTENTTYPE Functions, 82
	GETCONTENTVARCHAR2 Function, 163, 166
	GETCONTENTXML Function, 166
	GETCONTENTXMLREF Function, 163
	GETCONTENTXMLTYPE Function, 163
	GETCOUNT member function
	
	of ANYDATASET TYPE, 241

	GETCREATIONDATE Function, 166
	GETCREATOR Function, 166
	GETCURRENTUSER Function, 169
	GETCUSTOMMETADATA Function, 166
	GETDATA function, 170
	GETDCHARSET function, 170
	GETDEFAULTACL Procedure, 47
	GETDEFAULTASOF Procedure, 47
	GETDEFAULTOWNER Procedure, 47
	GETDEFAULTPRINCIPAL Procedure, 47
	GETDISPLAYNAME Function, 166
	GETDOCTYPE function, 170, 173
	GETDOCUMENT function, 173
	GETDOCUMENTELEMENT function, 170
	GETDTD function, 174
	GETDTD procedure, 174
	GETELEMENTSBYTAGNAME function, 170, 170
	GETENTITIES function, 170
	GETEVENT Function, 169
	GETEXCEPTIONCONTENT procedure, 174, 175
	GETEXPANDEDNAME function, 170, 170
	GETEXPANDEDNAME procedure, 170
	GETEXTERNALURL function, 245, 245, 245, 245
	GETFEATURES Function, 48
	GETFEATURESBYMOUNT Function, 47
	GETFEATURESBYNAME Function, 47
	GETFEATURESBYPATH Function, 47
	GETFIRST Function, 169
	GETFIRSTCHILD function, 170
	GETFTPPORT Function, 163
	GETHANDLERLIST Function, 169
	GETHTTPPORT Function, 163
	GETIMPLEMENTATION function, 170
	GETINFO member function
	
	of ANYTYPE TYPE, 242

	GETINTERFACE Function, 169
	GETLANGUAGE Function, 166, 169, 169
	GETLASTCHILD function, 170
	GETLASTMODIFIER Function, 166
	GETLENGTH function, 170, 170, 170
	GETLENGTH Functions, 82
	GETLINK Function, 169
	GETLINKNAME Function, 169
	GETLISTENERENDPOINT Procedure, 163
	GETLISTENERS Function, 118
	GETLOCK Function, 169
	GETLOCKTOKEN procedure, 163
	GETMODIFICATIONDATE Function, 166
	GETNAME Function, 169
	GETNAME function, 170, 170
	GETNAMEDITEM function, 170
	GETNAMESPACE function, 170, 170
	GETNAMESPACE procedure, 170
	GETNEXTSIBLING function, 170
	GETNODENAME function, 170
	GETNODETYPE function, 170
	GETNODEVALUE function, 170
	GETNODEVALUEASBINARYSTREAM Function & Procedure, 170
	GETNODEVALUEASCHARACTERSTREAM Function & Procedure, 170
	GETNOTATIONNAME function, 170
	GETNOTATIONS function, 170
	GETNUMBERVAL function, 259
	GETNUMROWSPROCESSED function, 171
	GETNUMROWSPROCESSED procedure, 174
	GETOLDRESOURCE Function, 169
	GETOPENACCESSMODE Function, 169
	GETOPENDENYMODE Function, 169
	GETOPTIONS Functions, 82
	GETOUTPUTSTREAM Function, 169
	GETOWNER Function, 166
	GETOWNERDOCUMENT function, 170
	GETOWNERELEMENT function, 170
	GETPARAMETER Function, 169
	GETPARENT Function, 169
	GETPARENTNAME Function, 169
	GETPARENTNODE function, 170
	GETPARENTOID Function, 169
	GETPARENTPATH Function, 169
	GETPAT procedure, 191
	GETPATH Function, 169
	GETPATH Procedures, 47, 48
	GETPATHBYMOUNTID Function, 47
	GETPATHBYREPOSID Function, 48
	GETPATHBYSTOREID Function, 47
	GETPATHNOWAIT Procedure, 48
	GETPATHNOWAIT Procedures, 47
	GETPERSISTENT static function
	
	of ANYTYPE TYPE, 242

	GETPREDECESSORS function, 165
	GETPREDSBYRESID function, 165
	GETPREFIX function, 170
	GETPREVIOUSSIBLING function, 170
	GETPRIVILEGES function, 163
	GETPUBLICID function, 170, 170
	GETQUALIFIEDNAME function, 170, 170
	GETREFCOUNT Function, 166
	GETRELEASEVERSION function, 173
	GETREPOSITORYRESCONFIG Function, 118
	GETREPOSITORYRESCONFIGPATHS Function, 118
	GETRESCONFIG Function, 118
	GETRESCONFIGPATHS Function, 118
	GETRESOID function, 163
	GETRESOURCE Function, 169
	GETRESOURCEBYRESID function, 165
	GETROOTELEMENT function, 259
	GETRUL function, 245
	GETSCHEMA Function, 169
	GETSCHEMANODE function, 170
	GETSCHEMAURL function, 259
	GETSOURCE Function, 169
	GETSPECIFIED function, 170
	GETSTANDALONE function, 170
	GETSTATS Procedure, 47
	GETSTOREBYMOUNT Function, 47
	GETSTOREBYNAME Function, 47
	GETSTOREBYPATH Function, 47
	GETSTOREID Function, 48
	GETSTOREPROPERTY Function, 49
	GETSTRINGVAL function, 259
	GETSUCCESSORS function, 165
	GETSUCCSBYRESID function, 165
	GETSYSTEMID function, 170, 170, 170
	GETTAGNAME function, 170
	GETTARGET function, 170
	GETTDEFAULTCONTEXT Procedure, 47
	GETTOKENTABLEINFO Procedure & Function, 40
	GETTOKENTABLEINFOBYTABLESPACE Procedure, 40
	GETTRACE Function, 47
	GETTYPE member function
	
	of ANYDATA TYPE, 240
	of ANYDATASET TYPE, 241

	GETTYPENAME member function
	
	of ANYDATA TYPE, 240
	of ANYDATASET TYPE, 241

	GETUPDATEBYTECOUNT Function, 169
	GETUPDATEBYTEOFFSET Function, 169
	GETURL function, 245, 245, 245, 245
	GETVALIDATIONMODE function, 173
	GETVALUE function, 170
	GETVERSION Function, 47, 48
	GETVERSION function, 170
	GETVERSION procedure, 174
	GETVERSIONID Function, 166
	GETXDB_TABLESPACE function, 163
	GETXDBEVENT Function, 169
	GETXML function, 171, 174, 245, 245, 245, 245
	GETXML procedure, 174
	GETXMLTYPE function, 170, 171
	GRANT_ADMIN_PRIVILEGE procedure, 146
	GRANT_OBJECT_PRIVILEGE procedure, 127
	GRANT_PRIVILEGE procedure, 65, 123
	GRANT_REMOTE_ADMIN_ACCESS procedure, 146
	GRANT_SWITCH_CONSUMER_GROUP procedure, 120
	GRANT_SYSTEM_PRIVILEGE procedure, 67, 120, 127
	GRANTING_OBJECT_PRIVILEGE procedure, 67

H

	HASACLCHANGED Function, 166
	HASATTRIBUTE function, 170
	HASAUTHORCHANGED Function, 166
	HASBLOBCONTENT Function, 163
	HASCHANGED Function, 166
	HASCHARACTERSETCHANGED Function, 166
	HASCHARCONTENT Function, 163
	HASCHILDNODES function, 170
	HASCOMMENTCHANGED Function, 166
	HASCONTENTCHANGED Function, 166
	HASCONTENTTYPECHANGED Function, 166
	HASCREATIONDATECHANGED Function, 166
	HASCREATORCHANGED Function, 166
	HASCUSTOMMETADATACHANGED Function, 166
	HASDISPLAYNAMECHANGED Function, 166
	HASFEATURE function, 170
	HASLANGUAGECHANGED Function, 166
	HASLASTMODIFIERCHANGED Function, 166
	HASMODIFICATIONDATECHANGED Function, 166
	HASOWNERCHANGED Function, 166
	HASREFCOUNTCHANGED Function, 166
	HASVERSIONIDCHANGED Function, 166
	HASXMLCONTENT Function, 163
	HASXMLREFERENCE Function, 163
	HEADCLOSE function
	
	of HTF package, 182

	HEADCLOSE procedure
	
	of HTP package, 183

	HEADER function
	
	of HTF package, 182

	HEADER procedure
	
	of HTP package, 183

	HEADOPEN function
	
	of HTF package, 182

	HEADOPEN procedure
	
	of HTP package, 183

	HELO function and procedure, 235
	HELP function, 235
	HR function
	
	of HTF package, 182

	HR procedure
	
	of HTP package, 183

	HTF package, 182
	HTML tags
	
	applet tags
	
	functions, 182
	procedures, 183

	atags tags
	
	procedures, 183

	character formatting tags
	
	functions, 182
	procedures, 183

	form tags
	
	functions, 182
	procedures, 183

	frame tags
	
	functions, 182
	procedures, 183

	list tags
	
	functions, 182
	procedures, 183

	paragraph formatting tags
	
	functions, 182
	procedures, 183

	table tags
	
	functions, 182

	HTMLCLOSE function
	
	of HTF package, 182

	HTMLCLOSE procedure
	
	of HTP package, 183

	HTMLDB_UTIL package documentation, 5
	HTMLOPEN function
	
	of HTF package, 182

	HTMLOPEN procedure
	
	of HTP package, 183

	HTP package, 183
	HTTP_HEADER_CLOSE procedure, 194
	HttpUriType, 245
	HTTPURITYPE function, 245
	HttpUriType subtype, 245
	
	CREATEURI function, 245
	GETBLOB function, 245
	GETCLOB function, 245
	GETCONTENTTYPE function, 245
	GETEXTERNALURL function, 245
	GETRUL function, 245
	GETXML function, 245
	HTTPURITYPE function, 245
	methods, 245

I

	IMG function
	
	of HTF package, 182

	IMG procedure
	
	of HTP package, 183

	IMG2 procedure
	
	of HTP package, 183

	IMPLEMENT_TASK Procedure, 18
	IMPLEMENT_TUNING_TASK Function, 139
	IMPORT_AWR Function, 160
	IMPORT_AWR Procedure, 159
	IMPORT_COLUMN_STATS procedure, 141
	IMPORT_DATABASE_PREFS Procedure, 141
	IMPORT_DATABASE_STATS procedure, 141
	IMPORT_DICTIONARY_STATS procedure, 141
	IMPORT_FIXED_OBJECTS_STATS procedure, 141
	IMPORT_INDEX_STATS procedure, 141
	IMPORT_SCHEMA_PREFS Procedure, 141
	IMPORT_SCHEMA_STATS procedure, 141
	IMPORT_SQL_TESTCASE Procedures, 137
	IMPORT_SQLWKLD_SCHEMA Procedure, 18
	IMPORT_SQLWKLD_SQLCACHE Procedure, 18
	IMPORT_SQLWKLD_STS Procedure, 18
	IMPORT_SQLWKLD_SUMADV Procedure, 18
	IMPORT_SQLWKLD_USER Procedure, 18
	IMPORT_SYSTEM_STATS procedure, 141
	IMPORT_TABLE_PREFS Procedure, 141
	IMPORT_TABLE_STATS procedure, 141
	IMPORT_XML procedure, 41, 41
	IMPORTNODE function, 170
	inbound servers
	
	DBMS_STREAMS_ADM package, 144
	rules, 144

	INCIDENTID_2_SQL Procedure, 137
	INCLUDE_EXTRA_ATTRIBUTES procedure, 32
	INDEX_PARAMETERS procedure, 65
	INDEX_TABLE_TYPE Table Type, 156
	INIT_CLEANUP procedure, 27
	INITFS Procedure, 50
	INITIALIZE function, 52
	INITIALIZE procedure, 108
	INITIALIZE_CUBE_UPGRADE procedure, 41, 41, 41
	INITIALIZE_REPLAY Procedure, 160
	INPLACEEVOLVE Procedure, 176
	INSERT_AUTOBIN_NUM_EQWIDTH procedure, 45
	INSERT_BIN_CAT_FREQ procedure, 45
	INSERT_BIN_NUM_EQWIDTH procedure, 45
	INSERT_BIN_NUM_QTILE procedure, 45
	INSERT_BIN_SUPER procedure, 45
	INSERT_CLIP_TRIM_TAIL procedure, 45
	INSERT_CLIP_WINSOR_TAIL procedure, 45
	INSERT_FINDING_DIRECTIVE Procedure, 16
	INSERT_MISS_CAT_MODE procedure, 45
	INSERT_MISS_NUM_MEAN procedure, 45
	INSERT_NORM_LIN_MINMAX procedure, 45
	INSERT_NORM_LIN_SCALE procedure, 45
	INSERT_NORM_LIN_ZSCORE procedure, 45
	INSERT_PARAMETER_DIRECTIVE Procedure, 16
	INSERT_SEGMENT_DIRECTIVE Procedure, 16
	INSERT_SQL_DIRECTIVE Procedure, 16
	INSERTBEFORE function, 170
	INSERTDATA procedure, 170
	INSERTXML function, 175, 177
	INSTANCE procedure, 78
	INSTANCE_RECORD Record Type, 156
	INSTANCE_TABLE Table Type, 156
	instantiation
	
	aborting database preparation, 32
	aborting schema preparation, 32
	aborting table preparation, 32
	global SCN, 21
	preparing a database for, 32
	preparing a schema for, 32
	preparing a table for, 32, 32
	schema SCN, 21
	table SCN, 21

	INSTR Functions, 82
	INTEGER_ARRAY Table Type, 131
	INTERNAL_VERSION_CHECK function, 106
	internet addressing
	
	using UTL_INADDR, 226

	INTERRUPT_ANALYSIS_TASK Procedure, 138
	INTERRUPT_DIAGNOSIS_TASK Procedure, 137
	INTERRUPT_TASK Procedure, 18
	INTERRUPT_TUNING_TASK procedure, 139
	INTERVAL procedure, 78
	INTERVAL_DAY_TO_SECOND_TABLE, 136
	INTERVAL_YEAR_TO_MONTH_TABLE Table Type, 136
	INVALIDATE Functions & Procedures, 121
	INVALIDATE Procedure, 156
	INVALIDATE_OBJECT Functions & Procedures, 121
	IS_BIT_SET Function, 156
	IS_CLEANUP_INITIALIZED function, 27
	IS_CLUSTER_DATABASE function, 156
	IS_HIERARCHY_ENABLED function, 168
	IS_LOCATOR function, 220
	IS_NULL_TAG member function, 248
	IS_OPEN function, 136, 223
	IS_REPLAY_PAUSED Procedure, 160
	IS_ROLE_ENABLED Function, 131
	IS_SESSION_ALIVE Function, 131
	IS_TRIGGER_FIRE_ONCE function, 53
	ISFOLDER Function, 163, 166
	ISFRAGMENT function, 259
	ISINDEX function
	
	of HTF package, 182

	ISINDEX procedure
	
	of HTP package, 183

	ISNULL Function, 166, 169
	ISNULL function, 170
	ISOPEN function, 221
	ISOPEN Functions, 82
	ISSCHEMABASED function, 259
	ISSCHEMAVALID function, 259
	ISSCHEMAVALIDATED function, 259
	ISTEMPORARY Functions, 82
	ITALIC function
	
	of HTF package, 182

	ITALIC procedure
	
	of HTP package, 183

	ITEM Functions, 170

J

	JARO_WINKLER Function, 230
	JARO_WINKLER_SIMILARITY Function, 230
	JOB constructor function, 128
	JOB object type, 128, 128
	JOB_ARRAY table type, 128, 128
	JOBARG constructor function, 128
	JOBARG object type, 128
	JOBARG_ARRAY table type, 128
	JOBATTR constructor function, 128
	JOBATTR object type, 128
	JOBATTR_ARRAY table type, 128

K

	KBD function
	
	of HTF package, 182

	KBD procedure
	
	of HTP package, 183

	KEEP procedure, 132
	KEEP_COLUMNS member procedure, 248
	KEEP_COLUMNS procedure, 144
	KEYBOARD function
	
	of HTF package, 182

	KEYBOARD procedure
	
	of HTP package, 183

L

	LAPACK Driver Routines (Linear Equations) Subprograms, 231
	LAPACK Driver Routines (LLS and Eigenvalue Problems), 231
	LAPACK_GBSV Procedures, 231
	LAPACK_GEES Procedures, 231
	LAPACK_GEEV Procedures, 231
	LAPACK_GELS Procedures, 231
	LAPACK_GESDD Procedures, 231
	LAPACK_GESV Procedures, 231
	LAPACK_GESVD Procedures, 231
	LAPACK_GTSV Procedures, 231
	LAPACK_PBSV Procedures, 231
	LAPACK_POSV Procedures, 231
	LAPACK_PPSV Procedures, 231
	LAPACK_PTSV Procedures, 231
	LAPACK_SBEV Procedures, 231
	LAPACK_SBEVD Procedures, 231
	LAPACK_SPEV Procedures, 231
	LAPACK_SPEVD Procedures, 231
	LAPACK_SPSV Procedures, 231
	LAPACK_STEV Procedures, 231
	LAPACK_STEVD Procedures, 231
	LAPACK_SYEV Procedures, 231
	LAPACK_SYEVD Procedures, 231
	LAPACK_SYSV Procedures, 231
	LAST_ERROR_POSITION function, 136
	LAST_ROW_COUNT function, 136
	LAST_ROW_ID function, 136
	LAST_SQL_FUNCTION_CODE function, 136
	LCR$_DDL_RECORD type, 248
	LCR$_ROW_LIST type, 248
	LCR$_ROW_RECORD type, 248
	LCR$_ROW_UNIT type, 248
	
	GET_LOB_INFORMATION member function, 248
	GET_LOB_OPERATION_SIZE member procedure, 248
	GET_LONG_INFORMATION member function, 248
	GET_POSITION member function, 248
	GET_ROW_TEXT member procedure, 248
	GET_WHERE_CLAUSE member procedure, 248
	SET_LOB_INFORMATION member procedure, 248
	SET_LOB_OPERATION_SIZE member procedure, 248

	LCR_TO_XML Function, 91
	LENGTH function, 232
	LINE function
	
	of HTF package, 182

	LINE procedure
	
	of HTP package, 183

	LINK Procedures, 163
	LINKREL function
	
	of HTF package, 182

	LINKREL procedure
	
	of HTP package, 183

	LINKREV function
	
	of HTF package, 182

	LINKREV procedure
	
	of HTP package, 183

	LIST Function, 47, 48
	LIST_CONTEXT Procedures, 131
	LISTALLCONTENT Function, 47
	LISTALLPROPERTIES Function, 47
	LISTHEADER function
	
	of HTF package, 182

	LISTHEADER procedure
	
	of HTP package, 183

	LISTINGCLOSE function
	
	of HTF package, 182

	LISTINGCLOSE procedure
	
	of HTP package, 183

	LISTINGOPEN function
	
	of HTF package, 182

	LISTINGOPEN procedure
	
	of HTP package, 183

	LISTITEM function
	
	of HTF package, 182

	LISTITEM procedure
	
	of HTP package, 183

	LISTMOUNTS Function, 47
	LISTPRINT procedure, 194
	LISTSTORES Function, 47
	LNAME_ARRAY Table Type, 131, 156
	LOAD_PLANS_FROM_CURSOR_CACHE Functions, 135
	LOAD_PLANS_FROM_SQLSET Function, 135
	LOAD_SQLSET procedure, 139
	LOAD_SQLSET_FROM_TCB Function, 137
	LOAD_TABLE procedure
	
	of DBMS_HS_PARALLEL package, 74

	LOADBLOBFROMFILE Procedure, 82
	LOADCLOBFROMFILE Procedure, 82
	LOADFROMFILE Procedure, 82
	LOBs
	
	DBMS_LOB package, 82

	LOCAL_TRANSACTION_ID function, 152
	LOCK_MAP procedure, 142
	LOCK_OBJECT procedure, 234
	LOCK_PARTITION_STATS Procedure, 141
	LOCK_SCHEMA_STATS procedure, 141
	LOCK_TABLE_STATS procedure, 141
	LOCKPATH Procedure, 47, 48
	LOCKRESOURCE function, 163
	log apply services
	
	managing initialization parameters for logical standby databases, 86

	logical change records (LCRs)
	
	DDL LCRs, 248
	
	getting base table name, 248
	getting base table owner, 248
	getting current schema, 248
	getting edition name, 248
	getting logon user name, 248
	getting object type, 248
	setting base table name, 248
	setting base table owner, 248
	setting current schema, 248
	setting DDL text, 248
	setting logon user, 248
	setting object type, 248

	determining if tag is NULL, 248
	executing, 248, 248
	extra attributes
	
	excluding, 32
	including, 32

	GET_THREAD_NUMBER member function, 248
	getting command type, 248
	getting commit SCN, 248
	getting commit SCN from position, 248
	getting commit time, 248
	getting compatibility information, 248
	getting extra attributes, 248
	getting LCR creation time, 248
	getting object name, 248
	getting object owner, 248
	getting SCN, 248
	getting SCN from position, 248
	getting source database name, 248
	getting tag, 248
	getting transaction identifier, 248
	LCR$_DDL_RECORD type, 248
	LCR$_ROW_LIST type, 248
	LCR$_ROW_RECORD type, 248
	LCR$_ROW_UNIT type, 248
	row LCRs, 248
	
	adding value to column, 248
	converting LONG to LOB, 248
	deleting value to column, 248
	getting column value, 248
	getting list of column values, 248
	getting LOB offset, 248
	getting XML information, 248
	keeping columns, 248
	renaming column, 248
	setting column value, 248
	setting list of column values, 248
	setting LOB offset, 248
	setting XML information, 248

	setting command type, 248
	setting extra attributes, 248
	setting object name, 248
	setting object owner, 248
	setting source database name, 248
	setting tag, 248
	types, 248

	logical standby databases
	
	managing with DBMS_LOGSTDBY package, 86

	logs
	
	Cube Build, 43
	Cube Dimension Compile, 43
	Cube Operations, 43
	Cube Rejected Records, 43

	LZ_COMPRESS functions and procedures, 221
	LZ_COMPRESS_ADD procedure, 221
	LZ_COMPRESS_CLOSE procedure, 221
	LZ_COMPRESS_OPEN function, 221
	LZ_UNCOMPRESS functions and procedures, 221
	LZ_UNCOMPRESS_CLOSE procedure, 221
	LZ_UNCOMPRESS_EXTRACT procedure, 221
	LZ_UNCOMPRESS_OPEN function, 221

M

	MAIL function and procedure, 235
	MAILTO function
	
	of HTF package, 182

	MAILTO procedure
	
	of HTP package, 183

	MAINTAIN_CHANGE_TABLE procedure, 144
	MAINTAIN_GLOBAL procedure, 144
	MAINTAIN_SCHEMAS procedure, 144
	MAINTAIN_SIMPLE_TABLESPACE procedure, 144
	MAINTAIN_SIMPLE_TTS procedure, 144
	MAINTAIN_TABLES procedure, 144
	MAINTAIN_TABLESPACES procedure, 144
	MAINTAIN_TTS procedure, 144
	MAKE_DATA_BLOCK_ADDRESS function, 156
	MAKEATTR function, 170
	MAKECDATASECTION function, 170
	MAKECHARACTERDATA function, 170
	MAKECOMMENT function, 170
	MAKEDOCUMENT Function, 166
	MAKEDOCUMENT function, 170
	MAKEDOCUMENTFRAGMENT function, 170
	MAKEDOCUMENTTYPE function, 170
	MAKEELEMENT function, 170
	MAKEENTITY function, 170
	MAKEENTITYREFERENCE function, 170
	MAKENODE function, 170, 170, 170, 170
	MAKENOTATION function, 170
	MAKEPROCESSINGINSTRUCTION function, 170
	MAKETEXT function, 170
	MAKEVERSIONED function, 165
	MAP_ALL function, 142
	MAP_DAD Procedure, 63
	MAP_ELEMENT function, 142
	MAP_FILE function, 142
	MAP_OBJECT function, 142
	MAPCLOSE function
	
	of HTF package, 182

	MAPCLOSE procedure
	
	of HTP package, 183

	MAPOPEN function
	
	of HTF package, 182

	MAPOPEN procedure
	
	of HTP package, 183

	MARK_RECOMMENDATION Procedure, 18
	MARKHOT Procedure, 132
	MATCH function, 191
	MATERIALIZE_DEFERRED_SEGMENTS Procedure, 134
	materialized view logs
	
	master table
	
	purging, 93, 93, 93

	materialized views
	
	comparing, 35
	converting from table- to cube-organized, 41
	optimizing cube organized, 42
	refreshing, 93, 93, 93

	materialized views (cube organized), 41
	MEMORY_REPORT Procedure, 121
	MENULISTCLOSE function
	
	of HTF package, 182

	MENULISTCLOSE procedure
	
	of HTP package, 183

	MENULISTOPEN function
	
	of HTF package, 182

	MENULISTOPEN procedure
	
	of HTP package, 183

	merge streams, 144, 144
	MERGE_COL_USAGE Procedure, 141
	MERGE_STREAMS procedure, 144
	MERGE_STREAMS_JOB procedure, 144
	MERGEXLIFF Functions, 178
	MESSAGE_PROPERTIES_ARRAY_T Type, 243
	MESSAGE_PROPERTIES_T Type, 243
	messaging client
	
	messaging client user, 144
	rules
	
	for LCRs, 144
	for user messages, 144

	META function
	
	of HTF package, 182

	META procedure
	
	of HTP package, 183

	MG2 function
	
	of HTF package, 182

	MGD_ID constructor function, 255
	MGD_ID object type, 255
	
	FORMAT function, 255
	GET_COMPONENT function, 255
	MGD_ID constructor function, 255
	TO_STRING function, 255
	TRANSLATE function, 255

	MGD_ID object types, 255
	MGD_ID_COMPONENT object type, 255
	MGD_ID_COMPONENT_VARRAY object type, 255
	MIGRATE_STORED_OUTLINE Function, 135
	migration
	
	post-migration actions, 96

	MIME_HEADER procedure, 194
	MIMEHEADER_DECODE function, 222
	MIMEHEADER_ENCODE function, 222
	model transparency, 45
	MODIFY_BASELINE_WINDOW_SIZE Procedure, 161
	MODIFY_OPERATOR_LIST procedure, 65
	MODIFY_PACKAGE_STATE Procedure, 131
	MODIFY_SERVICE Procedure, 130
	MODIFY_SNAPSHOT_SETTINGS procedure, 161
	MODIFY_TRANSFORMATION procedure, 153
	MODIFYPARAMETER Procedure, 172
	MOUNT_T Record Type, 47
	MOUNTS_T Table Type, 47
	MOUNTSTORE Procedure, 47
	MOVE_TO_DBFS_LINK Procedures, 82
	MOVEXDB_TABLESPACE Procedure, 164
	MSGID_ARRAY_T Type, 243
	MV_CUBE_ADVICE function, 42

N

	NAME_ARRAY Table Type, 156
	NAME_RESOLVE procedure, 156
	NAME_TOKENIZE procedure, 156
	NAMELIST Table Type, 135
	NAMESPACE function, 259
	NAMESPACEIDTABLE Procedure, 40
	NEW_LINE procedure, 100, 223
	NEW_ROW_LIST function and procedure, 193
	NEWCONTEXT function, 171, 174, 175, 177
	NEWCONTEXTFROMHIERARCHY Function, 171
	NEWDOMDOCUMENT function, 170
	NEWPARSER function, 173
	NEWPROCESSOR function, 180
	NEWSTYLESHEET function, 180
	NEXT_DATE procedure, 78
	NEXT_ITEM_TYPE function, 103
	NL function
	
	of HTF package, 182

	NL procedure
	
	of HTP package, 183

	NOBR function
	
	of HTF package, 182

	NOBR procedure
	
	of HTP package, 183

	NOFRAMESCLOSE function
	
	of HTF package, 182

	NOFRAMESCLOSE procedure
	
	of HTP package, 183

	NOFRAMESOPEN function
	
	of HTF package, 182

	NOFRAMESOPEN procedure
	
	of HTP package, 183

	NOOP function and procedure, 235
	NOOP Functions, 26
	NORMAL function, 108
	NORMAL_DIST_FIT procedure, 140
	NORMALIZE procedure, 170
	NORMALIZEPATH Functions, 47
	NUMBER_ARRAY Table Type, 156
	NUMBER_TABLE Table Type, 136
	NVARRAY_ADD Procedure, 91
	NVARRAY_FIND_NAME Function, 91
	NVARRAY_FIND_NAME_TYPE Function, 91
	NVARRAY_GET Function, 91
	NVARRAY_GET_BOOLEAN, 91
	NVARRAY_GET_BYTE, 91
	NVARRAY_GET_DATE Function, 91
	NVARRAY_GET_DOUBLE Function, 91
	NVARRAY_GET_FLOAT Function, 91
	NVARRAY_GET_INTEGER, 91
	NVARRAY_GET_LONG Function, 91
	NVARRAY_GET_RAW Function, 91
	NVARRAY_GET_SHORT, 91
	NVARRAY_GET_TEXT Function, 91

O

	OBJECT_DEPENDENT_SEGMENTS function, 133
	OBJECT_GROWTH_TREND function, 133
	ogical change records (LCRs)
	
	tracking, 144, 144

	OLAP aggregation operators, 41
	OLAP logs
	
	Cube Build, 43
	Cube Dimension Compile, 43
	Cube Operations, 43
	Cube Rejected Records, 43

	OLAP metadata
	
	upgrading to OLAP 11g, 41

	OLAP PL/SQL packages
	
	DBMS_CUBE_LOG, 43

	OLAP templates
	
	validation, 41
	writing to XML files, 41

	OLAP_DBA role, 41
	OLAP_USER role, 41, 41
	OLD_CURRENT_SCHEMA Function, 156
	OLD_CURRENT_USER Function, 156
	OLISTCLOSE function
	
	of HTF package, 182

	OLISTCLOSE procedure
	
	of HTP package, 183

	OLISTOPEN function
	
	of HTF package, 182

	OLISTOPEN procedure
	
	of HTP package, 183

	ONLINE_INDEX_CLEAN Function, 112
	OPEN Procedures, 82
	OPEN_CONNECTION function, 237
	OPEN_CONNECTION functions, 235
	OPEN_CURSOR Function, 75
	OPEN_CURSOR function, 136
	OPEN_DATA function and procedure, 235
	OPEN_FBA Procedure, 70
	optimizer statistics, 31
	OR REPLACE clause
	
	for creating packages, 1

	Oracle Data Mining, 44
	Oracle Streams
	
	administrator
	
	granting privileges, 146
	revoking privileges, 146

	advisors, 145
	change data capture
	
	configuring, 144

	compatibility, 143, 143, 143, 143, 143, 248
	creating queues, 144
	data dictionary
	
	removing information, 144

	messaging
	
	notification, 144

	privileges, 146
	replication
	
	configuring, 144, 144, 144, 144, 144, 144, 144, 144

	Oracle-supplied types
	
	logical change record (LCR) types, 248
	rule types, 256

	ORD_DICOM package documentation, 184
	ORD_DICOM_ADMIN package documentation, 185
	outbound servers
	
	rules, 144

	OVERLAY function, 232
	OVERRIDE_PRIORITY Procedures, 29
	OWA_CACHE package, 186
	OWA_COOKIE package, 187
	OWA_CUSTOM package, 188
	OWA_IMAGE package, 189
	OWA_OPT_LOCK package, 190
	OWA_PATTERN package, 191
	OWA_SEC package, 192
	OWA_TEXT package, 193
	OWA_UTIL package, 194

P

	PACK_MESSAGE procedures, 103
	PACK_STGTAB_BASELINE Function, 135
	PACK_STGTAB_SQLPATCH Procedure, 137
	PACK_STGTAB_SQLPROF Procedure, 139
	PACK_STGTAB_SQLSET Procedure, 139
	package
	
	DBMS_EXPFIL, 65
	DBMS_ODCI, 97
	DBMS_RLMGR, 123
	DBMS_XDB, 163
	DBMS_XMLDOM, 170
	DBMS_XMLGEN, 171
	DBMS_XMLPARSER, 173
	DBMS_XMLQUERY, 174
	DBMS_XMLSAVE, 175
	DBMS_XMLSCHEMA, 176
	UriFactory, 245

	Package - UriFactory, 245
	package overview, 1
	package variables
	
	i_am_a_refresh, 93

	packages
	
	creating, 1
	DBMS_MGD_ID_UTL, 89
	referencing, 1
	where documented, 1

	PARA function
	
	of HTF package, 182

	PARA procedure
	
	of HTP package, 183

	PARAGRAPH function
	
	of HTF package, 182

	PARAGRAPH procedure
	
	of HTP package, 183

	PARAM function
	
	of HTF package, 182

	PARAM procedure
	
	of HTP package, 183

	PARSE Procedure, 75
	PARSE procedure, 136, 173
	PARSEBUFFER procedure, 173
	PARSECLOB procedure, 173
	PARSEDTD procedure, 173
	PARSEDTDBUFFER procedure, 173
	PARSEDTDCLOB procedure, 173
	PATCHREPOSITORYRESCONFIGLIST Procedure, 118
	PATH_ITEM_T Record Type, 47
	PATH_ITEMS_T Table Type, 47
	PATHIDTABLE Function, 40
	PAUSE_PROFILER function and procedure, 106
	PAUSE_REPLAY Procedure, 160
	PIECEWISE member procedure
	
	of ANYDATA TYPE, 240
	of ANYDATASET TYPE, 241

	PING procedure, 52
	PLAINTEXT function
	
	of HTF package, 182

	PLAINTEXT procedure
	
	of HTP package, 183

	plan stability, 99
	PL/SQL
	
	datatypes, 57
	
	numeric codes for, 57

	functions
	
	DBMS_MGWADM package subprograms, 90
	DBMS_MGWMSG package subprograms, 91

	procedures
	
	DBMS_MGWADM package subprograms, 90
	DBMS_MGWMSG package subprograms, 91

	PL/SQL package
	
	DBMS_HS_PARALLEL, 74

	PLSQL_TRACE_VERSION procedure, 151
	pointer to
	
	CTX_ADM package, 6

	point-in-time recovery
	
	Oracle Streams, 144

	POISSON_DIST_FIT procedure, 140
	POPULATE_DIVERGENCE Procedure, 160
	PORT_STRING function, 156
	POST_INSTANTIATION_SETUP procedure, 144
	PRE_INSTANTIATION_SETUP procedure, 144
	PRECLOSE function
	
	of HTF package, 182

	PRECLOSE procedure
	
	of HTP package, 183

	predictive analytics, 104
	PREOPEN function
	
	of HTF package, 182

	PREOPEN procedure
	
	of HTP package, 183

	PREPARE Procedure, 160
	PREPARE_COLUMN_VALUES procedures, 141, 141
	PREPARE_COLUMN_VALUES_NVARCHAR2 procedure, 141
	PREPARE_COLUMN_VALUES_ROWID procedure, 141
	PREPARE_GLOBAL_INSTANTIATION procedure, 32
	PREPARE_SCHEMA_INSTANTIATION procedure, 32
	PREPARE_SYNC_INSTANTIATION function, 32
	PREPARE_TABLE_INSTANTIATION procedure, 32
	PRINT function
	
	of HTF package, 182

	PRINT procedure
	
	of HTP package, 183

	PRINT_BACKTRACE procedure, 52
	PRINT_CGI_ENV procedure, 194
	PRINT_INSTANTIATIONS procedure, 52
	PRINT_MULTI procedure, 193
	PRINT_POST_PROCESSED_SOURCE Procedure, 105
	PRINT_ROW_LIST procedure, 193
	PRINTS procedure
	
	of HTP package, 183

	privileges
	
	granting, 65
	Oracle Streams administrator, 146, 146
	revoking, 65

	PRN function
	
	of HTF package, 182

	PRN procedure
	
	of HTP package, 183

	PROBE_VERSION procedure, 52
	PROCESS_RECORDING Procedure, 160
	PROCESS_RULES procedure, 123
	PROCESSLINKS Procedure, 163
	PROCESSXSL function, 180
	PROGRAM_INFO Record Type, 52
	PROP_ITEM_T Record Type, 47
	PROP_ITEMS_T Table Type, 47
	PROPAGATEORIGINALEXCEPTION procedure, 174, 175
	propagations
	
	altering, 107
	creating, 107, 144, 144, 144, 144, 144
	DBMS_PROPAGATION_ADM package, 107
	dropping, 107
	propagation user, 144
	rules
	
	defining global, 144
	defining message, 144
	defining schema, 144
	defining subset, 144
	defining table, 144
	for LCRs, 144
	for user messages, 144

	starting, 107
	stopping, 107

	PROPANY Functions, 47
	PROPERTIES_T Table Type, 47
	PROPERTIESH2T Function, 47
	PROPERTIEST2H Function, 47
	PROPERTY_T Record Type, 47
	PROPNUMBER Function, 47
	PROPRAW Function, 47
	PROPTIMESTAMP Function, 47
	PROPVARCHAR2 Function, 47
	PS procedure
	
	of HTP package, 183

	PUBLISH_PENDING_STATS Procedure, 141
	PULL_SIMPLE_TABLESPACE procedure, 149
	PULL_TABLESPACES procedure, 149
	PURGE Procedure, 132
	PURGE procedure, 103
	PURGE_COMPARISON Procedure, 35
	PURGE_EVENTS procedure, 123
	PURGE_FILE_GROUP procedure, 67
	PURGE_LOST_DB_ENTRY procedure, 152
	PURGE_MIXED procedure, 152
	PURGE_PROCESSED_CHUNKS Procedure, 101
	PURGE_QUEUE_TABLE Procedure, 23
	PURGE_SOURCE_CATALOG procedure, 144
	PURGE_STATS procedure, 141
	PURGEALL Procedure, 47, 48
	PURGELDAPCACHE function, 168
	PURGEPATH Procedure, 47, 48
	PURGERESOURCEMETADATA Procedure, 163
	PURGESCHEMA Procedure, 176
	purging
	
	the subscription window, 34

	PUT procedure, 223
	PUT procedures, 100
	PUT_FILE procedure, 68
	PUT_LINE Procedure, 223
	PUT_LINE procedures, 100
	PUT_LINE_NCHAR procedure, 223
	PUT_NCHAR procedure, 223
	PUT_RAW function, 223
	PUTF procedure, 223
	PUTF_NCHAR procedure, 223
	PUTPATH Procedures, 47, 48

Q

	QNAMEIDTABLE Function, 40
	QUALIFIED_SQL_NAME Function, 26
	queues
	
	AnyData
	
	creating, 144
	removing, 144

	QUICK_TUNE Procedure, 18
	QUIT function and procedure, 235
	QUOTED_PRINTABLE_DECODE function, 222
	QUOTED_PRINTABLE_ENCODE function, 222

R

	RANDOM procedure, 108
	RCPT function, 235
	RE$ATTRIBUTE_VALUE type, 256
	RE$ATTRIBUTE_VALUE_LIST type, 256
	RE$COLUMN_VALUE type, 256, 256
	RE$COLUMN_VALUE_LIST type, 256
	RE$NAME_ARRAY type, 256
	RE$NV_ARRAY type, 256
	RE$NV_LIST type, 256
	
	ADD_PAIR member procedure, 256
	GET_ALL_NAMES member function, 256
	GET_VALUE member function, 256
	REMOVE_PAIR member procedure, 256

	RE$RULE_HIT type, 256
	RE$RULE_HIT_LIST type, 256
	RE$TABLE_ALIAS type, 256
	RE$TABLE_ALIAS_LIST type, 256
	RE$TABLE_VALUE type, 256
	RE$TABLE_VALUE_LIST type, 256
	RE$VARIABLE_TYPE type, 256
	RE$VARIABLE_TYPE_LIST type, 256
	RE$VARIABLE_VALUE type, 256
	RE$VARIABLE_VALUE_LIST type, 256
	READ Procedures, 82
	READ_CLIENT_INFO procedure, 20
	READ_LINE function, 237
	READ_LINE procedure
	
	of UTL_HTTP, 224

	READ_MODULE procedure, 20
	READ_ONLY procedure, 152
	READ_RAW function, 237
	READ_RAW procedure
	
	of UTL_HTTP, 224

	READ_TEXT function, 237
	READ_TEXT procedure
	
	of UTL_HTTP, 224

	READ_WRITE procedure, 152
	READ2CLOB function, 180
	Real-time SQL Monitoring Subprograms, 139
	REASSOCIATE_FBA Procedure, 70
	REBUILD_FREELISTS procedure, 112
	REBUILDHIERARCHICALINDEX Procedure, 164
	RECEIVE_MESSAGE function, 103
	RECHECK Function, 35
	RECOMP_PARALLEL procedure, 233
	RECOMP_SERIAL procedure, 233
	RECONFIGCACHE Procedure, 49
	REDIRECT_URL procedure, 194
	refresh
	
	materialized views, 93, 93, 93

	REFRESH_CATEGORY function, 89
	REFRESH_MVIEW procedure, 41, 41
	REGISTER Procedure, 19
	REGISTER_DEPENDENT_OBJECT procedure, 110
	REGISTER_FOREIGN_QUEUE Procedure, 90
	REGISTERPARAMETER Procedure, 172
	REGISTERSCHEMA procedure, 176
	REGISTERSTORE Procedure, 47
	REGISTERSTORECOMMAND Procedur, 49
	REGISTERTOKENTABLESET Procedure, 40
	REGISTERURI procedure, 176
	REGISTERURLHANDLER procedure, 245
	RELEASE function, 83
	REMAP_CONNECTION Procedure, 160
	REMAP_STGTAB_SQLPROF Procedure, 139
	REMAP_STGTAB_SQLSET Procedure, 139
	REMOVE Procedure, 169
	REMOVE procedure
	
	of DBMS_ALERT package, 19
	of DBMS_JOB package, 78
	of OWA_COOKIE package, 187

	REMOVE_AGENT Procedure, 90
	REMOVE_CATEGORY procedure, 89
	REMOVE_COLORED_SQL Procedure, 161
	REMOVE_FILE procedure, 67
	REMOVE_JOB Procedure, 90
	REMOVE_MSGSYSTEM_LINK Procedure, 90
	REMOVE_OPTION Procedure, 90
	REMOVE_PAIR member procedure, 256
	REMOVE_PIPE function, 103
	REMOVE_PROXY procedure, 89
	REMOVE_QUEUE procedure, 144
	REMOVE_RULE procedure, 127, 144
	REMOVE_SCHEME procedure, 89
	REMOVE_SQLSET_REFERENCE procedure, 139
	REMOVE_STMT_FROM_HANDLER procedure, 147
	REMOVE_STMT_HANDLER procedure, 21
	REMOVE_STREAMS_CONFIGURATION procedure, 144
	REMOVE_SUBSCRIBER Procedure, 90
	REMOVEALL procedure, 19
	REMOVEATTRIBUTE procedure, 170
	REMOVEATTRIBUTENODE function, 170
	REMOVENAMEDITEM function, 170
	REMOVEPARAM procedure, 180
	REMOVEXSLTPARAM procedure, 174, 175
	RENAME_BASELINE Procedure, 161
	RENAME_COLUMN member procedure, 248
	RENAME_COLUMN procedure, 144
	RENAME_SCHEMA procedure, 144
	RENAME_TABLE procedure, 144
	RENAMEPATH Procedure, 48
	RENAMEPATH Procedures, 47
	RENAMERESOURCE procedure, 163
	REPLACECHILD function, 170
	REPLACEDATA procedure, 170
	replication
	
	Oracle Streams
	
	configuring, 144, 144, 144, 144, 144, 144, 144, 144

	split and merge, 144, 144, 144

	REPLY, REPLIES record types, 235
	REPORT Function, 159, 160
	REPORT_ANALYSIS_TASK Function, 138
	REPORT_AUTO_TUNING_TASK Function, 139
	REPORT_DIAGNOSIS_TASK Function, 137
	REPORT_SQL_DETAIL Function, 139
	REPORT_SQL_MONITOR Function, 139
	REPORT_SQL_MONITOR_LIST Function, 139
	REPORT_TUNING_TASK function, 28, 139
	REQUEST function, 83, 224
	REQUEST_PIECES function, 224
	RESET_ANALYSIS_TASK Procedure, 138
	RESET_BUFFER procedure, 103
	RESET_DIAGNOSIS_TASK Procedure, 137
	RESET_GLOBAL_PREFS_DEFAULTS Procedure, 141
	RESET_JOB Procedure, 90
	RESET_PACKAGE Procedure, 131
	RESET_PARAM_DEFAULTS Procedure, 141
	RESET_SESSION procedure, 123
	RESET_SQLWKLD Procedure, 18
	RESET_SUBSCRIBER Procedure, 90
	RESET_TASK Procedure, 18
	RESET_TUNING_TASK procedure, 139
	RESETPARAMS procedure, 180
	RESOLVENAMESPACEPREFIX function, 170
	RESTARTQUERY procedure, 171
	RESTORE function, 142
	RESTORE_DATBASE_STATS procedure, 141
	RESTORE_DEFAULTS Procedure, 37
	RESTORE_DICTIONARY_STATS procedure, 141
	RESTORE_FIXED_OBJECTS_STATS procedure, 141
	RESTORE_SCHEMA_STATS procedure, 141
	RESTORE_SYSTEM_STATS procedure, 141
	RESTORE_TABLE_STATS procedure, 141
	RESTOREALL Procedure, 47, 48
	RESTOREPATH Procedure, 47, 48
	RESUME_ANALYSIS_TASK Procedure, 138
	RESUME_DIAGNOSIS_TASK Procedure, 137
	RESUME_PROFILER function and procedure, 106
	RESUME_REPLAY Procedure, 160
	RESUME_TASK Procedure, 101
	RESUME_TUNING_TASK Procedure, 139
	REUSE_REPLAY_FILTER_SET Procedure, 160
	REVERSE function, 232
	REVOKE_ADMIN_PRIVILEGE procedure, 146
	REVOKE_OBJECT_PRIVILEGE procedure, 67, 127
	REVOKE_PRIVILEGE procedure, 65, 123
	REVOKE_REMOTE_ADMIN_ACCESS procedure, 146
	REVOKE_SWITCH_CONSUMER_GROUP procedure, 120
	REVOKE_SYSTEM_PRIVILEGE procedure, 67, 120, 127
	RLM$EVENTIDS object type, 257
	ROLLBACK procedure, 152
	ROLLBACK_FORCE procedure, 152
	ROLLBACK_SAVEPOINT procedure, 152
	row migration, 144, 144
	ROWID datatype
	
	extended format, 125

	ROWID_BLOCK_NUMBER function, 125
	ROWID_CREATE function, 125
	ROWID_INFO procedure, 125
	ROWID_OBJECT function, 125
	ROWID_RELATIVE_FNO function, 125
	ROWID_ROW_NUMBER function, 125
	ROWID_TO_ABSOLUTE_FNO function, 125
	ROWID_TO_EXTENDED function, 125
	ROWID_TO_RESTRICTED function, 125
	ROWID_TYPE function, 125
	ROWID_VERIFY function, 125
	rule sets
	
	adding rules to, 127
	creating, 127
	dropping, 127
	removing rules from, 127

	rule-based transformations
	
	setting, 144

	rules
	
	action contexts
	
	adding name-value pairs, 256
	getting name-value pairs, 256
	getting value for name, 256
	removing name-value pairs, 256
	transformations, 144

	altering, 127
	creating, 127
	DBMS_RULE package, 126
	DBMS_RULE_ADM package, 127
	dropping, 127
	evaluation, 126
	
	iterators, 126, 126

	evaluation contexts
	
	altering, 127
	creating, 127
	dropping, 127

	inbound servers, 144
	object privileges
	
	granting, 127
	revoking, 127

	outbound servers, 144
	propagations
	
	removing, 144

	RE$ATTRIBUTE_VALUE type, 256
	RE$ATTRIBUTE_VALUE_LIST type, 256
	RE$COLUMN_VALUE type, 256, 256
	RE$COLUMN_VALUE_LIST type, 256
	RE$NAME_ARRAY type, 256
	RE$NV_ARRAY type, 256
	RE$NV_LIST type, 256
	RE$RULE_HIT type, 256
	RE$RULE_HIT_LIST type, 256
	RE$TABLE_ALIAS type, 256
	RE$TABLE_ALIAS_LIST type, 256
	RE$TABLE_VALUE type, 256
	RE$TABLE_VALUE_LIST type, 256
	RE$VARIABLE_TYPE type, 256
	RE$VARIABLE_TYPE_LIST type, 256
	RE$VARIABLE_VALUE type, 256
	RE$VARIABLE_VALUE_LIST type, 256
	subset
	
	defining, 144, 144

	system privileges
	
	granting, 127
	revoking, 127

	system-created, 144
	
	global apply, 144
	global capture, 144
	global propagation, 144
	global schema, 144
	message, 144, 144
	message propagation, 144
	removing, 144
	schema capture, 144
	schema propagation, 144
	subset apply, 144
	subset capture, 144
	subset propagation, 144
	table apply, 144
	table capture, 144
	table propagation, 144

	types, 256

	Rules Manager object types, 257
	RUN procedure, 78
	RUN_CHECK Procedure, 72
	RUN_TASK Procedure, 101
	RUNTIME_INFO Record Type, 52

S

	S function
	
	of HTF package, 182

	S procedure
	
	of HTP package, 183

	SAM (SQL Aggregation Management), 41
	SAMPLE function
	
	of HTF package, 182

	SAMPLE procedure
	
	of HTP package, 183

	SAVE function, 142
	SAVE Procedure, 166
	SAVEPOINT procedure, 152
	SCHEDULE_PROPAGATION Procedure, 23, 90
	Scheduler Chain Condition Syntax, 128
	SCHEDULER$_STEP_TYPE object type, 128
	SCHEDULER$_STEP_TYPE_LIST table type, 128
	SCHEMA_NAME Function, 26
	SCHEMAVALIDATE procedure, 259
	SCRIPT function
	
	of HTF package, 182

	SCRIPT procedure
	
	of HTP package, 183

	SCRIPT_TUNING_TASK Function, 139
	SDO_CS package documentation, 195
	SDO_CSW_PROCESS package documentation, 196
	SDO_GCDR package documentation, 197
	SDO_GEOM package documentation, 198
	SDO_GEOR package documentation, 199
	SDO_GEOR_ADMIN package documentation, 200
	SDO_GEOR_UTL package documentation, 201
	SDO_LRS package documentation, 202
	SDO_MIGRATE package documentation, 203
	SDO_NET package documentation, 204
	SDO_NET_MEM package documentation, 205
	SDO_OLS package documentation, 206
	SDO_PC_PKG package documentation, 207
	SDO_SAM package documentation, 208
	SDO_TIN_PKG package documentation, 209
	SDO_TOPO package documentation, 210
	SDO_TOPO_MAP package documentation, 211
	SDO_TUNE package documentation, 212
	SDO_UTIL package documentation, 213
	SDO_WFS_LOCK package documentation, 214
	SDO_WFS_PROCESS package documentation, 215
	SEARCH Function, 47, 48
	SECURE_CONNECTION Procedure, 237
	SEED procedures, 108
	SEED_COL_USAGE Procedures, 141
	SEGMENT_CORRUPT procedure, 134
	SEGMENT_DROP_CORRUPT procedure, 134
	SEGMENT_DUMP procedure, 134
	SEGMENT_FIX_STATUS procedure, 112
	SEGMENT_VERIFY procedure, 134
	SELECT_BASELINE_METRICS Function, 161
	SELECT_CURSOR_CACHE Function, 139
	SELECT_OBJECT procedure, 234
	SELECT_SQL_TRACE Function, 139
	SELECT_SQLSET function, 139, 139, 139, 139
	SELECT_WORKLOAD_REPOSITORY functions, 139
	SELECTNODES function, 180
	SELECTSINGLENODE function, 180
	SELF_CHECK procedure, 52
	SEM_APIS package documentation, 216
	SEM_PERF package documentation, 217
	SEM_RDFSA package documentation, 218, 219
	SEND procedure, 187, 229
	SEND_ATTACH_RAW procedure, 229
	SEND_ATTACH_VARCHAR2 procedure, 229
	SEND_MESSAGE function, 103
	SENDCOMMAND Procedures, 49
	SERV_MOD_ACT_STAT_DISABLE procedure, 92
	SERV_MOD_ACT_STAT_ENABLE procedure, 92
	SERV_MOD_ACT_TRACE_DISABLE procedure, 92
	SERV_MOD_ACT_TRACE_ENABLE procedure, 92
	SESSION _TRACE_DISABLE Procedure, 131
	SESSION _TRACE_ENABLE Procedur, 131
	SESSION_TRACE_DISABLE procedure, 92
	SESSION_TRACE_ENABLE procedure, 92
	SET* member procedures
	
	of ANYDATA TYPE, 240
	of ANYDATASET TYPE, 241

	SET_ACTION procedure, 20
	SET_ADVANCED_PARAMETER Procedure, 160
	SET_ANALYSIS_DEFAULT_PARAMETER Procedures, 138
	SET_ANALYSIS_TASK_PARAMETER Procedure, 138
	SET_AUDIT_TRAIL_LOCATION procedure, 27
	SET_AUDIT_TRAIL_PROPERTY procedure, 27
	SET_AUTHENTICATION procedure, 224
	SET_AUTHENTICATION_FROM_WALLET Procedure, 224
	SET_AUTHORIZATION procedure, 192
	SET_AUTO_TUNING_TASK_PARAMETER Procedures, 28
	SET_BASE_TABLE_NAME member procedure, 248
	SET_BASE_TABLE_OWNER member procedure, 248
	SET_BODY_CHARSET procedures, 224, 224
	SET_BREAKPOINT function, 52
	SET_CHANGE_HANDLER procedure, 21
	SET_CHUNK_STATUS Procedure, 101
	SET_CLIENT_INFO procedure, 20
	SET_CLIENT_SERVICE Procedure, 29
	SET_CNS_EXCEPTION_LOG procedure, 42
	SET_COLUMN_STATS procedures, 141
	SET_COMMAND_TYPE member procedure, 248
	SET_CONSUMER_GROUP_MAPPING procedure, 119
	SET_CONSUMER_GROUP_MAPPING_PRI procedure, 119
	SET_CONTEXT Procedure, 131
	SET_COOKIE_SUPPORT procedures, 224
	SET_CURRENT_SCHEMA member procedure, 248
	SET_DAD_ATTRIBUTE Procedure, 63
	SET_DATABASE_PREFS Procedure, 141
	SET_DBFS_LINK Procedures, 82
	SET_DDL_TEXT member procedure, 248
	SET_DEFAULT_SQLWKLD_PARAMETER Procedure, 18
	SET_DEFAULT_TASK_PARAMETER Procedures, 18
	SET_DEFAULTS procedure, 19
	SET_DETAILED_EXCP_SUPPORT procedure, 224
	SET_DIAGNOSIS_TASK_PARAMETER Procedure, 137
	SET_DML_HANDLER procedure, 21
	SET_EDITION_DEFERRED Procedure, 131
	SET_EDITIONING_VIEWS_READ_ONLY Procedure, 62
	SET_ENQUEUE_DESTINATION procedure, 21
	SET_EXECUTE procedure, 21
	SET_EXPRESSION procedure, 45
	SET_EXTRA_ATTRIBUTE member procedure, 248
	SET_FOLLOW_REDIRECT procedures, 224
	SET_GLOBAL_ATTRIBUTE Procedure, 63
	SET_GLOBAL_INSTANTIATION procedure, 21
	SET_GLOBAL_PREFS Procedure, 141
	SET_HEADER procedure, 224
	SET_IDENTIFIER, 131
	SET_INDEX_STATS procedures, 141
	SET_INITIAL_CONSUMER_GROUP procedure, 119
	SET_JAVA_LOGGING_LEVEL procedure, 89
	SET_KEY_COLUMNS procedure, 21
	SET_LAST_ARCHIVE_TIMESTAMP procedure, 27
	SET_LOB_INFORMATION member procedure, 248
	SET_LOB_OFFSET member procedure, 248
	SET_LOB_OPERATION_SIZE member procedure, 248
	SET_LOG_LEVEL Procedure, 90
	SET_LOG_SPEC procedure, 43
	SET_LOGON_USER member procedure, 248
	SET_MAILHOST Procedure, 24
	SET_MAILPORT Procedure, 24
	SET_MESSAGE_NOTIFICATION procedure, 144
	SET_MESSAGE_TRACKING procedure, 144
	SET_MODULE procedure, 20
	SET_NLS Procedure, 131
	SET_OBJECT_NAME member procedure, 248
	SET_OBJECT_OWNER member procedure, 248
	SET_OBJECT_TYPE member procedure, 248
	SET_OER_BREAKPOINT function, 52
	SET_OPTION Procedure, 90
	SET_P1_RESOURCES Procedure, 29
	SET_PARAM procedure, 141
	SET_PARAMETER procedure, 32, 43
	
	apply process, 21

	SET_PERSISTENT_CONN_SUPPORT procedure, 224
	SET_PLSQL_LOGGING_LEVEL procedure, 89
	SET_PLSQL_TRACE procedure, 151
	SET_PROTECTION_REALM procedure, 192
	SET_PROXY procedure, 89, 224
	SET_PURGE_JOB_INTERVAL procedure, 27
	SET_PURGE_JOB_STATUS procedure, 27
	SET_REPLAY_TIMEOUT Procedure, 160
	SET_RESPONSE_ERROR_CHECK procedure, 224
	SET_ROLE Procedure, 131
	SET_ROWID_THRESHOLD Procedure, 38
	SET_RULE_TRANSFORM_FUNCTION procedure, 144
	SET_SCHEMA_INSTANTIATION procedure, 21
	SET_SCHEMA_PREFS Procedure, 141
	SET_SENDFROM Procedure, 24
	SET_SESSION_LONGOPS procedure, 20
	SET_SESSION_TIMEOUT procedure, 122
	SET_SOURCE_DATABASE_NAME member procedure, 248
	SET_SQL_TRACE Procedure, 131
	SET_SQLWKLD_PARAMETER Procedure, 18
	SET_SYSTEM_STATS procedure, 141
	SET_TABLE_INSTANTIATION procedure, 21
	SET_TABLE_PREFS Procedure, 141
	SET_TABLE_STATS procedure, 141
	SET_TAG member procedure, 248
	SET_TAG procedure, 143, 144
	SET_TASK_PARAMETER Procedure, 18
	SET_THRESHOLD procedure, 129
	SET_TIMEOUT function, 52
	SET_TIMEOUT procedure, 122
	SET_TIMEOUT_BEHAVIOUR procedure, 52
	SET_TRANSFER_TIMEOUT procedure, 224
	SET_TRANSFORM procedure, 45
	SET_TRIGGER_FIRING_PROPERTY procedure, 53
	SET_TUNING_TASK_PARAMETER Function, 139
	SET_UP_QUEUE procedure, 144
	SET_UPDATE_CONFLICT_HANDLER procedure, 21
	SET_VALUE function, 52
	SET_VALUE member procedure, 248
	SET_VALUE_DEPENDENCY procedure, 21
	SET_VALUES member procedure, 248
	SET_WALLET procedure, 224
	SET_WARNING_SETTING_STRING procedure, 157
	SET_WATERMARK Procedure, 23
	SET_XML_INFORMATION member procedure, 248
	SETACL Procedure, 166
	SETACL procedure, 163
	SETATTRIBUTE procedure, 170
	SETATTRIBUTENODE function, 170
	SETAUTHOR Procedure, 166
	SETBASEDIR procedure, 173
	SETBATCHSIZE procedure, 175
	SETBINDVALUE procedure, 174
	SETCHARACTERSET Procedure, 166
	SETCHARSET Procedure, 170
	SETCOLLIDATTRNAME procedure, 174
	SETCOMMENT Procedure, 166
	SETCOMMITBATCH procedure, 175
	SETCONTENT Procedures, 163, 166
	SETCONTENTTYPE Procedure, 82, 166
	SETCONVERTSPECIALCHARS procedure, 171
	SETCUSTOMMETADATA Procedure, 166
	SETDATA procedure, 170
	SETDATAHEADER procedure, 174
	SETDATEFORMAT procedure, 174, 175
	SETDCHARSET procedure, 170
	SETDEFAULTACL Procedure, 47
	SETDEFAULTASOF Procedur, 47
	SETDEFAULTCONTEXT Procedure, 47
	SETDEFAULTOWNER Procedure, 47
	SETDEFAULTPRINCIPAL Procedure, 47
	SETDISPLAYNAME Procedure, 166
	SETDOCTYPE Procedure, 170
	SETDOCTYPE procedure, 173
	SETDVERSION procedure, 170
	SETENCODINGTAG procedure, 174
	SETERRORLOG procedure, 173, 180
	SETERRORTAG procedure, 174
	SETFTPPORT Procedure, 163
	SETHTTPPORT Procedure, 163
	SETIGNORECASE procedure, 175
	SETINFO member procedure
	
	of ANYTYPE TYPE, 242

	SETKEYCOLUMN procedure, 175, 177
	SETLANGUAGE Procedure, 166
	SETLISTENERENDPOINT Procedure, 163
	SETLISTENERLOCALACCESS Procedure, 163
	SETMAXROWS procedure, 171, 174
	SETMETAHEADER procedure, 174
	SETNAMEDITEM function, 170
	SETNODEVALUE procedure, 170
	SETNODEVALUEASBINARYSTREAM Function & Procedure, 170
	SETNODEVALUEASCHARACTERSTREAM Function & Procedure, 170
	SETOPTIONS Procedure, 82
	SETOWNER Procedure, 166
	SETPARAM procedure, 180
	SETPATH Procedure, 48
	SETPATH Procedures, 47
	SETPREFIX procedure, 170
	SETPRESERVEWHITESPACE procedure, 173, 175
	SETRAISEEXCEPTION procedure, 174
	SETRAISENOROWSEXCEPTION procedure, 174
	SETRENDERPATH Procedure, 169
	SETRENDERSTREAM Procedure, 169
	SETROWIDATTRNAME procedure, 174
	SETROWIDATTRVALUE procedure, 174
	SETROWSETTAG procedure, 171, 174
	SETROWTAG procedure, 174, 175, 177
	SETSCHEMAVALIDATED procedure, 259
	SETSKIPROWS procedure, 171, 174
	SETSOURCELANG Function, 178
	SETSQLTOXMLNAMEESCAPING procedure, 174, 175
	SETSTANDALONE procedure, 170
	SETSTATS Procedure, 47
	SETSTOREPROPERTY Procedure, 49
	SETSTYLESHEETHEADER procedure, 174
	SETTAGCASE procedure, 174
	SETTRACE Procedure, 47
	SETUPDATECOLUMN procedure, 175, 177
	SETVALIDATIONMODE procedure, 173
	SETVALUE procedure, 170
	SETXSLT procedure, 174, 175
	SETXSLTPARAM procedure, 174, 175
	SHOW_BREAKPOINTS procedures, 52
	SHOW_EXTENDED_STATS_NAME Function, 141
	SHOW_FRAME_SOURCE procedure, 52
	SHOW_SOURCE procedures, 52
	SHOW_STATS procedure, 236
	SHOWPAGE procedure, 194
	SHOWSOURCE procedure, 194
	SHOWWARNINGS procedure, 173, 180
	SHUTDOWN Procedure, 90
	SIGNAL procedure, 19
	SIGNATURE procedure, 194
	SIMPLE_SQL_NAME Function, 26
	SIZES procedure, 132
	SKIP_CORRUPT_BLOCKS procedure, 112
	SLEEP procedure, 83
	SMALL function
	
	of HTF package, 182

	SMALL procedure
	
	of HTP package, 183

	snapshot. See DBMS_MVIEW, 93
	SOURCE_LINES_T Table Type, 105
	SPACE_ERROR_INFO function, 122
	SPACE_USAGE procedure, 133
	SPACEUSAGE Procedure, 47, 48
	split streams, 144
	SPLIT_STREAMS procedure, 144
	SPLITPATH Procedure, 163
	SPLITTEXT function, 170
	SQL Apply
	
	managing logical standby databases, 86
	managing with DBMS_LOGSTDBY package, 86

	SQL generation, 248, 248
	SQL Performance Reporting Subprograms, 139
	SQL*Plus
	
	creating a sequence, 1

	SQL_OBJECT_NAME Function, 26
	SQLID_TO_SQLHASH Function, 156
	SQLSET_ROW Object Type, 139
	SQLTEXT_TO_SIGNATURE Function, 139
	STACK_BIN_CAT procedure, 45
	STACK_BIN_NUM procedure, 45
	STACK_CLIP procedure, 45
	STACK_COL_REM procedure, 45
	STACK_MISS_CAT procedure, 45
	STACK_MISS_NUM procedure, 45
	STACK_NORM_LIN procedure, 45
	staging
	
	queues
	
	creating, 144
	removing, 144

	START_APPLY procedure, 21
	START_CAPTURE Procedure, 159
	START_CAPTURE procedure, 32
	START_POOL Procedure, 37
	START_PROFILER functions and procedures, 106
	START_PROFILING Procedure, 73
	START_PROPAGATION procedure, 107
	START_REDEF_TABLE procedure, 110
	START_REPLAY Procedure, 160
	START_SERVICE procedure, 130
	STARTTLS Function and Procedure, 235
	STARTUP Procedure, 90
	STARTUP_EXTPROC_AGENT procedure, 181
	STATUS Function, 121
	STATUS_LINE procedure, 194
	STEP_ID function, 152
	STOP_APPLY procedure, 21
	STOP_CAPTURE procedure, 32
	STOP_POOL Procedure, 37
	STOP_PROFILER function and procedure, 106
	STOP_PROFILING Procedure, 73
	STOP_PROPAGATION procedure, 107
	STOP_SERVICE procedure, 130
	STOP_TASK Procedure, 101
	STORE_T Record Type, 47
	STORE_VALUES procedure, 190
	stored outlines
	
	DBMS_OUTLN, 99
	OUTLN_PKG package, 99

	STOREPUSH Procedure, 49
	STREAM2MULTI procedure, 193
	Streams
	
	removing configuration, 144

	STREAMS$_TRANSFORM_FUNCTION, 144
	STRIKE function
	
	of HTF package, 182

	STRIKE procedure
	
	of HTP package, 183

	STRING function, 108
	STRING_TO_RAW Function, 225
	STRONG function
	
	of HTF package, 182

	STRONG procedure
	
	of HTP package, 183

	STYLE function
	
	of HTF package, 182

	STYLE procedure
	
	of HTP package, 183

	SUB procedure
	
	of HTP package, 183

	SUBMIT procedure, 78
	SUBMIT_PENDING_AREA procedure, 119
	subscribers
	
	drop the subscription, 34
	extend the window to create a new view, 34
	purging the subscription window, 34
	retrieve change data from the subscriber views, 34

	subscription window
	
	purging, 34

	SUBSTR function, 232
	SUBSTR Functions, 82
	SUBSTRINGDATA function, 170
	Summary of DBMS_AQELM Subprograms, 24
	Summary of DBMS_DIMENSION Subprograms, 59
	Summary of DBMS_ERRLOG Subprograms, 64
	Summary of DBMS_MVIEW Subprograms, 93
	Summary of DBMS_XDBZ Subprograms, 168
	Summary of DBMS_XMLDOM Subprograms, 170
	Summary of DBMS_XMLSCHEMA Subprograms, 176
	Summary of UTL_LMS Subprograms, 228
	SUMMARY procedure, 140
	SUP function
	
	of HTF package, 182

	SUP procedure
	
	of HTP package, 183

	SWITCH_CONSUMER_GROUP_FOR_SESS procedure, 119
	SWITCH_CONSUMER_GROUP_FOR_USER procedure, 119
	SWITCH_CURRENT_CONSUMER_GROUP Procedure, 131
	SWITCH_PLAN procedure, 119
	SYNC_INTERIM_TABLE procedure, 110
	SYNC_TEXT_INDEXES procedure, 65, 123
	SYNCHRONIZE function, 52
	synchronous capture
	
	altering, 32
	instantiation
	
	preparing a table for, 32

	rules, 144

	SYNCINDEX Procedure, 172
	synonyms
	
	comparing, 35

	SYS.MGW_MQSERIES_PROPERTIES Object Type, 90
	SYS.MGW_PROPERTIES Object Type, 90
	SYS.MGW_PROPERTY Object Type, 90
	SYS.MGW_TIBRV_PROPERTIES Object Type, 90

T

	table alias
	
	attributes, 247

	TABLE_CREATE procedure, 43
	TABLE_TO_COMMA procedures, 156
	TABLECAPTION function
	
	of HTF package, 182

	TABLECAPTION procedure
	
	of HTP package, 183

	TABLECLOSE function
	
	of HTF package, 182

	TABLECLOSE procedure
	
	of HTP package, 183

	TABLEDATA function
	
	of HTF package, 182

	TABLEDATA procedure
	
	of HTP package, 183

	TABLEHEADER function
	
	of HTF package, 182

	TABLEHEADER procedure
	
	of HTP package, 183

	TABLEOPEN function
	
	of HTF package, 182

	TABLEOPEN procedure
	
	of HTP package, 183

	TABLEPRINT function, 194
	TABLEROWCLOSE function
	
	of HTF package, 182

	TABLEROWCLOSE procedure
	
	of HTP package, 183

	TABLEROWOPEN function
	
	of HTF package, 182

	TABLEROWOPEN procedure
	
	of HTP package, 183

	tables
	
	comparing, 35
	table items as arrays, 136

	tablespace repositories
	
	attaching tablespaces, 149
	cloning tablespaces, 149
	detaching tablespaces, 149

	TABLESPACE_FIX_BITMAPS procedure, 134
	TABLESPACE_FIX_SEGMENT_STATES procedure, 134
	TABLESPACE_MIGRATE_FROM_LOCAL procedure, 134
	TABLESPACE_MIGRATE_TO_LOCAL procedure, 134
	TABLESPACE_REBUILD_BITMAPS procedure, 134
	TABLESPACE_REBUILD_QUOTAS procedure, 134
	TABLESPACE_RELOCATE_BITMAPS procedure, 134
	TABLESPACE_SET type, 149
	TABLESPACE_VERIFY procedure, 134
	tablespaces
	
	change tables and, 33

	tags
	
	GET_TAG function, 143, 144
	SET_TAG procedure, 143, 144

	TARGET_FILE function, 43
	TARGET_LOB function, 43
	TARGET_PROGRAM_RUNNING procedure, 52
	TARGET_TABLE function, 43
	TARGET_TRACE function, 43
	TELETYPE function
	
	of HTF package, 182

	TELETYPE procedure
	
	of HTP package, 183

	TERMINATE procedure, 108
	TEXT_DECODE function, 222
	TEXT_ENCODE function, 222
	TIME_TABLE Table Type, 136
	TIME_WITH_TIME_ZONE_TABLE Table Type, 136
	TIMESTAMP_TABLE Table Type, 136
	TIMESTAMP_WITH_LTZ_TABLE Table Type, 136
	TIMESTAMP_WITH_TIME_ZONE_TABLE Table Type, 136
	TITLE function
	
	of HTF package, 182, 182

	TITLE procedure
	
	of HTP package, 183

	TO_CURSOR_NUMBER Function, 136
	TO_REFCURSOR Function, 136
	TO_STRING function, 255
	TODATE function, 194
	TOOBJECT procedure, 259
	TOUCHRESOURCE Procedure, 163
	TRACE Procedure, 47
	TRACE procedure, 42
	TRACEENABLED Function, 47
	TRACETAB.SQL, 151
	tracking LCRs, 144, 144
	TRANSACTION_BACKOUT Procedures, 69
	TRANSFORM function, 259
	transformations
	
	rule-based
	
	adding a column, 144
	custom, 144
	deleting a column, 144
	keeping columns, 144
	renaming a column, 144
	renaming a schema, 144
	renaming a table, 144
	STREAMS$_TRANSFORM_FUNCTION, 144

	TRANSFORMNODE function, 180
	TRANSLATE function, 232, 255
	TRANSLATEXML Function, 178
	TRANSLITERATE Function, 225, 232
	transparent data encryption
	
	apply process, 21

	TRANSPORT_SET_CHECK procedure, 154
	TRIM Procedures, 82
	TUNE_MVIEW Procedure, 18
	TYPE_BUILD function, 43
	TYPE_DIMENSION_COMPILE function, 43
	TYPE_OPERATIONS function, 43
	TYPE_REJECTED_RECORDS function, 43
	types
	
	Expression Filter, 247
	MGD_ID, 255, 255
	MGD_ID_COMPONENT, 255
	MGD_ID_COMPONENT_VARRAY, 255
	Oracle Multimedia
	
	ORDAudio, 249
	ORDDicom, 250
	ORDDoc, 251
	ORDImage, 252
	ORDVideo, 254
	SQL/MM Still Image, 253

	Rules Manager, 257

U

	ULISTCLOSE function
	
	of HTF package, 182

	ULISTCLOSE procedure
	
	of HTP package, 183

	ULISTOPEN function
	
	of HTF package, 182

	ULISTOPEN procedure
	
	of HTP package, 183

	UNASSIGN_ACL Procedure, 94
	UNASSIGN_ATTRIBUTE_SET procedure, 65
	UNASSIGN_WALLET_ACL Procedure, 94
	UNCHECKOUT function, 165
	UNCL_ARRAY Table Type, 156
	UNDERLINE function
	
	of HTF package, 182

	UNDERLINE procedure
	
	of HTP package, 183

	UNESCAPE function, 238
	UNESCAPEURI function, 245
	UNIFORM_DIST_FIT procedure, 140
	UNIQUE_SESSION_ID Function, 131
	UNIQUE_SESSION_NAME function, 103
	UNKEEP procedure, 132
	UNLOCK_MAP procedure, 142
	UNLOCK_PARTITION_STATS Procedure, 141
	UNLOCK_SCHEMA_STATS procedure, 141
	UNLOCK_TABLE_STATS procedure, 141
	UNLOCKPATH Procedure, 47, 48
	UNLOCKRESOURCE function, 163
	UNMAP_DAD Procedure, 63
	UNMARKHOT Procedure, 132
	UNMOUNTSTORE Procedure, 47
	UNPACK_MESSAGE procedures, 103
	UNPACK_STGTAB_BASELINE Function, 135
	UNPACK_STGTAB_SQLPATCH Procedure, 137
	UNPACK_STGTAB_SQLPROF Procedure, 139
	UNPACK_STGTAB_SQLSET Procedure, 139
	UNREGISTER_DEPENDENT_OBJECT procedure, 110
	UNREGISTER_FOREIGN_QUEUE Procedure, 90
	UNREGISTERSTORE Procedure, 47
	UNREGISTERURLHANDLER procedure, 245
	UNSCHEDULE_PROPAGATION Procedure, 90
	UNUSED_SPACE procedure, 133
	UPDATE_BY_CAT procedure, 99
	UPDATE_CATEGORY Procedure, 119
	UPDATE_CONSUMER_GROUP procedure, 119
	UPDATE_OBJECT Procedure, 18
	UPDATE_OBJECT procedure, 234
	UPDATE_PLAN procedure, 119
	UPDATE_PLAN_DIRECTIVE procedure, 119
	UPDATE_REC_ATTRIBUTES Procedure, 18
	UPDATE_SIGNATURES procedure, 99
	UPDATE_SQLSET procedures, 139
	UPDATE_SQLWKLD_ATTRIBUTES Procedure, 18
	UPDATE_SQLWKLD_STATEMENT Procedure, 18
	UPDATE_TASK_ATTRIBUTES Procedure, 18
	UPDATERESOURCEMETADATA Procedures, 163
	UPDATETRANSLATION Function, 178
	UPDATEXML function, 175, 177
	UPGRADE_DATABASE Procedure, 60
	UPGRADE_SCHEMA Procedure, 60
	UPGRADE_STAT_TABLE procedure, 141
	UPGRADE_TABLE Procedure, 60
	upgrading
	
	post-upgrade actions, 96

	URI Types
	
	description, 245

	UriFactory package, 245
	
	ESCAPEURI function, 245
	GETURL function, 245
	methods, 245
	REGISTERURLHANDLER procedure, 245
	UNESCAPEURI function, 245
	UNREGISTERURLHANDLER procedure, 245

	UriType supertype, 245
	
	GETBLOB function, 245
	GETCLOB function, 245
	GETCONTENTTYPE function, 245
	GETEXTERNALURL function, 245
	GETURL function, 245
	GETXML function, 245
	methods, 245

	UROWID_TABLE Table Type, 136
	USE_FILTER_SET Procedure, 160
	USE_ROLLBACK_SEGMENT procedure, 152
	USEBINARYSTREAM Function, 170
	USEITEMTAGSFORCOLL procedure, 171
	USENULLATTRIBUTEINDICATOR procedure, 171, 174
	USER_EXPORT procedures, 78
	USETYPEFORCOLLELEMTAG procedure, 174
	Using DBMS_ADVISOR, 18
	Using DBMS_AQIN, 25, 25
	Using DBMS_FILE_GROUP, 67
	Using DBMS_MVIEW, 93
	Using DBMS_RULE, 126
	Using DBMS_RULE_ADM, 127
	Using DBMS_STREAMS, 143
	Using DBMS_STREAMS_ADM, 144
	Using DBMS_STREAMS_TABLESPACE_ADM, 149
	Using DBMS_XMLDOM, 170
	Using DBMS_XMLSCHEMA, 176
	Using UTL_HTTP, 224
	UTL Streams Types, 258
	UTL_BINARYINPUTSTREAM Type, 258
	UTL_BINARYOUTPUTSTREAM Type, 258
	UTL_CHARACTERINPUTSTREAM Type, 258
	UTL_CHARACTEROUTPUTSTREAM Type, 258
	UTL_COLL package, 220
	UTL_COMPRESS package, 221
	UTL_ENCODE package, 222
	UTL_FILE package, 223
	UTL_HTTP package, 224
	UTL_I18N package, 225
	
	ESCAPE_REFERENCE function, 225, 225, 225, 225, 225, 225, 225
	GET_DEFAULT_CHARSET function, 225
	MAP_CHARSET function, 225
	MAP_LANGUAGE_FROM_ISO function, 225
	MAP_LOCALE_TO_ISO function, 225
	MAP_TERRITORY_FROM_ISO function, 225
	RAW_TO_CHAR function, 225
	RAW_TO_NCHAR function, 225
	UNESCAPE_REFERENCE function, 225

	UTL_INADDR package, 226
	UTL_LMS package, 228
	
	FORMAT_MESSAGE function, 228
	GET_MESSAGE function, 228

	UTL_MAIL package, 229
	UTL_MATCH package, 230
	UTL_NLA package, 231
	UTL_RAW package, 232
	UTL_RECOMP package, 233
	UTL_REF package, 234
	UTL_SPADV package, 236
	UTL_TCP package, 237
	UTL_URL package, 238
	UUDECODE function, 222
	UUENCODE function, 222

V

	V$STREAMS_MESSAGE_TRACKING view, 144, 144
	v$vpd_policies, 124
	VALIDATE procedure, 156
	VALIDATE_DIMENSION procedure, 59
	VALIDATE_EXPRESSIONS procedure, 65
	VALIDATE_PENDING_AREA procedure, 119
	VALIDATE_REWRITE_EQUIVALENCE Procedure, 17
	VALIDATE_SCHEME function, 89
	VALIDATE_XML procedure, 41
	VALUE functions, 108
	VALUEOF procedure, 180
	VARCHAR2_TABLE Table Type, 136
	VARCHAR2A Table Type, 136
	VARCHAR2S Table Type, 136
	VARIABLE function
	
	of HTF package, 182

	VARIABLE procedure
	
	of HTP package, 183

	VARIABLE_VALUE procedures, 136
	VERBOSE_ACTION function, 43
	VERBOSE_DEBUG function, 43
	VERBOSE_INFO function, 43
	VERBOSE_NOTICE function, 43
	VERBOSE_STATS function, 43
	VERIFY_VALUES function, 190
	VERSION function, 43
	views
	
	comparing, 35

	virtual dependency definitions
	
	object dependencies
	
	creating, 21
	dropping, 21

	value dependencies, 21

	Virtual Private Database. See VPD
	VPD
	
	column masking, 124
	enabling column-level, 124
	viewing current cursors and policy predicates, 124

	VPD use of DBMS_RLS, 124
	VRFY function, 235

W

	WAIT_ON_PENDING_DML Procedure, 156
	WAITANY procedure, 19
	WAITONE procedure, 19
	WBR function
	
	of HTF package, 182

	WBR procedure
	
	of HTP package, 183

	WEIBULL_DIST_FIT procedure, 140
	WHAT procedure, 78
	WHO_CALLED_ME procedure, 194
	WPG_DOCLOAD package, 239
	WRAP Functions, 53
	WRITE Procedures, 82
	WRITE_DATA procedure, 235
	WRITE_LINE function, 237
	WRITE_LINE procedure, 224
	WRITE_RAW function, 237
	WRITE_RAW procedure, 224
	WRITE_RAW_DATA procedure, 235
	WRITE_TEXT function, 237
	WRITE_TEXT procedure, 224
	WRITEAPPEND Procedures, 82
	WRITETOBUFFER procedure, 170
	WRITETOCLOB procedure, 170
	WRITETOFILE procedure, 170

X

	XA_COMMIT Function, 162
	XA_END Function, 162
	XA_FORGET Function, 162
	XA_GETLASTOER Function, 162
	XA_PREPARE Function, 162
	XA_RECOVER Function, 162
	XA_ROLLBACK Function, 162
	XA_SETTIMEOUT Function, 162
	XA_START Function, 162
	XDBEvent Type Subprograms, 169
	XDBHandler Type Subprograms, 169
	XDBHandlerList Type Subprograms, 169
	XDBLink Type Subprograms, 169
	XDBPath Type Subprograms, 169
	XDBRepositoryEvent Type Subprograms, 169
	XDBUriType, 245
	XDBURITYPE function, 245
	XDBUriType subtype, 245
	
	CREATEURI function, 245
	GETBLOB function, 245
	GETCLOB function, 245
	GETCONTENTTYPE function, 245
	GETEXTERNALURL function, 245
	GETURL function, 245
	GETXML function, 245
	methods, 245
	XDBURITYPE function, 245

	XDBZ Constants, 168
	XFORM_BIN_CAT procedure, 45
	XFORM_BIN_NUM procedure, 45
	XFORM_CLIP procedure, 45
	XFORM_COL_REM procedure, 45
	XFORM_EXPR_NUM procedure, 45
	XFORM_EXPR_STR procedure, 45
	XFORM_MISS_CAT procedure, 45
	XFORM_MISS_NUM procedure, 45
	XFORM_NORM_LIN procedure, 45
	XFORM_STACK procedure, 45
	XML tags
	
	specifying list of
	
	configuring index parameters, 247

	XML_TO_LCR Function, 91
	XMLINDEXADDPATH Procedure, 164
	XMLINDEXREMOVEPATH Procedure, 164
	XMLType
	
	CREATENONSCHEMABASEDXML function, 259
	CREATESCHEMABASEDXML function, 259
	CREATEXML function, 259
	description, 259
	EXISTSNODE function, 259
	EXTRACT function, 259
	GETBLOBVAL function, 259
	GETCLOBVAL function, 259
	GETNUMBERVAL function, 259
	GETROOTELEMENT function, 259
	GETSCHEMAURL function, 259
	GETSTRINGVAL function, 259
	ISFRAGMENT function, 259
	ISSCHEMABASED function, 259
	ISSCHEMAVALID function, 259
	ISSCHEMAVALIDATED function, 259
	NAMESPACE function, 259
	SCHEMAVALIDATE procedure, 259
	SETSCHEMAVALIDATED procedure, 259
	TOOBJECT procedure, 259
	TRANSFORM function, 259
	XMLTYPE function, 259

	XMLTYPE function, 259
	XPath parameters
	
	adding to attribute list, 65
	dropping from attribute list, 65

	XPath predicates
	
	indexing set of
	
	configuring XML element or XML attribute, 247

	XPINDEX_PARAMETERS procedure, 65
	XRANGE function, 232

Description of the illustration arpls006.eps
This illustration describes execution flow in UTL_HTTP that has two phases: (1) beginning with "begin_request" and ending with "end_request", (2) beginning with "get_response" and ending with with "end_response". Key to the symbols used:

	
... -> denotes "continue to next step", for example, "begin_request" -> "get_response"

	
... material enclosed in double quotation marks denotes an action, for example "PARSE"

	
... material enclosed in single qutotation marks denotes a choice point, for example, 'perform pre-response set operations': Yes/No

	
... material unenclosed denotes a choice of direction, for example, Yes

PHASE #1.

	
"begin_request" -> 'perform pre-response set operations': Yes/No

	
'perform set operations': Yes -> "set_cookie_support" (optional with option to repeat multiple times) -> "set_persistent_conn_support" (optional with option to repeat multiple times)-> "set_body_charset" (optional with option to repeat multiple times) -> "set_follow_redirect" (optional with option to repeat multiple times) ->"set_authentication" (optional with option to repeat multiple times) -> "set_header" (optional with option to repeat multiple times) -> 'perform pre-response write operations':Yes/No

	
'perform set operations': No -> 'perform write operations':Yes/No

	
'perform pre-response write operations':Yes -> "write_raw" (optional with option to repeat multiple times) -> "write_line" (optional with option to repeat multiple times) -> "write_text" (optional with option to repeat multiple times) -> "end_request"

	
'perform pre-response write operations': No -> "end_request"

PHASE #2.

	
"get_response" -> 'perform get operations': Yes/No

	
'perform get operations': Yes -> "set_body_charset" (optional with option to repeat multiple times) -> "get_authentication" (optional with option to repeat multiple times) -> "get_header_count" (optional with option to repeat multiple times) ->"get_header_by_name" (optional with option to repeat multiple times) -> 'peform read operations':Yes/No

	
'perform get operations': No -> 'peform read operations':Yes/No

	
'peform read operations':Yes -> "read_raw" (optional with option to repeat multiple times) ->"read_line" (optional with option to repeat multiple times) -> "read_text" (optional with option to repeat multiple times) -> end_response

	
'peform read operations':No -> end_response

Description of the illustration kana_small_arrow.gif
The image kana_small_arrow.gif is partially described in the preceding text. It shows how three versions of the word "Tanaka" can be standardized and converted into one form.

Description of the illustration arpls011.eps
This is a text description of arpls011.gif. This figure provides a graphical flowchart. The flowchart shows the following sequence:

	
CREATE_SUBSCRIPTION

	
SUBSCRIBE

	
Either repeat step 2 or continue to step 4

	
ACTIVATE_SUBSCRIPTION

	
EXTEND_WINDOW

	
Query subscriber views

	
PURGE_WINDOW

	
Either return to step 5 or continue to step 9

	
DROP_SUBSCRIPTION

Description of the illustration arpls001.eps
This illustration shows the first steps in the target session:

First, initialize the session for debugging, and generate or specify the unique debugID. DBMS_DEBUG.initialize()

Then, start debugging using DBMS_DEBUG.debug_on() or stop debugging using DBMS_DEBUG.debug_off(). Then, execute the PL/SQL program.

Description of the illustration arpls008.eps
This illustration describes execution flow in DBMS_SQL that begins with "open_cursor" and ends with "close_cursor". Key to the symbols used:

	
... -> denotes "continue to next step", for example "open cursor" -> "PARSE"

	
... material enclosed in double quotation marks denotes an action, for example "PARSE"

	
... material enclosed in single quotation marks denotes a choice point, for example 'Use bind variables': Yes/No

"open_cursor" -> "PARSE" -> Choice point: 'Use bind variables': Yes/No

	
'Use bind variables': Yes/No ...Yes -> "bind variable" (option to repeat) -> Choice point: 'query' ->

	
'Use bind variables': Yes/No ...No -> Choice point: 'query' ->

Choice point: 'query': Yes/No

	
Choice point: 'query': Yes/No ...Yes -> "DEFINE_COLUMN" (option to repeat) -> "EXECUTE" -> "FETCH_ROWS" -> "column_value, variable_value" (option to repeat) -> option to loop back to "EXECUTE", option to loop back to "fetch_rows", option to loop back to "PARSE", option to loop back to 'Use bind variables', option to loop back to 'query' -> "close_cursor"

	
Choice point: query Yes/No ...No -> "EXECUTE" -> Choice point: pl/sql block(s): Yes/No

	
Choice point: pl/sql block(s): Yes/No ...Yes -> Choice point: 'Use variable values': Yes/No

	
Choice point: 'Use variable values': Yes/No ... Yes -> "variable_value" (option to repeat) -> option to loop back to "PARSE", option to loop back to 'Use bind variables', option to loop back to 'query' -> close_cursor

	
Choice point: 'Use variable values': Yes/No ... No -> option to loop back to "PARSE", option to loop back to 'Use bind variables', option to loop back to 'query' -> close_cursor

	
Choice point: pl/sql block(s): Yes/No ...No -> option to loop back to "PARSE", option to loop back to 'Use bind variables', option to loop back to 'query' -> close_cursor

Description of the illustration arpls010.eps
This is a text description of arpls010.gif. This figure provides a graphical representation of inheritance-type relationship between DOM types; methods defined on the supertype should be available on the subtype. Description of the inheritance structure follows:

	
Attr, CharacterData, Document, DocumentFragment, DocumentType, Element, Entity, EntityReference, Notation, and ProcessingInstruction are all subtypes of Node

	
Text is a subtype of CharacterData

	
CDATASection and Comment are subtypes of Text

Description of the illustration arpls004.eps
This illustration shows the final steps in the target session:

	
Continue execution and wait for the next event DBMS_DEBUG.continue()

	
If the program terminated, detach the session using DBMS_DEBUG.detach_session()

	
If it did not terminate, resume the process by showing the stack.

Description of the illustration arpls003.eps
This illustration shows the continuation of steps in the target session:

	
Initialize using DBMS_DEBUG.attach_session()

	
Manipulate the breakpoints using:

	
DBMS_DEBUG.set_breakpoint()

	
DBMS_DEBUG.delete_breakpoint()

	
DBMS_DEBUG.disable_breakpoint()

	
DBMS_DEBUG.enable_breakpoint()

	
DBMS_DEBUG.show_breakpoint()

	
Read first event from the target session using DBMS_DEBUG.synchronize()

	
Show the stack using DBMS_DEBUG.print_backtrace()

	
Get/set values using:

	
DBMS_DEBUG.get_value()

	
DBMS_DEBUG.set_value()

	
Manipulate the breakpoints

	
Show the source by using DBMS_DEBUG.show_source().

Oracle Legal Notices
Oracle Legal Notices
Copyright Notice
Copyright © 1994-2010, Oracle and/or its affiliates. All rights reserved.
License Restrictions Warranty/Consequential Damages Disclaimer
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
Warranty Disclaimer
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
Restricted Rights Notice
If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
Hazardous Applications Notice
This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.
Trademark Notice
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
Third-Party Content, Products, and Services Disclaimer
This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
[image: Oracle Logo]
OEBPS/dcommon/conticon.gif

OEBPS/dcommon/booklist.gif

OEBPS/img/arpls008.gif
open_cursor

L2

PARSE

Uss bing
Vanabks?

bind_varable

defne_column
EXECUTE
PLSOL
block? ‘
Tetch_tows
variabl_valle column_value
variable_value

OEBPS/dcommon/index.gif

OEBPS/dcommon/oracle-small.JPG
ORACLE

OEBPS/dcommon/O_signature_clr.JPG
ORACLE

OEBPS/dcommon/feedback.gif

OEBPS/dcommon/feedbck2.gif
<

OEBPS/img/arpls001.gif
Initalze session for debugging,
and generate/specity unique debuglD.
DEMS_DEBUE.niialze)

Start dabugging
DEMS_DEBUG debug_cn()

Stap debugging
DEIIS_DEBUG. debug_off)

12 ¥

Excute PLISOL progams

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Database PL/SQL
Packages an