

Oracle® TimesTen In-Memory Database
Operations Guide

Release 11.2.1
E13065-08

January 2011

Oracle TimesTen In-Memory Database Operations Guide, Release 11.2.1

E13065-08

Copyright © 1996, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... xi

Audience... xi
Related documents.. xi
Conventions ... xi
Documentation Accessibility .. xii
Technical support .. xiii

What's New.. xv

New features in release 11.2.1.8.0 ... xv
New features in release 11.2.1.6.0 ... xv
New features in release 11.2.1.4.0 ... xv
New features in release 11.2.1.0 .. xvi

1 Managing TimesTen Databases
Connecting to TimesTen with ODBC and JDBC drivers ... 1-1

Connecting using TimesTen ODBC drivers... 1-3
Connecting using the TimesTen JDBC driver and driver manager.. 1-4

Specifying Data Source Names to identify TimesTen databases ... 1-5
Overview of user and system DSNs.. 1-5
Defining DSNs for direct or client/server connections.. 1-6
Connection attributes for Data Manager DSNs or Server DSNs... 1-7

Defining a Data Manager DSN ... 1-8
Creating a Data Manager DSN on Windows... 1-9

Specify the ODBC driver.. 1-9
Specify the Data Manager DSN .. 1-9
Specify the connection attributes... 1-10

Creating a Data Manager DSN on UNIX... 1-13
Create a user or system ODBC.INI file ... 1-14
Using environment variables in database path names... 1-15

Defining Client and Server DSNs ... 1-15
Resolution path for a DSN .. 1-15
DSN examples.. 1-16

Setting up a temporary database .. 1-16
Specifying PL/SQL connection attributes in a DSN.. 1-17
Creating multiple DSNs to a single database ... 1-18

iv

ODBC.INI file entry descriptions .. 1-20
ODBC Data Sources .. 1-20
Data Source specification ... 1-21
ODBC.INI file example... 1-22

Connecting to a database using a connection string .. 1-23
Specifying a RAM policy... 1-23
Specifying the size of a database ... 1-24

Estimating and modifying the data partition sizes for the database....................................... 1-25
Unloading the database from memory .. 1-25
Monitoring PermSize and TempSize attributes.. 1-26
Receiving out-of-memory warnings... 1-26

Manage existing tables in the database .. 1-26
Migration, backup, and restoration of the database... 1-26

Copying, migrating and restoring a database .. 1-27
Backing up and restoring a database ... 1-27

Types of backup provided.. 1-28
Thread programming with TimesTen... 1-29

2 Working with the TimesTen Client and Server
Overview of the TimesTen Client/Server.. 2-1

Restrictions on client/server communication.. 2-3
Communication protocols for Client/Server communication .. 2-3

TCP/IP Communication.. 2-3
Shared memory communication .. 2-3
UNIX domain socket communication.. 2-4

Configuring TimesTen Client and Server... 2-4
Overview of TimesTen Client/Server configuration.. 2-4
Installing and configuring for client/server connections .. 2-5

Configuring Client/Server of the same TimesTen release ... 2-6
Configuring cross-release TimesTen Client/Server .. 2-6

Defining Server DSNs.. 2-7
Server DSN connection attributes defined in ODBC.INI file ... 2-8
Server DSN connection attributes defined in ODBC Data Source Administrator 2-8

Defining a logical server name... 2-9
Creating and configuring a logical server name on Windows... 2-9
Creating and configuring a logical server name on UNIX .. 2-10
Working with the TTCONNECT.INI file ... 2-12

Creating Client DSNs ... 2-12
Creating and configuring Client DSNs on Windows ... 2-13
Creating and configuring Client DSNs on UNIX.. 2-18

Running the TimesTen Server.. 2-20
Server informational messages ... 2-20

Accessing a remote database on UNIX.. 2-21
Testing connections... 2-22

3 Working with the Oracle TimesTen Data Manager Daemon
Starting and stopping the Oracle TimesTen Data Manager service on Windows 3-1

v

Starting and stopping the daemon on UNIX .. 3-2
Shutting down a TimesTen application .. 3-2
Managing TimesTen daemon options ... 3-2

Determining the daemon listening address ... 3-3
Listening on IPv6 .. 3-4

Modifying informational messages... 3-5
Changing the allowable number of subdaemons.. 3-6
Allowing database access over NFS-mounted systems ... 3-7
Enabling Linux large page support ... 3-7
Shared memory daemon option for HP-UX ccNUMA systems ... 3-7

Managing TimesTen Client/Server options.. 3-8
Modifying the TimesTen Server options .. 3-8
Controlling the TimesTen Server... 3-8
Prespawning TimesTen Server processes... 3-8
Specifying multiple connections to the TimesTen Server .. 3-9

Configuring the maximum number of client connections per child server process......... 3-9
Configuring the desired number of child server processes spawned for a server DSN .. 3-9
Configuring the thread stack size of the child server processes .. 3-9

Using shared memory for Client/Server IPC ... 3-10
Managing the size of the shared memory segment .. 3-10
Changing the size of the shared memory segment... 3-11

Controlling the TimesTen Server log messages.. 3-11

4 Managing Access Control
Managing users to control authentication .. 4-1

Overview of users .. 4-1
Creating or identifying users to the database .. 4-3
Changing the password of the internal user ... 4-4
Dropping users from the database .. 4-4

Providing authorization to objects through privileges... 4-4
Privileges overview.. 4-5

System privileges .. 4-6
Object privileges.. 4-6
PUBLIC role ... 4-7
Privilege hierarchy rules .. 4-8

Granting or revoking system privileges ... 4-9
Granting administrator privileges... 4-10
Granting ALL PRIVILEGES ... 4-10
Granting privileges to connect to the database ... 4-11
Granting additional system privileges ... 4-11
Enabling users to perform operations on any database object type................................. 4-11

Granting or revoking object privileges .. 4-13
Grant all object privileges ... 4-13
Object privileges for tables ... 4-14
Object privileges for views ... 4-14
Object privileges for sequences.. 4-15
Object privileges for materialized views .. 4-15

vi

Object Privileges needed when creating foreign key with REFERENCES clause.......... 4-16
Object privileges for PL/SQL functions, procedures and packages 4-17
Object privileges for synonyms ... 4-17

Granting or revoking multiple privileges with a single SQL statement................................. 4-18
Granting or revoking privileges for cache groups ... 4-18

Cache manager privilege .. 4-18
Cache group system privileges .. 4-19
Cache group object privileges .. 4-20

Viewing user privileges.. 4-20
Privileges needed for utilities, built-in procedures and first connection attributes.............. 4-20
Privilege checking rules for parent-child tables ... 4-21

5 Globalization Support
Overview of globalization support features ... 5-1
Choosing a database character set... 5-2

Character sets and languages ... 5-2
Client operating system and application compatibility ... 5-2
Performance and storage implications.. 5-3
Character sets and replication .. 5-3

Length semantics and data storage ... 5-3
Connection character set ... 5-4
Linguistic sorts.. 5-4

Monolingual linguistic sorts ... 5-5
Multilingual linguistic sorts.. 5-5
Case-insensitive and accent-insensitive linguistic sorts ... 5-5
Performing a linguistic sort .. 5-6
Using linguistic indexes .. 5-6

SQL string and character functions .. 5-6
Setting globalization support attributes.. 5-7

Backward compatibility using TIMESTEN8 .. 5-8
Globalization support during migration ... 5-8

Object migration and character sets .. 5-9
Migration and length semantics .. 5-9
Migrating linguistic indexes ... 5-9
Migrating cache group tables ... 5-9

6 Using the ttIsql Utility
Batch mode vs. interactive mode ... 6-2
Defining default settings with the TTISQL environment variable ... 6-3
Customizing the ttIsql command prompt ... 6-4
Using the ttIsql online help ... 6-4
Using the ttIsql 'editline' feature for UNIX only ... 6-5

Emacs binding .. 6-5
vi binding .. 6-6

Using the ttIsql command history... 6-6
Saving and clearing the ttIsql command history... 6-7

Working with character sets ... 6-8

vii

Displaying database structure information .. 6-8
Using the ttIsql describe command ... 6-8
Using the ttIsql cachegroups command ... 6-9
Using the ttIsql dssize command... 6-9
Using the ttIsql monitor command ... 6-9

Listing database objects by object type .. 6-10
Viewing and setting connection attributes .. 6-12
Working with transactions .. 6-12
Working with prepared and parameterized SQL statements ... 6-13
Creating and executing PL/SQL blocks .. 6-16
Pass data from PL/SQL using OUT parameters .. 6-17
Viewing and changing query optimizer plans .. 6-18

Using the showplan command ... 6-18
Viewing commands and explain plans from the SQL Command Cache 6-21

View commands in the SQL Command Cache ... 6-21
Display query plan for statement in SQL Command Cache ... 6-22

Timing ODBC function calls .. 6-24
Managing XLA bookmarks ... 6-25

7 Working with Data in a TimesTen Database
Database overview ... 7-1

Database components.. 7-1
Database users and owners .. 7-2
Database persistence.. 7-2

Understanding tables .. 7-3
Overview of tables ... 7-3

Column overview ... 7-3
In-line and out-of-line columns .. 7-4
Default column values ... 7-4
Table names ... 7-4
Table access.. 7-4
Primary keys, foreign keys and unique indexes .. 7-5
System tables ... 7-5

Working with tables... 7-5
Creating a table.. 7-6
Dropping a table ... 7-6
Estimating table size ... 7-6

Implementing aging in your tables ... 7-6
Usage-based aging .. 7-7
Time-based aging.. 7-8
Aging and foreign keys.. 7-9
Scheduling when aging starts ... 7-9
Aging and replication.. 7-10

Understanding views.. 7-10
Creating a view.. 7-10

The SELECT query in the CREATE VIEW statement... 7-11
Dropping a view.. 7-11

viii

Restrictions on views and detail tables .. 7-11
Understanding materialized views.. 7-12

Overview of materialized views ... 7-12
Synchronous materialized view .. 7-13
Asynchronous materialized view.. 7-13
When to use synchronous or asynchronous materialized views...................................... 7-13

Working with materialized views .. 7-15
Creating a materialized view ... 7-15
Dropping a materialized view or a materialized view log .. 7-19
Restrictions on materialized views and detail tables.. 7-19
Performance implications of materialized views .. 7-20

Understanding indexes .. 7-21
Overview of index types .. 7-22
Creating an index .. 7-23
Altering an index... 7-23
Dropping an index .. 7-23
Estimating index size.. 7-23

Understanding rows ... 7-24
Inserting rows .. 7-24
Deleting rows... 7-24

Understanding synonyms.. 7-25
Creating synonyms ... 7-25
Dropping synonyms ... 7-26
Synonyms may cause invalidation or recompilation of SQL queries 7-26

8 Transaction Management and Recovery
Transaction overview .. 8-1

Configuring transaction implicit commit behavior .. 8-2
Transaction autocommit behavior.. 8-2
TimesTen DDL commit behavior ... 8-3
Relationship between autocommit and DDLCommitBehavior ... 8-4

Transaction semantics ... 8-4
Transaction atomicity .. 8-5
Transaction durability ... 8-5

Guaranteed durability ... 8-6
Delayed durability ... 8-6
Durable commit performance enhancements.. 8-7

Transaction logging ... 8-7
Managing transaction log buffers and files.. 8-8

Concurrency control through isolation and locking ... 8-8
Transaction isolation levels... 8-8
Locking granularities.. 8-10

Setting wait time for acquiring a lock ... 8-11
Checkpoint operations ... 8-11

Purpose of checkpoints ... 8-12
Usage of checkpoint files.. 8-12
Types of checkpoints .. 8-12

ix

Fuzzy or non-blocking checkpoints .. 8-13
Transaction-consistent checkpoints... 8-13

Setting and managing checkpoints... 8-13
Programmatically performing a checkpoint .. 8-14
Configure or turn off background checkpointing... 8-14
Display checkpoint history and status.. 8-14
Setting the checkpoint rate ... 8-14

9 TimesTen Database Performance Tuning
System and database tuning .. 9-1

Provide enough memory .. 9-2
Size your database correctly ... 9-2
Calculate shared memory size for PL/SQL runtime .. 9-2
Increase LogBufMB if needed .. 9-3
Use temporary databases if appropriate... 9-3
Avoid connection overhead.. 9-4
Load the database into RAM when duplicating.. 9-4
Reduce contention.. 9-4
Avoid operating system paging at load time... 9-5
Consider special options for maintenance ... 9-5
Check your driver .. 9-5
Enable tracing only as needed.. 9-6
Investigate alternative JVMs... 9-6
If you are using replication, adjust transaction log buffer size and CPU 9-6
Increase replication throughput for active standby pairs .. 9-6
Migrating data with character set conversions.. 9-7

Client/Server tuning .. 9-7
Work locally when possible.. 9-7
Choose a timeout interval ... 9-7
Choose the best method of locking.. 9-7

Choose an appropriate lock level ... 9-7
Choose an appropriate isolation level ... 9-8

Use shared memory segment as IPC when client and server are on the same machine......... 9-8
Enable TT_PREFETCH_CLOSE for Serializable transactions ... 9-9
Use a connection handle when calling SQLTransact ... 9-10

SQL tuning ... 9-10
Tune statements and use indexes ... 9-10
Select hash, range, or bitmap indexes appropriately... 9-11
Size hash indexes appropriately ... 9-12
Use foreign key constraint appropriately.. 9-13
Computing exact or estimated statistics .. 9-13
Avoid ALTER TABLE .. 9-13
Avoid nested queries .. 9-14
Prepare statements in advance.. 9-14
Avoid unnecessary prepare operations ... 9-15

Materialized view tuning .. 9-15
Limit number of join rows ... 9-15

x

Use indexes on join columns ... 9-15
Avoid unnecessary updates .. 9-16
Avoid changes to the inner table of an outer join .. 9-16
Limit number of columns in a view table.. 9-17

Transaction tuning .. 9-17
Size transactions appropriately... 9-17
Use durable commits appropriately... 9-17
Avoid frequent checkpoints .. 9-18
Turn off autocommit mode.. 9-18
Avoid transaction rollback... 9-19

Recovery tuning... 9-19
Set RecoveryThreads .. 9-19
Discovered direct I/O on HP-UX ... 9-19

Scaling for multiple CPUs ... 9-19
Run the demo applications as a prototype.. 9-20
Limit database-intensive connections per CPU.. 9-20
Use read operations when available .. 9-20
Limit prepares, re-prepares and connects ... 9-21
Limit replication transmitters and receivers and XLA readers .. 9-21
Allow indexes to be rebuilt in parallel during recovery ... 9-21
Use private commands... 9-21

XLA tuning ... 9-22
Increase transaction log buffer size when using XLA ... 9-22
Prefetch multiple update records ... 9-22
Acknowledge XLA updates... 9-22

10 The TimesTen Query Optimizer
When optimization occurs ... 10-1
Viewing SQL commands stored in the SQL Command Cache.. 10-3

Managing performance and troubleshooting commands... 10-3
Displaying commands stored in the SQL Command Cache .. 10-3

Viewing SQL query plans ... 10-5
Viewing a query plan from the system PLAN table .. 10-5

Instruct TimesTen to store the plan in the system PLAN table .. 10-6
Reading query plan from the PLAN table ... 10-6
Describing the PLAN table columns... 10-7

Viewing query plans associated with commands stored in the SQL Command Cache 10-8
Modifying plan generation ... 10-11

Why modify an execution plan? ... 10-11
When to modify an execution plan .. 10-12
How to modify execution plan generation.. 10-14

Glossary

Index

xi

Preface

Oracle TimesTen In-Memory Database is a memory-optimized relational database.
Deployed in the application tier, Oracle TimesTen In-Memory Database operates on
databases that fit entirely in physical memory using standard SQL interfaces. High
availability for the in-memory database is provided through real-time transactional
replication.

This guide provides:

■ Background information to help you understand how TimesTen works

■ Step-by-step instructions and examples that show how to perform the most
commonly needed tasks

Audience
To work with this guide, you should understand how database systems work and
have some knowledge of Structured Query Language (SQL).

Related documents
TimesTen documentation is available on the product distribution media and on the
Oracle Technology Network:

http://www.oracle.com/technetwork/database/timesten/documentation

Conventions
TimesTen supports multiple platforms. Unless otherwise indicated, the information in
this guide applies to all supported platforms. The term Windows refers to Windows
2000, Windows XP and Windows Server 2003. The term UNIX refers to Solaris, Linux,
HP-UX and AIX.

This document uses the following text conventions:

Note: In TimesTen documentation, the terms "data store" and
"database" are equivalent. Both terms refer to the TimesTen database
unless otherwise noted.

xii

TimesTen documentation uses these variables to identify path, file and user names:

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

italic monospace Italic monospace type indicates a variable in a code example that you
must replace. For example:

Driver=install_dir/lib/libtten.sl

Replace install_dir with the path of your TimesTen installation
directory.

[] Square brackets indicate that an item in a command line is optional.

{ } Curly braces indicated that you must choose one of the items separated
by a vertical bar (|) in a command line.

| A vertical bar (or pipe) separates alternative arguments.

. . . An ellipsis (. . .) after an argument indicates that you may use more
than one argument on a single command line.

% The percent sign indicates the UNIX shell prompt.

The number (or pound) sign indicates the UNIX root prompt.

Convention Meaning

install_dir The path that represents the directory where the current release of
TimesTen is installed.

TTinstance The instance name for your specific installation of TimesTen. Each
installation of TimesTen must be identified at install time with a unique
alphanumeric instance name. This name appears in the install path.

bits or bb Two digits, either 32 or 64, that represent either the 32-bit or 64-bit
operating system.

release or rr Three numbers that represent the first three numbers of the TimesTen
release number, with or without a dot. For example, 1121 or 11.2.1
represents TimesTen Release 11.2.1.

jdk_version Two digits that represent the version number of the major JDK release.
Specifically, 14 represent JDK 1.4; 5 represents JDK 5.

timesten A sample name for the TimesTen instance administrator. You can use
any legal user name as the TimesTen administrator. On Windows, the
TimesTen instance administrator must be a member of the
Administrators group. Each TimesTen instance can have a unique
instance administrator name.

DSN The data source name.

xiii

facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Technical support
For information about obtaining technical support for TimesTen products, go to the
following Web address:

http://www.oracle.com/support/contact.html

xiv

xv

What's New

This section summarizes the new features and functionality of Oracle TimesTen
In-Memory Database Release 11.2.1 that are documented in this guide, providing links
into the guide for more information.

New features in release 11.2.1.8.0
This section lists new features for Release 11.2.1.6.0 that are documented in this
reference and provides cross-references to additional information:

■ The ODBC Administrator GUI now contains new DDL replication connection
attributes. See "Creating a Data Manager DSN on Windows" on page 1-9.

New features in release 11.2.1.6.0
This section lists new features for Release 11.2.1.6.0 that are documented in this
reference and provides cross-references to additional information:

■ The ODBC Administrator GUI now contains new parallel replication connection
attributes. See "Creating a Data Manager DSN on Windows" on page 1-9.

New features in release 11.2.1.4.0
■ Synonym support

■ Privileges necessary for materialized views

Synonym support
You can create synonyms within TimesTen, as long as you have been granted the
appropriate privileges.

A synonym is an alias for a database object. Synonyms are often used for security and
convenience, because they can be used to mask object name and object owner. In
addition, you can use a synonym to simplify SQL statements. Synonyms provide
independence in that they permit applications to function without modification
regardless to which object a synonym points. Synonyms can be used in DML
statements and some DDL and IMDB cache statements.

For details on synonyms, see "Understanding synonyms" on page 7-25. For details on
the privileges necessary when creating and using synonyms, see "Object privileges for
synonyms" on page 4-17.

xvi

Privileges necessary for materialized views
The owner must have SELECT privileges on each table referenced by the materialized
view, also known as detail tables, when the materialized view is created. If the owner
loses the SELECT privilege on any of the detail tables, the materialized view is invalid.
For details on all privileges necessary for materialized views and how to recover
invalid materialized views, see "Object privileges for materialized views" on page 4-15.

View explain plan and SQL command using ttIsql
Using the ttIsql utility, you can view commands in the SQL command cache or
explain plans for commands in the SQL command cache. See "Viewing commands and
explain plans from the SQL Command Cache" on page 6-21 for details.

PL/SQL connection attributes
As shown in Figure 1–8, "PL/SQL Attributes", there are first connection attributes and
general connection attributes for PL/SQL.

New features in release 11.2.1.0
This guide has information about the following new features:

■ Access control

■ Asynchronous materialized views

■ SQL command cache

■ Bitmap indexes

■ Transaction log buffer file size

■ Automatic client failover

■ PL/SQL support

■ Replication performance

Access control
Oracle TimesTen In-Memory Database release 11.2.1 has a new access control model.
The previous TimesTen access control model has been removed. There is no
backwards compatibility between the two models.

Users are defined at the database level rather than at the installation level. Privileges
are defined at the object level. The system privileges in TimesTen release 7.0 and
previous releases have been replaced with system privileges that are similar to Oracle
database system privileges.

The main changes to access control in this release are as follows:

■ Access control is always on. You can no longer install TimesTen with access
control disabled.

■ Only the instance administrator can create and destroy databases.

■ Separate databases within an instance can have different users.

■ Every object must have an owner that is a user in the database. You cannot create
object bob.t1 unless user bob exists in the database.

■ Every object owner has access to their own objects. A user does not have access to
objects owned by other users unless explicitly granted access by the object's owner

xvii

or by a user with ADMIN privilege. Also, if the PUBLIC role has been granted
access to a given object, then all database users have access to that object.

■ Privileges are checked at prepare and when the statement is first executed.
Subsequent executions of a statement require further privilege checks only when a
revoke operation is executed in the database.

■ You cannot create or alter a user by executing the CREATE USER user
IDENTIFIED BY PASSWORD password or ALTER USER user IDENTIFIED BY
PASSWORD password SQL statements across a client/server connection.

■ You cannot drop a user with existing objects.

■ Many of the utilities and built-in procedures require a certain privilege in order to
execute. In addition, in order to modify or connect with certain first connection
attributes, certain privileges are required. The required privilege for each is
described with the utility, built-in procedure or first connection attribute
description in the Oracle TimesTen In-Memory Database Reference.

■ Only the instance administrator can execute the ttRepAdmin -duplicate
utility. The instance administrator must have the same operating system user
name on both source and target machines to execute ttRepAdmin -duplicate.
For more details, see Oracle TimesTen In-Memory Database Reference.

■ In previous versions, users could create an object with any owner name, even
though no such user existed. For example, user terry could create the object
pat.table1 even though there was no user pat in the database. However, since
every object now has an owner, when restoring from a TimesTen database from a
release before 11.2.1 using the ttMigrate utility, TimesTen automatically creates
the user pat for this object. The user pat will have no privileges and will have an
internally generated password. For more information, see "Database Upgrades" in
the Oracle TimesTen In-Memory Database Installation Guide.

■ If you are using the ttMigrate utility to save or restore the entire TimesTen
database, you must have the ADMIN privilege. However, if you are using
ttMigrate to save or restore a few database objects, then you need only the
privileges required to read or create those database objects. For more information,
see the description for ttMigrate in the Oracle TimesTen In-Memory Database
Reference.

For details on creating users and assigning privileges for access to database objects, see
Chapter 4, "Managing Access Control".

Asynchronous materialized views
Materialized views can be refreshed asynchronously at either a specified time or
through manual initiation. You can either have the deferred transactions updated
incrementally or with a complete refresh. A materialized view log is created and
associated with the asynchronous materialized view to facilitate the incremental
refresh of data from the detail tables. For full details, see "Understanding materialized
views" on page 7-12 and "Working with materialized views" on page 7-15.

SQL command cache
All commands executed—SQL statements, built-in procedures, and so on—are stored
in the SQL Command Cache, which uses temporary memory. The commands are
stored up until the limit of the SQL Command Cache is reached, then the new
commands are stored after the last used commands are removed. You can retrieve one
or more of these commands that are stored in the SQL Command Cache. For full

xviii

details on the SQL command cache, see "Viewing SQL commands stored in the SQL
Command Cache" on page 10-3.

You can also view the query plan information to monitor and troubleshoot your
queries. For details, see "Viewing query plans associated with commands stored in the
SQL Command Cache" on page 10-8.

Bitmap indexes
TimesTen supports bitmap indexes. See "Overview of index types" on page 7-22.

Transaction log buffer file size
The configuration for the transaction log buffer file size has been modified from
LogBuffSize, which was defining the size in KBs, to LogBufMB, which defines the
transaction log buffer size in MBs. This affects how you configure the database size, as
described in "Specifying the size of a database" on page 1-24. Use the LogBufMB to
configure performance, as described in "Increase LogBufMB if needed" on page 9-3.

Automatic client failover
You can configure automatic client failover for databases that have active standby pair
replication schemes. This enables the client to fail over automatically to the server on
which the standby database resides. See "Configuring automatic client failover" on
page 2-15.

PL/SQL support
You can specify values for PL/SQL connection attributes in a data source name (DSN).
See "Specifying PL/SQL connection attributes in a DSN" on page 1-17.

You can use the ttIsql utility to create and execute PL/SQL blocks. See "Creating
and executing PL/SQL blocks" on page 6-16 and "Pass data from PL/SQL using OUT
parameters" on page 6-17.

You can use the ttIsql utility to display PL/SQL objects. See "Listing database
objects by object type" on page 6-10.

Replication performance
Use the RecoveryThreads first connection attribute to increase performance of
active standby pairs. See "Increase replication throughput for active standby pairs" on
page 9-6.

1

Managing TimesTen Databases 1-1

1Managing TimesTen Databases

A TimesTen database is a collection of elements such as tables, views, and sequences
that can be accessed and manipulated through SQL. Each TimesTen database is
created when the first connection initiates. The database instance is freed only when
all existing connections have been disconnected. The configuration for the TimesTen
database is contained within the first connection attributes.

Thus, this chapter describes first how to configure for a connection to the TimesTen
database, because the configuration and management for your TimesTen database is
contained in attributes within the connection definition.

Once you have created a database, you can perform the following:

■ Use the ttIsql utility to connect to the database and execute a SQL file or start an
interactive SQL session, as described in "Batch mode vs. interactive mode" on
page 6-2.

■ Execute an application that uses the database, as described in Oracle TimesTen
In-Memory Database C Developer's Guide, Oracle TimesTen In-Memory Database Java
Developer's Guide and Oracle TimesTen In-Memory Database TTClasses Guide.

The main topics are as follows:

■ Connecting to TimesTen with ODBC and JDBC drivers

■ Specifying Data Source Names to identify TimesTen databases

■ Defining a Data Manager DSN

■ Defining Client and Server DSNs

■ Resolution path for a DSN

■ DSN examples

■ ODBC.INI file entry descriptions

■ Specifying a RAM policy

■ Specifying the size of a database

■ Manage existing tables in the database

■ Migration, backup, and restoration of the database

■ Thread programming with TimesTen

Connecting to TimesTen with ODBC and JDBC drivers
As described in "TimesTen connection options" in the Oracle In-Memory Database Cache
Introduction, applications use the TimesTen ODBC driver to access a TimesTen

Connecting to TimesTen with ODBC and JDBC drivers

1-2 Oracle TimesTen In-Memory Database Operations Guide

database. The application can use the ODBC direct driver, the Windows ODBC driver
manager, the ODBC client driver or the ODBC driver indirectly through a provided
interface to access the TimesTen database.

Figure 1–1 shows how the application can use different drivers and interfaces to access
the TimesTen database.

Figure 1–1 Application access to TimesTen database diagram

■ C applications interact with TimesTen by linking directly with the TimesTen
ODBC driver, by linking with the Windows ODBC driver manager, or by using
the OCI or Pro*C/C++ interfaces that access the ODBC driver.

■ Java applications interact with TimesTen by loading the JDBC library.

■ C++ applications interact with TimesTen through a TimesTen-provided set of
classes called TTClasses or by using the OCI or Pro*C/C++ interfaces that access
the ODBC driver.

■ C# applications interact with TimesTen through Oracle Data Provider for .NET
support for the TimesTen database.

Consider the following points:

■ An application that links directly with an ODBC driver, whether it is linked with
the direct driver or client driver, is limited to using only the driver with which it is
linked. An application linked directly to either of the TimesTen drivers can
connect to multiple databases at the same time.

■ The TimesTen direct driver supports multiple connections to multiple
TimesTen databases, each of which are all the same TimesTen version.

■ The TimesTen client driver, used to facilitate a client/server connection,
supports multiple connections to multiple TimesTen databases, which can be
different TimesTen versions.

This option offers less flexibility but better performance than linking with a driver
manager.

■ An application can link with more than one ODBC driver within the same
application, even if the drivers are for different databases. If the application loads
more than one ODBC driver, the application must use a driver manager, such as
the Windows ODBC driver manager.

JDBC TTClasses (C++) OCI

ODBC driver

Pro*C/C++

Application

SQL engine PL/SQL engine

TimesTen database engine

ODP.NET

Connecting to TimesTen with ODBC and JDBC drivers

Managing TimesTen Databases 1-3

An application might need multiple drivers if it needs to use both the TimesTen
direct driver and the TimesTen client driver.

The Windows ODBC driver manager dynamically loads an ODBC driver at
runtime. However, carefully evaluate the benefits of using the ODBC driver
manager, because it may affect the performance of your application with its
additional runtime overhead.

For more information on how to compile an application that uses the TimesTen driver
manager, see Oracle TimesTen In-Memory Database C Developer's Guide, Oracle TimesTen
In-Memory Database Java Developer's Guide and Oracle TimesTen In-Memory Database
TTClasses Guide.

The following sections describe how to define TimesTen databases:

■ Connecting using TimesTen ODBC drivers

■ Connecting using the TimesTen JDBC driver and driver manager

Connecting using TimesTen ODBC drivers
TimesTen includes the following ODBC drivers:

■ TimesTen Data Manager driver: A TimesTen ODBC driver for use with direct
connect applications.

■ TimesTen Client driver: A TimesTen Client ODBC driver for use with client/server
applications.

TimesTen includes the following two versions of the Data Manager ODBC driver:

■ Production: Use the production version of the TimesTen Data Manager driver for
most application development and for all deployment.

■ Debug: Use the debug version of the TimesTen Data Manager driver only if you
encounter problems with TimesTen itself. This version performs additional
internal error checking and is slower than the production version. On UNIX, the
TimesTen debug libraries are compiled with the -g option to display additional
debug information.

On Windows, the production version of the TimesTen Data Manager is installed by
default. To install the debug version, choose Custom setup. To install the TimesTen
Client driver, choose either Typical or Custom setup.

Table 1–1 lists the ODBC drivers for Windows:

Note: An application that is using an ODBC driver manager cannot
use XLA.

Table 1–1 ODBC drivers provided for Windows platforms

Platform Version Name

Windows Production TimesTen Data Manager 11.2.1 Driver.

Windows Debug TimesTen Data Manager 11.2.1 Debug Driver.

Windows Client TimesTen Client 11.2.1 Driver

Connecting to TimesTen with ODBC and JDBC drivers

1-4 Oracle TimesTen In-Memory Database Operations Guide

On UNIX, depending on the options selected at install time, TimesTen may install the
Client driver and both the production version and the debug version of the TimesTen
Data Manager ODBC driver.

Table 1–2 lists the TimesTen ODBC drivers for UNIX platforms.

Connecting using the TimesTen JDBC driver and driver manager
JDBC enables Java applications to issue SQL statements to TimesTen and process the
results. It is the primary interface for data access in the Java programming language.
For TimesTen installations, JDBC is installed with the TimesTen Data Manager.

As shown in Figure 1–1, the TimesTen JDBC driver uses the ODBC driver to access
TimesTen databases. For each JDBC method, the driver executes a set of ODBC
functions to perform the appropriate operation. Since the JDBC driver depends on
ODBC for all database operations, the first step in using JDBC is to define a TimesTen
database and the ODBC driver that will access it on behalf of JDBC.

The TimesTen JDBC API is implemented using native methods to bridge to the
TimesTen native API and provides a driver manager that can support multiple drivers
connecting to separate databases. The JDBC driver manager in the DriverManager
class keeps track of all JDBC drivers that have been loaded and are available to the
Java application. The application may load several drivers and access each driver
independently. For example, both the TimesTen Client JDBC driver and the TimesTen
direct driver can be loaded by an application. Then, Java applications can access
databases either on the local machine or a remote machine.

For a list of the Java functions supported by TimesTen, see the Oracle TimesTen
In-Memory Database Java Developer's Guide.

Table 1–2 ODBC drivers provided for UNIX platforms

Platform Version Location and name

HP-UX Production install_dir/lib/libtten.sl

TimesTen Data Manager 11.2.1 Driver.

HP-UX Debug install_dir/lib/libttenD.sl

TimesTen Data Manager 11.2.1 Debug Driver.

HP-UX Client install_dir/lib/libttclient.sl

TimesTen Client 11.2.1 Driver.

Solaris

Linux

Production install_dir/lib/libtten.so

TimesTen Data Manager 11.2.1 Driver.

Solaris

Linux

Debug install_dir/lib/libttenD.so

TimesTen Data Manager 11.2.1 Debug Driver.

Solaris

Linux

Client install_dir/lib/libttclient.so

TimesTen Client 11.2.1 Driver.

AIX Production install_dir/lib/libtten.a

TimesTen Data Manager 11.2.1 Driver.

AIX Debug install_dir/lib/libttenD.a

TimesTen Data Manager 11.2.1 Debug Driver.

AIX Client install_dir/lib/libttclient.a

TimesTen Client 11.2.1 Driver.

Specifying Data Source Names to identify TimesTen databases

Managing TimesTen Databases 1-5

Specifying Data Source Names to identify TimesTen databases
When you connect from an application, you use a Data Source Name (DSN) to
uniquely identify the particular TimesTen database to which you want to connect.
Specifically, a DSN is a character-string name that identifies a TimesTen database and
a collection of connection attributes that are to be used when connecting to the
database. On Windows, the DSN also specifies the ODBC driver to be used to access
the database.

Even though the DSN uniquely identifies a TimesTen database, a database can be
referenced by multiple DSNs. The difference between each of these unique DSNs is in
the specification of the connection attributes to the database. This provides convenient
names to different connection configurations for a single database.

A DSN has the following characteristics:

■ Its maximum length is 32 characters.

■ It is composed of ASCII characters except for the following: [] { } , ; ? * = ! @ \

■ It cannot contain spaces.

The following sections describe how to configure and manage your DSNs:

■ Overview of user and system DSNs

■ Defining DSNs for direct or client/server connections

■ Connection attributes for Data Manager DSNs or Server DSNs

Overview of user and system DSNs
DSNs are resolved using a two-tiered naming system, consisting of user DSNs and
system DSNs, which are as follows:

■ A user DSN can be used only by the user who created the DSN.

– On Windows, user DSNs are defined from the User DSN tab of the ODBC
Data Source Administrator.

– On UNIX, user DSNs are defined in the file $HOME/.odbc.ini or in a file
named by the ODBCINI environment variable. This file is referred to as the
user ODBC.INI file.

Although a user DSN is private to the user who created it, it is only the DSN,
consisting of the character-string name and its attributes, that is private. The
underlying database can be referenced by other users' user DSNs or by system
DSNs.

Note: If a user tries to use a DSN that has connection attributes for
which they do not have privileges, such as first connection attributes,
they receive an error. For more information on first connection
attribute privileges, see "Connection Attributes" in the Oracle TimesTen
In-Memory Database Reference.

Note: According to the ODBC standard, when an attribute occurs
multiple times in a connection string, the first value specified is used,
not the last value.

Specifying Data Source Names to identify TimesTen databases

1-6 Oracle TimesTen In-Memory Database Operations Guide

TimesTen supports data sources for both the TimesTen Data Manager and the
TimesTen Client in the .odbc.ini file.

■ A system DSN can be used by any user on the machine on which the system DSN
is defined to connect to the TimesTen database.

– On Windows, system DSNs are defined from the System DSN tab of the
ODBC Data Source Administrator.

– On UNIX, system DSNs are defined in the sys.odbc.ini file, which is
referred to as the system ODBC.INI file.

– In a non-root installation, the file is located in install_
dir/info/sys.odbc.ini.

– In a root installation, the file is located in
/var/TimesTen/InstanceName/sys.odbc.ini or
/var/TimesTen/sys.odbc.ini.

Defining DSNs for direct or client/server connections
DSNs are created to uniquely identify a database, whether local or remote. The
following explains the type of DSN to use for either a direct or client/server
connection:

■ Data Manager DSN: A DSN that specifies a local database uses the TimesTen Data
Manager ODBC driver, which is the direct driver. You can use either the
production version or the debug version of the TimesTen Data Manager driver.

A Data Manager DSN refers to a database using a path name and a filename
prefix. The database path name specifies the directory location of the database and
the prefix for the database, such as C:\data\chns\AdminDS or
/home/chns/AdminDS.

A Data Manager DSN that refers to a given TimesTen database must be defined on
the same system on which the database resides. TimesTen creates dsName.resn
files for each database. These files are used internally by TimesTen for maintaining
logs.

If multiple Data Manager DSNs refer to the same database, they must all use
exactly the same database path name, even if some other path name identifies the
same location. For example, you cannot use a symbolic link to refer to the database
in one DSN and the actual path name in another DSN. On Windows, you cannot
use a mapped drive letter in the database path name.

■ Client DSN: A Client DSN specifies a remote database and uses the TimesTen
Client. A Client DSN refers to a TimesTen database indirectly by specifying a
hostname, DSN pair, where the hostname represents the server machine on
which TimesTen Server is running and the DSN refers to a Server DSN that
specifies the TimesTen database on the server host.

■ Server DSN: A Server DSN is always defined as a system DSN and is defined on
the server system for each database on that server that will be accessed by client

Note: This path name and prefix does not define a file name, but the
name of the directory where the database is located and the prefix for
all database files. The actual files used by the database append file
suffixes, such as C:\data\chns\AdminDS.ds0 or
/home/chns/AdminDS.log2.

Specifying Data Source Names to identify TimesTen databases

Managing TimesTen Databases 1-7

applications. The format and attributes of a server DSN are very similar to those of
a Data Manager DSN.

On UNIX, all user DSNs including both Client DSNs and Data Manager DSNs that are
created by a specific user are defined in the same user ODBC.INI file. Similarly, all
system DSNs are defined in the same system ODBC.INI file.

The following table indicates the types of DSN supported by TimesTen, whether to
create a user or system DSN and the location of the DSN.

For more information about Client DSNs and Server DSNs, see "Working with the
TimesTen Client and Server" on page 2-1.

Connection attributes for Data Manager DSNs or Server DSNs
There are four types of TimesTen Data Manager DSN or Server DSN attributes:

■ Data Store attributes are associated with a database when it is created and cannot
be modified by subsequent connections. They can only be changed by destroying
and re-creating the database.

The following are some of the more popular data store attributes:

– DataStore: Directory name and file name prefix of the database.

– LogDir: Directory name of the database transaction log files. By default, the
transaction log files reside in the checkpoint files directory. Placing the
transaction log files and checkpoint files on different disks can improve
system throughput.

– DatabaseCharacterSet: Required character set specification that defines
the storage encoding.

■ First connection attributes are used when the TimesTen database is loaded into
memory. Only the instance administrator can load a database with first connection
attribute settings. By default, TimesTen loads an idle database, which is a database
with no connections, into memory when a first connection is made to it. These
attributes persist for all subsequent connections until the last connection to the
database is closed. First connection attributes can be modified only when the
TimesTen database is unloaded and then the instance administrator reconnects
with different values for the first connection attributes.

The following are some of the more popular first connection attributes:

DSN type
User or System
DSN? Location of DSN

Data Manager DSN Can be a user or
system DSN

Located on the machine where the database
resides.

Client DSN Can be a user or
system DSN

Located on any local or remote machine.

Server DSN Must be a system
DSN

Located on the machine where the database
resides.

Note: For a complete description of all attributes, see "Connection
Attributes" in the Oracle TimesTen In-Memory Database Reference.

Defining a Data Manager DSN

1-8 Oracle TimesTen In-Memory Database Operations Guide

– PermSize: Configures the allocated size of the database's permanent
partition. The permanent partition contains persistent database elements. Only
the permanent partition is written to disk during a checkpoint operation.

– TempSize: Configures the allocated size of the database's temporary
partition. The temporary partition contains transient data generated when
executing statements.

■ General connection attributes are set by each connection and persist for the
duration of the connection. Each concurrent connection can have different values.

The user name and password can be specified within the general connection
attributes in the DSN. When the user name is specified in the connection attributes
for the DSN, this defines the user name to be used in the connection, whether
using a direct or client/server connection. Any user configuration in the general
connection attributes or on the connection string itself has precedence over the
user name provided when initiating the connection, if different.

If you do not set the user name/password general connection attributes, the user
and password defaults to the operating system user who initiates the connection.

The first connection to the TimesTen database can ONLY be initiated by the
instance administrator. In this case, the user name/password fields in the
connection string must be blank and the instance administrator should be the one
initiating the first connection.

When you initiate a client/server connection, the passwords sent for the
connection are all encrypted by the client/server protocol. For external users, you
provide only the user name, as the password is verified by the operating system.

■ IMDB Cache attributes allow you to enter the Oracle Service Identifier for the
Oracle instance from which data will be loaded into TimesTen.

On Windows, you specify attributes in the ODBC Data Source Administrator.

On UNIX, you specify attributes in the ODBC.INI file. Attributes that do not appear in
the ODBC.INI file assume their default value.

Defining a Data Manager DSN
The following sections describe how to create a Data Manager DSN on either platform:

Note: Your system must have sufficient main memory to
accommodate the entire database. For more details on setting partition
sizes, see "Specifying the size of a database" on page 1-24.

Note: If you provide connection attributes in the connection string,
this overrides the connection attributes set in the DSN. See
"Connecting to a database using a connection string" on page 1-23 for
details.

Note: See "Working with the TimesTen Client and Server" on
page 2-1 for a description of the connection attributes that can be used
with the TimesTen Client ODBC driver.

Defining a Data Manager DSN

Managing TimesTen Databases 1-9

■ Creating a Data Manager DSN on Windows

■ Creating a Data Manager DSN on UNIX

Creating a Data Manager DSN on Windows
The following sections describe how to create a DSN on Windows:

■ Specify the ODBC driver

■ Specify the Data Manager DSN

■ Specify the connection attributes

Specify the ODBC driver
Specify the ODBC driver in the ODBC Data Source Administrator.

1. On the Windows Desktop, choose Start > Settings > Control Panel >
Administrative Tools > Data Sources (ODBC). This opens the ODBC Data Source
Administrator.

2. Choose whether you want to create a User DSN or System DSN. For a description
of user and system DSNs, see "Overview of user and system DSNs" on page 1-5.

3. Perform one of the following:

■ Select an existing TimesTen data source and click Configure.

■ Click Add. Then, select the appropriate TimesTen driver from the list. Click
Finish. This displays the TimesTen ODBC Setup dialog.

Specify the Data Manager DSN
On the Data Store tab of the TimesTen ODBC Setup dialog, specify a data source name
(DSN), a database directory path and prefix, and a database character set. The
database directory path cannot reference a mapped drive. See Figure 1–2.

Note: For additional examples of setting up a Data Manager DSN,
see "DSN examples" on page 1-16.

Note: JDBC users need to specify the ODBC driver to be used by the
JDBC driver, as described in "Connecting using the TimesTen JDBC
driver and driver manager" on page 1-4.

Note: For a list of TimesTen ODBC drivers, see "Connecting using
TimesTen ODBC drivers" on page 1-3.

Defining a Data Manager DSN

1-10 Oracle TimesTen In-Memory Database Operations Guide

Figure 1–2 Data Store tab

For an explanation of the DSN, database path and prefix, see "Specifying Data Source
Names to identify TimesTen databases" on page 1-5. For an explanation of database
character sets, see "Choosing a database character set" on page 5-2. The description
field is optional.

Specify the connection attributes
Indicate the desired connection attributes under the First Connection, General
Connection, and NLS Connection tabs of the TimesTen ODBC Setup dialog as shown
in Figure 1–3, Figure 1–4,and Figure 1–5. In addition, if you are using IMDB Cache for
Oracle, specify the connection attributes shown in Figure 1–6. If you are using a
multithreaded client/server configuration, specify the connection attributes shown in
Figure 1–7.

Note: For a description of the connection attributes, see "Connection
Attributes" in Oracle TimesTen In-Memory Database Reference.

Defining a Data Manager DSN

Managing TimesTen Databases 1-11

Figure 1–3 First Connection Attributes

Figure 1–4 General Connection Attributes

Defining a Data Manager DSN

1-12 Oracle TimesTen In-Memory Database Operations Guide

Figure 1–5 NLS Connection Attributes

Figure 1–6 IMDB Cache Attributes

Defining a Data Manager DSN

Managing TimesTen Databases 1-13

Figure 1–7 Server Attributes

Figure 1–8 PL/SQL Attributes

Click OK when finished.

Creating a Data Manager DSN on UNIX
This section includes the following topics:

■ Create a user or system ODBC.INI file

■ Using environment variables in database path names

Defining a Data Manager DSN

1-14 Oracle TimesTen In-Memory Database Operations Guide

Create a user or system ODBC.INI file
On UNIX, user DSNs are defined in the file $HOME/.odbc.ini or in a file named by
the ODBCINI environment variable. This file is referred to as the user ODBC.INI file.
System DSNs are defined in the system ODBC.INI file, which is located in install_
dir/info/sys.odbc.ini.

The syntax for user and system ODBC.INI files are the same. The syntax is described
in "ODBC.INI file entry descriptions" on page 1-20. The system ODBC.INI file is
created when TimesTen is installed on the machine. Users must create their own user
ODBC.INI file.

Perform the following to create the DSN:

1. Specify the DSN in the ODBC.INI file. The DSN appears inside square brackets at
the top of the DSN definition on a line by itself. For example:

[AdminDS]

2. Specify the ODBC driver.

To set the TimesTen driver, specify the DRIVER attribute in the ODBC.INI file.
The following example provides the TimesTen ODBC driver that this DSN is
configured to use:

[AdminDS]
DRIVER=install_dir/lib/libtten.so

3. Specify the database directory path and prefix in the ODBC.INI file. The following
example defines /users/robin as the database directory path and FixedDs as
the prefix for the database files:

DataStore=/users/robin/FixedDs

The database directory path can use environment variables, as discussed in "Using
environment variables in database path names" on page 1-15.

4. Choose a database character set. The following example defines the database
character set in the ODBC.INI file as US7ASCII:

DatabaseCharacterSet=US7ASCII

Note: For examples on defining a DSN, see "DSN examples" on
page 1-16.

Note: JDBC users need to specify the ODBC driver to be used by the
JDBC driver, as described in "Connecting using the TimesTen JDBC
driver and driver manager" on page 1-4.

Note: For a list of TimesTen ODBC drivers that you can use, see
Table 1–2.

Note: For more information, see "Specifying Data Source Names to
identify TimesTen databases" on page 1-5.

Resolution path for a DSN

Managing TimesTen Databases 1-15

5. Set connection attributes in your ODBC.INI file. Attributes that do not appear in
the ODBC.INI file assume their default value.

Using environment variables in database path names
You can use environment variables in the specification of the database path name and
transaction log file path name. For example, you can specify $HOME/AdminDS for the
location of the database.

Environment variables can be expressed either as $varname or $(varname). The
parentheses are optional. A backslash character (\) in the database path name quotes
the next character.

Defining Client and Server DSNs
For directions on how to define Client or Server DSNs for each platform, see "Defining
Server DSNs" on page 2-7 and "Creating Client DSNs" on page 2-12.

Resolution path for a DSN
When resolving a specific DSN, TimesTen performs the following:

1. Searches for a user DSN with the specified name in the following files:

a. The file referenced by the ODBCINI environment variable, if it is set.

b. The .odbc.ini file in the user's home directory, if the ODBCINI environment
variable is not set.

2. If no matching user DSN is found, TimesTen looks for a system DSN with the
specified name.

Note: For more information, see "Choosing a database character set"
on page 5-2.

Note: See "Connection Attributes" in Oracle TimesTen In-Memory
Database Reference. For examples, see "DSN examples" on page 1-16.

Note: Environment variable expansion uses the environment of the
process connecting to the database. Different processes may have
different values for the same environment variables and may
therefore expand the database path name differently. Environment
variables can only be used in the user ODBC.INI file. They cannot be
specified in the system ODBC.INI file.

Note:

■ If a user DSN and a system DSN with the same name exist,
TimesTen retrieves the user DSN.

■ On UNIX, if there are multiple DSNs with the same name in the
same ODBC.INI file, TimesTen retrieves the first one specified in
the file.

DSN examples

1-16 Oracle TimesTen In-Memory Database Operations Guide

a. The file referenced by the SYSODBCINI environment variable, if it is set.

b. The sys.odbc.ini file in the daemon home directory, if the SYSODBCINI
environment variable is not set.

c. On UNIX, for a non-root installation, the file is located in install_
dir/info/sys.odbc.ini. Or for a root installation, the file is located at
/var/TimesTen/InstanceName/sys.odbc.ini or
/var/TimesTen/sys.odbc.ini.

DSN examples
This section provides additional examples of how to set up a database:

■ Setting up a temporary database

■ Specifying PL/SQL connection attributes in a DSN

■ Creating multiple DSNs to a single database

For each example, the Windows ODBC Data Source Administrator settings are
followed by the corresponding ODBC.INI entries for UNIX.

Setting up a temporary database
This example illustrates how to set up a temporary database. For information on
temporary databases, see "Database overview" on page 7-1.

On Windows, you can use the settings in the TimesTen ODBC Setup dialog to set up a
temporary database. See Figure 1–9 and Figure 1–10.

Figure 1–9 Data Store tab

DSN examples

Managing TimesTen Databases 1-17

Figure 1–10 First Connection Attributes

To set up a temporary database on UNIX, create the following entries in your
ODBC.INI file. For a list of drivers for all UNIX platforms, see the table in "Connecting
using TimesTen ODBC drivers" on page 1-3.

The text in square brackets is the data source name.

[TempDs]
Driver=install_dir/lib/libtten.so
DataStore=/users/robin/TempDs
#this is a temporary database
Temporary=1
#create database if it is not found
AutoCreate=1
#log database updates to disk
LogPurge=1
DatabaseCharacterSet=US7ASCII

Specifying PL/SQL connection attributes in a DSN
You can specify values for PL/SQL general connection attributes.

The following are some of the PL/SQL connection attributes:

■ PLSCOPE_SETTINGS - Controls whether the PL/SQL compiler generates
cross-reference information.

■ PLSQL_OPTIMIZE_LEVEL - Sets the optimization level that is used to compile
PL/SQL library units.

Note: For a complete list of PL/SQL connection attributes, see
"Connection Attributes" in the Oracle TimesTen In-Memory Database
Reference.

DSN examples

1-18 Oracle TimesTen In-Memory Database Operations Guide

■ PLSQL_MEMORY_ADDRESS - Specifies the virtual address, as a hexadecimal value,
at which the PL/SQL shared memory segment is loaded into each process that
uses the TimesTen direct drivers. This memory address must be identical in all
connections to your database and in all processes that connect to your database.

■ PLSQL_MEMORY_SIZE - Determines the size, in megabytes, of the PL/SQL shared
memory segment.

This example creates the PLdsn DSN, enables PL/SQL by setting PLSQL to "1" and
sets the PL/SQL shared memory segment size to 32 MB.

[PLdsn]
Datastore=/users/user1/PLdsn
PermSize=32
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8
PLSQL=1
PLSQL_MEMORY_SIZE=32

For more examples, see "PL/SQL connection attributes" in Oracle TimesTen In-Memory
Database PL/SQL Developer's Guide.

Creating multiple DSNs to a single database
You can create two or more DSNs that refer to the same database but have different
connection attributes.

This example creates two DSNs, AdminDSN and GlobalDSN. The DSNs are identical
except for their connection character sets. Applications that use the US7ASCII
character set can connect to the TTDS database by using AdminDSN. Applications that
use multibyte characters can connect to the TTDS database by using GlobalDSN.

For Windows, use the ODBC Data Source Administrator to define AdminDSN as
shown in Figure 1–11. AdminDSN is created with the AL32UTF8 database character set.
Figure 1–12 shows that US7ASCII is the connection character set for AdminDSN.

Figure 1–11 Creating AdminDSN using TTDS database

DSN examples

Managing TimesTen Databases 1-19

Figure 1–12 Setting the connection character set for AdminDSN

GlobalDSN is also created with the AL32UTF8 database character set, as shown in
Figure 1–13. Figure 1–14 shows that the connection character set for GlobalDSN is
AL32UTF8.

Figure 1–13 Creating GlobalDSN using TTDS database

ODBC.INI file entry descriptions

1-20 Oracle TimesTen In-Memory Database Operations Guide

Figure 1–14 Setting the connection character set for GlobalDSN

The next example shows how to specify the DSNs on UNIX. It uses the TimesTen Data
Manager ODBC driver for Solaris.

The text in square brackets is the data source name.

[AdminDSN]
Driver=install_dir/lib/libtten.so
Datastore=/data/TTDS
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=US7ASCII

[GlobalDSN]
Driver=install_dir/lib/libtten.so
DataStore=/data/TTDS
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8

ODBC.INI file entry descriptions
The following sections describe the entries in the ODBC.INI file:

■ ODBC Data Sources

■ Data Source specification

■ ODBC.INI file example

ODBC Data Sources
Each entry in the optional ODBC Data Sources section lists a data source and a
description of the driver it uses. The data source section has the following format:

[ODBC Data Sources]
DSN=driver-description

■ The DSN is required and it identifies the data source to which the driver connects.
You choose this name.

ODBC.INI file entry descriptions

Managing TimesTen Databases 1-21

■ The driver-description is required. It describes the driver that connects to
the data source.

The optional Data Sources section, when present in the system DSN file on the
TimesTen Server, is used during the setup of Client DSNs. All system DSNs are made
available to the Client DSN setup for the ODBC Data Source Administrator on the
client, which displays all available DSNs on the TimesTen Server. The user can always
add a new system DSN in the ODBC Data Source Administrator. When adding DSNs
to the system DSN file, you should only include those DSNs that can be advertised to
clients. All system DSNs are potentially accessible through the client/server
configuration, even if they are not advertised.

Data Source specification
Each DSN listed in the ODBC Data Sources section has its own DSN specification. The
DSN specification for Data Manager DSN has the format shown in Table 1–3.

For example, the sampledb_1121 DSN could have a specification that includes the
following:

[sampledb_1121]
Driver=install_dir/lib/libtten.so
DataStore=install_dir/info/DemoDataStore/sampledb_1121
...

The database specification for TimesTen Client DSN has the format shown in
Table 1–4.

Table 1–3 Data Source specification format

Component Description

[DSN] The DSN is required. It is the name of the DSN,
as specified in the ODBC Data Sources section
of your .odbc.ini file.

Driver=driver-path-name The TimesTen Data Manager driver that is
linked with the data source. This is relevant
when using a driver manager or for the server
in a client/server scenario.

DataStore=data-store-path-prefix The directory path and prefix of the database
to access. This is required.

Optional attributes See "Connection Attributes" in Oracle TimesTen
In-Memory Database Reference for information
about attributes.

Note: While the syntax for the TimesTen Client DSN is listed here,
full directions for setting the Client DSN and Server DSN are located
in "Defining Server DSNs" on page 2-7 and "Creating Client DSNs" on
page 2-12.

Table 1–4 Database specification for TimesTen Client configurations

Component Description

[DSN] The DSN is required. It is the same DSN
specified in the ODBC Data Sources section of
the .odbc.ini file.

ODBC.INI file entry descriptions

1-22 Oracle TimesTen In-Memory Database Operations Guide

For example, the client/server data source sampledbCS_1121 that connects to
sampledb_1121 on the TimesTen Server ttserver could have a data source
specification that includes the following:

[sampledbCS_1121]
TTC_Server=ttserver
TTC_SERVER_DSN=sampledb_1121
TTC_Timeout=30

ODBC.INI file example
The following example shows portions of a UNIX .odbc.ini file:

...
[ODBC Data Sources]
sampledb_1121=TimesTen 11.2.1 Driver
...

[sampledb_1121]
Driver=install_dir/lib/libtten.so
DataStore=install_dir/info/DemoDataStore/sampledb_1121
PermSize=40
TempSize=32
PLSQL=1
DatabaseCharacterSet=US7ASCII
...

##
This following sample definitions should be in the .odbc.ini file
that is used for the TimesTen 11.2.1 Client.
The Server Name is set in the TTC_SERVER attribute.
The Server DSN is set in the TTC_SERVER_DSN attribute.
###

[ODBC Data Sources]
sampledbCS_1121=TimesTen 11.2.1 Client Driver
...

[sampledbCS_1121]
TTC_SERVER=localhost
TTC_SERVER_DSN=sampledb_1121
...

TTC_Server=server-name The server-name is required. It is the DNS
name, host name, IP address or logical server
name for the TimesTen Server.

TTC_Server_DSN=server-DSN The server-DSN is required. It is the name of
the data source to access on the TimesTen
Server.

TTC_Timeout=value Client connection timeout value in seconds.

Note: Most TimesTen Data Manager attributes are ignored for
TimesTen Client databases.

Table 1–4 (Cont.) Database specification for TimesTen Client configurations

Component Description

Specifying a RAM policy

Managing TimesTen Databases 1-23

Connecting to a database using a connection string
TimesTen applications require a DSN or a connection string be specified to connect to
a database. For modularity and maintainability, it is better to set attributes in a DSN
rather than in a connection string within the application, unless a particular
connection requires that specific attribute settings override the settings in the DSN or
the default settings.

The syntax for a connection string contains connection attribute definitions, where
each attribute is separated by a semicolon.

The following precedence rules are used to determine the settings of DSN attributes:

1. Attribute settings specified in a connection string have the highest precedence.If
an attribute appears more than once in a connection string, the first specification is
used.

2. If an attribute is not specified in the connection string, the attribute settings that
are specified in the DSN are used.

3. Default attribute settings have the lowest precedence.

You can connect to a TimesTen database without a predefined DSN with any ODBC
application or the ttIsql utility as long as the connection string contains the Driver,
DataStore, and DatabaseCharacterSet attributes, as follows:

■ The name or path name of the ODBC driver using the Driver attribute.

■ On Windows, the value of the Driver attribute should be the name of the
TimesTen ODBC Driver. For example, the value can be TimesTen Data
Manager 11.2.1.

■ On UNIX systems, the value of the Driver attribute should be the pathname
of the TimesTen ODBC Driver shared library file. The file resides in the
install_dir/lib directory.

■ The database path and filename prefix using the DataStore attribute.

■ The character set for the database using the DatabaseCharacterSet attribute.

The following example shows how you can connect providing the Driver,
DataStore, and DatabaseCharacterSet attributes using a connection string in
the ttIsql utility:

C:\ ttIsql
ttIsql <c> 1996-2009, Oracle. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.
Command> connect "Driver=TimesTen Data Manager
11.2.1;DataStore=C:\sales\admin;DatabaseCharacterSet=US7ASCII";

Specifying a RAM policy
TimesTen allows you to specify a RAM policy that determines when databases are
loaded and unloaded from main memory. To set the RAM policy, use the ttAdmin
utility.

For each database you can have a different RAM policy. The policy options are:

■ In Use: The database is loaded into memory when the first connection to the
database is opened, and it remains in memory as long as it has at least one active
connection. When the last connection to the database is closed, the database is
unloaded from memory. This is the default policy.

Specifying the size of a database

1-24 Oracle TimesTen In-Memory Database Operations Guide

■ InUse with RamGrace: The database is loaded into memory when the first
connection to the database is opened, and it remains in memory as long as it has at
least one active connection. When the last connection to the database is closed, the
database remains in memory for a "grace period." The database is unloaded from
memory only if no processes have connected to the database for the duration of
the grace period. The grace period can be set or reset at any time. It is only in effect
and stays in effect until the next time the grace period is changed.

■ Always: The database stays in memory at all times. If the machine on which the
database resides is rebooted, the database reloads into memory when the
TimesTen daemon is started, generally at boot time.

■ Manual: The database is manually loaded and unloaded by system administrators
using the ttAdmin utility.

The following sets the RAM policy to always for the database identified by the
ttdata DSN:

% ttadmin –rampolicy always ttdata
RAM Residence Policy : always
Replication Agent Policy : manual
Replication Manually Started : False
Cache Agent Policy : manual
Cache Agent Manually Started : False

Specifying the size of a database
TimesTen manages database space using two separate memory partitions within a
single contiguous memory space. One partition contains permanent data and the other
contains temporary data.

■ Permanent data includes the tables and indexes that make up a TimesTen
database. When a database is loaded into memory, the contents of the permanent
data partition are read from files stored on disk. The permanent data partition is
written to disk during checkpoint operations.

■ Temporary data includes locks, cursors, compiled commands, and other structures
needed for command execution and query evaluation. The temporary data
partition is created when a database is loaded into memory and is destroyed when
it is unloaded.

The connection attributes that control the size of the database when it is in memory are
PermSize and TempSize. The PermSize attribute specifies the size of the
permanent data partition and the TempSize attribute specifies the size of the
temporary data partition.

The sizes of the permanent and temporary data partitions are set when a database is
loaded into memory and cannot be changed while the database is in memory. To

Note: The first line shows the RAM residence policy set to always.
The rest of the output details other policies you can set with the
ttAdmin utility. See "ttAdmin" in the Oracle TimesTen In-Memory
Database Reference for more information.

Note: See "Connection Attributes" in the Oracle TimesTen In-Memory
Database Reference for further description of these attributes.

Specifying the size of a database

Managing TimesTen Databases 1-25

change the size of either partition, you must unload the database from memory and
then reconnect using different values for the PermSize or TempSize attributes.

Managing the database size and unloading the database are described in the following
sections:

■ Estimating and modifying the data partition sizes for the database

■ Unloading the database from memory

■ Monitoring PermSize and TempSize attributes

■ Receiving out-of-memory warnings

Estimating and modifying the data partition sizes for the database
Procedures, tables, or rows cannot be created in the database if the permanent or
temporary data partition is full. In order to have the correct size for your database, set
the appropriate size in the PermSize and TempSize connection attributes.

■ PermSize connection attribute: The permanent data partition can be increased in
size, but it cannot be decreased.

■ TempSize connection attribute: The temporary data partition can be either
increased or decreased in size for databases that do not participate in replication.

To make size estimates, use the ttSize utility or run the application until you can
make a reasonable estimate.

You must make sure that you have a shared memory segment that is large enough to
hold the database. In general, the minimum size of this shared memory segment
should be:

PermSize + TempSize + LogBufMB + 20MB overhead

When you are calculating the amount of PermSize to allocate, take into account that
PL/SQL procedures, functions and packages occupy space in the permanent data
partition. The amount of permanent data partition required by a stored PL/SQL unit
depends on the size and complexity of the unit. Small procedures can take less than 3
KBs, while larger ones can take considerably more. On average, reasonably complex
units could be expected to use about 20 KBs of permanent data partition space.

For more details, see "Installation prerequisites" in Oracle TimesTen In-Memory Database
Installation Guide and the descriptions of the TempSize and PermSize attributes in
Oracle TimesTen In-Memory Database Reference.

Unloading the database from memory
Before you can change the size of either partition, you must first unload a database
from memory, close all active connections to the database and set the RAM policy of
the database to manual or inUse.

■ To unload the database from memory, use the ttStatus utility to find processes
connected to the database and stop them. Once you have made the changes for
database size, reload it into memory.

Note: Additional shared segments may be created either for PL/SQL
with the PLSQL_MEMORY_SIZE or for Client/Server with the
-serverShmSize daemon option.

Manage existing tables in the database

1-26 Oracle TimesTen In-Memory Database Operations Guide

However, if the database is configured for replication, stop the cache and
replication agents, if they are running. Reconfigure the database sizes for all
replicas of the database. Once you have made the change in database size, read it
into memory and restart the cache and replication agents.

■ To set the RAM policy to manual or inUse, see "Specifying a RAM policy" on
page 1-23 for information.

Monitoring PermSize and TempSize attributes
The TimesTen table SYS.MONITOR contains several columns that can be used to
monitor usage of PermSize and TempSize. These columns include PERM_
ALLOCATED_SIZE, TEMP_ALLOCATED_SIZE, PERM_IN_USE_SIZE, PERM_IN_USE_
HIGH_WATER, TEMP_IN_USE_SIZE, and TEMP_IN_USE_HIGH_WATER. Each of these
columns show in KB units the currently allocated size of the database and the in-use
size of the database. The system updates this information each time a connection is
made or released and each time a transaction is committed or rolled back.

You can monitor block-level fragmentation in the database by using the
ttBlockInfo built-in procedure. For more details, see "ttBlockInfo" in the Oracle
TimesTen In-Memory Database Reference.

Receiving out-of-memory warnings
TimesTen provides two general connection attributes that determine when a low
memory warning should be issued: PermWarnThreshold and
TempWarnThreshold. Both attributes take a percentage value.

To receive out-of memory warnings, applications must call the built-in procedure
ttWarnOnLowMemory.

These attributes also set the threshold for SNMP warning. See "Diagnostics through
SNMP Traps" in the Oracle TimesTen In-Memory Database Error Messages and SNMP
Traps.

Manage existing tables in the database
The following utilities enable you to manage certain aspects of existing tables in the
database:

■ Add rows of data to an existing table. Use the ttBulkCp utility. You can save
data to an ASCII file and use the ttBulkCp utility to load the data rows into a
table in a TimesTen database.

The rows you are adding must contain the same number of columns as the table,
and the data in each column must be of the type defined for that column.

Because the ttBulkCp utility works on data stored in ASCII files, you can also
use this utility to import data from other applications, provided the number of
columns and data types are compatible with those in the table in the TimesTen
database and that the file found is compatible with ttBulkCp.

■ Rename the owner of tables in a database. Use the ttMigrate utility. When
restoring tables, you can use the -rename option to rename the owner of tables.

Migration, backup, and restoration of the database
The following sections describe how to manage the database:

Migration, backup, and restoration of the database

Managing TimesTen Databases 1-27

■ Copying, migrating and restoring a database

■ Backing up and restoring a database

Copying, migrating and restoring a database
The TimesTen utilities for copying, restoring and migrating a database enable you to
perform the following:

■ Migrate a database between releases of TimesTen. Use the ttMigrate utility.
This utility saves tables and indexes from a TimesTen database into a binary file.
The tables and indexes can then be restored into another TimesTen database. This
allows you to migrate data between TimesTen releases.

■ Migrate a database between different hardware platforms. Use the ttBulkCp
utility to save and restore the data. The ttBulkCp utility copies data from
TimesTen tables into ASCII files and back again, but only for those objects owned
by the user executing the utility, and those objects for which the owner has
SELECT privileges.

The ttBulkCp utility enables you to copy a single table between databases,
including between databases from different releases of TimesTen or between
databases on different hardware platforms.

The ttSchema utility saves the table definitions. Use ttIsql to re-create the
tables from the saved table definitions.

■ Take a snapshot of a database and then restore the database in the exact same
state. Use the ttBackup and ttRestore utilities or the ttBackup and
ttRestore C functions.

Backing up and restoring a database
The TimesTen backup and restore facility allows you to create a backup of any
TimesTen database to restore it at a later time. The primary use for the backup and
restore facility is to allow the restoration of a recent state of a database that has been
lost.

Every database backup contains the information needed to restore the database as it
existed at a the backup point, which is the time the backup began. Restoration of a
database from a given backup restores the modifications of all transactions that
committed before the backup point.

A backup operation is atomic: If it completes successfully, it will produce a backup
that can be used to restore a database to the state of its backup point. If it fails for any
reason, it leaves the files of any existing backup intact and its backup point
unchanged.

TimesTen writes a database backup to a location specified by a backup path, which
consists of a directory name and an optional basename. You must specify the backup
directory and basename when the backup is created. The basename defaults to the
basename of the database itself if you do not specify a basename.

Note: For details about using the TimesTen backup and restore
facility, see "ttBackup" and "ttRestore" in Oracle TimesTen In-Memory
Database Reference.

Migration, backup, and restoration of the database

1-28 Oracle TimesTen In-Memory Database Operations Guide

Types of backup provided
TimesTen supports both full and incremental backups. TimesTen also allows stream
backups.

■ Stream: A stream backup writes the database backup file to stdout.

■ Full: A full backup saves the entire database. For full backups, you must have
enough disk space available to hold both the existing backup and the new backup,
until the new backup succeeds.

■ Incremental: An incremental backup augments an existing incremental-enabled
backup of the same database. An incremental backup moves the backup point of
an existing backup forward in time by augmenting the backup with all of the
transaction log records created since its last backup point.

An incremental backup typically completes much faster than a full backup, as it
has less data to copy. The performance gain of incremental backups over full
backups comes at the cost of increased disk usage and longer restoration times.
Use incremental backups in concert with full backups in order to achieve a balance
between backup time, disk usage, and restoration time.

Before you can perform an incremental backup, you must first enable your backup
to allow for incremental backups by executing the ttBackup utility command
with the -fileFullEnable or the -fileIncrOrFull options. In either case, if
your backup was not previously enabled for incremental, a full file backup is
performed before the backup is enabled for subsequent incremental backups.
TimesTen supports the creation of up to eight incremental-enabled backup
instances for each database. If you attempt to start a ninth incremental backup,
TimesTen returns an error.

If you restore a database from a backup, regardless of whether the backup was
enabled or disabled for incremental, the restored database is disabled for
incremental backups. Thus, if you want incremental backups, you need to once
again execute the ttBackup utility command with the -fileFullEnable or the
-fileIncrOrFull option to enable incremental backups.

A set of files containing backup information for a given database, residing at a given
backup path, is referred to as a backup instance. A given backup instance must be
explicitly enabled for incremental backups.

The files of the existing backup may be modified by a failed full or incremental
backup, but not in a way that compromises the ability to restore from them.

The total list of backup types supported by TimesTen are as follows:

Note: Do not manually change the contents of the backup directory.
The addition, removal, or modification of any file in the backup
directory, except for modifications made by ttBackup and
ttRestore themselves, may compromise the integrity of the backup
and restoration of the database from the backup may not be possible.

Backup type File or stream Full or incremental Incremental-enabled Comment

fileFull File Full No Default

fileFullEnable File Full Yes

fileIncremental File Incremental. Yes Fails if incremental
backup not possible.

Thread programming with TimesTen

Managing TimesTen Databases 1-29

Thread programming with TimesTen
TimesTen supports multithreaded application access to databases. When a connection
is made to a database, any thread may issue operations on the connection.

Typically, a thread issues operations on its own connection and therefore in a separate
transaction from all other threads. In environments where threads are created and
destroyed rapidly, better performance may be obtained by maintaining a pool of
connections. Threads can allocate connections from this pool on demand to avoid the
connect and disconnect overhead.

TimesTen allows multiple threads to issue requests on the same connection and
therefore the same transaction. These requests are serialized by TimesTen, although
the application may require additional serialization of its own.

TimesTen also allows a thread to issue requests against multiple connections,
managing activities in several separate and concurrent transactions on the same or
different databases.

fileIncrOrFull File Either Yes Performs
fileIncremental if
possible;
fileFullEnable
otherwise.

streamFull Stream Full No

incrementalStop None None No Takes no backup;
just disables existing
incremental-enabled
backup.

Backup type File or stream Full or incremental Incremental-enabled Comment

Thread programming with TimesTen

1-30 Oracle TimesTen In-Memory Database Operations Guide

2

Working with the TimesTen Client and Server 2-1

2Working with the TimesTen Client and
Server

You can open client/server connections across a network to the TimesTen database
with the TimesTen Client and TimesTen Server.

The following sections describe the TimesTen Client/Server and how to connect using
them:

■ Overview of the TimesTen Client/Server

■ Configuring TimesTen Client and Server

■ Running the TimesTen Server

■ Accessing a remote database on UNIX

Overview of the TimesTen Client/Server
The TimesTen Server is a process that runs on a server machine that takes network
requests from TimesTen Clients and translates them into operations on databases on
the server machine. This enables clients to connect to databases that are located on
different machines, potentially running a different platform and operating system bit
level.

You can install the TimesTen Client on a separate or the same machine as the
TimesTen Server. If you install the TimesTen Client on the same machine as the
TimesTen Server, you can use them to access TimesTen databases on the local
machine. For example, this is useful when you want a 32-bit application to access a
64-bit database on the same machine, for platforms that support both 32-bit and 64-bit
applications.

Figure 2–1 demonstrates how the TimesTen Client and TimesTen Server communicate
using their respective drivers.

Note: You can create a client/server connection between any
combination of platforms that TimesTen supports.

Overview of the TimesTen Client/Server

2-2 Oracle TimesTen In-Memory Database Operations Guide

Figure 2–1 Diagram of TimesTen Client and TimesTen Server

■ TimesTen Client: To access TimesTen databases on remote systems, link your
application with the TimesTen Client ODBC driver. The application then
communicates with the TimesTen Server process. Using the TimesTen Client
driver, applications can connect transparently to TimesTen databases on a remote
or local system that has the TimesTen Server and Data Manager installed.

You can link a client application either directly with the TimesTen Client driver or
with the Windows ODBC driver manager. TimesTen supplies a driver manager
for Windows with the Quick Start sample applications. Note that there are
performance considerations in using a driver manager.

■ TimesTen Server: On the server machine, the TimesTen Server is linked with the
TimesTen Data Manager ODBC driver. The Server's responsibility is to listen for
requests from a client application, process the request through the Data Manager
ODBC driver, and then send the results and any error information back to the
client application.

The following sections describe the restrictions and the communication protocols for
client/server communication:

■ Restrictions on client/server communication

■ Communication protocols for Client/Server communication

Note: For details on compiling TimesTen applications, see the Oracle
TimesTen In-Memory Database Java Developer's Guide or the Oracle
TimesTen In-Memory Database C Developer's Guide.

Overview of the TimesTen Client/Server

Working with the TimesTen Client and Server 2-3

Restrictions on client/server communication
The following are the restrictions on client/server communication:

■ XLA cannot be used over a client/server connection.

■ On UNIX, some TimesTen utilities only work over direct connections, such as
ttAdmin, ttRepAdmin, and ttBackup. The utilities that can be executed over a
client/server connection on the UNIX platform are named with a suffix of CS,
such as ttIsqlCS, ttBulkCpCS, ttMigrateCS and ttSchemaCS. These
utilities have been linked with the TimesTen Client driver and can be used to
connect to client DSNs when accessing a database over a client/server connection.
Each utility listed in the Oracle TimesTen In-Memory Database Reference provides the
name of the client/server version of that utility, if there is one.

■ The ttCacheUidPwdSet built-in procedure cannot be used over a client/server
connection.

■ You cannot connect with an external user defined on one host to a TimesTen data
source on a remote host. There are no restrictions for connecting with internal
users.

■ Internal users can only be created or altered over a direct connection and not over
a client/server connection to a TimesTen database. Thus, you can only execute the
CREATE USER or ALTER USER statements using a direct connection to the
TimesTen database. Once created, the user that connects from the client to the
server must be granted the CREATE SESSION privilege or the connection will fail.
For more information on how to create the user on the TimesTen database and
how the administrator grants the CREATE SESSION privilege, see "Creating or
identifying users to the database" on page 4-3 and "Granting privileges to connect
to the database" on page 4-11.

■ On UNIX, TimesTen does not allow a child process to use a connection opened by
its parent. Any attempt from a child process using fork() to use a connection
opened by the parent process returns an error.

Communication protocols for Client/Server communication
By default, a server process is spawned at the time a client requests a connection. By
setting the -serverPool option in the ttendaemon.options file on the server
machine, you can pre-spawn a reserve pool of server processes. See "Prespawning
TimesTen Server processes" on page 3-8 for details.

The following sections describe the communication protocols that the TimesTen Client
can use with the TimesTen Server:

■ TCP/IP Communication

■ Shared memory communication

■ UNIX domain socket communication

TCP/IP Communication
By default, the TimesTen Client communicates with the TimesTen Server using
TCP/IP sockets. This is the only form of communication available when the TimesTen
Client and Server are installed on different machines.

Shared memory communication
If both the TimesTen Client and Server are installed on the same machine, applications
using the TimesTen Client ODBC driver may improve performance by using a shared

Configuring TimesTen Client and Server

2-4 Oracle TimesTen In-Memory Database Operations Guide

memory segment for inter-process communication (IPC). Using a shared memory
segment allows for the best performance, but consumes more memory. To use a
shared memory segment as communication, you must

1. Configure the server options to use shared memory communication in the
ttendaemon.options file. See "Using shared memory for Client/Server IPC" on
page 3-10.

2. Define the Network Address as ttShmHost in the logical server name. See
"Defining a logical server name" on page 2-9 for details.

UNIX domain socket communication
On UNIX platforms, if both the TimesTen Client and Server are installed on the same
machine, you can use UNIX domain sockets for communication. Using a shared
memory segment allows for the best performance, but greater memory usage. Using
UNIX domain sockets allows for improved performance over TCP/IP, but with less
memory consumption than a shared memory segment connection. To use domain
sockets, you must define the Network Address of the logical server as ttLocalHost.
See "Defining a logical server name" on page 2-9 for more information.

Configuring TimesTen Client and Server

The following sections describe how to connect a TimesTen application to a TimesTen
database using TimesTen Client and Server:

■ Overview of TimesTen Client/Server configuration

■ Installing and configuring for client/server connections

■ Defining Server DSNs

■ Defining a logical server name

■ Creating Client DSNs

Overview of TimesTen Client/Server configuration
Before the client application can connect to a TimesTen database, the user must
configure, as shown in Figure 2–2, the Client DSN, optionally a logical server name,
and a Server DSN to uniquely identify the desired TimesTen database.

Note: TimesTen supports a maximum of 16 different instances of the
shared memory IPC-enabled server. If an application tries to connect
to more than 16 different shared memory segments it receives an
error.

Note: Before configuring the TimesTen Client and Server, read
"Connecting to TimesTen with ODBC and JDBC drivers" on page 1-1
and "Specifying Data Source Names to identify TimesTen databases"
on page 1-5.

Configuring TimesTen Client and Server

Working with the TimesTen Client and Server 2-5

Figure 2–2 Configuring for a client/server connection

The client application refers to the Client DSN when initiating a connection. With the
following details, the connection request is resolved to be able to connect to the
intended TimesTen database:

■ The logical server name is an optional configuration on the client. When used, it
specifies the server host name where the TimesTen database is installed. This is
used when you want to hide or simplify the server host name. You must use the
logical server name when using shared memory IPC or UNIX domain sockets.

■ The Client DSN is configured in either the user or system ODBC.INI file with the
server host name, either the logical server name or the actual server machine
name, and the Server DSN that identifies the TimesTen database on the server.

■ The Server DSN is configured in the system ODBC.INI file with the TimesTen
database name and its connection attributes. The connection attributes specify
how the TimesTen database is loaded and configured, and how the connections to
it are to be controlled or managed.

Thus, when these are configured correctly, the client application can use the Client
DSN to locate and connect to the TimesTen database. The Client DSN defines the
server machine and the Server DSN. The Server DSN, in turn, specifies the TimesTen
database on that server, how the database is to be loaded, and how connections are to
be managed.

Installing and configuring for client/server connections
The following sections describe what you must install on which node for client/server
connections:

Client DSN

client application

logical
server
name

Client

Server DSN

TimesTen
database

Server

Configuring TimesTen Client and Server

2-6 Oracle TimesTen In-Memory Database Operations Guide

■ Configuring Client/Server of the same TimesTen release

■ Configuring cross-release TimesTen Client/Server

Configuring Client/Server of the same TimesTen release
The following sections describe how to install and configure TimesTen when the
Client and Server are of the same TimesTen release:

■ Install and configure the TimesTen Server

■ Install and configure the TimesTen Client

Install and configure the TimesTen Server Perform the following tasks on the machine on
which the TimesTen database resides. This machine is called the server machine.

1. Install the TimesTen Server. For information on how to install the TimesTen
Server, see the Oracle TimesTen In-Memory Database Installation Guide.

2. Create and configure a Server DSN corresponding to the TimesTen database. See
"Defining Server DSNs" on page 2-7. Set TimesTen connection attributes in the
Server DSN. See "Connection Attributes" in the Oracle TimesTen In-Memory
Database Reference.

Install and configure the TimesTen Client Perform the following tasks on the machine
where the client application resides. This machine is called the client machine.

1. Install the TimesTen Client. For information on how to install the TimesTen Client,
see the Oracle TimesTen In-Memory Database Installation Guide.

2. If you are using JDBC to connect to the database, install the Java Developer's Kit
(JDK), where the Java application will be running and set up the environment
variables, such as CLASSPATH and the shared library search path. See "Setting the
environment for Java development" in the Oracle TimesTen In-Memory Database Java
Developer's Guide for details.

3. Create and configure a Client DSN corresponding to the Server DSN. See
"Creating and configuring Client DSNs on UNIX" on page 2-18 and "Creating and
configuring Client DSNs on Windows" on page 2-13.

4. For OCI and Pro*C/C++ client/server connections, configure the application to
use either tnsnames.ora or easy connect as described in "Connecting to a
TimesTen database from OCI" in the Oracle TimesTen In-Memory Database C
Developer's Guide.

5. Link client/server applications as follows:

■ Link C and C++ client/server applications as described in "Linking options" in
the Oracle TimesTen In-Memory Database C Developer's Guide.

■ Link OCI or Pro*C/C++ applications in the same manner as any OCI or
Pro*C/C++ direct mode applications are linked, which is described in
"TimesTen Support for Oracle Call Interface" and "TimesTen Support for the
Oracle Pro*C/C++ Precompiler" in the Oracle TimesTen In-Memory Database C
Developer's Guide.

Configuring cross-release TimesTen Client/Server
A TimesTen Client can connect to a TimesTen Server from a different release and of a
different bit level. A TimesTen Client 7.0 or later release may connect to a TimesTen
Server 7.0 or later release of any bit level. If you are configuring for a cross-release

Configuring TimesTen Client and Server

Working with the TimesTen Client and Server 2-7

TimesTen Client/Server connection, install and configure as directed in "Configuring
Client/Server of the same TimesTen release" on page 2-6.

The TimesTen Server loads a driver and a TimesTen database of its own release and
bit level when a TimesTen Client application connects to the TimesTen database. The
TimesTen Data Manager is automatically installed on the Server system.

■ If you are using a local client/server connection using UNIX Domain sockets
through ttLocalHost, then the platforms for the client and the server must be
UNIX. The bit level and the release level for the client and server hosts must be the
same.

■ If you are using a local client/server connection over a shared memory IPC using
ttShmHost, then the platforms for the client and server can be either Windows or
UNIX. The bit level may be different on the client and server hosts.

Defining Server DSNs
Server DSNs identify TimesTen databases that are accessed by a client/server
connection. A Server DSN must be defined as a system DSN and has the same
configuration format and attributes as a TimesTen Data Manager DSN. For a
description of DSNs and instructions on creating them, see "Creating a Data Manager
DSN on Windows" on page 1-9 or "Creating a Data Manager DSN on UNIX" on
page 1-13.

Because a Server DSN identifies databases that are accessed by a TimesTen Server, a
Server DSN can be configured using the same connection attributes as a Data Manager
DSN. In addition, there are connection attributes that are only allowed within the
Server DSN specification. These attributes enable you to specify multiple client/server
connections to a single server.

The following sections describe the Server DSN attributes in the context of the
ODBC.INI file or the ODBC Data Source Administrator:

■ Server DSN connection attributes defined in ODBC.INI file

■ Server DSN connection attributes defined in ODBC Data Source Administrator

Note: You can add or configure a Server DSN while the TimesTen
Server is running.

Note: Some connection attributes, including the ones described in
the following sections, can be configured in the TimesTen daemon
options file (ttendaemon.options). If you have set the same
connection attributes in both the Server DSN and the daemon options
file, the value of the connection attributes in the Server DSN takes
precedence.

For a description of the TimesTen daemon options see "Managing
TimesTen Client/Server options" on page 3-8.

Note: For a complete description of the TimesTen Server connection
attributes, see "Connection Attributes" in the Oracle TimesTen
In-Memory Database Reference.

Configuring TimesTen Client and Server

2-8 Oracle TimesTen In-Memory Database Operations Guide

Server DSN connection attributes defined in ODBC.INI file
By default, TimesTen creates only one connection to a server per child process.
However, the following Server connection attributes enable you to specify multiple
client/server connections to a single TimesTen Server:

■ MaxConnsPerServer: Set the maximum number of client connections that are
handled by a single server process. The server is referenced by the Server DSN.
The server may have multiple server processes, where each process can only have
the maximum number of connections as specified by this attribute.

■ ServersPerDSN: You can have multiple server processes serving multiple
incoming connections on the server. The ServersPerDSN attribute specifies the
number of server processes that are initially spawned on the server. Each new
incoming connection spawns a new server process up to the ServersPerDSN.
When ServersPerDSN is reached, the existing server processes handle multiple
connections up to the number specified in MaxConnsPerServer.

■ ServerStackSize: Set the size of the stack on the Server for each connection.

The MaxConnsPerServer and ServersPerDSN attributes are related. Neither of
these attributes limits the number of client connections to given DSN. Instead, they
control how connections are distributed over server processes. For example, if
MaxConnsPerServer is set to 2 and ServersPerDSN is set to 5, then the following
occurs:

■ Connection 1 arrives at the server, the first server process is started for this
connection. Connections 2 through 5 arrive at the server, server processes 2
through 5 are initiated where each server process services a connection.

■ Connection 6 arrives at the server. Since ServersPerDSN is reached, and
MaxConnsPerServer is not, connection 6 is given to the first server process.
Incoming connections 7 through 10 are given respectively as the second
connection to server processes 2 through 5.

■ Connection 11 arrives at the server. Both ServersPerDSN and
MaxConnsPerServer are reached, so server process 6 is started to handle
connection 11.

Server DSN connection attributes defined in ODBC Data Source Administrator
If you anticipate having more than one connection using the Server DSN, specify
appropriate values for the Server DSN attributes as needed. On Windows in the ODBC
Data Source Administrator, these are specified on the Server tab.

Note: These attributes are read at first connection.

Configuring TimesTen Client and Server

Working with the TimesTen Client and Server 2-9

Figure 2–3 Server tab in TimesTen ODBC Administrator

Defining a logical server name
A logical server name is a definition for a server system on the TimesTen Client. In
some cases, such as when using a communication protocol other than TCP/IP for local
client/server or the TimesTen Server process is not listening on the default TCP/IP
port, you must define a logical server name on the client system. In these cases, the
Client DSN must refer to the logical server name. However, in most cases when the
communication protocol used is TCP/IP, the Client DSN can refer directly to the
server host name without having to define a logical server name.

The following sections demonstrate how to define a logical server name on Windows
or UNIX platforms:

■ Creating and configuring a logical server name on Windows

■ Creating and configuring a logical server name on UNIX

■ Working with the TTCONNECT.INI file

Creating and configuring a logical server name on Windows
To create and configure a logical server name:

1. On the Windows Desktop, choose Start > Settings > Control Panel >
Administrative Tools > Data Sources (ODBC).

This opens the ODBC Data Source Administrator.

2. Click User DSN or System DSN.

3. Select a TimesTen Client DSN and click Configure. If no Client DSN exists, click
Add, select TimesTen Client 11.2.1 and click Finish. This opens the TimesTen
Client DSN Setup dialog.

4. Click Servers. This opens the TimesTen Logical Server List dialog.

5. Click Add. This opens the TimesTen Logical Server Name Setup dialog.

6. In the Server Name field, enter a logical server name.

Configuring TimesTen Client and Server

2-10 Oracle TimesTen In-Memory Database Operations Guide

7. In the Description field, enter an optional description for the server.

8. In the Network Address field, enter the host name or IP address of the server
machine. The Network Address must be one of:

9. In the Network Port field, TimesTen displays the port number on which the
TimesTen Logical Server listens by default. If the TimesTen Server is listening on a
different port, enter that port number in the Network Port field.

For example:

10. Click OK, then click Close in the TimesTen Logical Server List dialog to finish
creating the logical server name.

To delete a server name:

1. On the Windows Desktop on the client machine, choose Start > Settings > Control
Panel.

2. Double click ODBC. This opens the ODBC Data Source Administrator.

3. Click either User DSN or System DSN.

4. Select a TimesTen Client DSN and click Configure. This opens the TimesTen
Client DSN Setup dialog.

5. Click Servers. This opens the TimesTen Logical Server List dialog.

6. Select a server name from the TimesTen Servers list.

7. Click Delete.

Creating and configuring a logical server name on UNIX
Define logical server names in a file named by the SYSTTCONNECTINI environment
variable. This file is referred to as the TTCONNECT.INI file. The file contains a
description, a network address and a port number.

The Network Address must be one of the following:

Type of connection Network Address

Local client/server connection that uses
shared memory for inter-process
communication

ttShmHost

Remote client/server connection The name of the machine where the TimesTen
Server is running. For example, server.
mycompany.com

Configuring TimesTen Client and Server

Working with the TimesTen Client and Server 2-11

TimesTen searches for the logical server in this order:

1. In the file specified by the SYSTTCONNECTINI environment variable, if it is set

2. In the daemon_home_dir/sys.ttconnect.ini file

Example 2–1 Defining a logical server name

This example from a TTCONNECT.INI file defines a logical server name, ttserver_
logical, for a TimesTen Server running on the machine server.mycompany.com
and listening on port 53385. The instance name of the TimesTen installation is
tt1121.

[ttserver_logical]
Description=TimesTen Server 11.2.1
Network_Address=server.mycompany.com
TCP_Port=53385

Example 2–2 Using UNIX domain sockets for communication

If both the client and server are on the same UNIX machine, applications using the
TimesTen Client ODBC driver may improve performance by using UNIX domain
sockets for communication.

The logical server name must also define the port number on which the TimesTen
Server is listening so that multiple instances of the same version of TimesTen Server
can be run on the same machine. To achieve this, the logical server name definition in
TTCONNECT.INI file might look like:

[LocalHost_tt1121_32]
Description=Local TimesTen Server TimesTen release 11.2.1 through domain sockets
Network_Address=ttLocalHost
TCP_PORT=53385

Example 2–3 Configuring shared memory for inter-process communication

If both the client and server are on the same machine, applications can use shared
memory for inter-process communication. This may result in the best performance.

The logical server name must also define the port number on which the TimesTen
Server is listening in order to make the initial connection. To achieve this, the logical
server name definition in TTCONNECT.INI file might look like:

[ShmHost_tt1121]
Description= Local TimesTen Server TimesTen release 11.2.1 through shared memory
Network_Address=ttShmHost
TCP_PORT=53385

Type of connection Network address

Local client/server connection that uses UNIX
domain sockets

ttLocalHost

Local client/server connection that uses
shared memory for inter-process
communication

ttShmHost

Remote client/server connection The name of the machine where the TimesTen
Server is running. For example, server.
mycompany.com

Configuring TimesTen Client and Server

2-12 Oracle TimesTen In-Memory Database Operations Guide

Working with the TTCONNECT.INI file
TimesTen uses the TTCONNECT.INI file to define the names and attributes for servers
and the mappings between logical server names and their network addresses. This
information is stored on machine where the TimesTen Client is installed. By default,
the TTCONNECT.INI file is install_dir/sys.ttconnect.ini.

To override the name and location of this file at runtime, set the SYSTTCONNECTINI
environment variable to the name and location of the TTCONNECT.INI file before
launching the TimesTen application.

Defining a server name on UNIX You can define short-hand names for TimesTen Servers
on UNIX in the TTCONNECT.INI file. The format of a TimesTen Server specification in
the TTCONNECT.INI file is shown in Table 2–1.

For example, the server specification for a remote TimesTen Server might appear as:

[ttserver]
Description=TimesTen Client/Server
Network_Address=server.company.com
TCP_Port=53385

For a local TimesTen Client/Server application that is using UNIX domain sockets, the
network address must be defined as ttLocalHost. The server specification might
appear as:

[LocalHost1121]
Description=Shm TimesTen Client/Server
Network_Address=ttLocalHost
TCP_Port=53385

For a TimesTen Client/Server application that is using a shared memory segment for
inter-process communication, the network address must be defined as ttShmHost.
The server specification might appear as:

[ShmHost1121]
Description=Shm TimesTen Client/Server
Network_Address=ttShmHost
TCP_Port=53385

Creating Client DSNs
A Client DSN specifies a remote database and uses the TimesTen Client. The Client
DSN can be defined as a user or as a system DSN. A Client DSN refers to a TimesTen

Table 2–1 TimesTen Server format in the TTCONNECT.INI file

Component Description

[ServerName] Logical server name of the TimesTen Server
machine

Description=description Description of the TimesTen Server

Network_Address=network-address The DNS name, host name or IP address of the
machine on which the TimesTen Server is
running.

TCP_Port=port-number The TCP/IP port number where the TImesTen
Server is running. Default for TimesTen
release 11.2.1 is 53385 for 32-bit platforms and
53389 for 64-bit platforms.

Configuring TimesTen Client and Server

Working with the TimesTen Client and Server 2-13

database indirectly by specifying a hostname, DSN pair, where the hostname
represents the server machine on which TimesTen Server is running and the DSN
refers to a Server DSN that is defined on that host. These are configured within the
Client DSN connection attributes.

Alternatively, you can configure connection attributes at runtime in the connection
string that is passed to the ODBC SQLDriverConnect function or the URL string that
is passed to the JDBC DriverManager.getConnection() method. For example,
you could use the TTC_SERVER_DSN attribute in either the connection string or the
Client DSN for a client to specify which DSN it should use on the server.

The following sections describe how to create the Client DSN and its attributes on
either the Windows or UNIX platforms:

■ Creating and configuring Client DSNs on Windows

■ Creating and configuring Client DSNs on UNIX

Creating and configuring Client DSNs on Windows
On Windows, use the ODBC Data Source Administrator to configure logical server
names and to define Client DSNs.

This section includes the following topics:

■ Creating a Client DSN on Windows

■ Setting the timeout interval and authentication

■ Configuring automatic client failover

■ Accessing a remote database on Windows

■ Testing connections

Creating a Client DSN on Windows

To define a TimesTen Client DSN:

1. On the Windows Desktop, choose Start > Settings > Control Panel >
Administrative Tools > Data Sources (ODBC). This opens the ODBC Data Source
Administrator.

2. Choose either User DSN or System DSN. For a description of User DSNs and
System DSNs see "Specifying Data Source Names to identify TimesTen databases"
on page 1-5.

Note: For a complete description of the TimesTen Client connection
attributes, see "Connection Attributes" in the Oracle TimesTen
In-Memory Database Reference.

Note: If you configure any of the Server DSN connection attributes
within the definition of the Client DSN, they will be ignored.
However, the TimesTen Client allows most of the Server DSN
attributes (except for the DataStore connection attribute) to be passed
in as part of the connection or URL string. These are transparently
passed on to the server and overrides what is configured in the Server
DSN.

Configuring TimesTen Client and Server

2-14 Oracle TimesTen In-Memory Database Operations Guide

3. Click Add. This opens the Create New Data Source dialog.

4. Choose TimesTen Client 11.2.1. Click Finish. This opens the Oracle TimesTen
Client DSN Setup dialog.

5. In the Client DSN field, enter a name for the Client DSN.

The name must be unique to the current list of defined DSNs on the machine
where the client application resides and can contain up to 32 characters. To avoid
potential conflicts, you may want to use a consistent naming scheme that
combines the logical server name with the name of the Server DSN. For example, a
corporation might have Client DSNs named Boston_Accounts and Chicago_
Accounts where Boston and Chicago are logical server names and Accounts
is a Server DSN.

6. In the Description field, enter an optional description for the Client DSN.

7. In the Server Name or Network Address field, specify the logical server or
network address of the server machine.

Configuring TimesTen Client and Server

Working with the TimesTen Client and Server 2-15

■ The name can be a host name, IP address or logical server name. The logical
server names defined on the client machine can be found in the drop-down
list. To define logical server names, click Servers.

■ If you do not specify a logical server name in this field, the TimesTen Client
assumes that the TimesTen Server is running on the default TCP/IP port
number. Therefore, if your Server is running on a port other than the default
port and you do not specify a logical server name in this field, you must
specify the port number in the ODBC connection string, using the TCP_Port
attribute.

For more information on defining logical server names, see "Creating and
configuring a logical server name on Windows" on page 2-9.

8. In the Server DSN field, enter the Server DSN corresponding to the database that
the client application will access.

■ If you do not know the name of the Server DSN, click Refresh to obtain a list
of Server DSNs that are defined on the machine specified in the Server Name
or Network Address field. Select the Server DSN from the drop-down list.

■ You must have a network connection to the machine where the TimesTen
Server is running.

For more information about customizing which Server DSNs show in this list, see
"ODBC Data Sources" on page 1-20.

9. In the Connection Character Set field, choose a character set that matches your
terminal settings or your data source. The default connection character set is
US7ASCII. For more information, see "ConnectionCharacterSet" in Oracle
TimesTen In-Memory Database Reference.

Configuring automatic client failover You can configure automatic client failover for
databases that have active standby pair replication schemes. This enables the client to
fail over automatically to the server on which the standby database resides.

In the Oracle TimesTen Client DSN Setup dialog, complete the following fields:

1. In the Failover Server Name or Network Address field, specify the logical server
or network address of the server machine.

■ The name can be a host name, IP address or logical server. The logical server
names defined on the client machine can be found in the drop-down list. To
define logical server names, click Servers.

■ If you do not specify a logical server name in this field, the TimesTen Client
assumes that the TimesTen Server is running on the default TCP/IP port
number. Therefore, if the Server is running on a port other than the default
port and you do not specify a logical server name in this field, you must
specify the port number in the ODBC connection string, using the TCP_Port
attribute.

For more information on defining logical server names, see "Creating and
configuring a logical server name on Windows" on page 2-9.

Note: See "Using automatic client failover" in Oracle TimesTen
In-Memory Database C Developer's Guide for information about
connection option persistence after failover.

Configuring TimesTen Client and Server

2-16 Oracle TimesTen In-Memory Database Operations Guide

2. In the Failover Server DSN field, enter the Server DSN corresponding to the
standby database.

■ If you do not know the name of the Server DSN, click Refresh to obtain a list
of Server DSNs that are defined on the machine specified in the Failover
Server Name or Network Address field. Select the Server DSN from the
drop-down list.

■ You must have a network connection to the machine where the TimesTen
Server is running.

3. Optionally, specify the Failover Port Range for the port for failover notifications.
By default, TimesTen uses a port chosen by the operating system. To
accommodate firewalls between the client and server systems, you can specify one
value for the port number or a range of port numbers.

Setting the timeout interval and authentication You can define the user name, password
and timeout interval for the client/server connection in the Client DSN with the UID,
PWD, and Timeout attributes. However, configuring the authentication in the Client
DSN is optional, since you can provide the user name and password when connecting.
If you do supply the user name and password in the Client DSN, the password is
stored unencrypted on the client.

For a description of the UID, PWD, and Timeout attributes, see "Connection
Attributes" in the Oracle TimesTen In-Memory Database Reference.

To set the timeout interval and authentication:

1. In the User ID field of the Oracle TimesTen Client DSN Setup dialog box, enter a
user name that is defined on the server machine.

2. In the Password field, enter the password that corresponds to the user ID.
Alternatively, you can enter an encrypted password in the PwdCrypt field.

3. In the Timeout Interval field, enter the interval time in seconds. You can enter any
non-negative integer. A value of 0 indicates that client/server operations should
not time out. The default is 60 seconds. The maximum is 99,999 seconds.

4. Click OK to save the setup.

Accessing a remote database on Windows In this example, the TimesTen Client machine is
client.mycompany.com. The client application is accessing the Server DSN on the
remote server machine, server.mycompany.com. The logical server name is
ttserver_logical.

1. On the server machine server.mycompany.com, use the ttStatus utility to
verify that the TimesTen Server is running and to verify the port number it is
listening on.

2. Using the procedure in "Defining Server DSNs" on page 2-7, verify that the Server
DSN, RunData1121_32, is defined as a System DSN on
server.mycompany.com.

Note: These examples reference the 32-bit sample DSNs. This is
indicated by the extension _32. On 64-bit platforms, the sample DSNs
are appended with _64.

Configuring TimesTen Client and Server

Working with the TimesTen Client and Server 2-17

3. On the client machine, client.mycompany.com, create a Logical Server Name
entry for the remote TimesTen Server. In the TimesTen Logical Server Name Setup
dialog:

■ In the Server Name field, enter ttserver_logical.

■ In the Network Address field, enter server.mycompany.com.

■ In the Network Port field, enter 53385. This is the default port number for the
TimesTen Server on 32-bit platforms for TimesTen Release 11.2.1. This value
should correspond to the value displayed by ttStatus in Step 1.

See "Creating and configuring a logical server name on Windows" on page 2-9 for
the procedure to open the TimesTen Server Name dialog and for more details.

4. On the client machine, client.mycompany.com, create a Client DSN that
corresponds to the remote Server DSN, RunData_tt1121_32. In the TimesTen
Client DSN Setup dialog, enter the following values:

■ In the Client DSN field, enter RunDataCS_tt1121_32.

■ In the Server Name or Network Address field, enter ttserver_logical.

■ In the Description field, enter a description for the server. Entering data into
this field is optional.

■ In the Server DSN field, enter RunData1121_32.

5. Run the client application from the machine client.mycompany.com using the
Client DSN, RunDataCS_tt1121. The example below uses the ttIsqlCS
program installed with TimesTen Client.

ttIsqlCS connStr "DSN=RunDataCS_tt1121_32"

This example describes how to access a TimesTen Server that is listening on a port
numbered other than the default port number.

Consider that the Network Address of the TimesTen Server is
server.mycompany.com and the Server is listening on Port 53385. The following
methods can be used to connect to a Server DS:

1. Define the logical server name logical_server with server.mycompany.com
as the Network Address and 53385 as the Network Port. Define a Client DSN
with logical_server as the Server name, Server_DSN as the Server DSN. And
execute the command:

ttIsqlCS -connStr "DSN=Client_DSN"

2. Alternatively, define the logical server name logical_server with
server.mycompany.com as the Network Address and the default port
number as the Network Port. Define a Client DSN with logical_server as the
Server name, Server_DSN as the Server DSN. Overwrite the port number in the
command:

ttIsqlCS -connStr "DSN=Client_DSN; TCP_Port=53385"

3. Alternatively, define the Server in the connection string. In this case you do not
need to define a Client DSN, nor a logical server name.

ttIsqlCS -connStr "TTC_Server=server.mycompany.com;
TTC_Server_DSN=Server_DSN; TCP_Port=53385"

Testing connections To test client application connections to TimesTen databases:

Configuring TimesTen Client and Server

2-18 Oracle TimesTen In-Memory Database Operations Guide

1. On the Windows Desktop, choose Start > Settings > Control Panel.

2. Double click ODBC. This opens the ODBC Data Source Administrator.

3. Click User DSN or System DSN.

4. Select the TimesTen Client DSN whose connection you want to test and click
Configure. This opens the TimesTen Client DSN Setup dialog.

5. Click Test TimesTen Server Connection to test the connection to TimesTen
Server.

The ODBC Data Source Administrator attempts to connect to TimesTen Server
and displays messages to indicate if it was successful. During this test TimesTen
Client verifies that:

■ ODBC, Windows sockets and TimesTen Client are installed on the client
machine.

■ The server specified in the Server Name or Network Address field of the
TimesTen Client DSN Setup dialog is defined and the corresponding machine
exists.

■ The TimesTen Server is running on the server machine.

6. Click Test Data Source Connection to test the connection to the Server DSN. The
ODBC Data Source Administrator attempts to connect to the Server DSN and
displays messages to indicate whether it was successful.

During this test, TimesTen Client verifies that:

■ The Server DSN specified in the Server DSN field is defined on the server
machine.

■ A client application can connect to the Server DSN.

Creating and configuring Client DSNs on UNIX
On UNIX, you define logical server names by editing the TTCONNECT.INI file and
you define Client DSNs by editing the user ODBC.INI file for user DSN or the system
ODBC.INI file for system DSNs. For a description of user and system DSNs, see
"Specifying Data Source Names to identify TimesTen databases" on page 1-5.

Configuring TimesTen Client and Server

Working with the TimesTen Client and Server 2-19

This section includes the following topics:

■ Creating a Client DSN

■ Configuring automatic client failover

Creating a Client DSN The syntax for defining the Client DSN in the ODBC.INI file is
described in "ODBC.INI file entry descriptions" on page 1-20.

In the ODBC Data Sources section of the ODBC.INI file, add an entry for the Client
DSN. The Client DSN specifies the location of the TimesTen database with the
following attributes:

■ ODBC client driver to use for the connection.

■ The server machine on which the database resides on is specified in the TTC_
Server attribute.

■ The Server DSN that specifies the intended database is specified in the TTC_
Server_DSN attribute.

For each TimesTen database with which the client will connect needs to have two
entries:

■ Define the Client DSN name and provide the name of the ODBC client driver to
use in the ODBC Data Sources section.

■ Create an entry with the Client DSN you defined in the ODBC Data Sources
section. Within this section, specify the server machine and the Server DSN.

The following is the syntax for providing the Client DSN name and the ODBC client
driver to use:

[ODBC Data Sources]
Client_DSN=name-of-ODBC-driver

For example, to defined RunDataCS_tt1121_32 as the Client DSN and associate it
with the TimesTen Client ODBC driver, you would make the following entry in the
ODBC Data Sources section of the ODBC.INI file:

[ODBC Data Sources]
RunDataCS_tt1121_32=TimesTen Client 11.2.1

After the ODBC Data Sources section, you would add an entry to specify the server
machine and Server DSN for each data source you defined. Each Client DSN listed in
the ODBC Data Sources section of the ODBC.INI file requires a its own specification
section.

The following is an example specification of the TimesTen Client DSN RunData_
tt1121_32 where the server is configured with a logical server name of ttserver_
logical and the Server DSN is RunData_tt1121_32:

[RunDataCS_tt1121_32]

Note: The Server DSN is defined on the server machine where the
database resides.

Note: All available ODBC client drivers are listed in "Connecting
using TimesTen ODBC drivers" on page 1-3.

Running the TimesTen Server

2-20 Oracle TimesTen In-Memory Database Operations Guide

TTC_Server=ttserver_logical
TTC_Server_DSN=RunData_tt1121_32

The TTC_SERVER* attributes are the main attributes for a Client DSN definition.
There are only a few client attributes, each of which are for identifying the server. If
you provide any server attributes in the client definition, these attributes are ignored.
For a description of all the Client DSN attributes used in the ODBC.INI file, see
"Connection Attributes" in the Oracle TimesTen In-Memory Database Reference.

Configuring automatic client failover You can configure automatic client failover for
databases that have active standby pair replication schemes. This enables the client to
fail over automatically to the server on which the standby database resides.

In the ODBC.INI file, set TTC_SERVER2 to the server on which the standby database
resides. Set TTC_SERVER_DSN2 to the name of the standby database.

For example:

[MYDSN FAILOVER]
TTC_SERVER=localhost
TTC_SERVER_DSN=MYDSN
TTC_Timeout=60000
ConnectionCharacterSet=AL32UTF8
TTC_SERVER2=localhost
TTC_SERVER_DSN2=MYDSNSTANDBY

Running the TimesTen Server
The TimesTen Server is a child process of the TimesTen daemon. If you installed the
TimesTen Server, this process is automatically started and stopped when the
TimesTen daemon or Data Manager service is started or stopped. You can explicitly
start or shut down the daemon or service with the ttDaemonAdmin utility.

The TimesTen Server handles requests from applications linked with the TimesTen
Client driver.

The default ports for the 32-bit and 64-bit versions of TimesTen main and TimesTen
Servers are described in the "TimesTen installation" chapter in the Oracle TimesTen
In-Memory Database Installation Guide. System administrators can change the port
number during installation to avoid conflicts or for security reasons. The port range is
from 1 - 65535. To connect to the TimesTen Server, Client DSNs are required to specify
the port number as part of the logical server name definition or in the connection
string.

On Windows, the TimesTen service is run as user SYSTEM. On UNIX, the TimesTen
Server is run as the instance administrator.

For instructions on modifying TimesTen Server options, see "Modifying the TimesTen
Server options" on page 3-8.

Server informational messages
The TimesTen Server records "connect," "disconnect" and various warning, error and
informational entries in log files.

On Windows, these application messages can be accessed with the Event Viewer.

On UNIX, the TimesTen Server logs messages to the syslog facility.

 See "Modifying informational messages" on page 3-5.

Accessing a remote database on UNIX

Working with the TimesTen Client and Server 2-21

Accessing a remote database on UNIX
In this example, the TimesTen Client application machine is a 32-bit Solaris machine,
client.mycompany.com. The client application is accessing the Server DSN
RunData_tt1121_32 on the remote server machine, another 32-bit Solaris machine,
server.mycompany.com. The logical server name is ttserver_logical. The
instance name of the TimesTen installation is tt1121_32.

1. On the server machine server.mycompany.com, use the ttStatus utility to
verify that the TimesTen Server is running and to verify the port number on which
it is listening.

2. Verify that the Server DSN RunData_tt1121_32 exists in the system ODBC.INI
file on server.mycompany.com.

There should be an entry in the ODBC.INI file as follows:

[RunData_tt1121_32]
Driver=install_dir/lib/libtten.so
DataStore=install_dir/server/RunData_tt1121_32

3. Create a logical server name entry for the remote TimesTen Server in the
TTCONNECT.INI file on client.mycompany.com.

[ttserver_logical]
This value for TCP_Port should correspond to the
value reported by ttStatus when verifying that the
server is running
Network_Address=server.mycompany.com
TCP_Port=53385

See "Creating and configuring Client DSNs on UNIX" on page 2-18 for information
on the creating a TTCONNECT.INI file.

4. On the client machine, client.mycompany.com, create a Client DSN corresponding
to the remote Server DSN, RunData_tt1121_32.

There should be an entry in the ODBC.INI file as follows:

[RunDataCS_tt1121_32]
TTC_SERVER=ttserver_logical
TTC_SERVER_DSN=RunData_tt1121_32

See "Overview of user and system DSNs" on page 1-5 for information on the
location of the proper ODBC.INI file.

5. Run the client application from the machine client.mycompany.com using the
Client DSN, RunDataCS_tt1121_32. The example below uses the ttIsql
program that is installed with TimesTen Client.

ttIsqlCS -connStr "DSN=RunDataCS_tt1121_32"

The next example describes how to access a TimesTen Server that is listening on a port
numbered other than the default port number.

Let us consider the Network Address of the TimesTen Server is
server.mycompany.com and the Server is listening on Port 53385. The following
methods can be used to connect to a Server DS:

1. Define the logical server name logical_server with server.mycompany.com
as the Network Address and 53385 as the Network Port. Define a Client DSN
with logical_server as the server name, Server_DSN as the Server DSN.
Execute the command:

Accessing a remote database on UNIX

2-22 Oracle TimesTen In-Memory Database Operations Guide

ttIsqlCS -connStr "DSN=Client_DSN"

2. Alternatively, define the logical server name logical_server with
server.mycompany.com as the Network Address and the default port
number as the Network Port. Define a Client DSN with logical_server as the
server name, Server_DSN as the Server DSN. Overwrite the port number in the
command:

ttIsqlCS -connStr "DSN=Client_DSN; TCP_Port=53385"

3. Alternatively, define the server in the connection string. In this case you do not
need to define a Client DSN, nor a logical server name.

ttIsqlCS -connStr "TTC_Server=server.mycompany.com;
TTC_Server_DSN=Server_DSN; TCP_Port=53385"

Testing connections
To test client application connections to TimesTen databases:

1. Verify that the client machine can access the server machine.

2. Run ping from the client machine to see if a response is received from the server
machine.

3. Verify that the TimesTen Server is running on the server machine.

■ Use telnet to connect to the port on which the TimesTen Server is listening.
For example:

telnet server.mycompany.com 53385

■ If you successfully connect to the TimesTen Server, you will see a message
similar to:

Connected to server.mycompany.com

■ If the server machine responds to a command, but TimesTen Server does not,
the TimesTen Server may not be running. In the case of a failed connection,
you will see a message similar to:

telnet: Unable to connect to remote host: Connection refused

■ Use the ttStatus utility on the server machine to determine the status and
port number of the TimesTen Server. Generally, the TimesTen Server is started
at installation time. If the TimesTen Server is not running, you must start it.
For information on starting the TimesTen Server, see "Modifying the
TimesTen Server options" on page 3-8.

4. Verify that the client application can connect to the database. If you cannot
establish a connection to the database, check that the TTCONNECT.INI file
contains the correct information.

5. If the information in the TTCONNECT.INI file is correct, check that a Server DSN
corresponding to the database has been defined properly in the system ODBC.INI
file on the machine where the database resides and where the TimesTen Server is
running.

3

Working with the Oracle TimesTen Data Manager Daemon 3-1

3Working with the Oracle TimesTen Data
Manager Daemon

The Oracle TimesTen Data Manager daemon, which is the Oracle TimesTen Data
Manager service on Windows, starts when TimesTen is installed. The daemon
operates continually in the background.

The TimesTen daemon performs the following functions:

■ Manages shared memory access

■ Coordinates process recovery

■ Keeps management statistics on what databases exist, which are in use, and which
application processes are connected to which databases

■ Manages RAM policy

■ Starts replication processes, the TimesTen Server and the cache agent.

Application developers do not interact with the daemon directly. No application code
runs in the daemon and application developers do not generally have to be concerned
with it. Application programs that access TimesTen databases communicate with the
daemon transparently using TimesTen internal routines.

The following sections discuss interaction with the TimesTen daemon on various
platforms:

■ Starting and stopping the Oracle TimesTen Data Manager service on Windows

■ Starting and stopping the daemon on UNIX

■ Shutting down a TimesTen application

■ Managing TimesTen daemon options

■ Managing TimesTen Client/Server options

Starting and stopping the Oracle TimesTen Data Manager service on
Windows

The Oracle TimesTen Data Manager service starts when you install the Oracle
TimesTen Data Manager on your Windows system. To manually start and stop the
Oracle TimesTen Data Manager service, you can use the ttDaemonAdmin utility with
the -start or -stop option, or the Windows Administrative Tools as follows:

1. Open Administrative Tools:

Starting and stopping the daemon on UNIX

3-2 Oracle TimesTen In-Memory Database Operations Guide

On Windows 2000 and XP, choose Start > Settings >Control Panel >
Administrative Tools.

2. Double-click Services. All currently available services are displayed.

3. Select TimesTen Data Manager 11.2.1, then click the appropriate button to stop or
start the service.

Starting and stopping the daemon on UNIX
You must be the instance administrator to start and stop the TimesTen daemon.

The instance administrator must manually start and stop the daemon, after each
system reboot, unless the setuproot script has been run. To manually start and stop
the TimesTen main daemon, you can use the ttDaemonAdmin utility with the
-start or -stop option.

User root can start the daemon by executing the daemon startup script. The
following table shows the location of the daemon startup script by platform.

Shutting down a TimesTen application
A TimesTen application consists of a database that has been allocated shared memory,
user connections, and possibly replication and cache agents for communication with
other TimesTen or Oracle databases.

To shut down a TimesTen application, complete the following tasks:

1. Disconnect all user connections gracefully.

2. Shut down all replication and cache agents.

3. Unload the database from shared memory if it was manually loaded.

4. Stop the TimesTen daemon.

Managing TimesTen daemon options
The ttendaemon.options file contains TimesTen daemon options. During
installation, the installer sets some of these options to correspond to your responses to
the installation prompts.

On Windows, the ttendaemon.options file is located in the directory:

install_dir\srv\info

On UNIX, the ttendaemon.options file is located in the directory:

install_dir/info/

Note: You must have administrative privileges to start and stop the
TimesTen service.

Platform Location of daemon startup script

Linux /etc/init.d/tt_instance_name

Solaris /etc/init.d/tt_instance_name

HP-UX /sbin/init.d/tt_instance_name

AIX /etc/init.d/tt_instance_name

Managing TimesTen daemon options

Working with the Oracle TimesTen Data Manager Daemon 3-3

The features that the ttendaemon.options file controls are as follows:

■ The network interfaces on which the daemon listens

■ The minimum and maximum number of TimesTen subdaemons that can exist for
the TimesTen instance

■ Whether or not the TimesTen Server is started

■ Whether or not you use shared memory segments for client/server inter-process
communication

■ The number of Server processes that are prespawned on your system

■ The location and size of support and user logs

■ Backward compatibility

■ The maximum number of users for a TimesTen instance

■ Data access across NFS mounted systems. This is for Linux only.

■ The TNS_ADMIN value for the Oracle Database. This option cannot be modified in
this file.

Use the ttmodinstall utility to make changes to the ttendaemon.options file for
most commonly changed options. See "ttmodinstall" in Oracle TimesTen In-Memory
Database Reference. If you cannot use ttmodinstall to change a particular option and
must modify the ttendaemon.options file directly, stop the TimesTen daemon
before you change the file. Restart the TimesTen daemon after you have finished
changing the file. To change TimesTen Server options, it is only necessary to stop the
server. It is not necessary to stop the TimesTen daemon.

The rest of this section includes the following topics:

■ Determining the daemon listening address

■ Modifying informational messages

■ Changing the allowable number of subdaemons

■ Allowing database access over NFS-mounted systems

■ Enabling Linux large page support

■ Shared memory daemon option for HP-UX ccNUMA systems

Determining the daemon listening address
By default, the TimesTen main daemon, all subdaemons and agents listen on a socket
for requests, using any available address. All TimesTen utilities and agents use the
loopback address to talk to the main daemon, and the main daemon uses the loopback
address to talk to agents.

The -listenaddr entry in a separate line in the ttendaemon.options file tells the
TimesTen daemons to listen on the specific address indicated in the value supplied.
The address specified with this option can be either a host name or a numerical IP
address.

The -listenaddr parameter exists for situations where a server has multiple
network addresses and multiple network cards. In this case it is possible to limit the
network addresses on which the TimesTen daemon is listening to a subset of the
server's network addresses. This is done by making entries only for those addresses on
which the daemon listens. These possibilities exist:

Managing TimesTen daemon options

3-4 Oracle TimesTen In-Memory Database Operations Guide

■ Given a situation where a server has a "public" network address that is accessible
both inside and outside the local network and a "private" address that is accessible
only within the local network, adding a -listenaddr entry containing only the
private address blocks all communications to TimesTen coming on the public
address.

■ By specifying only the local host, the TimesTen main daemon can be cut off from
all communications coming from outside the server and communicate only with
local clients and subdaemons.

There is no relationship between TimesTen replication and the -listenaddr
parameter and there is no requirement for enabling the -listenaddr parameter
when replication is enabled. If replication is going to be used in an environment where
-listenaddr is enabled, then the replication nodes need to know the allowable
network addresses to use. However, if no -listenaddr parameter is enabled
replication still works.

To explicitly specify the address on which the daemons should listen on a separate line
in the ttendaemon.options file, enter:

-listenaddr address

For example, if you want to restrict the daemon to listen to just the loopback address,
you say either:

-listenaddr 127.0.0.1

or

-listenaddr localhost

This means that only processes on the local machine can communicate with the
daemon. Processes from other machines would be excluded, so you would not be able
to replicate to or from other machines, or grant client access from other machines.

If you have multiple ethernet cards on different subnets, you can specify
-listenaddr entries to control which machines can connect to the daemon.

You can enter up to four addresses on which to listen by specifying the option and a
value on up to four separate lines in the ttendaemon.options file. In addition to
the addresses you specify, TimesTen always listens on the loopback address.

Listening on IPv6
By default, TimesTen uses the IPv4 protocol. To enable the daemon to listen on IPv6,
you must enter on a separate line in the ttendaemon.options file:

-enableIPv6

and

-listenaddr6 address

■ You can specify an IPv6 address with the -listenaddr6 option to enable IPv6.

■ Specifying the -enableIPv6 option with one or more -listenaddr or
-listenaddr6 options adds the IPv6 loopback interface to the list.

■ If you specify the -enableIPv6 option without specifying any addresses with the
-listenaddr or -listenaddr6 options, then the daemon listens on any IPv6
interface as well as any IPv4 interface.

Managing TimesTen daemon options

Working with the Oracle TimesTen Data Manager Daemon 3-5

The address specified with this option can be either a host name or a numerical IP
address. See "Determining the daemon listening address" on page 3-3 for specifics on
the -listenaddr option

If one or more -listenaddr options are provided, the daemons listen on the
specified IPv4 interfaces, with the IPv4 loopback address being added to the list if not
specified. If only -enableIPv6 is specified, the daemons listen on both the IPv4 ANY
interface and the IPv6 ANY interface.

You can specify both -listenaddr and -listenaddr6 options. If you specify one
or more -listenaddr6 options, the daemons listen on the specified IPv4 or IPv6
interfaces, with both the IPv4 and IPv6 loopback interfaces being added if not
specified. If the name resolver returns multiple IPv4 and/or IPv6 addresses for a
name, the daemons listen on all of the names.

Modifying informational messages
As the daemon operates, it generates error, warning and informational messages.
These messages may be useful for TimesTen system administration and for debugging
applications.

By default, informational messages are stored in the following:

■ A user error log that contains information you may need to see. Generally, these
messages contain information on actions you may need to take.

■ A support log containing everything in the user error log plus information of use
by TimesTen Customer Support.

The following options specify the locations and size of the support and user logs, as
well as the number of files to keep stored on your system.

Option Description

-supportlog path -f path Specifies the location for the support log file. The
default file is daemon_home/ttmesg.log

-maxsupportlogfiles num The TimesTen main daemon automatically rotates the
files once they get to a specific size. This option
specifies the number of support log files to keep. The
default is 10.

-maxsupportlogsize nBytes Specifies the maximum size of the support log file. The
default is 10 MB.

-userlog logfile

or

-userlog [syslog]

Specifies the location and name of the user log file. The
default file is daemon_home/tterrors.log.

You may specify [syslog] on UNIX systems as the
path or the Event Log on Windows, in which case the
output is sent to the system [syslog] or Event Log.

-maxuserlogfiles num The TimesTen main daemon automatically rotates the
files once they get to a specific size. This option
specifies the number of user log files to keep. The
default is 10.

-maxuserlogsize nBytes Specifies maximum size of the user log. Default is
1MB.

-showdate On UNIX systems only, indicates that the date should
be prepended to all messages

Managing TimesTen daemon options

3-6 Oracle TimesTen In-Memory Database Operations Guide

If you have specified the Event Log as the location for your log messages, to view
them follow these steps:

1. Open the Event Viewer window on your Windows Desktop.

2. From the Log menu, choose Application.

The window changes to display only log messages generated by applications. Any
messages with the word "TimesTen" in the "Source" column were generated by the
Oracle TimesTen Data Manager service.

3. To view any TimesTen message, double-click the message summary.

The message window is displayed. You can view additional messages by clicking
Next , Previous, up or down arrows, depending on your version of Windows.

To specify the syslog facility used to log TimesTen daemon and subdaemon
messages on UNIX, on a separate line of the ttendaemon.options file add:

-facility name

Possible name values are: auth, cron, daemon, local0-local7, lpr, mail, news,
user, or uucp.

To turn off detailed log messages, add a # before -verbose in the
ttendaemon.options file.

Changing the allowable number of subdaemons
TimesTen uses subdaemons to perform the following:

■ Manage databases.

■ Flush the transaction log buffer to disk.

■ Perform periodic checkpoints.

■ Implement the aging policies of various tables.

■ Find and break deadlocks.

■ Rollback transactions for abnormally terminated direct-mode applications.

■ Perform required background processing for the database.

The main TimesTen daemon spawns subdaemons dynamically as they are needed.
You can manually specify a range of subdaemons that the daemon may spawn, by
specifying a minimum and maximum.

At any point in time, one subdaemon is potentially needed for TimesTen process
recovery for each failed application process that is being recovered at that time.

By default, the maximum number of subdaemons is 50.

By default, TimesTen spawns a minimum of 4 subdaemons. However, you can change
these settings by assigning new values to the -minsubs and -maxsubs options in the
ttendaemon.options file.

Note: You can also view messages using the ttDaemonLog utility.

Managing TimesTen daemon options

Working with the Oracle TimesTen Data Manager Daemon 3-7

Allowing database access over NFS-mounted systems
By default, TimesTen systems cannot access data across NFS-mounted systems. On
Linux x86 64-bit systems, you can access checkpoint and transaction log files on
NFS-mounted systems.

To enable data access on NFS-mounted systems, on a separate line of the
ttendaemon.options file, add:

-allowNetworkFiles

Enabling Linux large page support
To enable Linux large page support on TimesTen, on a separate line of the
ttendaemon.options file, add:

-linuxLargePageAlignment Size_in_MB

The Size_in_MB is the Hugepagesize value in /proc/meminfo, specified in MB
instead of KB.

Shared memory daemon option for HP-UX ccNUMA systems
HP-UX ccNUMA systems have non-uniform memory latency depending on the data
location. Accessing data in a remote cell takes longer than accessing data in a local cell.
To ensure the best results for TimesTen operations, set the IPC_MEM_LOCAL and
confine the TimesTen processes to the local cell.

To set the locality hint for the shared memory segment, on a separate line of the
ttendaemon.options file, add:

-shmLocalityHint locality_hint

Legal values for locality_hint are:

■ IPC_MEM_LOCAL

■ IPC_MEM_INTERLEAVED

■ IPC_MEM_FIRST_TOUCH

■ IPC_MEM_STRIPED

Only one value string can be specified at a time. If specified, TimesTen attempts to
create the shared memory segment for all databases in the instance with the
appropriate locality hint.

The semantics of the hints are described in the man page for shmget. The default
behavior is to create the segment without the hint. Expect the default behavior if the
daemon option is not specified or if it is specified incorrectly. To see whether a
segment has been created with the hint, use the HP-UX pstat facility. See the HP-UX
man page for pstat.

Note: TimesTen does not support the storage of trace files or user
and support logs across NFS-mounted systems

Note: This option only takes effect if the instance administrator has
permission to access the memory resource.

Managing TimesTen Client/Server options

3-8 Oracle TimesTen In-Memory Database Operations Guide

Managing TimesTen Client/Server options
This section includes the following topics:

■ Modifying the TimesTen Server options

■ Controlling the TimesTen Server

■ Prespawning TimesTen Server processes

■ Specifying multiple connections to the TimesTen Server

■ Using shared memory for Client/Server IPC

■ Controlling the TimesTen Server log messages

Modifying the TimesTen Server options
The TimesTen Server is a child process of the TimesTen daemon that operates
continually in the background. To modify the TimesTen Server options, you must:

1. Stop the TimesTen Server.

2. Modify the options in the ttendaemon.options file as described in the
following sections.

3. Restart the TimesTen Server.

Controlling the TimesTen Server
The -server portno entry in a separate line in the ttendaemon.options file tells
the TimesTen daemon to start the TimesTen Server and what port to use. The portno
is the port number on which the server will listen.

If the TimesTen Server is installed, you can enable or disable the TimesTen Server:

■ To enable the TimesTen Server, remove the comment symbol '#' in front of the
-server portno entry.

■ To disable the TimesTen Server, add a comment symbol '#' in front of the
-server portno entry.

Prespawning TimesTen Server processes
Each TimesTen Client connection requires one server process. By default, a server
process is spawned when a client requests a connection.

You can prespawn a pool of reserve server processes, making them immediately
available for a client connection, thus improving client/server connection
performance.

The -serverpool number entry in a separate line in the ttendaemon.options
file on the Server machine tells the TimesTen Server to create number processes. If this
option is not specified, no processes are prespawned and kept in the reserve pool.

When a new connection is requested, if there are no items in the server pool, a new
process is spawned, as long as you have not met the operating system limit.

If you request more process than allowed by your operating system, a warning is
returned. Regardless of the number of processes requested, an error does not occur
unless a client requests a connection when no more are available on the system, even if
there are no processes remaining in the reserve pool.

Changes to the TimesTen Server take effect when the Server is restarted.

Managing TimesTen Client/Server options

Working with the Oracle TimesTen Data Manager Daemon 3-9

Specifying multiple connections to the TimesTen Server
By default, TimesTen creates only one connection to a Server for each child process.
You can set multiple connects to a single TimesTen Server, either by using the Server
connection attributes described in the Oracle TimesTen In-Memory Database Reference or
by setting the TimesTen daemon options described in this section. These options
enable you to set the number of connections to a TimesTen Server, the number of
servers for each DSN and the size of each connection to the server.

Configuring the maximum number of client connections per child server process
To run a child server process in multithreaded mode so that a single server process
can service multiple client connections to a database, add the following line to the
ttendaemon.options file:

-maxConnsPerServer NumberOfClientConnections

The possible values of NumberOfClientConnections range from 1 to 2047,
inclusive. The default value is 1, which indicates that the child server process runs in
multi-process mode and, therefore, can service only one client connection.

Configuring the desired number of child server processes spawned for a server
DSN
To specify the desired number of child server processes to be spawned for a particular
server DSN, add the following line to the ttendaemon.options file:

-serversPerDSN NumberOfChildServerProcesses

The possible values of NumberOfChildServerProcesses range from 1 to 2047,
inclusive. The default value is 1.

Client connections to a particular server DSN are evenly distributed in round-robin
fashion to the child server processes that are spawned and assigned to the DSN. The
number of child server processes assigned to the server DSN is greater than
NumberOfChildServerProcesses if the number of client connections to the DSN
is greater than the maximum number of client connections per child server process
multiplied by the desired number of child server processes spawned for a server DSN.

Configuring the thread stack size of the child server processes
To set the size of the child server process thread stack for each client connection, add
the following line to the ttendaemon.options file:

-serverStackSize ThreadStackSize

ThreadStackSize is specified in KB. The default is 128 KB on 32-bit systems and 256
KB on 64-bit systems. The ThreadStackSize setting is ignored if the maximum
number of client connections per child server process is 1 because the sole client
connection will be serviced by the main thread of the child server process.

Note: In the case that you have set both the Server connection
attributes and these daemon options, the value of the Server
connection attributes takes precedence.

Note: These changes to the TimesTen Server do not occur until the
TimesTen daemon is restarted.

Managing TimesTen Client/Server options

3-10 Oracle TimesTen In-Memory Database Operations Guide

Using shared memory for Client/Server IPC
By default, TimesTen uses TCP/IP communication between applications linked with
the TimesTen Client driver and the TimesTen Server.

Where the client application resides on the same machine as the TimesTen Server, you
can alternatively use shared memory for the inter-process communication (IPC).

This can be useful for performance purposes or to allow 32-bit client applications to
communicate with a 64-bit database on the server. Before using shared memory as IPC
verify that you have configured your system correctly. See "Installation prerequisites"
in Oracle TimesTen In-Memory Database Installation Guide.

The -serverShmIpc entry in a separate line in the ttendaemon.options file tells
the TimesTen Server to accept a client connection that intends to use a shared memory
segment for IPC.

If this entry is missing, add this line to the ttendaemon.options file to start the
TimesTen Server with shared memory IPC capability when the TimesTen daemon is
restarted.

If the entry exists, add the # symbol before the line in the ttendaemon.options file
to comment it out. The TimesTen Server is no longer started with shared memory IPC
capability when the TimesTen daemon starts.

Managing the size of the shared memory segment
The -serverShmSize size entry in a separate line in the ttendaemon.options
file tells the TimesTen Server to create a shared memory segment of the specified size
in MB.

If this entry is missing, the TimesTen Server creates a shared memory segment of
64MB.

An appropriate value for the shared memory segment depends on:

■ The expected number of concurrent client/server connections to all databases that
belong to an instance of the TimesTen Server.

■ The number of concurrent allocated statements within each such connection.

■ The amount of data being transmitted for a query.

Some guidelines for determining the size of the shared memory segment include:

■ The maximum size allowed is 1 gigabyte.

■ TimesTen needs 1 MB of memory for internal use.

■ Each connection needs a fixed block of 16 KB.

■ Each statement starts with a block of 16 KB for the IPC. But this size is increased or
decreased depending upon the size of the data being transmitted for a query.
TimesTen increments the statement buffer size by doubling it and decreases it by
halving it.

For example, if the user application anticipates a max of 100 simultaneous
shared-memory-enabled client/server connections, and if each connection is

Note: TimesTen supports a maximum of 16 different instances of the
shared memory IPC-enabled server. If an application tries to connect
to more than 16 different shared memory segments it receives an
ODBC error.

Managing TimesTen Client/Server options

Working with the Oracle TimesTen Data Manager Daemon 3-11

anticipated to have a maximum of 50 statements, and the largest query returns 128 KB
of data, use this formula to configure the serverShmSize:

serverShmSize = 1 MB + (100 * 16) KB + (100 * 50 * 128) KB
 = 1 MB + 2 MB + 625 MB = 628 MB

This is the most memory required for this example. The entire memory segment
would be used only if all 100 connections have 50 statements each and each statement
has a query that returns 128 KB of data in a row of the result.

In this example, if you configured the serverShmSize to 128 MB, either a new
shared-memory-enabled client/server connection is refused by the TimesTen Server or
a query may fail due to lack of resources within the shared memory segment.

Changing the size of the shared memory segment
Once configured, to change the value of the shared memory segment you must stop
the TimesTen Server. Stopping the server detaches all existing client/server
connections to any database that is associated with that instance of the TimesTen
Server. The steps for modifying the value of the -serverShmSize option are:

1. Modify the value of -serverShmSize in the ttendaemon.options file.

2. Use the ttDaemonAdmin utility to restart the TimesTen Server. Only the instance
administrator can restart the TimesTen Server.

Controlling the TimesTen Server log messages
The -noserverlog entry in a separate line in the ttendaemon.options file tells
the TimesTen daemon to turn off logging of connects and disconnects from the client
applications.

If the TimesTen Server is installed, you can enable or disable logging of connect and
disconnect messages by:

■ To enable logging, add a comment symbol '#' before the -noserverlog entry.

■ To disable logging, remove the comment symbol '#' before the -noserverlog
entry.

Managing TimesTen Client/Server options

3-12 Oracle TimesTen In-Memory Database Operations Guide

4

Managing Access Control 4-1

4Managing Access Control

The TimesTen Access Control provides authentication for each user and authorization
for all objects in the database. Authentication is provided with the correct user
password. Management of authorization for all objects in the database is provided by
granting appropriate privileges to specific users.

The following sections describe the TimesTen authentication and authorization:

■ Managing users to control authentication

■ Providing authorization to objects through privileges

Managing users to control authentication
For users to access and manipulate data within the database, you must create users
and provide appropriate passwords. When you create a user, you should also grant
the appropriate privileges for connecting to the database or for access to objects in the
database. For more information on granting privileges, see "Providing authorization to
objects through privileges" on page 4-4.

The following sections describe how to create and manage your users:

■ Overview of users

■ Creating or identifying users to the database

■ Changing the password of the internal user

■ Dropping users from the database

Overview of users
There are three types of users in the TimesTen database:

■ Instance administrator: The instance administrator is the user who installed the
TimesTen instance. This user has full privileges for everything within the
TimesTen instance. For information on creating this user, see "TimesTen
Installation" in the Oracle TimesTen In-Memory Database Installation Guide.

Note: In addition to the instance administrator, there are four system
users created during the TimesTen install. These system users are
used internally by TimesTen as follows: SYSTEM for internal use, SYS
for system objects, GRID for cache grid objects and TTREP for
replication objects.

Managing users to control authentication

4-2 Oracle TimesTen In-Memory Database Operations Guide

■ Internal user: An internal user is created within TimesTen for use within the
TimesTen database. An internal user authenticates with a password for a
particular database in which it was defined.

TimesTen user names are case-insensitive, of type TT_CHAR and limited to 30
characters. For details on all user naming conventions, see "Names and
parameters" in the Oracle TimesTen In-Memory Database SQL Reference.

You can create an internal user with the CREATE USER statement, which is
described in the CREATE USER section in the Oracle TimesTen In-Memory Database
SQL Reference.

■ External user: An external user is created within the operating system. External
users are assumed to have been authenticated by the operating system at login
time, so there is no stored password within the database. One cannot connect as an
external user from a different host from which the TimesTen database is installed.
On the same host, we use the operating system credentials of the client to enable
the client to connect as that particular external user. For example, if an external
user logs into the UNIX system, they can connect to the TimesTen database
without specifying a password since they already provided it during the login, as
long as the external user has been granted the correct privileges. The external user
must also be in the TimesTen users group and have the correct permissions
granted to it, as described in the Oracle TimesTen In-Memory Database Installation
Guide.

You cannot connect with an external user defined on one host to a TimesTen data
source on a remote host. External users can only be used to connect to the local
TimesTen data source, because the local operating system authenticates the
external user. When connecting over a client/server connection, the external user
must be defined on the same host the client and server. Thus, in when using an
external user, both the client and the server must be on the same host since the
operating system provides the authentication of the user.

While the external user is created within the operating system, you still need to
identify the user to the database as an external user with the IDENTIFIED
EXTERNALLY clause of the CREATE USER statement. For details on this SQL
statement, see "CREATE USER" in the Oracle TimesTen In-Memory Database SQL
Reference.

UNIX external user names are case sensitive. Windows external user names are
not. When connecting from UNIX platforms, TimesTen automatically converts the
external user name to upper case, rendering it case insensitive.

If you do not want to use cleartext passwords to log into TimesTen, then use the
PWDCrypt attribute to create a hash of the password. The only reason to use this
attribute is if the password is used for logging into other entities, such as an Oracle
Database. The PWDCrypt version of the password can always be used to connect
to TimesTen, but you cannot convert it back to the original password in order to
connect to Oracle.

Note: Both the instance administrator and all external users must be
in the TimesTen users group specified during the install. For more
details, see "TimesTen Installation" in the Oracle TimesTen In-Memory
Database Installation Guide.

Managing users to control authentication

Managing Access Control 4-3

Creating or identifying users to the database
Only the instance administrator or a user with the ADMIN privilege can create the
internal user or identify the external user with the CREATE USER statement. For
security purposes, you can only create or alter the internal user with the CREATE
USER or ALTER USER statements using a direct connection to the TimesTen database.
Thus, executing CREATE USER or ALTER USER from a client-server application or
through passthrough execution is not allowed. You can use the ALTER USER
statement to change a user from an internal to an external user or from an external to
an internal user. The full syntax for the CREATE USER statement is detailed in the
"SQL Statements" chapter in the Oracle TimesTen In-Memory Database SQL Reference.

To create an internal user, provide the user name and password in the CREATE USER
statement. The following example creates the internal user TERRY with the password
"secret":

CREATE USER TERRY IDENTIFIED BY "secret";
User created.

To identify an external user, provide the user name in the CREATE USER
IDENTIFIED EXTERNALLY statement. The following example identifies the external
user PAT to the TimesTen database:

CREATE USER PAT IDENTIFIED EXTERNALLY;
User created.

To change the external user PAT to an internal user, perform the following ALTER
USER statement:

ALTER USER PAT IDENTIFIED BY "secret";

To change the internal user PAT to an external user, perform the following ALTER
USER statement:

ALTER USER PAT IDENTIFIED EXTERNALLY;

You can see what users have been created by executing a SELECT statement on the
following system views:

■ SYS.ALL_USERS lists all users of the database that are visible to the current user.

■ SYS.USER_USERS describes the current user of the database.

■ SYS.DBA_USERS describes all users of the database. To perform a select statement
on this view, you must have the appropriate privileges granted.

For example, to see the current user, perform the following:

SELECT * FROM sys.user_users;
< PAT, 4, OPEN, <NULL>, <NULL>, USERS, TEMP, 2009-02-25 12:00:17.027100, <NULL>,
<NULL> >
1 row found.

For more details on these views, see "System Tables" in the Oracle TimesTen In-Memory
Database System Tables and Limits Reference.

Note: For details on a user with the ADMIN privilege, see "Granting
administrator privileges" on page 4-10.

Providing authorization to objects through privileges

4-4 Oracle TimesTen In-Memory Database Operations Guide

Changing the password of the internal user
Only the internal user has a password that can be modified within the database. A
user can alter their own password. A user with the ADMIN privilege can alter the
password of any user. These users can change the password with the IDENTIFIED
BY clause of the ALTER USER statement.

For example, to change the password for internal user TERRY to "12345" from its
current setting, perform the following:

ALTER USER TERRY IDENTIFIED BY "12345";
User altered.

Dropping users from the database
If granted the appropriate privileges, you can use the DROP USER statement to drop
users created in the database. You cannot drop the user in the following instances:

■ You cannot drop the instance administrator.

■ You cannot drop a user unless all objects owned by that user have first been
deleted.

■ You cannot drop a user if the user is currently connected to the database.

The following DROP USER statement drops the user TERRY from the database:

Command> drop user terry;
User dropped.

The following error occurs if you try to drop the instance administrator:

Command> drop user instadmin;
15103: System-defined users and roles cannot be dropped
The command failed.

The following error occurs if user Pat tries to drop user Terry when Pat does not have
the required ADMIN privilege:

Command> drop user terry;
15100: User PAT lacks privilege ADMIN
The command failed.

Providing authorization to objects through privileges
When multiple users can access database objects, authorization can be controlled to
these objects with privileges. Every object has an owner. Privileges control if a user can
modify an object owned by another user. Privileges are granted or revoked either by
the instance administrator, a user with the ADMIN privilege or, for privileges to a
certain object, by the owner of the object.

The following sections describe authorization to objects through the use of privileges:

■ Privileges overview

■ Granting or revoking system privileges

■ Granting or revoking object privileges

■ Granting or revoking multiple privileges with a single SQL statement

Note: Currently, we do not support DROP USER CASCADE.

Providing authorization to objects through privileges

Managing Access Control 4-5

■ Granting or revoking privileges for cache groups

■ Viewing user privileges

■ Privileges needed for utilities, built-in procedures and first connection attributes

■ Privilege checking rules for parent-child tables

Privileges overview
TimesTen provides user authorization to objects in the database through privileges.
Users must be granted privileges for access to database resources or objects. These
privileges restrict what operations users may perform on those objects. A user has all
privileges on all objects in their own schema, and these privileges cannot be revoked.
A user can be granted privileges for objects in other users' schemas.

TimesTen evaluates each user's privileges when the SQL statement is executed. Each
SQL statement can be executed by an arbitrary user. For example:

SELECT * from PAT.TABLE1;

If this statement is executed by Pat, then no extra privileges are necessary because Pat
owns this object. However, if another user, such as Terry, executes this statement, then
Terry must have been granted the SELECT privilege for PAT.TABLE1.

Privileges provide the following:

■ Define what data users, applications, or functions can access or what operations
they can perform.

■ Prevent users from adversely affecting system performance or from consuming
excessive system resources. For example, a privilege restricting the creation of
indexes is provided not because of an authorization concern, but because it may
affect DML performance and occupies space.

Some examples of privileges include the right to perform the following:

■ Connect to the database and create a session

■ Create a table

■ Select rows from a table that is owned by another user

■ Perform any cache group operation

In addition, a user may need certain privileges in order to perform the following:

■ Execute certain TimesTen built-in procedures, which are documented in the Oracle
TimesTen In-Memory Database Reference.

■ Execute certain TimesTen command-line utilities, which are documented in the
Oracle TimesTen In-Memory Database Reference.

■ Initiate a connection with first connection attributes, which are documented in the
Oracle TimesTen In-Memory Database Reference.

■ The privilege required for executing each SQL statement is documented in the
statement description in the Oracle TimesTen In-Memory Database SQL Reference

There are two levels of privileges:

■ System privileges: These privileges enable system-wide functionality, such as
access to all objects. Granting system privileges can enable a user to perform
standard administrator tasks or access to objects in other users' schemas. These
privileges extend beyond a single object. Restrict them only to trusted users.

Providing authorization to objects through privileges

4-6 Oracle TimesTen In-Memory Database Operations Guide

■ Object privileges: Each type of object has privileges associated with it.

A subset of these privileges are automatically granted to each user upon creation
through the PUBLIC role. Privilege hierarchy rules apply to all privileges granted to a
user.

Grant privileges to users so that they can accomplish tasks required for their job. We
recommend that you are intentional about who you grant privileges, so that they have
only the exact privileges that they need to perform necessary operations.

Privileges are checked at prepare time and when the statement is first executed for
each SQL statement. Subsequent executions of that statement require further privilege
checks only when a revoke operation is executed in the database.

System privileges
A system privilege enables a user the ability to perform system-level activities across
multiple objects in the database. It confers the right to perform a particular operation
in the database or to perform an operation on a type of object. For example, the
privilege to create or modify an object in another user's schema in the database
requires a system privilege to be granted to the user.

Only the instance administrator or a user with the ADMIN privilege can grant a system
privilege to a user. The instance administrator always has full system and object
privileges, which cannot be revoked at any time.

Some of the system privileges include ADMIN, SELECT ANY TABLE, CREATE
SESSION and CREATE ANY SEQUENCE. For more details on granting or revoking
system privileges, see "Granting or revoking system privileges" on page 4-9.

Object privileges
An object privilege enables a user to perform defined operations on a specific object.
Separate object privileges are available for each object type.

Every object owner has access and full privileges to their own objects. A user does not
have access to objects owned by other users unless explicitly granted access by the
object's owner or by a user with ADMIN privilege. If the PUBLIC role has been granted
access to a given object, then all database users have access to that object. A user with
ADMIN privileges cannot revoke an owner's privileges on the owner's object.

Object access control requires that a user either be the owner of an object or granted
the appropriate object privilege to perform operations on the object. Object privileges
are granted or revoked by the instance administrator, a user with the ADMIN privilege
or the user who is the owner of the object.

For more details on granting or revoking object privileges, see "Granting or revoking
object privileges" on page 4-13.

Note: The instance administrator can perform all operations. So, any
operation that can be performed by a user with ADMIN privileges can
also be performed by the instance administrator.

Note: Some objects, such as cache group and replication objects,
require system level privileges before a user can perform certain
operations.

Providing authorization to objects through privileges

Managing Access Control 4-7

PUBLIC role
A role called PUBLIC is automatically created in each TimesTen database. By default,
TimesTen grants specific privileges to this role. Every user created within the
TimesTen database are granted each privilege that is granted to the PUBLIC role. That
is, when the instance administrator or a user with the ADMIN privilege creates a user,
the privileges associated with the PUBLIC role are granted to each of these users. Each
subsequent privilege that is granted to the PUBLIC role is also automatically granted
to all users simultaneously. A user with the ADMIN privilege can add or remove
default privileges for all users by granting or revoking privileges from the PUBLIC
role. When the user revokes a privilege from PUBLIC, it is revoked from each user,
except for those users who have this privilege granted to them explicitly.

In the following example, user Pat is granted the SELECT ANY TABLE privilege and
PUBLIC is granted the SELECT ANY TABLE privilege. Then, all system privileges are
displayed from the SYS.DBA_SYS_PRIVS view. For more information on this view,
see "Viewing user privileges" on page 4-20. Revoking SELECT ANY TABLE from
PUBLIC does not remove SELECT ANY TABLE from Pat, which is shown again
through the SYS.DBA_SYS_PRIVS view.

Command> GRANT SELECT ANY TABLE TO PAT;
Command> GRANT SELECT ANY TABLE TO PUBLIC;
Command> SELECT * FROM SYS.DBA_SYS_PRIVS;
< SYS, ADMIN, NO >
< PUBLIC, SELECT ANY TABLE, NO >
< SYSTEM, ADMIN, NO >
< PAT, ADMIN, NO >
< PAT, SELECT ANY TABLE, NO >
5 rows found.
Command> REVOKE SELECT ANY TABLE FROM PUBLIC;
Command> select * from sys.dba_sys_privs;
< SYS, ADMIN, NO >
< SYSTEM, ADMIN, NO >
< PAT, ADMIN, NO >
< PAT, SELECT ANY TABLE, NO >
4 rows found.

If you must, you may create a database that grants the ADMIN privilege to PUBLIC.
This grants the ADMIN privilege to all users who will then have unrestricted access to
all database objects and be able to perform administrative tasks except for tasks that
must be performed by the instance administrator. This is never recommended as a
long-term approach, since it results in an insecure database. See "Database Upgrades"
in the Oracle TimesTen In-Memory Database Installation Guide for full details on when
and for what purposes to use this approach.

Note: The only exception to this behavior is that any privileges that
were granted to PUBLIC by user SYS cannot be revoked. The
privileges that were granted as part of database creation are shown
when you execute the following SQL statement:

SELECT * FROM DBA_TAB_PRIVS WHERE GRANTOR = 'SYS'

Note: For a full description of the default privileges assigned to the
PUBLIC role, see "SQL Statements" in the Oracle TimesTen In-Memory
Database SQL Reference.

Providing authorization to objects through privileges

4-8 Oracle TimesTen In-Memory Database Operations Guide

The PUBLIC role also grants access to certain objects, system tables and views. By
default, in a newly created TimesTen database, PUBLIC has SELECT and EXECUTE
privileges on various system tables and views and PL/SQL functions, procedures and
packages. You can see the list of privileges granted to PUBLIC, and subsequently all
users, by querying the SYS.DBA_TAB_PRIVS view. In the following query, the
privilege granted to PUBLIC is in the fifth column.

Command> DESC SYS.DBA_TAB_PRIVS;
View SYS.DBA_TAB_PRIVS:
 Columns:
 GRANTEE VARCHAR2 (30) INLINE
 OWNER VARCHAR2 (30) INLINE
 TABLE_NAME VARCHAR2 (30) INLINE
 GRANTOR VARCHAR2 (30) INLINE
 PRIVILEGE VARCHAR2 (40) INLINE NOT NULL
 GRANTABLE VARCHAR2 (3) INLINE NOT NULL
 HIERARCHY VARCHAR2 (3) INLINE NOT NULL
1 view found.

Command> SELECT * FROM SYS.DBA_TAB_PRIVS WHERE GRANTEE='PUBLIC';
< PUBLIC, SYS, TABLES, SYS, SELECT, NO, NO >
< PUBLIC, SYS, COLUMNS, SYS, SELECT, NO, NO >
< PUBLIC, SYS, INDEXES, SYS, SELECT, NO, NO >
< PUBLIC, SYS, USER_COL_PRIVS, SYS, SELECT, NO, NO >
< PUBLIC, SYS, PUBLIC_DEPENDENCY, SYS, SELECT, NO, NO >
< PUBLIC, SYS, USER_OBJECT_SIZE, SYS, SELECT, NO, NO >
< PUBLIC, SYS, STANDARD, SYS, EXECUTE, NO, NO >
< PUBLIC, SYS, UTL_IDENT, SYS, EXECUTE, NO, NO >
< PUBLIC, SYS, TT_DB_VERSION, SYS, EXECUTE, NO, NO >
< PUBLIC, SYS, PLITBLM, SYS, EXECUTE, NO, NO >
< PUBLIC, SYS, DBMS_OUTPUT, SYS, EXECUTE, NO, NO >
< PUBLIC, SYS, DBMS_SQL, SYS, EXECUTE, NO, NO >
< PUBLIC, SYS, DBMS_STANDARD, SYS, EXECUTE, NO, NO >
< PUBLIC, SYS, DBMS_PREPROCESSOR, SYS, EXECUTE, NO, NO >
< PUBLIC, SYS, UTL_RAW, SYS, EXECUTE, NO, NO >
< PUBLIC, SYS, DBMS_UTILITY, SYS, EXECUTE, NO, NO >
< PUBLIC, SYS, DBMS_RANDOM, SYS, EXECUTE, NO, NO >
...
57 rows found.

Privilege hierarchy rules
There is a hierarchy for all of the privileges. The higher level privileges confer related
lower level privileges. For example, the ADMIN privilege confers all privileges. The
SELECT ANY TABLE privilege confers the SELECT privilege on any individual table.

Whenever a user needs a privilege for an operation, you can verify if the user already
has the privilege if either the user is the owner of the object or has a higher level
privilege that confers the necessary privileges for that operation. For example, if the
user Pat needs to have the SELECT privilege for Terry.Table2, you can check the
following:

■ Is Pat the owner of the object? If so, owners have all object privileges on their
objects

■ Has Pat been granted the SELECT ANY TABLE privilege? This privilege means
Pat would have SELECT ON any table, view, materialized view.

■ Has Pat been granted the ADMIN privilege, which would mean that Pat can
perform any valid SQL operation.

Providing authorization to objects through privileges

Managing Access Control 4-9

If you grant a privilege that is included in a higher level privilege, no error occurs.
However, when you revoke privileges, they must be revoked in the same unit as
granted. The following sequence of grant and revoke statements for user PAT grants
the ability to update any table as well as an update privilege on a specific table:

GRANT UPDATE ANY TABLE TO PAT;
GRANT UPDATE ON HR.employees TO PAT;
REVOKE UPDATE ON HR.employees FROM PAT;

The UPDATE ANY TABLE privilege grants the ability to update any table in the
database. The second grant is specific for UPDATE privilege to the HR.employees
table. The second grant is unnecessary as the UPDATE ANY TABLE provides access to
all tables, including employees, but it does not result in an error. You can revoke the
second grant, but it will not affect the first grant of the UPDATE ANY TABLE system
privilege. Thus, Pat can still update the HR.employees table.

You must revoke in the same unit as was granted. The following example grants the
UPDATE ANY TABLE system privilege to Pat. A user tries to revoke the ability to
update the HR.employees table from the user. But, the UPDATE ANY TABLE
privilege is a system privilege and the UPDATE privilege is an object privilege. The
execution of the REVOKE statement for a unit that was not granted fails with an error.

GRANT UPDATE ANY TABLE TO PAT;
REVOKE UPDATE ON HR.employees FROM PAT;
15143: REVOKE failed: User PAT does not have object privilege UPDATE on
HR.EMPLOYEES
The command failed.

The full details of the privilege hierarchy is described in the "Privileges" chapter in the
Oracle TimesTen In-Memory Database SQL Reference.

Granting or revoking system privileges
To grant or revoke a system privilege, use the GRANT or REVOKE statements. Only the
instance administrator or a user with the ADMIN privilege can grant or revoke system
privileges. The GRANT or REVOKE syntax for system privileges includes the system
privilege and the user who receives that privilege. Both the syntax for the GRANT and
REVOKE statements and the required privileges for executing each SQL statement are
described in the "SQL Statements" chapter in the Oracle TimesTen In-Memory Database
SQL Reference.

The most powerful system privilege is ADMIN. When you grant a user the ADMIN
privilege, you enable this user to perform any operation for any database object.

An individual user can view their own system privileges in the SYS.USER_SYS_
PRIVS system view. A user with the ADMIN privilege can view all system privileges
for all users in the SYS.DBA_SYS_PRIVS system table. These system views are
described in "Viewing user privileges" on page 4-20.

The following sections describe some of the system privileges available in TimesTen:

■ Granting administrator privileges

■ Granting ALL PRIVILEGES

■ Granting privileges to connect to the database

Note: How to grant and revoke object privileges is described in
"Granting or revoking object privileges" on page 4-13.

Providing authorization to objects through privileges

4-10 Oracle TimesTen In-Memory Database Operations Guide

■ Granting additional system privileges

■ Enabling users to perform operations on any database object type

■ Granting or revoking privileges for cache groups

Granting administrator privileges
The ADMIN privilege confers all system and object privileges, which allows these users
to perform all administrative tasks and valid database operations. For all objects, a
user with the ADMIN privilege can perform create, alter, drop, select, update, insert, or
delete operations. In addition, a user with the ADMIN privilege can perform replication
tasks, checkpointing, backups, migration, user creation and deletion, and so on. Only a
user with the ADMIN privilege can grant or revoke all privileges.

Only a user with the ADMIN privilege may view all system tables and views by default.
Only a user with the ADMIN privilege can create, alter or drop replication schemas or
active standby pairs. The following views and packages can only be accessed by users
with the ADMIN privilege:

■ The SYS.DBA_TAB_PRIVS view

■ The SYS.DBA_SYS_PRIVS view

■ The SYS.UTL_RECOMP package

To grant the ADMIN privilege to the user TERRY, execute the following statement:

GRANT ADMIN TO TERRY;

If you have the ADMIN privilege, then you can grant privileges to other users. For
example, a user with the ADMIN privilege can grant the SELECT privilege to TERRY on
the departments table owned by Pat, as follows:

GRANT SELECT ON PAT.departments TO TERRY;

Granting ALL PRIVILEGES
 The ALL PRIVILEGES grants every system privilege to a user. If you want a user to
have most of the system privileges, you can grant ALL PRIVILEGES to a user and
then revoke only those system privileges that you do not want them to have. The
following example grants all system privileges to user PAT. Then, revokes the ADMIN
and DROP ANY TABLE privileges to disallow Pat the ability to perform all
administration tasks or to drop any tables.

GRANT ALL PRIVILEGES TO PAT;
REVOKE ADMIN, DROP ANY TABLE FROM PAT;

Note: For a full list of all system privileges, see "Privileges" in the
Oracle TimesTen In-Memory Database SQL Reference.

Note: For more information on viewing privileges for users from
system tables or views, see "Viewing user privileges" on page 4-20.

Note: Since Pat is the owner of departments, Pat may also grant the
SELECT object privilege to Terry.

Providing authorization to objects through privileges

Managing Access Control 4-11

You may also REVOKE ALL PRIVILEGES that were granted to a user. This removes
all system privileges from the user, except what the user inherits from the PUBLIC
role, as demonstrated below for user PAT:

REVOKE ALL PRIVILEGES FROM PAT;

Granting privileges to connect to the database
TimesTen databases are accessed through Data Source Names (DSNs). If a user tries to
use a DSN that has connection attributes for which they do not have privileges, such
as first connection attributes, they receive an error.

For a complete description of first connection attributes, see "Connection Attributes" in
the Oracle TimesTen In-Memory Database Reference.

All users must be granted the CREATE SESSION system privilege by a user with the
ADMIN privilege in order to connect to the database. The CREATE SESSION system
privilege provides the authorization to connect to the database. The following example
grants the CREATE SESSION privilege to Pat:

GRANT CREATE SESSION TO PAT;

A user with the ADMIN privilege can grant CREATE SESSION privilege to all users
by granting this privilege to the PUBLIC role. This allows all users to connect to the
database.

GRANT CREATE SESSION TO PUBLIC;

Granting additional system privileges
In addition to the ADMIN privilege, there are a few system privileges that confer a
superset of abilities. The following provides a brief description of these privileges:

■ XLA: XLA readers can have global impact on the system. They create extra log
volume, and can cause long log holds if they do not advance their bookmarks. You
must have the XLA system privilege to connect as an XLA reader.

■ CACHE_MANAGER: The CACHE_MANAGER privilege is used for cache group
administrator operations. See "Granting or revoking privileges for cache groups"
on page 4-18 for details.

Enabling users to perform operations on any database object type
When you want to grant or revoke privileges for a user, you can grant or revoke
privileges for a single object or for that type of object anywhere in the database.

The system privileges that contain the ANY keyword enable the user to perform the
functions on all objects of the same type in the database. These system privileges are
CREATE ANY object_type, DROP ANY object_type, ALTER ANY object_type, SELECT ANY
object_type, UPDATE ANY TABLE, INSERT ANY TABLE, DELETE ANY TABLE, and
EXECUTE ANY PROCEDURE.

Note: To grant or revoke privileges for a single object, use object
privileges, which are described in "Granting or revoking object
privileges" on page 4-13.

Providing authorization to objects through privileges

4-12 Oracle TimesTen In-Memory Database Operations Guide

The following sections provide more details for the CREATE ANY object_type, DROP
ANY object_type, and ALTER ANY object_type system privileges:

■ Creating a table, index, view, materialized view, sequence, PL/SQL procedure,
PL/SQL function, PL/SQL package or synonym

■ Dropping a table, view, materialized view, sequence, procedure, function, package
or synonym

■ Altering a table, view, materialized view, sequence, procedure, function or
package

Creating a table, index, view, materialized view, sequence, PL/SQL procedure, PL/SQL function,
PL/SQL package or synonym To create a table, view, materialized view, sequence,
PL/SQL procedure, PL/SQL function, PL/SQL package, or synonym within the user's
namespace or another user's namespace, you must have the appropriate CREATE
object_type or CREATE ANY object_type system privileges.

The following describes the CREATE and CREATE ANY system privileges:

■ The CREATE object_type privilege grants a user the ability to create that object, but
only in the user's own schema. After creation, the user owns this object and thus,
automatically has been granted all privileges for that object.

Other privileges are required if a user wants to create cache groups.

■ The CREATE ANY object_type privilege grants a user the ability to create any object
of that type in the database, even in another user's schema. The object types
include table, index, view, materialized view, sequence, synonym and procedure.
The CREATE ANY object_type privileges are CREATE ANY TABLE, CREATE ANY
INDEX, CREATE ANY VIEW, CREATE ANY MATERIALIZED VIEW, CREATE ANY
SEQUENCE, CREATE ANY SYNONYM and CREATE ANY PROCEDURE.

The following example grants the privilege to create any table in other users' schemas
to user TERRY:

GRANT CREATE ANY TABLE TO TERRY;

The following example grants the privilege to create a table within the user's own
schema:

GRANT CREATE TABLE TO TERRY;

Dropping a table, view, materialized view, sequence, procedure, function, package or synonym
Grant the DROP ANY object_type system privilege in order for a user to drop an object
of object_type that the user does not own. For example, granting Pat this privilege
enables Pat to drop the employees table that is owned by the user HR. A user always
has the right to drop a table they own. The DROP ANY object_type privilege enables a
user to drop any object of the specified type in the database, except for cache groups
that require other privileges.

Altering a table, view, materialized view, sequence, procedure, function or package ALTER ANY
PROCEDURE allows users to alter any procedure, function or package in the database.
The ALTER ANY object_type privilege is necessary to modify the properties of objects

Note: For a full description of these privileges, see "Privileges" in the
Oracle TimesTen In-Memory Database SQL Reference. For details on the
cache group system privileges that contain the ANY keyword, see
"Granting or revoking privileges for cache groups" on page 4-18.

Providing authorization to objects through privileges

Managing Access Control 4-13

that the user does not own. For example, if a procedure is created in the HR schema
named Proc1 and if Pat is granted the ALTER ANY PROCEDURE privilege, Pat can
successfully alter the procedure HR.Proc1.

Granting or revoking object privileges
To grant or revoke an object privilege, use the GRANT or REVOKE statements. The
syntax for the object-level GRANT or REVOKE statement requires the name of the object
on which the grant or revoke is applied. The syntax for the GRANT and REVOKE
statements is described in the "SQL Statements" chapter in the Oracle TimesTen
In-Memory Database SQL Reference.

The following sections describe and provide examples on the object privileges for all
object types, except for the cache admin objects. The cache object privileges are
described in "Granting or revoking privileges for cache groups" on page 4-18.:

■ Grant all object privileges

■ Object privileges for tables

■ Object privileges for views

■ Object privileges for sequences

■ Object privileges for materialized views

■ Object Privileges needed when creating foreign key with REFERENCES clause

■ Object privileges for PL/SQL functions, procedures and packages

■ Object privileges for synonyms

Grant all object privileges
You can grant all privileges for an object to a user with the ALL keyword. This
essentially grants a user the right to perform any operation on the object.

There are no specific object privileges for DROP or ALTER. These operations cannot be
granted for individual objects; instead, granting the appropriate system privilege
enables a user other the owner of an object to DROP or ALTER that object.

For example, GRANT ALL ON employees TO PAT grants all privileges for the
employees table to user PAT. It is possible to revoke individual privileges after
granting all object privileges. For instance, the following is a valid sequence of
operations:

GRANT ALL ON HR.employees TO PAT;
REVOKE DELETE ON HR.employees FROM PAT;

Note:

■ Each SQL statement may require a certain privilege. The required
privileges are documented with each statement description in the
"SQL Statements" chapter in the Oracle TimesTen In-Memory
Database SQL Reference.

■ For a full list of all object privileges, see "Privileges" in the Oracle
TimesTen In-Memory Database SQL Reference.

Providing authorization to objects through privileges

4-14 Oracle TimesTen In-Memory Database Operations Guide

You may also REVOKE ALL object privileges that were granted to a user for the object.
This removes all privileges for the object from the user, as demonstrated below for
user PAT:

REVOKE ALL ON HR.employees FROM PAT;

Both the object owner and a user with the ADMIN privilege can perform the GRANT
ALL and REVOKE ALL statements.

Object privileges for tables
For a user to perform operations on tables that they do not own, they must be granted
the appropriate object privilege for that table. This includes privileges for tables within
cache groups. The object privileges for tables include SELECT, UPDATE, DELETE,
INSERT, INDEX and REFERENCES.

The following object privileges may be appropriate not only for authorization, but also
for performance reasons:

■ The INDEX privilege enables the user to create an index on the table. Creating an
index consumes additional space and impacts the performance of DML on the
table. A specific grant for INDEX is required for a user to create an index.

■ The REFERENCES privilege enables the user to create a foreign key dependency on
the table. Foreign key dependencies impact the performance of DML operations
on the parent. For more details on the REFERENCES privilege, see "Object
Privileges needed when creating foreign key with REFERENCES clause" on
page 4-16.

The following example grants the SELECT object privilege for the employees table in
the HR schema to the user PAT:

GRANT SELECT ON HR.employees TO PAT;

The next example shows an example of how to grant the UPDATE privilege on the
employees table owned by the user HR to the user PAT:

GRANT UPDATE ON HR.employees TO PAT;

Object privileges for views
For a user to create a view, that user must be granted the CREATE VIEW or CREATE
ANY VIEW privilege. For a user to select from a view that they do not own, they need
to be granted the SELECT object privilege for that view. Furthermore, the view itself
needs to be valid; that is, the owner of the view must be granted the SELECT object
privilege for all of the objects referenced by the view.

When user PAT creates a view owned by Pat and that view only references objects
owned by Pat, then Pat is only required to be granted the CREATE VIEW privilege for
this operation. If Pat creates a view owned by Terry that references objects owned by
Terry, Pat is required to be granted the CREATE ANY VIEW privilege for this
operation. For example:

CREATE VIEW PAT.VIEW1 as select * from PAT.TABLE1;

In this example, if Pat executes this statement, Pat only needs to be granted the
CREATE VIEW privilege.

If user Pat creates a view, and the view references a table owned by Terry, then Pat
needs to be granted the CREATE VIEW privilege and the SELECT object privilege on
all of the objects referenced by the view. The owner of the view, not the view creator,
must be granted the SELECT object privilege on the objects referenced by the view.

Providing authorization to objects through privileges

Managing Access Control 4-15

Therefore, in this example, Pat must be granted the SELECT object privilege on
TABLE2 that is owned by Terry. Once these privileges are granted, Pat can execute the
following:

CREATE VIEW PAT.VIEW2 as select * from TERRY.TABLE2;

However, if a third user, Joe, executes this statement, then Joe must be granted the
CREATE ANY VIEW privilege to create the view. Even though Joe is executing the
statement, Pat, as the owner of the view, is still required to be granted the SELECT
object privilege in order to perform the select on Terry's table.

TimesTen validates all views referenced at execution time. TimesTen will notify which
privileges are not in place in order to perform the given operation.

For example:

CREATE VIEW PAT.VIEW2 as select * from TERRY.TABLE2;
CREATE VIEW JOE.VIEW4 as select * from PAT.VIEW2, TERRY.TABLE4;

If Pat is executing these statements, the following privileges must be granted:

■ CREATE ANY VIEW privilege so that Pat can create the view in Pat's own schema
as well as a view in Joe's schema.

■ USER Joe must be granted the SELECT object privilege on Terry.Table4.

■ USER Joe must be granted the SELECT object privilege on Pat.View2

■ USER Pat must be granted the SELECT object privilege on Terry.Table2

When validating all references, TimesTen also validates that PAT.VIEW2 is still valid
by verifying that Pat has the SELECT object privilege on TERRY.TABLE2. When you
select from a view, TimesTen validates that the view itself is still valid, as well as any
views referenced by that view.

Object privileges for sequences
For a user to perform operations on sequences that they do not own, they must be
granted the SELECT object privilege. The SELECT privilege on a sequence allows the
user to perform all operations on a sequence, including NEXTVAL, even though it
ultimately updates the sequence.

For example, to grant SELECT privilege on the employees_seq sequence in the HR
schema to the user PAT, issue the following statement:

GRANT SELECT ON HR.employees_seq TO PAT;

Pat can subsequently generate the next value of the sequence with the following
statement:

SELECT HR.employees_seq.NEXTVAL FROM DUAL;
< 207 >
1 row found.

Object privileges for materialized views
In order to create a materialized view, a user needs the CREATE MATERIALIZED
VIEW privilege. If the user is creating a materialized view in some other user's schema,
the user needs the CREATE ANY MATERIALIZED VIEW privilege.

The owner of the materialized view needs to have CREATE TABLE privilege as well as
SELECT privileges on every detail table in that materialized view. However, the owner
of the materialized view is automatically granted the SELECT privilege on the detail

Providing authorization to objects through privileges

4-16 Oracle TimesTen In-Memory Database Operations Guide

tables if previously granted a higher-level system privilege, such as SELECT ANY
TABLE or ADMIN.

For a user to select from a materialized view that they do not own, the user needs to be
granted the object privileges for materialized views, which include SELECT, INDEX
and REFERENCES. For more details on the privileges required, see the appropriate
SQL statements in the Oracle TimesTen In-Memory Database SQL Reference.

Behavior of Invalid Materialized Views The materialized view needs to be valid; that is, the
owner of the view must be granted and must keep the SELECT object privilege for all
of the detail tables referenced by the materialized view. If the owner of an existing
materialized view loses the SELECT privilege on any detail table on which the
materialized view is based, the materialized view becomes invalid.

The status of the materialized view is provided in the STATUS column of the
SYS.DBA_OBJECTS, SYS.ALL_OBJECTS, and SYS.USER_OBJECTS views. The
owner of the materialized view can see the status of its materialized views in the
USER_OBJECTS view. Alternatively, execute the ttIsql describe command,
which appends INVALID to the materialized view when it becomes invalid.

■ Users may still select from an invalid asynchronous materialized view without
error. However, users will receive an error when selecting from an invalid
synchronous materialized view.

■ Users that have the privilege to do so can still update the detail tables of the
materialized view. However, the invalid materialized view will not reflect these
changes. In addition, for asynchronous materialized views, the materialized view
log will not be updated if no valid materialized views depend on them.

■ REFRESH on an invalid synchronous materialized view fails with an error.

■ If the owner of the materialized view has been re-granted the privilege that was
previously revoked, a REFRESH on an invalid COMPLETE asynchronous
materialized view succeeds and the asynchronous materialized view is now valid.

■ In order to fix an invalid materialized view, you must grant the appropriate
privileges to the owner of the materialized view and then drop and re-create the
materialized view.

Object Privileges needed when creating foreign key with REFERENCES clause
The REFERENCES clause in the CREATE or ALTER TABLE statements creates a foreign
key dependency from the new child table column (TABLE1.COL1) on the parent table
column (TABLE2.PK) as shown in the following operation:

ALTER TABLE PAT.TABLE1 ADD CONSTRAINT FK1
 FOREIGN KEY (COL1) REFERENCES PAT.TABLE2 (PK);

In this example, the user executing the SQL must have ALTER ANY TABLE privilege.
Since Pat owns both tables, no additional privileges are needed since Pat owns both
tables.

Note: If the owner of the materialized view was granted with a
higher-level system privilege, such as SELECT ANY TABLE or ADMIN,
the owner loses the required SELECT privileges on the detail tables if
the higher-level system privilege is revoked. At this point, the
materialized view becomes invalid.

Providing authorization to objects through privileges

Managing Access Control 4-17

However, if the REFERENCES clause refers to a table not owned by this user, then the
REFERENCES object privilege on the table not owned by the user is required before
execution is allowed. For example:

ALTER TABLE PAT.TABLE1 ADD CONSTRAINT FK1
 FOREIGN KEY (COL1) REFERENCES TERRY.TABLE2 (PK);

In this example, the user executing this SQL must have ALTER ANY TABLE privilege.
As in the previous example, if the user executing this SQL is Pat, the ALTER ANY
TABLE privilege is not required because a table's owner can always modify its own
table. In addition, the user Pat must be granted the REFERENCES privilege on
TERRY.TABLE2 in order for Pat to create a foreign key involving a table owned by
Terry.

A user who creates or alters a child table needs the REFERENCES object privilege on
the parent table to create a foreign key dependency. The REFERENCES privilege
implicitly grants SELECT privileges for a user creating a foreign key on the parent
table. However, this implicit grant does not mean that the user has the SELECT
privilege on the parent table, so any SELECT statements will fail if the only privilege
on the parent table is the REFERENCES privilege.

Object privileges for PL/SQL functions, procedures and packages
For a user to perform operations on PL/SQL functions, PL/SQL procedures or
PL/SQL packages that they do not own, they must be granted the EXECUTE object
privilege. When you grant a user EXECUTE privilege on a package, this automatically
grants EXECUTE privilege on its component procedures and functions.

This privilege grants the right to the following:

■ Execute the procedure or function.

■ Access any program object declared in the specification of a package.

■ Compile the object implicitly during a call to a currently invalid or uncompiled
function or procedure.

The EXECUTE privilege does not allow the user to create, drop or alter any procedure,
function or package. This requires appropriate system privileges. For example, to
explicitly compile using ALTER PROCEDURE or ALTER FUNCTION, the user must be
granted the ALTER ANY PROCEDURE system privilege. For details on the system
privileges for functions, procedures or packages, see "Enabling users to perform
operations on any database object type" on page 4-11.

Object privileges for synonyms
For a user to create or drop private or public synonyms, the user must have the
following privileges:

Table 4–1 Privileges for synonyms

Action Required privilege

Create a private synonym in the user's own schema. CREATE SYNONYM

Create a private synonym in another user's schema. CREATE ANY SYNONYM

Create a public synonym. CREATE PUBLIC SYNONYM

Drop a private synonym in the user's own schema. No privilege needed.

Drop a private synonym in another user's schema. DROP ANY SYNONYM

Drop a public synonym. DROP PUBLIC SYNONYM

Providing authorization to objects through privileges

4-18 Oracle TimesTen In-Memory Database Operations Guide

In addition, in order to use a synonym, the user must have the appropriate access
privileges for the object that the synonym refers to. For example, if you create a
synonym for a view, then to select from that view using the synonym, the user would
need the SELECT privilege that is necessary to select from a view.

Granting or revoking multiple privileges with a single SQL statement
You can grant multiple object privileges in the same GRANT or REVOKE statement for
the same database object for one or more users. For example, the following grants
Terry the SELECT and UPDATE object privileges on the HR.employees table in the
same SQL statement.

GRANT SELECT, UPDATE ON HR.employees TO TERRY;

You can also grant multiple system privileges to one or more users with the same
GRANT or REVOKE statement. The following example grants multiple system privileges
to both Terry and Pat.

GRANT CREATE ANY TABLE, CREATE SESSION TO TERRY, PAT;

You cannot combine system and object privileges in the same GRANT or REVOKE
statement.

Granting or revoking privileges for cache groups
In order for a user to be able to perform activities involving any cache group, the user
must have the appropriate cache group privileges. There are system and object
privileges for cache groups, where system privileges confer abilities beyond a singular
object.

The following sections provide an overview of cache group privileges:

■ Cache manager privilege

■ Cache group system privileges

■ Cache group object privileges

For a full list of all system and object privileges for cache group operations, see
"Privileges" in the Oracle TimesTen In-Memory Database SQL Reference.

Cache manager privilege
The cache group system privileges provide a user the ability to affect cache group
objects across the database. The CACHE_MANAGER system privilege is the
administrator privilege for cache groups. If a user has been granted the CACHE_
MANAGER privilege, this user may perform any cache group operation. This privilege
confers all cache group operation privileges, which are listed in the "Privilege
hierarchy" section in the Oracle TimesTen In-Memory Database SQL Reference.

You must have the CACHE_MANAGER privilege to perform the initial load of a
read-only cache group or to change the state of autorefresh on a read-only cache

Note: Passthrough does not require any privileges to be granted,
since the privilege checking will be performed by the Oracle Database
with the user credentials. For details on passthrough, see the Oracle
In-Memory Database Cache User's Guide.

Providing authorization to objects through privileges

Managing Access Control 4-19

group. The initial load implicitly alters the state of the cache group autorefresh from
paused to on.

The following grants the CACHE_MANAGER privilege to Pat:

GRANT CACHE_MANAGER TO PAT;

Cache group system privileges
The privileges that the TimesTen users require depend on the types of cache group
operations that you want to perform.

■ To create a cache group, a user must be granted either the CREATE CACHE GROUP
or CREATE ANY CACHE GROUP system privilege. In addition, the user must be
granted either the CREATE ANY TABLE or CREATE TABLE privilege to create any
underlying cache tables, depending on if the table is owned by the user or not.

■ To drop or alter a cache group that is not owned by the user, the user must be
granted the DROP ANY CACHE GROUP or ALTER ANY CACHE GROUP privilege
as appropriate. In addition, the user must be granted the DROP ANY TABLE
privilege to drop any underlying cache tables, if the tables are not owned by the
user.

For example, the following confers the privilege for a user to alter any cache group in
the database:

GRANT ALTER ANY CACHE GROUP TO PAT;

Other system privileges for cache group operations are for performing the following
on objects not owned by the user:

■ FLUSH ANY CACHE GROUP: Allows users to flush any cache group in the
database.

■ LOAD ANY CACHE GROUP: Allows users to load any cache group in the database.

■ UNLOAD ANY CACHE GROUP: Allows users to unload any cache group in the
database.

■ REFRESH ANY CACHE GROUP: Allows users to refresh any cache group in the
database.

Note: An asynchronous writethrough (AWT) cache group combines
both cache groups and replication. The CACHE_MANAGER privilege
provides all of the privileges that you need for creating AWT cache
groups.

Note: All cache group privileges are described in detail in the
"Setting Up a Caching Infrastructure" chapter in the Oracle In-Memory
Database Cache User's Guide.

Note: Users with certain privileges must also be created on the
Oracle database to own Oracle tables and to store cache grid
information. The privileges required for the Oracle cache
administration user and the TimesTen cache manager user for each
cache operation are listed in the "Setting Up a Caching Infrastructure"
chapter in the Oracle In-Memory Database Cache User's Guide.

Providing authorization to objects through privileges

4-20 Oracle TimesTen In-Memory Database Operations Guide

Cache group object privileges
The object privileges for cache group operations are granted to a user for performing
the operation on a single, defined object. The following are the object privileges for
cache group objects:

■ FLUSH: Allows the user to flush a cache group owned by another user.

■ LOAD: Allows the user to load a cache group owned by another user.

■ UNLOAD: Allows the user to unload a cache group owned by another user.

■ REFRESH: Allows the user to refresh a cache group owned by another user.

For example, the following example grants Pat the cache group object privilege to
perform a FLUSH on the cache group CACHEGRP that is owned by Terry:

GRANT FLUSH ON TERRY.CACHEGRP TO PAT;

For details on cache group operations, see the Oracle In-Memory Database Cache User's
Guide.

Viewing user privileges
You can view the privileges granted to each user through the following views:

For example, perform the following to see all of the system privileges granted to all
users:

Command> SELECT * FROM SYS.DBA_SYS_PRIVS;
< SYS, ADMIN, YES >
< SYSTEM, ADMIN, YES >
< TERRY, ADMIN, YES >
< TERRY, CREATE ANY TABLE, NO >
< PAT, CACHE_MANAGER, NO >
5 rows found.

Privileges needed for utilities, built-in procedures and first connection attributes
Many of the utilities and built-in procedures require a certain privilege in order to
execute. In addition, in order to modify or connect with certain first connection

Table 4–2 System privilege views

View name Description

SYS.USER_SYS_PRIVS Returns all of the system privileges granted to the current user.

SYS.DBA_SYS_PRIVS Returns the list of system privileges granted to all users and
inherited from the PUBLIC role. Requires the ADMIN privilege to
select from this view.

SYS.USER_TAB_PRIVS Returns all of the object privileges granted to the current user.

SYS.ALL_TAB_PRIVS Returns the results of both USER_TAB_PRIVS and the object
privileges inherited from the PUBLIC role for a user. This shows
all object privileges granted to a user.

SYS.DBA_TAB_PRIVS Returns the object privileges granted to all users and inherited
from the PUBLIC role. Requires the ADMIN privilege to select
from this view.

Note: For details on these views, see "System Tables" in the Oracle
TimesTen In-Memory Database System Tables and Limits Reference.

Providing authorization to objects through privileges

Managing Access Control 4-21

attributes, certain privileges are required. First connection attributes are set when a
database is first loaded, and only the instance administrator can load a database with
first connection attribute settings. The required privilege for each is described with the
utility, built-in procedure or first connection attribute description in the Oracle
TimesTen In-Memory Database Reference.

Privilege checking rules for parent-child tables
If you have tables related by foreign key constraints, then the following applies:

■ If ON DELETE CASCADE is specified on a foreign-key constraint for a child table, a
user can delete rows from the parent table resulting in deletions from the child
table without requiring an explicit DELETE privilege on the child table. However,
a user must have the DELETE privilege on the parent table for this to occur
automatically.

■ When you perform an insert or update on a child table, TimesTen determines if
there is a foreign key constraint violation on the parent table resulting from the
change to the child table. In this case, a user is required to have the INSERT or
UPDATE privilege on the child table, but not a SELECT privilege on the parent
table.

■ A user who creates a child table needs the REFERENCES object privilege on the
parent table to create a foreign key dependency. See "Object Privileges needed
when creating foreign key with REFERENCES clause" on page 4-16 for more
details.

Providing authorization to objects through privileges

4-22 Oracle TimesTen In-Memory Database Operations Guide

5

Globalization Support 5-1

5Globalization Support

The following sections describe TimesTen globalization support features:

■ Overview of globalization support features

■ Choosing a database character set

■ Length semantics and data storage

■ Connection character set

■ Linguistic sorts

■ SQL string and character functions

■ Setting globalization support attributes

■ Globalization support during migration

Overview of globalization support features
TimesTen globalization support includes the following features:

■ Character set support

You must choose a database character set when you create a database. See
"Supported Character Sets" in the Oracle TimesTen In-Memory Database Reference for
all supported character sets. You can also choose a connection character set for a
session. See "Connection character set" on page 5-4.

■ Length semantics

You can specify byte semantics or character semantics for defining the storage
measurement of character data types. See "Length semantics and data storage" on
page 5-3.

■ Linguistic sorts and indexes. You can sort data based on linguistic rules. See
"Linguistic sorts" on page 5-4. You can use linguistic indexes to improve
performance of linguistic sorts. See "Using linguistic indexes" on page 5-6.

■ SQL string and character functions

TimesTen provides SQL functions that return information about character strings.
TimesTen also provides SQL functions that return a character from an encoded
value. See "SQL string and character functions" on page 5-6.

Note: This release of TimesTen does not support session language
and territory.

Choosing a database character set

5-2 Oracle TimesTen In-Memory Database Operations Guide

Choosing a database character set
TimesTen uses the database character set to define the encoding of data stored in
character data types, such as CHAR and VARCHAR2.

Use the DatabaseCharacterSet data store attribute to specify the database
character set during database creation. You cannot alter the database character set
after database creation, and there is no default value for DatabaseCharacterSet.
See "Supported character sets" in the Oracle TimesTen In-Memory Database Reference for
a list of supported character sets.

Consider the following questions when you choose a character set for a database:

■ What languages does the database need to support now and in the future?

■ Is the character set available on the operating system?

■ What character sets are used on clients?

■ How well does the application handle the character set?

■ What are the performance implications of the character set?

If you are using Oracle In-Memory Database Cache (IMDB Cache) to cache Oracle
tables, you must create the database with the same database character set as the Oracle
Database.

This section includes the following topics:

■ Character sets and languages

■ Client operating system and application compatibility

■ Performance and storage implications

■ Character sets and replication

Character sets and languages
Choosing a database character set determines what languages can be represented in
the database.

A group of characters, such as alphabetic characters, ideographs, symbols,
punctuation marks, and control characters, can be encoded as a character set. An
encoded character set assigns unique numeric codes to each character in the character
repertoire. The numeric codes are called code points or encoded values.

Character sets can be single-byte or multibyte. Single-byte 7-bit encoding schemes can
define up to 128 characters and normally support just one language. Single-byte 8-bit
encoding schemes can define up to 256 characters and often support a group of related
languages. Multibyte encoding schemes are needed to support ideographic scripts
used in Asian languages like Chinese or Japanese because these languages use
thousands of characters. These encoding schemes use either a fixed number or a
variable number of bytes to represent each character. Unicode is a universal encoded
character set that enables information from any language to be stored using a single
character set. Unicode provides a unique code value for every character, regardless of
the platform, program, or language.

Client operating system and application compatibility
The database character set is independent of the operating system. On an English
operating system, you can create and run a database with a Japanese character set.
However, when an application in the client operating system accesses the database,

Length semantics and data storage

Globalization Support 5-3

the client operating system must be able to support the database character set with
appropriate fonts and input methods. For example, you cannot insert or retrieve
Japanese data on the English Windows operating system without first installing a
Japanese font and input method. Another way to insert and retrieve Japanese data is
to use a Japanese operating system remotely to access the database server.

If all client applications use the same character set, then that character set is usually the
best choice for the database character set. When client applications use different
character sets, the database character set should be a superset of all the application
character sets. This ensures that every character is represented when converting from
an application character set to the database character set.

Performance and storage implications
For best performance, choose a character set that avoids character set conversion and
uses the most efficient encoding for the languages desired. Single-byte character sets
result in better performance than multibyte character sets, and they also are the most
efficient in terms of space requirements. However, single-byte character sets limit how
many languages you can support.

Character sets and replication
All databases in a replication scheme must have the same database character set. No
character set conversion occurs during replication.

Length semantics and data storage
In single-byte character sets, the number of bytes and the number of characters in a
string are the same. In multibyte character sets, a character or code point consists of
one or more bytes. Calculating the number of characters based on byte lengths can be
difficult in a variable-width character set. Calculating column lengths in bytes is called
byte semantics, while measuring column lengths in characters is called character
semantics.

Character semantics is useful for defining the storage requirements for multibyte
strings of varying widths. For example, in a Unicode database (AL32UTF8), suppose
that you need to define a VARCHAR2 column that can store up to five Chinese
characters together with five English characters. Using byte semantics, this column
requires 15 bytes for the Chinese characters, which are three bytes long, and 5 bytes for
the English characters, which are one byte long, for a total of 20 bytes. Using character
semantics, the column requires 10 characters.

The expressions in the following list use byte semantics. Note the BYTE qualifier in the
CHAR and VARCHAR2 expressions.

■ CHAR (5 BYTE)

■ VARCHAR2(20 BYTE)

The expressions in the following list use character semantics. Note the CHAR qualifier
in the VARCHAR2 expression.

■ VARCHAR2(20 CHAR)

■ SUBSTR(string, 1, 20)

By default, the CHAR and VARCHAR2 character data types are specified in bytes, not
characters. Therefore, the specification CHAR(20) in a table definition allows 20 bytes
for storing character data.

Connection character set

5-4 Oracle TimesTen In-Memory Database Operations Guide

The NLS_LENGTH_SEMANTICS general connection attribute determines whether a
new column of character data type uses byte or character semantics. It enables you to
create CHAR and VARCHAR2 columns using either byte-length or character-length
semantics without having to add the explicit qualifier. NCHAR and NVARCHAR2
columns are always character-based. Existing columns are not affected.

The default value for NLS_LENGTH_SEMANTICS is BYTE. Specifying the BYTE or
CHAR qualifier in a data type expression overrides the NLS_LENGTH_SEMANTICS
value.

Connection character set
The database character set determines the encoding of CHAR and VARCHAR2 character
data types. The connection character set is used to describe the encoding of the
incoming and outgoing application data, so that TimesTen can perform the necessary
character set conversion between the application and the database. For example, this
allows a non-Unicode application to communicate with a Unicode (AL32UTF8)
database.

The ConnectionCharacterSet general connection attribute sets the character
encoding for the connection, which can be different than the database character set.
The connection uses the connection character set for information that passes through
the connection, such as parameters, SQL query text, results and error messages.
Choose a connection character set that matches the application environment or the
character set of your data source.

Best performance results when the connection character set and the database character
set are the same because no conversion occurs. When the connection character set and
the database character set are different, data conversion is performed in the ODBC
layer. Characters that cannot be converted to the target character set are changed to
replacement characters.

The default connection character set is US7ASCII. This setting applies to both direct
and client connections.

Linguistic sorts
Different languages have different sorting rules. Text is conventionally sorted inside a
database according to the binary codes used to encode the characters. Typically, this
does not produce a sort order that is linguistically meaningful. A linguistic sort
handles the complex sorting requirements of different languages and cultures. It
enables text in character data types, such as CHAR, VARCHAR2, NCHAR, and
NVARCHAR2, to be sorted according to specific linguistic conventions.

A linguistic sort operates by replacing characters with numeric values that reflect each
character's proper linguistic order. TimesTen offers two kinds of linguistic sorts:
monolingual and multilingual.

This section includes the following topics:

■ Monolingual linguistic sorts

■ Multilingual linguistic sorts

■ Case-insensitive and accent-insensitive linguistic sorts

■ Performing a linguistic sort

■ Using linguistic indexes

Linguistic sorts

Globalization Support 5-5

Monolingual linguistic sorts
TimesTen compares character strings in two steps for monolingual sorts. The first step
compares the major value of the entire string from a table of major values. Usually,
letters with the same appearance have the same major value. The second step
compares the minor value from a table of minor values. The major and minor values
are defined by TimesTen. TimesTen defines letters with accent and case differences as
having the same major value but different minor values.

Monolingual linguistic sorting is available only for single-byte and Unicode database
character sets. If a monolingual linguistic sort is specified when the database character
set is non-Unicode multibyte, then the default sort order is the binary sort order of the
database character set.

For a list of supported sorts, see "NLS_SORT "in the Oracle TimesTen In-Memory
Database Reference.

Multilingual linguistic sorts
TimesTen provides multilingual linguistic sorts so that you can sort data for multiple
languages in one sort. Multilingual linguistic sort is based on the ISO/OEC 14651 -
International String Ordering and the Unicode Collation algorithm standards. This
framework enables the database to handle languages that have complex sorting rules,
such as those in Asian languages, as well as providing linguistic support for databases
with multilingual data.

In addition, multilingual sorts can handle canonical equivalence and supplementary
characters. Canonical equivalence is a basic equivalence between characters or
sequences of characters. For example, ç is equivalent to the combination of c and ,.

For example, TimesTen supports a monolingual French sort (FRENCH), but you can
specify a multilingual French sort (FRENCH_M). _M represents the ISO 14651 standard
for multilingual sorting. The sorting order is based on the GENERIC_M sorting order
and can sort accents from right to left. TimesTen recommends using a multilingual
linguistic sort if the tables contain multilingual data. If the tables contain only French,
then a monolingual French sort may have better performance because it uses less
memory. It uses less memory because fewer characters are defined in a monolingual
French sort than in a multilingual French sort. There is a trade-off between the scope
and the performance of a sort.

For a list of supported multilingual sorts, see "NLS_SORT" in the Oracle TimesTen
In-Memory Database Reference.

Case-insensitive and accent-insensitive linguistic sorts
Operations inside a database are sensitive to the case and the accents of the characters.
Sometimes you might need to perform case-insensitive or accent-insensitive
comparisons.

To specify a case-insensitive or accent-insensitive sort:

■ Append _CI to a TimesTen sort name for a case-insensitive sort. For example:

BINARY_CI: accent-sensitive and case-insensitive binary sort

GENERIC_M_CI: accent-sensitive and case-insensitive GENERIC_M sort

■ Append _AI to a TimesTen sort name for an accent-insensitive and
case-insensitive sort. For example:

BINARY_AI: accent-insensitive and case-insensitive binary sort

SQL string and character functions

5-6 Oracle TimesTen In-Memory Database Operations Guide

FRENCH_M_AI: accent-insensitive and case-insensitive FRENCH_M sort

Performing a linguistic sort
The NLS_SORT data store connection attribute indicates which collating sequence to
use for linguistic comparisons. The NLS_SORT value affects the SQL string comparison
operators and the ORDER BY clause.

You can use the ALTER SESSION statement to change the value of NLS_SORT:

ALTER SESSION SET NLS_SORT=SWEDISH;
SELECT product_name
 FROM product
 ORDER BY product_name;

PRODUCT NAME

aerial
Antenne
Lcd
ächzen
Ähre

You can also override the NLS_SORT setting by using the NLSSORT SQL function to
perform a linguistic sort:

SELECT * FROM test ORDER BY NLSSORT(name,'NLS_SORT=SPANISH');

For more extensive examples of using NLSSORT, see "NLSSORT" in the Oracle
TimesTen In-Memory Database SQL Reference.

Using linguistic indexes
You can create a linguistic index to achieve better performance during linguistic
comparisons. A linguistic index requires storage for the sort key values.

To create a linguistic index, use a statement similar to the following:

CREATE INDEX german_index ON employees
(NLSSORT(employee_id, 'NLS_SORT=GERMAN'));

The optimizer chooses the appropriate index based on the values for NLSSORT and
NLS_SORT.

You must create multiple linguistic indexes if you want more than one linguistic sort
on a column. For example, if you want both GERMAN and GERMAN_CI sorts against the
same column, create two linguistic indexes.

For more information, see "CREATE INDEX" in the Oracle TimesTen In-Memory
Database SQL Reference.

SQL string and character functions
The following table summarizes SQL functions that operate on character strings:

Setting globalization support attributes

Globalization Support 5-7

The following functions return characters:

■ CHR: Returns the character with the specified binary value in the database
character set.

■ NCHR: Returns the character with the specified Unicode value.

See "Expressions" in the Oracle TimesTen In-Memory Database SQL Reference for more
information including examples.

Setting globalization support attributes
The globalization support attributes are summarized in the following table:

SQL function Description

ASCIISTR Takes as its argument either a string or an expression that resolves
to a string in any character set. It returns the ASCII version of the
string in the database character set. Non-ASCII characters are
converted to Unicode escapes.

INSTR

INSTRB

INSTR4

Determines the first position, if any, at which one string occurs
within another string. INSTRB uses bytes instead of characters.
INSTR4 uses UCS4 code points.

LENGTH

LENGTHB

LENGTH4

Returns the length of a character string in an expression as
number of characters. LENGTHB uses bytes instead of characters.
LENGTH4 uses UCS4 code points.

LOWER and UPPER The LOWER function converts expressions of type CHAR, NCHAR,
VARCHAR2 or NVARCHAR2 to lowercase. The UPPER function
converts expressions of type CHAR, NCHAR, VARCHAR2 or
NVARCHAR2 to uppercase. Character semantics is supported for
CHAR and VARCHAR2 types. The data type of the result is the same
as the data type of the expression.

RTRIM Removes trailing spaces from CHAR, VARCHAR2, NCHAR or
NVARCHAR2 strings.

SUBSTR

SUBSTRB

SUBSTR4

Returns a VARCHAR2 or NVARCHAR2 string that represents a
substring of a CHAR or NCHAR string. The returned substring is a
specified number of characters, beginning from a designated
starting point. SUBSTRB uses bytes instead of characters.
SUBSTR4 uses UCS4 code points.

UNISTR Takes as its argument a string that resolves to data of type
NVARCHAR2. It returns the value in UTF-16 format. Unicode
escapes are supported.

Parameter Description

DatabaseCharacterSet Indicates the character encoding used by a database.

ConnectionCharacterSet Determines the character encoding for the connection, which
may be different from the database character set.

NLS_SORT Indicates the collating sequence to use for linguistic
comparisons.

NLS_LENGTH_SEMANTICS Sets the default length semantics.

Globalization support during migration

5-8 Oracle TimesTen In-Memory Database Operations Guide

DatabaseCharacterSet must be set during database creation. There is no default.
See "Choosing a database character set" on page 5-2.

The rest of the attributes are set during connection to a database. For more information
about ConnectionCharacterSet, see "Connection character set" on page 5-4.

You can use the ALTER SESSION statement to change the following attributes during
a session:

■ NLS_SORT

■ NLS_LENGTH_SEMANTICS

■ NLS_NCHAR_CONV_EXCP

For more information, see "ALTER SESSION" in the Oracle TimesTen In-Memory
Database SQL Reference and "Connection Attributes" in Oracle TimesTen In-Memory
Database Reference.

Backward compatibility using TIMESTEN8
TIMESTEN8 is a restricted database character set that specifies behavior from
TimesTen releases before 7.0. It is supported for backward compatibility only.

TIMESTEN8 has the following restrictions:

■ There is no support for character set conversion of any kind. This includes:

– Conversions between the application and the database. If
DatabaseCharacterSet is TIMESTEN8, then ConnectionCharacterSet must also
be TIMESTEN8.

– Conversions between CHAR/VARCHAR2 data and NCHAR/NVARCHAR2 data.

■ Sorting for CHAR and VARCHAR data types is limited to binary ordering. NLS_
SORT=BINARY is the only sort allowed.

■ TIMESTEN8 is not supported in IMDB Cache.

During database creation, customers should select the database character set matching
the actual encoding of the data being stored in CHAR and VARCHAR2 columns
whenever possible. Select TIMESTEN8 only when backwards compatibility to existing
TimesTen data is required.

Globalization support during migration
The ttMigrate utility saves one or more migrate objects from a TimesTen database
into a binary data file or restores the objects from the binary data files into a TimesTen
database. Migrate objects include tables, cache group definitions, views and
sequences.

This section includes the following topics:

■ Object migration and character sets

■ Migration and length semantics

NLS_NCHAR_CONV_EXCP Determines whether an error is reported when there is data
loss during an implicit or explicit data type conversion
between NCHAR/NVARCHAR2 data and CHAR/VARCHAR2
data.

Parameter Description

Globalization support during migration

Globalization Support 5-9

■ Migrating linguistic indexes

■ Migrating cache group tables

See also "Migration, backup, and restoration of the database" on page 1-26 of this
guide and the description of ttMigrate in the Oracle TimesTen In-Memory Database
Reference.

Object migration and character sets
The ttMigrate utility tags each object it saves with the object's character set. By
default, ttMigrate stores object data in the database character set, but you can
choose a different character set by using the -saveAsCharset option. You can
specify this option in create mode (-c) or append mode (-a).

When you use ttMigrate to restore an object, its data is implicitly converted to the
database character set of the target database if needed. Character set conversion can
result in data loss if the database character set of the target database cannot represent
all of the data that it receives.

If you know that the data is in encoded in the database character set of the target
database, you can use the -noCharsetConversion option. This option can be
specified only in restore mode (-r). If you use the -noCharsetConversion option,
ttMigrate treats the data as if it is in the database character set of the target
database.

When you restore untagged character data from a database that was created before
release 7.0 into a database from release 7.0 and later, ttMigrate treats the data as if it
is in the database character set of the target database.

The ttMigrate utility issues a warning whenever there is an implicit or explicit
character set conversion while saving or restoring data.

Migration and length semantics
The ttMigrate utility saves length semantic information about CHAR and VARCHAR2
columns. It restores the length semantic information when restoring objects into
databases created in TimesTen release 7.0 or later.

When objects are migrated back into a TimesTen release before 7.0, columns with
character semantics are converted to byte semantics and the column length is adjusted
to match the byte length of the original columns.

When objects are migrated from a release before 7.0 to release 7.0 and later, byte
semantics is used.

Migrating linguistic indexes
The ttMigrate utility supports migration of linguistic indexes into TimesTen
releases that support them. When migrating back to a TimesTen release before 7.0,
ttMigrate issues a warning indicating that the linguistic indexes cannot be restored.
Migration of the table proceeds without the linguistic indexes.

Migrating cache group tables
You cannot restore cache group tables containing NCHAR/NVARCHAR2 columns to a
release before 7.0. Releases before 7.0 do not allow these data types in cache group
tables.

Globalization support during migration

5-10 Oracle TimesTen In-Memory Database Operations Guide

6

Using the ttIsql Utility 6-1

6Using the ttIsql Utility

The TimesTen ttIsql utility is a general tool for working with a TimesTen data
source. The ttIsql command line interface is used to execute SQL statements and
built-in ttIsql commands to perform various operations. Some common tasks that
are typically accomplished using ttIsql include:

■ Database setup and maintenance. Creating tables and indexes, altering existing
tables and updating table statistics can be performed quickly and easily using
ttIsql.

■ Retrieval of information on database structures. The definitions for tables, indexes
and cache groups can be retrieved using built-in ttIsql commands. In addition,
the current size and state of the database can be displayed.

■ Optimizing database operations. The ttIsql utility can be used to alter and
display query optimizer plans for the purpose of tuning SQL operations. The time
required to execute various ODBC function calls can also be displayed.

The following sections describe how the ttIsql utility is used to perform these types
of tasks:

■ Batch mode vs. interactive mode

■ Defining default settings with the TTISQL environment variable

■ Customizing the ttIsql command prompt

■ Using the ttIsql online help

■ Using the ttIsql 'editline' feature for UNIX only

■ Using the ttIsql command history

■ Working with character sets

■ Displaying database structure information

■ Listing database objects by object type

■ Viewing and setting connection attributes

■ Working with transactions

■ Working with prepared and parameterized SQL statements

■ Creating and executing PL/SQL blocks

■ Pass data from PL/SQL using OUT parameters

■ Viewing and changing query optimizer plans

■ Timing ODBC function calls

Batch mode vs. interactive mode

6-2 Oracle TimesTen In-Memory Database Operations Guide

■ Managing XLA bookmarks

For more information on TimesTen SQL and for a detailed description of all ttIsql
commands see the "ttIsql" section in the Oracle TimesTen In-Memory Database Reference.

Batch mode vs. interactive mode
The ttIsql utility can be used in two distinctly different ways: batch mode or
interactive mode. When ttIsql is used in interactive mode, users type commands
directly into ttIsql from the console. When ttIsql is used in batch mode, a
prepared script of ttIsql commands is executed by specifying the name of the file
containing the commands.

Batch mode is commonly used for the following types of tasks:

■ Performing periodic maintenance operations including the updating of table
statistics, compacting the database and purging log files.

■ Initializing a database by creating tables, indexes and cache groups and then
populating the tables with data.

■ Generating simple reports by executing common queries.

Interactive mode is suited for the following types of tasks:

■ Experimenting with TimesTen features, testing design alternatives and improving
query performance.

■ Solving database problems by examining database statistics.

■ Any other database tasks that are not performed routinely.

By default, when starting ttIsql from the shell, ttIsql is in interactive mode. The
ttIsql utility prompts you to type in a valid ttIsql built-in command or SQL
statement by printing the Command> prompt:

C:\>ttIsql

ttIsql (c) 1996-2009, Oracle. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

Command>

Batch mode can be accessed in two different ways. The most common way is to specify
the -f option on the ttIsql command line followed by the name of file to run.

For example, executing a file containing a CREATE TABLE statement will look like
this:

C:\>ttIsql -f create.sql MY_DSN

ttIsql (c) 1996-2009, Oracle. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

Command> connect "DSN=MY_DSN"
Connection successful: DSN=MY_DSN;DataStore=E:\ds\MY_DSN;
DRIVER=E:\WINNT\System32\TTdv1121.dll;
(Default setting AutoCommit=1)

Command> run "create.sql"

CREATE TABLE LOOKUP (KEY NUMBER NOT NULL PRIMARY KEY, VALUE CHAR (64))

Defining default settings with the TTISQL environment variable

Using the ttIsql Utility 6-3

Command> exit
Disconnecting...
Done.

C:\>

The other way to use batch mode is to enter the run command directly from the
interactive command prompt. The run command is followed by the name of the file
containing ttIsql built-in commands and SQL statements to execute:

Command> run "create.sql";

CREATE TABLE LOOKUP (KEY NUMBER NOT NULL PRIMARY KEY, VALUE CHAR (64))
Command>

Defining default settings with the TTISQL environment variable
The ttIsql utility can be customized to automatically execute a set of command line
options every time a ttIsql session is started from the command prompt. This is
accomplished by setting an environment variable called TTISQL to the value of the
ttIsql command line that you prefer. A summary of ttIsql command line options
is shown below. For a complete description of the ttIsql command line options, see
the "ttIsql" section in the Oracle TimesTen In-Memory Database Reference.

Usage: ttIsql [-h | -help | -helpcmds | -helpfull | -V]
 [-connStr <connection_string>]
 [-f <filename>]
 [-v <verbosity>]
 [-e <initialization_commands>]
 [-interactive]
 [-N <ncharencoding>]
 [-wait]

The TTISQL environment variable has the same syntax requirements as the ttIsql
command line. When ttIsql starts up it reads the value of the TTISQL environment
variable and applies all options specified by the variable to the current ttIsql
session. If a particular command line option is specified in both the TTISQL
environment variable and the command line then the command line version will
always take precedence.

The procedure for setting the value of an environment variable differs based on the
platform and shell that ttIsql is started from. As an example, setting the TTISQL
environment variable on Windows could look like this:

C:\>set TTISQL=-connStr "DSN=MY_DSN" -e "autocommit 0;dssize;"

In this example, ttIsql will automatically connect to a DSN called MY_DSN, turn off
autocommit and display the size of the database as shown below:

C:\>ttIsql

ttIsql (c) 1996-2009, Oracle. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

Command> connect "DSN=MY_DSN";
Connection successful: DSN=MY_DSN;DataStore=E:\ds\MY_
DSN;DRIVER=E:\WINNT\System32\TTdv1121.dll;
(Default setting AutoCommit=1)
Command> autocommit 0;

Customizing the ttIsql command prompt

6-4 Oracle TimesTen In-Memory Database Operations Guide

Command> alltables;
 SYS.ACCESS$
 SYS.ARGUMENT$
 SYS.CACHE_GROUP
 SYS.COLUMNS
 SYS.COLUMN_HISTORY
 SYS.COL_STATS
 SYS.DEPENDENCY$
 SYS.DIR$
 SYS.DUAL
 SYS.ERROR$
 SYS.IDL_CHAR$
 SYS.IDL_SB4$
 SYS.IDL_UB1$
 SYS.IDL_UB2$
 SYS.INDEXES
 SYS.MONITOR
...
59 tables found.
Command>

Customizing the ttIsql command prompt
You can customize the ttIsql command prompt by using the set command with
the prompt attribute:

Command> set prompt MY_DSN;
MY_DSN

You can specify a string format (%c) that returns the name of the current connection:

Command> set prompt %c;
con1

If you want to embed spaces, you must quote the string:

Command> set prompt "MY_DSN %c> ";
MY_DSN con1>

Using the ttIsql online help
The ttIsql utility has an online version of command syntax definitions and
descriptions for all built-in ttIsql commands. To access this online help from within
ttIsql use the help command. To view a detailed description of any built-in
ttIsql commands type the help command followed by one or more ttIsql
commands to display help for. The example below displays the online description for
the connect and disconnect commands.

Command> help connect disconnect

Arguments in <> are required.
Arguments in [] are optional.

Command Usage: connect [DSN|connection_string] [as <connection_id>]
Command Aliases: (none)
Description: Connects to the data source specified by the optional DSN or
connection string argument. If an argument is not given, then the DSN or
connection string from the last successful connection is used. A connection ID
may optionally be specified, for use in referring to the connection when multiple
connections are enabled. The DSN is used as the default connection ID. If that ID

Using the ttIsql 'editline' feature for UNIX only

Using the ttIsql Utility 6-5

is already in use, the connection will be assigned the ID "conN", where N is some
number larger than 0.
Requires an active connection: NO
Requires autocommit turned off: NO
Reports elapsed execution time: YES
Works only with a TimesTen data source: NO
Example: connect; -or- connect RunData; -or- connect "DSN=RunData";
-or- connect RunData as rundata1;

Command Usage: disconnect [all]
Command Aliases: (none)
Description: Disconnects from the currently connected data source or all
connections when the "all" argument is included. If a transaction is active when
disconnecting then the transaction will be rolled back automatically. If a
connection exists when executing the "bye", "quit" or "exit" commands then the
"disconnect" command will be executed automatically.
Requires an active connection: NO
Requires autocommit turned off: NO
Reports elapsed execution time: YES
Works only with a TimesTen data source: NO
Example: disconnect;

To view a short description of all ttIsql built-in commands type the help command
without an argument. To view a detailed description of all built-in ttIsql commands
type the help command followed by the all argument.

To view the list of attributes that can be set or shown by using ttIsql, enter:

Command> help attributes

Using the ttIsql 'editline' feature for UNIX only
On UNIX systems, you can use the 'editline' library to set up emacs (default) or vi
bindings that enable you to scroll through previous ttIsql commands, as well as edit
and resubmit them. This feature is not available or needed on Windows.

To disable the 'editline' feature in ttIsql, use the ttIsql command set editline
off.

The set up and keystroke information is described for each type of editor:

■ Emacs binding

■ vi binding

Emacs binding
To use the emacs binding, create a file ~/.editrc and put "bind" on the last line of
the file, run ttIsql. The editline lib will print the current bindings.

The keystrokes when using ttIsql with the emacs binding are:

Keystroke Action

<Left-Arrow> Move the insertion point left. Back up.

<Right-Arrow> Move the insertion point right. Move forward.

<Up-Arrow> Scroll to the command prior to the one being displayed. Places the
cursor at the end of the line.

Using the ttIsql command history

6-6 Oracle TimesTen In-Memory Database Operations Guide

vi binding
To use the vi bindings, create a file ${HOME}/.editrc and put "bind-v" in the file,
run ttIsql. To get the current settings, create a file ${HOME}/.editrc and put
"bind" on the last line of the file. When you execute ttIsql, the editline lib will print
the current bindings.

The keystrokes when using ttIsql with the vi binding are:

Using the ttIsql command history
The ttIsql utility stores a list of the last 100 commands executed within the current
ttIsql session. The commands in this list can be viewed or executed again without

<Down-Arrow> Scroll to a more recent command history item and put the cursor at the
end of the line.

<Ctrl-A> Move the insertion point to the beginning of the line.

<Ctrl-E> Move the insertion point to the end of the line.

<Ctrl-K> "Kill" (Save and erase) the characters on the command line from the
current position to the end of the line.

<Ctrl-Y> "Yank" (Restore) the characters previously saved and insert them at the
current insertion point.

<Ctrl-F> Forward char - move forward 1 (see Right Arrow)

<Ctrl-B> Backward char - move back 1 (see Left Arrow)

<Ctrl-P> Previous History (see Up Arrow)

<Ctrl-N> Next History (see up Down Arrow)

Keystroke Action

<Left-Arrow>, h Move the insertion point left (back up)

<Right-Arrow>, l Move the insertion point right (forward)

<Up-Arrow>, k Scroll to the prior command in the history and put the cursor at the end
of the line.

<Down-Arrow>, j Scroll to the next command in the history and put the cursor at the end
of the line.

ESC Vi Command mode

0, $ Move the insertion point to the beginning of the line, Move to end of
the line.

i, I Insert mode, Insert mode at beginning of the line

a, A Add ("Insert after") mode, Append at end of line

R Replace mode

C Change to end of line

B Move to previous word

e Move to end of word

<Ctrl-P> Previous History (see Up Arrow)

<Ctrl-N> Next History (see up Down Arrow)

Keystroke Action

Using the ttIsql command history

Using the ttIsql Utility 6-7

having to type the entire command over. Both SQL statements and built-in ttIsql
commands are stored in the history list. Use the history command ("h ") to view the
list of previously executed commands. For example:

Command> h;
8 INSERT INTO T3 VALUES (3)
9 INSERT INTO T1 VALUES (4)
10 INSERT INTO T2 VALUES (5)
11 INSERT INTO T3 VALUES (6)
12 autocommit 0
13 showplan
14 SELECT * FROM T1, t2, t3 WHERE A=B AND B=C AND A=B
15 trytbllocks 0
16 tryserial 0
17 SELECT * FROM T1, t2, t3 WHERE A=B AND B=C AND A=B
Command>

The history command displays the last 10 SQL statements or ttIsql built-in
commands executed. To display more than that last 10 commands specify the
maximum number to display as an argument to the history command.

Each entry in the history list is identified by a unique number. The ! character
followed by the number of the command can be used to execute the command again.
For example:

Command>
Command> ! 12;

autocommit 0
Command>

To execute the last command again simply type a sequence of two ! characters:

Command> !!;

autocommit 0
Command>

To execute the last command that begins with a given string type the ! character
followed by the first few letters of the command. For example:

Command> ! auto;

autocommit 0
Command>

Saving and clearing the ttIsql command history
You can save the list of commands that ttIsql stores by using the savehistory
command:

Command> savehistory history.txt;

If the output file already exists, use the -a option to append the new command history
to the file or the -f option to overwrite the file. The next example shows how to
append new command history to an existing file.

Command> savehistory -a history.txt;

You can clear the list of commands that ttIsql stores by using the clearhistory
command:

Working with character sets

6-8 Oracle TimesTen In-Memory Database Operations Guide

Command> clearhistory;

Working with character sets
The ttIsql utility supports the character sets listed in "Supported character sets" in
the Oracle TimesTen In-Memory Database Reference. The ability of ttIsql to display
characters depends on the native operating system locale settings of the terminal on
which you are using ttIsql.

To override the locale-based output format, use the ncharencoding option or the -N
option. The valid values for these options are LOCALE (the default) and ASCII. If you
choose ASCII and ttIsql encounters a Unicode character, it displays it in escaped
format.

You do not need to have an active connection to change the output method.

Displaying database structure information
There are several ttIsql commands that display information on database structures.
The most useful commands are summarized below:

■ describe - Displays information on database objects.

■ cachegroups - Displays the attributes of cache groups.

■ dssize - Reports the current sizes of the permanent and temporary database
partitions.

■ monitor - Displays a summary of the current state of the database.

Using the ttIsql describe command
Use the describe command to display information on individual database objects.
Displays parameters for prepared SQL statements and built-in procedures. The
argument to the describe command can be the name of a table, view, materialized
view, materialized view log, sequence, synonym, a built-in procedure, a SQL
statement or a command ID for a previously prepared SQL statement, a PL/SQL
function, PL/SQL procedure or PL/SQL package.

The describe command requires a semicolon character to terminate the command.

Command> CREATE TABLE T1 (KEY NUMBER NOT NULL PRIMARY KEY, VALUE CHAR (64));
Command> describe T1
 > ;

Table USER.T1:
 Columns:
 *KEY NUMBER NOT NULL
 VALUE CHAR (64)
1 table found.

(primary key columns are indicated with *)
Command> describe SELECT * FROM T1 WHERE KEY=?;

Prepared Statement:
 Parameters:
 Parameter 1 NUMBER
 Columns:
 KEY NUMBER NOT NULL
 VALUE CHAR (64)

Displaying database structure information

Using the ttIsql Utility 6-9

Command> describe ttOptUseIndex;

Procedure TTOPTUSEINDEX:
 Parameters:
 Parameter INDOPTION VARCHAR (1024)
 Columns:
 (none)

1 procedure found.
Command>

Using the ttIsql cachegroups command
The cachegroups command is used to provide detailed information on cache groups
defined in the current database. The attributes of the root and child tables defined in
the cache group are displayed in addition to the WHERE clauses associated with the
cache group. The argument to the cachegroups command is the name of the cache
group that you want to display information for.

Command> cachegroups;
Cache Group CACHEUSER.READCACHE:
 Cache Group Type: Read Only
 Autorefresh: Yes
 Autorefresh Mode: Incremental
 Autorefresh State: Paused
 Autorefresh Interval: 5 Seconds
 Autorefresh Status: ok
 Aging: No aging defined
 Root Table: ORATT.READTAB
 Table Type: Read Only
Cache Group CACHEUSER.WRITECACHE:
 Cache Group Type: Asynchronous Writethrough global (Dynamic)
 Autorefresh: No
 Aging: LRU on
 Root Table: ORATT.WRITETAB
 Table Type: Propagate
2 cache groups found.

Using the ttIsql dssize command
The dssize command is used to report the current memory status of the permanent
and temporary partitions as well as the maximum, allocated and in-use sizes for the
database.

Using the ttIsql monitor command
The monitor command displays all of the information provided by the dssize
command plus additional statistics on the number of connections, checkpoints, lock
timeouts, commits, rollbacks and other information collected since the last time the
database was loaded into memory.

Command> monitor;
TIME_OF_1ST_CONNECT: Mon Feb 23 11:32:49 2009
DS_CONNECTS: 11
DS_DISCONNECTS: 0
DS_CHECKPOINTS: 0
DS_CHECKPOINTS_FUZZY: 0
DS_COMPACTS: 0
PERM_ALLOCATED_SIZE: 40960

Listing database objects by object type

6-10 Oracle TimesTen In-Memory Database Operations Guide

PERM_IN_USE_SIZE: 5174
PERM_IN_USE_HIGH_WATER: 5174
TEMP_ALLOCATED_SIZE: 18432
TEMP_IN_USE_SIZE: 4527
TEMP_IN_USE_HIGH_WATER: 4527
SYS18: 0
TPL_FETCHES: 0
TPL_EXECS: 0
CACHE_HITS: 0
PASSTHROUGH_COUNT: 0
XACT_BEGINS: 2
XACT_COMMITS: 1
XACT_D_COMMITS: 0
XACT_ROLLBACKS: 0
LOG_FORCES: 0
DEADLOCKS: 0
LOCK_TIMEOUTS: 0
LOCK_GRANTS_IMMED: 17
LOCK_GRANTS_WAIT: 0
SYS19: 0
CMD_PREPARES: 1
CMD_REPREPARES: 0
CMD_TEMP_INDEXES: 0
LAST_LOG_FILE: 0
REPHOLD_LOG_FILE: -1
REPHOLD_LOG_OFF: -1
REP_XACT_COUNT: 0
REP_CONFLICT_COUNT: 0
REP_PEER_CONNECTIONS: 0
REP_PEER_RETRIES: 0
FIRST_LOG_FILE: 0
LOG_BYTES_TO_LOG_BUFFER: 64
LOG_FS_READS: 0
LOG_FS_WRITES: 0
LOG_BUFFER_WAITS: 0
CHECKPOINT_BYTES_WRITTEN: 0
CURSOR_OPENS: 1
CURSOR_CLOSES: 1
SYS3: 0
SYS4: 0
SYS5: 0
SYS6: 0
CHECKPOINT_BLOCKS_WRITTEN: 0
CHECKPOINT_WRITES: 0
REQUIRED_RECOVERY: 0
SYS11: 0
SYS12: 1
TYPE_MODE: 0
SYS13: 0
SYS14: 0
SYS15: 0
SYS16: 0
SYS17: 0
SYS9:

Listing database objects by object type
You can use ttIsql to list tables, indexes, views, sequences, synonyms, PL/SQL
functions, procedures and packages in a database. Commands prefixed by all display

Listing database objects by object type

Using the ttIsql Utility 6-11

all of this type of object. For example, the functions command lists PL/SQL
functions that are owned by the user, whereas allfunctions lists all PL/SQL
functions.

You can optionally specify patterns for object owners and object names.

Use these commands to list database objects:

■ tables and alltables - Lists tables

■ indexes and allindexes - Lists indexes

■ views and allviews - Lists views

■ sequences and allsequences - Lists sequences

■ synonyms and allsynonyms - Lists synonyms

■ functions and allfunctions - Lists PL/SQL functions

■ procedures and allprocedures - Lists PL/SQL procedures

■ packages and allpackages - Lists PL/SQL packages

The following example demonstrates the procedures and allprocedures
commands. User TERRY creates a procedure called proc1 while connected to myDSN.
Note that a slash character (/) is entered on a new line following the PL/SQL
statements.

The procedures command and the allprocedures command show that it is the
only PL/SQL procedure in the database.

$ ttisql myDSN
Copyright (c) 1996-2009, Oracle. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.
connect "DSN=myDSN";
Connection successful:
DSN=myDSN;UID=terry;DataStore=/scratch/terry/myDSN;DatabaseCharacter
Set=AL32UTF8;ConnectionCharacterSet=US7ASCII;PermSize=32;TypeMode=0;
(Default setting AutoCommit=1)
Command> create or replace procedure proc1 as begin null; end;
 > /
Procedure created.
Command> procedures;
 TERRY.PROC1
1 procedure found.
Command> allprocedures;
 TERRY.PROC1
1 procedure found.

Now connect to the same DSN as Pat and create a procedure called q. The
allprocedures command shows the PL/SQL procedures created by Terry and pat.

$ ttisql "dsn=myDSN;uid=PAT"
Copyright (c) 1996-2009, Oracle. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.
connect "dsn=myDSN;uid=PAT";
Connection successful:
DSN=myDSN;UID=PAT;DataStore=/scratch/terry/myDSN;DatabaseCharacterSet=AL32UTF8;
ConnectionCharacterSet=US7ASCII;PermSize=32;TypeMode=0;

Note: For details on each of these commands, see the "ttIsql" section
in the Oracle TimesTen In-Memory Database Reference.

Viewing and setting connection attributes

6-12 Oracle TimesTen In-Memory Database Operations Guide

(Default setting AutoCommit=1)
Command> create or replace procedure q as begin null; end;
 > /
Procedure created.
Command> procedures;
 PAT.Q
1 procedure found.
Command> allprocedures;
 TERRY.PROC1
 PAT.Q
2 procedures found.

Viewing and setting connection attributes
You can view and set connection attributes with the ttIsql show and set
commands. For a list of the attributes that you can view and set with ttIsql, see
"Connection Attributes" in Oracle TimesTen In-Memory Database Reference.

To view the setting for the Passthrough attribute, enter:

Command> show passthrough;
PassThrough = 0

To change the Passthrough setting, enter:

Command> set passthrough 1;

Working with transactions
The ttIsql utility has several built-in commands for managing transactions. These
commands are summarized below:

■ autocommit - Turns on or off the autocommit feature. This can also be set as an
attribute of the set command.

■ commit - Commits the current transaction.

■ commitdurable - Commits the current transaction and ensures that the
committed work will be recovered in case of database failure.

■ rollback - Rolls back the current transaction.

■ isolation - Changes the transaction isolation level. This can also be set as an
attribute of the set command.

■ sqlquerytimeout - Specifies the number of seconds to wait for a SQL statement
to execute before returning to the application. This can also be set as an attribute of
the set command.

When starting ttIsql the autocommit feature is turned on by default. In this mode
every SQL operation against the database is committed automatically. To turn the
autocommit feature off execute the ttIsql autocommit command with an argument
of 0.

When autocommit is turned off transactions must be committed or rolled back
manually by executing the ttIsql commit, commitdurable or rollback
commands. The commitdurable command ensures that the transaction's effect is
preserved in case of database failure.

The ttIsql isolation command can be used to change the current connection's
transaction isolation properties. The isolation can be changed only at the beginning of
a transaction. The isolation command accepts one of the following constants:

Working with prepared and parameterized SQL statements

Using the ttIsql Utility 6-13

READ_COMMITTED and SERIALIZABLE. If the isolation command is modified
without an argument then the current isolation level is reported.

The ttIsql sqlquerytimeout command sets the timeout period for SQL
statements. If the execution time of a SQL statement exceeds the number of seconds set
by the sqlquerytimeout command, the SQL statement is not executed and an 6111
error is generated. For details, see "Setting a timeout value for executing SQL
statements" in the Oracle TimesTen In-Memory Database Java Developer's Guide and
"Setting a timeout value for executing SQL statements" in the Oracle TimesTen
In-Memory Database C Developer's Guide.

The following example demonstrates the common use of the ttIsql built-in
transaction management commands.

E:\>ttIsql
ttIsql (c) 1996-2009, Oracle. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

Command> connect "DSN=MY_DSN";
Connection successful: DSN=MY_DSN;DataStore=E:\ds\MY_DSN;DRIVER=E:\WINNT\System32\
TTdv1121.dll;
(Default setting AutoCommit=1)
Command> autocommit 0;
Command> CREATE TABLE LOOKUP (KEY NUMBER NOT NULL PRIMARY KEY, VALUE CHAR (64));
Command> commit;
Command> INSERT INTO LOOKUP VALUES (1, 'ABC');
1 row inserted.
Command> SELECT * FROM LOOKUP;
< 1, ABC >
1 row found.
Command> rollback;
Command> SELECT * FROM LOOKUP;
0 rows found.
Command> isolation;
isolation = READ_COMMITTED
Command> commitdurable;
Command> sqlquerytimeout 10;
Command> sqlquerytimeout;
Query timeout = 10 seconds
Command> disconnect;
Disconnecting...
Command> exit;
Done.
E:\>

Working with prepared and parameterized SQL statements
Preparing a SQL statement just once and then executing it multiple times is much
more efficient for TimesTen applications than re-preparing the statement each time it
is to be executed. ttIsql has a set of built-in commands to work with prepared SQL
statements. These commands are summarized below:

Note: TimesTen rollback and query timeout features do not stop
IMDB Cache operations that are being processed on Oracle. This
includes passthrough statements, flushing, manual loading, manual
refreshing, synchronous writethrough, propagating and dynamic
loading.

Working with prepared and parameterized SQL statements

6-14 Oracle TimesTen In-Memory Database Operations Guide

■ prepare - Prepares a SQL statement. Corresponds to a SQLPrepare ODBC call.

■ exec - Executes a previously prepared statement. Corresponds to a SQLExecute
ODBC call.

■ execandfetch - Executes a previously prepared statement and fetches all result
rows. Corresponds to a SQLExecute call followed by one or more calls to
SQLFetch.

■ fetchall - Fetches all result rows for a previously executed statement.
Corresponds to one or more SQLFetch calls.

■ fetchone - Fetches only one row for a previously executed statement.
Corresponds to exactly one SQLFetch call.

■ close - Closes the result set cursor on a previously executed statement that
generated a result set. Corresponds to a SQLFreeStmt call with the SQL_CLOSE
option.

■ free - Closes a previously prepared statement. Corresponds to a SQLFreeStmt
call with the SQL_DROP option.

■ describe - Describes the prepared statement including the input parameters and
the result columns.

The ttIsql utility prepared statement commands also handle SQL statement
parameter markers. When parameter markers are included in a prepared SQL
statement, ttIsql will automatically prompt for the value of each parameter in the
statement at execution time.

The example below uses the prepared statement commands of the ttIsql utility to
prepare an INSERT statement into a table containing a NUMBER and a CHAR column.
The statement is prepared and then executed twice with different values for each of
the statement's two parameters. The ttIsql utility timing command is used to
display the elapsed time required to executed the primary ODBC function call
associated with each command.

Command> connect "DSN=MY_DSN";
Connection successful: DSN=MY_DSN;DataStore=E:\ds\MY_DSN;DRIVER=
E:\WINNT\Sys tem32\TTdv1121.dll;
(Default setting AutoCommit=1)

Command> timing 1;
Command> create table t1 (key number not null primary key, value char(20));
Execution time (SQLExecute) = 0.007247 seconds.
Command> prepare insert into t1 values (:f, :g);
Execution time (SQLPrepare) = 0.000603 seconds.

Command> exec;
Type '?' for help on entering parameter values.
Type '*' to end prompting and abort the command.
Type '-' to leave the parameter unbound.
Type '/' to leave the remaining parameters unbound and execute the command.
Enter Parameter 1 'F' (NUMBER) > 1;
Enter Parameter 2 'G' (CHAR) > 'abc';
1 row inserted.
Execution time (SQLExecute) = 0.000454 seconds.

Command> exec;
Type '?' for help on entering parameter values.
Type '*' to end prompting and abort the command.
Type '-' to leave the parameter unbound.

Working with prepared and parameterized SQL statements

Using the ttIsql Utility 6-15

Type '/' to leave the remaining parameters unbound and execute the help command.
Enter Parameter 1 'F' (NUMBER) > 2;
Enter Parameter 2 'G' (CHAR) > 'def';
1 row inserted.
Execution time (SQLExecute) = 0.000300 seconds.

Command> free;
Command> select * from t1;
< 1, abc >
< 2, def >
2 rows found.
Execution time (SQLExecute + Fetch Loop) = 0.000226 seconds.

Command> disconnect;
Disconnecting...
Execution time (SQLDisconnect) = 2.911396 seconds.
Command>

In the example above, the prepare command is immediately followed by the SQL
statement to prepare. Whenever a SQL statement is prepared in ttIsql, a unique
command ID is assigned to the prepared statement. The ttIsql utility uses this ID to
keep track of multiple prepared statements. A maximum of 256 prepared statements
can exist in a ttIsql session simultaneously. When the free command is executed,
the command ID is automatically disassociated from the prepared SQL statement.

To see the command IDs generated by ttIsql when using the prepared statement
commands, set the verbosity level to 4 using the verbosity command before
preparing the statement, or use the describe * command to list all prepared
statements with their IDs.

Command IDs can be referenced explicitly when using ttIsql's prepared statement
commands. For a complete description of the syntax of ttIsql's prepared statement
commands see the "ttIsql" section in the Oracle TimesTen In-Memory Database Reference
or type help at the ttIsql command prompt.

The example below prepares and executes a SELECT statement with a predicate
containing one NUMBER parameter. The fetchone command is used to fetch the result
row generated by the statement. The showplan command is used to display the
execution plan used by the TimesTen query optimizer when the statement is executed.
In addition, the verbosity level is set to 4 so that the command ID used by ttIsql to
keep track of the prepared statement is displayed.

Command> connect "DSN=MY_DSN";
Connection successful: DSN=MY_DSN;DataStore=E:\ds\MY_DSN;DRIVER=E:\WINNT\Sys
tem32\TTdv1121.dll;
(Default setting AutoCommit=1)
The command succeeded.
Command> CREATE TABLE T1 (KEY NUMBER NOT NULL PRIMARY KEY, VALUE CHAR (64));
The command succeeded.
Command> INSERT INTO T1 VALUES (1, 'abc');
1 row inserted.
The command succeeded.
Command> autocommit 0;
The command succeeded.
Command> showplan 1;
The command succeeded.
Command> verbosity 4;
The command succeeded.
Command> prepare SELECT * FROM T1 WHERE KEY=?;
Assigning new prepared command id = 0.

Creating and executing PL/SQL blocks

6-16 Oracle TimesTen In-Memory Database Operations Guide

Query Optimizer Plan:

 STEP: 1
 LEVEL: 1
 OPERATION: RowLkHashScan
 TBLNAME: T1
 IXNAME: T1
 PRED: T1.KEY = qmark_1
 OTHERPRED: <NULL>

The command succeeded.
Command> exec;

Executing prepared command id = 0.
Type '?;' for help on entering parameter values.
Type '*;' to abort the parameter entry process.

Enter Parameter 1 (NUMBER) >1;
The command succeeded.
Command> fetchone;
Fetching prepared command id = 0.
< 1, abc >
1 row found.
The command succeeded.
Command> close;
Closing prepared command id = 0.
The command succeeded.
Command> free;
Freeing prepared command id = 0.
The command succeeded.
Command> commit;
The command succeeded.
Command> disconnect;
Disconnecting...
The command succeeded.
Command>

Creating and executing PL/SQL blocks
You can create and execute PL/SQL blocks from the ttIsql command line.

Set serveroutput on to display results generated from the PL/SQL block:

Command> set serveroutput on

Create an anonymous block that puts a text line in the output buffer. Note that the
block must be terminated with a slash (/).

Command> BEGIN
 > DBMS_OUTPUT.put_line(
 > 'Welcome!');
 > END;
 > /
Welcome!

Note: For information about using ttIsql with PL/SQL host
variables, see "Introduction to PL/SQL in the TimesTen Database" in
Oracle TimesTen In-Memory Database PL/SQL Developer's Guide.

Pass data from PL/SQL using OUT parameters

Using the ttIsql Utility 6-17

PL/SQL procedure successfully completed.
Command>

See the Oracle TimesTen In-Memory Database PL/SQL Developer's Guide for more
examples.

Pass data from PL/SQL using OUT parameters
You can pass data back to applications from PL/SQL by using OUT parameters. This
example returns information about how full a TimesTen database is.

Create the tt_space_info PL/SQL procedure and use SQL to provide values for the
permpct, permmaxpct, temppct, and tempmaxpct parameters.

Command> CREATE OR REPLACE PROCEDURE tt_space_info
 > (permpct OUT PLS_INTEGER,
 > permmaxpct OUT PLS_INTEGER,
 > temppct OUT PLS_INTEGER,
 > tempmaxpct OUT PLS_INTEGER) AS
 > monitor sys.monitor%ROWTYPE;
 > BEGIN
 > SELECT * INTO monitor FROM sys.monitor;
 > permpct := monitor.perm_in_use_size * 100 /
 monitor.perm_allocated_size;
 > permmaxpct := monitor.perm_in_use_high_water * 100 /
 monitor.perm_allocated_size;
 > temppct := monitor.temp_in_use_size * 100 /
 monitor.temp_allocated_size;
 > tempmaxpct := monitor.temp_in_use_high_water * 100 /
 monitor.temp_allocated_size;
 > END;
 >/

Procedure created.

Declare the variables and call tt_space_info. The parameter values are passed back
to ttIsql so they can be printed:

Command> VAR permpct NUMBER
Command> VAR permpctmax NUMBER
Command> VAR temppct NUMBER
Command> VAR temppctmax NUMBER
Command> BEGIN
 > tt_space_info(:permpct, :permpctmax, :temppct, :temppctmax);
 > END;
 >/

PL/SQL procedure successfully completed.

Command> PRINT permpct;
PERMPCT : 4

Command> PRINT permpctmax;
PERMPCTMAX : 4

Command> PRINT temppct;
TEMPPCT : 11

Command> PRINT temppctmax;
TEMPPCTMAX : 11

Viewing and changing query optimizer plans

6-18 Oracle TimesTen In-Memory Database Operations Guide

You can also pass back a statement handle that can be executed by a PL/SQL
statement with an OUT refcursor parameter. The PL/SQL statement can choose the
query associated with the cursor. The following example opens a refcursor, which
randomly chooses between ascending or descending order.

Command> VARIABLE ref REFCURSOR;
Command> BEGIN
 > IF (mod(dbms_random.random(), 2) = 0) THEN
 > open :ref for select object_name from SYS.ALL_OBJECTS order by 1 asc;
 > ELSE
 > open :ref for select object_name from SYS.ALL_OBJECTS order by 1 desc;
 > end if;
 > END;
 > /

PL/SQL procedure successfully completed.

To fetch the result set from the refcursor, use the PRINT command:

Command> PRINT ref
REF :
< ACCESS$ >
< ALL_ARGUMENTS >
< ALL_COL_PRIVS >
< ALL_DEPENDENCIES >
...
143 rows found.

Or if the result set was ordered in descending order, the following would print:

Command> PRINT ref
REF :
< XLASUBSCRIPTIONS >
< WARNING_SETTINGS$ >
< VIEWS >
...
143 rows found.

Viewing and changing query optimizer plans
The following sections describe how to view the query optimizer plans, commands in
the SQL command cache, or query plans for commands in the SQL command cache:

■ Using the showplan command

■ Viewing commands and explain plans from the SQL Command Cache

Using the showplan command
The built-in showplan command is used to display the query optimizer plans used by
the TimesTen Data Manager for executing queries. In addition, ttIsql contains
built-in query optimizer hint commands for altering the query optimizer plan. By
using the showplan command in conjunction with the built-in commands
summarized below, the optimum execution plan can be designed. For detailed
information on the TimesTen query optimizer see "The TimesTen Query Optimizer"
on page 10-1.

■ optprofile - Displays the current optimizer hint settings and join order.

■ setjoinorder - Sets the join order.

Viewing and changing query optimizer plans

Using the ttIsql Utility 6-19

■ setuseindex - Sets the index hint.

■ tryhash - Enables or disables the use of hash indexes.

■ trymergejoin - Enables or disables merge joins.

■ trynestedloopjoin - Enables or disables nested loop joins.

■ tryserial - Enables or disables serial scans.

■ trytmphash - Enables or disables the use of temporary hash indexes.

■ trytmptable - Enables or disables the use of an intermediate results table.

■ trytmpttree - Enables or disables the use of temporary range indexes.

■ tryttree - Enables or disables the use of range indexes.

■ tryrowid - Enables or disables the use of rowid scans.

■ trytbllocks - Enables or disables the use of table locks.

■ unsetjoinorder - Clears the join order.

■ unsetuseindex - Clears the index hint.

When using the showplan command and the query optimizer hint commands the
autocommit feature must be turned off. Use ttIsql's autocommit built-in command
to turn autocommit off.

The example below shows how these commands can be used to change the query
optimizer execution plan.

Command> CREATE TABLE T1 (A NUMBER);
Command> CREATE TABLE T2 (B NUMBER);
Command> CREATE TABLE T3 (C NUMBER);
Command>
Command> INSERT INTO T1 VALUES (3);
1 row inserted.
Command> INSERT INTO T2 VALUES (3);
1 row inserted.
Command> INSERT INTO T3 VALUES (3);
1 row inserted.
Command> INSERT INTO T1 VALUES (4);
1 row inserted.
Command> INSERT INTO T2 VALUES (5);
1 row inserted.
Command> INSERT INTO T3 VALUES (6);
1 row inserted.
Command>
Command> autocommit 0;
Command> showplan;
Command> SELECT * FROM T1, T2, T3 WHERE A=B AND B=C AND A=B;

Query Optimizer Plan:

 STEP: 1
 LEVEL: 3
 OPERATION: TblLkSerialScan
 TBLNAME: T1
 IXNAME: <NULL>
 PRED: <NULL>
 OTHERPRED: <NULL>

 STEP: 2

Viewing and changing query optimizer plans

6-20 Oracle TimesTen In-Memory Database Operations Guide

 LEVEL: 3
 OPERATION: TblLkSerialScan
 TBLNAME: T2
 IXNAME: <NULL>
 PRED: <NULL>
 OTHERPRED: T1.A = T2.B AND T1.A = T2.B

 STEP: 3
 LEVEL: 2
 OPERATION: NestedLoop
 TBLNAME: <NULL>
 IXNAME: <NULL>
 PRED: <NULL>
 OTHERPRED: <NULL>

 STEP: 4
 LEVEL: 2
 OPERATION: TblLkSerialScan
 TBLNAME: T3
 IXNAME: <NULL>
 PRED: <NULL>
 OTHERPRED: T2.B = T3.C

 STEP: 5
 LEVEL: 1
 OPERATION: NestedLoop
 TBLNAME: <NULL>
 IXNAME: <NULL>
 PRED: <NULL>
 OTHERPRED: <NULL>

< 3, 3, 3 >
1 row found.
Command> trytbllocks 0;
Command> tryserial 0;
Command> SELECT * FROM T1, t2, t3 WHERE A=B AND B=C AND A=B;

Query Optimizer Plan:

 STEP: 1
 LEVEL: 3
 OPERATION: TmpTtreeScan
 TBLNAME: T1
 IXNAME: <NULL>
 PRED: <NULL>
 OTHERPRED: <NULL>

 STEP: 2
 LEVEL: 3
 OPERATION: TmpTtreeScan
 TBLNAME: T2
 IXNAME: <NULL>
 PRED: T2.B >= T1.A
 OTHERPRED: <NULL>

 STEP: 3
 LEVEL: 2
 OPERATION: MergeJoin
 TBLNAME: <NULL>
 IXNAME: <NULL>

Viewing and changing query optimizer plans

Using the ttIsql Utility 6-21

 PRED: T1.A = T2.B AND T1.A = T2.B
 OTHERPRED: <NULL>

 STEP: 4
 LEVEL: 2
 OPERATION: TmpTtreeScan
 TBLNAME: T3
 IXNAME: <NULL>
 PRED: <NULL>
 OTHERPRED: T2.B = T3.C

 STEP: 5
 LEVEL: 1
 OPERATION: NestedLoop
 TBLNAME: <NULL>
 IXNAME: <NULL>
 PRED: <NULL>
 OTHERPRED: <NULL>

< 3, 3, 3 >
1 row found.
Command>

In this example a query against three tables is executed and the query optimizer plan
is displayed. The first version of the query simply uses the query optimizer's default
execution plan. However, in the second version the trytbllocks and tryserial
built-in hint commands have been used to alter the query optimizer's plan. Instead of
using serial scans and nested loop joins the second version of the query uses
temporary index scans and merge joins.

In this way the showplan command in conjunction with ttIsql's built-in query
optimizer hint commands can be used to quickly determine which execution plan
should be used to meet application requirements.

Viewing commands and explain plans from the SQL Command Cache
The following sections describe how to view commands and their explain plans:

■ View commands in the SQL Command Cache

■ Display query plan for statement in SQL Command Cache

View commands in the SQL Command Cache
The ttIsql cmdcache command invokes the ttSqlCmdCacheInfo built-in
procedure to display the contents of the TimesTen SQL Command Cache. See
"Displaying commands stored in the SQL Command Cache" on page 10-3 for full
details on this procedure.

If you execute the cmdcache command without parameters, the full SQL Command
Cache contents are displayed. Identical to the ttSqlCmdCacheInfo built-in
procedure, you can provide a command ID to specify a specific command to be
displayed.

In addition, the ttIsql cmdcache command can filter the results so that only those
commands that match a particular owner or query text are displayed.

The syntax for the cmdcache command is as follows:

cmdcache [[by {sqlcmdid | querytext | owner}] <query_substring>

Viewing and changing query optimizer plans

6-22 Oracle TimesTen In-Memory Database Operations Guide

If you provide the owner parameter, the results are filtered by the owner, identified
by the <query_substring>, displayed within each returned command. If you
provide the querytext parameter, the results are filtered so that all queries are
displayed that contain the substring provided within the <query_substring>. If
only the <query_substring> is provided, such as cmdcache <query_
substring>, the command assumes to filter the query text by the <query_
substring>.

Display query plan for statement in SQL Command Cache
The ttIsql explain command displays the query plan for an individual SQL
command.

■ If you provide a command ID from the SQL Command Cache, the explain
command invokes the ttSqlCmdQueryPlan built-in procedure to display the
query plan for an individual command in the TimesTen SQL Command Cache. If
you want the explain plan displayed in a formatted method, execute the explain
command instead of calling the ttSqlCmdQueryPlan built-in process. Both
provide the same information, but the ttSqlCmdQueryPlan built-in provides the
data in a raw data format. See "Viewing query plans associated with commands
stored in the SQL Command Cache" on page 10-8 for full details on the
ttSqlCmdQueryPlan procedure.

■ If you provide a SQL statement or the history item number, then the explain
command executes the SQL statements necessary to display the explain plan for
that SQL statement.

The syntax for the explain command is as follows:

explain [plan for] {[<Connid>.]<ttisqlcmdid> | sqlcmdid <sqlcmdid> | <sqlstmt> |
!<historyitem>}

Identical to the ttSqlCmdQueryPlan built-in procedure, you can provide a
command ID to specify a specific command to be displayed. The command ID can be
retrieved with the cmdcache command, as described in "View commands in the SQL
Command Cache" on page 6-21.

The following example provides an explain plan for command ID 38001456:

Command> explain sqlcmdid 38001456;

Query Optimizer Plan:
 Query Text: select * from all_objects where object_name = 'DBMS_OUTPUT'

 STEP: 1
 LEVEL: 12
 OPERATION: TblLkTtreeScan
 TABLENAME: OBJ$
 TABLEOWNERNAME: SYS
 INDEXNAME: USER$.I_OBJ
 INDEXEDPRED:
 NONINDEXEDPRED: (RTRIM(NAME)) = DBMS_OUTPUT;NOT(10 = TYPE#) ;(FLAGS ^
128 = 0) ;

 STEP: 2
 LEVEL: 12
 OPERATION: RowLkTtreeScan
 TABLENAME: OBJAUTH$
 TABLEOWNERNAME: SYS
 INDEXNAME: OBJAUTH$.I_OBJAUTH1

Viewing and changing query optimizer plans

Using the ttIsql Utility 6-23

 INDEXEDPRED: ((GRANTEE#=1) OR (GRANTEE#=10)) AND ((PRIVILEGE#=8))
 NONINDEXEDPRED: OBJ# = OBJ#;

 STEP: 3
 LEVEL: 11
 OPERATION: NestedLoop(Left OuterJoin)
 TABLENAME:
 TABLEOWNERNAME:
 INDEXNAME:
 INDEXEDPRED:
 NONINDEXEDPRED:
...
 STEP: 21
 LEVEL: 1
 OPERATION: Project
 TABLENAME:
 TABLEOWNERNAME:
 INDEXNAME:
 INDEXEDPRED:
 NONINDEXEDPRED:

Command>

In addition, the ttIsql explain command can generate an explain plan for any SQL
query you provide. For example, the following shows the explain plan for SQL query
"select * from dual;"

Command> explain select * from dual;

Query Optimizer Plan:

 STEP: 1
 LEVEL: 1
 OPERATION: RowLkSerialScan
 TBLNAME: DUAL
 IXNAME: <NULL>
 INDEXED CONDITION: <NULL>
 NOT INDEXED: <NULL>

You can also retrieve explain plans based upon the command history. The following
example shows how you explain a previously executed SQL statement using the
history command ID:

Command> select * from all_objects where object_name = 'DBMS_OUTPUT';
< SYS, DBMS_OUTPUT, <NULL>, 241, <NULL>, PACKAGE, 2009-10-13 10:41:11, 2009-10-13
10:41:11, 2009-10-13:10:41:11, VALID, N, N, N, 1, <NULL> >
< PUBLIC, DBMS_OUTPUT, <NULL>, 242, <NULL>, SYNONYM, 2009-10-13 10:41:11,
2009-10-13 10:41:11, 2009-10-13:10:41:11, INVALID, N, N, N, 1, <NULL> >
< SYS, DBMS_OUTPUT, <NULL>, 243, <NULL>, PACKAGE BODY, 2009-10-13 10:41:11,
2009-10-13 10:41:11, 2009-10-13:10:41:11, VALID, N, N, N, 2, <NULL> >
3 rows found.
Command> history;
1 connect "DSN=cache";
2 help cmdcache;
3 cmdcache;
4 explain select * from dual;
5 select * from all_objects where object_name = 'DBMS_OUTPUT';
Command> explain !5;

Query Optimizer Plan:

Timing ODBC function calls

6-24 Oracle TimesTen In-Memory Database Operations Guide

 STEP: 1
 LEVEL: 10
 OPERATION: TblLkTtreeScan
 TBLNAME: SYS.OBJ$
 IXNAME: USER$.I_OBJ
 INDEXED CONDITION: <NULL>
 NOT INDEXED: O.FLAGS & 128 = 0 AND CAST(RTRIM (O.NAME) AS VARCHAR2(30
BYTE) INLINE) = 'DBMS_OUTPUT' AND O.TYPE# <> 10

 STEP: 2
 LEVEL: 10
 OPERATION: RowLkTtreeScan
 TBLNAME: SYS.OBJAUTH$
 IXNAME: OBJAUTH$.I_OBJAUTH1
 INDEXED CONDITION: (OA.GRANTEE# = 1 OR OA.GRANTEE# = 10) AND OA.PRIVILEGE# = 8
 NOT INDEXED: OA.OBJ# = O.OBJ#

 STEP: 3
 LEVEL: 9
 OPERATION: NestedLoop(Left OuterJoin)
 TBLNAME: <NULL>
 IXNAME: <NULL>
 INDEXED CONDITION: <NULL>
 NOT INDEXED: <NULL>

 STEP: 4
 LEVEL: 9
 OPERATION: TblLkTtreeScan
 TBLNAME: SYS.OBJAUTH$
 IXNAME: OBJAUTH$.I_OBJAUTH1
 INDEXED CONDITION: (OBJAUTH$.GRANTEE# = 1 OR OBJAUTH$.GRANTEE# = 10) AND
(OBJAUTH$.PRIVILEGE# = 2 OR OBJAUTH$.PRIVILEGE# = 3 OR OBJAUTH$.PRIVILEGE# = 4 OR
OBJAUTH$.PRIVILEGE# = 5 OR OBJAUTH$.PRIVILEGE# = 8)
 NOT INDEXED: O.OBJ# = OBJAUTH$.OBJ#
...
 STEP: 19
 LEVEL: 1
 OPERATION: NestedLoop(Left OuterJoin)
 TBLNAME: <NULL>
 IXNAME: <NULL>
 INDEXED CONDITION: <NULL>
 NOT INDEXED: O.OWNER# = 1 OR (O.TYPE# IN (7,8,9) AND (NOT(ISNULLROW
(SYS.OBJAUTH$.ROWID)) OR NOT(ISNULLROW (SYS.SYSAUTH$.ROWID)))) OR (O.TYPE# IN
(1,2,3,4,5) AND NOT(ISNULLROW (SYS.SYSAUTH$.ROWID))) OR (O.TYPE# = 6 AND NOT(
ISNULLROW (SYS.SYSAUTH$.ROWID))) OR (O.TYPE# = 11 AND NOT(ISNULLROW
(SYS.SYSAUTH$.ROWID))) OR (O.TYPE# NOT IN (7,8,9,11) AND NOT(ISNULLROW
(SYS.OBJAUTH$.ROWID))) OR (O.TYPE# = 28 AND NOT(ISNULLROW (SYS.SYSAUTH$.ROWID)))
OR (O.TYPE# = 23 AND NOT(ISNULLROW (SYS.SYSAUTH$.ROWID))) OR O.OWNER# = 10

Timing ODBC function calls
Information on the time required to execute common ODBC function calls can be
displayed by using the ttIsql timing command. When the timing feature is
enabled many built-in ttIsql commands will report the elapsed execution time
associated with the primary ODBC function call corresponding to the ttIsql
command that is executed.

Managing XLA bookmarks

Using the ttIsql Utility 6-25

For example, when executing the ttIsql connect command several ODBC function
calls are executed, however, the primary ODBC function call associated with connect
is SQLDriverConnect and this is the function call that is timed and reported as
shown below.

Command> timing 1;
Command> connect "DSN=MY_DSN";
Connection successful: DSN=MY_DSN;DataStore=E:\ds\MY_DSN;DRIVER=E:\WINNT\System32\
TTdv1121.dll;
(Default setting AutoCommit=1)
Execution time (SQLDriverConnect) = 1.2626 seconds.
Command>

In the example above, the SQLDriverConnect call took about 1.26 seconds to
execute.

When using the timing command to measure queries, the time required to execute
the query plus the time required to fetch the query results is measured. To avoid
measuring the time to format and print query results to the display, set the verbosity
level to 0 before executing the query.

Command> timing 1;
Command> verbosity 0;
Command> SELECT * FROM T1;
Execution time (SQLExecute + FetchLoop) = 0.064210 seconds.
Command>

Managing XLA bookmarks
You can use the xlabookmarkdelete command to both check the status of the
current XLA bookmarks and delete them. This command requires XLA privilege or
object ownership.

For example, when running the XLA application, 'xlaSimple', you can check the
bookmark status by entering:

Command> xlabookmarkdelete;

XLA Bookmark: xlaSimple
 Read Log File: 0
 Read Offset: 630000
 Purge Log File: 0
 Purge Offset: 629960
 PID: 2808
 In Use: No
1 bookmark found.

To delete the bookmark, enter:

Command> xlabookmarkdelete xlaSimple;
Command>

Managing XLA bookmarks

6-26 Oracle TimesTen In-Memory Database Operations Guide

7

Working with Data in a TimesTen Database 7-1

7Working with Data in a TimesTen Database

This chapter provides detailed information on the basic components in a TimesTen
database and simple examples of how you can use SQL to manage these components.
For more information about SQL, see the Oracle TimesTen In-Memory Database SQL
Reference.

For information on how to execute SQL from within a C or Java application, see
"Managing TimesTen data" in the Oracle TimesTen In-Memory Database Java Developer's
Guide or "Managing TimesTen data" in the Oracle TimesTen In-Memory Database C
Developer's Guide.

This chapter includes the following topics:

■ Database overview

■ Understanding tables

■ Understanding views

■ Understanding materialized views

■ Understanding indexes

■ Understanding rows

■ Understanding synonyms

Database overview
The following sections describe the main TimesTen database elements and features:

■ Database components

■ Database users and owners

■ Database persistence

Database components
A TimesTen database has the following permanent components:

■ Tables. The primary components of a TimesTen database are the tables that
contain the application data. See "Understanding tables" on page 7-3.

■ Materialized Views. Read-only tables that hold a summary of data selected from
one or more "regular" TimesTen tables. See "Understanding materialized views"
on page 7-12.

■ Views. Logical tables that are based on one or more tables called detail tables. A
view itself contains no data. See "Understanding views" on page 7-10.

Database overview

7-2 Oracle TimesTen In-Memory Database Operations Guide

■ Indexes. Indexes on one or more columns of a table may be created for faster
access to tables. See "Understanding indexes" on page 7-21.

■ Rows. Every table consists of 0 or more rows. A row is a formatted list of values.
See "Understanding rows" on page 7-24.

■ System tables. System tables contain TimesTen metadata, such as a table of all
tables. See "System Tables" in the Oracle TimesTen In-Memory Database System
Tables and Limits Reference.

There are also many temporary components, including prepared commands, cursors
and locks.

Database users and owners
When access control is enabled, the TimesTen Data Manager authenticates user names
with passwords. TimesTen Client/Server also authenticates users with passwords.
Applications should choose one UID for the application itself because by default the
login name that is being used to run the application becomes the owner of the
database. If two different logins are used, TimesTen may have difficulty finding the
correct tables. If you omit the UID connection attribute in the connection string,
TimesTen uses the current user's login name. TimesTen converts all user names to
upper case characters.

Users cannot access TimesTen databases as user SYS. TimesTen determines the user
name by the value of the UID connection attribute, or if not present, then by the login
name of the connected user. If a user's login is SYS, set the UID connection to override
the login name.

Database persistence
When a database is created, it has either the permanent or temporary attribute set:

■ Permanent databases are stored to disk automatically through a procedure called
checkpointing. TimesTen automatically performs background checkpoints based
on the settings of the connection attributes CkptFrequency and
CkptLogVolume. TimesTen also checkpoints the database when the last
application disconnects. Applications can also checkpoint a database directly to
disk by invoking the ttCkptBlocking built-in procedures described in the
Oracle TimesTen In-Memory Database Reference.

■ Temporary databases are not stored to disk. A temporary database is
automatically destroyed when no applications are connected to it; that is, when
the last connection disconnects or when there is a system or application failure.
TimesTen removes all disk-based files when the last application disconnects.

A temporary database cannot be backed up or replicated. Temporary databases
are never fully checkpointed to disk, although Checkpoint operations can have
significant overhead for permanent databases, depending on database size and
activity, but have very little impact for temporary databases. Checkpoints are still
necessary to remove transaction log files.

However, temporary databases do have a transaction log, which is periodically
written to disk, so transactions can be rolled back. The amount of data written to
the transaction log for temporary databases is less than that written for permanent

Note: You cannot change the permanent or temporary attribute on a
database after it is created.

Understanding tables

Working with Data in a TimesTen Database 7-3

databases, allowing better performance for temporary databases. Recovery is
never performed for temporary databases.

You can increase your performance with temporary databases. If you do not need
to save the database to disk, you can save checkpoint overhead by creating a
temporary database.

Details for setting up a temporary database are described in "Setting up a
temporary database" on page 1-16.

Understanding tables
A TimesTen table consists of rows that have a common format or structure. This
format is described by the table's columns.

The following sections describes tables, its columns and how to manage them:

■ Overview of tables

■ Working with tables

■ Implementing aging in your tables

Overview of tables
This section includes the following topics:

■ Column overview

■ In-line and out-of-line columns

■ Default column values

■ Table names

■ Table access

■ Primary keys, foreign keys and unique indexes

■ System tables

Column overview
When you create the columns in the table, the column names are case-insensitive.

Each column has the following:

■ A data type

■ Optional nullability, primary key and foreign key properties

■ An optional default value

Unless you explicitly declare a column NOT NULL, columns are nullable. If a column
in a table is nullable, it can contain a NULL value. Otherwise, each row in the table
must have a non-NULL value in that column.

The format of TimesTen columns cannot be altered. It is possible to add or remove
columns but not to change column definitions. To add or remove columns, use the
ALTER TABLE statement. To change column definitions, an application must first
drop the table and then recreate it with the new definitions.

Understanding tables

7-4 Oracle TimesTen In-Memory Database Operations Guide

In-line and out-of-line columns
The in-memory layout of the rows of a table is designed to provide fast access to rows
while minimizing wasted space. TimesTen designates each VARBINARY, NVARCHAR
and VARCHAR column of a table as either in-line or not inline.

■ An in-line column has a fixed length. All values of fixed-length columns of a table
are stored row wise.

■ A not inline column has a varying length. Some VARCHAR, NVARCHAR or
VARBINARY data type columns are stored not inline. Not inline columns are not
stored contiguously with the row but are allocated. Accessing out-of-line columns
is slightly slower than accessing in-line columns. By default, VARCHAR, NVARCHAR
and VARBINARY columns whose declared column length is > 128 bytes are stored
out of line. Columns whose declared column length is <= 128 bytes are stored
inline.

The maximum sizes of in-line and out-of-line portions of a row are listed in
"Estimating table size" on page 7-6.

Default column values
When you create a table, you can specify default values for the columns. The default
value you specify must be compatible with the data type of the column. You can
specify one of the following default values for a column:

■ NULL for any column type

■ A constant value

■ SYSDATE for DATE and TIMESTAMP columns

■ USER for CHAR columns

■ CURRENT_USER for CHAR columns

■ SYSTEM_USER for CHAR columns

If you use the DEFAULT clause of the CREATE TABLE statement but do not specify the
default value, the default value is NULL. See "Column Definition" in the Oracle
TimesTen In-Memory Database SQL Reference.

Table names
A TimesTen table is identified uniquely by its owner name and table name. Every
table has an owner. By default, the owner is the user who created the table. Tables
created by TimesTen, such as system tables, have the owner name SYS, or TTREP if
created during replication.

To uniquely refer to a table, specify both its owner and name separated by a period
("."), such as MARY.PAYROLL. If an application does not specify an owner, TimesTen
looks for the table under the user name of the caller, then under the user name SYS.

A name is an alphanumeric value that begins with a letter. A name can include
underscores. The maximum length of a table name is 30 characters. The maximum
length of an owner name is also 30 characters. TimesTen displays all table, column and
owner names to upper case characters. See "Names and parameters" in the Oracle
TimesTen In-Memory Database SQL Reference for additional information.

Table access
Applications access tables through SQL statements. The TimesTen query optimizer
automatically chooses a fast way to access tables. It uses existing indexes or, if

Understanding tables

Working with Data in a TimesTen Database 7-5

necessary, creates temporary indexes to speed up access. For improved performance,
applications should explicitly create indexes for frequently searched columns because
the automatic creation and destruction of temporary indexes incurs a performance
overhead. For more details, see "Tune statements and use indexes" on page 9-10.

Primary keys, foreign keys and unique indexes
The creator of a TimesTen table can designate one or more columns as a primary key
to indicate that duplicate values for that set of columns should be rejected. Primary
key columns cannot be nullable. A table can have at most one primary key. TimesTen
automatically creates a range index on the primary key to enforce uniqueness on the
primary key and to guarantee fast access through the primary key. Indexes are
discussed in "Understanding indexes" on page 7-21. Once a row is inserted, its primary
key columns cannot be modified, except to change a range index to a hash index.

Although a table may have only one primary key, additional uniqueness properties
may be added to the table using unique indexes. See "CREATE INDEX" in the Oracle
TimesTen In-Memory Database SQL Reference for more information.

A table may also have one or more foreign keys through which rows correspond to
rows in another table. Foreign keys relate to a primary key or uniquely indexed
columns in the other table. Foreign keys use a range index on the referencing columns.
See "CREATE TABLE" in the Oracle TimesTen In-Memory Database SQL Reference for
more information.

System tables
In addition to tables created by applications, a TimesTen database contains system
tables. System tables contain TimesTen metadata such as descriptions of all tables and
indexes in the database, as well as other information such as optimizer plans.
Applications may query system tables just as they query user tables. Applications may
not update system tables. TimesTen system tables are described in the "System Tables"
chapter in the Oracle TimesTen In-Memory Database System Tables and Limits Reference.

Working with tables
To perform any operation that creates, drops or manages a table, the user must have
the appropriate privileges, which are described along with the syntax for all SQL
statements in the "SQL Statements" chapter in the Oracle TimesTen In-Memory Database
SQL Reference.

This section includes the following topics:

■ Creating a table

■ Dropping a table

■ Estimating table size

Note: Columns of a primary key cannot be nullable; a unique index
can be built on nullable columns.

Note: TimesTen system table formats may change between releases
and are different between the 32- and 64-bit versions of TimesTen.

Understanding tables

7-6 Oracle TimesTen In-Memory Database Operations Guide

Creating a table
To create a table, use the SQL statement CREATE TABLE. The syntax for all SQL
statements is provided in the Oracle TimesTen In-Memory Database SQL Reference.
TimesTen converts table names to upper case characters.

Example 7–1 Create a table

The following SQL statement creates a table, called NameID, with two columns:
CustId and CustName of two different data types.

CREATE TABLE NameID (CustId TT_INTEGER, CustName VARCHAR2(50));

Example 7–2 Create a table with a hash index

This example creates a table, called Customer, with the columns: CustId, CustName,
Addr, Zip, and Region. The CustId column is designated as the primary key, so that
the CustId value in a row uniquely identifies that row in the table, as described in
"Primary keys, foreign keys and unique indexes" on page 7-5. The UNIQUE HASH ON
custId PAGES value indicates that there are 30 pages in the hash index. This number
is used to determine the number of buckets that are to be allocated for the table's hash
index. Bucket count = (PAGES * 256) / 20. Therefore the number of buckets allocated
for the hash index is 384: (30 * 256) / 20 = 384

CREATE TABLE Customer
(custId NUMBER NOT NULL PRIMARY KEY,
custName CHAR(100) NOT NULL,
Addr CHAR(100),
Zip NUMBER,
Region CHAR(10))
UNIQUE HASH ON (custId) PAGES = 30;

Dropping a table
To drop a TimesTen table, call the SQL statement DROP TABLE.

Example 7–3 Drop a table

The following example drops the table NameID.

DROP TABLE NameID;

Estimating table size
Increasing the size of a TimesTen database can be done on first connect. To avoid
having to increase the size of a database, it is important not to underestimate the
eventual database size. Use the utility ttSize to estimate database size.

Implementing aging in your tables
You can define an aging policy for one or more tables in your database. An aging
policy refers to the type of aging and the aging attributes, as well as the aging state (ON
or OFF). You can specify one of the following types of aging policies: usage-based or
time-based. Usage-based aging removes least recently used (LRU) data within a
specified database usage range. Time-based aging removes data based on the specified
data lifetime and frequency of the aging process. You can define both usage-based
aging and time-based aging in the same database, but you can define only one type of
aging on a specific table.

You can define an aging policy for a new table with the CREATE TABLE statement.
You can add an aging policy to an existing table with the ALTER TABLE statement if

Understanding tables

Working with Data in a TimesTen Database 7-7

the table does not already have an aging policy defined. You can change the aging
policy by dropping aging and adding a new aging policy.

You cannot specify aging on the following types of tables:

■ Global temporary tables

■ Detail tables for materialized views

You can also implement aging in cache groups. See "Implementing aging on a cache
group" in the Oracle In-Memory Database Cache User's Guide.

This section includes the following topics:

■ Usage-based aging

■ Time-based aging

■ Aging and foreign keys

■ Scheduling when aging starts

■ Scheduling when aging starts

Usage-based aging
Usage-based aging enables you to maintain the amount of memory used in a database
within a specified threshold by removing the least recently used (LRU) data.

Define LRU aging for a new table by using the AGING LRU clause of the CREATE
TABLE statement. Aging begins automatically if the aging state is ON.

Use the ttAgingLRUConfig built-in procedure to specify the LRU aging attributes.
The attribute values apply to all tables in the database that have an LRU aging policy.
If you do not call the ttAgingLRUConfig built-in procedure, then the default values
for the attributes are used.

The following table summarizes the LRU aging attributes:

If you set a new value for AgingCycle after an LRU aging policy has already been
defined, aging occurs based on the current time and the new cycle time. For example,
if the original aging cycle is 15 minutes and LRU aging occurred 10 minutes ago, aging
is expected to occur again in 5 minutes. However, if you change the AgingCycle
parameter to 30 minutes, then aging occurs 30 minutes from the time you call the
ttAgingLRUConfig procedure with the new value for AgingCycle.

Note: The ttAgingLRUConfig built-in procedure requires that the
user have ADMIN privilege if you want to modify any attributes. You
do not need any privileges for viewing existing attributes. For more
information, see "Built-In Procedures" in the Oracle TimesTen
In-Memory Database Reference.

LRU Aging Attribute Description

LowUsageThreshhold The percent of the database PermSize at which LRU aging is
deactivated.

HighUsageThreshhold The percent of the database PermSize at which LRU aging is
activated.

AgingCycle The number of minutes between aging cycles.

Understanding tables

7-8 Oracle TimesTen In-Memory Database Operations Guide

If a row has been accessed or referenced since the last aging cycle, it is not eligible for
LRU aging. A row is considered to be accessed or referenced if one of the following is
true:

■ The row is used to build the result set of a SELECT statement.

■ The row has been flagged to be updated or deleted.

■ The row is used to build the result set of an INSERT SELECT statement.

You can use the ALTER TABLE statement to perform the following tasks:

■ Enable or disable the aging state on a table that has an aging policy defined by
using the ALTER TABLE statement with the SET AGING {ON|OFF} clause.

■ Add an LRU aging policy to an existing table by using the ALTER TABLE
statement with the ADD AGING LRU [ON|OFF] clause.

■ Drop aging on a table by using the ALTER TABLE statement with the DROP
AGING clause.

Use the ttAgingScheduleNow built-in procedure to schedule when aging starts. For
more information, see "Scheduling when aging starts" on page 7-9.

To change aging from LRU to time-based on a table, first drop aging on the table by
using the ALTER TABLE statement with the DROP AGING clause. Then add
time-based aging by using the ALTER TABLE statement with the ADD AGING USE
clause.

Time-based aging
Time-based aging removes data from a table based on the specified data lifetime and
frequency of the aging process. Specify a time-based aging policy for a new table with
the AGING USE clause of the CREATE TABLE statement. Add a time-based aging
policy to an existing table with the ADD AGING USE clause of the ALTER TABLE
statement.

The AGING USE clause has a ColumnName argument.ColumnName is the name of the
column that is used for time-based aging. For brevity, we will call it the timestamp
column. The timestamp column must be defined as follows:

■ ORA_TIMESTAMP, TT_TIMESTAMP, ORA_DATE or TT_DATE data type

■ NOT NULL

Your application updates the values of the timestamp column. If the value of this
column is unknown for some rows and you do not want the rows to be aged, then
define the column with a large default value. You can create an index on the
timestamp column for better performance of the aging process.

You cannot drop the timestamp column from a table that has a time-based aging
policy.

Note: When you drop LRU aging or add LRU aging to tables that are
referenced in commands, TimesTen marks the compiled commands
invalid. The commands need to be recompiled.

Note: You cannot add or modify a column in an existing table and
then use that column as a timestamp column because you cannot add
or modify a column and define it to be NOT NULL.

Understanding tables

Working with Data in a TimesTen Database 7-9

If the data type of the timestamp column is ORA_TIMESTAMP, TT_TIMESTAMP, or
ORA_DATE, you can specify the lifetime in days, hours, or minutes in the LIFETIME
clause of the CREATE TABLE statement. If the data type of the timestamp column is
TT_DATE, specify the lifetime in days.

The value in the timestamp column is subtracted from SYSDATE. The result is
truncated the result using the specified unit (minute, hour, day) and compared with
the specified LIFETIME value. If the result is greater than the LIFETIME value, then
the row is a candidate for aging.

Use the CYCLE clause to indicate how often the system should examine the rows to
remove data that has exceeded the specified lifetime. If you do not specify CYCLE,
aging occurs every five minutes. If you specify 0 for the cycle, then aging is
continuous. Aging begins automatically if the state is ON.

Use the ALTER TABLE statement to perform the following tasks:

■ Enable or disable the aging state on a table with a time-based aging policy by
using the SET AGING {ON|OFF} clause.

■ Change the aging cycle on a table with a time-based aging policy by using the SET
AGING CYCLE clause.

■ Change the lifetime by using the SET AGING LIFETIME clause.

■ Add time-based aging to an existing table with no aging policy by using the ADD
AGING USE clause.

■ Drop aging on a table by using the DROP AGING clause.

Use the ttAgingScheduleNow built-in procedure to schedule when aging starts. For
more information, see "Scheduling when aging starts" on page 7-9

To change the aging policy from time-based aging to LRU aging on a table, first drop
time-based aging on the table. Then add LRU aging by using the ALTER TABLE
statement with the ADD AGING LRU clause.

Aging and foreign keys
Tables that are related by foreign keys must have the same aging policy.

If LRU aging is in effect and a row in a child table has been recently accessed, then
neither the parent row nor the child row will be deleted.

If time-based aging is in effect and a row in a parent table is a candidate for aging out,
then the parent row and all of its children will be deleted.

If a table has ON DELETE CASCADE enabled, the setting is ignored.

Scheduling when aging starts
Use the ttAgingScheduleNow built-in procedure to schedule the aging process. The
aging process starts as soon as you call the procedure unless there is already an aging
process in progress, in which case it will begin when that aging process has completed.

When you call ttAgingScheduleNow, the aging process starts regardless of whether
the state is ON or OFF.

The aging process starts only once as a result of calling ttAgingScheduleNow does
not change the aging state. If the aging state is OFF when you call
ttAgingScheduleNow, then the aging process starts, but it does not continue after
the process is complete. To continue aging, you must call ttAgingScheduleNow
again or change the aging state to ON.

Understanding views

7-10 Oracle TimesTen In-Memory Database Operations Guide

If the aging state is already set to ON, then ttAgingScheduleNow resets the aging
cycle based on the time ttAgingScheduleNow was called.

You can control aging externally by disabling aging by using the ALTER TABLE
statement with the SET AGING OFF clause. Then use ttAgingScheduleNow to start
aging at the desired time.

Use ttAgingScheduleNow to start or reset aging for an individual table by
specifying its name when you call the procedure. If you do not specify a table name,
then ttAgingScheduleNow will start or reset aging on all of the tables in the
database that have aging defined.

Aging and replication
For active standby pairs, implement aging on the active master database. Deletes that
occur as a result of aging will be replicated to the standby master database and the
read-only subscribers. If a failover to the standby master database occurs, aging is
enabled on the database after its role changes to ACTIVE.

For all other types of replication schemes, implement aging separately on each node.
The aging policy must be the same on all nodes.

If you implement LRU aging on a multimaster replication scheme used as a hot
standby, LRU aging may provide unintended results. After a failover, you may not
have all of the desired data because aging occurs locally.

Understanding views
A view is a logical table that is based on one or more tables. The view itself contains no
data. It is sometimes called a non-materialized view to distinguish it from a materialized
view, which does contain data that has already been calculated from detail tables.
Views cannot be updated directly, but changes to the data in the detail tables are
immediately reflected in the view.

To choose whether to create a view or a materialized view, consider where the cost of
calculation lies. For a materialized view, the cost falls on the users who update the
detail tables because calculations must be made to update the data in the materialized
views. For a nonmaterialized view, the cost falls on a connection that queries the view,
because the calculations must be made at the time of the query.

To perform any operation that creates, drops or manages a view, the user must have
the appropriate privileges, which are described along with the syntax for all SQL
statements in the "SQL Statements" chapter in the Oracle TimesTen In-Memory Database
SQL Reference.

This section includes the following topics:

■ Creating a view

■ Dropping a view

■ Restrictions on views and detail tables

Creating a view
To create a view, use the CREATE VIEW SQL statement. The syntax for all SQL
statements is provided in the "SQL Statements" chapter in the Oracle TimesTen
In-Memory Database SQL Reference.

CREATE VIEW ViewName AS SelectQuery;

Understanding views

Working with Data in a TimesTen Database 7-11

This selects columns from the detail tables to be used in the view.

For example, create a view from the table t1:

CREATE VIEW v1 AS SELECT * FROM t1;

Now create a view from an aggregate query on the table t1:

CREATE VIEW v1 (max1) AS SELECT max(x1) FROM t1;

The SELECT query in the CREATE VIEW statement
The SELECT query used to define the contents of a materialized view is similar to the
top-level SQL SELECT statement described in "SQL Statements" in the Oracle TimesTen
In-Memory Database SQL Reference, with the following restrictions:

■ A SELECT * query in a view definition is expanded at view creation time. Any
columns added after a view is created do not affect the view.

■ The following cannot be used in a SELECT statement that is creating a view:

■ DISTINCT

■ FIRST

■ ORDER BY

■ Arguments

■ Temporary tables

■ Each expression in the select list must have a unique name. A name of a simple
column expression would be that column's name unless a column alias is defined.
RowId is considered an expression and needs an alias.

■ No SELECT FOR UPDATE or SELECT FOR INSERT statements can be used on a
view.

■ Certain TimesTen query restrictions are not checked when a non-materialized
view is created. Views that violate those restrictions may be allowed to be created,
but an error is returned when the view is referenced later in an executed
statement.

Dropping a view
The DROP VIEW statement deletes the specified view.

The following statement drops the CustOrder view:

DROP VIEW CustOrder;

Restrictions on views and detail tables
Views have the following restrictions:

■ When a view is referenced in the FROM clause of a SELECT statement, its name is
replaced by its definition as a derived table at parsing time. If it is not possible to
merge all clauses of a view to the same clause in the original select to form a legal
query without the derived table, the content of this derived table is materialized.
For example, if both the view and the referencing select specify aggregates, the
view is materialized before its result can be joined with other tables of the select.

■ A view cannot be dropped with a DROP TABLE statement. You must use the DROP
VIEW statement.

Understanding materialized views

7-12 Oracle TimesTen In-Memory Database Operations Guide

■ A view cannot be altered with an ALTER TABLE statement.

■ Referencing a view can fail due to dropped or altered detail tables.

Understanding materialized views
The following sections describes materialized views and how to manage them:

■ Overview of materialized views

■ Working with materialized views

Overview of materialized views
A materialized view is a read-only table that maintains a summary of data selected
from one or more regular TimesTen tables. The TimesTen tables queried to make up
the result set for the materialized view are called detail tables.

Figure 7–1 shows a materialized view created from detail tables. An application
updates the detail tables and can select data from the materialized view.

Figure 7–1 Materialized view

There are two types of materialized views based upon how the result set for the
materialized view is updated.

■ Synchronous materialized view

■ Asynchronous materialized view

In addition, learn when to use each type of materialized views in the section: "When to
use synchronous or asynchronous materialized views" on page 7-13.

Note: Materialized views are not supported on cache tables.

Data Store

Materialized View

Detail Tables

Updates Selects

Application

Understanding materialized views

Working with Data in a TimesTen Database 7-13

Synchronous materialized view
The synchronous materialized view, by default, updates the result set data from the
detail tables at the time of the detail table transaction. Every time data is updated in
the detail tables, the result set is updated. Thus, the synchronous materialized view is
never out of sync with the detail tables. However, this can affect your performance. A
single transaction, the user transaction, executes the updates for both the detail table
and any synchronous materialized views.

Asynchronous materialized view
The materialized view is populated and it is in sync with the detail tables at creation.
When the detail tables are updated, the asynchronous materialized views are not
updated immediately. At any moment, they can be out of sync with the corresponding
detail tables. The asynchronous materialized view defers updates to the result set as a
trade-off for performance. You decide when and how the result set is refreshed either
manually by the user or automatically within a pre-configured interval. The
asynchronous materialized view is always refreshed in its own transaction, not within
the user transaction that updates the detail tables. Thus, the user transaction is not
blocked by any updates for the asynchronous materialized view.

The asynchronous refresh may use either of the following refresh method
configurations:

■ FAST, which updates only the incremental changes since the last update.

■ COMPLETE, which provides a full refresh.

To facilitate a FAST refresh, you must create a materialized view log to manage the
deferred incremental transactions for each detail table used by the asynchronous
materialized view. Each detail table requires only one materialized view log for
managing all deferred transactions, even if it is included in more than one FAST
asynchronous materialized view.

The detail table cannot be dropped if there is an associated materialized view or
materialized view log.

When to use synchronous or asynchronous materialized views
The following sections provide guidelines on when to use synchronous or
asynchronous materialized views:

■ Joins and aggregate functions turn into super locks

Note: When you use XLA in conjunction with asynchronous
materialized views, you cannot depend on the ordering of the DDL
statements. In general, there are no operational differences between
the XLA mechanisms used to track changes to a table or a
materialized view. However, for asynchronous materialized views, be
aware that the order of XLA notifications for an asynchronous view is
not necessarily the same as it would be for the associated detail tables,
or the same as it would be for asynchronous view. For example, if
there are two inserts to a detail table, they may be done in the
opposite order in the asynchronous materialized view. Furthermore,
updates may be treated as a delete followed by an insert, and multiple
operations, such as multiple inserts or multiple deletes, may be
combined. Applications that depend on ordering should not use
asynchronous materialized views.

Understanding materialized views

7-14 Oracle TimesTen In-Memory Database Operations Guide

■ Freshness of the materialized view

■ Overhead cost

Joins and aggregate functions turn into super locks If a synchronous materialized view has
joins or uses aggregate functions, there is a super lock effect. For example, if you have
a single table with a synchronous materialized view that aggregates on average 1000
rows into 1. When you update a row in the detail table of the synchronous
materialized view, you lock that row for the remainder of the transaction. Any other
transaction that attempts to update that row blocks and waits until the transaction
commits.

But since there is a synchronous materialized view on that table, the materialized view
is also updated. The single row in the materialized view is locked and updated to
reflect the change. However, there are 999 other rows from the base table that also
aggregate to that same materialized view row. These 999 other base table rows are also
effectively locked because if you try to update any of them, you will block and wait
while retrieving the lock on the materialized view row. This is referred to as a super
lock.

The same effect occurs across joins. If you have a synchronous materialized view that
joins five tables and you update a row in any one of the five tables, you will have a
super lock on all the rows in the other four tables that join to the one that you updated.

Obviously, the combination of joins and aggregate functions compound the problem
for synchronous materialized views. However, asynchronous materialized views with
COMPLETE refresh diminish the super lock because the locks on the asynchronous
materialized view rows with COMPLETE refresh are only held during the refresh
process. The super locks with synchronous materialized views will be held until the
updating transaction commits. Thus, if you have short transactions, then super locks
on synchronous materialized view are not a problem. However, if you have long
transactions, use asynchronous materialized views with COMPLETE refresh that
minimize the effect of any super lock.

Freshness of the materialized view Synchronous materialized views are always fresh and
they always return the latest data. Asynchronous materialized views can become stale
after an update until refreshed. If you must have the most current data all the time,
use synchronous materialized views. However, you may consider using asynchronous
if your application does not need the most current data.

For example, you may execute a series of analytical queries each with variations. In
this case, you can use an asynchronous materialized view to isolate the differences that
result from the query variations from the differences that result from newly arrived or
updated data.

Overhead cost An asynchronous materialized view is not updated in the user
transaction, which updates the detail tables. The refresh of an asynchronous
materialized view is always performed in an independent transaction. This means that
the user is free to execute any other transaction. By comparison, for synchronous
materialized views, a single transaction executes the updates for both the detail table
and any synchronous materialized views, which does affect your performance.

While the asynchronous materialized view logs for asynchronous materialized views
with FAST refresh incur overhead, it is generally less overhead than the cost of
updating a synchronous materialized view. This is especially true even if the
asynchronous materialized view is complicated with joins. For asynchronous
materialized views with COMPLETE refresh, there is no overhead at the time of
updating the detail table.

Understanding materialized views

Working with Data in a TimesTen Database 7-15

You can defer asynchronous materialized view maintenance cost. The asynchronous
materialized view log costs less than the incremental maintenance of the synchronous
materialized view because the asynchronous materialized view logs perform simple
inserts, whereas synchronous materialized view maintenance has to compute the delta
for the materialized view and joins and then apply results in an update operation.
Updates are more expensive than inserts. The cost difference reduces if the
synchronous materialized view is simple in structure.

Working with materialized views
This section includes the following topics:

■ Creating a materialized view

■ Dropping a materialized view or a materialized view log

■ Restrictions on materialized views and detail tables

■ Performance implications of materialized views

Creating a materialized view
To create a materialized view, use the SQL statement CREATE MATERIALIZED VIEW.

When creating a materialized view, you can establish primary keys and the size of the
hash table in the same manner as described for tables in "Primary keys, foreign keys
and unique indexes" on page 7-5.

The materialized view examples are based on the following two tables:

CREATE TABLE customer(custId int not null,
 custName char(100) not null,
 Addr char(100),
 Zip int,
 Region char(10),
 PRIMARY KEY (custId));

CREATE TABLE bookOrder(orderId int not null,
 custId int not null,
 book char(100),
 PRIMARY KEY (orderId),
 FOREIGN KEY (custId) REFERENCES Customer(custId));

The following sections provide details and examples for creating materialized views:

■ Creating a synchronous materialized view

■ Creating an asynchronous materialized view

■ The SELECT query in the CREATE MATERIALIZED VIEW statement

Note: In order to create a materialized view, the user must have the
appropriate privileges, which are described along with the syntax for
all SQL statements in the "SQL Statements" chapter in the Oracle
TimesTen In-Memory Database SQL Reference.

If the owner has these privileges revoked for any of the detail tables
on which the materialized view is created, the materialized view
becomes invalid. See "Object privileges for materialized views" on
page 4-15 for details.

Understanding materialized views

7-16 Oracle TimesTen In-Memory Database Operations Guide

Creating a synchronous materialized view A synchronous materialized view is
automatically updated each time the detail tables are updated. You can create a
synchronous materialized view with the CREATE MATERIALIZED VIEW statement.

The following creates a synchronous materialized view, named SampleMV, that
generates a result set from selected columns in the customer and bookOrder detail
tables described above.

CREATE MATERIALIZED VIEW SampleMV AS
 SELECT customer.custId, custName, orderId, book
 FROM customer, bookOrder
 WHERE customer.custId=bookOrder.custId;

Creating an asynchronous materialized view An asynchronous materialized view is
updated as specified by the refresh method and refresh interval, which are configured
during the creation of the materialized view.

When you create an asynchronous materialized view, you specify the REFRESH clause
with at least one of the following:

■ Refresh method: For the asynchronous materialized view, specify either FAST or
COMPLETE for the refresh method. FAST denotes an incremental refresh.
COMPLETE indicates a full refresh. If the refresh method is omitted, then complete
is the default refresh method. If you specify FAST, then you must create the
asynchronous materialized view log for each detail table associated with the
materialized view.

■ Refresh interval:

– Manual update: If the refresh interval is not specified, the interval defaults to
manual update. You can manually refresh the view by using the REFRESH
MATERIALIZED VIEW statement, which is described at the end of this section.

– Specify refresh after every commit: When you specify NEXT SYSDATE
without specifying NUMTODSINTERVL(), the refresh is performed after every
commit of any user transaction that updates the detail tables. This refresh is
always performed in a separate transaction. The user transaction does not wait
for the refresh to complete. The option to refresh at every commit is only
supported for the fast refresh method.

– Specify interval: The asynchronous materialized view is updated at a specified
interval when you use the NEXT SYSDATE +
NUMTODSINTERVAL(IntegerLiteral,IntervalUnit) clause. This option
is supported for both FAST and COMPLETE refresh methods.

This clause specifies that the materialized view will be refreshed at the
specified interval. IntegerLiteral must be an integer. IntervalUnit
must be one of the following values: 'DAY', 'HOUR', 'MINUTE', 'SECOND'.

The last refresh time is saved in order to determine the next refresh time.
Refresh is skipped if there are no changes to the any of the detail tables of the
asynchronous materialized view since the last refresh. If you want to modify a
configured refresh interval, you must drop and recreate the asynchronous
materialized view.

Note: Aggregate functions and outer joins are not supported in a
FAST refresh.

Understanding materialized views

Working with Data in a TimesTen Database 7-17

If you use the fast refresh method, the deferred transactions are saved in a
materialized view log. Thus, before you create your asynchronous materialized view,
you must create a materialized view log for each detail table included in the
asynchronous materialized view that uses fast refresh. Each detail table can have only
one materialized view log even if they are used by more than one asynchronous
materialized view with fast refresh. All columns referenced in an asynchronous
materialized view must be included in the corresponding asynchronous materialized
view log. If there is more than one asynchronous materialized view with fast refresh
created on a detail table, make sure to include all columns that are used in the different
asynchronous materialized views created for that detail table in its asynchronous
materialized view log.

The following example creates an asynchronous materialized view that uses fast
refresh, where the deferred transactions are updated every hour after creation. First,
create the materialized view log for each detail table, customer and bookOrder. The
following statements create the materialized log views for customer and bookOrder
to track the deferred transactions for the fast refresh. The materialized view log for
customer tracks the primary key and the customer name as follows:

CREATE MATERIALIZED VIEW LOG ON customer WITH PRIMARY KEY (custName);

The materialized view log for the bookorder table tracks the primary key of
orderId and columns custId, and book.

CREATE MATERIALIZED VIEW LOG ON bookOrder WITH (custId, book);

Once you create the materialized view log for both the customer and bookOrder
detail tables, you can create an asynchronous materialized view. The asynchronous
materialized view must include either the ROWID or primary key columns for all the
detail tables.

The following example creates an asynchronous materialized view named
SampleAMV that generates a result set from selected columns in the customer and
bookOrder detail tables. The statement specifies a fast refresh to update the deferred
transactions every hour from the moment of creation.

CREATE MATERIALIZED VIEW SampleAMV
 REFRESH
 FAST
 NEXT SYSDATE + NUMTODSINTERVAL(1, 'HOUR')
 AS SELECT customer.custId, custName, orderId, book
 FROM customer, bookOrder
 WHERE customer.custId=bookOrder.custId;

If you want to manually refresh the materialized view, execute the REFRESH
MATERIALIZED VIEW statement. You can manually refresh the materialized view at
any time, even if a REFRESH interval is specified. For example, if there were multiple
updates to the detail tables, you can manually refresh the SampleAMV materialized
view as follows:

REFRESH MATERIALIZED VIEW SampleAMV;

Note: In the CREATE MATERIALIZED VIEW LOG syntax, the
primary key is included if you specify WITH PRIMARY KEY or do not
mention either PRIMARY KEY or ROWID. All non-primary key
columns that you want included in the materialized view log must be
specified in the parenthetical column list.

Understanding materialized views

7-18 Oracle TimesTen In-Memory Database Operations Guide

The SELECT query in the CREATE MATERIALIZED VIEW statement The SELECT query used
to define the contents of a materialized view is similar to the top-level SQL SELECT
statement described in "SQL Statements" in the Oracle TimesTen In-Memory Database
SQL Reference, with the following restrictions:

■ All columns in the GROUP BY GroupColumnList must be included in the
SelectList.

■ SUM and COUNT are allowed, but not expressions involving them, including AVG.

■ The following cannot be used in a SELECT statement that is creating a
materialized view:

– DISTINCT

– FIRST

– HAVING

– ORDER BY

– UNION

– UNION ALL

– MINUS

– INTERSECT

– JOIN

– User functions: USER, CURRENT_USER, SESSION_USER

– Subqueries

– NEXTVAL and CURRVAL

– Derived tables and joined tables

■ Each expression in the SelectList must have a unique name. A name of a simple
column expression would be that column's name unless a column alias is defined.
ROWID is considered an expression and needs an alias.

■ Self joins are allowed. A self join is a join of a table to itself. This table appears
more than once in the FROM clause and is followed by table aliases that qualify
column names in the join condition.

For synchronous materialized views or asynchronous materialized views that use
complete refresh, the following is true for the SELECT statement:

■ Aggregate views must include a COUNT(*) in the SelectList so that TimesTen can
do incremental updates of a group. For example, a group should be removed if its
count becomes zero.

■ Outer joins are allowed, but the SELECT list must project at least one non-nullable
column from each of the inner tables specified in the OUTER JOIN. OUTER JOIN
syntax for a SELECT in a materialized view definition is identical to that in a
top-level SELECT. The restrictions noted in the description of SELECT statements
apply. The (+) symbol must be used to specify outer joins of a materialized view.

For asynchronous materialized views that use fast refresh, the following is true for the
SELECT statement:

■ Aggregate functions are not supported.

■ Outer joins are not supported.

Understanding materialized views

Working with Data in a TimesTen Database 7-19

■ SELECT list must include ROWID or the primary key columns for all the included
detail tables.

Dropping a materialized view or a materialized view log
To drop any materialized view, execute the DROP VIEW statement.

The following statement drops the sampleMV materialized view.

DROP VIEW sampleMV;

When there are no asynchronous materialized views referencing a table, the
materialized view log on that table can be dropped. For example, if you have dropped
the materialized view sampleAMV, then the following statements drop the associated
materialized view logs.

DROP MATERIALIZED VIEW LOG ON customer;
DROP MATERIALIZED VIEW LOG ON bookOrder;

The syntax for all SQL statements is provided in the "SQL Statements" chapter in the
Oracle TimesTen In-Memory Database SQL Reference.

Identifying the table associated with a materialized view log Materialized view logs are
represented in the TimesTen system tables as a table named MVLOG$_
detailTableId, where detailTableId is the table id of the table on which it was
created. The table id and table name are both recorded in SYS.TABLES. For example,
if the materialized view log filename is MVLOG$_507244, then you can retrieve the
table name from SYS.TABLES where the table id is 507244 as follows:

select tblname from sys.tables where tblid = 507244;
< T1 >
1 row found.

Restrictions on materialized views and detail tables
A materialized view is a read-only table that cannot be updated directly. This means a
materialized view cannot be updated by an INSERT, DELETE, or UPDATE statement by
replication, XLA, or the cache agent.

For example, any attempt to update a row in a materialized view generates the
following error:

805: Update view table directly has not been implemented

Readers familiar with other implementations of materialized views should note the
following characteristics of TimesTen views:

■ Detail tables can be replicated, but materialized views cannot.

■ Neither a materialized view nor its detail tables can be part of a cache group.

■ No referential indexes can be defined on the materialized view.

■ To drop a materialized view must use the DROP VIEW statement.

■ You cannot alter a materialized view. You must use the DROP VIEW statement and
then create a new materialized view with a CREATE MATERIALIZED VIEW
statement.

■ Materialized views must be explicitly created by the application. The TimesTen
query optimizer has no facility to automatically create materialized views.

Understanding materialized views

7-20 Oracle TimesTen In-Memory Database Operations Guide

■ The TimesTen query optimizer does not rewrite queries on the detail tables to
reference materialized views. Application queries must directly reference views, if
they are to be used.

■ There are some restrictions to the SQL used to create materialized views. See
"CREATE MATERIALIZED VIEW" in the Oracle TimesTen In-Memory Database SQL
Reference for details.

Performance implications of materialized views
The following sections describes performance implications for each type of
materialized view:

■ Managing performance for asynchronous materialized views

■ Managing performance for synchronous materialized views

Managing performance for asynchronous materialized views For managing performance, you
can defer the refresh of the materialized view until an optimal time. Rows in the
materialized view logs, detail table and materialized view may be locked during the
refresh. If these locks interfere with the user transaction updating the detail tables,
then the user can adjust the refresh interval. If performance is the highest priority and
the asynchronous materialized view can be out of sync with the detail tables, set the
refresh interval to execute when the system load is low.

■ FAST refresh incrementally updates the materialized view based on the changes
captured in the materialized view log. The time for this refresh depends on the
number of modifications captured in the materialized view log and the
complexities of the SELECT statement used in the CREATE MATERIALIZED VIEW
statement. After every refresh, the processed rows in the materialized view log are
deleted.

Update table statistics on the detail table, materialized view log tables and the
materialized view at periodic intervals to improve the refresh performance. If the
view involves joins, update table statistics before inserting any row in any of the
detail tables. Table statistics can be updated using the ttOptEstimateStats
built-in procedure.

■ A complete refresh is similar to the initial loading of the materialized view at
creation time. The time for this refresh depends on the number of rows in the
detail tables.

Managing performance for synchronous materialized views The performance of UPDATE and
INSERT operations may be impacted if the updated table is referenced in a
materialized view. The performance impact depends on many factors, such as the
following:

■ Nature of the materialized view: How many detail tables, whether outer join or
aggregation is used.

■ Which indexes are present on the detail table and on the materialized view.

■ How many materialized view rows will be affected by the change.

A view is a persistent, up-to-date copy of a query result. To keep the view up to date,
TimesTen must perform "view maintenance" when you change a view's detail table.
For example, if you have a view named V that selects from tables T1, T2, and T3, then
any time you insert into T1, or update T2, or delete from T3, TimesTen performs
"view maintenance."

Understanding indexes

Working with Data in a TimesTen Database 7-21

View maintenance needs appropriate indexes just like regular database operations. If
they are not there, view maintenance will perform poorly.

All update, insert, or delete statements on detail tables have execution plans, as
described in "The TimesTen Query Optimizer" on page 10-1. For example, an update
of a row in T1 will have a first stage of the plan where it updates the view V, followed
by a second stage where it updates T1.

For fast view maintenance, you should evaluate the plans for all the operations that
update the detail tables, as follows:

1. Examine all the WHERE clauses for the update or delete statements that frequently
occur on the detail tables. Note any clause that uses an index key. For example, if
the operations that an application performs 95 percent of the time are as follows:

UPDATE T1 set A=A+1 WHERE K1=? AND K2=?
DELETE FROMT2 WHERE K3=?

Then the keys to note are (K1, K2) and K3.

2. Ensure that the view selects all of those key columns. In this example, the view
should select K1, K2, and K3.

3. Create an index on the view on each of those keys. In this example, the view
should have two indexes, one on (V.K1, V.K2) and one on V.K3. The indexes do
not have to be unique. The names of the view columns can be different from the
names of the table columns, though they are the same in this example.

With this method, when you update a detail table, your WHERE clause is used to do the
corresponding update of the view. This allows maintenance to be executed in a batch,
which has better performance.

The above method may not always work, however. For example, an application may
have many different methods to update the detail tables. The application would have
to select far too many items in the view or create too many indexes on the view, taking
up more space or more performance than you might wish. An alternative method is as
follows:

1. For each table in the view's FROM clause (each detail table), check which ones are
frequently changed by UPDATE, INSERT and CREATE VIEW statements. For
example, a view's FROM clause may have tables T1, T2, T3, T4, and T5, but of
those, only T2 and T3 are frequently changed.

2. For each of those tables, make sure the view selects its rowids. In this example, the
view should select T2.rowid and T3.rowid.

3. Create an index on the view on each of those rowid columns. In this example, the
columns might be called T2rowid and T3rowid, and indexes would be created
on V.T2rowid and V.T3rowid.

With this method, view maintenance is done on a row-by-row basis, rather than on a
batch basis. But the rows can be matched very efficiently between a view and its detail
tables, which speeds up the maintenance. It is generally not as fast as the first method,
but it is still good.

Understanding indexes
Indexes are auxiliary data structures that greatly improve the performance of table
searches. They are used automatically by the query optimizer to speed up the
execution of a query. For information about the query optimizer, see "The TimesTen
Query Optimizer" on page 10-1.

Understanding indexes

7-22 Oracle TimesTen In-Memory Database Operations Guide

You can designate an index as unique, which means that each row in the table has a
unique value for the indexed column or columns. Unique indexes can be created over
nullable columns. In conformance with the SQL standard, multiple NULL values are
permitted in a unique index.

When sorting data values, TimesTen considers NULL values to be larger than all
non-NULL values. See the Oracle TimesTen In-Memory Database SQL Reference for more
information on NULL values.

To perform any operation that creates, drops or alters an index, the user must have the
appropriate privileges, which are described along with the syntax for all SQL
statements in the "SQL Statements" chapter in the Oracle TimesTen In-Memory Database
SQL Reference.

The following sections describe how to manage your index:

■ Overview of index types

■ Creating an index

■ Altering an index

■ Dropping an index

■ Estimating index size

Overview of index types
TimesTen provides three types of indexes to enable fast access to tables.

■ Hash Indexes. Hash indexes are useful for finding rows with an exact match on
one or more columns. Hash indexes are useful for doing equality searches.
TimesTen currently supports a maximum of one hash index per table. A hash
index is created with the UNIQUE HASH option, which is specified over the
columns that make up the primary key of a table.

The "CREATE TABLE" section of the Oracle TimesTen In-Memory Database SQL
Reference discusses in detail the automatic creation of hash indexes. For an
example of how to create a hash index when creating the table, see Example 7–2.

■ Range Indexes. Range indexes are useful for finding rows with column values
within a certain range. You can create range indexes over one or more columns of
a table. Up to 32 range indexes may be created on one table.

Range indexes and equijoins can be used for equality and range searches, such as
greater than or equal to, less than or equal to, and so on. If you have a primary key
on a field and want to see if FIELD > 10, then the primary key index will not
expedite finding the answer, but a separate index will.

The "CREATE INDEX" section of the Oracle TimesTen In-Memory Database SQL
Reference discusses in describes how to create range indexes.

■ Bitmap Indexes. Bitmap indexes are useful when searching and retrieving data
from columns with low cardinality. That is, these columns can have only a few
unique possible values. Bitmap indexes encode information about a unique value
in a row in a bitmap. Each bit in the bitmap corresponds to a row in the table. Use

Note: Hash indexes are faster than range indexes for exact match
lookups, but they require more space than range indexes. Hash
indexes cannot be used for lookups involving ranges.

Understanding indexes

Working with Data in a TimesTen Database 7-23

a bitmap index for columns that do not have many unique values. An example of
such a column is a column that records gender as one of two values.

Bitmap indexes increase the performance of complex queries that specify multiple
predicates on multiple columns connected by AND and OR operators.

See "CREATE INDEX" in the Oracle TimesTen In-Memory Database SQL Reference for
how to create and more information on bitmap indexes.

Creating an index
To create an index, execute the SQL statement CREATE INDEX. TimesTen converts
index names to upper case characters.

Every index has an owner. The owner is the user who created the underlying table.
Indexes created by TimesTen itself, such as indexes on system tables, are created with
the user name SYS or with the user name TTREP if created during replication.

Example 7–4 Create an index

Create an index IxID over column CustID of table NameID.

CREATE INDEX IxID ON NameID (CustID);

You can also create a hash index by creating a primary key or using the UNIQUE HASH
ON clause in the CREATE TABLE. However, TimesTen may create temporary hash and
range indexes automatically during query processing to speed up query execution.

Altering an index

You can change a range index to a hash index with the USE HASH INDEX of the
ALTER TABLE statement.

Dropping an index
To uniquely refer to an index, an application must specify both its owner and name. If
the application does not specify an owner, TimesTen looks for the index first under the
user name of the caller, then under the user name SYS.

Example 7–5 Drop an index

The following drops the index named IxID.

DROP INDEX IxID;

To drop a TimesTen index, execute the DROP INDEX SQL statement. All indexes in a
table are dropped automatically when the table is dropped.

Estimating index size
Increasing the size of a TimesTen database can be done on first connect. To avoid
having to increase the size of a database, it is important not to underestimate the
eventual database size. Use the utility ttSize to estimate database size.

Note: Alternatively, you can perform lookups by RowID for fast
access to data. See the Oracle TimesTen In-Memory Database SQL
Reference for more information on RowIDs.

Understanding rows

7-24 Oracle TimesTen In-Memory Database Operations Guide

Understanding rows
Rows are used to store TimesTen data. TimesTen supports several data types for fields
in a row, including:

■ One-byte, two-byte, four-byte and eight-byte integers.

■ Four-byte and eight-byte floating-point numbers.

■ Fixed-length and variable-length character strings, both ASCII and Unicode.

■ Fixed-length and variable-length binary data.

■ Fixed-length fixed-point numbers.

■ Time represented as hh:mm:ss [AM|am|PM|pm].

■ Date represented as yyyy-mm-dd.

■ Timestamp represented as yyyy-mm-dd hh:mm:ss.

The "Data Types" section in the Oracle TimesTen In-Memory Database SQL Reference
contains a detailed description of these data types.

To perform any operation for inserting or deleting rows, the user must have the
appropriate privileges, which are described along with the syntax for all SQL
statements in the "SQL Statements" chapter in the Oracle TimesTen In-Memory Database
SQL Reference.

The following sections describe how to manage your rows:

■ Inserting rows

■ Deleting rows

Inserting rows
To insert a row, execute INSERT or INSERT SELECT. You can also use the ttBulkCp
utility.

Example 7–6 Insert a row in a table

To insert a row in the table NameID, enter:

INSERT INTO NameID VALUES(23125, 'John Smith';

Deleting rows
To delete a row, execute the DELETE statement.

Example 7–7 Delete a row

The following deletes all the rows from the table NameID for names that start with the
letter "S."

DELETE FROM NameID WHERE CustName LIKE 'S%';

Note: When inserting multiple rows into a table, it is more efficient
to use prepared commands and parameters in your code. Create
Indexes after the bulk load is completed.

Understanding synonyms

Working with Data in a TimesTen Database 7-25

Understanding synonyms
A synonym is an alias for a database object. Synonyms are often used for security and
convenience, because they can be used to mask object name and object owner. In
addition, you can use a synonym to simplify SQL statements. Synonyms provide
independence in that they permit applications to function without modification
regardless of which object a synonym refers to. Synonyms can be used in DML
statements and some DDL and IMDB cache statements.

Synonyms are categorized into two classes:

■ Private synonyms: A private synonym is owned by a specific user and exists in the
schema of a specific user. A private synonym shares the same namespace as all
other object names, such as table names, view names, sequence names, and so on.
Therefore, a private synonym cannot have the same name as a table name or a
view name in the same schema.

■ Public synonyms: A public synonym is owned by all users and every user in the
database can access it. A public synonym is accessible for all users and it does not
belong to any user schema. Therefore, a public synonym can have the same name
as a private synonym name or a table name.

In order to create and use synonyms, the user must have the correct privileges, which
are described in "Object privileges for synonyms" on page 4-17.

After synonyms are created, they can be viewed using the following views:

■ SYS.ALL_SYNONYMS: describes the synonyms accessible to the current user.

■ SYS.DBA_SYNONYMS: describes all synonyms in the database.

■ SYS.USER_SYNONYMS: describes the synonyms owned by the current user.

For full details on these views, see the Oracle TimesTen In-Memory Database Reference.

Creating synonyms
Create the synonym with the CREATE SYNONYM statement. You can use the CREATE
OR REPLACE SYNONYM statement to change the definition of an existing synonym
without needing to drop it first. The CREATE SYNONYM and CREATE OR REPLACE
SYNONYM statements specify the synonym name and the schema name in which the
synonym is created. If the schema is omitted, the synonym is created in the user's
schema. However, when creating public synonyms, you do not provide the schema
name as it will be defined in the PUBLIC namespace.

In order to execute the CREATE SYNONYM or CREATE OR REPLACE SYNONYM
statements, the user must have the appropriate privileges, as described in "Object
privileges for synonyms" on page 4-17.

■ Object types for synonyms: The CREATE SYNONYM and CREATE OR REPLACE
SYNONYM statements define an alias for a particular object, which can be one of the
following object types: table, view, synonym, sequence, PL/SQL stored procedure,
PL/SQL function, PL/SQL package, materialized view, or cache group.

■ Naming considerations: A private synonym shares the same namespace as all other
object names, such as table names and so on. Therefore, a private synonym cannot
have the same name as a table name or other objects in the same schema.

Note: If you try to create a synonym for unsupported object types,
you may not be able to use the synonym.

Understanding synonyms

7-26 Oracle TimesTen In-Memory Database Operations Guide

A public synonym is accessible for all users and does not belong to any particular
user schema. Therefore, a public synonym can have the same name as a private
synonym name or other object name. However, you cannot create a public
synonym that has the same name as any objects in the SYS schema.

In the following example, the user creates a private synonym of synjobs for the jobs
table. Execute a SELECT statement on both the jobs table and the synjobs synonym
to show that selecting from synjobs is the same as selecting from the jobs table.
Finally, to display the private synonym, the example executes a SELECT statement on
the SYS.USER_SYNONYMS table.

Command> CREATE SYNONYM synjobs FOR jobs;
Synonym created.

Command> SELECT FIRST 2 * FROM jobs;
< AC_ACCOUNT, Public Accountant, 4200, 9000 >
< AC_MGR, Accounting Manager, 8200, 16000 >
2 rows found.
Command> SELECT FIRST 2 * FROM synjobs;
< AC_ACCOUNT, Public Accountant, 4200, 9000 >
< AC_MGR, Accounting Manager, 8200, 16000 >
2 rows found.

Command> SELECT * FROM sys.user_synonyms;
< SYNJOBS, TTUSER, JOBS, <NULL> >
1 row found.

For full details, more examples, and rules on creating or replacing a synonym, see the
"CREATE SYNONYM" section in the Oracle TimesTen In-Memory Database SQL
Reference.

Dropping synonyms
Use the DROP SYNONYM statement to drop an existing synonym from the database. A
user cannot be dropped unless all objects, including synonyms, owned by this user are
dropped.

For example, the following drops the public synonym pubemp:

DROP PUBLIC SYNONYM pubemp;
Synonym dropped.

In order drop a public synonym or a private synonym in another user's schema, the
user must have the appropriate privileges. For full details, more examples, and rules
on creating or replacing a synonym, see the "DROP SYNONYM" section in the Oracle
TimesTen In-Memory Database SQL Reference.

Synonyms may cause invalidation or recompilation of SQL queries
When a synonym or object is newly created or dropped, some SQL queries and DDL
statements may be invalidated or recompiled. The following lists the invalidation and
recompilation behavior for SQL queries and DDL statements:

1. All SQL queries that depend on a public synonym are invalidated if you create a
private synonym with the same name for one of the following objects:

■ private synonym

■ table

■ view

Understanding synonyms

Working with Data in a TimesTen Database 7-27

■ sequence

■ materialized view

■ cache group

■ PL/SQL object including procedures, functions, and packages.

2. All SQL queries that depend on a private synonym or schema object are
invalidated when a private synonym or schema object is dropped.

Understanding synonyms

7-28 Oracle TimesTen In-Memory Database Operations Guide

8

Transaction Management and Recovery 8-1

8Transaction Management and Recovery

TimesTen supports transactions that provide atomic, consistent, isolated and durable
(ACID) access to data.

TimesTen transactions support ANSI Serializable and ANSI Read Committed levels of
isolation. ANSI Serializable isolation is the most stringent transaction isolation level.
ANSI Read Committed allows greater concurrency. Read Committed is the default
and is an appropriate isolation level for most applications.

Applications configure the transaction features they need with connection attributes or
connection options. See "Connection Attributes" in Oracle TimesTen In-Memory Database
Reference for more details on how to set isolation levels and durability options.

The main topics in this chapter are:

■ Transaction overview

■ Transaction semantics

■ Transaction atomicity

■ Transaction durability

■ Transaction logging

■ Durable commit performance enhancements

■ Concurrency control through isolation and locking

■ Checkpoint operations

Transaction overview
All operations on a TimesTen database, even those that do not modify or access
application data, are executed within a transaction. When running an operation and
there is no outstanding transaction, one is started automatically on behalf of the
application. Transactions are completed by an explicit or implicit commit or rollback.
When completed, resources that were acquired or opened by the transaction are
released and freed, such as locks and cursors.

Use the following SQL statements to commit or rollback your transaction:

■ The SQL COMMIT statement commits the current transaction. Updates made in the
transaction are made available to concurrent transactions.

■ The SQL ROLLBACK statement rolls back the current transaction. All updates
made in the transaction are undone.

Transaction overview

8-2 Oracle TimesTen In-Memory Database Operations Guide

Read-only transactions do not require a commit. When executing write operations,
complete transactions to release locks. When possible, keep write transactions short in
duration. Any long-running transactions can reduce concurrency and decrease
throughput because locks are held for a longer period of time, which blocks
concurrent transactions. Also, long-running transactions can prevent transaction log
files from being purged, causing these files to accumulate on disk.

A connection can have only one outstanding transaction at any time and cannot be
explicitly closed if it has an open transaction.

Configuring transaction implicit commit behavior
The following sections describe how you can configure whether the application
enables implicit commit behavior or requires explicit commit behavior for DML or
DDL statements:

■ Transaction autocommit behavior

■ TimesTen DDL commit behavior

■ Relationship between autocommit and DDLCommitBehavior

Transaction autocommit behavior
Autocommit configures whether TimesTen issues an implicit commit after DML or
DDL statements. By default, autocommit is enabled, following the ODBC and JDBC
specifications.

When autocommit is on, the following behavior occurs:

■ An implicit commit is issued immediately after a statement executes successfully.

■ An implicit rollback is issued immediately after a statement execution fails, such
as a primary key violation.

■ If the statement generates a result set that opens a cursor, the automatic commit is
not issued until that cursor and any other open cursors in the transaction have
been explicitly closed. Any statements executed while a cursor is open is not
committed until all cursors have been closed.

Fetching all rows of a result set does not automatically close its cursor. After the
result set has been processed, its cursor must be explicitly closed if using the read
committed isolation level or the transaction must be explicitly committed or rolled
back if using Serializable isolation level.

■ If you are using ODBC or JDBC batch operations to INSERT, UPDATE or DELETE
several rows in one call when autocommit is on, a commit occurs after the entire
batch operation has completed. If there is an error during the batch operation,
those rows that have been successfully modified will be committed within this

Note: For the syntax of the COMMIT and ROLLBACK statements, see
"SQL Statements" in the Oracle TimesTen In-Memory Database SQL
Reference.

Note: Even with durable commits and autocommit enabled, you
could lose work if there is a failure or the application exits without
closing cursors.

Transaction overview

Transaction Management and Recovery 8-3

transaction. If an error occurs due to a problem on a particular row, only the
successfully modified rows preceding the row with the error are committed in this
transaction. The pirow parameter to the ODBC SQLParamOptions function
contains the number of the rows in the batch that had a problem.

Commits can be costly for performance and intrusive if they are implicitly executed
after every statement. TimesTen recommends you disable autocommit so that all
commits are intentional. Disabling autocommit provides control over transactional
boundaries, enables multiple statements to be executed within a single transaction,
and improves performance, since there is no implicit commit after every statement.

If autocommit is disabled, transactions must be explicitly completed with a commit or
rollback after any of the following:

■ Completing all the work that was to be done in the transaction.

■ Issuing a transaction-consistent (blocking) checkpoint request.

■ Updating column and table statistics to be used by the query optimizer.

■ Calling a TimesTen built-in procedure that does not generate a result set in order
for the new setting specified in the procedure to take effect, such as the ttLockWait
procedure.

You must establish a connection to a database before changing the autocommit setting.
To disable autocommit, perform one of the following:

■ In ODBC-based applications, execute SQLSetConnectOption function with
SQL_AUTOCOMMIT_OFF.

■ In JDBC applications, Connection.setAutoCommit(false) method.

■ When running ttIsql, issue the autocommit 0 command.

TimesTen DDL commit behavior
Traditionally, in TimesTen databases, DDL statements are executed as part of the
current transaction and are committed or rolled back along with the rest of the
transaction. However, the default behavior for the Oracle database is that it issues an
implicit COMMIT before and after any DDL statement.

For the TimesTen release 11.2.1, you can configure for either behavior with the
DDLCommitBehavior connection attribute, as follows:

■ 0 - Oracle database behavior. An implicit transaction commit is performed before
the execution of each DDL statement and a durable commit is performed after the
execution of each DDL statement. This is the default.

■ 1 - Traditional TimesTen behavior. Execution of DDL statements does not trigger
implicit transaction commits.

DDL statements include the following:

■ CREATE, ALTER and DROP statements for any database object, including tables,
views, users, procedures and indexes.

■ TRUNCATE

■ GRANT and REVOKE

The consequences of setting DDLCommitBehavior=0 include the following:

■ DDL changes cannot be rolled back.

■ DDL statements delete records from global temporary tables unless the tables
were created with the ON COMMIT PRESERVE ROWS clause.

Transaction semantics

8-4 Oracle TimesTen In-Memory Database Operations Guide

■ Tables created with the CREATE TABLE ... AS SELECT statement are visible
immediately.

■ TRUNCATE statements are committed automatically. However, the truncate of the
parent and child tables must be truncated in separate transactions, with the child
table truncated first. You cannot truncate a parent table unless the child table is
empty. The truncation of child and parent table can only be in the same
transaction if you set DDLCommitBehavior to 1.

For more information, see "DDLCommitBehavior" in the Oracle TimesTen In-Memory
Database Reference.

Relationship between autocommit and DDLCommitBehavior
Both autocommit and DDLCommitBehavior configure if and when implicit commits
occur for SQL statements.

■ Autocommit applies to both DDL and DML statements. Enabling for implicit
commits of DDL statements overlaps in both options. If autocommit is enabled
and DDLCommitBehavior is disabled, autocommit only commits after the DDL
statement. However, if both autocommit and DDLCommitBehavior is enabled, an
implicit commit occurs both before and after the DDL statement.

■ To enable DDLCommitBehavior, you set the DDLCommitBehavior DSN
attribute. To enable or disable autocommit, the application executes an ODBC
function or JDBC method.

Table 8–1 shows what behavior occurs when you enable or disable one option in
conjunction with the other:

Transaction semantics
Logging and locking are used to ensure atomicity, consistency, isolation and durability
(ACID) semantics for transactions. Locking and transaction logs are used to ensure
ACID semantics as a transaction modifies data in a database as follows:

■ Locking: TimesTen acquires locks on data items that the transaction writes and,
depending on the transaction isolation level, data items that the transaction reads.
See "Concurrency control through isolation and locking" on page 8-8.

■ Transaction log: Modifications to the database are recorded in a transaction log.
See "Transaction logging" on page 8-7.

The following table shows how TimesTen uses locks and transaction logs:

Table 8–1 Relationship between autocommit and DDLCommitBehavior

AutoCommit DDLCommitBehavior Relationship

ON ON All statements are automatically committed, unless
you have an open cursor. DDL statements are
implicitly committed before and after execution.

OFF ON Recommended setting. DDL statements are
implicitly committed before and after execution. All
other statements require an explicit commit.

ON OFF All statements are implicitly committed after
execution, unless you have an open cursor. A
commit is issued after the DDL is processed and not
before.

OFF OFF All statements require an explicit commit, including
DDL statements.

Transaction durability

Transaction Management and Recovery 8-5

TimesTen supports temporary databases, which have essentially no checkpoints.
However, they do have a transaction log so that transactions can be rolled back.
Recovery is never performed for such databases. They will be destroyed after a
database or application shuts down or fails. For information on temporary databases,
see "Database overview" on page 7-1.

Transaction atomicity
All TimesTen transactions are atomic. Either all or none of the effects of the transaction
are applied to the database. Atomicity is implemented by using the transaction log to
undo the effects of a transaction if it is rolled back. Rollback can be caused explicitly by
the application or during database recovery because the transaction was not
committed at the time of failure.

Transaction durability
The TimesTen Data Manager provides durability with a combination of checkpointing
and transaction logging.

A checkpoint operation writes the current in-memory database image to a checkpoint
file on disk, which has the effect of making all transactions that have been committed
at the time of the checkpoint operation durable.

All transactions are logged to an in-memory transaction log buffer, which is written to
disk in one of the following ways:

■ Guaranteed durability through a durable (synchronous) commit

■ Delayed durability through a non-durable (asynchronous) commit:

If Then

Transaction is
terminated
successfully
(committed)

■ Transaction log is posted to disk if the DurableCommits attribute
is turned on.

■ Locks that were acquired on behalf of the transaction are released
and the corresponding data becomes available to other transactions
to read and modify.

■ All open cursors in the transaction are automatically closed.

Transaction is rolled
back

■ Transaction log is used to undo the effects of the transaction and to
restore any modified data items to the state they were before the
transaction began.

■ Locks that were acquired on behalf of the transaction are released.

■ All open cursors in the transaction are automatically closed.

System fails (data
not committed)

■ On first connect, TimesTen automatically performs database
recovery by reading the latest checkpoint image and applying the
transaction log to restore the database to its most recent
transactionally consistent state. See "Checkpoint operations" on
page 8-11.

Application fails ■ All outstanding transactions are rolled back.

Note: Checkpointing and logging are further described in
"Transaction logging" on page 8-7 and "Checkpoint operations" on
page 8-11.

Transaction durability

8-6 Oracle TimesTen In-Memory Database Operations Guide

The following sections describe durability options for TimesTen applications:

■ Guaranteed durability

■ Delayed durability

■ Durable commit performance enhancements

Guaranteed durability
Durability is implemented with a combination of checkpointing and logging.

■ Checkpoint files: A checkpoint operation writes the current database image to a
checkpoint file on disk, which has the effect of making all transactions that
committed before the checkpoint durable.

■ Transaction log files: For transactions that committed after the last checkpoint,
TimesTen uses conventional logging techniques to make them durable. As each
transaction progresses, it records its database modifications in an in-memory
transaction log. At commit time, the relevant portion of the transaction log is
flushed to disk. This log flush operation makes that transaction, and all
previously-committed transactions, durable.

Control returns to the application after the transaction log data has been durably
written to disk. A durably committed transaction will not be lost even in the event
of a system failure.

To enable guaranteed durability, applications set the DurableCommits attribute to 1.

Any recovery uses the last checkpoint image together with the transaction log to
reconstruct the latest transaction-consistent state of the database.

If most of your transactions commit durably, you may want to set the
LogFlushMethod first connect attribute to 2. This connection attribute configures
how TimesTen writes and synchronizes log data to transaction log files. For more
information, see "Use durable commits appropriately" on page 9-17.

Delayed durability
In delayed durability mode, as in guaranteed durability mode, each transaction enters
records into the in-memory transaction log as it makes modifications to the database.
However, when a transaction commits in delayed durability mode, it does not wait for
the transaction log to be posted to disk before returning control to the application.
Thus, a non-durable transaction may be lost in the event of a database failure.
However, they execute considerably faster than durable transactions. Eventually,
transactions are flushed to disk by the database's subdaemon process or when the
in-memory log buffer is full.

Applications request delayed durability mode by setting the DurableCommits
attribute to 0. This is the default and the recommended option. Connections that use
delayed durability can coexist with connections that use guaranteed durability.

Applications that wish to take advantage of the performance benefits of delayed
durability mode, but can only tolerate the loss of a small number of transactions, can

Note: Committing a transaction durably makes that transaction and
all previous transactions durable. Any non-durable transactions will
no longer be subject to loss in the event of a database failure, just as if
it had originally been committed durably.

Transaction logging

Transaction Management and Recovery 8-7

perform periodic durable commits in a background process. Only those transactions
that committed non-durably after the last durable commit are vulnerable to loss in the
event of a system failure.

Durable commit performance enhancements
The performance cost for durable commits can be reduced with a group commit of
multiple concurrently executing transactions. Many threads executing at the same
time, if they are short transactions, may commit at almost the same time. Then, a
single disk write commits a group of concurrent transactions durably. Group commit
does not improve the response time of any given commit operation, as each durable
commit must wait for a disk write to complete, but it can significantly improve the
throughput of a series of concurrent transactions.

When durable commits are used frequently, TimesTen can support more connections
than there are CPUs, as long as transactions are short. Each connection spends more
time waiting to commit than it spends using the CPU. Alternatively, applications that
perform infrequent durable commits cause each connection to be very CPU-intensive
for the TimesTen portion of its workload.

Applications that do not require optimal response time and can tolerate some
transaction loss may elect to perform periodic durable commits. This maintains a
smaller window of vulnerability to transaction loss as opposed to all transactions
being committed non-durably. By committing only every nth transaction durably or
performing a durable commit every n seconds, an application can achieve a quicker
response time while maintaining a small window of vulnerability to transaction loss.
A user can elect to perform a durable commit of a critical transaction, such as one that
deals with financial exchange, that cannot be vulnerable to loss.

To enable periodic durable commits, an application does the following:

1. Connects with setting the attribute DurableCommits=0. This causes the
transactions to commit non-durably.

2. When a durable commit is needed, the application can call the
ttDurableCommit built-in procedure before committing. The
ttDurableCommit built-in procedure does not actually commit the transaction;
it merely causes the commit to be durable when it occurs.

Transaction logging
The transaction log contains log records for each database update, commit, and
rollback. Only one transaction log is created for the database and is shared by all
concurrent connections.

TimesTen creates a transaction log record for each database update, commit, and
rollback. However, transaction log records are not generated for read-only
transactions. Log records are first written to the transaction log buffer, which resides
in the same shared memory segment as the database. The contents of the log buffer are
then subsequently flushed to the latest transaction log file on disk.

The transaction log is used to track all updates made within a transaction, so that those
updates can be undone if the transaction is rolled back.

Transaction logging enables recovery of transactions from checkpoint files and the
transaction log, which were committed from the time of the last checkpoint operation
after a system failure. If the transaction is non-durable, any committed transactions in
the log buffer that have not been flushed to disk would be lost in the event of a system
failure.

Concurrency control through isolation and locking

8-8 Oracle TimesTen In-Memory Database Operations Guide

Managing transaction log buffers and files
The following describes how to configure transaction log buffers and files:

■ Transaction log buffer: There is only on transaction log buffer for each database
and the size of the transaction log buffer can be configured using the LogBufMB
DSN attribute. Each transaction log buffer can have multiple strands. The number
of transaction log buffer strands is configured with the LogBufParallelism
attribute.

■ Transaction log files: The maximum size for the transaction log files can be
configured using the LogFileSize DSN attribute. All transaction log files are
created in the same directory as the checkpoint files unless the LogDir attribute
specifies a different location. The transaction log file names have the form ds_
name.logn. The ds_name is the database path name that is specified by the
DataStore DSN attribute and is provided within the database's DSN. The suffix
n is the transaction log file number, starting at zero.

Concurrency control through isolation and locking
The following sections describe transaction isolation and locking levels:

■ Transaction isolation levels

■ Locking granularities

Transaction isolation levels
Transaction isolation enables each active transaction to operate as if there were no
other transactions active in the system. Isolation levels determine if row-level locks are
acquired when performing read operations. When a statement is issued to update a
table, locks are acquired to prevent other transactions from modifying the same data
until the updating transaction completes and releases its locks.

The Isolation connection attribute sets the isolation level for a connection. Isolation
levels have no effect if using database-level locking because transactions cannot be run
concurrently. The isolation level cannot be changed in the middle of a transaction.

TimesTen supports the following two transaction isolation levels:

■ ANSI Read Committed isolation: The read committed isolation level is the
recommended mode of operation for most applications, and is the default mode. It
enables transactions that are reading data to execute concurrently with a
transaction that is updating the same data. TimesTen makes multiple versions of
data items to allow non-serializable read and write operations to proceed in
parallel.

Read operations do not block write operations and write operations do not block
read operations, even when they read and write the same data. Read operations
do not acquire locks on scanned rows. Write operations acquire locks that are held
until the transaction commits or rolls back. Readers share a committed copy of the
data, whereas a writer has its own uncommitted version. Therefore, when a
transaction reads an item that is being updated by another in-progress transaction,

Note: For best performance, TimesTen recommends that
applications use the LogDir attribute to place the transaction log files
in a different physical device from the checkpoint files. If separated,
I/O operations for checkpoints do not block I/O operations to the
transaction log and vice versa.

Concurrency control through isolation and locking

Transaction Management and Recovery 8-9

it sees the committed version of that item. It cannot see an uncommitted version of
an in-progress transaction.

Read committed isolation level provides for better concurrency at the expense of
decreased isolation because of the possibility of non-repeatable reads or phantom
rows within a transaction. If an application executes the same query multiple
times within the same transaction, the commit of an update from another
transaction may cause the results from the read operation to retrieve different
results. A phantom row appears in modified form in two different reads, in the
same transaction, due to early release of read locks during the transaction.

To set read committed isolation level, if previously modified since this is the
default, do one of the following:

■ ODBC applications execute the SQLSetConnectOption ODBC function with
the SQL_TXN_ISOLATION flag set to SQL_TXN_READ_COMMITTED.

■ Connect with isolation=1 in the connection string.

■ When using ttIsql, execute isolation 1 or isolation read_
committed.

■ ANSI Serializable isolation: All locks acquired within a transaction by a read or
write operation are held until the transaction commits or rolls back. Read
operations block write operations, and write operations block read operations. As
a result, a row that has been read by one transaction cannot be updated or deleted
by another transaction until the original transaction terminates. Similarly, a row
that has been inserted, updated or deleted by one transaction cannot be accessed
in any way by another transaction until the original transaction terminates.

Serializable isolation level provides for repeatable reads and increased isolation at
the expense of decreased concurrency. A transaction that executes the same query
multiple times within the same transaction is guaranteed to see the same result set
each time. Other transactions cannot update or delete any of the returned rows,
nor can they insert a new row that satisfies the query predicate.

To set the isolation level to Serializable, do one of the following:

■ ODBC applications execute the SQLSetConnectOption ODBC function with
the SQL_TXN_ISOLATION flag set to SQL_TXN_SERIALIZABLE.

■ Connect with isolation=0 in the connection string.

■ When using ttIsql, execute isolation 0 or isolation serializable.

To ensure that materialized views are always in a consistent state, all view
maintenance operations are performed under Serializable isolation, even when the
transaction is in read committed isolation. This means that the transaction obtains
read locks for any data items read during view maintenance. However, the
transaction releases the read locks at the end of the INSERT, UPDATE or CREATE
VIEW statement that triggered the view maintenance, instead of holding them
until the end of the transaction.

Note: The ttXactAdmin utility generates a report showing lock
holds and lock waits for all outstanding transactions. It can be used to
troubleshoot lock contention problems where operations are being
blocked, or encountering lock timeout or deadlock errors. It can also
be used to roll back a specified transaction.

Concurrency control through isolation and locking

8-10 Oracle TimesTen In-Memory Database Operations Guide

Locking granularities
TimesTen supports row-level locks, table-level locks and database-level locks:

■ Row-level locking: Transactions usually obtain locks on the individual rows that
they access. Row-level locking is the recommended mode of operation because it
provides the finest granularity of concurrency control. It allows concurrent
transactions to update different rows of the same table. However, row-level
locking requires space in the database's temporary partition to store lock
information.

Row-level locking is the default. However, if it has been modified to another type
of locking and you want to re-enable row-level locking, do one of the following:

– Set the LockLevel connection attribute to 0.

– Execute the ttLockLevel built-in procedure with the lockLevel parameter
set to Row. This procedure changes the lock level between row-level and
database-level locking on the next transaction and for all subsequent
transactions for this connection.

– Execute the ttOptSetFlag procedure to set the RowLock parameter to 1,
which enables the optimizer to consider using row locks.

■ Table-level locking: Table-level locking is recommended when concurrent
transactions access different tables or a transaction accesses most of the rows of a
particular table. Table-level locking provides better concurrency than
database-level locking. Row-level locking provides better concurrency than
table-level locking. Table-level locking requires only a small amount of space in
the temporary partition to store lock information.

Table-level locking provides the best performance for the following:

– Queries that access a significant number of rows of a table

– When there are very few concurrent transactions that access a table

– When temporary space is inadequate to contain all row locks that an
operation, such as a large insert or a large delete, might acquire

To enable table-level locking, execute the ttOptSetFlag procedure to set the
TblLock parameter to 1, which enables the optimizer to consider using table
locks. In addition, set RowLock to 0 so that the optimizer does not consider
row-level locks.

If both table-level and row-level locking are disabled, TimesTen defaults to
row-level locking. If both table-level and row-level locking are enabled, TimesTen
chooses the locking scheme that is more likely to have better performance. Even
though table-level locking provides better performance than row-level locking
because of reduced locking overhead, the optimizer will often choose row-level
locking for better concurrency. For more information, see "ttOptSetFlag" in Oracle
TimesTen In-Memory Database Reference.

■ Database-level locking: Database-level locking serializes all transactions, which
effectively allows no concurrency on the database. When a transaction is started, it

Note: Different connections can coexist with different levels of
locking, but the presence of even one connection using database-level
locking leads to reduced concurrency. For performance information,
see "Choose the best method of locking" on page 9-7.

Checkpoint operations

Transaction Management and Recovery 8-11

acquires an exclusive lock on the database, which ensures that there is no more
than one active transaction in the database at any given time. It releases the lock
when the transaction is completed.

Database-level locking often provides better performance than row-level locking,
due to reduced locking overhead. In addition, it provides higher throughput than
row-level locking when running a single stream of transactions such as a bulk load
operation. However, its applicability is limited to applications that never execute
multiple concurrent transactions. With database-level locking, every transaction
effectively runs in ANSI Serializable isolation, since concurrent transactions are
disallowed.

To enable database-level locking, do one of the following:

– Set the LockLevel connection attribute to 1.

– Execute the ttLockLevel built-in procedure with the lockLevel parameter
set to DS. This procedure changes the lock level between row-level and
database-level locking on the next transaction and for all subsequent
transactions for this connection.

Setting wait time for acquiring a lock
Set the LockWait connection attribute to the maximum amount of time that a
statement waits to acquire a lock before it times out. The default is 10 seconds. For
more information, see "LockWait" in Oracle TimesTen In-Memory Database Reference.

If a statement within a transaction waits for a lock and the lock wait interval has
elapsed, an error is returned. After receiving the error, the application can reissue the
statement.

Lock wait intervals are imprecise due to the scheduling of the database's managing
subdaemon process to detect lock timeouts. This imprecision does not apply to
zero-second timeouts, which are always immediately reported. The lock wait interval
does not apply to blocking checkpoints.

The database's managing subdaemon process checks every two seconds to see if there
is a deadlock in the database among concurrent transactions. If a deadlock occurs, an
error is returned to one of the transactions involved in the deadlock cycle. The
transaction that receives the error must rollback in order to allow the other
transactions involved in the deadlock to proceed.

Checkpoint operations
A checkpoint operation saves the in-memory image of a database to disk files, known
as checkpoint files. By default, TimesTen performs background checkpoints at regular
intervals. Checkpointing may generate a large amount of I/O activity and have a long
execution time depending on the size of the database and the number of database
changes since the most recent checkpoint.

Note: Applications can programmatically initiate checkpoint
operations. See "Setting and managing checkpoints" on page 8-13 for
more details.

Temporary databases do not initiate checkpointing. See "Database
persistence" on page 7-2 for more information on temporary
databases.

Checkpoint operations

8-12 Oracle TimesTen In-Memory Database Operations Guide

The following sections describe checkpoint operations and how you can manage them:

■ Purpose of checkpoints

■ Usage of checkpoint files

■ Types of checkpoints

■ Setting and managing checkpoints

Purpose of checkpoints
A checkpoint operation has two primary purposes.

■ Decreases the amount of time required for database recovery, because it provides
a more up-to-date database image on which recovery can begin.

■ Makes a portion of the transaction log unneeded for any future database recovery
operation, typically allowing one or more transaction log files to be deleted.

Both of these functions are very important to TimesTen applications. The reduction in
recovery time is important, as the amount of a transaction log needed to recover a
database has a direct impact on the amount of downtime seen by an application after a
system failure. The removal of unneeded transaction log files is important because it
frees disk space that can be used for new transaction log files. In addition, the fewer
transaction log files you have, the less time is required to load a database into memory.
If these files were never removed, they would eventually consume all available space
in the transaction log directory's file system, causing database operations to fail due to
log space exhaustion.

Usage of checkpoint files
Each TimesTen database has two checkpoint files, named dsname.ds0 and
dsname.ds1, where dsname is the database path name and file name prefix specified
in the database DSN. During a checkpoint operation, TimesTen determines which
checkpoint file contains the most recent consistent image and then writes the next
in-memory image of the database to the other file. Thus, the two files contain the two
most recent database images.

TimesTen uses the most recent consistent checkpoint file and the transaction log to
recover the database to its most recent transaction-consistent state after a database
shutdown or system failure. If any errors occur during this process, or if the more
recent checkpoint image is incomplete, then recovery restarts using the other
checkpoint file.

TimesTen also creates dsName.resn files for each database. These files are
pre-allocated to the same size as the transaction log files. The .res files contain
pre-allocated space that is used if the transaction log directory were to become full. If
this occurs, transactions are prevented from writing any new log records. Transactions
that attempt to write new log records are forced to rollback.

Types of checkpoints
TimesTen supports two types of database checkpoint operations:

■ Fuzzy or non-blocking checkpoints

■ Transaction-consistent checkpoints

Checkpoint operations

Transaction Management and Recovery 8-13

Fuzzy or non-blocking checkpoints
Fuzzy checkpoints, or non-blocking checkpoints, allow transactions to execute against
the database while the checkpoint is in progress. Fuzzy checkpoints do not obtain
locks of any kind, and therefore have a minimal impact on other database activity.
Because transactions may modify the database while a checkpoint operation is in
progress, the resulting checkpoint file may contain both committed and uncommitted
transactions. Furthermore, different portions of the checkpoint image may reflect
different points in time. For example, one portion may have been written before a
given transaction committed, while another portion was written afterward. The term
"fuzzy checkpoint" derives its name from this fuzzy state of the database image.

To recover the database when the checkpoint files were generated from fuzzy
checkpoint operations, TimesTen requires the most recent consistent checkpoint file
and the transaction log to bring the database into its most recent transaction-consistent
state.

Transaction-consistent checkpoints
Transaction-consistent checkpoints, also known as blocking checkpoints, obtain an
exclusive lock on the database for a portion of the checkpoint operation, blocking all
access to the database during that time. The resulting checkpoint image contains all
committed transactions prior to the time the checkpoint operations acquired the
exclusive lock on the database. Because no transactions can be active while the
database lock is held, no modifications made by in-progress transactions are included
in the checkpoint image.

TimesTen uses the most recent consistent checkpoint file to recover the database to
transaction-consistent state at the time of the last successful checkpoint operation
completed. It uses the transaction log files to recover the database to its most recent
transaction-consistent state after a database shutdown or system failure.

To request a transaction-consistent checkpoint, an application uses the
ttCkptBlocking built-in procedure. The actual checkpoint is delayed until the
requesting transaction commits or rolls back. If a transaction-consistent checkpoint is
requested for a database for which both checkpoint files are already up to date then
the checkpoint request is ignored.

Setting and managing checkpoints
The default behavior for TimesTen checkpoints is as follows:

■ TimesTen performs periodic fuzzy checkpoints in the background. You can
modify this behavior. See "Configure or turn off background checkpointing" on
page 8-14 for more information.

■ TimesTen performs a transaction-consistent checkpoint operation of a database
just before the database is unloaded from memory. See "Transaction-consistent
checkpoints" on page 8-13.

You can manage and monitor checkpoints with the following connection attributes
and built-in procedures:

■ CkptFrequency attribute

■ CkptLogVolume attribute

■ CkptRate attribute

■ ttCkpt built-in procedure

■ ttCkptBlocking built-in procedure

Checkpoint operations

8-14 Oracle TimesTen In-Memory Database Operations Guide

■ ttCkptConfig built-in procedure

■ ttCkptHistory built-in procedure

The following sections describe how to manage checkpointing:

■ Programmatically performing a checkpoint

■ Configure or turn off background checkpointing

■ Display checkpoint history and status

■ Setting the checkpoint rate

Programmatically performing a checkpoint
By default, TimesTen performs periodic fuzzy checkpoints in the background.
Therefore, applications rarely need to issue manual checkpoints. However, if an
application wishes to issue a manual checkpoint, it can call the ttCkpt built-in
procedure to request a fuzzy checkpoint or the ttCkptBlocking built-in procedure
to request a transaction-consistent checkpoint.

Configure or turn off background checkpointing
Using attributes or built-in procedures, you can configure TimesTen to checkpoint
either when the transaction log files contain a certain amount of data or at a specific
frequency.

To configure checkpointing in TimesTen, do the following:

Configure the CkptFrequency and CkptLogVolume connection attributes as
follows:

■ The CkptFrequency connection attribute controls the how often, in seconds, that
TimesTen performs a background checkpoint. The default is 600 seconds.

■ The CkptLogVolume connection attribute controls how much data, in megabytes,
that collects in the log between background checkpoints. By increasing this
amount, you can delay the frequency of the checkpoint. The default is 0.

To turn off background checkpointing, set both the CkptFrequency and
CkptLogVolume connection attributes to 0.

Alternatively, you can configure background checkpointing or turn it off by executing
the ttCkptConfig built-in procedure. The values set by ttCkptConfig take
precedence over those set with the connection attributes.

Display checkpoint history and status
Use the ttCkptHistory built-in procedure to display the information on the last
eight checkpoints. You can monitor the progress of a running checkpoint with the
Percent_Complete column.

Setting the checkpoint rate
By default, there is no limit to the rate at which checkpoint data is written to disk. You
can use the CkptRate attribute or the ttCkptConfig built-in procedure to set the
maximum rate at which background checkpoint data is written to disk. Checkpoints

Note: For information on default values and usage, see the Oracle
TimesTen In-Memory Database Reference.

Checkpoint operations

Transaction Management and Recovery 8-15

taken during recovery and final checkpoints do not honor this rate; in those situations,
the rate is unlimited.

Setting a rate too low can cause checkpoints to take an excessive amount of time and
cause the following problems:

■ Delay the purging of unneeded transaction log files

■ Delay the start of backup operations

■ Increase recovery time.

When choosing a rate, you should take into consideration the amount of data written
by a typical checkpoint and the amount of time checkpoints usually take. Both of these
pieces of information are available through the ttCkptHistory built-in procedure.

If a running checkpoint appears to be progressing too slowly when you evaluate the
progress of this checkpoint with the Percent_Complete column of the
ttCkptHistory result set, the rate can be increased by calling the ttCkptConfig
built-in procedure. If a call to ttCkptConfig changes the rate, the new rate takes
effect immediately, affecting even the running checkpoint.

Perform the following to calculate the checkpoint rate:

1. Call the ttCkptHistory built-in procedure.

2. For any given checkpoint, subtract the starttime from the endtime.

3. Divide the number of bytes written by this elapsed time in seconds to get the
number of bytes per second.

4. Divide this number by 1024*1024 to get the number of megabytes per second.

When setting the checkpoint rate, you should consider the following:

■ The specified checkpoint rate is only approximate. The actual rate of the
checkpoint may be below the specified rate, depending on the hardware, system
load and other factors.

■ The above method may underestimate the actual checkpoint rate, because the
starttime and endtime interval includes other checkpoint activities in addition to the
writing of dirty blocks to the checkpoint file.

■ The Percent_Complete field of the ttCkptHistory call may show 100 percent
before the checkpoint is actually complete. The Percent_Complete field shows
only the progress of the writing of dirty blocks and does not include additional
bookkeeping at the end of the checkpoint.

■ When adjusting the checkpoint rate, you may also need to adjust the checkpoint
frequency, as a slower rate makes checkpoints take longer, which effectively
increases the minimum time between checkpoint beginnings.

Note: See the Oracle TimesTen In-Memory Database Reference for
details on using these features.

Checkpoint operations

8-16 Oracle TimesTen In-Memory Database Operations Guide

9

TimesTen Database Performance Tuning 9-1

9TimesTen Database Performance Tuning

An application using the TimesTen Data Manager should obtain an order of
magnitude performance improvement in its data access over an application using a
traditional DBMS. However, poor application design and tuning can erode the
TimesTen advantage. This chapter discusses factors that can affect the performance of
a TimesTen application. These factors range from subtle, such as data conversions, to
more overt, such as preparing a command at each execution.

This chapter explains the full range of these factors, with a section on each factor
indicating:

■ How to detect problems.

■ How large is the potential performance impact.

■ Where are the performance gains.

■ What are the tradeoffs.

As discussed throughout this chapter, many performance problems can be identified
by examining the SYS.MONITOR table.

Topics are:

■ System and database tuning

■ Client/Server tuning

■ SQL tuning

■ Materialized view tuning

■ Transaction tuning

■ Recovery tuning

■ Scaling for multiple CPUs

■ XLA tuning

For information on tuning TimesTen Java applications, see "Application Tuning" in the
Oracle TimesTen In-Memory Database Java Developer's Guide. For information on tuning
TimesTen C applications, see "Application Tuning" in the Oracle TimesTen In-Memory
Database C Developer's Guide.

System and database tuning
The following sections include tips for tuning your system and databases:

■ Provide enough memory

System and database tuning

9-2 Oracle TimesTen In-Memory Database Operations Guide

■ Size your database correctly

■ Calculate shared memory size for PL/SQL runtime

■ Increase LogBufMB if needed

■ Use temporary databases if appropriate

■ Avoid connection overhead

■ Load the database into RAM when duplicating

■ Reduce contention

■ Avoid operating system paging at load time

■ Consider special options for maintenance

■ Check your driver

■ Enable tracing only as needed

■ Investigate alternative JVMs

■ If you are using replication, adjust transaction log buffer size and CPU

■ Increase replication throughput for active standby pairs

■ Migrating data with character set conversions

Provide enough memory
Performance impact: Large

Configure your system so that the entire database fits in main memory. The use of
virtual memory substantially decreases performance. You will know that the database
or working set does not fit if a performance monitoring tool shows excessive paging or
virtual memory activity.

You may have to add physical memory or configure the system software to allow a
large amount of shared memory to be allocated to your process(es). TimesTen includes
the ttSize utility to help you estimate the size of your database.

Size your database correctly
Performance impact: Variable

When you create a database, you are required to specify a database size. Specifically,
you specify sizes for the permanent and temporary partitions of the database. For
details on how to size the database and shared memory, see "Specifying the size of a
database" on page 1-24.

Calculate shared memory size for PL/SQL runtime
Performance impact: Variable

The PL/SQL runtime system uses an area of shared memory to hold metadata about
PL/SQL objects in TimesTen and the executable code for PL/SQL program units that
are currently being executed or that have recently been executed. The size of this
shared memory area is controlled by the PLSQL_MEMORY_SIZE first connect attribute.

When a new PL/SQL program unit is prepared for execution, it is loaded into shared
memory. If shared memory space is not available, the cached recently-executed
program units are discarded from memory until sufficient shared memory space is
available. If all of the PL/SQL shared memory is being used by currently executing

System and database tuning

TimesTen Database Performance Tuning 9-3

program units, then attempts by a new connection to execute PL/SQL may result in
out of space errors, such as ORA-04031. If this happens, increase the PLSQL_MEMORY_
SIZE.

Even if such out of space errors do not occur, the PLSQL_MEMORY_SIZE may be too
small. It is less expensive in CPU time to execute a PL/SQL procedure that is cached in
shared memory than one that is not cached. In a production application, the goal
should be for PLSQL_MEMORY_SIZE to be large enough so that frequently-executed
PL/SQL units are always cached. The TimesTen built-in procedure
ttPLSQLMemoryStats can be used to determine how often this occurs. The
PinHitRatio value returned is a real number between 0 and 1.

■ 1.0: A value of 1.0 means that every PL/SQL execution occurred from the cache.

■ 0.0: A value of 0.0 means that every execution required that the program unit be
loaded into shared memory.

The proper value of PLSQL_MEMORY_SIZE for a given application depends on the
application. If only a small number of PL/SQL program units are repeatedly executed,
then the size requirements can be small. If the application uses hundreds of PL/SQL
program units, memory requirements increase.

Performance increases dramatically as the PinHitRatio goes up. In one set of
experiments, an application program repeatedly executed a large number of PL/SQL
stored procedures. With a larger value for PLSQL_MEMORY_SIZE, the application
results in a PinHitRatio of around 90%, and the average execution time for a
PL/SQL procedure was 0.02 seconds. With a smaller value for PLSQL_MEMORY_SIZE,
there was more contention for the cache, resulting in a PinHitRatio of 66%. In this
experiment the average execution time was 0.26 seconds.

The default value for PLSQL_MEMORY_SIZE is 32 MBs. This should be sufficient for
several hundred PL/SQL program units of reasonable complexity to execute. After
running a production workload for some time, check the value of PinHitRatio. If it
is less than 0.90, consider increasing PLSQL_MEMORY_SIZE.

Increase LogBufMB if needed
Performance impact: Large

Increasing the value of LogBufMB can have a substantial positive performance impact.
If LOG_BUFFER_WAITS is increasing, then increase the value of LogBufMB.

The trade-off is that more transactions are buffered in memory and may be lost if the
process crashes. If DurableCommits are enabled, increasing the default LogBufMB
value does not improve performance.

Use temporary databases if appropriate
Performance impact: Variable

A TimesTen database may be permanent or Temporary. A temporary database
disappears when the last connection goes away or when there is a system or
application failure. For information on temporary databases, see "Database overview"
on page 7-1.

If you do not need to save the database to disk, you can save checkpoint overhead by
creating a temporary database.

Temporary databases are never fully checkpointed to disk, although the transaction
log is periodically written to disk. The amount of data written to the transaction log for
temporary databases is less than that written for permanent databases, allowing better

System and database tuning

9-4 Oracle TimesTen In-Memory Database Operations Guide

performance for temporary databases. Checkpoint operations can have significant
overhead for permanent databases, depending on database size and activity, but have
very little impact for temporary databases. Checkpoints are still necessary to remove
transaction log files.

Avoid connection overhead
Performance impact: Large

By default, TimesTen loads an idle database, which is a database with no connections,
into memory when a first connection is made to it. When the final application
disconnects from a database, a delay occurs when the database is written to disk. If
applications are continually connecting and disconnecting from a database, the
database may be loaded to and unloaded from memory continuously, resulting in
excessive disk I/O and poor performance. Similarly, if you are using a very large
database you may want to pre-load the database into memory before any applications
attempt to use it.

To avoid the latency of loading a database into memory, you can change the RAM
policy of the database to allow databases to always remain in memory. The trade-off is
that since the database is never unloaded from memory, a final disconnect checkpoint
never occurs. So, applications should checkpoint the database explicitly in order to
reduce the disk space taken up by transaction log files.

Alternatively, you can specify that the database remain in memory for a specified
interval of time and accept new connections. If no new connections occur in this
interval, TimesTen unloads the database from memory and checkpoints it. You can
also specify a setting to allow a system administrator to load and unload the database
from memory manually.

To change the RAM policy of a database, use the ttAdmin utility.

Load the database into RAM when duplicating
Performance impact: Large

When you duplicate a database, use the -ramLoad option of the ttAdmin utility. This
places the database in memory, available for connections, instead of unloading it with
a blocking checkpoint. See "Avoid connection overhead" on page 9-4.

Reduce contention
Database contention can substantially impede application performance.

To reduce contention in your application:

■ Choose the appropriate locking method. See "Choose the best method of locking"
on page 9-7.

■ Distribute data strategically in multiple tables or databases.

If your application suffers a decrease in performance because of lock contention and a
lack of concurrency, reducing contention is an important first step in improving
performance.

The LOCK_GRANTS_IMMED, LOCK_GRANTS_WAIT and LOCK_DENIALS_COND
columns in the SYS.MONITOR table provide some information on lock contention:

■ LOCK_GRANTS_IMMED counts how often a lock was available and was
immediately granted at lock request time.

System and database tuning

TimesTen Database Performance Tuning 9-5

■ LOCK_GRANTS_WAIT counts how often a lock request was granted after the
requestor had to wait for the lock to become available.

■ LOCK_DENIALS_COND counts how often a lock request was not granted because
the requestor did not want to wait for the lock to become available.

If limited concurrency results in a lack of throughput, or if response time is an issue,
an application can serialize JDBC calls to avoid contention. This can be achieved by
having a single thread issue all those calls. Using a single thread requires some
queuing and scheduling on the part of the application, which has to trade off some
CPU time for a decrease in contention and wait time. The result is higher performance
for low-concurrency applications that spend the bulk of their time in the database.

Avoid operating system paging at load time
Performance impact: Medium

All of the TimesTen platform operating systems implement a dynamic file system
buffer pool in main memory. If this buffer pool is allowed to be large, TimesTen and
the operating system both retain a copy of the file in memory, causing some of the
TimesTen shared segment to be paged out.

This behavior may not occur for databases that are less than half of the installed
memory size. On some systems, it is possible to limit the amount of main memory
used by the file system. On other systems, this effect is less pronounced. On HP-UX,
Solaris and Linux systems, consider using the MemoryLock attribute to specify
whether the database should be locked in memory. If used, the database cannot be
paged out.

On HP-UX, consider the settings for the kernel parameters dbc_min_pct and dbc_
max_pct. These parameters control the minimum and maximum percent of real
memory devoted to the file system. The default maximum is 50 percent. TimesTen
recommends reducing the maximum to 10 percent.

On AIX, you can avoid paging by configuring large pages, which locks the shared
segment into memory so it cannot be paged. See the Oracle TimesTen In-Memory
Database Reference for details on how to configure large pages on AIX.

Consider special options for maintenance
Performance impact: Medium

During special operations such as initial loading, you can choose different options
than you would use during normal operations. In particular, consider using
database-level locking for bulk loading; an example would be using ttBulkCp or
ttMigrate. These choices can improve loading performance by a factor of two.

An alternative to database-level locking is to exploit concurrency. Multiple copies of
ttBulkCp -i can be run using the -notblLock option. Optimal batching for
ttBulkCp occurs by adding the -xp 256 option. ttMigrate can be run with
-numThreads option to load individual or multiple tables concurrently.

Check your driver
Performance impact: Large

There are two versions of the TimesTen Data Manager driver for each platform, a
debugging version and a production version. Unless you are actually debugging, use
the production version. The debugging library can be significantly slower. See "Specify

System and database tuning

9-6 Oracle TimesTen In-Memory Database Operations Guide

the Data Manager DSN" on page 1-9 and "Specify the ODBC driver" on page 1-9 for a
description of the TimesTen Data Manager drivers for the different platforms.

On Windows, make sure that applications that use the ODBC driver manager use a
DSN that accesses the correct TimesTen driver. Make sure that direct-linked
applications are linked with the correct TimesTen driver. An application can call the
ODBC SQLGetInfo function with the SQL_DRIVER_NAME argument to determine
which driver it is using.

Enable tracing only as needed
Performance impact: Large

Both ODBC and JDBC provide a trace facility to help debug applications. For
performance runs, make sure that tracing is disabled except when debugging
applications.

To turn the JDBC tracing on, use:

DriverManager.setLogStream method:
DriverManager.setLogStream(new PrintStream(System.out, true));

By default tracing is off. You must call this method before you load a JDBC driver.
Once you turn the tracing on, you cannot turn it off for the entire execution of the
application.

Investigate alternative JVMs
Performance impact: Variable

JRockit, IBM and HP provide JVMs that may perform better than the Sun JVM.

If you are using replication, adjust transaction log buffer size and CPU
Performance impact: Large

If you are planning a replication scheme, then ensure the following:

■ The transaction log setting for LogBufMB should result in the value of LOG_FS_
READS in the SYS.MONITOR table being 0 or close to 0. This ensures that the
replication agent does not have to read any transaction log records from disk. If
the value of LOG_FS_READS is increasing, then increase the transaction log buffer
size.

■ CPU resources are adequate. The replication agent on the master database will
spawn a thread for every subscriber database. Each thread reads and processes the
transaction log independently and needs adequate CPU resources to make
progress.

■ If the sending side and receiving side of the replication scheme are mismatched in
CPU power, place the replication receiver on the faster system.

Increase replication throughput for active standby pairs
Performance impact: Medium

Use the RecoveryThreads first connection attribute to increase the number of
threads that apply changes from the active master database to the standby master
database from 1 to 2. If you set RecoveryThreads to 2 on the standby, you should
also set it to 2 on the active to maintain increased throughput if there is a failover.

Client/Server tuning

TimesTen Database Performance Tuning 9-7

You can also set RecoveryThreads to 2 on one or more read-only subscribers in an
active standby pair to increase replication throughput from the standby master
database.

Databases must be hosted on systems that are 2-way or larger to take advantage of
setting this attribute to 2.

Migrating data with character set conversions
Performance impact: Variable

If character set conversion is requested when migrating databases, performance may
be slower than if character set conversion is not requested.

Client/Server tuning
The following sections include tips for Client/Server tuning:

■ Work locally when possible

■ Choose a timeout interval

■ Choose the best method of locking

■ Use shared memory segment as IPC when client and server are on the same
machine

■ Enable TT_PREFETCH_CLOSE for Serializable transactions

■ Use a connection handle when calling SQLTransact

Work locally when possible
Performance impact: Large

Using TimesTen Client to access databases on a remote server machine adds network
overhead to your connections. Whenever possible, write your applications to access
the TimesTen Data Manager locally, and link the application directly with the
TimesTen Data Manager.

Choose a timeout interval
By default, connections wait 10 seconds to acquire a lock. To change the timeout
interval for locks, use the ttLockWait built-in procedure.

Choose the best method of locking
When multiple connections access a database simultaneously, TimesTen uses locks to
ensure that the various transactions operate in apparent isolation. TimesTen supports
the isolation levels described in Chapter 8, "Transaction Management and Recovery".
It also supports the locking levels: database-level locking, table-level locking and
row-level locking. You can use the LockLevel connection attribute to indicate
whether database-level locking or row-level locking should be used. Use the
ttOptSetFlag procedure to set optimizer hints that indicate whether table locks
should be used. The default lock granularity is row-level locking.

Choose an appropriate lock level
If there is very little contention on the database, use table-level locking. It provides
better performance and deadlocks are less likely. There is generally little contention on

Client/Server tuning

9-8 Oracle TimesTen In-Memory Database Operations Guide

the database when transactions are short or there are few connections. In that case,
transactions are not likely to overlap.

Table-level locking is also useful when a statement accesses nearly all the rows on a
table. Such statements can be queries, updates, deletes or multiple inserts done in a
single transaction.

TimesTen uses table locks only with Serializable isolation. If your application specifies
table locks with any other isolation levels, TimesTen overrides table-level locking and
uses row locks. However, the optimizer plan may still display table-level locking hints.

Database-level locking restricts concurrency more than table-level locking, and is
generally useful only for initialization operations, such as bulk-loading, when no
concurrency is necessary. It has better response-time than row-level or table-level
locking, at the cost of diminished throughput.

Row-level locking is generally preferable when there are many concurrent transactions
that are not likely to need access to the same row.

Choose an appropriate isolation level
When using row-level locking, applications can run transactions at the
SERIALIZABLE or READ_COMMITTED isolation level. The default isolation level is
READ_COMMITTED. You can use the Isolation connection attribute to specify one of
these isolation levels for new connections.

When running at SERIALIZABLE transaction isolation level, TimesTen holds all locks
for the duration of the transaction, so:

■ Any transaction updating a row blocks writers until the transaction commits.

■ Any transaction reading a row blocks out writers until the transaction commits.

When running at READ_COMMITTED transaction isolation level, TimesTen only holds
update locks for the duration of the transaction, so:

■ Any transaction updating a row blocks out readers and writers of that row until
the transaction commits.

■ Phantoms are possible. A phantom is a row that appears during one read but not
during another read, or appears in modified form in two different reads, in the
same transaction, due to early release of read locks during the transaction.

You can determine if there is an undue amount of contention on your system by
checking for time-out and deadlock errors (errors 6001, 6002, and 6003). Information is
also available in the LOCK_TIMEOUTS and DEADLOCKS columns of the SYS.MONITOR
table.

Use shared memory segment as IPC when client and server are on the same machine
Performance impact: Variable

The TimesTen Client normally communicates with TimesTen Server using TCP/IP
sockets. If both the TimesTen Client and TimesTen Server are on the same machine,
client applications show improved performance by using a shared memory segment
or a UNIX domain socket for inter-process communication (IPC).

To use a shared memory segment as IPC, you must set the server options in the
ttendaemon.options file. For a description of the server options, see "Modifying
the TimesTen Server options" on page 3-8.

Client/Server tuning

TimesTen Database Performance Tuning 9-9

In addition, applications that use shared memory for IPC must use a logical server
name for the Client DSN with ttShmHost as the Network Address. For more
information, see "Creating and configuring Client DSNs on UNIX" on page 2-18.

This feature may require a significant amount of shared memory. The TimesTen
Server pre-allocates the shared memory segment irrespective of the number of existing
connections or the number of statements within all connections.

If your application is running on a UNIX machine and you are concerned about
memory usage, the applications using TimesTen Client ODBC driver may improve the
performance by using UNIX domain sockets for communication. The performance
improvement when using UNIX domain sockets is not as large as when using
ShmIPC.

Applications that take advantage of UNIX domain sockets for local connections must
use a logical server name for the Client DSN with ttLocalHost as the Network
Address. For more information, see "Creating and configuring Client DSNs on UNIX"
on page 2-18. In addition, make sure that your system kernel parameters are
configured to allow the number of connections you require. See "Installation
prerequisites" in the Oracle TimesTen In-Memory Database Installation Guide.

Enable TT_PREFETCH_CLOSE for Serializable transactions
Performance impact: Variable

Enable TT_PREFETCH_CLOSE for serializable transactions in client/server
applications. In Serializable isolation mode, all transactions should be committed
when executed, including read-only transactions. When TT_PREFETCH_CLOSE is
enabled, the server closes the cursor and commits the transaction after the server has
fetched the entire result set for a read-only query. The client should still call
SQLFreeStmt(SQL_CLOSE) and SQLTransact(SQL_COMMIT), but the calls are
executed in the client and do not require a network round trip between the client and
server. TT_PREFETCH_CLOSE enhances performance by decreasing the network
traffic between client and server.

Do not use multiple statement handles when TT_PREFETCH_CLOSE is enabled. The
server may fetch all of the result set, commit the transaction, and close the statement
handle before the client is finished, resulting in the closing of all statement handles.

The following examples show how to use the TT_PREFETCH_CLOSE option with
ODBC and JDBC.

This example sets TT_PREFETCH_CLOSE with the SQLSetConnectOption ODBC
function. You can also set it with the SQLSetStmtOption ODBC function.

SQLSetConnectOption (hdbc, TT_PREFETCH_CLOSE, TT_PREFETCH_CLOSE_ON);
SQLExecDirect (hstmt, "SELECT * FROM T", SQL_NTS);
while (SQLFetch (hstmt) != SQL_NO_DATA_FOUND)
{
// do the processing
}
SQLFreeStmt (hstmt, SQL_CLOSE);

This example shows how to enable the TT_PREFETCH_CLOSE option with JDBC:

con = DriverManager.getConnection ("jdbc:timesten:client:" + DSN);
stmt = con.createStatement();
import com.timesten.sql
...
...
con.setTtPrefetchClose(true);

SQL tuning

9-10 Oracle TimesTen In-Memory Database Operations Guide

rs = stmt.executeQuery("select * from t");
while(rs.next())
{
// do the processing
}
import com.timesten.sql
....
try {
 ((TimesTenConnection)con).setTtPrefetchClose(true);
}
catch (SQLException) {
...
}
rs.close();
con.commit();

Use a connection handle when calling SQLTransact
Performance impact: Large

An application can make a call to SQLTransact with either SQL_NULL_HDBC and a
valid environment handle:

SQLTransact (ValidHENV, SQL_NULL_HDBC, fType)

or a valid connection handle:

SQLTransact (SQL_NULL_HENV, ValidHDBC, fType).

If the intention of the application is simply to commit or rollback on a single
connection, it should use a valid connection handle when calling SQLTransact.

SQL tuning
After you have determined the overall locking and I/O strategies, make sure that the
individual SQL statements are executed as efficiently as possible. The following
sections describe how to streamline your SQL statements:

■ Tune statements and use indexes

■ Select hash, range, or bitmap indexes appropriately

■ Use foreign key constraint appropriately

■ Computing exact or estimated statistics

■ Avoid ALTER TABLE

■ Avoid nested queries

■ Prepare statements in advance

■ Avoid unnecessary prepare operations

Tune statements and use indexes
Performance impact: Large

Verify that all statements are executed efficiently. For example, use queries that
reference only the rows necessary to produce the required result set. If only col1 from
table t1 is needed, use the statement:

SELECT col1 FROM t1...

SQL tuning

TimesTen Database Performance Tuning 9-11

instead of using:

SELECT * FROM t1...

Chapter 10, "The TimesTen Query Optimizer" describes how to view the plan that
TimesTen uses to execute a statement. Alternatively, you can use the ttIsql
showplan command to view the plan. View the plan for each frequently executed
statement in the application. If indexes are not used to evaluate predicates, consider
creating new indexes or rewriting the statement or query so that indexes can be used.
For example, indexes can only be used to evaluate WHERE clauses when single
columns appear on one side of a comparison predicate (equalities and inequalities), or
in a BETWEEN predicate.

If this comparison predicate is evaluated often, it would therefore make sense to
rewrite

WHERE c1+10 < c2+20

to

WHERE c1 < c2+10

and create an index on c1.

The presence of indexes does slow down write operations such as UPDATE, INSERT,
DELETE and CREATE VIEW. If an application does few reads but many writes to a
table, an index on that table may hurt overall performance rather than help it.

The FIRST keyword can be used to operate on a specific number of rows in the SQL
statements, SELECT, UPDATE and DELETE. This attribute can improve throughput and
response time. Alternatively, if an application plans to fetch at most one row for a
query, and a unique index is not being used to fetch the row, the application should
set SQL_MAX_ROW_COUNT to 1. See the Oracle TimesTen In-Memory Database Reference.

Occasionally, the system may create a temporary index to speed up query evaluation.
If this happens frequently, it is better for the application itself to create the index. The
CMD_TEMP_INDEXES column in the MONITOR table indicates how often a temporary
index was created during query evaluation.

If you have implemented time-based aging for a table or cache group, create an index
on the timestamp column for better performance of aging. See "Time-based aging" on
page 7-8.

Select hash, range, or bitmap indexes appropriately
Performance impact: Variable

The TimesTen Data Manager supports hash, range, and bitmap indexes. Each index
structure has a different strength.

Hash indexes are created when you supply the UNIQUE HASH clause for the CREATE
TABLE or ALTER TABLE statements. Hash indexes require that the table have a
primary key.

Range indexes are created by default with the CREATE TABLE statement or created
with the CREATE INDEX statement. Range indexes can speed up exact key lookups
but are more flexible and can speed up other queries as well. Select a range index if
your queries include LESS THAN or GREATER THAN comparisons. Range indexes are
effective for high-cardinality data: that is, data with many possible values, such as
CUSTOMER_NAME or PHONE_NUMBER.

SQL tuning

9-12 Oracle TimesTen In-Memory Database Operations Guide

Range indexes can also be used to speed up "prefix" queries. A prefix query has
equality conditions on all but the last key column that is specified. The last column of a
prefix query can have either an equality condition or an inequality condition.

Consider the following table and index definitions:

CREATE TABLE T(i1 integer, i2 integer, i3 integer, ...);
CREATE INDEX IXT on T(i1, i2, i3);

The index IXT can be used to speed up the following queries:

SELECT * FROM T WHERE i1>12;
SELECT * FROM T WHERE i1=12 and i2=75;
SELECT * FROM T WHERE i1=12 and i2 BETWEEN 10 and 20;
SELECT * FROM T WHERE i1=12 and i2=75 and i3>30;

The index IXT will not be used for queries like:

SELECT * FROM T WHERE i2=12;

because the prefix property is not satisfied. There is no equality condition for i1.

The index IXT will be used, but matching will only occur on the first two columns for
queries like:

SELECT * FROM T WHERE i1=12 and i2<50 and i3=630;

Range indexes have a dynamic structure that adjusts itself automatically to
accommodate changes in table size. A range index can be either unique or non-unique
and can be declared over nullable columns. It also allows the indexed column values
to be changed once a record is inserted. A range index is likely to be more compact
than an equivalent hash index.

Bitmap indexes are created with the CREATE INDEX statement. Bitmap indexes are
performant when searching and retrieving data from columns with low cardinality.
Bitmap indexes are useful with equality queries, especially when using the AND and
OR operators. These indexes increase the performance of complex queries that specify
multiple predicates on multiple columns connected by AND and OR operators. Bitmap
indexes are widely used in data warehousing environments. The environments
typically have large amounts of data and ad hoc queries, but a low level of concurrent
DML transactions. Bitmap indexes are compressed and have smaller storage
requirements than other indexing techniques. For more details on when to use bitmap
indexes, see "CREATE INDEX" in the Oracle TimesTen In-Memory Database SQL
Reference.

Size hash indexes appropriately
Performance impact: Variable

TimesTen uses hash indexes to enforce primary key constraints. The number of
buckets used for the hash index is determined by the PAGES parameter specified in the
UNIQUE HASH ON clause of the CREATE TABLE statement. The value for PAGES
should be the expected number of rows in the table divided by 256. A smaller value
may result in a greater number of collisions, decreasing performance, while a larger
value may provide somewhat increased performance at the cost of extra space used by
the index.

If the number of values to be indexed varies dramatically, it is best to err on the side of
a large index. If the size of a table cannot be accurately predicted, consider using a
range index with CREATE INDEX. Also, consider the use of unique indexes when the

SQL tuning

TimesTen Database Performance Tuning 9-13

indexed columns are large CHAR or binary values or when many columns are indexed.
Unique indexes may be faster than hash indexes in these cases.

If the performance of record inserts degrades as the size of the table gets larger, it is
very likely that you have underestimated the expected size of the table. You can resize
the hash index by using the ALTER TABLE statement to reset the PAGES value in the
UNIQUE HASH ON clause.

Use foreign key constraint appropriately
Performance impact: Variable

The declaration of a foreign key has no performance impact on SELECT queries, but it
slows down the INSERT and UPDATE operations on the table that the foreign key is
defined on and the UPDATE and DELETE operations on the table referenced by the
foreign key. The slow down is proportional to the number of foreign keys that either
reference or are defined on the table.

Computing exact or estimated statistics
Performance impact: Large

If statistics are available on the data in the database, the TimesTen optimizer uses them
when preparing a command to determine the optimal path to the data. If there are no
statistics, the optimizer uses generic guesses about the data distribution. For
performance reasons, TimesTen does not hold a lock on tables or rows when
computing statistics.

If you have examined the plans generated for your statements and you think they may
not be optimal, consider computing statistics before preparing your statements and
re-examining the plans. See Chapter 10, "The TimesTen Query Optimizer" for more
information.

If you have not examined the plans, we generally recommend computing statistics
since the information is likely to result in more efficient plans.

There are two built-in procedures for computing statistics: ttOptUpdateStats and
ttOptEstimateStats.

■ The ttOptUpdateStats built-in procedure evaluates every row of the table(s) in
question and computes exact statistics.

■ The ttOptEstimateStats procedure evaluates only a sampling of the rows of
the table(s) in question and produces estimated statistics.

Estimating statistics can be faster, although it may result in less accurate statistics. In
general, if time is not an issue, it is best to call ttOptUpdateStats. Estimation is
preferable if overall application performance may be affected. Computing statistics
with a sample of 10 percent is about ten times faster than computing exact statistics
and generally results in the same execution plans. Since computing statistics is a
time-consuming operation, you should compute statistics once after loading your
database but before preparing commands, and then periodically only if the
composition of your data changes substantially. It is recommended to always update
statistics after loading the database and after a large number of inserts or deletes have
occurred.

Avoid ALTER TABLE
Performance impact: Variable

SQL tuning

9-14 Oracle TimesTen In-Memory Database Operations Guide

The ALTER TABLE statement allows applications to add columns to a table and to
drop columns from a table. Although the ALTER TABLE statement itself runs very
quickly in most cases, the modifications it makes to the table can cause subsequent
operations on the table to run more slowly. The actual performance degradation the
application experiences varies with the number of times the table has been altered and
with the particular operation being performed on the table.

Dropping VARCHAR and VARBINARY columns is slower than dropping columns of
other data types since a table scan is required to free the space allocated to the existing
VARCHAR and VARBINARY values in the column to be dropped.

Avoid nested queries
Performance impact: Variable

If you can, it is recommended that you should rewrite your query to avoid nested
queries that need materialization of many rows.

The following are examples of nested queries that may need to be materialized and
result in multiple rows:

■ Aggregate nested query with groupby

■ Nested queries that reference rownum

■ Union, intersect, or minus nested queries

■ Nested queries with order by

For example, the following aggregate nested query results in an expensive
performance impact:

select * from (select sum(x1) sum1 from t1 group by y1),
 (select sum(x2) sum2 from t2 group by y2) where sum1=sum2;

The following is an example of a nested query that references rownum:

select * from (select rownum rc, x1 from t1 where x1>100),
 (select rownum rc, x2 from t2 where x2>100) where x1=x2;

The following is an example of a union nested query:

select * from (select x1 from t1 union select x2 from t2),
 (select x3 from t3 group by x3) where x1=x3;

See the Oracle TimesTen In-Memory Database SQL Reference for details on subqueries.

Prepare statements in advance
If you have applications that generate a statement multiple times searching for
different values each time, prepare a parameterized statement to reduce compile time.
For example, if your application generates statements like:

SELECT A FROM B WHERE C = 10
SELECT A FROM B WHERE C = 15

You can replace these statements with the single statement:

SELECT A FROM B WHERE C = ?

TimesTen shares prepared statements automatically after they have been committed.
As a result, an application request to prepare a statement for execution may be
completed very quickly if a prepared version of the statement already exists in the

Materialized view tuning

TimesTen Database Performance Tuning 9-15

system. Also, repeated requests to execute the same statement can avoid the prepare
overhead by sharing a previously prepared version of the statement.

Even though TimesTen allows prepared statements to be shared, it is still a good
practice for performance reasons to use parameterized statements. Using
parameterized statements can further reduce prepare overhead, in addition to any
savings from sharing statements.

Avoid unnecessary prepare operations
Because preparing SQL statements is an expensive operation, your application should
minimize the number of calls to the prepare API. Most applications prepare a set of
statements at the beginning of a connection and use that set for the duration of the
connection. This is a good strategy when connections are long, consisting of hundreds
or thousands of transactions. But if connections are relatively short, a better strategy is
to establish a long-duration connection that prepares the statements and executes
them on behalf of all threads or processes. The trade-off here is between
communication overhead and prepare overhead, and can be examined for each
application. Prepared statements are invalidated when a connection is closed.

See "ttSQLCmdCacheInfoGet" in the Oracle TimesTen In-Memory Database Reference
for related information.

Materialized view tuning
The following sections include tips for improving performance of materialized views:

■ Limit number of join rows

■ Use indexes on join columns

■ Avoid unnecessary updates

■ Avoid changes to the inner table of an outer join

■ Limit number of columns in a view table

Limit number of join rows
Performance impact: Variable

Larger numbers of join rows decrease performance. You can limit the number of join
rows and the number of tables joined by controlling the join condition. For example,
use only equality conditions that map one row from one table to one or at most a few
rows from the other table.

Use indexes on join columns
Performance impact: Variable

Create indexes on the columns of the detail table that are specified in the SELECT
statement that creates the join. Also consider creating an index on the materialized
view itself. This can improve the performance of keeping the materialized view
updated.

If an UPDATE or DELETE operation on a detail table is often based on a condition on a
column, try to create an index on the materialized view on this column if possible.

For example, CustOrder is a materialized view of customer orders, based on two
tables. The tables are Customer and bookOrder. The former has two columns

Materialized view tuning

9-16 Oracle TimesTen In-Memory Database Operations Guide

(custNo and custName) and the latter has three columns (ordNo, book, and
custNo). If you often update the bookOrder table to change a particular order by
using the condition bookOrder.ordNo=const, then create an index on
CustOrder.ordNo. On the other hand, if you often update based on the condition
bookOrder.custNo=const, then create an index on CustOrder.custNo.

If you often update using both conditions and cannot afford to create both indexes,
you may want to add bookOrder.rowId in the view and create an index on it
instead. In this case, TimesTen updates the view for each detail row update instead of
updating all of the rows in the view directly and at the same time. The scan to find the
row to be updated is an index scan instead of a row scan, and no join rows need to be
generated.

If ViewUniqueMatchScan is used in the execution plan, it is a sign that the execution
may be slower or require more space than necessary. A ViewUniqueMatchScan is
used to handle an update or delete that cannot be translated to a direct update or
delete of a materialized view, and there is no unique mapping between a join row and
the associated row in the materialized view. This can be fixed by selecting a unique
key for each detail table that is updated or deleted.

Avoid unnecessary updates
Performance impact: Variable

Try not to update a join column or a GROUP BY column because this involves deleting
the old value and inserting the new value.

Try not to update an expression that references more than one table. This may
disallow direct update of the view because TimesTen may perform another join
operation to get the new value when one value in this expression is updated.

View maintenance based on an update or delete is more expensive when:

■ The view cannot be updated directly. For example, not all columns specified in the
detail table UPDATE or DELETE statement are selected in the view, or

■ There is not an indication of a one-to-one mapping from the view rows to the join
rows.

For example:

CREATE MATERIALIZED VIEW v1 AS SELECT x1 FROM t1, t2 WHERE x1=x2;
DELETE FROM t1 WHERE y1=1;

The extra cost comes from the fact that extra processing is needed to ensure that one
and only one view row is affected due to a join row.

The problem is resolved if either x1 is UNIQUE or a unique key from t1 is included in
the select list of the view. ROWID can always be used as the unique key.

Avoid changes to the inner table of an outer join
Performance impact: Variable

Since outer join maintenance is more expensive when changes happen to an inner
table, try to avoid changes to the inner table of an outer join. When possible, perform
INSERT operations on an inner table before inserting into the associated join rows into
an outer table. Likewise, when possible perform DELETE operations on the outer table
before deleting from the inner table. This avoids having to convert non-matching rows
into matching rows or vice versa.

Transaction tuning

TimesTen Database Performance Tuning 9-17

Limit number of columns in a view table
Performance impact: Variable

The number of columns projected in the view SelectList can impact performance.
As the number of columns in the select list grows, the time to prepare operations on
detail tables increases. In addition, the time to execute operations on the view detail
tables also increases. Do not select values or expressions that are not needed.

The optimizer considers the use of temporary indexes when preparing operations on
detail tables of views. This can significantly slow down prepare time, depending upon
the operation and the view. If prepare time seems slow, consider using
ttOptSetFlag to turn off temporary range indexes and temporary hash scans.

Transaction tuning
The following sections describe how to increase performance when using transactions:

■ Size transactions appropriately

■ Use durable commits appropriately

■ Avoid frequent checkpoints

■ Turn off autocommit mode

■ Avoid transaction rollback

Size transactions appropriately
Each transaction, when it generates transaction log records (for example, a transaction
that does an INSERT, DELETE or UPDATE), incurs a disk write when the transaction
commits. Disk I/O affects response time and may affect throughput, depending on
how effective group commit is.

Performance-sensitive applications should avoid unnecessary disk writes at commit.
Use a performance analysis tool to measure the amount of time your application
spends in disk writes (versus CPU time). If there seems to be an excessive amount of
I/O, there are two steps you can take to avoid writes at commit:

■ Adjust the transaction size.

■ Adjust whether disk writes are performed at transaction commit. See "Use durable
commits appropriately".

Long transactions perform fewer disk writes per unit of time than short transactions.
However, long transactions also can reduce concurrency, as discussed in Chapter 8,
"Transaction Management and Recovery".

■ If only one connection is active on a database (for example, if it is an exclusive
connection), longer transactions could improve performance. However, long
transactions may have some disadvantages, such as longer rollbacks.

■ If there are multiple connections, there is a trade-off between transaction log I/O
delays and locking delays. In this case, transactions are best kept to the natural
length, as determined by requirements for atomicity and durability.

Use durable commits appropriately
By default, each TimesTen transaction results in a disk write at commit time. This
practice ensures that no committed transactions are lost because of system or
application failures. Applications can avoid some or all of these disk writes by

Transaction tuning

9-18 Oracle TimesTen In-Memory Database Operations Guide

performing nondurable commits. Nondurable commits do everything that a durable
commit does except write the transaction log to disk. Locks are released and cursors
are closed, but no disk write is performed.

The advantage of nondurable commits is a potential reduction in response time and
increase in throughput. The disadvantage is that some transactions may be lost in the
event of system failure. An application can force the transaction log to disk by
performing an occasional durable commit or checkpoint, thereby decreasing the
amount of potentially lost data. In addition, TimesTen itself periodically flushes the
transaction log to disk when internal buffers fill up, limiting the amount of data that
will be lost.

Transactions can be made durable or can be made to have delayed durability on a
connection-by-connection basis. Applications can force a durable commit of a specific
transaction by calling the ttDurableCommit procedure.

Applications that do not use nondurable commits can benefit from using synchronous
writes in place of write and flush. To turn on synchronous writes set the first
connection attribute LogFlushMethod=2.

The XACT_D_COMMITS column of the SYS.MONITOR table indicates the number of
transactions that were durably committed.

Avoid frequent checkpoints
Applications that are connected to a database for a long period of time occasionally
need to call the ttCkpt built-in procedure to checkpoint the database so that
transaction log files do not fill up the disk. Transaction-consistent checkpoints can
have a significant performance impact because they require exclusive access to the
database.

It is generally better to call ttCkpt to perform a non-blocking (or "fuzzy") checkpoint
than to call ttCkptBlocking to perform a blocking checkpoint. Non-blocking
checkpoints may take longer, but they permit other transactions to operate against the
database at the same time and thus impose less overall overhead. You can increase the
interval between successive checkpoints by increasing the amount of disk space
available for accumulating transaction log files.

As the transaction log increases in size (if the interval between checkpoints is large),
recovery time increases accordingly. If reducing recovery time after a system crash or
application failure is important, frequent checkpoints may be preferable. The DS_
CHECKPOINTS column of the SYS.MONITOR table indicates how often checkpoints
have successfully completed.

Turn off autocommit mode
AUTOCOMMIT mode forces a commit after each statement, and is enabled by default.
Committing each statement after execution, however, can significantly degrade

Note: Some controllers or drivers only write data into cache memory
in the controller or write to disk some time after the operating system
is told that the write is completed. In these cases, a power failure may
cause some information that you thought was durably committed to
be lost. To avoid this loss of data, configure your disk to write to the
recording media before reporting media before reporting completion
or use an uninterruptible power supply.

Scaling for multiple CPUs

TimesTen Database Performance Tuning 9-19

performance. For this reason, it is generally advisable to disable AUTOCOMMIT, using
the appropriate API for your programming environment.

The XACT_COMMITS column of the SYS.MONITOR table indicates the number of
transaction commits.

Avoid transaction rollback
When transactions fail due to erroneous data or application failure, they are rolled
back by TimesTen automatically. In addition, applications often explicitly rollback
transactions to recover from deadlock or timeout conditions. This is not desirable from
a performance point of view, as a rollback consumes resources and the entire
transaction is wasted.

Applications should avoid unnecessary rollbacks. This may mean designing the
application to avoid contention and checking application or input data for potential
errors in advance, if possible. The XACT_ROLLBACKS column of the SYS.MONITOR
table indicates the number of transactions that were rolled back.

Recovery tuning
The following sections include tips for improving performance of database recovery
after database shutdown or system failure:

■ Set RecoveryThreads

■ Discovered direct I/O on HP-UX

Set RecoveryThreads
Performance impact: Large

Set the RecoveryThreads attribute to the number of indexes or CPUs to improve
recovery performance.

Discovered direct I/O on HP-UX
Performance impact: Medium

Setting discovered_direct_iosz for the Veritas file system on HP-UX improves
recovery performance. Writes that are larger than discovered_direct_iosz
bypass the file system buffer cache and go directly to disk. Set discovered_direct_
iosz to at least one megabyte. See Veritas documentation for more information.

Scaling for multiple CPUs
The following sections include tips for improving performance for multiple CPUs:

■ Run the demo applications as a prototype

■ Limit database-intensive connections per CPU

■ Use read operations when available

Note: If you do not include any explicit commits in your application,
the application can use up important resources unnecessarily,
including memory and locks. All applications should do periodic
commits.

Scaling for multiple CPUs

9-20 Oracle TimesTen In-Memory Database Operations Guide

■ Limit prepares, re-prepares and connects

■ Limit replication transmitters and receivers and XLA readers

■ Allow indexes to be rebuilt in parallel during recovery

■ Use private commands

Run the demo applications as a prototype
Performance impact: Variable

One way to determine the approximate scaling you can expect from TimesTen is to
run one of the scalable demo applications, such as tptbm, on your system.

The tptbm application implements a multi-user throughput benchmark. It allows you
to control how it executes, including options to vary the number of processes that
execute TimesTen operations and the transaction mix of SELECTs, UPDATEs, and
INSERTs, for example. Run tptbm -help to see the full list of options.

By default the demo executes one operation per transaction. You can specify more
operations per transaction to better model your application. Larger transactions may
scale better or worse, depending on the application profile.

Run multi-processor versions of the demo to evaluate how your application can be
expected to perform on systems that have multiple CPUs. If the demo scales well but
your application scales poorly, you might try simplifying your application to see
where the issue is. Some users comment out the TimesTen calls and find they still have
bad scaling due to issues in the application.

You may also find, for example, that some simulated application data is not being
generated properly, so that all the operations are accessing the same few rows. That
type of localized access will greatly inhibit scalability if the accesses involve changes to
the data.

See the Quick Start home page at install_dir/quickstart.html for additional
information about tptbm and other demo applications. Go to the ODBC link under
"Sample Programs".

Limit database-intensive connections per CPU
Performance impact: Variable

Check the LOCK_TIMEOUTS or LOCK_GRANTS_WAIT fields in the SYS.MONITOR
table. If they have high values, this may indicate undue contention, which can lead to
poor scaling.

Because TimesTen is quite CPU-intensive, optimal scaling is achieved by having at
most one database-intensive connection per CPU. If you have a 4-CPU system or a
2-CPU system with hyperthreading, then a 4-processor application will run well, but
an 8-processor application will not perform well. The contention between the active
threads will be too high. The only exception to this rule is when many transactions are
committed durably. In this case, the connections are not very CPU-intensive because
of the increase in I/O operations to disk, and so the machine can support many more
concurrent connections.

Use read operations when available
Performance impact: Variable

Scaling for multiple CPUs

TimesTen Database Performance Tuning 9-21

Read operations scale better than write operations. Make sure that the read and write
balance reflects the real-life workload of your application.

Limit prepares, re-prepares and connects
Performance impact: Variable

Prepares do not scale. Make sure that you pre-prepare commands that are executed
more than once. The CMD_PREPARES and CMD_REPREPARES columns of the
SYS.MONITOR table indicate how often commands were prepared or automatically
re-prepared due to creation or deletion of indexes. If either has a high value, modify
your application to do connection pooling, so that connects and disconnects are rare
events.

Connects do not scale. Make sure that you pre-prepare commands that are executed
more than once. Look at the DS_CONNECTS field in the SYS.MONITOR table. If the
field has a high value, modify your application to do connection pooling, so that
connects and disconnects are rare events.

Limit replication transmitters and receivers and XLA readers
Performance impact: Variable

Replication and XLA operations have significant logging overhead. Replication scales
best when there are a limited number of transmitters or receivers. Check your
replication topology and see if you can simplify it. Generally, XLA scales best when
there are a limited number of readers. If your application has numerous readers, see if
you can reduce the number.

Monitor XLA and replication to ensure they are reading from the transaction log
buffer rather than from the disk. With a lot of concurrent updates, replication may not
keep up. Updates are single-threaded at the subscriber. You can achieve better XLA
throughput if the frequency of acknowledgements is reduced.

Estimate the number of readers and transmitters required by checking the values in
the LOG_FS_READS and LOG_BUFFER_WAITS columns in the SYS.MONITOR table.
The system updates this information each time a connection is made or released and
each time a transaction is committed or rolled back.

Setting LogFlushMethod=2 can improve performance of RETURN TWOSAFE
replication operations and RETURN RECEIPT with DURABLE TRANSMIT operations.

Allow indexes to be rebuilt in parallel during recovery
Performance impact: Variable

On multi-processor systems, set RecoveryThreads to minimum(number of CPUs
available, number of indexes) to allow indexes to be rebuilt in parallel if recovery is
necessary. If a rebuild is necessary, progress can be viewed in the user log. Setting
RecoveryThreads to a number larger than the number of CPUs available can cause
recovery to take longer than if it were single-threaded.

Use private commands
Performance impact: Variable

On multi-processor systems, if many threads are executing the same commands, then
try setting PrivateCommands=1 to improve throughput or response time. The use of
private commands increases the amount of temporary space used.

XLA tuning

9-22 Oracle TimesTen In-Memory Database Operations Guide

XLA tuning
The following sections include tips for improving XLA performance:

■ Increase transaction log buffer size when using XLA

■ Prefetch multiple update records

■ Acknowledge XLA updates

Increase transaction log buffer size when using XLA
A larger transaction log buffer size is appropriate when using XLA. When XLA is
enabled, additional transaction log records are generated to store additional
information for XLA. To ensure the transaction log buffer is properly sized, one can
watch for changes in the SYS.MONITOR table entries LOG_FS_READS and LOG_
BUFFER_WAITS. For optimal performance, both of these values should remain 0.
Increasing the transaction log buffer size may be necessary to ensure the values remain
0.

Prefetch multiple update records
Performance impact: Medium

Prefetching multiple update records at a time is more efficient than obtaining each
update record from XLA individually. Because updates are not prefetched when you
use AUTO_ACKNOWLEDGE mode, it can be slower than the other modes. If possible, you
should design your application to tolerate duplicate updates so you can use DUPS_
OK_ACKNOWLEDGE, or explicitly acknowledge updates. Explicitly acknowledging
updates usually yields the best performance if the application can tolerate not
acknowledging each message individually.

Acknowledge XLA updates
Performance impact: Medium

To explicitly acknowledge an XLA update, you call acknowledge on the update
message. Acknowledging a message implicitly acknowledges all previous messages.
Typically, you receive and process multiple update messages between
acknowledgements. If you are using the CLIENT_ACKNOWLEDGE mode and intend to
reuse a durable subscription in the future, you should call acknowledge to reset the
bookmark to the last-read position before exiting.

10

The TimesTen Query Optimizer 10-1

10The TimesTen Query Optimizer

The TimesTen cost-based query optimizer uses information about an application's
tables and their available indexes to choose a fast path to the data. Application
developers can examine the plan chosen by the optimizer to check that indexes are
used appropriately. If necessary, application developers can also modify the
optimizer's behavior so that it chooses a different plan.

This chapter includes the following topics:

■ When optimization occurs

■ Viewing SQL commands stored in the SQL Command Cache

■ Viewing SQL query plans

■ Modifying plan generation

When optimization occurs
It is useful to understand when TimesTen performs query optimization, since a single
command may be optimized several times.

TimesTen invokes the optimizer whenever a SELECT, UPDATE, DELETE, INSERT
SELECT or CREATE MATERIALIZED VIEW statement is prepared through an ODBC
SQLPrepare or SQLExecDirect function or any of the JDBC execute methods. The
resulting plan persists until an invalidating event occurs, or the command is dropped
by the application. A command is invalidated under the following circumstances:

■ A table it uses is dropped

■ A table it uses is altered

■ An index on a table it references is dropped

■ An index is created on a table it references

■ Statistics are recomputed

An invalid command is usually reprepared automatically just before it is re-executed.
This means that the optimizer is invoked again at this time, possibly resulting in a new
plan. Thus, a single command may be prepared several times.

A command may have to be prepared manually if, for example, the table that the
command referenced was dropped and a new table with the same name was created.

Note: When using JDBC, you must manually reprepare commands
when a table has been altered.

When optimization occurs

10-2 Oracle TimesTen In-Memory Database Operations Guide

When you prepare a statement manually, you should commit the prepare statement so
it can be shared. If the command is recompiled because it was invalid, and if
recompilation involves DDL on one of the referenced tables, then the prepared
statement must be committed to release the command lock.

For example, in ODBC a command joining tables T1 and T2 may undergo the
following changes:

In JDBC, a command joining tables T1 and T2 may undergo the following changes:

As illustrated, optimization is generally performed at prepare time, but it may also be
performed later when indexes are dropped or created, or when statistics are modified.
Optimization does not occur if a prepare can use a command in the cache.

If a command was prepared with the genPlan flag set, it will be recompiled with the
same flag set. Thus, the plan is generated even though the plan for another query was
found in the SYS.PLAN table.

If an application specifies hints to modify the optimizer's behavior, these hints persist
until the command is deleted. See "Modifying plan generation" on page 10-11" for
more information. For example, when the ODBC SQLPrepare function or JDBC

Action Description

SQLPrepare Command is prepared.

SQLExecute Command is executed.

SQLExecute Command is re-executed.

Create Index on T1 Command is invalidated.

SQLExecute Command is reprepared, then executed.

SQLExecute Command is re-executed.

ttOptUpdateStats on T1 Command is invalidated if the invalidate flag is passed to the
ttOptUpdateStats procedure.

SQLExecute Command is reprepared, then executed.

SQLExecute Command is re-executed.

SQLFreeStmt Command is dropped.

Action Description

Connection.prepareStatement Command is prepared.

PreparedStatement.execute Command is executed.

PreparedStatement.execute Command is re-executed.

Create Index on T1 Command is invalidated.

PreparedStatement.execute Command is reprepared, then executed.

PreparedStatement.execute Command is re-executed.

ttOptUpdateStats on T1 Command is invalidated if the invalidate flag is
passed to the ttOptUpdateStats procedure.

PreparedStatement.execute Command is reprepared, then executed.

PreparedStatement.execute Command is re-executed.

PreparedStatement.close Command is dropped.

Viewing SQL commands stored in the SQL Command Cache

The TimesTen Query Optimizer 10-3

Connection.prepareStatement method is called again on the same handle or
when the SQLFreeStmt function or PreparedStatement.close method is called.
This means that any intermediate reprepare operations that occur because of
invalidations will use those same hints.

Viewing SQL commands stored in the SQL Command Cache
All commands executed—SQL statements, built-in procedures, and so on—are stored
in the SQL Command Cache, which uses temporary memory. The commands are
stored up until the limit of the SQL Command Cache is reached, then the new
commands are stored after the last used commands are removed. You can retrieve one
or more of these commands that are stored in the SQL Command Cache.

The following sections describe how to view commands cached in the SQL Command
Cache:

■ Managing performance and troubleshooting commands

■ Displaying commands stored in the SQL Command Cache

Managing performance and troubleshooting commands
You can view all one or more of the SQL commands or details of their query plans
with the ttSqlCmdCacheInfo and ttSqlCmdQueryPlan built-in procedures. Use
the query plan information to monitor and troubleshoot your queries.

Viewing the SQL commands and query plans can help you perform the following:

■ Detect updates or deletes that are not using an index scan.

■ Monitor query plans of executing queries to ensure all plans are optimized.

■ Detect applications that do not prepare SQL statements or that re-prepare the
same statement multiple times.

■ Discover the percentage of space used in the command cache for performance
evaluation.

Displaying commands stored in the SQL Command Cache
The commands executed against the TimesTen database are cached in the SQL
command cache. The ttSqlCmdCacheInfo built-in procedure displays a specific or
all cached commands in the TimesTen SQL command cache. By default, all commands
are displayed; if you specify a command id, then only this command is retrieved for
display.

The command data is saved in the following format:

■ Command identifier, which is used to retrieve a specific command or its
associated query plan.

■ Private connection identifier.

■ Counter for the number of executions.

Note: This section describes viewing the commands stored in the
SQL Command Cache. For details on how to view the query plans
associated with these commands, see "Viewing query plans associated
with commands stored in the SQL Command Cache" on page 10-8.

Viewing SQL commands stored in the SQL Command Cache

10-4 Oracle TimesTen In-Memory Database Operations Guide

■ Counter for the number of times the user prepares this statement.

■ Counter for the number of times the user re-prepares this statement.

■ Freeable status, where if the value is one, then the subdaemon can free the space
with the garbage collector. A value of zero determines that the space is not able to
be freed.

■ Total size in bytes allocated for this command in the cache.

■ User who created the command.

■ Query text up to 1024 characters.

At the end of the list of all SQL commands, a status is printed of how many commands
were in the cache.

The following examples show how to display all or a single SQL command from the
SQL Command Cache using the ttSqlCmdCacheInfo built-in utility:

■ Displaying all SQL commands in the SQL Command Cache

■ Displaying a single SQL command

Example 10–1 Displaying all SQL commands in the SQL Command Cache

This example executes within ttIsql the ttSqlCmdCacheInfo built-in procedure
without arguments to show all cached SQL commands. The SQL commands are
displayed in terse format. To display the information where each column is prepended
with the column name, execute vertical on before executing the
ttsqlCmdCacheInfo procedure.

Command> call ttsqlCmdCacheInfo;
< 528079360, 2048, 0, 1, 0, 1, 2168, PAT , select * from
t7 where x7 is not null or exists (select 1 from t2,t3 where not 'tuf' like
'abc') >
< 527609108, 2048, 0, 1, 0, 1, 2960, PAT , select * from
t1 where x1 = (select x2 from t2 where z2 in (1,3) and y1=y2) order by 1, 2, 3 >
< 528054656, 2048, 0, 1, 0, 1, 1216, PAT , create table
t2(x2 int,y2 int, z2 int) >
< 528066648, 2048, 0, 1, 0, 1, 1176, PAT , insert into t2
select * from t1 >
< 528013192, 2048, 0, 1, 0, 1, 1848, PAT , select * from
t1 where exists (select * from t2 where x1=x2) or y1=1 >
< 527582620, 2048, 0, 1, 0, 1, 1240, PAT , insert into t2
select * from t1 >
< 527614292, 2048, 0, 1, 0, 1, 2248, PAT , select * from
t1 where exists (select x2 from t2 where x1=x2) order by 1, 2, 3 >
< 528061248, 2048, 0, 1, 0, 1, 696, PAT , create index i1
on t3(y3) >
< 528070368, 2048, 0, 1, 0, 1, 824, PAT , call
ttOptSetOrder('t3 t4 t2 t1') >
< 528018856, 2048, 0, 1, 0, 1, 984, PAT , insert into t2
select * from t1 >
< 527606460, 2048, 0, 1, 0, 1, 2624, PAT , select * from
t1 where x1 = (select x2 from t2 where y1=y2) order by 1, 2, 3 >
< 528123000, 2048, 0, 1, 0, 1, 3616, PAT , select * from
t1 where x1 = 1 or x1 = (select x2 from t2,t3 where z2=t3.x3) >
< 528074624, 2048, 0, 1, 0, 1, 856, PAT , call
ttOptSetOrder('t4 t2 t3 t1') >
< 527973892, 2048, 0, 1, 0, 1, 2872, PAT , select * from
t1 where x1 in (select x2 from t2) or x1 in (select x3 from t3) order by 1, 2, 3 >
< 527953876, 2048, 0, 1, 0, 1, 3000, PAT , select * from

Viewing SQL query plans

The TimesTen Query Optimizer 10-5

t1 where x1 = (select x2 from t2) order by 1, 2, 3 >
< 527603900, 2048, 0, 1, 0, 1, 2440, PAT , select * from
t1 where x1 in (select x2 from t2 where y1=y2) order by 1, 2, 3 >
< 528093308, 2048, 0, 1, 0, 1, 3608, PAT , select * from
t1 where x1 = 1 or x1 = (select x2 from t2,t3 where z2=t3.x3 and t3.z3=1) >
< 528060608, 2048, 0, 1, 0, 1, 696, PAT , create index i1
on t2 (y2) >

Example 10–2 Displaying a single SQL command

If you provide a command id as the input for the ttSqlCmdCacheInfo, the single
SQL command is displayed from within the SQL Command Cache. You can discover
the command id from executing this built-in without input. The command id is the
first column displayed.

The following example displays the SQL command identified by Command ID of
527973892. It is displayed in terse format; to view with the column headings
prepended, execute vertical on before executing the ttSqlCmdCacheInfo
built-in.

Command> call ttsqlCmdCacheInfo(527973892);
< 527973892, 2048, 0, 1, 0, 1, 2872, PAT , select * from
t1 where x1 in (select x2 from t2) or x1 in (select x3 from t3) order by 1, 2, 3 >
1 row found.

Viewing SQL query plans
You can view the query plan for a SQL command in one of two ways: storing the latest
query plan into the system PLAN table or viewing all cached SQL commands and their
query plans in the SQL command cache. Both methods are described in the following
sections:

■ Viewing a query plan from the system PLAN table

■ Viewing query plans associated with commands stored in the SQL Command
Cache

Viewing a query plan from the system PLAN table
The optimizer prepares the query plans. For the last SQL command to be
executed—such as a prepared SELECT, UPDATE, DELETE, INSERT SELECT, CREATE
TABLE, CREATE MATERIALIZED VIEW and so on—you can instruct that the plan be
stored in the system PLAN table:

1. Instruct TimesTen to generate the plan and store it in the system PLAN table.

2. Prepare the statement means calling the ODBC SQLPrepare function or JDBC
Connection.prepareStatement method on the statement. TimesTen stores
the plan into the PLAN table.

3. Read the generated plan within the SYS.PLAN table.

The stored plan is updated automatically whenever the command is reprepared.
Re-preparation occurs automatically if one ore more of the following occurs:

■ A table in the statement is altered.

■ If indexes are created or dropped.

■ The application invalidates commands when statistics are updated with the
invalidate option in the ttOptUpdateStat built-in procedure.

Viewing SQL query plans

10-6 Oracle TimesTen In-Memory Database Operations Guide

For these cases, read the PLAN table to view how the plan has been modified.

Instruct TimesTen to store the plan in the system PLAN table
Before you can view the plan in the system PLAN table, call the built-in
ttOptSetFlag procedure with the GenPlan flag. This call informs TimesTen that all
subsequent calls to the ODBC SQLPrepare function or JDBC
Connection.prepareStatement method in the transaction should store the
resulting plan in the current SYS.PLAN table.

The SYS.PLAN table only stores one plan, so each call to the ODBC SQLPrepare
function or JDBC Connection.prepareStatement method overwrites any plan
currently stored in the table.

If a command is prepared with the genPlan flag set, it is recompiled with this flag.
Thus, the plan is generated even though the plan for another query was found in the
SYS.PLAN table.

For example, try the query and optimizer hints with the ttIsql utility. To display
optimizer plans, issue the following commands:

autocommit 0;
showplan 1;

Reading query plan from the PLAN table
Once plan generation has been turned on and a command has been prepared, one or
more rows in the SYS.PLAN table store the plan for the command. The number of
rows in the table depends on the complexity of the command. Each row has seven
columns, as described in "System Tables" in the Oracle TimesTen In-Memory Database
System Tables and Limits Reference.

Example 10–3 Generating a query plan

This example uses the following query:

SELECT COUNT(*)
FROM T1, T2, T3
WHERE T3.B/T1.B > 1
AND T2.B <> 0
AND T1.A = -T2.A
AND T2.A = T3.A

The optimizer generates the five SYS.PLAN rows shown in the following table. Each
row is one step in the plan and reflects an operation that is performed during query
execution.

Note: Make sure AUTOCOMMIT is not set. If it is, the current
transaction completes after the processing of the command and
prepares in the next transaction are not affected.

Step Level Operation TblNames IXName Pred Other Pred

1 3 TblLkTtreeScan T1 IX1

2 3 TblLkTtreeScan T2 IX2(D) T2.B <> 0

3 2 MergeJoin T1.A = -T2.A

4 2 TblLkTtreeScan T3 IX3(D)

Viewing SQL query plans

The TimesTen Query Optimizer 10-7

For details about each column in the SYS.PLAN table, see "Describing the PLAN table
columns" on page 10-7.

Describing the PLAN table columns
The SYS.PLAN table has seven columns.

Column 1 (Step) Indicates the order of operation, which always starts with one.
Example 10–3 uses a table lock range scan in the following order:

1. Table locking range scan of IX1 on table T1.

2. Table locking range scan of IX2 on T2.

3. Merge join of T1 and T2 and so forth.

Column 2 (Level) Indicates the position of the operation in the join-tree diagram that
describes the execution. For Example 10–3, the join tree is as follows:

Column 3 (Operation) Indicates the type of operation being executed. For a description of
the potential values in this field and the type of table scan each represents, see
SYS.PLAN in "System Tables" in the Oracle TimesTen In-Memory Database System Tables
and Limits Reference.

Not all operations the optimizer performs are visible to the user. Only operations
significant to performance analysis are shown in the SYS.PLAN table. TblLk is an
optimizer hint that is honored at execution time in Serializable or Read Committed
isolation. Table locks are used during a scan only if row locks are disabled during
preparation.

Column 4 (TblNames) Indicates the table that is being scanned. This column is used only
when the operation is a scan. In all other cases, this column is NULL.

Column 5 (IXName) Indicates the index that is being used. This column is used only
when the operation is an index scan using an existing index—such as a hash or range
scan. In all other cases, this column is NULL. Names of range indexes are followed with
"(D)" if the scan is descending—from large to small rather than from small to large.

Column 6 (Pred) Indicates the predicate that participates in the operation, if there is one.
Predicates are used only with index scan and MergeJoin operations. The predicate
character string is limited to 1,024 characters.

5 1 MergeJoin T2.A = T3.A T3.B / T1.B > 1

Step Level Operation TblNames IXName Pred Other Pred

Viewing SQL query plans

10-8 Oracle TimesTen In-Memory Database Operations Guide

This column may be NULL—indicating no predicate—for a range scan. The optimizer
may choose a range scan over a table scan because, in addition to filtering, it has two
useful properties:

■ Rows are returned in sorted order, on index key.

■ Rows may be returned faster, especially if the table is sparse.

In Example 10–3, the range scans are used for their sorting capability; none of them
evaluates a predicate.

Column 7 (Other Pred) Indicates any other predicate that is applied while the operation
is being executed. These predicates do not participate directly in the scan or join but
are evaluated on each row returned by the scan or join.

For example, at step two of the plan generated for Example 10–3, a range scan is
performed on table T2. When that scan is performed, the predicate T2.B <> 0 is also
evaluated. Similarly, once the final merge-join has been performed, it is then possible
to evaluate the predicate T3.B / T1.B > 1.

Viewing query plans associated with commands stored in the SQL Command Cache
Use the query plan information to monitor and troubleshoot your queries.

The ttSqlCmdQueryPlan built-in procedure displays the query plan of a specific
statement or all statements in the command cache. It displays the detailed run-time
query plans for the cached SQL queries. By default, all query plans are displayed; if
you specify the command id taken from the SQL command output, only the query
plan for the specified SQL command is displayed.

The plan data displayed when you invoke this built-in procedure is as follows:

■ Command identifier

■ Query text up to 1024 characters

■ Step number of the current operation in the run-time query plan

■ Level number of the current operation in the query plan tree

■ Operation name of current step

■ Name of table used

■ Owner of the table

■ Name of index used

■ If used and available, the index predicate

Note: For more reasons why to use the ttSqlCmdQueryPlan
built-in procedure, see "Managing performance and troubleshooting
commands" on page 10-3.

Note: If you want to display a query plan for a specific command,
you must provide the command identifier, which is displayed with
the ttSqlCmdCacheInfo built-in procedure. See "Displaying
commands stored in the SQL Command Cache" on page 10-3 for full
details.

Viewing SQL query plans

The TimesTen Query Optimizer 10-9

■ If used and available, the non-indexed predicate

The ttSqlCmdQueryPlan built-in process displays the query plan in a raw data
format. Alternatively, you can execute the ttIsql explain command for a
formatted version of this output. For more information, see "Display query plan for
statement in SQL Command Cache" on page 6-22.

The following examples show how to display all or a single SQL query plan from the
SQL Command Cache using the ttSqlCmdQueryPlan built-in procedure:

■ Displaying all SQL query plans

■ Displaying a single SQL query plan

Example 10–4 Displaying all SQL query plans

You can display all SQL query plans associated with commands stored in the
command cache with the ttSqlCmdQuery plan built-in procedure within the ttIsql
utility.

The following example shows the output when executing the ttSqlCmdQueryPlan
built-in procedure without arguments, which displays detailed run-time query plans
for all valid queries. For invalid queries, there is no query plan; instead, the query text
is displayed.

The query plans are displayed in terse format; to view with the column headings
prepended, execute vertical on before executing the ttSqlCmdQueryPlan
built-in procedure.

Note: For complex expressions, there may be some difficulties in printing out the
original expressions.

Command> call ttSqlCmdQueryPlan();

< 528079360, select * from t7 where x7 is not null or exists (select 1 from t2,t3
where not 'tuf' like 'abc'), <NULL>, <NULL>, <NULL>, <NULL>, <NULL>, <NULL>,
<NULL>, <NULL> >
< 528079360, <NULL>, 0, 2, RowLkSerialScan , T7
, PAT , , , >
< 528079360, <NULL>, 1, 3, RowLkTtreeScan , T2
, PAT , I2 , , NOT(LIKE(tuf
,abc ,NULL)) >
< 528079360, <NULL>, 2, 3, RowLkTtreeScan , T3
, PAT , I2 , , >
< 528079360, <NULL>, 3, 2, NestedLoop ,
, , , , >
< 528079360, <NULL>, 4, 1, NestedLoop(Left OuterJoin) ,
, , , , >
< 528079360, <NULL>, 5, 0, Filter ,
, , , , X7 >
< 527576540, call ttSqlCmdQueryPlan(527973892), <NULL>, <NULL>, <NULL>, <NULL>,
<NULL>, <NULL>, <NULL>, <NULL> >
< 527576540, <NULL>, 0, 0, Procedure Call ,
, , , , >
< 528054656, create table t2(x2 int,y2 int, z2 int), <NULL>, <NULL>, <NULL>,

Note: For more information on how to view this information, see
"Reading query plan from the PLAN table" on page 10-6. The source
of the data may be different, but the mapping and understanding of
the material is the same as the query plan in the system PLAN table.

Viewing SQL query plans

10-10 Oracle TimesTen In-Memory Database Operations Guide

<NULL>, <NULL>, <NULL>, <NULL>, <NULL> >
< 528066648, insert into t2 select * from t1, <NULL>, <NULL>, <NULL>, <NULL>,
<NULL>, <NULL>, <NULL>, <NULL> >
< 528066648, <NULL>, 0, 0, Insert , T2
, PAT , , , >
< 528013192, select * from t1 where exists (select * from t2 where x1=x2) or
y1=1, <NULL>, <NULL>, <NULL>, <NULL>, <NULL>, <NULL>, <NULL>, <NULL> >
< 528061248, create index i1 on t3(y3), <NULL>, <NULL>, <NULL>, <NULL>, <NULL>,
<NULL>, <NULL>, <NULL> >
< 528070368, call ttOptSetOrder('t3 t4 t2 t1'), <NULL>, <NULL>, <NULL>, <NULL>,
<NULL>, <NULL>, <NULL>, <NULL> >
< 528070368, <NULL>, 0, 0, Procedure Call ,
, , , , >
< 528018856, insert into t2 select * from t1, <NULL>, <NULL>, <NULL>, <NULL>,
<NULL>, <NULL>, <NULL>, <NULL> >
< 527573452, call ttsqlCmdCacheInfo(527973892), <NULL>, <NULL>, <NULL>, <NULL>,
<NULL>, <NULL>, <NULL>, <NULL> >
< 527573452, <NULL>, 0, 0, Procedure Call ,
, , , , >
< 528123000, select * from t1 where x1 = 1 or x1 = (select x2 from t2,t3 where
z2=t3.x3), <NULL>, <NULL>, <NULL>, <NULL>, <NULL>, <NULL>, <NULL>, <NULL> >
< 528123000, <NULL>, 0, 2, RowLkSerialScan , T1
, PAT , , , >
< 528123000, <NULL>, 1, 6, RowLkTtreeScan , T2
, PAT , I2 , , >
< 528123000, <NULL>, 2, 6, RowLkTtreeScan , T3
, PAT , I2 , , Z2 = X3; >
< 528123000, <NULL>, 3, 5, NestedLoop ,
, , , , >
< 528123000, <NULL>, 4, 4, Materialized View ,
, , , , >
< 528123000, <NULL>, 5, 3, GroupBy ,
, , , , >
< 528123000, <NULL>, 6, 2, Filter ,
, , , , X1 =
colum_name; >
< 528123000, <NULL>, 7, 1, NestedLoop(Left OuterJoin) ,
, , , , >
< 528123000, <NULL>, 8, 0, Filter ,
, , , , X1 = 1; >

Example 10–5 Displaying a single SQL query plan

You can display any query plan associated with a SQL command by providing the
command id of the SQL command as the input for the ttSqlCmdQueryPlan built-in
procedure. The single query plan is displayed from within the SQL Command Cache.
You can discover the command id from executing this ttSqlCmdCacheInfo built-in
without input. The command id is the first column displayed.

The following example displays the query plan of the SQL command identified by
command id of 528078576. It is displayed in terse format; to view with the column
headings prepended, execute vertical on before executing the
ttSqlCmdQueryPlan built-in procedure.

Note: for complex expressions, there are some difficulties to print original expressions.

Command> call ttSqlCmdQueryPlan(528078576);
< 528078576, select * from t1 where 1=2 or (x1 in (select x2 from t2, t5 where y2
in (select y3 from t3)) and y1 in (select x4 from t4)), <NULL>, <NULL>, <NULL>,
<NULL>, <NULL>, <NULL>, <NULL>, <NULL> >
< 528078576, <NULL>, 0, 4, RowLkSerialScan , T1

Modifying plan generation

The TimesTen Query Optimizer 10-11

, PAT , , , >
< 528078576, <NULL>, 1, 7, RowLkTtreeScan , T2
, PAT , I2 , , >
< 528078576, <NULL>, 2, 7, RowLkTtreeScan , T5
, PAT , I2 , , >
< 528078576, <NULL>, 3, 6, NestedLoop ,
, , , , >
< 528078576, <NULL>, 4, 6, RowLkTtreeScan , T3
, PAT , I1 , ((Y3=Y2;)) ,
>
< 528078576, <NULL>, 5, 5, NestedLoop ,
, , , , >
< 528078576, <NULL>, 6, 4, Filter ,
, , , , X1 = X2; >
< 528078576, <NULL>, 7, 3, NestedLoop(Left OuterJoin) ,
, , , , >
< 528078576, <NULL>, 8, 2, Filter ,
, , , , >
< 528078576, <NULL>, 9, 2, RowLkTtreeScan , T4
, PAT , I2 , , Y1 = X4; >
< 528078576, <NULL>, 10, 1, NestedLoop(Left OuterJoin) ,
, , , , >
< 528078576, <NULL>, 11, 0, Filter ,
, , , , >
13 rows found.
Command>

Modifying plan generation
If you decide that you want to modify a query plan, you can only modify the query
plan that exists in the system PLAN table, as described in "Viewing a query plan from
the system PLAN table" on page 10-5. Once you do modify the query plan, it does not
replace the query plan, but creates a new query plan with your changes.

The following sections describe why you may want to modify execution plans and
then how to modify them:

■ Why modify an execution plan?

■ When to modify an execution plan

■ How to modify execution plan generation

Why modify an execution plan?
Applications may want to modify an execution plan for two reasons:

■ The plan is optimally fast but is ill-suited for the application. The optimizer may
select the fastest execution path, but this path may not be desirable from the
application's point of view. For example, if the optimizer chooses to use certain
indexes, these choices may prevent other operations-such as certain update or
delete operations-from occurring simultaneously on the indexed tables. In this
case, an application can prevent the use of those indexes.

The plan chosen by the optimizer may also consume more memory than is
available or than the application wants to allocate. For example, this may happen
if the plan stores intermediate results or requires the creation of temporary
indexes.

■ The plan is not optimally performant. The query optimizer chooses the plan that
it estimates will execute the fastest based on its knowledge of the tables' contents,

Modifying plan generation

10-12 Oracle TimesTen In-Memory Database Operations Guide

available indexes, statistics and the relative costs of various internal operations.
The optimizer often has to make estimates or generalizations when evaluating this
information, so there can be instances where it does not choose the fastest plan. In
this case, an application can adjust the optimizer's behavior to try to produce a
better plan.

When to modify an execution plan
Applications can modify an execution plan by providing hints to the optimizer. Hints
are specified by calls to one of the TimesTen optimizer built-in procedures and are in
effect for all calls to the ODBC SQLPrepare function or JDBC PreparedStatement
objects in the transaction. For more information on how to provide these hints, see
"How to modify execution plan generation" on page 10-14.

If a command is prepared with certain hints in effect, those hints continue to apply if
the command is reprepared automatically, even when this happens outside the initial
prepare transaction. This can happen when a table is altered, or an index is dropped or
created, or when statistics are modified, as described in "When optimization occurs"
on page 10-1.

If a command is prepared without hints, subsequent hints will not affect the command
if it is reprepared automatically. An application must call the ODBC SQLPrepare
function or JDBC Connection.prepareStatement method a second time so that
hints have an effect.

Example 10–6 Tuning a join when using ODBC

When using ODBC, a developer tuning a join on T1 and T2 might go through the
steps shown in the following figure.

During execution, the application may then go through the steps shown in the
following figure.

Note: Make sure AUTOCOMMIT is not set. If it is, the current
transaction completes after processing the ttOptSetFlag procedure
and prepares in the next transaction are not affected.

ttOptSetFlag

Prepare command

Examine PLAN table

Set various optimizer hints ttOptSetFlag

Prepare command again SQLPrepare

Examine PLAN table...

Put plans into the PLAN table

SYS.PLAN

Fully optimized!

SELECT * FROM
SYS.PLAN

SELECT * FROM

SQLPrepare

Modifying plan generation

The TimesTen Query Optimizer 10-13

Example 10–7 Tuning a join when using JDBC

When using JDBC, a developer tuning a join on T1 and T2 might go through the steps
shown in the following figure.

During execution, the application may then go through the steps shown in the
following figure.

ttOptSetFlag Set various optimizer hints.

SQLPreparePrepare command.

SQLExecuteExecute command.

SQLExecuteExecute command.

ttOptUpdateStatsCommand is invalidated

SQLExecuteCommand is reprepared automatically,

SQLExecuteExecute command.

SQLFreeStmtDrop command.

(if application chooses to invalidate).

using same hints, and executed.

 on T2

 ttOptSetFlag

Prepare command

Examine PLAN table

Set various optimizer hints ttOptSetFlag

Prepare command again Connection.prepareStatement

Examine PLAN table...

Put plans into the PLAN table

SYS.PLAN

Fully optimized!

SELECT * FROM
SYS.PLAN

SELECT * FROM

Connection.prepareStatement

Modifying plan generation

10-14 Oracle TimesTen In-Memory Database Operations Guide

How to modify execution plan generation
To change the query optimizer behavior, an application calls one of the following
built-in procedures using the ODBC procedure call interface:

■ ttOptSetFlag—Sets certain optimizer parameters.

■ ttOptSetOrder—Allows an application to specify the table join order.

■ ttOptUseIndex—Allows an application to specify that an index be used or to
disable the use of certain indexes.

■ ttOptClearStats, ttOptEstimateStats, ttOptSetColIntvlStats,
ttOptSetTblStats, ttOptUpdateStats—Manipulate statistics that the
TimesTen Data Manager maintains on the application's data that are used by the
query optimizer to estimate costs of various operations.

Some of these built-in procedures require that the user have privileges to the objects
on which the utility executes. For full details on these built-in procedures and any
privileges required, see "Built-In Procedures" in the Oracle TimesTen In-Memory
Database Reference.

The following examples provide an ODBC and JDBC method on how to use the
ttOptSetFlag built-in procedure:

■ Example 10–8—JDBC example.

■ Example 10–9—ODBC example.

Note: You can also experiment with optimizer settings using the
ttIsql utility. The commands that start with try control the
optimizer hints. To view your current optimizer hint settings, use the
optprofile command.

ttOptSetFlag Set various optimizer hints.

Connection.prepareStatementPrepare command.

Statement*.execute*Execute command.

Statement*.execute*Execute command.

ttOptUpdateStats on T2Command is invalidated

Statement*.execute*Command is re-prepared automatically,

Statement*.execute*Execute command.

PreparedStatement.closeDrop command.

(if application chooses to invalidate).

using same hints, and executed.

Modifying plan generation

The TimesTen Query Optimizer 10-15

Example 10–8 Using ttOptSetFlag in JDBC

This JDBC example illustrates the use of ttOptSetFlag to prevent the optimizer
from choosing a merge join.

import java.sql.*;
class Example
{
 public void myMethod() {
 CallableStatement cStmt;
 PreparedStatement pStmt;

 try {

 // Prevent the optimizer from choosing Merge Join
 cStmt = con.prepareCall("{
 CALL ttOptSetFlag('MergeJoin', 0)}");
 cStmt.execute();
 // Next prepared query
 pStmt=con.prepareStatement(
 "SELECT * FROM Tbl1, Tbl2 WHERE Tbl1.ssn=Tbl2.ssn");

 catch (SQLException ex) {
 ex.printStackTrace();
 }
 }

}

Example 10–9 Using ttOptSetFlag in ODBC

This ODBC example illustrates the use of ttOptSetFlag to prevent the optimizer
from choosing a merge join.

#include <sql.h>
SQLRETURN rc;
SQLHSTMT hstmt; fetchStmt;
....
rc = SQLExecDirect (hstmt, (SQLCHAR *)
 "{CALL ttOptSetFlag (MergeJoin, 0)}",
 SQL_NTS)
/* check return value */
...
rc = SQLPrepare (fetchStmt, ...)
/* check return value */
...

Modifying plan generation

10-16 Oracle TimesTen In-Memory Database Operations Guide

Glossary-1

Glossary

.odbc.ini file
See "ODBC initialization file (ODBC INI)".

ACID transaction semantics
An acronym referring to the four fundamental properties of a transaction: atomicity,
consistency, isolation and durability.

atomicity
A property of a transaction whereby either all or none of the operations of a
transaction are applied to the database.

backup instance
A set of files containing backup information for a given database, residing at a given
backup path. See also "backup path", "full backup" and "incremental backup".

backup path
The location of a database, specified by a directory name and an optional basename.

backup point
The time at which a backup begins. See also "backup path", "full backup" and
"incremental backup".

bitmap index
Indexes are used to speed up queries on a table. Bitmap indexes are useful when
searching and retrieving data from columns with low cardinality. That is, these
columns can have only a few unique possible values.

cache group
A set of cached tables related through foreign keys.

cache instance
A set of rows related through foreign keys. Each cache instance contains exactly one
row from the root table of a cache group and zero or more rows from the other tables
in the cache group.

client/server
An approach to application design and development in which application processing
is divided between components running on an end user's machine, such as the client,
and a network server. Generally, user interface elements are implemented in the client
component, while the server controls database access.

client data source name

Glossary-2

client data source name
See "data source name, client".

concurrency
The ability to have multiple transactions access and manipulate the database at the
same time.

connection
A data path between an application and a particular ODBC data source.

connection attribute
A character string that defines a connection parameter to be used when connecting to
an ODBC data source. Connection attributes have the form name=value, where name is
the name of the parameter and value is the parameter value. See also connection string.

connection request
A message sent by an application through an ODBC driver to an ODBC data source to
request a connection to that data source.

connection string
A character string that defines the connection parameters to be used when connecting
to an ODBC data source. A connection string is expressed as one or more connection
attributes separated by semicolons.

consistency
A property of transactions whereby each transaction transforms the database from one
consistent state to another.

cursor
A control structure used by an application to iterate through the results of an SQL
query.

data source definition
A named collection of connection attributes that defines the connection parameters to
be used when connecting to an ODBC data source. See also "data source name".

data source name
A logical name by which an end user or application refers to an ODBC data source
definition. Sometimes incorrectly used to mean "data source definition". See also "data
source definition", ODBC.INI file.

data source name, client
A data source name defined on a TimesTen client machine that refers to a Server DSN
on a server machine.

data source name, server
A system data source name (system DSN) defined on a server machine. Server Data
Source Names become available to all TimesTen clients on a network when the
TimesTen Server is running.

data source name, system
A data source name that is accessible by all users of a particular machine.

host

Glossary-3

data source name, user
A data source name that is accessible only by the user who created the data source
name.

driver
See "ODBC driver".

DSN
See "data source name".

DSN, client
See "data source name, client".

DSN, server
See "data source name, server".

DSN, system
See "data source name, system".

DSN, user
See "data source name, user".

durability
A property of transactions whereby the effects of a committed transaction survive
system failures.

environment variable
A name, value pair maintained by the operating system that can be used to pass
configuration parameters to an application.

event
An activity or occurrence that can be tracked by a logging mechanism in an
application, service or operating system. See also "logging", "protocol message
logging" and "event viewer".

event viewer
On Windows, a utility program used to view the contents of the operating system
event log.

full backup
A database backup procedure in which a complete copy of a database is created.
Typically, the first backup of a database must be a full backup. See also "incremental
backup".

hash index
Indexes are used to speed up queries on a table. Hash indexes are useful for finding
rows with an exact match on one or more columns.

host
A computer. Typically used to refer to a computer on a network that provides services
to other computers on the network.

host name

Glossary-4

host name
A character string name that uniquely identifies a particular computer on a network.
Examples: athena, thames.mycompany.com. See also "host".

in-line column
A column whose values are physically stored together with the other column values of
a row.

incremental backup
A database backup procedure in which an existing backup is augmented with all the
transaction log records created since its last full or incremental backup. See also
"backup instance" and "full backup".

initialization file
See ODBC.INI file.

IP address
A numeric address that uniquely identifies a computer on a network and consists of
four numbers separated by dots. Abbreviation for Internet Protocol address. Example:
123.61.129.91.

IPC
Inter Process Communication

isolation
A property of transactions whereby each transaction runs as if it were the only
transaction in the system.

listener thread
A thread that runs on the TimesTen Server that receives and processes connection
requests from TimesTen Clients.

logging
The process by which an application, service or operating system records specific
events that occur during processing.

multithreading
A programming paradigm in which a process contains multiple threads of control.

network address
A host name, or IP address that uniquely identifies a particular computer on a
network. Examples: 123.61.129.91, athena, thams.mycompany.com.

ODBC
See "Open Database Connectivity (ODBC)".

ODBC Administrator
A utility program used on Windows to create, configure and delete data source
definitions.

ODBC data source
See "data source name" (DSN).

procedure

Glossary-5

ODBC data source name
See "data source name" (DSN).

ODBC driver
A library that implements the function calls defined in the ODBC API and enables
applications to interact with ODBC data sources.

ODBC Driver Manager
A library that acts as an intermediary between an ODBC application and one or more
ODBC drivers.

ODBC initialization file (ODBC INI)
The ODBC.INI file contains a list of Data Sources and any properties for each. Each
Data Source name must have a driver property defined. This enables the driver to be
loaded when a connect call is made.

Open Database Connectivity (ODBC)
A database-independent application programming interface that enables applications
to access data stored in heterogeneous relational and non-relational databases. Based
on the Call-Level Interface (CLI) specification developed by X/Open's SQL Access
Group and first popularized by Microsoft on the Windows platform.

Open database connectivity (ODBC), is a database access protocol that lets you
connect to a database and then prepare and run SQL statements against the database.
In conjunction with an ODBC driver, an application can access any data source
including data stored in spreadsheets, like Excel. Because ODBC is a widely accepted
standard API, applications can be written to comply to the ODBC standard. The
ODBC driver performs all mappings between the ODBC standard and the particular
database the application is accessing. Using a data source-specific driver, an ODBC
compliant program can access any data source without any more development effort.

TimesTen provides the ODBC interface so that applications of any type that are ODBC
compliant can access TimesTen using the ODBC driver provided by TimesTen.

out-of-line column
A column whose values are physically stored separately from the other column values
of a row.

phantom
A row that appears during one read but not during another read within the same
transaction, due to the actions of other concurrently executing transactions.

ping
A utility that tests the connection between two computers on a network by sending a
message from one computer to the other and measuring how long it takes for the
receiving system to confirm that the message was received. Typically packaged with
network software.

port number
See "TCP/IP port number".

procedure
See "stored procedure".

process

Glossary-6

process
An instance of a program in execution.

propagate
When using IMDB Cache to send table or row modifications from an IMDB Cache to
an Oracle database. Compare with "replicate".

protocol message logging
The process that the TimesTen Server uses to record each message it receives through
the TimesTen network protocol.

range index
Indexes are used to speed up queries on a table. A range index is similar in
functionality to a B+-tree index and is best used for retrieving rows with column
values within a certain range.

replicate
The sending of table or row modifications from one database to another. Compare
with "propagate".

result set
A collection of zero or more rows of data that represent the result of an SQL query.

rollback
To undo the actions of a transaction, thereby returning all items modified by the
transaction to their original state.

row buffering
A performance enhancement used by the TimesTen Client in which the client receives
multiple result rows of an SQL query in each message from the TimesTen Server to
reduce network communication.

RPC
Remote Procedure Call.

scalability
The degree to which a system or application can handle increasing demands on
system resources without significant performance degradation.

schema
A schema is automatically created for a user upon user creation. A schema is the
namespace for a given user, where all objects owned by this user belong and all objects
are identified by schema qualified names. For example, user PAT belongs to the PAT
schema. In addition, the object EMPLOYEES owned by PAT is identified as
PAT.EMPLOYEES.

If a user refers to an object without the schema name, TimesTen first tries to resolve
the name to the user's schema. If this object does not exist, TimesTen tries to resolve
the name to SYS.EMPLOYEES.

A user always has all privileges to all objects in their own schema. These privileges can
never be revoked.

telnet

Glossary-7

server data source name
See "data source name, server".

server DSN
See "data source name, server".

system DSN
See "data source name, system".

shorthand name
A logical name used to refer to a particular TimesTen Server. Shorthand names relieve
the end user of having to enter a host name and port number to connect to a TimesTen
Server.

SMP
Symmetric multi-processing. A hardware configuration in which two or more similar
processors are connected via a high-bandwidth link and managed by one operating
system, where each processor has equal access to I/O devices.

SNMP
Simple Network Management Protocol. Used to manage nodes on a network.

SQL
Structured Query Language.

stack overflow condition
An error condition in which the stack usage of a thread or process exceeds the amount
of space allocated for the stack.

stored procedure
An executable object or named entity stored in a database that can be invoked with
input and output parameters and which can return result sets similar to those returned
by an SQL query.

system account
A special account on Windows used by the operating system and certain operating
system services. The TimesTen service and the TimesTen Server run under the system
account.

system DSN
See "data source name, system".

TCP/IP
The communications protocol used by computers on the Internet. Abbreviation for
Transport Control Protocol/Internet Protocol.

TCP/IP port number
A number used by TCP/IP that identifies the end point for a connection to a host that
supports multiple simultaneous connections.

telnet
A utility program and protocol that enables a user on one computer to open a virtual
terminal, log in to a remote host and interact as a terminal user of that host.

thread

Glossary-8

thread
An independent sequence of execution of program code inside a process. See also
"process".

thread-safe ODBC driver
An ODBC driver that supports multithreaded servers and clients. The TimesTen data
manager driver and the TimesTen Client driver are thread-safe.

timeout error
An error condition indicating that the requested operation did not complete within the
given amount of time. See also "timeout interval".

timeout interval
A configuration parameter that specifies the maximum amount of time that an
operation should take to complete. See also "timeout error".

TimesTen Client
(1) An ODBC driver that enables end users to access data sources through a TimesTen
Server. (2) A computer on which the TimesTen Client software has been installed.
Using the TimesTen Client driver, an end user or application can access any data
source managed by an available TimesTen Server.

TimesTen Client/Server network protocol
The protocol used by TimesTen Clients and TimesTen Servers to exchange data over a
standard TCP/IP network connection.

TimesTen Data Server
(1) An application program that makes TimesTen data sources available to the
TimesTen Clients on a network. (2) A computer on which the TimesTen Data Server
software is running.

TimesTen Server address
The host name or IP address used during installation of the TimesTen Server to
identify the computer on which the software is being installed.

transaction
An operation or set of operations performed against data in a database. The operations
defined in a transaction must be completed as a whole; if any part of the transaction
fails, the entire transaction fails. See also "ACID transaction semantics".

UCS-4
A fixed-width, 32-bit Unicode character set. Each character occupies 32 bits of storage.
The UCS-2 characters are the first 65,536 code points in this standard, so it can be
viewed as a 32-bit extension of UCS-2.

UTF-16
An encoding scheme defined by the ISO/IEC 10646 standard in which each Unicode
character is represented by either a two-byte integer or a pair of two-byte integers.
Characters from European scripts and most Asian scripts are represented in two bytes.
Surrogate pairs are represented in four bytes. Surrogate pairs represent characters
such as infrequently used Asian characters that were not included in the original range
of two-byte characters.

Windows sockets (Winsock)

Glossary-9

user account
The combination of a user name, password and access permissions that gives an
individual user access to an operating system.

user data source name
See"data source name, user".

user DSN
See "data source name, user".

User Manager
A Windows utility program used to create user accounts and assign access rights and
group membership.

Windows sockets (Winsock)
An API that defines a standard binary interface for TCP/IP transports on Windows
platforms. This API adds Windows-specific extensions to the Berkeley Sockets
interface originally defined in Berkeley UNIX.

Windows sockets (Winsock)

Glossary-10

Index-1

Index

A
accent-insensitive linguistic sort, 5-5
access control, 4-1

authorizing, 4-6
overview, 4-4

acknowledging updates, 9-22
active standby pair

aging, 7-10
ADMIN privilege, 4-6, 4-9
administrator

privileges, 4-6
aging

active standby pair, 7-10
attributes, 7-7
foreign keys, 7-9
LRU, 7-6, 7-7
ON DELETE CASCADE, 7-9
parent and child tables, 7-9
performance, 7-8
replication, 7-10
restrictions, 7-7
tables, 7-6
time-based, 7-6, 7-8
usage-based, 7-7

ALL keyword, 4-13
system privileges, 4-10

ALL_TAB_PRIVS view, 4-20
ALL_USERS view, 4-3
allfunctions command

ttIsql utility, 6-10
allpackages command

ttIsql utility, 6-10
allprocedures command

ttIsql utility, 6-10
ALTER ANY CACHE GROUP privilege, 4-19
ALTER ANY privilege, 4-12, 4-17
ALTER SESSION SQL statement, 5-8
ALTER TABLE

adding and removing columns, 7-3
and performance, 9-13
REFERENCES privilege, 4-16

ANY system privileges, 4-11
application

failure
use of logs and locks, 8-5

shut down, 3-2
ASCIISTR SQL function, 5-7
asynchronous checkpoints

 See fuzzy checkpoints
attributes

connection, 2-13
data source name, 1-18
PermWarnThreshold, 1-26
setting for UNIX, 1-15
specifying, 1-10
TempWarnThreshold, 1-26
viewing and changing by ttIsql, 6-12

AUTO_ACKNOWLEDGE mode, 9-22
autocommit

performance impact, 9-18
autocommit command

ttIsql utility, 6-12

B
backup

database, 1-27
full, 1-28
incremental, 1-28
stream, 1-28
types, 1-28

batch mode
ttIsql, 6-2

bitmap index, 9-11
when used, 7-22

byte semantics, 5-3

C
cache group

altering, 4-19
creation, 4-19
dropping, 4-19
granting privileges, 4-18
privileges, 4-6, 4-20
required privileges for AWT, 4-19
time-based aging, 7-8

CACHE_MANAGER privilege, 4-18
cachegroups command

ttIsql utility, 6-8, 6-9
case-insensitive linguistic sort, 5-5

Index-2

ccNUMA, 3-7
character semantics, 5-3
character set

and replication, 5-3
choosing, 5-2
working with in ttIsql, 6-8

checkpoints
and performance, 9-18
automatic, 7-2
fuzzy
influences on duration, 8-11
static

CHR SQL function, 5-7
clearing command history

ttIsql, 6-7
client

configuring automatic failover on UNIX, 2-20
configuring automatic failover on Windows, 2-15
connection attributes

described, 2-7, 2-13
creating DSN

on UNIX, 2-19
on Windows, 2-13

performance, 9-7
Client DSN

creating, 2-18
creating on UNIX, 2-19
creating on Windows, 2-13
Data Source Setup dialog, 2-14
name, 2-14

CLIENT_ACKNOWLEDGE mode, 9-22
Client/Server

changing shared memory segment size, 3-11
communication

overview, 2-3
configuring, 2-4
connections across bit-levels, 2-6
connections across releases, 2-6
managing shared memory segment size, 3-10
shared memory, 3-11
TCP/IP communication, 2-3
UNIX socket communication, 2-4

Client/Server communication
shared memory, 3-10
TCP/IP, 3-10

close command
ttIsql utility, 6-14

cmdcache command
ttIsql utility, 6-21

coexistence of different locking levels
columns

adding, 7-3
default values, 7-4
in-line, 7-4
nullability, 7-3

command history
ttIsql, 6-6

commit behavior
Oracle, 8-3
TimesTen, 8-3

commit command
ttIsql utility, 6-12

commitdurable command
ttIsql utility, 6-12

concurrency
locking, 8-8, 9-8
types of isolation, 8-8

configuring
Client/Server, 2-4

connect
using connection string, 1-23

connect command
ttIsql utility, 6-25

Connection
setAutoCommit method, 8-3

connection
locking, 9-7
locks, 9-7
performance overhead, 9-4
testing on Windows, 2-17
timeout interval, 9-7

connection attribute
connection, 2-7
LockLevel, 9-7
LogFlushMethod, 9-18
PermSize, 1-24
PLSCOPE_SETTINGS, 1-17
PLSQL_MEMORY_ADDRESS attribute, 1-18
PLSQL_MEMORY_SIZE attribute, 1-18
PLSQL_OPTIMIZE_LEVEL, 1-17
TempSize, 1-24
UID, 7-2

connection attributes
UNIX, 1-15

connection character set, 2-15, 5-4
connection string

using to connect, 1-23
ConnectionCharacterSet general connection

attribute, 5-4
Connection.prepareStatement method, 10-5

and execution plan generation, 10-12
contention

lock, 9-4
CREATE ANY CACHE GROUP privilege, 4-19
CREATE ANY privilege, 4-12
CREATE ANY SYNONYM statement, 4-17
CREATE ANY TABLE privilege, 4-19
CREATE CACHE GROUP privilege, 4-19
CREATE INDEX statement, 7-23
CREATE OR REPLACE SYNONYM statement, 4-17,

7-25
CREATE privilege, 4-12
CREATE PUBLIC SYNONYM statement, 4-17
CREATE SESSION privilege, 4-11
CREATE SYNONYM statement, 4-17, 7-25
CREATE TABLE privilege, 4-19
creating indexes

example, 7-23
how to do, 7-23

Custom setup, Windows, 1-3

Index-3

D
daemon

control operations, 3-6
informational messages on Windows
modifying options, 3-8
options, 3-2
overview, 3-1
starting and stopping on UNIX, 3-2
starting and stopping on Windows, 3-1
starting on UNIX, 3-2
starting on Windows, 3-1
stopping on UNIX, 3-2
stopping on Windows, 3-1

data
permanent, 1-24
temporary, 1-24

Data Manager service, 3-1
starting, 3-1
stopping, 3-1

data source
specification, 1-21
UNIX configuration files, 1-22

data source names, See DSN
database

accessing on a local machine, 2-4
accessing on a remote machine, 2-3
backup, 1-27
changing size of, 1-24
components, 7-1
connecting, 4-11
contention, 9-4
copying, 1-27
definition, 1-1
getting information with ttIsql, 6-8
loading to memory, 1-23
lock contention, 9-4
migrating, 1-27
owner, 7-2
path names, environment variables in, 1-15
permanent, 7-2
prefix name, 1-14
restoring, 1-27
setting attributes for UNIX, 1-15
sizing, 9-2
specifying size, 9-2
TCP/IP Client/Server access, 2-3
temporary, 1-16, 7-2, 9-3

performance, 9-3
UID connection attribute, 7-2
UNIX socket Client/Server access, 2-4
user names, 7-2
users, 7-2

database character set
application, 5-2
client operating system, 5-2
languages, 5-2
performance, 5-3

DatabaseCharacterSet attribute, 5-2
database-level locks, 8-10
DBA_SYS_PRIVS view, 4-9, 4-10, 4-20

DBA_TAB_PRIVS view, 4-10, 4-20
DBA_USERS view, 4-3
DDLCommitBehavior connection attribute, 8-3
default column values, 7-4
DELETE ANY privilege, 4-11
DELETE privilege, 4-14
deleting

rows, 7-24
Windows server name, 2-10

describe command
ttIsql utility, 6-8, 6-14

detail table, 7-12
diagnostics

SNMP traps, 1-26
driver

JDBC, 1-9
DRIVER attribute, 1-14
driver manager

JDBC, 1-4
linking with, 1-2
ODBC, 1-2

DriverManager.getConnection method, 2-13
drop

materialized view, 7-19
materialized view log, 7-19

DROP ANY CACHE GROUP privilege, 4-19
DROP ANY privilege, 4-12
DROP ANY SYNONYM statement, 4-17
DROP PUBLIC SYNONYM statement, 4-17
DROP SYNONYM statement, 7-26
dropping

indexes, 7-23
tables, example, 7-6

DSN, 4-11
Client, 1-6, 2-12
connection attributes, Data Manager, 1-7
Data Manager, 1-6
example, 1-16
example, Windows
finding in order of precedence, 1-15
maximum length, 1-5
naming rules, 1-5
.odbc.ini file, 1-5
setting attributes, 1-18
system, 1-6
user, 1-5

dssize command
ttIsql utility, 6-8, 6-9

DUPS_OK_ACKNOWLEDGE mode, 9-22
durability

overview, 8-5
durable commit

performance, 9-17
transaction, 9-17

E
editline for ttIsql, 6-5
environment variables

in database path names, 1-15

Index-4

TTISQL, 6-3
examples

creating indexes, 7-23
creating tables, 7-6
drop materialized view, 7-19
drop materialized view log, 7-19
dropping tables, 7-6
PLAN rows, 10-6

exec command
ttIsql utility, 6-14

execandfetch command
ttIsql utility, 6-14

EXECUTE ANY privilege, 4-11
EXECUTE privilege, 4-17
execution plan

generating, 10-1, 10-12
modifying, 10-11, 10-12, 10-14

execution plan generation
and Connection.prepareStatement, 10-12

explain command
ttIsql utility, 6-22

explain plan
display, 6-22

F
failover

configuring for client on UNIX, 2-20
configuring for client on Windows, 2-15

fetchall command
ttIsql utility, 6-14

fetchone command
ttIsql utility, 6-14

files
odbc.ini, 1-5, 1-22
.ttconnect.ini, 2-12
ttendaemon.options, 3-2, 3-6, 3-10

first connection attribute, 4-11
PLSQL_MEMORY_SIZE, 9-2

FLUSH ANY CACHE GROUP privilege, 4-19
FLUSH privilege, 4-20
foreign key

REFERENCES privilege, 4-16
foreign key constraint

and performance, 9-13
fragmentation

block-level, 1-26
free command

ttIsql utility, 6-14
functions

object privileges, 4-17
functions command

ttIsql utility, 6-10
fuzzy checkpoints, definition

G
GRANT ALL command, 4-10, 4-13
GRANT command, 4-9, 4-13

H
hash index, 9-11
hash indexes

definition, 7-22
overview, 7-22
sizing, 9-12
when used, 7-22

host binds
using ttIsql, 6-16

I
index

aging performance, 7-8
automatic creation, 7-5
explicit creation, 7-5

INDEX privilege, 4-14, 4-16
index size

estimating, 7-23
ttSize utility, 7-23

indexes
and performance, 9-11
automatic creation, 7-5
creating, 7-5, 7-23
dropping, 7-23
estimating size, 7-23
overview, 7-21
owner, 7-23
referencing, 7-23
See also range indexes
See also bitmap index
See also hash indexes
unique, 7-22

informational messages
modifying, 3-5

in-line columns, 7-4
INSERT ANY privilege, 4-11
INSERT privilege, 4-14
inserting rows, 7-24
INSTR SQL function, 5-7
INSTR4 SQL function, 5-7
INSTRB SQL function, 5-7
interactive mode

ttIsql, 6-2
invalidating commands, 10-1
I/O

performance, 9-17
isolation command

ttIsql utility, 6-12
isolation level

performance, 9-8
isolation modes

described, 8-8
Serializable, 8-9

IXNAME column in PLAN table, 10-7

J
JDBC

driver, 1-4

Index-5

driver manager, 1-4
JDBC tracing, 9-6
join

columns, view performance, 9-15
rows, view performance, 9-15

L
least recently used aging, 7-7
length semantics, 5-3
LENGTH SQL function, 5-7
LENGTH4 SQL function, 5-7
LENGTHB SQL function, 5-7
LEVEL column in PLAN table, 10-7
linguistic index, 5-6
linguistic sort

monolingual, 5-5
multilingual, 5-5

linguistic sorts
accent-insensitive, 5-5
case-insensitive, 5-5

linking applications
direct, 1-2
with driver manager, 1-2

LOAD ANY CACHE GROUP privilege, 4-19
LOAD privilege, 4-20
lock

set wait time, 8-11
locking

See also locks
See also ttLockLevel

LockLevel connection attribute, 9-7
locks

and concurrency, 9-8
and performance, 9-7
coexistence of different levels
database-level, 8-10, 9-8
overview table, 8-4
reduce contention, 9-4
row-level, 8-10, 9-8
table-level, 8-10, 9-8
timeout interval and performance, 9-7

LockWait attribute, 8-11
LogFlushMethod connection attribute, 9-18
logging

managing, 3-11
overview table, 8-4
temporary database, 7-2

logical server
Network Address, 2-4, 2-10

logical server name
creating on UNIX, 2-10

LOWER and UPPER SQL functions, 5-7
LRU aging, 7-7
LRU aging attributes, 7-7

M
maintenance options

performance impact, 9-5

materialized view
asynchronous

create, 7-16
overview, 7-13

create, 7-15
detail table, 7-12
drop, 7-19
invalidated, 4-16
performance, 7-20
restrictions, 7-19
SELECT queries in, 7-18
synchronous

create, 7-16
overview, 7-13

understanding, 7-12
materialized view log

drop, 7-19
materialized views

privileges, 4-16
maximum name length, 7-4
memory

loading a database into, 1-23
partitions, 1-24
permanent, 1-24
policy for loading a database, 1-23
temporary, 1-24

messages
informational, 2-20
server log, 2-20

metadata, TimesTen, 7-5
method

getConnection, 2-13
methods

Connection.prepareStatement, 10-5
Connection.setAutoCommit, 8-3

migrating
database, 1-27

modifying execution plan
overview, 10-11
procedure overview, 10-14

monitor command
ttIsql utility, 6-8, 6-9

N
names

log files, 8-8
maximum, 7-4

naming a Client DSN, 2-14
NCHR SQL function, 5-7
nested subqueries

and performance, 9-14
Network Address for logical server

ttLocalHost, 2-4
ttShmHost, 2-4
UNIX, 2-10
Windows, 2-10

NLS_LENGTH_SEMANTICS general connection
attribute, 5-3, 5-4

NLS_SORT connection attribute, 5-6

Index-6

NLSSORT SQL function, 5-6
non-durable commit, 9-17
non-durable commits

advantages and disadvantages, 9-18
not inline columns, 7-4
NULL values, sorting, 7-22
nullable columns

definition, 7-3
primary key not nullable, 7-5

O
object

privileges
ALL keyword, 4-13

object privileges
functions, 4-17
granting, 4-6, 4-13
materialized views, 4-16
object

cache group, 4-20
overview, 4-6
packages, 4-17
procedures, 4-17
revoking, 4-13
sequences, 4-15
tables, 4-14
view user grants, 4-20
views, 4-14

ODBC
tracing and performance, 9-6
UNIX driver, 1-14

ODBC functions
and the JDBC driver, 1-4

.odbc.ini, 1-5
odbc.ini, 1-5

entry example, 1-22
format of, 1-22

online help, 6-4
operating system

paging, 9-5
OPERATION column in PLAN table, 10-7
optimizer

application hints, 10-2
example scenario, 10-2
generating plan, 10-6
invalid statistics, 10-1
modifying execution plan, 10-11
PLAN row example, 10-6
query plan, 10-5
reading plan, 10-6

optimizer hints
ttOptSetFlag procedure, 9-7

optprofile command
ttIsql utility, 6-18

OTHERPRED column in PLAN table, 10-8
OUT parameters, 6-17
outer join

materialized view performance, 9-16
out-of-memory warnings, 1-26

owners
of indexes, 7-23

P
packages

object privileges, 4-17
packages command

ttIsql utility, 6-10
performance

and altered tables, 9-13
and autocommit, 8-3
and foreign key constraints, 9-13
and isolation modes, 9-8
and temporary databases, 9-3
application tuning

autocommit mode, 9-18
checkpoints, 9-18
connection overhead, 9-4
durable commits, 9-17
maintenance options, 9-5
ODBC tracing, 9-6
transaction rollback, 9-19
transaction size, 9-17

automatic index creation, 7-5
Client, 9-7
database tuning

driver usage, 9-5
specifying size, 9-2
temporary database

performance, 9-3
join columns in materialized views, 9-15
join rows in materialized views, 9-15
lock timeout interval, 9-7
materialized views, 9-16
replication throughput, 9-6
SQL tuning

indexes, 9-11
prepare operations, 9-15

temporary database, 9-3
tuning, 9-1
using privileges, 4-14
working locally, 9-7

permanent data partition, 1-25
permanent database, 7-2

automatic checkpointing, 7-2
PermSize attribute, 1-24

monitoring, 1-26
specifying, 9-2

PermWarnThreshold attribute, 1-26
phantoms, 9-8
plan

See execution plan, 10-7
PLAN rows, 10-6
PLAN table

columns, 10-7
IXNAME column, 10-7
LEVEL column, 10-7
OPERATION column, 10-7
OTHERPRED column, 10-8

Index-7

PRED column, 10-7
STEP column, 10-7
TBLNAME column, 10-7

PLSCOPE_SETTINGS connection attribute, 1-17
PL/SQL

creating and executing blocks, 6-16
shared memory sizing, 9-2

PL/SQL host variables
using ttIsql, 6-16

PL/SQL objects
using ttIsql to list, 6-10

PLSQL_MEMORY_ADDRESS connection
attribute, 1-18

PLSQL_MEMORY_SIZE attribute, 9-2
PLSQL_MEMORY_SIZE connection attribute, 1-18
PLSQL_OPTIMIZE_LEVEL connection

attribute, 1-17
PRED column in PLAN table, 10-7

limit on length, 10-7
prefetch multiple update records, 9-22
prepare command

ttIsql utility, 6-14
PreparedStatement objects, 10-12
preparing statements, 10-5
primary keys, 7-5

nullability, 7-5
See Also unique indexes

privileges
ADMIN, 4-6, 4-9
administrator, 4-6
ALL keyword, 4-13
ALL keyword system privileges, 4-10
ALTER ANY, 4-12, 4-17
ANY, 4-11
authorizing, 4-6
cache group, 4-6, 4-18, 4-20
CACHE_MANAGER, 4-18
CREATE ANY, 4-12
CREATE SESSION, 4-11
CREATE system, 4-12
definition, 4-5
DELETE, 4-14
DELETE ANY, 4-11
DROP ANY, 4-12
EXECUTE, 4-17
EXECUTE ANY, 4-11
first connection attributes, 4-11
grant system, 4-9
granting rights, 4-6
granting system privileges, 4-6
hierarchy rules, 4-8
INDEX, 4-14
INSERT ANY, 4-11
levels, 4-5
object, 4-6, 4-14

cache group, 4-20
functions, 4-17
granting, 4-6, 4-13
materialized views, 4-16
packages, 4-17

procedures, 4-17
revoking, 4-13
sequences, 4-15
tables, 4-14

overview, 4-4
parent-child table rules, 4-21
performance, 4-14
REFERENCES, 4-14
replication, 4-6
revoke system, 4-9
revoking ALL, 4-10
role, 4-7
SELECT, 4-14, 4-15, 4-16
SELECT ANY, 4-11
system

overview, 4-6
UPDATE, 4-14
UPDATE ANY, 4-11
view user grants, 4-20
XLA, 4-11

procedure, 7-20
procedures

object privileges, 4-17
procedures command

ttIsql utility, 6-10
PUBLIC role, 4-7

role
PUBLIC, 4-8

Q
query

plan, 10-5
query optimizer

See optimizer
query optimizer plans, 10-1

viewing with ttIsql, 6-18
query plan

display, 6-22

R
RAM policy

defined, 1-23
range index, 9-11
range indexes

overview, 7-22
RecoveryThreads attribute, 9-6
REF CURSOR

using ttIsql, 6-16
REFERENCES privilege, 4-14, 4-16
referencing indexes, 7-23
REFRESH ANY CACHE GROUP privilege, 4-19
REFRESH privilege, 4-20
remote database

accessing on UNIX, 2-10, 2-19, 2-21, 2-22
accessing on Windows, 2-16

removing
columns, 7-3
rows, 7-3

Index-8

replication
aging, 7-10
character sets, 5-3
privileges, 4-6
temporary data partition, 1-25
TimesTen daemon, 3-1
TTREP system tables, 7-4

replication performance, 9-6
.res files, 8-12
restore

database, 1-27
restrictions on table names, 7-4
REVOKE ALL command, 4-10, 4-13
REVOKE command, 4-9, 4-13
role

PUBLIC, 4-7
rollback

logs and locks, 8-5
performance impact, 9-19

rollback command
ttIsql utility, 6-12

row-level locks, 8-10
rows

adding, 7-3
adding to a table, 1-27
deleting, 7-24
in-line and out-of-line portions, 7-4
inserting, 7-24
understanding, 7-24

RTRIM SQL function, 5-7

S
saving command history

ttIsql, 6-7
schema

definition, Glossary-6
SELECT ANY privilege, 4-11
SELECT privilege, 4-14, 4-15, 4-16
sequences

object privileges, 4-15
Serializable isolation mode, 8-9
serializable transaction

performance, 9-9
Server

controlling, 3-8
creating a DSN, 2-7
creating DSN, 2-7
creating logical name, 2-9

on UNIX, 2-10
described, 2-20
modifying options, 3-8
name, 2-10, 2-14

creating on Windows, 2-9
Server List dialog, 2-9
Server Name Setup dialog, 2-9
starting and stopping, 2-20

Server daemon
modifying options, 3-8

Server log messages

controlling, 3-11
serverShmIpc, 3-10
serverShmSize, 3-11
service

See daemon
setjoinorder command

ttIsql utility, 6-18
setting the timeout interval on Windows, 2-16
setuseindex command

ttIsql utility, 6-19
shared memory

changing size, 3-11
Client/Server IPC, 3-10
Client/Server, managing size, 3-10
IPC-enabled server, 3-10
sizing, 9-2

shared memory segment
managing size, 3-10
size, 3-11

showplan command, 6-15, 6-18
ttIsql utility, 6-18

size
database, 1-24

sizing
hash indexes, 9-12
transactions, 9-17

SNMP traps
described, 1-26

sorting NULL values, 7-22
SQL

query plan, 10-5
tuning and performance, 9-10

SQL Command Cache
viewing commands, 6-21

SQLPrepare, 10-5
and execution plan generation, 10-12
performance impact, 9-15

sqlquerytimeout command
ttIsql utility, 6-12

starting and stopping the Server, 2-20
starting and stopping the TimesTen Data

Manager, 3-1
static checkpoints, definition
statistics

computing, 9-13
recomputation, 10-1
ttOptEstimateStats, 9-13
ttOptUpdateStats, 9-13

STEP column in PLAN table, 10-7
subdaemons

definition, 3-6
minimum required, 3-6
setting allowable number, 3-6
specifying allowable range, 3-6

SUBSTR SQL function, 5-7
SUBSTR4 SQL function, 5-7
SUBSTRB SQL function, 5-7
synchronous checkpoints

 See static checkpoints
synonym

Index-9

create, 7-25
definition, 7-25
drop, 7-26
invalidation, 7-26
private, 7-25
public, 7-25
recompiled, 7-26
required privileges, 4-17
viewing, 7-25

SYS owner of tables, 7-4
syslog, 3-6
SYS.MONITOR table, 1-26, 9-18, 9-22
System DSN, 1-9, 2-10, 2-18
system failure

resulting logs and locks, 8-5
system privileges

ANY, 4-11
cache group, 4-18
CREATE, 4-12
default privileges, 4-10
granting, 4-6, 4-9
granting ALL, 4-10
overview, 4-6
revoking, 4-9
view user grants, 4-20

system tables
access, 4-10
indexes on, 7-23
overview, 7-5

T
table size

estimating, 7-6
ttSize utility, 7-6

table-level locks, 8-10
tables

adding rows, 1-27
creating, example, 7-6
creating, examples, 7-6
deleting rows, 7-24
dropping, example, 7-6, 7-19
estimating size, 7-6
format, 7-3
in-line vs. not inline columns, 7-4
inserting rows, 7-24
modifying format, 7-3
name length, 7-4
names, 7-4
names, restrictions, 7-4
nullable columns, 7-3
object privileges, 4-14
owners, 7-4
SYS owner, 7-4
system, 4-10
understanding rows, 7-24
unique indexes

TBLNAME column in PLAN table, 10-7
TCP/IP

Client/Server

communication, 2-3
Temporary attribute

performance, 9-3
temporary data partition

and replication, 1-25
temporary database, 7-2

logging, 7-2
TempSize attribute, 1-24

monitoring, 1-26
specifying, 9-2

testing connections on Windows, 2-17
thread programming, 1-29
time-based aging, 7-8
timeout interval

setting on Windows, 2-16
TimesTen

ODBC driver, 1-3
TimesTen daemon

options, 3-2
TIMESTEN8 character set, 5-8
timestend, 3-1
timing command

ttIsql utility, 6-24
timing ODBC function calls, 6-24
transaction

commit
logs and locks, 8-5

durable commit, 9-17
locking, 9-7
log files

how to control, 8-8
names, 8-8

logging, 8-8
management

isolation levels, 8-1
locking, 8-4
logging, 8-4
semantics, 8-4

performance, 8-7, 9-17
rollback

logs and locks, 8-5
performance impact, 9-19

serializable
performance, 9-9

sizing, 9-17
ttIsql utility, 6-12
XLA, 9-22

tryhash command
ttIsql utility, 6-19

trymergejoin command
ttIsql utility, 6-19

trynestedloopjoin command
ttIsql utility, 6-19

tryrowid command
ttIsql utility, 6-19

tryserial command
ttIsql utility, 6-19

trytbllocks command
ttIsql utility, 6-19

trytmphash command

Index-10

ttIsql utility, 6-19
trytmptable command

ttIsql utility, 6-19
trytmpttree command

ttIsql utility, 6-19
tryttree command

ttIsql utility, 6-19
TT_PREFETCH_CLOSE connection option, 9-9
ttAgingLRUConfig built-in procedure, 7-7
ttBlockInfo utility, 1-26
ttconnect.ini file, 2-12
ttdaemon.options file

changing, 3-3
ttDurableCommit procedure, 9-18
ttendaemon.options file, 3-2, 3-6, 3-10
ttIsql, 6-4

autocommit command, 6-12
built-in command usage, 6-8, 6-12, 6-14, 6-21
cachegroups command, 6-8, 6-9
clearing command history, 6-7
cmdcache command, 6-21
command history, 6-6
commit command, 6-12
commitdurable command, 6-12
connect command, 6-25
customizing command prompt, 6-4
deleting rows, 7-24
describe command, 6-8
displaying database information, 6-8
dssize command, 6-8, 6-9
editline feature, 6-5
explain command, 6-22
isolation command, 6-12
modes, interactive and batch, 6-2
monitor command, 6-8, 6-9
online help, 6-4
rollback command, 6-12
saving command history, 6-7
showplan command, 6-18
sqlquerytimeout command, 6-12
timing command, 6-24
timing ODBC function calls, 6-24
using, 6-1
using OUT parameters, 6-17
view and set connection attributes, 6-12
viewing optimizer plan, 6-18
working with character sets, 6-8
working with parameterized SQL

statements, 6-13
working with prepared SQL statements, 6-13
working with transactions, 6-12

TTISQL environment variable, 6-3
ttLocalHost

logical server address, 2-4
ttmodinstall utility, 3-3
ttOptClearStats built-in procedure, 10-14
ttOptEstimateStats, 7-20

statistics computing, 9-13
ttOptEstimateStats built-in procedure, 7-20, 10-14
ttOptSetFlag procedure, 9-7

TTREP system tables, 7-4
ttShmHost, 2-12

logical server address, 2-4
ttSize utility, 1-25
ttSqlCmdCacheInfo built-in procedure, 6-21
ttSqlCmdQueryPlan built-in procedure, 6-22
ttStatus utility, 1-25
ttWarnOnLowMemory procedure, 1-26

U
UID connection attribute, 7-2
unique indexes, 7-22

See also primary key
UNISTR SQL function, 5-7
UNIX

setting attributes, 1-15
UNIX configuration file

odbc.ini, 1-22
UNIX configuration files

.odbc.ini, format of, 1-22
UNIX socket

Client/Server communication, 2-4
UNLOAD ANY CACHE GROUP privilege, 4-19
UNLOAD privilege, 4-20
unsetjoinorder command

ttIsql utility, 6-19
unsetuseindex command

ttIsql utility, 6-19
UPDATE ANY privilege, 4-11
UPDATE privilege, 4-14
updates

materialized view performance, 9-16
usage-based aging, 7-7
USER_SYS_PRIVS view, 4-9, 4-20
USER_TAB_PRIVS view, 4-20
USER_USERS view, 4-3
UTL_RECOMP package, 4-10

V
view

creating, 7-10
drop, 7-11
overview, 7-10
restrictions, 7-11
SELECT query, 7-11

views, 4-14
object privileges, 4-14

W
working with

parameterized SQL statements, 6-13
prepared SQL statements, 6-13

X
XLA

bookmark, deleting, 6-25
performance, 9-22

Index-11

privilege, 4-11
updates

acknowledging, 9-22
xlabookmarkdelete command

ttIsql utility, 6-25

Index-12

	Contents
	Preface
	Audience
	Related documents
	Conventions
	Documentation Accessibility
	Technical support

	What's New
	New features in release 11.2.1.8.0
	New features in release 11.2.1.6.0
	New features in release 11.2.1.4.0
	New features in release 11.2.1.0

	1 Managing TimesTen Databases
	Connecting to TimesTen with ODBC and JDBC drivers
	Connecting using TimesTen ODBC drivers
	Connecting using the TimesTen JDBC driver and driver manager

	Specifying Data Source Names to identify TimesTen databases
	Overview of user and system DSNs
	Defining DSNs for direct or client/server connections
	Connection attributes for Data Manager DSNs or Server DSNs

	Defining a Data Manager DSN
	Creating a Data Manager DSN on Windows
	Specify the ODBC driver
	Specify the Data Manager DSN
	Specify the connection attributes

	Creating a Data Manager DSN on UNIX
	Create a user or system ODBC.INI file
	Using environment variables in database path names

	Defining Client and Server DSNs
	Resolution path for a DSN
	DSN examples
	Setting up a temporary database
	Specifying PL/SQL connection attributes in a DSN
	Creating multiple DSNs to a single database

	ODBC.INI file entry descriptions
	ODBC Data Sources
	Data Source specification
	ODBC.INI file example

	Connecting to a database using a connection string
	Specifying a RAM policy
	Specifying the size of a database
	Estimating and modifying the data partition sizes for the database
	Unloading the database from memory
	Monitoring PermSize and TempSize attributes
	Receiving out-of-memory warnings

	Manage existing tables in the database
	Migration, backup, and restoration of the database
	Copying, migrating and restoring a database
	Backing up and restoring a database
	Types of backup provided

	Thread programming with TimesTen

	2 Working with the TimesTen Client and Server
	Overview of the TimesTen Client/Server
	Restrictions on client/server communication
	Communication protocols for Client/Server communication
	TCP/IP Communication
	Shared memory communication
	UNIX domain socket communication

	Configuring TimesTen Client and Server
	Overview of TimesTen Client/Server configuration
	Installing and configuring for client/server connections
	Configuring Client/Server of the same TimesTen release
	Configuring cross-release TimesTen Client/Server

	Defining Server DSNs
	Server DSN connection attributes defined in ODBC.INI file
	Server DSN connection attributes defined in ODBC Data Source Administrator

	Defining a logical server name
	Creating and configuring a logical server name on Windows
	Creating and configuring a logical server name on UNIX
	Working with the TTCONNECT.INI file

	Creating Client DSNs
	Creating and configuring Client DSNs on Windows
	Creating and configuring Client DSNs on UNIX

	Running the TimesTen Server
	Server informational messages

	Accessing a remote database on UNIX
	Testing connections

	3 Working with the Oracle TimesTen Data Manager Daemon
	Starting and stopping the Oracle TimesTen Data Manager service on Windows
	Starting and stopping the daemon on UNIX
	Shutting down a TimesTen application
	Managing TimesTen daemon options
	Determining the daemon listening address
	Listening on IPv6

	Modifying informational messages
	Changing the allowable number of subdaemons
	Allowing database access over NFS-mounted systems
	Enabling Linux large page support
	Shared memory daemon option for HP-UX ccNUMA systems

	Managing TimesTen Client/Server options
	Modifying the TimesTen Server options
	Controlling the TimesTen Server
	Prespawning TimesTen Server processes
	Specifying multiple connections to the TimesTen Server
	Configuring the maximum number of client connections per child server process
	Configuring the desired number of child server processes spawned for a server DSN
	Configuring the thread stack size of the child server processes

	Using shared memory for Client/Server IPC
	Managing the size of the shared memory segment
	Changing the size of the shared memory segment

	Controlling the TimesTen Server log messages

	4 Managing Access Control
	Managing users to control authentication
	Overview of users
	Creating or identifying users to the database
	Changing the password of the internal user
	Dropping users from the database

	Providing authorization to objects through privileges
	Privileges overview
	System privileges
	Object privileges
	PUBLIC role
	Privilege hierarchy rules

	Granting or revoking system privileges
	Granting administrator privileges
	Granting ALL PRIVILEGES
	Granting privileges to connect to the database
	Granting additional system privileges
	Enabling users to perform operations on any database object type

	Granting or revoking object privileges
	Grant all object privileges
	Object privileges for tables
	Object privileges for views
	Object privileges for sequences
	Object privileges for materialized views
	Object Privileges needed when creating foreign key with REFERENCES clause
	Object privileges for PL/SQL functions, procedures and packages
	Object privileges for synonyms

	Granting or revoking multiple privileges with a single SQL statement
	Granting or revoking privileges for cache groups
	Cache manager privilege
	Cache group system privileges
	Cache group object privileges

	Viewing user privileges
	Privileges needed for utilities, built-in procedures and first connection attributes
	Privilege checking rules for parent-child tables

	5 Globalization Support
	Overview of globalization support features
	Choosing a database character set
	Character sets and languages
	Client operating system and application compatibility
	Performance and storage implications
	Character sets and replication

	Length semantics and data storage
	Connection character set
	Linguistic sorts
	Monolingual linguistic sorts
	Multilingual linguistic sorts
	Case-insensitive and accent-insensitive linguistic sorts
	Performing a linguistic sort
	Using linguistic indexes

	SQL string and character functions
	Setting globalization support attributes
	Backward compatibility using TIMESTEN8

	Globalization support during migration
	Object migration and character sets
	Migration and length semantics
	Migrating linguistic indexes
	Migrating cache group tables

	6 Using the ttIsql Utility
	Batch mode vs. interactive mode
	Defining default settings with the TTISQL environment variable
	Customizing the ttIsql command prompt
	Using the ttIsql online help
	Using the ttIsql 'editline' feature for UNIX only
	Emacs binding
	vi binding

	Using the ttIsql command history
	Saving and clearing the ttIsql command history

	Working with character sets
	Displaying database structure information
	Using the ttIsql describe command
	Using the ttIsql cachegroups command
	Using the ttIsql dssize command
	Using the ttIsql monitor command

	Listing database objects by object type
	Viewing and setting connection attributes
	Working with transactions
	Working with prepared and parameterized SQL statements
	Creating and executing PL/SQL blocks
	Pass data from PL/SQL using OUT parameters
	Viewing and changing query optimizer plans
	Using the showplan command
	Viewing commands and explain plans from the SQL Command Cache
	View commands in the SQL Command Cache
	Display query plan for statement in SQL Command Cache

	Timing ODBC function calls
	Managing XLA bookmarks

	7 Working with Data in a TimesTen Database
	Database overview
	Database components
	Database users and owners
	Database persistence

	Understanding tables
	Overview of tables
	Column overview
	In-line and out-of-line columns
	Default column values
	Table names
	Table access
	Primary keys, foreign keys and unique indexes
	System tables

	Working with tables
	Creating a table
	Dropping a table
	Estimating table size

	Implementing aging in your tables
	Usage-based aging
	Time-based aging
	Aging and foreign keys
	Scheduling when aging starts
	Aging and replication

	Understanding views
	Creating a view
	The SELECT query in the CREATE VIEW statement

	Dropping a view
	Restrictions on views and detail tables

	Understanding materialized views
	Overview of materialized views
	Synchronous materialized view
	Asynchronous materialized view
	When to use synchronous or asynchronous materialized views

	Working with materialized views
	Creating a materialized view
	Dropping a materialized view or a materialized view log
	Restrictions on materialized views and detail tables
	Performance implications of materialized views

	Understanding indexes
	Overview of index types
	Creating an index
	Altering an index
	Dropping an index
	Estimating index size

	Understanding rows
	Inserting rows
	Deleting rows

	Understanding synonyms
	Creating synonyms
	Dropping synonyms
	Synonyms may cause invalidation or recompilation of SQL queries

	8 Transaction Management and Recovery
	Transaction overview
	Configuring transaction implicit commit behavior
	Transaction autocommit behavior
	TimesTen DDL commit behavior
	Relationship between autocommit and DDLCommitBehavior

	Transaction semantics
	Transaction atomicity
	Transaction durability
	Guaranteed durability
	Delayed durability
	Durable commit performance enhancements

	Transaction logging
	Managing transaction log buffers and files

	Concurrency control through isolation and locking
	Transaction isolation levels
	Locking granularities
	Setting wait time for acquiring a lock

	Checkpoint operations
	Purpose of checkpoints
	Usage of checkpoint files
	Types of checkpoints
	Fuzzy or non-blocking checkpoints
	Transaction-consistent checkpoints

	Setting and managing checkpoints
	Programmatically performing a checkpoint
	Configure or turn off background checkpointing
	Display checkpoint history and status
	Setting the checkpoint rate

	9 TimesTen Database Performance Tuning
	System and database tuning
	Provide enough memory
	Size your database correctly
	Calculate shared memory size for PL/SQL runtime
	Increase LogBufMB if needed
	Use temporary databases if appropriate
	Avoid connection overhead
	Load the database into RAM when duplicating
	Reduce contention
	Avoid operating system paging at load time
	Consider special options for maintenance
	Check your driver
	Enable tracing only as needed
	Investigate alternative JVMs
	If you are using replication, adjust transaction log buffer size and CPU
	Increase replication throughput for active standby pairs
	Migrating data with character set conversions

	Client/Server tuning
	Work locally when possible
	Choose a timeout interval
	Choose the best method of locking
	Choose an appropriate lock level
	Choose an appropriate isolation level

	Use shared memory segment as IPC when client and server are on the same machine
	Enable TT_PREFETCH_CLOSE for Serializable transactions
	Use a connection handle when calling SQLTransact

	SQL tuning
	Tune statements and use indexes
	Select hash, range, or bitmap indexes appropriately
	Size hash indexes appropriately
	Use foreign key constraint appropriately
	Computing exact or estimated statistics
	Avoid ALTER TABLE
	Avoid nested queries
	Prepare statements in advance
	Avoid unnecessary prepare operations

	Materialized view tuning
	Limit number of join rows
	Use indexes on join columns
	Avoid unnecessary updates
	Avoid changes to the inner table of an outer join
	Limit number of columns in a view table

	Transaction tuning
	Size transactions appropriately
	Use durable commits appropriately
	Avoid frequent checkpoints
	Turn off autocommit mode
	Avoid transaction rollback

	Recovery tuning
	Set RecoveryThreads
	Discovered direct I/O on HP-UX

	Scaling for multiple CPUs
	Run the demo applications as a prototype
	Limit database-intensive connections per CPU
	Use read operations when available
	Limit prepares, re-prepares and connects
	Limit replication transmitters and receivers and XLA readers
	Allow indexes to be rebuilt in parallel during recovery
	Use private commands

	XLA tuning
	Increase transaction log buffer size when using XLA
	Prefetch multiple update records
	Acknowledge XLA updates

	10 The TimesTen Query Optimizer
	When optimization occurs
	Viewing SQL commands stored in the SQL Command Cache
	Managing performance and troubleshooting commands
	Displaying commands stored in the SQL Command Cache

	Viewing SQL query plans
	Viewing a query plan from the system PLAN table
	Instruct TimesTen to store the plan in the system PLAN table
	Reading query plan from the PLAN table
	Describing the PLAN table columns

	Viewing query plans associated with commands stored in the SQL Command Cache

	Modifying plan generation
	Why modify an execution plan?
	When to modify an execution plan
	How to modify execution plan generation

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

