
[image: Oracle Corporation]

Contents

Title and Copyright Information

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

What's New in Oracle Objects for OLE?

	Oracle Database 11g Release 1 (11.1) and Release 2 (11.2) New Features
	Oracle Database 10g Release 2 (10.2) New Features
	Oracle Database 10g Release 1 (10.1) New Features

1 Introducing Oracle Objects for OLE

	Overview of Oracle Objects for OLE
	Oracle Objects for OLE In-Process Automation Server
	Oracle Data Control
	Oracle Objects for OLE C++ Class Library
	Required Setups
	Installation
	System Requirements
	Other Requirements

	Oracle Objects for OLE File Locations
	Component Certifications
	Oracle Objects for OLE Redistributable Files
	Redistributable File Locations
	Updating Files and Registrations

2 Using Oracle Objects for OLE with Automation Clients

	Using Automation Clients Overview
	Demonstration Schema and Code Examples
	Demonstration Schema Creation
	Demonstration Schema
	Other Schemas
	Related Files

	Using Oracle Objects for OLE Automation with Visual Basic
	Using OO4O Automation with Active Server Pages (ASP)
	Using Oracle Objects for OLE Automation with Excel
	Using Microsoft C++
	Using Oracle Data Control with Visual Basic
	Setting Oracle Data Control Properties with the Properties Window
	Setting Oracle Data Control Properties Programmatically

	Using the Oracle Data Control with MS Visual C++

3 Basic Features

	Overview of Client Applications
	Accessing the Oracle Objects for OLE Automation Server
	Obtaining an OraSession Object
	Obtaining an OraServer Object

	Connecting to Oracle Database
	Using OraServer for Connection Multiplexing

	Executing Commands
	Queries
	Data Manipulation Language Statements
	Updating Database Records
	Deleting Rows from a Table
	Inserting New Rows into a Table

	Thread Safety
	Using the Connection Pool Management Facility
	Creating the Connection Pool
	Obtaining from and Returning Objects to the Pool
	Destroying the Pool
	Accessing the Pool attributes
	Processing Transactions Using the Database from the Connection Pool

	Detection of Lost Connections
	PL/SQL Support
	PL/SQL Integration with Oracle Objects for OLE
	Executing PL/SQL Blocks Using ExecuteSQL and CreateSQL
	Returning PL/SQL Cursor Variables
	Returning PL/SQL Tables
	Executing Data Definition Language Statements

	Transaction Control
	Microsoft Transaction Server Support
	Asynchronous Processing
	Nonblocking Mode
	Checking the Status of a Nonblocking Operation
	Canceling a Nonblocking Operation
	Executing Multiple Queries in Asynchronous Mode
	Limitations on Nonblocking

4 Advanced OO4O Features

	Support for Oracle Object-Relational and LOB Data Types
	Instantiating Oracle LOBs, Objects, and Collections
	Oracle LOBs, Objects, and Collections

	Using Large Objects (LOBs)
	LOB Data Types
	Using OraBLOB and OraCLOB
	Retrieving LOBs From the Database
	Using an OraDynaset Object
	Using a Parameter object

	Performance Considerations with LOB Read and Write
	Single-Piece Operation
	Multiple-Piece Operation
	LOB Buffering Option

	Writing LOB Data
	Single-Piece Write Operation
	Multiple-Piece Write Operation

	Reading LOB Data
	Single-Piece Read Operation
	Multiple-Piece Read Operation

	Oracle Object Data Types
	About the OraObject Interface
	Using the OraObject Interface
	Retrieving an Embedded/Value Instance from the Database
	Accessing Attributes of an Embedded/Value Instance
	Modifying Attributes of an Embedded/Value Instance
	Executing a Member Method of an Oracle Object Instance

	About the OraRef Interface
	Using the OraRef Interface
	Retrieving a REF from the Database
	Accessing Attributes of a Referenceable Instance
	Modifying Attributes of a Referenceable Instance

	Oracle Collections
	About the OraCollection Interface
	Retrieving a Collection Type Instance from the Database
	Using a Dynaset Object
	Using a Parameter Object

	Accessing Collection Elements
	Modifying Collection Elements
	Creating a VARRAY Collection Type
	Creating a Dynaset from an OraCollection Object

	Advanced Queueing Interfaces
	Monitoring Messages

	Database Events
	Application Failover Notifications
	Failover Notification Registration
	Enabling Failover

	XML Generation
	Datetime and Interval Data Types
	Obtaining Datetime and Interval Data Types
	Descriptions of Datetime and Interval Data Types

	Database Schema Objects

5 Tuning and Troubleshooting

	Tips and Techniques for Performance Tuning
	Early Binding of OO4O Objects
	Tuning and Customization
	Avoiding Multiple Object Reference
	Parameter Bindings
	Array Processing
	Using Read-Only, Forward-Only Dynaset
	Using the PL/SQL Bulk Collection Feature
	Migration from LONG RAW to LOB or BFILE
	Using Connection Pooling

	Oracle Objects for OLE Error Handling
	OLE Automation Errors
	Nonblocking Errors
	Find Method Parser Errors
	Find Method Run-Time Errors
	OraObject Instance Errors
	LOB Errors
	Oracle Streams Advanced Queuing Errors
	OraCollection Errors
	OraNumber Errors
	Oracle Errors
	Oracle Data Control Errors

	Troubleshooting
	OLE Initialization or OLE Automation Errors
	Oracle Network Errors
	Access Violations

6 Quick Tour with Visual Basic

	Introduction
	About the Employee Database Application
	Employee Form
	Batch Insert Form

	Getting Started: Steps to Accessing Oracle Data
	Completed Sample Form_Load Procedure

	Programming a Data Entry Form
	About the Employee Form
	Navigating Through Data
	Moving to First or Last Rows
	Moving to the Previous Row
	Moving to the Next Row

	Adding Records
	Coding the Add Button
	Coding the Commit Button (Add)

	Updating Records
	Coding the Update Button
	Coding the Commit Button to Add and Update Records

	Deleting Records
	Querying the Database
	Using Batch Insert

	Programming a Batch Form
	About the Batch Insert Form
	Coding the Batch Insert Form_Load() Procedure
	Coding the CmdAddtoGrid() Procedure
	Coding the CommitGrid_Click() Procedure

7 Code Wizard for Stored Procedures

	Oracle Objects for OLE Code Wizard Components
	Data Types Supported by the OO4O Code Wizard
	Using the OO4O Code Wizard
	OO4O Code Wizard Command-Line Utility
	OO4O Code Wizard Visual Basic Wizard Add-in

	Code Wizard Examples
	Accessing a PL/SQL Stored Function with Visual Basic and Active Server Pages
	Accessing a PL/SQL Stored Procedure Using the LOB Type with Visual Basic
	Accessing a PL/SQL Stored Procedure Using the VARRAY Type with Visual Basic
	Accessing a PL/SQL Stored Procedure Using the Oracle OBJECT Type with Visual Basic

8 Introduction to Automation Objects

	Overview of Automation Objects
	OraSession Object Overview
	OraServer Object Overview
	OraDatabase Object Overview
	OraDynaset Object Overview
	OraField Object Overview
	OraParameters Object Overview
	OraParameter Object Overview
	OraParamArray Object Overview
	OraSQLStmt Object Overview

9 Server Objects

	OraAQ Object
	OraAQAgent Object
	OraAQMsg Object
	OraAttribute Object
	OraBFILE Object
	OraBLOB, OraCLOB Objects
	OraClient Object
	OraCollection Object
	OraConnection Object
	OraDatabase Object
	OraDynaset Object
	OraField Object
	OraIntervalDS Object
	OraIntervalYM Object
	OraMDAttribute Object
	OraMetaData Object
	OraNumber Object
	OraObject Object
	OraParamArray Object
	OraParameter Object
	OraRef Object
	OraServer Object
	OraSession Object
	OraSQLStmt Object
	OraSubscription Object
	OraTimeStamp Object
	OraTimeStampTZ Object
	OraConnections Collection
	OraFields Collection
	OraParameters Collection
	OraSessions Collection
	OraSubscriptions Collection

10 Server Methods

	Abs Method
	Add Method
	Add (OraIntervalDS) Method
	Add (OraIntervalYM) Method
	Add (OraNumber) Method
	Add (OraSubscriptions Collection) Method
	AddIntervalDS Method
	AddIntervalYM Method
	AddNew Method
	AddTable Method
	Append (OraCollection) Method
	Append (OraLOB) Method
	AppendChunk Method
	AppendChunkByte Method
	AQAgent (OraAQMsg) Method
	AQMsg (OraAQ) Method
	ArcCos (OraNumber) Method
	ArcSin (OraNumber) Method
	ArcTan (OraNumber) Method
	ArcTan2 (OraNumber) Method
	Attribute (OraMetaData) Method
	AutoBindDisable Method
	AutoBindEnable Method
	BeginTrans Method
	Cancel Method
	CancelEdit (OraRef) Method
	Ceil (OraNumber) Method
	ChangePassword (OraServer) Method
	ChangePassword (OraSession) Method
	Clone Method
	Clone (OraLOB/BFILE) Method
	Clone (OraCollection) Method
	Clone (OraIntervalDS) Method
	Clone (OraIntervalYM) Method
	Clone (OraNumber) Method
	Clone (OraObject/Ref) Method
	Clone (OraTimeStamp) Method
	Clone (OraTimeStampTZ) Method
	Close Method
	Close (OraBFILE) Method
	CloseAll (OraBFILE) Method
	CommitTrans Method
	Compare (OraLOB) Method
	ConnectSession Method
	CopyToClipboard Method
	Copy (OraLOB) Method
	CopyFromFile (OraLOB) Method
	CopyFromBFILE (OraLOB) Method
	CopyToFile (OraLOB/BFILE) Method
	Cos (OraNumber) Method
	CreateAQ Method
	CreateCustomDynaset Method
	CreateDatabasePool Method
	CreateDynaset Method
	CreateIterator Method
	CreateNamedSession Method
	CreateOraIntervalDS Method
	CreateOraIntervalYM Method
	CreateOraNumber Method
	CreateOraObject (OraDatabase) Method
	CreateOraTimeStamp Method
	CreateOraTimeStampTZ Method
	CreatePLSQLCustomDynaset Method
	CreatePLSQLDynaset Method
	CreateSession Method
	CreateSQL Method
	CreateTempBLOB/CLOB Method
	Delete Method
	Delete (OraCollection) Method
	Delete (OraRef) Method
	DeleteIterator Method
	Dequeue (OraAQ) Method
	Describe Method
	DestroyDatabasePool Method
	DisableBuffering (OraLOB) Method
	Div (OraIntervalDS) Method
	Div (OraIntervalYM) Method
	Div (OraNumber) Method
	DynasetCacheParams Method
	Edit Method
	Edit (OraRef) Method
	ElementValue Method
	EnableBuffering (OraLOB) Method
	Enqueue (OraAQ) Method
	Erase (OraLOB) Method
	ExecuteSQL Method
	Exist (OraCollection) Method
	Exp (OraNumber) Method
	FetchOraRef Method
	FieldSize Method
	FindFirst, FindLast, FindNext, and FindPrevious Methods
	Floor (OraNumber) Method
	FlushBuffer (OraLOB) Method
	GetDatabaseFromPool Method
	GetChunk Method
	GetChunkByte Method
	GetChunkByteEx Method
	GetXML Method
	GetXMLToFile Method
	GetRows Method
	Get_Value Method
	HypCos (OraNumber) Method
	HypSin (OraNumber) Method
	HypTan (OraNumber) Method
	InitIterator Method
	IsEqual (OraIntervalDS) Method
	IsEqual (OraIntervalYM) Method
	IsEqual (OraNumber) Method
	IsEqual (OraTimeStamp) Method
	IsEqual (OraTimeStampTZ) Method
	IsGreater (OraIntervalDS) Method
	IsGreater (OraIntervalYM) Method
	IsGreater (OraNumber) Method
	IsGreater (OraTimeStamp) Method
	IsGreater (OraTimeStampTZ) Method
	IsLess (OraIntervalDS) Method
	IsLess (OraIntervalYM) Method
	IsLess (OraNumber) Method
	IsLess (OraTimeStamp) Method
	IsLess (OraTimeStampTZ) Method
	IterNext Method
	IterPrev Method
	LastServerErrReset Method
	Ln (OraNumber) Method
	Log (OraNumber) Method
	MatchPos (OraLOB/BFILE) Method
	Mod (OraNumber) Method
	MonitorForFailover Method
	MonitorStart (OraAQ) Method
	MonitorStop (OraAQ) Method
	MoveFirst, MoveLast, MoveNext, and MovePrevious Methods
	MovePreviousn, MoveNextn, MoveRel, and MoveTo Methods
	Mul (OraIntervalDS) Method
	Mul (OraIntervalYM) Method
	Mul (OraNumber) Method
	Neg (OraIntervalDS) Method
	Neg (OraIntervalYM) Method
	Neg (OraNumber) Method
	Open (OraServer) Method
	Open (OraBFILE) Method
	OpenDatabase Method
	OriginalItem Method
	OriginalName
	Power (OraNumber) Method
	Put_Value Method
	Read (OraLOB/BFILE) Method
	ReadChunk Method
	Refresh Method
	Refresh (OraRef) Method
	Register Method
	Remove Method
	Remove (OraSubscriptions Collection) Method
	RemoveFromPool Method
	ResetTrans Method
	Rollback Method
	Round (OraNumber) Method
	SetPi (OraNumber) Method
	Sin (OraNumber) Method
	Sqrt (OraNumber) Method
	Sub (OraIntervalDS) Method
	Sub (OraIntervalYM) Method
	Sub (OraNumber) Method
	Tan (OraNumber) Method
	ToDate Method
	ToOraNumber (OraIntervalDS) Method
	ToOraTimeStamp Method
	ToOraTimeStampLTZ Method
	ToOraTimeStampTZ Method
	ToUniversalTime Method
	Trim (OraCollection) Method
	Trim (OraLOB) Method
	Trunc (OraNumber) Method
	Unregister Method
	Update Method
	Update (OraRef) Method
	Write (OraLOB) Method

11 Server Properties

	Address (OraAQAgent) Property
	ArraySize Property
	AutoCommit Property
	BOC Property
	BOF Property
	Bookmark Property
	BookMarkable Property
	CacheBlocks Property
	CacheChanged Property
	CacheMaximumSize Property
	CacheOptimalSize Property
	CacheSliceSize Property
	CacheSlicesPerBlock Property
	Client Property
	Connect Property
	Connection Property
	ConnectionOK Property
	Connections Property
	Consumer (OraAQ) Property
	Correlate (OraAQ) Property
	Correlation (OraAQMsg) Property
	Count Property
	Count (OraMetaData) Property
	Count (OraObject/Ref) Property
	Database Property
	DatabaseName Property
	Databases Property
	Day (OraTimeStamp) Property
	Day (OraTimeStampTZ) Property
	Days Property
	DbPoolCurrentSize Property
	DbPoolInitialSize Property
	DbPoolMaxSize Property
	Delay (OraAQMsg) Property
	DequeueMode (OraAQ) Property
	DequeueMsgId (OraAQ) Property
	DirectoryName Property
	DynasetOption Property
	EditMode Property
	EditOption (OraRef) Property
	ElementType Property
	EOC Property
	EOF Property
	ExceptionQueue Property
	Exists Property
	Expiration (OraAQMsg) Property
	FetchLimit Property
	FetchSize Property
	FieldIndex Property
	FieldName Property
	FieldOriginalName Property
	FieldOriginalNameIndex Property
	Fields Property
	FileName Property
	Filter Property
	Format (OraNumber) Property
	Format (OraTimeStamp) Property
	Format (OraTimeStampTZ) Property
	HexValue (OraRef) Property
	Hour (OraTimeStamp) Property
	Hour (OraTimeStampTZ) Property
	Hours Property
	IsLocator (OraCollection) Property
	IsMDObject Property
	IsNull (OraCollection) Property
	IsNull (OraLOB/BFILE) Property
	IsNull (OraObject) Property
	IsOpen (OraBFILE) Property
	IsRefNull (OraRef) Property
	LastErrorText Property
	LastModified Property
	LastServerErr Property
	LastServerErrPos Property
	LastServerErrText Property
	MaxSize (OraCollection) Property
	MinimumSize Property
	Minute (OraTimeStamp) Property
	Minute (OraTimeStampTZ) Property
	Minutes Property
	Month (OraTimeStamp) Property
	Month (OraTimeStampTZ) Property
	Months Property
	Name Property
	Name (AQAgent) Property
	Name (OraAttribute) Property
	Name (OraMDAttribute) Property
	Nanosecond(OraTimeStamp) Property
	Nanonsecond (OraTimeStampTZ) Property
	Nanonseconds Property
	Navigation (OraAQ) Property
	NoMatch Property
	NonBlockingState Property
	Offset (OraLOB/BFILE) Property
	OIPVersionNumber Property
	Options Property
	OraIDataType Property
	OraMaxDSize Property
	OraMaxSize Property
	OraNullOK Property
	OraPrecision Property
	OraScale Property
	Parameters Property
	PinOption (OraRef) Property
	PollingAmount Property
	Priority (OraAQMsg) Property
	RDMSVersion Property
	RecordCount Property
	RelMsgId (OraAQ) Property
	RowPosition Property
	SafeArray (OraCollection) Property
	Second (OraTimeStamp) Property
	Second (OraTimeStampTZ) Property
	Seconds Property
	Server Property
	ServerType Property
	Session Property
	Sessions Property
	Size Property
	Size (OraCollection) Property
	Size (OraLOB and OraBFILE) Property
	SnapShot Property
	Sort Property
	SQL Property
	Status Property
	Status (OraLOB/BFILE) Property
	Subscriptions Property
	TableName (OraRef) Property
	TableSize (OraCollection) Property
	TimeZone (OraTimeStampTZ) Property
	TotalDays Property
	TotalYears Property
	Transactions Property
	Truncated Property
	Type Property
	Type (OraAttribute) Property
	Type (OraCollection) Property
	Type (OraMetaData) Property
	TypeName (OraObject and OraRef) Property
	Updatable Property
	Value Property
	Value (OraAttribute) Property
	Value (OraAQMsg) Property
	Value (OraIntervalDS) Property
	Value (OraIntervalYM) Property
	Value (OraMDAttribute) Property
	Value (OraNumber) Property
	Value (OraTimeStamp) Property
	Value (OraTimeStampTZ) Property
	Version (OraObject and Ref) Property
	Visible (OraAQ) Property
	Wait (OraAQ) Property
	XMLAsAttribute Property
	XMLCollID Property
	XMLEncodingTag Property
	XMLNullIndicator Property
	XMLOmitEncodingTag Property
	XMLRowID Property
	XMLRowsetTag Property
	XMLRowTag Property
	XMLTagName Property
	XMLUpperCase Property
	Year (OraTimeStamp) Property
	Year (OraTimeStampTZ) Property
	Years Property

12 Data Control Events

	DragDrop Event
	DragOver Event
	Error Event
	MouseDown Event
	MouseMove Event
	MouseUp Event
	Reposition Event
	Validate Event

13 Data Control Methods

	Drag Method
	Move Method
	Refresh Method
	UpdateControls Method
	UpdateRecord Method
	ZOrder Method

14 Data Control Properties

	AllowMoveLast Property
	AutoBinding Property
	BackColor Property
	Caption Property
	Connect Property
	Database Property
	DatabaseName Property
	DirtyWrite Property
	DragIcon Property
	DragMode Property
	EditMode Property
	Enabled Property
	Font Property
	ForeColor Property
	Height Property
	Index Property
	Left Property
	MousePointer Property
	Name Property
	NoRefetch Property
	Options Property
	OracleMode Property
	ReadOnly Property
	Recordset Property
	RecordSource Property
	Session Property
	Tag Property
	Top Property
	TrailingBlanks Property
	Visible Property
	Width Property

A Appendix A

	Oracle Data Types
	Additional Schemas
	Schema Objects Used in OraMetaData Examples
	Schema Objects Used in LOB Data Type Examples
	Schema Objects Used in the OraObject and OraRef Examples
	Schema Objects Used in OraCollection Examples

Glossary

Index

Oracle® Objects for OLE

Developer's Guide

11g Release 2 (11.2) for Microsoft Windows

E17727-03

March 2011

Oracle Objects for OLE Developer's Guide, 11g Release 2 (11.2) for Microsoft Windows

E17727-03

Copyright © 1994, 2011, Oracle and/or its affiliates. All rights reserved.

Primary Authors: Janis Greenberg, Christian Shay

Contributing Authors: Riaz Ahmed, Kiminari Akiyama, Steven Caminez, Naveen Doraiswamy, Neeraj Gupta, Sinclair Hsu, Alex Keh, Chithra Ramamurthy, Ashish Shah, Martha Woo

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Preface

This document explains how to install, configure, and use Oracle Objects for OLE (OO4O). It covers features of Oracle Database that apply to Microsoft Windows operating systems.

Oracle Objects for OLE (OO4O) allows easy access to data stored in Oracle databases with any programming or scripting language that supports the Microsoft COM Automation.

	
Note:

Oracle Database 11g Release 2 (11.2) is the last database version that supports Oracle Objects for OLE. Oracle Database versions, which are released after Oracle Database 11g Release 2 (11.2), will not support Oracle Objects for OLE. You can continue to use Oracle Objects for OLE with existing Oracle Database versions that are covered under the lifetime support policy of Oracle.

	
Audience

	
Documentation Accessibility

	
Related Documents

	
Conventions

Audience

Oracle Objects for OLE Developer's Guide is intended for programmers developing applications to access an Oracle database using Oracle Objects for OLE. This documentation is also valuable to systems analysts, project managers, and others interested in the development of database applications.

To use this document, you must have a working knowledge of application programming using Visual Basic or Microsoft C/C++ and knowledge of Component Object Model (COM) concepts.

Readers should also be familiar with the use of structured query language (SQL) to access information in relational database systems.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/support/contact.html or visit http://www.oracle.com/accessibility/support.html if you are hearing impaired.

Related Documents

For more information, see these Oracle resources:

	
Oracle Objects for OLE C++ Class Library Developer's Guide, available as online help

	
Oracle Services for Microsoft Transaction Server Developer's Guide

	
Oracle Database Platform Guide for Windows

	
Oracle Database Concepts

	
Oracle Database Performance Tuning Guide

	
Oracle Database Reference

	
Oracle Database Advanced Application Developer's Guide

	
Oracle Database SecureFiles and Large Objects Developer's Guide

	
Oracle Database Object-Relational Developer's Guide

	
Oracle Streams Advanced Queuing User's Guide

	
Oracle XML DB Developer's Guide

	
Oracle XML Developer's Kit Programmer's Guide

	
Oracle Database PL/SQL User's Guide and Reference

	
Oracle Net Services Reference Guide

	
Oracle Database Globalization Support Guide

	
Oracle Database Oracle Real Application Clusters Administration and Deployment Guide

Many of the examples in this book use the sample schemas, which are installed by default when you select the Basic Installation option with an Oracle Database installation. Refer to Oracle Database Sample Schemas for information on how these schemas were created and how you can use them yourself.

To download free release notes, installation documentation, white papers, or other collateral, please visit the Oracle Technology Network (OTN). You must register online before using OTN; registration is free and can be done at

http://www.oracle.com/technology/contact/welcome.html

If you already have a user name and password for OTN, then you can go directly to the documentation section of the OTN Web site at

http://www.oracle.com/technology/documentation/index.html

For additional information, see:

http://www.microsoft.com

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

What's New in Oracle Objects for OLE?

This section describes new features of Oracle Database 11g Release 2 (11.2) and provides pointers to additional information. New features information from previous releases is also retained to help those users migrating to the current release.

The following sections describe the new features in Oracle Oracle Objects for OLE:

	
Oracle Database 11g Release 1 (11.1) and Release 2 (11.2) New Features

	
Oracle Database 10g Release 2 (10.2) New Features

	
Oracle Database 10g Release 1 (10.1) New Features

Oracle Database 11g Release 1 (11.1) and Release 2 (11.2) New Features

There are no new features for these releases.

Oracle Database 10g Release 2 (10.2) New Features

There are no new features for this release.

Documentation for Oracle Objects for OLE was improved and reorganized, although there is no additional content. The documentation was reformatted to a printable, PDF format. PDF and HTML are provided in the Documentation Library. Online Help in WinHelp format is no longer provided.

Oracle Database 10g Release 1 (10.1) New Features

	
Support for Oracle Grid Computing

Oracle Objects for OLE is grid-enabled, allowing developers to take advantage of Oracle database grid support without having to make changes to their application code.

	
Support for New Data Types

Oracle Objects for OLE provides support for the BINARY_DOUBLE and BINARY_FLOAT data types introduced in Oracle Database 10g. Instances of these types can be fetched from the database or passed as input or output variables to SQL statements and PL/SQL locks, including stored procedures and functions.

The following constants were added in the oraconst.txt to bind the BINARY_DOUBLE and BINARY_FLOAT data types.

	
ORATYPE_BDOUBLE, Oracle data type BINARY_DOUBLE, value 101

	
ORATYPE_BFLOAT, Oracle data type BINARY_FLOAT, value 100

	
Support for Multiple Oracle Homes

Oracle Objects for OLE can be installed in multiple Oracle homes, starting with release 10.1. However, being a Component Object Model (COM) component, only one instance can be active on the computer. This means that the current (latest) installation renders the previous one inactive.

To make multiple Oracle homes available, the use of a KEY_HOMENAME is required. Also, some of the Oracle Objects for OLE files include a version number.

	
See Also:

	
"Installation"

	
"Oracle Objects for OLE Redistributable Files"

	
"Tuning and Customization" for information about the Windows registry subkey

1 Introducing Oracle Objects for OLE

This chapter introduces Oracle Objects for OLE (OO4O).

	
Note:

Oracle Database 11g Release 2 (11.2) is the last database version that supports Oracle Objects for OLE. Oracle Database versions, which are released after Oracle Database 11g Release 2 (11.2), will not support Oracle Objects for OLE. You can continue to use Oracle Objects for OLE with existing Oracle Database versions that are covered under the lifetime support policy of Oracle.

This chapter contains these topics:

	
Overview of Oracle Objects for OLE

	
Oracle Objects for OLE In-Process Automation Server

	
Oracle Data Control

	
Oracle Objects for OLE C++ Class Library

	
Required Setups

	
Oracle Objects for OLE File Locations

	
Component Certifications

	
Oracle Objects for OLE Redistributable Files

Overview of Oracle Objects for OLE

Oracle Objects for OLE (OO4O) allows you to access data stored in Oracle databases with any programming or scripting language that supports Microsoft COM Automation and ActiveX technology. This includes Visual Basic, Visual C++, Visual Basic for Applications (VBA), IIS Active Server Pages (VBScript and JavaScript), and others.

Figure 1-1 illustrates the software layers that comprise the OO4O product.

Figure 1-1 Software Layers of OO4O

[image: Description of Figure 1-1 follows]

OO4O provides the following:

	
Oracle Objects for OLE In-Process Automation Server

	
Oracle Data Control

	
Oracle Objects for OLE C++ Class Library

Oracle Objects for OLE In-Process Automation Server

The OO4O In-Process Automation Server is a set of COM Automation Objects for connecting to Oracle databases, executing SQL statements and PL/SQL blocks, and accessing the results.

Figure 1-2 illustrates the object model that comprise the OO4O product.

Figure 1-2 Automation Objects

[image: hierarchy diagram starting with OraSession]

Unlike other COM-based database connectivity APIs, such as Microsoft ActiveX Data Objects (ADO), the OO4O Automation Server was created specifically for use with Oracle databases. It provides an optimized API for accessing features that are unique to the Oracle database and are otherwise cumbersome or unavailable from ODBC or OLE DB components.

OO4O provides key features for accessing Oracle databases efficiently and easily in environments ranging from the typical two-tier client/server applications, such as those developed in Visual Basic or Excel, to application servers deployed in multitiered application server environments such as Web server applications in Microsoft Internet Information Server (IIS) or Microsoft Transaction Server (MTS).

	
See Also:

"Introduction to Automation Objects"

Features include:

	
Oracle 11g is grid enabled, allowing developers to take full advantage of grid support without changes being required to existing code.

	
Tunable client-side, scrollable and updatable cursors for easy and efficient access to result sets of queries.

	
PL/SQL support for execution of PL/SQL anonymous blocks and stored procedures. This includes support for the Oracle data types, such as PL/SQL cursors, that are needed for parameters of PL/SQL stored procedures.

	
Support for array fetches, updates, and inserts resulting in reduced network round-trips.

	
Connection pooling to allow development of scalable middle tier application components, such as IIS Active Server Pages, that use and serve dynamic content stored in Oracle databases.

	
Support for COM+ and Microsoft Transaction Server (MTS) co-ordinated transactions.

	
Seamless access to instances of advanced Oracle data types:

	
Object references (REFs)

	
Object instances (Objects)

	
Nested tables

	
VARRAYs

	
BLOBs, CLOBs, NCLOBs, and BFILEs

	
XML generation.

	
Full support for advanced queuing.

	
Support for publishing, detecting, and subscribing to database events.

	
Support for asynchronous processing of SQL statements and PL/SQL blocks.

	
Easy to use interface for describing schema objects.

	
The Oracle code wizard for stored procedures, which automatically generates OO4O code to execute PL/SQL or Java stored procedures.

	
Thread safety, allowing safe access to automation objects in multithreaded environments.

	
See Also:

	
Chapter 9, "Server Objects"

	
Chapter 11, "Server Properties"

	
Chapter 10, "Server Methods"

	
Chapter 4, "Advanced OO4O Features"

Oracle Data Control

Oracle Data Control is an ActiveX control that is designed to simplify the exchange of data among an Oracle database and visual controls such as edit, text, list, and grid controls in Visual Basic and other development tools that support custom controls.

A data control enables you to perform most data access operations without writing any code. To create a dynaset with a data control, set the Connect, DatabaseName, and RecordSource properties, and execute the Refresh command.

A data control enables you to bind it to other controls that display a field, a record, or multiple records of the underlying dynaset. When record movement occurs, data in bound controls stay synchronized with the current record of the dynaset. If a user changes data in a control that is bound to a data control, the changes are automatically reflected in the underlying dynaset and database.

The Oracle Data Control is compatible with the Microsoft data control included with Visual Basic. If you are familiar with the Visual Basic data control, learning to use Oracle Data Control is quick and easy. Communication between data-aware controls and a Data Control is governed by a protocol specified by Microsoft.

	
See Also:

	
"Setting Oracle Data Control Properties with the Properties Window"

	
"Setting Oracle Data Control Properties Programmatically"

	
"Data Control Events"

Oracle Objects for OLE C++ Class Library

The Oracle Objects for OLE C++ Class Library is a collection of C++ classes that provide programmatic access to the OO4O Automation server. Although the class library is implemented using OLE Automation, neither the OLE development kit nor any OLE development knowledge is necessary to use it. This library helps C++ developers avoid writing COM client code to access the OO4O interfaces.

In addition to the object classes, the class library provides a bound class, which allows controls such as text and list boxes to be linked directly to a field of a dynaset (columns of a table in the database). The bound class supports late, run-time binding, as is available in Visual Basic. The Oracle Objects for OLE C++ Class Library is supported for Microsoft Visual C++ and the Microsoft Foundation Classes for the bound class.

	
See Also:

Oracle Objects for OLE C++ Class Library Developer's Guide available as online help

Required Setups

This section discusses the required setups for using Oracle Objects for OLE.

Installation

Oracle Objects for OLE can be installed in multiple Oracle homes, starting with Oracle Database 10g. However, being a COM component, only one instance can be active on the computer. This means that the current (latest) installation renders the previous one inactive. You can switch Oracle homes by using the Oracle installer.

System Requirements

	
Note:

Oracle Objects for OLE is not supported on Windows x64 operating systems.

The following system requirements are necessary to install Oracle Objects for OLE:

	
Windows Operating System:

	
32-bit: Windows 7 (Professional, Enterprise, and Ultimate Editions), Windows Vista (Business, Enterprise, and Ultimate Editions), Windows Server 2008 (Standard, Enterprise, Datacenter, Web, and Foundation Editions), Windows Server 2003 R2 (all editions), Windows Server 2003 (all editions), or Windows XP Professional Edition.

Oracle supports 32-bit Oracle Objects for OLE on x86, AMD64, and Intel EM64T processors on these operating systems.

	
A local or remote Oracle database (Oracle9i Release 2 or higher)

	
Oracle Client. Oracle Universal Installer ensures that the RSFs are installed as part of the OO4O installation.

	
The OO4O automation server requires an application that supports COM Automation such as:

	
Microsoft Visual Basic

	
Microsoft Excel

	
Microsoft Access

	
Microsoft Internet Information Server (IIS)

	
Borland Delphi

Other Requirements

The following other requirements may be necessary:

	
The Oracle Data Control requires Visual Basic.

	
The Oracle Objects for OLE C++ Class Library requires Microsoft Visual C++ Version 6.0 or later.

	
The OO4O Code Wizard requires Visual Basic 6. Visual Basic 6 must be installed before installing the Code Wizard.

	
The Oracle In-Process Server Type library (oipVER.tlb) must be referenced when an OO4O Visual Basic project is developed.

To do this, select References from the Project menu (VB 5.0/6.0) and check the box next to the Oracle In-Process Server 5.0 Type Library, which should be pointing to the ORACLE_BASE\\ORACLE_HOME\bin\oipVER.tlb file. See "Using Oracle Objects for OLE Automation with Visual Basic" for detailed information.

	
See Also:

"Oracle Objects for OLE Redistributable Files" and "Troubleshooting" for further information on Oracle Objects for OLE requirements

Oracle Objects for OLE File Locations

As part of the OO4O installation, the following directories are created and contain the corresponding files:

	
ORACLE_BASE\ORACLE_HOME\OO4O - SQL scripts and constants file

	
ORACLE_BASE\ORACLE_HOME\OO4O\CPP - Libraries, include files, DLLs, and source for the class library

	
ORACLE_BASE\ORACLE_HOME\OO4O\CPP\MFC - Libraries, include files, and source for the MFC Bound Class Library

	
ORACLE_BASE\ORACLE_HOME\OO4O\EXCEL\SAMPLES - Excel samples

	
ORACLE_BASE\ORACLE_HOMEOO4O\VB\SAMPLES - Visual Basic samples

	
ORACLE_BASE\ORACLE_HOME\OO4O\VB\SAMPLES\QT - Visual Basic Quick Tour guide

	
ORACLE_BASE\ORACLE_HOME\OO4O\IIS\SAMPLES - IIS samples

	
ORACLE_BASE\ORACLE_HOME\OO4O\codewiz - OO4O Code Wizard samples

Component Certifications

Find the latest certification information at My Oracle Support (formerly OracleMetaLink):

http://metalink.oracle.com/

You must register online before using My Oracle Support. After logging into My Oracle Support, select Product Lifecycle from the left column. From the Products Lifecycle page, click Certifications. Other Product Lifecycle options include Product Availability, Desupport Notices, and Alerts.

Oracle Objects for OLE Redistributable Files

This section discusses files that can be redistributed or updated on a computer that belongs to an end user or a developer.

If you cannot guarantee that your end users have the current release of Oracle Objects for OLE installed on their computers, you need to redistribute specific files that are part of Oracle Objects for OLE along with your OO4O application. A typical scenario might be if OO4O is installed as a patch without use of Oracle Universal Installer.

Redistributable File Locations

Table 1-1 lists the Redistributable file locations with comments and further actions that are needed.

Table 1-1 Redistributable File Locations

	Files	Place in Directory	Further Actions	Comments
	
oipVER.dll

	
ORACLE_BASE\ ORACLE_HOME\bin

	
Execute the following from a command prompt:

drive:\path>

regsvr32.exe oipVER.dll

	
None.

	
oipVER.tlb

	
ORACLE_BASE\ ORACLE_HOME\bin

	
None.

	
None.

	
oraansiVER.dll

	
ORACLE_BASE\ ORACLE_HOME\bin

	
None.

	
Change VER to the current version.

	
oo4oparm.reg

	
ORACLE_BASE\ ORACLE_HOME\oo4o

	
Edit for the correct ORACLE_HOME location and HOMEID on your computer. Execute the following from a command prompt: drive:\path>

oo4oparm.reg

	
File provided to register OO4O configuration information.

	
oiplang.msb

	
ORACLE_BASE\ ORACLE_HOME \oo4o\mesg

	
None.

	
This message file is language-specific. oipus.msb is the English version, and oipja.msb is the Japanese version.

	
oraclm32.dll

(for Microsoft

VC++)

or

oradc.ocx

	
ORACLE_BASE\ ORACLE_HOME\bin

	
For oradc.ocx, execute:

regsvr32.exe oradc.ocx drive:\path>

	
Distribute the files that correspond to the development software used in your application.

Additionally, ensure that the system requirements described in "Overview of Oracle Objects for OLE" are met.

You must also distribute the files from the following list that correspond to the development software you used to build your application:

	
oraclm32.dll (for Microsoft Visual C++)

	
oradc.ocx

Updating Files and Registrations

The oo4oparm.reg file is provided to register OO4O configuration information. Review this file and edit it as necessary to reflect the correct ORACLE_HOME location and HOMEID on your computer. To register oipVER.dll and enter the OO4O configuration information for oo4oparm.reg in the registry, execute the following from a command prompt:

drive:\path> regsvr32.exe oipVER.dll

drive:\path> oo4oparm.reg

The message file oiplang.msb should also be provided and copied to the ORACLE_BASE\ORACLE_HOME\oo4o\mesg directory. The message file is specific to a language. For example, oipus.msb is the English version and oipja.msb is the Japanese version.

	
Note:

Oracle Data Control (oradc.ocx) must be registered to function. The OLE Control Extension (OCX) can be registered by executing the following at the command prompt:
drive:\path> regsvr32.exe oradc.ocx

	
See Also:

"Oracle Data Control"

2 Using Oracle Objects for OLE with Automation Clients

This chapter describes the use of automation clients to access Oracle data.

This chapter contains these topics:

	
Using Automation Clients Overview

	
Demonstration Schema and Code Examples

	
Using Oracle Objects for OLE Automation with Visual Basic

	
Using OO4O Automation with Active Server Pages (ASP)

	
Using Oracle Objects for OLE Automation with Excel

	
Using Microsoft C++

	
Using Oracle Data Control with Visual Basic

	
Using the Oracle Data Control with MS Visual C++

Using Automation Clients Overview

Oracle Objects for OLE (OO4O) is designed to provide quick and efficient access to the data in an Oracle database using various programming or scripting languages.

OO4O can be easily used with Visual Basic, Excel, Active Server Pages, Internet Information Server (IIS), and other development tools.

Oracle Data Control with Visual Basic allows another method of accessing Oracle data.

Examples are provided for specific methods and properties in this developer's guide. Additionally, example programs are installed with Oracle Objects for OLE and are located in the ORACLE_BASE\\ORACLE_HOME\oo4o\ directory under VB, EXCEL, IIS, CPP, and so on.

A Quick Tour of OO4O with Visual Basic is also provided.

	
See Also:

Chapter 6, "Quick Tour with Visual Basic"

Demonstration Schema and Code Examples

The code examples included in this developer's guide and the example applications shipped with Oracle Objects for OLE are designed to work with a demonstration schema (database tables and other objects) and a demonstration user and password, scott/tiger. Code examples are located in the ORACLE_BASE\\ORACLE_HOME\oo4o directory.

Demonstration Schema Creation

You can create the OO4O demonstration schema with the demobld7.sql script located in the ORACLE_BASE\\ORACLE_HOME\oo4o directory. You can drop the demonstration schema with the demodrp7.sql script.

Demonstration Schema

The demonstration schema includes the following references:

	
Demonstration tables EMP and DEPT.

	
The user scott with password tiger (scott/tiger).

	
The network alias, ExampleDb.

Refer to Oracle Net Services Administrator's Guide for assistance in setting up the network service (database) alias and the tnsnames.ora file.

In many of the examples, you can access a local database using " " (a null string) for the network alias.

Other Schemas

Occasionally other schemas are required to run examples. The introductions to the examples contain names and locations of the schemas (in the appendix).

	
See Also:

"Additional Schemas"

Related Files

The ORACLE_BASE\\ORACLE_HOME\oo4o directory contains the following items:

	
OO4O example programs.

Subdirectories contain both C++ and Visual Basic examples.

	
The oraexamp.sql script, used to create stored procedures. Additional scripts, such as multicur.sql and empcur.sql, are provided to set up other example programs.

	
Oracle Objects for OLE global constant file, oraconst.txt, which contains constant values used for option flags and property values. This file is usually not needed as these constants are also included with the Oracle In-Process Server type library.

Using Oracle Objects for OLE Automation with Visual Basic

This example contains code fragments that demonstrate how to create all objects required by a dynaset and then create the dynaset itself.

	
Start Visual Basic and create a new project. From the Project menu, select References and check InProcServer 5.0 Type Library.

[image: References dialog box OIP Server 5.0 Type library checked]

	
Start Visual Basic and create a new project. Then, add the following code to the Declarations section of a form:

...
' Declare variables
Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset
Dim OraFields As OraFields

	
Add the following code to the load procedure associated with the form to display the Oracle data:

' Create the OraSession Object. The argument to CreateObject is the
' name by which the OraSession object is known to the OLE system.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

' Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

' Create the OraDynaset Object.
Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)

' You can now display or manipulate the data in the dynaset. For example:
Set OraFields = OraDynaset.fields
OraDynaset.movefirst
Do While Not OraDynaset.EOF
MsgBox OraFields("ename").Value
OraDynaset.movenext
Loop
End Sub

	
Run the form to view the results.

	
See Also:

	
"Using Oracle Objects for OLE with Automation Clients" for more information about using OO4O with Visual Basic

	
OraClient Object

	
OraDatabase Object

	
OraDynaset Object

	
OraField Object

	
OraParameter Object

	
OraSession Object

Using OO4O Automation with Active Server Pages (ASP)

This example uses Active Server Pages (ASP) in a Microsoft Internet Information Server (IIS) to demonstrate the connection pooling feature of Oracle Objects for OLE. The sample code executes a SQL SELECT query and returns the result as an HTML table. The database connection used in this script is obtained from a pool that is created when the global.asa file is executed.

To use Oracle Objects for OLE with OLE Automation and IIS, you need to install IIS 3.0 or later, including all ASP extensions. On the computer where IIS is running, an Oracle database must also be accessible.

	
Note:

The sample code for this example is available in the ORACLE_BASE\\ORACLE_HOME\oo4o\iis\samples\asp\connpool directory.

	
Start SQL*Plus and log in to the Oracle database as scott/tiger.

Create the following PL/SQL procedures:

-- creates PL/SQL package to be used in ASP demos
create or replace package ASP_demo as
 --cursor c1 is select * from emp;
 type empCur is ref cursor;
PROCEDURE GetCursor(p_cursor1 in out empCur, indeptno IN NUMBER,
 p_errorcode OUT NUMBER);
END ASP_demo;
/

Create or replace the ASP_demo package body as follows:

PROCEDURE GetCursor(p_cursor1 in out empCur, indeptno IN NUMBER,
 p_errorcode OUT NUMBER) is
BEGIN
 p_errorcode:= 0;
 open p_cursor1 for select * from emp where deptno = indeptno;
EXCEPTION
 When others then
 p_errorcode:= SQLCODE;
END GetCursor;
...

END ASP_demo;
/

	
Create the Active Server Pages (ASP) sample code. The OO4O related code is in bold.

'GLOBAL.ASA

<OBJECT RUNAT=Server SCOPE=Application ID=OraSession
 PROGID="OracleInProcServer.XOraSession"></OBJECT>
<SCRIPT LANGUAGE=VBScript RUNAT=Server>
Sub Application_OnStart

'Get an instance of the Connection Pooling object and
'create a pool of OraDatabase
OraSession.CreateDatabasePool 1,40,200,"exampledb", "scott/tiger", 0
End Sub

'OO4ODEMO.ASP

<html>
<head>
<title>Oracle Objects For OLE (OO4O) </title>
</head>
<body BGCOLOR="#FFFFFF">

<h2 align="center">Oracle Objects For OLE (OO4O) </h2>
<form ACTION="OO4ODEMO.asp" METHOD="POST">
<%
SqlQuery = Request.Form("sqlquery")
%>
<p>This sample executes a SQL SELECT query and returns the result as an HTML table. The database connection used in this script is obtained from a pool that is created when the global.asa is executed. </p>
<p>SQL Select Query: <input SIZE="48" NAME="sqlquery"> </p>
<p><input TYPE="SUBMIT"> <input TYPE="RESET"> <input LANGUAGE="VBScript" TYPE="button" VALUE="Show ASP Source" ONCLICK="Window.location.href = "oo4oasp.htm""

NAME="ShowSrc"></p>
</form>
<%
If SqlQuery = "" Then
%>
<% Else %>
<table BORDER="1">
<%
Set OraDatabase = OraSession.GetDatabaseFromPool(10)
Set OraDynaset = OraDatabase.CreateDynaset(SqlQuery,0)
Set Columns = OraDynaset.Fields
%>
<tr>
<td><table BORDER="1">
<tr>
<% For i = 0 to Columns.Count - 1 %>
<td><% = Columns(i).Name %></td>
<% Next %>
</tr>
<% while NOT OraDynaset.EOF %>
<tr>
<% For col = 0 to Columns.Count - 1 %>
<td><% = Columns(col) %>
</td>
<% Next %>
</tr>
<% OraDynaset.MoveNext %>
<% WEnd %>
</table>

<p><%End If%> </p>
<hr>
</td>
</tr>
</table>
</body>
</html>

	
Create a virtual directory from Microsoft Internet Service Manager with read and execute access, and place all .asp and .asa files in that directory.

	
Create an HTML page from which to launch the oo4odemo.asp file. Add a link in the page as follows:

<a href="/<your_path>/OO4ODEMO.ASP">This link launches the demo!

	
Load the page in a web browser and click the link to the demonstration.

	
Enter a query, such as 'SELECT * FROM EMP', in the SQL SELECT Query field, and select the Submit Query button. Do not include a semicolon (;) at the end of the query.

[image: SQL Select Query field with the entry select * from emp.]

Using Oracle Objects for OLE Automation with Excel

This sample shows how to insert Oracle data into an Excel worksheet.

	
Note:

The sample code for this example is available in the ORACLE_BASE\\ORACLE_HOME\oo4o\excel\samples\ directory.

To use OLE Automation with Microsoft Excel to insert Oracle data into a worksheet, perform the following steps:

	
Start Excel and create a new worksheet.

	
Use the Macro options in the Tools menu to create and edit new macros for manipulating the Oracle data.

[image: A dialog box with a list of possible macros.]

	
Enter Visual Basic code for macros to create and access an Oracle dynaset, such as the following EmpData() and ClearData() procedures (macros):

Sub EmpData()

'Declare variables
Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim EmpDynaset As OraDynaset
Dim flds() As OraField
Dim fldcount As Integer
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 Set OraDatabase = OraSession.OpenDatabase("ExampleDB", "scott/tiger", 0&)
 Set EmpDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)
 Range("A1:H15").Select
 Selection.ClearContents

 'Declare and create an object for each column.
 'This will reduce objects references and speed up your application.
fldcount = EmpDynaset.Fields.Count
ReDim flds(0 To fldcount - 1)
For Colnum = 0 To fldcount - 1
 Set flds(Colnum) = EmpDynaset.Fields(Colnum)
Next

'Insert Column Headings
For Colnum = 0 To EmpDynaset.Fields.Count - 1
 ActiveSheet.Cells(1, Colnum + 1) = flds(Colnum).Name
Next

'Display Data
For Rownum = 2 To EmpDynaset.RecordCount + 1
 For Colnum = 0 To fldcount - 1
 ActiveSheet.Cells(Rownum, Colnum + 1) = flds(Colnum).Value
 Next
 EmpDynaset.MoveNext
Next

Range("A1:A1").Select

End Sub

Sub ClearData()
 Range("A1:H15").Select
 Selection.ClearContents
 Range("A1:A1").Select
End Sub

	
Assign the procedures (macros) that were created, such as EmpData() and ClearData(), to command buttons in the worksheet for easy access. When you select the buttons, you can clear and refresh the data in the worksheet. In the following screenshot, ClearData() is assigned to the Clear button and EmpData() is assigned to the Refresh button.

[image: a spreadsheet, with sample data for empno, ename, job etc]

Using Microsoft C++

For details about Oracle Objects for OLE with Visual C++, see Oracle Objects for OLE C++ Class Library Developer's Guide, available as online help.

Using Oracle Data Control with Visual Basic

Oracle Data Control, when refreshed, automatically creates a client (if needed), session, database, and dynaset. For a basic application, little or no code is required.

This section shows two ways to set the properties of Oracle Data Control:

	
Using the Visual Basic Properties window

	
Programming the properties

Setting Oracle Data Control Properties with the Properties Window

	
Start Visual Basic and create a new project.

	
In the Components option of the Project menu, add Oracle Data Control to the project.

[image: the Components option of the Project menu]

The Oracle Data Control is added to your Visual Basic tool palette and looks like this:

[image: Components option of the Project menu]

	
To add Oracle Data Control to a project, drag and drop the control onto a form. Resize and position the control.

	
Change the name of the control to OraDataControl. Set up the Connect, DatabaseName, and RecordSource properties as follows to access the Oracle database:

[image: Properties window]

	
When Oracle Data Control is set up, you can drag and drop a Visual Basic control onto the same form and access the data in the control. Set the Data properties to access the data field and source that you want. The following figure shows a TextBox control that sets up display of the employee numbers.

[image: TextBox control that sets up display of the employee numbers]

	
When the project is run, the data identified by the RecordSource property is displayed using Oracle Data Control.

[image: actual form as it appears when it runs, with sample data]

You can also use Microsoft Grid Control to display all the data in the table. You need to add the grid control with the Components option of the Project menu.

Setting Oracle Data Control Properties Programmatically

The following code fragment demonstrates how to programmatically set the properties of Oracle Data Control required to create a dynaset. These are the same properties that you can set with the Properties window in Visual Basic.

	
Create a new project, and then in the Components option of the Project menu, add Oracle Data Control to the project.

	
Drag and drop Oracle Data Control onto a form. Change the name of the control to OraDataControl.

	
After you have inserted Oracle Data Control onto a form, add the following code to the load procedure associated with the form:

...

'Set the username and password.
OraDataControl.Connect = "scott/tiger"

'Set the database name.
OraDataControl.DatabaseName = "ExampleDb"

'Set the record source.
OraDataControl.RecordSource = "select * from emp"

'Refresh the data control.
OraDataControl.Refresh
...

You now have a valid session, database, and dynaset that can be referenced as follows:

	Object	Reference
	orasession	oradatacontrol.oradatabase.orasession
	oradatabase	oradatacontrol.oradatabase
	oradynaset	oradatacontrol.recordset

	
You can access the data in the RecordSource property using Visual Basic controls, such as the TextBox, as shown in the previous example.

Using the Oracle Data Control with MS Visual C++

This example shows how to create a basic Win32 Application with Oracle Data Control using MS Visual C++. This example assumes that both the Oracle data and DB Grid controls were registered on the system.

	
Start the Microsoft Visual C++ program.

	
From the File Menu, select New.

	
In the Projects tab of the New Window, select MFC AppWizard.exe. Enter a project name, such as OO4O, and determine the location of the project. Click OK.

	
In Step 1 of the MFC AppWizard, select Dialog based application, then click Next.

	
In Step 2 of the wizard, make sure the ActiveX Controls box is checked; accept the defaults; and enter a title for the dialog box. Click Next.

	
In Step 3 of the wizard, accept the defaults. Click Next.

	
In Step 4, click Finish. At the New Project Information screen, click OK.

	
In the Project Workspace dialog box, select the ResourceView tab. Expand the Resources folder, then expand the Dialog folder.

	
Double-click the main project dialog box to edit the dialog box.

Note: If you used OO4O as the project name, it is named IDD_OO4O_DIALOG.

	
Delete the default controls that are on the dialog box. Resize the dialog box to make it larger.

	
With the dialog box selected, click the right mouse button to display the menu. Select Properties from the menu. In the General tab of the Properties window, change the caption to Oracle Data Control Example. Close the Properties window.

	
With the dialog box selected, click the right mouse button to display the menu. Select Insert ActiveX Control... from the menu. Select ORADC Control in the window and then click OK.

[image: The Insert ActiveX Control dialog box.]

	
Position the ORADC Control at the bottom of the dialog box. With the data control selected, click the right mouse button to display the menu. Select Properties from the menu.

	
In the General tab of the Properties window, change the ID to IDC_ ORADATACONTROL. Deselect the check mark for Visible so that the control is hidden when the application is run.

	
Display the All tab of the Properties window and set the following:

Connect: scott/tiger
DatabaseName: exampledb
RecordSource: select * from emp

[image: the ORADC Control dialog box]

	
With the dialog box selected, click the right mouse button to display the menu. Select the Insert ActiveX control from the menu. Locate the DBGrid Control and click OK.

	
Position the DBGrid Control at the top of the dialog box and resize it. Display the properties for the control. In the All tab of the Properties window, set the DataSource property to Oracle Data Control (IDC_ORADATACONTROL). Accept the defaults for the other properties. These can be changed later.

	
From the File Menu, select Save All.

	
Build and Execute the project.

	
The DBGrid Control displays the records from the emp table as in the following illustration:

[image: An ORADC Control example]

3 Basic Features

This chapter describes basic features of Oracle Objects for OLE.

This chapter contains these topics:

	
Overview of Client Applications

	
Accessing the Oracle Objects for OLE Automation Server

	
Connecting to Oracle Database

	
Executing Commands

	
Thread Safety

	
Using the Connection Pool Management Facility

	
Detection of Lost Connections

	
PL/SQL Support

	
Transaction Control

	
Microsoft Transaction Server Support

	
Asynchronous Processing

Overview of Client Applications

Oracle Objects for OLE enables client applications to connect to Oracle databases, execute commands, and access and manipulate the results returned. While some flexibility exists in the order in which specific tasks can be performed, every application using OO4O Automation objects performs the following basic steps:

	
Accessing the Oracle Objects for OLE Automation Server

	
Connecting to Oracle Database

	
Executing Commands

	
Disconnect from the servers and free the OO4O objects used

Accessing the Oracle Objects for OLE Automation Server

To connect to an Oracle database with the OO4O Automation Server, you must first create an instance of the server. In Visual Basic (VB), this is usually done by calling the CreateObject method, although the NEW keyword can also be used.

You can use the Visual Basic CreateObject method with either of the following two OO4O server objects. The interfaces of these objects can provide access to OO4O and enable a connection to Oracle Database.

	
OraSession

Highest level object for an application. It manages collections of OraDatabase, OraConnection, and OraDynaset objects.

	
OraServer

Represents a physical connection to a database instance and allows for connection multiplexing

The CreateObject method uses the ID of the component and object as arguments.

Obtaining an OraSession Object

The following script demonstrates how to obtain an OraSession object in Visual Basic. OO4OSession is the object variable that holds an instance of the OraSession object.

Dim OO4OSession as Object
Set OO4OSession = CreateObject(“OracleInProcServer.XOraSession")

or

Dim OO4OSession as OraSession
Set OO4OSession = New OraSessionClass

or

Dim OO4OSession as New OraSessionClass

The following example demonstrates how to obtain an OraSession object in IIS Active Server Pages.

<OBJECT RUNAT=Server SCOPE=APPLICATION ID=OO4OSession
 PROGID="OracleInProcServer.XOraSession">
</OBJECT>

OracleInProcServer.XOraSession is the version independent program ID for OO4O that the Oracle client installation program registers in the Windows registry. It is the symbolic name for a globally unique identifier (CLSID) that identifies the OO4O component.

Obtaining an OraServer Object

You can also use the OraServer object interface for accessing the OO4O Automation Server.

Dim OO4OServer as Object
Set OO4OServer = CreateObject("OracleInProcServer.XOraServer")

Now you can connect to Oracle Database.

	
See Also:

"Connecting to Oracle Database"

Connecting to Oracle Database

Once you have obtained an interface, you can use it to establish a user session in an Oracle database by invoking the OpenDatabase method.

Set EmpDb= OO4OSession.OpenDatabase("ExampleDb", "Scott/Tiger", 0)

or

Set EmpDb= OO4OServer.OpenDatabase("Scott/Tiger")

The variable EmpDb represents a user session. It holds an OraDatabase interface and can be used to send commands to Oracle Database using ExampleDb for the network connection alias and scott/tiger for the user name and password.

	
See Also:

OpenDatabase Method

Using OraServer for Connection Multiplexing

The OraServer interface allows multiple user sessions to share a physical network connection to the database. This reduces resource usage on the network and the database, and allows for better server scalability. However, execution of commands by multiple user sessions is serialized on the connection. Therefore, this feature is not recommended for use in multithreaded applications in which parallel command execution is needed for performance.

The following code example shows how to use the OraServer interface to establish two user sessions:

Set OO4OServer = CreateObject("OracleInProcServer.XOraServer")
OO4OServer.Open("ExampleDb")
Set EmpDb1 = OO4OServer.OpenDatabase("Scott/Tiger")
Set EmpDb2 = OO4OServer.OpenDatabase("Scott/Tiger")

You can also obtain user sessions from a previously created pool of objects.

	
See Also:

"Using the Connection Pool Management Facility"

Executing Commands

Commands that can be sent to Oracle databases using OO4O Automation objects are divided into the following categories:

	
"Queries"

	
"Data Manipulation Language Statements"

Queries

Queries are statements that retrieve data from a database. A query can return zero, one, or many rows of data. All queries begin with the SQL keyword SELECT, as in the following example:

SELECT ename, empno FROM emp

In OO4O, SELECT statements such as this are used with the CreateDynaset method of the OraDatabase interface to execute queries. This method returns an OraDynaset object that is then used to access and manipulate the set of rows returned. An OraDynaset object encapsulates the functions of a client-side scrollable (forward and backward) cursor that allows browsing the set of rows returned by the query it executes.

	
Note:

Caching result sets on the client's local disk can be disabled if backward scrollability is not a requirement. This is strongly recommended and can provide significant performance improvements. Passing the ORADYN_NOCACHE option in the CreateDynaset method disables caching. This constant is defined in the oraconst.txt file and can be found in the root directory where OO4O is installed, ORACLE_BASE\\ORACLE_HOME\OO4O.

	
See Also:

	
OraDynaset Object

	
CreateDynaset Method

The following code example shows how to connect to the ExampleDb database, execute a query, move through the result set of rows, and displays the column values of each row in a simple message box.

Set OO4OSession = CreateObject(“OracleInProcServer.XOraSession")
Set EmpDb = OO4OSession.OpenDatabase("ExampleDb", "Scott/Tiger", 0)

' SELECT query described above used in next line
Set Employees = EmpDb.CreateDynaset("SELECT ename, empno FROM" & _
 "emp",ORADYN_NOCACHE)
While NOT Employees.EOF
 MsgBox "Name: " & Employees("ENAME").value & "Employee #: " & _
 Employees("EMPNO").value
Employees.MoveNext
Wend

In the previous example, Employees("ENAME") and Employees("EMPNO") return values of the ENAME and the EMPNO columns from the current row in the result set, respectively. An alternative method of accessing the column values is to use the positions of the columns, Employees(0) for the ENAME column and Employee(1) for EMPNO. This method obtains the column value faster than referencing a column by its name.

The Employees.MoveNext statement in the example sets the current row of the result set to the next row. The EOF property of the OraDynaset is set to True if an attempt is made to move past the last row in the result set.

The MoveNext method is one navigational method in the OraDynaset interface. Other methods include MoveFirst, MoveLast, MoveNext, MovePrevious, MoveNextn, MovePreviousn, MoveRel, and MoveTo.

An OraDynaset object also provides methods to update and delete rows retrieved from base tables or views that can be updated. In addition, it provides a way to insert new rows. See "OraDynaset Object".

Queries can also require the program to supply data to the database using input (bind) variables, as in the following example:

SELECT name, empno
 FROM employees
 WHERE ename = :ENAME

In the SQL statement, :ENAME is a placeholder for a value that is supplied by the application.

In OO4O, the OraParameter object is used to supply data values for placeholders.

To define a parameter, use the OraParameters collection object. This object is obtained by referencing the Parameters property of an OraDatabase interface. The OraParameters collection provides methods for adding, removing, and obtaining references to OraParameter objects.

The following statement adds an input parameter, ORAPARM_INPUT, to the OraParameters collection contained in the EmpDb object.

EmpDb.Parameters.Add "ENAME", "JONES", ORAPARM_INPUT

ENAME is the name of the parameter and must be the same as the name of the placeholder in the SQL statement, :ENAME in the sample code. JONES is provided as the initial value, and ORAPARM_INPUT notifies OO4O that it is used as an INPUT parameter.

The following example creates an OraDynaset object that contains only one row for an employee whose name is 'JONES'.

Set OO4OSession = CreateObject(“OracleInProcServer.XOraSession")
Set EmpDb = OO4OSession.OpenDatabase("ExampleDb", "Scott/Tiger", 0)
EmpDb.Parameters.Add "ENAME", "JONES", ORAPARM_INPUT
Set Employees = EmpDb.CreateDynaset("SELECT ename, empno FROM emp" & _
 "WHERE ename = :ENAME",ORADYN_NOCACHE)

While NOT Employees.EOF
 MsgBox "Name: " & Employees("ename").value & "Employee #: " & _
 Employees("empno").value
 Employees.MoveNext
Wend

	
See Also:

	
OraParameter Object

	
OraParameters Collection

	
MoveFirst, MoveLast, MoveNext, and MovePrevious Methods

	
MovePreviousn, MoveNextn, MoveRel, and MoveTo Methods

	
OraDatabase Object

Data Manipulation Language Statements

Data manipulation language (DML) statements can change data in the database tables. For example, DML statements are used to:

	
Updating Database Records

	
Deleting Rows from a Table

	
Inserting New Rows into a Table

The OraDatabase interface in OO4O provides two methods for executing DML statements: ExecuteSQL and CreateSQL. The following discussion describes how these methods can be used to execute various types of DML statements.

	
See Also:

	
ExecuteSQL Method

	
CreateSQL Method

Updating Database Records

The following example uses the ExecuteSQL method to execute an UPDATE statement.

Set OO4OSession = CreateObject("OracleInProcServer.XOraSession")
Set EmpDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0)
EmpDb.Parameters.Add "ENAME", "JONES", ORAPARM_INPUT
EmpDb.ExecuteSQL ("UPDATE emp SET sal = sal + 1000 WHERE ename = :ENAME")

Another way to execute the UPDATE statement is to use the CreateSQL method:

Set sqlStatement = EmpDb.CreateSQL("UPDATE emp SET sal = sal + 1000" & _
 "WHERE ename = :ENAME", 0&)

Both the ExecuteSQL and CreateSQL methods execute the UPDATE statement provided. The difference is that the CreateSQL method returns a reference to an OraSQLStmt interface, in addition to executing the statement. This interface can later be used to execute the same query using the Refresh method. Because the query has already been parsed by the database, subsequent execution of the same query results in faster execution, especially if bind parameters are used.

For example, to increase the salary of an employee named KING by 1000, change the value of the placeholder, and refresh the sqlStatement object as follows:

EmpDb.Parameters("ENAME").Value = "KING" sqlStatement.Refresh

For DML statements that are frequently executed, using parameters with OraSqlStmt objects is more efficient than using the ExecuteSql statement repeatedly. When the Refresh method of the OraSQLStmt is executed, the statement no longer needs to be parsed by the database. In application servers, such as Web servers, where the same queries are frequently executed with different parameter values, this can lead to significant savings in Oracle Database processing.

	
See Also:

	
ExecuteSQL Method

	
CreateSQL Method

	
OraSQLStmt Object

Deleting Rows from a Table

The following example uses the CreateSQL method to delete rows from the emp table.

Set OO4OSession = CreateObject("OracleInProcServer.XOraSession")
Set EmpDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0)
EmpDb.Parameters.Add "ENAME", "JONES", ORAPARM_INPUT
Set sqlStatement = EmpDb.CreateSQL ("DELETE from emp WHERE ename = :ENAME")

To delete another row from the emp table, the value of the parameter is changed, and the sqlStatement object is refreshed.

EmpDb.Parameters("ENAME").Value = "KING" sqlStatement.Refresh

Inserting New Rows into a Table

The following example adds a new row into the table.

Set OO4OSession = CreateObject("OracleInProcServer.XOraSession")
Set EmpDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0)
EmpDb.ExecuteSQL ("INSERT INTO emp (empno, ename, job, mgr, deptno)" & _
 "VALUES (1233,'OERTEL', 'WRITER', 7839, 30) ")

Inserting Multiple Rows Using Parameter Arrays

You can use parameter arrays to fetch, update, insert, or delete multiple rows in a table. Using parameter arrays for manipulating multiple rows is more efficient than executing multiple statements that operate on individual rows.

The following example demonstrates how the AddTable method of the OraDatabase interface is used to create parameter arrays. The arrays are then populated with values, and used as placeholders in the execution of an INSERT statement that inserts two rows into the emp table.

Set OO4OSession = CreateObject("OracleInProcServer.XOraSession")
Set EmpDb = OO4OSession.OpenDatabase("Exampledb", "scott/tiger", 0)

'Creates parameter arrays for the empno, ename, job, and salary columns
EmpDb.Parameters.AddTable "EMPNO_ARRAY", ORAPARM_INPUT, ORATYPE_NUMBER, 2
EmpDb.Parameters.AddTable "ENAME_ARRAY", ORAPARM_INPUT, ORATYPE_VARCHAR2, 2, 10
EmpDb.Parameters.AddTable "JOB_ARRAY", ORAPARM_INPUT, ORATYPE_VARCHAR2, 2, 9
EmpDb.Parameters.AddTable "MGR_ARRAY", ORAPARM_INPUT, ORATYPE_NUMBER, 2
EmpDb.Parameters.AddTable "DEPT_ARRAY", ORAPARM_INPUT, ORATYPE_VARCHAR2, 2, 10
Set EmpnoArray = EmpDb.Parameters("EMPNO_ARRAY")
Set EnameArray = EmpDb.Parameters("ENAME_ARRAY")
Set JobArray = EmpDb.Parameters("JOB_ARRAY")
Set MgrArray = EmpDb.Parameters("MGR_ARRAY")
Set DeptArray = EmpDb.Parameters("DEPT_ARRAY")

'Populate the arrays with values
EmpnoArray(0) = 1234
EnameArray(0) = "JORDAN"
JobArray(0) = "SALESMAN"
MgrArray(0) = 7839
DeptArray(0) = 30
EmpnoArray(1) = 1235
EnameArray(1) = "YOUNG"
JobArray(1) = "SALESMAN"
MgrArray(1) = 7839
DeptArray(1) = 30

'Insert two rows
EmpDb.ExecuteSQL ("INSERT INTO emp (empno, ename, job, mgr, deptno) VALUES" & _
 "(:EMPNO_ARRAY,:ENAME_ARRAY, :JOB_ARRAY,:MGR_ARRAY, :DEPT_ARRAY)")

	
See Also:

AddTable Method

Thread Safety

OO4O is thread-safe and can be used effectively in multithreaded applications and environments such as the Microsoft Internet Information Server (IIS). OO4O supports both the free and apartment threading models in COM/DCOM.

Access to OO4O object attributes is serialized when used with multiple threads of execution. To achieve maximum concurrency in query execution in a multithreaded application with OO4O, avoid sharing objects in multiple threads.

Avoid using commit and rollback operations on a session object that is shared among multiple threads because all connections associated with that session are committed or rolled back. To perform commit and rollback operations on a session object, create a unique session object for each database object used.

Using the Connection Pool Management Facility

The connection pool in OO4O is a pool of OraDatabase objects. An OO4O connection pool is a group of (possibly) already connected OraDatabase objects. For applications that require constant connections and disconnections to the database, such as ASP Web applications, using a connection pool results in enhanced performance.

Creating the Connection Pool

The connection pool is created by invoking the CreateDatabasePool method of the OraSession interface. An OraDatabase object represents a connection to an Oracle database and contains methods for executing SQL statements and PL/SQL blocks.

	
See Also:

CreateDatabasePool Method

Obtaining from and Returning Objects to the Pool

To retrieve an OraDatabase object from the pool, call the GetDatabaseFromPool method. This function returns a reference to an OraDatabase object.

	
See Also:

GetDatabaseFromPool Method

Destroying the Pool

The pool is implicitly destroyed if the parent session object that it belongs to is destroyed. It can also be destroyed at any time by invoking the DestroyDatabasePool method.

	
See Also:

DestroyDatabasePool Method

Accessing the Pool attributes

The following are the database pool properties. These properties are read-only:

	
DbPoolMaxSize - maximum pool size

	
DbPoolCurrentSize - current size of the pool

	
DbPoolInitialSize - initial size of the pool

Processing Transactions Using the Database from the Connection Pool

The following example shows the recommended way to process transactions:

set Odb = OraSession.GetDatabaseFromPool(0)
Odb.Connection.BeginTrans
…

Odb.Connection.CommitTrans

Detection of Lost Connections

OO4O, linked with clients from releases 8.1.6 or higher, supports detection of lost connections.

Applications can verify the status of the database connection by invoking the ConnectionOK property of the OraDatabase object. The OraSession.GetDatabaseFromPool method now verifies the connection before returning the OraDatabase to the application.

If the connection is lost, the GetDatabaseFromPool method drops the lost connection and fetches a new connection.

Dim MyDatabase As OraDatabase
Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set MyDatabase = MySession.OpenDatabase("ora90", "scott/tiger", 0&)

' Other code
...
' Check if the database connection has not timed out
if MyDatabase.ConnectionOK
 MsgBox " The database connection is valid"
endif

	
See Also:

	
ConnectionOK Property

	
OraDatabase Object

	
GetDatabaseFromPool Method

PL/SQL Support

PL/SQL is the Oracle procedural extension to the SQL language. PL/SQL processes complicated tasks that simple queries and SQL data manipulation language statements cannot perform. Without PL/SQL, Oracle Database would have to process SQL statements one at a time. Each SQL statement results in another call to the database and consequently higher performance overhead. In a networked environment, the overhead can be significant. Every time a SQL statement is issued, it must be sent over the network, creating more traffic. However, with PL/SQL, an entire block of statements can be sent to a database at one time. This can greatly reduce communication between an application and a database.

PL/SQL allows a number of constructs to be grouped into a single block and executed as a unit. These include:

	
One or more SQL statements

	
Variable declarations

	
Assignment statements

	
Procedural control statements (IF...THEN...ELSE statements and loops)

	
Exception handling statements

	
Calls to other Oracle stored procedures and stored functions

	
Special PL/SQL features such as records, tables, and cursor FOR loops

	
Cursor variables

PL/SQL Integration with Oracle Objects for OLE

Oracle Objects for OLE (OO4O) provides tight integration with PL/SQL stored procedures. OO4O supports PL/SQL stored procedures, PL/SQL tables, PL/SQL, cursors and so on. The PL/SQL bind variables are supported through the OraParameter Add method.

The stored procedure block is executed either through the CreateSQL method or the ExecuteSQL method.

Oracle Objects for OLE can return a cursor created in the stored procedure or anonymous PL/SQL block as a READONLY dynaset object.To do this, you must assign the cursor variable as an OraParameter object of type ORATYPE_CURSOR.

After executing the stored procedure, the Value property of this OraParameter object returns a read-only dynaset object.

This dynaset object can be treated the same as other dynaset objects.

	
See Also:

	
AddTable Method

	
Add Method

	
ExecuteSQL Method

	
CreateSQL Method

	
Value Property

	
OraParameter Object

Executing PL/SQL Blocks Using ExecuteSQL and CreateSQL

In OO4O, you can use the ExecuteSQL or CreateSQL methods of the OraDatabase object to execute PL/SQL blocks, as the following example shows:

Set OO4OSession = CreateObject("OracleInProcServer.XOraSession")
Set EmpDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0)

'Add EMPNO as an Input parameter and set its initial value.
EmpDb.Parameters.Add "EMPNO", 7369, ORAPARM_INPUT
EmpDb.Parameters("EMPNO").ServerType = ORATYPE_NUMBER

'Add ENAME as an Output parameter and set its initial value.
EmpDb.Parameters.Add "ENAME", 0, ORAPARM_OUTPUT
EmpDb.Parameters("ENAME").ServerType = ORATYPE_VARCHAR2

'Add SAL as an Output parameter
EmpDb.Parameters.Add "SAL", 0, ORAPARM_OUTPUT
EmpDb.Parameters("SAL").ServerType = ORATYPE_NUMBER

'Add COMMISSION as an Output parameter and set its initial value.
EmpDb.Parameters.Add "COMMISSION", 0, ORAPARM_OUTPUT
EmpDb.Parameters("COMMISSION").ServerType = ORATYPE_NUMBER
EmpDb.ExecuteSQL ("BEGIN SELECT ename, sal, comm INTO :ENAME, :SAL," & _
 ":COMMISSION FROM emp WHERE empno = :EMPNO; END;")

'display the values of Ename, Sal, Commission parameters
MsgBox "Name: " & EmpDb.Parameters("ENAME").Value
MsgBox "Salary " & EmpDb.Parameters("SAL").Value
MsgBox "Commission: " & EmpDb.Parameters("COMMISSION").Value

The following example executes a PL/SQL block that calls a stored procedure using the CreateSQL method in OO4O. The procedure takes a department number as input and returns the name and location of the department.

This example is used for creating the stored procedure in the employee database.

CREATE OR REPLACE PACKAGE Department as
PROCEDURE GetDeptName (inDeptNo IN NUMBER, outDeptName OUT VARCHAR2,
 outDeptLoc OUT VARCHAR2);
END Department;
/

CREATE OR REPLACE PACKAGE BODY Department as
PROCEDURE GetDeptName(inDeptNo IN NUMBER, outDeptName OUT VARCHAR2,
 outDeptLoc OUT VARCHAR2) is
BEGIN
 SELECT dname, loc into outDeptName, outDeptLoc from DEPT
 WHERE deptno = inDeptNo;
 END;
END Department;
/

The following example executes the previously created procedure to get the name and location of the department where deptno is 10.

Set OO4OSession = CreateObject("OracleInProcServer.XOraSession")
Set EmpDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0)
empDb.Parameters.Add "DEPTNO", 10, ORAPARM_INPUT
empDb.Parameters("DEPTNO").ServerType = ORATYPE_NUMBER
empDb.Parameters.Add "DNAME", 0, ORAPARM_OUTPUT
empDb.Parameters("DNAME").ServerType = ORATYPE_VARCHAR2
empDb.Parameters.Add "DLOC", 0, ORAPARM_OUTPUT
empDb.Parameters("DLOC").ServerType = ORATYPE_VARCHAR2
Set PlSqlStmt = empDb.CreateSQL("Begin Department.GetDeptname" & _
 "(:DEPTNO, :DNAME, :DLOC); end;", 0&)

'Display Department name and location
MsgBox empDb.Parameters("DNAME").Value & empDb.Parameters("DLOC").Value

	
See Also:

	
ExecuteSQL Method

	
CreateSQL Method

Returning PL/SQL Cursor Variables

PL/SQL cursor variables are mainly used for accessing one or more query result sets from PL/SQL blocks and stored procedures and functions. The OraParameter object in OO4O can be used to hold a PL/SQL cursor variable.

The OraParameter object representing a cursor variable should be of type ORATYPE_CURSOR, and can only be defined as an output variable. After the PL/SQL block is executed, the Value property of the OraParameter object contains a read-only OraDynaset object. This OraDynaset object can be used to scroll through the returned rows.

In some cases, it is better to use the CreateSQL method for executing PL/SQL procedures than the ExecuteSQL method. The Refresh method on the OraSQLStmt object can result in modified PL/SQL cursors. If the CreateSQL method is used, these modified cursors are automatically associated with the existing dynaset object, and no new dynaset object is created.

	
See Also:

"Executing PL/SQL Blocks Using ExecuteSQL and CreateSQL"

You cannot set the SQL property of the dynaset object; this raises an error.

	
Note:

PL/SQL stored procedures that contain cursors as table parameters are not supported.

You should call the Remove method on the parameter object. This helps in cleaning the dynaset object and local temporary cache files.

The following example contains a stored procedure that gets the cursors for the emp and dept tables and a small application that executes the procedure.

Stored Procedure

CREATE PACKAGE EmpAndDept AS
 cursor emp is select * from emp;
 cursor dept is select * from dept;
 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
 TYPE DeptCurTyp IS REF CURSOR RETURN dept%ROWTYPE;
 PROCEDURE GetEmpAndDeptData (emp_cv OUT EmpCurTyp,
 dept_cv OUT DeptCurTyp);
END EmpAndDept;/

CREATE PACKAGE BODY EmpAndDept AS
 PROCEDURE GetEmpAndDeptData (emp_cv OUT EmpCurTyp,
 dept_cv OUT DeptCurTyp) IS
 BEGIN
 OPEN emp_cv FOR SELECT * FROM emp;
 OPEN dept_cv FOR SELECT * FROM dept; END GetEmpAndDeptData;
END EmpAndDept;
/

Application

Set OO4OSession = CreateObject("OracleInProcServer.XOraSession")
Set EmpDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0)
empDb.Parameters.Add "EMPCUR", 0, ORAPARM_OUTPUT
empDb.Parameters("EMPCUR").serverType = ORATYPE_CURSOR
empDb.Parameters.Add "DEPTCUR", 0, ORAPARM_OUTPUT
empDb.Parameters("DEPTCUR").serverType = ORATYPE_CURSOR
Set PlSqlStmt = empDb.CreateSql("Begin EmpAndDept.GetEmpAndDeptData (:EMPCUR," & _
 ":DEPTCUR); end;", 0)
Set EmpDynaset = empDb.Parameters("EmpCur").Value
Set DeptDynaset = empDb.Parameters("DeptCur").Value
MsgBox EmpDynaset.Fields("ENAME").Value
MsgBox DeptDynaset.Fields("DNAME").Value

	
See Also:

	
OraParameter Object

	
ServerType Property

	
Value Property

	
OraDynaset Object

	
OraSQLStmt Object

	
DynasetOption Property

	
CreateSQL Method

	
Refresh Method

	
Remove Method

	
DynasetCacheParams Method

	
Recordset Property

Returning PL/SQL Tables

PL/SQL tables are mainly used for accessing arrays of PL/SQL data. The OraParamArray object in OO4O can be used to hold a PL/SQL cursor variable.

The OraParamArray object representing a table variable should be created first the using the AddTable method. Table values are accessed or set using the Get_Value and Put_Value methods of the OraParamArray object.

The PL/SQL procedure GetEmpNamesInArray returns an array of ENAME values for array of EMPNOs.

CREATE PACKAGE EmpNames AS
 type NUMARRAY is table of NUMBER index by
 BINARY_INTEGER; --Define EMPNOS array
 type VCHAR2ARRAY is table of VARCHAR2(10) index by
 BINARY_INTEGER; --Define ENAMES array
 PROCEDURE GetEmpNamesInArray (ArraySize IN INTEGER,
 inEmpnos IN NUMARRAY, outEmpNames OUT VCHAR2ARRAY);
END EmpNames; /

CREATE PACKAGE BODY EmpNames AS
 PROCEDURE GetEmpNamesInArray (ArraySize IN INTEGER,
 inEmpnos IN NUMARRAY, outEmpNames OUT VCHAR2ARRAY) is
 BEGIN
 FOR I in 1..ArraySize loop
 SELECT ENAME into outEmpNames(I) from EMP
 WHERE EMPNO = inEmpNos(I);
 END LOOP;
END;

END EmpNames; /

The following example executes the previous procedure to get the ename table.

Set OO4OSession = CreateObject("OracleInProcServer.XOraSession")
Set Empdb = OO4OSession.OpenDatabase("Exampledb", "scott/tiger", 0)
Empdb.Parameters.Add "ArraySize", 3, ORAPARM_INPUT
Empdb.Parameters.AddTable "EMPNOS", ORAPARM_INPUT, ORATYPE_NUMBER, 3, 22
Empdb.Parameters.AddTable "ENAMES", ORAPARM_OUTPUT, ORATYPE_VARCHAR2, 3, 10
Set EmpnoArray = Empdb.Parameters("EMPNOS")
Set EnameArray = Empdb.Parameters("ENAMES")

'Initialize the newly created input parameter table EMPNOS
EmpnoArray(0) = 7698
EmpnoArray(1) = 7782
EmpnoArray(2) = 7654
Empdb.ExecuteSQL ("Begin EmpNames.GetEmpNamesInArray(:ArraySize," & _
 ":EMPNOS, :ENAMES); End;")
MsgBox EnameArray(0)
MsgBox EnameArray(1)
MsgBox EnameArray(2)

	
See Also:

	
Get_Value Method

	
Put_Value Method

Executing Data Definition Language Statements

Data Definition Language (DDL) statements manage schema objects in the database. DDL statements create new tables, drop old tables, and establish other schema objects. They also control access to schema objects. For example:

Set OO4OSession = CreateObject("OracleInProcServer.XOraSession")
Set EmpDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0)
EmpDb.ExecuteSQL("create table employees (name VARCHAR2(20)," & _
 "ssn VARCHAR2(12), empno NUMBER(6), mgr NUMBER(6), salary NUMBER(6)")

EmpDb.ExecuteSQL("GRANT UPDATE, INSERT, DELETE ON employees TO donna")
EmpDb.ExecuteSQL("REVOKE UPDATE ON employees FROM jamie")

DDL statements also allow you to work with objects in Oracle Database, for example:

Set OO4OSession = CreateObject("OracleInProcServer.XOraSession")
Set EmpDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0)
EmpDb.ExecuteSQL("create type person_t as object (name VARCHAR2(30)," & _
 "ssn VARCHAR2(12),address VARCHAR2(50))")
EmpDb.ExecuteSQL("create table person_tab OF person_t")

Transaction Control

A transaction is a logical unit of work that comprises one or more SQL statements executed by a single user. A typical example is transferring money from one bank account to another. Two operations take place:

	
Money is taken out of one account.

	
Money is put into the other account.

These operations need to be performed together. If one operation was completed but not the other (for example, if the network connection went down), the bank's books would not balance correctly.

Normally, when you execute an update method on a dynaset, the changes are committed to the database immediately. Each operation is treated as a distinct transaction. The BeginTrans, CommitTrans, and Rollback transactional control methods of the OraSession object allow operations to be grouped into larger transactions.

The BeginTrans method tells the session that you are starting a group of operations. The CommitTrans method makes the entire group of operations permanent. The Rollback method cancels the entire group. The CommitTrans and Rollback methods end the transaction, and the program returns to normal operation: one transaction for each operation. Experienced Oracle Database users should note the following differences between the operation of Oracle Objects for OLE and many Oracle Database tools:

	
Oracle Database tools, such as SQL*Plus, execute as if the BeginTrans method was called when the tool was started. This means that updates are not committed immediately; they are held until a commit or rollback is executed.

	
SQL*Plus starts a new transaction every time a commit or rollback is executed.

	
SQL*Plus does not take a row lock in the case of a failed UPDATE or DELETE statement. However, in the case of OO4O, if UPDATE or DELETE methods fail on a given row in a dynaset in a global transaction (such as cases in which you issued a BeginTrans method), be aware that locks remain on those rows. These locks persist until you call a CommitTrans or Rollback method.

If you are connected to more than one database and use the transaction methods, be aware that Oracle Objects for OLE commits each database separately. This is not the same as the two-phase commit that Oracle Database provides. If your application needs to guarantee data integrity across databases, connect to a single database and then access additional databases by way of the Oracle Database link feature. This method gives you the benefit of the Oracle Database two-phase commit. Consult your Oracle Database documentation for more information about two-phase commit, database links, and distributed transactions.

Transactions apply only to the Data Manipulation Language (DML) portion of the SQL language (such as INSERT, UPDATE, and DELETE statements). Transactions do not apply to the Data Control Language (DCL) or Data Definition Language (DDL) portions (such as CREATE, DROP, and ALTER statements) of the SQL language. DCL and DDL commands always force a commit, which in turn commits everything done previously.

	
See Also:

	
BeginTrans Method

	
CommitTrans Method

	
OraConnection Object

	
OraSession Object

	
ResetTrans Method

	
Rollback Method

Microsoft Transaction Server Support

Oracle database transactions initiated in Oracle Objects for OLE (OO4O) automatically participate in global transactions coordinated by the Microsoft Distributed Transaction Coordinator (DTC) in the Microsoft Transaction Server (MTS), if all the following conditions are true:

	
The OpenDatabase method of OraSession uses the ORADB_ENLIST_IN_MTS option.

	
OO4O determines that it is running in the context of a global transaction in MTS.

	
Oracle Service for Microsoft Transaction Server is installed and running.

	
See Also:

	
Oracle Services for Microsoft Transaction Server Developer's Guide

	
OpenDatabase Method

Asynchronous Processing

In OO4O Automation, you can execute commands using asynchronous processing. This enables you to execute SQL statements and PL/SQL blocks in nonblocking mode. Nonblocking mode is an option of the CreateSQL method.

	
See Also:

CreateSQL Method

Nonblocking Mode

In nonblocking mode, control is returned to the application immediately even if the execution is not complete. This allows the application to execute other tasks that are not dependent on the results of the last execution.

To enable nonblocking mode, pass in the ORASQL_NONBLK option to the CreateSQL method while creating the OraSQLStmt object. If this mode is not specified, the OraSQLStmt object executes in blocking mode (default behavior).

'Create the statement in NON-BLOCKING mode
OraSQL = Oradb.CreateSQL("delete from emp",ORASQL_NONBLK)

An OraSQLStmt object created in nonblocking mode executes in nonblocking mode for the lifetime of the object.

	
See Also:

OraSQLStmt Object

This section contains the following topics:

	
Checking the Status of a Nonblocking Operation

	
Canceling a Nonblocking Operation

	
Executing Multiple Queries in Asynchronous Mode

	
Limitations on Nonblocking

Checking the Status of a Nonblocking Operation

To determine the status of an OraSQLStmt object executing asynchronously, applications need to poll the NonBlockingState property. The NonBlockingState property returns ORASQL_STILL_EXECUTING if execution is still pending or ORASQL_SUCCESS if execution has completed successfully.

Any failures are thrown as exceptions.

On successful completion, the output parameters, if any, are placed in the bound parameter buffers. The application can then access the parameters as in the blocking case.

The following example demonstrates the usage of the NonBlockingState property.

Dim OraDatabase as OraDatabase
Dim OraStmt as OraSQLStmt
Dim stat as long
Dim OraSess as OraSession
Set OraSess = CreateObject("OracleInProcServer.XOraSession")
Set OraDatabase =OraSess.OpenDatabase("ExampleDb", "scott/tiger", 0)

'execute the select statement with NONBLOCKING mode on
set OraStmt = OraDatabase.CreateSQL ("update emp set sal = sal + 1000", _
 ORASQL_NONBLK)

'Check if the call has completed
stat = OraStmt.NonBlockingState
while stat = ORASQL_STILL_EXECUTING
MsgBox "Asynchronous Operation under progress"
stat = OraStmt.NonBlockingState
wend
MsgBox "Asynchronous Operation completed successfully"

	
See Also:

NonBlockingState Property

Canceling a Nonblocking Operation

You can cancel a nonblocking operation that is underway by calling the Cancel method on the OraSQLStmt object that is executing the asynchronous call.

Dim OraDatabase as OraDatabase
Dim OraStmt as OraSQLStmt
Dim stat as long
Dim OraSess as OraSession
Set OraSess = CreateObject("OracleInProcServer.XOraSession")
Set OraDatabase =OraSess.OpenDatabase("ExampleDb", "scott/tiger", 0)

'execute the select statement with NONBLOCKING mode on
set OraStmt = OraDatabase.CreateSQL ("update emp set sal = sal + 1000", _
 ORASQL_NONBLK)

'Check if the call has completed
stat = OraStmt.NonBlockingState
if stat = ORASQL_STILL_EXECUTING
MsgBox "Cancelling the asynchronous operation that is underway"
OraStmt.Cancel
End if

	
See Also:

Cancel Method

Executing Multiple Queries in Asynchronous Mode

Multiple queries can be executed in asynchronous mode. In this example, while the first connection is executing a non-blocking call, the second connection executes a SQL statement in blocking mode.

Dim OraSess as OraSession
Dim OraServ as OraServer
Dim OraDb1 as OraDatabase
Dim OraDb2 as OraDatabase
Dim OraStmtnonblk as OraSQLStmt
Dim OraStmtblk as OraSQLStmt
Dim stat as long
set OraSess = CreateObject("OracleInProcServer.XOraSession")
set OraDb1 = OraSess.OpenDatabase("exampledb","scott/tiger",0&)
Set OraServ = CreateObject("OracleInProcServer.XOraServer")
set OraDb2 = OraServ.OpenDatabase("Exampledb","scott/tiger",0&)

'execute the select statement with NONBLOCKING mode on
set OraStmtnonblk = OraDb1.CreateSQL ("update emp set sal = sal + 1000", _
 ORASQL_NONBLK)

'Check if the call has completed
stat = OraStmt.NonBlockingState
while stat = ORASQL_STILL_EXECUTING
 MsgBox "Asynchronous Operation under progress"
 stat = OraStmt.NonBlockingState
wend
 MsgBox "Asynchronous Operation completed successfully"

'execute on the second connection in BLOCKING mode
set OraStmtblk = OraDb2.CreateSQL ("update emp set sal = sal + 500",0&)

Limitations on Nonblocking

The following are limitations on nonblocking mode:

	
When a nonblocking operation is running on an OraSQLStmt object, you cannot change the properties or attributes of this object, as it can affect the execution that is in progress.

	
You cannot create an OraSQLStmt object in nonblocking mode if there are other objects that are already instantiated on the connection. In other words, creating an OraSQLStmt object to execute in nonblocking mode only succeeds if no other objects, such as OraDynaset and OraAQ, are currently active on the same database session. The only exceptions are OraParameter and OraObject objects. These are permitted, as they may be required for the nonblocking execution.

	
See Also:

"Executing Multiple Queries in Asynchronous Mode"

4 Advanced OO4O Features

This chapter describes advanced Oracle Objects for OLE features.This chapter contains these topics:

	
Support for Oracle Object-Relational and LOB Data Types

	
Instantiating Oracle LOBs, Objects, and Collections

	
Using Large Objects (LOBs)

	
Oracle Object Data Types

	
Oracle Collections

	
Advanced Queueing Interfaces

	
Database Events

	
Application Failover Notifications

	
XML Generation

	
Datetime and Interval Data Types

	
Database Schema Objects

Support for Oracle Object-Relational and LOB Data Types

Oracle Objects for OLE provides support for accessing and manipulating instances of REFs, value instances, variable-length arrays (VARRAYs), nested tables, and large objects (LOBs) in an Oracle database.

Table 4-0 illustrates the containment hierarchy for instances of all types in Oracle Objects for OLE.

Figure 4-1 Object-Relational and LOB Data Types Diagram

[image: Object hierarchy starting with OraField and OraParameter]

Instances of these types can be fetched from the database or passed as input or output variables to SQL statements and PL/SQL blocks, including stored procedures and functions. All instances are mapped to COM Automation interfaces that provide methods for dynamic attribute access and manipulation. These interfaces can be obtained from:

	
The Value property of an OraField object in a dynaset.

	
The Value property of an OraParameter object used as an input or an output parameter in SQL Statements or PL/SQL blocks.

	
An attribute of another object/REF instance.

	
An element in a collection (VARRAY or a nested table).

Instantiating Oracle LOBs, Objects, and Collections

Oracle Objects for OLE provides COM Automation interfaces for working with LOBs, Oracle objects, and collection types. These interfaces provide methods and properties to access data associated with LOBs, Oracle objects, and collection instances.

Oracle LOBs, Objects, and Collections

Table 4-1 lists Oracle LOBs, Objects, and collection types with associated OO4O interfaces.

Table 4-1 Oracle LOBs, Objects, and Collections

	Type	OO4O Interface
	
Object

	
OraObject

	
REF

	
OraRef

	
VARRAY and Nested Table

	
OraCollection

	
BLOB

	
OraBlob

	
CLOB

	
OraClob

	
BFILE

	
OraBFile

How the preceding interfaces are retrieved in OO4O depend on how they are stored in the database or accessed in a SQL statement. These are the possible scenarios:

	
Column of a table

If a table contains LOBs, object types, and collections as columns and the dynaset SELECT statement is based on this table, then the Value property of the OraField object representing that column returns corresponding OO4O interfaces for that type.

	
Bind variable in a SQL statement or PL/SQL block

If a SQL statement or PL/SQL block has LOBs, object types, and collections as bind variables, then an OraParameter object should be created with a corresponding server type using the Add method. The Value property of the OraParameter object representing that bind variable returns the corresponding OO4O interfaces for that type.

	
Attribute of an Oracle object instance

If an Oracle object instance has LOBs, object types, or collections as attributes, then the corresponding OO4O interface for any attribute is retrieved by using the subscript or name of the attribute from the OraObject or OraRef, or by using the Value property of an OraAttribute object.

	
Element of VARRAY and nested table

If an Oracle VARRAY and nested table has object types and REF as its elements, then the corresponding OO4O interface is retrieved using the element index as the subscript from the OraCollection object.

When OO4O interfaces for these types are retrieved as part of a dynaset, then the OO4O interfaces represent instances of LOBs, objects, and collection types for the current row of the dynaset. If the current row changes due to a move operation, then the OO4O interfaces represent instances of LOBs, objects, and collection types for the new current row. When OO4O interfaces for these types are retrieved as part of an OraParameter object and the OraParameter value changes to due to a OraSQLStmt Refresh method, then the OO4O interface represents a new instance LOB, object, and collection type for that OraParameter.

Internally, OO4O maintains one OO4O interface for each OraField, OraParameter, and OraAttribute object. To retain the instance of LOBs, objects, and collection types independent of a dynaset move operation or an OraSQLStmt refresh operation, use the Clone method on the corresponding OO4O interface. This method makes a copy of LOBs, objects, and collection types instance and returns a corresponding OO4O interface associated with that copy.

Using Large Objects (LOBs)

The large object (LOB) data types (BLOB, CLOB, NCLOB, and BFILE) can provide storage for large blocks of unstructured data, such as text, images, video clips, and sound waveforms, up to 4 gigabytes in size. They provide efficient, random, piece-wise access to the data. In Oracle Objects for OLE, instances of LOB data types are represented as interfaces.

	
See Also:

	
OraBLOB, OraCLOB Objects

	
OraBFILE Object

	
"Schema Objects Used in LOB Data Type Examples" for schema objects used in the OraLOB and BFILE examples

This section includes the following topics:

	
LOB Data Types

	
Using OraBLOB and OraCLOB

	
Retrieving LOBs From the Database

	
Performance Considerations with LOB Read and Write

	
Writing LOB Data

	
Reading LOB Data

LOB Data Types

Table 4-2 lists the four LOB data types and their corresponding OO4O interfaces.

Table 4-2 LOB Data Types

	LOB Data Types	a LOB whose value is composed of	Corresponding OO4O Interface
	
BLOB

	
Unstructured binary (raw) data.

	
OraBLOB

	
CLOB

	
Fixed-width, single-byte character data that corresponds to the database character set defined for Oracle Database.

	
OraCLOB

	
NCLOB

	
Fixed-width, multiple-byte character data that corresponds to the national character set defined for Oracle Database.

	
OraCLOB

	
BFILE

	
A LOB whose large binary data is stored in operating system files outside of database tablespaces. BFILEs can also be located on tertiary storage devices such as hard disks, CD-ROMs, Photo CDs, and DVDs.

	
OraBFILE

The following example creates a table that has BLOB and CLOB columns, and inserts rows into the table using the ExecuteSQL method on an OraDatabase object.

Set OO4OSession = CreateObject("OracleInProcServer.XOraSession")

Set InvDb = OO4OSession.OpenDatabase("INVDB", "scott/tiger", 0)
InvDb.ExecuteSQL("create table part(part_id NUMBER, part_name
VARCHAR2(20),part_image BLOB, part_desc CLOB)")
InvDb.ExecuteSQL ("insert into part values (1,'ORACLE NETWORK',EMPTY_BLOB()," & _
 "EMPTY_CLOB())")
InvDb.ExecuteSQL ("insert into part values (2,'ORACLE SERVER', EMPTY_BLOB()," & _
 "EMPTY_CLOB())")

The EMPTY_BLOB() and EMPTY_CLOB() PL/SQL functions provide an empty LOB to insert into the LOB column.

	
See Also:

ExecuteSQL Method

Using OraBLOB and OraCLOB

OraBLOB and OraCLOB interfaces in OO4O provide methods for performing operations on large objects in the database including BLOB, CLOB, and NCLOB, and BFILE data types.

The following Visual Basic example illustrates how to read the PartImage from the part table:

Dim Buffer as Variant
Set Part = OraDatabase.CreateDynaset("select * from part", 0&)
set PartImage = OraDynaset.Fields("part_image").Value

'read the data into the buffer
amount_read = PartImage.Read(buffer)

'copy the image content into the file
PartImage.CopyToFile "d:\image\partimage.jpg"

	
See Also:

OraBLOB, OraCLOB Objects

Retrieving LOBs From the Database

OraBlob, OraClob, and OraBFile objects can be retrieved using an OraDynaset object or a parameter object:

Using an OraDynaset Object

If a table contains a LOB column and a dynaset query selects against that LOB column, then the Value property of the OraField object returns a OraBlob, OraClob, or a OraBFile object. The following example selects LOB columns from the part table. PartDesc and PartImage are OraBlob and OraClob objects that are retrieved from the OraField object.

Set OO4OSession = CreateObject("OracleInProcServer.XOraSession")
Set InvDb = OO4OSession.OpenDatabase("INVDB", "scott/tiger", 0)
Set Part = InvDb.CreateDynaset("select * from part", 0&)
Set PartDesc = Part.Fields("part_desc").Value
Set PartImage = Part.Fields("part_image").Value

Using a Parameter object

If a SQL statement or PL/SQL block has a bind variable of type LOB, you create a OraParameter object using the OraParameters Add method. The Value property of the OraParameter object for that bind variable returns an OraBlob, OraClob, or OraBFile object.

The following example illustrates how to use a LOB data type as a bind variable in a PL/SQL anonymous block. This block selects a LOB column from the database.

Set OO4OSession = CreateObject("OracleInProcServer.XOraSession")
Set InvDb = OO4OSession.OpenDatabase("INVDB", "scott/tiger", 0)
InvDb.Parameters.Add "PartDesc", Null, ORAPARM_OUTPUT,ORATYPE_CLOB
InvDb.Parameters.Add "PartImage", Null, ORAPARM_OUTPUT,ORATYPE_BLOB
InvDb.ExecuteSQL ("BEGIN select part_desc, part_image into :PARTDESC," & _
 ":PARTIMAGE from part where part_id = 1 for update NOWAIT; END;") & _
 "for update NOWAIT; END;")
Set PartDesc = InvDb.Parameters("PartDesc").Value
Set PartImage = InvDb.Parameters("PartImage").Value

Performance Considerations with LOB Read and Write

When reading and writing LOBs, there are several options that can optimize an application's memory usage and reduce the number of network round-trips.

Single-Piece Operation

The contents of a buffer are read or written to the database in one round-trip.

Multiple-Piece Operation

A small buffer is used for multiple calls to read or write methods. In this mode, the data is streamed, rather than requiring a complete round-trip for each read or write call. This method is quicker than doing several small single-piece operations. It has the restriction that the data must be read and written sequentially, meaning that the offset increases automatically with each read or write. The total amount must be known before it is written, and the operation cannot be aborted before completion.

	
See Also:

	
OraBLOB, OraCLOB Objects

	
Read (OraLOB/BFILE) Method

	
Write (OraLOB) Method

LOB Buffering Option

The LOB buffering option automatically buffers any read or write operations. A network round-trip occurs only when the FlushBuffer method is called. This is most useful when there are many small writes that occur all across the LOB. This method has significant restrictions.

	
See Also:

EnableBuffering (OraLOB) Method

Writing LOB Data

The Write method of the OraBlob and OraClob objects writes data from a local buffer to a LOB in the database. The CopyFromFile (OraLOB) method writes content of a local file to a LOB in the database.

Any operation that changes the value of a LOB, including the Write method, can only occur when the row the LOB is associated with has been locked. If a LOB field is null, it must first be updated with an empty LOB before a method can write to the LOB field.

LOB data can be written in one piece or in a series of multiple pieces., as described in the following topics:

	
Single-Piece Write Operation

	
Multiple-Piece Write Operation

	
See Also:

	
Write (OraLOB) Method

	
CopyFromFile (OraLOB) Method

Single-Piece Write Operation

The entire contents of a buffer can be written in a single piece in one network round-trip. The following example writes 10 KB of data from the local file partimage.dat to part_image column at the offset of 1000.

Dim buffer() as byte
ReDim buffer(10000)
Set OO4OSession = CreateObject("OracleInProcServer.XOraSession")
Set InvDb = OO4OSession.OpenDatabase("INVDB", "scott/tiger", 0)
Set Part = InvDb.CreateDynaset("select * from part", 0&)
Set PartImage = Part.Fields("part_image").Value
PartImage.Offset = 1000
FNum = FreeFile
Open "PartImage.Dat" For Binary As #FNum
Get #FNum, , buffer
Part.Edit

amount_written = PartImage.Write(buffer)
Part.Update
Close FNum

The CopyFromFile (OraLOB) method writes data directly to a LOB from a local file. The following code is functionally the same as the previous code:

Part.Edit
PartImage.CopyFromFile "PartImage.dat" , 10000, 1000
Part.Update

	
See Also:

CopyFromFile (OraLOB) Method

Multiple-Piece Write Operation

This mechanism is used when the size of the buffer available is smaller than the total amount of data to be written. The total amount of data to be written is set by using the PollingAmount (OraLOB/BFILE) property.

The Offset (OraLOB/BFILE) property is used only once to set the offset for the first piece Write operation. After the first time, it is automatically increased by the size of the previous piece. The Status (OraLOB/BFILE) property must be checked for success of each piece Write operation. If the Status property returns ORALOB_NEED_DATA, the Write method must be called again. This must continue until the amount specified by the PollingAmount property has been sent.

The piecetype argument of the Write method must be set to ORALOB_FIRST_PIECE for the first piece that is sent, and last piece Write operation ends with setting the piecetype argument to ORALOB_LAST_PIECE. At the end of multiple piece operation, the Status property returns ORALOB_NO_DATA.

The following example writes 102 KB of data in 10 KB chunks to the part_image column from the local file partimage.dat at offset of 1000.

Dim buffer() as byte
chunksize = 10000
ReDim buffer(chunksize)
Set OO4OSession = CreateObject("OracleInProcServer.XOraSession")
Set InvDb = OO4OSession.OpenDatabase("INVDB", "scott/tiger", 0)
Set Part = InvDb.CreateDynaset("select * from part", 0&)
Set PartImage = Part.Fields("part_image").Value

FNum = FreeFile
Open "PartImage.Dat" For Binary As #FNum
PartImage.Offset = 1000
PartImage.PollingAmount =102000
remainder = 102000
Part.Edit
Get #FNum, , buffer
amount_written = PartImage.Write(buffer, chunksize, ORALOB_FIRST_PIECE)

While PartImage.Status = ORALOB_NEED_DATA
remainder = remainder - chunksize
If remainder < chunksize Then
piecetype = ORALOB_LAST_PIECE
chunksize = remainder

Else
piecetype = ORALOB_NEXT_PIECE
End If
Get #FNum, , buffer
amount_written = PartImage.Write(buffer, chunksize, piecetype)
Wend
Close FNum
Part.Update

	
See Also:

	
PollingAmount Property

	
Offset (OraLOB/BFILE) Property

	
Status (OraLOB/BFILE) Property

Reading LOB Data

The OraBlob and OraClob Read method reads data to a local buffer from a LOB in the database. The CopyFromFile method reads the contents of a LOB into a local file.

LOB data can be read in one piece or in a series of multiple pieces, as described in the following topics:

	
Single-Piece Read Operation

	
Multiple-Piece Read Operation

	
See Also:

Read (OraLOB/BFILE) Method

Single-Piece Read Operation

The entire contents of a buffer can be read in a single piece in one network round-trip. The following example reads 10 KB of data from the part_image column at an offset of 1000 to the local file image.dat.

Dim buffer as Variant
Dim buf() As Byte
chunksize = 10000
Set OO4OSession = CreateObject("OracleInProcServer.XOraSession")
Set InvDb = OO4OSession.OpenDatabase("INVDB", "scott/tiger", 0)
Set Part = InvDb.CreateDynaset("select * from part", 0&)
Set PartImage = Part.Fields("part_image").Value
FNum = FreeFile
Open "image.dat" For Binary As #FNum
PartImage.Offset = 1000
amount_read = PartImage.Read(buffer,10000)
buf = buffer
Put #FNum, , buf
Close FNum

The CopyToFile (OraLOB/BFILE) method writes data directly to a local file from a LOB. The following code is functionally the same as the previous code:

PartImage.CopyToFile "image.dat" , 10000, 1000

	
See Also:

CopyToFile (OraLOB/BFILE) Method

Multiple-Piece Read Operation

This mechanism is used when the size of the buffer available is smaller than the total amount of data to be read. The total amount of data to be read is set by using the PollingAmount (OraLOB/BFILE) property. The Offset (OraLOB/BFILE) property is used only once to set the offset for the first piece Read operation. After the first time, it is automatically increased by the size of the previous piece.

The Status (OraLOB/BFILE) property must be checked for success for each piece Read operation. If the Status property returns ORALOB_NEED_DATA, the Read method must be called again. This must continue until the amount specified by the PollingAmount property has been read. At the end of multiple piece operations, the Status property returns ORALOB_NO_DATA.

The following example reads 102 KB of data in 10 KB chunks from the part_image column at offset of 1000 to the local file image.dat.

Dim buffer as Variant
Dim buf() As Byte
Set OO4OSession = CreateObject("OracleInProcServer.XOraSession")
Set InvDb = OO4OSession.OpenDatabase("INVDB", "scott/tiger", 0)
Set Part = InvDb.CreateDynaset("select * from part", 0&)
Set PartImage = Part.Fields("part_image").Value
FNum = FreeFile
Open "image.dat" For Binary As #FNum
PartImage.offset = 1000
PartImage.PollingAmount = 102000
amount_read = PartImage.Read(buffer, chunksize)
buf = buffer
Put #FNum, , buf
While PartImage.Status = ORALOB_NEED_DATA
amount_read = PartImage.Read(buffer, chunksize)
buf = buffer
Put #FNum, , buf
Wend
Close FNum

	
See Also:

	
PollingAmount Property

	
Offset (OraLOB/BFILE) Property

	
Status (OraLOB/BFILE) Property

Oracle Object Data Types

An object type is a user-defined composite data type created in the database. A column can represent an object type or a row can represent an object type. An instance of the Object type can be stored in the database. This object instance can be fetched to the client side and modified using Oracle Objects for OLE.

	
See Also:

Oracle Database Object-Relational Developer's Guide

There are two types of object instances.

	
OraObject object

If a column represents an object type, then an instance of this object type is referred to as an embedded instance or a value instance. In OO4O, this type is represented by an OraObject object. For example, an ADDRESS object type is stored as a column in the PERSON table. OraObject objects can be embedded within other structures. An embedded instance or a value instance can also be the attributes of another object instance.

	
See Also:

"About the OraObject Interface"

	
OraRef object

If a row in an object table represents an object type, then the instance of this type is referred to as a referenceable object. In OO4O, this type is represented by an OraRef object. An internally referenceable object has a unique object identifier that is represented by the REF data type. A REF column can be thought of as a pointer to a referenceable object. OO4O applications can retrieve a REF data type from a referenceable object, fetch (pin) the associated referenceable object to the client side, and update (flush) the modified referenceable object to the database.

	
See Also:

"About the OraRef Interface"

About the OraObject Interface

The OraObject interface is a representation of an Oracle embedded object or a value instance. It contains a collection interface (OraAttributes) for accessing and manipulating (updating and inserting) individual attributes of a value instance.

Individual attributes of an OraAttributes collection interface can be accessed by using a subscript or the name of the attribute.

The following Visual Basic example illustrates how to access attributes of the Address object in the person_tab table:

Set Person = OraDatabase.CreateDynaset("select * from person_tab",0&)
set Address = Person.Fields("Addr").Value
msgbox Address.Zip
msgbox.Address.City

	
See Also:

OraObject Object

Using the OraObject Interface

The following example creates an ADDRESS object type having street, city, state and zip as its attributes and a PERSON table having an ADDRESS object type column. It also inserts data using the ExecuteSQL method of the OraDatabase object.

set OO4OSession = CreateObject("OracleInProcServer.XOraSession")
set hrDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0)
HRDb.ExecuteSQL("create type ADDRESS as object (street
VARCHAR2(200), city varchar2(20), state CHAR(2), zip varchar2(10))")
HRDb.ExecuteSQL("create table person (name varchar2(20), age number," & _
 "addr ADDRESS) ")
HRDb.ExecuteSQL("insert into person values('nasser',40, " & _
 "address('Wine Blvd', 'Pleasanton', 'CA', '94065'))")
HRDb.ExecuteSQL("insert into person values('Maha', 25," & _
 "address('Continental Way', 'Belmont', 'CA', '94002'))")
HRDb.ExecuteSQL("insert into person values('chris',30, address('First " & _
 "Street', 'San Francisco', 'CA' ,'94123'))")

The following topics discuss manipulating the OraObject interface:

	
Retrieving an Embedded/Value Instance from the Database

	
Accessing Attributes of an Embedded/Value Instance

	
Modifying Attributes of an Embedded/Value Instance

	
See Also:

ExecuteSQL Method

Retrieving an Embedded/Value Instance from the Database

An OraObject object can be retrieved using OO4O using a dynaset or parameter object:

Using a Dynaset Object

If a table contains an object type column and a dynaset query selects against that column, then the Value property of the OraField object returns an OraObject.

The following code selects an ADDRESS column from the person table, and then an Address object is retrieved from the OraField object.

set OO4OSession = CreateObject("OracleInProcServer.XOraSession")
set hrDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0)
set Person = hrDb.CreateDynaset("select * from person", 0&)
set Address = Person.Fields("Addr").Value

Using a Parameter Object

If a SQL statement or a PL/SQL block has a bind variable of object type, you create an OraParameter object using the OraParameters Add method. The Value property of the OraParameter object for that bind variable returns an OraObject object.

The following example uses an object data type as a bind variable in a PL/SQL anonymous block. This block selects an object column from the database.

set OO4OSession = CreateObject("OracleInProcServer.XOraSession")
set hrDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0)
hrDb.Parameters.Add "ADDRESS", Null, ORAPARM_OUTPUT, ORATYPE_OBJECT, "ADDRESS"
'execute the sql statement which selects Address from the person_tab
hrDb.ExecuteSQL ("BEGIN select Addr into :ADDRESS from person where " & _
 "age = 40; end;")
'retrieve Address object from the OraParameter
set address = hrDb.Parameters("ADDRESS").Value

	
See Also:

	
OraObject Object

	
OraField Object

	
OraParameter Object

Accessing Attributes of an Embedded/Value Instance

Individual attributes can be accessed by using a subscript or the name of the attribute. The following example illustrates how to access attribute values of an ADDRESS object instance.

set OO4OSession = CreateObject("OracleInProcServer.XOraSession")
set hrDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0)
set Person = hrDb.CreateDynaset("select * from person", 0&)
set Address = Person.Fields("Addr").Value
msgbox Address.City
msgbox Address.Street
msgbox Address.State
msgbox Address.Zip

The following code accesses all of the attribute values:

For I=1 to Address.Count
 msgbox Address(I)
Next I

Modifying Attributes of an Embedded/Value Instance

If the object instance is retrieved using a dynaset object, its attribute values can be modified between a dynaset Edit/Update pair. The following example modifies the street and city attribute values of the ADDRESS object instance.

set OO4OSession = CreateObject("OracleInProcServer.XOraSession")
set hrDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0)
set Person = hrDb.CreateDynaset("select * from person", 0&)
set Address = Person.Fields("Addr").Value
Person.Edit
 Address.Street = "Oracle Parkway"
 Address.City = "Redwood shores"
Person.Update

Executing a Member Method of an Oracle Object Instance

Oracle object type member methods are created during type creation. Oracle object instance member methods are executed in OO4O as PL/SQL procedures or functions. Arguments and return values to the member methods should be bound using the OraParameter object. The first argument to the member method should always be the object instance. This object instance can be bound with the ORAPARM_INPUT or ORAPARM_BOTH mode. If the member method modifies the attributes of an object instance and a new object instance needs to be retrieved to the OO4O application, then this object instance must be bound with the ORAPARM_BOTH mode.

For example, if a bank_account object type has open, close, and deposit as member methods, then the schema for the bank_account object type is the following:

CREATE OR REPLACE TYPE bank_account AS OBJECT (
 acct_number INTEGER(5),
 balance REAL,
 MEMBER PROCEDURE open (amount IN REAL),
 MEMBER PROCEDURE close (num IN INTEGER, amount OUT REAL),
 MEMBER PROCEDURE deposit (SELF IN OUT bank_bccount,num IN
 INTEGER, amount IN REAL),
);

In OO4O, BankObj is an OraObject object representing a valid bank object instance from the database. To execute the deposit method, the SELF, num, and amount arguments need to be bound using the OraParameter object.

Dim BankObj as OraObject
assumes that we have valid BankObj
set BankObj =

'create a OraParameter object for bank_account object and set it to BankObj
OraDatabase.Parameters.Add "BANK", BankObj, ORAPARM_BOTH, ORATYPE_OBJECT, _
 "BANK_ACCOUNT"

'create a OraParameter object for num argument and set the value to 100
OraDatabase.Parameters.Add "ACCOUNT_NO", 100, ORAPARM_INPUT, ORATYPE_NUMBER

'create a OraParameter object for amount argument and set the value to 1200
OraDatabase.Parameters.Add "AMOUNT", 1200, ORAPARM_OUTPUT, ORATYPE_NUMBER

'display the balance from the bank object
Bankobj.balance

'now execute the PL/SQL block for member method execution
OraDatabase.ExecuteSQL ("BEGIN BANK_ACCOUNT.DEPOSIT :BANK," & _
 (":ACCOUNT_NO,:AMOUNT); END;")

'get the modified bank object from the parameter
set Bankobj = OraDatabase.Parameters("BANK").Value

'display the new balance
Bankobj.balance

About the OraRef Interface

The OraRef interface represents an instance of a referenceable object (REF) in client applications. The object attributes are accessed in the same manner as attributes of an object represented by the OraObject interface. The OraRef interface is derived from an OraObject interface through the containment mechanism in COM. REF objects are updated and deleted independently of the context from which they originated, such as dynasets. The OraRef interface also encapsulates the functionality for navigating through graphs of objects utilizing the Complex Object Retrieval Capability (COR) in Oracle Call Interface (OCI).

	
See Also:

"OraRef Object"

Using the OraRef Interface

This section demonstrates the creation of an object table named PERSON_TAB. The object table is based on the object type PERSONOBJ. Each reference to the rows of this object table is stored in an aperson REF type column of the CUSTOMERS table. The following code creates database schemas:

set OO4OSession = CreateObject("OracleInProcServer.XOraSession")
set hrDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0)
HRDb.ExecuteSQL("create type PERSONOBJ as object (name varchar2(20), " & _
 "age number, addr ADDRESS)")
HRDb.ExecuteSQL("create table person_tab of personobj")
HRDb.ExecuteSQL("insert into person_tab values('nasser',40," & _
 "address('Wine Blvd', 'Pleasanton', 'CA', '94065'))")
HRDb.ExecuteSQL("insert into person_tab values('Maha', 25, " & _
 "address('Continental Way', 'Belmont', 'CA', '94002'))")
HRDb.ExecuteSQL("insert into person_tab values('chris',30, " & _
 "address('First Street', 'San Francisco', 'CA' , '94123'))")

The following code creates a CUSTOMERS table having an aperson REF column referencing rows of the object table:

HRDb.ExecuteSQL("create table CUSTOMERS (account number,
aperson REF personobj)")

HRDb.ExecuteSQL("insert into customers values(10, null)")
HRDb.ExecuteSQL("insert into customers values(20, null)")
HRDb.ExecuteSQL("insert into customers values(30, null)")
HRDb.ExecuteSQL("update customers set aperson = (select ref(p) from " & _
 "person_tab p where p.name = 'nasser') where account = 10")
HRDb.ExecuteSQL("update customers set aperson = (select ref(p) from " & _
 "person_tab p where p.name = 'Maha') where account = 20")
HRDb.ExecuteSQL("update customers set aperson = (select ref(p) from " & _
 "person_tab p where p.name = 'chris') where account = 30")

The following topics discuss manipulating the OraRef Interface:

	
Retrieving a REF from the Database

	
Accessing Attributes of a Referenceable Instance

	
Modifying Attributes of a Referenceable Instance

	
See Also:

OraRef Object

Retrieving a REF from the Database

An OraRef object can be retrieved using OO4O in the following ways:

Using a Dynaset Object

If a table contains a REF type column and a dynaset query selects against that column, then the Value property of the OraField object returns an OraREF. The following example selects an aperson column from the person table, and the aperson object is retrieved from the OraField object.

set OO4OSession = CreateObject("OracleInProcServer.XOraSession")
set hrDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0)
set Customer = hrDb.CreateDynaset("select * from customers", 0&)
set Person = Customer.Fields("aperson").Value

Using an OraParameter Object

If a SQL statement or PL/SQL block has a bind variable of REF type, you create an OraParameter object using the OraParameters Add method. The Value property of the OraParameter object for that bind variable returns an OraREF.

The example illustrates using a REF object data type as a bind variable in a PL/SQL anonymous block. The block selects an object column from the database.

set OO4OSession = CreateObject("OracleInProcServer.XOraSession")
set hrDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0)
hrDb.Parameters.Add "PERSON", Null, ORAPARM_OUTPUT, ORATYPE_REF,"PERSONOBJ"

'execute the sql statement which selects Address from the person_tab
hrDb.ExecuteSQL ("BEGIN select aperson into :PERSON from customers" & _
 "where account = 10; end;")

'retrieve Person object from the OraParameter
set Person = hrDb.Parameters("PERSON").Value

	
See Also:

OraRef Object

Accessing Attributes of a Referenceable Instance

Before accessing attributes of a referenceable instance, it should be fetched (pinned) on the client side. OO4O implicitly pins the REF value when attribute values are accessed from the OraRef object. After the pin operation, attributes of the referenceable instance are accessed in the same manner as attributes of a value instance represented by the OraObject object.

The following example pins the APERSON REF value (implicitly) and accesses its name and address attributes. Note that accessing the address attribute returns an Address OraObject object.

set OO4OSession = CreateObject("OracleInProcServer.XOraSession")
set hrDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0)
set Customer = hrDb.CreateDynaset("select * from customers", 0&)
set Person = Customer.Fields("APERSON").Value
msgbox Person.Name
set Address = Person.Addr
msgbox Address.City

	
See Also:

OraRef Object

Modifying Attributes of a Referenceable Instance

Because a referenceable instance is stored in a row of an object table, modifying attributes of referenceable instance requires an object lock. Therefore, rows corresponding to the object instance in an object table should be locked, which can be done by calling the Edit method of the OraRef object. The OraRef Update method releases the object lock.

The following example modifies the age attribute of Person object.

set OO4OSession = CreateObject("OracleInProcServer.XOraSession")
set hrDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0)
set Customer = hrDb.CreateDynaset("select * from customers", 0&)
set Person = Customer.Fields("APERSON").Value
Person.Edit
Person.Age = 45
Person.Update

	
See Also:

	
OraRef Object

	
Update (OraRef) Method

	
Edit (OraRef) Method

Oracle Collections

A collection is an ordered group of elements, all of the same type. Each element has a unique subscript, called an index, that determines its position in the collection.

	
Note:

An OraCollection element index starts at 1.

A collection can be subdivided into the following types:

	
Nested table type

Viewed as a table stored in the column of a database table. When retrieved, the rows of a nested table are given consecutive subscripts starting at 1, and individual rows are accessed using array-like access.

	
VARRAY type

Viewed as an array stored in the column of a database table. To reference an element in a VARRAY type, standard subscripting syntax can be used. For example, Grade(3) references the third element in VARRAY Grades.

In Oracle Objects for OLE, an Oracle collection type is represented by the OraCollection interface. The following topics provide more information:

	
About the OraCollection Interface

	
Retrieving a Collection Type Instance from the Database

	
Accessing Collection Elements

	
Modifying Collection Elements

	
Creating a VARRAY Collection Type

	
Creating a Dynaset from an OraCollection Object

	
See Also:

	
"OraCollection Object"

	
"Schema Objects Used in OraCollection Examples"

About the OraCollection Interface

The OraCollection interface provides methods for accessing and manipulating Oracle collection types, namely variable-length arrays (VARRAYs) and nested tables in OO4O. Elements contained in a collection are accessed by subscripts.

The following Visual Basic example illustrates how to access attributes of the EnameList object from the department table:

Set Person = OraDatabase.CreateDynaset("select * from department",0&)
set EnameList = Department.Fields("Enames").Value

'access all elements of the EnameList VArray
for I=1 to I=EnameList.Size
 msgbox EnameList(I)
Next I

	
See Also:

OraCollection Object

Retrieving a Collection Type Instance from the Database

A collection type can be retrieved using OO4O in the following ways:

Using a Dynaset Object

If a table contains a collection type column and a dynaset query selects against that column, then the Value property of the OraField object returns an OraCollection object.

The following example selects the ENAMES column from the department table, and an EnameList object is retrieved from the OraField object:

set OO4OSession = CreateObject("OracleInProcServer.XOraSession")
set hrDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0)
Set Dept = hrDb.CreateDynaset("select * from department", 0&)
Set EnameList = Dept.Fields("ENAMES").Value

Using a Parameter Object

If a SQL statement or PL/SQL block has a bind variable of collection type, then you create a OraParameter object using the OraParameters Add method. The Value property of the OraParameter object for that bind variable returns an OraCollection object.

The following example uses a collection data type as a bind variable in a PL/SQL anonymous block and selects a collection type from the database:

set OO4OSession = CreateObject("OracleInProcServer.XOraSession")
set hrDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0)
hrDb.Parameters.Add "ENAMES", Null, ORAPARM_OUTPUT, ORATYPE_VARRAY, "ENAMELIST"
hrDb.ExecuteSQL ("BEGIN select enames into :ENAMES from department" & _
 "where dept_id = 10; END;")
set EnameList = hrDb.Parameters("ENAMES").Value

	
See Also:

	
OraCollection Object

	
OraField Object

Accessing Collection Elements

Individual element values are accessed by using a subscript. For example, the Value returned by the OraCollection object for subscript 1 is the element value at index 1. The maximum value of the subscript is equal to the total number of elements in the collection including any deleted elements. The OraCollection subscript starts from 1.

The following example code retrieves the Enamelist collection instance and accesses its elements at the first and second index.

set OO4OSession = CreateObject("OracleInProcServer.XOraSession")
set hrDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0)
Set Dept = hrDb.CreateDynaset("select * from department", 0&)
Set EnameList = Dept.Fields("ENAMES").Value
msgbox EnameList(1)
msgbox EnameList(2)

This code displays all the element values of the EnameList collection.

For I = 1 to EnameList.Size
 msgbox EnameList(I)
Next I

	
See Also:

OraCollection Object

Modifying Collection Elements

If the collection instance is retrieved using a dynaset object, element values can be modified between a dynaset Edit and Update pair. The following example code modifies the second element value of an Enamelist collection instance.

set OO4OSession = CreateObject("OracleInProcServer.XOraSession")
set hrDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0)

Set OraDynaset = hrDb.CreateDynaset("select * from department", 0&)
Set EnameList = OraDynaset.Fields("ENAMES").Value

OraDynaset.Edit
 EnameList(2) = "Chris"
OraDynaset.Update

Creating a VARRAY Collection Type

The example code that follows creates a VARRAY collection type ENAMELIST and a department table having ENAMELIST collection type column.

set OO4OSession = CreateObject("OracleInProcServer.XOraSession")
set hrDb = OO4OSession.OpenDatabase("Exampledb", "scott/tiger", 0)
hrDb.ExecuteSQL("CREATE TYPE ENAMELIST AS VARRAY(20) OF VARCHAR2(30)")
hrDb.ExecuteSQL("CREATE TABLE department (dept_id NUMBER(2),name" & _
 "VARCHAR2(15),ENAMES ENAMELIST)")

The following script inserts some collection data into department table:

hrDb.ExecuteSQL("INSERT INTO department VALUES(10, 'ACCOUNTING'," & _
 "ENAMELIST('KING','CLARK','MILLER'))")
hrDb.ExecuteSQL("INSERT INTO department VALUES(20, 'RESEARCH'," & _
 "ENAMELIST('JONES','SCOTT','ADAMS','SMITH','FORD'))")
hrDb.ExecuteSQL("INSERT INTO department VALUES(30, 'SALES'," & _
 "ENAMELIST('BLAKE','MARTIN','ALLEN','TURNER','JAMES'))")

	
See Also:

OraCollection Object

Creating a Dynaset from an OraCollection Object

A SELECT query can be issued against instances of the VARRAY and nested table collection types using SQL THE or TABLE operators and individual elements can be accessed as rows. If these collection types have object types for element types, then individual attributes of the object type represents fields of a row.

For example, if an object type X has attributes a, b, and c, and the element type of the collection is object type X, then the SELECT query on this collection returns a, b, and c fields.

In OO4O, read-only dynaset objects can be created from SELECT queries on the collection. Individual elements are accessed using row navigation. If the collection type has an object type as its element type, then attributes of that object type (element) are accessed using the OraField object.

This discussion assumes you have a Course object type and a CourseList nested table collection type with Course as its element type, as described here:

CREATE TYPE Course AS OBJECT (
 course_no NUMBER(4),
 title VARCHAR2(35),
 credits NUMBER(1)
);
CREATE TYPE CourseList AS TABLE OF Course;

In OO4O, CourseList OraCollection represents an instance of the CourseList collection type.

Dim CourseList as OraCollection

Assume that you have valid a CourseList collection instance:

set CourseList =

The SQL THE or TABLE operator needs collection type as a bind variable. Create a OraParameter object for the CourseList OraCollection as follows:

OraDatabase.Parameters.Add "COURSELIST", CourseList, ORAPARM_INPUT, _
 ORATYPE_TABLE, "COURSELIST"

Create a read-only dynaset based on the CourseList using the SQL THE operator:

Set CourseListDyn = OraDatabase.CreateDynaset("select * from THE (select" & _
 "CAST(:COURSELIST AS COURSELIST) from dual)", ORADYN_READONLY)

You can also create a read-only dynaset based on the CourseList using the SQL TABLE operator, which is available only in OO4O with libraries from release Oracle9i and on:

Set CourseListDyn = OraDatabase.CreateDynaset("select * from" & _
 "TABLE(CAST(:COURSELIST AS COURSELIST))", ORADYN_READONLY)

'display the course_no field
msgbox CourseListDyn.Fields("course_no").Value

'display the title field
msgbox CourseListDyn.Fields("title").Value

'move to next row
OraDynaset.MoveNext

	
See Also:

OraCollection Object

Example: Creating a Dynaset from an OraCollection Object

The following example illustrates how to create a dynaset from an OraCollection object. Before running the sample code, make sure that you have the necessary data types and tables in the database. See "Schema Objects Used in OraCollection Examples".

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim CourseList as OraCollection
Dim Course as OraObject
Dim CourseListDyn as OraDynaset

'create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from division
set OraDynaset = OraDatabase.CreateDynaset("select * from division", 0&)

'retrieve a Courses column from Division. Here Value property
'of OraField object 'returns CourseList OraCollection
set CourseList = OraDynaset.Fields("Courses").Value

'create a input parameter for CourseList for nested table dynaset
OraDatabase.Parameters.Add "COURSELIST", CourseList, ORAPARM_INPUT, _
 ORATYPE_TABLE, "COURSELIST"

'create a read only dynaset based on the CourseList.
Set CourseListDyn = OraDatabase.CreateDynaset("select * from" & _
 "THE(select CAST(:COURSELIST AS COURSELIST) from dual)", _
 ORADYN_READONLY)

'dynaset can also be created from Oracle8 collection using the
'following statement
'Set CourseListDyn = OraDatabase.CreateDynaset("select * from
'TABLE(CAST(:COURSELIST AS COURSELIST))", ORADYN_READONLY)

'get the field values of the collection dynaset
msgbox CourseListDyn.Fields("title").Value
msgbox CourseListDyn.Fields("course_no").Value

'move the original dynaset to second row
Oradynaset.MoveNext

'set the new value of CourseList collection from the second row
'of main dynaset to the "COURSELIST" parameter
OraDatabase.Parameters("COURSELIST").Value = CourseList

'refresh the collection dynaset. Now the collection dynaset values are refreshed
'with new collection value. CourseListDyn.Refresh
'get the field values of the collection dynaset
msgbox CourseListDyn.Fields("title").Value
msgbox CourseListDyn.Fields("course_no").Value

Advanced Queueing Interfaces

Oracle Objects for OLE provides the OraAQ Automation interface with methods for enqueuing and dequeuing messages. The OraAQMsg object contains the message to be enqueued or dequeued. The message can be a RAW message or any user-defined type.

The following examples illustrate how to enqueue RAW messages from the DBQ queue. Note that the DBQ queue must already be created in the database.

Dim Q as OraAQ
Dim Msg as OraAQMsg
set OO4OSession = CreateObject("OracleInProcServer.XOraSession")
set empDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0)
Set Q = empDb.CreateAQ("DBQ")
Retrieve the message object from the Q object.
set Msg = Q.AQMsg
Specify the message value.
Msg.Value = "This is the first Test message"
Enqueue the message.
Q.Enqueue

The following lines enqueue a high priority message.

Msg.Priority = ORAQMSG_HIGH_PRIORITY
Msg.Delay = 5
Msg.Value = "Urgent message"
Q.Enqueue

The following example dequeues the RAW messages from Oracle Database and displays the message content.

Q.Dequeue
MsgBox Msg.value
Dequeue and display the first high priority message
Msg.Priority = ORAQMSG_HIGH_PRIORITY
Q.Dequeue
MsgBox Msg.value

	
See Also:

OraAQ Object

Monitoring Messages

The OraAQ monitor methods (MonitorStart and MonitorStop) provide asynchronous dequeuing through notifications. This is suitable for applications that prefer to process messages in nonblocking mode. Applications can request to be notified on arrival of messages, by supplying an Automation object to the Monitor method. This object implements a method called NotifyMe to receive notifications. Messages can be monitored based on consumer name, message ID, or correlation.

The following sample code demonstrates a simple use of this facility. It illustrates a computerized trading system that executes buy/sell limit orders.

The sample instantiates a queue object for the STOCKS_TO_TRADE queue and monitors messages intended for consumer BROKER_AGENT. STOCKS_TO_TRADE queues messages of the user-defined type TRADEORDER_TYPE. This encapsulates all the information required to initiate a trade order. When messages addressed to the BROKER_AGENT are dequeued, the NotifyMe method of the CallbackClient object is invoked, and a stock trade is performed.

'First instantiate the CallbackClient. The queue monitor
' will invoke the NotifyMe on this class module.
Public CB_Client As New CallbackClient

 Dim DB As OraDatabase
 Dim Q as OraAQ
 set Q = DB.CreateAQ("STOCKS_TO_TRADE")

'Notify by calling cbclient::NotifyMe when there are messages
' for consumer '"BROKER_AGENT"
 Q.consumer = "BROKER_AGENT"

'Note that cbclient is a dispatch interface that supports the NotifyMe method.
 Dim s as string
 s = "BROKER_AGENT"
 'Notify the client only when there are messages for "BROKER_AGENT"
 Q.MonitorStart CB_Client, Q, s, 1
'other processing is performed here...

 Q.MonitorStop
Return
'Now implement the NotifyMe method of the CallbackClient class module
'and the necessary arguments that will contain the dequeued message
'NotifyMe is the callback interface defined by user. Ctx here is the
'Q object passed in at the time of MontiorStart.
Public sub NotifyMe (ByVal Ctx As Variant, ByVal Msgid As Variant)
 On Error GoTo NotifyMeErr
 Dim tradingSignal as OraAQMsg
 'Tradeorder contains details of the customer order
 Dim tradeorder as OraObject
 If IsNull(Msgid) Then
 MsgBox "No Message"
 'Get Error
 MsgBox OraDatabase.LastServerErrText
 Else
 mvarMsgid = Msgid
 Set tradingSignal = Ctx.AQMsg(1,"STOCK_TYPE","TRADER")
 set tradeorder = tradingSignal.Value

 'Tradeorder is the object of UDT "STOCK_TYPE"Access signal attribute
 'of tradeorder as tradeorder("signal).Value or tradeorder!signal
 if (tradeorder!signal = "SELL")
 'Sell the stock
 SellStock(tradeorder!NoOfShares, tradeorder!Ticker, _
 tradeorder!Price, tradeorder!ValidUntil)
 else if (tradeorder!signal = "BUY")
 'Buy the stock
 BuyStock(tradeorder!NoOfShares,tradeorder!Ticker, _
 tradeorder!Price,tradeorder!ValidUntil)
 end if
 End If
NotifyMeErr:
 Call RaiseError(MyUnhandledError, "newcallback:NotifyMe Method")
End Sub

Database Events

Oracle Database supports detection and run-time publication of database events.

The database event publication feature allows applications to subscribe to database events just as they subscribe to messages from other applications.

Users can enable the publication of the following events:

	
DML events (DELETE, INSERT, UPDATE)

	
DDL events (CREATE, ALTER, DROP)

	
Database events (SERVERERROR, LOGON, LOGOFF, STARTUP, SHUTDOWN)

The event publication subsystem is integrated with the AQ publish and subscribe engine.

	
See Also:

Oracle Database SQL Language Reference for a complete description of triggers for data and system events

Oracle Objects for OLE provides functionality to enable COM users to subscribe to Oracle Database events.

This feature supports asynchronous notification of database events to interested subscribers. Under this model, the client can subscribe to be notified of a database or system event, with each request stored as a subscription.

When the database event of interest fires, the subscriber is notified by the database event handler. The event handler was registered at the time of the event's subscription.

OO4O provides the OraSubscription object that represents the subscription to a database event and the OraSubscriptions collection that maintains a list of OraSubscription objects.

To subscribe to a database event, you must:

	
Create a subscription, based on the database event of interest.

	
Provide a database event handler. The database event handler should be an automation object that implements the NotifyDBEvents method. The NotifyDBEvents method is invoked by OO4O when the subscribed database events are fired.

	
Register the subscription, using the Register method.

Example: Registering an Application for Notification of Database Events

In the following example, an application subscribes for notification of database logon events (such as all logons to the database). When a user logs on to the database, the NotifyDBEvents method of the DBEventsHdlr that was passed in at the time of subscription is invoked. The context-sensitive information and the event-specific information are passed into the NotifyDBEvents method.

The DBEventsHdlr in this example is DBEventCls, which is defined later.

The main application is as follows:

' First instantiate the dbevent handler. The dbevent notification
' will fire the NotifyDBEvents on the callback handler.

Public DBEventsHdlr As New DBEventCls
Private Sub Form_Load()
 Dim gOraSession As Object
 Dim gOraSubscriptions As OraSubscriptions
 Dim gOraDatabase As OraDatabase

 'Create the OraSession Object
 Set gOraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set gOraDatabase = gOraSession.DbOpenDatabase
 ("ora90.us.oracle.com", "pubsub/pubsub",
 ORADB_ENLIST_FOR_CALLBACK)
 Set gOraSubscriptions = gOraDatabase.Subscriptions
 gOraSubscriptions.Add "PUBSUB.LOGON:ADMIN", DBEventsHdlr,
 gOraDatabase
 gOraSubscriptions(0).Register
 MsgBox "OK"
End Sub

The database event handler class that defines the NotifyDBEvents method is as follows:

Public countofMsgs as integer
Public Function NotifyDBEvents(Ctx As Variant, Payload As Variant)
 On error goto NotifyMeErr

 MsgBox "Retrieved payload " + Payload
 ' do something - here the subscription is unregistered after
 ' receiving 3 notifications
 countofMsgs = countofMsgs + 1
 If countofMsgs > 3 Then
 Ctx.Subscriptions(0).UnRegister
 End If
 Exit Sub
NotifyMeErr:
 Call RaiseError(MyUnhandledError, "newcallback:NotifyMe Method")

End Sub

	
See Also:

	
OraSubscription Object

	
OraSubscriptions Collection

	
Register Method

	
"Triggers on System Events and User Events" in Oracle Database Concepts

Application Failover Notifications

Application failover notifications can be used in the event of the failure of one database instance and failover to another instance. Because delay can occur during a failover, the application developer may want to inform the user that a failover is in progress, and request that the user stand by. Additionally, the session on the initial instance may have received some ALTER SESSION commands. These are not automatically replayed on the second instance. Therefore, the developer may want to replay these ALTER SESSION commands on the second instance.

Failover Notification Registration

To address the problems described, OO4O supports application failover notifications. To receive failover notifications, a notification handler must be registered with the MonitorForFailover method of the OraDatabase object. The notification handler must be an automation object (class module in Visual Basic) that implements the OnFailover method. An IDispatch pointer to this automation object must be passed in, along with any client-specific context, at the time of registering for failover notifications.

In the event of failover, the OnFailover method is invoked several times during the course of reestablishing the user's session. The first call to the OnFailover method of the notification handler occurs when the database first detects an instance connection loss. This is intended to allow the application to inform the user of an upcoming delay. If a failover is successful, a second call to the OnFailover method occurs when the connection is reestablished and usable. At this time, the client may want to replay the ALTER SESSION commands and inform the user that a failover has happened.

If a failover is unsuccessful, then the OnFailover method is called to inform the application that the failover will not take place.

An example of failover registration is included as part of the example in the next section.

	
See Also:

	
MonitorForFailover Method

	
OraDatabase Object

	
Oracle Net Services Administrator's Guidefor detailed information about application failover

Enabling Failover

To enable failover notifications, the option ORADB_ENLIST_FOR_CALLBACK must be passed into the call to the OpenDatabase method.

	
See Also:

OpenDatabase Method

Example: Failover Notification

The following sample shows a typical developer-defined OnFailover implementation and demonstrates how to register an application.

'Implement the OnFailover method of the FailoverClient class module and the
' necessary arguments that will contain the dequeued message. Ctx here is
' the application-defined context sensitive object that was passed
' in while registering with MonitorForFailover.
' An error of OO4O_FO_ERROR indicates that failover was unsuccessful, but the
' application can handle the and retry failover by returning
' a value of OO4O_FO_RETRY

Public Function OnFailover(Ctx As Variant, fo_type As Variant,fo_event _
 as variant, fo_OraDB as Variant)
Dim str As String

OnFailover=0
str = Switch(fo_type = 1&, "NONE", fo_type = 2&, "SESSION", fo_type = _
 4&, "SELECT")
If IsNull(str) Then
 str = "UNKNOWN!"
End If
If fo_event= OO4O_FO_ERROR Then
 MsgBox "Failover error gotten. Retrying "
 OnFailover = OO4O_FO_RETRY
 End If
If fo_event = OO4O_FO_BEGIN Then
 MsgBox " Failing Over with failover type : " & str
Else
 MsgBox "Failover Called with event : " & fo_event
End If
End Function

Registering the Application to Receive Failover Notifications

' First instantiate the Failover_Client. The Failover notification
' will invoke the OnFailover on this class module

Public Failover_Client As New FailoverClient
Dim OraDatabase As OraDatabase
Dim OraSession As OraSession
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

' Pass in the entire database name (ie., the entire Tnsnames entry
' with the domain name)in the opendatabase call
Set OraDatabase = OraSession.DbOpenDatabase("Exampledb.us.oracle.com", _
 "scott/tiger", ORADB_ENLIST_FOR_CALLBACK)
OraDatabase.MonitorForFailover Failover_Client, OraDatabase

XML Generation

Oracle Objects for OLE support for XML enables you to extract data in XML format from an Oracle database.

Data in XML markup language can be integrated with other software components that support XML. Web servers can provide XML documents along with a style sheet, thus separating the data content from its presentation, and preserving the data in its native form for easy searching.

Using Extensible Stylesheet Language Transformations (XSLT), developers can reformat XML documents received from other businesses into their desired style.

For more information about XML, go to

http://www.w3.org/XML/

XML Generation Example

OO4O renders XML from the contents of any OraDynaset method based on a starting row number and continuing for up to a specified amount of rows. For example:

OO4O Code

Dim XMLString As String
Dim startrow as Integer
Dim maxrows as Integer
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
Set OraDynaset = OraDatabase.CreateDynaset("select EMPNO, ENAME, COMM, JOB " & _
 "from EMP", 0&)
startrow = 4
maxrows = 2

'Output at most 2 rows beginning at row 4
XMLString = OraDynaset.GetXML(startrow, maxrows)

XML Output

<?xml version = "1.0"?>
<ROWSET>
<ROW id="4">
<EMPNO>7566</EMPNO>
<ENAME>JONES</ENAME>
<JOB>MANAGER</JOB>
</ROW>
<ROW id="5">
<EMPNO>7654</EMPNO>
<ENAME>MARTIN</ENAME>
<COMM>1400</COMM>
<JOB>SALESMAN</JOB>
</ROW>
</ROWSET>

The format of the XML can be customized through the OraDynaset and OraField methods:

Dim XMLString As String
Dim startrow as Integer
Dim maxrows as Integer
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
Set OraDynaset = OraDatabase.CreateDynaset("select EMPNO, ENAME, COMM," & _
 "JOB from EMP", 0&)

'Change the root tag of the XML document
OraDynaset.XMLRowsetTag = "ALL_EMPLOYEES"

'Change the row tag of the XML document
OraDynaset.XMLRowTag = "EMPLOYEE"

'Remove the rowid attribute
OraDynaset.XMLRowID = ""

'Turn on the null indicator
OraDynaset.XMLNullIndicator = True

'Change the EMPNO tag name
Set EmpnoField = OraDynaset.Fields("EMPNO")
EmpnoField.XMLTagName = "EMP_ID"

'and make it an attribute rather than an element
EmpnoField.XMLAsAttribute = True

'Change the ENAME tag name
Set EnameField = OraDynaset.Fields("ENAME")
EnameField.XMLTagName = "NAME"

'Change the COMM tag name
Set CommField = OraDynaset.Fields("COMM")
CommField.XMLTagName = "COMMISSION"

'Change the JOB tag name
Set JobField = OraDynaset.Fields("JOB")
JobField.XMLTagName = "JOB_TITLE"
startrow = 4
maxrows = 2

'Output at most 2 rows beginning at row 4
XMLString = OraDynaset.GetXML(startrow, maxrows)

Output

<?xml version = "1.0"?>
<ALL_EMPLOYEES>
<EMPLOYEE EMP_ID="7566">
<NAME>JONES</NAME>
<COMMISSION NULL="TRUE"></COMMISSION>
<JOB_TITLE>MANAGER</JOB_TITLE>
</EMPLOYEE>
<EMPLOYEE EMP_ID="7654">
<NAME NULL>MARTIN</NAME>
<COMMISSION>1400</COMMISSION>
<JOB_TITLE>SALESMAN</JOB_TITLE>
</EMPLOYEE>
</ALL_EMPLOYEES>

	
See Also:

OraDynaset Object

Datetime and Interval Data Types

From Release 9.2.0.4 and later, OO4O provides four new objects that enable developers to access and manipulate the new datetime and interval data types introduced in Oracle9i. Table 4-3 describes the OO4O objects and matching data types.

Table 4-3 Datetime and Interval Data Types

	OO4O Objects	Oracle Data Types
	
OraIntervalDS

	
INTERVAL DAY TO SECOND

	
OraIntervalYM

	
INTERVAL YEAR TO MONTH

	
OraTimeStamp

OraTimeStamp

	
TIMESTAMP

TIMESTAMP WITH LOCAL TIME ZONE

	
OraTimeStampTZ

	
TIMESTAMP WITH TIME ZONE

Instances of these types can be fetched from the database or passed as input or output variables to SQL statements and PL/SQL blocks, including stored procedures and functions.

These new data types are not supported as elements in collections such as PL/SQL indexed tables, VARRAYs, or nested tables.

Obtaining Datetime and Interval Data Types

OO4O datetime and interval data types can be obtained using:

	
The Value property of an OraField object in a dynaset.

	
The Value property of an OraParameter object as an input or an output parameter in SQL statements or PL/SQL blocks.

	
An attribute of another object or REF.

	
The following OraSession methods:

	
CreateOraIntervalDS

	
CreateOraIntervalYM

	
CreateOraTimeStamp

	
CreateOraTimeStampTZ

Descriptions of Datetime and Interval Data Types

	
OraTimeStamp object

Provides methods for operations on Oracle TIMESTAMP or TIMESTAMP WITH LOCAL TIME ZONE data types. Operations include accessing the datetime values and performing datetime operations.

	
OraTimeStampTZ object

Provides methods for operations on Oracle TIMESTAMP WITH TIME ZONE data types. Operations include accessing the datetime and time zone values and performing datetime operations.

	
OraIntervalDS object

Provides methods for operations on the Oracle INTERVAL DAY TO SECOND. This data type represents a period of time in terms of days, hours, minutes, seconds, and nanoseconds.

	
OraIntervalYM object

Provides methods for operations on the Oracle INTERVAL YEAR TO MONTH. This data type represents a period of time in terms of years and months.

Database Schema Objects

The OraMetaData interface provides access to the schema information of database objects. It is returned by invoking the Describe method of the OraDatabase interface. The Describe method takes the name of a schema object, such as the emp table and returns an OraMetaData object. The OraMetaData object provides methods for dynamically navigating and accessing all the attributes (OraMDAttribute collection) of a schema object described.

The following Visual Basic script shows a simple example of the OraMetaData interface. The sample retrieves and displays several attributes of the emp table.

Dim empMD as OraMetaData

set OO4OSession = CreateObject("OracleInProcServer.XOraSession")
set empDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0)

'Add EMPNO as an Input parameter and set its initial value.
Set empMd = empDb.Describe("emp")

'Get the column attribute collections.
Set empColumnsMd = empMd("ColumnList").Value

'Display name, data type, and size of each column in the emp table.
For I = 0 To empColumnsMd.Count - 1
 Set ColumnMd = empColumnsMd(I).Value
 MsgBox ColumnMd("data type").Value
 MsgBox ColumnMd("Name").Value
Next I

	
See Also:

	
OraMetaData Object

	
OraMDAttribute Object

5 Tuning and Troubleshooting

This chapter provides information about tuning, troubleshooting, and error handing in Oracle Objects for OLE (OO4O).

This chapter contains these topics:

	
Tips and Techniques for Performance Tuning

	
Oracle Objects for OLE Error Handling

	
Troubleshooting

Tips and Techniques for Performance Tuning

The following topics are intended to help tune the performance of applications that use Oracle Objects for OLE.

This section contains these topics:

	
Early Binding of OO4O Objects

	
Tuning and Customization

	
Avoiding Multiple Object Reference

	
Parameter Bindings

	
Array Processing

	
Using Read-Only, Forward-Only Dynaset

	
Using the PL/SQL Bulk Collection Feature

	
Migration from LONG RAW to LOB or BFILE

	
Using Connection Pooling

Early Binding of OO4O Objects

The early binding technique tightly typecasts OO4O objects to their native object types rather than the generic object type provided by Visual Basic. These objects are declared directly as OO4O objects, rather than as generic objects which are later reclassified as OO4O objects. Early binding improves performance by reducing frequent access to the OO4O type library. For example:

'Early binding of OO4O objects
Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset

'Generic binding of OO4O objects

Dim OraSession as Object
Dim OraDatabase as Object
Dim OraDynaset as Object

To use early binding of OO4O objects, the Oracle In-Process Server type library must be referenced in the Visual Basic projects.

	
See Also:

"Using Oracle Objects for OLE Automation with Visual Basic"

Tuning and Customization

Data access can be tuned and customized by altering the cache and fetch parameters of a dynaset. Setting the FetchLimit parameter to a higher value increases the number of rows that are fetched with each request, thus reducing the number of network trips to Oracle Database, and improving performance.

The cost of increasing the size of the FetchLimit parameter is that it increases memory requirements on the client side, and causes more data to be swapped to and from the temporary cache file on disk. The proper FetchLimit value should be set according to the client computer configuration and the anticipated size of the query result.

The FetchLimit value can be set in the following ways:

	
By using the CreateCustomDynaset method

	
By modifying parameters of the OO4O entry in the Windows registry

For Windows, the registry key is HKEY_LOCAL_MACHINE and the subkey is software\oracle\KEY_HOMENAME\oo4o, where HOMENAME is the appropriate Oracle home. The OO4O installation creates the following section in the registry:

"FetchLimit" = 100

	
See Also:

	
FetchLimit Property

	
CreateDynaset Method

	
OraDynaset Object

Avoiding Multiple Object Reference

Improper coding techniques with unnecessary object references can also affect performance. During dynaset object navigation, you should reduce the number of object references to the OraFields collections and OraField objects. The following is an inefficient code block:

'Create the OraDynaset Object
Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)

'Traverse until EOF is reached
Do Until OraDynaset.EOF
 msgbox OraDynaset.Fields("sal").value
OraDynaset.MoveNext
Loop

The OraDynaset, OraFields collections, and OraField objects are referenced for each iteration. Although OO4O provides improvement in handling the field collections object, multiple references to the automation object goes though the underlying OLE/COM automation layer, which slows down the execution.

The following example shows how to reference fields through a field object and not through the fields collection of the dynaset. Testing has determined that this small amount of extra code greatly improves performance.

Dim flds() As OraField
Dim i, fldcount As Integer

' Create the OraDynaset Object
Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)
' Get the field count, and output the names
fldcount = OraDynaset.Fields.Count
ReDim flds(0 To fldcount - 1)

For i = 0 To fldcount - 1
Set flds(i) = OraDynaset.Fields(i)
Next I
'Traverse until EOF is reached

Do Until OraDynaset.EOF
 msgbox Flds(5).Value
 msgbox Flds(6).Value
OraDynaset.MoveNext
Loop

Any method or object that is referenced through more than one object is potentially inefficient, but the extra coding to avoid this is not always worth the time saved. The best place to start is with field references, because they are most likely to occur multiple times.

Parameter Bindings

OO4O provides a way of enabling and disabling parameter object binding at the time it processes the SQL statement. This can be done through the AutoBindDisable and AutoBindEnable methods of the OraParameter object. If the SQL statement does not contain the parameter name, it is better to disable the OraParameter object because it avoids an unnecessary reference to the parameter object. This is most effective when the application is written primarily using PL/SQL procedures. For example:

Set OraDatabase = OraSession. OpenDatabase("Exampledb", "scott/tiger", 0&)

'Add the job input parameter with initial value MANAGER.
OraDatabase.Parameters.Add "job", "MANAGER", 1

'Add the deptno input parameter with initial value 10.
OraDatabase.Parameters.Add "deptno", 10, 1

'Add the job input parameter with initial value MANAGER.
OraDatabase.Parameters.Add "EmpCur", 0, 1
OraDatabase.Parameters("Empcur").ServerType = ORATYPE_CURSOR

'Disable the job parameter for now.
OraDatabase.Parameters("job").AutoBindDisable

set OraSqlStmt = CreateSQL("Begin GetEmpData(:Empcur, :deptno) End;",0&)

Note how the job parameter object is not referenced while processing the PL/SQL statement.

	
See Also:

	
AutoBindDisable Method

	
AutoBindEnable Method

Array Processing

OO4O supports an array interface to an Oracle database through the OraParamArray object. The array interface enables the transfer of bulk of data in single network trip. This is especially helpful while processing a PL/SQL or SQL statement through the ExecuteSQL or CreateSQL method. For example, in order to insert 100 rows into remote database without array processing, ExecuteSQL or CreateSQL must be called 100 times, which in turn makes 100 network trips. For example:

For I = 1 to 100
 OraParameter("EMPNO").Value = xxxx
 OraParameter("ENAME").Value = 'yyyy'
 OraParameter("DEPTNO").Value = zz
 OraDatabase.ExecuteSql("insert into emp values (:EMPNO,:ENAME,:DEPTNO)");
Next I

The following example makes use of arrays and makes only one network trip.

'ENAMEARR,:EMPNOARR,:DEPTNOARR are parameter arrays

For I = 1 to 100
 OraParameter("EMPNOARR").Put_Value xxxx, I
 OraParameter("ENAMEARR").Put_Value 'yyyy' ,I
 OraParameter("DEPTNOARR").Put_Value zz, I
Next I

'Now call the ExecuteSQL only once
OraDatabase.ExecuteSql("insert into emp values(:EMPNOARR," & _
 ":ENAMEARR, :DEPTNOARR)");

	
See Also:

OraParamArray Object for more information on using arrays

Using Read-Only, Forward-Only Dynaset

If your application does not make any updates to the dynaset, then you can create a read-only dynaset with the ORADYN_READONLY (H4) option. With this option, performance improvement can be gained by eliminating the overhead of parsing SQL statements locally and reducing network trips for SQL statement execution.

If your application does not need a scrollable dynaset, then you can create a forward-only dynaset with the ORADYN_NOCACHE (H8) option. With this option, performance improvement can be gained by eliminating the overhead of creating a local cache file and the overhead of reading/writing data from that file.

Using the PL/SQL Bulk Collection Feature

The PL/SQL bulk collection feature enables the selecting of bulk data in a single network trip using PL/SQL anonymous blocks. The OO4O OraDynaset object selects arrays of data during SQL statement execution. This involves overhead such as performing more network round-trips, creating more cache files and internal objects. If you do not want to use a dynaset due to its overhead, then this feature is useful for selecting arrays of data. The data to be selected can be bound either as an OraParamArray object or as an OraCollection object.

The following example illustrates PL/SQL bulk collection features using the OraCollection interface. It shows how arrays of enames are selected with one network round-trip and less overload.

Set OraDatabase = OraSession.OpenDatabase("Exampledb", "scott/tiger", 0&)

'create a VARRAY type ENAMELIST in the database
OraDatabase.ExecuteSQL ("create type ENAMELIST as VARRAY(50) OF VARCHAR2(20)")

'create a parameter for ENAMELIST VARRAY
OraDatabase.Parameters.Add "ENAMES", Null, ORAPARM_OUTPUT, 247,"ENAMELIST"

'execute the statement to select all the enames from ename column of emp table
OraDatabase.ExecuteSQL ("BEGIN select ENAME bulk collect into" & _
 ":ENAMES from emp; END;")

'here OraParameter object returns EnameList OraCollection
Set EnameList = OraDatabase.Parameters("ENAMES").Value

'display all the selected enames
FOR I = 1 to EnameList.Size
 msgbox Enamelist(I)
NEXT I

	
See Also:

OraDynaset Object

Migration from LONG RAW to LOB or BFILE

Oracle8i introduced the following new types described in "Using Large Objects (LOBs)":

	
BLOB

	
CLOB

	
BFILE

The design of these types allows OO4O to access them much faster than using LONG or LONG RAW types. For this reason, convert existing LONG RAW code to BLOB, CLOB, and BFILE, and only use LOBs and BFILEs for new applications. The OraLOB object should be used to access LOB and BFILE types, rather than these LONG RAW chunking methods, which are provided for backward compatibility only. Note that OraLOB offers maximum control.

LOB data types differ from LONG and LONG RAW data types in several ways:

	
A table can contain multiple LOB columns, but can contain only one LONG column.

	
A table containing one or more LOB columns can be partitioned, but a table containing a LONG column cannot be partitioned.

	
The maximum size of a LOB is 4 gigabytes, but the maximum size of a LONG is 2 gigabytes.

	
LOBs support random access to data, but LONGs data types support only sequential access.

	
LOB data types (except NCLOB) can be attributes of a user-defined object type, but LONG data types cannot.

	
LOB client-side buffering is used to optimize multiple small writes.

	
LOB data can be stored in operating system files outside of database tablespaces (BFILE types).

To make migration easier, the following methods can be used with BLOB, CLOB, and BFILE types:

	
AppendChunk Method

	
AppendChunkByte Method

	
GetChunk Method

	
GetChunkByte Method

	
GetChunkByteEx Method

	
ReadChunk Method

For older applications using the LONG RAW chunking methods, migration should not require a lot of changes to the code. The primary code changes involve the requirement that null BLOB and CLOB types be updated with empty before being used.

Using Connection Pooling

The connection pool in OO4O is a pool of OraDatabase objects. An OO4O connection pool is a group of (possibly) already connected OraDatabase objects. For applications that require constant connections and disconnections to the database, such as ASP Web applications, using a connection pool results in enhanced performance.

	
See Also:

"Using the Connection Pool Management Facility"

Oracle Objects for OLE Error Handling

OO4O errors are grouped in the following categories:

	
OLE Automation Errors

	
Nonblocking Errors

	
Find Method Parser Errors

	
Find Method Run-Time Errors

	
OraObject Instance Errors

	
LOB Errors

	
Oracle Streams Advanced Queuing Errors

	
OraCollection Errors

	
OraNumber Errors

	
Oracle Errors

	
Oracle Data Control Errors

OLE Automation Errors

The programmatic interface of the OO4O automation server is the OO4O In-Process Automation server. Errors that occur during execution of methods are frequently reported as an OLE Automation Error (ERR = 440, ERROR$="OLE Automation Error").

When an error occurs, check the LastServerErr property of the OraSession and OraDatabase objects to determine whether an Oracle database error has occurred. If the LastServerErr is not zero, then an error has been raised by the OO4O automation server.

To find OO4O automation server errors, scan the string returned by the ERROR$ function for the string "OIP-NNNN" where NNNN is an error number included in the Table 5-1.

	
Note:

These values are included in the oraconst.txt file in the ORACLE_BASE\\ORACLE_HOME\oo4o directory.

	
See Also:

	
"Oracle Objects for OLE In-Process Automation Server"

	
LastServerErr Property

	
OraSession Object

	
OraDatabase Object

Table 5-1 lists the Oracle OLE automation errors.

Table 5-1 Oracle OLE Automation Errors

	Constant	Value	Description
	
OERROR_ADVISEULINK

	
4096

	
Internal error: Invalid advisory connection.

	
OERROR_POSITION

	
4098

	
An attempt was made to retrieve a field value from an empty dynaset.

	
OERROR_NOFIELDNAME

	
4099

	
An invalid field name was specified.

	
OERROR_NOFIELDINDEX

	
4100

	
An invalid field index was specified. The range of indexes is 0 to FieldCount-1.

	
OERROR_TRANSIP

	
4101

	
A BeginTrans operation was specified while a transaction was already in progress.

	
OERROR_TRANSNIPC

	
4104

	
A CommitTrans operation was specified without first executing a BeginTrans.

	
OERROR_TRANSNIPR

	
4105

	
A Rollback operation was specified without first executing a BeginTrans.

	
OERROR_NODSET

	
4106

	
Internal error: System attempted to remove a nonexistent dynaset.

	
OERROR_INVROWNUM

	
4108

	
An attempt was made to reference an invalid row. This happens when EOF or BOF is True, or when the current row was deleted and no record movement occurred.

	
OERROR_TEMPFILE

	
4109

	
An error occurred while trying to create a temporary file for data caching.

	
OERROR_DUPSESSION

	
4110

	
An attempt was made to create a named session that already exists, using the CreateSession or CreateNamedSession method.

	
OERROR_NOSESSION

	
4111

	
Internal error: System attempted to remove a nonexistent session.

	
OERROR_NOOBJECTN

	
4112

	
An attempt was made to reference a named object of a collection (other than the fields collection) that does not exist.

	
OERROR_DUPCONN

	
4113

	
Internal error: Duplicate connection name.

	
OERROR_NOCONN

	
4114

	
Internal error: System attempted to remove a nonexistent connection.

	
OERROR_BFINDEX

	
4115

	
An invalid field index was specified. The range of indexes is 0 to Count -1.

	
OERROR_CURNREADY

	
4116

	
Internal error: System attempted to move to a row but the dynaset does not support this operation.

	
OERROR_NOUPDATES

	
4117

	
An attempt was made to change the data of a nonupdatable dynaset.

	
OERROR_NOTEDITING

	
4118

	
An attempt was made to change the value of a field without first executing the Edit method.

	
OERROR_DATACHANGE

	
4119

	
An attempt was made to edit data in the local cache, but the data on Oracle Database was changed.

	
OERROR_NOBUFMEM

	
4120

	
Out of memory for data binding buffers.

	
OERROR_INVBKMRK

	
4121

	
An invalid bookmark was specified.

	
OERROR_BNDVNOEN

	
4122

	
Internal error: Bind variable was not enabled.

	
OERROR_DUPPARAM

	
4123

	
An attempt was made to create a named parameter using the Add method, but that name already exists.

	
OERROR_INVARGVAL

	
4124

	
An invalid offset or length parameter was passed to the GetChunk method, or an internal error occurred using the AppendChunk method.

	
OERROR_INVFLDTYPE

	
4125

	
An attempt was made to use the GetChunk or AppendChunk method on a field that was not either Long or Long Raw type.

	
OERROR_INVARG

	
4126

	
An invalid argument value was entered.

	
OERROR_TRANSFORUP

	
4127

	
A SELECT ... FOR UPDATE operation was specified without first executing the BeginTrans operation.

	
OERROR_NOTUPFORUP

	
4128

	
A SELECT ... FOR UPDATE operation was specified, but the query is nonupdatable.

	
OERROR_TRANSLOCK

	
4129

	
A Commit or Rollback was executed while a SELECT ... FOR UPDATE operation was in progress.

	
OERROR_CACHEPARM

	
4130

	
An invalid cache parameter was specified. Note that the maximum value for the CacheBlocks parameter is 127.

	
OERROR_FLDRQROWID

	
4131

	
An attempt was made to reference a field that requires a ROWID (Long or Long Raw), but the ROWID value was not available.

	
OERROR_OUTOFMEMORY

	
4132

	
Internal Error: Out of memory.

	
OERROR_MAXSIZE

	
4135

	
Element size specified in the AddTable method exceeds the maximum size allowed for that variable type. See "AddTable Method" for more details.

	
OERROR_INVDIMENSION

	
4136

	
Dimension specified in the AddTable method is invalid (that is, negative). See "AddTable Method" for more details.

	
OERROR_ARRAYSIZ

	
4138

	
Dimensions of array parameters used in the INSERT, UPDATE, and DELETE statements are not equal.

	
OERROR_ARRAYFAILP

	
4139

	
Error processing arrays. For details see the oo4oerr.log in the Windows directory.

	
OE_CLIPFAIL

	
4141

	
Internal error: Clipboard could not be opened or closed.

	
OE_NOSOURCE

	
4143

	
No source string was provided for the UpdateResource method.

	
OE_INVSOURCE

	
4144

	
Invalid source type was provided for UpdateSource method.

	
OE_PLSQLDYN

	
4145

	
An attempt was made to set SQL property for dynaset created from PL/SQL cursor.

	
OERROR_CREATEPOOL

	
4147

	
Database pool already exists for this session.

	
OERROR_GETDB

	
4148

	
Unable to obtain a free database object from the pool.

	
OE_INVINPUTTYP

	
4149

	
Input type is not compatible with the field or parameter type.

	
OE_NOEDITONCLONE

	
4150

	
An attempt was made to edit a cloned object.

	
OE_BNDCHGTYPERR

	
4152

	
An attempt was made to change the type of a parameter array or an array of extended type.

Nonblocking Errors

Table 5-2 lists the nonblocking errors.

Table 5-2 Nonblocking Errors

	Constant	Value	Description
	
OERROR_NONBLKINPROGRESS

	
4153

	
Nonblocking operation in progress.

	
OERROR_NONONBLKINPROGRESS

	
4154

	
Operation is valid only when nonblocking operation is in progress.

Find Method Parser Errors

Find method parser errors occur when the parser cannot evaluate the expression in the Find method. These errors specify the part of the expression that caused the error.

Table 5-3 lists the Find method parser errors.

Table 5-3 Find Method Parser Errors

	Constant	Value	Description
	
OERROR_STACK_OVER

	
4496

	
Stack overflow.

	
OERROR_SYNTAX

	
4497

	
Syntax error.

	
OERROR_MISPLACED_PAREN

	
4498

	
Misplaced parenthesis.

	
OERROR_MISPLACED_QUOTE

	
4499

	
Misplaced quotation marks.

	
OERROR_MISSING PAREN

	
4500

	
Warning: Missing closing parenthesis.

	
OERROR_EXPECTED_PAREN

	
4501

	
Open parenthesis expected.

	
OERROR_PARSER_UNKNOWN

	
4502

	
Unknown parser error condition.

	
OERROR_INVALID_FUNCTION

	
4503

	
Syntax not supported.

	
OERROR_INVALID_COLUMN

	
4504

	
Invalid column name.

	
OERROR_MAX_TOKEN

	
4505

	
Maximum size exceeded in token.

	
OERROR_PARSER_DATA_TYPE

	
4506

	
Unsupported data type.

	
OERROR_UNEXPECTED_TOKEN

	
4507

	
Unexpected token found.

	
OERROR_END_OF_CLAUSE

	
4508

	
Unexpected end of clause.

Find Method Run-Time Errors

Find method run-time errors occur when the system cannot evaluate a find expression. Such errors are rare. When one occurs, the parser could have generated incorrect code.

Table 5-4 lists the Find method run-time errors.

Table 5-4 Find Method Run-Time Errors

	Constant	Value	Description
	
OERROR_INVALID_INSTR

	
4516

	
Internal error: Invalid instruction.

	
OERROR_STACK_ERROR

	
4517

	
Internal error: Stack overflow or underflow.

	
OERROR_CONVERT_TYPES

	
4518

	
Invalid type conversion.

	
OERROR_RUNTIME_DATA_TYPE

	
4519

	
Invalid data type.

	
OERROR_INVALID_SQL_ARG

	
4520

	
SQL function missing an argument.

	
OERROR_INVALID_COMPARE

	
4521

	
Invalid comparison.

	
OERROR_SELECT_DUAL

	
4522

	
SELECT from dual failed.

	
OERROR_DUAL_DATATYPE

	
4523

	
Invalid data type in SELECT from dual.

	
OER_OPER

	
4524

	
Invalid use of operator.

OraObject Instance Errors

Table 5-5 lists the OraObject instance errors.

Table 5-5 OraObject Instance Errors

	Constant	Value	Description
	
OERROR_NOOBJECT

	
4796

	
Creating an OraObject object instance in the client-side object cache failed.

	
OERROR_BINDERR

	
4797

	
Binding an OraObject object instance to a SQL statement failed.

	
OERROR_NOATTRNAME

	
4798

	
Getting the attribute name of an OraObject object instance failed.

	
OERROR_NOATTRINDEX

	
4799

	
Getting the attribute index of an OraObject object instance failed.

	
OERROR_INVINPOBJECT

	
4801

	
Invalid input object type for the binding operation.

	
OERROR_BAD_INDICATOR

	
4802

	
Fetched OraObject instance has an invalid indicator structure.

	
OERROR_OBJINSTNULL

	
4803

	
Operation on the NULL OraObject instance failed. See the "IsNull (OraObject) Property".

	
OERROR_REFNULL

	
4804

	
Pin operation on the NULL Ref value failed. See the "IsRefNull (OraRef) Property".

	
See Also:

	
IsNull (OraObject) Property

	
IsRefNull (OraRef) Property

	
OraObject Object

	
OraRef Object

LOB Errors

Table 5-6 lists the LOB errors.

Table 5-6 LOB Errors

	Constant	Value	Description
	
OERROR_INVSEEKPARAMS

	
4897

	
Invalid seek value is specified for the LOB read/write operation.

	
OERROR_LOBREAD

	
4898

	
Read operation failed.

	
OERROR_LOBWRITE

	
4899

	
Write operation failed.

	
OEL_INVCLOBBUF

	
4900

	
Input buffer type for CLOB write operation is not string.

	
OEL_INVBLOBBUF

	
4901

	
Input buffer type for BLOB write operation is not byte.

	
OERROR_INVLOBLEN

	
4902

	
Invalid buffer length for the LOB write operation.

	
OERROR_NOEDIT

	
4903

	
Write, Trim, Append, Copy operations are not allowed in this mode.

	
OERROR_INVINPUTLOB

	
4904

	
Invalid input LOB for the bind operation.

	
OERROR_NOEDITONCLONE

	
4905

	
Write, Trim, Append, Copy operations are not allowed for a cloned LOB object.

	
OERROR_LOBFILEOPEN

	
4906

	
Specified file could not be opened during a LOB operation.

	
OERROR_LOBFILEIOERR

	
4907

	
File Read or Write operation failed during a LOB operation.

	
OERROR_LOBNULL

	
4908

	
Operation on NULL LOB failed. See "IsNull (OraLOB/BFILE) Property".

	
See Also:

	
OraBLOB, OraCLOB Objects

	
IsNull (OraLOB/BFILE) Property

Oracle Streams Advanced Queuing Errors

Table 5-7 lists the Oracle Streams Advanced Queuing errors.

Table 5-7 Oracle Streams Advanced Queuing Errors

	Constant	Value	Description
	
OERROR_AQCREATEERR

	
4996

	
Error creating the OraAQ Object.

	
OERROR_MSGCREATEERR

	
4997

	
Error creating the AQMsg object.

	
OERROR_PAYLOADCREATEERR

	
4998

	
Error creating the payload object.

	
OERROR_MAXAGENTS

	
4999

	
Maximum number of subscribers exceeded.

	
OERROR_AGENTCREATEERR

	
5000

	
Error creating the AQAgent object.

	
See Also:

OraAQ Object

OraCollection Errors

Table 5-8 lists the OraCollection errors.

Table 5-8 OraCollection Errors

	Constant	Value	Description
	
OERROR_COLLINSTNULL

	
5196

	
Operation on NULL OraCollection failed. See "IsNull (OraCollection) Property".

	
OERROR_NOELEMENT

	
5197

	
Element does not exist for the given index.

	
OERROR_INVINDEX

	
5198

	
Invalid collection index is specified.

	
OERROR_NODELETE

	
5199

	
Delete operation is not supported for the VARRAY collection type.

	
OERROR_SAFEARRINVELEM

	
5200

	
Variant SafeArray cannot be created from the collection having nonscalar element types.

	
See Also:

	
OraCollection Object

	
IsNull (OraCollection) Property

OraNumber Errors

Table 5-9 lists the OraNumber errors.

Table 5-9 OraNumber Errors

	Constant	Value	Description
	
OERROR_NULLNUMBER

	
5296

	
Operation on NULL OraNumber object failed.

	
See Also:

OraNumber Object

Oracle Errors

The most recent Oracle error text is available from the LastServerErr and LastServerErrText properties of the OraSession or OraDatabase objects.

	
OraSession object

The LastServerErr and LastServerErrText properties of the OraSession object return all errors related to connections, such as errors on the OpenDatabase method.

	
OraDatabase object

The LastServerErr and LastServerErrText properties of the OraDatabase object return all errors related to an Oracle cursor, such as errors on the CreateDynaset, CreateSQL, and ExecuteSQL methods.

	
See Also:

	
LastServerErr Property

	
LastServerErrText Property

	
OraSession Object

	
OraDatabase Object

Oracle Data Control Errors

Oracle Data Control errors are specific to the Oracle data control. During the visual access of the data control, the OO4O automation server-specific errors are reported as OLE automation server errors with the error code of ODCERR_AUTOMATION. Specific Oracle Data Control error codes are retrieved from the DataErr parameter of the Error() event.

Table 5-10 lists the Oracle Data Control errors.

Table 5-10 Oracle Data Control Errors

	Constant	Value	Description
	
ODCERR_INITOIP

	
28000

	
Initialization of Oracle In-Process Server failed. Check the registry for the correct location of Oracle In-Process Server.

	
ODCERR_OLEQE

	
28001

	
Internal error. Querying In-Process Server interface failed.

	
ODCERR_AUTOMATION

	
28003

	
Oracle In-Process Server error occurred.

	
ODCERR_NODYNASET

	
28007

	
Attempted to access Oracle Data Control before initialization.

	
ODCERR_FIELDINDEX

	
28009

	
Bound controls trying to access with invalid field index.

	
ODCERR_FIELDNAME

	
28013

	
Bound controls tried to access with an invalid field name.

	
ODCERR_MEMORY

	
28014

	
Internal error. Failed to allocate memory for the requested bindings from the bound control.

	
ODCERR_BMKTYPE

	
28015

	
Oracle Data Control does not support the requested bookmark type.

	
ODCERR_CONVERSION

	
28016

	
Oracle Data Control cannot convert the field value to the requested type.

	
ODCERR_SETSESSION

	
28017

	
Setting the session property is not allowed.

	
ODCERR_SETDATABASE

	
28018

	
Setting the database property is not allowed.

	
ODCERR_BLOBUPDATE

	
28019

	
Oracle Data Control does not update picture or raw data directly from the bound control. Use AppendChunk() method.

	
ODCERR_DYN_NOCACHE

	
28020

	
Recordset property cannot be set to a dynaset created with the ORADYN_NOCACHE option (bound control connected to data control often requires bidirectional navigation).

	
ODCERR_DYN_NOMOVEFIRST

	
28021

	
Recordset property cannot be set to a dynaset created with the ORADYN_NOMOVEFIRST option.

	
See Also:

AppendChunk Method

Troubleshooting

This topic describes common errors related to the following:

	
OLE Initialization or OLE Automation Errors

	
Oracle Network Errors

	
Access Violations

	
See Also:

Oracle Database Error Messages for additional information about errors

OLE Initialization or OLE Automation Errors

The most frequent cause of OLE initialization and automation errors is missing or incorrectly installed software. Ensure correct installation of the software specified. Then make sure that you have specified method and property names correctly and that you have declared all Oracle objects as type object.

Table 5-11 lists the causes and solutions for OLE errors.

Table 5-11 Causes and Solutions for OLE Errors

	Possible Cause	Solution
	
Your system does not contain the Microsoft OLE Automation or run-time, files or these files are out of date.

	
Make sure you have the latest versions of files such as the following installed.

	
mfc42.dll

	
oleaut32.dll

	
ole32.dll

	
The Oracle Objects for OLE object information was not registered in the Windows registration database.

	
Either reinstall Oracle Objects for OLE or run the regedt32.exe file to register information. See "Oracle Objects for OLE Redistributable Files".

	
Your system does not contain the Oracle Required Support Files:

	
oraclient*.dll

	
orageneric*.dll

	
oracommon*.dll

	
oracore*.dll

	
oranls*.dll

	
Check the OO4O readme.htm file to see what version of the Oracle Database client is required and install it.

	
Your system does not contain the Oracle networking product or its files are not on the PATH.

	
Install an Oracle networking product, or add to your PATH an environment variable that indicates the directory containing these files.

	
You misspelled a method or property name.

	
Check Oracle Objects for OLE Developer's Guide (this guide) to determine the correct spelling.

	
You referenced a method or property from the wrong object.

	
Check Oracle Objects for OLE Developer's Guide (this guide) to determine the correct object.

	
Your system does not contain the oraansiVER.dll file.

	
Reinstall Oracle Objects for OLE or add to your PATH environment variable the directory in which these files are located.

Note: VER refers to the version.

	
See Also:

"Oracle Objects for OLE Redistributable Files"

Oracle Network Errors

The most frequent cause of Oracle network errors is incorrectly specified connection information. The connection information for Oracle Objects for OLE is specified differently than when using Open Database Connectivity (ODBC). Please verify that you specified connection information correctly, and then make sure your network connection is working properly before using Oracle Objects for OLE. The appropriate Oracle network documentation contains information about testing your connection and about any Oracle networking error that you may receive.

Table 5-12 lists the Oracle network errors.

Table 5-12 Oracle Networking Errors

	Possible Cause	Solution
	
Incorrect Connect property or argument to the OpenDatabase method.

	
See the topics on the Connect property or the OpenDatabase method for examples.

	
Incorrect DatabaseName property or argument to the OpenDatabase method.

	
See the topics on the DatabaseName property or the OpenDatabase method for examples.

	
Your system does not contain the Oracle networking product.

	
Install Oracle networking software.

	
See Also:

	
Connect Property

	
DatabaseName Property

	
OpenDatabase Method

Access Violations

The most frequent cause of access violations is installing Oracle Objects for OLE while other applications are running that require the OO4O automation server, Oracle Required Support Files, or OLE. To avoid this, install Oracle Objects for OLE immediately after starting Windows and before running any other application.

Table 5-13 lists the access violations.

Table 5-13 Access Violations

	Possible Cause	Solution
	
Duplicate Oracle Objects for OLE files exist in SYSTEM directories or along the PATH.

	
Remove any duplicate files. The files oipVER.dll and oipVER.tlb should only be located in the ORACLE_BASE\\ORACLE_HOME\bin directory.

	
Duplicate Oracle Required Support Files DLLs exist in the SYSTEM directories or along the PATH.

	
Remove any duplicate files. Typically, the Oracle Required Support Files DLLs are located in the ORACLE_BASE\\ORACLE_HOME \bin directory:

	
oraclient*.dll

	
orageneric*.dll

	
oracommon*.dll

	
oracore*.dll

	
oranls*.dll

	
Duplicate OLE DLLs exist in the SYSTEM directories or along the PATH.

	
Remove any duplicate files. The OLE DLLs (listed in the OO4O File Locations section) should only be located in \system directories.

	
See Also:

"Oracle Objects for OLE File Locations"

6 Quick Tour with Visual Basic

This quick tour is designed to get you started with Oracle Objects for OLE for Visual Basic. An example application, the employee database application, demonstrates how to program basic database operations, such as navigating through data and, adding, modifying, and querying records. A more advanced section demonstrates how to perform batch inserts using parameter arrays and SQL statement objects. This quick tour and example application assume that the Scott/Tiger schema is installed.

	
See Also:

"Demonstration Schema and Code Examples"

The entire code for this example application is provided in the ORACLE_BASE\\ORACLE_HOME\OO4O\VB\SAMPLES\QT\ directory.

This quick tour covers the following topics:

	
Introduction

	
Getting Started: Steps to Accessing Oracle Data

	
Programming a Data Entry Form

	
Programming a Batch Form

Introduction

This section introduces the employee database application and the two Visual Basic forms that users interact with to use the application.

About the Employee Database Application

The employee database application lets the user do the following:

	
Browse through data

	
Add records

	
Update records

	
Query the database

	
Add records in a batch operation

To provide these functions, this example uses the following forms:

	
Employee Form

	
Batch Insert Form

Employee Form

The Employee Form displays the fields of the database EMP table and has functional buttons that allow the user to browse, add, update, and query records.

Figure 6-1 shows the Employee Form.

Figure 6-1 Employee Form

[image: Description of Figure 6-1 follows]

	
See Also:

	
"Completed Sample Form_Load Procedure" for the code for the Form_Load procedure that initializes the Employee Form

	
"Programming a Data Entry Form" for a detailed description of the Employee Form and code for the navigational buttons

Batch Insert Form

The Batch Insert Form allows users to enter records in a batch operation.

	
See Also:

"Programming a Batch Form" for a detailed description of the Batch Insert Form and code for its commands

Figure 6-2 shows the Batch Insert Form.

Figure 6-2 Batch insert Form

[image: Description of Figure 6-2 follows]

Getting Started: Steps to Accessing Oracle Data

Before server data can be manipulated, the application must accomplish the four steps that are described in this section. Sample code for this example is provided in "Completed Sample Form_Load Procedure".

	
Start the Oracle In-Process Automation Server.

The Oracle In-Process Server (OIP) provides the interface between the Visual Basic application and Oracle Database. To start the Oracle In-Process Server, you must create an OraSession object using the Visual Basic CreateObject() function, as follows:

Set OraSession = CreateObject("OracleInProcServer.XOraSession")

When creating the OraSession object, the argument supplied to the CreateObject() function must always be OracleInProcServer.XOraSession. The left side of the argument defines the application name as registered in your system, in this case, OracleInProcServer. The right side identifies the type of object to create, in this case, the XOraSession object. Executing this command starts the Oracle In-Process Server.

	
Connect to Oracle Database.

After the OIP server is running, you can connect to a local or remote Oracle database. To do so, you must create the OraDatabase object as follows:

Set OraDatabase = OraSession.OpenDatabase("Exampledb", "scott/tiger", _
 ORADB_DEFAULT)

The OraSession.OpenDatabase() method creates the OraDatabase object. The method call must specify the database name, the connection string, and a bit flag that represents the database mode. The constant ORADB_DEFAULT represents the default database mode. When Visual Basic executes this line, a connection is created to the specified database.

	
Create a global OraDynaset object to manipulate the data.

Oracle Objects for OLE lets users browse and update data using an object called a dynaset.

The Employee application needs a global dynaset that the rest of the program can access. The OraDatabase.CreateDynaset() method creates the dynaset specifying a valid SQL SELECT statement. In the example, the statement selects all the rows from the emp table and assigns the resulting dynaset to the global EmpDynaset variable as follows:

Set EmpDynaset = OraDatabase.CreateDynaset("select * from emp", _
 ORADYN_DEFAULT)

The CreateDynaset() method returns a pointer to the result of the SQL SELECT statement.

The ORADYN_DEFAULT parameter value specifies the default dynaset state. In the default state, Oracle Objects for OLE sets unset fields to NULL while adding records using the AddNew method. This behavior is preferable because the emp table has no column defaults defined. You can also specify other options to allow server column defaults when adding records.

	
See Also:

"CreateDynaset Method"

	
Refresh the Employee Form with dynaset data.

The Employee Form displays database records one row at a time. Changes to the current row, such as those caused by navigating to a different row, must be reflected on the screen. The EmpRefresh() subroutine updates fields with the current dynaset row. For NULL field values, empty strings are displayed.

The following is an example of an EmpRefresh() subroutine:

 Private Sub EmpRefresh()
 'check if the current dynaset row is valid
 If EmpDynaset.BOF <> True And EmpDynaset.EOF <> True Then

 txtEmpno = EmpDynaset.Fields("empno").Value

 ' we can't display nulls, so display "" for NULL fields
 If Not IsNull(EmpDynaset.Fields("ename").Value) Then
 txtEname = EmpDynaset.Fields("ename").Value
 Else
 txtEname = ""
 End If

 If Not IsNull(EmpDynaset.Fields("job").Value) Then
 txtJob = EmpDynaset.Fields("job").Value
 Else
 txtJob = ""
 End If

 'check if mgr=nul
 If Not IsNull(EmpDynaset.Fields("mgr").Value) Then
 txtMgr = EmpDynaset.Fields("mgr").Value
 Else
 txtMgr = ""
 End If

 If Not IsNull(EmpDynaset.Fields("hiredate").Value) Then
 txtHireDate = EmpDynaset.Fields("hiredate").Value
 Else
 txtHireDate = ""
 End If

 If Not IsNull(EmpDynaset.Fields("hiredate").Value) Then
 txtSal = EmpDynaset.Fields("sal").Value
 Else
 txtSal = ""
 End If

 'check if comm=nul
 If Not IsNull(EmpDynaset.Fields("comm").Value) Then
 txtComm = EmpDynaset.Fields("comm").Value
 Else
 txtComm = ""
 End If

 txtDeptno = EmpDynaset.Fields("deptno").Value

'if the current dynaset row is invalid, display nothing
 Else

 txtEmpno = ""
 txtEname = ""
 txtJob = ""
 txtMgr = ""
 txtHireDate = ""
 txtSal = ""
 txtComm = ""
 txtDeptno = ""

 End If

End Sub

Completed Sample Form_Load Procedure

In the employee application described in the previous section, the Form_Load() procedure creates the OIP server, connects to the database, creates a global dynaset, and calls the EmpRefresh function to display the field values on the Employee Form. The following is an example of a Form_Load() procedure:

Private Sub Form_Load()
'OraSession and OraDatabase are global
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 Set OraDatabase = OraSession.OpenDatabase("Exampledb", "scott/tiger", 0&)
 Set EmpDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)

 Call EmpRefresh

End Sub

The following variables must be defined globally in EMP_QT.BAS:

Global OraSession As Object
Global OraDatabase As Object
Global EmpDynaset As Object

Programming a Data Entry Form

This section describes the Employee Form in detail and then describes the functions that it uses.

About the Employee Form

The Employee form displays the fields of the database EMP table and has functional buttons that allow the user to browse, add, update, and query records.

Each field corresponds to a column in the database EMP table. The Employee field (ENAME) is the indexed column and is mandatory for each record. The field data types and sizes are defined as follows in the EMP table:

Name Null? Type
----------------------- ---------- --------------------------
EMPNO NOT NULL NUMBER(4)
ENAME VARCHAR2(10)
JOB VARCHAR2(9)
MGR NUMBER(4)
HIREDATE DATE
SAL NUMBER(7,2)
COMM NUMBER(7,2)
DEPTNO NOT NULL NUMBER(2)

The Employee Number (EMPNO) and Department (DEPTNO) columns are NOT NULL, and, therefore, always require a value when a record is added. The length of each field is enforced by setting the MaxLength property of each TextBox to the appropriate number.

Figure 6-3 shows the Employee Form.

Figure 6-3 Employee Form

[image: Description of Figure 6-3 follows]

The initial code for the actual Form_Load procedure is provided in "Completed Sample Form_Load Procedure".

The Employee form is initialized by the Form_Load() procedure and includes the following features:

	
Navigating Through Data

	
Adding Records

	
Updating Records

	
Deleting Records

	
Querying the Database

Navigating Through Data

Database applications typically require that the user be able to view data in the database. The Employee form has four buttons that let the user scroll through data. Table 6-1 lists the buttons, what they do, which dynaset move method enables the action of the button, and where to look for further information.

Table 6-1 Navigational Buttons and Dynaset Move Methods

	Button	Action	Method	See...
	
|<

	
Moves to the first record

	
MoveFirst

	
Moving to First or Last Rows

	
<

	
Moves to the previous record

	
MovePrevious

	
Moving to the Previous Row

	
>

	
Moves to the next record

	
MoveNext

	
Moving to the Next Row

	
>|

	
Moves to the last record

	
MoveLast

	
Moving to First or Last Rows

To enable navigation through the records of the Employee database, you must first create a global dynaset that selects all the records (rows). Then use the dynaset move methods to program the navigation buttons.

Moving to First or Last Rows

To enable a move to the first row of a dynaset, use the MoveFirst method. Then call the EmpRefresh() routine to refresh the data in the Employee form.

The following example code shows the first-click event procedure for the employee example:

Private Sub cmdFirst_Click()
 EmpDynaset.MoveFirst
 Call EmpRefresh

End Sub

For a move to the last row, use the MoveLast method. Then, call the EmpRefresh() routine to refresh the data in the Employee form.

The following example code shows the last-click event procedure for the employee example:

Private Sub cmdLast_Click()

 EmpDynaset.MoveLast
 Call EmpRefresh

End Sub

Moving to the Previous Row

Navigation is possible to any row of a dynaset. If a user is positioned in the middle of a dynaset (that is, the current row is not the first row), the MovePrevious method enables navigation to the previous row.

However, when a user is positioned on the first row (current row is the first row) and executes the MovePrevious method, the beginning-of-file (BOF) condition becomes TRUE and the current row becomes invalid. In this case, the current row must be reset to the first row using the MoveFirst method.

The following example code shows the click-event procedure for the Previous button:

Private Sub cmdPrevious_Click()

 If EmpDynaset.BOF <> True Then
 EmpDynaset.DbMovePrevious
 If EmpDynaset.BOF = True Then
 MsgBox WarnFirstEmp$
 EmpDynaset.DbMoveFirst
 End If
 End If

Moving to the Next Row

If a user is positioned in the middle of a dynaset (that is, the current row is not the last row), the MoveNext method enables navigation to the next row.

However, when a user is positioned on the last row (current row is the last row) and then executes MoveNext, the end-of-file condition (EOF) becomes TRUE and the current row becomes invalid. In this case, the current row must be reset to the last row using the MoveLast method.

The following example code shows the click-event procedure for the Next button:

Private Sub cmdNext_Click()

 If EmpDynaset.EOF <> True Then
 EmpDynaset.DbMoveNext
 If EmpDynaset.EOF = True Then
 MsgBox WarnLastEmp$
 EmpDynaset.DbMoveLast
 End If
 End If

Adding Records

In the example application, the following buttons allow users to add employee records to the database:

	
Add

	
Commit

To add a record, the user clicks on the Add button, enters the new fields in the text boxes, and then clicks the Commit button to save the data to the database.

Coding the Add Button

The Add event procedure must perform the following steps:

	
Clear the fields on the form.

	
Disable the Add button.

	
Enable the Commit button.

	
Let the user enter new field values.

The following example code shows the Add event procedure for the Add button:

Private Sub AddNew_Click()
'Blank out the fields
 txtEmpno = ""
 txtEname = ""
 txtJob = ""
 txtMgr = ""
 txtHireDate = ""
 txtSal = ""
 txtComm = ""
 txtDeptno = ""

'Disable the Add button and enable the commit button
 AddNew.Enabled = False
 Commit.Enabled = True
'Disable the navigation buttons
 DisableNavButtons
'Set doadd to true for commit procedure
 DoAdd = True
End Sub

When the AddNew_Click() method exits, control returns to the Employee Form where the user enters values in the fields.

Coding the Commit Button (Add)

To commit an addition, you must place the dynaset in add mode using the AddNew method. Then, you assign the new data to the dynaset fields and update the database using the Update method. To make the program robust, the software validates some fields before adding them to the database.

The Commit_Click() event procedure for adding records must do the following:

	
Check that the Employee Number and Department fields are not null.

	
Check that the new Employee Number is not a duplicate entry.

Steps 1 and 2 are performed by the DoValidationChecks() function which is described following the Commit_Click() .

	
Place the dynaset in add mode using the AddNew method.

	
Assign entered data to dynaset fields using the Fields().Value property. This step is performed by the UpdateDynasetFields function.

	
Update the database with new records, using the Update method.

	
Disable the Commit button.

	
Enable the Add button.

The code for the Commit function is broken into the following routines:

	
"Commit_Click Event Procedure (Add)"

	
"DoValidationChecks() Function"

	
"UpdateDynasetFields() Function"

Commit_Click Event Procedure (Add)

The following is a typical Commit_Click() event procedure for adding records:

Private Sub Commit_Click()

On Error GoTo err_commit

ErrMsg = ""
'Do validation checks on entered data
If DoValidationChecks Then 'If validation checks have passed

'Add the new record to dynaset
EmpDynaset.AddNew

'Update the dynaset fields and then update database if there is no error.
If UpdateDynasetFields Then

'Update the database
 EmpDynaset.Update

Commit.Enabled = False
AddNew.Enabled = True

Exit Sub

err_commit:
 If ErrMsg <> "" Then
 MsgBox ErrMsg
 Else
 MsgBox Error$
 End If

End Sub

DoValidationChecks() Function

To check for duplicate entries as suggested in Step 2, you must create a local dynaset with the NOCACHE option, using a SQL statement that counts the rows matching the entered Employee Number field. If a match is found (row count greater than 0), the entered employee number is a duplicate entry and an error is displayed. In this case, because the SQL SELECT statement returns only a number, creating the dynaset without a cache is a more efficient error check than the server finding a duplicate entery.

DoValidationChecks() returns True if the entered data is valid; otherwise, it returns False.

Function DoValidationChecks() As Boolean

Dim DupDyn As Object
Dim DupDynQry As String

On Error GoTo err_ValidationCheck

ErrMsg = ""
'Empno cannot be changed while in Update mode, so we can skip over validation
If DoAdd Then
 If txtEmpno = "" Then
 ErrMsg = "You must enter a value for Employee Number"
 Error 1
 End If
End If

If txtHireDate <> "" And Not IsDate(txtHireDate) Then
 ErrMsg = "Enter date as dd-mmm-yy."
 Error 2
End If

If txtDeptno = "" Then
 ErrMsg = "You must enter a value for Department Number"
 Error 3
End If

'If adding a record, check for Duplicate empno value by
'attempting to count rows with same value
'Build Query:
If DoAdd Then
 DupDynQry = "select count(*) from emp where empno = " & txtEmpno
 Set DupDyn = OraDatabase.CreateDynaset(DupDynQry, ORADYN_NOCACHE)

 If DupDyn.Fields(0).Value <> 0 Then
 ErrNum = DUPLICATE_KEY
 ErrMsg = "Employee Number already exists."
 Error ErrNum
 End If
End If
'Succesful validation with no errors returns True
DoValidationChecks = True
Exit Function

err_ValidationCheck:
 If ErrMsg <> "" Then
 MsgBox ErrMsg
 Else
 MsgBox Error$
 End If
 'Validation returns false on failure
 DoValidationChecks = False

End Function

UpdateDynasetFields() Function

The commit event procedure calls this function after putting the dynaset in either Edit or AddNew mode. The UpdateDynasetFields() function sets the dynaset fields to the values entered in the text boxes. The function returns TRUE if successful, or returns FALSE if there is an error.

 Function UpdateDynasetFields() As Integer
'This function sets the dynaset field value to those entered in the text boxes.
'The function returns true on success, false on error.

ErrMsg = ""

On Error GoTo err_updatedynasetfields

EmpDynaset.Fields("empno").Value = txtEmpno
EmpDynaset.Fields("ename").Value = txtEname
EmpDynaset.Fields("job").Value = txtJob
EmpDynaset.Fields("mgr").Value = txtManager
EmpDynaset.Fields("hiredate").Value = txtHireDate
EmpDynaset.Fields("sal").Value = txtSal
EmpDynaset.Fields("comm").Value = txtComm
EmpDynaset.Fields("deptno").Value = txtDeptno

UpdateDynasetFields = True

Exit Function

err_updatedynasetfields:
 If ErrMsg <> "" Then
 MsgBox ErrMsg
 Else
 MsgBox Error$
 End If
 UpdateDynasetFields = False

Updating Records

To allow users to update existing records in the database, you need to include an Update button in the Employee Form. Users navigate to a particular record, click the Update button, make changes, and then click the Commit button.

While in update mode, the application makes the following restrictions:

	
Users cannot navigate to another record or perform another function.

	
Users cannot change the employee number because this is the primary key.

To program the Update function, write an event procedure for the Update button and modify the Commit procedure so that it handles both updating and adding records.

Coding the Update Button

To code the Update button, disable the Employee Number text box to prevent changes to this field while updating records, because this is a primary key. You must also disable the other buttons to disable other functions, such as navigation, while updating records.

Set the DoUpdate Boolean expression to TRUE, so the commit procedure recognizes the current process as an update operation, not an addition.

The update event procedure must do the following:

	
Disable the Update button.

	
Enable the Commit button.

	
Disable other buttons to disable functions, such as navigation, during the update operation.

	
Disable the Employee Number text box.

	
Set the DoUpdate flag to True.

	
Let the user enter changes.

The following example code shows the update event procedure:

Private Sub cmdUpdate_Click()
'Disable the Update button and enable the commit button
 cmdUpdate.Enabled = False
 Commit.Enabled = True
'Disable all other buttons
 DisableNavButtons

 txtEmpno.Enabled = False
 DoUpdate = True
End Sub

The update and add event procedures call the DisableNavButtons() subroutine to disable navigation and other functions during an add or update operation.

Private Sub DisableNavButtons()
'disable all buttons while adding and updating
cmdFirst.Enabled = False
cmdPrevious.Enabled = False
cmdNext.Enabled = False
cmdLast.Enabled = False
cmdFind.Enabled = False
cmdUpdate.Enabled = False
AddNew.Enabled = False

End Sub

Coding the Commit Button to Add and Update Records

The procedure for committing an update operation is similar to committing an add, except that the dynaset is set in edit mode using the Edit method and then the new dynaset values are assigned.

Because the same commit button and the same commit event procedure are used to add and update, two global flags DoAdd and DoUpdate are added to distinguish between adding and updating. The Add and Update click event procedures set these flags.

The Commit event procedure for adding and updating must do the following:

	
Validate entered data using the DoValidationChecks() function as before.

	
Use AddNew to add records or else use Edit for updates.

	
Assign entered data to dynaset fields, using the Fields().Value property using UpdateDynasetFields() as before.

	
Update database with new records, using Update.

	
Disable the Commit button.

	
Reenable all other functional buttons including the Add and Update buttons.

	
Set the DoUpdate and DoAdd flags to False.

The code that changes button and flag states in Steps 5 through 7 is provided in a new subroutine called SetAfterCommitFlags(). This replaces the lines of code that originally enabled Commit and AddNew.

The code for this Commit function is broken into the following routines:

	
"Commit_Click() Event Procedure Example"

	
"DoValidationChecks() Function" (UNKNOWN STEP NUMBER) , also used in the original Commit function

	
"UpdateDynasetFields() Function", also used in the original Commit function

	
"SetAfterCommitFlags() Subroutine Example", which is a new subroutine

Commit_Click() Event Procedure Example

The following example shows the Commit_Click Event Procedure.

Private Sub Commit_Click()

On Error GoTo err_commit

ErrMsg = ""
'Do validation checks on entered data
If DoValidationChecks Then 'If validation checks have passed

 'If we are adding a record use AddNew
 If DoAdd = True Then
 EmpDynaset.AddNew
 End If
 'If we are updating a record use Edit
 If DoUpdate = True Then
 EmpDynaset.Edit
 End If
 'Update the dynaset fields and then update database if there is no error.
 If UpdateDynasetFields Then
 EmpDynaset.Update
 End If

 SetAfterCommitFlags

End If 'Endif for DoValidationChecks

Exit Sub

err_commit:
 If ErrMsg <> "" Then
 MsgBox ErrMsg
 Else
 MsgBox Error$
 End If

End Sub

SetAfterCommitFlags() Subroutine Example

The following example shows the SetAfterCommitFlag() Subroutine.

The SetAfterCommitFlags() subroutine is called at the end of the commit event procedure. The SetAfterCommitFlags() subroutine reenables disabled buttons and text boxes and sets the DoUpdate and DoAdd flags to False.

Sub SetAfterCommitFlags()
'disable commit and re-enable add and update buttons
Commit.Enabled = False
AddNew.Enabled = True
cmdUpdate.Enabled = True

'enable the other buttons
cmdFirst.Enabled = True
cmdPrevious.Enabled = True
cmdNext.Enabled = True
cmdLast.Enabled = True
cmdFind.Enabled = True
cmdUpdate.Enabled = True
AddNew.Enabled = True

DoUpdate = False
DoAdd = False

txtEmpno.Enabled = True

End Sub

Deleting Records

Users can delete records by navigating to a particular record and clicking the Delete button. The application prompts the user to verify the deletion, then the application deletes the record using the Delete method. The program then refreshes the screen with the next record or with the previous record if the user deleted the last record in the dynaset.

The following example shows the delete-click event procedure:

Private Sub cmdDelete_Click()
'prompt user
Response = MsgBox("Do you really want to Delete?", vbYesNo + vbExclamation)

If Response = vbYes Then
 EmpDynaset.Delete
 'attempt to move to next record
 EmpDynaset.MoveNext
 If EmpDynaset.EOF Then 'If deleted last record
 EmpDynaset.MovePrevious
 End If
 Call EmpRefresh
End If
End Sub

Querying the Database

The employee application can be configured to allow users to search for particular records in the database. For demonstration purposes, a Find button is included to allow users to query only employee names. At any time, the user can enter the query in the Employee Name field, and click the Find button. The application then displays the result or displays a message if the name cannot be found.

To search for records, the FindFirst method is used. When the find operation succeeds, the record is displayed. If the find fails, a message is displayed. The current row is reset to the first row, because failures cause the dynaset to be BOF (beginning-of-file), effectively making the current row invalid.

The Find_Click() event procedure must do the following:

	
Build a find clause to find the record where the ENAME column matches the entered string.

	
Execute the find using the FindFirst method.

	
Display the record if it is found; if the record was not found, display a message and reset the current row to the first row.

The following example shows a typical find click event procedure:

Private Sub cmdFind_Click()
Dim FindClause As String
Dim SingleQuote As String

ErrMsg = ""
SingleQuote = "'"

On Error GoTo err_find
'build the find clause:
'Can make our query case insensitive by converting the names to upper case
'FindClause = "UPPER(ename) = " & SingleQuote & UCase(txtEname) & SingleQuote
FindClause = "ename = " & SingleQuote & txtEname & SingleQuote

EmpDynaset.DbFindFirst FindClause

If EmpDynaset.NoMatch Then
 MsgBox "Could not find record matching Employee Name " & txtEname
 EmpDynaset.DbMoveFirst
End If

Call EmpRefresh

Exit Sub

Using Batch Insert

A typical command to load the Batch Insert form looks like this:

Private Sub BInsert_Click()
 Load BatchInsert
 BatchInsert.Show
End Sub

	
See Also:

"Programming a Batch Form"

Programming a Batch Form

This section describes the Batch Insert Form and then describes the functions that it uses.

About the Batch Insert Form

The Batch Insert Form allows users to insert rows in a batch operation, that is, to insert more than one record into the database by using only one command. This feature is implemented using parameter arrays and SQL statements.

Table 6-1 shows a typical Batch Insert Form:

Figure 6-4 Batch Insert Form

[image: Description of Figure 6-4 follows]

Users navigate to the Batch Insert Form by clicking the Batch Insert button on the Employee Form. The Batch Insert Form has a grid that displays the entered data and a row of fields where the user enters each record. To keep the example simple, users are only allowed to enter information into the Employee Number, Employee Name, and Department Number fields.

Users enter records in the fields and click the Add to Grid button. The program displays the entered records in the grid. To insert the entire batch to the database, users click the CommitGrid button.

The Batch Insert Form uses three procedures. The Form_Load() procedure initializes the grid with the column headers. The CmdAddtoGrid_click() procedure copies the entered data from the fields to the grid. The CommitGrid_Click() procedure contains the parameter array and SQL statements used to make the batch insert.

These procedures are described as follows:

	
Coding the Batch Insert Form_Load() Procedure

	
Coding the CmdAddtoGrid() Procedure

	
Coding the CommitGrid_Click() Procedure

Coding the Batch Insert Form_Load() Procedure

The following examples show how the Batch Insert Form_Load() procedure sets the column headings for the grid:

Private Sub Form_Load()
Grid1.Enabled = True
CurrRow = 0 'Top row
ReadRow = 0
ReadCol = 0

'Set column headings

Grid1.Row = CurrRow
Grid1.Col = 0
Grid1.Text = "Employee Number"

Grid1.Col = 1
Grid1.Text = "Employee Name"

Grid1.Col = 2
Grid1.Text = "Department Number"

NoOfCols = 3

CurrRow = CurrRow + 1

End Sub

Coding the CmdAddtoGrid() Procedure

The CmdAddtoGrid_Click() procedure copies the data entered in the fields to the next empty grid row. The global variable CurrRow always points to the first empty row in the grid.

The following example shows the CmdAddtoGrid_Click():

Private Sub CmdAddtoGrid_Click()

'Update the grid
'Update Empno column
Grid1.Row = CurrRow
Grid1.Col = 0
Grid1.Text = txtEmpno
'Update Ename column
Grid1.Row = CurrRow
Grid1.Col = 1
Grid1.Text = txtEname
'Update Deptno column
Grid1.Row = CurrRow
Grid1.Col = 2
Grid1.Text = txtDeptno

'Increment CurrCol
CurrRow = CurrRow + 1

NoOfRows = CurrRow - 1

End Sub

Coding the CommitGrid_Click() Procedure

The CommitGrid_Click() procedure inserts the grid data into the database. To do so, this procedure creates a parameter array object for each column in the EMP table that corresponds to a column in the grid. The OraParameters.AddTable() method defines each parameter array. For example, a parameter array called EMPNO_ARR holds all Employee Number column elements.

After the parameter arrays are defined, the Put_Value method populates them with grid column elements.

To commit the parameter array elements to the database, this procedure uses the CreateSQL() method with a SQL INSERT statement containing the parameter arrays. Because the CreateSQL() method executes the SQL INSERT statement in addition to creating a SQL statement object, all column elements (parameter array elements) are inserted into the EMP table with this one statement.

If an error occurs during a SQL INSERT statement that contains parameter arrays, the SQL statement object is still created with no explicitly raised error. To identify such errors, always check the OraDatabase.LastServerErr and OraDatabase.LastServerErrText properties immediately after executing the CreateSQL method.

The CreateSQL method updates the database directly and has no effect on the dynaset. The EmpDynaset. Refresh method must used to refresh this dynaset so that it reflects the newly inserted records.

The CommitGrid_Click() event procedure must do the following:

	
Define a parameter array for each grid (database) column, using the AddTable method.

	
Copy grid column elements into parameter arrays, using the Put_Value method within a nested loop.

	
Create a SQL statement object using the CreateSQL method to insert parameter array elements into the EMP table.

	
Check the LastServerErrText and LastServerErr properties to catch SQL statement execution errors.

	
Refresh the global dyanset to reflect newly inserted records, using the Refresh method.

The following example shows a typical cmdCommitGrid_Click() procedure:

Private Sub cmdCommitGrid_Click()
Dim OraSqlStmt As Object
Dim OraPArray(2) As Object

On Error GoTo err_CommitGrid
ErrMsg = ""

'Define parameter arrays, one for each column
OraDatabase.Parameters.AddTable "EMPNO_ARR", ORAPARM_INPUT, ORATYPE_NUMBER, _
 NoOfRows
OraDatabase.Parameters.AddTable "ENAME_ARR", ORAPARM_INPUT, ORATYPE_VARCHAR2, _
 NoOfRows, 10
OraDatabase.Parameters.AddTable "DEPTNO_ARR", ORAPARM_INPUT, ORATYPE_NUMBER, _
 NoOfRows
If OraDatabase.LastServerErr <> 0 Or OraDatabase.LastServerErrText <> "" Then
Error 1
End If

'Initialize local array to hold parameter arrays
Set OraPArray(0) = OraDatabase.Parameters("EMPNO_ARR")
Set OraPArray(1) = OraDatabase.Parameters("ENAME_ARR")
Set OraPArray(2) = OraDatabase.Parameters("DEPTNO_ARR")

'Init the param array variables. Add loop to read thru grid ROWS
For ReadRow = 0 To (NoOfRows - 1)
Grid1.Row = ReadRow + 1
'Loop to read thru grid CELLS
 For ReadCol = 0 To NoOfCols - 1
 Grid1.Col = ReadCol
 OraPArray(ReadCol).Put_Value Grid1.Text, ReadRow
 Next ReadCol
Next ReadRow

'create a sqlstmt to insert array values into table
Set OraSqlStmt = OraDatabase.CreateSql("insert into emp(empno,ename,deptno)" & _
 "values(:EMPNO_ARR,:ENAME_ARR,:DEPTNO_ARR)", 0&)
If OraDatabase.LastServerErr <> 0 Or OraDatabase.LastServerErrText <> "" Then
 ErrMsg = OraDatabase.LastServerErrText
 Error 1
End If

'Refresh the Dynaset
EmpDynaset.Refresh

OraDatabase.Parameters.Remove "EMPNO_ARR"
OraDatabase.Parameters.Remove "ENAME_ARR"
OraDatabase.Parameters.Remove "DEPTNO_ARR"

Exit Sub

err_CommitGrid:
 If ErrMsg <> "" Then
 MsgBox ErrMsg
 Else
 MsgBox Error$
 End If

End Sub

7 Code Wizard for Stored Procedures

The Oracle Objects for OLE (OO4O) Code Wizard generates OO4O code that executes Oracle PL/SQL and Java stored procedures.

The wizard generates code into individual Microsoft Visual Basic or Active Server Page and VBScript subroutines from existing Oracle stored procedures and packages. Additionally, the wizard can generate complete implementations of COM Automation objects in the form of VB class files. The generated COM Automation object methods act as client stubs for the execution of stored procedures contained in a given package. All the OO4O code necessary for input/output parameter binding and stored procedure execution is automatically generated.

The wizard can be used as a command-line utility or as a Visual Basic add-in. The wizard automates the entire process of accessing stored procedures using COM interfaces, thereby significantly reducing development time and the likelihood of programming errors.

	
Note:

The Code Wizard requires Visual Basic 6.

This chapter contains these topics:

	
Oracle Objects for OLE Code Wizard Components

	
Data Types Supported by the OO4O Code Wizard

	
Using the OO4O Code Wizard

	
Code Wizard Examples

Oracle Objects for OLE Code Wizard Components

The OO4O Code Wizard includes the following components:

	
A command line utility, OO4OCodeWiz.exe, that converts PL/SQL and Java stored procedures to OO4O code.

	
A Visual Basic Add-in wizard that guides you through a series of steps to generate OO4O code for PL/SQL and Java stored procedures. The wizard displays Oracle packages and stored procedures from a tree control so that the user can choose which items to generate code.

Both of these components allow users to convert entire stored procedure packages to OO4O code.

Data Types Supported by the OO4O Code Wizard

The code wizard supports all data types, except for PL/SQL tables. When a PL/SQL table is used, an unsupportedType key word is used instead, and the generated code does not compile.

The output code may have to be modified for handling Null values. For example, when a VB variable is initialized to a parameter value, an isNull() check may have to be added if Null values are expected. Null values are correctly handled for VB variables of type Variant and Object.

Using the OO4O Code Wizard

The OO4O Code Wizard can be used as a command line utility or as a Visual Basic Add-in.

OO4O Code Wizard Command-Line Utility

The OO4OCodeWiz.exe is a command-line utility that generates a Visual Basic class, a Visual Basic file, or an Active Server Page/VB Script file from existing PL/SQL or Java stored procedures, as well as packages, within an Oracle database. Call the utility in the following manner:

OO4OCodeWiz [-o output_file] username/password@connect_string package

	Where	Specifies the following
	username	User name to log in to the database
	password	Password for the user name
	connect_string	Database connection string
	package	Package name
	stored_procedure	Stored procedure name (optional)

Example

OO4OCodeWiz -o empfile.asp scott/tiger@Exampledb employee.example

Option

	Option	Description
	-o	Specifies the output file name (optional)

Files Generated

The code wizard uses the information specified on the command line to determine which type of output file to generate.

If a file name and one of the permitted file extensions are specified, then they are used. In the preceding example, an ASP file is generated in the empfile.asp output. The user can specify the following extensions:

	Extension	File Type Generated
	.cls	VB class file
	.bas	VB file
	.asp	ASP or VB script file
	.vbs	ASP or VB script file

If no file extension is specified, the following rules indicate what type of file is generated, depending on other command-line specifications.

	
Package names without a stored procedure name generate a .cls file.

	
Package names with procedure names generate a .bas file.

Table 7-1 and Table 7-2 provide examples.

Table 7-1 Package Name Without Stored Procedure Name

	File Specified	Command	File Type Generated
	
File name with no file extension generates filename.cls.

	
OO4OCodeWiz -o empfile scott/tiger@Exampledb employee

	
empfile.cls

	
No file name or extension: generates packagename.cls.

	
OO4OCodeWiz scott/tiger@Exampledb employee

	
employee.cls

	
File name with file extension generates filename.fileexten.

	
OO4OCodeWiz -o empfile.asp scott/tiger@Exampledb employee

	
empfile.asp

Table 7-2 Package Name With Stored Procedure Name

	File Specified	Command	File Type Generated
	
File name with no file extension generates filename.bas.

	
OO4OCodeWiz -o empfile scott/tiger@Exampledb employee.example

	
empfile.bas

	
No file name or extension: generates packagename.bas.

	
OO4OCodeWiz scott/tiger@Exampledb employee.example

	
employee.bas

	
File name with file extension generates filename.fileexten.

	
OO4OCodeWiz -o empfile.asp scott/tiger@Exampledb employee.example

	
empfile.asp

OO4O Code Wizard Visual Basic Wizard Add-in

	
Launch the OO4O Code Wizard by selecting Oracle Code Wizard for Stored Procedures in the Add-Ins menu of Microsoft Visual Basic.

The Connect To Oracle Database dialog box appears:

[image: the Connect dialog box]

	
Enter the user name and password to connect to the database. A connection string is required if the database is not installed on the user's local computer.

	
Click OK.

The wizard displays the Oracle packages and stored procedures available to the user in a tree.

[image: OO4O Code Wizard for Stored Procedures dialog box]

	
Select one of the stored procedures or packages displayed.

	
Enter an output file name or click the Browse... button to navigate to a different directory in which to place the file.

	
Choose the file type from the Component type list. There are three choices: a VB class module (*.cls), a VB file (*.bas), or other. The other option generates a VB file (*.bas), but enables you to specify your own file extension.

	
Click OK.

A dialog box appears indicating that a new OO4O file was created.

	
Click Yes to create another file, or click No to return to Visual Basic.

Code Wizard Examples

The ORACLE_BASE\\ORACLE_HOME\oo4o\codewiz\samples directory contains sample applications incorporating code generated by the wizard. The following examples show the generated VB code output from Oracle stored procedures using the OO4O code wizard:

	
Accessing a PL/SQL Stored Function with Visual Basic and Active Server Pages

	
Accessing a PL/SQL Stored Procedure Using the LOB Type with Visual Basic

	
Accessing a PL/SQL Stored Procedure Using the VARRAY Type with Visual Basic

	
Accessing a PL/SQL Stored Procedure Using the Oracle OBJECT Type with Visual Basic

Accessing a PL/SQL Stored Function with Visual Basic and Active Server Pages

This example shows a PL/SQL stored function, GetEmpSal, and then the Visual Basic (*.cls) file that the code wizard generates for it.

FUNCTION GetEmpSal (inEmpno IN NUMBER)
RETURN NUMBER is
 outEmpsal NUMBER(7,2);
BEGIN
 SELECT SAL into outEmpsal from EMP WHERE EMPNO = inEmpno;
 RETURN (outEmpsal);
END;

The generated code for the GetEmpSal stored function is:

Public Function GETEMPSAL(INEMPNO As Variant) As Variant
OraDatabase.Parameters.Add "INEMPNO", INEMPNO, ORAPARM_INPUT, 2
OraDatabase.Parameters.Add "result", 0, ORAPARM_OUTPUT
OraDatabase.Parameters("result").serverType = 2
OraDatabase.ExecuteSQL ("declare result Number; Begin :result := " & _
 "Employee.GETEMPSAL(:INEMPNO); end;")

OraDatabase.Parameters.Remove "INEMPNO"
GETEMPSAL = OraDatabase.Parameters("result").Value
OraDatabase.Parameters.Remove "result"
End Function

In a VB class, OraDatabase appears as an attribute of the class. This attribute has to be set before any methods of the class can be invoked. For a VB file (*.bas), the generated code for the GetEmpSal stored function is the same as the VB class file, except for the function declaration:

Public Function GETEMPSAL(INEMPNO As Variant, ByRef OraDatabase As OraDatabase)
...

End Function

For an ASP file (*.asp), the function declaration also differs for the GetEmpSal stored function as follows, but the body of the code remains the same:

Public Function GETEMPSAL(INEMPNO, ByRef OraDatabase)
...
End Function

Accessing a PL/SQL Stored Procedure Using the LOB Type with Visual Basic

The following example shows how a Visual Basic file accesses a PL/SQL stored procedure with LOBs:

PROCEDURE getchapter(chapno in NUMBER, chap out CLOB) is
BEGIN
SELECT chapters into chap from mybook where chapterno = chapno
 for update;
END;

The following shows the generated Visual Basic code for the GETCHAPTER stored procedure:

Public Sub GETCHAPTER(CHAPNO As Variant, ByRef CHAP As OraCLOB)
OraDatabase.Parameters.Add "CHAPNO", CHAPNO, ORAPARM_INPUT, 2
OraDatabase.Parameters.Add "CHAP", Null, ORAPARM_OUTPUT, 112
OraDatabase.ExecuteSQL ("Begin MYBOOKPKG.GETCHAPTER(:CHAPNO,:CHAP); end;")
Set CHAP = OraDatabase.Parameters("CHAP").Value
OraDatabase.Parameters.Remove "CHAPNO"
OraDatabase.Parameters.Remove "CHAP"
End Sub

Accessing a PL/SQL Stored Procedure Using the VARRAY Type with Visual Basic

The following example shows how a PL/SQL stored procedure uses the Oracle collection type VARRAY:

PROCEDURE getnames(deptid in NUMBER, name out ENAMELIST) is
BEGIN
 SELECT ENAMES into name from department where dept_id = deptid for update;
END;

The wizard generates the following Visual Basic code for this stored procedure:

Public Sub GETNAMES(DEPTID As Variant, ByRef NAME As OraCollection)
OraDatabase.Parameters.Add "DEPTID", DEPTID, ORAPARM_INPUT, 2
OraDatabase.Parameters.Add "NAME", Null, ORAPARM_OUTPUT, 247, "ENAMELIST"
OraDatabase.ExecuteSQL ("Begin DEPTPKG.GETNAMES(:DEPTID, :NAME); end;")
Set NAME = OraDatabase.Parameters("NAME").Value
OraDatabase.Parameters.Remove "DEPTID"
OraDatabase.Parameters.Remove "NAME"
End Sub

Accessing a PL/SQL Stored Procedure Using the Oracle OBJECT Type with Visual Basic

The following example shows how a PL/SQL stored procedure uses the Oracle object type:

PROCEDURE getaddress(person_name in varchar2, person_address out address) is
BEGIN
 SELECT addr into person_address from person_table where name =
 person_name for update;
END;

The wizard generates the following Visual Basic code for this stored procedure:

Public Sub GETADDRESS(PERSON_NAME As String, ByRef PERSON_ADDRESS As OraObject)
OraDatabase.Parameters.Add "PERSON_NAME", PERSON_NAME, ORAPARM_INPUT, 1
OraDatabase.Parameters.Add "PERSON_ADDRESS", Null, ORAPARM_OUTPUT, _
 108, "ADDRESS"
OraDatabase.ExecuteSQL ("Begin PERSONPKG.GETADDRESS(:PERSON_NAME," & _
 ":PERSON_ADDRESS); end;")
Set PERSON_ADDRESS = OraDatabase.Parameters("PERSON_ADDRESS").Value
OraDatabase.Parameters.Remove "PERSON_NAME"
OraDatabase.Parameters.Remove "PERSON_ADDRESS"
End Sub

8 Introduction to Automation Objects

This chapter introduces commonly used OO4O Automation Objects.

This chapter contains these topics:

	
Overview of Automation Objects

	
OraSession Object Overview

	
OraServer Object Overview

	
OraDatabase Object Overview

	
OraDynaset Object Overview

	
OraField Object Overview

	
OraParameters Object Overview

	
OraParameter Object Overview

	
OraParamArray Object Overview

	
OraSQLStmt Object Overview

Overview of Automation Objects

The OO4O operational hierarchy of the objects expresses has-a and belongs-to relationships.

Figure 8-1 shows the operational hierarchy.

Figure 8-1 OO4O Automation Objects

[image: hierarchy diagram starting with OraSession]

The Automation objects diagram illustrates this hierarchy.

OraSession Object Overview

The OraSession object is returned when an instance of the OO4O Automation Server is created. It mainly serves as an interface for establishing connections to Oracle databases. It also contains methods for starting, committing, and canceling transactions on the connections contained in the OraDatabase objects created. The following Visual Basic example creates an instance of the OO4O Automation Server.

'OracleInProcServer.XOraSession is the symbolic name for a
'globally unique component identifier.
Set OO4OSession = CreateObject("OracleInProcServer.XOraSession")

	
See Also:

	
OraSession Object

	
"Accessing the Oracle Objects for OLE Automation Server"

	
"Connecting to Oracle Database"

OraServer Object Overview

The OraServer object represents a physical connection to an Oracle database instance. It provides a method, OpenDatabase, for creating user sessions, which represents OraDatabase objects. It makes it possible to do "connection multiplexing."

	
See Also:

	
OraServer Object

	
"Accessing the Oracle Objects for OLE Automation Server"

	
"Using OraServer for Connection Multiplexing"

OraDatabase Object Overview

The OraDatabase object represents a user connection to an Oracle database instance, and provides methods to execute SQL statements and PL/SQL code. The OraDatabase object is returned by the OpenDatabase method of the OraSession or the OraServer object.

The following example illustrates the use of the OpenDatabase method of the OraSession. OraDatabase objects created by this method contain a distinct physical connection to an Oracle database.

'Establish a connection to the ExampleDb database
Set hrDBSession = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

The following example demonstrates how a physical network connection to an Oracle database can be shared by multiple user sessions. Using a single connection that is shared by multiple user sessions results in reduced resource usage in an Oracle Database and can increase scalability.

'Create a server connection

Set hrDBServer = CreateObject("OracleInProcServer.XOraServer")
Set hrDBServer = oo4o.Open("ExampleDb")
Set userSession1 = hrDBServer.OpenDatabase("scott/tiger", 0)

'execute queries ...
Set userSession2= hrDBServer.OpenDatabase("scott/tiger", 0)

'execute queries ...

	
See Also:

OraDatabase Object

OraDynaset Object Overview

An OraDynaset object represents the result set of a SQL SELECT query or a PL/SQL cursor variable returned from a stored procedure or function. It is essentially a client-side scrollable and updatable cursor that allows for browsing the set of rows generated by the query it executes. It is created by the CreateDynaset or CreateCustomDynaset method of an OraDatabase interface.

The following Visual Basic example executes a query, loops through the result set, and displays values of columns returned.

Set employees = OraDatabase.CreateDynaset("select empno, ename from emp", 0&)

'While there are more rows
while not employees.EOF

'Display the values of empno and ename column of the current row
msgbox employees("empno") & employees("ename")

'Move to the next row
employees.MoveNext
wend

	
See Also:

	
OraDynaset Object

	
CreateCustomDynaset Method

	
CreateDynaset Method

OraField Object Overview

The OraField object is an abstraction of a column in an OraDynaset object. It contains the value as well as the metadata that describes a column of the current row in the dynaset. In the previous example for the OraDynaset object, the Field interface for empno can be obtained using this additional code:

set empno = employees.Fields("empno")
msgbox "Employee Number: " & empno.Value

OraFields is a collection object representing all columns in the current row.

OraField objects can represent instances of any data type supported by Oracle Database. This includes all primitive types, such as VARCHAR2, NUMBER, INT, and FLOAT, as well all the object-relational types introduced in Oracle8i.

	
See Also:

	
OraField Object

	
"Support for Oracle Object-Relational and LOB Data Types"

OraParameters Object Overview

The OraParameters object is a collection container for OraParameter objects. An OraParameter object is used to supply data values for placeholders used in the SQL statements or PL/SQL blocks at run time. It can be used to provide input values as well as contain values that are returned from the database. The following sample creates two parameter objects and uses them in an update query.

OraDatabase.Parameters.Add "SALARY", 4000, ORAPARM_INPUT
OraDatabase.Parameters.Add "ENAME", "JONES", ORAPARM_INPUT
Set updateStmt = OraDatabase.CreateSQL("update emp set sal = :SALARY" & _
 "where ename = :ENAME ")

	
See Also:

OraParameters Collection

OraParameter Object Overview

OraParameter objects can contain values for all the data types supported by Oracle9i including object-relational data types. They can be passed as input or output arguments to PL/SQL stored procedures and functions. The values of the OraParameter objects can also represent PL/SQL cursors in the form of OraDynaset objects.

	
See Also:

	
OraParameter Object

	
"PL/SQL Support"

OraParamArray Object Overview

An OraParamArray object provides the mechanism for binding and fetching an array of values. It is typically used for performing bulk inserts and updates.

'Create a table
OraDatabase.ExecuteSQL ("create table part_nos(partno number," & _
 "description char(50), primary key(partno))")

'Create two parameter arrays of size 10 to hold values for
'part numbers (size 22 bytes), and their description (50 bytes long).
OraDatabase.Parameters.AddTable "PARTNO", ORAPARM_INPUT, ORATYPE_NUMBER, 10, 22
OraDatabase.Parameters.AddTable "DESCRIPTION", ORAPARM_INPUT, _
 ORATYPE_CHAR, 10, 50

'Initialize the arrays
For I = 0 To 10
 OraDatabase.Parameters("PARTNO").put_Value = I, I
 OraDatabase.Parameters("DESCRIPTION ") = "some description", I
Next I

'Execute the query
Set OraSqlStmt = OraDatabase.CreateSql("insert into " & _
 "part_nos(partno, description) values(:PARTNO,:DESCRIPTION)", 0&)

	
See Also:

OraParamArray Object

OraSQLStmt Object Overview

The OraSQLStmt object is typically used for executing non-select SQL queries and PL/SQL blocks. The following line of code executes an update query and displays the number of rows affected.

Set updateStmt = OraDatabase.CreateSQL("update emp set sal = 3000" & _
 "where ename = 'JONES' ")
MsgBox updateStmt.RecordCount

The OraSQLStmt object (updateStmt) can be used later to execute the same query with a different value for the :SALARY placeholder. For example:

OraDatabase.Parameters("SALARY").value = 200000
updateStmt.Parameters("ENAME").value = "KING"
updateStmt.Refresh

	
See Also:

OraSQLStmt Object

9 Server Objects

This chapter describes the Oracle Objects for OLE Server Objects.

	
See Also:

	
"Overview of Oracle Objects for OLE"

	
"Oracle Objects for OLE In-Process Automation Server"

	
"Using Automation Clients Overview"

	
"Required Setups"

This chapter contains these topics:

	
OraAQ Object

	
OraAQAgent Object

	
OraAQMsg Object

	
OraAttribute Object

	
OraBFILE Object

	
OraBLOB, OraCLOB Objects

	
OraClient Object

	
OraCollection Object

	
OraConnection Object

	
OraDatabase Object

	
OraDynaset Object

	
OraField Object

	
OraIntervalDS Object

	
OraIntervalYM Object

	
OraMDAttribute Object

	
OraMetaData Object

	
OraNumber Object

	
OraObject Object

	
OraParamArray Object

	
OraParameter Object

	
OraRef Object

	
OraServer Object

	
OraSession Object

	
OraSQLStmt Object

	
OraSubscription Object

	
OraTimeStamp Object

	
OraTimeStampTZ Object

	
OraConnections Collection

	
OraFields Collection

	
OraParameters Collection

	
OraSessions Collection

	
OraSubscriptions Collection

OraAQ Object

Description

An OraAQ object is instantiated by invoking the CreateAQ method of the OraDatabase interface. It represents a queue that is present in the database.

Remarks

Oracle Objects for OLE provides interfaces for accessing Oracle Database Advanced Queuing (AQ) feature. It makes AQ accessible from popular COM-based development environments such as Visual Basic.

The OraAQ Automation interface provides methods for enqueuing and dequeuing messages (encapsulated in the OraAQMsg object). It also provides a method for monitoring queues for message arrivals.

Client applications provide a Dispatch interface to the monitor. The monitor checks the queue for messages that meet the application criteria. It then invokes the NotifyMe method of the Dispatch interface when these messages are dequeued.

The following diagram illustrates the OO4O AQ Automation objects and their properties.

[image: Description of o4o00016.gif follows]

Properties

	
Consumer (OraAQ) Property

	
Correlate (OraAQ) Property

	
DequeueMode (OraAQ) Property

	
DequeueMsgId (OraAQ) Property

	
Navigation (OraAQ) Property

	
RelMsgId (OraAQ) Property

	
Visible (OraAQ) Property

	
Wait (OraAQ) Property

Methods

	
AQMsg (OraAQ) Method

	
Enqueue (OraAQ) Method

	
Dequeue (OraAQ) Method

	
MonitorStart (OraAQ) Method

	
MonitorStop (OraAQ) Method

Examples

Example: Enqueuing Messages

Enqueuing messages of type RAW

"Enqueuing Messages of Type RAW"

Enqueuing messages of Oracle object types

"Enqueuing Messages of Oracle Object Types"

Example: Dequeuing messages

NOTE: The following code samples serve as models for dequeuing messages.

A complete AQ sample can be found in \OO4O\VB\SAMPLES\AQ

Dequeuing messages of the RAW type

"Example: Dequeuing Messages of RAW Type"

Dequeuing messages of Oracle object types

"Example: Dequeuing Messages of Oracle Object Types"

Example: Monitoring messages

See "Monitoring Messages" for examples illustrating the use of the MonitorStart and MonitorStop methods.

	
See Also:

	
OraAQAgent Object

	
OraAQMsg Object

	
Oracle Streams Advanced Queuing User's Guide for a detailed description of Oracle Advanced Queuing

OraAQAgent Object

Description

The OraAQAgent object represents a message recipient and is only valid for queues that allow multiple consumers.

Remarks

An OraAQAgent object can be instantiated by invoking the AQAgent method. For example:

Set agent = qMsg.AQAgent(name)

Methods

None.

Properties

	
Address (OraAQAgent) Property

	
Name (AQAgent) Property

Example

The following Visual Basic example illustrates a simple use of the advanced queuing feature. A message of a user-defined type, MESSAGE_TYPE, is enqueued into a queue, msg_queue, that supports multiple consumers.

Dim q as OraAQ
Dim qMsg as OraAQMsg
Dim agent as OraAQAgent
Set q = OraDatabase.CreateAQ("msg_queue")
Set qMsg = q.AQMsg(1,"MESSAGE_TYPE")

'To add SCOTT as a recipient for the message,
Set agent = qMsg.AQAgent("SCOTT")

'To enqueue,
q.Enqueue

	
See Also:

	
Oracle Streams Advanced Queuing User's Guide for a detailed description of Oracle Advanced Queuing

	
OraAQ Object

	
OraAQMsg Object

OraAQMsg Object

Description

The OraAQMsg object encapsulates the message to be enqueued or dequeued. The message can be of any user-defined or raw type.

Properties

	
Correlation (OraAQMsg) Property

	
Delay (OraAQMsg) Property

	
ExceptionQueue Property

	
Expiration (OraAQMsg) Property

	
Priority (OraAQMsg) Property

	
Value (OraAQMsg) Property

Methods

	
AQAgent (OraAQMsg) Method

	
See Also:

	
Oracle Streams Advanced Queuing User's Guide for a detailed description of Oracle Advanced Queuing

	
OraAQ Object

	
OraAQAgent Object

OraAttribute Object

Description

The OraAttribute object represents an attribute of a Value or REF instance of an OraObject or an OraRef.

Remarks

The OraAttribute object can be accessed from the OraObject or OraRef object by creating a subscript that uses ordinal integers or by using the name attribute.

See the Value (OraAttribute) property for a table that identifies the attribute type and the return value of the Value property of the OraAttribute object:

Properties

	
Value (OraAttribute) Property

	
Name (OraAttribute) Property

	
Type (OraAttribute) Property

Methods

None.

Examples

The following example accesses the attributes of the ADDRESS value instance in the server. Before running the sample code, make sure that you have the necessary data types and tables in the database. See "Schema Objects Used in the OraObject and OraRef Examples".

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset
Dim Address As OraObject
Dim City As OraAttribute
Dim State As OraAttribute

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from person_tab
Set OraDynaset = OraDatabase.CreateDynaset("select * from person_tab", 0&)

'retrieve an address column from person_tab
'the Value property of OraField object returns Address OraObject
Set Address = OraDynaset.Fields("Addr").Value

'access the City attribute object
Set City = Address("City")

' display the value of City attribute Object
MsgBox City.Value

'access the State attribute object
Set State = Address("State")

'display the value of State attribute Object
MsgBox State.Value

	
See Also:

	
OraCollection Object

	
OraParameter Object

	
OraObject Object

	
OraRef Object

OraBFILE Object

Description

The OraBFile interface in OO4O provides methods for performing operations on the BFILE LOB data type in the database.

Remarks

The BFILE types are large binary data objects stored in operating system files (external) outside of the database tablespaces.

Properties

	
DirectoryName Property

	
FileName Property

	
Exists Property

	
IsNull (OraLOB/BFILE) Property

	
IsOpen (OraBFILE) Property

	
Offset (OraLOB/BFILE) Property

	
PollingAmount Property

	
Size (OraLOB and OraBFILE) Property

	
Status (OraLOB/BFILE) Property

Methods

	
Clone (OraLOB/BFILE) Method

	
Close (OraBFILE) Method

	
CloseAll (OraBFILE) Method

	
Compare (OraLOB) Method

	
CopyToFile (OraLOB/BFILE) Method

	
MatchPos (OraLOB/BFILE) Method

	
Open (OraBFILE) Method

	
Read (OraLOB/BFILE) Method

Examples

See "Schema Objects Used in LOB Data Type Examples" for schema objects that are used in the OraLOB/BFILE examples.

NOTE: To add the required tables for the following examples, run the lob.sql file in the \OO4O\VB\SAMPLES\LOB directory.

Example: Accessing the BFILE Value

BFILE data can be read using the Read method. The OraBFILE object allows piecewise read operations. Before reading the BFILE content, the BFILE file should be opened using the Open method.

Dim PartColl as OraBFile
Dim buffer As Variant

'Create a Dynaset containing a BLOB and a CLOB column
set part = OraDatabase.CreateDynaset ("select * from part",0)
Set PartColl = part.Fields("part_collateral").Value

'open the bfile for read operation
PartColl.Open

'read the entire bfile
amount_read = PartColl.Read(buffer)

'close the bfile
PartColl.Close

Example: Reading and Inserting BFILEs Using Dynasets

To modify the directory and file names of the BFILE value of an OraBFILE object, first obtain a lock and then use the DirectoryName and FileName properties.

To insert a new row containing a BFILE column, initialize the BFILE column with new directory and file name values using the DirectoryName and FileName properties.

Dim PartColl as OraBFile
Dim buffer As Variant

'Create a Dynaset containing a BLOB and a CLOB column
set part = OraDatabase.CreateDynaset ("select * from part",0)
Set PartColl = part.Fields("part_collateral").Value

'insert a new BFILE in the part_collateral column
part.AddNew

'Directory objects will be upper-case by default
 PartColl.DirectoryName = "NEWDIRECTORYNAME"
 PartColl.FileName = "NewPartCollatoral"
part.Update

'move to the newly added row
part.MoveLast

'open the Bfile for read operation
PartColl.Open

'read the entire bfile
amount_read = PartColl.Read(buffer)

'close the Bfile
PartColl.Close

	
See Also:

	
OraBLOB, OraCLOB Objects

	
Oracle Database SecureFiles and Large Objects Developer's Guide for a detailed description of Oracle BFILE types

OraBLOB, OraCLOB Objects

Description

The OraBLOB and OraCLOB interfaces in OO4O provide methods for performing operations in a database on the large object data types BLOB, CLOB, and NCLOB. In this developer's guide, BLOB, CLOB, and NCLOB data types are also referred to as LOB data types.

OO4O supports the creation of temporary BLOB or CLOB types that can be manipulated and then bound to SQL statements or PL/SQL blocks, or copied into permanent LOBs.

Remarks

LOB data is accessed using the Read and CopyToFile methods.

LOB data is modified using the Write, Append, Erase, Trim, Copy, CopyFromFile, and CopyFromBFile methods. A row lock must be obtained before modifying the contents of a LOB column in a row. If the LOB column is a field of an OraDynaset object, then the lock is obtained by invoking the Edit method.

None of the LOB operations are allowed on NULL LOBs. To avoid errors, use the IsNull property to detect NULL LOBs. To perform write operations on a LOB that is null, first the LOB column must be initialized with an Empty value.

To insert a new row having a LOB column, first initialize the LOB column with an Empty value by setting the Value property of the OraField or OraParameter object to the keyword Empty and commit the change to the database. The newly updated Empty LOB must be selected again from the database before it can be used. This is done automatically in the case of the OraDynaset object: If a LOB field in an OraDynaset object is set to Empty and the Update method is called, OO4O automatically reselects the Empty LOB into the dynaset making it available for use in subsequent write operations.

There are two modes of operation for read and write operations for LOBs.

	
Multiple-piece read/write operations

In this mode, the total amount of data to be read or written is more than the size of the buffer for an individual read/write operation. Rather than make a complete round-trip for each operation, the pieces are streamed. To begin the multiple piece operation, the PollingAmount property is first set to the total amount of data to be read or written. The Offset property is set at this time to specify the initial offset for the first piece read/write operation. The offset is automatically incremented after the first read/write operation, and cannot be changed again until the multiple piece operation has completed. The Status property must be checked for the success of each piecewise operation and the operation must continue until all the pieces are read or written (it cannot be aborted). To start another multiple-piece read/write operation on the same LOB, the PollingAmount property has to be reset to the desired amount. See "Example: Multiple-Piece Read of a LOB".

	
Single-piece read/write operation

In this mode, the reading and writing of data occurs in one operation. This mode is enabled when the PollingAmount property is set to 0. See "Example: Single-Piece Read of a LOB".

The Offset property in both modes of operation is 1-based.

By design, LOBs cannot span transactions started by SELECT .. FOR UPDATE, INSERT, and UPDATE statements. Selecting or modifying LOB values using these SQL statements makes LOBs invalid outside the current transaction. In Oracle Objects for OLE, transactions can be started and ended in the following ways.

	
Dynaset Edit/Update method

The Edit method executes the SELECT FOR UPDATE statement to lock the row and start the transaction. The Update method ends the transaction. If the LOB column value is modifed between the Edit and Update pair, OO4O reselects the value of LOB column after the Update call. This is transparent to the user. Note that OO4O does not reselect the LOB value if the LOB is an attribute of an Oracle objects instance or element of an Oracle collection. If the transaction is started by the OraSession/OraDatabase or OraServer object and the LOB data is modified between the Edit and Update methods, OO4O does not reselect the LOB value from the database. LOBs are invalid after committing transactions initiated by OraSession/OraDatabase or OraServer objects.

See "Example: Dynasets Containing LOBs and Transactions".

	
Executing an INSERT or UPDATE statement through the ExecuteSQL or CreateSQL method.

An INSERT or UPDATE statement starts the transaction, and the transaction is implicitly ended by Oracle Objects for OLE (auto-commit). If a statement has a LOB output bind parameter, as in the case of the RETURNING .. INTO clause, then it will become invalid after the ExecuteSQL or CreateSQL method is executed To avoid this, the user must execute these statement between the BeginTrans/CommitTrans pair of OraSession, OraServer or OraDatabase objects.

See "Example: INSERT or UPDATE Statements with LOBs and Transactions".

	
See Also:

	
"Using Large Objects (LOBs)" for more information about LOB operations and LOB performance issues

	
Oracle Database SecureFiles and Large Objects Developer's Guide for a detailed description of Oracle LOBs

Properties

	
IsNull (OraLOB/BFILE) Property

	
PollingAmount Property

	
Offset (OraLOB/BFILE) Property

	
Size (OraLOB and OraBFILE) Property

	
Status (OraLOB/BFILE) Property

Methods

	
Append (OraLOB) Method

	
Clone (OraLOB/BFILE) Method

	
Compare (OraLOB) Method

	
Copy (OraLOB) Method

	
CopyFromFile (OraLOB) Method

	
CopyFromBFILE (OraLOB) Method

	
CopyToFile (OraLOB/BFILE) Method

	
DisableBuffering (OraLOB) Method

	
EnableBuffering (OraLOB) Method

	
Erase (OraLOB) Method

	
FlushBuffer (OraLOB) Method

	
MatchPos (OraLOB/BFILE) Method

	
Read (OraLOB/BFILE) Method

	
Trim (OraLOB) Method

	
Write (OraLOB) Method

Examples

See "Schema Objects Used in LOB Data Type Examples" for schema objects that are used in the OraLOB and BFILE examples.

Example: Accessing a LOB Value

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset
Dim PartImage as OraBlob
Dim buffer As Variant

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", _
 "scott/tiger", 0&)

'execute the select statement
set OraDynaset = OraDatabase.CreateDynaset ("select * from part",0&)

'retrieve photo field from the dynaset
set PartImage = OraDynaset.Fields("part_image").Value

'read the entire LOB column in one piece into the buffer
amount_read = PartImage.Read(buffer, 10)
'use the buffer for internal processing

Example: Modifying a LOB Value

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset
Dim PartDesc as OraClob
Dim buffer As String

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb","scott/tiger", 0&)

'execute the select statement
set OraDynaset = OraDatabase.CreateDynaset ("select * from part",0&)
set PartDesc = OraDynaset.Fields("part_desc").Value

'To get a free file number
FNum = FreeFile
'Open the file for reading
Open "partdesc.dat" For Binary As #FNum

'Allocate buffer to the size of file FNum and read the entire file
buffer = String$(LOF(FNum), 32)
Get #FNum, , buffer

'lock the row for write operation
OraDynaset.Edit
amount_written = PartDesc.Write(buffer)

'commit the operation and release the lock
OraDynaset.Update
Close FNum

Example: Inserting LOBs Using Dynasets

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim Part As OraDynaset
Dim PartImage as OraBLOB
Dim ImageChunk() As Byte
Dim amount_written As Long

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'Create a Dynaset containing a BLOB and a CLOB column

set part = OraDatabase.CreateDynaset ("select * from part",0)
set PartImage = part.Fields("part_image").Value

'First insert Empty LOB in the part_image column
part.AddNew
 part.Fields("part_id").Value = 1234
 part.Fields("part_image").Value = Empty
part.Update

'move to the newly added row
Part.MoveLast

'To get a free file number
FNum = FreeFile

'Open the file for reading PartImages
Open "part_picture.gif" For Binary As #FNum

'Re adjust the buffer size to hold entire file data

Redim ImageChunk(LOF(FNum))

'read the entire file and put it into buffer
Get #FNum, , ImageChunk

'call dynaset's Edit method to lock the row
part.Edit
amount_written = OraBlob.Write(ImageChunk)
part.Update

'close the file
Close FNum

Example: Inserting LOBs Using an OraParameter Object

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraBlob As OraBlob
Dim ImageChunk() As Byte
Dim amount_written As Long

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
Set OraParameters = OraDatabase.Parameters
OraParameters.Add "PartImage", Empty,ORAPARM_OUTPUT
OraParameters("PartImage").ServerType = ORATYPE_BLOB

'BeginTrans needs to be called since LOB locators become
'invalid after the ExecuteSQL call
OraSession.BeginTrans
OraDatabase.ExecuteSQL ("insert into part values (1234,'Oracle Application'," & _
 "EMPTY_BLOB(),NULL,NULL) RETURNING part_image INTO :PartImage")
set PartImage = OraDatabase.Parameters("PARTIMAGE").Value

FNum = FreeFile
'Open the file for reading PartImages
Open "part_picture.gif" For Binary As #FNum

'read the file and put it into buffer
Redim ImageChunk(LOF(FNum))
Get #FNum, , ImageChunk

Set OraBlob = OraDatabase.Parameters("PartImage").Value
amount_written = OraBlob.Write(ImageChunk, 10, ORALOB_ONE_PIECE)

' commit the transaction and close the file
OraSession.CommitTrans
Close FNum

Example: Dynasets Containing LOBs and Transactions

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraBlob As OraBlob
Dim PartImage as OraBLOB
Dim ImageChunk() As Byte
Dim amount_written As Long

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'Create a Dynaset containing a BLOB and a CLOB column
set part = OraDatabase.CreateDynaset ("select * from part " & _
 "where part_id = 1234",0)
set PartImage = part.Fields("part_image").Value

'To get a free file number
FNum = FreeFile

'Open the file for reading PartImages
Open "c:\part_picture.gif" For Binary As #FNum
Redim ImageChunk(LOF(FNum))

'read the file and put it into buffer
Get #FNum, , ImageChunk

'starts the transaction on OraSession
OraSession.BeginTrans

'call dynaset's Edit method to lock the row
part.Edit
Set OraBlob = PartImage
amount_written = OraBlob.Write(ImageChunk, 10, ORALOB_ONE_PIECE)
part.Update

'ends the transaction
OraSession.CommitTrans

'the following lines of code will raise error
'LOB locator cannot span transaction'
msgbox Partimage.Size
Close FNum

Example: INSERT or UPDATE Statements with LOBs and Transactions

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim ImageChunk() As Byte
Dim amount_written As Long

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

Set OraParameters = OraDatabase.Parameters
OraParameters.Add "PartImage", Empty,ORAPARM_OUTPUT
OraParameters("PartImage").ServerType = ORATYPE_BLOB

'Create a Dynaset containing a LOB,column
OraDatabase.ExecuteSQL ("insert into part values (1234,'Oracle Application'," & _
 "EMPTY_BLOB(),NULL,NULL) RETURNING part_image INTO :PartImage")
set PartImage = OraDatabase.Parameters("PARTIMAGE").Value

'the following lines of code will raise error
'LOB locator cannot span transaction'
msgbox Partimage.Size

Example: Using the CopyToFile Method

See "Example:Using the CopyToFile Method".

Example: Using the CopyFromFile Method

See "Example: Using the CopyFromFile Method".

Example: Multiple-Piece Read of a LOB

See "Example: Multiple-Piece Read of a LOB".

Example: Single-Piece Read of a LOB

See "Example: Single-Piece Read of a LOB".

Example: Multiple-Piece Write of a LOB

See "Multiple-Piece Write of a LOB Example".

Example: Single-Piece Write of a LOB

See "Single-Piece Write of a LOB Example".

Example: Passing a Temporary CLOB to a Stored Procedure

See "Example: Passing a Temporary CLOB to a Stored Procedure".

	
See Also:

	
OraBFILE Object

	
CreateTempBLOB/CLOB Method

OraClient Object

Description

An OraClient object defines a workstation domain, and all of the OraSession objects of that workstation are listed in the OraSessions collection of the OraClient object.

Remarks

Only one OraClient object can exist for each workstation, and it is created automatically by the system when it is needed.

Properties

	
Name Property

	
Sessions Property

Methods

	
CreateSession Method

	
See Also:

	
OraSession Object

	
OraSessions Collection

OraCollection Object

Description

The OraCollection interface represents Oracle collection types, such as variable-length arrays (VARRAYs) and nested tables.

Remarks

A collection is an ordered group of elements, all of the same type. For example, the students in a class or the grades for each student in a class. Each element has a unique subscript, called an index, that determines its position in the collection.

The collection type nested table is viewed as a table stored in the column of database tables. When retrieved, rows of a nested table are given consecutive subscripts that start at 1. Individual rows are accessed using an array-like access.

The collection type VARRAY is viewed as an array stored in the column of database tables. To reference an element in a VARRAY data type, standard subscripting syntax can be used. For example, Grade(3) references the third element in the VARRAY data type named Grades.

The OraCollection provides methods for accessing and manipulating an Oracle collection. Implicitly an OraCollection object contains an OLE Automation collection interface for accessing and manipulating (updating and inserting) individual elements of an Oracle collection. Individual elements can be accessed by using a subscript. An OraCollection element index starts at 1.

Element values are retrieved as Variant types. The Variant type of the element depends on the element type of the collection. Element values can be Null and can be set to Null. For elements of type objects and REFs, element values are returned as corresponding OO4O objects for that type. VARRAYs and nested tables do not support the elements of LOBs, VARRAYs, and Nested tables.

Table 9-1 lists the element type and return value of the elements.

Table 9-1 Element Type and Return Value of Elements

	Element Type	Element Value
	
Object

	
OraObject

	
REF

	
OraRef

	
Date

	
String

	
Number

	
String

	
CHAR, VARCHAR2

	
String

	
Real

	
Real

	
Integer

	
Integer

Element values are converted into a Variant SAFEARRAY format using the SafeArray property. Only elements of primitive types are supported. A Variant SAFEARRAY index starts at 0.

The CreateOraObject method on the OraDatabase object returns the OraCollection object. The Oracle collection associated with this OraCollection object is created in the client-side object cache.

For information about creating a dynaset from a collection, see to "Creating a Dynaset from an OraCollection Object".

Properties

	
BOC Property

	
ElementType Property

	
EOC Property

	
IsLocator (OraCollection) Property

	
IsNull (OraCollection) Property

	
MaxSize (OraCollection) Property

	
SafeArray (OraCollection) Property

	
Size (OraCollection) Property

	
TableSize (OraCollection) Property

	
Type (OraCollection) Property

Methods

	
Append (OraCollection) Method

	
Clone (OraCollection) Method

	
CreateIterator Method

	
Delete (OraCollection) Method

	
DeleteIterator Method

	
ElementValue Method

	
Exist (OraCollection) Method

	
InitIterator Method

	
IterNext Method

	
IterPrev Method

	
Trim (OraCollection) Method

Examples

Before running the sample code, make sure that you have the necessary data types and tables in the database. See "Schema Objects Used in OraCollection Examples" for schema objects that are used in the OraCollection examples.

Example: Accessing Collection Elements

The following example illustrates how to access collection elements.

OraDynaset Example

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim EnameList as OraCollection

'create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb","scott/tiger", 0&)

'create a dynaset object from department
set OraDynaset = OraDatabase.CreateDynaset("select * from department", 0&)

'retrieve a Enames column from Department.
'Here Value property of OraField object returns EnameList OraCollection
set EnameList = OraDynaset.Fields("Enames").Value

'access the first element of EnameList
msgbox EnameList(1)

'move to next to row
OraDynaset.MoveNext

'access all the elements of EnameList for the second row
For index = 1 To EnameList.Size
 msgbox EnameList(index)
Next Index

OraParameter Example

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim EnameList as OraCollection

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'create an OraParameter object representing EnameList collection bind Variable
OraDatabase.Parameters.Add "ENAMES", Null, ORAPARM_OUTPUT, _
 ORATYPE_VARRAY,"ENAMELIST"

'execute the sql statement which selects ENAMES VARRAY from the department table

OraDatabase.ExecuteSQL ("BEGIN select enames into :ENAMES from department " & _
 "where dept_id = 10; END;")

'get the EnameList collection from OraParameter
set EnameList = OraDatabase.Parameters("ENAMES").Value

'access all the elements of EnameList
For index = 1 To EnameList.Size
 msgbox EnameList(index)
Next Index

Example: Modifying Collection Elements

The following example illustrates how to modify collection elements.

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim EnameList as OraCollection

'create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from department
set OraDynaset = OraDatabase.CreateDynaset("select * from department", 0&)

'retrieve a Enames column from Department. Here Value property of OraField object
'returns EnameList OraCollection

set EnameList = OraDynaset.Fields("Enames").Value

'lock the row for editing and set the 2nd element of the EnameList to new value
OraDynaset.Edit
EnameList(2) = "Eric"
OraDynaset.Update

Example: Inserting in a Collection

The following example illustrates how to insert elements into an Oracle collection.

OraDynaset Example

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim EnameListNew as OraCollection

'create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'create a new OraCollection object from the database
set EnameListNew = OraDatabase.CreateOraObject("ENAMELIST")

'set EnameListNew's element values
EnameListNew(1) = "Nasser"
EnameListNew(2) = "Chris"
EnameListNew(3) = "Gopal"

'create a dynaset object from department
set OraDynaset = OraDatabase.CreateDynaset("select * from department", 0&)

'start the AddNew operation and insert the EnameListNew collection
OraDynaset.AddNew
OraDynaset.Fields("dept_id") = 40
OraDynaset.Fields("name") = "DEVELOPMENT"

'set the EnameListNew to enames column
OraDynaset.Fields("enames") = EnameListNew
OraDynaset.Update

OraParameter Example

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim EnameListNew as OraCollection

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'create a new OraCollection object from the database
set EnameListNew = OraDatabase.CreateOraObject("ENAMELIST")

'set EnameListNew's element values
EnameListNew(1) = "Nasser"
EnameListNew(2) = "Chris"
EnameListNew(3) = "Gopal"

'create an input OraParameter object representing EnameList collection bind 'Variable

OraDatabase.Parameters.Add "ENAMES", Null, ORAPARM_INPUT, ORATYPE_VARRAY, _
 "ENAMELIST"

'set the ENAMES parameter value to EnameListNew
OraDatabase.Parameters("ENAMES").Value = EnameListNew

'execute the insert sql statement
OraDatabase.ExecuteSQL ("insert into department values (40,'DEVELOPMENT', " & _
 ":ENAMES)")

Example: Collection with Object Type Elements

The following example illustrates the use of an Oracle collection having elements of object type.

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim CourseList as OraCollection
Dim Course as OraObject

'create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from division
set OraDynaset = OraDatabase.CreateDynaset("select * from division", 0&)

'retrieve a Courses column from Division.
'Here Value property of OraField object returns CourseList OraCollection

set CourseList = OraDynaset.Fields("Courses").Value
'retrieve the element value of the CourseList at index 1.
'Here element value is returned as Course OraObject
set Course = CourseList(1)

'retrieve course_no and title attribute of the Course
msgbox Course.course_no
msgbox Course.title

'move to next row
OraDynaset.MoveNext

'now CourseList object represents collection value for the second row
'and course OraObject 'represents the element value at index 1.
'retrieve course_no and title attribute of the Course.
msgbox Course.course_no
msgbox Course.title

Example: Creating a SAFEARRAY Variant from a Collection

The following example illustrates how to get and set a SAFEARRAY Variant with an Oracle collection.

Creating SAFEARRAY Variant from a Collection

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim EnameList as OraCollection
Dim EnameArray as Variant

'create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from department
set OraDynaset = OraDatabase.CreateDynaset("select * from department", 0&)

'retrieve a Enames column from Department.
'Here Value property of OraField objectreturns EnameList OraCollection
set EnameList = OraDynaset.Fields("Enames").Value

'get the Variant SAFEARRAY from the collection.
EnameArray = EnameList.SafeArray

'display the individual elements of EnameArray
msgbox EnameArray(0)
msgbox EnameArray(1)
msgbox EnameArray(2)

Setting SAFEARRAY Variant to the Collection

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim EnameList as OraCollection
Dim EnameArray() As String
ReDim EnameArray(3)

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'create an Empty uninitialized input OraParameter object
'represent EnameList collection bind Variable
OraDatabase.Parameters.Add "ENAMES", Empty, ORAPARM_INPUT, _
 ORATYPE_VARRAY,"ENAMELIST"

'get the Empty uninitialized ENAMES parameter value
set EnameList = OraDatabase.Parameters("ENAMES").Value

'initialize the EnameArray
EnameArray(0) = "Nasser"
EnameArray(1) = "Chris"
EnameArray(2) = "Gopal"

'set the EnameArray to EnameList's SafeArray
EnameList.SafeArray = EnameArray

'execute the insert sql statement
OraDatabase.ExecuteSQL ("insert into department " & _
 "values (40,'DEVELOPMENT', :ENAMES)")

Example: Creating a Dynaset from a Collection

The following example illustrates how to create a dynaset from an Oracle collection.

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim CourseList as OraCollection
Dim Course as OraObject
Dim CourseListDyn as OraDynaset

'create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from division
set OraDynaset = OraDatabase.CreateDynaset("select * from division", 0&)

'retrieve a Courses column from Division. Here Value
'property of OraField object returns CourseList OraCollection
set CourseList = OraDynaset.Fields("Courses").Value

'create a input parameter for CourseList for nested table dynaset
OraDatabase.Parameters.Add "COURSELIST", CourseList, ORAPARM_INPUT, _
 ORATYPE_TABLE, "COURSELIST"

'create a read only dynaset based on the CourseList.
Set CourseListDyn = OraDatabase.CreateDynaset("select * from THE" & _
 "(select CAST(:COURSELIST AS COURSELIST) from dual)", ORADYN_READONLY)

'dynaset can also be created from Oracle8 collection
'using the following statement, which requires OO4O v8.1.x later

Set CourseListDyn = OraDatabase.CreateDynaset("select * from " & _
 "TABLE(CAST(:COURSELIST AS COURSELIST))", ORADYN_READONLY)

'get the field values of the collection dynaset
msgbox CourseListDyn.Fields("title").Value
msgbox CourseListDyn.Fields("course_no").Value

'move the original dynaset to second row
Oradynaset.MoveNext

'set the new value of CourseList collection from the second row of main dynaset
'to the "COURSELIST" parameter
OraDatabase.Parameters("COURSELIST").Value = CourseList

'refresh the collection dynaset. Now the collection dynaset values are refreshed
' with new collection value.
CourseListDyn.Refresh

'get the field values of the collection dynaset
msgbox CourseListDyn.Fields("title").Value
msgbox CourseListDyn.Fields("course_no").Value

Example: Collection Iterator

See "Example: OraCollection Iterator" .

	
See Also:

	
OraParameter Object

	
CreateOraObject (OraDatabase) Method

	
"Instantiating Oracle LOBs, Objects, and Collections"

	
"Oracle Collections"

OraConnection Object

Description

An OraConnection object represents a single connection to an Oracle database.

Remarks

An OraConnection object is created automatically whenever an OraDatabase object is instantiated within the session, and it is destroyed automatically whenever all databases using the connection are discarded.

Currently, there is no way to create an OraConnection object explicitly, only by creating an OraDatabase object that requires a connection.

Properties

	
Connect Property

	
ConnectionOK Property

	
DatabaseName Property

	
Session Property

Methods

	
BeginTrans Method

	
CommitTrans Method

	
ResetTrans Method

	
Rollback Method

	
See Also:

	
OraConnections Collection

	
OraDatabase Object

OraDatabase Object

Description

An OraDatabase interface represents a user session to an Oracle database and provides methods for SQL and PL/SQL execution.

Remarks

An OraDatabase interface in Oracle8i and higher releases adds additional methods for controlling transactions and creating interfaces representing instances of Oracle object types. Attributes of schema objects can be retrieved using the Describe method of the OraDatabase interface.

In previous releases, an OraDatabase object is created by invoking the OpenDatabase method of an OraSession interface. The network alias, user name, and password are passed as arguments to this method. In Oracle8i and higher releases, invocation of this method results in implicit creation of an OraServer object.

As described in the OraServer interface description, an OraDatabase object can also be created using the OpenDatabase method of the OraServer interface.

Transaction control methods are available at the OraDatabase (user session) level. These methods include:

	
BeginTrans

	
CommitTrans

	
Rollback

For example:

MyDatabase.BeginTrans
MyDatabase.ExecuteSQL("delete from emp where empno = 1234")
MyDatabase.CommitTrans

	
Note:

If the AutoCommit property is set to True, transactions are committed automatically, and you do not need to use the transaction control methods.

Properties

	
AutoCommit Property

	
CacheMaximumSize Property

	
CacheOptimalSize Property

	
Connect Property

	
Connection Property

	
ConnectionOK Property

	
DatabaseName Property

	
LastServerErr Property

	
LastServerErrPos Property

	
LastServerErrText Property

	
Options Property

	
Server Property

	
Parameters Property

	
RDMSVersion Property

	
Subscriptions Property

Methods

	
BeginTrans Method

	
Close Method

	
CommitTrans Method

	
CreateAQ Method

	
CreateCustomDynaset Method

	
CreateTempBLOB/CLOB Method

	
CreateDynaset Method

	
CreateOraObject (OraDatabase) Method

	
CreateSQL Method

	
Describe Method

	
ExecuteSQL Method

	
FetchOraRef Method

	
LastServerErrReset Method

	
MonitorForFailover Method

	
Open (OraServer) Method

	
RemoveFromPool Method

	
Rollback Method

	
See Also:

	
OpenDatabase Method

	
OraServer Object

	
OraServer Object

OraDynaset Object

Description

An OraDynaset object permits browsing and updating of data created from a SQL SELECT statement.

Remarks

An OraDynaset object represents the result set of a SQL SELECT query or a PL/SQL cursor variable returned from a stored procedure or function. It is essentially a client-side scrollable and updatable cursor that allows browsing the set of rows generated by the query it executes. It is created by the CreateDynaset or CreateCustomDynaset method of an OraDatabase interface. An OraDynaset object can be used to scroll result sets that contain instances of relational and object-relational columns such as VARRAYs, nested tables, Objects, REFs, and LOBs and BFILE types.

This object provides transparent mirroring of database operations, such as updates. When data is updated through the Update method, the local mirror image of the query is updated so that the data appears to have been changed without reevaluating the query. The same procedure is used automatically when records are added to the dynaset. Integrity checking is performed to ensure that the mirrored image of the data always matches the actual data present on Oracle Database. This integrity checking is performed only when necessary (such as just before updates occur).

During create and refresh operations, the OraDynaset objects automatically bind all relevant enabled input parameters to the specified SQL statement, using the parameter names as placeholders in the SQL statement. This can simplify dynamic query building and increase the efficiency of multiple queries using the same SQL statement with varying WHERE clauses.

When you use Oracle Objects for OLE, locks are not placed on data until an Edit method is executed. The Edit method attempts to obtain a lock using the "SELECT ... FOR UPDATE" statement on the current record of the dynaset. This is done as late as possible to minimize the time that locks are placed on the records. The Edit method can fail for several reasons:

	
The SQL query violates the Oracle SQL update rules; for example, using calculated columns or table joins.

	
The user does not have the privileges needed to obtain a lock.

	
The record has been locked already by another user. Note that the OpenDatabase method has an option so that you can decide whether to wait on locks.

Properties

	BOF Property
	LastModified Property

	Bookmark Property
	NoMatch Property

	BookMarkable Property
	Options Property

	CacheBlocks Property
	RecordCount Property

	CacheChanged Property
	RowPosition Property

	CacheSliceSize Property
	Session Property

	CacheSlicesPerBlock Property
	SnapShot Property

	Connection Property
	SQL Property

	Database Property
	Transactions Property

	EditMode Property
	Updatable Property

	EOF Property
	XMLCollID Property

	FetchLimit Property
	XMLEncodingTag Property

	FetchSize Property
	XMLNullIndicator Property

	FieldIndex Property
	XMLOmitEncodingTag Property

	FieldName Property
	XMLRowsetTag Property

	FieldOriginalName Property
	XMLRowID Property

	FieldOriginalNameIndex Property
	XMLRowTag Property

	Fields Property
	XMLUpperCase Property

Methods

	
AddNew Method

	
Clone Method

	
Close Method

	
CopyToClipboard Method

	
Delete Method

	
Edit Method

	
FindFirst, FindLast, FindNext, and FindPrevious Methods

	
GetRows Method

	
GetXML Method

	
GetXMLToFile Method

	
MoveFirst, MoveLast, MoveNext, and MovePrevious Methods

	
MovePreviousn, MoveNextn, MoveRel, and MoveTo Methods

	
Refresh Method

	
Update Method

	
See Also:

	
CreateDynaset Method

	
CreateCustomDynaset Method

	
OraParameter Object

	
RowPosition Property

	
Update Method

OraField Object

Description

An OraField object represents a single column or data item within a row of a dynaset.

Remarks

An OraField object is accessed indirectly by retrieving a field from the OraFields collection of an OraDynaset object.

If the current row is being updated, then the OraField object represents the currently updated value, although the value may not yet have been committed to the database.

Assignment to the Value property of a field is permitted only if a record is being edited (using the Edit method) or a new record is being added (using the AddNew method). Other attempts to assign data to the Value property of a field results in an error.

Properties

	
OraIDataType Property

	
OraMaxDSize Property

	
OraMaxSize Property

	
OraNullOK Property

	
OraPrecision Property

	
OraScale Property

	
Name Property

	
Size Property

	
Truncated Property

	
Type Property

	
Value Property

	
XMLAsAttribute Property

	
XMLTagName Property

Methods

	
AppendChunk Method

	
AppendChunkByte Method

	
FieldSize Method

	
GetChunk Method

	
GetChunkByteEx Method

	
OriginalName

	
ReadChunk Method

	
See Also:

	
AddNew Method

	
Edit Method

	
OraDynaset Object

	
OraFields Collection

	
Value Property

OraIntervalDS Object

Description

The OraIntervalDS object provides methods for operations on the Oracle INTERVAL DAY TO SECOND.This data type represents a period of time in terms of days, hours, minutes, seconds, and nanoseconds.

Remarks

The OraIntervalDS object is created by the OraSession.CreateOraIntervalDS method or by calling the Clone method on an existing OraIntervalDS object.

An OraIntervalDS object can be bound using the ServerType ORATYPE_INTERVALDS. This allows the binding of a value to a parameter associated with an Oracle INTERVAL DAY TO SECOND data type in a SQL or PL/SQL statement.

When binding a string associated with an INTERVAL DAY TO SECOND data type, the ServerType must be specified to be a string type (for example, ORATYPE_VARCHAR2, ORATYPE_STRING) and the string must be in the format specified by Day HH:MI:SSxFF.

Properties

	
Days Property

	
Hours Property

	
Minutes Property

	
Nanonseconds Property

	
Seconds Property

	
TotalDays Property

	
Value (OraIntervalDS) Property

Methods

	
Add (OraIntervalDS) Method

	
Clone (OraIntervalDS) Method

	
Div (OraIntervalDS) Method

	
IsEqual (OraIntervalDS) Method

	
IsGreater (OraIntervalDS) Method

	
IsLess (OraIntervalDS) Method

	
Mul (OraIntervalDS) Method

	
Neg (OraIntervalDS) Method

	
Sub (OraIntervalDS) Method

	
ToOraNumber (OraIntervalDS) Method

	
See Also:

	
CreateOraIntervalDS Method

	
OraNumber Object

	
ServerType Property

OraIntervalYM Object

Description

The OraIntervalYM object provides methods for operations on the Oracle INTERVAL YEAR TO MONTH.This data type represents a period of time in terms of years and months.

Remarks

The OraIntervalYM object is created by the OraSession.CreateOraIntervalYM method or by calling the Clone method on an existing OraIntervalYM object.

An OraIntervalYM object can be bound using ServerType ORATYPE_INTERVALYM. This allows the binding of a value to a parameter associated with an Oracle INTERVAL YEAR TO MONTH data type in a SQL or PL/SQL statement.

When binding a string associated with an INTERVAL YEAR TO MONTH data type, the ServerType must be specified to be a string type (for example, ORATYPE_VARCHAR2, ORATYPE_STRING), and the string must be in the format specified by YEARS-MONTHS.

Properties

	
Months Property

	
Years Property

	
TotalYears Property

	
Value Property

Methods

	
Add (OraIntervalYM) Method

	
Clone (OraIntervalYM) Method

	
Div (OraIntervalYM) Method

	
IsEqual (OraIntervalYM) Method

	
IsGreater (OraIntervalYM) Method

	
IsLess (OraIntervalYM) Method

	
Mul (OraIntervalYM) Method

	
Neg (OraIntervalYM) Method

	
Sub (OraIntervalYM) Method

	
See Also:

	
CreateOraIntervalYM Method

	
OraNumber Object

	
ServerType Property

OraMDAttribute Object

Description

Each OraMDAttribute object describes an individual attribute. It represents an entry to the attribute table of the OraMetaData object. It can be accessed by creating a subscript that uses ordinal integers or by using the name of the attribute.

Remarks

None.

Properties

	
Name (OraMDAttribute) Property

	
Value (OraMDAttribute) Property

	
IsMDObject Property

Methods

None.

Examples

See "Schema Objects Used in OraMetaData Examples" for OraMetaData Schema Definitions used in these examples.

Example: Describing a Table

See "Describing a Table Example".

Example: Describing a User-Defined Type

See "Example: Describing a User-Defined Type".

Example: Describing Unknown Schema Objects

See "Example: Describing Unknown Schema Objects".

	
See Also:

	
OraMetaData Object

	
Describe Method

OraMetaData Object

Description

The OraMetaData object is returned by invoking the Describe method of the OraDatabase interface. The Describe method takes the name of a schema object, such as the emp table, and returns an OraMetaData object. The OraMetaData object provides methods for dynamically navigating and accessing all the attributes (OraMDAttribute collection) of a schema object described.

An OraMetaData object is a collection of OraMDAttribute objects that represent the description information about a particular schema object in the database. The following table is an example of attributes for a OraMetaData object of type table (ORAMD_TABLE).

Table 9-2 list the ORAMD_TABLE attributes.

Table 9-2 ORAMD_TABLE Attributes

	Attribute Name	Value Type	Description
	
ObjectID

	
Integer

	
Object ID.

	
NumCols

	
Integer

	
Number of columns.

	
ColumnList

	
OraMetaData

	
Column list.

	
IsTyped

	
Boolean

	
Is the table typed?

	
IsTemporary

	
Boolean

	
Is the table temporary?

	
Duration

	
String

	
Duration - can be session, transaction, or null.

	
DBA

	
Integer

	
Data block address of the segment header.

	
TableSpace

	
Integer

	
Tablespace in which the table resides.

	
IsClustered

	
Boolean

	
Is the table clustered?

	
IsPartitioned

	
Boolean

	
Is the table partitioned?

	
IsIndexOnly

	
Boolean

	
Is the table index-only?

	
See Also:

"Type (OraMetaData) Property"

Remarks

The OraMetaData object can be visualized as a table with three columns:

	
Metadata attribute name

	
Metadata attribute value

	
Flag specifying whether the Value is another OraMetaData object

The OraMDAttribute objects contained in the OraMetaData object can be accessed by creating a subscript that uses ordinal integers or by using the name of the property. Referencing a subscript that is not in the collection (0 to Count-1) results in the return of a NULL OraMDAttribute object.

Properties

	
Count (OraMetaData) Property

	
Type (OraMetaData) Property

Methods

	
Attribute (OraMetaData) Method

Examples

See "Schema Objects Used in OraMetaData Examples" for OraMetaData schema definitions used in these examples.

The following Visual Basic example illustrates a simple use of this facility. It retrieves and displays several attributes of the emp table.

Set empMD = OraDatabase.Describe("emp")

'Display the name of the Tablespace
msgbox empMD("tablespace")

'Display name, data type, and size of each column in the emp table.
Set empColumnsMD = empMD("Columns")
for I = 1 to empColumns.Count
 Set ColumnMD = empColumnsMD(I)
 MsgBox ColumnMD("Name") & ColumnMD("Data Type") & ColumnMD("Length")
Next I

Example: Describing a User-Defined Type

See "Example: Describing a User-Defined Type"

Example: Describing Unknown Schema Objects

See "Example: Describing Unknown Schema Objects"

	
See Also:

	
OraMDAttribute Object

	
Describe Method

OraNumber Object

Description

The OraNumber interface provides methods for operations on the Oracle Number data types. This interface exposes a set of math operations that provide greater precision than is available in some programming environments, such as Visual Basic.

Remarks

The OraNumber object can be obtained through the CreateOraNumber method of the OraSession object or by calling the Clone method on an existing OraNumber.

All of the methods of the OraNumber object that take a numeric argument accept a string, another numeric type, such as a long in Visual Basic, or another OraNumber object.

	
Note:

If a Visual Basic numeric value (or constant) is used as an argument, it is limited to the maximum precision provided by the language.

The OraNumber on which the math operation is called holds the result of the operation (overwriting any previous value). If a Format was specified (through the Format property), the value of an OraNumber must match this format or an error is raised when the Value property is accessed.

Properties

	
Format (OraNumber) Property

	
Value (OraNumber) Property

Methods

	
Abs Method

	
Add (OraNumber) Method

	
ArcCos (OraNumber) Method

	
ArcSin (OraNumber) Method

	
ArcTan (OraNumber) Method

	
ArcTan2 (OraNumber) Method

	
Ceil (OraNumber) Method

	
Clone (OraNumber) Method

	
Cos (OraNumber) Method

	
Div (OraNumber) Method

	
Exp (OraNumber) Method

	
Floor (OraNumber) Method

	
HypCos (OraNumber) Method

	
HypSin (OraNumber) Method

	
HypTan (OraNumber) Method

	
IsEqual (OraNumber) Method

	
IsGreater (OraNumber) Method

	
IsLess (OraNumber) Method

	
Ln (OraNumber) Method

	
Log (OraNumber) Method

	
Mod (OraNumber) Method

	
Mul (OraNumber) Method

	
Neg (OraNumber) Method

	
Power (OraNumber) Method

	
Round (OraNumber) Method

	
SetPi (OraNumber) Method

	
Sin (OraNumber) Method

	
Sqrt (OraNumber) Method

	
Sub (OraNumber) Method

	
Tan (OraNumber) Method

	
Trunc (OraNumber) Method

Example

A scientific calculator example program is included as part on the samples installed with Oracle Objects for OLE. See "Demonstration Schema and Code Examples".

	
See Also:

OraSession Object

OraObject Object

Description

The OraObject interface is a representation of an Oracle value instance (non-referenceable object instance or embedded objects). Value instances are instances of an Oracle object type stored in the column of a table or attribute of an another Oracle object instance or element of an Oracle collection.

Remarks

Implicitly an OraObject object contains a collection interface for accessing and manipulating (updating and inserting) individual attributes of an value instance. Individual attributes can be accessed by using a subscript or the name of the attribute.

The OraObject attribute index starts at 1. The Count property returns the total number of attributes. Each attribute of the underlying value instance is represented as an OraAttribute object.

Attribute values are retrieved as variants. The Variant type of the attribute depends on the attribute type of the object. Attribute values can be null and can be set to Null. For object types REF, LOB, and collection, attribute values are returned as corresponding OO4O objects for that type.

The CreateOraObject method on the OraDatabase object returns the OraObject object. The value instance associated with this OraObject object is created in the client-side object cache.

For information about executing a member method of a value instance, see "Executing a Member Method of an Oracle Object Instance".

For information about initializing an OraObject object representing a value instance in OO4O or executing a member method of a value instance, see "Instantiating Oracle LOBs, Objects, and Collections".

Properties

	
Count (OraObject/Ref) Property

	
IsNull (OraObject) Property

	
TypeName (OraObject and OraRef) Property

	
Version (OraObject and Ref) Property

Methods

	
Clone (OraObject/Ref) Method

Examples

See "Schema Objects Used in the OraObject and OraRef Examples" for schema descriptions used in examples of OraObject/OraRef objects.

Example: Accessing Attributes of an OraObject Object

The following example accesses the attributes of the ADDRESS value instance in the database.

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim Address as OraObject

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from person_tab
set OraDynaset = OraDatabase.CreateDynaset("select * from person_tab",0&)

'retrieve a address column from person_tab. Here Value property of OraField
'object returns Address OraObject
set Address = OraDynaset.Fields("Addr").Value

'access the attribute by dot notation
msgbox Address.Street

'access the attribute using '!' notation (early binding application)
msgbox Address!Street

'access the attribute by index
msgbox Address(1)

'access the attribute by name
msgbox Address("Street")

'access all the attributes of Address OraObject in the dynaset
Do Until OraDynaset.EOF
 For index = 1 To Address.Count
 msgbox Address(index)
 Next Index
OraDynaset.MoveNext
Loop

Example: Updating Attributes of an OraObject Object

The following examples modify the attributes of the ADDRESS value instance in the database.

Dynaset Example

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim Address as OraObject

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from person_tab
set OraDynaset = OraDatabase.CreateDynaset("select * from person_tab", 0&)

'retrieve a address column from person_tab.
'Here Value property of OraField object returns Address OraObject

set Address = OraDynaset.Fields("Addr").Value

'start the Edit operation and modify the Street attribute
OraDynaset.Edit
Address.Street = "Oracle Parkway"
OraDynaset.Update

Parameter Example

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim Address as OraObject

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'create an OraParameter object represent Address object bind Variable
OraDatabase.Parameters.Add "ADDRESS", Empty, ORAPARM_INPUT, ORATYPE_OBJECT, _
 "ADDRESS"

'get the uninitialized 'Empty' Address object from OraParameter
set Address = OraDatabase.Parameters("ADDRESS").Value

'modify the 'Street' attribute of the Address
Address.Street = "Oracle Parkway"

'execute the sql statement which updates Address in the person_tab
OraDatabase.ExecuteSQL ("update person_tab set addr = :ADDRESS where age = 40")

Example: Inserting an OraObject Object

The following examples insert a new field (value instance) called ADDRESS in the database.

Dynaset Example

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim AddressNew as OraObject

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from person_tab
set OraDynaset = OraDatabase.CreateDynaset("select * from person_tab", 0&)

' create a new Address object in OO4O
set AddressNew = OraDatabase.CreateOraObject("ADDRESS")

'initialize the Address object attribute to new value
AddressNew.Street = "Oracle Parkway"
AddressNew.State = "CA"

'start the dynaset AddNew operation and set the Address field to new address
' value
OraDynaset.Addnew
OraDynaset.Fields("ADDR").Value = AddressNew
OraDynaset.Update

OraParameter Example

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim AddressNew as OraObject

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'create an OraParameter object represent Address object bind Variable
OraDatabase.Parameters.Add "ADDRESS", Null, ORAPARM_INPUT, ORATYPE_OBJECT, _
 "ADDRESS"

' create a new Address object in OO4O
set AddressNew = OraDatabase.CreateObject("ADDRESS")

'initialize the Address object attribute to new value
AddressNew.Street = "Oracle Parkway"
AddressNew.State = "CA"

'set the Address to ADDRESS parameter
Oradatabase.Parameters("ADDRESS").Value = AddressNew

'execute the sql statement which updates Address in the person_tab
OraDatabase.ExecuteSQL ("insert into person_tab values (30,'Eric',:ADDRESS))

	
See Also:

	
"Oracle Object Data Types" for information on support of Oracle object-relational features

	
OraParameter Object

	
OraParamArray Object

	
OraRef Object

	
OraAttribute Object

	
CreateOraObject (OraDatabase) Method

	
"Executing a Member Method of an Oracle Object Instance"

OraParamArray Object

Description

An OraParamArray object represents an array type bind variable in a SQL statement or PL/SQL block, as opposed to a scalar type bind variable represented by the OraParameter object.

Remarks

OraParamArray objects are created, accessed, and removed indirectly through the OraParameters collection of an OraDatabase object. Each parameter has an identifying name and an associated value.

Implicitly an OraParamArray object contains an OLE automation collection interface for accessing and manipulating individual elements of an array. Individual elements can be accessed using a subscript or the Get_Value method. Individual elements can be modified by using a subscript or the Put_Value method.

Element values are retrieved as Variant types. The Variant type of the element depends on the ServerType of the OraParamArray object. Element values can be null and can be set to Null. For elements of type objects and REFs, element values are returned as corresponding OO4O objects for that type.

You can automatically bind a parameter to SQL and PL/SQL statements of other objects (as noted in the objects descriptions) by using the name of the parameter as a placeholder in the SQL or PL/SQL statement. Using parameters can simplify dynamic queries and increase program performance. Parameters are bound to SQL statements and PL/SQL blocks before execution.

The OraParameters collection is part of the OraDatabase object so that all parameters are available to any SQL statement or PL/SQL block executed within the database (through CreateDynaset, ExecuteSQL, or CreateSQL methods). Before a SQL statement or PL/SQL block is executed, an attempt is made to bind all parameters of the associated OraDatabase object. The bindings that fail (because the parameter does not apply to that particular SQL statement or PL/SQL block) are noted and no attempt is made to bind them again if the SQL statement or PL/SQL block is reexecuted but does not change.

Because neither SQL statements nor PL/SQL blocks are parsed locally (all parsing is done by Oracle Database), any unnecessary binding results in performance degradation. To prevent unnecessary parameter binding, use the AutoBindDisable and AutoBindEnable methods.

Properties

	
ArraySize Property

	
LastErrorText Property

	
MinimumSize Property

	
Name Property

	
ServerType Property

	
Status Property

	
Type Property

Methods

	
AutoBindDisable Method

	
AutoBindEnable Method

	
Get_Value Method

	
Put_Value Method

Example

Example: Using OraParamArrays with SQL Statements

The following example shows how to use the OraParamArray object with SQL statements:

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraSqlStmt As OraSQLStmt
Dim PartNoArray As OraParamArray
Dim DescArray As OraParamArray
Dim I As Integer

'Test case for inserting/updating/deleting multiple rows using parameter

' arrays with SQL statements
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
Set OraDatabase = OraSession.OpenDatabase("exampledb", "scott/tiger", 0&)

'Create table
OraDatabase.ExecuteSQL ("create table part_nos(partno number," & _
 "description char(50), primary key(partno))")
OraDatabase.Parameters.AddTable "PARTNO", ORAPARM_INPUT, ORATYPE_NUMBER, 10, 22
OraDatabase.Parameters.AddTable "DESCRIPTION", ORAPARM_INPUT, _
 ORATYPE_CHAR, 10, 50
Set PartNoArray = OraDatabase.Parameters("PARTNO")
Set DescArray = OraDatabase.Parameters("DESCRIPTION")

 'Initialize arrays
For I = 0 To 9
 achar = "Description" + Str(I)
 PartNoArray(I) = 1000 + I
 DescArray(I) = achar
Next I
Set OraSqlStmt = OraDatabase.CreateSql("insert into
part_nos(partno, description) values(:PARTNO,:DESCRIPTION)", 0&)

'Update the newly created part_nos table
For I = 0 To 9
 achar = "Description" + Str(1000 + I)
 DescArray(I) = achar
Next I

'Update table
Set OraSqlStmt = OraDatabase.CreateSql("update part_nos set DESCRIPTION" & _
 "=:DESCRIPTION where PARTNO = :PARTNO", 0&)

'Deleting rows
Set OraSqlStmt = OraDatabase.CreateSql("delete from part_nos where" & _
 "DESCRIPTION=: Description ", 0&)

'Drop the table
OraDatabase.ExecuteSQL ("drop table part_nos")

Example: Using OraParamArrays with PL/SQL

The following is an example using OraParamArray objects with PL/SQL. The Employee PL/SQL package can be set up with the ORAEXAMP.SQL script. See "Demonstration Schema and Code Examples".

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim EmpnoArray As OraParamArray
Dim EnameArray As OraParamArray

Set OraSession = CreateObject("OracleInProcServer.XOraSession")
Set OraDatabase = OraSession.OpenDatabase("exampledb", "scott/tiger", 0&)
OraDatabase.Parameters.Add "ArraySize", 3, ORAPARM_INPUT
OraDatabase.Parameters.AddTable "EMPNOS", ORAPARM_INPUT, ORATYPE_NUMBER,3, 22
OraDatabase.Parameters.AddTable "ENAMES", ORAPARM_OUTPUT, _
 ORATYPE_VARCHAR2, 3, 10
Set EmpnoArray = OraDatabase.Parameters("EMPNOS")
Set EnameArray = OraDatabase.Parameters("ENAMES")

'Initialize the newly created input parameter table EMPNOS
EmpnoArray(0) = 7698
EmpnoArray(1) = 7782
EmpnoArray(2) = 7654

'Execute the PLSQL package
OraDatabase.ExecuteSQL ("Begin Employee.GetEmpNamesInArray(:ArraySize," & _
 ":EMPNOS, :ENAMES); End;")
'Print out Enames
MsgBox EnameArray(0)
MsgBox EnameArray(1)
MsgBox EnameArray(2)

	
See Also:

	
OraParameters Collection

	
OraParameter Object

OraParameter Object

Description

An OraParameter object represents a bind variable in a SQL statement or PL/SQL block.

Remarks

OraParameter objects are created, accessed, and removed indirectly through the OraParameters collection of an OraDatabase object. Each parameter has an identifying name and an associated value. You can automatically bind a parameter to SQL and PL/SQL statements of other objects (as noted in the object descriptions), by using the parameter name as a placeholder in the SQL or PL/SQL statement. Using parameters can simplify dynamic queries and increase program performance.

Parameters are bound to SQL statements and PL/SQL blocks before execution. In the case of a SQL SELECT statement, binding occurs before dynaset creation.

The OraParameters collection is part of the OraDatabase object. Therefore, all parameters are available to any SQL statement or PL/SQL block executed within the database (through the CreateDynaset or ExecuteSQL methods).

Before a SQL statement or PL/SQL block is executed, an attempt is made to bind all parameters of the associated OraDatabase object. The bindings that fail (because the parameter does not apply to that particular SQL statement or PL/SQL block), are noted and no attempt is made to bind them again if the SQL statement or PL/SQL block is reexecuted but does not change.

Because neither SQL statements nor PL/SQL blocks are parsed locally (all parsing is done by Oracle Database), any unnecessary binding results in performance degradation. To prevent unnecessary parameter binding, use the AutoBindDisable and AutoBindEnable methods.

By default, the maximum size of the ORAPARM_OUTPUT variable for ServerType CHAR and VARCHAR2 is set to 127 bytes. Use the MinimumSize property to change this value. The minimum size of an ORAPARM_OUTPUT variable for CHAR, VARCHAR2, and ORATYPE_RAW_BIN must always be greater than the size of the expected data from the database column.

ServerType ORATYPE_RAW_BIN is used when binding to Oracle Raw columns. A byte array is used to put or get values. The maximum allowable size of ORATYPE_RAW_BIN bind buffers is 2000 bytes when bound to a column of a table, 32 KB when bound to a stored procedure. For example code, see the samples in the ORACLE_BASE\\ORACLE_HOME\OO4O\VB\Raw directory.

Properties

	
DynasetOption Property

	
MinimumSize Property

	
Name Property

	
ServerType Property

	
Status Property

	
Type Property

	
Value Property

Methods

	
AutoBindDisable Method

	
AutoBindEnable Method

	
DynasetCacheParams Method

	
See Also:

	
CreateDynaset Method

	
DynasetOption Property

	
ExecuteSQL Method

	
OraDatabase Object

	
OraParameters Collection

OraRef Object

Description

The OraRef interface represents an Oracle REF (reference) as well as a referenceable object (standalone instance).

Remarks

An Oracle REF is an identifier to a referenceable object. Referenceable objects are stored in rows of an object table. By pinning a REF object, referenceable objects are fetched to the client side. An OraRef object implicitly pins the underlying REF when the attributes of a referenceable object are accessed for the first time. The OraRef also encapsulates the functionality for an object navigational operation utilizing the Complex Object Retrieval Capability (COR).

Attributes of a referenceable object represented by the OraRef object are accessed in the same manner as attributes of an value instance represented by the OraObject interface. When pinned, OraRef contains an OraObject interface through the containment mechanism in COM. At run time, the OraRef interface can be typecast to the OraObject interface.

OraRef provides methods for update and delete operations on a referenceable object, independent of the context from which they originated, such as dynasets, parameters, and so on.

An object-level lock should be obtained before modifying the attributes of a referenceable object. This is done though the Edit method of the OraRefobject.

The CreateOraObject method on the OraDatabase object creates a new referenceable object in the database and returns information associated with the OraRef Object. The CreateOraObject and Update methods pair inserts a new referenceable object in the database.

For information about initializing an OraRef object representing a referenceable object in OO4O or executing a member method of a referenceable object, see "Instantiating Oracle LOBs, Objects, and Collections".

Properties

	
Count (OraObject/Ref) Property

	
EditOption (OraRef) Property

	
HexValue (OraRef) Property

	
IsRefNull (OraRef) Property

	
PinOption (OraRef) Property

	
TableName (OraRef) Property

	
TypeName (OraObject and OraRef) Property

	
Version (OraObject and Ref) Property

Methods

	
CancelEdit (OraRef) Method

	
Clone (OraObject/Ref) Method

	
Delete (OraRef) Method

	
Edit (OraRef) Method

	
Refresh (OraRef) Method

	
Update (OraRef) Method

Examples

Before running the sample code, make sure that you have the necessary data types and tables in the database. See "Schema Objects Used in the OraObject and OraRef Examples" for schema descriptions used in examples of OraObject/OraRef.

Example: Pinning Ref Values

The following example pins the attributes of the PERSON referenceable object in the database.

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim Person as OraRef

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from customers
set OraDynaset = OraDatabase.CreateDynaset("select * from customers", 0&)

'retrieve a aperson column from customers. Here Value property of
' OraField object returns Person OraRef
set Person = OraDynaset.Fields("aperson").Value

'access the attribute of person. This operation pins the Person ref
'value and fetches the Person referenceable object to the client.
msgbox Person.Name

Example: Accessing Attribute Values

The following example accesses the attributes of the PERSON referenceable object in the database.

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim Person as OraRef
Dim Address as OraObject

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from customers
set OraDynaset = OraDatabase.CreateDynaset("select * from customers", 0&)

'retrieve a aperson column from customers. Here Value property of OraField
'object returns Person OraRef
set Person = OraDynaset.Fields("aperson").Value

'access the attribute by dot notation.
msgbox Person.Name

'access the attribute using '!' notation (early binding application)
msgbox Person!Name

'access the attribute by index
msgbox Person(1)

'access the attribute by name
msgbox Person("Name")

'access Addr attribute . This returns Address OraObject.
set Address = Person.Addr

Example: Updating Attribute Values

The following example updates the attributes of the PERSON referenceable object in the database.

Dynaset Example

See "Updating Attribute Values: Dynaset Example".

Parameter Example

See "Updating Attribute Values: Parameter Example".

Example: Inserting Referenceable Objects

The following example inserts the new PERSON referenceable object in the database.

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim Person as OraRef

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'CreateOraObject creates a new referenceable object in the PERSON_TAB object
'table and returns associated OraRef
set Person = OraDatabase.CreateOraObject("PERSON","PERSON_TAB")

'modify the attributes of Person
Person.Name = "Eric"
Person.Age = 35

'Update method inserts modified referenceable object in the PERSON_TAB.
Person.Update

	
See Also:

	
OraObject Object

	
OraParameter Object

	
OraParamArray Object

OraServer Object

Description

The OraServer interface represents a physical network connection to an Oracle database.

Remarks

The OraServer interface exposes the connection multiplexing feature provided in the Oracle Call Interface. After an OraServer object is created, multiple user sessions (OraDatabase) can be attached to it by invoking the OpenDatabase method. This feature is particularly useful for application components, such as Internet Information Server (IIS), that use Oracle Objects for OLE in n-tier distributed environments. The use of connection multiplexing when accessing Oracle databases with a large number of user sessions active can help reduce server processing and resource requirements while improving the database scalability.

As illustrated in Figure 9-1, the OraServer interface contains a connection to an Oracle database and provides a method (OpenDatabase) for creating user sessions (OraDatabase objects) on the database connection it contains.

Figure 9-1 OraServer to Oracle Database Relationship

[image: Connection from the OraServer to the Oracle Server]

Properties

	
Name Property

	
Session Property

	
Databases Property

Methods

	
ChangePassword (OraServer) Method

	
OpenDatabase Method

	
Open (OraServer) Method

	
See Also:

	
OraConnection Object

	
OraDatabase Object

	
OraClient Object

	
OraDynaset Object

OraSession Object

Description

An OraSession object manages collections of OraDatabase, OraConnection, and OraDynaset objects used within an application.

Remarks

Typically, a single OraSession object is created for each application, but you can create named OraSession objects for shared use within and between applications.

The OraSession object is the highest level object for an application. OraSession and OraServer objects are the only objects created by the CreateObject Visual Basic or Visual Basic for Applications APIs and not by an Oracle Objects for OLE method.

Properties

	
Client Property

	
Connections Property

	
LastServerErr Property

	
LastServerErrText Property

	
Name Property

	
OIPVersionNumber Property

	
DbPoolCurrentSize Property

	
DbPoolInitialSize Property

	
DbPoolMaxSize Property

Methods

	
BeginTrans Method

	
ChangePassword (OraSession) Method

	
CommitTrans Method

	
ConnectSession Method

	
CreateDatabasePool Method

	
CreateNamedSession Method

	
CreateOraIntervalDS Method

	
CreateOraIntervalYM Method

	
CreateOraNumber Method

	
CreateOraTimeStamp Method

	
CreateOraTimeStampTZ Method

	
DestroyDatabasePool Method

	
GetDatabaseFromPool Method

	
OpenDatabase Method

	
LastServerErrReset Method

	
ResetTrans Method

	
Rollback Method

Examples

The following code fragments show how to create an OraSession object:

Dim oo4oSession as Object
Set oo4oSession = CreateObject("OracleInProcServer.XOraSession")

or

Dim oo4oSession as New OraSessionClass

or

Dim oo4oSession as OraSession
Set oo4oSession = New OraSessionClass

	
See Also:

	
OraClient Object

	
OraConnection Object

	
OraDatabase Object

	
OraDynaset Object

	
OraServer Object

OraSQLStmt Object

Description

An OraSQLStmt object represents a single SQL statement. Use the CreateSQL method to create the OraSQLStmt object from an OraDatabase object.

During create and refresh operations, OraSQLStmt objects automatically bind all relevant, enabled input parameters to the specified SQL statement, using the parameter names as placeholders in the SQL statement. This can improve the performance of SQL statement execution without parsing the SQL statement again.

Properties

	
Connection Property

	
Database Property

	
Options Property

	
RecordCount Property

	
Session Property

	
SQL Property

	
NonBlockingState Property

Methods

	
Refresh Method

	
Cancel Method

	
Close Method

	
See Also:

	
CreateSQL Method

	
OraParameter Object

	
"Asynchronous Processing"

OraSubscription Object

Description

An OraSubscription object that represents the subscription to a database event.

Remarks

OraSubscription objects are created, accessed, and removed indirectly through the OraSubscriptions collection of an OraDatabase object. Each subscription has a name that associates with an Oracle database event.

The OraSubscriptions collection is part of the OraDatabase object.

Properties

	
Name Property

Methods

	
Register Method

	
Unregister Method

	
See Also:

	
OraDatabase Object

	
OraSubscriptions Collection

	
"Database Events"

OraTimeStamp Object

Description

The OraTimeStamp object represents the Oracle TIMESTAMP and Oracle TIMESTAMP WITH LOCAL TIME ZONE data types and provides methods for operations on these two Oracle data types. The OraTimeStamp represents a date-time value that stores the following information: year, day, hour, minute, second, and nanosecond.

Remarks

The OraTimeStamp object is created by the OraSession.OraCreateTimeStamp method or by calling the Clone method on an existing OraTimeStamp object.

An OraTimeStamp object can be bound using ServerType ORATYPE_TIMESTAMP or ORATYPE_TIMESTAMPLTZ. This allows the binding of a value to a parameter associated with an Oracle TIMESTAMP or an Oracle TIMESTAMP WITH LOCAL TIME ZONE data type in a SQL or PL/SQL statement respectively.

When binding a string associated with a TIMESTAMP or a TIMESTAMP WITH LOCAL TIME ZONE data types, the ServerType must be specified to be a string type (for example, ORATYPE_VARCHAR2, ORATYPE_STRING) and the string must be in the format specified by the NLS_TIMESTAMP_FORMAT.

Properties

	
Day (OraTimeStamp) Property

	
Format (OraTimeStamp) Property

	
Hour (OraTimeStamp) Property

	
Minute (OraTimeStamp) Property

	
Month (OraTimeStamp) Property

	
Nanosecond(OraTimeStamp) Property

	
Second (OraTimeStamp) Property

	
Value (OraTimeStamp) Property

	
Year (OraTimeStamp) Property

Methods

	
AddIntervalDS Method

	
AddIntervalYM Method

	
Clone (OraTimeStamp) Method

	
IsEqual (OraTimeStamp) Method

	
IsGreater (OraTimeStamp) Method

	
IsLess (OraTimeStamp) Method

	
ToDate Method

	
ToOraTimeStampTZ Method

	
See Also:

	
CreateOraTimeStamp Method

	
OraNumber Object

	
ServerType Property

OraTimeStampTZ Object

Description

The OraTimeStampTZ object represents an Oracle TIMESTAMP WITH TIME ZONE data type and provides methods for operations on this Oracle data type. The OraTimeStampTZ represents a date-time value in a specific time zone that stores the following information: year, day, hour, minute, second, nanosecond, and the time zone.

Remarks

The OraTimeStampTZ object is created by the OraSession.OraCreateTimeStampTZ method or by calling the Clone method on an existing OraTimeStampTZ object.

An OraTimeStampTZ object can be bound using ServerType ORATYPE_TIMESTAMPTZ. This allows the binding of a value to a parameter associated with an Oracle TIMESTAMP WITH TIME ZONE data type in a SQL or PL/SQL statement.

When binding a string associated with an TIMESTAMP WITH TIME ZONE data type, the ServerType must be specified to be a string type (for example, ORATYPE_VARCHAR2, ORATYPE_STRING) and the string must be in the format specified by NLS_TIMESTAMP_TZ_FORMAT.

Properties

	
Day (OraTimeStampTZ) Property

	
Format (OraTimeStampTZ) Property

	
Hour (OraTimeStampTZ) Property

	
Minute (OraTimeStampTZ) Property

	
Month (OraTimeStampTZ) Property

	
Nanonsecond (OraTimeStampTZ) Property

	
Second (OraTimeStampTZ) Property

	
TimeZone (OraTimeStampTZ) Property

	
Value (OraTimeStampTZ) Property

	
Year (OraTimeStampTZ) Property

Methods

	
AddIntervalDS Method

	
AddIntervalYM Method

	
Clone (OraTimeStampTZ) Method

	
IsEqual (OraTimeStampTZ) Method

	
IsGreater (OraTimeStampTZ) Method

	
IsLess (OraTimeStampTZ) Method

	
ToDate Method

	
ToOraTimeStamp Method

	
ToOraTimeStampLTZ Method

	
ToUniversalTime Method

	
See Also:

	
CreateOraTimeStampTZ Method

	
OraNumber Object

	
ServerType Property

OraConnections Collection

Description

The OraConnections collection maintains a list of OraConnection objects. The list is not modifiable; you cannot add to or remove from this collection.

Remarks

You can access the OraConnection objects in this collection by creating a subscript (using ordinal integers) or by using the name the object was given at its creation. You can obtain the number of OraConnection objects in the collection by using the Count property. Referencing a subscript that is not within the collection (0 to Count-1) results in the return of a NULL OraConnection object.

Properties

	
Count Property

Methods

None.

	
See Also:

OraConnection Object

OraFields Collection

Description

The OraFields collection maintains a list of the OraField objects. The list is not modifiable; you cannot add to or remove from this collection.

Remarks

You can access the OraField objects in this collection by creating a subscript (using ordinal integers) or by using the name the object was given at its creation. You can obtain the number of OraField objects in the collection by using the Count property. Referencing a subscript that is not within the collection (0 to Count-1) results in the return of a null OraField object.

Properties

	
Count Property

Methods

	
OriginalItem Method

	
See Also:

OraField Object

OraParameters Collection

Description

The OraParameters collection maintains a list of OraParameter objects. Unlike the other collection objects, this list is modifiable; you can add to and remove from the collection.

Remarks

You can access the OraParameter objects in this collection by creating a subscript (using ordinal integers) or by using the name the object was given at its creation. You can obtain the number of OraParameter objects in the collection by using the Count property. Referencing a subscript that is not within the collection (0 to Count-1) results in the return of a null OraParameter object.

In addition to accessing the OraParameter objects of the collection, you can use the collection to create and destroy parameters by using the Add and Remove methods, respectively.

Properties

	
Count Property

Methods

	
Add Method

	
AddTable Method

	
Remove Method

	
See Also:

	
OraParameter Object

	
OraParamArray Object

OraSessions Collection

Description

The OraSessions collection maintains a list of OraSession objects. The list is not modifiable; you cannot add to or remove from this collection.

Remarks

You can access the OraSession objects in this collection by creating a subscript (using ordinal integers) or by using the name the object was given at its creation. You can obtain the number of OraSession objects in the collection by using the Count property. Referencing a subscript that is not within the collection (0 to Count-1) results in the return of a null OraSession object.

Properties

	
Count Property

Methods

None.

	
See Also:

OraSession Object

OraSubscriptions Collection

Description

The OraSubscriptions collection maintains a list of OraSubscription objects, which represent the subscription to a database event. Unlike the other collection objects, this list is modifiable; you can add to and remove from the collection.

Remarks

You can access the OraSubscription objects in this collection by creating a subscript (using ordinal integers) or by using the name the object was given at its creation. You can obtain the number of OraSubscription objects in the collection by using the Count property. Referencing a subscript that is not within the collection (0 to Count-1) results in the return of a null OraSubscription object.

In addition to accessing the OraSubscription objects of the collection, you can use the collection to create and destroy subscriptions by using the Add and Remove methods, respectively.

Properties

	
Count Property

Methods

	
Add (OraSubscriptions Collection) Method

	
Remove (OraSubscriptions Collection) Method

	
See Also:

	
OraSubscription Object

	
OraDatabase Object

	
"Database Events"

10 Server Methods

This chapter describes the Oracle Objects for OLE Server methods.

For an introduction to OO4O server objects, see "Oracle Objects for OLE In-Process Automation Server" .

This chapter contains these topics:

	
Server Methods: A to B

	
Server Methods: C

	
Server Methods: D to H

	
Server Methods: I to L

	
Server Methods: M to S

	
Server Methods: T to Z

Server Methods: A to B

	
Abs Method

	
Add Method

	
Add (OraIntervalDS) Method

	
Add (OraIntervalYM) Method

	
Add (OraNumber) Method

	
Add (OraSubscriptions Collection) Method

	
AddIntervalDS Method

	
AddIntervalYM Method

	
AddNew Method

	
AddTable Method

	
Append (OraCollection) Method

	
Append (OraLOB) Method

	
AppendChunk Method

	
AppendChunkByte Method

	
AQAgent (OraAQMsg) Method

	
AQMsg (OraAQ) Method

	
ArcCos (OraNumber) Method

	
ArcSin (OraNumber) Method

	
ArcTan (OraNumber) Method

	
ArcTan2 (OraNumber) Method

	
Attribute (OraMetaData) Method

	
AutoBindDisable Method

	
AutoBindEnable Method

	
BeginTrans Method

Server Methods: C

	
Cancel Method

	
CancelEdit (OraRef) Method

	
Ceil (OraNumber) Method

	
ChangePassword (OraServer) Method

	
ChangePassword (OraSession) Method

	
Clone Method

	
Clone (OraLOB/BFILE) Method

	
Clone (OraCollection) Method

	
Clone (OraIntervalDS) Method

	
Clone (OraIntervalYM) Method

	
Clone (OraNumber) Method

	
Clone (OraObject/Ref) Method

	
Clone (OraTimeStamp) Method

	
Clone (OraTimeStampTZ) Method

	
Close Method

	
Close (OraBFILE) Method

	
CloseAll (OraBFILE) Method

	
CommitTrans Method

	
Compare (OraLOB) Method

	
ConnectSession Method

	
CopyToClipboard Method

	
Copy (OraLOB) Method

	
CopyFromFile (OraLOB) Method

	
CopyFromBFILE (OraLOB) Method

	
CopyToFile (OraLOB/BFILE) Method

	
Cos (OraNumber) Method

	
CreateAQ Method

	
CreateCustomDynaset Method

	
CreateDatabasePool Method

	
CreateDynaset Method

	
CreateIterator Method

	
CreateNamedSession Method

	
CreateOraIntervalDS Method

	
CreateOraIntervalYM Method

	
CreateOraNumber Method

	
CreateOraObject (OraDatabase) Method

	
CreateOraTimeStamp Method

	
CreateOraTimeStampTZ Method

	
CreatePLSQLCustomDynaset Method

	
CreatePLSQLDynaset Method

	
CreateSession Method

	
CreateSQL Method

	
CreateTempBLOB/CLOB Method

Server Methods: D to H

	
Delete Method

	
Delete (OraCollection) Method

	
Delete (OraRef) Method

	
DeleteIterator Method

	
Dequeue (OraAQ) Method

	
Describe Method

	
DestroyDatabasePool Method

	
DisableBuffering (OraLOB) Method

	
Div (OraIntervalDS) Method

	
Div (OraIntervalYM) Method

	
Div (OraNumber) Method

	
DynasetCacheParams Method

	
Edit Method

	
Edit (OraRef) Method

	
ElementValue Method

	
EnableBuffering (OraLOB) Method

	
Enqueue (OraAQ) Method

	
Erase (OraLOB) Method

	
ExecuteSQL Method

	
Exist (OraCollection) Method

	
Exp (OraNumber) Method

	
FetchOraRef Method

	
FieldSize Method

	
FindFirst, FindLast, FindNext, and FindPrevious Methods

	
Floor (OraNumber) Method

	
FlushBuffer (OraLOB) Method

	
GetDatabaseFromPool Method

	
GetChunk Method

	
GetChunkByte Method

	
GetChunkByteEx Method

	
GetXML Method

	
GetXMLToFile Method

	
GetRows Method

	
Get_Value Method

	
HypCos (OraNumber) Method

	
HypSin (OraNumber) Method

	
HypTan (OraNumber) Method

Server Methods: I to L

	
InitIterator Method

	
IsEqual (OraIntervalDS) Method

	
IsEqual (OraIntervalYM) Method

	
IsEqual (OraNumber) Method

	
IsEqual (OraTimeStamp) Method

	
IsEqual (OraTimeStampTZ) Method

	
IsGreater (OraIntervalDS) Method

	
IsGreater (OraIntervalYM) Method

	
IsGreater (OraNumber) Method

	
IsGreater (OraTimeStamp) Method

	
IsGreater (OraTimeStampTZ) Method

	
IsLess (OraIntervalDS) Method

	
IsLess (OraIntervalYM) Method

	
IsLess (OraTimeStamp) Method

	
IsLess (OraTimeStampTZ) Method

	
IterNext Method

	
IterPrev Method

	
LastServerErrReset Method

	
Ln (OraNumber) Method

	
Log (OraNumber) Method

Server Methods: M to S

	
MatchPos (OraLOB/BFILE) Method

	
Mod (OraNumber) Method

	
MonitorForFailover Method

	
MonitorStart (OraAQ) Method

	
MonitorStop (OraAQ) Method

	
MoveFirst, MoveLast, MoveNext, and MovePrevious Methods

	
MovePreviousn, MoveNextn, MoveRel, and MoveTo Methods

	
Mul (OraIntervalDS) Method

	
Mul (OraIntervalYM) Method

	
Mul (OraNumber) Method

	
Neg (OraIntervalDS) Method

	
Neg (OraIntervalYM) Method

	
Neg (OraNumber) Method

	
Open (OraServer) Method

	
Open (OraBFILE) Method

	
OpenDatabase Method

	
OriginalItem Method

	
OriginalName

	
Power (OraNumber) Method

	
Put_Value Method

	
Read (OraLOB/BFILE) Method

	
ReadChunk Method

	
Refresh Method

	
Refresh (OraRef) Method

	
Register Method

	
Remove Method

	
Remove (OraSubscriptions Collection) Method

	
RemoveFromPool Method

	
ResetTrans Method

	
Rollback Method

	
Round (OraNumber) Method

	
SetPi (OraNumber) Method

	
Sin (OraNumber) Method

	
Sqrt (OraNumber) Method

	
Sub (OraIntervalDS) Method

	
Sub (OraIntervalYM) Method

	
Sub (OraNumber) Method

Server Methods: T to Z

	
Tan (OraNumber) Method

	
ToDate Method

	
ToOraNumber (OraIntervalDS) Method

	
ToOraTimeStamp Method

	
ToOraTimeStampLTZ Method

	
ToOraTimeStampTZ Method

	
ToUniversalTime Method

	
Trim (OraCollection) Method

	
Trim (OraLOB) Method

	
Trunc (OraNumber) Method

	
Unregister Method

	
Update Method

	
Update (OraRef) Method

	
Write (OraLOB) Method

Abs Method

Applies To

OraNumber Object

Description

Calculates the absolute value of an OraNumber object.

Usage

OraNumber.Abs

Remarks

The result of the operation is stored in the OraNumber object. There is no return value.

Add Method

Applies To

OraParameters Collection

Description

Adds a parameter to the OraParameters collection.

Usage

oraparameters.Add Name, Value, IOType, ServerType, ObjectName

Arguments

The arguments for the method are:

	Arguments	Description
	Name	The name of the parameter to be added to the parameters collection. This name is issued both for parameter identification and as the placeholder in associated SQL and PL/SQL statements.
	Value	A Variant specifying the initial value of the parameter. The initial value of the parameter is significant; it defines the data type of the parameter.
	IOType	An integer code specifying how the parameter is to be used in SQL statements and PL/SQL blocks.
	ServerType	Specifies Oracle Database type to which this parameter is to be bound. This is required when binding to BLOB, CLOB, BFILE, OBJECT, REF, NESTED TABLE, or VARRAY. For a list of possible values, see the OraParameter "ServerType Property".
	ObjectName	A case-sensitive string containing the name of the Object. This is only required if ServerType is ORATYPE_OBJECT, ORATYPE_VARRAY, or ORATYPE_TABLE. ServerType is required for ORATYPE_REF when the REF is used in PL/SQL.

IOType Settings

The IOType settings are:

	Settings	Values	Description
	ORAPARM_INPUT	1	Used for input variables only
	ORAPARM_OUTPUT	2	Used for output variables only
	ORAPARM_BOTH	3	Used for variables that are both input and output

These values can be found in the oraconst.txt file.

By default, the maximum size of the ORAPARM_OUTPUT variable for ServerType VAR, VARCHAR2, and ORATYPE_RAW_BIN is set to 128 bytes. Use the MinimumSize property to change this value. The minimum size of an ORAPARM_OUTPUT variable for VAR and VARCHAR2 must always be greater than the size of the expected data from the database column.

Verify that this value is correct. If you set an incorrect option, such as ORAPARM_BOTH for the IN stored procedure parameter type, this can result in errors. ORAPARM_BOTH is for IN and OUT parameters only. It is not used against one stored procedure that has an IN parameter and another that has an OUT parameter. For this case, use two parameters. Errors caused this way are rare, if there is a parameter-related error, verify that the IOType is correct.

The Value argument can be an Oracle Database 10g object, such as an OraBLOB. Note that a copy of the object is made at that point in time and the Value property must be accessed to obtain a new object that refers to the value of the parameter. For example, if IOType is ORATYPE_BOTH and an OraBLOB obtained from a dynaset is passed in as the input value, the Parameter Value property needs to be accessed one time after the SQL has been executed to obtain the newly updated output value of the parameter. The object is obtained from the parameter in the same manner as from a dynaset.

The Value property always refers to the latest value of the parameter. The Visual Basic value Null can also be passed as a value. The Visual Basic EMPTY value can be used for BLOB and CLOB data types to mean an empty LOB, and the EMPTY value can be used for OBJECT, VARRAY, and NESTED TABLE data types to mean an object whose attributes are all Null.

Remarks

Use parameters to represent SQL bind variables (as opposed to rebuilding the SQL statement). SQL bind variables are useful because you can change a parameter value without having to parse the query again. Use SQL bind variables only as input variables.

You can also use parameters to represent PL/SQL bind variables. You can use PL/SQL bind variables as both input and output variables.

The ORATYPE_RAW_BIN ServerType value is used when binding to Oracle Raw columns. A byte array is used to Put or Get values. The maximum allowable size of an ORATYPE_RAW_BIN bind buffers is 2000 bytes when bound to a column of a table and 32 KB when bound to a stored procedure. For example code, see the samples in the ORACLE_BASE\\ORACLE_HOME\OO4O\VB\Raw directory.

Examples

This example demonstrates using the Add and Remove parameter methods, the ServerType parameter property, and the ExecuteSQL database method to call a stored procedure and function (located in ORAEXAMP.SQL). Copy and paste this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

'Declare variables
Dim OraSession As OraSession
Dim OraDatabase As OraDatabase

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'Add EMPNO as an Input/Output parameter and set its initial value.
OraDatabase.Parameters.Add "EMPNO", 7369, ORAPARM_INPUT
OraDatabase.Parameters("EMPNO").ServerType = ORATYPE_NUMBER

'Add ENAME as an Output parameter and set its initial value.
OraDatabase.Parameters.Add "ENAME", 0, ORAPARM_OUTPUT
OraDatabase.Parameters("ENAME").ServerType = ORATYPE_VARCHAR2

'Add SAL as an Output parameter and set its initial value.
OraDatabase.Parameters.Add "SAL", 0, ORAPARM_OUTPUT
OraDatabase.Parameters("SAL").ServerType = ORATYPE_NUMBER

'Execute the Stored Procedure Employee.GetEmpName to retrieve ENAME.
' This Stored Procedure can be found in the file ORAEXAMP.SQL.
OraDatabase.ExecuteSQL ("Begin Employee.GetEmpName (:EMPNO, :ENAME); end;")
'Display the employee number and name.

'Execute the Stored Function Employee.GetSal to retrieve SAL.
' This Stored Function can be found in the file ORAEXAMP.SQL.
OraDatabase.ExecuteSQL ("declare SAL number(7,2); Begin" & _
 ":SAL:=Employee.GetEmpSal (:EMPNO); end;")

'Display the employee name, number and salary.
MsgBox "Employee " & OraDatabase.Parameters("ENAME").value & ", #" & _
 OraDatabase.Parameters("EMPNO").value & ",Salary=" & _
 OraDatabase.Parameters("SAL").value

'Remove the Parameters.
OraDatabase.Parameters.Remove "EMPNO"
OraDatabase.Parameters.Remove "ENAME"
OraDatabase.Parameters.Remove "SAL"

End Sub

	
See Also:

	
OraParameter Object

	
Remove Method

	
ServerType Property

Add (OraIntervalDS) Method

Applies To

OraIntervalDS Object

Description

Adds an argument to the OraIntervalDS object.

Usage

OraIntervalDS.Add operand

Arguments

The arguments for the method are:

	Arguments	Description
	[in] operand	A Variant of type String, a numeric value, or an OraIntervalDS object to be added.

Remarks

The result of the operation is stored in an OraIntervalDS object, overwriting any previous value. There is no return value.

If operand is a Variant of type String, it must be in the following format: [+/-]Day HH:MI:SSxFF.

If operand is a numeric value, the value provided should represent the total number of days that the constructed OraIntervalDS object represents.

Examples

Dim oraIDS as OraIntervalDS

'Create an OraIntervalDS using a string which represents
'1 day and 12 hours
Set oraIDS = oo4oSession.CreateOraIntervalDS("1 12:0:0.0")

'Add an interval using a string, which represents 2 days
'and 12 hours, to oraIDS.
'The resulting oraIDS is an interval which represents 4 days
oraIDS.Add "2 12:0:0.0"

	
See Also:

"CreateOraIntervalDS Method"

Add (OraIntervalYM) Method

Applies To

OraIntervalYM Object

Description

Adds an argument to the OraIntervalYM object.

Usage

OraIntervalYMObj.Add operand

Arguments

The arguments for the method are:

	Arguments	Description
	[in] operand	A Variant of type String, a numeric value, or an OraIntervalYM object to be added.

Remarks

The result of the operation is stored in the OraIntervalYM object, overwriting any previous value. There is no return value.

If operand is a Variant of type String, it must be in the following format: [+/-]YEARS-MONTHS.

If operand is a numeric value, the value provided should represent the total number of years that the constructed OraIntervalYM object represents.

Examples

Dim oraIYM as OraIntervalYM

'Create an OraIntervalYM using a string which represents 1 year and 6 months
Set oraIYM = oo4oSession.CreateOraIntervalYM("1-6")

'Add an interval using a string, which represents 2 years
'and 6 months, to oraIYM.
'The resulting oraIYM is an interval which represents 4 years
oraIYM.Add "2-6"

	
See Also:

CreateOraIntervalYM Method

Add (OraNumber) Method

Applies To

OraNumber Object

Description

Adds a numeric argument to the OraNumber object.

Usage

OraNumber.Add operand

Arguments

The arguments for the method are:

	Arguments	Description
	[in] operand	A Variant of type String, OraNumber object, or a numeric value.

Remarks

The result of the operation is stored in an OraNumber object. There is no return value.

Add (OraSubscriptions Collection) Method

Applies To

OraSubscriptions Collection

Description

Adds a subscription to the OraSubscriptions collection.

Usage

orasubscriptions.Add Name, DbeventsHdl, Ctx

Arguments

The arguments for the method are:

	Variants	Description
	[in] Name	The database event of interest. The appropriate event trigger and AQ queue must be set up prior to this.
Name refers to the subscription name in the form of the string 'SCHEMA.QUEUE' if the registration is for a single consumer queue and 'SCHEMA.QUEUE:CONSUMER_NAME' if the registration is for a multiple consumer queue.

The Name string should be in uppercase.

	[in] DbeventsHdl	The database event handler. An IDispatch interface implementing the NotifyDBEvents method, which is invoked when the database event of interest is fired.
	[in] Ctx	Context-specific information that the application wants passed to the NotifyDbEvents method when it is invoked.

Remarks

To register for subscription of a database event, the name identifying the subscription of interest and the name of the dbevent handler that handles the event must be passed in when the Add method is called. The queues and event triggers necessary to support the database event must be set up before the subscriptions can be fired.

The dbevent handler should be an automation object that implements the NotifyDBEvents method.

NotifyDBEvents Handler

The NotifyDBEvents method is invoked by Oracle Objects for OLE when database events of interest are fired.

For more detailed information about setting up the queues and triggers for Oracle Database events, see to Triggers on System Events and User Events in Oracle Database Concepts.

The syntax of the method is:

Public Function NotifyDBEvents(ByVal Ctx As Variant, ByVal Payload As Variant

Variants

The variants for the method are:

	Variants	Description
	[in] Ctx	Passed into the OraSubscriptions.Add method by the application. Context-sensitive information that the application wants passed on to the dbevent handler.
	[in] Payload	The payload for this notification.
Database events are fired by setting up event trigger and queues. Payload here refers to the payload, if any, that was enqueued in the queue when the event triggered.

Examples

Example: Registering an Application for Notification of Database Events

In the following example, an application subscribes for notification of database logon events (such as all logons to the database). When a user logs on to the database, the NotifyDBEvents method of the DBEventsHdlr that was passed in at the time of subscription is invoked. The context-sensitive information and the event-specific information are passed into the NotifyDBEvents method.

The DBEventsHdlr in this example is DBEventCls, which is defined later.

The main application:

' First instantiate the dbevent handler. The dbevent notification
' will fire the NotifyDBEvents on the callback handler.

Public DBEventsHdlr As New DBEventCls
Private Sub Form_Load()
 Dim gOraSession As Object
 Dim gOraSubscriptions As OraSubscriptions
 Dim gOraDatabase As OraDatabase

 'Create the OraSession Object
 Set gOraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set gOraDatabase = gOraSession.DbOpenDatabase
 ("ora90.us.oracle.com", "pubsub/pubsub",
 ORADB_ENLIST_FOR_CALLBACK)
 Set gOraSubscriptions = gOraDatabase.Subscriptions
 gOraSubscriptions.Add "PUBSUB.LOGON:ADMIN", DBEventsHdlr,
 gOraDatabase
 gOraSubscriptions(0).Register
 MsgBox "OK"
End Sub

The database event handler class that defines the NotifyDBEvents method.

Public countofMsgs as integer
Public Function NotifyDBEvents(Ctx As Variant, Payload As Variant)
 On error goto NotifyMeErr

 MsgBox "Retrieved payload " + Payload
 ' do something - here the subscription is unregistered after
 ' receiving 3 notifications
 countofMsgs = countofMsgs + 1
 If countofMsgs > 3 Then
 Ctx.Subscriptions(0).UnRegister
 End If
 Exit Sub
NotifyMeErr:
 Call RaiseError(MyUnhandledError, "newcallback:NotifyMe Method")

End Sub

	
See Also:

	
"Database Events" for a complete discussion of the concepts involved in this example

	
Triggers on System Events and User Events in Oracle Database Concepts for detailed information about setting up the queues and triggers for Oracle Database Events

	
OraSubscription Object

	
Remove (OraSubscriptions Collection) Method

AddIntervalDS Method

Applies To

OraTimeStamp Object

OraTimeStampTZ Object

Description

Adds an interval that represents an interval from days to seconds, to the OraTimeStamp or OraTimeStampTZ object.

Usage

OraTimeStampObj.AddIntervalDS operand
OraTimeStampTZObj.AddIntervalDS operand

Arguments

The arguments for the method are:

	Arguments	Description
	[in] operand	A Variant of type String, a numeric value, or an OraIntervalDS object that represents an interval from days to seconds to be added to the current OraTimeStamp or OraTimeStampTZ object.

Remarks

The result of adding an interval to the current OraTimeStamp or OraTimeStampTZ object is stored in the current object, overwriting any previous value. There is no return value.

If operand is a Variant of type String, it must be in the following format: [+/-] Day HH:MI:SSxFF.

If operand is a numeric value, the value provided should represent the total number of days that the constructed OraIntervalDS object represents.

Examples

Using OraTimeStamp

Dim OraTimeStamp As OraTimeStamp

...

'Create OraTimeStamp using a string
Set OraTimeStamp = OraSession.CreateOraTimeStamp("2000-12-28 00:00:00", _
 "YYYY-MM-DD HH:MI:SS")

'Add an interval using numeric value that represents 5 days and 12 hours
OraTimeStamp.AddIntervalDS 5.5

'Value should now be "2001-1-2 12:00:00"
tsStr = OraTimeStamp.Value

Using OraTimeStampTZ

Dim OraTimeStampTZ As OraTimeStampTZ

...

'Create OraTimeStampTZ using a string
Set OraTimeStamp = OraSession.CreateOraTimeStampTZ("2000-12-28 00:00:00 -07:00", _
 "YYYY-MM-DD HH:MI:SS TZH:TZM")

'Add an interval using numeric value that represents 5 days and 12 hours
OraTimeStampTZ.AddIntervalDS 5.5

'Value should now be "2001-1-2 12:00:00"
tstzStr = OraTimeStampTZ.Value

...

AddIntervalYM Method

Applies To

OraTimeStamp Object

OraTimeStampTZ Object

Description

Adds an interval that represents an interval from years to months, to the OraTimeStamp or OraTimeStampTZ object.

Usage

OraTimeStampObj.AddIntervalYM operand
OraTimeStampTZObj.AddIntervalYM operand

Arguments

The arguments for the method are:

	Arguments	Description
	[in] operand	A Variant of type String, a numeric value, or an OraIntervalYM object that represents an interval from years to months, to be added to the current OraTimeStamp or OraTimeStampTZ object.

Remarks

The result of adding an interval to the current OraTimeStamp or OraTimeStampTZ object is stored in the current object, overwriting any previous value. There is no return value.

If operand is a Variant of type String, it must be in following format: [+/-] YEARS-MONTHS.

If operand is a numeric value, the value provided should represent the total number of years that the constructed OraIntervalYM object represents.

Examples

Example: Using the OraTimeStamp Object

Dim OraTimeStamp As OraTimeStamp

...
'Create OraTimeStamp using a string
Set OraTimeStamp = OraSession.CreateOraTimeStamp("2000-12-28 00:00:00", _
 "YYYY-MM-DD HH:MI:SS")

'Add an interval using numeric value that represents 2 years
OraTimeStamp.AddIntervalYM 2

'Value should now be "2002-12-28 00:00:00"
tsStr = OraTimeStamp.Value

...

Example: Using the OraTimeStampTZ Object

Dim OraTimeStampTZ As OraTimeStampTZ

...
'Create OraTimeStampTZ using a string
Set OraTimeStampTZ =OraSession.CreateOraTimeStampTZ("2000-12-28 00:00:00" & _
 "-07:00" "YYYY-MM-DD HH:MI:SS TZH:TZM")

'Add an interval using numeric value that represents 2 years
OraTimeStampTZ.AddIntervalYM 2

'Value should now be "2002-12-28 00:00:00"
tstzStr = OraTimeStampTZ.Value

...

AddNew Method

Applies To

OraDynaset Object

Description

Clears the copy buffer and begins a record insertion operation into the specified dynaset and associated database.

Usage

oradynaset.AddNew
oradynaset.DbAddNew

Remarks

When an AddNew operation is initiated, values of fields present within the dynaset are maintained in a copy buffer and do not reflect the actual contents of the database.

The values of the fields are modified through the OraField object, and committed with an Update operation or when database movement occurs, which discards the new row. Field values that have not been explicitly assigned are either set to Null or allowed to default by way of the Oracle default mechanism, depending on the Column Defaulting mode of the options flag used when the OpenDatabase method was called. In either case, fields that appear in the database table but not in the dynaset are always defaulted by the Oracle default mechanism.

Internally, records are inserted by the AddNew method using the "INSERT into TABLE (...) VALUES (...)" SQL statement, and are added to the end of the table.

When adding a row that has object, collection, and REF columns, these column values should be set to a valid OraObject, OraCollection, or OraRef interface or to the Null value. The column values can also be set with the automation object returned by the CreateOraObject method. When adding a row having a BLOB, CLOB, or BFILE column, the column value should be set to a valid OraBLOB, OraCLOB, or OraBFILE interface, Null, or Empty. Setting a BLOB, CLOB, and BFILE column to an Empty value inserts an empty LOB value into the database.

	
Note:

A call to Edit, AddNew, or Delete methods cancels any outstanding Edit or AddNew method calls before proceeding. Any outstanding changes not saved using an Update method are lost during the cancellation.

Examples

This example demonstrates the use of the AddNew and Update methods to add a new record to a dynaset. Copy this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

 'Declare variables
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraDynaset As OraDynaset

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.

 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", _
 "scott/tiger", 0&)

 'Create the OraDynaset Object.
 Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)
 'Begin an AddNew.
 OraDynaset.AddNew

 'Set the field(column) values.
 OraDynaset.Fields("EMPNO").Value = "1000"
 OraDynaset.Fields("ENAME").Value = "WILSON"
 OraDynaset.Fields("JOB").Value = "SALESMAN"

 OraDynaset.Fields("MGR").Value = "7698"
 OraDynaset.Fields("HIREDATE").Value = "19-SEP-92"
 OraDynaset.Fields("SAL").Value = 2000
 OraDynaset.Fields("COMM").Value = 500
 OraDynaset.Fields("DEPTNO").Value = 30

 'End the AddNew and Update the dynaset.
 OraDynaset.Update

 MsgBox "Added one new employee."

End Sub

	
See Also:

	
Delete Method

	
Edit Method

	
EditMode Property

	
MoveFirst, MoveLast, MoveNext, and MovePrevious Methods

	
Update Method

	
Validate Event

AddTable Method

Applies To

OraParameters Collection

Description

Adds an array parameter to the OraParameters collection.

Usage

oraparamarray.AddTable Name, IOType, ServerType, ArraySize , ElementSize, ObjectName

Arguments

The arguments for the method are:

	Arguments	Description
	Name	The name of the parameter to be added to the parameters collection. This name is used both for parameter identification and as the placeholder in associated SQL and PL/SQL statements.
	IOType	An integer code specifying how the parameter is to be used in SQL statements and PL/SQL blocks.
	ServerType	Specifies Oracle Database type to which this array parameter is to be bound. For a list of possible values, see the OraParameter ServerType Property.
	ArraySize	Defines the number of elements in the parameter array. This parameter is used to calculate the maximum buffer length.
	ElementSize [optional]	Defines the size of the element. Valid for only character and string type table (array) parameters. The valid size for ElementSize depends on the VarType.
ElementSize is optional in all cases except when bound to char and string types.

	ObjectName	A case-sensitive string containing the name of the Object. This is only required if ServerType is ORATYPE_OBJECT, ORATYPE_VARRAY, or ORATYPE_TABLE. It is required for ORATYPE_REF when the REF is used in PL/SQL.

IO Type Settings

The IOType settings are:

	Constant	Value	Description
	ORAPARM_INPUT	1	Used for input variables only.
	ORAPARM_OUTPUT	2	Used for output variables only.
	ORAPARM_BOTH	3	Used for variables that are both input and output.

Verify that this value is correct. If you set an incorrect option, such as ORAPARM_BOTH for the stored procedure parameter type IN, this can result in errors. ORAPARM_BOTH is for IN and OUT parameters only. It is not used against one stored procedure that has an IN parameter and another that has an OUT parameter. In this case, use two parameters. Errors caused in this way are rare, but if there are parameter-related errors, verify that the IOType is correct.

Server Type

See ServerType Property for valid types and note the following:

Note:

	
External data type ORATYPE_NUMBER allows decimal precision of 1 to 38.

	
The maximum positive number is 0.99999999999999999999 E + 38.

	
The minimum positive number is 0.1 E-38.

	
The minimum negative number is -0.99999999999999999999 E + 38.

	
The maximum negative number is 0.1 E -38.

ElementSize (Optional)

Valid for character, string, and raw types. The valid size for ElementSize depends on the VarType. This represents the length of each individual string or raw array element. These ranges are listed.

	VarType	Size
	ORATYPE_VARCHAR2	Valid range from 1 to 1999
	ORATYPE_VARCHAR	Valid range from 1 to 1999
	ORATYPE_STRING	Valid range from 1 to 1999
	ORATYPE_CHAR	Valid range from 1 to 255
	ORATYPE_CHARZ	Valid range from 1 to 255
	ORATYPE_RAW_BIN	Valid range from 1 to 4000 (see remarks)

Remarks

Use parameters to represent SQL bind variables for array insert, update, and delete operations, rather than rebuilding the SQL statement. SQL bind variables are useful because you can change a parameter value without having to parse the query again. Use SQL bind variables only as input variables.

You can also use parameters to represent PL/SQL bind (IN/OUT) variables. You can use PL/SQL bind variables as both input and output variables.

The ServerType value ORATYPE_RAW_BIN is used when binding to Oracle Raw columns. A byte array is used to Put or Get values. The maximum allowable size of ORATYPE_RAW_BIN bind buffers is 2000 bytes when bound to a column of a table: the maximum allowable size is 32 KB when bound to a stored procedure. No element (see ElementSize argument) can be greater than 4000 bytes when binding to stored procedures, 2000 bytes against columns of tables. For example code, see the samples in the ORACLE_BASE\\ORACLE_HOME\OO4O\VB\Raw directory.

Examples

See "Example: Using OraParamArrays with PL/SQL".

	
See Also:

ServerType Property

Append (OraCollection) Method

Applies To

OraCollection Object

Description

Extends the size of the collection by one and appends the Variant value at the end of the collection.

Usage

OraCollection.Append element

Arguments

The arguments for the method are:

	Arguments	Description
	[in] element	A Variant representing the value to be appended.

Remarks

If an OraCollection represents a collection of Object types or Refs, the element argument should represent a valid OraObject or OraRef.

Examples

The following example illustrates the Append method. Before running the sample code, make sure that you have the necessary data types and tables in the database. See "Schema Objects Used in OraCollection Examples".

Example: Append Method for the OraCollection Object Example

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim EnameList as OraCollection

'create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from department
set OraDynaset = OraDatabase.CreateDynaset("select * from department", 0&)

'retrieve a Enames column from Department.
'Here Value property of OraField object returns EnameList OraCollection
set EnameList = OraDynaset.Fields("Enames").Value

'Append an "Eric" to the collection.
'Before that row level lock should be obtained
OraDynaset.Edit
EnameList.Append "Eric"
OraDynaset.Update

Append (OraLOB) Method

Applies To

OraBLOB, OraCLOB Objects

Description

Appends the LOB content of the input OraLOB object to the internal LOB value of this instance.

Usage

OraBlob.Append srcBlob
OraClob.Append srcClob

Arguments

The arguments for the method are:

	Arguments	Description
	[in] srcLOB	A valid object of type OraBLOB or OraCLOB.

Remarks

Appends the LOB content of input LOB to the end of current LOB value. Obtain either a row-level lock or an object-level lock before calling this method.

AppendChunk Method

Applies To

OraField Object

Description

Appends data from a string to a LONG or LONG RAW field in the copy buffer.

Usage

orafield.AppendChunk(string)
orafield.DbAppendChunk(string)

Arguments

The arguments for the method are:

	Arguments	Description
	string	Data to append to the specified field.

Remarks

The AppendChunk method allows the manipulation of data fields that are larger than 64 KB.

Examples

	
Note:

This example cannot be run as is. It requires a defined form named frmChunk.

This example demonstrates the use of the AppendChunk method to read a file into a LONG RAW column of a database. This example expects a valid dynaset named OraDynaset representing a table with a column named longraw. Copy this code into the definition section of a form named frmChunk. Call this procedure with a valid filename.

Sub AppendChunkExample (FName As String)

 'Declare various variables.
 Dim NumChunks As Integer, RemChunkSize As Integer
 Dim TotalSize As Long, CurChunk As String
 Dim I As Integer, FNum As Integer, ChunkSize As Integer

 'Set the size of each chunk.
 ChunkSize = 10240

 frmChunk.MousePointer = HOURGLASS

 'Begin an add operation.
 OraDynaset.AddNew

 'Clear the LONGRAW field.
 OraDynaset.Fields("LONGRAW").Value = ""

 'Get a free file number.
 FNum = FreeFile

 'Open the file.
 Open FName For Binary As #FNum

 'Get the total size of the file.

 TotalSize = LOF(FNum)

 'Set number of chunks.
 NumChunks = TotalSize \ ChunkSize

 'Set number of remaining bytes.
 RemChunkSize = TotalSize Mod ChunkSize

 'Loop through the file.
 For I = 0 To NumChunks

 'Calculate the new chunk size.
 If I = NumChunks Then
 ChunkSize = RemChunkSize
 End If

 CurChunk = String$(ChunkSize, 32)

 'Read a chunk from the file.
 Get #FNum, , CurChunk

 'Append chunk to LONGRAW field.
 OraDynaset.Fields("LONGRAW").AppendChunk (CurChunk)

 Next I

'Complete the add operation and update the database.
OraDynaset.Update

 'Close the file.
 Close FNum

 frmChunk.MousePointer = DEFAULT

End Sub

	
See Also:

	
"Migration from LONG RAW to LOB or BFILE"

	
FieldSize Method

	
GetChunk Method

	
Type Property

AppendChunkByte Method

Applies To

OraField Object

Description

Appends data from a byte array to a LONG or LONG RAW field in the copy buffer.

Usage

orafield.AppendChunkByte(ByteArray, numbytes)

Arguments

The arguments for the method are:

	Arguments	Description
	Byte Array	Data to append to the specified field.
	numbytes	Number of bytes to copy.

Remarks

The AppendChunkByte method allows the manipulation of data fields that are larger than 64 KB.

Examples

	
Note:

This is an incomplete code sample, provided for your reference. A complete Visual Basic sample called LONGRAW that is based on this code sample, is provided in the OO4O samples directory.

This sample code demonstrates the use of the AppendChunkByte method to read a file into a LONG RAW column of a database. This code expects a valid dynaset named OraDynaset representing a table with a column named longraw.

Sub AppendChunkByteExample (FName As String)

 'Declare various variables.
 Dim NumChunks As Integer, RemChunkSize As Integer
 Dim TotalSize As Long, CurChunkByte() As Byte
 Dim I As Integer, FNum As Integer, ChunkSize As Integer
 'Set the size of each chunk.
 ChunkSize = 10240
 frmChunk.MousePointer = HOURGLASS

 'Begin an add operation.
 OraDynaset.AddNew
 'Clear the LONGRAW field.
 OraDynaset.Fields("LONGRAW").Value = ""

 'Get a free file number.
 FNum = FreeFile

 'Open the file.
 Open FName For Binary As #FNum

 'Get the total size of the file.
 TotalSize = LOF(FNum)

 'Set number of chunks.
 NumChunks = TotalSize \ ChunkSize

 'Set number of remaining bytes.
 RemChunkSize = TotalSize Mod ChunkSize

 'Loop through the file.
 For I = 0 To NumChunks

 'Calculate the new chunk size.
 If I = NumChunks Then
 ChunkSize = RemChunkSize

 End If

 ReDim CurChunkByte(ChunkSize)

 'Read a chunk from the file.
 Get #FNum, , CurChunkByte

 'Append chunk to LONGRAW field.
 OraDynaset.Fields("LONGRAW").AppendChunkByte (CurChunkByte)
 Next I
'Complete the add operation and update the database.
OraDynaset.Update

 'Close the file.
 Close FNum

 frmChunk.MousePointer = DEFAULT

End Sub

	
See Also:

"Migration from LONG RAW to LOB or BFILE"

AQAgent (OraAQMsg) Method

Applies To

OraAQMsg Object

Description

Creates an instance of the OraAQAgent for the specified consumer and adds it to the OraAQAgents list of the message.

Usage

Set agent = qMsg.AQAgent(name)

Arguments

The arguments for the method are:

	Arguments	Description
	[in] name	A String up to 30 bytes representing the name of the consumer of the message.
	[in] [optional] Address	A 128-byte String representing the protocol specific address of a recipient, such as [schema.]queue[@dblink].

Remarks

The OraAQAgent object represents a message recipient and is only valid for queues that allow multiple consumers. Queue subscribers are recipients by default. Use this object to override the default consumers.

An OraAQAgent object can be instantiated by invoking the AQAgent method. For example:

Set agent = qMsg.AQAgent(consumer)

The maximum number of agents that a message can support is 10.

The AQAgent method returns an instance of an OraAQAgent object.

	
Note:

Address is not supported in this release, but is provided for future enhancements.

AQMsg (OraAQ) Method

Applies To

OraAQ Object

Description

Creates an OraAQMsg for the specified options.

Usage

Set qMsg = Q.AQMsg(msgtype, typename, schema)

Arguments

The arguments for the method are:

	Arguments	Description
	[in] msgtype	An Integer representing a RAW or user-defined type. Optional for RAW type. Possible values are:
	
ORATYPE_RAW (23) - Message type is RAW.

	
ORATYPE_OBJECT (108) - Message type is user-defined.

	[in] typename	A String representing the name of the type. Optional for RAW type. Default is 'RAW'.
	[in] [optional] schema	A String representing the schema where the type is defined. Default is 'SYS'.

Remarks

The method could be used as follows:

set QMsg = Q.AQMsg(ORATYPE_OBJECT,"MESSAGE_TYPE","SCOTT")
set QMsg = Q.AQMsg

ArcCos (OraNumber) Method

Applies To

OraNumber Object

Description

Calculates the arc cosine of an OraNumber object. The result is in radians.

Usage

OraNumber.ArcCos

Remarks

The result of the operation is stored in the OraNumber object. There is no return value.

This method returns an error if the OraNumber value is less than -1 or greater than 1.

ArcSin (OraNumber) Method

Applies To

OraNumber Object

Description

Calculates the arc sine of an OraNumber object. Result is in radians.

Usage

OraNumber.ArcSin

Remarks

The result of the operation is stored in the OraNumber object. There is no return value.

This method returns an error if the OraNumber object is less than -1 or greater than 1.

ArcTan (OraNumber) Method

Applies To

OraNumber Object

Description

Calculates the arc tangent of an OraNumber object. Result is in radians.

Usage

OraNumber.ArcTan

Remarks

The result of the operation is stored in the OraNumber object. There is no return value.

ArcTan2 (OraNumber) Method

Applies To

OraNumber Object

Description

Calculates the arc tangent of two numbers using the operand provided. The result is in radians.

Usage

OraNumber.ArcTan2 operand

Arguments

The arguments for the method are:

	Arguments	Description
	[in] operand	A Variant of type String, OraNumber, or a numeric value.

Remarks

The result of the operation is stored in the OraNumber object. There is no return value.

This method returns an error if operand is zero.

Attribute (OraMetaData) Method

Applies To

OraMetaData Object

Description

Returns the OraMDAttribute object at the specified index.

Usage

Set OraMDAttribute = OraMetaData.Attribute(2)
Set OraMDAttribute = OraMetaData.Attribute("AttributeName")

Arguments

The arguments for the method are:

	Arguments	Description
	[in] index	An Integer index between 0 and count-1, or a String representing the name of an attribute.

Remarks

None.

	
See Also:

OraMetaData Object for a list of possible attribute names

AutoBindDisable Method

Applies To

OraParameter Object

OraParamArray Object

Description

Resets the AutoBind status of a parameter.

Usage

oraparameter.AutoBindDisable

Remarks

If a parameter has AutoBindDisabled status, it is not automatically bound to a SQL or PL/SQL statement.

Examples

This example demonstrates the use of the AutoBindDisable and AutoBindEnable methods to prevent unnecessary parameter binding while creating various dynasets that use different parameters. Copy this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

 'Declare variables
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraDynaset As OraDynaset

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession. OpenDatabase("ExampleDb", _
 "scott/tiger", 0&)

 'Add the job input parameter with initial value MANAGER.
 OraDatabase.Parameters.Add "job", "MANAGER", 1

 'Add the deptno input parameter with initial value 10.
 OraDatabase.Parameters.Add "deptno", 10, 1

 'Disable the deptno parameter for now.
 OraDatabase.Parameters("deptno").AutoBindDisable

 'Create the OraDynaset Object using the job parameter.
 Set OraDynaset = OraDatabase.CreateDynaset("select * from emp" & _
 "where job = :job", 0&)

 'Only employees with job=MANAGER will be contained in the dynaset.
 MsgBox "Employee #" & OraDynaset.Fields("empno").value & ", " & _
 "Job=" & OraDynaset.Fields("job").value

 'Enable the deptno parameter and disable the job parameter.
 OraDatabase.Parameters("deptno").AutoBindEnable
 OraDatabase.Parameters("job").AutoBindDisable

 'Create the OraDynaset Object using the deptno parameter.
 Set OraDynaset = OraDatabase.CreateDynaset("select * from emp" & _
 "where deptno = :deptno", 0&)

 'Only employees with deptno=10 will be contained in the dynaset.
 MsgBox "Employee #" & OraDynaset.Fields("empno").value & "," & _
 "DeptNo=" & OraDynaset.Fields("deptno").value

End Sub

	
See Also:

AutoBindEnable Method

AutoBindEnable Method

Applies To

OraParameter Object

OraParamArray Object

Description

Sets the AutoBind status of a parameter.

Usage

oraparameter.AutoBindEnable

Remarks

If a parameter has AutoBindEnabled status, it is automatically bound to a SQL or PL/SQL statement.

Examples

This example demonstrates the use of the AutoBindDisable and AutoBindEnable methods to prevent unnecessary parameter binding while creating various dynasets that use different parameters. Copy this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

 'Declare variables
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraDynaset As OraDynaset

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession. OpenDatabase("ExampleDb", _
 "scott/tiger", 0&)

 'Add the job input parameter with initial value MANAGER.
 OraDatabase.Parameters.Add "job", "MANAGER", 1

 'Add the deptno input parameter with initial value 10.
 OraDatabase.Parameters.Add "deptno", 10, 1

 'Disable the deptno parameter for now.
 OraDatabase.Parameters("deptno").AutoBindDisable

 'Create the OraDynaset Object using the job parameter.
 Set OraDynaset = OraDatabase.CreateDynaset("select * from emp" & _
 "where job = :job", 0&)

 'Only employees with job=MANAGER will be contained in the dynaset.
 MsgBox "Employee #" & OraDynaset.Fields("empno").value & "," & _
 "Job=" & OraDynaset.Fields("job").value

 'Enable the deptno parameter and disable the job parameter.
 OraDatabase.Parameters("deptno").AutoBindEnable
 OraDatabase.Parameters("job").AutoBindDisable

 'Create the OraDynaset Object using the deptno parameter.
 Set OraDynaset = OraDatabase.CreateDynaset("select * from emp" & _
 "where deptno = :deptno", 0&)

 'Only employees with deptno=10 will be contained in the dynaset.
 MsgBox "Employee #" & OraDynaset.Fields("empno").value & "," & _
 "DeptNo=" & OraDynaset.Fields("deptno").value

End Sub

	
See Also:

AutoBindDisable Method

BeginTrans Method

Applies To

OraConnection Object

OraDatabase Object

OraSession Object

Description

Begins a database transaction within the specified session.

Usage

oraconnection.BeginTrans
oradatabase.BeginTrans
orasession.BeginTrans

Remarks

After this method has been called, no database transactions are committed until a CommitTrans is issued. Alternatively, the session can be rolled back using the Rollback method. If a transaction has already been started, repeated use of the BeginTrans method causes an error.

If Update or Delete methods fail on a given row in a dynaset in a global transaction after you issue a BeginTrans, be aware that locks remain on those rows on which you called the Update or Delete method. These locks persist until you call a CommitTrans or Rollback method.

	
Note:

If an OraDatabase object has been enlisted with Microsoft Transaction Server (MTS) and is part of a global MTS transaction, this method has no effect.

Examples

This example demonstrates the use of the BeginTrans method to group a set of dynaset edits into a single transaction and uses the Rollback method to cancel those changes. Copy this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

 'Declare variables
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraDynaset As OraDynaset
 Dim fld As OraField

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession. OpenDatabase("ExampleDb", _
 "scott/tiger", 0&)

 'Create the OraDynaset Object.
 Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)

 'Start Transaction processing.
 OraSession.BeginTrans

 'Setup a field object to save object references.
 Set fld = OraDynaset.Fields("sal")

 'Traverse until EOF is reached, setting each employees salary to zero
 Do Until OraDynaset.EOF = True
 OraDynaset.Edit
 fld.value = 0
 OraDynaset.Update
 OraDynaset.MoveNext
 Loop
 MsgBox "All salaries set to ZERO."

 'Currently, the changes have NOT been committed to the database.
 'End Transaction processing. Using RollbackTrans
 'means the rollback can be canceled in the Validate event.
 OraSession.Rollback
 'MsgBox "Salary changes rolled back."

End Sub

	
See Also:

	
AutoCommit Property

	
CommitTrans Method

	
ResetTrans Method

	
Rollback Method

	
"Microsoft Transaction Server Support"

Cancel Method

Applies To

OraSQLStmt Object created with the ORASQL_NONBLK option

Description

Cancels the currently executing SQL operation.

Usage

status = OraSQL.NonBlockingState
 if status = ORASQL_STILL_EXECUTING
OraSQL.CancelEndif

Return Values

ORASQL_SUCCESS(0) - Any errors are thrown as exceptions.

	
See Also:

"Asynchronous Processing"

CancelEdit (OraRef) Method

Applies To

OraRef Object

Description

Unlocks the referenceable object in the database and cancels the object update operation.

Usage

OraRef.CancelEdit

Remarks

Care should be taken before using this method; it cancels any pending transaction on the connection.

Ceil (OraNumber) Method

Applies To

OraNumber Object

Description

Calculates the ceiling value of an OraNumber object.

Usage

OraNumber.Ceil

Remarks

The result of the operation is stored in an OraNumber object. There is no return value.

ChangePassword (OraServer) Method

Applies To

OraServer Object

Description

Changes the password for a given user.

Usage

OraServer.ChangePassword user_name, current_password, new_password

Arguments

The arguments for the method are:

	Arguments	Description
	[in] user_name	A String representing the user for whom the password is changed.
	[in] current_password	A String representing the current password for the user.
	[in] new_password	A String representing the new password for whom the user account is set.

Remarks

The OraServer object should be attached to an Oracle database using the Open method before to using this method.

This method is useful when a password has expired. In that case, the OpenDatabase method could return the following error:

ORA-28001 "the password has expired".

	
See Also:

	
BeginTrans Method

	
Close Method

	
CommitTrans Method

	
CreateAQ Method

	
CreateCustomDynaset Method

	
CreateTempBLOB/CLOB Method

	
CreateDynaset Method

	
CreateOraObject (OraDatabase) Method

	
CreateSQL Method

	
Describe Method

	
ExecuteSQL Method

	
FetchOraRef Method

	
LastServerErrReset Method

	
MonitorForFailover Method

	
Open (OraServer) Method

	
OpenDatabase Method

	
RemoveFromPool Method

	
Rollback Method

ChangePassword (OraSession) Method

Applies To

OraSession Object

Description

Changes the password for a given user.

Usage

OraSession.ChangePassword database_name, user_name, current_password, new_password

Arguments

The arguments for the method are:

	Arguments	Description
	[in] database_name	A String representing the Oracle network specifier used when connecting to a database.
	[in] user_name	A String representing the user for whom the password is changed.
	[in] current_password	A String representing the current password for the user.
	[in] new_password	A String representing the new password for whom the user account is set.

Remarks

This method is especially useful when a password has expired. In that case, the OpenDatabase or CreateDatabasePool method could return the following error:

ORA-28001 "the password has expired".

Examples

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim password as String

'Note: The DBA could expire scott's password by issuing
'ALTER USER SCOTT PASSWORD EXPIRE

Set OraSession = CreateObject("OracleInProcServer.XOraSession")
password = "tiger"

On Error GoTo err:
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/" & password, 0&)
End

err:
'Check for password expiration error

If OraSession.LastServerErr = 28001 Then
 OraSession.ChangePassword "ExampleDb", "scott", password, "newpass"
 'reset our password variable, then try OpenDatabase again
 password = "newpass"
 Resume
End If

End

	
See Also:

	
OpenDatabase Method

	
CreateDatabasePool Method

Clone Method

Applies To

OraDynaset Object

Description

Returns a duplicate dynaset of the specified dynaset.

Usage

Set oradynaset2 = oradynaset1.Clone
Set oradynaset2 = oradynaset1.DbClone

Remarks

This method creates a duplicate dynaset of the one specified. The original and duplicate dynasets have their own current record. However, the new dynaset is not positioned on any row and has its EOF and BOF conditions set to True. To change this, you must explicitly set a current row on the new duplicate with a Move or Find method.

Using the Clone method has no effect on the original dynaset. You cannot add, update, or remove records from a dynaset clone.

Use the Clone method to perform an operation on a dynaset that requires multiple current records.

A cloned dynaset does not have all the property settings of the original. The CacheBlock, CacheSliceSize, CacheSlicePerBlock, and FetchLimit properties are all set to Null.

Bookmarks of a dynaset and its clone are interchangeable; bookmarks of dynasets created with separate CreateDynaset methods are not interchangeable.

	
See Also:

	
Bookmark Property

	
CreateDynaset Method

Clone (OraLOB/BFILE) Method

Applies To

OraBLOB, OraCLOB Objects

OraBFILE Object

Description

Returns the clone of an OraLOB or OraBFILE object.

Usage

OraBlob1 = OraBlob.Clone
OraClob1 = OraClob.Clone
OraBfile = OraBfile.Clone

Arguments

The arguments for the method are:

	Arguments	Description
	[in] OraLOB	A valid object of type OraBLOB, OraCLOB, or OraBFILE.

Remarks

This method makes a copy of an OraBLOB or OraCLOB object. This copy does not change due to a dynaset move operation or OraSQLStmt Refresh operation. No operation that modifies the LOB content of an OraBLOB or OraCLOB object can be performed on a clone.

This method makes a copy of Oracle BFILE locator and returns an OraBFILE associated with that copy. The copy of an OraBFILE does not change due to a dynaset move operation or a OraSQLStmt refresh operation.

Clone (OraCollection) Method

Applies To

OraCollection Object

Description

Returns the clone of an OraCollection object.

Usage

set OraCollection1 = OraCollection.Clone

Arguments

The arguments for the method are:

	Arguments	Description
	[in] oraCollection1	A valid OraCollection object

Remarks

This method makes a copy of an Oracle collection and returns an OraCollection object associated with that copy. This copy of an Oracle collection does not change due to a dynaset move operation or OraSQLStmt Refresh operation. An OraCollection object returned by this method allows operations to access its element values of the underlying Oracle collection and prohibits any operation that modifies its element values.

Clone (OraIntervalDS) Method

Applies To

OraIntervalDS Object

Description

Returns a copy of the OraIntervalDS object.

Usage

Set OraIntervalDSObjClone = OraIntervalDSObj.Clone

Remarks

Returns a new OraIntervalDS object with the same value as the original.

Clone (OraIntervalYM) Method

Applies To

OraIntervalYM Object

Description

Returns a copy of the OraIntervalYM object.

Usage

Set OraIntervalYMObjClone = OraIntervalYMObj.Clone

Remarks

Returns a new OraIntervalYM object with the same value as the original.

Clone (OraNumber) Method

Applies To

OraNumber Object

Description

Returns a copy of the OraNumber object .

Usage

Set OraNumber2 = OraNumber.Clone

Remarks

Returns a new OraNumber object with the same value as the original.

Clone (OraObject/Ref) Method

Applies To

OraObject Object

OraRef Object

Description

Returns the clone of an OraObject or OraRef object.

Usage

Set OraObjectClone = OraObject.CloneSet OraRefClone = OraRef.Clone

Remarks

This method makes a copy of a Value instance or REF value and returns an OraObject or OraRef object associated with that copy. This copy does not change due to a dynaset move operation or OraSQLStmt refresh operation. An OraObject object returned by this method allows an operation to access its attribute values of an underlying value instance and disallows any operation to modify its attribute values.

Examples

Before running the sample code, make sure that you have the necessary data types and tables in the database. For the following examples, see "Schema Objects Used in the OraObject and OraRef Examples"

Example: Clone Method for the OraObject Object

The following example shows the use of the Clone method.

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim Address as OraObject
Dim AddressClone as OraObject

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from person_tab
set OraDynaset = OraDatabase.CreateDynaset("select * from person_tab",0&)

'retrieve a address column from person_tab. Here Value property of OraField object
'returns Address OraObject
set Address = OraDynaset.Fields("Addr").Value

'here Address OraObject points to Address value instance in the server
'for the first row
msgbox Address.Street

'move to second row
OraDynaset.MoveNext

'here Address OraObject points to Address value instance in the server
'for the second row
msgbox Address.Street

'get the clone of Address object. This clone points to the copy of
'the value instance for second row
set AddressClone = Address.Clone

'move to third row
OraDynaset.MoveNext

'here Address OraObject points to Address value instance in the server
'for third row
msgbox Address.Street

'here AddressClone OraObject points to copy of Address value instance
' in the server for second row
msgbox AddressClone.Street

Example: Clone Method for the OraRef Object

The following example shows the usage of the Clone method. Before running the sample code, make sure that you have the necessary data types and tables in the database.

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim Person as OraRef
Dim PersonClone as OraRef

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from customers
set OraDynaset = OraDatabase.CreateDynaset("select * from customers", 0&)

'retrieve a aperson column from customers.
'Here Value property of OraField object 'returns Person OraRef
set Person = OraDynaset.Fields("aperson").Value

'here Person OraRef points to Person Ref value in the server for the first row
msgbox Person.Name

'move to second row
OraDynaset.MoveNext

'here Person OraRef points to Person Ref value in the server for the second row
msgbox Person.Name

'get the clone of Person object.
'This clone points to the copy of the Ref for second row
set PersonClone = Person.Clone

'move to third row
OraDynaset.MoveNext

'here Person OraRef points to Person Ref value
'in the server for the third row
msgbox Person.Name

'here PersonClone OraRef points to Person Ref value
'in the server for the second row
msgbox PersonClone.Name

Clone (OraTimeStamp) Method

Applies To

OraTimeStamp Object

Description

Returns a copy of the OraTimeStamp object.

Usage

Set OraTimeStampObj1 = OraTimeStampObj.Clone

Remarks

Returns a new OraTimeStamp object with the same value as the current object.

Clone (OraTimeStampTZ) Method

Applies To

OraTimeStampTZ Object

Description

Returns a copy of the OraTimeStampTZ object.

Usage

Set OraTimeStampTZObj1 = OraTimeStampTZObj.Clone

Remarks

Returns a new OraTimeStampTZ object with the same value as the current object.

Close Method

Applies To

OraDatabase Object

OraDynaset Object

OraSQLStmt Object

OraServer Object

Description

Does nothing. Added for compatibility with Visual Basic.

Remarks

Neither the OraDatabase nor the OraDynaset object supports this method. Once an OraDatabase or OraDynaset object has gone out of scope and there are no references to it, the object closes automatically.

	
See Also:

	
CreateDynaset Method

	
OpenDatabase Method

Close (OraBFILE) Method

Applies To

OraBFILE Object

Description

Closes an opened BFILE data type.

Usage

OraBfile = OraBfile.Close

Arguments

The arguments for the method are:

	Arguments	Description
	[in] OraBfile	A valid object of type OraBFILE.

Remarks

This method only applies to BFILEs, not LOBs.

CloseAll (OraBFILE) Method

Applies To

OraBFILE Object

Description

This method closes all open OraBFILE objects on this connection.

Usage

OraBfile.CloseAll

CommitTrans Method

Applies To

OraConnection Object

OraDatabase Object

OraSession Object

Description

Ends the current transaction and commits all pending changes to the database.

Usage

oraconnection.CommitTrans
oradatabase.CommitTrans
orasession.CommitTrans

Remarks

The CommitTrans method acts differently for these objects:

	
OraConnection and OraDatabase

The CommitTrans method commits all pending transactions for the specified connection. This method has no effect if a transaction has not started. When a sessionwide transaction is in progress, you can use this method to commit the transactions for the specified connection prematurely.

	
OraSession

The CommitTrans method commits all transactions present within the session. The CommitTrans method is valid only when a transaction has been started. If a transaction has not been started, using the CommitTrans method causes an error.

Note: If an OraDatabase object has been enlisted with Microsoft Transaction Server (MTS) and is part of a global MTS transaction, this method has no effect.

Examples

This example demonstrates the use of the BeginTrans method to group a set of dynaset edits into a single transaction. The CommitTrans method then accepts the changes. Copy this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

 'Declare variables
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraDynaset As OraDynaset

 Dim fld As OraField

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession. OpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Create the OraDynaset Object.
 Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)

 'Start Transaction processing.
 OraSession.BeginTrans

 'Setup a field object to save object references.
 Set fld = OraDynaset.Fields("sal")

 'Traverse until EOF is reached, setting each employees salary to zero.
 Do Until OraDynaset.EOF = True
 OraDynaset.Edit
 fld.value = 0
 OraDynaset.Update
 OraDynaset.MoveNext
 Loop
 MsgBox "All salaries set to ZERO."

 'Currently, the changes have NOT been committed
 'to the database.

 'End Transaction processing. Commit the changes to the database
 OraSession.CommitTrans
 MsgBox "Salary changes committed."

End Sub

	
See Also:

	
AutoCommit Property

	
BeginTrans Method

	
ResetTrans Method

	
Rollback Method

	
"Microsoft Transaction Server Support"

Compare (OraLOB) Method

Applies To

OraBLOB, OraCLOB Objects

OraBFILE Object

Description

Compares the specified portion of the LOB value of an OraBLOB or OraCLOB object (or OraBFILE object) to the LOB value of the input OraBLOB or OraCLOB object (or OraBFILE object).

Usage

IsEqual = OraBlob.Compare srcBlob, amount, Offset, srcOffset
IsEqual = OraClob.Compare srcClob, amount, Offset, srcOffset
IsEqual = OraBfile.Compare srcBfile, amount, Offset, srcOffset

Arguments

The arguments for the method are:

	Arguments	Description
	[in] srcLOB	Input OraBLOB, OraCLOB, or OraBFILE object whose value is to be compared.
	[in] [optional] amount	An Integer specifying the number of bytes or characters to compare. The default value of amount is from the Offset to the end of each LOB.
	[in] [optional] Offset	An Integer specifying the 1-based Offset in bytes (OraBLOB or OraBFILE) or characters (OraCLOB) in the value of this object. Default value is 1.
	[in] [optional] srcOffset	An Integer specifying the 1-based Offset in bytes (OraBLOB or OraBFILE) or characters (OraCLOB) in the value of the srcLob object. Default value is 1.
	[out] IsEqual	A Boolean representing the result of a compare operation.

Remarks

The Compare method returns True if comparison succeeds; otherwise, it returns False.

If the amount to be compared causes the comparison to take place beyond the end of one LOB but not beyond the end of the other, the comparison fails. Such a comparison could succeed only if the amount of data from the Offset to the end is the exactly the same for both LOBs.

This call is currently implemented by executing a PL/SQL block that utilizes DBMS_LOB.INSTR().

ConnectSession Method

Applies To

OraSession Object

Description

Returns the OraSession object with the specified name that is associated with the OraClient object of the specified session.

Usage

Set orasession2 = orasession1.ConnectSession(session_name)

Arguments

The arguments for the method are:

	Arguments	Description
	session_name	A String specifying the name of the session.

Remarks

This method is provided for simplicity and is equivalent to iterating through the OraSessions collection of the OraClient object of the current session and searching for a session named session_name. The OraSessions collection contains only sessions created through the current application. This means that it is not possible to share sessions across applications, only within applications.

Examples

This example demonstrates the use of the ConnectSession and CreateNamedSession methods to allow an application to use a session it previously created, but did not save. Copy this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

 'Declare variables
 Dim dfltsess As OraSession
 Dim OraSession As OraSession

 'Create the default OraSession Object.
 Set dfltsess = CreateObject("OracleInProcServer.XOraSession")

 'Try to connect to "ExampleSession". If it does not exist
 'an error is generated.
 On Error GoTo SetName
 Set OraSession = dfltsess.ConnectSession("ExampleSession")
 On Error GoTo 0

 'You can specify other processing here, such as creating a
 ' database and/or dynaset.

Exit Sub

SetName:
'The session named "ExampleSession" was not found, so create it.
Set OraSession = dfltsess.Client.CreateSession("ExampleSession")
Resume Next

End Sub

	
See Also:

	
CreateSession Method

	
OraClient Object

	
OraSessions Collection

CopyToClipboard Method

Applies To

OraDynaset Object

Description

Copy the rows from the dynaset to the clipboard in text format.

Usage

OraDynaset.CopyToClipboard(NumOfRows, colsep, rowsep)

Arguments

The arguments for the method are:

	Arguments	Description
	NumOfRows	Number of rows to be copied to the dynaset
	colsep [optional]	Column separator in the CHAR data type to be inserted between columns
	rowsep [optional]	Row separator in the CHAR data type to be inserted between rows

Remarks

This method is used to help transfer data between the Oracle Object for OLE cache (dynaset) and Windows applications, such as Excel or Word. The CopyToClipboard method copies data starting from the current position of the dynaset up to the last row.

The default column separator is TAB (ASCII 9).

The default row separator is ENTER (ASCII 13).

Examples

The following example copies data from the dynaset to the clipboard. Paste this code into the definition section of a form, then press F5.

Sub Form_Load ()
 'Declare variables
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraDynaset As OraDynaset

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)

'Now call CopyToClipboard to copy the entire dynaset
 OraDynaset.CopyToClipboard -1, chr(9), chr(13)
End Sub

Copy (OraLOB) Method

Applies To

OraBLOB, OraCLOB Objects

Description

Copies a portion of the internal LOB value of an input OraBLOB or OraCLOB object to internal LOB value of this instance.

Usage

OraBlob.Copy srcBlob, amount, destOffset, srcOffset
OraClob.Copy srcClob, amount, destOffset, srcOffset

Arguments

The arguments for the method are:

	Arguments	Description
	[in] srcLOB	An OraCLob or OraBLOB object whose value is to be copied.
	[in] [optional] amount	An Integer specifying number of bytes or characters to copy. Default value is the size of the BLOB or CLOB value of the srcLOB object.
	[in] [optional] destOffset	An Integer specifying the offset in bytes or characters for the value of this object. Default value is 1.
	[in] [optional] srcOffset	An Integer specifying the offset in bytes or characters, for the value of the srcLOB object. Default value is 1.

Remarks

Obtain either a row-level lock or object-level lock before calling this method.

CopyFromFile (OraLOB) Method

Applies To

OraBLOB, OraCLOB Objects

Description

Loads or copies a portion or all of a local file to the internal LOB value of this object.

Usage

OraBlob.CopyFromFile "blob.bmp" amount, offset, chunksize
OraClob.CopyFromFile "clob.txt" amount, offset, chunksize

Arguments

The arguments for the method are:

	Arguments	Description
	[in] filename	A string specifying the absolute name and path for the file to be read.
	[in] [optional] amount	An Integer specifying the maximum number in bytes to be copied. Default value is total file size.
	[in] [optional] offset	An Integer specifying the absolute offset of the BLOB or CLOB value of this object, in bytes for OraBLOB or OraBFILE and characters for OraCLOB. Default value is 1.
	[in] [optional] chunksize	An Integer specifying the size for each read operation, in bytes. If chunksize parameter is not set or 0, the value of the amount argument is used, which means the entire amount is transferred in one chunk.

Remarks

Obtain either a row-level lock or object-level lock before calling this method.

The file should be in the same format as the NLS_LANG setting.

	
Note:

When manipulating LOBs using LOB methods, such as Write and CopyFromFile, the LOB object is not automatically trimmed if the length of the new data is smaller than the old data. Use the Trim (OraLOB) method to shrink the LOB object to the size of the new data.

Examples

Example: Using the CopyFromFile Method

This example demonstrates the use of the CopyFromFile method.

Be sure that you have the PART table in the database with valid LOB data in it. Also, be sure that you have installed the OraLOB Schema Objects as described in "Schema Objects Used in LOB Data Type Examples" .

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim PartImage as OraBLOB

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'Create a Dynaset containing a BLOB and a CLOB column
set part = OraDatabase.CreateDynaset ("select * from part where" & _
 "part_id = 1234",0)
set PartImage = part.Fields("part_image").Value

'copy the entire content of partimage.jpg file to LOBS
part.Edit
PartImage.CopyFromFile "partimage.jpg"
part.Update

	
See Also:

Trim (OraLOB) Method

CopyFromBFILE (OraLOB) Method

Applies To

OraBLOB, OraCLOB Objects

Description

Copies a portion or all of the LOB value of an OraBFILE object to the LOB value of this object.

Usage

OraBlob.CopyFromBFile srcBFile, amount, destOffset, srcOffset

OraClob.CopyFromBFile srcBFile, amount, destOffset, srcOffset

Arguments

The arguments for the method are:

	Arguments	Description
	[in] srcBFile	An OraBFILE object from which the data is to be copied.
	[in] [optional] amount	An Integer specifying the maximum number to be copied, in characters for OraCLOB or bytes for OraBLOB or OraBFILE. Default value is the size of BFILE value of the srcBFile object.
	[in] [optional] destOffset	An Integer specifying the absolute offset for this instance. Default is 1.
	[in] [optional] srcOffset	An Integer specifying the absolute offset for the BFILE value of the source OraBFILE object. Default is 1.

Remarks

Obtain either a row-level lock or object-level lock before calling this method.

For a single-byte character set, the OraBFile object should be of the same character set as the database.

If the database has a variable width character set, the OraBFile object passed to the OraClob.CopyFromBFile method must point to a file that uses the UCS2 character set.

CopyToFile (OraLOB/BFILE) Method

Applies To

OraBLOB, OraCLOB Objects

OraBFILE Object

Description

Copies a portion or all of the internal LOB value of this object to the local file.

Usage

OraBlob.CopyToFile "blob.bmp" amount,offset,chunksize
OraClob.CopyToFile "clob.txt" amount,offset,chunksize
OraBfile.CopyToFile "bfile.bmp" amount,offset,chunksize

Arguments

The arguments for the method are:

	Arguments	Description
	[in] filename	A String specifying the absolute name and path for which the file is to be written.
	[in] [optional] amount	An Integer specifying the maximum amount to be copied, in bytes for OraBLOB/OraBFILE and characters for OraCLOB. Default value is the size of the LOB or BFILE.
	[in] [optional] offset	An Integer specifying absolute offset of the LOB or BFILE value of this instance, in bytes for OraBLOB/OraBFILE and characters for OraCLOB. Default value is 1.
	[in] [optional] chunksize	An Integer specifying the size, in bytes, for each write operation. If the chunksize parameter is not set or is 0, the value of the amount argument is used which means the entire amount is transferred in one chunk.

Remarks

The file is in the same format as the NLS_LANG setting.

If the file exists, its contents is overwritten.

Examples

Example:Using the CopyToFile Method

This example demonstrates the use of the CopyToFile method.

Be sure that you have the PART table in the database with valid LOB data in it. Also, be sure that you have installed the OraLOB Schema Objects as described in "Schema Objects Used in LOB Data Type Examples" .

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim PartDesc as OraCLOB

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&

'Create a Dynaset containing a BLOB and a CLOB column
set part = OraDatabase.CreateDynaset ("select * from part where" & _
 "part_id = 1234",0)
set PartDesc = part.Fields("part_desc").Value

'Copy the entire LOB content to partdesc.txt file
PartDesc.CopyToFile "partdesc.txt"

Cos (OraNumber) Method

Applies To

OraNumber Object

Description

Calculates the cosine of an OraNumber object given in radians.

Usage

OraNumber.Cos

Remarks

The result of the operation is stored in an OraNumber object. There is no return value.

CreateAQ Method

Applies To

OraDatabase Object

Description

Creates an instance of the OraAQ object.

Usage

Set OraAq = OraDatabase.CreateAQ(Qname)

Arguments

The arguments for the method are:

	Arguments	Description
	[in] Qname	A String representing the name of the queue in the database.

Remarks

None.

CreateCustomDynaset Method

Applies To

OraDatabase Object

Description

Creates a dynaset using custom cache and fetch parameters

Usage

Set oradynaset = oradatabase.CreateCustomDynaset(sql_statement, options, slicesize, perblock, blocks, FetchLimit, FetchSize, SnapShotID)

Arguments

The arguments for the method are:

	Arguments	Description
	sql_statement	Any valid Oracle SQL SELECT statement.
	slicesize	Cache slice size.
	perblock	Cache slices for each block.
	blocks	Cache maximum number of blocks.
	FetchLimit	Fetch array size.
	FetchSize	Fetch array buffer size.
	options	A bit flag indicating the status of any optional states of the dynaset. You can combine one or more options by adding their respective values. Specifying the constant ORADYN_DEFAULT or the value &H0& gives the following defaults for the dynaset:
	
Behave like Visual Basic Mode for a database: Field values not explicitly set are set to Null, overriding database column defaults.

	
Perform automatic binding of database parameters.

	
Remove trailing blanks from character string data retrieved from the database.

	
Create an updatable dynaset.

	
Cache data on the client.

	
Force a MoveFirst operation when the dynaset is created.

	
Maintain read-consistency.

	SnapShotID [optional]	The ID of a Snapshot obtained from the SnapShot property of an OraDynaset.

Constants

The following table lists constants and values for the options flag.

	Constant	Value	Description
	ORADYN_DEFAULT	&H0&	Accept the default behavior.
	ORADYN_NO_AUTOBIND	&H1&	Do not perform automatic binding of database parameters.
	ORADYN_NO_BLANKSTRIP	&H2&	Do not remove trailing blanks from character string data retrieved from the database.
	ORADYN_READONLY	&H4&	Force dynaset to be read-only.
	ORADYN_NOCACHE	&H8&	Do not create a local dynaset data cache. Without the local cache, previous rows within a dynaset are unavailable; however, increased performance results during retrieval of data from the database (move operations) and from the rows (field operations). Use this option in applications that make single passes through the rows of a dynaset for increased performance and decreased resource usage.
	ORADYN_ORAMODE	&H10&	Same as Oracle Mode for a database except it affects only the dynaset being created. If database was created in Oracle Mode, the dynaset inherits the property from it (for compatibility).
	ORADYN_NO_REFETCH	&H20&	Behaves same as ORADB_NO_REFETCH mode for a database except this mode affects only the dynaset being created. If the database was created in ORADB_NO_REFETCH mode, the dynaset inherits the property for compatibility.
	ORADYN_N_MOVEFIRST	&H40&	Does not force a MoveFirst when the dynaset is created. BOF and EOF are both true.
	ORADYN_DIRTY_WRITE	&H80&	Update and Delete methods do not check for read consistency.

These values can be found in the oraconst.txt file located in:

ORACLE_BASE\\ORACLE_HOME\rdbms\oo4o

Remarks

The SQL statement must be a SELECT statement or an error is returned. Features such as simple views and synonyms can be used freely. You can also use schema references, column aliases, table joins, nested select statements, and remote database references, but in each case you end up with a read-only dynaset.

If you use a complex expression or SQL function on a column, such as "sal + 100" or "abs(sal)" , you get an updatable dynaset, but the column associated with the complex expression is not updatable.

Object names generally are not modifed, but in certain cases, they can be changed. For example, if you use a column alias, you must use the alias to refer to the field by name. If you use spaces in a complex expression, you must refer to the column without the spaces, because the database removes spaces. Note that you can always refer to a field by number, that is, by its ordinal position in the SELECT statement.

Executing the SQL SELECT statement generates a commit operation to the database by default. To avoid this, use the BeginTrans method on the session object before using the CreateDynaset method.

The updatability of the resultant dynaset depends on the Oracle SQL rules of updatability, on the access you have been granted, and on the options flag.

Updatability Conditions

For the dynaset to be updatable, three conditions must be met:

	
A SQL statement must refer to a simple column list or to the entire column list (*).

	
The statement must not set the read-only flag of the options argument.

	
Oracle must permit ROWID references to the selected rows of the query.

Any SQL statement that does not meet these criteria is processed, but the results are not updatable and the Updatable property of the dynaset returns False.

This method automatically moves to the first row of the created dynaset.

You can use SQL bind variables in conjunction with the OraParameters collection.

Examples

This example demonstrates the CreateCustomDynaset method. Copy and paste this code into the definition section of a form, then press F5.

Sub Form_Load ()

 'Declare variables
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraDynaset As OraDynaset

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Create the OraDynaset Object using sliceSize as 256,perblock size as 16, no. of
 'blocks as 20, fetchLimit as 20,FetchSize as 4096

 Set OraDynaset = OraDatabase.CreateCustomDynaset("select empno, " & _
 "ename from emp", 0&,256,16,20,20,4096)

 'Display the first record.
 MsgBox "Employee " & OraDynaset.Fields("empno").value & ", #" & _
 OraDynaset.Fields("ename").value

End Sub

	
See Also:

SnapShot Property

CreateDatabasePool Method

Applies To

OraSession Object

Description

Creates a pool of OraDatabase objects. Only one pool can be created for each OraSession object.

Usage

CreateDatabasePool (long initialSize, long maxSize, long timeoutValue, BSTR database_name, BSTR connect_string, long options)

Arguments

The arguments for the method are:

	Arguments	Description
	initialSize	The initial size of the pool.
	maxSize	The maximum size to which the pool can grow.
	timeoutValue	If an OraDatabase object in the pool is idle for the timeoutValue value specified, the database connection that it contains is disconnected. The connection is reopened if the pool item is used again. This value is in seconds.
	database_name	The Oracle network specifier used when connecting the data control to a database.
	connectString	The user name and password to be used when connecting to an Oracle database.
	options	A bit flag word used to set the optional modes of the database. If options = 0, the default mode settings apply. "Constants" shows the available modes.

Remarks

The OpenDatabase method of the OraSession object is used to establish a connection to an Oracle database. This method returns a reference to the OraDatabase object which is then used for executing SQL statements and PL/SQL blocks. The connection pool in OO4O is a pool of OraDatabase objects. The pool is created by invoking the CreateDatabasePool method of the OraSession interface.

Exceptions are raised by this call if:

	
A pool already exists.

	
An error occurs in creating a connection to Oracle Database.

	
Invalid values for arguments are passed (that is, initialSize > maxSize).

The LastServerErr property of the OraSession object contains the code for the specific cause of the exception resulting from an Oracle Database error.

One possible connection error that could be returned is:

ORA-28001 "the password has expired"

The user can change the password using the ChangePassword method.

	
See Also:

	
DestroyDatabasePool Method

	
GetDatabaseFromPool Method

	
RemoveFromPool Method

	
ChangePassword (OraSession) Method

	
LastServerErr Property

CreateDynaset Method

Applies To

OraDatabase Object

Description

Creates an OraDynaset object from the specified SQL SELECT statement and options.

Usage

Set oradynaset = oradatabase.CreateDynaset(sql_statement, options, SnapShotID)
Set oradynaset = oradatabase.DbCreateDynaset(sql_statement, options, SnapShotID)

Arguments

The arguments for the method are:

	Arguments	Description
	sql_statement	A String containing any valid Oracle SQL SELECT statement.
	options	A bit flag indicating the status of any optional states of the dynaset. You can combine one or more options by adding their respective values. Specifying the constant ORADYN_DEFAULT or the value &H0& gives the following defaults for the dynaset:
	
Behave like Visual Basic Mode for a database: Field values not explicitly set are set to Null, overriding database column defaults.

	
Perform automatic binding of database parameters.

	
Remove trailing blanks from character string data retrieved from the database.

	
Create an updatable dynaset.

	
Cache data on client.

	
Force a MoveFirst when the dynaset is created.

	
Maintain read-consistency.

	SnapShotID [optional]	A ID of the snapshot obtained from the SnapShot property of an OraDynaset object.

Constants

The following table lists constants and values for the options flag.

	Constant	Value	Description
	ORADYN_DEFAULT	&H0&	Accept the default behavior.
	ORADYN_NO_AUTOBIND	&H1&	Do not perform automatic binding of database parameters.
	ORADYN_NO_BLANKSTRIP	&H2&	Do not remove trailing blanks from character string data retrieved from the database.
	ORADYN_READONLY	&H4&	Force dynaset to be read-only.
	ORADYN_NOCACHE	&H8&	Do not create a local dynaset data cache. Without the local cache, previous rows within a dynaset are unavailable; however, increased performance results during retrieval of data from the database (move operations) and from the rows (field operations). Use this option in applications that make single passes through the rows of a dynaset for increased performance and decreased resource usage.
	ORADYN_ORAMODE	&H10&	Behave the same as Oracle Mode for a database except affect only the dynaset being created. If database was created in Oracle Mode, the dynaset inherits the property from it (for compatibility).
	ORADYN_NO_REFETCH	&H20&	Behave the same as ORADB_NO_REFETCH mode for a database except affect only the dynaset being created. If the database was created in ORADB_NO_REFETCH mode, the dynaset inherits the property for compatibility.
	ORADYN_NO_MOVEFIRST	&H40&	Does not force a MoveFirst when the dynaset is created. BOF and EOF are both true.
	ORADYN_DIRTY_WRITE	&H80&	Update and Delete methods do not check for read consistency.

These values can be found in the oraconst.txt file.

Remarks

Features such as simple views and synonyms can be used freely. You can also use schema references, column aliases, table joins, nested select statements and remote database references, but in each case, the dynaset is read-only.

If you use a complex expression or SQL function on a column, such as "sal + 100" or "abs(sal)" , you get an updatable dynaset, but the column associated with the complex expression is not updatable.

Object names generally are not modifed, but in certain cases they can be changed. For example, if you use a column alias, you must use the alias to refer to the field by name. Also, if you use spaces in a complex expression, you must refer to the column without the spaces, since the database strips spaces. Note that you can always refer to a field by number, that is, by its ordinal position in the SELECT statement.

Executing the Update method generates a commit operation to the database by default. To avoid this, use the BeginTrans method on the session object before using the CreateDynaset method.

The updatability of the resultant dynaset depends on the Oracle SQL rules of updatability, on the access you have been granted, and on the options flag. For the dynaset to be updatable, these conditions must be met:

	
A SQL statement must refer to a simple column list or to the entire column list (*).

	
The statement must not set the read-only flag of the options argument.

	
Oracle Database must permit ROWID references to the selected rows of the query.

Any SQL statement that does not meet these criteria is processed, but the results are not updatable and the Updatable property of the dynaset returns False. This method automatically moves to the first row of the created dynaset. You can use SQL bind variables in conjunction with the OraParameters collection.

The SnapShotID option causes a snapshot descriptor to be created for the SQLStmt object created. This property can later be obtained and used in creation of other SQLStmt or OraDynaset objects. Execution snapshots provide the ability to ensure that multiple commands executed in the context of multiple OraDatabase objects operate on the same consistent snapshot of the committed data in the database.

Examples

This example demonstrates CreateObject, OpenDatabase and CreateDynaset methods. Copy and paste this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

 'Declare variables
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraDynaset As OraDynaset

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Create the OraDynaset Object.
 Set OraDynaset = OraDatabase.CreateDynaset("select empno, ename from emp", 0&)

 'Display the first record.
 MsgBox "Employee " & OraDynaset.Fields("empno").value & ", #" & _
 OraDynaset.Fields("ename").value

End Sub

	
See Also:

	
Clone Method

	
MoveFirst, MoveLast, MoveNext, and MovePrevious Methods

	
MovePreviousn, MoveNextn, MoveRel, and MoveTo Methods

	
OpenDatabase Method

	
Updatable Property

	
OraDynaset Object

	
OraParameter Object

	
OraParameters Collection

	
Update Method

	
BeginTrans Method

	
SnapShot Property

CreateIterator Method

Applies To

OraCollection Object

Description

Creates an iterator to scan the elements of a collection.

Usage

OraCollection.CreateIterator

Remarks

This method creates an iterator for scanning the elements of an Oracle collection. Accessing collection elements using the iterator is faster than using an index on the instance of a collection.

Examples

Example: OraCollection Iterator

The following example illustrates the use of an Oracle collection iterator.

Before running the sample code, make sure that you have the necessary data types and tables in the database. See "Schema Objects Used in OraCollection Examples" .

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset
Dim CourseList As OraCollection
Dim Course As OraObject

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", scott/tiger", 0&)

'Create a dynaset object from division
Set OraDynaset = OraDatabase.CreateDynaset("select courses from" & _
 "division where name='History'", 0&)

'Retrieve a Courses column from Division.
Set CourseList = OraDynaset.Fields("Courses").Value

'Create the iterator
CourseList.CreateIterator

'Initialize the iterator to point to the beginning of a collection
CourseList.InitIterator

'Call IterNext to read CourseList until the end
While CourseList.EOC = False
 Set Course = CourseList.ElementValue
 course_no = Course.course_no
 Title = Course.Title
 Credits = Course.Credits
 CourseList.IterNext
Wend

'Call IterPrev to read CourseList until the beginning
CourseList.IterPrev

While CourseList.BOC = False
 Set Course = CourseList.ElementValue
 course_no = Course.course_no
 Title = Course.Title
 Credits = Course.Credits
 CourseList.IterPrev
Wend

	
See Also:

	
DeleteIterator Method

	
InitIterator Method

CreateNamedSession Method

Applies To

OraSession Object

Description

Creates and returns a new named OraSession object.

Usage

orasession = orasession.CreateNamedSession(session_name)

Arguments

The arguments for the method are:

	Arguments	Description
	session_name	A String specifying the name of the session.

Remarks

Using this method, you can create named sessions that can be referenced later in the same application as long as the session object referred to is in scope. Once a session has been created, the application can reference it by way of the ConnectSession method or the OraSessions collection of their respective OraClient object. The OraSessions collection only contains sessions created within the current application. Therefore, it is not possible to share sessions across applications, only within applications.

This method is provided for simplicity and is equivalent to the CreateSession method of the OraClient object.

Examples

This example demonstrates the use of ConnectSession and CreateNamedSession methods to allow an application to use a session it previously created, but did not save. Copy this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

 'Declare variables
 Dim dfltsess As OraSession
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraDynaset As OraDynaset

 'Create the default OraSession Object.
 Set dfltsess = CreateObject("OracleInProcServer.XOraSession")

 'Try to connect to "ExampleSession". If it does not exist
 'an error is generated.
 On Error GoTo SetName
 Set OraSession = dfltsess.ConnectSession("ExampleSession")
 On Error GoTo 0

'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Create the OraDynaset Object.
 Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)

 'Display or manipulate data here

Exit Sub

SetName:
'The session named "ExampleSession" was not found, so create it.
Set OraSession = dfltsess.CreateNamedSession("ExampleSession")
Resume Next

End Sub

	
See Also:

	
CreateSession Method

	
ConnectSession Method

	
OraClient Object

	
OraSessions Collection

CreateOraIntervalDS Method

Applies To

OraSession Object

Description

Creates the OraIntervalDS object. This OraIntervalDS represents an Oracle INTERVAL DAY TO SECOND data type.

Usage

Set OraIntervalDSObj = OraSession.CreateOraIntervalDS value

Arguments

The arguments for the method are:

	Arguments	Description
	[in] value	A Variant of type String, a numeric value, an OraIntervalDS, or an OraNumber object.

Return Values

OraIntervalDS Object

Remarks

An OraSession object must be created before an OraIntervalDS object can be created.

If value is a Variant of type String, it must be in the following format: [+/-] Day HH:MI:SSxFF.

If value is a numeric value, the value provided should represent the total number of days that the constructed OraIntervalDS represents.

A Variant of type OraIntervalDS can also be passed. A cloned OraIntervalDS is returned.

Examples

Dim oraIDS as OraIntervalDS
Dim oraIDS2 as OraIntervalDS
Dim oraNum as OraNumber

'Create an OraIntervalDS using a string which represents 1 days, 2 hours,
'3 minutes, 4 seconds and 500000 nanoseconds
Set oraIDS = oo4oSession.CreateOraIntervalDS("1 2:3:4.005")

'Create an OraIntervalDS using a numeric value which represents
'1 days and 12 hours
Set oraIDS = oo4oSession.CreateOraIntervalDS(1.5)

'Create an OraIntervalDS using an OraIntervalDS
Set oraIDS2 = oo4oSession.CreateOraIntervalDS(oraIDS)

	
See Also:

	
OraNumber Object

	
OraIntervalDS Object

CreateOraIntervalYM Method

Applies To

OraSession Object

Description

Creates the OraIntervalYM object. This OraIntervalYM represents an Oracle INTERVAL YEAR TO MONTH data type.

Usage

Set OraIntervalYMObj = OraSession.CreateOraIntervalYM value

Arguments

The arguments for the method are:

	Arguments	Description
	[in] value	A Variant of type String, a numeric value, or an OraIntervalYM object.

Return Values

OraIntervalYM Object

Remarks

An OraSession object must be created before an OraIntervalYM object can be created.

If value is a Variant of type String, it must be in the following format: [+/-] YEARS-MONTHS.

If value is a numeric value, the value provided should represent the total number of years that the constructed OraIntervalYM object represents.

A Variant of type OraIntervalYM can also be passed. A cloned OraIntervalYM object is returned.

Examples

Dim oraIYM as OraIntervalYM
Dim oraIYM2 as OraIntervalYM

'Create an OraIntervalYM using a string which represents 1 year and 2 months
Set oraIYM = oo4oSession.CreateOraIntervalYM("1- 2")

'Create an OraIntervalYM using a numeric value which represents
'1 year and 6 months
Set oraIYM = oo4oSession.CreateOraIntervalYM(1.5)

'Create an OraIntervalYM using an OraIntervalYM
Set oraIYM2 = oo4oSession.CreateOraIntervalYM(oraIYM)

	
See Also:

	
OraIntervalYM Object

	
OraNumber Object

CreateOraNumber Method

Applies To

OraSession Object

Description

Creates an OraNumber object. This OraNumber represents an Oracle NUMBER data type.

Usage

OraNumber = OraSession.CreateOraNumber(inital_value, format)

Arguments

The arguments for the method are:

	Arguments	Description
	initial_value	Initial value of OraNumber. A Variant of type OraNumber, string or a numeric value.
	format [optional]	Format string to be used when displaying OraNumber value.

Return Value

OraNumber Object

Remarks

For more information about format strings, see the format property on the OraNumber object.

	
See Also:

	
ConnectSession Method

	
CreateSession Method

	
OraClient Object

	
OraNumber Object

	
OraSessions Collection

CreateOraObject (OraDatabase) Method

Applies To

OraDatabase Object

Description

Creates a value instance or referenceable object in the cache and returns the associated OO4O object.

Usage

OraObject1 = OraDatabase.CreateOraObject(schema_name)
OraRef1 = OraDatabase.CreateOraObject(schema_name,table_name)
OraCollection1 = OraDatabase.CreateOraObject(schema_name)

Arguments

The arguments for the method are:

	Arguments	Description
	OraObject1	A valid OraObject object representing a newly created value instance.
	OraRef1	A valid OraRef object representing a newly created referenceable object.
	OraCollection	A valid OraCollection object representing a newly created collection instance.
	schema_name	A String specifying the schema name of the value instance to be created.
	table_name	A String specifying the table name of the referenceable object to be created.

Remarks

If the table_name argument is not specified, it creates a value instance in the client and returns an OraObject or OraCollection object. If the table_name argument is specified, it creates a referenceable object in the database and returns an associated OraRef object.

Examples

OraObject and OraRef object examples are provided. Before running the sample code, make sure that you have the necessary data types and tables in the database. See "Schema Objects Used in the OraObject and OraRef Examples".

Example: Creating an OraObject Object

The following example illustrates the use of the CreateOraObject method to insert a value instance. The row containing ADDRESS is inserted as a value instance in the database.

Dynaset Example

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim AddressNew as OraObject

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", scott/tiger", 0&)

'create a dynaset object from person_tab
set OraDynaset = OraDatabase.CreateDynaset("select * from person_tab", 0&)

' create a new Address object in OO4O
set AddressNew = OraDatabase.CreateOraObject("ADDRESS")

'initialize the Address object attribute to new value
AddressNew.Street = "Oracle Parkway"
AddressNew.State = "CA"

'start the dynaset AddNew operation and
'set the Address field to new address value
OraDynaset.Addnew
OraDynaset.Fields("ADDR").Value = AddressNew
OraDynaset.Update

OraParameter Example

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim AddressNew as OraObject

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'create an OraParameter object represent Address object bind Variable
OraDatabase.Parameters.Add "ADDRESS", Null, ORAPARM_INPUT, _
 ORATYPE_OBJECT, "ADDRESS"

' create a new Address object in OO4O
set AddressNew = OraDatabase.CreateOraObject("ADDRESS")

'initialize the Address object attribute to new value
AddressNew.Street = "Oracle Parkway"
AddressNew.State = "CA"

'set the Address to ADDRESS parameter
Oradatabase.Parameters("ADDRESS").Value = AddressNew

'execute the sql statement which updates Address in the person_tab
OraDatabase.ExecuteSQL ("insert into person_tab values ('Eric',30,:ADDRESS)")

Example: Creating an OraRef Object

The following example illustrates the use of the CreateOraObject method to insert referenceable objects.

In this example, a new PERSON is inserted as a referenceable object in the database.

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim Person as OraRef

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'CreteOraObject creates a new referenceable
'object in the PERSON_TAB object table and returns associated OraRef
set Person = OraDatabase.CreateOraObject("PERSON","PERSON_TAB")

'modify the attributes of Person
Person.Name = "Eric"

Person.Age = 35
'Update method inserts modified referenceable object in the PERSON_TAB.
Person.Update

CreateOraTimeStamp Method

Applies To

OraSession Object

Description

Creates a new OraTimeStamp object. This OraTimeStamp method represents an Oracle TIMESTAMP or an Oracle TIMESTAMP WITH LOCAL TIME ZONE data type.

Usage

Set OraTimeStampObj = OraSession.CreateOraTimeStamp value format

Arguments

The arguments for the method are:

	Arguments	Description
	[in] value	A Variant of type String, Date, or OraTimeStamp.
	[in] [optional] format	TimeStamp format string to be used when displaying or interpreting an OraTimeStamp object as a string. If format is not specified, the TimeStamp string is interpreted using the session TIMESTAMP format (NLS_TIMESTAMP_FORMAT format).

Return Values

OraTimeStamp Object

Remarks

An OraSession object must created before an OraTimeStamp object can be created.

If value is a Variant of type String, the string format must match the datetime format specified in the format argument. If format is not specified, the string format must match the session TIMESTAMP format (NLS_TIMESTAMP_FORMAT).

If format is specified, it is stored in the Format property of the OraTimeStamp ; otherwise, the session TIMESTAMP format is stored in the OraTimeStamp Format property.

Examples

Dim oraTS as OraTimeStamp
Dim oraTS1 as OraTimeStamp
Dim date as Date

'Create an OraTimeStamp using a string assuming the session
'TIMESTAMP format is "DD-MON-RR HH.MI.SSXFF AM"
Set oraTS = oo4oSession.CreateOraTimeStamp("12-JAN-2003 12.0.0.0 PM")

'Create an OraTimeStamp using a string and a format
Set oraTS = oo4oSession.CreateOraTimeStamp("2003-01-12 12:00:00 PM", _
 "YYYY-MM-DD HH:MI:SS AM")

'Create an OraTimeStamp using a Date
date = #1/12/2003#

Set oraTS = oo4oSession.CreateOraTimeStamp(date)

'Create an OraTimeStamp using an OraTimeStamp
Set oraTS1 = oo4oSession.CreateOraTimeStamp(oraTS)

	
See Also:

	
OraTimeStamp Object

	
OraNumber Object

CreateOraTimeStampTZ Method

Applies To

OraSession Object

Description

Creates a new OraTimeStampTZ object. This OraTimeStampTZ object represents an Oracle TIMESTAMP WITH TIME ZONE data type.

Usage

Set OraTimeStampTZObj = OraSession.CreateOraTimeStampTZ value format

Arguments

The arguments for the method are:

	Arguments	Description
	[in] value	A Variant of type String, Date, or OraTimeStampTZ.
	[[in] [optional] format	TIMESTAMP WITH TIME ZONE format string to be used when displaying or interpreting an OraTimeStampTZ object as a string. If format is not specified, the TIMESTAMP WITH TIME ZONE string is interpreted using the session TIMESTAMP WITH TIME ZONE format (NLS_TIMESTAMP_TZ_FORMAT format).

Return Values

OraTimeStampTZ Object

Remarks

An OraSession object must be created before an OraTimeStampTZ object can be created.

If value is a Variant of type String, the string format must match the datetime format specified in the format argument if format is specified; otherwise, the string format must match the session TIMESTAMP WITH TIME ZONE format (NLS_TIMESTAMP_TZ_FORMAT).

If value is a Variant of type Date, the date-time value in the Date is interpreted as the date-time value in the time zone of the session. The TimeZone property in the OraTimeStampTZ object contains the time zone of the session.

If format is specified, it is stored in the Format property of the OraTimeStampTZ object, otherwise the session TIMESTAMP WITH TIME ZONE format is stored in the Format property of OraTimeStampTZ object.

Examples

Dim oraTSZ as OraTimeStampTZ
Dim oraTSZ1 as OraTimeStampTZ
Dim date as Date

'Create an OraTimeStampTZ using a string assuming the session
'TIMESTAMP WITH TIME ZONE format is "DD-MON-RR HH.MI.SSXFF AM TZH:TZM"
Set oraTSZ = oo4oSession.CreateOraTimeStampTZ("12-JAN-2003" & _
 "12.0.0.0 PM -03:00")

'Create an OraTimeStampTZ using a string and a format
Set oraTSZ = oo4oSession.CreateOraTimeStampTZ("2003-01-12" & _
 "12:00:00 PM -03:00", "YYYY-MM-DD HH:MI:SS AM TZH:TZM")

'Create an OraTimeStampTZ using a Date
date = #1/12/2003#
Set oraTSZ = oo4oSession.CreateOraTimeStampTZ(date)

'Create an OraTimeStampTZ using an OraTimeStampTZ
Set oraTSZ1 = oo4oSession.CreateOraTimeStampTZ(oraTSZ)

	
See Also:

	
OraTimeStampTZ Object

	
OraNumber Object

CreatePLSQLCustomDynaset Method

Applies To

OraDatabase Object

Deprecated.

For information on how to perform these tasks, see "Returning PL/SQL Cursor Variables".

Description

Creates a dynaset from a PL/SQL cursor using custom cache and fetch parameters. The SQL statement should be a stored procedure or anonymous block. The resulting dynaset is read-only. Attempting to set the SQL property results in an error. The dynaset can be refreshed with new parameters.

Usage

set OraDynaset = CreatePlsqlCustomDynaset(SQLStatement, CursorName, options, slicesize, perblock, blocks, FetchLimit, FetchSize)

Arguments

The arguments for the method are:

	Arguments	Description
	SQLStatement	Any valid Oracle PL/SQL stored procedure or anonymous block.
	CursorName	Name of the cursor created in the PL/SQL stored procedure.
	options	A bit flag indicating the status of any optional states of the dynaset. You can combine one or more options by adding their respective values.
	slicesize	Cache slice size.
	perblock	Cache slices for each block.
	blocks	Cache maximum number of blocks.
	FetchLimit	Fetch array size.
	FetchSize	Fetch array buffer size.

Constants

The options flag values are:

	Constant	Value	Description
	ORADYN_DEFAULT	&H0&	Accept the default behavior.
	ORADYN_NO_AUTOBIND	&H1&	Do not perform automatic binding of database parameters.
	ORADYN_NO_BLANKSTRIP	&H2&	Do not remove trailing blanks from character string data retrieved from the database.
	ORADYN_NOCACHE	&H8&	Do not create a local dynaset data cache. Without the local cache, previous rows within a dynaset are unavailable; however, increased performance results during retrieval of data from the database (move operations) and from the rows (field operations). Use this option in applications that make single passes through the rows of a dynaset for increased performance and decreased resource use.
	ORADYN_NO_MOVEFIRST	&H40&	Do not force a MoveFirst when the dynaset is created. BOF and EOF are both true.

These values can be found in the oraconst.txt file.

Remarks

The SQL statement must be a PL/SQL stored procedure with BEGIN and END around the call, as if it were executed as an anonymous PL/SQL block; otherwise, an error is returned. The CursorName argument should exactly match the cursor created inside the stored procedure or anonymous PL/SQL block; otherwise an error is returned. The cursor created inside the stored procedure should represent a valid SQL SELECT statement.

You do not need to bind the PL/SQL cursor variable using the OraParameters Add method if the stored procedure returns a cursor as an output parameter. You can still use PL/SQL bind variables in conjunction with the OraParameters collection.

This method automatically moves to the first row of the created dynaset.

Specifying ORADYN_READONLY, ORADYN_ORAMODE, ORADYN_NO_REFETCH, ORADYN_DIRTY_WRITE options have no effect on the dynaset creation.

	
See Also:

	
OraParameters Collection

	
Add Method

CreatePLSQLDynaset Method

Applies To

OraDatabase Object

Deprecated.

For information on how to perform these tasks, see "Returning PL/SQL Cursor Variables".

Description

Creates a dynaset from a PL/SQL cursor. The SQL statement should be a stored procedure or an anonymous block. The resulting dynaset is read-only and attempting to set SQL property results in an error. Dynasets can be refreshed with new parameters similar to dynasets without cursors.

Usage

set OraDynaset = CreatePLSQLDynaset(SQLStatement, CursorName, options)

Arguments

	Arguments	Description
	SQLStatement	Any valid Oracle PL/SQL stored procedure or anonymous block.
	CursorName	Name of the cursor created in the PL/SQL stored procedure.
	options	A bit flag indicating the status of any optional states of the dynaset. You can combine one or more options by adding their respective values.

Constants

The options flag values are:

	Constant	Value	Description
	ORADYN_DEFAULT	&H0&	Accept the default behavior.
	ORADYN_NO_BLANKSTRIP	&H2&	Do not remove trailing blanks from character string data retrieved from the database.
	ORADYN_NOCACHE	&H8&	Do not create a local dynaset data cache. Without the local cache, previous rows within a dynaset are unavailable; however, increased performance results during retrieval of data from the database (move operations) and from the rows (field operations). Use this option in applications that make single passes through the rows of a dynaset for increased performance and decreased resource usage.
	ORADYN_NO_MOVEFIRST	&H40&	Do not force a MoveFirst operation when the dynaset is created. BOF and EOF are both true.

These values can be found in the oraconst.txt file.

Remarks

The SQL statement must be a PL/SQL stored procedure with BEGIN and END statements around the call, as if it were executed as an anonymous PL/SQL block; otherwise an error is returned. The CursorName argument should exactly match the cursor created inside the stored procedure or anonymous PL/SQL block; otherwise, an error is returned. Cursors created inside the stored procedure should represent a valid SQL SELECT statement.

You do not need to bind the PL/SQL cursor variable using the OraParameters.Add method if the stored procedure returns a cursor as a output parameter. You can still use PL/SQL bind variables in conjunction with the OraParameters collection.

This method automatically moves to the first row of the created dynaset.

Specifying the ORADYN_READONLY, ORADYN_ORAMODE, ORADYN_NO_REFETCH, or ORADYN_DIRTY_WRITE options have no effect on the dynaset creation.

Examples

This example demonstrates the use of PL/SQL cursor in the CreatePlsqlDynaset method and Refresh method. This example returns a PL/SQL cursor as a dynaset for the different values of the DEPTNO parameter. Make sure that corresponding stored procedure (found in EMPCUR.SQL) is available in the Oracle database. and paste this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

 'Declare variables
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase

 Dim OraDynaset As OraDynaset

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

' Create the Deptno parameter
 OraDatabase.Parameters.Add "DEPTNO", 10, ORAPARM_INPUT
 OraDatabase.Parameters("DEPTNO").ServerType = ORATYPE_NUMBER

' Create OraDynaset based on "EmpCursor" created in stored procedure.
 Set OraDynaset = OraDatabase.CreatePLSQLDynaset("Begin Employee.GetEmpData" & _
 "(:DEPTNO,:EmpCursor); end;", "EmpCursor", 0&)

 'Should display KING
 MsgBox OraDynaset.Fields("ENAME").Value

 'Should display 7839
 MsgBox OraDynaset.Fields("EMPNO").Value

 ' Now set the deptno value to 20
 OraDatabase.Parameters("DEPTNO").Value = 20

 'Refresh the dynaset
 OraDynaset.Refresh

 'Should display JONES
 MsgBox OraDynaset.Fields("ENAME").Value

 'Should display 7566
 MsgBox OraDynaset.Fields("EMPNO").Value

 'Remove the parameter.
 OraDatabase.Parameters.Remove ("DEPTNO")

 End Sub

CreateSession Method

Applies To

OraClient Object

Description

Creates a new named OraSession object.

Usage

orasession = oraclient.CreateSession(session_name)

Arguments

The arguments for the method are:

	Arguments	Description
	session_name	A String specifying the name of the session.

Remarks

Use this method to create named sessions that can be referenced later in the same application without having to explicitly save the OraSession object when it is created. Once a session has been created, the application can reference it by way of the ConnectSession method or the OraSessions collection of their respective OraClient object. The OraSessions collection only contains sessions created within the current application. This means that it is not possible to share sessions across applications, only within applications.

Examples

This example demonstrates how to create a session object using the CreateSession method of the client object. Copy and paste this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

 'Declare variables
 Dim OraClient As OraClient
 Dim OraSession As OraSession
 Dim NamedOraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraDynaset As OraDynaset

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Get the OraClient object.
 Set OraClient = OraSession.Client

 'Create a named OraSession Object
 'Alternatively, you could use the CreateNamedSession
 'method of the OraSession Object.

 Set NamedOraSession = OraClient.CreateSession("ExampleSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = NamedOraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Create the OraDynaset Object.
 Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)

End Sub

	
See Also:

OraSession Object

CreateSQL Method

Applies To

OraDatabase Object

Description

Executes the SQL statement and creates an OraSQLStmt object from the specified SQL statement and options.

Usage

Set orasqlstmt = oradatabase.CreateSQL(sql_statement, options)

Arguments

The arguments for the method are:

	Arguments	Description
	sql_statement	Any valid Oracle SQL statement.
	options	A bit flag indicating the status of any optional states of the OraSQLStmt object. You can combine one or more options by adding their respective values.

Constants

The options flag values are:

	Constant	Value	Description
	ORASQL_NO_AUTOBIND	&H1&	Do not perform automatic binding of database parameters.
	ORASQL_FAILEXEC	&H2&	Raise error and do not create SQL statement object.
	ORASQL_NONBLK	&H4&	Execute SQL in a nonblocking state.

These values can be found in the oraconst.txt file.

Remarks

The SQL statement can be one continuous line with no breaks. If it is necessary to break the line, be sure to use line feeds (ASCII 10). Do not use carriage returns (ASCII 13), because the underlying Oracle Database functions treat carriage returns as null terminators.

You can use PL/SQL bind variables in conjunction with the OraParameters collection.

Executing the SQL statement generates a commit to the database by default. To avoid this, use the BeginTrans method on the session object before using the CreateSQL method.

When executing PL/SQL blocks or calling stored procedures, you must include a BEGIN and END statement around your call as if you were executing an anonymous PL/SQL block. This is equivalent to the EXECUTE command of SQL*Plus and SQL*DBA.

If the ORASQL_FAILEXEC option is used, an error is raised during SQLstmt object creation failure (on SQLstmt object refresh). The SQLstmt object is not created and cannot be refreshed.

	
Note:

Use the CreateSQL method with care, because any SQL statement or PL/SQL block that is executed might cause errors afterward when you use the Edit method on open dynasets.

Data Type

String

Examples

This example demonstrates the use of parameters, the CreateSQL method, the Refresh method, and the SQL property for OraSQLStmt object. Copy and paste this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

 'Declare variables
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraSqlStmt As OraSQLStmt

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

 OraDatabase.Parameters.Add "EMPNO", 7369, 1
 OraDatabase.Parameters("EMPNO").ServerType = 2 'ORATYPE_NUMBER

 OraDatabase.Parameters.Add "ENAME", 0, 2
 OraDatabase.Parameters("ENAME").ServerType = 1 'ORATYPE_VARCHAR2

 Set OraSqlStmt = OraDatabase.CreateSQL("Begin Employee.GetEmpName" & _
 "(:EMPNO, :ENAME); end;", 0&)

 'Notice that the SQL statement is NOT modified.
 MsgBox OraSqlStmt.SQL

 'Should display SMITH
 MsgBox OraDatabase.Parameters("ENAME").Value

 'Change the value of the empno parameter.
 OraDatabase.Parameters("EMPNO").Value = 7499

 'Refresh the sqlstmt
 OraSqlStmt.Refresh

 'Should display ALLEN
 MsgBox OraDatabase.Parameters("ENAME").Value

 'Notice that the SQL statement is NOT modified.
 MsgBox OraSqlStmt.SQL

 'Remove the parameter.
 OraDatabase.Parameters.Remove ("job")

 End Sub

	
See Also:

	
"Asynchronous Processing" for more information about the ORASQL_NONBLK option

	
BeginTrans Method

	
OraSQLStmt Object

	
CreateSQL Method

	
ExecuteSQL Method

	
Refresh Method

CreateTempBLOB/CLOB Method

Applies To

OraDatabase Object

Description

Creates a temporary LOB in the database.

Usage

Set OraBLOB = OraDatabase.CreateTempBLOB(use_caching) Set OraCLOB = OraDatabase.CreateTempCLOB(use_caching)

Arguments

The arguments for the method are:

	Arguments	Description
	use_caching	A boolean value that specifies whether Oracle Database uses caching when accessing this LOB. The default value is False.

Remarks

Temporary LOBs are LOBs that do not exist permanently in the database. OO4O programmers commonly use temporary LOBs to pass into stored procedures and functions that have LOB arguments.

Temporary LOBs do not require or take part in transactions. (It is not necessary to acquire a lock before write operations, and rollbacks have no effect on temporary LOBs.)

The use_caching argument directs Oracle to use caching when accessing the temporary LOB. This is suggested when multiple accesses are expected on a single LOB. Caching is not required for the typical case, where a LOB is created, filled with data, passed to a stored procedure, and then discarded.

Temporary LOBs exist on the database until no more references to the corresponding OraBLOB or OraCLOB exist on the client. Note that these references include any OraParameter or OraParamArray that contain a temporary OraBLOB or OraCLOB object.

Examples

Example: Passing a Temporary CLOB to a Stored Procedure

The following example illustrates the use of the CreateTempClob method to create a OraCLOB. The OraCLOB is then populated with data and passed to a stored procedure which has an argument of type CLOB.

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraClob as OraClob

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.

Set OraDatabase = OraSession.OpenDatabase("ExampleDb","scott/tiger", 0&)

'Create the stored procedure used in this example
OraDatabase.ExecuteSQL ("create or replace procedure GetClobSize" & _
 "(in_clob IN CLOB, clobsize OUT NUMBER) as Begin clobsize" & _
 " := DBMS_LOB.GETLENGTH(in_clob); End;")

'create an OraParameter object to represent Clob bind Variable
OraDatabase.Parameters.Add "CLOB", Null, ORAPARM_INPUT, ORATYPE_CLOB

'the size will go into this bind variable
OraDatabase.Parameters.Add "CLOBSIZE", Null, ORAPARM_OUTPUT, ORATYPE_NUMBER

' create a temporary CLOB
set OraClob = OraDatabase.CreateTempClob

'Populate the OraClob with some data. Note that no row locks are needed.
OraClob.Write "This is some test data"

'set the Parameter Value to the temporary Lob
OraDatabase.Parameters("CLOB").Value = OraClob

'execute the sql statement which updates Address in the person_tab
OraDatabase.ExecuteSQL ("Begin GetClobSize(:CLOB, :CLOBSIZE); end;")

'Display the size
MsgBox OraDatabase.Parameters("CLOBSize").Value

'these two lines force the temporary clob to be freed immediately
OraDatabase.Parameters.Remove "CLOB"
Set OraClob = nothing

Delete Method

Applies To

OraDynaset Object

Description

Deletes the current row of the specified dynaset.

Usage

oradynaset.Delete
oradynaset.DbDelete

Remarks

A row must be current before you can use the Delete method; otherwise, an error occurs.

Note that after you call the Delete method on a given row in a dynaset in a global transaction (that is, once you issue a BeginTrans method), locks remain on the selected rows until you call a CommitTrans or Rollback method.

Any references to the deleted row produce an error. The deleted row, as well as the next and previous rows, remain current until database movement occurs (using the MoveFirst, MovePrevious, MoveNext, or MoveLast methods). Once movement occurs, you cannot make the deleted row current again.

You cannot restore deleted records except by using transactions.

	
Note:

A call to an Edit, AddNew, or Delete method, cancels any outstanding Edit or AddNew calls before proceeding. Any outstanding changes not saved using an Update method are lost during the cancellation.

Examples

This example demonstrates the use of the Delete method to remove records from a database. Copy and paste this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

'Declare variables
Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("exampledb", "scott/tiger", 0&)

'Create the OraDynaset Object. Only select the employees in Department 10.
Set OraDynaset = OraDatabase.CreateDynaset("select * from emp where" & _
 "deptno=10", 0&)

 Do Until OraDynaset.EOF
 OraDynaset.Delete
 OraDynaset.MoveNext
 Loop
 MsgBox "All employees from department 10 removed."

End Sub

	
See Also:

	
AddNew Method

	
BeginTrans Method

	
CommitTrans Method

	
Edit Method

	
MoveFirst, MoveLast, MoveNext, and MovePrevious Methods

	
ResetTrans Method

	
Rollback Method

Delete (OraCollection) Method

Applies To

OraCollection Object

Description

Deletes an element at given index. This method is available only in an OraCollection of type ORATYPE_TABLE (nested table).

Usage

OraCollection.Delete index

Arguments

The arguments for the method are:

	Arguments	Description
	[in] index	An Integer specifying the index of the element to be deleted.

Remarks

The Delete method creates holes in the client-side nested table. This method returns an error if the element at the given index has already been deleted or if the given index is not valid for the given table.

Examples

The following example illustrates the Delete method. Before running the sample code, make sure that you have the necessary data types and tables in the database. See "Schema Objects Used in OraCollection Examples" .

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim CourseList as OraCollection

'create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from division
set OraDynaset = OraDatabase.CreateDynaset("select * from division", 0&)

'retrieve a Courses column from Division.
'Here Value property of OraField object returns CourseList OraCollection
set CourseList = OraDynaset.Fields("Courses").Value

'Delete the CourseList NestedTable at index 2.
'Before that lock should be obtained
OraDynaset.Edit
CourseList.Delete 2

OraDynaset.Update

	
See Also:

Type (OraCollection) Property

Delete (OraRef) Method

Applies To

OraRef Object

Description

Deletes a referenceable object in the database.

Usage

OraRef.Delete

Remarks

Accessing attributes on the deleted instance results in an error.

Examples

The following example illustrates the Delete method. Before running the sample code, make sure that you have the necessary data types and tables in the database. See "Schema Objects Used in the OraObject and OraRef Examples".

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim Person as OraRef

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'create an OraParameter object represent Person object bind Variable
OraDatabase.Parameters.Add "PERSON", Null, ORAPARM_OUTPUT, ORATYPE_REF,"PERSON"

'execute the sql statement which selects person
'from the customers table for account = 10
OraDatabase.ExecuteSQL ("BEGIN select aperson into :PERSON from customers" & _
 "where account = 10; END;")

'get the Person object from OraParameter
set Person = OraDatabase.Parameters("PERSON").Value

'delete the Person object in the server for modifying its attributes
Person.Delete

DeleteIterator Method

Applies To

OraCollection Object

Description

Deletes a collection iterator.

Usage

OraCollection.DeleteIterator

Remarks

None.

Examples

See "Example: OraCollection Iterator"

	
See Also:

"CreateIterator Method"

Dequeue (OraAQ) Method

Applies To

OraAQ Object

Description

Dequeues a message.

Usage

Q.Dequeue()

Remarks

The message attributes can be accessed with the OraAQMsg interface contained in this object. On success, this method returns the message identifier as an array of bytes. Otherwise, it returns an empty array (null).

Examples

	
Note:

The following code sample are models for dequeuing messages.
A complete AQ sample can be found in the \OO4O\VB\SAMPLES \AQ directory.

Example: Dequeuing Messages of RAW Type

 'Dequeue the first message available
Q.Dequeue
Set Msg = Q.QMsg

'Display the message content
MsgBox Msg.Value

'Dequeue the first message available without removing it
' from the queue
Q.DequeueMode = ORAAQ_DQ_BROWSE

'Dequeue the first message with the correlation identifier
' equal to "RELATIVE_MSG_ID"
Q.Navigation = ORAAQ_DQ_FIRST_MSG
Q.correlate = "RELATIVE_MESSAGE_ID"
Q.Dequeue

'Dequeue the next message with the correlation identifier

' of "RELATIVE_MSG_ID"
Q.Navigation = ORAAQ_DQ_NEXT_MSG
Q.Dequeue

'Dequeue the first high priority message
Msg.Priority = ORAQMSG_HIGH_PRIORITY
Q.Dequeue

'Dequeue the message enqueued with message id of Msgid_1
Q.DequeueMsgid = Msgid_1
Q.Dequeue

'Dequeue the message meant for the consumer "ANDY"
Q.consumer = "ANDY"
Q.Dequeue

'Return immediately if there is no message on the queue
Q.wait = ORAAQ_DQ_NOWAIT
Q.Dequeue

Example: Dequeuing Messages of Oracle Object Types

Set OraObj = DB.CreateOraObject("MESSAGE_TYPE")
Set QMsg = Q.AQMsg(23, "MESSAGE_TYPE","SCOTT")

'Dequeue the first message available without removing it
Q.Dequeue
OraObj = QMsg.Value

'Display the subject and data
MsgBox OraObj("subject").Value & OraObj("Data").Value

Describe Method

Applies To

OraDatabase Object

Description

Describes a schema object. This method returns an instance of the OraMetaData interface.

Usage

OraMetaDataObj = OraDatabase.Describe(SchemaObjectName)

Arguments

The arguments for the method are:

	Arguments	Description
	[in] SchemaObjectName	A String representing the name of the schema object to be described.

Remarks

The following schema object types can be described:

	
Tables

	
Views

	
Procedures

	
Functions

	
Packages

	
Sequences

	
Collections (VARRAYs or nested tables)

	
Types

Describing any other schema object (for example, a column) or an invalid schema object name raises an error. You should navigate to schema objects not listed here, rather than describing them directly.

This method takes the name of a schema object, such as emp, and returns a COM Automation object (OraMetaData). The OraMetaData object provides methods for dynamically navigating and accessing all the attributes (OraMDAttribute collection) of a schema object described.

Examples

Simple Describe Example

The following Visual Basic code illustrates a how to use the Describe method to retrieve and display several attributes of the emp table.

Set emp = OraDatabase.Describe("emp")

'Display the name of the Tablespace
MsgBox emp!tablespace
'Display name and data type of each column in the emp table.
Set empColumns = emp!ColumnList
Set ColumnList = empColumns.Value

for i = 0 to ColumnList.Count - 1
 Set Column = ColumnList(i).Value
 MsgBox "Column: " & Column!Name & " Data Type: " & Column!Data Type
Next i

Describing a Table Example

Before running the following example, make sure that you have the necessary datatypes and tables in the database. See "Schema Objects Used in OraMetaData Examples".

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset
Dim OraMetaData As OraMetaData
Dim OraMDAttribute As OraMDAttribute
Dim ColumnList As OraMetaData
Dim Column As OraMetaData

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDB", "scott/tiger", 0&)

'Use Describe to retrieve the metadata object
Set OraMetaData = OraDatabase.Describe("EMP")

'Display the type of the metadata
MsgBox TypeofMetaData & OraMetaData.Type

'Display the count of attributes belonging to the table
MsgBox NumberOfAttributes & OraMetaData.Count

'Attribute can be accessed using the explicit OraMetaData property: Attribute
'The index can be an integer or the attribute name
Set OraMDAttribute = OraMetaData.Attribute(0)
MsgBox "ObjectID: " & OraMDAttribute.Value

'Since Attribute is the default property of OraMetaData, an attribute can
' be accessed as follows. Here, we use attribute name as an index
Set OraMDAttribute = OraMetaData("ObjectID")
MsgBox "Name: " & OraMDAttribute.Name
MsgBox "Value: " & OraMDAttribute.Value

'Value is the default property of OraMDAttribute, the following shows
'the Value of property "IsClustered" for the table
MsgBox "Is Clustered: " & OraMetaData!IsClustered
MsgBox "Is Partitioned: " & OraMetaData!IsPartitioned

'Retrieve the Column List
Set OraMDAttribute = OraMetaData!ColumnList

' Use IsMDObject property to check whether an attribute's value is an OraMetaData
If (OraMDAttribute.IsMDObject()) Then
 Set ColumnList = OraMDAttribute.Value
 'Display the name and data type of each column
 For I = 0 To ColumnList.Count - 1
 Set Column = ColumnList(I).Value

' Each column is again an OraMetaData
 MsgBox "Column: " & Column!Name & " data type: " & Column!Data Type
 Next I
End If

Example: Describing a User-Defined Type

Before running the following example, make sure that you have the necessary datatypes and tables in the database. See "Schema Objects Used in OraMetaData Examples".

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset
Dim OraMetaData As OraMetaData
Dim OraMDAttribute As OraMDAttribute
Dim attrList As OraMetaData
Dim attr As OraMetaData

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDB", "scott/tiger",0&)
Set OraMetaData = OraDatabase.Describe("ORAMD_ADDRESS")
NumAttributes = OraMetaData!NumAttributes
NumMethods = OraMetaData!NumMethods
MsgBox "The Address type has " & NumAttributes & " attributes"
MsgBox "Address Object has " & NumMethods & " methods"

'Retrieve the attribute list of this type object
Set attrList = OraMetaData!Attributes.Value

'Display the name and data type of each attribute
For I = 0 To attrList.Count - 1
 Set attr = attrList(I).Value
 ' each attr is actually an OraMetaData
 MsgBox "Attribute Name: " & attr!Name
 MsgBox "Attribute Type: " & attr!TypeName

Next I

Example: Describing Unknown Schema Objects

Before running the following example, make sure that you have the necessary datatypes and tables in the database. See "Schema Objects Used in OraMetaData Examples".

Sub RecursiveDescribe(name$, xMD As OraMetaData)

Dim xMDAttr As OraMDAttribute
For I = 0 To xMD.Count - 1
 Set xMDAttr = xMD.Attribute(I)

 ' If an attribute can be described further, describe it,
 ' otherwise display its attribute name & value
 If (xMDAttr.IsMDObject) Then
 RecursiveDescribe xMDAttr.name, xMDAttr.Value
 Else
 MsgBox name & "->" & xMDAttr.name & " = " & xMDAttr.Value
 End If
Next I

End Sub
Sub Main()

'This example displays all the attributes of any schema object given
Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset
Dim xMD As OraMetaData
Dim x As String

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDB", "scott/tiger", 0&)

' x is any database object, here the EMP table is used as an example
x = "EMP"
Set xMD = OraDatabase.Describe(x)
MsgBox x & " is of the type " & xMD.Type
RecursiveDescribe x, xMD

End Sub

	
See Also:

	
OraMetaData Object

	
OraMDAttribute Object

DestroyDatabasePool Method

Applies To

OraSession Object

Description

The pool is implicitly destroyed if its parent session object is destroyed. It can also be destroyed at any time by invoking the DestroyDatabasePool method.

Usage

DestroyDatabasePool()

Remarks

An exception is raised by this call if the pool does not exist.

	
See Also:

CreateDatabasePool Method

DisableBuffering (OraLOB) Method

Applies To

OraBLOB, OraCLOB Objects

Description

Disables buffering of LOB operations.

Usage

OraBlob.DisableBuffering
OraClob.DisableBuffering

Remarks

This method does not automatically flush the buffers. The FlushBuffer method should be used to flush any changes before buffering is disabled.

	
See Also:

	
EnableBuffering (OraLOB) Method

	
FlushBuffer (OraLOB) Method

Div (OraIntervalDS) Method

Applies To

OraIntervalDS Object

Description

Divides the OraIntervalDS object by a divisor.

Usage

OraIntervalDSObj.Div divisor

Arguments

The arguments for the method are:

	Arguments	Description
	[in] divisor	A Variant for type numeric value or an OraNumber object to be used as the divisor.

Remarks

The result of the operation is stored in the OraIntervalDS object, overwriting any previous value. There is no return value.

Div (OraIntervalYM) Method

Applies To

OraIntervalYM Object

Description

Divides the OraIntervalYM object by a divisor.

Usage

OraIntervalYMObj.Div divisor

Arguments

The arguments for the method are:

	Arguments	Description
	[in] divisor	A Variant for type numeric value or an OraNumber object to be used as the divisor.

Remarks

The result of the operation is stored in the OraIntervalYM object, overwriting any previous value. There is no return value.

Div (OraNumber) Method

Applies To

OraNumber Object

Description

Divides an OraNumber object by a numeric argument.

Usage

OraNumber.Div operand

Arguments

The arguments for the method are:

	Arguments	Description
	[in] operand	A Variant of type String, OraNumber object, or a numeric value.

Remarks

The result of the operation is stored in an OraNumber object . There is no return value.

The operand must not be equal to zero, or a divide by zero error is raised.

DynasetCacheParams Method

Applies To

OraParameter Object

Description

Specifies the dynaset cache and fetch parameters for the dynaset created from the PL/SQL cursor.

Usage

oraparameter.DynasetCacheParams SliceSize,perblock, Blocks, FetchLimit,FetchSize

Arguments

The arguments for the method are:

	Arguments	Description
	SliceSize	Cache slice size.
	perblock	Cache slices for each block.
	Blocks	Cache maximum number of blocks.
	FetchLimit	Fetch array size.
	FetchSize	Fetch array buffer size.

Remarks

This method should be called before executing the PL/SQL procedure containing a cursor variable. By default, the dynaset is created with default cache and fetch parameters specified in the registry.

Edit Method

Applies To

OraDynaset Object

Description

Begins an edit operation on the current row by copying the data to the copy buffer.

Usage

oradynaset.Edit
oradynaset.DbEdit

Remarks

The Edit method causes the locally cached data to be compared to the corresponding row of an Oracle Database. An error is generated if Oracle Database data is not the same as the data currently being browsed. If this operation succeeds, the row is locked using a "SELECT ... FOR UPDATE" statement until the edit is completed with an Update method or until database movement occurs, which discards any edits in progress. The behavior of the "SELECT ... FOR UPDATE" statement is affected by the Lock Wait mode of the options flag used when the OpenDatabase method was called.

	
Note:

The cached data is not compared to the database with BLOB and CLOB, Object, REF, and collection types, and the data is updated regardless (dirty writes).

During editing, changes made to fields are kept in a shadowed copy buffer and do not yet reflect the actual contents of the database. However, all references to the row return the newly modified data as long as the edit operation is still in progress.

When data is modified within a data control attached to this dynaset, the Edit method is invoked automatically upon the next record movement. Thus, this method is required only when modifications are made to field data within code.

	
Note:

A call to an Edit, AddNew, or Delete method cancels any outstanding Edit or AddNew calls before proceeding. Any outstanding changes not saved using an Update operation are lost during the cancellation.

Examples

This example demonstrates the use of the Edit and Update methods to update values in a database. Copy and paste this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

'Declare variables
Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'Create the OraDynaset Object.
Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)

 'Traverse until EOF is reached, settingeach employee's salary to zero
 Do Until OraDynaset.EOF
 OraDynaset.Edit
 OraDynaset.Fields("sal").value = 0
 OraDynaset.Update
 OraDynaset.MoveNext
 Loop
 MsgBox "All salaries set to ZERO."

End Sub

	
See Also:

	
AddNew Method

	
CreateDynaset Method

	
Delete Method

	
OpenDatabase Method

	
Update Method

Edit (OraRef) Method

Applies To

OraRef Object

Description

Locks a referenceable object in the database.

Usage

OraRef.Edit

Remarks

Call this method before modifying any attributes of an underlying referenceable object of OraRef or an error is raised. This call makes a network round-trip to lock the object in the database. An error is raised if the object is changed by another user in the database. The object can also be locked during the pin operation using the EditOption property.

Examples

The following examples update the attributes of the "PERSON" referenceable object in the database.

Before running the sample code, make sure that you have the necessary data types and tables in the database. See "Schema Objects Used in the OraObject and OraRef Examples".

Dynaset Example

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim Person as OraRef

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from customers
set OraDynaset = OraDatabase.CreateDynaset("select * from customers", 0&)

'retrieve a aperson column from customers.
'Here Value property of OraField object 'returns Person OraRef
set Person = OraDynaset.Fields("aperson").Value

'locks the Person object in the server for modifying its attributes
Person.Edit
 Person.Name = "Eric"
 Person.Age = 35
'Update method flushes the modified referenceable object in the server
Person.Update

Parameter Example

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim Person as OraRef

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'create an OraParameter object represent Address object bind Variable
OraDatabase.Parameters.Add "PERSON", Null, ORAPARM_OUTPUT, _
 ORATYPE_REF,"PERSON"

'execute the sql statement which selects person from the customers table
OraDatabase.ExecuteSQL ("BEGIN select aperson into :PERSON" & _
 "from customers where account = 10; END;")

'get the Person object from OraParameter
set Person = OraDatabase.Parameters("PERSON").Value

'locks the Person object in the server for modifying its attributes
Person.Edit
 Person.Name = "Eric"
 Person.Age = 35

'Update method flushes the modified referenceable object in the server
Person.Update

	
See Also:

EditOption (OraRef) Property

ElementValue Method

Applies To

OraCollection Object

Description

Returns the current value of the collection element to which the iterator points.

Usage

elem_val = OraCollection.ElementValue

Arguments

The arguments for the method are:

	Arguments	Description
	elem_val	A Variant representing element value of the collection.

ElementType

For elements of type Object and REF, element values are returned as corresponding OO4O objects for that type. The following table shows the element type and return value of the elements:

	ElementType	Element Value
	Object	OraObject
	REF	OraRef
	Date	String
	Number	String
	CHAR,VARCHAR2	String
	Real	Real
	Integer	Integer

Remarks

Calling this method when the EOC or BOC property returns True raises an error. The Variant type of the element depends on the element type of the collection.

Examples

See "Example: OraCollection Iterator"

	
See Also:

	
CreateIterator Method

	
IterNext Method

	
IterPrev Method

EnableBuffering (OraLOB) Method

Applies To

OraBLOB, OraCLOB Objects

Description

Enables buffering of LOB operations.

Usage

OraBlob.EnableBuffering
OraClob.EnableBuffering

Remarks

When enabled, buffering uses the LOB Buffering subsystem to minimize network round-trips by buffering changes until the FlushBuffer method is called. This can be beneficial to applications that perform a series of repeated small reads and writes to specific areas of a LOB.

There are many caveats and restrictions for using LOB buffering. These are summarized here, but for complete information, see the Oracle Database SecureFiles and Large Objects Developer's Guide.

Restrictions

	
The following LOB methods cannot be used while buffering is enabled:

	
Append

	
Copy

	
Erase

	
Size

	
Trim

	
CopyFromBFILE

	
CopyFromFile

	
CopyToFile

	
There is currently a 512 KB limit to the amount of a single read/write operation.

	
Error reporting for buffered operations is delayed until the next database access.

	
Transactional support is not guaranteed. Users must roll back changes manually if an error occurs.

	
Do not perform updates to a LOB column that bypasses the buffering system while in the same transaction as a buffer-enabled LOB. Performing an INSERT statement can cause this.

	
Only one LOB object is allowed to perform buffered writes to a given LOB. Other LOB objects that point to the same LOB raise an error if they attempt a buffered write.

	
A LOB object taken from an OraParameter object raises an error if it is buffer-enabled and bound to an OUT parameter.

	
The Clone method can raise an error for buffer enabled LOBs.

	
Appending directly to the end of the LOB is allowed, but any write operation whose offset extends beyond the end of the LOB and results in blank padding (for CLOB) or zero padding (for BLOB) raises an error.

	
See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide

Enqueue (OraAQ) Method

Applies To

OraAQ Object

Description

Enqueues the message (OraAQMsg) contained in this object.

Usage

Msgid = Q.Enqueue

Remarks

On success, this method returns the message identifier as an array of bytes. Otherwise, it returns an empty array (null).

Examples

	
Note:

The following code samples are models for enqueuing messages, but cannot be run as is.
A complete AQ sample can be found in the \OO4O\VB\SAMPLES\AQ directory.

Enqueuing Messages of Type RAW

'Create an OraAQ object for the queue "DBQ"
Dim Q as OraAQ
Dim Msg as OraAQMsg
Dim OraSession as OraSession
Dim DB as OraDatabase

Set OraSession = CreateObject("OracleInProcServer.XOraSession")
Set DB = OraSession.OpenDatabase("mydb", “scott/tiger" 0&)
Set Q = DB.CreateAQ("DBQ")

'Get a reference to the AQMsg object
Set Msg = Q.AQMsg
Msg.Value = "Enqueue the first message to a RAW queue."

'Enqueue the message
Q.Enqueue

'Enqueue another message.
Msg.Value = "Another message"
Q.Enqueue

'Enqueue a message with non-default properties.
Msg.Priority = ORAQMSG_HIGH_PRIORITY
Msg.Delay = 5
Msg.Value = "Urgent message"
Q.Enqueue
Msg.Value = "The visibility option used in the enqueue call" & _
 "is ORAAQ_ENQ_IMMEDIATE"
Q.Visible = ORAAQ_ENQ_IMMEDIATE
Msgid = Q.Enqueue

'Enqueue Ahead of message Msgid_1
Msg.Value = "First Message to test Relative Message id"
Msg.Correlation = "RELATIVE_MESSAGE_ID"

Msg.delay = ORAAQ_MSG_NO_DELAY
Msgid_1 = Q.Enqueue
Msg.Value = "Second message to test RELATIVE_MESSAGE_ID is queued" & _
 " ahead of the First Message "
Q.RelMsgId = Msgid_1
Msgid = Q.Enqueue

Enqueuing Messages of Oracle Object Types

'Prepare the message. MESSAGE_TYPE is a user defined type in the "AQ" schema
Set OraMsg = Q.AQMsg(23, "MESSAGE_TYPE","SCOTT")
Set OraObj = DB.CreateOraObject("MESSAGE_TYPE")

OraObj("subject").Value = "Greetings from OO4O"
OraObj("text").Value = "Text of a message originated from OO4O"

Msgid = Q.Enqueue

Erase (OraLOB) Method

Applies To

OraBLOB, OraCLOB Objects

Description

Erases the specified portion of the LOB value of this object starting at the specified offset.

Usage

OraBlob.Erase amount, offset
OraClob.Erase amount, offset

Arguments

The arguments for the method are:

	Arguments	Description
	[in] amount	An Integer specifying the maximum number of characters or bytes to be erased.
	[in] offset [optional]	An Integer specifying absolute offset of the LOB value from which to start erasing. Default value is 1.

Remarks

Obtain either a row-level lock or object-level lock before calling this method. The actual number of characters or bytes and the requested number differ if the end of the LOB value is reached before erasing the requested number of characters or bytes. For BLOB types, erasing means that zero-byte fillers overwrite the existing LOB value. For CLOB types, erasing means that spaces overwrite the existing LOB value.

ExecuteSQL Method

Applies To

OraDatabase Object

Description

Executes a single non-SELECT SQL statement or a PL/SQL block.

Usage

rowcount = oradatabase.ExecuteSQL(sql_statement)
rowcount = oradatabase.DbExecuteSQL(sql_statement)

Arguments

The arguments for the method are:

	Arguments	Description
	sql_statement	Any valid Oracle non-SELECT SQL statement.

Remarks

Executes a SQL statement and returns the number of rows processed by that statement.

The sql_statement argument can be one continuous line with no breaks. If it is necessary to break the line, be sure to use line feeds (ASCII 10). Do not use carriage returns (ASCII 13), because the underlying Oracle Database functions treat carriage returns as null terminators.

Executing the SQL statement generates a commit to the database by default. To avoid this, use the BeginTrans method on the session object before using the ExecuteSQL method.

You can use PL/SQL bind variables in conjunction with the OraParameters collection.

When executing PL/SQL blocks or calling stored procedures, you must include a BEGIN and END statement around your call as if you were executing an anonymous PL/SQL block. This is equivalent to the EXECUTE command of SQL*Plus and SQL*DBA.

	
Note:

The ExecuteSQL method should be used with care because any SQL statement or PL/SQL block that is executed can adversely affect open dynasets. This is true if the OraDatabase object used for the ExecuteSQL method is the same as the one that was used to create the dynaset. Use a different OraDatabase object if you are unsure.

Normal dynaset operations can be adversely affected, if in transactional mode, a database commit is issued. This can happen if a SQL commit statement, a Data Control Language (DCL), or Data Definition Language (DDL) command is issued. DCL and DDL SQL commands, such as CREATE, DROP, ALTER, GRANT, and REVOKE always force a commit, which in turn commits everything done before them. See the Oracle Database SQL Language Reference for more details about DCL, DDL, and transactions.

Data Type

Long Integer

Examples

Example: ExecuteSQL

This example uses the Add and Remove parameter methods, the ServerType parameter property, and the ExecuteSQL database method to call the stored procedure GetEmpName and the stored function GetSal. Before running the example, run the ORAEXAMP.SQL file to create GetEmpName and GetSal as well as other necessary object types and LOBs in Oracle Database. Then, copy and paste this OO4O code example into the definition section of a form and run the program.

Sub Form_Load ()

'Declare variables
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraDynaset As OraDatabase

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Add EMPNO as an Input/Output parameter and set its initial value.
 OraDatabase.Parameters.Add "EMPNO", 7369, ORAPARM_INPUT
 OraDatabase.Parameters("EMPNO").ServerType = ORATYPE_NUMBER

 'Add ENAME as an Output parameter and set its initial value.
 OraDatabase.Parameters.Add "ENAME", 0, ORAPARM_OUTPUT
 OraDatabase.Parameters("ENAME").ServerType = ORATYPE_VARCHAR2

 'Add SAL as an Output parameter and set its initial value.
 OraDatabase.Parameters.Add "SAL", 0, ORAPARM_OUTPUT
 OraDatabase.Parameters("SAL").ServerType = ORATYPE_NUMBER

 'Execute the Stored Procedure Employee.GetEmpName to retrieve ENAME.
 ' This Stored Procedure can be found in the file ORAEXAMP.SQL.
 OraDatabase.ExecuteSQL ("Begin Employee.GetEmpName (:EMPNO, :ENAME); end;")
 'Display the employee number and name.

 'Execute the Stored Function Employee.GetSal to retrieve SAL.
 ' This Stored Function can be found in the file ORAEXAMP.SQL.
 OraDatabase.ExecuteSQL ("declare SAL number(7,2); Begin" & _
 ":SAL:=Employee.GetEmpSal (:EMPNO); end;")

 'Display the employee name, number and salary.
 MsgBox "Employee " & OraDatabase.Parameters("ENAME").value & ", #" & _
 OraDatabase.Parameters("EMPNO").value & ",Salary=" & _
 OraDatabase.Parameters("SAL").value

 'Remove the Parameters.
 OraDatabase.Parameters.Remove "EMPNO"
 OraDatabase.Parameters.Remove "ENAME"

 OraDatabase.Parameters.Remove "SAL"
End Sub

	
See Also:

	
Oracle Database SQL Language Reference

	
CreateDynaset Method

	
OraParameters Collection

	
Transactions Property

Exist (OraCollection) Method

Applies To

OraCollection Object

Description

Returns True if an element exists at a given index; otherwise, returns. Valid only for OraCollection of Type ORATYPE_TABLE.

Usage

exists = OraCollection.Exist index

Arguments

The arguments for the method are:

	Arguments	Description
	[out] exists	A Boolean value specifying the existence status of the element.
	[in] index	An Integer specifying the index of the element.

Remarks

None.

Exp (OraNumber) Method

Applies To

OraNumber Object

Description

Calculates e to the power of an OraNumber object.

Usage

OraNumber.Exp

Remarks

The result of the operation is stored in the OraNumber object. There is no return value.

FetchOraRef Method

Applies To

OraDatabase Object

Description

Fetches a referenceable object into the cache and returns the associated OraRef object.

Usage

Set OraRef = OraDatabase.FetchOraRef(hex_value)

Arguments

The arguments for the method are:

	Arguments	Description
	hex_value	A String containing the hexadecimal value of the REF.

Remarks

The hex_value argument can be obtained through the OraRef.HexValue property or from an XML document generated by the OraDynaset.GetXML method.

	
See Also:

	
HexValue (OraRef) Property

	
GetXML Method

FieldSize Method

Applies To

OraField Object

Description

Returns the number of bytes stored in a LONG or LONG RAW field. Not available at design time and read-only at run time.

Usage

data_size = orafield.FieldSize()
data_size = orafield.DbFieldSize()

Remarks

Returns the number of bytes stored in a LONG or LONG RAW field, up to a value of around 64 KB. If the field contains more than 64 KB, then the FieldSize method returns -1.

Oracle Database does not return the length of columns that are greater than 64 KB; The only way to determine the length is to retrieve the column. To conserve resources, columns of lengths greater than 64 KB are not retrieved automatically.

Data Type

Long Integer

	
See Also:

	
AppendChunk Method

	
GetChunk Method

	
OraField Object

	
Type Property

FindFirst, FindLast, FindNext, and FindPrevious Methods

Applies To

OraDynaset Object

Description

Find the indicated rows in the dynaset that matches the FindClause. The FindClause can be any valid WHERE clause without the WHERE. If the current FindClause matches the last clause from the previous find operation, then the current FindClause is not parsed again.

These methods move the current row directly to a matched row without calling any advisories except when the matched row is reached. If a matching row cannot be found, the NoMatch property is set to True, and the current row remains the same.

Usage

oradynaset.FindFirst FindClause
oradynaset.FindLast FindClause
oradynaset.FindNext FindClause
oradynaset.FindPrevious FindClause

Remarks

The following types of expressions can be used in the FindClause:

	
Simple queries, such as "deptno = 20"

	
Queries involving complex expressions, such as "sal + 100 > 1000".

	
SQL function calls, such as "UPPER(ename) = 'SCOTT' " or "NVL(comm, 0) = 0".

	
Subqueries, such as "deptno in (select deptno from dept)".

The SQL LIKE operator does not work in multiple byte languages. Table or synonym DUAL is required in the user's schema. Date values are retrieved and compared in Visual Basic format, which is the format specified in the Control Panel. Therefore, date comparisons fail if any other format such as the default Oracle format, DD-MON-YYYY is used.

The SQL function TO_CHAR (date, fmt) cannot be used because the first argument must be a date value in native Oracle format, and OO4O only handles 'string dates'.

The SQL function TO_DATE converts a string to a date, but OO4O converts it back to a string in Visual Basic format, as previously described, and the comparison may still fail.

The FindPrevious and FindLast methods in a NO_CACHE dynaset do not work; NoMatch is set to True.

Note: To avoid raising an error, check for EOF or BOF before calling a Find method.

Examples

This example demonstrates the use of the FindFirst, FindNext, FindPrevious methods. Copy and paste this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraDynaset As OraDynaset
 Dim OraFields As OraFields
 Dim FindClause As String

 Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "SCOTT/TIGER", 0&)
 Set OraDynaset = OraDatabase.CreateDynaset("select * from emp where empno" & _
 ">= 7654 and empno <= 7844 ", ORADYN_NO_BLANKSTRIP)

 Set OraFields = OraDynaset.Fields

 OraDynaset.MoveFirst

 'FindClause for job as MANAGER
 FindClause = "job LIKE '%GER'"

 OraDynaset.FindFirst FindClause

 'NoMatch property set to true , if no rows found
 If OraDynaset.NoMatch Then
 MsgBox "Couldn't find rows "
 else
 MsgBox OraFields("ename").Value ' Should display BLAKE

 OraDynaset.FindNext FindClause
 MsgBox OraFields("ename").Value ' Should display CLARK

 OraDynaset.FindPrevious FindClause
 MsgBox OraFields("ename").Value ' Should display BLAKE

 endif

End Sub

	
See Also:

	
MoveFirst, MoveLast, MoveNext, and MovePrevious Methods

	
NoMatch Property

	
OraDatabase Object

Floor (OraNumber) Method

Applies To

OraNumber Object

Description

Calculates the floor, that is, lowest value, of an OraNumber object.

Usage

OraNumber.Floor

Remarks

The result of the operation is stored in an OraNumber object. There is no return value.

FlushBuffer (OraLOB) Method

Applies To

OraBLOB, OraCLOB Objects

Description

Flushes, that is, empties, the content of the LOB to the database if LOB buffering has been enabled.

Usage

OraBlob.FlushBuffer OraClob.FlushBuffer

	
See Also:

EnableBuffering (OraLOB) Method

GetDatabaseFromPool Method

Applies To

OraSession Object

Description

Returns the next available OraDatabase object from the pool.

Usage

GetDatabaseFromPool(long waitTime)

Arguments

The arguments for the method are:

	Arguments	Description
	waitTime	The number of milliseconds this call waits for an object to be available, if the pool contains the maximum number of objects and all are used.

Remarks

To retrieve an OraDatabase object from the pool, the GetDatabaseFromPool method is called. This function returns a reference to an OraDatabase object. If the pool does not contain the maximum number of objects allowed, and all objects in the pool are used, then an additional OraDatabase object is created implicitly. In addition, if a pool item contains an OraDatabase object that has been timed out, then a new object is created and returned. The OraDatabase object obtained from the pool is then marked as in use and is returned to the pool when the object is no longer referenced by the application.

Exceptions are raised by this call if:

	
The connection pool does not exist.

	
The pool contains no objects.

	
A time-out has occurred.

The LastServerErr property of the OraSession object contains the code for the specific cause of the exception.

	
See Also:

CreateDatabasePool Method

GetChunk Method

Applies To

OraField Object

Description

Returns a string containing the bytes of all or a portion of a LONG or LONG RAW field.

Usage

data_string = orafield.GetChunk(offset, numbytes)
data_string = orafield.DbGetChunk(offset, numbytes)

Arguments

The arguments for the method are:

	Arguments	Description
	offset	The number of bytes of the field to skip before copying data.
	numbytes	The number of bytes to copy.

Remarks

The GetChunk method typically retrieves the specified bytes from the local cache. If data is not found in the cache, then the GetChunk method requests it from the database. Data from all fields (except the LONG or LONG RAW field) in the dynaset are retrieved and compared to the cached values for consistency. If any changes have occurred since the last fetch, then the GetChunk method stops the operation which causes an error and returns a Null string.

If a LONG or LONG RAW field is less than 65280 bytes, it is quicker to retrieve the data using the Value property than using the GetChunk method. You cannot use the GetChunk method on a LONG or LONG RAW field for which you have created an alias.

See "Migration from LONG RAW to LOB or BFILE".

Examples

This example demonstrates the use of the GetChunk method to retrieve a LONG RAW column of a database and save it as a file. This example expects a valid dynaset named OraDynaset representing a table with a column named longraw. Copy and paste this code into the definition section of a form. Call this procedure with a valid file name.

Sub GetChunkExample (FName As String)

'Declare various variables
Dim CurSize As Integer, ChunkSize As Long
Dim I As Integer, FNum As Integer, CurChunk As String

'Set the size of each chunk
ChunkSize = 10240

frmChunk.MousePointer = HOURGLASS

'Get a free file number
FNum = FreeFile

'Open the file
Open FName For Binary As #FNum

 I = 0
'Loop through all of the chunks. Oracle does not return the size of columns >
' 64KB. We should loop until the length of our block is less than we asked for.
Do
 CurChunk = OraDynaset.Fields("LONGRAW").GetChunk(I * ChunkSize, ChunkSize)
 CurSize = Len(CurChunk) 'Get the length of the current chunk.

 Put #FNum, , CurChunk 'Write chunk to file.
 I = I + 1
Loop Until CurSize < ChunkSize

'Close the file.
Close FNum

frmChunk.MousePointer = DEFAULT

End Sub

	
See Also:

	
"Migration from LONG RAW to LOB or BFILE"

	
AppendChunk Method

	
FieldSize Method

	
GetChunk Method

	
Type Property

	
Value Property

	
OraField Object

GetChunkByte Method

Applies To

OraField Object

Description

Reads the data from the LONG or LONG RAW field into byte array and returns the size of data read.

Usage

Size_read = orafield.GetChunkByte(ByteArray, offset, numbytes)

Arguments

The arguments for the method are:

	Arguments	Description
	ByteArray	The first element of the ByteArray to hold the data.
	offset	The number of bytes in the field to skip before copying data.
	numbytes	The number of bytes to copy.

Remarks

When possible, the GetChunkByte method retrieves the specified bytes from the local cache. However, to conserve resources, some of the data might not be stored locally. In these cases, the GetChunkByte method requests the necessary data from the database as required. As part of this process, data from all fields (except the Long or LONG RAW field) in the dynaset are retrieved and compared with the cached values for consistency. If any changes have occurred since the fetch of the original partial data, then the GetChunkByte method stops the operation and an error occurs. In the case of an abort, the returned string is Null.

If a LONG or LONG RAW field is less than 65280 bytes in size, it is quicker to retrieve the data using the Value property than using the GetChunkByte method. You cannot use the GetChunkByte method on a LONG or LONG RAW field for which you have created an alias.

Examples

This example demonstrates the use of the GetChunkByte method to retrieve a LONG RAW column of a database and save it as a file. This example expects a valid dynaset named OraDynaset representing a table with a column named longraw. Copy and paste this code into the definition section of a form. Call this procedure with a valid file name.

Sub GetChunkByteExample (FName As String)

'Declare various variables
Dim CurSize As Integer, ChunkSize As Long
Dim I As Integer, FNum As Integer, CurChunk() As Byte

'Set the size of each chunk
ChunkSize = 10240
'Redim CurChunk Array
ReDim CurChunk(ChunkSize)

frmChunk.MousePointer = HOURGLASS

'Get a free file number
FNum = FreeFile

'Open the file
Open FName For Binary As #FNum

 I = 0
'Loop through all of the chunks
'Oracle does not return the size of columns > 64KB. We should loop until the 'length of our block is less than we asked for.

Do
 CurSize = OraDynaset.Fields("type_longraw").GetChunkByte(CurChunk(0), I * ChunkSize, ChunkSize)

If CurSize > 0 AND CurSize < ChunkSize Then
 ReDim CurChunk(CurSize)
 CurSize = OraDynaset.Fields("type_longraw").GetChunkByte(CurChunk(0), I * ChunkSize, CurSize)
 End If
 Put #FNum, , CurChunk 'Write chunk to file.
 I = I + 1
Loop Until CurSize <= 0

'Close the file.
Close FNum

frmChunk.MousePointer = DEFAULT

End Sub

	
See Also:

"Migration from LONG RAW to LOB or BFILE" for additional information

GetChunkByteEx Method

Applies To

OraField Object

Description

Reads the data from a LONG or LONG RAW field into a Variant and returns the amount of data read.

Usage

amount_read = orafield.GetChunkByteEx(ByteArray, offset, numbytes)

Arguments

The arguments for the method are:

	Arguments	Description
	ByteArray	The name of the Variant ByteArray to hold the data.
	offset	The number of bytes in the field to skip before copying data.
	numbytes	The number of bytes to copy.

Remarks

When possible, the GetChunkByteEx method retrieves the specified bytes from the local cache. However, to conserve resources, some of the data might not be stored locally. In these cases, the GetChunkByteEx method requests the necessary data from the database as required. As part of this process, data from all fields (except the LONG or LONG RAW field) in the dynaset are retrieved and compared to the cached values for consistency. If any changes have occurred since the fetch of the original partial data, then the GetChunkByteEx method aborts the operation with an error.

Because the GetChunkByteEx method takes in a Variant as the first parameter, instead of the first element of the ByteArray as in the GetChunkByte method, only the GetChunkByteEx method can be used within an ASP/IIS environment.

If a LONG or LONG RAW field is less than 65280 bytes in size, it is quicker to retrieve the data using the Value property than using the GetChunkByteEx method.

See "Migration from LONG RAW to LOB or BFILE".

Examples

Using the GetChunkByteEx Method to Retrieve a LONG RAW Example

This example demonstrates the use of the GetChunkByteEx method to retrieve a LONG RAW column of a database and save it as a file. This example expects a valid dynaset named OraDynaset representing a table with a column named type_longraw. Copy and paste this code into the definition section of a form. Call this procedure with a valid file name.

Sub GetChunkByteExExample (FName As String)
'Declare various variables
Dim bytesread As Integer, ChunkSize As Long ,

bytearr() as byte
Dim I As Integer, FNum As Integer, CurChunk
'Set the size of each chunk
ChunkSize = 10240

frmChunk.MousePointer = HOURGLASS
'Get a free file number
FNum = FreeFile
'Open the file
Open FName For Binary As #FNum
I = 0
'Loop through all of the chunks
'Oracle does not return the size of columns > 64KB.
'We should loop until the length of our block is
'less than we asked for.
Do
 bytesread = OraDynaset.Fields("type_longraw").GetChunkByteEx(CurChunk,_
 I * ChunkSize, ChunkSize)
'redim byte array
redim bytearr(bytesread - 1)
bytearr = CurChunk
Put #FNum, , bytearr 'Write chunk to file.
I = I + 1
Loop Until bytesread < ChunkSize
'Close the file.
Close FNum
frmChunk.MousePointer = DEFAULT
End Sub

Using the GetChunkByteEx Method with Active Server Pages (ASP) Example

'This example is for use with ASP (Active Server Pages)
<%@ LANGUAGE = VBScript %>
<%Response.ContentType = "image/JPEG"%>
<%
Dim OraDatabase, Oradynaset
Dim Chunksize, BytesRead, CurChunkEx
'This assumes a pool of database connections have been created in the global.asa
Set OraDatabase = OraSession.getDatabaseFromPool(10)
'This assumes a table called "art_gallery" and
'displays JPEG images stored in the table
Set OraDynaset = OraDatabase.CreateDynaset("select art from art_gallery " & _
 "where artist = 'Picasso'", 0)

BytesRead = 0
'Reading in 32K chunks
ChunkSize= 32768
Do
 BytesRead = OraDynaset.Fields("picture").GetChunkByteEx(CurChunkEx, _
 i * ChunkSize, ChunkSize)
 if BytesRead > 0 then
 Response.BinaryWrite CurChunkEx
 end if
Loop Until BytesRead < ChunkSize
'Cleanup, remove all local references
Set OraDynaset = Nothing
Set Oradatabase = Nothing
%>

	
See Also:

"Migration from LONG RAW to LOB or BFILE"

GetXML Method

Applies to

OraDynaset Object

Description

Generates an XML document based on the contents of the dynaset.

Usage

 XMLstring = oradynaset.GetXML(startrow, maxrows)

Arguments

The arguments for the method are:

	Arguments	Description
	startrow	The row identifier indicating from which row to start (see OraDynaset.RowPosition). The default value of this argument is zero (the first row).
	maxrows	The maximum number of rows to retrieve (if the end of the record set is reached; fewer rows may be returned). If this argument is omitted, then all rows are returned.

Remarks

This method returns a string containing the XML document.

The formatting of the output XML can be customized through the XML properties of the OraDynaset and OraField objects.

	
See Also:

	
OraDynaset Object

	
OraField Object

	
RowPosition Property

GetXMLToFile Method

Applies To

OraDynaset Object

Description

Generates an XML document and writes it to a file.

Usage

oradynaset.GetXMLToFile (filename, startrow, maxrows)

Arguments

The arguments for the method are:

	Arguments	Description
	filename	The file name that the XML is written to. Existing files by the same name are overwritten.
	startrow	The row identifier indicating from which row to start (see OraDynaset.RowPosition). The default value of this argument is 0 (the first row).
	maxrows	The maximum number of rows to retrieve (if the end of the record set is reached; fewer rows may be returned). If this argument is omitted, then all rows are returned.

Remarks

There is no return value.

The formatting of the XML output can be customized through the XML properties of the OraDynaset and OraField objects.

	
See Also:

	
OraDynaset Object

	
OraField Object

	
RowPosition Property

GetRows Method

Applies To

OraDynaset Object

Description

Retrieves multiple records of a dynaset object into Variant safe array.

Usage

Array =OraDynaset.GetRows(num_rows, start, fields)

Arguments

The arguments for the method are:

	Arguments	Description
	num_rows [optional]	An Integer representing the number of records to retrieve. Default value is the total number of rows in the dynaset.
	start [optional]	An Integer representing the starting position of the dynaset from which the GetRows operation begins. Default value is the current position of the dynaset.
	fields [optional]	A Variant representing a single field name or field position, or an array of field names or array of field position numbers. The GetRows method returns only the data in these fields.

Remarks

Use the GetRows method to copy records from a dynaset into a two-dimensional array. The first subscript identifies the field and the second identifies the row number. The Array variable is automatically dimensioned to the correct size when the GetRows method returns the data.

Calling the GetRows method does not change the current row position of the dynaset object.

Examples

The following example retrieves data using the GetRows method.

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset
Dim row, col As Integer
Dim fields() As String

'Create the OraSession Object
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", _
 "scott/tiger", 0&)

Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)

'The following line executes GetRows to get all records
data_array = OraDynaset.GetRows()

'Now display all the data in data_array
For row = 0 To UBound(data_array, 2)
 For col = 0 To UBound(data_array, 1)
 Debug.Print data_array(col, row)
 Next col
Next row

'The following lines execute GetRows to get the data from
'the ename and empno fields starting at 5

ReDim fields(2)

fields(0) = "EMPNO"
fields(1) = "ENAME"

'Execute GetRows
data_array = OraDynaset.GetRows(, 5, fields)

'Now display all the data in data_array
For row = 0 To UBound(data_array, 2)
 For col = 0 To UBound(data_array, 1)
 Debug.Print data_array(col, row)
 Next col
Next row

Get_Value Method

Applies To

OraParamArray Object

Description

Returns the value of a particular element of the array at the specified index.

Usage

OraParamArray.Get_Value(array, index)

Arguments

The arguments for the method are:

	Arguments	Description
	[in] array	A String representing the name of the array.
	[in] index	An Integer representing the index value of the object.

Remarks

The OraParamArray.Get_Value method returns the value of the field as a Variant. The value of data_value = oraparameter.Value sets the contents of the parameter.

Note that fields of type DATE are returned in the default Visual Basic format as specified in the Control Panel, even though the default Oracle date format is "DD-MMM-YY".

The Value argument can be an Oracle Database 10g object, such as an OraBLOB object. For Put_Value, a copy of the object is made at that point in time, and Get_Value must be accessed to obtain a new object that refers to that index value. For example, if iotype is ORATYPE_BOTH and an OraBLOB object obtained from a dynaset is passed in as the input value, Get_Value needs to be called after the SQL code has been executed to obtain the newly updated output value of the ParamaterArray object.

Similar to a dynaset, the object obtained from the ParamaterArray Get_Value property refers to the latest value for that ParamaterArray index. The Visual Basic value Null can also be passed as a value. The Visual Basic value EMPTY can be used for BLOB and CLOB to indicate an empty LOB, and for Object, VARRAY, and nested table data types to indicate an object whose attributes are all Null.

This method is not available at design time and is read-only at run time.

When binding to RAW columns (ServerType ORATYPE_RAW_BIN), the value should be a byte array.

HypCos (OraNumber) Method

Applies To

OraNumber Object

Description

Calculates the hyperbolic cosine of an OraNumber object.

Usage

OraNumber.HypCos

Remarks

The result of the operation is stored in an OraNumber object. There is no return value.

HypSin (OraNumber) Method

Applies To

OraNumber Object

Description

Calculates the hyperbolic sine of an OraNumber object.

Usage

OraNumber.HypSin

Remarks

The result of the operation is stored in an OraNumber object. There is no return value.

HypTan (OraNumber) Method

Applies To

OraNumber Object

Description

Calculates the hyperbolic tangent of an OraNumber object.

Usage

OraNumber.HypTan

Remarks

The result of the operation is stored in an OraNumber object. There is no return value.

InitIterator Method

Applies To

OraCollection Object

Description

Initializes an iterator to scan a collection.

Usage

OraCollection.InitIterator

Remarks

This method initializes an iterator to point to the beginning of a collection. If this method is called for same Oracle Database 10g collection instance, then this method resets the iterator to point back to the beginning of the collection. The OraCollection object automatically reinitializes the iterator when the underlying collection changes due to a dynaset row navigation or a parameter Refresh method.

After you call the InitIterator method, you need to call the IterNext method or the first element in the collection repeats an extra time.

Examples

See "Example: OraCollection Iterator".

	
See Also:

	
IterNext Method

	
IterPrev Method

IsEqual (OraIntervalDS) Method

Applies To

OraIntervalDS Object

Description

Checks if the OraIntervalDS object is equal to an argument.

Usage

isEqual = OraIntervalDSObj.IsEqual value

Arguments

The arguments for the method are:

	Arguments	Description
	[in] value	A Variant of type String, a numeric value, or an OraIntervalDS object to be compared.

Remarks

Returns a Boolean value: The value is True if the OraIntervalDS object is equal to the argument; otherwise, it is False.

If value is a Variant of type String, it must be in the following format: [+/-] Day HH:MI:SSxFF.

If value is a numeric value, the value provided should represent the total number of days that the constructed OraIntervalDS object represents.

IsEqual (OraIntervalYM) Method

Applies To

OraIntervalYM Object

Description

Checks if the OraIntervalYM object is equal to an argument.

Usage

isEqual = OraIntervalYMObj.IsEqual value

Arguments

The arguments for the method are:

	Arguments	Description
	[in] value	A Variant of type String, a numeric value, or an OraIntervalYM object to be compared.

Remarks

Returns a Boolean value: The value is True if the OraIntervalYM object is equal to the argument; otherwise, it is False.

If value is a Variant of type String, it must be in the following format: [+/-] YEARS-MONTHS.

If value is a numeric value, the value provided should represent the total number of years that the constructed OraIntervalYM object represents.

IsEqual (OraNumber) Method

Applies To

OraNumber Object

Description

Checks if an OraNumber object is equal to an argument value.

Usage

bool = OraNumber.IsEqual value

Arguments

The arguments for the method are:

	Arguments	Description
	[in] value	A Variant of type String, OraNumber, or a numeric value.

Remarks

Returns a Boolean value: The value is True if all values are equal; otherwise, it is False.

IsEqual (OraTimeStamp) Method

Applies To

OraTimeStamp Object

Description

Checks if the OraTimeStamp object is equal to an argument.

Usage

isEqual = OraTimeStampObj.IsEqual value format

Arguments

The arguments for the method are:

	Arguments	Description
	[in] value	A Variant of type String, Date, or OraTimeStamp to be compared.
	[in] [optional] format	Specifies the TIMESTAMP format string to be used to interpret value when value is of type String. If format is not specified, the value is interpreted using the Format property of the current OraTimeStamp object.

Remarks

Returns a Boolean value: The value is True if the OraTimeStamp object is equal to the argument; otherwise, it is False. The IsEqual method compares all the date-time values stored in the OraTimeStamp object.

If value is of type String, the string format must match the format specified in the format argument. If format is not specified, the string format must match the Format property of the current OraTimeStamp object.

IsEqual (OraTimeStampTZ) Method

Applies To

OraTimeStampTZ Object

Description

Checks if the OraTimeStampTZ object is equal to an argument.

Usage

isEqual = OraTimeStampTZOb.IsEqual value, format

Arguments

The arguments for the method are:

	Arguments	Description
	[in] value	A Variant of type String, Date, or OraTimeStampTZ to be compared.
	[in] [optional] format	Specifies the TIMESTAMP WITH TIME ZONE format string to be used to interpret value when value is type String. If format is not specified, value is interpreted using the Format property of the current OraTimeStampTZ object.

Remarks

Returns a Boolean value: The value is True if the OraTimeStampTZ object is equal to the argument; otherwise, it is False. The IsEqual method only compares the Coordinated Universal Time (UTC) date-time values stored in the OraTimeStampTZ object; the time zone information is ignored.

	
Note:

UTC was formerly known as Greenwich Mean Time.)

If value is of type String, the string format must match the format specified in the format argument. If format is not specified, the string format must match the Format property of the current session OraTimeStampTZ object.

If value is of Date type, the date-time value in Date is interpreted as the date-time value in the time zone of the session.

IsGreater (OraIntervalDS) Method

Applies To

OraIntervalDS Object

Description

Checks if the OraIntervalDS object is greater than an argument.

Usage

isGreater = OraIntervalDSObj.IsGreater value

Arguments

The arguments for the method are:

	Arguments	Description
	[in] value	A Variant of type String, a numeric value, or an OraIntervalDS object to be compared.

Remarks

Returns a Boolean value: The value is True if the OraIntervalDS object is greater than the argument; otherwise, it is False.

If value is a Variant of type String, it must be in the following format: Day [+/-] HH:MI:SSxFF.

If value is a numeric value, the value provided should represent the total number of days that the constructed OraIntervalDS object represents.

IsGreater (OraIntervalYM) Method

Applies To

OraIntervalYM Object

Description

Checks if the OraIntervalYM object is greater than an argument.

Usage

isGreater = OraIntervalYMObj.IsGreater value

Arguments

The arguments for the method are:

	Arguments	Description
	[in] value	A Variant of type String, a numeric value, or an OraIntervalYM object to be compared.

Remarks

Returns a Boolean value: The value is True if the OraIntervalYM object is greater than the argument; otherwise, it is False.

If value is a Variant of type String, it must be in the following format: [+/-] YEARS-MONTHS.

If value is a numeric value, the value provided should represent the total number of years that the constructed OraIntervalYM object represents.

IsGreater (OraNumber) Method

Applies To

OraNumber Object

Description

Checks if an OraNumber object is greater than an argument value.

Usage

bool = OraNumber.IsGreater value

Arguments

The arguments for the method are:

	Arguments	Description
	[in] value	A Variant of type String, OraNumber object, or a numeric value.

Remarks

Returns a Boolean value: The value is True if the OraNumber object is greater than the argument; otherwise, it is False.

IsGreater (OraTimeStamp) Method

Applies To

OraTimeStamp Object

Description

Checks if the OraTimeStamp object is greater than an argument.

Usage

isGreater = OraTimeStampObj.IsGreater value format

Arguments

The arguments for the method are:

	Arguments	Description
	[in] value	A Variant of type String, Date, or OraTimeStamp to be compared.
	[in] [optional] format	Specifies the TIMESTAMP format string to be used to interpret value when value is of type String. If format is not specified, the value is interpreted using the Format property of the current OraTimeStamp object.

Remarks

Returns a Boolean value: The value is True if the OraTimeStamp object is greater than the argument; otherwise, it is False. The IsGreater method compares all the date-time values stored in the OraTimeStamp object.

If value is of type String, the string format must match the format specified in the format argument. If format is not specified, the string format must match the Format property of the current OraTimeStamp object.

IsGreater (OraTimeStampTZ) Method

Applies To

OraTimeStampTZ Object

Description

Checks if the OraTimeStampTZ object is greater than an argument.

Usage

isGreater = OraTimeStampTZObj.IsGreater value, format

Arguments

The arguments for the method are:

	Arguments	Description
	[in] value	A Variant of type String, Date, or OraTimeStampTZ object to be compared.
	[in] [optional] format	Specifies the TIMESTAMP WITH TIME ZONE format string to be used to interpret a value when value is type String. If format is not specified, value is interpreted using the Format property of the current OraTimeStampTZ object.

Remarks

Returns a Boolean value: The value is True if the OraTimeStampTZ object is greater than the argument; otherwise, it is False. The IsGreater method only compares the UTC date-time values stored in the OraTimeStampTZ object; the time zone information is ignored.

If value is of type String, the string format must match the format specified in the format argument. If format is not specified, the string format must match the Format property of the current OraTimeStampTZ object.

If value is of type Date, the date-time value in Date is interpreted as the date-time value in the time zone of the session.

IsLess (OraIntervalDS) Method

Applies To

OraIntervalDS Object

Description

Checks if the OraIntervalDS object is less than an argument.

Usage

isLess = OraIntervalDSObj.IsLess value

Arguments

The arguments for the method are:

	Arguments	Description
	[in] value	A Variant of type String, a numeric value, or an OraIntervalDS object to be compared.

Remarks

Returns a Boolean value: The value is True if the OraIntervalDS object is less than the argument; otherwise, it is False.

If value is a Variant of type String, it must be in the following format: [+/-] Day HH:MI:SSxFF.

If value is a numeric value, the value provided should represent the total number of days that the constructed OraIntervalDS object represents.

IsLess (OraIntervalYM) Method

Applies To

OraIntervalYM Object

Description

Checks if the OraIntervalYM object is less than an argument.

Usage

isLess = OraIntervalYMObj.IsLess value

Arguments

The arguments for the method are:

	Arguments	Description
	[in] value	A Variant of type String, a numeric value, or an OraIntervalYM object to be compared.

Remarks

Returns a Boolean value: The value is True if the OraIntervalYM object is less than the argument; otherwise, it is False.

If value is a Variant of type String, it must be in the following format: [+/-] YEARS-MONTHS.

If value is a numeric value, the value provided should represent the total number of years that the constructed OraIntervalYM object represents.

IsLess (OraNumber) Method

Applies To

OraNumber Object

Description

Checks if an OraNumber object is less than an argument value.

Usage

bool = OraNumber.IsLess value

Arguments

The arguments for the method are:

	Arguments	Description
	[in] value	A Variant of type String, OraNumber object, or a numeric value.

Remarks

Returns a Boolean value: The value is True if the OraNumber object is less than the argument; otherwise, it is False.

IsLess (OraTimeStamp) Method

Applies To

OraTimeStamp Object

Description

Checks if the OraTimeStamp object is less than an argument.

Usage

isLessr = OraTimeStampObj.IsLess value format

Arguments

The arguments for the method are:

	Arguments	Description
	[in] value	A Variant of type String, Date, or OraTimeStamp.
	[in] [optional] format	Specifies the TIMESTAMP format string to be used to interpret value when value is of type String. If format is not specified, the value is interpreted using the Format property of the current OraTimeStamp object.

Remarks

Returns a Boolean value: The value is True if the OraTimeStamp is less than the argument; otherwise, it is False. The IsLess method compares all the date-time values stored in the OraTimeStamp object.

If value is of type String, the string format must match the format specified in the format argument. If format is not specified, the string format must match the Format property of the current OraTimeStamp object.

IsLess (OraTimeStampTZ) Method

Applies To

OraTimeStampTZ Object

Description

Checks if the OraTimeSTampTZ object is less than an argument.

Usage

isLess = OraTimeStampTZObj.IsLess value, format

Arguments

The arguments for the method are:

	Arguments	Description
	[in] value	A Variant of type String, Date, or OraTimeStampTZ.
	[[in] [optional] format	Specifies the TIMESTAMP WITH TIME ZONE format string to be used to interpret value when value is type String. If format is not specified, value is interpreted using the Format property of the current OraTimeStampTZ object.

Remarks

Returns a Boolean value: The value is True if the OraTimeStampTZ object is less than the argument; otherwise, it is False. IsLess only compares the UTC date-time values stored in the OraTimeStampTZ object; the time zone information is ignored.

If value is of type String, the string format must match the format specified in the format argument. If format is not specified, the string format must match the Format property of the current OraTimeStampTZ object.

If value is of type Date, the date-time value in Date is interpreted as the date-time value in the time zone of the session.

IterNext Method

Applies To

OraCollection Object

Description

Moves the iterator to point to the next element in the collection.

Usage

OraCollection.IterNext

Remarks

Using an iterator is faster than using an index when accessing collection elements.

If the iterator is pointing to the last element of the collection before to executing this function, then calling this method makes the EOC property return True. Also, the iterator is not changed. Check the EOC property when calling this method repetitively.

Call the IterNext method after the InitIterator method, or the first element in the collection is repeated an extra time.

Examples

See "Example: OraCollection Iterator" .

	
See Also:

	
IterPrev Method

	
InitIterator Method

IterPrev Method

Applies To

OraCollection Object

Description

Moves the iterator to point to the previous element in the collection.

Usage

OraCollection.IterPrev

Remarks

Using an iterator is faster than using an index when accessing collection elements.

If the iterator is pointing to the first element of the collection prior to executing this function, then calling this method makes the BOC property return True. Also, the iterator is not changed. Check the BOC property when calling this method repetitively.

Examples

See "Example: OraCollection Iterator" .

	
See Also:

	
IterNext Method

	
InitIterator Method

LastServerErrReset Method

Applies To

OraDatabase Object

OraSession Object

Description

Clears the LastServerErr property to a zero value and sets the LastServerErrText property to Null for the specified object.

Usage

oradatabase.LastServerErrResetorasession.LastServerErrReset

Remarks

This method allows user programs to better determine which program request generated the Oracle error.

	
See Also:

	
OraDatabase Object

	
OraSession Object

	
LastServerErr Property

	
LastServerErrText Property

Ln (OraNumber) Method

Applies To

OraNumber Object

Description

Calculates the natural logarithm (base e) of an OraNumber object.

Usage

OraNumber.Ln

Remarks

The result of the operation is stored in the OraNumber object. There is no return value.

This method raises an error if the OraNumber object is less than or equal to zero.

Log (OraNumber) Method

Applies To

OraNumber Object

Description

Calculates the logarithm of operand using the OraNumber object as the base.

Usage

OraNumber.Log operand

Arguments

The arguments for the method are:

	Arguments	Description
	[in] operand	A Variant of type String, OraNumber, or a numeric value.

Remarks

The result of the operation is stored in the OraNumber object. There is no return value.

This method raises an error if the OraNumber object or operand is less than or equal to zero.

MatchPos (OraLOB/BFILE) Method

Applies To

OraBLOB, OraCLOB Objects

OraBFILE Object

Description

Returns the position of the nth occurrence of the pattern starting at the offset.

Usage

position = OraBlob.MatchPos pattern, offset, nth
position = OraClob.MatchPos pattern, offset, nth
position = OraBFile.MatchPos pattern, offset, nth

Arguments

The arguments for the method are:

	Arguments	Description
	[in] pattern	A string for CLOB, or byte array for BLOB or BFILE that is searched for in the LOB.
	[in] Offset	The starting position in the LOB or BFILE for the search.
	[in] nth	The occurrence number.

Remarks

This call is currently implemented by executing a PL/SQL block that uses DBMS_LOB.INSTR().

Mod (OraNumber) Method

Applies To

OraNumber Object

Description

Gets the modulus from the division of the OraNumber object by operand.

Usage

OraNumber.Mod operand

Arguments

The arguments for the method are:

	Arguments	Description
	[in] operand	A Variant of type String, OraNumber, or a numeric value.

Remarks

The result of the operation is stored in the OraNumber object. There is no return value.

If operand is equal to zero, an error is raised.

MonitorForFailover Method

Applies To

OraDatabase Object

Description

Registers the failover notification handler of the application.

Usage

OraDatabase.MonitorForFailover FOSink, FOCtx

Arguments

The arguments for the method are:

	Arguments	Description
	[in] FOSink	An IDispatch interface implementing the OnFailover method which is notified in event of a failover.
	[in] FOCtx	Context-specific information that the application wants passed into the OnFailover method in the event of a failover.

Remarks

To receive failover notifications, a notification handler must be registered with the MonitorForFailover method. The notification handler must be an automation object (a class module in Visual Basic) that implements the OnFailover method.

The syntax of the method is:

Public Function OnFailover(Ctx As Variant, fo_type As Variant,fo_event as Variant, fo_OraDB as Variant)

	Variants	Description
	[in] Ctx	Passed into the MonitorForFailover method by the application. Context-sensitive information that the application wants passed in event of a failover.
	[in] fo_type	Failover type. This is the type of failover that the client has requested. The values are:
	
OO4O_FO_SESSION indicates only session failover requested.

	
OO4O_FO_SELECT indicates select failover and session failover requested.

	[in]
fo_event

	Failover event. This indicates the state of the failover. It has several possible values:
	
OO4O_FO_BEGIN indicates that failover has detected a lost connection and failover is starting.

	
OO4O_FO_END indicates successful completion of a failover.

	
OO4O_FO_ABORT indicates that a failover was unsuccessful, and there is no option of retrying.

	
OO4O_FO_ERROR indicates that a failover was unsuccessful, and gives the application the opportunity to handle the error and retry the failover. The application can retry the failover, by programming the OnFailover method to return OO4O_FO_RETRY.

	
OO4O_FO_REAUTH indicates that a user handle has been reauthenticated. This applies to the situation where a client has multiple user sessions on a single database connection. During the initial failover, only the active user session is failed over. Other sessions are failed over when the application tries to use them. This is the value passed to the callback during these subsequent failovers.

	[in] fo_OraDB	The OraDatabase object of the user session that is being failed over. Valid only when the fo_event variant is OO4O_FO_REAUTH.

Examples

Failover Notification Example

See Example: Failover Notification.

	
See Also:

"Application Failover Notifications"

MonitorStart (OraAQ) Method

Applies To

OraAQ Object

Description

Starts a monitor thread for dequeuing the messages specified.

Usage

Q.MonitorStart NotificationHandler, CallbackCtx, MsgFilterVal,MsgFilter

Arguments

The arguments for the method are:

	Arguments	Description
	[in] NotificationHandler	An IDispatch interface containing the callback method (NotifyMe) which should be notified of new messages.
	[in] CallbackCtx	Context-specific information that the application wants to pass to the NotifyMe method. This is passed into the NotifyMe method whenever a new message satisfying the user criteria is dequeued.
	[in] [optional] MsgFilterVal	A byte array containing a value for the message filter. Ignored if MsgFilter is ORAAQ_ANY.
	[in] [optional] MsgFilter	An Integer constant specifying the selection criteria for messages. Possible values for MsgFilter are:
	
ORAAQ_ANY = 0 - Invokes the callback for any message that arrives on the queue. This is the default value.

	
ORAAQ_CONSUMER = 1 - Invokes the callback when the message intended for the consumer given in the MsgFilterValue is dequeued.

	
ORAAQ_MSGID = 2 - Invokes the callback when message with the identifier specified in MsgFilterVal is dequeued.

Remarks

NotifyMe is the callback method of the notification object. The syntax of the method is:

Public Sub NotifyMe (ByVal Ctx As Variant, ByVal Msgid As Variant)

	Variants	Description
	[in] Ctx	Value passed into the MonitorStart method by the application. Context-sensitive information that the application wants to pass in when messages are dequeued.
	[in] Msgid	The message ID of the newly dequeued message. The Msgid variant is null when there is an error while monitoring.

By default, the message is passed into NotifyMe in Remove mode. The default dequeue options can be overridden by setting the properties of this instance (OraAQ).

The MonitorStart method returns ORAAQ_SUCCESS or ORAAQ_FAIL.

	
See Also:

"Monitoring Messages"

MonitorStop (OraAQ) Method

Applies To

OraAQ Object

Description

Stops the monitor thread that was started earlier.

Usage

Q.MonitorStop

Remarks

Does nothing if a monitor is not running.

	
See Also:

"Monitoring Messages"

MoveFirst, MoveLast, MoveNext, and MovePrevious Methods

Applies To

OraDynaset Object

Description

Change the cursor position to the first, last, next, or previous row within the specified dynaset. These move methods move the cursor to the next (previous, and so on) valid row, skipping rows that have been deleted.

Usage

oradynaset.MoveFirst
oradynaset.DbMoveFirst

oradynaset.MoveLast
oradynaset.DbMoveLast

oradynaset.MovePrevious
oradynaset.DbMovePrevious

oradynaset.MoveNext
oradynaset.DbMoveNext

Remarks

The data control buttons map (from left to right or from top to bottom) to the MoveFirst, MovePrevious, MoveNext, and MoveLast methods. The BOF and EOF properties are never true when using the data control buttons.

When the first or last record is current, record movement does not occur if you use the MoveFirst or MoveLast methods, respectively. You force the query to completion if you use the MoveLast method on a dynaset.

If you use the MovePrevious method and the first record is current, there is no current record and BOF is true. Using the MovePrevious method again causes an error, although BOF remains True. If you use the MoveNext method and the last record is current, there is no current record and EOF is true. Using the MoveNext method again causes an error, although EOF remains true. Note that when the dynaset is created with the ORADYN_NO_MOVEFIRST option, BOF and EOF are true whether the dynaset is empty or not.

When you open a dynaset, BOF is False and the first record is current. If a dynaset is empty, BOF and EOF are both true, and there is no current record.

If an Edit or AddNew operation is pending and you use one of the Move methods indirectly by way of the data control, then the Update method is invoked automatically, although, it can be stopped during the Validate event.

If an Edit or AddNew operation is pending and you use one of the Move methods directly without the data control, pending Edit or AddNew operations cause existing changes to be lost, although no error occurs.

Data is fetched from the database, as necessary, so performing a MoveFirst operation followed by a MoveNext operation incrementally builds the mirrored (cached) local set without requiring read-ahead of additional data. However, executing a MoveLast operation requires that the entire query be evaluated and stored locally.

When a dynaset is attached to a data control, these methods first notify the Validate event of the data control that record motion is about to occur. The Validate handler can deny the request for motion, in which case the request is ignored. If the record pointer is successfully moved, then all custom controls attached to the data control are notified automatically of the new record position.

Examples

This example demonstrates record movement within a dynaset using the MoveFirst, MoveNext, MoveLast, MovePrevious methods. Copy and paste this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

 'Declare variables
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraDynaset As OraDynaset

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Create the OraDynaset Object.
 Set OraDynaset = OraDatabase.CreateDynaset("select empno, ename from emp", 0&)

MsgBox "Employee #" & OraDynaset.Fields("empno").value & ", " & _
 OraDynaset.Fields("ename").value

 'Move to the next record and display it.
 OraDynaset.MoveNext
 MsgBox "Employee #" & OraDynaset.Fields("empno").value & ", " & _
 OraDynaset.Fields("ename").value

 'Move to the last record and display it.
 OraDynaset.MoveLast
 MsgBox "Employee #" & OraDynaset.Fields("empno").value & ", " & _
 OraDynaset.Fields("ename").value

 'Move to the previous record and display it.
 OraDynaset.MovePrevious
 MsgBox "Employee #" & OraDynaset.Fields("empno").value & ", " & _
 OraDynaset.Fields("ename").value

End Sub

	
See Also:

	
AddNew Method

	
BOF Property

	
EOF Property

	
Edit Method

	
EditMode Property

	
RecordCount Property

	
Update Method

	
Validate Event

MovePreviousn, MoveNextn, MoveRel, and MoveTo Methods

Applies To

OraDynaset Object

Description

Change the cursor position to the specified row within the specified dynaset.

Usage

oradynaset.MovePreviousn offset
oradynaset.MoveNextn offset
oradynaset.MoveRel offset
oradynaset.MoveTo offset

MoveNextn Method

Moves offset records forward.

MovePreviousn Method

Moves offset records backward.

MoveRel Method

Moves offset records relative to the current row. A positive value, represented by a plus (+) sign, moves the cursor down the table, and a negative value moves the cursor up the table.

MoveTo Method

Moves directly to row number offset.

Remarks

EOF is set when the cursor moves beyond the end of a dynaset using MoveNextn, MoveRel, or MoveTo methods. BOF is set when the cursor moves beyond the start of a dynaset using MovePreviousn, MoveRel, or MoveTo methods. The MoveNextn, MovePreviousn, and MoveTo methods accept offset as a positive integer only. The MoveRel methods accepts offset as either a positive or a negative integer.

The MoveTo rownum always gets the same row unless the row has been deleted. If the requested row has been deleted, the MoveTo method moves to the next valid row. The MoveNextn, MovePreviousn, MoveRel, and MoveTo methods do not take into account deleted rows, so be cautious when using these methods based on relative positions of row numbers.

Data Type

Long Integer

Examples

This example demonstrates the use of the MovePreviousn, MoveNextn, MoveRel, and MoveTo methods. Copy and paste this code into the definition section of a form. Then, press F5.

 Private Sub Form_Load()
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraDynaset As OraDynaset
 Dim OraFields As OraFields

 Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "SCOTT/TIGER", 0&)
 Set OraDynaset = OraDatabase.CreateDynaset("select * from emp where empno" & _
 ">=7654 and empno <= 7844 ", ORADYN_NO LANKSTRIP)
 Set OraFields = OraDynaset.Fields

 'Move to 3rd record from the first record
 OraDynaset.MoveNextn 3 'Should set EOF to true
 MsgBox OraFields("ename").Value ' Should be display SCOTT

 If OraDynaset.EOF = True Then
 MsgBox "End of the record reached"
 End If

 'Move back from the current record by the offset 2
 OraDynaset.MovePreviousn 2
 MsgBox OraFields("ename").Value ' Should be display BLAKE

 If OraDynaset.BOF = True Then
 MsgBox "Start of the record reached"
 End If

 'Move relative in the forward direction
 OraDynaset.MoveRel 2
 MsgBox OraFields("ename").Value ' Should be display SCOTT

 If OraDynaset.EOF = True Then
 MsgBox "End of the record reached"
 End If

 'Move relative in the backward direction
 OraDynaset.MoveRel -2
 MsgBox OraFields("ename").Value ' Should be display BLAKE

 If OraDynaset.BOF = True Then
 MsgBox "Start of the record reached"
 End If

 'Move to the record position 4 in the current dynaset
 OraDynaset.MoveTo 4
 MsgBox OraFields("ename").Value ' Should be display SCOTT

End Sub

Mul (OraIntervalDS) Method

Applies To

OraIntervalDS Object

Description

Multiplies the OraIntervalDS object by a multiplier.

Usage

OraIntervalDSObj.Mul multiplier

Arguments

The arguments for the method are:

	Arguments	Description
	[in] multiplier	A Variant for type numeric value or an OraNumber object to be used as the multiplier.

Remarks

The result of the operation is stored in the OraIntervalDS object, overwriting any previous value. There is no return value.

Mul (OraIntervalYM) Method

Applies To

OraIntervalYM Object

Description

Multiplies the OraIntervalYM object by a multiplier.

Usage

OraIntervalYMObj.Mul multiplier

Arguments

The arguments for the method are:

	Arguments	Description
	[in] multiplier	A Variant for type numeric value or an OraNumber object to be used as the multiplier.

Remarks

The result of the operation is stored in the OraIntervalYM object, overwriting any previous value. There is no return value.

Mul (OraNumber) Method

Applies To

OraNumber Object

Description

Multiplies the OraNumber object by operand.

Usage

OraNumber.Mul operand

Arguments

The arguments for the method are:

	Arguments	Description
	[in] operand	A Variant of type String, OraNumber, or a numeric value.

Remarks

The result of the operation is stored in the OraNumber object. There is no return value.

Neg (OraIntervalDS) Method

Applies To

OraIntervalDS Object

Description

Negates the OraIntervalDS object.

Usage

OraIntervalDSObj.Neg

Remarks

The result of the operation is stored in the OraIntervalDS object, overwriting any previous value. There is no return value.

Neg (OraIntervalYM) Method

Applies To

OraIntervalYM Object

Description

Negates the OraIntervalYM object.

Usage

OraIntervalYMObj.Neg

Remarks

The result of the operation is stored in the OraIntervalYM object, overwriting any previous value. There is no return value.

Neg (OraNumber) Method

Applies To

OraNumber Object

Description

Negates an OraNumber object.

Usage

OraNumber.Neg

Remarks

The result of the operation is stored in the OraNumber object. There is no return value.

Open (OraServer) Method

Applies To

OraDatabase Object

OraServer Object

Description

Establishes a connection to an Oracle database.

Usage

OraServer.Open serverAlias

Arguments

The arguments for the method are:

	Arguments	Description
	[in] serverAlias	A String containing the Network alias used for connecting to the database.

Remarks

If no arguments is supplied, this method attaches to a database that was detached previously.

	
See Also:

	
BeginTrans Method

	
Close Method

	
CommitTrans Method

	
CreateAQ Method

	
CreateCustomDynaset Method

	
CreateTempBLOB/CLOB Method

	
CreateDynaset Method

	
CreateOraObject (OraDatabase) Method

	
Describe Method

	
ExecuteSQL Method

	
FetchOraRef Method

	
LastServerErrReset Method

	
MonitorForFailover Method

	
RemoveFromPool Method

Open (OraBFILE) Method

Applies To

OraBFILE Object

Description

Opens a BFILE.

Usage

OraBfile.Open

Remarks

This method should be called before accessing the BFILE value.

OpenDatabase Method

Applies To

OraSession Object

OraServer Object

Description

Establishes a user session to the database. It creates a new OraDatabase object using the given database name, connection string, and specified options.

Usage

Set oradatabase = orasession.OpenDatabase(database_name,connect_string, options) Set oradatabase = oraserver.OpenDatabase(connect_string, options)

Arguments

The arguments for the method are:

	Arguments	Description
	database_name	The Oracle Network specifier used when connecting the data control to a database.
	connect_string	The user name and password to be used when connecting to an Oracle database.
	options	A bit flag word used to set the optional modes of the database. If options = 0, the default mode settings apply. The following table shows the possible modes, which can be combined by adding their respective values.

Constants

The following table lists constants and values for the options flag.

	Constant	Value	Description
	ORADB_DEFAULT	&H0&	Visual Basic Mode (Default):
Field (column) values not explicitly set are set to Null when using the AddNew or Edit method. The Null values override any database column defaults. Wait on row locks when using Edit ("SELECT...FOR UPDATE").

Nonblocking SQL functionality is not enabled.

	ORADB_ORAMODE	&H1&	Oracle Mode:
Lets Oracle Database set the default field (column) values when using the AddNew method. The Oracle default column values are fetched again from database immediately after an insert or add operation.

Note: If you use triggers, fetch the data again using the full Oracle Mode.

	ORADB_NOWAIT	&H2&	Lock No-Wait Mode:
Does not wait on row locks. When you use the Edit method to update a row that is locked by another user or process, Lock No-Wait mode results in an immediate return of an error code.

Note: This option only applies to the OraDynaset object. It has no effect on OraSQLStmt objects or ExecuteSQL calls. It only raises an error in the case of a locked row.

	ORADB_NO_REFETCH	&H4&	Oracle Mode (No Refetch):
Performs like the Oracle Mode, but does not refetch data to the local cache. This boosts performance.

Note: Use the No Refetch mode only when you intend to insert rows without editing them, because database column defaults cause inconsistencies between database data and the local cache. Attempting to edit after inserting in this mode causes a Data has been modified (4119) error.

	ORADB_NONBLK	&H8&	Nonblocking Mode:
Turns on Nonblocking mode on SQL statement execution. Nonblocking mode affects the SQL statements processed using the ExecuteSQL, CreateDynaset, or CreateSQL methods.

Note: This feature has been deprecated.

	ORADB_ENLIST_IN_MTS	&H10&	Enlist in MTS Mode:
Determine whether the OraDatabase object enlists in the Microsoft Transaction Server (MTS) mode.

	ORADB_ENLIST_FOR_ CALLLBACK	&H20&	Enlist For Callbacks Mode:
Turn on the event notification. This mode has to be enabled to receive Failover Notifications.

These values can be found in the oraconst.txt file. For creating a valid database alias, see the Oracle Net Services Administrator's Guide.

Examples of valid connect_string arguments include:

	
"scott/tiger"

	
"system/manager"

	
"/"

Remarks

An OraConnection object is created automatically and appears within the OraConnections collection of the session. Opening a database has the effect of opening a connection but does not perform any SQL actions.

One possible connection error that could be returned is:

ORA-28001 "the password has expired"

The user can change the password using the ChangePassword method.

Examples

This example demonstrates how to programmatically create a dynaset and all of the underlying objects. Copy and paste this code into the definition section of a form with text boxes named txtEmpNo and txtEName. Then, press F5.

Sub Form_Load ()

 'Declare variables
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraDynaset As OraDynaset

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Create the OraDynaset Object.
 Set OraDynaset = OraDatabase.CreateDynaset("select empno, ename from emp", 0&)

 'Display the first record.
 txtEmpNo = OraDynaset.Fields("empno").value
 txtEName = OraDynaset.Fields("ename").value

End Sub

	
See Also:

	
"Microsoft Transaction Server Support"

	
ChangePassword (OraServer) Method

	
"Application Failover Notifications"

	
AddNew Method

	
Edit Method

	
ExecuteSQL Method

	
ChangePassword (OraSession) Method

	
OraConnection Object

	
OraConnections Collection

OriginalItem Method

Applies To

OraFields Collection

Description

Returns the OraField object based on the original column name used in the SELECT statement in the dynaset. Not available at design time and read-only at run time.

Usage

set OraField = OraFields.OriginalItem(field_index)
set OraField = OraFields.OriginalItem(original_name)

Arguments

The arguments for the method are:

	Arguments	Description
	field_index	Field index of the original column name.
	original_name	Original field name specified in the SQL statement.

Remarks

This is property is useful when a SQL statement contains 'schema.table.col' as the Name of the field, and retrieves the field object specific to that original name.

Examples

The following example shows the use of the OriginalItem method. Copy and paste this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

 'Declare variables
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraDynaset As OraDynaset
 Dim OraFields As OraFields

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

 Set OraDynaset = OraDatabase.CreateDynaset("select scott.emp.deptno," & _
 "dept.deptno from scott.emp, scott.dept where dept.deptno = emp.deptno", 0&)
 'Get the Field collection object
 Set OraFields = OraDynaset.Fields

 'get the original field object. Returns "scott.emp.deptno"

 MsgBox OraField.OriginalName

 Set OraField = OraFields.OriginalItem(1)

 'Returns "dept.deptno"
 MsgBox OraField.OriginalName

End Sub

OriginalName

Applies To

OraField Object

Description

Returns the original column name used in the SELECT statement in the dynaset (as opposed to the name of the field as it appears on the server returned by the Name property). Not available at design time and read-only at run time.

Usage

field_name = Orafield.OriginalName

Remarks

The orafield.OriginalName method returns the name of the specified OraField object. This returns the Original column name specified in the SQL statement during dynaset creation. This property is useful when a SQL statement contains 'schema.table.col' as the Name of the field. It enables duplicate column names to be referenced. (Duplicate column names can be avoided by using aliases in the SQL statement.)

Examples

The following example shows the use of the OriginalName property. Copy and paste this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

 'Declare variables
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraDynaset As OraDynaset
 Dim OraFields As OraFields

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

 Set OraDynaset = OraDatabase.CreateDynaset("select scott.emp.deptno," & _
 "dept.deptno from scott.emp, scott.dept where dept.deptno = emp.deptno", 0&)

 Set OraFields = OraDynaset.Fields

 'Returns "DEPTNO"
 MsgBox OraFields(0).Name

 'Returns "scott.emp.deptno"
 MsgBox OraFields(0).OriginalName

 'Returns "dept.deptno"
 MsgBox OraFields(1).OriginalName

End Sub

Power (OraNumber) Method

Applies To

OraNumber Object

Description

Raises the OraNumber object to the power of the operand.

Usage

OraNumber.Power operand

Arguments

The arguments for the method are:

	Arguments	Description
	[in] operand	A Variant of type String, OraNumber, or a numeric value.

Remarks

The result of the operation is stored in the OraNumber object. There is no return value.

Put_Value Method

Applies To

OraParamArray Object

Description

Inserts values into the table parameter.

Usage

OraParamArray.Put_Value(value, index)

Arguments

The arguments for the method are:

	Arguments	Description
	[in] value	A Variant representing the value to insert.
	[in] index	An Integer representing the index value of the object.

Remarks

This method should be used to insert a value before accessing a row in a table. A row does not contain a valid value until a row is assigned a value. Any reference to an unassigned row in the table raises an OLE Automation error.

The value argument can be an Oracle Database 10g object, such as an OraBLOB. For Put_Value, a copy of the object is made at that point in time, and Get_Value must be accessed to obtain a new object that refers to that index value. For example, if iotype is ORATYPE_BOTH and an OraBLOB obtained from a dynaset is passed in as the input value, Get_Value needs to be called after the SQL has been executed to obtain the newly updated output value of the ParamaterArray.

Similar to a dynaset, the object obtained from ParamaterArray Get_Value method always refers to the latest value for that ParamaterArray index. The Visual Basic value Null can also be passed as a value. The Visual Basic value EMPTY can be used for BLOB and CLOB to indicate an empty LOB, and for OBJECT, VARRAY and NESTED TABLE to indicate an object whose attributes are all Null.

When binding to RAW columns (ServerType ORATYPE_RAW_BIN) value should be a byte array.

Read (OraLOB/BFILE) Method

Applies To

OraBLOB, OraCLOB Objects

OraBFILE Object

Description

Reads into a buffer a specified portion of a BLOB, CLOB, or BFILE value. Returns the total amount of data read.

Usage

amount_read = OraBlob.Read buffer, chunksize
amount_read = OraClob.Read buffer, chunksize
amount_read = OraBfile.Read buffer, chunksize

Arguments

The arguments for the method are:

	Arguments	Description
	[out] buffer	Variant of type character array for OraCLOB, Variant of type byte array for OraBLOB, or OraBFILE from which the piece is read.
	[in] [optional] chunksize	An Integer specifying the amount to be read. Default value is the size of the LOB. In bytes for OraBLOB or OraBFILE; characters for OraCLOB.
	[out] amount_read	An Integer representing the total amount of data read. In bytes for OraBLOB or OraBFILE; characters for OraCLOB.

Remarks

Reads the LOB or BFILE data from the offset specified by the Offset property. For multiple piece read operation, the PollingAmount property must be set to the value of the total amount of data to be read, and the Status property must be checked for the success of each piece operation.

	
Note:

When reading a portion of a LOB, it is recommended that you set the PollingAmount property, rather than using the chunksize parameter. This avoids the possibility of raising an error if the entire LOB is not read before to executing another LOB method.

Examples

Be sure that you have installed the OraLOB Schema Objects as described in "Schema Objects Used in LOB Data Type Examples" .

Example: Multiple-Piece Read of a LOB

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset
Dim PartImage As OraBlob
Dim chunksize As Long
Dim AmountRead As Long
Dim buffer As Variant
Dim buf As String

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb","scott/tiger", 0&)

'Create the OraDynaset Object.
Set OraDynaset = OraDatabase.CreateDynaset("select * from part", 0&)

'Get OraBlob from OraDynaset
Set PartImage = OraDynaset.Fields("part_image").Value

'Set Offset and PollingAmount property for piecewise Read operation
PartImage.offset = 1
PartImage.PollingAmount = PartImage.Size
chunksize = 50000

'Get a free file number
FNum = FreeFile

'Open the file
Open "image.dat" For Binary As #FNum

'Do the first read on PartImage, buffer must be a variant
AmountRead = PartImage.Read(buffer, chunksize)

'put will not allow Variant type
buf = buffer
Put #FNum, , buf

' Check for the Status property for polling read operation
While PartImage.Status = ORALOB_NEED_DATA
 AmountRead = PartImage.Read(buffer, chunksize)
 buf = buffer
 Put #FNum, , buf
Wend

Close FNum

Example: Single-Piece Read of a LOB

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim PartDesc As OraClob
Dim AmountRead As Long
Dim buffer As Variant
Dim buf As String

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'Add PartDesc as an Output parameter and set its initial value.
OraDatabase.Parameters.Add "PartDesc", Null, ORAPARM_OUTPUT
OraDatabase.Parameters("PartDesc").ServerType = ORATYPE_CLOB

'Execute the statement returning 'PartDesc'
OraDatabase.ExecuteSQL ("BEGIN select part_desc into :PARTDESC from" & _
 "part where part_id = 1 for update NOWAIT; END;")

'Get 'PartDesc' from Parameters collection
Set PartDesc = OraDatabase.Parameters("PartDesc").Value

'Get a free file number
FNum = FreeFile

'Open the file.

Open "Desc.Dat" For Binary As #FNum

'Read entire CLOB value, buffer must be a Variant
AmountRead = PartDesc.Read(buffer)

'put will not allow Variant type
buf = buffer
Put #FNum, , buf

Close FNum

	
See Also:

	
Offset (OraLOB/BFILE) Property

	
PollingAmount Property

	
Status (OraLOB/BFILE) Property

ReadChunk Method

Applies To

OraField Object

Description

Returns a String containing the bytes of all or a portion of a LONG or LONG RAW field.

Usage

data_string = orafield.ReadChunk(offset, numbytes, bytesread)

Arguments

The arguments for the method are:

	Arguments	Description
	offset	The number of bytes in the field to skip before copying data.
	numbytes	The number of bytes to copy.
	bytesread	The number of bytes read.

Remarks

The ReadChunk method behaves like the GetChunk method, but it returns the actual number of bytes read in the bytesread argument.

	
See Also:

	
"Migration from LONG RAW to LOB or BFILE"

	
GetChunk Method

Refresh Method

Applies To

OraDynaset Object

OraSQLStmt Object

Description

Forces an immediate update of the dynaset given the current Connect, DatabaseName, and SQL properties.

Forces an immediate update of the dynaset by reexecuting the SQL statement in the SQL statement object.

Usage

oradynaset.Refresh
oradynaset.DbRefresh
orasqlstmt.Refresh
orasqlstmt.DbRefresh

Remarks

This method cancels all edit operations (Edit and AddNew methods), executes the current contents of the SQL statement buffer, and moves to the first row of the resulting dynaset. Any dynaset objects created before issuing the Refresh method, including bookmarks, record counts, and field collections, are considered invalid. The OraConnection and OraSession objects associated with the previous dynaset remain unchanged.

Performing a refresh operation with this method can be more efficient than refreshing with a data control. This method also lets you execute a modified SQL statement without creating a new dynaset or OraSQLStmt object.

The preferred refresh methods when changing parameter values are oradynaset.Refresh or orasqlstmt.Refresh, because required database operations are minimized (SQL parsing, binding, and so on). This can improve performance when only parameter values have changed.

If you call the Refresh method after assigning an invalid SQL statement to the SQL property of a dynaset or SQL statement object, these objects remain valid. However, a dynaset in this state does not permit any row or field operations. Bound controls also exhibit unusual behaviors similar to those that occur when the standard Visual Basic data control RecordSource is set to an invalid SQL statement at run time and then refreshed.

You can regain the normal dynaset and SQL statement operations by refreshing the object with a valid SQL statement. The Refresh method treats Null or empty SQL statements as invalid.

Examples

Refresh Method Example (OraDynaset)

This example demonstrates the use of parameters, the Refresh method, and the SQL property to restrict selected records. Copy and paste this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

 'Declare variables
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraDynaset As OraDynaset

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Create a parameter with an initial value.
 OraDatabase.Parameters.Add "job", "MANAGER", 1

 'Create the OraDynaset Object.
 Set OraDynaset =OraDatabase.CreateDynaset("select * from emp where job=:job",0&)

 'Notice that the SQL statement is NOT modified.
 MsgBox OraDynaset.SQL

 'Currently, OraDynaset only contains employees whose job is MANAGER.
 'Change the value of the job parameter.

 OraDatabase.Parameters("job").Value = "SALESMAN"

 'Refresh the dynaset.
 OraDynaset.Refresh

 'Currently, OraDynaset only contains employees whose job is SALESMAN.
 'Notice that the SQL statement is NOT modified.
 MsgBox OraDynaset.SQL

 'Remove the parameter.
 OraDatabase.Parameters.Remove ("job")

 End Sub

Refresh Method Example (OraSQLStmt)

This example demonstrates the use of parameters, the Refresh method, and the SQL property for the . object. Copy and paste this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

 'Declare variables
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraSqlStmt As OraSQLStmt

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

 OraDatabase.Parameters.Add "EMPNO", 7369, 1
 OraDatabase.Parameters("EMPNO").ServerType = 2 'ORATYPE_NUMBER
 OraDatabase.Parameters.Add "ENAME", 0, 2
 OraDatabase.Parameters("ENAME").ServerType = 1 'ORATYPE_VARCHAR2

 Set OraSqlStmt = OraDatabase.CreateSQL("Begin Employee.GetEmpName (:EMPNO," & _
 ":ENAME); end;", 0&)

 'Notice that the SQL statement is NOT modified.
 MsgBox OraSqlStmt.SQL

 'Should display SMITH
 MsgBox OraDatabase.Parameters("ENAME").Value

 'Change the value of the empno parameter.
 OraDatabase.Parameters("EMPNO").Value = 7499

 'Refresh the dynaset.
 OraSqlStmt.Refresh

 'Should display ALLEN
 MsgBox OraDatabase.Parameters("ENAME").Value

 'Notice that the SQL statement is NOT modified.
 MsgBox OraSqlStmt.SQL

 'Remove the parameter.
 OraDatabase.Parameters.Remove ("job")

 End Sub

	
See Also:

	
AddNew Method

	
Connect Property

	
CreateDynaset Method

	
DatabaseName Property

	
Edit Method

	
OraConnection Object

	
OraDynaset Object

	
OraSession Object

	
SQL Property

	
RecordSource Property

Refresh (OraRef) Method

Applies To

OraRef Object

Description

Refreshes the referenceable object from the most current database snapshot.

Usage

OraRef.Refresh

Register Method

Applies To

OraSubscription Object

Description

Activates the subscription.

Usage

orasubscription.Register

Remarks

When the specified database event is fired, the NotifyDBevents method of the dbevent handler that was passed in while creating this subscription is invoked.

Examples

See "Example: Registering an Application for Notification of Database Events" for a complete example.

	
See Also:

	
"Database Events"

	
OraSubscription Object

	
OraSubscriptions Collection

Remove Method

Applies To

OraParameters Collection

Description

Removes a parameter from the OraParameters collection.

Usage

oraparameters.Remove(member_name)

Arguments

The arguments for the method are:

	Arguments	Description
	member_name	A Variant specifying an integer subscript from 0 to Count 1, or the parameter name.

Remarks

Instead of repeatedly removing and adding unwanted parameters, use the AutoBindDisable and AutoBindEnable methods.

For an OraParameter of type ORATYPE_CURSOR, this method destroys the dynaset object associated with the cursor, and clears the local cache temporary files.

Examples

See "Example: ExecuteSQL".

	
See Also:

	
Add Method

	
AutoBindDisable Method

	
AutoBindEnable Method

	
OraDatabase Object

	
OraParameter Object

	
OraParameters Collection

Remove (OraSubscriptions Collection) Method

Applies To

OraSubscriptions Collection

Description

Removes a subscription from the OraSubscriptions collection.

Usage

orasubscriptions.Remove(member)

Arguments

The arguments for the method are:

	Arguments	Description
	member	A Variant specifying an integer subscript from 0 to Count, or the subscription name.

Remarks

This method unregisters (removes) the subscription if it is active, and destroys the subscription associated with it.

	
See Also:

	
Add (OraSubscriptions Collection) Method

	
OraSubscription Object

	
OraSubscriptions Collection

RemoveFromPool Method

Applies To

OraDatabase Object

Description

Removes the OraDatabase object from the pool.

Usage

OraDatabase.RemoveFromPool

Remarks

This method applies only to those OraDatabase objects that are retrieved from the pool using the GetDatabaseFromPool method.

No exceptions or errors are raised if the OraDatabase object is not a member the pool.

This method is useful for removing OraDatabase objects from the pool whose connections are no longer valid.

	
See Also:

	
CreateDatabasePool Method

	
DestroyDatabasePool Method

	
GetDatabaseFromPool Method

ResetTrans Method

Applies To

OraConnection Object

OraSession Object

Description

Unconditionally rolls back all transactions and clears the transaction mode initiated by BeginTrans method.

Usage

oraconnection.ResetTransorasession.ResetTrans

Remarks

This method does not generate events or produce errors. Because the ResetTrans method does not generate events, you cannot cancel the ResetTrans method in a Validate event, as you can with a rollback or commit operation.

Note: If an OraDatabase object has been enlisted with Microsoft Transaction Server (MTS) and is part of a global MTS transaction, this method has no effect.

Examples

This example demonstrates the use of the BeginTrans and ResetTrans methods to group a set of dynaset edits into a single transaction. Copy and paste this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

'Declare variables
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraDynaset As OraDynaset

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
'Create the OraDynaset Object.
Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)

 'Start Transaction processing.
 OraDynaset.Session.BeginTrans

 'Traverse until EOF is reached, setting each employee's salary to zero.
 Do Until OraDynaset.EOF
 OraDynaset.Edit
 OraDynaset.Fields("sal").value = 0
 OraDynaset.Update
 OraDynaset.MoveNext
 Loop
 MsgBox "All salaries set to ZERO."

 'Currently, the changes have NOT been committed to the database.
 'End Transaction processing.
 'Using ResetTrans means the rollback cannot be canceled in the Validate event.
 OraDynaset.Session.ResetTrans
 MsgBox "Salary changes rolled back."

End Sub

	
See Also:

	
BeginTrans Method

	
CommitTrans Method

	
OraSession Object

	
Rollback Method

	
Microsoft Transaction Server Support

	
Validate Event

Rollback Method

Applies To

OraConnection Object

OraDatabase Object

OraSession Object

Description

Ends the current transaction and rolls back all pending changes to the database.

Usage

oraconnection.Rollback
orasession.Rollback
oradatabase.Rollback

Remarks

When this method is invoked, all OraDynaset objects that share the specified session or connection are given the opportunity to cancel the rollback request. If they do not cancel the request, they are advised when the rollback succeeds.

This feature is useful primarily for dynasets that are created as part of an Oracle Data Control operation. For these dynasets, the Validate event is sent to allow them to cancel the rollback request.

	
OraConnection and OraDatabase:

The Rollback method rolls back all pending transactions within the specified connection. This method has no effect if a transaction has not begun. When a session-wide transaction is in progress, you can use this call to prematurely roll back the transactions for the specified connection.

	
OraSession:

The Rollback method rolls back all pending transactions within the specified session. The Rollback method is valid only when a transaction has been started. If a transaction has not been started, the use of the Rollback method results in an error.

	
Note:

If an OraDatabase object has been enlisted with Microsoft Transaction Server (MTS) and is part of a global MTS transaction, this method has no effect.

Examples

This example demonstrates the use of the BeginTrans and Rollback methods to group a set of dynaset edits into a single transaction. Copy and paste this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

'Declare variables
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraDynaset As OraDynaset

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
'Create the OraDynaset Object.
Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)

 'Start Transaction processing.
 OraDynaset.Session.BeginTrans

 'Traverse until EOF is reached, setting each employee's salary to zero.
 Do Until OraDynaset.EOF
 OraDynaset.Edit
 OraDynaset.Fields("sal").value = 0
 OraDynaset.Update
 OraDynaset.MoveNext
 Loop
 MsgBox "All salaries set to ZERO."

 'Currently, the changes have NOT been committed to the database.
 'End Transaction processing.
 OraDynaset.Session.Rollback
 MsgBox "Salary changes rolled back."

End Sub

	
See Also:

	
AutoCommit Property

	
BeginTrans Method

	
CommitTrans Method

	
OraSession Object

	
OraConnection Object

	
ResetTrans Method

	
"Microsoft Transaction Server Support"

	
Validate Event

Round (OraNumber) Method

Applies To

OraNumber Object

Description

Rounds the OraNumber object to the specified decimal place.

Usage

OraNumber.Power decplaces

Arguments

The arguments for the method are:

	Arguments	Description
	[in] decplaces	An Integer specifying the number of digits to the right of the decimal point from which to round. Negative values are allowed and signify digits to the left of the decimal point.

Remarks

The result of the operation is stored in the OraNumber object. There is no return value.

SetPi (OraNumber) Method

Applies To

OraNumber Object

Description

Sets an OraNumber object to Pi.

Usage

OraNumber.SetPi

Remarks

The result of the operation is stored in the OraNumber object. There is no return value.

Sin (OraNumber) Method

Applies To

OraNumber Object

Description

Calculates the sine of an OraNumber object given in radians.

Usage

OraNumber.Sin

Remarks

The result of the operation is stored in the OraNumber object. There is no return value.

Sqrt (OraNumber) Method

Applies To

OraNumber Object

Description

Calculates the square root of an OraNumber object.

Usage

OraNumber.Sqrt

Remarks

The result of the operation is stored in the OraNumber object. There is no return value.

This method returns an error if the OraNumber object is less than zero.

Sub (OraIntervalDS) Method

Applies To

OraIntervalDS Object

Description

Subtracts an argument from the OraIntervalDS object.

Usage

OraIntervalDSObj.Sub operand

Arguments

The arguments for the method are:

	Arguments	Description
	[in] operand	A Variant of type String, a numeric value, or an OraIntervalDS, object to be subtracted.

Remarks

The result of the operation is stored in the OraIntervalDS object, overwriting any previous value. There is no return value.

If operand is a Variant of type String, it must be in the following format: [+/-] Day HH:MI:SSxFF.

If operand is a numeric value, the value provided should represent the total number of days that the constructed OraIntervalDS object represents.

Sub (OraIntervalYM) Method

Applies To

OraIntervalYM Object

Description

Subtracts an argument from the OraIntervalYM object.

Usage

OraIntervalYMObj.Sub operand

Arguments

The arguments for the method are:

	Arguments	Description
	[in] operand	A Variant of type String, a numeric value, or an OraIntervalYM object to be subtracted.

Remarks

The result of the operation is stored in the OraIntervalYM object, overwriting any previous value. There is no return value.

If operand is a Variant of type String, it must be in the following format: [+/-] YEARS-MONTHS.

If operand is a numeric value, the value provided should represent the total number of years that the constructed OraIntervalYM object represents.

Sub (OraNumber) Method

Applies To

OraNumber Object

Description

Subtracts a numeric argument from the OraNumber object.

Usage

OraNumber.Sub operand

Arguments

The arguments for the method are:

	Arguments	Description
	[in] operand	A Variant of type String, type OraNumber, or a numeric value.

Remarks

The result of the operation is stored in the OraNumber object. There is no return value.

Tan (OraNumber) Method

Applies To

OraNumber Object

Description

Calculates the tangent of an OraNumber object given in radians.

Usage

OraNumber.Tan

Remarks

The result of the operation is stored in the OraNumber object. There is no return value.

ToDate Method

Applies To

OraTimeStamp Object

OraTimeStampTZ Object

Description

Returns a copy of the Date type from an OraTimeStamp or OraTimeStampTZ object.

Usage

Set date = OraTimeStampObj.ToDate
Set date = OraTimeStampTZObj.ToDate

Remarks

This method returns the datetime values in the Date data type. As a result, the date-time values can be adjusted if they fall outside the range allowed by a VB date.

	
For an OraTimeStamp object:

Returns a new Date object with the same date-time values as the current OraTimeStamp object, but the nanosecond portion is truncated.

	
For an OraTimeStampTZ object:

Returns a new Date object with the same date-time values as the current OraTimeStampTZ object, but the nanosecond portion and time zone portion are truncated.

Examples

Using the OraTimeStamp Object

Dim OraTimeStamp As OraTimeStamp

...
'Create OraTimeStamp using a string
Set OraTimeStamp = OraSession.CreateOraTimeStamp("1999-APR-29 12:10:23.444 AM", _
 "YYYY-MON-DD HH:MI:SS.FF AM")

' returns a Date type with date value set to "1999-APR-29 12:10:23 AM"
' note that the fractional part is dropped
Set date = OraTimeStamp.ToDate

Using the OraTimeStampTZ Object

Dim OraTimeStampTZ As OraTimeStampTZ

...
'Create OraTimeStampTZ using a string
Set OraTimeStampTZ = OraSession.CreateOraTimeStampTZ("2000-12-28" & _
 "12:10:23.444 -07:00", "YYYY-MM-DD HH:MI:SS.FF TZH:TZM")

'returns a Date type with date value set to "2000-12-28 12:10:23"
'note that Time Zone and nanosecond portions are dropped
Set date = OraTimeStampTZ.ToDate

ToOraNumber (OraIntervalDS) Method

Applies To

OraIntervalDS Object

Description

Returns an OraNumber object containing a value that represents the total number of days that the OraIntervalDS object specifies.

Usage

Set OraNumberObj = OraIntervalDSObj.ToOraNumber

ToOraTimeStamp Method

Applies To

OraTimeStampTZ Object

Description

Returns a copy of the OraTimeStamp object that has the date-time value in the specified time zone of the current OraTimeStampTZ object.

Returns a copy of the OraTimeStamp object from an OraTimeStampTZ object.

Usage

Set OraTimeStampObj = OraTimeStampTZObj.ToOraTimeStamp

Remarks

Returns a new OraTimeStamp object that has the date-time values in the specified time zone of the current OraTimeStampTZ object.

Examples

Dim OraTimeStampTZ As OraTimeStampTZ

...
'Create OraTimeStampTZ using a string
Set OraTimeStampTZ = OraSession.CreateOraTimeStampTZ("2000-12-28" & _
 "12:10:23.444 -07:00", "YYYY-MM-DD HH:MI:SS.FF TZH:TZM")

'returns a new OraTimeStamp object with date value equal to
' "2000-12-28 12:10:23.444"
'note that Time Zone portion is dropped
Set OraTimeStamp = OraTimeStampTZ.ToOraTimeStamp

ToOraTimeStampLTZ Method

Applies To

OraTimeStampTZ Object

Description

Returns a copy of the OraTimeStamp object that has the date-time value normalized to the session time zone of the current OraTimeStampTZ object.

Usage

Set OraTimeStampObj = OraTimeStampTZObj.ToOraTimeStampLTZ

Remarks

Returns a new OraTimeStamp object that has the date-time values normalized to the session time zone of the current OraTimeStampTZ object.

Examples

Dim OraTimeStampTZ As OraTimeStampTZ

...
'Create OraTimeStampTZ using a string
Set OraTimeStampTZ = OraSession.CreateOraTimeStampTZ("2003-APR-29" & _
 "12:00:00 -07:00", "YYYY-MON-DD HH:MI:SS TZH:TZM")

'Assuming that the Session Time Zone is "-08:00"
'returns a new OraTimeStamp object with date value normalized to
'session Time Zone, "2003-APR-29 11:00:00"

Set OraTimeStamp = OraTimeStampTZ.ToOraTimeStampLTZ
...

ToOraTimeStampTZ Method

Applies To

OraTimeStamp Object

Description

Returns a copy of the OraTimeStampTZ object from an OraTimeStamp object.

Usage

Set OraTimeStampTZObj = OraTimeStampObj.ToOraTimeStampTZ

Remarks

Returns a new OraTimeStampTZ object with the same date-time values as the current OraTimeStamp object. The time zone information in the returned OraTimeStampTZ object is set to the session time zone.

Examples

Dim OraTimeStamp As OraTimeStamp

...
'Create OraTimeStamp using a string
Set OraTimeStamp = OraSession.CreateOraTimeStamp("1999-APR-29" & _
 "12:10:23.444 AM", "YYYY-MON-DD HH:MI:SS.FF AM")

' assuming that the session Time Zone is "-07:00" returns a new
' OraTimeStampTZ object with date value equal to "1999-APR-29 12:10:23 -07:00"
Set OraTimeStampTZ = OraTimeStamp.ToOraTimeStampTZ

ToUniversalTime Method

Applies To

OraTimeStampTZ Object

Description

Returns a copy of the OraTimeStampTZ object that has the date-time value normalized to Coordinated Universal Time (UTC) of the current OraTimeStampTZ object.

Usage

Set OraTimeStampTZObj1 = OraTimeStampTZObj.ToUniversalTime

Remarks

Returns a new OraTimeStampTZ object that has the date-time values normalized to the UTC of the current OraTimeStampTZ object.

	
Note:

UTC was formerly known as Greenwich Mean Time.

Examples

Dim OraTimeStampTZ As OraTimeStampTZ
Dim OraTimeStampTZ_UTC As OraTimeStampTZ
...
'Create OraTimeStampTZ using a string
Set OraTimeStampTZ = OraSession.CreateOraTimeStampTZ("2003-APR-29 " & _
 "12:00:00 -07:00", "YYYY-MON-DD HH:MI:SS TZH:TZM")

'returns a new OraTimeStampTZ object with date value normalized to
'UTC time, "2003-APR-29 19:00:00 00:00"
Set OraTimeStampTZ_UTC = OraTimeStampTZ.ToUniversalTime
...

Trim (OraCollection) Method

Applies To

OraCollection Object

Description

Trims a given number of elements from the end of the collection.

Usage

OraCollection.Trim size

Arguments

The arguments for the method are:

	Arguments	Description
	[in] size	An Integer specifying the number of elements to trim.

Remarks

The elements are removed from the end of the collection. An error is returned if the size is greater than the current size of the collection.

Examples

The following example illustrates the Trim method. Before running the sample code, make sure that you have the necessary data types and tables in the database. See "Schema Objects Used in OraCollection Examples" .

Example: Trim Method for the OraCollection Object

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim EnameList as OraCollection

'create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from department
set OraDynaset = OraDatabase.CreateDynaset("select * from department", 0&)

'retrieve a Enames column from Department.
'Here Value property of OraField object returns EnameList OraCollection
set EnameList = OraDynaset.Fields("Enames").Value

'display the size of the collection
msgbox EnameList.Size

'Trim the EnameList collection by one. Before that row level
 'lock should be obtained

OraDynaset.Edit
EnameList.Trim 1
OraDynaset.Update

'display the new size of the collection
msgbox EnameList.Size

Trim (OraLOB) Method

Applies To

OraBLOB, OraCLOB Objects

Description

Trims or truncates the LOB value to shorter length.

Usage

OraBlob.Trim NewLen
OraClob.Trim NewLen

Arguments

The arguments for the method are:

	Arguments	Description
	[in] NewLen	An Integer specifying the new length of the LOB value; must be less than or equal to the current length.

Remarks

Either a row-level lock or object-level lock should be obtained before calling this method.

	
Note:

When manipulating LOBs using LOB methods, such as the Write and CopyFromFile, the LOB object is not automatically trimmed if the length of the new data is shorter than the old data. Use the Trim (OraLOB) method to shrink the LOB object to the size of the new data.

Trunc (OraNumber) Method

Applies To

OraNumber Object

Description

Truncates an Oracle number at a specified decimal place.

Usage

OraNumber.Trunc decplaces

Arguments

The arguments for the method are:

	Arguments	Description
	[in] decplaces	An Integer specifying the number of digits to the right of the decimal point from which to truncate. Negative values are allowed and signify digits to the left of the decimal point.

Remarks

The result of the operation is stored in the OraNumber object. There is no return value.

Unregister Method

Applies To

OraSubscription Object

Description

Unregisters this subscription, which turns off notifications on the specific database event.

Usage

orasubscription.UnRegister

Remarks

Unregistering a subscription ensures that the user does not receive notifications related to that subscription or database event in the future. If the user wants to resume notification, then the only option is to re-register the subscription.

Examples

Registering an Application for Notification of Database Events Example

See "Example: Registering an Application for Notification of Database Events".

	
See Also:

	
"Database Events"

	
OraSubscription Object

	
OraSubscriptions Collection

Update Method

Applies To

OraDynaset Object

Description

Saves the copy buffer to the specified dynaset.

Usage

oradynaset.Update
oradynaset.DbUpdate

Remarks

The Update method completes an AddNew or Edit operation and immediately commits changes to the database unless a BeginTrans operation is pending for the session.

Once the Update method is called on a given row in a dynaset in a global transaction (that is, a BeginTrans operation is issued), locks remain on the selected rows until a CommitTrans or Rollback method is called.

The mirrored data image is also updated so that the query does not have to be reevaluated to continue browsing and updating data. The method used for updating the mirror image is subject to the options flag that was passed to the OpenDatabase method that created the OraDatabase object of this dynaset.

If this dynaset is attached to a data control, then the Validate event of the data control code may optionally cancel the update request. If the update completes, then all bound controls associated with the dynaset are notified of the update so they can reflect the data changes automatically.

Examples

This example demonstrates the use of AddNew and Update methods to add a new record to a dynaset. Copy and paste this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

'Declare variables
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraDynaset As OraDynaset

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'Create the OraDynaset Object.
Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)

'Begin an AddNew.
OraDynaset.AddNew

'Set the field(column) values.
OraDynaset.Fields("EMPNO").Value = "1000"
OraDynaset.Fields("ENAME").Value = "WILSON"
OraDynaset.Fields("JOB").Value = "SALESMAN"
OraDynaset.Fields("MGR").Value = "7698"
OraDynaset.Fields("HIREDATE").Value = "19-SEP-92"
OraDynaset.Fields("SAL").Value = 2000
OraDynaset.Fields("COMM").Value = 500

OraDynaset.Fields("DEPTNO").Value = 30

'End the AddNew and Update the dynaset.
OraDynaset.Update

End Sub

	
See Also:

	
AddNew Method

	
Edit Method

	
OpenDatabase Method

	
OraDatabase Object

	
Validate Event

Update (OraRef) Method

Applies To

OraRef Object

Description

Flushes the modified referenceable object to the database.

Usage

OraRef.Update

Remarks

The Update method completes the Edit operation and commits the changes to the database unless a BeginTrans operation is pending for the session.

Examples

The following example updates the attributes of the PERSON referenceable object in the database. Before running the sample code, make sure that you have the necessary data types and tables in the database. See "Schema Objects Used in the OraObject and OraRef Examples".

Updating Attribute Values: Dynaset Example

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim Person as OraRef

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from customers
set OraDynaset = OraDatabase.CreateDynaset("select * from customers", 0&)

'retrieve a aperson column from customers. Here Value property of OraField
'object returns Person OraRef
set Person = OraDynaset.Fields("aperson").Value

'locks the Person object in the server for modifying its attributes
Person.Edit
 Person.Name = "Eric"
 Person.Age = 35

'Update method flushes the modified referenceable object in the server
Person.Update

Updating Attribute Values: Parameter Example

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim Person as OraRef

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'create an OraParameter object represent Address object bind Variable
OraDatabase.Parameters.Add "PERSON", Null, ORAPARM_OUTPUT, ORATYPE_REF,"PERSON"

'execute the sql statement which selects person from the customers table
OraDatabase.ExecuteSQL ("BEGIN select aperson into :PERSON from customers" & _
 "where account = 10; END;")

'get the Person object from OraParameter
set Person = OraDatabase.Parameters("PERSON").Value

'locks the Person object in the server for modifying its attributes
Person.Edit
 Person.Name = "Eric"
 Person.Age = 35

'Update method flushes the modified referenceable object in the server
Person.Update

Write (OraLOB) Method

Applies To

OraBLOB, OraCLOB Objects

Description

Writes a buffer into the BLOB or CLOB value of this object and returns the total amount of the data written.

Usage

amount_written = OraBlob.Write buffer, chunksize, piece
amount_written = OraClob.Write buffer, chunksize, piece

Arguments

The arguments for the method are:

	Arguments	Description
	in] buffer	The character array for an OraCLOB object or byte array for the OraBLOB object from which the piece is written.
	[in] [optional] chunksize	An Integer specifying the length of the buffer, in characters for an OraCLOB object and bytes for an OraBLOB or OraBFILE object. Default value is the size of the buffer argument.
	[in] [optional] piece	An Integer specifying which piece of the buffer is being written. Possible values include:
	
ORALOB_ONE_PIECE - Buffer is written in a single piece. This is the default.

	
ORALOB_FIRST_PIECE - Buffer represents the piece of LOB data to be written.

	
ORALOB_NEXT_PIECE - Buffer represents the next piece of LOB data to be written.

	
ORALOB_LAST_PIECE - Buffer represents the last piece of LOB data to be written.

	[out] amount_written	An Integer representing the amount written, in characters for an OraCLOB object and bytes for an OraBLOB or OraBFILE object.

Remarks

Obtain either a row-level lock or object-level lock before calling the Write method. This method writes the BLOB or CLOB data from the offset specified by the Offset property. For a multiple-piece write operation, the PollingAmount property can be set to the value of the total amount of data to be written, and the Status property must be checked for the success of each piece operation. If the total amount is not known, then the PollingAmount property can be set to 0 and polling still occurs as long as the piece type is not OraLob_piece.

For the last piece, set the piece argument to ORALOB_LAST_PIECE. You must write the polling amount in bytes or characters. It is not possible to terminate the Write operation early if the PollingAmount property is not zero.

When the OraLOB Pollingamount = 0 but the piece type on OraLOB Write is not ORALOB_ONE_PIECE, polling still occurs. Polling completes when ORALOB_LAST_PIECE is sent as an argument to a call to the Write method. This is useful when calling the OraCLOB.Write method in a variable-width character set, when counting the total amount of characters ahead of time may be costly.

	
Note:

When manipulating LOBs using LOB methods, such as the Write and CopyFromFile, the LOB object is not automatically trimmed if the length of the new data is shorter than the old data. Use the Trim (OraLOB) method to shrink the LOB object to the size of the new data.

Examples

Be sure that you have installed the OraLOB Schema Objects as described in "Schema Objects Used in LOB Data Type Examples" .

Multiple-Piece Write of a LOB Example

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset
Dim PartDesc As OraClob
Dim buffer As String
Dim chunksize As Long
Dim amount_written As Long

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'Create the OraDynaset Object
Set OraDynaset = OraDatabase.CreateDynaset("select * from part", 0&)
Set PartDesc = OraDynaset.Fields("part_desc").Value
chunksize = 32000

'Re adjust the buffer size
buffer = String$(chunksize, 32)
FNum = FreeFile

'Open the file.
Open "partdesc.dat" For Binary As #FNum

'set the offset and PollingAmount properties for piece wise
'Write operation
PartDesc.offset = 1
PartDesc.PollingAmount = LOF(FNum)
remainder = LOF(FNum)

'Lock the row for write operation
OraDynaset.Edit
Get #FNum, , buffer

'Do first write operation
amount_written = PartDesc.Write(buffer, chunksize, ORALOB_FIRST_PIECE)

While PartDesc.Status = ORALOB_NEED_DATA
 remainder = remainder - chunksize
 If remainder < chunksize Then
 piecetype = ORALOB_LAST_PIECE
 chunksize = remainder
 Else
 piecetype = ORALOB_NEXT_PIECE
 End If
 Get #FNum, , buffer

 amount_written = PartDesc.Write(buffer, chunksize, piecetype)
Wend

Close FNum

'call Update method to commit the transaction
OraDynaset.Update

Single-Piece Write of a LOB Example

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim PartImage As OraBlob
Dim buffer() As Byte

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'Add PartDesc as an Output parameter and set its initial value.
OraDatabase.Parameters.Add "PartImage", Null, ORAPARM_OUTPUT
OraDatabase.Parameters("PartImage").ServerType = ORATYPE_BLOB

'Begin the transaction
OraSession.BeginTrans

'Execute the statement returning 'PartDesc'
OraDatabase.ExecuteSQL ("BEGIN select part_image into :PARTIMAGE" & _
 "from part where part_id = 1 for update NOWAIT; END;")

'Get 'PartDesc' from Parameters collection
Set PartImage = OraDatabase.Parameters("PartImage").Value

'Get a free file number
FNum = FreeFile

'Open the file.
Open "PartImage.Dat" For Binary As #FNum

'Re adjust the buffer size to hold entire file data
ReDim buffer(LOF(FNum))
Get #FNum, , buffer

'Do one write operation
amount_written = PartImage.Write(buffer)

Close FNum
MsgBox "Amount written to the LOB data is " & amount_written

'Ends the transaction
OraSession.CommitTrans

	
See Also:

	
Offset (OraLOB/BFILE) Property

	
PollingAmount Property

	
Status (OraLOB/BFILE) Property

	
Trim (OraLOB) Method

	
Writing LOB Data

11 Server Properties

This chapter describes the Oracle Objects for OLE Server properties.

For an introduction to Server Objects, see "Oracle Objects for OLE In-Process Automation Server" .

This chapter contains these topics:

	
Server Properties: A to F

	
Server Properties: E to L

	
Server Properties: M to O

	
Server Properties: P to T

	
Server Properties: U to Z

Server Properties: A to F

	
Address (OraAQAgent) Property

	
ArraySize Property

	
AutoCommit Property

	
BOC Property

	
BOF Property

	
Bookmark Property

	
BookMarkable Property

	
CacheBlocks Property

	
CacheChanged Property

	
CacheMaximumSize Property

	
CacheOptimalSize Property

	
CacheSliceSize Property

	
CacheSlicesPerBlock Property

	
Client Property

	
Connect Property

	
Connection Property

	
ConnectionOK Property

	
Connections Property

	
Consumer (OraAQ) Property

	
Correlate (OraAQ) Property

	
Correlation (OraAQMsg) Property

	
Count Property

	
Count (OraMetaData) Property

	
Count (OraObject/Ref) Property

	
Database Property

	
DatabaseName Property

	
Databases Property

	
Day (OraTimeStamp) Property

	
Day (OraTimeStampTZ) Property

	
Days Property

	
DbPoolCurrentSize Property

	
DbPoolInitialSize Property

	
DbPoolMaxSize Property

	
Delay (OraAQMsg) Property

	
DequeueMode (OraAQ) Property

	
DequeueMsgId (OraAQ) Property

	
DirectoryName Property

	
DynasetOption Property

Server Properties: E to L

	
EditMode Property

	
EditOption (OraRef) Property

	
ElementType Property

	
EOC Property

	
EOF Property

	
ExceptionQueue Property

	
Exists Property

	
Expiration (OraAQMsg) Property

	
FetchLimit Property

	
FetchSize Property

	
FieldIndex Property

	
FieldName Property

	
FieldOriginalName Property

	
FieldOriginalNameIndex Property

	
Fields Property

	
FileName Property

	
Filter Property

	
Format (OraNumber) Property

	
Format (OraTimeStamp) Property

	
Format (OraTimeStampTZ) Property

	
HexValue (OraRef) Property

	
Hour (OraTimeStamp) Property

	
Hour (OraTimeStampTZ) Property

	
Hours Property

	
IsLocator (OraCollection) Property

	
IsMDObject Property

	
IsNull (OraCollection) Property

	
IsNull (OraLOB/BFILE) Property

	
IsNull (OraObject) Property

	
IsOpen (OraBFILE) Property

	
IsRefNull (OraRef) Property

	
LastErrorText Property

	
LastModified Property

	
LastServerErr Property

	
LastServerErrPos Property

	
LastServerErrText Property

Server Properties: M to O

	
MaxSize (OraCollection) Property

	
MinimumSize Property

	
Minute (OraTimeStamp) Property

	
Minute (OraTimeStampTZ) Property

	
Minutes Property

	
Month (OraTimeStamp) Property

	
Month (OraTimeStampTZ) Property

	
Months Property

	
Name Property

	
Name (AQAgent) Property

	
Name (OraAttribute) Property

	
Name (OraMDAttribute) Property

	
Nanosecond(OraTimeStamp) Property

	
Nanonsecond (OraTimeStampTZ) Property

	
Nanonseconds Property

	
Navigation (OraAQ) Property

	
NoMatch Property

	
NonBlockingState Property

	
Offset (OraLOB/BFILE) Property

	
OIPVersionNumber Property

	
Options Property

	
OraIDataType Property

	
OraMaxDSize Property

	
OraMaxSize Property

	
OraNullOK Property

	
OraPrecision Property

	
OraScale Property

Server Properties: P to T

	
Parameters Property

	
PinOption (OraRef) Property

	
PollingAmount Property

	
Priority (OraAQMsg) Property

	
RDMSVersion Property

	
RecordCount Property

	
RelMsgId (OraAQ) Property

	
RowPosition Property

	
SafeArray (OraCollection) Property

	
Second (OraTimeStamp) Property

	
Second (OraTimeStampTZ) Property

	
Seconds Property

	
Server Property

	
ServerType Property

	
Session Property

	
Sessions Property

	
Size Property

	
Size (OraCollection) Property

	
Size (OraLOB and OraBFILE) Property

	
SnapShot Property

	
Sort Property

	
SQL Property

	
Status Property

	
Status (OraLOB/BFILE) Property

	
Subscriptions Property

	
TableName (OraRef) Property

	
TableSize (OraCollection) Property

	
TimeZone (OraTimeStampTZ) Property

	
TotalDays Property

	
TotalYears Property

	
Transactions Property

	
Truncated Property

	
Type Property

	
Type (OraAttribute) Property

	
Type (OraCollection) Property

	
Type (OraMetaData) Property

	
TypeName (OraObject and OraRef) Property

Server Properties: U to Z

	
Updatable Property

	
Value Property

	
Value (OraAttribute) Property

	
Value (OraAQMsg) Property

	
Value (OraIntervalDS) Property

	
Value (OraIntervalYM) Property

	
Value (OraMDAttribute) Property

	
Value (OraNumber) Property

	
Value (OraTimeStamp) Property

	
Value (OraTimeStampTZ) Property

	
Version (OraObject and Ref) Property

	
Visible (OraAQ) Property

	
Wait (OraAQ) Property

	
XMLAsAttribute Property

	
XMLCollID Property

	
XMLEncodingTag Property

	
XMLNullIndicator Property

	
XMLOmitEncodingTag Property

	
XMLRowID Property

	
XMLRowsetTag Property

	
XMLRowTag Property

	
XMLTagName Property

	
XMLUpperCase Property

	
Year (OraTimeStamp) Property

	
Year (OraTimeStampTZ) Property

	
Years Property

Address (OraAQAgent) Property

Applies To

OraAQAgent Object

Description

Returns a 128-byte string representing the protocol-specific address of the recipient. The format is: [schema.]queue[@dblink]

Usage

agent_address = qMsg.AQAgent.Address

Data Type

String

ArraySize Property

Applies To

OraParamArray Object

Description

Specifies the array size (that is, number of elements in an array) of an OraParameter string buffer. Not available at design time and read-only at run time.

Usage

OraParamArray.ArraySize

Data Type

Integer

Remarks

You specify the ArraySize during AddTable. See the AddTable method for the OraParamArray object.

	
See Also:

AddTable Method

AutoCommit Property

Applies To

OraDatabase Object

Description

Returns or sets the AutoCommit property of the OraDatabase object.

Usage

autocommit = OraDatabase.AutoCommit
OraDatabase.AutoCommit = [True | False

Data Type

Boolean

Remarks

If the AutoCommit property is set to True, all the data operations that modify data in the database are automatically committed after the statement is executed.

If the AutoCommit property is set to False, you need to use the OraDatabase transaction methods (BeginTrans, CommitTrans, and Rollback) or SQL statements to control transactions.

Examples

The following example shows how to control transactions with SQL statements after setting the AutoCommit property to False.

Dim session As OraSession
Dim MyDb As OraDatabase
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
Set MyDb = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0)
MyDb.AutoCommit = False
MyDb.ExecuteSQL ("update emp set sal = 100000" & _
 "where ename = 'JOHN SMITH' ")
MyDb.ExecuteSQL ("commit")

	
See Also:

	
BeginTrans Method

	
CommitTrans Method

	
Rollback Method

BOC Property

Applies To

OraCollection Object

Description

Indicates True if the collection iterator moves before the first element of a collection.

Usage

boc_flag = OraCollection.BOC

Data Type

boolean

Examples

See "Example: OraCollection Iterator"

BOF Property

Applies To

OraDynaset Object

Description

Returns whether the current record position in a dynaset is before the first record. Not available at design time and read-only at run time.

Usage

bof_status = oradynaset.BOF

Data Type

Integer (Boolean)

Remarks

Returns True if an attempt has been made to move before the first record in the dynaset using the MovePrevious method. Returns False otherwise.

If a recordset is empty, both BOF and EOF return True.

Examples

This example demonstrates the use of the BOF and EOF properties to detect the limits of a record set. Copy and paste this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

 'Declare variables
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraDynaset As OraDynaset

 'Create the OraSession Object
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Create the OraDynaset Object
 Set OraDynaset = OraDatabase.CreateDynaset("select empno, ename from emp", 0&)

 'Traverse until EOF is reached
 Do Until OraDynaset.EOF
 OraDynaset.MoveNext
 Loop
 MsgBox "Reached EOF"

 'When EOF is True there is no current record.
 'The current recordset position is now AFTER the last record.
 OraDynaset.MoveLast

 Do Until OraDynaset.BOF
 OraDynaset.MovePrevious
 Loop
 MsgBox "Reached BOF"

 'When BOF is True there is no current record.
 'The current recordset position is now BEFORE
 'AFTER the last record.

 OraDynaset.MoveFirst
 'The recordset is now positioned at the first record.

End Sub

	
See Also:

	
EOF Property

	
MoveFirst, MoveLast, MoveNext, and MovePrevious Methods

Bookmark Property

Applies To

OraDynaset Object

Description

Determines the current record of a record set. Not available at design time and read/write at run time.

Usage

row_bookmark = oradynaset.Bookmark
oradynaset.Bookmark = row_bookmark

Data Type

The value is a string of binary data, but can be stored in a variable of String or Variant data type. The length of the string cannot be predicted, so do not use a fixed-length string.

Remarks

The first form returns a Bookmark property for the current row. The second form repositions the Bookmark property to refer to a specific record within the dynaset.

Bookmark objects exist only for the life of the dynaset and are specific to a particular dynaset. They cannot be shared among dynasets. However, Bookmark objects of a dynaset and their clones are interchangeable.

Before attempting to use Bookmark objects, check the BookMarkable property of that dynaset to see if it supports bookmarks.

Examples

This example demonstrates the use of the Bookmark property to return to a previously known record quickly. Copy and paste this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

 'Declare variables as OLE Objects.
 Dim OraClient As OraClient
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraDynaset As OraDynaset
 Dim Bookmark2 As String

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Get the client object.
 Set OraClient = OraSession.Client

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Create the OraDynaset Object.
 Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)

 'Move to the second record and display empno.
 OraDynaset.MoveNext
 MsgBox "Second Record, Employee #" & OraDynaset.Fields("EMPNO").value
 Bookmark2 = OraDynaset.Bookmark

 'Move to the last record and display empno.
 OraDynaset.MoveLast
 MsgBox "Last Record, Employee #" & OraDynaset.Fields("EMPNO").value

 'Move back to the second record using the bookmark.

 OraDynaset.Bookmark = Bookmark2
 MsgBox "Second Record, Employee #" & OraDynaset.Fields("EMPNO").value

End Sub

	
See Also:

	
BookMarkable Property

	
Clone Method

	
LastModified Property

BookMarkable Property

Applies To

OraDynaset Object

Description

Indicates whether the specified dynaset can supports Bookmark objects. Not available at design time and read-only at run time.

Usage

if_bookmarkable = oradynaset.Bookmarkable

Data Type

Integer (Boolean)

Remarks

This property returns True unless the No Cache mode was set when the specified dynaset was created; otherwise, it returns False.

	
See Also:

	
Bookmark Property

	
CreateDynaset Method

CacheBlocks Property

Applies To

OraDynaset Object

Description

Gets or set cache maximum number of blocks.

Usage

set blocks = oradynaset.CacheBlocks
oradynaset.CacheBlocks = blocks

Data Type

Integer

CacheChanged Property

Applies To

OraDynaset Object

Description

True if cache or fetch parameters have been changed.

Usage

set Changed = oradynaset.CacheChanged

Data Type

Boolean

CacheMaximumSize Property

Applies To

OraDatabase Object

Description

Sets the maximum size (high watermark) for the client-side object cache as a percentage of the optimal size. The default value is 10%.

Usage

Oradatabase.CacheMaximumSize maxsize

Data Type

Long

Remarks

If the memory occupied by the objects currently in the cache exceeds the high watermark (maximum object cache size), then the cache automatically begins to free unmarked objects that have a pin count of zero. The cache continues freeing those objects until memory use in the cache reaches the optimal size, or until it runs out of objects eligible for freeing.

CacheOptimalSize Property

Applies To

OraDatabase Object

Description

Sets the optimal size for the client-side object cache in bytes. The default value is 200 KB.

Usage

Oradatabase.CacheOptimalSize optimalsize

Data Type

Long

Remarks

This parameter increases the client-side object cache size. If the memory occupied by the objects currently in the cache exceeds the high watermark (maximum object cache size), then the cache automatically begins to free unmarked objects that have a pin count of zero. The cache continues freeing those objects until memory use in the cache reaches the optimal size, or until it runs out of objects eligible for freeing. This parameter should be set to an appropriate value so that object cache can accommodate all the fetched object instance from Oracle Database 10g. This is property is useful in performance tuning for accessing an Oracle Database 10g object instance.

CacheSliceSize Property

Applies To

OraDynaset Object

Description

Gets or sets cache slice size.

Usage

 set Slicesize = oradynaset.CacheSliceSize
 oradynaset.CacheSliceSize = Slicesize

Data Type

Integer

CacheSlicesPerBlock Property

Applies To

OraDynaset Object

Description

Gets or sets cache slices for each block.

Usage

set Perblock = oradynaset.CacheSlicePerBlock
oradynaset.CacheSlicePerBlock = Perblock

Data Type

Integer

Client Property

Applies To

OraSession Object

Description

Returns the OraClient object associated with the specified session. Not available at design time and read-only at run time.

Usage

Set oraclient = orasession.Client

Data Type

OLE Object (OraClient)

Remarks

Each computer has only one client object, so this property returns the same object for all sessions on the same computer.

	
See Also:

OraClient Object

Connect Property

Applies To

OraConnection Object

OraDatabase Object

Description

Returns the user name of the connection string associated with the connection. Not available at design time and read-only at run time.

Usage

connect_string = oraconnection.Connect
connect_string = oradatabase.Connect

Data Type

String

Remarks

	
OraConnection.Connect

Returns the user name of the connection string associated with the connection.

	
OraDatabase.Connect

Returns the user name of the connection string associated with the specified database. It is equivalent to referencing OraDatabase.Connection.Connect.

The password associated with the user name is never returned.

Examples

This example demonstrates the use of the Connect and DatabaseName properties to display the user name and database name to which the user is connected. Copy and paste this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

 'Declare variables
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraDynaset As OraDynaset

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Display the username and database to which we are connected.
 MsgBox "Connected to " & OraDatabase.Connect & "@" & OraDatabase.DatabaseName

End Sub

	
See Also:

	
OpenDatabase Method

	
DatabaseName Property

Connection Property

Applies To

OraDatabase Object

OraDynaset Object

OraSQLStmt Object

Description

Returns the OraConnection object associated with the specified database, dynaset, or OraSQLStmt object. Not available at design time and read-only at run time.

Usage

Set oraconnection = oradatabase.Connection
Set oraconnection = oradynaset.Connection
Set oraconnection = orasqlstmt.Connection

Data Type

OLE Object (OraConnection)

Remarks

	
OraDatabase.Connection

Returns the connection object associated with the specified database. Each database is associated with one connection object, but many databases can share the same connection object.

	
OraDynaset.Connection

Returns the connection object associated with this dynaset. This is equivalent to referencing oradynaset.Database.Connection.

	
OraSQLStmt.Connection

Returns the connection object associated with this OraSQLStmt object. This is equivalent to referencing orasqlstmt.Database.Connection.

	
See Also:

OraConnection Object

ConnectionOK Property

Applies To

OraDatabase Object

OraConnection Object

Description

Returns a Boolean value indicating the status of the database connection associated with the OraConnection object. A return value of True implies that the connection is alive in the connection object associated with the specified database. If the connection has been dropped, this property returns False.

Not available at design time and read-only at run time.

Usage

ConnectionStat = OraDatabase.ConnectionOK
ConnectionStat = OraDatabase.Connection.ConnectionOK

Data Type

Boolean

Remarks

	
OraDatabase.ConnectionOK

Returns the connection status of the connection object associated with the specified database. Each database is associated with one connection object, but many databases can share the same connection object.

	
OraConnection.ConnectionOK

Returns the status of the underlying connection to the database. This is equivalent to OraDatabase.OraConnection.ConnectionOK.

	
See Also:

	
Connection Property

	
"Detection of Lost Connections"

Connections Property

Applies To

OraSession Object

Description

Returns the OraConnections collection of the specified session. Not available at design time and read-only at run time.

Usage

Set oraconnections_collection = orasession.Connections

Data Type

OLE Object (OraParameters)

Remarks

You can access the connections in this collection by subscripting (using ordinal integer numbers). You can obtain the number of connections in the collection using the Count property of the returned collection. Integer subscripts begin with 0 and end with Count - 1. Out-of-range indexes and invalid names return a Null OraConnection object.

	
See Also:

	
Count Property

	
OraConnection Object

	
OraConnections Collection

Consumer (OraAQ) Property

Applies To

OraAQ Object

Description

Applicable only for a dequeue operation.

Usage

Q.Consumer = consumer_name

Data Type

String

Remarks

The value is a string representing the name of the consumer. Only those messages matching the consumer name are accessed.

Examples

Dim DB As OraDatabase
 Dim Q as OraAQ
 set Q = DB.CreateAQ("Q_MSG_MULTIPLE")
 'Dequeue only message meant for ANDY
 Q.consumer = "ANDY"
 'other processing...
 Q.Dequeue

Correlate (OraAQ) Property

Applies To

OraAQ Object

Description

Specifies the identification to look for while dequeuing messages.

Usage

Q.Correlate = "RELATIVE_MESSAGE_ID"

Data Type

String

Remarks

Applicable only for a dequeue operation.

Correlation (OraAQMsg) Property

Applies To

OraAQMsg Object

Description

Specifies the identification for the message. This can then be used as a means of dequeuing specific messages.

Usage

Msg.Correlation = my_message

Data Type

String

Remarks

Applicable only for a message that is being enqueued. Returns any string up to 128 bytes.

See Correlate for dequeuing using this identifier.

	
See Also:

Correlate (OraAQ) Property

Count Property

Applies To

OraConnections Collection

OraFields Collection

OraParameters Collection

OraSessions Collection

OraSubscriptions Collection

Description

Returns the number of objects in the specified collection. Not available at design time and read-only at run time.

Usage

connection_count = oraconnections.Count
field_count = orafields.Count
parameter_count = oraparameters.Count
session_count = orasessions.Count
subscriptions_count = OraSubscriptions.Count

Data Type

Integer

Remarks

Use this property to determine the number of objects in the specified collection.

Examples

This example demonstrates the use of the Count property to display the number of objects in the OraSessions, OraConnections, and OraFields collections. Copy and paste this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

 'Declare variables as OLE Objects.
 Dim OraClient As OraClient
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraDynaset As OraDynaset

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Get the client object.
 Set OraClient = OraSession.Client

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Create the OraDynaset Object.
 Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)

 MsgBox "You have " & OraClient.Sessions.Count & " OraSession Object(s)."
 MsgBox "You have " & OraSession.Connections.Count & " OraConnection Object(s)."
 MsgBox "You have " & OraDynaset.Fields.Count & " OraField Object(s)."

End Sub

	
See Also:

	
OraConnection Object

	
OraField Object

Count (OraMetaData) Property

Applies To

OraMetaData Object

Description

An integer representing the number of OraMDAttribute objects contained in this collection.

Usage

count = OraMetaData.Count

Data Type

Integer

	
See Also:

OraMDAttribute Object

Count (OraObject/Ref) Property

Applies To

OraObject Object

OraRef Object

Description

Returns the number of OraAttribute objects in the collection. This is same as the total number of attributes of the underlying referenceable object of OraRef or underlying value instance of OraObject. Read-only at run time.

Usage

attrcount = OraRef.Count
attrcount = OraObject.Count

Data Type

Integer

Remarks

Individual attributes can be accessed by using a subscript or the name of the attribute. The OraObject or OraRef attribute index starts at 1.

Examples

The following example shows the use of the Count property. Before running the sample code, make sure that you have the necessary data types and tables in the database. See "Schema Objects Used in the OraObject and OraRef Examples".

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim Address as OraObject

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from person_tab
set OraDynaset = OraDatabase.CreateDynaset("select * from person_tab",0&)

'retrieve a address column from person_tab.
'Here Value property of OraField object returns Address OraObject
set Address = OraDynaset.Fields("Addr").Value

'access the attribute by dot notation
msgbox Address.Street

'access the attribute using '!' notation (early binding application)
msgbox Address!Street

'access the attribute by index
msgbox Address(1)

'access the attribute by name
msgbox Address("Street")

'access all the attributes of Address OraObject in the dynaset
Do Until OraDynaset.EOF
 For index = 1 To Address.Count
 msgbox Address(index)
 Next Index
 OraDynaset.MoveNext

Loop

	
See Also:

OraAttribute Object

Database Property

Applies To

OraDynaset Object

OraSQLStmt Object

Description

Returns the OraDatabase object associated with the specified dynaset or SQL statement object. Not available at design time and read-only at run time.

Usage

Set oradatabase = oradynaset.Database
Set oradatabase = orasqlstmt.Database

Data Type

OLE Object (OraDatabase)

Remarks

The OraDynaset.Database property returns the OraDatabase object from which the specified dynaset was created.

The OraSQLStmt.Database property returns the OraDatabase object from which the specified SQLStmt object was created.

	
See Also:

	
CreateDynaset Method

	
OraDatabase Object

DatabaseName Property

Applies To

OraConnection Object

OraDatabase Object

Description

Returns the name of the database associated with the specified object. Not available at design time and read-only at run time.

Usage

database_name = oraconnection.DatabaseName
database_name = oradatabase.DatabaseName

Data Type

String

Remarks

	
oraconnection.DatabaseName

Returns the name of the database, as specified in the OpenDatabase method.

	
oradatabase.DatabaseName

Returns the database name associated with the connection. It is the same as the referencing oradatabase.Connection.DatabaseName.

Examples

This example demonstrates the use of the Connect and DatabaseName properties to display the user name and database to which you have connected. Copy and paste this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

 'Declare variables
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraDynaset As OraDynaset

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Display the username and database to which you have connected.
 MsgBox "Connected to " & OraDatabase.Connect & "@" & OraDatabase.DatabaseName

End Sub

	
See Also:

	
Connect Property

	
Connection Property

	
OpenDatabase Method

Databases Property

Applies To

OraServer Object

Description

Returns a collection interface containing all user sessions that have been established using this object.

Usage

Set myCollection = oraserver.Databases

Data Type

OLE Object (OraCollection)

	
See Also:

OraCollection Object

Day (OraTimeStamp) Property

Applies To

OraTimeStamp Object

Description

Gets and sets the Day attribute of an OraTimeStamp object.

Usage

day= OraTimeStampObj.Day
OraTimeStampObj.Day= day

Arguments

	Arguments	Description
	[in] day	The Day attribute of an OraTimeStamp object.

Data Type

Integer

Day (OraTimeStampTZ) Property

Applies To

OraTimeStampTZ Object

Description

Returns or sets the Day attribute of an OraTimeStampTZ object.

Usage

day= OraTimeStampTZObj.Day
OraTimeStampTZObj.Day= day

Arguments

	Arguments	Description
	[in] day	The Day attribute of an OraTimeStampTZ object.

Data Type

Integer

Days Property

Applies To

OraIntervalDS Object

Description

Gets and sets the Days attribute of an OraIntervalDS object

Usage

days = OraIntervalDSObj.Days
OraIntervalDSObj.Days = days

Arguments

	Arguments	Description
	[in] days	An Integer specifying the value of the Days attribute of the OraIntervalDS object.

Data Type

Integer

DbPoolCurrentSize Property

Applies To

OraSession Object

Description

Contains the number of currently active database objects in the pool. It is a read-only property.

Usage

curr_size = OraSession.DbPoolCurrentSize

Data Type

Integer

Remarks

An active database object in the pool that contains a live connection to the database.

DbPoolInitialSize Property

Applies To

OraSession Object

Description

Contains the initial size of the pool. It is a read-only property.

Usage

init_size = OraSession.DbPoolInitialSize

Data Type

Integer

DbPoolMaxSize Property

Applies To

OraSession Object

Description

Contains the maximum pool size. It is a read-only property.

Usage

max_size = OraSession.DbPoolMaxSize

Data Type

Integer

Delay (OraAQMsg) Property

Applies To

OraAQMsg Object

Description

Specifies the number of seconds to delay this enqueued message. Set this property to delay the immediate consumption of the message.

Usage

Msg.Delay = seconds

Data Type

Integer

Remarks

Applicable only for a message that is enqueued.

This delay represents the number of seconds after which the message is available for dequeuing.

Possible values are:

	
Any valid positive integer.

	
ORAAQ_MSG_NO_DELAY

Default is 0 seconds. The message is available immediately.

DequeueMode (OraAQ) Property

Applies To

OraAQ Object

Description

Specifies the locking behavior associated with the dequeue operation.

Usage

Q.DequeueMode = locking_mode

Data Type

Integer

Remarks

Possible values are:

	
ORAAQ_DQ_BROWSE (1)

Does not lock the message when dequeuing.

	
ORAAQ_DQ_LOCKED (2)

Reads and obtains a write lock on the message.

	
ORAAQ_DQ_REMOVE (3)(Default)

Reads the message, and updates or deletes it.

DequeueMsgId (OraAQ) Property

Applies To

OraAQ Object

Description

Returns an array of raw bytes, specifying the message identifier of the message to be dequeued.

Usage

Q.DequeueMsgid = msg_id

Data Type

String

Remarks

Applicable only for a dequeue operation.

DirectoryName Property

Applies To

OraBFILE Object

Description

Gets or sets the directory alias name.

Usage

diralias = OraBFile.DirectoryName
OraBFile.DirectoryName = diralias

Arguments

	Arguments	Description
	[in] [out] diralias	A String specifying the directory name to be retrieved or set.

Data Type

String

Remarks

This String is case-sensitive.

DynasetOption Property

Applies To

OraParameter Object

Description

Specifies the dynaset option for a dynaset created from the PL/SQL cursor.

Usage

oraparameter.DynasetOption = dyn_opts

Remarks

This property should be called before executing a PL/SQL procedure containing a cursor variable. By default, the dynaset is created with the ORADYN_READONLY option.

The possible values are:

	Possible Values	Value	Description
	ORADYN_DEFAULT	&H0&	Accepts the default behavior.
	ORADYN_NO_BLANKSTRIP	&H2&	Does not remove trailing blanks from character string data retrieved from the database.
	ORADYN_NOCACHE	&H8&	Does not create a local dynaset data cache. Without the local cache, previous rows within a dynaset are unavailable; however, increased performance results during retrieval of data from the database (move operations) and from the rows (field operations). Use this option in applications that make single passes through the rows of a dynaset for increased performance and decreased resource usage.
	ORADYN_NO_MOVEFIRST	&H40&	Does not force a MoveFirst operation when a dynaset is created. BOF and EOF are both True.

	
See Also:

	
MoveFirst, MoveLast, MoveNext, and MovePrevious Methods

	
BOF Property

	
EOF Property

EditMode Property

Applies To

OraDynaset Object

Description

Returns the editing state for the current row. Not available at design time and read-only at run time.

Usage

edit_mode = oradynaset.EditMode

Data Type

Integer

Remarks

The EditMode property values are:

	Constant	Value	Description
	ORADATA_EDITNONE	0	No editing in progress.
	ORADATA_EDITMODE	1	Editing is in progress on an existing row.
	ORADATA_EDITADD	2	A new record is being added and the copy buffer does not currently represent an actual row in the database.

These values are located in the ORACLE_BASE\\ORACLE_HOME\oo4o\oraconst.txt file and are intended to match similar constants in the Visual Basic constant.txt file.

This property is affected only by the Edit, AddNew, and Update methods.

	
See Also:

	
AddNew Method

	
Edit Method

	
Update Method

EditOption (OraRef) Property

Applies To

OraRef Object

Description

Specifies whether the object is to be locked during the pin operation.

Usage

edit_option = OraRef.EditOption
OraRef.EditOption = edit_option

Arguments

	Arguments	Description
	[in] [out] edit_option	An Integer representing the edit option.

Data Type

Integer

Remarks

This property should be called before a pin operation on a Ref value, before accessing an attribute for the first time on the OraRef object. This option is useful if the object attributes are modified immediately after the pin operation. Locking the object instance during the pin operation saves the round-trip to the database during the Edit (OraRef) operation.

Possible values of edit_option are:

	Constant	Value	Description
	ORAREF_NO_LOCK	1	Does not lock the object in the database (default).
	ORAREF_EXCLUSIVE_LOCK	2	Maintains an exclusive lock on the object in the database.
	ORAREF_NOWAIT_LOCK	3	Maintains an exclusive lock on the object in the database with the nowait option.

Examples

The following example shows the usage of the EditOption property. Before running the sample code, make sure that you have the necessary data types and tables in the database. See "Schema Objects Used in the OraObject and OraRef Examples".

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim Person as OraRef

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from customers
set OraDynaset = OraDatabase.CreateDynaset("select * from customers", 0&)

'retrieve a aperson column from customers. Here Value property of OraField object

'returns Person OraRef
set Person = OraDynaset.Fields("aperson").Value

'set the ORAREF_EXCLUSIVE_LOCK EditOption on the Person object.
Person.EditOption = ORAREF_EXCLUSIVE_LOCK

'pin the Person Ref. This operation also locks the underlying
'referenceable 'object in the server
MsgBox Person.Name

'call Edit method on Person OraRef.
'This method does not make any network round-trip

Person.Edit
Person.Name = "Eric"
Person.Age = 35
Person.Update

	
See Also:

Edit (OraRef) Method

ElementType Property

Applies To

OraCollection Object

Description

An integer code representing the server type of an element. This property is read-only at run time.

Usage

elem_type = OraCollection.ElementType

Data Type

Integer

Remarks

The codes correspond to the Oracle external data types. The following Oracle element data types are supported:

	Constant	Value	External Data Type
	ORATYPE_VARCHAR2	1	VARCHAR2
	ORATYPE_NUMBER	2	NUMBER
	ORATYPE_SINT	3	SIGNED INTEGER
	ORATYPE_FLOAT	4	FLOAT
	ORATYPE_VARCHAR	9	VARCHAR
	ORATYPE_DATE	12	DATE
	ORATYPE_UINT	68	UNSIGNED INTEGER
	ORATYPE_CHAR	96	CHAR
	ORATYPE_CHARZ	97	Null Terminated CHAR
	ORATYPE_BFLOAT	100	BINARY_FLOAT
	ORATYPE_BDOUBLE	101	BINARY_DOUBLE
	ORATYPE_OBJECT	108	Object
	ORATYPE_REF	110	Ref

EOC Property

Applies To

OraCollection Object

Description

Returns True if the collection iterator moves past the last element of a collection.

Usage

eoc_flag = OraCollection.EOC

Data Type

Boolean

Examples

See "Example: OraCollection Iterator" .

EOF Property

Applies To

OraDynaset Object

Description

Indicates whether the current record position in a dynaset is after the last record. Not available at design time and read-only at run time.

Usage

eof_status = oradynaset.EOF

Data Type

Integer (Boolean)

Remarks

Returns True if an attempt has been made to move after the last record in the dynaset using the MoveNext method. Otherwise, returns False.

If a recordset is empty, both BOF and EOF return True.

Examples

This example demonstrates the use of the BOF and EOF properties to detect the limits of a recordset. Copy and paste this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

 'Declare variables
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraDynaset As OraDynaset

 'Create the OraSession Object
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Create the OraDynaset Object
 Set OraDynaset = OraDatabase.CreateDynaset("select empno, ename from emp", 0&)

 'Traverse until EOF is reached
 Do Until OraDynaset.EOF
 OraDynaset.MoveNext
 Loop
 MsgBox "Reached EOF"

 'When EOF is True there is no current record. The current recordset
 ' position is now AFTER the last record
 OraDynaset.MoveLast

 Do Until OraDynaset.BOF
 OraDynaset.MovePrevious
 Loop
 MsgBox "Reached BOF"

 'When BOF is True there is no current record. The current recordset
 'position is now BEFORE AFTER the last record.

 OraDynaset.MoveFirst

 'The recordset is now positioned at the first record.

End Sub

	
See Also:

	
BOF Property

	
MoveFirst, MoveLast, MoveNext, and MovePrevious Methods

ExceptionQueue Property

Applies To

OraAQMsg Object

Description

Specifies the name of the queue to which message should be moved if it cannot be processed successfully.

Usage

Msg.ExceptionQueue queue_name

Data Type

String

Remarks

Applicable only for a message that is being enqueued.

Possible values are:

	
A String containing a valid queue name

	
Null (Default)

A message is moved to the exception queue if the number of dequeue attempts has expired or has exceeded max_retries specified in the DBMS_AQADM.CREATE_QUEUE command.

Exists Property

Applies To

OraBFILE Object

Description

Returns True if the OraBFILE points to a BFILE that exists on the database.

Usage

exists = OraBFile.Exists

Data Type

Boolean

Remarks

Read privileges on the directory where the BFILE is located are required to use this property. The operating system-specific permissions must have been set for the directory to make sure that the user can read the directory.

Appropriate privileges must be set up in the database previously. For example, to ensure that a user (scott) can read a directory (BfileDirectory) through the Exists property, the following SQL statement must be executed:

GRANT READ ON DIRECTORY BfileDirectory TO scott;

Expiration (OraAQMsg) Property

Applies To

OraAQMsg Object

Description

Specifies, in seconds, the time for which the message is available for dequeuing.

Usage

Msg.Expiration = seconds

Data Type

Integer

Remarks

This property is an offset from the delay. It is applicable only for a message that is being enqueued.

Possible Values are:

	
Any integer.

	
ORAAQ_MSG_NO_XPIRE (0)

Default 0 - The message will never expire.

FetchLimit Property

Applies To

OraDynaset Object

Description

Gets or sets the array size of the fetch.

Usage

set Limit = oradynaset.FetchLimit
oradynaset.FetchLimit = Limit

Data Type

Integer

FetchSize Property

Applies To

OraDynaset Object

Description

Gets or sets the array buffer size of the fetch.

Usage

set Size = oradynaset.FetchSize
oradynaset.FetchSize = Size

Data Type

Integer

FieldIndex Property

Applies To

OraDynaset Object

Description

Returns the index of the field indicated by the field_name argument.

Usage

set index = oradynaset.FieldIndex(field_name)

Arguments

	Arguments	Description
	[in] field_name	The name of the field as it appears in the SQL statement that the dynaset used most recently.

Data Type

Integer

Remarks

Accessing fields of a dynaset using an index is more efficient than accessing them by name. If you need to access a particular field many times, use this method to translate its name into its index.

	
See Also:

	
FieldName Property

	
FieldOriginalName Property

	
FieldOriginalNameIndex Property

FieldName Property

Applies To

OraDynaset Object

Description

Returns the field name in the SELECT statement in the dynaset.

Usage

set field_name = oradynaset.FieldName(index)

Arguments

	Arguments	Description
	[in] index	Index of the name of the field as it appears in the SQL statement.

Data Type

String

	
See Also:

	
FieldIndex Property

	
FieldOriginalName Property

	
FieldOriginalNameIndex Property

FieldOriginalName Property

Applies To

OraDynaset Object

Description

Gets the original field name used in the SELECT statement in the dynaset.

Usage

set field_name = oradynaset.FieldOriginalName(index)

Arguments

	Arguments	Description
	[in] index	An Integer specifying the field index of the original field name as it appears in the SQL statement.

Data Type

String

Remarks

The FieldOriginalName property returns a string containing the original column name specified in the SQL statement during dynaset creation. This property is useful when a SQL statement contains SCHEMA.TABLE.COL as the name of the field. This enables duplicate column names to be referenced. Another way to avoid duplicate columns is to specify an alias in the SQL statement.

	
See Also:

	
FieldIndex Property

	
FieldName Property

	
FieldOriginalNameIndex Property

FieldOriginalNameIndex Property

Applies To

OraDynaset Object

Description

Returns the index of the field indicated by the original field name used in the SQL SELECT statement.

Usage

set index = oradynaset.FieldOriginalNameIndex(name)

Arguments

	Arguments	Description
	[in] name	The original name of the field as it appears in the SQL statement.

Data Type

Integer

Remarks

Accessing fields of a dynaset by index is more efficient than accessing them by name. If you need to access a particular field many times, use this method to translate its original name into its index.

	
See Also:

	
FieldIndex Property

	
FieldName Property

	
FieldOriginalName Property

Fields Property

Applies To

OraDynaset Object

Description

Returns the collection of fields for the current row. Not available at design time and read-only at run time.

Usage

Set orafields_collection = oradynaset.Fields

Data Type

OLE Object (OraFields)

Remarks

You can access the fields in this collection by subscripting (using ordinal integer numbers) or by using a string denoting the field (column) name. You can obtain the count of the number of fields using the Count property on the returned collection. A subscript that is not within the collection (0 to Count - 1) results in the return of a Null OraField object.

	
See Also:

	
Count Property

	
OraFields Collection

FileName Property

Applies To

OraBFILE Object

Description

Gets or sets a filename. Read and write at run time.

Usage

filename = OraBFile.FileName
OraBFile.FileName = filename

Arguments

	Arguments	Description
	[in] [out] filename	A String specifying the directory name to be retrieved or set.

Data Type

String

Remarks

This string can be case-sensitive depending on the database operating system.

	
See Also:

OraField Object

Filter Property

Remarks

The OraDynaset object does not support this property. Refine your record selection by using a SQL WHERE clause or by using SQL parameters.

	
See Also:

	
CreateDynaset Method

	
OraDynaset Object

	
OraFields Collection

	
OraParameter Object

Format (OraNumber) Property

Applies To

OraNumber Object

Description

The format string used in OraNumber operations. For details about format strings, see Oracle Database SQL Quick Reference. Read and write at run time.

Usage

OraNumber.Format = formatstring
formatstring = OraNumber.Format

Arguments

	Arguments	Description
	[in] formatstring	A format string used in OraNumber operations.

Data Type

String

Remarks

An error is returned if the format string is set to an invalid value. To reset the format to the default, set it to an empty string.

	
See Also:

Oracle Database SQL Quick Reference

Format (OraTimeStamp) Property

Applies To

OraTimeStamp Object

Description

Returns or sets the TIMESTAMP format used to display the OraTimeStamp object as a string.

Usage

format = OraTimeStampObj.Format
OraTimeStampObj.Format = format

Arguments

	Arguments	Description
	[in] format	The format used to display an OraTimeStamp object as a string.

Data Type

String

Remarks

If Format is Null, the session TIMESTAMP format is used to display the OraTimeStamp object as a string.

Format (OraTimeStampTZ) Property

Applies To

OraTimeStampTZ Object

Description

Returns or sets the TIMESTAMP WITH TIME ZONE format used to display the OraTimeStampTZ object as a string.

Usage

format = OraTimeStampTZObj.Format
OraTimeStampTZObj.Format = format

Arguments

	Arguments	Description
	[in] format	The format used to display an OraTimeStampTZ object as a string.

Data Type

String

Remarks

If Format is Null, the session TIMESTAMP WITH TIME ZONE format is used to display the OraTimeStampTZ object as a string.

HexValue (OraRef) Property

Applies To

OraRef Object

Description

Returns the hexidecimal value of the REF.

Usage

hexstring = OraRef.HexValue

Remarks

The hexidecimal value of the REF can be used by the OraDatabase.FetchOraRef method.

	
See Also:

FetchOraRef Method

Hour (OraTimeStamp) Property

Applies To

OraTimeStamp Object

Description

Returns or sets the Hour attribute of an OraTimeStamp object.

Usage

hour = OraTimeStampObj.Hour
OraTimeStampObj.Hour = hour

Arguments

	Arguments	Description
	[in] hour	The Hour attribute of an OraTimeStamp object.

Data Type

Integer

Hour (OraTimeStampTZ) Property

Applies To

OraTimeStampTZ Object

Description

Returns or sets the Hour attribute of an OraTimeStampTZ object.

Usage

hour = OraTimeStampTZObj.Hour
OraTimeStampTZObj.Hour = hour

Arguments

	Arguments	Description
	[in] hour	The Hour attribute of an OraTimeStampTZ object.

Data Type

Integer

Hours Property

Applies To

OraIntervalDS Object

Description

Gets and sets the Hours attribute of an OraIntervalDS object.

Usage

hours = OraIntervalDSObj.Hours
OraIntervalDSObj.Hours = hours

Arguments

	Arguments	Description
	[in] hours	An Integer specifying the value of the Hours attribute of the OraIntervalDS object.

Data Type

Integer

IsLocator (OraCollection) Property

Applies To

OraCollection Object

Description

Returns True if the collection instance of the OraCollection object is locator-based; otherwise, returns False.

Usage

islocator = OraCollection.IsLocator

Data Type

Integer (Boolean)

IsMDObject Property

Applies To

OraMDAttribute Object

Description

Returns True if the Value property is another OraMetaData object; otherwise, the property is False.

Usage

isobject = OraMDAttribute.IsMDObject

Data Type

Boolean

IsNull (OraCollection) Property

Applies To

OraCollection Object

Description

Returns True if the collection value of the OraCollection object is Null.

Usage

isnull = OraObject.IsNull

Data Type

Integer (Boolean)

Remarks

Accessing elements of a Null collection results in an error. The IsNull property should be checked before accessing elements of an underlying collection.

IsNull (OraLOB/BFILE) Property

Applies To

OraBLOB, OraCLOB Objects

OraBFILE Object

Description

Returns True if the LOB or BFILE refers to a Null value in the database; otherwise, returns False. This property is read-only.

Usage

IsNull = OraBfile.IsNull
IsNull = OraBlob.IsNull
IsNull = OraClob.IsNull

Data Type

Boolean

Remarks

Some LOB or BFILE properties and methods are not valid when a LOB or BFILE is Null. This property makes it possible to check for Null values and avoid these errors.

IsNull (OraObject) Property

Applies To

OraObject Object

Description

Returns True if underlying value instance of the OraObject object is Null. Read-only at run time.

Usage

isnull = OraObject.IsNull

Data Type

Integer (Boolean)

Remarks

Accessing attributes of a Null value instance results in an error. The IsNull property can be checked before accessing attributes of an underlying value instance.

Examples

The following example shows the use of the IsNull property. Before running the sample code, make sure that you have the necessary data types and tables in the database. See "Schema Objects Used in the OraObject and OraRef Examples".

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim Address as OraObject
Dim AddressClone as OraObject

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from person_tab
set OraDynaset = OraDatabase.CreateDynaset("select * from person_tab", 0&)

' insert a Null Address value instance in the table
OraDynaset.AddNew
OraDynaset.Fields("Name").value = "Eric"
OraDynaset.Fields("Addr").Value = Null
OraDynaset.update

'move to the newly added value instance
OraDynaset.MoveLast

'retrieve a address column from person_tab. This Address object points to Null
' value instance
set Address = OraDynaset.Fields("Addr").Value

'try to access attributes of Address. the following line will result an error
msgbox Address.Street '---------ERROR------------'

'use the IsNull property to check the nullstatus
If Address.IsNull = False Then
 MsgBox Address!Street
End if

IsOpen (OraBFILE) Property

Applies To

OraBFILE Object

Description

Returns True if the OraBFILE object is open.

Usage

IsOpen = OraBFile.IsOpen

Data Type

Boolean

Remarks

The openness of an object OraBFILE is local to this OraBFILE object. If two OraBFILE objects point to the same BFILE in the database, and one OraBFILE object calls the Open method and the other does not, one OraBFILE object will return True for the IsOpen property. The other will return False.

	
See Also:

Open (OraBFILE) Method

IsRefNull (OraRef) Property

Applies To

OraRef Object

Description

Returns True if the underlying Ref value of the OraRef object is Null.

Usage

isnull = OraRef.IsRefNull

Data Type

Integer (Boolean)

Remarks

Accessing the attributes of a Null Ref value results in an error. The IsRefNull property should be checked before accessing attributes of an underlying referenceable object. This property is read-only at run time.

LastErrorText Property

Applies To

OraParamArray Object

Description

Gets the last error message. Not available at design time and read-only at run time.

Usage

OraParamArray.LastErrorText

Data Type

String

LastModified Property

Applies To

OraDynaset Object

Description

Returns the Bookmark object of the row that was last modified by an Edit or an AddNew operation. Not available at design time and read-only at run time.

Usage

last_modified_bookmark = oradynaset.LastModified

Data Type

The value is a string of binary data, but can be stored in a variable of String or Variant data type. The length of the string cannot be predicted, so do not use a fixed-length string.

Remarks

Use this property to make the last modified record the current record.

	
See Also:

	
AddNew Method

	
Bookmark Property

	
Edit Method

LastServerErr Property

Applies To

OraDatabase Object

OraSession Object

Description

Returns the last nonzero error code generated by an Oracle database function for the specified object. Not available at design time and read-only at run time.

Usage

error_number = oradatabase.LastServerErr
error_number = orasession.LastServerErr

Data Type

Long Integer

Remarks

This property represents the last nonzero return value from an Oracle Call Interface (OCI) database function, or zero if no error has occurred since the last LastServerErrReset request. For efficiency, only nonzero return values are returned; therefore, a nonzero value does not necessarily indicate that the most recently called OCI database function generated the error (because zero return values are not returned by way of the LastServerErr method).

	
Orasession.LastServerErr

Returns all errors related to connections, such as errors on OpenDatabase, BeginTrans, CommitTrans, Rollback, and ResetTrans method.

	
Oradatabase.LastServerErr

Returns all errors related to an Oracle cursor, such as errors on dynasets and from ExecuteSQL method.

Examples

This example demonstrates the use of the CreateDynaset method and the LastServerErr and LastServerErrText properties to determine whether an Oracle error has occurred, and to display the error message, respectively. Copy and paste this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

 'Declare variables as OLE Objects.
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraDynaset As OraDynaset

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Set up an error handler.
 On Error GoTo errhandler

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Attempt to Create the OraDynaset Object.
 'Notice that the FROM keyword is missing from the SQL statement.
 Set OraDynaset = OraDatabase.CreateDynaset("select * emp", 0&)

Exit Sub

errhandler:

 'Check to see if an Oracle error has occurred.
 If OraDatabase.LastServerErr <> 0 Then
 MsgBox OraDatabase.LastServerErrText
 Else 'Must be some non-Oracle error
 MsgBox "VB:" & Err & " " & Error(Err)
 End If

 Exit Sub

End Sub

	
See Also:

	
ExecuteSQL Method

	
LastServerErrReset Method

	
LastServerErrText Property

	
OpenDatabase Method

	
BeginTrans Method

	
CommitTrans Method

	
Rollback Method

	
ResetTrans Method

LastServerErrPos Property

Applies To

OraDatabase Object

Description

Returns the position at which a parsing error occurred in a SQL statement. Not available at design time and read-only at run time.

Usage

error_pos = oradatabase.LastServerErrPos

Data Type

Integer

Remarks

The LastServerErrPos property returns 0 if no SQL statements have been parsed; -1 if the last parse was successful; and >= 0 if the last parse failed. Parsing is done on SQL statements before execution (using the CreateDynaset or ExecuteSQL method).

	
See Also:

	
CreateDynaset Method

	
ExecuteSQL Method

	
LastServerErr Property

	
LastServerErrText Property

LastServerErrText Property

Applies To

OraDatabase Object

OraSession Object

Description

Returns the textual message associated with the current LastServerErr property of the specified object. Not available at design time and read-only at run time.

Usage

error_text = orasession.LastServerErrText
error_text = oradatabase.LastServerErrText

Data Type

String

Remarks

The returned value indicates one of three possible states:

	
If Null is returned, an Oracle Call Interface (OCI) database function has not returned an error since the most recent LastServerErrReset property.

	
If a non-Null value is returned, an OCI function has returned an error code; the returned string is the associated message.

	
If the message is empty, then no additional information was available.

Examples

This example demonstrates the use of the CreateDynaset method and the LastServerErr and LastServerErrText properties to determine whether an Oracle error has occurred and to display the error message. Copy and paste this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

 'Declare variables as OLE Objects.
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraDynaset As OraDynaset

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Set up an error handler.
 On Error GoTo errhandler

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Attempt to Create the OraDynaset Object.
 'Notice that the FROM keyword is missing from the SQL statement.
 Set OraDynaset = OraDatabase.CreateDynaset("select * emp", 0&)

Exit Sub

errhandler:

 'Check to see if an Oracle error has occurred.
 If OraDatabase.LastServerErr <> 0 Then
 MsgBox OraDatabase.LastServerErrText
 Else 'Must be some non-Oracle error.
 MsgBox "VB:" & Err & " " & Error(Err)
 End If

 Exit Sub

End Sub

	
See Also:

	
LastServerErr Property

	
LastServerErrReset Method

	
CreateDynaset Method

MaxSize (OraCollection) Property

Applies To

OraCollection Object

Description

Returns the maximum size of the collection.

Usage

max_size = OraCollection.MaxSize

Data Type

Integer

Remarks

For an OraCollection object of type ORATYPE_TABLE, this property returns the current size of the collection including deleted elements. For an OraCollection object of type ORATYPE_VARRAY, the property returns the maximum size of the collection.

MinimumSize Property

Applies To

OraParameter Object

OraParamArray Object

Description

Returns the minimum size of an OraParameter or OraParamArray string buffer or ByteArray (for ORATYPE_RAW_BIN). For OraParamArray objects, the minimum size property is read-only at run time. For OraParameter objects, the minimum size is read/write at run time.

Usage

oraparameter.MinimumSize
oraparamarray.MinimumSize

Data Type

Integer

Remarks

This property gets the minimum number of characters or bytes to be allocated for each element of the array. For OraParamArray objects, the size is specified using the AddTable method.

Examples

Note: This example needs the following to be run: a PL/SQL procedure called EmployeeLong with a GetEmpName procedure that uses a table with the column name ENAME_LONG that returns a long ename of approximately 200 characters.

Sub Form_Load ()

' Declare variables as OLE Objects.
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraDynaset As OraDynaset

' Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

' Create the OraDatabase Object.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

' Add EMPNO as an Input/Output parameter and set its initial value.
OraDatabase.Parameters.Add "EMPNO", 9999, ORAPARM_INPUT

' Add ENAME as an Output parameter and set its initial value.
OraDatabase.Parameters.Add "ENAME_LONG", "foo", ORAPARM_OUTPUT
OraDatabase.Parameters("ENAME_LONG").MinimumSize = 201
 'Since we require to hold a value of more than 128 bytes

' Execute the Stored Procedure Employee.GetEmpName to retrieve ENAME_LONG.
OraDatabase.ExecuteSQL ("Begin EmployeeLong.GetEmpName (:EMPNO," & _
 "NAME_LONG); end;")

	
See Also:

	
Add Method

	
AddTable Method

	
ExecuteSQL Method

Minute (OraTimeStamp) Property

Applies To

OraTimeStamp Object

Description

Returns or sets the Minute attribute of an OraTimeStamp object.

Usage

minute = OraTimeStampObj.Minute
OraTimeStampObj.Minute = minute

Arguments

	Arguments	Description
	[in] minute	The Minute attribute of an OraTimeStamp object.

Data Type

Integer

Minute (OraTimeStampTZ) Property

Applies To

OraTimeStampTZ Object

Description

Returns or sets the Minute attribute of an OraTimeStampTZ object.

Usage

minute = OraTimeStampTZObj.Minute
OraTimeStampTZObj.Minute = minute

Arguments

	Arguments	Description
	[in] minute	The Minute attribute of an OraTimeStampTZ object.

Data Type

Integer

Minutes Property

Applies To

OraIntervalDS Object

Description

Gets and sets the Minutes attribute of an OraIntervalDS object.

Usage

minutes = OraIntervalDSObj.Minutes
OraIntervalDSObj.Minutes = minutes

Arguments

	Arguments	Description
	[in] minutes	An Integer specifying the value of the Minutes attribute of the OraIntervalDS object.

Data Type

Integer

Month (OraTimeStamp) Property

Applies To

OraTimeStamp Object

Description

Returns or sets the Month attribute of an OraTimeStamp object.

Usage

month = OraTimeStampObj.Month
OraTimeStampObj.Month = month

Arguments

	Arguments	Description
	[in] month	The Month attribute of an OraTimeStamp object.

Data Type

Integer

Month (OraTimeStampTZ) Property

Applies To

OraTimeStampTZ Object

Description

Returns or sets the Month attribute of an OraTimeStampTZ object.

Usage

month = OraTimeStampTZObj.Month
OraTimeStampTZObj.Month = month

Arguments

	Arguments	Description
	[in] month	The Month attribute of an OraTimeStampTZ object.

Data Type

Integer

Months Property

Applies To

OraIntervalYM Object

Description

Gets and sets the Months attribute of an OraIntervalYM object.

Usage

months = OraIntervalYMObj.Months
OraIntervalYMObj.Months = months

Arguments

	Arguments	Description
	[in] month	An Integer specifying the value of the Months attribute of the OraIntervalYM object.

Data Type

Integer

Name Property

Applies To

OraClient Object

OraField Object

OraParameter Object

OraSession Object

OraParamArray Object

OraServer Object

OraSubscription Object

Description

Returns the name used to identify the given object. Not available at design time and read-only at run time.

Usage

client_name = oraclient.Name
field_name = orafield.Name
parameter_name = oraparameter.Name
paramarray_name = oraparamarray.Name
session_name = orasession.Name
server_name = oraserver.Name
subscription_name = orasubscription.Name

Data Type

String

Remarks

	
oraclient.Name

Returns the name of the specified OraClient object. This value is always local.

	
orafield.Name

Returns the name of the specified OraField object. If this is a true database field (not an alias), this use returns the name of the field as it appears in the database. If a SQL statement was executed that contains, for example, calculated select list items or column aliases, then the name is the actual text provided in the SQL SELECT statement.

	
oraparameter.Name

Returns the name of the specified OraParameter object. In addition to identifying the parameter within a parameters collection, the parameter name is also used to match placeholders within SQL and PL/SQL statements for the purposes of parameter binding.

	
oraparamarray.Name

Returns the name of the specified OraParamArray object. In addition to identifying the parameter within a parameters collection, the parameter name is also used to match placeholders within SQL and PL/SQL statements for the purposes of parameter binding.

	
orasession.Name

Returns the name of the specified OraSession object. For automatically created sessions, this is the name assigned by the system (usually a hexadecimal number). For user-created sessions, this is the name originally provided in the CreateSession method. Once created, a session name cannot be changed.

	
oraserver.Name

Returns the name of the physical connection of the specified OraServer object.

	
orasubscription.Name

Returns the name used to represent the subscription. Name here refers to the subscription name in the form of the string 'SCHEMA.QUEUE' if the registration is for a single consumer queue and 'SCHEMA.QUEUE:CONSUMER_NAME' if the registration is for a multiple consumer queue.

	
See Also:

	
CreateSession Method

	
Oracle Database Concepts for more information about Oracle Database events

Name (AQAgent) Property

Applies To

OraAQAgent Object

Description

Returns a 30-byte string representing the name of agent.

Usage

agent_name = qMsg.AQAgent.Name

Data Type

String

Name (OraAttribute) Property

Applies To

OraAttribute Object

Description

A String containing the name of the attribute.

Usage

name = OraAttribute.Name

Data Type

String

Remarks

Read-only at run time.

	
See Also:

OraAttribute Object

Name (OraMDAttribute) Property

Applies To

OraMDAttribute Object

Description

A String containing the name of the attribute.

Usage

name = OraMDAttribute.Name

Data Type

String

Nanosecond(OraTimeStamp) Property

Applies To

OraTimeStamp Object

Description

Returns or sets the Nanosecond attribute of an OraTimeStamp object.

Usage

nanosecond = OraTimeStampObj.NanosecondOraTimeStampObj.Nanosecond= nanosecond

Arguments

	Arguments	Description
	[in] nanosecond	The Nanosecond attribute of an OraTimeStamp object.

Data Type

Integer

Nanonsecond (OraTimeStampTZ) Property

Applies To

OraTimeStampTZ Object

Description

Returns or sets the Nanosecond attribute of an OraTimeStampTZ object.

Usage

nanosecond = OraTimeStampTZObj.NanosecondOraTimeStampTZObj.Nanosecond= nanosecond

Arguments

	Arguments	Description
	[in] nanosecond	The Nanosecond attribute of an OraTimeStampTZ object.

Data Type

Integer

Nanonseconds Property

Applies To

OraIntervalYM Object

Description

Gets and sets the Nanoseconds attribute of an OraIntervalDS object.

Usage

nanoseconds = OraIntervalDSObj.NanosecondsOraIntervalDSObj.Nanoseconds = nanoseconds

Arguments

	Arguments	Description
	[in] nanoseconds	An Integer specifying the value of the Nanoseconds attribute of the OraIntervalDS object.

Data Type

Integer

Navigation (OraAQ) Property

Applies To

OraAQ Object

Description

Specifies the position of the message that will be retrieved.

Usage

Q.Navigation = position

Data Type

Integer

Remarks

Possible values are:

	
ORAAQ_DQ_FIRST_MSG (1)

Retrieves the first message that is available and matches the search criteria.

	
ORAAQ_DQ_NEXT_TRANS (2)

Skips the remainder of the current transaction group, if any, and retrieves the first message of the next transaction group. Used only if message grouping is enabled for the queue.

	
ORAAQ_DQ_NEXT_MSG (3) (Default)

Retrieves the next message that is available and matches the search criteria.

NoMatch Property

Applies To

OraDynaset Object using the Address (OraAQAgent) Property Property

Description

Returns True if the last call to the FindFirst, FindLast, FindNext, or FindPrevious method failed.

Usage

Set nomatch_status = oradynaset.NoMatch

Data Type

Boolean

	
See Also:

FindFirst, FindLast, FindNext, and FindPrevious Methods

NonBlockingState Property

Applies To

"OraSQLStmt Object" created with ORASQL_NONBLK option.

Description

Returns the status of the currently executing SQL as follows:

	
ORASQL_STILL_EXECUTING

If operation is still underway.

	
ORASQL_SUCCESS

If operation has completed successfully.

Any failures are thrown as exceptions.

The application can access the output parameters, if any, as in the blocking case, after successful execution of the SQL statement.

Usage

status = OraSQL.NonBlockingState
if status = ORASQL_STILL_EXECUTING
 MsgBox "Still in execution"
else
 MsgBox "Execution completed successfully"

Return Values

ORASQL_STILL_EXECUTING(-3123) or ORASQL_SUCCESS(0)

Errors are thrown as exceptions.

	
See Also:

	
CreateSQL Method

	
"Asynchronous Processing"

Offset (OraLOB/BFILE) Property

Applies To

OraBLOB, OraCLOB Objects

OraBFILE Object

Description

Gets or sets the 1-based offset into the LOB or BFILE for the next Read or Write operation. This property is read/write at run time.

Usage

offsetbytes = OraBFile.Offset
OraBFile.Offset = offsetbytes

offsetbytes = OraBlob.Offset
OraBlob.Offset = offsetbytes

offsetchars = OraClob.Offset
OraClob.Offset = offsetchars

Data Type

Integer

Remarks

This value is expressed in bytes for OraBLOB and OraBFILE or characters for the OraCLOB object. The default value is 1. Setting this value to 0 raises an error. When the PollingAmount property is not 0 (polling is enabled), the Offset property can only be set before the first Read or Write operation, or after the current polling operation has completed.

	
See Also:

PollingAmount Property

OIPVersionNumber Property

Applies To

OraSession Object

Description

Returns the version number of Oracle Object for OLE. Not available at design time and read-only at run time.

Usage

version_number = orasession.OIPVersionNumber

Data Type

String

Remarks

This property returns a unique identifier for each release of Oracle Object for OLE.

Options Property

Applies To

OraDatabase Object

OraDynaset Object

OraSQLStmt Object

Description

Returns the options flag originally passed to the specified object. Not available at design time and read-only at run time.

Usage

options = oradatabase.Options
options = oradynaset.Options
options = orasqlstmt.Options

Data Type

Long Integer

Remarks

See the OpenDatabase method for a description of the possible values of oradatabase.Options.

See the CreateDynaset method for a description of the possible values of oradynaset.Options.

See the CreateSQL method for a description of the possible values of orasqlstmt.Options

	
See Also:

	
CreateDynaset Method

	
CreateSQL Method

	
OpenDatabase Method

OraIDataType Property

Applies To

OraField Object

Description

Returns the Oracle internal data type code for the field specified. Not available at design time and read-only at run time.

Usage

field_idatatype = orafield.OraIDataType

Data Type

Long Integer

Remarks

The following Oracle Internal data types are returned.

	Constant	Value	Internal Data Type
	ORATYPE_VARCHAR2	1	VARCHAR2
	ORATYPE_NUMBER	2	NUMBER
	ORATYPE_LONG	8	LONG
	ORATYPE_DATE	12	DATE
	ORATYPE_RAW	23	RAW
	ORATYPE_LONGRAW	24	LONG RAW
	ORATYPE_CHAR	96	CHAR
	ORATYPE_BFLOAT	100	BINARY_FLOAT
	ORATYPE_BDOUBLE	101	BINARY_DOUBLE
	ORATYPE_MLSLABEL	105	MLSLABEL
	ORATYPE_OBJECT	108	OBJECT
	ORATYPE_REF	110	REF
	ORATYPE_CLOB	112	CLOB
	ORATYPE_BLOB	113	BLOB
	ORATYPE_BFILE	114	BFILE
	ORATYPE_TIMESTAMP	187	TIMESTAMP
	ORATYPE_TIMESTAMPTZ	188	TIMESTAMP WITH TIME ZONE
	ORATYPE_INTERVALYM	189	INTERVAL YEAR TO MONTH
	ORATYPE_INTERVALDS	190	INTERVAL DAY TO SECOND
	ORATYPE_TIMESTAMPLTZ	232	TIMESTAMPWITHLOCALTIMEZONE
	ORATYPE_VARRAY	247	VARRAY
	ORATYPE_TABLE	248	NESTED TABLE

These values can be found in the ORACLE_BASE\\ORACLE_HOME\oo4o\oraconst.txt file.

	
See Also:

	
OraMaxDSize Property

	
OraMaxSize Property

	
OraNullOK Property

	
OraPrecision Property

	
OraScale Property

OraMaxDSize Property

Applies To

OraField Object

Description

Returns the Oracle maximum display size for the field specified. Not available at design time and read-only at run time.

Usage

field_maxdisplaysize = orafield.OraMaxDSize

Data Type

Long Integer

Remarks

This value is meaningful only when the value is returned as a character string, especially when using functions such as SUBSTR or TO_CHAR to modify the representation of the column.

	
See Also:

	
OraIDataType Property

	
OraMaxSize Property

	
OraNullOK Property

	
OraPrecision Property

	
OraScale Property

OraMaxSize Property

Applies To

OraField Object

Description

Returns the Oracle maximum column size as stored in the Oracle data dictionary. Not available at design time and read-only at run time.

Usage

field_maxsize = orafield.OraMaxSize

Data Type

Long Integer

Remarks

The return value is dependent on the Oracle internal data type. The following values will be returned:

	Oracle Column Type	Value
	CHAR, VARCHAR2, RAW	Length of the column in the table
	NUMBER	22 (the internal length)
	DATE	7 (the internal length)
	LONG, LONG RAW	0
	ROWID	System dependent
	Functions returning internal data type 1, such as TO_CHAR()	Same as orafield.MaxDSize

	
See Also:

	
OraIDataType Property

	
OraMaxDSize Property

	
OraNullOK Property

	
OraPrecision Property

	
OraScale Property

OraNullOK Property

Applies To

OraField Object

Description

Indicates whether or not Null values are permitted for this column. Not available at design time and read-only at run time.

Usage

field_nullok = orafield.OraNullOK

Data Type

Integer (Boolean)

Remarks

This property returns True if Null values are permitted, otherwise, it returns False.

	
See Also:

	
OraIDataType Property

	
OraMaxDSize Property

	
OraMaxSize Property

	
OraPrecision Property

	
OraScale Property

OraPrecision Property

Applies To

OraField Object

Description

Returns the precision of a numeric column. Not available at design time and read-only at run time.

Usage

field_precision = orafield.OraPrecision

Data Type

Long Integer

Remarks

This value is meaningful only when the value returned is numeric. Precision is the total number of digits of a number.

	
See Also:

	
OraIDataType Property

	
OraMaxDSize Property

	
OraMaxSize Property

	
OraNullOK Property

	
OraScale Property

OraScale Property

Applies To

OraField Object

Description

Returns the scale of a numeric column. Not available at design time and read-only at run time.

Usage

field_scale = orafield.OraScale

Data Type

Long Integer

Remarks

This value is meaningful only when the value returned is numeric. The SQL types REAL, DOUBLE PRECISION, FLOAT, and FLOAT(N) return a scale of -127.

	
See Also:

	
OraIDataType Property

	
OraMaxDSize Property

	
OraMaxSize Property

	
OraNullOK Property

	
OraPrecision Property

Parameters Property

Applies To

OraDatabase Object

Description

Returns the OraParameters collection of the specified database. Not available at design time and read-only at run time.

Usage

Set oraparameters_collection = oradatabase.Parameters

Data Type

OLE Object (OraParameters)

Remarks

You can access the parameters in this collection by subscripting (using ordinal integer numbers) or by using the name the parameter that was given at its creation. You can obtain the number of parameters in the collection using the Count property of the returned collection. Integer subscripts begin with 0 and end with Count-1. Out-of-range indexes and invalid names return a Null OraParameter object.

In addition to accessing the parameters of the collection, you can also use the collection to create and destroy parameters using the Add and Remove methods, respectively.

	
See Also:

	
Add Method

	
Count Property

	
OraParameter Object

	
OraParameters Collection

	
Remove Method

PinOption (OraRef) Property

Applies To

OraRef Object

Description

Gets and sets the Pin option for the referenceable object during the pin operation.

Usage

pin_option = OraRef.PinOptionOraRef.PinOption = pin_option

Arguments

	Arguments	Description
	[in] PinOption	An Integer representing the Pin option.

Data Type

Integer (Boolean)

Remarks

Possible values returned by the pin_option property are:

	Constant	Value	Description
	ORAREF_READ_ANY	3	If the object is already in the object cache, returns it, otherwise, retrieves it from the database(default).
	ORAREF_READ_RECENT	4	If the object is retrieved into the cache during a transaction, returns it from the cache, otherwise retrieves the object from the database.
	ORAREF_READ_LATEST	5	Always retrieves the latest values from the database.

Examples

The following example shows the usage of the PinOption property. Before running the sample code, make sure that you have the necessary data types and tables in the database. See "Schema Objects Used in the OraObject and OraRef Examples".

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim Person as OraRef

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from customers
set OraDynaset = OraDatabase.CreateDynaset("select * from customers", 0&)

'retrieve a aperson column from customers. Here Value
'property of OraField object returns Person OraRef
set Person = OraDynaset.Fields("aperson").Value

'set the ORAREF_READ_LATEST read option on the Person object.
Person.PinOption = ORAREF_READ_LATEST

'pin the Person Ref and get the latest copy of referenceable
'object for Ref from the database
MsgBox Person.Name
MsgBox Person.Age

PollingAmount Property

Applies To

OraBLOB, OraCLOB Objects

OraBFILE Object

Description

Gets or sets the total amount to be read or written for multiple chunk Read and Write operations (polling). A value of zero means that polling is not used. This property is read/write at run time.

Usage

pollamountbytes = OraBFile.PollingAmount
OraBfile.PollingAmount = pollamountbytes

pollamountbytes = OraBlob.PollingAmount
OraBlob.PollingAmount = pollamountbytes

pollamountchars= OraClob.PollingAmount
OraClob.PollingAmount = pollamountchars

Data Type

Integer

Remarks

This value is expressed in bytes for the OraBLOB and OraBFILE objects, or characters for the OraCLOB object. It is set before beginning a multiple-chunk read or write operation. After it is set, a series of Read or Write operations must be issued until the LOB Status property no longer returns ORALOB_NEED_DATA .This occurs when the PollingAmount bytes or characters have been read. Attempting to do other LOB operations before the end of the polling operation results in an error.

Priority (OraAQMsg) Property

Applies To

OraAQMsg Object

Description

Specifies the priority of the message.

Usage

Msg.Priority = msg_priority

Data Type

Integer

Remarks

A smaller number indicates higher priority.

Possible Values are:

	
Any integer including negative numbers.

	
ORAAQ_NORMAL (Default): 0

	
ORAAQ_HIGH : -10

	
ORAAQ_LOW : 10

This property can be set while enqueuing and can then be used for priority-based dequeuing.

RDMSVersion Property

Applies To

OraDatabase Object

Description

Returns the database version.

Usage

Set Version = oradatabase.RDBMSVersion

Data Type

String

RecordCount Property

Applies To

OraDynaset Object

OraSQLStmt Object

Description

	
OraDynaset

Returns the total number of records in the dynaset.

	
OraSQLStmt

Returns the number of records processed in an insert, update, or delete statement, even when there is a failure executing the SQL statement.

Not available at design time and read-only at run time.

Usage

record_count = oradynaset.RecordCountrecord_count = orasqlstmt.RecordCount

Data Type

Long Integer

Remarks

Referencing this property requires that the entire result table be fetched immediately from an Oracle database to determine the count of records. Due to the potentially severe performance impact of this, the user should avoid using this property and instead execute an additional query using the COUNT(*) clause, and use the SnapshotID property to guarantee time consistency. For an example, see the SnapShot property.

Referencing this property while using the ORADYN_NOCACHE option of the CreateDynaset method causes an implicit MoveLast operation and makes the current record the last record in the dynaset.

Examples

RecordCount Example (OraDynaset)

This example demonstrates the use of the RecordCount property to determine the number of records retrieved with a SELECT statement and OraDynaset. Copy and paste this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

 'Declare variables as OLE Objects.
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraDynaset As OraDynaset

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Create the dynaset.
 Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)

 'Display the number of records. Note that this causes
 'all records to be fetched to ensure an accurate count.

 MsgBox OraDynaset.RecordCount & " records retrieved."

End Sub

Record Count Example (OraSQLStmt)

The following example shows the number of records inserted into the database after using an INSERT statement with OraSQLStmt.

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset
Dim OraSqlStmt As OraSQLStmt
Dim OraPArray1 As OraParamArray
Dim OraPArray2 As OraParamArray
Dim I As Integer

On Error GoTo ERR_array_sql

'Test case for inserting/updating/deleting multiple rows using parameter arrays
'with SQL statements
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
Set OraDatabase = OraSession.OpenDatabase("exampledb", "scott/tiger", 0&)

'Create table
OraDatabase.ExecuteSQL ("create table part_nos(partno number, description" & _
 "char(50), primary key(partno))")

OraDatabase.Parameters.AddTable "PARTNO", ORAPARM_INPUT, ORATYPE_NUMBER, 10, 22
OraDatabase.Parameters.AddTable "DESCRIPTION", ORAPARM_INPUT, ORATYPE_CHAR, _
 10, 50
If OraDatabase.LastServerErr <> 0 Or OraDatabase.LastServerErrText <> "" Then
 MsgBox "Error"
End If

Set OraPArray1 = OraDatabase.Parameters("PARTNO")
Set OraPArray2 = OraDatabase.Parameters("DESCRIPTION")

'Initialize arrays
For I = 0 To 9
 achar = "Description" + Str(I)
 OraPArray1.put_Value 1000 + I, I
 OraPArray2.put_Value achar, I
Next I

Set OraSqlStmt = OraDatabase.CreateSql("insert into" & _
 "part_nos(partno, description) values(:PARTNO,:DESCRIPTION)", 0&)
If OraDatabase.LastServerErr <> 0 Or OraDatabase.LastServerErrText <> "" Then
 MsgBox "Error"
End If
MsgBox "# of records inserted : " & OraSqlStmt.RecordCount

Exit Sub
ERR_array_sql:

 MsgBox Err.Description

	
See Also:

	
SnapShot Property

	
CreateDynaset Method

	
MoveFirst, MoveLast, MoveNext, and MovePrevious Methods

RelMsgId (OraAQ) Property

Applies To

OraAQ Object

Description

Specifies that the message of this queue object is enqueued ahead of the message specified by the message ID.

Usage

OraAq.RelMsgid = msg_id

Data Type

String

Remarks

This method is applicable only for an enqueue operation.

Possible values include:

	
Any valid message identifier, specified by an array of bytes.

	
ORAAQ_NULL_MSGID (Default): No message identifier specified.

Setting this property invokes enqueue with the ORAAQ_ENQ_BEFORE option. Set this property to ORAAQ_NULL_MSGID to place the message on top of the queue.

RowPosition Property

Applies To

OraDynaset Object

Description

Returns the row number of the current row in the dynaset. Not available in design time and read-only in run time.

Usage

rownum = OraDynaset.RowPosition

Data Type

Integer

	
See Also:

OraField Object

SafeArray (OraCollection) Property

Applies To

OraCollection Object

Description

Gets or sets the element values from the Variant SAFEARRAY.

Usage

SafeArray = OraCollection.SafeArrayOraCollection.SafeArray = SafeArray

Arguments

	Arguments	Description
	SafeArray	A Variant representing SafeArray format.

Data Type

A Variant representing a SafeArray format.

Remarks

This property is only valid for simple scalar elements types, such as VARCHAR2 and NUMBER. This property raises an error for element type LOBS, Objects, Refs, and so on.

The Variant SAFEARRAY index starts at 0. When converting to SAFEARRAY format, the OraCollection object converts its element value to its corresponding SAFEARRAY Variant type. The following table explains collection element types and their corresponding SAFEARRAY Variant types:

	Collection Element Type	SAFEARRAY of
	Date	String
	Number	String
	CHAR, VARCHAR2	String
	Real	Real
	Integer	Integer

For setting a SAFEARRAY to a collection, OraCollection converts the SAFEARRAY elements to its nearest collection element type.

Second (OraTimeStamp) Property

Applies To

OraTimeStamp Object

Description

Returns or sets the Second attribute of an OraTimeStamp object.

Usage

second = OraTimeStampObj.SecondOraTimeStampObj.Second= second

Arguments

	Arguments	Description
	[in] second	The Second attribute of an OraTimeStamp object.

Data Type

Integer

Second (OraTimeStampTZ) Property

Applies To

OraTimeStampTZ Object

Description

Returns or sets the Second attribute of an OraTimeStampTZ object.

Usage

second = OraTimeStampTZObj.SecondOraTimeStampTZObj.Second= second

Arguments

	Arguments	Description
	[in] second	The Second attribute of an OraTimeStampTZ object.

Data Type

Integer

Seconds Property

Applies To

OraIntervalDS Object

Description

Gets and sets the Seconds attribute of an OraIntervalDS object.

Usage

seconds = OraIntervalDSObj.SecondsOraIntervalDSObj.Seconds = seconds

Arguments

	Arguments	Description
	[in] seconds	An Integer specifying the value of the Seconds attribute of the OraIntervalDS object.

Data Type

Integer

Server Property

Applies To

OraDatabase Object

Description

Returns the OraServer object to which this object is attached.

Usage

Set oraserver = oradatabase.Server

Data Type

OLE Object (OraServer)

	
See Also:

OraServer Object

ServerType Property

Applies To

OraParameter Object

OraParamArray Object

Description

Specifies the Oracle external type of a SQL or PL/SQL bind variable. Not available at design time and read/write at run time.

Read-only for the OraParamArray object. Specify the ServerType property during the AddTable method.

Usage

oraparameter.ServerType = oracle_type

Data Type

Integer

Remarks

Used to specify the external data type of SQL or PL/SQL (in/out) bind variables. This is necessary because no local parsing of the SQL statement or PL/SQL block is done to match the data types of placeholders in the SQL statement or PL/SQL block.

After an OraParameter object has been set to ServerType BLOB, CLOB, BFILE, OBJECT, REF, VARRAY, or NESTED TABLE, it cannot be changed to any other ServerType property.

The following Oracle external data types are supported.

	Constant	Value	Internal Data Type
	ORATYPE_VARCHAR2	1	VARCHAR2
	ORATYPE_NUMBER	2	NUMBER
	ORATYPE_SINT	3	SIGNED INTEGER
	ORATYPE_FLOAT	4	FLOAT
	ORATYPE_STRING	5	Null Terminated STRING
	ORATYPE_LONG	8	LONG
	ORATYPE_VARCHAR	9	VARCHAR
	ORATYPE_DATE	12	DATE
	ORATYPE_RAW	23	RAW
	ORATYPE_LONGRAW	24	LONG RAW
	ORATYPE_UINT	68	UNSIGNED INTEGER
	ORATYPE_CHAR	96	CHAR
	ORATYPE_CHARZ	97	Null Terminated CHAR
	ORATYPE_BFLOAT	100	BINARY_FLOAT
	ORATYPE_BDOUBLE	101	BINARY_DOUBLE
	ORATYPE_CURSOR	102	PLSQL CURSOR
	ORATYPE_MLSLABEL	105	MLSLABEL
	ORATYPE_OBJECT	108	OBJECT
	ORATYPE_REF	110	REF
	ORATYPE_CLOB	112	CLOB
	ORATYPE_BLOB	113	BLOB
	ORATYPE_BFILE	114	BFILE
	ORATYPE_TIMESTAMP	187	TIMESTAMP
	ORATYPE_TIMESTAMPTZ	188	TIMESTAMP WITH TIMEZONE
	ORATYPE_INTERVALYM	189	INTERVAL YEAR TO MONTH
	ORATYPE_INTERVALDS	190	INTERVAL DAY TO SECOND
	ORATYPE_TIMESTAMPLTZ	232	TIMESTAMP WITH LOCAL TIME ZONE
	ORATYPE_VARRAY	247	VARRAY
	ORATYPE_TABLE	248	NESTED TABLE
	ORATYPE_RAW_BIN	2000	RAW

These values can be found in the ORACLE_BASE\\ORACLE_HOME\oo4o\oraconst.txt file.

Examples

This example demonstrates the Add and Remove parameter methods, the ServerType parameter property, and the ExecuteSQL database method to call a stored procedure and function (located in ORAEXAMP.SQL). Copy and paste this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

'Declare variables as OLE Objects.
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraDynaset As OraDynaset

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Add EMPNO as an Input/Output parameter and set its initial value.
 OraDatabase.Parameters.Add "EMPNO", 7369, ORAPARM_INPUT
 OraDatabase.Parameters("EMPNO").ServerType = ORATYPE_NUMBER

 'Add ENAME as an Output parameter and set its initial value.
 OraDatabase.Parameters.Add "ENAME", 0, ORAPARM_OUTPUT
 OraDatabase.Parameters("ENAME").ServerType = ORATYPE_VARCHAR2

 'Add SAL as an Output parameter and set its initial value.
 OraDatabase.Parameters.Add "SAL", 0, ORAPARM_OUTPUT
 OraDatabase.Parameters("SAL").ServerType = ORATYPE_NUMBER

 'Execute the Stored Procedure Employee.GetEmpName to retrieve ENAME.
 ' This Stored Procedure can be found in the file ORAEXAMP.SQL.
 OraDatabase.ExecuteSQL ("Begin Employee.GetEmpName (:EMPNO, :ENAME); end;")
 'Display the employee number and name.

 'Execute the Stored Function Employee.GetSal to retrieve SAL.
 ' This Stored Function can be found in the file ORAEXAMP.SQL.
 OraDatabase.ExecuteSQL ("declare SAL number(7,2); Begin" & _
 ":SAL:=Employee.GetEmpSal (:EMPNO); end;")

 'Display the employee name, number and salary.
 MsgBox "Employee " & OraDatabase.Parameters("ENAME").value & ", #" & OraDatabase.Parameters("EMPNO").value & ",Salary=" & OraDatabase.Parameters("SAL").value

 'Remove the Parameters.
 OraDatabase.Parameters.Remove "EMPNO"
 OraDatabase.Parameters.Remove "ENAME"
 OraDatabase.Parameters.Remove "SAL"

End Sub

	
See Also:

	
Add Method

	
Remove Method

	
AddTable Method

	
ExecuteSQL Method

Session Property

Applies To

OraCollection Object

OraDatabase Object

OraDynaset Object

OraSQLStmt Object

OraServer Object

Description

Returns the OraSession object associated with the specified object. Not available at design time and read-only at run time.

Usage

Set orasession = oraconnection.Session
Set orasession = oradatabase.Session
Set orasession = oradynaset.Session
Set orasession = orasqlstmt.Session
Set orasession = oraserver.Session

Data Type

OLE Object (OraSession)

Remarks

	
oraconnection.Session

Returns the OraSession object in which this OraConnection object resides.

	
oradatabase.Session

Returns the OraSession object associated with this OraDatabase object. Each database is a part of one session, which is, by default, the session associated with the application.

	
oradynaset.Session

Returns the OraSession object associated with this OraDynaset object.

	
orasqlstmt.Session

Returns the OraSession object associated with this OraSQLStmt object.

	
See Also:

	
OraSession Object

	
OraSessions Collection

Sessions Property

Applies To

OraClient Object

Description

Returns the collection of all sessions for the specified OraClient object. Not available at design time and read-only at run time.

Usage

Set orasessions_collection = oraclient.Sessions

Data Type

OLE Object (OraSessions)

Remarks

You can access a session in this collection by subscripting (using ordinal numbers) or by using the name the session was given at its creation. You can obtain the total number of sessions in the collection by using the Count property of the returned collection. Integer subscripts begin with 0 and end with Count-1. Out-of-range indexes and invalid names return a Null OraSession object.

	
See Also:

	
Count Property

	
OraSession Object

	
OraSessions Collection

Size Property

Applies To

OraField Object

Description

Returns the number of characters or bytes of the Variant associated with the returned value of this field. Not available at design time and read-only at run time.

Usage

field_size = orafield.Size

Data Type

Long Integer

Remarks

This property returns 0 for LONG or LONG RAW fields. Use the FieldSize method to determine the length of LONG or LONG RAW fields.

	
See Also:

	
OraFields Collection

	
FieldSize Method

	
Type Property

Size (OraCollection) Property

Applies To

OraCollection Object

Description

Returns the current size of the given collection. Read-only at run time.

Usage

coll_size = OraCollection.Size

Data Type

Integer

Remarks

For an OraCollection object of type ORATYPE_TABLE, this property returns the current size of the collection including deleted elements.

	
See Also:

OraField Object

Size (OraLOB and OraBFILE) Property

Applies To

OraBLOB, OraCLOB Objects

OraBFILE Object

Description

Returns the number of bytes in OraBLOB and OraBFILE objects or the number of characters in an OraCLOB object. Read-only.

Usage

bytes = OraBFile.Size

bytes = OraBlob.Size

chars = OraClob.Size

SnapShot Property

Applies To

OraDynaset Object

Description

Returns the SnapshotID.

Read and write at run time.

Usage

SnapshotID = OraDynaset.Snapshot

Remarks

The SnapshotID represents the snapshot from which this dynaset was created. It can be thought of as a timestamp. It can be passed into other CreateDynaset method calls to cause them to be created using data from the same point in time as the original dynaset.

The Snapshot property can be set with the value of another Snapshot. That new snapshot is used during the next Refresh operation when the query is reexecuted. The Snapshot property always returns the SnapshotID on which this OraDynaset object was based, not any other SnapshotID set through the snapshot property.

The SnapshotID becomes invalid after a certain amount of time; that amount of time is dependent on the amount of activity and the configuration of the database. When this happens, you get a Snapshot too old error message. For more information about snapshots, see the Oracle Database Concepts.

This SnapshotID represents the point in time when this dynaset was created. Changes to this dynaset (Edit, Delete, and AddNew operations) is not reflected in additional dynasets created using this SnapshotID because they occurred after that point in time.

SnapshotID objects are only meaningful for SELECT statements where the tables referenced are real database tables, as opposed to pseudo tables such as DUAL.

One valuable use of the SnapshotID is to calculate the number of rows in a table without using the RecordCount property which causes every row to be fetched. See "Example: Counting Rows in a Dynaset".

Data Type

Object

Examples

Example: Using the SnapShot Property

This example shows the use of the SnapShot property.

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset1 As OraDynaset
Dim OraDynaset2 As OraDynaset
Dim SnapshotID as SnapshotID

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'ALLEN's JOB is initially SALESMAN
OraDatabase.ExecuteSql("Update EMP set JOB = 'SALESMAN' where ENAME = 'ALLEN'")

 'Create initial OraDynaset Object.
 Set OraDynaset1 = OraDatabase.CreateDynaset("select empno, ename," & _
 "job from emp", 0&)
MsgBox "OraDynaset1 -- Value of JOB is " & OraDynaset1.Fields("JOB").Value

'Change Allen's JOB
OraDatabase.ExecuteSql("Update EMP set JOB = 'CLERK' where ENAME = 'ALLEN'")

'This SnapshotID represents the point in time in which OraDynaset1 was created
Set SnapshotID = OraDynaset1.Snapshot

'Create OraDynaset2 from the same point in time as OraDynaset1
Set OraDynaset2 = OraDatabase.CreateDynaset("select JOB from EMP" & _
 "where ENAME = 'ALLEN'", 0&, SnapshotID)

MsgBox "OraDynaset2 -- Value of JOB from point of time of OraDynaset1 is " & _
 OraDynaset2.Fields("JOB").Value

'We set the snapshot to NULL which will get us current point in time.
OraDynaset2.Snapshot = Null

'We refresh it and it will get us the data from the current point in time
OraDynaset2.Refresh
MsgBox "OraDynaset2 -- Value of JOB from current point of time is " & _
 OraDynaset2.Fields("JOB").Value

'And back again to the old point in time --
OraDynaset2.Snapshot = SnapshotID
OraDynaset2.Refresh
MsgBox "OraDynaset2 -- Value of JOB from point of time of OraDynaset1 is " & _
 OraDynaset2.Fields("JOB").Value

Example: Counting Rows in a Dynaset

This example counts the number of rows in a dynaset without using the RecordCount property, which fetches every row. Note that the record count this returns cannot take into account any AddNew or Delete operations, making the information meaningful only immediately after the dynaset is created

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset
Dim OraDynCount As OraDynaset
Dim SnapshotID as SnapshotID

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'Create the Dynaset
Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)
Set SnapshotID = OraDynaset.Snapshot

'Use the snapshot for count query to guarantee the same point in time
Set OraDynCount = OraDatabase.CreateDynaset("select count(*) NUMROWS" & _
 "from emp", 0&, SnapshotID)
MsgBox "Number of rows in the table is " & OraDynCount.Fields("NUMROWS").Value

	
See Also:

	
CreateDynaset Method

	
CreateCustomDynaset Method

	
Oracle Database Concepts

Sort Property

Remarks

The OraDynaset object does not support this property. Sort your record set by using a SQL ORDER BY clause.

	
See Also:

	
CreateDynaset Method

	
OraDynaset Object

SQL Property

Applies To

OraDynaset Object

OraSQLStmt Object

Description

Returns or sets the SQL statement used to create the specified dynaset or OraSQLStmt object. Not available at design time and read/write at run time.

Usage

SQL_statement = oradynaset.SQL
SQL_statement = orasqlstmt.SQL

oradynaset.SQL = SQL_statement
orasqlstmt.SQL = SQL_statement

Data Type

String

Remarks

The first use returns the contents of the SQL statement buffer, and the second use sets the contents of the SQL statement buffer.

The SQL statement buffer initially contains the SQL statement used to create the dynaset or OraSQLStmt object. The contents of the SQL statement buffer are executed whenever the Refresh method is issued.

Examples

This example demonstrates the use of parameters, the Refresh method, and the SQL property to restrict selected records. Copy and paste this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

 'Declare variables as OLE Objects.
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraDynaset As OraDynaset

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Create a parameter with an initial value.
 OraDatabase.Parameters.Add "job", "MANAGER", 1

 'Create the OraDynaset Object.
 Set OraDynaset = OraDatabase.CreateDynaset("select * from emp where " & _
 "job=:job", 0&)

 'Notice that the SQL statement is NOT modified.
 MsgBox OraDynaset.SQL

 'Currently, OraDynaset only contains employees whose job is MANAGER.

 'Change the value of the job parameter.
 OraDatabase.Parameters("job").Value = "SALESMAN"

 'Refresh the dynaset.
 OraDynaset.Refresh

 'Currently, OraDynaset only contains employees whose 'job is SALESMAN.

 'Notice that the SQL statement is NOT modified.
 MsgBox OraDynaset.SQL

 'Remove the parameter.
 OraDatabase.Parameters.Remove ("job")

 End Sub

	
See Also:

Refresh Method

Status Property

Applies To

OraParameter Object

OraParamArray Object

Description

Returns an integer indicating the status of the specified parameter. Not available at design time and read-only at run time.

Usage

parameter_status = oraparameter.Statusparameter_status = oraparamarray.Status

Data Type

Integer

Remarks

The Status property is interpreted as a series of bits, each providing information about the parameter. Parameters can be bound only if they are enabled, and can be enabled only if they are auto-enabled.

The parameter Status property bit values are:

	Constant	Value	Description
	ORAPSTAT_INPUT	&H1&	Parameter can be used for input.
	ORAPSTAT_OUTPUT	&H2&	Parameter can be used for output.
	ORAPSTAT_AUTOENABLE	&H4&	Parameter is AutoBindEnabled.
	ORAPSTAT_ENABLE	&H8&	Parameter is Enabled. This bit is always set.

These values are located in the ORACLE_BASE\\ORACLE_HOME\oo4o\oraconst.txt file.

Examples

This example demonstrates the use of parameters and the ExecuteSQL method to call a stored procedure (located in ORAEXAMP.SQL). After calling the stored procedure, the Status property of each parameter is checked. Copy and paste this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

 'Declare variables as OLE Objects.
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraDynaset As OraDynaset

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Add EMPNO as an Input parameter and set its initial value.
 OraDatabase.Parameters.Add "EMPNO", 7369, ORAPARM_INPUT

 'Add ENAME as an Output parameter and set its initial value.
 OraDatabase.Parameters.Add "ENAME", 0, ORAPARM_OUTPUT

 'Execute the Stored Procedure Employee.GetEmpName to retrieve ENAME.
 ' This Stored Procedure is located in the file ORAEXAMP.SQL.
 OraDatabase.ExecuteSQL ("Begin Employee.GetEmpName (:EMPNO, :ENAME); end;")

 If OraDatabase.Parameters("EMPNO").Status & ORAPSTAT_INPUT Then
 MsgBox "Parameter EMPNO used for input."
 End If

 If OraDatabase.Parameters("ENAME").Status & ORAPSTAT_OUTPUT Then
 MsgBox "Parameter ENAME used for output."
 End If

'Display the employee number and name.
 MsgBox OraDatabase.Parameters("EMPNO").value
 MsgBox OraDatabase.Parameters("ENAME").value

 'Remove the Parameters.
 OraDatabase.Parameters.Remove "EMPNO"
 OraDatabase.Parameters.Remove "ENAME"

End Sub

	
See Also:

	
Add Method

	
AutoBindDisable Method

	
AutoBindEnable Method

	
ExecuteSQL Method

	
Remove Method

Status (OraLOB/BFILE) Property

Applies To

OraBLOB, OraCLOB Objects

OraBFILE Object

Description

Returns the status of the current polling operation.

Read-only.

Usage

status = OraBFile.Status
status = OraBlob.Status
status = OraClob.Status

Data Type

Integer

Remarks

This value only has meaning when the PollingAmount property is not zero, and a Read operation has occurred. Possible return values are:

	
ORALOB_NEED_DATA

There is more data to be read or written.

	
ORALOB_NODATA

There is no data to be read or written, usually due to an error condition.

	
ORALOB_SUCCESS LOB

The data was read or written successfully.

	
See Also:

PollingAmount Property

Subscriptions Property

Applies To

OraDatabase Object

Description

Returns the OraSubscriptions collection of the specified database. Not available at design time and read-only at run time.

Usage

Set orasubscriptions_collection = oradatabase.Subscriptions

Data Type

OLE Object (OraSubscriptions)

Remarks

You can access the subscriptions in this collection by subscripting (using ordinal integer numbers). You can obtain the number of subscriptions in the collection using the Count property of the returned collection. Integer subscripts begin with 0 and end with Count-1. Out-of-range indexes return a Null OraSubscription object.

In addition to accessing the subscriptions of the collection, you can also use the collection to create and destroy subscriptions using the Add and Remove methods, respectively.

Examples

See "Example: Registering an Application for Notification of Database Events" for a complete example.

	
See Also:

	
"Database Events"

	
OraSubscription Object

	
OraSubscriptions Collection

	
Remove (OraSubscriptions Collection) Method

TableName (OraRef) Property

Applies To

OraRef Object

Description

A String containing the name of the object table in which the underlying referenceable object resides.

Usage

table_name = OraRef.TableName

Data Type

String

Remarks

This property is read-only.

TableSize (OraCollection) Property

Applies To

OraCollection Object

Description

Returns the current size of the given collection. Read-only at run time.

Usage

table_size = OraCollection.TableSize

Data Type

Integer

Remarks

For an OraCollection object of type ORATYPE_TABLE, it returns the current size of the collection, excluding deleted elements.

TimeZone (OraTimeStampTZ) Property

Applies To

OraTimeStampTZ Object

Description

Returns or sets the time zone information of an OraTimeStampTZ object.

Usage

timezone = OraTimeStampTZObj.TimeZoneOraTimeStampTZObj.TimeZone= timezone

Arguments

	Arguments	Description
	[in] timezone	The time zone attribute of an OraTimeStampTZ object.

Data Type

String

Remarks

Setting the TimeZone property does not change the Coordinated Universal Time (UTC) datetime values stored in the OraTimeStampTZ object. However, the local datetime values in the specified time zone can change.

The following table shows the UTC datetime values that correspond to the datetime and time zone values of the OraTimeStampTZ object in the example.

	Properties	OraTSTZ Object Values	UTC Date Time Values of the OraTSTZ Object
	Year	2003	2003
	Month	4	4
	Day	29	29
	Hour	12	19
	Minute, Second, Nanosecond	0	0
	TimeZone	-07:00	00:00

Setting the TimeZone property to -08:00 changes the datetime values in the specified time zone of the OraTimeStampTZ object, but does not change the UTC datetime values.

	Properties	New OraTSTZ Object Values	UTC Date Time Values of the New OraTSTZ Object
	Year	2003	2003
	Month	4	4
	Day	29	29
	Hour	11	19
	Minute, Second, Nanosecond	0	0
	TimeZone	-08:00	00:00

Examples

Dim OraTSTZ as OraTimeStampTZ
Dim OraTSTZ_new as OraTimeStampTZ
Dim OraTSTZStr as String
Dim OraTSTZStr_new as String
Set OraTSTZ = oo4oSession.CreateOraTimeStampTZ("2003-APR-29" & _
 "12:00:00 -07:00", "YYYY-MON-DD HH:MI:SS TZH:TZM")

'Change Time Zone to "-08:00"
Set OraTSTZ_new = OraTSTZ.Clone
oraTSTZ_new.TimeZone = "-08:00"

'OraTSTZStr has value as (29-APR-03 12.00.00.000000000 PM -07:00)
OraTSTZStr = OraTSTZ.value
'OraTSTZStr_new has value as (29-APR-03 11.00.00.000000000 PM -08:00)
OraTSTZStr_new = OraTSTZ_new.value

TotalDays Property

Applies To

OraIntervalDS Object

Description

Gets and sets the total number of days that this OraIntervalDS object represents.

Usage

totalDays = OraIntervalDSObj.TotalDays
OraIntervalDSObj.TotalDays = totalDays

Arguments

	Arguments	Description
	[in] totalDays	A Variant type of any numeric value or an OraNumber object specifying the OraIntervalDS object as the total number of days.

Data Type

Double

Examples

Dim oraIDS as OraIntervalDS
'Create an OraIntervalDS using a string which represents 1 day and 12 hours
Set oraIDS = oo4oSession.CreateOraIntervalDS("1 12:0:0.0")

'totalDays is set to 1.5 which represents an interval of 1.5 days
totalDays = oraIDS.TotalDays

	
See Also:

OraNumber Object

TotalYears Property

Applies To

OraIntervalYM Object

Description

Gets and sets the total number of years that this OraIntervalYM object represents.

Usage

totalYears = OraIntervalYMObj.TotalYearsOraIntervalYMObj.TotalYears= totalYears

Arguments

	Arguments	Description
	[in] totalYears	A Variant type of any numeric value specifying the OraIntervalYM object as the total number of years.

Data Type

Double

Examples

Dim oraIYM as OraIntervalYM

'Create an OraIntervalYM using a string which represents 1 year and 6 months
Set oraIYM = oo4oSession.CreateOraIntervalYM("1-6")
'totalYears is set to 1.5 which represents an interval of 1.5 years
totalYears = oraIYM.TotalYears

Transactions Property

Applies To

OraDynaset Object

Description

Indicates whether or not the given dynaset can support transaction processing. Not available at design time and read-only at run time.

Usage

if_transactions = oradynaset.Transactions

Data Type

Integer (Boolean)

Remarks

This property always returns True.

	
See Also:

	
BeginTrans Method

	
CommitTrans Method

	
OraDynaset Object

	
ResetTrans Method

	
Rollback Method

Truncated Property

Applies To

OraField Object

Description

Indicates whether or not a field value was truncated when fetched. Not available at design time and read-only at run time.

Usage

field_status = orafield.Truncated

Data Type

Integer (Boolean)

Remarks

This property returns True if truncated data is returned; otherwise, it returns False. Truncation can only occur for LONG or LONG RAW fields. Use this property to decide whether more data needs to be retrieved from an Oracle database using the GetChunk method.

	
See Also:

	
GetChunk Method

	
Type Property

Type Property

Applies To

OraField Object

OraParameter Object

OraParamArray Object

Description

Returns the Variant type of the specified object. Not available at design time and read-only at run time.

Usage

data_type = orafield.Type
data_type = oraparameter.Type
data_type = oraparamarray.Type

Data Type

Integer

Remarks

	
orafield.Type

Returns the Variant data type (see Visual Basic documentation) associated with the returned value of this field.

	
oraparameter.Type

Returns an integer indicating the Variant data type that is actually bound to the SQL statement. This may differ from the Variant data type of oraparameter.Value, because internal conversions may be necessary to obtain a data type common to both Visual Basic and Oracle Database.

Users can expect the following mapping from Oracle internal data types:

	Oracle Data Type	Constant	Value	Data Type
	BINARY_DOUBLE	ORADB_DOUBLE	7	Double
	BINARY_FLOAT	ORADB_SINGLE	6	Single
	BLOB	ORADB_OBJECT	9	OraBLOB
	CHAR	ORADB_TEXT	10	String
	CLOB	ORADB_OBJECT	9	OraCLOB
	DATE	ORADB_DATE	8	Variant
	DATE	ORADB_DATE	8	Date
	INTERVAL DAY TO SECOND	ORADB_OBJECT	9	OraIntervalDS
	INTERVAL YEAR TO MONTH	ORADB_OBJECT	9	OraIntervalYM
	LONG	ORADB_MEMO	12	String
	LONG RAW	ORADB_LONGBINARY	11	String
	NESTED TABLE	ORADB_OBJECT	9	OraBFILE
	NUMBER (1-4, 0)	ORADB_INTEGER	3	Integer
	NUMBER (5-9, 0)	ORADB_LONG	4	Long Integer
	NUMBER (10-15, 0)	ORADB_DOUBLE	7	Double
	NUMBER (16-38, 0)	ORADB_TEXT	10	String
	NUMBER (1-15, n)	ORADB_DOUBLE	7	Double
	NUMBER (16-38, n)	ORADB_TEXT	10	String
	RAW	ORADB_LONGBINARY	11	String
	REF	ORADB_OBJECT	9	OraCollection
	TIMESTAMP	ORADB_OBJECT	9	OraTimeStamp
	TIMESTAMP WITH LOCAL TIME ZONE	ORADB_OBJECT	9	OraTimeStamp
	TIMESTAMP WITH TIME ZONE	ORADB_OBJECT	9	OraTimeStampTZ
	VARRAY	ORADB_OBJECT	9	OraCollection
	VARCHAR2	ORADB_TEXT	10	String

These values are located in the ORACLE_BASE\\ORACLE_HOME\oo4o\oraconst.txt file and are intended to match similar constants in the Visual Basic file datacons.txt file.

Note that fields of type DATE are returned in the default Visual Basic format as specified in the Control Panel, even though the default Oracle date format is "DD-MMM-YY".

Note that columns defined as NUMBER instead of NUMBER(precision, scale) are, by definition, floating point numbers with a precision of 38. This means that the Type property returns a type of ORADB_TEXT for these columns.

	
See Also:

Value Property

Type (OraAttribute) Property

Applies To

OraAttribute Object

Description

A integer code representing the type of this attribute.

Usage

typecode = OraAttribute.Type

Data Type

Integer

Remarks

These integer codes correspond to external data types in Oracle Call Interface (OCI). See Oracle data types.

	
See Also:

"Oracle Data Types"

Type (OraCollection) Property

Applies To

OraCollection Object

Description

Returns the type code of the collection.

Usage

coll_type = OraCollection.Type

Data Type

Integer

Remarks

This property returns one of the following values:

	Constant	Value	Description
	ORATYPE_VARRAY	247	Collection is VARRAY type.
	ORATYPE_TABLE	248	Collection is nested table type.

Type (OraMetaData) Property

Applies To

OraMetaData Object

Description

Returns type of the schema object described by the OraMetaData object.

Usage

type = OraMetaData.Type

Remarks

The possible values include the following constants:

	Constants	Value
	ORAMD_TABLE	1
	ORAMD_VIEW	2
	ORAMD_COLUMN	3
	ORAMD_COLUMN_LIST	4
	ORAMD_TYPE	5
	ORAMD_TYPE_ATTR	6
	ORAMD_TYPE_ATTR_LIST	7
	ORAMD_TYPE_METHOD	8
	ORAMD_TYPE_METHOD_LIST	9
	ORAMD_TYPE_ARG	10
	ORAMD_TYPE_RESULT	11
	ORAMD_PROC	12
	ORAMD_FUNC	13
	ORAMD_ARG	14
	ORAMD_ARG_LIST	15
	ORAMD_PACKAGE	16
	ORAMD_SUBPROG_LIST	17
	ORAMD_COLLECTION	18
	ORAMD_SYNONYM	19
	ORAMD_SEQENCE	20
	ORAMD_SCHEMA	21
	ORAMD_OBJECT_LIST	22
	ORAMD_OBJECT_LIST	23
	ORAMD_DATABASE	24

	
Note:

If this version of the OraMetaData object is used on Oracle Database release 8.1 or later, values higher than 24 are possible if the database is enhanced to introduce new schema types.

	
See Also:

ORAMD_TABLE Attributes

TypeName (OraObject and OraRef) Property

Applies To

OraObject Object

OraRef Object

Description

Specifies a String containing the name of the user-defined type of the object.

Usage

typename = OraRef.TypeName
typename = OraObject.TypeName

Data Type

String

Remarks

This property is read-only at run time.

Updatable Property

Applies To

OraDynaset Object

Description

Returns whether or not the specified dynaset is updatable. Not available at design time and read-only at run time.

Usage

if_updatable = oradynaset.Updatable

Data Type

Integer (Boolean)

Remarks

Returns True if the rows in the specified dynaset can be updated; otherwise, it returns False.

The updatability of the resultant dynaset depends on the Oracle SQL rules of updatability, on the access you have been granted, and on the read-only flag of the CreateDynaset method.

To be updatable, three conditions must be met:

	
The SQL statement must refer to a simple column list or to the entire column list (*).

	
The SQL statement must not set the read-only flag of the options argument.

	
Oracle Database must permit ROWID references to the selected rows of the query.

Any SQL statement that does not meet these criteria is processed, but the results are not updatable and this property returns False.

Examples

This example demonstrates the use of the Updatable method. Copy and paste this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

 'Declare variables as OLE Objects.
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraDynaset As OraDynaset

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Create an updatable dynaset using a simple query.
 Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)

 Call IsDynUpdatable(OraDynaset)

 'Create a non-updatable dynaset using column aliases.
 Set OraDynaset = OraDatabase.CreateDynaset("select ename EmployeeName," & _
 "empno EmployeeNumber, sal Salary from emp", 0&)
 Call IsDynUpdatable(OraDynaset)

 'Create a non-updatable dynaset using a join.
 Set OraDynaset = OraDatabase.CreateDynaset("select ename, emp.deptno," & _
 "loc from emp, dept where emp.deptno = dept.deptno", 0&)
 Call IsDynUpdatable(OraDynaset)

End Sub

Sub IsDynUpdatable (odyn As OraDynaset)

 'Check to see if the dynaset is updatable.
 If odyn.Updatable = True Then
 MsgBox "Created an UPDATABLE dynaset from: '" & odyn.SQL & "'"
 Else
 MsgBox "Created a READ-ONLY dynaset from: '" & odyn.SQL & "'"
 End If

End Sub

	
See Also:

	
CreateDynaset Method

	
SQL Property

	
RecordSource Property of Data Control

Value Property

Applies To

OraField Object

OraParameter Object

Description

Returns or sets the value of the given object. Not available at design time and read/write at run time.

Usage

orafield.Value = data_value
data_value = orafield.Value

oraparameter.Value = data_value
data_value = oraparameter.Value

Data Type

Variant

Remarks

	
Orafield.Value

Returns the value of the field as a Variant.

data_value = orafield.Value sets the contents of the field. Fields can contain Null values. You can test the Value property with the Visual Basic function IsNull() to determine whether the value is null upon return. You can also assign Null to the Value property whenever the current record is editable. Field values are cached locally as the data is retrieved from the database. However, in the case of a LONG or LONG RAW fields, some data may not be retrieved and stored locally. In these cases, data is retrieved as required using the methods described in the GetChunk field method. The maximum size of a LONG or LONG RAW field that can be retrieved directly through the Value property is approximately 64 KB. You must retrieve data fields larger than 64 KB indirectly, using the GetChunk method.

	
OraParameter.Value

Returns the value of the parameter as a Variant.

data_value = oraparameter.Value sets the contents of the parameter. Note that changing the Variant data type of the value can have significant impact on the processing of associated SQL and PL/SQL statements.

Note that fields of type DATE are returned in the default Visual Basic format of "MM/DD/YY" even though the default Oracle date format is "DD-MMM-YY".

The Value argument can be an Oracle Database 10g object, such as an OraBLOB.

Similar to a dynaset, the object obtained from parameter Value property always refers to the latest value of the Parameter. The Visual Basic value Null can also be passed as a value. The Visual Basic value EMPTY can be used for BLOB and CLOB to mean an empty LOB, and for OBJECT, VARRAY, and NESTED TABLE to mean an object whose attributes are all Null.

	
See Also:

	
GetChunk Method

	
OraParamArray Object

	
Type Property

Value (OraAttribute) Property

Applies To

OraAttribute Object

Description

Gets or sets the value of the attribute. This value could be an instance of an OraObject, OraRef, or OraCollection object, or any of the supported scalar types, such as Integer or Float.

Usage

attr_value = OraAttribute.Value OraAttribute.Value = attr_value

Data Type

Variant

Remarks

This is the default property for this object.

The Value property of the OraAttribute object returns the value of the attribute as a Variant. The Variant type of the attribute depends on the attribute type of the attribute. Attribute values can be Null and can be set to Null. For attribute of type objects, REF, LOB and Collection, attribute values are returned as corresponding OO4O objects for that type.

The following table identifies the attribute type and the return value of the Value property of the OraAttribute object:

	Element Type	Element Value
	Object	OraObject
	REF	OraRef
	VARRAY, Nested Table	OraCollection
	BLOB	OraBLOB
	CLOB	OraCLOB
	BFILE	OraBFILE
	Date	String
	Number	String
	CHAR,VARCHAR2	String
	Real	Real
	Integer	Integer

Value (OraAQMsg) Property

Applies To

OraAQMsg Object

Description

Returns or sets the value of the given object.

Usage

Msg.Value = my_string
set Msg.Value = OraObj

my_string = Msg.Value
Set OraObj = Msg.Value

Data Type

String

Remarks

The Value property represents the actual message for RAW as well as user-defined types.

This property is not available at design time and read/write at run time.

Examples

'To set the value for a message of Raw type
OraAQMsg.Value = "This is a test message"
myString = "Another way of setting the message"
OraAQMsg.Value = myString

'To set the value for a message of user-defined type
Dim OraObj as OraObject
OraObj("subject").Value = txtdesc
OraObj("text").Value = txtmsg
set OraAQMsg.Value = OraObj

'To get the value from a message of raw type
myString = OraAQMsg.Value

'To get the value from a message of object type(user-defined type)
Set OraObj = OraMsg.Value
txtdesc = OraObj("subject").Value
txtmsg = OraObj("text").Value

Value (OraIntervalDS) Property

Applies To

OraIntervalDS Object

Description

When read, the Value property provides a string representation of the value of the OraIntervalDS object using the format [+/-]Day HH:MI:SSxFF. When set, the Value property accepts a Variant of type String, a numeric value, or an OraIntervalDS object.

Usage

string = OraIntervalDSObj.Value OraIntervalDSObj.Value = value

Arguments

	Arguments	Description
	[in] value	A Variant of type String, a numeric value, or an OraIntervalDS object.

Data Type

Variant

Remarks

If the value set is a Variant of type String, it must be in the following format: [+/-] Day HH:MI:SSxFF.

If the value set is a numeric value, the value provided should represent the total number of days that the OraIntervalDS object represents.

Examples

Dim oraIDS as OraIntervalDS

'Create an OraIntervalDS using a string which represents 1 day and 12 hours
Set oraIDS = oo4oSession.CreateOraIntervalDS("1 12:0:0.0")

'get the OraIntervalDS.Value return a string for the Value
' property, idsStr is set to "01 12:00:00.000000"
idsStr = oraIDS.Value

'can also return a string for the Value property as follows
idsStr = oraIDS

'set the OraIntervalDS.Value using a string which represents 1 days and 12 hours
oraIDS.Value = "1 12:0:0.0"

'set the OraIntervalDS.Value using a numeric value which represents
'1 days and 12 hours
oraIDS.Value = 1.5

	
See Also:

CreateOraIntervalDS Method

Value (OraIntervalYM) Property

Applies To

OraIntervalYM Object

Description

When read, the Value property provides a string representation of the value of the OraIntervalYM object using the format YEARS-MONTHS.

When set, the Value property accepts a Variant of type String, a numeric value, or an OraIntervalYM object.

Usage

string = OraIntervalYMObj.ValueOraIntervalYMObj.Value= value

Arguments

	Arguments	Description
	[in] value	A Variant of type String, a numeric value, or an OraIntervalYM object.

Data Type

String

Remarks

If the value set is a Variant of type String, it must be in following format: [+/-] YEARS-MONTHS.

If the value set is a numeric value, the value provided should represent the total number of years that the OraIntervalYM object represents.

Examples

Dim oraIYM as OraIntervalYM

'Create an OraIntervalYM using a string which represents 1 year and 6 months
Set oraIYM = oo4oSession.CreateOraIntervalYM("1-6")

'get the OraIntervalYM.Value return a string for the Value property,
' iymStr is set to "01-06"
iymStr = oraIYM.Value

'can also return a string for the Value property as follows
iymStr = oraIYM

'set the OraIntervalDS.Value using a string which represents 1 year and 6 months
oraIYM.Value = "1-6"

'set the OraIntervalYM.Value using a numeric value which represents
'1 years and 6 months
oraIYM.Value = 1.5

	
See Also:

CreateOraIntervalYM Method

Value (OraMDAttribute) Property

Applies To

OraMDAttribute Object

Description

A String containing the value of the attribute.

Usage

value = OraMDAttribute.Value

Data Type

String

Remarks

This is the default property.

Value (OraNumber) Property

Applies To

OraNumber Object

Description

When read, the Value property provides a string representation of the value of the OraNumber object using the current format string. When set, the Value property accepts a Variant of type String, OraNumber, or a numeric value. Read and write at run time.

Usage

string = OraNumber.Value
OraNumber.Value = variantval

Arguments

	Arguments	Description
	[in] variantval	A Variant of type String, OraNumber, or a numeric value.

Data Type

Variant

Remarks

If the Value property is set to a numeric type, such as a LONG, it is limited to the maximum precision Visual Basic provides for numerical values.

If the current format cannot be applied successfully to the value, an error is raised. An error is also raised if this property is set to a Variant value that cannot be converted to a number, such as a string of nonnumeric characters.

Value (OraTimeStamp) Property

Applies To

OraTimeStamp Object

Description

When read, the Value property provides a string representation of the value of the OraTimeStamp object. If the Format property is not null, the output string format is in the format specified by the Format property; otherwise, the output string format is in the session TIMESTAMP format (NLS_TIMESTAMP_FORMAT). When set, the Value property accepts a Variant of type String, Date, or OraTimeStamp.

Usage

string = OraTimeStampObj.ValueOraTimeStampObj.Value= value

Arguments

	Arguments	Description
	[in] value	A Variant of type String, Date, or OraTimeStamp.

Data Type

String

Remarks

If the value is of type String and Format is not null, the string format must match the Format property. If the Format property is null, the string format must match the session TIMESTAMP format.

Examples

...

Set OraTimeStamp = OraSession.CreateOraTimeStamp("1999-APR-29 " & _
 "12:10:23.444 AM", "YYYY-MON-DD HH:MI:SS.FF AM")

'returns a string for the Value property
tsStr = OraTimeStamp.Value

'set OraTimeStamp.Value using a string
OraTimeStamp.Value = "1999-APR-29 12:10:23.444 AM"

	
See Also:

CreateOraTimeStamp Method

Value (OraTimeStampTZ) Property

Applies To

OraTimeStampTZ Object

Description

When read, the Value property provides a string representation of the value of the OraTimeStampTZ object. If the Format property is not null, the output string format is in the format specified by the Format property; otherwise, the output string format is in the session TIMESTAMP WITH TIME ZONE format (NLS_TIMESTAMP_TZ_FORMAT). When set, the Value property accepts a Variant of type String, Date, or OraTimeStampTZ.

Usage

string = OraTimeStampTZObj.ValueOraTimeStampObjTZ.Value= value

Arguments

	Arguments	Description
	[in] value	A Variant of type String, Date, or OraTimeStampTZ.

Data Type

String

Remarks

If the Variant is of type String and the Format property is not null, the string format must match the Format property. If the Format property is null, the string format must match the session TIMESTAMP WITH TIME ZONE format.

If the Variant is of type Date, the date-time value in Date is interpreted as the date-time value in the session time zone. The time zone information in the OraTimeStampTZ object contains the session time zone.

Examples

Dim OraTimeStampTZ As OraTimeStampTZ
...

Set OraTimeStampTZ = OraSession.CreateOraTimeStampTZ("2003-APR-29" & _
 "12:00:00 -07:00", "YYYY-MON-DD HH:MI:SS TZH:TZM")

'returns a string for the Value property
tstzStr = OraTimeStampTZ.Value
...

'set OraTimeStampTZ.Value using a string
OraTimeStampTZ.Value = "2003-APR-29 12:00:00 -07:00"

	
See Also:

CreateOraTimeStampTZ Method

Version (OraObject and Ref) Property

Applies To

OraObject Object

OraRef Object

Description

Returns a String containing user-assigned version of the type of underlying value instance.

Usage

version = OraRef.Version
version = OraObject.Version

Data Type

String

Remarks

This property is read-only at run time.

Visible (OraAQ) Property

Applies To

OraAQ Object

Description

Specifies the transactional behavior of the enqueue request.

Usage

Q.Visible = transaction_mode

Data Type

Integer

Remarks

This property is applicable only for an enqueue operation.

Possible values are:

	
ORAAQ_ENQ_IMMEDIATE (1)

The enqueue operation constitutes a transaction of its own. Set this property to make the message visible immediately after the enqueue operation.

	
ORAAQ_ENQ_ON_COMMIT (2) (Default)

The enqueue is part of the current transaction, and the message is visible only after the transaction commits.

Examples

Msg.Value = "The visibility option used in the enqueue call is " & _
 "ORAAQ_ENQ_IMMEDIATE"
Q.Visible = ORAAQ_ENQ_IMMEDIATE
Q.Enqueue

Wait (OraAQ) Property

Applies To

OraAQ Object

Description

Specifies the wait time (in seconds), if there is currently no message available.

Usage

Q.Wait = seconds

Data Type

Integer

Remarks

Applicable only for a dequeue operation.

Possible values are:

	
ORAAQ_DQ_WAIT_FOREVER (-1) (Default)

Waits forever.

	
ORAAQ_DQ_NOWAIT (0)

Does not wait.

XMLAsAttribute Property

Applies To

OraField Object

Description

Gets and sets a Boolean value that indicates whether this field name is given as an attribute. If the value is False, the field name is given as an element. Readable and writable at run time.

Usage

OraField.XMLAsAttribute = True

Remarks

The default value for this property is False.

Fields of type BLOB, CLOB, BFILE, Object, VARRAY, Nested Table, Long or LongRaw cannot be XML attributes.

XMLCollID Property

Applies To

OraDynaset Object

Description

Gets and sets the attribute name that replaces id (as in <TYPENAME_ITEM id = "1">) in the rendering of collection items that occurs when GetXML or GetXMLToFile methods are called. Readable and writable at run time.

Usage

oradynaset.XMLCollID = "NEWID"

Remarks

The default value for this property is id. If this property is set to Null or an empty String (""), the collectionid attribute is omitted. The attribute name must be valid or an error is raised. The case is preserved.

	
See Also:

	
GetXML Method

	
GetXMLToFile Method

XMLEncodingTag Property

Applies To

OraDynaset Object

Description

Gets or sets a string value in the encoding tag of the generated XML document.

Usage

OraDynaset.XMLEncodingTag = "SHIFT_JIS"

Remarks

This property is useful when the XML document generated by OO4O is converted to a different character set encoding before it is stored or parsed. This might occur if the property is to be loaded into a database or stored in a file system.

This property only sets the encoding tag value; it does not change the actual encoding of the document. The document generated by the GetXML method in Visual Basic is encoded in UCS2. The documents generated by the GetXMLToFile method use the same character set as the current NLS_LANG setting.

If this property is set to an empty String, the default encoding tags are used. To omit the tag entirely, use OraDynaset.XMLOmitEncodingTag.

No validity checking of the chosen encoding is done.

	
See Also:

	
GetXML Method

	
GetXMLToFile Method

	
XMLOmitEncodingTag Property

XMLNullIndicator Property

Applies To

OraDynaset Object

Description

Gets and sets a Boolean value that indicates whether a null indicator attribute is used in the case of Null field values. If the property is False, tags with Null values are omitted. Readable and writable at run time.

Usage

oradynaset.XMLNullIndicator = True

Remarks

The default value for this property is False.

XMLOmitEncodingTag Property

Applies To

OraDynaset Object

Description

Gets or sets a Boolean value that determines if the encoding tag should be omitted.

Usage

OraDynaset.XMLOmitEncodingTag = True

Remarks

The default value is False.

If this property is set to False, the value of the XMLEncodingTag property is used in the encoding tag.

	
See Also:

XMLEncodingTag Property

XMLRowID Property

Applies To

OraDynaset Object

Description

Gets and sets the attribute name that replaces id (as in <ROW id= "1">) in the rendering of XML that occurs when GetXML or GetXMLToFile methods are called. Readable and writable at run time.

Usage

 oradynaset.XMLRowID = "NEWID"

Remarks

The default value for this property is id. If this property is set to Null or an empty string (""), the rowid attribute is omitted. The attribute name must be valid or an error is raised. The case is preserved.

	
See Also:

	
GetXML Method

	
GetXMLToFile Method

XMLRowsetTag Property

Applies To

OraDynaset Object

Description

Gets or sets the tag name that replaces the rowset tag <ROWSET> in the rendering of XML that occurs when GetXML or GetXMLToFile methods are called. Readable and writable at run time.

Usage

 oradynaset.XMLRowSetTag = "NEWROWSET"

Remarks

The default value for this property is ROWSET. The tag name must be valid or an error is raised. The case is preserved. This tag is the root, unless schema metadata is requested with the document.

	
See Also:

	
GetXML Method

	
GetXMLToFile Method

XMLRowTag Property

Applies To

OraDynaset Object

Description

Gets and sets the tag name that replaces <ROW> in the rendering of XML that occurs when GetXML or GetXMLToFile methods are called. Readable and writable at run time.

Usage

oradynaset.XMLRowTag = "NEWROW"

Remarks

The default value for this property is ROW. If this property is set to Null or an empty string (""), the <ROW> tag is omitted. The tag name must be valid or an error is raised. The case is preserved.

	
See Also:

	
GetXML Method

	
GetXMLToFile Method

XMLTagName Property

Applies To

OraField Object

Description

Gets and sets the tag name that is used for this field in the rendering of XML that occurs when GetXML or GetXMLToFile methods are called. Readable and writable at run time.

Usage

orafield.XMLTagName = "EmployeeName"

Remarks

The default value for this property is the value of the Name property. If this property is set to Null or an empty string (""), this field is omitted. The name must be valid or an error is raised. The case is preserved.

	
See Also:

	
GetXML Method

	
GetXMLToFile Method

XMLUpperCase Property

Applies To

OraDynaset Object

Description

Gets and sets a Boolean value that indicates whether tag and attribute names are uppercase when GetXML or GetXMLToFile methods are called. Readable and writable at run time.

Usage

oradynaset.XMLUpperCase = True

Remarks

The default value for this property is False. If this property is set to True, all of the tag and attribute names are in upper case. This method should be called only after all custom tag or attribute names have been set by the user.

	
See Also:

	
GetXML Method

	
GetXMLToFile Method

Year (OraTimeStamp) Property

Applies To

OraTimeStamp Object

Description

Returns or sets the Year attribute of an OraTimeStamp object.

Usage

year = OraTimeStampObj.YearOraTimeStampObj.Year = year

Arguments

	Arguments	Description
	[in] year	The Year attribute of an OraTimeStamp object.

Data Type

Integer

Year (OraTimeStampTZ) Property

Applies To

OraTimeStampTZ Object

Description

Returns or sets the Year attribute of an OraTimeStampTZ object.

Usage

year = OraTimeStampObjTZ.Year
OraTimeStampObjTZ.Year = year

Arguments

	Arguments	Description
	[in] year	The Year attribute of an OraTimeStampTZ object.

Data Type

Integer

Years Property

Applies To

OraIntervalYM Object

Description

Gets and sets the Years attribute of an OraIntervalYM object.

Usage

years = OraIntervalYMObj.YearsOraIntervalYMObj.Years = years

Arguments

	Arguments	Description
	[in] years	An Integer specifying the value of the Years attribute of the OraIntervalYM object.

Data Type

Integer

12 Data Control Events

This chapter describes Oracle Data Control Events. For an introduction to Data Control, see "Oracle Data Control".

	
See Also:

For more information, see the Microsoft Visual Basic help and documentation.

This chapter contains these topics:

	
DragDrop Event

	
DragOver Event

	
Error Event

	
MouseDown Event

	
MouseMove Event

	
MouseUp Event

	
Reposition Event

	
Validate Event

DragDrop Event

Applies To

Oracle Data Control

Description

Occurs when a drag-and-drop operation is completed as a result of either dragging a control over a form or control and releasing the mouse button, or using the Drag method with its action argument = 2 (Drop).

	
See Also:

	
Drag Method

	
DragIcon Property

	
DragMode Property

	
DragOver Event

	
MouseDown Event

	
MouseMove Event

	
MouseUp Event

DragOver Event

Applies To

Oracle Data Control

Description

Occurs when a drag-and-drop operation is in progress. You can use this event to monitor when the mouse pointer enters, leaves, or is directly over a valid target. The mouse pointer position determines which target object receives this event.

	
See Also:

	
Drag Method

	
DragDrop Event

	
DragIcon Property

	
DragMode Property

	
MouseDown Event

	
MouseMove Event

	
MouseUp Event

Error Event

Applies To

Oracle Data Control

Description

This event is fired whenever an interactive operation causes an error. You can perform some operations directly with the data control, such as using the data control buttons or when the data control refreshes automatically when the form loads. In these cases, the Error event is fired instead of causing a normal run-time error.

	
See Also:

	
AddNew Method

	
Delete Method

	
MoveFirst, MoveLast, MoveNext, and MovePrevious Methods

MouseDown Event

Applies To

Oracle Data Control

Description

This event is fired whenever a mouse button is pressed (MouseDown) and the mouse pointer is over the data control, or has been captured by the data control. The mouse is captured if a mouse button has been pressed previously over the data control until all corresponding MouseUp events have been received.

	
See Also:

	
MouseMove Event

	
MousePointer Property

	
MouseUp Event

MouseMove Event

Applies To

Oracle Data Control

Description

This event is fired continuously whenever the mouse pointer moves across the data control. Unless another object has not captured the mouse, the data control recognizes a MouseMove event whenever the mouse position is within its borders.

	
See Also:

	
MouseDown Event

	
MousePointer Property

	
MouseUp Event

MouseUp Event

Applies To

Oracle Data Control

Description

This event is fired whenever a mouse button is released (MouseUp) and the mouse pointer is over the data control, or has been captured by the data control. The mouse is captured if a mouse button has been pressed previously over the data control until all corresponding MouseUp events have been received.

	
See Also:

	
MouseDown Event

	
MousePointer Property

	
MouseMove Event

Reposition Event

Applies To

Oracle Data Control

Description

This event is fired whenever the database record pointer is successfully repositioned to a new location. The Validate event is always fired before Reposition.

	
See Also:

	
Error Event

	
FindFirst, FindLast, FindNext, and FindPrevious Methods

	
MoveFirst, MoveLast, MoveNext, and MovePrevious Methods

	
Validate Event

Validate Event

Applies To

Oracle Data Control

Description

This method is called whenever a variety of circumstances occur. It is sent when an attempt is made to move to a new record position, to delete a record, add a record, move to a bookmark, or to roll back the dynasets in the session. Validate is always called before the operation proceeds and any action is taken.

	
See Also:

	
AddNew Method

	
Bookmark Property

	
Close Method

	
Delete Method

	
Edit Method

	
EditMode Property

	
FindFirst, FindLast, FindNext, and FindPrevious Methods

	
MoveFirst, MoveLast, MoveNext, and MovePrevious Methods

	
UpdateRecord Method

13 Data Control Methods

This chapter describes Oracle Data Control methods. For an introduction to Data Control, see "Oracle Data Control".

	
See Also:

For more information, see the Microsoft Visual Basic help and documentation.

This chapter contains these topics:

	
Drag Method

	
Move Method

	
Refresh Method

	
UpdateControls Method

	
UpdateRecord Method

	
ZOrder Method

Drag Method

Applies To

Oracle Data Control

Description

Begins, ends, or cancels dragging controls.

	
See Also:

	
DragDrop Event

	
DragIcon Property

	
DragMode Property

	
DragOver Event

	
MousePointer Property

Move Method

Applies To

Oracle Data Control

Description

Moves a form or control.

	
See Also:

	
Height Property

	
Left Property

	
Top Property

	
Width Property

Refresh Method

Applies To

Oracle Data Control

Description

This method recreates the OraDatabase and OraDynaset objects referenced within the data control and reestablishes a dynaset using the SQL statement from the RecordSource property and the connection information from the Connect and DatabaseName properties.

Usage

oradata1.Refresh

Remarks

If an existing dynaset has been assigned to an object variable in Visual Basic, then Refresh creates a new dynaset for the data control, but the old dynaset continues to be available for use until all references to it are removed.

	
See Also:

	
Connect Property

	
Database Property

	
OraDatabase Object

	
OraDynaset Object

	
RecordSource Property

	
SQL Property

UpdateControls Method

Applies To

Recordset Property of the Oracle Data Control.

Description

Gets the current record from a data control's recordset and displays the appropriate data in controls bound to that data control.

Usage

oradata1.Recordset.UpdateControls

Example

NOTE: This code snippet is intended to be placed in a complete application. The code snippet cancels changes made to bound controls and restores the data to the original values. To use this code snippet, copy it into the definition section of a form that has a data control named oradata1 (which has been successfully refreshed) and has the KeyPreview property set to True.

Sub Form_KeyDown (KeyCode As Integer, Shift As Integer)

Const KEY_ESCAPE = &H1B
If KeyCode = KEY_ESCAPE Then
oradata1.recordset.UpdateControls
End If
End Sub

Remarks

Use this method to allow the user to cancel changes made to bound controls and restore the contents of those controls to their original values.

This method has the effect of making the current record current again, except that no events occur.

	
Note:

For backward compatibility with earlier .VBX control, this method is also available as the method of data control's Recordset.

	
See Also:

	
Recordset Property

	
UpdateRecord Method

UpdateRecord Method

Applies To

Recordset Property of the Oracle Data Control.

Description

Saves the current values of bound controls.

oradata1.UpdateRecord

Remarks

This method enables you to save the current value of bound controls during a Validate event without generating another Validate event.

This method has the effect of executing the Edit method, changing a field, and executing the Update method, except that no events occur.

	
Note:

For backward compatibility with earlier .VBX control, this method is also available as the method of data control's Recordset.

	
See Also:

	
Edit Method

	
Recordset Property

	
Update Method

	
Validate Event

ZOrder Method

Applies To

Oracle Data Control

Description

Places a specified form or control at the front or back of the z-order within its graphical level.

14 Data Control Properties

This chapter describes the Oracle Data Control Properties. For an introduction to Data Control, see "Oracle Data Control".

	
See Also:

For more information, see the Microsoft Visual Basic help and documentation.

This chapter contains these topics:

	
AllowMoveLast Property

	
AutoBinding Property

	
BackColor Property

	
Caption Property

	
Connect Property

	
Database Property

	
DatabaseName Property

	
DirtyWrite Property

	
DragIcon Property

	
DragMode Property

	
EditMode Property

	
Enabled Property

	
Font Property

	
ForeColor Property

	
Height Property

	
Index Property

	
Left Property

	
MousePointer Property

	
Name Property

	
NoRefetch Property

	
Options Property

	
OracleMode Property

	
ReadOnly Property

	
Recordset Property

	
RecordSource Property

	
Session Property

	
Tag Property

	
Top Property

	
TrailingBlanks Property

	
Visible Property

	
Width Property

The following properties apply to the OraDynaset object and to the Oracle Data Control.

	
CacheBlocks Property

	
CacheSliceSize Property

	
CacheSlicesPerBlock Property

	
FetchLimit Property

	
FetchSize Property

AllowMoveLast Property

Applies To

Oracle Data Control

Description

Determines whether the user can move to the last record using the Data Control's MoveLast button. Read/write at design time and run time.

Usage

oradata1.AllowMoveLast = [True | False]

Remarks

By default, AllowMoveLast is True, in which case the user has no restriction upon record motion, even when moving to the last record may be very time consuming.

When AllowMoveLast is False, the Data Control's MoveLast button is grayed out and disabled. However, once the last record has been encountered (either because the user has navigated to the end of the set, or because code has positioned the record pointer to the last record), the button is enabled. This gives the user visual feedback about whether or not the entire query has been fetched. Setting this property to False does not prevent you from using the MoveLast method.

Changing this property has no effect until a Refresh method is sent to the data control.

Datatype

Integer (Boolean)

	
See Also:

	
MoveFirst, MoveLast, MoveNext, and MovePrevious Methods

	
Refresh Method

AutoBinding Property

Applies To

Oracle Data Control

Description

Determines whether the automatic binding of database object parameters will occur. Read/write at design time and run time.

Usage

oradata1.AutoBinding = [True | False

Remarks

By default, AutoBinding is True, in which case the parameters in the OraParameters collection are bound to the SQL statement of the RecordSource property before data control refresh (before the SQL statement is executed). Technically speaking, the parameters are rebound when the recordset is re-created.

Setting Autobinding to False takes effect only if the SQL statement of the RecordSource property needs to be rebound and reexecuted. This is not the case when you simply change a parameter value and refresh the data control or simply refresh the recordset (the SQL statement only needs to be reexecuted). This is the case if you alter the RecordSource property and change the SQL statement.

Use this property to disable all parameter binding when executing a SQL statement that does not contain any parameters (using CreateDynaset, Refresh, or ExecuteSQL).

Changing this property does not take effect until a Refresh method is sent to the data control (and the appropriate conditions apply). Changing this property has no effect when a recordset.Refresh is executed.

Data Type

Integer (Boolean)

Example

This example demonstrates the use of AutoBinding to show how it affects data control and recordset refresh. Copy this code into the definition section of a new form containing the Oracle Data Control named oradata1, Then, press F5 to run.

Sub Form_Load ()

 'Set the username and password.
 oradata1.Connect = "scott/tiger"

 'Set the databasename.
 oradata1.DatabaseName = "ExampleDb"

 'Refresh the data control without setting the RecordSource. This has the
 'effect of creatingthe underlying database object so that parameters
 'can be added.
 oradata1.Refresh

 'Set the RecordSource and use a SQL parameter for job.
 oradata1.RecordSource = "select * from emp where job = :job"

 'Add the job input parameter with initial value MANAGER.
 oradata1.Database.Parameters.Add "job", "MANAGER", 1

 'Add the deptno input parameter with initial value 10.
 oradata1.Database.Parameters.Add "deptno", 10, 1

 'Refresh the data control.
 oradata1.Refresh

 MsgBox "Employee #" & oradata1.Recordset.fields("empno") & ", Job=" & _
 oradata1.Recordset.fields("job")

 'Only employees with job=MANAGER will be contained in the dynaset.
'Turn off Automatic parameter binding.
 oradata1.AutoBinding = False

 'Change the value of the job parameter to SALESMAN.
 oradata1.Database.Parameters("job").Value = "SALESMAN"

 'Refresh ONLY the recordset.
 oradata1.Recordset.Refresh

 MsgBox "Employee #" & oradata1.Recordset.fields("empno") & ", Job=" & _
 oradata1.Recordset.fields("job")

 'The query will still execute even with AutoBinding=False
 'because the dynaset has not been re-created.
 'Set the RecordSource and use a SQL parameter for deptno.
 oradata1.RecordSource = "select * from emp where deptno = :deptno"

 On Error GoTo paramerr
 'Attempt to refresh the data control. An error should occur, because
 ' AutoBind=False, the SQL statement contains a parameter, and the
 'SQL statement needs to be bound before execution.
 oradata1.Refresh

Exit Sub

paramerr:
 MsgBox oradata1.Database.Session.LastServerErrText
Exit Sub

End Sub

	
See Also:

	Add Method
	
AutoBindDisable Method

	
AutoBindEnable Method

	
CreateDynaset Method

	
ExecuteSQL Method

	
OraParameter Object

	
OraParameters Collection

	
RecordSource Property

	
Refresh Method

BackColor Property

Applies To

Oracle Data Control

Description

Determines the background color of an object.

	
See Also:

ForeColor Property

Caption Property

Applies To

Oracle Data Control

Description

Determines the text displayed in or next to a control.

Connect Property

Applies To

Oracle Data Control

Description

The username and password to be used when connecting the data control to an Oracle database. Read/write at design time and run time.

Usage

oradata1.Connect = [username/password

Remarks

This string is passed to the OpenDatabase method of the OraSession object when the control is refreshed. Changing this property does not take effect until a Refresh method is sent to the data control.

If the data control is refreshed and the Connect property has not been specified, the refresh will fail.

Examples of valid Connect properties include:

"scott/tiger"
"system/manager"

Data Type

String

	
See Also:

	
OpenDatabase Method

	
OraSession Object

	
Refresh Method

Database Property

Applies To

Oracle Data Control

Description

Returns the OraDatabase object associated with the data control. Not available at design time and read-only at run time.

Usage

oradatabase = oradata1.Database

Remarks

If the data control has not been refreshed, any references to this property results in an Object variable not set runtime error.

Changing this property has no effect until a Refresh method is sent to the data control.

Data Type

OLE Object (OraDatabase)

	
See Also:

	
OraDatabase Object

	
Refresh Method

DatabaseName Property

Applies To

Oracle Data Control

Description

The Oracle SQL*Net specifier used when connecting the data control to an Oracle database. Read/write at design time and run time.

Usage

oradata1.DatabaseName = [DatabaseName]

Remarks

The Oracle SQL*Net specifier should include the Oracle SQL*Net protocol identifier, Oracle database name, and optional database instance. (SQL*Net aliases can also be used.) This string is passed to the OpenDatabase method of the OraSession object when the control is refreshed. Changing this property does not take effect until a Refresh method is sent to the data control.

If the data control is refreshed and DatabaseName has not been specified, the refresh fails.

Examples of valid DatabaseName properties include:

"t:oracle:PROD"
"p:Oracle10:demo"
"x:orasrv"
"mydbalias"(Where mydbalias represents "t:mfg:prod")

Data Type

String

	
See Also:

	
OpenDatabase Method

	
OraSession Object

	
Refresh Method

DirtyWrite Property

Applies To

Oracle Data Control

Description

Determines whether or not Update and Delete will or will not check for read inconsistencies.

Usage

oradata1.DirtyWrite = [True | False]

Data Type

Integer (Boolean)

Remarks

By default, DirtyWrite is False, meaning that read consistency will be maintained for Update and Delete operation on underlying recordset/dynaset object. Changing this property has no effect until a Refresh method is sent to the data control.

DragIcon Property

Applies To

Oracle Data Control

Description

Determines the icon to be displayed as the pointer in a drag-and-drop operation.

	
See Also:

	
Drag Method

	
DragDrop Event

	
DragMode Property

	
DragOver Event

DragMode Property

Applies To

Oracle Data Control

Description

Determines manual or automatic dragging mode for a drag-and-drop operation.

	
See Also:

	
Drag Method

	
DragDrop Event

	
DragIcon Property

	
DragOver Event

EditMode Property

Applies To

Oracle Data Control

Description

Returns the current editing state for the current row. Not available at design time and read-only at run time.

Usage

edit_mode = oradata1.EditMode

Remarks

The possible EditMode property values are:

	Constant	Value	Description
	ORADATA_EDITNONE	0	No editing in progress
	ORADATA_EDITMODE	1	Editing is in progress on an existing row
	ORADATA_EDITADD	2	A new record is being added and the copy buffer does not currently represent an actual row in the database.

These values are located in the oraconst.txt file and are intended to match similar constants in the Visual Basic oraconst.txt file.

This property is affected only by the Edit, AddNew, and Update methods.

Data Type

Integer

	
See Also:

	
AddNew Method

	
Edit Method

	
Update Method

Enabled Property

Applies To

Oracle Data Control

Description

Determines whether the control can respond to user-generated events.

	
See Also:

Visible Property

Font Property

Applies To

Oracle Data Control

Description

Determines the font object to be used for text displayed in a data control.

Usage

Oradata1.Font.Bold = True

ForeColor Property

Applies To

Oracle Data Control

Description

Determines the foreground color used to display text and graphics in an object.

	
See Also:

BackColor Property

Height Property

Applies To

Oracle Data Control

Description

Determines the height dimension of an object.

	
See Also:

	
Left Property

	
Move Method

	
Top Property

	
Width Property

Index Property

Applies To

Oracle Data Control

Description

Specifies the number that uniquely identifies a control in a control array. Available at design time only if the control is part of a control array; read-only at run time.

	
See Also:

Tag Property

Left Property

Applies To

Oracle Data Control

Description

Determines the distance between the internal left edge of an object and the left edge of its container.

	
See Also:

	
Move Method

	
Top Property

MousePointer Property

Applies To

Oracle Data Control

Description

Determines the type of mouse pointer displayed when the mouse is over a particular part of a form or control at run time.

	
See Also:

	
DragIcon Property

	
MouseMove Event

Name Property

Applies To

Oracle Data Control

Description

Specifies the name used in code to identify a form, control, or data access object. Not available at run time.

NoRefetch Property

Applies To

Oracle Data Control

Description

By default, NoRefetch is False, this means that default data set by Oracle Database will not be refetched to the local cache. If the ORADB_NO_REFETCH option is True, by default, the underlying recordset or dynaset will inherit this property.

Changing this property has no effect until a Refresh method is sent to the data control.

Usage

oradata1.NoRefetch = [True | False]

Data Type

Integer (Boolean)

Options Property

Applies To

Oracle Data Control

Description

Determines one or more characteristics of the database and all dynasets associated with the data control. Read/write at design time and run time.

Usage

oradata1.Options = database_optionsdatabase_options = oradata1.Options

Data Type

Long Integer

Remarks

This property is a bit flag word used to set the optional modes of the database. If options = 0, the default settings will apply. The following modes are available:

	
Column Defaulting mode

The default mode is called VB mode. In VB mode, field (column) values not explicitly set are set to NULL when using AddNew or Edit.

Optionally, you can use Oracle mode. Oracle mode indicates that changes made to fields (columns) are immediately reflected in the local mirror by retrieving the changed row from the database, thus allowing Oracle Database to set defaults for the columns and perform required calculations. Column Defaulting mode affects the behavior of the AddNew and Edit methods.

	
Lock Wait mode

The default mode is called Wait mode. In Wait mode, when dynaset rows are about to be modified (using Edit), the existing row in the database is retrieved using the SQL "SELECT ... FOR UPDATE" statement to lock the row in the database. If the row about to be changed has been locked by another process (or user), the "SELECT ... FOR UPDATE" statement, waits until the row is unlocked before proceeding.

Optionally, you can use NoWait mode. NoWait mode results in an immediate return of an error code, indicating that the row about to be updated is locked.

Lock Wait mode also affects any SQL statements processed using ExecuteSQL.

	
No Refetch mode

In this mode NULLs are not explicitly inserted as in the ORADB_ORAMODE. In ORADB_NO_REFETCH mode, performance is boosted, because data is not refetched to the local cache.

Options Property Flag Values

The Options property flag values are:

	Constant	Value	Description
	ORADB_DEFAULT	&H0&	Accepts the default behavior.
	ORADB_ORAMODE	&H1&	Lets Oracle Database set default field (column) values.
	ORADB_NOWAIT	&H2&	Does not wait on row locks when executing a SQL "SELECT ... FOR UPDATE" statement.

These values can be found in the oraconst.txt file. Options may be combined by adding their respective values.

This property is the same as the options passed to the OpenDatabase method. Just as with OpenDatabase, these options affect the OraDatabase object and all associated dynasets created from that database.

Changing this property does not take effect until a Refresh method is sent to the data control.

	
See Also:

	
AddNew Method

	
Edit Method

	
CreateDynaset Method

	
OpenDatabase Method

	
OraDatabase Object

	
OraDynaset Object

	
Refresh Method

OracleMode Property

Applies To

Oracle Data Control

Description

Determine whether the changes made to fields (columns) are immediately reflected in the local mirror by retrieving the changed row from the database, thus allowing Oracle to set defaults for the columns and perform required calculations.

Usage

oradata1.OracleMode = [True | False]

Data Type

Integer (Boolean)

Remarks

This property value is set to True by default, which means that fields (columns) changes are reflected in the local cache immediately. Changing this property value has no effect until the Refresh method is invoked. If the ORADB_ORAMODE mode is used for the database option, the underlying recordset/dynaset inherits this mode.

ReadOnly Property

Applies To

Oracle Data Control

Description

Determines whether the dynaset will be used for read-only operations. Read/write at design time and run time.

Usage

oradata1.ReadOnly = [True | False]

Data Type

Integer (Boolean)

Remarks

By default, ReadOnly is False which means that an attempt will be made to create an updatable dynaset by selecting ROWIDs from the database. If ReadOnly is set to True, a non-updatable dynaset is created (ROWIDs are not selected from the database and cached) and operations will be somewhat faster.

If the SELECT statement contains a LONG or LONG RAW column, ROWIDs are needed whether the dynaset will be updatable or not.

Changing this property does not take effect until a Refresh method is sent to the data control.

	
See Also:

	
CreateDynaset Method

	
Refresh Method

Recordset Property

Applies To

Oracle Data Control

Description

Returns a dynaset defined by the data control's Connect, DatabaseName, and RecordSource properties. Not available at design time and read and write at run time.

Usage

Set oradynaset = oradata1.RecordsetSet oradata1.Recordset = Oradynaset

Data Type

OLE Object (OraDynaset)

Remarks

The properties and methods of this dynaset are the same as those of any other dynaset object. The Recordset property of the Oracle Data Control (.OCX) can be set to external dynaset, or the Recordset property of the other data control. After the setting, Oracle Data control Database, session, and options properties now set to the corresponding properties of the external dynaset. Oracle data control shares the advisories of the external dynaset. This is very useful when attaching dynaset returned from the PL/SQL cursor by CreatePlsqlDynaset Method.

Example

This example demonstrates setting Recordset property to external dynaset created by CreatePlsqlDynaset method. This example returns a PL/SQL cursor as a external dynaset for the different values of DEPTNO parameter. Make sure that corresponding stored procedure (found in EMPCUR.SQL) is available in the Oracle Database. Copy this code into the definition section of a form containing the Oracle Data Control named oradata1. Then, press F5.

Sub Form_Load ()

 'Declare variables as OLE Objects.
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase
 Dim OraDynaset As OraDynaset

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

' Create the Deptno parameter
 OraDatabase.Parameters.Add "DEPTNO", 10, ORAPARM_INPUT

 OraDatabase.Parameters("DEPTNO").ServerType = ORATYPE_NUMBER

' Create OraDynaset based on "EmpCursor" created in stored procedure.
 Set OraDynaset = OraDatabase.CreatePLSQLDynaset("Begin Employee.GetEmpData (:DEPTNO,:EmpCursor); end;", "EmpCursor", 0&)

' Now attach the Oradynaset to Data control's recordset.
 set oradata1.recordset = OraDynaset

...
' Do some operation
...

 ' Now set the deptno value to 20
 OraDatabase.Parameters("DEPTNO").Value = 20

 'Refresh the sqlstmt
 Oradata1.recordset.Refresh

 'Remove the parameter.
 OraDatabase.Parameters.Remove ("DEPTNO")

 End Sub

	
See Also:

	
Connect Property

	
DatabaseName Property

	
MoveFirst, MoveLast, MoveNext, and MovePrevious Methods

	
OraDynaset Object

	
OraFields Collection

	
OraParameters Collection

	
RecordSource Property

RecordSource Property

Applies To

Oracle Data Control

Description

The SQL SELECT statement to be used to create the data control's RecordSet. Read/write at design time and run time.

Usage

oradata1.RecordSource = [SQL SELECT Statement]

Data Type

String

Remarks

The SQL statement must be a SELECT statement; otherwise an error is returned. Features such as views, synonyms, column aliases, schema references, table joins, nested selects, and remote database references can be used freely; object names are not modified in any way.

Whether or not the resultant dynaset can be updated depends on the Oracle SQL rules of updatability, the access you have been granted, and the ReadOnly property. In order to be updatable, three conditions must be met:

	
The SQL statement must refer to a simple column list or to the entire column list (*).

	
The SQL statement must not set the read-only flag of the options argument.

	
Oracle must permit ROWID references to the selected rows of the query.

Any SQL statement that does not meet these criteria is processed, but the results are not updatable and the dynaset's Updatable property returns False.

Changing this property does not take effect until a Refresh method is sent to the data control.

You can use SQL bind variables in conjunction with the OraParameters collection.

If this property is NULL or empty, then an OraDynaset object is not created, but OraSession, OraConnection, and OraDatabase objects are created for the data control. This behavior enables access to these objects prior to creation of a dynaset. For example, a NULL RecordSource might be used to instantiate the database object to add parameters. The RecordSource property can then be set at run time, making use of the automatic binding of database parameters.

Changing this property and calling the Refresh method of the RecordSet property will create a new dynaset object, but the old dynaset continues to be available for use until all references to it are removed.

Example

This example demonstrates the use of SQL bind variables (parameters) in the RecordSource property of the data control. To run this demonstration, copy this code into the definition section of a form containing a data control named oradata1, then, press F5.

Sub Form_Load ()

 'Set the username and password.
 oradata1.Connect = "scott/tiger"

 'Set the databasename.
 oradata1.DatabaseName = "ExampleDb"

 'Refresh the data control without setting the
 ' RecordSource. This has the effect of creating

 ' the underlying database object so that parameters may be added.
 oradata1.Refresh

 'Set the RecordSource and use a SQL parameter.
 oradata1.RecordSource = "select * from emp where job = :job"

 'Add the job input parameter with initial value MANAGER.
 oradata1.Database.Parameters.Add "job", "MANAGER", 1

 'Refresh the data control.
 'Only employees with the job MANAGER will be contained in the dynaset.
 oradata1.Refresh

 'Change the value of the job parameter to SALESMAN.
 oradata1.Database.Parameters("job").Value = "SALESMAN"

 'Refresh ONLY the recordset.
 'Only employees with the job SALESMAN will be contained in the dynaset.
 oradata1.Recordset.Refresh

End Sub

	
See Also:

	
Connect Property

	
DatabaseName Property

	
OraConnection Object

	
OraDatabase Object

	
OraDynaset Object

	
OraParameters Collection

	
OraSession Object

	
Recordset Property

	
Refresh Method

	
Updatable Property

Session Property

Applies To

Oracle Data Control

Description

The session object associated with the data control. Not available at design time and read-only at run time.

Usage

orasession = oradata1.Session

Data Type

OLE Object (OraSession)

Remarks

This property is equivalent to referencing oradata1.Database.Session. If the data control has not been refreshed, any references to this property result in an Object variable not set runtime error.

	
See Also:

	
OraDatabase Object

	
OraSession Object

	
OraSessions Collection

Tag Property

Applies To

Oracle Data Control

Description

Stores any extra data needed by your application.

Top Property

Applies To

Oracle Data Control

Description

Determines the distance between the internal top edge of an object and the top edge of its container.

	
See Also:

	
Move Method

	
Left Property

TrailingBlanks Property

Applies To

Oracle Data Control

Description

Determines whether trailing blanks should be removed from character string data retrieved from the database. Read/write at design time and run time.

Usage

oradata1.TrailingBlanks = [True | False]

Data Type

Integer (Boolean)

Remarks

By default, TrailingBlanks is False. This means that trailing blanks will be removed from character string data retrieved from the database.

Changing this property has no effect until a Refresh method is sent to the data control.

	
See Also:

	
CreateDynaset Method

	
Refresh Method

Visible Property

Applies To

Oracle Data Control

Description

Determines whether an object is visible or hidden.

	
See Also:

Enabled Property

Width Property

Applies To

Oracle Data Control

Description

Determines the width dimension of an object.

	
See Also:

	
Height Property

	
Left Property

	
Move Method

	
Top Property

A Appendix A

This appendix includes the following:

	
Oracle Data Types

	
Additional Schemas

Oracle Data Types

The following are code for Oracle data types.

Table A-1 Oracle Data Type Codes

	Oracle Data Type	Codes
	
ORATYPE_VARCHAR2

	
1

	
ORATYPE_NUMBER

	
2

	
ORATYPE_SINT

	
3

	
ORATYPE_FLOAT

	
4

	
ORATYPE_STRING

	
5

	
ORATYPE_DECIMAL

	
7

	
ORATYPE_LONG

	
8

	
ORATYPE_VARCHAR

	
9

	
ORATYPE_DATE

	
12

	
ORATYPE_REAL

	
21

	
ORATYPE_DOUBLE

	
22

	
ORATYPE_UNSIGNED8

	
23

	
ORATYPE_RAW

	
23

	
ORATYPE_LONGRAW

	
24

	
ORATYPE_UNSIGNED16

	
25

	
ORATYPE_UNSIGNED32

	
26

	
ORATYPE_SIGNED8

	
27

	
ORATYPE_SIGNED16

	
28

	
ORATYPE_SIGNED32

	
29

	
ORATYPE_PTR

	
32

	
ORATYPE_OPAQUE

	
58

	
ORATYPE_UINT

	
68

	
ORATYPE_CHAR

	
96

	
ORATYPE_CHARZ

	
97

	
ORATYPE_BFLOAT

	
100

	
ORATYPE_BDOUBLE

	
101

	
ORATYPE_CURSOR

	
102

	
ORATYPE_ROWID

	
104

	
ORATYPE_MLSLABEL

	
105

	
ORATYPE_OBJECT

	
108

	
ORATYPE_REF

	
110

	
ORATYPE_CLOB

	
112

	
ORATYPE_BLOB

	
113

	
ORATYPE_BFILE

	
114

	
ORATYPE_CFILE

	
115

	
ORATYPE_RSLT

	
116

	
ORATYPE_NAMEDCOLLECTION

	
122

	
ORATYPE_COLL

	
122

	
ORATYPE_TIMESTAMP

	
187

	
ORATYPE_TIMESTAMPTZ

	
188

	
ORATYPE_INTERVALYM

	
189

	
ORATYPE_INTERVALDS

	
190

	
ORATYPE_SYSFIRST

	
228

	
ORATYPE_TIMESTAMPLTZ

	
232

	
ORATYPE_SYSLAST

	
235

	
ORATYPE_OCTET

	
245

	
ORATYPE_SMALLINT

	
246

	
ORATYPE_VARRAY

	
247

	
ORATYPE_TABLE

	
248

	
ORATYPE_OTMLAST

	
320

	
ORATYPE_RAW_BIN

	
2000

These codes are also listed in the oraconst.txt file located in the ORACLE_BASE\\ORACLE_HOME\oo4o directory.

Additional Schemas

Occasionally other schemas are required to run examples. These schemas are listed in the following sections.

Schema Objects Used in OraMetaData Examples

This section presents OraMetaData schema definitions.

CREATE TYPE ORAMD_ADDRESS AS OBJECT (no NUMBER,
 street VARCHAR(60),
 state CHAR(2),
 zip CHAR(10),
MEMBER PROCEDURE ChangeStreetName(newstreet IN VARCHAR2)
);

Schema Objects Used in LOB Data Type Examples

The following schema objects are used in the OraLOB and BFILE examples. Run the SQL script ORAEXAMP.SQL on your database to set up the schema.

CREATE TABLE part (
 part_id NUMBER,
 part_name VARCHAR2(20),
 part_image BLOB,
 part_desc CLOB,
 part_collateral BFILE
);

Create Directory NewDirectoryName as 'C:\valid\path'

Schema Objects Used in the OraObject and OraRef Examples

The following schema objects are used in the OraObject and OraRef examples. Data for the following tables can be inserted with the ORAEXAMP.SQL script that is provided with the OO4O installation.

CREATE TYPE address AS OBJECT (
 street VARCHAR2(200),
 city VARCHAR2(200),
 state CHAR(2),
 zip VARCHAR2(20)
);

CREATE TYPE person as OBJECT(
 name VARCHAR2(20),
 age NUMBER,
 addr ADDRESS);

CREATE TABLE person_tab of PERSON;
CREATE TABLE customers(
 account NUMBER,
 aperson REF PERSON);

Schema Objects Used in OraCollection Examples

The following schema is used in examples of OraCollection methods

CREATE TYPE ENAMELIST AS VARRAY(20) OF VARCHAR2(30);
 CREATE TABLE department (
 dept_id NUMBER(2),
 name VARCHAR2(15),
 ENAMES ENAMELIST);

 DROP TYPE COURSE;

 CREATE TYPE Course AS OBJECT (
 course_no NUMBER(4),
 title VARCHAR2(35),
 credits NUMBER(1));

 CREATE TYPE CourseList AS TABLE OF Course;

 CREATE TABLE division (
 name VARCHAR2(20),
 director VARCHAR2(20),
 office VARCHAR2(20),
 courses CourseList)
 NESTED TABLE courses STORE AS courses_tab;

Glossary

BFILEs

External binary files that exist outside the database tablespaces residing in the operating system. BFILEs are referenced from the database semantics, and are also known as external LOBs.

Binary Large Object (BLOB)

A large object data type whose content consists of binary data. Additionally, this data is considered raw as its structure is not recognized by the database.

Character Large Object (CLOB)

The LOB data type whose value is composed of character data corresponding to the database character set. A CLOB may be indexed and searched by the Oracle Text search engine.

coordinated universal time (UTC)

UTC was formerly known as Greenwich Mean Time.

Large Object (LOB)

The class of SQL data type that is further divided into internal LOBs and external LOBs. Internal LOBs include BLOBs, CLOBs, and NCLOBs while external LOBs include BFILEs.

National Character Large Object (NCLOB)

The LOB data type whose value is composed of character data corresponding to the database national character set.

PL/SQL

Oracle procedural language extension to SQL.

primary key

The column or set of columns included in the definition of a table's PRIMARY KEY constraint.

UTC

UTC (Coordinated Universal Time) was formerly known as Greenwich Mean Time.

Index

A B C D E F G H I J L M N O P Q R S T U V W X Z

A

	Abs method, 10
	Access Violations, 5.3.3
	accessing
	
	collection elements, 4.5.3
	OraObject, 4.4.4.2
	OraObject attributes, 4.4.2.2
	referenceable instance, 4.4.4.2

	accessing the OO4O Automation Server, 3.2
	Active Server Pages, 1.1, 2.1, 2.4
	Active Server Pages with OO4O Automation, 2.4
	ActiveX Control, 1.3, 2.8
	AddTable method, 3.8.4
	advanced features of Oracle Objects for OLE, 4
	advanced queuing interfaces, 4.6
	AllowMoveLast property, 14
	application failover notifications, 4.8
	application notifications, 4.8.1
	array processing, 5.1.5
	ASP, 1.1, 2.4
	asynchronous dequeuing, 4.6.1
	AutoBindDisable method, 5.1.4
	AutoBindEnable method, 5.1.4
	automation objects
	
	introduction, 8

	Automation Server, 3.2
	avoiding multiple object reference, 5.1.3

B

	BackColor property, 14
	batch inserts, 6
	BeginTrans method, 3.9
	bind variables, 3.8
	bindings, 5.1.4
	Borland Delphi, 1.5.2
	bound class, 1.4
	buffering
	
	LOB, 4.3.4

	bulk collect feature, 5.1.7

C

	C++, 1.4
	cache parameters, 5.1.2
	caching, 3.4.1
	Caption property, 14
	chunking methods
	
	LONG RAW, 5.1.8

	client applications, 3
	code examples
	
	location, 2.2

	Code Wizard
	
	using, 7.3

	Code Wizard Components, 7.1
	Code Wizard data types, 7.2
	Code Wizard examples, 7.4
	Code Wizard for stored procedures, 7
	collection elements
	
	accessing, 4.5.3
	modifying, 4.5.4

	collection types
	
	retrieving from the database, 4.5.2
	VARRAY, 4.5.5

	collections, 4.5
	
	OraFields, 5.1.3

	COM Automation Objects, 1.2
	commands
	
	executing, 3.4

	CommitTrans method, 3.9
	Complex Object Retrieval Capability (COR) in OCI, 4.4.3
	Component Certifications
	
	My Oracle Support, 1.7

	configuration information, 1.8.2
	Connect data control property, 14
	connection information
	
	incorrectly specified, 5.3.2

	connection multiplexing, 3.3.1
	connection pool, 5.1.9
	connection pool management, 3.6
	connection pooling, 2.4, 5.1.9
	connpool sample (IIS), 2.4
	constant file, 2.2.1.3
	CreateCustomDynaset method, 5.1.2
	CreateSQL method, 3.4.2.1, 3.8, 5.1.5
	creating
	
	dynaset from OraCollection, 4.5.6
	VARRAY collection type, 4.5.5

	customization, 5.1.2

D

	data control recordset, 13
	data controls, 2.1
	Data Definition Language (DDL) statements, 3.8.5
	Data Manipulation Language (DML) Statements, 3.4.2
	data streaming, 4.3.4
	data types, 4.4
	
	datetime, 4.10
	interval, 4.10

	data types supported by the OO4O Code Wizard, 7.2
	database connectivity APIs, 1.2
	Database data control property, 14
	database events, 4.7
	
	detection, 4.7

	database records
	
	updating, 3.4.2.1

	database schema objects, 4.11
	DatabaseName data control property, 14
	datetime data types, 4.10
	DBGrid Control, 2.8
	DDL statements, 3.8.5
	deleting rows from table, 3.4.2.2
	demodrp7.sql, 2.2.1
	demonstration
	
	Excel, 2.5
	Oracle Data Control, 2.7
	Oracle Data Control with VC++, 2.8
	quick tour, 6

	demonstration schema, 2.2
	
	creation, 2.2.1

	demonstration tables
	
	dept, 2.2.1
	emp, 2.2.1

	dept table, 2.2.1
	dequeuing, 4.6.1
	detection of database events, 4.7
	differences LOB types from LONG RAW, 5.1.8
	DirtyWrite property, 14
	disabling parameter binding, 5.1.4
	DML statements, 3.4.2
	Drag method, 12, 13
	DragDrop event, 12
	DragIcon property, 14
	DragMode property, 14
	DragOver event, 12
	Drop method, 12
	Dyanset object
	
	using, 4.4.4.1.1

	dynaset
	
	creating from an OraCollection, 4.5.6

	Dynaset object
	
	using, 4.4.2.1.1

	dynasets
	
	using, 5.1.6

E

	early binding of OO4O Objects, 5.1.1
	Edit method, 13
	EditMode property, 14
	emp table, 2.2.1
	empcur.sql, 2.2.1.3
	Enabled property, 14
	enabling failover, 4.8.2
	enabling parameter bindinng, 5.1.4
	error code
	
	ODCERR_AUTOMATION, 5.2.11

	Error data control event, 12
	error handling, 5.2
	errors
	
	Access Viloations, 5.3.3
	Advanced Queuing, 5.2.7
	Collection, 5.2.8
	Find method parser, 5.2.3
	incorrectly installed software, 5.3.1
	installation, 5.3.3
	network errors, 5.3.2
	nonblocking, 5.2.2
	OLE Automation, 5.2.1
	OLE Initialization or OLE Automation, 5.3.1
	Oracle, 5.2.10
	Oracle Data Control, 5.2.11
	Oracle LOB, 5.2.6
	Oracle Number, 5.2.9
	Oracle object instance, 5.2.5
	troubleshooting, 5.3

	events
	
	database, 4.7

	ExampleDb, 2.2.1
	examples, 2.1, 2.2.1.3
	
	Code Wizard, 7.4

	Excel demo, 2.5
	Excel with OO4O automation, 2.5
	ExecuteSQL method, 3.4.2.1, 3.8, 5.1.5
	executing commands, 3.4
	executing Data Definition Language (DDL) statements, 3.8.5
	executing methods
	
	OraObject, 4.4.2.4

	executing PL/SQL blocks, 3.8

F

	failover, 4.8
	
	enabling, 4.8.2
	notification, 4.8.2

	Failover Notification Registration, 4.8.1
	features
	
	advanced, 4
	new, Preface

	fetch parameters, 5.1.2
	FetchLimit property, 5.1.2
	file locations, 1.5
	Find method, 5.2.2
	
	parser errors, 5.2.3
	run-time errors, 5.2.3

	Font property, 14
	ForeColor property, 14

G

	global.asa file, 2.4
	grid control, 1.3

H

	Height property, 14

I

	IIS, 2.1
	IIS Active Server Pages, 1.1
	IIS Microsot Internet Information Server, 2.4
	incorrectly installed software
	
	errors, 5.3.1

	incorrectly specified connection information, 5.3.2
	Index data control property, 14
	InProcServer Type Library, 2.3
	input variables, 4.1
	inserting multiple rows, 3.4.2.3
	inserting new rows in table, 3.4.2.3
	installation, 1.5
	installation errors, 5.3.3
	instance errors, 5.2.5
	interfaces
	
	OO4O, 4.3.1
	retrieving, 4.2.1

	interval data types, 4.10

J

	Java stored procedures, 7

L

	large objects, 5.1.8
	Large Objects (LOBs)
	
	using, 4.3

	LastServerErr property, 5.2.1, 5.2.10
	LastServerErrText property, 5.2.10
	Left property, 14
	LOB buffering, 4.3.4
	LOB data
	
	multiple-piece read operation, 4.3.6
	reading, 4.3.6
	writing, 4.3.5

	LOB data single-piece read operation, 4.3.6
	LOB datatatypes
	
	support for, 4.1

	LOBs, 5.1.8
	
	data types, 4.3.1
	retrieving from database, 4.3.3
	using, 4.3

	Long, 5.1.8
	LONG RAW
	
	chunking methods, 5.1.8
	migration from, 5.1.8
	types, 5.1.8

	Long types, 5.1.8

M

	messages
	
	enqueuing, 4.6
	monitoring, 4.6.1

	methods
	
	AutoBindDisable, 5.1.4
	AutoBindEnable, 5.1.4
	CreateCustomDynaset, 5.1.2
	CreateSQL, 5.1.5
	ExecuteSQL, 5.1.5
	Find, 5.2.2, 5.2.3
	Server, 10

	MFC AppWizard, 2.8
	Microsoft Access, 1.5.2
	Microsoft data control, 1.3
	Microsoft Foundation Classes, 1.4
	Microsoft Information Server, 2.1
	Microsoft Internet Information Server (IIS), 1.5.2
	Microsoft Internet Service Manager, 2.4
	Microsoft Transaction Server support, 3.10
	Microsoft VC++, 1.8, 2.8
	Microsoft Visual Basic
	
	Microsoft Excel, 1.5.2

	migration from LONG RAW to LOB or BFILE, 5.1.8
	modfiying attributes
	
	OraObject, 4.4.4.3
	referenceable instance, 4.4.4.3

	modifying
	
	collection elements, 4.5.4
	OraObject attributes, 4.4.2.3

	MonitorForFailover method, 4.8.1
	monitoring
	
	messages, 4.6.1

	MonitorStart method, 4.6.1
	MonitorStop method, 4.6.1
	MouseDown event, 12
	MouseMove event, 12
	MousePointer property, 14
	MouseUp event, 12
	Move data control method, 13
	MTS support, 3.10
	multicur.sql, 2.2.1.3
	multiple Oracle homes, system requirements, 1.5
	multiple rows, 3.4.2.3
	multiple-piece operation, 4.3.4
	multiple-piece read operation, 4.3.6
	multiple-piece write operation, 4.3.5
	multiplexing, 3.3.1
	My Oracle Support, 1.7

N

	Name data control property, 14
	nested tables, 4.1, 4.5
	network alias
	
	ExampleDb, 2.2.1

	network service alias, 2.2.1
	network trips, 5.1.7
	
	reducing, 5.1.5, 5.1.6

	Nonblocking Errors, 5.2.2
	nonblocking mode, 4.6.1
	NoRefetch property, 14
	notifications
	
	application failover, 4.8, 4.8.1

O

	object data types, 4.4
	Object-relational features
	
	support for, 4.1

	Objects, 9
	objects
	
	OraBLOB, OraCLOB, 5.2.6
	OraCollection, 5.1.7
	OraCollection errors, 5.2.8
	OraDynaset, 5.1.3, 5.1.7
	OraField, 5.1.3
	OraObject, 5.2.5
	OraParamArray, 5.1.5, 5.1.7
	OraParameter, 5.1.4

	ODBC, 1.2
	ODCERR_AUTOMATION error code, 5.2.11
	oiplang.msb, 1.8.2
	oipVER.dll, 1.8.2
	OLE Automation Errors, 5.2.1
	OLE Initialization or OLE Automation Errors, 5.3.1
	OO4O Automation Server, 3.2
	OO4O Code Wizard
	
	requirements, 1.5.3
	using, 7.3

	OO4O Code Wizard Components, 7.1
	OO4O Code Wizard examples, 7.4
	OO4O Code Wizard Visual Basic Wizard, 7.3.2
	OO4O File Locations, 1.6
	OO4O In-Process Automation Server, 1.2, 5.2.1
	OO4O methods, 10
	OO4O Objects, 9
	OO4O Redistributable Files, 1.8
	OO4O server methods, 10
	OO4O server properties, 11
	OO4OCodeWiz.exe, 7.3
	oo4oparm.reg file, 1.8.2
	oorodemo.asp file, 2.4
	option flags, 2.2.1.3
	options
	
	ORADYN_NOCACHE, 5.1.6
	ORADYN_READONLY, 5.1.6

	Options data control property, 14
	OraAQ interface, 4.6
	OraAQ object, 4.6.1
	OraAQMsg object, 4.6
	OraAttributes interface, 4.4.1
	OraBLOB and OraCLOB
	
	objects, 5.2.6
	using, 4.3.2

	Oracle Advanced Queuing Errors, 5.2.7
	Oracle Call Interface (OCI), 4.4.3
	Oracle Client, 1.5.2
	Oracle Collection Errors, 5.2.8
	Oracle Collections, 4.5
	Oracle Data Control, 1.3, 1.8.2, 2.2.1, 2.8
	
	requirements, 1.5.3
	setting properties, 2.7.2

	Oracle Data Control demonstration, 2.7
	Oracle Data Control errors, 5.2.11
	Oracle Data Control events, 12
	
	DragDrop, 12
	DragOver, 12
	Error, 12
	MouseDown, 12
	MouseMove, 12
	MouseUp, 12
	Reposition, 12
	Validate, 12

	Oracle Data Control methods, 13
	
	Drag, 13
	Move, 13
	Refresh, 13
	UpdateControls, 13
	UpdateRecord, 13
	ZOrder, 13

	Oracle Data Control properties, 14
	
	AllowMoveLast, 14
	AutoBind lAutoBind property, 14
	BackColor, 14
	Caption, 14
	Connect, 14
	Database, 14
	DatabaseName, 14
	DirtyWrite, 14
	DragIcon, 14
	DragMode, 14
	EditMode, 14
	Enabled, 14
	Font, 14
	ForeColor, 14
	Height, 14
	Index, 14
	Left, 14
	MousePointer, 14
	Name, 14
	NoRefetch, 14
	Options, 14
	OracleMode, 14
	ReadOnly, 14
	Recordset, 14
	RecordSource, 14
	Session, 14
	Tag, 14
	Top, 14
	TrailingBlanks, 14
	Visible, 14
	Width, 14

	Oracle Data Control with Visual Basic, 2.7
	Oracle Errors, 5.2.10
	Oracle In-Process Server Type library, 1.5.3
	Oracle LOB errors, 5.2.6
	Oracle LOBs, Objects, and Collections, 4.2.1
	
	instantiating, 4.2

	Oracle network errors, 5.3.2
	Oracle Number errors, 5.2.9
	Oracle Object Instance Errors, 5.2.5
	Oracle Objects for OLE (OO4O) overview, 1.1
	Oracle Objects for OLE C++ Class Library, 1.4
	Oracle Objects for OLE server methods, 10
	Oracle Objects for OLE Server Objects, 9
	Oracle Objects for OLE server properties, 11
	Oracle Universal Installer, 1.5.2, 1.8
	OracleMetaLink, 1.7
	OracleMode property, 14
	oraclm32.dll, 1.8
	OraCollection, 4.5
	OraCollection interface, 4.5.1
	OraCollection object, 5.1.7, 5.2.8
	
	creating a dynaset from, 4.5.6

	oraconst.txt, 2.2.1.3
	OraDatabase object
	
	pool of, 5.1.9
	pool, performance, ASP applications, 3.6

	OraDatabase objects, 13
	ORADC Control, 2.8
	oradc.ocx, 1.8, 1.8.2
	ORADYN_NOCACHE option, 3.4.1, 5.1.6
	ORADYN_READONLY option, 5.1.6
	OraDynaset
	
	objects, 13
	XML from, 4.9

	OraDynaset object, 5.1.3, 5.1.7
	
	using, 4.3.3

	oraexamp.sql, 2.2.1.3
	OraField objects, 5.1.3
	OraFields collection, 5.1.3
	OraMetaData object, 4.11
	OraObject interface, 4.4.1
	
	using, 4.4.2

	OraObject object, 4.4
	
	accessing, 4.4.4.2
	accessing attributes of, 4.4.2.2
	executing methods, 4.4.2.4
	instance errors, 5.2.5
	modfiying attributes, 4.4.4.3
	modifying attributes of, 4.4.2.3
	retrieving, 4.4.2

	OraParamArray object, 5.1.5, 5.1.7
	OraParameter object, 5.1.4
	
	using, 4.4.4.1.2

	OraRef interface
	
	about, 4.4.3
	using, 4.4.4

	OraRef object, 4.4
	OraSQLStmt, 3.4.2.1
	ORATYPE_CURSOR, 3.8.3
	output variables, 4.1

P

	parameter bindings, 5.1.4
	Parameter object
	
	using, 4.3.3, 4.4.2.1.2

	ParameterArrays, 3.4.2.3
	performance, 3.4.1, 3.4.2.1, 3.8, 5.1.2
	
	considerations with LOB, 4.3.4
	improvement, 5.1.6

	PL/SQL bind variables, 3.8
	PL/SQL blocks
	
	executing, 3.8

	PL/SQL bulk collect feature, 5.1.7
	PL/SQL cursor variables, 3.8.3, 3.8.3
	PL/SQL procedures, 5.1.4, 7
	PL/SQL support, 3.8
	PL/SQL tables
	
	returning, 3.8.4

	processing
	
	arrays, 5.1.5

	properties, 11
	
	FetchLimit, 5.1.2
	LastServerErr, 5.2.1, 5.2.10
	LastServerErrText, 5.2.10

	property values, 2.2.1.3

Q

	queries, 3.4.1
	queueing, 4.6
	quick tour, 6

R

	ReadOnly property, 14
	Recordset data control property, 14
	RecordSource data control property, 13, 14
	reducing round-trips, 5.1.5
	REF
	
	retrieving from database, 4.4.4.1

	referenceable instance, 4.4.4.2, 4.4.4.3
	Refresh data control method, 13
	Refresh method, 3.8
	Reposition event, 12
	required setups, 1.5
	required support files (RSF), 1.5.2
	requirements
	
	OO4O Code Wizard, 1.5.3
	Oracle Data Control, 1.5.3

	retreiving
	
	interfaces, 4.2.1

	retrieving
	
	collection types, 4.5.2
	LOBs from database, 4.3.3
	OraObject, 4.4.2
	REF, 4.4.4.1

	returning PL/SQL tables, 3.8.4
	round-trips, 4.3.4, 5.1.7
	
	reducing, 5.1.5, 5.1.6

	run-time errors, 5.2.3

S

	sample application
	
	quick tour, 6

	schema objects, 4.11
	scott schema, 2.2.1
	scott/tiger, 2.2
	SELECT statements, 3.4.1
	server methods, 10
	server properties, 11
	Session data control property, 14
	Setting Oracle Data Control Properties Programmatically, 2.7.2
	setup
	
	required, 1.5

	single-piece operation, 4.3.4
	single-piece read operation, 4.3.6
	single-piece write operation, 4.3.5
	sqldembld7.sql, 2.2.1
	support for Microsoft Transaction Server, 3.10
	support for PL/SQL, 3.8
	system requirements, 1.5.2

T

	Tag property, 14
	tnsnames.ora file, 2.2.1
	Top property, 14
	TrailingBlanks property, 14
	transaction control, 3.9
	troubleshooting, 5.3
	tuning, 5.1.2
	Type Library, 2.3
	types, 5.1.8
	
	LONG RAW, 5.1.8

U

	Universal Installer, 1.5.2, 1.8
	update database records, 3.4.2.1
	Update method, 13
	UpdateControls method, 13
	UpdateRecord method, 13
	Updating files and registrations, 1.8.2
	using
	
	Dynaset object, 4.4.4.1.1
	OraParameter object, 4.4.4.1.2
	OraRef interface, 4.4.4

	using a Dynaset object, 4.4.2.1.1
	using a Parameter object, 4.4.2.1.2
	using Automation Clients, 2.1
	using Microsoft C++, 2.6
	using OO4O Automation with Active Server Pages (ASP), 2.4
	using OO4O Automation with Excel, 2.5
	using OO4O Automation with Visual Basic, 2.3
	using OraBLOB and OraCLOB, 4.3.2
	using OraObject interface, 4.4.2
	using read-only forward-only dynasets, 5.1.6
	using the OO4O Code Wizard, 7.3
	using the Oracle Data Control with MS VC++, 2.8
	using the Oracle Data Control with Visual Basic, 2.7
	using the PL/SQL bulk collect feature, 5.1.7

V

	Validate event, 12, 12, 13
	VARRAY collection type
	
	creating, 4.5.5

	VARRAYs, 4.1, 4.5
	Visible property, 14
	Visual Basic, 1.1, 5.1.1, 12, 13, 14
	Visual Basic for Applications, 1.1
	Visual Basic with OO4O automation, 2.3
	Visual Basic Wizard Add-in to Code Wizard, 7.3.2
	Visual Basic, Excel, 2.1
	Visual C++, 1.4, 2.6, 2.8
	Visual C++, JavaScript, 1.1

W

	Width property, 14
	Windows 2000, 1.5.2
	Windows registry parameters, 5.1.2
	Windows Server 2003, 1.5.2
	Windows Vista, 1.5.2
	Windows XP, 1.5.2
	writing
	
	LOB data, 4.3.5

X

	XML
	
	generation, 4.9

	XML from OraDynaset, 4.9
	XML support for, 4.9
	XSLT, 4.9

Z

	z-order, 13
	ZOrder methods, 13

This illustration shows the References dialog box with a check mark beside Oracle In-Process Server 5.0 Type library.

This illustration shows the Connect dialog box with text fields for User Name, Password, and Connect String.

This screenshot shows a TextBox control that sets up display of the employee numbers.

This illustration shows a spreadsheet, with columns and sample data for empno, ename, job, and so on.

There is sample data, and there are two buttons labeled Refresh and Clear that run the macros, EmpData and ClearData, respectively.

This is an illustration of the object hierarchy starting with OraField and OraParameter at the same level.

At the next level, the following descend from OraField and OraParameter: OraObject, OraRef, OraCollection, OraBlob, OraClob, OraBFile, and value of all other scalar types.

At the third level, OraAttribute descends from OraObject or from OraRef, and element values descend from OraCollection.

This illustration shows the SQL Select Query field with the entry select * from emp.

The results are shown in columns for EMPNO, ENAME, JOB, MGR, HIREDATE, SAL, COMM, and DEPTNO.

This hierarchy diagram starts with the OraDatabase object, steps down to OraAQ, then OraAQMsg which contains user-defined types and raw types.

A branch goes out from OraAQMsg to the recipient, OraAQAgent.

This is a screenshot of the Components option of the Project menu. Oracle Data Control has been checked, under the Controls tab.

This screenshot shows the OO4O Code Wizard for Stored Procedures dialog box; it is displaying a tree of the available Oracle packages and stored procedures.

The text above the tree says "Select Stored Procedures and enter a filename to host your Stored Procedures. Upon clicking OK, OO4O Code Wizard will add the file to our Visual Basic Project.

Below the tree is a text field and browse box for entering the file name.

Next there are options for Appending execution code to the file and Overwriting the file content with the execution code.

Next is a list for the component types. The one currently chosen is Class Module (*.cls).

Next is a check box to Connect to the database next time this add-in is launched, which is currently checked.

Next are OK and Cancel buttons.

This is a hierarchy diagram.

The top of the diagram is the OraSession.

Next is OraServer, followed by OraDatabase

The diagram indicates that the following are created from OraDatabase:

OraSQLStmt

OraDynaset

OraParameters

OraParameterArray

OraMetaData

OraAQ

The diagram also indicates the following:

OraField belongs to the OraDynaset object.

OraParameter belongs to the OraParameters object.

OraMDAttribute belongs to the OraMetaData object.

OraAQMsg belongs to the OraAQ object.

This is a screenshot of the ORADC Control dialog box showing the All tab. It lists Properties and sample values including scott/tiger for Connect and exampledb for DatabaseName.

This is a screenshot of the ORADC Control example. It shows a columnar listing with data for EMPNO, ENAME, JOB, MGR and HIREDATE. Scroll bars allow for scrolling to columns and records not shown.

This is a screenshot of the actual form as it appears when it runs, with sample data.

The screenshot shows the following:

Employee Number is 7369.

Employee Name is Smith.

Employee Job is Clerk.

At the bottom, Oracle Data Control appears, with next, previous, first, and last arrows.

This is a screenshot of the Properties window with the following settings:

Caption property set to Oracle Data Control.

Connect property set to scott/tiger.

RecordSource property set to select * from emp.

This diagram shows on one side a connection from OraServer to Oracle Database, and on the other side, a connection to the OraSession and OraDatabase and user sessions.

This is a screenshot of the Employee Form example.

It shows the following fields and sample values:

Employee Number 7839

Employee Name King

Job President

Manager blank

Hire Date 11/17/81

Salary 5000

Commission Blank

Department Number 10

At the bottom buttons, are available to move to the first, last, next and previous employee.

Also buttons are available to Add, Update, Commit, Delete, Find, and Batch Insert

This is a screenshot of the Components option of the Project menu.

Oracle Data Control has been checked, under the Controls tab.

This is a screenshot of the Batch Insert form.

It contains a grid with columns and sample data for Employee, Employee Name, and Department.

After the grid, there are entry fields with sample data as follows:

Employee Number 300, Employee Name Frank, Department Number 20.

After the entry fields, there are Add to Grid and CommitGrid buttons.

This is a hierarchical diagram of the software layers of OO4O.

At the base is Oracle Database.

On top of this is the Oracle Client Libraries (OCI, CORE, and NLS).

On top of this is the OO4O In-Process Automation Server.

Next is COM/DCOM.

Next, in parallel, are the C++ Class Libraries, the Oracle Data Control and Automation Controllers (VB, Excel, AS).

On top of these, standing at the top of the hierarchy, are the Data Aware ActiveX Controls.

This is a screenshot of the Insert ActiveX Control dialog box.

It includes the ORADC control as well as the ObjectBrowser control, Oracle Sound Control, Popup Control, and others.

This screenshot shows a dialog box with a list of possible macros.

The first text field, called Macro Name/Reference displays the selected macro, EmpData.

There are buttons on the right side: Run, Cancel, Step, Edit, Delete, and Options.

There is also a description field at the bottom for those macros that provide a description.

Oracle Legal Notices
Copyright Notice
Copyright © 1994-2010, Oracle and/or its affiliates. All rights reserved.
License Restrictions Warranty/Consequential Damages Disclaimer
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
Warranty Disclaimer
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
Restricted Rights Notice
If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
Hazardous Applications Notice
This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.
Trademark Notice
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
Third-Party Content, Products, and Services Disclaimer
This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
[image: Oracle Logo]
OEBPS/dcommon/index.gif

OEBPS/dcommon/O_signature_clr.JPG
ORACLE

OEBPS/img/iissamp.gif
SaL Select Query:

[select * from emp.
Submit Query | Reset

[EMPNO [ENAME |JOB MGR HIREDATE|SAL [COMMDEPTNO
783 |RING [PRESIDENT 117581 [5000 10
7698 |BLAKE |MANAGER (1839 [5/1/81 2850 30
7782 [CLARK |MANAGER (7839 [6/9/81 2450 10
7566 [JONES |MANAGER (7839 4/2/81 2975 20
7654 [MARTIV [SALESMAN (7698 [528/81 (1250 [1400 30
7499 [ALLEN [SALESMAN [7698 [220/81 (1600 [300 |30
7844 |TURNER [SALESMAN (7698 [3/8/81 1500 0 30
7900 |TAMES |CLERK [7698 [12/381 [950 30

OEBPS/img/emp8.gif
Employee Form

Employee Number:
Employee Name:
Job:

Manager:

Hire Date

Salary:
Commission:

Department Number:

EEE

7839
KING

PRESIDENT

e

5000

10

= =0 =0
[Uodae |

OEBPS/dcommon/feedback.gif

OEBPS/dcommon/feedbck2.gif
<

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Objects for OLE
Developer's Guide
for Microsoft
Windows, 11g
Release 2 (11.2.0.2)

OEBPS/img/batch2.gif
[Emploges [Employes Name [Department
100 £l
00 seatt 2
M Frenk 2

Employes Number

Employes Name

Department Number

EC

IFvank

Addtatid

2

OEBPS/dcommon/contbig.gif

OEBPS/dcommon/uarrow.gif

OEBPS/img/o4o00000.gif
Data Aware ActiveX Controls

C++ Class
Libraries

Oracle Data
Control

Automation Controllers
(VB. Excel. ASP)

COM/DCOM

40 Ir
Automati

R

Oracle Client Libraries
(OCI. CORE. NLS)

Oracle

Database

OEBPS/img/oradcemp.gif
£z Oracle Data Control Example

ENAME [J0E | MGH]
SMITH [CLERK | 7902
ALLEN [SALESM| 7698
'WARD _|SALESM| 7698
JONES |MANAGE| 7239
MARTIN [SALESM]| 7638
BLAKE [MANAGE 7839
CLARK [MANAGE 7839
SCOTT [ANALYS| 7566
KING__|PRESIDE

TURNER [SALESM| 7638
/ADAMS |CLERK | 7788

OEBPS/dcommon/rightnav.gif

OEBPS/img/connect.gif
Connect To Oracle Database

User Name: [

Password

Connect Sting:

ol

OEBPS/img/o4o00016.gif
Recipient

OEBPS/dcommon/masterix.gif

OEBPS/dcommon/bookicon.gif

OEBPS/img/dcprops.gif
[ORADataControl ORADC
Alphabetic Categorized |

Caption Oracle Data Control
Databasellame ExampleDb
Dirtywite Fale

EditMade. 0

Enabled True

FetchLimit 0

Fetchsize 0

Font (Fort)

ForeColor [00000125

HelpContextD 0
Index

NoRefetch Fale

Options 0

Oraclettode Fale

Readorly False
Recordsource select * from emp

OEBPS/dcommon/oracle.gif

OEBPS/img/o4o00015.gif
OraSession

I OraDatabase

—}— User Sessions

OEBPS/dcommon/prodbig.gif

OEBPS/img/exmacros.gif
CleaData
Enchata

Desciption

OEBPS/img/runform.gif
. Form1

Employes Number
7369

Employes Name
[SMITH

Emploges Job
[CLERK

W[4| o Daa coner

MM

OEBPS/dcommon/doclib.gif

OEBPS/img/exsheet.gif
Bl

ENAME

A B x C D E F [H

1 [EMPNO_[ENAME_LI0B MGR__ HIREDATE SAL __ COMM _ DEPTNG
2| 739/SMITH CLERK 7902 127770 BUO0 o
3| 7499 ALLEN SALESMAN 7698 2201 1B00 300 0
4| 752 WARD SALESMAN 7698 2221 1260 &0 0
5| 7506.JONES MANAGER 7839 Apm1 2975 i
6| 755 MARTIN SALESMAN 7698 9AA1 1260 1400 0
7| 769BBLAKE MANAGER 783 501 280 0
8| 7782CLARK MANAGER 7839 BAA1 2480 10
9| 778SCOTT ANALYST 756 4797 3000 i
10| 783 KNG PRESIDENT 1781 5000 10
1| 7844 TURNER SALESMAN 7698 9Bl 1500 [E
12| 7876 ADAMS | CLERK 778 sAR7 110 i
13| 7900 JAMES | CLERK 7698 1273781 950 0
1| 7902 FORD ANALYST 756 1231 3000 pi
15| 793 MLLER | CLERK T2 vzRz 13m 10
6

7 Refresh Clear

OEBPS/dcommon/conticon.gif

OEBPS/dcommon/booklist.gif

OEBPS/dcommon/oracle-small.JPG
ORACLE

OEBPS/img/o4o00002.gif

OEBPS/dcommon/rarrow.gif

OEBPS/dcommon/prodicon.gif

OEBPS/img/o4o00001.gif
OraSession
44 OraServer
OraDatabase

OraSQLStmt

OraDynasst OraFi

= OraAQ OraAQMsg

OraParameters OraParameter m
OraParameterArray
OraMetaData OraMDAttribute m

OEBPS/dcommon/topnav.gif

OEBPS/img/boxprops.gif
[Text1(0) TextBox

Alphabetic Categorized |

DataSource ORADataContral

Datarield

Returnsfsets a valus that binds a control to a fild in
the cunent record

OEBPS/dcommon/mix.gif

OEBPS/dcommon/indxicon.gif

OEBPS/dcommon/toc.gif

OEBPS/dcommon/leftnav.gif

OEBPS/img/oradc.gif

OEBPS/dcommon/bookbig.gif

OEBPS/dcommon/larrow.gif

OEBPS/img/o4o00003.gif
Awailable References:

[CIGfProv 1.0 Type Lbrary = Cancel
[CIOLE DB Erors Type Lbrary —
[Cloleprn 1.0 Type Library.

ok 1.0 Type Lbrary Erowse.
] Optsrold 1.0 Type Lvary —
0 Srace Deta Contral +

L] Ora0LEDE 1.0 Type Lirary Prioiy

[package and Degloyment Weerd = e

[Pagetiavber DTC 1.0 Type Lbrary +

[CIPDCube 1.0 Type Library
[Clperformance Logs and Alerts 1.0 Type Library
[Clpkekg 1.0 Type Lbrary

[pPhiavicatorEricae 1.0 Tyoe Library _';I
« >

-Orack Infroc Server 5.0 Typs Libary
Location: Ciloradeloratolbiniop10.b
Language: Standard

OEBPS/dcommon/help.gif

OEBPS/img/oradcprp.gif
R R Gereal | Conol Al

Propety Voo
Capton OReDCC
Cornect sootiger
Databaseiame crapleds
Ditgite Fabe
Edibode 0

Endbled Tue
FetchLinit 0
Fetchsize 0

Fort VS Sans Sert

OEBPS/img/o4o00004.gif
Conto | Desgrrs | Iseble Obects |

[CIMSWEEDYD 1.0 Type Lirary 2
[CIhodetgr 1.0 Type Lbrary

[Cloleprn 1.0 Type Library.

[10ptsHold 1.0 Type Library.

[CIpackage and Deployment wizard
[CIpagetiavhar DTC 1.0 Type Library

[Clpreview 1.0 Type Library

[Clprowz 1.0 Type Lirary

[CIRDCClientrost 1.0 Type Library |
[CIReal layer Activex Control Lbrary

| Ref Edit Control
D Reqwace .6 Ty Lbrry . _ mowe. |
I —| 3

J T~ gelected Items Only

-Orack Data Contral

Location: ~ C:\oraclelorai0lpintorade.ox

oo |0

OEBPS/img/wizproc.gif
0040 Code Wizard for Stored Procedures

Select Stored Procedures and enfer a flename to hast your Stored
Frocedutes. Upon clicking OK. 0040 Code Wizard will add the fe
o yourVisual Basic proect,

Select Stored Pracedures

E=- -
@ CTXBUG_IDISPATCH
50 e
@ GETEMPDATA
@ GETEMPDATE
) GETEMPNAME
L]

GETEMPNAMESINARRAY
[ARRAYSIZE in Number
[INEMPNOS in
[DUTEMPNAMES out

B @ GETEMPSAL
[out Number
[INEMPNO in Number

/%@ EMPLOYEE TEST

Eniet th flename

D Wicrasot Viua Studo\VBSBNGP T s Browse.

& Apperd erecuton codeto e
€ Oyeritzthe fi content ith e exzoufion codz.

Component ype: [Ciass Module (~cls)

v st e chisbas e i i chd

o ==

OEBPS/img/oradcins.gif
Insert ActiveX Control
Actve coniiol
ObjectBromser Contiol
ObjectLst Contol Cancel
Oracle Image Conlrol
Qrack InerDifce Server
(Qracle PoweBrowser DEX
Qracle Sound Cortel
(Qracl Video Conirol
(ORADC Contol =
Fopup Contiol
Fopuphienu Dbiest [

Path:

