

Oracle® TimesTen In-Memory Database
Java Developer's Guide

Release 11.2.1

E13068-07

January 2011

Oracle TimesTen In-Memory Database Java Developer's Guide, Release 11.2.1

E13068-07

Copyright © 1996, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface .. vii

Audience.. vii
Related documents... vii
Conventions ... viii
Documentation Accessibility ... ix
Technical support .. ix

What's New.. xi

New features in Release 11.2.1.7.0 .. xi
New features in Release 11.2.1.6.0 .. xi
New features in Release 11.2.1.4.0 .. xi
New features in Release 11.2.1.1.0 ... xii

1 Java Development Environment

Installing TimesTen and the JDK.. 1-1
Setting the environment for Java development ... 1-1
Compiling Java applications .. 1-2
About the TimesTen Java demos ... 1-2

2 Working with TimesTen Databases

Key JDBC classes and interfaces ... 2-1
Package imports ... 2-2
Support for interfaces in the java.sql package ... 2-2
Support for classes in the java.sql package .. 2-3
Support for interfaces and classes in the javax.sql package... 2-3
TimesTen JDBC extensions... 2-4
Additional TimesTen classes and interfaces .. 2-5

Managing TimesTen database connections... 2-5
Load the TimesTen driver... 2-6
Create a connection URL for the database and specify connection attributes 2-6
Connect to the database .. 2-6
Disconnect from the database .. 2-7
Opening and closing a direct driver connection ... 2-7
Access control for connections ... 2-8

Managing TimesTen data.. 2-8

iv

Executing simple SQL statements ... 2-8
Working with TimesTen result sets: hints and restrictions .. 2-10
Fetching multiple rows of data ... 2-10
Binding parameters and executing statements... 2-11

Preparing SQL statements and setting input parameters .. 2-11
Working with OUT and IN OUT parameters.. 2-15
Binding duplicate parameters in SQL statements... 2-17
Binding duplicate parameters in PL/SQL ... 2-18

Working with REF CURSORs ... 2-18
Working with DML returning (RETURNING INTO clause) ... 2-19
Working with rowids ... 2-21
Working with synonyms.. 2-22
Committing or rolling back changes to the database .. 2-23

Setting autocommit.. 2-23
Manually committing or rolling back changes.. 2-23
Using COMMIT and ROLLBACK SQL statements .. 2-23

Managing multiple threads ... 2-23
Java escape syntax and SQL functions... 2-24

Using additional TimesTen data management features .. 2-24
Using CALL to execute procedures and functions .. 2-24
Setting a timeout or threshold for executing SQL statements .. 2-26

Setting a timeout value for SQL statements... 2-26
Setting a threshold value for SQL statements.. 2-27

Features for use with IMDB Cache... 2-27
Setting temporary passthrough level with the ttOptSetFlag built-in procedure 2-27
Managing cache groups .. 2-28

Setting up user-specified parallel replication ... 2-28
Considering TimesTen features for access control ... 2-29
Handling errors.. 2-29

About fatal errors, non-fatal errors, and warnings .. 2-30
Handling fatal errors ... 2-30
Handling non-fatal errors ... 2-30
About warnings.. 2-31

Reporting errors and warnings ... 2-31
Catching and responding to specific errors .. 2-32
Rolling back failed transactions .. 2-33

JDBC support for automatic client failover ... 2-33
Features and functionality of JDBC support for automatic client failover 2-34

General Client Failover Features ... 2-34
Client failover features for pooled connections... 2-34

Synchronous detection of automatic client failover... 2-35
Asynchronous detection of automatic client failover .. 2-35

Implement a client failover event listener .. 2-35
Register the client failover listener instance... 2-37
Remove the client failover listener instance... 2-37

v

3 Using JMS/XLA for Event Management

JMS/XLA concepts.. 3-1
How XLA reads records from the transaction log .. 3-2
XLA and materialized views .. 3-3
XLA bookmarks.. 3-4

How bookmarks work ... 3-4
Replicated bookmarks.. 3-4

JMS/XLA configuration file and topics .. 3-5
XLA updates ... 3-6
XLA acknowledgment modes .. 3-7

Prefetching updates .. 3-8
Acknowledging updates.. 3-8

Access control impact on XLA ... 3-8
JMS/XLA and Oracle GDK dependency.. 3-8
Connecting to XLA ... 3-8
Monitoring tables for updates ... 3-9
Receiving and processing updates.. 3-9
Terminating a JMS/XLA application ... 3-12

Closing the connection ... 3-12
Deleting bookmarks.. 3-12
Unsubscribing from a table.. 3-13

Using JMS/XLA as a replication mechanism ... 3-13
Applying JMS/XLA messages to a target database... 3-13
TargetDataStore error recovery .. 3-14

4 Distributed Transaction Processing: JTA

Overview of JTA ... 4-1
X/Open DTP model... 4-2
Two-phase commit... 4-2

Using JTA in TimesTen ... 4-3
TimesTen database requirements for XA ... 4-3
Global transaction recovery in TimesTen... 4-3
XA error handling in TimesTen ... 4-4

Using the JTA API .. 4-4
Required packages ... 4-4
Creating a TimesTen XAConnection object ... 4-4
Creating XAResource and Connection objects .. 4-6

5 Application Tuning

Tuning Java applications... 5-1
Use prepared statement pooling.. 5-1
Use arrays of parameters for batch execution.. 5-2
Bulk fetch rows of TimesTen data ... 5-3
Use the ResultSet method getString() sparingly.. 5-3
Avoid data type conversions.. 5-3

Tuning JMS/XLA applications ... 5-4

vi

Configure xlaPrefetch parameter... 5-4
Reduce frequency of calls to ttXlaAcknowledge... 5-4
Handling high event rates .. 5-4

6 JMS/XLA Reference

JMS/XLA MapMessage contents ... 6-1
XLA update types .. 6-1
XLA flags ... 6-2

DML event data formats ... 6-4
Table data .. 6-4
Row data.. 6-4
Context information... 6-4

DDL event data formats .. 6-5
CREATE_TABLE.. 6-5
DROP_TABLE .. 6-5
CREATE_INDEX.. 6-6
DROP_INDEX .. 6-6
ADD_COLUMNS... 6-6
DROP_COLUMNS... 6-7
CREATE_VIEW .. 6-8
DROP_VIEW... 6-8
CREATE_SEQ ... 6-9
DROP_SEQ.. 6-9
CREATE_SYNONYM.. 6-9
DROP_SYNONYM ... 6-10
TRUNCATE ... 6-10

Data type support .. 6-10
Data type mapping ... 6-10
Data types character set.. 6-12

JMS classes for event handling .. 6-12
JMS/XLA replication API... 6-13

TargetDataStore interface .. 6-13
TargetDataStoreImpl class ... 6-14

JMS message header fields.. 6-14

Index

vii

Preface

Oracle TimesTen In-Memory Database is a memory-optimized relational database.
Deployed in the application tier, TimesTen operates on databases that fit entirely in
physical memory using standard SQL interfaces. High availability for the in-memory
database is provided through real-time transactional replication.

TimesTen supports a variety of programming interfaces, including JDBC (Java
Database Connectivity) and PL/SQL (Oracle procedural language extension for SQL).

This preface covers the following topics:

■ Audience

■ Related documents

■ Conventions

■ Documentation Accessibility

■ Technical support

Audience
This guide is for anyone developing or supporting applications that use TimesTen
through JDBC.

In addition to familiarity with JDBC, you should be familiar with TimesTen, SQL
(Structured Query Language), and database operations.

Related documents
TimesTen documentation is available on the product distribution media and on the
Oracle Technology Network:

http://www.oracle.com/technetwork/database/timesten/documentation/

Javadoc for standard JDBC classes and interfaces is available at the following location:

http://download.oracle.com/javase/1.5.0/docs/api/

Oracle documentation is also available on the Oracle Technology network. This may
be especially useful for Oracle features that TimesTen supports but does not attempt to
fully document:

http://www.oracle.com/technetwork/database/enterprise-edition/documentation/

In particular, the following Oracle document may be of interest.

viii

■ Oracle Database SQL Language Reference

■ Oracle Database JDBC Developer's Guide

Conventions
TimesTen supports multiple platforms. Unless otherwise indicated, the information in
this guide applies to all supported platforms. The term Windows refers to Windows
2000, Windows XP and Windows Server 2003. The term UNIX refers to Solaris, Linux,
HP-UX, and AIX.

This document uses the following text conventions:

TimesTen documentation uses these variables to identify path, file and user names:

Note: In TimesTen documentation, the terms "data store" and
"database" are equivalent. Both terms refer to the TimesTen database
unless otherwise noted.

Convention Meaning

italic Italic type indicates terms defined in text, book titles, or emphasis.

monospace Monospace type indicates code, commands, URLs, class names,
interface names, method names, function names, attribute names,
directory names, file names, text that appears on the screen, or text that
you enter.

italic monospace Italic monospace type indicates a placeholder or a variable in a code
example for which you specify or use a particular value. For example:

Driver=install_dir/lib/libtten.sl

Replace install_dir with the path of your TimesTen installation
directory.

[] Square brackets indicate that an item in a command line is optional.

{ } Curly braces indicated that you must choose one of the items separated
by a vertical bar (|) in a command line.

| A vertical bar (or pipe) separates alternative arguments.

. . . An ellipsis (. . .) after an argument indicates that you may use more
than one argument on a single command line. An ellipsis in a code
example indicates that what is shown is only a partial example.

% The percent sign indicates the UNIX shell prompt.

Convention Meaning

install_dir The path that represents the directory where TimesTen is installed.

TTinstance The instance name for your specific installation of TimesTen. Each
installation of TimesTen must be identified at install time with a unique
instance name. This name appears in the install path.

bits or bb Two digits, either 32 or 64, that represent either the 32-bit or 64-bit
operating system.

release or rr Numbers that represent a major TimesTen release, with or without dots.
For example, 1121 or 11.2.1 represents TimesTen Release 11.2.1.

ix

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Technical support
For information about obtaining technical support for TimesTen products, go to the
following Web address:

http://www.oracle.com/support/contact.html

jdk_version One or two digits that represent the version number of a major JDK
release. For example, 14 is for JDK 1.4 and 5 is for JDK 5.

DSN TimesTen data source name (for the TimesTen database).

Convention Meaning

x

xi

What's New

This section summarizes the new features and functionality of Oracle TimesTen
In-Memory Database Release 11.2.1 that are documented in this guide, providing links
into the guide for more information.

New features in Release 11.2.1.7.0
■ CALL for PL/SQL procedures and functions

TimesTen now supports CALL syntax from any of its programming interfaces to
call PL/SQL procedures and functions (in addition to CALL syntax to call
TimesTen built-in procedures, which was already supported).

See "Using CALL to execute procedures and functions" on page 2-24.

New features in Release 11.2.1.6.0
■ User-specified parallel replication

For applications that have very predictable transactional dependencies and do not
require the commit order on the replica database to be the same as that on the
originating database, TimesTen supports parallel replication. This feature allows
replication of multiple user-specified tracks of transactions in parallel.

See "Setting up user-specified parallel replication" on page 2-28.

New features in Release 11.2.1.4.0
■ Support for Java 6

See "Setting the environment for Java development" on page 1-1 regarding the
class path.

■ Additional rowid support (for use with Java 6)

While rowids have been supported throughout the 11.2.1 release cycle as noted
below, the 11.2.1.4.0 release adds support for the java.sql.RowId interface and
Types.ROWID type.

See "Working with rowids" on page 2-21.

■ Synonyms

TimesTen supports private and public synonyms (aliases) for database objects
such as tables, views, sequences, and PL/SQL objects. See "Working with
synonyms" on page 2-22.

xii

New features in Release 11.2.1.1.0
■ Quick Start demos

This release includes an optional Quick Start feature with introductory
information and some new or reworked demo applications. Note that the demos
have mostly the same names as in earlier releases, but in a different location.

See "About the TimesTen Java demos" on page 1-2 and
install_dir/quickstart.html in your installation.

■ Access control

Perhaps the most significant overall change to previous functionality in this
release is access control. TimesTen has new features to control database access with
object-level resolution for database objects such as tables, views, materialized
views, and sequences. This also affects access to certain TimesTen built-in
procedures, utilities, and database and connection attributes.

See "Considering TimesTen features for access control" on page 2-29. For general
information, see "Managing Access Control" in Oracle TimesTen In-Memory Database
Operations Guide.

■ Output parameters

TimesTen now supports OUT and IN OUT parameters for your database
operations.

See "Working with OUT and IN OUT parameters" on page 2-15.

■ Duplicate parameters

TimesTen now supports either of two modes for binding duplicate parameters in a
SQL statement. Use the DuplicateBindMode general connection attribute to
choose between Oracle mode and traditional TimesTen mode.

See "Binding duplicate parameters in SQL statements" on page 2-17.

■ REF CURSORs

REF CURSOR is a PL/SQL concept, where a REF CURSOR is a handle to a cursor
over a SQL result set and can be passed between PL/SQL and an application.

See "Working with REF CURSORs" on page 2-18.

■ Automatic client failover

Automatic client failover, used in High Availability scenarios when failure of a
TimesTen node results in failover (transfer) to an alternate node, automatically
reconnects applications to the new node. TimesTen provides features that allow
applications to be alerted when this happens, so they can take any appropriate
action.

See "JDBC support for automatic client failover" on page 2-33.

■ DML returning (RETURNING INTO clause)

You can use a RETURNING INTO clause, referred to as DML returning, with an
INSERT, UPDATE, or DELETE statement to return specified items from a row that
was affected by the action.

See "Working with DML returning (RETURNING INTO clause)" on page 2-19.

■ Rowids

xiii

Each row in a TimesTen database table has a unique identifier known as its rowid.
TimesTen now supports Oracle-style rowids. An application can retrieve the rowid
of a row from the ROWID pseudocolumn.

See "Working with rowids" on page 2-21.

■ Execution time threshold for SQL statements

You can configure TimesTen to write a warning to the support log and throw an
SNMP trap when the execution of a SQL statement exceeds a specified time
duration, in seconds. This feature was added in a 7.0.x maintenance release but not
documented in this manual. Note that this feature is similar to but differs from the
previously existing timeout value for SQL statements.

See "Setting a timeout or threshold for executing SQL statements" on page 2-26.

■ JMS/XLA replicated bookmarks

If you are using an active standby pair replication scheme, you now have the
option of using replicated bookmarks. For a replicated bookmark, operations on
the bookmark are replicated to the standby database as appropriate. This allows
more efficient recovery of your bookmark positions when failover occurs.

See the section on replicated bookmarks under "XLA bookmarks" on page 3-4.

■ Indication of XLA updates due to cascading deletes or aging

TimesTen indicates if an XLA update was generated as part of a cascading delete
or aging operation through new XLA flags.

See "XLA flags" on page 6-2.

xiv

1

Java Development Environment 1-1

1Java Development Environment

This chapter provides information about the Java development environment and
related considerations. It includes the following topics:

■ Installing TimesTen and the JDK

■ Setting the environment for Java development

■ Compiling Java applications

■ About the TimesTen Java demos

Installing TimesTen and the JDK
Install and configure TimesTen for your environment, as described in Oracle TimesTen
In-Memory Database Installation Guide, and the Java JDK, as described in your Java
installation documentation. As you set up a Java development environment, the topics
of particular interest in Oracle TimesTen In-Memory Database Installation Guide include
the following:

■ "JDK support"

■ "Client/Server configurations"

■ "Environment variables"

After you have installed and configured TimesTen, create a database DSN as described
in "Managing TimesTen Databases" in Oracle TimesTen In-Memory Database Operations
Guide. The topics of particular interest include the following:

■ "Connecting using the TimesTen JDBC driver and driver manager"

■ "Overview of user and system DSNs"

■ "Defining DSNs for direct or client/server connections"

■ "Thread programming with TimesTen"

■ "Creating a Data Manager DSN on UNIX" or "Creating a Data Manager DSN on
Windows"

Setting the environment for Java development
Before you begin developing Java applications for TimesTen, you must set your
environment appropriately. This includes the following considerations:

■ Environment variables must be set appropriately. See "Java environment variables"
in Oracle TimesTen In-Memory Database Installation Guide for more information

Compiling Java applications

1-2 Oracle TimesTen In-Memory Database Java Developer's Guide

about environment variables for Java, including discussion of the PATH,
CLASSPATH, THREAD_FLAGS, and shared library path environment variables.

■ TimesTen includes Oracle Instant Client, which is required for certain JDBC
features and operations.

Use the appropriate ttenv script to set up environment variables and runtime access
to the Instant Client.

On UNIX platforms, execute one of the following scripts.

install_dir/bin/ttenv.sh
install_dir/bin/ttenv.csh

On Windows, run the following:

install_dir\bin\ttenv.bat

Compiling Java applications
"Java environment variables" in Oracle TimesTen In-Memory Database Installation Guide
discusses the CLASSPATH setting for compiling Java applications in TimesTen.

Compiling any Java application requires the JAR file appropriate for your JDK to be in
your classpath. In TimesTen, the following are for JDK 5.0 and JDK 6.0, respectively:

install_dir/lib/ttjdbc5.jar
install_dir/lib/ttjdbc6.jar

In addition, compiling any JMS/XLA application requires the following to be in your
classpath:

install_dir/lib/timestenjmsxla.jar
install_dir/3rdparty/jms1.1/lib/jms.jar
install_dir/lib/orai18n.jar

About the TimesTen Java demos
After you have configured your Java environment, you can confirm that everything is
set up correctly by compiling and running the TimesTen Quick Start demo
applications. Refer to the Quick Start welcome page at
install_dir/quickstart.html, especially the links under SAMPLE
PROGRAMS, for information about the following:

■ Demo schema and setup

The build_sampledb script creates a sample database and demo schema. You
must run this before you start using the demos.

■ Demo environment and setup

The ttquickstartenv script, a superset of the ttenv script generally used for
TimesTen setup, sets up the demo environment. You must run this each time you
enter a session where you want to compile and run any of the demos.

■ Demos and setup

TimesTen provides demos for JDBC and JMS/XLA under the
quickstart/sample_code directory. For instructions on compiling and
running the demos, see the README file or files in the subdirectories.

■ What the demos do

About the TimesTen Java demos

Java Development Environment 1-3

A synopsis of each demo is provided when you click JDBC (Java) under SAMPLE
PROGRAMS. The TimesTen basic Java demos are named level1, level2,
level3, and level4. Data files for the level demos are in the jdbc/datfiles
directory.

Note: All of the level demos support both direct and client/server
connections to the database.

About the TimesTen Java demos

1-4 Oracle TimesTen In-Memory Database Java Developer's Guide

2

Working with TimesTen Databases 2-1

2Working with TimesTen Databases

This chapter describes the basic procedures for writing a Java application to access
data. Before attempting to write a TimesTen application, be sure you have completed
the following prerequisite tasks:

After you have successfully executed the TimesTen Java demos, your development
environment is set up correctly and ready for you to create applications that access a
database.

Topics in this chapter are:

■ Key JDBC classes and interfaces

■ Managing TimesTen database connections

■ Managing TimesTen data

■ Using additional TimesTen data management features

■ Considering TimesTen features for access control

■ Handling errors

■ JDBC support for automatic client failover

Key JDBC classes and interfaces
This section discusses important standard and TimesTen-specific JDBC packages,
classes, and interfaces. The following topics are covered:

■ Package imports

■ Support for interfaces in the java.sql package

■ Support for classes in the java.sql package

■ Support for interfaces and classes in the javax.sql package

Prerequisite task What you do

Create a database. Follow the procedures described in "Managing
TimesTen Databases" in Oracle TimesTen
In-Memory Database Operations Guide.

Configure the Java environment. Follow the procedures described in "Setting the
environment for Java development" on
page 1-1.

Compile and execute the TimesTen Java
demos.

Follow the procedures described in "About the
TimesTen Java demos" on page 1-2.

Key JDBC classes and interfaces

2-2 Oracle TimesTen In-Memory Database Java Developer's Guide

■ TimesTen JDBC extensions

■ Additional TimesTen classes and interfaces

For reference information on standard JDBC, see the following:

http://download.oracle.com/javase/1.5.0/docs/api/

For reference information on TimesTen JDBC extensions, refer to Oracle TimesTen
In-Memory Database JDBC Extensions Java API Reference.

Package imports
You must import the standard JDBC package in any Java program that use JDBC:

import java.sql.*;

If you are going to use data sources or pooled connections, you must also import the
standard extended JDBC package:

import javax.sql.*;

You must import the TimesTen JDBC package:

import com.timesten.jdbc.*;

To use XA data sources for JTA, you must also import the following TimesTen
package:

import com.timesten.jdbc.xa.*;

Support for interfaces in the java.sql package
TimesTen supports the java.sql interfaces shown in Table 2–1.

Table 2–1 Supported java.sql interfaces

Interface in java.sql Remarks on TimesTen support

CallableStatement ■ You must pass parameters to CallableStatement by position,
not by name.

■ You cannot use SQL escape syntax.

■ There is no support for CLOB, BLOB, Array, Struct, or Ref.

■ There is no support for Calendar for setDate(), getDate(),
setTime(), or getTime().

Connection ■ There is no support for savepoints.

DatabaseMetaData ■ No restrictions.

ParameterMetaData ■ The JDBC driver cannot determine whether a column is nullable
and always returns parameterNullableUnknown from calls to
isNullable().

■ The getScale() method returns 1 for VARCHAR, NVARCHAR and
VARBINARY data types if they are INLINE. (Scale is of no
significance to these data types.)

PreparedStatement ■ There is no support for getMetaData() in
PreparedStatement.

■ There is no support for CLOB, BLOB, Array, Struct, or Ref.

■ There is no support for Calendar for setDate(), getDate(),
setTime(), or getTime().

Key JDBC classes and interfaces

Working with TimesTen Databases 2-3

Support for classes in the java.sql package
TimesTen supports the following java.sql classes:

■ Date

■ DriverManager

■ DriverPropertyInfo

■ Time

■ Timestamp

■ Types

■ DataTruncation

■ SQLException

■ SQLWarning

Support for interfaces and classes in the javax.sql package
TimesTen supports the following javax.sql interfaces:

■ DataSource is implemented by TimesTenDataSource.

■ PooledConnection is implemented by ObservableConnection.

■ ConnectionPoolDataSource is implemented by ObservableConnectionDS.

Statement ■ No restrictions.

■ See "Managing cache groups" on page 2-28 for special TimesTen
functionality of the getUpdateCount() method with cache
groups.

ResultSet ■ There is support for getMetaData() in ResultSet.

■ You cannot have multiple open ResultSet objects per
statement.

■ You cannot specify the holdability of a result set, so a cursor
cannot remain open after it has been committed.

■ There is no support for scrollable or updatable result sets.

■ There is no support for CLOB, BLOB, Array, Struct, or Ref.

■ There is no support for Calendar for setDate(), getDate(),
setTime(), or getTime().

■ See "Working with TimesTen result sets: hints and restrictions" on
page 2-10.

ResultSetMetaData ■ The getPrecision() method returns 0 for undefined precision.

■ The getScale() method returns -127 for undefined scale.

RowId Note: This support applies only when using Java 6 (ttjdbc6.jar).

■ The ROWID data type can be accessed using the RowId interface.

■ OUT and IN OUT rowids can be registered as Types.ROWID.

■ Metadata methods will return Types.ROWID and RowId as
applicable.

Table 2–1 (Cont.) Supported java.sql interfaces

Interface in java.sql Remarks on TimesTen support

Key JDBC classes and interfaces

2-4 Oracle TimesTen In-Memory Database Java Developer's Guide

■ XADataSource is implemented by TimesTenXADataSource (in package
com.timesten.jdbc.xa).

TimesTen supports the following javax.sql event and listener:

■ When using a PooledConnection instance, you can register a
ConnectionEventListener instance to listen for ConnectionEvent
occurrences.

TimesTen JDBC extensions
For most scenarios, you can use standard JDBC functionality as supported by
TimesTen.

TimesTen also provides the following extensions in the com.timesten.jdbc
package for TimesTen-specific features.

Important: The TimesTen JDBC driver itself does not implement a
database connection pool. The ObservableConnection and
ObservableConnectionDS classes simply implement standard Java
EE interfaces, facilitating the creation and management of database
connection pools according to the Java EE standard.

A sample TimesTen connection pool package is shipped as part of the
Quick Start demos. This is located in the following directory:

install_dir/quickstart/sample_code/jdbc/connectionpool

Note: It is permissible to register a StatementEventListener
instance in TimesTen; however, StatementEvent instances are not
supported.

Table 2–2 TimesTen JDBC extensions

Interface Extends Remarks

TimesTenConnection Connection Provides capabilities such as
prefetching rows to improve
performance, listening to events
for automatic client failover, and
setting the track number for
parallel replication.

See "Fetching multiple rows of
data" on page 2-10, "General
Client Failover Features" on
page 2-34, and "Setting up
user-specified parallel
replication" on page 2-28.

TimesTenStatement Statement Provides capabilities for
specifying a query threshold.

See "Setting a threshold value for
SQL statements" on page 2-27.

TimesTenPreparedStatement PreparedStatement Supports DML returning.

See "Working with DML
returning (RETURNING INTO
clause)" on page 2-19.

Managing TimesTen database connections

Working with TimesTen Databases 2-5

Additional TimesTen classes and interfaces
In addition to implementations discussed previously, TimesTen provides the following
classes and interfaces in the com.timesten.jdbc package. Features supported by
these classes and interfaces are discussed later in this chapter.

Additional TimesTen Interfaces
■ Use TimesTenTypes for TimesTen type extensions (for REF CURSORs).

■ Use ClientFailoverEventListener (and also the ClientFailoverEvent
class below) for automatic client failover features. See "JDBC support for automatic
client failover" on page 2-33.

■ Use TimesTenVendorCode for vendor codes used in SQL exceptions.

Additional TimesTen Classes
■ Use ClientFailoverEvent (and also the ClientFailoverEventListener

interface above) for automatic client failover features.

Managing TimesTen database connections
The type of DSN you create depends on whether your application connects directly to
the database or connects by a client. If you intend to connect directly to the database,
create a DSN as described in "Creating a Data Manager DSN on UNIX" or "Creating a
Data Manager DSN on Windows" in Oracle TimesTen In-Memory Database Operations
Guide. If you intend to create a client connection to the database, create a DSN as
described in "Creating and configuring Client DSNs on Windows" or "Creating and
configuring Client DSNs on UNIX" in Oracle TimesTen In-Memory Database Operations
Guide.

After you have created a DSN, the application can connect to the database. This
section describes how to create a JDBC connection to a database using either the JDBC
direct driver or the JDBC client driver.

The operations described in this section are based on the level1 demo. Refer to
"About the TimesTen Java demos" on page 1-2.

This following topics are covered here:

■ Load the TimesTen driver

■ Create a connection URL for the database and specify connection attributes

■ Connect to the database

■ Disconnect from the database

■ Opening and closing a direct driver connection

■ Access control for connections

TimesTenCallableStatement CallableStatement Supports PL/SQL REF
CURSORs.

See "Working with REF
CURSORs" on page 2-18.

Table 2–2 (Cont.) TimesTen JDBC extensions

Interface Extends Remarks

Managing TimesTen database connections

2-6 Oracle TimesTen In-Memory Database Java Developer's Guide

Load the TimesTen driver
The TimesTen JDBC driver must be loaded before it is available for making database
connections. The following is the TimesTen JDBC driver:

com.timesten.jdbc.TimesTenDriver

If you are using the DriverManager interface to connect to TimesTen, call the
Class.forName() method to load the TimesTen JDBC driver. This method creates an
instance of the TimesTen driver and registers it with the driver manager. If you are
using the TimesTenDataSource interface, you are not required to call
Class.forName().

To identify and load the TimesTen driver:

Class.forName("com.timesten.jdbc.TimesTenDriver");

Create a connection URL for the database and specify connection attributes
To create a JDBC connection, you must specify a TimesTen connection URL for the
database. The format of a TimesTen connection URL is as follows:

jdbc:timesten:{direct|client}:dsn=DSNname;[DSNattributes;]

The default is direct.

For example, the following creates a direct connection to the sample database:

String URL = "jdbc:timesten:direct:dsn=sampledb_1121";

You can programmatically set or override the connection attributes in the DSN
description by specifying attributes in the connection URL.

Refer to "Connection attributes for Data Manager DSNs or Server DSNs" in Oracle
TimesTen In-Memory Database Operations Guide for introductory information about
connection attributes. General connection attributes require no special privilege. First
connection attributes are set when the database is first loaded, and persist for all
connections. Only the instance administrator can load a database with changes to first
connection attribute settings. Refer to "Connection Attributes" in Oracle TimesTen
In-Memory Database Reference for specific information about any particular connection
attribute, including required privilege.

For example, to set the LockLevel general connection attribute to 1, create a URL as
follows:

String URL = "jdbc:timesten:direct:dsn=sampledb_1121;LockLevel=1";

Connect to the database
After you have defined a URL, you can use the getConnection() method of either
DriverManager or TimesTenDataSource to connect to the database.

If you use the DriverManager.getConnection() method, specify the driver URL
to connect to the database.

import java.sql.*;
...
Connection conn = DriverManager.getConnection(URL);

Note: If the TimesTen JDBC driver is not loaded, TimesTen returns
an error when the application attempts to connect to the database.

Managing TimesTen database connections

Working with TimesTen Databases 2-7

To use the TimesTenDataSource method getConnection(), first create a data
source. Then use the TimesTenDataSource method setUrl() to set the URL and
getConnection() to connect:

import com.timesten.jdbc.TimesTenDataSource;
import java.sql.*;
...
TimesTenDataSource ds = new TimesTenDataSource();
ds.setUrl("jdbc:timesten:direct:<dsn>");
Connection conn = ds.getConnection();

The TimesTen user name and password can be set in the DSN within the URL in the
setUrl() call, but there are also TimesTenDataSource methods to set them
separately, as well as to set the Oracle password (as applicable):

TimesTenDataSource ds = new TimesTenDataSource();
ds.setUser(myttusername); // User name to log in to TimesTen.
ds.setPassword(myttpwd); // Password to log in to TimesTen.
ds.setUrl("jdbc:timesten:direct:<dsn>");
ds.setOraclePassword(myorapwd); // Password to log in to Oracle.
Connection conn = ds.getConnection();

Either the DriverManager.getConnection() method or the
ds.getConnection() method returns a Connection object (conn in this example)
that you can use as a handle to the database. See the level1 demo for an example on
how to use the DriverManager method getConnection(), and the level2 and
level3 demos for examples of using the TimesTenDataSource method
getConnection(). Refer to "About the TimesTen Java demos" on page 1-2.

Disconnect from the database
When you are finished accessing the database, call the Connection method close()
to close the connection to the database.

If an error has occurred, you may want to roll back the transaction before
disconnecting from the database. See "Handling non-fatal errors" on page 2-30 and
"Rolling back failed transactions" on page 2-33 for more information.

Opening and closing a direct driver connection
Example 2–1 shows the general framework for an application that uses the
DriverManager class to create a direct driver connection to the sample database,
execute some SQL, and then close the connection. See the level1 demo for a working
example. (See "About the TimesTen Java demos" on page 1-2 regarding the demos.)

Example 2–1 Connecting, executing SQL, and disconnecting

String URL = "jdbc:timesten:dsn=sampledb_1121";
Connection conn = null;

try {
 Class.forName("com.timesten.jdbc.TimesTenDriver");
} catch (ClassNotFoundException ex) {

Note: If the TimesTen JDBC driver is not loaded, TimesTen returns
an error when the application attempts to connect to the database. See
"Load the TimesTen driver" on page 2-6.

Managing TimesTen data

2-8 Oracle TimesTen In-Memory Database Java Developer's Guide

 // See "Handling errors" on page 2-29
}

try {
 // Open a connection to TimesTen
 conn = DriverManager.getConnection(URL);

 // Report any SQLWarnings on the connection
 // See "Reporting errors and warnings" on page 2-31

 // Do SQL operations
 // See "Managing TimesTen data" below

// Close the connection to TimesTen
 conn.close();

// Handle any errors
} catch (SQLException ex) {
 // See "Handling errors" on page 2-29
}

Access control for connections
Privilege to connect to a database must be explicitly granted to every user other than
the instance administrator, through the CREATE SESSION privilege. This is a system
privilege so must be granted by an administrator to the user, either directly or through
the PUBLIC role. Refer to "Managing Access Control" in Oracle TimesTen In-Memory
Database Operations Guide for additional information and examples.

Managing TimesTen data
This section provides detailed information on working with data in a TimesTen
database. It includes the following topics:

■ Executing simple SQL statements

■ Working with TimesTen result sets: hints and restrictions

■ Fetching multiple rows of data

■ Binding parameters and executing statements

■ Working with REF CURSORs

■ Working with DML returning (RETURNING INTO clause)

■ Working with rowids

■ Committing or rolling back changes to the database

■ Managing multiple threads

■ Java escape syntax and SQL functions

Executing simple SQL statements
"Working with Data in a TimesTen Database" in Oracle TimesTen In-Memory Database
Operations Guide describes how to use SQL to manage data. This section describes how
to use the createStatement() method of a Connection instance, and the
executeUpdate() or executeQuery() method of a Statement instance, to
execute a SQL statement within a Java application.

Managing TimesTen data

Working with TimesTen Databases 2-9

Unless statements are prepared in advance, use the execution methods of a
Statement object, such as execute(), executeUpdate() or executeQuery(),
depending on the nature of the SQL statement and any returned result set.

For SQL statements that are prepared in advance, use the same execution methods of a
PreparedStatement object.

The execute() method returns true if there is a result set (for example, on a
SELECT) or false if there is no result set (for example, on an INSERT, UPDATE, or
DELETE). The executeUpdate() method returns the number of rows affected. For
example, when executing an INSERT statement, the executeUpdate() method
returns the number of rows inserted. The executeQuery() method returns a result
set, so it should only be called when a result set is expected (for example, when
executing a SELECT statement).

Example 2–2 Executing an update

This example uses the executeUpdate() method on the Statement object to
execute an INSERT statement to insert data into the customer table in the current
schema. The connection must also be opened, which is not shown.

Connection conn;
Statement stmt;
...
// [Code to open connection. See "Connect to the database" on page 2-6...]
...
try {
 stmt = conn.createStatement();
 int numRows = stmt.executeUpdate("insert into customer values"
 + "(40, 'West', 'Big Dish', '123 Signal St.')");
}
catch (SQLException ex) {
 ...
}

Example 2–3 Executing a query

This example uses an executeQuery() call on the Statement object to execute a
SELECT statement on the customer table in the current schema and display the
returned java.sql.ResultSet instance:

Statement stmt;
.
try {
 ResultSet rs = stmt.executeQuery("select cust_num, region, " +
 "name, address from customer");
 System.out.println("Fetching result set...");
 while (rs.next()) {
 System.out.println("\n Customer number: " + rs.getInt(1));

Notes:

■ See "Working with TimesTen result sets: hints and restrictions" on
page 2-10 for details about what you should know when working
with result sets generated by TimesTen.

■ Access control privileges are checked both when SQL is prepared
and when it is executed in the database. Refer to "Considering
TimesTen features for access control" on page 2-29 for related
information.

Managing TimesTen data

2-10 Oracle TimesTen In-Memory Database Java Developer's Guide

 System.out.println(" Region: " + rs.getString(2));
 System.out.println(" Name: " + rs.getString(3));
 System.out.println(" Address: " + rs.getString(4));
 }
 }
catch (SQLException ex) {
 ex.printStackTrace();
}

Working with TimesTen result sets: hints and restrictions
Use ResultSet objects to process query results. In addition, some methods and
built-in procedures return TimesTen data in the form of a ResultSet object. This
section describes what you should know when using ResultSet objects from
TimesTen.

■ TimesTen does not support multiple open ResultSet objects per statement.
TimesTen cannot return multiple ResultSet objects from a single Statement
object without first closing the current result set.

■ TimesTen does not support holdable cursors. You cannot specify the holdability of
a result set, essentially whether a cursor can remain open after it has been
committed.

■ ResultSet objects are not scrollable or updatable, so you cannot specify
ResultSet.TYPE_SCROLL_SENSITIVE or ResultSet.CONCUR_UPDATABLE.

■ Use the ResultSet method close() to close a result set as soon as you are done
with it. For performance reasons, this is especially important for result sets used
for both read and update operations and for result sets used in pooled
connections.

■ Calling the ResultSet method getString() is more costly in terms of
performance if the underlying data type is not a string. Because Java strings are
immutable, getString() must allocate space for a new string each time it is
called. Do not use getString() to retrieve primitive numeric types, like byte or
int, unless it is absolutely necessary. For example, it is much faster to call
getInt() on an integer column. Also see "Use the ResultSet method getString()
sparingly" on page 5-3.

In addition, it is generally true for dates and timestamps that ResultSet native
methods getDate() and getTimestamp() will have better performance than
getString().

■ Application performance is influenced by the choice of getXXX() calls and by
any required data transformations after invocation.

■ JDBC ignores the setting for the ConnectionCharacterSet attribute. It returns
data in UTF-16 encoding.

Fetching multiple rows of data
Fetching multiple rows of data can increase the performance of an application that
connects to a database set with Read Committed isolation level.

You can specify the number of rows to be prefetched as follows.

■ Call the Statement or ResultSet method setFetchSize(). These are the
standard JDBC calls, but the limitation is that they only affect one statement at a
time.

Managing TimesTen data

Working with TimesTen Databases 2-11

■ Call the TimesTenConnection method setTtPrefetchCount(). This enables
a TimesTen extension that establishes prefetch on a connection level so that all of
the statements on the connection use the same prefetch setting.

This section describes the connection-level prefetch implemented in TimesTen.

When the prefetch count is set to 0, TimesTen uses a default value, depending on the
isolation level you have set for the database. With Read Committed isolation level, the
default prefetch value is 5. With Serializable isolation level, the default is 128. The
default prefetch value is the optimum setting for most applications. Generally, a higher
value may result in better performance for larger result sets, at the expense of slightly
higher resource use.

To disable prefetch, set the prefetch count to 1.

Call the TimesTenConnection method getTtPrefetchCount() to check the
current prefetch value.

Example 2–4 Setting a prefetch count

The following code uses a setTtPrefetchCount() call to set the prefetch count to
10, then uses a getTtPrefetchCount() call to return the prefetch count in the count
variable.

TimesTenConnection conn =
 (TimesTenConnection) DriverManager.getConnection(url);

// set prefech count to 10 for this connection
conn.setTtPrefetchCount(10);

// Return the prefetch count to the 'count' variable.
int count = conn.getTtPrefetchCount();

Binding parameters and executing statements
This sections discusses how to bind input or output parameters for SQL statements.
The following topics are covered:

■ Preparing SQL statements and setting input parameters

■ Working with OUT and IN OUT parameters

■ Binding duplicate parameters in SQL statements

■ Binding duplicate parameters in PL/SQL

Preparing SQL statements and setting input parameters
SQL statements that are to be executed more than once should be prepared in advance
by calling the Connection method prepareStatement(). For maximum
performance, prepare parameterized statements.

Note: You can use the TimesTen prefetch count extension only with
direct-linked applications.

Note: Array binding, the ability to bind associative arrays (index-by
tables) and varrays (variable size arrays) into PL/SQL statements, is
not supported in TimesTen JDBC.

Managing TimesTen data

2-12 Oracle TimesTen In-Memory Database Java Developer's Guide

Example 2–5 Prepared statement for querying

This example shows the basics of an executeQuery() call on a
PreparedStatement object. It executes a prepared SELECT statement and displays
the returned result set.

PreparedStatement pSel = conn.prepareStatement("select cust_num, " +
 "region, name, address " +
 "from customer" +
 "where region = ?");
pSel.setInt(1,1);

try {
 ResultSet rs = pSel.executeQuery();

 while (rs.next()) {
 System.out.println("\n Customer number: " + rs.getInt(1));
 System.out.println(" Region: " + rs.getString(2));
 System.out.println(" Name: " + rs.getString(3));
 System.out.println(" Address: " + rs.getString(4));
 }
}
catch (SQLException ex) {
 ex.printStackTrace();
}

Example 2–6 Prepared statement for updating

This example shows how a single parameterized statement can be substituted for four
separate statements.

Rather than execute a similar INSERT statement with different values:

Statement.execute("insert into t1 values (1, 2)");
Statement.execute("insert into t1 values (3, 4)");
Statement.execute("insert into t1 values (5, 6)");
Statement.execute("insert into t1 values (7, 8)");

It is much more efficient to prepare a single parameterized INSERT statement and use
PreparedStatement methods setXXX() to set the row values before each execute.

PreparedStatement pIns = conn.PreparedStatement("insert into t1 values (?,?)");

Notes:

■ It is generally true for time, dates, and timestamps that
PreparedStatement native methods setTime(), setDate()
and setTimestamp() will have better performance than
setString().

■ Application performance is influenced by the choice of setXXX()
calls and by any required data transformations before invocation.

■ Access control privileges are checked both when SQL is prepared
and when it is executed in the database. Refer to "Considering
TimesTen features for access control" on page 2-29 for related
information.

■ For TT_TINYINT columns, use setShort() or setInt()
instead of setByte() to realize the full range of TT_TINYINT
(0-255).

Managing TimesTen data

Working with TimesTen Databases 2-13

pIns.setInt(1, 1);
pIns.setInt(2, 2);
pIns.executeUpdate();

pIns.setInt(1, 3);
pIns.setInt(2, 4);
pIns.executeUpdate();

pIns.setInt(1, 5);
pIns.setInt(2, 6);
pIns.executeUpdate();

pIns.setInt(1, 7);
pIns.setInt(2, 8);
pIns.executeUpdate();

conn.commit();
pIns.close();

TimesTen shares prepared statements automatically after they have been committed.
For example, if two or more separate connections to the database each prepare the
same statement, then the second, third, ... , nth prepared statements return very
quickly because TimesTen remembers the first prepared statement.

Example 2–7 Prepared statements for updating and querying

This example prepares INSERT and SELECT statements, executes the INSERT twice,
executes the SELECT, and prints the returned result set. For a working example, see
the level1 demo. (Refer to "About the TimesTen Java demos" on page 1-2 regarding
the demos.)

Connection conn;
...
// [Code to open connection. See "Connect to the database" on page 2-6...]
...

// Disable auto-commit
conn.setAutoCommit(false);

 // Report any SQLWarnings on the connection
 // See "Reporting errors and warnings" on page 2-31

// Prepare a parameterized INSERT and a SELECT Statement
PreparedStatement pIns =
 conn.prepareStatement("insert into customer values (?,?,?,?)");

PreparedStatement pSel = conn.prepareStatement
 ("select cust_num, region, name, " +
 "address from customer");

// Data for first INSERT statement
pIns.setInt(1, 100);
pIns.setString(2, "N");
pIns.setString(3, "Fiberifics");
pIns.setString(4, "123 any street");

// Execute the INSERT statement
pIns.executeUpdate();

Managing TimesTen data

2-14 Oracle TimesTen In-Memory Database Java Developer's Guide

// Data for second INSERT statement
pIns.setInt(1, 101);
pIns.setString(2, "N");
pIns.setString(3, "Natural Foods Co.");
pIns.setString(4, "5150 Johnson Rd");

// Execute the INSERT statement
pIns.executeUpdate();

// Commit the inserts
conn.commit();

// Done with INSERTs, so close the prepared statement
pIns.close();

// Report any SQLWarnings on the connection.
reportSQLWarnings(conn.getWarnings());

// Execute the prepared SELECT statement
ResultSet rs = pSel.executeQuery();

System.out.println("Fetching result set...");
while (rs.next()) {
 System.out.println("\n Customer number: " + rs.getInt(1));
 System.out.println(" Region: " + rs.getString(2));
 System.out.println(" Name: " + rs.getString(3));
 System.out.println(" Address: " + rs.getString(4));
}

// Close the result set.
rs.close();

// Commit the select - yes selects must be committed too
conn.commit();

// Close the select statement - we're done with it
pSel.close();

Example 2–8 Prepared statements for multiple connections

This example, prepares three identical parameterized INSERT statements for three
separate connections. The first prepared INSERT for connection conn1 is shared with
the conn2 and conn3 connections and speeds up the prepare operations for pIns2
and pIns3:

Connection conn1;
Connection conn2;
Connection conn3;
.....
PreparedStatement pIns1 = conn1.prepareStatement
 ("insert into t1 values (?,?)");

PreparedStatement pIns2 = conn2.prepareStatement
 ("insert into t1 values (?,?)");

PreparedStatement pIns3 = conn3.prepareStatement
 ("insert into t1 values (?,?)");

Managing TimesTen data

Working with TimesTen Databases 2-15

Working with OUT and IN OUT parameters
"Preparing SQL statements and setting input parameters" on page 2-11 shows how to
prepare a statement and set input parameters using PreparedStatement methods.
TimesTen also supports OUT and IN OUT parameters, for which you use
java.sql.CallableStatement instead of PreparedStatement, as follows.

1. Use the method registerOutParameter() to register an OUT or IN OUT
parameter, specifying the parameter position (position in the statement) and data
type.

This is the standard method as specified in the CallableStatement interface:

void registerOutParameter(int parameterIndex, int sqlType, int scale)

Be aware, however, that if you use this standard version for CHAR, VARCHAR,
NCHAR, NVARCHAR, BINARY, or VARBINARY data, TimesTen will allocate memory
to hold the largest possible value. In many cases this is wasteful.

Instead, you can use the TimesTen extended interface
TimesTenCallableStatement, which includes a registerOutParameter()
signature that enables you to specify the maximum data length. For CHAR,
VARCHAR, NCHAR, and NVARCHAR, the unit of length is number of characters. For
BINARY and VARBINARY, it is bytes.

void registerOutParameter(int paramIndex,
 int sqlType,
 int ignore, //This parameter is ignored by TimesTen.
 int maxLength)

2. Use the appropriate CallableStatement method setXXX(), where XXX
indicates the data type, to set the input value of an IN OUT parameter. Specify the
parameter position and data value.

3. Use the appropriate CallableStatement method getXXX() to get the output
value of an OUT or IN OUT parameter, specifying the parameter position.

Note: All tuning options, such as join ordering, indexes and locks,
must match for the statement to be shared. Also, if the prepared
statement references a temp table, it is only shared within a single
connection.

Important: Check for SQL warnings before processing output
parameters. In the event of a warning, output parameters are
undefined. See "Handling errors" on page 2-29 for general information
about errors and warnings.

Managing TimesTen data

2-16 Oracle TimesTen In-Memory Database Java Developer's Guide

Example 2–9 Using an OUT parameter in a callable statement

This example shows how to use a callable statement with an OUT parameter. In the
TimesTenCallableStatement instance, a PL/SQL block calls a function
RAISESAL that calculates a new salary and returns it as an integer. Assume a
Connection instance conn. (Refer to Oracle TimesTen In-Memory Database PL/SQL
Developer's Guide for information about PL/SQL.)

import java.sql.CallableStatement;
import java.sql.Connection;
import java.sql.Types;
import com.timesten.jdbc.TimesTenCallableStatement;
...
// Prepare to call a PL/SQL stored procedure RAISESAL (raise salary)
CallableStatement cstmt = conn.prepareCall
 ("BEGIN :newSalary := RAISESAL(:name, :inc); end;");

// Declare that the first param (newSalary) is a return (output) value of type int
cstmt.registerOutParameter(1, Types.INTEGER);

// Raise Leslie's salary by $2000 (she wanted $3000 but we held firm)
cstmt.setString(2, "LESLIE"); // name argument (type String) is the second param
cstmt.setInt(3, 2000); // raise argument (type int) is the third param

// Do the raise
cstmt.execute();

// Check warnings. If there are warnings, values of OUT parameters are undefined.
SQLWarning wn;
boolean warningFlag = false;
if ((wn = cstmt.getWarnings()) != null) {
 do {
 warningFlag = true;
 System.out.println(wn);
 wn = wn.getNextWarning();
 } while(wn != null);
}

// Get the new salary back
if (!warningFlag) {
 int new_salary = cstmt.getInt(1);
 System.out.println("The new salary is: " + new_salary);
}

// Close the statement and connection
cstmt.close();
conn.close();
...

Notes: In TimesTen:

■ You cannot pass parameters to a CallableStatement object by
name. You must set parameters by position. You cannot use the
SQL escape syntax.

■ The registerOutParameter() signatures specifying the
parameter by name are not supported. You must specify the
parameter by position.

■ SQL structured types are not supported.

Managing TimesTen data

Working with TimesTen Databases 2-17

Binding duplicate parameters in SQL statements
TimesTen supports either of two modes for binding duplicate parameters in a SQL
statement:

■ Oracle mode, where multiple occurrences of the same parameter name are
considered to be distinct parameters.

■ Traditional TimesTen mode, as in earlier releases, where multiple occurrences of
the same parameter name are considered to be multiple occurrences of the same
parameter.

You can choose the desired mode through the DuplicateBindMode general
connection attribute. DuplicateBindMode=0 (the default) is for the Oracle mode,
and DuplicateBindMode=1 is for the TimesTen mode. Because this is a general
connection attribute, different concurrent connections to the same database can use
different values. Refer to "DuplicateBindMode" in Oracle TimesTen In-Memory Database
Reference for additional information about this attribute.

The rest of this section provides details for each mode, considering the following
query:

SELECT * FROM employees
 WHERE employee_id < :a AND manager_id > :a AND salary < :b;

Oracle mode for duplicate parameters In the Oracle mode, multiple occurrences of the
same parameter name in a SQL statement are considered to be different parameters.
When parameter position numbers are assigned, a number is given to each parameter
occurrence without regard to name duplication. The application must, at a minimum,
bind a value for the first occurrence of each parameter name. For any subsequent
occurrence of a given parameter name, the application has the following choices.

■ It can bind a different value for the occurrence.

■ It can leave the parameter occurrence unbound, in which case it takes the same
value as the first occurrence.

In either case, each occurrence still has a distinct parameter position number.

To use a different value for the second occurrence of a in the SQL statement above:

pstmt.setXXX(1, ...); /* first occurrence of :a */
pstmt.setXXX(2, ...); /* second occurrence of :a */
pstmt.setXXX(3, ...); /* occurrence of :b */

To use the same value for both occurrences of a:

pstmt.setXXX(1, ...); /* both occurrences of :a */
pstmt.setXXX(3, ...); /* occurrence of :b */

Parameter b is considered to be in position 3 regardless.

TimesTen mode for duplicate parameters In the TimesTen mode, SQL statements
containing duplicate parameters are parsed such that only distinct parameter names
are considered as separate parameters. The application binds a value only for each
unique parameter, and no unique parameter can be left unbound.

Note: This discussion applies only to SQL statements issued directly
from JDBC (not through PL/SQL, for example).

Managing TimesTen data

2-18 Oracle TimesTen In-Memory Database Java Developer's Guide

Binding is based on the position of the first occurrence of a parameter name.
Subsequent occurrences of the parameter name are bound to the same value, and are
not given parameter position numbers.

For the SQL statement above, the two occurrences of a are considered to be a single
parameter, so cannot be bound separately:

pstmt.setXXX(1, ...); /* both occurrences of :a */
pstmt.setXXX(2, ...); /* occurrence of :b */

Note that in the TimesTen mode, parameter b is considered to be in position 2, not
position 3.

Binding duplicate parameters in PL/SQL
The preceding discussion does not apply within PL/SQL. Instead, PL/SQL semantics
apply, whereby you bind a value for each unique parameter. An application executing
the following block, for example, would bind only one parameter, corresponding to
:a.

DECLARE
 x NUMBER;
 y NUMBER;
BEGIN
 x:=:a;
 y:=:a;
END;

An application executing the following block would also bind only one parameter:

BEGIN
 INSERT INTO tab1 VALUES(:a, :a);
END

And the same for the following CALL statement:

...CALL proc(:a, :a)...

An application executing the following block would bind two parameters, with :a as
parameter #1 and :b as parameter #2. The second parameter in each INSERT
statement would take the same value as the first parameter in the first INSERT
statement, as follows.

BEGIN
 INSERT INTO tab1 VALUES(:a, :a);
 INSERT INTO tab1 VALUES(:b, :a);
END

Working with REF CURSORs
REF CURSOR is a PL/SQL concept, where a REF CURSOR is a handle to a cursor over
a SQL result set and can be passed between PL/SQL and an application. In TimesTen,
the cursor can be opened in PL/SQL, then the REF CURSOR can be passed to the
application for processing of the result set.

An application can receive a REF CURSOR, as an OUT parameter, as follows:

1. Register the REF CURSOR OUT parameter as type TimesTenTypes.CURSOR (a
TimesTen type extension), also specifying the parameter position of the REF
CURSOR (position in the statement).

Managing TimesTen data

Working with TimesTen Databases 2-19

2. Retrieve the REF CURSOR using the getCursor() method defined by the
TimesTenCallableStatement interface (a TimesTen JDBC extension),
specifying the parameter position of the REF CURSOR. The getCursor()
method is used like other getXXX() methods and returns a ResultSet instance.

The following example demonstrates this usage.

Example 2–10 Using a REF CURSOR

This example shows how to use a callable statement with a REF CURSOR. In the
CallableStatement instance, a PL/SQL block opens a cursor and executes a query.
The TimesTenCallableStatement method getCursor() is used to return the
cursor, which is registered as TimesTenTypes.CURSOR.

import java.sql.CallableStatement;
import java.sql.Connection;
import java.sql.ResultSet;
import com.timesten.jdbc.TimesTenCallableStatement;
import com.timesten.jdbc.TimesTenTypes;
...
Connection conn;
CallableStatement cstmt;
ResultSet cursor;
...
// Use a PL/SQL block to open the cursor.
cstmt = conn.prepareCall
 (" begin open :x for select tblname,tblowner from tables; end;");
cstmt.registerOutParameter(1, TimesTenTypes.CURSOR);
cstmt.execute();
cursor = ((TimesTenCallableStatement)cstmt).getCursor(1);

// Use the cursor as you would any other ResultSet object.
while(cursor.next()){
 System.out.println(cursor.getString(1));
}

// Close the statement
cstmt.close();
conn.close();
...

Working with DML returning (RETURNING INTO clause)
You can use a RETURNING INTO clause, referred to as DML returning, with an
INSERT, UPDATE, or DELETE statement to return specified items from a row that was
affected by the action. This eliminates the need for a subsequent SELECT statement
and separate round trip, in case, for example, you want to confirm what was affected
by the action.

With TimesTen, DML returning is limited to returning items from a single-row
operation. The clause returns the items into a list of OUT parameters.

Important: For passing REF CURSORs between PL/SQL and an
application, TimesTen supports only OUT REF CURSORs, from
PL/SQL to the application, and supports a statement returning only a
single REF CURSOR.

Managing TimesTen data

2-20 Oracle TimesTen In-Memory Database Java Developer's Guide

TimesTenPreparedStatement, an extension of the standard
PreparedStatement interface, supports DML returning. Use the
TimesTenPreparedStatement method registerReturnParameter() to
register the return parameters.

void registerReturnParameter(int paramIndex, int sqlType)

As with the registerOutParameter() method discussed in "Working with OUT
and IN OUT parameters" on page 2-15, this method includes a signature that enables
you to optionally specify a maximum size for CHAR, VARCHAR, NCHAR, NVARCHAR,
BINARY, or VARBINARY data. This avoids possible inefficiency where TimesTen would
otherwise allocate memory to hold the largest possible value. For CHAR, VARCHAR,
NCHAR, and NVARCHAR, the unit of size is number of characters. For BINARY and
VARBINARY, it is bytes.

void registerReturnParameter(int paramIndex, int sqlType, int maxSize)

Use the TimesTenPreparedStatement method getReturnResultSet() to
retrieve the return parameters, returning a ResultSet instance.

Be aware of the following restrictions.

■ The getReturnResultSet() method must not be invoked more than once.
Otherwise, the behavior is indeterminate.

■ ResultSetMetaData is not supported for the result set returned by
getReturnResultSet().

■ Streaming methods such as getCharacterStream() are not supported for the
result set returned by getReturnResultSet().

■ There is no batch support for DML returning.

SQL syntax and restrictions for the RETURNING INTO clause in TimesTen are
documented as part of the "INSERT", "UPDATE", and "DELETE" documentation in
Oracle TimesTen In-Memory Database SQL Reference.

Refer to "RETURNING INTO Clause" in Oracle Database PL/SQL Language Reference for
general information about DML returning.

Example 2–11 DML returning

This example shows how to use DML returning with a
TimesTenPreparedStatement instance, returning the name and age for a row that
is inserted.

 import java.sql.ResultSet;
 import java.sql.SQLException;
 import java.sql.SQLWarning;
 import java.sql.Types;
 import com.timesten.jdbc.TimesTenPreparedStatement;

 Connection conn;

 ...

Important: Check for SQL warnings after executing the TimesTen
prepared statement. In the event of a warning, output parameters are
undefined. See "Handling errors" on page 2-29 for general information
about errors and warnings.

Managing TimesTen data

Working with TimesTen Databases 2-21

 // Insert into a table and return results
 TimesTenPreparedStatement pstmt =
 (TimesTenPreparedStatement)conn.prepareStatement
 ("insert into tab1 values(?,?) returning name, age into ?,?");

 // Populate table
 pstmt.setString(1,"John Doe");
 pstmt.setInt(2, 65);

 /** register returned parameter
 * in this case the maximum size of name is 100 chars
 */
 pstmt.registerReturnParameter(3, Types.VARCHAR, 100);
 pstmt.registerReturnParameter(4, Types.INTEGER);

 // process the DML returning statement
 int count = pstmt.executeUpdate();

 /* Check warnings; if there are warnings, values of DML RETURNING INTO
 parameters are undefined. */
 SQLWarning wn;
 boolean warningFlag = false;
 if ((wn = pstmt.getWarnings()) != null) {
 do {
 warningFlag = true;
 System.out.println(wn);
 wn = wn.getNextWarning();
 } while(wn != null);
 }

 if (!warningFlag) {
 if (count>0)
 {
 ResultSet rset = pstmt.getReturnResultSet(); //rset not null, not empty
 while(rset.next())
 {
 String name = rset.getString(1);
 int age = rset.getInt(2);
 System.out.println("Name " + name + " age " + age);
 }
 }
 }

Working with rowids
Each row in a table has a unique identifier known as its rowid. An application can
retrieve the rowid of a row from the ROWID pseudocolumn. A rowid value can be
represented in either binary or character format, with the binary format taking 12
bytes and the character format 18 bytes.

For Java 6, TimesTen supports the java.sql.RowId interface and Types.ROWID
type.

You can use any of the following ResultSet methods to retrieve a rowid:

■ byte[] getBytes(int columnIndex)

■ String getString(int columnIndex)

■ Object getObject(int columnIndex)

Returns a String object in Java 5. Returns a RowId object in Java 6.

Managing TimesTen data

2-22 Oracle TimesTen In-Memory Database Java Developer's Guide

You can use any of the following PreparedStatement methods to set a rowid:

■ setBytes(int parameterIndex, byte[] x)

■ setString(int parameterIndex, String x)

■ setRowId(int parameterIndex, RowId x) (Java 6 only)

■ setObject(int parameterIndex, Object x)

Takes a String object in Java 5. Takes a String or RowId object in Java 6.

An application can specify literal rowid values in SQL statements, such as in WHERE
clauses, as CHAR constants enclosed in single quotes.

Refer to "ROWID data type" and "ROWID specification" in Oracle TimesTen In-Memory
Database SQL Reference for additional information about rowids and the ROWID data
type, including usage and lifecycle.

Working with synonyms
TimesTen supports private and public synonyms (aliases) for database objects such as
tables, views, sequences, and PL/SQL objects. Synonyms are often used for security to
mask object names and object owners, or for convenience to simplify SQL statements.

To create a private synonym for table foo in your schema:

CREATE SYNONYM synfoo FOR foo;

To create a public synonym for foo:

CREATE PUBLIC SYNONYM pubfoo FOR foo;

A private synonym exists in the schema of a specific user and shares the same
namespace as database objects such as tables, views, and sequences. A private
synonym cannot have the same name as a table or other object in the same schema.

A public synonym does not belong to any particular schema, is accessible to all users,
and can have the same name as any private object.

To create a synonym you must have the CREATE SYNONYM or CREATE PUBLIC
SYNONYM privilege, as applicable. To use a synonym you must have appropriate
privileges to access the underlying object.

For general information about synonyms, see "Understanding synonyms" in Oracle
TimesTen In-Memory Database Operations Guide. For information about the CREATE
SYNONYM and DROP SYNONYM statements, see "SQL Statements" in Oracle TimesTen
In-Memory Database SQL Reference.

Note: You cannot use getBytes() or setBytes() for ROWID
parameters that are PL/SQL parameters or passthrough parameters
(parameters passed to Oracle when using the Oracle In-Memory
Database Cache). Use getString() and setString(), or use
getObject() and setObject() with a RowId object (Java 6 only)
or String object.

Note: Oracle TimesTen In-Memory Database does not support the
PL/SQL type UROWID.

Managing TimesTen data

Working with TimesTen Databases 2-23

Committing or rolling back changes to the database
This section discusses autocommit and manual commits or rollbacks, assuming a
JDBC Connection object myconn and Statement object mystmt.

Setting autocommit
A TimesTen connection has autocommit enabled by default, but it is recommended
that you disable it. You can use the Connection method setAutoCommit() to
enable or disable autocommit.

To disable autocommit:

myconn.setAutoCommit(false);
// Report any SQLWarnings on the connection
// See "Reporting errors and warnings" on page 2-31

Manually committing or rolling back changes
If autocommit is disabled, you must use the Connection method commit() to
manually commit transactions, or the rollback() method to roll back changes. For
example:

myconn.commit();

Or:

myconn.rollback();

Using COMMIT and ROLLBACK SQL statements
You can prepare and execute COMMIT and ROLLBACK SQL statements the same way as
other SQL statements. Using COMMIT and ROLLBACK statements has the same effect as
using the Connection methods commit() and rollback(). For example:

mystmt.execute("COMMIT");

Managing multiple threads

The level4 demo demonstrates the use of multiple threads. Refer to "About the
TimesTen Java demos" on page 1-2.

When your application has a direct driver connection to the database, TimesTen
functions share stack space with your application. In multithreaded environments, it is
important to avoid overrunning the stack allocated to each thread because
consequences can result that are unpredictable and difficult to debug. The amount of
stack space consumed by TimesTen calls varies depending on the SQL functionality
used. Most applications should set thread stack space to at least 16 KB on 32-bit
systems and between 34 KB to 72 KB on 64-bit systems.

Note: All open cursors are closed upon transaction commit or
rollback in TimesTen.

Note: On some UNIX platforms it is necessary to set
THREADS_FLAG, as described in "Set the THREADS_FLAG variable
(UNIX only)" in Oracle TimesTen In-Memory Database Installation Guide.

Using additional TimesTen data management features

2-24 Oracle TimesTen In-Memory Database Java Developer's Guide

The amount of stack space allocated for each thread is specified by the operating
system when threads are created. On Windows, you can use the TimesTen debug
driver and link your application against the Visual C++ debug C library to enable
stack probes that raise an identifiable exception if a thread attempts to grow its stack
beyond the amount allocated.

Java escape syntax and SQL functions
When using SQL in JDBC, pay special attention to Java escape syntax. SQL functions
such as UNISTR use the backslash (\) character. You should escape the backslash
character. For example, using the following SQL syntax in a Java application may not
produce the intended results:

INSERT INTO table1 SELECT UNISTR('\00E4') FROM dual;

Escape the backslash character as follows:

INSERT INTO table1 SELECT UNISTR('\\00E4') FROM dual;

Using additional TimesTen data management features
Preceding sections discussed key features for managing TimesTen data. This section
covers the following additional features:

■ Using CALL to execute procedures and functions

■ Setting a timeout or threshold for executing SQL statements

■ Managing cache groups

■ Setting up user-specified parallel replication

Using CALL to execute procedures and functions
TimesTen supports each of the following syntax formats from any of its programming
interfaces to call PL/SQL procedures (procname) or PL/SQL functions (funcname)
that are standalone or part of a package, or to call TimesTen built-in procedures
(procname):

CALL procname[(argumentlist)]

CALL funcname[(argumentlist)] INTO :returnparam

CALL funcname[(argumentlist)] INTO ?

TimesTen JDBC also supports each of the following syntax formats:

{ CALL procname[(argumentlist)] }

{ ? = [CALL] funcname[(argumentlist)] }

{ :returnparam = [CALL] funcname[(argumentlist)] }

Note: In multithreaded applications, a thread that issues requests on
different connection handles to the same database may encounter lock
conflict with itself. TimesTen resolves these conflicts with lock
timeouts.

Using additional TimesTen data management features

Working with TimesTen Databases 2-25

You can execute procedures and functions through the CallableStatement
interface, with a prepare step first when appropriate (such as when a result set is
returned).

The following example calls the TimesTen built-in procedure ttCkpt. (Also see
Example 2–12 below for a more complete example with JDBC syntax.)

CallableStatement.execute("call ttCkpt")

The following example calls the TimesTen built-in procedure ttDataStoreStatus.
A prepare call is used because this procedure produces a result set. (Also see
Example 2–13 below for a more complete example with JDBC syntax.)

CallableStatement cStmt;
cStmt = conn.prepareCall("call ttDataStoreStatus");
cStmt.execute();

These examples call a PL/SQL procedure myproc with two parameters:

cStmt.execute("{ call myproc(:param1, :param2) }");

cStmt.execute("{ call myproc(?, ?) }");

The following shows several ways to call a PL/SQL function myfunc:

cStmt.execute("CALL myfunc() INTO :retparam");

cStmt.execute("CALL myfunc() INTO ?");

cStmt.execute("{ :retparam = myfunc() }");

cStmt.execute("{ ? = myfunc() }");

See "CALL" in Oracle TimesTen In-Memory Database SQL Reference for details about
CALL syntax.

Example 2–12 Executing a ttCkpt call

This example calls the ttCkpt procedure to initiate a fuzzy checkpoint.

Connection conn;
CallableStatement cStmt;
.......
cStmt = conn.prepareCall("{ Call ttCkpt }");
cStmt.execute();
conn.commit(); // commit the transaction

Be aware that the ttCkpt built-in procedure requires ADMIN privilege. Refer to
"ttCkpt" in Oracle TimesTen In-Memory Database Reference for additional information.

Example 2–13 Executing a ttDataStoreStatus call

This example calls the ttDataStoreStatus procedure and prints out the returned
result set.

For built-in procedures that return results, you can use the getXXX() methods of the
ResultSet interface to retrieve the data, as shown.

Note: A user's own procedure takes precedence over a TimesTen
built-in procedure with the same name.

Using additional TimesTen data management features

2-26 Oracle TimesTen In-Memory Database Java Developer's Guide

Contrary to the advice given in "Working with TimesTen result sets: hints and
restrictions" on page 2-10, this example uses a getString() call on the ResultSet
object to retrieve the Context field, which is a binary. This is because the output is
printed, rather than used for processing. If you do not want to print the Context
value, you can achieve better performance by using the getBytes() method instead.

ResultSet rs;

CallableStatement cStmt = conn.prepareCall("{ Call ttDataStoreStatus }");

if (cStmt.execute() == true) {
 rs = cStmt.getResultSet();
 System.out.println("Fetching result set...");
 while (rs.next()) {
 System.out.println("\n Database: " + rs.getString(1));
 System.out.println(" PID: " + rs.getInt(2));
 System.out.println(" Context: " + rs.getString(3));
 System.out.println(" ConType: " + rs.getString(4));
 System.out.println(" memoryID: " + rs.getString(5));
 }
 rs.close();
 }
cStmt.close();

Setting a timeout or threshold for executing SQL statements
TimesTen offers two ways to limit the time for SQL statements to execute, applying to
any execute(), executeBatch(), executeQuery(), executeUpdate(), or
next() call.

■ Setting a timeout value for SQL statements

■ Setting a threshold value for SQL statements

The former is to set a timeout, where if the timeout duration is reached, the statement
stops executing and an error is thrown. The latter is to set a threshold, where if the
threshold is reached, an SNMP trap is thrown but execution continues.

Setting a timeout value for SQL statements
In TimesTen you can set the SqlQueryTimeout general connection attribute to
specify the timeout period (in seconds) for any connection, and hence any statement. If
you set SqlQueryTimeout in the DSN specification, its value becomes the default
value for all subsequent connections to the database. Despite the name, this timeout
value applies to any executable SQL statement, not just queries.

For a particular statement, you can override the SqlQueryTimeout setting by calling
the Statement method setQueryTimeout().

The query timeout limit has effect only when the SQL statement is actively executing.
A timeout does not occur during the commit or rollback phase of an operation. For
those transactions that execute a large number of UPDATE, DELETE, or INSERT
statements, the commit or rollback phases may take a long time to complete. During
that time the timeout value is ignored.

Using additional TimesTen data management features

Working with TimesTen Databases 2-27

Setting a threshold value for SQL statements
You can configure TimesTen to write a warning to the support log and throw an SNMP
trap when the execution of a SQL statement exceeds a specified time duration, in
seconds. Execution continues and is not affected by the threshold.

The name of the SNMP trap is ttQueryThresholdWarnTrap. See Oracle TimesTen
In-Memory Database Error Messages and SNMP Traps for information about configuring
SNMP traps.

Despite the name, this threshold applies to any JDBC call executing a SQL statement,
not just queries.

By default, the application obtains the threshold value from the QueryThreshold
general connection attribute setting. You can override the threshold for a JDBC
Connection object by including the QueryThreshold attribute in the connection
URL for the database. For example, to set QueryThreshold to a value of 5 seconds
for the myDSN database:

jdbc:timesten:direct:dsn=myDSN;QueryThreshold=5

You can also use the setQueryTimeThreshold() method of a
TimesTenStatement object to set the threshold. This overrides the connection
attribute setting and the Connection object setting.

You can retrieve the current threshold value by using the
getQueryTimeThreshold() method of the TimesTenStatement object.

Features for use with IMDB Cache
This section discusses features related to the use of IMDB Cache:

■ Setting temporary passthrough level with the ttOptSetFlag built-in procedure

■ Managing cache groups

Setting temporary passthrough level with the ttOptSetFlag built-in procedure
TimesTen provides the ttOptSetFlag built-in procedure for setting various flags,
including the PassThrough flag to temporarily set the passthrough level. You can use
ttOptSetFlag to set PassThrough in a JDBC application as in the following sample
statement, which sets the passthrough level to 1. The setting affects all statements that
are prepared until the end of the transaction.

pstmt = conn.prepareStatement("call ttoptsetflag('PassThrough', 1)");

The example that follows includes samples of code that accomplish these steps:

1. Creation of a prepared statement (a PreparedStatement instance
thePassThroughStatement) that calls ttOptSetFlag using a bind parameter
for passthrough level.

Note: If both a lock-wait and a SqlQueryTimeout are specified, the
lesser of the two values causes a timeout first. Regarding lock
timeouts, in Oracle TimesTen In-Memory Database Reference you can
refer to information about the ttLockWait built-in procedure in
"ttLockWait" and about the LockWait general connection attribute in
"LockWait". Or refer to "Check for deadlocks and timeouts" in the
Oracle TimesTen In-Memory Database Troubleshooting Procedures Guide.

Using additional TimesTen data management features

2-28 Oracle TimesTen In-Memory Database Java Developer's Guide

2. Definition of a method setPassthrough() that takes a specified passthrough
setting, binds it to the prepared statement, then executes the prepared statement to
call ttOptSetFlag to set the passthrough level.

 thePassThroughStatement =
 theConnection.prepareStatement("call ttoptsetflag('PassThrough', ?)");
...
 private void setPassthrough(int level) throws SQLException{
 thePassThroughStatement.setInt(1, level);
 thePassThroughStatement.execute();
 }

Also see "ttOptSetFlag" in Oracle TimesTen In-Memory Database Reference for more
information about that built-in procedure, and "Setting a passthrough level" in Oracle
In-Memory Database Cache User's Guide for information about the meaning and effect of
each passthrough level.

Managing cache groups
In TimesTen, following the execution of a FLUSH CACHE GROUP, LOAD CACHE
GROUP, REFRESH CACHE GROUP, or UNLOAD CACHE GROUP statement, the
Statement method getUpdateCount() returns the number of cache instances that
were flushed, loaded, refreshed, or unloaded.

For related information, see "Determining the number of cache instances affected by an
operation" in Oracle In-Memory Database Cache User's Guide.

Setting up user-specified parallel replication
For applications that have very predictable transactional dependencies and do not
require the commit order on the replica database to be the same as that on the
originating database, TimesTen supports parallel replication. This feature allows
replication of multiple user-specified tracks of transactions in parallel. See "Increasing
replication throughput for other replication schemes" in Oracle TimesTen In-Memory
Database TimesTen to TimesTen Replication Guide for general information about parallel
replication.

User-specified parallel replication is enabled through the TimesTen data store
attributes ReplicationParallelism and ReplicationApplyOrdering, as
described in "Data store attributes" in Oracle TimesTen In-Memory Database Reference.
The track number of transactions for a connection can be specified through the
TimesTen general connection attribute ReplicationTrack, the ALTER SESSION
parameter REPLICATION_TRACK, or in JDBC through the following
TimesTenConnection method:

■ void setReplicationTrack(int track)

TimesTenConnection also has the corresponding getter method:

■ int getReplicationTrack()

Note: The track number setting will hold for the lifetime of the
connection, unless it is specifically reset.

To find the track number that is in use, you can call the
TimesTenConnection method getReplicationTrack() or call
the TimesTen built-in procedure ttConfiguration, which returns
current TimesTen attribute settings, including ReplicationTrack.

Handling errors

Working with TimesTen Databases 2-29

Considering TimesTen features for access control
TimesTen has features to control database access with object-level resolution for
database objects such as tables, views, materialized views, sequences, and synonyms.
You can refer to "Managing Access Control" in Oracle TimesTen In-Memory Database
Operations Guide for introductory information about TimesTen access control.

This section introduces access control as it relates to SQL operations, database
connections, and JMS/XLA.

For any query, SQL DML statement, or SQL DDL statement discussed in this
document or used in an example, it is assumed that the user has appropriate privileges
to execute the statement. For example, a SELECT statement on a table requires
ownership of the table, SELECT privilege granted for the table, or the SELECT ANY
TABLE system privilege. Similarly, any DML statement requires table ownership, the
applicable DML privilege (such as UPDATE) granted for the table, or the applicable
ANY TABLE privilege (such as UPDATE ANY TABLE).

For DDL statements, CREATE TABLE requires the CREATE TABLE privilege in the
user's schema, or CREATE ANY TABLE in any other schema. ALTER TABLE requires
ownership or the ALTER ANY TABLE system privilege. DROP TABLE requires
ownership or the DROP ANY TABLE system privilege. There are no object-level ALTER
or DROP privileges.

Refer to "SQL Statements" in Oracle TimesTen In-Memory Database SQL Reference for a
list of access control privileges and the privilege required for any given SQL statement.

Privileges are granted through the SQL statement GRANT and revoked through the
statement REVOKE. Some privileges are automatically granted to all users through the
PUBLIC role, of which all users are a member. Refer to "The PUBLIC role" in Oracle
TimesTen In-Memory Database SQL Reference for information about this role.

In addition, access control affects the following topics covered in this document:

■ Connecting to a database. Refer to "Access control for connections" on page 2-8.

■ Setting connection attributes. Refer to "Create a connection URL for the database
and specify connection attributes" on page 2-6.

■ Configuring and managing JMS/XLA. Refer to "Access control impact on XLA" on
page 3-8.

Handling errors
This section discusses how to check for, identify and handle errors in a TimesTen Java
application.

For a list of the errors that TimesTen returns and what to do if the error is encountered,
see "Warnings and Errors" in Oracle TimesTen In-Memory Database Error Messages and
SNMP Traps.

This section includes the following topics.

Notes:

■ Access control cannot be disabled.

■ Access control privileges are checked both when SQL is prepared
and when it is executed in the database, with most of the
performance cost coming at prepare time.

Handling errors

2-30 Oracle TimesTen In-Memory Database Java Developer's Guide

■ About fatal errors, non-fatal errors, and warnings

■ Reporting errors and warnings

■ Catching and responding to specific errors

■ Rolling back failed transactions

About fatal errors, non-fatal errors, and warnings
TimesTen can return a fatal error, a non-fatal error, or a warning.

Handling fatal errors
Fatal errors make the database inaccessible until it can be recovered. When a fatal error
occurs, all database connections are required to disconnect. No further operations may
complete. Fatal errors are indicated by TimesTen error codes 846 and 994. Error
handling for these errors should be different from standard error handling. In
particular, the code should roll back the transaction and, to avoid out-of-memory
conditions, disconnect from the database. Shared memory from the old TimesTen
instance will not be freed until all active connections at the time of the error have
disconnected.

When fatal errors occur, TimesTen performs the full cleanup and recovery procedure:

■ Every connection to the database is invalidated, a new memory segment is
allocated and applications are required to disconnect.

■ The database is recovered from the checkpoint and transaction log files upon the
first subsequent initial connection.

– The recovered database reflects the state of all durably committed transactions
and possibly some transactions that were committed non-durably.

– No uncommitted or rolled back transactions are reflected.

If no checkpoint or transaction log files exist and the AutoCreate attribute is set,
TimesTen creates an empty database.

Handling non-fatal errors
Non-fatal errors include simple errors such as an INSERT statement that violates
unique constraints. This category also includes some classes of application and process
failures.

TimesTen returns non-fatal errors through the normal error-handling process and
requires the application to check for and identify them.

When a database is affected by a non-fatal error, an error may be returned and the
application should take appropriate action. In some cases, such as with a process
failure, an error cannot be returned, so TimesTen automatically rolls back the
transactions of the failed process.

An application can handle non-fatal errors by modifying its actions or, in some cases,
by rolling back one or more offending transactions, as described in "Rolling back failed
transactions" on page 2-33.

Note: If a ResultSet, Statement, PreparedStatement,
CallableStatement or Connection operation results in a
database error, it is a good practice to call the close() method for
that object.

Handling errors

Working with TimesTen Databases 2-31

About warnings
TimesTen returns warnings when something unexpected occurs that you may want to
know about. Here are some examples of events that cause TimesTen to issue a
warning:

■ A checkpoint failure

■ Use of a deprecated TimesTen feature

■ Truncation of some data

■ Execution of a recovery process upon connect

You should always include code that checks for warnings, as they can indicate
application problems.

Reporting errors and warnings
You should check for and report all errors and warnings that can be returned on every
call. This saves considerable time and effort during development and debugging. A
SQLException object is generated if there are one or more database access errors and
a SQLWarning object is generated if there are one or more warning messages. A single
call may return multiple errors or warnings or both, so your application should report
all errors or warnings in the returned SQLException or SQLWarning objects.

Multiple errors or warnings are returned in linked chains of SQLException or
SQLWarning objects. Example 2–14 and Example 2–15 demonstrate how you might
iterate through the lists of returned SQLException and SQLWarning objects to
report all of the errors and warnings, respectively.

Example 2–14 Printing exceptions

This method prints out the content of all exceptions in the linked SQLException
objects.

static int reportSQLExceptions(SQLException ex)
 {
 int errCount = 0;

 if (ex != null) {
 errStream.println("\n--- SQLException caught ---");
 ex.printStackTrace();

 while (ex != null) {
 errStream.println("SQL State: " + ex.getSQLState());
 errStream.println("Message: " + ex.getMessage());
 errStream.println("Error Code: " + ex.getErrorCode());
 errCount ++;
 ex = ex.getNextException();
 errStream.println();
 }
 }

 return errCount;
}

Example 2–15 Printing warnings

This method prints out the content of all warning in the linked SQLWarning objects.

static int reportSQLWarnings(SQLWarning wn)
{

Handling errors

2-32 Oracle TimesTen In-Memory Database Java Developer's Guide

 int warnCount = 0;

 while (wn != null) {
 errStream.println("\n--- SQL Warning ---");
 errStream.println("SQL State: " + wn.getSQLState());
 errStream.println("Message: " + wn.getMessage());
 errStream.println("Error Code: " + wn.getErrorCode());

 // is this a SQLWarning object or a DataTruncation object?
 if (wn instanceof DataTruncation) {
 DataTruncation trn = (DataTruncation) wn;
 errStream.println("Truncation error in column: " +
 trn.getIndex());
 }

 warnCount++;
 wn = wn.getNextWarning();
 errStream.println();
 }

 return warnCount;
}

Catching and responding to specific errors
In some situations it may be desirable to respond to a specific SQL state or TimesTen
error code. You can use the SQLException method getSQLState() to return the
SQL99 state error string, and getErrorCode() to return TimesTen error codes, as
shown in Example 2–16.

Also refer to the entry for TimesTenVendorCode in Oracle TimesTen In-Memory
Database JDBC Extensions Java API Reference for error information.

Example 2–16 Catching an error

The TimesTen demos require that you load the demo schema before they are executed.
The following catch statement alerts the user that appuser has not been loaded or
has not been refreshed by detecting ODBC error S0002 and TimesTen error 907:

catch (SQLException ex) {
 if (ex.getSQLState().equalsIgnoreCase("S0002")) {
 errStream.println("\nError: The table appuser.customer " +
 "does not exist.\n\t Please reinitialize the database.");
 } else if (ex.getErrorCode() == 907) {
 errStream.println("\nError: Attempting to insert a row " +
 "with a duplicate primary key.\n\tPlease reinitialize the database.");
}

You can use the TimesTenVendorCode interface to detect the errors by their name,
rather than their number.

Consider this example:

ex.getErrorCode() == com.timesten.jdbc.TimesTenVendorCode.TT_ERR_KEYEXISTS

The following is equivalent:

ex.getErrorCode() == 907

JDBC support for automatic client failover

Working with TimesTen Databases 2-33

Rolling back failed transactions
In some situations, such as recovering from a deadlock or timeout condition, you may
want to explicitly roll back the transaction using the Connection method
rollback(), as in the following example.

Example 2–17 Rolling back a transaction

try {
 if (conn != null && !conn.isClosed()) {
 // Rollback any transactions in case of errors
 if (retcode != 0) {
 try {
 System.out.println("\nEncountered error. Rolling back transaction");
 conn.rollback();
 } catch (SQLException ex) {
 reportSQLExceptions(ex);
 }
 }
 }

 System.out.println("\nClosing the connection\n");
 conn.close();
}

The XACT_ROLLBACKS column of the SYS.MONITOR table indicates the number of
transactions that were rolled back. Refer to "SYS.MONITOR" in Oracle TimesTen
In-Memory Database System Tables and Limits Reference for additional information.

A transaction rollback consumes resources and the entire transaction is in effect
wasted. To avoid unnecessary rollbacks, design your application to avoid contention
and check the application or input data for potential errors before submitting it.

JDBC support for automatic client failover
Automatic client failover, used in High Availability scenarios when failure of a
TimesTen node results in failover (transfer) to an alternate node, automatically
reconnects applications to the new node. TimesTen provides features that allow
applications to be alerted when this happens, so they can take any appropriate action.

This section discusses TimesTen JDBC extensions related to automatic client failover,
covering the following topics:

■ Features and functionality of JDBC support for automatic client failover

■ Synchronous detection of automatic client failover

■ Asynchronous detection of automatic client failover

Automatic client failover is complementary to Oracle Clusterware in situations where
Oracle Clusterware is used, though the two features are not dependent on each other.

Note: If your application fails in the middle of an active transaction,
TimesTen automatically rolls back the transaction.

Note: Automatic client failover applies only to client/server mode.
The functionality described here does not apply to a direct connection.

JDBC support for automatic client failover

2-34 Oracle TimesTen In-Memory Database Java Developer's Guide

You can refer to "Automatic client failover" in Oracle TimesTen In-Memory Database C
Developer's Guide for related information. You can also refer to "Using Oracle
Clusterware to Manage Active Standby Pairs" in Oracle TimesTen In-Memory Database
TimesTen to TimesTen Replication Guide for information about Oracle Clusterware.

Features and functionality of JDBC support for automatic client failover
This section discusses general TimesTen JDBC features related to client failover, and
functionality relating specifically to pooled connections.

General Client Failover Features
TimesTen JDBC support for automatic client failover provides two mechanisms for
detecting a failover:

■ Synchronous detection, through a SQL exception. After an automatic client failover,
JDBC objects created on the failed connection—such as statements, prepared
statements, callable statements, and result sets—can no longer be used. A Java
SQL exception is thrown if an application attempts to access any such object. By
examining the SQL state and error code of the exception, you can determine
whether the exception is the result of a failover situation.

■ Asynchronous detection, through an event listener. An application can register a
user-defined client failover event listener, which will be notified of each event that
occurs during the process of a failover.

TimesTen JDBC provides the following features, in package com.timesten.jdbc, to
support automatic client failover:

■ The ClientFailoverEvent class. This class is used to represent events that
occur during a client failover: begin, end, abort, or retry.

■ The ClientFailoverEventListener interface. An application interested in
client failover events must include a class that implements this interface, which is
the mechanism to listen for client failover events. At runtime, the application must
register ClientFailoverEventListener instances through the TimesTen
connection (see immediately below).

■ New methods in the TimesTenConnection interface. This interface specifies the
methods addConnectionEventListener() and
removeConnectionEventListener() to register or remove, respectively, a
client failover event listener.

■ A new constant, TT_ERR_FAILOVERINVALIDATION, in the
TimesTenVendorCode interface. This enables you to identify an event as a
failover event.

Client failover features for pooled connections
TimesTen recommends that applications using pooled connections
(javax.sql.PooledConnection) or connection pool data sources
(javax.sql.ConnectionPoolDataSource) use the synchronous mechanism
noted previously to handle stale objects on the failed connection. Java EE application
servers manage pooled connections, so applications are not able to listen for events on
pooled connections. And application servers would not implement and register an
instance of ClientFailoverEventListener, that being a TimesTen extension.

JDBC support for automatic client failover

Working with TimesTen Databases 2-35

Synchronous detection of automatic client failover
If, in a failover situation, an application attempts to use objects created on the failed
connection, then JDBC will throw a SQL exception. The vendor-specific exception code
will be set to TimesTenVendorCode.TT_ERR_FAILOVERINVALIDATION.

Detecting a failover through this mechanism is referred to as synchronous detection.
The following example demonstrates this.

Example 2–18 Synchronous detection of automatic client failover

try {
 // ...
 // Execute a query on a previously prepared statement.
 ResultSet theResultSet = theStatement.executeQuery("select * from dual");
 // ...

} catch (SQLException sqlex) {
 sqlex.printStackTrace();
 if (sqlex.getErrorCode() == TimesTenVendorCode.TT_ERR_FAILOVERINVALIDATION) {
 // Automatic client failover has taken place; discontinue use of this object.
 }
}

Asynchronous detection of automatic client failover
Asynchronous failover detection requires an application to implement a client failover
event listener and register an instance of it on the TimesTen connection. This section
describes the steps involved:

1. Implement a client failover event listener

2. Register the client failover listener instance

3. Remove the client failover listener instance

Implement a client failover event listener
TimesTen JDBC provides the
com.timesten.jdbc.ClientFailoverEventListener interface for use in
listening for events, highlighted by the following method:

■ void notify(ClientFailoverEvent event)

To use asynchronous failover detection, you must create a class that implements this
interface, then register an instance of the class at runtime on the TimesTen connection
(discussed shortly).

When a failover event occurs, TimesTen calls the notify() method of the listener
instance you registered, providing a ClientFailoverEvent instance that you can
then examine for information about the event.

The following example shows the basic form of a ClientFailoverEventListener
implementation.

Example 2–19 Asynchronous detection of automatic client failover

 private class MyCFListener implements ClientFailoverEventListener {
 // Skeletal example
 /* Applications can build state system to track states during failover.
 You may want to add methods that talks about readiness of this Connection
 for processing.

JDBC support for automatic client failover

2-36 Oracle TimesTen In-Memory Database Java Developer's Guide

 */
 public void notify(ClientFailoverEvent event) {

 // Process connection failover type
 switch(event.getTheFailoverType()) {
 case TT_FO_CONNECTION:
 // Process session fail over
 System.out.println("This should be a connection failover type " +
 event.getTheFailoverType());
 break;

 default:
 break;
 }

 // Process connection failover events
 switch(event.getTheFailoverEvent()) {
 case BEGIN:
 System.out.println("This should be a BEGIN event " +
 event.getTheFailoverEvent());

 /* Applications cannot use Statement, PreparedStatement, ResultSet,
 etc. created on the failed Connection any longer.
 */
 // ...
 break;

 case END:
 System.out.println("This should be an END event " +
 event.getTheFailoverEvent());

 /* Applications may want to re-create Statement and PreparedStatement
 objects at this point as needed.
 */

 break;

 case ABORT:
 System.out.println("This should be an ABORT event " +
 event.getTheFailoverEvent());
 break;

 case ERROR:
 System.out.println("This should be an ERROR event " +
 event.getTheFailoverEvent());
 break;

 default:
 break;
 }
 }
 }

The event.getTheFailoverType() call returns an instance of the nested class
ClientFailoverEvent.FailoverType, which is an enumeration type. In
TimesTen, the only supported value is TT_FO_CONNECTION, indicating a connection
failover.

JDBC support for automatic client failover

Working with TimesTen Databases 2-37

The event.getTheFailoverEvent() call returns an instance of the nested class
ClientFailoverEvent.FailoverEvent, which is an enumeration type where the
value can be one of the following:

■ BEGIN if the client failover has begun

■ END if the client failover has completed successfully

■ ERROR if the client failover failed but will be retried

■ ABORT if the client failover has aborted

Register the client failover listener instance
At runtime you must register an instance of your failover event listener class with the
TimesTen connection object, so that TimesTen will be able to call the notify()
method of the listener class as needed for failover events.

TimesTenConnection provides the following method for this:

■ void addConnectionEventListener
 (ClientFailoverEventListener listener)

Create an instance of your listener class, then register it using this method. The
following example establishes the connection and registers the listener. Assume
theDsn is the JDBC URL for a TimesTen Client/Server database and
theCFListener is an instance of your failover event listener class.

Example 2–20 Registering the client failover listener

 try {

 // Assume this is a client/server connection; register for conn failover.
 Class.forName("com.timesten.jdbc.TimesTenClientDriver");
 String url = "jdbc:timesten:client:" + theDsn;
 theConnection = (TimesTenConnection)DriverManager.getConnection(url);
 theConnection.addConnectionEventListener(theCFListener);
 // ...
 /* Additional logic goes here; connection failover listener will be
 called if there is a fail over.
 */
 // ...
 }
 catch (ClassNotFoundException cnfex) {
 cnfex.printStackTrace();
 }
 catch (SQLException sqlex) {
 sqlex.printStackTrace();
 }

Remove the client failover listener instance
The TimesTenConnection interface defines the following method to deregister a
failover event listener:

■ void removeConnectionEventListener
 (ClientFailoverEventListener listener)

Use this method to deregister a listener instance.

JDBC support for automatic client failover

2-38 Oracle TimesTen In-Memory Database Java Developer's Guide

3

Using JMS/XLA for Event Management 3-1

3Using JMS/XLA for Event Management

You can use the TimesTen JMS/XLA API (JMS/XLA) to monitor TimesTen for changes
to specified tables in a local database and receive real-time notification of these
changes. One of the purposes of JMS/XLA is to provide a high-performance,
asynchronous alternative to triggers.

You can also use JMS/XLA to build a custom data replication solution, if the TimesTen
replication solutions described in Oracle TimesTen In-Memory Database TimesTen to
TimesTen Replication Guide do not meet your needs.

JMS/XLA implements Java Message Service (JMS) interfaces to make the functionality
of the TimesTen Transaction Log API (XLA) available to Java applications. JMS
information and resources are available at the following location:

http://java.sun.com/products/jms/docs.html

In addition, the standard JMS API documentation is installed with the Oracle
TimesTen In-Memory Database at the following location:

install_dir/3rdparty/jms1.1/doc/api/index.html

For information about tuning TimesTen JMS/XLA applications for improved
performance, see "Tuning JMS/XLA applications" on page 5-4.

This chapter includes the following topics:

■ JMS/XLA concepts

■ JMS/XLA and Oracle GDK dependency

■ Connecting to XLA

■ Monitoring tables for updates

■ Receiving and processing updates

■ Terminating a JMS/XLA application

■ Using JMS/XLA as a replication mechanism

JMS/XLA concepts
Java applications can use the JMS/XLA API to receive event notifications from
TimesTen. JMS/XLA uses the JMS publish-subscribe interface to provide access to
XLA updates.

You subscribe to updates by establishing a JMS Session that provides a connection to
XLA and creating a durable subscriber (TopicSubscriber). You can receive and
process messages synchronously through the subscriber, or you can implement a
listener (MessageListener) to process the updates asynchronously.

JMS/XLA concepts

3-2 Oracle TimesTen In-Memory Database Java Developer's Guide

JMS/XLA is designed for applications that want to monitor a local database. TimesTen
and the application receiving the notifications must reside on the same system.

This section includes the following topics:

■ How XLA reads records from the transaction log

■ XLA and materialized views

■ XLA bookmarks

■ JMS/XLA configuration file and topics

■ XLA updates

■ XLA acknowledgment modes

■ Access control impact on XLA

How XLA reads records from the transaction log
As applications modify a database, TimesTen generates transaction log records that
describe the changes made to the data and other events such as transaction commits.

New transaction log records are always written to the end of the transaction log buffer
as they are generated. Transaction log records are periodically flushed in batches from
the log buffer in memory to transaction log files on disk.

Applications can use XLA to monitor the transaction log for changes to the database.
XLA reads through the transaction log, filters the log records, and delivers XLA
applications with a list of transaction records that contain the changes to the tables and
columns of interest.

XLA sorts the records into discrete transactions. If multiple applications are updating
the database simultaneously, transaction log records from the different applications
will be interleaved in the transaction log.

XLA transparently extracts all transaction log records associated with a particular
transaction and delivers them in a contiguous list to the application.

Only the records for committed transactions are returned. They are returned in the
order in which their final commit record appears in the transaction log. XLA filters out
records associated with changes to the database that have not yet committed.

If a change is made but then rolled back, XLA does not deliver the records for the
aborted transaction to the application.

Consider the example transaction log illustrated in Figure 3–1 and Example 3–1 that
follow, which illustrate most of these basic XLA concepts.

Note: The JMS/XLA API supports persistent-mode XLA. In this
mode, XLA obtains update records directly from the transaction log
buffer or transaction log files, so the records are available until they
are read. Persistent-mode XLA also allows multiple readers to access
transaction log updates simultaneously.

JMS/XLA concepts

Using JMS/XLA for Event Management 3-3

Figure 3–1 Records extracted from the transaction log

Example 3–1 Reading transaction log records

In this example, the transaction log contains the following records:

CT1 - Application C updates row 1 of table W with value 7.7.
BT1 - Application B updates row 3 of table X with value 2.
CT2 - Application C updates row 9 of table W with value 5.6.
BT2 - Application B updates row 2 of table Y with value "XYZ".
AT1 - Application A updates row 1 of table Z with value 3.
AT2 - Application A updates row 3 of table Z with value 4.
BT3 - Application B commits its transaction.
AT3 - Application A rolls back its transaction.
CT3 - Application C commits its transaction.

An XLA application that is set up to detect changes to tables W, Y, and Z would see the
following:

BT2 and BT3 - Update row 2 of table Y with value "XYZ" and commit.
CT1 - Update row 1 of table W with value 7.7.
CT2 and CT3 - Update row 9 of table W with value 5.6 and commit.

This example demonstrates the following:

■ Transaction records for application B and application C all appear.

■ Though the records for application C begin to appear in the transaction log before
those for application B, the commit for application B (BT3) appears in the
transaction log before the commit for application C (CT3). As a result, the records
for application B are returned to the XLA application ahead of those for
application C.

■ The application B update to table X (BT1) is not presented because XLA is not set
up to detect changes to table X.

■ The application A updates to table Z (AT1 and AT2) are never presented because it
did not commit and was rolled back (AT3).

XLA and materialized views
You can use XLA to track changes to both tables and materialized views. A
materialized view provides a single source from which you can track changes to
selected rows and columns in multiple detail tables. Without a materialized view, the
XLA application would have to monitor and filter the update records from all of the
detail tables, including records reflecting updates to rows and columns of no interest
to the application.

In general, there are no operational differences between the XLA mechanisms used to
track changes to a table or a materialized view. However, for asynchronous
materialized views, be aware that the order of XLA notifications for an asynchronous

..........................
Transaction Log

Oldest NewestCT1 BT2 AT2 CT3CT2 AT1 AT3

BT2 BT3 CT2CT1 CT3

XLA Application

BT1 BT3

JMS/XLA concepts

3-4 Oracle TimesTen In-Memory Database Java Developer's Guide

view is not necessarily the same as it would be for the associated detail tables, or the
same as it would be for a synchronous view. For example, if there are two inserts to a
detail table, they may be done in the opposite order in the asynchronous materialized
view. Furthermore, updates may be treated as a delete followed by an insert, and
multiple operations (such as multiple inserts or multiple deletes) may be combined.
Applications that depend on ordering should not use asynchronous materialized
views.

XLA bookmarks
An XLA bookmark marks the read position of an XLA subscriber application in the
transaction log. Bookmarks facilitate durable subscriptions, enabling an application to
disconnect from a topic and then reconnect to continue receiving updates where it left
off.

How bookmarks work
When you create a message consumer for XLA, you always use a durable
TopicSubscriber. The subscription identifier you specify when you create the
subscriber is used as the XLA bookmark name. When you use the ttXlaSubscribe
and ttXlaUnsubscribe built-in procedures through JDBC to start and stop XLA
publishing for a table, you explicitly specify the name of the bookmark to be used.

Bookmarks are reset to the last read position whenever an acknowledgment is
received. For more information about how update messages are acknowledged, see
the "XLA acknowledgment modes" on page 3-7.

You can remove a durable subscription by calling unsubscribe() on the JMS
Session object. This deletes the corresponding XLA bookmark and forces a new
subscription to be created when you reconnect. For more information see "Deleting
bookmarks" on page 3-12.

A bookmark subscription cannot be altered when it is in use. To alter a subscription,
you must close the message consumer, alter the subscription using ttXlaSubscribe
and ttXlaUnsubscribe, and open the message consumer.

Replicated bookmarks
If you are using an active standby pair replication scheme, you have the option of
using replicated bookmarks, according to the replicatedBookmark attribute of the
<topic> element in the jmsxla.xml file as discussed in "JMS/XLA configuration
file and topics" on page 3-5. For a replicated bookmark, operations on the bookmark
are replicated to the standby database as appropriate, assuming there is suitable write
privilege for the standby. This allows more efficient recovery of your bookmark
positions if a failover occurs.

You can only read and acknowledge a replicated bookmark in the active database.
Each time you acknowledge a replicated bookmark, the acknowledge operation is
asynchronously replicated to the standby database.

Note: You can also use the ttXlaBookmarkCreate TimesTen
built-in procedure to create bookmarks. See "ttXlaBookmarkCreate" in
Oracle TimesTen In-Memory Database Reference for information about
that function.

JMS/XLA concepts

Using JMS/XLA for Event Management 3-5

Be aware of the following usage notes:

■ The position of the bookmark in the standby database will be very close to that of
the bookmark in the active database; however, because the replication of
acknowledge operations is asynchronous, you may see a small window of
duplicate updates when there is a failover, depending on how often acknowledge
operations are performed.

■ If replicated bookmarks exist at the time you enable the active standby pair
scheme, the bookmarks will automatically be added to the replication scheme.

■ It is permissible to drop the active standby pair scheme while replicated
bookmarks exist. The bookmarks will cease to be replicated at that point.

■ You cannot delete replicated bookmarks while the replication agent is running.

JMS/XLA configuration file and topics
To connect to XLA, you establish a connection to a JMS Topic object that corresponds
to a particular database. The JMS/XLA configuration file provides the mapping
between topic names and databases.

You can specify a replicated bookmark by setting replicatedBookmark="yes" in
the <topic> element when you specify the topic. The default setting is "no". Also see
"XLA bookmarks" on page 3-4.

By default, JMS/XLA looks for a configuration file named jmsxla.xml in the current
working directory. If you want to use another name or location for the file, you must
specify it as part of the environment variable in the InitialContext class and add
the location to the classpath.

Example 3–2 Specifying the JMS/XLA configuration file

The following code specifies the configuration file as part of the environment variable
in the InitialContext class.

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.timesten.dataserver.jmsxla.SimpleInitialContextFactory");
env.put(XlaConstants.CONFIG_FILE_NAME, "/newlocation.xml");
InitialContext ic = new InitialContext(env);

The JMS/XLA API uses the class loader to locate the JMS/XLA configuration file if
XlaConstants.CONFIG_FILE_NAME is set. In this example, the JMS/XLA API
searches for the newlocation.xml file in the top directory in both the location
specified in the CLASSPATH environment variable and in the JAR files specified in the
CLASSPATH variable.

The JMS/XLA configuration file can also be located in subdirectories, as follows:

env.put(XlaConstants.CONFIG_FILE_NAME,
"/com/mycompany/myapplication/deepinside.xml");

In this case, the JMS/XLA API searches for the deepinside.xml file in the
com/mycompany/myapplication subdirectory in both the location specified in the

Note: Alternatively, if you use ttXlaBookmarkCreate to create a
bookmark, that function has a bit you can set to specify a replicated
bookmark.

JMS/XLA concepts

3-6 Oracle TimesTen In-Memory Database Java Developer's Guide

CLASSPATH environment variable and in the JAR files specified in the CLASSPATH
variable.

The JMS/XLA API uses the first configuration file that it finds.

Example 3–3 Defining a topic in the configuration file

A topic definition in the configuration file consists of a name, a connection string, and
a prefetch value that specifies how many updates to retrieve at a time.

For example, the configuration file shown here maps the DemoDataStore topic to the
TestDB DSN:

<xlaconfig>
 <topics>
 <topic name="DemoDataStore"
 connectionString="DSN=TestDB"
 xlaPrefetch="100" />
 </topics>
</xlaconfig>

Example 3–4 Defining a topic to use replicated bookmarks

A topic definition can also specify whether a replicated bookmark should be used. The
following repeats the preceding example, but with a replicated bookmark.

<xlaconfig>
 <topics>
 <topic name="DemoDataStore"
 connectionString="DSN=TestDB"
 xlaPrefetch="100" replicatedBookmark="yes" />
 </topics>
</xlaconfig>

XLA updates
Applications receive XLA updates as JMS MapMessage objects. The MapMessage
contains a set of typed name and value pairs that correspond to the fields in an XLA
update header.

You can access the message fields using the MapMessage getter methods. The
getMapNames() method returns an Enumeration object that contains the names of
all of the fields in the message. You can retrieve individual fields from the message by
name. All reserved field names begin with two underscores, for example __TYPE.

All update messages have a __TYPE field that indicates what type of update the
message contains. The types are specified as integer values. As a convenience, you can
use the constants defined in com.timesten.dataserver.jmsxla.XlaConstants
to compare against the integer types. The supported types are described in Table 3–1.

Table 3–1 XLA update types

Update type Description

INSERT A row has been added.

UPDATE A row has been modified.

DELETE A row has been removed.

COMMIT_ONLY A transaction has been committed.

CREATE_TABLE A table has been created.

JMS/XLA concepts

Using JMS/XLA for Event Management 3-7

For more information about the contents of an XLA update message, see "JMS/XLA
MapMessage contents" on page 6-1.

XLA acknowledgment modes
The XLA acknowledgment mechanism is designed to ensure that an application has
not only received a message, but has successfully processed it. Acknowledging an
update permanently resets the application's XLA bookmark to the last record that was
read. This prevents previously returned records from being reread, ensuring that an
application does not receive previously acknowledged records if the bookmark is
reused when an application reconnects to XLA.

JMS/XLA can automatically acknowledge XLA update messages, or applications can
choose to acknowledge messages explicitly. You specify how updates are to be
acknowledged when you create the Session object.

JMS/XLA supports three acknowledgment modes:

■ AUTO_ACKNOWLEDGE: In this mode, updates are automatically acknowledged as
you receive them. Each message is delivered only once. Duplicate messages will
not be sent, so messages might be lost if there is an application failure. Messages
are always delivered and acknowledged individually, so JMS/XLA does not
prefetch multiple records. The xlaprefetch attribute in the topic is ignored.

■ DUPS_OK_ACKNOWLEDGE: In this mode, updates are automatically acknowledged,
but duplicate messages might be delivered when there is an application failure.
JMS/XLA prefetches records according to the xlaprefetch attribute specified
for the topic and sends an acknowledgment when the last record in a prefetched
block is read. If the application fails before reading all of the prefetched records, all
of the records in the block are presented to the application it restarts.

■ CLIENT_ACKNOWLEDGE: In this mode, applications are responsible for
acknowledging receipt of update messages by calling acknowledge() on the
MapMessage. JMS/XLA prefetches records according to the xlaprefetch
attribute specified for the topic.

DROP_TABLE A table has been dropped.

CREATE_INDEX An index has been created.

DROP_INDEX An index has been dropped.

ADD_COLUMNS New columns have been added to the table.

DROP_COLUMNS Columns have been removed from the table.

CREATE_VIEW A materialized view has been created.

DROP_VIEW A materialized view has been dropped.

CREATE_SEQ A sequence has been created.

DROP_SEQ A sequence has been dropped.

CREATE_SYNONYM A synonym has been created.

DROP_SYNONYM A synonym has been dropped.

TRUNCATE The table has been truncated and all rows in the table have been
deleted.

Table 3–1 (Cont.) XLA update types

Update type Description

JMS/XLA and Oracle GDK dependency

3-8 Oracle TimesTen In-Memory Database Java Developer's Guide

Prefetching updates
Prefetching multiple update records at a time is more efficient than obtaining each
update record from XLA individually. Because updates are not prefetched when you
use AUTO_ACKNOWLEDGE mode, it can be slower than the other modes. If possible, you
should design the application to tolerate duplicate updates so you can use
DUPS_OK_ACKNOWLEDGE, or explicitly acknowledge updates. Explicitly
acknowledging updates usually yields the best performance, as long as you can avoid
acknowledging each message individually.

Acknowledging updates
To explicitly acknowledge an XLA update, call acknowledge() on the update
message. Acknowledging a message implicitly acknowledges all previous messages.
Typically, you receive and process multiple update messages between
acknowledgments. If you are using the CLIENT_ACKNOWLEDGE mode and intend to
reuse a durable subscription in the future, you should call acknowledge() to reset
the bookmark to the last-read position before exiting.

Access control impact on XLA
"Considering TimesTen features for access control" on page 2-29 provides a brief
overview of how TimesTen access control affects operations in the database. Access
control includes impact on XLA, as follows:

■ Any XLA functionality requires the system privilege XLA. This includes
connecting to TimesTen as an XLA reader and executing the TimesTen XLA
built-in procedures ttXlaBookmarkCreate, ttXlaBookmarkDelete,
ttXlaSubscribe, and ttXlaUnsubscribe, all of which are documented in
"Built-In Procedures" in Oracle TimesTen In-Memory Database Reference.

■ A user with the XLA privilege has capabilities equivalent to the SELECT ANY
TABLE and SELECT ANY SEQUENCE system privileges.

JMS/XLA and Oracle GDK dependency
The JMS/XLA API uses orai18n.jar, part of the Oracle Globalization Development
Kit (GDK) for translating from the database character set specified by the
DatabaseCharacterSet attribute to UTF-16 encoding. The JMS/XLA API supports
a specific version of the GDK with each TimesTen release. If JMS/XLA finds other
versions of the GDK loaded in the JVM, it displays a severe warning and continues
processing. You can find out the GDK version supported by JMS/XLA by entering the
following commands:

$ cd install_dir/lib
$ java -cp ./orai18n.jar oracle.i18n.util.GDKOracleMetaData -version

Also see "Compiling Java applications" on page 1-2.

Connecting to XLA
To connect to XLA so you can receive updates, use a JMS connection factory to create a
connection. Then use the connection to establish a session. When you are ready to start
processing updates, call start() on the connection to enable message dispatching.
This is shown in Example 3–5 that follows, from the syncJMS Quick Start demo.

Receiving and processing updates

Using JMS/XLA for Event Management 3-9

Example 3–5 Connecting to XLA

/** JMS connection */
private javax.jms.TopicConnection connection;
/** JMS session */
private TopicSession session;
...
// get Connection
Context messaging = new InitialContext();
TopicConnectionFactory connectionFactory =
 (TopicConnectionFactory)messaging.lookup("TopicConnectionFactory");
connection = connectionFactory.createTopicConnection();
connection.start();
...
// get Session
session = connection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);

Monitoring tables for updates
Before you can start receiving updates, you must specify to XLA which tables you
want to monitor for changes.

To subscribe to changes and turn on XLA publishing for a table, call the
ttXlaSubscribe built-in procedure through JDBC.

When you use ttXlaSubscribe to enable XLA publishing for a table, you must
specify parameters for the name of the table and the name of the bookmark that will
be used to track the table:

ttXlaSubscribe(user.table, mybookmark)

For example, call ttXlaSubscribe by the JDBC CallableStatement interface:

Connection con;

CallableStatement cStmt;
...
cStmt = con.prepareCall("{call ttXlaSubscribe(user.table, mybookmark)}");
cStmt.execute();

Use ttXlaUnsubscribe to unsubscribe from the table during shutdown. For more
information, see "Unsubscribing from a table" on page 3-13.

The application can verify table subscriptions by checking the
SYS.XLASUBSCRIPTIONS system table.

For more information about using TimesTen built-in procedures in a Java application,
see "Using CALL to execute procedures and functions" on page 2-24.

Receiving and processing updates
You can receive XLA updates either synchronously or asynchronously.

To receive and process updates for a topic synchronously, perform the following tasks.

1. Create a durable TopicSubscriber instance to subscribe to a topic.

2. Call receive() or receiveNoWait() on your subscriber to get the next
available update.

3. Process the returned MapMessage instance.

Receiving and processing updates

3-10 Oracle TimesTen In-Memory Database Java Developer's Guide

To receive and process updates for a topic asynchronously, perform the following
tasks.

1. Create a MessageListener instance to process the updates.

2. Create a durable TopicSubscriber instance to subscribe to a topic.

3. Register the MessageListener with the TopicSubscriber.

4. Start the connection.

5. Wait for messages to arrive. You can call the Object method wait() to wait for
messages if your application does not have to do anything else in its main thread.

When an update is published, the MessageListener method onMessage() is
called and the message is passed in as a MapMessage instance.

The application can verify table subscriptions by checking the
SYS.XLASUBSCRIPTIONS system table.

Example 3–6, from the asyncJMS Quick Start demo, uses a listener to process updates
asynchronously.

Example 3–6 Using a listener to process updates asynchronously

MyListener myListener = new MyListener(outStream);

outStream.println("Creating consumer for topic " + topic);
Topic xlaTopic = session.createTopic(topic);
bookmark = "bookmark";
TopicSubscriber subscriber = session.createDurableSubscriber(xlaTopic, bookmark);

// After setMessageListener() has been called, myListener's onMessage
// method will be called for each message received.
subscriber.setMessageListener(myListener);

Note that bookmark must already exist. You can use JDBC and the
ttXlaBookmarkCreate built-in procedure to create a bookmark. Also, the
TopicSubscriber must be a durable subscriber. XLA connections are designed to be
durable. XLA bookmarks make it possible to disconnect from a topic and then
reconnect to start receiving updates where you left off. The string you pass in as the
subscription identifier when you create a durable subscriber is used as the XLA
bookmark name.

You can call unsubscribe() on the JMS TopicSession to delete the XLA
bookmark used by the subscriber when the application shuts down. This causes a new
bookmark to be created when the application is restarted.

When you receive an update, you can use the MapMessage getter methods to extract
information from the message and then perform whatever processing your application
requires. The TimesTen XlaConstants class defines constants for the update types
and special message fields for use in processing XLA update messages.

The first step is typically to determine what type of update the message contains. You
can use the MapMessage method getInt() to get the contents of the __TYPE field,

Note: You may miss messages if you do not register the
MessageListener before you start the connection. If the connection
is already started, stop the connection, register the
MessageListener, then start the connection.

Receiving and processing updates

Using JMS/XLA for Event Management 3-11

and compare the value against the numeric constants defined in the XlaConstants
class.

In Example 3–7, from the asyncJMS Quick Start demo, the method onMessage()
extracts the update type from the MapMessage object and displays the action that the
update signifies.

Example 3–7 Determining the update type

public void onMessage(Message message)
{
 MapMessage mapMessage = (MapMessage)message;
 String messageType = null;
 /** Standard output stream */
 private static PrintStream outStream = System.out;

 if (message == null)
 {
 errStream.println("MyListener: update message is null");
 return ;
 }

 try
 {
 outStream.println();
 outStream.println("onMessage: got a " + mapMessage.getJMSType() + " message");

 // Get the type of event (insert, update, delete, drop table, etc.).
 int type = mapMessage.getInt(XlaConstants.TYPE_FIELD);
 if (type == XlaConstants.INSERT)
 {
 outStream.println("A row was inserted.");
 }
 else if (type == XlaConstants.UPDATE)
 {
 outStream.println("A row was updated.");
 }
 else if (type == XlaConstants.DELETE)
 {
 outStream.println("A row was deleted.");
 }
 else
 {

 // Messages are also received for DDL events such as CREATE TABLE.
 // This program processes INSERT, UPDATE, and DELETE events,
 // and ignores the DDL events.
 return ;
 }
 ...
 }
...
}

When you know what type of message you have received, you can process the
message according to the application's needs. To get a list of all of the fields in a
message, you can call the MapMessage method getMapNames(). You can retrieve
individual fields from the message by name.

Terminating a JMS/XLA application

3-12 Oracle TimesTen In-Memory Database Java Developer's Guide

Example 3–8, from the asyncJMS Quick Start demo, extracts the column values from
insert, update, and delete messages using the column names.

Example 3–8 Extracting column values

/** Standard output stream */
private static PrintStream outStream = System.out;
...
if (type == XlaConstants.INSERT
 || type == XlaConstants.UPDATE
 || type == XlaConstants.DELETE)
{

 // Get the column values from the message.
 int cust_num = mapMessage.getInt("cust_num");
 String region = mapMessage.getString("region");
 String name = mapMessage.getString("name");
 String address = mapMessage.getString("address");

 outStream.println("New Column Values:");
 outStream.println("cust_num=" + cust_num);
 outStream.println("region=" + region);
 outStream.println("name=" + name);
 outStream.println("address=" + address);
}

For detailed information about the contents of XLA update messages, see "JMS/XLA
MapMessage contents" on page 6-1. For information about how TimesTen column
types map to JMS data types and the getter methods used to retrieve the column
values, see "Data type support" on page 6-10.

Terminating a JMS/XLA application
When the XLA application has finished reading from the transaction log, it should
gracefully exit by closing the XLA connection, deleting any unneeded bookmarks, and
unsubscribing from any tables to which you explicitly subscribed.

Closing the connection
To close the connection to XLA, call close() on the Connection object.

After a connection has been closed, any attempt to use it, its sessions, or its subscribers
will throw an IllegalStateException. You can continue to use messages received
through the connection, but you cannot call the acknowledge() method on the
received message after the connection is closed.

Deleting bookmarks
Deleting XLA bookmarks during shutdown is optional. Deleting a bookmark enables
the disk space associated with any unread update records in the transaction log to be
freed.

If you do not delete the bookmark, it can be reused by a durable subscriber. If the
bookmark is available when a durable subscriber reconnects, the subscriber will
receive all unacknowledged updates published since the previous connection was
terminated. Keep in mind that when a bookmark exists with no application reading
from it, the transaction log will continue to grow and the amount of disk space
consumed by your database will increase.

Using JMS/XLA as a replication mechanism

Using JMS/XLA for Event Management 3-13

To delete a bookmark, you can simply call unsubscribe on the JMS Session, which
invokes the ttXlaBookmarkDelete built-in procedure to remove the XLA
bookmark.

Unsubscribing from a table
To turn off XLA publishing for a table, use the ttXlaUnsubscribe built-in
procedure. If you use ttXlaSubscribe to enable XLA publishing for a table, you
should use ttXlaUnsubscribe to unsubscribe from the table when shutting down
your application.

When you unsubscribe from a table, specify the name of the table and the name of the
bookmark used to track the table:

ttXlaUnsubscribe(user.table, mybookmark)

The following example calls ttXlaUnSubscribe through a CallableStatement
object.

Example 3–9 Unsubscribing from a table

Connection con;

CallableStatement cStmt;
...
cStmt = con.prepareCall("{call ttXlaUnSubscribe(user.table, mybookmark)}");
cStmt.execute();

For more information about using TimesTen built-in procedures in a Java application,
see "Using CALL to execute procedures and functions" on page 2-24.

Using JMS/XLA as a replication mechanism
If the TimesTen replication solutions described in Oracle TimesTen In-Memory Database
TimesTen to TimesTen Replication Guide do not meet your needs, you can use JMS/XLA
to replicate updates from a source database to a target database.

Applying JMS/XLA messages to a target database
The source database generates JMS/XLA messages. To apply the messages to a target
database, you must extract the XLA descriptor from them. Use the MapMessage
interface to extract the update descriptor:

MapMessage message;
/**
 *...other code
 */
try {
 byte[]updateMessage=
 mapMessage.getBytes(XlaConstants.UPDATE_DESCRIPTOR_FIELD);
}

Note: You cannot delete replicated bookmarks while the replication
agent is running.

Note: If you want to drop a table, you must unsubscribe from it first.

Using JMS/XLA as a replication mechanism

3-14 Oracle TimesTen In-Memory Database Java Developer's Guide

catch (JMSException jex){
/**
 *...other code
 */
}

The target database may reside on a different system from the source database. The
update descriptor is returned as a byte array and can be serialized for network
transmission.

You must create a target database object that represents the target database so you can
apply the objects from the source database. You can create a target database object
named myTargetDataStore as an instance of the TargetDataStoreImpl class.
For example:

TargetDataStore myTargetDataStore=
 new TargetDataStoreImpl("DSN=sampleDSN");

Apply messages to myTargetDataStore by using the TargetDataStore method
apply(). For example:

myTargetDataStore.apply(updateDescriptor);

By default, TimesTen checks for conflicts on the target database before applying the
update. If the target database has information that is later than the update,
TargetDataStore throws an exception. If you do not want TimesTen to check for
conflicts, use the TargetDataStore method setUpdateConflictCheckFlag()
to change the behavior.

By default, TimesTen commits the update to the database based on commit flags and
transaction boundaries contained in the update descriptor. If you want the application
to perform manual commits instead, use the setAutoCommitFlag() method to
change the autocommit flag. To perform a manual commit on myTargetDataStore,
use the following command:

myTargetDataStore.commit();

You can perform a rollback if errors occur during the application of the update. Use
the following command for myTargetDataStore:

myTargetDataStore.rollback();

Close myTargetDataStore by using the following command:

myTargetDataStore.close;

See "JMS/XLA replication API" on page 6-13 for more information about the
TargetDataStore interface.

TargetDataStore error recovery
Invoking TargetDataStore can yield transient and permanent errors.

TargetDataStore methods return a nonzero value when transient errors occur. The
application can retry the operation and is responsible for monitoring update
descriptors that must be reapplied. For more information about transient XLA errors,
see "Handling XLA errors" in Oracle TimesTen In-Memory Database C Developer's Guide.

TargetDataStore methods return a JMSException object for permanent errors. If
the application receives a permanent error, it should verify that the database is valid. If

Using JMS/XLA as a replication mechanism

Using JMS/XLA for Event Management 3-15

the database is invalid, the target database object should be closed and a new one
should be created. Other types of permanent errors may require manual intervention.

The following example shows how to recover errors from a TargetDataStore
object.

Example 3–10 Recovering errors

TargetDataStore theTargetDataStore;
byte[] updateDescriptor;
int rc;

// Other code
try {
 ...
 if ((rc = theTargetDataStore.apply(updateDescriptor)) == 0) {
 // apply successful
 }
 else {
 // Transient error. Retry later.
 }
 }
catch (JMSException jex) {
 if (theTargetDataStore.isDataStoreValid()) {
 // Database valid; permanent error that may need Administrator intervention.
 }
 else {
 try {
 theTargetDataStore.close();
 }
 catch (JMSException closeEx) {
 // Close errors are not usual. This may need Administrator intervention.
 }
}

Using JMS/XLA as a replication mechanism

3-16 Oracle TimesTen In-Memory Database Java Developer's Guide

4

Distributed Transaction Processing: JTA 4-1

4Distributed Transaction Processing: JTA

This chapter describes the TimesTen implementation of the Java Transaction API (JTA).

The TimesTen implementation of the Java JTA interfaces is intended to enable Java
applications, application servers, and transaction managers to use TimesTen resource
managers in distributed transaction processing (DTP) environments. The TimesTen
implementation is supported for use by the Oracle WebLogic Server.

The purpose of this chapter is to provide information specific to the TimesTen
implementation of JTA and is intended to be used with the following documents:

■ The JTA and JDBC documentation available from the following locations:

http://www.oracle.com/technetwork/java/javaee/tech/

http://www.oracle.com/technetwork/java/javase/tech/

■ WebLogic documentation, available through the following location:

http://www.oracle.com/technetwork/middleware/weblogic/documentation

As TimesTen JTA is built on top of the TimesTen implementation of the X/Open XA
standard, much of the discussion here is in terms of underlying XA features. You can
also refer to "Distributed Transaction Processing: XA" in Oracle TimesTen In-Memory
Database C Developer's Guide.

This chapter includes the following topics:

■ Overview of JTA

■ Using JTA in TimesTen

■ Using the JTA API

Overview of JTA
This section provides a brief overview of the following XA concepts.

■ X/Open DTP model

Important:

■ The TimesTen XA implementation does not work with the Oracle
In-Memory Database Cache (IMDB Cache). The start of any XA
transaction will fail if the cache agent is running.

■ You cannot execute an XA transaction if replication is enabled.

■ Do not execute DDL statements within an XA transaction.

Overview of JTA

4-2 Oracle TimesTen In-Memory Database Java Developer's Guide

■ Two-phase commit

X/Open DTP model
Figure 4–1 illustrates the interfaces defined by the X/Open DTP model.

Figure 4–1 Distributed transaction processing model

The TX interface is what applications use to communicate with a transaction manager.
The figure shows an application communicating global transactions to the transaction
manager. In the DTP model, the transaction manager breaks each global transaction
down into multiple branches and distributes them to separate resource managers for
service. It uses the JTA interface to coordinate each transaction branch with the
appropriate resource manager.

In the context of TimesTen JTA, the resource managers can be a collection of TimesTen
databases, or databases in combination with other commercial databases that support
JTA.

Global transaction control provided by the TX and JTA interfaces is distinct from local
transaction control provided by the native JDBC interface. It is generally best to
maintain separate connections for local and global transactions. Applications can
obtain a connection handle to a TimesTen resource manager to initiate both local and
global transactions over the same connection.

Two-phase commit
In a JTA implementation, the transaction manager commits the distributed branches of
a global transaction by using a two-phase commit protocol.

1. In phase 1, the transaction manager directs each resource manager to prepare to
commit, which is to verify and guarantee it can commit its respective branch of the
global transaction. If a resource manager cannot commit its branch, the transaction
manager rolls back the entire transaction in phase 2.

2. In phase 2, the transaction manager either directs each resource manager to
commit its branch or, if a resource manager reported it was unable to commit in
phase 1, rolls back the global transaction.

Note the following optimizations.

Application Program (AP)

Transaction
Manager (TM)

Resource
Managers (RMs)

XA Interface

TX or proprietary
transaction interface

Native Interface
(e.g. ODBC)

XA or JTA Interface

Global
Transactions

Native Interface
(ODBC or JDBC)

Transaction
Branches

Using JTA in TimesTen

Distributed Transaction Processing: JTA 4-3

■ If a global transaction is determined by the transaction manager to have involved
only one branch, it skips phase 1 and commits the transaction in phase 2.

■ If a global transaction branch is read-only, where it does not generate any
transaction log records, the transaction manager commits the branch in phase 1
and skips phase 2 for that branch.

Using JTA in TimesTen
This section discusses the following considerations for using JTA in TimesTen:

■ TimesTen database requirements for XA

■ Global transaction recovery in TimesTen

■ XA error handling in TimesTen

TimesTen database requirements for XA
To guarantee global transaction consistency, TimesTen XA transaction branches must
be durable. The TimesTen implementation of the xa_prepare(), xa_rollback(),
and xa_commit() functions log their actions to disk, regardless of the value set in the
DurableCommits general connection attribute or by the ttDurableCommit built-in
procedure. If you must recover from a failure, both the resource manager and the
TimesTen transaction manager have a consistent view of which transaction branches
were active in a prepared state at the time of failure.

Rollback of transactions requires transaction logging, which is always enabled with
XA.

Global transaction recovery in TimesTen
When a database is loaded from disk to recover after a failure or unexpected
termination, any global transactions that were prepared but not committed are left
pending, or in doubt. Normal processing is not enabled until the disposition of all
in-doubt transactions has been resolved.

After connection and recovery are complete, TimesTen checks for in-doubt
transactions. If there are no in-doubt transactions, operation proceeds as normal. If
there are in-doubt transactions, other connections may be created, but virtually all
operations are prohibited on those connections until the in-doubt transactions are
resolved. Any other JDBC calls result in the following error:

Error 11035 - "In-doubt transactions awaiting resolution in recovery must be
resolved first"

The list of in-doubt transactions can be retrieved through the XA implementation of
xa_recover(), then dealt with through the XA call xa_commit(),
xa_rollback(), or xa_forget(), as appropriate. After all the in-doubt
transactions are cleared, operations proceed normally.

This scheme should be adequate for systems that operate strictly under control of the
transaction manager, since the first thing the transaction manager should do after
connect is to call xa_recover().

Note: The transaction manager considers the global transaction
committed if and only if all branches successfully commit.

Using the JTA API

4-4 Oracle TimesTen In-Memory Database Java Developer's Guide

If the transaction manager is unavailable or cannot resolve an in-doubt transaction,
you can use the ttXactAdmin utility to independently commit or abort the individual
transaction branches. Be aware, however, that these ttXactAdmin options require
ADMIN privilege. See "ttXactAdmin" in Oracle TimesTen In-Memory Database Reference.

XA error handling in TimesTen
The XA specification has a limited, strictly defined set of errors that can be returned
from XA interface calls. The ODBC SQLError mechanism returns XA defined errors,
along with any additional information.

The TimesTen XA related errors begin at number 11000. Errors 11002 through 11020
correspond to the errors defined by the XA standard.

See "Warnings and Errors" in Oracle TimesTen In-Memory Database Error Messages and
SNMP Traps for the complete list of errors.

Using the JTA API
The TimesTen implementation of JTA provides an API consistent with that specified in
the JTA specification. TimesTen JTA operates on JDK 1.4 and above.

This section covers the following topics for using the JTA API:

■ Required packages

■ Creating a TimesTen XAConnection object

■ Creating XAResource and Connection objects

Regarding how to register a TimesTen DSN with WebLogic, information on
configuring TimesTen for application servers and object-relational mapping
frameworks is available at the following location:

http://www.oracle.com/technetwork/database/timesten/overview/

Required packages
The TimesTen JDBC and XA implementations are available in the following packages:

com.timesten.jdbc.*;
com.timesten.jdbc.xa.*;

Your application should also import these standard packages:

import java.sql.*;
import javax.sql.*;
import javax.transaction.xa.*;

Creating a TimesTen XAConnection object
Connections to XA data sources are established through XADataSource objects. You
can create an XAConnection object for your database by using the
TimesTenXADataSource instance as a connection factory.
TimesTenXADataSource implements the javax.sql.XADataSource interface.

After creating a new TimesTenXADataSource instance, use the setUrl() method
to specify a database. The URL should look similar to the following.

■ For a direct connection:

jdbc:timesten:direct:DSNname

Using the JTA API

Distributed Transaction Processing: JTA 4-5

■ For a client connection:

jdbc:timesten:client:DSNname

You can also optionally use the setUser() and setPassword() methods to set the
ID and password for a specific user.

Example 4–1 Creating a TimesTen XA data source object

In this example, the TimesTenXADataSource object is used as a factory to create a
new TimesTen XA data source object. Then the URL that identifies the TimesTen DSN
(dsn1), the user name (myName), and the password (myPasswd) are set for this
TimesTenXADataSource instance. Then the getXAConnection() method is used
to return a connection to the object, xaConn.

TimesTenXADataSource xads = new TimesTenXADataSource();

xads.setUrl("jdbc:timesten:direct:dsn1");
xads.setUser("myName");
xads.setPassword("myPassword");

XAConnection xaConn = null;
try {
 xaConn = xads.getXAConnection();
}
catch (SQLException e){
 e.printStackTrace();
 return;
}

You can create multiple connections to an XA data source object. This example creates
a second connection, xaConn2:

XAConnection xaConn = null;
XAConnection xaConn2 = null;
try {
 xaConn = xads.getXAConnection();
 xaConn2 = xads.getXAConnection();
}

Example 4–2 Creating multiple TimesTen XA data source objects

This example creates two instances of TimesTenXADataSource for the databases
named dsn1 and dsn2. It then creates a connection for dsn1 and two connections for
dsn2.

TimesTenXADataSource xads = new TimesTenXADataSource();

xads.setUrl("jdbc:timesten:direct:dsn1");
xads.setUser("myName");
xads.setPassword("myPassword");

XAConnection xaConn1 = null;
XAConnection xaConn2 = null;
XAConnection xaConn3 = null;

Note: Privilege must be granted to connect to a database. Refer to
"Access control for connections" on page 2-8.

Using the JTA API

4-6 Oracle TimesTen In-Memory Database Java Developer's Guide

try {
 xaConn1 = xads.getXAConnection(); // connect to dsn1
}
catch (SQLException e){
 e.printStackTrace();
 return;
}

xads.setUrl("jdbc:timesten:direct:dsn2");
xads.setUser("myName");
xads.setPassword("myPassword");

try {
 xaConn2 = xads.getXAConnection(); // connect to dsn2
 xaConn3 = xads.getXAConnection(); // connect to dsn2
}
catch (SQLException e){
 e.printStackTrace();
 return;
}

Creating XAResource and Connection objects
After using getXAConnection() to obtain an XAConnection object, you can use
the XAConnection method getXAResource() to obtain an XAResource object,
then the XAConnection method getConnection() to obtain a Connection object
for the underlying connection.

Example 4–3 Getting an XA resource object and a connection

//get an XAResource
XAResource xaRes = null;
try {
 xaRes = xaConn.getXAResource();
}catch (SQLException e){
 e.printStackTrace();
 return;
}

//get an underlying physical Connection
Connection conn = null;
try {
 conn = xaConn.getConnection();
}catch (SQLException e){
 e.printStackTrace();
 return;
}

From this point, you can use the same connection, conn, for both local and global
transactions. Be aware of the following, however.

■ You must commit or roll back an active local transaction before starting a global
transaction. Otherwise you will get the XAException exception XAER_OUTSIDE.

■ You must end an active global transaction before initiating a local transaction,
otherwise you will get a SQLException, "Illegal combination of local transaction
and global (XA) transaction."

Note: Once an XAConnection is established, autocommit is off.

5

Application Tuning 5-1

5Application Tuning

This chapter provides tips on how to tune a Java application to run optimally on a
TimesTen database. See "TimesTen Database Performance Tuning" in Oracle TimesTen
In-Memory Database Operations Guide for more general tuning tips.

This chapter is organized as follows:

■ Tuning Java applications

■ Tuning JMS/XLA applications

Tuning Java applications
This section describes general principles to consider when tuning Java applications for
TimesTen. It includes the following topics:

■ Use prepared statement pooling

■ Use arrays of parameters for batch execution

■ Bulk fetch rows of TimesTen data

■ Use the ResultSet method getString() sparingly

■ Avoid data type conversions

Use prepared statement pooling
TimesTen supports prepared statement pooling for pooled connections, as discussed in
the JDBC 3.0 specification, through the TimesTen ObservableConnectionDS class.
This is the TimesTen implementation of ConnectionPoolDataSource. Note that
statement pooling is transparent to an application. Use of the PreparedStatement
object, including preparing and closing the statement, is no different.

Enable prepared statement pooling and specify the maximum number of statements in
the pool by calling the ObservableConnectionDS method setMaxStatements().
A value of 0, the default, disables prepared statement pooling. Any integer value
greater than 0 enables prepared statement pooling with the value taken as the
maximum number of statements. Once set, this value should not be changed.

Prepared statements or callable statements will be pooled at the time of creation if the
pool has not reached its capacity. In Java 6, you can remove a prepared statement or

Note: Also see "Working with TimesTen result sets: hints and
restrictions" on page 2-10 and the notes in "Binding parameters and
executing statements" on page 2-11.

Tuning Java applications

5-2 Oracle TimesTen In-Memory Database Java Developer's Guide

callable statement from the pool by calling setPoolable(false) on the statement
object. After the statement is closed, it will be removed from the pool.

Use arrays of parameters for batch execution
You can improve performance by using groups, referred to as batches, of statement
executions, calling the addBatch() and executeBatch() methods for Statement
or PreparedStatement objects.

For Statement objects, a batch typically consists of a set of INSERT or UPDATE
statements. Statements that return result sets are not allowed in a batch. A SQL
statement is added to a batch by calling addBatch(). The set of SQL statements
associated with a batch are executed through the executeBatch() method.

For PreparedStatement objects, a batch consists of repeated executions of a
statement using different input parameter values. For each set of input values, create
the batch by using appropriate setXXX() calls followed by the addBatch() call. The
batch is executed by the executeBatch() method.

TimesTen recommends the following batch sizes for Release 11.2.1:

■ 256 for INSERT statements

■ 31 for UPDATE statements

■ 31 for DELETE statements

Example 5–1 Batching statements

// turn off autocommit
conn.setAutoCommit(false);

Statement stmt = conn.createStatement();
stmt.addBatch("INSERT INTO employees VALUES (1000, 'Joe Jones')");
stmt.addBatch("INSERT INTO departments VALUES (260, 'Shoe')");
stmt.addBatch("INSERT INTO emp_dept VALUES (1000, 260)");

// submit a batch of update commands for execution
int[] updateCounts = stmt.executeBatch();
conn.commit ();

Example 5–2 Batching prepared statements

// turn off autocommit
conn.setAutoCommit(false);
// prepare the statement
PreparedStatement stmt = conn.prepareStatement
 ("INSERT INTO employees VALUES (?, ?)");

// first set of parameters
stmt.setInt(1, 2000);

Important: With prepared statement pooling, JDBC considers two
statements to be identical if their SQL (including comments) is
identical, regardless of other considerations such as optimizer settings.
Do not use prepared statement pooling in a scenario where different
optimizer hints may be applied to statements that are otherwise
identical. In this scenario, a statement execution may result in the use
of an identical statement from the pool with an unanticipated
optimizer setting.

Tuning Java applications

Application Tuning 5-3

stmt.setString(2, "Kelly Kaufmann");
stmt.addBatch();

// second set of parameters
stmt.setInt(1, 3000);
stmt.setString(2, "Bill Barnes");
stmt.addBatch();

// submit the batch for execution. Check update counts
int[] updateCounts = stmt.executeBatch();
conn.commit ();

For either a Statement or PreparedStatement object, the executeBatch()
method returns an array of update counts (updateCounts[] in Example 5–1 and
Example 5–2 above), with one element in the array for each statement execution. The
value of each element can be any of the following:

■ A number indicating how many rows in the database were affected by the
corresponding statement execution.

■ SUCCESS_NO_INFO, indicating the corresponding statement execution was
successful, but the number of affected rows is unknown.

■ EXECUTE_FAILED, indicating the corresponding statement execution failed.

Once there is a statement execution with EXECUTE_FAILED status, no further
statement executions will be attempted.

For more information about using the JDBC batch update facility, refer to the Javadoc
for the Statement interface, particularly information about the executeBatch()
method, at the following location:

http://download.oracle.com/javase/1.5.0/docs/api/

Bulk fetch rows of TimesTen data
TimesTen provides an extension that allows an application to fetch multiple rows of
data. For applications that retrieve large amounts of TimesTen data, fetching multiple
rows can increase performance greatly. However, when using Read Committed
isolation level, locks are held on all rows being retrieved until the application has
received all the data, decreasing concurrency. For more information on this feature, see
"Fetching multiple rows of data" on page 2-10.

Use the ResultSet method getString() sparingly
Because Java strings are immutable, the ResultSet method getString() must
allocate space for a new string in addition to translating the underlying C string to a
Unicode string, making it a costly call.

In addition, you should not call getString() on primitive numeric types, like byte
or int, unless it is absolutely necessary. It is much faster to call getInt() on an
integer column, for example.

Avoid data type conversions
TimesTen instruction paths are so short that even small delays due to data conversion
can cause a relatively large percentage increase in transaction time.

Use the appropriate getXXX() method on a ResultSet object for the data type of
the data in the underlying database. For example, if the data type of the data is

Tuning JMS/XLA applications

5-4 Oracle TimesTen In-Memory Database Java Developer's Guide

DOUBLE, to avoid data conversion in the JDBC driver you should call getDouble().
Similarly, use the appropriate setXXX() method on the PreparedStatement object
for the input parameter in an SQL statement. For example, if you are inserting data
into a CHAR column using a PreparedStatement, you should use setString().

Tuning JMS/XLA applications
This section contains specific performance tuning tips for applications that use the
JMS/XLA API. JMS/XLA has some overhead that makes it slower than using the C
XLA API. In the C API, records are returned to the user in a batch. In the JMS model an
object is instantiated and each record is presented one at a time in a callback to the
MessageListener method onMessage(). High performance applications can use
some tuning to overcome some of this overhead.

This section includes the following topics:

■ Configure xlaPrefetch parameter

■ Reduce frequency of calls to ttXlaAcknowledge

■ Handling high event rates

Configure xlaPrefetch parameter
The code underlying the JMS layer that reads the transaction log is more efficient if it
can fetch as many rows as possible before presenting the object/rows to the user. The
amount of prefetching is controlled in the jmsxla.xml configuration file with the
xlaPrefetch parameter. Set the prefetch count to a large value like 100 or 1000.

Reduce frequency of calls to ttXlaAcknowledge
Calls to the C XLA function ttXlaAcknowledge move the bookmark and involve
updates to system tables, so one way to increase throughput is to wait until several
transactions have been detected before issuing the call. The reader application must
have some tolerance for seeing the same set of records more than once. Moving the
bookmark can be done manually using the Session object CLIENT_ACKNOWLEDGE
mode when instantiating a session:

Session session = connection.createSession (false, Session.CLIENT_ACKNOWLEDGE);

For many applications, setting this value to 100 is a reasonable choice.

Refer to "ttXlaAcknowledge" in Oracle TimesTen In-Memory Database C Developer's Guide
for information about this function.

Handling high event rates
The synchronous interface is suitable only for applications with low event rates and
for which AUTO_ACKNOWLEDGE or DUPS_OK_ACKNOWLEDGE acknowledgment modes
are acceptable. Applications that require CLIENT_ACKNOWLEDGE acknowledgment
mode and applications with high event rates should use the asynchronous interface
for receiving updates. They should acknowledge the messages on the callback thread
itself if they are using CLIENT_ACKNOWLEDGEMENT as acknowledgment mode. See
"Receiving and processing updates" on page 3-9.

Note: See "Access control impact on XLA" on page 3-8 for access
control considerations relevant to JMS/XLA.

6

JMS/XLA Reference 6-1

6JMS/XLA Reference

This chapter provides reference information for the JMS/XLA API. It includes the
following topics:

■ JMS/XLA MapMessage contents

■ DML event data formats

■ DDL event data formats

■ Data type support

■ JMS classes for event handling

■ JMS/XLA replication API

■ JMS message header fields

JMS/XLA MapMessage contents
A javax.jms.MapMessage contains a set of typed name and value pairs that
correspond to the fields in an XLA update header, which is published as the C
structure ttXlaUpdateDesc_t. The fields contained in a MapMessage instance
depend on what type of update it is.

XLA update types
Each MapMessage returned by the JMS/XLA API contains at least one name and
value pair, __TYPE (with 2 underscores), that identifies the type of update described in
the message as an integer value. The types are specified as integer values. As a
convenience, you can use the constants defined in
com.timesten.dataserver.jmsxla.XlaConstants to compare against the
integer types. Table 6–1 shows the supported types.

Note: "Access control impact on XLA" on page 3-8 introduces the
effects of TimesTen access control features on XLA functionality.

Table 6–1 XLA update types

Type Description

ADD_COLUMNS Indicates that columns have been added.

COMMIT_FIELD The name of the field in a message that contains a commit.

COMMIT_ONLY Indicates that a commit has occurred.

JMS/XLA MapMessage contents

6-2 Oracle TimesTen In-Memory Database Java Developer's Guide

XLA flags
For all update types, the MapMessage contains name and value pairs that indicate the
following.

CONTEXT_FIELD The name of the field in a message that contains the context
value passed to the ttApplicationContext procedure as
a byte array.

CREATE_INDEX Indicates that an index has been created.

CREATE_SEQ Indicates that a sequence has been created.

CREATE_SYNONYM Indicates that a synonym has been created.

CREATE_TABLE Indicates that a table has been created.

CREATE_VIEW Indicates that a view has been created.

DELETE Indicates that a row has been deleted.

DROP_COLUMNS Indicates that columns have been dropped.

DROP_INDEX Indicates that an index has been dropped.

DROP_SEQ Indicates that a sequence has been dropped.

DROP_SYNONYM Indicates that a synonym has been dropped.

DROP_TABLE Indicates that a table has been dropped.

DROP_VIEW Indicates that a view has been dropped.

FIRST_FIELD The name of the field that contains the flag that indicates the
first record in a transaction.

INSERT Indicates that a row has been inserted.

MTYP_FIELD The name of the field in a message that contains type
information.

MVER_FIELD The name of the field in a message that contains the
transaction log file number of the XLA record.

NULLS_FIELD The name of the field in a message that contains the list of
fields that have null values.

REPL_FIELD The name of the field in a message that contains the flag that
indicates that the update was applied by replication.

TBLNAME_FIELD The name of the field in a message that contains the table
name.

TBLOWNER_FIELD The name of the field in a message that specifies the table
owner.

TRUNCATE Indicates that a table has been truncated.

TYPE_FIELD The name of the field in a message that specifies the message
type.

UPDATE Indicates that a row has been updated.

UPDATE_DESCRIPTOR_FIELD The name of the field that returns a ttXlaUpdateDesc_t
structure as a byte array.

UPDATED_COLUMNS_FIELD The name of the field in a message that contains the list of
updated columns.

Table 6–1 (Cont.) XLA update types

Type Description

JMS/XLA MapMessage contents

JMS/XLA Reference 6-3

■ Whether this is the first record of a transaction

■ Whether this is the last record of a transaction

■ Whether the update was performed by replication

■ Which table was updated

■ The owner of the updated table

The name and value pairs that contain these XLA flags are described in Table 6–2. Each
name is preceded by two underscores.

Table 6–2 JMS/XLA flags

Name Description
Corresponding
ttXlaUpdateDesc_t flag

__AGING_DELETE Indicates that a delete was due to
aging. The flag is present only if the
XLA update record is due to an aging
delete. The XlaConstants constant
AGING_DELETE_FIELD represents
this flag.

TT_AGING

__CASCADING_DELETE Indicates that a delete was due to a
cascading delete. The flag is present
only if the XLA update record is due
to a cascading delete. The
XlaConstants constant
CASCADING_DELETE_FIELD
represents this flag.

TT_CASCDEL

__COMMIT Indicates that this is the last record in
a transaction and that a commit was
performed after this operation. Only
included in the MapMessage if
TT_UPDCOMMIT is on. The
XlaConstants constant
COMMIT_FIELD represents this flag.

TT_UPDCOMMIT

__FIRST Indicates that this is the first record in
a new transaction. Only included in
the MapMessage if TT_UPDFIRST is
on. The XlaConstants constant
FIRST_FIELD represents this flag.

TT_UPDFIRST

__REPL Indicates that this change was applied
to the database through replication.
Only included in the MapMessage if
TT_UPDREPL is on. The
XlaConstants constant
REPL_FIELD represents this flag.

TT_UPDREPL

__UPDCOLS Only used for UPDATETUP records,
this flag indicates that the XLA update
descriptor contains a list of columns
that were actually modified by the
operation. Specified as a string that
contains a semicolon-delimited list of
column names. Only included in the
MapMessage if TT_UPDCOLS is on.
The XlaConstants constant
UPDATE_COLUMNS_FIELD represents
this flag.

TT_UPDCOLS

DML event data formats

6-4 Oracle TimesTen In-Memory Database Java Developer's Guide

Applications can use the MapMessage method itemExists() to determine whether
a flag is present, and getBoolean() to determine whether a flag is set. As input,
specify the XlaConstants constant that corresponds to the flag, such as
XlaConstants.AGING_DELETE_FIELD.

Example 6–1 Check for commit

Equivalent to using TT_UPCOMMIT in XLA, you can use the following test in
JMS/XLA to see whether this is the last record in a transaction and that a commit was
performed after the operation.

if (MapMessage.getBoolean(XlaConstants.COMMIT_FIELD)) { // Field is set
 ...
}

DML event data formats
Many DML operations generate XLA updates that can be monitored by XLA event
handlers. This section describes the contents of the MapMessage objects that are
generated for these operations.

Table data
For INSERT, UPDATE and DELETE operations, MapMessage contains two name and
value pairs, __TBLOWNER and __TBLNAME. These fields describe the name and owner
of the table that is being updated. For example, for a table SCOTT.EMPLOYEES, any
related MapMessage contains a field __TBLOWNER with the string value "SCOTT" and
a field __TBLNAME with the string value "EMPLOYEES".

Row data
For INSERT and DELETE operations, a complete image of the inserted or deleted row
is included in the message and all column values are available.

For UPDATE operations, the complete "before" and "after" images of the row are
available, along with a list of column numbers indicating which columns were
modified. Access the column values using the names of the columns. The column
names in the "before" image all begin with a single underscore. For example,
columnname contains the new value and _columnname contains the old value.

If the value of a column is NULL, it is omitted from the column list. The __NULLS name
and value pair contains a semicolon-delimited list of the columns that contain NULL
values.

Context information
If the ttApplicationContext built-in procedure was used to encode context
information in an XLA record, that information is included in the __CONTEXT name
and value pair in the MapMessage. If no context information is provided, the
__CONTEXT value is not included in the MapMessage.

Note: The XlaConstants interface is in the
com.timesten.dataserver.jmsxla package.

DDL event data formats

JMS/XLA Reference 6-5

DDL event data formats
Many data definition language (DDL) operations generate XLA updates that can be
monitored by XLA event handlers. This section describes the contents of the
MapMessage objects that are generated for these operations.

CREATE_TABLE
Messages with __TYPE=1 (XlaConstants.CREATE_TABLE) indicate that a table
has been created. Table 6–3 shows the name and value pairs that are included in a
MapMessage generated for a CREATE_TABLE operation.

DROP_TABLE
Messages with __TYPE=2 (XlaConstants.DROP_TABLE) indicate that a table has
been dropped. Table 6–4 shows the name and value pairs that are included in a
MapMessage generated for a DROP_TABLE operation.

Table 6–3 CREATE_TABLE data provided in update messages

Name Value

OWNER String value of the owner of the created table.

NAME String value of the name of the created table.

PK_COLUMNS String value containing the names of the columns in the
primary key for this table. If the table has no primary key,
the PK_COLUMNS value is not specified.

Format:

<col1name>[;<col2name> [;<col3name>[;...]]]

COLUMNS String value containing the names of the columns in the
table.

Format:

<col1name>[;<col2name> [;<col3name>[;...]]]

Note: For each column in the table, additional name and
value pairs that describe the column are included in
MapMessage.

_column_name_TYPE Integer value representing the data type of this column.
From java.sql.Types.

_column_name_PRECISION Integer value containing the precision of this column (for
NUMERIC or DECIMAL).

_column_name_SCALE Integer value containing the scale of this column (for
NUMERIC or DECIMAL).

_column_name_SIZE Integer value indicating the maximum size of this column
(for CHAR, VARCHAR, BINARY, or VARBINARY).

_column_name_NULLABLE Boolean value indicating whether this column can have a
NULL value.

_column_name_OUTOFLINE Boolean value indicating whether this column is stored in
the inline or out-of-line part of the tuple.

_column_name_INPRIMARYKEY Boolean value indicating whether this column is part of the
primary key of the table.

DDL event data formats

6-6 Oracle TimesTen In-Memory Database Java Developer's Guide

CREATE_INDEX
Messages with __TYPE=3 (XlaConstants.CREATE_INDEX) indicate that an index
has been created. Table 6–5 shows the name and value pairs that are included in a
MapMessage generated for a CREATE_INDEX operation.

DROP_INDEX
Messages with __TYPE=4 (XlaConstants.DROP_INDEX) indicate that an index
has been dropped. Table 6–6 shows the name and value pairs that are included in a
MapMessage generated for a DROP_INDEX operation.

ADD_COLUMNS
Messages with __TYPE=5 (XlaConstants.ADD_COLUMNS) indicate that a table
has been altered by adding new columns. Table 6–7 shows the name and value pairs
that are included in a MapMessage generated for a ADD_COLUMNS operation.

Table 6–4 DROP_TABLE data provided in update messages

Name Value

OWNER String value of the owner of the sequence.

NAME String value of the name of the dropped sequence.

Table 6–5 CREATE_INDEX data provided in update messages

Name Value

TBLOWNER String value of the owner of the table on which the index was created.

TBLNAME String value of the name of the table on which the index was created.

IXNAME String value of the name of the created index.

INDEX_TYPE String value representing the index type: "P" (primary key), "F" (foreign
key), or "R" (regular).

INDEX_METHOD String value representing the index method: "H" (hash), "T" (range), or
"B" (bit map).

UNIQUE Boolean value indicating whether the index is unique.

HASH_PAGES Integer value representing the number of pages in a hash index (not
specified for range indexes).

COLUMNS String value describing the columns in the index.

Format:

<col1name>[;<col2name> [;<col3name>[;...]]]

Table 6–6 DROP_INDEX data provided In update messages

Name Value

OWNER String value of the owner of the table on which the index was dropped.

TABLE_NAME String value of the name of the table on which the index was dropped.

INDEX_NAME String value of the name of the dropped index.

DDL event data formats

JMS/XLA Reference 6-7

DROP_COLUMNS
Messages with __TYPE=6 (XlaConstants.DROP_COLUMNS) indicate that a table
has been altered by dropping existing columns. Table 6–8 shows the name and value
pairs that are included in a MapMessage generated for a DROP_COLUMNS operation.

Table 6–7 ADD_COLUMNS data provided in update messages

Name Value

OWNER String value of the owner of the altered table.

NAME String value of the name of the altered table.

PK_COLUMNS String value containing the names of the columns in the
primary key for this table. If the table has no primary key,
the PK_COLUMNS value is not specified.

Format:

<col1name>[;<col2name> [;<col3name>[;...]]]

COLUMNS String value containing the names of the columns added
to the table.

Format:

<col1name>[;<col2name> [;<col3name>[;...]]]

Note: For each added column, additional name and value
pairs that describe the column are included in the
MapMessage.

_column_name_TYPE Integer value representing the data type of this column.
From java.sql.Types.

_column_name_PRECISION Integer value containing the precision of this column (for
NUMERIC or DECIMAL).

_column_name_SCALE Integer value containing the scale of this column (for
NUMERIC or DECIMAL).

_column_name_SIZE Integer value indicating the maximum size of this column
(for CHAR, VARCHAR, BINARY, or VARBINARY).

_column_name_NULLABLE Boolean value indicating whether this column can have a
NULL value.

_column_name_OUTOFLINE Boolean value indicating whether this column is stored in
the inline or out-of-line part of the tuple.

_column_name_INPRIMARYKEY Boolean value indicating whether this column is part of
the primary key of the table.

Table 6–8 DROP_COLUMNS data provided in update message

Name Value

OWNER String value of the owner of the altered table.

NAME String value of the name of the altered table.

DDL event data formats

6-8 Oracle TimesTen In-Memory Database Java Developer's Guide

CREATE_VIEW
Messages with __TYPE=14 (XlaConstants.CREATE_VIEW) indicate that a
materialized view has been created. Table 6–9 shows the name and value pairs that are
included in a MapMessage generated for a CREATE_VIEW operation.

DROP_VIEW
Messages with __TYPE=15 (XlaConstants.DROP_VIEW) indicate that a
materialized view has been dropped. Table 6–10 shows the name and value pairs that
are included in a MapMessage generated for a DROP_VIEW operation.

COLUMNS String value containing the names of the columns dropped
from the table.

Format:

<col1name>[;<col2name> [;<col3name>[;...]]]

Note: For each dropped column, additional name and value
pairs that describe the column are included in the
MapMessage.

_column_name_TYPE Integer value representing the data type of this column.
From java.sql.Types.

_column_name_PRECISION Integer value containing the precision of this column (for
NUMERIC or DECIMAL).

_column_name_SCALE Integer value containing the scale of this column (for
NUMERIC or DECIMAL).

_column_name_SIZE Integer value indicating the maximum size of this column
(for CHAR, VARCHAR, BINARY, or VARBINARY).

_column_name_NULLABLE Boolean value indicating whether this column can have a
NULL value.

_column_name_OUTOFLINE Boolean value indicating whether this column is stored in
the inline or out-of-line part of the tuple.

_column_name_INPRIMARYKEY Boolean value indicating whether this column is part of the
primary key of the table.

Table 6–9 CREATE_VIEW data provided in update messages

Name Value

OWNER String value of the owner of the created view.

NAME String value of the name of the created view.

Table 6–10 DROP_VIEW data provided in update messages

Name Value

OWNER String value of the owner of the dropped view.

NAME String value of the name of the dropped view.

Table 6–8 (Cont.) DROP_COLUMNS data provided in update message

Name Value

DDL event data formats

JMS/XLA Reference 6-9

CREATE_SEQ
Messages with __TYPE=16 (XlaConstants.CREATE_SEQ) indicate that a
sequence has been created. Table 6–11 shows the name and value pairs that are
included in a MapMessage generated for a CREATE_SEQ operation.

DROP_SEQ
Messages with __TYPE=17 (XlaConstants.DROP_SEQ) indicate that a sequence
has been dropped. Table 6–12 shows the name and value pairs that are included in a
MapMessage generated for a DROP_SEQ operation.

CREATE_SYNONYM
Messages with __TYPE=19 (XlaConstants.CREATE_SYNONYM) indicate that a
synonym has been created. Table 6–13 shows the name and value pairs that are
included in a MapMessage generated for a CREATE_SYNONYM operation.

Table 6–11 CREATE_SEQ data provided in update messages

Name Value

OWNER String value of the owner of the created sequence.

NAME String value of the name of the created sequence.

CYCLE Boolean value indicating whether the CYCLE option was specified on
the new sequence.

INCREMENT A long value indicating the INCREMENT BY option specified for the
new sequence.

MIN_VALUE A long value indicating the MINVALUE option specified for the new
sequence.

MAX_VALUE A long value indicating the MAXVALUE option specified for the new
sequence.

Table 6–12 DROP_SEQ data provided in update messages

Name Value

OWNER String value of the owner of the dropped table.

NAME String value of the name of the dropped table.

Table 6–13 CREATE_SYNONYM data provided in update messages

Name Value

OWNER String value of the owner of the created synonym.

NAME String value of the name of the created synonym.

OBJECT_OWNER String value of the schema of the object for which you are creating a
synonym.

OBJECT_NAME String value of the name of the object for which you are creating a
synonym.

IS_PUBLIC Boolean value that is TRUE if the synonym is public, or FALSE if not.

IS_REPLACE Boolean value that is TRUE if the synonym was created using CREATE
OR REPLACE, or FALSE otherwise.

Data type support

6-10 Oracle TimesTen In-Memory Database Java Developer's Guide

DROP_SYNONYM
Messages with __TYPE=20 (XlaConstants.DROP_SYNONYM) indicate that a
synonym has been dropped. Table 6–14 shows the name and value pairs that are
included in a MapMessage generated for a DROP_SYNONYM operation.

TRUNCATE
Messages with __TYPE=18 (XlaConstants.TRUNCATE) indicate that a table has
been truncated. All rows in the table have been deleted. Table 6–15 shows the name
and value pairs that are included in a MapMessage generated for a TRUNCATE
operation.

Data type support
This section covers data type considerations for JMS/XLA.

Data type mapping
Table 6–16 lists access methods for the data types supported by TimesTen. For more
information about data types, see "Data Types" in Oracle TimesTen In-Memory Database
SQL Reference.

Table 6–14 DROP_SYNONYM data provided in update messages

Name Value

OWNER String value of the owner of the dropped synonym.

NAME String value of the name of the dropped synonym.

IS_PUBLIC Boolean value that is TRUE if the synonym was public, or FALSE if not.

Table 6–15 TRUNCATE data provided in update messages

Name Value

OWNER String value of the owner of the truncated table.

NAME String value of the name of the truncated table.

Table 6–16 Data Type Mapping

TimesTen column type Read with MapMessage method...

CHAR(n) getString()

VARCHAR(n) getString()

NCHAR(n) getString()

NVARCHAR(n) getString()

NVARCHAR2(n) getString()

DOUBLE getDouble()

FLOAT getFloat()

DECIMAL(p,s) getString()

Can be converted to BigDecimal or to Double by the
application.

Data type support

JMS/XLA Reference 6-11

NUMERIC(p,s) getString()

Can be converted to BigDecimal or to Double by the
application.

INTEGER getInt()

SMALLINT getShort()

TINYINT getShort()

BIGINT getLong()

BINARY(n) getBytes()

VARBINARY(n) getBytes()

DATE getLong(), getString()

The getLong() method returns microseconds since epoch
(00:00:00 UTC, January 1, 1970).

Can be converted to Date or Calendar by the application.

TIME getString()

Can be converted to Date or Calendar by the application.

TIMESTAMP getLong(), getString()

The getLong() method returns microseconds since epoch
(00:00:00 UTC, January 1, 1970). It truncates nanoseconds. Use
getString() if you require nanosecond precision.

Can be converted to Date or Calendar by the application.

TT_CHAR getString()

TT_VARCHAR getString()

TT_NCHAR getString()

TT_NVARCHAR getString()

ORA_CHAR getString()

ORA_VARCHAR2 getString()

ORA_NCHAR getString()

ORA_NVARCHAR2 getString()

VARCHAR2 getString()

TT_TINYINT getShort()

TT_SMALLINT getShort()

TT_INTEGER getInt()

TT_BIGINT getLong()

BINARY_FLOAT getFloat()

BINARY_DOUBLE getDouble()

REAL getFloat()

NUMBER getString()

ORA_NUMBER getString()

TT_DECIMAL getString()

Table 6–16 (Cont.) Data Type Mapping

TimesTen column type Read with MapMessage method...

JMS classes for event handling

6-12 Oracle TimesTen In-Memory Database Java Developer's Guide

Data types character set
JMS/XLA uses a UTF-16 character set for the following data types:

■ TT_CHAR

■ TT_VARCHAR

■ ORA_CHAR

■ ORA_VARCHAR2

■ TT_NCHAR

■ TT_NVARCHAR

■ ORA_NCHAR

■ ORA_NVARCHAR2

■ NCHAR

■ NVARCHAR

■ NVARCHAR2

JMS classes for event handling
You can use JMS classes when programming to the JMS/XLA API. The JMS/XLA API
supports only publish/subscribe messaging. JMS classes include the following:

■ Message (parent class only)

■ TopicConnectionFactory

■ Topic

■ TopicSubscriber

TT_TIME getString()

TT_DATE getLong(), getString()

The getLong() method returns microseconds since epoch
(00:00:00 UTC, January 1, 1970).

TT_TIMESTAMP getLong(), getString()

The getLong() method returns microseconds since epoch
(00:00:00 UTC, January 1, 1970).

ORA_DATE getLong(), getString()

The getLong() method returns microseconds since epoch
(00:00:00 UTC, January 1, 1970).

ORA_TIMESTAMP getLong(), getString()

The getLong() method returns microseconds since epoch
(00:00:00 UTC, January 1, 1970). It truncates nanoseconds. Use
getString() if you require nanosecond precision.

TT_BINARY getBytes()

TT_VARBINARY getBytes()

ROWID getBytes(), getString()

Table 6–16 (Cont.) Data Type Mapping

TimesTen column type Read with MapMessage method...

JMS/XLA replication API

JMS/XLA Reference 6-13

■ Connection

■ Session

■ ConnectionMetaData

■ MapMessage

■ TopicConnection

■ TopicSession

■ ConnectionFactory

■ Destination

■ MessageConsumer

■ ExceptionListener

See the following location for documentation of these classes:

http://download.oracle.com/javaee/5/api/

JMS/XLA replication API
The TimesTen com.timesten.dataserver.jmsxla package includes the
TargetDataStore interface and the TargetDataStoreImpl class.

See Oracle TimesTen In-Memory Database JMS/XLA Java API Reference for information.

TargetDataStore interface
This interface is used to apply XLA update records from a source database to a target
database. The source and target database schema must be identical for the affected
tables.

This interface includes the methods shown in Table 6–17.

Table 6–17 TargetDataStore methods

Method Description

apply() Applies XLA update descriptor to the target database.

close() Closes the connections to the database and releases the
resources.

commit() Performs a manual commit.

getAutoCommitFlag() Returns the value of the autocommit flag.

getConnectString() Returns the database connection string.

getUpdateConflictCheckFlag() Returns the value of the flag for checking update
conflicts.

isClosed() Checks whether the object is closed.

isDataStoreValid() Checks whether the database is valid.

rollback() Rolls back the last transaction.

setAutoCommitFlag() Sets the flag for autocommit during apply.

setUpdateConflictCheckFlag() Sets the flag for checking update conflicts during
apply.

JMS message header fields

6-14 Oracle TimesTen In-Memory Database Java Developer's Guide

TargetDataStoreImpl class
This class creates connections and XLA handles for a target database. It implements
the TargetDataStore interface.

JMS message header fields
Table 6–18 shows the JMS message header fields provided by JMS/XLA.

Table 6–18 JMS/XLA header fields

Header Contents

JMSMessageId The transaction log file number of the XLA record.

JMSType The string representation of the __TYPE field.

Index-1

Index

A
access control

connection attributes, 2-6
for connections, 2-8
impact in JMS/XLA, 3-8
overview of impact, 2-29

acknowledgments, JMS/XLA, 3-7
ADD_COLUMNS, JMS/XLA, 6-6
array binds (not supported), 2-11
asynchronous detection, automatic client

failover, 2-35
asynchronous updates, JMS/XLA, 3-10
autocommit mode, 2-23
automatic client failover

asynchronous detection, 2-35
overview, features, 2-34
synchronous detection, 2-35

B
batching SQL statements, 5-2
binding parameters

array binds (not supported), 2-11
duplicate parameters in PL/SQL, 2-18
duplicate parameters in SQL, 2-17
how to bind, 2-11
OUT and IN OUT, 2-15

bookmarks--see XLA bookmarks
built-in procedures

calling TimesTen built-ins, 2-24
ttApplicationContext, 6-2
ttCkpt, 2-25
ttDataStoreStatus, 2-25
ttDurableCommit, 4-3
ttXlaBookMarkCreate, 3-10
ttXlaBookmarkDelete, 3-13
ttXlaSubscribe, 3-9
ttXlaUnsubscribe, 3-13

bulk fetch rows, 5-3
bulk insert, update, delete (batching), 5-2

C
cache

cache groups, cache instances affected, 2-28

set passthrough level, 2-27
CALL

PL/SQL procedures and functions, 2-24
TimesTen built-in procedures, 2-24

CallableStatement interface support, 2-2
catching errors, 2-32
character set for data types, JMS/XLA, 6-12
client failover--see automatic client failover
ClientFailoverEvent class, TimesTen, 2-5
ClientFailoverEventListener interface, TimesTen, 2-5
commit

autocommit mode, 2-23
commit() method, 2-23
committing changes, 2-23
manual commit, 2-23
SQL COMMIT statement, 2-23

configuration file, JMS/XLA, 3-5
connecting

connection URL, creating, 2-6
opening and closing direct driver connection, 2-7
TimesTenXADataSource, JTA, 4-4
to TimesTen, 2-5
to XLA, 3-8
user name and passwords, 2-7
XAConnection, JTA, 4-4
XAResource and Connection, JTA, 4-6

connection attributes
first connection attributes, 2-6
general connection attributes, 2-6
setting programmatically, 2-6

connection events, ConnectionEvent support, 2-4
Connection interface support, 2-2
connection pool, 2-4
ConnectionPoolDataSource interface support, 2-3
CREATE_INDEX, JMS/XLA, 6-6
CREATE_SEQ, JMS/XLA, 6-9
CREATE_SYNONYM, JMS/XLA, 6-9
CREATE_TABLE, JMS/XLA, 6-5
CREATE_VIEW, JMS/XLA, 6-8
cursors

closed upon commit, 2-23
REF CURSORs, 2-18
result set hints and restrictions, 2-10

Index-2

D
data source, JTA, 4-4
data types

character set, JMS/XLA, 6-12
conversions and performance, 5-3
mapping, JMS/XLA, 6-10

DatabaseMetaData interface support, 2-2
DataSource interface support, 2-3
demo applications, Quick Start, 1-2
direct driver connection, opening and closing, 2-7
disconnecting, from TimesTen, 2-7
distributed transaction processing--see JTA
DML returning, 2-19
driver (JDBC), loading, 2-6
DriverManager class, using, 2-7
DROP_COLUMNS, JMS/XLA, 6-7
DROP_INDEX, JMS/XLA, 6-6
DROP_SEQ, JMS/XLA, 6-9
DROP_SYNONYM, JMS/XLA, 6-10
DROP_TABLE, JMS/XLA, 6-5
DROP_VIEW, JMS/XLA, 6-8
dropping a table, JMS/XLA, requirements, 3-13
DuplicateBindMode general connection

attribute, 2-17
Durable commits, with JTA, 4-3

E
environment variables, 1-1
errors

catching and responding, 2-32
error levels, 2-30
fatal errors, 2-30
handling, 2-29
non-fatal errors, 2-30
reporting, 2-31
rolling back failed transactions, 2-33
warnings, 2-31
XA/JTA error handling, 4-4

escape syntax in SQL functions, 2-24
event data formats, JMS/XLA

DDL events, 6-5
DML events, 6-4

event handling, JMS classes, 6-12
exceptions--see errors
executing SQL statements, 2-8, 2-11
extensions, JDBC, supported by TimesTen, 2-4

F
failover--see automatic client failover
fatal errors, handling, 2-30
fetching

multiple rows, 2-10
results, simple example, 2-9

first connection attributes, 2-6
flags, XLA, 6-2

G
GDK, JMS/XLA dependency, JMS/XLA, 3-8
general connection attributes, 2-6
getString() method, performance, 5-3
global transactions, recovery, JTA, 4-3
globalization, GDK dependency, JMS/XLA, 3-8

H
header fields, message, JMS/XLA, 6-14

I
IMDB Cache--see cache
IN OUT parameters, 2-15
installing TimesTen and JDK, 1-1
Instant Client, 1-2

J
JAR files for Java 5 and Java 6, 1-1
Java 5 JAR file, 1-1
Java 6

JAR file, 1-1
RowId interface support, 2-3, 2-21
ROWID type, 2-21

Java environment variables, 1-1
Java Transaction API--see JTA
java.sql

supported classes, 2-3
supported interfaces, 2-2

javax.sql, supported interfaces and classes, 2-3
JDBC driver, loading, 2-6
JDBC support

additional TimesTen interfaces and classes, 2-5
java.sql supported classes, 2-3
java.sql supported interfaces, 2-2
key classes and interfaces, 2-1
package imports, 2-2
TimesTen extensions, 2-4

JDK, installing, 1-1
JMS/XLA

access control impact, 3-8
asynchronous updates, 3-10
bookmarks--see XLA bookmarks
character set for data types, 6-12
closing the connection, 3-12
concepts, 3-1
configuration file, 3-5
connecting to XLA, 3-8
data type mapping, 6-10
dropping a table, 3-13
event data formats, DDL, 6-5
event data formats, DML, 6-4
event handling, JMS classes, 6-12
flags, 6-2
GDK dependency, 3-8
high event rates, 5-4
MapMessage contents, 6-1
MapMessage objects, XLA updates, 3-6

Index-3

materialized views and XLA, 3-3
message header fields, 6-14
monitoring tables, 3-9
performance tuning, 5-4
receiving and processing updates, 3-9
replication API, 6-13
replication using JMS/XLA, 3-13
synchronous updates, 3-9
table subscriptions, verifying, 3-9
terminating a JMS/XLA application, 3-12
topics, 3-5
unsubscribe from a table, 3-13
update types, 6-1
XLA acknowledgments, 3-7
XLA updates, 3-6

JTA
API, 4-4
durable commits, 4-3
error handling, XA, 4-4
global transactions, recover, 4-3
overview, 4-1
packages, required, 4-4
requirements, database, 4-3
resource manager, 4-2
TimesTenXADataSource, 4-4
transaction manager, 4-2
two-phase commit, 4-2
XAConnection, 4-4
XAResource, 4-6
X/Open DTP model, 4-2

L
loading JDBC driver, 2-6

M
MapMessage

contents, 6-1
Map Message objects, XLA updates, 3-6

materialized views and XLA, 3-3
message header fields, JMS/XLA, 6-14
monitoring tables, JMS/XLA, 3-9
multithreaded environments, 2-23

O
ObservableConnection, 2-3
ObservableConnectionDS, 2-3
Oracle Globalization Development Kit, supported

version, JMS/XLA, 3-8
Oracle Instant Client, 1-2
orai18n.jar version, JMS/XLA, 3-8
OUT parameters, 2-15

P
package imports, JDBC, 2-2
packages, required, JTA, 4-4
parallel replication, setup and JDBC support, 2-28
ParameterMetaData interface support, 2-2

parameters
binding, 2-11
duplicate parameters in PL/SQL, 2-18
duplicate parameters in SQL, 2-17
OUT and IN OUT, 2-15

passthrough, set level with ttOptSetFlag, 2-27
passwords for connection, 2-7
performance

batch execution, 5-2
bulk fetch rows, 5-3
data type conversions, 5-3
getString() method, 5-3
high event rates, JMS/XLA, 5-4
Java application tuning, 5-1
JMS/XLA application tuning, 5-4
prepared statement pooling, 5-1
ttXlaAcknowledge, 5-4

PL/SQL procedures and functions, calling, 2-24
pooled connections, client failover, 2-34
PooledConnection interface support, 2-3
pooling prepared statements, 5-1
prefetching

and performance, 5-4
fetching multiple rows, 2-10
xlaPrefetch parameter, 5-4

prepared statement
pooling, 5-1
sharing, 2-13

PreparedStatement interface support, 2-2
preparing SQL statements, 2-11
privileges--see access control

Q
query threshold (or for any SQL), 2-27
query timeout (or for any SQL), 2-26
query, executing, 2-9
Quick Start demo applications and tutorials, 1-2

R
recovery, global transactions, JTA, 4-3
REF CURSORs, 2-18
replicated bookmarks, JMS/XLA, 3-4
replication

JMS/XLA replication API, 6-13
using JMS/XLA, 3-13

resource manager, JTA, 4-2
result sets, hints and restrictions, 2-10
ResultSet interface support, 2-3
ResultSetMetaData interface support, 2-3
RETURNING INTO clause, 2-19
rollback

rollback() method, 2-23
rolling back failed transactions, 2-33
SQL ROLLBACK, 2-23

rowids
RowId interface support, 2-3, 2-21
rowid support, 2-21
ROWID type, 2-21

Index-4

S
security--see access control
Statement interface support, 2-3
statements

executing, 2-8, 2-11
preparing, 2-11

subscriptions (JMS/XLA), table, verifying, 3-9
synchronous detection, automatic client

failover, 2-35
synchronous updates, JMS/XLA, 3-9
synonyms, 2-22

T
table subscriptions (JMS/XLA), verifying, 3-9
target database

applying messages, 3-14
checking conflicts, 3-14
creating, 3-14
manual commit, 3-14
rollback, 3-14

TargetDataStore interface, JMS/XLA
error recovery, 3-14
methods, 6-13

TargetDataStoreImpl class, JMS/XLA, 6-14
terminating a JMS/XLA application, 3-12
threads, multithreaded environments, 2-23
threshold for SQL statements, 2-27
timeout for SQL statements, 2-26
TimesTenCallableStatement interface, 2-4, 2-5
TimesTenConnection interface, 2-4
TimesTenPreparedStatement interface, 2-4
TimesTenStatement interface, 2-4
TimesTenTypes interface, 2-5
TimesTenVendorCode interface, 2-5, 2-32
TimesTenXADataSource, JTA, 4-4
topics, JMS/XLA, 3-5
transaction manager, JTA, 4-2
TRUNCATE, JMS/XLA, 6-10
ttApplicationContext built-in procedure, 6-2
ttCkpt built-in procedure, 2-25
ttDataStoreStatus built-in procedure, 2-25
ttXlaAcknowledge, and performance, 5-4
ttXlaBookmarkCreate built-in procedure, 3-10
ttXlaBookmarkDelete built-in procedure, 3-13
ttXlaSubscribe built-in procedure, 3-9
ttXlaUnsubscribe built-in procedure, 3-13
two-phase commit, JTA, 4-2

U
unsubscribe from a table, JMS/XLA, 3-13
update types, XLA, 6-1
update, executing, 2-9
updates, receiving and processing, JMS/XLA, 3-9
URL for connection, 2-6
user name for connection, 2-7
UTF-16 character set for data types, JMS/XLA, 6-12

W
warnings, 2-31

X
XAConnection, JTA, 4-4
XADataSource interface support, 2-4
XAResource and Connection, JTA, 4-6
XA--see JTA
XLA bookmarks

deleting, 3-12
overview, 3-4
replicated bookmarks, 3-4

xlaPrefetch parameter, 5-4
XLA--see JMS/XLA
X/Open DTP model, 4-2

	Contents
	Preface
	Audience
	Related documents
	Conventions
	Documentation Accessibility
	Technical support

	What's New
	New features in Release 11.2.1.7.0
	New features in Release 11.2.1.6.0
	New features in Release 11.2.1.4.0
	New features in Release 11.2.1.1.0

	1 Java Development Environment
	Installing TimesTen and the JDK
	Setting the environment for Java development
	Compiling Java applications
	About the TimesTen Java demos

	2 Working with TimesTen Databases
	Key JDBC classes and interfaces
	Package imports
	Support for interfaces in the java.sql package
	Support for classes in the java.sql package
	Support for interfaces and classes in the javax.sql package
	TimesTen JDBC extensions
	Additional TimesTen classes and interfaces

	Managing TimesTen database connections
	Load the TimesTen driver
	Create a connection URL for the database and specify connection attributes
	Connect to the database
	Disconnect from the database
	Opening and closing a direct driver connection
	Access control for connections

	Managing TimesTen data
	Executing simple SQL statements
	Working with TimesTen result sets: hints and restrictions
	Fetching multiple rows of data
	Binding parameters and executing statements
	Preparing SQL statements and setting input parameters
	Working with OUT and IN OUT parameters
	Binding duplicate parameters in SQL statements
	Binding duplicate parameters in PL/SQL

	Working with REF CURSORs
	Working with DML returning (RETURNING INTO clause)
	Working with rowids
	Working with synonyms
	Committing or rolling back changes to the database
	Setting autocommit
	Manually committing or rolling back changes
	Using COMMIT and ROLLBACK SQL statements

	Managing multiple threads
	Java escape syntax and SQL functions

	Using additional TimesTen data management features
	Using CALL to execute procedures and functions
	Setting a timeout or threshold for executing SQL statements
	Setting a timeout value for SQL statements
	Setting a threshold value for SQL statements

	Features for use with IMDB Cache
	Setting temporary passthrough level with the ttOptSetFlag built-in procedure
	Managing cache groups

	Setting up user-specified parallel replication

	Considering TimesTen features for access control
	Handling errors
	About fatal errors, non-fatal errors, and warnings
	Handling fatal errors
	Handling non-fatal errors
	About warnings

	Reporting errors and warnings
	Catching and responding to specific errors
	Rolling back failed transactions

	JDBC support for automatic client failover
	Features and functionality of JDBC support for automatic client failover
	General Client Failover Features
	Client failover features for pooled connections

	Synchronous detection of automatic client failover
	Asynchronous detection of automatic client failover
	Implement a client failover event listener
	Register the client failover listener instance
	Remove the client failover listener instance

	3 Using JMS/XLA for Event Management
	JMS/XLA concepts
	How XLA reads records from the transaction log
	XLA and materialized views
	XLA bookmarks
	How bookmarks work
	Replicated bookmarks

	JMS/XLA configuration file and topics
	XLA updates
	XLA acknowledgment modes
	Prefetching updates
	Acknowledging updates

	Access control impact on XLA

	JMS/XLA and Oracle GDK dependency
	Connecting to XLA
	Monitoring tables for updates
	Receiving and processing updates
	Terminating a JMS/XLA application
	Closing the connection
	Deleting bookmarks
	Unsubscribing from a table

	Using JMS/XLA as a replication mechanism
	Applying JMS/XLA messages to a target database
	TargetDataStore error recovery

	4 Distributed Transaction Processing: JTA
	Overview of JTA
	X/Open DTP model
	Two-phase commit

	Using JTA in TimesTen
	TimesTen database requirements for XA
	Global transaction recovery in TimesTen
	XA error handling in TimesTen

	Using the JTA API
	Required packages
	Creating a TimesTen XAConnection object
	Creating XAResource and Connection objects

	5 Application Tuning
	Tuning Java applications
	Use prepared statement pooling
	Use arrays of parameters for batch execution
	Bulk fetch rows of TimesTen data
	Use the ResultSet method getString() sparingly
	Avoid data type conversions

	Tuning JMS/XLA applications
	Configure xlaPrefetch parameter
	Reduce frequency of calls to ttXlaAcknowledge
	Handling high event rates

	6 JMS/XLA Reference
	JMS/XLA MapMessage contents
	XLA update types
	XLA flags

	DML event data formats
	Table data
	Row data
	Context information

	DDL event data formats
	CREATE_TABLE
	DROP_TABLE
	CREATE_INDEX
	DROP_INDEX
	ADD_COLUMNS
	DROP_COLUMNS
	CREATE_VIEW
	DROP_VIEW
	CREATE_SEQ
	DROP_SEQ
	CREATE_SYNONYM
	DROP_SYNONYM
	TRUNCATE

	Data type support
	Data type mapping
	Data types character set

	JMS classes for event handling
	JMS/XLA replication API
	TargetDataStore interface
	TargetDataStoreImpl class

	JMS message header fields

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	W
	X

