

Oracle® TimesTen In-Memory Database
C Developer's Guide

Release 11.2.1

E13066-08

January 2011

Oracle TimesTen In-Memory Database C Developer's Guide, Release 11.2.1

E13066-08

Copyright © 1996, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... xi

Audience... xi
Related documents.. xi
Conventions .. xii
Documentation Accessibility ... xiii
Technical support .. xiii

What's New.. xv

New features in Release 11.2.1.7.0 .. xv
New features in Release 11.2.1.6.0 .. xv
New features in Release 11.2.1.4.0 .. xv
New features in Release 11.2.1.1.0 .. xv

1 C Development Environment

Setting the environment for development .. 1-1
Linking options .. 1-1

Linking directly with the TimesTen ODBC drivers .. 1-1
Linking with a driver manager .. 1-2
Testing link options ... 1-3

Compiling and linking applications .. 1-3
Compiling and linking applications on Windows .. 1-3
Compiling and linking applications on UNIX... 1-4

About the TimesTen C demos .. 1-5

2 Working with TimesTen Databases

Managing TimesTen database connections... 2-1
SQLConnect, SQLDriverConnect, SQLAllocConnect, SQLDisconnect functions.................... 2-2
Connecting to and disconnecting from a database ... 2-2
Setting connection attributes programmatically ... 2-5
Access control for connections ... 2-6

Managing TimesTen data.. 2-6
TimesTen #include files... 2-6
SQL statement execution within C applications.. 2-7

SQLExecDirect and SQLExecute functions ... 2-7
Executing a SQL statement.. 2-7

iv

Preparing and executing queries and working with cursors .. 2-8
TimesTen deferred prepare .. 2-9
Prefetching multiple rows of data .. 2-10
Binding parameters and executing statements... 2-11

SQLBindParameter function .. 2-11
Determination of parameter type assignments and type conversions 2-12
Binding IN parameters.. 2-14
Binding OUT parameters.. 2-14
Binding IN OUT parameters .. 2-15
Binding duplicate parameters in SQL statements... 2-16
Binding duplicate parameters in PL/SQL ... 2-17
Considerations for floating point data.. 2-18
Using SQL_WCHAR and SQL_WVARCHAR with a driver manager............................ 2-18

Working with REF CURSORs ... 2-18
Working with DML returning (RETURNING INTO clause) ... 2-20
Working with rowids ... 2-22
Working with synonyms.. 2-22
Making and committing changes to the database.. 2-23

Using additional TimesTen data management features .. 2-24
Using CALL to execute procedures and functions .. 2-24
Setting a timeout or threshold for executing SQL statements .. 2-25

Setting a timeout value for SQL statements... 2-25
Setting a threshold value for SQL statements.. 2-26

Features for use with IMDB cache.. 2-26
Setting temporary passthrough level with the ttOptSetFlag built-in procedure 2-27
Determining passthrough status ... 2-27
Managing cache groups .. 2-27

Setting globalization options ... 2-27
TT_NLS_SORT ... 2-28
TT_NLS_LENGTH_SEMANTICS ... 2-28
TT_NLS_NCHAR_CONV_EXCP.. 2-28

Setting up user-specified parallel replication ... 2-28
ODBC 3.0 data types... 2-29

Considering TimesTen features for access control ... 2-30
Handling Errors ... 2-30

Checking for errors ... 2-31
 Error and warning levels .. 2-31

Fatal errors .. 2-31
Non-fatal errors .. 2-32
Warnings ... 2-32

Recovering after fatal errors .. 2-32
Using automatic client failover... 2-32

Features and functionality of automatic client failover... 2-33
Failover callback functions .. 2-35

3 TimesTen Support for Oracle Call Interface

Overview of OCI .. 3-1

v

Overview of TimesTen OCI support .. 3-2
OCI libraries and architecture .. 3-2
Globalization support.. 3-3

Character sets... 3-3
Additional globalization features ... 3-3

TimesTen restrictions and differences .. 3-4
Oracle Database features not supported ... 3-4
Additional TimesTen OCI restrictions... 3-5
Additional TimesTen OCI differences ... 3-5

The ttSrcScan utility ... 3-5
Getting started with TimesTen OCI ... 3-6

Environment variables for TimesTen OCI ... 3-6
Compiling and linking OCI applications ... 3-8
Connecting to a TimesTen database from OCI.. 3-8

Using the tnsnames naming method to connect .. 3-8
Using an easy connect string to connect.. 3-9
Configuring whether to use tnsnames.ora or easy connect... 3-10
Connecting as an externally identified user in OCI.. 3-11

Error reporting... 3-11
Signal handling and diagnostic framework considerations ... 3-11
OCI demo programs ... 3-11

Additional features of TimesTen OCI ... 3-11
TimesTen deferred prepare ... 3-12
Using IMDB Cache in OCI... 3-12

Specifying the Oracle password in OCI for IMDB Cache.. 3-12
Determining the number of cache groups affected by an action 3-13

Duplicate parameter bindings in TimesTen OCI ... 3-13
Call, handle, descriptor, SQL data type, and parameter attribute support 3-13

4 TimesTen Support for Oracle Pro*C/C++ Precompiler

Overview of the Oracle Pro*C/C++ Precompiler ... 4-1
Overview of TimesTen support for Pro*C/C++ .. 4-1

TimesTen OCI support .. 4-2
Embedded SQL support and restrictions ... 4-2
Semantic checking restrictions ... 4-2
Embedded PL/SQL restrictions... 4-3
Transaction restrictions ... 4-3
Connection restrictions.. 4-3
Summary of unsupported or restricted executable commands and clauses............................. 4-4
The ttSrcScan utility ... 4-4

Getting started with TimesTen Pro*C/C++ ... 4-5
Building a Pro*C/C++ application.. 4-5
Connecting to a TimesTen database from Pro*C/C++ .. 4-6

Connection syntax and parameters.. 4-6
Using tnsnames or easy connect ... 4-6
Specifying the Oracle password in Pro*C/C++ for IMDB Cache.. 4-7
Connecting as an externally identified user in Pro*C/C++ ... 4-7

vi

Error reporting and handling... 4-8
Pro*C/C++ demo programs... 4-8

TimesTen Pro*C/C++ Precompiler options ... 4-8
Precompiler option support ... 4-8
Setting precompiler options .. 4-10

5 XLA and TimesTen Event Management

XLA concepts ... 5-1
XLA persistent mode ... 5-2
How XLA reads records from the transaction log .. 5-2
About XLA and materialized views.. 5-3
About XLA bookmarks ... 5-4

Creating or reusing a bookmark... 5-4
How bookmarks work ... 5-4
Replicated bookmarks.. 5-6

About XLA data types ... 5-6
Access control impact on XLA ... 5-8
XLA demo ... 5-8

Writing an XLA event-handler application ... 5-9
Obtaining a database connection handle.. 5-9
Initializing XLA and obtaining an XLA handle.. 5-10
Specifying which tables to monitor for updates... 5-11
Retrieving update records from the transaction log .. 5-12
Inspecting record headers and locating row addresses .. 5-15
Inspecting column data .. 5-17

Obtaining column descriptions.. 5-17
Reading fixed-length column data .. 5-18
Reading NOT INLINE variable-length column data.. 5-19
Null-terminating returned strings... 5-21
Converting complex data types ... 5-22
Detecting null values ... 5-24
Putting it all together: a PrintColValues() function .. 5-24

Handling XLA errors .. 5-27
Dropping a table that has an XLA bookmark ... 5-29
Deleting bookmarks.. 5-30
Terminating an XLA application .. 5-31

Using XLA as a replication mechanism .. 5-33
Checking table compatibility between databases .. 5-33

Checking table and column descriptions ... 5-33
Checking table and column versions .. 5-34

Replicating updates between databases .. 5-34
Handling timeout and deadlock errors ... 5-35
Checking for update conflicts.. 5-36
Replicating updates to a non-TimesTen database.. 5-36

Other XLA features ... 5-37
Changing the location of a bookmark.. 5-37
Passing application context ... 5-37

vii

Using XLA in non-persistent mode.. 5-38
How non-persistent mode differs from persistent mode... 5-39
Initializing XLA in non-persistent mode.. 5-39
Configuring the staging buffer .. 5-39
Retrieving and resetting the buffer status .. 5-40

6 Distributed Transaction Processing: XA

Overview of XA .. 6-1
X/Open DTP model... 6-1
Two-phase commit... 6-2

Using XA in TimesTen... 6-3
TimesTen database requirements for XA ... 6-3
Global transaction recovery in TimesTen... 6-3
Considerations in using standard XA functions with TimesTen.. 6-4

xa_open() .. 6-4
xa_close() .. 6-4
Transaction id (XID) parameter .. 6-4

TimesTen tt_xa_context function to obtain ODBC handle from XA connection...................... 6-4
Considerations in calling ODBC functions over XA connections in TimesTen........................ 6-6

Autocommit ... 6-6
Local transaction COMMIT and ROLLBACK .. 6-6
Closing open cursors .. 6-6

XA resource manager switch.. 6-6
xa_switch_t .. 6-6
tt_xa_switch ... 6-7

XA error handling in TimesTen ... 6-7
XA support through the Windows ODBC driver manager .. 6-8

Issues to consider ... 6-8
Linking to the TimesTen ODBC XA driver manager extension library..................................... 6-8

Configuring Tuxedo to use TimesTen XA.. 6-8
Update the $TUXDIR/udataobj/RM file ... 6-9
Build the Tuxedo transaction manager server... 6-9
Update the GROUPS section in the UBBCONFIG file.. 6-9
Compile the servers .. 6-10

7 Application Tuning

Bypass driver manager if appropriate .. 7-1
Using arrays of parameters for batch execution ... 7-1
Avoid excessive binds ... 7-2
Avoid SQLGetData .. 7-2
Avoid data type conversions .. 7-3
Bulk fetch rows of TimesTen data... 7-3

8 TimesTen Utility API

ttBackup ... 8-2
ttDestroyDataStore... 8-6

viii

ttDestroyDataStoreForce... 8-8
ttRamGrace ... 8-10
ttRamLoad... 8-11
ttRamPolicy .. 8-12
ttRamUnload .. 8-14
ttRepDuplicateEx .. 8-15
ttRestore .. 8-20
ttUtilAllocEnv .. 8-22
ttUtilFreeEnv .. 8-24
ttUtilGetError ... 8-26
ttUtilGetErrorCount.. 8-28
ttXactIdRollback .. 8-30

9 XLA Reference

About XLA functions... 9-1
About return codes .. 9-1
About parameter types (input, output, input-output) ... 9-1
About results output by functions... 9-1
About required privileges... 9-2

Summary of XLA functions by category.. 9-2
XLA core functions including data type conversion functions ... 9-2
XLA persistent mode functions.. 9-4
XLA non-persistent mode functions ... 9-4
XLA replication functions ... 9-4

XLA function reference ... 9-6
ttXlaAcknowledge.. 9-7
ttXlaApply... 9-9
ttXlaClose ... 9-11
ttXlaCommit... 9-12
ttXlaConfigBuffer .. 9-13
ttXlaConvertCharType ... 9-15
ttXlaDateToODBCCType... 9-16
ttXlaDecimalToCString .. 9-17
ttXlaDeleteBookmark.. 9-19
ttXlaError.. 9-20
ttXlaErrorRestart ... 9-22
ttXlaGenerateSQL.. 9-23
ttXlaGetColumnInfo ... 9-25
ttXlaGetLSN ... 9-27
ttXlaGetTableInfo .. 9-28
ttXlaGetVersion ... 9-29
ttXlaLookup ... 9-30
ttXlaNextUpdate ... 9-32
ttXlaNextUpdateWait ... 9-34
ttXlaNumberToBigInt... 9-36
ttXlaNumberToCString .. 9-37
ttXlaNumberToDouble... 9-38

ix

ttXlaNumberToInt... 9-39
ttXlaNumberToSmallInt... 9-40
ttXlaNumberToTinyInt .. 9-41
ttXlaNumberToUInt.. 9-42
ttXlaOpenTimesTen .. 9-43
ttXlaOraDateToODBCTimeStamp.. 9-44
ttXlaOraTimeStampToODBCTimeStamp.. 9-45
ttXlaPersistOpen.. 9-46
ttXlaResetStatus... 9-48
ttXlaRollback.. 9-49
ttXlaRowidToCString ... 9-50
ttXlaSetLSN .. 9-51
ttXlaSetVersion .. 9-52
ttXlaStatus .. 9-53
ttXlaTableByName .. 9-54
ttXlaTableCheck .. 9-55
ttXlaTableStatus... 9-57
ttXlaTimeToODBCCType .. 9-60
ttXlaTimeStampToODBCCType... 9-61
ttXlaTableVersionVerify... 9-62
ttXlaVersionColumnInfo.. 9-64
ttXlaVersionCompare ... 9-65
ttXlaVersionTableInfo... 9-67

C data structures used by XLA.. 9-68
ttXlaNodeHdr_t... 9-69
ttXlaUpdateDesc_t .. 9-70

Special update data formats ... 9-73
Locating the row data following a ttXlaUpdateDesc_t header ... 9-77

ttXlaStatus_t ... 9-78
ttXlaVersion_t .. 9-79
ttXlaTblDesc_t.. 9-80
ttXlaTblVerDesc_t ... 9-81
ttXlaColDesc_t ... 9-82
tt_LSN_t.. 9-84
tt_XlaLsn_t ... 9-85

10 TimesTen ODBC Functions and Options

Supported ODBC functions .. 10-1
Option support for ODBC connection and statement functions ... 10-3

Option support for SQLSetConnectOption and SQLGetConnectOption............................... 10-3
Option support for SQLSetStmtOption and SQLGetStmtOption.. 10-5

Index

x

xi

Preface

Oracle TimesTen In-Memory Database is a memory-optimized relational database.
Deployed in the application tier, TimesTen operates on databases that fit entirely in
physical memory using standard SQL interfaces. High availability for the in-memory
database is provided through real-time transactional replication.

TimesTen supports a variety of programming interfaces, including ODBC (Open
Database Connectivity), OCI (Oracle Call Interface), Oracle Pro*C/C++ (precompiler
for embedded SQL and PL/SQL instructions in C or C++ code), and PL/SQL (Oracle
procedural language extension for SQL).

This preface covers the following topics:

■ Audience

■ Related documents

■ Conventions

■ Documentation Accessibility

■ Technical support

Audience
This guide is for anyone developing or supporting applications that use TimesTen
through ODBC, OCI, or Pro*C/C++.

In addition to familiarity with the particular programming interface you use, you
should be familiar with TimesTen, SQL (Structured Query Language), and database
operations.

Related documents
TimesTen documentation is available on the product distribution media and on the
Oracle Technology Network:

http://www.oracle.com/technetwork/database/timesten/documentation/

Oracle documentation is also available on the Oracle Technology network. This may
be especially useful for Oracle features that TimesTen supports but does not attempt to
fully document, such as OCI and Pro*C/C++:

http://www.oracle.com/technetwork/database/enterprise-edition/documentation/

In particular, the following Oracle documents may be of interest.

xii

■ Oracle Call Interface Programmer's Guide

■ Pro*C/C++ Programmer's Guide

■ Oracle Database Globalization Support Guide

■ Oracle Database Net Services Administrator's Guide

■ Oracle Database SQL Language Reference

This manual frequently refers to ODBC API reference documentation for further
information. This is available from Microsoft or a variety of third parties. For example:

http://msdn.microsoft.com/en-us/library/ms714562(VS.85).aspx

Conventions
TimesTen supports multiple platforms. Unless otherwise indicated, the information in
this guide applies to all supported platforms. The term Windows refers to Windows
2000, Windows XP, and Windows Server 2003. The term UNIX refers to Solaris, Linux,
HP-UX, and AIX.

This document uses the following text conventions:

In addition, TimesTen documentation uses the following special conventions:

Note: In TimesTen documentation, the terms "data store" and
"database" are equivalent. Both terms refer to the TimesTen database
unless otherwise noted.

Convention Meaning

italic Italic type indicates terms defined in text, book titles, or emphasis.

monospace Monospace type indicates code, commands, URLs, function names,
attribute names, directory names, file names, text that appears on the
screen, or text that you enter.

italic monospace Italic monospace type indicates a placeholder or a variable in a code
example for which you specify or use a particular value. For example:

Driver=install_dir/lib/libtten.sl

Replace install_dir with the path of your TimesTen installation
directory.

[] Square brackets indicate that an item in a command line is optional.

{ } Curly braces indicated that you must choose one of the items separated
by a vertical bar (|) in a command line.

| A vertical bar (or pipe) separates alternative arguments.

. . . An ellipsis (. . .) after an argument indicates that you may use more
than one argument on a single command line. An ellipsis in a code
example indicates that what is shown is only a partial example.

% The percent sign indicates the UNIX shell prompt.

Convention Meaning

install_dir The path that represents the directory where TimesTen is installed.

xiii

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Technical support
For information about obtaining technical support for TimesTen products, go to the
following Web address:

http://www.oracle.com/support/contact.html

TTinstance The instance name for your specific installation of TimesTen. Each
installation of TimesTen must be identified at installation time with a
unique instance name. This name appears in the installation path.

bits or bb Two digits, either 32 or 64, that represent either a 32-bit or 64-bit
operating system.

release or rr Numbers that represent a major TimesTen release, with or without dots.
For example, 1121 or 11.2.1 represents TimesTen Release 11.2.1.

DSN TimesTen data source name (for the TimesTen database).

Convention Meaning

xiv

xv

What's New

This section summarizes new features and functionality of Oracle TimesTen
In-Memory Database Release 11.2.1 that are documented in this guide, providing links
into the guide for more information.

New features in Release 11.2.1.7.0
■ CALL for PL/SQL procedures and functions

TimesTen now supports CALL syntax from any of its programming interfaces to
call PL/SQL procedures and functions (in addition to CALL syntax to call
TimesTen built-in procedures, which was already supported).

See "Using CALL to execute procedures and functions" on page 2-24.

New features in Release 11.2.1.6.0
■ User-specified parallel replication

For applications that have very predictable transactional dependencies and do not
require the commit order on the replica database to be the same as that on the
originating database, TimesTen supports parallel replication. This feature allows
replication of multiple user-specified tracks of transactions in parallel.

See "Setting up user-specified parallel replication" on page 2-28.

New features in Release 11.2.1.4.0
■ Synonyms

TimesTen supports private and public synonyms (aliases) for database objects
such as tables, views, sequences, and PL/SQL objects.

See "Working with synonyms" on page 2-22.

New features in Release 11.2.1.1.0
■ Quick Start demos

This release includes an optional Quick Start feature with introductory
information, tutorials, and new or reworked demo applications. Note that the
demos have mostly the same names as in earlier releases, but in a different
location.

xvi

See "About the TimesTen C demos" on page 1-5 and
install_dir/quickstart.html in your installation.

■ Oracle Call Interface (OCI) support

OCI is an API that provides functions you can use to access the database server
and control SQL execution. OCI supports the data types, calling conventions,
syntax, and semantics of the C and C++ programming languages. You compile
and link an OCI program much as you would any C or C++ program. There is no
preprocessing or precompilation step.

See Chapter 3, "TimesTen Support for Oracle Call Interface."

■ Pro*C/C++ support

The Oracle Pro*C/C++ Precompiler enables you to embed SQL statements or
PL/SQL blocks directly into C or C++ code. You use a precompilation step to
convert the Pro*C/C++ source file into a C or C++ source file.

See Chapter 4, "TimesTen Support for Oracle Pro*C/C++ Precompiler."

■ Access control

Perhaps the most significant overall change to previous functionality in this
release is access control. TimesTen has new features to control database access with
object-level resolution for database objects such as tables, views, materialized
views, and sequences. This also affects access to certain TimesTen built-in
procedures, utilities, and connection attributes.

See "Considering TimesTen features for access control" on page 2-30. For general
information, see "Managing Access Control" in Oracle TimesTen In-Memory Database
Operations Guide.

■ Output parameters

Discussion of binding parameters includes new support for binding OUT and IN
OUT parameters.

See appropriate subsections under "Binding parameters and executing statements"
on page 2-11.

■ Duplicate parameters

TimesTen now supports either of two modes for binding duplicate parameters in a
SQL statement. Use the DuplicateBindMode general connection attribute to
choose between the Oracle mode (now the default) and the traditional TimesTen
mode.

See "Binding duplicate parameters in SQL statements" on page 2-16.

■ REF CURSORs

REF CURSOR is a PL/SQL concept, where a REF CURSOR is a handle to a cursor
over a SQL result set and can be passed between PL/SQL and an application.

See "Working with REF CURSORs" on page 2-18.

■ Automatic client failover

Automatic client failover, used in High Availability scenarios when failure of a
TimesTen node results in failover (transfer) to an alternate node, automatically
reconnects applications to the new node. TimesTen provides features that allow
applications to be alerted when this happens, so they can take any appropriate
action.

See "Using automatic client failover" on page 2-32.

xvii

■ Deferred prepare

To make its behavior consistent with OCI expectations and to avoid unwanted
round trips between client and server, the TimesTen client library implementation
of SQLPrepare performs what is referred to as a deferred prepare, where the
request is not sent to the server until required.

See "TimesTen deferred prepare" on page 2-9.

■ Parallel log manager

As a result of new multistrand functionality of the log manager, some terminology
has changed in Chapter 5, "XLA and TimesTen Event Management," and
Chapter 9, "XLA Reference." For discussion in those chapters, the term "log
sequence number" (LSN) is replaced by "log record identifier". There are still LSNs,
but in a more limited and specific context. Only some of what used to be called
LSNs are still LSNs in the new usage. Names of functions, data structures, and so
on where "LSN" appears are not changed due to backward compatibility
considerations.

In particular, note that the multistrand functionality affects the tt_XlaLsn_t
structure used by XLA functions ttXlaGetLSN and ttXlaSetLSN. It also affects
the tt_LSN_t structure that is a field of the ttXlaUpdateDesc_t structure. See
"ttXlaGetLSN" on page 9-27, "ttXlaSetLSN" on page 9-51, and "ttXlaUpdateDesc_t"
on page 9-70.

■ Rowids

Each row in a TimesTen database table has a unique identifier known as its rowid.
TimesTen now supports Oracle-style rowids. An application can retrieve the rowid
of a row from the ROWID pseudocolumn. Rowids can be represented in either
binary or character format.

See "Working with rowids" on page 2-22.

■ DML returning (RETURNING INTO clause)

TimesTen now supports the RETURNING INTO clause, referred to as DML
returning, with an INSERT, UPDATE, or DELETE statement to return specified items
from a row that was affected by the action.

See "Working with DML returning (RETURNING INTO clause)" on page 2-20.

■ Execution time threshold for SQL statements

You can configure TimesTen to write a warning to the support log and throw an
SNMP trap when the execution of a SQL statement exceeds a specified time
duration, in seconds. This feature was added in a 7.0.x maintenance release but not
documented in this manual. Note that this feature is similar to but differs from the
previously existing timeout value for SQL statements.

See "Setting a timeout or threshold for executing SQL statements" on page 2-25.

■ "T-tree" indexes are now referred to as "range" indexes.

■ C utility function changes

The ttRepDuplicateEx function in particular is affected by access control. See
"ttRepDuplicateEx" on page 8-15.

■ XLA replicated bookmarks

If you are using an active standby pair replication scheme, you now have the
option of using replicated bookmarks. For a replicated bookmark, operations on

xviii

the bookmark are replicated to the standby database as appropriate. This allows
more efficient recovery of your bookmark positions in the event of failover.

See the section on replicated bookmarks under "About XLA bookmarks" on
page 5-4.

■ Additional XLA changes

– Use of XLA in non-persistent mode is discouraged. Use the persistent mode.

See "XLA persistent mode" on page 5-2.

– There is a new XLA type conversion function for rowids,
ttXlaRowidToCString.

See "ttXlaRowidToCString" on page 9-50.

– XLA indicates whether an update was generated as part of a cascading delete
or aging operation, through new values for the flags field in the
ttXlaUpdateDesc_t structure.

See "ttXlaUpdateDesc_t" on page 9-70.

1

C Development Environment 1-1

1C Development Environment

This chapter provides information about the C development environment and related
considerations. The following topics are covered:

■ Setting the environment for development

■ Linking options

■ Compiling and linking applications

■ About the TimesTen C demos

Setting the environment for development
Environment variable settings for TimesTen are discussed in "Environment variables"
in the Oracle TimesTen In-Memory Database Installation Guide.

On UNIX platforms, set the environment for TimesTen by executing one of the
following scripts:

install_dir/bin/ttenv.sh
install_dir/bin/ttenv.csh

On Windows, set the environment during installation or run the following:

install_dir\bin\ttenv.bat

Linking options
A TimesTen application can link with the TimesTen ODBC direct driver or ODBC
client driver, or can link with a driver manager.

Linking directly with the TimesTen ODBC drivers
Applications to be used solely with TimesTen can directly link with either the
TimesTen ODBC direct driver or the ODBC client driver. Direct linking avoids the
performance overhead of a driver manager and is the simplest way to access

Notes:

■ The ttenv scripts also configure access to the Oracle Instant
Client, required for OCI programming.

■ You can optionally use the appropriate ttquickstartenv script
instead of ttenv. This is a superset of ttenv that also sets up the
TimesTen Quick Start demo environment.

Linking options

1-2 Oracle TimesTen In-Memory Database C Developer's Guide

TimesTen. However, developers of direct-linked applications should be aware of the
following issues associated with direct linking.

■ The application can only connect to a DSN that uses the driver with which it is
linked. It cannot connect to a database of any other vendor, nor can it connect to a
TimesTen DSN of a different TimesTen driver or a different version or type.

■ Windows ODBC tracing is not available to direct-linked applications.

■ The ODBC cursor library is not available to direct-linked applications.

■ Applications cannot use the ODBC functions that are usually implemented by a
driver manager. These functions include SQLDataSources and SQLDrivers.

■ Applications that use SQLCancel to close a cursor instead of
SQLFreeStmt(..., SQL_CLOSE) will receive a return code of
SQL_SUCCESS_WITH_INFO and a SQL state of 01S05. This warning is intended
to be used by the driver manager to manage its internal state. Applications should
treat this warning as success.

Linking with a driver manager
Applications that link with the ODBC driver manager on Windows can connect to any
DSN that references an ODBC driver and can even connect simultaneously to multiple
DSNs that use different ODBC drivers. Note, however, that driver managers are not
available by default on most non-Windows platforms. In addition, using a driver
manager may add significant synchronization overhead to every ODBC function call
and has the following limitations:

■ The TimesTen option TT_PREFETCH_COUNT cannot be used with applications that
link with a driver manager. For more information on using
TT_PREFETCH_COUNT, see "Prefetching multiple rows of data" on page 2-10.

■ Applications cannot set or reset the TimesTen-specific TT_PREFETCH_CLOSE
connection option. For more information about using the TT_PREFETCH_CLOSE
connection option, see "Enable TT_PREFETCH_CLOSE for serializable
transactions" in the Oracle TimesTen In-Memory Database Operations Guide.

■ Transaction Log API (XLA) calls cannot be used when applications are linked with
a driver manager.

■ The ODBC C types SQLBIGINT, SQLTINYINT, and SQLWCHAR are not supported
for an application linked with a driver manager when used with TimesTen. You
cannot call methods that have any of these types in their signatures.

Note: Though it is not yet formally supported, TimesTen supplies a
driver manager for both Windows and UNIX with the Quick Start
sample applications. This driver manager is limited to support for the
TimesTen direct driver and client driver only, but does not have the
functionality or performance limitations described above.
Applications that must concurrently use both direct connections and
client/server connections can use this driver manager to achieve this
with very little impact on performance and no impact on functionality.

Compiling and linking applications

C Development Environment 1-3

Testing link options
To test whether an application was directly linked, you can call SQLGetInfo to
examine the driver release of the database connection handle, as shown in
Example 1–1.

For direct-linked applications, the call to SQLGetInfo returns the unchanged
connection handle. For applications that use a driver manager, the returned connection
handle differs from the passed-in handle.

Example 1–1 Testing whether an application is directly linked

RetCode = SQLDriverConnect(hdbc,NULL,szConnString,
 SQL_NTS,szConnout,255,&cbConnOut,SQL_DRIVER_NOPROMPT);
rc = SQLGetInfo(hdbc, SQL_DRIVER_HDBC, &drhdbc,
 sizeof (drhdbc), &drhdbclen);
if (drhdbc != NULL && drhdbc != hdbc) {
 /* Linked with driver manager */
}
else {
 /* Directly linked with TimesTen driver */
}

Compiling and linking applications
This section discusses compiling and linking C applications on Windows or UNIX.

Compiling and linking applications on Windows
To compile TimesTen applications on Windows, you are not required to specify the
location of the ODBC #include files. These files are included with Microsoft Visual
C++. However, you must indicate the location of TimesTen #include files by using
the /I compiler option.

The Makefile in Example 1–2 shows how to build a TimesTen application on Windows
systems. This example assumes that install_dir\lib has already been added to
the LIB environment variable.

Example 1–2 Building a TimesTen application in Windows

CFLAGS = "/Iinstall_dir\include"
LIBSDM = ODBC32.LIB
LIBS = tten1121.lib ttdv1121.lib
LIBSDEBUG = tten1121d.lib ttdv1121d.lib
LIBSCS = ttclient1121.lib

Link with the ODBC driver manager
appldm.exe:appl.obj
 $(CC) /Feappldm.exe appl.obj $(LIBSDM)

Link directly with the TimesTen
ODBC production driver
appl.exe:appl.obj
 $(CC) /Feappl.exe appl.obj\
 $(LIBS)

Link directly with the TimesTen
ODBC debug driver
appldebug.exe:appl.obj
 $(CC) /Feappldebug.exe appl.obj\

Compiling and linking applications

1-4 Oracle TimesTen In-Memory Database C Developer's Guide

 $(LIBSDEBUG)

Link directly with the TimesTen
ODBC client driver
applcs.exe:appl.obj
 $(CC) /Feapplcs.exe appl.obj\
 $(LIBSCS)

Compiling and linking applications on UNIX
On UNIX platforms:

■ Compile TimesTen applications using the TimesTen header files from the TimesTen
installation directory.

■ Link with the TimesTen ODBC direct driver or client driver, each of which is
provided as a shared library.

On UNIX, applications using the ULONG, SLONG, USHORT or SSHORT ODBC data types
must specify the TT_USE_ALL_TYPES preprocessor option while compiling. This is
typically done using the -DTT_USE_ALL_TYPES C compiler option.

To use the TimesTen #include files, add the following to the C compiler command,
where install_dir is the TimesTen installation directory path:

-Iinstall_dir/include

To link with the TimesTen ODBC direct driver, add the following to the link command:

-Linstall_dir/lib -ltten

The -L option tells the linker to search the TimesTen lib directory for library files. The
-ltten option links in the TimesTen ODBC direct driver.

To link with the TimesTen ODBC client driver, add the following to the link command:

-Linstall_dir/lib -lttclient

On Solaris, the default TimesTen ODBC client driver was compiled with Studio 11. The
library enables you to link an application compiled with the Sun Studio 11 C/C++
compiler directly with the TimesTen client.

On AIX, when linking applications with the TimesTen ODBC client driver, the C++
runtime library must be included in the link command (because the client driver is
written in C++ and AIX does not link it automatically) and must follow the client
driver:

-Linstall_dir/lib -lttclient -lC_r

You can use Makefiles in subdirectories under the quickstart/sample_code
directory, or you can use Example 1–3 to guide you in creating your own Makefile.

Example 1–3 Makefile to link the application

CFLAGS = -Iinstall_dir/include
LIBS = -Linstall_dir/lib -ltten
LIBSDEBUG = -Linstall_dir/lib -lttenD
LIBSCS = -Linstall_dir/lib -lttclient

Link directly with the TimesTen
ODBC production driver
appl:appl.o
 $(CC) -o appl appl.o $(LIBS)

About the TimesTen C demos

C Development Environment 1-5

Link directly with the TimesTen ODBC debug driver
appldebug:appl.o
 $(CC) -o appldebug appl.o $(LIBSDEBUG)

Link directly with the TimesTen client driver
applcs:appl.o
 $(CC) -o applcs appl.o $(LIBSCS)

About the TimesTen C demos
After you have configured your C environment, you can confirm that everything is set
up correctly by compiling and running TimesTen Quick Start demo applications. Refer
to the Quick Start welcome page at install_dir/quickstart.html, especially the
links under SAMPLE PROGRAMS, for information on the following topics.

■ Demo schema and setup

The build_sampledb script creates a sample database and demo schema. You
must run this before you start using the demos.

■ Demo environment and setup

The ttquickstartenv script, a superset of the ttenv script generally used for
TimesTen setup, sets up the demo environment. You must run this each time you
enter a session where you want to compile and run any of the demos.

■ Demos and setup

TimesTen provides demos for ODBC, XLA, OCI, and Pro*C/C++ in subdirectories
under the quickstart/sample_code directory. For instructions on compiling
and running the demos, see the README files in the subdirectories.

■ What the demos do

A synopsis of each demo is provided when you click the categories under
SAMPLE PROGRAMS.

Notes:

■ To directly link your application to the TimesTen debug ODBC
driver, substitute -lttenD for -ltten on the link line.

■ On Solaris, when compiling with Sun C/C++ compilers, TimesTen
applications must be compiled and linked with the -mt option.

About the TimesTen C demos

1-6 Oracle TimesTen In-Memory Database C Developer's Guide

2

Working with TimesTen Databases 2-1

2Working with TimesTen Databases

This chapter describes how to use ODBC to connect to and use Oracle TimesTen
In-Memory Database. It includes the following topics:

■ Managing TimesTen database connections

■ Managing TimesTen data

■ Using additional TimesTen data management features

■ Considering TimesTen features for access control

■ Handling Errors

■ Using automatic client failover

Managing TimesTen database connections
The Oracle TimesTen In-Memory Database Operations Guide contains information about
creating a DSN for the database. The type of DSN you create depends on whether your
application will connect directly to the database or will connect by a client.

If you intend to connect directly to the database, refer to "Managing TimesTen
Databases" in Oracle TimesTen In-Memory Database Operations Guide. There are sections
on creating a DSN for a direct connection from UNIX or Windows.

If you intend to create a client connection to the database, refer to "Working with the
TimesTen Client and Server" in Oracle TimesTen In-Memory Database Operations Guide.
There are sections on creating a DSN for a client/server connection from UNIX or
Windows.

The rest of this section covers the following topics:

■ SQLConnect, SQLDriverConnect, SQLAllocConnect, SQLDisconnect functions

■ Connecting to and disconnecting from a database

■ Setting connection attributes programmatically

Notes:

■ In TimesTen, the user name and password must be for a valid user
who has been granted CREATE SESSION privilege to connect to
the database.

■ A TimesTen connection cannot be inherited from a parent process.
If a process opens a database connection before creating a child
process, the child must not use the connection.

Managing TimesTen database connections

2-2 Oracle TimesTen In-Memory Database C Developer's Guide

■ Access control for connections

SQLConnect, SQLDriverConnect, SQLAllocConnect, SQLDisconnect functions
The following ODBC functions are available for connecting to a database and related
functionality:

■ SQLConnect: Loads a driver and connects to the database. The connection handle
points to where information about the connection is stored, including status,
transaction state, results, and error information.

■ SQLDriverConnect: This is an alternative to SQLConnect when more
information is required than what is supported by SQLConnect, which is just
data source (the database), user name, and password.

■ SQLAllocConnect: Allocates memory for a connection handle within the
specified environment.

■ SQLDisconnect: Disconnect from the database. Takes the existing connection
handle as its only argument.

Refer to ODBC API reference documentation for details about these functions.

Connecting to and disconnecting from a database
This section provides examples of connecting to and disconnecting from the database.

Example 2–1 Connect and disconnect (excerpt)

This code fragment invokes SQLConnect and SQLDisconnect to connect to and
disconnect from the database named FixedDs. The first invocation of SQLConnect
by any application causes the creation of the FixedDs database. Subsequent
invocations of SQLConnect would connect to the existing database.

#include <sql.h>
SQLRETURN retcode;
SQLHDBC hdbc;

...
retcode = SQLConnect(hdbc,
 (SQLCHAR*)"FixedDs", SQL_NTS,
 (SQLCHAR*)"johndoe", SQL_NTS,
 (SQLCHAR*)"opensesame", SQL_NTS);
...
retcode = SQLDisconnect(hdbc);
...

Example 2–2 Connect and disconnect (complete program)

This example contains a complete program that creates, connects to, and disconnects
from a database. The example uses SQLDriverConnect instead of SQLConnect to
set up the connection, and uses SQLAllocConnect to allocate memory. It also shows
how to get error messages. (In addition, you can refer to "Handling Errors" on
page 2-30.)

#ifdef WIN32
include <windows.h>
#else
include <sqlunix.h>
#endif
#include <sql.h>

Managing TimesTen database connections

Working with TimesTen Databases 2-3

#include <sqlext.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

static void chkReturnCode(SQLRETURN rc, SQLHENV henv,
 SQLHDBC hdbc, SQLHSTMT hstmt,
 char* msg, char* filename,
 int lineno, BOOL err_is_fatal);

#define DEFAULT_CONNSTR "DSN=sampledb_1121;PermSize=32"

int
main(int ac, char** av)
{
SQLRETURN rc = SQL_SUCCESS;
 /* General return code for the API */
SQLHENV henv = SQL_NULL_HENV;
 /* Environment handle */
SQLHDBC hdbc = SQL_NULL_HDBC;
 /* Connection handle */
SQLHSTMT hstmt = SQL_NULL_HSTMT;
 /* Statement handle */
SQLCHAR connOut[255];
 /* Buffer for completed connection string */
SQLSMALLINT connOutLen;
 /* Number of bytes returned in ConnOut */
SQLCHAR *connStr = (SQLCHAR*)DEFAULT_CONNSTR;
 /* Connection string */
rc = SQLAllocEnv(&henv);
if (rc != SQL_SUCCESS) {
 fprintf(stderr, "Unable to allocate an "
 "environment handle\n");
 exit(1);
}
rc = SQLAllocConnect(henv, &hdbc);
chkReturnCode(rc, henv, SQL_NULL_HDBC,
 SQL_NULL_HSTMT,
 "Unable to allocate a "
 "connection handle\n",
 __FILE__, __LINE__, 1);

rc = SQLDriverConnect(hdbc, NULL,
 connStr, SQL_NTS,
 connOut, sizeof(connOut),
 &connOutLen,
 SQL_DRIVER_NOPROMPT);
chkReturnCode(rc, henv, hdbc, SQL_NULL_HSTMT,
 "Error in connecting to the"
 " database\n",
 __FILE__, __LINE__, 1);
rc = SQLAllocStmt(hdbc, &hstmt);
chkReturnCode(rc, henv, hdbc, SQL_NULL_HSTMT,
 "Unable to allocate a "
 "statement handle\n",
 __FILE__, __LINE__, 1);

/* Your application code here */

if (hstmt != SQL_NULL_HSTMT) {

Managing TimesTen database connections

2-4 Oracle TimesTen In-Memory Database C Developer's Guide

 rc = SQLFreeStmt(hstmt, SQL_DROP);
 chkReturnCode(rc, henv, hdbc, hstmt,
 "Unable to free the "
 "statement handle\n",
 __FILE__, __LINE__, 0);
}

rc = SQLDisconnect(hdbc);
chkReturnCode(rc, henv, hdbc,
 SQL_NULL_HSTMT,
 "Unable to close the "
 "connection\n",
 __FILE__, __LINE__, 0);

rc = SQLFreeConnect(hdbc);
chkReturnCode(rc, henv, hdbc,
 SQL_NULL_HSTMT,
 "Unable to free the "
 "connection handle\n",
 __FILE__, __LINE__, 0);

rc = SQLFreeEnv(henv);
chkReturnCode(rc, henv, SQL_NULL_HDBC,
 SQL_NULL_HSTMT,
 "Unable to free the "
 "environment handle\n",
 __FILE__, __LINE__, 0);

 return 0;
}

static void
chkReturnCode(SQLRETURN rc, SQLHENV henv,
 SQLHDBC hdbc, SQLHSTMT hstmt,
 char* msg, char* filename,
 int lineno, BOOL err_is_fatal)
{
#define MSG_LNG 512
 SQLCHAR sqlState[MSG_LNG];
 /* SQL state string */
 SQLINTEGER nativeErr;
 /* Native error code */
 SQLCHAR errMsg[MSG_LNG];
 /* Error msg text buffer pointer */
 SQLSMALLINT errMsgLen;
 /* Error msg text Available bytes */
 SQLRETURN ret = SQL_SUCCESS;
 if (rc != SQL_SUCCESS &&
 rc != SQL_NO_DATA_FOUND) {
 if (rc != SQL_SUCCESS_WITH_INFO) {
 /*
 * It's not just a warning
 */
 fprintf(stderr, "*** ERROR in %s, line %d:"
 " %s\n",
 filename, lineno, msg);
 }
 /*
 * Now see why the error/warning occurred
 */

Managing TimesTen database connections

Working with TimesTen Databases 2-5

 while (ret == SQL_SUCCESS ||
 ret == SQL_SUCCESS_WITH_INFO) {
 ret = SQLError(henv, hdbc, hstmt,
 sqlState, &nativeErr,
 errMsg, MSG_LNG,
 &errMsgLen);
 switch (ret) {
 case SQL_SUCCESS:
 fprintf(stderr, "*** %s\n"
 "*** ODBC Error/Warning = %s, "
 "TimesTen Error/Warning "
 " = %d\n",
 errMsg, sqlState,
 nativeErr);
 break;
 case SQL_SUCCESS_WITH_INFO:
 fprintf(stderr, "*** Call to SQLError"
 " failed with return code of "
 "SQL_SUCCESS_WITH_INFO.\n "
 "*** Need to increase size of"
 " message buffer.\n");
 break;
 case SQL_INVALID_HANDLE:
 fprintf(stderr, "*** Call to SQLError"
 " failed with return code of "
 "SQL_INVALID_HANDLE.\n");
 break;
 case SQL_ERROR:
 fprintf(stderr, "*** Call to SQLError"
 " failed with return code of "
 "SQL_ERROR.\n");
 break;
 case SQL_NO_DATA_FOUND:
 break;
 } /* switch */
 } /* while */
 if (rc != SQL_SUCCESS_WITH_INFO && err_is_fatal) {
 fprintf(stderr, "Exiting.\n");
 exit(-1);
 }
 }
}

Setting connection attributes programmatically
You can set or override connection attributes programmatically by specifying a
connection string when you connect to a database.

Refer to Oracle TimesTen In-Memory Database Operations Guide for general information
about connection attributes. General connection attributes require no special privilege.
First connection attributes are set when the database is first loaded, and persist for all
connections. Only the instance administrator can load a database with changes to first
connection attribute settings. Refer to "Connection Attributes" in Oracle TimesTen
In-Memory Database Reference for additional information, including specific information
about any particular connection attribute.

Example 2–3 Connect and use store-level locking

This code fragment connects to a database named mydsn and indicates in the
SQLDriverConnect call that the application should use database-level locking rather

Managing TimesTen data

2-6 Oracle TimesTen In-Memory Database C Developer's Guide

than the default row-level locking. Note that LockLevel is a general connection
attribute.

SQLHDBC hdbc;
SQLCHAR ConnStrOut[512];
SQLSMALLINT cbConnStrOut;
SQLRETURN rc;

rc = SQLDriverConnect(hdbc, NULL,
 "DSN=mydsn;LockLevel=1", SQL_NTS,
 ConnStrOut, sizeof (ConnStrOut),
 &cbConnStrOut, SQL_DRIVER_NOPROMPT);

Access control for connections
Privilege to connect to the database must be explicitly granted to every user other than
the instance administrator, through the CREATE SESSION privilege. This is a system
privilege. It must be granted by an administrator to the user, either directly or through
the PUBLIC role. Refer to "Managing Access Control" in Oracle TimesTen In-Memory
Database Operations Guide for additional information and examples.

Managing TimesTen data
This section provides detailed information on working with data in a TimesTen
database. It includes the following topics:

■ TimesTen #include files

■ SQL statement execution within C applications

■ Preparing and executing queries and working with cursors

■ TimesTen deferred prepare

■ Prefetching multiple rows of data

■ Binding parameters and executing statements

■ Working with REF CURSORs

■ Working with DML returning (RETURNING INTO clause)

■ Working with rowids

■ Making and committing changes to the database

TimesTen #include files
In addition to standard C #include files, your application must include the following
TimesTen #include files.

Note: Each connection to a database opens several files. An
application with many threads, each with a separate connection, has
several files open for each thread. Such an application can exceed the
maximum number of file descriptors that may be simultaneously
open on the operating system. In this case, configure your system to
allow a larger number of open files. See "Limits on number of open
files" in Oracle TimesTen In-Memory Database System Tables and Limits
Reference.

Managing TimesTen data

Working with TimesTen Databases 2-7

SQL statement execution within C applications
"Working with Data in a TimesTen Database" in Oracle TimesTen In-Memory Database
Operations Guide describes how to use SQL to manage data. This section describes
general formats used to execute a SQL statement within a C application. The following
topics are covered:

■ SQLExecDirect and SQLExecute functions

■ Executing a SQL statement

SQLExecDirect and SQLExecute functions
There are two ODBC functions to execute SQL statements:

■ SQLExecute: Executes a statement that has been prepared. This is used together
with SQLPrepare. After the application is done with the results, they can be
discarded and SQLExecute can be run again using different parameter values.

This is typically used for DML statements with bind parameters, or statements
that are being executed a relatively large number of times.

■ SQLExecDirect: Prepares and executes a statement.

This is typically used for DDL statements or for DML statements that would
execute only a relatively small number of times and without bind parameters.

Refer to ODBC API reference documentation for details about these functions.

Executing a SQL statement
You can use the SQLExecDirect function as shown in Example 2–4.

The next section, "Preparing and executing queries and working with cursors", shows
usage of the SQLExecute and SQLPrepare functions.

Example 2–4 Executing a SQL statement with SQLExecDirect

This code sample creates a table, NameID, with two columns: CustID and CustName.
The table maps character names to integer identifiers.

#include <sql.h>
SQLRETURN rc;
SQLHSTMT hstmt;
...
rc = SQLExecDirect(hstmt, (SQLCHAR*)
 "CREATE TABLE NameID (CustID INTEGER, CustName VARCHAR(50))",
 SQL_NTS);
if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)
 ... /* handle error */

Include file Description

timesten.h TimesTen ODBC #include file.

tt_errCode.h TimesTen native error codes.

Note: Access control privileges are checked both when SQL is
prepared and when it is executed in the database. Refer to
"Considering TimesTen features for access control" on page 2-30 for
related information.

Managing TimesTen data

2-8 Oracle TimesTen In-Memory Database C Developer's Guide

Preparing and executing queries and working with cursors
This section shows the basic steps of preparing and executing a query and working
with cursors. Applications use cursors to scroll through the results of a query,
examining one result row at a time.

In the ODBC setting, a cursor is always associated with a result set. This association is
made by the ODBC driver. The application can control cursor characteristics, such as
number of rows to fetch at one time, using SQLSetStmtOption options documented
in "Option support for SQLSetStmtOption and SQLGetStmtOption" on page 10-5. The
steps involved in executing a query typically include the following.

1. Use SQLPrepare to prepare the SELECT statement for execution.

2. Use SQLBindParameter, if the statement has parameters, to bind each parameter
to an application address. See "SQLBindParameter function" on page 2-11. (Note
that Example 2–5 below does not bind parameters.)

3. Call SQLExecute to initiate the SELECT statement. See "SQLExecDirect and
SQLExecute functions" on page 2-7.

4. Call SQLBindCol to assign the storage and data type for a column of results,
binding column results to local variable storage in your application.

5. Call SQLFetch to fetch the results. Specify the statement handle.

6. Call SQLFreeStmt to free the statement handle. Specify the statement handle and
either SQL_CLOSE, SQL_DROP, SQL_UNBIND, or SQL_RESET_PARAMS.

Refer to ODBC API reference documentation for details on these ODBC functions.

Example 2–5 Executing a query and working with the cursor

This example illustrates how to prepare and execute a query using ODBC calls. Error
checking has been omitted to simplify the example. In addition to ODBC functions
mentioned previously, this example uses SQLNumResultCols to return the number
of columns in the result set, SQLDescribeCol to return a description of one column
of the result set (column name, type, precision, scale, and nullability), and
SQLBindCol to assign the storage and data type for a column in the result set. These
are all described in detail in ODBC API reference documentation.

#include <sql.h>

SQLHSTMT hstmt;
SQLRETURN rc;
int i;
SQLSMALLINT numCols;
SQLCHAR colname[32];
SQLSMALLINT colnamelen, coltype, scale, nullable;
SQLULEN collen [MAXCOLS];
SQLLEN outlen [MAXCOLS];
SQLCHAR* data [MAXCOLS];

/* other declarations and program set-up here */

/* Prepare the SELECT statement */

Note: Access control privileges are checked both when SQL is
prepared and when it is executed in the database. Refer to
"Considering TimesTen features for access control" on page 2-30 for
related information.

Managing TimesTen data

Working with TimesTen Databases 2-9

rc = SQLPrepare(hstmt,
(SQLCHAR*) "SELECT * FROM EMP WHERE AGE>20",
SQL_NTS);
/* ... */

/* Determine number of columns in result rows */
rc = SQLNumResultCols(hstmt, &numCols);

/* ... */

/* Describe and bind the columns */
for (i = 0; i < numCols; i++) {
 rc = SQLDescribeCol(hstmt,
 (SQLSMALLINT) (i + 1),
 colname,(SQLSMALLINT)sizeof(colname), &colnamelen, &coltype, &collen[i],
 &scale, &nullable);

 /* ... */

 data[i] = (SQLCHAR*) malloc (collen[i] +1);
 rc = SQLBindCol(hstmt, (SQLSMALLINT) (i + 1),
 SQL_C_CHAR, data[i],
 COL_LEN_MAX, &outlen[i]);

 /* ... */

}
/* Execute the SELECT statement */
rc = SQLExecute(hstmt);

/* ... */

/* Fetch the rows */
if (numCols > 0) {
 while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS ||
 rc == SQL_SUCCESS_WITH_INFO) {
 /* ... "Process" the result row */
 } /* end of for-loop */
 if (rc != SQL_NO_DATA_FOUND)
 fprintf(stderr,
 "Unable to fetch the next row\n");

/* Close the cursor associated with the SELECT statement */
 rc = SQLFreeStmt(hstmt, SQL_CLOSE);
}

TimesTen deferred prepare
In standard ODBC, a SQLPrepare call is expected to be compiled by the SQL engine
so that information about the SQL statement, such as column descriptions for the
result set, is available to the application and accessible through calls such as
SQLDescribeCol. To achieve this functionality, the SQLPrepare call must be sent to
the server for processing.

This is in contrast, for example, to expected behavior under Oracle Call Interface
(OCI), where a prepare call is expected to be a lightweight operation performed on the
client to simply extract names and positions of parameters.

To avoid unwanted round trips between client and server, and also to make the
behavior consistent with OCI expectations, the TimesTen client library implementation

Managing TimesTen data

2-10 Oracle TimesTen In-Memory Database C Developer's Guide

of SQLPrepare performs what is referred to as a "deferred prepare", where the
request is not sent to the server until required. Examples of when the round trip would
be required:

■ When there is a SQLExecute call. Note that if there is a deferred prepare call that
has not yet been sent to the server, a SQLExecute call on the client is converted to
a SQLExecDirect call.

■ When there is a request for information about the query that can only be supplied
by the SQL engine, such as when there is a SQLDescribeCol call, for example.
Many such calls in standard ODBC can access information previously returned by
a SQLPrepare call, but with the deferred prepare functionality the SQLPrepare
call is sent to the server and the information is returned to the application only as
needed.

The deferred prepare implementation requires no changes at the application or user
level; however, be aware that calling any of the following functions may result in a
round trip to the server if the required information from a previously prepared
statement has not yet been retrieved:

■ SQLColAttributes

■ SQLDescribeCol

■ SQLDescribeParam

■ SQLNumResultCols

■ SQLNumParams

■ SQLGetStmtOption (for options that depend on the statement having been
compiled by the SQL engine)

Also be aware that when calling any of these functions, any error from an earlier
SQLPrepare call may be deferred until one of these calls is executed. In addition,
these calls may return errors specific to SQLPrepare as well as errors specific to
themselves.

Prefetching multiple rows of data
A TimesTen extension to ODBC allows applications to prefetch multiple rows of data
into the ODBC driver buffer. This can increase the performance of applications that use
the Read Committed or Serializable isolation level.

The TT_PREFETCH_COUNT connection option determines how many rows a
SQLFetch call will prefetch. This option is available for both direct access and
client/server applications.

TT_PREFETCH_COUNT can be set in a call to either SQLSetConnectOption or
SQLSetStmtOption. The value can be any integer from 0 to 128, inclusive. Following
is an example.

rc = SQLSetConnectOption(hdbc, TT_PREFETCH_COUNT, 100);

With this setting, the first SQLFetch call will prefetch 100 rows. Subsequent
SQLFetch calls will fetch from the ODBC buffer instead of from the database, until

Note: Deferred prepare functionality is not implemented, and not
relevant, with the TimesTen direct driver.

Managing TimesTen data

Working with TimesTen Databases 2-11

the buffer is depleted. After it is depleted, the next SQLFetch call will fetch another
100 rows into the buffer, and so on.

To disable prefetch, set TT_PREFETCH_COUNT to 1.

When the prefetch count is set to 0, TimesTen uses a default value, depending on the
isolation level you have set for the database. With Read Committed isolation level, the
default prefetch value is 5. With Serializable isolation level, the default is 128. The
default prefetch value is the optimum setting for most applications. Generally, a higher
value may result in better performance for larger result sets, at the expense of slightly
higher resource use.

You can set the isolation level as follows:

rc = SQLSetConnectOption(hdbc, SQL_TXN_ISOLATION, SQL_TXN_READ_COMMITTED);

Or:

rc = SQLSetConnectOption(hdbc, SQL_TXN_ISOLATION, SQL_TXN_SERIALIZABLE);

Binding parameters and executing statements
This sections discusses how to bind input or output parameters for SQL statements.
The following topics are covered:

■ SQLBindParameter function

■ Determination of parameter type assignments and type conversions

■ Binding IN parameters

■ Binding OUT parameters

■ Binding IN OUT parameters

■ Binding duplicate parameters in SQL statements

■ Binding duplicate parameters in PL/SQL

■ Considerations for floating point data

■ Using SQL_WCHAR and SQL_WVARCHAR with a driver manager

SQLBindParameter function
The ODBC SQLBindParameter function is used to bind parameters for SQL
statements. This could include IN, OUT, or IN OUT parameters.

To bind an input parameter through ODBC, use the SQLBindParameter function
with a setting of SQL_PARAM_INPUT for the fParamType argument. Refer to ODBC
API reference documentation for details about the SQLBindParameter function.
Table 2–1 provides a brief summary of its arguments.

To bind an output or input-output parameter through ODBC, use the
SQLBindParameter function with a setting of SQL_PARAM_OUTPUT or
SQL_PARAM_INPUT_OUTPUT, respectively, for the fParamType argument. As with
input parameters, use the fSqlType, cbColDef, and ibScale arguments (as
applicable) of the ODBC SQLBindParameter function to specify data types. In
addition, use the rgbValue, cbValueMax, and pcbValue arguments of
SQLBindParameter.

Managing TimesTen data

2-12 Oracle TimesTen In-Memory Database C Developer's Guide

Determination of parameter type assignments and type conversions
Bind parameter type assignments are determined as follows.

■ Parameter type assignments for statements that execute in TimesTen are
determined by TimesTen. Specifically:

– For SQL statements that execute within TimesTen, the TimesTen query
optimizer determines data types of SQL parameters.

■ Parameter type assignments for statements that execute in Oracle Database, or
according to Oracle functionality, are determined by the application. Specifically:

– For SQL statements that execute within Oracle Database—that is, passthrough
statements from the Oracle In-Memory Database Cache (IMDB Cache)—the
application must specify data types through its calls to the ODBC
SQLBindParameter function, according to the fSqlType, cbColDef, and
ibScale arguments of that function, as applicable.

– For PL/SQL blocks or procedures that execute within TimesTen, where the
PL/SQL execution engine has the same basic functionality as in Oracle
Database, the application must specify data types through its calls to
SQLBindParameter (the same as for SQL statements that execute within
Oracle).

So regarding host binds for PL/SQL (the variables, or parameters, that are
preceded by a colon within a PL/SQL block), note that the type of a host bind
is effectively declared by the call to SQLBindParameter, according to

Table 2–1 SQLBindParameter arguments

Argument Type Description

hstmt SQLHSTMT Statement handle.

ipar SQLUSMALLINT Parameter number, sequentially from left to right, starting
with 1.

fParamType SQLSMALLINT Indicating input or output: SQL_PARAM_INPUT,
SQL_PARAM_OUTPUT, or SQL_PARAM_INPUT_OUTPUT.

fCType SQLSMALLINT C data type of the parameter.

fSqlType SQLSMALLINT SQL data type of the parameter.

cbColDef SQLULEN The precision of the parameter, such as the maximum
number of bytes for binary data, the maximum number of
digits for a number, or the maximum number of characters
for character data.

ibScale SQLSMALLINT The scale of the parameter, referring to the maximum
number of digits to the right of the decimal point, where
applicable.

rgbValue SQLPOINTER Pointer to a buffer for the data of the parameter.

cbValueMax SQLLEN Maximum length of the rgbValue buffer, in bytes.

pcbValue SQLLEN* Pointer to a buffer for the length of the parameter.

Note: Refer to "Data Types" in Oracle TimesTen In-Memory Database
SQL Reference for information about precision and scale of TimesTen
data types.

Managing TimesTen data

Working with TimesTen Databases 2-13

fSqlType and the other arguments as applicable, and is not declared within
the PL/SQL block.

The ODBC driver performs any necessary type conversions between C values and
SQL or PL/SQL types. For any C-to-SQL or C-to-PL/SQL combination that is not
supported, an error will occur. These conversions can be from a C type to a SQL or
PL/SQL type (IN parameter), from a SQL or PL/SQL type to a C type (OUT
parameter), or both (IN OUT parameter).

Table 2–2 documents the mapping between ODBC types and SQL or PL/SQL types.

Table 2–2 ODBC SQL to TimesTen SQL or PL/SQL type mappings

ODBC type (fSqlType) SQL or PL/SQL type

SQL_BIGINT NUMBER

SQL_BINARY RAW(p)

SQL_BIT PLS_INTEGER

SQL_CHAR CHAR(p)

SQL_DATE DATE

SQL_DECIMAL NUMBER

SQL_DOUBLE NUMBER

SQL_FLOAT BINARY_DOUBLE

SQL_INTEGER PLS_INTEGER

SQL_NUMERIC NUMBER

SQL_REAL BINARY_FLOAT

SQL_REFCURSOR REF CURSOR

SQL_ROWID ROWID

SQL_SMALLINT PLS_INTEGER

SQL_TIMESTAMP TIMESTAMP(s)

SQL_TINYINT PLS_INTEGER

SQL_VARBINARY RAW(p)

SQL_VARCHAR VARCHAR2(p)

SQL_WCHAR NCHAR(p)

SQL_WVARCHAR NVARCHAR2(p)

Notes:

■ The notation (p) indicates precision is according to the
SQLBindParameter argument cbColDef.

■ The notation (s) indicates scale is according to the
SQLBindParameter argument ibScale.

■ Most applications should use SQL_VARCHAR rather than
SQL_CHAR for binding character data. Use of SQL_CHAR may
result in unwanted space padding to the full precision of the
parameter type.

Managing TimesTen data

2-14 Oracle TimesTen In-Memory Database C Developer's Guide

Binding IN parameters
For IN parameters for use with PL/SQL in TimesTen, use the fSqlType, cbColDef,
and ibScale arguments (as applicable) of the ODBC SQLBindParameter function
to specify data types. This is in contrast to how SQL input parameters are supported,
as noted in the preceding section, "Determination of parameter type assignments and
type conversions".

In addition, the rgbValue, cbValueMax, and pcbValue arguments of
SQLBindParameter are used as follows for IN parameters:

■ rgbValue: Before statement execution, points to the buffer where the application
places the parameter value to be passed to the application.

■ cbValueMax: For character and binary data, indicates the maximum length of the
incoming value that rgbValue points to, in bytes. For all other data types,
cbValueMax is ignored, and the length of the value that rgbValue points to is
determined by the length of the C data type specified in the fCType argument of
SQLBindParameter.

■ pcbValue: Points to a buffer that contains one of the following before statement
execution:

– The actual length of the value that rgbValue points to. For IN parameters,
this would be valid only for character or binary data.

– SQL_NTS for a null-terminated string.

– SQL_NULL_DATA for a null value.

Binding OUT parameters
For OUT parameters for use with PL/SQL in TimesTen, as noted for IN parameters
previously, use the fSqlType, cbColDef, and ibScale arguments (as applicable) of
the ODBC SQLBindParameter function to specify data types.

In addition, the rgbValue, cbValueMax, and pcbValue arguments of
SQLBindParameter are used as follows for OUT parameters:

■ rgbValue: During statement execution, points to the buffer where the value
returned from the statement should be placed.

■ cbValueMax: For character and binary data, indicates the maximum length of the
outgoing value that rgbValue points to, in bytes. For all other data types,
cbValueMax is ignored, and the length of the value that rgbValue points to is
determined by the length of the C data type specified in the fCType argument of
SQLBindParameter.

Note that ODBC null-terminates all character data, even if the data is truncated.
Therefore, when an OUT parameter has character data, cbValueMax must be large
enough to accept the maximum data value plus a null terminator (one additional
byte for CHAR and VARCHAR parameters, or two additional bytes for NCHAR and
NVARCHAR parameters).

■ pcbValue: Points to a buffer that contains one of the following after statement
execution:

– The actual length of the value that rgbValue points to (for all C types, not
just character and binary data). This is the length of the full parameter value,
regardless of whether the value can fit in the buffer that rgbValue points to.

– SQL_NULL_DATA for a null value.

Managing TimesTen data

Working with TimesTen Databases 2-15

Example 2–6 Binding output parameters

This example shows how to prepare, bind, and execute a PL/SQL anonymous block.
The anonymous block assigns bind variable a the value 'abcde' and bind variable b
the value 123.

SQLPrepare prepares the anonymous block. SQLBindParameter binds the first
parameter (a) as an output parameter of type SQL_VARCHAR and binds the second
parameter (b) as an output parameter of type SQL_INTEGER. SQLExecute executes
the anonymous block.

{
 SQLHSTMT hstmt;
 char aval[11];
 SQLLEN aval_len;
 SQLINTEGER bval;
 SQLLEN bval_len;

 SQLAllocStmt(hdbc, &hstmt);

 SQLPrepare(hstmt,
 (SQLCHAR*)"begin :a := 'abcde'; :b := 123; end;",
 SQL_NTS);

 SQLBindParameter(hstmt, 1, SQL_PARAM_OUTPUT, SQL_C_CHAR, SQL_VARCHAR,
 10, 0, (SQLPOINTER)aval, sizeof(aval), &aval_len);

 SQLBindParameter(hstmt, 2, SQL_PARAM_OUTPUT, SQL_C_SLONG, SQL_INTEGER,
 0, 0, (SQLPOINTER)&bval, sizeof(bval), &bval_len);

 SQLExecute(hstmt);

 printf("aval = [%s] (length = %d), bval = %d\n", aval, (int)aval_len, bval);
}

Binding IN OUT parameters
For IN OUT parameters for use with PL/SQL in TimesTen, as noted for IN parameters
previously, use the fSqlType, cbColDef, and ibScale arguments (as applicable) of
the ODBC SQLBindParameter function to specify data types.

In addition, the rgbValue, cbValueMax, and pcbValue arguments of
SQLBindParameter are used as follows for IN OUT parameters:

■ rgbValue: This is first used before statement execution as described in "Binding
IN parameters" on page 2-14. Then it is used during statement execution as
described in the preceding section, "Binding OUT parameters". Note that for an IN
OUT parameter, the outgoing value from a statement execution will be the
incoming value to the statement execution that immediately follows, unless that is
overridden by the application. Also, for IN OUT values bound when you are using
data-at-execution, the value of rgbValue serves as both the token that would be
returned by the ODBC SQLParamData function and as the pointer to the buffer
where the outgoing value will be placed.

■ cbValueMax: For character and binary data, this is first used as described in
"Binding IN parameters" on page 2-14. Then it is used as described in the
preceding section, "Binding OUT parameters". For all other data types,
cbValueMax is ignored, and the length of the value that rgbValue points to is
determined by the length of the C data type specified in the fCType argument of
SQLBindParameter.

Managing TimesTen data

2-16 Oracle TimesTen In-Memory Database C Developer's Guide

Note that ODBC null-terminates all character data, even if the data is truncated.
Therefore, when an IN OUT parameter has character data, cbValueMax must be
large enough to accept the maximum data value plus a null terminator (one
additional byte for CHAR and VARCHAR parameters, or two additional bytes for
NCHAR and NVARCHAR parameters).

■ pcbValue: This is first used before statement execution as described in "Binding
IN parameters" on page 2-14. Then it is used after statement execution as
described in the preceding section, "Binding OUT parameters".

Binding duplicate parameters in SQL statements
TimesTen supports either of two modes for binding duplicate parameters in a SQL
statement. (Regarding PL/SQL statements, see "Binding duplicate parameters in
PL/SQL" on page 2-17.)

■ Oracle mode, where multiple occurrences of the same parameter name are
considered to be distinct parameters.

■ Traditional TimesTen mode, as in earlier releases, where multiple occurrences of
the same parameter name are considered to be the same parameter.

You can choose the desired mode through the DuplicateBindMode general
connection attribute. DuplicateBindMode=0 (the default) is for the Oracle mode,
and DuplicateBindMode=1 is for the TimesTen mode. Because this is a general
connection attribute, different concurrent connections to the same database can use
different values. Refer to "DuplicateBindMode" in Oracle TimesTen In-Memory Database
Reference for additional information about this attribute.

The rest of this section provides details for each mode, considering the following
query:

SELECT * FROM employees
 WHERE employee_id < :a AND manager_id > :a AND salary < :b;

Important:

■ For character and binary data, carefully consider the value you
use for cbValueMax. A value that is smaller than the actual
buffer size may result in spurious truncation warnings. A value
that is greater than the actual buffer size may cause the ODBC
driver to overwrite the rgbValue buffer, resulting in memory
corruption.

■ TimesTen will return SQL_SUCCESS_WITH_INFO if there are
errors in converting OUT or IN OUT parameters. If SQLExecute,
SQLExecDirect, or SQLParamData returns
SQL_SUCCESS_WITH_INFO, then the values of all OUT and IN
OUT parameters are undefined.

Notes:

■ This discussion applies only to SQL statements issued directly
from ODBC (not through PL/SQL, for example).

■ The use of "?" for parameters, not supported in Oracle Database,
is supported by TimesTen in either mode.

Managing TimesTen data

Working with TimesTen Databases 2-17

Oracle mode for duplicate parameters In Oracle mode, where DuplicateBindMode=0,
multiple occurrences of the same parameter name in a SQL statement are considered
to be different parameters. When parameter position numbers are assigned, a number
is given to each parameter occurrence without regard to name duplication. The
application must, at a minimum, bind a value for the first occurrence of each
parameter name. For any subsequent occurrence of a given parameter name, the
application has the following choices.

■ It can bind a different value for the occurrence.

■ It can leave the parameter occurrence unbound, in which case it takes the same
value as the first occurrence.

In either case, each occurrence still has a distinct parameter position number.

To use a different value for the second occurrence of a in the SQL statement above:

SQLBindParameter(..., 1, ...); /* first occurrence of :a */
SQLBindParameter(..., 2, ...); /* second occurrence of :a */
SQLBindParameter(..., 3, ...); /* occurrence of :b */

To use the same value for both occurrences of a:

SQLBindParameter(..., 1, ...); /* both occurrences of :a */
SQLBindParameter(..., 3, ...); /* occurrence of :b */

Parameter b is considered to be in position 3 regardless.

In Oracle mode, the SQLNumParams ODBC function returns 3 for the number of
parameters in the example.

TimesTen mode for duplicate parameters In TimesTen mode, where
DuplicateBindMode=1, SQL statements containing duplicate parameters are parsed
such that only distinct parameter names are considered as separate parameters.

Binding is based on the position of the first occurrence of a parameter name.
Subsequent occurrences of the parameter name are not given their own position
numbers. All occurrences of the same parameter name take on the same value.

For the SQL statement above, the two occurrences of a are considered to be a single
parameter, so cannot be bound separately:

SQLBindParameter(..., 1, ...); /* both occurrences of :a */
SQLBindParameter(..., 2, ...); /* occurrence of :b */

Note that in TimesTen mode, parameter b is considered to be in position 2, not
position 3.

In TimesTen mode, the SQLNumParams ODBC function returns 2 for the number of
parameters in the example.

Binding duplicate parameters in PL/SQL
The preceding discussion does not apply within PL/SQL. Instead, PL/SQL semantics
apply, whereby you bind a value for each unique parameter. An application executing
the following block, for example, would bind only one parameter, corresponding to
:a.

DECLARE
 x NUMBER;
 y NUMBER;
BEGIN
 x:=:a;

Managing TimesTen data

2-18 Oracle TimesTen In-Memory Database C Developer's Guide

 y:=:a;
END;

An application executing the following block would also bind only one parameter:

BEGIN
 INSERT INTO tab1 VALUES(:a, :a);
END

And the same for the following CALL statement:

...CALL proc(:a, :a)...

An application executing the following block would bind two parameters, with :a as
parameter #1 and :b as parameter #2. The second parameter in each INSERT
statement would take the same value as the first parameter in the first INSERT
statement:

BEGIN
 INSERT INTO tab1 VALUES(:a, :a);
 INSERT INTO tab1 VALUES(:b, :a);
END

Considerations for floating point data
The BINARY_DOUBLE and BINARY_FLOAT data types store and retrieve the IEEE
floating point values Inf, -Inf, and NaN. If an application uses a C language facility
such as printf, scanf, or strtod that requires conversion to character data, the
floating point values are returned as "INF", "-INF", and "NAN". These character strings
cannot be converted back to floating point values.

Using SQL_WCHAR and SQL_WVARCHAR with a driver manager
Applications using the Windows driver manager may encounter errors from
SQLBindParameter with SQL state S1004 (SQL data type out of range) when
passing an fSqlType value of SQL_WCHAR or SQL_WVARCHAR. This problem can be
avoided by passing one of the following values for fSqlType instead:

■ SQL_WCHAR_DM_SQLBINDPARAMETER_BYPASS instead of SQL_WCHAR

■ SQL_WVARCHAR_DM_SQLBINDPARAMETER_BYPASS instead of SQL_WVARCHAR

These type codes are semantically identical to SQL_WCHAR and SQL_WVARCHAR but
avoid the error from the Windows driver manager. They can be used in applications
that link with the driver manager or link directly with the TimesTen ODBC direct
driver or ODBC client driver.

See "SQLBindParameter function" on page 2-11 for information about that ODBC
function.

Working with REF CURSORs
REF CURSOR is a PL/SQL concept, where a REF CURSOR is a handle to a cursor over
a SQL result set and can be passed between PL/SQL and an application. In TimesTen,
the cursor can be opened in PL/SQL then the REF CURSOR can be passed to the
application. The results can be processed in the application using ODBC calls. This is
an OUT REF CURSOR (an OUT parameter with respect to PL/SQL). The REF CURSOR
is attached to a statement handle, allowing applications to describe and fetch result
sets using the same APIs as for any result set.

Managing TimesTen data

Working with TimesTen Databases 2-19

Take the following steps to use a REF CURSOR. Assume a PL/SQL statement that
returns a cursor through a REF CURSOR OUT parameter. Note the same basic steps of
prepare, bind, execute, and fetch as in the cursor example in "Preparing and executing
queries and working with cursors" on page 2-8.

1. Prepare the PL/SQL statement, using SQLPrepare, to be associated with the first
statement handle.

2. Bind each parameter of the statement, using SQLBindParameter. When binding
the REF CURSOR output parameter, use an allocated second statement handle as
rgbValue, the pointer to the data buffer.

The pcbValue, ibScale, cbValueMax, and pcbValue arguments are ignored
for REF CURSORs.

See "SQLBindParameter function" on page 2-11 and "Binding OUT parameters" on
page 2-14 for information about these and other SQLBindParameter arguments.

3. Call SQLExecute to execute the statement.

4. Call SQLBindCol to bind result columns to local variable storage.

5. Call SQLFetch to fetch the results. After a REF CURSOR is passed from PL/SQL
to an application, the application can describe and fetch the results as it would for
any result set.

6. Use SQLFreeStmt to free the statement handle.

These steps are demonstrated in the example that follows. Refer to ODBC API
reference documentation for details on these functions.

Example 2–7 Executing a query and working with a REF CURSOR

This example uses a REF CURSOR and demonstrates the basic steps of preparing a
query, binding parameters, executing the query, binding results to local variable
storage, and fetching the results. Error handling omitted for simplicity. In addition to
ODBC functions summarized earlier, this example uses SQLAllocStmt to allocate
memory for a statement handle.

refcursor_example(SQLHDBC hdbc)
{
 SQLCHAR* stmt_text;
 SQLHSTMT plsql_hstmt;
 SQLHSTMT refcursor_hstmt;
 SQLINTEGER deptid;
 SQLINTEGER empid;
 SQLCHAR lastname[30];

 /* allocate 2 statement handles: one for the plsql statement and
 * one for the ref cursor */
 SQLAllocStmt(hdbc, &plsql_hstmt);
 SQLAllocStmt(hdbc, &refcursor_hstmt);

 /* prepare the plsql statement */
 stmt_text = (SQLCHAR*)
 "begin "

Important: For passing REF CURSORs between PL/SQL and an
application, TimesTen supports only OUT REF CURSORs, from
PL/SQL to the application, and supports a statement returning only a
single REF CURSOR.

Managing TimesTen data

2-20 Oracle TimesTen In-Memory Database C Developer's Guide

 "open :refc for "
 "select employee_id, last_name "
 "from employees "
 "where department_id = :dept; "
 "end;";
 SQLPrepare(plsql_hstmt, stmt_text, SQL_NTS);

 /* bind parameter 1 (:refc) to refcursor_hstmt */
 SQLBindParameter(plsql_hstmt, 1, SQL_PARAM_OUTPUT, SQL_C_REFCURSOR,
 SQL_REFCURSOR, 0, 0, refcursor_hstmt, 0, 0);

 /* bind parameter 2 (:deptid) to local variable deptid */
 SQLBindParameter(plsql_hstmt, 2, SQL_PARAM_INPUT, SQL_C_SLONG,
 SQL_INTEGER, 0, 0, &deptid, 0, 0);

 /* set the value for :deptid */
 deptid = 30;

 /* execute the plsql statement */
 SQLExecute(plsql_hstmt);

 /*
 * The result set is now attached to refcursor_hstmt.
 * Bind the result columns and fetch the result set.
 */

 /* bind result column 1 to local variable empid */
 SQLBindCol(refcursor_hstmt, 1, SQL_C_SLONG,
 (SQLPOINTER)&empid, 0, 0);

 /* bind result column 2 to local variable lastname */
 SQLBindCol(refcursor_hstmt, 2, SQL_C_CHAR,
 (SQLPOINTER)lastname, sizeof(lastname), 0);

 /* fetch the result set */
 while(SQLFetch(refcursor_hstmt) != SQL_NO_DATA_FOUND){
 printf("%d, %s\n", empid, lastname);
 }

 /* close the ref cursor's statement handle and drop both handles */
 SQLFreeStmt(refcursor_hstmt, SQL_DROP);
 SQLFreeStmt(plsql_hstmt, SQL_DROP);
}

Working with DML returning (RETURNING INTO clause)
You can use a RETURNING INTO clause, referred to as DML returning, with an
INSERT, UPDATE, or DELETE statement to return specified items from a row that was
affected by the action. This eliminates the need for a subsequent SELECT statement
and separate round trip in case, for example, you want to confirm what was affected
by the action.

With ODBC, DML returning is limited to returning items from a single-row operation.
The clause returns the items into a list of OUT parameters. Bind the OUT parameters as
discussed in "Binding parameters and executing statements" on page 2-11.

SQL syntax and restrictions for the RETURNING INTO clause in TimesTen are
documented as part of "INSERT", "UPDATE", and "DELETE" in Oracle TimesTen
In-Memory Database SQL Reference.

Managing TimesTen data

Working with TimesTen Databases 2-21

Refer to "RETURNING INTO Clause" in Oracle Database PL/SQL Language Reference for
details about DML returning.

Example 2–8 DML returning

This example is adapted from Example 2–9 in the previous section.

void
update_example(SQLHDBC hdbc)
{
SQLCHAR* stmt_text;
SQLHSTMT hstmt;
SQLINTEGER raise_pct;
char hiredate_str[30];
char last_name[30];
SQLLEN hiredate_len;
SQLLEN numrows;

/* allocate a statement handle */
SQLAllocStmt(hdbc, &hstmt);

/* prepare an update statement to give a raise to one employee hired
 before a given date and return that employee's last name */
stmt_text = (SQLCHAR*)
 "update employees "
 "set salary = salary * ((100 + :raise_pct) / 100.0) "
 "where hire_date < :hiredate and rownum = 1 returning last_name into "
 ":last_name";
SQLPrepare(hstmt, stmt_text, SQL_NTS);

/* bind parameter 1 (:raise_pct) to variable raise_pct */
SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,
 SQL_DECIMAL, 0, 0, (SQLPOINTER)&raise_pct, 0, 0);

/* bind parameter 2 (:hiredate) to variable hiredate_str */
SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,
 SQL_TIMESTAMP, 0, 0, (SQLPOINTER)hiredate_str,
 sizeof(hiredate_str), &hiredate_len);
/* bind parameter 3 (:last_name) to variable last_name */
SQLBindParameter(hstmt, 3, SQL_PARAM_OUTPUT, SQL_C_CHAR,
 SQL_VARCHAR, 30, 0, (SQLPOINTER)last_name,
 sizeof(last_name), NULL);
/* set parameter values to give a 10% raise to an employee hired before
 * January 1, 1996. */
raise_pct = 10;
strcpy(hiredate_str, "1996-01-01");
hiredate_len = SQL_NTS;

/* execute the update statement */
SQLExecute(hstmt);

/* tell us who the lucky person is */
printf("Gave raise to %s.\n", last_name);

/* drop the statement handle */
SQLFreeStmt(hstmt, SQL_DROP);

/* commit the changes */
SQLTransact(henv, hdbc, SQL_COMMIT);

}

Managing TimesTen data

2-22 Oracle TimesTen In-Memory Database C Developer's Guide

This returns "King" as the recipient of the raise.

Working with rowids
Each row in a database table has a unique identifier known as its rowid. An application
can retrieve the rowid of a row from the ROWID pseudocolumn. Rowids can be
represented in either binary or character format.

An application can specify literal rowid values in SQL statements, such as in WHERE
clauses, as CHAR constants enclosed in single quotes.

As noted in Table 2–2 on page 2-13, the ODBC SQL type SQL_ROWID corresponds to
the SQL type ROWID.

For parameters and result set columns, rowids are convertible to and from the C types
SQL_C_BINARY, SQL_C_WCHAR, and SQL_C_CHAR. SQL_C_CHAR is the default C type
for rowids. The size of a rowid would be 12 bytes as SQL_C_BINARY, 18 bytes as
SQL_C_CHAR, and 36 bytes as SQL_C_WCHAR.

Refer to "ROWID data type" and "ROWID specification" in Oracle TimesTen In-Memory
Database SQL Reference for additional information about rowids and the ROWID data
type, including usage and life.

Working with synonyms
TimesTen supports private and public synonyms (aliases) for database objects such as
tables, views, sequences, and PL/SQL objects. Synonyms are often used for security to
mask object names and object owners, or for convenience to simplify SQL statements.

To create a private synonym for table foo in your schema:

CREATE SYNONYM synfoo FOR foo;

To create a public synonym for foo:

CREATE PUBLIC SYNONYM pubfoo FOR foo;

A private synonym exists in the schema of a specific user and shares the same
namespace as database objects such as tables, views, and sequences. A private
synonym cannot have the same name as a table or other object in the same schema.

A public synonym does not belong to any particular schema, is accessible to all users,
and can have the same name as any private object.

To create a synonym you must have the CREATE SYNONYM or CREATE PUBLIC
SYNONYM privilege, as applicable. To use a synonym you must have appropriate
privileges to access the underlying object.

For general information about synonyms, see "Understanding synonyms" in Oracle
TimesTen In-Memory Database Operations Guide. For information about the CREATE
SYNONYM and DROP SYNONYM statements, see "SQL Statements" in Oracle TimesTen
In-Memory Database SQL Reference.

Note: Oracle TimesTen In-Memory Database does not support the
PL/SQL type UROWID.

Managing TimesTen data

Working with TimesTen Databases 2-23

Making and committing changes to the database
By default in TimesTen, autocommit is enabled, so that any DML change you make
(update, insert, or delete) is committed automatically. It is recommended, however,
that you disable this feature and commit (or roll back) your changes explicitly. You can
refer to "Transaction semantics" in Oracle TimesTen In-Memory Database Operations Guide
for information about autocommit.

With autocommit disabled, you can commit or roll back a transaction using the
SQLTransact ODBC function. Refer to ODBC API reference documentation for
details about this function.

Example 2–9 Updating the database and committing the change

This example prepares and executes a statement to give raises to selected employees,
then manually commits the changes. Assume autocommit has been previously
disabled.

update_example(SQLHDBC hdbc)
{
 SQLCHAR* stmt_text;
 SQLHSTMT hstmt;
 SQLINTEGER raise_pct;
 char hiredate_str[30];
 SQLLEN hiredate_len;
 SQLLEN numrows;

 /* allocate a statement handle */
 SQLAllocStmt(hdbc, &hstmt);

 /* prepare an update statement to give raises to employees hired before a
 * given date */
 stmt_text = (SQLCHAR*)
 "update employees "
 "set salary = salary * ((100 + :raise_pct) / 100.0) "
 "where hire_date < :hiredate";
 SQLPrepare(hstmt, stmt_text, SQL_NTS);

 /* bind parameter 1 (:raise_pct) to variable raise_pct */
 SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,
 SQL_DECIMAL, 0, 0, (SQLPOINTER)&raise_pct, 0, 0);

Notes:

■ Autocommit mode applies only to the top-level statement
executed by SQLExecute or SQLExecDirect. There is no
awareness of what occurs inside the statement, and therefore no
capability for intermediate autocommits of nested operations.

■ All open cursors are closed upon transaction commit or rollback
in TimesTen.

■ The SQLRowCount function can be used to return information
about SQL operations. For UPDATE, INSERT, and DELETE
statements, the output argument returns the number of rows
affected. For other operations, the driver can define the usage of
this argument. See "Managing cache groups" on page 2-27
regarding special TimesTen functionality. Refer to ODBC API
reference documentation for general information about
SQLRowCount and its arguments.

Using additional TimesTen data management features

2-24 Oracle TimesTen In-Memory Database C Developer's Guide

 /* bind parameter 2 (:hiredate) to variable hiredate_str */
 SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,
 SQL_TIMESTAMP, 0, 0, (SQLPOINTER)hiredate_str,
 sizeof(hiredate_str), &hiredate_len);

 /* set parameter values to give a 10% raise to employees hired before
 * January 1, 1996. */
 raise_pct = 10;
 strcpy(hiredate_str, "1996-01-01");
 hiredate_len = SQL_NTS;

 /* execute the update statement */
 SQLExecute(hstmt);

 /* print the number of employees who got raises. See */
 SQLRowCount(hstmt, &numrows);
 printf("Gave raises to %d employees.\n", numrows);

 /* drop the statement handle */
 SQLFreeStmt(hstmt, SQL_DROP);

 /* commit the changes */
 SQLTransact(henv, hdbc, SQL_COMMIT);

}

Using additional TimesTen data management features
Preceding sections discussed key features for managing TimesTen data. This section
covers the additional features listed here.

■ Using CALL to execute procedures and functions

■ Setting a timeout or threshold for executing SQL statements

■ Features for use with IMDB cache

■ Setting globalization options

■ Setting up user-specified parallel replication

■ ODBC 3.0 data types

Using CALL to execute procedures and functions
TimesTen supports each of the following syntax formats from any of its programming
interfaces to call PL/SQL procedures (procname) or PL/SQL functions (funcname)
that are standalone or part of a package, or to call TimesTen built-in procedures
(procname):

CALL procname[(argumentlist)]

CALL funcname[(argumentlist)] INTO :returnparam

CALL funcname[(argumentlist)] INTO ?

TimesTen ODBC also supports each of the following syntax formats:

{ CALL procname[(argumentlist)] }

{ ? = [CALL] funcname[(argumentlist)] }

Using additional TimesTen data management features

Working with TimesTen Databases 2-25

{ :returnparam = [CALL] funcname[(argumentlist)] }

The following ODBC example calls the TimesTen ttCkpt built-in procedure.

rc = SQLExecDirect (hstmt, (SQLCHAR*) "call ttCkpt",SQL_NTS);

These examples call a PL/SQL procedure myproc with two parameters:

rc = SQLExecDirect(hstmt, (SQLCHAR*) "{ call myproc(:param1, :param2) }",SQL_NTS);

rc = SQLExecDirect(hstmt, (SQLCHAR*) "{ call myproc(?, ?) }",SQL_NTS);

The following shows several ways to call a PL/SQL function myfunc:

rc = SQLExecDirect (hstmt, (SQLCHAR*) "CALL myfunc() INTO :retparam",SQL_NTS);

rc = SQLExecDirect (hstmt, (SQLCHAR*) "CALL myfunc() INTO ?",SQL_NTS);

rc = SQLExecDirect (hstmt, (SQLCHAR*) "{ :retparam = myfunc() }",SQL_NTS);

rc = SQLExecDirect (hstmt, (SQLCHAR*) "{ ? = myfunc() }",SQL_NTS);

See "CALL" in Oracle TimesTen In-Memory Database SQL Reference for details about
CALL syntax.

Setting a timeout or threshold for executing SQL statements
TimesTen offers two ways to limit the time for SQL statements or procedure calls to
execute, applying to any SQLExecute, SQLExecDirect, or SQLFetch call.

■ Setting a timeout value for SQL statements

■ Setting a threshold value for SQL statements

For the former, if the timeout duration is reached, the statement stops executing and
an error is thrown. For the latter, if the threshold is reached, an SNMP trap is thrown
but execution continues.

Setting a timeout value for SQL statements
To control how long SQL statements should execute before timing out, you can set the
SQL_QUERY_TIMEOUT option using a SQLSetStmtOption or
SQLSetConnectOption call to specify a timeout value, in seconds. Despite the name,
this timeout value applies to any executable SQL statement, not just queries.

In TimesTen you can specify this timeout value for any connection, and hence for any
statement, by using the SqlQueryTimeout general connection attribute. If you set
SqlQueryTimeout in the DSN specification, its value becomes the default value for
all subsequent connections to the database. A call to SQLSetConnectOption with
the SQL_QUERY_TIMEOUT option overrides any default value that a connection may
have inherited and applies to any statement from that connection. A call to
SQLSetStmtOption with the SQL_QUERY_TIMEOUT option overrides any default

Note:

■ A user's own procedure takes precedence over a TimesTen built-in
procedure with the same name.

■ TimesTen does not support using SQL_DEFAULT_PARAM with
SQLBindParameter for a CALL statement.

Using additional TimesTen data management features

2-26 Oracle TimesTen In-Memory Database C Developer's Guide

value inherited from the connection and any value set using
SQLSetConnectOption, but applies only to the statement.

The query timeout limit has effect only when a SQL statement is actively executing. A
timeout does not occur during commit or rollback. For transactions that execute a large
number of UPDATE, DELETE or INSERT statements, the commit or rollback phases
may take a long time to complete. During that time the timeout value is ignored.

Setting a threshold value for SQL statements
You can configure TimesTen to write a warning to the support log and throw an SNMP
trap when the execution of a SQL statement exceeds a specified time duration, in
seconds. Execution continues and is not affected by the threshold.

The name of the SNMP trap is ttQueryThresholdWarnTrap. See Oracle TimesTen
In-Memory Database Error Messages and SNMP Traps for information about configuring
SNMP traps. Despite the name, this threshold applies to any executable SQL
statement.

By default, the application obtains the threshold from the QueryThreshold general
connection attribute setting (refer to "QueryThreshold" in Oracle TimesTen In-Memory
Database Reference). Setting the TT_QUERY_THRESHOLD option in a
SQLSetConnectOption call overrides the connection attribute setting for the current
connection.

To set the threshold with SQLSetConnectOption:

RETCODE SQLSetConnectOption(hdbc, TT_QUERY_THRESHOLD, seconds);

Setting the TT_QUERY_THRESHOLD option in a SQLSetStmtOption call overrides
the connection attribute setting, and any setting through SQLSetConnectOption, for
the statement. It applies to SQL statements executed using the ODBC statement
handle.

To set the threshold with SQLSetStmtOption:

RETCODE SQLSetStmtOption(hstmt, TT_QUERY_THRESHOLD, seconds);

You can retrieve the current value of TT_QUERY_THRESHOLD by using the
SQLGetConnectOption or SQLGetStmtOption ODBC function:

RETCODE SQLGetConnectOption(hdbc, TT_QUERY_THRESHOLD, paramvalue);

RETCODE SQLGetStmtOption(hstmt, TT_QUERY_THRESHOLD, paramvalue);

Features for use with IMDB cache
This section discusses features related to the use of IMDB Cache:

■ Setting temporary passthrough level with the ttOptSetFlag built-in procedure

■ Determining passthrough status

Note: If both a lock timeout and a SqlQueryTimeout value are
specified, the lesser of the two values causes a timeout first.

Regarding lock timeouts, you can refer to "ttLockWait" (built-in
procedure) or "LockWait" (general connection attribute) in Oracle
TimesTen In-Memory Database Reference, or to "Check for deadlocks and
timeouts" in Oracle TimesTen In-Memory Database Troubleshooting
Procedures Guide.

Using additional TimesTen data management features

Working with TimesTen Databases 2-27

■ Managing cache groups

See Oracle In-Memory Database Cache User's Guide for information about IMDB Cache.

Setting temporary passthrough level with the ttOptSetFlag built-in procedure
TimesTen provides the ttOptSetFlag built-in procedure for setting various flags,
including the PassThrough flag to temporarily set the passthrough level. You can use
ttOptSetFlag to set PassThrough in a C application as in the following example,
which sets the passthrough level to 1. The setting affects all statements that are
prepared until the end of the transaction.

rc = SQLExecDirect (hstmt, "ttOptSetFlag ('PassThrough', 1)",SQL_NTS);

Also see "ttOptSetFlag" in Oracle TimesTen In-Memory Database Reference for more
information about that built-in procedure, and "Setting a passthrough level" in Oracle
In-Memory Database Cache User's Guide for information about the meaning and effect of
each passthrough level.

Determining passthrough status
You can call the SQLGetStmtOption ODBC function with the
TT_STMT_PASSTHROUGH_TYPE statement option to determine whether a SQL
statement is to be executed in the TimesTen database or passed through to the Oracle
database for execution. For example:

rc = SQLGetStmtOption(hStmt, TT_STMT_PASSTHROUGH_TYPE, &passThroughType);

You can make this call after preparing the SQL statement. It is useful with
PassThrough settings of 1, 2, 4, or 5, where the determination of whether a statement
will actually be passed through is not made until compilation time. If
TT_STMT_PASSTHROUGH_NONE is returned, the statement is to be executed in
TimesTen. If TT_STMT_PASSTHROUGH_ORACLE is returned, the statement is to be
passed through to Oracle for execution.

See "Setting a passthrough level" in Oracle In-Memory Database Cache User's Guide for
information about passthrough settings.

Managing cache groups
In IMDB Cache, following the execution of a FLUSH CACHE GROUP, LOAD CACHE
GROUP, REFRESH CACHE GROUP, or UNLOAD CACHE GROUP statement, the ODBC
function SQLRowCount returns the number of cache instances that were flushed,
loaded, refreshed, or unloaded.

For related information, see "Determining the number of cache instances affected by an
operation" in Oracle In-Memory Database Cache User's Guide.

Refer to ODBC API reference documentation for general information about
SQLRowCount.

Setting globalization options
TimesTen extensions to ODBC enable an application to set options for linguistic sorts,
length semantics for character columns, and error reporting during character set
conversion. These options can be used in a call to SQLSetConnectOption. The

Note: TT_STMT_PASSTHROUGH_TYPE is supported with
SQLGetStmtOption only, not with SQLSetStmtOption.

Using additional TimesTen data management features

2-28 Oracle TimesTen In-Memory Database C Developer's Guide

options are defined in the timesten.h #include file (noted in "TimesTen #include
files" on page 2-6).

For more information about linguistic sorts, length semantics, and character sets, see
"Globalization Support" in Oracle TimesTen In-Memory Database Operations Guide.

This section includes the following TimesTen ODBC globalization options:

■ TT_NLS_SORT

■ TT_NLS_LENGTH_SEMANTICS

■ TT_NLS_NCHAR_CONV_EXCP

TT_NLS_SORT
This option specifies the collating sequence used for linguistic comparisons. See
"Monolingual linguistic sorts" and "Multilingual linguistic sorts" in Oracle TimesTen
In-Memory Database Operations Guide for supported linguistic sorts.

It takes a string value. The default is "BINARY".

Also see the description of the NLS_SORT general connection attribute, which has the
same functionality, in "NLS_SORT" in Oracle TimesTen In-Memory Database Reference.
Note that TT_NLS_SORT, being a runtime option, takes precedence over the
NLS_SORT connection attribute.

TT_NLS_LENGTH_SEMANTICS
This option specifies whether byte or character semantics is used. The possible values
are:

■ TT_NLS_LENGTH_SEMANTICS_BYTE (default)

■ TT_NLS_LENGTH_SEMANTICS_CHAR

Also see the description of the NLS_LENGTH_SEMANTICS general connection
attribute, which has the same functionality, in "NLS_LENGTH_SEMANTICS" in Oracle
TimesTen In-Memory Database Reference. Note that TT_NLS_LENGTH_SEMANTICS,
being a runtime option, takes precedence over the NLS_LENGTH_SEMANTICS
connection attribute.

TT_NLS_NCHAR_CONV_EXCP
This option specifies whether an error is reported when there is data loss during an
implicit or explicit character type conversion between NCHAR or NVARCHAR2 data and
CHAR or VARCHAR2 data during SQL operations. The option does not apply to
conversions done by ODBC as a result of binding.

The possible values are:

■ TRUE: Errors during conversion are reported.

■ FALSE: Errors during conversion are not reported (default).

Also see the description of the NLS_NCHAR_CONV_EXCP general connection attribute,
which has the same functionality, in "NLS_NCHAR_CONV_EXCP" in Oracle TimesTen
In-Memory Database Reference. Note that TT_NLS_NCHAR_CONV_EXCP, being a runtime
option, takes precedence over the NLS_NCHAR_CONV_EXCP connection attribute.

Setting up user-specified parallel replication
For applications that have very predictable transactional dependencies and do not
require the commit order on the replica database to be the same as that on the

Using additional TimesTen data management features

Working with TimesTen Databases 2-29

originating database, TimesTen supports parallel replication. This feature allows
replication of multiple user-specified tracks of transactions in parallel. See "Increasing
replication throughput for other replication schemes" in Oracle TimesTen In-Memory
Database TimesTen to TimesTen Replication Guide for general information about parallel
replication.

User-specified parallel replication is enabled through the TimesTen data store
attributes ReplicationParallelism and ReplicationApplyOrdering, as
described in "Data store attributes" in Oracle TimesTen In-Memory Database Reference.
The track number for transactions on a connection can be specified through the
TimesTen general connection attribute ReplicationTrack, the ALTER SESSION
parameter REPLICATION_TRACK, or in ODBC through the TT_REPLICATION_TRACK
connection option, as noted in "Option support for SQLSetConnectOption and
SQLGetConnectOption" on page 10-3.

ODBC 3.0 data types
The data types used in ODBC 2.0 and prior have been renamed in ODBC 3.0 for ISO 92
standards compliance. The sample programs shipped with TimesTen have been
written using SQL 3.0 data types. The following table maps 2.0 types to their 3.0
equivalents.

Either version of data types may be used with TimesTen without restriction.

Note also that the FAR modifier that is mentioned in ODBC 2.0 documentation is not
required.

Note: The track number setting will hold for the lifetime of the
connection, unless it is specifically reset.

You can call the TimesTen built-in procedure ttConfiguration,
which returns current TimesTen attribute settings, to find the track
number (ReplicationTrack) that is in use.

ODBC 2.0 data type ODBC 3.0 data type

HDBC SQLHDBC

HENV SQLHENV

HSTMT SQLHSTMT

HWND SQLHWND

LDOUBLE SQLDOUBLE

RETCODE SQLRETURN

SCHAR SQLSCHAR

SDOUBLE SQLFLOATS

SDWORD SQLINTEGER

SFLOAT SQLREAL

SWORD SQLSMALLINT

UCHAR SQLCHAR

UDWORD SQLUINTEGER

UWORD SQLUSMALLINT

Considering TimesTen features for access control

2-30 Oracle TimesTen In-Memory Database C Developer's Guide

Considering TimesTen features for access control
TimesTen has features to control database access with object-level resolution for
database objects such as tables, views, materialized views, sequences, and synonyms.
You can refer to "Managing Access Control" in Oracle TimesTen In-Memory Database
Operations Guide for introductory information about these features.

This section introduces access control as it relates to SQL operations, database
connections, XLA, and C utility functions.

For any query, SQL DML statement, or SQL DDL statement discussed in this
document or used in an example, it is assumed that the user has appropriate privileges
to execute the statement. For example, a SELECT statement on a table requires
ownership of the table, SELECT privilege granted for the table, or the SELECT ANY
TABLE system privilege. Similarly, any DML statement requires table ownership, the
applicable DML privilege (such as UPDATE) granted for the table, or the applicable
ANY TABLE privilege (such as UPDATE ANY TABLE).

For DDL statements, CREATE TABLE requires the CREATE TABLE privilege in the
user's schema, or CREATE ANY TABLE in any other schema. ALTER TABLE requires
ownership or the ALTER ANY TABLE system privilege. DROP TABLE requires
ownership or the DROP ANY TABLE system privilege. There are no object-level ALTER
or DROP privileges.

Refer to "SQL Statements" in Oracle TimesTen In-Memory Database SQL Reference for the
privilege required for any given SQL statement.

Privileges are granted through the SQL statement GRANT and revoked through the
statement REVOKE. Some privileges are granted to all users through the PUBLIC role,
of which each user is a member. See "The PUBLIC role" in Oracle TimesTen In-Memory
Database SQL Reference for information about that role.

In addition, access control affects the following topics covered in this document:

■ Connecting to a database. Refer to "Access control for connections" on page 2-6.

■ Setting connection attributes. Refer to "Setting connection attributes
programmatically" on page 2-5.

■ Configuring and managing XLA and using XLA functions. Refer to "Access
control impact on XLA" on page 5-8. Also refer to Chapter 9, "XLA Reference." The
documentation for each XLA function notes the required privilege.

■ Executing C utility functions. Refer to Chapter 8, "TimesTen Utility API." The
documentation for each utility mentions whether any privilege is required.

Handling Errors
This section includes the following topics:

■ Checking for errors

■ Error and warning levels

Notes:

■ Access control cannot be disabled.

■ Access control privileges are checked both when SQL is prepared
and when it is executed in the database, with most of the
performance cost coming at prepare time.

Handling Errors

Working with TimesTen Databases 2-31

■ Recovering after fatal errors

Checking for errors
An application should check for errors and warnings on every call. This saves
considerable time and effort during development and debugging. The demo programs
provided with TimesTen show examples of error checking.

Errors can be checked using either the TimesTen error code (error number) or error
string, as defined in the install_dir/include/tt_errCode.h file. Entries are in
the following format:

#define tt_ErrMemoryLock 712

For a description of each message, see "List of errors and warnings" in Oracle TimesTen
In-Memory Database Error Messages and SNMP Traps.

After calling an ODBC function, check the return code. If the return code is not
SQL_SUCCESS, use an error-handling routine that calls the ODBC function SQLError
to retrieve the errors on the relevant ODBC handle. A single ODBC call may return
multiple errors. The application should be written to return all errors by repeatedly
calling the SQLError function until all errors are read from the error stack. Continue
calling SQLError until the return code is SQL_NO_DATA_FOUND.

Refer to ODBC API reference documentation for details about the SQLError function
and its arguments.

For more information about writing a function to handle standard ODBC errors, see
"Retrieving errors and warnings" in Oracle TimesTen In-Memory Database Error Messages
and SNMP Traps.

Example 2–10 Checking an ODBC function call for errors

This example shows that after a call to SQLAllocConnect, you can check for an error
condition. If one is found, an error message is displayed and program execution is
terminated.

rc = SQLAllocConnect(henv, &hdbc);

if (rc != SQL_SUCCESS) {
 handleError(rc, henv, hdbc, hstmt, err_buf, &native_error);
 fprintf(stderr,
 "Unable to allocate a connection handle:\n%s\n",
 err_buf);
 TerminateGracefully(1);
}

 Error and warning levels
TimesTen can return fatal errors, non-fatal errors, or warnings.

Fatal errors
Fatal errors are those that make the database inaccessible until after error recovery.
When a fatal error occurs, all database connections are required to disconnect. No
further operations may complete. Fatal errors are indicated by TimesTen error codes
846 and 994. Error handling for these errors should be different from standard error
handling. In particular, the application error-handling code should include a
disconnect from the database.

Also see "Recovering after fatal errors" on page 2-32.

Using automatic client failover

2-32 Oracle TimesTen In-Memory Database C Developer's Guide

Non-fatal errors
Non-fatal errors include simple errors such as an INSERT statement that violates
unique constraints. This category also includes some classes of application and process
failures.

TimesTen returns non-fatal errors through the normal error-handling process and
requires the application to check for and identify them.

When a database is affected by a non-fatal error, an error may be returned and the
application should take appropriate action. In some cases, such as process failure, no
error is returned, but TimesTen automatically rolls back the transactions of the failed
process.

An application can handle non-fatal errors by modifying its actions or, in some cases,
rolling back one or more offending transactions.

Warnings
TimesTen returns warnings when something unexpected occurs that you may want to
know about. Some examples of events that cause TimesTen to issue a warning include:

■ Checkpoint failure

■ Use of a deprecated TimesTen feature

■ Truncation of some data

■ Execution of a recovery process upon connect

Application developers should include code that checks for warnings, as they can
indicate application problems.

Recovering after fatal errors
When fatal errors occur, TimesTen performs a full cleanup and recovery procedure:

■ Every connection to the database is invalidated. To avoid out-of-memory
conditions, applications are required to disconnect from the invalidated database.
Shared memory from the old TimesTen instance will not be freed until all active
connections at the time of the error have disconnected.

■ The database is recovered from the checkpoint and transaction log files upon the
first subsequent initial connection.

■ The recovered database reflects the state of all durably committed transactions and
possibly some transactions that were committed non-durably.

■ No uncommitted or rolled back transactions are reflected.

If no checkpoint or transaction log files exist and the AutoCreate first connection
attribute is set, TimesTen creates an empty database.

Using automatic client failover
Automatic client failover, used in High Availability scenarios when failure of a
TimesTen node results in failover (transfer) to an alternate node, automatically
reconnects applications to the new node. The standby node becomes the active node
due to failure of the previously active node. TimesTen provides features that allow
applications to be alerted when this happens, so they can take any appropriate action.

This section discusses the TimesTen implementation of automatic client failover,
covering the following topics.

Using automatic client failover

Working with TimesTen Databases 2-33

■ Features and functionality of automatic client failover

■ Failover callback functions

Automatic client failover is complementary to Oracle Clusterware in situations where
Oracle Clusterware is used, but the two features are not dependent on each other. For
information about Oracle Clusterware, you can refer to "Using Oracle Clusterware to
Manage Active Standby Pairs" in Oracle TimesTen In-Memory Database TimesTen to
TimesTen Replication Guide.

Features and functionality of automatic client failover
When a client failover occurs, no state other than the connection handle is preserved.
All client statement handles are marked as invalid. API calls on these statement
handles will generally return SQL_ERROR with a distinctive failover error code,
defined in tt_errCode.h, such as:

SQLSTATE = S1000 "General Error", native error = tt_ErrFailoverInvalidation

The exception to this is for SQLError and SQLFreeStmt calls, which would behave
normally.

In addition, note the following:

■ The socket to the old server is closed. There is no attempt to call SQLDisconnect.

■ In connecting to the alternate TimesTen node, the same connection string that was
returned from the original connection request is used, other than resetting
attributes as appropriate to indicate the new server DSN.

■ It is up to the application to open new statement handles and reexecute necessary
SQLPrepare calls.

■ If a failover has already occurred and the client is already connected to the
alternate server, the next failover request results in an attempt to reconnect to the
original server. If that fails, alternating attempts are made to connect to the two
servers until a timeout value specified by the TimesTen client connection attribute
TTC_Timeout is reached. (Refer to "TTC_Timeout" in Oracle TimesTen In-Memory
Database Reference for information about that attribute.)

■ Failover connections are created only as needed, not in advance.

When failover occurs, TimesTen makes a callback to a user-defined function that you
register. This function takes care of any custom actions you want to occur in a failover
situation.

Notes:

■ The features described here apply only in client/server mode, not
for direct connections.

■ TimesTen supports automatic client failover only in the active
standby pair replication configuration, where the clients are to be
connected to the node currently in the active role. When a failover
connection is attempted, the server will reject it if it is not active.

■ Functionality is similar to that of Oracle TAF (Transparent
Application Failover) and FAN (Fast Application Notification),
but TimesTen does not use the FAN or TAF libraries.

Using automatic client failover

2-34 Oracle TimesTen In-Memory Database C Developer's Guide

The following public connection options will be propagated to the new connection.
The corresponding general connection attribute is shown in parentheses where
applicable. The TT_REGISTER_FAILOVER_CALLBACK option is used to register your
callback function.

SQL_ACCESS_MODE
SQL_AUTOCOMMIT
SQL_TXN_ISOLATION (Isolation)
SQL_OPT_TRACE
SQL_QUIET_MODE
TT_PREFETCH_CLOSE
TT_CLIENT_TIMEOUT (TTC_TIMEOUT)
TT_WARN_POSSIBLE_TRUNC_BINDING
TT_WARN_SQLCBIGINT_BINDING
TT_CONNECTION_CHARACTER_SET (ConnectionCharacterSet)
TT_REGISTER_FAILOVER_CALLBACK

The following options will be propagated to the new connection if they were set
through connection attributes or SQLSetConnectOption calls, but not if set through
TimesTen built-in procedures or ALTER SESSION.

TT_NLS_SORT (NLS_SORT)
TT_NLS_LENGTH_SEMANTICS (NLS_LENGTH_SEMANTICS)
TT_NLS_NCHAR_CONV_EXCP (NLS_NCHAR_CONV_EXCP)
TT_DYNAMIC_LOAD_ENABLE (DynamicLoadEnable)
TT_DYNAMIC_LOAD_ERROR_MODE (DynamicLoadErrorMode)

The following options will be propagated to the new connection if they were set on the
connection handle.

SQL_QUERY_TIMEOUT
TT_PREFETCH_COUNT

The following attributes for the logical server DSN in sys.ttconnect.ini are
equivalent to TTC_Server, TTC_Server_DSN, and TCP_Port, but for the alternate
server.

TTC_Server2
TTC_Server_DSN2
TCP_Port2

Setting any of TTC_Server2, TTC_Server_DSN2, or TCP_Port2 implies the
following:

■ You intend to use automatic client failover.

Notes:

■ Like other connection attributes, TTC_Server2,
TTC_Server_DSN2, and TCP_Port2 can be specified in the
connection string, overriding any settings in the DSN.

■ If TTC_Server2 is specified but TTC_Server_DSN2 and
TCP_Port2 are not, then TTC_Server_DSN2 is set to the
TTC_Server_DSN value and TCP_Port2 is set to the TCP_Port
value.

■ TTC_Server and TTC_Server2 can have the same setting if it is
a virtual IP address.

Using automatic client failover

Working with TimesTen Databases 2-35

■ You understand that a new thread will be created for your application to support
the failover mechanism.

■ You have linked your application with a thread library.

The following new connection attribute specifies a port range for the port where the
failover thread will listen for failover notifications:

TTC_FAILOVERPORTRANGE

Set this as a lower and upper value separated by hyphen. TimesTen supports setting a
port range to accommodate firewalls between the client and server. By default, a port
chosen by the operating system will be used.

Failover callback functions
When failover occurs, TimesTen makes a callback to your user-defined function for
any desired action. This function is called when the attempt to connect to the alternate
server begins, and again after the attempt to connect is complete. This function could
be used, for example, to cleanly restore statement handles.

The function API is defined as follows (modeled on a corresponding TAF function):

typedef SQLRETURN (*ttFailoverCallbackFcn_t)
 (SQLHDBC, /* hdbc */
 SQLPOINTER, /* foCtx */
 SQLUINTEGER, /* foType */
 SQLUINTEGER); /* foEvent */

Where:

■ hdbc is the ODBC connection handle for the connection that failed.

■ foCtx is a pointer to an application-defined data structure, for use as needed.

■ foType is the type of failover. In TimesTen, the only supported value for this is
TT_FO_SESSION, which results in the session being reestablished. This does not
result in statements being re-prepared, as would be the case with TAF.

■ foEvent indicates the event that has occurred, with supported values as for FAN
and TAF:

– TT_FO_BEGIN: Beginning failover.

– TT_FO_ABORT: Failover failed. Retries were attempted for the interval
specified by TTC_Timeout without success.

Notes:

■ If the client library cannot connect to TTC_Server_DSN, it will
try the failover alternative, as if it had received an explicit failover
request.

■ If the client library loses the connection to the server, it will fail
over and attempt to switch to the alternate node.

■ If the active node fails before the client registration is successfully
propagated by replication to the standby, the client will not
receive a failover message and the registration will be lost.
However, the client library will eventually notice (through TCP)
that its connection to the former active server has been lost, and it
can then initiate a failover attempt.

Using automatic client failover

2-36 Oracle TimesTen In-Memory Database C Developer's Guide

– TT_FO_END: Successful end of failover.

– TT_FO_ERROR: A failover connection failed but will be retried.

Note that TT_FO_REAUTH is not supported by TimesTen client failover.

Use a SQLSetConnectOption call to set the TimesTen
TT_REGISTER_FAILOVER_CALLBACK option to register the callback function,
specifying an option value that is a pointer to a structure of C type
ttFailoverCallback_t, which is defined as follows in the timesten.h file and
refers to the callback function:

typedef struct{
 SQLHDBC appHdbc;
 ttFailoverCallbackFcn_t callbackFcn;
 SQLPOINTER foCtx;
} ttFailoverCallback_t;

Where:

■ appHdbc is the ODBC connection handle, and should have the same value as
hdbc in the SQLSetConnectOption calling sequence. (It is required in the data
structure due to driver manager implementation details, in case you are using a
driver manager.)

■ callbackFcn specifies the callback function. (You can set this to NULL to cancel
callbacks for the given connection. The failover will still happen, but the
application will not be notified.)

■ foCtx is a pointer to an application-defined data structure, as in the function
description earlier.

Set TT_REGISTER_FAILOVER_CALLBACK for each connection for which a callback is
desired. The values in the ttFailoverCallback_t structure will be copied when
the SQLSetConnectOption call is made. The structure need not be kept by the
application. If TT_REGISTER_FAILOVER_CALLBACK is set multiple times for a
connection, the last setting takes precedence.

Example 2–11 Failover callback function and registration

This example shows the following:

■ A globally defined user structure type, FOINFO, and the structure variable
foStatus of type FOINFO.

■ A callback function, FailoverCallback(), that updates the foStatus
structure whenever there is a failover.

■ A registration function, RegisterCallback(), that does the following.

Notes:

■ Because the callback function executes asynchronously to the
main thread of your application, it should generally perform only
simple tasks, such as setting flags that are polled by the
application. However, there is no such restriction if the application
is designed for multithreading. In that case, the function could
even make ODBC calls, for example, but it is only safe to do so if
the foEvent value TT_FO_END has been received.

■ It is up to the application to manage the data pointed to by the
foCtx setting.

Using automatic client failover

Working with TimesTen Databases 2-37

– Declares a structure, failoverCallback, of type
ttFailoverCallback_t.

– Initializes foStatus values.

– Sets the failoverCallback data values, consisting of the connection
handle, a pointer to foStatus, and the callback function
(FailoverCallback).

– Registers the callback function with a SQLSetConnectOption call that sets
TT_REGISTER_FAILOVER_CALLBACK as a pointer to failoverCallback.

/* user defined structure */
struct FOINFO
{
 int callCount;
 SQLUINTEGER lastFoEvent;
};
/* global variable passed into the callback function */
struct FOINFO foStatus;

/* the callback function */
SQLRETURN FailoverCallback (SQLHDBC hdbc,
 SQLPOINTER pCtx,
 SQLUINTEGER FOType,
 SQLUINTEGER FOEvent)
{
 struct FOINFO* pFoInfo = (struct FOINFO*) pCtx;

 /* update the user defined data */
 if (pFoInfo != NULL)
 {
 pFoInfo->callCount ++;
 pFoInfo->lastFoEvent = FOEvent;

 printf ("Failover Call #%d\n", pFoInfo->callCount);
 }

 /* the ODBC connection handle */
 printf ("Failover HDBC : %p\n", hdbc);

 /* pointer to user data */
 printf ("Failover Data : %p\n", pCtx);

 /* the type */
 switch (FOType)
 {
 case TT_FO_SESSION:
 printf ("Failover Type : TT_FO_SESSION\n");
 break;

 default:
 printf ("Failover Type : (unknown)\n");
 }

 /* the event */
 switch (FOEvent)

Using automatic client failover

2-38 Oracle TimesTen In-Memory Database C Developer's Guide

 {
 case TT_FO_BEGIN:
 printf ("Failover Event: TT_FO_BEGIN\n");
 break;

 case TT_FO_END:
 printf ("Failover Event: TT_FO_END\n");
 break;

 case TT_FO_ABORT:
 printf ("Failover Event: TT_FO_ABORT\n");
 break;

 case TT_FO_REAUTH:
 printf ("Failover Event: TT_FO_REAUTH\n");
 break;

 case TT_FO_ERROR:
 printf ("Failover Event: TT_FO_ERROR\n");
 break;

 default:
 printf ("Failover Event: (unknown)\n");
 }

 return SQL_SUCCESS;
}

/* function to register the callback with the failover connection */
SQLRETURN RegisterCallback (SQLHDBC hdbc)
{
 SQLRETURN rc;
 ttFailoverCallback_t failoverCallback;

 /* initialize the global user defined structure */
 foStatus.callCount = 0;
 foStatus.lastFoEvent = -1;

 /* register the connection handle, callback and the user defined structure */
 failoverCallback.appHdbc = hdbc;
 failoverCallback.foCtx = &foStatus;
 failoverCallback.callbackFcn = FailoverCallback;

 rc = SQLSetConnectOption (hdbc, TT_REGISTER_FAILOVER_CALLBACK,
 (SQLULEN)&failoverCallback);

 return rc;
}

When a failover occurs, the callback function would produce output such as the
following:

Failover Call #1
Failover HDBC : 0x8198f50
Failover Data : 0x818f8ac
Failover Type : TT_FO_SESSION
Failover Event: TT_FO_BEGIN

3

TimesTen Support for Oracle Call Interface 3-1

3TimesTen Support for Oracle Call Interface

Oracle TimesTen In-Memory Database and Oracle IMDB Cache support the Oracle
Call Interface (OCI) for C or C++ programs.

This chapter includes the following sections:

■ Overview of OCI

■ Overview of TimesTen OCI support

■ Getting started with TimesTen OCI

■ Additional features of TimesTen OCI

■ Call, handle, descriptor, SQL data type, and parameter attribute support

This chapter focuses on TimesTen-specific information regarding OCI support. For
complete information, you can refer to Oracle Call Interface Programmer's Guide in the
Oracle Database library.

Overview of OCI
OCI is an API that provides functions you can use to access the database server and
control SQL execution. OCI supports the data types, calling conventions, syntax, and
semantics of the C and C++ programming languages. You compile and link an OCI
program much as you would any C or C++ program. There is no preprocessing or
precompilation step.

The OCI library of database access and retrieval functions is in the form of a dynamic
runtime library that can be linked into an application at runtime. The OCI library
includes the following functional areas:

■ SQL access functions

■ Data type mapping and manipulation functions

The following are among the many useful features that OCI provides or supports:

■ Statement caching

■ Dynamic SQL

■ Facilities to treat transaction control, session control, and system control
statements like DML statements

■ Description functionality to expose layers of server metadata

■ Ability to associate commit requests with statement executions to reduce round
trips

■ Optimization of queries using transparent prefetch buffers to reduce round trips

Overview of TimesTen OCI support

3-2 Oracle TimesTen In-Memory Database C Developer's Guide

■ Thread safety that eliminates the need for mutual exclusive locks on OCI handles

For general information about OCI, you can refer to Oracle Call Interface Programmer's
Guide, included with the Oracle Database documentation set.

Overview of TimesTen OCI support
This chapter contains information specific to using OCI with TimesTen and IMDB
Cache. For supported features, TimesTen OCI syntax and usage is the same as that in
Oracle Database.

This section covers the following topics:

■ OCI libraries and architecture

■ Globalization support

■ TimesTen restrictions and differences

■ The ttSrcScan utility

OCI libraries and architecture
TimesTen OCI depends on the Oracle client library and the TimesTen ODBC libraries.
TimesTen OCI support enables you to run many existing OCI applications with
TimesTen in direct mode or client/server mode. It also enables you to use other Oracle
products, such as Pro*C/C++ and ODP.NET, that use OCI as a database interface. (You
can also call PL/SQL from OCI, Pro*C/C++, and ODP.NET applications.) Figure 3–1
shows where OCI support is positioned in the TimesTen architecture.

TimesTen includes Oracle Instant Client as the OCI client library. This is configured
through the appropriate ttenv script, as discussed in "Setting the environment for
development" on page 1-1.

Figure 3–1 OCI in the TimesTen architecture

TimesTen Release 11.2.1 OCI is based on Oracle Release 11.1.0.7 OCI and supports the
contemporary OCI 8 style APIs. For example, the OCIStmtExecute() function is

JDBC TTClasses (C++) OCI

ODBC driver

Pro*C/C++

Application

SQL engine PL/SQL engine

TimesTen database engine

ODP.NET

Overview of TimesTen OCI support

TimesTen Support for Oracle Call Interface 3-3

supported but not the older oexec() function. See "Obsolete OCI Routines" in Oracle
Call Interface Programmer's Guide in the Oracle Database documentation.

Globalization support
This section discusses TimesTen OCI support for globalization.

Character sets
To specify a character set for the connection, OCI programs can set the NLS_LANG
environment variable or call OCIEnvNlsCreate(). Any connection character set in
the odbc.ini file is ignored. Setting the character set explicitly is recommended. The
default is typically AMERICAN_AMERICA.US7ASCII.

Note that because TimesTen OCI does not support language or locale (territory)
settings, the language and territory components of NLS_LANG, such as
AMERICAN_AMERICA above, are ignored. Even when not specifying the language and
locale, however, you must still include the period in front of the character set when
setting NLS_LANG. For example, either of the following would work, although
AMERICAN_AMERICA is ignored:

NLS_LANG=AMERICAN_AMERICA.WE8ISO8859P1

Or:

NLS_LANG=.WE8ISO8859P1

Additional globalization features
TimesTen OCI also supports the following additional globalization features. These can
be set either as environment variables or TimesTen general connection attributes. An
environment variable setting takes precedence.

■ NLS_LENGTH_SEMANTICS: By default, the lengths of character data types CHAR
and VARCHAR2 are specified in bytes, not characters. For single-byte character

Notes:

■ An NLS_LANG environment setting overrides the TimesTen
default character set.

■ The TIMESTEN8 character set is not supported.

■ On Windows, the NLS_LANG setting is taken from the registry if it
is not in the environment. If your OCI or Pro*C/C++ program has
trouble connecting to TimesTen, verify that the NLS_LANG setting
under HKEY_LOCAL_MACHINE\Software\ORACLE\ is valid and
indicates a character set supported by TimesTen. (The NLS_LANG
registry setting may be set to an invalid value, such as "NA". If the
value is "NA", the TimesTen installer will replace it with
AMERICAN_AMERICA.US7ASCII.) This is likely only an issue on
systems that previously had Oracle9i or earlier Oracle versions
installed.

■ Refer to "Choosing a Locale with the NLS_LANG Environment
Variable" in Oracle Database Globalization Support Guide for
information about NLS_LANG.

■ Refer to "OCIEnvNlsCreate()" in Oracle Call Interface Programmer's
Guide for information about that OCI call.

Overview of TimesTen OCI support

3-4 Oracle TimesTen In-Memory Database C Developer's Guide

encoding this works well. For multibyte character encoding, you can use
NLS_LENGTH_SEMANTICS to create CHAR and VARCHAR2 columns using
character-length semantics instead. Supported settings are BYTE (default) and
CHAR. (NCHAR and NVARCHAR2 columns are always character-based. Existing
columns are not affected.)

■ NLS_SORT: This specifies the type of sort for character data. It overrides the
default value from NLS_LANGUAGE. Valid values are BINARY or any linguistic sort
name supported by TimesTen. For example, to specify the German linguistic sort
sequence, set NLS_SORT=German.

■ NLS_NCHAR_CONV_EXCP: This determines whether an error is reported when
there is data loss during an implicit or explicit character type conversion between
NCHAR or NVARCHAR data and CHAR or VARCHAR2 data. Valid settings are TRUE
and FALSE. The default value is FALSE, resulting in no error being reported.

Refer to Oracle TimesTen In-Memory Database Operations Guide and Oracle Database
Globalization Support Guide for additional information on these environment variables
and related features.

TimesTen restrictions and differences
This section discusses restrictions and differences for OCI in TimesTen compared to in
the Oracle Database.

Oracle Database features not supported
TimesTen does not support OCI calls that are related to functionality that does not
exist in TimesTen or IMDB Cache. For example, TimesTen and IMDB Cache do not
support these Oracle Database features:

■ Advanced Queuing

■ Any Data

■ Object support

■ LOB data types

■ Collections

■ Cartridge Services

■ Direct path loading

■ Date/time intervals

■ Iterators

■ BFILE

■ Cryptographic Toolkit

■ XML DB support

■ Spatial Services

■ Event handling

Note: These environment variables override the corresponding
TimesTen general connection attributes for OCI or Pro*C/C++
programs.

Overview of TimesTen OCI support

TimesTen Support for Oracle Call Interface 3-5

■ Session switching

■ Scrollable cursors

Additional TimesTen OCI restrictions
TimesTen OCI has the following restrictions:

■ The TypeMode data store attribute must be set to 0, which corresponds to Oracle
behavior.

■ The DuplicateBindMode general connection attribute must be set to 0, which
corresponds to Oracle behavior.

■ The DDLCommitBehavior general connection attribute must be set to 0, which
corresponds to Oracle behavior.

■ Asynchronous calls are not supported.

■ Connection pooling and session pooling are not supported.

■ Describing objects with OCIDescribeAny() is supported only by name.
Describing PL/SQL objects is not supported.

■ TimesTen Client/Server automatic client failover is not supported.

■ The TNSPING utility does not recognize connections to TimesTen.

■ Retrieving implicit ROWID values from INSERT, UPDATE, and DELETE statements
is not supported. (This is supported for SELECT FOR UPDATE statements,
however.)

■ TimesTen built-in procedures that return result sets are not supported directly.

■ Only a single REF CURSOR can be returned from a PL/SQL block, procedure call,
or function call.

■ Binding and defining of structures through OCIBindArrayOfStruct() and
OCIDefineArrayOfStruct() is supported for SQL statements but not for
PL/SQL.

■ Oracle utilities such as SQL*Plus and SQL*Loader are not supported. (As
alternatives for these two in particular, you can use the ttIsql utility and the
ttBulkCp built-in procedure, respectively.)

■ Array binding, the ability to bind associative arrays (index-by tables) and varrays
(variable size arrays) into PL/SQL statements, is not supported.

Additional TimesTen OCI differences
Both TimesTen and Oracle support XA, but TimesTen does not support XA through
OCI.

With OCI, TimesTen automatically disables autocommit for DML statements.

The ttSrcScan utility
If you have an existing OCI program and want to see whether it uses OCI features that
TimesTen does not support, you can use the ttSrcScan command line utility to scan
your program for unsupported functions, packages, types, type codes, attributes,
modes, and constants. This is a standalone utility that can be run without TimesTen or
Oracle being installed and runs on any platform supported by TimesTen. It reads
source code files as input and creates HTML and text files as output. If the utility finds
unsupported items, then they are logged and alternatives are suggested. You can find

Getting started with TimesTen OCI

3-6 Oracle TimesTen In-Memory Database C Developer's Guide

the ttSrcScan executable in the quickstart/sample_util directory in your
TimesTen installation.

Specify an input file or directory for the program to be scanned and an output
directory for the ttSrcScan reports. Other options are available as well. See the
README file in the sample_util directory for information.

Getting started with TimesTen OCI
This section discusses the following topics for getting started with a TimesTen OCI
application:

■ Environment variables for TimesTen OCI

■ Compiling and linking OCI applications

■ Connecting to a TimesTen database from OCI

■ Error reporting

■ Signal handling and diagnostic framework considerations

■ OCI demo programs

Environment variables for TimesTen OCI
Environment variables for executing a TimesTen OCI application are described in
Table 3–1. Settings apply to both direct mode and client/server mode except as noted.

After installation, you can modify environment variables as appropriate through the
TimesTen install_dir/bin/ttenv script or quickstart/ttquickstartenv
script applicable to your operating system.

You can also use the TimesTen OCI and Pro*C/C++ Makefiles provided with the
Quick Start demos to implement appropriate environment settings. These are in the
following locations:

quickstart/sample_code/oci/
quickstart/sample_code/proc/

Refer to "Environment variables" in Oracle TimesTen In-Memory Database Installation
Guide for additional information about environment variables and ttenv.

Getting started with TimesTen OCI

TimesTen Support for Oracle Call Interface 3-7

Table 3–1 Environment variables for TimesTen OCI

Variable Required or optional Settings

LD_LIBRARY_PATH (UNIX)

PATH (Windows)

Required Must be set so that the Oracle Instant
Client directory precedes the Oracle
Database libraries in the path. The path
will be set properly if you use either of
the following scripts under
install_dir:

bin/ttenv
quickstart/ttquickstartenv

(Unless you installed Quick Start in a
different location.)

TNS_ADMIN Required if you use the tnsnames
naming method

Specifies the directory where the
tnsnames.ora file is located. This is
also where TimesTen looks for a
sqlnet.ora file.

TWO_TASK (UNIX)

LOCAL (Windows)

Optional You can use this, whichever is
appropriate for your platform, instead
of specifying the dbname argument in
your OCI logon call. The setting
consists of a valid TNS name or easy
connect string.

See "Connecting to a TimesTen database
from OCI" on page 3-8 for more
information.

NLS_LANG Optional See "Character sets" on page 3-3. Only
the character set component is honored
and it must indicate a character set
supported by TimesTen. The language
and territory values are ignored.

This environment variable overrides
the TimesTen default character set.

NLS_SORT Optional See "Additional globalization features"
on page 3-3. The sort order must be a
value supported by TimesTen.

This overrides the TimesTen NLS_SORT
general connection attribute.

NLS_LENGTH_SEMANTICS Optional See "Additional globalization features"
on page 3-3.

This overrides the TimesTen
NLS_LENGTH_SEMANTICS general
connection attribute.

NLS_NCHAR_CONV_EXCP Optional See "Additional globalization features"
on page 3-3.

This overrides the TimesTen
NLS_NCHAR_CONV_EXCP general
connection attribute.

Note: Refer to "NLS general connection attributes" in Oracle TimesTen
In-Memory Database Reference for information about the NLS
connection attributes mentioned in the table.

Getting started with TimesTen OCI

3-8 Oracle TimesTen In-Memory Database C Developer's Guide

Compiling and linking OCI applications
No changes are required for the steps to compile and link an OCI application in
TimesTen.

OCI programs that use the Oracle Client 11.1.0.7 library do not have to be recompiled
or relinked to be executed with TimesTen.

Connecting to a TimesTen database from OCI
TimesTen OCI uses the Oracle Instant Client to connect to the TimesTen database. You
can connect to the database through either the tnsnames or the easy connect naming
method, similarly to how you would connect to an Oracle database through those
methods.

This section covers the following topics:

■ Using the tnsnames naming method to connect

■ Using an easy connect string to connect

■ Configuring whether to use tnsnames.ora or easy connect

■ Connecting as an externally identified user in OCI

Refer to "Configuring Naming Methods" in Oracle Database Net Services Administrator's
Guide for additional information about tnsnames, easy connect, and the
tnsnames.ora file.

Using the tnsnames naming method to connect
TimesTen supports tnsnames syntax. You can use a TimesTen tnsnames.ora entry
the same way you would use an Oracle tnsnames.ora entry.

The syntax of a TimesTen entry in tnsnames.ora is as follows:

tns_entry = (DESCRIPTION =
 (CONNECT_DATA =
 (SERVICE_NAME = dsn)
 (SERVER = timesten_direct | timesten_client)))

Where tns_entry is the arbitrary TNS name you assign to the entry. You can use this
as the dbname argument in OCILogon(), OCILogon2(), and OCIServerAttach()
calls.

DESCRIPTION and CONNECT_DATA are required as shown.

For SERVICE_NAME, dsn must be a TimesTen DSN that is configured in the
odbc.ini or sys.odbc.ini file that is visible to a user running your OCI
application. On Windows, the DSN can be specified by using the ODBC Data Source

Notes:

■ Although the sqlnet mechanism is used for a TimesTen OCI
connection, the connection goes through the TimesTen ODBC
driver, not the Oracle sqlnet driver.

■ Privilege to connect to the database must be explicitly granted to
every user other than the instance administrator, through the
CREATE SESSION privilege. Refer to "Access control for
connections" on page 2-6.

Getting started with TimesTen OCI

TimesTen Support for Oracle Call Interface 3-9

Administrator. See "Managing TimesTen Databases" in Oracle TimesTen In-Memory
Database Operations Guide.

For SERVER, timesten_direct specifies a direct connection to TimesTen or
timesten_client specifies a client/server connection. If you choose
timesten_client, the DSN must be configured as a client/server database.

As always, the host and port of the TimesTen server are determined from entries in the
sys.ttconnect.ini file, according to the DSN. See "Working with the TimesTen
Client and Server" in Oracle TimesTen In-Memory Database Operations Guide.

Here is a sample tnsnames.ora entry for a direct connection:

my_tnsname = (DESCRIPTION =
 (CONNECT_DATA =
 (SERVICE_NAME = my_dsn)
 (SERVER = timesten_direct)))

You can use the TNS name, my_tnsname, in either of the following ways:

■ Specify "my_tnsname" for the dbname argument in your OCI logon call.

■ Specify an empty string for dbname and set TWO_TASK or LOCAL to
"my_tnsname".

For example:

OCILogon2(envhp, errhp, &svchp,
 (text *)"user1", (ub4)strlen("user1"),
 (text *)"pwd1", (ub4)strlen("pwd1"),
 (text *)"my_tnsname", (ub4)strlen((char*)"my_tnsname"), OCI_DEFAULT));

Refer to "Connect, Authorize, and Initialize Functions" in Oracle Call Interface
Programmer's Guide for details about OCI logon calling sequences.

Or on a UNIX system, for example, you can set TWO_TASK to "my_tnsname" and use
an OCI logon call with an empty string for dbname:

OCILogon2(envhp, errhp, &svchp,
 (text *)"user1", (ub4)strlen("user1"),
 (text *)"pwd1", (ub4)strlen("pwd1"),
 (text *)"", (ub4)0, OCI_DEFAULT));

Using an easy connect string to connect
TimesTen supports easy connect syntax, which enhances the Instant Client package by
allowing connections to be made without configuring tnsnames.ora. An easy
connect string has syntax similar to a URL, in the following format:

[//]host[:port]/service_name:server[/instance]

The initial double-slash is optional. A host name must be specified to satisfy easy
connect syntax, but is otherwise ignored by TimesTen. The name "localhost" is
typically used by convention. Any value specified for the port is also ignored. In
client/server mode, the host and port of the TimesTen server are determined from
entries in the sys.ttconnect.ini file, according to the TimesTen DSN.

Specify the DSN for service_name. Specify timesten_client or
timesten_direct, as desired, for server.

TimesTen ignores the instance field and does not require that it be specified.

For example, the following easy connect string connects to a TimesTen server using the
client/server libraries. Assume the DSN ttclient in the odbc.ini file is resolved as

Getting started with TimesTen OCI

3-10 Oracle TimesTen In-Memory Database C Developer's Guide

a client/server data source and connects to the corresponding host and port specified
in the sys.ttconnect.ini file:

"localhost/ttclient:timesten_client"

The following easy connect string is for a direct connection to TimesTen. Assume the
DSN ttdirect is defined in odbc.ini:

"localhost/ttdirect:timesten_direct"

You can use an easy connect string in either of the following ways:

■ Specify it for the dbname argument in your OCI logon call.

■ Specify an empty string for dbname and set TWO_TASK or LOCAL to the easy
connect string, in quotes.

For example:

OCILogon2(envhp, errhp, &svchp,
 (text *)"user1", (ub4)strlen("user1"),
 (text *)"pwd1", (ub4)strlen("pwd1"),
 (text *)"localhost/ttclient:timesten_client",
 (ub4)strlen((char*)"localhost/ttclient:timesten_client"), OCI_DEFAULT));

Refer to "Connect, Authorize, and Initialize Functions" in Oracle Call Interface
Programmer's Guide for details about OCI logon calling sequences.

Or on a UNIX system, for example, you can set TWO_TASK to
"localhost/ttclient:timesten_client" and use an OCI logon call with an
empty string for dbname:

OCILogon2(envhp, errhp, &svchp,
 (text *)"user1", (ub4)strlen("user1"),
 (text *)"pwd1", (ub4)strlen("pwd1"),
 (text *)"", (ub4)0, OCI_DEFAULT));

Configuring whether to use tnsnames.ora or easy connect
If a sqlnet.ora file is present, it specifies the naming methods that will be tried and
the order in which they will be tried. The Instant Client will look for a sqlnet.ora
file at the TNS_ADMIN location, if applicable. If TNS_ADMIN has not been set but
ORACLE_HOME has been (such as if you had a previous Instant Client installation), the
default sqlnet.ora location is the Oracle Database default location as noted in
"Parameters for the sqlnet.ora File" in Oracle Database Net Services Reference.

If sqlnet.ora is found and does not include a particular naming method, you cannot
use that method. If sqlnet.ora is not found, you can use either method.

In TimesTen, sample copies of tnsnames.ora and sqlnet.ora are in the
install_dir/network/admin/samples directory. Here is the sqlnet.ora file
that TimesTen provides, which supports both tnsnames and easy connect
("EZCONNECT"):

To use ezconnect syntax or tnsnames, the following entries must be
included in the sqlnet.ora configuration.
#
NAMES.DIRECTORY_PATH= (TNSNAMES, EZCONNECT)

With this file, TimesTen will first look for tnsnames syntax in your OCI logon calls. If
it cannot find tnsnames syntax, it will look for easy connect syntax.

Additional features of TimesTen OCI

TimesTen Support for Oracle Call Interface 3-11

Connecting as an externally identified user in OCI
You can connect through OCI as an externally identified user (external user) by
specifying the user name in brackets, such as "[myadmin]", and the password as an
empty string, "".

In particular, this is useful in connecting as the instance administrator, which in
TimesTen is always an external user.

Adapting an earlier example:

OCILogon2(envhp, errhp, &svchp,
 (text *)"[myadmin]", (ub4)strlen("[myadmin]"),
 (text *)"", (ub4)strlen(""),
 (text *)"my_tnsname", (ub4)strlen((char*)"my_tnsname"), OCI_DEFAULT));

This functionality uses OCI proxy syntax. You can refer to the discussion of client
access through a proxy in Oracle Call Interface Programmer's Guide.

Error reporting
Errors under TimesTen OCI applications return Oracle error codes. TimesTen attempts
to report the same Oracle error code as Oracle would under similar conditions. The
error messages may come from either the TimesTen catalog or the Oracle catalog.
Some error messages may include the accompanying TimesTen error code if
appropriate.

Fatal errors are those that make the database inaccessible until after error recovery.
When a fatal error occurs, all database connections are required to disconnect in order
to avoid out-of-memory conditions. No further operations may complete. Shared
memory from the old TimesTen instance will not be freed until all active connections at
the time of the error have disconnected.

Fatal errors in OCI are indicated by the Oracle error code ORA-03135 or ORA-00600.
Error handling for these errors should be different from standard error handling. In
particular, the application error-handling code should include a disconnect from the
database.

Signal handling and diagnostic framework considerations
The OCI diagnostic framework installs signal handlers that may impact any signal
handling that you use in your application. You can disable OCI signal handling by
setting DIAG_SIGHANDLER_ENABLED=FALSE in the sqlnet.ora file. Refer to "Fault
Diagnosability in OCI" in Oracle Call Interface Programmer's Guide for information.

OCI demo programs
TimesTen ships OCI demo programs. They are in the
quickstart/sample_code/oci directory. The README file in the directory
explains how to compile and run the demos.

Refer to the Quick Start welcome page at install_dir/quickstart.html for
information.

Additional features of TimesTen OCI
This section covers the following topics for developers using TimesTen OCI:

■ TimesTen deferred prepare

Additional features of TimesTen OCI

3-12 Oracle TimesTen In-Memory Database C Developer's Guide

■ Using IMDB Cache in OCI

■ Duplicate parameter bindings in TimesTen OCI

TimesTen deferred prepare
In OCI, a prepare call is expected to be a lightweight operation performed on the
client. To allow TimesTen to be consistent with this expectation, and to avoid
unwanted round trips between client and server, the TimesTen client library
implementation of SQLPrepare performs what is referred to as a deferred prepare,
where the request is not sent to the server until required. See "TimesTen deferred
prepare" on page 2-9.

Using IMDB Cache in OCI
This section discusses TimesTen OCI features related using the IMDB Cache:

■ Specifying the Oracle password in OCI for IMDB Cache

■ Determining the number of cache groups affected by an action

Specifying the Oracle password in OCI for IMDB Cache
To use IMDB Cache, there must be a cache user in the TimesTen database with the
same name as an Oracle Database user who can select from and update the cached
Oracle tables. This Oracle user, for example, can be the cache administration user or a
schema user. The password of the TimesTen cache user can be different from the
password of the Oracle user with the same name. See "Setting Up a Caching
Infrastructure" in Oracle In-Memory Database Cache User's Guide for details.

For use of OCI with the IMDB Cache, TimesTen allows you to pass the Oracle user's
password through OCI by appending it to the password field in an OCILogon() or
OCILogon2() call when you log in to TimesTen. Use the attribute OraclePWD in the
connect string, such as in the following example:

text *cacheuser = (text *)"cacheuser1";
text *cachepwds = (text *)"ttpwd;OraclePWD=orclpwd";
text *ttdbname = (text *)"tt_tnsname";
....
OCILogon2(envhp, errhp, &svchp,
 (text *)cacheuser, (ub4)strlen(cacheuser),
 (text *)cachepwds, (ub4)strlen(cachepwds),
 (text *)ttdbname, (ub4)strlen(ttdbname), OCI_DEFAULT));

You must always specify OraclePWD, even if the Oracle user's password is the same
as the TimesTen user's password.

Note the following for the example:

■ cacheuser1 is the name of the TimesTen cache user as well as the name of the
Oracle user who can access the cached Oracle tables.

■ ttpwd is the password of the TimesTen cache user.

■ orclpwd is the password of the Oracle user.

■ tt_tnsname is the TNS name of the TimesTen database being connected to.

The Oracle database is specified through the TimesTen OracleNetServiceName
general connection attribute in the odbc.ini or sys.odbc.ini file.

Call, handle, descriptor, SQL data type, and parameter attribute support

TimesTen Support for Oracle Call Interface 3-13

Alternatively, instead of using a TNS name, you could use easy connect syntax or the
TWO_TASK or LOCAL environment variable, as discussed in preceding sections.

Determining the number of cache groups affected by an action
In TimesTen OCI, following the execution of a FLUSH CACHE GROUP, LOAD CACHE
GROUP, REFRESH CACHE GROUP, or UNLOAD CACHE GROUP statement, the OCI
Function OCIAttrGet() with the OCI_ATTR_ROW_COUNT argument returns the
number of cache instances that were flushed, loaded, refreshed, or unloaded.

For related information, see "Determining the number of cache instances affected by an
operation" in the Oracle In-Memory Database Cache User's Guide.

Duplicate parameter bindings in TimesTen OCI
"Binding duplicate parameters in SQL statements" on page 2-16 discusses the two
supported modes for binding duplicate parameters in a SQL statement, either the
Oracle mode or the traditional TimesTen mode. As in that section, consider the
following query. Note that in TimesTen OCI, only the Oracle mode is supported.

SELECT * FROM employees
 WHERE employee_id < :a AND manager_id > :a AND salary < :b;

In OCI, as in the Oracle mode in general, two occurrences of parameter a are
considered to be separate parameters. However, OCI allows both occurrences of a to
be bound with a single call to OCIBindByPos():

OCIBindByPos(..., 1, ...); /* both occurrences of :a */
OCIBindByPos(..., 3, ...); /* occurrence of :b */

Alternatively, OCI also allows the two occurrences of a to be bound separately:

OCIBindByPos(..., 1, ...); /* first occurrence of :a */
OCIBindByPos(..., 2, ...); /* second occurrence of :a */
OCIBindByPos(..., 3, ...); /* occurrence of :b */

Note that in both cases, parameter b is considered to be in position 3.

Call, handle, descriptor, SQL data type, and parameter attribute support
Table 3–2 lists TimesTen support for OCI calls that are documented for Oracle
Database, release 11.1.0.7.

Some groups of calls are represented with an asterisk in the name. For example, the
calls related to Advanced Queuing, which TimesTen does not support, have names
that start with OCIAQ and are represented in the table as OCIAQ*(). OCI date
functions, which TimesTen does support, are designated by OCIDate*().

Note: OCI also allows parameters to be bound by name, rather than
by position, using OCIBindByName().

Table 3–2 TimesTen OCI call support

OCI call Supported Notes

OCIAQ*() No TimesTen does not support Advanced
Queuing.

OCIAnyData*() No TimesTen does not support Any Data.

Call, handle, descriptor, SQL data type, and parameter attribute support

3-14 Oracle TimesTen In-Memory Database C Developer's Guide

OCIAppCtxClearAll() Yes

OCIAppCtxSet() Yes

OCIArrayDescriptorAlloc() Yes

OCIArrayDescriptorFree() Yes

OCIAttrGet() Yes TimesTen support includes special usage
with cache groups. See "Using IMDB Cache
in OCI" on page 3-12.

OCIAttrSet() Yes

OCIBinXml*() No TimesTen does not support XML DB.

OCIBindArrayOfStruct() Yes Supported for SQL statements but not
PL/SQL.

OCIBindByName() Yes Unsupported values for the mode parameter:

■ OCI_DATA_AT_EXEC

■ OCI_IOV

OCIBindByPos() Yes Unsupported values for the mode parameter:

■ OCI_DATA_AT_EXEC

■ OCI_IOV

OCIBindDynamic() No

OCIBindObject() No TimesTen does not support user-defined
objects.

OCIBreak() No

OCICache*() No TimesTen does not support user-defined
objects.

OCICharSetConversionIsRepl
acementUsed()

Yes

OCICharSetToUnicode() Yes

OCIClientVersion() Yes

OCIColl*() No TimesTen does not support collections.

OCIConnectionPoolCreate() No

OCIConnectionPoolDestroy() No

OCIContext*() No TimesTen does not support Data Cartridge.

OCIDBShutdown() No

OCIDBStartup() No

OCIDate*() Yes See Table 3–4 on page 3-19 for information
about descriptor support.

OCIDefineArrayOfStruct() Yes Supported for SQL statements but not
PL/SQL.

OCIDefineByPos() Yes

OCIDefineDynamic() No

OCIDefineObject() No

Table 3–2 (Cont.) TimesTen OCI call support

OCI call Supported Notes

Call, handle, descriptor, SQL data type, and parameter attribute support

TimesTen Support for Oracle Call Interface 3-15

OCIDescribeAny() Yes Unsupported values for the objptr_typ
parameter:

■ OCI_OTYPE_REF

■ OCI_OTYPE_PTR

Unsupported values for the objtyp
parameter:

■ OCI_PTYPE_PKG

■ OCI_PTYPE_SYN

■ OCI_PTYPE_TYPE

OCIDescriptorAlloc() Yes

OCIDescriptorFree() Yes

OCIDirPath*() No TimesTen does not support Direct Path
Loading.

OCIDuration*() No TimesTen does not support Data Cartridge.

OCIEnvCreate() Yes Unsupported values for the mode parameter:

■ OCI_EVENTS

■ OCI_NEW_LENGTH_SEMANTICS

■ OCI_NCHAR_LITERAL_REPLACE_ON

■ OCI_NCHAR_LITERAL_REPLACE_OFF

■ OCI_NO_MUTEX (Instead use
OCI_ENV_NO_MUTEX.)

OCIEnvInit() Yes Unsupported values for the mode parameter:

■ OCI_NO_MUTEX

■ OCI_ENV_NO_MUTEX

Note: Use OCIEnvCreate() instead of
OCIEnvInit(). OCIEnvInit() is
supported for backward compatibility.

OCIEnvNlsCreate() Yes Unsupported values for the mode parameter:

■ OCI_EVENTS

■ OCI_NCHAR_LITERAL_REPLACE_ON

■ OCI_NCHAR_LITERAL_REPLACE_OFF

■ OCI_NO_MUTEX (Instead use
OCI_ENV_NO_MUTEX.)

OCIErrorGet() Yes

OCIExtProc*() No TimesTen does not support Data Cartridge.

OCIExtract*() No TimesTen does not support Data Cartridge.

OCIFile*() No TimesTen does not support Data Cartridge.

OCIFormatInit() No TimesTen does not support Data Cartridge.

OCIFormatString() No TimesTen does not support Data Cartridge.

OCIFormatTerm() No TimesTen does not support Data Cartridge.

OCIHandleAlloc() Yes

OCIHandleFree() Yes

Table 3–2 (Cont.) TimesTen OCI call support

OCI call Supported Notes

Call, handle, descriptor, SQL data type, and parameter attribute support

3-16 Oracle TimesTen In-Memory Database C Developer's Guide

OCIInitialize() Yes Unsupported values for the mode parameter:

■ OCI_NO_MUTEX

■ OCI_ENV_NO_MUTEX

Note: Use OCIEnvCreate() instead of
OCIInitialize(). OCIInitialize() is
supported for backward compatibility.

OCIInterval*() Yes See Table 3–4 on page 3-19 for information
about descriptor support.

OCIIter*() No TimesTen does not support collections.

OCILdaToSvcCtx() No

OCILob*() No TimesTen does not support LOB data types.

OCILogoff() Yes

OCILogon() Yes

OCILogon2() Yes OCI_DEFAULT is the only supported value
for the mode parameter.

OCIMemory*() No TimesTen does not support Data Cartridge.

OCIMessage*() No TimesTen does not support Data Cartridge.

OCIMultiByte*() Yes

OCINls*() Yes

OCINumber*() Yes

OCIObject*() No TimesTen does not support user-defined
objects.

OCIParamGet() Yes

OCIParamSet() Yes

OCIPasswordChange() No

OCIPing() Yes

OCIRaw*() Yes

OCIRef*() No

OCIReset() No

OCIRowidToChar() Yes

OCIServer*() Yes OCI_DEFAULT is the only supported value
for the mode parameter of
OCIServerAttach.

OCISessionBegin() Yes OCI_CRED_RDBMS is the only supported
value for the credt parameter.

OCI_DEFAULT is the only supported value
for the mode parameter.

OCISessionEnd() Yes

OCISessionGet() Yes

OCISessionPoolCreate() No

OCISessionPoolDestroy() No

Table 3–2 (Cont.) TimesTen OCI call support

OCI call Supported Notes

Call, handle, descriptor, SQL data type, and parameter attribute support

TimesTen Support for Oracle Call Interface 3-17

OCISessionRelease() Yes

OCISharedLibInit() No

OCIStmtExecute() Yes Unsupported values for the mode parameter:

■ OCI_BATCH_ERRORS

■ OCI_EXACT_FETCH

■ OCI_STMT_SCROLLABLE_READONLY

Note: Using OCI_COMMIT_ON_SUCCESS
results in improved performance, avoiding
an extra round trip to the server to commit a
transaction.

OCIStmtFetch() Yes

OCIStmtFetch2() Yes The only supported values for the
orientation parameter are OCI_DEFAULT
and OCI_FETCH_NEXT.

OCIStmtGetBindInfo() Yes

OCIStmtGetPieceInfo() No

OCIStmtPrepare() Yes The only supported value for the language
parameter is OCI_NTV_SYNTAX.

Note: In TimesTen, OCIStmtPrepare()
does not support statement caching. See
OCIStmtPrepare2() that follows.

OCIStmtPrepare2() Yes The only supported value for the mode
parameter is OCI_DEFAULT.

For statement caching, TimesTen supports
the key argument to tag a statement for
future calls to OCIStmtPrepare2() or
OCIStmtRelease().

OCIStmtRelease() Yes The only supported value for the mode
parameter is OCI_DEFAULT.

For statement caching, TimesTen supports
the key argument to tag a statement. This
can be the key from OCIStmtPrepare2().

OCIStmtSetPieceInfo() No

OCIString*() Yes

OCISubscription*() No TimesTen does not support Advanced
Queuing.

OCISvcCtxToLda() No

OCITable*() No

OCITerminate() No

OCIThread*() Yes

OCITransCommit() Yes The only supported value for the mode
parameter is OCI_DEFAULT.

OCITransDetach() No

OCITransForget() No

OCITransMultiPrepare() No

Table 3–2 (Cont.) TimesTen OCI call support

OCI call Supported Notes

Call, handle, descriptor, SQL data type, and parameter attribute support

3-18 Oracle TimesTen In-Memory Database C Developer's Guide

Table 3–3 lists the handles and attributes that TimesTen OCI supports.

OCITransPrepare() No

OCITransRollback() Yes

OCITransStart() No

OCIType*() No

OCIUnicodeToCharSet() Yes

OCIUserCallbackGet() Yes

OCIUserCallbackRegister() Yes

OCIWideChar*() Yes

OCIXmlDbFreeXmlCtx() No TimesTen does not support XML DB.

OCIXmlDbInitXmlCtx() No TimesTen does not support XML DB.

Table 3–3 TimesTen OCI supported handles and attributes

Handle C object Supported attributes

Environment OCIEnv OCI_ATTR_ENV_CHARSET_ID

OCI_ATTR_ENV_NCHARSET_ID

OCI_ATTR_ENV_UTF16

OCI_ATTR_EVTCTX

OCI_ATTR_OBJECT

Error OCIError OCI_ATTR_DML_ROW_OFFSET

Service context OCISvcCtx OCI_ATTR_ENV

OCI_ATTR_IN_V8_MODE

OCI_ATTR_SERVER

OCI_ATTR_SESSION

OCI_ATTR_TRANS

Statement OCIStmt OCI_ATTR_BIND_COUNT

OCI_ATTR_CURRENT_POSITION

OCI_ATTR_ENV

OCI_ATTR_FETCH_ROWID

OCI_ATTR_NUM_DML_ERRORS

OCI_ATTR_PARAM_COUNT

OCI_ATTR_PREFETCH_MEMORY

OCI_ATTR_PREFETCH_ROWS

OCI_ATTR_ROW_COUNT

OCI_ATTR_ROWID

OCI_ATTR_ROWS_FETCHED

OCI_ATTR_SQLFNCODE

OCI_ATTR_STATEMENT

OCI_ATTR_STMT_TYPE

Table 3–2 (Cont.) TimesTen OCI call support

OCI call Supported Notes

Call, handle, descriptor, SQL data type, and parameter attribute support

TimesTen Support for Oracle Call Interface 3-19

Table 3–4 lists the descriptors that TimesTen OCI supports.

Bind OCIBind OCI_ATTR_CHARSET_FORM

OCI_ATTR_CHARSET_ID

OCI_ATTR_MAXCHAR_SIZE

OCI_ATTR_MAXDATA_SIZE

Define OCIDefine OCI_ATTR_CHARSET_FORM

OCI_ATTR_CHARSET_ID

OCI_ATTR_MAXCHAR_SIZE

Describe OCIDescribe OCI_ATTR_PARAM

OCI_ATTR_PARAM_COUNT

Server OCIServer OCI_ATTR_ENV

OCI_ATTR_IN_V8_MODE

OCI_ATTR_SERVER_GROUP

OCI_ATTR_SERVER_STATUS

User session OCISession OCI_ATTR_CLIENT_IDENTIFER

OCI_ATTR_CLIENT_INFO

OCI_ATTR_CURRENT_SCHEMA

OCI_ATTR_DRIVER_NAME

OCI_ATTR_INITIAL_CLIENT_ROLES

OCI_ATTR_MODULE

OCI_ATTR_PROXY_CREDENTIALS

OCI_ATTR_USERNAME

Authentication OCIAuthInfo Same as for user session handle.

Transaction OCITrans OCI_ATTR_TRANS_NAME

OCI_ATTR_TRANS_TIMEOUT

Thread OCIThreadHandle

Table 3–4 TimesTen OCI supported descriptors

Descriptor C object

Parameter (read-only) OCIParam

ROWID OCIRowid

ANSI DATE OCIDateTime

TIMESTAMP OCIDateTime

TIMESTAMP WITH TIME ZONE OCIDateTime

TIMESTAMP WITH LOCAL TIME ZONE OCIDateTime

INTERVAL YEAR TO MONTH OCIInterval

INTERVAL DAY TO SECOND OCIInterval

User callback OCIUcb

Table 3–3 (Cont.) TimesTen OCI supported handles and attributes

Handle C object Supported attributes

Call, handle, descriptor, SQL data type, and parameter attribute support

3-20 Oracle TimesTen In-Memory Database C Developer's Guide

Table 3–5 lists the SQL data types that TimesTen OCI supports.

Table 3–6 that follows lists supported parameter attributes.

Table 3–5 TimesTen OCI supported SQL data types

SQL data type Notes

SQLT_AFC

SQLT_AVC

SQLT_BDOUBLE

SQLT_BFLOAT

SQLT_BIN

SQLT_CHR

SQLT_DAT

SQLT_DATE

SQLT_FLT

SQLT_IBDOUBLE

SQLT_IBFLOAT

SQLT_INT

SQLT_INTERVAL_DS Not stored in TimesTen.

SQLT_INTERVAL_YM Not stored in TimesTen.

SQLT_LBI

SQLT_LNG

SQLT_LVB Truncated at 4 MB when stored in TimesTen.

SQLT_LVC Truncated at 4 MB when stored in TimesTen.

SQLT_NUM

SQLT_ODT

SQLT_RDD Rowids returned in Oracle format.

SQLT_RSET Only one result set parameter is allowed for each statement.

SQLT_STR

SQLT_TIME

SQLT_TIME_TZ Time zone is ignored when stored in TimesTen.

SQLT_TIMESTAMP

SQLT_TIMESTAMP_LTZ Time zone is ignored when stored in TimesTen.

SQLT_TIMESTAMP_TZ Time zone is ignored when stored in TimesTen.

SQLT_UIN

SQLT_VBI

SQLT_VCS

SQLT_VNU

SQLT_VST

Call, handle, descriptor, SQL data type, and parameter attribute support

TimesTen Support for Oracle Call Interface 3-21

Table 3–6 TimesTen OCI support for parameter attributes

Parameter Supported attributes

All parameters OCI_ATTR_NUM_PARAMS

OCI_ATTR_OBJ_NAME

OCI_ATTR_OBJ_SCHEMA

OCI_ATTR_PTYPE

Table and view parameters OCI_ATTR_NUM_COLS

OCI_ATTR_LIST_COLUMNS

PL/SQL procedure and function
parameters

OCI_ATTR_LIST_ARGUMENTS

PL/SQL subprogram parameters OCI_ATTR_LIST_ARGUMENTS

OCI_ATTR_NAME

PL/SQL package parameters OCI_ATTR_LIST_SUBPROGRAMS

Sequence parameters OCI_ATTR_OBJID

OCI_ATTR_MIN

OCI_ATTR_MAX

OCI_ATTR_INCR

OCI_ATTR_CACHE

OCI_ATTR_ORDER

OCI_ATTR_HW_MARK

Column parameters OCI_ATTR_CHAR_USED

OCI_ATTR_CHAR_SIZE

OCI_ATTR_DATA_SIZE

OCI_ATTR_DATA_TYPE

OCI_ATTR_NAME

OCI_ATTR_PRECISION

OCI_ATTR_SCALE

OCI_ATTR_IS_NULL

OCI_ATTR_TYPE_NAME

OCI_ATTR_SCHEMA_NAME

OCI_ATTR_CHARSET_ID

OCI_ATTR_CHARSET_FORM

Argument and result parameters OCI_ATTR_NAME

OCI_ATTR_POSITION

OCI_ATTR_DATA_TYPE

OCI_ATTR_DATA_SIZE

OCI_ATTR_PRECISION

OCI_ATTR_SCALE

OCI_ATTR_LEVEL

OCI_ATTR_IS_NULL

OCI_ATTR_CHARSET_ID

OCI_ATTR_CHARSET_FORM

Call, handle, descriptor, SQL data type, and parameter attribute support

3-22 Oracle TimesTen In-Memory Database C Developer's Guide

List parameters OCI_LTYPE_COLUMN

OCI_LTYPE_SCH_OBJ

OCI_LTYPE_DB_SCH

Database parameters OCI_ATTR_VERSION

OCI_ATTR_CHARSET_ID

OCI_ATTR_NCHARSET_ID

OCI_ATTR_LIST_SCHEMAS

OCI_ATTR_MAX_PROC_LEN

OCI_ATTR_MAX_COLUMN_LEN

OCI_ATTR_ATTR_CURSOR_COMMIT_BEHAVIOR

OCI_ATTR_MAX_CATALOG_NAMELEN

OCI_ATTR_CATALOG_LOCATION

OCI_ATTR_SAVEPOINT_SUPPORT

OCI_ATTR_NOWAIT_SUPPORT

OCI_ATTR_AUTOCOMMIT_DDL

OCI_ATTR_LOCKING_MODE

Table 3–6 (Cont.) TimesTen OCI support for parameter attributes

Parameter Supported attributes

4

TimesTen Support for Oracle Pro*C/C++ Precompiler 4-1

4TimesTen Support for Oracle Pro*C/C++
Precompiler

Oracle TimesTen In-Memory Database and Oracle IMDB Cache support the Oracle
Pro*C/C++ Precompiler for C and C++ applications. You can use the precompiler with
embedded SQL and PL/SQL applications that access the TimesTen database.

This chapter includes the following topics:

■ Overview of the Oracle Pro*C/C++ Precompiler

■ Overview of TimesTen support for Pro*C/C++

■ Getting started with TimesTen Pro*C/C++

■ TimesTen Pro*C/C++ Precompiler options

It provides only an overview and TimesTen-specific information regarding
Pro*C/C++. For complete general information, you can refer to Pro*C/C++
Programmer's Guide in the Oracle Database library.

Overview of the Oracle Pro*C/C++ Precompiler
The Oracle Pro*C/C++ Precompiler enables you to embed SQL statements or PL/SQL
blocks directly into C or C++ code. Further, you can use your C or C++ program host
variables in your embedded SQL or PL/SQL.

You use a precompilation step to convert the Pro*C/C++ source file into a C or C++
source file. The precompiler accepts the Pro*C/C++ file as input, translates embedded
SQL statements into standard Oracle runtime library calls, and generates a modified
source code file that you can then compile and link. Pro*C/C++ code is linked against
the Oracle precompiler SQLLIB library, which is shipped with TimesTen as part of the
Oracle Instant Client.

Overview of TimesTen support for Pro*C/C++
TimesTen support for the Oracle Pro*C/C++ Precompiler depends on TimesTen OCI.
TimesTen OCI depends on the Oracle client library and the TimesTen ODBC libraries.
See Figure 3–1 on page 3-2 to see where OCI and Pro*C/C++ fit in the TimesTen
architecture.

This chapter contains information specific to using the Oracle Pro*C/C++ Precompiler
with TimesTen. The syntax and usage of the Oracle Pro*C/C++ Precompiler with
TimesTen is essentially the same as with Oracle Database.

The rest of this section includes the following topics.

Overview of TimesTen support for Pro*C/C++

4-2 Oracle TimesTen In-Memory Database C Developer's Guide

■ TimesTen OCI support

■ Embedded SQL support and restrictions

■ Semantic checking restrictions

■ Embedded PL/SQL restrictions

■ Transaction restrictions

■ Connection restrictions

■ Summary of unsupported or restricted executable commands and clauses

■ The ttSrcScan utility

TimesTen OCI support
Because TimesTen support of the Oracle Pro*C/C++ Precompiler depends on
TimesTen OCI support, restrictions for TimesTen OCI apply to Pro*C/C++
applications.

In addition, TimesTen does not support OCI calls that are related to functionality that
does not exist in TimesTen.

For more information about TimesTen OCI support, see Chapter 3, "TimesTen Support
for Oracle Call Interface." Much of the information there may apply to Pro*C/C++
applications as well.

Embedded SQL support and restrictions
TimesTen supports SQL92 standards. Oracle supports SQL99 standards.

The TimesTen Pro*C/C++ Precompiler does not support embedded SQL for
functionality that TimesTen and IMDB Cache do not support. See "TimesTen
restrictions and differences" on page 3-4.

TimesTen provides the following support for SQLLIB functions:

■ SQLErrorGetText (sqlglmt) is supported.

■ SQLRowidGet() is supported following only SELECT FOR UPDATE statements.

In addition, TimesTen support for the Oracle Pro*C/C++ Precompiler has the
following restrictions:

■ REGISTER CONNECT is not supported.

■ Stored Java subprograms are not supported.

Semantic checking restrictions
TimesTen support for the Oracle Pro*C/C++ Precompiler does not include semantic
checking during precompilation. A SQLCHECK precompiler option setting that
specifies semantic checking is permissible but has no effect.

It is important to be aware, however, that a setting of SEMANTICS results in a database
connection even though precompilation semantic checking is not performed.
Therefore, a setting of SEMANTICS requires the following during precompilation:

■ The database must be running.

■ The USERID precompiler option must be set, either on the command line or in the
pcscfg.cfg configuration file. You must provide the user name and password

Overview of TimesTen support for Pro*C/C++

TimesTen Support for Oracle Pro*C/C++ Precompiler 4-3

for an existing TimesTen user, and a TNS name that points to the database. In the
following example, you will be prompted for the password:

USERID=user1@my_tnsname

Alternatively, you can enter USERID=user1/mypassword@my_tnsname, but for
security reasons it is not advisable to specify a password on a command line or in
a configuration file.

See "Connecting to a TimesTen database from Pro*C/C++" on page 4-6 for information
about usage and syntax for TNS names.

See the next section, "Embedded PL/SQL restrictions", for related information about
Pro*C/C++ programs that use PL/SQL.

Embedded PL/SQL restrictions
In TimesTen, if a Pro*C/C++ application contains PL/SQL blocks, then Pro*C/C++
acts as though the SQLCHECK setting is SEMANTICS. It is important to be aware that
this results in a database connection even though precompilation semantic checking is
not performed. Therefore, using PL/SQL in a Pro*C/C++ application requires the
following during precompilation:

■ The database must be running.

■ The USERID precompiler option must be set, specifying an existing TimesTen user.
See the preceding section, "Semantic checking restrictions", for details about
setting this option.

Transaction restrictions
Regarding transactions, TimesTen support for the Oracle Pro*C/C++ Precompiler does
not include the following:

■ SAVEPOINT SQL statement

■ SET TRANSACTION SQL statement

You can still have transactions with commit and rollback, just not the SET
TRANSACTION SQL statement.

■ Fetch across commits

■ Distributed transactions

Connection restrictions
Regarding connections, TimesTen support for the Oracle Pro*C/C++ Precompiler does
not include the following:

■ ALTER AUTHORIZATION clause

■ Automatic connections to the database

■ Making connections to the database with SYSDBA or SYSOPER privilege, given
that these privileges do not exist in TimesTen

■ Implicit connections (dblinks) to a TimesTen or Oracle Database

For information about supported connection syntax, see "Connecting to a TimesTen
database from Pro*C/C++" on page 4-6.

Overview of TimesTen support for Pro*C/C++

4-4 Oracle TimesTen In-Memory Database C Developer's Guide

Summary of unsupported or restricted executable commands and clauses
Given restrictions including those noted in the preceding sections, this section
summarizes the Pro*C/C++ EXEC SQL executable commands, categories of
commands, and command clauses that TimesTen does not support:

■ ALTER AUTHORIZATION

■ CACHE FREE ALL

■ CALL: Supported only for calling PL/SQL. To call TimesTen built-in procedures,
use dynamic SQL statements.

■ Any "COLLECTION..." command

■ COMMIT FORCE 'some text'

■ COMMIT WORK COMMENT 'some text' RELEASE: The COMMENT clause is not
supported.

■ CONNECT BY

■ CONTEXT OBJECT OPTION GET

■ CONTEXT OBJECT OPTION SET

■ DECLARE TABLE: Supports only Oracle data types.

■ DECLARE TYPE

■ EXPLAIN PLAN

■ IN SYSDBA MODE

■ IN SYSOPER MODE

■ Any "LOB..." command

■ LOCK TABLE

■ Any "OBJECT..." command

■ PARTITION

■ REGISTER CONNECT

■ RETURN

■ RETURNING

■ SAVEPOINT

■ SET DESCRIPTOR: Cannot set CHARACTER_SET_NAME.

■ SET TRANSACTION

■ START WITH

■ TO SAVEPOINT

The ttSrcScan utility
If you have an existing Pro*C/C++ program and want to see whether it uses
Pro*C/C++ features that TimesTen does not support, you can use the ttSrcScan
command line utility to scan your program for unsupported embedded SQL functions
and types. This is a standalone utility that can be run without TimesTen or Oracle
being installed and runs on any platform supported by TimesTen. It reads source code
files as input and creates HTML and text files as output. If the utility finds
unsupported items, they are logged and alternatives are suggested. You can find the

Getting started with TimesTen Pro*C/C++

TimesTen Support for Oracle Pro*C/C++ Precompiler 4-5

ttSrcScan executable in the quickstart/sample_util directory in your
TimesTen installation.

Specify an input file or directory for the program to be scanned and an output
directory for the ttSrcScan reports. Other options are available as well. See the
README file in the sample_util directory for information.

Getting started with TimesTen Pro*C/C++
This section covers the following topics for getting started with a Pro*C/C++
application for TimesTen:

■ Building a Pro*C/C++ application

■ Connecting to a TimesTen database from Pro*C/C++

■ Error reporting and handling

■ Pro*C/C++ demo programs

Building a Pro*C/C++ application
Before building a Pro*C/C++ application, you must set up your environment:

1. You can use the TimesTen OCI and Pro*C/C++ Makefiles provided with the Quick
Start demos to implement appropriate environment settings. These are in the
following locations:

install_dir/quickstart/sample_code/oci/
install_dir/quickstart/sample_code/proc/

(Unless you installed Quick Start in a different location.)

2. Confirm LD_LIBRARY_PATH or PATH is set so that the Oracle Instant Client
directory precedes the Oracle Database libraries in the path. The path will be set
properly if you use the install_dir/bin/ttenv script or
quickstart/ttquickstartenv script. See "Environment variables" in Oracle
TimesTen In-Memory Database Installation Guide for information about environment
variables and ttenv.

Then use steps such as the following to build a Pro*C/C++ application. The steps
shown here present a basic example for a UNIX system and assume the program has
no other includes (#include) or links to other libraries. The designation
instant_client represents the directory where Oracle Instant Client is installed.

See the Quick Start Pro*C/C++ Makefile in the quickstart/sample_code/proc
directory for complete, platform-specific examples.

1. Precompile the Pro*C/C++ source file by using the proc command from your
system prompt. For example:

% proc iname=sample.pc

The proc utility takes a .pc source file as input and produces a .c file.

2. Compile the resulting C code file. On Linux platforms, enter a command similar to
the following:

% gcc -c sample.c -I(instant_client)/sdk/include

3. Link the resulting object modules with modules in SQLLIB. For example:

% gcc -o sample sample.o -L(instant_client)/lib -lclntsh

Getting started with TimesTen Pro*C/C++

4-6 Oracle TimesTen In-Memory Database C Developer's Guide

Connecting to a TimesTen database from Pro*C/C++
This section provides information on connecting to TimesTen from a Pro*C/C++
application. Also see "Connecting to a TimesTen database from OCI" on page 3-8 for
information about using the tnsnames naming method or easy connect naming
method to connect to the database.

The following topics are covered here:

■ Connection syntax and parameters

■ Using tnsnames or easy connect

■ Specifying the Oracle password in Pro*C/C++ for IMDB Cache

■ Connecting as an externally identified user in Pro*C/C++

Connection syntax and parameters
TimesTen supports the following connection syntax:

EXEC SQL CONNECT{:user IDENTIFIED BY :pwd | :user_string}
 [[AT{dbname |:host_variable}]USING :connect_string];

The parameters are described in Table 4–1.

Using tnsnames or easy connect
Your EXEC SQL CONNECT syntax can be simplified if you use the Oracle tnsnames
or easy connect method.

From Pro*C/C++, you can use a host variable to include the user name, password, and
a TNS name. For example:

EXEC SQL CONNECT :dbstring

Note: A TimesTen connection cannot be inherited from a parent
process. If a process opens a database connection before creating a
child process, the child must not use the connection. In Pro*C/C++, to
avoid having a child process inadvertently inherit a connection from
its parent, use EXEC SQL COMMIT RELEASE in the parent before
creating the child.

Table 4–1 Connection parameters

Parameter Description

user This is the user name.

pwd This is the user password.

user_string As an alternative to separate user and pwd entries, user_string is a
user name and password separated by a slash, such as user1/pwd1.
After an "@" sign, you can also include a database identifier, instead of
using dbname, or a TNS name or easy connect string, instead of using
connect_string. See examples in the next section, "Using tnsnames
or easy connect".

dbname This is a database identifier declared in a previous DECLARE
DATABASE statement.

host_variable This is a variable whose value is a database identifier.

connect_string This is a valid TNS name or easy connect string for a TimesTen
database.

Getting started with TimesTen Pro*C/C++

TimesTen Support for Oracle Pro*C/C++ Precompiler 4-7

Where dbstring is set to "user1/pwd1@my_tnsname".

Alternatively, the host variable could include the user name, password, and an easy
connect string. For example, dbstring could be set to
"user1/pwd1@localhost/ttclient:timesten_client".

Or, if the TWO_TASK or LOCAL environment variable, as applicable for your operating
system, is set to "my_tnsname" or "localhost/ttclient:timesten_client",
you could connect as in the following example:

EXEC SQL CONNECT :user1 IDENTIFIED BY :pwd1

Specifying the Oracle password in Pro*C/C++ for IMDB Cache
To use IMDB Cache, there must be a cache user in the TimesTen database with the
same name as an Oracle Database user who can select from and update the cached
Oracle tables. This Oracle user, for example, can be the cache administration user or a
schema user. The password of the TimesTen cache user can be different from the
password of the Oracle user with the same name. See "Setting Up a Caching
Infrastructure" in Oracle In-Memory Database Cache User's Guide for details.

For use of Pro*C/C++ with IMDB Cache, TimesTen allows you to pass the Oracle
user's password through Pro*C/C++ by appending it to the password field in an EXEC
SQL CONNECT call when you log in to TimesTen. Use the attribute OraclePWD in the
connect string, such as in the following example:

text *cacheuser = (text *)"cacheuser1";
text *cachepwds = (text *)"ttpwd;OraclePWD=orclpwd";
text *dbname = (text *)"tt_tnsname";
....
EXEC SQL CONNECT :cacheuser IDENTIFIED BY :cachepwds AT :dbname

You must always specify OraclePWD, even if the Oracle user's password is the same
as the TimesTen user's password. Furthermore, in the circumstance of specifying an
Oracle password for IMDB Cache, you must use a form of EXEC SQL CONNECT that
specifies the password as a separate host variable. In this example, cacheuser1 is the
name of the TimesTen cache user as well as the name of the Oracle user who can access
the cached Oracle tables, ttpwd is the password of the TimesTen cache user, orclpwd
is the password of the Oracle user, and tt_tnsname is the TNS name of the TimesTen
database being connected to. The Oracle database is specified through the TimesTen
OracleNetServiceName general connection attribute in the odbc.ini or
sys.odbc.ini file.

Alternatively, instead of using the AT clause with a TNS name, you could use the
TWO_TASK or LOCAL environment variable, as discussed in "Connecting to a TimesTen
database from OCI" on page 3-8.

Connecting as an externally identified user in Pro*C/C++
You can connect through Pro*C/C++ as an externally identified user (external user) by
specifying the user name in brackets, such as "[myadmin]", and the password as an
empty string, "".

In particular, this is useful in connecting as the instance administrator, which in
TimesTen is always an external user.

Consider the following example.

text *instanceadmin = (text *)"[myadmin]";
text *instanceadminpwd = (text *)"";
text *dbname = (text *)"tt_tnsname";

TimesTen Pro*C/C++ Precompiler options

4-8 Oracle TimesTen In-Memory Database C Developer's Guide

....
EXEC SQL CONNECT :instanceadmin IDENTIFIED BY :instanceadminpwd AT :dbname

This functionality uses OCI proxy syntax. You can refer to the discussion of client
access through a proxy in Oracle Call Interface Programmer's Guide.

Error reporting and handling
Be aware of the following regarding error conditions and error reporting:

■ Errors under TimesTen Pro*C/C++ applications return Oracle error codes.
TimesTen attempts to report the same Oracle error code as Oracle would under
similar conditions. The error messages may come from either the TimesTen catalog
or the Oracle catalog. Some error messages may include the accompanying
TimesTen error code if appropriate. Pro*C/C++ applications that rely on parsing
error codes should be checked.

■ TimesTen supports the WHENEVER SQLERROR directive, to go to an error handler
if an error occurs, and the WHENEVER NOT FOUND directive, to go to a handling
section if a "no data found" condition occurs. TimesTen does not support the
WHENEVER SQLWARNING directive.

Examples:

EXEC SQL WHENEVER NOT FOUND GOTO close_cursor;
...
EXEC SQL WHENEVER SQLERROR GOTO error_handler;

Pro*C/C++ demo programs
TimesTen ships Pro*C/C++ demo programs. They are in the
quickstart/sample_code/proc directory. The README file in the directory
explains how to compile and run the demos.

Refer to the Quick Start welcome page at install_dir/quickstart.html for
information.

TimesTen Pro*C/C++ Precompiler options
This section discusses Pro*C/C++ Precompiler option support by TimesTen.

Precompiler option support
Table 4–2 describes TimesTen Pro*C/C++ Precompiler option support.

Table 4–2 TimesTen Pro*C/C++ Precompiler option support

Option Notes

AUTO_CONNECT Supported value: NO (default).

CHAR_MAP Supported.

CINCR Setting has no effect because TimesTen supports only CPOOL=NO.

CLOSE_ON_COMMIT Supported value: YES.

The Oracle default value of NO is overridden by TimesTen.

CMAX Setting has no effect because TimesTen supports only CPOOL=NO.

CMIN Setting has no effect because TimesTen supports only CPOOL=NO.

TimesTen Pro*C/C++ Precompiler options

TimesTen Support for Oracle Pro*C/C++ Precompiler 4-9

CNOWAIT Setting has no effect because TimesTen supports only CPOOL=NO.

CODE Supported.

COMP_CHARSET Supported.

CONFIG Supported.

CPOOL Supported value: NO (default).

CPP_SUFFIX Supported.

CTIMEOUT Setting has no effect because TimesTen supports only CPOOL=NO.

DB2_ARRAY Supported.

DBMS Supported value: NATIVE (default).

DEF_SQLCODE Supported.

DEFINE Supported.

DURATION Setting has no effect because TimesTen does not support objects.

DYNAMIC Supported.

ERRORS Supported.

ERRTYPE Not supported.

EVENTS Both values allowed, but TimesTen OCI does not support
Advanced Queuing.

FIPS Supported.

HEADER Supported.

HOLD_CURSOR Supported.

IMPLICIT_SVPT Supported value: NO (default).

INAME Supported.

INCLUDE Supported.

INTYPE Supported.

LINES Supported.

LNAME Supported.

LTYPE Supported.

MAX_ROW_INSERT Supported.

MAXLITERAL Supported.

MAXOPENCURSORS Supported.

MODE Supported.

NATIVE_TYPES Supported.

NLS_CHAR Supported.

NLS_LOCAL Supported value: NO (default).

OBJECTS Setting has no effect because TimesTen does not support objects.

ONAME Supported.

ORACA Supported.

Table 4–2 (Cont.) TimesTen Pro*C/C++ Precompiler option support

Option Notes

TimesTen Pro*C/C++ Precompiler options

4-10 Oracle TimesTen In-Memory Database C Developer's Guide

Setting precompiler options
You can set precompiler options in the following ways.

■ At compile time, either in the configuration file pcscfg.cfg or on the
Pro*C/C++ command line. A setting on the command line takes precedence over a
setting in the configuration file.

■ At runtime through the EXEC ORACLE OPTION command. A runtime setting
takes precedence over a compile-time setting.

For example, the following shows portions of the configuration file that ships with
TimesTen.

OUTLINE All values are allowed, but TimesTen does not support Oracle
optimization.

OUTLNPREFIX Both values are allowed, but TimesTen does not support Oracle
optimization.

PAGELEN Supported.

PARSE Supported.

PREFETCH Supported.

RELEASE_CURSOR Supported.

RUNOUTLINE Not supported. Both values (yes|no) are allowed but ignored.

SELECT_ERROR Supported.

SQLCHECK Any of the SQLCHECK settings is allowed, but TimesTen does not
support semantic checking during precompilation.

Whenever a Pro*C/C++ application uses PL/SQL, Pro*C/C++
acts as though the SQLCHECK setting is SEMANTICS.

Important: A setting of SEMANTICS (or FULL, which is
synonymous) always results in a connection to the database,
even though precompilation semantic checking is not
performed.

See "Semantic checking restrictions" on page 4-2.

STMT_CACHE Supported.

SYS_INCLUDE Supported.

THREADS Supported.

TYPE_CODE Supported.

UNSAFE_NULL Supported.

USERID Supported.

UTF16_CHARSET Only the NCHAR_CHARSET setting is supported.

VARCHAR Supported.

VERSION Setting has no effect because TimesTen does not support objects.

Note: TimesTen does not support the default value for
CLOSE_ON_COMMIT. TimesTen supports only
CLOSE_ON_COMMIT=YES.

Table 4–2 (Cont.) TimesTen Pro*C/C++ Precompiler option support

Option Notes

TimesTen Pro*C/C++ Precompiler options

TimesTen Support for Oracle Pro*C/C++ Precompiler 4-11

ltype=short
parse=full
close_on_commit=yes
...

The following command line would override the ltype=short setting from the
configuration file:

% proc ltype=long ... iname=sample.pc

The following runtime command would override the ltype=long setting from the
command line:

EXEC ORACLE OPTION LTYPE=NONE;

TimesTen Pro*C/C++ Precompiler options

4-12 Oracle TimesTen In-Memory Database C Developer's Guide

5

XLA and TimesTen Event Management 5-1

5XLA and TimesTen Event Management

The Transaction Log API (XLA) is a set of C language functions that enable you to
implement applications to perform the following:

■ Monitor TimesTen for changes to specified tables in a local database.

■ Receive real-time notification of these changes.

One of the purposes of XLA is to provide a high-performance, asynchronous
alternative to triggers.

XLA also provides functions that enable you to build a custom data replication
solution if the TimesTen replication solutions described in Oracle TimesTen In-Memory
Database TimesTen to TimesTen Replication Guide do not meet your needs.

For a complete description of each XLA function, see Chapter 9, "XLA Reference".

This chapter includes the following topics:

■ XLA concepts

■ Writing an XLA event-handler application

■ Using XLA as a replication mechanism

■ Other XLA features

XLA concepts
This section includes the following topics:

■ XLA persistent mode

■ How XLA reads records from the transaction log

■ About XLA and materialized views

■ About XLA bookmarks

Notes:

■ XLA is available on all platforms supported by TimesTen.
However, XLA does not support data transfer between different
platforms or between 32-bit and 64-bit versions of the same
platform.

■ XLA does not support applications linked with a driver manager
library or the client/server library.

XLA concepts

5-2 Oracle TimesTen In-Memory Database C Developer's Guide

■ About XLA data types

■ Access control impact on XLA

■ XLA demo

XLA functions mentioned here are documented in Chapter 9, "XLA Reference".

XLA persistent mode
In normal usage, TimesTen XLA is initialized in persistent mode. In this mode, XLA
obtains update records directly from the transaction log buffer or transaction log files,
so the records are available for as long as they are needed. The persistent logging
model also allows multiple readers to simultaneously read transaction log updates.

The ttXlaPersistOpen XLA function opens a connection to the database in
persistent mode.

When initially created, TimesTen configures a transaction log handle for the same
version as the TimesTen release to which the application is linked. You can also use the
ttXlaGetVersion and ttXlaSetVersion XLA functions to interoperate with
earlier XLA versions.

(It is possible, though not recommended, to use XLA in non-persistent mode. This is
discussed in "Using XLA in non-persistent mode" on page 5-38.)

How XLA reads records from the transaction log
As applications modify a database, TimesTen generates transaction log records that
describe the changes made to the data and other events such as transaction commits.

New transaction log records are always written to the end of the log buffer as they are
generated.

Transaction log records are periodically flushed in batches from the log buffer in
memory to transaction log files on disk. When XLA is initialized in persistent mode,
the XLA application does not have to be concerned with which portions of the
transaction log are on disk or in memory. Therefore, the term "transaction log" as used
in this chapter refers to the "virtual" source of transaction update records, regardless of
whether those records are physically located in memory or on disk.

Applications can use XLA to monitor the transaction log for changes to the database.
XLA reads through the transaction log, filters the log records, and delivers to XLA
applications a list of transaction records that contain the changes to the tables and
columns of interest.

XLA sorts the records into discrete transactions. If multiple applications are updating
the database simultaneously, transaction log records from the different applications
will be interleaved in the transaction log.

XLA transparently extracts all transaction log records associated with a particular
transaction and delivers them in a contiguous list to the application.

Only the records for committed transactions are returned. They are returned in the
order in which their final commit record appears in the transaction log. XLA filters out
records associated with changes to the database that have not yet been committed.

If a change is made but then rolled back, XLA does not deliver the records for the
aborted transaction to the application.

Most of these basic XLA concepts are demonstrated in Example 5–1 that follows and
summarized in the bulleted list following the example.

XLA concepts

XLA and TimesTen Event Management 5-3

Consider the example transaction log illustrated in Figure 5–1.

Figure 5–1 Records extracted from the transaction log

Example 5–1 Reading transaction log records

In this example, the transaction log contains the following records:

CT1 - Application C updates row 1 of table W with value 7.7.
BT1 - Application B updates row 3 of table X with value 2.
CT2 - Application C updates row 9 of table W with value 5.6.
BT2 - Application B updates row 2 of table Y with value "XYZ".
AT1 - Application A updates row 1 of table Z with value 3.
AT2 - Application A updates row 3 of table Z with value 4.
BT3 - Application B commits its transaction.
AT3 - Application A rolls back its transaction.
CT3 - Application C commits its transaction.

An XLA application that is set up to detect changes to tables W, Y, and Z would see the
following:

BT2 and BT3 - Update row 2 of table Y with value "XYZ" and commit.
CT1 - Update row 1 of table W with value 7.7.
CT2 and CT3 - Update row 9 of table W with value 5.6 and commit.

This example demonstrates the following:

■ Transaction records of applications B and C all appear together.

■ Although the records for application C begin to appear in the transaction log
before those for application B, the commit for application B (BT3) appears in the
transaction log before the commit for application C (CT3). As a result, the records
for application B are returned to the XLA application ahead of those for
application C.

■ The application B update to table X (BT1) is not presented because XLA is not set
up to detect changes to table X.

■ The application A updates to table Z (AT1 and AT2) are never presented because it
did not commit and was rolled back (AT3).

About XLA and materialized views
You can use XLA to track changes to both tables and materialized views. A
materialized view provides a single source from which you can track changes to
selected rows and columns in multiple detail tables. Without a materialized view, the
XLA application would have to monitor and filter the update records from all of the
detail tables, including records reflecting updates to rows and columns of no interest
to the application.

..........................
Transaction Log

Oldest NewestCT1 BT2 AT2 CT3CT2 AT1 AT3

BT2 BT3 CT2CT1 CT3

XLA Application

BT1 BT3
..........................

XLA concepts

5-4 Oracle TimesTen In-Memory Database C Developer's Guide

In general, there are no operational differences between the XLA mechanisms used to
track changes to a table or a materialized view. However, for asynchronous
materialized views, be aware that the order of XLA notifications for an asynchronous
materialized view is not necessarily the same as it would be for the associated detail
tables, or the same as it would be for a synchronous materialized view. For example, if
there are two inserts to a detail table, they may be done in the opposite order in the
asynchronous materialized view. Furthermore, updates may be treated as a delete
followed by an insert. Also, multiple operations, such as multiple inserts or multiple
deletes, may be combined. Applications that depend on ordering should not use
asynchronous materialized views.

For more information about materialized views, see the following:

■ "CREATE MATERIALIZED VIEW" in Oracle TimesTen In-Memory Database SQL
Reference

■ "Understanding materialized views" in Oracle TimesTen In-Memory Database
Operations Guide

About XLA bookmarks
Each reader of a persistent transaction log uses a bookmark to maintain its position in
the log update stream. Each bookmark consists of two pointers that track update
records in the transaction log by using log record identifiers:

■ An Initial Read log record identifier points to the most recently acknowledged
transaction log record. Initial Read log record identifiers are stored in the database,
so they are persistent across database connections, shutdowns, and failures.

■ A Current Read log record identifier points to the record currently being read from
the transaction log.

The rest of this section covers the following:

■ Creating or reusing a bookmark

■ How bookmarks work

■ Replicated bookmarks

Creating or reusing a bookmark
As described in "Initializing XLA and obtaining an XLA handle" on page 5-10, when
you call the ttXlaPersistOpen function to initialize a persistent XLA handle, you
include a tag parameter to identify either a new bookmark or one that exists in the
system, and an options parameter to specify whether it is a new non-replicated
bookmark, a new replicated bookmark, or an existing (reused) bookmark. At this time,
the Initial Read log record identifier associated with the bookmark is read from the
database and cached in the persistent XLA handle (ttXlaHandle_h). It designates
the start position of the reader in the transaction log.

How bookmarks work
When an application first initializes XLA and obtains an XLA handle, its Current Read
log record identifier and Initial Read log record identifier both point to the last record
written to the database, as shown in Figure 5–2 that follows.

XLA concepts

XLA and TimesTen Event Management 5-5

Figure 5–2 Log record indicator positions upon initializing a persistent XLA handle

As described in "Retrieving update records from the transaction log" on page 5-12, use
the ttXlaNextUpdate or ttXlaNextUpdateWait function to return a batch of
records for committed transactions from the transaction log in the order in which they
were committed. Each call to ttXlaNextUpdate resets the Current Read log record
identifier of the bookmark to the last record read, as shown in Figure 5–3. The Current
Read log record identifier marks the start position for the next call to
ttXlaNextUpdate.

Figure 5–3 Records retrieved by ttXlaNextUpdate

You can use the ttXlaGetLSN and ttXlaSetLSN functions to reread records, as
described in "Changing the location of a bookmark" on page 5-37. However, calling the
ttXlaAcknowledge function permanently resets the Initial Read log record identifier
of the bookmark to its Current Read log record identifier, as shown in Figure 5–4. After
you have called the ttXlaAcknowledge function to reset the Initial Read log record
identifier, all previously read transaction records are flagged for purging by TimesTen.
Once the Initial Read log record identifier is reset, you cannot use ttXlaSetLSN to go
back and reread any of the previously read transactions.

Figure 5–4 ttXlaAcknowledge resets bookmark

Note: A ttXlaAcknowledge call will reset the bookmark even if
there are no relevant update records to acknowledge. This may be
useful in managing transaction log space, but should be balanced
against the expense of the operation. Be aware that XLA purges
transaction logs a file at a time. Refer to "ttXlaAcknowledge" on
page 9-7 for details on how the operation works.

Initial Read log record identifier
 Current Read log record identifier

Transaction Log
.......................... Oldest Newest FT 1 FT 2 FT 3 QT 4 QT 1 QT 2 QT 3 ZT 1 ZT 2 ZT 3 XT 1 ZT 4 ZT 5 XT 2 AT 1

Initial Read log record identifier Current Read log record identifier

Transaction Log

Oldest Newest AT 1 AT 2 AT 3 AT 4 BT 1 BT 2 BT 3

BT 1 BT 2 AT 1 BT 3 AT 2 AT 3 AT 4

Reader
Records retrieved from the
log by t tXlaNextUpdate()

CT 1 CT 2 CT 3 DT 1 CT 4 CT 5 DT 2 DT 3 ZT 4 ZT 5 XT 2

..........................

Transaction Log

Oldest Newest AT 1 AT 2 AT 3 AT 4 BT 1 BT 2 BT 3

BT 1 BT 2 AT 1 BT 3 AT 2 AT 3 AT 4

Reader

 Records flagged for purging

CT 1 CT 2 CT 3 DT 1 CT 4 CT 5 DT 2 DT 3

Initial Read log record identifier
 Current Read log record identifier

ttXlaAcknowledge()

XLA concepts

5-6 Oracle TimesTen In-Memory Database C Developer's Guide

The number of bookmarks created in a database is limited to 64. Each bookmark can
be associated with only one active persistent connection at a time. However, a
bookmark over its lifetime may be associated with many connections. An application
can open a persistent connection, create a new bookmark, associate the bookmark with
the connection, read a few records using the bookmark, disconnect from the database,
reconnect to the database, create a new persistent connection, associate this new
connection with the bookmark, and continue reading persistent transaction log records
from where the old connection stopped.

Replicated bookmarks
If you are using an active standby pair replication scheme, you have the option of
using replicated bookmarks according to the options settings in your
ttXlaPersistOpen calls. For a replicated bookmark, operations on the bookmark
are replicated to the standby database as appropriate. This allows more efficient
recovery of your bookmark positions in the event of failover. Reading resumes from
the stream of XLA records close to the point at which they left off before the
switchover to the new active store. Without replicated bookmarks, reading must go
through numerous duplicate records that were returned on the old active store.

You can only read and acknowledge a replicated bookmark in the active database.
Each time you acknowledge a replicated bookmark, the acknowledge operation is
asynchronously replicated to the standby database.

Be aware of the following usage notes:

■ The position of the bookmark in the standby database will be very close to that of
the bookmark in the active database; however, because the replication of
acknowledge operations is asynchronous, you may see a small window of
duplicate updates in the event of a failover, depending on how often acknowledge
operations are performed.

■ It is recommended that you close and reopen all bookmarks on a database after it
changes from standby to active status, using the ttXlaClose and
ttXlaPersistOpen functions. The state of a replicated bookmark on a standby
database does change during normal XLA processing, as the replication agent
automatically repositions bookmarks as appropriate on standby databases. If you
attempt to use a bookmark that was open before the database changed to active
status, you will receive an error indicating that the state of the bookmark was reset
and that it has been repositioned. While it is permissible to continue reading from
the repositioned bookmark in this scenario, you can avoid the error by closing and
reopening bookmarks.

■ If replicated bookmarks exist at the time you enable the active standby pair
scheme, the bookmarks will automatically be added to the replication scheme.

■ It is permissible to drop the active standby pair scheme while replicated
bookmarks exist. The bookmarks will cease to be replicated at that point.

■ You cannot delete replicated bookmarks as long as the replication agent is
running.

About XLA data types
XLA data types supported by TimesTen are the same as previous data types when an
equivalent data type existed before TimesTen release 7.0. Thus XLA applications that
were written before release 7.0 should continue to work without code changes. If you
change an XLA application that was written before release 7.0 so that it uses new data
types, then you must also modify it to support the new data types.

XLA concepts

XLA and TimesTen Event Management 5-7

Table 5–1 shows the data type mapping between internal SQL data types and XLA
data types before release 7.0 and since release 7.0. For more information about
TimesTen data types, see "Data Types" in Oracle TimesTen In-Memory Database SQL
Reference.

XLA offers functions to convert between internal SQL data types and external
programmatic data types. For example, you can use ttXlaNumberToCString to
convert NUMBER columns to character strings. XLA data type conversion functions
include the following:

■ ttXlaDateToODBCCType

■ ttXlaDecimalToCString

■ ttXlaNumberToCString

Table 5–1 XLA data type mapping

Internal SQL data type
XLA data type before
Release 7.0

XLA data type since
Release 7.0

TT_CHAR SQL_CHAR TTXLA_CHAR_TT

TT_VARCHAR SQL_VARCHAR TTXLA_VARCHAR_TT

TT_NCHAR SQL_WCHAR TTXLA_NCHAR_TT

TT_NVARCHAR SQL_WVARCHAR TTXLA_NVARCHAR_TT

CHAR - TTXLA_CHAR

NCHAR - TTXLA_NCHAR

VARCHAR2 - TTXLA_VARCHAR

NVARCHAR2 - TTXLA_NVARCHAR

TT_TINYINT SQL_TINYINT TTXLA_TINYINT

TT_SMALLINT SQL_SMALLINT TTXLA_SMALLINT

TT_INTEGER SQL_INTEGER TTXLA_INTEGER

TT_BIGINT SQL_BIGINT TTXLA_BIGINT

BINARY_FLOAT SQL_REAL TTXLA_BINARY_FLOAT

BINARY_DOUBLE SQL_DOUBLE TTXLA_BINARY_DOUBLE

TT_DECIMAL SQL_DECIMAL TTXLA_DECIMAL_TT

NUMBER - TTXLA_NUMBER

NUMBER(p,s) - TTXLA_NUMBER

FLOAT - TTXLA_NUMBER

TT_TIME SQL_TIME TTXLA_TIME

TT_DATE SQL_DATE TTXLA_DATE_TT

TT_TIMESTAMP SQL_TIMESTAMP TTXLA_TIMESTAMP_TT

DATE - TTXLA_DATE

TIMESTAMP - TTXLA_TIMESTAMP

TT_BINARY SQL_BINARY TTXLA_BINARY

TT_VARBINARY SQL_VARBINARY TTXLA_VARBINARY

ROWID - TTXLA_ROWID

XLA concepts

5-8 Oracle TimesTen In-Memory Database C Developer's Guide

■ ttXlaNumberToDouble

■ ttXlaNumberToBigInt

■ ttXlaNumberToInt

■ ttXlaNumberToSmallInt

■ ttXlaNumberToTinyInt

■ ttXlaNumberToUInt

■ ttXlaOraDateToODBCTimeStamp

■ ttXlaOraTimeStampToODBCTimeStamp

■ ttXlaRowidToCString

■ ttXlaTimeToODBCCType

■ ttXlaTimeStampToODBCCType

Access control impact on XLA
"Considering TimesTen features for access control" on page 2-30 provides a brief
overview of how TimesTen access control affects operations in the database. Access
control includes impact on XLA, as follows:

■ Any XLA functionality requires the system privilege XLA. This includes:

– Connecting to TimesTen as an XLA reader, such as by the
ttXlaPersistOpen C function.

– Executing any other XLA-related TimesTen C functions. These are
documented in Chapter 9, "XLA Reference".

– Executing any XLA-related TimesTen built-in procedures. The procedures
ttXlaBookmarkCreate, ttXlaBookmarkDelete, ttXlaSubscribe, and
ttXlaUnsubscribe are documented in "Built-In Procedures" in Oracle
TimesTen In-Memory Database Reference.

■ A user with the XLA privilege has capabilities equivalent to the SELECT ANY
TABLE and SELECT ANY SEQUENCE system privileges.

■ A user with the XLA privilege can capture DDL statement records that occur in the
database. Note that as a result, the user can obtain information about database
objects that he or she has not otherwise been granted access to.

XLA demo
TimesTen provides the xlaSimple demo showing how to use many of the XLA
functions described in this chapter. It is located in the
quickstart/sample_code/odbc/xla directory:

See "About the TimesTen C demos" on page 1-5 for an overview of TimesTen demo
programs for C developers. Refer to install_dir/quickstart.html for details.
The README file in the odbc directory contains instructions for building and running
xlaSimple, among others.

Most of this chapter, including the sample code shown in "Writing an XLA
event-handler application" starting immediately below, is based on the xlaSimple
demo. For this demo, a table MYDATA has been created in the APPUSER schema. While
you are logged in as APPUSER, you will be making updates to the table. While you are
logged in as XLAUSER, the xlaSimple demo reports on the updates.

Writing an XLA event-handler application

XLA and TimesTen Event Management 5-9

To run the demo, execute xlaSimple at one command prompt. You will be prompted
for the password of XLAUSER, which is specified when the sample database is created.
Start ttIsql at a separate command prompt, connecting to the TimesTen sample
database as APPUSER. Again, you will be prompted for a password that is specified
when the sample database is created.

At the ttIsql command prompt you can enter DML statements to alter the table.
Then you can view the XLA output in the xlaSimple window.

Writing an XLA event-handler application
This section describes the general procedures for writing an XLA application that
detects and reports changes to selected tables in a database. With the possible
exception of "Inspecting column data" on page 5-17, the procedures described in this
section are applicable to most XLA applications.

The following procedures are described:

■ Obtaining a database connection handle

■ Initializing XLA and obtaining an XLA handle

■ Specifying which tables to monitor for updates

■ Retrieving update records from the transaction log

■ Inspecting record headers and locating row addresses

■ Inspecting column data

■ Handling XLA errors

■ Dropping a table that has an XLA bookmark

■ Deleting bookmarks

■ Terminating an XLA application

The example code in this section is based on the xlaSimple demo application.

XLA functions mentioned here are documented in Chapter 9, "XLA Reference".

Obtaining a database connection handle
As with every ODBC application, an XLA application must initialize ODBC, obtain an
environment handle (henv), and obtain a connection handle (hdbc) to communicate
with the specific database.

Initialize the environment and connection handles:

SQLHENV henv = SQL_NULL_HENV;
SQLHDBC hdbc = SQL_NULL_HDBC;

Important: In addition to #include files noted in "TimesTen
#include files" on page 2-6, an XLA application must include
tt_xla.h.

Note: To simplify the code examples, routine error checking code for
each function call has been omitted. See "Handling XLA errors" on
page 5-27 for information on error handling.

Writing an XLA event-handler application

5-10 Oracle TimesTen In-Memory Database C Developer's Guide

Pass the address of henv to the SQLAllocEnv ODBC function to allocate an
environment handle:

rc = SQLAllocEnv(&henv);

Pass the address of hdbc to the SQLAllocConnect ODBC function to allocate a
connection handle for the database:

rc = SQLAllocConnect(henv, &hdbc);

Call the SQLDriverConnect ODBC function to connect to the database specified by
the connection string (connStr), which in this example is passed from the command
line:

static char connstr[CONN_STR_LEN];
...
rc = SQLDriverConnect(hdbc, NULL, (SQLCHAR*)connstr, SQL_NTS, NULL, 0,
 NULL, SQL_DRIVER_COMPLETE);

Call the SQLSetConnectOption ODBC function to turn autocommit off:

rc = SQLSetConnectOption(hdbc, SQL_AUTOCOMMIT, SQL_AUTOCOMMIT_OFF);

Initializing XLA and obtaining an XLA handle
After initializing ODBC and obtaining an environment and connection handle as
described in "Obtaining a database connection handle" on page 5-9, you can initialize
XLA and obtain an XLA handle to access the transaction log. Create only one XLA
handle per ODBC connection. If your application uses multiple XLA reader threads,
create a separate XLA handle and ODBC connection for each thread.

This section describes how to initialize XLA in persistent mode, which is the
recommended mode.

Before initializing XLA, initialize a bookmark. Then initialize an XLA handle as type
ttXlaHandle_h:

unsigned char bookmarkName [32];
...
strcpy((char*)bookmarkName, "xlaSimple");
...
ttXlaHandle_h xla_handle = NULL;

Pass bookmarkName and the address of xla_handle to the ttXlaPersistOpen
function to obtain an XLA handle:

rc = ttXlaPersistOpen(hdbc, bookmarkName, XLACREAT, &xla_handle);

The XLACREAT option is used to create a new non-replicated bookmark. Alternatively,
use the XLAREPL option to create a replicated bookmark. In either case, the operation
will fail if the bookmark already exists.

To use a bookmark that already exists, call ttXlaPersistOpen with the XLAREUSE
option, as shown in the following example.

Note: After an ODBC connection handle is opened for use by an
XLA application, the ODBC handle cannot be used for ODBC
operations until the corresponding XLA handle is closed by calling
ttXlaClose.

Writing an XLA event-handler application

XLA and TimesTen Event Management 5-11

#include <tt_errCode.h> /* TimesTen Native Error codes */
...
 if (native_error == 907) { /* tt_ErrKeyExists */
 rc = ttXlaPersistOpen(hdbc, bookmarkName, XLAREUSE, &xla_handle);
 ...
 }

If ttXlaPersistOpen is given invalid parameters, or the application was unable to
allocate memory for the handle, the return code will be SQL_INVALID_HANDLE. In
this situation, ttXlaError cannot be used to detect this or any further errors.

If ttXlaPersistOpen fails but still creates a handle, the handle must be closed to
prevent memory leaks.

Specifying which tables to monitor for updates
After initializing XLA and obtaining an XLA handle, as described in "Initializing XLA
and obtaining an XLA handle" on page 5-10, you can specify which tables or
materialized views you want to monitor for update events.

You can determine which tables a bookmark is subscribed to by querying the
SYS.XLASUBSCRIPTIONS table. You can also use SYS.XLASUBSCRIPTIONS to
determine which bookmarks have subscribed to a specific table.

The ttXlaNextUpdate and ttXlaNextUpdateWait functions retrieve XLA records
associated with DDL events. DDL XLA records are available to any XLA bookmark.
DDL events include CREATAB, DROPTAB, CREAIND, DROPIND, CREATVIEW,
DROPVIEW, CREATSEQ, DROPSEQ, CREATSYN, DROPSYN, ADDCOLS, DRPCOLS,
TRUNCATE, SETTBLI, and SETCOLI transactions.

The ttXlaTableStatus function indicates that DML records associated with the
specified table should be monitored by the current bookmark. Or it determines
whether the current bookmark is already monitoring DML records associated with the
table.

Call the ttXlaTableByName function to obtain both the system and user identifiers
for a named table or materialized view. Then call the ttXlaTableStatus function to
enable XLA to monitor changes to the table or materialized view.

Example 5–2 Specifying a table to monitor for updates

This example tracks changes to the MYDATA table:

#define TABLE_OWNER "APPUSER"
#define TABLE_NAME "MYDATA"
...
SQLUBIGINT SYSTEM_TABLE_ID = 0;
...
SQLUBIGINT userID;

rc = ttXlaTableByName(xla_handle, TABLE_OWNER, TABLE_NAME,
 &SYSTEM_TABLE_ID, &userID);

Note: When an XLA handle is initially created, TimesTen configures
it for the same version as the TimesTen release to which the
application is linked. If you must interoperate with earlier XLA
versions, you can use the ttXlaGetVersion and
ttXlaSetVersion functions.

Writing an XLA event-handler application

5-12 Oracle TimesTen In-Memory Database C Developer's Guide

When you have the table identifiers, you can use the ttXlaTableStatus function to
enable XLA update tracking to detect changes to the MYDATA table. Setting the
newstatus parameter to a nonzero value results in XLA tracking changes made to
the specified table:

SQLINTEGER oldstatus;
SQLINTEGER newstatus = 1;
...
rc = ttXlaTableStatus(xla_handle, SYSTEM_TABLE_ID, 0,
 &oldstatus, &newstatus);

The oldstatus parameter is output to indicate the status of the table at the time of
the call.

At any time, you can use ttXlaTableStatus to return the current XLA status of a
table by leaving newstatus null and returning only oldstatus. For example:

rc = ttXlaTableStatus(xla_handle, SYSTEM_TABLE_ID, 0,
 &oldstatus, NULL);
...
if (oldstatus != 0)
 printf("XLA is currently tracking changes to table %s.%s\n",
 TABLE_OWNER, TABLE_NAME);
else
 printf("XLA is not tracking changes to table %s.%s\n",
 TABLE_OWNER, TABLE_NAME);

Retrieving update records from the transaction log
Once you have specified which tables to monitor for updates, you can call the
ttXlaNextUpdate or ttXlaNextUpdateWait function to return a batch of records
from the transaction log. Only records for committed transactions are returned. They
are returned in the order in which they were committed. You must periodically call the
ttXlaAcknowledge function to acknowledge receipt of the transactions so that XLA
can determine which records are no longer needed and can be purged from the
transaction log. These functions impact the position of the application's bookmark in
the transaction log, as described in "How bookmarks work" on page 5-4.

Each update record in a transaction returned by ttXlaNextUpdate begins with an
update header described by the ttXlaUpdateDesc_t structure. This update header
contains a flag indicating if the record is the first in the transaction (TT_UPDFIRST) or
the last commit record (TT_UPDCOMMIT). The update header also identifies the table
affected by the update. Following the update header are zero to two rows of data that
describe the update made to that table in the database.

Figure 5–5 that follows shows a call to ttXlaNextUpdate that returns a transaction
consisting of four update records from the transaction log. Receipt of the returned
transaction is acknowledged by calling ttXlaAcknowledge, which resets the
bookmark.

Note: The ttXlaAcknowledge function is an expensive operation
and should be used only as necessary.

Note: This example is simplified for clarity. An actual XLA
application would likely read records for multiple transactions before
calling ttXlaAcknowledge.

Writing an XLA event-handler application

XLA and TimesTen Event Management 5-13

Figure 5–5 Update records

Example 5–3 Retrieving update records from the transaction log

The xlaSimple demo continues to monitor our table for updates until stopped by the
user.

Before calling ttXlaNextUpdateWait, the example initializes a pointer to the buffer
to hold the returned ttXlaUpdateDesc_t records (arry) and a variable to hold the
actual number of returned records (records). Because the example calls
ttXlaNextUpdateWait, it also specifies the number of seconds to wait
(FETCH_WAIT_SECS) if no records are found in the transaction log buffer.

Next, call ttXlaNextUpdateWait, passing these values to obtain a batch of
ttXlaUpdateDesc_t records in arry. Then process each record in arry by passing
it to the HandleChange() function described in Example 5–4 on page 5-16. After all
records are processed, call ttXlaAcknowledge to reset the bookmark position.

#define FETCH_WAIT_SECS 5
...
SQLINTEGER records;
ttXlaUpdateDesc_t** arry;
int j;

while (!StopRequested()) {

 /* Get a batch of update records */
 rc = ttXlaNextUpdateWait(xla_handle, &arry, 100,
 &records, FETCH_WAIT_SECS);
 if (rc != SQL_SUCCESS {
 /* See "Handling XLA errors" on page 5-27 */
 }

/* Process the records */
for(j=0; j < records; j++){
 ttXlaUpdateDesc_t* p;
 p = arry[j];
 HandleChange(p); /* Described in the next section */
}

 /* After each batch, Acknowledge updates to reset bookmark.*/
 rc = ttXlaAcknowledge(xla_handle);
 if (rc != SQL_SUCCESS {
 /* See "Handling XLA errors" on page 5-27 */
 }
} /* end while !StopRequested() */

The actual number of records returned by ttXlaNextUpdate or
ttXlaNextUpdateWait, as indicated by the nreturned output parameter of those

Update
Header
Data

Update
Header
Data

Update
Header
Data

Update
Header
Data

Update Records for a Transaction

TT_UPDFIRST TT_UPDCOMMIT

Transaction Log

ttXlaNextUpdate
ttXlaAcknowledge

Writing an XLA event-handler application

5-14 Oracle TimesTen In-Memory Database C Developer's Guide

functions, may be less than the value of the maxrecords parameter. Figure 5–6 shows
an example where maxrecords is 10, the transaction log contains transaction AT that
is made up of seven records, and transaction BT that is made up of three records. In
this case, both transactions are returned in the same batch and both maxrecords and
nreturned values are 10. However, the next three transactions in the log are CT with
11 records, DT with two records, and ET with two records. Because the commit record
for the DT transaction appears before the CT commit record, the next call to
ttXlaNextUpdate returns the two records for the DT transaction and the value of
nreturned is 2. In the next call to ttXlaNextUpdate, XLA detects that the total
records for the CT transaction exceeds maxrecords, so it returns the records for this
transaction in two batches. The first batch contains the first 10 records for CT
(nreturned = 10). The second batch contains the last CT record and the two records
for the ET transaction, assuming no commit record for a transaction following ET is
detected within the next seven records.

See "ttXlaNextUpdate" on page 9-32 and "ttXlaNextUpdateWait" on page 9-34 for
details of the parameters of these functions.

Figure 5–6 Records retrieved when maxrecords=10

XLA reads records from either a memory buffer or transaction log files on disk, as
described in "How XLA reads records from the transaction log" on page 5-2. To
minimize latency, records from the memory buffer are returned as soon as they are
available, while records not in the buffer are returned only if the buffer is empty. This
design allows XLA applications to see changes as soon as the changes are made and
with minimal latency. The trade-off is that there may be times when fewer changes are
returned than the number requested by the ttXlaNextUpdate or
ttXlaNextUpdateWait maxrecords parameter.

Curren t Read

Transaction Log

AT1 AT2 AT3 AT4B T1 B T2 B T3

‘nreturned ’ = 1 0

AT5 AT6 AT7 CT1 CT3 CT4 C T5DT1 CT2 DT2 CT6 CT7 CT8 CT9 CT10

‘m axrecords’ records = 10

B T1 B T2 AT1BT3 AT 2 AT3 AT4 AT5 AT6 AT 7

‘n returned ’ = 2

DT1 DT 2

CT11 ET1 ET2

C T1 C T2 CT4CT3 CT5 C T6 CT7 CT8 CT9

‘n retu rned’ = 10

Initial Read Current Read

Current Read

First call to
ttXlaNextUpdate() returns

Second call to ttXlaNextUpdate()
returns DT transaction

Third call to ttXlaNextUpdate()
returns first 10 records of the

CT10

Current Read

C T11 ET1 ET2

‘n retu rned’ = 3

Fourth call to t tXlaNextUpdate()
returns the last record of the

both AT and BT transact ions

CT transaction

CT transaction and the
ET transaction

log record identifier log record identifier

log record identifier

log record identifier

log record identifier

Writing an XLA event-handler application

XLA and TimesTen Event Management 5-15

Inspecting record headers and locating row addresses
Now that there is an array of update records where the type of operation each record
represents is known, the returned row data can be inspected.

Each record returned by the ttXlaNextUpdate or ttXlaNextUpdateWait function
begins with an ttXlaUpdateDesc_t header that describes the following:

■ The table on which the operation was performed

■ Whether the record is the first or last (commit) record in the transaction

■ The type of operation it represents

■ The length of the returned row data, if any

■ Which columns in the row were updated, if any

Figure 5–7 shows one of the update records in the transaction log

Figure 5–7 Address of row data returned in an XLA update record

The ttXlaUpdateDesc_t header has a fixed length and, depending on the type of
operation, is followed by zero to two rows (or tuples) from the database. You can
locate the address of the first returned row by obtaining the address of the
ttXlaUpdateDesc_t header and adding it to sizeof(ttXlaUpdateDesc_t):

tup1 = (void*) ((char*) ttXlaUpdateDesc_t + sizeof(ttXlaUpdateDesc_t));

This is shown in Example 5–4 below.

The ttXlaUpdateDesc_t ->type field describes the type of SQL operation that
generated the update. Transaction records of type UPDATETTUP describe UPDATE
operations, so they return two rows to report the row data before and after the update.
You can locate the address of the second returned row that holds the value after the
update by adding the address of the first row in the record to its length:

if (ttXlaUpdateDesc_t->type == UPDATETUP) {
 tup2 = (void*) ((char*) tup1 + ttXlaUpdateDesc_t->tuple1);
}

Note: Some XLA applications may improve performance by making
the "fetch" and "process record" procedures asynchronous. For
example, you can create one thread to fetch and store the records and
one or more other threads to process the stored records.

....

First Transaction
Update Record

Transaction
Commit Record

....

Update Header

Row
Data

Address of 'tuple1' row

(ttXlaUpdateDesc_t)

Tuple2

Tuple1
Address of 'tuple2' row (UPDATETTUP only)

Writing an XLA event-handler application

5-16 Oracle TimesTen In-Memory Database C Developer's Guide

This is also shown in Example 5–4.

Example 5–4 Inspecting record headers for SQL operation type

This example passes each record returned by the ttXlaNextUpdateWait function to
a HandleChange() function, which determines whether the record is related to an
INSERT, UPDATE, or CREATE VIEW operation. To keep this example simple, all other
operations are ignored.

The HandleChange() function handles each type of SQL operation differently before
calling the PrintColValues() function described in Example 5–13 on page 5-24.

void HandleChange(ttXlaUpdateDesc_t* xlaP)
{
 void* tup1;
 void* tup2;

 /* First confirm that the XLA update is for the table we care about. */
 if (xlaP->sysTableID != SYSTEM_TABLE_ID)
 return ;

 /* OK, it's for the table we're monitoring. */

 /* The last record in the ttXlaUpdateDesc_t record is the "tuple2"
 * field. Immediately following this field is the first XLA record
 * "row".
 */

 tup1 = (void*) ((char*) xlaP + sizeof(ttXlaUpdateDesc_t));

 switch(xlaP->type) {

 case INSERTTUP:
 printf("Inserted new row:\n");
 PrintColValues(tup1);
 break;

 case UPDATETUP:

 /* If this is an update ttXlaUpdateDesc_t, then following that is
 * the second XLA record "row".
 */

 tup2 = (void*) ((char*) tup1 + xlaP->tuple1);
 printf("Updated row:\n");
 PrintColValues(tup1);
 printf("To:\n");
 PrintColValues(tup2);
 break;

 case DELETETUP:
 printf("Deleted row:\n");
 PrintColValues(tup1);
 break;

 default:
 /* Ignore any XLA records that are not for inserts/update/delete SQL ops. */
 break;

 } /* switch (xlaP->type) */
}

Writing an XLA event-handler application

XLA and TimesTen Event Management 5-17

Inspecting column data
As described in "Inspecting record headers and locating row addresses" on page 5-15,
zero to two rows of data may be returned in an update record after the
ttXlaUpdateDesc_t structure. For each row, the first portion of the data is the
fixed-length data, which is followed by any variable-length data, as shown in
Figure 5–8.

Figure 5–8 Column offsets in a row returned in an XLA update record

The procedures for inspecting column data are described in the following sections:

■ Obtaining column descriptions

■ Reading fixed-length column data

■ Reading NOT INLINE variable-length column data

■ Null-terminating returned strings

■ Converting complex data types

■ Detecting null values

■ Putting it all together: a PrintColValues() function

Obtaining column descriptions
To read the column values from the returned row, you must first know the offset of
each column in that row. The column offsets and other column metadata can be
obtained for a particular table by calling the ttXlaGetColumnInfo function, which
returns a separate ttXlaColDesc_t structure for each column in the table. You
should call the ttXlaGetColumnInfo function as part of your initialization
procedure. This call was omitted from the discussion in "Initializing XLA and
obtaining an XLA handle" on page 5-10 for simplicity.

When calling ttXlaGetColumnInfo, specify a colinfo parameter to create a
pointer to a buffer to hold the list of returned ttXlaColDesc_t structures. Use the
maxcols parameter to define the size of the buffer.

Example 5–5 Using column descriptions

The sample code from the xlaSimple demo below guesses the maximum number of
returned columns (MAX_XLA_COLUMNS), which sets the size of the buffer
xla_column_defs to hold the returned ttXlaColDesc_t structures. An alternative
and more precise way to set the maxcols parameter would be to call the

....

First Transaction
Update Record

Transaction
Commit Record

....

Update Header

Variable Length Data

Column Offsets
 (ttXlaColDesc_t->offset + rowAddress)

Tuple

Address used to locate
variable-length data

Fixed Length Data
(ttXlaUpdateDesc_t)

Writing an XLA event-handler application

5-18 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaGetTableInfo function and use the value returned in ttXlaColDesc_t
->columns.

#define MAX_XLA_COLUMNS 128
...
SQLINTEGER ncols;
...
ttXlaColDesc_t xla_column_defs[MAX_XLA_COLUMNS];
...
rc = ttXlaGetColumnInfo(xla_handle, SYSTEM_TABLE_ID, userID,
 xla_column_defs, MAX_XLA_COLUMNS, &ncols);
 if (rc != SQL_SUCCESS {
 /* See "Handling XLA errors" on page 5-27 */
}

As shown in Figure 5–9, the ttXlaGetColumnInfo function produces the following
output:

■ A list, xla_column_defs, of ttXlaColDesc_t structures into the buffer
pointed to by the ttXlaGetColumnInfo colinfo parameter.

■ An nreturned value, ncols, that holds the actual number of columns returned
in the xla_column_defs buffer.

Figure 5–9 ttXlaColDesc_t structures returned by ttXlaGetColumnInfo

Each ttXlaColDesc_t structure returned by ttXlaGetColumnInfo includes an
offset value that describes the offset location of that column. How you use this offset
value to read the column data depends on whether the column contains fixed-length
data (such as CHAR, NCHAR, INTEGER, BINARY, DOUBLE, FLOAT, DATE, TIME,
TIMESTAMP, and so on) or variable-length data (such as VARCHAR, NVARCHAR, or
VARBINARY).

Reading fixed-length column data
For fixed-length column data, the address of a column is the offset value in the
ttXlaColDesc_t structure, plus the address of the row.

ttXlaColDesc_t[0] ttXlaColDesc_t[1] ttXlaColDesc_t[2] ttXlaColDesc_t[3] ttXlaColDesc_t[4] ttXlaColDesc_t[5]

Name Address CustNo Service TStamp Price

colName: 'Name'
sysColNum: 1
dataType: CHAR
offset:
etc...

colName: 'ADDRESS'
sysColNum: 2
dataType:VARCHAR2
offset:
etc...

colName: 'CUSTNO'
sysColNum: 3
dataType: NUMBER
offset:
etc...

colName: 'SERVICE'
sysColNum: 4
dataType: NCHAR
offset:
etc...

colName: 'TSTAMP'
sysColNum: 5
dataType: TIMESTAMP
offset:
etc...

MYDATA
Table

ttXlaGetColumnInfo (....colinfo) buffer

colName: 'PRICE'
sysColNum: 6
dataType: NUMBER
offset:
etc...

Writing an XLA event-handler application

XLA and TimesTen Event Management 5-19

Figure 5–10 Locating fixed-length data in a row

Example 5–6 Reading fixed-length column data

See Example 5–13 on page 5-24 for a complete working example of computations such
as those shown here.

The first column in the MYDATA table is of type CHAR. If you use the address of the
tup1 row obtained earlier in the HandleChange() function (Example 5–4 on
page 5-16) and the offset from the first ttXlaColDesc_t structure returned by the
ttXlaGetColumnInfo function (Example 5–5 on page 5-17), you can obtain the
value of the first column with computations such as the following:

char* Column1;

Column1 = ((unsigned char*) tup1 + xla_column_defs[0].offset);

The third column in the MYDATA table is of type INTEGER, so you can use the offset
from the third ttXlaColDesc_t structure to locate the value and recast it as an
integer using computations such as the following. The data is guaranteed to be aligned
properly.

int Column3;

Column3 = *((int*) ((unsigned char*) tup +
 xla_column_defs[2].offset));

The fourth column in the MYDATA table is of type NCHAR, so you can use the offset
from the fourth ttXlaColDesc_t structure to locate the value and recast it as a
SQLWCHAR type, with computations such as the following:

SQLWCHAR* Column4;

Column4 = (SQLWCHAR*) ((unsigned char*) tup +
 xla_column_defs[3].offset);

Unlike the column values obtained in the above examples, Column4 points to an array
of two-byte Unicode characters. You must iterate through each element in this array to
obtain the string, as shown for the SQL_WCHAR case in Example 5–13 on page 5-24.

Other fixed-length data types can be cast to their corresponding C types. Complex
fixed-length data types, such as DATE, TIME, and DECIMAL values, are stored in an
internal TimesTen format, but can be converted by applications to their corresponding
ODBC C value using the XLA conversion functions, as described in "Converting
complex data types" on page 5-22.

Reading NOT INLINE variable-length column data
For NOT INLINE variable-length data (VARCHAR, NVARCHAR, and VARBINARY), the
data located at ttXlaColDesc_t ->offset is a four-byte offset value that points to

Note: Strings returned by XLA are not null-terminated. See
"Null-terminating returned strings" on page 5-21.

Variable Length DataFixed Length Data

CHAR DataColumn1 = (void*) ((unsigned char*)
 tup1 + ttXlaColDesc_t[0].offset);

tup1

Writing an XLA event-handler application

5-20 Oracle TimesTen In-Memory Database C Developer's Guide

the location of the data in the variable-length portion of the returned row. By adding
the offset address to the offset value, you can obtain the address of the column data in
the variable-length portion of the row. The first n bytes (where n is 4 on 32-bit
platforms or 8 on 64-bit platforms) at this location is the length of the data, followed by
the actual data. For variable-length data, the ttXlaColDesc_t ->size value is the
maximum allowable column size. Figure 5–11 shows how to locate NOT INLINE
variable-length data in a row.

Figure 5–11 Locating NOT INLINE variable-length data in a row

Example 5–7 Reading NOT INLINE variable-length column data

See Example 5–13, "Complete PrintColValues() function" for a complete working
example of computations such as those shown here.

Continuing with our example, the second column in the returned row (tup1) is of
type VARCHAR. To locate the variable-length data in the row, first locate the value at
the column's ttXlaColDesc_t ->offset in the fixed-length portion of the row, as
shown in Figure 5–11 above. The value at this address is the four-byte offset of the data
in the variable-length portion of the row (VarOffset). Next, obtain a pointer to the
beginning of the variable-length column data (DataLength) by adding the
VarOffset offset value to the address of VarOffset. Assuming the operation is
performed on a 32-bit platform, the first four bytes at the DataLength location is the
length of the data. The next byte after DataLength is the beginning of the actual data
(Column2).

The sample code here assumes the operation is performed on a 32-bit platform, so
DataLength is initialized as a 32-bit type. On a 64-bit platform, DataLength must be
initialized as a 64-bit type and the Column2 data would appear 64 bits + 1 after the
offset address, DataLength.

void* VarOffset; /* offset of data */
long* DataLength; /* length of data */
char* Column2; /* pointer to data */

VarOffset = (void*) ((unsigned char*) tup1 +
 xla_column_defs[1].offset);
 /*
 * If column is out-of-line, pColVal points to an offset
 * else column is inline so pColVal points directly to the string length.
 */

 if (xla_column_defs[1].flags & TT_COLOUTOFLINE)
 DataLength = (long*)((char*)VarOffset + *((int*)VarOffset));
 else
 DataLength = (long*)VarOffset;
 Column2 = (char*)(DataLength+1);

Variable Length DataFixed Length Data

Data
Length VARCHAR Data

DataLength = (int*)((char*)VarOffset + *((int*)VarOffset))

tup1

VarOffset = (void*) ((unsigned char*)
 tup1+ ttXlaColDesc_t[1].offset);

Column2 = (char*)(DataLength + 1);

Writing an XLA event-handler application

XLA and TimesTen Event Management 5-21

VARBINARY types are handled in a manner similar to VARCHAR types. If Column2
were an NVARCHAR type, you could initialize it as a SQLWCHAR, get the value as shown
in the above VARCHAR case, then iterate through the Column2 array, as shown for the
NCHAR value, CharBuf, in Example 5–13 on page 5-24.

Null-terminating returned strings
Strings returned from record row data are not terminated with a null character. You
can null-terminate a string by copying it into a buffer and adding a null character, such
as '\0', after the last character in the string.

The procedures for null-terminating fixed-length and variable-length strings are
slightly different. The procedure for null-terminating fixed-length strings is described
in Example 5–8. Example 5–9 that follows describes the procedure for null-terminating
variable-length strings of a known size. Example 5–10 then describes the procedure for
strings of an unknown size.

Example 5–8 Null-terminating fixed-length strings

See Example 5–13 on page 5-24 for a complete working example of computations such
as those shown here.

To null-terminate the fixed-length CHAR(10) Column1 string returned in Example 5–6
on page 5-19, establish a buffer large enough to hold the string plus null character.
Next, obtain the size of the string from ttXlaColDesc_t ->size, copy the string
into the buffer, and null-terminate the end of the string, using computations such as
the following. You can now use the contents of the buffer. In this example, the string is
printed:

char buffer[10+1];
int size;

size = xla_column_defs[0].size;
memcpy(buffer, Column1, size);
buffer[size] = '\0';

printf(" Row %s is %s\n", ((unsigned char*) xla_column_defs[0].colName), buffer);

Null-terminating a variable-length string is similar to the procedure for fixed-length
strings, only the size of the string is the value located at the beginning of the
variable-length data offset, as described in "Reading NOT INLINE variable-length
column data" on page 5-19.

Example 5–9 Null-terminating variable-length strings of known size

(See Example 5–13 on page 5-24 for a complete working example of computations such
as those shown here.)

If the Column2 string obtained in Example 5–7 on page 5-20 is a VARCHAR(32),
establish a buffer large enough to hold the string plus null character. Use the value
located at the DataLength offset to determine the size of the string, using
computations such as the following:

char buffer[32+1];

memcpy(buffer, Column2, *DataLength);
buffer[*DataLength] = '\0';

printf(" Row %s is %s\n", ((unsigned char*) xla_column_defs[1].colName), buffer);

Writing an XLA event-handler application

5-22 Oracle TimesTen In-Memory Database C Developer's Guide

If you are writing general purpose code to read all data types, you cannot make any
assumptions about the size of a returned string. For strings of an unknown size,
statically allocate a buffer large enough to hold the majority of returned strings. If a
returned string is larger than the buffer, dynamically allocate the correct size buffer, as
shown in Example 5–10.

Example 5–10 Null-terminating variable-length strings of unknown size

If the Column2 string obtained in Example 5–7 on page 5-20 is of an unknown size,
you might statically allocate a buffer large enough to hold a string of up to 10000
characters. Then check that the DataLength value obtained at the beginning of the
variable-length data offset is less than the size of the buffer. If the string is larger than
the buffer, use malloc() to dynamically allocate the buffer to the correct size.

#define STACKBUFSIZE 10000
char VarStackBuf[STACKBUFSIZE];
char* buffer;

buffer = (*DataLength+1 <= STACKBUFSIZE) ? VarStackBuf :
 malloc(*DataLength+1);

memcpy(buffer,Column2,*DataLength);
buffer[*DataLength] = '\0';

printf(" Row %s is %s\n", ((unsigned char*) xla_column_defs[1].colName), buffer);
if (buffer != VarStackBuf) /* buffer was allocated */
 free(buffer);

Converting complex data types
Values for complex data types such as TT_DATE, TT_TIME, and TT_DECIMAL are
stored in an internal TimesTen format that can be converted into corresponding ODBC
C types using the XLA type conversion functions. Table 5–2 contains descriptions of
these conversion functions.

Table 5–2 XLA data type conversion functions

Function Converts

ttXlaDateToODBCCType Internal TT_DATE value to an ODBC C value.

ttXlaTimeToODBCCType Internal TT_TIME value to an ODBC C value.

ttXlaTimeStampToODBCCType Internal TT_TIMESTAMP value to an ODBC C
value.

ttXlaDecimalToCString Internal TT_DECIMAL value to a string value.

ttXlaDateToODBCCType Internal TTXLA_DATE_TT value to an ODBC
C value.

ttXlaDecimalToCString Internal TTXLA_DECIMAL_TT value to a
character string.

ttXlaNumberToBigInt Internal TTXLA_NUMBER value to a
TT_BIGINT value.

ttXlaNumberToCString Internal TTXLA_NUMBER value to a character
string.

ttXlaNumberToDouble Internal TTXLA_NUMBER value to a long
floating point number value.

ttXlaNumberToInt Internal TTXLA_NUMBER value to an integer.

Writing an XLA event-handler application

XLA and TimesTen Event Management 5-23

These conversion functions can be used on row data included in the
ttXlaUpdateDesc_t types: UPDATETUP, INSERTTUP and DELETETUP.

Example 5–11 Converting complex data types

(See Example 5–13 on page 5-24 for a complete working example of computations such
as those shown here.)

If you use the address of the tup1 row obtained earlier in the HandleChange()
function (Example 5–4 on page 5-16) and the offset from the fifth ttXlaColDesc_t
structure returned by the ttXlaGetColumnInfo function (Example 5–5 on
page 5-17), you can locate a column value of type TIMESTAMP. Use the
ttXlaTimeStampToODBCCType function to convert the column data from TimesTen
format and store the converted time value in an ODBC TIMESTAMP_STRUCT. You
could use code such as the following to print the values:

void* Column5;
TIMESTAMP_STRUCT timestamp;

Column5 = (void*) ((unsigned char*) tup1 +
 xla_column_defs[4].offset);

rc = ttXlaTimeStampToODBCCType(Column5, ×tamp);
 if (rc != SQL_SUCCESS) {
 /* See "Handling XLA errors" on page 5-27 */
 }
printf(" %s: %04d-%02d-%02d %02d:%02d:%02d.%06d\n",
 ((unsigned char*) xla_column_defs[i].colName),
 timestamp.year,timestamp.month, timestamp.day,
 timestamp.hour,timestamp.minute,timestamp.second,
 timestamp.fraction);

If you use the address of the tup1 row obtained earlier in the HandleChange()
function (Example 5–4) and the offset from the sixth ttXlaColDesc_t structure
returned by the ttXlaGetColumnInfo function (Example 5–5), you can locate a
column value of type DECIMAL. Use the ttXlaDecimalToCString function to
convert the column data from TimesTen decimal format to a string. You could use code
such as the following to print the values.

ttXlaNumberToSmallInt Internal TTXLA_NUMBER value to a
TT_SMALLINT value.

ttXlaNumberToTinyInt Internal TTXLA_NUMBER value to a
TT_TINYINT value.

ttXlaNumberToUInt Internal TTXLA_NUMBER value to an unsigned
integer.

ttXlaOraDateToODBCTimeStamp Internal TTXLA_DATE value to an ODBC
timestamp.

ttXlaOraTimeStampToODBCTimeStamp Internal TTXLA_TIMESTAMP value to an
ODBC timestamp.

ttXlaTimeToODBCCType Internal TTXLA_TIME value to an ODBC C
value.

ttXlaTimeStampToODBCCType Internal TTXLA_TIMESTAMP_TT value to an
ODBC C value.

Table 5–2 (Cont.) XLA data type conversion functions

Function Converts

Writing an XLA event-handler application

5-24 Oracle TimesTen In-Memory Database C Developer's Guide

char decimalData[50];

Column6 = (float*) ((unsigned char*) tup +
 xla_column_defs[5].offset);
precision = (short) (xla_column_defs[5].precision);
scale = (short) (xla_column_defs[5].scale);

rc = ttXlaDecimalToCString(Column6, (char*)&decimalData,
 precision, scale);
 if (rc != SQL_SUCCESS) {
 /* See "Handling XLA errors" on page 5-27 */
 }

printf(" %s: %s\n", ((unsigned char*) xla_column_defs[5].colName), decimalData);

Detecting null values
For columns that can have null values, ttXlaColDesc_t ->nullOffset points to a
null byte in the record. The nullOffset is 1 if the column is null, or 0 if it is not null.

To determine if a column value is null, first check if the nullOffset is 0, in which
case it is not a nullable value. If nullOffset is nullable, then check the value at the
nullOffset to see if it is 1 or 0.

Example 5–12 Deleting null values

Check whether Column6 is null as follows:

if (xla_column_defs[5].nullOffset != 0) {
 if (*((unsigned char*) tup +
 xla_column_defs[5].nullOffset) == 1) {
 printf("Column6 is NULL\n");
 }
}

Putting it all together: a PrintColValues() function
Example 5–13 shows a function that checks the ttXlaColDesc_t ->dataType of
each column to locate columns with a data type of CHAR, NCHAR, INTEGER,
TIMESTAMP, DECIMAL, and VARCHAR, then prints the values. This is just one possible
approach. Another option, for example, would be to check the ttXlaColDesc_t
->ColName values to locate specific columns by name.

The PrintColValues() function handles CHAR and VARCHAR strings up to 50 bytes
in length. NCHAR characters must belong to the ASCII character set.

Example 5–13 Complete PrintColValues() function

The function in this example first checks ttXlaColDesc_t ->nullOffset to see if
the column is null. Next it checks the ttXlaColDesc_t ->dataType field to
determine the data type for the column. For simple fixed-length data (CHAR, NCHAR,
and INTEGER), it casts the value located at ttXlaColDesc_t ->offset to the
appropriate C type. The complex data types, TIMESTAMP and DECIMAL, are converted
from their TimesTen formats to ODBC C values using the
ttXlaTimeStampToODBCCType and ttXlaDecimalToCString functions.

For variable-length data (VARCHAR), the function locates the data in the
variable-length portion of the row, as described in "Handling XLA errors" on
page 5-27.

Writing an XLA event-handler application

XLA and TimesTen Event Management 5-25

void PrintColValues(void* tup)
{

 SQLRETURN rc ; /* make these global?? */
 SQLINTEGER native_error;

 void* pColVal;
 char buffer[50+1]; /* No strings over 50 bytes */
 int i;

 for (i = 0; i < ncols; i++)
 {

 if (xla_column_defs[i].nullOffset != 0) { /* See if column is NULL */
 /* this means col could be NULL */
 if (*((unsigned char*) tup + xla_column_defs[i].nullOffset) == 1) {
 /* this means that value is SQL NULL */
 printf(" %s: NULL\n",
 ((unsigned char*) xla_column_defs[i].colName));
 continue; /* Skip rest and re-loop */
 }
 }

 /* Fixed-length data types: */
 /* For INTEGER, recast as int */

 if (xla_column_defs[i].dataType == TTXLA_INTEGER) {

 printf(" %s: %d\n",
 ((unsigned char*) xla_column_defs[i].colName),
 ((int) ((unsigned char*) tup + xla_column_defs[i].offset)));
 }

 /* For CHAR, just get value and null-terminate string */

 else if (xla_column_defs[i].dataType == TTXLA_CHAR_TT
 || xla_column_defs[i].dataType == TTXLA_CHAR) {

 pColVal = (void*) ((unsigned char*) tup + xla_column_defs[i].offset);

 memcpy(buffer, pColVal, xla_column_defs[i].size);
 buffer[xla_column_defs[i].size] = '\0';

 printf(" %s: %s\n", ((unsigned char*) xla_column_defs[i].colName), buffer);
 }

 /* For NCHAR, recast as SQLWCHAR.
 NCHAR strings must be parsed one character at a time */

 else if (xla_column_defs[i].dataType == TTXLA_NCHAR_TT
 || xla_column_defs[i].dataType == TTXLA_NCHAR) {
 SQLUINTEGER j;
 SQLWCHAR* CharBuf;

 CharBuf = (SQLWCHAR*) ((unsigned char*) tup + xla_column_defs[i].offset);

 printf(" %s: ", ((unsigned char*) xla_column_defs[i].colName));

 for (j = 0; j < xla_column_defs[i].size / 2; j++)
 {

Writing an XLA event-handler application

5-26 Oracle TimesTen In-Memory Database C Developer's Guide

 printf("%c", CharBuf[j]);
 }
 printf("\n");
 }
 /* Variable-length data types:
 For VARCHAR, locate value at its variable-length offset and null-terminate.
 VARBINARY types are handled in a similar manner.
 For NVARCHARs, initialize 'var_data' as a SQLWCHAR, get the value as shown
 below, then iterate through 'var_len' as shown for NCHAR above */

 else if (xla_column_defs[i].dataType == TTXLA_VARCHAR
 || xla_column_defs[i].dataType == TTXLA_VARCHAR_TT) {

 long* var_len;
 char* var_data;
 pColVal = (void*) ((unsigned char*) tup + xla_column_defs[i].offset);
 /*
 * If column is out-of-line, pColVal points to an offset
 * else column is inline so pColVal points directly to the string length.
 */
 if (xla_column_defs[i].flags & TT_COLOUTOFLINE)
 var_len = (long*)((char*)pColVal + *((int*)pColVal));
 else
 var_len = (long*)pColVal;

 var_data = (char*)(var_len+1);

 memcpy(buffer,var_data,*var_len);
 buffer[*var_len] = '\0';

 printf(" %s: %s\n", ((unsigned char*) xla_column_defs[i].colName), buffer);
 }
 /* Complex data types require conversion by the XLA conversion methods
 Read and convert a TimesTen TIMESTAMP value.
 DATE and TIME types are handled in a similar manner */

 else if (xla_column_defs[i].dataType == TTXLA_TIMESTAMP
 || xla_column_defs[i].dataType == TTXLA_TIMESTAMP_TT) {

 TIMESTAMP_STRUCT timestamp;
 char* convFunc;

 pColVal = (void*) ((unsigned char*) tup + xla_column_defs[i].offset);

 if (xla_column_defs[i].dataType == TTXLA_TIMESTAMP_TT) {
 rc = ttXlaTimeStampToODBCCType(pColVal, ×tamp);
 convFunc="ttXlaTimeStampToODBCCType";
 }
 else {
 rc = ttXlaOraTimeStampToODBCTimeStamp(pColVal, ×tamp);
 convFunc="ttXlaOraTimeStampToODBCTimeStamp";
 }

 if (rc != SQL_SUCCESS) {
 handleXLAerror (rc, xla_handle, err_buf, &native_error);
 fprintf(stderr, "%s() returns an error <%d>: %s",
 convFunc, rc, err_buf);
 TerminateGracefully(1);
 }

Writing an XLA event-handler application

XLA and TimesTen Event Management 5-27

 printf(" %s: %04d-%02d-%02d %02d:%02d:%02d.%06d\n",
 ((unsigned char*) xla_column_defs[i].colName),
 timestamp.year,timestamp.month, timestamp.day,
 timestamp.hour,timestamp.minute,timestamp.second,
 timestamp.fraction);
 }

 /* Read and convert a TimesTen DECIMAL value to a string. */

 else if (xla_column_defs[i].dataType == TTXLA_DECIMAL_TT) {

 char decimalData[50];
 short precision, scale;
 pColVal = (float*) ((unsigned char*) tup + xla_column_defs[i].offset);
 precision = (short) (xla_column_defs[i].precision);
 scale = (short) (xla_column_defs[i].scale);

 rc = ttXlaDecimalToCString(pColVal, (char*)&decimalData, precision, scale);
 if (rc != SQL_SUCCESS) {
 handleXLAerror (rc, xla_handle, err_buf, &native_error);
 fprintf(stderr, "ttXlaDecimalToCString() returns an error <%d>: %s",
 rc, err_buf);
 TerminateGracefully(1);
 }

 printf(" %s: %s\n", ((unsigned char*) xla_column_defs[i].colName),
 decimalData);
 }
 else if (xla_column_defs[i].dataType == TTXLA_NUMBER) {
 char numbuf[32];
 pColVal = (void*) ((unsigned char*) tup + xla_column_defs[i].offset);

 rc=ttXlaNumberToCString(xla_handle, pColVal, numbuf, sizeof(numbuf));
 if (rc != SQL_SUCCESS) {
 handleXLAerror (rc, xla_handle, err_buf, &native_error);
 fprintf(stderr, "ttXlaNumberToDouble() returns an error <%d>: %s",
 rc, err_buf);
 TerminateGracefully(1);
 }
 printf(" %s: %s\n", ((unsigned char*) xla_column_defs[i].colName), numbuf);
 }

 } /* End FOR loop */
}

Handling XLA errors
Each time you call an ODBC or XLA function, you must check the return code for any
errors. If the error is fatal, terminate the program as described in "Terminating an XLA
application" on page 5-31.

An error can be checked using either its error code (error number) or tt_Err string.
For the complete list of TimesTen error codes and error strings, see the
install_dir/include/tt_errCode.h file. For a description of each message, see
"List of errors and warnings" in Oracle TimesTen In-Memory Database Error Messages and
SNMP Traps.

If the return code from an XLA function is not SQL_SUCCESS, use the ttXlaError
function to retrieve XLA-specific errors on the XLA handle.

Writing an XLA event-handler application

5-28 Oracle TimesTen In-Memory Database C Developer's Guide

Also see "Checking for errors" on page 2-31.

Example 5–14 Checking the return code and calling the error-handling function

This example, after calling the XLA function ttXlaTableByName, checks to see if the
return code is SQL_SUCCESS. If not, it calls an XLA error-handling function followed
by a function to terminate the application. See "Terminating an XLA application" on
page 5-31.

rc = ttXlaTableByName(xla_handle, TABLE_OWNER, TABLE_NAME,
 &SYSTEM_TABLE_ID, &userID);
if (rc != SQL_SUCCESS) {
 handleXLAerror (rc, xla_handle, err_buf, &native_error);
 fprintf(stderr,
 "ttXlaTableByName() returns an error <%d>: %s", rc, err_buf);
 TerminateGracefully(1);
}

Your XLA error-handling function should repeatedly call ttXlaError until all XLA
errors are read from the error stack, proceeding until the return code from
ttXlaError is SQL_NO_DATA_FOUND. If you must reread the errors, you can call the
ttXlaErrorRestart function to reset the error stack pointer to the first error.

The error stack is cleared after a call to any XLA function other than ttXlaError or
ttXlaErrorRestart.

Depending on your application, you may be required to act on specific XLA errors,
including those shown in Table 5–3.

Note: In cases where ttXlaPersistOpen cannot create an XLA
handle, it returns the error code SQL_INVALID_HANDLE. Because no
XLA handle has been created, ttXlaError cannot be used to detect
this error. SQL_INVALID_HANDLE is returned only in cases where no
memory can be allocated or the parameters provided are invalid.

Table 5–3 XLA errors and codes

Error Code

tt_ErrDbAllocFailed 802 (transient)

tt_ErrCondLockConflict 6001 (transient)

tt_ErrDeadlockVictim 6002 (transient)

tt_ErrTimeoutVictim 6003 (transient)

tt_ErrPermSpaceExhausted 6220 (transient)

tt_ErrTempSpaceExhausted 6221 (transient)

tt_ErrBadXlaRecord 8024

tt_ErrXlaBookmarkUsed 8029

tt_ErrXlaLsnBad 8031

tt_ErrXlaNoSQL 8034

tt_ErrXlaNoLogging 8035

tt_ErrXlaParameter 8036

tt_ErrXlaTableDiff 8037

Writing an XLA event-handler application

XLA and TimesTen Event Management 5-29

Example 5–15 Calling the handleXLAerror() function

This example shows handleXLAerror(), the error function for the xlaSimple
demo program.

void handleXLAerror(SQLRETURN rc, ttXlaHandle_h xlaHandle,
 SQLCHAR* err_msg, SQLINTEGER* native_error)
{
 SQLINTEGER retLen;
 SQLINTEGER code;

 char* err_msg_ptr;

 /* initialize return codes */
 rc = SQL_ERROR;
 *native_error = -1;
 err_msg[0] = '\0';

 err_msg_ptr = (char*)err_msg;

 while (1)
 {
 int rc = ttXlaError(xlaHandle, &code, err_msg_ptr,
 ERR_BUF_LEN - (err_msg_ptr - (char*)err_msg), &retLen);
 if (rc == SQL_NO_DATA_FOUND)
 {
 break;
 }
 if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO) {
 sprintf(err_msg_ptr,
 "*** Error fetching error message via ttXlaError(); rc=<%d>.",rc) ;
 break;
 }
 rc = SQL_ERROR;
 *native_error = code ;
 /* append any other error messages */
 err_msg_ptr += retLen;
 }
}

Dropping a table that has an XLA bookmark
Before you can drop a table that is subscribed to by an XLA bookmark, you must
unsubscribe the table from the bookmark. There are several ways to unsubscribe a
table from a bookmark, depending on whether the application is connected to the
bookmark.

If persistent XLA applications are connected and using bookmarks that are tracking
the table to be dropped, then perform the following tasks.

tt_ErrXlaTableSystem 8038

tt_ErrXlaTupleMismatch 8046

tt_ErrXlaDedicatedConnection 8047

Table 5–3 (Cont.) XLA errors and codes

Error Code

Writing an XLA event-handler application

5-30 Oracle TimesTen In-Memory Database C Developer's Guide

1. Each persistent XLA application must call the ttXlaTableStatus function and
set the newstatus parameter to 0. This unsubscribes the table from the XLA
bookmark in use by the application.

2. Drop the table.

If persistent XLA applications are not connected and using bookmarks associated with
the table to be dropped, then perform the following tasks:

1. Query the SYS.XLASUBSCRIPTIONS system table to see which bookmarks have
subscribed to the table you want to drop.

2. Use the ttXlaUnsubscribe built-in procedure to unsubscribe the table from
each XLA bookmark with a subscription to the table.

3. Drop the table.

Deleting bookmarks also unsubscribes the table from the XLA bookmarks. See the next
section, "Deleting bookmarks".

Deleting bookmarks
You may want to delete bookmarks when you terminate an application or drop a table.
Use the ttXlaDeleteBookmark function to delete XLA bookmarks if the application
is connected and using the bookmarks.

As described in "About XLA bookmarks" on page 5-4, a bookmark may be reused by a
new connection after its previous connection has closed. The new connection can
resume reading from the transaction log from where the previous connection stopped.
Note the following:

■ If you delete the bookmark, subsequent checkpoint operations such as the ttCkpt
or ttCkptBlocking built-in procedure will free the disk space associated with
any unread update records in the transaction log.

■ If you do not delete the bookmark, when an XLA application connects and reuses
the bookmark, all unread update records that have accumulated since the program
terminated are read by the application. This is because the update records are
persistent in the TimesTen transaction log. However, the danger is that these
unread records can build up in the transaction log files and consume a lot of disk
space.

Notes:

■ You cannot delete replicated bookmarks while the replication
agent is running.

■ When you reuse a bookmark, you start with the Initial Read log
record identifier in the transaction log file. To ensure that a
connection that reuses a bookmark begins reading where the prior
connection left off, the prior connection should call
ttXlaAcknowledge to reset the bookmark position to the
currently accessed record before disconnecting.

■ Be aware that ttCkpt and ttCkptBlocking require ADMIN
privilege. TimesTen built-in procedures and any required
privileges are documented in "Built-In Procedures" in Oracle
TimesTen In-Memory Database Reference.

Writing an XLA event-handler application

XLA and TimesTen Event Management 5-31

Example 5–16 Deleting bookmarks

The InitHandler() function in the xlaSimple demo deletes the XLA bookmark
upon exit, as shown in the following example.

if (deleteBookmark) {
 ttXlaDeleteBookmark(xla_handle);
 if (rc != SQL_SUCCESS) {
 /* See "Handling XLA errors" on page 5-27 */
 }
 xla_handle = NULL; /* Deleting the bookmark has the */
 /* effect of disconnecting from XLA. */
}
/* Close the XLA connection as described in the next section,
"Terminating an XLA application". */

If the application is not connected and using the XLA bookmark, you can delete the
bookmark either of the following ways:

■ Close the bookmark and call the ttXlaBookmarkDelete built-in procedure.

■ Close the bookmark and use the ttIsql command xladeletebookmark.

Terminating an XLA application
When your XLA application has finished reading from the transaction log, you should
gracefully exit by rolling back uncommitted transactions and freeing all handles. Also
unsubscribe the tables and materialized views being monitored, unless your
application must capture updates that occur when it is not connected. You may or may
not want to delete the XLA bookmark when the program terminates, as described in
"Deleting bookmarks" on page 5-30.

Free your resources in reverse order of allocation. For each table and materialized view
tracked by XLA, call the ttXlaTableStatus function and set the newstatus
parameter to 0. This unsubscribes the table or materialized view from XLA. Next, call
ttXlaClose to release the XLA handle.

Call appropriate ODBC functions. Call SQLTransact with SQL_ROLLBACK to roll
back any uncommitted transaction. Next, call SQLDisconnect to close the connection
to TimesTen. Finally, call SQLFreeConnect and SQLFreeEnv to release the
connection handle (hdbc) and environment handle (henv) and to free the associated
memory.

Example 5–17 Terminating an XLA application

This example shows TerminateGracefully(), the XLA termination function in the
xlaSimple demo.

void TerminateGracefully(int status)
{

 SQLRETURN rc;
 SQLINTEGER native_error ;
 SQLINTEGER oldstatus;
 SQLINTEGER newstatus = 0;

 /* If the table has been subscribed to through XLA, unsubscribe it. */

 if (SYSTEM_TABLE_ID != 0) {
 rc = ttXlaTableStatus(xla_handle, SYSTEM_TABLE_ID, 0,
 &oldstatus, &newstatus);

Writing an XLA event-handler application

5-32 Oracle TimesTen In-Memory Database C Developer's Guide

 if (rc != SQL_SUCCESS) {
 handleXLAerror (rc, xla_handle, err_buf, &native_error);
 fprintf(stderr, "Error when unsubscribing from "TABLE_OWNER"."TABLE_NAME
 " table <%d>: %s", rc, err_buf);
 }
 SYSTEM_TABLE_ID = 0;
 }

 /* Close the XLA connection. */

 if (xla_handle != NULL) {
 rc = ttXlaClose(xla_handle);
 if (rc != SQL_SUCCESS) {
 fprintf(stderr, "Error when disconnecting from XLA:<%d>", rc);
 }
 xla_handle = NULL;
 }

 if (hstmt != SQL_NULL_HSTMT) {
 rc = SQLFreeStmt(hstmt, SQL_DROP);
 if (rc != SQL_SUCCESS) {
 handleError(rc, henv, hdbc, hstmt, err_buf, &native_error);
 fprintf(stderr, "Error when freeing statement handle:\n%s\n", err_buf);
 }
 hstmt = SQL_NULL_HSTMT;
 }

 /* Disconnect from TimesTen entirely. */

 if (hdbc != SQL_NULL_HDBC) {
 rc = SQLTransact(henv, hdbc, SQL_ROLLBACK);
 if (rc != SQL_SUCCESS) {
 handleError(rc, henv, hdbc, hstmt, err_buf, &native_error);
 fprintf(stderr, "Error when rolling back transaction:\n%s\n", err_buf);
 }

 rc = SQLDisconnect(hdbc);
 if (rc != SQL_SUCCESS) {
 handleError(rc, henv, hdbc, hstmt, err_buf, &native_error);
 fprintf(stderr, "Error when disconnecting from TimesTen:\n%s\n", err_buf);
 }

 rc = SQLFreeConnect(hdbc);
 if (rc != SQL_SUCCESS) {
 handleError(rc, henv, hdbc, hstmt, err_buf, &native_error);
 fprintf(stderr, "Error when freeing connection handle:\n%s\n", err_buf);
 }
 hdbc = SQL_NULL_HDBC;
 }

 if (henv != SQL_NULL_HENV) {
 rc = SQLFreeEnv(henv);
 if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO) {
 handleError(rc, henv, hdbc, hstmt, err_buf, &native_error);
 fprintf(stderr, "Error when freeing environment handle:\n%s\n", err_buf);
 }
 henv = SQL_NULL_HENV;
 }
 exit(status);
}

Using XLA as a replication mechanism

XLA and TimesTen Event Management 5-33

Using XLA as a replication mechanism
If the TimesTen replication solutions described in Oracle TimesTen In-Memory Database
TimesTen to TimesTen Replication Guide do not meet your needs, you can use XLA
functions to replicate updates from one database to another.

In this section, the sending database is referred to as the master and the receiving
database as the subscriber. To use XLA to replicate changes between databases, first
use the ttXlaPersistOpen function to initialize the XLA handles, as described in
"Initializing XLA and obtaining an XLA handle" on page 5-10.

After the XLA handles have been initialized for the databases, take the steps described
in the following sections:

■ Checking table compatibility between databases

■ Replicating updates between databases

■ Handling timeout and deadlock errors

■ Checking for update conflicts

XLA functions mentioned here are documented in Chapter 9, "XLA Reference".

Checking table compatibility between databases
Before transferring update records from one database to the other, verify that the
tables in the master and subscriber databases are compatible with one another:

■ You can check the descriptions of a table and its columns by using the
ttXlaTableByName, ttXlaGetTableInfo, and ttXlaGetColumnInfo
functions. See "Checking table and column descriptions" immediately below.

■ You can check the table and column versions of a specific XLA record by using the
ttXlaVersionTableInfo and ttXlaVersionColumnInfo functions. See
"Checking table and column versions" on page 5-34.

Checking table and column descriptions
Use the ttXlaTableByName, ttXlaGetTableInfo, and ttXlaGetColumnInfo
functions to return ttXlaTblDesc_t and ttXlaColDesc_t descriptions for each
table you want to replicate. These operations are described in "Specifying which tables
to monitor for updates" on page 5-11 and "Obtaining column descriptions" on
page 5-17. You can then pass these descriptions to the ttXlaTableCheck function.
The output parameter, compat, specifies whether the tables are compatible. A value of
1 indicates compatibility and 0 indicates non-compatibility. The following example
shows this.

Example 5–18 Checking table and column descriptions for compatibility

SQLINTEGER compat;
ttXlaTblDesc_t table;
ttXlaColDesc_t columns[20];

rc = ttXlaTableCheck(xla_handle, &table, columns, &compat);
if (compat) {
 /* Go ahead and start replicating */

Note: You cannot use XLA to replicate updates between different
platforms or between 32-bit and 64-bit versions of the same platform.

Using XLA as a replication mechanism

5-34 Oracle TimesTen In-Memory Database C Developer's Guide

}
else {
 /* Not compatible or some other error occurred */
}

Checking table and column versions
Use the ttXlaVersionTableInfo and ttXlaVersionColumnInfo functions to
retrieve the table structure information of an update record at the time the record was
generated.

The following example verifies that the table associated with the pXlaRecord update
record from the pCmd source is compatible with the hXlaTarget target.

Example 5–19 Checking table and column versions for compatibility

BOOL CUTLCheckXlaTable (SCOMMAND* pCmd,
 ttXlaHandle_h hXlaTarget,
 const ttXlaUpdateDesc_t* pXlaRecord)
{
 /* locals */
 ttXlaTblVerDesc_t tblVerDescSource;
 ttXlaColDesc_t colDescSource [255];
 SQLINTEGER iColsReturned = 0;
 SQLINTEGER iCompatible = 0;
 SQLRETURN rc;

 /* only certain update record types should be checked */
 if (pXlaRecord->type == INSERTTUP ||
 pXlaRecord->type == UPDATETUP ||
 pXlaRecord->type == DELETETUP)
 {
 /* Get source table description associated with this record */
 /* from the time it was generated. */
 rc = ttXlaVersionTableInfo (pCmd->pCtx->con->hXla,
 (ttXlaUpdateDesc_t*) pXlaRecord, &tblVerDescSource);

 if (rc == SQL_SUCCESS)
 {
 /* Get the source column descriptors for this table */
 /* at the time the record was generated. */
 rc = ttXlaVersionColumnInfo (pCmd->pCtx->con->hXla,
 (ttXlaUpdateDesc_t*) pXlaRecord,
 colDescSource, 255, &iColsReturned);

 if (rc == SQL_SUCCESS)
 {
 /* Check compatibility. */
 rc = ttXlaTableCheck (hXlaTarget,
 &tblVerDescSource.tblDesc, colDescSource,
 &iCompatible);
 }
 }
 }
}

Replicating updates between databases
When you are ready to begin replication, use the ttXlaNextUpdate or
ttXlaNextUpdateWait function to obtain batches of update records from the master

Using XLA as a replication mechanism

XLA and TimesTen Event Management 5-35

database and ttXlaApply to write the records to the subscriber database. The
following example shows this.

Example 5–20 Replicating updates between databases

int j;
ttXlaHandle_h h;
SQLINTEGER records;
ttXlaUpdateDesc_t** arry;

 do {
 /* get up to 15 updates */
 rc = ttXlaNextUpdate(h,&arry,15,&records);
 if (rc != SQL_SUCCESS) {
 /* See "Handling XLA errors" on page 5-27 */
 }

 /* print number of updates returned */
 printf("Records returned by ttXlaNextUpdate : %d\n",records);

 /* apply the received updates */
 for (j=0;j < records;j++) {
 ttXlaUpdateDesc_t* p;

 p = arry[j];
 rc = ttXlaApply(h, p, 0);
 if (rc != SQL_SUCCESS){
 /* See "Handling XLA errors" on page 5-27 and */
 /* "Handling timeout and deadlock errors" below */
 }
 }

 /* print number of updates applied */
 printf("Records applied successfully : %d\n",records);

 } while (records != 0);

Handling timeout and deadlock errors
The return code from ttXlaApply indicates whether the update was successful. If the
return code is not SQL_SUCCESS, then the update may have encountered a transient
problem, such as a deadlock or timeout, or a persistent problem. You can use
ttXlaError to check for errors, such as tt_ErrDeadlockVictim or
tt_ErrTimeoutVictim. Recovery from transient errors is possible by rolling back
the replicated transaction and re-executing it. Other errors may be persistent, such as
those for duplicate key violations or key not found. Such errors are likely to repeat if
the transaction is re-executed.

Important: If you are packaging data to be replicated across a
network, or anywhere between processes not using the same memory
space, you must ensure that the ttXlaUpdateDesc_t data structure
is shipped in its entirely. Its length is indicated by
ttXlaUpdateDesc_t ->header.length, where the header
element is a ttXlaNodeHdr_t structure that in turn has a length
element. Also see "ttXlaUpdateDesc_t" on page 9-70 and
"ttXlaNodeHdr_t" on page 9-69.

Using XLA as a replication mechanism

5-36 Oracle TimesTen In-Memory Database C Developer's Guide

If ttXlaApply returns a timeout or deadlock error before applying the commit record
(ttXlaUpdateDesc_t ->flags = TT_UPDCOMMIT) for a transaction to the
subscriber database, you can do either of the following:

■ Use ttXlaRollback to roll back the transaction.

■ Use ttXlaCommit to commit the changes in the records that have been applied to
the subscriber database.

To enable recovery from transient errors, you should keep track of transaction
boundaries on the master database and store the records associated with the
transaction currently being applied to the subscriber in a user buffer, so you can
reapply them if necessary. The transaction boundaries can be found by checking the
flags member of the ttXlaUpdateDesc_t structure. Consider the following
example. If this condition is true, then the record was committed:

(pXlaRecords [iRecordIndex]->flags & TT_UPDCOMMIT)

If you encounter an error that requires you to roll back a transaction, call
ttXlaRollback to roll back the records applied to the subscriber database. Then call
ttXlaApply to reapply all the rolled back records stored in your buffer.

Checking for update conflicts
If you have applications making simultaneous updates to both your master and
subscriber databases, you may encounter update conflicts. Update conflicts are
described in detail in "Resolving Replication Conflicts" in Oracle TimesTen In-Memory
Database TimesTen to TimesTen Replication Guide.

To check for update conflicts in XLA, you can set the ttXlaApply test parameter to
compare the old row value (ttXlaUpdateDesc_t ->tuple1) in each record of type
UPDATETUP with the existing row in the subscriber database. If the old row value in
the update description does not match the corresponding row in the subscriber
database, an update conflict is assumed. In this case, ttXlaApply does not apply the
update to the subscriber and returns an sb_ErrXlaTupleMismatch error.

Replicating updates to a non-TimesTen database
If you are replicating changes to a non-TimesTen database, you can use the
ttXlaGenerateSQL function to convert the record data into a SQL statement that
can be read by the non-TimesTen subscriber. For update and delete records,
ttXlaGenerateSQL requires a primary key or a unique index on a non-nullable
column to generate the correct SQL.

The ttXlaGenerateSQL function accepts a ttXlaUpdateDesc_t record as a
parameter and outputs its SQL equivalent into a buffer.

Note: An alternative to buffering the transaction records in a user
buffer is to call ttXlaGetLSN to get the transaction log record
identifier of each commit record in the transaction log, as described in
"Changing the location of a bookmark" on page 5-37. If you encounter
an error that requires you to roll back a transaction, you can call
ttXlaSetLSN to reset the bookmark to the beginning of the
transaction in the transaction log and reapply the records. However,
the extra overhead associated with the ttXlaGetLSN function may
make this a less efficient option.

Other XLA features

XLA and TimesTen Event Management 5-37

Example 5–21 Replicating updates to a non-TimesTen database

This example translates a record (record) and stores the resulting SQL output in a
200-character buffer (buffer). The actual size of the buffer is returned in the
actualLength parameter.

ttXlaUpdateDesc_t record;
char buffer[200];
SQLINTEGER actualLength;

rc = ttXlaGenerateSQL(xla_handle, &record, buffer, 200, &actualLength);

if (rc != SQL_SUCCESS) {
 handleXLAerror (rc, xla_handle, err_buf, &native_error);
 if (native_error == 8034) { // tt_ErrXlaNoSQL
 printf("Unable to translate to SQL\n");
 }
}

Other XLA features
The following sections describe how to use additional XLA features:

■ Changing the location of a bookmark

■ Passing application context

■ Using XLA in non-persistent mode

Changing the location of a bookmark
At any point during a connection, you can call the ttXlaGetLSN function to query
the system for the Current Read log record identifier. If you must replay a set of
updates, you can use the ttXlaSetLSN function to reset the Current Read log record
identifier to any valid value larger than the Initial Read log record identifier set by the
last ttXlaAcknowledge call. In this context, "larger" only applies if the log record
identifiers being compared are from records in the same transaction. If that is not the
case, then any log record identifier from a transaction that committed before another
transaction is the "smaller" log record identifier, even if the numeric value of the log
record identifier is larger. The only way to enable the Initial Read log record identifier
to move forward to the Current Read log record identifier is by calling the
ttXlaAcknowledge function, which indicates that you have received and processed
all transaction log records up to the Current Read log record identifier. Once you have
called ttXlaAcknowledge on a particular bookmark, you can no longer access
transaction log records with a log record identifier smaller than the Current Read log
record identifier.

Passing application context
Although it is not an XLA function, writers to the transaction log can call the
ttApplicationContext built-in procedure to pass binary data associated with an

Important: The SQL returned by ttXlaGenerateSQL uses
TimesTen SQL syntax. The SQL statement may fail on a non-TimesTen
subscriber if there are SQL syntax incompatibilities between the two
systems. In addition, the SQL statement is encoded in the connection
character set associated with the XLA handle.

Other XLA features

5-38 Oracle TimesTen In-Memory Database C Developer's Guide

application to XLA readers. This procedure specifies a single VARBINARY value that is
returned in the next update record produced by the current transaction. XLA readers
can obtain a pointer to this value as described in "Reading NOT INLINE
variable-length column data" on page 5-19.

To set the context:

1. Declare two program variables for invoking the ttApplicationContext
procedure. The variable contextBuffer is a CHAR array that is declared to be
large enough to accommodate the longest application context that you will use.
The variable contextBufferLen is of type INTEGER and is used to convey the
actual length of the context on each call to ttApplicationContext.

2. Initialize a statement handle with a compiled invocation of the
ttApplicationContext built-in procedure:

rc = SQLPrepare(hstmt, "call ttApplicationContext(?)", SQL_NTS);
rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,
 SQL_VARBINARY, 0, 0, &contextBuffer,
 sizeof contextBuffer, &contextBufferLen);

3. When the application context must be set later, copy the context value into
contextBuffer, assign the length of the context to contextBufferLen, and
invoke ttApplicationContext with the call:

rc = SQLExecute(hstmt);

The transaction is then committed with the usual call on SQLTransact:

rc = SQLTransact(NULL, hdbc, SQL_COMMIT);

Using XLA in non-persistent mode
TimesTen XLA is normally used in persistent mode, but non-persistent mode is also
supported. This is primarily for backward compatibility. In non-persistent mode,
transaction log updates are maintained in an XLA staging buffer, which is where XLA
stages the update records obtained from the transaction log and makes them available
to be read by the application. However, the staging buffer can be accessed by only one
reader at a time and all of the buffered data is lost when the computer or database is
shut down.

The ttXlaOpenTimesTen XLA function opens a connection to a database in
non-persistent mode.

Information for operating XLA in non-persistent mode is described in the following
sections.

Note: A context value will be applied to only one update record.
After it has been applied it is reset. If the same context value should be
applied to multiple updates, then it must be reestablished before each
update.

Note: If a SQL operation fails after a call to
ttApplicationContext, the context may not be stored in the next
SQL operation and therefore may be lost. If this happens, the
application can call ttApplicationContext again before the next
SQL operation.

Other XLA features

XLA and TimesTen Event Management 5-39

■ How non-persistent mode differs from persistent mode

■ Initializing XLA in non-persistent mode

■ Configuring the staging buffer

■ Retrieving and resetting the buffer status

How non-persistent mode differs from persistent mode
Non-persistent mode differs from persistent mode as follows:

■ Transaction update records are maintained in a transient staging buffer, rather
than being obtained directly from a transaction log buffer or transaction log file on
disk.

■ If the staging buffer becomes full, transactions cannot complete until you empty
the buffer.

■ You cannot use XLA bookmarks.

■ You must configure the size of the staging buffer by using ttXlaConfigBuffer.

■ You can check the status of the staging buffer by calling the ttXlaStatus
function.

■ You can reset the staging buffer status by calling the ttXlaResetStatus
function.

■ Only one XLA application can read from the staging buffer at any one time.

All other XLA procedures, excluding those related to bookmarks, are the same as those
described for persistent mode in "Writing an XLA event-handler application" on
page 5-9.

Initializing XLA in non-persistent mode
After initializing ODBC and obtaining an environment handle, connection handle, and
statement handle as described in "Obtaining a database connection handle" on
page 5-9, you can initialize XLA in non-persistent mode and obtain an XLA handle to
access the transaction log. Though you may have multiple open XLA connections in
non-persistent mode, you must coordinate reads so that only one connection accesses
the staging buffer at any one time.

Initializing XLA in non-persistent mode is similar to initializing in persistent mode, as
described in "Initializing XLA and obtaining an XLA handle" on page 5-10, but you are
not required to identify a bookmark. Simply initialize an XLA handle as type
ttXlaHandle_h and pass the address to the ttXlaOpenTimesTen function to
obtain the XLA handle:

ttXlaHandle_h xla_handle;
rc = ttXlaOpenTimesTen(hdbc, &xla_handle);

Configuring the staging buffer
After initializing XLA in non-persistent mode, use the ttXlaConfigBuffer function
to configure the size of the XLA staging buffer. Only one staging buffer may be
configured for a database. The staging buffer size setting is guaranteed to survive
normal disconnects. However, the size setting may not survive an abnormal
termination, depending on whether a checkpoint was done.

When finished using XLA, you can delete the staging buffer by setting its size to 0.

See "ttXlaConfigBuffer" on page 9-13 for details.

Other XLA features

5-40 Oracle TimesTen In-Memory Database C Developer's Guide

Retrieving and resetting the buffer status
When operating XLA in non-persistent mode, you can use the ttXlaStatus function
to retrieve status information on the transaction log buffer and your XLA staging
buffer.

See "ttXlaStatus" on page 9-53 for details.

6

Distributed Transaction Processing: XA 6-1

6Distributed Transaction Processing: XA

This chapter describes the TimesTen implementation of the X/Open XA standard.

The TimesTen implementation of the XA interfaces is intended for use by transaction
managers in distributed transaction processing (DTP) environments. You can use these
interfaces to write a new transaction manager or to adapt an existing transaction
manager, such as Oracle Tuxedo, to operate with TimesTen resource managers.

The purpose of this chapter is to provide information specific to the TimesTen
implementation of XA and is intended to be used with the following documents:

■ X/Open CAE Specification, Distributed Transaction Processing: The XA Specification
published by the The Open Group (http://www.opengroup.org).

■ Tuxedo documentation, available through the following location:

http://www.oracle.com/technetwork/middleware/weblogic/documentation

This chapter includes the following topics:

■ Overview of XA

■ Using XA in TimesTen

■ XA support through the Windows ODBC driver manager

■ Configuring Tuxedo to use TimesTen XA

Overview of XA
This section provides a brief overview of the following XA concepts:

■ X/Open DTP model

■ Two-phase commit

X/Open DTP model
Figure 6–1 that follows illustrates the interfaces defined by the X/Open DTP model.

Important:

■ The TimesTen XA implementation does not work with IMDB
Cache. The start of any XA transaction will fail if the cache agent
is running.

■ You cannot execute an XA transaction if replication is enabled.

■ Do not execute DDL statements within an XA transaction.

Overview of XA

6-2 Oracle TimesTen In-Memory Database C Developer's Guide

Figure 6–1 Distributed transaction processing model

The TX interface is what applications use to communicate with a transaction manager.
The figure shows an application communicating global transactions to the transaction
manager. In the DTP model, the transaction manager breaks each global transaction
down into multiple branches and distributes them to separate resource managers for
service. It uses the XA interface to coordinate each transaction branch with the
appropriate resource manager.

In the context of TimesTen XA, the resource managers can be a collection of TimesTen
databases, or databases in combination with other commercial databases that support
XA.

Global transaction control provided by the TX and XA interfaces is distinct from local
transaction control provided by the native ODBC interface. It is generally best to
maintain separate connections for local and global transactions. Applications can
obtain a connection handle to a TimesTen resource manager in order to initiate both
local and global transactions over the same connection. See "TimesTen tt_xa_context
function to obtain ODBC handle from XA connection" on page 6-4 for more
information.

Two-phase commit
In an XA implementation, the transaction manager commits the distributed branches
of a global transaction by using a two-phase commit protocol.

1. In phase one, the transaction manager directs each resource manager to prepare to
commit, which is to verify and guarantee it can commit its respective branch of the
global transaction. If a resource manager cannot commit its branch, the transaction
manager rolls back the entire transaction in phase two.

2. In phase two, the transaction manager either directs each resource manager to
commit its branch or, if a resource manager reported it was unable to commit in
phase one, rolls back the global transaction.

Note the following optimizations:

■ If a global transaction is determined by the transaction manager to have involved
only one branch, it skips phase one and commits the transaction in phase two.

■ If a global transaction branch is read-only, where it does not generate any
transaction log records, the transaction manager commits the branch in phase one
and skips phase two for that branch.

Application Program (AP)

Transaction
Manager (TM)

Resource
Managers (RMs)

XA Interface

TX or proprietary
transaction interface

Native Interface
(e.g. ODBC)

XA or JTA Interface

Global
Transactions

Native Interface
(ODBC or JDBC)

Transaction
Branches

Using XA in TimesTen

Distributed Transaction Processing: XA 6-3

Using XA in TimesTen
The TimesTen implementation of XA provides an API that is consistent with the API
specified in Distributed Transaction Processing: The XA Specification. This section
describes what you should know when using the TimesTen implementation of XA,
covering the following topics:

■ TimesTen database requirements for XA

■ Global transaction recovery in TimesTen

■ Considerations in using standard XA functions with TimesTen

■ TimesTen tt_xa_context function to obtain ODBC handle from XA connection

■ Considerations in calling ODBC functions over XA connections in TimesTen

■ XA resource manager switch

■ XA error handling in TimesTen

TimesTen database requirements for XA
To guarantee global transaction consistency, TimesTen XA transaction branches must
be durable. The TimesTen implementation of the xa_prepare(), xa_rollback(),
and xa_commit() functions log their actions to disk, regardless of the value set in the
DurableCommits general connection attribute or by the ttDurableCommit built-in
procedure. (The behavior is equivalent to what occurs with a setting of
DurableCommits=1. See "DurableCommits" in Oracle TimesTen In-Memory Database
Reference for related information.) If you must recover from a failure, both the resource
manager and the TimesTen transaction manager have a consistent view of which
transaction branches were active in a prepared state at the time of failure.

Rollback of transactions requires transaction logging, which is always enabled with
XA.

Global transaction recovery in TimesTen
When a database is loaded from disk to recover after a failure or unexpected
termination, any global transactions that were prepared but not committed are left
pending, or in doubt. Normal processing is not enabled until the disposition of all
in-doubt transactions has been resolved.

After connection and recovery are complete, TimesTen checks for in-doubt
transactions. If there are no in-doubt transactions, operation proceeds as normal. If
there are in-doubt transactions, other connections may be created, but virtually all
operations are prohibited on those connections until the in-doubt transactions are
resolved. Any other ODBC or JDBC calls result in the following error:

Error 11035 - "In-doubt transactions awaiting resolution in recovery must be
resolved first"

The list of in-doubt transactions can be retrieved through the XA implementation of
xa_recover(), then dealt with through the XA call xa_commit(),
xa_rollback(), or xa_forget(), as appropriate. After all of the in-doubt
transactions are cleared, operation proceeds normally.

Note: The transaction manager considers the global transaction
committed if and only if all branches successfully commit.

Using XA in TimesTen

6-4 Oracle TimesTen In-Memory Database C Developer's Guide

This scheme should be adequate for systems that operate strictly under control of the
transaction manager, since the first thing the transaction manager should do after
connect is to call xa_recover().

If the transaction manager is unavailable or cannot resolve an in-doubt transaction,
you can use the ttXactAdmin utility to independently commit or abort the individual
transaction branches. Be aware, however, that these ttXactAdmin options require
ADMIN privilege. See "ttXactAdmin" in Oracle TimesTen In-Memory Database Reference.

Considerations in using standard XA functions with TimesTen
This section describes some issues concerning the use of TimesTen XA functions,
which are of interest if you are writing your own transaction manager.

xa_open()
The xa_info string used by xa_open() should be a connection string identical to
that supplied to SQLDriverConnect, such as:

"DSN=DataStoreResource;UID=MyName"

XA limits the length of the string to 256 characters. See MAXINFOSIZE in the xa.h
header file.

The xa_open() function automatically turns off autocommit when it opens an XA
connection.

A connection opened with xa_open() must be closed with a call to xa_close().

xa_close()
The xa_info string used by xa_close() should be empty.

Transaction id (XID) parameter
XA uniquely identifies global transactions by using a transaction ID, referred to as an
XID. The XID is a required parameter for XA functions that manipulate a transaction.
Internally, TimesTen maps XIDs to its own transaction identifiers.

The XID defined by the XA standard has some of its members (such as formatID,
gtrid_length, and bqual_length) defined as type long. Be aware that this can
cause problems when 32-bit client applications connect to a 64-bit server, or 64-bit
client applications connect to a 32-bit server. This is because long is a 32-bit integer on
32-bit platforms but a 64-bit integer on 64-bit platforms, other than 64-bit Windows.
Hence, TimesTen internally uses only the 32 least significant bits of those XID
members regardless of the platform type of client or server. TimesTen does not support
any value in those XID members that does not fit in a 32-bit integer.

TimesTen tt_xa_context function to obtain ODBC handle from XA connection
TimesTen provides the function tt_xa_context(), which enables you to acquire the
ODBC connection handle associated with an XA connection opened by xa_open().

Note: Privilege to connect to the database must be explicitly granted
to every user other than the instance administrator, through the
CREATE SESSION privilege. Refer to "Access control for connections"
on page 2-6.

Using XA in TimesTen

Distributed Transaction Processing: XA 6-5

Syntax
#include <tt_xa.h>
int tt_xa_context(int* rmid, SQLHENV* henv, SQLHDBC* hdbc);

Parameters

Return values
0: Success

1: rmid not found

-1: Invalid parameter

Example
In the following example, assume Tuxedo has used xa_open() and xa_start() to
open a connection to the database and start a transaction. To do further ODBC
processing on the connection, use the tt_xa_context() function to locate the
SQLHENV and SQLHDBC handles allocated by xa_open().

Example 6–1 Using tt_xa_context() to locate handles

do_insert()
{

 SQLHENV henv;
 SQLHDBC hdbc;
 SQLHSTMT hstmt;

 /* retrieve the handles for the current connection */
 tt_xa_context(NULL, &henv, &hdbc);

 /* now we can do our ODBC programming as usual */
 SQLAllocStmt(hdbc, &hstmt);

 SQLExecDirect(hstmt, "insert into t1 values (1)", SQL_NTS);

 SQLFreeStmt(hstmt, SQL_DROP);
}

Parameter Type Description

rmid int The specified resource manager ID. If this is non-null, the
function returns the handles associated with the rmid
value.

If the specified rmid is null, the function returns the
handles associated with the first connection on this thread.
For example, specify a null value if the connection has
been opened outside the scope of the user-written code,
where rmid is unknown. This establishes context in the
application environment.

henv out SQLHENV The environment handle associated with the current
xa_open() context.

hdbc out SQLHDBC The connection handle associated with the current
xa_open() context.

Using XA in TimesTen

6-6 Oracle TimesTen In-Memory Database C Developer's Guide

Considerations in calling ODBC functions over XA connections in TimesTen
This section describes some TimesTen issues to be aware of when calling ODBC
functions using an ODBC handle associated with an XA connection opened by
xa_open().

Autocommit
To simplify operation and prevent possible contradictions, xa_open() automatically
turns off autocommit when it opens an XA connection.

Autocommit may subsequently be turned on or off during local transaction work, but
must be turned off before xa_start() is called to begin work on a global transaction
branch. If autocommit is on, a call to xa_start() returns the following error:

Error 11030 - "Autocommit must be turned off when working on global (XA)
transactions"

Once xa_start() has been called to begin work on a global transaction branch,
autocommit may not be turned on until such work has been completed through a call
to xa_end(). Any attempt to turn on autocommit in this case will result in the same
error as above.

Local transaction COMMIT and ROLLBACK
Once work on a global transaction branch has commenced through a call to
xa_start(), attempts to perform a local commit or rollback using SQLTransact
results in the following error:

Error 11031- "Illegal combination of local transaction and global (XA)
transaction"

Closing open cursors
Any open statement cursors must be closed using SQLFreeStmt with a value of
SQL_CLOSE before calling xa_end() to end work on a global transaction branch.
Otherwise, the following error is returned:

Error 11032 - "XA request failed due to open cursors"

XA resource manager switch
Each resource manager defines a switch in its xa.h header file that provides the
transaction manager with access to the XA functions in the resource managers. The
transaction manager never directly calls an XA interface function. Instead, it calls the
function in the switch table, which, in turn, points to the appropriate function in the
resource manager. This allows resource managers to be added and removed without
the requirement to recompile the applications.

In the TimesTen implementation of XA, the functions in the XA switch, xa_switch_t,
point to their respective functions defined in a TimesTen switch, tt_xa_switch.

xa_switch_t
The xa_switch_t structure defined by the XA specification is as follows:

/*
* XA Switch Data Structure
*/
#define RMNAMESZ 32 /* length of resource manager name, */
 /* including the null terminator */
#define MAXINFOSIZE 256 /* maximum size in bytes of xa_info strings, */

Using XA in TimesTen

Distributed Transaction Processing: XA 6-7

 /* including the null terminator */

struct xa_switch_t
{

 char name[RMNAMESZ]; /* name of resource manager */
 long flags; /* resource manager specific options */
 long version; /* must be 0 */

int (*xa_open_entry)(char*, int, long); /* xa_open function pointer */
int (*xa_close_entry)(char*, int, long); /* xa_close function pointer*/
int (*xa_start_entry)(XID*, int, long); /* xa_start function pointer */
int (*xa_end_entry)(XID*, int, long); /* xa_end function pointer */
int (*xa_rollback_entry)(XID*, int, long); /* xa_rollback function pointer */
int (*xa_prepare_entry)(XID*, int, long); /* xa_prepare function pointer */
int (*xa_commit_entry)(XID*, int, long); /* xa_commit function pointer */
int (*xa_recover_entry)(XID*, long, int, long); /* xa_recover function pointer*/
int (*xa_forget_entry)(XID*, int, long); /* xa_forget function pointer */
int (*xa_complete_entry)(int*, int*, int, long); /* xa_complete function pointer
*/
};

typedef struct xa_switch_t xa_switch_t;
/*
 * Flag definitions for the RM switch
 */
#define TMNOFLAGS 0x00000000L /* no resource manager features selected */
#define TMREGISTER 0x00000001L /* resource manager dynamically registers */
#define TMNOMIGRATE 0x00000002L /* RM does not support association migration */
#define TMUSEASYNC 0x00000004L /* RM supports asynchronous operations */

tt_xa_switch
The tt_xa_switch names the actual functions implemented by a TimesTen resource
manager. It also indicates explicitly that association migration is not supported. In
addition, dynamic registration and asynchronous operations are not supported.

struct xa_switch_t
tt_xa_switch =
{
 "TimesTen", /* name of resource manager */
 TMNOMIGRATE, /* RM does not support association migration */
 0,
 tt_xa_open,
 tt_xa_close,
 tt_xa_start,
 tt_xa_end,
 tt_xa_rollback,
 tt_xa_prepare,
 tt_xa_commit,
 tt_xa_recover,
 tt_xa_forget,
 tt_xa_complete
};

XA error handling in TimesTen
The XA specification has a limited and strictly defined set of errors that can be
returned from XA interface calls. The ODBC SQLError function returns XA-defined
errors along with any additional information.

XA support through the Windows ODBC driver manager

6-8 Oracle TimesTen In-Memory Database C Developer's Guide

The TimesTen XA-related errors begin at number 11000. Errors 11002 through 11020
correspond to the errors defined by the XA standard.

See "Warnings and Errors" in Oracle TimesTen In-Memory Database Error Messages and
SNMP Traps for the complete list of errors.

XA support through the Windows ODBC driver manager
This section discusses issues and procedures for using XA with the Windows ODBC
driver manager. (UNIX ODBC driver managers are not considered.)

Issues to consider
XA support through the ODBC driver manager requires special handling. There are
two fundamental problems:

■ The XA interface is not part of the defined ODBC interface. If the XA symbols are
directly referenced in an application, it is not possible to link with only the driver
manager library to resolve all the external references.

■ By design, the driver manager determines which driver .dll file to load at
connect time, when you call SQLConnect or SQLDriverConnect. XA dictates
that the connection should be opened through xa_open(). However, the correct
xa_open() entry point cannot be located until the .dll is loaded during the
connect operation itself.

Note that the driver manager objective of database portability is generally not
applicable here, since each XA implementation is essentially proprietary. The primary
benefit of driver manager support for XA-enabled applications is to allow
TimesTen-specific applications to run transparently with either the TimesTen direct
driver or the TimesTen Client/Server driver.

Linking to the TimesTen ODBC XA driver manager extension library
On Windows installations, TimesTen provides a driver manager extension library,
ttxadm1121.dll, for XA functions. Applications can make XA calls directly, but
must link in the extension library.

To link with the ttxadm1121.dll library, applications must include
ttxadm1121.lib before odbc32.lib in their link line. For example:

Link with the ODBC driver manager
appldm.exe:appl.obj
 $(CC) /Feappldm.exe appl.obj ttxadm1121.lib odbc32.lib

Configuring Tuxedo to use TimesTen XA

Note: The XA driver manager extension is implemented only for
32-bit Windows applications.

Note: Though TimesTen XA has been demonstrated to work with the
Oracle Tuxedo transaction manager, TimesTen cannot guarantee the
operation of DTP software beyond the TimesTen implementation of
XA.

Configuring Tuxedo to use TimesTen XA

Distributed Transaction Processing: XA 6-9

To configure Tuxedo to use the TimesTen resource managers, perform the following
tasks:

■ Update the $TUXDIR/udataobj/RM file

■ Build the Tuxedo transaction manager server

■ Update the GROUPS section in the UBBCONFIG file

■ Compile the servers

Update the $TUXDIR/udataobj/RM file
To integrate the TimesTen XA resource manager into the Oracle Tuxedo system,
update the $TUXDIR/udataobj/RM file to identify the TimesTen resource manager,
the name of the TimesTen resource manager switch (tt_xa_switch), and the name of
the library for the resource manager.

On UNIX platforms, add the following:

TimesTen:tt_xa_switch:-Linstall_dir/lib -ltten

For example:

TimesTen:tt_xa_switch:-L/opt/TimesTen/giraffe/lib -ltten

On Windows platforms, add the following:

TimesTen;tt_xa_switch;install_dir\lib\ttdv1121.lib

For example:

TimesTen;tt_xa_switch;C:\TimesTen\giraffe\lib\ttdv1121.lib

Build the Tuxedo transaction manager server
Use the buildtms command to build a transaction manager server for the TimesTen
resource manager. Then copy the TMS_TT file created by buildtms to the
$TUXDIR/bin directory.

On UNIX platforms, the commands are the following:

buildtms -o TMS_TT -r TimesTen -v
cp TMS_TT $TUXDIR/bin

On Windows platforms, the commands are the following:

buildtms -o TMS_TT -r TimesTen -v
copy TMS_TT.exe %TUXDIR%\bin

Update the GROUPS section in the UBBCONFIG file
For TMSNAME, specify the TMS_TT file created by the buildtms command described
in the preceding section.

Note: The examples in this section use the direct driver. You can also
use the client/server library or driver manager library with the XA
extension library.

Note: The install_dir is the path to the TimesTen home directory.

Configuring Tuxedo to use TimesTen XA

6-10 Oracle TimesTen In-Memory Database C Developer's Guide

TMSNAME=TMS_TT

Enter a line for each TimesTen resource manager that includes a group name, followed
by the LMID, GRPNO, and OPENINFO parameters. Your OPENINFO string should look
like this:

OPENINFO="TimesTen:DSN=DSNname"

Where DSNname is the name of the database.

Note that on Windows, Tuxedo servers run as user SYSTEM. Add the UID general
connection attribute to the OPENINFO string to specify a user other than SYSTEM for
the connection:

OPENINFO="TimesTen:DSN=DSNname;UID=user"

Do not specify a CLOSEINFO parameter for any TimesTen resource manager.

Example 6–2 shows the portions of a UBBCONFIG file used to configure two TimesTen
resource managers, GROUP1 and GROUP2.

Example 6–2 Configuring TimesTen resource managers

*RESOURCES
...
*MACHINES
...
ENGSERV LMID=simple
*GROUPS
DEFAULT: TMSNAME=TMS_TT TMSCOUNT=2
GROUP1
 LMID=simple GRPNO=1 OPENINFO="TimesTen:DSN=MyDSN1;UID=MyName"
GROUP2
 LMID=simple GRPNO=2 OPENINFO="TimesTen:DSN=MyDSN2;UID=MyName"
*SERVERS
DEFAULT:
 CLOPT="-A"
simpserv1 SRVGRP=GROUP1 SRVID=1
simpserv2 SRVGRP=GROUP2 SRVID=2

*SERVICES
TOUPPER
TOLOWER

Compile the servers
Set the CFLAGS environment variable to include the install_dir/include
directory that holds the TimesTen header files. Then use the buildserver command
to construct an Oracle Tuxedo ATMI server load module.

On UNIX platforms, enter the following.

export CFLAGS=-Iinstall_dir/include
buildserver -o server -f server.c -r TimesTen -s SERVICE

On Windows platforms, enter the following.

set CFLAGS=-Iinstall_dir\Include
buildserver -o server -f server.c -r TimesTen -s SERVICE

Note: The install_dir is the path to the TimesTen home directory.

Configuring Tuxedo to use TimesTen XA

Distributed Transaction Processing: XA 6-11

Example 6–3 shows an example of how to use the buildclient command to
construct the client module (simpcl) and the buildserver command to construct
the two server modules described in the UBBCONFIG file in Example 6–2 above.

Example 6–3 Construct server modules

set CFLAGS=-IC:\TimesTen\giraffe\Include
buildclient -o simpcl -f simpcl.c
buildserver -v -t -o simpserv1 -f simpserv1.c -r TimesTen -s TOUPPER
buildserver -v -t -o simpserv2 -f simpserv2.c -r TimesTen -s TOLOWER

Configuring Tuxedo to use TimesTen XA

6-12 Oracle TimesTen In-Memory Database C Developer's Guide

7

Application Tuning 7-1

7Application Tuning

This chapter describes how to tune a C application to run optimally on a TimesTen
database. See "TimesTen Database Performance Tuning" in Oracle TimesTen In-Memory
Database Operations Guide for more general tuning tips.

This chapter includes the following topics:

■ Bypass driver manager if appropriate

■ Using arrays of parameters for batch execution

■ Avoid excessive binds

■ Avoid SQLGetData

■ Avoid data type conversions

■ Bulk fetch rows of TimesTen data

Bypass driver manager if appropriate
TimesTen permits ODBC applications that do not need some of the functionality
provided by a driver manager to link without one. In particular, applications that do
not need ODBC access to database systems other than TimesTen should consider
omitting the driver manager. This is done by linking the application directly with the
TimesTen direct or client driver, as described in "Linking options" on page 1-1. The
performance improvement will be significant.

"Testing link options" on page 1-3 explains how to determine whether an application is
linked directly with the driver or with the driver manager.

Using arrays of parameters for batch execution
You can improve performance by using groups, referred to as batches, of statement
executions in your application.

The SQLParamOptions ODBC function allows an application to specify multiple
values for the set of parameters assigned by SQLBindParameter. This is useful for
processing the same SQL statement multiple times with various parameter values. For
example, your application can specify multiple sets of values for the set of parameters
associated with an INSERT statement, and then execute the INSERT statement once to
perform all the insert operations.

Note: It is permissible for some applications connected to a database
to be linked with the driver manager, while others connected to the
same database are direct-linked.

Avoid excessive binds

7-2 Oracle TimesTen In-Memory Database C Developer's Guide

TimesTen supports the use of SQLParamOptions with INSERT, UPDATE and DELETE
statements, but not with SELECT statements. TimesTen recommends the following
batch sizes for Release 11.2.1:

■ 256 for INSERT statements

■ 31 for UPDATE statements

■ 31 for DELETE statements

Table 7–1 provides a summary of SQLParamOptions arguments. Refer to ODBC API
reference documentation for details.

Assuming the crow value is greater than 1, the rgbValue argument of
SQLBindParameter points to an array of parameter values and the pcbValue
argument points to an array of lengths. (Also see "SQLBindParameter function" on
page 2-11.)

Refer to the TimesTen Quick Start demo source file bulkinsert.c for a complete
working example of batching. (Also, for programming in C++ with TTClasses, see
bulktest.cpp.)

Avoid excessive binds
The purpose of a SQLBindCol or SQLBindParameter call is to associate a type
conversion and program buffer with a data column or parameter. For a given SQL
statement, if the type conversion or memory buffer for a given data column or
parameter is not going to change over repeated executions of the statement, it is better
not to make repeated calls to SQLBindCol or SQLBindParameter.

Avoid SQLGetData
SQLGetData can be used for fetching data without binding columns. This can
sometimes have a negative impact on performance because applications have to issue
a SQLGetData ODBC call for every column of every row that is fetched. In contrast,
using bound columns requires only one ODBC call for each fetched column. Further,
the TimesTen ODBC driver is more highly optimized for the bound columns method
of fetching data.

SQLGetData can be very useful, though, for doing piece-wise fetches of data from
long character or binary columns.

Table 7–1 SQLParamOptions arguments

Argument Type Description

hstmt SQLHSTMT Statement handle.

crow SQLROWSETSIZE Number of values for each parameter.

pirow SQLROWSETSIZE Pointer to storage for the current row number.

Note: When using SQLParamOptions with the TimesTen
Client/Server driver, data-at-execution parameters are not supported.

Note: A call to SQLFreeStmt with the SQL_UNBIND option unbinds
all columns.

Bulk fetch rows of TimesTen data

Application Tuning 7-3

Avoid data type conversions
TimesTen instruction paths are so short that even small delays due to data conversion
can cause a relatively large percentage increase in transaction time. To avoid data type
conversions:

■ Match input argument types to expression types.

■ Match the types of output buffers to the types of the fetched values.

■ Match the connection character set to the database character set.

Bulk fetch rows of TimesTen data
TimesTen provides the TT_PREFETCH_COUNT option, which can be set through
SQLSetStmtOption and allows an application to fetch multiple rows of data. This
feature is available for applications that use the Read Committed isolation level. For
applications that retrieve large amounts of TimesTen data, fetching multiple rows can
increase performance greatly. However, locks are held on all rows being retrieved until
all the application has received all the data, decreasing concurrency. For more
information on how to use TT_PREFETCH_COUNT, see "Prefetching multiple rows of
data" on page 2-10.

Bulk fetch rows of TimesTen data

7-4 Oracle TimesTen In-Memory Database C Developer's Guide

8

TimesTen Utility API 8-1

8TimesTen Utility API

The TimesTen Utility Library C language functions documented in this chapter
provide a programmable interface to some of the command line utilities documented
in "Utilities" in Oracle TimesTen In-Memory Database Reference.

Applications that use this set of C language functions must include ttutillib.h and
link with both the TimesTen driver library (libtten on UNIX or ttdv1121.lib and
tten1121.lib on Windows) and the TimesTen utility library (libttutil on UNIX
and ttutil1121.lib on Windows platforms).

These functions are not supported with TimesTen Client or for Java applications. They
are supported only for TimesTen ODBC applications using the direct driver.

Return codes
Unless otherwise indicated, the utility functions return these codes as defined in
ttutillib.h.

Important: Applications must call the ttUtilAllocEnv C function
before calling any other TimesTen utility library function. In addition,
applications must call the ttUtilFreeEnv C function when it is
done with the TimesTen utility library interface.

Code Description

TTUTIL_SUCCESS Returned upon success.

TTUTIL_ERROR Returned if an error occurs.

TTUTIL_WARNING Returned upon success, when a warning has
been generated.

TTUTIL_INVALID_HANDLE Returned if an invalid utility library handle is
specified.

Note: The application must call the ttUtilGetError C function to
retrieve all actual error or warning information.

ttBackup

8-2 Oracle TimesTen In-Memory Database C Developer's Guide

ttBackup

Description
Creates either a full or an incremental backup copy of the database specified by
connStr. You can back up a database either to a set of files or to a stream. You can
restore the database at a later time using either the ttRestore function or the
ttRestore utility. If the database is in use at the time of the backup, it must be in
shared mode to successfully complete this operation.

For an overview of the TimesTen backup and restore facility, see "Migration, backup,
and restoration of the database" in the Oracle TimesTen In-Memory Database Operations
Guide.

Required privilege
Requires ADMIN.

Syntax
ttBackup (ttUtilHandle handle, const char* connStr,
 ttBackUpType type, ttBooleanType atomic,
 const char* backupDir, const char* baseName,
 ttUtFileHandle stream)

Parameters

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library
environment handle allocated using
ttUtilAllocEnv.

connStr const char* A null-terminated string specifying a
connection string that describes the database to
be backed up.

ttBackup

TimesTen Utility API 8-3

type ttBackupType Specified the type of backup to be performed.
Valid values are as follows:

■ TT_BACKUP_FILE_FULL: Performs a full
file backup to the backup path specified by
the backupDir and baseName
parameters. The resulting backup is not
enabled for incremental backup.

■ TT_BACKUP_FILE_FULL_ENABLE:
Performs a full file backup to the backup
path specified by the backupDir and
baseName parameters. The resulting
backup is enabled for incremental backup.

■ TT_BACKUP_FILE_INCREMENTAL:
Performs an incremental file backup to the
backup path specified by the backupDir
and baseName parameters, if that backup
path contains an incremental-enabled
backup of the database. Otherwise, an error
is returned.

■ TT_BACKUP_FILE_INCR_OR_FULL:
Performs an incremental file backup to the
backup path specified by the backupDir
and baseName parameters of that backup
path contains an incremental-enabled
backup of the database. Otherwise, it
performs a full file backup of the database
and marks it incremental enabled.

■ TT_BACKUP_STREAM_FULL: Performs a
stream backup to the stream specified by
the stream parameter.

■ TT_BACKUP__INCREMENTAL_STOP: Does
not perform a backup. Disables incremental
backups for the backup path specified by
the backupDir and baseName
parameters. This prevents transaction log
files from accumulating for an incremental
backup.

Parameter Type Description

ttBackup

8-4 Oracle TimesTen In-Memory Database C Developer's Guide

atomic ttBooleanType Specifies the disposition of an existing backup
with the same baseName and backupDir
while the new backup is being created.

This parameter has an effect only on full file
backups when there is an existing backup with
the same baseName and backupDir. It is
ignored for incremental backups because they
augment, rather than replace, an existing
backup. It is ignored for stream backups
because they write to the given stream, ignoring
the baseName and backupDir parameters.

The following are valid values:

■ TT_FALSE: The existing backup is
destroyed before the new backup begins. If
the new backup fails to complete, neither
the new, incomplete, backup nor the
existing backup can be used to restore the
database. This option should be used only
when the database is being backed up for
the first time, when there is a another
backup of the database that uses a different
baseName or backupDir, or when the
application can tolerate a window of time
(typically tens of minutes long for large
databases) during which no backup of the
database exists.

■ TT_TRUE: The existing backup is destroyed
only after the new backup has completed
successfully. If the new backup fails to
complete, the old backup is retained and
can be used to restore the database. If there
is an existing backup with the same
baseName and backupDir then the use of
this option ensures that there is no window
of time during which neither the existing
backup nor the new backup is available for
restoring the database, and it ensures that
the existing backup will be destroyed only
if it has been successfully superseded by
the new backup. However, it does require
enough disk space for both the existing and
new backups to reside in the backupDir at
the same time.

backupDir const char* Specifies the backup directory for file backups.
It is ignored for stream backups. Otherwise it
must be non-null.

For TT_BACKUP_INCREMENTAL_STOP, it
specifies the directory portion of the backup
path that is to be disabled.

For TT_BACKUP_INCREMENTAL_STOP or a file
backup, an error is returned if NULL is specified.

Parameter Type Description

ttBackup

TimesTen Utility API 8-5

Example
This example backs up the database for the payroll DSN into C:\backup.

ttUtilHandle utilHandle;
int rc;
rc = ttBackup (utilHandle, "DSN=payroll", TT_BACKUP_FILE_FULL,
 TT_TRUE, "c:\\backup", NULL, TTUTIL_INVALID_FILE_HANDLE);

Upon successful backup, all files are created in the C:\backup directory.

Note
Each database supports only eight incremental-enabled backups.

See also
ttRestore

baseName const char* Specifies the file prefix for the backup files in
the backup directory specified by the
backupDir parameter for file backups.

It is ignored for stream backups.

If NULL is specified for this parameter, the file
prefix for the backup files is the file name
portion of the DataStore attribute in the
ODBC definition of the database.

For TT_BACKUP_INCREMENTAL_STOP, this
parameter specifies the basename portion of the
backup path that is to be disabled.

stream ttUtFileHandle For stream backups, this parameter specifies the
stream to which the backup is to be written.

On UNIX, it is an integer file descriptor that can
be written to by using write(2). Pass 1 to
write the backup to stdout.

On Windows, it is a handle that can be written
to using WriteFile. Pass the result of
GetStdHandle(STD_OUTPUT_HANDLE) to
write the backup to the standard output.

This parameter is ignored for file backups.

The application can pass
TTUTIL_INVALID_FILE_HANDLE for this
parameter.

Parameter Type Description

ttDestroyDataStore

8-6 Oracle TimesTen In-Memory Database C Developer's Guide

ttDestroyDataStore

Description
Destroys a database, including all checkpoint files, transaction logs and daemon
catalog entries corresponding to the database specified by the connection string. It
does not delete the DSN itself defined in the odbc.ini file on the supported UNIX
platforms or in Windows registry on the supported Windows platforms.

Required privilege
Requires instance administrator.

Syntax
ttDestroyDataStore (ttUtilHandle handle, const char* connStr,
 unsigned int timeout)

Parameters

Example
This example destroys a database defined by the payroll DSN, consisting of files
C:\dsns\payroll.ds0, C:\dsns\payroll.ds1, and several transaction log files
C:\dsns\payroll.logn.

char errBuff [256];
int rc;
unsigned int retCode;
ttUtilErrType retType;
ttUtilHandle utilHandle;
...
...
rc = ttDestroyDataStore (utilHandle, "DSN=payroll", 30);
if (rc == TTUTIL_SUCCESS)
 printf ("Datastore payroll successfully destroyed.\n");
else if (rc == TTUTIL_INVALID_HANDLE)
 printf ("TimesTen utility library handle is invalid.\n");
else

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library environment
handle allocated using ttUtilAllocEnv.

connStr const char* A null-terminated string specifying the
connection string that describes the database to be
destroyed. All attributes in this connection string,
except the DSN and the DataStore attribute, are
ignored.

timeout unsigned int Specifies the number of times to retry before
returning to the caller. ttDestroyDataStore
continually retries the destroy operation every
second until it is successful or the timeout is
reached. This is useful in those situations where
the destroy fails due to some temporary
condition, such as when the database is in use.

No retry is performed if this parameter value is 0.

ttDestroyDataStore

TimesTen Utility API 8-7

 while ((rc = ttUtilGetError (utilHandle, 0, &retCode,
 &retType, errBuff, sizeof (errBuff), NULL)) !=
 TTUTIL_NODATA)
 {
 ...
 ...
}

ttDestroyDataStoreForce

8-8 Oracle TimesTen In-Memory Database C Developer's Guide

ttDestroyDataStoreForce

Description
Destroys a database, including all checkpoint files, transaction logs and daemon
catalog entries corresponding to the database specified by the connection string. It
does not delete the DSN itself defined in the odbc.ini file on the supported UNIX
platforms or in the Windows registry on supported Windows platforms.

Required privilege
Requires instance administrator.

Syntax
ttDestroyDataStoreForce (ttUtilHandle handle, const char* connstr,
 unsigned int timeout)

Parameters

Example
This example destroys a database defined by the payroll DSN, consisting of files
C:\dsns\payroll.ds0, C:\dsns\payroll.ds1, and several transaction log files
C:\dsns\payroll.logn.

char errBuff [256];
int rc;
unsigned int retCode;
ttUtilErrType retType;
ttUtilHandle utilHandle;
...
...
rc = ttDestroyDataStoreForce (utilHandle, "DSN=payroll", 30);
if (rc == TTUTIL_SUCCESS)
 printf ("Datastore payroll successfully destroyed.\n");
else if (rc == TTUTIL_INVALID_HANDLE)
 printf ("TimesTen utility library handle is invalid.\n");
else

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library environment
handle allocated using ttUtilAllocEnv.

connStr const char* A null-terminated string specifying the connection
string that describes the database to be destroyed.
All attributes in this connection string, except the
DSN and the DataStore attribute, are ignored.

timeout unsigned int Specifies the number of seconds to retry before
returning to the caller. The
ttDestroyDataStoreForce utility continually
retries the destroy operation every second until it
is successful or the timeout is reached. This is
useful when the destroy fails due to some
temporary condition, such as when the database is
in use.

No retry is performed if this parameter value is 0.

ttDestroyDataStoreForce

TimesTen Utility API 8-9

 while ((rc = ttUtilGetError (utilHandle, 0, &retCode,
 &retType, errBuff, sizeof (errBuff), NULL)) !=
 TTUTIL_NODATA)
 {
 ...
 ...
}

ttRamGrace

8-10 Oracle TimesTen In-Memory Database C Developer's Guide

ttRamGrace

Description
Specifies the number of seconds the database specified by the connection string is kept
in RAM by TimesTen after the last application disconnects from the database.
TimesTen then unloads the database. This grace period can be set or reset at any time
but is only in effect if the RAM policy is TT_RAMPOL_INUSE.

Required privilege
Requires instance administrator.

Syntax
ttRamGrace (ttUtilHandle handle, const char* connStr, unsigned int seconds)

Parameters

Example
This example sets the RAM grace period of 10 seconds for the payroll DSN.

ttUtilHandle utilHandle;
int rc;
rc = ttRamGrace (utilHandle, "DSN=payroll", 10);

See also
ttRamLoad
ttRamPolicy
ttRamUnload

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library
environment handle allocated using
ttUtilAllocEnv.

connStr const char* A null-terminated string specifying a
connection string that describes the database for
which the RAM grace period is set.

seconds unsigned int Specifies the number of seconds TimesTen keeps
the database in RAM after the last application
disconnects from the database. TimesTen then
unloads the database.

ttRamLoad

TimesTen Utility API 8-11

ttRamLoad

Description
Causes TimesTen to load the database specified by the connection string into the
system RAM. For a permanent database, a call to ttRamLoad is valid only when
RamPolicy is set to TT_RAMPOL_MANUAL. For a temporary database, a call to
ttRamLoad loads the database into RAM.

Required privilege
Requires instance administrator.

Syntax
ttRamLoad (ttUtilHandle handle, const char* connStr)

Parameters

Example
This example loads the database for the payroll DSN.

ttUtilHandle utilHandle;
int rc;
rc = ttRamLoad (utilHandle, "DSN=payroll");

See also
ttRamGrace
ttRamPolicy
ttRamUnload

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library
environment handle allocated using
ttUtilAllocEnv.

connStr const char* A null-terminated string specifying a
connection string that describes the database to
be loaded into RAM.

ttRamPolicy

8-12 Oracle TimesTen In-Memory Database C Developer's Guide

ttRamPolicy

Description
Defines the policy used to determine when TimesTen loads the database specified by
the connection string into the system RAM.

Required privilege
Requires instance administrator.

Syntax
ttRamPolicy (ttUtilHandle handle, const char* connStr,
 ttRamPolicyType policy)

Parameters

Example
This example sets the RAM policy to manual for the payroll DSN.

ttUtilHandle utilHandle;
int rc;
rc = ttRamPolicy (utilHandle, "DSN=payroll", TT_RAMPOL_MANUAL);

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library
environment handle allocated using
ttUtilAllocEnv.

connStr const char* A null-terminated string specifying a
connection string that describes the database for
which the RAM policy is to be set.

policy ttRamPolicyType Specifies the policy used to determine when
TimesTen loads the specified database into
system RAM. Valid values are the following:

■ TT_RAMPOL_ALWAYS: Specifies that the
database should always remain in RAM.

■ TT_RAMPOL_MANUAL: Specifies that the
database can be loaded into RAM explicitly
using either the ttRamLoad C function or
the ttAdmin -ramLoad command.
Similarly, the database can be unloaded
from RAM explicitly by using
ttRamUnload C function or using
ttAdmin -ramUnload command.

■ TT_RAMPOL_INUSE: Specifies that the
database is to be loaded into RAM when an
application wants to connect to the
database. This RAM policy may be further
modified using the ttRamGrace C
function or using the ttAdmin
-ramGrace command.

If you do not explicitly set the RAM policy for
the specified database, the default RAM policy
is TT_RAMPOL_INUSE.

ttRamPolicy

TimesTen Utility API 8-13

Note
The policy cannot be set for a temporary database.

See also
ttRamGrace
ttRamLoad
ttRamUnload

ttRamUnload

8-14 Oracle TimesTen In-Memory Database C Developer's Guide

ttRamUnload

Description
Causes TimesTen to unload the database specified by the connection string from the
system RAM if the TimesTen RAM policy is set to manual. (Refer to "ttRamPolicySet"
in Oracle TimesTen In-Memory Database Reference for related information.) For a
permanent database, this call is valid only when RAM policy is set to
TT_RAMPOL_MANUAL. For a temporary database, a call to ttRamUnload always tries
to unload the database from RAM because RAM policy cannot be set for such a
database.

Required privilege
Requires instance administrator.

Syntax
ttRamUnload (ttUtilHandle handle, const char* connStr)

Parameters

Example
This example unloads the database from RAM for the payroll DSN.

ttUtilHandle utilHandle;
int rc;
rc = ttRamUnload (utilHandle, "DSN=payroll");

Notes
When using this function with a temporary database, TimesTen always attempts to
unload the database.

See also
ttRamGrace
ttRamLoad
ttRamPolicy

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library
environment handle allocated using
ttUtilAllocEnv.

connStr const char* A null-terminated string specifying a
connection string for the database to be
unloaded from RAM.

ttRepDuplicateEx

TimesTen Utility API 8-15

ttRepDuplicateEx

Description
Creates a replica of a remote database on the local system. The process is initiated from
the receiving local system. From there, a connection is made to the remote source
database to perform the duplicate operation.

Required privilege
Requires an instance administrator on the receiving local database (where
ttRepDuplicateEx is called) and a user with ADMIN privilege on the remote source
database. Create the internal user on the remote source store as necessary.

In addition, be aware of the following requirements to execute ttRepDuplicateEx:

■ The operating system user name of the instance administrator on the receiving
local database must be the same as the operating system user name of the instance
administrator on the remote source database.

■ When ttRepDuplicateEx is called, the uid and pwd data structure elements
must specify the user name and password of the user with ADMIN privilege on the
remote source database. This user name is used to connect to the remote source
database to perform the duplicate operation.

Syntax
ttRepDuplicateEx (ttUtilHandle handle,
 const char* destConnStr,
 const char* srcDatabase,
 const char* remoteHost,
 ttRepDuplicateExArg* arg
)
typedef struct
{
 unsigned int size; /*set to size of(ttRepDuplicateExArg) */
 unsigned int flags;
 const char* uid;
 const char* pwd;
 const char* pwdcrypt;
 const char* cacheuid;
 const char* cachepwd;
 const char* localHost;

Notes:

■ This utility includes features to recover from a site failure by
creating a disaster recovery (DR) read-only subscriber as part of
the active standby pair replication scheme. See "Using a disaster
recovery subscriber in an active standby pair" in Oracle TimesTen
In-Memory Database TimesTen to TimesTen Replication Guide for
additional information.

■ If the database does not use cache groups, the following items
discussed below are not relevant: cacheuid and cachepwd data
structure elements; TT_REPDUP_NOKEEPCG,
TT_REPDUP_RECOVERINGNODE, TT_REPDUP_INITCACHEDR,
and TT_REPDUP_DEFERCACHEUPDATE flag values.

ttRepDuplicateEx

8-16 Oracle TimesTen In-Memory Database C Developer's Guide

 int truncListLen;
 const char** truncList;
 int dropListLen;
 const char** dropList;
 int maxkbytesPerSec;
 int remoteDaemonPort;
 int nThreads4initDR;
 int crsManaged;
 /*new struct elements can only be added here at the end */
} ttRepDuplicateExArg

Parameters

Struct elements
The ttRepDuplicateEx argument structure contains these elements:

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library
environment handle allocated using
ttUtilAllocEnv.

destConnStr const char* A null-terminated string specifying the
connection string for a local database into
which the replica of the remote database is
created.

srcDatabase const char* A null-terminated string specifying the remote
source database name. This name is the last
component of the database path name.

remoteHost const char* A null-terminated string specifying the
TCP/IP host name of the system where the
remote source database is located.

arg ttRepDuplicateExArg* The address of the structure containing the
desired ttRepDuplicateEx arguments. If
NULL is passed in for arg or if the value of arg
->size is invalid, TimesTen returns error
12230, "Invalid argument value", and
TTUTIL_ERROR.

Element Type Description

size unsigned int Must be set up to sizeof
(ttRepDuplicateExArg).

flags unsigned int The bit-wise union of values chosen from the
list in the table of flag values.

uid const char* The user name of a user on the remote source
database with ADMIN privileges. This user name
is used to connect to the remote source database
to perform the duplicate operation.

pwd const char* The password associated with the user ID.

pwdcrypt const char* The encrypted password associated with the
user ID.

cacheuid const char* Cache administration user ID.

cachepwd const char* Cache administration user password.

ttRepDuplicateEx

TimesTen Utility API 8-17

The ttRepDuplicateExArg flags element is constructed from these values:

localHost const char* A null-terminated string specifying the TCP/IP
host name of the local system. This element is
ignored if remoteRepStart is TT_FALSE. This
explicitly identifies the local host. This
parameter can be null, which is useful if the
local host uses a nonstandard name such as an
IP address.

truncListLen int The number of elements in the truncList.

truncList const char** A list of non-replicated tables to truncate after
duplicate.

dropListLen int The number of elements in dropList.

dropList const char** A list of non-replicated tables to drop after the
duplicate operation.

maxkbytesPerSec int Setting maxkbytesPerSec to a nonzero value
specifies that the duplicate operation should not
put more than maxkbytesPerSec kilobytes of
data per second onto the network. Setting
maxkbytesPerSec to 0 or a negative number
indicates that the duplicate operation should
not attempt to limit its bandwidth.

remoteDaemonPort int Specifies the remote daemon port. Setting
remoteDaemonPort to 0 results in the daemon
port number for the target database being set to
the port number used for the daemon on the
source database.

This option cannot be used in duplicate
operations for databases with automatic port
configuration.

nThreads4initDR int For the disaster recovery subscriber, this
determines the number of threads used to
initialize the Oracle database on the disaster
recovery site.

After the TimesTen database is copied to the
disaster recovery system, the Oracle database
tables are truncated and the data from the
TimesTen cache groups is copied to the Oracle
database on the disaster recovery system.

Also see the TT_REPDUP_INITCACHEDR flag
below.

crsManaged int For internal use. This should be set to 0
(default).

Value Description

TT_REPDUP_NOFLAGS No flags.

TT_REPDUP_COMPRESS Enables compression of the data transmitted
over the network for the duplicate operation.

Element Type Description

ttRepDuplicateEx

8-18 Oracle TimesTen In-Memory Database C Developer's Guide

Example
This example creates a replica of a remote TimesTen DSN, remote_payroll with the
database path name C:\dsns\payroll, to a local DSN local_payroll.

ttUtilHandle utilHandle;
int rc;
ttRepDuplicateExArg arg;

memset(&arg, 0, sizeof(arg));
arg.size = sizeof(ttRepDuplicateExArg);
arg.flags = TT_REPDUP_REPSTART | TT_REPDUP_DELXLA;
arg.localHost = "mylocalhost";

TT_REPDUP_REPSTART Directs ttRepDuplicateEx to set the
replication state (with respect to the local
database) in the remote database to the start
state before the remote database is copied
across the network. This ensures that all
updates made after the duplicate operation are
replicated from the remote database to the
newly created or restored local database.

TT_REPDUP_RAMLOAD Keeps the database in memory upon
completion of the duplicate operation. It
changes the RAM policy for the database to
manual.

TT_REPDUP_DELXLA ttRepDuplicateEx removes all the XLA
bookmarks as part of the duplicate operation.

TT_REPDUP_NOKEEPCG Do not preserve the cache group definitions.
ttRepDuplicateEx converts all cache group
tables into regular tables.

By default, cache group definitions are
preserved.

TT_REPDUP_RECOVERINGNODE Specifies that ttRepDuplicateEx is being
used to recover a failed node for a replication
scheme that includes an AWT or autorefresh
cache group. Do not specify
TT_REPDUP_RECOVERINGNODE when rolling
out a new or modified replication scheme to a
node. If ttRepDuplicateEx cannot update
metadata stored on the Oracle database and all
incremental autorefresh cache groups are
replicated, then updates to the metadata will
be automatically deferred until the cache and
replication agents are started.

TT_REPDUP_DEFERCACHEUPDATE Forces the deferral of changes to metadata
stored on the Oracle database until the cache
and replication agents are started and the
agents can connect to the Oracle database.
Using this option can cause a full autorefresh
if some incremental cache groups are not
replicated or if ttRepDuplicateEx is being
used for rolling out a new or modified
replication scheme to a node.

TT_REPDUP_INITCACHEDR Initializes disaster recovery. You must also
specify cacheuid and cachepwd in the data
structure. Also see nThreads4initDR in the
data structure.

Value Description

ttRepDuplicateEx

TimesTen Utility API 8-19

arg.uid="myuid";
arg.pwd="mypwd";
rc=ttRepDuplicateEx(utilHandle,"DSN=local_payroll","payroll","remotehost", &arg);

See also
The following built-in procedures are described in "Built-In Procedures" in Oracle
TimesTen In-Memory Database Reference.

ttReplicationStatus
ttRepPolicySet
ttRepStop
ttRepSubscriberStateSet
ttRepSyncGet
ttRepSyncSet

ttRestore

8-20 Oracle TimesTen In-Memory Database C Developer's Guide

ttRestore

Description
Restores a database specified by the connection string from a backup that has been
created using the ttBackup C function or ttBackup utility. If the database already
exists, ttRestore will not overwrite it.

For an overview of the TimesTen backup and restore facility, see "Migration, backup,
and restoration of the database" in Oracle TimesTen In-Memory Database Operations
Guide.

Required privilege
Requires instance administrator.

Syntax
ttRestore (ttUtilHandle handle, const char* connStr,
 ttRestoreType type, const char* backupDir,
 const char* baseName, ttUtFileHandle stream,
 unsigned intflags)

Parameters

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library
environment handle allocated using
ttUtilAllocEnv.

connStr const char* A null-terminated string specifying a
connection string that describes the database to
be restored.

type ttRestoreType Indicates whether the database is to be restored
from a file or a stream backup. Valid values are
the following:

■ TT_RESTORE_FILE: The database is to be
restored from a file backup located at the
backup path specified by the backupDir
and baseName parameters.

■ TT_RESTORE_STREAM: The database is to
be restored from a stream backup read from
the given stream.

backupDir const char* For TT_RESTORE_FILE, specifies the directory
where the backup files are stored.

For TT_RESTORE_STREAM, this parameter is
ignored.

baseName const char* For TT_RESTORE_FILE, specifies the file prefix
for the backup files in the backup directory
specified by the backupDir parameter.

If NULL is specified, the file prefix for the
backup files is the file name portion of the
DataStore attribute of the database ODBC
definition.

For TT_RESTORE_STREAM, this parameter is
ignored.

ttRestore

TimesTen Utility API 8-21

Example
This example restores the database for the payroll DSN from C:\backup.

ttUtilHandle utilHandle;
int rc;

rc = ttRestore (utilHandle, "DSN=payroll", TT_RESTORE_FILE,
 "c:\\backup", NULL, TTUTIL_INVALID_FILE_HANDLE, 0);

See also
ttBackup

stream ttUtFileHandle For TT_RESTORE_STREAM, specifies the stream
from which the backup is to be read.

On UNIX, it is an integer file descriptor that can
be read from using read(2). Pass 0 to read the
backup from stdin.

On Windows, it is a handle that can be read
from using ReadFile. Pass the result of
GetStdHandle(STD_INPUT_HANDLE) to read
from the standard input.

For TT_RESTORE_FILE, this parameter is
ignored. The application can pass
TTUTIL_INVALID_FILE_HANDLE for this
parameter.

flags unsigned int Reserved for future use. Specify 0.

Parameter Type Description

ttUtilAllocEnv

8-22 Oracle TimesTen In-Memory Database C Developer's Guide

ttUtilAllocEnv

Description
Allocates memory for a TimesTen utility library environment handle and initializes the
TimesTen utility library interface for use by an application. An application must call
ttUtilAllocEnv before calling any other TimesTen utility library function. In
addition, an application must call ttUtilFreeEnv when it is done with the TimesTen
utility library interface.

Required privilege
None.

Syntax
ttUtilAllocEnv (ttUtilHandle* handle_ptr, char* errBuff,
 unsigned int buffLen, unsigned int* errLen)

Parameters

Return codes
This utility returns the following code as defined in ttutillib.h.

Otherwise, it returns a TimesTen-specific error message as defined in tt_errCode.h
and a corresponding error message in the buffer provided by the caller.

Example
This example allocates and initializes a TimesTen utility library environment handle
with the name utilHandle.

Parameter Type Description

handle_ptr ttUtilHandle* Specifies a pointer to storage where the
TimesTen utility library environment handle is
returned.

errBuff char* A user allocated buffer where error messages (if
any) are returned. The returned error message is
a null-terminated string. If the length of the
error message exceeds buffLen-1, it is
truncated to buffLen-1. If this parameter is
null, buffLen is ignored and TimesTen does
not return error messages to the calling
application.

buffLen unsigned int Specifies the size of the buffer errBuff. If this
parameter is 0, TimesTen does not return error
messages to the calling application.

errLen unsigned int* A pointer to an unsigned integer where the
actual length of the error message is returned. If
it is NULL, this parameter is ignored.

Code Description

TTUTIL_SUCCESS Returned upon success.

ttUtilAllocEnv

TimesTen Utility API 8-23

char errBuff [256];
int rc;
ttUtilHandle utilHandle;

rc = ttUtilAllocEnv (&utilHandle, errBuff, sizeof(errBuff), NULL);

See also
ttUtilFreeEnv
ttUtilGetError
ttUtilGetErrorCount

ttUtilFreeEnv

8-24 Oracle TimesTen In-Memory Database C Developer's Guide

ttUtilFreeEnv

Description
Frees memory associated with the TimesTen utility library handle.

An application must call ttUtilAllocEnv before calling any other TimesTen utility
library function. In addition, an application must call ttUtilFreeEnv when it is
done with the TimesTen utility library interface.

Required privilege
None.

Syntax
ttUtilFreeEnv (ttUtilHandle handle, char* errBuff,
 unsigned int buffLen, unsigned int* errLen)

Parameters

Return codes
This utility returns the following codes as defined in ttutillib.h.

Otherwise, it returns a TimesTen-specific error message as defined in tt_errCode.h
and a corresponding error message in the buffer provided by the caller.

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library
environment handle allocated using
ttUtilAllocEnv.

errBuff char* A user-allocated buffer where error messages
are to be returned. The returned error message
is a null-terminated string. If the length of the
error message exceeds buffLen-1, it is
truncated to buffLen-1. If this parameter is
NULL, buffLen is ignored and TimesTen does
not return error messages to the calling
application.

buffLen unsigned int Specifies the size of the buffer errBuff. If this
parameter is 0, TimesTen does not return error
messages to the calling application.

errLen unsigned int* A pointer to an unsigned integer where the
actual length of the error message is returned. If
it is NULL, this parameter is ignored.

Code Description

TTUTIL_SUCCESS Returned upon success.

TTUTIL_INVALID_HANDLE Returned if an invalid utility library handle is specified.

ttUtilFreeEnv

TimesTen Utility API 8-25

Example
This example frees a TimesTen utility library environment handle named
utilHandle.

char errBuff [256];
int rc;
ttUtilHandle utilHandle;

rc = ttUtilFreeEnv (utilHandle, errBuff, sizeof(errBuff), NULL);

See also
ttUtilAllocEnv
ttUtilGetError
ttUtilGetErrorCount

ttUtilGetError

8-26 Oracle TimesTen In-Memory Database C Developer's Guide

ttUtilGetError

Description
Retrieves the errors and warnings generated by the last call to the TimesTen C utility
library functions excluding ttUtilAllocEnv and ttUtilFreeEnv.

Required privilege
None.

Syntax
ttUtilGetError (ttUtilHandle handle, unsigned int errIndex,
 unsigned int* retCode, ttUtilErrType* retType,
 char* errbuff, unsigned int buffLen,
 unsigned int* errLen)

Parameters

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library
environment handle allocated using
ttUtilAllocEnv.

errIndex unsigned int Indicates error or warning record to be retrieved
from the TimesTen utility library error array.
Valid values are as follows:

■ 0: Retrieve the next record from the utility
library error array.

■ 1...n: Retrieve the specified record from the
utility library error array, where n is the
error count returned by the
ttUtilGetErrorCount call.

retCode unsigned int* Returns the TimesTen-specific error or warning
codes as defined in tt_errCode.h.

retType ttUtilErrType* Indicates whether the returned message is an
error or warning. The following are valid return
values:

■ TTUTIL_ERROR

■ TTUTIL_WARNING

errBuff char* A user allocated buffer where error messages (if
any) are to be returned. The returned error
message is a null-terminated string. If the length
of the error message exceeds buffLen-1, it is
truncated to buffLen-1. If this parameter is
NULL, buffLen is ignored and TimesTen does
not return error messages to the calling
application.

buffLen unsigned int Specifies the size of the buffer errBuff. If this
parameter is 0, TimesTen does not return error
messages to the calling application.

errLen unsigned int* A pointer to an unsigned integer where the
actual length of the error message is returned. If
it is NULL, TimesTen ignores this parameter.

ttUtilGetError

TimesTen Utility API 8-27

Return codes
This utility returns the following codes as defined in ttutillib.h.

Example
This example retrieves all error or warning information after calling
ttDestroyDataStore for the DSN named payroll.

char errBuff[256];
int rc;
unsigned int retCode;
ttUtilErrType retType;
ttUtilHandle utilHandle;

rc = ttDestroyDataStore (utilHandle, "DSN=PAYROLL", 30);
if ((rc == TTUTIL_SUCCESS)
 printf ("Datastore payroll successfully destroyed.\n");
else if (rc == TTUTIL_INVALID_HANDLE)
 printf ("TimesTen utility library handle is invalid.\n");
else
 while ((rc = ttUtilGetError (utilHandle, 0,
 &retCode, &retType, errBuff, sizeof (errBuff),
 NULL)) != TTUTIL_NODATA)
 {
...
...
}

Notes
Each of the TimesTen C functions can potentially generate multiple errors and
warnings for a single call from an application. To retrieve all of these errors and
warnings, the application must make repeated calls to ttUtilGetError until it
returns TTUTIL_NODATA.

See also
ttUtilAllocEnv
ttUtilFreeEnv
ttUtilGetErrorCount

Code Description

TTUTIL_SUCCESS Returned upon success.

TTUTIL_INVALID_HANDLE Returned if an invalid utility library handle is specified.

TTUTIL_NODATA Returned if no error or warming information is retrieved.

ttUtilGetErrorCount

8-28 Oracle TimesTen In-Memory Database C Developer's Guide

ttUtilGetErrorCount

Description
Retrieves the number of errors and warnings generated by the last call to the TimesTen
C utility library functions, excluding ttUtilAllocEnv and ttUtilFreeEnv. Each
of these functions can potentially generate multiple errors and warnings for a single
call from an application. To retrieve all of these errors and warnings, the application
must make repeated calls to ttUtilGetError until it returns TTUTIL_NODATA.

Required privilege
None.

Syntax
ttUtilGetErrorCount (ttUtilHandle handle,
 unsigned int* errCount)

Parameters

Return codes
The utility returns the following codes as defined in ttutillib.h.

Example
This example retrieves the error and warning count information after calling
ttDestroyDataStore for the DSN named payroll.

int rc;
unsigned int errCount;
ttUtilHandle utilHandle;

rc = ttDestroyDataStore (utilHandle, "DSN=payroll", 30);
if (rc == TTUTIL_SUCCESS)
 printf ("Datastore payroll successfully destroyed.\n")

else if (rc == TTUTIL_INVALID_HANDLE)
 printf ("TimesTen utility library handle is invalid.\n");
else
{

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library
environment handle allocated using
ttUtilAllocEnv.

errCount unsigned int* Indicates the number of errors and warnings
generated by the last call, excluding
ttUtilAllocEnv and ttUtilFreeEnv, to the
TimesTen utility library.

Code Description

TTUTIL_SUCCESS Returned upon success.

TTUTIL_INVALID_HANDLE Returned if an invalid utility library handle is specified.

ttUtilGetErrorCount

TimesTen Utility API 8-29

rc = ttUtilGetErrorCount(utilHandle, &errCount);
 ...
 ...
}

Notes
Each of the TimesTen utility library functions can potentially generate multiple errors
and warnings for a single call from an application. To retrieve all of these errors and
warnings, the application must make repeated calls to ttUtilGetError until it
returns TTUTIL_NODATA.

See also
ttUtilAllocEnv
ttUtilFreeEnv
ttUtilGetError

ttXactIdRollback

8-30 Oracle TimesTen In-Memory Database C Developer's Guide

ttXactIdRollback

Description
Rolls back the transaction indicated by the transaction ID that is specified. The
intended user of ttXactIdRollback is the ttXactAdmin utility. However,
programs that want to have a thread with the power to roll back the work of other
threads must ensure that those threads call the ttXactIdGet built-in procedure
before beginning work and put the results into a location known to the thread that
executes the rollback.

Required privilege
Requires ADMIN.

Syntax
ttXactIdRollback (ttUtilHandle handle, const char* connStr,
 const char* xactId)

Parameters

Example
This example rolls back a transaction with the ID 3.4567 in the database named
payroll.

char errBuff [256];
int rc;
unsigned int retCode;
ttUtilErrType retType;
ttUtilHandle utilHandle;
...
rc = ttXactIdRollback (utilHandle, "DSN=payroll", "3.4567");
if (rc == TTUTIL_SUCCESS)
 printf ("Transaction ID successfully rolled back.\n");
else if (rc == TTUTIL_INVALID_HANDLE)
 printf ("TimesTen utility library handle is invalid.\n");
else
 while ((rc = ttUtilGetError (utilHandle, 0, &retCode,
 &retType, errBuff, sizeof (errBuff), NULL)) != TTUTIL_NODATA)
 {
 ...
}

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library
environment handle allocated using
ttUtilAllocEnv.

connStr const char** The connection string of the database, which
contains the transaction to be rolled back.

xactId const char* The transaction ID for the transaction to be
rolled back.

9

XLA Reference 9-1

9XLA Reference

This chapter provides reference information for the Transaction Log API (XLA)
described in Chapter 5, "XLA and TimesTen Event Management". It includes the
following topics:

■ About XLA functions

■ Summary of XLA functions by category

■ XLA function reference

■ C data structures used by XLA

About XLA functions
This section includes general information about XLA functions.

About return codes
All of the XLA API functions described in this chapter return a value of type
SQLRETURN, which is defined by ODBC to have one of the following values:

■ SQL_SUCCESS

■ SQL_SUCCESS_WITH_INFO

■ SQL_NO_DATA_FOUND

■ SQL_ERROR

See "Handling XLA errors" on page 5-27 for information on handling XLA errors.

About parameter types (input, output, input-output)
In the function descriptions:

■ All parameters are input-only unless otherwise indicated.

■ Output parameters are prefixed with OUT.

■ Input-output parameters are prefixed with IN OUT.

About results output by functions
Most routines in this API copy results to application buffers. Those few routines that
produce pointers to buffers containing results are guaranteed to remain valid only
until the next call with the same XLA handle.

Exceptions to this rule include the following.

Summary of XLA functions by category

9-2 Oracle TimesTen In-Memory Database C Developer's Guide

■ Buffers remain valid across calls to the ttXlaError function that supplies
diagnostic information.

■ Results returned by ttXlaNextUpdate remain valid until the next call to
ttXlaNextUpdate.

■ For ttXlaConfigBuffer, or ttXlaAcknowledge in persistent mode, if the
application must retain access to the buffers for a longer time, it must copy the
information from the buffer returned by XLA to an application-owned buffer.

Character string values in XLA are null- terminated, except for actual column values.
Fixed-length CHAR columns are space-padded to their full length. VARCHAR columns
have an explicit length encoded.

XLA uses the same data structures for both 32- and 64-bit platforms. The types
SQLUINTEGER and SQLUBIGINT are used to refer to 32- and 64-bit integers
unambiguously. Issues of alignment and padding are addressed by filling the type
definition so that each SQLUINTEGER value is on a four-byte boundary and each
SQLUBIGINT value is on an eight-byte boundary. For a description of storage
requirements for other TimesTen data types, see "Understanding rows" in Oracle
TimesTen In-Memory Database Operations Guide.

About required privileges
"Access control impact on XLA" on page 5-8 introduces the effects of TimesTen access
control features on XLA functionality. Any XLA functionality requires the system
privilege XLA.

Summary of XLA functions by category
As described in Chapter 5, "XLA and TimesTen Event Management", TimesTen XLA
can be used to detect updates on a database or as a toolkit to build your own
replication solution. You can initialize XLA in either persistent or non-persistent mode,
but use of non-persistent mode is discouraged.

This section categorizes the XLA functions based on their use and provides a brief
description of each function. It includes the following categories:

■ XLA core functions including data type conversion functions

■ XLA persistent mode functions

■ XLA non-persistent mode functions

■ XLA replication functions

XLA core functions including data type conversion functions
The following table lists core XLA functions that can be used by any XLA application:

Function Description

ttXlaClose Closes the XLA handle opened by ttXlaPersistOpen.

ttXlaConvertCharType Converts column data into the connection character set.

ttXlaError Retrieves error information.

ttXlaErrorRestart Resets error stack information.

ttXlaGetColumnInfo Retrieves information about all the columns in the table.

Summary of XLA functions by category

XLA Reference 9-3

See "Writing an XLA event-handler application" on page 5-9 for a discussion on how to
use most of these functions.

The following table lists data type conversion functions that can be used by any XLA
application:

ttXlaGetTableInfo Retrieves information about a table.

ttXlaGetVersion Retrieves the current version of XLA.

ttXlaNextUpdate Retrieves a batch of updates from TimesTen.

ttXlaNextUpdateWait Retrieves a batch of updates from TimesTen. Will wait for a
specified time if no updates are available in the transaction
log.

ttXlaTableByName Finds the system and user table identifiers for a table given
the table's owner and name.

ttXlaTableStatus Sets and retrieves XLA status for a table.

ttXlaSetVersion Sets the XLA version to be used.

ttXlaTableVersionVerify Checks whether the cached table definitions are compatible
with the XLA record being processed.

ttXlaVersionColumnInfo Retrieves information about the columns in a table for which
a change update record must be processed.

ttXlaVersionCompare Compares two XLA versions.

Function Description

ttXlaDateToODBCCType Converts a TTXLA_DATE_TT value to an ODBC C
value usable by applications.

ttXlaDecimalToCString Converts a TTXLA_DECIMAL_TT value to a
character string usable by applications.

ttXlaNumberToBigInt Converts a TTXLA_NUMBER value to a SQLBIGINT
C value usable by applications.

ttXlaNumberToCString Converts a TTXLA_NUMBER value to a character
string usable by applications.

ttXlaNumberToDouble Converts a TTXLA_NUMBER value to a long
floating point number value usable by
applications.

ttXlaNumberToInt Converts a TTXLA_NUMBER value to an integer
usable by applications.

ttXlaNumberToSmallInt Converts a TTXLA_NUMBER value to a
SQLSMALLINT C value usable by applications.

ttXlaNumberToTinyInt Converts a TTXLA_NUMBER value to a SQLCHAR C
value usable by applications.

ttXlaNumberToUInt Converts a TTXLA_NUMBER value to an unsigned
integer usable by applications.

ttXlaOraDateToODBCTimeStamp Converts a TTXLA_DATE value to an ODBC
timestamp usable by applications.

ttXlaOraTimeStampToODBCTimeStamp Converts a TTXLA_TIMESTAMP value to an ODBC
timestamp usable by applications.

Function Description

Summary of XLA functions by category

9-4 Oracle TimesTen In-Memory Database C Developer's Guide

For more information about XLA data types, see "About XLA data types" on page 5-6.

XLA persistent mode functions
The following table lists the functions that are exclusive to operating XLA in persistent
mode:

See "Writing an XLA event-handler application" on page 5-9 for a discussion on how to
use these functions.

XLA non-persistent mode functions

The following table lists the functions that are exclusive to operating XLA in
non-persistent mode:

XLA replication functions
The following table lists the functions that are exclusive to using XLA as a replication
mechanism include the following.

ttXlaRowidToCString Converts a ROWID value to a character string value
usable by applications.

ttXlaTimeToODBCCType Converts a TTXLA_TIME value to an ODBC C
value usable by applications.

ttXlaTimeStampToODBCCType Converts a TTXLA_TIMESTAMP_TT value to an
ODBC C value usable by applications.

Function Description

ttXlaPersistOpen Initializes a handle to a database to access the transaction log in
persistent mode.

ttXlaAcknowledge Acknowledges receipt of one or more transaction update records
from the transaction log.

ttXlaDeleteBookmark Deletes a transaction log bookmark.

ttXlaGetLSN Retrieves the log record identifier of the current bookmark for a
database.

ttXlaSetLSN Sets the log record identifier of the current bookmark for a
database.

Note: TimesTen recommends using XLA in persistent mode.

Function Description

ttXlaOpenTimesTen Initializes a handle to a database to access the transaction log in
non-persistent mode.

ttXlaConfigBuffer Sets the size of the XLA staging buffer.

ttXlaStatus Retrieves the current XLA status.

ttXlaResetStatus Resets all the XLA statistics counters.

Function Description

Summary of XLA functions by category

XLA Reference 9-5

See "Using XLA as a replication mechanism" on page 5-33 for a discussion on how to
use these functions.

Function Description

ttXlaApply Applies the update to the database associated with the XLA handle.

ttXlaTableCheck Verifies that the named table in the table description received from the
sending database is compatible with the receiving database.

ttXlaLookup Looks for an update record for a table with a specific key value.

ttXlaRollback Rolls back a transaction.

ttXlaCommit Commits a transaction.

ttXlaGenerateSQL Generates a SQL statement that expresses the effect of an update record.

XLA function reference

9-6 Oracle TimesTen In-Memory Database C Developer's Guide

XLA function reference

This section provides reference information for each XLA function. Functions are listed
in alphabetical order.

XLA function reference

XLA Reference 9-7

ttXlaAcknowledge

Description
This function is used in persistent mode to acknowledge that one or more records have
been read from the transaction log by the ttXlaNextUpdate or
ttXlaNextUpdateWait function.

After you make this call, the bookmark is reset so that you cannot reread any of the
previously returned records. Call ttXlaAcknowledge only when messages have
been completely processed.

Note that ttXlaAcknowledge is an expensive operation that should be used only as
necessary. Calling ttXlaAcknowledge more than once per reading of the transaction
log file does not reduce the volume of the transaction log since XLA only purges
transaction logs a file at a time. To detect when a new transaction log file is generated,
you can find out which log file a bookmark is in by examining the purgeLSN
(represented by the PURGELSNHIGH and PURGELSNLOW values) for the bookmark in
the system table SYS.TRANSACTION_LOG_API. You can then call
ttXlaAcknowledge to purge the old transaction log files. (Note that you must have
ADMIN or SELECT ANY TABLE privilege to view this table.)

The second purpose of ttXlaAcknowledge is to ensure that the XLA application
does not see the acknowledged records if it were to connect to a previously used
bookmark by calling the ttXlaPersistOpen function with the XLAREUSE option. If
you intend to reuse a bookmark, call ttXlaAcknowledge to reset the bookmark
position to the current record before calling ttXlaClose.

See "Retrieving update records from the transaction log" on page 5-12 for a discussion
about using this function.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaAcknowledge(ttXlaHandle_h handle)

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Notes:

■ The bookmark is only reset for the specified handle. Other
handles in the system may still be able to access those earlier
transactions.

■ The bookmark is reset even if there are no relevant update records
to acknowledge.

Parameter Type Description

handle ttXlaHandle_h The transaction log handle.

ttXlaAcknowledge

9-8 Oracle TimesTen In-Memory Database C Developer's Guide

Example
rc = ttXlaAcknowledge(xlahandle);

See also
ttXlaNextUpdate
ttXlaNextUpdateWait

XLA function reference

XLA Reference 9-9

ttXlaApply

Description
Applies an update to the database associated with the transaction log handle. The
return value indicates whether the update was successful. The return also shows if the
update encountered a persistent problem. (To see whether the update encountered a
transient problem such as a deadlock or timeout, you must call ttXlaError and
check the error code.)

If the ttXlaUpdateDesc_t record is a transaction commit, the underlying database
transaction is committed. No other transaction commits are performed by
ttXlaApply. If the parameter test is true, the "old values" in the update description
are compared against the current contents of the database for record updates and
deletions. If the old value in the update description does not match the corresponding
row in the database, this function rejects the update and returns an
sb_ErrXlaTupleMismatch error.

See "Using XLA as a replication mechanism" on page 5-33 for a discussion about using
this function.

Required privilege
Requires the system privilege ADMIN.

Additional privileges may be required on the target database for the ttXlaApply
operation. For example, to apply a CREATETAB (create table) record to the target
database, you must have CREATE TABLE or CREATE ANY TABLE privilege, as
appropriate.

Syntax
SQLRETURN ttXlaApply(ttXlaHandle_h handle,
 ttXlaUpdateDesc_t* record,
 SQLINTEGER test)

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Note: ttXlaApply cannot be used if the table definition was
updated since it was originally written to the transaction log. Unique
key and foreign key constraints are checked at the row level rather
than at the statement level.

Parameter Type Description

handle ttXlaHandle_h The transaction log handle for the database.

record ttXlaUpdateDesc_t* Transaction to generate SQL statement.

test SQLINTEGER Test for old values:

■ 1: Test on.

■ 0: Test off.

ttXlaApply

9-10 Oracle TimesTen In-Memory Database C Developer's Guide

If test is 1 and ttXlaApply detects an update conflict, an
sb_ErrXlaTupleMismatch error is returned.

Example
This example applies an update to a database without testing for the previous value of
the existing record:

ttXlaUpdateDesc_t record;
rc = ttXlaApply(xlahandle, &record, 0);

Note
When calling ttXlaApply, it is possible for the update to timeout or deadlock with
concurrent transactions. In such cases, it is the application's responsibility to roll the
transaction back and reapply the updates.

See also
ttXlaCommit
ttXlaRollback
ttXlaLookup
ttXlaTableCheck
ttXlaGenerateSQL

XLA function reference

XLA Reference 9-11

ttXlaClose

Description
Closes an XLA handle that was opened by ttXlaPersistOpen. See "Terminating an
XLA application" on page 5-31 for a discussion about using this function.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaClose(ttXlaHandle_h handle)

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

To close the XLA handle opened in the previous example, use the following call:

rc = ttXlaClose(xlahandle);

See also
ttXlaPersistOpen

Parameter Type Description

handle ttXlaHandle_h The ODBC handle for the database.

ttXlaCommit

9-12 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaCommit

Description
Commits the current transaction being applied on the transaction log handle. This
routine commits the transaction regardless of whether the transaction has completed.
You can call this routine to respond to transient errors (timeout or deadlock) reported
by ttXlaApply, which applies the current transaction if it does not encounter an
error.

See "Handling timeout and deadlock errors" on page 5-35 for a discussion about using
this function.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaCommit(ttXlaHandle_h handle)

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example
rc = ttXlaCommit(xlahandle);

See also
ttXlaApply
ttXlaRollback
ttXlaLookup
ttXlaTableCheck
ttXlaGenerateSQL

Parameter Type Description

handle ttXlaHandle_h The transaction log handle for the database.

XLA function reference

XLA Reference 9-13

ttXlaConfigBuffer

Description
This function is valid only when XLA is in non-persistent mode (which is generally
discouraged).

You can use the ttXlaConfigBuffer function to both set and get the size of the XLA
staging buffer, which is where XLA stages the update records obtained from the
transaction log and makes them available to be read by the application.

To first set the size of the staging buffer, specify a value for the newSize parameter
and a null value for the oldSize parameter. The new size of the staging buffer is
retrieved from *newSize. A size of zero indicates no staging buffer should be
allocated.

To change the size of the staging buffer, specify a value for newSize and provide an
oldSize parameter. Upon return, *oldSize contains the previous size of the staging
buffer, or 0 if the size had not been set.

To retrieve but not change the current size of the staging buffer, specify a null value for
newSize. The current size of the staging buffer is returned in *oldSize.

When choosing the size of your staging buffer, consider that if the buffer is too small,
TimesTen updates will exhaust the buffer, causing further updates to be rejected.
Conversely, over-allocating space for the buffer wastes memory.

After setting the size of your staging buffer, you can resize it at any time. However,
resizing may result in copying the current buffer and therefore incurring substantial
performance penalties.

Changes to the staging buffer size are carried out immediately. When the buffer is
resized, records that were returned by previous calls to ttXlaNextUpdate or
ttXlaNextUpdateWait become invalid.

Only one buffer may be configured for a database. When the buffer is resized, values
returned by previous calls on ttXlaNextUpdate become invalid.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaConfigBuffer(ttXlaHandle_h handle,
 out SQLUBIGINT* oldSize,
 SQLUBIGINT* newSize)

Notes:

■ If the XLA staging buffer is set to a nonzero size and no XLA
reader is connected, updates on the database will be written into
the buffer. When the staging buffer becomes full, database
operations cannot successfully complete until you either delete
the staging buffer (size set to 0) or connect an XLA reader and
begin reading from the buffer.

■ If a smaller size is specified for the staging buffer and the current
contents will not fit in the smaller size, the buffer size is not
changed and an error is returned.

ttXlaConfigBuffer

9-14 Oracle TimesTen In-Memory Database C Developer's Guide

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example
Assume the following declarations for our examples:

SQLUBIGINT currentSize, requestedSize;

To find the current size of the staging buffer without changing the size:

rc = ttXlaConfigBuffer(xlahandle, ¤tSize, NULL);

To set the size of the staging buffer to 400,000 bytes:

requestedSize = 400000;
...
rc = ttXlaConfigBuffer(xlahandle, NULL, &requestedSize);

To change the size of the staging buffer to 400,000 bytes and retrieve the previous size:

requestedSize = 400000;
...
rc = ttXlaConfigBuffer(xla_handle, ¤tSize, &requestedSize);

To delete the staging buffer:

requestedSize = 0;
...
rc = ttXlaConfigBuffer(xlahandle, NULL, &requestedSize);

Note
Buffer resizing may copy the current buffer and therefore incur substantial
performance penalties. If a smaller size is specified for the staging buffer and the
current contents will not fit in the smaller size, the staging buffer size is not changed
and an error is returned.

See also
ttXlaOpenTimesTen
ttXlaStatus
ttXlaResetStatus

Parameter Type Description

handle ttXlaHandle_h The transaction log handle for the database.

oldSize out SQLUBIGINT* Current size of the staging buffer.

newSize SQLUBIGINT* New size of the staging buffer.

XLA function reference

XLA Reference 9-15

ttXlaConvertCharType

Description
Converts the column data indicated by the colinfo and tup parameters into the
connection character set associated with the transaction log handle and places the
result in a buffer.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaConvertCharType (ttXlaHandle_h handle,
 ttXlaColDesc_t* colinfo,
 void* tup,
 void* buf,
 size_t buflen)

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Parameter Type Description

handle ttXlaHandle_h The transaction log handle for the database.

colinfo ttXlaColDesc_t* A pointer to the buffer that holds the column
descriptions.

tup void* The data that is to be converted.

buf void* Location where the converted data is placed.

buflen size_t Size of the buffer where the converted data is
placed.

ttXlaDateToODBCCType

9-16 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaDateToODBCCType

Description
Converts a TTXLA_DATE_TT value to an ODBC C value usable by applications. See
"Converting complex data types" on page 5-22 for a discussion about using this
function.

Call this function only on a column of data type TTXLA_DATE_TT. The data type can
be obtained from the ttXlaColDesc_t structure returned by the
ttXlaGetColumnInfo function.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaDateToODBCCType(void* fromData,
 out DATE_STRUCT* returnData)

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Parameter Type Description

fromData void* Pointer to the date value returned from the
transaction log.

returnData out DATE_STRUCT* Pointer to storage allocated to hold the
converted date.

XLA function reference

XLA Reference 9-17

ttXlaDecimalToCString

Description
Converts a TTXLA_DECIMAL_TT value to a string usable by applications. The scale
and precision values can be obtained from the ttXlaColDesc_t structure returned
by the ttXlaGetColumnInfo function. The scale parameter specifies the
maximum number of digits after the decimal point. If the decimal value is larger than
1, the precision parameter should specify the maximum number of digits before
and after the decimal point. If the decimal value is less than 1, precision equals
scale.

Call this function only for a column of type TTXLA_DECIMAL_TT. The data type can
be obtained from the ttXlaColDesc_t structure returned by the
ttXlaGetColumnInfo function.

See "Converting complex data types" on page 5-22 for a discussion about using this
function.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaDecimalToCString(void* fromData,
 out char* returnData,
 SQLSMALLINT precision,
 SQLSMALLINT scale)

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example
This example assumes you have obtained the offset, precision, and scale values
from a ttXlaColDesc_t structure and used the offset to obtain a decimal value,
pColVal, in a row returned in a transaction log record.

char decimalData[50];
static ttXlaColDesc_t colDesc[255];

Parameter Type Description

fromData void* Pointer to the decimal value returned from the
transaction log.

returnData out char* Pointer to storage allocated to hold the
converted string.

precision SQLSMALLINT If fromData is larger than 1, precision is the
maximum number of digits before and after the
decimal point. If fromData is less than 1,
precision equals scale.

scale SQLSMALLINT Maximum number of digits after the decimal
point.

ttXlaDecimalToCString

9-18 Oracle TimesTen In-Memory Database C Developer's Guide

rc = ttXlaDecimalToCString(pColVal, (char*)&decimalData,
 colDesc->precision,
 colDesc->scale);

XLA function reference

XLA Reference 9-19

ttXlaDeleteBookmark

Description
Deletes the bookmark associated with the specified transaction log handle. After the
bookmark has been deleted, it is no longer accessible and its identifier may be reused
for another bookmark. The deleted bookmark is no longer associated with the
database handle and the effect is the same as having opened the persistent connection
with the XLANONE option.

If the bookmark is in use, it cannot be deleted until it is no longer in use.

See "Deleting bookmarks" on page 5-30 for a discussion about using this function.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaDeleteBookmark(ttXlaHandle_h handle)

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example
Delete the bookmark for xlahandle:

rc = ttXlaDeleteBookmark(xlahandle);

See also
ttXlaPersistOpen
ttXlaGetLSN
ttXlaSetLSN

Notes:

■ Do not confuse this with the TimesTen built-in procedure
ttXlaBookmarkDelete, documented in "ttXlaBookmarkDelete"
in Oracle TimesTen In-Memory Database Reference.

■ You cannot delete replicated bookmarks while the replication
agent is running.

Parameter Type Description

handle ttXlaHandle_h The transaction log handle.

ttXlaError

9-20 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaError

Description
Reports details of any errors encountered from the previous call on the given
transaction log handle. Multiple errors may be returned through subsequent calls to
ttXlaError. The error stack is cleared following each call to a function other than
ttXlaError itself and ttXlaErrorRestart.

See "Handling XLA errors" on page 5-27 for a discussion about using this function.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaError(ttXlaHandle_h handle,
 out SQLINTEGER* errCode,
 out char* errMessage,
 SQLINTEGER maxLen,
 out SQLINTEGER* retLen)

Parameters

Returns
SQL_SUCCESS if error information is returned and SQL_NO_DATA_FOUND if no more
errors are found in the error stack. If the errMessage buffer is not large enough,
ttXlaError returns SQL_SUCCESS_WITH_INFO.

Example
There can be multiple errors on the error stack. This example shows how to read them
all.

char message[100];
SQLINTEGER code;

for (;;) {
 rc = ttXlaError(xlahandle, &code, message, sizeof (message), &retLen);
 if (rc == SQL_NO_DATA_FOUND)
 break;
 if (rc == SQL_ERROR) {
 printf("Error in fetching error message\n");
 break;
 }

Parameter Type Description

handle ttXlaHandle_h The transaction log handle for the database.

errCode out SQLINTEGER* The code of the error message to be copied into
the errMessage buffer.

errMessage out char* Buffer to hold the error text.

maxLen SQLINTEGER The maximum length of the errMessage
buffer.

retLen out SQLINTEGER* The actual size of the error message.

XLA function reference

XLA Reference 9-21

 else {
 printf("Error code %d: %s\n", code, message);
 }
}

Note
If you use multiple threads to access a TimesTen transaction log over a single XLA
connection, TimesTen creates a latch to control concurrent access. If for some reason
the latch cannot be acquired by a thread, the XLA function returns
SQL_INVALID_HANDLE.

See also
ttXlaErrorRestart

ttXlaErrorRestart

9-22 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaErrorRestart

Description
Resets the error stack so that an application can reread the errors. See "Handling XLA
errors" on page 5-27 for a discussion about using this function.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaErrorRestart(ttXlaHandle_h handle)

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example
rc = ttXlaErrorRestart(xlahandle);

See also
ttXlaError

Parameter Type Description

handle ttXlaHandle_h The transaction log handle for the database.

XLA function reference

XLA Reference 9-23

ttXlaGenerateSQL

Description
Generates a SQL DML or DDL statement that expresses the effect of the update record.
The generated statement is not applied to any database. Instead, the statement is
returned in the given buffer, whose maximum size is specified by the maxLen
parameter. The actual size of the buffer is returned in actualLen. For update and
delete records, ttXlaGenerateSQL requires a primary key or a unique index on a
non-nullable column to generate the correct SQL.

The generated SQL statement is encoded in the connection character set that is
associated with the ODBC connection of the XLA handle.

Also see "Replicating updates to a non-TimesTen database" on page 5-36.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaGenerateSQL(ttXlaHandle_h handle,
 ttXlaUpdateDesc_t* record,
 out char* buffer,
 SQLINTEGER maxLen,
 out SQLINTEGER* actualLen)

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example
This example generates the text of a SQL statement that is equivalent to the UPDATE
expressed by an update record:

ttXlaUpdateDesc_t record;
char buffer[200];
/*
 * Get the desired update record into the varable record.
 */

SQLINTEGER actualLength;

rc = ttXlaGenerateSQL(xlahandle, &record, buffer, 200,
 &actualLength);

Parameter Type Description

handle ttXlaHandle_h The transaction log handle for the database.

record ttXlaUpdateDesc_t* The record to be translated into SQL.

buffer out char* Location of the translated SQL statement.

maxLen SQLINTEGER The maximum length of the buffer, in bytes.

actualLen out SQLINTEGER* The actual length of the buffer, in bytes.

ttXlaGenerateSQL

9-24 Oracle TimesTen In-Memory Database C Developer's Guide

Note
The ttXlaGenerateSQL function cannot generate SQL statements for update records
associated with a table that has been dropped or altered since the record was
generated.

See also
ttXlaApply
ttXlaCommit
ttXlaRollback
ttXlaLookup
ttXlaTableCheck

XLA function reference

XLA Reference 9-25

ttXlaGetColumnInfo

Description
Retrieves information about all the columns in the table. Normally, the output
parameter for number of columns returned, nreturned, is set to the number of
columns returned in colinfo. The systemTableID or userTableID parameter
describes the desired table. This call is serialized with respect to changes in the table
definition.

See "Obtaining column descriptions" on page 5-17 for a discussion about using this
function.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaGetColumnInfo(ttXlaHandle_h handle,
 SQLUBIGINT systemTableID,
 SQLUBIGINT userTableID,
 out ttXlaColDesc_t* colinfo,
 SQLINTEGER maxcols,
 out SQLINTEGER* nreturned)

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example
For this example, assume the following definitions:

ttXlaColDesc_t colinfo[20];
SQLUBIGINT systemTableID, userTableID;
SQLINTEGER ncols;

To get the description of up to 20 columns using the system table identifier, issue the
following call:

rc = ttXlaGetColumnInfo(xlahandle, systemTableID, 0, colinfo, 20, &ncols);

Parameter Type Description

handle ttXlaHandle_h The transaction log handle for the database.

systemTableID SQLUBIGINT System ID of table.

userTableID SQLUBIGINT User ID of table.

colinfo out ttXlaColDesc_t* A pointer to the buffer large enough to hold a
separate description for maxcols columns.

maxcols SQLINTEGER The maximum number of columns that can be
stored in the colInfo buffer. If the table
contains more than maxcols columns, an error
is returned.

nreturned out SQLINTEGER* The number of columns returned.

ttXlaGetColumnInfo

9-26 Oracle TimesTen In-Memory Database C Developer's Guide

Likewise, the user table identifier can be used:

rc = ttXlaGetColumnInfo(xlahandle, 0, userTableID, colinfo, 20, &ncols);

See "ttXlaColDesc_t" on page 9-82 for details and an example on how to access the
column data in a returned row.

See also
ttXlaGetTableInfo
ttXlaDecimalToCString
ttXlaDateToODBCCType
ttXlaTimeToODBCCType
ttXlaTimeStampToODBCCType

XLA function reference

XLA Reference 9-27

ttXlaGetLSN

Description
Returns the Current Read log record identifier for the connection specified by the
transaction log handle. See "How bookmarks work" on page 5-4 for a discussion about
using this function.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaGetLSN(ttXlaHandle_h handle,
 out tt_XlaLsn_t* LSN)

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example
This example returns the Current Read log record identifier, CurLSN.

tt_XlaLsn_t CurLSN;

rc = ttXlaGetLSN(xlahandle, &CurLSN);

See also
ttXlaSetLSN

Parameter Type Description

handle ttXlaHandle_h The transaction log handle for the database.

LSN out tt_XlaLsn_t* The Current Read log record identifier for the
handle.

Note: Be aware that tt_XlaLsn_t, particularly the logFile and
logOffset fields, is used differently than in earlier releases, referring
to log record identifiers rather than sequentially increasing LSNs. See
the note in "tt_XlaLsn_t" on page 9-85.

ttXlaGetTableInfo

9-28 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaGetTableInfo

Description
Retrieves information about the rows in the table (refer to the description of the
ttXlaTblDesc_t data type.) If the userTableID parameter is nonzero, then it is
used to locate the desired table. Otherwise, the systemTableID value is used to
locate the table. If both are zero, an error is returned. The description is stored in the
output parameter tblinfo. This call is serialized with respect to changes in the table
definition.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaGetTableInfo(ttXlaHandle_h handle,
 SQLUBIGINT systemTableID,
 SQLUBIGINT userTableID,
 out ttXlaTblDesc_t* tblinfo)

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example
For this example, assume the following definitions:

ttXlaTblDesc_t tabinfo;
SQLUBIGINT systemTableID, userTableID;

To get table information using a system identifier, find the system table identifier using
ttXlaTableByName or other means and issue the following call:

rc = ttXlaGetTableInfo(xlahandle, systemTableID, 0, &tabinfo);

Alternatively, the table information can be retrieved using a user table identifier:

rc = ttXlaGetTableInfo(xlahandle, 0, userTableID, &tabinfo);

See also
ttXlaGetColumnInfo

Parameter Type Description

handle ttXlaHandle_h The transaction log handle for the database.

systemTableID SQLUBIGINT System table ID.

userTableID SQLUBIGINT User table ID.

tblinfo out ttXlaTblDesc_t* Row information.

XLA function reference

XLA Reference 9-29

ttXlaGetVersion

Description
This function is used in combination with ttXlaSetVersion to ensure XLA
applications written for older versions of XLA operate on a new version. The
configured version is typically the older version, while the actual version is the newer
one.

The function retrieves the currently configured XLA version and stores it into
configuredVersion parameter. The actual version of the underlying XLA is stored
in actualVersion. Due to calls on ttXlaSetVersion, the results in
configuredVersion may vary from one call to the next, but the results in
actualVersion remain the same.

See "XLA persistent mode" on page 5-2 for a discussion about using this function.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaGetVersion(ttXlaHandle_h handle,
 out ttXlaVersion_t* configuredVersion,
 out ttXlaVersion_t* actualVersion)

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example
Assume the following directions for this example:

ttXlaVersion_t configured, actual;

To determine the current version configuration, use the following call:

rc = ttXlaGetVersion(xlahandle, &configured, &actual);

See also
ttXlaVersionCompare
ttXlaSetVersion

Parameter Type Description

handle ttXlaHandle_h The transaction log handle for the
database.

configuredVersion out ttXlaVersion_t* The configured version of XLA.

actualVersion out ttXlaVersion_t* The actual version of XLA.

ttXlaLookup

9-30 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaLookup

Description
This function looks for a record in the given table with key values according to the
keys parameter. The formats of the keys and result records are the same as for
ordinary rows. This function requires a primary key on the underlying table.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaLookup(ttXlaHandle_h handle,
 ttXlaTableDesc_t* table,
 void* keys,
 out void* result,
 SQLINTEGER maxsize,
 out SQLINTEGER* retsize)

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example
This example looks up a record given a pair of integer key values. Before this call,
table should describe the desired table and keybuffer contains a record with the
key columns set.

char keybuffer[100];
char recbuffer[2000];
ttXlaTableDesc_t table;
SQLINTEGER recordSize;

rc = ttXlaLookup(xlahandle, &table, keybuffer, recbuffer,
 sizeof (recbuffer), &recordSize);

Parameter Type Description

handle ttXlaHandle_h The transaction log handle for the database.

table ttXlaTblDesc_t* The table to search.

keys void* A record in the defined structure for the table.
Only those columns of the keys record that are
part of the primary key for the table are
examined.

result out void* The located record is copied into the result. If no
record exists with the matching key columns, an
error is returned.

maxsize SQLINTEGER The size of the largest record that can fit into the
result buffer.

retsize out SQLINTEGER* The actual size of the record.

XLA function reference

XLA Reference 9-31

See also
ttXlaApply
ttXlaCommit
ttXlaRollback
ttXlaTableCheck
ttXlaGenerateSQL

ttXlaNextUpdate

9-32 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaNextUpdate

Description
This function fetches up to a specified maximum number of update records from the
transaction log and returns the records associated with committed transactions to a
specified buffer. The actual number of returned records is reported in the nreturned
output parameter. This function requires a bookmark to be present in the database and
to be associated with the connection used by the function.

When operating the transaction log in persistent mode, each call to
ttXlaNextUpdate resets the bookmark to the last record read to enable the next call
to ttXlaNextUpdate to return the next list of records.

See "Retrieving update records from the transaction log" on page 5-12 for a discussion
about using this function.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaNextUpdate(ttXlaHandle_h handle,
 out ttXlaUpdateDesc_t*** records,
 SQLINTEGER maxrecords,
 out SQLINTEGER* nreturned)

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example
This example retrieves up to 100 records and describes a loop in which each record can
be processed:

ttXlaUpdateDesc_t** records;
SQLINTEGER nreturned;
SQLINTEGER i;

rc = ttXlaNextUpdate(xlahandle, &records, 100, &nreturned);
/* Check for errors; if none, process the records */
for (i = 0; i < nreturned; i++) {
 process(records[i]);
}

Parameter Type Description

handle ttXlaHandle_h The transaction log handle for the database.

records out ttXlaUpdateDesc_t*** The buffer to hold the completed
transaction records.

maxrecords SQLINTEGER Maximum number of records to be fetched.

nreturned out SQLINTEGER* The actual number of returned records,
where 0 is returned if no update data is
available.

XLA function reference

XLA Reference 9-33

Notes
Updates are generated for all data definition statements, regardless of tracking status.
Updates are generated for data update operations for all tracked tables associated with
the bookmark.

In addition, updates are generated for certain special operations, including assigning
application-level identifiers for tables and columns and changing a table's tracking
status.

See also
ttXlaNextUpdateWait
ttXlaAcknowledge

ttXlaNextUpdateWait

9-34 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaNextUpdateWait

Description
This is similar to the ttXlaNextUpdate function, with the addition of a seconds
parameter that specifies the number of seconds to wait if no records are available in
the transaction log. The actual number of seconds of wait time can be up to two
seconds more than the specified seconds value.

Also see "Retrieving update records from the transaction log" on page 5-12.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaNextUpdateWait(ttXlaHandle_h handle,
 out ttXlaUpdateDesc_t*** records,
 SQLINTEGER maxrecords,
 out SQLINTEGER* nreturned,
 SQLINTEGER seconds)

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example
This example retrieves up to 100 records and will wait for up to 60 seconds if there are
no records available in the transaction log.

ttXlaUpdateDesc_t** records;
SQLINTEGER nreturned;
SQLINTEGER i;

rc = ttXlaNextUpdateWait(xlahandle, &records, 100, &nreturned, 60);
/* Check for errors; if none, process the records */
for (i = 0; i < nreturned; i++) {
 process(records[i]);
}

Parameter Type Description

handle ttXlaHandle_h The transaction log handle for the database.

records out
ttXlaUpdateDesc_t***

The buffer to hold the completed transaction
records.

maxrecords SQLINTEGER The maximum number of records to be fetched.

Note: The largest effective value is 1000
records.

nreturned out SQLINTEGER* The actual number of records returned, where
0 is returned if no update data is available
within the seconds wait period.

seconds SQLINTEGER Number of seconds to wait if the log is empty.

XLA function reference

XLA Reference 9-35

See also
ttXlaNextUpdate
ttXlaAcknowledge

ttXlaNumberToBigInt

9-36 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaNumberToBigInt

Description
Converts a TTXLA_NUMBER value to a SQLBIGINT value usable by an application.

Call this function only for a column of type TTXLA_NUMBER. The data type can be
obtained from the ttXlaColDesc_t structure returned by the
ttXlaGetColumnInfo function.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaNumberToBigInt(void* fromData,
 SQLBIGINT* bint)

Parameters

Returns
SQL_SUCCESS if successful. Otherwise, use ttXlaError to report an error.

Parameter Type Description

fromData void* Pointer to the number value returned from the
transaction log.

bint SQLBIGINT* The SQLBIGINT value converted from the XLA
number value.

XLA function reference

XLA Reference 9-37

ttXlaNumberToCString

Description
Converts a TTXLA_NUMBER value to a character string usable by an application.

Call this function only for a column of type TTXLA_NUMBER. The data type can be
obtained from the ttXlaColDesc_t structure returned by the
ttXlaGetColumnInfo function.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaNumberToCString(ttXlaHandle_h handle,
 void* fromData,
 char* buf,
 int buflen
 int* reslen)

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Parameter Type Description

fromData void* Pointer to the number value returned from the
transaction log.

buf char* Location where the converted data is placed.

buflen int Size of the buffer where the converted data is
placed.

reslen int* If buflen >= reslen, then reslen is the
number of bytes that were written.

If buflen <reslen, then reslen is the
number of bytes that would have been written if
the buffer had been large enough.

ttXlaNumberToDouble

9-38 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaNumberToDouble

Description
Converts a TTXLA_NUMBER value to a long floating point number value usable by
applications.

Call this function only for a column of type TTXLA_NUMBER. The data type can be
obtained from the ttXlaColDesc_t structure returned by the
ttXlaGetColumnInfo function.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaNumberToDouble(void* fromData,
 double* dbl)

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report an error.

Parameter Type Description

fromData void* Pointer to the number value returned from the
transaction log.

dbl double* The long floating point number value converted
from the XLA number value.

XLA function reference

XLA Reference 9-39

ttXlaNumberToInt

Description
Converts a TTXLA_NUMBER value to a SQLINTEGER value usable by an application.

Call this function only for a column of type TTXLA_NUMBER. The data type can be
obtained from the ttXlaColDesc_t structure returned by the
ttXlaGetColumnInfo function.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaNumberToInt(void* fromData,
 SQLINTEGER* ival)

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report an error.

Parameter Type Description

fromData void* Pointer to the number value returned from the
transaction log.

ival SQLINTEGER* The SQLINTEGER value converted from the
XLA number value.

ttXlaNumberToSmallInt

9-40 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaNumberToSmallInt

Description
Converts a TTXLA_NUMBER value to a SQLSMALLINT value usable by an application.

Call this function only for a column of type TTXLA_NUMBER. The data type can be
obtained from the ttXlaColDesc_t structure returned by the
ttXlaGetColumnInfo function.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaNumberToSmallInt(void* fromData,
 SQLSMALLINT* smint)

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report an error.

Parameter Type Description

fromData void* Pointer to the number value returned from the
transaction log.

smint SQLSMALLINT* The SQLSMALLINT value converted from the
XLA number value.

XLA function reference

XLA Reference 9-41

ttXlaNumberToTinyInt

Description
Converts a TTXLA_NUMBER value to a tiny integer value usable by an application.

Call this function only for a column of type TTXLA_NUMBER. The data type can be
obtained from the ttXlaColDesc_t structure returned by the
ttXlaGetColumnInfo function.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaNumberToTinyInt(void* fromData,
 SQLCHAR* tiny)

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report an error.

Parameter Type Description

fromData void* Pointer to the number value returned from the
transaction log.

tiny SQLCHAR* The tiny integer value converted from the XLA
number value.

ttXlaNumberToUInt

9-42 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaNumberToUInt

Description
Converts a TTXLA_NUMBER value to an unsigned integer value usable by an
application.

Call this function only for a column of type TTXLA_NUMBER. The data type can be
obtained from the ttXlaColDesc_t structure returned by the
ttXlaGetColumnInfo function.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaNumberToInt(void* fromData,
 SQLUINTEGER* ival)

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report an error.

Parameter Type Description

fromData void* Pointer to the number value returned from the
transaction log.

ival SQLUINTEGER* The integer value converted from the XLA
number value.

XLA function reference

XLA Reference 9-43

ttXlaOpenTimesTen

Description
Initializes a transaction log handle to a database to enable access to the transaction log
in non-persistent mode. The hdbc parameter is an ODBC connection handle to a
database that will be used to apply updates. Do not issue any other ODBC calls against
this connection until it is closed by ttXlaClose. The handle parameter is initialized
by this call and must be provided on each subsequent call that applies updates.

In non-persistent mode, only one application at a time can read from the transaction
log. See "Initializing XLA in non-persistent mode" on page 5-39 for related discussion.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaOpenTimesTen(SQLHDBC hdbc,
 out ttXlaHandle_h* handle)

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

The following example opens a transaction log in non-persistent mode and returns a
handle named xlahandle for the ODBC connection:

SQLHDBC hdbc;
ttXlaHandle_h xlahandle;
rc = ttXlaOpenTimesTen(hdbc, &xlahandle);

Note
Use of multiple threads over the same XLA handle is not recommended by TimesTen.
Multithreaded applications should use ttXlaPersistOpen to create a separate XLA
handle for each thread. If multiple threads must use the same XLA handle, use a
mutex to serialize thread access to that XLA handle so that only one thread can
execute an XLA operation at a time.

See also
ttXlaConfigBuffer
ttXlaStatus
ttXlaResetStatus
ttXlaClose

Note: Most applications should use ttXlaPersistOpen to
initialize XLA in persistent mode.

Parameter Type Description

hdbc SQLHDBC The ODBC handle for the database.

handle out ttXlaHandle_h* The transaction log handle for the database.

ttXlaOraDateToODBCTimeStamp

9-44 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaOraDateToODBCTimeStamp

Description
Converts a TTXLA_DATE value to an ODBC timestamp.

Call this function only for a column of type TTXLA_DATE. The data type can be
obtained from the ttXlaColDesc_t structure returned by the
ttXlaGetColumnInfo function.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaOraDateToODBCTimeStamp(void* fromData,
 TIMESTAMP_STRUCT* returnData)

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report an error.

Parameter Type Description

fromData void* Pointer to the number value returned from
the transaction log.

returnData TIMESTAMP_STRUCT* An ODBC timestamp value converted from
the XLA Oracle DATE value.

XLA function reference

XLA Reference 9-45

ttXlaOraTimeStampToODBCTimeStamp

Description
Converts a TTXLA_TIMESTAMP value to an ODBC timestamp.

Call this function only for a column of type TTXLA_TIMESTAMP. The data type can be
obtained from the ttXlaColDesc_t structure returned by the
ttXlaGetColumnInfo function.

Syntax
SQLRETURN ttXlaOraTimeStampToODBCTimeStamp(void* fromData,
 TIMESTAMP_STRUCT* returnData)

Required privilege
Requires the system privilege XLA.

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report an error.

Parameter Type Description

fromData void* Pointer to the number value returned from
the transaction log.

returnData TIMESTAMP_STRUCT* An ODBC timestamp value converted from
the XLA Oracle TIMESTAMP value.

ttXlaPersistOpen

9-46 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaPersistOpen

Description
Initializes a transaction log handle to a database to enable access to the transaction log
in persistent mode. The hdbc parameter is an ODBC connection handle to a database.
Create only one XLA handle for each ODBC connection. After you have created an
XLA handle on an ODBC connection, do not issue any other ODBC calls over the
ODBC connection until it is closed by ttXlaClose.

The tag is a string that identifies the persistent bookmark (see "About XLA
bookmarks" on page 5-4). The tag can identify a new bookmark, either non-replicated
or replicated, or one that exists in the system, as specified by the options parameter.
The handle parameter is initialized by this call and must be provided on each
subsequent call to XLA.

Some actions can be done without a bookmark. When performing these types of
actions, you can use the XLANONE option to access the transaction log without a
bookmark. Actions that cannot be done without a bookmark are the following:

■ ttXlaAcknowledge

■ ttXlaGetLSN

■ ttXlaSetLSN

■ ttXlaNextUpdate

■ ttXlaNextUpdateWait

In persistent mode, multiple applications can concurrently read from the transaction
log. See "Initializing XLA and obtaining an XLA handle" on page 5-10 for a discussion
about using this function.

When this function is successful, XLA sets the autocommit mode to off.

If this function fails but still creates a handle, the handle must be closed to prevent
memory leaks.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaPersistOpen(SQLHDBC hdbc,
 SQLCHAR* tag,
 SQLUINTEGER options,
 out ttXlaHandle_h* handle)

Parameters

Parameter Type Description

hdbc SQLHDBC The ODBC handle for the database.

tag SQLCHAR* The identifier for the persistent bookmark. Can
be null, in which case options should be set to
XLANONE. Maximum allowed length is 31.

XLA function reference

XLA Reference 9-47

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example
This example opens a transaction log in persistent mode, returns a handle named
xlahandle, and creates a new non-replicated bookmark named mybookmark:

SQLHDBC hdbc;
ttXlaHandle_h xlahandle;

rc = ttXlaPersistOpen(hdbc, (SQLCHAR*)mybookmark,
 XLACREAT, &xlahandle);

Alternatively, create a new replicated bookmark as follows:

SQLHDBC hdbc;
ttXlaHandle_h xlahandle;

rc = ttXlaPersistOpen(hdbc, (SQLCHAR*)mybookmark,
 XLAREPL, &xlahandle);

Note
Multithreaded applications should create a separate XLA handle for each thread. If
multiple threads must use the same XLA handle, use a mutex to serialize thread
access to that XLA handle so that only one thread can execute an XLA operation at a
time.

See also
ttXlaClose
ttXlaDeleteBookmark
ttXlaGetLSN
ttXlaSetLSN

options SQLUINTEGER Bookmark options:

■ XLANONE: Connect without a bookmark.
The tag field is ignored.

■ XLACREAT: Create a new non-replicated
bookmark. Fails if a bookmark already
exists.

■ XLAREPL: Create a new replicated
bookmark. Fails if a bookmark already
exists.

■ XLAREUSE: Associate with an existing
bookmark (non-replicated or replicated).
Fails if the bookmark does not exist.

handle out ttXlaHandle_h* The transaction log handle returned by this call.
Space is allocated by this call. User should call
ttXlaClose to free space.

Parameter Type Description

ttXlaResetStatus

9-48 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaResetStatus

Description
This function is valid only when XLA is in non-persistent mode (which is generally
discouraged).

Resets all the XLA status counters reported in the ttXlaStatus_t structure returned
by ttXlaStatus. Currently, only the xlabufminfree value is reset.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaResetStatus(ttXlaHandle_h handle)

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example
The following example resets the XLA status counters:

rc = ttXlaResetStatus(xlahandle);

See also
ttXlaOpenTimesTen
ttXlaConfigBuffer
ttXlaStatus

Parameter Type Description

handle ttXlaHandle_h The transaction log handle for the database.

XLA function reference

XLA Reference 9-49

ttXlaRollback

Description
Rolls back the current transaction being applied on the transaction log handle. You can
call this routine to respond to transient errors (timeout or deadlock) reported by
ttXlaApply.

See "Handling timeout and deadlock errors" on page 5-35 for a discussion about using
this function.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaRollback(ttXlaHandle_h handle)

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example
rc = ttXlaRollback(xlahandle);

See Also
ttXlaApply
ttXlaCommit
ttXlaLookup
ttXlaTableCheck
ttXlaGenerateSQL

Parameter Type Description

handle ttXlaHandle_h The transaction log handle for the database.

ttXlaRowidToCString

9-50 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaRowidToCString

Description
Converts a ROWID value to a string value usable by applications.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaRowidToCString(void* fromData, char* buf, int buflen)

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example
char charbuf[18];
void* rowiddata;
/* ... */
rc = ttXlaRowidToCString(rowiddata, charbuf, sizeof(charbuf));

Parameter Type Description

fromData void* Pointer to the ROWID value returned from the
transaction log.

buf char* Pointer to storage allocated to hold the
converted string.

buflen int Length of the converted string.

XLA function reference

XLA Reference 9-51

ttXlaSetLSN

Description
Sets the Current Read log record identifier for the database specified by the transaction
handle. The specified LSN value should be returned from ttXlaGetLSN. It cannot be
a user-created value and cannot be earlier than the current bookmark Initial Read log
record identifier.

See "About XLA bookmarks" on page 5-4 for a discussion about using this function.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaSetLSN(ttXlaHandle_h handle,
 tt_XlaLsn_t* LSN)

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example
This example sets the Current Read log record identifier to CurLSN.

tt_XlaLsn_t CurLSN;

rc = ttXlaSetLSN(xlahandle, &CurLSN);

See also
ttXlaGetLSN

Parameter Type Description

handle ttXlaHandle_h The transaction log handle for the database.

LSN tt_XlaLsn_t* The new log record identifier for the handle.

Note: Be aware that tt_XlaLsn_t, particularly the logFile and
logOffset fields, is used differently than in earlier releases, referring
to log record identifiers rather than sequentially increasing LSNs. See
the note in "tt_XlaLsn_t" on page 9-85.

ttXlaSetVersion

9-52 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaSetVersion

Description
Sets the version of XLA to be used by the application. This version must be either the
same as the version received from ttXlaGetVersion or from an earlier version.

See "XLA persistent mode" on page 5-2 for a discussion about using this function.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaSetVersion(ttXlaHandle_h handle,
 ttXlaVersion_t* version)

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example
To set the configured version to the value specified in requestedVersion, issue the
following call:

rc = ttXlaSetVersion(xlahandle, &requestedVersion);

See also
ttXlaVersionCompare
ttXlaGetVersion

Parameter Type Description

handle ttXlaHandle_h The transaction log handle for the database.

version ttXlaVersion_t* The desired version of XLA.

XLA function reference

XLA Reference 9-53

ttXlaStatus

Description
This function is valid only when operating XLA in non-persistent mode (which is
generally discouraged).

Retrieves status information on the transaction log buffer and your XLA staging buffer
and stores it in the *status parameter, which is of data type ttXlaStatus_t. This
data structure includes the following:

■ The free and occupied space in the staging buffer

■ The number of transactions and records in the staging buffer

■ The free and occupied space in the transaction log buffer

■ Whether the system is accepting new transaction updates

The ttXlaStatus_t ->xlabufminfree value is the minimum number of free
bytes in the transaction log buffer and is a useful statistic if you want to recalculate the
optimum size of the staging buffer. As the transaction log buffer expands and
contracts, xlabufminfree may no longer accurately reflect the minimum space. You
can call ttXlaResetStatus, generally used to reset the value of the
ttXlaStatus_t ->xlabufminfree field, to set xlabufminfree to NULL. Then, at
some later time, you can call ttXlaStatus to obtain a new minimum value before
calculating the optimum newSize value to pass to the ttXlaConfigBuffer
function.

Required privilege
Requires the system privilege XLA.

Syntax
ttXlaStatus(ttXlaHandle_h handle, out ttXlaStatus_t* status)

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example
This example gets the current XLA status:

ttXlaStatus_t s;
rc = ttXlaStatus(xlahandle, &s);

See also
ttXlaOpenTimesTen
ttXlaConfigBuffer
ttXlaResetStatus

Parameter Type Description

handle ttXlaHandle_h The transaction log handle for the database.

status out ttXlaStatus_t* The current XLA status.

ttXlaTableByName

9-54 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaTableByName

Description
Finds the system and user table identifiers for a table or materialized view by
providing the owner and name of the table or view. See "Specifying which tables to
monitor for updates" on page 5-11 for a discussion about using this function.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaTableByName(ttXlaHandle_h handle,
 char* owner,
 char* name,
 out SQLUBIGINT* sysTableID,
 out SQLUBIGINT* userTableID)

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example
To get the system and user table IDs associated with the table
PURCHASING.INVOICES, use the following call:

SQLUBIGINT sysTableID;
SQLUBIGINT userTableID;

rc = ttXlaTableByName(xlahandle, "PURCHASING", "INVOICES",
 &sysTableID, &userTableID);

See also
ttXlaTableStatus

Parameter Type Description

handle ttXlaHandle_h The transaction log handle for the database.

owner char* The owner for the table or view as a string.

name char* The name of the table or view.

sysTableID out SQLUBIGINT* Where the system table ID is returned.

userTableID out SQLUBIGINT* Where the user table ID is returned.

XLA function reference

XLA Reference 9-55

ttXlaTableCheck

Description
When using XLA as a replication mechanism, this function verifies that the named
table in the ttXlaTblDesc_t structure received from a master database is compatible
with a subscriber database or database associated with the transaction log handle. The
compat parameter indicates whether the tables are compatible.

See "Checking table compatibility between databases" on page 5-33 for a discussion
about using this function.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaTableCheck(ttXlaHandle_h handle,
 ttXlaTblDesc_t* table,
 ttXlaColDesc_t* columns,
 out SQLINTEGER* compat)

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example
This example checks the compatibility of a table:

SQLINTEGER compat;
ttXlaTblDesc_t table;
ttXlaColDesc_t columns[20];
/*
 * Get the desired table and column definitions into
 * the variables "table" and "columns"
 */
rc = ttXlaTableCheck(xlahandle, &table, columns, &compat);
if (compat) {
 /*
 * Compatible
 */
}
else {
 /*

Parameter Type Description

handle ttXlaHandle_h The transaction log handle for the database.

table ttXlaTblDesc_t* A table description.

columns ttXlaColDesc_t* Column description for the table.

compat out SQLINTEGER* Returns compatibility information.

■ 1: Tables are compatible.

■ 0: Tables are not compatible.

ttXlaTableCheck

9-56 Oracle TimesTen In-Memory Database C Developer's Guide

 * Not compatible or some other error occurred
 */
}

See also
ttXlaApply
ttXlaCommit
ttXlaRollback
ttXlaLookup
ttXlaGenerateSQL

XLA function reference

XLA Reference 9-57

ttXlaTableStatus

Description
Returns the update status for a table. Identify the table by specifying either a user ID
(userTableID) or a system ID (systemTableID). If userTableID is nonzero, it is
used to locate the table. Otherwise systemTableID is used. If both are zero, an error
is returned.

Specifying a value for newstatus sets the update status to *newstatus. A nonzero
status means the table specified by systemTableID is available through XLA. Zero
means the table is not tracked. Changes to table update status are effective
immediately.

Updates to a table are tracked only if update tracking was enabled for the table at the
time the update was performed. This call is serialized with respect to updates to the
underlying table. Therefore, transactions that update the table run either completely
before or completely after the change to table status.

To use ttXlaTableStatus, the user must be connected to a bookmark in persistent
mode. The function reports inserts, updates, and deletes only to the bookmark that has
subscribed to the table. It reports DDL events to all bookmarks. DDL events include
CREATAB, DROPTAB, CREAIND, DROPIND, CREATVIEW, DROPVIEW, CREATSEQ,
DROPSEQ, CREATSYN, DROPSYN, ADDCOLS, DRPCOLS, TRUNCATE, SETTBL1, and
SETCOL1 transactions.

See "Specifying which tables to monitor for updates" on page 5-11 for a discussion
about using this function.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaTableStatus(ttXlaHandle_h handle,
 SQLUBIGINT systemTableID,
 SQLUBIGINT userTableID,
 out SQLINTEGER* oldstatus,
 SQLINTEGER* newstatus)

Parameters

Note: DML updates to a table being tracked through XLA will not
prevent ttXlaTableStatus from running. However, DDL updates
to the table being tracked, which take a lock on SYS.TABLES, will
delay ttXlaTableStatus from running in serializable isolation
against SYS.TABLES.

Parameter Type Description

handle ttXlaHandle_h The transaction log handle for the database.

systemTableID SQLUBIGINT System ID of table.

userTableID SQLUBIGINT User ID of table.

ttXlaTableStatus

9-58 Oracle TimesTen In-Memory Database C Developer's Guide

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example
The following examples assume that the system or user table identifiers are found
using ttXlaTableByName or some other means.

Assume these declarations for the example:

SQLUBIGINT systemTableID;
SQLUBIGINT userTableID;
SQLINTEGER currentStatus, requestedStatus;

To find the status of a table given its system table identifier, use the following call:

/* Get system table identifier into systemTableID, then ... */

rc = ttXlaTableStatus(xlahandle, systemTableID, 0,
 ¤tStatus, NULL);

The currentStatus value will be nonzero if update tracking for the table is enabled,
or zero otherwise.

To enable update tracking for a table given a system table identifier, set the requested
status to 1 as follows:

requestedStatus = 1;

rc = ttXlaTableStatus(xlahandle, systemTableID, 0,
 NULL, &requestedStatus);

You can set a new update tracking status and retrieve the current status in a single call,
as in the following example:

requestedStatus = 1;

rc = ttXlaTableStatus(xlahandle, systemTableID, 0,
 ¤tStatus, &requestedStatus);

The above call enables update tracking for a table by system table identifier and
retrieves the prior update tracking status in the variable currentStatus.

All of these examples can be done using user table identifiers as well. To retrieve the
update tracking status of a table through its user table identifier, use the following call:

/* Get system table identifier into userTableID, then ... */

rc = ttXlaTableStatus(xlahandle, 0, userTableID,
 ¤tStatus, NULL);

oldstatus out SQLINTEGER* XLA old status:

■ 1: On.

■ 0: Off.

newstatus SQLINTEGER* XLA new status:

■ 1: On.

■ 0: Off.

Parameter Type Description

XLA function reference

XLA Reference 9-59

See also
ttXlaTableByName

ttXlaTimeToODBCCType

9-60 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaTimeToODBCCType

Description
Converts a TTXLA_TIME value to an ODBC C value usable by applications. See
"Converting complex data types" on page 5-22 for a discussion about using this
function.

Call this function only for a column of type TTXLA_TIME. The data type can be
obtained from the ttXlaColDesc_t structure returned by the
ttXlaGetColumnInfo function.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaTimeToODBCCType (void* fromData,
 out TIME_STRUCT* returnData)

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example
This example assumes you have used the offset value returned in a
ttXlaColDesc_t structure to obtain a time value, pColVal, from a row returned in
a transaction log record.

TIME_STRUCT time;

rc = ttXlaTimeToODBCCType(pColVal, &time);

Parameter Type Description

fromData void* Pointer to the time value returned from the
transaction log.

returnData out TIME_STRUCT* Pointer to storage allocated to hold the
converted time.

XLA function reference

XLA Reference 9-61

ttXlaTimeStampToODBCCType

Description
Converts a TTXLA_TIMSTAMP_TT value to an ODBC C value usable by applications.
See "Converting complex data types" on page 5-22 for a discussion about using this
function.

Call this function only for a column of type TTXLA_TIMSTAMP_TT. The data type can
be obtained from the ttXlaColDesc_t structure returned by the
ttXlaGetColumnInfo function.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaTimeStampToODBCCType(void* fromData,
 out TIMESTAMP_STRUCT* returnData)

Parameters

Returns
SQL_SUCCESS if successful. Otherwise, use ttXlaError to report the error.

Example
This example assumes you have used the offset value returned in a
ttXlaColDesc_t structure to obtain a timestamp value, pColVal, from a row
returned in a transaction log record.

TIMESTAMP_STRUCT timestamp;

rc = ttXlaTimeStampToODBCCType(pColVal, ×tamp);

Parameter Type Description

fromData void* Pointer to the timestamp value returned
from the transaction log.

returnData out TIMESTAMP_STRUCT* Pointer to storage allocated to hold the
converted timestamp.

ttXlaTableVersionVerify

9-62 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaTableVersionVerify

Description
Verifies that the cached table definitions are compatible with the XLA record being
processed. Table definitions change only when the ALTER TABLE statement is used to
add or remove columns.

You can monitor the XLA stream for XLA records of transaction type ADDCOLS and
DRPCOLS to avoid the overhead of using this function. When an XLA record of
transaction type ADDCOLS or DROPCOLS is encountered, refresh the table and column
definitions. See "Inspecting record headers and locating row addresses" on page 5-15
for information about monitoring XLA records for transaction type.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaTableVersionVerify(ttXlaHandle_h handle
 ttXlaTblVerDesc_t* table,
 ttXlaUpdateDesc_t* record
 out SQLINTEGER* compat)

Parameters

Returns
SQL_SUCCESS if cached table definition is compatible with the XLA record being
processed. Otherwise, use ttXlaError to report the error.

Example
This example checks the compatibility of a table.

SQLINTEGER compat;
ttXlaTbVerDesc_t table;
ttXlaUpdateDesc_t* record;
/*
 * Get the desired table definitions into the variable "table"
 */
rc = ttXlaTableVersionVerify(xlahandle, &table, record, &compat);
if (compat) {
/*
 * Compatible
 */
}

Parameter Type Description

handle ttXlaHandle_h The transaction log handle for the database.

table ttXlaTblVerDesc_t* A cached table description.

record ttXlaUpdateDesc_t* The XLA record that must be processed.

compat out SQLINTEGER* Returns compatibility information.

■ 1: Tables are compatible.

■ 0: Tables are not compatible.

XLA function reference

XLA Reference 9-63

else {
/*
 * Not compatible or some other error occurred
 * If not compatible, issue a call to ttXlaVersionTableInfo and
 * ttXlaVersionColumnInfo to get the new definition.
 */
}

See also
ttXlaVersionColumnInfo
ttXlaVersionTableInfo

ttXlaVersionColumnInfo

9-64 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaVersionColumnInfo

Description
Retrieves information about the columns in a table for which a change update XLA
record must be processed.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaVersionColumnInfo(ttXlaHandle_h handle,
 ttXlaUpdateDesc_t* record,
 out ttXlaColDesc_t* colinfo,
 SQLINTEGER maxcols,
 out SQLINTEGER* nreturned)

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example
For this example, assume the following definitions:

ttXlaHandle_h xlahandle
ttXlaUpdateDesc_t* record;
ttXlaColDesc_t colinfo[20];
SQLINTEGER ncols;

The following call retrieves the description of up to 20 columns:

rc = ttXlaVersionColumnInfo(xlahandle, record, colinfo, 20, &ncols);

Parameter Type Description

handle ttXlaHandle_h The transaction log handle for the database.

record ttXlaUpdateDesc_t* The XLA record that must be processed.

colinfo out ttXlaColDesc_t* A pointer to the buffer large enough to hold a
description for maxcols columns.

maxcols SQLINTEGER The maximum number of columns the table can
have. If the table contains more than maxcols
columns, an error is returned.

nreturned out SQLINTEGER* The number of columns returned.

XLA function reference

XLA Reference 9-65

ttXlaVersionCompare

Description
Compares two XLA versions and returns the result.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaVersionCompare(ttXlaHandle_h handle,
 ttXlaVersion_t* version1,
 ttXlaVersion_t* version2,
 out SQLINTEGER* comparison)

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example
To compare the configured version against the actual version of XLA, issue the
following call:

ttXlaVersion_t configured, actual;
SQLINTEGER comparision;

rc = ttXlaGetVersion (xlahandle, &configured, &actual);
rc = ttXlaVersionCompare (xlahandle, &configured, &actual,
 &comparison);

Notes
When connecting two systems with XLA-based replication, use the following protocol:

1. At the primary site, retrieve the XLA version using ttXlaGetVersion. Send this
version information to the standby site.

Parameter Type Description

handle ttXlaHandle_h The transaction log handle for the database.

version1 ttXlaVersion_t* The version of XLA you want to compare with
version2.

version2 ttXlaVersion_t* The version of XLA you want to compare with
version1.

comparison out SQLINTEGER* The comparison result.

■ 0: Indicates version1 and version2
match.

■ -1: Indicates version1 is earlier than
version2.

■ +1: Indicates version1 is later than
version2.

ttXlaVersionCompare

9-66 Oracle TimesTen In-Memory Database C Developer's Guide

2. At the standby site, retrieve the XLA version using ttXlaGetVersion. Use
ttXlaVersionCompare to determine which version is earlier. The earlier version
number must be used to ensure proper operation between the two sites. Use
ttXlaSetVersion to specify the version of the interface to use at the standby
site. Send the earlier version number back to the primary site.

3. When the chosen version is received at the primary site, use ttXlaSetVersion
to specify the version of XLA to use.

See also
ttXlaGetVersion
ttXlaSetVersion

XLA function reference

XLA Reference 9-67

ttXlaVersionTableInfo

Description
Retrieves the table definition for the change update record that must be processed. The
table description is stored in the tableinfo output parameter.

Required privilege
Requires the system privilege XLA.

Syntax
SQLRETURN ttXlaVersionTableInfo(ttXlaHandle_h handle,
 ttXlaUpdateDesc_t* record,
 out ttXlaTblVerDesc_t* tblinfo)

Parameters

Returns
SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example
For this example, assume the following definitions:

ttXlaHandle_h xlahandle;
ttXlaUpdateDesc_t* record;
ttXlaTblVerDesc_t tabinfo;

The following call retrieves a table definition:

rc = ttXlaVersionTableInfo(xlahandle, record, &tabinfo);

Parameter Type Description

handle ttXlaHandle_h The transaction log handle for the database.

record ttXlaUpdateDesc_t* The XLA record that must be processed.

tableinfo out ttXlaTblVerDesc_t* Information about table definition.

C data structures used by XLA

9-68 Oracle TimesTen In-Memory Database C Developer's Guide

C data structures used by XLA

This section describes the C data structures used by the XLA functions described in
this chapter. These structures are defined in the following file:

install_dir/include/tt_xla.h

You must include this file when building your XLA application.

Table 9–1 Summary of C data structures

C data structure Description

ttXlaNodeHdr_t Describes the record type. Used at the beginning of records returned
by XLA.

ttXlaUpdateDesc_t Describes an update record.

ttXlaStatus_t Describes XLA status information returned by ttXlaStatus.

ttXlaVersion_t Describes XLA version information returned by ttXlaGetVersion.

ttXlaTblDesc_t Describes table information returned by ttXlaGetTableInfo.

ttXlaTblVerDesc_t Describes table version returned by ttXlaVersionTableInfo.

ttXlaColDesc_t Describes table column information returned by
ttXlaGetColumnInfo.

tt_LSN_t Description of a log record identifier used by bookmarks. This
structure is used by the ttXlaUpdateDesc_t structure.

tt_XlaLsn_t Describes a log record identifier used by an XLA bookmark.

C data structures used by XLA

XLA Reference 9-69

ttXlaNodeHdr_t

Most C data structures begin with a standard header that describes the data record
type and length. The standard header has the type ttXlaNodeHdr_t.

This header includes the following fields.

Field Type Description

nodeType char The type of record:

■ TTXLANHVERSION: Version.

■ TTXLANHUPDATE: Update.

■ TTXLANHTABLEDESC: Table description.

■ TTXLANHCOLDESC: Column description.

■ TTXLANHSTATUS: Status.

■ TTXLANHINVALID: Invalid.

byteOrder char Byte order of the record.

■ "1": Big-endian.

■ "2": Little-endian.

length SQLUINTEGER Total length of record, including all attachments.

ttXlaUpdateDesc_t

9-70 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaUpdateDesc_t

This structure describes an update operation to a single row (or tuple) in the database.
Each update record returned by a ttXlaNextUpdate or ttXlaNextUpdateWait
function begins with a fixed length ttXlaUpdateDesc_t header followed by zero to
two rows from the database. The row data differs depending on the record type
reported in the ttXlaUpdateDesc_t header:

■ No rows are included in a COMMITONLY record.

■ One row is included in INSERTTUP, DELETETUP, or SETREPL records.

■ Two rows are included in an UPDATETUP record to report the row data before and
after the update, respectively.

■ Special format rows are included in CREATAB, DROPTAB, CREAIND, DROPIND,
CREATVIEW, DROPVIEW, CREATSEQ, DROPSEQ, CREATSYN, DROPSYN, ADDCOLS,
DRPCOLS, SETTBLI, and SETCOLI records, which are described in "Special
update data formats" on page 9-73.

The flags field is a bit-map of special options for the record update.

The connID field identifies the ODBC connection handle that initiated the update.
This value can be used to determine if updates came from the same connection.

A separate commit XLA record is generated when a call to the
ttApplicationContext procedure is not followed by an operation that generates
an XLA record. See "Passing application context" on page 5-37 for a description of the
ttApplicationContext procedure.

Note
XLA cannot receive notification of the following:

■ CREATE VIEW or DROP VIEW for a non-materialized view

■ CREATE GLOBAL TEMPORARY TABLE or DROP TABLE for a temporary table

The only XLA records that can be generated from an ALTER TABLE operation are of
the following types:

■ ADDCOLS or DRPCOLS when columns are added or dropped

■ CREAIND or DROPIND when a unique attribute of a column is modified

While sequence creates (CREATESEQ) and drops (DROPSEQ) are visible through XLA,
sequence increments are not.

All deletes resulting from cascading deletes and aging are visible through XLA. The
flags value (discussed in the following table) indicates when deletes are due to
cascading or aging.

The fields of the update header defined by ttXlaUpdateDesc_t are as follows.

Note: SETREPL, SETTBLI and SETCOLI records are not returned in
persistent mode.

Field Type Description

header ttXlaNodeHdr_t Standard data header.

C data structures used by XLA

XLA Reference 9-71

type SQLUSMALLINT Record type:

■ CREATAB: Create table.

■ DROPTAB: Drop table.

■ CREAIND: Create index.

■ DROPIND: Drop index.

■ CREATVIEW: Create view.

■ DROPVIEW: Drop view.

■ CREATSEQ: Create sequence.

■ DROPSEQ: Drop sequence.

■ CREATSYN: Create synonym.

■ DROPSYN: Drop synonym.

■ ADDCOLS: Add columns.

■ DRPCOLS: Drop columns.

■ SETREPL: Set table replication status.

■ SETTBLI: Set table user ID.

■ SETCOLI: Set column user ID.

■ TRUNCATE: Truncate table.

■ INSERTTUP: Insert.

■ UPDATETUP: Update.

■ DELETETUP: Delete.

■ COMMITONLY: Commit.

Field Type Description

ttXlaUpdateDesc_t

9-72 Oracle TimesTen In-Memory Database C Developer's Guide

flags SQLUSMALLINT Special options on record update:

■ TT_UPDCOMMIT: Indicates that the update record
is the last record for the transaction. (Implied
commit.)

■ TT_UPDFIRST: Indicates that the update record
is the first record for the transaction.

■ TT_UPDREPL: Indicates that this update was the
result of a non-XLA TimesTen replicated update
from another database.

■ TT_UPDCOLS: Indicates the presence of a list
following the last returned row that specifies
which columns in the row were updated. The list
consists of an array of SQLUSMALLINT values,
the first of which is the number of columns that
were updated, followed by the column numbers
of the updated columns. For example, if the first
and third columns are updated, the array is (2, 1,
3) or (2, 3, 1), depending on the UPDATE
statement used. This array is included with all
UPDATETUP records.

■ TT_UPDDEFAULT: Indicates that the update
record (either a CREATAB or ADDCOLS) contains
default column values. If set, the default columns
are presented as an array of SQLUSMALLINT
values followed by a string with all the default
values concatenated. The number of
SQLUSMALLINT values in the array equals the
number of columns in the CREATAB or ADDCOLS
record.

■ TT_CASCDEL: Indicates that the XLA update was
generated as part of a cascade delete operation.

■ TT_AGING: Indicates that the XLA update was
generated as part of an aging operation.

If the value of a specific column is 0, it indicates that
column does not have a default value. The defaults
for all nonzero values are concatenated in a string and
are presented in order, with the array value indicating
the length of the default value. For example, three
columns with defaults 1 of type INTEGER, no default,
and "apple" of type VARCHAR2(10) is (1,0,5)"1apple".

Decimal values for each of these flags bits is as
follows. (Note that some flag values are for internal
use only.)

TT_UPDCOMMIT 1
TT_UPDFIRST 2
TT_UPDREPL 4
TT_UPDCOLS 8
TT_UPDDEFAULT 64
TT_CASCDEL 256
TT_AGING 512

contextOffset SQLUINTEGER Offset to application-provided context value. This
value is 0 if there is no context. A nonzero value
indicates the location of the context relative to the
beginning of the XLA record.

connID SQLUBIGINT Connection ID owning the transaction.

sysTableID SQLUBIGINT System-provided identifier of the affected table.

Field Type Description

C data structures used by XLA

XLA Reference 9-73

Special update data formats
The data contained in an update record follows the ttXlaTblDesc_t header. This
section describes the data formats for the special update records related to specific SQL
operations.

CREATE TABLE
For a CREATE TABLE operation, the special row value consists of the
ttXlaTblDesc_t record describing the new table, followed by the
ttXlaColDesc_t records that describe each column.

ALTER TABLE
For an ALTER TABLE operation, the special row value consists of a
ttXlaDropTableTup_t or ttXlaAddColumnTup_t value, followed by a
ttXlaColDesc_t record that describes the column.

ttXlaDropTableTup_t
For a DROP TABLE operation, the row value is as follows:

ttXlaTruncateTableTup_t
For a TRUNCATE TABLE operation, the row value is as follows:

ttXlaCreateIndexTup_t
For a CREATE INDEX operation, the row value is as follows.

userTableID SQLUBIGINT Application-defined table ID of the affected table.

tranID SQLUBIGINT Read-only, system-provided transaction identifier.

LSN tt_LSN_t Transaction log record identifier of this operation,
used for diagnostics.

tuple1 SQLUINTEGER Length of first row (tuple), or zero.

tuple2 SQLUINTEGER Length of second row (tuple), or zero.

Note: Be aware that tt_LSN_t, particularly the logFile and
logOffset fields, is used differently than in earlier releases, referring
to log record identifiers rather than sequentially increasing LSNs. See
the note in "tt_LSN_t" on page 9-84.

Field Type Description

tblName char(31) Name of the dropped table.

tblOwner char(31) Owner of the dropped table.

Field Type Description

tblName char(31) Name of the truncated table

tblOwner char(31) Owner of the truncated table.

Field Type Description

tblName char(31) Name of the table on which the index is defined.

Field Type Description

ttXlaUpdateDesc_t

9-74 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaDropIndexTup_t
For a DROP INDEX operation, the row value is as follows:

ttXlaAddColumnTup_t
For an ADD COLUMN operation, the row value is as follows:

Following this special row are the ttXlaColDesc_t records describing the new
columns.

ttXlaDropColumnTup_t
For a DROP COLUMN operation, the row value is as follows:

tblOwner char(31) Owner of the table on which the index is
defined.

ixName char(31) Name of the new index.

flag char(31) Index flag:

■ "P": Primary.

■ "F": Foreign.

■ "R": Regular.

nixcols SQLUINTEGER Number of indexed columns.

ixColsSys SQLUINTEGER(16) Indexed column numbers using system
numbers.

ixColsUser SQLUINTEGER(16) Indexed column numbers using user-defined
column IDs.

ixType char Type of index:

■ "T": Range.

■ "H": Hash.

ixUnique char Uniqueness of index:

■ "U": Unique.

■ "N": Non-unique.

pages SQLUINTEGER Number of pages for hash indexes.

Field Type Description

tblName char(31) Name of the table on which the index was
dropped.

tblOwner char(31) Owner of the table on which the index was
dropped.

ixName char(31) Name of the dropped index.

Field Type Description

ncols SQLUINTEGER The number of additional columns.

Field Type Description

ncols SQLUINTEGER The number of dropped columns.

Field Type Description

C data structures used by XLA

XLA Reference 9-75

Following this special row is an array of ttXlaColDesc_t records describing the
columns that were dropped.

ttXlaCreateSeqTup_t
For a CREATE SEQUENCE operation, the row value is as follows:

ttXlaDropSeqTup_t
For a DROP SEQUENCE operation, the row value is as follows:

ttXlaViewDesc_t
For a CREATE VIEW operation, the row value is as follows.

ttXlaDropViewTup_t
For a DROP VIEW operation, the row value is as follows.

Field Type Description

sqName char(31) Name of sequence.

sqOwner char(31) Owner of sequence.

cycle char Indicates whether the sequence number
generator will continue to generate numbers
after it reaches the maximum or minimum
value:

■ "1": Cycle.

■ "0": Do not cycle.

minval SQLBIGINT Minimum value of sequence.

maxval SQLBIGINT Maximum value of sequence.

incr SQLBIGINT Increment between sequence numbers. Positive
numbers indicate an ascending sequence and
negative numbers indicate a descending
sequence. In a descending sequence, the range
goes from maxval to minval. In an ascending
sequence, the range goes from minval to
maxval.

Field Type Description

sqName char(31) Name of sequence.

sqOwner char(31) Owner of sequence.

Note: This applies to either materialized or non-materialized views.

Field Type Description

vwName char(31) Name of view.

vwOwner char(31) Owner of view.

sysTableID SQLUBIGINT System table ID stored in SYS.TABLES.

Note: This applies to either materialized or non-materialized views.

ttXlaUpdateDesc_t

9-76 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaCreateSynTup_t
For a CREATE SYNONYM operation, the row value is as follows:

ttXlaDropSynTup_t
For a DROP SYNONYM operation, the row value is as follows:

ttXlaSetTableTup_t
The description of the SET TABLE ID operation uses the previously assigned
application table identifier in the main part of the update record and provides the new
value of the application table identifier in the following special row.

ttXlaSetColumnTup_t
The description of the SET COLUMN ID operation provides the following special row:

Field Type Description

vwName char(31) Name of view.

vwOwner char(31) Owner of view.

Field Type Description

synName char(31) Name of synonym.

synOwner char(31) Owner of synonym.

objName char(31) Name of object the synonym points to.

objOwner char(31) Owner of object the synonym points to.

isPublic char Indicates whether the synonym is public:

■ "1": True.

■ "0": False.

isReplace char Indicates whether the synonym was created
using CREATE OR REPLACE:

■ "1": True.

■ "0": False.

Field Type Description

synName char(31) Name of synonym.

synOwner char(31) Owner of synonym.

isPublic char Indicates whether the synonym is public:

■ "1": True.

■ "0": False.

Field Type Description

newID SQLUBIGINT The new user-defined table ID.

Field Type Description

oldUserColID SQLUINTEGER Previous user-defined column ID value.

newUserColID SQLUINTEGER New user-defined column ID value.

C data structures used by XLA

XLA Reference 9-77

ttXlaSetStatusTup_t
A change in a table's replication status provides the following special row.

Locating the row data following a ttXlaUpdateDesc_t header
See "Retrieving update records from the transaction log" on page 5-12 and "Inspecting
record headers and locating row addresses" on page 5-15 for a detailed discussion on
obtaining update records and inspecting the contents of ttXlaUpdateDesc_t
headers. Below is a summary of these procedures.

The update header is immediately followed by the row data. The row data is stored in
an internal format with the offsets given in the ttXlaColDesc_t structure returned
by ttXlaGetColumnInfo.

You can locate the address of the row data by adding the address of the update header
to its size.

For example:

char* Row = (char*)&ttXlaUpdateDesc_t +
 sizeof(ttXlaUpdateDesc_t);

For UPDATETUP records, there are two rows of data following the
ttXlaUpdateDesc_t header. The first row contains the data before the update, and
the second row the data after the update.

Since the new row is right after the old row, you can calculate its address by adding
the address of the old row to its length (tuple1).

For example:

char* oldRow = (char*)&ttXlaUpdateDesc_t +
 sizeof(ttXlaUpdateDesc_t);
char* newRow = oldRow + ttXlaUpdateDesc_t.tuple1;

See "ttXlaColDesc_t" on page 9-82 for details on how to access the column data in a
returned row.

sysColID SQLUINTEGER System column ID.

Field Type Description

oldStatus SQLUINTEGER Previous replication status.

newStatus SQLUINTEGER New replication status.

Field Type Description

ttXlaStatus_t

9-78 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaStatus_t

The ttXlaStatus_t structure shows runtime operational information about the XLA
system. This structure is returned by the ttXlaStatus function when operating XLA
in non-persistent mode.

Field Type Description

header ttXlaNodeHdr_t Standard data header.

xlabuffree SQLUBIGINT Free bytes in the staging buffer.

xlabufminfree SQLUBIGINT Minimum free bytes in the staging buffer.

xlabufalloc SQLUBIGINT Allocated bytes in the staging buffer.

xlabuftran SQLUBIGINT Number of transactions in the staging buffer.

xlabufrec SQLUBIGINT Number of records in the staging buffer.

logbuffree SQLUBIGINT Number of free bytes in the transaction log
buffer.

logbufminfree SQLUBIGINT Minimum free bytes in the transaction log
buffer.

logbufalloc SQLUBIGINT Number of allocated bytes in the transaction log
buffer.

flags SQLUINTEGER A bit map of status flags. Currently, only the
TTXLASTAT_STALLED flag is defined. If set,
this flag specifies that the XLA staging buffer is
full and new updates are being rejected.

C data structures used by XLA

XLA Reference 9-79

ttXlaVersion_t

To permit future extensions to XLA, a version structure ttXlaVersion_t describes
the current XLA version and structure byte order. This structure is returned by the
ttXlaGetVersion function.

This structure includes the following fields.

Field Type Description

header ttXlaNodeHdr_t Standard data header.

hardware char(16) Name of hardware platform.

wordSize SQLUINTEGER Native word size (32 or 64).

TTMajor SQLUINTEGER TimesTen major version.

TTMinor SQLUINTEGER TimesTen minor version.

TTPatch SQLUINTEGER TimesTen point release number.

OS char(16) Name of operating system.

OSMajor SQLUINTEGER Operating system major version.

OSMinor SQLUINTEGER Operating system minor version.

ttXlaTblDesc_t

9-80 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaTblDesc_t

Table information is portrayed through the ttXlaTblDesc_t structure. This
structure is returned by the ttXlaGetTableInfo function.

This structure includes the following fields.

The inline row size includes space for all fixed-width columns, null column flags, and
pointer information for variable-length columns. Each varying-length column
occupies four bytes of inline row space.

Note the following if the table has a declared primary key:

■ The nPrimCols value is greater than 0.

■ The primColsSys array contains the column numbers of the primary key, in the
same order in which they were originally declared with the CREATE TABLE
statement.

■ The primColsUser array contains the corresponding application-specified
column identifiers.

Field Type Description

header ttXlaNodeHdr_t Standard data header.

tblName char(31) Name of the table, null-terminated.

tblOwner char(31) Owner of the table, null-terminated.

sysTableID SQLUBIGINT Unique system-defined table identifier.

userTableId SQLUBIGINT User-defined table identifier.

columns SQLUINTEGER Number of columns.

width SQLUINTEGER Inline row size.

nPrimCols SQLUINTEGER Number of primary columns.

primColsSys SQLUINTEGER(16) System primary key column numbers.

primColsUser SQLUINTEGER(16) User-defined primary key column numbers.

C data structures used by XLA

XLA Reference 9-81

ttXlaTblVerDesc_t

This data structure contains the table version number and ttXlaTblDesc_t. It is
returned by ttXlaVersionTableInfo. This structure includes the following fields.

Field Type Description

tblDesc ttXlaTblDesc_t Table description.

tblVer SQLBIGINT System-generated table version number.

ttXlaColDesc_t

9-82 Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaColDesc_t

Column information is given through this structure, which is returned by the
ttXlaGetColumnInfo function.

The structure includes the following fields.

The procedures for obtaining a ttXlaColDesc_t structure and inspecting its
contents are described in "Inspecting column data" on page 5-17. Below is a summary
of these procedures.

The ttXlaColDesc_t structure is returned by the ttXlaGetColumnInfo function.
This structure contains the metadata needed to access column information in a
particular table. For example, you can use the offset field to locate specific column
data in the row or rows returned in an update record after the ttXlaColDesc_t
structure. By adding the offset to the address of a returned row, you can locate the
address to the column value. You can then cast this value to the corresponding C types

Field Type Description

header ttXlaNodeHdr_t Standard data header.

colName [tt_NameLenMax] char Name of the column.

pad0 SQLUINTEGER Pad to four-byte boundary.

sysColNum SQLUINTEGER Ordinal number of the column as
specified when the table is created or
subsequently altered. It is the same as
the corresponding COLNUM value in
SYS.COLUMNS. (See "SYS.COLUMNS"
in Oracle TimesTen In-Memory Database
System Tables and Limits Reference.)

userColNum SQLUINTEGER This is 0 or a column number optionally
specified by the user through the
ttSetUserColumnID TimesTen
built-in procedure. (See
"ttSetUserColumnID" in Oracle TimesTen
In-Memory Database Reference.)

dataType SQLUINTEGER Structure in ODBC TTXLA_* code.

See "About XLA data types" on page 5-6.

size SQLUINTEGER Maximum or basic size of column.

offset SQLUINTEGER Offset to fixed-length part of column.

nullOffset SQLUINTEGER Offset to null byte; zero if not nullable.

precision SQLSMALLINT Numeric precision for decimal types.

scale SQLSMALLINT Numeric scale for decimal types.

flags SQLUINTEGER Column flag:

■ TT_COLPRIMKEY: Column is
primary key.

■ TT_COLVARYING: Column is stored
out of line.

■ TT_COLNULLABLE: Column is
nullable.

■ TT_COLUNIQUE: Column has a
unique attribute defined on it.

C data structures used by XLA

XLA Reference 9-83

according to the dataType field, or pass it to one of the conversion routines described
in "Converting complex data types" on page 5-22.

TimesTen row data consists of fixed-length data followed by any variable-length data.

■ For fixed length column data, ttXlaColDesc_t returns the offset and size of
the column data. The offset is relative to the beginning of the fixed part of the
record. See Example 9–1 below.

■ For variable-length column data (VARCHAR and VARBINARY), offset is an
address that points to a four-byte offset value. By adding the offset address to the
offset value, you can obtain the address of the column data in the variable-length
portion of the row. The first n bytes at this location is the length of the data,
followed by the actual data (where n is 4 on 32-bit platforms or 8 on 64-bit
platforms). For variable-length data, the returned size value is the maximum
allowable column size. See Example 9–1 below.

For columns that can have null values, nullOffset points to a null byte in the
record. This value is 1 if the column is null, or 0 if it is not null. See "Detecting null
values" on page 5-24 for a discussion.

The flags bits define whether the column is nullable, part of a primary key, or stored
out of line.

The sysColNum value is the system column number to assign to the column. This
value begins with 1 for the first column.

Example 9–1 Copying and printing a VARCHAR string

For fixed-length column data, the address of a column is the offset value in the
ttXlaColDesc_t structure, plus the address of the row as follows:

ttXlaColDesc_t colDesc;

void* pColVal = colDesc->offset + row;

The value of the column can be obtained by dereferencing this pointer using a type
pointer that corresponds to the data type. For example, for SQL_INTEGER, the ODBC
type is SQLINTEGER and the value of the column can be obtained by the following:

((SQLINTEGER) pColVal))

In the case of variable-length column data, the pColVal calculated above is the
address of a four-byte offset value. Adding this offset value to the address of pColVal
provides a pointer to the beginning of the variable-length column data. Assuming the
operation is performed on a 64-bit platform, the first eight bytes at this location is the
length of this data (var_len), followed by the actual data (var_data).

In this example, a VARCHAR string is copied and printed.

tt_ptrint* var_len = (tt_ptrint*)((char*)pColVal +
 ((int)pColVal));
char* var_data = (char*)(var_len+1);
char* buffer = malloc(*var_len+1);
memcpy(buffer,var_data,*var_len);
buffer[*var_len] = (char)NULL; /* NULL terminate the string */
printf("%s\n",buffer);
free(buffer);

tt_LSN_t

9-84 Oracle TimesTen In-Memory Database C Developer's Guide

tt_LSN_t

Description of log record identifier used by bookmarks. This structure is used by the
ttXlaUpdateDesc_t structure.

Field Type Description

logFile SQLUBIGINT Higher order portion of log record identifier.

logOffset SQLUBIGINT Lower order portion of log record identifier.

Note: The logFile and logOffset field names are retained for
backward compatibility, although their usage has changed. In
previous releases the values referred to LSNs, which increased
sequentially, and the values had very specific meanings, indicating the
log file number plus byte offset. Now they refer to log record
identifiers, which are more abstract and do not have a direct
relationship to the log file number and byte offset. All you can assume
about a sequence of log record identifiers is that a log record identifier
B read at a later time than a log record identifier A will have a higher
value.

C data structures used by XLA

XLA Reference 9-85

tt_XlaLsn_t

Description of a log record identifier used by bookmarks. This structure is returned by
the ttXlaGetLSN function and used by the ttXlaSetLSN function.

The checksum is specific to an XLA handle to ensure that every log record identifier is
related to a known XLA connection.

Field Type Description

checksum SQLUINTEGER Checksum used to ensure that it is a valid log
record identifier handle.

xid SQLUSMALLINT Transaction ID.

logFile SQLUBIGINT Higher order portion of log record identifier.

logOffset SQLUBIGINT Lower order portion of log record identifier.

Note: The logFile and logOffset field names are retained for
backward compatibility, although their usage has changed. In
previous releases the values referred to LSNs, which increased
sequentially, and the values had very specific meanings, indicating the
log file number plus byte offset. Now they refer to log record
identifiers, which are more abstract and do not have a direct
relationship to the log file number and byte offset. All you can assume
about a sequence of log record identifiers is that a log record identifier
B read at a later time than a log record identifier A will have a higher
value.

tt_XlaLsn_t

9-86 Oracle TimesTen In-Memory Database C Developer's Guide

10

TimesTen ODBC Functions and Options 10-1

10TimesTen ODBC Functions and Options

This chapter covers the topics noted below, listing ODBC functions supported by
TimesTen and options supported by TimesTen for set and get functions for statements
and connections. For complete function definitions, refer to ODBC API reference
documentation.

TimesTen supports ODBC 2.5, Extension Level 1, with additional features for
Extension Level 2 as indicated in this chapter.

■ Supported ODBC functions

■ Option support for ODBC connection and statement functions

Supported ODBC functions
This section lists ODBC function supported by TimesTen, with special notes as
applicable.

Table 10–1 Supported ODBC functions

Function Notes

SQLAllocConnect

SQLAllocEnv

SQLAllocStmt

SQLBindCol

SQLBindParameter See "SQLBindParameter function" on page 2-11.

SQLCancel In TimesTen, SQLCancel cannot cancel a function running
asynchronously on the hstmt or one running on the hstmt
on another thread.

SQLColAttributes

SQLColumns

SQLConnect

SQLDataSources Available only to programs using a driver manager.

SQLDescribeCol

SQLDescribeParam

SQLDisconnect

SQLDriverConnect

SQLDrivers Available only to programs using a driver manager.

Supported ODBC functions

10-2 Oracle TimesTen In-Memory Database C Developer's Guide

SQLError

SQLExecDirect

SQLExecute

SQLFetch

SQLForeignKeys

SQLFreeConnect

SQLFreeEnv

SQLFreeStmt

SQLGetConnectOption See "Option support for SQLSetConnectOption and
SQLGetConnectOption" on page 10-3.

SQLGetCursorName You can set or get a cursor name but not reference it, such as
in a WHERE CURRENT OF clause for a positioned update or
delete.

SQLGetData

SQLGetFunctions

SQLGetInfo

SQLGetStmtOption See "Option support for SQLSetStmtOption and
SQLGetStmtOption" on page 10-5.

SQLGetTypeInfo

SQLNativeSql

SQLNumParams

SQLNumResultCols

SQLParamData

SQLParamOptions

SQLPrepare

SQLPrimaryKeys

SQLProcedureColumns

SQLProcedures

SQLPutData

SQLRowCount In addition to its standard functionality, this has special usage
with cache groups. See "Managing cache groups" on
page 2-27.

SQLSetConnectOption See "Option support for SQLSetConnectOption and
SQLGetConnectOption" on page 10-3.

SQLSetCursorName You can set or get a cursor name but not reference it, such as
in a WHERE CURRENT OF clause for a positioned update or
delete.

SQLSetStmtOption See "Option support for SQLSetStmtOption and
SQLGetStmtOption" on page 10-5.

SQLSetParam ODBC 1.0 function, replaced by SQLBindParameter in
ODBC 2.0. Retained for backward compatibility.

Table 10–1 (Cont.) Supported ODBC functions

Function Notes

Option support for ODBC connection and statement functions

TimesTen ODBC Functions and Options 10-3

Option support for ODBC connection and statement functions
This section discusses TimesTen option support for the ODBC functions
SQLSetConnectOption, SQLGetConnectOption, SQLSetStmtOption, and
SQLGetStmtOption.

Refer to ODBC API reference documentation for general information about these
functions.

Option support for SQLSetConnectOption and SQLGetConnectOption
Table 10–2 and Table 10–3 document TimesTen support for standard and
TimesTen-specific options for the ODBC SQLSetConnectOption and
SQLGetConnectOption functions. These functions let you set connection options
after the initial connection or retrieve those settings. Some of these correspond to
connection attributes you can set during the connection process, as noted.

Also see "Option support for SQLSetStmtOption and SQLGetStmtOption" on
page 10-5. Those options can also be set using SQLSetConnectOption, in which case
the value serves as a default for all statements on the connection.

SQLSpecialColumns

SQLStatistics

SQLTables

SQLTransact

Note: An option setting through SQLSetConnectOption or
SQLSetStmtOption overrides the setting of the corresponding
connection attribute (as applicable).

Table 10–2 Standard options: SQLSetConnectOption, SQLGetConnectOption

Option Support

SQL_ACCESS_MODE No

SQL_AUTOCOMMIT Yes

SQL_CURRENT_QUALIFIER No

SQL_LOGIN_TIMEOUT No

SQL_MAX_ROWS Yes

SQL_NOSCAN Yes

SQL_ODBC_CURSORS Available only to programs using a driver
manager.

SQL_OPT_TRACE Available only to programs using a driver
manager.

SQL_OPT_TRACEFILE Available only to programs using a driver
manager.

SQL_PACKET_SIZE No

Table 10–1 (Cont.) Supported ODBC functions

Function Notes

Option support for ODBC connection and statement functions

10-4 Oracle TimesTen In-Memory Database C Developer's Guide

SQL_QUIET_MODE No

SQL_TRANSLATE_DLL No

SQL_TRANSLATE_OPTION No

SQL_TXN_ISOLATION Supported only if vParam is
SQL_TXN_READ_COMMITTED or
SQL_TXN_SERIALIZABLE. See "Prefetching
multiple rows of data" on page 2-10. Also see
"Concurrency control through isolation and
locking" in Oracle TimesTen In-Memory
Database Operations Guide. Same functionality
as the Isolation general connection
attribute, as described in "Isolation" in Oracle
TimesTen In-Memory Database Reference.

Table 10–3 TimesTen options: SQLSetConnectOption, SQLGetConnectOption

Option Comments

TT_CLIENT_TIMEOUT For client/server only. Same functionality as
the TTC_Timeout TimesTen client connection
attribute, as described in "TTC_Timeout" in
Oracle TimesTen In-Memory Database Reference.

TT_DYNAMIC_LOAD_ENABLE See "Disabling dynamic loading" in Oracle
In-Memory Database Cache User's Guide. This
has the same functionality as the
DynamicLoadEnable IMDB Cache general
connection attribute described in
"DynamicLoadEnable" in Oracle TimesTen
In-Memory Database Reference.

TT_DYNAMIC_LOAD_ERROR_MODE See "Displaying dynamic load errors" in Oracle
In-Memory Database Cache User's Guide. Same
functionality as the
DynamicLoadErrorMode IMDB Cache
connection attribute described in
"DynamicLoadErrorMode" in Oracle TimesTen
In-Memory Database Reference.

TT_NLS_LENGTH_SEMANTICS See "Setting globalization options" on
page 2-27. Same functionality as the
NLS_LENGTH_SEMANTICS general connection
attribute described in
"NLS_LENGTH_SEMANTICS" in Oracle
TimesTen In-Memory Database Reference. There
is also related information about the
functionality in "Additional globalization
features" on page 3-3.

TT_NLS_NCHAR_CONV_EXCP See "Setting globalization options" on
page 2-27. Same functionality as the
NLS_NCHAR_CONV_EXCP general connection
attribute described in
"NLS_NCHAR_CONV_EXCP" in Oracle
TimesTen In-Memory Database Reference. There
is also related information about the
functionality in "Additional globalization
features" on page 3-3.

Table 10–2 (Cont.) Standard options: SQLSetConnectOption, SQLGetConnectOption

Option Support

Option support for ODBC connection and statement functions

TimesTen ODBC Functions and Options 10-5

Option support for SQLSetStmtOption and SQLGetStmtOption
Table 10–4 and Table 10–5 document TimesTen support for standard and
TimesTen-specific options for the ODBC SQLSetStmtOption and
SQLGetStmtOption functions, which let you set or retrieve statement option
settings.

To set an option default value for all statements associated with a connection, use
SQLSetConnectOption.

TT_NLS_SORT See "Setting globalization options" on
page 2-27. Same functionality as the
NLS_SORT general connection attribute
described in "NLS_SORT" in Oracle TimesTen
In-Memory Database Reference. There is also
related information about the functionality in
"Additional globalization features" on
page 3-3.

TT_PREFETCH_CLOSE See "Enable TT_PREFETCH_CLOSE for
Serializable transactions" in Oracle TimesTen
In-Memory Database Operations Guide.

TT_REGISTER_FAILOVER_CALLBACK See "Using automatic client failover" on
page 2-32.

TT_REPLICATION_TRACK See "Setting up user-specified parallel
replication" on page 2-28. Same functionality
as the ReplicationTrack general
connection attribute, to specify a track number
for use with parallel replication for the
connection, as described in "ReplicationTrack"
in Oracle TimesTen In-Memory Database
Reference.

Note: An option setting through SQLSetConnectOption or
SQLSetStmtOption overrides the setting of the corresponding
connection attribute (as applicable).

Table 10–4 Standard options: SQLSetStmtOption, SQLGetStmtOption

Option Support

SQL_ASYNC_ENABLE No

SQL_BIND_TYPE No

SQL_CONCURRENCY No

SQL_CURSOR_TYPE No

SQL_KEYSET_SIZE No

SQL_MAX_LENGTH No. SQL_MAX_LENGTH can be set, but any
specified value will be overridden with 0
(return all available data).

SQL_MAX_ROWS Yes

SQL_NOSCAN Yes

Table 10–3 (Cont.) TimesTen options: SQLSetConnectOption, SQLGetConnectOption

Option Comments

Option support for ODBC connection and statement functions

10-6 Oracle TimesTen In-Memory Database C Developer's Guide

SQL_QUERY_TIMEOUT Yes. See "Setting a timeout or threshold for
executing SQL statements" on page 2-25.

SQL_RETRIEVE_DATA No

SQL_ROWSET_SIZE No

SQL_SIMULATE_CURSOR No

SQL_USE_BOOKMARKS No

Table 10–5 TimesTen options: SQLSetStmtOption, SQLGetStmtOption

Option Comment

TT_PREFETCH_COUNT See "Prefetching multiple rows of data" on
page 2-10.

TT_QUERY_THRESHOLD See "Setting a threshold value for SQL
statements" on page 2-26. This is to specify a
time threshold for SQL statements, in seconds,
after which TimesTen will write a warning to
the support log and throw an SNMP trap.

TT_PRIVATE_COMMANDS Commands are not shared with any other
connection. See "PrivateCommands" in Oracle
TimesTen In-Memory Database Reference.

TT_STMT_PASSTHROUGH_TYPE Determines whether a specific prepared
statement will be passed through to Oracle by
the passthrough feature of IMDB Cache. The
value returned by SQLGetStmtOption can
be either TT_STMT_PASSTHROUGH_NONE or
TT_STMT_PASSTHROUGH_ORACLE.

Note: In TimesTen, this option is supported
only with SQLGetStmtOption.

See "Determining passthrough status" on
page 2-27. Also see "Setting a passthrough
level" in Oracle In-Memory Database Cache
User's Guide.

Table 10–4 (Cont.) Standard options: SQLSetStmtOption, SQLGetStmtOption

Option Support

Index-1

Index

A
access control

connection attributes, 2-5
for connections, 2-6
impact on XLA, 5-8
overview of impact, 2-30

acknowledge records have been read, XLA, 9-7
AIX, linking considerations, 1-4
allocating memory, utility library environment

handle, 8-22
application context, passing, XLA, 5-37
applying database updates, XLA, 9-9
array binds, OCI (not supported), 3-5
AUTOCOMMIT with XA, 6-6
automatic client failover, 2-32

B
backing up a database, 8-2
batch SQL operations, 7-1
binding parameters

array binds, OCI (not supported), 3-5
duplicate parameters in OCI, 3-13
duplicate parameters in PL/SQL, 2-17
duplicate parameters in SQL, 2-16
floating point data, 2-18
IN OUT parameters, 2-15
IN parameters, 2-14
OUT parameters, 2-14
parameter type assignments and

conversions, 2-12
performance impact, 7-2
precision, 2-12
scale, 2-12
SQL_WCHAR and SQL_WVARCHAR with driver

manager, 2-18
SQLBindParameter, 2-11

bookmarks--see XLA bookmarks
buildtms command, XA, 6-9
built-in procedures

calling TimesTen built-ins, 2-24
ttApplicationContext, 5-37, 9-70
ttXactIdGet, 8-30

bulk fetch, 2-10, 7-3
bulk insert, update, delete (batching), 7-1

C
C language functions--see Utility Library.
cache

cache groups, cache instances affected, OCI, 3-13
cache groups, cache instances affected,

ODBC, 2-27
get passthrough status, 2-27
Oracle password, specifying, OCI, 3-12
Oracle password, specifying, Pro*C/C++, 4-7
set passthrough level, 2-27

CALL
PL/SQL procedures and functions, 2-24
TimesTen built-in procedures, 2-24

character set conversion, 2-27
client failover

automatic client failover, 2-32
failover callback functions, 2-35

closing a transaction log API handle, XLA, 9-11
column data, inspecting, XLA, 5-17
committing a transaction

ODBC, 2-23
XLA, 9-12

compiling applications
OCI applications, 3-8
Pro*C/C++ applications, 4-5
UNIX, 1-4
Windows, 1-3

concurrency control, 10-4
connection attributes

first connection attributes, 2-5
general connection attributes, 2-5

connections
access control, 2-6
attributes, setting programmatically, 2-5
connecting to database, 2-2
disconnecting from database, 2-2
external user (OCI), 3-11
external user (Pro*C/C++), 4-7
managing, 2-1
OCI, connecting to database, 3-8
Pro*C/C++, connecting to database, 4-6
SQLConnect, SQLDriverConnect,

SQLAllocConnect, SQLDisconnect, 2-2
SQLSetConnectOption and SQLGetConnectOption

supported options, 10-3

Index-2

cursors
REF CURSORs, 2-18
usage, 2-8

D
data structures, XLA

summary, 9-68
tt_LSN_t, 9-84
tt_XlaLsn_t, 9-85
ttXlaColDesc_t, 9-82
ttXlaNodeHdr_t, 9-69
ttXlaStatus_t, 9-78
ttXlaTblDesc_t, 9-80
ttXlaTblVerDesc_t, 9-81
ttXlaUpdateDesc_t, 9-70
ttXlaVersion_t, 9-79

data types
conversions and performance, 7-3
ODBC 2.0 versus ODBC 3.0 types, 2-29
type mapping/conversion for parameter

binding, 2-12
XLA, 5-6

database
applying updates, XLA, 9-9
backing up, 8-2
connection handle, obtaining, XLA, 5-9
destroying, 8-6, 8-8
RAM usage, 8-10, 8-11, 8-12, 8-14
replicating, 8-15
restoring, 8-20

deadlock error, 5-35
deferred prepare

OCI, 3-12
ODBC, 2-9

demo applications, Quick Start, 1-5
destroying a database, 8-6, 8-8
diagnostic framework considerations (OCI), 3-11
disaster recovery, 8-15
distributed transaction processing (XA)

also see XA
overview, 6-1
resource manager, 6-2
transaction manager, 6-2
transaction recovery, 6-3

DML returning, 2-20
driver manager

linking with, 1-2
performance impact, 7-1
using SQL_WCHAR and SQL_

WVARCHAR, 2-18
XA, support (Windows), 6-8

dropping a table with XLA bookmark, 5-29
duplicate parameter binding

in OCI, 3-13
Oracle vs. TimesTen modes, 2-16

DuplicateBindMode general connection
attribute, 2-16

DurableCommit, XA, 6-3

E
easy connect

with OCI, 3-9
with Pro*C/C++, 4-6

environment variables
OCI, 3-6
TimesTen, 1-1

errors
error and warning levels, 2-31
error handling, 2-30
OCI error reporting, 3-11
Pro*C/C++ error reporting, 4-8
recovery, 2-32
transaction log API error handling, 5-27
utility library errors, count, 8-28
utility library errors, retrieving, 8-26

event management (XLA), 5-1
execution of SQL

executing the statement, 2-7
SQLExecDirect and SQLExecute, 2-7

external user, connecting
OCI, 3-11
Pro*C/C++, 4-7

F
failover, 2-32
fetching results

bulk fetch, prefetch, 2-10, 7-3
example, 2-9

first connection attributes, 2-5
floating point data, binding, 2-18
freeing memory, utility library environment

handle, 8-24

G
general connection attributes, 2-5
globalization options

OCI, 3-3
ODBC, 2-27

I
-I flag (compiling), 1-3, 1-4
IMDB Cache--see cache
IN OUT parameters, 2-15
IN parameters, 2-14
include files, TimesTen (#include), 2-6
initializing a database handle, XLA, 9-46
isolation level, 10-4

K
key not found error, 5-35

L
-L flag (compiling), 1-4
linking applications

Index-3

AIX considerations, 1-4
OCI applications, 3-8
Pro*C/C++ applications, 4-5
Solaris considerations, 1-4
testing whether directly linked, 1-3
UNIX, 1-4
Windows, 1-3
with driver manager, 1-2
with TimesTen driver, 1-1

-lodbc flag (compiling), 1-4
log record identifier, 5-4

M
materialized views with XLA, 5-3

N
non-persistent mode, XLA, 5-38
NVARCHAR type, 5-21

O
OCI

architecture in TimesTen, 3-2
call support, 3-13
compiling and linking applications, 3-8
connecting as external user, 3-11
connecting to a TimesTen database, 3-8
deferred prepare, 3-12
demo applications, 3-11
descriptor support, 3-19
diagnostic framework considerations, 3-11
easy connect, using, 3-9
environment variables, 3-6
error reporting, 3-11
external user connection, 3-11
handle support, 3-18
Oracle password, specifying for cache, 3-12
overview, 3-1
parameter attribute support, 3-20
restrictions in TimesTen, 3-4
signal handling considerations, 3-11
SQL data type support, 3-20
statement caching, 3-1, 3-17
TimesTen support, 3-2
tnsnames, using, 3-8

OCIBindByPos, 3-13
ODBC functions, supported in TimesTen, 10-1
Oracle Call Interface support, 3-1
OUT parameters, 2-14

P
parallel replication, setup and ODBC support, 2-28
parameter binding

duplicate parameters in OCI, 3-13
duplicate parameters in PL/SQL, 2-17
duplicate parameters in SQL, 2-16
floating point data, 2-18
IN OUT parameters, 2-15

IN parameters, 2-14
OUT parameters, 2-14
parameter type assignments and

conversions, 2-12
SQL_WCHAR and SQL_WVARCHAR with driver

manager, 2-18
SQLBindParameter, 2-11

passthrough
get status with TT_STMT_PASSTHROUGH_TYPE

ODBC option, 2-27, 10-6
set level with ttOptSetFlag, 2-27

performance
batch SQL operations, 7-1
binding parameters, 7-2
bulk fetch, prefetch, 7-3
data type conversions, 7-3
SQLGetData, 7-2

persistent mode, XLA, 5-2
PL/SQL procedures and functions, calling, 2-24
precision, 2-12
prefetch multiple rows, 2-10, 7-3
preparation of SQL

deferred prepare, 2-9
preparing the statement, 2-8

privileges--see access control
Pro*C/C++ Precompiler

architecture in TimesTen, 3-2
building an application, 4-5
commands and clauses, unsupported or restricted

(summary), 4-4
connecting as external user, 4-7
connecting to a TimesTen database, 4-6
connection restrictions, 4-3
demo applications, 4-8
easy connect, using, 4-6
embedded PL/SQL restrictions, 4-3
embedded SQL restrictions, 4-2
error reporting, 4-8
external user connection, 4-7
getting started, 4-5
option setting, 4-10
option support, 4-8
Oracle password, specifying for cache, 4-7
overview, 4-1
semantic checking restrictions, 4-2
SQLLIB support, 4-2
TimesTen support, 4-1
tnsnames, using, 4-6
transaction restrictions, 4-3

Q
query results, working with cursors, 2-8
query threshold (or for any statement), 2-26
query timeout (or for any statement), 2-25
Quick Start, demo applications, 1-5

R
RAM usage

Index-4

ttRamGrace, 8-10
ttRamLoad, 8-11
ttRamPolicy, 8-12
ttRamUnload, 8-14

record headers, inspecting, XLA, 5-15
REF CURSORs, 2-18
replicating a database

utility function, 8-15
XLA, using for replication, 5-33

resource manager, XA, 6-2
restoring a database, 8-20
RETURNING INTO clause, 2-20
rolling back a transaction

utility function, 8-30
XLA, 9-49

rowid
convert ROWID to string, XLA, 9-50
using rowids, ROWID type, 2-22

S
sb_ErrXlaTupleMismatch error, 5-36, 9-9, 9-10
scale, 2-12
security--see access control
signal handling considerations (OCI), 3-11
Solaris, linking considerations, 1-4
SQL_QUERY_TIMEOUT option, 2-25
SQL_WCHAR and SQL_WVARCHAR with driver

manager, 2-18
SQLAllocConnect, 2-2
SQLBindCol, performance, 7-2
SQLBindParameter

arguments, usage, 2-11
performance, 7-2

SQLConnect, 2-2
SQLDisconnect, 2-2
SQLDriverConnect, 2-2, 2-5
SQLExecDirect, 2-7
SQLExecute, 2-7
SQLGetConnectOption, supported options, 10-3
SQLGetData and performance, 7-2
SQLGetStmtOption() ODBC function

TT_STMT_PASSTHROUGH_TYPE option, 2-27
SQLGetStmtOption, supported options, 10-5
SQLLIB support (Pro*C/C++), 4-2
SQLParamOptions function, 7-2
SQLRowCount, 2-23, 2-27
SQLSetConnectOption, supported options, 10-3
SQLSetStmtOption, supported options, 10-5
statement caching, OCI, 3-1, 3-17
statement execution (SQL)

executing the statement, 2-7
SQLExecDirect and SQLExecute, 2-7

statement options, SQLSetStmtOption and
SQLGetStmtOption, supported options, 10-5

statement preparation (SQL)
deferred prepare, 2-9
preparing the statement, 2-8

synonyms, 2-22

T
tables to monitor, XLA, 5-11
threshold for SQL statements, 2-26
timeout

for SQL statements, 2-25
handing timeout errors, 5-35

timesten.h
brief description, 2-6
globalization options, 2-27
ttFailoverCallback_t structure, 2-36

tnsnames
with OCI, 3-8
with Pro*C/C++, 4-6

transaction log API
also see XLA
bookmarks, 5-4
closing handle, 9-11
data structures, 9-68
demos, 5-8
error handling, 5-27
functions, overview, 9-1
functions, summary, 9-2
overview, 5-1
replication, 5-33
tt_LSN_t data structure, 9-84
tt_XlaLsn_t data structure, 9-85
ttXlaAcknowledge, 9-7
ttXlaApply, 9-9
ttXlaClose, 9-11
ttXlaColDesc_t data structure, 9-82
ttXlaCommit, 9-12
ttXlaConfigBuffer, 9-13
ttXlaConvertType, 9-15
ttXlaDateToODBCCType, 9-16
ttXlaDecimalToCString, 9-17
ttXlaDeleteBookmark, 9-19
ttXlaError, 9-20
ttXlaErrorRestart, 9-22
ttXlaGenerateSQL, 9-23
ttXlaGetColumnInfo, 9-25
ttXlaGetLSN, 9-27
ttXlaGetTableInfo, 9-28
ttXlaGetVersion, 9-29
ttXlaLookup, 9-30
ttXlaNextUpdate, 9-32
ttXlaNextUpdateWait, 9-34
ttXlaNodeHdr_t data structure, 9-69
ttXlaNumberToBigInt, 9-36
ttXlaNumberToCString, 9-37
ttXlaNumberToDouble, 9-38
ttXlaNumberToInt, 9-39
ttXlaNumberToSmallInt, 9-40
ttXlaNumberToTinyInt, 9-41
ttXlaNumberToUInt, 9-42
ttXlaOpenTimesTen, 9-43
ttXlaOraDateToODBCTimeStamp, 9-44
ttXlaOraTimeStampToODBCTimeStamp, 9-45
ttXlaPersistOpen, 9-46
ttXlaResetStatus, 9-48
ttXlaRollback, 9-49

Index-5

ttXlaRowdToCString, 9-50
ttXlaSetLSN, 9-51
ttXlaSetVersion, 9-52
ttXlaStatus, 9-53
ttXlaStatus_t data structure, 9-78
ttXlaTableByName, 9-54
ttXlaTableCheck, 9-55
ttXlaTableStatus, 9-57
ttXlaTableVersionVerify, 9-62
ttXlaTblDesc_t data structure, 9-80
ttXlaTblVerDesc_t data structure, 9-81
ttXlaTimeStampToODBCCType, 9-61
ttXlaTimeToODBCCType, 9-60
ttXlaUpdateDesc_t data structure, 9-70
ttXlaVersion_t data structure, 9-79
ttXlaVersionColumnInfo, 9-64
ttXlaVersionCompare, 9-65
ttXlaVersionTableInfo, 9-67

transaction manager, XA, 6-2
tt_ErrBadXlaRecord, 5-28
tt_ErrCondLockConflict, 5-28
tt_ErrDbAllocFailed, 5-28
tt_ErrDeadlockVictim, 5-28
tt_ErrDeadlockVictim error, 5-35
tt_ErrPermSpaceExhausted, 5-28
tt_ErrTempSpaceExhausted, 5-28
tt_ErrTimeoutVictim, 5-28
tt_ErrTimeoutVictim error, 5-35
tt_ErrXlaBookmarkUsed, 5-28
tt_ErrXlaDedicatedConnection, 5-29
tt_ErrXlaLsnBad, 5-28
tt_ErrXlaNoLogging, 5-28
tt_ErrXlaNoSQL, 5-28
tt_ErrXlaParameter, 5-28
tt_ErrXlaTableDiff, 5-28
tt_ErrXlaTableSystem, 5-29
tt_ErrXlaTupleMismatch, 5-29
tt_LSN_t data structure, XLA, 9-84
TT_NLS_LENGTH_SEMANTICS ODBC

option, 2-28
TT_NLS_NCHAR_CONV_EXCP ODBC option, 2-28
TT_NLS_SORT ODBC option, 2-28
TT_PREFETCH_CLOSE connection option, 1-2
TT_PREFETCH_COUNT, 2-10, 7-3
TT_QUERY_THRESHOLD, 2-26
TT_STMT_PASSTHROUGH_TYPE ODBC

option, 10-6
tt_xa_context() function, XA, 6-4
tt_xa_switch, XA, 6-7
tt_xla.h #include file, 5-9
tt_XlaLsn_t data structure, XLA, 9-85
ttApplicationContext, 5-37, 9-70
ttBackup, 8-2
ttCkpt built-in procedure, 5-30
ttCkptBlocking built-in procedure, 5-30
ttDestroyDataStore, 8-6
ttDestroyDataStoreForce, 8-8
ttDurableCommit, XA, 6-3
ttRamGrace, 8-10
ttRamLoad, 8-11

ttRamPolicy, 8-12
ttRamUnload, 8-14
ttRepDuplicateEx, 8-15
ttRestore, 8-20
ttSrcScan utility, 3-5, 4-4
ttUtilAllocEnv, 8-22
ttUtilFreeEnv, 8-24
ttUtilGetError, 8-26
ttUtilGetErrorCount, 8-28
ttXactIdGet built-in procedure, 8-30
ttXactIdRollback, 8-30
ttxadm43.dll library, XA, 6-8
ttXlaAcknowledge, 5-12, 9-7
ttXlaApply, 5-35, 9-9
ttXlaBookmarkDelete built-in procedure, 5-31
ttXlaClose, 5-31, 9-11
ttXlaColDesc_t, 5-17
ttXlaColDesc_t data structure, XLA, 9-82
ttXlaCommit, 5-36, 9-12
ttXlaConfigBuffer, 5-39, 9-13
ttXlaConvertCharType, 9-15
ttXlaDateToODBCCType, 5-22, 9-16
ttXlaDecimalToCString, 5-22, 9-17
ttXlaDeleteBookmark, 5-30, 9-19
ttXlaError, 5-28, 9-20
ttXlaErrorRestart, 5-28, 9-22
ttXlaGenerateSQL, 5-36, 9-23
ttXlaGetColumnInfo, 5-17, 9-25
ttXlaGetLSN, 5-36, 9-27
ttXlaGetTableInfo, 5-18, 9-28
ttXlaGetVersion, 5-11, 9-29
ttXlaHandle_h XLA handle, 5-10, 5-39
ttXlaLookup, 9-30
ttXlaNextUpdate, 5-12, 9-32
ttXlaNextUpdateWait, 5-12, 9-34
ttXlaNodeHdr_t, 9-69
ttXlaNodeHdr_t data structure, XLA, 9-69
ttXlaNumberToBigInt, 5-22, 9-36
ttXlaNumberToCString, 5-22, 9-37
ttXlaNumberToDouble, 5-22, 9-38
ttXlaNumberToInt, 5-22, 9-39
ttXlaNumberToSmallInt, 5-23, 9-40
ttXlaNumberToTinyInt, 5-23, 9-41
ttXlaNumberToUInt, 5-23, 9-42
ttXlaOpenTimesTen, 5-39, 9-43
ttXlaOraDateToODBCTimeStamp, 5-23, 9-44
ttXlaOraTimeStampToODBCTimeStamp, 5-23, 9-45
ttXlaPersistOpen, 5-10, 9-46
ttXlaResetStatus, 9-48
ttXlaRollback, 5-36, 9-49
ttXlaRowdToCString, 9-50
ttXlaSetLSN, 5-36, 9-51
ttXlaSetVersion, 5-11, 9-52
ttXlaStatus, 5-40, 9-53
ttXlaStatus_t data structure, XLA, 9-78
ttXlaTableByName, 5-11, 9-54
ttXlaTableCheck, 9-55
ttXlaTableStatus, 5-11, 9-57
ttXlaTableVersionVerify, 9-62
ttXlaTblDesc_t data structure, XLA, 9-80

Index-6

ttXlaTblVerDesc_t data structure, XLA, 9-81
ttXlaTimeStampToODBCCType, 5-22, 5-23, 9-61
ttXlaTimeToODBCCType, 5-22, 5-23, 9-60
ttXlaUnsubscribe built-in procedure, 5-30
ttXlaUpdateDesc_t

description, usage, 9-70
rows of data following in update record, 5-17
TT_AGING flag, 9-72
TT_CASCDEL flag, 9-72
TT_UPDCOLS flag, 9-72
TT_UPDCOMMIT flag, 9-72
TT_UPDDEFAULT flag, 9-72
TT_UPDFIRST flag, 9-72
TT_UPDREPL flag, 9-72
ttXlaAddColumnTup_t, 9-74
ttXlaCreateIndexTup_t, 9-73
ttXlaCreateSeqTup_t, 9-75
ttXlaCreateSynTup_t, 9-76
ttXlaDropColumnTup_t, 9-74
ttXlaDropindexTup_t, 9-74
ttXlaDropSeqTup_t, 9-75
ttXlaDropSynTup_t, 9-76
ttXlaDropTableTup_t, 9-73
ttXlaDropViewTup_t, 9-75
ttXlaSetColumnTup_t, 9-76
ttXlaSetStatusTup_t, 9-77
ttXlaSetTableTup_t, 9-76
ttXlaTruncateTableTup_t, 9-73
ttXlaViewDesc_t, 9-75
update header, described, 5-12
what it describes, 5-15

ttXlaVersion_t data structure, XLA, 9-79
ttXlaVersionColumnInfo, 9-64
ttXlaVersionCompare, 9-65
ttXlaVersionTableInfo, 9-67
Tuxedo, configuration for XA, 6-8
two-phase commit protocol, XA, 6-2
type mapping/conversion for parameter

binding, 2-12

U
UBBCONFIG file, XA, 6-9
UNIX, compiling and linking applications, 1-4
update conflicts, XLA, 5-36
update records, retrieving, XLA, 5-12
Utility Library

described, overview, 8-1
ttBackup, back up database, 8-2
ttDestroyDataStore, destroy database, 8-6
ttDestroyDataStoreForce, destroy database, 8-8
ttRamGrace, RAM usage, 8-10
ttRamLoad, RAM usage, 8-11
ttRamPolicy, RAM usage, 8-12
ttRamUnload, RAM usage, 8-14
ttRepDuplicateEx, replicate database, 8-15
ttRestore, restore database, 8-20
ttUtilAllocEnv, allocate library environment

handle, 8-22
ttUtilFreeEnv, free library environment

handle, 8-24
ttUtilGetError, utility library errors, 8-26
ttUtilGetErrorCount, utility library error

count, 8-28
ttXactIdRollback, roll back transaction, 8-30

V
VARBINARY type, 5-21
VARCHAR type, 5-20

W
Windows, compiling and linking applications, 1-3

X
XA

AUTOCOMMIT with XA, 6-6
driver manager support (Windows), 6-8
DurableCommit, 6-3
resource manager, 6-2
transaction manager, 6-2
transaction recovery, 6-3
tt_xa_context() function, 6-4
tt_xa_switch, 6-7
ttDurableCommit, 6-3
Tuxedo configuration, 6-8
two-phase commit, 6-2
XID parameter, 6-4

xa_close() function, 6-4
xa_open() function, 6-4
xa_switch_t, 6-6
XID parameter, XA, 6-4
XLA

access control, 5-8
acknowledge records have been read, 9-7
also see transaction log API
also see XLA bookmarks
application context, passing, 5-37
applying database updates, 9-9
closing a transaction log API handle, XLA, 9-11
column data, inspecting, 5-17
column information, retrieving, 9-25
committing a transaction, 9-12
concepts, 5-1
counters, resetting Transaction Log

counters, 9-48
data structures, 9-68
data types, 5-6
database connection handle, obtaining, 5-9
dropping a table with bookmark, 5-29
errors, reading transaction log errors, 9-20
errors, resetting the transaction log error

stack, 9-22
event-handler application, 5-9
functions, overview, 9-1
functions, summary, 9-2
initializing a database handle, 9-46
materialized views, using, 5-3
non-persistent mode, 5-38

Index-7

persistent mode, 5-2
record headers, inspecting, 5-15
record, looking up, 9-30
replication using XLA, 5-33
rolling back a transaction, 9-49
status, retrieving Transaction Log API

status, 9-53
table compatibility, verifying, 9-55
table information, retrieving, 9-28, 9-54
table status, 9-57
tables to monitor, specifying, 5-11
terminating XLA application, 5-31
update buffer configuration, 9-13
update conflicts, 5-36
update data, retrieving, 9-32
update records, retrieving, 5-12
version, retrieving the Transaction Log API

version, 9-29
version, setting the Transaction Log API

version, 9-52
XLA handle, initializing, 5-10

XLA bookmarks
creating or reusing, 5-4
deleting, 5-30, 9-19
determining tables subscribed to, 5-11
how they work, 5-4
location, changing, 5-37
overview, 5-4
replicated bookmarks, 5-6
reporting DDL events, 5-11

X/Open DTP model, 6-1

Index-8

	Contents
	Preface
	Audience
	Related documents
	Conventions
	Documentation Accessibility
	Technical support

	What's New
	New features in Release 11.2.1.7.0
	New features in Release 11.2.1.6.0
	New features in Release 11.2.1.4.0
	New features in Release 11.2.1.1.0

	1 C Development Environment
	Setting the environment for development
	Linking options
	Linking directly with the TimesTen ODBC drivers
	Linking with a driver manager
	Testing link options

	Compiling and linking applications
	Compiling and linking applications on Windows
	Compiling and linking applications on UNIX

	About the TimesTen C demos

	2 Working with TimesTen Databases
	Managing TimesTen database connections
	SQLConnect, SQLDriverConnect, SQLAllocConnect, SQLDisconnect functions
	Connecting to and disconnecting from a database
	Setting connection attributes programmatically
	Access control for connections

	Managing TimesTen data
	TimesTen #include files
	SQL statement execution within C applications
	SQLExecDirect and SQLExecute functions
	Executing a SQL statement

	Preparing and executing queries and working with cursors
	TimesTen deferred prepare
	Prefetching multiple rows of data
	Binding parameters and executing statements
	SQLBindParameter function
	Determination of parameter type assignments and type conversions
	Binding IN parameters
	Binding OUT parameters
	Binding IN OUT parameters
	Binding duplicate parameters in SQL statements
	Binding duplicate parameters in PL/SQL
	Considerations for floating point data
	Using SQL_WCHAR and SQL_WVARCHAR with a driver manager

	Working with REF CURSORs
	Working with DML returning (RETURNING INTO clause)
	Working with rowids
	Working with synonyms
	Making and committing changes to the database

	Using additional TimesTen data management features
	Using CALL to execute procedures and functions
	Setting a timeout or threshold for executing SQL statements
	Setting a timeout value for SQL statements
	Setting a threshold value for SQL statements

	Features for use with IMDB cache
	Setting temporary passthrough level with the ttOptSetFlag built-in procedure
	Determining passthrough status
	Managing cache groups

	Setting globalization options
	TT_NLS_SORT
	TT_NLS_LENGTH_SEMANTICS
	TT_NLS_NCHAR_CONV_EXCP

	Setting up user-specified parallel replication
	ODBC 3.0 data types

	Considering TimesTen features for access control
	Handling Errors
	Checking for errors
	Error and warning levels
	Fatal errors
	Non-fatal errors
	Warnings

	Recovering after fatal errors

	Using automatic client failover
	Features and functionality of automatic client failover
	Failover callback functions

	3 TimesTen Support for Oracle Call Interface
	Overview of OCI
	Overview of TimesTen OCI support
	OCI libraries and architecture
	Globalization support
	Character sets
	Additional globalization features

	TimesTen restrictions and differences
	Oracle Database features not supported
	Additional TimesTen OCI restrictions
	Additional TimesTen OCI differences

	The ttSrcScan utility

	Getting started with TimesTen OCI
	Environment variables for TimesTen OCI
	Compiling and linking OCI applications
	Connecting to a TimesTen database from OCI
	Using the tnsnames naming method to connect
	Using an easy connect string to connect
	Configuring whether to use tnsnames.ora or easy connect
	Connecting as an externally identified user in OCI

	Error reporting
	Signal handling and diagnostic framework considerations
	OCI demo programs

	Additional features of TimesTen OCI
	TimesTen deferred prepare
	Using IMDB Cache in OCI
	Specifying the Oracle password in OCI for IMDB Cache
	Determining the number of cache groups affected by an action

	Duplicate parameter bindings in TimesTen OCI

	Call, handle, descriptor, SQL data type, and parameter attribute support

	4 TimesTen Support for Oracle Pro*C/C++ Precompiler
	Overview of the Oracle Pro*C/C++ Precompiler
	Overview of TimesTen support for Pro*C/C++
	TimesTen OCI support
	Embedded SQL support and restrictions
	Semantic checking restrictions
	Embedded PL/SQL restrictions
	Transaction restrictions
	Connection restrictions
	Summary of unsupported or restricted executable commands and clauses
	The ttSrcScan utility

	Getting started with TimesTen Pro*C/C++
	Building a Pro*C/C++ application
	Connecting to a TimesTen database from Pro*C/C++
	Connection syntax and parameters
	Using tnsnames or easy connect
	Specifying the Oracle password in Pro*C/C++ for IMDB Cache
	Connecting as an externally identified user in Pro*C/C++

	Error reporting and handling
	Pro*C/C++ demo programs

	TimesTen Pro*C/C++ Precompiler options
	Precompiler option support
	Setting precompiler options

	5 XLA and TimesTen Event Management
	XLA concepts
	XLA persistent mode
	How XLA reads records from the transaction log
	About XLA and materialized views
	About XLA bookmarks
	Creating or reusing a bookmark
	How bookmarks work
	Replicated bookmarks

	About XLA data types
	Access control impact on XLA
	XLA demo

	Writing an XLA event-handler application
	Obtaining a database connection handle
	Initializing XLA and obtaining an XLA handle
	Specifying which tables to monitor for updates
	Retrieving update records from the transaction log
	Inspecting record headers and locating row addresses
	Inspecting column data
	Obtaining column descriptions
	Reading fixed-length column data
	Reading NOT INLINE variable-length column data
	Null-terminating returned strings
	Converting complex data types
	Detecting null values
	Putting it all together: a PrintColValues() function

	Handling XLA errors
	Dropping a table that has an XLA bookmark
	Deleting bookmarks
	Terminating an XLA application

	Using XLA as a replication mechanism
	Checking table compatibility between databases
	Checking table and column descriptions
	Checking table and column versions

	Replicating updates between databases
	Handling timeout and deadlock errors
	Checking for update conflicts
	Replicating updates to a non-TimesTen database

	Other XLA features
	Changing the location of a bookmark
	Passing application context
	Using XLA in non-persistent mode
	How non-persistent mode differs from persistent mode
	Initializing XLA in non-persistent mode
	Configuring the staging buffer
	Retrieving and resetting the buffer status

	6 Distributed Transaction Processing: XA
	Overview of XA
	X/Open DTP model
	Two-phase commit

	Using XA in TimesTen
	TimesTen database requirements for XA
	Global transaction recovery in TimesTen
	Considerations in using standard XA functions with TimesTen
	xa_open()
	xa_close()
	Transaction id (XID) parameter

	TimesTen tt_xa_context function to obtain ODBC handle from XA connection
	Considerations in calling ODBC functions over XA connections in TimesTen
	Autocommit
	Local transaction COMMIT and ROLLBACK
	Closing open cursors

	XA resource manager switch
	xa_switch_t
	tt_xa_switch

	XA error handling in TimesTen

	XA support through the Windows ODBC driver manager
	Issues to consider
	Linking to the TimesTen ODBC XA driver manager extension library

	Configuring Tuxedo to use TimesTen XA
	Update the $TUXDIR/udataobj/RM file
	Build the Tuxedo transaction manager server
	Update the GROUPS section in the UBBCONFIG file
	Compile the servers

	7 Application Tuning
	Bypass driver manager if appropriate
	Using arrays of parameters for batch execution
	Avoid excessive binds
	Avoid SQLGetData
	Avoid data type conversions
	Bulk fetch rows of TimesTen data

	8 TimesTen Utility API
	ttBackup
	ttDestroyDataStore
	ttDestroyDataStoreForce
	ttRamGrace
	ttRamLoad
	ttRamPolicy
	ttRamUnload
	ttRepDuplicateEx
	ttRestore
	ttUtilAllocEnv
	ttUtilFreeEnv
	ttUtilGetError
	ttUtilGetErrorCount
	ttXactIdRollback

	9 XLA Reference
	About XLA functions
	About return codes
	About parameter types (input, output, input-output)
	About results output by functions
	About required privileges

	Summary of XLA functions by category
	XLA core functions including data type conversion functions
	XLA persistent mode functions
	XLA non-persistent mode functions
	XLA replication functions

	XLA function reference
	ttXlaAcknowledge
	ttXlaApply
	ttXlaClose
	ttXlaCommit
	ttXlaConfigBuffer
	ttXlaConvertCharType
	ttXlaDateToODBCCType
	ttXlaDecimalToCString
	ttXlaDeleteBookmark
	ttXlaError
	ttXlaErrorRestart
	ttXlaGenerateSQL
	ttXlaGetColumnInfo
	ttXlaGetLSN
	ttXlaGetTableInfo
	ttXlaGetVersion
	ttXlaLookup
	ttXlaNextUpdate
	ttXlaNextUpdateWait
	ttXlaNumberToBigInt
	ttXlaNumberToCString
	ttXlaNumberToDouble
	ttXlaNumberToInt
	ttXlaNumberToSmallInt
	ttXlaNumberToTinyInt
	ttXlaNumberToUInt
	ttXlaOpenTimesTen
	ttXlaOraDateToODBCTimeStamp
	ttXlaOraTimeStampToODBCTimeStamp
	ttXlaPersistOpen
	ttXlaResetStatus
	ttXlaRollback
	ttXlaRowidToCString
	ttXlaSetLSN
	ttXlaSetVersion
	ttXlaStatus
	ttXlaTableByName
	ttXlaTableCheck
	ttXlaTableStatus
	ttXlaTimeToODBCCType
	ttXlaTimeStampToODBCCType
	ttXlaTableVersionVerify
	ttXlaVersionColumnInfo
	ttXlaVersionCompare
	ttXlaVersionTableInfo

	C data structures used by XLA
	ttXlaNodeHdr_t
	ttXlaUpdateDesc_t
	ttXlaStatus_t
	ttXlaVersion_t
	ttXlaTblDesc_t
	ttXlaTblVerDesc_t
	ttXlaColDesc_t
	tt_LSN_t
	tt_XlaLsn_t

	10 TimesTen ODBC Functions and Options
	Supported ODBC functions
	Option support for ODBC connection and statement functions
	Option support for SQLSetConnectOption and SQLGetConnectOption
	Option support for SQLSetStmtOption and SQLGetStmtOption

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

